
Microsoft	Research	Detours	Package	Overview

Detours	is	a	library	for	intercepting	binary	functions	on	ARM,	x86,	x64,	and
IA64	machines.	Detours	is	most	commmonly	used	to	intercept	Win32	APIs	calls
within	an	application,	such	as	to	add	debugging	instrumentation.	Interception
code	is	applied	dynamically	at	runtime.	Detours	replaces	the	first	few
instructions	of	the	target	function	with	an	unconditional	jump	to	the	user-
provided	detour	function.	Instructions	from	the	target	function	are	placed	in	a
trampoline.	The	address	of	the	trampoline	is	placed	in	a	target	pointer.	The
detour	function	can	either	replace	the	target	function	or	extend	its	semantics	by
invoking	the	target	function	as	a	subroutine	through	the	target	pointer	to	the
trampoline.

Detours	are	inserted	at	execution	time.	The	code	of	the	target	function	is
modified	in	memory,	not	on	disk,	thus	enabling	interception	of	binary	functions
at	a	very	fine	granularity.	For	example,	the	procedures	in	a	DLL	can	be	detoured
in	one	execution	of	an	application,	while	the	original	procedures	are	not
detoured	in	another	execution	running	at	the	same	time.	Unlike	DLL	re-linking
or	static	redirection,	the	interception	techniques	used	in	the	Detours	library	are
guaranteed	to	work	regardless	of	the	method	used	by	application	or	system	code
to	locate	the	target	function.

In	addition	to	basic	detour	functionality,	Detours	also	includes	functions	to	edit
the	DLL	import	table	of	any	binary,	to	attach	arbitrary	data	segments	to	existing
binaries,	and	to	load	a	DLL	into	a	new	process.	Once	loaded	into	a	process,	the
instrumentation	DLL	can	detour	any	function	in	the	process,	whether	in	the
application	or	the	system	libraries,	such	as	the	Windows	APIs.

This	technical	overview	of	Detours	is	divided	into	four	sections:

Interception	of	Binary	Functions
Using	Detours
Payloads	and	DLL	Import	Editing
Detouring	32-bit	and	64-bit	Processes

Developers	new	to	Detours	will	find	the	it	very	useful	to	read	all	four	technical
overview	sections	and	the	Simple	sample.

This	documentation	also	contains	the	following	information:

Detours	API	reference
Sample	programs	using	the	Detours	APIs.
Frequently	Asked	Questions	(FAQ)

Interception	of	Binary	Functions

The	Detours	library	enables	interception	of	function	calls.	Interception	code	is
applied	dynamically	at	runtime.		Detours	replaces	the	first	few	instructions	of	the
target	function	with	an	unconditional	jump	to	the	user-provided	detour
function.	Instructions	from	the	target	function	are	preserved	in	a	trampoline
function.	The	trampoline	consists	of	the	instructions	removed	from	the	target
function	and	an	unconditional	branch	to	the	remainder	of	the	target	function.

When	execution	reaches	the	target	function,	control	jumps	directly	to	the	user-
supplied	detour	function.	The	detour	function	performs	whatever	interception
preprocessing	is	appropriate.	The	detour	function	can	return	control	to	the	source
function	or	it	can	call	the	trampoline	function,	which	invokes	the	target	function
without	interception.	When	the	target	function	completes,	it	returns	control	to	the
detour	function.		The	detour	function	performs	appropriate	postprocessing	and
returns	control	to	the	source	function.	Figure	1	shows	the	logical	flow	of	control
for	function	invocation	with	and	without	interception.

Figure	1.	Control	flow	of	invocation	without	Detours	and	with	Detours.

The	Detours	library	intercepts	target	functions	by	rewriting	their	in-process
binary	image.	For	each	target	function,	Detours	actually	rewrites	two	functions,

the	target	function	and	the	matching	trampoline	function,	and	one	function
pointer,	the	target	pointer.	The	trampoline	function	is	allocated	dynamically	by
Detours.	Prior	to	insertion	of	a	detour,	the	trampoline	contains	only	a	single
jump	instruction	to	the	target	function.	After	insertion,	the	trampoline	contains
the	initial	instructions	from	the	target	function	and	a	jump	to	the	remainder	of
the	target	function.

The	target	pointer	is	initialized	by	the	user	to	point	to	the	target	function.	After	a
detour	is	attached	to	the	target	function,	the	target	pointer	is	modified	to	point	to
the	trampoline	function.	After	the	detour	is	detached	from	the	target	function,	the
target	pointer	is	returned	to	point	to	the	original	target	function.

Figure	2.	Trampoline	and	target	functions,	before	(on	the	left)	and	after	(on	the	right)	insertion	of	the	detour.

Figure	2	shows	the	insertion	of	a	detour.	To	detour	a	target	function,	Detours
first	allocates	memory	for	the	dynamic	trampoline	function	(if	no	static
trampoline	is	provided)	and	then	enables	write	access	to	both	the	target	and	the
trampoline.		Starting	with	the	first	instruction,	Detours	copies	instructions	from
the	target	to	the	trampoline	until	at	least	5	bytes	have	been	copied	(enough	for	an
unconditional	jump	instruction).	If	the	target	function	is	fewer	than	5	bytes,

Detours	aborts	and	returns	an	error	code.

To	copy	instructions,	Detours	uses	a	simple	table-driven	disassembler.	Detours
adds	a	jump	instruction	from	the	end	of	the	trampoline	to	the	first	non-copied
instruction	of	the	target	function.	Detours	writes	an	unconditional	jump
instruction	to	the	detour	function	as	the	first	instruction	of	the	target	function.	To
finish,	Detours	restores	the	original	page	permissions	on	both	the	target	and
trampoline	functions	and	flushes	the	CPU	instruction	cache	with	a	call	to	the
FlushInstructionCache	API.

Using	Detours

Two	things	are	necessary	in	order	to	detour	a	target	function:	a	target	pointer
containing	the	address	of	the	target	function	and	a	detour	function.	For	proper
interception	the	target	function,	detour	function,	and	the	target	pointer	must	have
exactly	the	same	call	signature	including	number	of	arguments	and	calling
convention.	Using	the	same	calling	convention	insures	that	registers	will	be
properly	preserved	and	that	the	stack	will	be	properly	aligned	between	detour
and	target	functions

The	code	fragment	in	Figure	5	illustrates	the	usage	of	the	Detours	library.	User
code	must	include	the	detours.h	header	file	and	link	with	the	detours.lib
library.

#include	<windows.h>

#include	<detours.h>

static	LONG	dwSlept	=	0;

//	Target	pointer	for	the	uninstrumented	Sleep	API.

//

static	VOID	(WINAPI	*	TrueSleep)(DWORD	dwMilliseconds)	=	Sleep;

//	Detour	function	that	replaces	the	Sleep	API.

//

VOID	WINAPI	TimedSleep(DWORD	dwMilliseconds)

{

				//	Save	the	before	and	after	times	around	calling	the	Sleep	API.

				DWORD	dwBeg	=	GetTickCount();

				TrueSleep(dwMilliseconds);

				DWORD	dwEnd	=	GetTickCount();

				InterlockedExchangeAdd(&dwSlept;,	dwEnd	-	dwBeg);

}

//	DllMain	function	attaches	and	detaches	the	TimedSleep	detour	to	the

//	Sleep	target	function.		The	Sleep	target	function	is	referred	to

//	through	the	TrueSleep	target	pointer.

//

BOOL	WINAPI	DllMain(HINSTANCE	hinst,	DWORD	dwReason,	LPVOID	reserved)

{

				if	(DetourIsHelperProcess())	{

								return	TRUE;

				}

				if	(dwReason	==	DLL_PROCESS_ATTACH)	{

								DetourRestoreAfterWith();

								DetourTransactionBegin();

								DetourUpdateThread(GetCurrentThread());

								DetourAttach(&(PVOID&)TrueSleep,	TimedSleep);

								DetourTransactionCommit();

				}

				else	if	(dwReason	==	DLL_PROCESS_DETACH)	{

								DetourTransactionBegin();

								DetourUpdateThread(GetCurrentThread());

								DetourDetach(&(PVOID&)TrueSleep,	TimedSleep);

								DetourTransactionCommit();

				}

				return	TRUE;

}

Figure	5.	Simple	detour	to	modify	the	Windows	Sleep	API.

Interception	of	the	target	function	is	enabled	by	invoking	the	DetourAttach	API
within	a	detour	transaction.	A	detour	transaction	is	marked	by	calls	to	the
DetourTransactionBegin	API	and	the	DetourTransactionCommit	API.	The
DetourAttach	API	takes	two	arguments:	the	address	of	the	target	pointer	and	the
pointer	to	the	detour	function.	The	target	function	is	not	given	as	an	argument
because	it	must	already	be	stored	in	the	target	pointer.

The	DetourUpdateThread	API	enlists	threads	in	the	transaction	so	that	their
instruction	pointers	are	appropriately	updated	when	the	transaction	commits.

The	DetourAttach	API	allocates	and	prepares	a	trampoline	for	calling	the	target
function.	When	the	detour	transaction	commits,	the	target	function	and
trampoline	are	rewritten	and	the	target	pointer	is	updated	to	point	to	the
trampoline	function.

Once	a	target	function	has	been	detoured,	any	call	to	the	target	function	will	be
re-routed	through	the	detour	function.	It	is	the	responsibility	of	the	detour
function	to	copy	arguments	when	invoking	the	target	function	through	the
trampoline.	This	is	intuitive	as	the	target	function	becomes	simply	a	subroutine
callable	by	the	detour	function.

Interception	of	a	target	function	is	removed	by	calling	the	DetourDetach	API
within	a	detour	transaction.	Like	the	DetourAttach	API,	the	DetourDetach	API
takes	two	arguments:	the	address	of	the	target	pointer	and	the	pointer	to	the
detour	function.	When	the	detour	transaction	commits,	the	target	function	is
rewritten	and	restored	to	its	original	code,	the	trampoline	function	is	deleted,	and
the	target	pointer	is	restored	to	point	to	the	original	target	function.

In	cases	where	detour	functions	need	to	inserted	into	an	existing	application
without	source	code	access,	the	detour	functions	should	be	packaged	in	a	DLL.
The	DLL	can	be	loaded	into	a	new	process	at	creation	time	using	the
DetourCreateProcessWithDllEx	or	DetourCreateProcessWithDlls	APIs.	If	a	DLL
is	inserted	using	DetourCreateProcessWithDllEx	or
DetourCreateProcessWithDlls,	the	DllMain	function	must	call	the
DetourRestoreAfterWith	API.	If	the	DLL	may	be	used	in	mixed	32-bit	and	64-
bit	environments,	then	the	DllMain	function	must	call	the
DetourIsHelperProcess	API.	The	DLL	must	export	the
DetourFinishHelperProcess	API	as	export	Ordinal	1,	which	will	be	called	by
rundll32.exe	to	perform	the	helper	tasks.

NOTE:	Microsoft	in	no	way	warrants	or	supports	any	Microsoft	or	third-party
code	that	has	been	altered	either	with	a	detour	or	with	any	other	mechanism.

The	withdll.exe	program	include	in	the	Detours	package	uses	the
DetourCreateProcessWithDlls	API	to	start	a	new	process	with	a	named	DLL.

Payloads	and	DLL	Import	Editing

In	addition	to	APIs	for	attaching	and	detaching	detours	functions,	the	Detours
package	also	include	APIs	for	attaching	arbitrary	data	segments,	called	payloads,
to	Windows	binary	files	and	for	editing	DLL	import	tables.	The	binary	editing
APIs	in	Detours	are	fully	reversible;	Detours	stores	recovery	information	within
the	binary	to	enable	removal	of	the	edits	at	any	time	in	the	future.

Figure	3.	Format	of	a	Windows	PE	binary	file.

Figure	3	shows	the	basic	structure	of	a	Windows	Portable	Executable	(PE)
binary	file.	The	PE	format	for	Windows	binaries	is	an	extension	of	COFF	(the
Common	Object	File	Format).	A	Windows	binary	consists	of	a	DOS	compatible
header,	a	PE	header,	a	text	section	containing	program	code,	a	data	section
containing	initialized	data,	an	import	table	listing	any	imported	DLLS	and
functions,	an	export	table	listing	functions	exported	by	the	code,	and	debug
symbols.	With	the	exception	of	the	two	headers,	each	of	the	other	sections	of	the
file	is	optional	and	may	not	exist	in	a	given	binary.

Figure	4.	Format	of	a	Detours-modified	binary	file.

To	modify	a	Windows	binary,	Detours	creates	a	new	.detours	section	between
the	export	table	and	the	debug	symbols,	as	shown	in	Figure	4.	Note	that	debug
symbols	must	always	reside	last	in	a	Windows	binary.	The	new	section	contains
a	detours	header	record	and	a	copy	of	the	original	PE	header.	If	modifying	the
import	table,	Detours	creates	the	new	import	table,	appends	it	to	the	copied	PE
header,	then	modifies	the	original	PE	header	to	point	to	the	new	import	table.
Finally,	Detours	writes	any	user	payloads	at	the	end	of	the	.detours	section	and
appends	the	debug	symbols	to	finish	the	file.		Detours	can	reverse	modifications
to	the	Windows	binary	by	restoring	the	original	PE	header	from	the	.detours
section	and	removing	the	.detours	section.	Figure	4	shows	the	format	of	a
Detours-modified	Windows	binary.

Creating	a	new	import	table	serves	two	purposes.	First,	it	preserves	the	original
import	table	in	case	the	programmer	needs	to	reverse	all	modifications	to	the
Windows	file.	Second,	the	new	import	table	can	contain	renamed	import	DLLs
and	functions	or	entirely	new	DLLs	and	functions.	For	example,	the	setdll.exe
program	included	in	the	Detours	package,	inserts	an	initial	entry	for	a	user’s
DLL	into	a	target	application	binary.	As	the	first	entry	in	the	application’s	import

table,	the	user’s	DLL	is	always	the	first	DLL	to	run	in	the	application’s	address
space.

