
Digital	Filter	Design	VIs	and	Functions
June	2008,	371325C-01
Installed	With:	Digital	Filter	Design	Toolkit.	This	topic	might	not	match	its
corresponding	palette	in	LabVIEW	depending	on	your	operating	system,
licensed	product(s),	and	target.
Use	the	Digital	Filter	Design	VIs	and	functions	to	create	digital	filters,
analyze	filter	characteristics,	process	signals,	convert	floating-point	filters
to	fixed-point	filters,	simulate	fixed-point	filtering	processes,	and	generate
code	to	implement	filters	on	embedded	platforms.
The	VIs	on	this	palette	can	return	general	LabVIEW	error	codes	or
specific	digital	filter	design	error	codes.

Subpalette Description
Conversion
VIs

Use	the	Conversion	VIs	to	retrieve	and	convert	filter
structures	and	to	cascade	filters.

Filter
Analysis
VIs

Use	the	Filter	Analysis	VIs	to	analyze	the	characteristics	of
filters.

Filter
Design	VIs

Use	the	Filter	Design	VIs	to	create	finite	impulse	response
(FIR),	infinite	impulse	response	(IIR),	and	other	types	of
filters.

Fixed-Point
Tools	VIs

Use	the	Fixed-Point	Tools	VIs	to	quantize	coefficients,
model	the	behavior	of	fixed-point	filters,	simulate	filtering
processes,	generate	statistics	reports,	and	generate	fixed-
point	target	code.

Multirate
Filter
Analysis
VIs

Use	the	Multirate	Filter	Analysis	VIs	to	analyze
characteristics	of	multirate	filters.

Multirate
Filter
Design	VIs

Use	the	Multirate	Filter	Design	VIs	to	create	multirate	filters.

Multirate
Fixed-Point
Tools	VIs

Use	the	Multirate	Fixed-Point	Tools	VIs	to	quantize	filter
coefficients,	model	the	behavior	of	fixed-point	multirate
filters,	simulate	multirate	filtering	processes,	and	generate

lverror.chm::/Misc_LV_Error_Codes.html
lvdigfiltdestk.chm::/DFD_Conversion_VIs.html
lvdigfiltdestk.chm::/DFD_Analysis_VIs.html
lvdigfiltdestk.chm::/DFD_Design_VIs.html
lvdigfiltdestk.chm::/DFD_FXP_Tools_VIs.html
lvdigfiltdestk.chm::/DFD_M_Analysis_VIs.html
lvdigfiltdestk.chm::/DFD_Multi_Design_VIs.html
lvdigfiltdestk.chm::/MR_FXP_Tools.html

fixed-point	target	code.
Multirate
Processing
VIs

Use	the	Multirate	Processing	VIs	to	filter	signals	with
multirate	digital	filters.

Multirate
Utilities	VIs

Use	the	Multirate	Utilities	VIs	to	retrieve	the	multirate	filter
coefficients	and	parameters	and	to	create	multirate	filters
from	the	filter	coefficients.

Processing
VIs

Use	the	Processing	VIs	to	filter	signals	with	digital	filters.

Utilities	VIs Use	the	Utilities	VIs	to	retrieve	the	filter	coefficients	and	and
to	create	filters	from	the	coefficients.

©	2005–2008	National	Instruments	Corporation.	All	rights	reserved.

lvdigfiltdestk.chm::/DFD_M_Process_VIs.html
lvdigfiltdestk.chm::/MR_Utilities_VIs.html
lvdigfiltdestk.chm::/DFD_Processing_VIs.html
lvdigfiltdestk.chm::/DFD_Utilities_VIs.html

Conversion	VIs
Owning	Palette:	Digital	Filter	Design	VIs	and	Functions
Installed	With:	Digital	Filter	Design	Toolkit.	This	topic	might	not	match	its
corresponding	palette	in	LabVIEW	depending	on	your	operating	system,
licensed	product(s),	and	target.
Use	the	Conversion	VIs	to	retrieve	and	convert	filter	structures	and	to
cascade	filters.
The	VIs	on	this	palette	can	return	general	LabVIEW	error	codes	or
specific	digital	filter	design	error	codes.

Palette	Object Description
DFD	Cascade
Filters

Creates	a	new	filter	by	cascading	two	or	more	filters.

DFD	Convert
Structure

Converts	the	structure	of	a	filter	to	a	new	structure	that
you	specify.

DFD	Get	Filter
Structure

Retrieves	the	structure	of	a	specified	filter.

DFD	Scale	Filter Scales	the	coefficients	of	a	filter	without	changing	the
characteristics	of	the	filter.

lvdigfiltdestk.chm::/DFD_VIs.html
lverror.chm::/Misc_LV_Error_Codes.html
lvdigfiltdestk.chm::/DFD_Cascade_Filters.html
lvdigfiltdestk.chm::/DFD_Convert_Struc.html
lvdfdtconcepts.chm::/select_structure.html
lvdigfiltdestk.chm::/DFD_Get_Structure.html
lvdigfiltdestk.chm::/DFD_Scale_Filter.html

DFD	Cascade	Filters	VI
Owning	Palette:	Conversion	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Creates	a	new	filter	by	cascading	two	or	more	filters.
Example

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
filter	in	1	specifies	the	first	filter	you	want	to	cascade.
filter	in	2	specifies	the	second	filter	you	want	to	cascade.
filters	in	specifies	one	or	more	filters	that	you	want	to	cascade.
Use	this	input	instead	of	the	filter	in	1	and	filter	in	2	inputs	to
cascade	more	than	two	filters.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced

lvdigfiltdestk.chm::/DFD_Conversion_VIs.html
javascript:placeObject(object2879);
javascript:findObject(object2879);
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

the	error	or	warning.	The	default	is	an	empty	string.

filter	out	returns	a	new	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

Example
Refer	to	the	Cascade	Lowpass	and	Highpass	to	Bandpass	Filter	VI	in	the
labview\examples\Digital	Filter	Design\Getting	Started\Design	Filters	directory
for	an	example	of	using	the	DFD	Cascade	Filters	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CGetting%20Started%5C%5CDesign%20Filters%5C%5CCascade%20Lowpass%20and%20Highpass%20to%20Bandpass%20Filter.vi');
javascript:findExamples(10056);

DFD	Convert	Structure	VI
Owning	Palette:	Conversion	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Converts	the	structure	of	a	filter	to	a	new	structure	that	you	specify.
Examples

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
filter	in	specifies	the	input	filter.
target	structure	specifies	the	new	structure	you	want	to	use	to
design	the	filter.	You	can	select	one	of	23	structure	types	for	FIR
and	IIR	filters.	

1 FIR	Direct	Form	(default)
2 FIR	Direct	Form	Transposed
3 FIR	Symmetric
4 FIR	Antisymmetric
5 IIR	Direct	Form	I
6 IIR	Direct	Form	I	Transposed
7 IIR	Direct	Form	II
8 IIR	Direct	Form	II	Transposed
9 IIR	Cascaded	Second-Order	Sections	Form	I
10 IIR	Cascaded	Second-Order	Sections	Form	I	Transposed
11 IIR	Cascaded	Second-Order	Sections	Form	II
12 IIR	Cascaded	Second-Order	Sections	Form	II	Transposed
13 Lattice	Allpass	(basic	sections)
14 Lattice	Allpass	(one	multiplier	sections)
15 Lattice	Allpass	(normalized	sections)
16 Lattice	AR	(basic	sections)

lvdigfiltdestk.chm::/DFD_Conversion_VIs.html
lvdfdtconcepts.chm::/select_structure.html
javascript:placeObject(object2873);
javascript:findObject(object2873);

17 Lattice	AR	(one	multiplier	sections)
18 Lattice	AR	(normalized	sections)
19 Lattice	MA	(minimum	phase)
20 Lattice	MA	(maximum	phase)
21 Lattice	ARMA	(basic	sections)
22 Lattice	ARMA	(one	multiplier	sections)
23 Lattice	ARMA	(normalized	sections)

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

filter	out	returns	the	filter	with	the	new	structure.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

Examples
Refer	to	the	following	VIs	for	examples	of	using	the	DFD	Convert
Structure	VI:

Structure	Selection	and	Quantization	VI:	labview\examples\Digital
Filter	Design\Fixed-Point	Filters\Single-Rate
	Open	example	 	Browse	related	examples
Change	Structure	of	Filter	VI:	labview\examples\Digital	Filter
Design\Getting	Started\Apply	Filters
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFixed-Point%20Filters%5C%5CSingle-Rate%5C%5CStructure%20Selection%20and%20Quantization.vi');
javascript:findExamples(10063);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CGetting%20Started%5C%5CApply%20Filters%5C%5CChange%20Structure%20of%20Filter.vi');
javascript:findExamples(10054);

DFD	Get	Filter	Structure	VI
Owning	Palette:	Conversion	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Retrieves	the	structure	of	a	specified	filter.
Example

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
filter	in	specifies	the	input	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

filter	out	returns	the	filter	in	unchanged.
structure	returns	the	structure	of	the	filter.

lvdigfiltdestk.chm::/DFD_Conversion_VIs.html
javascript:placeObject(object2878);
javascript:findObject(object2878);
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

Example
Refer	to	the	Change	Structure	of	Filter	VI	in	the	labview\examples\Digital
Filter	Design\Getting	Started\Apply	Filters	directory	for	an	example	of	using
the	DFD	Get	Filter	Structure	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CGetting%20Started%5C%5CApply%20Filters%5C%5CChange%20Structure%20of%20Filter.vi');
javascript:findExamples(10054);

DFD	Scale	Filter	VI
Owning	Palette:	Conversion	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Scales	the	coefficients	of	a	filter	without	changing	the	characteristics	of
the	filter.
Details		Example

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
scale	type	specifies	the	options	you	use	to	scale	the	filter
coefficients.	Refer	to	the	Details	section	of	this	topic	for	more
information	about	each	scale	type.	

0 No	Norm
1 Time	Domain	1-Norm	(default)
2 Time	Domain	2-Norm
3 Time	Domain	Inf-Norm

filter	in	specifies	the	input	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.

lvdigfiltdestk.chm::/DFD_Conversion_VIs.html
javascript:placeObject(object3634);
javascript:findObject(object3634);
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html

code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

filter	out	returns	the	scaled	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html
lverror.chm::/Error_Code_Ranges.html

DFD	Scale	Filter	Details
This	VI	calculates	the	norm	values	for	all	impulse	responses	of	the
summation	outputs	in	the	filter.	This	VI	then	chooses	an	appropriate	norm
value	to	use	as	the	reference	for	scaling	the	filter	coefficients.	You	can
use	the	following	four	norm	calculation	types:

Time	Domain	1-Norm—Specifies	that	for	the	impulse	response
of	each	summation	output,	this	VI	calculates	the	corresponding
norm	value	by	using	the	following	equation:

where	hi	is	the	impulse	response.

This	scale	type	ensures	that	the	dynamic	range	of	the	output
values	is	within	an	appropriate	range.	However,	this	scale	type
also	reduces	the	signal-to-rounding-noise	ratio.
Time	Domain	2-Norm—Specifies	that	for	the	impulse	response
of	each	summation	output,	this	VI	calculates	the	corresponding
norm	value	by	using	the	following	equation:

This	scale	type	returns	a	higher	signal-to-rounding-noise	ratio
than	the	Time	Domain	1-Norm	type.	However,	this	scale	type
cannot	guarantee	an	appropriate	dynamic	range	of	the	output
values.
Time	Domain	Inf-Norm—Specifies	that	for	the	impulse	response
of	each	summation	output,	this	VI	calculates	the	corresponding
norm	value	by	using	the	following	equation:
max|hi|

This	scale	type	cannot	guarantee	an	appropriate	dynamic	range
of	the	output	values.
No	Norm—Does	not	normalize	the	impulse	response.

The	four	norm	calculation	types	in	the	list	above	have	decreasing
requirements,	which	correspondingly	result	in	a	decreased	overflow-
handling	capability	for	fixed-point	operations	such	as	quantization.
Choose	the	appropriate	scale	type	according	to	the	specific	requirements

lvdfdtconcepts.chm::/dfd_structure_graph.html

and	applications.

Example
Refer	to	the	Scale	Filter	before	Targeting	to	FXP	VI	in	the
labview\examples\Digital	Filter	Design\Fixed-Point	Filters\Single-Rate
directory	for	an	example	of	using	the	DFD	Scale	Filter	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFixed-Point%20Filters%5C%5CSingle-Rate%5C%5CScale%20Filter%20before%20Targeting%20to%20FXP.vi');
javascript:findExamples(10063);

Filter	Analysis	VIs
Owning	Palette:	Digital	Filter	Design	VIs	and	Functions
Installed	With:	Digital	Filter	Design	Toolkit.	This	topic	might	not	match	its
corresponding	palette	in	LabVIEW	depending	on	your	operating	system,
licensed	product(s),	and	target.
Use	the	Filter	Analysis	VIs	to	analyze	the	characteristics	of	filters.
The	VIs	on	this	palette	can	return	general	LabVIEW	error	codes	or
specific	digital	filter	design	error	codes.

Palette	Object Description
DFD	Get	Freq
Response

Calculates	the	frequency	responses,	including	the
magnitude	and	phase	responses,	of	a	filter	at	specified
frequency	points.

DFD	Plot	Freq
Response

Plots	the	frequency	responses,	including	the
magnitude	and	phase	responses,	of	a	filter.

DFD	Plot	Group
Delay

Plots	the	group	delay	response	of	a	filter.

DFD	Plot
Impulse
Response

Plots	the	impulse	response	of	a	filter.

DFD	Plot
Narrowband
Freq	Response

Plots	the	frequency	responses,	including	the
magnitude	and	phase	responses,	of	a	narrowband
filter.

DFD	Plot	Phase
Delay

Plots	the	phase	delay	response	of	a	filter.

DFD	Plot	Pole-
Zero

Plots	the	poles	and	zeroes	of	a	filter	in	the	z-plane.

DFD	Plot	Step
Response

Plots	the	step	response	of	a	filter.

Filter	Analysis Analyzes	the	specified	characteristics	of	a	filter.

lvdigfiltdestk.chm::/DFD_VIs.html
lverror.chm::/Misc_LV_Error_Codes.html
lvdigfiltdestk.chm::/DFD_Get_Freq_Res.html
lvdigfiltdestk.chm::/DFD_Plot_Freq_Res.html
lvdigfiltdestk.chm::/DFD_Plot_Group_Delay.html
lvdfdtconcepts.chm::/grp_phase_delay.html
lvdigfiltdestk.chm::/DFD_Plot_Impulse_Res.html
lvdigfiltdestk.chm::/DFD_Plot_Narrow_Freq.html
lvdfdtconcepts.chm::/narrowband_fir.html
lvdigfiltdestk.chm::/DFD_Plot_Phase_Delay.html
lvdfdtconcepts.chm::/grp_phase_delay.html
lvdigfiltdestk.chm::/DFD_Plot_Zero_Pole.html
lvdfdtconcepts.chm::/Poles_and_Zeroes.html
lvdigfiltdestk.chm::/DFD_Plot_Step_Resp.html
lvdigfiltdestk.chm::/DFD_Check_Filter.html

Filter	Analysis	Express	VI
Owning	Palette:	Filter	Analysis	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Analyzes	the	specified	characteristics	of	a	filter.

Dialog	Box	Options
Block	Diagram	Inputs
Block	Diagram	Outputs

	Place	on	the	block	diagram 	Find	on	the	Functions	palette

lvdigfiltdestk.chm::/DFD_Analysis_VIs.html
javascript:placeObject(object2929);
javascript:findObject(object2929);

Dialog	Box	Options
Parameter Description
Show
impulse
response

Plots	the	impulse	response	if	you	place	a	checkmark	in	the
checkbox.

Show	step
response

Plots	the	step	response	if	you	place	a	checkmark	in	the
checkbox.

Show
pole-zero
plot

Plots	the	poles	and	zeroes	if	you	place	a	checkmark	in	the
checkbox.

Show
magnitude
response

Plots	the	magnitude	response	if	you	place	a	checkmark	in
the	checkbox.

Show
phase
response

Plots	the	phase	delay	response	if	you	place	a	checkmark	in
the	checkbox.

Show
group
delay

Plots	the	group	delay	response	if	you	place	a	checkmark	in
the	checkbox.

Magnitude Contains	the	following	options:
Linear—Displays	the	magnitude	response	using	a
linear	scale.
dB—Displays	the	magnitude	response	in	decibels.

Phase Contains	the	following	options:
Unwrap	phase—Specifies	whether	this	Express	VI
wraps	or	unwraps	the	phase.	If	you	place	a
checkmark	in	the	checkbox,	this	Express	VI
unwraps	the	phase	and	does	not	restrict	the	phase
to	[0,	2π].
Unit	in	degree—Specifies	whether	to	display	the
phase	in	degrees	or	radians.	If	you	place	a
checkmark	in	the	checkbox,	this	Express	VI	displays
the	phase	in	degrees.

lvdfdtconcepts.chm::/Poles_and_Zeroes.html
lvdfdtconcepts.chm::/grp_phase_delay.html
lvdfdtconcepts.chm::/grp_phase_delay.html

Block	Diagram	Inputs
Parameter Description
filter	in Specifies	the	input	filter.
error	in	(no
error)

Describes	error	conditions	that	occur	before	this	VI	or
function	runs.

Block	Diagram	Outputs
Parameter Description
magnitude Returns	the	magnitude	response	plot.
phase Returns	the	phase	response	plot.
group
delay

Returns	the	group	delay	response	plot.

Z	Plane Returns	the	pole-zero	response	plot.
impulse Returns	the	impulse	response	plot.
step Returns	the	step	response	plot.
error	out Contains	error	information.	If	error	in	indicates	that	an	error

occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

DFD	Get	Freq	Response	VI
Owning	Palette:	Filter	Analysis	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Calculates	the	frequency	responses,	including	the	magnitude	and	phase
responses,	of	a	filter	at	specified	frequency	points.
Examples

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
output	option	specifies	the	frequency	response	that	this	VI	plots.	

0 Floating-Point	(default)—If	filter	in	is	a	floating-point	filter,	this
VI	calculates	the	frequency	response	of	this	filter.	If	filter	in	is	a
fixed-point	filter,	this	VI	calculates	the	frequency	response	of
the	reference	floating-point	filter.

1 Fixed-Point—If	filter	in	is	a	floating-point	filter,	this	VI	returns
an	error.	If	filter	in	is	a	fixed-point	filter,	this	VI	calculates	the
frequency	response	of	this	filter.

freq	points	specifies	the	frequency	points,	in	hertz,	at	which	you
want	to	calculate	the	frequency	response.
filter	in	specifies	the	input	filter.
phase	view	specifies	the	phase	response	display	settings.

unwrap?	specifies	whether	this	VI	unwraps	the	phase.	The
default	is	FALSE,	which	specifies	that	the	phase	remains
wrapped	and	is	limited	to	[0,	2π).
degree?	specifies	whether	the	phase	appears	in	degrees	or
radians.	The	default	is	FALSE,	which	specifies	that	the
phase	appears	in	radians.

dB	on?	specifies	whether	this	VI	uses	decibels	or	a	linear	scale	to

lvdigfiltdestk.chm::/DFD_Analysis_VIs.html
javascript:placeObject(object2842);
javascript:findObject(object2842);

express	the	magnitude	response.	The	default	is	TRUE,	which
specifies	that	this	VI	converts	linear	magnitude	response	to
decibels.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

fs	specifies	the	sampling	frequency	in	hertz.	The	default	is	–1,
which	specifies	that	this	VI	uses	the	sampling	frequency	of	the
input	filter.
filter	out	returns	the	filter	in	unchanged.
magnitude	returns	the	resulting	magnitude	response	at	freq
points.
phase	returns	the	resulting	phase	response	at	freq	points.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

for	more	information	about	the	error.
status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

Examples
Refer	to	the	following	VIs	for	examples	of	using	the	DFD	Get	Freq
Response	VI:

Lpth	Norm	Complex	Approximation-Compensate	Channel
Distortion	VI:	labview\examples\Digital	Filter	Design\Floating-Point
Filters\Conventional
	Open	example	 	Browse	related	examples
Analyze	Frequency	Response	of	Filter	with	Log	Spaced	Freq
Bins	VI:	labview\examples\Digital	Filter	Design\Getting
Started\Analyze	Filters
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFloating-Point%20Filters%5C%5CConventional%5C%5CLpth%20Norm%20Complex%20Approximation-Compensate%20Channel%20Distortion.vi');
javascript:findExamples(6302);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CGetting%20Started%5C%5CAnalyze%20Filters%5C%5CAnalyze%20Frequency%20Response%20of%20Filter%20with%20Log%20Spaced%20Freq%20Bins.vi');
javascript:findExamples(10052);

DFD	Plot	Freq	Response	VI
Owning	Palette:	Filter	Analysis	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Plots	the	frequency	responses,	including	the	magnitude	and	phase
responses,	of	a	filter.
Details		Examples

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
output	option	specifies	the	filter	response	that	this	VI	plots.	

0 Auto	(default)—This	VI	automatically	determines	the	responses
of	filter	in	to	plot.	If	filter	in	is	a	floating-point	filter,	this	VI	plots
the	frequency	response	of	this	filter.	If	filter	in	is	a	fixed-point
filter,	this	VI	plots	the	frequency	responses	of	both	the	fixed-
point	filter	and	the	reference	floating-point	filter.

1 Floating-Point	Only—If	filter	in	is	a	floating-point	filter,	this	VI
plots	the	frequency	response	of	this	filter.	If	filter	in	is	a	fixed-
point	filter,	this	VI	plots	the	frequency	response	of	the	reference
floating-point	filter.

2 Fixed-Point	Only—If	filter	in	is	a	floating-point	filter,	this	VI
returns	an	empty	graph.	If	filter	in	is	a	fixed-point	filter,	this	VI
plots	the	frequency	response	of	this	filter.

#	freq	bins	specifies	the	number	of	frequency	bins	between	0	and
fs	that	this	VI	plots	in	the	frequency	response.	The	default	is	–1,
which	specifies	that	this	VI	automatically	determines	the	number	of
frequency	bins.
filter	in	specifies	the	input	filter.
phase	view	specifies	the	phase	response	display	settings.

unwrap?	specifies	whether	this	VI	unwraps	the	phase.	The

lvdigfiltdestk.chm::/DFD_Analysis_VIs.html
javascript:placeObject(object2834);
javascript:findObject(object2834);

default	is	FALSE,	which	specifies	that	the	phase	remains
wrapped	and	is	limited	to	[0,	2π).
degree?	specifies	whether	the	phase	appears	in	degrees	or
radians.	The	default	is	FALSE,	which	specifies	that	the
phase	appears	in	radians.

dB	on?	specifies	whether	this	VI	uses	decibels	or	a	linear	scale	to
express	the	magnitude	response.	The	default	is	TRUE,	which
specifies	that	this	VI	converts	linear	magnitude	response	to
decibels.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

fs	specifies	the	sampling	frequency	in	hertz.	The	default	is	–1,
which	specifies	that	this	VI	uses	the	sampling	frequency	of	the
input	filter.
filter	out	returns	the	filter	in	unchanged.
magnitude	response	returns	the	magnitude	response	of	the	filter.
phase	response	returns	the	phase	response	of	the	filter.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	Plot	Freq	Response	Details
Given	the	transfer	function	of	a	filter	H(z),	the	frequency	response	of	the
filter	is	defined	by	the	following	equation:

H(ejω)	=	H(z)|z	=	ejω

H(ejω)	is	a	complex	function	that	can	be	expressed	using	the	following
equation:

H(ejω)	=	|H(ejω)|ejθ(ω)

where	|H(ejω)|	is	defined	as	the	magnitude	response,	and	θ(ω)	is	defined
as	the	phase	response.

If	k	is	an	integer,	H(ej(ω+2kπ))	=	H(ej2kπejω)	=	H(ejω),	so	H(ejω)	is	periodic
with	a	period	2π.	|H(ejω)|	and	θ(ω)	also	are	periodic	with	a	period	2π.	For
one	period	–π	≤	ω	≤	π,	the	magnitude	response	is	even	symmetric	and
the	phase	response	is	odd	symmetric.	The	frequency	response	is
calculated	only	for	0	≤	ω	≤	π,	meaning	the	frequency	is	between	0	and
fs/2,	where	fs	is	the	normalized	sampling	frequency.

Examples
Refer	to	the	following	VIs	for	examples	of	using	the	DFD	Plot	Freq
Response	VI:

Frequency	Analysis	of	a	Filter	Design	-	DFD	VI:
labview\examples\Digital	Filter	Design\AALXMPL
	Open	example	 	Browse	related	examples
Analyze	Frequency	Response	of	Filter	VI:	labview\examples\Digital
Filter	Design\Getting	Started\Analyze	Filters
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CAALXMPL%5C%5CFrequency%20Analysis%20of%20a%20Filter%20Design%20-%20DFD.vi');
javascript:findExamples(3742);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CGetting%20Started%5C%5CAnalyze%20Filters%5C%5CAnalyze%20Frequency%20Response%20of%20Filter.vi');
javascript:findExamples(10052);

DFD	Plot	Group	Delay	VI
Owning	Palette:	Filter	Analysis	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Plots	the	group	delay	response	of	a	filter.
Examples

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
output	option	specifies	the	group	delay	response	that	this	VI
plots.	

0 Auto	(default)—This	VI	automatically	determines	the	responses
of	filter	in	to	plot.	If	filter	in	is	a	floating-point	filter,	this	VI	plots
the	group	delay	response	of	this	filter.	If	filter	in	is	a	fixed-point
filter,	this	VI	plots	the	group	delay	responses	of	both	the	fixed-
point	filter	and	the	reference	floating-point	filter.

1 Floating-Point	Only—If	filter	in	is	a	floating-point	filter,	this	VI
plots	the	group	delay	response	of	this	filter.	If	filter	in	is	a	fixed-
point	filter,	this	VI	plots	the	group	delay	response	of	the
reference	floating-point	filter.

2 Fixed-Point	Only—If	filter	in	is	a	floating-point	filter,	this	VI
returns	an	empty	graph.	If	filter	in	is	a	fixed-point	filter,	this	VI
plots	the	group	delay	response	of	this	filter.

#	freq	bins	specifies	the	number	of	frequency	bins	between	0	and
fs	that	this	VI	plots	in	the	group	delay	response.	The	default	is	–1,
which	specifies	that	this	VI	automatically	determines	the	number	of
frequency	bins.
filter	in	specifies	the	input	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error

lvdigfiltdestk.chm::/DFD_Analysis_VIs.html
lvdfdtconcepts.chm::/grp_phase_delay.html
javascript:placeObject(object2836);
javascript:findObject(object2836);

occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

fs	specifies	the	sampling	frequency	in	hertz.	The	default	is	–1,
which	specifies	that	this	VI	uses	the	sampling	frequency	of	the
input	filter.
group	delay	unit	specifies	the	unit	of	measurement	for	the	group
delay	response.	

0 Samples	(default)
1 Seconds

filter	out	returns	the	filter	in	unchanged.
group	delay	returns	the	group	delay	response	of	the	filter	in
samples	or	seconds,	depending	on	the	value	you	specify	for	the
group	delay	unit	input.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

Examples
Refer	to	the	following	VIs	for	examples	of	using	the	DFD	Plot	Group
Delay	VI:

Group	Delay	Compensation	VI:	labview\examples\Digital	Filter
Design\Floating-Point	Filters\Conventional
	Open	example	 	Browse	related	examples
Analyze	Frequency	Response	of	Filter	VI:	labview\examples\Digital
Filter	Design\Getting	Started\Analyze	Filters
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFloating-Point%20Filters%5C%5CConventional%5C%5CGroup%20Delay%20Compensation.vi');
javascript:findExamples(6302);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CGetting%20Started%5C%5CAnalyze%20Filters%5C%5CAnalyze%20Frequency%20Response%20of%20Filter.vi');
javascript:findExamples(10052);

DFD	Plot	Impulse	Response	VI
Owning	Palette:	Filter	Analysis	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Plots	the	impulse	response	of	a	filter.
Details		Example

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
output	option	specifies	the	impulse	response	that	this	VI	plots.	

0 Auto	(default)—This	VI	automatically	determines	the	responses
of	filter	in	to	plot.	If	filter	in	is	a	floating-point	filter,	this	VI	plots
the	impulse	response	of	this	filter.	If	filter	in	is	a	fixed-point
filter,	this	VI	plots	the	impulse	responses	of	both	the	fixed-point
filter	and	the	reference	floating-point	filter.

1 Floating-Point	Only—If	filter	in	is	a	floating-point	filter,	this	VI
plots	the	impulse	response	of	this	filter.	If	filter	in	is	a	fixed-
point	filter,	this	VI	plots	the	impulse	response	of	the	reference
floating-point	filter.

2 Fixed-Point	Only—If	filter	in	is	a	floating-point	filter,	this	VI
returns	an	empty	graph.	If	filter	in	is	a	fixed-point	filter,	this	VI
plots	the	impulse	response	of	this	filter.

#	points	specifies	the	number	of	samples	that	this	VI	plots	for	the
impulse	response.	If	the	value	is	an	integer	greater	than	zero,	this
VI	uses	the	specified	value.	If	the	value	is	less	than	or	equal	to
zero,	this	VI	automatically	determines	the	number	of	samples.	The
default	is	–1.
filter	in	specifies	the	input	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value

lvdigfiltdestk.chm::/DFD_Analysis_VIs.html
javascript:placeObject(object2840);
javascript:findObject(object2840);

to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

fs	specifies	the	sampling	frequency	in	hertz.	The	default	is	–1,
which	specifies	that	this	VI	uses	the	sampling	frequency	of	the
input	filter.
filter	out	returns	the	filter	in	unchanged.
impulse	response	returns	the	impulse	response	of	the	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html
lverror.chm::/Error_Code_Ranges.html

the	error	or	warning.

DFD	Plot	Impulse	Response	Details
Impulse	response	is	the	response	of	the	filter	to	the	impulse	signal

A	filter	is	considered	stable	if	the	filter	impulse	response	h(n)	approaches
0	as	n	goes	to	infinity;	otherwise,	the	filter	is	unstable.

Example
Refer	to	the	Analyze	Impulse	and	Step	Response	of	Filter	VI	in	the
labview\examples\Digital	Filter	Design\Getting	Started\Analyze	Filters
directory	for	an	example	of	using	the	DFD	Plot	Impulse	Response	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CGetting%20Started%5C%5CAnalyze%20Filters%5C%5CAnalyze%20Impulse%20and%20Step%20Response%20of%20Filter.vi');
javascript:findExamples(10052);

DFD	Plot	Narrowband	Freq	Response	VI
Owning	Palette:	Filter	Analysis	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Plots	the	frequency	responses,	including	the	magnitude	and	phase
responses,	of	a	narrowband	filter.
Examples

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
#	freq	bins	specifies	the	number	of	frequency	bins	between	0	and
fs	that	this	VI	plots	in	the	frequency	response.	The	default	is	–1,
which	specifies	that	this	VI	automatically	determines	the	number	of
frequency	bins.
narrowband	filter	in	specifies	the	input	narrowband	filter.

multirate	filters	contains	the	multirate	filters	this	VI	uses	to
construct	the	narrowband	filter.
filter	type	contains	the	type	of	filter.	

0 Lowpass	(default)
1 Highpass
2 Bandpass
3 Bandstop
4 Wideband-Lowpass
5 Wideband-Highpass

phase	view	specifies	the	phase	response	display	settings.
unwrap?	specifies	whether	this	VI	unwraps	the	phase.	The
default	is	FALSE,	which	specifies	that	the	phase	remains
wrapped	and	is	limited	to	[0,	2π).
degree?	specifies	whether	the	phase	appears	in	degrees	or

lvdigfiltdestk.chm::/DFD_Analysis_VIs.html
lvdfdtconcepts.chm::/narrowband_fir.html
javascript:placeObject(object2838);
javascript:findObject(object2838);
lvdfdtconcepts.chm::/dfd_filter_spec.html

radians.	The	default	is	FALSE,	which	specifies	that	the
phase	appears	in	radians.

dB	on?	specifies	whether	this	VI	uses	decibels	or	a	linear	scale	to
express	the	magnitude	response.	The	default	is	TRUE,	which
specifies	that	this	VI	converts	linear	magnitude	response	to
decibels.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

fs	specifies	the	sampling	frequency	in	hertz.	The	default	is	–1,
which	specifies	that	this	VI	uses	the	sampling	frequency	of	the
input	filter.
narrowband	filter	out	returns	a	duplicate	filter	of	narrowband
filter	in.

multirate	filters	contains	the	multirate	filters	this	VI	uses	to
construct	the	narrowband	filter.
filter	type	contains	the	type	of	filter.	

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html
lvdfdtconcepts.chm::/dfd_filter_spec.html

0 Lowpass	(default)
1 Highpass
2 Bandpass
3 Bandstop
4 Wideband-Lowpass
5 Wideband-Highpass

magnitude	response	returns	the	magnitude	response	of	the	filter.
phase	response	returns	the	phase	response	of	the	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

Examples
Refer	to	the	following	VIs	for	examples	of	using	the	DFD	Plot
Narrowband	Freq	Response	VI:

Narrowband	Filtering	-	DFD	VI:	labview\examples\Digital	Filter
Design\AALXMPL
	Open	example	 	Browse	related	examples
Narrowband	Filter	Design	and	Processing	VI:
labview\examples\Digital	Filter	Design\Floating-Point	Filters\Multirate
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CAALXMPL%5C%5CNarrowband%20Filtering%20-%20DFD.vi');
javascript:findExamples(3742);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFloating-Point%20Filters%5C%5CMultirate%5C%5CNarrowband%20Filter%20Design%20and%20Processing.vi');
javascript:findExamples(10071);

DFD	Plot	Phase	Delay	VI
Owning	Palette:	Filter	Analysis	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Plots	the	phase	delay	response	of	a	filter.

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
output	option	specifies	the	phase	delay	response	that	this	VI
plots.	

0 Auto	(default)—This	VI	automatically	determines	the	responses
of	filter	in	to	plot.	If	filter	in	is	a	floating-point	filter,	this	VI	plots
the	phase	delay	response	of	this	filter.	If	filter	in	is	a	fixed-point
filter,	this	VI	plots	the	phase	delay	responses	of	both	this	filter
and	the	reference	floating-point	filter.

1 Floating-Point	Only—If	filter	in	is	a	floating-point	filter,	this	VI
plots	the	phase	delay	response	of	this	filter.	If	filter	in	is	a	fixed-
point	filter,	this	VI	plots	the	phase	delay	response	of	the
reference	floating-point	filter.

2 Fixed-Point	Only—If	filter	in	is	a	floating-point	filter,	this	VI
returns	an	empty	graph.	If	filter	in	is	a	fixed-point	filter,	this	VI
plots	the	phase	delay	response	of	this	filter.

#	freq	bins	specifies	the	number	of	frequency	bins	between	0	and
fs	that	this	VI	plots	in	the	phase	delay	response.	The	default	is	–1,
which	specifies	that	this	VI	automatically	determines	the	number	of
frequency	bins.
filter	in	specifies	the	input	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while

lvdigfiltdestk.chm::/DFD_Analysis_VIs.html
lvdfdtconcepts.chm::/grp_phase_delay.html
javascript:placeObject(object2837);
javascript:findObject(object2837);

this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

fs	specifies	the	sampling	frequency	in	hertz.	The	default	is	–1,
which	specifies	that	this	VI	uses	the	sampling	frequency	of	the
input	filter.
phase	delay	unit	specifies	the	unit	of	measurement	for	the	phase
delay	response.	

0 Samples	(default)
1 Seconds

filter	out	returns	the	filter	in	unchanged.
phase	delay	returns	the	phase	delay	response	of	the	filter	in
samples	or	seconds,	depending	on	the	value	you	specify	for	the
phase	delay	unit	input.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	Plot	Pole-Zero	VI
Owning	Palette:	Filter	Analysis	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Plots	the	poles	and	zeroes	of	a	filter	in	the	z-plane.
Example

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
output	option	specifies	the	pole-zero	distribution	that	this	VI	plots.

0 Auto	(default)—This	VI	automatically	determines	the	pole-zero
distribution	of	filter	in	to	plot.	If	filter	in	is	a	floating-point	filter,
this	VI	plots	the	pole-zero	distribution	of	this	filter.	If	filter	in	is	a
fixed-point	filter,	this	VI	plots	the	pole-zero	distributions	of	both
this	filter	and	the	reference	floating-point	filter.

1 Floating-Point	Only—If	filter	in	is	a	floating-point	filter,	this	VI
plots	the	pole-zero	distribution	of	this	filter.	If	filter	in	is	a	fixed-
point	filter,	this	VI	plots	the	pole-zero	distribution	of	the
reference	floating-point	filter.

2 Fixed-Point	Only—If	filter	in	is	a	floating-point	filter,	this	VI
returns	an	empty	graph.	If	filter	in	is	a	fixed-point	filter,	this	VI
plots	the	pole-zero	distribution	of	this	filter.

filter	in	specifies	the	input	filter.
upper	half	plane	only	specifies	if	this	VI	displays	zeroes	and
poles	on	only	the	upper-half	unit	circle.	The	default	is	TRUE.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error

lvdigfiltdestk.chm::/DFD_Analysis_VIs.html
lvdfdtconcepts.chm::/Poles_and_Zeroes.html
javascript:placeObject(object2839);
javascript:findObject(object2839);
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html

Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

filter	out	returns	the	filter	in	unchanged.
Z-Plane	returns	the	zeroes	and	poles	of	the	filter	in	an	XY	graph.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html
lverror.chm::/Error_Code_Ranges.html

Example
Refer	to	the	Get	Zero-Pole-Gain	of	Filter	VI	in	the	labview\examples\Digital
Filter	Design\Getting	Started\Analyze	Filters	directory	for	an	example	of
using	the	DFD	Plot	Pole-Zero	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CGetting%20Started%5C%5CAnalyze%20Filters%5C%5CGet%20Zero-Pole-Gain%20of%20Filter.vi');
javascript:findExamples(10052);

DFD	Plot	Step	Response	VI
Owning	Palette:	Filter	Analysis	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Plots	the	step	response	of	a	filter.
The	step	response	is	the	response	to	a	unit-step	input	signal.	You	can
use	the	step	response	to	determine	when	the	filter	reaches	the	steady
state	for	the	step	input.
Example

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
output	option	specifies	the	filter	response	that	this	VI	plots.	

0 Auto	(default)—This	VI	automatically	determines	the	responses
of	filter	in	to	plot.	If	filter	in	is	a	floating-point	filter,	this	VI	plots
the	step	response	of	this	filter.	If	filter	in	is	a	fixed-point	filter,
this	VI	plots	the	step	responses	of	both	this	filter	and	the
reference	floating-point	filter.

1 Floating-Point	Only—If	filter	in	is	a	floating-point	filter,	this	VI
plots	the	step	response	of	this	filter.	If	filter	in	is	a	fixed-point
filter,	this	VI	plots	the	step	response	of	the	reference	floating-
point	filter.

2 Fixed-Point	Only—If	filter	in	is	a	floating-point	filter,	this	VI
returns	an	empty	graph.	If	filter	in	is	a	fixed-point	filter,	this	VI
plots	the	step	response	of	this	filter.

#	points	specifies	the	number	of	samples	that	this	VI	plots	for	the
step	response.	If	the	value	is	an	integer	greater	than	zero,	this	VI
uses	the	specified	value.	If	the	value	is	less	than	or	equal	to	zero,
this	VI	automatically	determines	the	number	of	samples.	The
default	is	–1.
filter	in	specifies	the	input	filter.

lvdigfiltdestk.chm::/DFD_Analysis_VIs.html
javascript:placeObject(object2841);
javascript:findObject(object2841);

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

fs	specifies	the	sampling	frequency	in	hertz.	The	default	is	–1,
which	specifies	that	this	VI	uses	the	sampling	frequency	of	the
input	filter.
filter	out	returns	the	filter	in	unchanged.
step	response	returns	the	step	response	of	the	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html
lverror.chm::/Error_Code_Ranges.html

source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

Example
Refer	to	the	Analyze	Impulse	and	Step	Response	of	Filter	VI	in	the
labview\examples\Digital	Filter	Design\Getting	Started\Analyze	Filters
directory	for	an	example	of	using	the	DFD	Plot	Step	Response	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CGetting%20Started%5C%5CAnalyze%20Filters%5C%5CAnalyze%20Impulse%20and%20Step%20Response%20of%20Filter.vi');
javascript:findExamples(10052);

Filter	Design	VIs
Owning	Palette:	Digital	Filter	Design	VIs	and	Functions
Installed	With:	Digital	Filter	Design	Toolkit.	This	topic	might	not	match	its
corresponding	palette	in	LabVIEW	depending	on	your	operating	system,
licensed	product(s),	and	target.
Use	the	Filter	Design	VIs	to	create	finite	impulse	response	(FIR),	infinite
impulse	response	(IIR),	and	other	types	of	filters.
The	VIs	on	this	palette	can	return	general	LabVIEW	error	codes	or
specific	digital	filter	design	error	codes.

Palette	Object Description
Classical	Filter
Design

Creates	a	lowpass,	highpass,	bandpass,	or	bandstop
filter	interactively.

DFD	Classical
Design

Creates	a	lowpass,	highpass,	bandpass,	or	bandstop
filter.

Pole-Zero
Placement

Adds,	deletes,	and	moves	poles	and	zeroes	in	a	filter.

Subpalette Description
Advanced
FIR	Filter
Design	VIs

Use	the	Advanced	FIR	Filter	Design	VIs	to	estimate	finite
impulse	response	(FIR)	filter	order	and	to	create	FIR	filters
from	the	filter	specifications.

Advanced
IIR	Filter
Design	VIs

Use	the	Advanced	IIR	Filter	Design	VIs	to	estimate	infinite
impulse	response	(IIR)	filter	order	and	to	create	IIR	filters
from	the	filter	specifications.

Special
Filter
Design	VIs

Use	the	Special	Filter	Design	VIs	to	create	notch	peak,
infinite	impulse	response	(IIR)	comb,	maximally	flat,
narrowband,	and	other	special	filters.

lvdigfiltdestk.chm::/DFD_VIs.html
lverror.chm::/Misc_LV_Error_Codes.html
lvdigfiltdestk.chm::/DFD_Classical_Filter.html
lvdigfiltdestk.chm::/DFD_Classical_Design.html
lvdigfiltdestk.chm::/DFD_Zero_Pole_Place.html
lvdigfiltdestk.chm::/DFD_Adv_FIR_VIs.html
lvdigfiltdestk.chm::/DFD_Adv_IIR_VIs.html
lvdigfiltdestk.chm::/DFD_Special_VIs.html

Classical	Filter	Design	Express	VI
Owning	Palette:	Filter	Design	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Creates	a	lowpass,	highpass,	bandpass,	or	bandstop	filter	interactively.
Details		

Dialog	Box	Options
Block	Diagram	Inputs
Block	Diagram	Outputs

	Place	on	the	block	diagram 	Find	on	the	Functions	palette

lvdigfiltdestk.chm::/DFD_Design_VIs.html
javascript:placeObject(object2927);
javascript:findObject(object2927);

Dialog	Box	Options
Parameter Description
Main
Settings

Contains	the	following	options:
Filter	type—Specifies	the	type	of	filter	that	this	VI
creates.	The	valid	values	include	Lowpass,
Highpass,	Bandpass,	and	Bandstop.	The	default
is	Lowpass.
Filter	Specifications—Contains	the	following
options:

Sampling	frequency—Specifies	the
sampling	frequency	of	the	filter	in	hertz.	This
input	must	contain	a	value	greater	than	zero.
The	default	is	1k	Hz.
Passband	edge	frequency	1—Specifies
the	first	passband	edge	frequency	of	the
filter	in	hertz.	This	input	must	contain	a	value
greater	than	zero	and	less	than	the	Nyquist
frequency.	If	you	set	Filter	type	to	Lowpass
or	Bandstop,	the	default	is	100	Hz.	If	you	set
Filter	type	to	Highpass	or	Bandpass,	the
default	is	200	Hz.
Passband	edge	frequency	2—Specifies
the	second	passband	edge	frequency	of	the
filter	in	hertz.	This	input	must	contain	a	value
greater	than	Passband	edge	frequency	1
and	less	than	the	Nyquist	frequency.	This
input	is	not	available	for	lowpass	or
highpass	filters.	If	you	set	Filter	type	to
Bandpass,	the	default	is	300	Hz.	If	you	set
Filter	type	to	Bandstop,	the	default	is	400	Hz.
Passband	ripple—Specifies	the	passband
ripple	of	the	filter	in	units	that	the	Magnitude
in	dB	option	determines.	If	you	place	a
checkmark	in	the	Magnitude	in	dB
checkbox,	this	input	must	contain	a	value
greater	than	zero.	The	default	is	0.1	dB.	If

lvdfdtconcepts.chm::/dfd_filter_spec.html

you	remove	the	checkmark	from	the
Magnitude	in	dB	checkbox,	the	valid	range
of	this	input	is	(0,	1).	The	default	then	is
0.011447.
Stopband	edge	frequency	1—Specifies
the	first	stopband	edge	frequency	of	the	filter
in	hertz.	If	you	set	Filter	type	to	Lowpass	or
Bandstop,	this	input	must	contain	a	value
greater	than	Passband	edge	frequency	1
and	less	than	the	Nyquist	frequency.	The
default	is	200	Hz.	If	you	set	Filter	type	to
Highpass	or	Bandpass,	this	input	must	contain
a	value	greater	than	zero	and	less	than
Passband	edge	frequency	1.	The	default
then	is	100	Hz.
Stopband	edge	frequency	2—Specifies
the	second	stopband	edge	frequency	of	the
filter	in	hertz.	If	you	set	Filter	type	to
Bandpass,	this	input	must	contain	a	value
greater	than	Passband	edge	frequency	2
and	less	than	the	Nyquist	frequency.	The
default	is	400	Hz.	If	you	set	Filter	type	to
Bandstop,	this	input	must	contain	a	value
greater	than	Stopband	edge	frequency	1
and	less	than	Passband	edge	frequency	2.
The	default	then	is	300	Hz.	This	input	is	not
available	for	lowpass	or	highpass	filters.
Stopband	attenuation—Specifies	the
stopband	attenuation	of	the	filter	in	units	that
the	Magnitude	in	dB	option	determines.	If
you	place	a	checkmark	in	the	Magnitude	in
dB	checkbox,	this	input	must	contain	a
value	greater	than	zero.	The	default	is	60	dB.
If	you	remove	the	checkmark	from	the
Magnitude	in	dB	checkbox,	the	valid	range
of	this	input	is	(0,	1).	The	default	then	is
0.001.

Design	method—Specifies	the	method	that	this

lvdfdtconcepts.chm::/design_methods.html

Express	VI	uses	to	design	the	filter.	Options	include
Butterworth,	Chebyshev,	Inverse	Chebyshev,
Elliptic,	Kaiser	Window,	Dolph-Chebyshev
Window,	and	Equi-Ripple	FIR.	The	default	is
Elliptic.

Design
Feedback

Contains	the	following	options:
Filter	order—Returns	the	order	of	the	designed
filter.
Error	message—Contains	details	about	errors	that
occur	during	filter	creation.

Magnitude
in	dB

Specifies	whether	this	Express	VI	uses	decibels	or	a	linear
scale	to	express	the	magnitude	response.	If	you	place	a
checkmark	in	the	checkbox,	this	Express	VI	converts	a
linear	magnitude	response	to	decibels.	This	Express	VI
uses	decibels	by	default.

Passband Specifies	the	color	of	the	lines	in	the	magnitude	plot	that
represent	the	passband	response	and	the	passband
frequencies.	The	default	is	blue.	Click	the	color	box	next	to
the	parameter	name	to	select	a	different	color.

Stopband Specifies	the	color	of	the	lines	in	the	magnitude	plot	that
represent	the	stopband	attenuation	and	the	stopband
frequencies.	The	default	is	red.	Click	the	color	box	next	to
the	parameter	name	to	select	a	different	color.

Magnitude
Response

Contains	the	plot	of	the	magnitude	response.	You	can	drag
the	cursors	in	the	plot	to	change	the	specifications.	The
color	you	specify	in	Passband	represents	the	passband
response	and	the	passband	frequencies.	The	color	you
specify	in	Stopband	represents	the	stopband	attenuation
and	the	stopband	frequencies.	The	green	vertical	line	in	the
graph	represents	the	half	sampling	frequency,	also	known
as	the	Nyquist	frequency.

Z-Plane Contains	the	plot	of	the	zeroes	and	poles	of	the	filter	in	the
z-plane.

Block	Diagram	Inputs
Parameter Description
error	in	(no
error)

Describes	error	conditions	that	occur	before	this	VI	or
function	runs.

Block	Diagram	Outputs
Parameter Description
filter	out Returns	the	new	filter.
error	out Contains	error	information.	If	error	in	indicates	that	an	error

occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

Classical	Filter	Design	Details
As	you	define	a	filter	specification,	you	must	adhere	to	a	set	of	rules	to
maintain	valid	specifications.	If	any	violations	to	the	rules	occur,	the	Error
message	indicator	of	the	Configure	Classical	Filter	Design	dialog	box
displays	a	message	with	suggestions	for	repositioning	the	cursors.	The
rules	are	as	follows:

Keep	horizontal	cursors	in	the	range	(0,	1)	in	a	linear	scale	or	(–
inf,	0	dB)	in	a	logarithmic	scale.
Keep	the	horizontal	passband	cursor	above	the	horizontal
stopband	cursor.

Pole-Zero	Placement	Express	VI
Owning	Palette:	Filter	Design	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Adds,	deletes,	and	moves	poles	and	zeroes	in	a	filter.
You	can	load	a	filter	from	an	existing	file.

Dialog	Box	Options
Block	Diagram	Inputs
Block	Diagram	Outputs

	Place	on	the	block	diagram 	Find	on	the	Functions	palette

lvdigfiltdestk.chm::/DFD_Design_VIs.html
javascript:placeObject(object2928);
javascript:findObject(object2928);

Dialog	Box	Options
Parameter Description
Zeroes Specifies	the	properties	for	each	zero	in	the	filter.	Contains

the	following	options:
Real—Specifies	the	real	part	value	if	coordinates
are	rectangular,	or	the	radius	value	if	coordinates
are	polar.
Imaginary—Specifies	the	imaginary	part	value	if
coordinates	are	rectangular,	or	the	angle	value	if
coordinates	are	polar.
Is	real?—Makes	the	specified	pole	or	zero	point	real
if	you	place	a	checkmark	in	the	checkbox.
Is	linear	phase	pair?—Makes	the	specified	pole	or
zero	a	linear	phase	pair	if	you	place	a	checkmark	in
the	checkbox.
On	unit	circle?—Places	the	pole	or	zero	point	on
the	unit	circle	if	you	place	a	checkmark	in	the
checkbox.
Order—Specifies	the	order	of	the	pole	or	zero.	The
value	of	Order	must	be	an	integer	greater	than	zero.
The	default	is	1.

Poles Specifies	the	properties	for	each	pole	in	the	filter.	Contains
the	following	options:

Real—Specifies	the	real	part	value	if	coordinates
are	rectangular,	or	the	radius	value	if	coordinates
are	polar.
Imaginary—Specifies	the	imaginary	part	value	if
coordinates	are	rectangular,	or	the	angle	value	if
coordinates	are	polar.
Is	real?—Makes	the	specified	pole	or	zero	point	real
if	you	place	a	checkmark	in	the	checkbox.
Is	linear	phase	pair?—Makes	the	specified	pole	or
zero	a	linear	phase	pair	if	you	place	a	checkmark	in
the	checkbox.
On	unit	circle?—Places	the	pole	or	zero	point	on

the	unit	circle	if	you	place	a	checkmark	in	the
checkbox.
Order—Specifies	the	order	of	the	pole	or	zero.	The
value	of	Order	must	be	an	integer	greater	than	zero.
The	default	is	1.

Settings Contains	the	following	options:
Gain—Sets	the	gain	of	the	filter	manually.	You	can
use	this	control	only	if	you	remove	the	checkmark
from	the	Normalized	gain	checkbox.
Normalized	gain—Specifies	if	this	Express	VI
automatically	adjusts	the	gain	of	the	filter.	The
default	contains	a	checkmark	in	the	checkbox,	which
specifies	that	this	Express	VI	adjusts	the	gain	so	the
maximum	response	is	1.0	(0	dB).	Remove	the
checkmark	from	the	checkbox	to	adjust	the	gain
manually	with	the	Gain	control.
Sampling	frequency—Specifies	the	sampling
frequency	in	hertz.	This	input	must	contain	a	value
greater	than	zero.	The	default	is	1	Hz.
Coordinates—Specifies	whether	this	Express	VI
displays	poles	and	zeroes	in	rectangular	or	polar
coordinates.	The	default	is	rectangular	coordinates.

Load
Filter	from
File

Opens	a	file	dialog	you	can	use	to	select	a	file	of	a	filter	that
loads	into	this	Express	VI.

Zero Specifies	the	color	of	the	zeroes	in	the	Z	Plane	plot.	The
default	is	blue.	Click	the	color	box	next	to	the	parameter
name	to	select	a	different	color.

Pole Specifies	the	color	of	the	poles	in	the	Z	Plane	plot.	The
default	is	red.	Click	the	color	box	next	to	the	parameter
name	to	select	a	different	color.

Delete
Selected

Deletes	the	selected	pole	or	zero	from	the	filter.

Add	Zero Adds	a	zero	to	the	filter.
Add	Pole Adds	a	pole	to	the	filter.

Z-Plane Plots	the	number	and	location	of	poles	and	zeroes.
Magnitude
Response

Plots	the	filter	magnitude	response.

Magnitude
in	dB

Specifies	whether	this	Express	VI	uses	decibels	or	a	linear
scale	in	the	magnitude	plot.	If	a	checkmark	is	in	the
checkbox,	this	Express	VI	converts	linear	magnitude
response	to	decibels.

Block	Diagram	Inputs
Parameter Description
error	in	(no
error)

Describes	error	conditions	that	occur	before	this	VI	or
function	runs.

Block	Diagram	Outputs
Parameter Description
filter	out Returns	the	new	filter.
error	out Contains	error	information.	If	error	in	indicates	that	an	error

occurred	before	this	VI	or	function	ran,	error	out	contains
the	same	error	information.	Otherwise,	it	describes	the	error
status	that	this	VI	or	function	produces.

DFD	Classical	Design	VI
Owning	Palette:	Filter	Design	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Creates	a	lowpass,	highpass,	bandpass,	or	bandstop	filter.
Example

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
design	method	specifies	the	method	that	this	VI	uses	to	design
the	filter.	

0 Butterworth
1 Chebyshev
2 Inverse	Chebyshev
3 Elliptic	(default)
4 Kaiser	Window
5 Dolph-Chebyshev	Window
6 Equi-Ripple	FIR

filter	type	specifies	the	type	of	filter	that	this	VI	creates.	

0 Lowpass	(default)
1 Highpass
2 Bandpass
3 Bandstop

freq	specs	specifies	the	band	edge	frequencies	of	the	filter.
fpass	1	specifies	the	first	passband	edge	frequency	in
hertz.
fstop	1	specifies	the	first	stopband	edge	frequency	in	hertz.

lvdigfiltdestk.chm::/DFD_Design_VIs.html
javascript:placeObject(object2843);
javascript:findObject(object2843);
lvdfdtconcepts.chm::/design_methods.html
lvdfdtconcepts.chm::/dfd_filter_spec.html

fpass	2	specifies	the	second	passband	edge	frequency	in
hertz.	This	VI	ignores	this	input	for	lowpass	and	highpass
filters.
fstop	2	specifies	the	second	stopband	edge	frequency	in
hertz.	This	VI	ignores	this	input	for	lowpass	and	highpass
filters.

ripple	specs	specifies	the	ripple	level	in	the	passband	and
stopband	of	the	filter.

passband	specifies	the	ripple	level	in	the	passband.	The
default	is	0.1.
stopband	specifies	the	ripple	level	in	the	stopband.	The
default	is	60.
dB/linear?	specifies	whether	this	VI	applies	a	decibel	scale
or	a	linear	scale	to	the	ripple	levels.	If	the	value	is	TRUE,
this	VI	applies	a	decibel	scale	to	the	ripple	level.	If	the	value
is	FALSE,	this	VI	applies	a	linear	scale	to	the	ripple	level.
The	default	is	TRUE.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

fs	specifies	the	sampling	frequency	in	hertz.	The	value	must	be
greater	than	zero.	The	default	is	1,	which	is	the	normalized
sampling	frequency.
filter	out	returns	a	new	filter.
order	returns	the	filter	order.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

Example
Refer	to	the	Classical	Filter	Design	VI	in	the	labview\examples\Digital	Filter
Design\Floating-Point	Filters\Conventional	directory	for	an	example	of	using
the	DFD	Classical	Design	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFloating-Point%20Filters%5C%5CConventional%5C%5CClassical%20Filter%20Design.vi');
javascript:findExamples(6302);

Advanced	FIR	Filter	Design	VIs
Owning	Palette:	Filter	Design	VIs
Installed	With:	Digital	Filter	Design	Toolkit.	This	topic	might	not	match	its
corresponding	palette	in	LabVIEW	depending	on	your	operating	system,
licensed	product(s),	and	target.
Use	the	Advanced	FIR	Filter	Design	VIs	to	estimate	finite	impulse
response	(FIR)	filter	order	and	to	create	FIR	filters	from	the	filter
specifications.
The	VIs	on	this	palette	can	return	general	LabVIEW	error	codes	or
specific	digital	filter	design	error	codes.

Palette
Object Description

DFD
Dolph-
Chebyshev
Design

Creates	a	finite	impulse	response	(FIR)	filter	by	using	the
Dolph-Chebyshev	Window	method.

DFD
Dolph-
Chebyshev
Order
Estimation

Estimates	the	order	of	a	finite	impulse	response	(FIR)	filter
that	you	designed	by	using	the	Dolph-Chebyshev	Window
method.

DFD
Kaiser
Design

Creates	a	finite	impulse	response	(FIR)	filter	by	using	the
Kaiser	Window	method.

DFD
Kaiser
Order
Estimation

Estimates	the	order	of	a	finite	impulse	response	(FIR)	filter
that	you	designed	by	using	the	Kaiser	Window	method.

