
Sysinternals	DebugView
Copyright	©	1999-2004	Mark	Russinovich
Sysinternals	-	www.sysinternals.com
DebugView	is	an	application	that	lets	you	monitor	debug	output	on	your
local	system,	or	any	computer	on	the	network	that	you	can	reach	via
TCP/IP.	It	is	capable	of	displaying	both	kernel-mode	and	Win32	debug
output	generated	by	standard	debug	print	APIs,	so	you	don’t	need	a
debugger	to	catch	the	debug	output	your	applications	or	device	drivers
generate,	and	you	don't	need	to	modify	your	applications	or	drivers	to
use	non-Windows	debug	functions	in	order	to	view	its	debug	output.

License

You	may	not	redistribute	DebugView	in	any	form	without	the	express
written	permission	of	Mark	Russinovich.	If	you	wish	to	redistribute
DebugView,	please	contact	licensing@sysinternals.com.

http://www.sysinternals.com
mailto:licensing@sysinternals.com

Capabilities
DebugView	works	on	Windows	NT	4.0,	Windows	2000,	Windows	XP,
Windows	Server	2003,	Windows	95,	Windows	98	and	Windows	Me.
Note:	if	you	want	to	run	DebugView	on	Windows	95	you	must	install	the
WinSock2	update,	available	for	free	download	from	Microsoft’s	Web	site.

Under	Windows	9x/Me	DebugView	can	capture	output	from	the	following
sources:

Win32	OutputDebugString
Win16	OutputDebugString
Kernel-mode	Out_Debug_String
Kernel-mode	_Debug_Printf_Service

Under	Windows	NT	and	Win2k	DebugView	can	capture:

Win32	OutputDebugString
Kernel-mode	DbgPrint
All	kernel-mode	variants	of	DbgPrint	implemented	in	Windows	XP
and	.NET	Server

DebugView	also	extracts	kernel-mode	debug	output	generated	at	the
time	of	a	crash	from	crash	dump	files	if	DebugView	was	capturing	output
at	the	time	of	the	crash.

http://www.microsoft.com/windows95/downloads/contents/WUAdminTools/S_WUNetworkingTools/W95Sockets2/Default.asp

Starting	DebugView
Simply	execute	the	DebugView	program	file	(dbgview.exe)	and
DebugView	will	immediately	start	capturing	debug	output.	Note	that	if	you
wish	to	capture	kernel-mode	debug	output	under	Windows	NT/2K,	you
must	have	the	“load	driver”	privilege.

Menus,	hot-keys,	or	toolbar	buttons	can	be	used	to	clear	the	window,
save	the	monitored	data	to	a	file,	search	output,	and	change	the	window
font.	In	addition,	you	can	toggle	on	and	off	capture	of	kernel	or	Win32
debug	output.

As	events	are	printed	to	the	output,	they	are	tagged	with	a	sequence
number.	If	DebugView’s	internal	buffers	are	overflowed	during	extremely
heavy	activity,	this	will	be	reflected	with	gaps	in	the	sequence	number.

Each	time	you	exit	DebugView	it	remembers	the	position	of	the	window,
the	widths	of	the	output	columns,	the	font	selection,	configured	filters,
and	the	time-stamp	mode.

Command-line	Options

DebugView	supports	several	command-line	options	that	let	you	modify	its
behavior	when	it	starts.	Several	are	relevant	when	starting	DebugView	as
a	client	on	a	system	that	will	send	debug	output	across	the	network	to	a
DebugView	instance	that	displays	the	output	on	another	computer,	and
are	described	in	the	Remote	Monitoring	section.	However,	others	modify
the	behavior	of	DebugView	when	you	run	it	to	display	output,	and	are
useful	if	you	want	to	execute	DebugView	from	a	batch	file	or	logon	script
and	want	it	to	capture	debug	output	as	soon	as	it	starts.	You	can	have
DebugView	display	all	of	its	command-line	options	by	using	the	/?	option.