Detours	provides	APIs	for	editing	import	tables	(DetourBinaryEditImports),
adding	payloads	(DetourBinarySetPayload),	enumerating	payloads
(DetourBinaryEnumeratePayloads),	and	removing	payloads
(DetourBinaryPurgePayloads).	Detours	also	provides	APIs	for	enumerating	the
binary	files	mapped	into	an	address	space	(DetourEnumerateModules)	and
locating	payloads	within	those	mapped	binaries	(DetourFindPayload).		Each
payload	is	identified	by	a	128-bit	globally	unique	identifier	(GUID).	Payloads
can	be	used	to	attach	per-application	configuration	data	to	application	binaries.

Payloads	can	be	copied	directly	into	a	target	process	using	the
DetourCopyPayloadToProcess	API.

Detouring	32-bit	and	64-bit	Processes

Note:	Only	the	Professional	editions	of	Detours	support	64-bit	processes.	The
non-commercial,	Express	editions	of	Detours	only	support	32-bit	x86
processes.

The	most	common	usage	scenario	for	Detours	is	to	detour	functions	in	an
existing	application	without	modifying	the	orginal	application	binaries.	In	these
scenarios,	the	user-supplied	detour	functions	are	packaged	in	a	DLL	that	is
loaded	into	the	applicaiton	at	startup	time	using	the	DetourCreateProcessWithDll
API.	The	DetourCreateProcessWithDll	API	is	called	from	the	parent	process;	it
alters	the	in-memory	copy	of	the	application	by	inserting	an	import	table	entry
for	the	detour	DLL.	This	new	import	table	entry	causes	the	OS	loader	to	load	the
DLL	after	the	application	process	has	started,	but	before	any	of	the	application
code	can	run.	The	detour	DLL	then	has	a	chance	to	hook	target	functions	in	the
target	process.

In	computers	with	64-bit	processors,	Windows	supports	both	32-bit	and	64-bit
applications.	To	support	both	32-bit	and	64-bit	applications,	you	must	create
both	32-bit	and	64-bit	versions	of	your	detour	DLL.	You	must	also	replace	all
uses	of	the	DetourCreateProcessWithDll	API	with	either	the
DetourCreateProcessWithDllEx	API	or	DetourCreateProcessWithDlls	API.	The
DetourCreateProcessWithDllEx	and	DetourCreateProcessWithDlls	APIs	chooses
between	the	32-bit	or	64-bit	versions	of	your	DLL	as	appropriate	for	the	target
application.

What	To	Do

To	support	both	32-bit	and	64-bit	applications	on	a	single	system,	you	must
create	two	DLLs.	One	DLL	must	contain	32-bit	code,	the	other	DLL	must
contain	64-bit	code.	The	DLLs	must	reside	in	the	same	directory	and	must	have
identical	names	except	that	the	name	of	the	32-bit	DLL	should	end	with	"32"	and
the	name	of	the	64-bit	DLL	should	end	with	"64".	For	example,	matching	DLLs
would	be	named	foo32.dll	and	foo64.dll.

You	should	use	the	DetourCreateProcessWithDllEx	or
DetourCreateProcessWithDlls	API	to	start	a	process	with	your	DLL.
Furthermore,	your	DLLs	must:

Export	the	DetourFinishHelperProcess	API	as	export	ordinal	1.

Call	the	DetourIsHelperProcess	API	in	your	DllMain	function.	Immediately
return	TRUE	if	DetourIsHelperProcess	return	TRUE.

Call	the	DetourCreateProcessWithDllEx	or	DetourCreateProcessWithDlls
API	instead	of	DetourCreateProcessWithDll	to	create	new	target	processes.

How	It	Works

In	the	case	where	both	the	parent	process	and	the	target	process	are	the	same,
such	as	both	32-bit	or	both	64-bit,	the	DetourCreateProcessWithDllEx	API
works	the	same	as	the	DetourCreateProcessWithDll	API.

When	the	parent	process	is	32-bit	and	the	target	is	64-bit	or	the	parent	is	64-bit
and	the	target	is	32-bit,	DetourCreateProcessWithDllEx	creates	a	helper	process
by	loading	your	DLL	into	a	rundll32.exe	process,	and	calling
DetourFinishHelperProcess	through	export	Ordinal	1.	This	API	patches	up	the
application's	import	table	using	the	correct	32-bit	or	64-bit	code.

Give	It	a	Try

To	give	helper	processes	a	try,	first	build	the	Detours	samples	for	32-bit	using	a
32-bit	build	environment.	Then	build	the	samples	for	64-bit	using	a	64-bit	build
environment.	Then	in	the	samples\tryman	directory,	in	the	64-bit	environment
type	"nmake	size64"	to	run	a	recursive	set	of	processes	that	alternate	between
32-bit	and	64-bit	processes.

Remarks

For	more	information	on	rundll32.exe,	see
http://support.microsoft.com/kb/164787.

Related	APIs:

DetourCreateProcessWithDllEx,	DetourCreateProcessWithDlls,
DetourFinishHelperProcess,	DetourIsHelperProcess,	DetourRestoreAfterWith.

http://support.microsoft.com/kb/164787

Related	Samples

Simple,	Simple,	Slept,	Traceapi,	Tracebld,	Tracelnk,	Tracemem,	Tracereg,
Traceser,	Tracetcp,	Tryman.

Detours	API	Reference

The	Table	of	Contents	provides	an	alphabetical	listing	of	the	available	API
functions,	which	can	be	grouped	as	follows:

APIs	For	Detouring	Target	Functions

DetourTransactionBegin
DetourUpdateThread
DetourAttach
DetourAttachEx
DetourDetach
DetourSetIgnoreTooSmall
DetourSetRetainRegions
DetourSetSystemRegionLowerBound
DetourSetSystemRegionUpperBound
DetourTransactionAbort
DetourTransactionCommit
DetourTransactionCommitEx

APIs	For	Finding	Target	Functions

DetourFindFunction
DetourCodeFromPointer

APIs	For	Accessing	Loaded	Binaries	and	Payloads

DetourEnumerateModules
DetourGetEntryPoint
DetourGetModuleSize
DetourEnumerateExports
DetourEnumerateImport
DetourEnumerateImportEx
DetourFindPayload
DetourGetContainingModule
DetourGetSizeOfPayloads

APIs	For	Modifying	Binaries

DetourBinaryOpen
DetourBinaryEnumeratePayloads
DetourBinaryFindPayload
DetourBinarySetPayload
DetourBinaryDeletePayload
DetourBinaryPurgePayloads
DetourBinaryEditImports
DetourBinaryResetImports
DetourBinaryWrite
DetourBinaryClose

APIs	For	Inserting	DLLs	and	Payloads	Into	New	Processes

DetourCreateProcessWithDllEx
DetourCreateProcessWithDlls
DetourCopyPayloadToProcess
DetourFinishHelperProcess
DetourIsHelperProcess
DetourRestoreAfterWith

DetourAttach

Attach	a	detour	to	a	target	function.

Definition

LONG	DetourAttach(

				Inout	PVOID	*	ppPointer,

				In				PVOID	pDetour

);

Parameters

ppPointer
Pointer	to	the	target	pointer	to	which	the	detour	will	be	attached.

pDetour
Pointer	to	the	detour	function.

Return	value

Returns	NO_ERROR	if	successful;	otherwise,	returns	an	error	code.

Error	codes

ERROR_INVALID_BLOCK
The	function	referenced	is	too	small	to	be	detoured.

ERROR_INVALID_HANDLE
The	ppPointer	parameter	is	null	or	points	to	a	null	pointer.

ERROR_INVALID_OPERATION
No	pending	transaction	exists.

ERROR_NOT_ENOUGH_MEMORY
Not	enough	memory	exists	to	complete	the	operation.

Remarks

DetourAttach	attaches	a	detour	to	a	target	function	as	part	of	the	current
transaction	opened	by	the	DetourTransactionBegin	API.

For	more	information	on	using	Detours	to	intercept	function	calls,	see
Interception	of	Binary	Functions	or	Using	Detours	in	the	Detours	Overview.

Related	Samples

Commem,	Cping,	Dtest,	Excep,	FindFunc,	Simple,	Slept,	Traceapi,	Tracebld,
Tracelnk,	Tracemem,	Tracereg,	Traceser,	Tracetcp,	Tryman.

DetourAttachEx

Attach	a	detour	to	a	target	function	and	retrieve	additional	detail	about	the
ultimate	target.

Definition

LONG	DetourAttachEx(

				Inout			PVOID	*	ppPointer,

				In						PVOID	pDetour,

				_Out_opt_	PDETOUR_TRAMPOLINE	*	ppRealTrampoline

				_Out_opt_	PVOID	*	ppRealTarget

				_Out_opt_	PVOID	*	ppRealDetour

);

Parameters

ppPointer
Pointer	to	the	target	pointer	to	which	the	detour	will	be	attached.

pDetour
Pointer	to	the	detour	function.

ppRealTrampoline
Variable	to	receive	the	address	of	the	trampoline.

ppRealTarget
Variable	to	receive	the	final	address	of	the	target	function.

ppRealDetour
Variable	to	receive	the	final	address	of	the	detour	function.

Return	value

Returns	NO_ERROR	if	successful;	otherwise,	returns	an	error	code.

Error	codes

ERROR_INVALID_BLOCK
The	function	referenced	is	too	small	to	be	detoured.

ERROR_INVALID_HANDLE
The	ppPointer	parameter	is	null	or	points	to	a	null	pointer.

ERROR_INVALID_OPERATION
No	pending	transaction	exists.

ERROR_NOT_ENOUGH_MEMORY
Not	enough	memory	exists	to	complete	the	operation.

Remarks

DetourAttachEx	attaches	a	detour	to	a	target	function	and	retrieves	additional
detail	about	the	ultimate	target	as	part	of	the	current	transaction	opened	by	the
DetourTransactionBegin	API.

For	more	information	on	using	Detours	to	intercept	function	calls,	see
Interception	of	Binary	Functions	or	Using	Detours	in	the	Detours	Overview.

DetourBinaryClose

Close	a	binary	opened	for	editing.

Definition

BOOL	DetourBinaryClose(

				In	PDETOUR_BINARY	pBinary

);

Parameters

pBinary
Pointer	to	the	binary	opened	by	DetourBinaryOpen,	.

Return	value

If	successful,	returns	TRUE;	otherwise,	returns	FALSE.

Remarks

DetourBinaryClose	closes	the	binary	opened	for	editing	by	DetourBinaryOpen.

For	more	information	on	binary	editing	with	Detours,	see	Payloads	and	DLL
Import	Editing	in	the	Detours	Overview.

Related	Samples

Dumpi,	Impmunge,	Setdll.

DetourBinaryDeletePayload

Remove	a	payload	from	a	binary.

Definition

BOOL	DetourBinaryDeletePayload(

				In	PDETOUR_BINARY	pBinary,

				In	REFGUID	rguid

);

Parameters

pBinary
Pointer	to	the	binary	opened	by	DetourBinaryOpen,	.

rguid
GUID	of	payload	to	remove.

Remarks

DetourBinaryDeletePayload	removes	a	payload	from	a	binary	opened	by
DetourBinaryOpen	.

For	more	information	on	binary	editing	with	Detours	and	paylods,	see	Payloads
and	DLL	Import	Editing	in	the	Detours	Overview.

Return	value

If	successful,	returns	TRUE;	otherwise,	returns	FALSE.

DetourBinaryEditImports

Edit	the	import	tables	of	a	binary.

Definition

BOOL	DetourBinaryEditImports(

				In					PDETOUR_BINARY	pBinary,

				_In_opt_	PVOID	pContext,

				_In_opt_	PF_DETOUR_BINARY_BYWAY_CALLBACK	pfByway,

				_In_opt_	PF_DETOUR_BINARY_FILE_CALLBACK	pfFile,

				_In_opt_	PF_DETOUR_BINARY_SYMBOL_CALLBACK	pfSymbol,

				_In_opt_	PF_DETOUR_BINARY_COMMIT_CALLBACK	pfFinal

);

Parameters

pBinary
Pointer	to	binary	opened	by	DetourBinaryOpen	.

pContext
Program	specific	context	pointer	to	be	passed	unmodified	to	each	callback
function.

pfByway
Callback	function	called	before	each	module	in	the	import	table.

pfFile
Callback	function	called	once	for	each	module	in	the	import	table.

pfSymbol
Callback	function	called	once	for	each	symbol	in	the	import	table.

pfCommit
Callback	function	called	at	the	end	of	the	import	table	if	there	have	been	no
errors.

Return	value

If	successful,	returns	TRUE;	otherwise,	returns	FALSE.

Remarks

DetourBinaryEditImports	edits	the	import	tables	of	a	binary	opened	by
DetourBinaryOpen.	Detours	stores	edits	in	a	reversible	format	using	a	Detours
payload.	The	DetourBinaryResetImports	function	can	be	used	to	remove	the
edits.

DetourBinaryEditImports	walks	sequentially	through	the	import	table	of	a
binary	making	callbacks	on	all	points	of	interest.	Four	points	of	interest	are
currently	supported,	each	with	its	own	callback	function:

Files:	The	pfFile	function	is	called	for	each	file	listed	in	the	import	table.
The	callback	function	can	alter	the	file	name	at	its	discretion.
Symbols:	The	pfSymbol	function	is	called	for	each	symbol	listed	in	each
file	in	the	import	table.	The	callback	function	can	alter	the	symbol	name	at
its	discretion.
Byways:	The	pfByway	function	is	called	once	at	the	start	of	the	import
table,	between	each	pair	of	import	functions,	and	again	at	the	end	of	the
import	table.	The	pfByway	function	can	at	its	discretion	introduce	a	new
import	file	into	the	import	table.	When	a	byway	is	inserted,	the	import	table
is	modified	to	import	the	function	exported	with	ordinal	#1	from	the	named
import	file.
Commit:	The	pfCommit	function	is	called	at	the	end	of	walking	the	import
table	if	no	errors	have	been	returned	by	previous	callback	functions.