DFD	Least
Pth	Norm
Design

Designs	an	infinite	impulse	response	(IIR)	or	finite	impulse
response	(FIR)	filter	with	a	frequency	response	that
matches	the	response	you	request	in	terms	of	the	least	pth
norm	algorithm.	You	can	use	either	the	iterative	reweighted
least	square	(IRLS)	method	or	the	Newton	method	that	this
VI	provides	to	design	a	filter.	You	must	manually	select	the

lvdigfiltdestk.chm::/DFD_Design_VIs.html
lverror.chm::/Misc_LV_Error_Codes.html
lvdigfiltdestk.chm::/DFD_Dolph_Design.html
lvdfdtconcepts.chm::/design_methods.html
lvdigfiltdestk.chm::/DFD_Dolph_Order.html
lvdfdtconcepts.chm::/design_methods.html
lvdigfiltdestk.chm::/DFD_Kaiser_Design.html
lvdfdtconcepts.chm::/design_methods.html
lvdigfiltdestk.chm::/DFD_Kaiser_Order.html
lvdfdtconcepts.chm::/design_methods.html
lvdigfiltdestk.chm::/DFD_LPth_Norm.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html

polymorphic	instance	you	want	to	use.
DFD
Remez
Design

Creates	an	equi-ripple	filter	using	the	Remez	exchange
method.

DFD
Remez
Order
Estimation

Estimates	the	order	of	a	Remez	equi-ripple	filter.

DFD
Windowed
FIR	Design

Creates	a	finite	impulse	response	(FIR)	filter	by	using	the
window	methods.

lvdigfiltdestk.chm::/DFD_Remez_Design.html
lvdigfiltdestk.chm::/DFD_Remez_Order.html
lvdigfiltdestk.chm::/DFD_Windowed_FIR.html

DFD	Dolph-Chebyshev	Design	VI
Owning	Palette:	Advanced	FIR	Filter	Design	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Creates	a	finite	impulse	response	(FIR)	filter	by	using	the	Dolph-
Chebyshev	Window	method.
You	can	use	the	DFD	Dolph-Chebyshev	Order	Estimation	VI	to	estimate
order.
Details		

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
filter	type	specifies	the	type	of	filter	that	this	VI	creates.	

0 Lowpass	(default)
1 Highpass
2 Bandpass
3 Bandstop

order	specifies	the	filter	order.	The	value	of	order	must	be	greater
than	zero.	The	default	is	31.	order	+1	equals	the	number	of
coefficients	or	filter	taps.	Increasing	the	value	can	narrow	the
transition	band.
high	cutoff	freq	specifies	the	high	cutoff	frequency	in	hertz.	The
value	must	be	greater	than	low	cutoff	freq.	The	default	is	0.45.
This	VI	uses	this	input	only	for	bandpass	and	bandstop	filter
design.	The	cutoff	frequency	is	the	frequency	with	one-half
magnitude	response.
low	cutoff	freq	specifies	the	low	cutoff	frequency	in	hertz.	The
default	is	0.12.	The	cutoff	frequency	is	the	frequency	with	one-half
magnitude	response.

lvdigfiltdestk.chm::/DFD_Adv_FIR_VIs.html
lvdfdtconcepts.chm::/design_methods.html
lvdigfiltdestk.chm::/DFD_Dolph_Order.html
javascript:placeObject(object2858);
javascript:findObject(object2858);
lvdfdtconcepts.chm::/dfd_filter_spec.html

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

fs	specifies	the	sampling	frequency	in	hertz.	The	value	must	be
greater	than	zero.	The	default	is	1,	which	is	the	normalized
sampling	frequency.
ripple	ratio	specifies	the	side-lobe	attenuation	provided	by	the
Dolph-Chebyshev	Window	function	in	decibels.	The	value	must	be
greater	than	zero.	The	default	is	40.	Increasing	the	value	of	ripple
ratio	decreases	the	ripples	in	the	passband	and	stopband.
filter	out	returns	a	new	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	Dolph-Chebyshev	Design	Details
The	Dolph-Chebyshev	Window	is	a	ripple-adjustable	window,	as
described	in	the	following	equation:

where	r	is	the	relative	side-lobe	attenuation	of	the	Dolph-Chebyshev
Window	in	decibels,	and	CM(x)	is	the	Mth	order	Chebyshev	polynomial.

DFD	Dolph-Chebyshev	Order	Estimation	VI
Owning	Palette:	Advanced	FIR	Filter	Design	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Estimates	the	order	of	a	finite	impulse	response	(FIR)	filter	that	you
designed	by	using	the	Dolph-Chebyshev	Window	method.

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
filter	type	specifies	the	type	of	filter	that	this	VI	creates.	

0 Lowpass	(default)
1 Highpass
2 Bandpass
3 Bandstop

freq	specs	specifies	the	band	edge	frequencies	of	the	filter.
fpass	1	specifies	the	first	passband	edge	frequency	in
hertz.
fstop	1	specifies	the	first	stopband	edge	frequency	in	hertz.
fpass	2	specifies	the	second	passband	edge	frequency	in
hertz.	This	VI	ignores	this	input	for	lowpass	and	highpass
filters.
fstop	2	specifies	the	second	stopband	edge	frequency	in
hertz.	This	VI	ignores	this	input	for	lowpass	and	highpass
filters.

ripple	specs	specifies	the	ripple	level	in	the	passband	and
stopband	of	the	filter.

passband	specifies	the	ripple	level	in	the	passband.	The
default	is	0.1.
stopband	specifies	the	ripple	level	in	the	stopband.	The

lvdigfiltdestk.chm::/DFD_Adv_FIR_VIs.html
lvdfdtconcepts.chm::/design_methods.html
javascript:placeObject(object2855);
javascript:findObject(object2855);
lvdfdtconcepts.chm::/dfd_filter_spec.html

default	is	60.
dB/linear?	specifies	whether	this	VI	applies	a	decibel	scale
or	a	linear	scale	to	the	ripple	levels.	If	the	value	is	TRUE,
this	VI	applies	a	decibel	scale	to	the	ripple	level.	If	the	value
is	FALSE,	this	VI	applies	a	linear	scale	to	the	ripple	level.
The	default	is	TRUE.

order	option	specifies	filter	order	requirements.	The	default	is
MinEven,	which	yields	the	minimum	even	order	for	the	filter	to	meet
the	specifications	you	set.	

0 MinNum
1 MinEven	(default)
2 MinOdd

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

fs	specifies	the	sampling	frequency	in	hertz.	The	value	must	be
greater	than	zero.	The	default	is	1,	which	is	the	normalized

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

sampling	frequency.
estimated	order	returns	the	minimum	order	value	that	the	filter
requires	to	meet	the	specifications	you	set.
high	cutoff	freq	returns	the	high	cutoff	frequency.	The	cutoff
frequency	is	the	frequency	with	one-half	magnitude	response.
low	cutoff	freq	returns	the	low	cutoff	frequency.	The	cutoff
frequency	is	the	frequency	with	one-half	magnitude	response.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

ripple	ratio	returns	the	side-lobe	attenuation	provided	by	the
Dolph-Chebyshev	Window	in	decibels.

lverror.chm::/Error_Code_Ranges.html

DFD	Kaiser	Design	VI
Owning	Palette:	Advanced	FIR	Filter	Design	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Creates	a	finite	impulse	response	(FIR)	filter	by	using	the	Kaiser	Window
method.
You	can	use	the	DFD	Kaiser	Order	Estimation	VI	to	estimate	order.
Details		

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
filter	type	specifies	the	type	of	filter	that	this	VI	creates.	

0 Lowpass	(default)
1 Highpass
2 Bandpass
3 Bandstop

order	specifies	the	filter	order.	The	value	of	order	must	be	greater
than	zero.	The	default	is	31.	order	+1	equals	the	number	of
coefficients	or	filter	taps.	Increasing	the	value	can	narrow	the
transition	band.
high	cutoff	freq	specifies	the	high	cutoff	frequency	in	hertz.	The
value	must	be	greater	than	low	cutoff	freq.	The	default	is	0.45.
This	VI	uses	this	input	only	for	bandpass	and	bandstop	filter
design.	The	cutoff	frequency	is	the	frequency	with	one-half
magnitude	response.
low	cutoff	freq	specifies	the	low	cutoff	frequency	in	hertz.	The
default	is	0.12.	The	cutoff	frequency	is	the	frequency	with	one-half
magnitude	response.
error	in	describes	error	conditions	that	occur	before	this	VI	or

lvdigfiltdestk.chm::/DFD_Adv_FIR_VIs.html
lvdfdtconcepts.chm::/design_methods.html
lvdigfiltdestk.chm::/DFD_Kaiser_Order.html
javascript:placeObject(object2857);
javascript:findObject(object2857);
lvdfdtconcepts.chm::/dfd_filter_spec.html

function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

fs	specifies	the	sampling	frequency	in	hertz.	The	value	must	be
greater	than	zero.	The	default	is	1,	which	is	the	normalized
sampling	frequency.
beta	controls	the	main	lobe	width	and	the	ratio	of	the	main	lobe	to
secondary	lobes.	The	default	is	2.46.	If	you	increase	beta	while
order	remains	constant,	the	side	lobe	decreases	in	amplitude	but
the	transition	bandwidth	increases.
filter	out	returns	a	new	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	Kaiser	Design	Details
The	Kaiser	window	is	ripple-adjustable,	as	described	by	the	following
equation:

where	I0(x)	is	the	zero-order	modified	Bessel	function	of	the	first	kind,	 	is
the	beta	input	that	controls	the	main	lobe	width	and	the	ratio	of	the	main
lobe	to	secondary	lobes,	and	M	represents	the	size	of	the	Kaiser	window.

DFD	Kaiser	Order	Estimation	VI
Owning	Palette:	Advanced	FIR	Filter	Design	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Estimates	the	order	of	a	finite	impulse	response	(FIR)	filter	that	you
designed	by	using	the	Kaiser	Window	method.

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
filter	type	specifies	the	type	of	filter	that	this	VI	creates.	

0 Lowpass	(default)
1 Highpass
2 Bandpass
3 Bandstop

freq	specs	specifies	the	band	edge	frequencies	of	the	filter.
fpass	1	specifies	the	first	passband	edge	frequency	in
hertz.
fstop	1	specifies	the	first	stopband	edge	frequency	in	hertz.
fpass	2	specifies	the	second	passband	edge	frequency	in
hertz.	This	VI	ignores	this	input	for	lowpass	and	highpass
filters.
fstop	2	specifies	the	second	stopband	edge	frequency	in
hertz.	This	VI	ignores	this	input	for	lowpass	and	highpass
filters.

ripple	specs	specifies	the	ripple	level	in	the	passband	and
stopband	of	the	filter.

passband	specifies	the	ripple	level	in	the	passband.	The
default	is	0.1.
stopband	specifies	the	ripple	level	in	the	stopband.	The

lvdigfiltdestk.chm::/DFD_Adv_FIR_VIs.html
lvdfdtconcepts.chm::/design_methods.html
javascript:placeObject(object2854);
javascript:findObject(object2854);
lvdfdtconcepts.chm::/dfd_filter_spec.html

default	is	60.
dB/linear?	specifies	whether	this	VI	applies	a	decibel	scale
or	a	linear	scale	to	the	ripple	levels.	If	the	value	is	TRUE,
this	VI	applies	a	decibel	scale	to	the	ripple	level.	If	the	value
is	FALSE,	this	VI	applies	a	linear	scale	to	the	ripple	level.
The	default	is	TRUE.

order	option	specifies	filter	order	requirements.	The	default	is
MinEven,	which	yields	the	minimum	even	order	for	the	filter	to	meet
the	specifications	you	set.	

0 MinNum
1 MinEven	(default)
2 MinOdd

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

fs	specifies	the	sampling	frequency	in	hertz.	The	value	must	be
greater	than	zero.	The	default	is	1,	which	is	the	normalized

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

sampling	frequency.
estimated	order	returns	the	minimum	order	value	that	the	filter
requires	to	meet	the	specifications	you	set.
high	cutoff	freq	returns	the	high	cutoff	frequency.	The	cutoff
frequency	is	the	frequency	with	one-half	magnitude	response.
low	cutoff	freq	returns	the	low	cutoff	frequency.	The	cutoff
frequency	is	the	frequency	with	one-half	magnitude	response.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

beta	returns	the	beta	value	that	the	Kaiser	window	requires.

lverror.chm::/Error_Code_Ranges.html

DFD	Least	Pth	Norm	Design	VI
Owning	Palette:	Advanced	IIR	Filter	Design	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Designs	an	infinite	impulse	response	(IIR)	or	finite	impulse	response
(FIR)	filter	with	a	frequency	response	that	matches	the	response	you
request	in	terms	of	the	least	pth	norm	algorithm.	You	can	use	either	the
iterative	reweighted	least	square	(IRLS)	method	or	the	Newton	method
that	this	VI	provides	to	design	a	filter.	You	must	manually	select	the
polymorphic	instance	you	want	to	use.
Details		Examples
Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

	Place	on	the	block	diagram 	Find	on	the	Functions	palette

lvdigfiltdestk.chm::/DFD_Adv_IIR_VIs.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
javascript:placeObject(object2853);
javascript:findObject(object2853);

DFD	Least	Pth	Norm	Design	by	IRLS

pole	radius	constraint	specifies	the	maximum	pole	radius	for	the
new	filter.	The	default	is	0.99.	A	small	pole	radius	decreases	the
possibility	of	filter	instability	resulting	from	finite	precision	effects.
However,	a	small	pole	radius	can	affect	the	potential	sharpness	of
the	magnitude	response	adversely.	The	range	of	valid	values	for
pole	radius	constraint	is	(0,	1].	If	you	specify	an	invalid	value,
this	VI	ignores	this	input	and	applies	no	constraint	to	the	pole
radius.
filter	type	specifies	the	type	of	filter	that	this	VI	creates.	

0 Symmetric	(default)—Creates	a	filter	with	a	symmetric	impulse
response.

1 Antisymmetric—Creates	a	filter	with	an	antisymmetric	impulse
response.

2 Differentiator—Creates	a	filter	with	an	antisymmetric	impulse
response.	This	filter	type	differs	from	Antisymmetric	by	having
an	additional	weighting	of	1/ 	on	amplitude	response.

3 Hilbert—Creates	a	filter	with	an	antisymmetric	impulse
response.	This	filter	type	differs	from	Antisymmetric	because
this	option	obtains	the	phase	by	adding	π	to	the	phase	input.

4 Minimum	Phase—Creates	a	minimum	phase	filter.
5 Maximum	Phase—Creates	a	maximum	phase	filter.

order	specifies	the	filter	numerator	and	denominator	order.	For
FIR	filters,	order+1	equals	the	number	of	coefficients.	For	IIR
filters,	the	numerator	order+1	equals	the	number	of	forward
coefficients	and	the	denominator	order+1	equals	the	number	of
reverse	coefficients.

numerator	specifies	the	numerator	order.	The	value	must

lvdfdtconcepts.chm::/dfd_fp_process.html#finite_effects

be	greater	than	zero.	The	default	is	5.
denominator	specifies	the	denominator	order.	The	value
must	be	greater	than	or	equal	to	zero.	The	default	is	5.	If
you	set	denominator	to	0,	this	VI	creates	a	digital	FIR	filter.
Otherwise,	this	VI	creates	a	digital	IIR	filter.

band	specs	specifies	the	target	frequency	response	that	the	filter
frequency	response	fits.	Each	element	in	the	array	represents	one
frequency	band	specification.	You	can	enter	one	or	more	points	in
ascending	order	to	describe	the	frequency	response	in	each	band.
This	VI	connects	the	points	to	form	the	continuous	ideal	frequency
response	for	the	band.	The	frequency	range	between	two
consecutive	bands	is	a	transition	band.

freq	specifies	one	frequency	point	in	hertz.
magnitude	specifies	the	magnitude	in	relation	to	freq	using
a	linear	scale.
weight	specifies	the	relative	importance	of	the	ripple	size.
Increasing	weight	reduces	the	ripple	size	and	brings	the
filter	closer	to	the	frequency	response	specified	in	freq.	This
VI	linearly	interpolates	the	weight	values	of	the	frequencies
between	points.	For	example,	to	design	a	lowpass	filter
whose	passband	ripple	is	half	the	stopband	ripple,	set	the
passband	weight	to	2	and	the	stopband	weight	to	1.
phase	specifies	the	phase	in	relation	to	freq.

group	delay	specifies	the	group	delay	for	all	bands.	The	default	is
5.	You	can	specify	any	real	number.	For	a	specific	frequency,	this
VI	adjusts	the	phase	response	using	the	phase	input	in	the	band
specs	in	combination	with	group	delay.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html

wiring	error	out	from	one	node	to	error	in	of	the	next	node.
status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

fs	specifies	the	sampling	frequency	in	hertz.	The	value	must	be
greater	than	zero.	The	default	is	1,	which	is	the	normalized
sampling	frequency.
p	specifies	the	order	of	norm.	The	value	of	p	must	be	between	2
and	128.	When	p	equals	2,	this	VI	returns	the	least	squares
solution.	As	you	increase	the	value	of	p,	the	solution
asymptotically	approaches	an	equi-ripple	magnitude	solution.
When	p	equals	128,	this	VI	returns	a	nearly	equi-ripple	magnitude
response.	The	default	is	128.	This	input	corresponds	to	the	p
parameter	in	the	equations	in	the	Details	section	of	this	topic.
filter	out	returns	a	new	filter.
pth	norm	returns	the	pth	norm	for	the	design.

error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.

lverror.chm::/Error_Code_Ranges.html
lverror.chm::/Error_Code_Ranges.html

source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

DFD	Least	Pth	Norm	Design	by	Newton

pole	radius	constraint	specifies	the	maximum	pole	radius	for	the
new	filter.	The	default	is	0.99.	A	small	pole	radius	decreases	the
possibility	of	filter	instability	resulting	from	finite	precision	effects.
However,	a	small	pole	radius	can	affect	the	potential	sharpness	of
the	magnitude	response	adversely.	The	range	of	valid	values	for
pole	radius	constraint	is	(0,	1].	If	you	specify	an	invalid	value,
this	VI	ignores	this	input	and	applies	no	constraint	to	the	pole
radius.
filter	type	specifies	the	type	of	filter	that	this	VI	creates.	

0 Symmetric	(default)—Creates	a	filter	with	a	symmetric	impulse
response.

1 Antisymmetric—Creates	a	filter	with	an	antisymmetric	impulse
response.

2 Differentiator—Creates	a	filter	with	an	antisymmetric	impulse
response.	This	filter	type	differs	from	Antisymmetric	by	having
an	additional	weighting	of	1/ 	on	amplitude	response.

3 Hilbert—Creates	a	filter	with	an	antisymmetric	impulse
response.	This	filter	type	differs	from	Antisymmetric	because
this	option	obtains	the	phase	by	adding	π	to	the	phase	input.

4 Minimum	Phase—Creates	a	minimum	phase	filter.
5 Maximum	Phase—Creates	a	maximum	phase	filter.

order	specifies	the	filter	numerator	and	denominator	order.	For
FIR	filters,	order+1	equals	the	number	of	coefficients.	For	IIR
filters,	the	numerator	order+1	equals	the	number	of	forward
coefficients	and	the	denominator	order+1	equals	the	number	of
reverse	coefficients.

numerator	specifies	the	numerator	order.	The	value	must

lvdfdtconcepts.chm::/dfd_fp_process.html#finite_effects

be	greater	than	zero.	The	default	is	5.
denominator	specifies	the	denominator	order.	The	value
must	be	greater	than	or	equal	to	zero.	The	default	is	5.	If
you	set	denominator	to	0,	this	VI	creates	a	digital	FIR	filter.
Otherwise,	this	VI	creates	a	digital	IIR	filter.

band	specs	specifies	the	target	frequency	response	that	the	filter
frequency	response	fits.	Each	element	in	the	array	represents	one
frequency	band	specification.	You	can	enter	one	or	more	points	in
ascending	order	to	describe	the	frequency	response	in	each	band.
This	VI	connects	the	points	to	form	the	continuous	ideal	frequency
response	for	the	band.	The	frequency	range	between	two
consecutive	bands	is	a	transition	band.

freq	specifies	one	frequency	point	in	hertz.
magnitude	specifies	the	magnitude	in	relation	to	freq	using
a	linear	scale.
weight	specifies	the	relative	importance	of	the	ripple	size.
Increasing	weight	reduces	the	ripple	size	and	brings	the
filter	closer	to	the	frequency	response	specified	in	freq.	This
VI	linearly	interpolates	the	weight	values	of	the	frequencies
between	points.	For	example,	to	design	a	lowpass	filter
whose	passband	ripple	is	half	the	stopband	ripple,	set	the
passband	weight	to	2	and	the	stopband	weight	to	1.
phase	specifies	the	phase	in	relation	to	freq.

group	delay	specifies	the	group	delay	for	all	bands.	The	default	is
5.	You	can	specify	any	real	number.	For	a	specific	frequency,	this
VI	adjusts	the	phase	response	using	the	phase	input	in	the	band
specs	in	combination	with	group	delay.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html

wiring	error	out	from	one	node	to	error	in	of	the	next	node.
status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

fs	specifies	the	sampling	frequency	in	hertz.	The	value	must	be
greater	than	zero.	The	default	is	1,	which	is	the	normalized
sampling	frequency.
p	specifies	the	order	of	norm.	The	value	of	p	must	be	between	2
and	128.	When	p	equals	2,	this	VI	returns	the	least	squares
solution.	As	you	increase	the	value	of	p,	the	solution
asymptotically	approaches	an	equi-ripple	magnitude	solution.
When	p	equals	128,	this	VI	returns	a	nearly	equi-ripple	magnitude
response.	The	default	is	128.	This	input	corresponds	to	the	p
parameter	in	the	equations	in	the	Details	section	of	this	topic.
filter	out	returns	a	new	filter.
pth	norm	returns	the	pth	norm	for	the	design.

error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.

lverror.chm::/Error_Code_Ranges.html
lverror.chm::/Error_Code_Ranges.html

source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

DFD	Least	Pth	Norm	Design	Details
You	can	design	either	an	IIR	or	FIR	filter	using	this	VI.	The	following
equation	shows	the	frequency	response	of	an	IIR	filter	with	N	zeroes	and
M	poles:

where B(ω)	is	the	Fourier	transform	of	the	forward	coefficients
A(ω)	is	the	Fourier	transform	of	the	reverse	coefficients
b(n)	is	the	set	of	forward	coefficients
a(n)	is	the	set	of	reverse	coefficients

When	M	equals	zero,	the	IIR	filter	reduces	to	an	FIR	filter.	Usually,	a(0)	is
normalized	to	one,	as	shown	in	the	equation	above.
Given	a	complex-valued	ideal	frequency	response	D(ω),	the	DFD	Least
Pth	Norm	Design	VI	designs	optimal	IIR	filters	using	the	least	pth	norm
algorithm.	The	VI	uses	either	complex	approximation	or	magnitude
approximation	to	create	the	design.	The	following	equation	is	the
complex	approximation:

where W(i)	is	a	positive	weight	at	the	ith	frequency	point

H	is	the	response	of	the	designed	filter
D	is	the	target	response
L	is	the	number	of	frequency	points	used	to	perform	the
calculation

p	is	the	pth	norm

The	following	equation	is	the	magnitude	approximation:

The	equations	are	minimized	in	terms	of	filter	coefficients	a(n)	and	b(n).
If	you	set	the	filter	type	input	to	Minimum	Phase	or	Maximum	Phase,
the	DFD	Least	Pth	Norm	Design	VI	performs	magnitude	approximation
and	ignores	the	phase	information	of	D(ω).	If	you	set	the	filter	type	input
to	Symmetric,	Antisymmetric,	Differentiator,	or	Hilbert,	the	DFD	Least
Pth	Norm	Design	VI	uses	complex	approximation.
The	phase	response	of	the	filter	θoverall(ω)	is	specified	by	phase	in	the
band	specs	θspecified(ω)	and	group	delay	τgp,	as	shown	in	the	following
equation:
θoverall(ω)	=	–τgpω	+	θspecified(ω)

Examples
Refer	to	the	following	VIs	for	examples	of	using	the	DFD	Least	Pth	Norm
Design	VI:

Arbitrary	Shape	Lowpass	Filter	Design	VI:
labview\examples\Digital	Filter	Design\Floating-Point
Filters\Conventional
	Open	example	 	Browse	related	examples
Lpth	Norm	Complex	Approximation-Compensate	Channel
Distortion	VI:	labview\examples\Digital	Filter	Design\Floating-Point
Filters\Conventional
	Open	example	 	Browse	related	examples
LPth	Norm	IIR	Filter	Design	VI:	labview\examples\Digital	Filter
Design\Floating-Point	Filters\Conventional
	Open	example	 	Browse	related	examples
LPth	Norm	Weighting	Filter	Design	VI:	labview\examples\Digital
Filter	Design\Floating-Point	Filters\Conventional
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFloating-Point%20Filters%5C%5CConventional%5C%5CArbitrary%20Shape%20Lowpass%20Filter%20Design.vi');
javascript:findExamples(6302);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFloating-Point%20Filters%5C%5CConventional%5C%5CLpth%20Norm%20Complex%20Approximation-Compensate%20Channel%20Distortion.vi');
javascript:findExamples(6302);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFloating-Point%20Filters%5C%5CConventional%5C%5CLPth%20Norm%20IIR%20Filter%20Design.vi');
javascript:findExamples(6302);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFloating-Point%20Filters%5C%5CConventional%5C%5CLPth%20Norm%20Weighting%20Filter%20Design.vi');
javascript:findExamples(6302);

DFD	Remez	Design	VI
Owning	Palette:	Advanced	FIR	Filter	Design	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Creates	an	equi-ripple	filter	using	the	Remez	exchange	method.
Details		Examples

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
minimum	order	specifies	whether	this	VI	uses	the	filter	order	you
specify	or	calculates	the	minimum	filter	order.	The	default	is	user
defined.	If	you	select	minEven	or	minOdd,	this	VI	ignores	the
order	input	and	determines	the	minimum	required	filter	order.	You
also	must	provide	a	ripple	constraint	for	each	band	in	the	ripple
constraint	input	of	band	specs.	

0 user	defined—Specifies	to	use	the	value	in	order.
1 minEven—Specifies	to	calculate	the	minimum	even	order
value	and	use	this	value	to	design	the	filter.

2 minOdd—Specifies	to	calculate	the	minimum	odd	order	value
and	use	this	value	to	design	the	filter.

filter	type	specifies	the	type	of	filter	that	this	VI	creates.	

0 Symmetric	(default)—Creates	a	filter	with	a	symmetric	impulse
response.

1 Antisymmetric—Creates	a	filter	with	an	antisymmetric	impulse
response.	The	Symmetric	and	Antisymmetric	options
determine	the	symmetry	of	the	filter	impulse	response	and
consequently	determine	the	symmetry	of	the	zero	phase
frequency	amplitude	response	specified	by	the	band
specifications.

lvdigfiltdestk.chm::/DFD_Adv_FIR_VIs.html
javascript:placeObject(object2860);
javascript:findObject(object2860);
lvdfdtconcepts.chm::/linear_min_filters.html#types

2 Differentiator—Creates	a	filter	with	an	antisymmetric	impulse
response.	This	filter	type	differs	from	Antisymmetric	by	having
an	additional	weighting	of	1/ 	on	amplitude	response.	This
option	uses	a	built-in	weighting	function	that	is	inversely
proportional	to	frequency	to	achieve	a	constant	percentage
error	ripple	versus	the	amplitude	of	the	frequency	response.

3 Hilbert—Creates	a	filter	with	an	antisymmetric	impulse
response	that	behaves	in	the	same	way	as	Antisymmetric.

4 Minimum	Phase—Creates	a	minimum	phase	filter.	Minimum
phase	filters	sometimes	are	called	minimum	energy	delay	or
minimum	delay	filters.	A	minimum	phase	FIR	filter	has	all	the
zeroes	inside	or	on	the	unit	circle	of	the	z-plane.

5 Maximum	Phase—Creates	a	maximum	phase	filter.	A
maximum	phase	FIR	filter	has	a	time-reversed	impulse
response	of	a	minimum	phase	filter,	where	the	zeroes	of	a
maximum	phase	filter	are	all	outside	or	on	the	unit	circle	of	the
z-plane.

order	specifies	the	filter	order.	The	value	of	order	must	be	greater
than	zero.	The	default	is	20.	order	+1	equals	the	number	of
coefficients	or	filter	taps.	Increasing	the	value	can	narrow	the
transition	band.
band	specs	specifies	the	target	frequency	response	that	the	filter
frequency	response	fits.	Each	element	of	the	array	represents	one
frequency	band	specification.	You	can	enter	one	or	more	points	in
ascending	order	to	describe	the	frequency	response	in	each	band.
This	VI	connects	the	points	to	form	the	continuous	ideal	frequency
response	for	the	band.	The	frequency	range	between	two
consecutive	bands	is	a	transition	band.	The	frequency	response
you	describe	with	the	band	specs	input	is	the	signed	amplitude
response.	You	can	provide	negative	target	amplitude	values.
However,	if	the	filter	type	input	is	Minimum	Phase	or	Maximum
Phase,	the	frequency	response	you	describe	with	the	band	specs
input	is	the	magnitude	response,	and	all	target	amplitude	values
must	be	positive.

freq	specifies	one	frequency	point	in	hertz.
amplitude	specifies	the	amplitude	on	freq	in	linear	scale.

weight	specifies	the	relative	importance	of	the	ripple	size.
Increasing	weight	reduces	the	ripple	size	and	brings	the
filter	closer	to	the	frequency	response	specified	in	freq.	This
VI	linearly	interpolates	the	weight	values	of	the	frequencies
between	points.	For	example,	to	design	a	lowpass	filter
whose	passband	ripple	is	half	the	stopband	ripple,	set	the
passband	weight	to	2	and	the	stopband	weight	to	1.
ripple	constraint	specifies	the	ripple	constraint	in	the
current	band	using	linear	scale.	The	default	is	0,	which
means	that	no	constraint	is	applied.	If	you	enter	a	positive
value,	the	ripple	level	in	the	current	band	will	be	at	a	level
lower	than	the	value	you	specify.	You	must	leave	at	least
one	band	unconstrained	if	you	set	minimum	order	to	user
defined.

freqs	of	exact	gain	specifies	frequency	points	where	the
amplitude	must	have	exactly	the	same	value	as	the	amplitude
input	in	band	specs.	If	a	frequency	point	does	not	appear	in	band
specs,	this	VI	interpolates	the	amplitude	linearly.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

fs	specifies	the	sampling	frequency	in	hertz.	The	value	must	be
greater	than	zero.	The	default	is	1,	which	is	the	normalized
sampling	frequency.
filter	out	returns	a	new	filter.
actual	ripples	returns	the	actual	ripple	magnitude	in	each	band
specified	in	band	specs.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	Remez	Design	Details
In	the	Remez	exchange	method,	the	filter	frequency	response	best	fits
the	target	response	in	the	Chebyshev	sense.	The	Remez	Design	VI
employs	either	complex	approximation	or	magnitude	approximation	to
create	the	design.
The	design	criterion	for	complex	approximation	is	defined	by	the	following
equation:

The	design	criterion	for	magnitude	approximation	is	defined	by	the
following	equation:

where	D(wi)	is	the	ideal	frequency	response,	H(wi)	is	the	frequency
response	of	the	designed	filter,	and	W(i)	is	the	positive	weight	at	the	ith
frequency	point.	Symmetric,	Antisymmetric,	Differentiator,	and	Hilbert
filter	types	use	complex	approximation.	Minimum	Phase	and	Maximum
Phase	filter	types	use	magnitude	approximation.

Examples
Refer	to	the	following	VIs	for	examples	of	using	the	DFD	Remez	Design
VI:

EquiRipple	Filter	Design	-	DFD	VI:	labview\examples\Digital	Filter
Design\AALXMPL
	Open	example	 	Browse	related	examples
Advanced	Remez	FIR	Filter	Design	VI:	labview\examples\Digital
Filter	Design\Floating-Point	Filters\Conventional
	Open	example	 	Browse	related	examples
Arbitrary	Shape	Lowpass	Filter	Design	VI:
labview\examples\Digital	Filter	Design\Floating-Point
Filters\Conventional
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CAALXMPL%5C%5CEquiRipple%20Filter%20Design%20-%20DFD.vi');
javascript:findExamples(3742);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFloating-Point%20Filters%5C%5CConventional%5C%5CAdvanced%20Remez%20FIR%20Filter%20Design.vi');
javascript:findExamples(6302);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFloating-Point%20Filters%5C%5CConventional%5C%5CArbitrary%20Shape%20Lowpass%20Filter%20Design.vi');
javascript:findExamples(6302);

DFD	Remez	Order	Estimation	VI
Owning	Palette:	Advanced	FIR	Filter	Design	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Estimates	the	order	of	a	Remez	equi-ripple	filter.

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
filter	type	specifies	the	type	of	filter	that	this	VI	creates.	

0 Lowpass	(default)
1 Highpass
2 Bandpass
3 Bandstop

freq	specs	specifies	the	band	edge	frequencies	of	the	filter.
fpass	1	specifies	the	first	passband	edge	frequency	in
hertz.
fstop	1	specifies	the	first	stopband	edge	frequency	in	hertz.
fpass	2	specifies	the	second	passband	edge	frequency	in
hertz.	This	VI	ignores	this	input	for	lowpass	and	highpass
filters.
fstop	2	specifies	the	second	stopband	edge	frequency	in
hertz.	This	VI	ignores	this	input	for	lowpass	and	highpass
filters.

ripple	specs	specifies	the	ripple	level	in	the	passband	and
stopband	of	the	filter.

passband	specifies	the	ripple	level	in	the	passband.	The
default	is	0.1.
stopband	specifies	the	ripple	level	in	the	stopband.	The
default	is	60.

lvdigfiltdestk.chm::/DFD_Adv_FIR_VIs.html
javascript:placeObject(object2856);
javascript:findObject(object2856);
lvdfdtconcepts.chm::/dfd_filter_spec.html

dB/linear?	specifies	whether	this	VI	applies	a	decibel	scale
or	a	linear	scale	to	the	ripple	levels.	If	the	value	is	TRUE,
this	VI	applies	a	decibel	scale	to	the	ripple	level.	If	the	value
is	FALSE,	this	VI	applies	a	linear	scale	to	the	ripple	level.
The	default	is	TRUE.

order	option	specifies	filter	order	requirements.	The	default	is
MinEven,	which	yields	the	minimum	even	order	for	the	filter	to	meet
the	specifications	you	set.	

0 MinNum
1 MinEven	(default)
2 MinOdd

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

fs	specifies	the	sampling	frequency	in	hertz.	The	value	must	be
greater	than	zero.	The	default	is	1,	which	is	the	normalized
sampling	frequency.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

estimated	order	returns	the	minimum	order	value	that	the	filter
requires	to	meet	the	specifications	you	set.
band	specs	returns	specifications	such	as	frequency,	amplitude,
and	weight	in	one	or	more	bands.

freq	returns	one	frequency	point	in	hertz.
amplitude	returns	the	amplitude	on	freq	in	linear	scale.
weight	returns	the	weight	of	the	error	on	freq.
ripple	constraint	returns	the	ripple	constraint	in	the	current
filter	band	in	linear	scale.

error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	Windowed	FIR	Design	VI
Owning	Palette:	Advanced	FIR	Filter	Design	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Creates	a	finite	impulse	response	(FIR)	filter	by	using	the	window
methods.
Example

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
window	specifies	the	time-domain	window	this	VI	uses.	

0 None	(default)
1 Hanning
2 Hamming
3 Blackman-Harris
4 Exact	Blackman
5 Blackman
6 Flat	Top
7 4	Term	B-Harris
8 7	Term	B-Harris
9 Low	Sidelobe
30 Triangular

filter	type	specifies	the	type	of	filter	that	this	VI	creates.	

0 Lowpass	(default)
1 Highpass
2 Bandpass

lvdigfiltdestk.chm::/DFD_Adv_FIR_VIs.html
javascript:placeObject(object2859);
javascript:findObject(object2859);
lvdfdtconcepts.chm::/dfd_filter_spec.html

3 Bandstop

order	specifies	the	filter	order.	The	value	of	order	must	be	greater
than	zero.	The	default	is	20.	order	+1	equals	the	number	of
coefficients	or	filter	taps.	Increasing	the	value	can	narrow	the
transition	band.
high	cutoff	freq	specifies	the	high	cutoff	frequency	in	hertz.	The
value	must	be	greater	than	low	cutoff	freq.	The	default	is	0.45.
This	VI	uses	this	input	only	for	bandpass	and	bandstop	filter
design.	The	cutoff	frequency	is	the	frequency	with	one-half
magnitude	response.
low	cutoff	freq	specifies	the	low	cutoff	frequency	in	hertz.	The
default	is	0.12.	The	cutoff	frequency	is	the	frequency	with	one-half
magnitude	response.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

fs	specifies	the	sampling	frequency	in	hertz.	The	value	must	be
greater	than	zero.	The	default	is	1,	which	is	the	normalized
sampling	frequency.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

filter	out	returns	a	new	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

Example
Refer	to	the	FIR	Windowed	Filter	Design	-	DFD	VI	in	the
labview\examples\Digital	Filter	Design\AALXMPL	directory	for	an	example
of	using	the	DFD	Windowed	FIR	Design	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CAALXMPL%5C%5CFIR%20Windowed%20Filter%20Design%20-%20DFD.vi');
javascript:findExamples(3742);

Advanced	IIR	Filter	Design	VIs
Owning	Palette:	Filter	Design	VIs
Installed	With:	Digital	Filter	Design	Toolkit.	This	topic	might	not	match	its
corresponding	palette	in	LabVIEW	depending	on	your	operating	system,
licensed	product(s),	and	target.
Use	the	Advanced	IIR	Filter	Design	VIs	to	estimate	infinite	impulse
response	(IIR)	filter	order	and	to	create	IIR	filters	from	the	filter
specifications.
The	VIs	on	this	palette	can	return	general	LabVIEW	error	codes	or
specific	digital	filter	design	error	codes.

Palette
Object Description

DFD
Bessel
Design

Creates	a	digital	Bessel	infinite	impulse	response	(IIR)	filter.

DFD
Butterworth
Design

Creates	a	digital	Butterworth	infinite	impulse	response	(IIR)
filter.

DFD
Butterworth
Order
Estimation

Estimates	the	Butterworth	filter	order.

DFD
Chebyshev
Design

Creates	a	digital	Chebyshev	infinite	impulse	response	(IIR)
filter.

DFD
Chebyshev
Order
Estimation

Estimates	the	Chebyshev	I	filter	order.

DFD
Elliptic
Design

Creates	a	digital	Elliptic	infinite	impulse	response	(IIR)	filter.

DFD
Elliptic

Estimates	the	Elliptic	filter	order.

lvdigfiltdestk.chm::/DFD_Design_VIs.html
lverror.chm::/Misc_LV_Error_Codes.html
lvdigfiltdestk.chm::/DFD_Bessel_Design.html
lvdigfiltdestk.chm::/DFD_Butterworth.html
lvdigfiltdestk.chm::/DFD_Butterworth_Od.html
lvdigfiltdestk.chm::/DFD_Chebyshev_Design.html
lvdigfiltdestk.chm::/DFD_Chebyshev_Order.html
lvdigfiltdestk.chm::/DFD_Elliptic_Design.html
lvdigfiltdestk.chm::/DFD_Elliptic_Order.html

Order
Estimation
DFD
Inverse
Chebyshev
Design

Creates	a	digital	Inverse	Chebyshev	infinite	impulse
response	(IIR)	filter.

DFD
Inverse
Chebyshev
Order
Estimation

Estimates	the	Inverse	Chebyshev	filter	order.

DFD	Least
Pth	Norm
Design

Designs	an	infinite	impulse	response	(IIR)	or	finite	impulse
response	(FIR)	filter	with	a	frequency	response	that
matches	the	response	you	request	in	terms	of	the	least	pth
norm	algorithm.	You	can	use	either	the	iterative	reweighted
least	square	(IRLS)	method	or	the	Newton	method	that	this
VI	provides	to	design	a	filter.	You	must	manually	select	the
polymorphic	instance	you	want	to	use.

lvdigfiltdestk.chm::/DFD_Inv_Cheby.html
lvdigfiltdestk.chm::/DFD_Inv_Cheby_Order.html
lvdigfiltdestk.chm::/DFD_LPth_Norm.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html

DFD	Bessel	Design	VI
Owning	Palette:	Advanced	IIR	Filter	Design	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Creates	a	digital	Bessel	infinite	impulse	response	(IIR)	filter.
Details		Examples

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
filter	type	specifies	the	type	of	filter	that	this	VI	creates.	

0 Lowpass	(default)
1 Highpass
2 Bandpass
3 Bandstop

order	specifies	the	digital	filter	order.	The	value	of	order	must	be
greater	than	zero.	The	default	is	2.	If	you	set	filter	type	to	Lowpass
or	Highpass,	the	digital	filter	order	you	specify	must	equal	the
analog	prototype	filter	order.	If	you	set	filter	type	to	Bandstop	or
Bandpass,	the	digital	filter	order	you	specify	must	be	an	even
number	that	equals	two	times	the	analog	prototype	filter	order.
Increasing	the	value	can	narrow	the	transition	band.
high	cutoff	freq	specifies	the	high	cutoff	frequency	in	hertz.	The
value	must	be	greater	than	low	cutoff	freq.	The	default	is	0.45.
This	VI	uses	this	input	for	bandpass	and	bandstop	filter	designs
only.	The	cutoff	frequency	specifies	the	passband,	or	the	region	of
an	approximately	linear	phase	response.
low	cutoff	freq	specifies	the	low	cutoff	frequency	in	hertz.	The
default	is	0.12.	The	cutoff	frequency	specifies	the	passband,	or	the
region	of	an	approximately	linear	phase	response.
error	in	describes	error	conditions	that	occur	before	this	VI	or

lvdigfiltdestk.chm::/DFD_Adv_IIR_VIs.html
javascript:placeObject(object2852);
javascript:findObject(object2852);
lvdfdtconcepts.chm::/dfd_filter_spec.html

function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

fs	specifies	the	sampling	frequency	in	hertz.	The	value	must	be
greater	than	zero.	The	default	is	1,	which	is	the	normalized
sampling	frequency.
filter	out	returns	a	new	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html
lverror.chm::/Error_Code_Ranges.html

the	error	or	warning.

DFD	Bessel	Design	Details
Bessel	filters	have	maximally	flat	response	in	both	the	passband	and	the
stopband.	The	phase	response	in	the	passband	of	Bessel	filters,	which
typically	is	the	region	of	interest,	is	nearly	linear.	However,	Bessel	filters
require	high-order	filters	to	provide	a	good	approximation	of	the	ideal	filter
response.
To	achieve	linear	phase	response	without	a	Bessel	filter,	use	FIR	filter
designs	or	use	the	DFD	Group	Delay	Compensator	VI	to	compensate	the
IIR	filter	group	delay.

lvdigfiltdestk.chm::/DFD_GDelay_Compens.html

Examples
Refer	to	the	following	VIs	for	examples	of	using	the	DFD	Bessel	Design
VI:

IIR	Filter	Design	-	DFD	VI:	labview\examples\Digital	Filter
Design\AALXMPL
	Open	example	 	Browse	related	examples
Bessel	IIR	Filter	Design	VI:	labview\examples\Digital	Filter
Design\Floating-Point	Filters\Conventional
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CAALXMPL%5C%5CIIR%20Filter%20Design%20-%20DFD.vi');
javascript:findExamples(3742);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFloating-Point%20Filters%5C%5CConventional%5C%5CBessel%20IIR%20Filter%20Design.vi');
javascript:findExamples(6302);

DFD	Butterworth	Design	VI
Owning	Palette:	Advanced	IIR	Filter	Design	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Creates	a	digital	Butterworth	infinite	impulse	response	(IIR)	filter.
You	can	use	the	DFD	Butterworth	Order	Estimation	VI	to	estimate	order.
Details		Examples

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
filter	type	specifies	the	type	of	filter	that	this	VI	creates.	

0 Lowpass	(default)
1 Highpass
2 Bandpass
3 Bandstop

order	specifies	the	digital	filter	order.	The	value	of	order	must	be
greater	than	zero.	The	default	is	2.	If	you	set	filter	type	to	Lowpass
or	Highpass,	the	digital	filter	order	you	specify	must	equal	the
analog	prototype	filter	order.	If	you	set	filter	type	to	Bandstop	or
Bandpass,	the	digital	filter	order	you	specify	must	be	an	even
number	that	equals	two	times	the	analog	prototype	filter	order.
Increasing	the	value	can	narrow	the	transition	band.
high	cutoff	freq	specifies	the	high	cutoff	frequency	in	hertz.	The
value	must	be	greater	than	low	cutoff	freq.	The	default	is	0.45.
This	VI	uses	this	input	only	for	bandpass	and	bandstop	filter
design.	The	cutoff	frequency	that	you	specify	corresponds	to	the
half-power	frequency	or	the	3	dB	frequency.
low	cutoff	freq	specifies	the	low	cutoff	frequency	in	hertz.	The
default	is	0.12.	The	cutoff	frequency	that	you	specify	corresponds
to	the	half-power	frequency	or	the	3	dB	frequency.

lvdigfiltdestk.chm::/DFD_Adv_IIR_VIs.html
lvdigfiltdestk.chm::/DFD_Butterworth_Od.html
javascript:placeObject(object2844);
javascript:findObject(object2844);
lvdfdtconcepts.chm::/dfd_filter_spec.html

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

fs	specifies	the	sampling	frequency	in	hertz.	The	value	must	be
greater	than	zero.	The	default	is	1,	which	is	the	normalized
sampling	frequency.
filter	out	returns	a	new	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html
lverror.chm::/Error_Code_Ranges.html

source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

DFD	Butterworth	Design	Details
Butterworth	filters	have	the	following	characteristics:

Smooth	frequency	response	at	all	frequencies	and	monotonically
decreasing	or	increasing	magnitude	response	in	the	transition
band.
Maximally	flat	at	frequencies	of	zero	and	one-half	the	sampling
frequency.

Butterworth	filters	do	not	always	provide	an	acceptable	accurate
approximation	of	the	ideal	frequency	response	because	the	filter	has
slow	roll	off	in	the	transition	band.	Use	Chebyshev,	Inverse	Chebyshev,
or	Elliptic	filters	to	achieve	a	sharper	roll	off.

Examples
Refer	to	the	following	VIs	for	examples	of	using	the	DFD	Butterworth
Design	VI:

Extract	the	Sine	Wave	-	DFD	VI:	labview\examples\Digital	Filter
Design\AALXMPL
	Open	example	 	Browse	related	examples
IIR	Filter	Design	-	DFD	VI:	labview\examples\Digital	Filter
Design\AALXMPL
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CAALXMPL%5C%5CExtract%20the%20Sine%20Wave%20-%20DFD.vi');
javascript:findExamples(3742);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CAALXMPL%5C%5CIIR%20Filter%20Design%20-%20DFD.vi');
javascript:findExamples(3742);

DFD	Butterworth	Order	Estimation	VI
Owning	Palette:	Advanced	IIR	Filter	Design	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Estimates	the	Butterworth	filter	order.

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
filter	type	specifies	the	type	of	filter	that	this	VI	creates.	

0 Lowpass	(default)
1 Highpass
2 Bandpass
3 Bandstop

freq	specs	specifies	the	band	edge	frequencies	of	the	filter.
fpass	1	specifies	the	first	passband	edge	frequency	in
hertz.
fstop	1	specifies	the	first	stopband	edge	frequency	in	hertz.
fpass	2	specifies	the	second	passband	edge	frequency	in
hertz.	This	VI	ignores	this	input	for	lowpass	and	highpass
filters.
fstop	2	specifies	the	second	stopband	edge	frequency	in
hertz.	This	VI	ignores	this	input	for	lowpass	and	highpass
filters.

ripple	specs	specifies	the	ripple	level	in	the	passband	and
stopband	of	the	filter.

passband	specifies	the	ripple	level	in	the	passband.	The
default	is	0.1.
stopband	specifies	the	ripple	level	in	the	stopband.	The
default	is	60.

lvdigfiltdestk.chm::/DFD_Adv_IIR_VIs.html
javascript:placeObject(object2845);
javascript:findObject(object2845);
lvdfdtconcepts.chm::/dfd_filter_spec.html

dB/linear?	specifies	whether	this	VI	applies	a	decibel	scale
or	a	linear	scale	to	the	ripple	levels.	If	the	value	is	TRUE,
this	VI	applies	a	decibel	scale	to	the	ripple	level.	If	the	value
is	FALSE,	this	VI	applies	a	linear	scale	to	the	ripple	level.
The	default	is	TRUE.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

fs	specifies	the	sampling	frequency	in	hertz.	The	value	must	be
greater	than	zero.	The	default	is	1,	which	is	the	normalized
sampling	frequency.
estimated	order	returns	the	minimum	order	value	that	the	filter
requires	to	meet	the	specifications	you	set.
high	cutoff	freq	returns	the	high	cutoff	frequency.	The	cutoff
frequency	corresponds	to	the	half-power	frequency	or	the	3	dB
frequency.
low	cutoff	freq	returns	the	low	cutoff	frequency.	The	cutoff
frequency	corresponds	to	the	half-power	frequency	or	the	3	dB
frequency.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	Chebyshev	Design	VI
Owning	Palette:	Advanced	IIR	Filter	Design	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Creates	a	digital	Chebyshev	infinite	impulse	response	(IIR)	filter.
You	can	use	the	DFD	Chebyshev	Order	Estimation	VI	to	estimate	order.
Details		Example

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
filter	type	specifies	the	type	of	filter	that	this	VI	creates.	

0 Lowpass	(default)
1 Highpass
2 Bandpass
3 Bandstop

order	specifies	the	digital	filter	order.	The	value	of	order	must	be
greater	than	zero.	The	default	is	2.	If	you	set	filter	type	to	Lowpass
or	Highpass,	the	digital	filter	order	you	specify	must	equal	the
analog	prototype	filter	order.	If	you	set	filter	type	to	Bandstop	or
Bandpass,	the	digital	filter	order	you	specify	must	be	an	even
number	that	equals	two	times	the	analog	prototype	filter	order.
Increasing	the	value	can	narrow	the	transition	band.
high	cutoff	freq	specifies	the	high	cutoff	frequency	in	hertz.	The
value	must	be	greater	than	low	cutoff	freq.	The	default	is	0.45.
This	VI	uses	this	input	only	for	bandpass	and	bandstop	filter
design.	The	cutoff	frequency	that	you	specify	corresponds	to	the
edge	frequency	of	the	passband.
low	cutoff	freq	specifies	the	low	cutoff	frequency	in	hertz.	The
default	is	0.12.	The	cutoff	frequency	that	you	specify	corresponds
to	the	edge	frequency	of	the	passband.

lvdigfiltdestk.chm::/DFD_Adv_IIR_VIs.html
lvdigfiltdestk.chm::/DFD_Chebyshev_Order.html
javascript:placeObject(object2849);
javascript:findObject(object2849);
lvdfdtconcepts.chm::/dfd_filter_spec.html

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

fs	specifies	the	sampling	frequency	in	hertz.	The	value	must	be
greater	than	zero.	The	default	is	1,	which	is	the	normalized
sampling	frequency.
passband	ripple	specifies	the	ripple	level	in	the	passband	in
decibels.	The	value	must	be	greater	than	zero.	The	default	is	1.
filter	out	returns	a	new	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	Chebyshev	Design	Details
Chebyshev	filters	have	the	following	characteristics:

Minimum	peak	error	in	the	passband.
Equi-ripple	magnitude	response	in	the	passband.
Monotonically	decreasing	or	increasing	magnitude	response	in
the	transition	band	and	the	stopband.
For	filters	of	the	same	order,	the	roll	off	in	the	transition	band	is
sharper	than	that	of	Butterworth	filters.

Example
Refer	to	the	IIR	Filter	Design	-	DFD	VI	in	the	labview\examples\Digital	Filter
Design\AALXMPL	directory	for	an	example	of	using	the	DFD	Chebyshev
Design	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CAALXMPL%5C%5CIIR%20Filter%20Design%20-%20DFD.vi');
javascript:findExamples(3742);

DFD	Chebyshev	Order	Estimation	VI
Owning	Palette:	Advanced	IIR	Filter	Design	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Estimates	the	Chebyshev	I	filter	order.

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
filter	type	specifies	the	type	of	filter	that	this	VI	creates.	

0 Lowpass	(default)
1 Highpass
2 Bandpass
3 Bandstop

freq	specs	specifies	the	band	edge	frequencies	of	the	filter.
fpass	1	specifies	the	first	passband	edge	frequency	in
hertz.
fstop	1	specifies	the	first	stopband	edge	frequency	in	hertz.
fpass	2	specifies	the	second	passband	edge	frequency	in
hertz.	This	VI	ignores	this	input	for	lowpass	and	highpass
filters.
fstop	2	specifies	the	second	stopband	edge	frequency	in
hertz.	This	VI	ignores	this	input	for	lowpass	and	highpass
filters.

ripple	specs	specifies	the	ripple	level	in	the	passband	and
stopband	of	the	filter.

passband	specifies	the	ripple	level	in	the	passband.	The
default	is	0.1.
stopband	specifies	the	ripple	level	in	the	stopband.	The
default	is	60.

lvdigfiltdestk.chm::/DFD_Adv_IIR_VIs.html
javascript:placeObject(object2846);
javascript:findObject(object2846);
lvdfdtconcepts.chm::/dfd_filter_spec.html

dB/linear?	specifies	whether	this	VI	applies	a	decibel	scale
or	a	linear	scale	to	the	ripple	levels.	If	the	value	is	TRUE,
this	VI	applies	a	decibel	scale	to	the	ripple	level.	If	the	value
is	FALSE,	this	VI	applies	a	linear	scale	to	the	ripple	level.
The	default	is	TRUE.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

fs	specifies	the	sampling	frequency	in	hertz.	The	value	must	be
greater	than	zero.	The	default	is	1,	which	is	the	normalized
sampling	frequency.
estimated	order	returns	the	minimum	order	value	that	the	filter
requires	to	meet	the	specifications	you	set.
high	cutoff	freq	returns	the	high	cutoff	frequency.	The	cutoff
frequency	corresponds	to	the	edge	frequency	of	the	passband.
low	cutoff	freq	returns	the	low	cutoff	frequency.	The	cutoff
frequency	corresponds	to	the	edge	frequency	of	the	passband.

error	out	contains	error	information.	If	error	in	indicates	that	an

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

passband	ripple	returns	the	ripple	level	in	the	passband	in
decibels.

lverror.chm::/Error_Code_Ranges.html

DFD	Elliptic	Design	VI
Owning	Palette:	Advanced	IIR	Filter	Design	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Creates	a	digital	Elliptic	infinite	impulse	response	(IIR)	filter.
You	can	use	the	DFD	Elliptic	Order	Estimation	VI	to	estimate	order.
Details		Examples

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
filter	type	specifies	the	type	of	filter	that	this	VI	creates.	

0 Lowpass	(default)
1 Highpass
2 Bandpass
3 Bandstop

order	specifies	the	digital	filter	order.	The	value	of	order	must	be
greater	than	zero.	The	default	is	2.	If	you	set	filter	type	to	Lowpass
or	Highpass,	the	digital	filter	order	you	specify	must	equal	the
analog	prototype	filter	order.	If	you	set	filter	type	to	Bandstop	or
Bandpass,	the	digital	filter	order	you	specify	must	be	an	even
number	that	equals	two	times	the	analog	prototype	filter	order.
Increasing	the	value	can	narrow	the	transition	band.
high	cutoff	freq	specifies	the	high	cutoff	frequency	in	hertz.	The
value	must	be	greater	than	low	cutoff	freq.	The	default	is	0.45.
This	VI	uses	this	input	only	for	bandpass	and	bandstop	filter
design.	The	cutoff	frequency	that	you	specify	corresponds	to	the
edge	frequency	of	the	passband.
low	cutoff	freq	specifies	the	low	cutoff	frequency	in	hertz.	The
default	is	0.12.	The	cutoff	frequency	that	you	specify	corresponds
to	the	edge	frequency	of	the	passband.

lvdigfiltdestk.chm::/DFD_Adv_IIR_VIs.html
lvdigfiltdestk.chm::/DFD_Elliptic_Order.html
javascript:placeObject(object2851);
javascript:findObject(object2851);
lvdfdtconcepts.chm::/dfd_filter_spec.html

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

fs	specifies	the	sampling	frequency	in	hertz.	The	value	must	be
greater	than	zero.	The	default	is	1,	which	is	the	normalized
sampling	frequency.
ripples	specifies	the	passband	ripple	and	stopband	attenuation	of
the	filter	in	decibels.

passband	ripple	specifies	the	ripple	level	in	the	passband
in	decibels.	The	value	must	be	greater	than	zero.	The
default	is	1.
stopband	atten	specifies	the	stopband	attenuation	in
decibels.	The	value	must	be	greater	than	zero.	The	default
is	60.

filter	out	returns	a	new	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	Elliptic	Design	Details
Elliptic	filters	have	the	following	characteristics:

Minimum	peak	error	in	the	passband	and	stopband.
Equi-ripple	magnitude	response	in	the	passband	and	stopband.
Compared	with	same-order	Butterworth	or	Chebyshev	filters,
Elliptic	filters	have	the	sharpest	transition	band,	which	accounts
for	their	widespread	use.

Examples
Refer	to	the	following	VIs	for	examples	of	using	the	DFD	Elliptic	Design
VI:

IIR	Filter	Design	-	DFD	VI:	labview\examples\Digital	Filter
Design\AALXMPL
	Open	example	 	Browse	related	examples
Elliptic	IIR	Filter	Design	VI:	labview\examples\Digital	Filter
Design\Floating-Point	Filters\Conventional
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CAALXMPL%5C%5CIIR%20Filter%20Design%20-%20DFD.vi');
javascript:findExamples(3742);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFloating-Point%20Filters%5C%5CConventional%5C%5CElliptic%20IIR%20Filter%20Design.vi');
javascript:findExamples(6302);

DFD	Elliptic	Order	Estimation	VI
Owning	Palette:	Advanced	IIR	Filter	Design	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Estimates	the	Elliptic	filter	order.
Example

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
filter	type	specifies	the	type	of	filter	that	this	VI	creates.	