Here	are	the	command-line	options	supported	when	you	run	DebugView
in	non-client	mode:

debugview	[/f]	[/t]	[/l	Logfile	[/a]		[[/m	nnn	[/w]]	|	[/n	[/x]]]	[/h	nn]]	[Logfile]

The	/f	option	has	DebugView	skip	the	filter	confirmation	dialog	when
filters	were	active	the	previous	execution.

The	/t	option	has	DebugView	launch	into	the	system	tray,	rather	than	as	a
window.	This	has	DebugView	capture	debug	output	as	soon	as	it	starts
while	not	taking	up	screen	real-estate.	DebugView's	tray	behavior	is
further	described	in	the	Running	in	the	Tray	section.

The	/l	option	directs	DebugView	to	begin	writing	output	to	the	indicated
logfile	as	soon	as	DebugView	executes.	The	/m	option	allows	you	to
specify	a	size	limit	(in	MB)	for	the	log	file,	and	the	/a	option	has
DebugView	append	to	the	logfile	if	it	already	exists,	rather	than	overwrite
it	and	/w	has	the	log	file	wrap	when	it	reaches	the	maximum	size	you
specify.	The	/n	switch	has	DebugView	create	a	new	log	file,	named	with
the	date,	each	day.	If	you	include	/x	with	/n	the	display	clears	when	a	new
log	file	is	created.

Finally,	the	/h	switch	controls	the	history	depth,	which	is	the	count	of	most
recent	output	lines	shown	in	the	DebugView	display.	These	options
correspond	to	the	logfile	commands	available	through	menu	items	when
DebugView	is	running,	which	are	described	in	Saving	and	Print.

Capturing	Debug	Output
Global	Capture

You	control	DebugView’s	global	capture	mode	by	toggling	capture-on	and
capture-off	with	the	 	toolbar	button,	the	Capture|Capture	Events
menu	entry,	or	the	Ctrl+E	hot-key	sequence.	DebugView	does	not
capture	any	data	when	its	capture-mode	is	off.	The	state	of	Win32
capture	and	kernel	capture	determine	what	kind	of	debug	output	(if	any)
is	captured	when	the	global	capture	mode	is	on.

Capturing	Win32	Debug	Output

If	you	specify,	DebugView	will	register	to	receive	and	print	debug	output
generated	by	Win32	programs	that	call	OutputDebugString.	The	
toolbar	button,	the	Capture|Capture	Win32	menu	item,	and	the	Ctrl+W
hot-key	sequence	can	toggle	this	capture	on	and	off.	If	the	Win32	PID
options	is	set	(under	Options|Win32	PIDs)	then	information	identifying
processes	that	generate	Win32	debug	output	is	prefixed	to	each	line	of
Win32	debug	output.	If	you	are	running	DebugView	on	Windows	NT/2K,
then	the	process	ID	of	the	processes	are	prefixed	in	brackets	to	each	line
of	Win32	debug	output.	If	the	option	is	set	and	you	are	running	on	a
Win9x	system,	then	the	process	name	is	prefixed	in	brackets	to	the
output.

If	you	run	DebugView	in	a	remote	logon	session	of	Windows	2000
Terminal	Services,	DebugView	adds	a	Capture	Global	Win32	menu	item
to	the	Capture	menu.	Whereas	the	Capture	Win32	menu	item	and
associated	toolbar	button	enable	and	disable	capture	of	debug	output	in
DebugView's	local	logon	session,	the	Capture	Global	Win32	menu	item
lets	you	enable	and	disable	the	capture	of	debug	output	that	is	generated
in	the	console	(global)	session.	Win32	services	run	in	the	console
session,	so	this	feature	lets	you	capture	the	output	that	services	generate
even	when	you	are	running	DebugView	in	another	logon	session.

Capturing	Kernel-Mode	Debug	Output
You	can	configure	DebugView	to	capture	kernel-mode	debug	output
generated	by	device	drivers	and/or	the	Windows	kernel	by	using	the

Capture|Capture	Kernel	menu	selection,	 	toolbar	button,	or	the	Ctrl+K
hot-key.	Process	IDs	are	not	reported	for	kernel-mode	output	since	such
output	is	typically	not	process-context	related.

