
Debug	Help	Library
This	overview	describes	the	function	set	provided	by	the	debug	help
library,	DbgHelp.	It	contains	a	set	a	debugging	support	routines	that	allow
you	to	work	with	executable	images	in	the	portable	executable	(PE)
format.

The	DbgHelp	documentation	is	as	follows:

About	DbgHelp

Using	DbgHelp

DbgHelp	Reference

To	obtain	the	latest	version	of	DbgHelp.dll,	go	to
http://www.microsoft.com/whdc/devtools/debugging/default.mspx	and
download	Debugging	Tools	for	Windows.

For	a	description	of	the	PE	format,	download	the	specification	from	the
following	location:
http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx

For	information	on	how	to	browse	information	found	in	.pdb	files,	see	the
Debug	Interface	Access	SDK.

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

Http://go.microsoft.com/FWLink/?LinkId=84137
Http://go.microsoft.com/FWLink/?LinkId=84140
Http://go.microsoft.com/FWLink/?LinkId=83974
mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20Debug Help Library%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

About	DbgHelp
The	following	topics	describe	symbol	files	and	the	functionality	provided
by	the	DbgHelp	functions.

DbgHelp	Versions

Symbol	Files

Symbol	Handling

Symbol	Servers	and	Symbol	Stores

Minidump	Files

Source	Server

Updated	Platform	Support

Note	that	all	DbgHelp	functions	are	single	threaded.	Therefore,	calls	from
more	than	one	thread	to	this	function	will	likely	result	in	unexpected
behavior	or	memory	corruption.	To	avoid	this,	you	must	synchronize	all
concurrent	calls	from	more	than	one	thread	to	this	function.

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20About DbgHelp%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

DbgHelp	Versions
The	DbgHelp	library	is	implemented	by	DbgHelp.dll.	This	DLL	is	included
in	the	operating	system.	To	use	this	DLL	on	earlier	systems,	you	can
distribute	the	DLL	with	your	application.	To	obtain	the	latest	version	of
DbgHelp.dll,	go	to
http://www.microsoft.com/whdc/devtools/debugging/default.mspx	and
download	Debugging	Tools	for	Windows.

Each	version	of	DbgHelp	includes	additional	functionality.	To	ensure	that
the	correct	version	of	DbgHelp	is	available	for	your	application,	review
the	Requirements	information	in	the	documentation	of	the	functions	it
uses.

Supported	Versions

The	following	is	a	summary	of	the	released	versions	of	DbgHelp,	in
reverse	chronological	order.

Version Date	stamp Distribution	Vehicle
6.8 10/07/2007 Debugging	Tools	for	Windows	6.8

6.6 7/10/2006 Debugging	Tools	for	Windows	6.6

6.5 5/24/2005 Debugging	Tools	for	Windows	6.5

6.4 1/10/2005 Debugging	Tools	for	Windows	6.4

6.3 5/24/2004 Debugging	Tools	for	Windows	6.3

6.2 7/11/2003 Debugging	Tools	for	Windows	6.2

5.2 3/25/2003 Windows	Server	2003

6.1 Debugging	Tools	for	Windows	6.1

6.0 Debugging	Tools	for	Windows	6.0

4.0 Debugging	Tools	for	Windows	4.0

5.1 Windows	XP

3.0 Debugging	Tools	for	Windows	3.0

2.0 Debugging	Tools	for	Windows	2.0

Http://go.microsoft.com/FWLink/?LinkId=84137

1.0 Debugging	Tools	for	Windows	1.0

5.0 Windows	2000

Version	6.8

The	following	functions	were	added	to	DbgHelp	version	6.8.

OMAP
SymAddSourceStream
SymGetOmaps
SymGetSourceVarFromToken

Version	6.6

The	following	functions	were	added	to	DbgHelp	version	6.6.

SymFindDebugInfoFile
SymFindExecutableImage
SymSrvGetFileIndexInfo

Version	6.5

The	following	function	was	added	to	DbgHelp	version	6.5.

SymRefreshModuleList

The	following	structures	were	added	to	DbgHelp	version	6.5.

MINIDUMP_HANDLE_DESCRIPTOR_2
MINIDUMP_HANDLE_OBJECT_INFORMATION
MINIDUMP_HANDLE_OPERATION_LIST
MINIDUMP_IO_CALLBACK
MINIDUMP_MISC_INFO_2
MINIDUMP_READ_MEMORY_FAILURE_CALLBACK

Version	6.4

The	following	function	was	added	to	DbgHelp	version	6.4.

SymEnumSourceLines

Version	6.3

DbgHelp	version	6.3	adds	Unicode	support	to	many	of	the	existing
functions.	To	enable	this	support,	define
DBGHELP_TRANSLATE_TCHAR	at	the	top	of	each	source	file	or	when
you	compile	your	application.

The	following	functions	were	added	to	DbgHelp	version	6.3.

SymEnumProcesses
SymGetSymbolFile
SymGetTypeInfoEx
SymSrvDeltaName
SymSrvGetFileIndexes
SymSrvGetFileIndexString
SymSrvGetSupplement
SymSrvIsStore
SymSrvStoreFile
SymSrvStoreSupplement

The	following	structures	were	added	to	DbgHelp	version	6.3.

MINIDUMP_MEMORY_INFO
MINIDUMP_MEMORY_INFO_LIST
MINIDUMP_THREAD_INFO
MINIDUMP_THREAD_INFO_LIST

DbgHelp	6.3	also	supports	Source	Server.

Version	6.2

The	following	functions	were	added	to	DbgHelp	version	6.2.

SymEnumSourceFiles
SymFromIndex
SymGetScope
SymGetSourceFile
SymGetSourceFileFromToken
SymGetSourceFileToken
SymMatchString
SymNext
SymPrev

SymSearch

Version	6.1

The	following	functions	were	added	to	DbgHelp	version	6.1.

SymEnumLines
SymFromToken
SymGetHomeDirectory
SymSetHomeDirectory

Versions	5.2	and	6.0

The	following	functions	were	added	to	DbgHelp	versions	5.2	and	6.0.

EnumDirTree
SymAddSymbol
SymDeleteSymbol
SymEnumSymbolsForAddr
SymLoadModuleEx
SymSetParentWindow

The	following	structures	were	added	to	DbgHelp	version	5.2	and	6.0.

MINIDUMP_MISC_INFO
MINIDUMP_UNLOADED_MODULE
MINIDUMP_UNLOADED_MODULE_LIST
MODLOAD_DATA

Versions	4.0	and	5.1

The	following	functions	were	added	to	DbgHelp	versions	4.0	and	5.1.

MiniDumpReadDumpStream
MiniDumpWriteDump
SymbolServer
SymbolServerClose
SymbolServerGetOptions
SymbolServerSetOptions
SymEnumSymbols
SymEnumTypes
SymFindFileInPath

SymFromAddr
SymFromName
SymGetFileLineOffsets64
SymGetTypeFromName
SymGetTypeInfo
SymSetContext

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20DbgHelp Versions%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

Symbol	Files
A	symbol	file	contains	the	same	debugging	information	that	an
executable	file	would	contain.	However,	the	information	is	stored	in	a
debug	(.dbg)	file	or	a	program	database	(.pdb),	rather	than	the
executable	file.	Therefore,	you	can	install	only	the	symbol	files	you	will
need	during	debugging.	This	reduces	the	file	size	of	the	executable,
saving	load	time	and	disk	storage.

Debuggers	can	determine	whether	an	executable	file	or	DLL	contains
debugging	information	by	searching	for	the
IMAGE_FILE_DEBUG_STRIPPED	characteristic.	If	this	characteristic	is
present,	the	debugging	information	exists	in	a	symbol	file.

To	create	a	.dbg	file,	build	your	executable	file	with	debugging	information
according	to	the	directions	for	your	build	tools.	Next,	use	the
SplitSymbols	function.	The	resulting	.dbg	file	uses	the	PE	format.
To	create	a	.pdb	file,	build	your	executable	file	with	debugging	information
according	to	the	directions	for	your	build	tools.

The	operating	system	dynamic-link	libraries	(DLL)	have	associated
symbol	files.	These	.pdb	files	are	not	installed	during	installation.	To
install	the	system	symbol	files,	create	a	directory	on	your	hard	disk,	and
copy	the	files	from	your	system	installation	compact	disc	(CD).	The
symbol	files	are	located	in	the	SUPPORT\DEBUG\I386\SYMBOLS
directory	tree.

To	work	with	the	symbolic	debugging	information	contained	in	a	symbol
file,	use	the	symbol	handling	functions.

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20Symbol Files%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

Symbol	Handling
The	symbol	handler	functions	give	applications	easy	and	portable	access
to	the	symbolic	debugging	information	of	an	image.	These	functions
should	be	used	exclusively	to	ensure	access	to	symbolic	information.
This	is	necessary	because	these	functions	isolate	the	application	from
the	symbol	format.

For	more	information,	see	the	following	topics:

Symbol	Handler	Initialization

Symbol	Paths

Symbol	Loading

Deferred	Symbol	Loading

Decorated	Symbol	Names

Finding	Symbols

Symbol	Handler	Cleanup

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20Symbol Handling%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

Symbol	Handler	Initialization
The	symbol	handler	is	designed	to	track	various	sets	of	symbol	files.

To	initialize	the	symbol	handler,	call	the	SymInitialize	function.	The
hProcess	parameter	can	be	a	unique	arbitrary	number,	a	value	returned
from	the	GetCurrentProcess	function,	or	the	identifier	of	any	running
process.	The	fInvadeProcess	parameter	indicates	whether	the	symbol
handler	should	enumerate	the	modules	loaded	by	the	process	and	load
symbols	for	each	of	its	modules.	If	fInvadeProcess	is	TRUE,	the
hProcess	parameter	must	be	the	value	returned	from
GetCurrentProcess	or	the	identifier	of	an	existing	process.	To	refresh
this	list,	use	the	SymRefreshModuleList	function.
Using	fInvadeProcess	is	a	simple	way	to	load	all	symbol	files	for	a
process.	However,	the	symbol	handler	will	not	attempt	to	load	symbols
for	modules	subsequently	loaded	by	the	LoadLibrary	function.	You	must
use	the	SymLoadModuleEx	function	in	this	case.
Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20Symbol Handler Initialization%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

Symbol	Paths
The	library	uses	the	symbol	search	path	to	locate	debug	symbols	(.dbg
file)	for	.dll,	.exe,	and	.sys	files	by	appending	"\symbols"	and	"\dll"	or
"\exe"	or	"\sys"	to	the	path.	For	example,	the	typical	location	of	symbol
files	for	.dll	files	is	c:\mysymbols\symbols\dll.	For	.exe	files,	the	location	is
c:\mysymbols\symbols\exe.

To	specify	where	the	symbol	handler	will	search	disk	directories	for
symbol	files,	call	the	SymSetSearchPath	function.	Alternatively,	you	can
specify	a	symbol	search	path	in	the	UserSearchPath	parameter	of	the
SymInitialize	function.
The	UserSearchPath	parameter	in	SymInitialize	and	the	SearchPath
parameter	in	SymSetSearchPath	take	a	pointer	to	a	null-terminated
string	that	specifies	a	path,	or	series	of	paths	separated	by	a	semicolon.
The	symbol	handler	uses	these	paths	to	search	for	symbol	files.	If	this
parameter	is	specified	as	a	non-null	value,	the	symbol	handler	searches
only	the	paths	set	by	the	application.	If	this	parameter	is	NULL,	the
symbol	handler	first	searches	the	current	working	directory	of	the
application,	then	the	system	root	directory	(%windir%).	If	you	set	the
_NT_SYMBOL_PATH	or	_NT_ALT_SYMBOL_PATH	environment
variable,	the	symbol	handler	searches	for	symbol	files	in	the	following
order:

1.	 The	current	working	directory	of	the	application.

2.	 The	_NT_SYMBOL_PATH	environment	variable.

3.	 The	_NT_ALT_SYMBOL_PATH	environment	variable.

To	retrieve	the	search	paths,	call	the	SymGetSearchPath	function.
The	search	path	for	program	database	(.pdb)	files	is	different	than	the
path	for	debug	(.dbg)	files.	The	algorithm	is	determined	by	the
functionality	of	the	symbol	library.	By	default,	Microsoft	Visual	C/C++
creates	Microsoft	format	symbols,	strips	them	from	the	image,	and	places
them	in	a	separate	.pdb	file.	Typically,	the	.pdb	file	will	be	located	in	the
directory	that	contains	the	executable	image.	Visual	C/C++	embeds	the
absolute	path	to	the	.pdb	file	in	the	executable	image.	If	the	symbol

handler	cannot	find	the	.pdb	file	in	that	location	or	if	the	.pdb	file	was
moved	to	another	directory,	the	symbol	handler	will	locate	the	.pdb	file
using	the	search	path	described	for	.dbg	files.

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20Symbol Paths%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

Symbol	Loading
The	symbol	handler	will	load	symbols	when	you	call	the	SymInitialize
function	with	the	fInvadeProcess	parameter	set	to	TRUE	or	when	you	call
the	SymLoadModuleEx	function	to	specify	a	module.	In	either	case,	the
symbol	handler	either	loads	the	symbols	or	defers	symbol	loading	until
symbols	are	requested,	depending	on	the	options	set	by	the
SymSetOptions	function.
The	symbol	handler	can	be	used	to	retrieve	symbolic	information	for	any
module;	it	does	not	need	to	be	associated	with	a	process	specified	in	the
SymInitialize	call.	To	use	an	arbitrary	module,	specify	the	full	path	to	the
module	image	in	the	ImageName	parameter.	You	can	use	a	path	to	any
executable	module	that	has	debugging	information	(.exe,	.dll,	.drv,	.sys,
.scr,	.cpl,	or	.com).	Use	the	BaseOfDll	parameter	to	specify	any	load
address,	then	symbol	addresses	will	be	based	from	that	address.

It	may	not	be	necessary	to	keep	a	symbol	module	loaded	through	the
duration	of	an	application.	To	release	the	symbol	module	from	the	symbol
handler's	list	of	modules,	use	the	SymUnloadModule64	function.	This
function	releases	the	memory	allocated	for	the	symbol	module.	To	use
symbols	for	that	module	again,	you	must	call	the	SymLoadModuleEx
function	even	if	the	symbol	deferred	load	option	is	set.

Diagnosing	Symbol	Load	Problems

To	view	all	attempts	to	load	symbols,	call	SymSetOptions	with
SYMOPT_DEBUG.	This	causes	DbgHelp	to	call	the	OutputDebugString
function	with	detailed	information	on	symbol	searches,	such	as	the
directories	it	is	searching	and	and	error	messages.	If	your	code	uses
SymRegisterCallback64,	DbgHelp	will	call	your	callback	function
instead	of	calling	OutputDebugString.	The	ActionCode	parameter	is	set
to	CBA_DEBUG_INFO	and	the	CallbackData	parameter	is	a	string	that
can	be	displayed.

To	enable	this	debug	output	to	be	displayed	to	the	console	without
changing	your	source	code,	set	the	DBGHELP_DBGOUT	environment
variable	to	a	non-NULL	value	before	calling	the	SymInitialize	function.	To
log	the	information	to	a	file,	set	the	DBGHELP_LOG	environment

variable	to	the	name	of	the	log	file	to	be	used.

Note	that	these	features	should	be	used	only	when	needed.	They	may
slow	down	symbol	loading	of	modules	that	contain	many	symbols.

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20Symbol Loading%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

Deferred	Symbol	Loading
To	conserve	time	and	memory	when	working	with	many	symbol	files,	use
the	SymSetOptions	function	to	set	the	deferred	symbol	loading
(SYMOPT_DEFERRED_LOADS)	option,	then	use	the
SymLoadModuleEx	or	SymInitialize	function	to	load	symbols	deferred
for	all	modules.	The	symbol	handler	will	list	symbols	that	are	available	for
the	modules,	but	will	not	map	the	debug	information	into	memory	until	it
is	requested.	This	is	the	preferred	method	to	efficiently	use	debugging
symbols.	All	functions	that	use	symbols	are	affected	by	deferred	symbol
loading.

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20Deferred Symbol Loading%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

Decorated	Symbol	Names
A	decorated	symbol	name	includes	characters	that	distinguish	how	a
public	symbol	has	been	declared.	For	__stdcall	functions,	names	include
the	"@"	character	and	a	decimal	number	that	specifies	the	number	of
bytes	in	its	function	parameters.	For	example,	the	decorated	name	of	the
LoadLibrary	function	is	LoadLibrary@4.	For	C++	functions	the	name
decoration	is	more	complex	and	varies	from	compiler	to	compiler.

To	retrieve	the	undecorated	symbol	name,	use	the
UnDecorateSymbolName	function.	Alternatively,	you	can	call	the
SymSetOptions	function	to	request	that	the	symbol	handler	always
present	symbols	with	undecorated	names.	You	must	set	this	option
before	loading	the	symbols	because	the	symbol	handler	creates	the
symbol	name	tables	at	load	time.

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20Decorated Symbol Names%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

Finding	Symbols
After	a	symbol	file	has	been	loaded	into	the	symbol	handler,	an
application	can	use	the	symbol	locator	functions	to	return	symbol
information	for	a	specified	address.	These	functions	can	also	find	a
source	code	file	name	and	line	number	location	for	an	address.

Enumerating	Symbol	Files

To	retrieve	a	list	of	all	symbol	files	loaded	by	module	name,	call	the
SymEnumerateModules64	function.	For	an	example,	see	Enumerating
Symbol	Modules.	To	retrieve	a	list	of	symbols	for	a	given	module,	call	the
SymEnumSymbols	function.	For	an	example,	see	Enumerating
Symbols.

Retrieving	Symbols	by	Address

To	retrieve	symbolic	information	for	a	specific	address,	use	the
SymFromAddr	function.	This	function	retrieves	information	and	stores	it
in	a	SYMBOL_INFO	structure.	Because	symbol	names	are	variable	in
length,	you	must	provide	additional	buffer	space	following	the
SYMBOL_INFO	structure	declaration.	For	an	example,	see	Retrieving
Symbol	Information	by	Address.

Note	that	the	address	does	not	need	to	be	on	a	symbol	boundary.	If	the
address	comes	after	the	beginning	of	a	symbol	but	before	the	end	of	the
symbol	(the	beginning	of	the	symbol	plus	the	symbol	size),	the	function
will	locate	the	symbol.

Retrieving	Symbols	by	Symbol	Name

To	retrieve	symbolic	information	in	a	SYMBOL_INFO	structure	for	a
specific	module	and	symbol	name,	use	the	SymFromName	function.	If
deferred	symbol	loading	is	set,	SymFromName	will	attempt	to	load	the
symbol	file	for	a	module	if	it	has	not	already	been	loaded.	To	specify	a
module	name	along	with	a	symbol	name,	use	the	syntax
Module!SymName.	The	"!"	character	delimits	the	module	name	from	the
symbol	name.	For	an	example,	see	Retrieving	Symbol	Information	by
Name.

Retrieving	Line	Numbers	by	Address

To	retrieve	the	source	code	location	for	a	specific	address,	use	the
SymGetLineFromAddr64	function.	This	function	fills	an
IMAGEHLP_LINE64	structure	that	includes	the	source	file	name	and	line
number	location	referred	to	by	the	specified	address.	For	an	example,
see	Retrieving	Symbol	Information	by	Address.

Retrieving	Line	Numbers	by	Symbol	Name

To	retrieve	source	code	location	for	a	specific	symbol	name,	use	the
SymGetLineFromName64	function.	This	function	is	similar	to
SymGetSymFromName64,	but	retrieves	an	IMAGEHLP_LINE64
structure.	To	use	SymGetLineFromAddr64	or
SymGetLineFromName64,	you	must	set	the	load	lines	option
(SYMOPT_LOAD_LINES)	using	the	SymSetOptions	function.	For	an
example,	see	Retrieving	Symbol	Information	by	Name.

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20Finding Symbols%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

Public,	Global,	and	Local	Symbols
The	symbol	handling	capabilities	of	the	DbgHelp	API	have	evolved	over
the	years.	To	ensure	that	your	code	works	in	a	variety	of	scenarios	and
provides	full	details	on	the	symbols,	use	the	newest	functions	whenever
possible.	For	example,	SymEnumSymbols	replaces
SymEnumerateSymbols64,	SymFromName	replaces
SymGetSymFromName64,	and	SymFromAddr	replaces
SymGetSymFromAddr64.

Public	Symbols

Initial	versions	of	DbgHelp.dll	supported	examining	only	public	symbols.
These	symbols	are	generated	for	any	item	in	the	code	that	must	be
exposed	between	different	source	files.	They	also	include	all	items	that
are	exported	out	of	the	module.

The	symbols	are	either	embedded	in	the	image,	or	stored	separately	in	a
.dbg	or	.pdb	file.	The	only	information	stored	is	the	symbol	name	and
address.	The	names	are	available	as	decorated	names.	To	view
undecorated	names,	call	the	SymSetOptions	function	with
SYMOPT_UNDNAME,	or	use	the	UnDecorateSymbolName	function.
Note	that	the	DbgHelp	API	was	not	initially	designed	to	support	multiple
instances	of	the	same	symbol	within	a	module.	This	is	because	public
symbols	are	restricted	to	unique	names	within	a	module.	Therefore,
SymGetSymFromName64	returns	only	the	first	symbol	that	matches.	To
retrieve	all	symbols	that	match,	call	SymEnumSymbols.

Global	and	Local	Symbols

Newer	versions	of	DbgHelp.dll	support	global	and	local	symbols	when
using	.pdb	files.	These	new	versions	include	static	functions,	functions
scoped	within	a	source	file,	function	parameters,	and	local	variables.
When	DbgHelp	searches	for	a	symbol,	it	checks	the	global	and	local
symbol	tables	before	checking	the	public	symbol	table.	This	is	because
there	is	more	information	available	for	these	types	of	symbols	than	is
available	for	public	symbols.

Global	and	local	symbols	are	stored	with	undecorated	names.	Therefore,

the	SYMOPT_UNDNAME	flag	has	no	effect.	To	get	decorated	symbol
names,	you	must	use	the	SYMOPT_PUBLICS_ONLY	flag.	This	causes
DbgHelp	to	search	only	the	public	symbols.

To	view	local	symbols	or	function	parameters,	call	the	SymSetContext
function	with	the	InstructionOffset	member	of	the
IMAGEHLP_STACK_FRAME	structure	set	to	the	address	of	any	function
symbol.	Subsequent	calls	to	SymFromName	and	SymEnumSymbols
can	operate	within	the	context	of	this	address.	To	do	so,	set	the
BaseOfDll	parameter	to	NULL	and	omit	the	module	specifier	from	the
Name	or	Mask	parameter.	This	forces	DbgHelp	to	search	for	matching
symbols	within	the	scope	indicated	by	SymSetContext.
To	determine	if	a	symbol	is	a	parameter,	check	the	Flags	member	of	the
SYMBOL_INFO	structure.	If	the	symbol	is	a	parameter,	the	member
contains	SYMFLAG_PARAMETER.	If	it	is	a	local	symbol,	the	member
contains	SYMFLAG_LOCAL.

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20Public, Global, and Local Symbols%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

Symbol	Handler	Cleanup
To	free	all	the	memory	used	by	the	symbol	handler	for	a	process,	use	the
SymCleanup	function.	This	function	enumerates	all	loaded	modules,
frees	each	module,	and	frees	the	memory	allocated	for	the	list	of
modules.	After	you	call	SymCleanup,	you	cannot	use	the	process	handle
in	the	symbol	handling	functions	until	you	call	the	SymInitialize	function.
Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20Symbol Handler Cleanup%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

Symbol	Servers	and	Symbol	Stores
To	set	up	symbols	correctly	for	debugging	can	be	a	challenging	task,
particularly	for	kernel	debugging.	It	often	requires	that	you	know	the
names	and	releases	of	all	products	on	your	computer.	The	debugger
must	be	able	to	locate	the	symbol	files	that	correspond	to	each	product
release	and	service	pack.	This	can	result	in	an	extremely	long	symbol
path	consisting	of	a	long	list	of	directories.

To	simplify	these	difficulties	in	coordinating	symbol	files,	use	the	symbol
server.	The	symbol	server	enables	the	debuggers	to	automatically
retrieve	the	correct	symbol	files	without	product	names,	releases,	or	build
numbers.	Debugging	Tools	for	Windows	contains	the	SymSrv	symbol
server.

The	symbol	server	is	activated	by	including	a	certain	text	string	in	the
symbol	path.	Each	time	the	debugger	needs	to	load	symbols	for	a	newly
loaded	module,	it	calls	the	symbol	server	to	locate	the	appropriate
symbol	files.	The	symbol	server	locates	the	files	in	a	symbol	store.	This	is
a	collection	of	symbol	files,	an	index,	and	a	tool	that	can	be	used	by	an
administrator	to	add	and	delete	files.	The	files	are	indexed	according	to
unique	parameters	such	as	the	time	stamp	and	image	size.	Debugging
Tools	for	Windows	contains	a	symbol	store	tool	called	SymStore.

For	more	information,	see:

Using	SymSrv

Using	SymStore

Using	Other	Symbol	Stores

SymStore	Command-Line	Options

Symbol	Servers	and	Internet	Firewalls

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20Symbol Servers and Symbol Stores%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

©	2007	Microsoft	Corporation.	All	rights	reserved.

Using	SymSrv
The	SymSrv	(symsrv.dll)	symbol	server	is	included	in	the	Debugging
Tools	for	Windows	package.	It	must	be	installed	in	the	same	directory	as
the	copy	of	Dbghelp.dll	that	you	are	loading.	To	ensure	that	you	load	the
correct	version	of	Dbghelp.dll,	delay-load	the	DLL	instead	of	having	the
operating	system	load	it.	Be	sure	to	specify	a	full	path	to	Dbghelp.dll
when	calling	the	LoadLibrary	function.
SymSrv	delivers	symbol	files	from	a	centralized	symbol	store.	This	store
can	contain	any	number	of	symbol	files,	corresponding	to	any	number	of
programs	or	operating	systems.	The	store	can	also	contain	binary	files
(this	is	useful	when	debugging	minidump	files).

The	store	can	contain	the	actual	symbol	and	binary	files,	or	it	can	simply
contain	pointers	to	symbol	files.	If	the	store	contains	pointers,	SymSrv	will
retrieve	the	actual	files	directly	from	their	sources.

SymSrv	can	also	separate	a	large	symbol	store	into	a	smaller	subset	that
is	appropriate	for	a	specialized	debugging	task.

Finally,	SymSrv	can	obtain	symbol	files	from	an	HTTP	or	HTTPS	source
using	the	logon	information	provided	by	the	operating	system.	SymSrv
supports	HTTPS	sites	protected	by	smartcards,	certificates,	and	regular
logins	and	passwords.

Setting	the	Symbol	Path

The	symbol	path	(_NT_SYMBOL_PATH	environment	variable)	can
include	several	directories	separated	by	semicolons	for	SymSrv	to	use	to
locate	symbol	files.	This	path	can	also	include	symbol	stores	using	the
following	syntax:

symsrv*ServerDLL*DownstreamStore*\\Server\Share
symsrv*ServerDLL*\\Server\Share
srv*DownstreamStore*\\Server\Share
srv*DownstreamStore1*DownstreamStoreN*\\Server\Share
srv*\\Server\Share
srv**\\Server\Share
srv**\\Server\Share*http://InternetSite

The	following	table	describes	elements	of	this	syntax.

Field Description
symsrv Indicates	to	the	debugger	that	this	item	is	a

symbol	server,	not	just	a	normal	symbol	directory.

ServerDLL The	name	of	the	symbol	server	DLL.	If	you	are
using	the	SymSrv	symbol	server,	this	will	always
be	Symsrv.dll.

srv* Same	as	symsrv*symsrv.dll.

srv** Same	as	symsrv*symsrv.dll	plus	the	default
downstream	store,	which	is	set	using
SymSetHomeDirectory.

DownstreamStore1
to
DownstreamStore10

A	series	of	one	to	ten	local	directories	or	network
shares	that	will	be	used	to	cache	individual
symbol	files.	If	a	directory	does	not	exist,
SymStore	will	attempt	to	create	it.

For	performance	reasons,	it	is	a	good	idea	to
make	the	first	downstream	store	specified	a	local
directory.

\\Server\Share The	server	and	share	of	the	master	symbol	store.

<empty	field> An	empty	field	(either	**	or	a	terminating	asterisk)
indicates	the	default	downstream	store.

If	a	downstream	store	is	not	included,	the	debugger	will	load	all	symbol
files	from	the	specified	server	and	share.

If	a	downstream	store	is	included,	the	debugger	will	first	look	for	a	symbol
file	in	this	location.	If	the	symbol	file	is	not	found,	the	debugger	will	locate
the	symbol	file	from	the	specified	server	and	share	and	copy	this	file	to
the	downstream	store.	The	file	will	be	copied	to	a	subdirectory	in	the	tree
under	DownstreamStore	which	corresponds	to	its	location	in	the	tree
under	\\Server\Share.

Instead	of	specifying	the	directory	for	the	downstream	store	in	the	symbol
path,	you	can	call	SymbolServerSetOptions	with
SSRVOPT_DOWNSTREAM_STORE	to	set	the	downstream	store,	then

use	the	shortened	syntax	srv**\\Server\Share.

For	example,	to	use	SymSrv	as	the	symbol	server	with	a	symbol	store	on
\\mybuilds\mysymbols,	set	the	following	symbol	path:

set	_NT_SYMBOL_PATH=	srv*\\mybuilds\mysymbols
To	set	the	symbol	path	so	that	the	debugger	will	copy	symbol	files	from	a
symbol	store	on	\\mybuilds\mysymbols	to	your	local	directory
c:\localsymbols,	use:

set
_NT_SYMBOL_PATH=srv*c:\localsymbols*\\mybuilds\mysymbols
To	use	a	cascading	store,	set	the	following	symbol	path:

set	_NT_SYMBOL_PATH	=
srv*c:\localsymbols*\\server\store*\\mybuilds\mysymbols
In	this	example,	SymSrv	first	looks	for	the	file	in	c:\localsymbols.	If	it	is
found	there,	it	will	return	a	path	to	the	file.	Otherwise,	SymSrv	looks	for
the	file	in	\\server\store.	If	it	is	found	there,	SymSrv	copies	the	file	to
c:\localsymbols	and	returns	a	path	to	the	file.	Otherwise,	SymSrv	looks
for	the	file	in	\\mybuilds\mysymbols.	If	it	is	found	there,	SymSrv	copies
the	file	to	\\server\store,	then	to	c:\localsymbols.

Compressed	Files

SymSrv	is	compatible	with	symbol	stores	that	contain	compressed	files,
as	long	as	this	compression	has	been	done	with	the	Compress.exe	tool
that	was	distributed	with	the	Windows	Server	2003	Resource	Kit.
Compressed	files	should	have	an	underscore	as	the	last	character	in
their	file	extensions	(for	example,	module1.pd_	or	module2.db_).	For
details,	see	Using	SymStore.

Files	are	not	uncompressed	unless	the	target	store	is	the	bottom-most
store	in	the	path.

DbgHelp	6.1	and	earlier.:		If	the	files	in	the	master
store	are	compressed,	you	must	use	a	downstream
store.	SymSrv	will	uncompress	all	files	before	copying
them	to	the	downstream	store.

Deleting	the	Cache

If	you	are	using	a	downstream	store	as	a	cache,	you	can	delete	this
directory	at	any	time	to	save	disk	space.

It	is	possible	to	have	a	vast	symbol	store	that	includes	symbol	files	for
many	different	programs	or	Windows	versions.	If	you	upgrade	the	version
of	Windows	used	on	your	target	computer,	the	cached	symbol	files	will	all
match	the	earlier	version.	These	cached	files	will	not	be	of	any	further
use,	and	therefore	this	might	be	a	good	time	to	delete	the	cache.

Downstream	Stores

A	downstream	store	can	be	useful	in	an	environment	where	the	symbols
are	located	in	a	distant	location	on	a	potentially	slow	network.	A	group	of
users	can	create	a	common	downstream	store	that	is	physically	close	to
them,	so	that	the	slow	file	access	occurs	only	the	first	time	the	symbol	is
accessed	and	copied	to	the	downstream	store.	It	is	not	necessary	to
specify	a	downstream	store	unless	you	are	accessing	symbols	from	an
HTTP	or	HTTPS	site	or	using	compressed	files	on	your	store.

It	is	possible	to	declare	the	default	downstream	store	as	a	flat	directory,
rather	than	a	standard	symbol	tree	structure.	To	do	so,	call	the
SymSetOptions	function	with	SYMOPT_FLAT_DIRECTORY	(this	also
sets	the	SSRVOPT_FLAT_DEFAULT_STORE	option	in	SymSrv).	Be
sure	to	call	SymSetHomeDirectory	before	doing	so;	otherwise,	the
symbol	files	can	be	written	to	the	program	directory.

Pointer	Files

SymStore	can	create	and	use	files	that	point	to	a	target	file	rather	than
the	target	file	itself.	If	a	symbol	store	contains	such	a	pointer	file,	the
default	is	to	copy	the	file	from	the	location	indicated	in	the	pointer	file	to
the	store.	To	configure	a	store	such	that	the	pointer	file	is	copied	instead
of	the	file	it	points	to,	create	a	file	named	Wantsptr.txt	in	the	root	of	the
target	store.	The	contents	of	Wantsptr.txt	are	not	important,	only	the
presence	of	the	file.

How	SymSrv	Locates	Files

SymSrv	creates	a	fully-qualified	UNC	path	to	the	desired	symbol	file.	This

path	begins	with	the	path	to	the	symbol	store	recorded	in	the
_NT_SYMBOL_PATH	environment	variable.	The	SymbolServer	routine
is	then	used	to	identify	the	name	of	the	desired	file;	this	name	is
appended	to	the	path	as	a	directory	name.	Another	directory	name,
consisting	of	the	concatenation	of	the	id,	two,	and	three	parameters
passed	to	SymbolServer,	is	then	appended;	if	any	of	these	values	are
zero,	they	are	omitted.

The	resulting	directory	is	searched	for	the	symbol	file,	or	a	symbol	store
pointer	file.

If	this	search	is	successful,	the	path	is	passed	to	the	caller	and	TRUE	is
returned.	If	the	file	is	not	found,	FALSE	is	returned.

Excluding	Files	from	Symbols	List

To	exclude	files	from	a	symbols	search,	you	can	specify	their	names	in
Symsrv.ini	or	in	the	registry.	To	specify	the	files	in	Symsrv.ini,	create	a
section	named	Exclusions	and	list	the	files.	The	file	names	can	contain
wildcards,	as	shown	in	the	following	example:

[Exclusions]

dbghelp.pdb

symsrv.*

mso*

Alternatively,	you	can	store	the	files	to	be	excluded	in	the	registry.	Create
the	following	registry	key:
HKEY_LOCAL_MACHINE\Sofware\Microsoft\Symbol
Server\Exclusions.	Store	each	file	name	as	a	string	value	(REG_SZ)
within	this	key.	The	name	of	the	string	value	specifies	the	name	of	the	file
to	be	excluded.	You	can	use	the	contents	of	the	string	value	to	store	a
comment	describing	why	the	file	is	being	excluded.

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20Using SymSrv%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

©	2007	Microsoft	Corporation.	All	rights	reserved.

Using	SymStore
SymStore	(symstore.exe)	is	a	tool	for	creating	symbol	stores.	It	is
included	in	the	Debugging	Tools	for	Windows	package.

SymStore	stores	symbols	in	a	format	that	enables	the	debugger	to	look
up	the	symbols	based	on	the	time	stamp	and	size	of	the	image	(for	a
.dbg	or	executable	file),	or	signature	and	age	(for	a	.pdb	file).	The
advantage	of	the	symbol	store	over	the	traditional	symbol	storage	format
is	that	all	symbols	can	be	stored	or	referenced	on	the	same	server	and
retrieved	by	the	debugger	without	any	prior	knowledge	of	which	product
contains	the	corresponding	symbol.

Note	that	multiple	versions	of	.pdb	symbol	files	(for	example,	public	and
private	versions)	cannot	be	stored	on	the	same	server,	because	they
each	contain	the	same	signature	and	age.

SymStore	Transactions

Every	call	to	SymStore	is	recorded	as	a	transaction.	There	are	two	types
of	transactions:	add	and	delete.

When	the	symbol	store	is	created,	a	directory,	called	"000admin",	is
created	under	the	root	of	the	server.	The	000admin	directory	contains
one	file	for	each	transaction,	as	well	as	the	log	files	Server.txt	and
History.txt.	The	Server.txt	file	contains	a	list	of	all	transactions	that	are
currently	on	the	server.	The	History.txt	file	contains	a	chronological
history	of	all	transactions.

Each	time	SymStore	stores	or	removes	symbol	files,	a	new	transaction
number	is	created.	Then,	a	file,	whose	name	is	this	transaction	number,
is	created	in	000admin.	This	file	contains	a	list	of	all	the	files	or	pointers
that	have	been	added	to	the	symbol	store	during	this	transaction.	If	a
transaction	is	deleted,	SymStore	will	read	through	its	transaction	file	to
determine	which	files	and	pointers	it	should	delete.

The	add	and	del	options	specify	whether	an	add	or	delete	transaction	is
to	be	performed.	Including	the	/p	option	with	an	add	operation	specifies
that	a	pointer	is	to	be	added;	omitting	the	/p	option	specifies	that	the
actual	symbol	file	is	to	be	added.

It	is	also	possible	to	create	the	symbol	store	in	two	separate	stages.	In
the	first	stage,	you	use	SymStore	with	the	/x	option	to	create	an	index
file.	In	the	second	stage,	you	use	SymStore	with	the	/y	option	to	create
the	actual	store	of	files	or	pointers	from	the	information	in	the	index	file.

This	can	be	a	useful	technique	for	a	variety	of	reasons.	For	instance,	this
allows	the	symbol	store	to	be	easily	recreated	if	the	store	is	somehow
lost,	as	long	as	the	index	file	still	exists.	Or	perhaps	the	computer
containing	the	symbol	files	has	a	slow	network	connection	to	the
computer	on	which	the	symbol	store	will	be	created.	In	this	case,	you	can
create	the	index	file	on	the	same	machine	as	the	symbol	files,	transfer
the	index	file	to	the	second	machine,	and	then	create	the	store	on	the
second	machine.

For	a	full	listing	of	all	SymStore	parameters,	see	SymStore	Command-
Line	Options.

Note		SymStore	does	not	support	simultaneous	transactions	from
multiple	users.	It	is	recommended	that	one	user	be	designated
"administrator"	of	the	symbol	store	and	be	responsible	for	all	add	and
del	transactions.

Transaction	Examples

Here	are	two	examples	of	SymStore	adding	symbol	pointers	for	build
2195	of	Windows	2000	to	\\sampledir\symsrv:

symstore	add	/r	/p	/f	\\BuildServer\BuildShare\2195free\symbols*.*

			/s	\\sampledir\symsrv	/t	"Windows	2000"	/v	"Build	2195	x86	free"

			/c	"Sample	add"

symstore	add	/r	/p	/f	\\BuildServer\BuildShare\2195free\symbols*.*	

			/s	\\sampledir\symsrv	/t	"Windows	2000"	/v	"Build	2195	x86	checked"

			/c	"Sample	add"

In	the	following	example,	SymStore	adds	the	actual	symbol	files	for	an
application	project	in	\\largeapp\appserver\bins	to	\\testdir\symsrv:

symstore	add	/r	/f	\\largeapp\appserver\bins*.*	/s	\\testdir\symsrv	

			/t	"Large	Application"	/v	"Build	432"	/c	"Sample	add"

Here	is	an	example	of	how	an	index	file	is	used.	First,	SymStore	creates
an	index	file	based	on	the	collection	of	symbol	files	in
\\largeapp\appserver\bins\.	In	this	case,	the	index	file	is	placed	on	a	third
computer,	\\hubserver\hubshare.	You	use	the	/g	option	to	specify	that	the
file	prefix	"\\largeapp\appserver"	might	change	in	the	future:

symstore	add	/r	/p	/g	\\largeapp\appserver	/f	

			\\largeapp\appserver\bins*.*	

			/x	\\hubserver\hubshare\myindex.txt

Now	suppose	you	move	all	the	symbol	files	off	of	the	machine
\\largeapp\appserver	and	put	them	on	\\myarchive\appserver.	You	can
then	create	the	symbol	store	itself	from	the	index	file
\\hubserver\hubshare\myindex.txt	as	follows:

symstore	add	/y	\\hubserver\hubshare\myindex.txt	

			/g	\\myarchive\appserver	/s	\\sampledir\symsrv	/p	

			/t	"Large	Application"	/v	"Build	432"	/c	"Sample	Add	from	Index"

Finally,	here	is	an	example	of	SymStore	deleting	a	file	added	by	a
previous	transaction.	See	the	following	section	for	an	explanation	of	how
to	determine	the	transaction	ID	(in	this	case,	0000000096).

symstore	del	/i	0000000096	/s	\\sampledir\symsrv

Compressed	Files

SymStore	can	be	used	with	compressed	files	in	two	different	ways.

1.	 Use	SymStore	with	the	/p	option	to	store	pointers	to	the
symbol	files.	After	SymStore	finishes,	compress	the	files	that
the	pointers	refer	to.

2.	 Use	SymStore	with	the	/x	option	to	create	an	index	file.	After
SymStore	finishes,	compress	the	files	listed	in	the	index	file.
Then	use	SymStore	with	the	/y	option	(and,	if	you	wish,	the
/p	option)	to	store	the	files	or	pointers	to	the	files	in	the
symbol	store.	(SymStore	will	not	need	to	uncompress	the
files	to	perform	this	operation.)

Your	symbol	server	will	be	responsible	for	uncompressing	the	files	when
they	are	needed.

If	you	are	using	SymSrv	as	your	symbol	server,	any	compression	should
be	done	using	the	compress.exe	tool	that	is	distributed	with	the	Platform
SDK.	Compressed	files	should	have	an	underscore	as	the	last	character
in	their	file	extensions	(for	example,	module1.pd_	or	module2.db_).	For
details,	see	Using	SymSrv.

The	server.txt	and	history.txt	Files

When	a	transaction	is	added,	several	items	of	information	are	added	to
server.txt	and	history.txt	for	future	lookup	capability.	The	following	is	an
example	of	a	line	in	server.txt	and	history.txt	for	an	add	transaction:

0000000096,add,ptr,10/09/99,00:08:32,Windows	NT	4.0	SP	4,x86	fre	1.156c-RTM-2,Added	from	\\mybuilds\symbols,

This	is	a	comma-separated	line.	The	fields	are	defined	as	follows.

Field Description
0000000096 Transaction	ID	number,	as	created	by	SymStore.

add Type	of	transaction.	This	field	can	be	either	add	or	del.
ptr Whether	files	or	pointers	were	added.	This	field	can	be

either	file	or	ptr.
10/09/99 Date	when	transaction	occurred.

00:08:32 Time	when	transaction	started.

Windows
NT

Product.

x86	fre Version	(optional).

Added	from Comment	(optional)

Unused (Reserved	for	later	use.)

Here	are	some	sample	lines	from	the	transaction	file	0000000096.	Each
line	records	the	directory	and	the	location	of	the	file	or	pointer	that	was
added	to	the	directory.

canon800.dbg\35d9fd51b000,\\mybuilds\symbols\sp4\dll\canon800.dbg

canonlbp.dbg\35d9fd521c000,\\mybuilds\symbols\sp4\dll\canonlbp.dbg

certadm.dbg\352bf2f48000,\\mybuilds\symbols\sp4\dll\certadm.dbg

certcli.dbg\352bf2f1b000,\\mybuilds\symbols\sp4\dll\certcli.dbg

certcrpt.dbg\352bf04911000,\\mybuilds\symbols\sp4\dll\certcrpt.dbg

certenc.dbg\352bf2f7f000,\\mybuilds\symbols\sp4\dll\certenc.dbg

If	you	use	a	del	transaction	to	undo	the	original	add	transactions,	these
lines	will	be	removed	from	server.txt,	and	the	following	line	will	be	added
to	history.txt:

0000000105,del,0000000096

The	fields	for	the	delete	transaction	are	defined	as	follows.

Field Description
0000000105 Transaction	ID	number,	as	created	by	SymStore.

del Type	of	transaction.	This	field	can	be	either	add	or	del.
0000000096 Transaction	that	was	deleted.

Symbol	Storage	Format

SymStore	uses	the	file	system	itself	as	a	database.	It	creates	a	large	tree
of	directories,	with	directory	names	based	on	such	things	as	the	symbol
file	time	stamps,	signatures,	age,	and	other	data.

For	example,	after	several	different	acpi.dbg	files	have	been	added	to	the
server,	the	directories	could	look	like	this:

Directory	of	\\mybuilds\symsrv\acpi.dbg

10/06/1999		05:46p						<DIR>										.

10/06/1999		05:46p						<DIR>										..

10/04/1999		01:54p						<DIR>										37cdb03962040

10/04/1999		01:49p						<DIR>										37cdb04027740

10/04/1999		12:56p						<DIR>										37e3eb1c62060

10/04/1999		12:51p						<DIR>										37e3ebcc27760

10/04/1999		12:45p						<DIR>										37ed151662060

10/04/1999		12:39p						<DIR>										37ed15dd27760

10/04/1999		11:33a						<DIR>										37f03ce962020

10/04/1999		11:21a						<DIR>										37f03cf7277c0

10/06/1999		05:38p						<DIR>										37fa7f00277e0

10/06/1999		05:46p						<DIR>										37fa7f01620a0

In	this	example,	the	lookup	path	for	the	acpi.dbg	symbol	file	might	look
something	like	this:	\\mybuilds\symsrv\acpi.dbg\37cdb03962040.

Three	files	may	exist	inside	the	lookup	directory:

1.	 If	the	file	was	stored,	then	acpi.dbg	will	exist	there.

2.	 If	a	pointer	was	stored,	then	a	file	called	file.ptr	will	exist	and
contain	the	path	to	the	actual	symbol	file.

3.	 A	file	called	refs.ptr,	which	contains	a	list	of	all	the	current
locations	for	acpi.dbg	with	this	timestamp	and	image	size
that	are	currently	added	to	the	symbol	store.

Displaying	the	directory	listing	of
\\mybuilds\symsrv\acpi.dbg\37cdb03962040	gives	the	following:

10/04/1999		01:54p																		52	file.ptr

10/04/1999		01:54p																		67	refs.ptr

The	file	file.ptr	contains	the	text	string
"\\mybuilds\symbols\x86\2128.chk\symbols\sys\acpi.dbg".	Since	there	is
no	file	called	acpi.dbg	in	this	directory,	the	debugger	will	try	to	find	the	file
at	\\mybuilds\symbols\x86\2128.chk\symbols\sys\acpi.dbg.

The	contents	of	refs.ptr	are	used	only	by	SymStore,	not	the	debugger.
This	file	contains	a	record	of	all	transactions	that	have	taken	place	in	this
directory.	A	sample	line	from	refs.ptr	might	be:

0000000026,ptr,\\mybuilds\symbols\x86\2128.chk\symbols\sys\acpi.dbg

This	shows	that	a	pointer	to
\\mybuilds\symbols\x86\2128.chk\symbols\sys\acpi.dbg	was	added	with
transaction	"0000000026".

Some	symbol	files	stay	constant	through	various	products	or	builds	or	a
particular	product.	One	example	of	this	is	the	Windows	2000	file
msvcrt.pdb.	Doing	a	directory	of	\\mybuilds\symsrv\msvcrt.pdb	shows
that	only	two	versions	of	msvcrt.pdb	have	been	added	to	the	symbols
server:

Directory	of	\\mybuilds\symsrv\msvcrt.pdb

10/06/1999		05:37p						<DIR>										.

10/06/1999		05:37p						<DIR>										..

10/04/1999		11:19a						<DIR>										37a8f40e2

10/06/1999		05:37p						<DIR>										37f2c2272

However,	doing	a	directory	of	\\mybuilds\symsrv\msvcrt.pdb\37a8f40e2
shows	that	refs.ptr	has	several	pointers	in	it.

Directory	of	\\mybuilds\symsrv\msvcrt.pdb\37a8f40e2

10/05/1999		02:50p														54					file.ptr

10/05/1999		02:50p											2,039					refs.ptr

The	contents	of	\\mybuilds\symsrv\msvcrt.pdb\37a8f40e2\refs.ptr	are	the
following:

0000000001,ptr,\\mybuilds\symbols\x86\2137\symbols\dll\msvcrt.pdb

0000000002,ptr,\\mybuilds\symbols\x86\2137.chk\symbols\dll\msvcrt.pdb

0000000003,ptr,\\mybuilds\symbols\x86\2138\symbols\dll\msvcrt.pdb

0000000004,ptr,\\mybuilds\symbols\x86\2138.chk\symbols\dll\msvcrt.pdb

0000000005,ptr,\\mybuilds\symbols\x86\2139\symbols\dll\msvcrt.pdb

0000000006,ptr,\\mybuilds\symbols\x86\2139.chk\symbols\dll\msvcrt.pdb

0000000007,ptr,\\mybuilds\symbols\x86\2140\symbols\dll\msvcrt.pdb

0000000008,ptr,\\mybuilds\symbols\x86\2140.chk\symbols\dll\msvcrt.pdb

0000000009,ptr,\\mybuilds\symbols\x86\2136\symbols\dll\msvcrt.pdb

0000000010,ptr,\\mybuilds\symbols\x86\2136.chk\symbols\dll\msvcrt.pdb

0000000011,ptr,\\mybuilds\symbols\x86\2135\symbols\dll\msvcrt.pdb

0000000012,ptr,\\mybuilds\symbols\x86\2135.chk\symbols\dll\msvcrt.pdb

0000000013,ptr,\\mybuilds\symbols\x86\2134\symbols\dll\msvcrt.pdb

0000000014,ptr,\\mybuilds\symbols\x86\2134.chk\symbols\dll\msvcrt.pdb

0000000015,ptr,\\mybuilds\symbols\x86\2133\symbols\dll\msvcrt.pdb

0000000016,ptr,\\mybuilds\symbols\x86\2133.chk\symbols\dll\msvcrt.pdb

0000000017,ptr,\\mybuilds\symbols\x86\2132\symbols\dll\msvcrt.pdb

0000000018,ptr,\\mybuilds\symbols\x86\2132.chk\symbols\dll\msvcrt.pdb

0000000019,ptr,\\mybuilds\symbols\x86\2131\symbols\dll\msvcrt.pdb

0000000020,ptr,\\mybuilds\symbols\x86\2131.chk\symbols\dll\msvcrt.pdb

0000000021,ptr,\\mybuilds\symbols\x86\2130\symbols\dll\msvcrt.pdb

0000000022,ptr,\\mybuilds\symbols\x86\2130.chk\symbols\dll\msvcrt.pdb

0000000023,ptr,\\mybuilds\symbols\x86\2129\symbols\dll\msvcrt.pdb

0000000024,ptr,\\mybuilds\symbols\x86\2129.chk\symbols\dll\msvcrt.pdb

0000000025,ptr,\\mybuilds\symbols\x86\2128\symbols\dll\msvcrt.pdb

0000000026,ptr,\\mybuilds\symbols\x86\2128.chk\symbols\dll\msvcrt.pdb

0000000027,ptr,\\mybuilds\symbols\x86\2141\symbols\dll\msvcrt.pdb

0000000028,ptr,\\mybuilds\symbols\x86\2141.chk\symbols\dll\msvcrt.pdb

0000000029,ptr,\\mybuilds\symbols\x86\2142\symbols\dll\msvcrt.pdb

0000000030,ptr,\\mybuilds\symbols\x86\2142.chk\symbols\dll\msvcrt.pdb

This	shows	that	the	same	msvcrt.pdb	was	used	for	multiple	builds	of
symbols	for	Windows	2000	stored	on	\\mybuilds\symsrv.

Here	is	an	example	of	a	directory	that	contains	a	mixture	of	file	and
pointer	additions:

Directory	of	E:\symsrv\dbghelp.dbg\38039ff439000

10/12/1999		01:54p									141,232					dbghelp.dbg

10/13/1999		04:57p														49					file.ptr

10/13/1999		04:57p													306					refs.ptr

In	this	case,	refs.ptr	has	the	following	contents:

0000000043,file,e:\binaries\symbols\retail\dll\dbghelp.dbg

0000000044,file,f:\binaries\symbols\retail\dll\dbghelp.dbg

0000000045,file,g:\binaries\symbols\retail\dll\dbghelp.dbg

0000000046,ptr,\\sampledir\bin\symbols\retail\dll\dbghelp.dbg

0000000047,ptr,\\sampledir2\bin\symbols\retail\dll\dbghelp.dbg

Thus,	transactions	43,	44,	and	45	added	the	same	file	to	the	server,	and
transactions	46	and	47	added	pointers.	If	transactions	43,	44,	and	45	are
deleted,	then	the	file	dbghelp.dbg	will	be	deleted	from	the	directory.	The
directory	will	then	have	the	following	contents:

Directory	of	e:\symsrv\dbghelp.dbg\38039ff439000

10/13/1999		05:01p																			49	file.ptr

10/13/1999		05:01p																	130	refs.ptr

Now	file.ptr	contains	"\\sampledir2\bin\symbols\retail\dll\dbghelp.dbg",
and	refs.ptr	contains

0000000046,ptr,\\sampledir\bin\symbols\retail\dll\dbghelp.dbg

0000000047,ptr,\\sampledir2\bin\symbols\retail\dll\dbghelp.dbg

Whenever	the	final	entry	in	refs.ptr	is	a	pointer,	the	file	file.ptr	will	exist
and	contain	the	path	to	the	associated	file.	Whenever	the	final	entry	in
refs.ptr	is	a	file,	no	file.ptr	will	exist	in	this	directory.	Therefore,	any	delete
operation	that	removes	the	final	entry	in	refs.ptr	may	result	in	file.ptr
being	created,	deleted,	or	changed.

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20Using SymStore%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

Using	Other	Symbol	Stores
It	is	possible	to	write	your	own	symbol	store	creation	program,	rather	than
using	SymStore.

Since	SymStore	transactions	are	all	logged	in	CSV-format	text	files,	you
can	leverage	any	existing	SymStore	log	files	for	use	in	your	own
database	program.

If	you	plan	to	use	the	SymSrv	program	provided	with	Debugging	Tools	for
Windows,	it	is	recommended	that	you	use	SymStore	as	well.	Updates	to
these	two	programs	will	always	be	released	together,	and	therefore	their
versions	will	always	match.

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20Using Other Symbol Stores%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymStore	Command-Line	Options
The	following	syntax	forms	are	supported	for	SymStore	transactions.	The
first	parameter	must	always	be	add	or	del.	The	order	of	the	other
parameters	does	not	matter.

symstore	add	[/l	/o	/p	/r]	/f	File	/s	Store	/t	Product	[/v	Version]	[/c
Comment]	[/d	LogFile]
symstore	add	[/a	/l	/o	/p	/r]	/g	Share	/f	File	/x	IndexFile	[/d	LogFile]
symstore	add	[/o	/p]	/y	IndexFile	/g	Share	/s	Store	/t	Product	[/v
Version]	[/c	Comment]	[/d	LogFile]
symstore	del	/i	ID	/s	Store	[/o]	[/d	LogFile]
symstore	/?

Parameter Meaning
/f	File Specifies	the	network	path	of	files	or	directories	to	add.

/g	Share Specifies	the	server	and	share	where	the	symbol	files	were
originally	stored.	When	used	with	/f,	Share	should	be
identical	to	the	beginning	of	the	File	specifier.	When	used
with	/y,	Share	should	be	the	location	of	the	original	symbol
files	(not	the	index	file).	This	allows	you	to	later	change	this
portion	of	the	file	path	in	case	you	move	the	symbol	files	to
a	different	server	and	share.

/i	ID Specifies	the	transaction	ID	string.

/l Allows	the	file	to	be	in	a	local	directory	rather	than	a
network	path.	(This	option	is	only	used	with	the	/p	option.)

/p Causes	SymStore	to	store	a	pointer	to	the	file,	rather	than
the	file	itself.

/r Causes	SymStore	to	add	files	or	directories	recursively.

/s	Store Specifies	the	root	directory	for	the	symbol	store.

