
What's	New	in	Version	2.2

Moved	to	new	HTML	help	system	and	updated	the	help	text.

Added	support	for	MSDN	8.0	external	help	and	updated	the	online	help
URL.

Improved	Side-by-Side	support	that	handles	DLL	manifests	and
app.exe.local	files.

Updated	internal	information	about	known	OS	versions,	build	numbers,
and	flags	up	to	the	Vista	RC1	build.

What	was	New	in	Version	2.1

Support	for	Side-by-Side	versioning	of	modules.	This	is	a	new	feature
introduced	with	Windows	XP	that	allows	applications	to	specify	specific
versions	and/or	locations	of	files	it	wishes	to	use.

Integration	with	Visual	Studio	help,	MSDN	help,	and	MSDN	online	to
provide	the	ability	to	display	detailed	help	for	any	known	function.

What	was	New	in	Version	2.0

Detection	of	dynamically	loaded	modules,	including	details	about	which
module	actually	called	LoadLibrary	to	dynamically	load	the	module.

Detection	of	dynamically	called	functions,	including	details	about	which
module	actually	called	GetProcAddress	to	obtain	the	function	address.

Detection	of	delay-load	dependencies.	This	is	a	new	type	of	dependency
that	was	introduced	with	Microsoft	Visual	C++	6.0.	They	work	on
Windows	95/98/Me	and	Windows	NT/2000/XP/2003/Vista/+.

Support	for	64-bit	Windows	modules.

Console	mode	that	allows	Dependency	Walker	to	be	ran	without	its
graphical	interface	being	displayed.	This	is	useful	for	batch	files	and
unattended	automation	of	Dependency	Walker	features.

Command	line	options	to	configure	module	search	order,	column	sorting,
output	files,	profiling,	and	other	settings.

Ability	to	monitor	module	entrypoints	(like	DllMain)	looking	for	module
initialization	failures.

C++	function	name	undecorating	to	provide	human	readable	C++	function
prototypes	including	function	names,	return	types,	and	parameter	types.

User	definable	module	search	paths	with	support	for	"KnownDLLs"	and
the	"App	Paths"	registry	keys.	Search	paths	can	be	saved	and	loaded	from
within	the	graphical	interface	or	from	the	command	line.

Ability	to	save	a	module's	session	to	a	text	report	file	for	easy	viewing	in
any	text	viewer.

Ability	to	save	a	module's	session	to	a	comma	separated	value	(CSV)	file
for	easy	importing	into	other	applications.

Ability	to	save	a	snapshot	of	an	entire	module	session	to	an	image	file,
which	can	be	loaded	by	Dependency	Walker	at	a	later	time	on	any
computer.

Module	profiling	to	detect	dynamic	dependencies,	child	processes,	thread
activity,	and	exceptions.	Child	processes	can	also	be	profiled	for	their
dependencies.

Ability	to	control	what	file	extensions	Dependency	Walker	will	add	the
"View	Dependencies"	menu	item	to	a	file's	context	menu	in	explorer.

Added	hotkeys	to	help	match	imports	with	exports,	and	modules	in	the	list
view	with	modules	in	the	tree	view.	Also	added	hotkeys	to	locate	the
previous,	next,	or	original	instance	of	a	module	in	the	tree	view.

Added	some	new	columns	to	the	Module	List	View.	They	include	Link
Time	Stamp,	Link	Checksum,	Real	Checksum,	Symbols,	Actual	Base,
Virtual	Size,	and	Load	Order.

Added	an	OS	Information	dialog.	This	information	is	also	saved	to	text
and	Dependency	Walker	Image	(DWI)	files.

All	list	views	can	now	be	sorted	by	icon,	which	provides	an	easy	way	of
grouping	items	of	similar	type.

You	can	now	search	all	list	views	for	text	by	simply	typing	in	a	few
characters	to	match	in	the	currently	sorted	column.

Added	color-coding	to	the	module	list	view	and	log	view	to	help	highlight
problems.

Frequently	Asked	Questions	(FAQ)

Q: Dependency	Walker	seems	to	only	show	some	of	my	application's
dependencies.	Why	doesn't	it	show	all	of	them?

A:

When	you	first	open	a	module	in	Dependency	Walker,	it	only	shows
implicit,	forwarded,	and	delay-load	dependencies.	Many	dependencies	are
loaded	dynamically	and	will	not	be	detected	until	you	profile	the	application
from	within	Dependency	Walker.	For	more	information,	see	Types	of
Dependencies	Handled	By	Dependency	Walker	and	Using	Application
Profiling	to	Detect	Dynamic	Dependencies.

Q:

Why	am	I	seeing	a	lot	of	applications	where	MPR.DLL	shows	up	in	red
under	SHLWAPI.DLL	because	it	is	missing	a	function	named
WNetRestoreConnectionA?	I	also	get	a	"Warning:	At	least	one	module
has	an	unresolved	import	due	to	a	missing	export	function	in	a	delay-
load	dependent	module"	message.

A:

Some	versions	of	SHLWAPI.DLL	(like	the	one	on	Windows	XP)	have	a
delay-load	dependency	on	the	function	WNetRestoreConnectionA	in
MPR.DLL.	Missing	delay-load	functions	are	not	a	problem	as	long	as	the
calling	DLL	is	prepared	to	handle	the	situation.	Dependency	Walker	flags	all
potential	problems	as	it	cannot	detect	if	an	application	intends	to	handle	the
issue.	In	the	case	of	SHLWAPI.DLL,	this	is	not	an	problem	as	it	does	not
require	WNetRestoreConnectionA	to	exist	and	handles	the	missing	function
at	runtime.	This	warning	can	be	ignored.	See	the	"How	to	Interpret	Warnings
and	Errors	in	Dependency	Walker"	section	in	help	for	more	details.

Q:
Why	is	MSJAVA.DLL	showing	up	in	yellow	(missing	module)	and	I	get
a	"Warning:	At	least	one	delay-load	dependency	module	was	not
found"	message?

A:

The	MSHTML.DLL	module	that	was	released	with	Windows	XP	SP2	and
Windows	2003	SP1	has	a	delay-load	dependency	on	MSJAVA.DLL.	Missing
delay-load	dependencies	are	not	a	problem	as	long	as	the	calling	DLL	is
prepared	to	handle	the	missing	module.	Dependency	Walker	flags	all
potential	problems	as	it	cannot	detect	if	an	application	intends	to	handle	the
issue.	In	this	particular	case,	MSJAVA.DLL	is	an	optional	module,	and
MSHTML.DLL	is	prepared	to	handle	it.	This	warning	can	be	ignored.	See

the	"How	to	Interpret	Warnings	and	Errors	in	Dependency	Walker"	section
in	help	for	more	details.

Q: Dependency	Walker	says	I'm	missing	APPHELP.DLL.	Where	can	I	get
it	from?

A:

APPHELP.DLL	is	used	by	Windows	XP's	application	compatibility	feature.
It	is	a	Windows	XP/2003/Vista/+	only	DLL.	If	you	see	this	warning,	you
most	likely	installed	Internet	Explorer	6.0	on	your	pre-	Windows	XP
computer	(Windows	95/98/ME/2000).	Internet	Explorer	6.0	installs	a	new
SHWAPI.DLL	that	has	a	delay-load	dependency	on	APPHELP.DLL.	This	is
normal	as	SHWAPI.DLL	does	not	expect	to	find	APPHELP.DLL	on
versions	of	Windows	prior	to	Windows	XP.	This	warning	can	be	ignored.
You	do	not	need	(or	want)	APPHELP.DLL	on	Windows	95/98/ME/2000.

Q:

Can	Dependency	Walker	help	me	figure	out	why	my	component	won't
register?
[or]	Why	does	REGSVR32.EXE	fail	to	register	my	DLL,	but
Dependency	Walker	does	not	show	any	error	with	my	DLL?

A:

Many	modules	need	to	be	"registered"	on	a	computer	before	they	will	work.
This	includes	most	ActiveX	controls,	OCXs,	COM	components,	ATL
components,	Visual	Basic	components,	and	many	others.	These	types	of
modules	are	usually	registered	with	REGSVR32.EXE	or	something	similar.
For	the	most	part,	REGSVR32.EXE	loads	your	DLL,	calls	GetProcAddress
for	the	DLL's	DllRegisterServer	function,	then	calls	that	function.	A
common	failure	is	when	your	DLL	relies	on	another	DLL	that	is	missing	or
not	registered.	If	you	just	open	your	DLL	in	Dependency	Walker,	you	may
or	may	not	see	a	problem,	depending	on	the	type	of	registration	failure.

The	best	way	to	debug	a	module	that	fails	to	register	is	by	opening
REGSVR32.EXE	in	Dependency	Walker	rather	than	your	DLL.	Then
choose	to	start	profiling	(F7).	In	the	profiling	dialog,	enter	the	full	path	to
your	DLL	in	the	"Program	arguments"	field.	For	"Starting	directory",	you
may	wish	to	enter	the	directory	that	the	DLL	resides	in.	Check	the	options
you	wish	to	use	and	press	Ok.	This	will	run	REGSVR32.EXE	and	attempt	to
register	your	DLL.	By	actually	running	REGSVR32.EXE,	you	can	see	more
types	of	runtime	errors.

Q: My	application	runs	better	when	being	profiled	by	Dependency	Walker
than	when	I	run	it	by	itself.	Why	is	this?

A:

I've	had	several	reports	of	applications	that	normally	crash,	will	not	crash
when	being	profiled	under	Dependency	Walker.	Dependency	Walker	acts	as
a	debugger	when	you	are	profiling	your	application.	This	in	itself,	makes
your	program	run	differently.

First,	there	is	the	overhead	of	Dependency	Walker	that	slows	the	execution
of	your	application	down.	If	your	application	is	crashing	due	to	some	race
condition,	this	slow	down	alone	might	be	enough	to	avoid	the	race
condition.	If	this	is	the	case,	it	is	a	design	issue	of	the	application	and	you
are	just	getting	lucky	when	it	doesn't	crash.

Second,	normally	when	threads	block	on	critical	sections,	events,
semaphores,	mutexes,	etc.,	they	unblock	on	a	first-in-first-out	(FIFO)	basis.
This	is	not	guaranteed	by	the	OS,	but	is	usually	the	case.	When	being	run
under	a	debugger,	FIFO	queues	are	sometimes	randomized,	so	threads	may
block	and	resume	in	a	different	order	than	they	would	when	not	running
under	a	debugger.	This	might	be	relieving	a	race	condition	or	altering	the
execution	enough	to	make	things	work.	Again,	the	application	is	just	getting
lucky	when	it	doesn't	crash.

Finally,	applications	running	under	the	debugger	automatically	get	a	system
debug	heap.	All	memory	functions	are	handled	slightly	different.	Allocations
are	padded	with	guard	bytes	to	check	to	see	if	you	are	writing	outside	of	a
region	you	have	allocated	(buffer	overrun/underrun).	Allocations	might	also
be	laid	out	differently	in	memory	then	when	not	under	the	debugger.	So,	if
you	are	writing	past	the	end	of	a	buffer	under	the	debugger,	you	might	be
trashing	guard	bytes,	freed	memory,	or	just	something	not	very	critical.
However,	when	not	running	under	the	debugger,	you	might	be	trashing
something	critical	(like	a	pointer),	and	your	app	crashes.

For	the	debug	heap,	you	can	turn	this	off	in	Dependency	Walker	and	see	if
your	application	crashes	when	being	profiled.	If	it	does	then,	then	you
probably	suffer	a	buffer	overrun,	stray/bad/freed	pointer,	etc.	To	do	this,	start
a	command	prompt.	Type	"SET	_NO_DEBUG_HEAP=1".	Then	start
Dependency	Walker	from	that	command	line.	This	should	disable	the	debug
heap	for	that	instance	of	Dependency	Walker.	Note,	this	only	works	on

Windows	XP	and	beyond.

Q: How	do	I	view	the	parameter	and	return	types	of	a	function?

A:

For	most	functions,	this	information	is	simply	not	present	in	the	module.	The
Windows'	module	file	format	only	provides	a	single	text	string	to	identify
each	function.	There	is	no	structured	way	to	list	the	number	of	parameters,
the	parameter	types,	or	the	return	type.	However,	some	languages	do
something	called	function	"decoration"	or	"mangling",	which	is	the	process
of	encoding	information	into	the	text	string.	For	example,	a	function	like	int
Foo(int,	int)	encoded	with	simple	decoration	might	be	exported	as	_Foo@8.
The	8	refers	to	the	number	of	bytes	used	by	the	parameters.	If	C++
decoration	is	used,	the	function	would	be	exported	as	?
Foo@@YGHHH@Z,	which	can	be	directly	decoded	back	to	the	function's
original	prototype:	int	Foo(int,	int).	Dependency	Walker	supports	C++
undecoration	by	using	the	Undecorate	C++	Functions	Command.

Q: Why	are	my	function	names	exported	differently	then	I	declare	them?

A:

Many	compilers	"decorate"	function	names	by	default.	Unless	you	give	the
compiler	specific	instructions	on	how	to	export	functions,	a	function	like	int
Foo(int,	int)	may	end	up	getting	exported	as	_Foo@8,	or	even	?
Foo@@YGHHH@Z	if	C++	decoration	is	used.	Languages	like	C++	allow
function	overloading,	which	is	the	ability	to	declare	multiple	functions	with
the	same	name,	but	with	different	parameters.	Because	of	this,	each	function
must	have	a	unique	signature	string	since	exporting	just	the	name	would
cause	a	name	conflict.	To	disable	C++	decoration,	you	can	use	the	extern
"C"	notation	when	declaring	your	functions	in	a	C++	source	file.	To	prevent
decoration	altogether,	you	can	add	a	DEF	file	to	your	C/C++	project	and
declare	the	actual	function	names	you	want	exported.

Q:
My	application	seems	to	run	just	fine	during	profiling,	however,	I	see
errors	in	the	log	view	and	red	or	yellow	icons	in	the	other	views.	Is	this
normal?
It	is	fairly	normal	to	see	errors	or	warnings	during	profiling.	One	common
error	seen	is	when	one	module	tries	to	dynamically	load	another	module
(using	one	of	the	LoadLibrary	functions),	but	the	module	is	not	found.
Dependency	Walker	makes	a	note	of	this	failure,	but	if	the	application	is
prepared	for	the	failure,	then	this	is	not	a	problem.	Another	common	error	is

A:
when	a	module	tries	to	dynamically	locate	a	function	(using
GetProcAddress)	in	a	module.	Again,	this	is	not	a	problem	if	the	application
is	prepared	for	the	failure.	You	may	also	see	first-chance	exceptions	occur	in
the	log	view.	If	the	application	handles	the	exceptions	and	they	don't	turn
into	second-chance	exceptions,	then	this	is	not	a	problem.	All	these	cases	are
normal,	and	can	usually	be	ignored.	However,	if	the	application	you	are
profiling	crashes	or	fails	to	run	properly,	then	the	errors	may	provide	some
insight	as	to	what	caused	the	problem.	See	the	How	to	Interpret	Warnings
and	Errors	in	Dependency	Walker	section	for	more	details.

Q: Wow,	my	application	depends	on	all	those	files?	Which	ones	do	I	need	to
redistribute	with	my	application?

A:

For	starters,	there	are	certain	modules	you	should	never	redistribute	with
your	application,	such	as	kernel32.dll,	user32.dll,	and	gdi32.dll.	To	see
which	files	you	are	allowed	to	redistribute,	you	can	look	for	a	file	named
REDIST.TXT	on	your	development	computer.	This	file	is	included	with
development	suites	like	Microsoft	Visual	C++	and	Visual	Basic.	You	can
also	look	up	"redistributable	files"	and	"redist.txt"	in	the	MSDN	index	for
more	information	on	what	files	to	redistribute,	how	to	redistribute	them,	how
to	check	file	versions,	etc.	Another	site	worth	mentioning	is	the	Microsoft
DLL	Help	Database	(http://support.microsoft.com/dllhelp).	This	site	has
detailed	version	histories	of	DLLs,	and	lists	what	products	were	shipped
with	each	version.

Q: What	does	"Shared	module	not	hooked"	mean,	and	why	are	some
module's	DllMain	calls	never	being	logged?

A:

Dependency	Walker	hooks	modules	as	they	load	in	order	to	track	calls	to
functions	like	DllMain,	LoadLibrary,	and	GetProcAddress.	Any	module
loaded	above	address	0x80000000	(usually	system	modules)	on	Windows
95/98/Me	is	shared	system-wide	and	cannot	be	hooked.	The	result	is	that
Dependency	Walker	cannot	log	information	about	function	calls	in	those
modules.	Windows	NT/2000/XP/2003/Vista/+	does	not	have	this	limitation.
See	Using	Application	Profiling	to	Detect	Dynamic	Dependencies	for	more
information.

Q: Why	do	some	modules	show	up	more	than	once	under	a	single	parent
module?

A:

Dependency	Walker	may	show	a	module	more	than	once	to	inform	you	that
it	is	a	dependency	for	more	than	one	reason.	It	is	possible	for	a	module	to
show	up	as	an	implicitly	linked	dependency,	a	forwarded	dependency,	and	a
dynamic	dependency,	all	under	a	single	parent	module.	See	the	Module
Dependency	Tree	View	for	more	details.	In	reality,	only	one	copy	of	the
module	resides	in	memory	during	run-time.

Q: Is	there	a	command	line	version	of	Dependency	Walker?

A:

Dependency	Walker	can	be	run	as	a	graphical	application	or	as	a	console
application.	When	the	console	mode	option	is	used,	Dependency	Walker	can
process	a	module,	save	the	results,	and	exit	without	any	graphical	interface
or	user	prompting.	See	the	Command	Line	Options	section	for	more
information.

Q: Will	Dependency	Walker	work	with	COM,	Visual	Basic,	or	.NET
modules?

A:

Yes.	Dependency	Walker	will	work	with	any	32-bit	or	64-bit	Windows
module,	regardless	of	what	language	was	used	to	develop	it.		However,
many	languages	have	their	own	way	to	specify	dependency	relationships
between	modules.		For	example,	COM	modules	may	have	embedded	type
libraries	and	registration	information	in	the	registry,	and	.NET	modules	may
use	.NET	assemblies.		These	techniques	are	all	implemented	as	layers	above
the	core	Windows	API.		In	the	end,	these	layers	still	need	to	call	down	to	the
core	Windows	functions	like	LoadLibrary	and	GetProcAddress	to	do	the
actual	work.		It	is	at	this	core	level	that	Dependency	Walker	understands
what	is	going	on.		So,	while	Dependency	Walker	may	not	understand	all	the
language	specific	complexities	of	your	application,	it	will	still	be	able	to
track	all	module	activity	at	a	core	Windows	API	level.

Q: Will	Dependency	Walker	work	with	64-bit	modules?

A:

Yes.	Dependency	Walker	will	work	with	any	32-bit	or	64-bit	Windows
module.	There	are	32-bit	and	64-bit	versions	Dependency	Walker.		All
versions	are	capable	or	opening	32-bit	and	64-bit	modules.		However,	there
are	major	advantages	to	using	the	32-bit	Dependency	Walker	to	process	32-
bit	modules	and	the	64-bit	Dependency	Walker	to	process	64-bit	modules.	
This	is	especially	true	when	running	on	a	64-bit	version	of	Windows,	which
allows	execution	of	both	32-bit	and	64-bit	programs.		The	32-bit	subsystem

on	64-bit	Windows	(known	as	"WOW64")	has	its	own	private	registry,
"AppPaths",	"KnownDlls",	system	folders,	and	manifest	processing.		Only
the	32-bit	version	of	Dependency	Walker	can	access	this	32-bit	environment,
which	is	needed	to	accurately	process	a	32-bit	module.		Likewise,	only	the
64-bit	version	of	Dependency	Walker	can	fully	access	the	64-bit
environment,	so	it	should	always	be	used	for	processing	64-bit	modules.

Q: Why	is	the	"Start	Profiling"	button	and	menu	item	disabled?

A:

The	profiling	option	works	by	actually	executing	your	application	and
watching	it	to	see	what	it	loads.		In	order	for	this	to	be	possible,	you	need	to
have	opened	an	executable	(usually	has	an	EXE	extension)	rather	than	a
DLL.		If	you	want	to	profile	a	DLL,	you	will	need	to	open	some	executable
that	loads	the	DLL	(see	the	FAQ	about	using	REGSVR32.EXE	to	load
DLLs).		The	profiling	feature	also	requires	that	the	executable	you	have
loaded	is	for	the	same	CPU	architecture	as	the	version	of	Dependency
Walker	you	are	currently	running.		For	example,	you	need	the	32-bit	x86
version	of	Dependency	Walker	to	profile	a	32-bit	x86	executable,	and	the
64-bit	x64	version	of	Dependency	Walker	to	profile	a	64-bit	x64	executable.

Q: Will	Dependency	Walker	work	with	Windows	CE	modules?

A:

Yes.	Windows	CE	modules	use	the	same	module	format	(known	as	the
"Portable	Executable"	format)	that	is	used	for	modules	written	for	Windows
95,	Windows	98,	Windows	Me,	Windows	NT,	Windows	2000,	Windows	XP,
Windows	2003,	Windows	Vista,	and	beyond.		There	is	no	version	of
Dependency	Walker	that	actually	runs	on	Windows	CE,	but	you	can	open
Windows	CE	modules	with	Dependency	Walker	on	a	standard	Windows
computer.		However,	Dependency	Walker	automatically	tries	to	locate
dependent	modules	using	the	default	Windows	module	search	path.		For
Windows	CE	modules,	this	can	cause	errors	since	non-CE	modules	may	be
found	in	the	default	search	path.		To	fix	this,	you	can	use	Dependency
Walker's	"Configure	Module	Search	Order"	dialog	to	remove	all	standard
paths	and	then	add	a	private	folder	of	your	own	that	contains	only	CE
modules.		If	you	frequently	find	yourself	doing	this,	you	can	save	your
custom	search	order	to	a	file	and	then	later	pass	the	file	to	Dependency
Walker	using	the	"/d:your_file.dwp"	command	line	option	(see	Command
Line	Options	for	more	details).