On	Windows	NT/2K,	kernel-mode	capture	is	only	possible	if	the	user
account	in	which	you	run	DebugView	has	the	"load	driver"	privilege.	If	the
account	does	not	have	this	privilege	then	DebugView	disables	the	kernel-
mode	capture	and	pass-through	mode	toolbar	buttons	and	menu	items.

Under	Windows	NT/2K,	Win32	debug	output	and	kernel-mode	debug
output	originate	with	two	different	sources.	Therefore,	DebugView
captures	the	different	outputs	into	two	separate	buffer	pools,	and	merges
the	outputs	in	the	display	window	according	to	their	relative	sequence
numbers.	While	this	means	that	the	order	of	kernel-mode	and	Win32
output	is	correctly	represented,	the	update	of	such	information	may	not
be	sequential	i.e.	DebugView	may	display	a	number	of	Win32	debug
messages,	and	shortly	after	merge	in	kernel-mode	debug	messages	that
have	interleaved	sequence	numbers.	This	is	the	reason	that	sequence
numbers	are	represented	as	8-digit	numbers:	the	display’s	listview	auto-
sorting	feature	is	used	by	DebugView	to	order	merged	kernel-
mode/Win32	output.

Pass-Through	Mode

DebugView	can	be	configured	to	pass	kernel-mode	debug	output	to	a
kernel-mode	debugger	or	to	swallow	the	output.	The	pass-through	mode
is	toggled	with	the	Capture|Pass-Through	menu	selection	or	 	toolbar
button.	The	pass-through	mode	allows	you	to	see	kernel-mode	debug
output	in	the	output	buffers	of	a	conventional	kernel-mode	debugger
while	at	the	same	time	viewing	it	in	DebugView.

Inserting	Comments
You	can	insert	comments	into	the	output	log	by	selecting	Edit|Append
Comment.	Comments	insert	into	the	currently	viewed	output.	Type
comments	into	the	dialog	followed	by	the	return	key	and	dismiss	the
dialog	when	you	are	done	entering	comments.

Clearing	the	Display

An	application	that	generates	debug	output	can	cause	the	DebugView
display	to	clear	by	printing	the	string	"DBGVIEWCLEAR".

Searching,	Filtering,	and	Limiting	Output
DebugView	has	several	features	that	can	help	you	zoom-in	on	the	debug
output	you	are	interested	in.	These	capabilities	include	searching,
filtering,	and	limiting	the	number	of	debug	output	lines	saved	in	the
display.

Clearing	the	Display

To	reset	the	output	window,	use	the	Edit|Clear	Display	menu	item,	
toolbar	button,	or	Ctrl+X	hot-key	sequence.	This	also	causes	the
sequence	number	to	be	reset	to	0.

Searching

If	you	want	to	search	for	a	line	containing	text	of	interest	you	use	the	find
dialog.	The	find	dialog	is	activated	with	the	Ctrl+F	hot-key	sequence,	the
Edit|Find	menu	entry,	or	the	 	toolbar	button.	If	the	search	you	specify
matches	text	in	the	output	window,	DebugView	will	highlight	the	matching
line	and	turn	off	the	display’s	auto-scroll	in	order	to	keep	the	line	in	the
window.	To	repeat	a	successful	search,	use	the	F3	hot-key.

Filtering
Another	way	to	isolate	output	that	you	are	interested	in	is	to	use
DebugView’s	filtering	capability.	Use	the	Edit|Filter/Highlight	menu	item,
	toolbar	button,	or	Ctrl-L	hot-key	to	activate	the	filter	dialog.	The	dialog

contains	two	edit	fields:	include	and	exclude.	The	include	field	is	where
you	enter	substring	expressions	that	match	debug	output	lines	that	you
want	DebugView	to	display,	and	the	exclude	field	is	where	you	enter	text
for	debug	output	lines	that	you	do	not	want	DebugView	to	display.	You
can	enter	multiple	expressions,	separating	each	with	a	semicolon	(‘;’).	Do
not	include	spaces	in	the	filter	expression	unless	you	want	the	spaces	to
be	part	of	the	filter.	Note	that	the	filters	are	interpreted	in	a	case-
insensitive	manner,	and	that	you	should	use	‘*’	as	a	wildcard.