/t	Product Specifies	the	name	of	the	product.

/v	Version Specifies	the	version	of	the	product.

/c
Comment

Specifies	a	comment	for	the	transaction.

/d	LogFile Specifies	a	log	file	to	be	used	for	command	output.	If	this	is
not	included,	transaction	information	and	other	output	is
sent	to	stdout.

/o Causes	SymStore	to	display	verbose	output.

/x
IndexFile

Causes	SymStore	not	to	store	the	actual	symbol	files.
Instead,	SymStore	records	information	in	the	IndexFile	that
will	enable	SymStore	to	access	the	symbol	files	at	a	later
time.

/a Causes	SymStore	to	append	new	indexing	information	to	an
existing	index	file.	(This	option	is	only	used	with	the	/x
option.)

/y
IndexFile

Causes	SymStore	to	read	the	data	from	a	file	created	with
/x.

/? Displays	help	text	for	the	SymStore	command.

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymStore Command-Line Options%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

Symbol	Servers	and	Internet	Firewalls
Some	systems	use	Internet	firewalls	or	proxy	servers	that	require
authentication	for	all	Internet	traffic.	Early	versions	of	the	symbol	server
could	not	access	symbols	from	the	Internet	unless	the	system	used	a
firewall	client	that	handled	the	authentication	transparently.

Starting	with	Dbghelp	6.1,	the	symbol	server	supports	proxy	servers	that
require	such	authentication.	Symbol	server	uses	whatever	server	is
configured	as	the	default	in	the	computer's	LAN	settings.	To	find	this,
open	theInternet	Options	item	in	Control	Panel,	click	the	Connections
tab	and	click	LAN	Settings.	This	can	also	be	done	from	Internet	Explorer
by	clicking	Internet	Options	on	the	Tools	menu.	Symbol	server	has
been	tested	on	many	brands	of	proxy	servers	using	both	basic	and
challenge-response	methods	of	authentication.

To	define	a	specific	proxy	server	for	symbol	server	to	use,	set	the
_NT_SYMBOL_PROXY	environment	variable	to	the	name	(or	IP
address)	of	the	proxy	server,	followed	by	the	port	number.	Separate	the
two	values	with	a	colon.	For	example:

set	_NT_SYMBOL_PROXY=myproxyserver:80
When	using	the	Windbg	debugger,	configure	your	symbol	path	to	point	to
the	symbol	store	that	you	want	to	use.	The	one	difference	is	that	the
system	will	display	a	dialog	box	in	which	you	need	to	enter	your	user	ID
and	password	to	pass	to	the	proxy	server.	If	you	enter	incorrect
information,	the	dialog	box	will	be	redisplayed.	If	you	click	the	Cancel
button,	the	dialog	box	is	dismissed	and	the	symbol	server	will	be	disabled
for	use	through	the	Internet.

When	using	the	latest	versions	of	Cdb.exe	or	Ntsd.exe,	this	functionality
is	turned	off	by	default.	However	you	can	enable	or	disable	this
functionality	using	the	!sym	extension	command	as	follows:

To	turn	on	prompting	for	user	ID	and	password:	!sym
prompts.

To	turn	off	prompting	for	user	ID	and	password:	!sym
prompts	off.

If	you	turn	on	prompting,	you	will	need	to	reload	symbols	with	the	.reload
command.

The	DbgHelp	API	has	been	expanded	to	support	these	changes.	The
SymbolServerSetOptions	function	supports	the	SSRVOPT_PROXY
option.	If	the	data	parameter	is	NULL,	the	default	proxy	defined	in
Internet	Options	is	used.	Otherwise	a	zero-terminated	string	is	passed
specifying	the	name	and	port	number	of	the	proxy	server.	The	name	and
port	are	separated	by	a	colon	as	follows:	myproxyserver:80.	The
SymSetOptions	function	supports	the	SYMOPT_NO_PROMPTS	option.
This	turns	off	all	prompting	for	validation	from	the	symbol	server.

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20Symbol Servers and Internet Firewalls%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

Minidump	Files
Applications	can	produce	user-mode	minidump	files,	which	contain	a
useful	subset	of	the	information	contained	in	a	crash	dump	file.
Applications	can	create	minidump	files	very	quickly	and	efficiently.
Because	minidump	files	are	small,	they	can	be	easily	sent	over	the
internet	to	technical	support	for	the	application.

A	minidump	file	does	not	contain	as	much	information	as	a	full	crash
dump	file,	but	it	contains	enough	information	to	perform	basic	debugging
operations.	To	read	a	minidump	file,	you	must	have	the	binaries	and
symbol	files	available	for	the	debugger.

Current	versions	of	Microsoft	Office	and	Microsoft	Windows	create
minidump	files	for	the	purpose	of	analyzing	failures	on	customers'
computers.

The	following	DbgHelp	functions	are	used	with	minidump	files.

MiniDumpCallback
MiniDumpReadDumpStream
MiniDumpWriteDump

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20Minidump Files%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

Source	Server
Source	server	enables	a	client	to	retrieve	the	exact	version	of	the	source
files	that	were	used	to	build	an	application.	Because	the	source	code	for
a	module	can	change	between	versions	and	over	a	course	of	years,	it	is
important	to	look	at	the	source	code	as	it	existed	when	the	version	of	the
module	in	question	was	built.

Source	server	retrieves	the	appropriate	files	from	source	control.	To	use
source	server,	the	application	must	have	been	source	indexed.

Source	Indexing

The	source	indexing	system	is	a	collection	of	executable	files	and	Perl
scripts.	The	Perl	scripts	require	Perl	5.6	or	greater.

Generally,	binaries	are	source	indexed	during	the	build	process	after	the
application	has	been	built.	The	information	needed	by	source	server	is
stored	in	the	PDB	files.	Source	server	currently	supports	the	following
source-control	systems:	Perforce	and	Visual	SourceSafe.	You	can	also
create	a	custom	script	to	index	your	code	for	a	different	source-control
system.

The	following	table	lists	the	source	server	tools.

Tool Description
Srcsrv.ini This	file	is	the	master	list	of	all	source	control	servers.

Each	entry	has	the	following	format:

MYSERVER=serverinfo

When	using	Perforce,	the	server	info	consists	of	the	full
network	path	to	the	server,	followed	by	a	colon,	followed
by	the	port	number	it	uses.	For	example:

MYSERVER=machine.corp.company.com:1666

This	file	can	be	installed	on	the	computer	running	the
debugger.	When	source	server	starts,	it	looks	at	Srvsrc.ini
for	values;	these	values	will	override	the	information
contained	in	the	PDB	file.	This	enables	users	to	configure

a	debugger	to	use	an	alternate	source	control	server	at
debug	time.

For	more	information,	see	the	example	Srcsrv.ini	installed
with	the	source	server	tools.

Ssindex.cmd This	script	builds	the	list	of	files	checked	into	source
control	along	with	the	version	information	of	each	file.	It
stores	a	subset	of	this	information	in	the	.pdb	files
generated	when	you	built	the	application.	The	script	uses
one	of	the	following	Perl	modules	to	interface	with	source
control:	P4.pm	(Perforce)	or	Vss.pm	(Visual	Source	Safe).

For	more	information,	run	the	script	with	the	-?	or	-??
(verbosed	help)	option	or	examine	the	script.

Srctool.exe This	utility	lists	all	files	indexed	within	a	.pdb	file.	For	each
file,	it	lists	the	full	path,	source	control	server,	and	version
number	of	the	file.	You	can	use	this	information	to	retrieve
files	without	using	the	source	server.

For	more	information,	run	the	utility	with	the	/?	option.

Pdbstr.exe This	utility	is	used	by	the	indexing	scripts	to	insert	the
version	control	information	into	the	"srcsrv"	alternate
stream	of	the	target	.pdb	file.	It	can	also	read	any	stream
from	a	.pdb	file.	You	can	use	this	information	to	verify	that
the	indexing	scripts	are	working	properly.

For	more	information,	run	the	utility	with	the	/?	option.

Retrieving	the	Source	File

The	DbgHelp	API	provides	access	to	source	server	functionality	through
the	SymGetSourceFile	function.	To	retrieve	the	name	of	the	source	file
to	be	retrieved,	call	the	SymEnumSourceFiles	or
SymGetLineFromAddr64	function.

Using	Source	Server	with	a	Debugger

To	use	the	source	server	with	WinDbg,	KD,	NTSD,	or	CDB,	ensure	that
you	have	installed	a	recent	version	of	the	Debugging	Tools	for	Windows
package	(version	6.3	or	later).	Then,	include	srv*	in	the	.srcpath

command	as	follows:

.srcpath	srv*;c:\mysource
Note	that	this	example	also	includes	a	traditional	source	path.	If	the
debugger	cannot	retrieve	the	file	from	the	source	server,	it	will	search	the
specified	path.

If	a	source	file	is	retrieved	by	the	source	server,	it	will	remain	on	your
hard	drive	after	the	debugging	session	is	over.	Source	files	are	stored
locally	in	the	src	subdirectory	of	the	Debugging	Tools	for	Windows
installation	directory.

Source	Server	Data	Blocks

Source	server	relies	on	two	blocks	of	data	within	the	PDB	file.

Source	file	list.	Building	a	module	automatically	creates	a	list
of	fully-qualified	paths	to	the	source	files	used	to	build	the
module.

Data	block.	Indexing	the	source	as	described	previously
adds	an	alternate	stream	to	the	PDB	file	named	"srcsrv".
The	script	that	inserts	this	data	is	dependent	on	the	specific
build	process	and	source	control	system	in	use.

In	the	language	specification	version	1,	the	data	block	is	divided	into
three	sections:	ini,	variables,	and	source	files.	It	has	the	following	syntax.

SRCSRV:	ini	--	

VERSION=1

VERCTRL=<source_control_str>

DATETIME=<date_time_str>

SRCSRV:	variables	--	

SRCSRVTRG=%sdtrg%	

SRCSRVCMD=%sdcmd%	

SRCSRVENV=var1=string1\bvar2=string2	

DEPOT=//depot	

SDCMD=sd.exe	-p	%fnvar%(%var2%)	print	-o	%srcsrvtrg%	-q	%depot%/%var3%#%var4%

SDTRG=%targ%\%var2%\%fnbksl%(%var3%)\%var4%\%fnfile%(%var1%)	

WIN_SDKTOOLS=	sserver.microsoft.com:4444	

SRCSRV:	source	files	---------------------------------------	

<path1>*<var2>*<var3>*<var4>	

<path2>*<var2>*<var3>*<var4>	

<path3>*<var2>*<var3>*<var4>	

<path4>*<var2>*<var3>*<var4>	

SRCSRV:	end	--

All	text	is	interpreted	literally,	except	for	text	enclosed	in	percent	signs
(%).	Text	enclosed	in	percent	signs	is	treated	as	a	variable	name	to	be
resolved	recursively,	unless	it	is	one	of	the	following	functions:

%fnvar%()
The	parameter	text	should	be	enclosed	in	percent	signs	and	treated
as	a	variable	to	be	expanded.

%fnbksl%()
All	forward	slashes	(/)	in	the	parameter	text	should	be	replaced	with
backward	slashes	(\).

%fnfile%()
All	path	information	in	the	parameter	text	should	be	stripped	out,
leaving	only	the	file	name.

The	ini	section	contains	variables	that	describe	the	requirements.	The
indexing	script	can	add	any	number	of	variables	to	this	section.	The
following	are	examples:

VERSION
The	language	specification	version.	This	variable	is	required.

VERCTL
A	string	that	describes	the	source	control	product.	This	variable	is
optional.

DATETIME
A	string	that	indicates	the	date	and	time	the	PDB	file	was	processed.
This	variable	is	optional.

The	variables	section	contains	variables	that	describe	how	to	extract	a

file	from	source	control.	It	can	also	be	used	to	define	commonly	used	text
as	variables	to	reduce	the	size	of	the	data	block.

SRCSRVTRG
Describes	how	to	build	the	target	path	for	the	extracted	file.	This	is	a
required	variable.

SRCSRVCMD
Describes	how	to	build	the	command	to	extract	the	file	from	source
control.	This	includes	the	name	of	the	executable	file	and	its
command-line	parameters.	This	is	a	required	variable.

SRCSRVENV
A	string	that	lists	environment	variables	to	be	created	during	the	file
extraction.	Separate	multiple	entries	with	a	backspace	character	(\b).
This	is	an	optional	variable.

The	source	files	section	contains	an	entry	for	each	source	file	that	has
been	indexed.	The	contents	of	each	line	are	interpreted	as	variables	with
the	names	VAR1,	VAR2,	VAR3,	and	so	on	until	VAR10.	The	variables	are
separated	by	asterisks.	VAR1	must	specify	the	fully-qualified	path	to	the
source	file	as	listed	elsewhere	in	the	PDB	file.	For	example,	the	following
line:

c:\proj\src\file.cpp*TOOLS_PRJ*tools/mytool/src/file.cpp*3

is	interpreted	as	follows:

VAR1=c:\proj\src\file.cpp

VAR2=TOOLS_PRJ

VAR3=tools/mytool/src/file.cpp

VAR4=3

In	this	example,	VAR4	is	a	version	number.	However,	most	source	control
systems	support	labeling	files	in	such	a	way	that	the	source	state	for	a
given	build	can	be	restored.	Therefore,	you	could	alternately	use	the
label	for	the	build.	The	sample	data	block	could	be	modified	to	contain	a

variable	such	as	the	following:

LABEL=BUILD47

Then,	presuming	the	source	control	system	uses	the	at	sign	(@)	to
indicate	a	label,	you	could	modify	the	SRCSRVCMD	variable	as	follows:

sd.exe	-p	%fnvar%(%var2%)	print	-o	%srcsrvtrg%	-q
%depot%/%var3%@%label%

How	Source	Server	Works

The	source	server	client	is	implemented	in	Symsrv.dll.	The	client	does
not	extract	information	directly	from	the	PDB	file;	it	uses	a	symbol	handler
such	as	the	one	implemented	in	Dbghelp.dll.	It	is	essentially	a	recursive
variable	substitution	engine	that	creates	a	command	line	that	can	be
used	to	extract	the	proper	source	file	from	the	source	control	system.
Your	code	should	not	call	Symsrv.dll	directly.	To	integrate	its	functionality
into	your	application,	use	the	SymGetSourceFile	function.
The	first	version	of	source	server	works	as	follows.	This	behavior	may
change	in	future	versions.

The	client	calls	the	SrcSrvInit	function	with	the	target	path
to	be	used	as	a	base	for	all	source	file	extractions.	It	stores
this	path	in	the	TARG	variable.

The	client	extracts	the	Srcsrv	stream	from	the	PDB	when	the
module	PDB	is	loaded	and	calls	the	SrcSrvLoadModule
function	to	pass	the	data	block	to	source	server.

When	Dbghelp	retrieves	a	source	file,	the	client	calls	the
SrcSrvGetFile	function	to	retrieve	the	source	files	from
source	control.

Source	server	searches	the	source	file	entries	in	the	data
block	for	an	entry	with	that	matches	the	requested	file.	It	fills
VAR1	to	VARn	with	the	contents	of	the	source	file	entry.
Next,	it	expands	the	SRCSRVTRG	variable	using	VAR1	to
VARn.	If	the	file	is	already	in	this	location,	it	returns	the

location	to	the	caller.	Otherwise,	it	expands	the
SRCSRVCMD	variable	to	build	the	command	needed	to
retrieve	the	file	from	source	control	and	copy	it	to	the	target
location.	Finally,	it	executes	this	command.

Creating	a	Source	Control	Provider	Module

The	source	server	includes	provider	modules	for	Perforce	(p4.pm)	and
Visual	Source	Safe	(vss.pm).	To	create	your	own	provider	module,	you
must	implement	the	following	set	of	interfaces.

$module::SimpleUsage()
Purpose:	Displays	simple	module	usage	information	to	STDOUT.

Parameters:	None

Return	value:	None

$module::VerboseUsage()
Purpose:	Displays	in-depth	module	usage	information	to	STDOUT.

Parameters:	None

Return	value:	None

$objref	=	$module::new(@CommandArguments)
Purpose:	Initializes	an	instance	of	the	provider	module.

Parameters:	All	@ARGV	arguments	that	weren't	recognized	by
SSIndex.cmd	as	being	general	arguments.

Return	value:	A	reference	that	can	be	used	in	later	operations.

$objref->GatherFileInformation($SourcePath,
$ServerHashReference)

Purpose:	Enables	the	module	to	gather	the	required	source	indexing
information	for	the	directory	specified	by	the	$SourcePath	parameter.
The	module	should	not	assume	that	this	entry	will	be	called	only
once	for	each	object	instance,	as	SSIndex.cmd	may	call	it	multiple
times	for	different	paths.

Parameters:	(1)	The	local	directory	containing	the	source	to	be
indexed.	(2)	A	reference	to	a	hash	containing	all	of	the	entries	from
the	specified	Srcsrv.ini	file.

Return	value:	None

($VariableHashReference,	$FileEntry)	=	$objref-
>GetFileInfo($LocalFile)

Purpose:	Provides	the	necessary	information	to	extract	a	single,
specific	file	from	the	source	control	system.

Parameters:	A	fully-qualified	file	name

Return	value:	(1)	A	hash	reference	of	the	variables	necessary	to
interpret	the	returned	$FileEntry.	SSIndex.cmd	caches	these
variables	for	every	source	file	used	by	a	single	debug	file	to	reduce
the	amount	of	information	written	to	the	source	index	stream.	(2)	The
file	entry	to	be	written	to	the	source	index	stream	to	allow	SrcSrv.dll
to	extract	this	file	from	source	control.	The	exact	format	of	this	line	is
specific	to	the	source	control	system.

$TextString	=	$objref->LongName()
Purpose:	Provides	a	descriptive	string	to	identify	the	source	control
provider	to	the	end	user.

Parameters:	None

Return	value:	The	descriptive	name	of	the	source	control	system.

@StreamVariableLines	=	$objref->SourceStreamVariables()
Purpose:	Enables	the	source	control	provider	to	add	source	control
specific	variables	to	the	source	stream	for	each	debug	file.	The
sample	modules	use	this	method	for	writing	the	required
EXTRACT_CMD	and	EXTRACT_TARGET	variables.

Parameters:	None

Return	value:	The	list	of	entries	for	the	source	stream	variables.

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20Source Server%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

Updated	Platform	Support
Where	necessary,	the	DbgHelp	library	has	been	widened	to	support	both
32-	and	64-bit	Windows.	The	original	function	and	structure	definitions
are	still	in	DbgHelp.h,	but	there	are	also	updated	versions	of	these
definitions	that	are	compatible	with	64-bit	Windows.	If	you	use	the
updated	functions	in	your	code,	it	can	be	compiled	for	both	32-	and	64-bit
Windows.	Your	code	will	also	be	more	efficient,	since	the	original
functions	simply	call	the	updated	functions	to	perform	the	work.

For	example,	DbgHelp.h	contains	definitions	for	SymUnloadModule
(original	function)	and	SymUnloadModule64	(updated	function).	These
definitions	are	nearly	identical,	but	use	different	types	for	the	BaseOfDll
parameter.	(SymUnloadModule	uses	the	DWORD	type,	while
SymUnloadModule64	uses	the	DWORD64	type.)	If	you	write	your	code
to	use	SymUnloadModule64,	it	can	be	compiled	for	both	32-	and	64-bit
Windows.	The	code	is	also	more	efficient	than	if	it	were	to	call
SymUnloadModule.
The	following	is	a	list	of	the	updated	functions:

EnumerateLoadedModules64
StackWalk64
SymEnumerateModules64
SymEnumerateSymbols64
SymFunctionTableAccess64
SymGetLineFromAddr64
SymGetLineFromName64
SymGetLineNext64
SymGetLinePrev64
SymGetModuleBase64
SymGetModuleInfo64
SymGetSymFromAddr64
SymGetSymFromName64
SymGetSymNext64
SymGetSymPrev64
SymLoadModule64
SymRegisterCallback64

SymRegisterFunctionEntryCallback64
SymUnloadModule64

The	following	is	a	list	of	the	updated	structures:

ADDRESS64
IMAGEHLP_DEFERRED_SYMBOL_LOAD64
IMAGEHLP_DUPLICATE_SYMBOL64
IMAGEHLP_LINE64
IMAGEHLP_MODULE64
IMAGEHLP_SYMBOL64
KDHELP64
STACKFRAME64

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20Updated Platform Support%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

Using	DbgHelp
The	following	topics	demonstrate	how	an	application	can	use	the	symbol
handler	functions.

Initializing	the	Symbol	Handler

Loading	a	Symbol	Module

Enumerating	Symbol	Modules

Enumerating	Symbols

Retrieving	Symbol	Information	by	Name

Retrieving	Symbol	Information	by	Address

Retrieving	Undecorated	Symbol	Names

Unloading	a	Symbol	Module

Terminating	the	Symbol	Handler

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20Using DbgHelp%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

Initializing	the	Symbol	Handler
The	following	code	demonstrates	how	to	initialize	the	symbol	handler.
The	SymSetOptions	function	defers	symbol	loading	until	symbol
information	is	requested.	The	code	loads	the	symbols	for	each	module	in
the	specified	process	by	passing	a	value	of	TRUE	for	the	bInvade
parameter	of	the	SymInitialize	function.	(This	function	calls	the
SymLoadModule64	function	for	each	module	the	process	has	mapped
into	its	address	space.)

If	the	specified	process	is	not	the	process	that	called	SymInitialize,	the
code	passes	a	process	identifier	as	the	first	parameter	of	SymInitialize
Specifying	NULL	as	the	second	parameter	of	SymInitialize	indicates	that
the	symbol	handler	should	use	the	default	search	path	to	locate	symbol
files.	For	detailed	information	on	how	the	symbol	handler	locates	symbol
files	or	how	an	application	can	specify	a	symbol	search	path,	see	Symbol
Paths.

DWORD		error;

HANDLE	hProcess;

DWORD		processId;

SymSetOptions(SYMOPT_UNDNAME	|	SYMOPT_DEFERRED_LOADS);

hProcess	=	GetCurrentProcess();

//	hProcess	=	(HANDLE)processId;

if	(SymInitialize(hProcess,	NULL,	TRUE))

{

				//	SymInitialize	returned	success

}

else

{

				//	SymInitialize	failed

				error	=	GetLastError();

				printf("SymInitialize	returned	error	:	%d\n",	error);

}

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20Initializing the Symbol Handler%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

Loading	a	Symbol	Module
If	an	application	does	not	call	the	SymInitialize	function	with	the
fInvadeProcess	parameter	set	to	TRUE,	it	must	load	symbols	for	a
module	when	they	are	required.	To	load	a	symbol	module	on	demand,
the	application	can	call	the	SymLoadModuleEx	function	with	a	full	path
to	a	module	name.	When	the	module	is	loaded,	the	symbol	handler	will
either	load	the	symbols	immediately	or	defer	the	load,	depending	on	the
options	set	using	the	SymSetOptions	function.

The	following	code	loads	a	symbol	module.	Note	that	it	assumes	you
have	initialized	the	symbol	handler	using	the	code	in	Initializing	the
Symbol	Handler.

char		szImageName[MAX_PATH];

DWORD64	dwBaseAddr;

if	(SymLoadModuleEx(hProcess,	NULL,	szImageName,	NULL,	

																				dwBaseAddr,	0,	NULL,	0))

{

				//	SymLoadModuleEx	returned	success

}

else

{

				//	SymLoadModuleEx	failed

				error	=	GetLastError();

				printf("SymLoadModuleEx	returned	error	:	%d\n",	error);

}

Note	that	szImageName	can	be	a	path	to	any	executable	module	that
has	debugging	information	(.exe,	.dll,	.drv,	.sys,	.scr,	.cpl,	.com).	Also,
dwBaseAddr	is	the	base	address	of	the	symbol	module	to	be	loaded.	If
this	value	is	0,	the	symbol	handler	will	obtain	the	base	address	from	the
specified	symbol	module.

See	Also

Unloading	a	Symbol	Module

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20Loading a Symbol Module%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

Enumerating	Symbol	Modules
The	following	code	lists	the	modules	that	have	been	loaded	by	the
SymLoadModule64	or	SymInitialize	function.	The
SymEnumerateModules64	function	requires	a	callback	function,	which
will	be	called	once	for	each	module	loaded.	In	this	example,
EnumModules	is	an	implementation	of	the	callback	function.	The
example	assumes	you	have	initialized	the	symbol	handler	using	the	code
in	Initializing	the	Symbol	Handler.

BOOL	CALLBACK	EnumModules(

				LPSTR			ModuleName,	

				DWORD64	BaseOfDll,		

				PVOID			UserContext)

{

				printf("%08X	%s\n",	BaseOfDll,	ModuleName);

				return	TRUE;

}

if	(SymEnumerateModules64(hProcess,	EnumModules,	NULL))

{

				//	SymEnumerateModules64	returned	success

}

else

{

				//	SymEnumerateModules64	failed

				error	=	GetLastError();

				printf("SymEnumerateModules64	returned	error	:	%d\n",	error);

}

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20Enumerating Symbol Modules%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

Enumerating	Symbols
The	following	code	displays	the	name,	address,	and	size	of	each	loaded
symbol	in	the	specified	module.	The	SymEnumSymbols	function
requires	a	callback	function,	which	will	be	called	once	for	each	module
loaded.	In	this	example,	EnumSymProc	is	an	implementation	of	the
callback	function.	The	example	assumes	you	have	initialized	the	symbol
handler	using	the	code	in	Initializing	the	Symbol	Handler.

#include	<windows.h>

#include	<stdio.h>

#include	<dbghelp.h>

BOOL	CALLBACK	EnumSymProc(

				PSYMBOL_INFO	pSymInfo,			

				ULONG	SymbolSize,						

				PVOID	UserContext)

{

				printf("%08X	%4u	%s\n",	

											pSymInfo->Address,	SymbolSize,	pSymInfo->Name);

				return	TRUE;

}

void	main()

{

				HANDLE	hProcess;

				DWORD64	BaseOfDll;

				char	*Mask;

				//	TODO:	Initialize	hProcess,	BaseOfDll,	and	Mask.

				//	TODO:	Call	SymInitialize.

				if	(SymEnumSymbols(hProcess,	BaseOfDll,	Mask,	EnumSymProc,	NULL))

				{

								//	SymEnumSymbols	succeeded

				}

				else

				{

								//	SymEnumSymbols	failed

								printf("SymEnumSymbols	failed:	%d\n",	GetLastError());

				}

}

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20Enumerating Symbols%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

Retrieving	Symbol	Information	by	Name
The	following	code	demonstrates	how	to	call	the	SymFromName
function.	This	function	fills	in	a	SYMBOL_INFO	structure.	Because	the
name	is	variable	in	length,	you	must	supply	a	buffer	that	is	large	enough
to	hold	the	name	stored	at	the	end	of	the	SYMBOL_INFO	structure.	Also,
the	MaxNameLen	member	must	be	set	to	the	number	of	bytes	reserved
for	the	name.	In	this	example,	szSymbolName	is	a	buffer	that	stores	the
name	of	the	requested	symbol.	The	example	assumes	you	have
initialized	the	symbol	handler	using	the	code	in	Initializing	the	Symbol
Handler.

BYTE	szSymbolName[MAX_SYM_NAME];

ULONG64	buffer[(sizeof(SYMBOL_INFO)	+

				MAX_SYM_NAME*sizeof(TCHAR)	+

				sizeof(ULONG64)	-	1)	/

				sizeof(ULONG64)];

PSYMBOL_INFO	pSymbol	=	(PSYMBOL_INFO)buffer;

StringCchCopy(szSymbolName,	MAX_SYM_NAME,	TEXT("WinMain"));

pSymbol->SizeOfStruct	=	sizeof(SYMBOL_INFO);

pSymbol->MaxNameLen	=	MAX_SYM_NAME;

if	(SymFromName(hProcess,	szSymbolName,	pSymbol))

{

				//	SymFromName	returned	success

}

else

{

				//	SymFromName	failed

				error	=	GetLastError();

				printf("SymFromName	returned	error	:	%d\n",	error);

}

If	an	application	has	a	module	or	source	file	name	as	well	as	line	number
information,	it	can	use	SymGetLineFromName64	to	retrieve	a	virtual
code	address.	This	function	requires	a	pointer	to	an	IMAGEHLP_LINE64
structure	to	receive	the	virtual	code	address.	Note	that	the	symbol
handler	can	retrieve	line	number	information	only	when
SYMOPT_LOAD_LINES	option	is	set	using	the	SymSetOptions
function.	This	option	must	be	set	before	loading	the	module.	The
szModuleName	parameter	contains	the	source	module	name;	it	is
optional	and	can	be	NULL.	The	szFileName	parameter	should	contain
the	source	file	name,	and	dwLineNumber	parameter	should	contain	the
line	number	for	which	the	virtual	address	will	be	retrieved.

BYTE			szModuleName[MAX_PATH];

BYTE			szFileName[MAX_PATH];

DWORD		dwLineNumber;

LONG			lDisplacement;

IMAGEHLP_LINE64	line;

SymSetOptions(SYMOPT_LOAD_LINES);

line.SizeOfStruct	=	sizeof(IMAGEHLP_LINE64);

StringCchCopy(szModuleName,	MAX_PATH,	TEXT("MyApp"));

StringCchCopy(szFileName,	MAX_PATH,	TEXT("main.c"));

dwLineNumber	=	248;

if	(SymGetLineFromName64(hProcess,	szModuleName,	szFileName,

				dwLineNumber,	&lDisplacement,	&line))

{

				//	SymGetLineFromName64	returned	success

}

else

{

				//	SymGetLineFromName64	failed

				error	=	GetLastError();

				printf("SymGetLineFromName64	returned	error	:	%d\n",	error);

}

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20Retrieving Symbol Information by Name%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

Retrieving	Symbol	Information	by	Address
The	following	code	demonstrates	how	to	call	the	SymFromAddr
function.	This	function	fills	in	a	SYMBOL_INFO	structure.	Because	the
name	is	variable	in	length,	you	must	supply	a	buffer	that	is	large	enough
to	hold	the	name	stored	at	the	end	of	the	SYMBOL_INFO	structure.	Also,
the	MaxNameLen	member	must	be	set	to	the	number	of	bytes	reserved
for	the	name.	In	this	example,	dwAddress	is	the	address	to	be	mapped	to
a	symbol.	The	SymFromAddr	function	will	store	an	offset	to	the
beginning	of	the	symbol	to	the	address	in	dwDisplacement.	The	example
assumes	you	have	initialized	the	symbol	handler	using	the	code	in
Initializing	the	Symbol	Handler.

DWORD		dwAddress;

DWORD		dwDisplacement;

ULONG64	buffer[(sizeof(SYMBOL_INFO)	+

				MAX_SYM_NAME*sizeof(TCHAR)	+

				sizeof(ULONG64)	-	1)	/

				sizeof(ULONG64)];

PSYMBOL_INFO	pSymbol	=	(PSYMBOL_INFO)buffer;

pSymbol->SizeOfStruct	=	sizeof(SYMBOL_INFO);

pSymbol->MaxNameLen	=	MAX_SYM_NAME;

if	(SymFromAddr(hProcess,	dwAddress,	&dwDisplacement,	pSymbol))

{

//	SymFromAddr	returned	success

}

else

{

				//	SymFromAddr	failed

				error	=	GetLastError();

				printf("SymFromAddr	returned	error	:	%d\n",	error);

}

To	retrieve	the	source	code	line	number	for	a	specified	address,	an
application	can	use	SymGetLineFromAddr64.	This	function	requires	a
pointer	to	an	IMAGEHLP_LINE64	structure	to	receive	the	source	file
name	and	line	number	corresponding	to	a	specified	code	address.	Note
that	the	symbol	handler	can	retrieve	line	number	information	only	when
SYMOPT_LOAD_LINES	is	set	using	the	SymSetOptions	function.	This
option	must	be	set	before	loading	the	module.	The	dwAddress	parameter
contains	the	code	address	for	which	the	source	file	name	and	line
number	will	be	located.

DWORD64		dwAddress;

DWORD		dwDisplacement;

IMAGEHLP_LINE64	line;

SymSetOptions(SYMOPT_LOAD_LINES);

line.SizeOfStruct	=	sizeof(IMAGEHLP_LINE64);

if	(SymGetLineFromAddr64(hProcess,	dwAddress,	&dwDisplacement,	&line))

{

				//	SymGetLineFromAddr64	returned	success

}

else

{

				//	SymGetLineFromAddr64	failed

				error	=	GetLastError();

				printf("SymGetLineFromAddr64	returned	error	:	%d\n",	error);

}

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20Retrieving Symbol Information by Address%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

Retrieving	Undecorated	Symbol	Names
The	following	code	demonstrates	how	to	retrieve	an	undecorated	symbol
name	from	a	symbol	name	using	UnDecorateSymbolName.	The
decorated	name	is	stored	in	szName.	The	example	assumes	you	have
initialized	the	symbol	handler	using	the	code	in	Initializing	the	Symbol
Handler.

if	(UnDecorateSymbolName(szName,	szUndName,	

				sizeof(szUndName),	UNDNAME_COMPLETE))

{

				//	UnDecorateSymbolName	returned	success

				printf	("Symbol	:	%s\n",	szUndName);

}

else

{

				//	UnDecorateSymbolName	failed

				error	=	GetLastError();

				printf("UnDecorateSymbolName	returned	error	%d\n",	error);

}

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20Retrieving Undecorated Symbol Names%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

Unloading	a	Symbol	Module
The	following	code	unloads	a	symbol	module	referred	to	by	the
BaseOfDll	module	address	using	SymUnloadModule64.

if	(SymUnloadModule64(hProcess,	BaseOfDll)

{

				//	SymUnloadModule64	returned	success

}

else

{

				//	SymUnloadModule64	failed

				error	=	GetLastError();

				printf("SymUnloadModule64	returned	error	:	%d\n",	error);

}

See	Also

Loading	a	Symbol	Module

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20Unloading a Symbol Module%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

Terminating	the	Symbol	Handler
The	following	code	cleans	up	all	memory	associated	with	symbol
handling	for	the	specified	process,	using	SymCleanup.

if	(SymCleanup(hProcess))

{

				//	SymCleanup	returned	success

}

else

{

				//	SymCleanup	failed

				error	=	GetLastError();

				printf("SymCleanup	returned	error	:	%d\n",	error);

}

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20Terminating the Symbol Handler%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

DbgHelp	Reference
The	following	elements	are	part	of	DbgHelp:

DbgHelp	Enumerations

DbgHelp	Functions

DbgHelp	Structures

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20DbgHelp Reference%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

DbgHelp	Enumerations
The	following	are	the	DbgHelp	enumeration	types.

IMAGEHLP_SYMBOL_TYPE_INFO
MINIDUMP_CALLBACK_TYPE
MINIDUMP_HANDLE_OBJECT_INFORMATION_TYPE
MINIDUMP_SECONDARY_FLAGS
MINIDUMP_STREAM_TYPE
MINIDUMP_TYPE
MODULE_WRITE_FLAGS
THREAD_WRITE_FLAGS

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20DbgHelp Enumerations%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

IMAGEHLP_SYMBOL_TYPE_INFO	Enumeration
Identifies	the	type	of	symbol	information	to	be	retrieved.

typedef	enum	

{

		TI_GET_SYMTAG,

		TI_GET_SYMNAME,

		TI_GET_LENGTH,

		TI_GET_TYPE,

		TI_GET_TYPEID,

		TI_GET_BASETYPE,

		TI_GET_ARRAYINDEXTYPEID,

		TI_FINDCHILDREN,

		TI_GET_DATAKIND,

		TI_GET_ADDRESSOFFSET,

		TI_GET_OFFSET,

		TI_GET_VALUE,

		TI_GET_COUNT,

		TI_GET_CHILDRENCOUNT,

		TI_GET_BITPOSITION,

		TI_GET_VIRTUALBASECLASS,

		TI_GET_VIRTUALTABLESHAPEID,

		TI_GET_VIRTUALBASEPOINTEROFFSET,

		TI_GET_CLASSPARENTID,

		TI_GET_NESTED,

		TI_GET_SYMINDEX,

		TI_GET_LEXICALPARENT,

		TI_GET_ADDRESS,

		TI_GET_THISADJUST,

		TI_GET_UDTKIND,

		TI_IS_EQUIV_TO,

		TI_GET_CALLING_CONVENTION,

		TI_IS_CLOSE_EQUIV_TO,

		TI_GTIEX_REQS_VALID,

		TI_GET_VIRTUALBASEOFFSET,

		TI_GET_VIRTUALBASEDISPINDEX,

		TI_GET_IS_REFERENCE,

		TI_GET_INDIRECTVIRTUALBASECLASS

}IMAGEHLP_SYMBOL_TYPE_INFO;

Constants

TI_GET_SYMTAG
The	symbol	tag.

The	data	type	is	DWORD*.

TI_GET_SYMNAME
The	symbol	name.

The	data	type	is	WCHAR**.	The	caller	must	free	the	buffer.

TI_GET_LENGTH
The	length	of	the	type.

The	data	type	is	ULONG64*.

TI_GET_TYPE
The	type.

The	data	type	is	DWORD*.

TI_GET_TYPEID
The	type	index.

The	data	type	is	DWORD*.

TI_GET_BASETYPE
The	base	type	for	the	type	index.

The	data	type	is	DWORD*.

TI_GET_ARRAYINDEXTYPEID
The	type	index	for	index	of	an	array	type.

The	data	type	is	DWORD*.

TI_FINDCHILDREN
The	type	index	of	all	children.

The	data	type	is	a	pointer	to	a	TI_FINDCHILDREN_PARAMS
structure.	The	Count	member	should	be	initialized	with	the	number

of	children.

TI_GET_DATAKIND
The	data	kind.

The	data	type	is	DWORD*.

TI_GET_ADDRESSOFFSET
The	address	offset.

The	data	type	is	DWORD*.

TI_GET_OFFSET
The	offset	of	the	type	in	the	parent.	Members	can	use	this	to	get	their
offset	in	a	structure.

The	data	type	is	DWORD*.

TI_GET_VALUE
The	value	of	a	constant	or	enumeration	value.

The	data	type	is	VARIANT*.

TI_GET_COUNT
The	count	of	array	elements.

The	data	type	is	DWORD*.

TI_GET_CHILDRENCOUNT
The	number	of	children.

The	data	type	is	DWORD*.

TI_GET_BITPOSITION
The	bit	position	of	a	bitfield.

The	data	type	is	DWORD*.

TI_GET_VIRTUALBASECLASS
A	value	that	indicates	whether	the	base	class	is	virtually	inherited.

The	data	type	is	BOOL.

TI_GET_VIRTUALTABLESHAPEID
The	symbol	interface	of	the	type	of	virtual	table,	for	a	user-defined
type.

TI_GET_VIRTUALBASEPOINTEROFFSET
The	offset	of	the	virtual	base	pointer.

The	data	type	is	DWORD*.

TI_GET_CLASSPARENTID
The	type	index	of	the	class	parent.

The	data	type	is	DWORD*.

TI_GET_NESTED
A	value	that	indicates	whether	the	type	index	is	nested.

The	data	type	is	DWORD*.

TI_GET_SYMINDEX
The	symbol	index	for	a	type.

The	data	type	is	DWORD*.

TI_GET_LEXICALPARENT
The	lexical	parent	of	the	type.

The	data	type	is	DWORD*.

TI_GET_ADDRESS
The	index	address.

The	data	type	is	ULONG64*.

TI_GET_THISADJUST
The	offset	from	the	this	pointer	to	its	actual	value.
The	data	type	is	DWORD*.

TI_GET_UDTKIND
The	UDT	kind.

The	data	type	is	DWORD*.

TI_IS_EQUIV_TO
The	equivalency	of	two	types.

The	data	type	is	DWORD*.	The	value	is	S_OK	is	the	two	types	are
equivalent,	and	S_FALSE	otherwise.

TI_GET_CALLING_CONVENTION

The	calling	convention.

The	data	type	is	DWORD.	The	following	are	the	valid	values:
CV_CALL_NEAR_C	(0x00)
CV_CALL_FAR_C	(0x01)
CV_CALL_NEAR_PASCAL	(0x02)
CV_CALL_FAR_PASCAL	(0x03)
CV_CALL_NEAR_FAST	(0x04)
CV_CALL_FAR_FAST	(0x05)
CV_CALL_SKIPPED	(0x06)
CV_CALL_NEAR_STD	(0x07)
CV_CALL_FAR_STD	(0x08)
CV_CALL_NEAR_SYS	(0x09)
CV_CALL_FAR_SYS	(0x0a)
CV_CALL_THISCALL	(0x0b)
CV_CALL_MIPSCALL	(0x0c)
CV_CALL_GENERIC	(0x0d)
CV_CALL_ALPHACALL	(0x0e)
CV_CALL_PPCCALL	(0x0f)
CV_CALL_SHCALL	(0x10)
CV_CALL_ARMCALL	(0x11)
CV_CALL_AM33CALL	(0x12)
CV_CALL_TRICALL	(0x13)
CV_CALL_SH5CALL	(0x14)
CV_CALL_M32RCALL	(0x15)

TI_IS_CLOSE_EQUIV_TO
The	equivalency	of	two	symbols.	This	is	not	guaranteed	to	be
accurate.

The	data	type	is	DWORD*.	The	value	is	S_OK	is	the	two	types	are
equivalent,	and	S_FALSE	otherwise.

TI_GTIEX_REQS_VALID
The	element	where	the	valid	request	bitfield	should	be	stored.

The	data	type	is	ULONG64*.
This	value	is	only	used	with	the	SymGetTypeInfoEx	function.

TI_GET_VIRTUALBASEOFFSET
The	offset	in	the	virtual	function	table	of	a	virtual	function.

The	data	type	is	DWORD.

TI_GET_VIRTUALBASEDISPINDEX
The	index	into	the	virtual	base	displacement	table.

The	data	type	is	DWORD.

TI_GET_IS_REFERENCE
Indicates	whether	a	pointer	type	is	a	reference.

The	data	type	is	Boolean.

TI_GET_INDIRECTVIRTUALBASECLASS
TBD

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

SymGetTypeInfoSymGetTypeInfoEx

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20IMAGEHLP_SYMBOL_TYPE_INFO%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MINIDUMP_CALLBACK_TYPE	Enumeration
Identifies	the	type	of	information	returned	by	the	MiniDumpCallback
function.

typedef	enum	_MINIDUMP_CALLBACK_TYPE

{

		ModuleCallback,

		ThreadCallback,

		ThreadExCallback,

		IncludeThreadCallback,

		IncludeModuleCallback,

		MemoryCallback,

		CancelCallback,

		WriteKernelMinidumpCallback,

		KernelMinidumpStatusCallback,

		RemoveMemoryCallback,

		IncludeVmRegionCallback,

		IoStartCallback,

		IoWriteAllCallback,

		IoFinishCallback,

		ReadMemoryFailureCallback,

		SecondaryFlagsCallback

}MINIDUMP_CALLBACK_TYPE;

Constants

ModuleCallback
The	callback	function	returns	module	information.

ThreadCallback
The	callback	function	returns	thread	information.

ThreadExCallback
The	callback	function	returns	extended	thread	information.

IncludeThreadCallback
The	callback	function	indicates	which	threads	are	to	be	included.	It	is
called	as	the	minidump	library	is	enumerating	the	threads	in	a

process,	rather	than	after	the	information	gathered,	as	it	is	with
ThreadCallback	or	ThreadExCallback.	It	is	called	for	each	thread.	If
the	callback	function	returns	FALSE,	the	current	thread	is	excluded.
This	allows	the	caller	to	obtain	information	for	a	subset	of	the	threads
in	a	process,	without	suspending	threads	that	are	not	of	interest.
Alternately,	you	can	modify	the	ThreadWriteFlags	member	of	the
MINIDUMP_CALLBACK_OUTPUT	structure	and	return	TRUE	to
avoid	gathering	unnecessary	information	for	the	thread.

IncludeModuleCallback
The	callback	function	indicates	which	modules	are	to	be	included.
The	callback	function	is	called	as	the	minidump	library	is
enumerating	the	modules	in	a	process,	rather	than	after	the
information	is	gathered,	as	it	is	with	ModuleCallback.	It	is	called	for
each	module.	If	the	callback	function	returns	FALSE,	the	current
module	is	excluded.	Alternatively,	you	can	modify	the
ModuleWriteFlags	member	of	the
MINIDUMP_CALLBACK_OUTPUT	structure	and	return	TRUE	to
avoid	gathering	unnecessary	information	for	the	module.

MemoryCallback
The	callback	function	returns	a	region	of	memory	to	be	included	in
the	dump.	The	callback	is	called	only	for	dumps	generated	without
the	MiniDumpWithFullMemory	flag.	If	the	callback	function	returns
FALSE	or	a	region	of	size	0,	the	callback	will	not	be	called	again.

DbgHelp	6.1	and	earlier:		This	value	is	not
supported.

CancelCallback
The	callback	function	returns	cancellation	information.

DbgHelp	6.1	and	earlier:		This	value	is	not
supported.

WriteKernelMinidumpCallback
The	user-mode	minidump	has	been	successfully	completed.	To
initiate	a	kernel-mode	minidump,	the	callback	should	return	TRUE
and	set	the	Handle	member	of	the
MINIDUMP_CALLBACK_OUTPUT	structure.

DbgHelp	6.1	and	earlier:		This	value	is	not
supported.

KernelMinidumpStatusCallback
The	callback	function	returns	status	information	for	the	kernel
minidump.

DbgHelp	6.1	and	earlier:		This	value	is	not
supported.

RemoveMemoryCallback
The	callback	function	returns	a	region	of	memory	to	be	excluded
from	the	dump.	The	callback	is	called	only	for	dumps	generated
without	the	MiniDumpWithFullMemory	flag.	If	the	callback	function
returns	FALSE	or	a	region	of	size	0,	the	callback	will	not	be	called
again.

DbgHelp	6.3	and	earlier:		This	value	is	not
supported.

IncludeVmRegionCallback
The	callback	function	returns	information	about	the	virtual	memory
region.	It	is	called	twice	for	each	region	during	the	full-memory
writing	pass.	The	VmRegion	member	of	the
MINIDUMP_CALLBACK_OUTPUT	structure	contains	the	current
memory	region.	You	can	modify	the	base	address	and	size	of	the
region,	as	long	as	the	new	region	remains	a	subset	of	the	original
region;	changes	to	other	members	are	ignored.	If	the	callback	returns
TRUE	and	sets	the	Continue	member	of
MINIDUMP_CALLBACK_OUTPUT	to	TRUE,	the	minidump	library
will	use	the	region	specified	by	VmRegion	as	the	region	to	be
written.	If	the	callback	returns	FALSE	or	if	Continue	is	FALSE,	the
callback	will	not	be	called	for	additional	memory	regions.

DbgHelp	6.4	and	earlier:		This	value	is	not
supported.

IoStartCallback
The	callback	function	indicates	that	the	caller	will	be	providing	an
alternate	I/O	routine.	If	the	callback	returns	TRUE	and	sets	the
Status	member	of	MINIDUMP_CALLBACK_OUTPUT	to	S_FALSE,

the	minidump	library	will	send	all	I/O	through	callbacks.	The	caller
will	receive	an	IoWriteAllCallback	callback	for	each	piece	of	data.

DbgHelp	6.4	and	earlier:		This	value	is	not
supported.

IoWriteAllCallback
The	callback	must	write	all	requested	bytes	or	fail.	The	Io	member	of
the	MINIDUMP_CALLBACK_OUTPUT	structure	contains	the
request.	If	the	write	operation	fails,	the	callback	should	return	FALSE.
If	the	write	operation	succeeds,	the	callback	should	return	TRUE	and
set	the	Status	member	of	MINIDUMP_CALLBACK_OUTPUT	to
S_OK.	The	caller	will	receive	an	IoFinishCallback	callback	when	the
I/O	has	completed.

DbgHelp	6.4	and	earlier:		This	value	is	not
supported.

IoFinishCallback
The	callback	returns	I/O	completion	information.	If	the	callback
returns	FALSE	or	does	not	set	the	Status	member	of
MINIDUMP_CALLBACK_OUTPUT	to	S_OK,	the	minidump	library
assumes	the	minidump	write	operation	has	failed.

DbgHelp	6.4	and	earlier:		This	value	is	not
supported.

ReadMemoryFailureCallback
There	has	been	a	failure	to	read	memory.	If	the	callback	returns
TRUE	and	sets	the	Status	member	of
MINIDUMP_CALLBACK_OUTPUT	to	S_OK,	the	memory	failure	is
ignored	and	the	block	is	omitted	from	the	minidump.	Otherwise,	this
failure	results	in	a	failure	to	write	to	the	minidump.

DbgHelp	6.4	and	earlier:		This	value	is	not
supported.

SecondaryFlagsCallback
The	callback	returns	secondary	information.

DbgHelp	6.5	and	earlier:		This	value	is	not
supported.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

MINIDUMP_CALLBACK_INPUTMiniDumpCallback

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_CALLBACK_TYPE%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MINIDUMP_HANDLE_OBJECT_INFORMATION_TYPE
Enumeration

Identifies	the	type	of	object-specific	information.

typedef	enum	_MINIDUMP_HANDLE_OBJECT_INFORMATION

{

		MiniHandleObjectInformationNone,

		MiniThreadInformation1,

		MiniMutantInformation1,

		MiniMutantInformation2,

		MiniProcessInformation1,

		MiniProcessInformation2

}MINIDUMP_HANDLE_OBJECT_INFORMATION_TYPE;

Constants

MiniHandleObjectInformationNone
There	is	no	object-specific	information	for	this	handle	type.

MiniThreadInformation1
The	information	is	specific	to	thread	objects.

MiniMutantInformation1
The	information	is	specific	to	mutant	objects.

MiniMutantInformation2
The	information	is	specific	to	mutant	objects.

MiniProcessInformation1
The	information	is	specific	to	process	objects.

MiniProcessInformation2
The	information	is	specific	to	process	objects.

Remarks

The	information	represented	by	each	of	these	values	can	vary	by
operating	system	and	procesor	architecture.	Per-handle	object-specific
information	is	automatically	gathered	when	minidump	type	is

MiniDumpWithHandleData.	For	more	information,	see
MINIDUMP_TYPE.

Requirements

Redistributable Requires	DbgHelp.dll	6.5	or	later.

Header Declared	in	DbgHelp.h.

See	Also

MINIDUMP_HANDLE_OBJECT_INFORMATION
Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_HANDLE_OBJECT_INFORMATION_TYPE%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MINIDUMP_SECONDARY_FLAGS	Enumeration
Specifies	the	secondary	flags	for	the	minidump.

typedef	enum	

{

		MiniSecondaryWithoutPowerInfo	=	0x00000001

}MINIDUMP_SECONDARY_FLAGS;

Constants

MiniSecondaryWithoutPowerInfo
The	minidump	information	does	not	retrieve	the	processor	power
information	contained	in	the	MINIDUMP_MISC_INFO_2	structure.

Requirements

Redistributable Requires	DbgHelp.dll	6.6	or	later.

Header Declared	in	Dbghelp.h.

See	Also

MINIDUMP_MISC_INFO_2
Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_SECONDARY_FLAGS%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MINIDUMP_STREAM_TYPE	Enumeration
Represents	the	type	of	a	minidump	data	stream.

typedef	enum	_MINIDUMP_STREAM_TYPE

{

		UnusedStream	=	0,

		ReservedStream0	=	1,

		ReservedStream1	=	2,

		ThreadListStream	=	3,

		ModuleListStream	=	4,

		MemoryListStream	=	5,

		ExceptionStream	=	6,

		SystemInfoStream	=	7,

		ThreadExListStream	=	8,

		Memory64ListStream	=	9,

		CommentStreamA	=	10,

		CommentStreamW	=	11,

		HandleDataStream	=	12,

		FunctionTableStream	=	13,

		UnloadedModuleListStream	=	14,

		MiscInfoStream	=	15,

		MemoryInfoListStream	=	16,

		ThreadInfoListStream	=	17,

		HandleOperationListStream	=	18,

		LastReservedStream	=	0xffff

}MINIDUMP_STREAM_TYPE;

Constants

UnusedStream
Reserved.	Do	not	use	this	enumeration	value.

ReservedStream0
Reserved.	Do	not	use	this	enumeration	value.

ReservedStream1
Reserved.	Do	not	use	this	enumeration	value.

ThreadListStream
The	stream	contains	thread	information.	For	more	information,	see
MINIDUMP_THREAD_LIST.

ModuleListStream
The	stream	contains	module	information.	For	more	information,	see
MINIDUMP_MODULE_LIST.

MemoryListStream
The	stream	contains	memory	allocation	information.	For	more
information,	see	MINIDUMP_MEMORY_LIST.

ExceptionStream
The	stream	contains	exception	information.	For	more	information,
see	MINIDUMP_EXCEPTION_STREAM.

SystemInfoStream
The	stream	contains	general	system	information.	For	more
information,	see	MINIDUMP_SYSTEM_INFO.

ThreadExListStream
The	stream	contains	extended	thread	information.	For	more
information,	see	MINIDUMP_THREAD_EX_LIST.

Memory64ListStream
The	stream	contains	memory	allocation	information.	For	more
information,	see	MINIDUMP_MEMORY64_LIST.

CommentStreamA
The	stream	contains	an	ANSI	string	used	for	documentation
purposes.

CommentStreamW
The	stream	contains	a	Unicode	string	used	for	documentation
purposes.

HandleDataStream
The	stream	contains	high-level	information	about	the	active	operating
system	handles.	For	more	information,	see
MINIDUMP_HANDLE_DATA_STREAM.

FunctionTableStream

The	stream	contains	function	table	information.	For	more	information,
see	MINIDUMP_FUNCTION_TABLE_STREAM.

UnloadedModuleListStream
The	stream	contains	module	information	for	the	unloaded	modules.
For	more	information,	see
MINIDUMP_UNLOADED_MODULE_LIST.

DbgHelp	5.1:		This	value	is	not	supported.

MiscInfoStream
The	stream	contains	miscellaneous	information.	For	more
information,	see	MINIDUMP_MISC_INFO	or
MINIDUMP_MISC_INFO_2.

DbgHelp	5.1:		This	value	is	not	supported.

MemoryInfoListStream
The	stream	contains	memory	region	description	information.	It
corresponds	to	the	information	that	would	be	returned	for	the	process
from	the	VirtualQuery	function.	For	more	information,	see
MINIDUMP_MEMORY_INFO_LIST.

DbgHelp	6.1	and	earlier:		This	value	is	not
supported.

ThreadInfoListStream
The	stream	contains	thread	state	information.	For	more	information,
see	MINIDUMP_THREAD_INFO_LIST.

DbgHelp	6.1	and	earlier:		This	value	is	not
supported.

HandleOperationListStream
This	stream	contains	operation	list	information.	For	more	information,
see	MINIDUMP_HANDLE_OPERATION_LIST.

DbgHelp	6.4	and	earlier:		This	value	is	not
supported.

LastReservedStream
Any	value	greater	than	this	value	will	not	be	used	by	the	system	and
can	be	used	to	represent	application-defined	data	streams.	For	more

information,	see	MINIDUMP_USER_STREAM.

Remarks

In	this	context,	a	data	stream	is	a	set	of	data	in	a	minidump	file.

The	StreamType	member	of	the	MINIDUMP_DIRECTORY	structure	can
be	one	of	these	types.	Additional	types	may	be	added	in	the	future,	so	if
a	program	reading	the	minidump	header	encounters	a	stream	type	it
does	not	recognize,	it	should	ignore	the	stream	altogether.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

MINIDUMP_DIRECTORYMINIDUMP_EXCEPTION_STREAM
MINIDUMP_FUNCTION_TABLE_STREAM
MINIDUMP_HANDLE_DATA_STREAM
MINIDUMP_HANDLE_OPERATION_LIST
MINIDUMP_MEMORY_INFO_LIST
MINIDUMP_MEMORY_LIST
MINIDUMP_MISC_INFO
MINIDUMP_MODULE_LIST
MINIDUMP_SYSTEM_INFO
MINIDUMP_THREAD_EX_LIST
MINIDUMP_THREAD_INFO_LIST
MINIDUMP_THREAD_LIST
MINIDUMP_UNLOADED_MODULE_LIST
MINIDUMP_USER_STREAM

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_STREAM_TYPE%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

©	2007	Microsoft	Corporation.	All	rights	reserved.