0 Lowpass	(default)
1 Highpass
2 Bandpass
3 Bandstop

freq	specs	specifies	the	band	edge	frequencies	of	the	filter.
fpass	1	specifies	the	first	passband	edge	frequency	in
hertz.
fstop	1	specifies	the	first	stopband	edge	frequency	in	hertz.
fpass	2	specifies	the	second	passband	edge	frequency	in
hertz.	This	VI	ignores	this	input	for	lowpass	and	highpass
filters.
fstop	2	specifies	the	second	stopband	edge	frequency	in
hertz.	This	VI	ignores	this	input	for	lowpass	and	highpass
filters.

ripple	specs	specifies	the	ripple	level	in	the	passband	and
stopband	of	the	filter.

passband	specifies	the	ripple	level	in	the	passband.	The
default	is	0.1.
stopband	specifies	the	ripple	level	in	the	stopband.	The

lvdigfiltdestk.chm::/DFD_Adv_IIR_VIs.html
javascript:placeObject(object2848);
javascript:findObject(object2848);
lvdfdtconcepts.chm::/dfd_filter_spec.html

default	is	60.
dB/linear?	specifies	whether	this	VI	applies	a	decibel	scale
or	a	linear	scale	to	the	ripple	levels.	If	the	value	is	TRUE,
this	VI	applies	a	decibel	scale	to	the	ripple	level.	If	the	value
is	FALSE,	this	VI	applies	a	linear	scale	to	the	ripple	level.
The	default	is	TRUE.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

fs	specifies	the	sampling	frequency	in	hertz.	The	value	must	be
greater	than	zero.	The	default	is	1,	which	is	the	normalized
sampling	frequency.
estimated	order	returns	the	minimum	order	value	that	the	filter
requires	to	meet	the	specifications	you	set.
high	cutoff	freq	returns	the	high	cutoff	frequency.	The	cutoff
frequency	corresponds	to	the	edge	frequency	of	the	passband.
low	cutoff	freq	returns	the	low	cutoff	frequency.	The	cutoff
frequency	corresponds	to	the	edge	frequency	of	the	passband.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

ripples	returns	the	passband	ripple	and	stopband	attenuation	of
the	filter	in	decibels.

passband	ripple	returns	the	ripple	level	in	the	passband	in
decibels.
stopband	atten	returns	the	stopband	attenuation	in
decibels.

lverror.chm::/Error_Code_Ranges.html

Example
Refer	to	the	Elliptic	IIR	Filter	Design	VI	in	the	labview\examples\Digital
Filter	Design\Floating-Point	Filters\Conventional	directory	for	an	example	of
using	the	DFD	Elliptic	Order	Estimation	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFloating-Point%20Filters%5C%5CConventional%5C%5CElliptic%20IIR%20Filter%20Design.vi');
javascript:findExamples(6302);

DFD	Inverse	Chebyshev	Design	VI
Owning	Palette:	Advanced	IIR	Filter	Design	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Creates	a	digital	Inverse	Chebyshev	infinite	impulse	response	(IIR)	filter.
You	can	use	the	DFD	Inverse	Chebyshev	Order	Estimation	VI	to	estimate
order.
Details		Example

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
filter	type	specifies	the	type	of	filter	that	this	VI	creates.	

0 Lowpass	(default)
1 Highpass
2 Bandpass
3 Bandstop

order	specifies	the	digital	filter	order.	The	value	of	order	must	be
greater	than	zero.	The	default	is	2.	If	you	set	filter	type	to	Lowpass
or	Highpass,	the	digital	filter	order	you	specify	must	equal	the
analog	prototype	filter	order.	If	you	set	filter	type	to	Bandstop	or
Bandpass,	the	digital	filter	order	you	specify	must	be	an	even
number	that	equals	two	times	the	analog	prototype	filter	order.
Increasing	the	value	can	narrow	the	transition	band.
high	cutoff	freq	specifies	the	high	cutoff	frequency	in	hertz.	The
value	must	be	greater	than	low	cutoff	freq.	The	default	is	0.45.
This	VI	uses	this	input	only	for	bandpass	and	bandstop	filter
design.	The	cutoff	frequency	that	you	specify	corresponds	to	the
edge	frequency	of	the	stopband.
low	cutoff	freq	specifies	the	low	cutoff	frequency	in	hertz.	The
default	is	0.12.	The	cutoff	frequency	that	you	specify	corresponds

lvdigfiltdestk.chm::/DFD_Adv_IIR_VIs.html
lvdigfiltdestk.chm::/DFD_Inv_Cheby_Order.html
javascript:placeObject(object2850);
javascript:findObject(object2850);
lvdfdtconcepts.chm::/dfd_filter_spec.html

to	the	edge	frequency	of	the	stopband.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

fs	specifies	the	sampling	frequency	in	hertz.	The	value	must	be
greater	than	zero.	The	default	is	1,	which	is	the	normalized
sampling	frequency.
stopband	atten	specifies	the	stopband	attenuation	in	decibels.
The	value	must	be	greater	than	zero.	The	default	is	60.
filter	out	returns	a	new	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	Inverse	Chebyshev	Design	Details
Inverse	Chebyshev	filters,	also	known	as	Chebyshev	II	or	Type	II
Chebyshev	filters,	have	the	following	characteristics:

Minimum	peak	error	in	the	stopband.
Equi-ripple	magnitude	response	in	the	stopband.
Monotonically	decreasing	or	increasing	magnitude	response	in
the	passband.
For	filters	of	the	same	order,	the	roll	off	in	the	transition	band	is
sharper	than	that	of	Butterworth	filters.

Example
Refer	to	the	IIR	Filter	Design	-	DFD	VI	in	the	labview\examples\Digital	Filter
Design\AALXMPL	directory	for	an	example	of	using	the	DFD	Inverse
Chebyshev	Design	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CAALXMPL%5C%5CIIR%20Filter%20Design%20-%20DFD.vi');
javascript:findExamples(3742);

DFD	Inverse	Chebyshev	Order	Estimation	VI
Owning	Palette:	Advanced	IIR	Filter	Design	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Estimates	the	Inverse	Chebyshev	filter	order.

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
filter	type	specifies	the	type	of	filter	that	this	VI	creates.	

0 Lowpass	(default)
1 Highpass
2 Bandpass
3 Bandstop

freq	specs	specifies	the	band	edge	frequencies	of	the	filter.
fpass	1	specifies	the	first	passband	edge	frequency	in
hertz.
fstop	1	specifies	the	first	stopband	edge	frequency	in	hertz.
fpass	2	specifies	the	second	passband	edge	frequency	in
hertz.	This	VI	ignores	this	input	for	lowpass	and	highpass
filters.
fstop	2	specifies	the	second	stopband	edge	frequency	in
hertz.	This	VI	ignores	this	input	for	lowpass	and	highpass
filters.

ripple	specs	specifies	the	ripple	level	in	the	passband	and
stopband	of	the	filter.

passband	specifies	the	ripple	level	in	the	passband.	The
default	is	0.1.
stopband	specifies	the	ripple	level	in	the	stopband.	The
default	is	60.

lvdigfiltdestk.chm::/DFD_Adv_IIR_VIs.html
javascript:placeObject(object2847);
javascript:findObject(object2847);
lvdfdtconcepts.chm::/dfd_filter_spec.html

dB/linear?	specifies	whether	this	VI	applies	a	decibel	scale
or	a	linear	scale	to	the	ripple	levels.	If	the	value	is	TRUE,
this	VI	applies	a	decibel	scale	to	the	ripple	level.	If	the	value
is	FALSE,	this	VI	applies	a	linear	scale	to	the	ripple	level.
The	default	is	TRUE.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

fs	specifies	the	sampling	frequency	in	hertz.	The	value	must	be
greater	than	zero.	The	default	is	1,	which	is	the	normalized
sampling	frequency.
estimated	order	returns	the	minimum	order	value	that	the	filter
requires	to	meet	the	specifications	you	set.
high	cutoff	freq	returns	the	high	cutoff	frequency.	The	cutoff
frequency	corresponds	to	the	edge	frequency	of	the	stopband.
low	cutoff	freq	returns	the	low	cutoff	frequency.	The	cutoff
frequency	corresponds	to	the	edge	frequency	of	the	stopband.

error	out	contains	error	information.	If	error	in	indicates	that	an

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

stopband	atten	returns	the	stopband	attenuation	in	decibels.

lverror.chm::/Error_Code_Ranges.html

Special	Filter	Design	VIs
Owning	Palette:	Filter	Design	VIs
Installed	With:	Digital	Filter	Design	Toolkit.	This	topic	might	not	match	its
corresponding	palette	in	LabVIEW	depending	on	your	operating	system,
licensed	product(s),	and	target.
Use	the	Special	Filter	Design	VIs	to	create	notch	peak,	infinite	impulse
response	(IIR)	comb,	maximally	flat,	narrowband,	and	other	special
filters.
The	VIs	on	this	palette	can	return	general	LabVIEW	error	codes	or
specific	digital	filter	design	error	codes.

Palette
Object Description

DFD
Arbitrary
Group	Delay
Design

Creates	an	allpass	filter	with	a	group	delay	that	you
specify.

DFD	Group
Delay
Compensator

Compensates	the	group	delay	of	a	filter.

DFD	IIR
Comb
Design

Creates	an	infinite	impulse	response	(IIR)	comb	filter.	You
must	manually	select	the	polymorphic	instance	you	want
to	use.

DFD	IIR
Notch	Peak
Design

Designs	a	notch	or	peak	filter	in	which	the	notch	or	peak
is	located	at	the	center	frequency.	You	must	manually
select	the	polymorphic	instance	you	want	to	use.

DFD	Maxflat
Design

Creates	a	lowpass	finite	impulse	response	(FIR)	or	infinite
impulse	response	(IIR)	filter	with	a	magnitude	frequency
response	that	is	maximally	flat	at	0	and	at	half	the
sampling	frequency.

DFD
Narrowband
Filter	Design

Creates	a	narrowband	filter	using	the	interpolated	finite
impulse	response	(FIR)	technique.

lvdigfiltdestk.chm::/DFD_Design_VIs.html
lverror.chm::/Misc_LV_Error_Codes.html
lvdigfiltdestk.chm::/DFD_Arb_Grp_Dly.html
lvdfdtconcepts.chm::/grp_phase_delay.html
lvdigfiltdestk.chm::/DFD_GDelay_Compens.html
lvdfdtconcepts.chm::/grp_compensator.html
lvdigfiltdestk.chm::/DFD_IIR_Comb_Design.html
lvdfdtconcepts.chm::/Comb_Filters.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
lvdigfiltdestk.chm::/DFD_IIR_Notch_Peak.html
lvdfdtconcepts.chm::/Notch_Peak_Filters.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
lvdigfiltdestk.chm::/DFD_Maxflat_Design.html
lvdigfiltdestk.chm::/DFD_Narrow_Filter.html

DFD	Arbitrary	Group	Delay	Design	VI
Owning	Palette:	Special	Filter	Design	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Creates	an	allpass	filter	with	a	group	delay	that	you	specify.

The	group	delay	in	the	new	filter	is	optimal	in	terms	of	the	least	pth	norm.
Example

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
pole	radius	constraint	specifies	the	maximum	pole	radius	for	the
new	filter.	The	default	is	0.99.	A	small	pole	radius	constraint
decreases	the	possibility	of	filter	instability	caused	by	finite
precision	effects.	However,	a	small	value	of	the	pole	radius
constraint	can	adversely	affect	the	potential	sharpness	of	the
group	delay	response.	The	valid	values	for	pole	radius	constraint
are	within	the	range	(0,	1].	This	VI	ignores	the	input	and	applies	no
constraint	to	the	radius	if	a	value	is	beyond	the	range.
integer	offset?	specifies	whether	the	group	delay	offset	between
the	group	delay	of	the	filter	and	predefined	specifications	is	an
integer	or	any	real	number.	The	default	is	TRUE.	If	you	set	integer
offset?	to	FALSE,	the	group	delay	offset	is	any	real	number.	Using
an	integer	can	slightly	increase	delay.
order	specifies	the	filter	order.	The	value	of	order	must	be	greater
than	zero.	The	default	is	10.
band	specs	specifies	the	group	delay	response	you	want	for	the
filter,	for	one	or	more	frequency	bands.

freq	specifies	the	frequency	point.
group	delay	specifies	the	group	delay	you	want	for	the
frequency	point.
weight	defines	the	relative	significance	of	the	group	delay

lvdigfiltdestk.chm::/DFD_Special_VIs.html
lvdfdtconcepts.chm::/grp_phase_delay.html
javascript:placeObject(object2865);
javascript:findObject(object2865);

you	want.	Increasing	the	value	of	weight	adds	precision	to
group	delay	for	the	frequency	point.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

fs	specifies	the	sampling	frequency	in	hertz.	The	value	must	be
greater	than	zero.	The	default	is	1,	which	is	the	normalized
sampling	frequency.
filter	out	returns	a	new	filter.
offset	returns	the	group	delay	offset	between	the	group	delay	of
filter	out	and	the	group	delay	specified	in	band	specs.	The
integer	offset?	input	determines	whether	offset	is	an	integer	or	a
floating-point	number.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

Example
Refer	to	the	Arbitrary	Group	Delay	Filter	Design	VI	in	the
labview\examples\Digital	Filter	Design\Floating-Point	Filters\Conventional
directory	for	an	example	of	using	the	DFD	Arbitrary	Group	Delay	Design
VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFloating-Point%20Filters%5C%5CConventional%5C%5CArbitrary%20Group%20Delay%20Filter%20Design.vi');
javascript:findExamples(6302);

DFD	Group	Delay	Compensator	VI
Owning	Palette:	Special	Filter	Design	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Compensates	the	group	delay	of	a	filter.
The	resulting	filter,	compensated	filter,	has	the	same	magnitude
response	as	the	original	filter	but	includes	a	constant	group	delay	in	the
frequency	ranges	you	specify.
Example

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
pole	radius	constraint	specifies	the	maximum	pole	radius	for	the
new	filter.	The	default	is	0.99.	A	small	pole	radius	constraint
decreases	the	possibility	of	filter	instability	caused	by	finite
precision	effects.	However,	a	small	value	of	the	pole	radius
constraint	can	adversely	affect	the	potential	sharpness	of	the
group	delay	response.	The	valid	values	for	pole	radius	constraint
are	within	the	range	(0,	1].	This	VI	ignores	the	input	and	applies	no
constraint	to	the	radius	if	a	value	is	beyond	the	range.
integer	group	delay?	specifies	whether	group	delay	for	the	new
filter	is	an	integer.	The	default	is	TRUE.	If	you	set	integer	group
delay?	to	FALSE,	group	delay	is	any	real	number.
filter	in	specifies	the	input	filter.
compensator	order	specifies	the	order	of	the	allpass	filter	that
compensator	returns,	which	compensates	group	delay.
compensator	order	must	be	an	even	number.
freq	ranges	specifies	one	or	more	frequency	ranges	in	which	this
VI	compensates	the	group	delay.

low	specifies	the	low	end	of	the	frequency	range.	The
default	is	0.

lvdigfiltdestk.chm::/DFD_Special_VIs.html
lvdfdtconcepts.chm::/grp_compensator.html
javascript:placeObject(object2866);
javascript:findObject(object2866);

high	specifies	the	high	end	of	the	frequency	range.	The
default	is	0.2.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

fs	specifies	the	sampling	frequency	in	hertz.	The	value	must	be
greater	than	zero.	The	default	is	1,	which	is	the	normalized
sampling	frequency.
compensated	filter	returns	the	new	filter	with	compensated	group
delay.
compensator	returns	the	allpass	filter	that	the	VI	uses	to
compensate	the	group	delay.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

Example
Refer	to	the	Group	Delay	Compensation	VI	in	the	labview\examples\Digital
Filter	Design\Floating-Point	Filters\Conventional	directory	for	an	example	of
using	the	DFD	Group	Delay	Compensator	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFloating-Point%20Filters%5C%5CConventional%5C%5CGroup%20Delay%20Compensation.vi');
javascript:findExamples(6302);

DFD	IIR	Comb	Design	VI
Owning	Palette:	Special	Filter	Design	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Creates	an	infinite	impulse	response	(IIR)	comb	filter.	You	must	manually
select	the	polymorphic	instance	you	want	to	use.
Examples
Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

	Place	on	the	block	diagram 	Find	on	the	Functions	palette

lvdigfiltdestk.chm::/DFD_Special_VIs.html
lvdfdtconcepts.chm::/Comb_Filters.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
javascript:placeObject(object2862);
javascript:findObject(object2862);

DFD	IIR	Comb	Design	by	N	and	Bandwidth

filter	type	specifies	the	type	of	IIR	comb	filter.	

0 Notch	Type	I	(default)
1 Notch	Type	II
2 Peak	Type	I
3 Peak	Type	II

#	notches/peaks	specifies	the	number	of	notches	or	peaks	in	the
full	frequency	band	from	0	to	fs.	The	default	is	10.
Df	defines	the	full	bandwidth	at	the	level	of	–Ab.	The	default	is
0.02.	Df	represents	 f.
Ab	specifies	the	attenuation	that	corresponds	to	the	bandwidth.
The	default	is	3.0103,	which	corresponds	to	3	dB	bandwidth,	the
commonly	used	bandwidth	of	a	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status

lvdfdtconcepts.chm::/Comb_Filters.html
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html

is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

fs	specifies	the	sampling	frequency	in	hertz.	The	value	must	be
greater	than	zero.	The	default	is	1,	which	is	the	normalized
sampling	frequency.
filter	out	returns	a	new	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html
lverror.chm::/Error_Code_Ranges.html

DFD	IIR	Comb	Design	by	f0	and	Bandwidth

filter	type	specifies	the	type	of	IIR	comb	filter.	

0 Notch	Type	I	(default)
1 Notch	Type	II
2 Peak	Type	I
3 Peak	Type	II

f0	specifies	the	center	frequency	of	the	first	nonzero	notch	or	peak.
The	default	is	0.1.	The	value	of	fs/f0	must	be	an	integer	for	a	Type
I	comb	filter	design.	The	value	of	fs/(f0*2)	must	be	an	integer	for	a
Type	II	comb	filter	design.
Df	defines	the	full	bandwidth	at	the	level	of	–Ab.	The	default	is
0.02.	Df	represents	 f.
Ab	specifies	the	attenuation	that	corresponds	to	the	bandwidth.
The	default	is	3.0103,	which	corresponds	to	3	dB	bandwidth,	the
commonly	used	bandwidth	of	a	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.

lvdfdtconcepts.chm::/Comb_Filters.html
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html

code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

fs	specifies	the	sampling	frequency	in	hertz.	The	value	must	be
greater	than	zero.	The	default	is	1,	which	is	the	normalized
sampling	frequency.
filter	out	returns	a	new	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html
lverror.chm::/Error_Code_Ranges.html

Examples
Refer	to	the	following	VIs	for	examples	of	using	the	DFD	IIR	Comb
Design	VI:

IIR	Comb	Filter	Design	VI:	labview\examples\Digital	Filter
Design\Floating-Point	Filters\Conventional
	Open	example	 	Browse	related	examples
Noise	Cancellation	for	ECG	Signal	by	Notch	Filter	VI:
labview\examples\Digital	Filter	Design\Floating-Point
Filters\Conventional
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFloating-Point%20Filters%5C%5CConventional%5C%5CIIR%20Comb%20Filter%20Design.vi');
javascript:findExamples(6302);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFloating-Point%20Filters%5C%5CConventional%5C%5CNoise%20Cancellation%20for%20ECG%20Signal%20by%20Notch%20Filter.vi');
javascript:findExamples(6302);

DFD	IIR	Notch	Peak	Design	VI
Owning	Palette:	Special	Filter	Design	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Designs	a	notch	or	peak	filter	in	which	the	notch	or	peak	is	located	at	the
center	frequency.	You	must	manually	select	the	polymorphic	instance	you
want	to	use.
Examples
Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

	Place	on	the	block	diagram 	Find	on	the	Functions	palette

lvdigfiltdestk.chm::/DFD_Special_VIs.html
lvdfdtconcepts.chm::/Notch_Peak_Filters.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
javascript:placeObject(object2861);
javascript:findObject(object2861);

DFD	IIR	Notch	Peak	Design	By	Q	Factor

filter	type	specifies	the	type	of	filter	that	this	VI	creates.	

0 Notch	(default)
1 Peak

f0	specifies	the	center	frequency	of	the	notch	or	peak.	The	value	of
f0	must	be	greater	than	0	but	less	than	half	the	value	of	fs.	The
default	is	0.10.
Q	factor	specifies	the	Q	factor	of	the	filter,	which	equals	the
quotient	of	center	frequency	and	corresponding	bandwidth.	The
default	is	20.	The	Q	factor	reflects	the	relative	sharpness	of	the
filter	notch	or	peak.	Increasing	the	Q	factor	sharpens	the	notch	or
peak.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in

lvdfdtconcepts.chm::/Notch_Peak_Filters.html
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

fs	specifies	the	sampling	frequency	in	hertz.	The	value	must	be
greater	than	zero.	The	default	is	1,	which	is	the	normalized
sampling	frequency.
filter	out	returns	a	new	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	IIR	Notch	Peak	Design	By	Bandwidth

filter	type	specifies	the	type	of	filter	that	this	VI	creates.	

0 Notch	(default)
1 Peak

f0	specifies	the	center	frequency	of	the	notch	or	peak.	The	value	of
f0	must	be	greater	than	or	equal	to	0	but	less	than	half	the	value	of
fs.	The	default	is	0.10.
Df	defines	the	full	bandwidth	at	the	level	of	–Ab.	The	default	is
0.02.	Df	represents	 f.
Ab	specifies	the	attenuation	that	corresponds	to	the	bandwidth.
The	default	is	3.0103,	which	corresponds	to	3	dB	bandwidth,	the
commonly	used	bandwidth	of	a	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.

lvdfdtconcepts.chm::/Notch_Peak_Filters.html
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

fs	specifies	the	sampling	frequency	in	hertz.	The	value	must	be
greater	than	zero.	The	default	is	1,	which	is	the	normalized
sampling	frequency.
filter	out	returns	a	new	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

Examples
Refer	to	the	following	VIs	for	examples	of	using	the	DFD	IIR	Notch	Peak
Design	VI:

IIR	Notch	Peak	Filter	Design	VI:	labview\examples\Digital	Filter
Design\Floating-Point	Filters\Conventional
	Open	example	 	Browse	related	examples
Noise	Cancellation	for	ECG	Signal	by	Notch	Filter	VI:
labview\examples\Digital	Filter	Design\Floating-Point
Filters\Conventional
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFloating-Point%20Filters%5C%5CConventional%5C%5CIIR%20Notch%20Peak%20Filter%20Design.vi');
javascript:findExamples(6302);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFloating-Point%20Filters%5C%5CConventional%5C%5CNoise%20Cancellation%20for%20ECG%20Signal%20by%20Notch%20Filter.vi');
javascript:findExamples(6302);

DFD	Maxflat	Design	VI
Owning	Palette:	Special	Filter	Design	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Creates	a	lowpass	finite	impulse	response	(FIR)	or	infinite	impulse
response	(IIR)	filter	with	a	magnitude	frequency	response	that	is
maximally	flat	at	0	and	at	half	the	sampling	frequency.
You	can	specify	whether	this	VI	creates	an	FIR	or	IIR	filter.

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
filter	type	specifies	the	type	of	filter	that	this	VI	creates.	

0 IIR	(default)
1 FIR
2 Symmetric	FIR

numerator	order	sets	the	FIR	filter	order	or	the	numerator	order	of
the	IIR	filter.	The	value	must	be	greater	than	zero.	The	default	is	2.
denominator	order	sets	the	denominator	order	of	the	IIR	filter.
The	default	is	2.	The	value	must	be	greater	than	or	equal	to	zero	if
you	set	filter	type	to	IIR.	If	you	set	filter	type	to	FIR	or	Symmetric
FIR,	this	VI	ignores	this	input.
3dB	cutoff	freq	specifies	the	cutoff	frequency	in	hertz	at	which	the
magnitude	response	of	the	filter	equals	–3	dB.	The	default	is	0.25.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error

lvdigfiltdestk.chm::/DFD_Special_VIs.html
javascript:placeObject(object2863);
javascript:findObject(object2863);
lvdfdtconcepts.chm::/FIR_and_IIR_Filters.html
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html

Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

fs	specifies	the	sampling	frequency	in	hertz.	The	value	must	be
greater	than	zero.	The	default	is	1,	which	is	the	normalized
sampling	frequency.
filter	out	returns	a	new	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html
lverror.chm::/Error_Code_Ranges.html

DFD	Narrowband	Filter	Design	VI
Owning	Palette:	Special	Filter	Design	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Creates	a	narrowband	filter	using	the	interpolated	finite	impulse	response
(FIR)	technique.
To	filter	data,	wire	the	narrowband	filter	out	output	to	the	narrowband
filter	input	of	the	DFD	Narrowband	Filtering	VI.
Examples

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
filter	type	specifies	the	type	of	filter	that	this	VI	creates.	

0 Lowpass	(default)
1 Highpass
2 Bandpass
3 Bandstop

freq	specs	specifies	the	band	edge	frequencies	of	the	filter.
fpass	1	specifies	the	first	passband	edge	frequency	in
hertz.
fstop	1	specifies	the	first	stopband	edge	frequency	in	hertz.
fpass	2	specifies	the	second	passband	edge	frequency	in
hertz.	This	VI	ignores	this	input	for	lowpass	and	highpass
filters.
fstop	2	specifies	the	second	stopband	edge	frequency	in
hertz.	This	VI	ignores	this	input	for	lowpass	and	highpass
filters.

ripple	specs	specifies	the	ripple	level	in	the	passband	and
stopband	of	the	filter.

lvdigfiltdestk.chm::/DFD_Special_VIs.html
lvdigfiltdestk.chm::/DFD_Narrow_Filtering.html
javascript:placeObject(object2864);
javascript:findObject(object2864);
lvdfdtconcepts.chm::/dfd_filter_spec.html

passband	specifies	the	ripple	level	in	the	passband.	The
default	is	0.1.
stopband	specifies	the	ripple	level	in	the	stopband.	The
default	is	60.
dB/linear?	specifies	whether	this	VI	applies	a	decibel	scale
or	a	linear	scale	to	the	ripple	levels.	If	the	value	is	TRUE,
this	VI	applies	a	decibel	scale	to	the	ripple	level.	If	the	value
is	FALSE,	this	VI	applies	a	linear	scale	to	the	ripple	level.
The	default	is	TRUE.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

fs	specifies	the	sampling	frequency	in	hertz.	The	value	must	be
greater	than	zero.	The	default	is	1,	which	is	the	normalized
sampling	frequency.
narrowband	filter	out	contains	the	narrowband	filter.

multirate	filters	contains	the	multirate	filters	this	VI	uses	to
construct	the	narrowband	filter.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

filter	type	contains	the	type	of	narrowband	filter.

error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

Examples
Refer	to	the	following	VIs	for	examples	of	using	the	DFD	Narrowband
Filter	Design	VI:

Narrowband	Filtering	-	DFD	VI:	labview\examples\Digital	Filter
Design\AALXMPL
	Open	example	 	Browse	related	examples
Narrowband	Filter	Design	and	Processing	VI:
labview\examples\Digital	Filter	Design\Floating-Point	Filters\Multirate
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CAALXMPL%5C%5CNarrowband%20Filtering%20-%20DFD.vi');
javascript:findExamples(3742);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFloating-Point%20Filters%5C%5CMultirate%5C%5CNarrowband%20Filter%20Design%20and%20Processing.vi');
javascript:findExamples(10071);

Fixed-Point	Tools	VIs
Owning	Palette:	Digital	Filter	Design	VIs	and	Functions
Installed	With:	Digital	Filter	Design	Toolkit.	This	topic	might	not	match	its
corresponding	palette	in	LabVIEW	depending	on	your	operating	system,
licensed	product(s),	and	target.
Use	the	Fixed-Point	Tools	VIs	to	quantize	coefficients,	model	the
behavior	of	fixed-point	filters,	simulate	filtering	processes,	generate
statistics	reports,	and	generate	fixed-point	target	code.
The	VIs	on	this	palette	can	return	general	LabVIEW	error	codes	or
specific	digital	filter	design	error	codes.

Palette	Object Description
DFD	Convert
FXP	to	Integer

Converts	fixed-point	numbers	to	integers.	You	must
manually	select	the	polymorphic	instance	you	want	to
use.

DFD	Convert
Integer	to	FXP

Converts	integers	to	fixed-point	numbers.	Wire	data	to
the	I16	input	to	determine	the	polymorphic	instance	to
use	or	manually	select	the	instance.

DFD	FXP
Code
Generator

Generates	fixed-point	code	from	a	fixed-point	filter,
including	fixed-point	LabVIEW	field-programmable	gate
array	(FPGA)	code,	integer	LabVIEW	code,	and	C	code.
You	must	manually	select	the	polymorphic	instance	you
want	to	use.

DFD	FXP	Coef
Report

Generates	a	text	report	about	the	coefficients	of	a	fixed-
point	filter.

DFD	FXP	Get
Quantizer

Retrieves	quantizer	settings	from	a	fixed-point	filter.	You
must	manually	select	the	polymorphic	instance	you
want	to	use.

DFD	FXP
Modeling

Creates	a	fixed-point	filter	model	according	to	the	input
and	output	word	length	settings.

DFD	FXP
Postprocessing

Converts	the	output	signal	of	a	fixed-point	filter	from	a
fixed-point	integer	representation	to	a	floating-point
representation.	You	must	manually	select	the
polymorphic	instance	you	want	to	use.

DFD	FXP Quantizes	the	coefficients	of	a	floating-point	filter	and

lvdigfiltdestk.chm::/DFD_VIs.html
lverror.chm::/Misc_LV_Error_Codes.html
lvdigfiltdestk.chm::/DFD_FXP_to_Integer.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
lvdigfiltdestk.chm::/DFD_Integer_to_FXP.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
lvdigfiltdestk.chm::/DFD_FXP_Codegen.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
lvdigfiltdestk.chm::/DFD_FXP_Coef_Report.html
lvdigfiltdestk.chm::/DFD_Get_Quantizer.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
lvdigfiltdestk.chm::/DFD_FXP_Modeling.html
lvdfdtconcepts.chm::/specify_wl_iwl.html
lvdigfiltdestk.chm::/DFD_FXP_Postp.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
lvdigfiltdestk.chm::/DFD_FXP_QCoef.html

Quantize	Coef generates	a	fixed-point	filter.	You	must	manually	select
the	polymorphic	instance	you	want	to	use.

DFD	FXP	Set
Quantizer

Sets	a	quantizer	or	quantizers	in	a	fixed-point	filter.	You
must	manually	select	the	polymorphic	instance	you
want	to	use.

DFD	FXP
Simulation
Report

Creates	a	text	report	of	filtering	statistics	from	the	DFD
FXP	Simulation	VI	or	the	DFD	FXP	Simulation	with
State	VI.

DFD	FXP
Simulation	with
State

Simulates	the	filtering	process	with	initial	internal	states
and	generates	the	filtering	statistics	report	for	a	fixed-
point	filter.	Wire	data	to	the	signal	in	input	to	determine
the	polymorphic	instance	to	use	or	manually	select	the
instance.

DFD	FXP
Simulation

Simulates	the	filtering	process	continuously	and
generates	a	filtering	statistics	report	for	a	fixed-point
filter.	Wire	data	to	the	signal	in	input	to	determine	the
polymorphic	instance	to	use	or	manually	select	the
instance.

lvhowto.chm::/SelectingDefaultInstPolyVI.html
lvdigfiltdestk.chm::/DFD_FXP_Set_Q.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
lvdigfiltdestk.chm::/DFD_FXP_SimReport.html
lvdigfiltdestk.chm::/DFD_FXP_Simulation.html
lvdigfiltdestk.chm::/DFD_FXP_Sim_State.html
lvdigfiltdestk.chm::/DFD_FXP_Sim_State.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
lvdigfiltdestk.chm::/DFD_FXP_Simulation.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html

DFD	Convert	FXP	to	Integer	VI
Owning	Palette:	Fixed-Point	Tools	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Converts	fixed-point	numbers	to	integers.	You	must	manually	select	the
polymorphic	instance	you	want	to	use.
Examples
Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

	Place	on	the	block	diagram 	Find	on	the	Functions	palette

lvdigfiltdestk.chm::/DFD_FXP_Tools_VIs.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
javascript:placeObject(object2897);
javascript:findObject(object2897);

DFD	Convert	FXP	to	I16	(scalar)

quantization	settings	specifies	the	settings	of	the	quantizer.
source	specifies	the	quantizer	source.	

0 Coefficients	a/k	(default)
1 Input
2 Output
3 Multiplicand
4 Product
5 Sum
6 Delay
7 Coefficients	b/v

wl	specifies	the	word	length,	in	number	of	bits,	that	the
quantizer	uses	to	represent	a	fixed-point	number.	The
default	is	16.
iwl	specifies	the	integer	word	length,	in	number	of	bits,
within	wl	that	the	quantizer	uses	to	represent	the	integer
part	of	a	fixed-point	number.	The	default	is	1.	iwl	can	be	any
integer	value.
overflow	mode	specifies	how	this	VI	handles	overflows	and
underflows	in	the	quantizer.	

0 Saturation
1 Wrap	(default)

rounding	mode	specifies	the	rounding	mode	this	VI	uses	in
the	quantizer.	

0 Nearest
1 Truncation	(default)

lvdfdtconcepts.chm::/configure_quantizer.html
lvdfdtconcepts.chm::/specify_wl_iwl.html
lvdfdtconcepts.chm::/specify_wl_iwl.html
lvdfdtconcepts.chm::/handle_overflow.html
lvdfdtconcepts.chm::/set_rounding_mode.html

signed?	specifies	if	the	fixed-point	number	is	a	signed
number.	This	VI	supports	signed	numbers	only.	If	you
remove	the	checkmark	from	the	signed?	checkbox,	the
result	you	obtain	might	not	be	correct.

FXP	value	specifies	the	fixed-point	number	you	want	to	convert.
I16	returns	a	16-bit	signed	integer.

DFD	Convert	FXP	to	I32	(scalar)

quantization	settings	specifies	the	settings	of	the	quantizer.
source	specifies	the	quantizer	source.	

0 Coefficients	a/k	(default)
1 Input
2 Output
3 Multiplicand
4 Product
5 Sum
6 Delay
7 Coefficients	b/v

wl	specifies	the	word	length,	in	number	of	bits,	that	the
quantizer	uses	to	represent	a	fixed-point	number.	The
default	is	16.
iwl	specifies	the	integer	word	length,	in	number	of	bits,
within	wl	that	the	quantizer	uses	to	represent	the	integer
part	of	a	fixed-point	number.	The	default	is	1.	iwl	can	be	any
integer	value.
overflow	mode	specifies	how	this	VI	handles	overflows	and
underflows	in	the	quantizer.	

0 Saturation
1 Wrap	(default)

rounding	mode	specifies	the	rounding	mode	this	VI	uses	in
the	quantizer.	

0 Nearest
1 Truncation	(default)

lvdfdtconcepts.chm::/configure_quantizer.html
lvdfdtconcepts.chm::/specify_wl_iwl.html
lvdfdtconcepts.chm::/specify_wl_iwl.html
lvdfdtconcepts.chm::/handle_overflow.html
lvdfdtconcepts.chm::/set_rounding_mode.html

signed?	specifies	if	the	fixed-point	number	is	a	signed
number.	This	VI	supports	signed	numbers	only.	If	you
remove	the	checkmark	from	the	signed?	checkbox,	the
result	you	obtain	might	not	be	correct.

FXP	value	specifies	the	fixed-point	number	you	want	to	convert.
I32	returns	a	32-bit	signed	integer.

DFD	Convert	FXP	to	I8	(scalar)

quantization	settings	specifies	the	settings	of	the	quantizer.
source	specifies	the	quantizer	source.	

0 Coefficients	a/k	(default)
1 Input
2 Output
3 Multiplicand
4 Product
5 Sum
6 Delay
7 Coefficients	b/v

wl	specifies	the	word	length,	in	number	of	bits,	that	the
quantizer	uses	to	represent	a	fixed-point	number.	The
default	is	16.
iwl	specifies	the	integer	word	length,	in	number	of	bits,
within	wl	that	the	quantizer	uses	to	represent	the	integer
part	of	a	fixed-point	number.	The	default	is	1.	iwl	can	be	any
integer	value.
overflow	mode	specifies	how	this	VI	handles	overflows	and
underflows	in	the	quantizer.	

0 Saturation
1 Wrap	(default)

rounding	mode	specifies	the	rounding	mode	this	VI	uses	in
the	quantizer.	

0 Nearest
1 Truncation	(default)

lvdfdtconcepts.chm::/configure_quantizer.html
lvdfdtconcepts.chm::/specify_wl_iwl.html
lvdfdtconcepts.chm::/specify_wl_iwl.html
lvdfdtconcepts.chm::/handle_overflow.html
lvdfdtconcepts.chm::/set_rounding_mode.html

signed?	specifies	if	the	fixed-point	number	is	a	signed
number.	This	VI	supports	signed	numbers	only.	If	you
remove	the	checkmark	from	the	signed?	checkbox,	the
result	you	obtain	might	not	be	correct.

FXP	value	specifies	the	fixed-point	number	you	want	to	convert.
I8	returns	an	8-bit	signed	integer.

DFD	Convert	FXP	to	I16	(vector)

quantization	settings	specifies	the	settings	of	the	quantizer.
source	specifies	the	quantizer	source.	

0 Coefficients	a/k	(default)
1 Input
2 Output
3 Multiplicand
4 Product
5 Sum
6 Delay
7 Coefficients	b/v

wl	specifies	the	word	length,	in	number	of	bits,	that	the
quantizer	uses	to	represent	a	fixed-point	number.	The
default	is	16.
iwl	specifies	the	integer	word	length,	in	number	of	bits,
within	wl	that	the	quantizer	uses	to	represent	the	integer
part	of	a	fixed-point	number.	The	default	is	1.	iwl	can	be	any
integer	value.
overflow	mode	specifies	how	this	VI	handles	overflows	and
underflows	in	the	quantizer.	

0 Saturation
1 Wrap	(default)

rounding	mode	specifies	the	rounding	mode	this	VI	uses	in
the	quantizer.	

0 Nearest
1 Truncation	(default)

lvdfdtconcepts.chm::/configure_quantizer.html
lvdfdtconcepts.chm::/specify_wl_iwl.html
lvdfdtconcepts.chm::/specify_wl_iwl.html
lvdfdtconcepts.chm::/handle_overflow.html
lvdfdtconcepts.chm::/set_rounding_mode.html

signed?	specifies	if	the	fixed-point	number	is	a	signed
number.	This	VI	supports	signed	numbers	only.	If	you
remove	the	checkmark	from	the	signed?	checkbox,	the
result	you	obtain	might	not	be	correct.

FXP	values	specifies	the	fixed-point	numbers	you	want	to	convert.
I16	values	returns	an	array	of	16-bit	signed	integers.

DFD	Convert	FXP	to	I32	(vector)

quantization	settings	specifies	the	settings	of	the	quantizer.
source	specifies	the	quantizer	source.	

0 Coefficients	a/k	(default)
1 Input
2 Output
3 Multiplicand
4 Product
5 Sum
6 Delay
7 Coefficients	b/v

wl	specifies	the	word	length,	in	number	of	bits,	that	the
quantizer	uses	to	represent	a	fixed-point	number.	The
default	is	16.
iwl	specifies	the	integer	word	length,	in	number	of	bits,
within	wl	that	the	quantizer	uses	to	represent	the	integer
part	of	a	fixed-point	number.	The	default	is	1.	iwl	can	be	any
integer	value.
overflow	mode	specifies	how	this	VI	handles	overflows	and
underflows	in	the	quantizer.	

0 Saturation
1 Wrap	(default)

rounding	mode	specifies	the	rounding	mode	this	VI	uses	in
the	quantizer.	

0 Nearest
1 Truncation	(default)

lvdfdtconcepts.chm::/configure_quantizer.html
lvdfdtconcepts.chm::/specify_wl_iwl.html
lvdfdtconcepts.chm::/specify_wl_iwl.html
lvdfdtconcepts.chm::/handle_overflow.html
lvdfdtconcepts.chm::/set_rounding_mode.html

signed?	specifies	if	the	fixed-point	number	is	a	signed
number.	This	VI	supports	signed	numbers	only.	If	you
remove	the	checkmark	from	the	signed?	checkbox,	the
result	you	obtain	might	not	be	correct.

FXP	values	specifies	the	fixed-point	numbers	you	want	to	convert.
I32	values	returns	an	array	of	32-bit	signed	integers.

DFD	Convert	FXP	to	I8	(vector)

quantization	settings	specifies	the	settings	of	the	quantizer.
source	specifies	the	quantizer	source.	

0 Coefficients	a/k	(default)
1 Input
2 Output
3 Multiplicand
4 Product
5 Sum
6 Delay
7 Coefficients	b/v

wl	specifies	the	word	length,	in	number	of	bits,	that	the
quantizer	uses	to	represent	a	fixed-point	number.	The
default	is	16.
iwl	specifies	the	integer	word	length,	in	number	of	bits,
within	wl	that	the	quantizer	uses	to	represent	the	integer
part	of	a	fixed-point	number.	The	default	is	1.	iwl	can	be	any
integer	value.
overflow	mode	specifies	how	this	VI	handles	overflows	and
underflows	in	the	quantizer.	

0 Saturation
1 Wrap	(default)

rounding	mode	specifies	the	rounding	mode	this	VI	uses	in
the	quantizer.	

0 Nearest
1 Truncation	(default)

lvdfdtconcepts.chm::/configure_quantizer.html
lvdfdtconcepts.chm::/specify_wl_iwl.html
lvdfdtconcepts.chm::/specify_wl_iwl.html
lvdfdtconcepts.chm::/handle_overflow.html
lvdfdtconcepts.chm::/set_rounding_mode.html

signed?	specifies	if	the	fixed-point	number	is	a	signed
number.	This	VI	supports	signed	numbers	only.	If	you
remove	the	checkmark	from	the	signed?	checkbox,	the
result	you	obtain	might	not	be	correct.

FXP	values	specifies	the	fixed-point	numbers	you	want	to	convert.
I8	values	returns	an	array	of	8-bit	signed	integers.

Examples
Refer	to	the	following	VIs	for	examples	of	using	the	DFD	Convert	FXP	to
Integer	VI:

Conversion	between	FXP	and	Integer	VI:	labview\examples\Digital
Filter	Design\Fixed-Point	Filters\Single-Rate
	Open	example	 	Browse	related	examples
How	to	Build	Coefficients	Quantizer	VI:	labview\examples\Digital
Filter	Design\Getting	Started\Apply	Filters
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFixed-Point%20Filters%5C%5CSingle-Rate%5C%5CConversion%20between%20FXP%20and%20Integer.vi');
javascript:findExamples(10063);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CGetting%20Started%5C%5CApply%20Filters%5C%5CHow%20to%20Build%20Coefficients%20Quantizer.vi');
javascript:findExamples(10054);

DFD	Convert	Integer	to	FXP	VI
Owning	Palette:	Fixed-Point	Tools	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Converts	integers	to	fixed-point	numbers.	Wire	data	to	the	I16	input	to
determine	the	polymorphic	instance	to	use	or	manually	select	the
instance.
Examples
Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

	Place	on	the	block	diagram 	Find	on	the	Functions	palette

lvdigfiltdestk.chm::/DFD_FXP_Tools_VIs.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
javascript:placeObject(object2899);
javascript:findObject(object2899);

DFD	Convert	I16	to	FXP	(scalar)

quantization	settings	specifies	the	settings	of	the	quantizer.
source	specifies	the	quantizer	source.	

0 Coefficients	a/k	(default)
1 Input
2 Output
3 Multiplicand
4 Product
5 Sum
6 Delay
7 Coefficients	b/v

wl	specifies	the	word	length,	in	number	of	bits,	that	the
quantizer	uses	to	represent	a	fixed-point	number.	The
default	is	16.
iwl	specifies	the	integer	word	length,	in	number	of	bits,
within	wl	that	the	quantizer	uses	to	represent	the	integer
part	of	a	fixed-point	number.	The	default	is	1.	iwl	can	be	any
integer	value.
overflow	mode	specifies	how	this	VI	handles	overflows	and
underflows	in	the	quantizer.	

0 Saturation
1 Wrap	(default)

rounding	mode	specifies	the	rounding	mode	this	VI	uses	in
the	quantizer.	

0 Nearest
1 Truncation	(default)

lvdfdtconcepts.chm::/configure_quantizer.html
lvdfdtconcepts.chm::/specify_wl_iwl.html
lvdfdtconcepts.chm::/specify_wl_iwl.html
lvdfdtconcepts.chm::/handle_overflow.html
lvdfdtconcepts.chm::/set_rounding_mode.html

signed?	specifies	if	the	fixed-point	number	is	a	signed
number.	This	VI	supports	signed	numbers	only.	If	you
remove	the	checkmark	from	the	signed?	checkbox,	the
result	you	obtain	might	not	be	correct.

I16	specifies	a	16-bit	signed	integer.
FXP	value	returns	a	fixed-point	number.

DFD	Convert	I32	to	FXP	(scalar)

quantization	settings	specifies	the	settings	of	the	quantizer.
source	specifies	the	quantizer	source.	

0 Coefficients	a/k	(default)
1 Input
2 Output
3 Multiplicand
4 Product
5 Sum
6 Delay
7 Coefficients	b/v

wl	specifies	the	word	length,	in	number	of	bits,	that	the
quantizer	uses	to	represent	a	fixed-point	number.	The
default	is	16.
iwl	specifies	the	integer	word	length,	in	number	of	bits,
within	wl	that	the	quantizer	uses	to	represent	the	integer
part	of	a	fixed-point	number.	The	default	is	1.	iwl	can	be	any
integer	value.
overflow	mode	specifies	how	this	VI	handles	overflows	and
underflows	in	the	quantizer.	

0 Saturation
1 Wrap	(default)

rounding	mode	specifies	the	rounding	mode	this	VI	uses	in
the	quantizer.	

0 Nearest
1 Truncation	(default)

lvdfdtconcepts.chm::/configure_quantizer.html
lvdfdtconcepts.chm::/specify_wl_iwl.html
lvdfdtconcepts.chm::/specify_wl_iwl.html
lvdfdtconcepts.chm::/handle_overflow.html
lvdfdtconcepts.chm::/set_rounding_mode.html

signed?	specifies	if	the	fixed-point	number	is	a	signed
number.	This	VI	supports	signed	numbers	only.	If	you
remove	the	checkmark	from	the	signed?	checkbox,	the
result	you	obtain	might	not	be	correct.

I32	specifies	a	32-bit	signed	integer.
FXP	value	returns	a	fixed-point	number.

DFD	Convert	I8	to	FXP	(scalar)

quantization	settings	specifies	the	settings	of	the	quantizer.
source	specifies	the	quantizer	source.	

0 Coefficients	a/k	(default)
1 Input
2 Output
3 Multiplicand
4 Product
5 Sum
6 Delay
7 Coefficients	b/v

wl	specifies	the	word	length,	in	number	of	bits,	that	the
quantizer	uses	to	represent	a	fixed-point	number.	The
default	is	16.
iwl	specifies	the	integer	word	length,	in	number	of	bits,
within	wl	that	the	quantizer	uses	to	represent	the	integer
part	of	a	fixed-point	number.	The	default	is	1.	iwl	can	be	any
integer	value.
overflow	mode	specifies	how	this	VI	handles	overflows	and
underflows	in	the	quantizer.	

0 Saturation
1 Wrap	(default)

rounding	mode	specifies	the	rounding	mode	this	VI	uses	in
the	quantizer.	

0 Nearest
1 Truncation	(default)

lvdfdtconcepts.chm::/configure_quantizer.html
lvdfdtconcepts.chm::/specify_wl_iwl.html
lvdfdtconcepts.chm::/specify_wl_iwl.html
lvdfdtconcepts.chm::/handle_overflow.html
lvdfdtconcepts.chm::/set_rounding_mode.html

signed?	specifies	if	the	fixed-point	number	is	a	signed
number.	This	VI	supports	signed	numbers	only.	If	you
remove	the	checkmark	from	the	signed?	checkbox,	the
result	you	obtain	might	not	be	correct.

I8	specifies	an	8-bit	signed	integer.
FXP	value	returns	a	fixed-point	number.

DFD	Convert	I16	to	FXP	(vector)

quantization	settings	specifies	the	settings	of	the	quantizer.
source	specifies	the	quantizer	source.	

0 Coefficients	a/k	(default)
1 Input
2 Output
3 Multiplicand
4 Product
5 Sum
6 Delay
7 Coefficients	b/v

wl	specifies	the	word	length,	in	number	of	bits,	that	the
quantizer	uses	to	represent	a	fixed-point	number.	The
default	is	16.
iwl	specifies	the	integer	word	length,	in	number	of	bits,
within	wl	that	the	quantizer	uses	to	represent	the	integer
part	of	a	fixed-point	number.	The	default	is	1.	iwl	can	be	any
integer	value.
overflow	mode	specifies	how	this	VI	handles	overflows	and
underflows	in	the	quantizer.	

0 Saturation
1 Wrap	(default)

rounding	mode	specifies	the	rounding	mode	this	VI	uses	in
the	quantizer.	

0 Nearest
1 Truncation	(default)

lvdfdtconcepts.chm::/configure_quantizer.html
lvdfdtconcepts.chm::/specify_wl_iwl.html
lvdfdtconcepts.chm::/specify_wl_iwl.html
lvdfdtconcepts.chm::/handle_overflow.html
lvdfdtconcepts.chm::/set_rounding_mode.html

signed?	specifies	if	the	fixed-point	number	is	a	signed
number.	This	VI	supports	signed	numbers	only.	If	you
remove	the	checkmark	from	the	signed?	checkbox,	the
result	you	obtain	might	not	be	correct.

I16	values	specifies	an	array	of	16-bit	signed	integers.
FXP	values	returns	an	array	of	fixed-point	numbers.

DFD	Convert	I32	to	FXP	(vector)

quantization	settings	specifies	the	settings	of	the	quantizer.
source	specifies	the	quantizer	source.	

0 Coefficients	a/k	(default)
1 Input
2 Output
3 Multiplicand
4 Product
5 Sum
6 Delay
7 Coefficients	b/v

wl	specifies	the	word	length,	in	number	of	bits,	that	the
quantizer	uses	to	represent	a	fixed-point	number.	The
default	is	16.
iwl	specifies	the	integer	word	length,	in	number	of	bits,
within	wl	that	the	quantizer	uses	to	represent	the	integer
part	of	a	fixed-point	number.	The	default	is	1.	iwl	can	be	any
integer	value.
overflow	mode	specifies	how	this	VI	handles	overflows	and
underflows	in	the	quantizer.	

0 Saturation
1 Wrap	(default)

rounding	mode	specifies	the	rounding	mode	this	VI	uses	in
the	quantizer.	

0 Nearest
1 Truncation	(default)

lvdfdtconcepts.chm::/configure_quantizer.html
lvdfdtconcepts.chm::/specify_wl_iwl.html
lvdfdtconcepts.chm::/specify_wl_iwl.html
lvdfdtconcepts.chm::/handle_overflow.html
lvdfdtconcepts.chm::/set_rounding_mode.html

signed?	specifies	if	the	fixed-point	number	is	a	signed
number.	This	VI	supports	signed	numbers	only.	If	you
remove	the	checkmark	from	the	signed?	checkbox,	the
result	you	obtain	might	not	be	correct.

I32	values	specifies	an	array	of	32-bit	signed	integers.
FXP	values	returns	an	array	of	fixed-point	numbers.

DFD	Convert	I8	to	FXP	(vector)

quantization	settings	specifies	the	settings	of	the	quantizer.
source	specifies	the	quantizer	source.	

0 Coefficients	a/k	(default)
1 Input
2 Output
3 Multiplicand
4 Product
5 Sum
6 Delay
7 Coefficients	b/v

wl	specifies	the	word	length,	in	number	of	bits,	that	the
quantizer	uses	to	represent	a	fixed-point	number.	The
default	is	16.
iwl	specifies	the	integer	word	length,	in	number	of	bits,
within	wl	that	the	quantizer	uses	to	represent	the	integer
part	of	a	fixed-point	number.	The	default	is	1.	iwl	can	be	any
integer	value.
overflow	mode	specifies	how	this	VI	handles	overflows	and
underflows	in	the	quantizer.	

0 Saturation
1 Wrap	(default)

rounding	mode	specifies	the	rounding	mode	this	VI	uses	in
the	quantizer.	

0 Nearest
1 Truncation	(default)

lvdfdtconcepts.chm::/configure_quantizer.html
lvdfdtconcepts.chm::/specify_wl_iwl.html
lvdfdtconcepts.chm::/specify_wl_iwl.html
lvdfdtconcepts.chm::/handle_overflow.html
lvdfdtconcepts.chm::/set_rounding_mode.html

signed?	specifies	if	the	fixed-point	number	is	a	signed
number.	This	VI	supports	signed	numbers	only.	If	you
remove	the	checkmark	from	the	signed?	checkbox,	the
result	you	obtain	might	not	be	correct.

I8	values	specifies	an	array	of	8-bit	signed	integers.
FXP	values	returns	an	array	of	fixed-point	numbers.

Examples
Refer	to	the	following	VIs	for	examples	of	using	the	DFD	Convert	Integer
to	FXP	VI:

Conversion	between	FXP	and	Integer	VI:	labview\examples\Digital
Filter	Design\Fixed-Point	Filters\Single-Rate
	Open	example	 	Browse	related	examples
How	to	Build	Coefficients	Quantizer	VI:	labview\examples\Digital
Filter	Design\Getting	Started\Apply	Filters
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFixed-Point%20Filters%5C%5CSingle-Rate%5C%5CConversion%20between%20FXP%20and%20Integer.vi');
javascript:findExamples(10063);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CGetting%20Started%5C%5CApply%20Filters%5C%5CHow%20to%20Build%20Coefficients%20Quantizer.vi');
javascript:findExamples(10054);

DFD	FXP	Code	Generator	VI
Owning	Palette:	Fixed-Point	Tools	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Generates	fixed-point	code	from	a	fixed-point	filter,	including	fixed-point
LabVIEW	field-programmable	gate	array	(FPGA)	code,	integer	LabVIEW
code,	and	C	code.	You	must	manually	select	the	polymorphic	instance
you	want	to	use.

Note		To	avoid	errors	in	generating	code	from	a	fixed-point	filter,
ensure	that	you	configure	the	quantizers	according	to	the
guidelines	in	the	Details	section	of	the	DFD	FXP	Set	Quantizer	VI.

Examples
Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

	Place	on	the	block	diagram 	Find	on	the	Functions	palette

lvdigfiltdestk.chm::/DFD_FXP_Tools_VIs.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
javascript:placeObject(object2896);
javascript:findObject(object2896);

DFD	FXP	LabVIEW	FPGA	Code	Generator

open	project?	specifies	if	this	VI	opens	the	project	file	after
generating	the	code.	The	default	is	FALSE,	which	means	that	you
must	open	the	project	file	manually	after	this	VI	generates	the
code.
#	channels	specifies	the	number	of	channels	that	you	want	the
generated	code	to	process.	The	default	is	1.
filter	in	specifies	the	input	filter.
destination	folder	specifies	the	folder	in	which	you	want	to	save
the	generated	code.	This	VI	returns	an	error	if	you	do	not	specify	a
valid	path	to	the	folder.
filter	name	specifies	a	name	for	the	filter	code	that	this	VI
generates.	This	VI	also	uses	this	value	as	the	filename	of	the
project	file	that	contains	the	generated	filter	code.	You	can	use
only	letters	and	digits	in	the	filter	name	input.	This	VI	ignores
other	characters.	If	you	specify	an	invalid	name,	this	VI	creates	a
string	that	starts	with	Unknown.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html

default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

confirm?	specifies	if	you	want	this	VI	to	ask	you	for	confirmation
before	replacing	an	existing	file.	If	the	value	is	TRUE,	this	VI
displays	a	dialog	box	asking	for	confirmation	to	replace	the	existing
file.	If	the	value	is	FALSE,	this	VI	replaces	the	existing	file
automatically.	The	default	is	TRUE.
lvproj	path	returns	the	path	to	the	generated	project	file.
sampling	frequency/FPGA	clock	returns	a	ratio.	You	can	multiply
this	ratio	with	a	specific	FPGA	clock	rate	to	calculate	the	maximum
input	sampling	frequency	per	channel	that	the	generated	FPGA
code	can	process	at	the	FPGA	clock	rate.	For	example,	if	the	ratio
is	0.05	and	the	FPGA	clock	rate	is	40	MHz,	then	the	maximum
input	sampling	frequency	per	channel	that	the	generated	FPGA
code	can	process	is	2	MHz.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html
lverror.chm::/Error_Code_Ranges.html

DFD	FXP	Integer	LabVIEW	Code	Generator

open	project?	specifies	if	this	VI	opens	the	project	file	after
generating	the	code.	The	default	is	FALSE,	which	means	that	you
must	open	the	project	file	manually	after	this	VI	generates	the
code.
#	channels	specifies	the	number	of	channels	that	you	want	the
generated	code	to	process.	The	default	is	1.
filter	in	specifies	the	input	filter.
destination	folder	specifies	the	folder	in	which	you	want	to	save
the	generated	code.	This	VI	returns	an	error	if	you	do	not	specify	a
valid	path	to	the	folder.
filter	name	specifies	a	name	for	the	filter	code	that	this	VI
generates.	This	VI	also	uses	this	value	as	the	filename	of	the
project	file	that	contains	the	generated	filter	code.	You	can	use
only	letters	and	digits	in	the	filter	name	input.	This	VI	ignores
other	characters.	If	you	specify	an	invalid	name,	this	VI	creates	a
string	that	starts	with	Unknown.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html

default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

confirm?	specifies	if	you	want	this	VI	to	ask	you	for	confirmation
before	replacing	an	existing	file.	If	the	value	is	TRUE,	this	VI
displays	a	dialog	box	asking	for	confirmation	to	replace	the	existing
file.	If	the	value	is	FALSE,	this	VI	replaces	the	existing	file
automatically.	The	default	is	TRUE.
lvproj	path	returns	the	path	to	the	generated	project	file.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html
lverror.chm::/Error_Code_Ranges.html

DFD	FXP	C	Code	Generator

filter	in	specifies	the	input	filter.
destination	folder	specifies	the	folder	in	which	you	want	to	save
the	generated	code.	This	VI	returns	an	error	if	you	do	not	specify	a
valid	path	to	the	folder.
filter	name	specifies	a	name	for	the	filter	code	that	this	VI
generates.	This	VI	also	uses	this	value	as	the	filename	of	the
project	file	that	contains	the	generated	filter	code.	You	can	use
only	letters	and	digits	in	the	filter	name	input.	This	VI	ignores
other	characters.	If	you	specify	an	invalid	name,	this	VI	creates	a
string	that	starts	with	Unknown.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

confirm?	specifies	if	you	want	this	VI	to	ask	you	for	confirmation
before	replacing	an	existing	file.	If	the	value	is	TRUE,	this	VI
displays	a	dialog	box	asking	for	confirmation	to	replace	the	existing
file.	If	the	value	is	FALSE,	this	VI	replaces	the	existing	file
automatically.	The	default	is	TRUE.
output	files	contains	the	absolute	path	to	the	generated	C	source
files.	The	VI	generates	three	files:	filter	name.c,	which	contains	C
source	code,	filter	name.h,	which	contains	function	prototypes,	and
nidfdtyp.h,	which	is	a	National	Instruments	proprietary	file.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

Examples
Refer	to	the	following	VIs	for	examples	of	using	the	DFD	FXP	Code
Generator	VI:

LabVIEW	FPGA	Code	Generation	VI:	labview\examples\Digital
Filter	Design\Fixed-Point	Filters\Single-Rate
	Open	example	 	Browse	related	examples
Generate	LabVIEW	FPGA	Code	for	Exponentially	Weighted
Moving	Average	Filter	VI:	labview\examples\Digital	Filter
Design\Fixed-Point	Filters\Single-Rate
	Open	example	 	Browse	related	examples
Integer	LabVIEW	Code	Generation	VI:	labview\examples\Digital
Filter	Design\Fixed-Point	Filters\Single-Rate
	Open	example	 	Browse	related	examples
LabVIEW	C	Code	Generation	VI:	labview\examples\Digital	Filter
Design\Fixed-Point	Filters\Single-Rate
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFixed-Point%20Filters%5C%5CSingle-Rate%5C%5CLabVIEW%20FPGA%20Code%20Generation.vi');
javascript:findExamples(10063);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFixed-Point%20Filters%5C%5CSingle-Rate%5C%5CGenerate%20LabVIEW%20FPGA%20Code%20for%20Exponentially%20Weighted%20Moving%20Average%20Filter.vi');
javascript:findExamples(10063);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFixed-Point%20Filters%5C%5CSingle-Rate%5C%5CInteger%20LabVIEW%20Code%20Generation.vi');
javascript:findExamples(10063);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFixed-Point%20Filters%5C%5CSingle-Rate%5C%5CLabVIEW%20C%20Code%20Generation.vi');
javascript:findExamples(10063);

DFD	FXP	Coef	Report	VI
Owning	Palette:	Fixed-Point	Tools	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Generates	a	text	report	about	the	coefficients	of	a	fixed-point	filter.
Examples

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
filter	in	specifies	the	input	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

filter	out	returns	the	filter	in	unchanged.
coefficients	report	returns	a	string	that	contains	a	text	report	on
the	fixed-point	filter	coefficients.	The	coefficients	report	output	is

lvdigfiltdestk.chm::/DFD_FXP_Tools_VIs.html
javascript:placeObject(object2883);
javascript:findObject(object2883);
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

a	single	string	that	contains	the	following	sections:
Reference	Value—Contains	the	floating-point	coefficients
before	quantization.
Quantized	Value—Contains	the	fixed-point	coefficients
after	quantization.
Note—Indicates	whether	the	quantized	coefficients	have
overflows,	underflows,	or	are	zeroes,	and	provides	the
number	of	overflows,	underflows,	and	zeroes	that	the
quantizing	generates.