Consider	a	binary	that	imports	the	functions	CreateFileW	and	CloseHandle
from	Kernel32.dll,	the	function	CommandLineToArgvW	from	Shell32.dll,	the
functions	RegOpenKeyExW,	RegQueryValueW,	and	RegCloseKey	from
AdvApi32.dll,	and	has	a	byway	for	MyDetour.Dll	inserted	from	a	previous	call
to	DetoursBinaryEditImports.	A	program	calling	DetoursBinaryEditImports
would	receive	the	following	callbacks:

BywayCallback	(...,	NULL,	...)

BywayCallback	(...,	"MyDetour.dll",	...)

BywayCallback	(...,	NULL,	...)

FileCallback	(...,	"Kernel32.dll",	...)

SymbolCallback	(...,	"CloseHandle",	...)

SymbolCallback	(...,	"CreateFileW",	...)

BywayCallback	(...,	NULL,	...)

FileCallback	(...,	"Shell32.dll",	...)

SymbolCallback	(...,	"CommandLineToArgvW",	...)

BywayCallback	(...,	NULL,	...)

FileCallback	(...,	"AdvApi32.dll",	...)

SymbolCallback	(...,	"RegCloseKey",	...)

SymbolCallback	(...,	"RegQueryValueW",	...)

SymbolCallback	(...,	"RegOpenKeyExW",	...)

BywayCallback	(...,	NULL,	...)

CommitCallback	(...)

For	more	information	on	binary	editing	with	Detours,	see	Payloads	and	DLL
Import	Editing	in	the	Detours	Overview.

Note:	Each	DLL	inserted	as	a	byway	must	export	a	function	with	ordinal	#1.	If
the	export	table	for	the	DLL	does	not	export	a	function	with	ordinal	#1,	the
target	binary	will	fail	to	load	correct.

Related	Samples

Dumpi,	Impmunge,	Setdll.

PF_DETOUR_BINARY_BYWAY_CALLBACK

Pointer	to	function	called	once	for	each	existing	byway	or	opportunity	to	insert	a
new	byway	while	editing	an	import	table	using	the	DetourBinaryEditImports
API.

Definition

BOOL	BinaryBywayCallback(

				_In_opt_																		PVOID	pContext,

				_In_opt_																		LPCSTR	pszFile,

				_Outptr_result_maybenull_	LPCSTR	*	ppszOutFile

);

Parameters

pContext
Umodified	program	specific	context	pointer	passed	as	pContext	argument
to	DetourBinaryEditImports.

pszFile
Name	of	byway	listed	in	current	import	table	or	NULL.

ppszOutFile
Pointer	to	output	name	of	desired	byway.

Return	value

TRUE	to	continue	editing	import	table	or	FALSE	to	abort.

Remarks

PF_DETOUR_BINARY_BYWAY_CALLBACK	is	called	once	for	each	existing	byway	in
the	target	binary	and	once	before	or	after	each	file	or	byway	listed	in	the	existing
import	table.	When	called	for	an	existing	byway,	pszFile	will	have	a	non-NULL
value.

When	PF_DETOUR_BINARY_BYWAY_CALLBACK	is	called	before	or	after	an	existing
file	or	byway,	pszFile	will	be	NULL.	The	callback	function	can	use	this

opportunity	to	insert	a	new	byway	if	desired.

Note:	Each	DLL	inserted	as	a	byway	must	export	a	function	with	ordinal	#1.	If
the	export	table	for	the	DLL	does	not	export	a	function	with	ordinal	#1,	the
target	binary	will	fail	to	load	correct.

PF_DETOUR_BINARY_COMMIT_CALLBACK

Pointer	to	function	called	at	the	end	of	editing	an	import	table	using	the
DetourBinaryEditImports	API.

Definition

BOOL	BinaryCommitCallback(

				_In_opt_	PVOID	pContext

);

Parameters

pContext
Umodified	program	specific	context	pointer	passed	as	pContext	argument
to	DetourBinaryEditImports.

Return	value

TRUE	to	continue	editing	import	table	or	FALSE	to	abort.

PF_DETOUR_BINARY_FILE_CALLBACK

Pointer	to	function	called	once	for	file	while	editing	an	import	table	using	the
DetourBinaryEditImports	API.

Definition

BOOL	BinaryFileCallback(

				_In_opt_																		PVOID	pContext,

				In																						LPCSTR	pszOrigFile,

				In																						LPCSTR	pszFile,

				_Outptr_result_maybenull_	LPCSTR	*	ppszOutFile

);

Parameters

pContext
Umodified	program	specific	context	pointer	passed	as	pContext	argument
to	DetourBinaryEditImports.

pszOrigFile
Name	of	file	listed	in	original	import	table.

pszFile
Name	of	file	listed	in	current	import	table

ppszOutFile
Pointer	to	output	desired	import	table	name.

Return	value

TRUE	to	continue	editing	import	table	or	FALSE	to	abort.

PF_DETOUR_BINARY_SYMBOL_CALLBACK

Pointer	to	function	called	once	for	each	symbol	while	editing	an	import	table
using	the	DetourBinaryEditImports	API.

Definition

BOOL	BinarySymbolCallback(

				_In_opt_																		PVOID	pContext,

				In																						ULONG	nOrigOrdinal,

				In																						ULONG	nOrdinal,

				Out																					ULONG	*	pnOutOrdinal,

				_In_opt_																		PCSTR	pszOrigSymbol,

				_In_opt_																		PCSTR	pszSymbol,

				_Outptr_result_maybenull_	PCSTR	*ppszOutSymbol

);

Parameters

pContext
Umodified	program	specific	context	pointer	passed	as	pContext	argument
to	DetourBinaryEditImports.

nOrigOrdinal
Import	ordinal	listed	in	original	import	table.

nOrdinal
Import	ordinal	listed	in	current	import	table.

pnOutOrdinal
Pointer	to	output	desired	import	ordinal.

pszOrigSymbol
Import	symbol	listed	in	original	import	table.

pszSymbol
Import	symbol	listed	in	current	import	table.

ppszOutSymbol
Pointer	to	output	desire	import	symbol.

Return	value

TRUE	to	continue	editing	import	table	or	FALSE	to	abort.

DetourBinaryEnumeratePayloads

Enumerate	the	payloads	in	a	binary.

Definition

_Writable_bytes_(*pcbData)

_Readable_bytes_(*pcbData)

Success(return	!=	NULL)

PVOID	DetourBinaryEnumeratePayloads(

				In						PDETOUR_BINARY	pBinary,

				_Out_opt_	GUID	*	pGuid,

				Out					DWORD	*	pcbData,

				Inout			DWORD	*	pnIterator

);

Parameters

pBinary
Pointer	to	the	binary	opened	by	DetourBinaryOpen	.

pGuid
Pointer	to	the	variable	to	receive	the	GUID	of	the	next	payload.

pcbData
Poiunter	to	the	Variable	to	receive	the	size	in	bytes	of	the	next	payload.

pnIterator
Enumeration	variable.	Should	be	set	to	zero	to	start	enumeration.	The
enumeration	variable	should	not	be	modified	between	successive	calls	to
this	function.

Remarks

DetourBinaryEnumeratePayloads	enumerates	all	of	the	payloads	in	a	binary
opened	by	DetourBinaryOpen	.

For	more	information	on	binary	editing	with	Detours	and	paylods,	see	Payloads
and	DLL	Import	Editing	in	the	Detours	Overview.

Return	value

If	successful,	returns	a	pointer	to	the	next	payload;	otherwise,	returns	NULL.

DetourBinaryFindPayload

Find	a	payload	within	a	binary.

Definition

_Writable_bytes_(*pcbData)

_Readable_bytes_(*pcbData)

Success(return	!=	NULL)

PVOID	DetourBinaryFindPayload(

				In		PDETOUR_BINARY	pBinary,

				In		REFGUID	rguid,

				Out	DWORD	*	pcbData

);

Parameters

pBinary
Pointer	to	the	binary	opened	by	DetourBinaryOpen	.

rguid
GUID	of	the	specified	payload.

pcbData
Pointer	to	the	variable	that	receives	the	size	of	the	specified	payload	in
bytes.

Remarks

DetourBinaryFindPayloadFinds	a	specific	payload	within	a	binary	opened	by
DetourBinaryOpen.

For	more	information	on	binary	editing	with	Detours	and	paylods,	see	Payloads
and	DLL	Import	Editing	in	the	Detours	Overview.

Return	value

If	successful,	returns	TRUE;	otherwise,	returns	FALSE.

DetourBinaryOpen

Read	the	contents	of	a	binary	into	memory	for	editing.

Definition

PDETOUR_BINARY	DetourBinaryOpen(

				In	HANDLE	hFile

);

Parameters

hFile
The	handle	of	the	binary	to	be	opened	for	editing.

Return	value

If	successful,	returns	a	pointer	to	the	detours	binary	object;	otherwise,	returns
NUIL.

Error	codes

The	function	sets	the	following	error	code,	if	appropriate.	The	error	code	may	be
retrived	after	the	function	has	returned	by	calling	GetLastError.

ERROR_OUT_OF_MEMORY
Not	enough	memory	to	complete	the	operation.

Remarks

DetourBinaryOpen	reads	the	contents	of	a	Windows	PE	COFF	binary	into
memory	for	editing.

For	more	information	on	binary	editing	with	Detours,	see	Payloads	and	DLL
Import	Editing	in	the	Detours	Overview.

Related	Samples

Dumpi,	Impmunge,	Setdll.

DetourBinaryPurgePayloads

Remove	all	payloads	from	a	binary.

Definition

BOOL	DetourBinaryPurgePayloads(

				In	PDETOUR_BINARY	pBinary

);

Parameters

pBinary
Pointer	to	binary,	opened	by	DetourBinaryOpen,	to	be	purged.

Remarks

DetourBinaryPurgePayloadsRemoves	all	payloads	from	a	binary	opened	by
DetourBinaryOpen.

For	more	information	on	binary	editing	with	Detours,	see	Payloads	and	DLL
Import	Editing	in	the	Detours	Overview.

Return	value

If	successful,	returns	TRUE;	otherwise,	returns	FALSE.

DetourBinaryResetImports

Remove	all	edits	by	Detours	of	the	binary's	import	table.

Definition

BOOL	DetourBinaryResetImports(

				In	PDETOUR_BINARY	pBinary

);

Parameters

pBinary
Pointer	to	the	binary	opened	by	DetourBinaryOpen.

Return	value

If	successful,	returns	TRUE;	otherwise,	returns	FALSE.

Remarks

DetourBinaryResetImportsRemoves	all	Detours	edits	made	to	the	import	table
of	a	binary	opened	by	DetourBinaryOpen.

For	more	information	on	binary	editing	with	Detours,	see	Payloads	and	DLL
Import	Editing	in	the	Detours	Overview.

Related	Samples

Setdll.

DetourBinarySetPayload

Attach	a	payload	to	a	binary.

Definition

PVOID	DetourBinarySetPayload(

				In																			PDETOUR_BINARY	pBinary,

				In																			REFGUID	rguid,

				_In_reads_opt_(cbData)	PVOID	pData,

				In																			DWORD	cbData

);

Parameters

pBinary
Pointer	to	the	binary	opened	by	DetourBinaryOpen

rguid
GUID	of	the	payload	to	be	added	to	binary.

pData
Pointer	to	payload	data.

cbData
Size	of	the	payload	data	in	bytes.

Remarks

DetourBinarySetPayload	attaches	a	payload	to	a	binary	opened	by
DetourBinaryOpen.	The	payload	can	be	located	at	runtime	using	the
DetourFindPayload	API.

For	more	information	on	binary	editing	with	Detours,	see	Payloads	and	DLL
Import	Editing	in	the	Detours	Overview.

Return	value

If	successful,	returns	TRUE;	otherwise,	returns	FALSE.

DetourBinaryWrite

Write	an	updated	binary	to	a	file.

Definition

BOOL	DetourBinaryWrite(

				In	PDETOUR_BINARY	pBinary,

				In	HANDLE	hFile

);

Parameters

pBinary
Pointer	to	the	binary	to	be	written	to	a	file.

hFile
Handle	of	the	file	to	receive	the	contents	of	the	binary.

Return	value

If	successful,	returns	TRUE;	otherwise,	returns	FALSE.

Remarks

DetourBinaryWrite	writes	the	updated	binary,	opened	by	DetourBinaryOpen,	to
a	file.

For	more	information	on	binary	editing	with	Detours,	see	Payloads	and	DLL
Import	Editing	in	the	Detours	Overview.

Related	Samples

Impmunge,	Setdll.

DetourCodeFromPointer

Return	a	pointer	to	the	code	that	implements	a	function	pointer.

Definition

PVOID	DetourCodeFromPointer(

				In						PVOID	pPointer,

				_Out_opt_	PVOID	*ppGlobals

);

Parameters

pPointer
Pointer	to	the	function.

ppGlobals
Variable	to	receive	the	address	of	the	function's	globals	data.

Return	value

Returns	a	pointer	to	the	code	implementing	the	function.

Remarks

DetourCodeFromPointer	returns	a	pointer	to	the	code	that	implements	a	function
pointed	to	by	a	function	pointer.	When	a	binary	is	statically	linked	against	a
DLL,	pointers	to	functions	from	the	DLL	often	point	not	to	the	code	from	the
DLL,	but	to	a	jump	statement	in	the	binary's	import	table.
DetourCodeFromPointer	returns	the	address	of	the	actual	target	function,	not	the
jump	statement.