MINIDUMP_TYPE	Enumeration
Identifies	the	type	of	information	that	will	be	written	to	the	minidump	file
by	the	MiniDumpWriteDump	function.

typedef	enum	_MINIDUMP_TYPE

{

		MiniDumpNormal	=	0x00000000,

		MiniDumpWithDataSegs	=	0x00000001,

		MiniDumpWithFullMemory	=	0x00000002,

		MiniDumpWithHandleData	=	0x00000004,

		MiniDumpFilterMemory	=	0x00000008,

		MiniDumpScanMemory	=	0x00000010,

		MiniDumpWithUnloadedModules	=	0x00000020,

		MiniDumpWithIndirectlyReferencedMemory	=	0x00000040,

		MiniDumpFilterModulePaths	=	0x00000080,

		MiniDumpWithProcessThreadData	=	0x00000100,

		MiniDumpWithPrivateReadWriteMemory	=	0x00000200,

		MiniDumpWithoutOptionalData	=	0x00000400,

		MiniDumpWithFullMemoryInfo	=	0x00000800,

		MiniDumpWithThreadInfo	=	0x00001000,

		MiniDumpWithCodeSegs	=	0x00002000

}MINIDUMP_TYPE;

Constants

MiniDumpNormal
Include	just	the	information	necessary	to	capture	stack	traces	for	all
existing	threads	in	a	process.

MiniDumpWithDataSegs
Include	the	data	sections	from	all	loaded	modules.	This	results	in	the
inclusion	of	global	variables,	which	can	make	the	minidump	file
significantly	larger.	For	per-module	control,	use	the
ModuleWriteDataSeg	enumeration	value	from
MODULE_WRITE_FLAGS.

MiniDumpWithFullMemory

Include	all	accessible	memory	in	the	process.	The	raw	memory	data
is	included	at	the	end,	so	that	the	initial	structures	can	be	mapped
directly	without	the	raw	memory	information.	This	option	can	result	in
a	very	large	file.

MiniDumpWithHandleData
Include	high-level	information	about	the	operating	system	handles
that	are	active	when	the	minidump	is	made.

MiniDumpFilterMemory
Stack	and	backing	store	memory	written	to	the	minidump	file	should
be	filtered	to	remove	all	but	the	pointer	values	necessary	to
reconstruct	a	stack	trace.	Typically,	this	removes	any	private
information.

MiniDumpScanMemory
Stack	and	backing	store	memory	should	be	scanned	for	pointer
references	to	modules	in	the	module	list.	If	a	module	is	referenced	by
stack	or	backing	store	memory,	the	ModuleWriteFlags	member	of
the	MINIDUMP_CALLBACK_OUTPUT	structure	is	set	to
ModuleReferencedByMemory.

MiniDumpWithUnloadedModules
Include	information	from	the	list	of	modules	that	were	recently
unloaded,	if	this	information	is	maintained	by	the	operating	system.

Windows	Server	2003	and	Windows	XP:		The
operating	system	does	not	maintain	information	for
unloaded	modules	until	Windows	Server	2003	SP1
and	Windows	XP	SP2.

DbgHelp	5.1:		This	value	is	not	supported.

MiniDumpWithIndirectlyReferencedMemory
Include	pages	with	data	referenced	by	locals	or	other	stack	memory.
This	option	can	increase	the	size	of	the	minidump	file	significantly.

DbgHelp	5.1:		This	value	is	not	supported.

MiniDumpFilterModulePaths
Filter	module	paths	for	information	such	as	user	names	or	important
directories.	This	option	may	prevent	the	system	from	locating	the

image	file	and	should	be	used	only	in	special	situations.

DbgHelp	5.1:		This	value	is	not	supported.

MiniDumpWithProcessThreadData
Include	complete	per-process	and	per-thread	information	from	the
operating	system.

DbgHelp	5.1:		This	value	is	not	supported.

MiniDumpWithPrivateReadWriteMemory
Scan	the	virtual	address	space	for	other	types	of	memory	to	be
included.

DbgHelp	5.1:		This	value	is	not	supported.

MiniDumpWithoutOptionalData
Reduce	the	data	that	is	dumped	by	eliminating	memory	regions	that
are	not	essential	to	meet	criteria	specified	for	the	dump.	This	can
avoid	dumping	memory	that	may	contain	data	that	is	private	to	the
user.	However,	it	is	not	a	guarantee	that	no	private	information	will	be
present.

DbgHelp	6.1	and	earlier:		This	value	is	not
supported.

MiniDumpWithFullMemoryInfo
Include	memory	region	information.	For	more	information,	see
MINIDUMP_MEMORY_INFO_LIST.

DbgHelp	6.1	and	earlier:		This	value	is	not
supported.

MiniDumpWithThreadInfo
Include	thread	state	information.	For	more	information,	see
MINIDUMP_THREAD_INFO_LIST.

DbgHelp	6.1	and	earlier:		This	value	is	not
supported.

MiniDumpWithCodeSegs
Include	all	code	and	code-related	sections	from	loaded	modules	to
capture	executable	content.	For	per-module	control,	use	the

ModuleWriteCodeSegs	enumeration	value	from
MODULE_WRITE_FLAGS.

DbgHelp	6.1	and	earlier:		This	value	is	not
supported.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

MiniDumpWriteDump
Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_TYPE%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MODULE_WRITE_FLAGS	Enumeration
Identifies	the	type	of	module	information	that	will	be	written	to	the
minidump	file	by	the	MiniDumpWriteDump	function.

typedef	enum	_MODULE_WRITE_FLAGS

{

		ModuleWriteModule	=	0x0001,

		ModuleWriteDataSeg	=	0x0002,

		ModuleWriteMiscRecord	=	0x0004,

		ModuleWriteCvRecord	=	0x0008,

		ModuleReferencedByMemory	=	0x0010,

		ModuleWriteTlsData	=	0x0020,

		ModuleWriteCodeSegs	=	0x0040

}MODULE_WRITE_FLAGS;

Constants

ModuleWriteModule
Only	module	information	will	be	written	to	the	minidump	file.

ModuleWriteDataSeg
Module	and	data	segment	information	will	be	written	to	the	minidump
file.	This	value	will	only	be	set	if	the	MiniDumpWithDataSegs
enumeration	value	from	MINIDUMP_TYPE	is	set.

ModuleWriteMiscRecord
Module,	data	segment,	and	miscellaneous	record	information	will	be
written	to	the	minidump	file.

ModuleWriteCvRecord
CodeView	information	will	be	written	to	the	minidump	file.	Some
debuggers	need	the	CodeView	information	to	properly	locate
symbols.

ModuleReferencedByMemory
Indicates	that	a	module	was	referenced	by	a	pointer	on	the	stack	or
backing	store	of	a	thread	in	the	minidump.	This	value	is	valid	only	if
the	DumpType	parameter	of	the	MiniDumpWriteDump	function

includes	MiniDumpScanMemory.

ModuleWriteTlsData
Per-module	automatic	TLS	data	is	written	to	the	minidump	file.	(Note
that	automatic	TLS	data	is	created	using	__declspec(thread)	while
TlsAlloc	creates	dynamic	TLS	data).	This	value	is	valid	only	if	the
DumpType	parameter	of	the	MiniDumpWriteDump	function	includes
MiniDumpWithProcessThreadData.

DbgHelp	6.1	and	earlier:		This	value	is	not
supported.

ModuleWriteCodeSegs
Code	segment	information	will	be	written	to	the	minidump	file.	This
value	will	only	be	set	if	the	MiniDumpWithCodeSegs	enumeration
value	from	MINIDUMP_TYPE	is	set.

DbgHelp	6.1	and	earlier:		This	value	is	not
supported.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

MINIDUMP_CALLBACK_OUTPUTMiniDumpWriteDump

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MODULE_WRITE_FLAGS%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

THREAD_WRITE_FLAGS	Enumeration
Identifies	the	type	of	thread	information	that	will	be	written	to	the
minidump	file	by	the	MiniDumpWriteDump	function.

typedef	enum	_THREAD_WRITE_FLAGS

{

		ThreadWriteThread	=	0x0001,

		ThreadWriteStack	=	0x0002,

		ThreadWriteContext	=	0x0004,

		ThreadWriteBackingStore	=	0x0008,

		ThreadWriteInstructionWindow	=	0x0010,

		ThreadWriteThreadData	=	0x0020,

		ThreadWriteThreadInfo	=	0x0040

}THREAD_WRITE_FLAGS;

Constants

ThreadWriteThread
Only	basic	thread	information	will	be	written	to	the	minidump	file.

ThreadWriteStack
Basic	thread	and	thread	stack	information	will	be	written	to	the
minidump	file.

ThreadWriteContext
The	entire	thread	context	will	be	written	to	the	minidump	file.

ThreadWriteBackingStore

Intel	IPF:		The	backing	store	memory	of	every
thread	will	be	written	to	the	minidump	file.

ThreadWriteInstructionWindow
A	small	amount	of	memory	surrounding	each	thread's	instruction
pointer	will	be	written	to	the	minidump	file.	This	allows	instructions
near	a	thread's	instruction	pointer	to	be	disassembled	even	if	an
executable	image	matching	the	module	cannot	be	found.

ThreadWriteThreadData

When	the	minidump	type	includes
MiniDumpWithProcessThreadData,	this	flag	is	set.	The	callback
function	can	clear	this	flag	to	control	which	threads	provide	complete
thread	data	in	the	minidump	file.

DbgHelp	5.1:		This	value	is	not	supported.

ThreadWriteThreadInfo
When	the	minidump	type	includes	MiniDumpWithThreadInfo,	this	flag
is	set.	The	callback	function	can	clear	this	flag	to	control	which
threads	provide	thread	state	information	in	the	minidump	file.	For
more	information,	see	MINIDUMP_THREAD_INFO.

DbgHelp	6.1	and	earlier:		This	value	is	not
supported.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

MINIDUMP_CALLBACK_OUTPUTMiniDumpWriteDump

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20THREAD_WRITE_FLAGS%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

DbgHelp	Functions
The	following	are	the	DbgHelp	functions.

General

The	following	are	general	helper	functions:

EnumDirTree
ImagehlpApiVersion
ImagehlpApiVersionEx
MakeSureDirectoryPathExists
SearchTreeForFile

Debugger

The	debugging	service	functions	are	the	functions	most	suited	for	use	by
a	debugger	or	the	debugging	code	in	an	application.	These	functions	can
be	used	in	concert	with	the	symbol	handler	functions	for	easier	use.

EnumerateLoadedModules64
EnumerateLoadedModulesEx
FindDebugInfoFile
FindDebugInfoFileEx
FindExecutableImage
FindExecutableImageEx
StackWalk64
SymSetParentWindow
UnDecorateSymbolName

Image	Access

The	image	access	functions	access	the	data	in	an	executable	image.	The
functions	provide	high-level	access	to	the	base	of	images	and	very
specific	access	to	the	most	common	parts	of	an	image's	data.

GetTimestampForLoadedLibrary
ImageDirectoryEntryToData
ImageDirectoryEntryToDataEx
ImageNtHeader

ImageRvaToSection
ImageRvaToVa

Symbol	Handler

The	symbol	handler	functions	give	applications	easy	and	portable	access
to	the	symbolic	debugging	information	of	an	image.	These	functions
should	be	used	exclusively	to	ensure	access	to	symbolic	information.
This	is	necessary	because	these	functions	isolate	the	application	from
the	symbol	format.

SymAddSourceStream
SymAddSymbol
SymCleanup
SymDeleteSymbol
SymEnumerateModules64
SymEnumLines
SymEnumProcesses
SymEnumSourceFiles
SymEnumSourceFileTokens
SymEnumSourceLines
SymEnumSymbols
SymEnumSymbolsForAddr
SymEnumTypes
SymEnumTypesByName
SymFindDebugInfoFile
SymFindExecutableImage
SymFindFileInPath
SymFromAddr
SymFromIndex
SymFromName
SymFromToken
SymFunctionTableAccess64
SymGetFileLineOffsets64
SymGetHomeDirectory
SymGetLineFromAddr64
SymGetLineFromName64
SymGetLineNext64

SymGetLinePrev64
SymGetModuleBase64
SymGetModuleInfo64
SymGetOmaps
SymGetOptions
SymGetScope
SymGetSearchPath
SymGetSymbolFile
SymGetTypeFromName
SymGetTypeInfo
SymGetTypeInfoEx
SymGetUnwindInfo
SymInitialize
SymLoadModule64
SymLoadModuleEx
SymMatchFileName
SymMatchString
SymNext
SymPrev
SymRefreshModuleList
SymRegisterCallback64
SymRegisterFunctionEntryCallback64
SymSearch
SymSetContext
SymSetHomeDirectory
SymSetOptions
SymSetScopeFromAddr
SymSetScopeFromIndex
SymSetSearchPath
SymUnDName64
SymUnloadModule64

Symbol	Server

The	symbol	server	enables	debuggers	to	automatically	retrieve	the
correct	symbol	files	without	product	names,	releases,	or	build	numbers.
The	following	functions	are	used	with	the	symbol	server.

SymbolServer
SymbolServerClose
SymbolServerGetOptions
SymbolServerSetOptions
SymSrvDeltaName
SymSrvGetFileIndexes
SymSrvGetFileIndexInfo
SymSrvGetFileIndexString
SymSrvGetSupplement
SymSrvIsStore
SymSrvStoreFile
SymSrvStoreSupplement

User-mode	Minidump	Files

The	minidump	functions	provide	a	way	for	applications	to	produce
crashdump	files	that	contain	a	useful	subset	of	the	entire	process
context;	this	is	known	as	a	minidump	file.	The	following	functions	are
used	with	minidump	files.

MiniDumpCallback
MiniDumpReadDumpStream
MiniDumpWriteDump

Source	Server

Source	server	enables	a	client	to	retrieve	the	exact	version	of	the	source
files	that	were	used	to	build	an	application.	The	following	functions	are
used	with	source	server.

SymGetSourceFile

SymGetSourceFileFromToken

SymGetSourceFileToken

SymGetSourceVarFromToken

Obsolete	Functions

MapDebugInformation
SymEnumerateSymbols64

SymGetSymFromAddr64
SymGetSymFromName64
SymGetSymNext64
SymGetSymPrev64
UnMapDebugInformation

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20DbgHelp Functions%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

EnumDirTree	Function
Enumerates	all	occurrences	of	the	specified	file	in	the	specified	directory
tree.

BOOL	WINAPI	EnumDirTree(

		__in_opt						HANDLE	hProcess,

		__in										PCTSTR	RootPath,

		__in										PCTSTR	InputPathName,

		__out									LPTSTR	OutputPathBuffer,

		__in										PENUMDIRTREE_CALLBACK	Callback,

		__in										PVOID	CallbackData

);

Parameters

hProcess
A	handle	to	a	process.	This	handle	must	have	been	previously
passed	to	the	SymInitialize	function.

RootPath
The	path	where	the	function	should	begin	searching	for	the	file.

InputPathName
The	name	of	the	file	to	be	found.	You	can	specify	a	partial	path.

OutputPathBuffer
A	pointer	to	a	buffer	that	receives	the	full	path	of	the	file.	If	the
function	fails	or	does	not	find	a	matching	file,	this	buffer	will	still
contain	the	last	full	path	that	was	found.

This	parameter	is	optional	and	can	be	NULL.

Callback
An	application-defined	callback	function,	or	NULL.	For	more
information,	see	EnumDirTreeProc.

CallbackData
The	user-defined	data	or	NULL.	This	value	is	passed	to	the	callback
function.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

The	search	can	be	canceled	if	you	register	a
SymRegisterCallbackProc64	callback	function.	For	every	file	operation,
EnumDirTree	calls	this	callback	function	with
CBA_DEFERRED_SYMBOL_LOAD_CANCEL.	If	the	callback	function
returns	TRUE,	EnumDirTree	cancels	the	search.
All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Requirements

Redistributable Requires	DbgHelp.dll	6.0	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	EnumDirTreeW	(Unicode)	and
EnumDirTree	(ANSI).

See	Also

DbgHelp	FunctionsEnumDirTreeProc

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20EnumDirTree%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

EnumDirTreeProc	Callback	Function
An	application-defined	callback	function	used	with	the	EnumDirTree
function.	It	is	called	every	time	a	match	is	found.

The	PENUMDIRTREE_CALLBACK	type	defines	a	pointer	to	this
callback	function.	EnumDirTreeProc	is	a	placeholder	for	the	application-
defined	function	name.

BOOL	CALLBACK	EnumDirTreeProc(

		[in]																	LPCTSTR	FilePath,

		[in]																	PVOID	CallerData

);

Parameters

FilePath
A	pointer	to	a	buffer	that	receives	the	full	path	of	the	file	that	is	found.

CallerData
A	user-defined	value	specified	in	EnumDirTree,	or	NULL.	Typically,
this	parameter	is	used	by	an	application	to	pass	a	pointer	to	a	data
structure	that	enables	the	callback	function	to	establish	some
context.

Return	Value

To	continue	enumeration,	the	callback	function	must	return	FALSE.

To	stop	enumeration,	the	callback	function	must	return	TRUE.

Requirements

Redistributable Requires	DbgHelp.dll	6.0	or	later.

Header Declared	in	DbgHelp.h.

Unicode

Implemented	as	PENUMDIRTREE_CALLBACKW
(Unicode)	and	PENUMDIRTREE_CALLBACK
(ANSI).

See	Also

DbgHelp	FunctionsEnumDirTree

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20EnumDirTreeProc%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

EnumerateLoadedModules64	Function
Enumerates	the	loaded	modules	for	the	specified	process.

This	function	supersedes	the	EnumerateLoadedModules	function.	For
more	information,	see	Updated	Platform	Support.

BOOL	WINAPI	EnumerateLoadedModules64(

		__in										HANDLE	hProcess,

		__in										PENUMLOADED_MODULES_CALLBACK64	EnumLoadedModulesCallback

		__in_opt						PVOID	UserContext

);

Parameters

hProcess
A	handle	to	the	process	whose	modules	will	be	enumerated.

EnumLoadedModulesCallback
An	application-defined	callback	function.	For	more	information,	see
EnumerateLoadedModulesProc64.

UserContext
Optional	user-defined	data.	This	value	is	passed	to	the	callback
function.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	EnumerateLoadedModulesW64
(Unicode)	and	EnumerateLoadedModules64	(ANSI).

See	Also

DbgHelp	FunctionsEnumerateLoadedModulesProc64

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20EnumerateLoadedModules64%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

EnumerateLoadedModulesEx	Function
[This	documentation	is	preliminary	and	is	subject	to	change.]

TBD

BOOL	WINAPI	EnumerateLoadedModulesEx(

		__in										HANDLE	hProcess,

		__in										PENUMLOADED_MODULES_CALLBACK64	EnumLoadedModulesCallback

		__in_opt						PVOID	UserContext

);

Parameters

hProcess
A	handle	to	the	process	whose	modules	will	be	enumerated.

EnumLoadedModulesCallback
An	application-defined	callback	function.	For	more	information,	see
EnumerateLoadedModulesProc64.

UserContext
Optional	user-defined	data.	This	value	is	passed	to	the	callback
function.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define

DBGHELP_TRANSLATE_TCHAR.

Requirements

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	EnumerateLoadedModulesExW	(Unicode)
and	EnumerateLoadedModulesEx	(ANSI).

See	Also

DbgHelp	Functions

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20EnumerateLoadedModulesEx%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

EnumerateLoadedModulesProc64	Callback
Function

An	application-defined	callback	function	used	with	the
EnumerateLoadedModules64	function.
The	PENUMLOADED_MODULES_CALLBACK64	type	defines	a	pointer
to	this	callback	function.	EnumerateLoadedModulesProc64	is	a
placeholder	for	the	application-defined	function	name.

BOOL	CALLBACK	EnumerateLoadedModulesProc64(

		[in]																	PTSTR	ModuleName,

		[in]																	DWORD64	ModuleBase,

		[in]																	ULONG	ModuleSize,

		[in]																	PVOID	UserContext

);

Parameters

ModuleName
The	name	of	the	enumerated	module.

ModuleBase
The	base	address	of	the	module.

ModuleSize
The	size	of	the	module,	in	bytes.

UserContext
Optional	user-defined	data.	This	value	is	passed	from
EnumerateLoadedModules64.

Return	Value

To	continue	enumeration,	the	callback	function	must	return	TRUE.

To	stop	enumeration,	the	callback	function	must	return	FALSE.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

Unicode

Implemented	as
PENUMLOADED_MODULES_CALLBACKW64
(Unicode)	and
PENUMLOADED_MODULES_CALLBACK64	(ANSI).

See	Also

DbgHelp	FunctionsEnumerateLoadedModules64

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20EnumerateLoadedModulesProc64%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

FindDebugInfoFile	Function
Locates	a	debug	(.dbg)	file.

To	provide	a	callback	function	to	verify	the	symbol	file	located,	use	the
FindDebugInfoFileEx	function.

HANDLE	WINAPI	FindDebugInfoFile(

		__in										PCSTR	FileName,

		__in										PCSTR	SymbolPath,

		__out									PSTR	DebugFilePath

);

Parameters

FileName
The	name	of	the	.dbg	file	that	is	desired.	You	can	use	a	partial	path.

SymbolPath
The	path	where	symbol	files	are	located.	This	can	be	multiple	paths
separated	by	semicolons.	To	retrieve	the	symbol	path,	use	the
SymGetSearchPath	function.

DebugFilePath
A	pointer	to	a	buffer	that	receives	the	full	path	of	the	.dbg	file.

Return	Value

If	the	function	succeeds,	the	return	value	is	an	open	handle	to	the	.dbg
file.

If	the	function	fails,	the	return	value	is	NULL.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

The	FindDebugInfoFile	function	is	used	to	locate	a	.dbg	file.	This
function	is	provided	so	the	search	can	be	conducted	in	several	different
directories	through	a	single	function	call.	The	SymbolPath	parameter	can
contain	multiple	paths,	with	each	separated	by	a	semicolon	(;).	When
multiple	paths	are	specified,	the	function	searches	each	directory	for	the

file.	Subdirectories	are	not	searched.	When	the	file	is	located,	the	search
stops.	Thus,	be	sure	to	specify	SymbolPath	with	the	paths	in	the	correct
order.

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

See	Also

DbgHelp	FunctionsFindDebugInfoFileEx
SymGetSearchPath

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20FindDebugInfoFile%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

FindDebugInfoFileEx	Function
Locates	the	specified	debug	(.dbg)	file.

HANDLE	WINAPI	FindDebugInfoFileEx(

		__in										PCTSTR	FileName,

		__in										PCTSTR	SymbolPath,

		__out									PTSTR	DebugFilePath,

		__in										PFIND_DEBUG_FILE_CALLBACK	Callback,

		__in										PVOID	CallerData

);

Parameters

FileName
The	name	of	the	.dbg	file	to	locate.	You	can	use	a	partial	path.

SymbolPath
The	path	where	symbol	files	are	located.	This	can	be	multiple	paths
separated	by	semicolons.	To	retrieve	the	symbol	path,	use	the
SymGetSearchPath	function.

DebugFilePath
A	pointer	to	a	buffer	that	receives	the	full	path	of	the	.dbg	file.

Callback
An	application-defined	callback	function	that	verifies	whether	the
correct	file	was	found	or	the	function	should	continue	its	search.	For
more	information,	see	FindDebugInfoFileProc.
This	parameter	may	be	NULL.

CallerData
Optional	user-defined	data	to	pass	to	the	callback	function.

Return	Value

If	the	function	succeeds,	the	return	value	is	an	open	handle	to	the	.dbg
file.

If	the	function	fails,	the	return	value	is	NULL.	To	retrieve	extended	error

information,	call	GetLastError.

Remarks

The	FindDebugInfoFileEx	function	is	used	to	locate	a	.dbg	file.	This
function	is	provided	so	the	search	can	be	conducted	in	several	different
directories	through	a	single	function	call.	The	SymbolPath	parameter	can
contain	multiple	paths,	with	each	separated	by	a	semicolon	(;).	When
multiple	paths	are	specified,	the	function	searches	each	specified
directory	for	the	file.	When	the	file	is	located,	the	search	stops.	Thus,	be
sure	to	specify	SymbolPath	with	the	paths	in	the	correct	order.

If	the	file	name	specified	does	not	include	a	.dbg	extension,
FindDebugInfoFileEx	searches	for	the	file	in	the	following	sequence:

1.	 SymbolPath\Symbols\ext\filename.dbg

2.	 SymbolPath\ext\filename.dbg

3.	 SymbolPath\filename.dbg

4.	 FileNamePath\filename.dbg

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	FindDebugInfoFileExW	(Unicode)
and	FindDebugInfoFileEx	(ANSI).

See	Also

DbgHelp	FunctionsFindDebugInfoFileProc
SymGetSearchPath

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20FindDebugInfoFileEx%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

FindDebugInfoFileProc	Callback	Function
An	application-defined	callback	function	used	with	the
FindDebugInfoFileEx	function.	It	verifies	whether	the	symbol	file	located
by	FindDebugInfoFileEx	is	the	correct	symbol	file.
The	PFIND_DEBUG_FILE_CALLBACK	type	defines	a	pointer	to	this
callback	function.	FindDebugInfoFileProc	is	a	placeholder	for	the
application-defined	function	name.

BOOL	CALLBACK	FindDebugInfoFileProc(

		[in]																	HANDLE	FileHandle,

		[in]																	PTSTR	FileName,

		[in]																	PVOID	CallerData

);

Parameters

FileHandle
A	handle	to	the	symbol	file.

FileName
The	name	of	the	symbol	file.

CallerData
Optional	user-defined	data.	This	parameter	can	be	NULL.

Return	Value

If	the	symbol	file	is	valid,	return	TRUE.	Otherwise,	return	FALSE.

Remarks

One	way	to	verify	the	symbol	file	is	to	compare	its	timestamp	to	the
timestamp	in	the	image.	To	retrieve	the	timestamp	of	the	image,	use	the
GetTimestampForLoadedLibrary	function.	To	retrieve	the	timestamp	of
the	symbol	file,	use	the	SymGetModuleInfo64	function.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

Unicode

Implemented	as
PFIND_DEBUG_FILE_CALLBACKW	(Unicode)	and
PFIND_DEBUG_FILE_CALLBACK	(ANSI).

See	Also

DbgHelp	FunctionsFindDebugInfoFileEx
GetTimestampForLoadedLibrary
SymGetModuleInfo64

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20FindDebugInfoFileProc%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

FindExecutableImage	Function
Locates	an	executable	file.

To	specify	a	callback	function,	use	the	FindExecutableImageEx
function.

HANDLE	WINAPI	FindExecutableImage(

		__in										PCSTR	FileName,

		__in										PCSTR	SymbolPath,

		__out									PSTR	ImageFilePath

);

Parameters

FileName
The	name	of	the	symbol	file	to	be	located.	This	parameter	can	be	a
partial	path.

SymbolPath
The	path	where	symbol	files	are	located.	This	can	be	multiple	paths
separated	by	semicolons.	To	retrieve	the	symbol	path,	use	the
SymGetSearchPath	function.

ImageFilePath
A	pointer	to	a	buffer	that	receives	the	full	path	of	the	executable	file.

Return	Value

If	the	function	succeeds,	the	return	value	is	an	open	handle	to	the
executable	file.

If	the	function	fails,	the	return	value	is	NULL.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

The	FindExecutableImage	function	is	provided	so	executable	files	can
be	located	in	several	different	directories	through	a	single	function	call.
The	SymbolPath	parameter	can	contain	multiple	paths,	with	each
separated	by	a	semicolon	(;).	When	multiple	paths	are	specified,	the

function	searches	each	directory	tree	for	the	executable	file.	When	the
file	is	located,	the	search	stops.	Thus,	be	sure	to	specify	SymbolPath
with	the	paths	in	the	correct	order.

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

See	Also

DbgHelp	FunctionsFindExecutableImageEx
SymGetSearchPath

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20FindExecutableImage%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

FindExecutableImageEx	Function
Locates	the	specified	executable	file.

HANDLE	WINAPI	FindExecutableImageEx(

		__in										PCTSTR	FileName,

		__in										PCTSTR	SymbolPath,

		__out									PTSTR	ImageFilePath,

		__in										PFIND_EXE_FILE_CALLBACK	Callback,

		__in										PVOID	CallerData

);

Parameters

FileName
The	name	of	the	symbol	file	to	be	located.	This	parameter	can	be	a
partial	path.

SymbolPath
The	path	where	symbol	files	are	located.	This	string	can	contain
multiple	paths	separated	by	semicolons.	To	retrieve	the	symbol	path,
use	the	SymGetSearchPath	function.

ImageFilePath
A	pointer	to	a	buffer	that	receives	the	full	path	of	the	executable	file.

Callback
An	application-defined	callback	function	that	verifies	whether	the
correct	executable	file	was	found,	or	whether	the	function	should
continue	its	search.	For	more	information,	see
FindExecutableImageProc.
This	parameter	can	be	NULL.

CallerData
Optional	user-defined	data	for	the	callback	function.	This	parameter
can	be	NULL.

Return	Value

If	the	function	succeeds,	the	return	value	is	an	open	handle	to	the

executable	file.

If	the	function	fails,	the	return	value	is	NULL.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

The	FindExecutableImageEx	function	is	provided	so	executable	files
can	be	found	in	several	different	directories	by	using	a	single	function
call.	If	the	SymbolPath	parameter	contains	multiple	paths,	the	function
searches	each	specified	directory	tree	for	the	executable	file.	When	the
file	is	found,	the	search	stops.	Thus,	be	sure	to	specify	SymbolPath	with
the	paths	in	the	correct	order.

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	FindExecutableImageExW
(Unicode)	and	FindExecutableImageEx	(ANSI).

See	Also

DbgHelp	FunctionsFindExecutableImageProc
SymGetSearchPath

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20FindExecutableImageEx%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

FindExecutableImageProc	Callback	Function
An	application-defined	callback	function	used	with	the
FindExecutableImageEx	function.	It	verifies	whether	the	executable	file
found	by	FindExecutableImageEx	is	the	correct	executable	file.
The	PFIND_EXE_FILE_CALLBACK	type	defines	a	pointer	to	this
callback	function.	FindExecutableImageProc	is	a	placeholder	for	the
application-defined	function	name.

BOOL	CALLBACK	FindExecutableImageProc(

		[in]																	HANDLE	FileHandle,

		[in]																	PCTSTR	FileName,

		[in]																	PVOID	CallerData

);

Parameters

FileHandle
A	handle	to	the	executable	file.

FileName
The	name	of	the	executable	file.

CallerData
Optional	user-defined	data.	This	parameter	can	be	NULL.

Return	Value

If	the	executable	file	is	valid,	return	TRUE.	Otherwise,	return	FALSE.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

Unicode

Implemented	as	PFIND_EXE_FILE_CALLBACKW
(Unicode)	and	PFIND_EXE_FILE_CALLBACK
(ANSI).

See	Also

DbgHelp	FunctionsFindExecutableImageEx

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20FindExecutableImageProc%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

FunctionTableAccessProc64	Callback	Function
An	application-defined	callback	function	used	with	the	StackWalk64
function.	It	provides	access	to	the	run-time	function	table	for	the	process.

The	PFUNCTION_TABLE_ACCESS_ROUTINE64	type	defines	a	pointer
to	this	callback	function.	FunctionTableAccessProc64	is	a	placeholder
for	the	application-defined	function	name.

PVOID	CALLBACK	FunctionTableAccessProc64(

		[in]																	HANDLE	hProcess,

		[in]																	DWORD64	AddrBase

);

Parameters

hProcess
A	handle	to	the	process	for	which	the	stack	trace	is	generated.

AddrBase
The	address	of	the	instruction	to	be	located.

Return	Value

The	function	returns	a	pointer	to	the	run-time	function	table.	On	an	x86
computer,	this	is	a	pointer	to	an	FPO_DATA	structure.	On	an	Alpha
computer,	this	is	a	pointer	to	an	IMAGE_FUNCTION_ENTRY	structure.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

DbgHelp	FunctionsFPO_DATA
IMAGE_FUNCTION_ENTRY
StackWalk64

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20FunctionTableAccessProc64%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

GetModuleBaseProc64	Callback	Function
An	application-defined	callback	function	used	with	the	StackWalk64
function.	It	is	called	when	StackWalk64	needs	a	module	base	address
for	a	given	virtual	address.

The	PGET_MODULE_BASE_ROUTINE64	type	defines	a	pointer	to	this
callback	function.	GetModuleBaseProc64	is	a	placeholder	for	the
application-defined	function	name.

DWORD64	CALLBACK	GetModuleBaseProc64(

		[in]																	HANDLE	hProcess,

		[in]																	DWORD64	Address

);

Parameters

hProcess
A	handle	to	the	process	for	which	the	stack	trace	is	generated.

Address
An	address	within	the	module	image	to	be	located.

Return	Value

The	function	returns	the	base	address	of	the	module.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

DbgHelp	FunctionsStackWalk64

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20GetModuleBaseProc64%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

GetTimestampForLoadedLibrary	Function
Retrieves	the	timestamp	of	a	loaded	image.

DWORD	WINAPI	GetTimestampForLoadedLibrary(

		__in										HMODULE	ImageBase

);

Parameters

ImageBase
The	base	address	of	an	image	that	is	mapped	into	memory	by	a	call
to	the	MapViewOfFile	function.

Return	Value

If	the	function	succeeds,	the	return	value	is	the	timestamp	from	the
image.

If	the	function	fails,	the	return	value	is	zero.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

The	timestamp	for	an	image	indicates	the	date	and	time	that	the	image
was	created	by	the	linker.	The	value	is	represented	in	the	number	of
seconds	elapsed	since	midnight	(00:00:00),	January	1,	1970,	Universal
Coordinated	Time,	according	to	the	system	clock.	The	timestamp	can	be
printed	using	the	C	run-time	(CRT)	function	ctime.

All	DbgHelp	Functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

See	Also

DbgHelp	FunctionsMapViewOfFile

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20GetTimestampForLoadedLibrary%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

ImageDirectoryEntryToData	Function
Obtains	access	to	image-specific	data.

This	function	has	been	superseded	by	the
ImageDirectoryEntryToDataEx	function.	Use
ImageDirectoryEntryToDataEx	to	retrieve	the	section	header.

PVOID	WINAPI	ImageDirectoryEntryToData(

		__in										PVOID	Base,

		__in										BOOLEAN	MappedAsImage,

		__in										USHORT	DirectoryEntry,

		__out									PULONG	Size

);

Parameters

Base
The	base	address	of	the	image.

MappedAsImage
If	this	parameter	is	TRUE,	the	file	is	mapped	by	the	system	as	an
image.	If	the	flag	is	FALSE,	the	file	is	mapped	as	a	data	file	by	the
MapViewOfFile	function.

DirectoryEntry
The	index	number	of	the	desired	directory	entry.	This	parameter	can
be	one	of	the	following	values.

Value Meaning

IMAGE_DIRECTORY_ENTRY_ARCHITECTURE
7

Architecture-
specific	data

IMAGE_DIRECTORY_ENTRY_BASERELOC
5

Base
relocation
table

IMAGE_DIRECTORY_ENTRY_BOUND_IMPORT
11

Bound	import
directory

IMAGE_DIRECTORY_ENTRY_COM_DESCRIPTOR
14

COM
descriptor
table

IMAGE_DIRECTORY_ENTRY_DEBUG
6

Debug
directory

IMAGE_DIRECTORY_ENTRY_DELAY_IMPORT
13

Delay	import
table

IMAGE_DIRECTORY_ENTRY_EXCEPTION
3

Exception
directory

IMAGE_DIRECTORY_ENTRY_EXPORT
0

Export
directory

IMAGE_DIRECTORY_ENTRY_GLOBALPTR
8

The	relative
virtual
address	of
global	pointer

IMAGE_DIRECTORY_ENTRY_IAT
12

Import
address	table

IMAGE_DIRECTORY_ENTRY_IMPORT
1

Import
directory

IMAGE_DIRECTORY_ENTRY_LOAD_CONFIG
10

Load
configuration
directory

IMAGE_DIRECTORY_ENTRY_RESOURCE
2

Resource
directory

IMAGE_DIRECTORY_ENTRY_SECURITY
4

Security
directory

IMAGE_DIRECTORY_ENTRY_TLS Thread	local

9 storage
directory

Size
A	pointer	to	a	variable	that	receives	the	size	of	the	data	for	the
directory	entry,	in	bytes.

Return	Value

If	the	function	succeeds,	the	return	value	is	a	pointer	to	the	directory
entry's	data.

If	the	function	fails,	the	return	value	is	NULL.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

The	ImageDirectoryEntryToData	function	is	used	to	obtain	access	to
image-specific	data.

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

See	Also

DbgHelp	Functions
ImageDirectoryEntryToDataEx
MapViewOfFile

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20ImageDirectoryEntryToData%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

ImageDirectoryEntryToDataEx	Function
Locates	a	directory	entry	within	the	image	header	and	returns	the
address	of	the	data	for	the	directory	entry.	This	function	returns	the
section	header	for	the	data	located,	if	one	exists.

PVOID	WINAPI	ImageDirectoryEntryToDataEx(

		__in										PVOID	Base,

		__in										BOOLEAN	MappedAsImage,

		__in										USHORT	DirectoryEntry,

		__out									PULONG	Size,

		__out									PIMAGE_SECTION_HEADER*	FoundHeader

);

Parameters

Base
The	base	address	of	the	image	or	data	file.

MappedAsImage
If	the	flag	is	TRUE,	the	file	is	mapped	by	the	system	as	an	image.	If
this	flag	is	FALSE,	the	file	is	mapped	as	a	data	file	by	the
MapViewOfFile	function.

DirectoryEntry
The	directory	entry	to	be	located.	The	value	must	be	one	of	the
following	values.

Value Meaning

IMAGE_DIRECTORY_ENTRY_ARCHITECTURE
7

Architecture-
specific	data

IMAGE_DIRECTORY_ENTRY_BASERELOC
5

Base
relocation
table

IMAGE_DIRECTORY_ENTRY_BOUND_IMPORT
11

Bound	import
directory

IMAGE_DIRECTORY_ENTRY_COM_DESCRIPTOR
14

COM
descriptor
table

IMAGE_DIRECTORY_ENTRY_DEBUG
6

Debug
directory

IMAGE_DIRECTORY_ENTRY_DELAY_IMPORT
13

Delay	import
table

IMAGE_DIRECTORY_ENTRY_EXCEPTION
3

Exception
directory

IMAGE_DIRECTORY_ENTRY_EXPORT
0

Export
directory

IMAGE_DIRECTORY_ENTRY_GLOBALPTR
8

The	relative
virtual
address	of
global	pointer

IMAGE_DIRECTORY_ENTRY_IAT
12

Import
address	table

IMAGE_DIRECTORY_ENTRY_IMPORT
1

Import
directory

IMAGE_DIRECTORY_ENTRY_LOAD_CONFIG
10

Load
configuration
directory

IMAGE_DIRECTORY_ENTRY_RESOURCE
2

Resource
directory

IMAGE_DIRECTORY_ENTRY_SECURITY
4

Security
directory

IMAGE_DIRECTORY_ENTRY_TLS
9

Thread	local
storage

directory

Size
A	pointer	to	a	variable	that	receives	the	size	of	the	data	for	the
directory	entry	that	is	located.

FoundHeader
A	pointer	to	an	IMAGE_SECTION_HEADER	structure	that	receives
the	data.	If	the	section	header	does	not	exist,	this	parameter	is
NULL.

Return	Value

If	the	function	succeeds,	the	return	value	is	a	pointer	to	the	data	for	the
directory	entry.

If	the	function	fails,	the	return	value	is	NULL.	To	retrieve	extended	error
information,	call	GetLastError.
All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

See	Also

DbgHelp	Functions
IMAGE_SECTION_HEADER
MapViewOfFile

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20ImageDirectoryEntryToDataEx%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

ImagehlpApiVersion	Function
Retrieves	the	version	information	of	the	DbgHelp	library	installed	on	the
system.

To	indicate	the	version	of	the	library	with	which	the	application	was	built,
use	the	ImagehlpApiVersionEx	function.

LPAPI_VERSION	WINAPI	ImagehlpApiVersion(void);

Parameters

This	function	has	no	parameters.

Return	Value

The	return	value	is	a	pointer	to	an	API_VERSION	structure.

Remarks

Use	the	information	in	the	API_VERSION	structure	to	determine	whether
the	version	of	the	library	installed	on	the	system	is	compatible	with	the
version	of	the	library	used	by	the	application.	Although	the	library
functions	are	backward	compatible,	functions	introduced	in	one	version
are	obviously	not	available	in	earlier	versions.

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL

Requires	Dbghelp.dll.

See	Also

DbgHelp	FunctionsAPI_VERSION
ImagehlpApiVersionEx

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20ImagehlpApiVersion%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

ImagehlpApiVersionEx	Function
Modifies	the	version	information	of	the	library	used	by	the	application.

LPAPI_VERSION	WINAPI	ImagehlpApiVersionEx(

		__in										LPAPI_VERSION	AppVersion

);

Parameters

AppVersion
A	pointer	to	an	API_VERSION	structure	that	contains	valid	version
information	for	your	application.

Return	Value

The	return	value	is	a	pointer	to	an	API_VERSION	structure.

Remarks

Use	the	ImagehlpApiVersionEx	function	to	indicate	the	version	of	the
library	with	which	the	application	was	built.	The	library	uses	this
information	to	ensure	compatibility.	For	example,	consider	walking
through	kernel-mode	callback	stack	frames	(starting	with	Windows	NT
4.0,	User	and	GDI	exist	in	kernel	mode).	If	you	call
ImagehlpApiVersionEx	to	set	the	Revision	member	to	version	4	or
later,	the	StackWalk64	function	will	continue	through	a	callback	stack
frame.	Otherwise,	if	you	set	Revision	to	a	version	earlier	than	4,
StackWalk64	will	stop	at	the	kernel	transition.
All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

See	Also

DbgHelp	FunctionsAPI_VERSION
ImagehlpApiVersion

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20ImagehlpApiVersionEx%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

ImageNtHeader	Function
Locates	the	IMAGE_NT_HEADERS	structure	in	a	PE	image	and	returns
a	pointer	to	the	data.

PIMAGE_NT_HEADERS	WINAPI	ImageNtHeader(

		__in										PVOID	ImageBase

);

Parameters

ImageBase
The	base	address	of	an	image	that	is	mapped	into	memory	by	a	call
to	the	MapViewOfFile	function.

Return	Value

If	the	function	succeeds,	the	return	value	is	a	pointer	to	an
IMAGE_NT_HEADERS	structure.
If	the	function	fails,	the	return	value	is	NULL.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

See	Also

DbgHelp	FunctionsIMAGE_NT_HEADERS
MapViewOfFile

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20ImageNtHeader%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

ImageRvaToSection	Function
Locates	a	relative	virtual	address	(RVA)	within	the	image	header	of	a	file
that	is	mapped	as	a	file	and	returns	a	pointer	to	the	section	table	entry	for
that	RVA.

PIMAGE_SECTION_HEADER	WINAPI	ImageRvaToSection(

		__in										PIMAGE_NT_HEADERS	NtHeaders,

		__in										PVOID	Base,

		__in										ULONG	Rva

);

Parameters

NtHeaders
A	pointer	to	an	IMAGE_NT_HEADERS	structure.	This	structure	can
be	obtained	by	calling	the	ImageNtHeader	function.

Base
This	parameter	is	reserved.

Rva
The	relative	virtual	address	to	be	located.

Return	Value

If	the	function	succeeds,	the	return	value	is	a	pointer	to	an
IMAGE_SECTION_HEADER	structure.
If	the	function	fails,	the	return	value	is	NULL.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

See	Also

DbgHelp	FunctionsIMAGE_NT_HEADERS
IMAGE_SECTION_HEADER
ImageNtHeader
MapViewOfFile

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20ImageRvaToSection%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

ImageRvaToVa	Function
Locates	a	relative	virtual	address	(RVA)	within	the	image	header	of	a	file
that	is	mapped	as	a	file	and	returns	the	virtual	address	of	the
corresponding	byte	in	the	file.

PVOID	WINAPI	ImageRvaToVa(

		__in										PIMAGE_NT_HEADERS	NtHeaders,

		__in										PVOID	Base,

		__in										ULONG	Rva,

		__in_out						PIMAGE_SECTION_HEADER*	LastRvaSection

);

Parameters

NtHeaders
A	pointer	to	an	IMAGE_NT_HEADERS	structure.	This	structure	can
be	obtained	by	calling	the	ImageNtHeader	function.

Base
The	base	address	of	an	image	that	is	mapped	into	memory	through	a
call	to	the	MapViewOfFile	function.

Rva
The	relative	virtual	address	to	be	located.

LastRvaSection
A	pointer	to	an	IMAGE_SECTION_HEADER	structure	that	specifies
the	last	RVA	section.	This	is	an	optional	parameter.	When	specified,
it	points	to	a	variable	that	contains	the	last	section	value	used	for	the
specified	image	to	translate	an	RVA	to	a	VA.

Return	Value

If	the	function	succeeds,	the	return	value	is	the	virtual	address	in	the
mapped	file.

If	the	function	fails,	the	return	value	is	NULL.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

The	ImageRvaToVa	function	locates	an	RVA	within	the	image	header	of
a	file	that	is	mapped	as	a	file	and	returns	the	virtual	address	of	the
corresponding	byte	in	the	file.

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

See	Also

DbgHelp	FunctionsIMAGE_NT_HEADERS
IMAGE_SECTION_HEADER
ImageNtHeader
MapViewOfFile

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20ImageRvaToVa%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MakeSureDirectoryPathExists	Function
Creates	all	the	directories	in	the	specified	path,	beginning	with	the	root.

BOOL	WINAPI	MakeSureDirectoryPathExists(

		__in										PCSTR	DirPath

);

Parameters

DirPath
A	valid	path	name.	If	the	final	component	of	the	path	is	a	directory,
not	a	file	name,	the	string	must	end	with	a	backslash	(\)	character.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

Each	directory	specified	is	created,	if	it	does	not	already	exist.	If	only
some	of	the	directories	are	created,	the	function	will	return	FALSE.

This	function	does	not	support	Unicode	strings.	To	specify	a	Unicode
path,	use	the	SHCreateDirectoryEx	function.
All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

See	Also

DbgHelp	Functions

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MakeSureDirectoryPathExists%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MapDebugInformation	Function
Obtains	access	to	the	debugging	information	for	an	image.

Note		This	function	is	provided	only	for	backward	compatibility.	It
does	not	return	reliable	information.	New	applications	should	use	the
SymGetModuleInfo64	and	SymLoadModule64	functions.

PIMAGE_DEBUG_INFORMATION	WINAPI	MapDebugInformation(

		__in										HANDLE	FileHandle,

		__in										PSTR	FileName,

		__in										PSTR	SymbolPath,

		__in										DWORD	ImageBase

);

Parameters

FileHandle
A	handle	to	an	open	executable	image	or	NULL.

FileName
The	name	of	an	executable	image	file	or	NULL.

SymbolPath
The	path	where	symbol	files	are	located.	The	path	can	be	multiple
paths	separated	by	semicolons.	To	retrieve	the	symbol	path,	use	the
SymGetSearchPath	function.

ImageBase
The	base	address	for	the	image	or	zero.

Return	Value

If	the	function	succeeds,	the	return	value	is	a	pointer	to	an
IMAGE_DEBUG_INFORMATION	structure.
If	the	function	fails,	the	return	value	is	NULL.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

The	MapDebugInformation	function	is	used	to	obtain	access	to	an
image's	debugging	information.	The	debugging	information	is	extracted
from	the	image	or	the	symbol	file	and	placed	into	the
IMAGE_DEBUG_INFORMATION	structure.	This	structure	is	allocated	by
the	library	and	must	be	deallocated	by	using	the
UnmapDebugInformation	function.	The	memory	for	the	structure	is	not
in	the	process's	default	heap,	so	attempts	to	free	it	with	a	memory
deallocation	routine	will	fail.

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

See	Also

DbgHelp	FunctionsIMAGE_DEBUG_INFORMATION
SymGetSearchPath
UnmapDebugInformation

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MapDebugInformation%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MiniDumpCallback	Callback	Function
An	application-defined	callback	function	used	with
MiniDumpWriteDump.	It	receives	extended	minidump	information.
The	MINIDUMP_CALLBACK_ROUTINE	type	defines	a	pointer	to	this
callback	function.	MiniDumpCallback	is	a	placeholder	for	the
application-defined	function	name.

BOOL	CALLBACK	MiniDumpCallback(

		[in]																	PVOID	CallbackParam,

		[in]																	const	PMINIDUMP_CALLBACK_INPUT	

		[in,	out]												PMINIDUMP_CALLBACK_OUTPUT	CallbackOutput

);

Parameters

CallbackParam
An	application-defined	parameter	value.

CallbackInput
A	pointer	to	a	MINIDUMP_CALLBACK_INPUT	structure	that
specifies	extended	minidump	information.

CallbackOutput
A	pointer	to	a	MINIDUMP_CALLBACK_OUTPUT	structure	that
receives	application-defined	information	from	the	callback	function.

Return	Value

If	the	function	succeeds,	return	TRUE;	otherwise,	return	FALSE.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

DbgHelp	FunctionsMINIDUMP_CALLBACK_INFORMATION
MiniDumpWriteDump

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MiniDumpCallback%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MiniDumpReadDumpStream	Function
Reads	a	stream	from	a	user-mode	minidump	file.

BOOL	WINAPI	MiniDumpReadDumpStream(

		__in										PVOID	BaseOfDump,

		__in										ULONG	StreamNumber,

		__out									PMINIDUMP_DIRECTORY*	Dir,

		__out									PVOID*	StreamPointer,

		__out									ULONG*	StreamSize

);

Parameters

BaseOfDump
A	pointer	to	the	base	of	the	mapped	minidump	file.	The	file	should
have	been	mapped	into	memory	using	the	MapViewOfFile	function.

StreamNumber
The	type	of	data	to	be	read	from	the	minidump	file.	This	member	can
be	one	of	the	values	in	the	MINIDUMP_STREAM_TYPE
enumeration.

Dir
A	pointer	to	a	MINIDUMP_DIRECTORY	structure.

StreamPointer
A	pointer	to	the	beginning	of	the	minidump	stream.	The	format	of	this
stream	depends	on	the	value	of	StreamNumber.	For	more
information,	see	MINIDUMP_STREAM_TYPE.

StreamSize
The	size	of	the	stream	pointed	to	by	StreamPointer,	in	bytes.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE;	otherwise,	the	return
value	is	FALSE.

Remarks

In	this	context,	a	data	stream	is	a	block	of	data	written	to	a	minidump	file.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

See	Also

DbgHelp	FunctionsMINIDUMP_DIRECTORY
MINIDUMP_STREAM_TYPE
MiniDumpWriteDump

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MiniDumpReadDumpStream%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MiniDumpWriteDump	Function
Writes	user-mode	minidump	information	to	the	specified	file.

BOOL	WINAPI	MiniDumpWriteDump(

		__in										HANDLE	hProcess,

		__in										DWORD	ProcessId,

		__in										HANDLE	hFile,

		__in										MINIDUMP_TYPE	DumpType,

		__in										PMINIDUMP_EXCEPTION_INFORMATION	ExceptionParam

		__in										PMINIDUMP_USER_STREAM_INFORMATION	UserStreamParam

		__in										PMINIDUMP_CALLBACK_INFORMATION	CallbackParam

);

Parameters

hProcess
A	handle	to	the	process	for	which	the	information	is	to	be	generated.

This	handle	must	have	PROCESS_QUERY_INFORMATION	and
PROCESS_VM_READ	access	to	the	process.	For	more	information,
see	Process	Security	and	Access	Rights.	The	caller	must	also	be
able	to	get	THREAD_ALL_ACCESS	access	to	the	threads	in	the
process.	For	more	information,	see	Thread	Security	and	Access
Rights.

ProcessId
The	identifier	of	the	process	for	which	the	information	is	to	be
generated.

hFile
A	handle	to	the	file	in	which	the	information	is	to	be	written.

DumpType
The	type	of	information	to	be	generated.	This	parameter	can	be	one
or	more	of	the	values	from	the	MINIDUMP_TYPE	enumeration.

ExceptionParam
A	pointer	to	a	MINIDUMP_EXCEPTION_INFORMATION	structure
describing	the	client	exception	that	caused	the	minidump	to	be

generated.	If	the	value	of	this	parameter	is	NULL,	no	exception
information	is	included	in	the	minidump	file.

UserStreamParam
A	pointer	to	a	MINIDUMP_USER_STREAM_INFORMATION
structure.	If	the	value	of	this	parameter	is	NULL,	no	user-defined
information	is	included	in	the	minidump	file.

CallbackParam
A	pointer	to	a	MINIDUMP_CALLBACK_INFORMATION	structure
that	specifies	a	callback	routine	which	is	to	receive	extended
minidump	information.	If	the	value	of	this	parameter	is	NULL,	no
callbacks	are	performed.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE;	otherwise,	the	return
value	is	FALSE.	To	retrieve	extended	error	information,	call
GetLastError.	Note	that	the	last	error	will	be	an	HRESULT	value.
If	the	operation	is	canceled,	the	last	error	code	is
HRESULT_FROM_WIN32(ERROR_CANCELLED).

Remarks

The	MiniDumpCallback	function	receives	extended	minidump
information	from	MiniDumpWriteDump.	It	also	provides	a	way	for	the
caller	to	determine	the	granularity	of	information	written	to	the	minidump
file,	as	the	callback	function	can	filter	the	default	information.

MiniDumpWriteDump	may	not	produce	a	valid	stack	trace	for	the	calling
thread.	To	work	around	this	problem,	you	must	capture	the	state	of	the
calling	thread	before	calling	MiniDumpWriteDump	and	use	it	as	the
ExceptionParam	parameter.	One	way	to	do	this	is	to	force	an	exception
inside	a	__try/__except	block	and	use	the	EXCEPTION_POINTERS
information	provided	by	GetExceptionInformation.	Alternatively,	you
can	call	the	function	from	a	new	worker	thread	and	filter	this	worker
thread	from	the	dump.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

See	Also

DbgHelp	FunctionsMINIDUMP_CALLBACK_INFORMATION
MINIDUMP_EXCEPTION_INFORMATION
MINIDUMP_USER_STREAM_INFORMATION
MiniDumpCallback
MiniDumpReadDumpStream

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MiniDumpWriteDump%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

ReadProcessMemoryProc64	Callback	Function
An	application-defined	callback	function	used	with	the	StackWalk64
function.	It	is	called	when	StackWalk64	needs	to	read	memory	from	the
address	space	of	the	process.

The	PREAD_PROCESS_MEMORY_ROUTINE64	type	defines	a	pointer
to	this	callback	function.	ReadProcessMemoryProc64	is	a	placeholder
for	the	application-defined	function	name.

BOOL	CALLBACK	ReadProcessMemoryProc64(

		[in]																	HANDLE	hProcess,

		[in]																	DWORD64	lpBaseAddress,

		[in]																	PVOID	lpBuffer,

		[in]																	DWORD	nSize,

		[in]																	LPDWORD	lpNumberOfBytesRead

);

Parameters

hProcess
A	handle	to	the	process	for	which	the	stack	trace	is	generated.

lpBaseAddress
The	base	address	of	the	memory	to	be	read.

lpBuffer
A	pointer	to	a	buffer	that	receives	the	memory	to	be	read.

nSize
The	size	of	the	memory	to	be	read,	in	bytes.

lpNumberOfBytesRead
A	pointer	to	a	variable	that	receives	the	number	of	bytes	actually
read.

Return	Value

If	the	function	succeeds,	the	return	value	should	be	TRUE.	If	the	function
fails,	the	return	value	should	be	FALSE.

Remarks

This	function	should	read	as	much	of	the	requested	memory	as	possible.
The	StackWalk64	function	handles	the	case	where	only	part	of	the
requested	memory	is	read.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

DbgHelp	FunctionsStackWalk64

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20ReadProcessMemoryProc64%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SearchTreeForFile	Function
Searches	a	directory	tree	for	a	specified	file.