Use	the	coefficients	report	output	to	view	the	number	of
overflows	and	underflows	so	you	can	adjust	the	quantization
settings.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

Examples
Refer	to	the	following	VIs	for	examples	of	using	the	DFD	FXP	Coef
Report	VI:

Analyze	Coefficients-Quantized	Filter	VI:	labview\examples\Digital
Filter	Design\Fixed-Point	Filters\Single-Rate
	Open	example	 	Browse	related	examples
Structure	Selection	and	Quantization	VI:	labview\examples\Digital
Filter	Design\Fixed-Point	Filters\Single-Rate
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFixed-Point%20Filters%5C%5CSingle-Rate%5C%5CAnalyze%20Coefficients-Quantized%20Filter.vi');
javascript:findExamples(10063);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFixed-Point%20Filters%5C%5CSingle-Rate%5C%5CStructure%20Selection%20and%20Quantization.vi');
javascript:findExamples(10063);

DFD	FXP	Get	Quantizer	VI
Owning	Palette:	Fixed-Point	Tools	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Retrieves	quantizer	settings	from	a	fixed-point	filter.	You	must	manually
select	the	polymorphic	instance	you	want	to	use.
Example
Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

	Place	on	the	block	diagram 	Find	on	the	Functions	palette

lvdigfiltdestk.chm::/DFD_FXP_Tools_VIs.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
javascript:placeObject(object2882);
javascript:findObject(object2882);

DFD	FXP	Get	Quantizer	(All)

filter	in	specifies	the	input	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

filter	out	returns	the	filter	in	unchanged.
quantizers	returns	all	quantizer	settings	in	the	fixed-point	filter.

source	returns	the	quantizer	source.
wl	returns	the	word	length,	in	number	of	bits,	that	the
quantizer	uses	to	represent	a	fixed-point	number.
iwl	returns	the	integer	word	length,	in	number	of	bits,	within
wl	that	the	quantizer	uses	to	represent	the	integer	part	of	a
fixed-point	number.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

overflow	mode	returns	the	operation	mode	for	overflow
and	underflow	in	the	quantizer.
rounding	mode	returns	the	mode	for	rounding	numbers	in
the	quantizer.
signed?	is	TRUE	if	the	fixed-point	number	is	a	signed
number.	signed?	is	FALSE	if	the	fixed-point	number	is	an
unsigned	number.

error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	FXP	Get	Quantizer	(One)

filter	in	specifies	the	input	filter.
quantizer	source	specifies	the	source	for	the	quantizer.	

0 Coefficients	a/k	(default)
1 Input
2 Output
3 Multiplicand
4 Product
5 Sum
6 Delay
7 Coefficients	b/v

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

filter	out	returns	the	filter	in	unchanged.
quantizer	returns	the	settings	of	one	quantizer.

source	returns	the	quantizer	source.
wl	returns	the	word	length,	in	number	of	bits,	that	the
quantizer	uses	to	represent	a	fixed-point	number.
iwl	returns	the	integer	word	length,	in	number	of	bits,	within
wl	that	the	quantizer	uses	to	represent	the	integer	part	of	a
fixed-point	number.
overflow	mode	returns	the	operation	mode	for	overflow
and	underflow	in	the	quantizer.
rounding	mode	returns	the	mode	for	rounding	numbers	in
the	quantizer.
signed?	is	TRUE	if	the	fixed-point	number	is	a	signed
number.	signed?	is	FALSE	if	the	fixed-point	number	is	an
unsigned	number.

error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	FXP	Get	Quantizer	(Group)

filter	in	specifies	the	input	filter.
quantizer	sources	specifies	the	source	for	each	quantizer.	

0 Coefficients	a/k
1 Input
2 Output
3 Multiplicand	(default)
4 Product
5 Sum
6 Delay
7 Coefficients	b/v

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

filter	out	returns	the	filter	in	unchanged.
quantizers	returns	all	quantizer	settings	in	the	fixed-point	filter.

source	returns	the	quantizer	source.
wl	returns	the	word	length,	in	number	of	bits,	that	the
quantizer	uses	to	represent	a	fixed-point	number.
iwl	returns	the	integer	word	length,	in	number	of	bits,	within
wl	that	the	quantizer	uses	to	represent	the	integer	part	of	a
fixed-point	number.
overflow	mode	returns	the	operation	mode	for	overflow
and	underflow	in	the	quantizer.
rounding	mode	returns	the	mode	for	rounding	numbers	in
the	quantizer.
signed?	is	TRUE	if	the	fixed-point	number	is	a	signed
number.	signed?	is	FALSE	if	the	fixed-point	number	is	an
unsigned	number.

error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

Example
Refer	to	the	Easy	Fixed-Point	Filter	Modeling	and	Simulation	VI	in	the
labview\examples\Digital	Filter	Design\Fixed-Point	Filters\Single-Rate
directory	for	an	example	of	using	the	DFD	FXP	Get	Quantizer	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFixed-Point%20Filters%5C%5CSingle-Rate%5C%5CEasy%20Fixed-Point%20Filter%20Modeling%20and%20Simulation.vi');
javascript:findExamples(10063);

DFD	FXP	Modeling	VI
Owning	Palette:	Fixed-Point	Tools	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Creates	a	fixed-point	filter	model	according	to	the	input	and	output	word
length	settings.

Note		To	avoid	errors	in	generating	code	from	a	fixed-point	filter,
ensure	that	you	configure	the	quantizers	according	to	the
guidelines	in	the	Details	section	of	the	DFD	FXP	Set	Quantizer	VI.

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
filter	in	specifies	the	input	filter.
input	word	length	specifies	the	word	length,	in	number	of	bits,
that	this	VI	uses	to	represent	the	input	signal.	The	valid	range	is	[1,
32].	The	default	is	16.
output	word	length	specifies	the	word	length,	in	number	of	bits,
that	this	VI	uses	to	represent	the	output	signal.	The	valid	range	is
[1,	32].	The	default	is	16.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.

lvdigfiltdestk.chm::/DFD_FXP_Tools_VIs.html
lvdfdtconcepts.chm::/specify_wl_iwl.html
javascript:placeObject(object3623);
javascript:findObject(object3623);
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html

code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

output	rounding	mode	specifies	the	rounding	mode	this	VI	uses
in	the	output	quantizer.	

0 Nearest—Rounds	to	the	closest	representable	number.
1 Truncation	(default)—Rounds	to	the	closest	representable
number	less	than	the	original	value.

filter	out	returns	a	fixed-point	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html
lvdfdtconcepts.chm::/set_rounding_mode.html
lverror.chm::/Error_Code_Ranges.html

DFD	FXP	Postprocessing	VI
Owning	Palette:	Fixed-Point	Tools	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Converts	the	output	signal	of	a	fixed-point	filter	from	a	fixed-point	integer
representation	to	a	floating-point	representation.	You	must	manually
select	the	polymorphic	instance	you	want	to	use.
Example
Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

	Place	on	the	block	diagram 	Find	on	the	Functions	palette

lvdigfiltdestk.chm::/DFD_FXP_Tools_VIs.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
javascript:placeObject(object3630);
javascript:findObject(object3630);

DFD	FXP	Postprocessing	(I32,	nCh)

input	range	specifies	the	maximum	absolute	value	of	the	input
signal	that	the	fixed-point	integer	can	represent.	For	example,	the
input	ranges	both	are	10	for	DAQ	devices	with	ranges	of	[0,	10V]
and	[–10,	10V].	The	default	is	1.
#	channels	specifies	the	number	of	channels	that	signal	in
contains.	The	default	is	1.
signal	in	specifies	the	input	signal	that	you	want	to	process.
filter	specifies	the	input	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

history	in	specifies	the	data	from	the	last	iteration	of	the

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

postprocessing	process.
signal	out	returns	a	floating-point	signal	after	postprocessing
signal	in.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

history	out	returns	the	remaining	data	for	the	next	iteration	of
postprocessing.	You	can	wire	this	output	to	the	history	in	input	of
the	next	call	to	this	VI	if	you	want	to	process	the	data	continuously.

lverror.chm::/Error_Code_Ranges.html

DFD	FXP	Postprocessing	(I16,	nCh)

input	range	specifies	the	maximum	absolute	value	of	the	input
signal	that	the	fixed-point	integer	can	represent.	For	example,	the
input	ranges	both	are	10	for	DAQ	devices	with	ranges	of	[0,	10V]
and	[–10,	10V].	The	default	is	1.
#	channels	specifies	the	number	of	channels	that	signal	in
contains.	The	default	is	1.
signal	in	specifies	the	input	signal	that	you	want	to	process.
filter	specifies	the	input	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

history	in	specifies	the	history	data	from	the	last	iteration	of

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

postprocessing.
signal	out	returns	a	floating-point	signal	after	postprocessing
signal	in.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

history	out	returns	the	remaining	data	for	the	next	iteration	of
postprocessing.	You	can	wire	this	output	to	the	history	in	input	of
the	next	call	to	this	VI	if	you	want	to	process	the	data	continuously.

lverror.chm::/Error_Code_Ranges.html

DFD	FXP	Postprocessing	(I32,	1Ch)

input	range	specifies	the	maximum	absolute	value	of	the	input
signal	that	the	fixed-point	integer	can	represent.	For	example,	the
input	ranges	both	are	10	for	DAQ	devices	with	ranges	of	[0,	10V]
and	[–10,	10V].	The	default	is	1.
signal	in	specifies	the	input	signal	that	you	want	to	process.
filter	specifies	the	input	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

signal	out	returns	a	floating-point	signal	after	postprocessing
signal	in.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	FXP	Postprocessing	(I16,	1Ch)

input	range	specifies	the	maximum	absolute	value	of	the	input
signal	that	the	fixed-point	integer	can	represent.	For	example,	the
input	ranges	both	are	10	for	DAQ	devices	with	ranges	of	[0,	10V]
and	[–10,	10V].	The	default	is	1.
signal	in	specifies	the	input	signal	that	you	want	to	process.
filter	specifies	the	input	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

signal	out	returns	a	floating-point	signal	after	postprocessing
signal	in.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

Example
Refer	to	the	Simulation	with	Integer	Inputs	VI	in	the
labview\examples\Digital	Filter	Design\Fixed-Point	Filters\Single-Rate
directory	for	an	example	of	using	the	DFD	FXP	Postprocessing	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFixed-Point%20Filters%5C%5CSingle-Rate%5C%5CSimulation%20with%20Integer%20Inputs.vi');
javascript:findExamples(10063);

DFD	FXP	Quantize	Coef	VI
Owning	Palette:	Fixed-Point	Tools	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Quantizes	the	coefficients	of	a	floating-point	filter	and	generates	a	fixed-
point	filter.	You	must	manually	select	the	polymorphic	instance	you	want
to	use.
Use	the	DFD	FXP	Coef	Report	VI	to	generate	a	report	on	the	effect	that
quantization	has	on	the	filter.
Details		Examples
Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

	Place	on	the	block	diagram 	Find	on	the	Functions	palette

lvdigfiltdestk.chm::/DFD_FXP_Tools_VIs.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
lvdigfiltdestk.chm::/DFD_FXP_Coef_Report.html
javascript:placeObject(object2880);
javascript:findObject(object2880);

DFD	FXP	Quantize	Coef	(Easy)

coefficients	b/v	word	length	specifies	the	word	length,	in	number
of	bits,	that	the	quantizer	uses	to	represent	coefficients	b/v.
coefficients	a/k	word	length	specifies	the	word	length,	in	number
of	bits,	that	the	quantizer	uses	to	represent	coefficients	a/k.
filter	in	specifies	the	input	floating-point	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

gain	settings	specifies	the	settings	for	the	filter	gain.
gain	processing	specifies	whether	you	want	to	process	the
filter	gain	on	a	host	machine	or	a	fixed-point	target,	such	as
an	NI	Reconfigurable	I/O	(RIO)	target.	If	you	want	to

lvdfdtconcepts.chm::/specify_wl_iwl.html
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

generate	C	code	from	the	resulting	fixed-point	filter,	you
must	set	gain	processing	to	On	Target.	

0 On	Target—Specifies	to	process	the	filter	gain	on	a
fixed-point	target.

1 On	Host	(default)—Specifies	to	process	the	filter	gain	on
a	host	machine.

gain	word	length	specifies	the	word	length,	in	number	of
bits,	that	this	VI	uses	to	represent	the	filter	gain	if	you	set
gain	processing	to	On	Target.	The	valid	range	is	[1,	32].
The	default	is	16.

filter	out	returns	a	fixed-point	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	FXP	Quantize	Coef	(Advanced)

coefficients	b/v	quantizer	specifies	the	settings	for	the
coefficients	b/v	quantizer.

source	specifies	the	quantizer	source.	

0 Coefficients	a/k
1 Input
2 Output
3 Multiplicand
4 Product
5 Sum
6 Delay
7 Coefficients	b/v	(default)

wl	specifies	the	word	length,	in	number	of	bits,	that	the
quantizer	uses	to	represent	a	fixed-point	number.	The	valid
range	is	[1,	32].	If	you	specify	an	invalid	value,	this	VI	uses
the	same	quantizer	settings	as	you	specified	in	the
Coefficients	a/k	quantizer.	The	default	is	–1.
iwl	specifies	the	integer	word	length,	in	number	of	bits,
within	wl	that	the	quantizer	uses	to	represent	the	integer
part	of	a	fixed-point	number.	The	default	is	1.	iwl	can	be	any
integer	value.
overflow	mode	specifies	how	this	VI	handles	overflows	and
underflows	in	the	quantizer.	

0 Saturation
1 Wrap	(default)

rounding	mode	specifies	the	rounding	mode	this	VI	uses	in

lvdfdtconcepts.chm::/configure_quantizer.html
lvdfdtconcepts.chm::/specify_wl_iwl.html
lvdfdtconcepts.chm::/specify_wl_iwl.html
lvdfdtconcepts.chm::/handle_overflow.html
lvdfdtconcepts.chm::/set_rounding_mode.html

the	quantizer.	

0 Nearest
1 Truncation	(default)

signed?	specifies	if	the	fixed-point	number	is	a	signed
number.	This	VI	supports	signed	numbers	only.	If	you
remove	the	checkmark	from	the	signed?	checkbox,	the
result	you	obtain	might	not	be	correct.

coefficients	a/k	quantizer	specifies	the	settings	for	the
coefficients	a/k	quantizer.

source	specifies	the	quantizer	source.	

0 Coefficients	a/k	(default)
1 Input
2 Output
3 Multiplicand
4 Product
5 Sum
6 Delay
7 Coefficients	b/v

wl	specifies	the	word	length,	in	number	of	bits,	that	the
quantizer	uses	to	represent	a	fixed-point	number.	The	valid
range	is	[1,	32].	If	you	specify	an	invalid	value,	this	VI	uses
the	same	quantizer	settings	as	you	specified	in	the
Coefficients	b/v	quantizer.	The	default	is	16.
iwl	specifies	the	integer	word	length,	in	number	of	bits,
within	wl	that	the	quantizer	uses	to	represent	the	integer
part	of	a	fixed-point	number.	The	default	is	1.	iwl	can	be	any
integer	value.
overflow	mode	specifies	how	this	VI	handles	overflows	and
underflows	in	the	quantizer.	

0 Saturation

lvdfdtconcepts.chm::/configure_quantizer.html
lvdfdtconcepts.chm::/specify_wl_iwl.html
lvdfdtconcepts.chm::/specify_wl_iwl.html
lvdfdtconcepts.chm::/handle_overflow.html

1 Wrap	(default)

rounding	mode	specifies	the	rounding	mode	this	VI	uses	in
the	quantizer.	

0 Nearest
1 Truncation	(default)

signed?	specifies	if	the	fixed-point	number	is	a	signed
number.	This	VI	supports	signed	numbers	only.	If	you
remove	the	checkmark	from	the	signed?	checkbox,	the
result	you	obtain	might	not	be	correct.

filter	in	specifies	the	input	floating-point	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

gain	settings	specifies	the	settings	for	the	filter	gain.
gain	processing	specifies	whether	you	want	to	process	the
filter	gain	on	a	host	machine	or	a	fixed-point	target,	such	as

lvdfdtconcepts.chm::/set_rounding_mode.html
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

an	NI	Reconfigurable	I/O	(RIO)	target.	If	you	want	to
generate	C	code	from	the	resulting	fixed-point	filter,	you
must	set	gain	processing	to	On	Target.	

0 On	Target—Specifies	to	process	the	filter	gain	on	a
fixed-point	target.

1 On	Host	(default)—Specifies	to	process	the	filter	gain	on
a	host	machine.

gain	word	length	specifies	the	word	length,	in	number	of
bits,	that	this	VI	uses	to	represent	the	filter	gain	if	you	set
gain	processing	to	On	Target.	The	valid	range	is	[1,	32].
The	default	is	16.

filter	out	returns	a	fixed-point	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	FXP	Quantize	Coef	Details
You	can	represent	an	integer,	or	binary	number,	with	a	length	wl	as
b1b2b3​bwl	where	bi	is	a	binary	digit.	Both	wl	and	iwl	determine	the
position	of	the	binary	point	and	the	range	the	binary	number	can
represent.
For	a	signed	fixed-point	number	in	two's	complement,	the	value	of	the
fixed-point	number	is	defined	by	the	following	equation:

The	highest	representable	number	is	2iwl(2–1–2–wl)	and	the	lowest
representable	number	is	–2iwl–1.
For	an	unsigned	fixed-point	number,	the	value	of	the	fixed-point	number
is	defined	by	the	following	equation:

For	unsigned	fixed-point	numbers,	the	highest	representable	number	is
2iwl(1–2–wl)	and	the	lowest	representable	number	is	0.
The	rounding	mode	input	controls	the	operation	of	quantizing	to	wl	bits.
If	you	set	rounding	mode	to	Nearest,	the	quantizer	rounds	the	result	to
the	closest	representable	number.	If	the	two	closest	representable
numbers	are	equidistant,	the	quantizer	rounds	the	result	to	the	closest
representable	number	with	a	least	significant	bit	of	0.	If	you	set	rounding
mode	to	Truncation,	the	quantizer	rounds	to	the	closest	representable
number	lower	than	the	original	value.
overflow	mode	determines	the	quantized	value	when	an	overflow	or
underflow	occurs.	If	you	set	overflow	mode	to	Saturation,	the	quantizer
converts	the	specified	value	to	the	highest	representable	number	for
overflow	or	to	the	lowest	representable	number	for	underflow.	If	you	set
overflow	mode	to	Wrap,	the	quantizer	wraps	around	the	specified	value
from	the	highest	representable	number	to	the	lowest	representable
number	for	overflow	or	from	the	lowest	representable	number	to	the
highest	representable	number	for	underflow.	The	size	of	the	error	does
not	increase	as	abruptly	with	Saturation	as	the	size	does	with	Wrap
when	overflow	or	underflow	occurs.

Examples
Refer	to	the	following	VIs	for	examples	of	using	the	DFD	FXP	Quantize
Coef	VI:

How	to	Build	Coefficients	Quantizer	VI:	labview\examples\Digital
Filter	Design\Getting	Started\Apply	Filters
	Open	example	 	Browse	related	examples
Analyze	Coefficients-Quantized	Filter	VI:	labview\examples\Digital
Filter	Design\Fixed-Point	Filters\Single-Rate
	Open	example	 	Browse	related	examples
Easy	Fixed-Point	Filter	Modeling	and	Simulation	VI:
labview\examples\Digital	Filter	Design\Fixed-Point	Filters\Single-Rate
	Open	example	 	Browse	related	examples
Structure	Selection	and	Quantization	VI:	labview\examples\Digital
Filter	Design\Fixed-Point	Filters\Single-Rate
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CGetting%20Started%5C%5CApply%20Filters%5C%5CHow%20to%20Build%20Coefficients%20Quantizer.vi');
javascript:findExamples(10054);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFixed-Point%20Filters%5C%5CSingle-Rate%5C%5CAnalyze%20Coefficients-Quantized%20Filter.vi');
javascript:findExamples(10063);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFixed-Point%20Filters%5C%5CSingle-Rate%5C%5CEasy%20Fixed-Point%20Filter%20Modeling%20and%20Simulation.vi');
javascript:findExamples(10063);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFixed-Point%20Filters%5C%5CSingle-Rate%5C%5CStructure%20Selection%20and%20Quantization.vi');
javascript:findExamples(10063);

DFD	FXP	Set	Quantizer	VI
Owning	Palette:	Fixed-Point	Tools	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Sets	a	quantizer	or	quantizers	in	a	fixed-point	filter.	You	must	manually
select	the	polymorphic	instance	you	want	to	use.
Details		Example
Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

	Place	on	the	block	diagram 	Find	on	the	Functions	palette

lvdigfiltdestk.chm::/DFD_FXP_Tools_VIs.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
javascript:placeObject(object2881);
javascript:findObject(object2881);

DFD	FXP	Set	Quantizer	(One)

filter	in	specifies	the	input	filter.
quantizer	specifies	the	settings	of	the	quantizer.

source	specifies	the	quantizer	source.	

0 Coefficients	a/k	(default)
1 Input
2 Output
3 Multiplicand
4 Product
5 Sum
6 Delay
7 Coefficients	b/v

wl	specifies	the	word	length,	in	number	of	bits,	that	the
quantizer	uses	to	represent	a	fixed-point	number.	The
default	is	16.
iwl	specifies	the	integer	word	length,	in	number	of	bits,
within	wl	that	the	quantizer	uses	to	represent	the	integer
part	of	a	fixed-point	number.	The	default	is	1.	iwl	can	be	any
integer	value.
overflow	mode	specifies	how	this	VI	handles	overflows	and
underflows	in	the	quantizer.	

0 Saturation
1 Wrap	(default)

rounding	mode	specifies	the	rounding	mode	this	VI	uses	in
the	quantizer.	

0 Nearest

lvdfdtconcepts.chm::/configure_quantizer.html
lvdfdtconcepts.chm::/specify_wl_iwl.html
lvdfdtconcepts.chm::/specify_wl_iwl.html
lvdfdtconcepts.chm::/handle_overflow.html
lvdfdtconcepts.chm::/set_rounding_mode.html

1 Truncation	(default)

signed?	specifies	if	the	fixed-point	number	is	a	signed
number.	This	VI	supports	signed	numbers	only.	If	you
remove	the	checkmark	from	the	signed?	checkbox,	the
result	you	obtain	might	not	be	correct.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

filter	out	returns	a	fixed-point	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	FXP	Set	Quantizer	(Group)

filter	in	specifies	the	input	filter.
quantizers	specifies	the	settings	for	a	group	of	quantizers.

quantizer	specifies	the	settings	of	the	quantizer.
source	specifies	the	quantizer	source.	

0 Coefficients	a/k	(default)
1 Input
2 Output
3 Multiplicand
4 Product
5 Sum
6 Delay
7 Coefficients	b/v

wl	specifies	the	word	length,	in	number	of	bits,	that
the	quantizer	uses	to	represent	a	fixed-point	number.
The	default	is	16.
iwl	specifies	the	integer	word	length,	in	number	of
bits,	within	wl	that	the	quantizer	uses	to	represent	the
integer	part	of	a	fixed-point	number.	The	default	is	1.
iwl	can	be	any	integer	value.
overflow	mode	specifies	how	this	VI	handles
overflows	and	underflows	in	the	quantizer.	

0 Saturation
1 Wrap	(default)

rounding	mode	specifies	the	rounding	mode	this	VI
uses	in	the	quantizer.	

lvdfdtconcepts.chm::/configure_quantizer.html
lvdfdtconcepts.chm::/specify_wl_iwl.html
lvdfdtconcepts.chm::/specify_wl_iwl.html
lvdfdtconcepts.chm::/handle_overflow.html
lvdfdtconcepts.chm::/set_rounding_mode.html

0 Nearest
1 Truncation	(default)

signed?	specifies	if	the	fixed-point	number	is	a
signed	number.	This	VI	supports	signed	numbers
only.	If	you	remove	the	checkmark	from	the	signed?
checkbox,	the	result	you	obtain	might	not	be	correct.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

filter	out	returns	a	fixed-point	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	FXP	Set	Quantizer	Details
Depending	on	whether	you	use	the	fixed-point	filter	model	for	simulation
or	for	code	generation,	the	DFD	FXP	Set	Quantizer	VI	has	different
restrictions	on	the	word	lengths,	the	overflow	mode,	and	the	rounding
mode	of	the	quantizers.	The	following	table	lists	the	restrictions	on	each
quantizer	for	simulation.

Quantizer Word	Length Rounding	Mode Overflow	Mode
Coefficients	a/k 1​32 No	Restriction No	Restriction
Coefficients	b/v 1​32 No	Restriction No	Restriction
Input 1​32 No	Restriction No	Restriction
Output 1​32 No	Restriction No	Restriction
Multiplicand 1​32 No	Restriction No	Restriction
Product 1​64 No	Restriction No	Restriction
Sum 1​64 No	Restriction No	Restriction
Delay 1​32 No	Restriction No	Restriction
Gain 1​32 Nearest Saturation

The	following	table	lists	the	restrictions	on	each	quantizer	for	code
generation.

Quantizer Word	Length Rounding	Mode Overflow	Mode
Coefficients	a/k 1​32 No	Restriction No	Restriction
Coefficients	b/v 1​32 No	Restriction No	Restriction
Input 1​32 No	Restriction No	Restriction
Output1 1​32 Truncation Wrap

Multiplicand2 1​32 Truncation Wrap

Product 32 Truncation Wrap
Sum 32 Truncation Wrap
Delay3 Equal	to	Input/Sum Truncation Wrap

Gain 1​32 Nearest Saturation
1For	LabVIEW	code	generation,	such	as	integer	LabVIEW	code	and
LabVIEW	FPGA	code,	the	rounding	and	overflow	modes	of	the	output

quantizer	do	not	have	any	restrictions.	However,	if	you	want	to	generate
C	code,	the	rounding	mode	must	be	Truncation	and	the	overflow	mode
must	be	Wrap.
2For	FIR	structures,	the	word	length	of	the	multiplicand	quantizer	must
conform	to	the	restrictions	as	the	following	table	shows:

Filter	Structure Word	Length	of	Multiplicand
FIR	Direct	Form Equal	to	Input
FIR	Direct	Form	Transposed Equal	to	Input
FIR	Symmetric Equal	to	min(Input+1,	32)
FIR	Antisymmetric Equal	to	min(Input+1,	32)

The	integer	word	length	of	the	multiplicand	quantizer	must	be	greater
than	or	equal	to	the	value	in	the	default	fixed-point	model.
3For	FIR	structures	other	than	the	FIR	Direct	Form	Transposed	structure,
the	word	length	of	the	delay	quantizer	must	be	equal	to	that	of	the	input
quantizer.	For	the	FIR	Direct	Form	Transposed	structure	and	all	IIR	and
lattice	filter	structures,	the	word	length	of	the	delay	quantizer	must	be
equal	to	that	of	the	sum	quantizer.

lvdfdtconcepts.chm::/FIR_Filter_Specs.html

Example
Refer	to	the	Customized	Fixed-Point	Filter	Modeling	and	Simulation	VI	in
the	labview\examples\Digital	Filter	Design\Fixed-Point	Filters\Single-Rate
directory	for	an	example	of	using	the	DFD	FXP	Set	Quantizer	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFixed-Point%20Filters%5C%5CSingle-Rate%5C%5CCustomized%20Fixed-Point%20Filter%20Modeling%20and%20Simulation.vi');
javascript:findExamples(10063);

DFD	FXP	Simulation	VI
Owning	Palette:	Fixed-Point	Tools	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Simulates	the	filtering	process	continuously	and	generates	a	filtering
statistics	report	for	a	fixed-point	filter.	Wire	data	to	the	signal	in	input	to
determine	the	polymorphic	instance	to	use	or	manually	select	the
instance.
You	can	use	the	DFD	FXP	Simulation	Report	VI	to	generate	a	report
about	the	performance	of	quantizers	during	a	simulation.
Examples
Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

	Place	on	the	block	diagram 	Find	on	the	Functions	palette

lvdigfiltdestk.chm::/DFD_FXP_Tools_VIs.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
lvdigfiltdestk.chm::/DFD_FXP_SimReport.html
javascript:placeObject(object2884);
javascript:findObject(object2884);

DFD	FXP	Simulation	(DBL	In)

input	range	specifies	the	maximum	absolute	value	of	the	input
signal	that	the	fixed-point	integer	can	represent.	For	example,	the
input	ranges	both	are	10	for	DAQ	devices	with	ranges	of	[0,	10V]
and	[–10,	10V].	The	default	is	1.
init?	specifies	how	you	want	to	initialize	the	internal	states.	The
default	is	TRUE,	which	specifies	that	this	VI	initializes	the	internal
states	to	zero.	If	init?	is	FALSE,	this	VI	initializes	the	internal
states	from	the	final	states	of	the	previous	call	to	the	current	VI
instance.	To	process	a	large	data	sequence,	split	the	sequence
into	smaller	blocks,	set	init?	to	TRUE	for	the	first	block,	and	set
init?	to	FALSE	for	the	remaining	blocks.
signal	in	is	the	input	signal	you	want	to	process.	You	can	wire	an
impulse	pattern,	step	pattern,	uniform	white	noise,	or	a	user-
defined	signal	to	this	input.	The	input	word	length	value	you	set
on	the	DVD	FXP	Modeling	VI	determines	the	range	of	signal	in.
The	range	equals	[–2^(input	word	length–1),	2^(input	word
length–1)–1].	For	example,	if	you	specify	16	as	the	input	word
length	value,	the	corresponding	range	is	[–32768,	32767].
filter	in	specifies	the	input	filter.
filtering	statistics	in	specifies	the	statistical	information	of
quantizers	in	the	filter	in	input	before	the	simulation.

quantizer	source	specifies	the	source	for	the	quantizer.	

0 Coefficients	a/k	(default)
1 Input
2 Output
3 Multiplicand
4 Product

lvdigfiltdestk.chm::/DFD_FXP_Modeling.html

5 Sum
6 Delay
7 Coefficients	b/v

statistical	information	contains	the	statistical	information
for	quantizer	source.

max	value	contains	the	maximum	value	that
appeared	in	quantizer	source	during	simulation.
min	value	contains	the	minimum	value	that	appeared
in	quantizer	source	during	simulation.
#overflows	contains	the	number	of	overflows	that
occurred	in	quantizer	source	during	simulation.
#underflows	contains	the	number	of	underflows	that
occurred	in	quantizer	source	during	simulation.
#operations	contains	the	number	of	operations	that
occurred	in	quantizer	source	during	simulation.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

the	error	or	warning.	The	default	is	an	empty	string.

DBL	signal	out	returns	the	filtered	floating-point	signal.
integer	signal	out	returns	the	output	fixed-point	integer	signal,
which	is	the	same	as	the	output	signal	from	a	fixed-point	target.
filtering	statistics	report	returns	the	statistical	information	of
quantizers	in	the	filter	in	input	after	the	simulation	occurs.	Use	the
DFD	FXP	Simulation	Report	VI	to	generate	a	text	report	from	the
filtering	statistics	report	output.

quantizer	source	returns	the	quantizer	source.
statistical	information	contains	the	statistical	information
for	quantizer	source.

max	value	contains	the	maximum	value	that
appeared	in	quantizer	source	during	simulation.
min	value	contains	the	minimum	value	that	appeared
in	quantizer	source	during	simulation.
#overflows	contains	the	number	of	overflows	that
occurred	in	quantizer	source	during	simulation.
#underflows	contains	the	number	of	underflows	that
occurred	in	quantizer	source	during	simulation.
#operations	contains	the	number	of	operations	that
occurred	in	quantizer	source	during	simulation.

error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.

source	describes	the	origin	of	the	error	or	warning	and	is,	in

lvdigfiltdestk.chm::/DFD_FXP_SimReport.html
lverror.chm::/Error_Code_Ranges.html

most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

DFD	FXP	Simulation	(I32	In)

input	range	specifies	the	maximum	absolute	value	of	the	input
signal	that	the	fixed-point	integer	can	represent.	For	example,	the
input	ranges	both	are	10	for	DAQ	devices	with	ranges	of	[0,	10V]
and	[–10,	10V].	The	default	is	1.
init?	specifies	how	you	want	to	initialize	the	internal	states.	The
default	is	TRUE,	which	specifies	that	this	VI	initializes	the	internal
states	to	zero.	If	init?	is	FALSE,	this	VI	initializes	the	internal
states	from	the	final	states	of	the	previous	call	to	the	current	VI
instance.	To	process	a	large	data	sequence,	split	the	sequence
into	smaller	blocks,	set	init?	to	TRUE	for	the	first	block,	and	set
init?	to	FALSE	for	the	remaining	blocks.
signal	in	specifies	the	input	signal	that	you	want	to	process.
filter	in	specifies	the	input	filter.
filtering	statistics	in	specifies	the	statistical	information	of
quantizers	in	the	filter	in	input	before	the	simulation.

quantizer	source	specifies	the	source	for	the	quantizer.	

0 Coefficients	a/k	(default)
1 Input
2 Output
3 Multiplicand
4 Product
5 Sum
6 Delay
7 Coefficients	b/v

statistical	information	contains	the	statistical	information
for	quantizer	source.

max	value	contains	the	maximum	value	that
appeared	in	quantizer	source	during	simulation.
min	value	contains	the	minimum	value	that	appeared
in	quantizer	source	during	simulation.
#overflows	contains	the	number	of	overflows	that
occurred	in	quantizer	source	during	simulation.
#underflows	contains	the	number	of	underflows	that
occurred	in	quantizer	source	during	simulation.
#operations	contains	the	number	of	operations	that
occurred	in	quantizer	source	during	simulation.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

DBL	signal	out	returns	the	filtered	floating-point	signal.
integer	signal	out	returns	the	output	fixed-point	integer	signal,
which	is	the	same	as	the	output	signal	from	a	fixed-point	target.

filtering	statistics	report	returns	the	statistical	information	of

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

quantizers	in	the	filter	in	input	after	the	simulation	occurs.	Use	the
DFD	FXP	Simulation	Report	VI	to	generate	a	text	report	from	the
filtering	statistics	report	output.

quantizer	source	returns	the	quantizer	source.
statistical	information	contains	the	statistical	information
for	quantizer	source.

max	value	contains	the	maximum	value	that
appeared	in	quantizer	source	during	simulation.
min	value	contains	the	minimum	value	that	appeared
in	quantizer	source	during	simulation.
#overflows	contains	the	number	of	overflows	that
occurred	in	quantizer	source	during	simulation.
#underflows	contains	the	number	of	underflows	that
occurred	in	quantizer	source	during	simulation.
#operations	contains	the	number	of	operations	that
occurred	in	quantizer	source	during	simulation.

error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lvdigfiltdestk.chm::/DFD_FXP_SimReport.html
lverror.chm::/Error_Code_Ranges.html

DFD	FXP	Simulation	(I16	In)

input	range	specifies	the	maximum	absolute	value	of	the	input
signal	that	the	fixed-point	integer	can	represent.	For	example,	the
input	ranges	both	are	10	for	DAQ	devices	with	ranges	of	[0,	10V]
and	[–10,	10V].	The	default	is	1.
init?	specifies	how	you	want	to	initialize	the	internal	states.	The
default	is	TRUE,	which	specifies	that	this	VI	initializes	the	internal
states	to	zero.	If	init?	is	FALSE,	this	VI	initializes	the	internal
states	from	the	final	states	of	the	previous	call	to	the	current	VI
instance.	To	process	a	large	data	sequence,	split	the	sequence
into	smaller	blocks,	set	init?	to	TRUE	for	the	first	block,	and	set
init?	to	FALSE	for	the	remaining	blocks.
signal	in	specifies	the	input	signal	that	you	want	to	process.
filter	in	specifies	the	input	filter.
filtering	statistics	in	specifies	the	statistical	information	of
quantizers	in	the	filter	in	input	before	the	simulation.

quantizer	source	specifies	the	source	for	the	quantizer.	

0 Coefficients	a/k	(default)
1 Input
2 Output
3 Multiplicand
4 Product
5 Sum
6 Delay
7 Coefficients	b/v

statistical	information	contains	the	statistical	information
for	quantizer	source.

max	value	contains	the	maximum	value	that
appeared	in	quantizer	source	during	simulation.
min	value	contains	the	minimum	value	that	appeared
in	quantizer	source	during	simulation.
#overflows	contains	the	number	of	overflows	that
occurred	in	quantizer	source	during	simulation.
#underflows	contains	the	number	of	underflows	that
occurred	in	quantizer	source	during	simulation.
#operations	contains	the	number	of	operations	that
occurred	in	quantizer	source	during	simulation.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

DBL	signal	out	returns	the	filtered	floating-point	signal.
integer	signal	out	returns	the	output	fixed-point	integer	signal,
which	is	the	same	as	the	output	signal	from	a	fixed-point	target.

filtering	statistics	report	returns	the	statistical	information	of

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

quantizers	in	the	filter	in	input	after	the	simulation	occurs.	Use	the
DFD	FXP	Simulation	Report	VI	to	generate	a	text	report	from	the
filtering	statistics	report	output.

quantizer	source	returns	the	quantizer	source.
statistical	information	contains	the	statistical	information
for	quantizer	source.

max	value	contains	the	maximum	value	that
appeared	in	quantizer	source	during	simulation.
min	value	contains	the	minimum	value	that	appeared
in	quantizer	source	during	simulation.
#overflows	contains	the	number	of	overflows	that
occurred	in	quantizer	source	during	simulation.
#underflows	contains	the	number	of	underflows	that
occurred	in	quantizer	source	during	simulation.
#operations	contains	the	number	of	operations	that
occurred	in	quantizer	source	during	simulation.

error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lvdigfiltdestk.chm::/DFD_FXP_SimReport.html
lverror.chm::/Error_Code_Ranges.html

Examples
Refer	to	the	following	VIs	for	examples	of	using	the	DFD	FXP	Simulation
VI:

Easy	Fixed-Point	Filter	Modeling	and	Simulation	VI:
labview\examples\Digital	Filter	Design\Fixed-Point	Filters\Single-Rate
	Open	example	 	Browse	related	examples
Customized	Fixed-Point	Filter	Modeling	and	Simulation	VI:
labview\examples\Digital	Filter	Design\Fixed-Point	Filters\Single-Rate
	Open	example	 	Browse	related	examples
Continuous	Overflow	Statistics	VI:	labview\examples\Digital	Filter
Design\Fixed-Point	Filters\Single-Rate
	Open	example	 	Browse	related	examples
Simulation	with	Integer	Inputs	VI:	labview\examples\Digital	Filter
Design\Fixed-Point	Filters\Single-Rate
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFixed-Point%20Filters%5C%5CSingle-Rate%5C%5CEasy%20Fixed-Point%20Filter%20Modeling%20and%20Simulation.vi');
javascript:findExamples(10063);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFixed-Point%20Filters%5C%5CSingle-Rate%5C%5CCustomized%20Fixed-Point%20Filter%20Modeling%20and%20Simulation.vi');
javascript:findExamples(10063);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFixed-Point%20Filters%5C%5CSingle-Rate%5C%5CContinuous%20Overflow%20Statistics.vi');
javascript:findExamples(10063);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFixed-Point%20Filters%5C%5CSingle-Rate%5C%5CSimulation%20with%20Integer%20Inputs.vi');
javascript:findExamples(10063);

DFD	FXP	Simulation	Report	VI
Owning	Palette:	Fixed-Point	Tools	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Creates	a	text	report	of	filtering	statistics	from	the	DFD	FXP	Simulation	VI
or	the	DFD	FXP	Simulation	with	State	VI.
Wire	the	filtering	statistics	report	output	of	the	DFD	FXP	Simulation	VI
or	the	DFD	FXP	Simulation	with	State	VI	to	the	filtering	statistics	report
input	of	this	VI.
Details		Examples

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
filtering	statistics	report	specifies	the	statistical	information	of
quantizers	after	a	simulation.

quantizer	source	specifies	the	source	for	the	quantizer.	

0 Coefficients	a/k	(default)
1 Input
2 Output
3 Multiplicand
4 Product
5 Sum
6 Delay
7 Coefficients	b/v

statistical	information	contains	the	statistical	information
for	quantizer	source.

max	value	contains	the	maximum	value	that
appeared	in	quantizer	source	during	simulation.
min	value	contains	the	minimum	value	that	appeared
in	quantizer	source	during	simulation.

lvdigfiltdestk.chm::/DFD_FXP_Tools_VIs.html
lvdigfiltdestk.chm::/DFD_FXP_Simulation.html
lvdigfiltdestk.chm::/DFD_FXP_Sim_State.html
javascript:placeObject(object2891);
javascript:findObject(object2891);

#overflows	contains	the	number	of	overflows	that
occurred	in	quantizer	source	during	simulation.
#underflows	contains	the	number	of	underflows	that
occurred	in	quantizer	source	during	simulation.
#operations	contains	the	number	of	operations	that
occurred	in	quantizer	source	during	simulation.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

filtering	text	report	returns	a	text	report	with	the	filtering	statistics
from	filtering	statistics	report.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	FXP	Simulation	Report	Details
The	filtering	text	report	output	lists	filtering	statistics	for	the	quantizers
of	Input,	Output,	Multiplicand,	Product,	Sum,	and	Delay	during	the
simulation	process.	The	output	does	not	include	Coefficients	a/k	and
Coefficients	b/v.	Each	quantizer	includes	five	entries:	max	value,	min
value,	#overflows,	#underflows,	and	#operations.
You	can	use	filtering	text	report	to	monitor	the	performance	of
quantizers.	Use	the	max	value	and	min	value	to	monitor	the	effect	of
overflow	and	underflow	and	adjust	quantization	settings	accordingly.

Examples
Refer	to	the	following	VIs	for	examples	of	using	the	DFD	FXP	Simulation
Report	VI:

Customized	Fixed-Point	Filter	Modeling	and	Simulation	VI:
labview\examples\Digital	Filter	Design\Fixed-Point	Filters\Single-Rate
	Open	example	 	Browse	related	examples
Continuous	Overflow	Statistics	VI:	labview\examples\Digital	Filter
Design\Fixed-Point	Filters\Single-Rate
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFixed-Point%20Filters%5C%5CSingle-Rate%5C%5CCustomized%20Fixed-Point%20Filter%20Modeling%20and%20Simulation.vi');
javascript:findExamples(10063);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFixed-Point%20Filters%5C%5CSingle-Rate%5C%5CContinuous%20Overflow%20Statistics.vi');
javascript:findExamples(10063);

DFD	FXP	Simulation	with	State	VI
Owning	Palette:	Fixed-Point	Tools	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Simulates	the	filtering	process	with	initial	internal	states	and	generates
the	filtering	statistics	report	for	a	fixed-point	filter.	Wire	data	to	the	signal
in	input	to	determine	the	polymorphic	instance	to	use	or	manually	select
the	instance.
You	can	use	the	DFD	FXP	Simulation	Report	VI	to	generate	a	text	report
about	the	performance	of	quantizers	during	a	simulation.
Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

	Place	on	the	block	diagram 	Find	on	the	Functions	palette

lvdigfiltdestk.chm::/DFD_FXP_Tools_VIs.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
lvdigfiltdestk.chm::/DFD_FXP_SimReport.html
javascript:placeObject(object2890);
javascript:findObject(object2890);

DFD	FXP	Simulation	with	State	(DBL	In)

input	range	specifies	the	maximum	absolute	value	of	the	input
signal	that	the	fixed-point	integer	can	represent.	For	example,	the
input	ranges	both	are	10	for	DAQ	devices	with	ranges	of	[0,	10V]
and	[–10,	10V].	The	default	is	1.
signal	in	is	the	input	signal	you	want	to	process.	You	can	wire	an
impulse	pattern,	step	pattern,	uniform	white	noise,	or	a	user-
defined	signal	to	this	input.	The	input	word	length	value	you	set
on	the	DVD	FXP	Modeling	VI	determines	the	range	of	signal	in.
The	range	equals	[–2^(input	word	length–1),	2^(input	word
length–1)–1].	For	example,	if	you	specify	16	as	the	input	word
length	value,	the	corresponding	range	is	[–32768,	32767].
filter	in	specifies	the	input	filter.
filtering	statistics	in	specifies	the	statistical	information	of
quantizers	in	the	filter	in	input	before	the	simulation.

quantizer	source	specifies	the	source	for	the	quantizer.	

0 Coefficients	a/k	(default)
1 Input
2 Output
3 Multiplicand
4 Product
5 Sum
6 Delay
7 Coefficients	b/v

statistical	information	contains	the	statistical	information
for	quantizer	source.

max	value	contains	the	maximum	value	that

lvdigfiltdestk.chm::/DFD_FXP_Modeling.html

appeared	in	quantizer	source	during	simulation.
min	value	contains	the	minimum	value	that	appeared
in	quantizer	source	during	simulation.
#overflows	contains	the	number	of	overflows	that
occurred	in	quantizer	source	during	simulation.
#underflows	contains	the	number	of	underflows	that
occurred	in	quantizer	source	during	simulation.
#operations	contains	the	number	of	operations	that
occurred	in	quantizer	source	during	simulation.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

state	in	specifies	the	initial	internal	states	before	processing.
DBL	signal	out	returns	the	filtered	floating-point	signal.
integer	signal	out	returns	the	output	fixed-point	integer	signal,
which	is	the	same	as	the	output	signal	from	a	fixed-point	target.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

filtering	statistics	report	returns	the	statistical	information	of
quantizers	in	the	filter	in	input	after	the	simulation	occurs.	Use	the
DFD	FXP	Simulation	Report	VI	to	generate	a	text	report	from	the
filtering	statistics	report	output.

quantizer	source	returns	the	quantizer	source.
statistical	information	contains	the	statistical	information
for	quantizer	source.

max	value	contains	the	maximum	value	that
appeared	in	quantizer	source	during	simulation.
min	value	contains	the	minimum	value	that	appeared
in	quantizer	source	during	simulation.
#overflows	contains	the	number	of	overflows	that
occurred	in	quantizer	source	during	simulation.
#underflows	contains	the	number	of	underflows	that
occurred	in	quantizer	source	during	simulation.
#operations	contains	the	number	of	operations	that
occurred	in	quantizer	source	during	simulation.

error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

state	out	returns	the	internal	states	after	processing.	You	can	wire
this	output	to	the	state	in	input	of	the	next	call	to	this	VI	if	you	want
to	process	data	continuously.

lvdigfiltdestk.chm::/DFD_FXP_SimReport.html
lverror.chm::/Error_Code_Ranges.html

DFD	FXP	Simulation	with	State	(I32	In)

input	range	specifies	the	maximum	absolute	value	of	the	input
signal	that	the	fixed-point	integer	can	represent.	For	example,	the
input	ranges	both	are	10	for	DAQ	devices	with	ranges	of	[0,	10V]
and	[–10,	10V].	The	default	is	1.
signal	in	specifies	the	input	signal	that	you	want	to	process.
filter	in	specifies	the	input	filter.
filtering	statistics	in	specifies	the	statistical	information	of
quantizers	in	the	filter	in	input	before	the	simulation.

quantizer	source	specifies	the	source	for	the	quantizer.	

0 Coefficients	a/k	(default)
1 Input
2 Output
3 Multiplicand
4 Product
5 Sum
6 Delay
7 Coefficients	b/v

statistical	information	contains	the	statistical	information
for	quantizer	source.

max	value	contains	the	maximum	value	that
appeared	in	quantizer	source	during	simulation.
min	value	contains	the	minimum	value	that	appeared
in	quantizer	source	during	simulation.
#overflows	contains	the	number	of	overflows	that
occurred	in	quantizer	source	during	simulation.

#underflows	contains	the	number	of	underflows	that
occurred	in	quantizer	source	during	simulation.
#operations	contains	the	number	of	operations	that
occurred	in	quantizer	source	during	simulation.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

state	in	specifies	the	initial	internal	states	before	processing.
DBL	signal	out	returns	the	filtered	floating-point	signal.
integer	signal	out	returns	the	output	fixed-point	integer	signal,
which	is	the	same	as	the	output	signal	from	a	fixed-point	target.
filtering	statistics	report	returns	the	statistical	information	of
quantizers	in	the	filter	in	input	after	the	simulation	occurs.	Use	the
DFD	FXP	Simulation	Report	VI	to	generate	a	text	report	from	the
filtering	statistics	report	output.

quantizer	source	returns	the	quantizer	source.

statistical	information	contains	the	statistical	information

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html
lvdigfiltdestk.chm::/DFD_FXP_SimReport.html

for	quantizer	source.
max	value	contains	the	maximum	value	that
appeared	in	quantizer	source	during	simulation.
min	value	contains	the	minimum	value	that	appeared
in	quantizer	source	during	simulation.
#overflows	contains	the	number	of	overflows	that
occurred	in	quantizer	source	during	simulation.
#underflows	contains	the	number	of	underflows	that
occurred	in	quantizer	source	during	simulation.
#operations	contains	the	number	of	operations	that
occurred	in	quantizer	source	during	simulation.

error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

state	out	returns	the	internal	states	after	processing.	You	can	wire
this	output	to	the	state	in	input	of	the	next	call	to	this	VI	if	you	want
to	process	data	continuously.

lverror.chm::/Error_Code_Ranges.html

DFD	FXP	Simulation	with	State	(I16	In)

input	range	specifies	the	maximum	absolute	value	of	the	input
signal	that	the	fixed-point	integer	can	represent.	For	example,	the
input	ranges	both	are	10	for	DAQ	devices	with	ranges	of	[0,	10V]
and	[–10,	10V].	The	default	is	1.
signal	in	specifies	the	input	signal	that	you	want	to	process.
filter	in	specifies	the	input	filter.
filtering	statistics	in	specifies	the	statistical	information	of
quantizers	in	the	filter	in	input	before	the	simulation.

quantizer	source	specifies	the	source	for	the	quantizer.	

0 Coefficients	a/k	(default)
1 Input
2 Output
3 Multiplicand
4 Product
5 Sum
6 Delay
7 Coefficients	b/v

statistical	information	contains	the	statistical	information
for	quantizer	source.

max	value	contains	the	maximum	value	that
appeared	in	quantizer	source	during	simulation.
min	value	contains	the	minimum	value	that	appeared
in	quantizer	source	during	simulation.
#overflows	contains	the	number	of	overflows	that
occurred	in	quantizer	source	during	simulation.

#underflows	contains	the	number	of	underflows	that
occurred	in	quantizer	source	during	simulation.
#operations	contains	the	number	of	operations	that
occurred	in	quantizer	source	during	simulation.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

state	in	specifies	the	initial	internal	states	before	processing.
DBL	signal	out	returns	the	filtered	floating-point	signal.
integer	signal	out	returns	the	output	fixed-point	integer	signal,
which	is	the	same	as	the	output	signal	from	a	fixed-point	target.
filtering	statistics	report	returns	the	statistical	information	of
quantizers	in	the	filter	in	input	after	the	simulation	occurs.	Use	the
DFD	FXP	Simulation	Report	VI	to	generate	a	text	report	from	the
filtering	statistics	report	output.

quantizer	source	returns	the	quantizer	source.

statistical	information	contains	the	statistical	information

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html
lvdigfiltdestk.chm::/DFD_FXP_SimReport.html

for	quantizer	source.
max	value	contains	the	maximum	value	that
appeared	in	quantizer	source	during	simulation.
min	value	contains	the	minimum	value	that	appeared
in	quantizer	source	during	simulation.
#overflows	contains	the	number	of	overflows	that
occurred	in	quantizer	source	during	simulation.
#underflows	contains	the	number	of	underflows	that
occurred	in	quantizer	source	during	simulation.
#operations	contains	the	number	of	operations	that
occurred	in	quantizer	source	during	simulation.

error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

state	out	returns	the	internal	states	after	processing.	You	can	wire
this	output	to	the	state	in	input	of	the	next	call	to	this	VI	if	you	want
to	process	data	continuously.

lverror.chm::/Error_Code_Ranges.html

Multirate	Filter	Analysis	VIs
Owning	Palette:	Digital	Filter	Design	VIs	and	Functions
Installed	With:	Digital	Filter	Design	Toolkit.	This	topic	might	not	match	its
corresponding	palette	in	LabVIEW	depending	on	your	operating	system,
licensed	product(s),	and	target.
Use	the	Multirate	Filter	Analysis	VIs	to	analyze	characteristics	of	multirate
filters.
The	VIs	on	this	palette	can	return	general	LabVIEW	error	codes	or
specific	digital	filter	design	error	codes.

Palette	Object Description
DFD	Plot	MRate
Freq	Response

Plots	the	frequency	responses,	including	the
magnitude	and	phase	responses,	of	multirate	filters.

DFD	Plot	NStage
MRate	Freq
Response

Plots	the	frequency	responses,	including	the
magnitude	and	phase	responses,	of	multistage
multirate	filters.

lvdigfiltdestk.chm::/DFD_VIs.html
lverror.chm::/Misc_LV_Error_Codes.html
lvdigfiltdestk.chm::/DFD_Plot_MR_Freq.html
lvdigfiltdestk.chm::/DFD_Plot_NS_MR_Freq.html

DFD	Plot	MRate	Freq	Response	VI
Owning	Palette:	Multirate	Filter	Analysis	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Plots	the	frequency	responses,	including	the	magnitude	and	phase
responses,	of	multirate	filters.
Example

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
output	option	specifies	the	filter	response	that	this	VI	plots.	

0 Auto	(default)—This	VI	automatically	determines	the	responses
of	multirate	filter	in	to	plot.	If	multirate	filter	in	is	a	floating-
point	multirate	filter,	this	VI	plots	the	frequency	response	of	this
multirate	filter.	If	multirate	filter	in	is	a	fixed-point	multirate
filter,	this	VI	plots	the	frequency	responses	of	both	this	multirate
filter	and	the	reference	floating-point	multirate	filter.

1 Floating-Point	Only—If	multirate	filter	in	is	a	floating-point
multirate	filter,	this	VI	plots	the	frequency	response	of	this
multirate	filter.	If	multirate	filter	in	is	a	fixed-point	multirate
filter,	this	VI	plots	the	frequency	response	of	the	reference
floating-point	multirate	filter.

2 Fixed-Point	Only—If	multirate	filter	in	is	a	floating-point
multirate	filter,	this	VI	returns	an	empty	graph.	If	multirate	filter
in	is	a	fixed-point	multirate	filter,	this	VI	plots	the	frequency
response	of	this	multirate	filter.

#	freq	bins	specifies	the	number	of	frequency	bins	between	0	and
the	highest	sampling	frequency	in	the	frequency	response	of	the
multirate	filter.	The	default	is	–1,	which	specifies	that	this	VI
automatically	determines	the	number	of	frequency	bins.
multirate	filter	in	specifies	the	input	multirate	filter.

lvdigfiltdestk.chm::/DFD_M_Analysis_VIs.html
javascript:placeObject(object2905);
javascript:findObject(object2905);

phase	view	specifies	the	phase	response	display	settings.
unwrap?	specifies	whether	this	VI	unwraps	the	phase.	The
default	is	FALSE,	which	specifies	that	the	phase	remains
wrapped	and	is	limited	to	[0,	2π).
degree?	specifies	whether	the	phase	appears	in	degrees	or
radians.	The	default	is	FALSE,	which	specifies	that	the
phase	appears	in	radians.

dB	on?	specifies	whether	this	VI	uses	decibels	or	a	linear	scale	to
express	the	magnitude	response.	The	default	is	TRUE,	which
specifies	that	this	VI	converts	linear	magnitude	response	to
decibels.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

fs	in	specifies	the	input	sampling	frequency	of	the	multirate	filter	in
hertz.	If	the	value	of	fs	in	is	equal	to	or	less	than	zero,	this	VI	uses
the	sampling	frequency	of	the	input	filter.	The	default	is	–1.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

multirate	filter	out	returns	the	multirate	filter	in	unchanged.
magnitude	response	returns	the	magnitude	response	of	the	filter.
phase	response	returns	the	phase	response	of	the	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

Example
Refer	to	the	Analyze	Coefficients-Quantized	Multirate	Filter	VI	in	the
labview\examples\Digital	Filter	Design\Fixed-Point	Filters\Multirate	directory
for	an	example	of	using	the	DFD	Plot	MRate	Freq	Response	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFixed-Point%20Filters%5C%5CMultirate%5C%5CAnalyze%20Coefficients-Quantized%20Multirate%20Filter.vi');
javascript:findExamples(8415);

DFD	Plot	NStage	MRate	Freq	Response	VI
Owning	Palette:	Multirate	Filter	Analysis	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Plots	the	frequency	responses,	including	the	magnitude	and	phase
responses,	of	multistage	multirate	filters.
Example

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
output	option	specifies	the	filter	responses	that	this	VI	plots.	