As	an	example,	say	you	want	DebugView	to	display	debug	output	that
contains	either	“error”	or	“abort”,	but	want	to	exclude	lines	that	contain
either	of	those	strings	and	the	word	“gui”.	To	configure	DebugView’s
filters	for	this	you	enter	“error;abort”	for	the	include	filter	and	“gui”	for	the

exclude	filter.	If	you	wanted	to	have	DebugView	show	only	output	that
has	"MyApp:"	at	the	start	of	the	output	line	and	"severe"	at	the	end,	you
could	use	a	wildcard	in	the	include	filter:	"myapp:*severe".

Highlighting

DebugView	also	has	another	type	of	filtering:	highlighting.	If	you	want
output	lines	that	contain	certain	text	to	be	highlighted	in	the	DebugView
output	window,	enter	a	highlight	filter.	DebugView	implements	support	for
up	to	five	different	highlight	filters,	each	with	its	own	foreground	and
background	color	settings.	Use	the	filter	drop-down	in	the	highlight	filter
area	of	the	filter	dialog	to	select	which	highlight	filter	you	want	to	edit.	Use
the	same	syntax	just	described	for	include	and	exclude	filters	when
defining	a	highlight	filter.

To	change	the	colors	used	for	the	foreground	and	background	of
highlighted	lines,	click	on	the	Colors	button	when	you	have	selected	the
highlight	filter	you	wish	to	modify.	You	will	be	asked	to	pick	colors	from	a
palette,	and	your	choices	will	be	remembered	by	DebugView	from	run	to
run.

Saving	and	Restoring	Filters
Use	the	Load	and	Save	buttons	on	the	filter	dialog	to	save	and	restore
filter	settings,	including	the	include,	exclude	and	highlighting	filters,	as
well	as	the	highlighting	colors	settings.

History-Depth

A	final	way	to	control	DebugView	output	is	to	limit	the	number	of	lines	that
are	retained	in	the	display.	You	use	the	Edit|History-Depth	menu	item,	
	toolbar	button,	or	the	Ctrl+H	hot-key	sequence	to	activate	the	history-

depth	editor.	Enter	the	number	of	output	lines	you	want	DebugView	to
retain	and	it	will	keep	only	that	number	of	the	most	recent	debug	output
lines,	discarding	older	ones.	A	history-depth	of	0	represents	no	limit	on
output	lines	retained.

You	do	not	need	to	use	the	history-depth	feature	to	prevent	all	of	a
system’s	virtual	memory	from	being	consumed	in	long-running	captures.

DebugView	monitors	system	memory	usage	and	will	go	into	a	low-
memory	state	when	it	detects	that	memory	is	running	low.	DebugView’s
low-memory	state	consists	of	it	not	capturing	further	debug	output	until
the	low-memory	condition	is	no	longer	in	effect.

Saving,	Printing	and	Logging
DebugView	lets	you	both	save	and	print	captured	debug	output.

Saving	Output

You	can	save	the	contents	of	the	DebugView	output	window	as	a	text	file
(.log	extension)	using	the	File|Save	or	File|Save	As	menu	items,	or	the
Ctrl+S	hot-key	sequence.

Using	Edit|Copy	or	the	Ctrl+C	hot-key	sequence	you	can	copy	the
debug	output	contained	within	selected	output	lines	to	the	clipboard.

Logging	to	a	File

To	have	DebugView	log	output	to	a	file	as	it	displays	it,	use	the	File|Log
to	File	or	File	|Log	to	File	As	menu	items,	the	 	toolbar	button,	or	the
Ctrl+O	hot-key	sequence.	Log	file	settings	you	specify	include	the	name
of	the	log	file,	the	maximum	size	it	should	be	allowed	to	grow,	and
whether	or	not	DebugView	should	restart	the	log	or	append	to	it	if	the	file
specified	already	contains	output.		If	you	select	the	wrap	option	then
DebugView	will	wrap	around	to	the	beginning	of	the	file	when	the	file's
maximum	specified	size	is	reached.