Q: Will	Dependency	Walker	work	with	16-bit	modules?

A: No.	Dependency	Walker	only	supports	32-bit	and	64-bit	Windows	modules.
It	never	has	and	never	will	support	16-bit.

Q: What	do	all	the	version	numbers	mean?
A: See	the	Overview	of	Module	Version	Numbers	section	for	the	details.

Q: Can	I	print	out	the	results	of	a	session?

A: No,	but	you	can	save	the	results	to	several	different	text	formats	which	canbe	viewed	or	printed	from	a	text	viewer	program	like	Notepad.

Q: How	can	I	send	the	results	of	a	session	to	someone?

A:

Dependency	Walker	supports	several	ways	to	capture	the	data	in	a	session.
All	the	views	support	simple	copying	from	them	using	the	Copy	Command.
Dependency	Walker	also	supports	several	methods	of	saving	the	entire
session	to	a	file.	There	are	various	text	formats	that	can	be	easily	printed	or
emailed	to	someone	for	viewing.	You	can	also	save	the	results	to	a
Dependency	Walker	Image	(DWI)	file,	which	can	be	loaded	by	Dependency
Walker	on	another	computer	to	see	the	captured	results	from	your	computer.
For	more	information	on	saving	the	session	to	a	file,	see	the	Save	Command
and	File	Save	Dialog	section.

Q: What	do	all	the	icons	mean?

A:
Each	view	in	Dependency	Walker	has	detailed	help	describing	what	the
icons	mean	for	that	view.	See	the	Module	Session	Window	section	for	a	list
of	views.

Q: Can	I	search	for	a	function	by	name	or	ordinal?

A:

All	the	list	views	in	Dependency	Walker	can	be	sorted	and	searched.	Any
text	you	type	while	in	a	list	view	will	search	for	that	text	in	the	column	that
the	list	is	currently	sorted	by.	For	example,	if	the	export	function	list	is
sorted	by	function	names	and	you	type	"Get",	the	first	function	that	starts
with	"Get"	will	be	highlighted.	This	will	work	for	any	column	in	any	list.
For	more	details,	see	the	help	sections	for	the	actual	list	views.

Q: Dependency	Walker's	open	dialog	is	not	showing	a	file	that	I	want	to
open.	How	can	I	fix	this?

A:

By	default,	Windows	"hides"	certain	system	files	(like	DLLs)	from	the	user.
To	change	this	setting,	open	"My	Computer"	and	select	"Options"	from	the
menu.	Depending	on	what	version	of	Windows	you	are	using,	this	should	be
off	of	the	"View"	or	"Tools"	menu,	and	may	be	called	"Folder	Options"	or
just	"Options".	In	the	dialog	that	appears,	choose	the	"View"	tab.	You	should
see	an	option	that	reads	either	"Show	all	files"	or	"Show	hidden	files	and
folders".	Make	sure	this	option	is	selected.	You	will	also	see	a	check-box
that	reads	"Hide	MS-DOS	file	extensions	for	file	types	that	are	registered"	or
"Hide	file	extensions	for	known	file	types".	You	will	want	to	uncheck	this
box.	Once	done,	press	"Ok"	in	that	dialog.	Dependency	Walker	should	now
show	all	system	files	in	its	open	dialog.

Q: How	do	I	uninstall	Dependency	Walker?

A:

Dependency	Walker	does	not	have	a	setup	or	uninstall	program.	It	was
designed	to	simply	run	when	you	want	it,	and	delete	if	you	don't	need	it
anymore.	If	you	have	told	Dependency	Walker	to	handle	certain	file
extensions,	you	will	probably	want	to	remove	those	associations	before
deleting	the	program.	This	can	be	done	by	using	the	Handled	File	Extensions
command.	The	files	to	delete	when	Dependency	Walker	is	no	longer	needed
are	depends.exe,	depends.dll,	and	depends.chm.

Q: Why	are	some	modules	looking	for	a	function	named	"IsTNT"	in
KERNEL32.DLL?

A:

TNT	is	a	32-bit	emulation	layer	written	by	Phar	Lap.	There	are	still	some
modules	in	use	that	have	pieces	of	code	that	check	to	see	if	they	are	running
on	TNT	by	calling	GetProcAddress("IsTNT")	for	KERNEL32.DLL.	This
warning	can	be	ignored.

Q: Why	are	some	modules	trying	to	load	a	module	named	"AUX"?

A:
This	is	usually	related	to	modules	trying	to	load	the	AUX	audio	driver.	Since
AUX	is	a	reserved	DOS	name,	the	load	fails.	This	warning	is	harmless	and
can	be	ignored.

MFC42.DLL	is	trying	to	load	MFC42LOC.DLL,	but	it	is	not	found.

Q: [or]	COMCTL32.DLL	is	trying	to	load	CMCTLENU.DLL,	but	it	is	not
found.	Why	is	this?

A:

Both	MFC42LOC.DLL	and	CMCTLENU.DLL	are	language	specific
resource	DLLs	that	may	not	be	needed	on	your	system.	Many	modules	on
Windows	store	all	their	language	specific	messages	in	external	DLLs	(one
per	language).	At	run-time,	the	module	loads	the	language	DLL	for	the
current	language	of	the	operating	system.	The	names	of	the	modules	usually
end	in	"ENU"	for	United	States	English,	"ESP"	for	Spanish,	"JPN"	for
Japanese,	etc.	The	"LOC"	ending	that	MFC	uses	stands	for	"localized".
When	MFC	is	installed,	it	copies	the	correct	language	DLL	to	your	system
and	renames	it	to	MFC42LOC.DLL.	So,	why	the	missing	module?	Well,
most	modules	protect	themselves	from	failure	by	storing	one	default
language	in	the	main	DLL	itself.	It	the	language	specific	resource	DLL	fails
to	load,	then	the	module	defaults	to	using	the	local	resources	in	itself.	In
most	cases,	these	default	resources	are	the	same	resources	as	would	be	in	the
ENU	version	of	the	resource	DLL.	For	this	reason,	there	does	not	need	to	be
an	ENU	version	of	the	resource	DLL,	and	therefore	it	fails	to	find	one	at
runtime.	This	is	normal.

	

Why	Use	Dependency	Walker?

Have	you	ever...

...wondered	why	an	application	or	module	was	failing	to	load?

...wondered	what	minimum	set	of	files	are	required	to	run	a	particular
application	or	load	a	particular	DLL?

...wondered	why	a	certain	module	was	being	loaded	with	a	particular
application?

...wanted	to	know	what	functions	are	exposed	by	a	particular	module,	and
which	ones	are	actually	being	called	by	other	modules?

...wanted	to	know	the	parameter	and	return	types	of	exported	C++
functions?

...wanted	to	remove	all	dependencies	for	a	given	module?

...wanted	to	know	the	complete	path	of	all	the	modules	being	loaded	for	a
particular	application?

...wanted	to	know	all	the	base	addresses	of	each	module	being	loaded	for	a
particular	application?	What	about	versions?	Or	maybe	CPU	types?

...received	one	of	the	following	errors...

The	dynamic	link	library	BAR.DLL	could	not	be	found	in	the
specified	path...

The	procedure	entry	point	FOO	could	not	be	located	in	the	dynamic
link	library	BAR.DLL.

The	application	or	DLL	BAR.DLL	is	not	a	valid	Windows	image.

The	application	failed	to	initialize	properly.

Initialization	of	the	dynamic	link	library	BAR.DLL	failed.	The
process	is	terminating	abnormally.

The	image	file	BAR.EXE	is	valid,	but	is	for	a	machine	type	other
than	the	current	machine.

Program	too	big	to	fit	in	memory.

Using	Dependency	Walker	for	Troubleshooting
Modules

Dependency	Walker	recursively	scans	all	dependent	modules	required	by	a
particular	application.	During	this	scan	it	performs	the	following	tasks:

Detects	missing	files.	These	are	files	that	are	required	as	a	dependency	to
another	module.	A	symptom	of	this	problem	is	the	"The	dynamic	link
library	BAR.DLL	could	not	be	found	in	the	specified	path..."	error.
Detects	invalid	Files.	This	includes	files	that	are	not	Win32	or	Win64
compliant	and	files	that	are	corrupt.	A	symptom	of	this	problem	is	the
"The	application	or	DLL	BAR.EXE	is	not	a	valid	Windows	image"	error.

Detects	import/export	mismatches.	Verifies	that	all	functions	imported	by
a	module	are	actually	exported	from	the	dependent	modules.	All
unresolved	import	functions	are	flagged	with	an	error.	A	symptom	of	this
problem	is	the	"The	procedure	entry	point	FOO	could	not	be	located	in	the
dynamic	link	library	BAR.DLL"	error.

Detects	circular	dependency	errors.	This	is	a	very	rare	error,	but	can	occur
with	forwarded	functions.

Detects	mismatched	CPU	types	of	modules.	This	occurs	if	a	module	built
for	one	CPU	tries	to	load	a	module	built	for	a	different	CPU.

Detects	checksum	inconsistencies	by	verifying	module	checksums	to	see
if	any	modules	have	been	modified	after	they	were	built.

Detects	module	collisions	by	highlighting	any	modules	that	fail	to	load	at
their	preferred	base	address.

Detects	module	initialization	failures	by	tracking	calls	to	module
entrypoints	and	looking	for	errors.

Dependency	Walker	can	also	perform	a	run-time	profile	of	your
application	to	detect	dynamically	loaded	modules	and	module
initialization	failures.	The	same	error	checking	from	above	applies	to
dynamically	loaded	modules	as	well.

Using	Dependency	Walker	for	General	Information
about	Modules

Dependency	Walker	is	more	than	just	a	troubleshooting	utility.	It	also	provides	a
great	deal	of	valuable	information	about	the	module	layout	of	a	particular
application	and	details	on	each	module.	Dependency	Walker	provides	the
following	information:

A	complete	module	dependency	tree	diagram	of	all	the	modules	required
by	a	particular	application.
A	list	of	all	functions	exported	from	each	module.	These	lists	include
functions	exported	by	name,	functions	exported	by	ordinal,	and	functions
that	are	actually	forwarded	to	other	modules.	Named	C++	functions	can
be	shown	in	their	native	decorated	format,	or	can	be	expanded	into	human
readable	function	prototypes	including	return	types	and	parameters	types.

A	list	of	functions	that	are	actually	called	in	each	module	by	other
modules.	These	lists	can	help	developers	understand	why	a	particular
module	is	being	linked	with	an	application,	and	also	provides	information
on	how	to	remove	unneeded	modules	from	being	dependencies.

A	list	of	the	minimum	set	of	files	that	are	required	in	order	for	a	module	to
load	and	run.	This	list	can	be	very	useful	when	copying	files	to	another
computer	or	creating	setup	scripts.

For	each	individual	module	found,	the	following	information	is
provided...

Full	path	to	the	module	file.

Date	and	time	of	the	module	file.

Date	and	time	the	module	was	actually	built.

Size	of	the	module	file.

Attributes	of	the	module	file.

The	module	checksum	from	when	the	module	was	built.

The	actual	module	checksum.

Type	of	CPU	that	the	module	was	built	for.

Type	of	subsystem	that	the	module	was	built	to	run	in.

Type	of	debugging	symbols	that	are	associated	with	the	module.

The	preferred	base	load	address	of	the	module.

The	actual	base	load	address	of	the	module.

The	virtual	size	of	the	module.

The	load	order	of	the	module	with	respect	to	other	modules.

The	file	version	found	in	the	module's	version	resource.

The	product	version	found	in	the	module's	version	resource.

The	image	version	found	in	the	module's	file	header.

The	version	of	the	linker	that	was	used	to	create	the	module	file.

The	version	of	the	OS	that	the	module	file	was	built	to	run	on.

The	version	of	the	subsystem	that	the	module	file	was	built	to	run	in.

A	possible	error	message	if	any	error	occurred	while	processing	the
file.

Command	Line	Options	and	Return	Values

DEPENDS.EXE

[/?]	[/c]	[/a:#]	[/f:#]	[/u:#]	[/ps:#]	[/pp:#]	[/po:#]	[/ph:#]	[/pl:#]
[/pg:#]	[/pt:#]	[/pn:#]	[/pe:#]	[/pm:#]	[/pf:#]	[/pi:#]	[/pc:#]
[/pa:#]	[/pd:dir]	[/pb]	[/sm:#]	[/si:#]	[/se:#]	[/sf:#]	[/od:path]
[/ot:path]	[/of:path]	[/oc:path]	[/d:path]	[path	[args...]]

/? Help	-	Displays	this	page.

/c

Console	mode	-	Dependency	Walker	will	process	the	other
command	line	options	and	exit	without	displaying	its
graphical	interface.	You	must	specify	a	module	or
Dependency	Walker	Image	(DWI)	file	to	open	when	using
this	option.

/a:#

Auto	Expand	-	Use	/a:0	to	start	Dependency	Walker	with	the
Auto	Expand	setting	initially	turned	off,	or	/a:1	to	start	with	it
turned	on.	If	this	option	is	not	specified,	then	the	setting	from
the	last	time	you	ran	Dependency	Walker	will	be	used.

/f:#

View	full	paths	-	Use	/f:0	to	start	Dependency	Walker	with
the	View	Full	Paths	setting	initially	turned	off,	or	/f:1	to	start
with	it	turned	on.	If	this	option	is	not	specified,	then	the
setting	from	the	last	time	you	ran	Dependency	Walker	will	be
used.

/u:#

Undecorate	C++	functions	-	Use	/u:0	to	start	Dependency
Walker	with	the	Undecorate	C++	Functions	setting	initially
turned	off,	or	/u:1	to	start	with	it	turned	on.	If	this	option	is
not	specified,	then	the	setting	from	the	last	time	you	ran
Dependency	Walker	will	be	used.

/ps:#

Profiling	option:	Simulate	ShellExecute	by	inserting	any
App	Paths	directories	into	the	PATH	environment
variable	-	Use	/ps:0	to	start	Dependency	Walker	with	this
setting	initially	turned	off,	or	/ps:1	to	start	with	it	turned	on.	If
this	option	is	not	specified,	then	the	setting	from	the	last	time
you	ran	Dependency	Walker	will	be	used.
Profiling	option:	Log	DllMain	calls	for	process	attach	and
process	detach	messages	-	Use	/pp:0	to	start	Dependency
Walker	with	this	setting	initially	turned	off,	or	/pp:1	to	start

/pp:# with	it	turned	on.	If	this	option	is	not	specified,	then	the
setting	from	the	last	time	you	ran	Dependency	Walker	will	be
used.

/po:#

Profiling	option:	Log	DllMain	calls	for	all	other	messages,
including	thread	attach	and	thread	detach	-	Use	/po:0	to
start	Dependency	Walker	with	this	setting	initially	turned	off,
or	/po:1	to	start	with	it	turned	on.	If	this	option	is	not
specified,	then	the	setting	from	the	last	time	you	ran
Dependency	Walker	will	be	used.

/ph:#

Profiling	option:	Hook	the	process	to	gather	more	detailed
dependency	information	-	Use	/ph:0	to	start	Dependency
Walker	with	this	setting	initially	turned	off,	or	/ph:1	to	start
with	it	turned	on.	If	this	option	is	not	specified,	then	the
setting	from	the	last	time	you	ran	Dependency	Walker	will	be
used.

/pl:#

Profiling	option:	Log	LoadLibrary	function	calls	-	Use
/pl:0	to	start	Dependency	Walker	with	this	setting	initially
turned	off,	or	/pl:1	to	start	with	it	turned	on.	If	this	option	is
not	specified,	then	the	setting	from	the	last	time	you	ran
Dependency	Walker	will	be	used.	If	this	option	is	turned	on,
then	the	"Hook	the	process	to	gather	more	detailed
dependency	information"	option	will	also	be	turned	on.

/pg:#

Profiling	option:	Log	GetProcAddress	function	calls	-	Use
/pg:0	to	start	Dependency	Walker	with	this	setting	initially
turned	off,	or	/pg:1	to	start	with	it	turned	on.	If	this	option	is
not	specified,	then	the	setting	from	the	last	time	you	ran
Dependency	Walker	will	be	used.	If	this	option	is	turned	on,
then	the	"Hook	the	process	to	gather	more	detailed
dependency	information"	option	will	also	be	turned	on.

/pt:#

Profiling	option:	Log	thread	information	-	Use	/pt:0	to	start
Dependency	Walker	with	this	setting	initially	turned	off,	or
/pt:1	to	start	with	it	turned	on.	If	this	option	is	not	specified,
then	the	setting	from	the	last	time	you	ran	Dependency
Walker	will	be	used.
Profiling	option:	Use	simple	thread	numbers	instead	of
actual	thread	IDs	-	Use	/pn:0	to	start	Dependency	Walker

/pn:# with	this	setting	initially	turned	off,	or	/pn:1	to	start	with	it
turned	on.	If	this	option	is	not	specified,	then	the	setting	from
the	last	time	you	ran	Dependency	Walker	will	be	used.	If	this
option	is	turned	on,	then	the	"Log	thread	information"	option
will	also	be	turned	on.

/pe:#

Profiling	option:	Log	first	chance	exceptions	-	Use	/pe:0	to
start	Dependency	Walker	with	this	setting	initially	turned	off,
or	/pe:1	to	start	with	it	turned	on.	If	this	option	is	not
specified,	then	the	setting	from	the	last	time	you	ran
Dependency	Walker	will	be	used.

/pm:#

Profiling	option:	Log	debug	output	messages	-	Use	/pm:0
to	start	Dependency	Walker	with	this	setting	initially	turned
off,	or	/pm:1	to	start	with	it	turned	on.	If	this	option	is	not
specified,	then	the	setting	from	the	last	time	you	ran
Dependency	Walker	will	be	used.

/pf:#

Profiling	option:	Use	full	paths	when	logging	file	names	-
Use	/pf:0	to	start	Dependency	Walker	with	this	setting
initially	turned	off,	or	/pf:1	to	start	with	it	turned	on.	If	this
option	is	not	specified,	then	the	setting	from	the	last	time	you
ran	Dependency	Walker	will	be	used.

/pi:#

Profiling	option:	Log	a	time	stamp	with	each	line	of	log	-
Use	/pi:0	to	start	Dependency	Walker	with	this	setting	initially
turned	off,	or	/pi:1	to	start	with	it	turned	on.	If	this	option	is
not	specified,	then	the	setting	from	the	last	time	you	ran
Dependency	Walker	will	be	used.

/pc:#

Profiling	option:	Automatically	open	and	profile	child
processes	-	Use	/pc:0	to	start	Dependency	Walker	with	this
setting	initially	turned	off,	or	/pc:1	to	start	with	it	turned	on.	If
this	option	is	not	specified,	then	the	setting	from	the	last	time
you	ran	Dependency	Walker	will	be	used.	This	option	is
ignored	when	running	in	console	mode.

/pa:#

Profiling	option:	Turn	all	profiling	options	on	or	off	-	Use
/pa:0	to	initially	turn	all	profiling	options	off,	or	/pa:1	to
initially	turn	them	all	on.	This	option	can	be	used	before	other
profiling	options.	For	example,	/pa:1	/pf:0	will	turn	on	all
options	except	for	the	"Use	full	paths	when	logging	file
names"	option.

/pd:dir
Profiling	option:	Starting	directory	-	Specifies	the	starting
directory	to	use	when	profiling	the	module.	This	option
requires	that	you	specify	a	module	to	open.

/pb

Profiling	option:	Automatically	begin	profiling	after	the
module	has	been	loaded	-	This	option	requires	that	you
specify	a	module	to	open.	If	an	output	option	(/od,	/ot,	/of,	or
/oc)	is	specified,	Dependency	Walker	will	wait	until	the
profiling	fully	completes	before	saving	the	results.

/sm:#

Sort	column	for	module	list	view	-	This	option	controls	the
initial	sort	column	that	Dependency	Walker	will	use	when
sorting	the	items	in	the	Module	List	View.	If	this	option	is	not
specified,	then	the	value	from	the	last	time	you	ran
Dependency	Walker	will	be	used.	The	values	allowed	are:

1.	 Icon
2.	 Module	Name	or	Path
3.	 File	Time	Stamp
4.	 Link	Time	Stamp
5.	 File	Size
6.	 File	Attributes
7.	 Link	Checksum
8.	 Real	Checksum
9.	 CPU	Type
10.	 Subsystem	Type
11.	 Symbol	Types
12.	 Preferred	Base	Address
13.	 Actual	Base	Address
14.	 Virtual	Size
15.	 Load	Order
16.	 File	Version
17.	 Product	Version
18.	 Image	Version
19.	 Linker	Version
20.	 OS	Version
21.	 Subsystem	Version

Sort	column	for	parent	import	function	list	view	-	This

/si:#

option	controls	the	initial	sort	column	that	Dependency
Walker	will	use	when	sorting	the	items	in	the	Parent	Import
Function	List	View.	If	neither	this	option	or	the	/sf	option	is
specified,	then	the	value	from	the	last	time	you	ran
Dependency	Walker	will	be	used.	The	values	allowed	are:

1.	 Icon
2.	 Ordinal	Value
3.	 Hint	Value
4.	 Function	Name
5.	 Entry	Point	Address

/se:#

Sort	column	for	export	function	list	views	-	This	option
controls	the	initial	sort	column	that	Dependency	Walker	will
use	when	sorting	the	items	in	the	Export	Function	List	View.
If	neither	this	option	or	the	/sf	option	is	specified,	then	the
value	from	the	last	time	you	ran	Dependency	Walker	will	be
used.	The	values	allowed	are:

1.	 Icon
2.	 Ordinal	Value
3.	 Hint	Value
4.	 Function	Name
5.	 Entry	Point	Address

/sf:#

Sort	column	for	both	function	list	views	-	This	option
controls	the	initial	sort	column	that	Dependency	Walker	will
use	when	sorting	the	items	in	both	the	Parent	Import	Function
List	View	and	the	Export	Function	List	View.	If	no	sort
column	option	is	specified	for	a	particular	column,	then	the
value(s)	from	the	last	time	you	ran	Dependency	Walker	will
be	used.	The	values	allowed	are:

1.	 Icon
2.	 Ordinal	Value
3.	 Hint	Value
4.	 Function	Name

5.	 Entry	Point	Address

/od:path

Output	file	in	Dependency	Walker	Image	(DWI)	format	-
This	option	requires	that	you	specify	a	module	or	Dependency
Walker	Image	(DWI)	file	to	open.	Once	the	module	has	been
processed,	the	results	will	be	written	to	the	specified	file	in
the	Dependency	Walker	Image	(DWI)	format.