0 Auto	(default)—This	VI	automatically	determines	the	responses
of	multirate	filters	in	to	plot.	If	multirate	filters	in	are	floating-
point	multirate	filters,	this	VI	plots	the	frequency	responses	of
these	multirate	filters.	If	multirate	filters	in	are	fixed-point
multirate	filters,	this	VI	plots	the	frequency	responses	of	both
these	multirate	filters	and	the	reference	floating-point	multirate
filters.

1 Floating-Point	Only—If	multirate	filters	in	are	floating-point
multirate	filters,	this	VI	plots	the	frequency	responses	of	these
multirate	filters.	If	multirate	filters	in	are	fixed-point	multirate
filters,	this	VI	plots	the	frequency	responses	of	only	the
reference	floating-point	multirate	filters.

2 Fixed-Point	Only—If	multirate	filters	in	are	floating-point
multirate	filters,	this	VI	returns	an	empty	graph.	If	multirate
filters	in	are	fixed-point	multirate	filters,	this	VI	plots	the
frequency	responses	of	these	multirate	filters.

#	freq	bins	specifies	the	number	of	frequency	bins	between	0	and
the	highest	sampling	frequency	in	the	frequency	response	of	the
multirate	filter.	The	default	is	–1,	which	specifies	that	this	VI
automatically	determines	the	number	of	frequency	bins.

lvdigfiltdestk.chm::/DFD_M_Analysis_VIs.html
javascript:placeObject(object2906);
javascript:findObject(object2906);

multirate	filters	in	specifies	the	input	multistage	multirate	filters.
phase	view	specifies	the	phase	response	display	settings.

unwrap?	specifies	whether	this	VI	unwraps	the	phase.	The
default	is	FALSE,	which	specifies	that	the	phase	remains
wrapped	and	is	limited	to	[0,	2π).
degree?	specifies	whether	the	phase	appears	in	degrees	or
radians.	The	default	is	FALSE,	which	specifies	that	the
phase	appears	in	radians.

dB	on?	specifies	whether	this	VI	uses	decibels	or	a	linear	scale	to
express	the	magnitude	response.	The	default	is	TRUE,	which
specifies	that	this	VI	converts	linear	magnitude	response	to
decibels.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

fs	in	specifies	the	input	sampling	frequency	of	the	multirate	filter	in
hertz.	If	the	value	of	fs	in	is	equal	to	or	less	than	zero,	this	VI	uses
the	sampling	frequency	of	the	input	filter.	The	default	is	–1.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

multirate	filters	out	returns	the	multirate	filters	in	unchanged.
magnitude	responses	returns	the	overall	magnitude	response
and	the	magnitude	response	of	each	stage	of	the	multirate	filters
in.	For	fixed-point	multistage	multirate	filters,	this	VI	returns	the
magnitude	responses	of	all	stages	by	interleaving	the	fixed-point
magnitude	responses	and	reference	floating-point	magnitude
responses	in	the	following	format:	[MRoverall,	MFoverall,	MR1,	MF1,
MR2,	MF2,	…,	MRn,	MFn]
where MRoverall	represents	the	overall	magnitude	response	of	the

reference	floating-point	multistage	multirate	filter
MFoverall	represents	the	overall	magnitude	response	of	the
fixed-point	multistage	multirate	filter

MRn	represents	the	magnitude	response	of	the	nth	stage
of	the	reference	floating-point	multistage	multirate	filter

MFn	represents	the	magnitude	response	of	the	nth	stage	of
the	fixed-point	multistage	multirate	filter

phase	responses	returns	the	overall	phase	response	and	the
phase	response	of	each	stage	of	the	multirate	filters	in	multirate
filters	in.	For	fixed-point	multistage	multirate	filters,	this	VI	returns
the	phase	responses	of	all	stages	by	interleaving	the	fixed-point
phase	responses	and	reference	floating-point	phase	responses	in
the	following	format:	[PRoverall,	PFoverall,	PR1,	PF1,	PR2,	PF2,	…,
PRn,	PFn]
where PRoverall	represents	the	overall	phase	response	of	the

reference	floating-point	multistage	multirate	filter
PFoverall	represents	the	overall	phase	response	of	the
fixed-point	multistage	multirate	filter

PRn	represents	the	phase	response	of	the	nth	stage	of	the
reference	floating-point	multistage	multirate	filter

PFn	represents	the	phase	response	of	the	nth	stage	of	the
fixed-point	multistage	multirate	filter

error	out	contains	error	information.	If	error	in	indicates	that	an

error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

Example
Refer	to	the	Analyze	Coefficients-Quantized	Multistage	Multirate	Filter	VI
in	the	labview\examples\Digital	Filter	Design\Fixed-Point	Filters\Multirate
directory	for	an	example	of	using	the	DFD	Plot	NStage	MRate	Freq
Response	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFixed-Point%20Filters%5C%5CMultirate%5C%5CAnalyze%20Coefficients-Quantized%20Multistage%20Multirate%20Filter.vi');
javascript:findExamples(8415);

Multirate	Filter	Design	VIs
Owning	Palette:	Digital	Filter	Design	VIs	and	Functions
Installed	With:	Digital	Filter	Design	Toolkit.	This	topic	might	not	match	its
corresponding	palette	in	LabVIEW	depending	on	your	operating	system,
licensed	product(s),	and	target.
Use	the	Multirate	Filter	Design	VIs	to	create	multirate	filters.
The	VIs	on	this	palette	can	return	general	LabVIEW	error	codes	or
specific	digital	filter	design	error	codes.

Palette	Object Description
DFD	Halfband
Design

Creates	a	halfband	filter	with	an	automatic	order
estimation.

DFD	MRate
Filter	Design

Creates	a	single-stage	multirate	filter.	You	must
manually	select	the	polymorphic	instance	you	want	to
use.

DFD	NStage
MRate	Filter
Design

Creates	multistage	multirate	filters,	which	meet	the
requirements	you	specify	by	cascading	filters	in
multirate	filters	out.

DFD	Nyquist
Design

Creates	a	Nyquist	filter	using	the	window	or	equi-ripple
methods	with	an	automatic	order	estimation.

DFD	Raised
Cosine	Design

Creates	a	raised	cosine	or	a	root-raised	cosine	finite
impulse	response	(FIR)	filter.

Multirate	CIC
Design

Creates	a	cascaded	integrator	comb	(CIC)	filter.

Multirate	FIR
Design

Creates	a	finite	impulse	response	(FIR)	multirate	filter.

Multistage
Multirate	Filter
Design

Creates	a	multistage	multirate	filter.

lvdigfiltdestk.chm::/DFD_VIs.html
lverror.chm::/Misc_LV_Error_Codes.html
lvdigfiltdestk.chm::/DFD_Halfband_Design.html
lvdfdtconcepts.chm::/Nyquist_Filters.html#halfband_filters
lvdigfiltdestk.chm::/DFD_MR_Design.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
lvdigfiltdestk.chm::/DFD_NS_MR_Filter.html
lvdigfiltdestk.chm::/DFD_Nyquist_Design.html
lvdfdtconcepts.chm::/Nyquist_Filters.html
lvdigfiltdestk.chm::/DFD_Raised_Cosine.html
lvdfdtconcepts.chm::/Nyquist_Filters.html#raised_cosine_filters
lvdigfiltdestk.chm::/DFD_CIC_Filter.html
lvdfdtconcepts.chm::/cic_filters.html
lvdigfiltdestk.chm::/DFD_MRate_FIR_Design.html
lvdigfiltdestk.chm::/DFD_NS_MR_Design.html

Multirate	CIC	Design	Express	VI
Owning	Palette:	Multirate	Filter	Design	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Creates	a	cascaded	integrator	comb	(CIC)	filter.

Dialog	Box	Options
Block	Diagram	Outputs

	Place	on	the	block	diagram 	Find	on	the	Functions	palette

lvdigfiltdestk.chm::/DFD_Multi_Design_VIs.html
lvdfdtconcepts.chm::/cic_filters.html
javascript:placeObject(object3659);
javascript:findObject(object3659);

Dialog	Box	Options
Parameter Description
Magnitude
Response

Contains	the	plot	of	the	magnitude	response.	You	can	drag
the	cursors	in	the	plot	to	change	the	specifications.

Magnitude	in	dB—Specifies	whether	this	Express
VI	uses	decibels	or	a	linear	scale	to	express	the
magnitude	response.	If	you	place	a	checkmark	in
the	checkbox,	this	Express	VI	converts	a	linear
magnitude	response	to	decibels.	This	Express	VI
uses	decibels	by	default.
Passband—Specifies	the	color	of	the	lines	in	the
magnitude	plot	that	represent	the	passband
response	and	the	passband	edge	frequency.	The
default	is	blue.
Maximum	aliasing	frequency—Specifies	the	color
of	the	lines	in	the	magnitude	plot	that	represent	the
aliasing	distortion	and	the	maximum	aliasing
frequency.	The	default	is	red.	This	option	is	available
only	if	you	set	Filter	type	to	Decimation	or	No	Rate
Change.
Maximum	imaging	frequency—Specifies	the	color
of	the	lines	in	the	magnitude	plot	that	represent	the
images	and	the	maximum	image	frequency.	The
default	is	red.	This	option	is	available	only	if	you	set
Filter	type	to	Interpolation.

Main
Settings

Contains	the	following	options:
Filter	type—Specifies	the	type	of	CIC	filter	that	this
VI	creates.	The	valid	values	include	No	Rate
Change,	Interpolation,	and	Decimation.	The
default	is	Decimation.
Number	of	stages—Specifies	the	number	of	stages
in	the	CIC	filter.	The	valid	range	is	[1,	8].	The	default
is	4.
Filter	factor—Specifies	the	sampling	frequency
conversion	factor	of	the	CIC	filter.	If	you	set	Filter
type	to	No	Rate	Change,	the	value	of	this	input	must

be	an	integer	greater	than	or	equal	to	1.	If	you	set
Filter	type	to	Interpolation	or	Decimation,	the	value	of
this	input	must	be	an	integer	greater	than	or	equal	to
2.	The	default	is	2.
Differential	delay—Specifies	the	number	of	null
values	in	the	frequency	response.	Increasing	the
value	of	the	differential	delay	increases	the	number
of	null	values	and	the	sharpness	of	the	transition
band	in	the	frequency	response.	A	larger	differential
delay	value	also	requires	more	hardware	resources.
The	valid	values	include	1	and	2.	The	default	is	1.
Input	sampling	frequency—Specifies	the	sampling
frequency,	in	hertz,	of	an	input	signal	for	the	CIC
filter.	This	input	must	contain	a	value	greater	than
zero.	The	default	is	1	Hz.

Analysis
Settings

Contains	the	following	options:
Analyze	CIC	filter—Specifies	if	you	want	to	analyze
the	passband	distortion	and	aliasing	distortion	for
the	CIC	filter.
Passband	frequency—Specifies	the	passband
frequency	of	the	CIC	filter.	This	input	is	available
only	if	you	place	a	checkmark	in	the	Analyze	CIC
filter	checkbox.	This	Express	VI	calculates	the
default	value	as	80%	of	fN/4.	If	you	set	Filter	type	to
Interpolation	or	No	Rate	Change,	fN	is	the	Nyquist
frequency	of	the	input	sampling	frequency.	If	you	set
Filter	type	to	Decimation,	fN	is	the	Nyquist	frequency
of	the	output	sampling	frequency	.
Passband	distortion—Returns	the	magnitude
distortion	at	the	passband	frequency	in	a	unit	that
the	Magnitude	in	dB	option	determines.	This	output
displays	the	magnitude	distortion	value	only	if	you
place	a	checkmark	in	the	Analyze	CIC	filter
checkbox.
Aliasing	distortion—Returns	the	magnitude
distortion	at	the	maximum	aliasing	frequency	in	a
unit	that	the	Magnitude	in	dB	option	determines.

This	output	displays	the	magnitude	distortion	value
only	if	you	place	a	checkmark	in	the	Analyze	CIC
filter	checkbox.

Block	Diagram	Outputs
Parameter Description
CIC	filter
out

Returns	the	new	CIC	multirate	filter.

error	out Describes	the	error	status	that	this	VI	or	function
produces.

Multirate	FIR	Design	Express	VI
Owning	Palette:	Multirate	Filter	Design	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Creates	a	finite	impulse	response	(FIR)	multirate	filter.
Details		

Dialog	Box	Options
Block	Diagram	Outputs

	Place	on	the	block	diagram 	Find	on	the	Functions	palette

lvdigfiltdestk.chm::/DFD_Multi_Design_VIs.html
javascript:placeObject(object3655);
javascript:findObject(object3655);

Dialog	Box	Options
Parameter Description
Magnitude
Response

Contains	the	plot	of	the	magnitude	response.	You	can
drag	the	cursors	in	the	plot	to	change	the	specifications.
The	color	you	specify	in	Passband	represents	the
passband	response	and	the	passband	edge	frequency.
The	color	you	specify	in	Stopband	represents	the
stopband	attenuation	and	the	stopband	edge	frequency.
The	color	you	specify	in	Stopband	limit	represents	the
stopband	limit.	The	color	you	specify	in	Nyquist
represents	half	the	sampling	frequency,	also	known	as
the	Nyquist	frequency.

Magnitude	in	dB—Specifies	whether	this
Express	VI	uses	decibels	or	a	linear	scale	to
express	the	magnitude	response.	If	you	place	a
checkmark	in	the	checkbox,	this	Express	VI
converts	a	linear	magnitude	response	to
decibels.	This	Express	VI	uses	decibels	by
default.
Nyquist—Specifies	the	color	of	the	line	in	the
magnitude	plot	that	represents	the	Nyquist
frequency.	The	default	is	green.
Passband—Specifies	the	color	of	the	lines	in
the	magnitude	plot	that	represent	the	passband
response	and	the	passband	edge	frequency.
The	default	is	blue.
Stopband	limit—Specifies	the	color	of	the	line
in	the	magnitude	plot	that	represents	the
maximum	stopband	edge	frequency.	The	default
is	yellow.
Stopband—Specifies	the	color	of	the	lines	in
the	magnitude	plot	that	represent	the	stopband
attenuation	and	the	stopband	edge	frequency.
The	default	is	red.

Flow	Diagram Returns	the	flow	diagram	of	the	multirate	filter	you
specify	in	Filter	type.

Filter
Coefficients

Returns	the	coefficients	of	the	multirate	filter	according
to	the	settings	you	specify	on	the	Floating-Point
Design	page.

Filter	order—Displays	the	order	of	the	multirate
filter	you	design.	The	value	of	Filter	order+1
equals	the	number	of	coefficients.

Main	Settings Contains	the	following	options:
Design	method—Specifies	the	method	that	this
Express	VI	uses	to	design	the	multirate	filter.
The	valid	values	include	Kaiser	Window,
Dolph-Chebyshev	Window,	and	Equi-Ripple
FIR.	The	default	is	Equi-Ripple	FIR.
Filter	type—Specifies	the	type	of	multirate	filter
that	this	VI	creates.	The	valid	values	include	No
Rate	Change,	Interpolation,	Decimation,	and
Rational	Resampling.	The	default	is
Decimation.
Filter	factor—Specifies	the	sampling	frequency
conversion	factor	of	the	multirate	filter.	Contains
the	following	options:

L—Specifies	the	interpolation	factor	for
an	interpolation	or	rational	resampling
filter.	This	input	is	available	only	if	you
set	Filter	type	to	Interpolation	or	Rational
Resampling.	The	value	of	this	input	must
be	an	integer	greater	than	or	equal	to	2.
The	default	is	1.
M—Specifies	the	decimation	factor	for	a
decimation	or	rational	resampling	filter.
This	input	is	available	only	if	you	set
Filter	type	to	Decimation	or	Rational
Resampling.	The	value	of	this	input	must
be	an	integer	greater	than	or	equal	to	2.
The	default	is	2.

Filter
Specifications

Contains	the	following	options:
Input	sampling	frequency—Specifies	the

lvdfdtconcepts.chm::/design_methods.html
lvdfdtconcepts.chm::/dfd_interpolation.html
lvdfdtconcepts.chm::/rational_resampling.html
lvdfdtconcepts.chm::/dfd_decimation.html

sampling	frequency,	in	hertz,	of	an	input	signal
for	the	multirate	filter.	This	input	must	contain	a
value	greater	than	zero.	The	default	is	1k	Hz.
Passband	edge	frequency—Specifies	the
passband	edge	frequency	of	the	multirate	filter.
The	default	is	200	Hz.
Stopband	edge	frequency—Specifies	the
stopband	edge	frequency	of	the	multirate	filter.
The	default	is	250	Hz.
Output	sampling	frequency—Returns	the
sampling	frequency	of	the	output	signal	for	the
multirate	filter.
Passband	ripple—Specifies	the	passband
ripple	of	the	multirate	filter	in	a	unit	that	the
Magnitude	in	dB	option	determines.	If	you
place	a	checkmark	in	the	Magnitude	in	dB
checkbox,	Passband	ripple	must	be	greater
than	zero.	The	default	is	0.1	dB.	If	you	remove
the	checkmark	from	the	Magnitude	in	dB
checkbox,	the	valid	range	of	Passband	ripple	is
(0,	1).	The	default	then	is	0.011.
Stopband	attenuation—Specifies	the	stopband
attenuation	of	the	multirate	filter	in	a	unit	that	the
Magnitude	in	dB	option	determines.	If	you
place	a	checkmark	in	the	Magnitude	in	dB
checkbox,	Stopband	attenuation	must	be
greater	than	zero.	The	default	is	60	dB.	If	you
remove	the	checkmark	from	the	Magnitude	in
dB	checkbox,	the	valid	range	of	Stopband
attenuation	is	(0,	1).	The	default	then	is	0.011.

Transition
band	aliasing
allowed

Specifies	if	you	allow	frequency	aliasing	in	the	transition
band.

Quantization
Settings

Contains	the	following	options:
Quantize	filter—Specifies	if	you	want	to	use
this	Express	VI	to	quantize	the	floating-point
multirate	filter	you	design.	If	you	enter	the

lvdfdtconcepts.chm::/design_fl_multirate.html
lvdfdtconcepts.chm::/design_fl_multirate.html

multirate	filter	specifications,	you	can	place	a
checkmark	in	the	Quantize	filter	checkbox	after
you	click	the	Update	Design	button.
Coefficients	word	length—Specifies	the	word
length,	in	number	of	bits,	that	this	Express	VI
uses	to	represent	the	filter	coefficients.	This
option	is	available	only	if	you	place	a	checkmark
in	the	Quantize	filter	checkbox.	The	valid	range
is	[1,	32].	The	default	is	16.
Gain	word	length—Specifies	the	word	length,
in	number	of	bits,	that	this	Express	VI	uses	to
represent	the	multirate	filter	gain	if	the	gain
processing	occurs	on	an	NI	Reconfigurable	I/O
(RIO)	target.	This	option	is	available	only	if	you
place	a	checkmark	in	the	Quantize	filter
checkbox	and	select	On	Target	from	the	Gain
processing	pull-down	menu.	The	valid	range	is
[1,	32].	The	default	is	16.
Coefficients	scale	type—Specifies	how	this
Express	VI	scales	the	multirate	filter	coefficients.
This	option	is	available	only	if	you	place	a
checkmark	in	the	Quantize	filter	checkbox.	The
valid	values	include	No	Norm,	Time	Domain-1
Norm,	Time	Domain-2	Norm,	and	Time
Domain-Inf	Norm.	The	default	is	Time	Domain-1
Norm.
Scale	by	power	of	2—Specifies	whether	this
Express	VI	scales	the	multirate	filter	with	the
original	norm	value	or	the	smallest	power	of	2
value	that	is	greater	than	the	norm	value.	This
option	is	available	only	if	you	place	a	checkmark
in	the	Quantize	filter	checkbox.	If	you	place	a
checkmark	in	the	Scale	by	power	of	2
checkbox,	this	Express	VI	scales	the	multirate
filter	with	the	smallest	power	of	2	value.	If	you
remove	the	checkmark	from	the	Scale	by
power	of	2	checkbox,	this	Express	VI	scales
the	multirate	filter	with	the	original	norm	value.

lvdfdtconcepts.chm::/specify_wl_iwl.html

Gain	processing—Specifies	whether	the	gain
processing	occurs	on	a	host	machine	or	an	NI-
RIO	target.	This	option	is	available	only	if	you
place	a	checkmark	in	the	Quantize	filter
checkbox.
Postprocessing	filter	gain—Displays	the	value
of	the	postprocessing	gain.	Manually	multiply
the	fixed-point	output	signal	by	the
postprocessing	gain	to	obtain	the	floating-point
output	signal	or	automatically	use	the	DFD	FXP
MRate	Postprocessing	VI	to	handle	the
postprocessing	gain.

Tips Displays	tips	and	error	messages	that	help	you	use	this
Express	VI	to	design	a	multirate	filter.

Update
Design

Updates	the	floating-point	multirate	filter	design	with	the
specifications	you	entered.	When	you	click	the	Update
Design	button,	you	enable	the	Quantize	filter	option	on
the	Fixed-Point	Quantization	page.

lvdigfiltdestk.chm::/DFD_FXP_MR_Pos.html

Block	Diagram	Outputs
Parameter Description
error	out Describes	the	error	status	that	this	VI	or	function

produces.
multirate	filter
out

Returns	the	new	multirate	filter.

postprocessing
filter	gain

Returns	the	value	of	the	postprocessing	gain.
Manually	multiply	the	fixed-point	output	signal	by	the
postprocessing	gain	to	obtain	the	floating-point	output
signal	or	automatically	use	DFD	FXP	MRate
Postprocessing	VI	to	handle	the	postprocessing	gain.

Multirate	FIR	Design	Details
As	you	define	a	filter	specification,	you	must	adhere	to	a	set	of	rules	to
maintain	valid	specifications.	If	you	do	not	adhere	to	the	following	rules,
the	Configure	Multirate	Filter	Design	dialog	box	displays	a	message	in
the	Tips	indicator	with	suggestions	for	repositioning	the	cursors.

Keep	the	horizontal	cursors	in	the	range	(0,	1)	in	a	linear	scale	or
(–inf,	0	dB)	in	a	logarithmic	scale.
Keep	the	horizontal	passband	cursor	above	the	horizontal
stopband	cursor.
The	Passband	edge	frequency	value	must	be	less	than	the
Nyquist	frequency,	or	you	must	keep	the	vertical	passband	cursor
to	the	left	of	the	Nyquist	cursor.
The	Stopband	edge	frequency	value	must	be	greater	than	the
Passband	edge	frequency	value,	or	you	must	keep	the	vertical
passband	cursor	to	the	left	of	the	stopband	cursor.
If	you	remove	the	checkmark	from	the	Transition	band	aliasing
allowed	checkbox	to	avoid	aliasing	in	the	transition	band,	keep
the	Stopband	edge	frequency	value	between	the	Passband
edge	frequency	value	and	the	Nyquist	frequency,	or	keep	the
vertical	stopband	cursor	between	the	vertical	passband	and
Nyquist	cursors.	If	you	place	a	checkmark	in	the	Transition	band
aliasing	allowed	checkbox	to	allow	aliasing	in	the	transition
band,	keep	the	vertical	stopband	cursor	between	the	vertical
passband	cursor	and	the	vertical	stopband	limit	cursor.

Multistage	Multirate	Filter	Design	Express	VI
Owning	Palette:	Multirate	Filter	Design	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Creates	a	multistage	multirate	filter.

Dialog	Box	Options
Block	Diagram	Outputs

	Place	on	the	block	diagram 	Find	on	the	Functions	palette

lvdigfiltdestk.chm::/DFD_Multi_Design_VIs.html
javascript:placeObject(object3660);
javascript:findObject(object3660);

Dialog	Box	Options
Parameter Description
Magnitude
Response

Contains	the	plot	of	the	magnitude	response.	You	can
drag	the	cursors	in	the	plot	to	change	the	specifications.
The	color	you	specify	in	Passband	represents	the
passband	response	and	the	passband	edge	frequency.
The	color	you	specify	in	Stopband	represents	the
stopband	attenuation	and	the	stopband	edge	frequency.
The	color	you	specify	in	Stopband	limit	represents	the
stopband	limit.	The	color	you	specify	in	Nyquist
represents	the	half	sampling	frequency,	also	known	as
the	Nyquist	frequency.

Magnitude	in	dB—Specifies	whether	this
Express	VI	uses	decibels	or	a	linear	scale	to
express	the	magnitude	response.	If	you	place	a
checkmark	in	the	checkbox,	this	Express	VI
converts	a	linear	magnitude	response	to
decibels.	This	Express	VI	uses	decibels	by
default.
Nyquist—Specifies	the	color	of	the	line	in	the
magnitude	plot	that	represents	the	Nyquist
frequency.	The	default	is	green.
Passband—Specifies	the	color	of	the	lines	in
the	magnitude	plot	that	represent	the	passband
response	and	the	passband	edge	frequency.
The	default	is	blue.
Stopband	limit—Specifies	the	color	of	the	line
in	the	magnitude	plot	that	represents	the
maximum	stopband	edge	frequency.	The	default
is	yellow.
Stopband—Specifies	the	color	of	the	lines	in
the	magnitude	plot	that	represent	the	stopband
attenuation	and	the	stopband	edge	frequency.
The	default	is	red.
Response	selection—Specifies	the	stage	for
which	you	want	to	check	the	magnitude

response.

Flow	Diagram Returns	the	flow	diagram	of	the	multirate	filter	you
specify	in	Filter	type.

Filter
Coefficients

Returns	the	coefficients	of	the	multirate	filter	according
to	the	settings	you	specify	on	the	Floating-Point
Design	page.

Filter	order—Displays	the	order	of	the	multirate
filter	you	design.	The	value	of	Filter	order+1
equals	the	number	of	coefficients.
Coefficients	selection—Specifies	the	stage	for
which	you	want	to	check	the	filter	coefficients.

Main	Settings Contains	the	following	options:
Filter	type—Specifies	the	type	of	multirate	filter
that	this	VI	creates.	The	valid	values	include	No
Rate	Change,	Interpolation,	and	Decimation.
The	default	is	Decimation.
Filter	factor—Specifies	the	sampling	frequency
conversion	factor	of	the	multirate	filter.	If	you	set
Filter	type	to	No	Rate	Change,	the	value	of	this
input	must	be	an	integer	greater	than	or	equal	to
1.	The	default	is	1.	If	you	set	Filter	type	to
Decimation	or	Interpolation,	the	value	of	this	input
must	be	an	integer	greater	than	or	equal	to	2.
The	default	then	is	2.
Number	of	stages—Specifies	the	number	of
stages	of	the	multirate	filter	that	this	VI	creates.
The	valid	value	of	Number	of	stages	is	an
integer	between	1	and	3.	Within	this	range,	the
value	of	Number	of	stages	must	be	less	than
or	equal	to	the	number	of	elements	in	the	prime
factorization	of	Filter	factor.
Using	CIC—Specifies	if	you	want	to	use	the
cascaded	integrator	comb	(CIC)	filter	design
method	to	design	one	stage	of	the	multistage
multirate	filters.	This	option	is	available	only	if
Filter	factor	is	greater	than	4	and	divisible	by	4.

lvdfdtconcepts.chm::/cic_filters.html

The	default	is	FALSE,	which	means	this
Express	VI	does	not	use	the	CIC	filter	design
method.	If	the	value	is	TRUE,	this	Express	VI
uses	the	CIC	filter	design	method	to	design	the
first	stage	of	the	filter	when	you	set	filtering
mode	to	Decimation,	or	the	last	stage	of	the	filter
when	you	set	filtering	mode	to	Interpolation.
Subfactors—Specifies	the	factors	of	each
stage	of	the	multirate	filter.	Contains	the
following	options:

Subfactor	1—Specifies	the	sampling
frequency	conversion	factor	of	the	first
stage	of	the	multirate	filter.	This	option	is
available	only	if	Number	of	stages	is
equal	to	or	greater	than	2	and	Filter
factor	is	not	a	prime	number.
Subfactor	2—Specifies	the	sampling
frequency	conversion	factor	of	the
second	stage	of	the	multirate	filter.	This
option	is	available	only	if	Number	of
stages	is	equal	to	or	greater	than	2	and
if	the	number	of	elements	in	the	prime
factorization	of	Filter	factor	is	equal	to
or	greater	than	2.
Subfactor	3—Specifies	the	sampling
frequency	conversion	factor	of	the	third
stage	of	the	multirate	filter.	This	option	is
available	only	if	Number	of	stages	is
equal	to	3	and	if	the	number	of	elements
in	the	prime	factorization	of	Filter	factor
is	greater	than	2.

Filter
Specifications

Contains	the	following	options:
Input	sampling	frequency—Specifies	the
sampling	frequency,	in	hertz,	of	an	input	signal
for	the	multirate	filter.	This	input	must	contain	a
value	greater	than	zero.	The	default	is	1k	Hz.
Passband	edge	frequency—Specifies	the

passband	edge	frequency	of	the	multirate	filter.
The	default	is	200	Hz.
Stopband	edge	frequency—Specifies	the
stopband	edge	frequency	of	the	multirate	filter.
The	default	is	250	Hz.
Output	sampling	frequency—Returns	the
sampling	frequency	of	the	output	signal	for	the
multirate	filter.
Passband	ripple—Specifies	the	passband
ripple	of	the	multirate	filter	in	a	unit	that	the
Magnitude	in	dB	option	determines.	If	you
place	a	checkmark	in	the	Magnitude	in	dB
checkbox,	Passband	ripple	must	be	greater
than	zero.	The	default	is	0.1	dB.	If	you	remove
the	checkmark	from	the	Magnitude	in	dB
checkbox,	the	valid	range	of	Passband	ripple	is
(0,	1).	The	default	then	is	0.011.
Stopband	attenuation—Specifies	the	stopband
attenuation	of	the	multirate	filter	in	a	unit	that	the
Magnitude	in	dB	option	determines.	If	you
place	a	checkmark	in	the	Magnitude	in	dB
checkbox,	Stopband	attenuation	must	be
greater	than	zero.	The	default	is	60	dB.	If	you
remove	the	checkmark	from	the	Magnitude	in
dB	checkbox,	the	valid	range	of	Stopband
attenuation	is	(0,	1).	The	default	then	is	0.011.

Transition
band	aliasing
allowed

Specifies	if	you	allow	frequency	aliasing	in	the	transition
band.

Quantization
Settings

Contains	the	following	options:
Quantize	filter—Specifies	if	you	want	to	use
this	Express	VI	to	quantize	the	floating-point
multirate	filter	you	design.	If	you	enter	the
multirate	filter	specifications,	you	can	place	a
checkmark	in	the	Quantize	filter	checkbox	after
you	click	the	Update	Design	button.
Coefficients	word	lengths—Specifies	the	word

lvdfdtconcepts.chm::/design_fl_multirate.html
lvdfdtconcepts.chm::/design_fl_multirate.html
lvdfdtconcepts.chm::/specify_wl_iwl.html

lengths,	in	number	of	bits,	that	this	Express	VI
uses	to	represent	the	filter	coefficients	of	each
stage.	Contains	the	following	options:

Coefficients	word	length	1—Specifies
the	word	length	of	the	first	stage	filter
coefficients	of	the	multirate	filter.	This
option	is	available	only	if	you	place	a
checkmark	in	the	Quantize	filter
checkbox.	The	valid	range	is	[1,	32].	The
default	is	16.
Coefficients	word	length	2—Specifies
the	word	length	of	the	second	stage	filter
coefficients	of	the	multirate	filter.	This
option	is	available	only	if	Number	of
stages	is	equal	to	or	greater	than	2	and
if	you	place	a	checkmark	in	the
Quantize	filter	checkbox.	The	valid
range	is	[1,	32].	The	default	is	16.
Coefficients	word	length	3—Specifies
the	word	length	of	the	third	stage	filter
coefficients	of	the	multirate	filter.	This
option	is	available	only	if	Number	of
stages	is	equal	to	3	and	if	you	place	a
checkmark	in	the	Quantize	filter
checkbox.	The	valid	range	is	[1,	32].	The
default	is	16.

Gain	word	length—Specifies	the	word	length,
in	number	of	bits,	that	this	Express	VI	uses	to
represent	the	multirate	filter	gain	if	the	gain
processing	occurs	on	an	NI	Reconfigurable	I/O
(RIO)	target.	This	option	is	available	only	if	you
place	a	checkmark	in	the	Quantize	filter
checkbox	and	select	On	Target	from	the	Gain
processing	pull-down	menu.	The	valid	range	is
[1,	32].	The	default	is	16.
Coefficients	scale	type—Specifies	how	this
Express	VI	scales	the	multirate	filter	coefficients.
This	option	is	available	only	if	you	place	a

checkmark	in	the	Quantize	filter	checkbox.	The
valid	values	include	No	Norm,	Time	Domain-1
Norm,	Time	Domain-2	Norm,	and	Time
Domain-Inf	Norm.	The	default	is	Time	Domain-1
Norm.
Gain	processing—Specifies	whether	the	gain
processing	occurs	on	a	host	machine	or	an	NI-
RIO	target.	This	option	is	available	only	if	you
place	a	checkmark	in	the	Quantize	filter
checkbox.
Scale	by	power	of	2—Specifies	whether	this
Express	VI	scales	the	multirate	filter	with	the
original	norm	value	or	the	smallest	power	of	2
value	that	is	greater	than	the	norm	value.	This
option	is	available	only	if	you	place	a	checkmark
in	the	Quantize	filter	checkbox.	If	you	place	a
checkmark	in	the	Scale	by	power	of	2
checkbox,	this	Express	VI	scales	the	multirate
filter	with	the	smallest	power	of	2	value.	If	you
remove	the	checkmark	from	the	Scale	by
power	of	2	checkbox,	this	Express	VI	scales
the	multirate	filter	with	the	original	norm	value.
Postprocessing	filter	gain—Displays	the	value
of	the	postprocessing	gain.	Manually	multiply
the	fixed-point	output	signal	by	the
postprocessing	gain	to	obtain	the	floating-point
output	signal	or	automatically	use	the	DFD	FXP
MRate	Postprocessing	VI	to	handle	the
postprocessing	gain.

Tips Displays	tips	and	error	messages	that	help	you	use	this
Express	VI	to	design	a	multirate	filter.

Update
Design

Updates	the	floating-point	multirate	filter	design	with	the
specifications	you	entered.	When	you	click	the	Update
Design	button,	you	enable	the	Quantize	filter	option	on
the	Fixed-Point	Quantization	page.

lvdigfiltdestk.chm::/DFD_FXP_MR_Pos.html

Block	Diagram	Outputs
Parameter Description
error	out Describes	the	error	status	that	this	VI	or	function

produces.
multirate	filters
out

Returns	the	new	multirate	filters.

postprocessing
filter	gain

Returns	the	value	of	the	postprocessing	gain.
Manually	multiply	the	fixed-point	output	signal	by	the
postprocessing	gain	to	obtain	the	floating-point	output
signal	or	automatically	use	DFD	FXP	MRate
Postprocessing	VI	to	handle	the	postprocessing	gain.

DFD	Halfband	Design	VI
Owning	Palette:	Multirate	Filter	Design	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Creates	a	halfband	filter	with	an	automatic	order	estimation.
You	can	use	the	filter	as	a	single-rate	filter,	an	interpolation	filter,	or	a
decimation	filter.
Example

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
method	specifies	the	method	this	VI	uses	to	create	the	filter.	

0 Kaiser	Window
1 Dolph-Chebyshev	Window
2 Equi-Ripple
3 Positive	Equi-Ripple	(default)
4 Max	Flat

filter	type	specifies	the	type	of	filter	that	this	VI	creates.	

0 Lowpass	(default)
1 Highpass

order	specifies	the	filter	order.	The	value	of	order	must	be	an
even	integer	that	is	greater	than	zero.	The	default	is	–1.	If	order	is
not	greater	than	zero,	this	VI	uses	the	stopband	attenuation	input
to	estimate	filter	order.	If	order	is	an	odd	number,	this	VI	returns	an
error.
roll	off	determines	the	relative	transition	bandwidth,	which	equals
(transition	band)/(2*passband+transition	band).	The	default	is	0.2.
roll	off	must	be	in	the	range	(0,	1).	If	the	passband	is	fixed,	a

lvdigfiltdestk.chm::/DFD_Multi_Design_VIs.html
lvdfdtconcepts.chm::/Nyquist_Filters.html#halfband_filters
javascript:placeObject(object2902);
javascript:findObject(object2902);
lvdfdtconcepts.chm::/design_methods.html
lvdfdtconcepts.chm::/dfd_filter_spec.html

smaller	roll	off	value	results	in	a	narrower	transition	bandwidth.
stopband	attenuation	specifies	the	stopband	attenuation	in
decibels.	The	value	must	be	greater	than	zero.	The	default	is	40.	If
order	is	greater	than	zero,	this	VI	ignores	stopband	attenuation
and	uses	order	to	create	the	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

filtering	mode	specifies	the	processing	mode	of	the	filter	that	this
VI	creates.	

0 No	Rate	Change—Does	not	change	the	sampling	frequency	of
a	signal.

1 Interpolation—Increases	the	sampling	frequency	of	a	signal	to
a	higher	sampling	frequency	that	differs	from	the	original
frequency	by	an	integer	value.	Interpolation	also	is	known	as
up-sampling.

2 Decimation	(default)—Reduces	the	sampling	frequency	of	a

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html
lvdfdtconcepts.chm::/dfd_interpolation.html

signal	to	a	lower	sampling	frequency	that	differs	from	the
original	frequency	by	an	integer	value.	Decimation	also	is
known	as	down-sampling.

multirate	filter	out	returns	a	new	multirate	filter.
order	out	returns	the	actual	order	of	the	new	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lvdfdtconcepts.chm::/dfd_decimation.html
lverror.chm::/Error_Code_Ranges.html

Example
Refer	to	the	Halfband	Filter	VI	in	the	labview\examples\Digital	Filter
Design\Floating-Point	Filters\Multirate	directory	for	an	example	of	using	the
DFD	Halfband	Design	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFloating-Point%20Filters%5C%5CMultirate%5C%5CHalfband%20Filter.vi');
javascript:findExamples(10071);

DFD	MRate	Filter	Design	VI
Owning	Palette:	Multirate	Filter	Design	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Creates	a	single-stage	multirate	filter.	You	must	manually	select	the
polymorphic	instance	you	want	to	use.
Example
Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

	Place	on	the	block	diagram 	Find	on	the	Functions	palette

lvdigfiltdestk.chm::/DFD_Multi_Design_VIs.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
javascript:placeObject(object2900);
javascript:findObject(object2900);

DFD	MRate	Filter	Design	(Integer)

method	specifies	the	method	this	VI	uses	to	create	the	filter.	

0 Kaiser	Window
1 Dolph-Chebyshev	Window
2 Equi-Ripple	(default)

factor	specifies	the	sampling	frequency	conversion	factor	of	the
multirate	filter.	The	value	of	factor	must	be	an	integer	greater	than
zero.	The	default	is	8.
order	specifies	the	filter	order.	The	value	of	order	must	be	an
even	integer	that	is	greater	than	zero.	If	order	is	not	greater	than
zero,	this	VI	uses	the	ripple	specs	input	to	estimate	filter	order.	If
order	is	an	odd	number,	this	VI	returns	an	error.	The	default	is	–1.
freq	specs	specifies	the	passband	edge	frequency	and	stopband
edge	frequency	of	the	multirate	filter.

fpass	specifies	the	passband	edge	frequency	of	the
multirate	filter.
fstop	specifies	the	stopband	edge	frequency	of	the
multirate	filter.

ripple	specs	specifies	the	ripple	level	in	the	passband	and
stopband	of	the	filter.

passband	specifies	the	ripple	level	in	the	passband.	The
default	is	0.1.
stopband	specifies	the	ripple	level	in	the	stopband.	The
default	is	60.
dB/linear?	specifies	whether	this	VI	applies	a	decibel	scale
or	a	linear	scale	to	the	ripple	levels.	If	the	value	is	TRUE,

lvdfdtconcepts.chm::/design_methods.html
lvdfdtconcepts.chm::/design_fl_multirate.html
lvdfdtconcepts.chm::/design_fl_multirate.html

this	VI	applies	a	decibel	scale	to	the	ripple	level.	If	the	value
is	FALSE,	this	VI	applies	a	linear	scale	to	the	ripple	level.
The	default	is	TRUE.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

fs	in	specifies	the	input	sampling	frequency	of	the	multirate	filter	in
hertz.	The	default	is	800.
filtering	mode	specifies	the	processing	mode	of	the	filter	that	this
VI	creates.	

0 No	Rate	Change—Does	not	change	the	sampling	frequency	of
a	signal.

1 Interpolation—Increases	the	sampling	frequency	of	a	signal	to
a	higher	sampling	frequency	that	differs	from	the	original
frequency	by	an	integer	value.	Interpolation	also	is	known	as
up-sampling.

2 Decimation	(default)—Reduces	the	sampling	frequency	of	a

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html
lvdfdtconcepts.chm::/dfd_interpolation.html

signal	to	a	lower	sampling	frequency	that	differs	from	the
original	frequency	by	an	integer	value.	Decimation	also	is
known	as	down-sampling.

multirate	filter	out	returns	a	new	multirate	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lvdfdtconcepts.chm::/dfd_decimation.html
lverror.chm::/Error_Code_Ranges.html

DFD	MRate	Filter	Design	(Rational)

method	specifies	the	method	this	VI	uses	to	create	the	filter.	

0 Kaiser	Window
1 Dolph-Chebyshev	Window
2 Equi-Ripple	(default)

factor	contains	the	sampling	frequency	conversion	factor	of	the
multirate	filter.

L	contains	the	numerator	factor	of	the	rational	resampling
frequency	conversion	factor.	The	value	of	L	must	be	an
integer	greater	than	zero.	The	value	of	L	must	not	equal	the
value	of	M.	The	default	is	8.
M	contains	the	denominator	factor	of	the	rational	resampling
frequency	conversion	factor.	The	value	of	M	must	be	an
integer	greater	than	zero.	The	value	of	M	must	not	equal	the
value	of	L.	The	default	is	3.

order	specifies	the	filter	order.	The	value	of	order	must	be	an
even	integer	that	is	greater	than	zero.	If	order	is	not	greater	than
zero,	this	VI	uses	the	ripple	specs	input	to	estimate	filter	order.	If
order	is	an	odd	number,	this	VI	returns	an	error.	The	default	is	–1.
freq	specs	specifies	the	passband	edge	frequency	and	stopband
edge	frequency	of	the	multirate	filter.

fpass	specifies	the	passband	edge	frequency	of	the
multirate	filter.
fstop	specifies	the	stopband	edge	frequency	of	the
multirate	filter.

ripple	specs	specifies	the	ripple	level	in	the	passband	and
stopband	of	the	filter.

lvdfdtconcepts.chm::/design_methods.html
lvdfdtconcepts.chm::/design_fl_multirate.html
lvdfdtconcepts.chm::/design_fl_multirate.html

passband	specifies	the	ripple	level	in	the	passband.	The
default	is	0.1.
stopband	specifies	the	ripple	level	in	the	stopband.	The
default	is	60.
dB/linear?	specifies	whether	this	VI	applies	a	decibel	scale
or	a	linear	scale	to	the	ripple	levels.	If	the	value	is	TRUE,
this	VI	applies	a	decibel	scale	to	the	ripple	level.	If	the	value
is	FALSE,	this	VI	applies	a	linear	scale	to	the	ripple	level.
The	default	is	TRUE.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

fs	in	specifies	the	input	sampling	frequency	of	the	multirate	filter	in
hertz.	The	default	is	100.
multirate	filter	out	returns	a	new	multirate	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

Example
Refer	to	the	Single	Stage	Multirate	Filter	Design	VI	in	the
labview\examples\Digital	Filter	Design\Floating-Point	Filters\Multirate
directory	for	an	example	of	using	the	DFD	MRate	Filter	Design	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFloating-Point%20Filters%5C%5CMultirate%5C%5CSingle%20Stage%20Multirate%20Filter%20Design.vi');
javascript:findExamples(10071);

DFD	NStage	MRate	Filter	Design	VI
Owning	Palette:	Multirate	Filter	Design	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Creates	multistage	multirate	filters,	which	meet	the	requirements	you
specify	by	cascading	filters	in	multirate	filters	out.
Wire	the	multirate	filters	out	output	to	the	multirate	filters	in	input	of
the	DFD	NStage	MRate	Filtering	VI	or	the	DFD	NStage	MRate	Filtering
for	Single	Block	VI	if	you	want	to	process	data	with	the	new	filter.
Details		Examples

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
manual	factorization	specifies	the	factors	for	each	stage.	The
product	of	all	the	factors	in	the	manual	factorization	input	must
equal	the	factor	input	value.
factor	specifies	the	sampling	frequency	conversion	factor	of	the
multirate	filter.	factor	must	be	greater	than	1.	The	default	is	8.	If
you	set	using	CIC?	to	TRUE,	factor	must	be	greater	than	4	and
divisible	by	4.
using	CIC?	specifies	if	you	want	to	use	the	cascaded	integrator
comb	(CIC)	filter	design	method	to	design	one	stage	of	the
multistage	multirate	filters.	The	default	is	FALSE,	which	means	this
VI	does	not	use	the	CIC	filter	design	method.	If	the	value	is	TRUE,
this	VI	uses	the	CIC	filter	design	method	to	design	the	first	stage	of
the	filter	when	you	set	filtering	mode	to	Decimation,	or	the	last
stage	of	the	filter	when	you	set	filtering	mode	to	Interpolation.
freq	specs	specifies	the	passband	edge	frequency	and	stopband
edge	frequency	of	the	multistage	multirate	filters.

fpass	specifies	the	passband	edge	frequency	of	the
multistage	multirate	filters.	The	default	is	45.

lvdigfiltdestk.chm::/DFD_Multi_Design_VIs.html
lvdigfiltdestk.chm::/DFD_NS_MR_Filtering.html
lvdigfiltdestk.chm::/DFD_NS_MR_S_Block.html
javascript:placeObject(object2903);
javascript:findObject(object2903);
lvdfdtconcepts.chm::/cic_filters.html
lvdfdtconcepts.chm::/design_fl_multirate.html

fstop	specifies	the	stopband	edge	frequency	of	the
multistage	multirate	filters.	The	default	is	52.

ripple	specs	specifies	the	ripple	level	in	the	passband	and
stopband	of	the	filter.

passband	specifies	the	ripple	level	in	the	passband.	The
default	is	0.1.
stopband	specifies	the	ripple	level	in	the	stopband.	The
default	is	60.
dB/linear?	specifies	whether	this	VI	applies	a	decibel	scale
or	a	linear	scale	to	the	ripple	levels.	If	the	value	is	TRUE,
this	VI	applies	a	decibel	scale	to	the	ripple	level.	If	the	value
is	FALSE,	this	VI	applies	a	linear	scale	to	the	ripple	level.
The	default	is	TRUE.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

fs	in	specifies	the	input	sampling	frequency	of	the	multistage
multirate	filters	in	hertz.	The	default	is	800.

lvdfdtconcepts.chm::/design_fl_multirate.html
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

filtering	mode	specifies	the	processing	mode	of	the	filter	that	this
VI	creates.	

0 No	Rate	Change—Does	not	change	the	sampling	frequency	of
a	signal.

1 Interpolation—Increases	the	sampling	frequency	of	a	signal	to
a	higher	sampling	frequency	that	differs	from	the	original
frequency	by	an	integer	value.	Interpolation	also	is	known	as
up-sampling.

2 Decimation	(default)—Reduces	the	sampling	frequency	of	a
signal	to	a	lower	sampling	frequency	that	differs	from	the
original	frequency	by	an	integer	value.	Decimation	also	is
known	as	down-sampling.

multirate	filters	out	returns	the	new	multistage	multirate	filters.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lvdfdtconcepts.chm::/dfd_interpolation.html
lvdfdtconcepts.chm::/dfd_decimation.html
lverror.chm::/Error_Code_Ranges.html

DFD	NStage	MRate	Filter	Design	Details
Use	the	DFD	NStage	MRate	Filter	Design	VI	to	create	multirate	filters
with	large	multirate	factors.	This	VI	distributes	a	large	factor	into	each
stage	of	the	multirate	filter,	as	shown	in	the	following	example.	A
multistage	design	requires	less	computation	and	storage	than	a	single-
stage	design.
For	example,	if	the	sampling	frequency	conversion	factor	M	contains	the
factors	M1,	M2,	and	M3,	such	that	M	=	M1*M2*M3,	and	M1>M2>M3>1,	you
can	design	a	three-stage	multirate	filter	in	which	all	three	stages	use	the
same	multirate	processing	mode	that	filtering	mode	specifies.
If	you	set	using	CIC?	to	TRUE,	the	factor	M	must	be	divisible	by	4,	for
example,	M	=	2*2*M1.	In	this	case,	the	filter	with	the	largest	factor	M1	is	a
CIC	filter.
The	overall	response	of	cascading	the	multirate	filters	is	a	lowpass
response.

Examples
Refer	to	the	following	VIs	for	examples	of	using	the	DFD	NStage	MRate
Filter	Design	VI:

Analyze	Coefficients-Quantized	Multistage	Multirate	Filter	VI:
labview\examples\Digital	Filter	Design\Fixed-Point	Filters\Multirate
	Open	example	 	Browse	related	examples
Multistage	Decimation	Filter	Design	VI:	labview\examples\Digital
Filter	Design\Floating-Point	Filters\Multirate
	Open	example	 	Browse	related	examples
Multistage	Multirate	Filter	Design	(with	CIC)	VI:
labview\examples\Digital	Filter	Design\Floating-Point	Filters\Multirate
	Open	example	 	Browse	related	examples
Multistage	Multirate	Filter	Design	VI:	labview\examples\Digital	Filter
Design\Floating-Point	Filters\Multirate
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFixed-Point%20Filters%5C%5CMultirate%5C%5CAnalyze%20Coefficients-Quantized%20Multistage%20Multirate%20Filter.vi');
javascript:findExamples(8415);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFloating-Point%20Filters%5C%5CMultirate%5C%5CMultistage%20Decimation%20Filter%20Design.vi');
javascript:findExamples(10071);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFloating-Point%20Filters%5C%5CMultirate%5C%5CMultistage%20Multirate%20Filter%20Design%20(with%20CIC).vi');
javascript:findExamples(10071);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFloating-Point%20Filters%5C%5CMultirate%5C%5CMultistage%20Multirate%20Filter%20Design.vi');
javascript:findExamples(10071);

DFD	Nyquist	Design	VI
Owning	Palette:	Multirate	Filter	Design	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Creates	a	Nyquist	filter	using	the	window	or	equi-ripple	methods	with	an
automatic	order	estimation.
You	can	use	the	Nyquist	filter	as	a	single-rate	filter,	an	interpolation	filter,
or	a	decimation	filter.
Example

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
method	specifies	the	method	this	VI	uses	to	create	the	filter.	

0 Kaiser	Window
1 Dolph-Chebyshev	Window
2 Equi-Ripple
3 Positive	Equi-Ripple	(default)

factor	specifies	the	sampling	frequency	conversion	factor	of	the
multirate	filter.	The	default	is	4.	The	passband	of	the	filter	depends
on	factor	by	Nyquist	sampling	theorem.
order	specifies	the	filter	order.	The	value	of	order	must	be	an
even	integer	that	is	greater	than	zero.	The	default	is	–1.	If	order	is
not	greater	than	zero,	this	VI	uses	the	stopband	attenuation	input
to	estimate	filter	order.	If	order	is	an	odd	number,	this	VI	returns	an
error.
roll	off	determines	the	relative	transition	bandwidth,	which	equals
(transition	band)/(2*passband	+	transition	band).	The	default	is	0.2.
roll	off	must	be	in	the	range	of	(0,1).	If	the	value	of	factor	is	fixed,
a	smaller	roll	off	value	results	in	a	narrower	transition	bandwidth.

lvdigfiltdestk.chm::/DFD_Multi_Design_VIs.html
lvdfdtconcepts.chm::/Nyquist_Filters.html
javascript:placeObject(object2901);
javascript:findObject(object2901);
lvdfdtconcepts.chm::/design_methods.html

stopband	attenuation	specifies	the	stopband	attenuation	in
decibels.	The	value	must	be	greater	than	zero.	The	default	is	40.	If
order	is	greater	than	zero,	this	VI	ignores	stopband	attenuation
and	uses	order	to	create	the	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

filtering	mode	specifies	the	processing	mode	of	the	filter	that	this
VI	creates.	

0 No	Rate	Change—Does	not	change	the	sampling	frequency	of
a	signal.

1 Interpolation—Increases	the	sampling	frequency	of	a	signal	to
a	higher	sampling	frequency	that	differs	from	the	original
frequency	by	an	integer	value.	Interpolation	also	is	known	as
up-sampling.

2 Decimation	(default)—Reduces	the	sampling	frequency	of	a
signal	to	a	lower	sampling	frequency	that	differs	from	the
original	frequency	by	an	integer	value.	Decimation	also	is

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html
lvdfdtconcepts.chm::/dfd_interpolation.html
lvdfdtconcepts.chm::/dfd_decimation.html

known	as	down-sampling.

multirate	filter	out	returns	a	new	multirate	filter.
order	out	returns	the	actual	order	of	the	new	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

Example
Refer	to	the	Nyquist	Filter	VI	in	the	labview\examples\Digital	Filter
Design\Floating-Point	Filters\Multirate	directory	for	an	example	of	using	the
DFD	Nyquist	Design	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFloating-Point%20Filters%5C%5CMultirate%5C%5CNyquist%20Filter.vi');
javascript:findExamples(10071);

DFD	Raised	Cosine	Design	VI
Owning	Palette:	Multirate	Filter	Design	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Creates	a	raised	cosine	or	a	root-raised	cosine	finite	impulse	response
(FIR)	filter.
You	can	use	the	filter	as	a	single-rate	filter,	an	interpolation	filter,	or	a
decimation	filter.
Example

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
window	specifies	the	time-domain	window	this	VI	uses.	

0 None	(default)
1 Hanning
2 Hamming
3 Blackman-Harris
4 Exact	Blackman
5 Blackman
6 Flat	Top
7 4	Term	B-Harris
8 7	Term	B-Harris
9 Low	Sidelobe
30 Triangular

factor	specifies	the	sampling	frequency	conversion	factor	of	the
multirate	filter.	The	default	is	4.	The	passband	of	the	filter	depends
on	factor	by	Nyquist	sampling	theorem.
order	specifies	the	filter	order.	The	value	must	be	an	even	integer

lvdigfiltdestk.chm::/DFD_Multi_Design_VIs.html
lvdfdtconcepts.chm::/Nyquist_Filters.html#raised_cosine_filters
javascript:placeObject(object2904);
javascript:findObject(object2904);

that	is	greater	than	zero.	The	default	is	10.	If	order	is	an	odd
number,	this	VI	returns	an	error.	Increasing	the	value	of	order	can
increase	the	stopband	attenuation.
roll	off	determines	the	relative	transition	bandwidth,	which	equals
(transition	band)/(2*passband	+	transition	band).	The	default	is	0.2.
roll	off	must	be	in	the	range	of	[0,1].	If	the	value	of	factor	is	fixed,
a	smaller	roll	off	value	results	in	a	narrower	transition	bandwidth.
type	specifies	the	type	of	filter	that	this	VI	creates.	

0 Raised	Cosine	(default)
1 Root	Raised	Cosine

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

filtering	mode	specifies	the	processing	mode	of	the	filter	that	this
VI	creates.	

0 No	Rate	Change—Does	not	change	the	sampling	frequency	of

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

a	signal.
1 Interpolation—Increases	the	sampling	frequency	of	a	signal	to
a	higher	sampling	frequency	that	differs	from	the	original
frequency	by	an	integer	value.	Interpolation	also	is	known	as
up-sampling.

2 Decimation	(default)—Reduces	the	sampling	frequency	of	a
signal	to	a	lower	sampling	frequency	that	differs	from	the
original	frequency	by	an	integer	value.	Decimation	also	is
known	as	down-sampling.

multirate	filter	out	returns	a	new	multirate	filter.
order	out	returns	the	actual	order	of	the	new	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lvdfdtconcepts.chm::/dfd_interpolation.html
lvdfdtconcepts.chm::/dfd_decimation.html
lverror.chm::/Error_Code_Ranges.html

Example
Refer	to	the	Raised	Cosine	Filter	VI	in	the	labview\examples\Digital	Filter
Design\Floating-Point	Filters\Multirate	directory	for	an	example	of	using	the
DFD	Raised	Cosine	Design	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFloating-Point%20Filters%5C%5CMultirate%5C%5CRaised%20Cosine%20Filter.vi');
javascript:findExamples(10071);

Multirate	Fixed-Point	Tools	VIs
Owning	Palette:	Digital	Filter	Design	VIs	and	Functions
Installed	With:	Digital	Filter	Design	Toolkit.	This	topic	might	not	match	its
corresponding	palette	in	LabVIEW	depending	on	your	operating	system,
licensed	product(s),	and	target.
Use	the	Multirate	Fixed-Point	Tools	VIs	to	quantize	filter	coefficients,
model	the	behavior	of	fixed-point	multirate	filters,	simulate	multirate
filtering	processes,	and	generate	fixed-point	target	code.
The	VIs	on	this	palette	can	return	general	LabVIEW	error	codes	or
specific	digital	filter	design	error	codes.

Palette	Object Description
DFD	FXP	Get
MRate	Coef
Quantizer

Retrieves	settings	for	the	filter	coefficients	quantizer	of	a
multirate	filter.

DFD	FXP	Get
MRate	Output
Quantizer

Retrieves	the	settings	for	the	output	quantizer	of	a
multirate	filter.

DFD	FXP
Moving
Average	Code
Generator

Generates	LabVIEW	field-programmable	gate	array
(FPGA)	code	from	a	fixed-point	moving	average	(MA)
multirate	filter.

DFD	FXP
MRate	Code
Generator

Generates	LabVIEW	field-programmable	gate	array
(FPGA)	code	from	a	fixed-point	multirate	filter.