If	you	select	the	Create	New	Log	Every	Day	option	then	DebugView	will
not	limit	the	size	of	the	log	file,	but	will	create	a	new	log	file	every	day	that
has	the	current	date	appended	to	the	base	log	file	name	you	enter.

When	logging	is	active	the	log	file	toolbar	button	will	look	like	 .	To	stop
logging	simply	select	the	toolbar	button	or	the	File	|Log	to	File	menu
item.	If	the	log	file’s	maximum	size	is	reached	logging	to	the	file	stops
and	the	logging	toolbar	button	changes	to	 .

If	you	are	monitoring	debug	output	from	multiple	remote	computers	and
enable	logging	to	a	file,	all	output	is	logged	to	the	file	you	specify.	Ranges
of	output	from	different	computers	are	separated	with	a	header	that
indicates	the	name	of	the	computer	from	which	the	subsequent	records
were	recorded.

Printing	Output

You	can	use	File|Print	or	File|Print	Range	to	print	the	contents	of	the
display	to	a	printer.	Choose	Print	Range	if	you	only	want	to	print	a
subset	of	the	sequence	numbers	displayed,	or	Print	if	you	want	to	print
all	the	output	records.	The	Ctrl+P	hot-key	sequence	corresponds	to
File|Print.

Using	the	Print	Range	dialog	you	can	also	specify	whether	or	not
sequence	numbers	and	timestamps	will	be	printed	along	with	the	debug
output.	Omitting	these	fields	can	save	page	space	if	they	are	not
necessary.	The	settings	you	choose	are	used	in	all	subsequent	print
operations.

In	order	to	prevent	wrap-around	when	output	lines	are	wider	than	a	page,
consider	using	landscape	mode	instead	of	portrait	when	printing.

Loading	Output

Use	the	File|Open	menu	item	to	load	a	previously	saved	DebugView	log
file	into	the	output	window.

Options
There	are	a	number	of	options	that	let	you	adjust	several	characteristics
of	DebugView,	including	the	way	that	it	behaves	and	looks.

Timing	Format

DebugView	displays	time	stamps	of	captured	debug	output	in	one	of	two
formats:	as	clock-time	(the	time	of	day),	or	as	relative	time.	When
displaying	relative	time	DebugView	represents	the	time	of	a	debug	output
record	as	the	difference	between	its	timestamp	and	the	timestamp	of	the
first	record	in	the	display.	This	mode	is	helpful	when	you	debug	timing-
related	problems.	Use	the	Options|Clock	Time	menu	item,	 	toolbar
button,	or	Ctrl+T	hot-key	sequence	to	toggle	between	clock	time	and
relative	time	modes.

When	DebugView	is	in	clock-time	mode	you	can	select	the
Options|Show	Milliseconds	menu	item	to	have	DebugView	show
timestamps	that	include	millisecond	resolution.

Force	Carriage	Returns

The	default	behavior	of	DebugView	is	to	buffer	output	strings	in	an
internal	buffer	DebugView	maintains	until	a	carriage-return	is
encountered	or	the	buffer	overflows.	This	allows	applications	and	drivers
to	build	output	lines	with	multiple	invocations	of	debug	output	functions.

Select	Options|Force	Carriage	Returns	to	cause	DebugView	to	display
every	string	passed	to	a	debug	output	function	on	a	separate	output	line,
regardless	of	whether	the	string	is	terminated	with	a	carriage	return.

Auto	Scroll

Use	the	Options|Auto	Scroll	menu	item,	 	toolbar	button,	or	Ctrl+A	hot-
key	sequence	to	toggle	DebugView	between	auto-scroll	and	non-auto
scroll	modes.	When	in	auto-scroll	mode	DebugView	will	always	keep	the
most	recent	debug	output	visible	in	the	display	window.