/ot:path

Output	file	in	text	format	-	This	option	requires	that	you
specify	a	module	or	Dependency	Walker	Image	(DWI)	file	to
open.	Once	the	module	has	been	processed,	the	results	will	be
written	to	the	specified	file	in	text	format.

/of:path

Output	file	in	text	format	with	import	/	export	function
lists	-	This	option	requires	that	you	specify	a	module	or
Dependency	Walker	Image	(DWI)	file	to	open.	Once	the
module	has	been	processed,	the	results	will	be	written	to	the
specified	file	in	text	format,	including	the	import	and	export
function	lists.

/oc:path

Output	file	in	Comma	Separated	Value	(CSV)	format	-
This	option	requires	that	you	specify	a	module	or	Dependency
Walker	Image	(DWI)	file	to	open.	Once	the	module	has	been
processed,	the	results	will	be	written	to	the	specified	file	in	a
Comma	Separated	Value	(CSV)	format.

/d:path

Dependency	Walker	Path	(DWP)	file	to	load	-	This	options
allows	you	to	specify	a	Dependency	Walker	Path	(DWP)	File
to	load	and	use	as	the	initial	search	path	when	searching	for
modules.	DWP	files	can	be	created	using	the	Configure
Module	Search	Order	command	in	Dependency	Walker.

path

Path	to	a	module	or	Dependency	Walker	Image	(DWI)	file
to	load	-	For	this	option,	you	can	specify	a	file	name,	a
relative	path,	or	a	full	path	to	a	file	to	load.	The	file	must	be	a
32-bit	or	64-bit	Windows	module	or	a	Dependency	Walker
Image	(DWI)	file.	This	path	must	come	after	any	options
intended	for	Dependency	Walker	since	all	options	that	follow
this	path	are	assumed	to	be	program	arguments	for	use	when
profiling	the	module.

args...

Program	arguments	-	Specifies	the	command	line	arguments
to	use	when	profiling	the	module	specified	by	the	path
option.	Dependency	Walker	considers	any	text	following	the
path	option	as	being	program	arguments.	For	this	reason,	any
options	intended	for	Dependency	Walker	must	be	specified
before	the	path	option.	If	the	file	specified	by	the	path	option
is	really	a	Dependency	Walker	Image	(DWI)	file,	then	the
args	are	ignored.

	

General	Rules	about	Command	Line	Options

Options	are	case	insensitive.	For	example,	"/c"	and	"/C"	are
equivalent.

Options	may	start	with	a	slash	or	a	dash.	For	example,	"/c"	and	"-c"
are	equivalent.

The	colons	(:)	shown	in	the	options	above	are	optional.	They	may	be
removed	or	replaced	with	spaces.	For	example,	"/f:0",	"/f	0",	and
"/f0"	are	equivalent.

All	profiling	options	are	cumulative	from	left	to	right.	For	example,
/pa:1	/pm:0	will	turn	on	all	the	profiling	options,	then	turn	off	the
"Log	debug	output	messages"	option,	but	/pm:0	/pa:1	will	simply
turn	on	all	profiling	options.

Program	options	intended	for	Dependency	Walker	must	come	before
the	module	path.	All	options	after	the	module	path	will	be	passed	to
the	module	as	its	command	line	when	profiled.

If	you	wish	to	specify	text	that	has	spaces,	that	text	should	be	placed
in	quotes.	For	example:

depends	/pb	/oc	"c:\output	files\foo	bar.csv"	"c:\input	files\foo
bar.exe"	1	2	3	"this	is	a	test"

Multiple	options	can	be	grouped	together.	You	may	even	append
options	to	other	options	that	require	numerical	values.	The	only
options	that	cannot	be	appended	to	are	options	that	require	a	path	or
text	values	(-pd,	-od,	-ot,	-of,	-oc,	and	-d).	For	example:

depends	-c	-f:0	-u:1	-pa:1	-pf:0	-pe:0	-pb	-sm:12	-sf:4	-
d:search.dwp	-oc:result.csv	-od:result.dwi	foo.exe

Could	be	shortened	to:

depends	-cf0u1pa1pf0pe0pbsm12sf4dsearch.dwp	-ocresult.csv	-
odresult.dwi	foo.exe	bar

All	options	can	be	specified	with	or	without	the	"Console	Mode"
option	(/c).

More	than	one	output	file	type	option	can	be	specified.

Return	Values

When	Dependency	Walker	exits,	it	returns	a	set	of	bit	flags	that	are	OR'ed
together.	There	are	three	groups	of	error	flags	-	module	warnings,	module
errors,	and	processing	errors.	The	error	flags	have	been	arranged	in	a	way

that	makes	it	easy	to	detect	the	severity	of	a	problem.

If	the	return	value	is	greater	than	or	equal	to	0x00010000,	then	there	was	a
processing	error	with	Dependency	Walker	and	no	work	was	done.
Otherwise,	if	the	return	value	is	greater	than	or	equal	to	0x00000100,	then
the	operating	system	will	not	be	able	to	load	the	module	due	to	some
module	or	dependency	error.	Otherwise,	if	the	return	value	is	greater	than	or
equal	to	0x00000001,	then	the	module	has	no	load-time	dependency
problems	and	will	most	likely	have	no	problems	loading,	but	may	have
runtime	problems.

Module	Warnings	-	Application	should	load,	but	might	fail	during	runtime.

0x00000001 At	least	one	dynamic	dependency	module	was	not	found.
0x00000002 At	least	one	delay-load	dependency	module	was	not	found.

0x00000004 At	least	one	module	could	not	dynamically	locate	a	functionin	another	module	using	the	GetProcAddress	function	call.

0x00000008 At	least	one	module	has	an	unresolved	import	due	to	amissing	export	function	in	a	delay-load	dependent	module.

0x00000010
At	least	one	module	was	corrupted	or	unrecognizable	to
Dependency	Walker,	but	still	appeared	to	be	a	Windows
module.

0x00000020

At	least	one	module	failed	to	load	during	profiling.	This
usually	occurs	when	a	module	returns	0	from	its	DllMain
function	or	generates	an	unhandled	exception	while
processing	the	DLL_PROCESS_ATTACH	message.

Module	Errors	-	Application	will	fail	to	load	by	the	operating	system.

0x00000100 At	least	one	file	was	not	a	32-bit	or	64-bit	Windows	module.

0x00000200 At	least	one	required	implicit	or	forwarded	dependency	wasnot	found.

0x00000400
At	least	one	module	has	an	unresolved	import	due	to	a

missing	export	function	in	a	dependent	module.
0x00000800 Modules	with	different	CPU	types	were	found.
0x00001000 A	circular	dependency	was	detected.
0x00002000 There	was	an	error	in	a	Side-by-Side	configuration	file.

Processing	Errors	-	All	or	some	modules	could	not	be	processed.

0x00010000 There	was	an	error	with	at	least	one	command	line	option.
0x00020000 The	file	you	specified	to	load	could	not	be	found.
0x00040000 At	least	one	file	could	not	be	opened	for	reading.

0x00080000 The	format	of	the	Dependency	Walker	Image	(DWI)	file	was
unrecognized.

0x00100000 There	was	an	error	while	trying	to	profile	the	application.
0x00200000 There	was	an	error	writing	the	results	to	an	output	file.
0x00400000 Dependency	Walker	ran	out	of	memory.
0x00800000 Dependency	Walker	encountered	an	internal	program	error.

Overview	of	Module	Version	Numbers

There	are	four	version	fields	that	every	Windows	module	is	guaranteed	to	have.
They	are	all	two-part	version	numbers	(#.#).	They	include:

Image	Version

This	value	is	set	by	the	developer	of	the	module	by
using	the	VERSION	statement	in	their	DEF	file	or	by
using	the	/VERSION	linker	option.	It	usually
represents	the	version	of	the	module	or	product	that
the	module	is	part	of,	but	can	contain	any	value	since
it	is	up	to	the	developer	to	set	it.	If	the	developer	does
not	specify	a	version,	then	this	value	will	default	to
0.0.	This	value	may	be	used	as	a	last	resort	when
comparing	two	modules	to	check	which	module	is
newer.

OS	Version

This	value	represents	which	version	of	the	operating
system	the	module	was	designed	to	run	on.	Certain
functions	may	behave	differently	depending	on	this
value	in	order	to	remain	compatible	with	applications
built	for	a	particular	operating	system	version.

Subsystem	Version

This	value	represents	which	subsystem	version	the
module	was	designed	to	run	on.	Most	modules	use
the	default	value,	but	developers	can	override	the
default	by	using	the	/SUBSYSTEM	linker	option	if
they	wish	to	target	a	particular	subsystem	version
other	than	the	default.	Certain	subsystem	functions
may	behave	differently	depending	on	this	value	in
order	to	remain	compatible	with	applications	built	for
a	particular	subsystem	version.

Linker	Version

This	value	represents	the	version	of	the	linker	that
was	used	to	build	the	module.	It	can	be	used	to
determine	if	a	specific	linker	feature	was	available	at
the	time	the	module	was	built.	For	example,	delay-
load	dependencies	is	a	new	feature	introduced	with
version	6.0	of	the	linker,	so	if	this	value	is	less	than
6.0,	the	module	shouldn't	have	any	delay-load

dependencies.

In	addition	to	the	four	standard	version	values,	developers	can	add	four	more
optional	version	values	by	including	a	VERSION_INFO	resource	as	part	of	their
resource	file.	This	resource	structure	has	two	four-part	numeric	fields	(#.#.#.#)
and	two	text	fields.	They	include:

File	Version	Value

This	field	is	known	as	the	"FILEVERSION"	field
in	the	VERSION_INFO	resource	structure.	This
numerical	value	usually	represents	the	version	of
the	module	itself,	but	can	contain	any	value	since
it	is	up	to	the	developer	to	set	it.	This	is	the	value
that	most	programs	use	when	comparing	two
modules	to	check	which	module	is	newer.

Product	Version	Value

This	field	is	known	as	the
"PRODUCTVERSION"	field	in	the
VERSION_INFO	resource	structure.	This
numerical	value	usually	represents	the	version	of
the	product	that	this	module	is	part	of,	but	can
contain	any	value	since	it	is	up	to	the	developer	to
set	it.	For	example,	"Acme	Tools	version	3.0"	is	a
set	of	ten	utilities,	including	"Acme	Virus
Checker	version	1.5".	The	virus	checker
executable	might	have	a	file	version	of	1.5.0.0
and	a	product	version	of	3.0.0.0

File	Version	Text

This	field	is	known	as	the	"FileVersion"	field	in
the	VERSION_INFO	resource	structure.	This	text
string	usually	represents	the	version	of	the
module	itself,	but	can	contain	any	text	string
since	it	is	up	to	the	developer	to	set	it.

Product	Version	Text

This	field	is	known	as	the	"ProductVersion"	field
in	the	VERSION_INFO	resource	structure.	This
text	string	usually	represents	the	version	of	the
product	that	this	module	is	part	of,	but	can
contain	any	text	string	since	it	is	up	to	the
developer	to	set	it.

Dependency	Walker	shows	the	true	FILEVERSION	and	PRODUCTVERSION
version	values	and	not	the	text	string	versions.	Other	applications,	like	the
Windows	Properties	dialog,	show	the	text	string	values	since	that	is	what	the
developer	of	the	module	wants	the	average	non-technical	user	to	see.	For
example,	you	may	see	only	"2.0"	in	the	Windows	Properties	dialog	for	a	module
when	its	real	version	is	2.0.5.2034.	If	you	want	to	know	the	true	version	of	a	file,
you	should	use	Dependency	Walker	and	not	the	Windows	Properties	dialog.

A	great	web	site	for	looking	up	version	numbers	of	modules	is	the	Microsoft
DLL	Help	Database
(http://support.microsoft.com/servicedesks/FileVersion/dllinfo.asp).	This	site	has
detailed	version	histories	of	DLLs	and	lists	what	products	were	shipped	with
each	version.	This	database	can	be	helpful	in	tracking	down	version	problems.

http://support.microsoft.com/servicedesks/FileVersion/dllinfo.asp

Types	of	Dependencies	Handled	By	Dependency
Walker

There	are	several	ways	a	module	can	be	a	dependent	of	another	module:

1.	 Implicit	Dependency	(also	known	as	a	load-time	dependency	or
sometimes	incorrectly	referred	to	as	static	dependency):	Module	A	is
implicitly	linked	with	a	LIB	file	for	Module	B	at	compile/link	time,	and
Module	A's	source	code	actually	calls	one	or	more	functions	in	Module	B.
Module	B	is	a	load	time	dependency	of	Module	A	and	will	be	loaded	into
memory	regardless	if	Module	A	actually	makes	a	call	to	Module	B	at	run-
time.	Module	B	will	be	listed	in	Module	A's	import	table.

2.	 Delay-load	Dependency:	Module	A	is	delay-load	linked	with	a	LIB	file	for
Module	B	at	compile/link	time,	and	Module	A's	source	code	actually	calls
one	or	more	functions	in	Module	B.	Module	B	is	a	dynamic	dependency
and	will	only	be	loaded	if	Module	A	actually	makes	a	call	to	Module	B	at
run-time.	Module	B	will	be	listed	in	Module	A's	delay-load	import	table.

3.	 Forward	Dependency:	Module	A	is	linked	with	a	LIB	file	for	Module	B	at
compile/link	time,	and	Module	A's	source	code	actually	calls	one	or	more
functions	in	Module	B.	One	of	the	functions	called	in	Module	B	is	actually
a	forwarded	function	call	to	Module	C.	Module	B	and	Module	C	are	both
dependencies	of	Module	A,	but	only	Module	B	will	be	listed	in	Module	A's
import	table.

4.	 Explicit	Dependency	(also	known	as	a	dynamic	or	run-time	dependency):
Module	A	is	not	linked	with	Module	B	at	compile/link	time.	At	runtime,
Module	A	dynamically	loads	Module	B	via	a	LoadLibrary	type	function.
Module	B	becomes	a	run	time	dependency	of	Module	A,	but	will	not	be
listed	in	any	of	Module	A's	tables.	This	type	of	dependency	is	common	with
OCXs,	COM	objects,	and	Visual	Basic	applications.

5.	 System	Hook	Dependency	(also	known	as	an	injected	dependency):	This
type	of	dependency	occurs	when	another	application	hooks	a	specific	event
(like	a	mouse	event)	in	a	process.	When	that	process	produces	that	event,
the	OS	can	inject	a	module	into	the	process	to	handle	the	event.	The	module

that	is	injected	into	the	process	is	not	really	a	dependent	of	any	other
module,	but	does	resides	in	that	process'	address	space.

Dependency	Walker	fully	supports	modules	loaded	by	all	of	the	above
techniques.	Case	1,	2,	and	3	can	easily	be	detected	by	just	opening	a	module	in
Dependency	Walker.	Case	4	and	5	require	runtime	profiling,	a	new	feature	in
Dependency	Walker	2.0.	For	more	information	on	profiling,	see	the	Using
Application	Profiling	to	Detect	Dynamic	Dependencies	section.

Using	Application	Profiling	to	Detect	Dynamic
Dependencies

Dependency	Walker	version	2.0	adds	application	profiling,	a	technique	used	to
watch	a	running	application	to	see	what	modules	it	loads.	This	allows
Dependency	Walker	to	detect	dynamically	loaded	modules	that	are	not
necessarily	reported	in	any	on	the	import	tables	of	other	modules.	Dependency
Walker's	profiler	can	also	detect	when	a	module	fails	to	initialize,	which	often
results	in	the	"The	application	failed	to	initialize	properly"	error.

When	a	module	is	first	opened	by	Dependency	Walker,	it	is	immediately	scanned
for	all	implicit,	delay-load,	and	forwarded	dependencies	(for	more	information
on	dependency	types,	see	the	Types	of	Dependencies	Handled	By	Dependency
Walker	section).	Once	all	the	modules	have	been	scanned,	the	results	are
displayed.	In	addition	to	these	known	dependencies,	modules	are	free	to	load
other	modules	at	run-time	without	any	prior	warning	to	the	operating	system.
These	types	of	dependencies	are	known	as	dynamic	or	explicit	dependencies.
There	is	really	no	way	to	detect	dynamic	dependencies	without	actually	running
the	application	and	watching	it	to	see	what	modules	it	loads	at	run-time.	This	is
exactly	what	Dependency	Walker's	application	profiling	does.

For	profiling	to	work,	the	module	you	open	in	Dependency	Walker	has	to	be	an
executable	file	(usually	ends	with	.EXE)	that	is	designed	to	run	on	the	system
you	are	working	with.	If	not,	the	Start	Profiling	menu	option	and	toolbar	button
will	not	be	enabled.	When	you	choose	to	profile	an	application,	your	application
should	begin	to	run.	As	your	application	runs,	Dependency	Walker	will	gather
information	and	log	it	to	the	Log	View,	as	well	as	update	the	other	views.

It	is	the	job	of	the	user	to	"exercise"	the	application	to	ensure	that	all	dynamic
dependencies	are	found.	Usually	dynamic	dependencies	are	only	loaded	when
needed.	For	example,	modules	related	to	printing	might	only	be	loaded	if	the
application	actually	prints.	In	a	case	like	this,	if	the	application	does	not	perform
a	print	while	being	profiled,	then	Dependency	Walker	will	not	detect	those
modules	related	to	printing.	Other	modules	might	only	get	loaded	if	an	error
occurs	in	the	application.	Scenarios	like	these	might	be	hard	to	produce.	Because
of	this,	It	is	impossible	to	guarantee	that	all	dynamic	dependencies	are
found,	but	the	more	an	application	is	exercised,	the	better	the	odds	are	of	finding

them.

Dependency	Walker's	application	profiler	tracks	every	module	that	gets	loaded
and	attempts	to	determine	which	module	actually	requested	the	file	to	be	loaded.
This	allows	dynamically	loaded	modules	to	be	inserted	into	the	Module
Dependency	Tree	View	as	a	child	of	the	module	that	actually	loaded	the	module.

The	profiler	works	by	hooking	particular	function	calls	in	the	remote	process
being	profiled.	On	Windows	95,	Windows	98,	and	Windows	Me,	only	non-
system	modules	can	be	hooked.	The	result	is	that	when	a	system	module
dynamically	loads	another	module,	the	profiler	cannot	tell	who	the	parent
module	is	for	the	dynamically	loaded	module.	Parentless	modules	like	these	will
be	added	to	the	root	of	the	Module	Dependency	Tree	View.	All	modules	that	are
loaded	due	to	a	system-wide	hook	will	also	be	added	to	the	root	of	the	Module
Dependency	Tree	View	since	these	types	of	modules	are	loaded	directly	by	the
OS	and	have	no	parent	module.	Even	though	Dependency	Walker	may	not	be
able	to	detect	the	parent	of	a	dynamic	dependency,	it	does	guarantee	that	all
modules	that	get	loaded	by	the	application	will	be	detected.

One	final	benefit	of	the	profiler	is	that	it	can	correct	the	paths	of	any	modules
that	may	have	been	incorrectly	determined	during	the	initial	implicit	module
scan.	When	you	first	open	a	module	in	Dependency	Walker,	it	recursively	scans
all	the	import	and	export	tables	of	modules	to	build	the	initial	module	hierarchy.
Only	file	names	are	stored	in	these	tables,	so	dependency	walker	uses	the	rules
you	have	set	up	in	the	Module	Search	Order	Dialog	to	determine	the	full	path	to
each	module.	During	profiling,	Dependency	Walker	examines	the	real	path	of
each	module	as	they	load	and	compares	them	to	the	modules	in	the	tree.	If	a
module	loads	from	a	different	path	than	Dependency	Walker	expected	it	to	load
from,	then	it	will	update	the	module	hierarchy	and	other	views	to	reflect	the
change.

How	to	Interpret	Warnings	and	Errors	in	Dependency
Walker

Dependency	Walker	may	generate	many	warnings	and	errors	for	an	application.
Some	errors	may	cause	an	application	to	fail,	while	others	are	harmless	and	can
be	ignored.	Most	failures	fit	into	one	of	two	categories:	load-time	failures	or	run-
time	failures.

A	load-time	failure	means	that	an	application	or	module	didn't	even	have	a
chance	to	run.	In	more	technical	terms,	this	usually	means	that	the	entry-point	to
a	module	was	never	called	since	the	operating	system	couldn't	load	all	the
required	modules.	This	can	occur	if	an	implicit	or	forward	dependency	could	not
be	found	or	was	missing	a	needed	function	(for	more	information	on	dependency
types,	see	the	Types	of	Dependencies	Handled	By	Dependency	Walker	section).
You	will	also	encounter	a	load-time	failure	if	the	application	attempts	to	load	a
corrupt	or	non-Windows	module,	a	module	for	a	different	CPU	type	then	you	are
using,	or	a	16-bit	module	into	a	32-bit	application.	Here	are	some	common	load-
time	error	messages:

The	dynamic	link	library	BAR.DLL	could	not	be	found	in	the
specified	path...
The	procedure	entry	point	FOO	could	not	be	located	in	the	dynamic
link	library	BAR.DLL.

The	application	or	DLL	BAR.DLL	is	not	a	valid	Windows	image.

The	application	failed	to	initialize	properly.

Initialization	of	the	dynamic	link	library	BAR.DLL	failed.	The
process	is	terminating	abnormally.

The	image	file	BAR.EXE	is	valid,	but	is	for	a	machine	type	other
than	the	current	machine.

Most	load-time	problems	can	be	immediately	detected	by	Dependency	Walker.
When	you	first	open	a	module	in	Dependency	Walker,	it	scans	that	module	for
all	implicit,	forward,	and	delay-load	dependencies.	Implicit	and	forward
dependencies	are	required	by	the	operating	system	in	order	for	the	application	to
run.	If	any	implicit	or	forward	dependencies	are	missing	or	have	errors,	then	it	is
likely	that	the	application	will	encounter	a	load-time	failure	if	run.	Delay-load
dependencies	are	not	required	by	the	operating	system	at	load-time,	so	errors	or
warning	with	delay	load	dependencies	may	or	may	not	cause	problems.