DFD	FXP
MRate
Modeling

Creates	a	fixed-point	multirate	filter	model	according	to
the	input	and	output	word	length	settings.

DFD	FXP
MRate
Postprocessing

Converts	the	output	signal	of	a	fixed-point	multirate	filter
from	an	integer,	fixed-point	representation	to	a	floating-
point	representation.	You	must	manually	select	the
polymorphic	instance	you	want	to	use.

DFD	FXP
MRate
Quantization

Quantizes	the	coefficients	of	a	floating-point	multirate
filter	and	generates	a	fixed-point	multirate	filter.

lvdigfiltdestk.chm::/DFD_VIs.html
lverror.chm::/Misc_LV_Error_Codes.html
lvdigfiltdestk.chm::/DFD_MRate_QCoef.html
lvdigfiltdestk.chm::/DFD_MRate_Output.html
lvdigfiltdestk.chm::/DFD_FXP_MA_Gen.html
lvdigfiltdestk.chm::/DFD_FXP_MR_Gen.html
lvdigfiltdestk.chm::/DFD_FXP_MR_Mod.html
lvdigfiltdestk.chm::/DFD_FXP_MR_Pos.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
lvdigfiltdestk.chm::/DFD_FXP_MR_Qua.html

DFD	FXP
MRate
Simulation

Simulates	the	filtering	process	of	a	fixed-point	multirate
filter	continuously.	Wire	data	to	the	signal	in	input	to
determine	the	polymorphic	instance	to	use	or	manually
select	the	instance.

DFD	FXP
NStage	MRate
Code
Generator

Generates	LabVIEW	field-programmable	gate	array
(FPGA)	code	from	multistage	multirate	filters.

DFD	FXP
NStage	MRate
Modeling

Creates	a	fixed-point	multistage	multirate	filter	model
according	to	the	input	and	output	word	length	settings.

DFD	FXP
NStage	MRate
Postprocessing

Converts	the	output	signal	of	a	fixed-point	multistage
multirate	filter	from	a	fixed-point	representation	to	a
floating-point	representation.	You	must	manually	select
the	polymorphic	instance	you	want	to	use.

DFD	FXP
NStage	MRate
Quantization

Quantizes	the	coefficients	of	a	floating-point	multistage
multirate	filter	and	generates	a	fixed-point	multistage
multirate	filter.	This	VI	has	the	same	internal	settings	as
the	DFD	FXP	MRate	Quantization	VI.

DFD	FXP
NStage	MRate
Simulation

Simulates	the	filtering	process	of	a	fixed-point
multistage	multirate	filter	continuously.	Wire	data	to	the
signal	in	input	to	determine	the	polymorphic	instance	to
use	or	manually	select	the	instance.

lvdigfiltdestk.chm::/DFD_FXP_MR_Sim.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
lvdigfiltdestk.chm::/DFD_NS_MR_Gen.html
lvdigfiltdestk.chm::/DFD_NS_MR_Mod.html
lvdfdtconcepts.chm::/specify_wl_iwl.html
lvdigfiltdestk.chm::/DFD_NS_MR_Pos.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
lvdigfiltdestk.chm::/DFD_NS_MR_Qua.html
lvdigfiltdestk.chm::/DFD_FXP_MR_Qua.html#details
lvdigfiltdestk.chm::/DFD_NS_MR_Sim.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html

DFD	FXP	Get	MRate	Coef	Quantizer	VI
Owning	Palette:	Multirate	Fixed-Point	Tools	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Retrieves	settings	for	the	filter	coefficients	quantizer	of	a	multirate	filter.

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
multirate	filter	in	specifies	the	input	fixed-point	multirate	filter.	You
must	specify	a	finite	impulse	response	(FIR)	multirate	filter	for	this
input.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

multirate	filter	out	returns	the	multirate	filter	in	unchanged.
coefficients	quantizer	returns	the	settings	of	the	filter	coefficients
quantizer.

lvdigfiltdestk.chm::/MR_FXP_Tools.html
javascript:placeObject(object3664);
javascript:findObject(object3664);
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

source	returns	the	quantizer	source.
wl	returns	the	word	length,	in	number	of	bits,	that	the
quantizer	uses	to	represent	a	fixed-point	number.
iwl	returns	the	integer	word	length,	in	number	of	bits,	within
wl	that	the	quantizer	uses	to	represent	the	integer	part	of	a
fixed-point	number.
overflow	mode	returns	the	operation	mode	for	overflow
and	underflow	in	the	quantizer.
rounding	mode	returns	the	mode	for	rounding	numbers	in
the	quantizer.
signed?	is	TRUE	if	the	fixed-point	number	is	a	signed
number.	signed?	is	FALSE	if	the	fixed-point	number	is	an
unsigned	number.

error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	FXP	Get	MRate	Output	Quantizer	VI
Owning	Palette:	Multirate	Fixed-Point	Tools	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Retrieves	the	settings	for	the	output	quantizer	of	a	multirate	filter.

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
multirate	filter	in	specifies	the	input	fixed-point	multirate	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

multirate	filter	out	returns	the	multirate	filter	in	unchanged.
output	quantizer	returns	the	settings	of	the	output	quantizer.

source	returns	the	quantizer	source.
wl	returns	the	word	length,	in	number	of	bits,	that	the

lvdigfiltdestk.chm::/MR_FXP_Tools.html
javascript:placeObject(object3666);
javascript:findObject(object3666);
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

quantizer	uses	to	represent	a	fixed-point	number.
iwl	returns	the	integer	word	length,	in	number	of	bits,	within
wl	that	the	quantizer	uses	to	represent	the	integer	part	of	a
fixed-point	number.
overflow	mode	returns	the	operation	mode	for	overflow
and	underflow	in	the	quantizer.
rounding	mode	returns	the	mode	for	rounding	numbers	in
the	quantizer.
signed?	is	TRUE	if	the	fixed-point	number	is	a	signed
number.	signed?	is	FALSE	if	the	fixed-point	number	is	an
unsigned	number.

error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	FXP	Moving	Average	Code	Generator	VI
Owning	Palette:	Multirate	Fixed-Point	Tools	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Generates	LabVIEW	field-programmable	gate	array	(FPGA)	code	from	a
fixed-point	moving	average	(MA)	multirate	filter.
Details		Example

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
open	project?	specifies	if	this	VI	opens	the	project	file	after
generating	the	code.	The	default	is	FALSE,	which	means	that	you
must	open	the	project	file	manually	after	this	VI	generates	the
code.
#	channels	specifies	the	number	of	channels	that	you	want	the
generated	code	to	process.	The	default	is	1.
moving	average	filter	specifies	the	input	moving	average	filter.
destination	folder	specifies	the	path	to	the	folder	in	which	you
want	to	save	the	generated	code.	This	VI	returns	an	error	if	you	do
not	specify	a	valid	path	to	the	folder.
filter	name	specifies	a	name	for	the	multirate	filter	code	that	this
VI	generates.	This	VI	also	uses	this	value	as	the	filename	of	the
project	file	that	contains	the	generated	filter	code.	You	can	use
only	letters	and	digits	in	the	filter	name	input.	This	VI	ignores
other	characters.	If	you	specify	an	invalid	name,	this	VI	creates	a
string	that	starts	with	Unknown.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while

lvdigfiltdestk.chm::/MR_FXP_Tools.html
javascript:placeObject(object3667);
javascript:findObject(object3667);

this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

confirm?	specifies	if	you	want	this	VI	to	ask	you	for	confirmation
before	replacing	an	existing	file.	If	the	value	is	TRUE,	this	VI
displays	a	dialog	box	asking	for	confirmation	to	replace	the	existing
file.	If	the	value	is	FALSE,	this	VI	replaces	the	existing	file
automatically.	The	default	is	TRUE.
lvproj	path	returns	the	path	to	the	generated	project	file.
sampling	frequency/FPGA	clock	returns	a	ratio.	You	can	multiply
this	ratio	with	a	specific	FPGA	clock	rate	to	calculate	the	maximum
input	sampling	frequency	per	channel	that	the	generated	FPGA
code	can	process	at	the	FPGA	clock	rate.	For	example,	if	the	ratio
is	0.05	and	the	FPGA	clock	rate	is	40	MHz,	then	the	maximum
input	sampling	frequency	per	channel	that	the	generated	FPGA
code	can	process	is	2	MHz.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	FXP	Moving	Average	Code	Generator	Details
An	MA	filter	is	a	lowpass,	fixed-point	cascaded	integrator	comb	(CIC)
filter	that	meets	the	following	criteria:

The	filtering	mode	of	the	CIC	filter	is	no-rate	change	or
decimation.
The	number	of	stages	of	the	CIC	filter	is	1.
The	differential	delay	of	the	CIC	filter	is	1.
The	values	of	the	sampling	frequency	conversion	factor	and	input
word	length	must	satisfy	the	following	equation:
log2(a)+b	≤	32

where	a	is	the	sampling	frequency	conversion	factor	of	the	CIC
filter	and	b	is	the	input	word	length	that	you	specified	when
creating	a	fixed-point	CIC	filter	model.
The	internal	precision	setting	must	be	Full.

lvdfdtconcepts.chm::/cic_filters.html

Example
Refer	to	the	Generate	LabVIEW	FPGA	Code	for	Moving	Average	Filter	VI
in	the	labview\examples\Digital	Filter	Design\Fixed-Point	Filters\Multirate
directory	for	an	example	of	using	the	DFD	FXP	Moving	Average	Code
Generator	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFixed-Point%20Filters%5C%5CMultirate%5C%5CGenerate%20LabVIEW%20FPGA%20Code%20for%20Moving%20Average%20Filter.vi');
javascript:findExamples(8415);

DFD	FXP	MRate	Code	Generator	VI
Owning	Palette:	Multirate	Fixed-Point	Tools	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Generates	LabVIEW	field-programmable	gate	array	(FPGA)	code	from	a
fixed-point	multirate	filter.
Example

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
open	project?	specifies	if	this	VI	opens	the	project	file	after
generating	the	code.	The	default	is	FALSE,	which	means	that	you
must	open	the	project	file	manually	after	this	VI	generates	the
code.
#	channels	specifies	the	number	of	channels	that	you	want	the
generated	code	to	process.	The	default	is	1.
multirate	filter	specifies	the	input	multirate	filter.
destination	folder	specifies	the	path	to	the	folder	in	which	you
want	to	save	the	generated	code.	This	VI	returns	an	error	if	you	do
not	specify	a	valid	path	to	the	folder.
filter	name	specifies	a	name	for	the	multirate	filter	code	that	this
VI	generates.	This	VI	also	uses	this	value	as	the	filename	of	the
project	file	that	contains	the	generated	filter	code.	You	can	use
only	letters	and	digits	in	the	filter	name	input.	This	VI	ignores
other	characters.	If	you	specify	an	invalid	name,	this	VI	creates	a
string	that	starts	with	Unknown.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while

lvdigfiltdestk.chm::/MR_FXP_Tools.html
javascript:placeObject(object3614);
javascript:findObject(object3614);

this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

confirm?	specifies	if	you	want	this	VI	to	ask	you	for	confirmation
before	replacing	an	existing	file.	If	the	value	is	TRUE,	this	VI
displays	a	dialog	box	asking	for	confirmation	to	replace	the	existing
file.	If	the	value	is	FALSE,	this	VI	replaces	the	existing	file
automatically.	The	default	is	TRUE.
lvproj	path	returns	the	path	to	the	generated	project	file.
sampling	frequency/FPGA	clock	returns	a	ratio.	You	can	multiply
this	ratio	with	a	specific	FPGA	clock	rate	to	calculate	the	maximum
input	sampling	frequency	per	channel	that	the	generated	FPGA
code	can	process	at	the	FPGA	clock	rate.	For	example,	if	the	ratio
is	0.05	and	the	FPGA	clock	rate	is	40	MHz,	then	the	maximum
input	sampling	frequency	per	channel	that	the	generated	FPGA
code	can	process	is	2	MHz.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

Example
Refer	to	the	Generate	LabVIEW	FPGA	Code	for	Multirate	Filter	VI	in	the
labview\examples\Digital	Filter	Design\Fixed-Point	Filters\Multirate	directory
for	an	example	of	using	the	DFD	FXP	MRate	Code	Generator	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFixed-Point%20Filters%5C%5CMultirate%5C%5CGenerate%20LabVIEW%20FPGA%20Code%20for%20Multirate%20Filter.vi');
javascript:findExamples(8415);

DFD	FXP	MRate	Modeling	VI
Owning	Palette:	Multirate	Fixed-Point	Tools	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Creates	a	fixed-point	multirate	filter	model	according	to	the	input	and
output	word	length	settings.
Example

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
multirate	filter	in	specifies	the	input	multirate	filter.
input	word	length	specifies	the	word	length,	in	number	of	bits,
that	this	VI	uses	to	represent	the	input	signal.	The	valid	range	is	[1,
32].	The	default	is	16.
output	word	length	specifies	the	word	length,	in	number	of	bits,
that	this	VI	uses	to	represent	the	output	signal.	The	valid	range	is
[1,	32].	The	default	is	16.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status

lvdigfiltdestk.chm::/MR_FXP_Tools.html
javascript:placeObject(object3624);
javascript:findObject(object3624);
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html

is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

output	rounding	mode	specifies	the	rounding	mode	this	VI	uses
in	the	output	quantizer.	

0 Nearest—Rounds	to	the	closest	representable	number.
1 Truncation	(default)—Rounds	to	the	closest	representable
number	less	than	the	original	value.

internal	precision	specifies	the	precision	of	the	internal	signals.	

0 Truncated	(default)—Approximates	a	full-precision	result	and
helps	spare	logical	resources	of	the	FPGA	hardware	target.
This	option	is	valid	for	all	finite	impulse	response	(FIR)	multirate
filters	and	cascaded	integrator	comb	(CIC)	decimation	filters.

1 Full—Provides	a	full-precision	result.	You	must	use	this	option
if	the	filter	is	a	moving	average	(MA)	multirate	filter.	Otherwise
the	simulation	cannot	return	the	same	results	as	the	code
generation	results.

multirate	filter	out	returns	a	fixed-point	multirate	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in

lverror.chm::/Error_Code_Ranges.html
lvdfdtconcepts.chm::/set_rounding_mode.html
lvdfdtconcepts.chm::/cic_filters.html
lvdigfiltdestk.chm::/DFD_FXP_MA_Gen.html#details
lverror.chm::/Error_Code_Ranges.html

most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

Example
Refer	to	the	Fixed-Point	Multirate	Filter	Modeling	and	Simulation	VI	in	the
labview\examples\Digital	Filter	Design\Fixed-Point	Filters\Multirate	directory
for	an	example	of	using	the	DFD	FXP	MRate	Modeling	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFixed-Point%20Filters%5C%5CMultirate%5C%5CFixed-Point%20Multirate%20Filter%20Modeling%20and%20Simulation.vi');
javascript:findExamples(8415);

DFD	FXP	MRate	Postprocessing	VI
Owning	Palette:	Multirate	Fixed-Point	Tools	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Converts	the	output	signal	of	a	fixed-point	multirate	filter	from	an	integer,
fixed-point	representation	to	a	floating-point	representation.	You	must
manually	select	the	polymorphic	instance	you	want	to	use.
Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

	Place	on	the	block	diagram 	Find	on	the	Functions	palette

lvdigfiltdestk.chm::/MR_FXP_Tools.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
javascript:placeObject(object3628);
javascript:findObject(object3628);

DFD	FXP	MRate	Postprocessing	(I32,	nCh)

input	range	specifies	the	maximum	absolute	value	of	the	input
signal	that	the	fixed-point	integer	can	represent.	For	example,	the
input	ranges	both	are	10	for	DAQ	devices	with	ranges	of	[0,	10V]
and	[–10,	10V].	The	default	is	1.
#	channels	specifies	the	number	of	channels	that	signal	in
contains.	The	default	is	1.
signal	in	specifies	the	input	signal	that	you	want	to	process.
multirate	filter	specifies	the	input	multirate	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

history	in	specifies	the	data	from	the	last	iteration	of	the

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

postprocessing	process.
signal	out	returns	a	floating-point	signal	after	postprocessing
signal	in.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

history	out	returns	the	remaining	data	for	the	next	iteration	of
postprocessing.	You	can	wire	this	output	to	the	history	in	input	of
the	next	call	to	this	VI	if	you	want	to	process	the	data	continuously.

lverror.chm::/Error_Code_Ranges.html

DFD	FXP	MRate	Postprocessing	(I16,	nCh)

input	range	specifies	the	maximum	absolute	value	of	the	input
signal	that	the	fixed-point	integer	can	represent.	For	example,	the
input	ranges	both	are	10	for	DAQ	devices	with	ranges	of	[0,	10V]
and	[–10,	10V].	The	default	is	1.
#	channels	specifies	the	number	of	channels	that	signal	in
contains.	The	default	is	1.
signal	in	specifies	the	input	signal	that	you	want	to	process.
multirate	filter	specifies	the	input	multirate	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

history	in	specifies	the	history	data	from	the	last	iteration	of

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

postprocessing.
signal	out	returns	a	floating-point	signal	after	postprocessing
signal	in.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

history	out	returns	the	remaining	data	for	the	next	iteration	of
postprocessing.	You	can	wire	this	output	to	the	history	in	input	of
the	next	call	to	this	VI	if	you	want	to	process	the	data	continuously.

lverror.chm::/Error_Code_Ranges.html

DFD	FXP	MRate	Postprocessing	(I32,	1Ch)

input	range	specifies	the	maximum	absolute	value	of	the	input
signal	that	the	fixed-point	integer	can	represent.	For	example,	the
input	ranges	both	are	10	for	DAQ	devices	with	ranges	of	[0,	10V]
and	[–10,	10V].	The	default	is	1.
signal	in	specifies	the	input	signal	that	you	want	to	process.
multirate	filter	specifies	the	input	multirate	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

signal	out	returns	a	floating-point	signal	after	postprocessing
signal	in.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	FXP	MRate	Postprocessing	(I16,	1Ch)

input	range	specifies	the	maximum	absolute	value	of	the	input
signal	that	the	fixed-point	integer	can	represent.	For	example,	the
input	ranges	both	are	10	for	DAQ	devices	with	ranges	of	[0,	10V]
and	[–10,	10V].	The	default	is	1.
signal	in	specifies	the	input	signal	that	you	want	to	process.
multirate	filter	specifies	the	input	multirate	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

signal	out	returns	a	floating-point	signal	after	postprocessing
signal	in.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	FXP	MRate	Quantization	VI
Owning	Palette:	Multirate	Fixed-Point	Tools	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Quantizes	the	coefficients	of	a	floating-point	multirate	filter	and	generates
a	fixed-point	multirate	filter.
Details		Examples

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
scale	by	power	of	2?	specifies	whether	this	VI	scales	the
multirate	filter	with	the	original	norm	value	or	the	smallest	power	of
2	value	that	is	greater	than	the	norm	value.	If	scale	by	power	of
2?	is	TRUE,	this	VI	scales	the	multirate	filter	with	the	smallest
power	of	2	value.	If	scale	by	power	of	2?	is	FALSE,	this	VI	scales
the	multirate	filter	with	the	original	norm	value.	The	default	is
FALSE.
scale	type	specifies	how	to	scale	the	multirate	filter	coefficients.
Refer	to	the	Details	section	of	the	DFD	Scale	Filter	VI	for	more
information	about	each	scale	type.	

0 No	Norm
1 Time	Domain	1-Norm	(default)
2 Time	Domain	2-Norm
3 Time	Domain	Inf-Norm

multirate	filter	in	specifies	the	input	multirate	filter.
coefficients	word	length	specifies	the	word	length,	in	number	of
bits,	that	this	VI	uses	to	represent	the	multirate	filter	coefficients.
The	valid	range	is	[1,	32].	The	default	is	16.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before

lvdigfiltdestk.chm::/MR_FXP_Tools.html
javascript:placeObject(object3621);
javascript:findObject(object3621);
lvdfdtconcepts.chm::/specify_wl_iwl.html

this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

gain	settings	specifies	the	settings	for	the	multirate	filter	gain.
gain	processing	specifies	whether	you	want	to	process	the
multirate	filter	gain	on	a	host	machine	or	an	NI
Reconfigurable	I/O	(RIO)	target.	

0 On	Target—Specifies	to	process	the	multirate	filter	gain
on	an	NI-RIO	target.

1 On	Host	(default)—Specifies	to	process	the	multirate
filter	gain	on	a	host	machine.

gain	word	length	specifies	the	word	length,	in	number	of
bits,	that	this	VI	uses	to	represent	the	multirate	filter	gain	if
you	set	gain	processing	to	On	Target.	The	valid	range	is	[1,
32].	The	default	is	16.

multirate	filter	out	returns	a	fixed-point	multirate	filter.
postprocessing	gain	returns	the	filter	gain	that	this	VI	scaled.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	FXP	MRate	Quantization	Details
The	DFD	FXP	MRate	Quantization	VI	automatically	determines	a
quantizer	for	the	filter	coefficients	according	to	the	scale	type	you
specify.	The	input	coefficients	word	length	determines	the	word	length	of
the	quantizer,	and	the	maximum	absolute	value	among	the	filter
coefficients	determines	the	integer	word	length	of	the	quantizer.	This	VI
sets	the	overflow	mode	and	rounding	mode	to	saturation	and	nearest,
respectively.

Tip		You	can	use	the	DFD	FXP	Get	MRate	Coef	Quantizer	VI	to
retrieve	the	quantizer	information.

lvdigfiltdestk.chm::/DFD_Mrate_QCoef.html

Examples
Refer	to	the	following	VIs	for	examples	of	using	the	DFD	FXP	MRate
Quantization	VI:

How	to	Build	Coefficients	Quantizer	VI:	labview\examples\Digital
Filter	Design\Getting	Started\Apply	Filters
	Open	example	 	Browse	related	examples
Analyze	Coefficients-Quantized	Multirate	Filter	VI:
labview\examples\Digital	Filter	Design\Fixed-Point	Filters\Multirate
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CGetting%20Started%5C%5CApply%20Filters%5C%5CHow%20to%20Build%20Coefficients%20Quantizer.vi');
javascript:findExamples(10054);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFixed-Point%20Filters%5C%5CMultirate%5C%5CAnalyze%20Coefficients-Quantized%20Multirate%20Filter.vi');
javascript:findExamples(8415);

DFD	FXP	MRate	Simulation	VI
Owning	Palette:	Multirate	Fixed-Point	Tools	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Simulates	the	filtering	process	of	a	fixed-point	multirate	filter	continuously.
Wire	data	to	the	signal	in	input	to	determine	the	polymorphic	instance	to
use	or	manually	select	the	instance.
Example
Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

	Place	on	the	block	diagram 	Find	on	the	Functions	palette

lvdigfiltdestk.chm::/MR_FXP_Tools.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
javascript:placeObject(object3626);
javascript:findObject(object3626);

DFD	FXP	MRate	Simulation	(DBL)

input	range	specifies	the	maximum	absolute	value	of	the	input
signal	that	the	fixed-point	integer	can	represent.	For	example,	the
input	ranges	both	are	10	for	DAQ	devices	with	ranges	of	[0,	10V]
and	[–10,	10V].	The	default	is	1.
init?	specifies	how	you	want	to	initialize	the	internal	states.	The
default	is	TRUE,	which	specifies	that	this	VI	initializes	the	internal
states	to	zero.	If	init?	is	FALSE,	this	VI	initializes	the	internal
states	from	the	final	states	of	the	previous	call	to	the	current	VI
instance.	To	process	a	large	data	sequence,	split	the	sequence
into	smaller	blocks,	set	init?	to	TRUE	for	the	first	block,	and	set
init?	to	FALSE	for	the	remaining	blocks.
signal	in	specifies	the	input	signal	you	want	to	process.	The	input
word	length	value	you	set	on	the	DVD	FXP	MRate	Modeling	VI
determines	the	range	of	signal	in.	The	range	equals	[–2^(input
word	length–1),	2^(input	word	length–1)–1].	For	example,	if	you
specify	16	as	the	input	word	length	value,	the	corresponding
range	is	[–32768,	32767].
multirate	filter	specifies	the	input	multirate	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The

lvdigfiltdestk.chm::/DFD_FXP_MR_Mod.html
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html

default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

DBL	signal	out	returns	the	output	floating-point	signal	after
postprocessing.
integer	signal	out	returns	the	output	fixed-point	integer	signal,
which	is	the	same	as	the	output	signal	from	a	fixed-point	target.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html
lverror.chm::/Error_Code_Ranges.html

DFD	FXP	MRate	Simulation	(I32)

input	range	specifies	the	maximum	absolute	value	of	the	input
signal	that	the	fixed-point	integer	can	represent.	For	example,	the
input	ranges	both	are	10	for	DAQ	devices	with	ranges	of	[0,	10V]
and	[–10,	10V].	The	default	is	1.
init?	specifies	how	you	want	to	initialize	the	internal	states.	The
default	is	TRUE,	which	specifies	that	this	VI	initializes	the	internal
states	to	zero.	If	init?	is	FALSE,	this	VI	initializes	the	internal
states	from	the	final	states	of	the	previous	call	to	the	current	VI
instance.	To	process	a	large	data	sequence,	split	the	sequence
into	smaller	blocks,	set	init?	to	TRUE	for	the	first	block,	and	set
init?	to	FALSE	for	the	remaining	blocks.
signal	in	specifies	the	input	signal	that	you	want	to	process.
multirate	filter	specifies	the	input	multirate	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

DBL	signal	out	returns	the	output	floating-point	signal	after
postprocessing.
integer	signal	out	returns	the	output	fixed-point	integer	signal,
which	is	the	same	as	the	output	signal	from	a	fixed-point	target.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	FXP	MRate	Simulation	(I16)

input	range	specifies	the	maximum	absolute	value	of	the	input
signal	that	the	fixed-point	integer	can	represent.	For	example,	the
input	ranges	both	are	10	for	DAQ	devices	with	ranges	of	[0,	10V]
and	[–10,	10V].	The	default	is	1.
init?	specifies	how	you	want	to	initialize	the	internal	states.	The
default	is	TRUE,	which	specifies	that	this	VI	initializes	the	internal
states	to	zero.	If	init?	is	FALSE,	this	VI	initializes	the	internal
states	from	the	final	states	of	the	previous	call	to	the	current	VI
instance.	To	process	a	large	data	sequence,	split	the	sequence
into	smaller	blocks,	set	init?	to	TRUE	for	the	first	block,	and	set
init?	to	FALSE	for	the	remaining	blocks.
signal	in	specifies	the	input	signal	that	you	want	to	process.
multirate	filter	specifies	the	input	multirate	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

DBL	signal	out	returns	the	output	floating-point	signal	after
postprocessing.
integer	signal	out	returns	the	output	fixed-point	integer	signal,
which	is	the	same	as	the	output	signal	from	a	fixed-point	target.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

Example
Refer	to	the	Fixed-Point	Multirate	Filter	Modeling	and	Simulation	VI	in	the
labview\examples\Digital	Filter	Design\Fixed-Point	Filters\Multirate	directory
for	an	example	of	using	the	DFD	FXP	MRate	Simulation	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFixed-Point%20Filters%5C%5CMultirate%5C%5CFixed-Point%20Multirate%20Filter%20Modeling%20and%20Simulation.vi');
javascript:findExamples(8415);

DFD	FXP	NStage	MRate	Code	Generator	VI
Owning	Palette:	Multirate	Fixed-Point	Tools	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Generates	LabVIEW	field-programmable	gate	array	(FPGA)	code	from
multistage	multirate	filters.
Example

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
open	project?	specifies	if	this	VI	opens	the	project	file	after
generating	the	code.	The	default	is	FALSE,	which	means	that	you
must	open	the	project	file	manually	after	this	VI	generates	the
code.
#	channels	specifies	the	number	of	channels	that	you	want	the
generated	code	to	process.	The	default	is	1.
multirate	filters	specifies	the	input	multistage	multirate	filters.
destination	folder	specifies	the	path	to	the	folder	in	which	you
want	to	save	the	generated	code.	This	VI	returns	an	error	if	you	do
not	specify	a	valid	path	to	the	folder.
filter	name	specifies	a	name	for	the	multistage	multirate	filter	code
that	this	VI	generates.	This	VI	also	uses	this	value	as	the	filename
of	the	project	file	that	contains	the	generated	filter	code.	You	can
use	only	letters	and	digits	in	the	filter	name	input.	This	VI	ignores
other	characters.	If	you	specify	an	invalid	name,	this	VI	creates	a
string	that	starts	with	Unknown.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while

lvdigfiltdestk.chm::/MR_FXP_Tools.html
javascript:placeObject(object3615);
javascript:findObject(object3615);

this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

confirm?	specifies	if	you	want	this	VI	to	ask	you	for	confirmation
before	replacing	an	existing	file.	If	the	value	is	TRUE,	this	VI
displays	a	dialog	box	asking	for	confirmation	to	replace	the	existing
file.	If	the	value	is	FALSE,	this	VI	replaces	the	existing	file
automatically.	The	default	is	TRUE.
lvproj	path	returns	the	path	to	the	generated	project	file.
sampling	frequency/FPGA	clock	returns	a	ratio.	You	can	multiply
this	ratio	with	a	specific	FPGA	clock	rate	to	calculate	the	maximum
input	sampling	frequency	per	channel	that	the	generated	FPGA
code	can	process	at	the	FPGA	clock	rate.	For	example,	if	the	ratio
is	0.05	and	the	FPGA	clock	rate	is	40	MHz,	then	the	maximum
input	sampling	frequency	per	channel	that	the	generated	FPGA
code	can	process	is	2	MHz.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

Example
Refer	to	the	Generate	LabVIEW	FPGA	Code	for	Multistage	Multirate
Filter	VI	in	the	labview\examples\Digital	Filter	Design\Fixed-Point
Filters\Multirate	directory	for	an	example	of	using	the	DFD	FXP	NStage
MRate	Code	Generator	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFixed-Point%20Filters%5C%5CMultirate%5C%5CGenerate%20LabVIEW%20FPGA%20Code%20for%20Multistage%20Multirate%20Filter.vi');
javascript:findExamples(8415);

DFD	FXP	NStage	MRate	Modeling	VI
Owning	Palette:	Multirate	Fixed-Point	Tools	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Creates	a	fixed-point	multistage	multirate	filter	model	according	to	the
input	and	output	word	length	settings.
Example

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
interstage	word	lengths	specifies	the	word	lengths,	in	number	of
bits,	that	this	VI	uses	to	represent	the	signal	between	every	two
consecutive	stages	of	the	multirate	filter.
multirate	filters	in	specifies	the	input	multistage	multirate	filter.
input	word	length	specifies	the	word	length,	in	number	of	bits,
that	this	VI	uses	to	represent	the	input	signal.	The	valid	range	is	[1,
32].	The	default	is	16.
output	word	length	specifies	the	word	length,	in	number	of	bits,
that	this	VI	uses	to	represent	the	output	signal.	The	valid	range	is
[1,	32].	The	default	is	16.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or

lvdigfiltdestk.chm::/MR_FXP_Tools.html
lvdfdtconcepts.chm::/specify_wl_iwl.html
javascript:placeObject(object3625);
javascript:findObject(object3625);
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html

that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

output	rounding	mode	specifies	the	rounding	mode	this	VI	uses
in	the	output	quantizer.	

0 Nearest—Rounds	to	the	closest	representable	number.
1 Truncation	(default)—Rounds	to	the	closest	representable
number	less	than	the	original	value.

internal	precision	specifies	the	precision	of	the	internal	signals.	

0 Truncated	(default)—Approximates	a	full-precision	result	and
helps	spare	logical	resources	of	the	FPGA	hardware	target.
This	option	is	valid	for	all	finite	impulse	response	(FIR)	multirate
filters	and	cascaded	integrator	comb	(CIC)	decimation	filters.

1 Full—Provides	a	full-precision	result.	You	must	use	this	option
if	the	filter	is	a	moving	average	(MA)	multirate	filter.	Otherwise
the	simulation	cannot	return	the	same	results	as	the	code
generation	results.

multirate	filters	out	returns	the	fixed-point	multistage	multirate
filters.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.

lverror.chm::/Error_Code_Ranges.html
lvdfdtconcepts.chm::/set_rounding_mode.html
lvdfdtconcepts.chm::/cic_filters.html
lvdigfiltdestk.chm::/DFD_FXP_MA_Gen.html#details

code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

Example
Refer	to	the	Fixed-Point	Multistage	Multirate	Filter	Modeling	and
Simulation	VI	in	the	labview\examples\Digital	Filter	Design\Fixed-Point
Filters\Multirate	directory	for	an	example	of	using	the	DFD	FXP	NStage
MRate	Modeling	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFixed-Point%20Filters%5C%5CMultirate%5C%5CFixed-Point%20Multistage%20Multirate%20Filter%20Modeling%20and%20Simulation.vi');
javascript:findExamples(8415);

DFD	FXP	NStage	MRate	Postprocessing	VI
Owning	Palette:	Multirate	Fixed-Point	Tools	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Converts	the	output	signal	of	a	fixed-point	multistage	multirate	filter	from
a	fixed-point	representation	to	a	floating-point	representation.	You	must
manually	select	the	polymorphic	instance	you	want	to	use.
Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

	Place	on	the	block	diagram 	Find	on	the	Functions	palette

lvdigfiltdestk.chm::/MR_FXP_Tools.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
javascript:placeObject(object3629);
javascript:findObject(object3629);

DFD	FXP	NStage	MRate	Postprocessing	(I32,	nCh)

input	range	specifies	the	maximum	absolute	value	of	the	input
signal	that	the	fixed-point	integer	can	represent.	For	example,	the
input	ranges	both	are	10	for	DAQ	devices	with	ranges	of	[0,	10V]
and	[–10,	10V].	The	default	is	1.
#	channels	specifies	the	number	of	channels	that	signal	in
contains.	The	default	is	1.
signal	in	specifies	the	input	signal	that	you	want	to	process.
multirate	filters	specifies	the	input	multistage	multirate	filters.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

history	in	specifies	the	data	from	the	last	iteration	of	the

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

postprocessing	process.
signal	out	returns	a	floating-point	signal	after	postprocessing
signal	in.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

history	out	returns	the	remaining	data	for	the	next	iteration	of
postprocessing.	You	can	wire	this	output	to	the	history	in	input	of
the	next	call	to	this	VI	if	you	want	to	process	the	data	continuously.

lverror.chm::/Error_Code_Ranges.html

DFD	FXP	NStage	MRate	Postprocessing	(I16,	nCh)

input	range	specifies	the	maximum	absolute	value	of	the	input
signal	that	the	fixed-point	integer	can	represent.	For	example,	the
input	ranges	both	are	10	for	DAQ	devices	with	ranges	of	[0,	10V]
and	[–10,	10V].	The	default	is	1.
#	channels	specifies	the	number	of	channels	that	signal	in
contains.	The	default	is	1.
signal	in	specifies	the	input	signal	that	you	want	to	process.
multirate	filters	specifies	the	input	multistage	multirate	filters.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

history	in	specifies	the	history	data	from	the	last	iteration	of

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

postprocessing.
signal	out	returns	a	floating-point	signal	after	postprocessing
signal	in.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

history	out	returns	the	remaining	data	for	the	next	iteration	of
postprocessing.	You	can	wire	this	output	to	the	history	in	input	of
the	next	call	to	this	VI	if	you	want	to	process	the	data	continuously.

lverror.chm::/Error_Code_Ranges.html

DFD	FXP	NStage	MRate	Postprocessing	(I32,	1Ch)

input	range	specifies	the	maximum	absolute	value	of	the	input
signal	that	the	fixed-point	integer	can	represent.	For	example,	the
input	ranges	both	are	10	for	DAQ	devices	with	ranges	of	[0,	10V]
and	[–10,	10V].	The	default	is	1.
signal	in	specifies	the	input	signal	that	you	want	to	process.
multirate	filters	specifies	the	input	multistage	multirate	filters.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

signal	out	returns	a	floating-point	signal	after	postprocessing
signal	in.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	FXP	NStage	MRate	Postprocessing	(I16,	1Ch)

input	range	specifies	the	maximum	absolute	value	of	the	input
signal	that	the	fixed-point	integer	can	represent.	For	example,	the
input	ranges	both	are	10	for	DAQ	devices	with	ranges	of	[0,	10V]
and	[–10,	10V].	The	default	is	1.
signal	in	specifies	the	input	signal	that	you	want	to	process.
multirate	filters	specifies	the	input	multistage	multirate	filters.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

signal	out	returns	a	floating-point	signal	after	postprocessing
signal	in.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	FXP	NStage	MRate	Quantization	VI
Owning	Palette:	Multirate	Fixed-Point	Tools	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Quantizes	the	coefficients	of	a	floating-point	multistage	multirate	filter	and
generates	a	fixed-point	multistage	multirate	filter.	This	VI	has	the	same
internal	settings	as	the	DFD	FXP	MRate	Quantization	VI.
Examples

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
scale	by	power	of	2?	specifies	whether	this	VI	scales	the
multirate	filter	with	the	original	norm	value	or	the	smallest	power	of
2	value	that	is	greater	than	the	norm	value.	If	scale	by	power	of
2?	is	TRUE,	this	VI	scales	the	multirate	filter	with	the	smallest
power	of	2	value.	If	scale	by	power	of	2?	is	FALSE,	this	VI	scales
the	multirate	filter	with	the	original	norm	value.	The	default	is
FALSE.
scale	type	specifies	how	to	scale	the	multirate	filter	coefficients.
Refer	to	the	Details	section	of	the	DFD	Scale	Filter	VI	for	more
information	about	each	scale	type.	

0 No	Norm
1 Time	Domain	1-Norm	(default)
2 Time	Domain	2-Norm
3 Time	Domain	Inf-Norm

multirate	filters	in	specifies	the	input	multistage	multirate	filter.
coefficients	word	lengths	specifies	the	word	length,	in	number	of
bits,	that	this	VI	uses	to	represent	the	coefficients	of	each	stage	in
the	input	multirate	filter.	The	valid	range	is	[1,	32].	The	default	is
16.

lvdigfiltdestk.chm::/MR_FXP_Tools.html
lvdigfiltdestk.chm::/DFD_FXP_MR_Qua.html#details
javascript:placeObject(object3622);
javascript:findObject(object3622);
lvdfdtconcepts.chm::/specify_wl_iwl.html

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

gain	settings	specifies	the	settings	for	the	multirate	filter	gain.
gain	processing	specifies	whether	you	want	to	process	the
multirate	filter	gain	on	a	host	machine	or	an	NI
Reconfigurable	I/O	(RIO)	target.	

0 On	Target—Specifies	to	process	the	multirate	filter	gain
on	an	NI-RIO	target.

1 On	Host	(default)—Specifies	to	process	the	multirate
filter	gain	on	a	host	machine.

gain	word	length	specifies	the	word	length,	in	number	of
bits,	that	this	VI	uses	to	represent	the	multirate	filter	gain	if
you	set	gain	processing	to	On	Target.	The	valid	range	is	[1,
32].	The	default	is	16.

multirate	filters	out	returns	the	fixed-point	multistage	multirate
filters.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

postprocessing	gain	returns	the	filter	gain	that	this	VI	scaled.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

Examples
Refer	to	the	following	VIs	for	examples	of	using	the	DFD	FXP	NStage
MRate	Quantization	VI:

How	to	Build	Coefficients	Quantizer	VI:	labview\examples\Digital
Filter	Design\Getting	Started\Apply	Filters
	Open	example	 	Browse	related	examples
Analyze	Coefficients-Quantized	Multistage	Multirate	Filter	VI:
labview\examples\Digital	Filter	Design\Fixed-Point	Filters\Multirate
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CGetting%20Started%5C%5CApply%20Filters%5C%5CHow%20to%20Build%20Coefficients%20Quantizer.vi');
javascript:findExamples(10054);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFixed-Point%20Filters%5C%5CMultirate%5C%5CAnalyze%20Coefficients-Quantized%20Multistage%20Multirate%20Filter.vi');
javascript:findExamples(8415);

DFD	FXP	NStage	MRate	Simulation	VI
Owning	Palette:	Multirate	Fixed-Point	Tools	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Simulates	the	filtering	process	of	a	fixed-point	multistage	multirate	filter
continuously.	Wire	data	to	the	signal	in	input	to	determine	the
polymorphic	instance	to	use	or	manually	select	the	instance.
Example
Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

	Place	on	the	block	diagram 	Find	on	the	Functions	palette

lvdigfiltdestk.chm::/MR_FXP_Tools.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
javascript:placeObject(object3627);
javascript:findObject(object3627);

DFD	FXP	NStage	MRate	Simulation	(DBL)

input	range	specifies	the	maximum	absolute	value	of	the	input
signal	that	the	fixed-point	integer	can	represent.	For	example,	the
input	ranges	both	are	10	for	DAQ	devices	with	ranges	of	[0,	10V]
and	[–10,	10V].	The	default	is	1.
init?	specifies	how	you	want	to	initialize	the	internal	states.	The
default	is	TRUE,	which	specifies	that	this	VI	initializes	the	internal
states	to	zero.	If	init?	is	FALSE,	this	VI	initializes	the	internal
states	from	the	final	states	of	the	previous	call	to	the	current	VI
instance.	To	process	a	large	data	sequence,	split	the	sequence
into	smaller	blocks,	set	init?	to	TRUE	for	the	first	block,	and	set
init?	to	FALSE	for	the	remaining	blocks.
signal	in	specifies	the	input	signal	you	want	to	process.	The	input
word	length	value	you	set	on	the	DVD	FXP	NStage	MRate
Modeling	VI	determines	the	range	of	signal	in.	The	range	equals
[–2^(input	word	length–1),	2^(input	word	length–1)–1].	For
example,	if	you	specify	16	as	the	input	word	length	value,	the
corresponding	range	is	[–32768,	32767].
multirate	filters	specifies	the	input	multistage	multirate	filters.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The

lvdigfiltdestk.chm::/DFD_NS_MR_Mod.html
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html

default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

DBL	signal	out	returns	the	output	floating-point	signal	after
postprocessing.
integer	signal	out	returns	the	output	fixed-point	integer	signal,
which	is	the	same	as	the	output	signal	from	a	fixed-point	target.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html
lverror.chm::/Error_Code_Ranges.html

DFD	FXP	NStage	MRate	Simulation	(I32)

input	range	specifies	the	maximum	absolute	value	of	the	input
signal	that	the	fixed-point	integer	can	represent.	For	example,	the
input	ranges	both	are	10	for	DAQ	devices	with	ranges	of	[0,	10V]
and	[–10,	10V].	The	default	is	1.
init?	specifies	how	you	want	to	initialize	the	internal	states.	The
default	is	TRUE,	which	specifies	that	this	VI	initializes	the	internal
states	to	zero.	If	init?	is	FALSE,	this	VI	initializes	the	internal
states	from	the	final	states	of	the	previous	call	to	the	current	VI
instance.	To	process	a	large	data	sequence,	split	the	sequence
into	smaller	blocks,	set	init?	to	TRUE	for	the	first	block,	and	set
init?	to	FALSE	for	the	remaining	blocks.
signal	in	specifies	the	input	signal	you	want	to	process.	The	input
word	length	value	you	set	on	the	DVD	FXP	NStage	MRate
Modeling	VI	determines	the	range	of	signal	in.	The	range	equals
[–2^(input	word	length–1),	2^(input	word	length–1)–1].	For
example,	if	you	specify	16	as	the	input	word	length	value,	the
corresponding	range	is	[–32768,	32767].
multirate	filters	specifies	the	input	multistage	multirate	filters.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The

lvdigfiltdestk.chm::/DFD_NS_MR_Mod.html
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html

default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

DBL	signal	out	returns	the	output	floating-point	signal	after
postprocessing.
integer	signal	out	returns	the	output	fixed-point	integer	signal,
which	is	the	same	as	the	output	signal	from	a	fixed-point	target.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html
lverror.chm::/Error_Code_Ranges.html

DFD	FXP	NStage	MRate	Simulation	(I16)

input	range	specifies	the	maximum	absolute	value	of	the	input
signal	that	the	fixed-point	integer	can	represent.	For	example,	the
input	ranges	both	are	10	for	DAQ	devices	with	ranges	of	[0,	10V]
and	[–10,	10V].	The	default	is	1.
init?	specifies	how	you	want	to	initialize	the	internal	states.	The
default	is	TRUE,	which	specifies	that	this	VI	initializes	the	internal
states	to	zero.	If	init?	is	FALSE,	this	VI	initializes	the	internal
states	from	the	final	states	of	the	previous	call	to	the	current	VI
instance.	To	process	a	large	data	sequence,	split	the	sequence
into	smaller	blocks,	set	init?	to	TRUE	for	the	first	block,	and	set
init?	to	FALSE	for	the	remaining	blocks.
signal	in	specifies	the	input	signal	you	want	to	process.	The	input
word	length	value	you	set	on	the	DVD	FXP	NStage	MRate
Modeling	VI	determines	the	range	of	signal	in.	The	range	equals
[–2^(input	word	length–1),	2^(input	word	length–1)–1].	For
example,	if	you	specify	16	as	the	input	word	length	value,	the
corresponding	range	is	[–32768,	32767].
multirate	filters	specifies	the	input	multistage	multirate	filters.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The

lvdigfiltdestk.chm::/DFD_NS_MR_Mod.html
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html

default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

DBL	signal	out	returns	the	output	floating-point	signal	after
postprocessing.
integer	signal	out	returns	the	output	fixed-point	integer	signal,
which	is	the	same	as	the	output	signal	from	a	fixed-point	target.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html
lverror.chm::/Error_Code_Ranges.html

Example
Refer	to	the	Fixed-Point	Multistage	Multirate	Filter	Modeling	and
Simulation	VI	in	the	labview\examples\Digital	Filter	Design\Fixed-Point
Filters\Multirate	directory	for	an	example	of	using	the	DFD	FXP	NStage
MRate	Simulation	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFixed-Point%20Filters%5C%5CMultirate%5C%5CFixed-Point%20Multistage%20Multirate%20Filter%20Modeling%20and%20Simulation.vi');
javascript:findExamples(8415);

Multirate	Processing	VIs
Owning	Palette:	Digital	Filter	Design	VIs	and	Functions
Installed	With:	Digital	Filter	Design	Toolkit.	This	topic	might	not	match	its
corresponding	palette	in	LabVIEW	depending	on	your	operating	system,
licensed	product(s),	and	target.
Use	the	Multirate	Processing	VIs	to	filter	signals	with	multirate	digital
filters.
The	VIs	on	this	palette	can	return	general	LabVIEW	error	codes	or
specific	digital	filter	design	error	codes.

Palette
Object Description

DFD
MRate
Filtering
for	Single
Block

Filters	a	single-block	signal	with	a	multirate	filter.	Wire	data
to	the	signal	in	input	to	determine	the	polymorphic	instance
to	use	or	manually	select	the	instance.

DFD
MRate
Filtering
with	State

Filters	a	signal	with	a	multirate	filter.	You	must	specify	the
initial	internal	states	in	state	in	to	filter	samples	accurately.
Wire	data	to	the	signal	in	input	to	determine	the
polymorphic	instance	to	use	or	manually	select	the	instance.

DFD
MRate
Filtering

Filters	a	signal	continuously	with	a	multirate	filter.	Wire	data
to	the	signal	in	input	to	determine	the	polymorphic	instance
to	use	or	manually	select	the	instance.

DFD
NStage
MRate
Filtering
for	Single
Block

Filters	a	single-block	signal	with	a	multistage	multirate	filter.
Wire	data	to	the	signal	in	input	to	determine	the
polymorphic	instance	to	use	or	manually	select	the	instance.

DFD
NStage
MRate
Filtering
with	State

Filters	a	signal	with	a	multistage	multirate	filter.	You	must
specify	the	initial	internal	states	in	state	in	to	filter	the
samples	accurately.	Wire	data	to	the	signal	in	input	to
determine	the	polymorphic	instance	to	use	or	manually
select	the	instance.

lvdigfiltdestk.chm::/DFD_VIs.html
lverror.chm::/Misc_LV_Error_Codes.html
lvdigfiltdestk.chm::/DFD_MR_S_Block.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
lvdigfiltdestk.chm::/DFD_MR_Filt_State.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
lvdigfiltdestk.chm::/DFD_MRate_Filtering.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
lvdigfiltdestk.chm::/DFD_NS_MR_S_Block.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
lvdigfiltdestk.chm::/DFD_NS_MR_State.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html

DFD
NStage
MRate
Filtering

Filters	a	signal	continuously	with	a	multistage	multirate	filter.
Wire	data	to	the	signal	in	input	to	determine	the
polymorphic	instance	to	use	or	manually	select	the	instance.

lvdigfiltdestk.chm::/DFD_NS_MR_Filtering.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html

DFD	MRate	Filtering	VI
Owning	Palette:	Multirate	Processing	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Filters	a	signal	continuously	with	a	multirate	filter.	Wire	data	to	the	signal
in	input	to	determine	the	polymorphic	instance	to	use	or	manually	select
the	instance.
Example
Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

	Place	on	the	block	diagram 	Find	on	the	Functions	palette

lvdigfiltdestk.chm::/DFD_M_Process_VIs.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
javascript:placeObject(object2908);
javascript:findObject(object2908);

DFD	MRate	Filtering	(Array)

init?	controls	the	initialization	of	internal	states.	The	default	is
FALSE,	in	which	this	VI	initializes	internal	states	from	the	final
states	of	the	previous	call	to	the	current	VI	instance.	If	you	select
TRUE,	this	VI	initializes	internal	states	to	zero.
signal	in	specifies	the	input	array	of	single-channel	samples	you
want	to	process.
multirate	filter	specifies	the	input	multirate	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

zero	phase?	specifies	whether	this	VI	uses	the	multirate	filter	as	a
zero-phase	filter,	in	which	no	delay	occurs	between	signal	in	and
signal	out.	This	input	is	valid	only	if	you	set	init?	to	TRUE	or	if	you

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

run	this	VI	for	the	first	time.	The	default	is	TRUE.	You	can	use	a
multirate	filter	as	a	zero-phase	filter	only	if	it	is	an	even-order	filter.
signal	out	returns	an	array	of	filtered	single-channel	samples.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	MRate	Filtering	(Wfm)

init?	controls	the	initialization	of	internal	states.	The	default	is
FALSE,	in	which	this	VI	initializes	internal	states	from	the	final
states	of	the	previous	call	to	the	current	VI	instance.	If	you	select
TRUE,	this	VI	initializes	internal	states	to	zero.
signal	in	specifies	the	input	waveform	you	want	to	process.
multirate	filter	specifies	the	input	multirate	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

zero	phase?	specifies	whether	this	VI	uses	the	multirate	filter	as	a
zero-phase	filter,	in	which	no	delay	occurs	between	signal	in	and
signal	out.	This	input	is	valid	only	if	you	set	init?	to	TRUE	or	if	you
run	this	VI	for	the	first	time.	The	default	is	TRUE.	You	can	use	a

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

multirate	filter	as	a	zero-phase	filter	only	if	it	is	an	even-order	filter.
signal	out	returns	the	filtered	waveform.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	MRate	Filtering	(Array	NChan)

init?	controls	the	initialization	of	internal	states.	The	default	is
FALSE,	in	which	this	VI	initializes	internal	states	from	the	final
states	of	the	previous	call	to	the	current	VI	instance.	If	you	select
TRUE,	this	VI	initializes	internal	states	to	zero.
signal	in	is	the	input	array	of	multiple-channel	samples	you	want
to	process.	Each	element	in	the	first	dimension	of	the	array
corresponds	to	a	channel.	Each	element	in	the	second	dimension
of	the	array	corresponds	to	a	sample	from	each	channel.
multirate	filter	specifies	the	input	multirate	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

zero	phase?	specifies	whether	this	VI	uses	the	multirate	filter	as	a

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

zero-phase	filter,	in	which	no	delay	occurs	between	signal	in	and
signal	out.	This	input	is	valid	only	if	you	set	init?	to	TRUE	or	if	you
run	this	VI	for	the	first	time.	The	default	is	TRUE.	You	can	use	a
multirate	filter	as	a	zero-phase	filter	only	if	it	is	an	even-order	filter.
signal	out	returns	an	array	of	filtered	multiple-channel	samples.
Each	element	in	the	first	dimension	of	the	array	corresponds	to	a
channel.	Each	element	in	the	second	dimension	of	the	array
corresponds	to	a	sample	from	each	channel.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	MRate	Filtering	(Wfm	NChan)

init?	controls	the	initialization	of	internal	states.	The	default	is
FALSE,	in	which	this	VI	initializes	internal	states	from	the	final
states	of	the	previous	call	to	the	current	VI	instance.	If	you	select
TRUE,	this	VI	initializes	internal	states	to	zero.
signal	in	is	the	input	array	of	multiple-channel	waveforms	you
want	to	process.
multirate	filter	specifies	the	input	multirate	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

zero	phase?	specifies	whether	this	VI	uses	the	multirate	filter	as	a
zero-phase	filter,	in	which	no	delay	occurs	between	signal	in	and
signal	out.	This	input	is	valid	only	if	you	set	init?	to	TRUE	or	if	you

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

run	this	VI	for	the	first	time.	The	default	is	TRUE.	You	can	use	a
multirate	filter	as	a	zero-phase	filter	only	if	it	is	an	even-order	filter.
signal	out	returns	an	array	of	filtered	multiple-channel	waveforms.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

Example
Refer	to	the	Single	Stage	Multirate	Filter	Design	VI	in	the
labview\examples\Digital	Filter	Design\Floating-Point	Filters\Multirate
directory	for	an	example	of	using	the	DFD	MRate	Filtering	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFloating-Point%20Filters%5C%5CMultirate%5C%5CSingle%20Stage%20Multirate%20Filter%20Design.vi');
javascript:findExamples(10071);

DFD	MRate	Filtering	for	Single	Block	VI
Owning	Palette:	Multirate	Processing	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Filters	a	single-block	signal	with	a	multirate	filter.	Wire	data	to	the	signal
in	input	to	determine	the	polymorphic	instance	to	use	or	manually	select
the	instance.
Examples
Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

	Place	on	the	block	diagram 	Find	on	the	Functions	palette

lvdigfiltdestk.chm::/DFD_M_Process_VIs.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
javascript:placeObject(object2907);
javascript:findObject(object2907);

DFD	MRate	Filtering	for	Single	Block	(Array)

signal	in	specifies	the	input	array	of	single-channel	samples	you
want	to	process.
multirate	filter	specifies	the	input	multirate	filter.
extension	type	specifies	the	method	this	VI	uses	to	pad	data	at
the	beginning	and	end	of	signal	in	to	lessen	artificial	jumps.	

0 Zero	padding	(default)—Uses	zeroes	to	pad	the	input	data.
Watch	for	abrupt	transitions	between	the	padded	zeroes	and
the	input	data,	which	causes	large	artifacts	near	the	transition.

1 Symmetric—Uses	replications	of	the	input	data	to	pad	the
data,	except	that	this	VI	flips	the	replications	so	that	there	are
mirroring	symmetries	at	the	beginning	and	at	the	end	of	the
input	data.

2 Periodic—Adds	a	replication	of	the	input	data	block	at	the
beginning	of	the	input	data	block	and	adds	another	replication
at	the	end	to	pad	the	data.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html

code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

zero	phase?	specifies	whether	this	VI	uses	the	multirate	filter	as	a
zero-phase	filter,	in	which	no	delay	occurs	between	signal	in	and
signal	out.	The	default	is	TRUE.	You	can	use	a	multirate	filter	as	a
zero-phase	filter	only	if	it	is	an	even-order	filter.
signal	out	returns	an	array	of	filtered	single-channel	samples.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html
lverror.chm::/Error_Code_Ranges.html

DFD	MRate	Filtering	for	Single	Block	(Wfm)

signal	in	specifies	the	input	waveform	you	want	to	process.
multirate	filter	specifies	the	input	multirate	filter.
extension	type	specifies	the	method	this	VI	uses	to	pad	data	at
the	beginning	and	end	of	signal	in	to	lessen	artificial	jumps.	

0 Zero	padding	(default)—Uses	zeroes	to	pad	the	input	data.
Watch	for	abrupt	transitions	between	the	padded	zeroes	and
the	input	data,	which	causes	large	artifacts	near	the	transition.

1 Symmetric—Uses	replications	of	the	input	data	to	pad	the
data,	except	that	this	VI	flips	the	replications	so	that	there	are
mirroring	symmetries	at	the	beginning	and	at	the	end	of	the
input	data.

2 Periodic—Adds	a	replication	of	the	input	data	block	at	the
beginning	of	the	input	data	block	and	adds	another	replication
at	the	end	to	pad	the	data.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html

is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

zero	phase?	specifies	whether	this	VI	uses	the	multirate	filter	as	a
zero-phase	filter,	in	which	no	delay	occurs	between	signal	in	and
signal	out.	The	default	is	TRUE.	You	can	use	a	multirate	filter	as	a
zero-phase	filter	only	if	it	is	an	even-order	filter.
signal	out	returns	the	filtered	waveform.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html
lverror.chm::/Error_Code_Ranges.html

DFD	MRate	Filtering	for	Single	Block	(Array	NChan)

signal	in	is	the	input	array	of	multiple-channel	samples	you	want
to	process.	Each	element	in	the	first	dimension	of	the	array
corresponds	to	a	channel.	Each	element	in	the	second	dimension
of	the	array	corresponds	to	a	sample	from	each	channel.
multirate	filter	specifies	the	input	multirate	filter.
extension	type	specifies	the	method	this	VI	uses	to	pad	data	at
the	beginning	and	end	of	signal	in	to	lessen	artificial	jumps.	

0 Zero	padding	(default)—Uses	zeroes	to	pad	the	input	data.
Watch	for	abrupt	transitions	between	the	padded	zeroes	and
the	input	data,	which	causes	large	artifacts	near	the	transition.

1 Symmetric—Uses	replications	of	the	input	data	to	pad	the
data,	except	that	this	VI	flips	the	replications	so	that	there	are
mirroring	symmetries	at	the	beginning	and	at	the	end	of	the
input	data.

2 Periodic—Adds	a	replication	of	the	input	data	block	at	the
beginning	of	the	input	data	block	and	adds	another	replication
at	the	end	to	pad	the	data.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html

that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

zero	phase?	specifies	whether	this	VI	uses	the	multirate	filter	as	a
zero-phase	filter,	in	which	no	delay	occurs	between	signal	in	and
signal	out.	The	default	is	TRUE.	You	can	use	a	multirate	filter	as	a
zero-phase	filter	only	if	it	is	an	even-order	filter.
signal	out	returns	an	array	of	filtered	multiple-channel	samples.
Each	element	in	the	first	dimension	of	the	array	corresponds	to	a
channel.	Each	element	in	the	second	dimension	of	the	array
corresponds	to	a	sample	from	each	channel.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html
lverror.chm::/Error_Code_Ranges.html

DFD	MRate	Filtering	for	Single	Block	(Wfm	NChan)

signal	in	is	the	input	array	of	multiple-channel	waveforms	you
want	to	process.
multirate	filter	specifies	the	input	multirate	filter.
extension	type	specifies	the	method	this	VI	uses	to	pad	data	at
the	beginning	and	end	of	signal	in	to	lessen	artificial	jumps.	