Hiding	the	Toolbar

You	can	gain	more	display	space	by	hiding	the	DebugView	toolbar.	Use

the	Options|Hide	Toolbar	menu	item	or	Ctrl+B	hot-key	sequence	to
toggle	the	toolbar’s	presence.	DebugView	will	remember	the	toolbar	state
when	you	exit	it	and	restore	the	same	state	the	next	time	you	start	it.

Win32	PIDS

Setting	this	option	using	the	Options|Win32	PIDs	menu	item	will	cause
DebugView	to	prefix	Win32	debug	output	with	either	the	process	ID
(Windows	NT/2K)	or	the	process	name	(Windows	9x)	of	the	process	that
generated	the	output.	Deselecting	this	option	can	save	screen	space	if
you	are	not	interested	in	what	process	generates	Win32	output.

Changing	the	Font
Use	the	Edit|Font	menu	entry	to	open	a	font-selection	dialog	where	you
can	choose	a	font	that	DebugView	will	use	in	its	output	window.

Always	on	Top

To	keep	DebugView	as	the	top-most	window	on	the	desktop,	use	the
Options|Always	On	Top	menu	item.	Selecting	the	menu	item	a	second
time	will	toggle	off	the	always-on-top	mode.

Running	in	the	Tray
Running	DebugView	in	the	system	tray	is	useful	if	you	want	it	to	capture
debug	output	but	do	not	it	to	take	up	space	on	the	desktop	or	task	bar.
You		minimize	DebugView	to	the	system	try	by	selecting	the
Edit|Minimize	to	Tray	menu	item,	which	both	changes	the	menu	item	to
Edit|Minimize	to	Task	Bar	and	has	DebugView	appear	as	an	icon	on
the	tray.	To	reactivate	DebugView	from	the	tray	you	double-click	on	its
tray	icon.	Subsequently	minimizing	DebugView	by	clicking	on	its	window
minimize	button	will	minimize	it	to	the	tray.	To	minimize	DebugView	to	the
task	bar,	select	Edit|Minimize	To	Task	Bar,	after	which	the	minimize
button	will	function	as	normal.

When	DebugView	is	in	the	tray	its	icon	is	colored	if	global	capture	is
enabled	and	black-and-white	if	global	capture	is	disabled.	The	right-click
context	menu	for	the	DebugView	tray	icon	is	a	copy	of	the	DebugView
Capture	menu,	which	allows	you	to	enable	and	disable	global	capture,
Win32	capture,	and	kernel-mode	capture.

Logging	at	Boot	Time	(WinNT/2K/XP	Only)
Under	Windows	NT/2K/XP	DebugView	can	capture	kernel-mode	debug
output	generated	during	the	boot	process.	To	have	it	do	so,	select	the
Capture|Log	Boot	menu	item,	which	is	enabled	when	the	local	computer
is	Windows	NT/2K	and	the	DebugView	window	is	connected	to	the	local
computer.		When	boot	logging	is	enabled,		DebugView	buffers	up	to	1MB
of	debug	output	beginning	at	the	earliest	point	in	the	system's	next	boot
process.		You	can	view	the	buffered	debug	output	by	connecting
DebugView	to	the	system,	at	which	time	the	buffering	ceases.

Crash	Dumps	(WinNT/2K/XP	Only)
Under	Windows	NT/2K/XP	you	can	configure	the	system	to	save	a	dump
of	physical	memory	when	the	operating	system	crashes.	Using	this	crash
dump	facility	DebugView	allows	you	to	view	any	debug	output	your
kernel-mode	driver	made	up	to	the	time	of	a	crash.	If	your	driver	is
sufficiently	instrumented	with	debug	output,	then	this	feature	permits
users	that	experience	a	crash	using	your	driver	to	send	you	a	debug
output	file	instead	of	an	entire	memory	dump.	You	must	be	capturing
kernel-mode	debug	output	with	DebugView	at	the	time	of	crash	for	this
option	to	work.