Run-time	dependencies	are	modules	that	an	application	loads	after	it	has
initialized	and	begun	to	run.	This	is	usually	achieved	by	calling	one	of	the
LoadLibrary	type	functions.	Once	a	module	has	been	loaded,	an	application	can
call	the	GetProcAddress	function	to	locate	a	specific	function	in	the	newly
loaded	module.	Dependency	Walker	can	track	all	these	calls	and	reports	any
failures.	However,	if	the	application	is	prepared	to	handle	the	failure,	then	the
warning	can	be	ignored.

There	are	many	reasons	for	using	run-time	dependencies.	First,	they	can	increase
load-time	performance	since	an	application	can	delay	the	loading	of	certain
modules	that	may	not	be	needed	until	later.	For	example,	if	an	application	uses	a
DLL	related	to	printing,	that	DLL	might	not	get	loaded	unless	you	actually	print
something	from	the	application.	Second,	they	can	be	used	in	cases	where	a
module,	or	a	function	within	a	module,	may	not	exist.	For	example,	an
application	might	need	to	call	a	Windows	NT	specific	function	when	running	on
Windows	NT,	but	the	module	or	function	does	not	exist	on	Windows	9x.	If	the
application	were	to	implicitly	link	to	the	module	that	the	function	lives	in,	then	a
load-time	failure	would	occur	on	Windows	9x	since	the	operating	system	would
not	be	able	to	locate	the	function	at	load-time.	By	making	it	a	run-time
dependency,	the	application	can	check	to	see	if	the	function	exists	and	only	call
it	if	it	does.

There	are	two	types	of	run-time	dependencies:	explicit	dependencies	(often
referred	to	as	dynamic	dependencies)	and	delay-load	dependencies.	Explicit
dependencies	can	be	loaded	at	anytime	during	the	life	of	the	application	with	no
prior	notice.	Because	of	this,	the	only	way	to	determine	what	explicit
dependencies	an	application	will	use	is	to	run	the	application	and	watch	it	to	see
what	it	loads	(for	more	information	on	profiling,	see	the	Using	Application
Profiling	to	Detect	Dynamic	Dependencies	section).	With	explicit	dependencies,
the	application	directly	calls	LoadLibrary	and	GetProcAddress	to	do	the	work.

Delay-load	dependencies	are	actually	implemented	as	explicit	dependencies,	but
a	helper	library	and	the	linker	do	most	of	the	work.	Most	all	Windows	modules
have	an	"import	table"	stored	in	them.	This	table	is	built	by	the	linker	and	used
by	the	operating	system	to	determine	the	implicit	and	forward	dependencies	of	a
given	module.	Any	module	or	function	in	this	list	that	cannot	be	found	will
cause	the	module	to	fail.	If	you	tell	the	linker	to	make	a	module	a	delay-load
dependency,	then	instead	of	storing	that	module's	information	in	the	main	import
table,	it	stores	it	in	a	separate	delay-load	import	table.	At	run-time,	if	a	module
calls	into	a	delay-load	dependency	module,	the	call	is	trapped	by	the	helper
library.	This	library	then	uses	LoadLibrary	to	load	the	module	and
GetProcAddress	to	query	all	the	functions	referenced	in	the	module.	Once	this	is
complete,	the	call	is	passed	along	to	the	real	function	and	execution	resumes
without	the	module	that	made	the	call	even	knowing	what	just	happen.	All	future
calls	from	that	specific	module	to	the	delay-loaded	module	will	be	made	directly
into	the	already	loaded	module	instead	of	being	trapped	by	the	helper	library.

The	delay-load	helper	library	has	a	mechanism	for	notifying	the	caller	if	there	is
a	failure.	Like	failures	with	explicit	dependencies,	if	the	application	is	prepared
for	the	failure,	then	this	should	not	be	a	problem.

To	summarize,	implicit	and	forward	dependencies	are	required	dependencies	that
need	to	exist	and	have	no	errors	or	warnings.	Explicit	and	delay-load
dependencies	may	not	need	to	exist	and	may	not	need	to	export	all	the	functions
that	the	parent	module	wishes	to	import	from	them.	However,	if	an	application	is
not	prepared	to	handle	a	missing	explicit	or	delay-load	module,	or	a	missing
function	within	an	explicit	or	delay-load	module,	then	this	can	result	in	a	run-
time	failure	of	the	application.	Dependency	Walker	cannot	predict	if	an
application	plans	to	handle	failures,	so	it	just	warns	you	of	all	potential
problems.	If	you	find	an	application	runs	smoothly,	then	you	can	probably	ignore
most	all	warnings.	However,	if	your	application	were	to	fail,	then	the	warnings
may	provide	some	insight	as	to	what	caused	the	failure.

There	is	one	other	type	of	warning	generated	by	Dependency	Walker	while
profiling	that	is	worth	mentioning.	This	is	related	to	first	and	second	exceptions.
When	an	exception	(like	an	access	violation)	occurs	in	an	application,	the
application	is	given	a	chance	to	handle	the	exception.	These	are	known	as	first
chance	exceptions.	If	the	application	handles	the	exception,	then	there	should	be
no	problem	and	the	exception	can	probably	be	ignored.	If	the	application	does
not	handle	the	first	chance	exception,	then	it	turns	into	a	second	chance

exception,	which	are	usually	fatal	to	the	application.	When	a	second	chance
exception	occurs,	the	operating	system	usually	puts	up	a	dialog	telling	you	that
the	application	has	crashed	and	needs	to	exit.

Dependency	Walker	always	logs	second	chance	exceptions	and	can	optionally
log	first	chance	exceptions.	Many	applications	routinely	generate	first	chance
exceptions	and	handle	them.	This	is	not	a	sign	of	a	bad	application	since	there
are	many	legitimate	reasons	to	generate	first	chance	exceptions	and	handle	them.

Dependency	Walker	Path	(DWP)	Files

Dependency	Walker	Path	(DWP)	files	are	used	to	define	how	Dependency
Walker	locates	modules	on	your	system.	By	default,	Dependency	Walker	is	set
up	to	simulate	the	search	algorithm	that	the	operating	system	uses	to	locate
modules.	However,	you	can	override	this	default	and	set	up	your	own	custom
search	criteria.	See	the	Module	Search	Order	Dialog	section	for	more
information.

DWP	files	are	usually	created	by	configuring	a	search	order	in	the	Module
Search	Order	Dialog,	and	then	choosing	save	from	that	dialog	to	save	the	search
order	to	a	DWP	file.	This	DWP	file	can	then	be	loaded	at	a	later	time	from	the
Module	Search	Order	Dialog	or	from	the	Command	Line.

DWP	files	can	also	be	created	and	edited	by	hand.	DWP	files	are	simply	text
files	that	contain	a	list	of	search	groups.	The	following	is	a	list	of	supported
keywords:

SxS Side-by-Side	components
KnownDLLs The	system's	"KnownDLLs"	list
AppDir The	application	directory
32BitSysDir The	32-bit	system	directory

16BitSysDir The	16-bit	system	directory	(Windows
NT/2000/XP/2003/Vista/+	only)

OSDir The	system's	root	OS	directory
AppPath The	application's	registered	"App	Paths"	directories
SysPath The	system's	"PATH"	environment	variable	directories
UserDir A	user	defined	directory

Each	keyword	must	be	on	a	line	by	itself.	All	keywords	are	case	insensitive.
Except	for	the	UserDir	keyword,	no	keyword	can	be	specified	more	than	once.
The	UserDir	keyword	is	a	special	keyword	that	also	requires	a	directory	path.
The	syntax	for	it	is:

UserDir	c:\path\to\some\directory\

You	may	use	system	variables	in	the	path	as	well.	For	example:

UserDir	%build_directory%\%target_cpu%\debug\

All	spaces	and	empty	lines	in	the	DWP	file	are	ignored,	except	for	spaces	that
are	part	of	a	directory	path.	No	quotes	should	be	used	with	any	of	the	keywords
or	paths.	You	may	add	comments	to	the	file	by	starting	a	line	with	a	colon	(:),
semicolon	(;),	forward	slash	(/),	single	quote	('),	or	pound	(#).

Module	Session	Window

A	module	session	window	is	created	for	every	module	or	Dependency	Walker
Image	(DWI)	file	that	is	opened.	The	window	is	split	into	the	following	five
views:

Module	Dependency	Tree	View
Module	List	View

Parent	Import	Function	List	View

Export	Function	List	View

Log	View

All	views	support	right-click	context	menus	to	commonly	used	commands	for
that	view.	All	views	support	context	help.	You	may	press	F1	anywhere	in
Dependency	Walker	to	get	help	on	the	item	that	currently	has	the	focus.	You	may
also	use	the	Context	Help	tool	to	allow	you	to	simply	click	on	the	item	you	wish
to	get	help	on.

For	navigating	through	the	views,	see	the	Previous	Pane	command	and	the	Next
Pane	command.	For	navigating	through	the	open	Module	Session	Windows,	see
the	Previous	Window	command,	the	Next	Window	command,	and	the	Window
1,	2,	3,	...	command.

Module	Dependency	Tree	View

The	Module	Dependency	Tree	View	displays	a	hierarchical	view	of	all	the
modules'	dependencies.	There	are	several	ways	a	module	can	be	a	dependency	of
another	module.	For	more	information	on	dependency	types,	see	the	Types	of
Dependencies	Handled	By	Dependency	Walker	section.

Dependency	Walker	starts	with	the	root	module	you	chose	to	open	and	scans	its
import	tables	to	build	a	list	of	required	dependent	modules.	Dependency	Walker
then	scans	each	of	these	dependent	modules	for	their	dependent	modules.	This
recursion	continues	until	all	modules	and	their	dependent	modules	have	been
processed.

To	prevent	a	bloated	tree	and	possible	infinite	circular	loops	with	dependent
modules,	Dependency	Walker	stops	processing	a	given	branch	of	the	tree	when	it
reaches	a	module	that	it	has	already	processed	somewhere	else	in	the	tree.
Duplicate	modules	are	marked	with	a	small	arrow	in	the	middle	of	their
accompanying	image	(see	below).	To	determine	what	the	branch	would	have
looked	like	if	Dependency	Walker	had	processed	it,	use	the	Highlight	Original
Instance	Command	to	find	the	original	instance	of	the	module	in	the	tree.

Dependency	Walker	also	scans	each	dependent	module	looking	for	forwarded
function	calls	to	other	modules.	If	a	forwarded	function	is	found	and	actually
called	by	the	parent	module,	then	the	module	that	the	function	is	forwarded	to	is
also	pulled	in	and	added	to	the	dependency	tree.	These	forwarded	modules	are
specially	marked	in	the	dependency	tree	with	a	small	state	image	next	to	their
accompanying	image	(see	below).

While	processing	the	dependency	tree,	Dependency	Walker	performs	several
validity	checks	along	the	way.	It	checks	to	make	sure	each	module	is	a	valid	32-
bit	or	64-bit	Windows	module.	It	checks	for	mismatched	binaries,	such	as	an	x86
module	with	an	Alpha	module.	It	scans	import	and	export	function	tables
looking	for	unresolved	external	functions.	It	checks	for	circular	dependencies,
which	are	allowed,	and	for	circular	forwarded	dependencies,	which	are	not
allowed.	Any	errors	that	are	encountered	while	processing	the	tree	will	be
displayed	using	a	special	image	(see	below)	for	the	particular	modules	in	error
and/or	by	a	message	box.

The	Auto	Expand	setting	controls	how	much	of	the	tree	is	initially	seen	after
loading	a	module.	When	this	option	is	turned	on,	the	entire	tree	will	be
displayed.	When	the	option	is	turned	off,	only	the	root	module,	its	immediate
dependencies,	and	modules	with	errors	will	be	shown.

Modules	can	be	displayed	using	full	file	paths	or	just	the	file	name	to	conserve
screen	space.	You	can	control	what	is	displayed	using	the	Full	Paths	option.	You
may	also	copy	the	selected	module's	file	name	or	path	to	the	clipboard	by
selecting	the	Copy	Command.	The	actual	text	copied	will	differ	depending	on
how	the	Full	Paths	option	is	set.	The	contents	of	the	Module	Dependency	Tree
View	can	also	be	saved	to	a	text	file	using	the	Save	Command	or	Save	As
Command.

The	following	is	a	table	of	the	primary	images	that	can	accompany	each	module
in	the	dependency	tree.	This	list	is	just	a	subset	of	all	the	possible	images.	Actual
images	can	be	a	combination	of	one	or	more	of	the	following	images:

Normal	Images

Normal	module	with	no	errors.

Duplicate	module.	This	module	has	already	been	processed
somewhere	else	in	the	tree.	You	can	use	the	Highlight	Original
Instance	Command	to	find	the	original	instance	of	the	module	in	the
tree.

Forwarded	module.	This	module	is	a	dependency	because	the	parent
module	has	forwarded	one	of	its	functions	to	this	module.

Delay-load	module.	This	module	will	be	dynamically	loaded	if	any
of	its	exported	functions	are	actually	called	at	run-time.

Dynamic	module.	This	module	was	detected	during	profiling	and
was	dynamically	loaded	or	used	by	its	parent	module.	If	the	module
has	no	parent,	then	Dependency	Walker	was	unable	to	determine	who
loaded	the	module.	See	Using	Application	Profiling	to	Detect
Dynamic	Dependencies	for	more	information.

This	module	was	dynamically	loaded	by	a	call	to	the	LoadLibraryEx
function	with	the	DONT_RESOLVE_DLL_REFERENCES	flag
and/or	the	LOAD_LIBRARY_AS_DATAFILE	flag.	These	flags
cause	the	module	to	get	mapped	into	memory	without	loading	its
dependent	modules	or	calling	the	module's	DllMain	function.

64-bit	module.	This	module	is	designed	to	run	on	a	64-bit	versions	of
Windows.	Modules	are	assumed	to	be	32-bit	if	this	image	is	not
present.

Warning	and	Error	Images

Missing	module.	This	module	could	not	be	found	in	the	search	path.
See	the	Configure	Search	Order	Command	for	more	information.

Invalid	module.	See	the	Module	List	View	for	an	error	message
describing	the	module	error.

Module	warning.	This	module	is	either	missing	one	or	more	export
functions	that	are	required	by	its	parent	module,	is	of	the	wrong	CPU
type,	or	failed	to	initialize	when	being	loaded.	For	a	missing	export,
the	Parent	Import	Function	List	View	will	list	the	actual	unresolved
functions	that	are	causing	the	problem.	For	implicit	dependencies,
this	is	an	error	that	will	cause	the	parent	module	to	fail	to	load.	If	the
module	failed	to	load	or	initialized,	then	check	the	Log	View	for
details	on	the	failure.

Delay-load	module	warning.	This	module	is	either	missing	one	or
more	export	functions	that	are	required	by	its	parent	module,	or	is	of
the	wrong	CPU	type.	For	a	missing	export,	the	Parent	Import
Function	List	View	will	list	the	actual	unresolved	functions	that	are
missing.	For	delay-load	dependencies,	this	is	most	likely	not	an	error
since	one	reason	developers	use	delay-load	modules	is	when	they	are
unsure	if	a	particular	function	exists	in	dependent	module.	Parents	of
delay-load	modules	have	techniques	for	recovering	from	missing

exports	in	the	delay-loaded	dependent	module.

Dynamic	module	warning.	This	module	is	either	missing	one	or	more
export	functions	that	the	parent	module	attempted	to	retrieve	using
GetProcAddress,	is	of	the	wrong	CPU	type,	or	failed	to	initialize
when	being	loaded.	For	a	missing	export,	the	Parent	Import	Function
List	View	will	list	the	actual	functions	that	the	parent	module	could
not	locate.	For	dynamic	dependencies,	this	is	usually	just	a	warning,
since	it	is	perfectly	valid	for	a	module	to	dynamically	check	for	the
existence	of	a	function	in	another	module,	even	if	the	function	does
not	exist.	If	the	module	failed	to	load	or	initialized,	then	check	the
Log	View	for	details	on	the	failure.

See	the	How	to	Interpret	Warnings	and	Errors	in	Dependency	Walker	section	for
more	details	on	module	errors.

It	is	possible	for	a	module	to	show	up	more	than	once	as	a	dependency	of	a
single	parent	module.	Dependency	Walker	does	this	to	inform	you	that	this
module	is	a	dependency	for	more	than	one	reason.	A	module	can	show	up	as	an
implicitly	linked	dependency,	a	forwarded	dependency,	and	a	dynamic
dependency,	all	under	a	single	parent	module.

For	example,	if	module	A	implicitly	links	to	module	B,	you	will	see	module	B
under	module	A	as	an	implicit	dependency.	The	functions	listed	in	the	Parent
Import	Function	List	View	for	that	instance	of	module	B	are	what	is	required	for
module	A	to	be	able	to	successfully	load.	During	runtime	profiling,	if	module	A
dynamically	loads	module	B,	a	second	instance	of	module	B	will	appear	under
module	A,	but	this	time	with	a	different	image	(see	above)	signifying	that	it	was
dynamically	loaded.	The	functions	listed	in	the	Parent	Import	Function	List
View	for	this	second	instance	of	module	B	are	what	module	A	looked	for	in
module	B	at	runtime	using	the	GetProcAddress	function	call.

Module	List	View

The	Module	List	View	displays	a	list	of	all	unique	modules	that	are
dependencies	for	the	root	module	you	opened.	This	list	defines	the	set	of	files
needed	for	the	module	to	load	and	execute	as	a	running	process.

Modules	can	be	displayed	using	full	file	paths	or	just	the	file	name	to	conserve
screen	space.	You	can	control	what	is	displayed	using	the	Full	Paths	option.	You
may	also	copy	the	selected	modules'	file	names	or	paths	to	the	clipboard	by
selecting	the	Copy	Command.	The	actual	text	copied	will	differ	depending	on
how	the	Full	Paths	option	is	set.	If	more	than	one	module	is	selected,	a	list	will
be	copied	to	the	clipboard	with	carriage	returns	after	each	module.	The	complete
contents	of	the	Module	List	View	can	also	be	saved	to	a	text	file	or	comma
separated	value	(CSV)	file	using	the	Save	Command	or	Save	As	Command.

There	is	not	a	one-to-one	relationship	between	the	modules	listed	in	this	list
view	and	the	modules	listed	in	the	Module	Dependency	Tree	View.	This	list
view	shows	the	unique	set	of	modules,	where	as	the	tree	view	shows	all	the
module	relationships.	A	module	like	KERNEL32.DLL	may	show	up	dozens	of
times	in	the	tree	view	since	many	other	modules	depend	on	it,	but	it	will	only
show	up	once	in	this	list	view.	Some	instances	of	KERNEL32.DLL	might	be
implicitly	loaded,	while	others	may	be	dynamically	loaded.	Some	might	have
import	/	export	mismatch	errors,	while	others	may	have	no	errors.	Since	there	is
not	a	one-to-one	relationship	between	the	two	views,	the	module	list	view	tries
to	use	images	for	modules	that	encapsulate	the	state	of	all	instances	of	each
module	in	the	tree	view.	For	example,	if	KERNEL32.DLL	appears	in	the	tree
view	ten	times	with	no	errors	and	one	time	with	an	import	/	export	mismatch
error,	then	the	list	view	will	show	KERNEL32.DLL	as	having	an	import	/	export
mismatch	error.

Dependency	Walker	also	gives	precedence	to	certain	types	of	dependencies.	If	a
module	is	implicitly	required	for	an	application	to	load,	then	it	will	appear	with
the	implicit	module	image	in	the	module	list	view.	This	is	true	even	if	the
module	is	also	listed	as	a	delay-load	or	dynamic	dependency	in	the	tree	view,
since	an	implicit	dependency	is	the	most	significant	type	of	dependency	and	is
required	for	the	application	to	load.	If	a	module	is	dynamically	loaded	or	is	a
child	of	a	dynamically	loaded	module,	then	it	will	appear	with	the	dynamic

module	image	in	the	list	view.	If	a	module	is	delay-loaded	or	is	a	child	of	a
delay-loaded	module,	then	it	will	appear	with	the	delay-load	module	image	in
the	list	view.	If	a	module	is	both	a	delay-load	and	dynamic	dependency,	it	will	be
shown	as	a	dynamic	dependency	in	the	list	view	since	modules	that	actually	get
dynamically	loaded	are	given	precedence	over	delay-loaded	modules	that	don't
get	loaded.	This	can	cause	images	in	the	list	view	to	change	from	delay-load	to
dynamic	as	modules	get	loaded	dynamically.

The	following	is	a	table	of	the	primary	images	that	can	accompany	each	module
in	the	Module	List	View.	This	list	is	just	a	subset	of	all	the	possible	images.
Actual	images	can	be	a	combination	of	one	or	more	of	the	following	images:

Normal	Images

All	instances	of	this	module	were	normal	and	had	no	errors.	If	no
delay-load	image	(hour	glass)	or	dynamic	image	(star	/	asterisk)	is	to
the	left	of	this	module	image,	then	at	least	one	instance	of	this
module	is	implicitly	required	for	the	root	module	to	load.

All	instances	of	this	module	are	marked	as	delay-load	or	are	children
of	modules	marked	as	delay-load.	Modules	with	this	image	will
change	to	dynamic	dependencies	at	runtime	if	the	module	is	actually
loaded.

All	instances	of	this	module	were	dynamically	loaded	and	detected
during	profiling.	See	Using	Application	Profiling	to	Detect	Dynamic
Dependencies	for	more	information.

All	instances	of	this	module	were	dynamically	loaded	by	calls	to	the
LoadLibraryEx	function	with	the
DONT_RESOLVE_DLL_REFERENCES	flag	and/or	the
LOAD_LIBRARY_AS_DATAFILE	flag.	These	flags	cause	the
module	to	get	mapped	into	memory	without	loading	its	dependent
modules	or	calling	the	module's	DllMain	function.	If	a	module	with
this	image	is	later	loaded	without	the
DONT_RESOLVE_DLL_REFERENCES	and

LOAD_LIBRARY_AS_DATAFILE	flags,	then	the	image	will
change	to	the	standard	dynamic	dependency	image	above.