0 Zero	padding	(default)—Uses	zeroes	to	pad	the	input	data.
Watch	for	abrupt	transitions	between	the	padded	zeroes	and
the	input	data,	which	causes	large	artifacts	near	the	transition.

1 Symmetric—Uses	replications	of	the	input	data	to	pad	the
data,	except	that	this	VI	flips	the	replications	so	that	there	are
mirroring	symmetries	at	the	beginning	and	at	the	end	of	the
input	data.

2 Periodic—Adds	a	replication	of	the	input	data	block	at	the
beginning	of	the	input	data	block	and	adds	another	replication
at	the	end	to	pad	the	data.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html

code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

zero	phase?	specifies	whether	this	VI	uses	the	multirate	filter	as	a
zero-phase	filter,	in	which	no	delay	occurs	between	signal	in	and
signal	out.	The	default	is	TRUE.	You	can	use	a	multirate	filter	as	a
zero-phase	filter	only	if	it	is	an	even-order	filter.
signal	out	returns	an	array	of	filtered	multiple-channel	waveforms.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html
lverror.chm::/Error_Code_Ranges.html

Examples
Refer	to	the	following	VIs	for	examples	of	using	the	DFD	MRate	Filtering
for	Single	Block	VI:

Interpolation	Filtering	for	Single	Block	VI:	labview\examples\Digital
Filter	Design\Floating-Point	Filters\Multirate
	Open	example	 	Browse	related	examples
Multirate	Filtering	VI:	labview\examples\Digital	Filter	Design\Getting
Started\Apply	Filters
	Open	example	 	Browse	related	examples
Decimation	Filtering	for	Single	Block	VI:	labview\examples\Digital
Filter	Design\Floating-Point	Filters\Multirate
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFloating-Point%20Filters%5C%5CMultirate%5C%5CInterpolation%20Filtering%20for%20Single%20Block.vi');
javascript:findExamples(10071);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CGetting%20Started%5C%5CApply%20Filters%5C%5CMultirate%20Filtering.vi');
javascript:findExamples(10054);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFloating-Point%20Filters%5C%5CMultirate%5C%5CDecimation%20Filtering%20for%20Single%20Block.vi');
javascript:findExamples(10071);

DFD	MRate	Filtering	with	State	VI
Owning	Palette:	Multirate	Processing	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Filters	a	signal	with	a	multirate	filter.	You	must	specify	the	initial	internal
states	in	state	in	to	filter	samples	accurately.	Wire	data	to	the	signal	in
input	to	determine	the	polymorphic	instance	to	use	or	manually	select	the
instance.
Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

	Place	on	the	block	diagram 	Find	on	the	Functions	palette

lvdigfiltdestk.chm::/DFD_M_Process_VIs.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
javascript:placeObject(object2909);
javascript:findObject(object2909);

DFD	MRate	Filtering	with	State	(Array)

signal	in	specifies	the	input	array	of	single-channel	samples	you
want	to	process.
multirate	filter	specifies	the	input	multirate	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

state	in	specifies	the	initial	internal	states	before	processing.
signal	out	returns	an	array	of	filtered	single-channel	samples.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

for	more	information	about	the	error.
status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

state	out	returns	the	internal	states	after	processing.	You	can	wire
this	output	to	the	state	in	input	of	the	next	call	to	this	VI	if	you	want
to	process	data	continuously.

lverror.chm::/Error_Code_Ranges.html

DFD	MRate	Filtering	with	State	(Wfm)

signal	in	specifies	the	input	waveform	you	want	to	process.
multirate	filter	specifies	the	input	multirate	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

state	in	specifies	the	initial	internal	states	before	processing.
signal	out	returns	the	filtered	waveform.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

state	out	returns	the	internal	states	after	processing.	You	can	wire
this	output	to	the	state	in	input	of	the	next	call	to	this	VI	if	you	want
to	process	data	continuously.

lverror.chm::/Error_Code_Ranges.html

DFD	NStage	MRate	Filtering	VI
Owning	Palette:	Multirate	Processing	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Filters	a	signal	continuously	with	a	multistage	multirate	filter.	Wire	data	to
the	signal	in	input	to	determine	the	polymorphic	instance	to	use	or
manually	select	the	instance.
Example
Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

	Place	on	the	block	diagram 	Find	on	the	Functions	palette

lvdigfiltdestk.chm::/DFD_M_Process_VIs.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
javascript:placeObject(object2911);
javascript:findObject(object2911);

DFD	NStage	MRate	Filtering	(Array)

init?	controls	the	initialization	of	internal	states.	The	default	is
FALSE,	in	which	this	VI	initializes	internal	states	from	the	final
states	of	the	previous	call	to	the	current	VI	instance.	If	you	select
TRUE,	this	VI	initializes	internal	states	to	zero.
signal	in	specifies	the	input	array	of	single-channel	samples	you
want	to	process.
multirate	filters	specifies	the	input	multirate	filters.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

zero	phase?	specifies	whether	this	VI	uses	the	multirate	filter	as	a
zero-phase	filter,	in	which	no	delay	occurs	between	signal	in	and
signal	out.	This	input	is	valid	only	if	you	set	init?	to	TRUE	or	if	you

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

run	this	VI	for	the	first	time.	The	default	is	TRUE.	You	can	use	a
multistage	multirate	filter	as	a	zero-phase	filter	only	if	every	stage
is	an	even-order	filter.
signal	out	returns	an	array	of	filtered	single-channel	samples.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	NStage	MRate	Filtering	(Wfm)

init?	controls	the	initialization	of	internal	states.	The	default	is
FALSE,	in	which	this	VI	initializes	internal	states	from	the	final
states	of	the	previous	call	to	the	current	VI	instance.	If	you	select
TRUE,	this	VI	initializes	internal	states	to	zero.
signal	in	specifies	the	input	waveform	you	want	to	process.
multirate	filters	specifies	the	input	multirate	filters.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

zero	phase?	specifies	whether	this	VI	uses	the	multirate	filter	as	a
zero-phase	filter,	in	which	no	delay	occurs	between	signal	in	and
signal	out.	This	input	is	valid	only	if	you	set	init?	to	TRUE	or	if	you
run	this	VI	for	the	first	time.	The	default	is	TRUE.	You	can	use	a

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

multistage	multirate	filter	as	a	zero-phase	filter	only	if	every	stage
is	an	even-order	filter.
signal	out	returns	the	filtered	waveform.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

Example
Refer	to	the	Multistage	Multirate	Filter	Continuous	Processing	VI	in	the
labview\examples\Digital	Filter	Design\Floating-Point	Filters\Multirate
directory	for	an	example	of	using	the	DFD	NStage	MRate	Filtering	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFloating-Point%20Filters%5C%5CMultirate%5C%5CMultistage%20Multirate%20Filter%20Continuous%20Processing.vi');
javascript:findExamples(10071);

DFD	NStage	MRate	Filtering	for	Single	Block	VI
Owning	Palette:	Multirate	Processing	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Filters	a	single-block	signal	with	a	multistage	multirate	filter.	Wire	data	to
the	signal	in	input	to	determine	the	polymorphic	instance	to	use	or
manually	select	the	instance.
Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

	Place	on	the	block	diagram 	Find	on	the	Functions	palette

lvdigfiltdestk.chm::/DFD_M_Process_VIs.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
javascript:placeObject(object2910);
javascript:findObject(object2910);

DFD	NStage	MRate	Filtering	for	Single	Block	(Array)

signal	in	specifies	the	input	array	of	single-channel	samples	you
want	to	process.
multirate	filters	specifies	the	input	multirate	filters.
extension	type	specifies	the	method	this	VI	uses	to	pad	data	at
the	beginning	and	end	of	signal	in	to	lessen	artificial	jumps.	

0 Zero	padding	(default)—Uses	zeroes	to	pad	the	input	data.
Watch	for	abrupt	transitions	between	the	padded	zeroes	and
the	input	data,	which	causes	large	artifacts	near	the	transition.

1 Symmetric—Uses	replications	of	the	input	data	to	pad	the
data,	except	that	this	VI	flips	the	replications	so	that	there	are
mirroring	symmetries	at	the	beginning	and	at	the	end	of	the
input	data.

2 Periodic—Adds	a	replication	of	the	input	data	block	at	the
beginning	of	the	input	data	block	and	adds	another	replication
at	the	end	to	pad	the	data.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html

code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

zero	phase?	specifies	whether	the	VI	uses	the	multistage
multirate	filter	as	a	zero-phase	filter,	in	which	no	delay	occurs
between	signal	in	and	signal	out.	The	default	is	TRUE.	You	can
use	a	multistage	multirate	filter	as	a	zero-phase	filter	only	if	every
stage	is	an	even-order	filter.
signal	out	returns	an	array	of	filtered	single-channel	samples.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html
lverror.chm::/Error_Code_Ranges.html

DFD	NStage	MRate	Filtering	for	Single	Block	(Wfm)

signal	in	specifies	the	input	waveform	you	want	to	process.
multirate	filters	specifies	the	input	multirate	filters.
extension	type	specifies	the	method	this	VI	uses	to	pad	data	at
the	beginning	and	end	of	signal	in	to	lessen	artificial	jumps.	

0 Zero	padding	(default)—Uses	zeroes	to	pad	the	input	data.
Watch	for	abrupt	transitions	between	the	padded	zeroes	and
the	input	data,	which	causes	large	artifacts	near	the	transition.

1 Symmetric—Uses	replications	of	the	input	data	to	pad	the
data,	except	that	this	VI	flips	the	replications	so	that	there	are
mirroring	symmetries	at	the	beginning	and	at	the	end	of	the
input	data.

2 Periodic—Adds	a	replication	of	the	input	data	block	at	the
beginning	of	the	input	data	block	and	adds	another	replication
at	the	end	to	pad	the	data.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html

is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

zero	phase?	specifies	whether	the	VI	uses	the	multistage
multirate	filter	as	a	zero-phase	filter,	in	which	no	delay	occurs
between	signal	in	and	signal	out.	The	default	is	TRUE.	You	can
use	a	multistage	multirate	filter	as	a	zero-phase	filter	only	if	every
stage	is	an	even-order	filter.
signal	out	returns	the	filtered	waveform.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html
lverror.chm::/Error_Code_Ranges.html

DFD	NStage	MRate	Filtering	with	State	VI
Owning	Palette:	Multirate	Processing	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Filters	a	signal	with	a	multistage	multirate	filter.	You	must	specify	the
initial	internal	states	in	state	in	to	filter	the	samples	accurately.	Wire	data
to	the	signal	in	input	to	determine	the	polymorphic	instance	to	use	or
manually	select	the	instance.
Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

	Place	on	the	block	diagram 	Find	on	the	Functions	palette

lvdigfiltdestk.chm::/DFD_M_Process_VIs.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
javascript:placeObject(object2912);
javascript:findObject(object2912);

DFD	NStage	MRate	Filtering	with	State	(Array)

signal	in	specifies	the	input	array	of	single-channel	samples	you
want	to	process.
multirate	filters	specifies	the	input	multirate	filters.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

state	in	specifies	the	initial	internal	states	before	processing.
state	specifies	the	internal	states	of	one	stage	of	the
multirate	filters.

signal	out	returns	an	array	of	filtered	single-channel	samples.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

state	out	returns	the	internal	states	after	processing.	You	can	wire
this	output	to	the	state	in	input	of	the	next	call	to	this	VI	if	you	want
to	process	data	continuously.

state	returns	the	internal	states	of	one	stage	of	the
multirate	filters	after	filtering.

lverror.chm::/Error_Code_Ranges.html

DFD	NStage	MRate	Filtering	with	State	(Wfm)

signal	in	specifies	the	input	waveform	you	want	to	process.
multirate	filters	specifies	the	input	multirate	filters.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

state	in	specifies	the	initial	internal	states	before	processing.
state	specifies	the	internal	states	of	one	stage	of	the
multirate	filters.

signal	out	returns	the	filtered	waveform.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

state	out	returns	the	internal	states	after	processing.	You	can	wire
this	output	to	the	state	in	input	of	the	next	call	to	this	VI	if	you	want
to	process	data	continuously.

state	returns	the	internal	states	of	one	stage	of	the
multirate	filters	after	filtering.

lverror.chm::/Error_Code_Ranges.html

Multirate	Utilities	VIs
Owning	Palette:	Digital	Filter	Design	VIs	and	Functions
Installed	With:	Digital	Filter	Design	Toolkit.	This	topic	might	not	match	its
corresponding	palette	in	LabVIEW	depending	on	your	operating	system,
licensed	product(s),	and	target.
Use	the	Multirate	Utilities	VIs	to	retrieve	the	multirate	filter	coefficients
and	parameters	and	to	create	multirate	filters	from	the	filter	coefficients.
The	VIs	on	this	palette	can	return	general	LabVIEW	error	codes	or
specific	digital	filter	design	error	codes.

Palette
Object Description

DFD	Build
CIC	Filter

Creates	a	cascaded	integrator	comb	(CIC)	filter.

DFD	Build
MRate
Filter

Creates	a	multirate	filter.	You	must	manually	select	the
polymorphic	instance	you	want	to	use.

DFD	Get
MRate	CIC
Parameters

Retrieves	the	transfer	function	coefficients,	sampling
frequency	conversion	factor,	filtering	mode,	and	filter
parameters	of	a	cascaded	integrator	comb	(CIC)	filter.

DFD	Get
MRate
Filter
Parameters

Retrieves	the	transfer	function,	sampling	frequency
conversion	factor,	and	filtering	mode	of	a	multirate	filter.

DFD	Get
MRate
Filter
Structure

Retrieves	the	structure	of	a	multirate	filter.	A	multirate	filter
can	have	either	a	finite	impulse	response	(FIR)	or	cascaded
integrator	comb	(CIC)	structure.

DFD	Load
from	File

Retrieves	a	filter	from	a	file.	You	must	manually	select	the
polymorphic	instance	you	want	to	use.

DFD	Save
MRate	to
Text	File

Saves	a	multirate	filter	to	a	text	file	in	XML	format.

DFD	Save
to	File

Saves	a	filter	into	a	file.	Wire	data	to	the	filter	in	input	to
determine	the	polymorphic	instance	to	use	or	manually

lvdigfiltdestk.chm::/DFD_VIs.html
lverror.chm::/Misc_LV_Error_Codes.html
lvdigfiltdestk.chm::/DFD_Build_CIC_Filter.html
lvdfdtconcepts.chm::/cic_filters.html
lvdigfiltdestk.chm::/DFD_Build_MRate.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
lvdigfiltdestk.chm::/DFD_Get_MRate_CIC.html
lvdfdtconcepts.chm::/cic_filters.html
lvdigfiltdestk.chm::/DFD_Get_MR_Params.html
lvdigfiltdestk.chm::/DFD_Get_MR_Structure.html
lvdfdtconcepts.chm::/FIR_and_IIR_Filters.html
lvdfdtconcepts.chm::/cic_filters.html
lvdigfiltdestk.chm::/DFD_Load_from_File.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
lvdigfiltdestk.chm::/DFD_MR_to_Text.html
lvdigfiltdestk.chm::/DFD_Save_to_File.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html

select	the	instance.	Use	the	DFD	Load	from	File	VI	to	load
the	filter	from	the	file.

lvdigfiltdestk.chm::/DFD_Load_from_File.html

DFD	Build	CIC	Filter	VI
Owning	Palette:	Multirate	Utilities	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Creates	a	cascaded	integrator	comb	(CIC)	filter.
Examples

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
filtering	mode	specifies	the	processing	mode	of	the	filter	that	this
VI	creates.	

0 No	Rate	Change—Does	not	change	the	sampling	frequency	of
a	signal.

1 Interpolation—Increases	the	sampling	frequency	of	a	signal	to
a	higher	sampling	frequency	that	differs	from	the	original
frequency	by	an	integer	value.	Interpolation	also	is	known	as
up-sampling.

2 Decimation	(default)—Reduces	the	sampling	frequency	of	a
signal	to	a	lower	sampling	frequency	that	differs	from	the
original	frequency	by	an	integer	value.	Decimation	also	is
known	as	down-sampling.

filter	type	specifies	the	type	of	filter	that	this	VI	creates.	

0 Lowpass	(default)
1 Highpass

#	stages	specifies	the	number	of	stages	in	the	CIC	filter.
factor	specifies	the	sampling	frequency	conversion	factor	of	the
CIC	filter.
differential	delay	specifies	the	differential	delay	of	the	CIC	filter	in
samples.	The	valid	values	include	1	and	2.	The	default	is	1.

lvdigfiltdestk.chm::/MR_Utilities_VIs.html
lvdfdtconcepts.chm::/cic_filters.html
javascript:placeObject(object2920);
javascript:findObject(object2920);
lvdfdtconcepts.chm::/dfd_interpolation.html
lvdfdtconcepts.chm::/dfd_decimation.html
lvdfdtconcepts.chm::/dfd_filter_spec.html

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

CIC	filter	out	returns	a	new	CIC	multirate	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html
lverror.chm::/Error_Code_Ranges.html

Examples
Refer	to	the	following	VIs	for	examples	of	using	the	DFD	Build	CIC	Filter
VI:

CIC	Filter	Design	VI:	labview\examples\Digital	Filter
Design\Floating-Point	Filters\Multirate
	Open	example	 	Browse	related	examples
Generate	LabVIEW	FPGA	Code	for	Moving	Average	Filter	VI:
labview\examples\Digital	Filter	Design\Fixed-Point	Filters\Multirate
	Open	example	 	Browse	related	examples
Create	Multirate	Filter	VI:	labview\examples\Digital	Filter
Design\Getting	Started\Design	Filters
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFloating-Point%20Filters%5C%5CMultirate%5C%5CCIC%20Filter%20Design.vi');
javascript:findExamples(10071);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFixed-Point%20Filters%5C%5CMultirate%5C%5CGenerate%20LabVIEW%20FPGA%20Code%20for%20Moving%20Average%20Filter.vi');
javascript:findExamples(8415);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CGetting%20Started%5C%5CDesign%20Filters%5C%5CCreate%20Multirate%20Filter.vi');
javascript:findExamples(10056);

DFD	Build	MRate	Filter	VI
Owning	Palette:	Multirate	Utilities	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Creates	a	multirate	filter.	You	must	manually	select	the	polymorphic
instance	you	want	to	use.
Example
Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

	Place	on	the	block	diagram 	Find	on	the	Functions	palette

lvdigfiltdestk.chm::/MR_Utilities_VIs.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
javascript:placeObject(object2923);
javascript:findObject(object2923);

DFD	Build	MRate	Filter	from	TF

h(n)	specifies	the	input	transfer	function	this	VI	uses	to	create	the
filter.
factor	specifies	the	sampling	frequency	conversion	factor	this	VI
uses	to	create	the	filter.
filtering	mode	specifies	the	processing	mode	of	the	filter	that	this
VI	creates.	

0 No	Rate	Change—Does	not	change	the	sampling	frequency	of
a	signal.

1 Interpolation—Increases	the	sampling	frequency	of	a	signal	to
a	higher	sampling	frequency	that	differs	from	the	original
frequency	by	an	integer	value.	Interpolation	also	is	known	as
up-sampling.

2 Decimation	(default)—Reduces	the	sampling	frequency	of	a
signal	to	a	lower	sampling	frequency	that	differs	from	the
original	frequency	by	an	integer	value.	Decimation	also	is
known	as	down-sampling.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.

lvdfdtconcepts.chm::/dfd_interpolation.html
lvdfdtconcepts.chm::/dfd_decimation.html
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html

code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

multirate	filter	out	returns	a	new	multirate	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html
lverror.chm::/Error_Code_Ranges.html

DFD	Build	MRate	Filter	from	FIR	Filter

filter	in	specifies	the	input	finite	impulse	response	(FIR)	filter	that
this	VI	uses	to	create	the	multirate	filter.
factor	specifies	the	sampling	frequency	conversion	factor	this	VI
uses	to	create	the	filter.
filtering	mode	specifies	the	processing	mode	of	the	filter	that	this
VI	creates.	

0 No	Rate	Change—Does	not	change	the	sampling	frequency	of
a	signal.

1 Interpolation—Increases	the	sampling	frequency	of	a	signal	to
a	higher	sampling	frequency	that	differs	from	the	original
frequency	by	an	integer	value.	Interpolation	also	is	known	as
up-sampling.

2 Decimation	(default)—Reduces	the	sampling	frequency	of	a
signal	to	a	lower	sampling	frequency	that	differs	from	the
original	frequency	by	an	integer	value.	Decimation	also	is
known	as	down-sampling.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.

lvdfdtconcepts.chm::/dfd_interpolation.html
lvdfdtconcepts.chm::/dfd_decimation.html
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html

code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

multirate	filter	out	returns	a	new	multirate	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html
lverror.chm::/Error_Code_Ranges.html

DFD	Build	MRate	Filter	from	MRate	Filter

multirate	filter	in	specifies	the	input	multirate	filter	that	includes
the	transfer	function	this	VI	uses	to	create	the	new	multirate	filter.
factor	specifies	the	sampling	frequency	conversion	factor	this	VI
uses	to	create	the	filter.
filtering	mode	specifies	the	processing	mode	of	the	filter	that	this
VI	creates.	

0 No	Rate	Change—Does	not	change	the	sampling	frequency	of
a	signal.

1 Interpolation—Increases	the	sampling	frequency	of	a	signal	to
a	higher	sampling	frequency	that	differs	from	the	original
frequency	by	an	integer	value.	Interpolation	also	is	known	as
up-sampling.

2 Decimation	(default)—Reduces	the	sampling	frequency	of	a
signal	to	a	lower	sampling	frequency	that	differs	from	the
original	frequency	by	an	integer	value.	Decimation	also	is
known	as	down-sampling.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.

lvdfdtconcepts.chm::/dfd_interpolation.html
lvdfdtconcepts.chm::/dfd_decimation.html
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html

code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

multirate	filter	out	returns	a	new	multirate	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html
lverror.chm::/Error_Code_Ranges.html

DFD	Build	MRate	Filter	from	TF	(Rational)

h(n)	specifies	the	input	transfer	function	this	VI	uses	to	create	the
filter.
factor	contains	the	sampling	frequency	conversion	factor	of	the
multirate	filter.

L	contains	the	numerator	factor	of	the	rational	resampling
frequency	conversion	factor.	The	value	of	L	must	be	an
integer	greater	than	zero.	The	value	of	L	must	not	equal	the
value	of	M.	The	default	is	8.
M	contains	the	denominator	factor	of	the	rational	resampling
frequency	conversion	factor.	The	value	of	M	must	be	an
integer	greater	than	zero.	The	value	of	M	must	not	equal	the
value	of	L.	The	default	is	3.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

the	error	or	warning.	The	default	is	an	empty	string.

multirate	filter	out	returns	a	new	multirate	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	Build	MRate	Filter	from	FIR	Filter	(Rational)

filter	in	specifies	the	input	finite	impulse	response	(FIR)	filter	that
this	VI	uses	to	create	the	multirate	filter.
factor	contains	the	sampling	frequency	conversion	factor	of	the
multirate	filter.

L	contains	the	numerator	factor	of	the	rational	resampling
frequency	conversion	factor.	The	value	of	L	must	be	an
integer	greater	than	zero.	The	value	of	L	must	not	equal	the
value	of	M.	The	default	is	8.
M	contains	the	denominator	factor	of	the	rational	resampling
frequency	conversion	factor.	The	value	of	M	must	be	an
integer	greater	than	zero.	The	value	of	M	must	not	equal	the
value	of	L.	The	default	is	3.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

the	error	or	warning.	The	default	is	an	empty	string.

multirate	filter	out	returns	a	new	multirate	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	Build	MRate	Filter	from	MRate	Filter	(Rational)

multirate	filter	in	specifies	the	input	multirate	filter	that	includes
the	transfer	function	this	VI	uses	to	create	the	new	multirate	filter.
factor	contains	the	sampling	frequency	conversion	factor	of	the
multirate	filter.

L	contains	the	numerator	factor	of	the	rational	resampling
frequency	conversion	factor.	The	value	of	L	must	be	an
integer	greater	than	zero.	The	value	of	L	must	not	equal	the
value	of	M.	The	default	is	8.
M	contains	the	denominator	factor	of	the	rational	resampling
frequency	conversion	factor.	The	value	of	M	must	be	an
integer	greater	than	zero.	The	value	of	M	must	not	equal	the
value	of	L.	The	default	is	3.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

the	error	or	warning.	The	default	is	an	empty	string.

multirate	filter	out	returns	a	new	multirate	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

Example
Refer	to	the	Create	Multirate	Filter	VI	in	the	labview\examples\Digital	Filter
Design\Getting	Started\Design	Filters	directory	for	an	example	of	using	the
DFD	Build	MRate	Filter	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CGetting%20Started%5C%5CDesign%20Filters%5C%5CCreate%20Multirate%20Filter.vi');
javascript:findExamples(10056);

DFD	Get	MRate	CIC	Parameters	VI
Owning	Palette:	Multirate	Utilities	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Retrieves	the	transfer	function	coefficients,	sampling	frequency
conversion	factor,	filtering	mode,	and	filter	parameters	of	a	cascaded
integrator	comb	(CIC)	filter.

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
multirate	filter	in	specifies	the	input	multirate	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

h(n)	returns	the	equivalent	finite	impulse	response	(FIR)
coefficients	of	the	CIC	filter.

lvdigfiltdestk.chm::/MR_Utilities_VIs.html
lvdfdtconcepts.chm::/cic_filters.html
javascript:placeObject(object3616);
javascript:findObject(object3616);
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

CIC	parameters	returns	the	CIC	filter	parameters.
#	stages	returns	the	number	of	stages	in	the	CIC	filter.
differential	delay	returns	the	differential	delay	of	the	CIC
filter	in	sample	times.
filter	type	returns	the	passband	of	the	filter.

factor	returns	the	sampling	frequency	conversion	factor	of	the
multirate	filter.
filtering	mode	returns	the	filtering	mode	of	the	multirate	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	Get	MRate	Filter	Parameters	VI
Owning	Palette:	Multirate	Utilities	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Retrieves	the	transfer	function,	sampling	frequency	conversion	factor,
and	filtering	mode	of	a	multirate	filter.

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
type	specifies	the	transfer	function	that	this	VI	retrieves.	

0 FLP	(default)—Specifies	to	retrieve	the	transfer	function	of	a
floating-point	multirate	filter.	If	multirate	filter	in	is	a	fixed-point
multirate	filter,	this	VI	retrieves	the	transfer	function	of	the
reference	floating-point	multirate	filter.

1 FXP—Specifies	to	retrieve	the	transfer	function	of	a	fixed-point
multirate	filter.	If	multirate	filter	in	is	a	floating-point	multirate
filter,	this	VI	returns	an	error.

multirate	filter	in	specifies	the	input	multirate	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.

lvdigfiltdestk.chm::/MR_Utilities_VIs.html
javascript:placeObject(object2926);
javascript:findObject(object2926);
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html

code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

h(n)	returns	the	transfer	function	coefficients	of	the	multirate	filter.
factor	contains	the	sampling	frequency	conversion	factor	of	the
multirate	filter.

L	contains	the	numerator	factor	of	the	rational	resampling
frequency	conversion	factor.	L	contains	1	for	no-rate-
change	or	decimation	filters.
M	contains	the	denominator	factor	of	the	rational	resampling
frequency	conversion	factor.	M	contains	1	for	no-rate-
change	or	interpolation	filters.

filtering	mode	returns	the	filtering	mode	of	the	multirate	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html
lverror.chm::/Error_Code_Ranges.html

DFD	Get	MRate	Filter	Structure	VI
Owning	Palette:	Multirate	Utilities	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Retrieves	the	structure	of	a	multirate	filter.	A	multirate	filter	can	have
either	a	finite	impulse	response	(FIR)	or	cascaded	integrator	comb	(CIC)
structure.

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
multirate	filter	in	specifies	the	input	multirate	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

multirate	filter	out	returns	the	multirate	filter	in	unchanged.
structure	returns	the	structure	of	the	multirate	filter.

lvdigfiltdestk.chm::/MR_Utilities_VIs.html
lvdfdtconcepts.chm::/FIR_and_IIR_Filters.html
lvdfdtconcepts.chm::/cic_filters.html
javascript:placeObject(object3617);
javascript:findObject(object3617);
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	Load	from	File	VI
Owning	Palette:	Utilities	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Retrieves	a	filter	from	a	file.	You	must	manually	select	the	polymorphic
instance	you	want	to	use.
Example
Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

	Place	on	the	block	diagram 	Find	on	the	Functions	palette

lvdigfiltdestk.chm::/DFD_Utilities_VIs.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
javascript:placeObject(object2925);
javascript:findObject(object2925);

DFD	Load	Filter	from	File

file	path	in	specifies	the	path	to	the	file.	If	file	path	in	is	empty
(default)	or	<Not	A	Path>,	this	VI	displays	the	Select	File	Path
dialog	box	from	which	you	can	select	a	file.	This	VI	returns	an	error
if	you	specify	a	file	path	that	does	not	exist	or	if	you	click	the
Cancel	button	on	the	dialog	box.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

filter	out	returns	the	filter	you	loaded	from	the	text	file.
file	path	out	returns	the	path	to	the	file	to	which	this	VI	saved	the
filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	Load	MRate	Filter	from	File

file	path	in	specifies	the	path	to	the	file.	If	file	path	in	is	empty
(default)	or	<Not	A	Path>,	this	VI	displays	the	Select	File	Path
dialog	box	from	which	you	can	select	a	file.	This	VI	returns	an	error
if	you	specify	a	file	path	that	does	not	exist	or	if	you	click	the
Cancel	button	on	the	dialog	box.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

multirate	filter	out	is	the	newly	loaded	multirate	filter.
file	path	out	returns	the	path	to	the	file	to	which	this	VI	saved	the
filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

Example
Refer	to	the	Save	and	Load	Filter	VI	in	the	labview\examples\Digital	Filter
Design\Getting	Started\Apply	Filters	directory	for	an	example	of	using	the
DFD	Load	from	File	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CGetting%20Started%5C%5CApply%20Filters%5C%5CSave%20and%20Load%20Filter.vi');
javascript:findExamples(10054);

DFD	Save	MRate	to	Text	File	VI
Owning	Palette:	Multirate	Utilities	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Saves	a	multirate	filter	to	a	text	file	in	XML	format.

Note		This	VI	uses	periods	for	decimal	points	in	the	coefficients
values.

Details		Examples

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
multirate	filter	in	specifies	the	input	multirate	filter.	You	cannot
specify	a	multistage	multirate	filter	for	this	input.
file	path	in	specifies	the	path	to	the	file	in	which	you	want	to	save
the	multirate	filter.	The	default	file	extension	is	.xml.	You	can	use
any	other	file	extension	for	the	file.	If	file	path	in	is	empty	(default)
or	<Not	A	Path>,	this	VI	displays	a	dialog	box	from	which	you	can
select	a	file.	This	VI	returns	an	error	if	you	specify	a	file	path	that
does	not	exist	or	if	you	click	the	Cancel	button	on	the	dialog	box.
comments	specifies	the	comments	that	you	want	to	add	to	the
text	file.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or

lvdigfiltdestk.chm::/MR_Utilities_VIs.html
javascript:placeObject(object3665);
javascript:findObject(object3665);
lvdfdtconcepts.chm::/mstage_mrate_filt.html
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html

that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

multirate	filter	out	returns	the	multirate	filter	in	unchanged.
file	path	out	returns	the	path	to	the	file	to	which	this	VI	saved	the
multirate	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html
lverror.chm::/Error_Code_Ranges.html

DFD	Save	MRate	to	Text	File	Details
This	VI	saves	a	multirate	filter	as	an	.xml	file	by	default.	The	following
table	lists	the	tags	that	the	.xml	file	might	contain.

Tag	Name Description
DFDTData Contains	the	entire	information	about	a	multirate

filter.
CustomerComments Contains	the	information	you	specified	in	the

comments	input	of	this	VI.
Structure Contains	the	multirate	filter	structure.
FilteringMode Contains	the	filtering	mode	setting	of	the

multirate	filter.
Factor Contains	the	sampling	frequency	conversion

factor	of	the	multirate	filter.	This	tag	contains	the
following	sub-tags:

L—Contains	the	value	of	the	interpolation
factor.
M—Contains	the	value	of	the	decimation
factor.

CICParameters Contains	the	filter	parameters	of	the	cascaded
integrator	comb	(CIC)	filter.	If	the	filter	is	not	a
CIC	filter,	this	XML	file	does	not	contain	this	tag.
If	the	filter	is	a	CIC	filter,	this	tag	contains	the
following	sub-tags:

NumberOfStages—Contains	the
number	of	stages	of	the	CIC	filter.
DifferentialDelay—Contains	the
differential	delay	value	of	the	CIC	filter.
FilterType—Contains	the	filter	type	of	the
CIC	filter.

Order Contains	the	multirate	filter	order.
Coefficients Contains	the	floating-point	multirate	filter

coefficients.	If	the	filter	is	a	fixed-point	multirate
filter,	this	tag	contains	the	coefficients	of	the

reference	floating-point	multirate	filter.
FXPInformation Contains	the	entire	information	about	the	fixed-

point	multirate	filter.	If	the	filter	is	a	floating-point
multirate	filter,	this	XML	file	does	not	contain	this
tag.	If	the	filter	is	a	fixed-point	multirate	filter,	this
tag	can	contain	the	following	sub-tags:

FXPCoefficients—Contains	the	fixed-
point	multirate	filter	coefficients.
FXPGain—Contains	the	fixed-point
multirate	filter	gain.
IntegerCoefficients—Contains	the
integer	multirate	filter	coefficients.
IntegerGain—Contains	the	integer
multirate	filter	gain.
Quantizers—Contains	the	multirate	filter
coefficients	quantizer	settings	and
multirate	filter	gain	quantizer	settings.
This	tag	contains	the	following	sub-tags:

CoefficientsQuantizer—
Contains	the	multirate	filter
coefficients	quantizer	settings.
ScaleByPowerOf2—Indicates
the	scaling	setting	of	the	multirate
filter.	This	tag	appears	only	if	you
set	the	scale	by	power	of	2?
input	of	the	DFD	FXP	MRate
Quantization	VI	to	TRUE.
ScaleType—Contains	the	scale
type	setting	of	the	multirate	filter.
GainQuantizer—Contains	the
multirate	filter	gain	quantizer
settings.

The	CoefficientsQuantizer	and
GainQuantizer	tags	can	contain	the
following	sub-tags:

WordLength—Contains	the	word

lvdigfiltdestk.chm::/DFD_FXP_MR_Qua.html

length	of	the	quantizer.
IntegerWordLength—Contains
the	integer	word	length	of	the
quantizer.
OverflowMode—Contains	the
overflow	mode	setting	of	the
quantizer.
RoundingMode—Contains	the
rounding	mode	setting	of	the
quantizer.
Signed—Indicates	the	quantizer
uses	a	signed	fixed-point	format.
This	tag	is	always	empty.
Unsigned—Indicates	the
quantizer	uses	an	unsigned	fixed-
point	format.	This	tag	is	always
empty.

Note		If	the	gain	processing	occurs
on	a	host	machine,	or	if	the	gain
processing	occurs	on	a	target	but
the	filter	gain	is	a	power-of-2
value,	the	multirate	filter	gain
quantizer	contains	the	following
message	only:	No	integer	gain	is
processed	on	the	target.

Examples
Refer	to	the	following	VIs	for	examples	of	using	the	DFD	Save	MRate	to
Text	File	VI:

Export	Multirate	FIR	Coef	to	Xilinx	COE	File	VI:
labview\examples\Digital	Filter	Design\Fixed-Point	Filters\Multirate
	Open	example	 	Browse	related	examples
Save	Multirate	Filter	to	Text	File	VI:	labview\examples\Digital	Filter
Design\Getting	Started\Apply	Filters
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFixed-Point%20Filters%5C%5CMultirate%5C%5CExport%20Multirate%20FIR%20Coef%20to%20Xilinx%20COE%20File.vi');
javascript:findExamples(10054);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CGetting%20Started%5C%5CApply%20Filters%5C%5CSave%20Multirate%20Filter%20to%20Text%20File.vi');
javascript:findExamples(10054);

DFD	Save	to	File	VI
Owning	Palette:	Utilities	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Saves	a	filter	into	a	file.	Wire	data	to	the	filter	in	input	to	determine	the
polymorphic	instance	to	use	or	manually	select	the	instance.	Use	the
DFD	Load	from	File	VI	to	load	the	filter	from	the	file.
Example
Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

	Place	on	the	block	diagram 	Find	on	the	Functions	palette

lvdigfiltdestk.chm::/DFD_Utilities_VIs.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
lvdigfiltdestk.chm::/DFD_Load_from_File.html
javascript:placeObject(object2924);
javascript:findObject(object2924);

DFD	Save	Filter	to	File

filter	in	specifies	the	input	filter.
file	path	in	specifies	the	path	to	the	file	in	which	you	want	to	save
the	filter.	The	default	file	extension	is	.fds.	You	can	use	any	other
file	extension	for	the	file.	If	file	path	in	is	empty	(default)	or	<Not	A
Path>,	this	VI	displays	a	dialog	box	from	which	you	can	select	a
file.	This	VI	returns	an	error	if	you	specify	a	file	path	that	does	not
exist	or	if	you	click	the	Cancel	button	on	the	dialog	box.	Use	the
DFD	Load	from	File	VI	to	load	the	filter	from	the	file.
start	path	is	the	path	name	to	the	initially	displayed	directory	or
folder	in	the	file	dialog.	The	default	value	is	<Not	A	Path>,	which	is
the	path	to	the	last	directory	or	folder	shown	in	the	file	dialog.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

lvdigfiltdestk.chm::/DFD_Load_from_File.html
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

filter	out	returns	the	filter	in	unchanged.
file	path	out	returns	the	path	to	the	file	to	which	this	VI	saved	the
filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	Save	MRate	Filter	to	File

multirate	filter	in	specifies	the	input	multirate	filter.	You	cannot
specify	a	multistage	multirate	filter	for	this	input.
file	path	in	specifies	the	path	to	the	file	in	which	you	want	to	save
the	multirate	filter.	The	default	file	extension	is	.mfs.	You	can	use
any	other	file	extension	for	the	multirate	file.	If	file	path	in	is	empty
(default)	or	<Not	A	Path>,	this	VI	displays	a	dialog	box	from	which
you	can	select	a	file.	This	VI	returns	an	error	if	you	specify	a	file
path	that	does	not	exist	or	if	you	click	the	Cancel	button	on	the
dialog	box.	Use	the	DFD	Load	from	File	VI	to	load	the	multirate
filter	from	the	file.
start	path	is	the	path	name	to	the	initially	displayed	directory	or
folder	in	the	file	dialog.	The	default	value	is	<Not	A	Path>,	which	is
the	path	to	the	last	directory	or	folder	shown	in	the	file	dialog.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in

lvdfdtconcepts.chm::/mstage_mrate_filt.html
lvdigfiltdestk.chm::/DFD_Load_from_File.html
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

multirate	filter	out	returns	the	multirate	filter	in	unchanged.
file	path	out	returns	the	path	to	the	file	to	which	this	VI	saved	the
multirate	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

Example
Refer	to	the	Save	and	Load	Filter	VI	in	the	labview\examples\Digital	Filter
Design\Getting	Started\Apply	Filters	directory	for	an	example	of	using	the
DFD	Save	to	File	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CGetting%20Started%5C%5CApply%20Filters%5C%5CSave%20and%20Load%20Filter.vi');
javascript:findExamples(10054);

Processing	VIs
Owning	Palette:	Digital	Filter	Design	VIs	and	Functions
Installed	With:	Digital	Filter	Design	Toolkit.	This	topic	might	not	match	its
corresponding	palette	in	LabVIEW	depending	on	your	operating	system,
licensed	product(s),	and	target.
Use	the	Processing	VIs	to	filter	signals	with	digital	filters.
The	VIs	on	this	palette	can	return	general	LabVIEW	error	codes	or
specific	digital	filter	design	error	codes.

Palette
Object Description

DFD
Filtering
with	State

Filters	an	input	signal.	You	must	specify	the	initial	internal
states	in	the	state	in	input	to	generate	an	accurate	output.
Wire	data	to	the	signal	in	input	to	determine	the
polymorphic	instance	to	use	or	manually	select	the
instance.

DFD
Filtering

Filters	an	input	signal	continuously.	Wire	data	to	the	signal
in	input	to	determine	the	polymorphic	instance	to	use	or
manually	select	the	instance.

DFD	Integer
Delay	with
State

Delays	a	signal	by	a	specified	integer	number	of	sample
intervals.	You	must	specify	the	initial	internal	states	in	the
state	in	input	to	generate	an	accurate	output.	Wire	data	to
the	signal	in	input	to	determine	the	polymorphic	instance
to	use	or	manually	select	the	instance.

DFD	Integer
Delay

Delays	a	signal	continuously	by	a	specified	integer	number
of	sample	intervals.	Wire	data	to	the	signal	in	input	to
determine	the	polymorphic	instance	to	use	or	manually
select	the	instance.

DFD
Narrowband
Filtering
with	State

Filters	a	signal	with	a	narrowband	filter.	You	must	specify
the	initial	internal	states	in	state	in	to	generate	an	accurate
output.	Wire	data	to	the	signal	in	input	to	determine	the
polymorphic	instance	to	use	or	manually	select	the
instance.

DFD
Narrowband

Filters	a	signal	continuously	with	a	narrowband	filter.	Wire
data	to	the	signal	in	input	to	determine	the	polymorphic

lvdigfiltdestk.chm::/DFD_VIs.html
lverror.chm::/Misc_LV_Error_Codes.html
lvdigfiltdestk.chm::/DFD_Filtering_State.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
lvdigfiltdestk.chm::/DFD_Filtering.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
lvdigfiltdestk.chm::/DFD_Int_Delay_State.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
lvdigfiltdestk.chm::/DFD_Integer_Delay.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
lvdigfiltdestk.chm::/DFD_Narrow_State.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
lvdigfiltdestk.chm::/DFD_Narrow_Filtering.html

Filtering instance	to	use	or	manually	select	the	instance.

lvhowto.chm::/SelectingDefaultInstPolyVI.html

DFD	Filtering	VI
Owning	Palette:	Processing	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Filters	an	input	signal	continuously.	Wire	data	to	the	signal	in	input	to
determine	the	polymorphic	instance	to	use	or	manually	select	the
instance.
Examples
Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

	Place	on	the	block	diagram 	Find	on	the	Functions	palette

lvdigfiltdestk.chm::/DFD_Processing_VIs.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
javascript:placeObject(object2867);
javascript:findObject(object2867);

DFD	Filtering	(PtByPt)

init?	controls	the	initialization	of	internal	states.	The	default	is
FALSE,	in	which	this	VI	initializes	internal	states	from	the	final
states	of	the	previous	call	to	the	current	VI	instance.	If	you	select
TRUE,	this	VI	initializes	internal	states	to	zero.
signal	in	is	the	input	sample	you	want	to	process.
filter	specifies	the	input	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

signal	out	returns	the	filtered	sample.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	Filtering	(Array)

init?	controls	the	initialization	of	internal	states.	The	default	is
FALSE,	in	which	this	VI	initializes	internal	states	from	the	final
states	of	the	previous	call	to	the	current	VI	instance.	If	you	select
TRUE,	this	VI	initializes	internal	states	to	zero.
signal	in	specifies	the	input	array	of	single-channel	samples	you
want	to	process.
filter	specifies	the	input	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

signal	out	returns	an	array	of	filtered	single-channel	samples.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	Filtering	(Wfm)

init?	controls	the	initialization	of	internal	states.	The	default	is
FALSE,	in	which	this	VI	initializes	internal	states	from	the	final
states	of	the	previous	call	to	the	current	VI	instance.	If	you	select
TRUE,	this	VI	initializes	internal	states	to	zero.
signal	in	specifies	the	input	waveform	you	want	to	process.
filter	specifies	the	input	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

signal	out	returns	the	filtered	waveform.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	Filtering	(PtByPt	NChan)

init?	controls	the	initialization	of	internal	states.	The	default	is
FALSE,	in	which	this	VI	initializes	internal	states	from	the	final
states	of	the	previous	call	to	the	current	VI	instance.	If	you	select
TRUE,	this	VI	initializes	internal	states	to	zero.
signal	in	is	the	input	array	of	multiple-channel	samples	you	want
to	process.
filter	specifies	the	input	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

signal	out	returns	an	array	of	filtered	multiple-channel	samples.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	Filtering	(Array	NChan)

init?	controls	the	initialization	of	internal	states.	The	default	is
FALSE,	in	which	this	VI	initializes	internal	states	from	the	final
states	of	the	previous	call	to	the	current	VI	instance.	If	you	select
TRUE,	this	VI	initializes	internal	states	to	zero.
signal	in	is	the	input	array	of	multiple-channel	samples	you	want
to	process.	Each	element	in	the	first	dimension	of	the	array
corresponds	to	a	channel.	Each	element	in	the	second	dimension
of	the	array	corresponds	to	a	sample	from	each	channel.
filter	specifies	the	input	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

signal	out	returns	an	array	of	filtered	multiple-channel	samples.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

Each	element	in	the	first	dimension	of	the	array	corresponds	to	a
channel.	Each	element	in	the	second	dimension	of	the	array
corresponds	to	a	sample	from	each	channel.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	Filtering	(Wfm	NChan)

init?	controls	the	initialization	of	internal	states.	The	default	is
FALSE,	in	which	this	VI	initializes	internal	states	from	the	final
states	of	the	previous	call	to	the	current	VI	instance.	If	you	select
TRUE,	this	VI	initializes	internal	states	to	zero.
signal	in	is	the	input	array	of	multiple-channel	waveforms	you
want	to	process.
filter	specifies	the	input	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

signal	out	returns	an	array	of	filtered	multiple-channel	waveforms.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

Examples
Refer	to	the	following	VIs	for	examples	of	using	the	DFD	Filtering	VI:

Online	Filtering	-	DFD	VI:	labview\examples\Digital	Filter
Design\AALXMPL
	Open	example	 	Browse	related	examples
Train	Wheel	PtByPt	-	DFD	VI:	labview\examples\Digital	Filter
Design\AALXMPL
	Open	example	 	Browse	related	examples
Filtering	VI:	labview\examples\Digital	Filter	Design\Getting
Started\Apply	Filters
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CAALXMPL%5C%5COnline%20Filtering%20-%20DFD.vi');
javascript:findExamples(3742);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CAALXMPL%5C%5CTrain%20Wheel%20PtByPt%20-%20DFD.vi');
javascript:findExamples(3742);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CGetting%20Started%5C%5CApply%20Filters%5C%5CFiltering.vi');
javascript:findExamples(10054);

DFD	Filtering	with	State	VI
Owning	Palette:	Processing	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Filters	an	input	signal.	You	must	specify	the	initial	internal	states	in	the
state	in	input	to	generate	an	accurate	output.	Wire	data	to	the	signal	in
input	to	determine	the	polymorphic	instance	to	use	or	manually	select	the
instance.
Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

	Place	on	the	block	diagram 	Find	on	the	Functions	palette

lvdigfiltdestk.chm::/DFD_Processing_VIs.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
javascript:placeObject(object2868);
javascript:findObject(object2868);

DFD	Filtering	with	State	(PtByPt)

signal	in	is	the	input	sample	you	want	to	process.
filter	specifies	the	input	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

state	in	specifies	the	initial	internal	states	before	processing.
signal	out	returns	the	filtered	sample.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

state	out	returns	the	internal	states	after	processing.	You	can	wire
this	output	to	the	state	in	input	of	the	next	call	to	this	VI	if	you	want
to	process	data	continuously.

lverror.chm::/Error_Code_Ranges.html

DFD	Filtering	with	State	(Array)

signal	in	specifies	the	input	array	of	single-channel	samples	you
want	to	process.
filter	specifies	the	input	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

state	in	specifies	the	initial	internal	states	before	processing.
signal	out	returns	an	array	of	filtered	single-channel	samples.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

for	more	information	about	the	error.
status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

state	out	returns	the	internal	states	after	processing.	You	can	wire
this	output	to	the	state	in	input	of	the	next	call	to	this	VI	if	you	want
to	process	data	continuously.

lverror.chm::/Error_Code_Ranges.html

DFD	Filtering	with	State	(Wfm)

signal	in	specifies	the	input	waveform	you	want	to	process.
filter	specifies	the	input	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

state	in	specifies	the	initial	internal	states	before	processing.
signal	out	returns	the	filtered	waveform.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

state	out	returns	the	internal	states	after	processing.	You	can	wire
this	output	to	the	state	in	input	of	the	next	call	to	this	VI	if	you	want
to	process	data	continuously.

lverror.chm::/Error_Code_Ranges.html

DFD	Integer	Delay	VI
Owning	Palette:	Processing	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Delays	a	signal	continuously	by	a	specified	integer	number	of	sample
intervals.	Wire	data	to	the	signal	in	input	to	determine	the	polymorphic
instance	to	use	or	manually	select	the	instance.
Example
Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

	Place	on	the	block	diagram 	Find	on	the	Functions	palette

lvdigfiltdestk.chm::/DFD_Processing_VIs.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
javascript:placeObject(object2869);
javascript:findObject(object2869);

DFD	Integer	Delay	(PtByPt)

init?	controls	the	initialization	of	internal	states.	The	default	is
FALSE,	in	which	this	VI	initializes	internal	states	from	the	final
states	of	the	previous	call	to	the	current	VI	instance.	If	you	select
TRUE,	this	VI	initializes	internal	states	to	zero.
signal	in	is	the	input	sample	you	want	to	process.
delay	specifies	the	number	of	samples	by	which	you	want	to	delay
the	input	signal.	The	default	is	1.	The	value	of	delay	must	be
greater	than	or	equal	to	zero.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

signal	out	returns	the	delayed	sample.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	Integer	Delay	(Array)

init?	controls	the	initialization	of	internal	states.	The	default	is
FALSE,	in	which	this	VI	initializes	internal	states	from	the	final
states	of	the	previous	call	to	the	current	VI	instance.	If	you	select
TRUE,	this	VI	initializes	internal	states	to	zero.
signal	in	specifies	the	input	array	of	single-channel	samples	you
want	to	process.
delay	specifies	the	number	of	samples	by	which	you	want	to	delay
the	input	signal.	The	default	is	1.	The	value	of	delay	must	be
greater	than	or	equal	to	zero.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

signal	out	returns	an	array	of	delayed	single-channel	samples.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	Integer	Delay	(Wfm)

init?	controls	the	initialization	of	internal	states.	The	default	is
FALSE,	in	which	this	VI	initializes	internal	states	from	the	final
states	of	the	previous	call	to	the	current	VI	instance.	If	you	select
TRUE,	this	VI	initializes	internal	states	to	zero.
signal	in	specifies	the	input	waveform	you	want	to	process.
delay	specifies	the	number	of	samples	by	which	you	want	to	delay
the	input	signal.	The	default	is	1.	The	value	of	delay	must	be
greater	than	or	equal	to	zero.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

signal	out	contains	the	delayed	waveform.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	Integer	Delay	(PtByPt	NChan)

init?	controls	the	initialization	of	internal	states.	The	default	is
FALSE,	in	which	this	VI	initializes	internal	states	from	the	final
states	of	the	previous	call	to	the	current	VI	instance.	If	you	select
TRUE,	this	VI	initializes	internal	states	to	zero.
signal	in	is	the	input	array	of	multiple-channel	samples	you	want
to	process.
delay	specifies	the	number	of	samples	by	which	you	want	to	delay
the	input	signal.	The	default	is	1.	The	value	of	delay	must	be
greater	than	or	equal	to	zero.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

signal	out	returns	an	array	of	delayed	multiple-channel	samples.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

Each	element	in	the	first	dimension	of	the	array	corresponds	to	a
channel.	Each	element	in	the	second	dimension	of	the	array
corresponds	to	a	sample	from	each	channel.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	Integer	Delay	(Array	NChan)

init?	controls	the	initialization	of	internal	states.	The	default	is
FALSE,	in	which	this	VI	initializes	internal	states	from	the	final
states	of	the	previous	call	to	the	current	VI	instance.	If	you	select
TRUE,	this	VI	initializes	internal	states	to	zero.
signal	in	is	the	input	array	of	multiple-channel	samples	you	want
to	process.	Each	element	in	the	first	dimension	of	the	array
corresponds	to	a	channel.	Each	element	in	the	second	dimension
of	the	array	corresponds	to	a	sample	from	each	channel.
delay	specifies	the	number	of	samples	by	which	you	want	to	delay
the	input	signal.	The	default	is	1.	The	value	of	delay	must	be
greater	than	or	equal	to	zero.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

signal	out	returns	an	array	of	delayed	multiple-channel	samples.
Each	element	in	the	first	dimension	of	the	array	corresponds	to	a
channel.	Each	element	in	the	second	dimension	of	the	array
corresponds	to	a	sample	from	each	channel.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	Integer	Delay	(Wfm	NChan)

init?	controls	the	initialization	of	internal	states.	The	default	is
FALSE,	in	which	this	VI	initializes	internal	states	from	the	final
states	of	the	previous	call	to	the	current	VI	instance.	If	you	select
TRUE,	this	VI	initializes	internal	states	to	zero.
signal	in	is	the	input	array	of	multiple-channel	waveforms	you
want	to	process.
delay	specifies	the	number	of	samples	by	which	you	want	to	delay
the	input	signal.	The	default	is	1.	The	value	of	delay	must	be
greater	than	or	equal	to	zero.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

signal	out	returns	an	array	of	delayed	multiple-channel

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

waveforms.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

Example
Refer	to	the	Delay	Signal	VI	in	the	labview\examples\Digital	Filter
Design\Getting	Started\Apply	Filters	directory	for	an	example	of	using	the
DFD	Integer	Delay	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CGetting%20Started%5C%5CApply%20Filters%5C%5CDelay%20Signal.vi');
javascript:findExamples(10054);

DFD	Integer	Delay	with	State	VI
Owning	Palette:	Processing	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Delays	a	signal	by	a	specified	integer	number	of	sample	intervals.	You
must	specify	the	initial	internal	states	in	the	state	in	input	to	generate	an
accurate	output.	Wire	data	to	the	signal	in	input	to	determine	the
polymorphic	instance	to	use	or	manually	select	the	instance.
Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

	Place	on	the	block	diagram 	Find	on	the	Functions	palette

lvdigfiltdestk.chm::/DFD_Processing_VIs.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
javascript:placeObject(object2870);
javascript:findObject(object2870);

DFD	Integer	Delay	with	State	(PtByPt)

signal	in	is	the	input	sample	you	want	to	process.
delay	specifies	the	number	of	samples	by	which	you	want	to	delay
the	input	signal.	The	default	is	1.	The	value	of	delay	must	be
greater	than	or	equal	to	zero.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

state	in	specifies	the	initial	internal	states	before	processing.
signal	out	returns	the	delayed	sample.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

state	out	returns	the	internal	states	after	processing.	You	can	wire
this	output	to	the	state	in	input	of	the	next	call	to	this	VI	if	you	want
to	process	data	continuously.

lverror.chm::/Error_Code_Ranges.html

DFD	Integer	Delay	with	State	(Array)

signal	in	specifies	the	input	array	of	single-channel	samples	you
want	to	process.
delay	specifies	the	number	of	samples	by	which	you	want	to	delay
the	input	signal.	The	default	is	1.	The	value	of	delay	must	be
greater	than	or	equal	to	zero.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

state	in	specifies	the	initial	internal	states	before	processing.
signal	out	returns	an	array	of	delayed	single-channel	samples.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

state	out	returns	the	internal	states	after	processing.	You	can	wire
this	output	to	the	state	in	input	of	the	next	call	to	this	VI	if	you	want
to	process	data	continuously.

lverror.chm::/Error_Code_Ranges.html

DFD	Integer	Delay	with	State	(Wfm)

signal	in	specifies	the	input	waveform	you	want	to	process.
delay	specifies	the	number	of	samples	by	which	you	want	to	delay
the	input	signal.	The	default	is	1.	The	value	of	delay	must	be
greater	than	or	equal	to	zero.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

state	in	specifies	the	initial	internal	states	before	processing.
signal	out	contains	the	delayed	waveform.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

state	out	returns	the	internal	states	after	processing.	You	can	wire
this	output	to	the	state	in	input	of	the	next	call	to	this	VI	if	you	want
to	process	data	continuously.

lverror.chm::/Error_Code_Ranges.html

DFD	Narrowband	Filtering	VI
Owning	Palette:	Processing	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Filters	a	signal	continuously	with	a	narrowband	filter.	Wire	data	to	the
signal	in	input	to	determine	the	polymorphic	instance	to	use	or	manually
select	the	instance.
Example
Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

	Place	on	the	block	diagram 	Find	on	the	Functions	palette

lvdigfiltdestk.chm::/DFD_Processing_VIs.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
javascript:placeObject(object2871);
javascript:findObject(object2871);

DFD	Narrowband	Filtering	(Array)

init?	controls	the	initialization	of	internal	states.	The	default	is
FALSE,	in	which	this	VI	initializes	internal	states	from	the	final
states	of	the	previous	call	to	the	current	VI	instance.	If	you	select
TRUE,	this	VI	initializes	internal	states	to	zero.
signal	in	specifies	the	input	array	of	single-channel	samples	you
want	to	process.
narrowband	filter	contains	the	narrowband	filter.

multirate	filters	contains	the	multirate	filters	this	VI	uses	to
construct	the	narrowband	filter.
filter	type	contains	the	type	of	filter.	

0 Lowpass	(default)
1 Highpass
2 Bandpass
3 Bandstop
4 Wideband-Lowpass
5 Wideband-Highpass

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or

lvdfdtconcepts.chm::/dfd_filter_spec.html
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html

that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

signal	out	returns	an	array	of	filtered	single-channel	samples.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html
lverror.chm::/Error_Code_Ranges.html

DFD	Narrowband	Filtering	(Wfm)

init?	controls	the	initialization	of	internal	states.	The	default	is
FALSE,	in	which	this	VI	initializes	internal	states	from	the	final
states	of	the	previous	call	to	the	current	VI	instance.	If	you	select
TRUE,	this	VI	initializes	internal	states	to	zero.
signal	in	specifies	the	input	waveform	you	want	to	process.
narrowband	filter	contains	the	narrowband	filter.

multirate	filters	contains	the	multirate	filters	this	VI	uses	to
construct	the	narrowband	filter.
filter	type	contains	the	type	of	filter.	