On	some	platforms,	function	pointer	point	to	indirection	labels,	not	code.	On
these	platforms,	the	indirection	labels	also	contains	a	pointer	to	the	global	(or
static)	data	associated	with	the	function.

For	more	information	on	using	Detours	to	intercept	function	calls,	see
Interception	of	Binary	Functions	or	Using	Detours	in	the	Detours	Overview.

Related	Samples

Slept,	Tracebld.

DetourCopyPayloadToProcess

Copy	a	payload	into	a	target	process.

Definition

BOOL	DetourCopyPayloadToProcess(

				In																					HANDLE	hProcess,

				In																					REFGUID	rguid,

				_In_reads_bytes_(cbData)	PVOID	pvData,

				In																					DWORD	cbData

);

Parameters

hProcess
Process	into	which	payload	should	be	copied.

rguid
GUID	of	the	specified	payload.

pvData
Pointer	to	payload	data.

pcbData
Size	in	bytes	of	payload	data.

Return	value

Returns	TRUE	if	the	payload	was	successfully	copied	to	the	target	process.

Error	codes

On	failure,	DetourCopyPayloadToProcess	will	return	FALSE.	Extended	error
code	information	may	be	retrieved	by	calling	GetLastError.

Remarks

DetourCopyPayloadToProcess	allocated	a	region	of	memory	in	the	target
process	using	the	VirtualAllocEx	API.	It	then	uses	the	WriteProcessMemory

API	to	create	an	artificial	PE	binary	module	in	the	target	memory.	In	the
artificial	module,	DetourCopyPayloadToProcess	creates	a	.detours	section
with	the	specified	payload	data.

Code	in	the	target	process	can	find	the	payload	by	enumerating	through	all
modules	using	the	DetourEnumerateModules	API	and	querying	each	module	for
the	payload	using	the	DetourFindPayload	API.

Related	Samples

Tracebld,	WithDll.

DetourCreateProcessWithDll

Create	a	new	process	and	load	a	DLL	into	it..

DetourCreateProcessWithDll	has	been	deprecated.	Use
DetourCreateProcessWithDllEx	or	DetourCreateProcessWithDlls	instead.

Definition

BOOL	DetourCreateProcessWithDll(

				_In_opt_				LPCTSTR	lpApplicationName,

				_Inout_opt_	LPTSTR	lpCommandLine,

				_In_opt_				LPSECURITY_ATTRIBUTES	lpProcessAttributes,

				_In_opt_				LPSECURITY_ATTRIBUTES	lpThreadAttributes,

				In								BOOL	bInheritHandles,

				In								DWORD	dwCreationFlags,

				_In_opt_				LPVOID	lpEnvironment,

				_In_opt_				LPCTSTR	lpCurrentDirectory,

				In								LPSTARTUPINFOW	lpStartupInfo,

				Out							LPPROCESS_INFORMATION	lpProcessInformation,

				In								LPCSTR	lpDllName,

				_In_opt_				PDETOUR_CREATE_PROCESS_ROUTINEW	pfCreateProcessW

);

Parameters

lpApplicationName
Application	name	as	defined	for	CreateProcess	API.

lpCommandLine
Command	line	as	defined	for	CreateProcess	API.

lpProcessAttributes
Process	attributes	as	defined	for	CreateProcess	API.

lpThreadAttributes
Thread	attributes	as	defined	for	CreateProcess	API.

bInheritHandles
Inherit	handle	flags	as	defined	for	CreateProcess	API.

dwCreationFlags
Creation	flags	as	defined	for	CreateProcess	API.

lpEnvironment
Process	environment	variables	as	defined	for	CreateProcess	API.

lpCurrentDirectory
Process	current	directory	as	defined	for	CreateProcess	API.

lpStartupInfo
Process	startup	information	as	defined	for	CreateProcess	API.

lpProcessInformation
Process	handle	information	as	defined	for	CreateProcess	API.

lpDllName
Pathname	of	the	DLL	to	be	insert	into	the	new	process.

pfCreateProcessW
Pointer	to	program	specific	replacement	for	the	CreateProcess	API,	or
NULL	if	the	standard	CreateProcess	API	should	be	used	to	create	the	new
process.

Return	value

Returns	TRUE	if	the	new	process	was	created;	otherwise	returns	FALSE.

Error	codes

See	error	code	returned	from	CreateProcess.

Remarks

DetourCreateProcessWithDll	creates	a	new	process	with	the	specified	DLL
inserted	into	it.

The	process	is	created	in	a	suspended	state	with	the	CREATE_SUSPENDED
flag	to	CreateProcess.	Detours	then	modifies	the	image	of	the	application	binary
in	the	new	process	to	include	the	specified	DLL	as	its	first	import.	Execution	in
the	process	is	then	resumed.	When	execution	resumes,	the	Windows	process
loader	will	first	load	the	detour	DLL	and	then	any	other	DLLs	in	the
application's	import	table,	before	calling	the	application	entry	point.

DetourCreateProcessWithDll	modifies	the	in-memory	import	table	of	the
target	PE	binary	program	in	the	new	process	it	creates.	The	updated	import	table
will	contain	a	reference	to	function	ordinal	#1	exported	from	the	detour	DLL.

Note:	The	new	process	will	fail	to	start	if	the	detour	DLL	does	not	export

DetourFinishHelperProcess	as	export	ordinal	#1.

After	the	detour	DLL	has	been	loaded,	it	should	reverse	changes	to	the	in-
memory	import	table	by	calling	DetourRestoreAfterWith.	To	facilitate
reversing	these	changes,	DetourCreateProcessWithDll	copies	relevant	reversal
data	into	a	payload	in	the	target	process	using	the	DetourCopyPayloadToProcess
API.	The	loaded	DLL	should	call	the	DetourRestoreAfterWith	API	to	restores
the	contents	of	the	import	table.

Related	Samples

Tracebld,	Tracemem,	Tracereg,	Traceser,	Withdll.

DetourCreateProcessWithDllEx

Create	a	new	process	and	load	a	DLL	into	it.	Chooses	the	appropriate	32-bit	or
64-bit	DLL	based	on	the	target	process.

Replaces	DetourCreateProcessWithDll.

Definition

BOOL	DetourCreateProcessWithDllEx(

				_In_opt_				LPCTSTR	lpApplicationName,

				_Inout_opt_	LPTSTR	lpCommandLine,

				_In_opt_				LPSECURITY_ATTRIBUTES	lpProcessAttributes,

				_In_opt_				LPSECURITY_ATTRIBUTES	lpThreadAttributes,

				In								BOOL	bInheritHandles,

				In								DWORD	dwCreationFlags,

				_In_opt_				LPVOID	lpEnvironment,

				_In_opt_				LPCTSTR	lpCurrentDirectory,

				In								LPSTARTUPINFOW	lpStartupInfo,

				Out							LPPROCESS_INFORMATION	lpProcessInformation,

				In								LPCSTR	lpDllName,

				_In_opt_				PDETOUR_CREATE_PROCESS_ROUTINEW	pfCreateProcessW

);

Parameters

lpApplicationName
Application	name	as	defined	for	CreateProcess	API.

lpCommandLine
Command	line	as	defined	for	CreateProcess	API.

lpProcessAttributes
Process	attributes	as	defined	for	CreateProcess	API.

lpThreadAttributes
Thread	attributes	as	defined	for	CreateProcess	API.

bInheritHandles
Inherit	handle	flags	as	defined	for	CreateProcess	API.

dwCreationFlags
Creation	flags	as	defined	for	CreateProcess	API.

lpEnvironment
Process	environment	variables	as	defined	for	CreateProcess	API.

lpCurrentDirectory
Process	current	directory	as	defined	for	CreateProcess	API.

lpStartupInfo
Process	startup	information	as	defined	for	CreateProcess	API.

lpProcessInformation
Process	handle	information	as	defined	for	CreateProcess	API.

lpDllName
Pathname	of	the	DLL	to	be	insert	into	the	new	process.	To	support	both	32-
bit	and	64-bit	applications,	The	DLL	name	should	end	with	"32"	if	the	DLL
contains	32-bit	code	and	should	end	with	"64"	if	the	DLL	contains	64-bit
code.	If	the	target	process	differs	in	size	from	the	parent	process,	Detours
will	automatically	replace	"32"	with	"64"	or	"64"	with	"32"	in	the	path
name.

pfCreateProcessW
Pointer	to	program	specific	replacement	for	the	CreateProcess	API,	or
NULL	if	the	standard	CreateProcess	API	should	be	used	to	create	the	new
process.

Return	value

Returns	TRUE	if	the	new	process	was	created;	otherwise	returns	FALSE.

Error	codes

See	error	code	returned	from	CreateProcess.

Remarks

DetourCreateProcessWithDllEx	creates	a	new	process	with	the	specified	DLL
inserted	into	it.

The	process	is	created	in	a	suspended	state	with	the	CREATE_SUSPENDED
flag	to	CreateProcess.	Detours	then	modifies	the	image	of	the	application	binary
in	the	new	process	to	include	the	specified	DLL	as	its	first	import.	Execution	in
the	process	is	then	resumed.	When	execution	resumes,	the	Windows	process
loader	will	first	load	the	target	DLL	and	then	any	other	DLLs	in	the	application's
import	table,	before	calling	the	application	entry	point.

DetourCreateProcessWithDllEx	modifies	the	in-memory	import	table	of	the
target	PE	binary	program	in	the	new	process	it	creates.	The	updated	import	table
will	contain	a	reference	to	function	ordinal	#1	exported	from	the	target	DLL.	If
the	target	process	is	32-bit	and	the	parent	process	is	64-bit,	or	if	the	target
process	is	64-bit	and	the	parent	process	is	32-bit,
DetourCreateProcessWithDllEx	will	use	rundll32.exe	to	load	the	DLL	into	a
helper	process	that	matches	the	target	process	temporarily	in	order	to	update	the
target	processes	import	table	with	the	correct	DLL.

Note:	The	new	process	will	fail	to	start	if	the	target	DLL	does	not	contain	a
exported	function	with	ordinal	#1.

After	the	target	DLL	has	been	loaded,	it	can	reverse	changes	to	the	in-memory
import	table	by	calling	DetourRestoreAfterWith.	To	facilitate	reversing	these
changes,	DetourCreateProcessWithDllEx	copies	relevant	reversal	data	into	a
payload	in	the	target	process	using	the	DetourCopyPayloadToProcess	API.	The
loaded	DLL	should	call	the	DetourRestoreAfterWith	API	to	restores	the
contents	of	the	import	table.

Related	Samples

Traceapi,	Tracebld,	Tracemem,	Tracereg,	Traceser,	Tryman,	Withdll.

DetourCreateProcessWithDlls

Create	a	new	process	and	load	DLLs	into	it.	Chooses	the	appropriate	32-bit	or
64-bit	DLL	based	on	the	target	process.

Replaces	DetourCreateProcessWithDll.

Definition

BOOL	DetourCreateProcessWithDlls(

				_In_opt_										LPCTSTR	lpApplicationName,

				_Inout_opt_							LPTSTR	lpCommandLine,

				_In_opt_										LPSECURITY_ATTRIBUTES	lpProcessAttributes,

				_In_opt_										LPSECURITY_ATTRIBUTES	lpThreadAttributes,

				In														BOOL	bInheritHandles,

				In														DWORD	dwCreationFlags,

				_In_opt_										LPVOID	lpEnvironment,

				_In_opt_										LPCTSTR	lpCurrentDirectory,

				In														LPSTARTUPINFOW	lpStartupInfo,

				Out													LPPROCESS_INFORMATION	lpProcessInformation,

				In														DWORD	nDlls,

				_In_reads_(nDlls)	LPCSTR	*rlpDlls,

				_In_opt_										PDETOUR_CREATE_PROCESS_ROUTINEW	pfCreateProcessW

);

Parameters

lpApplicationName
Application	name	as	defined	for	CreateProcess	API.

lpCommandLine
Command	line	as	defined	for	CreateProcess	API.

lpProcessAttributes
Process	attributes	as	defined	for	CreateProcess	API.

lpThreadAttributes
Thread	attributes	as	defined	for	CreateProcess	API.

bInheritHandles
Inherit	handle	flags	as	defined	for	CreateProcess	API.

dwCreationFlags
Creation	flags	as	defined	for	CreateProcess	API.

lpEnvironment

Process	environment	variables	as	defined	for	CreateProcess	API.
lpCurrentDirectory

Process	current	directory	as	defined	for	CreateProcess	API.
lpStartupInfo

Process	startup	information	as	defined	for	CreateProcess	API.
lpProcessInformation

Process	handle	information	as	defined	for	CreateProcess	API.
nDlls

Count	of	the	number	of	DLLs	in	rlpDlls.
rlpDlls

Array	of	pathnames	of	the	DLL	to	be	insert	into	the	new	process.	To
support	both	32-bit	and	64-bit	applications,	The	DLL	names	should	end
with	"32"	if	the	DLL	contains	32-bit	code	and	should	end	with	"64"	if	the
DLL	contains	64-bit	code.	If	the	target	process	differs	in	size	from	the
parent	process,	Detours	will	automatically	replace	"32"	with	"64"	or	"64"
with	"32"	in	the	path	name.

pfCreateProcessW
Pointer	to	program	specific	replacement	for	the	CreateProcess	API,	or
NULL	if	the	standard	CreateProcess	API	should	be	used	to	create	the	new
process.

Return	value

Returns	TRUE	if	the	new	process	was	created;	otherwise	returns	FALSE.

Error	codes

See	error	code	returned	from	CreateProcess.