64-bit	module.	This	module	is	designed	to	run	on	a	64-bit	versions	of
Windows.	Modules	are	assumed	to	be	32-bit	if	this	image	is	not
present.

Warning	and	Error	Images

Missing	module.	This	module	could	not	be	found	in	the	search	path.
See	the	Configure	Search	Order	Command	for	more	information.

Invalid	module.	This	module	will	be	accompanied	by	an	error
message	to	describe	the	problem.

Module	warning.	At	least	one	instance	of	this	module	is	either
missing	one	or	more	export	functions	that	are	required	by	its	parent
module,	is	of	the	wrong	CPU	type,	or	failed	to	load	at	runtime.
Locate	the	offending	module(s)	in	the	Module	Dependency	Tree
View	and	then	look	in	the	Parent	Import	Function	List	View	for	that
module	to	see	the	actual	unresolved	functions	that	are	causing	the
problem.	This	may	or	may	not	be	an	error.	If	the	offending	module(s)
are	marked	as	dynamic,	then	this	is	just	a	warning	since	it	is	valid	for
modules	to	call	GetProcAddress	to	dynamically	check	for	a	function
and	fail	to	find	it.	If	the	offending	module(s)	are	delay-load,	then	this
is	also	probably	not	an	error	since	one	reason	developers	use	delay-
load	dependencies	is	when	they	are	unsure	if	a	function	exists	in	a
dependent	module.	If	the	offending	module(s)	are	implicit	or
forwarded	dependencies,	then	this	is	an	error	and	will	cause	the
parent	of	those	modules	to	fail	to	load.	If	no	export	functions	are
missing,	then	check	the	Log	View	to	see	if	the	module	error	is	related
to	a	load	failure.

See	the	How	to	Interpret	Warnings	and	Errors	in	Dependency	Walker	section	for
more	details	on	module	errors.

The	Module	List	View	contains	several	columns	of	information	about	each
module.	These	columns	include:

Image See	above	list	for	descriptions.

Module Full	path	or	file	name	for	the	module	file.	See	the	Full
Paths	option	for	toggling	between	the	two	modes.

File	Time	Stamp Date	and	time	of	the	module	file.	This	is	the	time	that
the	file	was	last	saved.

Link	Time	Stamp Date	and	time	that	the	module	was	built.	This	is	a
value	that	the	linker	stores	in	the	file	itself.

File	Size Size	of	the	module	file.

Attr.

Attributes	of	the	module	file.	Possible	values	are	R
(read	only),	H	(hidden),	S	(system),	A	(archive),	C
(compressed),	T	(temporary),	O	(offline),	and	E
(encrypted).

Link	Checksum

The	module	checksum	from	when	the	module	was
built.	This	value	is	set	by	using	the	linker's	/RELEASE
command	line	option.	If	this	linker	option	is	not
specified,	then	the	checksum	may	be	zero.	This	value
will	be	shown	in	red	if	it	is	not	zero	and	does	not
match	the	actual	module	checksum.	If	the	values	do
not	match,	it	means	that	the	module	has	been	modified
after	it	was	built.

Real	Checksum

The	actual	module	checksum.	This	value	is	computed
by	Dependency	Walker	and	should	match	the
checksum	computed	by	the	linker	when	the	module
was	built.

CPU

Type	of	CPU	that	the	module	was	built	for.	Possible
values	are	x86,	Intel	64,	Alpha	AXP,	Alpha	64,
PowerPC,	MIPS	R3000	BE	(big	endian),	MIPS
R3000,	MIPS	R4000,	MIPS	R10000,	MIPS	WinCE
V2,	SH3,	SH3E,	SH4,	SH5,	ARM,	Thumb,	MIPS	16,
MIPS	FPU,	MIPS	FPU	16,	CEE,	and	CEF.	This	value
will	be	shown	in	red	if	it	does	not	match	the	CPU	type
of	the	root	module	in	the	session.	This	value	is	set	by
using	the	linker's	/MACHINE	command	line	option.

Subsystem

Type	of	subsystem	that	the	module	was	built	to	run	in.
Possible	values	are	Native,	GUI,	Console,	Win9x
driver,	OS/2	console,	Posix	console,	WinCE	1.x	GUI,
and	WinCE	2.0+	GUI,	EFI,	and	Xbox.	This	value	is	set
by	using	the	linker's	/SUBSYSTEM	command	line
option.

Symbols

Type	of	debugging	symbols	that	are	associated	with
the	module.	Possible	values	are	None,	DBG	(debug),
PDB	(program	database),	CV	(codeview),	COFF
(common	object	file	format),	FPO	(frame	pointer
omission),	OMAP,	and	Borland.	If	one	or	more	of	the
debug	blocks	are	invalid,	then	the	word	"Invalid"	will
also	appear.	This	usually	means	that	debug	symbols
have	been	striped	from	the	file,	but	the	debug	entries
were	left	behind.

Preferred	Base

The	preferred	base	load	address	of	the	module.	This
will	be	32-bits	for	32-bit	modules	and	64-bits	for	64-
bit	modules.	This	value	is	set	by	using	the	linker's
/BASE	command	line	option.

Actual	Base

The	actual	base	load	address	of	the	module.	This	value
will	read	"Unknown"	until	the	module	has	actually
been	loaded	into	memory	by	Dependency	Walker's
profiler.	See	the	Start	Profiling	Command	for	more
information.	This	value	will	be	shown	in	red	if	it	does
not	match	the	preferred	base	address	for	the	module.
Your	application	will	suffer	a	load-time	performance
hit	for	every	module	that	does	not	load	at	its	preferred
base	address.	This	value	will	read	"Data	file"	if	the	file
was	loaded	as	a	data	file	via	a	call	to	LoadLibraryEx
with	the	LOAD_LIBRARY_AS_DATAFILE	flag.

Virtual	Size
The	virtual	size	of	the	module.	This	is	the	size	of
memory	that	will	be	reserved	for	the	module	to	be
mapped	into.

Load	Order

The	load	order	of	the	module	with	respect	to	other
modules.	This	value	will	read	"Not	Loaded"	until	the
module	has	actually	been	loaded	into	memory	by
Dependency	Walker's	profiler.	See	the	Start	Profiling

Command	for	more	information.

File	Ver

The	file	version	found	in	the	module's	version
resource.	This	value	represents	the	FILEVERSION
field	in	the	VERSION_INFO	resource	structure.	It	will
read	"N/A"	if	the	module	does	not	contain	a
VERSION_INFO	resource.

Product	Ver

The	product	version	found	in	the	module's	version
resource.	This	value	represents	the
PRODUCTVERSION	field	in	the	VERSION_INFO
resource	structure.	It	will	read	"N/A"	if	the	module
does	not	contain	a	VERSION_INFO	resource.

Image	Ver
The	image	version	found	in	the	module's	file	header.
This	value	is	set	by	using	the	linker's	/VERSION
command	line	option.

Linker	Ver The	version	of	the	linker	that	was	used	to	create	the
module	file.

OS	Ver The	version	of	the	OS	that	the	module	file	was	built	to
run	on.

Subsystem	Ver
The	version	of	the	subsystem	that	the	module	file	was
built	to	run	in.	This	value	is	set	by	using	the	linker's
/SUBSYSTEM	command	line	option.

The	module	list	can	be	sorted	on	the	data	in	any	column	in	the	list.	Simply	click
on	the	column	header	button	for	the	column	you	wish	to	sort	by.	An	arrow	(^)	is
displayed	in	the	column	header	for	the	column	that	the	list	is	currently	sorted	by.
You	can	also	size	a	column	to	its	"best	fit"	width	by	double-clicking	the	divider
line	between	two	columns	in	the	column	header.	You	can	search	for	text	in	the
currently	sorted	column	by	simply	typing	in	the	first	few	characters	of	the	item
you	wish	to	find.

If	a	module	was	not	found	or	was	not	a	valid	32-bit	or	64-bit	Windows	binary,
then	an	error	message	will	be	displayed	in	place	of	the	normal	column
information	for	that	module.

Parent	Import	Function	List	View

The	Parent	Import	Function	List	View	displays	the	list	of	parent	import	functions
for	the	currently	selected	module	in	the	Module	Dependency	Tree	View.	Parent
import	functions	are	functions	that	are	actually	called	in	the	given	module	by	the
parent	module.

For	implicit	and	forward	dependencies,	the	selected	module	needs	to	export
every	function	that	the	parent	is	importing	from	it.	If	the	selected	module	does
not	export	one	of	the	functions	that	the	parent	module	expects	to	call,	then	an
unresolved	external	error	will	occur	if	the	module	is	attempted	to	be	loaded.	See
the	Export	Function	List	View	for	viewing	the	selected	module's	export
functions.

Dependency	Walker	searches	the	exported	function	list	for	every	parent	import
function	to	ensure	there	is	a	match.	If	any	function	is	unresolved,	then	the
function	is	marked	with	an	error	image	(see	below)	and	the	module	is	mark	with
an	error	image	as	well	in	the	Module	Dependency	Tree	View	and	the	Module
List	View.

The	Parent	Import	Function	List	View	can	also	help	you	locate	unnecessary
modules	in	an	application.	The	fact	that	the	parent	module	is	calling	functions	in
the	selected	module	is	what	makes	the	selected	module	a	dependency	of	the
parent.	As	a	developer,	if	you	can	safely	stop	the	parent	module	from	calling	all
the	functions	listed	in	the	parent	import	function	list	for	a	given	module,	then
that	module	will	no	longer	be	a	dependent	of	the	parent	module.

C++	functions	can	be	displayed	in	their	native	decorated	format	or	in	a	human
readable	undecorated	format.	See	the	Undecorate	C++	Functions	Command	for
more	information.	You	may	also	copy	the	selected	function	names	to	the
clipboard	by	selecting	the	Copy	Command.	The	actual	text	copied	will	differ
depending	on	how	the	Undecorate	C++	Functions	option	is	set.	If	more	than	one
function	is	selected,	a	list	will	be	copied	to	the	clipboard	with	carriage	returns
after	each	function.	The	complete	contents	of	the	Parent	Import	Function	List
View	can	also	be	saved	to	a	text	file	using	the	Save	Command	or	Save	As
Command.

The	following	are	the	primary	images	that	can	accompany	each	function	in	the
parent	import	list:

Resolved	C	import.

Resolved	C++	import.	C++	functions	can	be	viewed	in	their	native
decorated	form	or	in	a	human	readable	undecorated	form.	See	the
Undecorate	C++	Functions	Command	for	more	information.

Resolved	ordinal	import.

Resolved	dynamic	C	import	(similar	images	also	exist	for	C++	and
ordinal	functions).	The	parent	module	of	this	module	called	the
GetProcAddress	function	to	dynamically	get	the	address	of	this
function.	This	does	not	necessarily	mean	the	parent	module	actually
used	the	function	address	to	call	the	function.

Unresolved	C	function	(similar	images	also	exist	for	C++	and	ordinal
functions).	This	function	is	called	by	the	parent	module,	but	it	is	not
exported	from	the	current	module.	This	is	often	referred	to	as	an
"unresolved	external	function".	If	this	module	is	an	implicit	or
forwarded	dependency,	then	the	parent	module	will	fail	to	load.	If
this	module	is	a	delay-load	dependency,	then	the	parent	module	will
most	likely	recover	from	the	missing	dependency,	as	that	is	a	feature
of	using	delay-load	dependencies.

Unresolved	dynamic	C	function	(similar	images	also	exist	for	C++
and	ordinal	functions).	The	parent	module	of	this	module	called	the
GetProcAddress	function	to	dynamically	get	the	address	of	this
function,	but	the	current	module	does	not	export	the	function.	This	is
not	necessarily	an	error	since	one	of	the	reasons	modules	call
GetProcAddress	is	to	see	if	a	function	exists	in	a	module.

The	Parent	Import	Function	View	is	comprised	of	five	columns:

See	the	above	list	for	descriptions.	The	header	for	this

Image column	has	the	letters	"PI"	in	it,	which	just	stands	for	"Parent
Imports"

Ordinal
The	ordinal	value	of	the	imported	function,	if	the	function	is
imported	by	ordinal.	This	value	can	be	"N/A"	if	the	function
is	imported	by	name.

Hint

The	hint	value	for	the	imported	function.	The	hint	value	is
used	internally	by	the	operating	system's	loader	to	quickly
match	imports	with	exports.	It	is	used	as	an	index	into	the
array	of	exported	functions	in	the	selected	module.

Function

The	name	of	the	imported	function,	if	the	function	is
imported	by	name.	This	can	be	"N/A"	if	the	function	is
imported	by	ordinal.	C++	functions	can	be	viewed	in	their
native	decorated	form	or	in	a	human	readable	undecorated
form.	See	the	Undecorate	C++	Functions	Command	for	more
information.	You	may	also	see	"<invalid	string>"	as	a
function	name,	which	means	a	call	to	GetProcAddress	was
made	with	an	invalid	string,	or	"<empty-string>",	which
means	GetProcAddress	was	called	with	an	empty	string.

Entry	Point

The	entry	point	memory	address	for	the	function.	For
implicit	and	forward	dependencies,	this	field	often	reads
"Not	Bound",	which	means	that	the	entry	point	address	will
not	be	known	until	load	time.	If	an	address	is	given,	then	the
parent	module	has	been	pre-bound	by	a	program	like	BIND.
Binding	is	the	process	of	walking	the	import	list	of	a	module
and	the	export	list	of	all	its	dependent	modules,	in	order	to
fill	in	the	import	list	with	the	absolute	addresses	to	the
functions	it	references.	This	job	is	usually	done	by	the	loader
as	each	module	is	loaded,	but	can	be	skipped	if	the	modules
have	been	pre-bound.	Pre-binding	is	an	optimization	that
calculates	the	absolute	addresses	based	off	of	the	modules'
preferred	base	addresses	and	stores	them	in	the	module's
import	table.	Assuming	a	dependency	of	a	given	module
actually	loads	at	its	preferred	base	address	and	has	not
changed,	then	the	loader	can	save	time	by	skipping	the	bind
phase	to	that	dependency	module.	For	dynamic
dependencies,	this	Entry	Point	field	displays	the	address
returned	by	the	GetProcAddress	function	call.

The	function	list	can	be	sorted	on	the	data	in	any	column	in	the	list.	Simply	click
on	the	column	header	button	for	the	column	you	wish	to	sort	by.	An	arrow	(^)	is
displayed	in	the	column	header	for	the	column	that	the	list	is	currently	sorted	by.
You	can	also	size	a	column	to	its	"best	fit"	width	by	double-clicking	the	divider
line	between	two	columns	in	the	column	header.	You	can	search	for	text	in	the
currently	sorted	column	by	simply	typing	in	the	first	few	characters	of	the	item
you	wish	to	find.	For	ordinal	and	hint	values,	you	may	enter	decimal	or	hex
(prefaced	by	0x)	values	to	search	for.

Export	Function	List	View

The	Export	Function	List	View	displays	the	list	of	export	functions	for	the
currently	selected	module	in	the	Module	Dependency	Tree	View.	Export
functions	are	functions	that	a	module	exposes	to	other	modules.	They	can	be
thought	of	as	the	module's	interface.

Dependency	Walker	uses	the	exported	list	to	check	for	unresolved	external	errors
in	the	selected	module.	For	more	information,	read	the	Parent	Import	Function
List	View	section.

While	Dependency	Walker	scans	the	export	list	for	a	module,	it	checks	each
function	to	see	if	it	is	really	a	forwarded	function.	A	forwarded	function	is	a
function	that	appears	to	be	exported	from	a	particular	module,	but	in	fact	the
code	for	the	function	actually	lives	in	another	module.	The	operating	system's
loader	recognizes	this	and	loads	the	forwarded	module	if	necessary	to	resolve
any	imports	from	the	parent	module.	Dependency	Walker,	like	the	operating
system's	loader,	also	loads	the	forwarded	module	if	necessary.

C++	functions	can	be	displayed	in	their	native	decorated	format	or	in	a	human
readable	undecorated	format.	See	the	Undecorate	C++	Functions	Command	for
more	information.	You	may	also	copy	the	selected	function	names	to	the
clipboard	by	selecting	the	Copy	Command.	The	actual	text	copied	will	differ
depending	on	how	the	Undecorate	C++	Functions	option	is	set.	If	more	than	one
function	is	selected,	a	list	will	be	copied	to	the	clipboard	with	carriage	returns
after	each	function.	The	complete	contents	of	the	Export	Function	List	View	can
also	be	saved	to	a	text	file	using	the	Save	Command	or	Save	As	Command.

The	following	are	the	possible	images	that	can	accompany	each	function	in	the
export	list:

C	export	function	that	resides	in	the	selected	module.

C++	export	function	that	resides	in	the	selected	module.	C++
functions	can	be	viewed	in	their	native	decorated	form	or	in	a	human
readable	undecorated	form.	See	the	Undecorate	C++	Functions
Command	for	more	information.

Ordinal	export	function	that	resides	in	the	selected	module.

C	export	function	that	is	called	at	least	once	by	any	module	in	the
current	module	session	(similar	images	also	exist	for	C++	and	ordinal
functions).

C	export	function	that	is	called	by	the	selected	module	in	the	Module
Dependency	Tree	View	(similar	images	also	exist	for	C++	and
ordinal	functions).	There	will	be	a	one-to-one	relationship	between
these	functions	and	the	resolved	imports	in	the	Parent	Import
Function	List	View.	You	can	use	the	Highlight	Matching	Item
command	to	quickly	jump	between	the	matching	import	and	export.

Forwarded	C	export	function	that	resides	in	a	different	module
(similar	images	also	exist	for	C++	and	ordinal	functions).	The
module	that	the	function	truly	resides	in	is	listed	in	the	Entry	Point
column.

The	Export	Function	View	is	comprised	of	four	columns:

Image
See	the	above	list	for	descriptions.	The	header	for	this
column	has	the	letter	"E"	in	it,	which	just	stands	for
"Exports"

Ordinal
The	ordinal	value	of	the	exported	function,	if	the	function	is
exported	by	ordinal.	This	value	can	be	"N/A"	if	the	function
is	exported	only	by	name.

Hint

The	hint	value	for	the	exported	function.	The	hint	value	is
used	internally	by	the	operating	system's	loader	to	quickly
match	imports	with	exports.	It	is	used	as	an	index	into	the
array	of	exported	functions	in	the	selected	module.

	

The	name	of	the	exported	function,	if	the	function	is
exported	by	name.	This	can	be	"N/A"	if	the	function	is

Function exported	only	by	ordinal.	C++	functions	can	be	viewed	in
their	native	decorated	form	or	in	a	human	readable
undecorated	form.	See	the	Undecorate	C++	Functions
Command	for	more	information.

Entry	Point

The	entry	point	memory	address	for	the	function.	This	is
usually	a	relative	offset	from	the	base	address	at	which	the
module	will	load	at	by	the	operating	system's	loader.	This
base	address	is	usually	the	base	address	listed	in	the	Module
List	View	for	the	particular	module.	If	the	function	is
forwarded	to	another	module,	then	a	forward	string	will	be
displayed	instead	of	an	address.	The	forward	string	is	in	the
form	of	ModuleName.FunctionName.

The	function	list	can	be	sorted	on	the	data	in	any	column	in	the	list.	Simply	click
on	the	column	header	button	for	the	column	you	wish	to	sort	by.	An	arrow	(^)	is
displayed	in	the	column	header	for	the	column	that	the	list	is	currently	sorted	by.
You	can	also	size	a	column	to	its	"best	fit"	width	by	double-clicking	the	divider
line	between	two	columns	in	the	column	header.	You	can	search	for	text	in	the
currently	sorted	column	by	simply	typing	in	the	first	few	characters	of	the	item
you	wish	to	find.	For	ordinal	and	hint	values,	you	may	enter	decimal	or	hex
(prefaced	by	0x)	values	to	search	for.

Log	View

This	view	is	used	to	log	module	warnings,	module	errors,	and	all	activity	while
profiling	the	application	for	the	current	Module	Session.	For	more	information
on	profiling,	see	the	Start	Profiling	Command,	the	Using	Application	Profiling
to	Detect	Dynamic	Dependencies	section,	and	the	Profile	Module	Dialog.

While	profiling	an	application,	Dependency	Walker	gathers	information	from	the
running	process.	The	various	types	of	information	that	can	be	logged	include:

The	start	of	the	new	process.	This	is	always	logged.
The	exiting	of	the	process.	This	is	always	logged.

The	creation	of	a	thread.	These	are	only	logged	if	the	Log	thread
information	box	is	checked	in	the	Profile	Module	Dialog.

The	exiting	of	a	thread.	These	are	only	logged	if	the	Log	thread
information	box	is	checked	in	the	Profile	Module	Dialog.

The	loading	of	a	module.	These	are	always	logged.

The	unloading	of	a	module.	These	are	always	logged.

Any	debug	output	text	that	the	process	generates.	These	are	only
logged	if	the	Log	debug	output	box	is	checked	in	the	Profile
Module	Dialog.	Debug	output	text	is	logged	with	a	grayed-out	color
to	distinguish	it	from	normal	log	text.

Any	first	chance	exceptions	that	occur	in	the	process.	These	are	only
logged	if	the	Log	first	chance	exceptions	box	is	checked	in	the
Profile	Module	Dialog.

Any	second	chance	exceptions	that	occur	in	the	process.	These	are
always	logged.	These	lines	will	be	colored	red.

The	calling	of	a	module's	DllMain	function.	These	are	only	logged	if
either	of	the	two	Log	DllMain	calls	boxes	are	checked	in	the	Profile
Module	Dialog.