Use	the	Edit|Process	Crash	menu	item	to	select	a	crash	dump	file	for
DebugView	to	analyze.	DebugView	will	process	the	file,	looking	for	its
debug	output	buffers.	If	it	finds	debug	output	in	the	crash	dump
DebugView	will	prompt	you	for	the	name	of	the	log	file	where	it	should
save	the	output.	You	can	load	saved	output	files	into	DebugView	for
viewing.

Remote	Monitoring	Startup
DebugView	has	advanced	remote	monitoring	capabilities	that	allow	you
to	view	debug	output	generated	on	remote	systems	from	a	central
location.	The	remote	systems	must	be	accessible	via	TCP/IP.	DebugView
lets	you	monitor	multiple	remote	systems	simultaneously,	using	a	hot-key
or	a	menu	selection	to	switch	between	them.	If	both	the	computer	you	are
running	the	DebugView	GUI	on	(the	server)	and	the	system	you	want	to
monitor	(the	client)	are	running	Windows	NT/2K,	and	they	are	in	the
same	Network	Neighborhood,	then	DebugView	will	automatically	install
its	client	software	on	the	client.	For	all	other	combinations	you	must
manually	install	and	start	DebugView’s	client	software	on	the	client.

Manual	Client	Startup

If	either	the	server	or	the	client	is	running	Windows	9x,	or	the	server	and
client	are	not	mutually	accessible	via	the	Windows	Network
Neighborhood,	then	you	must	manually	start	the	DebugView	client	on	the
client	computer.	To	do	this,	run	the	DebugView	program	on	the	client	and
specify	“/c”	as	a	command-line	argument:

dbgview	/c	[/t]	[/s]	[/e]	[/g]

The	DebugView	client	window	will	appear	and	indicate	that	it	is	waiting
for	a	connection	from	the	DebugView	server.

After	you	have	started	the	DebugView	client	use	the	Computer|Connect
menu	item	or	Ctrl+R	hot-key	sequence	of	the	DebugView	server	to	open
a	computer	connection	dialog.	In	the	dialog	enter	the	name	or	IP	address
of	the	client	computer.	If	the	client	computer	is	in	the	server’s	Network
Neighborhood	you	can	also	use	the	browse	button	in	the	dialog	to	open	a
view	of	the	Network	Neighborhood	and	visually	select	the	client
computer.

If	you	want	to	run	the	client	in	a	“headless”	mode,	specify	“/s”	(silent)	in
addition	to	the	“/c”	command-line	argument	when	you	start	the
DebugView	client.	This	will	cause	the	DebugView	client	to	not	display	a
window,	and	to	remain	active	until	the	current	user	logs	out,	silently
connecting	with	and	disconnecting	from	DebugView	servers.

Use	the	“/e”	option	when	starting	the	client	if	you	want	it	to	notify	you
when	server	connections	break.	When	a	server	connection	is	broken	and
this	switch	is	specified	you	must	close	the	notification	window	before	the
client	will	accept	further	connections.

The	"/t"	option	has	the	DebugView	client	run	in	the	tray.	The	client
presents	a	gray	tray	icon	when	there's	no	connection	to	a	server	and	a
colored	icon	when	a	server	is	connected.	You	can	open	the	client	window
by	double	clicking	the	tray	icon	and	store	it	back	in	the	tray	by	minimizing
the	client	window.

If	you	are	running	DebugView	from	a	non-console	login	on	a	system	with
Terminal	Services	you	can	direct	the	DebugView	client	to	capture	global
(console)	debug	output	with	the	/g	switch.

If	you	specify	“/?”	DebugView	will	tell	you	its	supported	command-line
options.

Automatic	Client	Startup

Automatic	startup	is	not	supported	on	the	Alpha.