Remarks

DetourCreateProcessWithDlls	creates	a	new	process	with	the	specified	DLL
inserted	into	it.

The	process	is	created	in	a	suspended	state	with	the	CREATE_SUSPENDED
flag	to	CreateProcess.	Detours	then	modifies	the	image	of	the	application	binary
in	the	new	process	to	include	the	specified	DLL	as	its	first	import.	Execution	in
the	process	is	then	resumed.	When	execution	resumes,	the	Windows	process

loader	will	first	load	the	target	DLL	and	then	any	other	DLLs	in	the	application's
import	table,	before	calling	the	application	entry	point.

DetourCreateProcessWithDlls	modifies	the	in-memory	import	table	of	the
target	PE	binary	program	in	the	new	process	it	creates.	The	updated	import	table
will	contain	a	reference	to	function	ordinal	#1	exported	from	the	target	DLL.	If
the	target	process	is	32-bit	and	the	parent	process	is	64-bit,	or	if	the	target
process	is	64-bit	and	the	parent	process	is	32-bit,
DetourCreateProcessWithDlls	will	use	rundll32.exe	to	load	the	DLL	into	a
helper	process	that	matches	the	target	process	temporarily	in	order	to	update	the
target	processes	import	table	with	the	correct	DLL.

Note:	The	new	process	will	fail	to	start	if	the	target	DLL	does	not	contain	a
exported	function	with	ordinal	#1.

After	the	target	DLL	has	been	loaded,	it	can	reverse	changes	to	the	in-memory
import	table	by	calling	DetourRestoreAfterWith.	To	facilitate	reversing	these
changes,	DetourCreateProcessWithDlls	copies	relevant	reversal	data	into	a
payload	in	the	target	process	using	the	DetourCopyPayloadToProcess	API.	The
loaded	DLL	should	call	the	DetourRestoreAfterWith	API	to	restores	the
contents	of	the	import	table.

Related	Samples

Traceapi,	Tracebld,	Tracemem,	Tracereg,	Traceser,	Tryman,	Withdll.

DetourDetach

Detach	a	detour	from	a	target	function.

Definition

LONG	DetourDetach(

				Inout	PVOID	*	ppPointer,

				In				PVOID	pDetour

);

Parameters

ppPointer
Pointer	to	the	target	pointer	from	which	the	detour	will	be	detached.

pDetour
Pointer	to	the	detour	function.

Return	value

Returns	NO_ERROR	if	successful;	otherwise,	returns	an	error	code.

Error	codes

ERROR_INVALID_BLOCK
The	function	to	be	detached	was	too	small	to	be	detoured.

ERROR_INVALID_HANDLE
The	ppPointer	parameter	is	null	or	references	a	null	address.

ERROR_INVALID_OPERATION
No	pending	transaction	exists.

ERROR_NOT_ENOUGH_MEMORY
Not	enough	memory	to	complete	the	operation.

Remarks

DetourDetach	detaches	a	detour	from	a	target	function	as	part	of	the	current
transaction	opened	by	the	DetourTransactionBegin	API.

For	more	information	on	using	Detours	to	intercept	function	calls,	see
Interception	of	Binary	Functions	or	Using	Detours	in	the	Detours	Overview.

Related	Samples

Commem,	Cping,	FindFunc,	Member,	Simple,	Slept,	Traceapi,	Tracebld,
Tracelnk,	Tracemem,	Tracereg,	Traceser,	Tracetcp,	Tryman.

DetourEnumerateExports

Enumerate	exports	from	a	module.

Definition

BOOL	DetourEnumerateExports(

				In					HMODULE	hModule,

				_In_opt_	PVOID	pContext,

				In					PF_DETOUR_ENUMERATE_EXPORT_CALLBACK	pfExport

);

Parameters

hModule
The	handle	to	the	module	whose	exports	are	to	be	enumerated.

pContext
Program	specific	context	that	will	be	passed	to	pfExport.

pfExport
Callback	function	to	be	called	once	per	symbol	exported	from	module.

Return	value

TRUE	if	module	exports	are	enumerated;	otherwise	FALSE.

Error	codes

The	function	sets	one	of	the	following	error	codes,	as	appropriate.	The	error
code	may	be	retrived	after	the	function	has	returned	by	calling	GetLastError.

ERROR_BAD_EXE_FORMAT
The	MZ	header	of	specified	module	is	invalid.

ERROR_EXE_MARKED_INVALID
The	NT	COFF	header	of	the	specified	module	is	invalid.

ERROR_INVALID_EXE_SIGNATURE
The	NT	COFF	header	of	the	specified	module	has	an	invalid	signature.

Related	Samples

Disas,	Dumpe,	Disas,	Einst,	Tracelnk,	Tracereg.

PF_DETOUR_ENUMERATE_EXPORT_CALLBACK

Pointer	to	function	called	once	for	each	export	enumerated	by
DetourEnumerateExports.

Definition

BOOL	EnumerateExportCallback(

				_In_opt_	PVOID	pContext,

				In					ULONG	nOrdinal,

				_In_opt_	LPCSTR	pszName,

				_In_opt_	PVOID	pCode

);

Parameters

pContext
Umodified	program	specific	context	pointer	passed	as	pContext	argument
to	DetourEnumerateExports.

nOrdinal
Ordinal	of	export	function.

pszName
Name	of	export	function.

pCode
Pointer	to	code	implementing	the	function.

Return	value

TRUE	to	continue	enumeration	of	export	symbols	or	FALSE	to	abort	enumeration.

DetourEnumerateImports

Enumerate	imports	from	a	module.

Definition

BOOL	DetourEnumerateImports(

				_In_opt_	HMODULE	hModule,

				_In_opt_	PVOID	pContext,

				_In_opt_	PF_DETOUR_IMPORT_FILE_CALLBACK	pfImportFile,

				_In_opt_	PF_DETOUR_IMPORT_FUNC_CALLBACK	pfImportFunc

);

Parameters

hModule
The	handle	to	the	module	whose	imports	are	to	be	enumerated.

pContext
Program	specific	context	that	will	be	passed	to	pfImportFile	and
pfImportFunc.

pfImportFile
Callback	function	to	be	called	once	per	file	imported	by	module.

pfImportFunc
Callback	function	to	be	called	once	per	function	imported	by	module.

Return	value

TRUE	if	module	imports	are	enumerated;	otherwise	FALSE.

Error	codes

The	function	sets	one	of	the	following	error	codes,	as	appropriate.	The	error
code	may	be	retrived	after	the	function	has	returned	by	calling	GetLastError.

ERROR_BAD_EXE_FORMAT
The	MZ	header	of	specified	module	is	invalid.

ERROR_EXE_MARKED_INVALID
The	NT	COFF	header	of	the	specified	module	is	invalid.

ERROR_INVALID_EXE_SIGNATURE
The	NT	COFF	header	of	the	specified	module	has	an	invalid	signature.

Remarks

If	you	need	a	pointer	into	the	Import	Address	Table	("IAT"),	you	should	use	the
DetourEnumerateImportsEx.

Related	Samples

Tracebld.

PF_DETOUR_IMPORT_FILE_CALLBACK

Pointer	to	function	called	once	for	each	file	enumerated	by
DetourEnumerateImports.

Definition

BOOL	ImportFileCallback(

				_In_opt_	PVOID	pContext,

				_In_opt_	HMODULE	nOrdinal,

				_In_opt_	LPCSTR	pszName

);

Parameters

pContext
Umodified	program	specific	context	pointer	passed	as	pContext	argument
to	DetourEnumerateImports.

hModule
Module	handle	within	the	process	of	the	imported	file.	NULL	to	indicate
end	of	enumeration.

pszName
Name	of	imported	file.	NULL	to	indicate	end	of	enumeration.

Return	value

TRUE	to	continue	enumeration	of	import	files	or	FALSE	to	abort	enumeration.

PF_DETOUR_IMPORT_FUNC_CALLBACK

Pointer	to	function	called	once	for	each	function	enumerated	by
DetourEnumerateImports.

Definition

BOOL	ImportFuncCallback(

				_In_opt_	PVOID	pContext,

				In					ULONG	nOrdinal,

				_In_opt_	PCSTR	pszName,

				_In_opt_	PVOID	pvFunc

);

Parameters

pContext
Umodified	program	specific	context	pointer	passed	as	pContext	argument
to	DetourEnumerateImports.

nOrdinal
Ordinal	of	imported	function.	0	if	the	import	is	by	name.

pszName
Name	of	imported	function.	NULL	if	the	import	is	by	ordinal.

pvFunc
Pointer	to	code	implementing	the	function	(or	less	commonly,	data).	NULL
if	the	end	of	the	module.

Return	value

TRUE	to	continue	enumeration	of	import	functions	or	FALSE	to	abort	enumeration.

DetourEnumerateImportsEx

Enumerate	imports	from	a	module.

Definition

BOOL	DetourEnumerateImportsEx(

				_In_opt_	HMODULE	hModule,

				_In_opt_	PVOID	pContext,

				_In_opt_	PF_DETOUR_IMPORT_FILE_CALLBACK	pfImportFile,

				_In_opt_	PF_DETOUR_IMPORT_FUNC_CALLBACK_EX	pfImportFunc

);

Parameters

hModule
The	handle	to	the	module	whose	imports	are	to	be	enumerated.

pContext
Program	specific	context	that	will	be	passed	to	pfImportFile	and
pfImportFunc.

pfImportFile
Callback	function	to	be	called	once	per	file	imported	by	module.

pfImportFunc
Callback	function	to	be	called	once	per	function	imported	by	module.

Return	value

TRUE	if	module	imports	are	enumerated;	otherwise	FALSE.

Error	codes

The	function	sets	one	of	the	following	error	codes,	as	appropriate.	The	error
code	may	be	retrived	after	the	function	has	returned	by	calling	GetLastError.

ERROR_BAD_EXE_FORMAT
The	MZ	header	of	specified	module	is	invalid.

ERROR_EXE_MARKED_INVALID
The	NT	COFF	header	of	the	specified	module	is	invalid.

ERROR_INVALID_EXE_SIGNATURE
The	NT	COFF	header	of	the	specified	module	has	an	invalid	signature.

Remarks

DetourEnumerateImports	and	DetourEnumerateImportsEx	are	very	similar.
DetourEnumerateImports's	callback	receives	a	pointer	to	the	code	(or	less
commonly,	data)	pointed	to	by	the	Import	Address	Table	("IAT").
DetourEnumerateImportsEx's	callback	receives	a	pointer	into	the	IAT.

Related	Samples

Tracebld.

PF_DETOUR_IMPORT_FUNC_CALLBACK_EX

Pointer	to	function	called	once	for	each	entry	in	the	IAT	enumerated	by
DetourEnumerateImportsEx.	This	is	similar	to
PF_DETOUR_IMPORT_FUNC_CALLBACK	except	here	the	last	parameter
points	to	the	entry	in	the	IAT.

Definition

BOOL	ImportFuncCallbackEx(

				_In_opt_	PVOID	pContext,

				In					ULONG	nOrdinal,

				_In_opt_	PCSTR	pszName,

				_In_opt_	PVOID	*pvFunc

);

Parameters

pContext
Umodified	program	specific	context	pointer	passed	as	pContext	argument
to	DetourEnumerateImportsEx.

nOrdinal
Ordinal	of	imported	function.	0	if	the	import	is	by	name.

pszName
Name	of	imported	function.	NULL	if	the	import	is	by	ordinal.

pvFunc
Pointer	to	the	address	within	the	Import	Address	Table	("IAT")	for	the
function	(or	less	commonly,	data).	NULL	if	the	end	of	the	module.

Return	value

TRUE	to	continue	enumeration	of	import	functions	or	FALSE	to	abort	enumeration.

DetourEnumerateModules

Enumerate	the	PE	binaries	in	a	process.

Definition

HMODULE	DetourEnumerateModules(

				_In_opt_	HMODULE	hModuleLast

);

Parameters

hModuleLast
The	handle	of	the	last	module	enumerated.	Pass	NULL	to	start	enumeration
for	the	beginning	of	the	process.

Return	value

Handle	to	the	next	module	loaded	in	a	process.

Remarks

DetourEnumerateModules	enumerates	all	of	the	PE	binaries	loaded	into	a
process.	Once	a	module	has	been	enumerated,	its	entry	point	can	be	located	with
the	DetourGetEntryPoint	API,	its	exports	can	be	enumerated	with	the
DetourEnumerateExports	API,	and	its	payloads	can	be	found	using	the
DetourFindPayload	API.

Related	Samples

Disas,	Einst,	Tracebld,	Tracelnk,	Tracereg.

DetourFindFunction

Find	the	address	of	a	target	function	by	name.

Definition

PVOID	DetourFindFunction(

				In	LPCSTR	pszModule,

				In	LPCSTR	pszFunction

);

Parameters

pszModule
The	path	of	the	DLL	or	binary	in	which	the	function	should	be	found.

pszFunction
The	name	of	the	function	to	be	found.

Return	value

If	successful,	returns	the	address	of	the	function	pszFunction;	otherwise,	returns
NULL.

Remarks

DetourFindFunction	tries	to	retrieve	a	function	pointer	for	a	named	function
through	the	dynamic	linking	export	tables	of	the	named	module	and	then,	if	that
fails,	through	debugging	symbols	using	the	DbgHelp	APIs	if	available.

DetourFindFunction	uses	the	DbgHelp	APIs	to	access	debug	symbols.	It
dynamically	links	to	the	DbgHelp	APIs	by	dynamically	loading	DBGHELP.DLL.