The	return	from	a	module's	DllMain	function.	These	are	only	logged
if	either	of	the	two	Log	DllMain	calls	boxes	are	checked	in	the
Profile	Module	Dialog.	This	line	of	log	will	be	shown	in	red	if	the
DllMain	function	was	called	with	the	DLL_PROCESS_ATTACH
message	and	it	returned	0.	If	a	module	returns	0	from	its	DllMain
function	while	processing	the	DLL_PROCESS_ATTACH	message,
then	the	OS	will	unload	the	module	and	return	a	failure.	In	the	case
of	an	implicit	dependency,	this	will	cause	the	entire	application	to	fail
to	load	with	an	error	dialog	reading	something	like	"The	application
failed	to	initialize	properly".	In	the	case	of	a	dynamic	dependency,
the	call	to	LoadLibrary	will	fail	with	error	1114
(ERROR_DLL_INIT_FAILED),	but	the	application	may	continue	to
run.

The	calling	of	a	LoadLibrary	type	function.	These	are	only	logged	if
the	Log	LoadLibrary	function	calls	box	is	checked	in	the	Profile
Module	Dialog.

The	return	from	a	call	to	a	LoadLibrary	type	function.	These	are	only
logged	if	the	Log	LoadLibrary	function	calls	box	is	checked	in	the
Profile	Module	Dialog.	This	line	of	log	will	be	colored	red	if	the
function	fails.

Any	calls	to	the	GetProcAddress	function.	These	are	only	logged	if
the	Log	GetProcAddress	function	calls	box	is	checked	in	the
Profile	Module	Dialog.	This	line	of	log	will	be	colored	red	if	the
function	fails.

If	the	Log	a	time	stamp	with	each	line	of	log	box	is	checked	in	the	Profile
Module	Dialog,	then	each	line	of	log	in	the	Log	View	will	begin	with	a	time
stamp.	Each	time	stamp	shows	the	number	of	hours,	minutes,	seconds,	and
milliseconds	that	have	elapsed	since	the	process	started.	It	is	important	to	note

that	Dependency	Walker	can	significantly	impact	the	performance	of	certain
operations	within	the	application	being	profiled.	For	this	reason,	these	time
stamps	should	probably	not	be	used	as	an	accurate	method	of	measuring	the
performance	of	your	application.

You	may	copy	text	from	the	Log	View	using	the	Copy	Command.	The	contents
of	the	window	can	also	be	saved	to	a	text	file	using	the	Save	Command	or	Save
As	Command.	You	can	also	search	the	Log	View	for	text	using	the	Find
Command	and	Find	Next	Command.

File	Menu	Commands

The	File	menu	offers	the	following	commands:

Open... Opens	and	processes	a	module	file.
Close Closes	the	active	Module	Session	Window.
Save Saves	the	active	Module	Session	Window.

Save	As... Saves	the	active	Module	Session	Window	with	a	new	name	or
type.

File	1,	2,	3,	... Opens	and	processes	the	specified	module	file.
Exit Exits	Dependency	Walker.

Edit	Menu	Commands

The	Edit	menu	offers	the	following	commands:

Copy

Copies	the	selection	in	the	current	view	to	the	clipboard	as
text.

	

Select	All Selects	all	items	in	the	current	view.
Find... Finds	text	in	the	Log	View.
Find	Next Repeats	last	find	operation	in	the	Log	View.

Clear	Log	Window Clears	the	contents	of	the	Log	View	in	the	active	Module
Session	Window.

View	Menu	Commands

The	View	menu	offers	the	following	commands:

System	Information... Displays	information	about	the	system.

Expand	All Expands	all	nodes	in	the	Module
Dependency	Tree	View.

Collapse	All Collapses	all	nodes	in	the	Module
Dependency	Tree	View.

Auto	Expand
When	checked,	the	Module	Dependency
Tree	View	will	automatically	expand	to
show	modules	as	they	are	added.

Full	Paths
Shows	or	hides	full	file	paths	in	the
Module	Dependency	Tree	View	and	the
Module	List	View.

Undecorate	C++	Functions
Display	undecorated	C++	functions	names
in	both	the	Parent	Import	Function	List
View	and	the	Export	Function	List	View.

Highlight	Matching	Item Highlights	the	matching	item	in	the	related
view.

Highlight	Original	Instance	In	Tree
Highlights	the	original	instance	of	the
selected	module	in	the	Module
Dependency	Tree	View.

Highlight	Previous	Instance	In	Tree
Highlights	the	previous	instance	of	the
selected	module	in	the	Module
Dependency	Tree	View.

Highlight	Next	Instance	In	Tree
Highlights	the	next	instance	of	the	selected
module	in	the	Module	Dependency	Tree
View.

Refresh Updates	all	views	for	the	active	Module
Session	Window.

View	Module	in	External	Viewer Opens	the	selected	modules	in	the	external
module	viewer.

Lookup	Function	in	External	Help Lookup	the	selected	function	in	the
external	help	collection.

Properties... Displays	the	Windows	Properties	dialog
for	the	selected	modules.

Toolbar Shows	or	hides	the	toolbar.
Status	Bar Shows	or	hides	the	status	bar.

Options	Menu	Commands

The	Options	menu	offers	the	following	commands:

Configure	Module	Search	Order...
Configure	or	view	the	search
order	used	when	locating
dependent	modules.

Configure	External	Module	Viewer... Configures	the	external	module
viewer.

Configure	External	Function	Help	Collection...
Configures	the	external
function	help	collection	used	to
lookup	functions.

Configure	Handled	File	Extensions... Configures	what	file	extensions
Dependency	Walker	handles.

Profile	Menu	Commands

The	Profile	menu	offers	the	following	commands:

Start	Profiling Executes	the	module	and	profiles	it	for	runtime	dependencies.
Stop	Profiling Stops	execution	and	profiling	of	the	process.

Window	Menu	Commands

The	Window	menu	offers	the	following	commands:

Cascade Arranges	windows	in	an	overlapped	fashion.
Tile	Horizontally Arranges	windows	in	non-overlapped	horizontal	tiles.
Tile	Vertically Arranges	windows	in	non-overlapped	vertical	tiles.
Arrange	Icons Arranges	the	icons	of	all	minimized	windows.
Window	1,	2,	3,	... Activates	the	specified	window.

Help	Menu	Commands

The	Help	menu	offers	the	following	commands,	which	provide	you	assistance
with	this	application:

Help	Topics Displays	the	table	of	contents	for	the	online	help
documentation.

About	Dependency	Walker... Displays	program	information,	version,	andcopyright.

Toolbar

The	toolbar	is	displayed	by	default	across	the	top	of	the	application	window,
below	the	menu	bar.	The	toolbar	provides	quick	mouse	access	to	many	tools
used	in	Dependency	Walker.

There	are	three	ways	you	can	learn	what	a	particular	toolbar	button's	action	is.
You	can	float	the	mouse	over	the	button	and	a	tool	tip	will	pop	up	with	the
command	name.	You	can	press	and	hold	the	mouse	down	over	a	button	and	read
the	text	displayed	in	the	Status	Bar	for	a	more	detailed	description.	If	you	do	not
wish	to	execute	the	command,	move	the	mouse	off	the	toolbar	button	and	release
the	mouse.	Last,	you	can	use	the	Context	Help	utility	to	activate	the	online	help
documentation	for	the	toolbar	button.

The	toolbar	can	be	docked	to	the	top,	left,	right,	and	bottom	of	Dependency
Walker's	main	window,	as	well	as	free	floated	in	its	own	mini	window	To	change
the	docking	location	of	the	toolbar,	simply	grab	the	toolbar	along	its	edge	and
drag	it	to	where	you	would	like	it	to	go.

To	hide	or	display	the	Toolbar,	choose	the	Toolbar	option	from	the	View	menu.

Opens	and	processes	a	module	file.	See	the	Open...	command	for	more
information.
Saves	the	current	Module	Session	to	a	file.	See	the	Save	Command	for	more
information.
Copies	the	current	selection	to	the	clipboard	as	text.	See	the	Copy
Command	for	more	information.
When	checked,	the	Module	Dependency	Tree	View	will	automatically
expand	to	show	modules	as	they	are	added.	See	the	Auto	Expand	option	for
more	information.
Shows	or	hides	full	path	strings	in	the	Module	Dependency	Tree	View	and
the	Module	List	View.	See	the	Full	Paths	option	for	more	information.
Enables	or	disables	undecoration	of	C++	function	names	in	the	Parent
Import	Function	List	View	and	the	Export	Function	List	View.	See	the

Undecorate	C++	Functions	option	for	more	information.
Launches	the	external	module	viewer	for	the	selected	modules.	See	the
View	Module	in	External	Viewer	command	for	more	information.
Displays	the	Windows	Properties	dialog	for	the	selected	modules.	See	the
Properties	command	for	more	information.
Displays	information	about	the	system.	See	the	System	Information
command	for	more	information.
Configures	the	search	order	used	when	locating	dependent	modules.	See	the
Configure	Search	Order	command	for	more	information.
Starts	profiling	the	current	Module	Session.	See	the	Start	Profiling
Command	for	more	information.
Stops	profiling	the	current	Module	Session.	See	the	Stop	Profiling
Command	for	more	information.
Arranges	windows	in	an	overlapped	fashion.	See	the	Cascade	command	for
more	information.
Arranges	windows	as	non-overlapping	horizontal	tiles.	See	the	Tile
Horizontally	command	for	more	information.
Arranges	windows	as	non-overlapping	vertical	tiles.	See	the	Tile	Vertically
command	for	more	information.
Enters	context	help	mode.	See	the	Context	Help	command	for	more
information.

Undecorate	C++	Functions	Command	(View	Menu)

Use	this	command	to	toggle	the	Undecorate	C++	Functions	option	on	or	off.
When	this	option	is	on,	a	check	mark	appears	next	to	the	Undecorate	C++
Functions	menu	item	and	the	Undecorate	C++	Functions	toolbar	button	is
displayed	as	depressed.

This	option	requires	that	you	have	IMAGEHLP.DLL	on	your	system.	If	this
DLL	is	not	found,	then	the	Undecorate	C++	Functions	option	will	be	disabled.
IMAGEHLP.DLL	is	installed	with	Windows	NT/2000/XP/2003/Vista	and
Windows	95	OSR2	and	beyond.

When	the	Undecorate	C++	Functions	option	is	on,	both	the	Parent	Import
Function	List	View	and	the	Export	Function	List	View	will	undecorate	C++
functions	into	human	readable	function	prototypes	containing	parameter	and
return	types.	When	the	Undecorate	C++	Functions	option	is	off,	these	views	will
show	C++	functions	in	their	true	decorated	form.	Dependency	Walker	can	only
undecorate	functions	that	use	the	Microsoft	decoration	rules.

This	option	also	effects	how	the	Copy	Command	and	Save	Command	work.
When	the	Undecorate	C++	Functions	option	is	on,	the	Copy	Command	will	copy
the	undecorated	names	for	C++	functions	to	the	clipboard,	otherwise	it	just
copies	the	true	decorated	names.	For	the	Save	Command,	text	files	will	contain
undecorated	names	for	C++	functions	when	the	Undecorate	C++	Functions
option	is	on	and	the	true	decorated	names	when	it	is	off.

Shortcuts

Keys: F10
Toolbar:

Module	Search	Order	Dialog

This	resizable	dialog	is	used	to	configure	how	Dependency	Walker	locates
dependent	modules.	When	you	first	open	a	module	in	Dependency	Walker,	it	is
scanned	for	all	modules	it	is	dependent	on.	Then,	all	those	dependent	modules
are	scanned	for	their	dependent	modules.	This	recursion	is	repeated	until	all
modules	have	been	scanned.	Inside	each	module	are	various	tables	that	provide
this	information.	However,	only	the	file	names	of	the	dependent	files	are
specified	and	not	complete	file	paths.	For	this	reason,	it	is	the	job	of	Dependency
Walker	to	search	your	system	for	each	file	to	establish	a	full	path	to	the	files.
This	is	where	the	Module	Search	Order	Dialog	comes	into	play.

The	Module	Search	Order	Dialog	allows	you	to	specify	where	Dependency
Walker	should	look	for	dependent	modules.	By	default,	Dependency	Walker	is
set	up	to	simulate	the	search	algorithm	that	the	operating	system	uses	to	locate
modules.	You	can	override	this	default	behavior	and	set	up	your	own	custom
search	criteria.	This	can	be	helpful	for	various	reasons.	For	example,	maybe	you
want	to	check	the	dependencies	of	a	group	of	MIPS	Windows	CE	files	on	your
x86	Windows	computer.	Since	you	really	don't	want	Dependency	Walker	to
accidentally	pick	up	x86	Windows	modules	as	dependencies,	you	can	remove	all
the	default	search	criteria	from	the	search	order	and	just	add	directories	that
contain	MIPS	Windows	CE	modules.

If	the	active	Module	Session	is	actually	a	loaded	Dependency	Walker	Image
(DWI)	file,	then	the	dialog	will	show	the	search	order	that	was	in	use	on	the
computer	that	created	the	DWI	file.	Also,	the	caption	of	the	dialog	will	contain
the	name	of	the	DWI	file,	and	many	of	the	controls	listed	below	will	not	be
accessible	since	the	search	order	cannot	be	modified	when	viewing	the	results
from	a	DWI	file.	If	the	current	Module	Session	is	not	a	DWI	file,	then	the
dialog's	caption	will	contain	the	text	"(Local)"	in	it.

The	Module	Search	Order	Dialog	has	seven	predefined	locations	it	searches	for
files.	In	addition	to	these	seven	locations,	you	can	add	search	directories	of	your
own.	The	seven	predefined	locations	include	the	following:

Side-by-Side	components	(Windows	2000/XP/2003/Vista/+)

Starting	with	Windows	2000,	applications	can	create	an	empty	"app.exe.local"	file
in	the	same	directory	as	the	main	EXE	to	instruct	Windows	to	search	the	local
directory	for	dependent	modules	before	the	rest	of	the	search	path.	Starting	in
Windows	XP,	"app.exe.local"	may	be	a	file	or	a	directory.	If	a	directory	is	used,
the	loader	will	search	the	"app.exe.local"	directory	for	dependent	modules	as	well
as	the	application	directory	before	the	rest	of	the	search	path.	Also	starting	in
Windows	XP,	applications	can	override	the	operating	system's	default	search
order	by	providing	more	detail	instructions	about	the	versions	and/or	locations	of
modules	it	requires.	These	instructions	consist	of	an	XML	manifest	that	can	be
stored	in	a	special	"app.exe.manifest"	file	or	as	an	RT_MANIFEST	resource	in
any	module.		In	most	cases,	an	XML	manifest	will	override	any	.local	file.

The	system's	known	DLLs	list.

These	are	known	modules	like	KERNEL32.DLL.	When	the	operating	system
encounters	a	known	DLL,	it	skips	all	rules	and	loads	it	from	a	known	place.

The	application	directory.

This	is	the	directory	that	the	main	module	of	your	application	lives	in.

The	32-bit	system	directory.

This	is	your	32-bit	system	directory.	On	Windows	NT/2000,	it	is	usually
something	like	C:\WinNT\System32\.	On	Windows	XP/2003/Vista,	it	is	usually
something	like	C:\Windows\System32\.	On	Windows	95/98/Me,	it	is	usually
something	like	C:\Windows\System\.

The	16-bit	system	directory	(Windows	NT/2000/XP/2003/Vista/+).

This	is	your	16-bit	Windows	directory	and	only	exists	on	Windows

NT/2000/XP/2003/Vista/+.	On	Windows	NT/2000,	it	is	usually	something	like
C:\WinNT\System\.	On	Windows	XP/2003/Vista,	it	is	usually	something	like
C:\Windows\System\.

The	system's	root	OS	directory.

This	is	the	directory	that	your	operating	system	is	installed	to.	It	is	usually
something	like	C:\WinNT\	on	Windows	NT/2000	and	C:\Windows\	on	Windows
95/98/Me/XP/2003/Vista.

The	application's	registered	"App	Paths"	directories.

This	is	a	set	of	directories	that	an	application	can	register	for	itself	in	the
"HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\App
Paths\"	section	of	the	registry.	If	an	application	has	registered	one	or	more	directories,
then	those	directories	will	be	searched	for	dependent	files.	This	feature	is	actually
provided	by	the	Shell	and	not	by	the	core	operating	system.	When	an	application	is
started	by	calling	a	Shell	function	(like	ShellExecute	or	ShellExecuteEx),	the	Shell
checks	the	registry	to	see	if	the	application	has	registered	a	path	in	the	"App	Paths"
section.	If	so,	that	path	is	inserted	into	the	head	of	the	PATH	variable	for	the
application	about	to	be	started.	Most	newer	applications	use	the	Shell	functions	to
start	other	applications,	but	for	applications	that	call	CreateProcess,	the	applications
started	will	not	receive	their	"App	Paths"	path	as	part	of	their	search	order.

The	system's	"PATH"	environment	variable	directories.

The	last	item	in	a	module's	search	order	is	usually	the	PATH	variable.	This	is	a
user-definable	system	variable	that	is	seen	by	all	applications	running	on	a	given
computer.	It	usually	contains	one	or	more	directories	where	common	modules	can
be	found.

	

The	Module	Search	Order	Dialog	has	the	following	controls:

Available	Search	Groups

If	you	remove	one	or	more	of	the	predefined	search	locations	from	the
Current	Search	Order	list,	they	will	be	added	to	this	list	so	that	you
can	access	them	if	you	wish	to	add	them	back	to	the	Current	Search
Order.	The	locations	in	this	list	will	not	be	part	of	the	search	order.

Current	Search	Order

This	list	displays	the	current	search	order.	It	can	contain	any	number	of
the	predefined	search	locations	as	well	as	any	number	of	user-defined
directories.	When	Dependency	Walker	is	searching	for	a	module,	it
will	start	at	the	top	of	the	list	and	work	its	way	down	until	the	module
is	found.	If	the	end	of	the	list	is	reached	with	no	match,	then
Dependency	Walker	gives	up	and	marks	the	module	as	"Not	Found"

>>	(Add)

This	moves	the	highlighted	item	in	the	Available	Search	Groups	list
to	the	bottom	of	the	Current	Search	Order	list.	Once	moved,	you	can
move	it	up	the	list	if	necessary	using	the	Move	Up	button.	If	no	item	is
highlighted	in	the	Available	Searches	list,	then	this	button	will	be
disabled.

<<	(Remove)

This	moves	the	highlighted	item	in	the	Current	Search	Order	list	to
the	bottom	of	the	Available	Search	Groups	list.	If	no	item	is
highlighted	in	the	Current	Search	Order	list,	then	this	button	will	be
disabled.

Expand

Press	this	button	to	show	all	the	files	and/or	directories	that	belong	to
each	search	group.	When	this	button	is	not	pressed,	just	the	group
names	are	displayed.

Move	Up

This	moves	the	highlighted	item	in	the	Current	Search	Order	list	up
one	position.	If	no	item	is	highlighted,	or	the	first	item	is	highlighted,
then	this	button	will	be	disabled.

Move	Down

This	moves	the	highlighted	item	in	the	Current	Search	Order	list
down	one	position.	If	no	item	is	highlighted,	or	the	last	item	is
highlighted,	then	this	button	will	be	disabled.

Load

Press	this	button	to	load	a	Dependency	Walker	Path	(DWP)	file	from
disk.	See	the	Dependency	Walker	Path	(DWP)	Files	section	for	more
information.	You	may	also	load	DWP	files	from	the	Command	Line
when	first	starting	Dependency	Walker.

Save

Press	this	button	to	save	the	current	search	order	to	a	Dependency
Walker	Path	(DWP)	file.	See	the	Dependency	Walker	Path	(DWP)

Files	section	for	more	information.

Default

This	button	resets	the	Current	Search	Order	list	to	its	default
configuration.	This	will	cause	all	user-defined	directories	to	be
removed	from	the	list.

Add	Directory

This	button	and	text	field	allow	you	to	add	user-defined	search
directories	to	the	search	order.	You	can	type	in	a	directory	you	wish	to
add	or	press	the	Browse	button	to	graphically	pick	a	directory.	If	no
text	is	present	in	the	text	field,	then	the	Add	Directory	button	will	be
disabled.	You	can	add	as	many	user-defined	directories	as	you	wish.
Directories	are	added	to	the	bottom	of	the	Current	Search	Order	list.
To	move	them	up	the	list,	use	the	Move	Up	button.

Browse

This	button	allows	you	to	graphically	choose	a	directory	to	be	added	to
the	Current	Search	Order	list.	Once	pushed,	a	browse	dialog	will
appear	allowing	you	to	choose	a	directory.	If	you	choose	a	directory
from	the	browse	dialog,	it	will	show	up	in	the	Add	Directory	text
field.	To	actually	add	the	directory	to	the	search	order,	you	need	to
press	the	Add	Directory	button.

Copy	Command	(Edit	Menu)

Use	this	command	to	copy	the	current	selection	to	the	clipboard	as	text.	This
command	is	unavailable	if	there	is	nothing	selected	that	can	be	copied.	Copying
data	to	the	clipboard	replaces	any	contents	previously	stored	on	the	clipboard.

For	the	Module	Dependency	Tree	View	and	the	Module	List	View,	the	selected
module	names	are	copied.	If	the	Full	Paths	option	is	enabled,	then	complete	path
strings	will	be	copied,	otherwise	just	the	module	file	names	are	copied.

For	the	Parent	Import	Function	List	View	and	the	Export	Function	List	View,	the
selected	function	names	are	copied.	If	the	Undecorate	C++	Functions	option	is
enabled,	then	the	undecorated	names	for	C++	functions	will	be	copied,	otherwise
just	the	native	decorated	names	are	copied.

For	the	Log	View,	all	highlighted	text	is	copied.

Shortcuts

Keys: CTRL+C
Keys: CTRL+INSERT
Toolbar:

Save	Command	(File	Menu)

Use	this	command	to	save	the	active	Module	Session	using	the	same	name	and
type	that	you	have	previously	saved	the	file	with.	If	you	have	not	previously
saved	the	Module	Session,	then	this	command	behaves	just	like	the	Save	As
Command,	which	will	display	the	File	Save	Dialog	prompting	you	for	a	file
name	and	file	type.	Within	the	File	Save	Dialog,	you	can	choose	to	save	the	file
as	a	Dependency	Walker	Image	(DWI)	file,	a	comma	separated	value	(CSV)	file,
or	various	formats	of	text	files.