BOOL	WINAPI	SearchTreeForFile(

		__in										PCTSTR	RootPath,

		__in										PCTSTR	InputPathName,

		__out									PTSTR	OutputPathBuffer

);

Parameters

RootPath
The	path	where	the	function	should	begin	searching	for	the	file.

InputPathName
The	file	for	which	the	function	will	search.	You	can	use	a	partial	path.

OutputPathBuffer
A	pointer	to	a	buffer	that	receives	the	full	path	to	the	file	that	is	found.
This	string	is	not	modified	if	the	return	value	is	FALSE.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

The	function	searches	for	the	file	specified	by	the	InputPathName
parameter	beginning	at	the	path	specified	in	the	RootPath	parameter.
The	maximum	path	depth	that	is	allowed	in	the	RootPath	is	32
directories.	When	the	function	finds	the	file	in	the	directory	tree,	it	places
the	full	path	to	the	file	in	the	buffer	specified	by	the	OutputPathBuffer
parameter.	The	underlying	file	system	specifies	the	order	of	the
subdirectory	search.

The	search	can	be	canceled	if	you	register	a
SymRegisterCallbackProc64	callback	function.	For	every	directory

searched,	SearchTreeForFile	calls	this	callback	function	with
CBA_DEFERRED_SYMBOL_LOAD_CANCEL.	If	the	callback	function
returns	TRUE,	SearchTreeForFile	cancels	the	search.
This	function	triggers	one	CBA_DEFERRED_SYMBOL_LOAD_CANCEL
event	per	directory	searched.	This	allows	the	caller	to	cancel	the	search.

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SearchTreeForFileW	(Unicode)	and
SearchTreeForFile	(ANSI).

See	Also

DbgHelp	Functions

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SearchTreeForFile%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

StackWalk64	Function
Obtains	a	stack	trace.

This	function	supersedes	the	StackWalk	function.	For	more	information,
see	Updated	Platform	Support.

BOOL	WINAPI	StackWalk64(

		__in										DWORD	MachineType,

		__in										HANDLE	hProcess,

		__in										HANDLE	hThread,

		__in_out						LPSTACKFRAME64	StackFrame,

		__in_out						PVOID	ContextRecord,

		__in										PREAD_PROCESS_MEMORY_ROUTINE64	ReadMemoryRoutine

		__in										PFUNCTION_TABLE_ACCESS_ROUTINE64	FunctionTableAccessRoutine

		__in										PGET_MODULE_BASE_ROUTINE64	GetModuleBaseRoutine

		__in										PTRANSLATE_ADDRESS_ROUTINE64	TranslateAddress

);

Parameters

MachineType
The	architecture	type	of	the	computer	for	which	the	stack	trace	is
generated.	This	parameter	can	be	one	of	the	following	values.

Value Meaning

IMAGE_FILE_MACHINE_I386
0x014c

Intel	x86

IMAGE_FILE_MACHINE_IA64
0x0200

Intel	Itanium	Processor	Family
(IPF)

IMAGE_FILE_MACHINE_AMD64
0x8664

x64	(AMD64	or	EM64T)

hProcess
A	handle	to	the	process	for	which	the	stack	trace	is	generated.	If	the
caller	supplies	a	valid	callback	pointer	for	the	ReadMemoryRoutine

parameter,	then	this	value	does	not	have	to	be	a	valid	process
handle.	It	can	be	a	token	that	is	unique	and	consistently	the	same	for
all	calls	to	the	StackWalk64	function.	If	the	symbol	handler	is	used
with	StackWalk64,	use	the	same	process	handles	for	the	calls	to
each	function.

hThread
A	handle	to	the	thread	for	which	the	stack	trace	is	generated.	If	the
caller	supplies	a	valid	callback	pointer	for	the	ReadMemoryRoutine
parameter,	then	this	value	does	not	have	to	be	a	valid	thread	handle.
It	can	be	a	token	that	is	unique	and	consistently	the	same	for	all	calls
to	the	StackWalk64	function.

StackFrame
A	pointer	to	a	STACKFRAME64	structure.	This	structure	receives
information	for	the	next	frame,	if	the	function	call	succeeds.

ContextRecord
A	pointer	to	a	CONTEXT	structure.	This	parameter	is	required	only
when	the	MachineType	parameter	is	not
IMAGE_FILE_MACHINE_I386.	However,	it	is	recommended	that	this
parameter	contain	a	valid	context	record.	This	allows	StackWalk64
to	handle	a	greater	variety	of	situations.

This	context	may	be	modified,	so	do	not	pass	a	context	record	that
should	not	be	modified.

ReadMemoryRoutine
A	callback	routine	that	provides	memory	read	services.	When	the
StackWalk64	function	needs	to	read	memory	from	the	process's
address	space,	the	ReadProcessMemoryProc64	callback	is	used.
If	this	parameter	is	NULL,	then	the	function	uses	a	default	routine.	In
this	case,	the	hProcess	parameter	must	be	a	valid	process	handle.

If	this	parameter	is	not	NULL,	the	application	should	implement	and
register	a	symbol	handler	callback	function	that	handles
CBA_READ_MEMORY.

FunctionTableAccessRoutine
A	callback	routine	that	provides	access	to	the	run-time	function	table

for	the	process.	This	parameter	is	required	because	the
StackWalk64	function	does	not	have	access	to	the	process's	run-
time	function	table.	For	more	information,	see
FunctionTableAccessProc64.
The	symbol	handler	provides	functions	that	load	and	access	the	run-
time	table.	If	these	functions	are	used,	then
SymFunctionTableAccess64	can	be	passed	as	a	valid	parameter.

GetModuleBaseRoutine
A	callback	routine	that	provides	a	module	base	for	any	given	virtual
address.	This	parameter	is	required.	For	more	information,	see
GetModuleBaseProc64.
The	symbol	handler	provides	functions	that	load	and	maintain
module	information.	If	these	functions	are	used,	then
SymGetModuleBase64	can	be	passed	as	a	valid	parameter.

TranslateAddress
A	callback	routine	that	provides	address	translation	for	16-bit
addresses.	For	more	information,	see	TranslateAddressProc64.
Most	callers	of	StackWalk64	can	safely	pass	NULL	for	this
parameter.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	Note	that	StackWalk64
generally	does	not	set	the	last	error	code.

Remarks

The	StackWalk64	function	provides	a	portable	method	for	obtaining	a
stack	trace.	Using	the	StackWalk64	function	is	recommended	over
writing	your	own	function	because	of	all	the	complexities	associated	with
stack	walking	on	platforms.	In	addition,	there	are	compiler	options	that
cause	the	stack	to	appear	differently,	depending	on	how	the	module	is
compiled.	By	using	this	function,	your	application	has	a	portable	stack
trace	that	continues	to	work	as	the	compiler	and	operating	system
change.

The	first	call	to	this	function	will	fail	if	the	AddrPC,	AddrFrame,	and
AddrStack	members	of	the	STACKFRAME64	structure	passed	in	the
StackFrame	parameter	are	not	initialized.

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

See	Also

CONTEXT
DbgHelp	Functions
FunctionTableAccessProc64
GetModuleBaseProc64
ReadProcessMemoryProc64
STACKFRAME64
TranslateAddressProc64

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20StackWalk64%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymAddSourceStream	Function
Adds	the	stream	to	the	specified	module	for	use	by	the	Source	Server.

BOOL	WINAPI	SymAddSourceStream(

		__in										HANDLE	hProcess,

		__in										ULONG64	Base,

		__in_opt						PCTSTR	StreamFile,

		__in_opt						PBYTE	Buffer,

		__in										size_t	Size

);

Parameters

hProcess
A	handle	to	a	process.	This	handle	must	have	been	previously
passed	to	the	SymInitialize	function.

Base
The	base	address	of	the	module.

StreamFile
A	null-terminated	string	that	contains	the	absolute	or	relative	path	to
the	source	indexing	stream,	or	a	buffer	that	contains	the	contents	of
the	stream.	Can	be	NULL	if	Buffer	is	not	NULL.

Buffer
A	buffer	that	contains	additional	information	(not	included	in	the	file)
to	add	to	the	source	stream.	Can	be	NULL	if	StreamFile	is	not	NULL.

Size
Size,	in	bytes,	of	the	Buffer	buffer.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Requirements

Redistributable Requires	DbgHelp.dll	6.8	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymAddSourceStreamW	(Unicode)
and	SymAddSourceStream	(ANSI).

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymAddSourceStream%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymAddSymbol	Function
Adds	a	virtual	symbol	to	the	specified	module.

BOOL	WINAPI	SymAddSymbol(

		__in										HANDLE	hProcess,

		__in										ULONG64	BaseOfDll,

		__in										PCTSTR	Name,

		__in										DWORD64	Address,

		__in										DWORD	Size,

		__in										DWORD	Flags

);

Parameters

hProcess
A	handle	to	a	process.	This	handle	must	have	been	previously
passed	to	the	SymInitialize	function.

BaseOfDll
The	base	address	of	the	module.

Name
The	name	of	the	symbol.	The	maximum	size	of	a	symbol	name	is
MAX_SYM_NAME	characters.

Address
The	address	of	the	symbol.	This	address	must	be	within	the	address
range	of	the	specified	module.

Size
The	size	of	the	symbol,	in	bytes.	This	parameter	is	optional.

Flags
This	parameter	is	unused.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error

information,	call	GetLastError.

Remarks

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Requirements

Redistributable Requires	DbgHelp.dll	6.0	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymAddSymbolW	(Unicode)	and
SymAddSymbol	(ANSI).

See	Also

DbgHelp	FunctionsSymDeleteSymbol

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymAddSymbol%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymbolServer	Callback	Function
An	entry	point	to	the	symbol	server	DLL.	It	is	used	to	locate	a	symbol	file.
This	function	should	not	be	called	directly.

The	PSYMBOLSERVERPROC	type	defines	a	pointer	to	this	callback
function.	SymbolServer	is	a	placeholder	for	the	library-defined	function
name.

BOOL	CALLBACK	SymbolServer(

		[in]																	LPCSTR	params,

		[in]																	LPCSTR	filename,

		[in]																	PVOID	id,

		[in]																	DWORD	two,

		[in]																	DWORD	three,

		[out]																LPSTR	path

);

Parameters

params
The	server-specific	information.	This	information	is	used	to	identify
which	store	to	use	for	locating	symbols.	For	more	information,	see
Symbol	Servers	and	Symbol	Stores.

filename
The	name	of	the	symbol	file	to	be	returned.	For	the	default	symbol
server,	this	name	cannot	include	path	information.

id
The	first	of	three	identifying	parameters	(see	Remarks).

two
The	second	of	three	identifying	parameters	(see	Remarks).

three
The	third	of	three	identifying	parameters	(see	Remarks).

path
A	pointer	to	a	buffer	that	receives	the	fully	qualified	path	to	the

symbol	file.	This	buffer	should	be	at	least	MAX_PATH	bytes.

Return	Value

If	the	server	locates	a	valid	symbol	file,	it	returns	TRUE;	otherwise,	it
returns	FALSE	and	GetLastError	returns	a	value	that	indicates	why	the
symbol	file	was	not	returned.

Remarks

The	identifying	parameters	are	to	be	filled	in	as	follows:

If	DbgHelp	is	looking	for	a	.dbg	file,	the	id	parameter
contains	the	TimeDateStamp	of	the	original	image	as	found
in	its	PE	header.	Parameter	two	contains	the	SizeOfImage
field,	also	extracted	from	the	PE	header.	Parameter	three	is
unused	and	set	to	zero.

If	DbgHelp	is	looking	for	a	.pdb	file,	the	id	parameter
contains	a	pointer	to	the	PDB	GUID.	Parameter	two	contains
the	PDB	age.	Parameter	three	is	unused	and	set	to	zero.

If	DbgHelp	is	looking	for	any	other	type	of	image,	such	as	an
executable	file,	it	is	probably	being	called	through	the
SymFindFileInPath	function.	In	this	case,	the	parameters
are	opaque	to	DbgHelp.	However,	if	this	function	is	being
used	to	retrieve	an	executable	file,	it	is	expected	that	the
parameters	will	be	filled	in	as	for	a	.dbg	file,	using
TimeDateStamp	and	the	image	size	as	parameters.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

DbgHelp	FunctionsSymFindFileInPath

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymbolServer%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymbolServerCallback	Callback	Function
An	entry	point	to	the	symbol	server	DLL.

The	PSYMBOLSERVERCALLBACKPROC	type	defines	a	pointer	to	this
callback	function.	SymbolServerCallback	is	a	placeholder	for	the	library-
defined	function	name.

BOOL	CALLBACK	SymbolServerCallback(

																							UINT_PTR	action,

																							ULONG64	data,

																							ULONG64	context

);

Parameters

action
The	action	code.	This	parameter	can	be	one	of	the	following	values.

Value Meaning

SSRVACTION_EVENT
3

Provide	debug	trace	information.
The	data	parameter	is	a	pointer	to
an	IMAGEHLP_CBA_EVENT
structure.

DbgHelp	6.0
and
earlier:		This
value	is	not
supported.

SSRVACTION_QUERYCANCEL
2

Cancel	the	file	copy.	The	data
parameter	is	a	ULONG64	value.
If	this	value	is	zero,	continue	the
operation.	Otherwise,	cancel	the
operation.

DbgHelp	6.0
and

earlier:		This
value	is	not
supported.

SSRVACTION_SIZE
5

TBD

SSRVACTION_TRACE
1

Provide	debug	trace	information.
The	data	parameter	is	a	text
string.

data
The	format	of	this	parameter	depends	on	the	value	of	the	action
parameter.

context
The	context	information	provided	by	calling
SymbolServerSetOptions	with	SSRVOPT_SETCONTEXT.

Return	Value

To	indicate	success,	return	TRUE.

To	indicate	failure,	return	FALSE	and	call	the	SetLastError	function	to
indicate	an	error	condition.	If	you	do	not	handle	a	particular	action	code,
you	should	also	return	FALSE.	(Returning	TRUE	in	this	case	may	have
unintended	consequences.)

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

DbgHelp	Functions
IMAGEHLP_CBA_EVENT

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymbolServerCallback%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymbolServerClose	Callback	Function
An	entry	point	to	the	symbol	server	DLL.	It	is	called	every	time	the
SymCleanup	function	is	called.
The	PSYMBOLSERVERCLOSEPROC	type	defines	a	pointer	to	this
callback	function.	SymbolServerClose	is	a	placeholder	for	the	library-
defined	function	name.

BOOL	WINAPI	SymbolServerClose(void);

Parameters

This	callback	has	no	parameters.

Return	Value

The	server	can	return	TRUE	to	indicate	success,	or	return	FALSE	and
call	the	SetLastError	function	to	indicate	an	error	condition.

Remarks

To	call	this	function,	you	must	use	LoadLibrary	function	to	load	the	DLL
and	the	GetProcAddress	function	to	get	the	address	of	the	function.	The
default	implementation	is	in	Symsrv.dll.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

DbgHelp	Functions

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymbolServerClose%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

SymbolServerGetOptions	Callback	Function
An	entry	point	to	the	symbol	server	DLL.	It	is	used	to	retrieve	the	symbol
server	options.

The	PSYMBOLSERVERGETOPTIONSPROC	type	defines	a	pointer	to
this	callback	function.	SymbolServerGetOptions	is	a	placeholder	for	the
library-defined	function	name.

UINT_PTR	CALLBACK	SymbolServerGetOptions(void);

Parameters

This	callback	has	no	parameters.

Return	Value

The	function	returns	the	symbol	server	options	that	have	been	set.

Remarks

To	call	this	function,	you	must	use	LoadLibrary	function	to	load	the	DLL
and	the	GetProcAddress	function	to	get	the	address	of	the	function.	The
default	implementation	is	in	Symsrv.dll.

If	you	are	using	Symsrv.dll	as	your	symbol	server,	the	return	value	is	the
combination	of	the	following	values	that	have	been	set	using
SymbolServerSetOptions:

SSRVOPT_CALLBACK
SSRVOPT_DOWNSTREAM_STORE
SSRVOPT_FLAT_DEFAULT_STORE
SSRVOPT_FAVOR_COMPRESSED
SSRVOPT_NOCOPY
SSRVOPT_OVERWRITE
SSRVOPT_PARAMTYPE
SSRVOPT_PARENTWIN
SSRVOPT_PROXY
SSRVOPT_SECURE
SSRVOPT_SETCONTEXT

SSRVOPT_TRACE
SSRVOPT_UNATTENDED

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

DbgHelp	FunctionsSymbolServer
SymbolServerSetOptions

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymbolServerGetOptions%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymbolServerSetOptions	Callback	Function
An	entry	point	to	the	symbol	server	DLL.	It	is	used	to	set	the	symbol
server	options.

The	PSYMBOLSERVERSETOPTIONSPROC	type	defines	a	pointer	to
this	callback	function.	SymbolServerSetOptions	is	a	placeholder	for	the
library-defined	function	name.

BOOL	CALLBACK	SymbolServerSetOptions(

																							UINT_PTR	options,

																							ULONG64	data

);

Parameters

options
The	option	to	be	set	(see	Remarks).

data
The	server-specific	option	data.	The	format	of	this	data	depends	on
the	value	of	options	(see	Remarks).

Return	Value

The	server	can	return	TRUE	to	indicate	success,	or	return	FALSE	and
call	the	SetLastError	function	to	indicate	an	error	condition.

Remarks

To	call	this	function,	you	must	use	LoadLibrary	function	to	load	the	DLL
and	the	GetProcAddress	function	to	get	the	address	of	the	function.	The
default	implementation	is	in	Symsrv.dll.

If	you	are	using	Symsrv.dll	as	your	symbol	server,	the	options	parameter
should	be	one	of	the	following	values.

id Meaning
SSRVOPT_CALLBACK Callback	function.	The	data

parameter	contains	a	pointer	to

the	callback	function.	If	data	is
NULL,	any	previously-set
callback	function	is	ignored.

SSRVOPT_DOWNSTREAM_STORE The	data	parameter	contains	a
string	that	specifies	the
downstream	store	path.	For	more
information,	see	Using	SymSrv.

DbgHelp	6.0
and
earlier:		This
value	is	not
supported.

SSRVOPT_FLAT_DEFAULT_STORE If	data	is	TRUE,	SymSrv	uses
the	default	downstream	store	as
a	flat	directory.

DbgHelp	6.1
and
earlier:		This
value	is	not
supported.

SSRVOPT_FAVOR_COMPRESSED If	data	is	TRUE,	SymSrv	uses
symbols	that	do	not	have	an
address.	By	default,	SymSrv
filters	out	symbols	that	do	not
have	an	address.

SSRVOPT_NOCOPY If	data	is	TRUE,	SymSrv	will	not
verify	that	the	path	parameter
passed	by	the	SymbolServer
function	actually	exists.	In	this
case,	SymbolServer	will	always
return	TRUE.

SSRVOPT_OVERWRITE If	data	is	TRUE,	SymSrv	will
overwrite	the	downlevel	store
from	the	symbol	store.

DbgHelp	6.1
and
earlier:		This
value	is	not
supported.

SSRVOPT_PARAMTYPE Data	type	of	the	id	parameter
passed	to	the	SymbolServer
function.

The	data	parameter	is	of	type
UINT_PTR	and	can	be	one	of	the
following	values:

SSRVOPT_DWORD
(default)
SSRVOPT_DWORDPTR
SSRVOPT_GUIDPTR

SSRVOPT_PARENTWIN The	data	parameter	is	an	HWND
value	that	specifies	the	handle	to
the	parent	window	that	should	be
used	for	all	dialog	boxes	and
pop-ups.	If	data	is	NULL,	SymSrv
will	use	the	desktop	window	as
the	parent	(this	is	the	default).

SSRVOPT_PROXY If	data	is	NULL,	the	default	proxy
server	is	used.	Otherwise,	data	is
a	null-terminated	string	that
specifies	the	name	and	port
number	of	the	proxy	server.	The
name	and	port	number	are
separated	by	a	colon	(:).	For
more	information,	see	Symbol
Servers	and	Internet	Firewalls.

DbgHelp	6.0
and
earlier:		This

value	is	not
supported.

SSRVOPT_RESET Resets	default	options.

SSRVOPT_SECURE If	data	is	TRUE,	SymSrv	will	not
use	the	downstream	store
specified	in
_NT_SYMBOL_PATH.

DbgHelp	6.0
and
earlier:		This
value	is	not
supported.

SSRVOPT_SETCONTEXT The	data	parameter	specifies	the
value	passed	to	the
SymbolServerCallback	function
in	the	context	parameter.

DbgHelp	6.0
and
earlier:		This
value	is	not
supported.

SSRVOPT_TRACE SymSrv	will	provide	debug	trace
information.

DbgHelp
5.1:		This	value
is	not
supported.

SSRVOPT_UNATTENDED If	data	is	TRUE,	SymSrv	will	not
display	dialog	boxes	or	pop-ups.
If	data	is	FALSE,	SymSrv	will
display	these	graphical	features
when	making	connections.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

DbgHelp	FunctionsSymbolServerGetOptions

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymbolServerSetOptions%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymCleanup	Function
Deallocates	all	resources	associated	with	the	process	handle.

BOOL	WINAPI	SymCleanup(

		__in										HANDLE	hProcess

);

Parameters

hProcess
A	handle	to	the	process	that	was	originally	passed	to	the
SymInitialize	function.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

This	function	frees	all	resources	associated	with	the	process	handle.
Failure	to	call	this	function	causes	memory	and	resource	leaks	in	the
calling	application

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	call
SymInitialize	only	when	your	process	starts	and	SymCleanup	only
when	your	process	ends.	It	is	not	necessary	for	each	thread	in	the
process	to	call	these	functions.

Example	Code

For	an	example,	see	Terminating	the	Symbol	Handler.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

See	Also

DbgHelp	FunctionsSymInitialize

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymCleanup%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymDeleteSymbol	Function
Deletes	a	virtual	symbol	from	the	specified	module.

BOOL	WINAPI	SymDeleteSymbol(

		__in										HANDLE	hProcess,

		__in										ULONG64	BaseOfDll,

		__in										PCTSTR	Name,

		__in										DWORD64	Address,

		__in										DWORD	Flags

);

Parameters

hProcess
A	handle	to	a	process.	This	handle	must	have	been	previously
passed	to	the	SymInitialize	function.

BaseOfDll
The	base	address	of	the	module.

Name
The	name	of	the	symbol.

Address
The	address	of	the	symbol.	This	address	must	be	within	the	address
range	of	the	specified	module.

Flags
This	parameter	is	unused.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,

calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Requirements

Redistributable Requires	DbgHelp.dll	6.0	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymDeleteSymbolW	(Unicode)	and
SymDeleteSymbol	(ANSI).

See	Also

DbgHelp	FunctionsSymAddSymbol

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymDeleteSymbol%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymEnumerateModules64	Function
Enumerates	all	modules	that	have	been	loaded	for	the	process	by	the
SymLoadModule64	or	SymLoadModuleEx	function.
This	function	supersedes	the	SymEnumerateModules	function.	For
more	information,	see	Updated	Platform	Support.

BOOL	WINAPI	SymEnumerateModules64(

		__in										HANDLE	hProcess,

		__in										PSYM_ENUMMODULES_CALLBACK64	EnumModulesCallback

		__in										PVOID	UserContext

);

Parameters

hProcess
A	handle	to	the	process	that	was	originally	passed	to	the
SymInitialize	function.

EnumModulesCallback
The	enumeration	callback	function.	This	function	is	called	once	per
module.	For	more	information,	see	SymEnumerateModulesProc64

UserContext
A	user-defined	value	or	NULL.	This	value	is	simply	passed	to	the
callback	function.	Normally,	this	parameter	is	used	by	an	application
to	pass	a	pointer	to	a	data	structure	that	lets	the	callback	function
establish	some	type	of	context.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

The	SymEnumerateModules64	function	enumerates	all	modules	that
have	been	loaded	for	the	process	by	SymLoadModule64,	even	if	the

symbol	loading	is	deferred.	The	enumeration	callback	function	is	called
once	for	each	module	and	is	passed	the	module	information.

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Example	Code

For	an	example,	see	Enumerating	Symbol	Modules.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymEnumerateModulesW64
(Unicode)	and	SymEnumerateModules64	(ANSI).

See	Also

DbgHelp	FunctionsSymEnumerateModulesProc64
SymInitialize
SymLoadModule64

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymEnumerateModules64%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

©	2007	Microsoft	Corporation.	All	rights	reserved.

SymEnumerateModulesProc64	Callback	Function
An	application-defined	callback	function	used	with	the
SymEnumerateModules64	function.	It	is	called	once	for	each
enumerated	module,	and	receives	the	module	information.

The	PSYM_ENUMMODULES_CALLBACK64	type	defines	a	pointer	to
this	callback	function.	SymEnumerateModulesProc64	is	a	placeholder
for	the	application-defined	function	name.

BOOL	CALLBACK	SymEnumerateModulesProc64(

		[in]																	PCSTR	ModuleName,

		[in]																	DWORD64	BaseOfDll,

		[in]																	PVOID	UserContext

);

Parameters

ModuleName
The	name	of	the	module.

BaseOfDll
The	base	address	where	the	module	is	loaded	into	memory.

UserContext
The	user-defined	value	specified	in	SymEnumerateModules64,	or
NULL.	Typically,	this	parameter	is	used	by	an	application	to	pass	a
pointer	to	a	data	structure	that	lets	the	callback	function	establish
some	type	of	context.

Return	Value

If	the	return	value	is	TRUE,	the	enumeration	will	continue.

If	the	return	value	is	FALSE,	the	enumeration	will	stop.

Remarks

The	calling	application	is	called	once	per	module	until	all	modules	are
enumerated,	or	until	the	enumeration	callback	function	returns	FALSE.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

DbgHelp	FunctionsSymEnumerateModules64

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymEnumerateModulesProc64%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymEnumerateSymbols64	Function
Enumerates	all	the	symbols	for	a	specified	module.

Note		This	function	is	provided	only	for	compatibility.	Applications
should	use	SymEnumSymbols,	which	is	faster	and	more	powerful.

BOOL	WINAPI	SymEnumerateSymbols64(

		__in										HANDLE	hProcess,

		__in										DWORD64	BaseOfDll,

		__in										PSYM_ENUMSYMBOLS_CALLBACK64	EnumSymbolsCallback

		__in										PVOID	UserContext

);

Parameters

hProcess
A	handle	to	the	process.	This	handle	must	have	been	previously
passed	to	the	SymInitialize	function.

BaseOfDll
The	base	address	of	the	module	for	which	symbols	are	to	be
enumerated.

EnumSymbolsCallback
The	callback	function	that	receives	the	symbol	information.	For	more
information,	see	SymEnumerateSymbolsProc64.

UserContext
A	user-defined	value	or	NULL.	This	value	is	passed	to	the	callback
function.	Typically,	this	parameter	is	used	by	an	application	to	pass	a
pointer	to	a	data	structure	that	enables	the	callback	function
establish	some	type	of	context.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

This	function	supersedes	the	SymEnumerateSymbols	function.	For
more	information,	see	Updated	Platform	Support.

The	SymEnumerateSymbols64	function	enumerates	all	the	symbols	for
the	specified	module.	The	module	information	is	located	by	the	BaseOfDll
parameter.	The	EnumSymbolsCallback	function	is	called	once	per
symbol	and	is	passed	the	information	for	each	symbol.

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

See	Also

DbgHelp	FunctionsSymEnumerateSymbolsProc64
SymEnumSymbols
SymInitialize

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymEnumerateSymbols64%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymEnumerateSymbolsProc64	Callback	Function
An	application-defined	callback	function	used	with	the
SymEnumerateSymbols64	function.	It	is	called	once	for	each
enumerated	symbol,	and	receives	the	symbol	information.

The	PSYM_ENUMSYMBOLS_CALLBACK64	type	defines	a	pointer	to
this	callback	function.	SymEnumerateSymbolsProc64	is	a	placeholder
for	the	application-defined	function	name.

Note		This	function	is	provided	only	for	compatibility.	Applications
should	use	SymEnumSymbols.

BOOL	CALLBACK	SymEnumerateSymbolsProc64(

		[in]																	PTSTR	SymbolName,

		[in]																	DWORD64	SymbolAddress,

		[in]																	ULONG	SymbolSize,

		[in]																	PVOID	UserContext

);

Parameters

SymbolName
The	name	of	the	symbol.	The	name	can	be	undecorated	if	the
SYMOPT_UNDNAME	option	is	used	with	the	SymSetOptions
function.

SymbolAddress
The	virtual	address	for	the	beginning	of	the	symbol.

SymbolSize
The	size	of	the	symbol,	in	bytes.	The	size	is	calculated	and	is
actually	a	best-guess	value.	In	some	cases,	the	value	can	be	zero.

UserContext
The	user-defined	value	specified	in	SymEnumerateSymbols64,	or
NULL.	Typically,	this	parameter	is	used	by	an	application	to	pass	a
pointer	to	a	data	structure	that	lets	the	callback	function	establish
some	type	of	context.

Return	Value

If	the	function	returns	TRUE,	the	enumeration	will	continue.

If	the	function	returns	FALSE,	the	enumeration	will	stop.

Remarks

The	calling	application	is	called	once	per	symbol	until	all	the	symbols	are
enumerated	or	until	the	enumeration	callback	function	returns	FALSE.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

DbgHelp	FunctionsSymEnumerateSymbols64
SymEnumSymbols

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymEnumerateSymbolsProc64%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymEnumLines	Function
Enumerates	all	lines	in	the	specified	module.

BOOL	WINAPI	SymEnumLines(

		__in										HANDLE	hProcess,

		__in										ULONG64	Base,

		__in										PCTSTR	Obj,

		__in										PCTSTR	File,

		__in										PSYM_ENUMLINES_CALLBACK	EnumLinesCallback

		__in										PVOID	UserContext

);

Parameters

hProcess
A	handle	to	a	process.	This	handle	must	have	been	previously
passed	to	the	SymInitialize	function.

Base
The	base	address	of	the	module.

Obj
The	name	of	an	.obj	file	within	the	module.	The	scope	of	the
enumeration	is	limited	to	this	file.	If	this	parameter	is	NULL	or	an
empty	string,	all	.obj	files	are	searched.

File
A	regular	expression	that	indicates	the	names	of	the	source	files	to
be	searched.	If	this	parameter	is	NULL	or	an	empty	string,	all	files
are	searched.

EnumLinesCallback
A	SymEnumLinesProc	callback	function	that	receives	the	line
information.

UserContext
A	user-defined	value	that	is	passed	to	the	callback	function,	or	NULL.
This	parameter	is	typically	used	by	an	application	to	pass	a	pointer	to
a	data	structure	that	provides	context	for	the	callback	function.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

This	function	is	supported	for	PDB	information	only.	If	you	have	COFF
information,	try	using	one	of	the	SymGetLineXXX	functions.
All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Requirements

Redistributable Requires	DbgHelp.dll	6.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymEnumLinesW	(Unicode)	and
SymEnumLines	(ANSI).

See	Also

DbgHelp	FunctionsSymEnumLinesProc

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymEnumLines%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

SymEnumLinesProc	Callback	Function
An	application-defined	callback	function	used	with	the	SymEnumLines
and	SymEnumSourceLines	functions.
The	PSYM_ENUMLINES_CALLBACK	type	defines	a	pointer	to	this
callback	function.	SymEnumLinesProc	is	a	placeholder	for	the
application-defined	function	name.

BOOL	CALLBACK	SymEnumLinesProc(

		[in]																	PSRCCODEINFO	LineInfo,

		[in]																	PVOID	UserContext

);

Parameters

LineInfo
A	pointer	to	a	SRCCODEINFO	structure	that	provides	information
about	the	line.

UserContext
The	user-defined	value	passed	from	the	SymEnumLines	function,
or	NULL.	This	parameter	is	typically	used	by	an	application	to	pass	a
pointer	to	a	data	structure	that	provides	context	information	for	the
callback	function.

Return	Value

If	the	function	returns	TRUE,	the	enumeration	will	continue.

If	the	function	returns	FALSE,	the	enumeration	will	stop.

Requirements

Redistributable Requires	DbgHelp.dll	6.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

DbgHelp	FunctionsSymEnumLines
SymEnumSourceLines

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymEnumLinesProc%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymEnumProcesses	Function
Enumerates	each	process	that	has	called	the	SymInitialize	function.

BOOL	WINAPI	SymEnumProcesses(

		__in										PSYM_ENUMPROCESSES_CALLBACK	EnumProcessesCallback

		__in										PVOID	UserContext

);

Parameters

EnumProcessesCallback
A	SymEnumProcessesProc	callback	function	that	receives	the
process	information.

UserContext
A	user-defined	value	that	is	passed	to	the	callback	function,	or	NULL.
This	parameter	is	typically	used	by	an	application	to	pass	a	pointer	to
a	data	structure	that	provides	context	for	the	callback	function.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Redistributable Requires	DbgHelp.dll	6.3	or	later.

Header Declared	in	DbgHelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

See	Also

DbgHelp	FunctionsSymEnumProcessesProc

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymEnumProcesses%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymEnumProcessesProc	Callback	Function
An	application-defined	function	used	with	the	SymEnumProcesses
function.

The	PSYM_ENUMPROCESSES_CALLBACK	type	defines	a	pointer	to
this	callback	function.	SymEnumProcessesProc	is	a	placeholder	for	the
application-defined	function	name.

BOOL	CALLBACK	SymEnumProcessesProc(

		[in]																	HANDLE	hProcess,

		[in]																	PVOID	UserContext

);

Parameters

hProcess
A	handle	to	the	process.

UserContext
The	user-defined	value	passed	from	the	SymEnumProcesses
function,	or	NULL.	This	parameter	is	typically	used	by	an	application
to	pass	a	pointer	to	a	data	structure	that	provides	context	information
for	the	callback	function.

Return	Value

If	the	function	returns	TRUE,	the	enumeration	will	continue.

If	the	function	returns	FALSE,	the	enumeration	will	stop.

Requirements

Redistributable Requires	DbgHelp.dll	6.3	or	later.

Header Declared	in	DbgHelp.h.

See	Also

SymEnumProcesses

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymEnumProcessesProc%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymEnumSourceFiles	Function
Enumerates	all	source	files	in	a	process.

BOOL	WINAPI	SymEnumSourceFiles(

		__in										HANDLE	hProcess,

		__in										ULONG64	ModBase,

		__in										PCSTR	Mask,

		__in										PSYM_ENUMSOURCEFILES_CALLBACK	EnumSymbolsCallback

		__in										PVOID	UserContext

);

Parameters

hProcess
A	handle	to	a	process.	This	handle	must	have	been	previously
passed	to	the	SymInitialize	function.

ModBase
The	base	address	of	the	module.	If	this	value	is	zero	and	Mask
contains	an	exclamation	point	(!),	the	function	looks	across	modules.
If	this	value	is	zero	and	Mask	does	not	contain	an	exclamation	point,
the	function	uses	the	scope	established	by	the	SymSetContext
function.

Mask
A	regular	expression	that	indicates	the	names	of	the	source	files	to
be	enumerated.	To	specify	a	module	name,	use	the	!mod	syntax.

If	this	parameter	is	NULL,	the	function	will	enumerate	all	files.

EnumSymbolsCallback
Pointer	to	a	SymEnumSourceFilesProc	callback	function	that
receives	the	source	file	information.

UserContext
User-defined	value	that	is	passed	to	the	callback	function,	or	NULL.
This	parameter	is	typically	used	by	an	application	to	pass	a	pointer	to
a	data	structure	that	provides	context	for	the	callback	function.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Redistributable Requires	DbgHelp.dll	6.2	or	later.

Header Declared	in	DbgHelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymEnumSourceFilesW	(Unicode)
and	SymEnumSourceFiles	(ANSI).

See	Also

DbgHelp	FunctionsSymEnumSourceFilesProc

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymEnumSourceFiles%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymEnumSourceFilesProc	Callback	Function
An	application-defined	callback	function	used	with	the
SymEnumSourceFiles	function.
The	PSYM_ENUMSOURCEFILES_CALLBACK	type	defines	a	pointer	to
this	callback	function.	SymEnumSourceFilesProc	is	a	placeholder	for
the	application-defined	function	name.

BOOL	CALLBACK	SymEnumSourceFilesProc(

		[in]																	PSOURCEFILE	pSourceFile,

		[in]																	PVOID	UserContext

);

Parameters

pSourceFile
A	pointer	to	a	SOURCEFILE	structure	that	provides	information
about	the	source	file.

UserContext
The	user-defined	value	passed	from	the	SymEnumSourceFiles
function,	or	NULL.	This	parameter	is	typically	used	by	an	application
to	pass	a	pointer	to	a	data	structure	that	provides	context	information
for	the	callback	function.

Return	Value

If	the	function	returns	TRUE,	the	enumeration	will	continue.

If	the	function	returns	FALSE,	the	enumeration	will	stop.

Requirements

Redistributable Requires	DbgHelp.dll	6.2	or	later.

Header Declared	in	DbgHelp.h.

Implemented	as
PSYM_ENUMSOURCEFILES_CALLBACKW

Unicode (Unicode)	and
PSYM_ENUMSOURCEFILES_CALLBACK	(ANSI).

See	Also

DbgHelp	FunctionsSOURCEFILE
SymEnumSourceFiles

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymEnumSourceFilesProc%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymEnumSourceFileTokens	Function
[This	documentation	is	preliminary	and	is	subject	to	change.]

TBD

BOOL	WINAPI	SymEnumSourceFileTokens(

		__in										HANDLE	hProcess,

		__in										ULONG64	Base,

		__in										PENUMSOURCEFILETOKENSCALLBACK	Callback

);

Parameters

hProcess
A	handle	to	a	process.	This	handle	must	have	been	previously
passed	to	the	SymInitialize	function.

Base
The	base	address	of	the	module.	If	this	value	is	zero	and	Mask
contains	an	exclamation	point	(!),	the	function	looks	across	modules.
If	this	value	is	zero	and	Mask	does	not	contain	an	exclamation	point,
the	function	uses	the	scope	established	by	the	SymSetContext
function.

Callback
A	SymEnumSourceFileTokensProc	callback	function	that	receives
the	symbol	information.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must

synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

See	Also

DbgHelp	FunctionsSymEnumSourceFileTokensProc

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymEnumSourceFileTokens%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymEnumSourceFileTokensProc	Callback
Function

[This	documentation	is	preliminary	and	is	subject	to	change.]

An	application-defined	callback	function	used	with	the
SymEnumSourceFileTokens	function.
The	PENUMSOURCEFILETOKENSCALLBACK	type	defines	a	pointer
to	this	callback	function.	SymEnumSourceFileTokensProc	is	a
placeholder	for	the	application-defined	function	name.

BOOL	CALLBACK	SymEnumSourceFileTokensProc(

		[in]																	PVOID	token,

		[in]																	size_t	size

);

Parameters

token
TBD

size
TBD

Return	Value

If	the	function	returns	TRUE,	the	enumeration	will	continue.

If	the	function	returns	FALSE,	the	enumeration	will	stop.

Requirements

Header Declared	in	Dbghelp.h.

See	Also

SymEnumSourceFileTokens
Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymEnumSourceFileTokensProc%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

SymEnumSourceLines	Function
Enumerates	all	source	lines	in	a	module.

BOOL	WINAPI	SymEnumSourceLines(

		__in										HANDLE	hProcess,

		__in										ULONG64	Base,

		__in										PCTSTR	Obj,

		__in										PCTSTR	File,

		__in										DWORD	Line,

		__in										DWORD	Flags,

		__in										PSYM_ENUMLINES_CALLBACK	EnumLinesCallback

		__in										PVOID	UserContext

);

Parameters

hProcess
A	handle	to	a	process.	This	handle	must	have	been	previously
passed	to	the	SymInitialize	function.

Base
The	base	address	of	the	module.

Obj
The	name	of	an	.obj	file	within	the	module.	The	scope	of	the
enumeration	is	limited	to	this	file.	If	this	parameter	is	NULL	or	an
empty	string,	all	.obj	files	are	searched.

File
The	regular	expression	that	indicates	the	names	of	the	source	files	to
be	searched.	If	this	parameter	is	NULL	or	an	empty	string,	all	files
are	searched.

Line
The	line	number	of	a	line	within	the	module.	The	scope	of	the
enumeration	is	limited	to	this	line.	If	this	parameter	is	0,	all	lines	are
searched.

Flags

If	this	parameter	is	ESLFLAG_FULLPATH,	the	function	matches	the
full	path	in	the	File	parameter.

EnumLinesCallback
A	SymEnumLinesProc	callback	function	that	receives	the	line
information.

UserContext
A	user-defined	value	that	is	passed	to	the	callback	function,	or	NULL.
This	parameter	is	typically	used	by	an	application	to	pass	a	pointer	to
a	data	structure	that	provides	context	for	the	callback	function.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Redistributable Requires	DbgHelp.dll	6.4	or	later.

Header Declared	in	DbgHelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymEnumSourceLinesW	(Unicode)
and	SymEnumSourceLines	(ANSI).

See	Also

DbgHelp	FunctionsSymEnumLinesProc
SymInitialize

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymEnumSourceLines%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymEnumSymbols	Function
Enumerates	all	symbols	in	a	process.

BOOL	WINAPI	SymEnumSymbols(

		__in										HANDLE	hProcess,

		__in										ULONG64	BaseOfDll,

		__in										PCTSTR	Mask,

		__in										PSYM_ENUMERATESYMBOLS_CALLBACK	EnumSymbolsCallback

		__in										PVOID	UserContext

);

Parameters

hProcess
A	handle	to	a	process.	This	handle	must	have	been	previously
passed	to	the	SymInitialize	function.

BaseOfDll
The	base	address	of	the	module.	If	this	value	is	zero	and	Mask
contains	an	exclamation	point	(!),	the	function	looks	across	modules.
If	this	value	is	zero	and	Mask	does	not	contain	an	exclamation	point,
the	function	uses	the	scope	established	by	the	SymSetContext
function.

Mask
A	regular	expression	that	indicates	the	names	of	the	symbols	to	be
enumerated.	To	specify	a	module	name,	use	the	!mod	syntax.

EnumSymbolsCallback
A	SymEnumSymbolsProc	callback	function	that	receives	the
symbol	information.

UserContext
A	user-defined	value	that	is	passed	to	the	callback	function,	or	NULL.
This	parameter	is	typically	used	by	an	application	to	pass	a	pointer	to
a	data	structure	that	provides	context	for	the	callback	function.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Example	Code

For	an	example,	see	Enumerating	Symbols.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymEnumSymbolsW	(Unicode)	and
SymEnumSymbols	(ANSI).

See	Also

DbgHelp	FunctionsSymEnumSymbolsProc

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymEnumSymbols%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

SymEnumSymbolsForAddr	Function
Enumerates	the	symbols	for	the	specified	address.

BOOL	WINAPI	SymEnumSymbolsForAddr(

		__in										HANDLE	hProcess,

		__in										DWORD64	Address,

		__in										PSYM_ENUMERATESYMBOLS_CALLBACK	EnumSymbolsCallback

		__in										PVOID	UserContext

);

Parameters

hProcess
A	handle	to	a	process.	This	handle	must	have	been	previously
passed	to	the	SymInitialize	function.

Address
The	address	for	which	symbols	are	to	be	located.	The	address	does
not	have	to	be	on	a	symbol	boundary.	If	the	address	comes	after	the
beginning	of	a	symbol	and	before	the	end	of	the	symbol	(the
beginning	of	the	symbol	plus	the	symbol	size),	the	function	will	find
the	symbol.

EnumSymbolsCallback
An	application-defined	callback	function.	This	function	is	called	for
every	symbol	found	at	Address.	For	more	information,	see
SymEnumSymbolsProc.

UserContext
Optional	user-defined	data.	This	value	is	passed	to	the	callback
function.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Requirements

Redistributable Requires	DbgHelp.dll	6.0	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymEnumSymbolsForAddrW
(Unicode)	and	SymEnumSymbolsForAddr	(ANSI).

See	Also

DbgHelp	FunctionsSymEnumSymbolsProc

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymEnumSymbolsForAddr%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymEnumSymbolsProc	Callback	Function
An	application-defined	callback	function	used	with	the
SymEnumSymbols	or	SymEnumTypes	function.
The	PSYM_ENUMERATESYMBOLS_CALLBACK	type	defines	a
pointer	to	this	callback	function.	SymEnumSymbolsProc	is	a
placeholder	for	the	application-defined	function	name.

BOOL	CALLBACK	SymEnumSymbolsProc(

		[in]																	PSYMBOL_INFO	pSymInfo,

		[in]																	ULONG	SymbolSize,

		[in]																	PVOID	UserContext

);

Parameters

pSymInfo
A	pointer	to	a	SYMBOL_INFO	structure	that	provides	information
about	the	symbol.

SymbolSize
The	size	of	the	symbol,	in	bytes.	The	size	is	calculated	and	is
actually	a	guess.	In	some	cases,	this	value	can	be	zero.

UserContext
The	user-defined	value	passed	from	the	SymEnumSymbols	or
SymEnumTypes	function,	or	NULL.	This	parameter	is	typically	used
by	an	application	to	pass	a	pointer	to	a	data	structure	that	provides
context	information	for	the	callback	function.

Return	Value

If	the	function	returns	TRUE,	the	enumeration	will	continue.

If	the	function	returns	FALSE,	the	enumeration	will	stop.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

Unicode

Implemented	as
PSYM_ENUMERATESYMBOLS_CALLBACKW
(Unicode)	and
PSYM_ENUMERATESYMBOLS_CALLBACK
(ANSI).

See	Also

DbgHelp	FunctionsSymEnumSymbols
SymEnumTypes

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymEnumSymbolsProc%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymEnumTypes	Function
Enumerates	all	user-defined	types.

BOOL	WINAPI	SymEnumTypes(

		__in										HANDLE	hProcess,

		__in										ULONG64	BaseOfDll,

		__in										PSYM_ENUMERATESYMBOLS_CALLBACK	EnumSymbolsCallback

		__in										PVOID	UserContext

);

Parameters

hProcess
A	handle	to	a	process.	This	handle	must	have	been	previously
passed	to	the	SymInitialize	function.

BaseOfDll
The	base	address	of	the	module.

EnumSymbolsCallback
A	pointer	to	an	SymEnumSymbolsProc	callback	function	that
receives	the	symbol	information.

UserContext
A	user-defined	value	to	be	passed	to	the	callback	function,	or	NULL.
This	parameter	is	typically	used	by	an	application	to	pass	a	pointer	to
a	data	structure	that	provides	context	information	for	the	callback
function.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in

unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymEnumTypesW	(Unicode)	and
SymEnumTypes	(ANSI).

See	Also

DbgHelp	FunctionsSymEnumSymbolsProc

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymEnumTypes%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymEnumTypesByName	Function
[This	documentation	is	preliminary	and	is	subject	to	change.]

Enumerates	all	user-defined	types.

BOOL	WINAPI	SymEnumTypesByName(

		__in										HANDLE	hProcess,

		__in										ULONG64	BaseOfDll,

		__in_opt						PCSTR	mask,

		__in										PSYM_ENUMERATESYMBOLS_CALLBACK	EnumSymbolsCallback

		__in										PVOID	UserContext

);

Parameters

hProcess
A	handle	to	a	process.	This	handle	must	have	been	previously
passed	to	the	SymInitialize	function.

BaseOfDll
The	base	address	of	the	module.

mask
TBD

EnumSymbolsCallback
A	pointer	to	an	SymEnumSymbolsProc	callback	function	that
receives	the	symbol	information.

UserContext
A	user-defined	value	to	be	passed	to	the	callback	function,	or	NULL.
This	parameter	is	typically	used	by	an	application	to	pass	a	pointer	to
a	data	structure	that	provides	context	information	for	the	callback
function.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error

information,	call	GetLastError.

Remarks

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Requirements

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymEnumTypesByNameW	(Unicode)	and
SymEnumTypesByName	(ANSI).

See	Also

DbgHelp	FunctionsSymEnumSymbolsProc

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymEnumTypesByName%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymFindDebugInfoFile	Function
Locates	a	.dbg	file	in	the	process	search	path.

HANDLE	WINAPI	SymFindDebugInfoFile(

		__in										HANDLE	hProcess,

		__in										PCTSTR	FileName,

		__out									PTSTR	DebugFilePath,

		__in										PFIND_DEBUG_FILE_CALLBACK	Callback,

		__in										PVOID	CallerData

);

Parameters

hProcess
A	handle	to	the	process	that	was	originally	passed	to	the
SymInitialize	function.

FileName
The	name	of	the	.dbg	file.	You	can	use	a	partial	path.

DebugFilePath
The	fully-qualified	path	of	the	.dbg	file.	This	buffer	must	be	at	least
MAX_PATH	characters.

Callback
An	application-defined	callback	function	that	verifies	whether	the
correct	file	was	found	or	the	function	should	continue	its	search.	For
more	information,	see	FindDebugInfoFileProc.
This	parameter	can	be	NULL.

CallerData
A	user-defined	value	or	NULL.	This	value	is	simply	passed	to	the
callback	function.	This	parameter	is	typically	used	by	an	application
to	pass	a	pointer	to	a	data	structure	that	provides	some	context	for
the	callback	function.

Return	Value

If	the	function	succeeds,	the	return	value	is	an	open	handle	to	the	.dbg

file.

If	the	function	fails,	the	return	value	is	NULL.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

This	function	uses	the	search	path	set	using	the	SymInitialize	or
SymSetSearchPath	function.
All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Requirements

Redistributable Requires	DbgHelp.dll	6.6	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymFindDebugInfoFileW	(Unicode)
and	SymFindDebugInfoFile	(ANSI).

See	Also

DbgHelp	FunctionsFindDebugInfoFileProc

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymFindDebugInfoFile%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

SymFindExecutableImage	Function
Locates	an	executable	file	in	the	process	search	path.

HANDLE	WINAPI	SymFindExecutableImage(

		__in										HANDLE	hProcess,

		__in										PCTSTR	FileName,

		__out									PTSTR	ImageFilePath,

		__in										PFIND_EXE_FILE_CALLBACK	Callback,

		__in										PVOID	CallerData

);

Parameters

hProcess
A	handle	to	the	process	that	was	originally	passed	to	the
SymInitialize	function.

FileName
The	name	of	the	executable	file.	You	can	use	a	partial	path.

ImageFilePath
The	fully-qualified	path	of	the	executable	file.	This	buffer	must	be	at
least	MAX_PATH	characters.

Callback
An	application-defined	callback	function	that	verifies	whether	the
correct	executable	file	was	found,	or	whether	the	function	should
continue	its	search.	For	more	information,	see
FindExecutableImageProc.
This	parameter	can	be	NULL.

CallerData
A	user-defined	value	or	NULL.	This	value	is	simply	passed	to	the
callback	function.	This	parameter	is	typically	used	by	an	application
to	pass	a	pointer	to	a	data	structure	that	provides	some	context	for
the	callback	function.

Return	Value

If	the	function	succeeds,	the	return	value	is	an	open	handle	to	the
executable	file.

If	the	function	fails,	the	return	value	is	NULL.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

This	function	uses	the	search	path	set	using	the	SymInitialize	or
SymSetSearchPath	function.
All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Requirements

Redistributable Requires	DbgHelp.dll	6.6	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymFindExecutableImageW
(Unicode)	and	SymFindExecutableImage	(ANSI).

See	Also

DbgHelp	FunctionsFindExecutableImageProc

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymFindExecutableImage%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

SymFindFileInPath	Function
Locates	a	symbol	file	or	executable	image.

BOOL	WINAPI	SymFindFileInPath(

		__in										HANDLE	hProcess,

		__in										PCTSTR	SearchPath,

		__in										PCTSTR	FileName,

		__in										PVOID	id,

		__in										DWORD	two,

		__in										DWORD	three,

		__in										DWORD	flags,

		__out									PTSTR	FilePath,

		__in										PFINDFILEINPATHCALLBACK	callback,

		__in										PVOID	context

);

Parameters

hProcess
A	handle	to	the	process	that	was	originally	passed	to	the
SymInitialize	function.

SearchPath
The	search	path.	This	can	be	multiple	paths	separated	by
semicolons.	It	can	include	both	directories	and	symbol	servers.	If	this
parameter	is	NULL,	the	function	uses	the	search	path	set	using	the
SymSetSearchPath	or	SymInitialize	function.

FileName
The	name	of	the	file.	You	can	specify	a	path;	however,	only	the	file
name	is	used.

id
The	first	of	three	identifying	parameters	(see	Remarks).

two
The	second	of	three	identifying	parameters	(see	Remarks).

three

The	third	of	three	identifying	parameters	(see	Remarks).

flags
The	format	of	the	id	parameter.	This	parameter	can	be	one	of	the
following	values.

Value Meaning

SSRVOPT_DWORD
0x0002

The	id	parameter	is	a	DWORD.

SSRVOPT_DWORDPTR
0x0004

The	id	parameter	is	a	pointer	to	a
DWORD.

SSRVOPT_GUIDPTR
0x0008

The	id	parameter	is	a	pointer	to	a	GUID

FilePath
A	pointer	to	a	buffer	that	receives	the	fully	qualified	path	to	the
symbol	file.	This	buffer	must	be	at	least	MAX_PATH	characters.

callback
A	SymFindFileInPathProc	callback	function.

context
A	user-defined	value	or	NULL.	This	value	is	simply	passed	to	the
callback	function.	This	parameter	is	typically	used	by	an	application
to	pass	a	pointer	to	a	data	structure	that	provides	some	context	for
the	callback	function.

Return	Value

If	the	server	locates	a	valid	symbol	file,	it	returns	TRUE;	otherwise,	it
returns	FALSE	and	GetLastError	returns	a	value	that	indicates	why	the
symbol	file	was	not	returned.

Remarks

The	identifying	parameters	are	filled	in	as	follows:

If	DbgHelp	is	looking	for	a	.pdb	file,	the	id	parameter

specifies	the	PDB	signature	as	found	in	the	codeview	debug
directory	of	the	original	image.	Parameter	two	specifies	the
PDB	age.	Parameter	three	is	unused	and	set	to	zero.

If	DbgHelp	is	looking	for	any	other	type	of	image,	such	as	an
executable	file	or	.dbg	file,	the	id	parameter	specifies	the
TimeDateStamp	of	the	original	image	as	found	in	its	PE
header.	Parameter	two	specifies	the	SizeOfImage	field,	also
extracted	from	the	PE	header.	Parameter	three	is	unused
and	set	to	zero.

When	searching	a	directory,	this	function	does	not	verify	that	the	symbol
identifiers	match	by	default.	To	ensure	the	matching	symbol	files	are
located,	call	the	SymSetOptions	function	with
SYMOPT_EXACT_SYMBOLS.

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymFindFileInPathW	(Unicode)	and
SymFindFileInPath	(ANSI).

See	Also

DbgHelp	Functions
SymFindFileInPathProc
SymInitialize
SymSetSearchPath

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymFindFileInPath%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymFindFileInPathProc	Callback	Function
An	application-defined	callback	function	used	with	the
SymFindFileInPath	function.
The	PFINDFILEINPATHCALLBACK	type	defines	a	pointer	to	this
callback	function.	SymFindFileInPathProc	is	a	placeholder	for	the
application-defined	function	name.

BOOL	CALLBACK	SymFindFileInPathProc(

		[in]																	PCTSTR	fileName,

		[in]																	PVOID	context

);

Parameters

fileName
The	name	of	the	file.

context
The	user-defined	value	specified	in	SymFindFileInPath,	or	NULL.
This	parameter	is	typically	used	by	an	application	to	pass	a	pointer	to
a	data	structure	that	provides	some	context	for	the	callback	function.

Return	Value

Return	TRUE	to	continue	searching.

Return	FALSE	to	end	the	search.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

Unicode

Implemented	as	PFINDFILEINPATHCALLBACKW
(Unicode)	and	PFINDFILEINPATHCALLBACK
(ANSI).

See	Also

DbgHelp	FunctionsSymFindFileInPath

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymFindFileInPathProc%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymFromAddr	Function
Retrieves	symbol	information	for	the	specified	address.