If	both	the	client	and	server	are	running	Windows	NT/2K	and	are	in	the
same	Network	Neighborhood,	there	is	no	need	for	you	to	install	the
DebugView	client	on	the	client	computer.	Instead,	specify	the	client
computer	name	or	address	in	the	connection	dialog	as	you	would	if	you
were	connecting	to	a	manually	started	DebugView	client,	and	DebugView
will	automatically	install	and	start	the	DebugView	client	on	the	client
computer.	When	you	disconnect	from	the	client	DebugView	uninstalls	its
client	software	for	you.	In	case	you	want	to	clean	up	client	files	yourself
after	a	non-graceful	exit	of	the	server,	the	files	DebugView	installs	on	the
client	are	placed	in	<winnt>\system32	and	include	dbgvsvc.exe	and
dbgv.sys.

The	DebugView	server	will	always	attempt	an	automatic	install,	and	if
that	fails	it	falls	back	on	trying	to	connect	to	a	manually	installed	client.

Managing	Connection	Views
When	a	remote	capture	session	is	established	DebugView	creates	a	new
computer	view	for	the	session.	The	active	computer	view	is	the	one	that
has	captured	output	displayed	in	the	DebugView	GUI,	and	is	identified	on
the	DebugView	title	bar.	To	switch	from	one	computer	view	to	another
select	the	desired	view,	which	is	listed	by	computer	name,	in	the
Computer	menu.	Alternatively,	you	can	use	Ctrl+Tab	to	cycle	through	the
computer	views.

The	state	of	global	capture,	Win32	debug	capture,	kernel	capture,	and
pass-through	for	a	newly	established	remote	session	are	all	adopted	from
the	current	settings	of	the	local	view	(the	view	of	the	computer	on	which
the	DebugView	is	executing).	Changes	you	make	to	these	settings	only
apply	to	the	active	computer	view.

Disconnecting	a	Remote	Session

When	you	are	through	capturing	debug	output	from	a	remote	system,
make	the	view	for	the	computer	from	which	you	want	to	disconnect	the
active	view	and	then	use	the	Computer|Disconnect	menu	entry	to	close
the	session.

When	you	exit	DebugView	it	saves	the	state	of	the	local	view,	including
the	width	of	the	display	columns,	and	DebugView	applies	those	settings
the	next	time	you	start	it.

Managing	Multiple	Windows
DebugView	allows	you	to	open	multiple	DebugView	windows	on	the
same	computer,	allowing	you	to	capture	debug	output	from	different
computers	into	different	windows.	This	is	an	alternative	to	connecting	to
multiple	computers	from	the	same	DebugView	window,	and	is	desirable
when	you	wish	to	simultaneously	view	different	output	sources.

By	default,	when	you	start	the	first	DebugView	window	on	a	computer	it
connects	with	the	local	computer.	This	means	that	it	captures	and
displays	any	debug	output	generated	on	the	computer.	You	can	open	a
second	instance	of	DebugView	either	by	starting	it	again,	or	by	selecting
the	File|New	Window	menu	entry.

You	can	use	the	Computer|Connect	Local	menu	entry	to	connect
DebugView	to	the	local	computer,	and	choose	the
Computer|Disconnect	menu	entry	to	disconnect	from	the	local
computer	when	it	is	selected	as	the	active	computer	view	within	a
DebugView	window.	Note	that	only	one	DebugView	instance	can	be
connected	to	any	computer	at	a	given	time.

If	you	start	a	new	DebugView	window	by	executing	the	program	again
the	configuration	settings	DebugView	uses	reflect	those	of	the	last
DebugView	window	that	was	closed.	If	you	start	a	new	DebugView
window	using	the	File|New	Window	menu	entry,	the	configuration
settings	are	adopted	from	the	window	in	which	you	select	the	menu	item.

Reporting	Problems
If	you	encounter	a	problem	while	running	DebugView,	please	visit	the
Sysinternals	web	site	(www.sysinternals.com)	to	see	if	an	update	has
been	released	that	might	correct	the	bug.	If	the	problem	has	not	been
fixed,	please	submit	a	thorough	report	of	the	problem,	including
information	on	your	system	configuration	and	details	on	how	to	reproduce
the	problem,	to:

mark@sysinternals.com

http://www.sysinternals.com
mailto:mark@sysinternals.com