If	your	program	can't	find	debug	symbols	that	you	know	are	available,	the	most
likely	cause	is	that	system	either	can't	find	DBGHELP.DLL	or	the	version	of
DBGHELP.DLL	loaded	by	the	system	is	broken.	This	can	happen	on	64-bit
machines	(X64	and	IA64)	where	the	system	will	often	load	a	32-bit	version	of
DBGHELP.DLL	even	though	you	have	written	64-bit	code.	Some	32-bit	versions	of

Windows	also	included	a	non-functional	DBGHELP.DLL	stub.

You	can	test	your	version	of	DBGHELP.DLL	by	using	the	SymTest	program	from
the	FindFunc.	directory..

Related	Samples

Cping,	Excep.	FindFunc.

DetourFindPayload

Return	the	address	of	the	specified	payload	within	a	module.

Definition

_Writable_bytes_(*pcbData)

_Readable_bytes_(*pcbData)

Success(return	!=	NULL)

PVOID	DetourFindPayload(

				_In_opt_	HMODULE	hModule,

				In					REFGUID	rguid,

				Out				DWORD	*	pcbData

);

Parameters

hModule
Module	holding	the	payload	specified	payload.

rguid
GUID	of	the	specified	payload.

pcbData
Variable	to	receive	the	size	in	bytes	of	the	specified	payload.

Return	value

Pointer	to	the	specified	payload	or	NULL	if	the	payload	doesn't	exist.

Error	codes

The	function	sets	one	of	the	following	error	codes	if	it	was	unable	to	search	the
module	for	the	target	payload.	The	error	code	may	be	retrived	after	the	function
has	returned	by	calling	GetLastError.

ERROR_BAD_EXE_FORMAT
The	MZ	header	of	specified	module	is	invalid.

ERROR_EXE_MARKED_INVALID
The	NT	COFF	header	of	the	specified	module	is	invalid.

ERROR_INVALID_EXE_SIGNATURE
The	NT	COFF	header	of	the	specified	module	has	an	invalid	signature.

Remarks

DetourFindPayload	returns	the	address	of	the	specified	payload	within	a
module.	Payloads	can	either	be	created	at	compile	link	time,	see	the	Einst,	or	can
be	inserted	it	an	existing	binary	using	the	DetourBinarySetPayload	API.

For	more	information	on	binary	editing	with	Detours	and	paylods,	see	Payloads
and	DLL	Import	Editing	in	the	Detours	Overview.

Related	Samples

Einst,	Tracebld.

DetourGetContainingModule

Find	the	PE	binary	in	a	process	containg	a	known	function.

Definition

HMODULE	DetourGetContainingModule(

				In	PVOID	vpAddr

);

Parameters

pvAddr
Address	of	a	function	in	the	process.

Return	value

Handle	to	the	containing	module	or	NULL	if	the	address	doesn't	reside	in	a
loaded	PE	binary.

DetourGetEntryPoint

Return	the	entry	point	for	a	module..

Definition

PVOID	DetourGetEntryPoint(

				_In_opt_	HMODULE	hModule

);

Parameters

hModule
The	handle	of	the	module	to	which	the	entry	point	is	desired.

Return	value

Returns	the	entry	point	for	the	module,	if	found;	otherwise,	returns	NULL.

Error	codes

The	function	sets	one	of	the	following	error	codes,	as	appropriate.	The	error
code	may	be	retrived	after	the	function	has	returned	by	calling	GetLastError.

ERROR_BAD_EXE_FORMAT
The	MZ	header	of	specified	module	is	invalid.

ERROR_EXE_MARKED_INVALID
The	NT	COFF	header	of	the	specified	module	is	invalid.

ERROR_INVALID_EXE_SIGNATURE
The	NT	COFF	header	of	the	specified	module	has	an	invalid	signature.

Remarks

DetourGetEntryPoint	returns	the	entry	point	for	a	module.	For	a	.EXE	file,	the
entry	point	is	the	start	of	the	code	for	the	runtime	startup	runtimes.	For	a	.DLL
file,	the	entry	point	is	the	start	of	the	code	for	the	DllMain	function.

The	Slept	sample	shows	how	to	capture	program	execution	after	DLL
initialization	by	detouring	the	entry	point	of	a	program.

Related	Samples

Disas,	Dumpe,	Dumpe,	Tracebld,	Slept.

DetourGetModuleSize

Return	the	load	size	of	a	module.

Definition

ULONG	DetourGetModuleSize(

				In	HMODULE	hModule

);

Parameters

hModule
The	handle	to	the	module	whose	load	size	is	desired.

Return	value

Returns	the	size	of	the	module	in	bytes,	if	it	can	be	determined;	otherwise,
returns	0.

Error	codes

The	function	sets	one	of	the	following	error	codes,	as	appropriate.	The	error
code	may	be	retrived	after	the	function	has	returned	by	calling	GetLastError.

ERROR_BAD_EXE_FORMAT
The	MZ	header	of	specified	module	is	invalid.

ERROR_EXE_MARKED_INVALID
The	NT	COFF	header	of	the	specified	module	is	invalid.

ERROR_INVALID_EXE_SIGNATURE
The	NT	COFF	header	of	the	specified	module	has	an	invalid	signature.

Related	Samples

Disas,	Tracebld.

DetourIsHelperProcess

Check	if	the	current	process	is	a	helper	process	or	a	target	process.

Definition

BOOL	DetourIsHelperProcess(VOID);

Return	value

Returns	true	if	this	process	is	a	helper	process.

Returns	false	if	this	process	is	a	target	process.

Remarks

When	creating	a	32-bit	target	process	from	a	64-bit	parent	process	or	creating	a
64-bit	target	process	from	a	32-bit	parent	process,	the
DetourCreateProcessWithDllEx	API	must	create	a	temporary	helper	process.	It
loads	a	copy	of	the	user-supplied	DLL	into	the	helper	process	using	the
rundll32.exe	mechanism.	The	user-supplied	DLL	should	call
DetourIsHelperProcess	within	its	DllMain	function	to	determine	if	it	has	been
loaded	into	a	helper	process	or	into	a	target	process.

When	a	user-supplied	DLL	is	loaded	into	a	helper	process,	it	must	not	detour
any	functions.	Instead,	it	should	perform	no	operations	in	DllMain.	The	user-
supplied	DLL	must	also	export	the	DetourFinishHelperProcess	API	as	its
Ordinal	1	export	function.

For	more	information,	see	Detouring	32-bit	and	64-bit	Processes.

Related	Samples

Simple,	Simple,	Slept,	Traceapi,	Tracebld,	Tracelnk,	Tracemem,	Tracereg,
Traceser,	Tracetcp,	Tryman.

DetourFinishHelperProcess

Finishes	updating	a	target	process	from	the	helper	process.

Definition

VOID	CALLBACK	DetourFinishHelperProcess(

				In	HWND,

				In	HINSTANCE,

				In	LPSTR,

				In	INT);

Remarks

When	creating	a	32-bit	target	process	from	a	64-bit	parent	process	or	creating	a
64-bit	target	process	from	a	32-bit	parent	process,	the
DetourCreateProcessWithDllEx	API	must	create	a	temporary	helper	process.	It
loads	a	copy	of	the	user-supplied	DLL	into	the	helper	process	using	the
rundll32.exe	mechanism.	Rundll32.exe	will	call	DLL's	Ordinal	1	export
function.	The	DetourFinishHelperProcess	API	must	be	set	as	the	DLL's
Ordinal	1	export	function.

Within	its	DllMain	function,	a	user-supplied	DLL	can	determine	if	the	process	is
a	helper	process	or	a	target	process	by	calling	the	DetourIsHelperProcess	API.

For	more	information,	see	Detouring	32-bit	and	64-bit	Processes.

Related	Samples

Simple,	Simple,	Slept,	Traceapi,	Tracebld,	Tracelnk,	Tracemem,	Tracereg,
Traceser,	Tracetcp,	Tryman.

DetourRestoreAfterWith

Restore	the	contents	in	memory	import	table	after	a	process	was	started	with
DetourCreateProcessWithDllEx	or	DetourCreateProcessWithDlls.	.

Definition

BOOL	DetourRestoreAfterWith(VOID);

Return	value

Returns	true	if	the	necessary	payload	was	found	and	the	restore	succeeded.

Error	codes

The	function	sets	one	of	the	following	error	codes	if	it	was	unable	to	find	the
necessary	payload	or	restore	the	import	table.	The	error	code	may	be	retrived
after	the	function	has	returned	by	calling	GetLastError.

ERROR_MOD_NOT_FOUND
Could	not	find	the	necessary	payload.

Remarks

The	DetourCreateProcessWithDllEx	API	modifies	the	in-memory	import	table
of	the	target	PE	binary	program	in	the	new	process	it	creates.	For	correct
application	compatibilty,	the	changes	to	the	import	table	should	be	removed
before	the	application	runs.	To	remove	these	changes,
DetourCreateProcessWithDllEx	copies	relevant	reversal	data	into	a	payload	in
the	target	process	using	the	DetourCopyPayloadToProcess	API.	When	called	in
the	target	process,	DetourRestoreAfterWith	searches	for	the	necessary
payloaded	and	restores	the	contents	of	the	import	table.

For	correct	results,	DetourRestoreAfterWith	should	be	called	in	the
PROCESS_ATTACH	portion	of	the	DllMain	function	of	the	DLL	loaded	into
the	target	process.

Related	Samples

Simple,	Simple,	Slept,	Traceapi,	Tracebld,	Tracelnk,	Tracemem,	Tracereg,
Traceser,	Tracetcp,	Tryman.

DetourSetIgnoreTooSmall

Enable	or	disable	transaction	abort	on	a	failure	to	attach	or	detach	an	individual
detour	function.

Definition

BOOL	DetourSetIgnoreTooSmall(

				In	BOOL	fIgnore

);

Return	value

Returns	true	if	Detours	was	previously	ignoring	failures	to	detour	target
functions	too	smal	for	detouring.

Parameters

fIgnore
Specifies	whether	to	ignore	functions	that	are	too	small	to	detour.	If	this
parameter	is	set	to	TRUE,	these	functions	will	be	ignored	if	encountered.	If
this	parameter	is	set	to	FALSE,	then	encountering	a	function	too	small	to
be	detoured	will	cause	DetourTransactionCommit	to	fail.

Remarks

DetourSetIgnoreTooSmall	sets	the	flag	to	determine	if	failure	to	detour	a	target
function	that	is	too	small	for	detouring	is	sufficient	error	to	cause	abort	of	the
current	detour	transaction.

For	more	information	on	using	Detours	to	intercept	function	calls,	see
Interception	of	Binary	Functions	or	Using	Detours	in	the	Detours	Overview.

Related	Samples

Traceapi.

DetourSetRetainRegions

Force	Detours	to	retain	trampoline	allocation	regions	even	after	the	trampolines
have	been	released.

Definition

BOOL	DetourSetRetainRegions(

				In	BOOL	fRetain

);

Return	value

Returns	true	if	Detours	was	previously	retaining	unused	trampoline	regions.

Parameters

fRetain
Specifies	whether	trampoline	memory	allocation	regions	should	be	retained
(and	reused)	after	all	of	the	trampolines	in	the	region	have	been	released.	If
this	parameter	is	set	to	TRUE,	these	regions	will	be	retained.	If	this
parameter	is	set	to	FALSE,	then	region	will	not	be	retained.

Remarks

Detours	allocated	trampolines	from	contiguous	regions	of	64KB	of	memory.	By
default,	these	regions	will	be	returned	to	the	OS	when	all	of	the	trampolines	in
the	region	have	been	release	(detached).	However,	in	some	cases,	such	as	when	a
program	frequently	attaches,	detaches,	and	reattaches,	it	may	be	desirable	to
retain	the	memory	regions.

Detours	releases	prior	to	version	3.0	always	retained	trampoline	regions.	For
backward	compatibility,	some	programs	may	want	to	force	this	deprecated
behavior	by	calling	DetourSetRetainRegions(TRUE).

DetourSetSystemRegionLowerBound

Set	the	lower	bound	of	the	region	of	memory	that	cannot	be	used	for	trampolines
because	it	is	reserved	for	system	DLLs.

Definition

PVOID	DetourSetSystemRegionLowerBound(

				In	PVOID	pSystemRegionLowerBound

);

Return	value

Returns	the	previous	lower	bound	value.

Parameters

pSystemRegionLowerBound
Specifies	the	lower	bound	of	the	system	region	into	which	Detours	must
avoid	placing	trampolines.

Remarks

The	DetourAttach	and	DetourAttachEx	APIs	allocate	a	trampoline	for	each
detoured	function.	To	avoid	fragmenting	memory,	Detours	attempts	to	create	the
region	from	which	it	allocates	trampoline	as	close	as	possible	to	the	code	being
detoured.	In	some	circumstances,	trampoline	region	can	collides	with	memory
that	is	silently	set	aside	by	the	OS	or	the	application	for	DLLs	that	are	loaded
later.	When	this	happens,	the	application	continues	to	bahave	correctly,	but	the
OS	can	be	forced	to	relocate	one	or	more	DLLs	to	another	location,	which
increase	the	virtual	memory	required	for	the	process.

To	avoid	these	DLL-relocation	collisions,	Detours	is	programmed	to	avoid
placing	any	trampolines	in	region	of	memory	called	the	"system	region".	By
default,	this	region	is	from	0x70000000	to	0x80000000.	Call
DetourSetSystemRegionLowerBound	and	DetourSetSystemRegionUpperBound
and	to	change	the	region.	For	example,	one	might	increase	the	region	if	the	CLR

is	loaded	into	a	process	after	system	DLLs	are	detoured.

For	more	information	on	using	Detours	to	intercept	function	calls,	see
Interception	of	Binary	Functions	or	Using	Detours	in	the	Detours	Overview.

Related	Samples

Region.

DetourSetSystemRegionUpperBound

Set	the	lower	bound	of	the	region	of	memory	that	cannot	be	used	for	trampolines
because	it	is	reserved	for	system	DLLs.