0 Lowpass	(default)
1 Highpass
2 Bandpass
3 Bandstop
4 Wideband-Lowpass
5 Wideband-Highpass

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The

lvdfdtconcepts.chm::/dfd_filter_spec.html
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html

default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

signal	out	returns	the	filtered	waveform.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html
lverror.chm::/Error_Code_Ranges.html

Example
Refer	to	the	Narrowband	Filter	Design	and	Processing	VI	in	the
labview\examples\Digital	Filter	Design\Floating-Point	Filters\Multirate
directory	for	an	example	of	using	the	DFD	Narrowband	Filtering	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFloating-Point%20Filters%5C%5CMultirate%5C%5CNarrowband%20Filter%20Design%20and%20Processing.vi');
javascript:findExamples(10071);

DFD	Narrowband	Filtering	with	State	VI
Owning	Palette:	Processing	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Filters	a	signal	with	a	narrowband	filter.	You	must	specify	the	initial
internal	states	in	state	in	to	generate	an	accurate	output.	Wire	data	to
the	signal	in	input	to	determine	the	polymorphic	instance	to	use	or
manually	select	the	instance.
Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

	Place	on	the	block	diagram 	Find	on	the	Functions	palette

lvdigfiltdestk.chm::/DFD_Processing_VIs.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
javascript:placeObject(object2872);
javascript:findObject(object2872);

DFD	Narrowband	Filtering	with	State	(Array)

signal	in	specifies	the	input	array	of	single-channel	samples	you
want	to	process.
narrowband	filter	contains	the	narrowband	filter.

multirate	filters	contains	the	multirate	filters	this	VI	uses	to
construct	the	narrowband	filter.
filter	type	contains	the	type	of	filter.	

0 Lowpass	(default)
1 Highpass
2 Bandpass
3 Bandstop
4 Wideband-Lowpass
5 Wideband-Highpass

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,

lvdfdtconcepts.chm::/dfd_filter_spec.html
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

state	in	specifies	the	initial	internal	states	before	filtering.
state	specifies	the	internal	states	of	one	filter	within
narrowband	filter.

signal	out	returns	an	array	of	filtered	single-channel	samples.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

state	out	returns	the	internal	states	after	filtering.	You	can	wire	this
output	to	the	state	in	input	of	another	call	to	this	VI	if	you	want	to
process	data	continuously.

state	returns	the	internal	states	of	one	filter	in	narrowband
filter	after	filtering.

lverror.chm::/Error_Code_Ranges.html

DFD	Narrowband	Filtering	with	State	(Wfm)

signal	in	specifies	the	input	waveform	you	want	to	process.
narrowband	filter	contains	the	narrowband	filter.

multirate	filters	contains	the	multirate	filters	this	VI	uses	to
construct	the	narrowband	filter.
filter	type	contains	the	type	of	filter.	

0 Lowpass	(default)
1 Highpass
2 Bandpass
3 Bandstop
4 Wideband-Lowpass
5 Wideband-Highpass

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.

lvdfdtconcepts.chm::/dfd_filter_spec.html
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

state	in	specifies	the	initial	internal	states	before	filtering.
state	specifies	the	internal	states	of	one	filter	within
narrowband	filter.

signal	out	returns	the	filtered	waveform.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

state	out	returns	the	internal	states	after	filtering.	You	can	wire	this
output	to	the	state	in	input	of	another	call	to	this	VI	if	you	want	to
process	data	continuously.

state	returns	the	internal	states	of	one	filter	in	narrowband
filter	after	filtering.

lverror.chm::/Error_Code_Ranges.html

Utilities	VIs
Owning	Palette:	Digital	Filter	Design	VIs	and	Functions
Installed	With:	Digital	Filter	Design	Toolkit.	This	topic	might	not	match	its
corresponding	palette	in	LabVIEW	depending	on	your	operating	system,
licensed	product(s),	and	target.
Use	the	Utilities	VIs	to	retrieve	the	filter	coefficients	and	and	to	create
filters	from	the	coefficients.
The	VIs	on	this	palette	can	return	general	LabVIEW	error	codes	or
specific	digital	filter	design	error	codes.

Palette
Object Description

DFD	Build
Filter	from
Cascaded
Coef

Converts	the	IIR	Filter	Cluster	output	of	the	Advanced	IIR
Filtering	VIs	into	a	filter.

DFD	Build
Filter	from
Lattice	Coef

Creates	a	filter	from	lattice	form	coefficients.

DFD	Build
Filter	from
Transfer
Function

Creates	a	filter	from	a	transfer	function.

DFD	Build
Filter	from
Zero-Pole-
Gain

Builds	a	filter	using	poles,	zeroes,	and	gain	values.

DFD	Get
Cascaded
Coef

Converts	a	filter	to	an	infinite	impulse	response	(IIR)	filter
cluster	that	is	compatible	with	the	IIR	Filter	Cluster	output
in	the	Advanced	IIR	Filtering	VIs.

DFD	Get
Lattice	Coef

Retrieves	the	lattice	form	coefficients	of	a	filter.	The	filter
you	specify	must	have	a	lattice	form	filter	structure.

DFD	Get
Order

Retrieves	the	order	of	a	filter.

lvdigfiltdestk.chm::/DFD_VIs.html
lverror.chm::/Misc_LV_Error_Codes.html
lvdigfiltdestk.chm::/DFD_Cascad_Coef.html
lvanls.chm::/Advanced_IIR_Filtering.html
lvdigfiltdestk.chm::/DFD_Lattice_Coef.html
lvdigfiltdestk.chm::/DFD_Build_from_TF.html
lvdigfiltdestk.chm::/DFD_Build_from_ZPK.html
lvdigfiltdestk.chm::/DFD_Get_Cas_Coef.html
lvanls.chm::/Advanced_IIR_Filtering.html
lvdigfiltdestk.chm::/DFD_Get_Lattice_Coef.html
lvdigfiltdestk.chm::/DFD_Get_Order.html

DFD	Get
Transfer
Function

Retrieves	the	transfer	function	of	a	filter.

DFD	Get
Zero-Pole-
Gain

Retrieves	the	zeroes,	poles,	and	gain	(ZPK)	of	a	filter.

DFD	Load
from	File

Retrieves	a	filter	from	a	file.	You	must	manually	select	the
polymorphic	instance	you	want	to	use.

DFD	Load
from	Text
File

Retrieves	a	filter	from	a	text	file.

DFD
Render
Difference
Equation

Draws	the	difference	equation	of	a	filter	in	a	picture
indicator.

DFD
Render
Transfer
Function
Equation

Draws	the	transfer	function	of	a	filter	in	a	picture	indicator.

DFD
Render
Zero-Pole-
Gain
Equation

Draws	the	zero-pole-gain	equation	of	a	filter	in	a	picture
indicator.

DFD	Save
to	File

Saves	a	filter	into	a	file.	Wire	data	to	the	filter	in	input	to
determine	the	polymorphic	instance	to	use	or	manually
select	the	instance.	Use	the	DFD	Load	from	File	VI	to	load
the	filter	from	the	file.

DFD	Save
to	Text	File

Saves	a	filter	to	a	text	file	in	XML	format.

lvdigfiltdestk.chm::/DFD_Get_TF.html
lvdigfiltdestk.chm::/DFD_Get_ZPK.html
lvdigfiltdestk.chm::/DFD_Load_from_File.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
lvdigfiltdestk.chm::/DFD_Load_Filter.html
lvdigfiltdestk.chm::/DFD_Render_Diff_Equ.html
lvconcepts.chm::/Using_the_Picture_Indicator.html
lvdigfiltdestk.chm::/DFD_Render_TF.html
lvconcepts.chm::/Using_the_Picture_Indicator.html
lvdigfiltdestk.chm::/DFD_Render_ZPK.html
lvconcepts.chm::/Using_the_Picture_Indicator.html
lvdigfiltdestk.chm::/DFD_Save_to_File.html
lvhowto.chm::/SelectingDefaultInstPolyVI.html
lvdigfiltdestk.chm::/DFD_Load_from_File.html
lvdigfiltdestk.chm::/DFD_Save_to_Text.html

DFD	Build	Filter	from	Cascaded	Coef	VI
Owning	Palette:	Utilities	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Converts	the	IIR	Filter	Cluster	output	of	the	Advanced	IIR	Filtering	VIs
into	a	filter.
Example

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
IIR	Filter	Cluster	specifies	the	cascaded	form	of	the	IIR	filter
coefficients.	This	cluster	is	the	output	from	one	of	the	IIR
coefficient	design	VIs:	Butterworth	Coefficients,	Bessel
Coefficients,	Chebyshev	Coefficients,	Elliptic	Coefficients,	or	Inv
Chebyshev	Coefficients.

filter	structure	selects	IIR	second-order	or	fourth-order
filter	stages.
Reverse	Coefficients	is	the	reverse	coefficients	of	the	IIR
cascade	filter.
Forward	Coefficients	is	the	forward	coefficients	of	the	IIR
cascade	filter.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The

lvdigfiltdestk.chm::/DFD_Utilities_VIs.html
lvanls.chm::/Advanced_IIR_Filtering.html
javascript:placeObject(object2917);
javascript:findObject(object2917);
lvanls.chm::/Butterworth_Coefficients.html
lvanls.chm::/Bessel_Coefficients.html
lvanls.chm::/Chebyshev_Coefficients.html
lvanls.chm::/Elliptic_Coefficients.html
lvanls.chm::/Inv_Chebyshev_Coefficients.html
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html

default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

filter	out	returns	a	new	filter.
error	out	contains	error	information	corresponding	to	the	error
code.	Right-click	the	error	out	indicator	on	the	front	panel	and
select	Explain	Error	or	Explain	Warning	from	the	shortcut	menu
for	more	information	about	the	error	or	warning.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html
lverror.chm::/Error_Code_Ranges.html

Example
Refer	to	the	Create	IIR	Filter	from	Cascaded	Coefficients	VI	in	the
labview\examples\Digital	Filter	Design\Getting	Started\Design	Filters	directory
for	an	example	of	using	the	DFD	Build	Filter	from	Cascaded	Coef	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CGetting%20Started%5C%5CDesign%20Filters%5C%5CCreate%20IIR%20Filter%20from%20Cascaded%20Coefficients.vi');
javascript:findExamples(10056);

DFD	Build	Filter	from	Lattice	Coef	VI
Owning	Palette:	Utilities	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Creates	a	filter	from	lattice	form	coefficients.
Example

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
lattice	coef	specifies	the	lattice	form	coefficients	this	VI	uses	to
create	the	filter.

structure	type	specifies	the	structure	of	the	filter.	

13 Lattice	Allpass	(basic	sections)
14 Lattice	Allpass	(one	multiplier	sections)
15 Lattice	Allpass	(normalized	sections)
16 Lattice	AR	(basic	sections)
17 Lattice	AR	(one	multiplier	sections)
18 Lattice	AR	(normalized	sections)
19 Lattice	MA	(minimum	phase)
20 Lattice	MA	(maximum	phase)
21 Lattice	ARMA	(basic	sections)	(default)
22 Lattice	ARMA	(one	multiplier	sections)
23 Lattice	ARMA	(normalized	sections)

reflection	coefficients	specifies	the	lattice	reflection
coefficients	of	the	filter.
ladder	coefficients	specifies	the	lattice	ladder	coefficients
of	the	filter.
gain	specifies	the	lattice	gain.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before

lvdigfiltdestk.chm::/DFD_Utilities_VIs.html
javascript:placeObject(object2919);
javascript:findObject(object2919);
lvdfdtconcepts.chm::/select_structure.html

this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

filter	out	returns	a	new	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html
lverror.chm::/Error_Code_Ranges.html

Example
Refer	to	the	Create	Filter	from	Lattice	Coefficients	VI	in	the
labview\examples\Digital	Filter	Design\Getting	Started\Design	Filters	directory
for	an	example	of	using	the	DFD	Build	Filter	from	Lattice	Coef	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CGetting%20Started%5C%5CDesign%20Filters%5C%5CCreate%20Filter%20from%20Lattice%20Coefficients.vi');
javascript:findExamples(10056);

DFD	Build	Filter	from	Transfer	Function	VI
Owning	Palette:	Utilities	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Creates	a	filter	from	a	transfer	function.
Details		Examples

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
numerator	specifies	the	numerator	polynomial	of	the	transfer
function	in	ascending	order	of	z^–1.
denominator	specifies	the	denominator	polynomial	of	the	transfer
function	in	ascending	order	of	z^–1.	The	default	is	1,	which	means
this	VI	builds	an	FIR	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

lvdigfiltdestk.chm::/DFD_Utilities_VIs.html
javascript:placeObject(object2914);
javascript:findObject(object2914);
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

filter	out	returns	a	new	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	Build	Filter	from	Transfer	Function	Details
The	transfer	function	of	a	filter	is	defined	by	the	following	equation:

where z	is	a	complex	variable
b	is	the	set	of	coefficients	of	the	numerator	polynomial,	also
known	as	the	forward	coefficients
a	is	the	set	of	coefficients	of	the	denominator	polynomial,	also
known	as	the	reverse	coefficients
N	is	the	numerator	order
M	is	the	denominator	order

The	default	value	of	denominator	is	1.00,	which	means	this	VI	builds	an
FIR	filter.

Examples
Refer	to	the	following	VIs	for	examples	of	using	the	DFD	Build	Filter	from
Transfer	Function	VI:

Build	an	Exponentially	Weighted	Moving	Average	Filter	VI:
labview\examples\Digital	Filter	Design\Getting	Started\Design	Filters
	Open	example	 	Browse	related	examples
Create	Filter	from	Transfer	Function	VI:	labview\examples\Digital
Filter	Design\Getting	Started\Design	Filters
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CGetting%20Started%5C%5CDesign%20Filters%5C%5CBuild%20an%20Exponentially%20Weighted%20Moving%20Average%20Filter.vi');
javascript:findExamples(10056);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CGetting%20Started%5C%5CDesign%20Filters%5C%5CCreate%20Filter%20from%20Transfer%20Function.vi');
javascript:findExamples(10056);

DFD	Build	Filter	from	Zero-Pole-Gain	VI
Owning	Palette:	Utilities	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Builds	a	filter	using	poles,	zeroes,	and	gain	values.
Details		Example

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
gain	specifies	the	gain	this	VI	uses	to	create	the	filter	in	linear
units.
zeroes	specifies	the	zeroes	this	VI	uses	to	create	the	filter.
poles	specifies	the	poles	this	VI	uses	to	create	the	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

lvdigfiltdestk.chm::/DFD_Utilities_VIs.html
javascript:placeObject(object2922);
javascript:findObject(object2922);
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

filter	out	returns	a	new	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	Build	Filter	from	Zero-Pole-Gain	Details
The	filter	that	the	filter	out	returns	represents	the	transfer	function	H(z),
expressed	by

where	z	is	a	complex	variable,	zk	is	a	zero,	and	pk	is	a	pole.	N	is	the
numerator	order	and	M	is	the	denominator	order.
The	poles	of	a	stable	filter	must	remain	inside	the	unit	circle.

Example
Refer	to	the	Create	Filter	from	Zero-Pole-Gain	VI	in	the
labview\examples\Digital	Filter	Design\Getting	Started\Design	Filters	directory
for	an	example	of	using	the	DFD	Build	Filter	from	Zero-Pole-Gain	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CGetting%20Started%5C%5CDesign%20Filters%5C%5CCreate%20Filter%20from%20Zero-Pole-Gain.vi');
javascript:findExamples(10056);

DFD	Get	Cascaded	Coef	VI
Owning	Palette:	Utilities	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Converts	a	filter	to	an	infinite	impulse	response	(IIR)	filter	cluster	that	is
compatible	with	the	IIR	Filter	Cluster	output	in	the	Advanced	IIR	Filtering
VIs.
You	can	wire	the	IIR	Filter	Cluster	output	of	this	VI	to	the	IIR	Filter
Cluster	input	of	the	Advanced	IIR	Filtering	VIs.
Example

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
type	specifies	the	type	of	coefficients	to	retrieve.	

0 FLP	(default)—Specifies	to	retrieve	the	coefficients	of	a
floating-point	filter.	If	filter	in	is	a	fixed-point	filter,	this	VI
retrieves	the	coefficients	of	the	reference	floating-point	filter.

1 FXP—Specifies	to	retrieve	the	coefficients	of	a	fixed-point	filter.
If	filter	in	is	a	floating-point	filter,	this	VI	returns	an	error.

filter	in	specifies	the	input	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or

lvdigfiltdestk.chm::/DFD_Utilities_VIs.html
lvanls.chm::/Advanced_IIR_Filtering.html
javascript:placeObject(object2916);
javascript:findObject(object2916);
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html

function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

filter	out	returns	the	filter	in	unchanged.
IIR	Filter	Cluster	returns	the	cascaded	form	of	the	IIR	filter
coefficients.

filter	structure	indicates	either	IIR	second-order	or	IIR
fourth-order	filter	stages.
Reverse	Coefficients	is	the	reverse	coefficients	of	the	IIR
cascade	filter.
Forward	Coefficients	is	the	forward	coefficients	of	the	IIR
cascade	filter.

gain	returns	the	gain	of	the	filter	in	linear	units.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html
lverror.chm::/Error_Code_Ranges.html

Example
Refer	to	the	Get	Cascaded	Coefficients	of	IIR	Filter	VI	in	the
labview\examples\Digital	Filter	Design\Getting	Started\Analyze	Filters
directory	for	an	example	of	using	the	DFD	Get	Cascaded	Coef	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CGetting%20Started%5C%5CAnalyze%20Filters%5C%5CGet%20Cascaded%20Coefficients%20of%20IIR%20Filter.vi');
javascript:findExamples(10052);

DFD	Get	Lattice	Coef	VI
Owning	Palette:	Utilities	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Retrieves	the	lattice	form	coefficients	of	a	filter.	The	filter	you	specify
must	have	a	lattice	form	filter	structure.
Example

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
type	specifies	the	type	of	coefficients	to	retrieve.	

0 FLP	(default)—Specifies	to	retrieve	the	coefficients	of	a
floating-point	filter.	If	filter	in	is	a	fixed-point	filter,	this	VI
retrieves	the	coefficients	of	the	reference	floating-point	filter.

1 FXP—Specifies	to	retrieve	the	coefficients	of	a	fixed-point	filter.
If	filter	in	is	a	floating-point	filter,	this	VI	returns	an	error.

filter	in	specifies	the	input	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status

lvdigfiltdestk.chm::/DFD_Utilities_VIs.html
javascript:placeObject(object2918);
javascript:findObject(object2918);
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html

is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

filter	out	returns	the	filter	in	unchanged.
lattice	coef	returns	the	lattice	form	coefficients	from	the	filter.

structure	type	returns	the	structure	of	the	filter.
reflection	coefficients	returns	the	lattice	reflection
coefficients	of	the	filter.
ladder	coefficients	returns	the	lattice	ladder	coefficients	of
the	filter.
gain	returns	the	lattice	gain	of	the	filter.

error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html
lverror.chm::/Error_Code_Ranges.html

Example
Refer	to	the	Get	Lattice	Coefficients	of	Filter	VI	in	the
labview\examples\Digital	Filter	Design\Getting	Started\Analyze	Filters
directory	for	an	example	of	using	the	DFD	Get	Lattice	Coef	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CGetting%20Started%5C%5CAnalyze%20Filters%5C%5CGet%20Lattice%20Coefficients%20of%20Filter.vi');
javascript:findExamples(10052);

DFD	Get	Order	VI
Owning	Palette:	Utilities	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Retrieves	the	order	of	a	filter.

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
filter	in	specifies	the	input	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

filter	out	returns	the	filter	in	unchanged.
order	returns	the	filter	order.	For	infinite	impulse	response	(IIR)
filters,	order	is	the	larger	of	the	numerator	and	denominator	order
values.

lvdigfiltdestk.chm::/DFD_Utilities_VIs.html
javascript:placeObject(object3618);
javascript:findObject(object3618);
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

DFD	Get	Transfer	Function	VI
Owning	Palette:	Utilities	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Retrieves	the	transfer	function	of	a	filter.
Examples

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
type	specifies	the	type	of	transfer	function	to	retrieve.	

0 FLP	(default)—Specifies	to	retrieve	the	transfer	function	of	a
floating-point	filter.	If	filter	in	is	a	fixed-point	filter,	this	VI
retrieves	the	transfer	function	of	the	reference	floating-point
filter.

1 FXP—Specifies	to	retrieve	the	transfer	function	of	a	fixed-point
filter.	If	filter	in	is	a	floating-point	filter,	this	VI	returns	an	error.

filter	in	specifies	the	input	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.

lvdigfiltdestk.chm::/DFD_Utilities_VIs.html
javascript:placeObject(object2913);
javascript:findObject(object2913);
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html

code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

filter	out	returns	the	filter	in	unchanged.
numerator	returns	the	numerator	polynomial	of	the	transfer
function	in	ascending	order	of	z^–1.
denominator	returns	the	denominator	polynomial	of	the	transfer
function	in	ascending	order	of	z^–1.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html
lverror.chm::/Error_Code_Ranges.html

Examples
Refer	to	the	following	VIs	for	examples	of	using	the	DFD	Get	Transfer
Function	VI:

Get	Integer	Coef	of	Fixed-Point	FIR	Filter	VI:
labview\examples\Digital	Filter	Design\Fixed-Point	Filters\Single-Rate
	Open	example	 	Browse	related	examples
Get	Transfer	Function	of	Filter	VI:	labview\examples\Digital	Filter
Design\Getting	Started\Analyze	Filters
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFixed-Point%20Filters%5C%5CSingle-Rate%5C%5CGet%20Integer%20Coef%20of%20Fixed-Point%20FIR%20Filter.vi');
javascript:findExamples(10063);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CGetting%20Started%5C%5CAnalyze%20Filters%5C%5CGet%20Transfer%20Function%20of%20Filter.vi');
javascript:findExamples(10052);

DFD	Get	Zero-Pole-Gain	VI
Owning	Palette:	Utilities	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Retrieves	the	zeroes,	poles,	and	gain	(ZPK)	of	a	filter.
Example

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
type	specifies	the	type	of	zero-pole-gain	(ZPK)	coefficients	to
retrieve.	

0 FLP	(default)—Specifies	to	retrieve	the	coefficients	of	a
floating-point	filter.	If	filter	in	is	a	fixed-point	filter,	this	VI
retrieves	the	coefficients	of	the	reference	floating-point	filter.

1 FXP—Specifies	to	retrieve	the	coefficients	of	a	fixed-point	filter.
If	filter	in	is	a	floating-point	filter,	this	VI	returns	an	error.

filter	in	specifies	the	input	filter.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.

lvdigfiltdestk.chm::/DFD_Utilities_VIs.html
javascript:placeObject(object2921);
javascript:findObject(object2921);
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html

code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

gain	returns	the	gain	of	the	filter	in	linear	units.
filter	out	returns	the	filter	in	unchanged.
zeroes	returns	the	zeroes	of	the	filter.
poles	returns	the	poles	of	the	filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html
lverror.chm::/Error_Code_Ranges.html

Example
Refer	to	the	Get	Zero-Pole-Gain	of	Filter	VI	in	the	labview\examples\Digital
Filter	Design\Getting	Started\Analyze	Filters	directory	for	an	example	of
using	the	DFD	Get	Zero-Pole-Gain	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CGetting%20Started%5C%5CAnalyze%20Filters%5C%5CGet%20Zero-Pole-Gain%20of%20Filter.vi');
javascript:findExamples(10052);

DFD	Load	from	Text	File	VI
Owning	Palette:	Utilities	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Retrieves	a	filter	from	a	text	file.

Note		This	VI	uses	periods	as	the	decimal	points	in	the	coefficients
values.

Example

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
load	type	specifies	whether	to	load	a	filter	from	the	coefficients	or
from	the	zeroes,	poles,	and	gain.	

0 From	Coefficients	(default)—Loads	the	filter	from	the	filter
coefficients.

1 From	Zero-Pole-Gain—Loads	the	filter	from	the	zeroes,	poles,
and	gain.	For	a	filter	with	a	finite	impulse	response	(FIR)
symmetric	or	antisymmetric	structure,	if	you	saved	the	filter	to	a
text	file	by	using	the	DFD	Save	to	Text	File	VI	and	then	load	the
filter	from	the	text	file	by	using	the	DFD	Load	from	Text	File	VI,
the	new	filter	coefficients	might	not	be	exactly	the	same	as	the
original	filter	coefficients	because	of	the	numeric	errors
occurred	during	the	conversion	between	the	filter	coefficients
and	zero-pole-gain	values.

file	path	in	specifies	the	path	to	the	file.	If	file	path	in	is	empty
(default)	or	<Not	A	Path>,	this	VI	displays	the	Select	File	Path
dialog	box	from	which	you	can	select	a	file.	This	VI	returns	an	error
if	you	specify	a	file	path	that	does	not	exist	or	if	you	click	the
Cancel	button	on	the	dialog	box.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while

lvdigfiltdestk.chm::/DFD_Utilities_VIs.html
javascript:placeObject(object3619);
javascript:findObject(object3619);
lvdfdtconcepts.chm::/FIR_Filter_Specs.html
lvdigfiltdestk.chm::/DFD_Save_to_Text.html

this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

filter	out	returns	the	filter	you	loaded	from	the	text	file.
file	path	out	returns	the	path	to	the	file	to	which	this	VI	saved	the
filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html
lverror.chm::/Error_Code_Ranges.html

Example
Refer	to	the	Save	and	Load	Filter	to	and	from	Text	File	VI	in	the
labview\examples\Digital	Filter	Design\Getting	Started\Apply	Filters	directory
for	an	example	of	using	the	DFD	Load	from	Text	File	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CGetting%20Started%5C%5CApply%20Filters%5C%5CSave%20and%20Load%20Filter%20to%20and%20from%20Text%20File.vi');
javascript:findExamples(10054);

DFD	Render	Difference	Equation	VI
Owning	Palette:	Utilities	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Draws	the	difference	equation	of	a	filter	in	a	picture	indicator.
Example

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
coefficients	format	specifies	how	this	VI	converts	the	filter
coefficients	into	a	string.
type	specifies	the	type	of	difference	equation	to	draw.	

0 FLP	(default)—Specifies	to	draw	the	difference	equation	of	a
floating-point	filter.	If	filter	in	is	a	fixed-point	filter,	this	VI	draws
the	difference	equation	of	the	reference	floating-point	filter.

1 FXP—Specifies	to	draw	the	difference	equation	of	a	fixed-point
filter.	If	filter	in	is	a	floating-point	filter,	this	VI	returns	an	error.

filter	in	specifies	the	input	filter.
origin	specifies	the	upper-left-hand	position	of	the	difference
equation	this	VI	draws.

left	specifies	the	horizontal	coordinate	that	increases	to	the
right.	The	default	is	10.
top	specifies	the	vertical	coordinate	that	increases	to	the
bottom.	The	default	is	10.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error

lvdigfiltdestk.chm::/DFD_Utilities_VIs.html
lvconcepts.chm::/Using_the_Picture_Indicator.html
javascript:placeObject(object3631);
javascript:findObject(object3631);
lvconcepts.chm::/Format_Specifier_Syntax.html

status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

display	format	specifies	the	format	in	which	this	VI	displays	the
difference	equation.	

0 Feedback	on	left	and	feedforward	on	right	(default)—
Displays	the	difference	equation	with	the	feedback	on	the	left
side	of	the	equation	and	the	feedforward	on	the	right	side	of	the
equation.

1 Feedback	and	feedforward	on	right—Displays	the	difference
equation	with	both	feedback	and	feedforward	on	the	right	side
of	the	equation.

2 Feedback	and	feedforward	on	right	in	one	line—Displays
the	difference	equation	with	both	feedback	and	feedforward	on
the	right	side	of	the	equation	in	one	line.

filter	out	returns	the	filter	in	unchanged.
difference	equation	returns	the	difference	equation	of	filter	in	in
a	picture	indicator.
draw	area	size	returns	the	size	of	the	area	in	the	picture	indicator
this	VI	uses	to	draw	the	difference	equation.

width	returns	the	width	of	the	draw	area.
height	returns	the	height	of	the	draw	area.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

Example
Refer	to	the	Filter	Rendering	VI	in	the	labview\examples\Digital	Filter
Design\Getting	Started\Analyze	Filters	directory	for	an	example	of	using	the
DFD	Render	Difference	Equation	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CGetting%20Started%5C%5CAnalyze%20Filters%5C%5CFilter%20Rendering.vi');
javascript:findExamples(10052);

DFD	Render	Transfer	Function	Equation	VI
Owning	Palette:	Utilities	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Draws	the	transfer	function	of	a	filter	in	a	picture	indicator.
Example

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
coefficients	format	specifies	how	this	VI	converts	the	filter
coefficients	into	a	string.
type	specifies	the	type	of	transfer	function	to	draw.	

0 FLP	(default)—Specifies	to	draw	the	transfer	function	of	a
floating-point	filter.	If	filter	in	is	a	fixed-point	filter,	this	VI	draws
the	transfer	function	of	the	reference	floating-point	filter.

1 FXP—Specifies	to	draw	the	transfer	function	of	a	fixed-point
filter.	If	filter	in	is	a	floating-point	filter,	this	VI	returns	an	error.

filter	in	specifies	the	input	filter.
origin	specifies	the	upper-left-hand	position	of	the	transfer	function
this	VI	draws.

left	specifies	the	horizontal	coordinate	that	increases	to	the
right.	The	default	is	10.
top	specifies	the	vertical	coordinate	that	increases	to	the
bottom.	The	default	is	10.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error

lvdigfiltdestk.chm::/DFD_Utilities_VIs.html
lvconcepts.chm::/Using_the_Picture_Indicator.html
javascript:placeObject(object3632);
javascript:findObject(object3632);
lvconcepts.chm::/Format_Specifier_Syntax.html

status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

display	format	specifies	the	format	in	which	this	VI	displays	the
transfer	function.	

0 Expanded	Form	(default)—Displays	the	transfer	function	in
ascending	order	of	power.

1 Second-Order	Sections—Displays	the	transfer	function	in
strict	order	with	two	as	the	highest	order.

filter	out	returns	the	filter	in	unchanged.
transfer	function	returns	the	transfer	function	of	filter	in	in	a
picture	indicator.
draw	area	size	returns	the	size	of	the	area	in	the	picture	indicator
this	VI	uses	to	draw	the	transfer	function.

width	returns	the	width	of	the	draw	area.
height	returns	the	height	of	the	draw	area.

error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

Example
Refer	to	the	Filter	Rendering	VI	in	the	labview\examples\Digital	Filter
Design\Getting	Started\Analyze	Filters	directory	for	an	example	of	using	the
DFD	Render	Transfer	Function	Equation	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CGetting%20Started%5C%5CAnalyze%20Filters%5C%5CFilter%20Rendering.vi');
javascript:findExamples(10052);

DFD	Render	Zero-Pole-Gain	Equation	VI
Owning	Palette:	Utilities	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Draws	the	zero-pole-gain	equation	of	a	filter	in	a	picture	indicator.
Example

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
coefficients	format	specifies	how	this	VI	converts	the	filter
coefficients	into	a	string.
type	specifies	the	type	of	zero-pole-gain	equation	to	draw.	

0 FLP	(default)—Specifies	to	draw	the	zero-pole-gain	equation	of
a	floating-point	filter.	If	filter	in	is	a	fixed-point	filter,	this	VI
draws	the	zero-pole-gain	equation	of	the	reference	floating-
point	filter.

1 FXP—Specifies	to	draw	the	zero-pole-gain	equation	of	a	fixed-
point	filter.	If	filter	in	is	a	floating-point	filter,	this	VI	returns	an
error.

filter	in	specifies	the	input	filter.
origin	specifies	the	upper-left-hand	position	of	the	zero-pole-gain
equation	this	VI	draws.

left	specifies	the	horizontal	coordinate	that	increases	to	the
right.	The	default	is	10.
top	specifies	the	vertical	coordinate	that	increases	to	the
bottom.	The	default	is	10.

error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error

lvdigfiltdestk.chm::/DFD_Utilities_VIs.html
lvconcepts.chm::/Using_the_Picture_Indicator.html
javascript:placeObject(object3633);
javascript:findObject(object3633);
lvconcepts.chm::/Format_Specifier_Syntax.html

occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or
function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

display	format	specifies	the	format	in	which	this	VI	displays	the
zero-pole-gain	equation.	

0 Separated	Roots	(default)—Displays	the	zero-pole-gain
equation	in	the	first-order	form.

1 Combined	Roots—Displays	the	zero-pole-gain	equation	in	the
second-order	form.

filter	out	returns	the	filter	in	unchanged.
zero-pole-gain	equation	returns	the	zero-pole-gain	equation	of
filter	in	in	a	picture	indicator.
draw	area	size	returns	the	size	of	the	area	in	the	picture	indicator
this	VI	uses	to	draw	the	zero-pole-gain	equation.

width	returns	the	width	of	the	draw	area.
height	returns	the	height	of	the	draw	area.

error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front

glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html
lverror.chm::/Error_Code_Ranges.html

panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html

Example
Refer	to	the	Filter	Rendering	VI	in	the	labview\examples\Digital	Filter
Design\Getting	Started\Analyze	Filters	directory	for	an	example	of	using	the
DFD	Render	Zero-Pole-Gain	Equation	VI.
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CGetting%20Started%5C%5CAnalyze%20Filters%5C%5CFilter%20Rendering.vi');
javascript:findExamples(10052);

DFD	Save	to	Text	File	VI
Owning	Palette:	Utilities	VIs
Installed	With:	Digital	Filter	Design	Toolkit
Saves	a	filter	to	a	text	file	in	XML	format.
Use	the	DFD	Load	from	Text	File	VI	to	load	the	filter	from	the	text	file.

Note		This	VI	uses	periods	for	decimal	points	in	the	coefficients
values.

Details		Examples

	Place	on	the	block	diagram 	Find	on	the	Functions	palette
filter	in	specifies	the	input	filter.
file	path	in	specifies	the	path	to	the	file	in	which	you	want	to	save
the	filter.	The	default	file	extension	is	.xml.	You	can	use	any	other
file	extension	for	the	file.	If	file	path	in	is	empty	(default)	or	<Not	A
Path>,	this	VI	displays	a	dialog	box	from	which	you	can	select	a
file.	This	VI	returns	an	error	if	you	specify	a	file	path	that	does	not
exist	or	if	you	click	the	Cancel	button	on	the	dialog	box.	Use	the
DFD	Load	from	Text	File	VI	to	load	the	filter	from	the	text	file.
comments	specifies	the	comments	that	you	want	to	add	to	the
text	file.
error	in	describes	error	conditions	that	occur	before	this	VI	or
function	runs.	The	default	is	no	error.	If	an	error	occurred	before
this	VI	or	function	runs,	the	VI	or	function	passes	the	error	in	value
to	error	out.	This	VI	or	function	runs	normally	only	if	no	error
occurred	before	this	VI	or	function	runs.	If	an	error	occurs	while
this	VI	or	function	runs,	it	runs	normally	and	sets	its	own	error
status	in	error	out.	Use	the	Simple	Error	Handler	or	General	Error
Handler	VIs	to	display	the	description	of	the	error	code.	Use	error
in	and	error	out	to	check	errors	and	to	specify	execution	order	by
wiring	error	out	from	one	node	to	error	in	of	the	next	node.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	or

lvdigfiltdestk.chm::/DFD_Utilities_VIs.html
lvdigfiltdestk.chm::/DFD_Load_Filter.html
javascript:placeObject(object3620);
javascript:findObject(object3620);
lvdigfiltdestk.chm::/DFD_Load_Filter.html
glang.chm::/Simple_Error_Handler.html
glang.chm::/General_Error_Handler.html

function	ran	or	FALSE	(checkmark)	to	indicate	a	warning	or
that	no	error	occurred	before	this	VI	or	function	ran.	The
default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	nonzero	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	specifies	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.	The	default	is	an	empty	string.

filter	out	returns	the	filter	in	unchanged.
file	path	out	returns	the	path	to	the	file	to	which	this	VI	saved	the
filter.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	or	function	ran,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error	status
that	this	VI	or	function	produces.	Right-click	the	error	out	front
panel	indicator	and	select	Explain	Error	from	the	shortcut	menu
for	more	information	about	the	error.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	is	the	error	or	warning	code.	If	status	is	TRUE,	code
is	a	nonzero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	or	function	that	produced
the	error	or	warning.

lverror.chm::/Error_Code_Ranges.html
lverror.chm::/Error_Code_Ranges.html

DFD	Save	to	Text	File	Details
This	VI	saves	a	filter	as	an	.xml	file	by	default.	The	following	table	lists
the	tags	that	the	.xml	file	might	contain.

Tag	Name Description
DFDTData Contains	the	entire	information	about	a	filter.
CustomerComments Contains	the	information	you	specified	in	the

comments	input	of	this	VI.
Order Contains	the	filter	order.
Structure Contains	the	filter	structure.
Coefficients Contains	the	floating-point	filter	coefficients.	If	the

filter	is	a	fixed-point	filter,	this	tag	contains	the
coefficients	of	the	reference	floating-point	filter.
Depending	on	the	type	of	filter	you	specified	in
the	filter	in	input,	this	tag	can	contain	the
following	sub-tags:

FIRCoefficients—Contains	the
coefficients	of	the	filter	if	the	filter	has	a
finite	impulse	response	(FIR)	structure.
ForwardCoefficients—Contains	the
forward	coefficients	of	the	filter	if	the	filter
has	an	infinite	impulse	response	(IIR)
Direct	Form	structure.
ReverseCoefficients—Contains	the
reverse	coefficients	of	the	filter	if	the	filter
has	an	IIR	Direct	Form	structure.
NumberOfSections—Contains	the
number	of	sections	in	the	filter	if	the	filter
has	an	IIR	Cascaded	Second-Order
Sections	Form	structure.
SecondOrderSectionsCoefficients—
Contains	the	second-order	section
representation	of	the	filter	if	the	filter	has
an	IIR	Cascaded	Second-Order	Sections
Form	structure.	This	tag	contains	an	L-
by-6	matrix,	where	L	is	the	number	of

lvdfdtconcepts.chm::/FIR_Filter_Specs.html
lvdfdtconcepts.chm::/iir_direct_specs.html
lvdfdtconcepts.chm::/iir_sos_specs.html

rows	of	the	matrix.	Each	row	of	the	matrix
contains	the	coefficients	of	one	filter
section	in	the	form	[b0	b1	b2	1	a1	a2].
ReflectionCoefficients—Contains	the
reflection	coefficients	of	the	filter	if	the
filter	has	a	lattice	allpass,	lattice	auto-
regressive	(AR),	lattice	moving	average
(MA),	or	lattice	ARMA	structure.
LadderCoefficients—Contains	the
ladder	coefficients	of	the	filter	if	the	filter
has	a	lattice	ARMA	structure.
Gain—Contains	the	filter	gain	that
corresponds	to	the	filter	coefficients.

ZeroPoleGain Contains	the	floating-point	zeroes,	poles,	and
filter	gain.	If	the	filter	is	a	fixed-point	filter,	this	tag
contains	the	zeroes,	poles,	and	filter	gain	of	the
reference	floating-point	filter.	This	tag	contains
the	following	sub-tags:

Zeroes—Contains	the	zeroes	of	the	filter.
Poles—Contains	the	poles	of	the	filter.
Gain—Contains	the	filter	gain	that
corresponds	to	the	zeroes	and	poles.

FXPInformation Contains	the	entire	information	about	the	fixed-
point	filter.	If	the	filter	is	a	floating-point	filter,	this
XML	file	does	not	contain	this	tag.	If	the	filter	is	a
fixed-point	filter,	this	tag	can	contain	the	following
sub-tags:

FXPCoefficients—Contains	the	fixed-
point	filter	coefficients.	This	tag	contains
the	same	sub-tags	as	the	Coefficients
tag.
IntegerCoefficients—Contains	the
integer	filter	coefficients.	This	tag
contains	the	same	sub-tags	as	the
Coefficients	tag.
FXPZeroPoleGain—Contains	the	fixed-

lvdfdtconcepts.chm::/lattice_allpass.html
lvdfdtconcepts.chm::/Lattice_AR_Specs.html
lvdfdtconcepts.chm::/Lattice_MA_Specs.html
lvdfdtconcepts.chm::/Lattice_ARMA_Specs.html

point	zeroes,	poles,	and	filter	gain.	This
tag	contains	the	same	sub-tags	as	the
ZeroPoleGain	tag.
Quantizers—Contains	information	about
the	filter	coefficients	quantizer	and	filter
gain	quantizer.	Each	quantizer
corresponds	to	a	sub-tag,	except	the
NumberOfSections	sub-tag,	in	the
Coefficients	tag.	Each	quantizer
contains	the	following	sub-tags:

WordLength—Contains	the	word
length	of	the	quantizer.
IntegerWordLength—Contains
the	integer	word	length	of	the
quantizer.
OverflowMode—Contains	the
overflow	mode	setting	of	the
quantizer.
RoundingMode—Contains	the
rounding	mode	setting	of	the
quantizer.
Signed—Indicates	the	quantizer
uses	a	signed	fixed-point	format.
This	tag	is	always	empty.
Unsigned—Indicates	the
quantizer	uses	an	unsigned	fixed-
point	format.	This	tag	is	always
empty.

Note		If	the	gain	processing	occurs
on	a	host	machine,	or	if	the	gain
processing	occurs	on	a	target	but
the	filter	gain	is	a	power-of-2
value,	the	filter	gain	quantizer
contains	the	following	message
only:	No	integer	gain	is	processed
on	the	target.

Examples
Refer	to	the	following	VIs	for	examples	of	using	the	DFD	Save	to	Text
File	VI:

Export	FIR	Coef	to	Xilinx	COE	File	VI:	labview\examples\Digital
Filter	Design\Fixed-Point	Filters\Single-Rate
	Open	example	 	Browse	related	examples
Export	SOS	Coef	to	MathScript	VI:	labview\examples\Digital	Filter
Design\Getting	Started\Apply	Filters
	Open	example	 	Browse	related	examples
Export	SOS	Zero-Pole-Gain	to	MathScript	VI:
labview\examples\Digital	Filter	Design\Getting	Started\Apply	Filters
	Open	example	 	Browse	related	examples
Save	and	Load	Filter	to	and	from	Text	File	VI:
labview\examples\Digital	Filter	Design\Getting	Started\Apply	Filters
	Open	example	 	Browse	related	examples

javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CFixed-Point%20Filters%5C%5CSingle-Rate%5C%5CExport%20FIR%20Coef%20to%20Xilinx%20COE%20File.vi');
javascript:findExamples(10054);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CGetting%20Started%5C%5CApply%20Filters%5C%5CExport%20SOS%20Coef%20to%20MathScript.vi');
javascript:findExamples(10054);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CGetting%20Started%5C%5CApply%20Filters%5C%5CExport%20SOS%20Zero-Pole-Gain%20to%20MathScript.vi');
javascript:findExamples(10054);
javascript:openVI('examples%5C%5CDigital%20Filter%20Design%5C%5CGetting%20Started%5C%5CApply%20Filters%5C%5CSave%20and%20Load%20Filter%20to%20and%20from%20Text%20File.vi');
javascript:findExamples(10054);

Error	Codes	(Digital	Filter	Design	Toolkit)
The	Digital	Filter	Design	VIs	can	return	the	following	error	codes.	Refer	to
the	KnowledgeBase	for	more	information	about	correcting	errors	in
LabVIEW.

Code Description
−24116 The	band	edge	frequencies	must	correspond	to	the	frequency

points.
−24115 The	length	of	the	input	string	must	be	compatible	with	the	length

of	frequency	points.
−24114 The	length	of	the	input	array	must	be	compatible	with	the	length

of	frequency	points.
−24113 The	frequency	points	must	be	in	ascending	order.
−24112 The	filter	must	have	a	nonnegative	zero-phase	response.
−24111 The	input	filter	is	not	a	valid	fixed-point	moving	average	(MA)

filter.	Refer	to	the	LabVIEW	Help	for	more	information	about
fixed-point	MA	filters.

−24110 The	input	filter	must	be	a	fixed-point	filter	with	the	IIR	Cascaded
Second-Order	Sections	Form	structure.

−24109 The	code	generation	was	cancelled.
−24108 To	generate	C	code	from	the	filter,	you	must	specify	whether	to

process	the	gain	on	the	target	or	the	host.
−24107 The	input	signal	must	be	in	the	range	specified	in	the	input

word	length	value.	Refer	to	the	LabVIEW	Help	for	more
information	about	the	valid	range	for	the	input	signal.

−24106 The	bandwidth	must	be	greater	than	0	and	less	than	f0/2	for	a
Type	I	comb	filter	design.	The	bandwidth	must	be	greater	than	0
and	less	than	f0	for	a	Type	II	comb	filter	design.

−24105 The	bandwidth	must	be	greater	than	0	and	less	than	the	value	of
fn/N,	where	fn	is	the	Nyquist	frequency	and	N	is	the	value	you
specify	for	the	#	notches/peaks	input.

−24104 The	Q	factor	must	be	greater	than	the	value	of	f0/fn,	where	f0	is
the	center	frequency	of	the	notch	or	peak	and	fn	is	the	Nyquist
frequency.

lvdigfiltdestk.chm::/DFD_VIs.html
javascript:WWW(WWW_KB)

−24103 To	design	a	filter	by	using	the	Q	factor,	you	must	specify	the
center	frequency	value	f0	in	the	range	(0,	fn),	where	fn	is	the
Nyquist	frequency.	If	you	want	to	design	a	filter	with	the	center
frequency	at	DC,	choose	the	By	Bandwidth	instance.

−24102 The	bandwidth	must	be	greater	than	0	and	less	than	the	Nyquist
frequency.

−24101 The	center	frequency	f0	must	be	greater	than	or	equal	to	0	and
less	than	the	Nyquist	frequency.

−24100 This	function	is	not	applicable	to	cascaded	integrator	comb
(CIC)	filters.

−24099 The	filter	must	be	a	linear	phase	finite	impulse	response	(FIR)
filter.

−24098 This	function	failed	to	calculate	the	spectral	factor	of	the	filter.
Ensure	that	the	filter	is	a	linear	phase	filter	with	a	nonnegative
zero-phase	response.

−24097 If	you	want	to	generate	code	from	the	resulting	filter,	the	integer
word	length	that	you	specify	for	the	multiplicand	quantizer	must
be	greater	than	or	equal	to	the	integer	word	length	of	the	sum
quantizer.

−24096 If	you	want	to	generate	code	from	the	resulting	filter,	the	integer
word	length	that	you	specify	for	the	multiplicand	quantizer	must
be	greater	than	or	equal	to	the	integer	word	length	of	the	delay
quantizer.

−24095 The	number	of	channels	must	be	greater	than	0.
−24094 You	must	specify	a	valid	value	for	the	word	length.	Refer	to	the

LabVIEW	Help	for	more	information	about	the	valid	range	of
word	lengths.

−24093 If	you	want	to	process	the	filter	gain	on	a	fixed-point	target,	you
must	specify	the	word	length	of	the	filter	gain	in	the	range	[1,	32].

−24092 You	must	specify	the	word	length	of	at	least	one	set	of
coefficients	in	the	range	[1,	32].

−24091 The	input	coefficients	are	invalid	for	the	cascaded	structure	you
specified.

−24088 The	input	multirate	filter	is	not	a	valid	cascaded	integrator	comb
(CIC)	filter.

−24087 The	file	path	you	specified	is	invalid.	Specify	a	valid	file	path.
−24086 A	memory	overflow	occurred	on	the	field-programmable	gate

array	(FPGA)	target.
−24085 Fixed-point	multirate	finite	impulse	response	(FIR)	code

generation	supports	factors	only	in	the	range	[1,	255].	The	taps
per	phase	must	be	in	the	range	[1,	32767].

−24084 Fixed-point	cascaded	integrator	comb	(CIC)	filter	code
generation	supports	factors	only	in	the	range	[1,	65535].

−24083 The	code	generation	supports	only	one-	to	255-channel
processing.

−24082 Fixed-point	cascaded	integrator	comb	(CIC)	filter	code
generation	supports	only	one-channel	processing.

−24081 A	project	with	the	same	name	already	exists	in	memory.	Close
the	existing	project	or	specify	another	name	for	the	new	project.

−24080 The	passband	edge	frequency	must	be	greater	than	zero	and
less	than	the	Nyquist	frequency.	Refer	to	the	LabVIEW	Help	for
more	information	about	specifying	a	valid	value	for	the	passband
edge	frequency.

−24079 You	must	specify	a	valid	filtering	mode.	Refer	to	the	LabVIEW
Help	for	more	information	about	specifying	the	filtering	mode.

−24078 The	array	of	the	input	filter	cannot	be	empty.
−24077 The	array	size	for	interstage	word	length	values	must	equal	#

stages	-	1,	where	#	stages	is	the	number	of	stages	of	the
multistage	multirate	filter.

−24076 The	DFD	Plot	NStage	MRate	Freq	Response	VI	does	not
support	multistage	multirate	filters	that	contain	rational
resampling	filters.

−24075 The	array	size	for	the	coefficient	word	length	values	must	be	the
same	as	that	of	the	input	multirate	filter.

−24074 The	stopband	edge	frequency	must	be	greater	than	the
passband	edge	frequency.

−24073 To	generate	LabVIEW	FPGA	code,	you	must	install	the
LabVIEW	FPGA	Module	and	NI-RIO	driver	software	with	R
Series	support.	To	execute	the	FPGA	code,	you	also	need	an

FPGA	target	on	which	to	run	the	code.
−24071 The	fixed-point	cascaded	integrator	comb	(CIC)	filter	does	not

support	the	Highpass	mode.	You	must	set	the	differential
delay	and	#	stages	inputs	to	1	if	you	want	to	design	a	fixed-
point	CIC	filter	that	works	as	a	moving-average	(MA)	filter.

−24070 The	input	range	must	be	greater	than	0.
−24069 The	output	phase	of	a	decimation	filter	must	be	in	the	range	[0,

factor).
−24068 The	fixed-point	multirate	filter	object	is	invalid.
−24067 You	must	specify	the	input	word	length	value	in	the	range	[1,

32].
−24066 The	filtering	mode	of	the	multirate	filter	does	not	match	the

instance	you	chose	in	the	polymorphic	VI.	Specify	the
appropriate	instance	of	the	polymorphic	VI.

−24065 The	pair	of	rational	factors	cannot	be	equal.
−24063 The	value	of	fs/f0	must	be	an	integer	for	a	Type	I	comb	filter

design,	where	fs	and	f0	are	the	sampling	frequency	and	central
frequency,	respectively.	The	value	of	fs/(f0*2)	must	be	an	integer
for	a	Type	II	comb	filter	design.

−24062 You	must	specify	a	delay	value	that	is	greater	than	or	equal	to
zero.

−24061 You	must	specify	a	roll	off	value	in	the	range	[0,	1].
−24060 You	must	specify	a	gain	value	that	is	not	equal	to	zero.
−24059 The	zeroes	that	you	specified	cannot	contain	NaN	or	zero

values.	The	poles	you	specified	cannot	contain	NaN	or	Inf
values.

−24058 The	stopband	edge	frequency	value	is	too	high	and	might
introduce	aliasing	distortion	in	the	passband.

−24057 The	product	of	the	factors	in	the	manual	factorization	input
must	equal	the	factor	input	value.

−24056 You	must	specify	a	factor	value	that	is	greater	than	4	and
divisible	by	4	if	you	use	the	cascaded	integrator	comb	(CIC)	filter
in	multistage	multirate	filters.

−24055 The	overflow	mode	input	is	set	to	Saturation	for	a	sum

quantizer.	Set	the	overflow	mode	input	to	Wrap.

−24053 The	shift	number	in	the	states	is	invalid.
−24052 The	diagonal	size	must	match	the	matrix	size.
−24051 LabVIEW	failed	to	allocate	space	for	data.
−24050 This	VI	failed	to	load	the	filter	from	the	file.	Specify	a	valid	file

path.
−24049 The	multirate	filter	object	is	invalid.
−24048 You	must	specify	a	valid	value	for	the	differential	delay.	Valid

values	are	1	and	2.
−24047 The	filter	design	failed	with	the	specified	numerator	and

denominator	order	values.	Use	smaller	order	values.
−24046 You	must	specify	the	frequencies	of	the	exact	gain	within	the

frequency	ranges	of	the	band	specs	input.
−24045 The	number	of	stages	must	be	in	the	range	[1,	8].
−24044 You	must	specify	numerator	order	and	denominator	order	values

of	less	than	35.
−24043 You	must	specify	a	multirate	factor	that	is	greater	than	zero.
−24042 Bandpass	and	bandstop	filters	require	an	order	value	that	is	an

even	number.
−24041 The	structure	of	the	filter	is	invalid.	Refer	to	the	LabVIEW	Help

for	more	information	about	selecting	a	filter	structure.
−24040 You	must	set	the	quantizer	source	input	to	Coefficients	a/k	or

Coefficients	b/v.
−24039 The	input	coefficients	are	invalid	for	the	specified	lattice	filter

structure.
−24038 The	structure	of	the	filter	you	specified	is	not	a	lattice	filter

structure.
−24037 The	input	filter	is	not	an	finite	impulse	response	(FIR)	filter.
−24036 The	input	filter	is	not	a	quantized	fixed-point	filter.
−24035 The	filter	design	failed	with	the	specifications	you	entered.
−24034 The	value	of	the	states	in	input	must	match	the	filter	order.
−24032 You	must	specify	a	filter	order	value	that	is	an	even	number.

−24031 You	must	specify	a	denominator	order	value	that	is	greater	than
or	equal	to	zero.

−24030 You	must	specify	a	numerator	order	value	that	is	greater	than
zero.

−24029 You	must	specify	a	multirate	factor	that	is	greater	than	one.
−24028 You	must	specify	a	roll	off	value	in	the	range	(0,	1).
−24027 Ripples	in	a	linear	scale	must	be	in	the	range	(0,	1).
−24026 You	must	specify	a	valid	frequency	sequence	in	the	freq	specs

input.
−24025 The	fixed-point	filter	model	you	specified	is	incompatible	with	the

constraints	of	code	generation.	Refer	to	the	LabVIEW	Help	for
more	information	about	generating	code	with	the	Digital	Filter
Design	VIs.

−24024 The	LabVIEW	Digital	Filter	Design	Toolkit	does	not	support
LabVIEW	FPGA	code	generation	for	this	filter	structure.

−24023 You	must	specify	a	Q	factor	or	Df	value	that	is	greater	than
zero.

−24022 You	must	specify	an	order	value	that	is	greater	than	zero.
−24021 You	must	specify	frequency	values	that	are	greater	than	zero

and	less	than	the	Nyquist	frequency.
−24020 Each	band	must	contain	at	least	one	point.
−24019 You	must	specify	high	frequency	values	that	are	greater	than	low

frequency	values.
−24018 You	must	specify	a	sampling	frequency	value	that	is	greater	than

zero.
−24017 You	must	specify	a	stopband	attenuation	or	ripple	value	that	is

greater	than	0.
−24016 You	must	specify	a	nonnegative	value	or	values	for	the

magnitude	input.
−24015 The	filter	object	is	invalid.
−24014 The	transfer	function	is	invalid.
−24013 You	must	specify	a	ripple	ratio	that	is	greater	than	zero	for

Dolph-Chebyshev	windows.

−24012 The	filter	cannot	be	represented	by	the	structure	you	specified.
−24011 The	required	order	of	the	filter	specifications	is	too	large	to	work

with	the	minimum	order	search	option.	Use	the	user	defined
option.

−24010 You	must	constrain	all	bands	for	minimum	order	designs.
−24009 You	must	specify	a	nonnegative	frequency	response	for

minimum	or	maximum	phase	designs.
−24008 The	amplitude	value	at	DC	must	be	zero	for	odd-order,

antisymmetric,	finite	impulse	response	(FIR)	filter	designs.
−24007 The	amplitude	values	at	the	DC	and	Nyquist	frequencies	both

must	be	zero	for	even-order,	antisymmetric,	finite	impulse
response	(FIR)	filter	designs.

−24006 The	amplitude	value	at	the	Nyquist	frequency	must	be	zero	for
odd-order,	symmetric,	finite	impulse	response	(FIR)	filter
designs.

−24005 You	must	define	at	least	one	valid	band.
−24004 All	weighting	values	must	be	positive.
−24003 The	band	frequency	must	be	in	ascending	order.	Bands	cannot

overlap	and	must	occur	between	the	DC	and	Nyquist
frequencies.

−24002 This	VI	failed	to	design	a	filter	that	meets	all	constraints.	Specify
a	larger	ripple	constraint	or	order	value.

−24001 The	number	of	iterations	has	reached	its	maximum	value,	or	a
numeric	error	in	the	Remez	design	has	occurred.

24001 The	actual	sampling	frequency	differs	from	the	one	used	to
create	the	filter.

24002 The	timestamps	of	the	two	sequential	data	blocks	are
inconsistent.

24003 The	input	sequence	is	empty.
24004 The	state	in	input	is	empty.
24005 The	value	of	p	must	be	in	the	range	[2,	128].
24006 The	pole	radius	must	be	in	the	range	(0,	1].
24007 Zeroes	at	two	ends	of	the	transfer	function	have	been	removed.

The	designed	order	is	different	from	the	specified	order.

24009 Either	the	maximum	iteration	has	been	reached,	or	a	numerical
error	has	occurred	during	the	least	pth	norm	design.

24010 This	VI	will	design	a	filter	with	a	lower	order	than	the	order	you
specified.

24011 The	pair	of	rational	factors	are	not	coprime.
24012 The	filtering	process	will	initialize	because	the	sampling

frequency	of	the	signal	to	process	has	changed	from	that	of	the
preceding	block	of	signal	data.

24013 The	filtering	process	will	initialize	because	the	number	of	signal
channels	to	process	has	changed.

24014 The	filtering	process	will	initialize	because	the	delay	value	has
changed.

24015 The	filtering	process	will	initialize	because	the	number	of
multirate	filters	has	changed.

24016 The	input	word	length	value	of	a	stage	must	equal	the	output
word	length	value	of	the	preceding	stage.

24017 The	stopband	edge	frequency	must	be	less	than	or	equal	to	the
Nyquist	frequency	if	you	do	not	allow	aliasing.

24018 The	design	process	might	take	a	long	time	because	the
estimated	filter	order	is	greater	than	1000.

24019 You	first	must	click	the	Update	Design	button	to	design	a
floating-point	filter	before	you	can	quantize	the	filter.	You	cannot
quantize	the	filter	if	the	filter	is	a	multistage	no-rate-change	filter.