BOOL	WINAPI	SymFromAddr(

		__in										HANDLE	hProcess,

		__in										DWORD64	Address,

		__out									PDWORD64	Displacement,

		__in_out						PSYMBOL_INFO	Symbol

);

Parameters

hProcess
A	handle	to	a	process.	This	handle	must	have	been	previously
passed	to	the	SymInitialize	function.

Address
The	address	for	which	a	symbol	should	be	located.	The	address
does	not	have	to	be	on	a	symbol	boundary.	If	the	address	comes
after	the	beginning	of	a	symbol	and	before	the	end	of	the	symbol,	the
symbol	is	found.

Displacement
The	displacement	from	the	beginning	of	the	symbol,	or	zero.

Symbol
A	pointer	to	a	SYMBOL_INFO	structure	that	provides	information
about	the	symbol.	The	symbol	name	is	variable	in	length;	therefore
this	buffer	must	be	large	enough	to	hold	the	name	stored	at	the	end
of	the	SYMBOL_INFO	structure.	Be	sure	to	set	the	MaxNameLen
member	to	the	number	of	bytes	reserved	for	the	name.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Example	Code

For	an	example,	see	Retrieving	Symbol	Information	by	Address.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymFromAddrW	(Unicode)	and
SymFromAddr	(ANSI).

See	Also

DbgHelp	FunctionsSYMBOL_INFO

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymFromAddr%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymFromIndex	Function
Retrieves	symbol	information	for	the	specified	index.

BOOL	WINAPI	SymFromIndex(

		__in										HANDLE	hProcess,

		__in										ULONG64	BaseOfDll,

		__in										DWORD	Index,

		__out									PSYMBOL_INFO	Symbol

);

Parameters

hProcess
A	handle	to	a	process.	This	handle	must	have	been	previously
passed	to	the	SymInitialize	function.

BaseOfDll
The	base	address	of	the	module.

Index
A	unique	value	for	the	symbol.

Symbol
A	pointer	to	a	SYMBOL_INFO	structure	that	provides	information
about	the	symbol.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Redistributable Requires	DbgHelp.dll	6.2	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymFromIndexW	(Unicode)	and
SymFromIndex	(ANSI).

See	Also

DbgHelp	FunctionsSYMBOL_INFO

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymFromIndex%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymFromName	Function
Retrieves	symbol	information	for	the	specified	name.

BOOL	WINAPI	SymFromName(

		__in										HANDLE	hProcess,

		__in										PCTSTR	Name,

		__out									PSYMBOL_INFO	Symbol

);

Parameters

hProcess
A	handle	to	a	process.	This	handle	must	have	been	previously
passed	to	the	SymInitialize	function.

Name
The	name	of	the	symbol	to	be	located.

Symbol
A	pointer	to	a	SYMBOL_INFO	structure	that	provides	information
about	the	symbol.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Example	Code

For	an	example,	see	Retrieving	Symbol	Information	by	Name.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymFromNameW	(Unicode)	and
SymFromName	(ANSI).

See	Also

DbgHelp	FunctionsSYMBOL_INFO

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymFromName%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymFromToken	Function
Retrieves	symbol	information	for	the	specified	managed	code	token.

BOOL	WINAPI	SymFromToken(

		__in										HANDLE	hProcess,

		__in										DWORD64	Base,

		__in										DWORD	Token,

		__in_out						PSYMBOL_INFO	Symbol

);

Parameters

hProcess
A	handle	to	a	process.	This	handle	must	have	been	previously
passed	to	the	SymInitialize	function.

Base
The	base	address	of	the	managed	code	module.

Token
The	managed	code	token.

Symbol
A	pointer	to	a	SYMBOL_INFO	structure	that	provides	information
about	the	symbol.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Requirements

Redistributable Requires	DbgHelp.dll	6.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymFromTokenW	(Unicode)	and
SymFromToken	(ANSI).

See	Also

DbgHelp	FunctionsSYMBOL_INFO

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymFromToken%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymFunctionTableAccess64	Function
Retrieves	the	function	table	entry	for	the	specified	address.

This	function	supersedes	the	SymFunctionTableAccess	function.	For
more	information,	see	Updated	Platform	Support.

PVOID	WINAPI	SymFunctionTableAccess64(

		__in										HANDLE	hProcess,

		__in										DWORD64	AddrBase

);

Parameters

hProcess
A	handle	to	the	process	that	was	originally	passed	to	the
SymInitialize	function.

AddrBase
The	base	address	for	which	function	table	information	is	required.

Return	Value

If	the	function	succeeds,	the	return	value	is	a	pointer	to	the	function	table
entry.

If	the	function	fails,	the	return	value	is	NULL.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

The	type	of	pointer	returned	is	specific	to	the	image	from	which	symbols
are	loaded.

x86:		If	the	image	is	for	an	x86	system,	this	is	a	pointer
to	an	FPO_DATA	structure.

x64:		If	the	image	is	for	an	x64	system,	this	is	a	pointer
to	an	_IMAGE_RUNTIME_FUNCTION_ENTRY
structure.

RISC:		If	the	image	is	for	any	of	the	RISC	platforms,	this

is	a	pointer	to	an	IMAGE_FUNCTION_ENTRY
structure.

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

See	Also

DbgHelp	FunctionsFPO_DATA
IMAGE_FUNCTION_ENTRY
_IMAGE_RUNTIME_FUNCTION_ENTRY
SymInitialize

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymFunctionTableAccess64%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymGetFileLineOffsets64	Function
Locates	line	information	for	the	specified	module	and	file	name.

BOOL	WINAPI	SymGetFileLineOffsets64(

		__in										HANDLE	hProcess,

		__in										PCSTR	ModuleName,

		__in										PCSTR	FileName,

		__out									PDWORD64	Buffer,

		__in										ULONG	BufferLines

);

Parameters

hProcess
A	handle	to	the	process	that	was	originally	passed	to	the
SymInitialize	function.

ModuleName
The	name	of	the	module	in	which	lines	are	to	be	located.	If	this
parameter	is	NULL,	the	function	searches	all	modules.

FileName
The	name	of	the	file	in	which	lines	are	to	be	located.

Buffer
An	array	of	offsets	for	each	line.	The	offset	for	the	line	n	is	stored	in
element	n-1.	Array	elements	for	lines	that	do	not	have	line
information	are	left	unchanged.

BufferLines
The	size	of	the	Buffer	array,	in	elements.

Return	Value

If	the	function	succeeds,	the	return	value	is	the	highest	line	number
found.	This	value	is	zero	if	no	line	information	was	found.

If	the	function	fails,	the	return	value	is	LINE_ERROR.	To	retrieve
extended	error	information,	call	GetLastError.

Remarks

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

See	Also

DbgHelp	Functions

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymGetFileLineOffsets64%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymGetHomeDirectory	Function
Retrieves	the	home	directory	used	by	Dbghelp.

PTCHAR	WINAPI	SymGetHomeDirectory(

		__in										DWORD	type,

		__out									PTSTR	dir,

		__in										size_t	size

);

Parameters

type
The	directory	to	be	retrieved.	This	parameter	can	be	one	of	the
following	values.

Value Meaning

hdBase
0

The	home	directory.

hdSrc
2

The	source	directory.

hdSym
1

The	symbol
directory.

dir
A	pointer	to	a	string	that	receives	the	directory.

size
The	size	of	the	output	buffer,	in	characters.

Return	Value

If	the	function	succeeds,	the	return	value	is	a	pointer	to	the	dir	parameter.

If	the	function	fails,	the	return	value	is	NULL.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Requirements

Redistributable Requires	DbgHelp.dll	6.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymGetHomeDirectoryW	(Unicode)
and	SymGetHomeDirectory	(ANSI).

See	Also

DbgHelp	Functions
SymSetHomeDirectory

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymGetHomeDirectory%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymGetLineFromAddr64	Function
Locates	the	source	line	for	the	specified	address.

This	function	supersedes	the	SymGetLineFromAddr	function.	For	more
information,	see	Updated	Platform	Support.

BOOL	WINAPI	SymGetLineFromAddr64(

		__in										HANDLE	hProcess,

		__in										DWORD64	dwAddr,

		__out									PDWORD	pdwDisplacement,

		__out									PIMAGEHLP_LINE64	Line

);

Parameters

hProcess
A	handle	to	the	process	that	was	originally	passed	to	the
SymInitialize	function.

dwAddr
The	address	for	which	a	line	should	be	located.	It	is	not	necessary
for	the	address	to	be	on	a	line	boundary.	If	the	address	appears	after
the	beginning	of	a	line	and	before	the	end	of	the	line,	the	line	is
found.

pdwDisplacement
The	displacement	from	the	beginning	of	the	line,	or	zero.

Line
A	pointer	to	an	IMAGEHLP_LINE64	structure.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

The	caller	must	allocate	the	Line	buffer	properly	and	fill	in	the	required
members	of	the	IMAGEHLP_LINE64	structure	before	calling
SymGetLineFromAddr64.
This	function	returns	a	pointer	to	a	buffer	that	may	be	reused	by	another
function.	Therefore,	be	sure	to	copy	the	data	returned	to	another	buffer
immediately.

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Example	Code

For	an	example,	see	Retrieving	Symbol	Information	by	Address.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymGetLineFromAddrW64
(Unicode)	and	SymGetLineFromAddr64	(ANSI).

See	Also

DbgHelp	FunctionsIMAGEHLP_LINE64
SymGetLineFromName64
SymInitialize

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymGetLineFromAddr64%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymGetLineFromName64	Function
Locates	a	source	line	for	the	specified	module,	file	name,	and	line
number.

This	function	supersedes	the	SymGetLineFromName	function.	For	more
information,	see	Updated	Platform	Support.

BOOL	WINAPI	SymGetLineFromName64(

		__in										HANDLE	hProcess,

		__in										PCTSTR	ModuleName,

		__in										PCTSTR	FileName,

		__in										DWORD	dwLineNumber,

		__out									PLONG	lpDisplacement,

		__in_out						PIMAGEHLP_LINE64	Line

);

Parameters

hProcess
A	handle	to	the	process	that	was	originally	passed	to	the
SymInitialize	function.

ModuleName
The	name	of	the	module	in	which	a	line	is	to	be	located.

FileName
The	name	of	the	file	in	which	a	line	is	to	be	located.	If	the	application
has	more	than	one	source	file	with	this	name,	be	sure	to	specify	a	full
path.

dwLineNumber
The	line	number	to	be	located.

lpDisplacement
The	displacement	from	the	beginning	of	the	line,	or	zero.

Line
A	pointer	to	an	IMAGEHLP_LINE64	structure.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

The	caller	must	allocate	the	Line	buffer	properly	and	fill	in	the	required
members	of	the	IMAGEHLP_LINE64	structure	before	calling
SymGetLineFromName64.
Before	calling	this	function,	ensure	that	the	symbols	are	initialized
correctly	by	first	calling	SymInitialize,	SymSetOptions,	and
SymLoadModule64.
This	function	returns	a	pointer	to	a	buffer	that	may	be	reused	by	another
function.	Therefore,	be	sure	to	copy	the	data	returned	to	another	buffer
immediately.

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Example	Code

For	an	example,	see	Retrieving	Symbol	Information	by	Name.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymGetLineFromNameW64
(Unicode)	and	SymGetLineFromName64	(ANSI).

See	Also

DbgHelp	FunctionsIMAGEHLP_LINE64
SymGetLineFromAddr64
SymInitialize

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymGetLineFromName64%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymGetLineNext64	Function
Retrieves	the	line	information	for	the	next	source	line.

This	function	supersedes	the	SymGetLineNext	function.	For	more
information,	see	Updated	Platform	Support.

BOOL	WINAPI	SymGetLineNext64(

		__in										HANDLE	hProcess,

		__in_out						PIMAGEHLP_LINE64	Line

);

Parameters

hProcess
A	handle	to	the	process	that	was	originally	passed	to	the
SymInitialize	function.

Line
A	pointer	to	an	IMAGEHLP_LINE64	structure	that	contains	the	line
information.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

The	SymGetLineNext64	function	requires	that	the	IMAGEHLP_LINE64
structure	have	valid	data,	presumably	obtained	from	a	call	to	the
SymGetLineFromAddr64	or	SymGetLineFromName64	function.	This
structure	receives	the	line	information	for	the	next	line	in	sequence.

This	function	returns	a	pointer	to	a	buffer	that	may	be	reused	by	another
function.	Therefore,	be	sure	to	copy	the	data	returned	to	another	buffer
immediately.

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in

unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymGetLineNextW64	(Unicode)	and
SymGetLineNext64	(ANSI).

See	Also

DbgHelp	FunctionsIMAGEHLP_LINE64
SymGetLineFromAddr64
SymGetLineFromName64
SymGetLinePrev64
SymInitialize

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymGetLineNext64%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymGetLinePrev64	Function
Retrieves	the	line	information	for	the	previous	source	line.

This	function	supersedes	the	SymGetLinePrev	function.	For	more
information,	see	Updated	Platform	Support.

BOOL	WINAPI	SymGetLinePrev64(

		__in										HANDLE	hProcess,

		__in_out						PIMAGEHLP_LINE64	Line

);

Parameters

hProcess
A	handle	to	the	process	that	was	originally	passed	to	the
SymInitialize	function.

Line
A	pointer	to	an	IMAGEHLP_LINE64	structure.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

The	SymGetLinePrev64	function	requires	that	the	IMAGEHLP_LINE64
structure	have	valid	data,	presumably	obtained	from	a	call	to	the
SymGetLineFromAddr64	or	SymGetLineFromName64	function.	This
structure	is	filled	with	the	line	information	for	the	previous	line	in
sequence.

This	function	returns	a	pointer	to	a	buffer	that	may	be	reused	by	another
function.	Therefore,	be	sure	to	copy	the	data	returned	to	another	buffer
immediately.

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in

unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymGetLinePrevW64	(Unicode)	and
SymGetLinePrev64	(ANSI).

See	Also

DbgHelp	FunctionsIMAGEHLP_LINE64
SymGetLineFromAddr64
SymGetLineFromName64
SymGetLineNext64
SymInitialize

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymGetLinePrev64%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymGetModuleBase64	Function
Retrieves	the	base	address	of	the	module	that	contains	the	specified
address.

This	function	supersedes	the	SymGetModuleBase	function.	For	more
information,	see	Updated	Platform	Support.

DWORD64	WINAPI	SymGetModuleBase64(

		__in										HANDLE	hProcess,

		__in										DWORD64	dwAddr

);

Parameters

hProcess
A	handle	to	the	process	that	was	originally	passed	to	the
SymInitialize	function.

dwAddr
The	virtual	address	that	is	contained	in	one	of	the	modules	loaded	by
the	SymLoadModule64	function.

Return	Value

If	the	function	succeeds,	the	return	value	is	a	nonzero	virtual	address.
The	value	is	the	base	address	of	the	module	containing	the	address
specified	by	the	dwAddr	parameter.

If	the	function	fails,	the	return	value	is	zero.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

The	module	table	is	searched	for	a	module	that	contains	dwAddr.	The
module	is	located	based	on	the	load	address	and	size	of	each	module.

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this

function.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

See	Also

DbgHelp	FunctionsSymInitialize
SymLoadModule64

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymGetModuleBase64%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymGetModuleInfo64	Function
Retrieves	the	module	information	of	the	specified	module.

This	function	supersedes	the	SymGetModuleInfo	function.	For	more
information,	see	Updated	Platform	Support.

BOOL	WINAPI	SymGetModuleInfo64(

		__in										HANDLE	hProcess,

		__in										DWORD64	dwAddr,

		__out									PIMAGEHLP_MODULE64	ModuleInfo

);

Parameters

hProcess
A	handle	to	the	process	that	was	originally	passed	to	the
SymInitialize	function.

dwAddr
The	virtual	address	that	is	contained	in	one	of	the	modules	loaded	by
the	SymLoadModule64	function

ModuleInfo
A	pointer	to	an	IMAGEHLP_MODULE64	structure.	The
SizeOfStruct	member	must	be	set	to	the	size	of	the
IMAGEHLP_MODULE64	structure.	An	invalid	value	will	result	in	an
error.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

The	module	table	is	searched	for	a	module	that	contains	the	dwAddr.	The
module	is	located	based	on	the	load	address	and	size	of	each	module.	If
a	valid	module	is	found,	the	ModuleInfo	parameter	is	filled	with	the

information	about	the	module.

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

See	Also

DbgHelp	FunctionsIMAGEHLP_MODULE64
SymInitialize
SymLoadModule64

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymGetModuleInfo64%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymGetOmaps	Function
Retrieves	the	omap	tables	within	a	loaded	module.

BOOL	WINAPI	SymGetOmaps(

		__in										HANDLE	hProcess,

		__in										ULONG64	BaseOfDll,

		__out									POMAP*	OmapTo,

		__out									PDWORD64	cOmapTo,

		__out									POMAP*	OmapFrom,

		__out									PDWORD64	cOmapFrom

);

Parameters

hProcess
A	handle	to	a	process.	This	handle	must	have	been	previously
passed	to	the	SymInitialize	function.

BaseOfDll
The	base	address	of	the	module.

OmapTo
An	array	of	address	map	entries	to	the	new	image	layout	taken	from
the	original	layout.	For	details	on	the	map	entries,	see	the	OMAP
structure.

cOmapTo
The	number	of	entries	in	the	OmapTo	array.

OmapFrom
An	array	of	address	map	entries	from	the	new	image	layout	to	the
original	layout	(as	described	by	the	debug	symbols).	For	details	on
the	map	entries,	see	the	OMAP	structure.

cOmapFrom
The	number	of	entries	in	the	OmapFrom	array.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails	(the	omap	is	not	found),	the	return	value	is	FALSE.	To
retrieve	extended	error	information,	call	GetLastError.

Requirements

Redistributable Requires	DbgHelp.dll	6.8	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymGetOmaps%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymGetOptions	Function
Retrieves	the	current	option	mask.

DWORD	WINAPI	SymGetOptions(void);

Parameters

This	function	has	no	parameters.

Return	Value

The	function	returns	the	current	options	that	have	been	set.	Zero	is	a
valid	value	and	indicates	that	all	options	are	turned	off.

Remarks

These	options	can	be	changed	several	times	while	the	library	is	in	use	by
an	application.	Any	option	change	affects	all	future	calls	to	the	symbol
handler.

The	return	value	is	the	combination	of	the	following	values	that	have
been	set	using	the	SymSetOptions	function.

SYMOPT_ALLOW_ABSOLUTE_SYMBOLS

SYMOPT_ALLOW_ZERO_ADDRESS

SYMOPT_AUTO_PUBLICS

SYMOPT_CASE_INSENSITIVE

SYMOPT_DEBUG

SYMOPT_DEFERRED_LOADS

SYMOPT_EXACT_SYMBOLS

SYMOPT_FAIL_CRITICAL_ERRORS

SYMOPT_FAVOR_COMPRESSED

SYMOPT_FLAT_DIRECTORY

SYMOPT_IGNORE_CVREC

SYMOPT_IGNORE_IMAGEDIR

SYMOPT_IGNORE_NT_SYMPATH

SYMOPT_INCLUDE_32BIT_MODULES

SYMOPT_LOAD_ANYTHING

SYMOPT_LOAD_LINES

SYMOPT_NO_CPP

SYMOPT_NO_IMAGE_SEARCH

SYMOPT_NO_PROMPTS

SYMOPT_NO_PUBLICS

SYMOPT_NO_UNQUALIFIED_LOADS

SYMOPT_OVERWRITE

SYMOPT_PUBLICS_ONLY

SYMOPT_SECURE

SYMOPT_UNDNAME

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

See	Also

DbgHelp	Functions

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymGetOptions%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymGetScope	Function
Retrieves	the	scope	for	the	specified	index.

BOOL	WINAPI	SymGetScope(

		__in										HANDLE	hProcess,

		__in										ULONG64	BaseOfDll,

		__in										DWORD	Index,

		__out									PSYMBOL_INFO	Symbol

);

Parameters

hProcess
A	handle	to	a	process.	This	handle	must	have	been	previously
passed	to	the	SymInitialize	function.

BaseOfDll
The	base	address	of	the	module.

Index
A	unique	value	for	the	symbol.

Symbol
A	pointer	to	a	SYMBOL_INFO	structure.	The	Scope	member
contains	the	scope.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Redistributable Requires	DbgHelp.dll	6.2	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymGetScopeW	(Unicode)	and
SymGetScope	(ANSI).

See	Also

DbgHelp	FunctionsSYMBOL_INFO

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymGetScope%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymGetSearchPath	Function
Retrieves	the	symbol	search	path	for	the	specified	process.

BOOL	WINAPI	SymGetSearchPath(

		__in										HANDLE	hProcess,

		__out									PTSTR	SearchPath,

		__in										DWORD	SearchPathLength

);

Parameters

hProcess
A	handle	to	the	process	that	was	originally	passed	to	the
SymInitialize	function.

SearchPath
A	pointer	to	the	buffer	that	receives	the	symbol	search	path.

SearchPathLength
The	size	of	the	SearchPath	buffer,	in	characters.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

The	SymGetSearchPath	function	copies	the	symbol	search	path	for	the
specified	process	into	the	SearchPath	buffer.	If	the	function	fails,	the
contents	of	the	buffer	are	undefined.

To	specify	a	symbol	search	path	for	the	process,	use	the
SymSetSearchPath	function.
All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must

synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymGetSearchPathW	(Unicode)	and
SymGetSearchPath	(ANSI).

See	Also

DbgHelp	FunctionsSymInitialize
SymSetSearchPath

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymGetSearchPath%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymGetSourceFile	Function
Retrieves	the	specified	source	file	from	the	source	server.

BOOL	WINAPI	SymGetSourceFile(

		__in										HANDLE	hProcess,

		__in										ULONG64	Base,

		__in_opt						PCSTR	Params,

		__in										PCSTR	FileSpec,

		__out									PSTR	FilePath,

		__in										DWORD	Size

);

Parameters

hProcess
A	handle	to	a	process.	This	handle	must	have	been	previously
passed	to	the	SymInitialize	function.

Base
The	base	address	of	the	module.

Params
This	parameter	is	unused.

FileSpec
The	name	of	the	source	file.

FilePath
A	pointer	to	a	buffer	that	receives	the	fully-qualified	path	of	the
source	file.

Size
The	size	of	the	FilePath	buffer,	in	characters.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

To	control	which	directory	receives	the	source	files,	use	the
SymSetHomeDirectory	function.
All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Redistributable Requires	DbgHelp.dll	6.2	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

See	Also

DbgHelp	FunctionsSource	Server

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymGetSourceFile%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymGetSourceFileFromToken	Function
Retrieves	the	source	file	associated	with	the	specified	token	from	the
source	server.

BOOL	WINAPI	SymGetSourceFileFromToken(

		__in										HANDLE	hProcess,

		__in										PVOID	Token,

		__in_opt						PCTSTR	Params,

		__out									PTSTR	FilePath,

		__in										DWORD	Size

);

Parameters

hProcess
A	handle	to	a	process.	This	handle	must	have	been	previously
passed	to	the	SymInitialize	function.

Token
A	pointer	to	the	token.

Params
This	parameter	is	unused.

FilePath
A	pointer	to	a	buffer	that	receives	the	fully-qualified	path	of	the
source	file.

Size
The	size	of	the	FilePath	buffer,	in	characters.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Requirements

Redistributable Requires	DbgHelp.dll	6.2	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode

Implemented	as	SymGetSourceFileFromTokenW
(Unicode)	and	SymGetSourceFileFromToken
(ANSI).

See	Also

DbgHelp	FunctionsSource	Server

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymGetSourceFileFromToken%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymGetSourceFileToken	Function
Retrieves	token	for	the	specified	source	file	from	the	source	server.

BOOL	WINAPI	SymGetSourceFileToken(

		__in										HANDLE	hProcess,

		__in										ULONG64	Base,

		__in										PCTSTR	FileSpec,

		__out									PVOID*	Token,

		__in										DWORD*	Size

);

Parameters

hProcess
A	handle	to	a	process.	This	handle	must	have	been	previously
passed	to	the	SymInitialize	function.

Base
The	base	address	of	the	module.

FileSpec
The	name	of	the	source	file.

Token
A	pointer	to	a	buffer	that	receives	the	token.

Size
The	size	of	the	Token	buffer,	in	bytes.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in

unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Requirements

Redistributable Requires	DbgHelp.dll	6.2	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymGetSourceFileTokenW
(Unicode)	and	SymGetSourceFileToken	(ANSI).

See	Also

DbgHelp	FunctionsSource	Server

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymGetSourceFileToken%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymGetSourceVarFromToken	Function
Retrieves	the	value	associated	with	the	specified	variable	name	from	the
Source	Server	token.

BOOL	WINAPI	SymGetSourceVarFromToken(

		__in										HANDLE	hProcess,

		__in										PVOID	Token,

		__in_opt						PCTSTR	Params,

		__in										PCTSTR	VarName,

		__out									PTSTR	Value,

		__in										DWORD	Size

);

Parameters

hProcess
A	handle	to	a	process.	This	handle	must	have	been	previously
passed	to	the	SymInitialize	function.

Token
A	pointer	to	the	token.

Params
This	parameter	is	unused.

VarName
The	name	of	the	variable	token	whose	value	you	want	to	retrieve.

Value
A	pointer	to	a	buffer	that	receives	the	value	associated	with	the
variable	token	specified	in	the	VarName	parameter.

Size
The	size	of	the	Value	buffer,	in	characters.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error

information,	call	GetLastError.

Remarks

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Requirements

Redistributable Requires	DbgHelp.dll	6.8	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymGetSourceVarFromTokenW
(Unicode)	and	SymGetSourceVarFromToken	(ANSI).

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymGetSourceVarFromToken%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymGetSymbolFile	Function
Locates	a	symbol	file	in	the	specified	symbol	path.

BOOL	WINAPI	SymGetSymbolFile(

		__in_opt						HANDLE	hProcess,

		__in										PCTSTR	SymPath,

		__in										PCTSTR	ImageFile,

		__in										DWORD	Type,

		__out									PTSTR	SymbolFile,

		__in										size_t	cSymbolFile,

		__out									PTSTR	DbgFile,

		__in										size_t	cDbgFile

);

Parameters

hProcess
A	handle	to	the	process	that	was	originally	passed	to	the
SymInitialize	function.	This	parameter	is	optional.
If	this	parameter	is	0,	SymPath	cannot	be	NULL.	Use	this	option	to
load	a	symbol	file	without	calling	SymInitialize	or	SymCleanup.

SymPath
The	symbol	path.	If	this	parameter	is	NULL	or	an	empty	string,	the
function	uses	the	symbol	path	set	using	the	SymInitialize	or
SymSetSearchPath	function.

ImageFile
The	name	of	the	image	file.

Type
The	type	of	symbol	file.	This	parameter	can	be	one	of	the	following
values.

Value Meaning

sfImage
0

A	.exe	or	.dll
file.

sfDbg
1

A	.dbg	file.

sfPdb
2

A	.pdb	file.

sfMpd
3

Reserved.

SymbolFile
A	pointer	to	a	null-terminated	string	that	receives	the	name	of	the
symbol	file.

cSymbolFile
The	size	of	the	SymbolFile	buffer,	in	characters.

DbgFile
A	pointer	to	a	buffer	that	receives	the	fully	qualified	path	to	the
symbol	file.	This	buffer	must	be	at	least	MAX_PATH	characters.

cDbgFile
The	size	of	the	DbgFile	buffer,	in	characters.

Return	Value

If	the	server	locates	a	valid	symbol	file,	it	returns	TRUE;	otherwise,	it
returns	FALSE	and	GetLastError	returns	a	value	that	indicates	why	the
symbol	file	was	not	returned.

Remarks

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Requirements

Redistributable Requires	DbgHelp.dll	6.3	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymGetSymbolFileW	(Unicode)	and
SymGetSymbolFile	(ANSI).

See	Also

DbgHelp	Functions
SymInitialize

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymGetSymbolFile%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymGetSymFromAddr64	Function
Locates	the	symbol	for	the	specified	address.

Note		This	function	is	provided	only	for	compatibility.	Applications
should	use	SymFromAddr.

BOOL	WINAPI	SymGetSymFromAddr64(

		__in										HANDLE	hProcess,

		__in										DWORD64	Address,

		__out									PDWORD64	Displacement,

		__out									PIMAGEHLP_SYMBOL64	Symbol

);

Parameters

hProcess
A	handle	to	the	process	that	was	originally	passed	to	the
SymInitialize	function.

Address
The	address	for	which	a	symbol	is	to	be	located.	The	address	does
not	have	to	be	on	a	symbol	boundary.	If	the	address	comes	after	the
beginning	of	a	symbol	and	before	the	end	of	the	symbol	(the
beginning	of	the	symbol	plus	the	symbol	size),	the	symbol	is	found.

Displacement
The	displacement	from	the	beginning	of	the	symbol,	or	zero.

Symbol
A	pointer	to	an	IMAGEHLP_SYMBOL64	structure.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

This	function	supersedes	the	SymGetSymFromAddr	function.	For	more
information,	see	Updated	Platform	Support.

The	SymGetSymFromAddr64	function	locates	the	symbol	for	a
specified	address.	The	modules	are	searched	for	the	one	the	address
belongs	to.	When	the	module	is	found,	its	symbol	table	is	searched	for	a
match.	When	the	symbol	is	found,	the	symbol	information	is	copied	into
the	Symbol	buffer	provided	by	the	caller.	The	caller	must	allocate	the
Symbol	buffer	properly	and	fill	in	the	required	parameters	in	the
IMAGEHLP_SYMBOL64	structure	before	calling
SymGetSymFromAddr64.
All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

See	Also

DbgHelp	FunctionsIMAGEHLP_SYMBOL64
SymFromAddr
SymInitialize

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymGetSymFromAddr64%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

©	2007	Microsoft	Corporation.	All	rights	reserved.

SymGetSymFromName64	Function
Locates	a	symbol	for	the	specified	name.

Note		This	function	is	provided	only	for	compatibility.	Applications
should	use	SymFromName.

BOOL	WINAPI	SymGetSymFromName64(

		__in										HANDLE	hProcess,

		__in										PCSTR	Name,

		__out									PIMAGEHLP_SYMBOL64	Symbol

);

Parameters

hProcess
A	handle	to	the	process	that	was	originally	passed	to	the
SymInitialize	function.

Name
The	symbol	name	for	which	a	symbol	is	to	be	located.

Symbol
A	pointer	to	an	IMAGEHLP_SYMBOL64	structure.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

This	function	supersedes	the	SymGetSymFromName	function.	For
more	information,	see	Updated	Platform	Support.

The	SymGetSymFromName64	function	is	used	to	locate	a	symbol	for	a
specified	name.	The	name	can	contain	a	module	prefix	that	isolates	the
symbol	search	to	a	single	module's	symbol	table.

The	module	prefix	is	in	the	form	of	"module!".	The	"!"	character	is	the

delimiter	between	the	module	name	and	the	symbol	name.	If	there	is	no
module	prefix,	then	the	search	is	performed	on	each	module's	symbol
table	in	a	linear	manner,	beginning	with	the	first	module	that	is	loaded.

Using	the	module	prefix	is	preferable	for	two	reasons.	First,	the	symbol
search	occurs	much	faster.	Second,	when	deferred	symbol	loading	is
turned	on,	the	search	causes	symbols	to	be	loaded	for	each	module	that
is	searched.	When	the	symbol	is	found,	the	symbol	information	is	copied
into	the	Symbol	buffer	provided	by	the	caller.	The	caller	must	allocate	the
Symbol	buffer	properly	and	fill	in	the	required	parameters	in	the
IMAGEHLP_SYMBOL64	structure	before	calling
SymGetSymFromName64.
All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

See	Also

DbgHelp	FunctionsIMAGEHLP_SYMBOL64
SymFromName
SymInitialize

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymGetSymFromName64%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

SymGetSymNext64	Function
Retrieves	the	symbol	information	for	the	next	symbol.

Note		This	function	is	provided	only	for	compatibility.	Applications
should	use	SymNext.

BOOL	WINAPI	SymGetSymNext64(

		__in										HANDLE	hProcess,

		__in_out						PIMAGEHLP_SYMBOL64	Symbol

);

Parameters

hProcess
A	handle	to	the	process	that	was	originally	passed	to	the
SymInitialize	function.

Symbol
A	pointer	to	an	IMAGEHLP_SYMBOL64	structure.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

This	function	supersedes	the	SymGetSymNext	function.	For	more
information,	see	Updated	Platform	Support.

The	SymGetSymNext64	function	requires	that	the
IMAGEHLP_SYMBOL64	structure	have	valid	data,	presumably	obtained
from	a	call	to	the	SymGetSymFromAddr64	or
SymGetSymFromName64	function.	This	structure	is	filled	with	the
symbol	information	for	the	next	symbol	in	sequence	by	virtual	address.

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must

synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

See	Also

DbgHelp	FunctionsIMAGEHLP_SYMBOL64
SymGetSymFromAddr64
SymGetSymFromName64
SymGetSymPrev64
SymInitialize

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymGetSymNext64%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymGetSymPrev64	Function
Retrieves	the	symbol	information	for	the	previous	symbol.

Note		This	function	is	provided	only	for	compatibility.	Applications
should	use	SymPrev.

BOOL	WINAPI	SymGetSymPrev64(

		__in										HANDLE	hProcess,

		__in_out						PIMAGEHLP_SYMBOL64	Symbol

);

Parameters

hProcess
A	handle	to	the	process	that	was	originally	passed	to	the
SymInitialize	function.

Symbol
A	pointer	to	an	IMAGEHLP_SYMBOL64	structure.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

This	function	supersedes	the	SymGetSymPrev	function.	For	more
information,	see	Updated	Platform	Support.

The	SymGetSymPrev64	function	requires	the	IMAGEHLP_SYMBO64L
structure	to	have	valid	data,	presumably	obtained	from	a	call	to	the
SymGetSymFromAddr64	or	SymGetSymFromName64	function.	This
structure	is	filled	in	with	the	symbol	information	for	the	previous	symbol	in
sequence	by	virtual	address.

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must

synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

See	Also

DbgHelp	FunctionsIMAGEHLP_SYMBOL64
SymGetSymFromAddr64
SymGetSymFromName64
SymGetSymNext64
SymInitialize

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymGetSymPrev64%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymGetTypeFromName	Function
Retrieves	a	type	index	for	the	specified	type	name.

BOOL	WINAPI	SymGetTypeFromName(

		__in										HANDLE	hProcess,

		__in										ULONG64	BaseOfDll,

		__in										PCTSTR	Name,

		__out									PSYMBOL_INFO	Symbol

);

Parameters

hProcess
A	handle	to	a	process.	This	handle	must	have	been	previously
passed	to	the	SymInitialize	function.

BaseOfDll
The	base	address	of	the	module.

Name
The	name	of	the	type.

Symbol
A	pointer	to	a	SYMBOL_INFO	structure.	The	TypeIndex	member
contains	the	type	index.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

To	retrieve	information	about	the	type,	pass	the	type	index	to	the
SymGetTypeInfo	function.
All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in

unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymGetTypeFromNameW	(Unicode)
and	SymGetTypeFromName	(ANSI).

See	Also

DbgHelp	FunctionsSYMBOL_INFO
SymGetTypeInfo

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymGetTypeFromName%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymGetTypeInfo	Function
Retrieves	type	information	for	the	specified	type	index.	For	larger	queries,
use	the	SymGetTypeInfoEx	function.

BOOL	WINAPI	SymGetTypeInfo(

		__in										HANDLE	hProcess,

		__in										DWORD64	ModBase,

		__in										ULONG	TypeId,

		__in										IMAGEHLP_SYMBOL_TYPE_INFO	GetType,

		__out									PVOID	pInfo

);

Parameters

hProcess
A	handle	to	a	process.	This	handle	must	have	been	previously
passed	to	the	SymInitialize	function.

ModBase
The	base	address	of	the	module.

TypeId
The	type	index.	(A	number	of	functions	return	a	type	index	in	the
TypeIndex	member	of	the	SYMBOL_INFO	structure.)

GetType
The	information	type.	This	parameter	can	be	one	of	more	of	the
values	from	the	IMAGEHLP_SYMBOL_TYPE_INFO	enumeration
type.

pInfo
The	data.	The	format	of	the	data	depends	on	the	value	of	the
GetType	parameter.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

For	more	details	on	the	type	information,	see	the	documentation	for	the
PDB	format.

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

See	Also

DbgHelp	FunctionsIMAGEHLP_SYMBOL_TYPE_INFO
SymGetTypeFromName
SymGetTypeInfoEx

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymGetTypeInfo%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymGetTypeInfoEx	Function
Retrieves	multiple	pieces	of	type	information.

BOOL	WINAPI	SymGetTypeInfoEx(

		__in										HANDLE	hProcess,

		__in										DWORD64	ModBase,

		__in_out						PIMAGEHLP_GET_TYPE_INFO_PARAMS	Params

);

Parameters

hProcess
A	handle	to	a	process.	This	handle	must	have	been	previously
passed	to	the	SymInitialize	function.

ModBase
The	base	address	of	the	module.

Params
A	pointer	to	an	IMAGEHLP_GET_TYPE_INFO_PARAMS	structure
that	specifies	input	and	output	information	for	the	query.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Redistributable

Requires	DbgHelp.dll	6.3	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

See	Also

DbgHelp	FunctionsIMAGEHLP_GET_TYPE_INFO_PARAMS
SymGetTypeFromName

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymGetTypeInfoEx%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymGetUnwindInfo	Function
[This	documentation	is	preliminary	and	is	subject	to	change.]

TBD

BOOL	WINAPI	SymGetUnwindInfo(

		__in										HANDLE	hProcess,

		__in										DWORD64	Address,

		__out_opt					PVOID	Buffer,

		__in_out						PULONG	Size

);

Parameters

hProcess
A	handle	to	a	process.	This	handle	must	have	been	previously
passed	to	the	SymInitialize	function.

Address
TBD

Buffer
TBD

Size
TBD

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this

function.

Requirements

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

See	Also

DbgHelp	Functions

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymGetUnwindInfo%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymInitialize	Function
Initializes	the	symbol	handler	for	a	process.

BOOL	WINAPI	SymInitialize(

		__in										HANDLE	hProcess,

		__in										PCTSTR	UserSearchPath,

		__in										BOOL	fInvadeProcess

);

Parameters

hProcess
A	handle	that	identifies	the	caller.	This	value	should	be	unique	and
nonzero,	but	need	not	be	a	process	handle.	However,	if	you	do	use	a
process	handle,	be	sure	to	use	the	correct	handle.	If	the	application
is	a	debugger,	use	the	process	handle	for	the	process	being
debugged.	Do	not	use	the	handle	returned	by	GetCurrentProcess
when	debugging	another	process,	because	calling	functions	like
SymLoadModuleEx	can	have	unexpected	results.
This	parameter	cannot	be	NULL.

Windows	Me/98/95:		Use	the	process	identifier,	not
the	process	handle.

UserSearchPath
The	path,	or	series	of	paths	separated	by	a	semicolon	(;),	that	is
used	to	search	for	symbol	files.	If	this	parameter	is	NULL,	the	library
attempts	to	form	a	symbol	path	from	the	following	sources:

The	current	working	directory	of	the	application

The	_NT_SYMBOL_PATH	environment	variable

The	_NT_ALTERNATE_SYMBOL_PATH	environment
variable

Note	that	the	search	path	can	also	be	set	using	the
SymSetSearchPath	function.

fInvadeProcess
If	this	value	is	TRUE,	enumerates	the	loaded	modules	for	the
process	and	effectively	calls	the	SymLoadModule64	function	for
each	module.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

The	SymInitialize	function	is	used	to	initialize	the	symbol	handler	for	a
process.	In	the	context	of	the	symbol	handler,	a	process	is	a	convenient
object	to	use	when	collecting	symbol	information.	Usually,	symbol
handlers	are	used	by	debuggers	and	other	tools	that	need	to	load
symbols	for	a	process	being	debugged.

The	handle	passed	to	SymInitialize	must	be	the	same	value	passed	to
all	other	symbol	handler	functions	called	by	the	process.	It	is	the	handle
that	the	functions	use	to	identify	the	caller	and	locate	the	correct	symbol
information.	When	you	have	finished	using	the	symbol	information,	call
the	SymCleanup	function	to	deallocate	all	resources	associated	with	the
process	for	which	symbols	are	loaded.

The	search	for	symbols	files	is	performed	recursively	for	all	paths
specified	in	the	UserSearchPath	parameter.	Therefore,	if	you	specify	the
root	directory	in	a	search,	the	whole	drive	is	searched,	which	can	take
significant	time.	Note	that	the	directory	that	contains	the	executable	file
for	the	process	is	not	automatically	part	of	the	search	path.	To	include
this	directory	in	the	search	path,	call	the	GetModuleFileNameEx
function,	then	add	the	path	returned	to	UserSearchPath.

A	process	that	calls	SymInitialize	should	not	call	it	again	unless	it	calls
SymCleanup	first.	If	the	call	to	SymInitialize	set	fInvadeProcess	to
TRUE	and	you	simply	need	to	reload	the	module	list,	use	the
SymRefreshModuleList	function.
All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,

calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	call
SymInitialize	only	when	your	process	starts	and	SymCleanup	only
when	your	process	ends.	It	is	not	necessary	for	each	thread	in	the
process	to	call	these	functions.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Example	Code

For	an	example,	see	Initializing	the	Symbol	Handler.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymInitializeW	(Unicode)	and
SymInitialize	(ANSI).

See	Also

DbgHelp	FunctionsGetModuleFileNameEx
SymCleanup
SymEnumProcesses
SymLoadModule64
SymRefreshModuleList
SymSetSearchPath

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymInitialize%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

SymLoadModule64	Function
Loads	the	symbol	table.

This	function	supersedes	the	SymLoadModule	function.	For	more
information,	see	Updated	Platform	Support.

DWORD64	WINAPI	SymLoadModule64(

		__in										HANDLE	hProcess,

		__in										HANDLE	hFile,

		__in										PCSTR	ImageName,

		__in										PCSTR	ModuleName,

		__in										DWORD64	BaseOfDll,

		__in										DWORD	SizeOfDll

);

Parameters

hProcess
A	handle	to	the	process.	This	handle	must	have	been	previously
passed	to	the	SymInitialize	function.

hFile
A	handle	to	the	file	for	the	executable	image.	This	argument	is	used
mostly	by	debuggers,	where	the	debugger	passes	the	file	handle
obtained	from	a	debugging	event.	A	value	of	NULL	indicates	that
hFile	is	not	used.

ImageName
The	name	of	the	executable	image.	This	name	can	contain	a	partial
path,	a	full	path,	or	no	path	at	all.	If	the	file	cannot	be	located	by	the
name	provided,	the	symbol	search	path	is	used.

ModuleName
A	shortcut	name	for	the	module.	If	the	pointer	value	is	NULL,	the
library	creates	a	name	using	the	base	name	of	the	symbol	file.

BaseOfDll
The	load	address	of	the	module.	If	the	value	is	zero,	the	library
obtains	the	load	address	from	the	symbol	file.	The	load	address

contained	in	the	symbol	file	is	not	necessarily	the	actual	load
address.	Debuggers	and	other	applications	having	an	actual	load
address	should	use	the	real	load	address	when	calling	this	function.

If	the	image	is	a	.pdb	file,	this	parameter	cannot	be	zero.

SizeOfDll
The	size	of	the	module,	in	bytes.	If	the	value	is	zero,	the	library
obtains	the	size	from	the	symbol	file.	The	size	contained	in	the
symbol	file	is	not	necessarily	the	actual	size.	Debuggers	and	other
applications	having	an	actual	size	should	use	the	real	size	when
calling	this	function.

If	the	image	is	a	.pdb	file,	this	parameter	cannot	be	zero.

Return	Value

If	the	function	succeeds,	the	return	value	is	the	base	address	of	the
loaded	module.

If	the	function	fails,	the	return	value	is	zero.	To	retrieve	extended	error
information,	call	GetLastError.
If	the	module	is	already	loaded,	the	return	value	is	zero	and
GetLastError	returns	ERROR_SUCCESS.

Remarks

The	symbol	handler	creates	an	entry	for	the	module	and	if	the	deferred
symbol	loading	option	is	turned	off,	an	attempt	is	made	to	load	the
symbols.	If	deferred	symbol	loading	is	enabled,	the	module	is	marked	as
deferred	and	the	symbols	are	not	loaded	until	a	reference	is	made	to	a
symbol	in	the	module.

To	unload	the	symbol	table,	use	the	SymUnloadModule64	function.
All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

See	Also

DbgHelp	FunctionsSymInitialize
SymUnloadModule64

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymLoadModule64%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymLoadModuleEx	Function
Loads	the	symbol	table	for	the	specified	module.

DWORD64	WINAPI	SymLoadModuleEx(

		__in										HANDLE	hProcess,

		__in										HANDLE	hFile,

		__in										PCTSTR	ImageName,

		__in										PCTSTR	ModuleName,

		__in										DWORD64	BaseOfDll,

		__in										DWORD	DllSize,

		__in										PMODLOAD_DATA	Data,

		__in										DWORD	Flags

);

Parameters

hProcess
A	handle	to	the	process	that	was	originally	passed	to	the
SymInitialize	function.

hFile
A	handle	to	the	file	for	the	executable	image.	This	argument	is	used
mostly	by	debuggers,	where	the	debugger	passes	the	file	handle
obtained	from	a	debugging	event.	A	value	of	NULL	indicates	that
hFile	is	not	used.

ImageName
The	name	of	the	executable	image.	This	name	can	contain	a	partial
path,	a	full	path,	or	no	path	at	all.	If	the	file	cannot	be	located	by	the
name	provided,	the	symbol	search	path	is	used.

ModuleName
A	shortcut	name	for	the	module.	If	the	pointer	value	is	NULL,	the
library	creates	a	name	using	the	base	name	of	the	symbol	file.

BaseOfDll
The	load	address	of	the	module.	If	the	value	is	zero,	the	library
obtains	the	load	address	from	the	symbol	file.	The	load	address

contained	in	the	symbol	file	is	not	necessarily	the	actual	load
address.	Debuggers	and	other	applications	having	an	actual	load
address	should	use	the	real	load	address	when	calling	this	function.

If	the	image	is	a	.pdb	file,	this	parameter	cannot	be	zero.

DllSize
The	size	of	the	module,	in	bytes.	If	the	value	is	zero,	the	library
obtains	the	size	from	the	symbol	file.	The	size	contained	in	the
symbol	file	is	not	necessarily	the	actual	size.	Debuggers	and	other
applications	having	an	actual	size	should	use	the	real	size	when
calling	this	function.

If	the	image	is	a	.pdb	file,	this	parameter	cannot	be	zero.

Data
A	pointer	to	a	MODLOAD_DATA	structure	that	represents	headers
other	than	the	standard	PE	header.	This	parameter	is	optional	and
can	be	NULL.

Flags
This	parameter	can	be	zero	or	one	or	more	of	the	following	values.	If
this	parameter	is	zero,	the	function	loads	the	modules	and	the
symbols	for	the	module.

Value Meaning

SLMFLAG_NO_SYMBOLS
0x4

Loads	the	module	but	not	the	symbols
for	the	module.

SLMFLAG_VIRTUAL
0x1

Creates	a	virtual	module	named
ModuleName	at	the	address	specified
in	BaseOfDll.	To	add	symbols	to	this
module,	call	the	SymAddSymbol
function.

Return	Value

If	the	function	succeeds,	the	return	value	is	the	base	address	of	the
loaded	module.

If	the	function	fails,	the	return	value	is	zero.	To	retrieve	extended	error

information,	call	GetLastError.
If	the	module	is	already	loaded,	the	return	value	is	zero	and
GetLastError	returns	ERROR_SUCCESS.

Remarks

The	symbol	handler	creates	an	entry	for	the	module	and	if	the	deferred
symbol	loading	option	is	turned	off,	an	attempt	is	made	to	load	the
symbols.	If	deferred	symbol	loading	is	enabled,	the	module	is	marked	as
deferred	and	the	symbols	are	not	loaded	until	a	reference	is	made	to	a
symbol	in	the	module.	Therefore,	you	should	always	call	the
SymGetModuleInfo64	function	after	calling	SymLoadModuleEx.
To	unload	the	symbol	table,	use	the	SymUnloadModule64	function.
All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Example	Code

For	an	example,	see	Loading	a	Symbol	Module.

Requirements

Redistributable Requires	DbgHelp.dll	6.0	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymLoadModuleExW	(Unicode)	and
SymLoadModuleEx	(ANSI).

See	Also

DbgHelp	Functions
MODLOAD_DATA
SymAddSymbol
SymUnloadModule64

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymLoadModuleEx%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymMatchFileName	Function
Compares	a	string	to	a	file	name	and	path.

BOOL	WINAPI	SymMatchFileName(

		__in										PTSTR	FileName,

		__in										PTSTR	Match,

		__out									PTSTR*	FileNameStop,

		__out									PTSTR*	MatchStop

);

Parameters

FileName
The	file	name	to	be	compared	to	the	Match	parameter.

Match
The	string	to	be	compared	to	the	FileName	parameter.

FileNameStop
A	pointer	to	a	string	buffer	that	receives	a	pointer	to	the	location	in
FileName	where	matching	stopped.	For	a	complete	match,	this	value
can	be	one	character	before	FileName.	This	value	can	also	be
NULL.

MatchStop
A	pointer	to	a	string	buffer	that	receives	a	pointer	to	the	location	in
Match	where	matching	stopped.	For	a	complete	match,	this	value
may	be	one	character	before	Match.	This	value	may	be	NULL.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

Because	the	match	string	can	be	a	suffix	of	the	complete	file	name,	this
function	can	be	used	to	match	a	plain	file	name	to	a	fully	qualified	file

name.

Matching	begins	from	the	end	of	both	strings	and	proceeds	backward.
Matching	is	case-insensitive	and	equates	a	backslash	('\')	with	a	forward
slash	('/').

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymMatchFileNameW	(Unicode)
and	SymMatchFileName	(ANSI).

See	Also

DbgHelp	Functions

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymMatchFileName%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymMatchString	Function
Compares	the	specified	string	to	the	specified	regular	expression.

BOOL	WINAPI	SymMatchString(

		__in										PCTSTR	string,

		__in										PCTSTR	expression,

		__in										BOOL	fCase

);

Parameters

string
The	string,	such	as	a	symbol	name,	to	be	compared	to	the
expression	parameter.

expression
The	PDB	regular	expression	to	compare	to	the	string	parameter.

fCase
A	variable	that	indicates	whether	or	not	the	comparison	is	to	be	case
sensitive.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Redistributable Requires	DbgHelp.dll	6.2	or	later.

Header Declared	in	DbgHelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymMatchStringW	(Unicode)	and
SymMatchString	(ANSI).

See	Also

DbgHelp	Functions

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymMatchString%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymNext	Function
Retrieves	symbol	information	for	the	next	symbol.

BOOL	WINAPI	SymNext(

		__in										HANDLE	hProcess,

		__in_out						PSYMBOL_INFO	Symbol

);

Parameters

hProcess
A	handle	to	a	process.	This	handle	must	have	been	previously
passed	to	the	SymInitialize	function.

Symbol
A	pointer	to	a	SYMBOL_INFO	structure	that	provides	information
about	the	current	symbol.	Upon	return,	the	structure	contains
information	about	the	next	symbol.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

This	function	requires	that	the	SYMBOL_INFO	structure	have	valid	data
for	the	current	symbol.	The	next	symbol	is	the	symbol	with	the	virtual
address	that	is	next	in	the	sequence.

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Redistributable Requires	DbgHelp.dll	6.2	or	later.

Header Declared	in	DbgHelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymNextW	(Unicode)	and	SymNext
(ANSI).

See	Also

DbgHelp	FunctionsSYMBOL_INFO
SymPrev

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymNext%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymPrev	Function
Retrieves	symbol	information	for	the	previous	symbol.

BOOL	WINAPI	SymPrev(

		__in										HANDLE	hProcess,

		__in_out						PSYMBOL_INFO	Symbol

);

Parameters

hProcess
A	handle	to	a	process.	This	handle	must	have	been	previously
passed	to	the	SymInitialize	function.

Symbol
A	pointer	to	a	SYMBOL_INFO	structure	that	provides	information
about	the	current	symbol.	Upon	return,	the	structure	contains
information	about	the	previous	symbol.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

This	function	requires	that	the	SYMBOL_INFO	structure	have	valid	data
for	the	current	symbol.	The	previous	symbol	is	the	symbol	with	a	virtual
address	that	immediately	precedes	this	symbol.

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Redistributable Requires	DbgHelp.dll	6.2	or	later.

Header Declared	in	DbgHelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymPrevW	(Unicode)	and	SymPrev
(ANSI).

See	Also

DbgHelp	FunctionsSYMBOL_INFO
SymNext

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymPrev%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymRefreshModuleList	Function
Refreshes	the	module	list	for	the	process.

BOOL	WINAPI	SymRefreshModuleList(

		__in										HANDLE	hProcess

);

Parameters

hProcess
A	handle	to	a	process.	This	handle	must	have	been	previously
passed	to	the	SymInitialize	function.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

This	function	enumerates	the	loaded	modules	for	the	process	and
effectively	calls	the	SymLoadModule64	function	for	each	module.	This
same	process	is	performed	by	SymInitialize	if	fInvadeProcess	is	TRUE.
All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Redistributable Requires	DbgHelp.dll	6.5	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

See	Also

DbgHelp	Functions

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymRefreshModuleList%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymRegisterCallback64	Function
Registers	a	callback	function	for	use	by	the	symbol	handler.

This	function	supersedes	the	SymRegisterCallback	function.	For	more
information,	see	Updated	Platform	Support.

BOOL	WINAPI	SymRegisterCallback64(

		__in										HANDLE	hProcess,

		__in										PSYMBOL_REGISTERED_CALLBACK64	CallbackFunction

		__in										ULONG64	UserContext

);

Parameters

hProcess
A	handle	to	the	process	that	was	originally	passed	to	the
SymInitialize	function.

CallbackFunction
A	SymRegisterCallbackProc64	callback	function.

UserContext
A	user-defined	value	or	NULL.	This	value	is	simply	passed	to	the
callback	function.	Normally,	this	parameter	is	used	by	an	application
to	pass	a	pointer	to	a	data	structure	that	lets	the	callback	function
establish	some	context.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

The	SymRegisterCallback64	function	lets	an	application	register	a
callback	function	for	use	by	the	symbol	handler.	The	symbol	handler	calls
the	registered	callback	function	when	there	is	status	or	progress
information	for	the	application.

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymRegisterCallbackW64
(Unicode)	and	SymRegisterCallback64	(ANSI).

See	Also

DbgHelp	FunctionsSymRegisterCallbackProc64
SymInitialize

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymRegisterCallback64%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymRegisterCallbackProc64	Callback	Function
An	application-defined	callback	function	used	with	the
SymRegisterCallback64	function.	It	is	called	by	the	symbol	handler.
The	PSYMBOL_REGISTERED_CALLBACK64	type	defines	a	pointer	to
this	callback	function.	SymRegisterCallbackProc64	is	a	placeholder	for
the	application-defined	function	name.

BOOL	CALLBACK	SymRegisterCallbackProc64(

		[in]																	HANDLE	hProcess,

		[in]																	ULONG	ActionCode,

		[in]																	ULONG64	CallbackData,

		[in]																	ULONG64	UserContext

);

Parameters

hProcess
A	handle	to	the	process	that	was	originally	passed	to	the
SymInitialize	function.

ActionCode
The	callback	code.	This	parameter	can	be	one	of	the	following
values.

Value Meaning

CBA_DEBUG_INFO
0x10000000

Display	verbose	information.

The	CallbackData
string.

CBA_DEFERRED_SYMBOL_LOAD_CANCEL
0x00000007

Deferred	symbol	loading	has	started.	To
cancel	the	symbol	load,	return	TRUE.

The	CallbackData
ignored.

CBA_DEFERRED_SYMBOL_LOAD_COMPLETE Deferred	symbol	load	has	completed.