Definition

PVOID	DetourSetSystemRegionUpperBound(

				In	PVOID	pSystemRegionUpperBound

);

Return	value

Returns	the	previous	upper	bound	value.

Parameters

pSystemRegionUpperBound
Specifies	the	upper	bound	of	the	system	region	into	which	Detours	must
avoid	placing	trampolines.

Remarks

The	DetourAttach	and	DetourAttachEx	APIs	allocate	a	trampoline	for	each
detoured	function.	To	avoid	fragmenting	memory,	Detours	attempts	to	create	the
region	from	which	it	allocates	trampoline	as	close	as	possible	to	the	code	being
detoured.	In	some	circumstances,	trampoline	region	can	collides	with	memory
that	is	silently	set	aside	by	the	OS	or	the	application	for	DLLs	that	are	loaded
later.	When	this	happens,	the	application	continues	to	bahave	correctly,	but	the
OS	can	be	forced	to	relocate	one	or	more	DLLs	to	another	location,	which
increase	the	virtual	memory	required	for	the	process.

To	avoid	these	DLL-relocation	collisions,	Detours	is	programmed	to	avoid
placing	any	trampolines	in	region	of	memory	called	the	"system	region".	By
default,	this	region	is	from	0x70000000	to	0x80000000.	Call
DetourSetSystemRegionLowerBound	and	DetourSetSystemRegionUpperBound
and	to	change	the	region.	For	example,	one	might	increase	the	region	if	the	CLR

is	loaded	into	a	process	after	system	DLLs	are	detoured.

For	more	information	on	using	Detours	to	intercept	function	calls,	see
Interception	of	Binary	Functions	or	Using	Detours	in	the	Detours	Overview.

Related	Samples

Region.

DetourTransactionAbort

Abort	the	current	transaction.

Definition

LONG	DetourTransactionAbort(VOID);

Return	value

Returns	NO_ERROR	if	the	pending	transaction	was	completely	aborted;
otherwise,	returns	an	error	code.

Error	codes

ERROR_INVALID_OPERATION
No	pending	transaction	exists.

Remarks

DetourTransactionAbort	aborts	the	current	transaction	created	with
DetourTransactionBegin.	Aborting	a	transaction	reverse	the	effects	of	any	calls
to	the	DetourAttach,	DetourAttachEx,	DetourDetach,	or	DetourUpdateThread
APIs	made	within	the	transaction.

For	more	information	on	using	Detours	to	intercept	function	calls,	see
Interception	of	Binary	Functions	or	Using	Detours	in	the	Detours	Overview.

DetourTransactionBegin

Begin	a	new	transaction	for	attaching	or	detaching	detours.

Definition

LONG	DetourTransactionBegin(VOID);

Return	value

Returns	NO_ERROR	if	successful;	otherwise	returns
ERROR_INVALID_OPERATION.

Error	codes

ERROR_INVALID_OPERATION
A	pending	transaction	alrady	exists.

Remarks

DetourTransactionBegin	begins	a	new	transaction	for	attaching	or	detaching
detours.

After	beginning	a	transaction,	a	program	calls	the	DetourAttach	or
DetourAttachEx	API	to	attach	a	detour	to	a	target	function,	calls	the
DetourDetach	API	to	detach	a	detour	from	a	target	function,	or	calls	the
DetourUpdateThread	API	to	include	include	a	thread	in	the	transaction	update.

The	attach,	detach,	and	thread	operations	do	not	take	effect	until	the	program
commits	the	transaction	using	the	DetourTransactionCommit	or
DetourTransactionCommitEx	API.	Alternatively,	the	program	can	abort	the
transaction	using	the	DetourTransactionAbort	API.

For	more	information	on	using	Detours	to	intercept	function	calls,	see
Interception	of	Binary	Functions	or	Using	Detours	in	the	Detours	Overview.

Related	Samples

Commem,	Cping,	Dtest,	Excep,	FindFunc,	Member,	Simple,	Slept,	Traceapi,
Tracebld,	Tracelnk,	Tracemem,	Tracereg,	Traceser,	Tracetcp,	Tryman.

DetourTransactionCommit

Commit	the	current	transaction.

Definition

LONG	DetourTransactionCommit(VOID);

Return	value

Returns	NO_ERROR	if	successful;	otherwise,	returns	an	error	code.

Error	codes

ERROR_INVALID_DATA
Target	function	was	changed	by	third	party	between	steps	of	the	transaction.

ERROR_INVALID_OPERATION
No	pending	transaction	exists.

Other
Error	code	returned	by	API	within	DetourAttach,	DetourAttachEx,	or
DetourDetach	that	caused	transaction	to	fail.

Remarks

DetourTransactionCommit	commits	the	current	transaction	created	with
DetourTransactionBegin.	Commiting	a	transaction	make	all	updates	specified	in
any	calls	to	the	DetourAttach,	DetourAttachEx,	DetourDetach,	or
DetourUpdateThread	APIs	within	the	transaction.

For	more	information	on	using	Detours	to	intercept	function	calls,	see
Interception	of	Binary	Functions	or	Using	Detours	in	the	Detours	Overview.

Related	Samples

Commem,	Cping,	Dtest,	Excep,	FindFunc,	Member,	Simple,	Slept,	Traceapi,
Tracebld,	Tracelnk,	Tracemem,	Tracereg,	Traceser,	Tracetcp,	Tryman.

DetourTransactionCommitEx

Commit	the	current	transaction.

Definition

LONG	DetourTransactionCommitEx(

				_Out_opt_	PVOID	**	pppFailedPointer

);

Parameters

pppFailedPointer
Variable	to	receive	the	target	pointer	passed	to	the	DetourAttach,
DetourAttachEx,	or	DetourDetach	call	that	caused	the	latest	transaction	to
fail.

Return	value

Returns	NO_ERROR	if	successful;	otherwise,	returns	an	error	code.

Error	codes

ERROR_INVALID_DATA
Target	function	was	changed	by	third	party	before	the	transaction	could
complete.

ERROR_INVALID_OPERATION
No	pending	transaction	exists.

Other	Codes
Error	code	returned	by	API	within	DetourAttach,	DetourAttachEx,	or
DetourDetach	that	caused	transaction	to	fail.

Remarks

DetourTransactionCommitEx	commits	the	current	transaction	created	with
DetourTransactionBegin.	Commiting	a	transaction	make	all	updates
specified	in	any	calls	to	the	DetourAttach,	DetourAttachEx,	DetourDetach,

or	DetourUpdateThread	APIs	within	the	transaction.

For	more	information	on	using	Detours	to	intercept	function	calls,	see
Interception	of	Binary	Functions	or	Using	Detours	in	the	Detours	Overview.

Related	Samples

Traceapi,

DetourUpdateThread

Enlist	a	thread	for	update	in	the	current	transaction.

Definition

LONG	DetourUpdateThread(

				In	HANDLE	hThread

);

Parameters

hThread
The	handle	of	the	thread	to	be	updated	with	the	pending	transaction.

Return	value

Returns	NO_ERROR	if	successful;	otherwise,	returns	an	error	code.

Error	codes

ERROR_NOT_ENOUGH_MEMORY
Not	enough	memory	to	record	identity	of	thread.

Remarks

DetourUpdateThread	enlists	the	specified	thread	for	update	when	the	current
transaction,	opened	by	the	DetourTransactionBegin	API,	commits.

When	a	detour	transaction	commmits,	Detours	insures	that	all	threads	enlisted	in
the	transcation	via	the	DetourUpdateThread	API	are	updated	if	their	instruction
pointer	lies	within	the	rewritten	code	in	either	the	target	function	or	the
trampoline	function.

Threads	not	enlisted	in	the	transaction	are	not	updated	when	the	transaction
commits.	As	a	result,	they	may	attempt	to	execute	an	illegal	combination	of	old
and	new	code.

For	more	information	on	using	Detours	to	intercept	function	calls,	see
Interception	of	Binary	Functions	or	Using	Detours	in	the	Detours	Overview.

Related	Samples

Commem,	Cping,	Dtest,	Excep,	FindFunc,	Member,	Simple,	Slept,	Traceapi,
Tracebld,	Tracelnk,	Tracemem,	Tracereg,	Traceser,	Tracetcp,	Tryman.

Building	The	Samples

To	build	the	sample	applications,	type	nmake	in	the	samples	directory.	Note	that
you	must	build	the	setdll	and	syslog	samples	in	order	to	use	many	of	the	other
sample	programs.

Each	of	the	sample	directories	has	a	test,	which	can	be	invoked	by	typing	nmake
test,	to	demonstrate	the	usage	of	the	sample.	With	very	few	exceptions,	all	of
the	.exe	programs	also	accept	a	/?	command	to	display	a	usage	message.

The	trace	samples	log	their	output	through	the	syelogd.exe	daemon	and	hook
CreateProcessW	to	load	themselves	into	any	child	processes.	For	example,
typing	withdll	-d:traceapi.dll	cmd.exe	will	create	a	command	shell	under
which	all	processes	log	their	API	calls	through	traceapi.dll.

Detours	includes	the	following	samples:

Commem
Cping
Disas
Dtest
Dumpe
Dumpi
Einst
Excep
FindFunc
Impmunge
Member
Region
Setdll
Simple
Slept
Syelog
Traceapi
Tracebld
Tracelnk
Tracemem
Tracereg

Traceser
Tracetcp
Tryman
Withdll

Commem

Demostrates	how	to	detour	a	member	function	of	a	COM	interface.

Uses

DetourAttach,	DetourTransactionBegin,	DetourTransactionCommit,
DetourUpdateThread.

Cping

Detours	multiple	functions	in	the	DCOM/RPC	stack	to	measure	the	overhead	of
sending	DCOM	messages.

Uses

DetourAttach,	DetourFindFunction,	DetourTransactionBegin,
DetourTransactionCommit,	DetourUpdateThread.

Disas

Tests	the	Detours	disassembler	tables.

Uses

DetourEnumerateExports,	DetourEnumerateModules,	DetourGetEntryPoint,
DetourGetModuleSize.

Dtest

Detours	the	Win32	Sleep	function	and	a	private	function.	The	private	function	is
first	detoured,	then	detoured	recursively	3	times	using	the	DetourAttach	API.

Uses

DetourAttach,	DetourTransactionBegin,	DetourTransactionCommit,
DetourUpdateThread.

Dumpe

Dumps	the	list	of	all	functions	exported	from	a	binary.

Uses

DetourEnumerateExports,	DetourGetEntryPoint.

Dumpi

Dumps	the	list	of	all	functions	imported	by	a	binary.

Uses

DetourBinaryClose,	DetourBinaryEditImports,	DetourBinaryOpen.

Einst

Find	payloads	compiled	into	binary	files.

Uses

DetourEnumerateModules,	DetourFindPayload.

Excep

Uses	a	first-chance	exception	filter	to	toggle	VM	permissions	on	a	page;
enabling	writes	after	catching	the	first	write	to	a	page.

Uses

DetourAttach,	DetourFindFunction,	DetourTransactionBegin,
DetourTransactionCommit,	DetourUpdateThread.

FindFunc

Demostrates	how	to	detour	a	function	using	DetourFindFunction	to	find	the
function	using	debug	symbols.

Uses

DetourAttach,	DetourDetach,	DetourFindFunction,	DetourFinishHelperProcess,
DetourIsHelperProcess,	DetourRestoreAfterWith,	DetourTransactionBegin,
DetourTransactionCommit,	DetourUpdateThread.

Impmunge

Modifies	all	of	the	entries	in	a	binary's	imports	table.

Uses

DetourBinaryClose,	DetourBinaryEditImports,	DetourBinaryOpen,
DetourBinaryWrite.

Member

Demostrates	how	to	detour	a	class	member	function.

Uses

DetourAttach,	DetourTransactionBegin,	DetourTransactionCommit,
DetourUpdateThread.

Region

Demostrates	how	to	change	the	region	of	memory	off	limits	for	trampolines.

Uses

DetourAttach,	DetourTransactionBegin,	DetourTransactionCommit,
DetourSetSystemRegionLowerBound,	DetourSetSystemRegionUpperBound,
DetourUpdateThread.

Setdll

Add	a	DLL	to	the	import	table	of	any	binary	(a	.DLL	or	.EXE	for	example).	Use
setdll.exe	to	attach	one	of	the	sample	DLLs	to	an	application	.EXE	file.

Note:	The	target	binary	will	fail	to	load	if	the	target	DLL	does	not	contain	a
exported	function	with	ordinal	#1.	For	more	information,	see	the
DetourBinaryEditImports	API.

Related	Samples

Withdll.

Uses

DetourBinaryClose,	DetourBinaryEditImports,	DetourBinaryOpen,
DetourBinaryResetImports,	DetourBinaryWrite.

Simple

Simplest	example	of	a	Detours-based	DLL	which	modifies	and	adds
functionality	to	a	Windows	API.	Modifies	the	Sleep	API	to	record	the	number
of	ticks	spent	sleeping.

The	Simple	example	is	described	in	more	detail	in	Using	Detours.

Uses

DetourAttach,	DetourDetach,	DetourTransactionBegin,
DetourTransactionCommit,	DetourUpdateThread.

Slept

More	ellaborate	version	of	the	simple	sample.	Demonstrates	detouring	both
static	and	dynamic	functions.	Also	demonstrates	how	to	capture	program
execution	after	DLL	initialization	by	detouring	the	programs	entry	point.

Uses

DetourAttach,	DetourCodeFromPointer,	DetourDetach,	DetourGetEntryPoint,
DetourTransactionBegin,	DetourTransactionCommit,	DetourUpdateThread.