Shortcuts

Keys: CTRL+S
Toolbar:

File	Save	Dialog

Save	in

Lists	the	available	folders	and	files.	To	see	how	the	current	folder	fits	in	the
hierarchy	on	your	computer,	click	the	down	arrow.	To	see	what's	inside	a
folder,	click	it.

File	and	Folder	List

This	list	displays	all	the	files	and	folders	located	in	the	folder	specified	by
the	Save	in	field	that	match	the	search	specifications	of	the	File	name	field
and/or	the	Files	of	type	field.	You	may	select	any	file	in	this	list	and	press
Ok	to	overwrite	the	file.	You	may	also	double-click	on	any	file	in	this	list	to
overwrite	the	file.

File	name

This	box	allows	you	to	type	a	full	path	to	a	file,	a	relative	path	to	a	file,	a
path	to	another	folder	to	browse,	a	file	name	to	save	to,	or	a	partial	filename
with	wildcards	(*	and	?)	to	search	for.	Depending	on	what	you	choose	to
do,	the	Save	in	field	and	the	File	and	Folder	List	will	update	to	reflect	the
change.	If	you	type	in	a	valid	file	name	and	press	Ok	or	Enter,	then	that	file
will	be	created	and	saved	to.

Save	as	type

Select	the	file	format	you	wish	to	save	the	active	Module	Session	to.
Dependency	Walker	provides	four	options	for	this	list:

Dependency	Walker	Image	(DWI)

DWI	files	represent	a	complete	snapshot	of	the	current	Module	Session.
They	are	binary	files	that	are	only	recognizable	to	Dependency	Walker.
DWI	files	may	be	loaded	by	Dependency	Walker	at	a	future	time	on	any
computer	to	view	the	complete	results	of	the	current	Module	Session	as
displayed	on	the	computer	that	generated	the	Module	Session.

Text	(*.txt)

Selecting	this	option	will	save	the	contents	of	the	System	Information
Dialog,	Module	Search	Order	Dialog,	Module	Dependency	Tree	View,
Module	List	View,	and	Log	View	to	a	formatted	text	file	that	can	be	viewed
with	any	text	viewer.

Text	with	Import/Export	Lists	(*.txt)

This	option	is	the	same	as	the	Text	option,	but	also	saves	the	contents	of	the
Parent	Import	Function	List	View	and	Export	Function	List	View	in
addition	to	the	contents	of	the	System	Information	Dialog,	Module	Search
Order	Dialog,	Module	Dependency	Tree	View,	Module	List	View,	and	Log
View	to	a	formatted	text	file	that	can	be	viewed	with	any	text	viewer.

Comma	Separated	Values	(*.csv)

This	option	will	save	the	Module	List	View	to	a	comma	separated	value
(CSV)	text	file.	CSV	files	can	be	easily	imported	into	many	applications
such	as	Excel	or	Access.	They	may	also	be	useful	with	any	post	processing
tools	you	may	write	on	your	own.	Each	module	in	the	Module	List	View
uses	one	line	in	the	CSV	file.	The	text	in	each	column	of	the	Module	List
View	are	separated	by	commas	in	the	CSV	file.	Any	text	that	may	contain	a
comma	as	part	of	its	text	will	be	put	in	quotes	to	prevent	the	comma	from
being	interpreted	as	a	column	separator.

Configure	Handled	File	Extensions	Command
(Options	Menu)

This	command	will	display	the	Handled	File	Extensions	Dialog,	which	allows
you	to	configure	which	file	extensions	Dependency	Walker	should	handle.	You
can	open	"handled"	files	in	any	explorer	window	by	right-clicking	on	a	file	and
choosing	"View	Dependencies"	from	the	context	menu.	Handled	files	also	show
up	in	Dependency	Walker's	File	Open	Dialog	by	default.

Auto	Expand	(View	Menu)

When	this	option	is	turned	on,	the	Module	Dependency	Tree	View	will
automatically	expand	the	tree	to	show	modules	as	they	are	added.	This	includes
all	modules	that	are	detected	during	the	initial	loading	of	a	session,	as	well	as	all
modules	found	during	profiling.

When	this	option	is	turned	off,	the	tree	is	never	automatically	expanded	as	the
result	of	a	new	module	being	added.	The	only	exceptions	are	the	root	module
and	modules	that	contain	errors.	The	root	module	will	be	expanded	to	show	the
immediate	dependencies	of	that	root	module.	The	tree	will	also	be	expanded	to
show	any	modules	that	contain	errors.	All	other	branches	of	the	module	tree	will
remain	collapsed	unless	you	expand	them.

This	command	can	also	be	used	to	quickly	show	all	modules	that	contain	errors.
Whenever	this	option	is	turned	off,	the	tree	will	automatically	collapse	all	nodes
except	for	those	that	contain	modules	with	errors.	If	this	option	is	already	turned
off,	you	can	simply	turn	it	on	and	back	off	to	force	this	effect	to	occur.

Shortcuts

Keys: F8
Toolbar:

Full	Paths	Command	(View	Menu)

Use	this	command	to	toggle	the	Full	Paths	option	on	or	off.	When	this	option	is
on,	a	check	mark	appears	next	to	the	Full	Paths	menu	item	and	the	Full	Paths
toolbar	button	is	displayed	as	depressed.

When	the	Full	Paths	option	is	on,	both	the	Module	Dependency	Tree	View	and
the	Module	List	View	will	display	the	complete	path	to	each	module.	When	this
option	is	off,	these	views	will	display	only	file	names.

This	option	also	effects	how	the	Copy	Command	and	Save	Command	work.
When	the	Full	Paths	option	is	on,	the	Copy	Command	will	copy	the	full	paths	of
the	selected	files	to	the	clipboard,	otherwise	it	just	copies	the	file	names.	For	the
Save	Command,	text	files	and	comma	separated	value	(CSV)	files	will	contain
full	paths	when	the	Full	Paths	option	is	on	and	just	file	names	when	it	is	off.

Shortcuts

Keys: F9
Toolbar:

Configure	Module	Search	Order	Command	(Options
Menu)

This	command	will	display	the	Module	Search	Order	Dialog,	which	allows	you
to	control	how	Dependency	Walker	searches	your	system	for	dependent	files.

Shortcuts

Toolbar:

Start	Profiling	Command	(Profile	Menu)

This	command	will	display	the	Profile	Module	Dialog,	which	allows	you	to
configure	and	start	profiling	of	the	active	Module	Session.

This	command	will	be	disabled	if	any	of	the	following	apply:

You	have	not	loaded	any	modules	into	Dependency	Walker.
The	application	is	already	being	profiled.	If	this	is	the	case,	then	the
Stop	Profiling	Command	will	be	enabled.

The	Module	Session	represents	a	loaded	Dependency	Walker	Image
(DWI)	file.	DWI	files	are	snapshots	from	a	previous	time	and
possibly	from	a	different	system.	The	files	displayed	may	or	may	not
correspond	to	files	on	your	current	system,	and	therefore	cannot	be
profiled	reliably.

The	root	module	of	the	active	Module	Session	does	not	match	the
system	you	are	running	on.	For	example,	a	64-bit	Alpha	module
cannot	be	profiled	on	a	32-bit	x86	computer.

The	root	module	cannot	be	a	DLL,	OCX,	or	similar	type	module.	It
must	be	the	main	executable	file	(usually	ends	with	.EXE)	of	an
application.

Shortcuts

Keys: F7
Toolbar:

Context	Help	Command

Use	the	Context	Help	command	to	obtain	help	on	a	particular	area	of
Dependency	Walker.	When	you	choose	the	Toolbar's	Context	Help	button,	the
mouse	pointer	will	change	to	an	arrow	and	question	mark.	Then	click
somewhere	in	the	Dependency	Walker	window,	such	as	another	Toolbar	button,
menu	item,	or	a	view.	The	Help	topic	will	be	shown	for	the	item	you	clicked	on.

Shortcuts

Keys: SHIFT+F1
Toolbar:

Previous	Pane	Command

This	command	allows	you	to	use	the	keyboard	to	switch	between	the	different
views	in	a	Module	Session	Window.	The	Previous	Pane	Command	navigates
backwards	through	the	views	in	the	following	order:

1.	 Log	View
2.	 Module	List	View
3.	 Export	Function	List	View
4.	 Parent	Import	Function	List	View
5.	 Module	Dependency	Tree	View

See	the	Next	Pane	command	for	navigating	through	the	views	in	opposite	order.

Shortcuts

Keys: SHIFT+F6

Next	Pane	Command

This	command	allows	you	to	use	the	keyboard	to	switch	between	the	different
views	in	a	Module	Session	Window.	The	Next	Pane	Command	navigates
forward	through	the	views	in	the	following	order:

1.	 Module	Dependency	Tree	View
2.	 Parent	Import	Function	List	View
3.	 Export	Function	List	View
4.	 Module	List	View
5.	 Log	View

See	the	Previous	Pane	command	for	navigating	through	the	views	in	opposite
order.

Shortcuts

Keys: F6

Previous	Window	Command	(System	Menu)

Use	this	command	to	switch	to	the	previous	open	Module	Session	Window.
Dependency	Walker	determines	which	window	is	previous	according	to	the
order	in	which	you	opened	the	Module	Session	Windows.

See	the	Next	Window	command	also.

Shortcuts

Keys: SHIFT+CTRL+F6

Next	Window	Command	(System	Menu)

Use	this	command	to	switch	to	the	next	open	Module	Session	Window.
Dependency	Walker	determines	which	window	is	next	according	to	the	order	in
which	you	opened	the	Module	Session	Windows.

See	the	Previous	Window	command	also.

Shortcuts

Keys: CTRL+F6

	

1,	2,	3,	...	Command	(Window	Menu)

Dependency	Walker	displays	a	list	of	currently	open	Module	Session	Windows
at	the	bottom	of	the	Window	menu.	A	check	mark	appears	in	front	of	the	Module
Session	Window	name	of	the	active	Module	Session	Window.	Choose	a	module
session	from	this	list	to	make	its	window	active.

Highlight	Original	Instance	In	Tree	(View	Menu)

This	command	is	used	to	locate	the	original	instance	of	a	module	in	the	Module
Dependency	Tree	View.	It	is	only	enabled	when	a	duplicate	module	is
highlighted.	Duplicate	modules	are	shown	with	a	small	arrow	in	their	image.
This	command	will	move	the	current	selection	to	the	original	instance	of	the
module.

Shortcuts

Keys: CTRL+K

Save	As	Command	(File	Menu)

Use	this	command	to	display	the	File	Save	Dialog,	which	allows	you	to	save	the
active	Module	Session	with	a	new	name	or	type.	Within	the	File	Save	Dialog,
you	can	choose	to	save	the	file	as	a	Dependency	Walker	Image	(DWI)	file,	a
comma	separated	value	(CSV)	file,	or	various	formats	of	text	files.

The	Save	As	Command	always	displays	the	File	Save	Dialog,	even	if	you	have
previously	saved	the	Module	Session	using	a	particular	name	and	type.	This
allows	you	to	choose	a	new	name	or	file	type	to	save	to.	If	you	wish	to	re-save
the	active	Module	Session	using	the	same	name	and	type	that	you	have
previously	saved	the	file	with,	then	you	can	just	use	the	Save	Command	to	avoid
the	File	Save	Dialog.

Highlight	Matching	Item	(View	Menu)

This	command	behaves	differently	depending	on	what	view	has	the	focus.

If	the	Module	Dependency	Tree	View	has	the	focus	and	a	module	is	selected	in
it,	then	this	command	will	find	that	selected	module	in	the	Module	List	View
and	highlight	it.

If	the	Module	List	View	has	the	focus	and	a	module	is	selected	in	it,	then	this
command	will	find	that	selected	module	in	the	Module	Dependency	Tree	View
and	highlight	it.

If	the	Parent	Import	Function	List	View	has	the	focus	and	a	function	is	selected
in	it,	then	this	command	will	find	the	matching	function	in	the	Export	Function
List	View	and	highlight	it.	This	command	will	be	disabled	if	the	function	is
unresolved	and	cannot	be	found	in	the	Export	Function	List	View.

If	the	Export	Function	List	View	has	the	focus	and	a	function	is	selected	in	it,
then	this	command	will	find	the	matching	function	in	the	Parent	Import	Function
List	View	and	highlight	it.	This	command	will	be	disabled	if	the	function	is	not
called	by	the	parent	module	and	cannot	be	found	in	the	Parent	Import	Function
List	View.

Shortcuts

Keys: CTRL+M

	

Profile	Module	Dialog

The	profile	dialog	is	used	to	configure	how	a	module	is	to	be	profiled.	It	contains
the	following	controls:

Program	arguments

This	field	can	be	filled	in	with	any	arguments	you	wish	to	start	the
application	with.

Starting	directory

This	field	contains	the	directory	that	the	application	should	start	in.	By
default,	this	field	is	filled	in	with	the	directory	that	the	main	executable
lives	in.	If	you	wish	to	change	this	directory,	you	can	type	in	a	new
directory	or	press	the	Browse	button	to	graphically	choose	a	new	directory.
You	can	also	press	the	Default	button	to	restore	this	field	to	its	default
directory.

Browse...

This	button	will	display	a	browse	dialog	that	lets	you	graphically	choose	a
starting	directory	for	the	application.	After	you	choose	a	directory,	it	will
appear	in	the	Starting	Directory	field.

Default

This	button	will	restore	the	Starting	Directory	field	to	its	default	directory.

Clear	the	log	window.

When	this	box	is	checked,	the	Log	View	will	be	cleared	before	the	profile	is
started.

Simulate	ShellExecute	by	inserting	any	App	Paths	directories	into	the
PATH	environment	variable.

When	this	box	is	checked,	Dependency	Walker	will	simulate	the
ShellExecute	function	when	starting	your	application.	This	ensures	that
your	application's	"App	Paths"	entries	are	part	of	the	search	path.	When	this
box	is	not	checked,	Dependency	Walker	simply	calls	CreateProcess	to	start
your	application,	which	does	not	use	the	"App	Paths"	entries.	Usually,	you
should	check	this	box	unless	you	are	troubleshooting	a	problem	related	to
"App	Paths"	entries.

Log	DllMain	calls	for	process	attach	and	process	detach	messages.

Dependency	Walker	monitors	all	calls	to	each	non-shared	module's
entrypoint,	usually	known	as	the	DllMain	function.	When	this	box	is
checked,	all	DllMain	functions	called	with	the	DLL_PROCESS_ATTACH
message	or	DLL_PROCESS_DETACH	message	will	be	logged.	If	a
module	returns	0	from	its	DllMain	function	while	processing	the
DLL_PROCESS_ATTACH	message,	then	the	OS	will	unload	the	module
and	return	a	failure.	In	the	case	of	an	implicit	dependency,	this	will	cause
the	entire	application	to	fail	to	load	with	an	error	dialog	reading	something
like	"The	application	failed	to	initialize	properly".	In	the	case	of	a	dynamic
dependency,	the	call	to	LoadLibrary	will	fail	with	error	1114
(ERROR_DLL_INIT_FAILED),	but	the	application	may	continue	to	run.

Log	DllMain	calls	for	all	other	messages,	including	thread	attach	and	thread
detach.

Dependency	Walker	monitors	all	calls	to	each	non-shared	module's

entrypoint,	usually	known	as	the	DllMain	function.	When	this	box	is
checked,	all	DllMain	functions	called	with	the	DLL_THREAD_ATTACH
message	or	DLL_THREAD_DETACH	message	will	be	logged.

Hook	the	process	to	gather	more	detailed	dependency	information.

When	this	item	is	checked,	Dependency	Walker	will	inject	a	small	DLL	into
the	application	being	profiled	to	help	gather	details	that	can	only	be
gathered	from	within	the	application	itself.	When	the	process	being	profiled
is	hooked,	Dependency	Walker	is	able	to	track	which	modules	dynamically
load	other	modules	at	runtime,	as	well	as	what	functions	are	dynamically
being	called	into	those	dynamically	loaded	modules.	It	can	also	capture	the
command	line	arguments	passed	to	child	processes.	When	a	process	is	not
hooked,	Dependency	Walker	can	still	track	all	dynamically	loaded	modules,
but	cannot	provide	information	about	which	module	loaded	the	dynamic
modules,	or	what	dynamic	functions	were	called.	See	the	Using	Application
Profiling	to	Detect	Dynamic	Dependencies	section	for	more	information.

Log	LoadLibrary	function	calls.

This	option	is	only	enabled	if	the	Hook	the	process	to	gather	more
detailed	dependency	information	is	checked.	When	checked,	all	calls	to
LoadLibrary	type	functions	will	be	logged	to	the	Log	View.	When	not
checked,	the	calls	are	still	processed,	but	just	not	displayed	in	the	Log	View.

Log	GetProcAddress	function	calls.

This	option	is	only	enabled	if	the	Hook	the	process	to	gather	more
detailed	dependency	information	is	checked.	When	checked,	all	calls	to
GetProcAddress	will	be	logged	to	the	Log	View.	When	not	checked,	the
calls	are	still	processed,	but	just	not	displayed	in	the	Log	View.

Log	thread	information.

When	this	option	is	checked,	all	thread	creations	and	deletions	are	logged	to
the	Log	View.	Also,	all	other	events	logged	to	the	Log	View,	will	have	the
thread	I.D.	appended	to	the	end.	This	option	can	be	helpful	if	you	are	trying
to	track	down	what	threads	are	loading	modules	and	calling	functions.

Use	simple	thread	numbers	instead	of	actual	thread	IDs.

This	option	is	only	enabled	if	the	Log	thread	information	is	checked.
When	checked,	simple	incrementing	numbers	are	used	to	represent	the
different	threads	rather	than	true	thread	I.D.'s,	which	can	be	lengthy
hexadecimal	values.	This	makes	following	a	particular	thread's	activity
easier.

Log	first	chance	exceptions.

When	this	option	is	checked,	all	first	chance	exceptions	will	be	logged	to
the	Log	View.	First	chance	exceptions	should	be	harmless	if	handled
correctly	by	the	application.	Usually,	you	can	leave	this	option	checked,	but
if	you	are	profiling	an	application	that	makes	extensive	use	of	first	chance
exceptions,	then	you	may	wish	to	uncheck	this	option	to	reduce	unwanted
output.	If	an	application	does	not	handle	a	first	chance	exception,	then	a
second	chance	exception	occurs	and	the	application	is	terminated.
Dependency	Walker	always	logs	second	chance	exceptions,	regardless	of
how	this	option	is	set.

Log	debug	output.

When	this	option	is	set,	all	debug	output	from	the	process	will	be	logged	to
the	Log	View.

Use	full	paths	when	logging	file	names.

This	option	lets	you	control	how	file	names	are	logged	to	the	Log	View.
Several	of	the	events	that	are	logged	will	need	to	display	file	names.	When
this	option	is	checked,	full	paths	to	the	files	will	be	logged.	When	this
option	is	not	checked,	only	the	file	names	will	be	displayed.

Log	a	time	stamp	with	each	line	of	log.

When	this	option	is	set,	each	line	of	log	will	begin	with	a	time	stamp.	Each
time	stamp	shows	the	number	of	hours,	minutes,	seconds,	and	milliseconds
that	have	elapsed	since	the	process	started.	It	is	important	to	note	that
Dependency	Walker	can	significantly	impact	the	performance	of	certain
operations	within	the	application	being	profiled.	For	this	reason,	these	time
stamps	should	probably	not	be	used	as	an	accurate	method	of	measuring	the
performance	of	your	application.

Automatically	open	and	profile	child	processes.

When	this	option	is	checked,	Dependency	Walker	will	automatically	open
and	process	any	child	processes	of	a	process	being	profiled.	For	example,	if
you	are	profiling	application	A	and	it	decides	to	launch	application	B,	then
Dependency	Walker	will	open	a	new	Module	Session	Window	for
application	B	and	immediately	begin	to	profile	it	using	the	same	profiling
settings	as	application	A.

Find	Command	(Edit	Menu)

This	command	will	display	the	Find	Dialog,	which	allows	you	to	search	for	text
in	the	Log	View.

Shortcuts

Keys: CTRL+F

Find	Next	Command	(Edit	Menu)

Use	this	command	to	repeat	the	last	find	operation	in	the	Log	View.	If	there	is	no
previous	find	operation,	then	this	command	works	just	like	the	Find	Command,
which	will	display	the	Find	Dialog.

Shortcuts

Keys: F3

Open	Command	(File	Menu)

The	Open	Command	will	display	the	File	Open	Dialog,	which	allows	you	to
open	and	process	a	module,	or	to	open	a	Dependency	Walker	Image	(DWI)	file.

You	may	also	open	modules	directory	from	an	Explorer	window	by	right-
clicking	on	the	module	you	wish	to	open	and	choosing	"View	Dependencies"
from	the	context	menu.	In	order	for	this	to	work,	you	must	tell	Dependency
Walker	what	file	extensions	to	handle	by	using	the	Handled	File	Extensions
Command.

Dependency	Walker	uses	a	multiple	document	interface	that	allows	more	than
one	Module	Session	Window	to	be	opened	and	visible	at	once.	Use	the	Window
Menu	to	switch	between	the	multiple	open	Module	Session	Windows.	See	the
Window	1,	2,	3,	...	Command	for	more	information.

Shortcuts

Keys: CTRL+O
Shell: Drag	and	drop	modules	on	top	of	Dependency	Walker	to	open	them.

Shell: Right-click	on	a	module	file	in	the	Shell	and	choose	"View
Dependencies"	from	the	Shell's	context	menu.

Toolbar:

Close	Command	(File	Menu)

Use	this	command	to	close	the	active	Module	Session	Window.

Shortcuts

Keys: CTRL+F4

Mouse:

Single-click	on	the	Close	button	in	the	Title	Bar	of	the	window	you
wish	to	close.

Mouse:

Double-click	on	the	System	Menu	icon	in	the	Title	Bar	of	the	window
you	wish	to	close.

1,	2,	3,	...	Command	(File	Menu)

Dependency	Walker	stores	the	eight	most	recently	opened	modules	at	the	bottom
of	the	File	menu	for	your	convenience.	To	open	one	of	the	modules	listed,	select
the	module	from	the	menu	or	type	the	number	that	corresponds	with	the	module
you	want	to	open.