0x00000002 The	CallbackData
IMAGEHLP_DEFERRED_SYMBOL_LOAD64
structure.

CBA_DEFERRED_SYMBOL_LOAD_FAILURE
0x00000003

Deferred	symbol	load	has	failed.

The	CallbackData
IMAGEHLP_DEFERRED_SYMBOL_LOAD64
structure.	The	symbol	handler	will	attempt	to
load	the	symbols	again	if	the	callback	function
sets	the	FileName

CBA_DEFERRED_SYMBOL_LOAD_PARTIAL
0x00000020

Deferred	symbol	load	has	partially	completed.
The	symbol	loader	is	unable	to	read	the	image
header	from	either	the	image	file	or	the
specified	module.

The	CallbackData
IMAGEHLP_DEFERRED_SYMBOL_LOAD64
structure.	The	symbol	handler	will	attempt	to
load	the	symbols	again	if	the	callback	function
sets	the	FileName

DbgHelp	5.1:		
not	supported.

CBA_DEFERRED_SYMBOL_LOAD_START
0x00000001

Deferred	symbol	load	has	started.

The	CallbackData
IMAGEHLP_DEFERRED_SYMBOL_LOAD64
structure.

CBA_DUPLICATE_SYMBOL
0x00000005

Duplicate	symbols	were	found.	This	reason	is
used	only	in	COFF	or	CodeView	format.

The	CallbackData
IMAGEHLP_DUPLICATE_SYMBOL64
structure.	To	specify	which	symbol	to	use,	set
the	SelectedSymbol
structure.

CBA_EVENT
0x00000010

Display	verbose	information.	If	you	do	not
handle	this	event,	the	information	is	resent
through	the	CBA_DEBUG_INFO	event.

The	CallbackData
IMAGEHLP_CBA_EVENT

CBA_READ_MEMORY
0x00000006

The	loaded	image	has	been	read.

The	CallbackData
IMAGEHLP_CBA_READ_MEMORY
structure.	The	callback	function	should	read
the	number	of	bytes	specified	by	the	
member	into	the	buffer	specified	by	the	
member,	and	update	the	
accordingly.

CBA_SET_OPTIONS
0x00000008

Symbol	options	have	been	updated.	To
retrieve	the	current	options,	call	the
SymGetOptions

The	CallbackData
ignored.

CBA_SYMBOLS_UNLOADED
0x00000004

Symbols	have	been	unloaded.

The	CallbackData
ignored.

CallbackData
Data	for	the	operation.	The	format	of	this	data	depends	on	the	value
of	the	ActionCode	parameter.

If	the	callback	function	was	registered	with
SymRegisterCallbackW64,	the	data	is	a	Unicode	string	or	data
structure.	Otherwise,	the	data	uses	ANSI	format.

UserContext
User-defined	value	specified	in	SymRegisterCallback64,	or	NULL.
Typically,	this	parameter	is	used	by	an	application	to	pass	a	pointer
to	a	data	structure	that	lets	the	callback	function	establish	some

context.

Return	Value

To	indicate	success	handling	the	code,	return	TRUE.

To	indicate	failure	handling	the	code,	return	FALSE.	If	your	code	does	not
handle	a	particular	code,	you	should	also	return	FALSE.	(Returning
TRUE	in	this	case	may	have	unintended	consequences.)

Remarks

The	calling	application	gets	called	through	the	registered	callback
function	as	a	result	of	another	call	to	one	of	the	symbol	handler	functions.
The	calling	application	must	be	prepared	for	the	possible	side	effects	that
this	can	cause.	If	the	application	has	only	one	callback	function	that	is
being	used	by	multiple	threads,	then	care	may	be	necessary	to
synchronize	some	types	of	data	access	while	in	the	context	of	the
callback	function.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

DbgHelp	Functions
IMAGEHLP_CBA_EVENT
IMAGEHLP_CBA_READ_MEMORY
IMAGEHLP_DEFERRED_SYMBOL_LOAD64
IMAGEHLP_DUPLICATE_SYMBOL64
SymRegisterCallback64

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymRegisterCallbackProc64%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

SymRegisterFunctionEntryCallback64	Function
Registers	a	callback	function	for	use	by	the	stack	walking	procedure	on
Alpha	computers.

This	function	supersedes	the	SymRegisterFunctionEntryCallback
function.	For	more	information,	see	Updated	Platform	Support.

BOOL	WINAPI	SymRegisterFunctionEntryCallback64(

		__in										HANDLE	hProcess,

		__in										PSYMBOL_FUNCENTRY_CALLBACK64	CallbackFunction

		__in										ULONG64	UserContext

);

Parameters

hProcess
A	handle	to	the	process	that	was	originally	passed	to	the
StackWalk64	function.

CallbackFunction
A	SymRegisterFunctionEntryCallbackProc64	callback	function.

UserContext
A	user-defined	value	or	NULL.	This	value	is	simply	passed	to	the
callback	function.	Normally,	this	parameter	is	used	by	an	application
to	pass	a	pointer	to	a	data	structure	that	lets	the	callback	function
establish	some	context.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

The	SymRegisterFunctionEntryCallback64	function	lets	an	application
register	a	callback	function	for	use	by	the	stack	walking	procedure.	The
stack	walking	procedure	calls	the	registered	callback	function	when	it	is

unable	to	locate	a	function	table	entry	for	an	address.	In	most	cases,	the
stack	walking	procedure	locates	the	function	table	entries	in	the	function
table	of	the	image	containing	the	address.	However,	in	situations	where
the	function	table	entries	are	not	in	the	image,	this	callback	allows	the
debugger	to	provide	the	function	table	entry	from	another	source.	For
example,	run-time	generated	code	on	Alpha	computers	can	define
dynamic	function	tables	to	support	exception	handling	and	stack	tracing.

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

See	Also

DbgHelp	FunctionsSymRegisterFunctionEntryCallbackProc64
StackWalk64

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymRegisterFunctionEntryCallback64%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymRegisterFunctionEntryCallbackProc64
Callback	Function

An	application-defined	callback	function	used	with	the
SymRegisterFunctionEntryCallback64	function.	It	is	called	by	the	stack
walking	procedure.

The	PSYMBOL_FUNCENTRY_CALLBACK64	type	defines	a	pointer	to
this	callback	function.	SymRegisterFunctionEntryCallbackProc64	is	a
placeholder	for	the	application-defined	function	name.

PVOID	CALLBACK	SymRegisterFunctionEntryCallbackProc64(

		[in]																	HANDLE	hProcess,

		[in]																	ULONG64	AddrBase,

		[in]																	ULONG64	UserContext

);

Parameters

hProcess
A	handle	to	the	process	that	was	originally	passed	to	the
StackWalk64	function.

AddrBase
The	address	of	an	instruction	for	which	the	callback	function	should
return	a	function	table	entry.

UserContext
The	user-defined	value	specified	in
SymRegisterFunctionEntryCallback64,	or	NULL.	Typically,	this
parameter	is	used	by	an	application	to	pass	a	pointer	to	a	data
structure	that	lets	the	callback	function	establish	some	context.

Return	Value

Return	the	value	NULL	if	no	function	table	entry	is	available.

On	success,	return	a	pointer	to	an
IMAGE_RUNTIME_FUNCTION_ENTRY	structure.	Refer	to	the	header
file	WinNT.h	for	the	definition	of	this	function.

Remarks

The	structure	must	be	returned	in	exactly	the	form	it	exists	in	the	process
being	debugged.	Some	members	may	be	pointers	to	other	locations	in
the	process	address	space.	The	ReadProcessMemoryProc64	callback
function	may	be	called	to	retrieve	the	information	at	these	locations.

The	calling	application	gets	called	through	the	registered	callback
function	as	a	result	of	a	call	to	the	StackWalk64	function.	The	calling
application	must	be	prepared	for	the	possible	side	effects	that	this	can
cause.	If	the	application	has	only	one	callback	function	that	is	being	used
by	multiple	threads,	then	it	may	be	necessary	to	synchronize	some	types
of	data	access	while	in	the	context	of	the	callback	function.

This	function	is	similar	to	the	FunctionTableAccessProc64	callback
function.	The	difference	is	that	FunctionTableAccessProc64	returns	an
IMAGE_FUNCTION_ENTRY	structure,	while	this	function	returns	an
IMAGE_RUNTIME_FUNCTION_ENTRY	structure.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

DbgHelp	FunctionsSymRegisterFunctionEntryCallback64

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymRegisterFunctionEntryCallbackProc64%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymSearch	Function
Searches	for	PDB	symbols	that	meet	the	specified	criteria.

BOOL	WINAPI	SymSearch(

		__in										HANDLE	hProcess,

		__in										ULONG64	BaseOfDll,

		__in_opt						DWORD	Index,

		__in_opt						DWORD	SymTag,

		__in_opt						PCTSTR	Mask,

		__in_opt						DWORD64	Address,

		__in										PSYM_ENUMERATESYMBOLS_CALLBACK	EnumSymbolsCallback

		__in										PVOID	UserContext,

		__in										DWORD	Options

);

Parameters

hProcess
A	handle	to	a	process.	This	handle	must	have	been	previously
passed	to	the	SymInitialize	function.

BaseOfDll
The	base	address	of	the	module.	If	this	value	is	zero	and	Mask
contains	an	exclamation	point	(!),	the	function	looks	across	modules.
If	this	value	is	zero	and	Mask	does	not	contain	an	exclamation	point,
the	function	uses	the	scope	established	by	the	SymSetContext
function.

Index
A	unique	value	for	the	symbol.

SymTag
The	PDB	classification.	These	values	are	defined	in	Dbghelp.h	in	the
SymTagEnum	enumeration	type.	For	descriptions,	see	the	PDB
documentation.

Mask
A	regular	expression	that	indicates	the	names	of	the	symbols	to	be

enumerated.	To	specify	a	module	name,	use	the	!mod	syntax.

Address
The	address	of	the	symbol.

EnumSymbolsCallback
A	SymEnumSymbolsProc	callback	function	that	receives	the
symbol	information.

UserContext
A	user-defined	value	that	is	passed	to	the	callback	function,	or	NULL.
This	parameter	is	typically	used	by	an	application	to	pass	a	pointer	to
a	data	structure	that	provides	context	for	the	callback	function.

Options
The	options	that	control	the	behavior	of	this	function.

Value Meaning

SYMSEARCH_ALLITEMS
0x08

TBD

SYMSEARCH_GLOBALSONLY
0x04

Search	only	for	global	symbols.

SYMSEARCH_MASKOBJS
0x01

For	internal	use	only.

SYMSEARCH_RECURSE
0x02

Recurse	from	the	top	to	find	all
symbols.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in

unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Redistributable Requires	DbgHelp.dll	6.2	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymSearchW	(Unicode)	and
SymSearch	(ANSI).

See	Also

DbgHelp	Functions
SymEnumSymbolsProc

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymSearch%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymSetContext	Function
Sets	context	information	used	by	the	SymEnumSymbols	function.	This
function	only	works	with	PDB	symbols.

BOOL	WINAPI	SymSetContext(

		__in										HANDLE	hProcess,

		__in										PIMAGEHLP_STACK_FRAME	StackFrame,

		__in										PIMAGEHLP_CONTEXT	Context

);

Parameters

hProcess
A	handle	to	a	process.	This	handle	must	have	been	previously
passed	to	the	SymInitialize	function.

StackFrame
A	pointer	to	an	IMAGEHLP_STACK_FRAME	structure	that	contains
frame	information.

Context
This	parameter	is	ignored.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

If	you	call	SymSetContext	to	set	the	context	to	its	current	value,	the
function	fails	but	GetLastError	returns	ERROR_SUCCESS.
All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

See	Also

DbgHelp	FunctionsIMAGEHLP_STACK_FRAME
SymEnumSymbols

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymSetContext%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymSetHomeDirectory	Function
Sets	the	home	directory	used	by	Dbghelp.

PTCHAR	WINAPI	SymSetHomeDirectory(

		__in										HANDLE	hProcess,

		__in										PCTSTR	dir

);

Parameters

hProcess
A	handle	to	a	process.	This	handle	must	have	been	previously
passed	to	the	SymInitialize	function.

dir
The	home	directory.	This	directory	must	be	writable,	otherwise	the
home	directory	is	the	common	application	directory	specified	with
CSIDL_COMMON_APPDATA.	If	this	parameter	is	NULL,	the	function
uses	the	default	directory.

Return	Value

If	the	function	succeeds,	the	return	value	is	a	pointer	to	the	dir	parameter.

If	the	function	fails,	the	return	value	is	NULL.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

The	default	home	directory	is	the	directory	in	which	Dbghelp.dll	resides.
Dbghelp	uses	this	directory	as	a	basis	for	other	directories,	such	as	the
default	downstream	store	directory	(the	sym	subdirectory	of	the	home
directory).

The	home	directory	used	for	the	default	symbol	store	and	the	source
server	cache	location	is	stored	in	the	DBGHELP_HOMEDIR	environment
variable.

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in

unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Requirements

Redistributable Requires	DbgHelp.dll	6.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymSetHomeDirectoryW	(Unicode)
and	SymSetHomeDirectory	(ANSI).

See	Also

DbgHelp	FunctionsSymGetHomeDirectory

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymSetHomeDirectory%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymSetOptions	Function
Sets	the	options	mask.

DWORD	WINAPI	SymSetOptions(

		__in										DWORD	SymOptions

);

Parameters

SymOptions
The	symbol	options.	Zero	is	a	valid	value	and	indicates	that	all
options	are	turned	off.	The	options	values	are	combined	using	the
OR	operator	to	form	a	valid	options	value.	The	following	are	valid
values.

Value Meaning

SYMOPT_ALLOW_ABSOLUTE_SYMBOLS
0x00000800

Enables	the	use	of	symbols
that	are	stored	with	absolute
addresses.	Most	symbols	are
stored	as	RVAs	from	the	base
of	the	module.	DbgHelp
translates	them	to	absolute
addresses.	There	are	symbols
that	are	stored	as	an	absolute
address.	These	have	very
specialized	purposes	and	are
typically	not	used.

DbgHelp	5.1
and
earlier:		
value	is	not
supported.

SYMOPT_ALLOW_ZERO_ADDRESS
0x01000000

Enables	the	use	of	symbols
that	do	not	have	an	address.
By	default,	DbgHelp	filters	out

symbols	that	do	not	have	an
address.

SYMOPT_AUTO_PUBLICS
0x00010000

Do	not	search	the	public
symbols	when	searching	for
symbols	by	address,	or	when
enumerating	symbols,	unless
they	were	not	found	in	the
global	symbols	or	within	the
current	scope.	This	option	has
no	effect	with
SYMOPT_PUBLICS_ONLY.

DbgHelp	5.1
and
earlier:		
value	is	not
supported.

SYMOPT_CASE_INSENSITIVE
0x00000001

All	symbol	searches	are
insensitive	to	case.

SYMOPT_DEBUG
0x80000000

Pass	debug	output	through
OutputDebugString
SymRegisterCallbackProc64
callback	function.

SYMOPT_DEFERRED_LOADS
0x00000004

Symbols	are	not	loaded	until	a
reference	is	made	requiring
the	symbols	be	loaded.	This	is
the	fastest,	most	efficient	way
to	use	the	symbol	handler.

SYMOPT_DISABLE_SYMSRV_AUTODETECT
0x02000000

TBD

SYMOPT_EXACT_SYMBOLS
0x00000400

Do	not	load	an	unmatched
.pdb	file.	Do	not	load	export
symbols	if	all	else	fails.

SYMOPT_FAIL_CRITICAL_ERRORS
0x00000200

Do	not	display	system	dialog
boxes	when	there	is	a	media
failure	such	as	no	media	in	a
drive.	Instead,	the	failure
happens	silently.

SYMOPT_FAVOR_COMPRESSED
0x00800000

If	there	is	both	an
uncompressed	and	a
compressed	file	available,
favor	the	compressed	file.
This	option	is	good	for	slow
connections.

SYMOPT_FLAT_DIRECTORY
0x00400000

Symbols	are	stored	in	the	root
directory	of	the	default
downstream	store.

DbgHelp	6.1
and
earlier:		
value	is	not
supported.

SYMOPT_IGNORE_CVREC
0x00000080

Ignore	path	information	in	the
CodeView	record	of	the	image
header	when	loading	a	.pdb
file.

SYMOPT_IGNORE_IMAGEDIR
0x00200000

Ignore	the	image	directory.

DbgHelp	6.1
and
earlier:		
value	is	not
supported.

SYMOPT_IGNORE_NT_SYMPATH
0x00001000

Do	not	use	the	path	specified
by	_NT_SYMBOL_PATH	if	the

user	calls
SymSetSearchPath
valid	path.

DbgHelp
5.1:		This
value	is	not
supported.

SYMOPT_INCLUDE_32BIT_MODULES
0x00002000

When	debugging	on	64-bit
Windows,	include	any	32-bit
modules.

SYMOPT_LOAD_ANYTHING
0x00000040

Disable	checks	to	ensure	a	file
(.exe,	.dbg.,	or	.pdb)	is	the
correct	file.	Instead,	load	the
first	file	located.

SYMOPT_LOAD_LINES
0x00000010

Loads	line	number
information.

SYMOPT_NO_CPP
0x00000008

All	C++	decorated	symbols
containing	the	symbol
separator	"::"	are	replaced	by
"__".	This	option	exists	for
debuggers	that	cannot	handle
parsing	real	C++	symbol
names.

SYMOPT_NO_IMAGE_SEARCH
0x00020000

Do	not	search	the	image	for
the	symbol	path	when	loading
the	symbols	for	a	module	if
the	module	header	cannot	be
read.

DbgHelp
5.1:		This
value	is	not
supported.

SYMOPT_NO_PROMPTS
0x00080000

Prevents	prompting	for
validation	from	the	symbol
server.

SYMOPT_NO_PUBLICS
0x00008000

Do	not	search	the	publics
table	for	symbols.	This	option
should	have	little	effect
because	there	are	copies	of
the	public	symbols	in	the
globals	table.

DbgHelp
5.1:		This
value	is	not
supported.

SYMOPT_NO_UNQUALIFIED_LOADS
0x00000100

Prevents	symbols	from	being
loaded	when	the	caller
examines	symbols	across
multiple	modules.	Examine
only	the	module	whose
symbols	have	already	been
loaded.

SYMOPT_OVERWRITE
0x00100000

Overwrite	the	downlevel	store
from	the	symbol	store.

DbgHelp	6.1
and
earlier:		
value	is	not
supported.

SYMOPT_PUBLICS_ONLY
0x00004000

Do	not	use	private	symbols.
The	version	of	DbgHelp	that
shipped	with	Windows	2000
and	earlier	supported	only
public	symbols;	this	option

provides	compatibility	with	this
limitation.

DbgHelp
5.1:		This
value	is	not
supported.

SYMOPT_SECURE
0x00040000

DbgHelp	will	not	load	any
symbol	server	other	than
SymSrv.	SymSrv	will	not	use
the	downstream	store
specified	in
_NT_SYMBOL_PATH.	After
this	flag	has	been	set,	it
cannot	be	cleared.

DbgHelp	6.0
and
6.1:		This
flag	can	be
cleared.

DbgHelp
5.1:		This
value	is	not
supported.

SYMOPT_UNDNAME
0x00000002

All	symbols	are	presented	in
undecorated	form.

This	option	has	no	effect	on
global	or	local	symbols
because	they	are	stored
undecorated.	This	option
applies	only	to	public	symbols.

Return	Value

The	function	returns	the	current	options	mask.

Remarks

The	options	value	can	be	changed	any	number	of	times	while	the	library
is	in	use	by	an	application.	The	option	change	affects	all	future	calls	to
the	symbol	handler.

To	get	the	current	options	mask,	call	the	SymGetOptions	function.
All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Example	Code

For	an	example,	see	Initializing	the	Symbol	Handler.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

See	Also

DbgHelp	Functions
SymGetOptions

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymSetOptions%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymSetParentWindow	Function
Sets	the	window	that	the	caller	will	use	to	display	a	user	interface.

BOOL	WINAPI	SymSetParentWindow(

		__in										HWND	hwnd

);

Parameters

hwnd
A	handle	to	the	window.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Redistributable Requires	DbgHelp.dll	6.0	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

See	Also

DbgHelp	Functions

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymSetParentWindow%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymSetScopeFromAddr	Function
[This	documentation	is	preliminary	and	is	subject	to	change.]

TBD

BOOL	WINAPI	SymSetScopeFromAddr(

		__in										HANDLE	hProcess,

		__in										ULONG64	Address

);

Parameters

hProcess
A	handle	to	a	process.	This	handle	must	have	been	previously
passed	to	the	SymInitialize	function.

Address
TBD

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

See	Also

SymSetScopeFromIndex
Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymSetScopeFromAddr%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymSetScopeFromIndex	Function
[This	documentation	is	preliminary	and	is	subject	to	change.]

TBD

BOOL	WINAPI	SymSetScopeFromIndex(

		__in										HANDLE	hProcess,

		__in										ULONG64	BaseOfDll,

		__in										DWORD	Index

);

Parameters

hProcess
A	handle	to	a	process.	This	handle	must	have	been	previously
passed	to	the	SymInitialize	function.

BaseOfDll
The	base	address	of	the	module.

Index
TBD

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

See	Also

SymSetScopeFromAddr
Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymSetScopeFromIndex%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymSetSearchPath	Function
Sets	the	search	path	for	the	specified	process.

BOOL	WINAPI	SymSetSearchPath(

		__in										HANDLE	hProcess,

		__in										PCTSTR	SearchPath

);

Parameters

hProcess
A	handle	to	the	process	that	was	originally	passed	to	the
SymInitialize	function.

SearchPath
The	symbol	search	path.	The	string	can	contain	multiple	paths
separated	by	semicolons.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

The	symbol	search	path	can	be	changed	any	number	of	times	while	the
library	is	in	use	by	an	application.	The	change	affects	all	future	calls	to
the	symbol	handler.

To	get	the	current	search	path,	call	the	SymGetSearchPath	function.
All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymSetSearchPathW	(Unicode)	and
SymSetSearchPath	(ANSI).

See	Also

DbgHelp	FunctionsSymGetSearchPath
SymInitialize

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymSetSearchPath%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymSrvDeltaName	Function
Generates	the	name	for	a	file	that	describes	the	relationship	between	two
different	versions	of	the	same	symbol	or	image	file.	Using	this	feature
prevents	applications	from	having	to	regenerate	such	information	every
time	they	analyze	two	files.

PCTSTR	WINAPI	SymSrvDeltaName(

		__in										HANDLE	hProcess,

		__in										PCTSTR	SymPath,

		__in										PCTSTR	Type,

		__in										PCTSTR	File1,

		__in										PCTSTR	File2

);

Parameters

hProcess
A	handle	to	a	process.	This	handle	must	have	been	previously
passed	to	the	SymInitialize	function.

SymPath
The	symbol	path.	The	function	uses	only	the	symbol	stores
described	in	standard	syntax	for	symbol	stores.	All	other	paths	are
ignored.	If	this	parameter	is	NULL,	the	function	uses	the	symbol	path
set	using	the	SymInitialize	or	SymSetSearchPath	function.

Type
The	extension	for	the	generated	file	name.

File1
The	path	of	the	first	version	of	the	symbol	or	image	file.

File2
The	path	of	the	second	version	of	the	symbol	or	image	file.

Return	Value

If	the	function	succeeds,	the	return	value	is	the	resulting	file	name.

If	the	function	fails,	the	return	value	is	NULL.	To	retrieve	extended	error

information,	call	GetLastError.

Remarks

This	function	opens	the	two	specified	files,	reads	the	indexing	information
from	the	header,	and	passes	this	information	to	the	symbol	server	so	it
can	create	the	file	name.	If	you	specify	the	Type	parameter	as	"xml",	the
name	is	the	index	of	File1,	followed	by	a	dash,	followed	by	the	index	of
File2,	followed	by	an	.xml	extension.	For	example:

3F3D5C755000-3F3D647621000.xml

This	function	returns	a	pointer	to	a	buffer	that	may	be	reused	by	another
function.	Therefore,	be	sure	to	copy	the	data	returned	to	another	buffer
immediately.

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Requirements

Redistributable Requires	DbgHelp.dll	6.3	or	later.

Header Declared	in	DbgHelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymSrvDeltaNameW	(Unicode)	and
SymSrvDeltaName	(ANSI).

See	Also

DbgHelp	Functions

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymSrvDeltaName%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymSrvGetFileIndexes	Function
Retrieves	the	indexes	for	the	specified	.pdb,	.dbg,	or	image	file	that	would
be	used	to	store	the	file.	The	combination	of	these	values	uniquely
identifies	the	file	in	the	symbol	server.	They	can	be	used	when	calling	the
SymFindFileInPath	function	to	search	for	a	file	in	a	symbol	store.

BOOL	WINAPI	SymSrvGetFileIndexes(

		__in										PCTSTR	File,

		__out									GUID*	Id,

		__out									DWORD*	Val1,

		__out_opt					DWORD*	Val2,

		__in										DWORD	Flags

);

Parameters

File
The	name	of	the	file.

Id
The	first	of	three	identifying	parameters.

Val1
The	second	of	three	identifying	parameters.

Val2
The	third	of	three	identifying	parameters.

Flags
This	parameter	is	reserved	for	future	use.

Return	Value

If	the	function	succeeds,	the	return	value	is	nonzero.

If	the	function	fails,	the	return	value	is	zero.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Requirements

Redistributable Requires	DbgHelp.dll	6.3	or	later.

Header Declared	in	DbgHelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymSrvGetFileIndexesW	(Unicode)
and	SymSrvGetFileIndexes	(ANSI).

See	Also

DbgHelp	Functions

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymSrvGetFileIndexes%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymSrvGetFileIndexInfo	Function
Retrieves	the	index	information	for	the	specified	.pdb,	.dbg,	or	image	file.

BOOL	WINAPI	SymSrvGetFileIndexInfo(

		__in										PCTSTR	File,

		__out									PSYMSRV_INDEX_INFO	Info,

		__in										DWORD	Flags

);

Parameters

File
The	name	of	the	file.

Info
A	SYMSRV_INDEX_INFO	structure	that	receives	the	index
information.

Flags
This	parameter	is	reserved	for	future	use.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Requirements

Redistributable Requires	DbgHelp.dll	6.6	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymSrvGetFileIndexInfoW
(Unicode)	and	SymSrvGetFileIndexInfo	(ANSI).

See	Also

DbgHelp	FunctionsSYMSRV_INDEX_INFO

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymSrvGetFileIndexInfo%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymSrvGetFileIndexString	Function
Retrieves	the	index	string	for	the	specified	.pdb,	.dbg,	or	image	file.

BOOL	WINAPI	SymSrvGetFileIndexString(

		__in										HANDLE	hProcess,

		__in										PCTSTR	SrvPath,

		__in										PCTSTR	File,

		__out									PTSTR	Index,

		__in										size_t	Size,

																DWORD	Flags

);

Parameters

hProcess
A	handle	to	a	process.	This	handle	must	have	been	previously
passed	to	the	SymInitialize	function.

SrvPath
The	path	to	the	symbol	server.

File
The	name	of	the	file.

Index
A	pointer	to	a	buffer	that	receives	the	index	string.

Size
The	size	of	the	Index	buffer,	in	characters.

Flags
This	parameter	is	reserved	for	future	use.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Requirements

Redistributable Requires	DbgHelp.dll	6.3	or	later.

Header Declared	in	DbgHelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymSrvGetFileIndexStringW
(Unicode)	and	SymSrvGetFileIndexString	(ANSI).

See	Also

DbgHelp	Functions

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymSrvGetFileIndexString%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymSrvGetSupplement	Function
Retrives	the	specified	file	from	the	supplement	for	a	symbol	store.

PCTSTR	WINAPI	SymSrvGetSupplement(

		__in										HANDLE	hProcess,

		__in										PCTSTR	SymPath,

		__in										PCTSTR	Node,

		__in										PCTSTR	File

);

Parameters

hProcess
A	handle	to	a	process.	This	handle	must	have	been	previously
passed	to	the	SymInitialize	function.

SymPath
The	symbol	path.	The	function	uses	only	the	symbol	stores
described	in	standard	syntax	for	symbol	stores.	All	other	paths	are
ignored.	If	this	parameter	is	NULL,	the	function	uses	the	symbol	path
set	using	the	SymInitialize	or	SymSetSearchPath	function.

Node
The	symbol	file	associated	with	the	supplemental	file.

File
The	name	of	the	file.

Return	Value

If	the	function	succeeds,	the	return	value	is	the	fully-qualified	path	for	the
supplemental	file.

If	the	function	fails,	the	return	value	is	NULL.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

For	more	information	on	supplemental	files,	see
SymSrvStoreSupplement.

This	function	returns	a	pointer	to	a	buffer	that	may	be	reused	by	another
function.	Therefore,	be	sure	to	copy	the	data	returned	to	another	buffer
immediately.

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Requirements

Redistributable Requires	DbgHelp.dll	6.3	or	later.

Header Declared	in	DbgHelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymSrvGetSupplementW	(Unicode)
and	SymSrvGetSupplement	(ANSI).

See	Also

DbgHelp	FunctionsSymSrvStoreSupplement

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymSrvGetSupplement%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymSrvIsStore	Function
Determines	whether	the	specified	path	is	a	symbol	store.

BOOL	WINAPI	SymSrvIsStore(

		__in_opt						HANDLE	hProcess,

		__in										PCTSTR	path

);

Parameters

hProcess
A	handle	to	a	process.	This	handle	must	have	been	previously
passed	to	the	SymInitialize	function.

path
The	path.

Return	Value

If	the	path	specifies	a	symbol	store,	the	function	returns	TRUE.
Otherwise,	it	returns	FALSE.

Remarks

This	function	is	correct	except	in	the	rare	circumstance	that	the	path	is	a
downstream	symbol	store	that	has	never	been	accessed	using	a	version
of	SymSrv.dll	that	is	at	least	as	recent	as	the	one	being	called.

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Requirements

Redistributable Requires	DbgHelp.dll	6.3	or	later.

Header Declared	in	DbgHelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymSrvIsStoreW	(Unicode)	and
SymSrvIsStore	(ANSI).

See	Also

DbgHelp	Functions

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymSrvIsStore%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymSrvStoreFile	Function
Stores	a	file	in	the	specified	symbol	store.

PCTSTR	WINAPI	SymSrvStoreFile(

		__in										HANDLE	hProcess,

		__in										PCTSTR	SrvPath,

		__in										PCTSTR	File,

		__in										DWORD	Flags

);

Parameters

hProcess
A	handle	to	a	process.	This	handle	must	have	been	previously
passed	to	the	SymInitialize	function.

SrvPath
The	symbol	store.

File
The	name	of	the	file.

Flags
The	flags	that	control	the	function.	This	parameter	can	be	one	of	the
following	values.

Value Meaning

SYMSTOREOPT_COMPRESS
0x01

Compress	the	file.

SYMSTOREOPT_OVERWRITE
0x02

Overwrite	the	file	if	it	exists.

SYMSTOREOPT_PASS_IF_EXISTS
0x40

Do	not	report	an	error	if	the
file	already	exists	in	the
symbol	store.

SYMSTOREOPT_POINTER Store	in	File.ptr.

0x08

SYMSTOREOPT_RETURNINDEX
0x04

Return	the	index	only.

Return	Value

If	the	function	succeeds,	the	return	value	is	a	pointer	to	a	null-terminated
string	that	specifies	the	full-qualified	path	to	the	stored	file.

If	the	function	fails,	the	return	value	is	NULL.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

This	function	returns	a	pointer	to	a	buffer	that	may	be	reused	by	another
function.	Therefore,	be	sure	to	copy	the	data	returned	to	another	buffer
immediately.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Requirements

Redistributable Requires	DbgHelp.dll	6.3	or	later.

Header Declared	in	DbgHelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymSrvStoreFileW	(Unicode)	and
SymSrvStoreFile	(ANSI).

See	Also

DbgHelp	Functions

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymSrvStoreFile%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymSrvStoreSupplement	Function
Stores	a	file	in	the	specified	supplement	to	a	symbol	store.	The	file	is
typically	associated	with	a	file	in	the	symbol	server.

PCTSTR	WINAPI	SymSrvStoreSupplement(

		__in										HANDLE	hProcess,

		__in										PCTSTR	SymPath,

		__in										PCTSTR	Node,

		__in										PCTSTR	File,

		__in										DWORD	Flags

);

Parameters

hProcess
A	handle	to	a	process.	This	handle	must	have	been	previously
passed	to	the	SymInitialize	function.

SymPath
The	path	to	the	symbol	store.

Node
The	symbol	file	associated	with	the	supplemental	file.

File
The	name	of	the	file.

Flags
If	this	parameter	is	SYMSTOREOPT_COMPRESS,	the	file	is
compressed	in	the	symbol	store.	Currently,	there	are	no	other
supported	values.

Return	Value

If	the	function	succeeds,	the	return	value	is	the	fully-qualified	path	for	the
supplemental	file.

If	the	function	fails,	the	return	value	is	NULL.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

An	important	use	for	this	function	is	to	store	delta	files.	For	more
information,	see	SymSrvDeltaName.
This	function	returns	a	pointer	to	a	buffer	that	may	be	reused	by	another
function.	Therefore,	be	sure	to	copy	the	data	returned	to	another	buffer
immediately.

The	symbol	server	stores	supplemental	files	with	the	same	extension	in	a
common	directory.	For	example,	Sup1.xml	would	be	stored	in	the
following	directory:	SymPath\supplement\Node\xml.

The	administrator	of	a	store	can	prevent	users	from	writing	supplemental
files	by	creating	a	read-only	file	in	the	root	of	the	store	named
Supplement.	Alternatively,	the	administrator	can	create	the	supplement
directory	and	use	ACLs	to	control	access.

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Requirements

Redistributable Requires	DbgHelp.dll	6.3	or	later.

Header Declared	in	DbgHelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	SymSrvStoreSupplementW
(Unicode)	and	SymSrvStoreSupplement	(ANSI).

See	Also

DbgHelp	FunctionsSymSrvGetSupplement

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymSrvStoreSupplement%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymUnDName64	Function
Undecorates	a	decorated	C++	symbol	name.

Applications	can	also	use	the	UnDecorateSymbolName	function.

BOOL	WINAPI	SymUnDName64(

		__in										PIMAGEHLP_SYMBOL64	sym,

		__out									PSTR	UnDecName,

		__in										DWORD	UnDecNameLength

);

Parameters

sym
A	pointer	to	an	IMAGEHLP_SYMBOL64	structure	that	specifies	the
symbol	to	be	undecorated.

UnDecName
A	pointer	to	a	buffer	that	receives	the	undecorated	name.

UnDecNameLength
The	size	of	the	UnDecName	buffer,	in	characters.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

See	Also

DbgHelp	FunctionsUnDecorateSymbolName

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymUnDName64%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SymUnloadModule64	Function
Unloads	the	symbol	table.

This	function	supersedes	the	SymUnloadedModule	function.	For	more
information,	see	Updated	Platform	Support.

BOOL	WINAPI	SymUnloadModule64(

		__in										HANDLE	hProcess,

		__in										DWORD64	BaseOfDll

);

Parameters

hProcess
A	handle	to	the	process	that	was	originally	passed	to	the
SymInitialize	function.

BaseOfDll
The	base	address	of	the	module	that	is	to	be	unloaded.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Example	Code

For	an	example,	see	Unloading	a	Symbol	Module.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

See	Also

DbgHelp	FunctionsSymInitialize

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SymUnloadModule64%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

TranslateAddressProc64	Callback	Function
An	application-defined	callback	function	used	with	the	StackWalk64
function.	It	provides	address	translation	for	16-bit	addresses.

The	PTRANSLATE_ADDRESS_ROUTINE64	type	defines	a	pointer	to
this	callback	function.	TranslateAddressProc64	is	a	placeholder	for	the
application-defined	function	name.

DWORD64	CALLBACK	TranslateAddressProc64(

		[in]																	HANDLE	hProcess,

		[in]																	HANDLE	hThread,

		[in]																	LPADDRESS64	lpaddr

);

Parameters

hProcess
A	handle	to	the	process	for	which	the	stack	trace	is	generated.

hThread
A	handle	to	the	thread	for	which	the	stack	trace	is	generated.

lpaddr
An	address	to	be	translated.

Return	Value

The	function	returns	the	translated	address.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

DbgHelp	FunctionsStackWalk64

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20TranslateAddressProc64%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

UnDecorateSymbolName	Function
Undecorates	the	specified	decorated	C++	symbol	name.

DWORD	WINAPI	UnDecorateSymbolName(

		__in										PCTSTR	DecoratedName,

		__out									PTSTR	UnDecoratedName,

		__in										DWORD	UndecoratedLength,

		__in										DWORD	Flags

);

Parameters

DecoratedName
The	decorated	C++	symbol	name.	This	name	can	be	identified	by	the
first	character	of	the	name,	which	is	always	a	question	mark	(?).

UnDecoratedName
A	pointer	to	a	string	buffer	that	receives	the	undecorated	name.

UndecoratedLength
The	size	of	the	UnDecoratedName	buffer,	in	characters.

Flags
The	options	for	how	the	decorated	name	is	undecorated.	This
parameter	can	be	zero	or	more	of	the	following	values.

Value Meaning

UNDNAME_32_BIT_DECODE
0x0800

Undecorate	32-bit
decorated	names.

UNDNAME_COMPLETE
0x0000

Enable	full
undecoration.

UNDNAME_NAME_ONLY
0x1000

Crack	only	the	name
for	primary
declaration.	Returns
[scope::]name.	Does
expand	template

parameters.

UNDNAME_NO_ACCESS_SPECIFIERS
0x0080

Disable	expansion
of	access	specifiers
for	members.

UNDNAME_NO_ALLOCATION_LANGUAGE
0x0010

Disable	expansion
of	the	declaration
language	specifier.

UNDNAME_NO_ALLOCATION_MODEL
0x0008

Disable	expansion
of	the	declaration
model.

UNDNAME_NO_ARGUMENTS
0x2000

Do	not	undecorate
function	arguments.

UNDNAME_NO_CV_THISTYPE
0x0040

Disable	expansion
of	CodeView
modifiers	on	the	this
type	for	primary
declaration.

UNDNAME_NO_FUNCTION_RETURNS
0x0004

Disable	expansion
of	return	types	for
primary
declarations.

UNDNAME_NO_LEADING_UNDERSCORES
0x0001

Remove	leading
underscores	from
Microsoft	keywords.

UNDNAME_NO_MEMBER_TYPE
0x0200

Disable	expansion
of	the	static	or
virtual	attribute	of
members.

UNDNAME_NO_MS_KEYWORDS Disable	expansion

0x0002 of	Microsoft
keywords.

UNDNAME_NO_MS_THISTYPE
0x0020

Disable	expansion
of	Microsoft
keywords	on	the
this	type	for	primary
declaration.

UNDNAME_NO_RETURN_UDT_MODEL
0x0400

Disable	expansion
of	the	Microsoft
model	for	user-
defined	type	returns.

UNDNAME_NO_SPECIAL_SYMS
0x4000

Do	not	undecorate
special	names,	such
as	vtable,	vcall,
vector,	metatype,
and	so	on.

UNDNAME_NO_THISTYPE
0x0060

Disable	all	modifiers
on	the	this	type.

UNDNAME_NO_THROW_SIGNATURES
0x0100

Disable	expansion
of	throw-signatures
for	functions	and
pointers	to
functions.

Return	Value

If	the	function	succeeds,	the	return	value	is	the	number	of	characters	in
the	UnDecoratedName	buffer,	not	including	the	NULL	terminator.

If	the	function	fails,	the	return	value	is	zero.	To	retrieve	extended	error
information,	call	GetLastError.
If	the	function	fails	and	returns	zero,	the	content	of	the
UnDecoratedName	buffer	is	undetermined.

Remarks

To	use	undecorated	symbols,	call	the	SymSetOptions	function	with	the
SYMOPT_UNDNAME	option.

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

To	call	the	Unicode	version	of	this	function,	define
DBGHELP_TRANSLATE_TCHAR.

Example	Code

For	an	example,	see	Retrieving	Undecorated	Symbol	Names.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

Unicode Implemented	as	UnDecorateSymbolNameW
(Unicode)	and	UnDecorateSymbolName	(ANSI).

See	Also

DbgHelp	Functions
SymSetOptions

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20UnDecorateSymbolName%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

UnmapDebugInformation	Function
Deallocates	the	memory	and	resources	allocated	by	a	call	to	the
MapDebugInformation	function.
Note		This	function	is	provided	only	for	backward	compatibility.	New
applications	should	use	the	SymUnloadModule64	function.

BOOL	WINAPI	UnmapDebugInformation(

		__in										PIMAGE_DEBUG_INFORMATION	DebugInfo

);

Parameters

DebugInfo
A	pointer	to	an	IMAGE_DEBUG_INFORMATION	structure	that	is
returned	from	a	call	to	MapDebugInformation.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

The	UnmapDebugInformation	function	is	the	counterpart	to	the
MapDebugInformation	function	and	must	be	used	to	deallocate	the
memory	and	resources	allocated	by	a	call	to	the	MapDebugInformation
function.

All	DbgHelp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Redistributable

Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Dbghelp.h.

Library Use	Dbghelp.lib.

DLL Requires	Dbghelp.dll.

See	Also

DbgHelp	FunctionsIMAGE_DEBUG_INFORMATION
MapDebugInformation

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20UnmapDebugInformation%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

DbgHelp	Structures
The	following	are	the	DbgHelp	structures:

_IMAGE_RUNTIME_FUNCTION_ENTRY
ADDRESS64
API_VERSION
FPO_DATA
IMAGE_DEBUG_INFORMATION
IMAGEHLP_CBA_READ_MEMORY
IMAGEHLP_DEFERRED_SYMBOL_LOAD64
IMAGEHLP_DUPLICATE_SYMBOL64
IMAGEHLP_GET_TYPE_INFO_PARAMS
IMAGEHLP_LINE64
IMAGEHLP_MODULE64
IMAGEHLP_STACK_FRAME
IMAGEHLP_SYMBOL64
KDHELP64
LOADED_IMAGE
MINIDUMP_CALLBACK_INFORMATION
MINIDUMP_CALLBACK_INPUT
MINIDUMP_CALLBACK_OUTPUT
MINIDUMP_DIRECTORY
MINIDUMP_EXCEPTION
MINIDUMP_EXCEPTION_INFORMATION
MINIDUMP_EXCEPTION_STREAM
MINIDUMP_FUNCTION_TABLE_DESCRIPTOR
MINIDUMP_FUNCTION_TABLE_STREAM
MINIDUMP_HANDLE_DATA_STREAM
MINIDUMP_HANDLE_DESCRIPTOR
MINIDUMP_HANDLE_DESCRIPTOR_2
MINIDUMP_HANDLE_OBJECT_INFORMATION
MINIDUMP_HANDLE_OPERATION_LIST
MINIDUMP_HEADER
MINIDUMP_INCLUDE_MODULE_CALLBACK
MINIDUMP_INCLUDE_THREAD_CALLBACK
MINIDUMP_IO_CALLBACK

MINIDUMP_LOCATION_DESCRIPTOR
MINIDUMP_MEMORY_DESCRIPTOR
MINIDUMP_MEMORY_INFO
MINIDUMP_MEMORY_INFO_LIST
MINIDUMP_MEMORY_LIST
MINIDUMP_MISC_INFO
MINIDUMP_MISC_INFO_2
MINIDUMP_MODULE
MINIDUMP_MODULE_CALLBACK
MINIDUMP_MODULE_LIST
MINIDUMP_READ_MEMORY_FAILURE_CALLBACK
MINIDUMP_STRING
MINIDUMP_SYSTEM_INFO
MINIDUMP_THREAD
MINIDUMP_THREAD_CALLBACK
MINIDUMP_THREAD_EX
MINIDUMP_THREAD_EX_CALLBACK
MINIDUMP_THREAD_EX_LIST
MINIDUMP_THREAD_INFO
MINIDUMP_THREAD_INFO_LIST
MINIDUMP_THREAD_LIST
MINIDUMP_UNLOADED_MODULE
MINIDUMP_UNLOADED_MODULE_LIST
MINIDUMP_USER_STREAM
MINIDUMP_USER_STREAM_INFORMATION
MODLOAD_CVMISC
MODLOAD_DATA
OMAP
SOURCEFILE
SRCCODEINFO
STACKFRAME64
SYMBOL_INFO
SYMSRV_INDEX_INFO
TI_FINDCHILDREN_PARAMS

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20DbgHelp Structures%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

_IMAGE_RUNTIME_FUNCTION_ENTRY	Structure
Represents	an	entry	in	the	function	table	on	64-bit	Windows.

typedef	struct	_IMAGE_RUNTIME_FUNCTION_ENTRY	{

		DWORD	BeginAddress;

		DWORD	EndAddress;

		DWORD	UnwindInfoAddress;

}	_IMAGE_RUNTIME_FUNCTION_ENTRY,	

	*_PIMAGE_RUNTIME_FUNCTION_ENTRY;

Members

BeginAddress
The	address	of	the	start	of	the	function.

EndAddress
The	address	of	the	end	of	the	function.

UnwindInfoAddress
The	address	of	the	unwind	information	for	the	function.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Winnt.h;	include	Windows.h.

See	Also

SymFunctionTableAccess64

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20_IMAGE_RUNTIME_FUNCTION_ENTRY%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

©	2007	Microsoft	Corporation.	All	rights	reserved.

ADDRESS64	Structure
Represents	an	address.	It	is	used	in	the	STACKFRAME64	structure.
This	structure	supersedes	the	ADDRESS	structure.	For	more
information,	see	Updated	Platform	Support.

typedef	struct	_tagADDRESS64	{

		DWORD64	Offset;

		WORD	Segment;

		ADDRESS_MODE	Mode;

}	ADDRESS64,	

	*LPADDRESS64;

Members

Offset
The	offset	into	the	segment,	or	a	32-bit	virtual	address.	The
interpretation	of	this	value	depends	on	the	value	contained	in	the
Mode	member.

Segment
The	segment	number.	This	value	is	used	only	for	16-bit	addressing.

Mode
The	addressing	mode.	This	member	can	be	one	of	the	following
values.

Value Meaning

AddrMode1616
0

16:16	addressing.	To	support	this
addressing	mode,	you	must	supply	a
TranslateAddressProc64	callback
function.

AddrMode1632
1

16:32	addressing.	To	support	this
addressing	mode,	you	must	supply	a
TranslateAddressProc64	callback
function.

AddrModeReal
2

Real-mode	addressing.	To	support	this
addressing	mode,	you	must	supply	a
TranslateAddressProc64	callback
function.

AddrModeFlat
3

Flat	addressing.	This	is	the	only
addressing	mode	supported	by	the
library.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

STACKFRAME64

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20ADDRESS64%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

API_VERSION	Structure
Contains	the	library	version.

typedef	struct	API_VERSION	{

		USHORT	MajorVersion;

		USHORT	MinorVersion;

		USHORT	Revision;

		USHORT	Reserved;

}	API_VERSION,	

	*LPAPI_VERSION;

Members

MajorVersion
The	major	version	number.

MinorVersion
The	minor	version	number.

Revision
The	revision	number.

Reserved
This	member	is	reserved	for	use	by	the	operating	system.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

ImagehlpApiVersion
ImagehlpApiVersionEx

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20API_VERSION%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

FPO_DATA	Structure
Represents	the	stack	frame	layout	for	a	function	on	an	x86	computer
when	frame	pointer	omission	(FPO)	optimization	is	used.	The	structure	is
used	to	locate	the	base	of	the	call	frame.

typedef	struct	_FPO_DATA	{

		DWORD	ulOffStart;

		DWORD	cbProcSize;

		DWORD	cdwLocals;

		WORD	cdwParams;

		WORD	cbProlog		:8;

		WORD	cbRegs		:3;

		WORD	fHasSEH		:1;

		WORD	fUseBP		:1;

		WORD	reserved		:1;

		WORD	cbFrame		:2;

}	FPO_DATA,	

	*PFPO_DATA;

Members

ulOffStart
The	offset	of	the	first	byte	of	the	function	code.

cbProcSize
The	number	of	bytes	in	the	function.

cdwLocals
The	number	of	local	variables.

cdwParams
The	size	of	the	parameters,	in	DWORDs.

cbProlog
The	number	of	bytes	in	the	function	prolog	code.

cbRegs
The	number	of	registers	saved.

fHasSEH
A	variable	that	indicates	whether	the	function	uses	structured
exception	handling.

fUseBP
A	variable	that	indicates	whether	the	EBP	register	has	been
allocated.

reserved
Reserved	for	future	use.

cbFrame
A	variable	that	indicates	the	frame	type.

Type Meaning

FRAME_FPO
0

FPO	frame

FRAME_NONFPO
3

Non-FPO	frame

FRAME_TRAP
1

Trap	frame

FRAME_TSS
2

TSS	frame

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	Winnt.h;	include	Windows.h.

See	Also

FunctionTableAccessProc64
STACKFRAME64
SymFunctionTableAccess64

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20FPO_DATA%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

IMAGE_DEBUG_INFORMATION	Structure
Contains	debugging	information.

Note		This	structure	is	used	by	the	MapDebugInformation	and
UnmapDebugInformation	functions,	which	are	provided	only	for
backward	compatibility.

typedef	struct	_IMAGE_DEBUG_INFORMATION	{

		LIST_ENTRY	List;

		DWORD	Size;

		PVOID	MappedBase;

		USHORT	Machine;

		USHORT	Characteristics;

		DWORD	CheckSum;

		DWORD	ImageBase;

		DWORD	SizeOfImage;

		DWORD	NumberOfSections;

		PIMAGE_SECTION_HEADER	Sections;

		DWORD	ExportedNamesSize;

		PSTR	ExportedNames;

		DWORD	NumberOfFunctionTableEntries;

		PIMAGE_FUNCTION_ENTRY	FunctionTableEntries;

		DWORD	LowestFunctionStartingAddress;

		DWORD	HighestFunctionEndingAddress;

		DWORD	NumberOfFpoTableEntries;

		PFPO_DATA	FpoTableEntries;

		DWORD	SizeOfCoffSymbols;

		PIMAGE_COFF_SYMBOLS_HEADER	CoffSymbols;

		DWORD	SizeOfCodeViewSymbols;

		PVOID	CodeViewSymbols;

		PSTR	ImageFilePath;

		PSTR	ImageFileName;

		PSTR	ReservedDebugFilePath;

		DWORD	ReservedTimeDateStamp;

		BOOL	ReservedRomImage;

		PIMAGE_DEBUG_DIRECTORY	ReservedDebugDirectory;

		DWORD	ReservedNumberOfDebugDirectories;

		DWORD	ReservedOriginalFunctionTableBaseAddress;

		DWORD	Reserved[2];

}	IMAGE_DEBUG_INFORMATION,	

	*PIMAGE_DEBUG_INFORMATION;

Members

List
A	linked	list	of	LIST_ENTRY	structures.

Size
The	size	of	the	memory	allocated	for	the
IMAGE_DEBUG_INFORMATION	structure	and	all	debugging
information,	in	bytes.

MappedBase
The	base	address	of	the	image.

Machine
The	computer	type.	This	member	can	be	one	of	the	following	values.

Value Meaning

IMAGE_FILE_MACHINE_I386
0x014c

Intel	(32-bit)

IMAGE_FILE_MACHINE_IA64
0x0200

Intel	Itanium	Processor	Family
(IPF)

IMAGE_FILE_MACHINE_AMD64
0x8664

x64	(AMD64	or	EM64T)

Characteristics
The	characteristics	of	the	image.	This	member	can	be	one	of	the
following	values.

Value Meaning

IMAGE_FILE_RELOCS_STRIPPED
0x0001

Relocation
information	is

stripped	from
the	file.

IMAGE_FILE_EXECUTABLE_IMAGE
0x0002

The	file	is
executable
(there	are	no
unresolved
external
references).

IMAGE_FILE_LINE_NUMS_STRIPPED
0x0004

Line	numbers
are	stripped
from	the	file.

IMAGE_FILE_LOCAL_SYMS_STRIPPED
0x0008

Local	symbols
are	stripped
from	file.

IMAGE_FILE_AGGRESIVE_WS_TRIM
0x0010

Aggressively
trim	the	working
set.

IMAGE_FILE_LARGE_ADDRESS_AWARE
0x0020

The	application
can	handle
addresses
larger	than	2
GB.

IMAGE_FILE_BYTES_REVERSED_LO
0x0080

Bytes	of	the
word	are
reversed.

IMAGE_FILE_32BIT_MACHINE
0x0100

Computer
supports	32-bit
words.

IMAGE_FILE_DEBUG_STRIPPED
0x0200

Debugging
information	is
stored

separately	in	a
.dbg	file.

IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP
0x0400

If	the	image	is
on	removable
media,	copy
and	run	from
the	swap	file.

IMAGE_FILE_NET_RUN_FROM_SWAP
0x0800

If	the	image	is
on	the	network,
copy	and	run
from	the	swap
file.

IMAGE_FILE_SYSTEM
0x1000

System	file.

IMAGE_FILE_DLL
0x2000

DLL	file.

IMAGE_FILE_UP_SYSTEM_ONLY
0x4000

File	should	be
run	only	on	a
uniprocessor
computer.

IMAGE_FILE_BYTES_REVERSED_HI
0x8000

Bytes	of	the
word	are
reversed.

CheckSum
The	checksum	of	the	image.

ImageBase
The	requested	base	address	of	the	image.

SizeOfImage
The	size	of	the	image,	in	bytes.

NumberOfSections

The	number	of	COFF	section	headers.

Sections
A	pointer	to	the	first	COFF	section	header.	For	more	information,	see
IMAGE_SECTION_HEADER.

ExportedNamesSize
The	size	of	the	ExportedNames	member,	in	bytes.

ExportedNames
A	pointer	to	a	series	of	null-terminated	strings	that	name	all	the
functions	exported	from	the	image.

NumberOfFunctionTableEntries
The	number	of	entries	contained	in	the	FunctionTableEntries
member.

FunctionTableEntries
A	pointer	to	the	first	function	table	entry.	For	more	information,	see
IMAGE_FUNCTION_ENTRY.

LowestFunctionStartingAddress
The	lowest	function	table	starting	address.

HighestFunctionEndingAddress
The	highest	function	table	ending	address.

NumberOfFpoTableEntries
The	number	of	entries	contained	in	the	FpoTableEntries	member.

FpoTableEntries
A	pointer	to	the	first	FPO	entry.	For	more	information,	see
FPO_DATA.

SizeOfCoffSymbols
The	size	of	the	COFF	symbol	table,	in	bytes.

CoffSymbols
A	pointer	to	the	COFF	symbol	table.

SizeOfCodeViewSymbols
The	size	of	the	CodeView	symbol	table,	in	bytes.

CodeViewSymbols

A	pointer	to	the	beginning	of	the	CodeView	symbol	table.

ImageFilePath
The	relative	path	to	the	image	file	name.

ImageFileName
The	image	file	name.

ReservedDebugFilePath
The	full	path	to	the	symbol	file.

ReservedTimeDateStamp
The	timestamp	of	the	image.	This	represents	the	date	and	time	the
image	was	created	by	the	linker.

ReservedRomImage
This	value	is	TRUE	if	the	image	is	a	ROM	image.

ReservedDebugDirectory
A	pointer	to	the	first	debug	directory.	For	more	information,	see
IMAGE_DEBUG_DIRECTORY.

ReservedNumberOfDebugDirectories
The	number	of	entries	contained	in	the	DebugDirectory	member.

ReservedOriginalFunctionTableBaseAddress
The	original	function	table	base	address.

Reserved
This	member	is	reserved	for	use	by	the	operating	system.