Syelog

System	event	logging	library	and	service.	All	of	the	tracing	samples	connect	to
syelogd.exe	through	a	named	pipe.	Syelogd	outputs	tracing	information	to	the
console.	You	must	run	syelogd.exe	in	a	seperate	window	in	order	to	see	the
output	from	any	of	the	following	tracing	DLLs:	Traceapi,	Tracelnk,	Tracemem,
Tracereg,	Traceser,	or	Tracetcp.

Uses

Uses	none	of	the	Detours	APIs.

Traceapi

Win32	API	tracing	sample.	Detours	and	prints	tracing	statements	for	1401
Win32	API	functions.	Output	from	the	trace	is	logged	to	the	syelogd.exe
deamon.

Uses

DetourAttach,	DetourCreateProcessWithDllEx,	DetourDetach,
DetourFinishHelperProcess,	DetourIsHelperProcess,	DetourRestoreAfterWith,
DetourSetIgnoreTooSmall,	DetourTransactionBegin,	DetourTransactionCommit,
DetourTransactionCommitEx,	DetourUpdateThread.

Tracebld

Traces	the	file	access	patterns	of	a	process	and	all	of	its	children.	Unlike	the
other	tracing	samples,	Tracebld	is	entirely	self-contained.	It	includes	a	parent
process	that	initiates	a	child	process	with	instrumentation	and	aggregates	the
results	for	the	child	and	its	children.	Output	from	the	children	is	delivered	to	the
parent	process	via	a	named	pipe	created	by	the	parent.

Uses

DetourAttach,	DetourAttachEx,	DetourCodeFromPointer,
DetourCopyPayloadToProcess,	DetourCreateProcessWithDllEx,	DetourDetach,
DetourEnumerateImports,	DetourEnumerateModules,	DetourFindPayload,
DetourGetEntryPoint,	DetourGetModuleSize,	DetourFinishHelperProcess,
DetourIsHelperProcess,	DetourRestoreAfterWith,	DetourTransactionBegin,
DetourTransactionCommit,	DetourUpdateThread.

Tracelnk

Traces	all	calls	to	the	Windows	dynamic	linking	APIs.	Output	from	the	trace	is
logged	to	the	syelogd.exe	deamon.

Uses

DetourAttach,	DetourDetach,	DetourEnumerateModules,
DetourTransactionBegin,	DetourTransactionCommit,	DetourUpdateThread.

Tracemem

Traces	all	calls	to	the	Windows	HeapAlloc	API.	Output	from	the	trace	is	logged
to	the	syelogd.exe	deamon.

Uses

DetourAttach,	DetourCreateProcessWithDllEx,	DetourDetach,
DetourTransactionBegin,	DetourTransactionCommit,	DetourUpdateThread.

Tracereg

Traces	activity	through	the	registry	APIs.	Output	from	the	trace	is	logged	to	the
syelogd.exe	deamon.

Uses

DetourAttach,	DetourCreateProcessWithDllEx,	DetourDetach,
DetourEnumerateModules,	DetourTransactionBegin,	DetourTransactionCommit,
DetourUpdateThread.

Traceser

Traces	activity	through	the	serial	ports	(com1	or	com2).	Output	from	the	trace	is
logged	to	the	syelogd.exe	deamon.

Uses

DetourAttach,	DetourCreateProcessWithDllEx,	DetourDetach,
DetourTransactionBegin,	DetourTransactionCommit,	DetourUpdateThread.

Tracetcp

Traces	activity	through	WinSock	TCP	APIs.	Output	from	the	trace	is	logged	to
the	syelogd.exe	deamon.

Uses

DetourAttach,	DetourDetach,	DetourTransactionBegin,
DetourTransactionCommit,	DetourUpdateThread.

Traceapi

Demonstration	of	using	helper	processes	to	hook	both	32-bit	and	64-bit	target
processes.

Uses

DetourAttach,	DetourCreateProcessWithDllEx,	DetourDetach,
DetourFinishHelperProcess,	DetourIsHelperProcess,	DetourRestoreAfterWith,
DetourTransactionBegin,	DetourTransactionCommit,	DetourUpdateThread.

Withdll

Demonstrates	how	to	use	the	DetourCreateProcessWithDlls	API	to	load	a	detour
DLL	into	a	new	process	without	modifying	the	target	application.	Calls
CreateProcess	and	loads	a	named	DLL	into	the	target	process.

Note:	The	new	process	will	fail	to	start	if	the	target	DLL	does	not	contain	a
exported	function	with	ordinal	#1.	For	more	information,	see	the
DetourCreateProcessWithDlls	API.

Related	Samples

Setdll.

Uses

DetourCreateProcessWithDlls	.

Detours	Frequently	Asked	Questions	(FAQ)

This	page	contains	a	list	of	questions	frequently	asked	about	Detours.	The
questions	are	grouped	by	general	topic	and	area	of	interest.

Compatibility

Is	Detours	compatible	with	Windows	8?

Yes.	Detours	is	fully	compatible	with	Windows	8	desktop	and	server
applications.	While	Detours	can	be	used	in	the	development	and	testing	of
Window	Store	apps,	new	Windows	Store	apps	for	Windows	8	can	not	ship	with
Detours.

Why	can't	my	Windows	Store	app	for	Windows	8	include	Detours?

Windows	Store	apps	may	use	only	a	subset	of	the	Win32	API.	Detours	requires
several	Win32	APIs	that	are	forbidden	in	for	Windows	App	Certification.
Forbidden	APIs	used	by	Detours	include	VirtualAlloc,	VirtualProtect,	and
FlushInstructionCache.

Is	Detours	compatible	with	Windows	95,	Windows	98,	or	Windows	ME?

No.	Detours	is	compatible	only	with	the	Windows	NT	family	of	operating
systems:	Windows	NT,	Windows	XP,	and	Windows	Server	2003,	etc.	Detours
does	not	work	on	the	Windows	9x	family	of	operating	systems	because	they
have	a	primitive	virtual	memory	system.

Compiling	with	Detours	Code

How	do	I	do	thing	X	with	Detours?

Look	in	the	Detours	Samples.	The	Detours	Samples	are	quite	extensive.	It	is
likely	that	anything	you	want	to	accomplish	with	Detours	is	covered	in	one	of
the	included	samples.

Where	can	I	find	detours.lib	and	detours.h?

You	need	to	build	a	version	of	detours.lib	for	your	C/C++	compiler	in	the
detours/src	directory	by	typing	nmake	either	in	the	detours	directory	or	in	the
detours/src	directory.

Running	with	Detours

Why	don't	I	see	any	calls	to	my	detour	of	malloc?

Probably	because	the	target	program	is	not	using	the	malloc	function	you
detoured.

Standard	library	functions	like	malloc	can	be	linked	with	a	program	either
statically,	from	one	of	the	libc*.lib	libraries,	or	dynamically,	from	one	of	the
msvcrt*.dll	libraries.	When	statically	linked,	a	program	receives	its	own
private	version	of	the	standard	library	functions.	When	dynamically	linked,	a
program	shares	version	of	the	standard	library	functions	in	a	DLL.	If	you	detour
your	private	version	of	the	function,	or	if	the	target	program	uses	its	own	private
version	of	the	function,	your	detour	won't	be	called	by	the	target	program.

Why	is	Detours	packaged	as	a	static	library	(detours.lib)	and	not	as	a	dynamic	link	library	(say
detours.dll)?

Packaging	Detours	as	a	statical	library	minimizes	the	risk	that	you	will
accidentally	detour	a	function	required	by	the	Detours	package	itself	and	reduces
versioning	problems.	Note	that	Detours	adds	only	about	16KB	when	statically
linked	with	your	code.

Do	I	still	need	to	use	detoured.dll?

No,	the	detoured.dll	marker	file	was	removed	in	Detours	3.0.	Before	Detours
3.0,	this	file	was	used	as	marker	to	guide	Microsoft	technical	support	personnel
and	tools,	like	Windows	Error	Reporting,	by	helping	them	quickly	determine
that	a	process	has	been	altered	by	the	Detours	package.	Advances	in	Windows
OCA	in	Windows	7	removed	the	need	for	this	marker	as	Windows	7	maintains	a
list	of	DLL	that	have	been	unloaded	from	a	process.	Microsoft	can	not	guarantee
nor	support	in	any	way,	the	modification	of	Microsoft	binaries	by	third	parties.
Nor	can	Microsoft	support,	in	any	way,	an	application	that	contains	Microsoft
binaries	modified	by	third	parties.	This	includes	in-memory	modification	using
the	Detours	package.

http://msdn.microsoft.com/en-us/library/windows/hardware/gg487440

How	can	I	debug	the	startup	of	my	detour	DLL?

The	Windbg	can	single	step	or	break	on	exceptions	in	process	startup.	Windbg	is
available	in	the	"Debugging	Tools	for	Windows"	download	from	on
www.microsoft.com.	For	example,	you	can	use	the	command	line:

windbg	-o	withdll.exe	-d:mydll.dll	myexe.exe

Why	does	my	code	act	differently	under	a	debugger?

Debuggers	insert	breakpoints	by	replacing	function	code	with	break	instructions.
For	example,	on	the	X86	and	X64	processors,	the	debugger	will	write	a	0xCC
(int	3)	for	a	breakpoint.	If	the	breakpoint	is	written	before	a	detour	is	applied,	the
Detour	library	will	see	the	0xCC	instead	of	the	real	instructions.

The	best	way	to	work	around	this	issue	is	to	ensure	that	no	debugger	breakpoints
are	set	on	target	functions.

Licensing

Can	Detours	be	used	in	commercial	applications?

Yes,	with	a	Detours	Professional	license.	You	can	purchase	Detours	Professional
from	the	Microsoft	Store.

Bug	Reports

How	do	I	report	a	bug?

Please	send	detailed	bug	reports	to	detours@microsoft.com.	Bug	reports	may	be
used	to	fix	bugs	in	future	versions	of	the	Detours	package.	Please	include	the
text	"DETOURS	BUG	REPORT"	in	the	subject	line.	Within	the	body	of	your
message,	please	include	the	first	line	from	the	README.TXT	file	which
contains	the	full	description	of	the	version	Detours	you	are	using	including	the
Build	number.

Before	submitted	a	bug	report,	please	make	every	effort	to	insure	that	the
problem	is	not	an	error	in	your	own	code	or	your	usage	of	Detours.	The	most
common	sources	of	user	error	are	covered	in	this	FAQ.

http://msdn.microsoft.com/en-us/windows/hardware/gg463009
http://www.microsoftstore.com/store/msstore/en_US/pd/productID.216531800/search.true
mailto:detours@microsoft.com?subject=DETOURS BUG REPORT

The	detours@microsoft.com	email	address	is	for	bug	reports	only,	it	is	not	a
product	support	line.

DetourGetSizeOfPayloads

Return	the	size	of	all	payloads	within	a	module.

Definition

DWORD	DetourGetSizeOfPayloads(

				In	HMODULE	hModule

);

Parameters

hModule
The	module	for	which	the	size	of	the	payloads	is	to	be	returned.

Return	value

If	successful,	returns	the	size	in	bytes	of	the	payloads	within	a	module;
otherwise,	returns	zero.

Error	codes

The	function	sets	one	of	the	following	error	codes,	as	appropriate.	The	error
code	may	be	retrived	after	the	function	has	returned	by	calling	GetLastError.

ERROR_INVALID_HANDLE
The	module	handle	was	invalid.

Related	Samples

Einst.

	Detours Overview
	Interception of Binary Functions
	Using Detours
	Payloads and DLL Import Editing
	Detouring 32-bit and 64-bit Processes

	Detours API Reference
	DetourAttach
	DetourAttachEx
	DetourBinaryClose
	DetourBinaryDeletePayload
	DetourBinaryEditImports
	PF_DETOUR_BINARY_BYWAY_CALLBACK
	PF_DETOUR_BINARY_COMMIT_CALLBACK
	PF_DETOUR_BINARY_FILE_CALLBACK
	PF_DETOUR_BINARY_SYMBOL_CALLBACK

	DetourBinaryEnumeratePayloads
	DetourBinaryFindPayload
	DetourBinaryOpen
	DetourBinaryPurgePayloads
	DetourBinaryResetImports
	DetourBinarySetPayload
	DetourBinaryWrite
	DetourCodeFromPointer
	DetourCopyPayloadToProcess
	DetourCreateProcessWithDll
	DetourCreateProcessWithDllEx
	DetourCreateProcessWithDlls
	DetourDetach
	DetourEnumerateExports
	PF_DETOUR_ENUMERATE_EXPORT_CALLBACK

	DetourEnumerateImports
	PF_DETOUR_IMPORT_FILE_CALLBACK
	PF_DETOUR_IMPORT_FUNC_CALLBACK

	DetourEnumerateImportsEx
	PF_DETOUR_IMPORT_FILE_CALLBACK
	PF_DETOUR_IMPORT_FUNC_CALLBACK_EX

	DetourEnumerateModules
	DetourFindFunction
	DetourFindPayload
	DetourGetContainingModule
	DetourGetEntryPoint
	DetourGetModuleSize
	DetourIsHelperProcess
	DetourFinishHelperProcess
	DetourRestoreAfterWith
	DetourSetIgnoreTooSmall
	DetourSetRetainRegions
	DetourSetSystemRegionLowerBound
	DetourSetSystemRegionUpperBound
	DetourTransactionAbort
	DetourTransactionBegin
	DetourTransactionCommit
	DetourTransactionCommitEx
	DetourUpdateThread

	Detours Samples
	Commem
	Cping
	Disas
	Dtest
	Dumpe
	Dumpi
	Einst
	Excep
	FindFunc
	Impmunge
	Member
	Region
	Setdll
	Simple
	Slept
	Syelog
	Traceapi
	Tracebld
	Tracelnk
	Tracemem
	Tracereg
	Traceser
	Tracetcp
	Tryman
	Withdll

	Frequently Asked Questions