Exit	Command	(File	Menu)

Use	this	command	to	close	all	Module	Session	Windows	and	exit	Dependency
Walker.

Shortcuts

Keys: ALT+F4

Mouse:

Single-click	on	the	main	window's	Close	button	in	the	Title	Bar.

Mouse

Double-click	on	the	main	window's	System	Menu	icon	in	the	Title	Bar.

Select	All	Command	(Edit	Menu)

Use	this	command	to	select	all	the	items	in	a	particular	view.	This	command
only	works	in	the	Module	List	View,	the	Parent	Import	Function	List	View,	the
Export	Function	List	View,	and	the	Log	View.	Select	All	is	often	useful	before
performing	a	Copy	if	you	wish	to	copy	the	entire	contents	of	a	view.

Shortcuts

Keys: CTRL+A

Clear	Log	Window	Command	(Edit	Menu)

Use	this	command	to	clear	the	contents	of	the	Log	View.

System	Information	Command	(View	Menu)

This	command	will	display	the	System	Information	Dialog,	which	displays
detailed	information	about	the	operating	system.	If	the	active	Module	Session	is
a	loaded	Dependency	Walker	Image	(DWI)	file,	then	the	System	Information
Dialog	will	show	the	system	information	for	the	system	that	the	DWI	file	was
saved	on.	Otherwise,	the	System	Information	Dialog	shows	information	about
the	current	system.

Shortcuts

Toolbar:

	

Expand	All	Command	(View	Menu)

This	command	will	expand	all	the	module	nodes	in	the	Module	Dependency
Tree	View,	making	the	entire	tree	visible.

Shortcuts

Keys: CTRL+E

Collapse	All	Command	(View	Menu)

This	command	will	collapse	all	the	module	nodes	in	the	Module	Dependency
Tree	View,	leaving	only	the	root	modules	visible.

Shortcuts

Keys: CTRL+W

Highlight	Previous	Instance	In	Tree	(View	Menu)

This	command	is	used	to	locate	the	previous	instance	of	the	selected	module	in
the	Module	Dependency	Tree	View.	It	is	only	enabled	when	there	is	a	previous
instance	of	the	selected	module.	This	command	will	move	the	current	selection
to	the	previous	instance	of	the	module.

Shortcuts

Keys: CTRL+B

Highlight	Next	Instance	In	Tree	(View	Menu)

This	command	is	used	to	locate	the	next	instance	of	the	selected	module	in	the
Module	Dependency	Tree	View.	It	is	only	enabled	when	there	is	a	next	instance
of	the	selected	module.	This	command	will	move	the	current	selection	to	the
next	instance	of	the	module.

Shortcuts

Keys: CTRL+N

Refresh	Command	(View	Menu)

This	command	will	force	the	active	Module	Session	Window	to	clear	all	of	its
views	and	reprocess	the	original	module.	This	can	be	useful	during
troubleshooting	a	module	to	determine	if	some	action	you	performed,	such	as
locating	and	copying	a	missing	module,	has	alleviated	a	problem.

Shortcuts

Keys: F5

View	Module	in	External	Viewer	Command	(View
Menu)

The	external	viewer	command	is	provided	as	a	means	to	launch	a	secondary
module	viewer.	The	external	viewer	application	is	completely	user	configurable.
See	the	Configure	External	Module	Viewer...	command	for	more	information.

If	the	active	view	is	the	Module	Dependency	Tree	View,	Parent	Import	Function
List	View,	or	Export	Function	List	View,	then	this	command	will	launch	the
external	viewer	application	with	the	module	that	is	currently	selected	in	the
Module	Dependency	Tree	View.	If	the	Module	List	View	has	the	focus,	then
Dependency	Walker	will	launch	a	separate	instance	of	the	external	viewer
application	for	every	module	that	is	selected	in	the	list.

Shortcuts

Keys: ENTER	(while	one	or	more	modules	are	highlighted	in	the	active
view)

Mouse: Double-click	on	a	module.
Toolbar:

Lookup	Function	in	External	Help	Command	(View
Menu)

This	command	will	attempt	to	find	help	about	the	currently	selected	function	by
using	a	help	collection	installed	on	your	computer	or	by	using	the	MSDN	online
collection	via	the	internet.	This	command	is	available	when	either	the	Parent
Import	Function	List	View	or	the	Export	Function	List	View	is	active	and	a
named	function	is	highlighted.	To	configure	what	help	collection	to	use	for
lookups,	see	the	Configure	External	Function	Help	Collection	command.

Shortcuts

Keys: ENTER	(while	a	function	is	highlighted	in	the	active	view)
Mouse: Double-click	on	a	function.

Properties	Command	(View	Menu)

The	properties	command	is	provided	as	a	means	to	launch	the	Windows
"Properties"	dialog	for	selected	modules.

If	the	active	view	is	the	Module	Dependency	Tree	View,	Parent	Import	Function
List	View,	or	Export	Function	List	View,	then	the	Properties	dialog	will	be
displayed	for	the	module	that	is	currently	selected	in	the	Module	Dependency
Tree	View.	If	the	Module	List	View	has	the	focus,	then	Dependency	Walker	will
display	a	separate	Properties	dialog	for	every	module	that	is	selected	in	the	list.

Shortcuts

Keys: ALT+ENTER
Toolbar:

Toolbar	Command	(View	Menu)

Use	this	command	to	display	and	hide	the	Toolbar,	which	includes	buttons	for
some	of	the	most	common	commands	in	Dependency	Walker,	such	as	the	File
Open.	A	check	mark	appears	next	to	the	menu	item	when	the	Toolbar	is
displayed.

See	Toolbar	for	more	help	on	using	the	toolbar.

Status	Bar	Command	(View	Menu)

Use	this	command	to	display	and	hide	the	Status	Bar.	A	check	mark	appears	next
to	the	menu	item	when	the	Status	Bar	is	displayed.

See	Status	Bar	for	more	help	on	using	the	status	bar.

Configure	External	Module	Viewer	Command
(Options	Menu)

This	command	will	display	the	Configure	External	Module	Viewer	Dialog,
which	allows	you	to	configure	the	external	viewer	application	and	arguments.

Configure	External	Function	Help	Collection
Command	(Options	Menu)

This	command	will	display	the	Configure	External	Function	Help	Collection
Dialog,	which	allows	you	to	configure	which	help	collection	to	use	when	the
Lookup	Function	in	External	Help	command	is	invoked.

Stop	Profiling	Command	(Profile	Menu)

This	command	will	stop	profiling	the	application	for	the	active	Module	Session.
It	will	forcefully	terminate	your	application,	so	it	should	only	be	used	in
situations	where	the	application	is	not	responding	to	normal	methods	of	closing.
The	Stop	Profiling	Command	is	only	enabled	when	you	are	currently	profiling
the	application.	See	the	Start	Profiling	Command	for	more	information	on
profiling	your	application.

Shortcuts

Keys: SHIFT+F7
Toolbar:

Cascade	Command	(Window	Menu)

Use	this	command	to	arrange	all	non-minimized	Module	Session	Windows	in	an
overlapped	fashion.

Shortcuts

Toolbar:

Tile	Horizontal	Command	(Window	Menu)

Use	this	command	to	arrange	all	non-minimized	Module	Session	Windows	as
non-overlapping	horizontal	tiles.

Shortcuts

Toolbar:

Tile	Vertical	Command	(Window	Menu)

Use	this	command	to	arrange	all	non-minimized	Module	Session	Windows	as
non-overlapping	vertical	tiles.

Shortcuts

Toolbar:

Arrange	Icons	Command	(Window	Menu)

Use	this	command	to	arrange	the	icons	for	minimized	windows	at	the	bottom	of
the	Dependency	Walker's	main	window.

Help	Topics	Command	(Help	Menu)

Use	this	command	to	display	the	opening	screen	of	Help.	From	the	opening
screen,	you	can	jump	to	any	area	of	Dependency	Walker's	online	help
documentation.

Once	you	open	Help,	you	can	click	the	Contents	button	whenever	you	want	to
return	to	the	opening	screen.

About	Dependency	Walker	Command	(Help	Menu)

Use	this	command	to	display	program	information,	the	version,	and	the
copyright	of	your	copy	of	Dependency	Walker.

System	Information	Dialog

This	resizable	dialog	displays	information	about	the	current	computer,	operating
system,	and	user.	If	the	active	Module	Session	is	actually	a	loaded	Dependency
Walker	Image	(DWI)	file,	then	all	the	information	in	the	System	Information
Dialog	describes	the	computer	that	saved	the	DWI	file	rather	then	the	current
computer.	The	caption	of	this	dialog	will	contain	the	text	"(Local)"	if	it	is
displaying	live	information	for	the	current	computer.	For	DWI	files,	the	caption
will	contain	the	name	of	the	DWI	file	that	the	information	is	stored	in.

All	the	information	shown	in	the	System	Information	Dialog	is	also	saved	to	text
and	DWI	type	files	when	you	use	the	Save	Command	or	Save	As	Command.

Close

Closes	the	dialog.

Refresh

Refreshes	the	dialog	with	updated	information.	This	button	will	be	disabled
if	the	data	shown	is	really	from	a	loaded	Dependency	Walker	Image	(DWI)
file.

Select	All

Selects	all	the	text	in	the	text	window.	This	button	is	useful	before	pressing
the	Copy	button	if	you	wish	to	copy	the	entire	text	window.

Copy

Copies	the	selected	text	in	the	text	window	to	the	clipboard.	This	button	is

disabled	if	no	text	is	selected.

Handled	File	Extensions	Dialog

This	dialog	is	used	to	configure	what	file	extensions	you	wish	Dependency
Walker	to	"handle".	Dependency	Walker	will	register	itself	with	your	operating
system	as	a	viewer	for	any	file	extensions	you	add	within	this	dialog.	Once
registered,	you	can	right-click	on	a	handled	file	in	any	explorer	window	and
choose	"View	Dependencies"	from	the	context	menu	to	launch	Dependency
Walker	and	process	that	file.	Handled	files	are	also	shown	by	default	in	the	File
Open	Dialog	when	it	is	first	displayed.

You	may	also	use	the	Handled	File	Extensions	Dialog	to	remove	handled	file
extensions.	This	will	remove	the	"View	Dependencies"	menu	item	from	the
right-click	explorer	context	menu	for	the	extensions	you	wish	to	stop	handling.

Usually,	you	will	want	Dependency	Walker	to	handle	all	extensions	that
represent	32-bit	or	64-bit	Windows	modules.	Some	common	ones	are	EXE,
DLL,	and	OCX.	However,	developers	are	free	to	use	any	extension	they	wish
when	creating	modules.	Because	of	this,	Dependency	Walker	provides	the	option
to	scan	one	or	more	of	your	disk	drives	looking	for	files	that	are	32-bit	or	64-bit
Windows	modules	and	automatically	add	them	to	your	handled	file	extension
list.

Extension

This	field	allows	you	to	manually	enter	an	extension	and	add	it	to	the	list.
You	do	not	need	to	enter	a	period	as	part	of	the	extension.	After	you	type	in
an	extension,	you	need	to	press	the	Add	button	to	add	it	to	the	list.

Add

This	button	adds	the	extension	in	the	Extension	field	to	the	extension	list.	If
there	is	no	text	in	the	Extension	field	or	the	extension	entered	is	already	in
the	list,	then	this	button	will	be	disabled.

Remove

Removes	all	the	highlighted	extensions	from	the	extension	list.

Search...

This	button	will	display	the	Search	for	Executable	File	Extensions	Dialog,
which	allows	you	to	automatically	search	one	or	more	of	your	disk	drives
for	32-bit	and	64-bit	Windows	modules.

File	Open	Dialog

Look	in

Lists	the	available	folders	and	files.	To	see	how	the	current	folder	fits	in	the
hierarchy	on	your	computer,	click	the	down	arrow.	To	see	what's	inside	a
folder,	click	it.

File	and	Folder	List

This	list	displays	all	the	files	and	folders	located	in	the	folder	specified	by
the	Look	in	field	that	match	the	search	specifications	of	the	File	name	field
and/or	the	Files	of	type	field.	You	may	select	any	file	in	this	list	and	press
Ok	to	open	the	file.	You	may	also	double-click	on	any	file	in	this	list	to
open	the	file.

File	name

This	box	allows	you	to	type	a	full	path	to	a	file,	a	relative	path	to	a	file,	a
path	to	another	folder	to	browse,	a	file	name	to	open,	or	a	partial	filename
with	wildcards	(*	and	?)	to	search	for.	Depending	on	what	you	choose	to
do,	the	Look	in	field	and	the	File	and	Folder	List	will	update	to	reflect	the
change.	If	you	type	an	exact	match	to	a	particular	file,	then	that	file	will	be
opened.

Files	of	type

Select	the	types	of	files	you	want	to	open	from	the	drop-down	list.	The	File
and	Folder	List	will	update	to	show	only	the	types	of	files	specified	by	the
Files	of	type	field.	Dependency	Walker	provides	three	options	for	this	list:

Handled	File	Extensions

Selecting	this	type	will	show	all	files	that	contain	a	file	extension	that	you
have	told	Dependency	Walker	to	handle.	To	configure	what	extensions	are
handled,	see	the	Handled	File	Extensions	Command.	You	can	load	a	file
with	any	extension,	but	this	setting	only	displays	the	ones	that	are	handled.

Dependency	Walker	Image	(DWI)

Selecting	this	type	will	show	all	files	with	the	DWI	extension.	DWI	files
are	image	files	that	contain	a	complete	snapshot	of	a	previous	Module
Session.	By	loading	a	DWI	file,	you	can	view	the	complete	results	of	a
previous	Module	Session	without	actually	being	on	the	system	that
generated	the	results.

All	Files	(*.*)

Selecting	this	option	will	simply	display	all	files	for	the	current	folder.	This
can	be	useful	in	finding	a	file	that	you	have	not	told	dependency	walker	to
handle.

Find	Dialog

The	following	options	allow	you	to	search	for	text	in	the	Log	View.

Find	what

Fill	this	field	in	with	the	text	you	wish	to	locate	in	the	Log	View.

Match	whole	word	only

Check	this	box	to	limit	the	search	to	only	finding	your	text	when	seen	as	a
whole	word	and	not	part	of	a	larger	word.	When	not	checked,	all
occurrences	of	your	text	will	be	found.	For	example,	when	this	option	is	not
checked,	searching	for	"lock"	could	find	words	like	"clock"	and	"locker".

Match	case

Check	this	box	to	limit	the	search	to	only	finding	text	that	exactly	matches
the	case	of	your	search	text.

Find	Next

Press	this	button	to	look	for	the	next	occurrence	of	your	search	text.	The
search	begins	from	your	current	cursor	location	and	continues	to	the	end	of
the	view.	For	each	match	that	is	found,	the	text	will	be	highlighted	in	the
Log	View,	and	the	cursor	will	be	moved	to	that	selection.	You	may
repeatedly	press	Find	Next	to	continue	searching	for	more	matches.

Title	Bar

The	title	bar	is	located	along	the	top	of	a	window.	For	Dependency	Walker's
main	window	(shown	above),	it	contains	the	name	of	the	application	and	the
active	module	session	name	if	a	module	has	been	loaded.	For	a	Module	Session
Window,	it	will	contain	the	name	of	the	session	module.

To	move	a	window,	drag	the	title	bar.	To	resize	a	window,	drag	the	size	bars	at
the	corners	or	edges	of	the	window.

Dependency	Walker's	main	window's	title	bar	contains	the	following	elements:

System	Menu	button.	This	is	actually	displayed	as	a	small
Dependency	Walker	icon	on	left	size	of	the	Title	Bar
Name	of	the	application,	"Dependency	Walker"

Name	of	the	active	Module	Session;	for	example,	"notepad.exe"

Minimize	button

Restore/Maximize	button

Close	button

Status	Bar

The	status	bar	is	displayed	at	the	bottom	of	Dependency	Walker's	main	window.
To	display	or	hide	the	status	bar,	use	the	Status	Bar	option	from	the	View	menu.

The	status	bar	describes	actions	of	menu	items	as	you	use	the	arrow	keys	or
mouse	to	navigate	through	menus.	This	area	similarly	shows	messages	that
describe	the	actions	of	Toolbar	buttons	as	you	depress	them	and	before	releasing
them.	If	after	viewing	the	description	of	the	toolbar	button	command	you	wish
not	to	execute	the	command,	then	move	the	mouse	pointer	off	the	toolbar	button
and	release	the	mouse	button.

Configure	External	Module	Viewer	Dialog

Command

This	field	specifies	a	path	to	the	executable	to	be	run	when	the	View
Module	in	External	Viewer	command	is	invoked.	You	may	use	environment
variables,	like	%SystemRoot%,	in	this	path.

Arguments

This	field	specifies	the	command	line	arguments	to	be	passed	to	the
executable	specified	in	the	Command	field	when	the	View	Module	in
External	Viewer	command	is	invoked.	You	may	use	a	%1	anywhere	in	the
argument	string	to	represent	the	full	path	to	the	module	file.	When	the
external	viewer	application	is	launched,	all	%1	tokens	will	be	replaced	with
the	full	path	to	the	module	file.	You	should	surround	all	%1	arguments	in
quotes	so	that	the	external	viewer	can	handle	long	filenames	with	spaces.
For	example,	"%1".	You	may	also	use	environment	variables	in	this	field.

Browse

This	button	will	display	a	File	Open	Dialog,	which	allows	you	to	browse
your	system	for	the	executable	file	to	be	used	as	your	external	viewer.	If	a
file	is	chosen	in	this	dialog,	the	Command	field	will	be	updated	to	show
the	new	file.

When	you	first	run	Dependency	Walker,	it	defaults	to	using
QUIKVIEW.EXE	as	your	external	viewer	if	you	have	it	on	your	system.	If
it	is	not	found,	then	it	defaults	to	using	DEPENDS.EXE	as	the	external
viewer,	which	will	just	launch	another	instance	of	Dependency	Walker.
Here	is	an	example	using	DUMPBIN.EXE	(part	of	Visual	C++)	to	get
header	information	about	a	module:

Command %SystemRoot%\System32\cmd.exe

Arguments /c	dumpbin.exe	/headers	"%1"	>	"%TEMP%\headers.txt"	&
start	notepad	"%TEMP%\headers.txt"

Configure	External	Function	Help	Collection	Dialog

This	dialog	is	used	to	determine	what	help	collection	should	be	used	when	the
Lookup	Function	in	External	Help	command	is	invoked.	Dependency	Walker
will	examine	your	computer	and	determine	what	help	collections	are	installed
and	available	for	you	to	use.	It	supports	collections	from	MSDN,	Visual	Studio
6.0,	and	Visual	Studio	7.0.	Dependency	Walker	can	also	perform	a	lookup	over
the	internet	using	the	MSDN	online	help.	This	is	useful	if	you	don't	have	any
installed	collections,	or	your	collections	are	out	of	date.

Use	the	following	MSDN	collection

Select	this	radio	button	to	indicate	that	you	wish	to	use	an	installed	help
collection	rather	than	the	online	collection.

Collection	list

This	is	a	list	of	help	collections	that	Dependency	Walker	found	installed	on
your	system.	Dependency	Walker	attempts	to	sort	the	list	from	the	most
relevant	help	collection	to	the	least	relevant	help	collection.

Refresh

This	button	will	rescan	your	system	for	help	collections.

Use	MSDN	online	(Use	a	%1	to	represent	the	function	name)

Select	this	radio	button	to	indicate	that	you	wish	to	use	the	MSDN	online
help	rather	than	an	installed	help	collection.

URL

This	field	contains	the	URL	that	Dependency	Walker	will	launch	in	a
browser	window	when	you	invoke	the	Lookup	Function	in	External	Help
command.	Dependency	Walker	will	replace	all	occurrences	of	%1	in	the
URL	with	the	name	of	the	function	you	are	looking	up.

Default	URL

This	button	will	fill	in	the	URL	field	with	the	default	URL	for	using	MSDN
online.	This	default	URL	was	determined	at	the	time	Dependency	Walker
was	released	and	may	not	work	in	the	future	if	MSDN	online	changes	the
format	of	their	URL.	For	this	reason,	the	URL	field	has	been	provided	so
that	you	can	modify	the	URL	to	fit	your	needs.

Search	for	Executable	File	Extensions	Dialog

This	dialog	will	automatically	search	one	or	more	of	your	disk	drives	looking	for
32-bit	and	64-bit	Windows	modules.	Once	the	search	is	complete,	you	can
choose	which	of	the	files	you	want	Dependency	Walker	to	handle.

Drives	to	Search

This	list	shows	all	drive	letters	currently	available	on	your	computer.	By
default,	all	drives	that	are	local	hard	drives	are	highlighted.	Select	the	drives
you	wish	to	search	and	press	the	Search	button	to	begin.	While	searching,
the	word	"Searching"	will	appear	next	to	the	drive	that	is	currently	being
searched.

Extensions	to	Add

Once	the	searching	begins,	this	list	will	be	populated	as	32-bit	or	64-bit
Windows	modules	are	found.	During	the	search,	the	list	itself	will	be
disabled,	preventing	you	from	unselecting	items.	Once	the	search
completes,	you	can	select	which	files	you	want	Dependency	Walker	to
handle	and	press	the	Add	button.

Search

Once	you	have	selected	the	drives	you	wish	to	search	in	the	Drives	to
Search	list,	press	this	button	to	begin	searching.	While	searching,	all
controls	in	the	dialog	will	be	disabled	except	the	Stop	and	Cancel	buttons.

Stop

This	will	stop	the	currently	running	search.	If	there	is	no	currently	running

search,	then	this	button	will	be	disabled.

Add

Once	the	search	has	completed,	you	can	press	this	button	to	add	all	the
highlighted	extensions	in	Extensions	to	Add	list	to	the	handled	list	and
return	to	the	Handled	File	Extensions	Dialog.

Cancel

Press	this	button	to	close	the	dialog	without	adding	any	file	extensions	to
Dependency	Walker's	handled	list.	If	a	search	is	currently	running,	the
Cancel	button	will	stop	the	search	first,	then	close	the	dialog.

	What's New in Version 2.2
	Frequently Asked Questions (FAQ)