Remarks

The	LIST_ENTRY	structure	is	defined	as	follows:

typedef	struct	_LIST_ENTRY	{

			struct	_LIST_ENTRY	*Flink;

			struct	_LIST_ENTRY	*Blink;

}	LIST_ENTRY,	*PLIST_ENTRY,	*RESTRICTED_POINTER	PRLIST_ENTRY;

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

FPO_DATA
IMAGE_COFF_SYMBOLS_HEADER
IMAGE_DEBUG_DIRECTORY
IMAGE_FUNCTION_ENTRY
IMAGE_SECTION_HEADER
MapDebugInformation
UnmapDebugInformation

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20IMAGE_DEBUG_INFORMATION%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

IMAGEHLP_CBA_EVENT	Structure
Contains	information	about	a	debugging	event.

typedef	struct	_IMAGEHLP_CBA_EVENT	{

		DWORD	severity;

		DWORD	code;

		PCTSTR	desc;

		PVOID	object;

}	IMAGEHLP_CBA_EVENT,	

	*PIMAGEHLP_CBA_EVENT;

Members

severity
The	event	severity.	This	parameter	can	be	one	of	the	following
values.

Value Meaning

sevInfo
0

Informational	event.

sevProblem
1

Reserved	for	future	use.

sevAttn
2

Reserved	for	future	use.

sevFatal
3

Reserved	for	future	use.

code
This	member	is	reserved	for	future	use.

desc
A	text	description	of	the	error.

object
This	member	is	reserved	for	future	use.

Requirements

Redistributable Requires	DbgHelp.dll	6.1	or	later.

Header Declared	in	DbgHelp.h.

Unicode Implemented	as	IMAGEHLP_CBA_EVENTW
(Unicode)	and	IMAGEHLP_CBA_EVENT	(ANSI).

See	Also

SymbolServerCallback
SymRegisterCallbackProc64

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20IMAGEHLP_CBA_EVENT%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

IMAGEHLP_CBA_READ_MEMORY	Structure
Contains	information	about	a	memory	read	operation.

typedef	struct	_IMAGEHLP_CBA_READ_MEMORY	{

		DWORD64	addr;

		PVOID	buf;

		DWORD	bytes;

		DWORD*	bytesread;

}	IMAGEHLP_CBA_READ_MEMORY,	

	*PIMAGEHLP_CBA_READ_MEMORY;

Members

addr
The	address	to	be	read.

buf
A	pointer	to	a	buffer	that	receives	the	memory	read.

bytes
The	number	of	bytes	to	read.

bytesread
A	pointer	to	a	variable	that	receives	the	number	of	bytes	read.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

SymRegisterCallbackProc64

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20IMAGEHLP_CBA_READ_MEMORY%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

IMAGEHLP_DEFERRED_SYMBOL_LOAD64
Structure

Contains	information	about	a	deferred	symbol	load.

This	structure	supersedes	the
IMAGEHLP_DEFERRED_SYMBOL_LOAD	structure.	For	more
information,	see	Updated	Platform	Support.

typedef	struct	_IMAGEHLP_DEFERRED_SYMBOL_LOAD64	{

		DWORD	SizeOfStruct;

		DWORD64	BaseOfImage;

		DWORD	CheckSum;

		DWORD	TimeDateStamp;

		TCHAR	FileName[MAX_PATH];

		BOOLEAN	Reparse;

		HANDLE	hFile;

}	IMAGEHLP_DEFERRED_SYMBOL_LOAD64,	

	*PIMAGEHLP_DEFERRED_SYMBOL_LOAD64;

Members

SizeOfStruct
The	size	of	the	structure,	in	bytes.	The	caller	must	set	this	member	to
sizeof(IMAGEHLP_DEFERRED_SYMBOL_LOAD64).

BaseOfImage
The	base	virtual	address	where	the	image	is	loaded.

CheckSum
The	computed	checksum	of	the	image.	This	value	can	be	zero.

TimeDateStamp
The	date	and	timestamp	value.	The	value	is	represented	in	the
number	of	seconds	elapsed	since	midnight	(00:00:00),	January	1,
1970,	Universal	Coordinated	Time,	according	to	the	system	clock.
The	timestamp	can	be	printed	using	the	C	run-time	(CRT)	function
ctime.

FileName

The	image	name.	The	name	may	or	may	not	contain	a	full	path.

Reparse
If	this	member	is	TRUE,	the	operation	should	be	performed	again.
Otherwise,	it	should	not.

hFile
A	handle	to	a	file.	This	member	is	used	with
CBA_DEFERRED_SYMBOL_LOAD_PARTIAL	and
IMAGEHLP_DEFERRED_SYMBOL_LOAD_FAILURE	callbacks.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

Unicode

Implemented	as
IMAGEHLP_DEFERRED_SYMBOL_LOADW64
(Unicode)	and
IMAGEHLP_DEFERRED_SYMBOL_LOAD64
(ANSI).

See	Also

SymRegisterCallbackProc64

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20IMAGEHLP_DEFERRED_SYMBOL_LOAD64%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

IMAGEHLP_DUPLICATE_SYMBOL64	Structure
Contains	duplicate	symbol	information.

This	structure	supersedes	the	IMAGEHLP_DUPLICATE_SYMBOL
structure.	For	more	information,	see	Updated	Platform	Support.

typedef	struct	_IMAGEHLP_DUPLICATE_SYMBOL64	{

		DWORD	SizeOfStruct;

		DWORD	NumberOfDups;

		PIMAGEHLP_SYMBOL64	Symbol;

		DWORD	SelectedSymbol;

}	IMAGEHLP_DUPLICATE_SYMBOL64,	

	*PIMAGEHLP_DUPLICATE_SYMBOL64;

Members

SizeOfStruct
The	size	of	the	structure,	in	bytes.	The	caller	must	set	this	member	to
sizeof(IMAGEHLP_DUPLICATE_SYMBOL64).

NumberOfDups
The	number	of	duplicate	symbols.

Symbol
A	pointer	to	an	array	of	symbols	(IMAGEHLP_SYMBOL64
structures).	The	number	of	entries	in	the	array	is	specified	by	the
NumberOfDups	member.

SelectedSymbol
The	index	into	the	symbol	array	for	the	selected	symbol.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

IMAGEHLP_SYMBOL64
SymRegisterCallbackProc64

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20IMAGEHLP_DUPLICATE_SYMBOL64%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

IMAGEHLP_GET_TYPE_INFO_PARAMS	Structure
Contains	type	information	for	a	module.

typedef	struct	_IMAGEHLP_GET_TYPE_INFO_PARAMS	{

		ULONG	SizeOfStruct;

		ULONG	Flags;

		ULONG	NumIds;

		PULONG	TypeIds;

		ULONG64	TagFilter;

		ULONG	NumReqs;

		IMAGEHLP_SYMBOL_TYPE_INFO*	ReqKinds;

		PULONG_PTR	ReqOffsets;

		PULONG	ReqSizes;

		ULONG_PTR	ReqStride;

		ULONG_PTR	BufferSize;

		PVOID	Buffer;

		ULONG	EntriesMatched;

		ULONG	EntriesFilled;

		ULONG64	TagsFound;

		ULONG64	AllReqsValid;

		ULONG	NumReqsValid;

		PULONG64	ReqsValid;

}	IMAGEHLP_GET_TYPE_INFO_PARAMS,	

	*PIMAGEHLP_GET_TYPE_INFO_PARAMS;

Members

SizeOfStruct
The	size	of	this	structure,	in	bytes.

Flags
This	member	can	be	one	of	the	following	values.

Value Meaning

IMAGEHLP_GET_TYPE_INFO_CHILDREN
0x00000002

Retrieve	information
about	the	children	of

the	specified	types,
not	the	types
themselves.

IMAGEHLP_GET_TYPE_INFO_UNCACHED
0x00000001

Do	not	cache	the
data	for	later
retrievals.	It	is	good
to	use	this	flag	if	you
will	not	be	requesting
the	information
again.

NumIds
The	number	of	elements	specified	in	the	TypeIds	array.

TypeIds
An	array	of	type	indexes.

TagFilter
The	filter	for	return	values.	For	example,	set	this	member	to	1	<<
SymTagData	to	return	only	results	with	a	symbol	tag	of	SymTagData.
For	a	list	of	tags,	see	the	SymTagEnum	type	defined	in	Dbghelp.h

NumReqs
The	number	of	elements	specified	in	the	arrays	specified	in	the
ReqKinds,	ReqOffsets,	and	ReqSizes	members.	These	arrays
must	be	the	same	size.

ReqKinds
An	array	of	information	types	to	be	requested.	Each	element	is	one
of	the	enumeration	values	in	the
IMAGEHLP_SYMBOL_TYPE_INFO	enumeration	type.

ReqOffsets
An	array	of	offsets	that	specify	where	to	store	the	data	for	each
request	within	each	element	of	Buffer	array.

ReqSizes
The	size	of	each	data	request,	in	bytes.	The	required	sizes	are
described	in	IMAGEHLP_SYMBOL_TYPE_INFO.

ReqStride
The	number	of	bytes	for	each	element	in	the	Buffer	array.

BufferSize
The	size	of	the	Buffer	array,	in	bytes.

Buffer
An	array	of	records	used	for	storing	query	results.	Each	record	is
separated	by	ReqStride	bytes.	Each	type	for	which	data	is	to	be
retrieved	requires	one	record	in	the	array.	Within	each	record,	there
are	NumReqs	pieces	of	data	stored	as	the	result	of	individual
queries.	The	data	is	stored	within	the	record	according	to	the	offsets
specified	in	ReqOffsets.	The	format	of	the	data	depends	on	the
value	of	the	ReqKinds	member	in	use.

EntriesMatched
The	number	of	type	entries	that	match	the	filter.

EntriesFilled
The	number	of	elements	in	the	Buffer	array	that	received	results.

TagsFound
A	bitmask	indicating	all	tag	bits	encountered	during	the	search
operation.

AllReqsValid
A	bitmask	indicate	the	bit-wise	AND	of	all	ReqsValid	fields.

NumReqsValid
The	size	of	ReqsValid,	in	elements.

ReqsValid
A	bitmask	indexed	by	Buffer	element	index	that	indicates	which
request	data	is	valid.	This	member	can	be	NULL.

Requirements

Redistributable Requires	DbgHelp.dll	6.3	or	later.

Header Declared	in	DbgHelp.h.

See	Also

IMAGEHLP_SYMBOL_TYPE_INFO
SymGetTypeInfoEx

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20IMAGEHLP_GET_TYPE_INFO_PARAMS%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

IMAGEHLP_LINE64	Structure
Represents	a	source	file	line.

This	structure	supersedes	the	IMAGEHLP_LINE	structure.	For	more
information,	see	Updated	Platform	Support.

typedef	struct	_IMAGEHLP_LINE64	{

		DWORD	SizeOfStruct;

		PVOID	Key;

		DWORD	LineNumber;

		PTSTR	FileName;

		DWORD64	Address;

}	IMAGEHLP_LINE64,	

	*PIMAGEHLP_LINE64;

Members

SizeOfStruct
The	size	of	the	structure,	in	bytes.	The	caller	must	set	this	member	to
sizeof(IMAGEHLP_LINE64).

Key
This	member	is	reserved	for	use	by	the	operating	system.

LineNumber
The	line	number	in	the	file.

FileName
The	name	of	the	file,	including	the	full	path.

Address
The	address	of	the	first	instruction	in	the	line.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

Unicode Implemented	as	IMAGEHLP_LINEW64	(Unicode)	and
IMAGEHLP_LINE64	(ANSI).

See	Also

SymGetLineFromAddr64
SymGetLineFromName64
SymGetLineNext64
SymGetLinePrev64

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20IMAGEHLP_LINE64%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

IMAGEHLP_MODULE64	Structure
Contains	module	information.

This	structure	supersedes	the	IMAGEHLP_MODULE	structure.	For	more
information,	see	Updated	Platform	Support.

typedef	struct	_IMAGEHLP_MODULE64	{

		DWORD	SizeOfStruct;

		DWORD64	BaseOfImage;

		DWORD	ImageSize;

		DWORD	TimeDateStamp;

		DWORD	CheckSum;

		DWORD	NumSyms;

		SYM_TYPE	SymType;

		TCHAR	ModuleName[32];

		TCHAR	ImageName[256];

		TCHAR	LoadedImageName[256];

		TCHAR	LoadedPdbName[256];

		DWORD	CVSig;

		TCHAR	CVData[MAX_PATH*3];

		DWORD	PdbSig;

		GUID	PdbSig70;

		DWORD	PdbAge;

		BOOL	PdbUnmatched;

		BOOL	DbgUnmatched;

		BOOL	LineNumbers;

		BOOL	GlobalSymbols;

		BOOL	TypeInfo;

		BOOL	SourceIndexed;

		BOOL	Publics;

}	IMAGEHLP_MODULE64,	

	*PIMAGEHLP_MODULE64;

Members

SizeOfStruct
The	size	of	the	structure,	in	bytes.	The	caller	must	set	this	member	to

sizeof(IMAGEHLP_MODULE64).

BaseOfImage
The	base	virtual	address	where	the	image	is	loaded.

ImageSize
The	size	of	the	image,	in	bytes.

TimeDateStamp
The	date	and	timestamp	value.	The	value	is	represented	in	the
number	of	seconds	elapsed	since	midnight	(00:00:00),	January	1,
1970,	Universal	Coordinated	Time,	according	to	the	system	clock.
The	timestamp	can	be	printed	using	the	C	run-time	(CRT)	function
ctime.

CheckSum
The	checksum	of	the	image.	This	value	can	be	zero.

NumSyms
The	number	of	symbols	in	the	symbol	table.	The	value	of	this
parameter	is	not	meaningful	when	SymPdb	is	specified	as	the	value
of	the	SymType	parameter.

SymType
The	type	of	symbols	that	are	loaded.	This	member	can	be	one	of	the
following	values.

Value Meaning

SymCoff COFF	symbols.

SymCv CodeView	symbols.

SymDeferred Symbol	loading	deferred.

SymDia DIA	symbols.

SymExport Symbols	generated	from	a	DLL	export
table.

SymNone No	symbols	are	loaded.

SymPdb PDB	symbols.

SymSym .sym	file.

SymVirtual The	virtual	module	created	by
SymLoadModuleEx	with
SLMFLAG_VIRTUAL.

ModuleName
The	module	name.

ImageName
The	image	name.	The	name	may	or	may	not	contain	a	full	path.

LoadedImageName
The	full	path	and	file	name	of	the	file	from	which	symbols	were
loaded.

LoadedPdbName
The	full	path	and	file	name	of	the	.pdb	file.

CVSig
The	signature	of	the	CV	record	in	the	debug	directories.

CVData
The	contents	of	the	CV	record.

PdbSig
The	PDB	signature.

PdbSig70
The	PDB	signature	(Visual	C/C++	7.0	and	later)

PdbAge
The	DBI	age	of	PDB.

PdbUnmatched
A	value	that	indicates	whether	the	loaded	PDB	is	unmatched.

DbgUnmatched
A	value	that	indicates	whether	the	loaded	DBG	is	unmatched.

LineNumbers

A	value	that	indicates	whether	line	number	information	is	available.

GlobalSymbols
A	value	that	indicates	whether	symbol	information	is	available.

TypeInfo
A	value	that	indicates	whether	type	information	is	available.

SourceIndexed
A	value	that	indicates	whether	the	.pdb	supports	the	source	server.

DbgHelp	6.1	and	earlier:		This	member	is	not
supported.

Publics
A	value	that	indicates	whether	the	module	contains	public	symbols.

DbgHelp	6.1	and	earlier:		This	member	is	not
supported.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

Unicode Implemented	as	IMAGEHLP_MODULEW64
(Unicode)	and	IMAGEHLP_MODULE64	(ANSI).

See	Also

SymGetModuleInfo64

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20IMAGEHLP_MODULE64%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

IMAGEHLP_STACK_FRAME	Structure
Contains	the	stack	frame	information.	This	structure	is	used	with	the
SymSetContext	function.

typedef	struct	_IMAGEHLP_STACK_FRAME	{

		ULONG64	InstructionOffset;

		ULONG64	ReturnOffset;

		ULONG64	FrameOffset;

		ULONG64	StackOffset;

		ULONG64	BackingStoreOffset;

		ULONG64	FuncTableEntry;

		ULONG64	Params[4];

		ULONG64	Reserved[5];

		BOOL	Virtual;

		ULONG	Reserved2;

}	IMAGEHLP_STACK_FRAME,	

	*PIMAGEHLP_STACK_FRAME;

Members

InstructionOffset
The	program	counter.

x86:		The	program	counter	is	EIP.

Intel	IPF:		The	program	counter	is	a	combination	of
the	bundle	address	and	a	slot	indicator	of	0,	4,	or	8
for	the	slot	within	the	bundle.

x64:		The	program	counter	is	RIP.

ReturnOffset
The	return	address.

FrameOffset
The	frame	pointer.

x86:		The	frame	pointer	is	EBP.

Intel	IPF:		There	is	no	frame	pointer,	but

AddrBStore	is	used.

x64:		The	frame	pointer	is	RBP.	AMD-64	does	not
always	use	this	value.

StackOffset
The	stack	pointer.

x86:		The	stack	pointer	is	ESP.

Intel	IPF:		The	stack	pointer	is	SP.

x64:		The	stack	pointer	is	RSP.

BackingStoreOffset

Intel	IPF:		The	backing	store	address.

FuncTableEntry

x86:		An	FPO_DATA	structure.	If	there	is	no
function	table	entry,	this	member	is	NULL.

Params
The	possible	arguments	to	the	function.

Reserved
This	member	is	reserved	for	system	use.

Virtual
If	this	is	a	virtual	frame,	this	member	is	TRUE.	Otherwise,	this
member	is	FALSE.

Reserved2
This	member	is	reserved	for	system	use.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

SymSetContext

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20IMAGEHLP_STACK_FRAME%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

IMAGEHLP_SYMBOL64	Structure
Contains	symbol	information.

This	structure	supersedes	the	IMAGEHLP_SYMBOL	structure.	For	more
information,	see	Updated	Platform	Support.

typedef	struct	_IMAGEHLP_SYMBOL64	{

		DWORD	SizeOfStruct;

		DWORD64	Address;

		DWORD	Size;

		DWORD	Flags;

		DWORD	MaxNameLength;

		TCHAR	Name[1];

}	IMAGEHLP_SYMBOL64,	

	*PIMAGEHLP_SYMBOL64;

Members

SizeOfStruct
The	size	of	the	structure,	in	bytes.	The	caller	must	set	this	member	to
sizeof(IMAGEHLP_SYMBOL64).

Address
The	virtual	address	for	the	symbol.

Size
The	size	of	the	symbol,	in	bytes.	This	value	is	a	best	guess	and	can
be	zero.

Flags
This	member	is	reserved	for	use	by	the	operating	system.

MaxNameLength
The	maximum	length	of	the	string	that	the	Name	member	can
contain,	in	characters,	not	including	the	null-terminating	character.
Because	symbol	names	can	vary	in	length,	this	data	structure	is
allocated	by	the	caller.	This	member	is	used	so	the	library	knows
how	much	memory	is	available	for	use	by	the	symbol	name.

Name
The	decorated	or	undecorated	symbol	name.	If	the	buffer	is	not	large
enough	for	the	complete	name,	it	is	truncated	to	MaxNameLength
characters,	including	the	null-terminating	character.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

Unicode Implemented	as	IMAGEHLP_SYMBOLW64	(Unicode)
and	IMAGEHLP_SYMBOL64	(ANSI).

See	Also

SymGetSymFromAddr64
SymGetSymFromName64

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20IMAGEHLP_SYMBOL64%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

KDHELP64	Structure
Information	that	is	used	by	kernel	debuggers	to	trace	through	user-mode
callbacks	in	a	thread's	kernel	stack.

This	structure	supersedes	the	KDHELP	structure.	For	more	information,
see	Updated	Platform	Support.

typedef	struct	_KDHELP64	{

		DWORD64	Thread;

		DWORD	ThCallbackStack;

		DWORD	ThCallbackBStore;

		DWORD	NextCallback;

		DWORD	FramePointer;

		DWORD64	KiCallUserMode;

		DWORD64	KeUserCallbackDispatcher;

		DWORD64	SystemRangeStart;

		DWORD64	KiUserExceptionDispatcher;

		DWORD64	Reserved[7];

}	KDHELP64,	

	*PKDHELP64;

Members

Thread
The	address	of	the	kernel	thread	object,	as	provided	in	the
WAIT_STATE_CHANGE	packet.

ThCallbackStack
The	offset	in	the	thread	object	to	the	pointer	to	the	current	callback
frame	in	the	kernel	stack.

ThCallbackBStore

Intel	IPF:		The	offset	in	the	thread	object	to	a
pointer	to	the	current	callback	backing	store	frame
in	the	kernel	stack.

NextCallback
The	address	of	the	next	callback	frame.

FramePointer
The	address	of	the	saved	frame	pointer,	if	applicable.

KiCallUserMode
The	address	of	the	kernel	function	that	calls	out	to	user	mode.

KeUserCallbackDispatcher
The	address	of	the	user-mode	dispatcher	function.

SystemRangeStart
The	lowest	kernel-mode	address.

KiUserExceptionDispatcher
The	address	of	the	user-mode	exception	dispatcher	function.

DbgHelp	6.1	and	earlier:		This	member	is	not
supported.

Reserved
This	member	is	reserved	for	use	by	the	operating	system.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

STACKFRAME64

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20KDHELP64%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

LOADED_IMAGE	Structure
Contains	information	about	the	loaded	image.

typedef	struct	_LOADED_IMAGE	{

		PSTR	ModuleName;

		HANDLE	hFile;

		PUCHAR	MappedAddress;

		PIMAGE_NT_HEADERS32	FileHeader;

		PIMAGE_SECTION_HEADER	LastRvaSection;

		ULONG	NumberOfSections;

		PIMAGE_SECTION_HEADER	Sections;

		ULONG	Characteristics;

		BOOLEAN	fSystemImage;

		BOOLEAN	fDOSImage;

		BOOLEAN	fReadOnly;

		UCHAR	Version;

		LIST_ENTRY	Links;

		ULONG	SizeOfImage;

}	LOADED_IMAGE,	

	*PLOADED_IMAGE;

Members

ModuleName
The	file	name	of	the	mapped	file.

hFile
A	handle	to	the	mapped	file.

MappedAddress
The	base	address	of	the	mapped	file.

FileHeader
A	pointer	to	an	IMAGE_NT_HEADERS	structure.

LastRvaSection
A	pointer	to	an	IMAGE_SECTION_HEADER	structure.

NumberOfSections

The	number	of	COFF	section	headers.

Sections
A	pointer	to	an	IMAGE_SECTION_HEADER	structure.

Characteristics
The	image	characteristics	value.	This	member	can	be	one	of	the
following	values.

Value Meaning

IMAGE_FILE_RELOCS_STRIPPED
0x0001

Relocation
information	is
stripped	from
the	file.

IMAGE_FILE_EXECUTABLE_IMAGE
0x0002

The	file	is
executable
(there	are	no
unresolved
external
references).

IMAGE_FILE_LINE_NUMS_STRIPPED
0x0004

Line	numbers
are	stripped
from	the	file.

IMAGE_FILE_LOCAL_SYMS_STRIPPED
0x0008

Local	symbols
are	stripped
from	file.

IMAGE_FILE_AGGRESIVE_WS_TRIM
0x0010

Aggressively
trim	the	working
set.

IMAGE_FILE_LARGE_ADDRESS_AWARE
0x0020

The	application
can	handle
addresses
larger	than	2
GB.

IMAGE_FILE_BYTES_REVERSED_LO
0x0080

Bytes	of	word
are	reversed.

IMAGE_FILE_32BIT_MACHINE
0x0100

Computer
supports	32-bit
words.

IMAGE_FILE_DEBUG_STRIPPED
0x0200

Debugging
information	is
stored
separately	in	a
.dbg	file.

IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP
0x0400

If	the	image	is
on	removable
media,	copy
and	run	from
the	swap	file.

IMAGE_FILE_NET_RUN_FROM_SWAP
0x0800

If	the	image	is
on	the	network,
copy	and	run
from	the	swap
file.

IMAGE_FILE_SYSTEM
0x1000

System	file.

IMAGE_FILE_DLL
0x2000

DLL	file.

IMAGE_FILE_UP_SYSTEM_ONLY
0x4000

File	should	be
run	only	on	a
uniprocessor
computer.

IMAGE_FILE_BYTES_REVERSED_HI
0x8000

Bytes	of	the
word	are

reversed.

fSystemImage
If	the	image	is	a	kernel	mode	executable	image,	this	value	is	TRUE.

fDOSImage
If	the	image	is	a	16-bit	executable	image,	this	value	is	TRUE.

fReadOnly
If	the	image	is	read-only,	this	value	is	TRUE.

Version
The	version	string.

Links
The	list	of	loaded	images.

SizeOfImage
The	size	of	the	image,	in	bytes.

Remarks

The	LIST_ENTRY	structure	is	defined	as	follows:

typedef	struct	_LIST_ENTRY	{

			struct	_LIST_ENTRY	*Flink;

			struct	_LIST_ENTRY	*Blink;

}	LIST_ENTRY,	*PLIST_ENTRY,	*RESTRICTED_POINTER	PRLIST_ENTRY;

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

IMAGE_NT_HEADERS

IMAGE_SECTION_HEADER
ImageLoad
MapAndLoad

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20LOADED_IMAGE%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MINIDUMP_CALLBACK_INFORMATION	Structure
Contains	a	pointer	to	an	optional	callback	function	that	can	be	used	by
the	MiniDumpWriteDump	function.

typedef	struct	_MINIDUMP_CALLBACK_INFORMATION	{

		MINIDUMP_CALLBACK_ROUTINE	CallbackRoutine;

		PVOID	CallbackParam;

}	MINIDUMP_CALLBACK_INFORMATION,	

	*PMINIDUMP_CALLBACK_INFORMATION;

Members

CallbackRoutine
A	pointer	to	the	MiniDumpCallback	callback	function.

CallbackParam
The	application-defined	data	for	CallbackRoutine.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

MiniDumpCallback
MiniDumpWriteDump

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_CALLBACK_INFORMATION%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MINIDUMP_CALLBACK_INPUT	Structure
Contains	information	used	by	the	MiniDumpCallback	function.

typedef	struct	_MINIDUMP_CALLBACK_INPUT	{

		ULONG	ProcessId;

		HANDLE	ProcessHandle;

		ULONG	CallbackType;

		union	{

				HRESULT	Status;

				MINIDUMP_THREAD_CALLBACK	Thread;

				MINIDUMP_THREAD_EX_CALLBACK	ThreadEx;

				MINIDUMP_MODULE_CALLBACK	Module;

				MINIDUMP_INCLUDE_THREAD_CALLBACK	IncludeThread;

				MINIDUMP_INCLUDE_MODULE_CALLBACK	IncludeModule;

				MINIDUMP_IO_CALLBACK	Io;

				MINIDUMP_READ_MEMORY_FAILURE_CALLBACK	ReadMemoryFailure;

				ULONG	SecondaryFlags;

		};

}	MINIDUMP_CALLBACK_INPUT,	

	*PMINIDUMP_CALLBACK_INPUT;

Members

ProcessId
The	identifier	of	the	process	that	contains	callback	function.

This	member	is	not	used	if	CallbackType	is	IoStartCallback.

ProcessHandle
A	handle	to	the	process	that	contains	the	callback	function.

This	member	is	not	used	if	CallbackType	is	IoStartCallback.

CallbackType
The	type	of	callback	function.	This	member	can	be	one	of	the	values
in	the	MINIDUMP_CALLBACK_TYPE	enumeration.

Status
If	CallbackType	is	KernelMinidumpStatusCallback,	the	union	is	an

HRESULT	value	that	indicates	the	status	of	the	kernel	minidump
write	attempt.

Thread
If	CallbackType	is	ThreadCallback,	the	union	is	a
MINIDUMP_THREAD_CALLBACK	structure.

ThreadEx
If	CallbackType	is	ThreadExCallback,	the	union	is	a
MINIDUMP_THREAD_EX_CALLBACK	structure.

Module
If	CallbackType	is	ModuleCallback,	the	union	is	a
MINIDUMP_MODULE_CALLBACK	structure.

IncludeThread
If	CallbackType	is	IncludeThreadCallback,	the	union	is	a
MINIDUMP_INCLUDE_THREAD_CALLBACK	structure.

DbgHelp	6.2	and	earlier:		This	member	is	not
available.

IncludeModule
If	CallbackType	is	IncludeModuleCallback,	the	union	is	a
MINIDUMP_INCLUDE_MODULE_CALLBACK	structure.

DbgHelp	6.2	and	earlier:		This	member	is	not
available.

Io
If	CallbackType	is	IoStartCallback,	IoWriteAllCallback,	or
IoFinishCallback,	the	union	is	a	MINIDUMP_IO_CALLBACK
structure.

DbgHelp	6.4	and	earlier:		This	member	is	not
available.

ReadMemoryFailure
If	CallbackType	is	ReadMemoryFailureCallback,	the	union	is	a
MINIDUMP_READ_MEMORY_FAILURE_CALLBACK	structure.

DbgHelp	6.4	and	earlier:		This	member	is	not
available.

SecondaryFlags
Contains	a	value	from	the	MINIDUMP_SECONDARY_FLAGS
enumeration	type.

DbgHelp	6.5	and	earlier:		This	member	is	not
available.

Remarks

If	CallbackType	is	CancelCallback	or	MemoryCallback,	the	ProcessId
ProcessHandle,	and	CallbackType	members	are	valid	but	no	other
input	is	specified.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

MINIDUMP_CALLBACK_TYPE
MINIDUMP_INCLUDE_MODULE_CALLBACK
MINIDUMP_INCLUDE_THREAD_CALLBACK
MINIDUMP_IO_CALLBACK
MINIDUMP_MODULE_CALLBACK
MINIDUMP_READ_MEMORY_FAILURE_CALLBACK
MINIDUMP_THREAD_CALLBACK
MINIDUMP_THREAD_EX_CALLBACK
MiniDumpCallback

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_CALLBACK_INPUT%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MINIDUMP_CALLBACK_OUTPUT	Structure
Contains	information	returned	by	the	MiniDumpCallback	function.

typedef	struct	_MINIDUMP_CALLBACK_OUTPUT	{

		union	{

				ULONG	ModuleWriteFlags;

				ULONG	ThreadWriteFlags;

				ULONG	SecondaryFlags;

				struct	{

						ULONG64	MemoryBase;

						ULONG	MemorySize;

				};

				struct	{

						BOOL	CheckCancel;

						BOOL	Cancel;

				};

				HANDLE	Handle;

		};

		struct	{

				MINIDUMP_MEMORY_INFO	VmRegion;

				BOOL	Continue;

		};

		HRESULT	Status;

}	MINIDUMP_CALLBACK_OUTPUT,	

	*PMINIDUMP_CALLBACK_OUTPUT;

Members

ModuleWriteFlags
The	module	write	operation	flags.	This	member	can	be	one	or	more
of	the	values	in	the	MODULE_WRITE_FLAGS	enumeration.	The
flags	are	set	to	their	default	values	on	entry	to	the	callback.

This	member	is	ignored	unless	the	callback	type	is
IncludeModuleCallback	or	ModuleCallback.

ThreadWriteFlags

The	thread	write	operation	flags.	This	member	can	be	one	or	more	of
the	values	in	the	THREAD_WRITE_FLAGS	enumeration.	The	flags
are	set	to	their	default	values	on	entry	to	the	callback.

This	member	is	ignored	unless	the	callback	type	is
IncludeThreadCallback,	ThreadCallback,	or	ThreadExCallback.

SecondaryFlags
Contains	a	value	from	the	MINIDUMP_SECONDARY_FLAGS
enumeration	type.

DbgHelp	6.5	and	earlier:		This	member	is	not
available.

MemoryBase
The	base	address	of	the	memory	region	to	be	included	in	the	dump.

This	member	is	ignored	unless	the	callback	type	is	MemoryCallback
or	RemoveMemoryCallback.

MemorySize
The	size	of	the	memory	region	to	be	included	in	the	dump,	in	bytes.

This	member	is	ignored	unless	the	callback	type	is	MemoryCallback
or	RemoveMemoryCallback.

CheckCancel
Controls	whether	the	callback	function	should	receive	cancel
callbacks.	If	this	member	is	TRUE,	the	cancel	callbacks	will	continue.
Otherwise,	they	will	not.

This	member	is	ignored	unless	the	callback	type	is	CancelCallback.

Cancel
Controls	whether	the	dump	should	be	canceled.	If	the	callback
function	returns	TRUE	and	Cancel	is	TRUE,	the	dump	will	be
canceled.	In	this	case,	the	MiniDumpWriteDump	function	fails	and
the	dump	is	not	valid.

This	member	is	ignored	unless	the	callback	type	is	CancelCallback.

Handle
A	handle	to	the	file	to	which	a	kernel	minidump	will	be	written.

This	member	is	ignored	unless	the	callback	type	is
WriteKernelMinidumpCallback.

VmRegion
A	MINIDUMP_MEMORY_INFO	structure	that	describes	the	virtual
memory	region.	The	region	base	and	size	must	be	aligned	on	a	page
boundary.	The	region	size	can	be	set	to	0	to	filter	out	the	region.

This	member	is	ignored	unless	the	callback	type	is
IncludeVmRegionCallback.

Continue
Controls	whether	the	dump	should	be	continued.	If	the	callback
function	returns	TRUE	and	Continue	is	TRUE,	the	dump	will	be
continued.	Otherwise,	the	MiniDumpWriteDump	function	fails	and
the	dump	is	not	valid.

This	member	is	ignored	unless	the	callback	type	is
IncludeVmRegionCallback.

Status
The	status	of	the	operation.

This	member	is	ignored	unless	the	callback	type	is
ReadMemoryFailureCallback,	IoStartCallback,	IoWriteAllCallback,	or
IoFinishCallback.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

MiniDumpCallback
MODULE_WRITE_FLAGS
THREAD_WRITE_FLAGS

Send	comments	about	this	topic	to	Microsoft

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_CALLBACK_OUTPUT%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

MINIDUMP_DIRECTORY	Structure
Contains	the	information	needed	to	access	a	specific	data	stream	in	a
minidump	file.

typedef	struct	_MINIDUMP_DIRECTORY	{

		ULONG32	StreamType;

		MINIDUMP_LOCATION_DESCRIPTOR	Location;

}	MINIDUMP_DIRECTORY,	

	*PMINIDUMP_DIRECTORY;

Members

StreamType
The	type	of	data	stream.	This	member	can	be	one	of	the	values	in
the	MINIDUMP_STREAM_TYPE	enumeration.

Location
A	MINIDUMP_LOCATION_DESCRIPTOR	structure	that	specifies
the	location	of	the	data	stream.

Remarks

In	this	context,	a	data	stream	is	a	block	of	data	within	a	minidump	file.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

MiniDumpReadDumpStream
MINIDUMP_LOCATION_DESCRIPTOR
MINIDUMP_STREAM_TYPE

Send	comments	about	this	topic	to	Microsoft

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_DIRECTORY%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

MINIDUMP_EXCEPTION	Structure
Contains	exception	information.

typedef	struct	_MINIDUMP_EXCEPTION	{

		ULONG32	ExceptionCode;

		ULONG32	ExceptionFlags;

		ULONG64	ExceptionRecord;

		ULONG64	ExceptionAddress;

		ULONG32	NumberParameters;

		ULONG32	__unusedAlignment;

		ULONG64	ExceptionInformation[EXCEPTION_MAXIMUM_PARAMETERS];

}	MINIDUMP_EXCEPTION,	

	*PMINIDUMP_EXCEPTION;

Members

ExceptionCode
The	reason	the	exception	occurred.	This	is	the	code	generated	by	a
hardware	exception,	or	the	code	specified	in	the	RaiseException
function	for	a	software-generated	exception.	Following	are	the
exception	codes	likely	to	occur	due	to	common	programming	errors.

Value Meaning

EXCEPTION_ACCESS_VIOLATION The	thread	tried
to	read	from	or
write	to	a	virtual
address	for
which	it	does	not
have	the
appropriate
access.

EXCEPTION_ARRAY_BOUNDS_EXCEEDED The	thread	tried
to	access	an
array	element
that	is	out	of

bounds	and	the
underlying
hardware
supports	bounds
checking.

EXCEPTION_BREAKPOINT A	breakpoint
was
encountered.

EXCEPTION_DATATYPE_MISALIGNMENT The	thread	tried
to	read	or	write
data	that	is
misaligned	on
hardware	that
does	not	provide
alignment.	For
example,	16-bit
values	must	be
aligned	on	2-
byte	boundaries;
32-bit	values	on
4-byte
boundaries,	and
so	on.

EXCEPTION_FLT_DENORMAL_OPERAND One	of	the
operands	in	a
floating-point
operation	is
denormal.	A
denormal	value
is	one	that	is	too
small	to
represent	as	a
standard
floating-point
value.

EXCEPTION_FLT_DIVIDE_BY_ZERO The	thread	tried
to	divide	a
floating-point
value	by	a
floating-point
divisor	of	zero.

EXCEPTION_FLT_INEXACT_RESULT The	result	of	a
floating-point
operation	cannot
be	represented
exactly	as	a
decimal	fraction.

EXCEPTION_FLT_INVALID_OPERATION This	exception
represents	any
floating-point
exception	not
included	in	this
list.

EXCEPTION_FLT_OVERFLOW The	exponent	of
a	floating-point
operation	is
greater	than	the
magnitude
allowed	by	the
corresponding
type.

EXCEPTION_FLT_STACK_CHECK The	stack
overflowed	or
underflowed	as
the	result	of	a
floating-point
operation.

EXCEPTION_FLT_UNDERFLOW The	exponent	of

a	floating-point
operation	is	less
than	the
magnitude
allowed	by	the
corresponding
type.

EXCEPTION_ILLEGAL_INSTRUCTION The	thread	tried
to	execute	an
invalid
instruction.

EXCEPTION_IN_PAGE_ERROR The	thread	tried
to	access	a	page
that	was	not
present,	and	the
system	was
unable	to	load
the	page.	For
example,	this
exception	might
occur	if	a
network
connection	is
lost	while
running	a
program	over
the	network.

EXCEPTION_INT_DIVIDE_BY_ZERO The	thread	tried
to	divide	an
integer	value	by
an	integer
divisor	of	zero.

EXCEPTION_INT_OVERFLOW The	result	of	an
integer	operation

caused	a	carry
out	of	the	most
significant	bit	of
the	result.

EXCEPTION_INVALID_DISPOSITION An	exception
handler	returned
an	invalid
disposition	to	the
exception
dispatcher.
Programmers
using	a	high-
level	language
such	as	C
should	never
encounter	this
exception.

EXCEPTION_NONCONTINUABLE_EXCEPTION The	thread	tried
to	continue
execution	after	a
noncontinuable
exception
occurred.

EXCEPTION_PRIV_INSTRUCTION The	thread	tried
to	execute	an
instruction
whose	operation
is	not	allowed	in
the	current
machine	mode.

EXCEPTION_SINGLE_STEP A	trace	trap	or
other	single-
instruction
mechanism
signaled	that

one	instruction
has	been
executed.

EXCEPTION_STACK_OVERFLOW The	thread	used
up	its	stack.

Another	exception	code	is	likely	to	occur	when	debugging	console
processes.	It	does	not	arise	because	of	a	programming	error.	The
DBG_CONTROL_C	exception	code	occurs	when	CTRL+C	is	input	to
a	console	process	that	handles	CTRL+C	signals	and	is	being
debugged.	This	exception	code	is	not	meant	to	be	handled	by
applications.	It	is	raised	only	for	the	benefit	of	the	debugger,	and	is
raised	only	when	a	debugger	is	attached	to	the	console	process.

ExceptionFlags
This	member	can	be	either	zero,	indicating	a	continuable	exception,
or	EXCEPTION_NONCONTINUABLE,	indicating	a	noncontinuable
exception.	Any	attempt	to	continue	execution	after	a	noncontinuable
exception	causes	the
EXCEPTION_NONCONTINUABLE_EXCEPTION	exception.

ExceptionRecord
A	pointer	to	an	associated	MINIDUMP_EXCEPTION	structure.
Exception	records	can	be	chained	together	to	provide	additional
information	when	nested	exceptions	occur.

ExceptionAddress
The	address	where	the	exception	occurred.

NumberParameters
The	number	of	parameters	associated	with	the	exception.	This	is	the
number	of	defined	elements	in	the	ExceptionInformation	array.

__unusedAlignment
Reserved	for	cross-platform	structure	member	alignment.	Do	not	set.

ExceptionInformation
An	array	of	additional	arguments	that	describe	the	exception.	The
RaiseException	function	can	specify	this	array	of	arguments.	For
most	exception	codes,	the	array	elements	are	undefined.	For	the

following	exception	code,	the	array	elements	are	defined	as	follows.

Exception	code Meaning

EXCEPTION_ACCESS_VIOLATION The	first	element	of	the	array
contains	a	read/write	flag	that
indicates	the	type	of	operation
that	caused	the	access
violation.	If	this	value	is	zero,
the	thread	attempted	to	read
the	inaccessible	data.	If	this
value	is	1,	the	thread
attempted	to	write	to	an
inaccessible	address.

The	second	array	element
specifies	the	virtual	address
of	the	inaccessible	data.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

MINIDUMP_EXCEPTION_STREAM
RaiseException

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_EXCEPTION%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MINIDUMP_EXCEPTION_INFORMATION	Structure
Contains	the	exception	information	written	to	the	minidump	file	by	the
MiniDumpWriteDump	function.

typedef	struct	_MINIDUMP_EXCEPTION_INFORMATION	{

		DWORD	ThreadId;

		PEXCEPTION_POINTERS	ExceptionPointers;

		BOOL	ClientPointers;

}	MINIDUMP_EXCEPTION_INFORMATION,	

	*PMINIDUMP_EXCEPTION_INFORMATION;

Members

ThreadId
The	identifier	of	the	thread	throwing	the	exception.

ExceptionPointers
A	pointer	to	an	EXCEPTION_POINTERS	structure	specifying	a
computer-independent	description	of	the	exception	and	the
processor	context	at	the	time	of	the	exception.

ClientPointers
The	memory	location	to	which	the	value	of	ExceptionPointers
refers.	If	this	member	is	TRUE,	the	exception	pointer	is	located	in	the
address	space	of	the	client,	or	the	process	that	crashed.	If	this
member	is	FALSE,	the	exception	pointer	is	located	in	the	address
space	of	the	calling	program.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

EXCEPTION_POINTERS
MiniDumpWriteDump

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_EXCEPTION_INFORMATION%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MINIDUMP_EXCEPTION_STREAM	Structure
Represents	an	exception	information	stream.

typedef	struct	MINIDUMP_EXCEPTION_STREAM	{

		ULONG32	ThreadId;

		ULONG32	__alignment;

		MINIDUMP_EXCEPTION	ExceptionRecord;

		MINIDUMP_LOCATION_DESCRIPTOR	ThreadContext;

}	MINIDUMP_EXCEPTION_STREAM,	

	*PMINIDUMP_EXCEPTION_STREAM;

Members

ThreadId
The	identifier	of	the	thread	that	caused	the	exception.

__alignment
A	variable	for	alignment.

ExceptionRecord
A	MINIDUMP_EXCEPTION	structure.

ThreadContext
A	MINIDUMP_LOCATION_DESCRIPTOR	structure.

Remarks

In	this	context,	a	data	stream	is	a	set	of	data	in	a	minidump	file.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

MINIDUMP_EXCEPTION
MINIDUMP_LOCATION_DESCRIPTOR

MINIDUMP_STREAM_TYPE

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_EXCEPTION_STREAM%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MINIDUMP_FUNCTION_TABLE_DESCRIPTOR
Structure

Represents	a	function	table	stream.

typedef	struct	_MINIDUMP_FUNCTION_TABLE_DESCRIPTOR	{

		ULONG64	MinimumAddress;

		ULONG64	MaximumAddress;

		ULONG64	BaseAddress;

		ULONG32	EntryCount;

		ULONG32	SizeOfAlignPad;

}	MINIDUMP_FUNCTION_TABLE_DESCRIPTOR,	

	*PMINIDUMP_FUNCTION_TABLE_DESCRIPTOR;

Members

MinimumAddress
The	minimum	address	of	functions	described	by	the	table.

MaximumAddress
The	maximum	address	of	functions	described	by	the	table.

BaseAddress
The	base	address	to	use	when	computing	full	virtual	addresses	from
relative	virtual	addresses	in	function	entries.

EntryCount
The	number	of	entries	in	the	function	table.

SizeOfAlignPad
The	size	of	alignment	padding	that	follows	the	function	entry	data,	in
bytes.	The	function	entry	data	in	the	stream	is	guaranteed	to	be
aligned	appropriately	for	access	to	the	data	members.	If	a	minidump
is	directly	mapped	in	memory,	it	is	always	possible	to	directly
reference	structure	members	in	the	stream.

Remarks

The	first	descriptor	in	the	function	table	stream	follows	the	header,
MINIDUMP_FUNCTION_TABLE_STREAM.	The	generic	descriptor	is

followed	by	a	native	system	descriptor,	then	by	EntryCount	native
system	function	entry	structures.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

MINIDUMP_FUNCTION_TABLE_STREAM

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_FUNCTION_TABLE_DESCRIPTOR%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MINIDUMP_FUNCTION_TABLE_STREAM	Structure
Represents	the	header	for	the	function	table	stream.

typedef	struct	_MINIDUMP_FUNCTION_TABLE_STREAM	{

		ULONG32	SizeOfHeader;

		ULONG32	SizeOfDescriptor;

		ULONG32	SizeOfNativeDescriptor;

		ULONG32	SizeOfFunctionEntry;

		ULONG32	NumberOfDescriptors;

		ULONG32	SizeOfAlignPad;

}	MINIDUMP_FUNCTION_TABLE_STREAM,	

	*PMINIDUMP_FUNCTION_TABLE_STREAM;

Members

SizeOfHeader
The	size	of	header	information	for	the	stream,	in	bytes.	This	value	is
sizeof(MINIDUMP_FUNCTION_TABLE_STREAM).

SizeOfDescriptor
The	size	of	a	descriptor	in	the	stream,	in	bytes.	This	value	is
sizeof(MINIDUMP_FUNCTION_TABLE_DESCRIPTOR).

SizeOfNativeDescriptor
The	size	of	a	raw	system	descriptor	in	the	stream,	in	bytes.	This
value	depends	on	the	particular	platform	and	system	version	on
which	the	minidump	was	generated.

SizeOfFunctionEntry
The	size	of	a	raw	system	function	table	entry,	in	bytes.	This	value
depends	on	the	particular	platform	and	system	version	on	which	the
minidump	was	generated.

NumberOfDescriptors
The	number	of	descriptors	in	the	stream.

SizeOfAlignPad
The	size	of	alignment	padding	that	follows	the	header,	in	bytes.

Remarks

In	this	context,	a	data	stream	is	a	set	of	data	in	a	minidump	file.	This
header	structure	is	followed	by	NumberOfDescriptors	function	tables.
For	each	function	table	there	is	a
MINIDUMP_FUNCTION_TABLE_DESCRIPTOR	structure,	then	the	raw
system	descriptor	for	the	table,	then	the	raw	system	function	entry	data.	If
necessary,	alignment	padding	is	placed	between	tables	to	properly	align
the	initial	structures.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

MINIDUMP_FUNCTION_TABLE_DESCRIPTOR
MINIDUMP_STREAM_TYPE

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_FUNCTION_TABLE_STREAM%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MINIDUMP_HANDLE_DATA_STREAM	Structure
Represents	the	header	for	a	handle	data	stream.

typedef	struct	_MINIDUMP_HANDLE_DATA_STREAM	{

		ULONG32	SizeOfHeader;

		ULONG32	SizeOfDescriptor;

		ULONG32	NumberOfDescriptors;

		ULONG32	Reserved;

}	MINIDUMP_HANDLE_DATA_STREAM,	

	*PMINIDUMP_HANDLE_DATA_STREAM;

Members

SizeOfHeader
The	size	of	the	header	information	for	the	stream,	in	bytes.	This
value	is	sizeof(MINIDUMP_HANDLE_DATA_STREAM).

SizeOfDescriptor
The	size	of	a	descriptor	in	the	stream,	in	bytes.	This	value	is
sizeof(MINIDUMP_HANDLE_DESCRIPTOR)	or
sizeof(MINIDUMP_HANDLE_DESCRIPTOR_2).

NumberOfDescriptors
The	number	of	descriptors	in	the	stream.

Reserved
Reserved	for	future	use;	must	be	zero.

Remarks

In	this	context,	a	data	stream	is	a	set	of	data	in	a	minidump	file.	This
header	structure	is	followed	by	NumberOfDescriptors
MINIDUMP_HANDLE_DESCRIPTOR	or
MINIDUMP_HANDLE_DESCRIPTOR_2	structures.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

MINIDUMP_HANDLE_DESCRIPTOR
MINIDUMP_HANDLE_DESCRIPTOR_2
MINIDUMP_STREAM_TYPE

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_HANDLE_DATA_STREAM%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MINIDUMP_HANDLE_DESCRIPTOR	Structure
Contains	the	state	of	an	individual	system	handle	at	the	time	the
minidump	was	written.

typedef	struct	_MINIDUMP_HANDLE_DESCRIPTOR	{

		ULONG64	Handle;

		RVA	TypeNameRva;

		RVA	ObjectNameRva;

		ULONG32	Attributes;

		ULONG32	GrantedAccess;

		ULONG32	HandleCount;

		ULONG32	PointerCount;

}	MINIDUMP_HANDLE_DESCRIPTOR,	

	*PMINIDUMP_HANDLE_DESCRIPTOR;

Members

Handle
The	operating	system	handle	value.

TypeNameRva
An	RVA	to	a	MINIDUMP_STRING	structure	that	specifies	the	object
type	of	the	handle.	This	member	can	be	zero.

ObjectNameRva
An	RVA	to	a	MINIDUMP_STRING	structure	that	specifies	the	object
name	of	the	handle.	This	member	can	be	zero.

Attributes
The	meaning	of	this	member	depends	on	the	handle	type	and	the
operating	system.

GrantedAccess
The	meaning	of	this	member	depends	on	the	handle	type	and	the
operating	system.

HandleCount
The	meaning	of	this	member	depends	on	the	handle	type	and	the
operating	system.

PointerCount
The	meaning	of	this	member	depends	on	the	handle	type	and	the
operating	system.

Remarks

The	first	descriptor	in	the	handle	data	stream	follows	the	header,
MINIDUMP_HANDLE_DATA_STREAM.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

MINIDUMP_HANDLE_DATA_STREAM
MINIDUMP_STRING

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_HANDLE_DESCRIPTOR%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MINIDUMP_HANDLE_DESCRIPTOR_2	Structure
Describes	the	state	of	an	individual	system	handle	at	the	time	the
minidump	was	written.

typedef	struct	_MINIDUMP_HANDLE_DESCRIPTOR_2	{

		ULONG64	Handle;

		RVA	TypeNameRva;

		RVA	ObjectNameRva;

		ULONG32	Attributes;

		ULONG32	GrantedAccess;

		ULONG32	HandleCount;

		ULONG32	PointerCount;

		RVA	ObjectInfoRva;

		ULONG32	Reserved0;

}	MINIDUMP_HANDLE_DESCRIPTOR_2,	

	*PMINIDUMP_HANDLE_DESCRIPTOR_2;

Members

Handle
The	operating	system	handle	value.

TypeNameRva
An	RVA	to	a	MINIDUMP_STRING	structure	that	specifies	the	object
type	of	the	handle.	This	member	can	be	zero.

ObjectNameRva
An	RVA	to	a	MINIDUMP_STRING	structure	that	specifies	the	object
name	of	the	handle.	This	member	can	be	0.

Attributes
The	meaning	of	this	member	depends	on	the	handle	type	and	the
operating	system.

GrantedAccess
The	meaning	of	this	member	depends	on	the	handle	type	and	the
operating	system.

HandleCount

The	meaning	of	this	member	depends	on	the	handle	type	and	the
operating	system.

PointerCount
The	meaning	of	this	member	depends	on	the	handle	type	and	the
operating	system.

ObjectInfoRva
An	RVA	to	a	MINIDUMP_HANDLE_OBJECT_INFORMATION
structure	that	specifies	object-specific	information.	This	member	can
be	0	if	there	is	no	extra	information.

Reserved0
Reserved	for	future	use;	must	be	zero.

Remarks

The	first	descriptor	in	the	handle	data	stream	follows	the	header,
MINIDUMP_HANDLE_DATA_STREAM.

Requirements

Redistributable Requires	DbgHelp.dll	6.5	or	later.

Header Declared	in	Dbghelp.h.

See	Also

MINIDUMP_HANDLE_DATA_STREAM
MINIDUMP_HANDLE_OBJECT_INFORMATION
MINIDUMP_STRING

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_HANDLE_DESCRIPTOR_2%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MINIDUMP_HANDLE_OBJECT_INFORMATION
Structure

Contains	object-specific	information	for	a	handle.

typedef	struct	_MINIDUMP_HANDLE_OBJECT_INFORMATION	{

		RVA	NextInfoRva;

		ULONG32	InfoType;

		ULONG32	SizeOfInfo;

}	MINIDUMP_HANDLE_OBJECT_INFORMATION;

Members

NextInfoRva
An	RVA	to	a	MINIDUMP_HANDLE_OBJECT_INFORMATION
structure	that	specifies	additional	object-specific	information.	This
member	is	0	if	there	are	no	more	elements	in	the	list.

InfoType
The	object	information	type.	This	member	is	one	of	the	values	from
the	MINIDUMP_HANDLE_OBJECT_INFORMATION_TYPE
enumeration.

SizeOfInfo
The	size	of	the	information	that	follows	this	member,	in	bytes.

Requirements

Redistributable Requires	DbgHelp.dll	6.5	or	later.

Header Declared	in	Dbghelp.h.

See	Also

MINIDUMP_HANDLE_DESCRIPTOR_2

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_HANDLE_OBJECT_INFORMATION%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

MINIDUMP_HANDLE_OPERATION_LIST	Structure
Contains	a	list	of	handle	operations.

typedef	struct	_MINIDUMP_HANDLE_OPERATION_LIST	{

		ULONG32	SizeOfHeader;

		ULONG32	SizeOfEntry;

		ULONG32	NumberOfEntries;

		ULONG32	Reserved;

}	MINIDUMP_HANDLE_OPERATION_LIST,	

	*PMINIDUMP_HANDLE_OPERATION_LIST;

Members

SizeOfHeader
The	size	of	the	header	data	for	the	stream,	in	bytes.	This	is	generally
sizeof(MINIDUMP_HANDLE_OPERATION_LIST).

SizeOfEntry
The	size	of	each	entry	following	the	header,	in	bytes.	This	is
generally	sizeof(AVRF_HANDLE_OPERATION).

NumberOfEntries
The	number	of	entries	in	the	stream.	These	are	generally
AVRF_HANDLE_OPERATION	structures.	The	entries	follow	the
header.

Reserved
This	member	is	reserved	for	future	use.

Remarks

For	a	definition	of	the	AVRF_HANDLE_OPERATION	structure,	see	the
Avrfsdk.h	header	file.

Requirements

Redistributable Requires	DbgHelp.dll	6.5	or	later.

Header Declared	in	Dbghelp.h.

See	Also

MINIDUMP_STREAM_TYPE

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_HANDLE_OPERATION_LIST%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MINIDUMP_HEADER	Structure
Contains	header	information	for	the	minidump	file.

typedef	struct	_MINIDUMP_HEADER	{

		ULONG32	Signature;

		ULONG32	Version;

		ULONG32	NumberOfStreams;

		RVA	StreamDirectoryRva;

		ULONG32	CheckSum;

		union	{

				ULONG32	Reserved;

				ULONG32	TimeDateStamp;

		};

		ULONG64	Flags;

}	MINIDUMP_HEADER,	

	*PMINIDUMP_HEADER;

Members

Signature
The	signature.	Set	this	member	to	MINIDUMP_SIGNATURE.

Version
The	version	of	the	minidump	format.	The	low-order	word	is
MINIDUMP_VERSION.	The	high-order	word	is	an	internal	value	that
is	implementation	specific.

NumberOfStreams
The	number	of	streams	in	the	minidump	directory.

StreamDirectoryRva
The	base	RVA	of	the	minidump	directory.	The	directory	is	an	array	of
MINIDUMP_DIRECTORY	structures.

CheckSum
The	checksum	for	the	minidump	file.	This	member	can	be	zero.

Reserved
This	member	is	reserved.

TimeDateStamp
Time	and	date,	in	time_t	format.

Flags
One	or	more	values	from	the	MINIDUMP_TYPE	enumeration	type.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

MINIDUMP_DIRECTORY
MINIDUMP_TYPE

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_HEADER%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MINIDUMP_INCLUDE_MODULE_CALLBACK
Structure

Contains	information	for	the	MiniDumpCallback	function	when	the
callback	type	is	IncludeModuleCallback.

typedef	struct	_MINIDUMP_INCLUDE_MODULE_CALLBACK	{

		ULONG64	BaseOfImage;

}	MINIDUMP_INCLUDE_MODULE_CALLBACK,	

	*PMINIDUMP_INCLUDE_MODULE_CALLBACK;

Members

BaseOfImage
The	base	address	of	the	executable	image	in	memory.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

MINIDUMP_CALLBACK_INPUT
MINIDUMP_CALLBACK_TYPE
MiniDumpCallback

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_INCLUDE_MODULE_CALLBACK%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MINIDUMP_INCLUDE_THREAD_CALLBACK
Structure

Contains	information	for	the	MiniDumpCallback	function	when	the
callback	type	is	IncludeThreadCallback.

typedef	struct	_MINIDUMP_INCLUDE_THREAD_CALLBACK	{

		ULONG	ThreadId;

}	MINIDUMP_INCLUDE_THREAD_CALLBACK,	

	*PMINIDUMP_INCLUDE_THREAD_CALLBACK;

Members

ThreadId
The	identifier	of	the	thread.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

MINIDUMP_CALLBACK_INPUT
MINIDUMP_CALLBACK_TYPE
MiniDumpCallback

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_INCLUDE_THREAD_CALLBACK%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MINIDUMP_IO_CALLBACK	Structure
Contains	I/O	callback	information.	This	structure	is	used	by	the
MiniDumpCallback	function	when	the	callback	type	is	IoStartCallback,
IoWriteAllCallback,	or	IoFinishCallback.

typedef	struct	_MINIDUMP_IO_CALLBACK	{

		HANDLE	Handle;

		ULONG64	Offset;

		PVOID	Buffer;

		ULONG	BufferBytes;

}	MINIDUMP_IO_CALLBACK,	

	*PMINIDUMP_IO_CALLBACK;

Members

Handle
The	file	handle	passed	to	the	MiniDumpWriteDump	function.

Offset
The	offset	for	the	write	operation	from	the	start	of	the	minidump	data.
This	member	is	used	only	with	IoWriteAllCallback.

Buffer
A	pointer	to	a	buffer	that	contains	the	data	to	be	written.	This
member	is	used	only	with	IoWriteAllCallback.

BufferBytes
The	size	of	the	data	buffer,	in	bytes.	This	member	is	used	only	with
IoWriteAllCallback.

Requirements

Redistributable Requires	DbgHelp.dll	6.5	or	later.

Header Declared	in	Dbghelp.h.

See	Also

MINIDUMP_CALLBACK_INPUT
MiniDumpCallback

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_IO_CALLBACK%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MINIDUMP_LOCATION_DESCRIPTOR	Structure
Contains	information	describing	the	location	of	a	data	stream	within	a
minidump	file.

typedef	struct	_MINIDUMP_LOCATION_DESCRIPTOR	{

		ULONG64	DataSize;

		RVA64	Rva;

}	MINIDUMP_LOCATION_DESCRIPTOR;

Members

DataSize
The	size	of	the	data	stream,	in	bytes.

Rva
The	relative	virtual	address	(RVA)	of	the	data.	This	is	the	byte	offset
of	the	data	stream	from	the	beginning	of	the	minidump	file.

Remarks

In	this	context,	a	data	stream	refers	to	a	block	of	data	within	a	minidump
file.

This	structure	uses	32-bit	locations	for	RVAs	in	the	first	4GB	and	64-bit
locations	are	used	for	larger	RVAs.	The
MINIDUMP_LOCATION_DESCRIPTOR64	structure	is	defined	as
follows.

typedef	struct	_MINIDUMP_LOCATION_DESCRIPTOR64	{

		ULONG64	DataSize;

		RVA64	Rva;

}	MINIDUMP_LOCATION_DESCRIPTOR64;

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

MINIDUMP_DIRECTORY
MINIDUMP_EXCEPTION_STREAM
MINIDUMP_MEMORY_DESCRIPTOR

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_LOCATION_DESCRIPTOR%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MINIDUMP_MEMORY_DESCRIPTOR	Structure
Describes	a	range	of	memory.

typedef	struct	_MINIDUMP_MEMORY_DESCRIPTOR	{

		ULONG64	StartOfMemoryRange;

		MINIDUMP_LOCATION_DESCRIPTOR	Memory;

}	MINIDUMP_MEMORY_DESCRIPTOR,	

	*PMINIDUMP_MEMORY_DESCRIPTOR;

Members

StartOfMemoryRange
The	starting	address	of	the	memory	range.

Memory
A	MINIDUMP_LOCATION_DESCRIPTOR	structure.

Remarks

MINIDUMP_MEMORY_DESCRIPTOR64	is	used	for	full-memory
minidumps	where	all	of	the	raw	memory	is	sequential	at	the	end	of	the
minidump.	There	is	no	need	for	individual	relative	virtual	addresses
(RVAs),	because	the	RVA	is	the	base	RVA	plus	the	sum	of	the	preceding
data	blocks.	The	MINIDUMP_MEMORY_DESCRIPTOR64	structure	is
defined	as	follows.

typedef	struct	_MINIDUMP_MEMORY_DESCRIPTOR64	{

				ULONG64	StartOfMemoryRange;

				ULONG64	DataSize;

}	MINIDUMP_MEMORY_DESCRIPTOR64,	*PMINIDUMP_MEMORY_DESCRIPTOR64;

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

MINIDUMP_LOCATION_DESCRIPTOR

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_MEMORY_DESCRIPTOR%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MINIDUMP_MEMORY_INFO	Structure
Describes	a	region	of	memory.

typedef	struct	_MINIDUMP_MEMORY_INFO	{

		ULONG64	BaseAddress;

		ULONG64	AllocationBase;

		ULONG32	AllocationProtect;

		ULONG32	__alignment1;

		ULONG64	RegionSize;

		ULONG32	State;

		ULONG32	Protect;

		ULONG32	Type;

		ULONG32	__alignment2;

}	MINIDUMP_MEMORY_INFO,	

	*PMINIDUMP_MEMORY_INFO;

Members

BaseAddress
The	base	address	of	the	region	of	pages.

AllocationBase
The	base	address	of	a	range	of	pages	in	this	region.	The	page	is
contained	within	this	memory	region.

AllocationProtect
The	memory	protection	when	the	region	was	initially	allocated.	This
member	can	be	one	of	the	memory	protection	options,	along	with
PAGE_GUARD	or	PAGE_NOCACHE,	as	needed.

__alignment1
A	variable	for	alignment.

RegionSize
The	size	of	the	region	beginning	at	the	base	address	in	which	all
pages	have	identical	attributes,	in	bytes.

State
The	state	of	the	pages	in	the	region.	This	member	can	be	one	of	the

following	values.

State Meaning

MEM_COMMIT
0x1000

Indicates	committed	pages	for	which
physical	storage	has	been	allocated,
either	in	memory	or	in	the	paging	file	on
disk.

MEM_FREE
0x10000

Indicates	free	pages	not	accessible	to
the	calling	process	and	available	to	be
allocated.	For	free	pages,	the
information	in	the	AllocationBase,
AllocationProtect,	Protect,	and	Type
members	is	undefined.

MEM_RESERVE
0x2000

Indicates	reserved	pages	where	a	range
of	the	process's	virtual	address	space	is
reserved	without	any	physical	storage
being	allocated.	For	reserved	pages,
the	information	in	the	Protect	member
is	undefined.

Protect
The	access	protection	of	the	pages	in	the	region.	This	member	is
one	of	the	values	listed	for	the	AllocationProtect	member.

Type
The	type	of	pages	in	the	region.	The	following	types	are	defined.

Type Meaning

MEM_IMAGE
0x1000000

Indicates	that	the	memory	pages	within
the	region	are	mapped	into	the	view	of
an	image	section.

MEM_MAPPED
0x40000

Indicates	that	the	memory	pages	within
the	region	are	mapped	into	the	view	of	a
section.

MEM_PRIVATE
0x20000

Indicates	that	the	memory	pages	within
the	region	are	private	(that	is,	not
shared	by	other	processes).

__alignment2
A	variable	for	alignment.

Requirements

Redistributable Requires	DbgHelp.dll	6.3	or	later.

Header Declared	in	DbgHelp.h.

See	Also

MINIDUMP_MEMORY_INFO_LIST

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_MEMORY_INFO%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MINIDUMP_MEMORY_INFO_LIST	Structure
Contains	a	list	of	memory	regions.

typedef	struct	_MINIDUMP_MEMORY_INFO_LIST	{

		ULONG	SizeOfHeader;

		ULONG	SizeOfEntry;

		ULONG64	NumberOfEntries;

}	MINIDUMP_MEMORY_INFO_LIST,	

	*PMINIDUMP_MEMORY_INFO_LIST;

Members

SizeOfHeader
The	size	of	the	header	data	for	the	stream,	in	bytes.	This	is	generally
sizeof(MINIDUMP_MEMORY_INFO_LIST).

SizeOfEntry
The	size	of	each	entry	following	the	header,	in	bytes.	This	is
generally	sizeof(MINIDUMP_MEMORY_INFO).

NumberOfEntries
The	number	of	entries	in	the	stream.	These	are	generally
MINIDUMP_MEMORY_INFO	structures.	The	entries	follow	the
header.

Requirements

Redistributable Requires	DbgHelp.dll	6.3	or	later.

Header Declared	in	DbgHelp.h.

See	Also

MINIDUMP_MEMORY_INFO
MINIDUMP_STREAM_TYPE

Send	comments	about	this	topic	to	Microsoft

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_MEMORY_INFO_LIST%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

MINIDUMP_MEMORY_LIST	Structure
Contains	a	list	of	memory	ranges.

typedef	struct	_MINIDUMP_MEMORY_LIST	{

		ULONG32	NumberOfMemoryRanges;

		MINIDUMP_MEMORY_DESCRIPTOR	MemoryRanges[];

}	MINIDUMP_MEMORY_LIST,	

	*PMINIDUMP_MEMORY_LIST;

Members

NumberOfMemoryRanges
The	number	of	structures	in	the	MemoryRanges	array.

MemoryRanges
An	array	of	MINIDUMP_MEMORY_DESCRIPTOR	structures.

Remarks

The	MINIDUMP_MEMORY64_LIST	structure	is	defined	as	follows.	It	is
used	for	full-memory	minidumps.

typedef	struct	_MINIDUMP_MEMORY64_LIST	{

				ULONG64	NumberOfMemoryRanges;

				RVA64	BaseRva;

				MINIDUMP_MEMORY_DESCRIPTOR64	MemoryRanges	[0];

}	MINIDUMP_MEMORY64_LIST,	*PMINIDUMP_MEMORY64_LIST;

Note	that	BaseRva	is	the	overall	base	RVA	for	the	memory	list.	To	locate
the	data	for	a	particular	descriptor,	start	at	BaseRva	and	increment	by
the	size	of	a	descriptor	until	you	reach	the	descriptor.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

MINIDUMP_MEMORY_DESCRIPTOR
MINIDUMP_STREAM_TYPE

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_MEMORY_LIST%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MINIDUMP_MISC_INFO	Structure
Contains	a	variety	of	information.

typedef	struct	_MINIDUMP_MISC_INFO	{

		ULONG32	SizeOfInfo;

		ULONG32	Flags1;

		ULONG32	ProcessId;

		ULONG32	ProcessCreateTime;

		ULONG32	ProcessUserTime;

		ULONG32	ProcessKernelTime;

}	MINIDUMP_MISC_INFO,	

	*PMINIDUMP_MISC_INFO;

Members

SizeOfInfo
The	size	of	the	structure,	in	bytes.

Flags1
The	flags	that	indicate	the	valid	members	of	this	structure.	This
member	can	be	one	or	more	of	the	following	values.

Value Meaning

MINIDUMP_MISC1_PROCESS_ID
0x00000001

ProcessId	is	used.

MINIDUMP_MISC1_PROCESS_TIMES
0x00000002

ProcessCreateTime,
ProcessKernelTime,	and
ProcessUserTime	are
used.

ProcessId
The	identifier	of	the	process.	If	Flags1	does	not	specify
MINIDUMP_MISC1_PROCESS_ID,	this	member	is	unused.

ProcessCreateTime
The	creation	time	of	the	process,	in	time_t	format.	If	Flags1	does	not

specify	MINIDUMP_MISC1_PROCESS_TIMES,	this	member	is
unused.

ProcessUserTime
The	time	the	process	has	executed	in	user	mode,	in	seconds.	The
time	that	each	of	the	threads	of	the	process	has	executed	in	user
mode	is	determined,	then	all	these	times	are	summed	to	obtain	this
value.	If	Flags1	does	not	specify
MINIDUMP_MISC1_PROCESS_TIMES,	this	member	is	unused.

ProcessKernelTime
The	time	the	process	has	executed	in	kernel	mode,	in	seconds.	The
time	that	each	of	the	threads	of	the	process	has	executed	in	kernel
mode	is	determined,	then	all	these	times	are	summed	to	obtain	this
value.	If	Flags1	does	not	specify
MINIDUMP_MISC1_PROCESS_TIMES,	this	member	is	unused.

Requirements

Redistributable Requires	DbgHelp.dll	6.0	or	later.

Header Declared	in	DbgHelp.h.

See	Also

MINIDUMP_STREAM_TYPE

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_MISC_INFO%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MINIDUMP_MISC_INFO_2	Structure
Represents	information	in	the	miscellaneous	information	stream.

typedef	struct	_MINIDUMP_MISC_INFO_2	{

		ULONG32	SizeOfInfo;

		ULONG32	Flags1;

		ULONG32	ProcessId;

		ULONG32	ProcessCreateTime;

		ULONG32	ProcessUserTime;

		ULONG32	ProcessKernelTime;

		ULONG32	ProcessorMaxMhz;

		ULONG32	ProcessorCurrentMhz;

		ULONG32	ProcessorMhzLimit;

		ULONG32	ProcessorMaxIdleState;

		ULONG32	ProcessorCurrentIdleState;

}	MINIDUMP_MISC_INFO_2,	

	*PMINIDUMP_MISC_INFO_2;

Members

SizeOfInfo
The	size	of	the	structure,	in	bytes.

Flags1
The	flags	that	indicate	the	valid	members	of	this	structure.	This
member	can	be	one	or	more	of	the	following	values.

Value Meaning

MINIDUMP_MISC1_PROCESS_ID
0x00000001

ProcessId	is	used.

MINIDUMP_MISC1_PROCESS_TIMES
0x00000002

ProcessCreateTime
ProcessKernelTime
ProcessUserTime
used.

MINIDUMP_MISC1_PROCESSOR_POWER_INFO ProcessorMaxMhz

0x00000004 ProcessorCurrentMhz
ProcessorMhzLimit
ProcessorMaxIdleState
and
ProcessorCurrentIdleState
are	used.

ProcessId
The	identifier	of	the	process.	If	Flags1	does	not	specify
MINIDUMP_MISC1_PROCESS_ID,	this	member	is	unused.

ProcessCreateTime
The	creation	time	of	the	process,	in	time_t	format.	If	Flags1	does	not
specify	MINIDUMP_MISC1_PROCESS_TIMES,	this	member	is
unused.

ProcessUserTime
The	time	the	process	has	executed	in	user	mode,	in	seconds.	The
time	that	each	of	the	threads	of	the	process	has	executed	in	user
mode	is	determined,	then	all	these	times	are	summed	to	obtain	this
value.	If	Flags1	does	not	specify
MINIDUMP_MISC1_PROCESS_TIMES,	this	member	is	unused.

ProcessKernelTime
The	time	the	process	has	executed	in	kernel	mode,	in	seconds.	The
time	that	each	of	the	threads	of	the	process	has	executed	in	kernel
mode	is	determined,	then	all	these	times	are	summed	to	obtain	this
value.	If	Flags1	does	not	specify
MINIDUMP_MISC1_PROCESS_TIMES,	this	member	is	unused.

ProcessorMaxMhz
The	maximum	specified	clock	frequency	of	the	system	processor,	in
MHz.	If	Flags1	does	not	specify
MINIDUMP_MISC1_PROCESSOR_POWER_INFO,	this	member	is
unused.

ProcessorCurrentMhz
The	processor	clock	frequency,	in	MHz.	This	number	is	the	maximum
specified	processor	clock	frequency	multiplied	by	the	current
processor	throttle.	If	Flags1	does	not	specify

MINIDUMP_MISC1_PROCESSOR_POWER_INFO,	this	member	is
unused.

ProcessorMhzLimit
The	limit	on	the	processor	clock	frequency,	in	MHz.	This	number	is
the	maximum	specified	processor	clock	frequency	multiplied	by	the
current	processor	thermal	throttle	limit.	If	Flags1	does	not	specify
MINIDUMP_MISC1_PROCESSOR_POWER_INFO,	this	member	is
unused.

ProcessorMaxIdleState
The	maximum	idle	state	of	the	processor.	If	Flags1	does	not	specify
MINIDUMP_MISC1_PROCESSOR_POWER_INFO,	this	member	is
unused.

ProcessorCurrentIdleState
The	current	idle	state	of	the	processor.	If	Flags1	does	not	specify
MINIDUMP_MISC1_PROCESSOR_POWER_INFO,	this	member	is
unused.

Requirements

Redistributable Requires	DbgHelp.dll	6.5	or	later.

Header Declared	in	Dbghelp.h.

See	Also

MINIDUMP_STREAM_TYPE

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_MISC_INFO_2%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MINIDUMP_MODULE	Structure
Contains	information	for	a	specific	module.

typedef	struct	_MINIDUMP_MODULE	{

		ULONG64	BaseOfImage;

		ULONG32	SizeOfImage;

		ULONG32	CheckSum;

		ULONG32	TimeDateStamp;

		RVA	ModuleNameRva;

		VS_FIXEDFILEINFO	VersionInfo;

		MINIDUMP_LOCATION_DESCRIPTOR	CvRecord;

		MINIDUMP_LOCATION_DESCRIPTOR	MiscRecord;

		ULONG64	Reserved0;

		ULONG64	Reserved1;

}	MINIDUMP_MODULE,	

	*PMINIDUMP_MODULE;

Members

BaseOfImage
The	base	address	of	the	module	executable	image	in	memory.

SizeOfImage
The	size	of	the	module	executable	image	in	memory,	in	bytes.

CheckSum
The	checksum	value	of	the	module	executable	image.

TimeDateStamp
The	timestamp	value	of	the	module	executable	image,	in	time_t
format.

ModuleNameRva
An	RVA	to	a	MINIDUMP_STRING	structure	that	specifies	the	name
of	the	module.

VersionInfo
A	VS_FIXEDFILEINFO	structure	that	specifies	the	version	of	the
module.

CvRecord
A	MINIDUMP_LOCATION_DESCRIPTOR	structure	that	specifies
the	CodeView	record	of	the	module.

MiscRecord
A	MINIDUMP_LOCATION_DESCRIPTOR	structure	that	specifies
the	miscellaneous	record	of	the	module.

Reserved0
Reserved	for	future	use.

Reserved1
Reserved	for	future	use.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

MINIDUMP_MODULE_LIST
MINIDUMP_STRING
VS_FIXEDFILEINFO

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_MODULE%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MINIDUMP_MODULE_CALLBACK	Structure
Contains	module	information	for	the	MiniDumpCallback	function	when
the	callback	type	is	ModuleCallback.

typedef	struct	_MINIDUMP_MODULE_CALLBACK	{

		PWCHAR	FullPath;

		ULONG64	BaseOfImage;

		ULONG	SizeOfImage;

		ULONG	CheckSum;

		ULONG	TimeDateStamp;

		VS_FIXEDFILEINFO	VersionInfo;

		PVOID	CvRecord;

		ULONG	SizeOfCvRecord;

		PVOID	MiscRecord;

		ULONG	SizeOfMiscRecord;

}	MINIDUMP_MODULE_CALLBACK,	

	*PMINIDUMP_MODULE_CALLBACK;

Members

FullPath
The	fully	qualified	path	of	the	module	executable.

BaseOfImage
The	base	address	of	the	module	executable	image	in	memory.

SizeOfImage
The	size	of	the	module	executable	image	in	memory,	in	bytes.

CheckSum
The	checksum	value	of	the	module	executable	image.

TimeDateStamp
The	timestamp	value	of	the	module	executable	image,	in	time_t
format.

VersionInfo
A	VS_FIXEDFILEINFO	structure	that	specifies	the	version	of	the
module.

CvRecord
A	pointer	to	a	string	containing	the	CodeView	record	of	the	module.

SizeOfCvRecord
The	size	of	the	Codeview	record	of	the	module	in	the	CvRecord
member,	in	bytes.

MiscRecord
A	pointer	to	a	string	that	specifies	the	miscellaneous	record	of	the
module.

SizeOfMiscRecord
The	size	of	the	miscellaneous	record	of	the	module	in	the
MiscRecord	member,	in	bytes.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

MINIDUMP_CALLBACK_INPUT
MiniDumpCallback
VS_FIXEDFILEINFO

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_MODULE_CALLBACK%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MINIDUMP_MODULE_LIST	Structure
Contains	a	list	of	modules.

typedef	struct	_MINIDUMP_MODULE_LIST	{

		ULONG32	NumberOfModules;

		MINIDUMP_MODULE	Modules[];

}	MINIDUMP_MODULE_LIST,	

	*PMINIDUMP_MODULE_LIST;

Members

NumberOfModules
The	number	of	structures	in	the	Modules	array.

Modules
An	array	of	MINIDUMP_MODULE	structures.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

MINIDUMP_MODULE
MINIDUMP_STREAM_TYPE

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_MODULE_LIST%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MINIDUMP_READ_MEMORY_FAILURE_CALLBACK
Structure

Contains	information	about	a	failed	memory	read	operation.	This
structure	is	used	by	the	MiniDumpCallback	function	when	the	callback
type	is	ReadMemoryFailureCallback.

typedef	struct	_MINIDUMP_READ_MEMORY_FAILURE_CALLBACK	{

		ULONG64	Offset;

		ULONG	Bytes;

		HRESULT	FailureStatus;

}	MINIDUMP_READ_MEMORY_FAILURE_CALLBACK,	

	*PMINIDUMP_READ_MEMORY_FAILURE_CALLBACK;

Members

Offset
The	offset	of	the	address	for	the	failed	memory	read	operation.

Bytes
The	size	of	the	failed	memory	read	operation,	in	bytes.

FailureStatus
The	resulting	error	code	from	the	failed	memory	read	operation.

Requirements

Redistributable Requires	DbgHelp.dll	6.5	or	later.

Header Declared	in	Dbghelp.h.

See	Also

MINIDUMP_CALLBACK_INPUT
MiniDumpCallback

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_READ_MEMORY_FAILURE_CALLBACK%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

MINIDUMP_STRING	Structure
Describes	a	string.

typedef	struct	_MINIDUMP_STRING	{

		ULONG32	Length;

		WCHAR	Buffer[];

}	MINIDUMP_STRING,	

	*PMINIDUMP_STRING;

Members

Length
The	size	of	the	string	in	the	Buffer	member,	in	bytes.	This	size	does
not	include	the	null-terminating	character.

Buffer
The	null-terminated	string.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

MINIDUMP_HANDLE_DESCRIPTOR
MINIDUMP_MODULE
MINIDUMP_UNLOADED_MODULE

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_STRING%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MINIDUMP_SYSTEM_INFO	Structure
Contains	processor	and	operating	system	information.

typedef	struct	_MINIDUMP_SYSTEM_INFO	{

		USHORT	ProcessorArchitecture;

		USHORT	ProcessorLevel;

		USHORT	ProcessorRevision;

		union	{

				USHORT	Reserved0;

				struct	{

						UCHAR	NumberOfProcessors;

						UCHAR	ProductType;

				};

		};

		ULONG32	MajorVersion;

		ULONG32	MinorVersion;

		ULONG32	BuildNumber;

		ULONG32	PlatformId;

		RVA	CSDVersionRva;

		union	{

				ULONG32	Reserved1;

				struct	{

						USHORT	SuiteMask;

						USHORT	Reserved2;

				};

		};

		union	{

				struct	{

						ULONG32	VendorId[3];

						ULONG32	VersionInformation;

						ULONG32	FeatureInformation;

						ULONG32	AMDExtendedCpuFeatures;

				}	X86CpuInfo;

				struct	{

						ULONG64	ProcessorFeatures[2];

				}	OtherCpuInfo;

		}	Cpu;

}	MINIDUMP_SYSTEM_INFO,	

	*PMINIDUMP_SYSTEM_INFO;

Members

ProcessorArchitecture
The	system's	processor	architecture.	This	member	can	be	one	of	the
following	values.

Value Meaning

PROCESSOR_ARCHITECTURE_AMD64
9

x64	(AMD	or	Intel)

PROCESSOR_ARCHITECTURE_IA64
6

Intel	Itanium
Processor	Family
(IPF)

PROCESSOR_ARCHITECTURE_INTEL
0

x86

PROCESSOR_ARCHITECTURE_UNKNOWN
0xffff

Unknown
processor.

ProcessorLevel
The	system's	architecture-dependent	processor	level.

If	ProcessorArchitecture	is
PROCESSOR_ARCHITECTURE_INTEL,	ProcessorLevel	can	be
one	of	the	following	values.

Value Meaning

3 Intel	80386

4 Intel	80486

5 Intel	Pentium

6 Intel	Pentium	Pro	or	Pentium
II

If	ProcessorArchitecture	is	PROCESSOR_ARCHITECTURE_IA64,
ProcessorLevel	is	set	to	1.

ProcessorRevision
The	architecture-dependent	processor	revision.

Processor Value
Intel	80386
or	80486

A	value	of	the	form	xxyz.

If	xx	is	equal	to	0xFF,	y	-	0xA	is	the	model	number,
and	z	is	the	stepping	identifier.	For	example,	an	Intel
80486-D0	system	returns	0xFFD0.

If	xx	is	not	equal	to	0xFF,	xx	+	'A'	is	the	stepping
letter	and	yz	is	the	minor	stepping.

Intel
Pentium,
Cyrix,	or
NextGen	586

A	value	of	the	form	xxyy,	where	xx	is	the	model
number	and	yy	is	the	stepping.	Display	this	value	of
0x0201	as	follows:

Model	xx,	Stepping	yy

Reserved0
This	member	is	reserved	for	future	use	and	must	be	zero.

NumberOfProcessors
The	number	of	processors	in	the	system.

ProductType
Any	additional	information	about	the	system.	This	member	can	be
one	of	the	following	values.

Value Meaning

VER_NT_DOMAIN_CONTROLLER
0x0000002

The	system	is	a	domain
controller.

VER_NT_SERVER
0x0000003

The	system	is	a	server.

VER_NT_WORKSTATION
0x0000001

The	system	is	running
Windows	NT	4.0	Workstation,
Windows	2000	Professional,
Windows	XP	Home	Edition,	or
Windows	XP	Professional.

MajorVersion
The	major	version	number	of	the	operating	system.	This	member	can
be	4,	5,	or	6.

MinorVersion
The	minor	version	number	of	the	operating	system.

BuildNumber
The	build	number	of	the	operating	system.

Windows	Me/98/95:		The	low-order	word	contains
the	build	number	of	the	operating	system.	The	high-
order	word	contains	the	major	and	minor	version
numbers.

PlatformId
The	operating	system	platform.	This	member	can	be	one	of	the
following	values.

Value Meaning

VER_PLATFORM_WIN32s
0

Win32s.

VER_PLATFORM_WIN32_WINDOWS
1

Windows	Me,	Windows	98,
or	Windows	95.

VER_PLATFORM_WIN32_NT
2

Windows	Server	2003,
Windows	XP,	or
Windows	2000.

CSDVersionRva
An	RVA	(from	the	beginning	of	the	dump)	to	a	MINIDUMP_STRING
that	describes	the	latest	Service	Pack	installed	on	the	system.	If	no
Service	Pack	has	been	installed,	the	string	is	empty.

Reserved1
This	member	is	reserved	for	future	use.

SuiteMask
The	bit	flags	that	identify	the	product	suites	available	on	the	system.
This	member	can	be	a	combination	of	the	following	values.

Value Meaning

VER_SUITE_BACKOFFICE
0x00000004

Microsoft	BackOffice
components	are	installed.

VER_SUITE_BLADE
0x00000400

Windows	Server	2003,	Web
Edition	is	installed.

VER_SUITE_COMPUTE_SERVER
0x00004000

Windows	Server	2003,
Compute	Cluster	Edition	is
installed.

VER_SUITE_DATACENTER
0x00000080

Windows	Server	2008
Datacenter,	Windows
Server	2003,	Datacenter
Edition	or	Windows	2000
Datacenter	Server	is	installed.

VER_SUITE_ENTERPRISE
0x00000002

Windows	Server	2008
Enterprise,	Windows
Server	2003,	Enterprise
Edition,	Windows	2000
Advanced	Server,	or
Windows	NT	Server	4.0
Enterprise	Edition	is	installed.
Refer	to	the	Remarks	section
for	more	information	about	this
bit	flag.

VER_SUITE_EMBEDDEDNT
0x00000040

Windows	XP	Embedded	is
installed.

VER_SUITE_PERSONAL
0x00000200

Windows	XP	Home	Edition	is
installed.

VER_SUITE_SINGLEUSERTS
0x00000100

Remote	Desktop	is	supported,
but	only	one	interactive
session	is	supported.	This
value	is	set	unless	the	system
is	running	in	application	server
mode.

VER_SUITE_SMALLBUSINESS
0x00000001

Microsoft	Small	Business
Server	was	once	installed	on
the	system,	but	may	have
been	upgraded	to	another
version	of	Windows.	Refer	to
the	Remarks	section	for	more
information	about	this	bit	flag.

VER_SUITE_SMALLBUSINESS_RESTRICTED
0x00000020

Microsoft	Small	Business
Server	is	installed	with	the
restrictive	client	license	in
force.	Refer	to	the	
section	for	more	information
about	this	bit	flag.

VER_SUITE_STORAGE_SERVER
0x00002000

Windows	Storage	Server	2003
R2	is	installed.

VER_SUITE_TERMINAL
0x00000010

Terminal	Services	is	installed.
This	value	is	always	set.

If	VER_SUITE_TERMINAL	is
set	but
VER_SUITE_SINGLEUSERTS
is	not	set,	the	system	is
running	in	application	server
mode.

Reserved2
This	member	is	reserved	for	future	use.

Cpu

X86CpuInfo
The	CPU	information	obtained	from	the	CPUID	instruction.	This
structure	is	supported	only	for	x86	computers.

VendorId
CPUID	subfunction	0.	The	array	elements	are	as	follows:

VendorId[0]	is	EAX
VendorId[1]	is	EBX
VendorId[2]	is	ECX

VersionInformation
CPUID	subfunction	1.	Value	of	EAX.

FeatureInformation
CPUID	subfunction	1.	Value	of	EDX.

AMDExtendedCpuFeatures
CPUID	subfunction	80000001.	Value	of	EBX.	This	member
is	supported	only	if	the	vendor	is	"AuthenticAMD".

OtherCpuInfo
Other	CPU	information.	This	structure	is	supported	only	for	non-
x86	computers.

ProcessorFeatures
For	a	list	of	possible	values,	see	the
IsProcessorFeaturePresent	function.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

IsProcessorFeaturePresent
MINIDUMP_STREAM_TYPE

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_SYSTEM_INFO%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MINIDUMP_THREAD	Structure
Contains	information	for	a	specific	thread.

typedef	struct	_MINIDUMP_THREAD	{

		ULONG32	ThreadId;

		ULONG32	SuspendCount;

		ULONG32	PriorityClass;

		ULONG32	Priority;

		ULONG64	Teb;

		MINIDUMP_MEMORY_DESCRIPTOR	Stack;

		MINIDUMP_LOCATION_DESCRIPTOR	ThreadContext;

}	MINIDUMP_THREAD,	

	*PMINIDUMP_THREAD;

Members

ThreadId
The	identifier	of	the	thread.

SuspendCount
The	suspend	count	for	the	thread.	If	the	suspend	count	is	greater
than	zero,	the	thread	is	suspended;	otherwise,	the	thread	is	not
suspended.	The	maximum	value	is	MAXIMUM_SUSPEND_COUNT.

PriorityClass
The	priority	class	of	the	thread.	See	Scheduling	Priorities.

Priority
The	priority	level	of	the	thread.

Teb
The	thread	environment	block.

Stack
A	MINIDUMP_MEMORY_DESCRIPTOR	structure.

ThreadContext
A	MINIDUMP_LOCATION_DESCRIPTOR	structure.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

MINIDUMP_LOCATION_DESCRIPTOR
MINIDUMP_MEMORY_DESCRIPTOR

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_THREAD%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MINIDUMP_THREAD_CALLBACK	Structure
Contains	thread	information	for	the	MiniDumpCallback	function	when
the	callback	type	is	ThreadCallback.

typedef	struct	_MINIDUMP_THREAD_CALLBACK	{

		ULONG	ThreadId;

		HANDLE	ThreadHandle;

		CONTEXT	Context;

		ULONG	SizeOfContext;

		ULONG64	StackBase;

		ULONG64	StackEnd;

}	MINIDUMP_THREAD_CALLBACK,	

	*PMINIDUMP_THREAD_CALLBACK;

Members

ThreadId
The	identifier	of	the	thread.

ThreadHandle
A	handle	to	the	thread

Context
A	CONTEXT	structure	that	contains	the	processor-specific	data.

SizeOfContext
The	size	of	the	returned	processor-specific	data	in	the	Context
member,	in	bytes.

StackBase
The	base	address	of	the	thread	stack.

StackEnd
The	ending	address	of	the	thread	stack.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

MINIDUMP_CALLBACK_INPUT
MiniDumpCallback
CONTEXT

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_THREAD_CALLBACK%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MINIDUMP_THREAD_EX	Structure
Contains	extended	information	for	a	specific	thread.

typedef	struct	_MINIDUMP_THREAD_EX	{

		ULONG32	ThreadId;

		ULONG32	SuspendCount;

		ULONG32	PriorityClass;

		ULONG32	Priority;

		ULONG64	Teb;

		MINIDUMP_MEMORY_DESCRIPTOR	Stack;

		MINIDUMP_LOCATION_DESCRIPTOR	ThreadContext;

		MINIDUMP_MEMORY_DESCRIPTOR	BackingStore;

}	MINIDUMP_THREAD_EX,	

	*PMINIDUMP_THREAD_EX;

Members

ThreadId
The	identifier	of	the	thread.

SuspendCount
The	suspend	count	for	the	thread.	If	the	suspend	count	is	greater
than	zero,	the	thread	is	suspended;	otherwise,	the	thread	is	not
suspended.	The	maximum	value	is	MAXIMUM_SUSPEND_COUNT.

PriorityClass
The	priority	class	of	the	thread.	See	Scheduling	Priorities.

Priority
The	priority	level	of	the	thread.

Teb
The	thread	environment	block.

Stack
A	MINIDUMP_MEMORY_DESCRIPTOR	structure.

ThreadContext
A	MINIDUMP_LOCATION_DESCRIPTOR	structure.

BackingStore

Intel	IPF:		The	backing	store	for	the	thread.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

MINIDUMP_LOCATION_DESCRIPTOR
MINIDUMP_MEMORY_DESCRIPTOR

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_THREAD_EX%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MINIDUMP_THREAD_EX_CALLBACK	Structure
Contains	extended	thread	information	for	the	MiniDumpCallback
function	when	the	callback	type	is	ThreadExCallback.

typedef	struct	_MINIDUMP_THREAD_EX_CALLBACK	{

		ULONG	ThreadId;

		HANDLE	ThreadHandle;

		CONTEXT	Context;

		ULONG	SizeOfContext;

		ULONG64	StackBase;

		ULONG64	StackEnd;

		ULONG64	BackingStoreBase;

		ULONG64	BackingStoreEnd;

}	MINIDUMP_THREAD_EX_CALLBACK,	

	*PMINIDUMP_THREAD_EX_CALLBACK;

Members

ThreadId
The	identifier	of	the	thread.

ThreadHandle
A	handle	to	the	thread

Context
A	CONTEXT	structure	that	contains	the	processor-specific	data.

SizeOfContext
The	size	of	the	returned	processor-specific	data	in	the	Context
member,	in	bytes.

StackBase
The	base	address	of	the	thread	stack.

StackEnd
The	ending	address	of	the	thread	stack.

BackingStoreBase

Intel	IPF:		The	base	address	of	the	thread	backing

store.

BackingStoreEnd

Intel	IPF:		The	ending	address	of	the	thread
backing	store.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

MINIDUMP_CALLBACK_INPUT
MiniDumpCallback
CONTEXT

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_THREAD_EX_CALLBACK%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MINIDUMP_THREAD_EX_LIST	Structure
Contains	a	list	of	threads.

typedef	struct	_MINIDUMP_THREAD_EX_LIST	{

		ULONG32	NumberOfThreads;

		MINIDUMP_THREAD_EX	Threads[];

}	MINIDUMP_THREAD_EX_LIST,	

	*PMINIDUMP_THREAD_EX_LIST;

Members

NumberOfThreads
The	number	of	structures	in	the	Threads	array.

Threads
An	array	of	MINIDUMP_THREAD_EX	structures.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

MINIDUMP_STREAM_TYPE
MINIDUMP_THREAD_EX

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_THREAD_EX_LIST%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MINIDUMP_THREAD_INFO	Structure
Contains	thread	state	information.

typedef	struct	_MINIDUMP_THREAD_INFO	{

		ULONG32	ThreadId;

		ULONG32	DumpFlags;

		ULONG32	DumpError;

		ULONG32	ExitStatus;

		ULONG64	CreateTime;

		ULONG64	ExitTime;

		ULONG64	KernelTime;

		ULONG64	UserTime;

		ULONG64	StartAddress;

		ULONG64	Affinity;

}	MINIDUMP_THREAD_INFO,	

	*PMINIDUMP_THREAD_INFO;

Members

ThreadId
The	identifier	of	the	thread.

DumpFlags
The	flags	that	indicate	the	thread	state.	This	member	can	be	0	or	one
of	the	following	values.

Value Meaning

MINIDUMP_THREAD_INFO_ERROR_THREAD
0x00000001

A	placeholder	thread
due	to	an	error
accessing	the	thread.
No	thread	information
exists	beyond	the
thread	identifier.

MINIDUMP_THREAD_INFO_EXITED_THREAD
0x00000004

The	thread	has	exited
(not	running	any	code)
at	the	time	of	the

dump.

MINIDUMP_THREAD_INFO_INVALID_CONTEXT
0x00000010

Thread	context	could
not	be	retrieved.

MINIDUMP_THREAD_INFO_INVALID_INFO
0x00000008

Thread	information
could	not	be	retrieved.

MINIDUMP_THREAD_INFO_INVALID_TEB
0x00000020

TEB	information	could
not	be	retrieved.

MINIDUMP_THREAD_INFO_WRITING_THREAD
0x00000002

This	is	the	thread	that
called
MiniDumpWriteDump

DumpError
An	HRESULT	value	that	indicates	the	dump	status.

ExitStatus
The	thread	termination	status	code.

CreateTime
The	time	when	the	thread	was	created,	in	100-nanosecond	intervals
since	January	1,	1601	(UTC).

ExitTime
The	time	when	the	thread	exited,	in	100-nanosecond	intervals	since
January	1,	1601	(UTC).

KernelTime
The	time	executed	in	kernel	mode,	in	100-nanosecond	intervals.

UserTime
The	time	executed	in	user	mode,	in	100-nanosecond	intervals.

StartAddress
The	starting	address	of	the	thread.

Affinity
The	processor	affinity	mask.

Requirements

Redistributable Requires	DbgHelp.dll	6.3	or	later.

Header Declared	in	DbgHelp.h.

See	Also

MINIDUMP_THREAD_INFO_LIST

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_THREAD_INFO%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MINIDUMP_THREAD_INFO_LIST	Structure
Contains	a	list	of	threads.

typedef	struct	_MINIDUMP_THREAD_INFO_LIST	{

		ULONG	SizeOfHeader;

		ULONG	SizeOfEntry;

		ULONG64	NumberOfEntries;

}	MINIDUMP_THREAD_INFO_LIST,	

	*PMINIDUMP_THREAD_INFO_LIST;

Members

SizeOfHeader
The	size	of	the	header	data	for	the	stream,	in	bytes.	This	is	generally
sizeof(MINIDUMP_THREAD_INFO_LIST).

SizeOfEntry
The	size	of	each	entry	following	the	header,	in	bytes.	This	is
generally	sizeof(MINIDUMP_THREAD_INFO).

NumberOfEntries
The	number	of	entries	in	the	stream.	These	are	generally
MINIDUMP_THREAD_INFO	structures.	The	entries	follow	the
header.

Requirements

Redistributable Requires	DbgHelp.dll	6.3	or	later.

Header Declared	in	DbgHelp.h.

See	Also

MINIDUMP_STREAM_TYPE
MINIDUMP_THREAD_INFO

Send	comments	about	this	topic	to	Microsoft

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_THREAD_INFO_LIST%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

MINIDUMP_THREAD_LIST	Structure
Contains	a	list	of	threads.

typedef	struct	_MINIDUMP_THREAD_LIST	{

		ULONG32	NumberOfThreads;

		MINIDUMP_THREAD	Threads[];

}	MINIDUMP_THREAD_LIST,	

	*PMINIDUMP_THREAD_LIST;

Members

NumberOfThreads
The	number	of	structures	in	the	Threads	array.

Threads
An	array	of	MINIDUMP_THREAD	structures.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

MINIDUMP_STREAM_TYPE
MINIDUMP_THREAD

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_THREAD_LIST%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MINIDUMP_UNLOADED_MODULE	Structure
Contains	information	about	a	module	that	has	been	unloaded.	This
information	can	help	diagnose	problems	calling	code	that	is	no	longer
loaded.

typedef	struct	_MINIDUMP_UNLOADED_MODULE	{

		ULONG64	BaseOfImage;

		ULONG32	SizeOfImage;

		ULONG32	CheckSum;

		ULONG32	TimeDateStamp;

		RVA	ModuleNameRva;

}	MINIDUMP_UNLOADED_MODULE,	

	*PMINIDUMP_UNLOADED_MODULE;

Members

BaseOfImage
The	base	address	of	the	module	executable	image	in	memory.

SizeOfImage
The	size	of	the	module	executable	image	in	memory,	in	bytes.

CheckSum
The	checksum	value	of	the	module	executable	image.

TimeDateStamp
The	timestamp	value	of	the	module	executable	image,	in	time_t
format.

ModuleNameRva
An	RVA	to	a	MINIDUMP_STRING	structure	that	specifies	the	name
of	the	module.

Requirements

Redistributable Requires	DbgHelp.dll	6.0	or	later.

Header Declared	in	DbgHelp.h.

See	Also

MINIDUMP_UNLOADED_MODULE_LIST

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_UNLOADED_MODULE%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MINIDUMP_UNLOADED_MODULE_LIST	Structure
Contains	a	list	of	unloaded	modules.

typedef	struct	_MINIDUMP_UNLOADED_MODULE_LIST	{

		ULONG32	SizeOfHeader;

		ULONG32	SizeOfEntry;

		ULONG32	NumberOfEntries;

}	MINIDUMP_UNLOADED_MODULE_LIST,	

	*PMINIDUMP_UNLOADED_MODULE_LIST;

Members

SizeOfHeader
The	size	of	the	header	data	for	the	stream,	in	bytes.	This	is	generally
sizeof(MINIDUMP_UNLOADED_MODULE_LIST).

SizeOfEntry
The	size	of	each	entry	following	the	header,	in	bytes.	This	is
generally	sizeof(MINIDUMP_UNLOADED_MODULE).

NumberOfEntries
The	number	of	entries	in	the	stream.	These	are	generally
MINIDUMP_UNLOADED_MODULE	structures.	The	entries	follow
the	header.

Requirements

Redistributable Requires	DbgHelp.dll	6.0	or	later.

Header Declared	in	DbgHelp.h.

See	Also

MINIDUMP_STREAM_TYPE
MINIDUMP_UNLOADED_MODULE

Send	comments	about	this	topic	to	Microsoft

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_UNLOADED_MODULE_LIST%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

MINIDUMP_USER_STREAM	Structure
Contains	user-defined	information	stored	in	a	data	stream.

typedef	struct	_MINIDUMP_USER_STREAM	{

		ULONG32	Type;

		ULONG	BufferSize;

		PVOID	Buffer;

}	MINIDUMP_USER_STREAM,	

	*PMINIDUMP_USER_STREAM;

Members

Type
The	type	of	data	stream.	For	more	information,	see
MINIDUMP_STREAM_TYPE.

BufferSize
The	size	of	the	user-defined	data	stream	buffer,	in	bytes.

Buffer
A	pointer	to	a	buffer	that	contains	the	user-defined	data	stream.

Remarks

In	this	context,	a	data	stream	refers	to	a	block	of	data	within	a	minidump
file.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

MINIDUMP_STREAM_TYPE
MINIDUMP_USER_STREAM_INFORMATION
MiniDumpCallback

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_USER_STREAM%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MINIDUMP_USER_STREAM_INFORMATION
Structure

Contains	a	list	of	user	data	streams	used	by	the	MiniDumpWriteDump
function.

typedef	struct	_MINIDUMP_USER_STREAM_INFORMATION	{

		ULONG	UserStreamCount;

		PMINIDUMP_USER_STREAM	UserStreamArray;

}	MINIDUMP_USER_STREAM_INFORMATION,	

	*PMINIDUMP_USER_STREAM_INFORMATION;

Members

UserStreamCount
The	number	of	user	streams.

UserStreamArray
An	array	of	MINIDUMP_USER_STREAM	structures.

Remarks

In	this	context,	a	data	stream	refers	to	a	block	of	data	within	a	minidump
file.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

MINIDUMP_USER_STREAM
MiniDumpWriteDump

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MINIDUMP_USER_STREAM_INFORMATION%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

MODLOAD_CVMISC	Structure
[This	documentation	is	preliminary	and	is	subject	to	change.]

Contains	CodeView	and	Misc	records.

typedef	struct	_MODLOAD_CVMISC	{

		DWORD	oCV;

		size_t	cCV;

		DWORD	oMisc;

		size_t	cMisc;

		DWORD	dtImage;

		DWORD	cImage;

}	MODLOAD_CVMISC,	

	*PMODLOAD_CVMISC;

Members

oCV
The	offset	of	the	CodeView	record.

cCV
The	size	of	the	CodeView	record.

oMisc
The	offset	of	the	Misc	record.

cMisc
The	size	of	the	Misc	record.

dtImage
The	date/time	stamp	of	the	image.

cImage
The	size	of	the	image.

Requirements

Header Declared	in	DbgHelp.h.

See	Also

MODLOAD_DATA

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MODLOAD_CVMISC%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MODLOAD_DATA	Structure
Contains	module	data.

typedef	struct	_MODLOAD_DATA	{

		DWORD	ssize;

		DWORD	ssig;

		PVOID	data;

		DWORD	size;

		DWORD	flags;

}	MODLOAD_DATA,	

	*PMODLOAD_DATA;

Members

ssize
The	size	of	this	structure,	in	bytes.

ssig
The	type	of	data.	This	member	can	be	one	of	the	following	values.

Value Meaning

DBHHEADER_DEBUGDIRS
0x1

The	data	member	is	a	buffer	that
contains	an	array	of
IMAGE_DEBUG_DIRECTORY
structures.

DBHHEADER_CVMISC
0x2

The	data	member	is	a	buffer	that
contains	an	array	of
MODLOAD_CVMISC	structures.

data
The	data.	The	format	of	this	data	depends	on	the	value	of	the	ssig
member.

size
The	size	of	the	data	buffer,	in	bytes.

flags

This	member	is	unused.

Requirements

Redistributable Requires	DbgHelp.dll	6.0	or	later.

Header Declared	in	DbgHelp.h.

See	Also

IMAGE_DEBUG_DIRECTORY
MODLOAD_CVMISC
SymLoadModuleEx

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MODLOAD_DATA%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

OMAP	Structure
Describes	an	entry	in	an	address	map.

typedef	struct	_OMAP	{

		ULONG	rva;

		ULONG	rvaTo;

}	OMAP,	

	*POMAP;

Members

rva
A	relative	virtual	address	(RVA)	in	image	A.

rvaTo
The	relative	virtual	address	that	rva	is	mapped	to	in	image	B.

Remarks

An	address	map	provides	a	translation	from	one	image	layout	(A)	to
another	(B).	An	array	of	OMAP	structures,	sorted	by	rva,	defines	an
address	map.

To	translate	an	address,	addrA,	in	image	A	to	an	address,	addrB,	in
image	B,	perform	the	following	steps:

1.	 Search	the	map	for	the	entry,	e,	with	the	largest	rva	less
than	or	equal	to	addrA.

2.	 Set	delta	=	addrA	–	e.rva.

3.	 Set	addrB	=	e.rvaTo	+	delta.

See	Also

SymGetOmaps

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20OMAP%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

SOURCEFILE	Structure
Contains	source	file	information.

typedef	struct	_SOURCEFILE	{

		DWORD64	ModBase;

		PTCHAR	FileName;

}	SOURCEFILE,	

	*PSOURCEFILE;

Members

ModBase
The	base	address	of	the	module.

FileName
The	fully-qualified	source	file	name.

Requirements

Redistributable Requires	DbgHelp.dll	6.3	or	later.

Header Declared	in	DbgHelp.h.

Unicode Implemented	as	SOURCEFILEW	(Unicode)	and
SOURCEFILE	(ANSI).

See	Also

SymEnumSourceFiles

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SOURCEFILE%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SRCCODEINFO	Structure
Contains	line	information.

typedef	struct	_SRCCODEINFO	{

		DWORD	SizeOfStruct;

		PVOID	Key;

		DWORD64	ModBase;

		TCHAR	Obj[MAX_PATH+1];

		TCHAR	FileName[MAX_PATH+1];

		DWORD	LineNumber;

		DWORD64	Address;

}	SRCCODEINFO,	

	*PSRCCODEINFO;

Members

SizeOfStruct
The	size	of	the	structure,	in	bytes.

Key
This	member	is	not	used.

ModBase
The	base	address	of	the	module	that	contains	the	line.

Obj
The	name	of	the	object	file	within	the	module	that	contains	the	line.

FileName
The	fully-qualified	source	file	name.

LineNumber
The	line	number	within	the	source	file.

Address
The	virtual	address	of	the	first	instruction	of	the	line.

Requirements

Redistributable Requires	DbgHelp.dll	6.1	or	later.

Header Declared	in	DbgHelp.h.

Unicode Implemented	as	SRCCODEINFOW	(Unicode)	and
SRCCODEINFO	(ANSI).

See	Also

SymEnumLinesProc

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SRCCODEINFO%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

STACKFRAME64	Structure
Represents	a	stack	frame.

This	structure	supersedes	the	STACKFRAME	structure.	For	more
information,	see	Updated	Platform	Support.

typedef	struct	_tagSTACKFRAME64	{

		ADDRESS64	AddrPC;

		ADDRESS64	AddrReturn;

		ADDRESS64	AddrFrame;

		ADDRESS64	AddrStack;

		ADDRESS64	AddrBStore;

		PVOID	FuncTableEntry;

		DWORD64	Params[4];

		BOOL	Far;

		BOOL	Virtual;

		DWORD64	Reserved[3];

		KDHELP64	KdHelp;

}	STACKFRAME64,	

	*LPSTACKFRAME64;

Members

AddrPC
An	ADDRESS64	structure	that	specifies	the	program	counter.

x86:		The	program	counter	is	EIP.

Intel	IPF:		The	program	counter	is	StIIP.

x64:		The	program	counter	is	RIP.

AddrReturn
An	ADDRESS64	structure	that	specifies	the	return	address.

AddrFrame
An	ADDRESS64	structure	that	specifies	the	frame	pointer.

x86:		The	frame	pointer	is	EBP.

Intel	IPF:		There	is	no	frame	pointer,	but
AddrBStore	is	used.

x64:		The	frame	pointer	is	RBP	or	RDI.	This	value
is	not	always	used.

AddrStack
An	ADDRESS64	structure	that	specifies	the	stack	pointer.

x86:		The	stack	pointer	is	ESP.

Intel	IPF:		The	stack	pointer	is	SP.

x64:		The	stack	pointer	is	RSP.

AddrBStore

Intel	IPF:		An	ADDRESS64	structure	that	specifies
the	backing	store	(RsBSP).

FuncTableEntry
On	x86	computers,	this	member	is	an	FPO_DATA	structure.	If	there
is	no	function	table	entry,	this	member	is	NULL.

Params
The	possible	arguments	to	the	function.

Far
This	member	is	TRUE	if	this	is	a	WOW	far	call.

Virtual
This	member	is	TRUE	if	this	is	a	virtual	frame.

Reserved
This	member	is	used	internally	by	the	StackWalk64	function.

KdHelp
A	KDHELP64	structure	that	specifies	helper	data	for	walking	kernel
callback	frames.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

ADDRESS64
FPO_DATA
IMAGE_FUNCTION_ENTRY
KDHELP64
StackWalk64

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20STACKFRAME64%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SYMBOL_INFO	Structure
Contains	symbol	information.

typedef	struct	_SYMBOL_INFO	{

		ULONG	SizeOfStruct;

		ULONG	TypeIndex;

		ULONG64	Reserved[2];

		ULONG	Index;

		ULONG	Size;

		ULONG64	ModBase;

		ULONG	Flags;

		ULONG64	Value;

		ULONG64	Address;

		ULONG	Register;

		ULONG	Scope;

		ULONG	Tag;

		ULONG	NameLen;

		ULONG	MaxNameLen;

		TCHAR	Name[1];

}	SYMBOL_INFO,	

	*PSYMBOL_INFO;

Members

SizeOfStruct
The	size	of	the	structure,	in	bytes.	This	member	must	be	set	to
sizeof(SYMBOL_INFO).	Note	that	the	total	size	of	the	data	is	the
SizeOfStruct	+	MaxNameLen	-	1.	The	reason	to	subtract	one	is	that
the	first	character	in	the	name	is	accounted	for	in	the	size	of	the
structure.

TypeIndex
The	type	index	of	the	symbol.	For	more	information,	see	the	PDB
documentation.

Reserved
This	member	is	reserved	for	system	use.

Index
The	unique	value	for	the	symbol.	The	value	associated	with	a	symbol
is	not	guaranteed	to	be	the	same	each	time	you	run	the	process.

For	PDB	symbols,	the	index	value	for	a	symbol	is	not	generated	until
the	symbol	is	enumerated	or	retrieved	through	a	search	by	name	or
address.	The	index	values	for	all	CodeView	and	COFF	symbols	are
generated	when	the	symbols	are	loaded.

Size
The	symbol	size,	in	bytes.	This	value	is	typically	zero	and	should	be
ignored.

ModBase
The	base	address	of	the	module	that	contains	the	symbol.

Flags
This	member	can	be	one	or	more	of	the	following	values.

Value Meaning

SYMFLAG_CLR_TOKEN
0x00040000

The	symbol	is	a	CLR	token.

SYMFLAG_CONSTANT
0x00000100

The	symbol	is	a	constant.

SYMFLAG_EXPORT
0x00000200

The	symbol	is	from	the	export	table.

SYMFLAG_FORWARDER
0x00000400

The	symbol	is	a	forwarder.

SYMFLAG_FRAMEREL
0x00000020

Offsets	are	frame	relative.

SYMFLAG_FUNCTION
0x00000800

The	symbol	is	a	known	function.

SYMFLAG_ILREL
0x00010000

The	symbol	address	is	an	offset
relative	to	the	beginning	of	the

intermediate	language	block.	This
applies	to	managed	code	only.

SYMFLAG_LOCAL
0x00000080

The	symbol	is	a	local	variable.

SYMFLAG_METADATA
0x00020000

The	symbol	is	managed	metadata.

SYMFLAG_PARAMETER
0x00000040

The	symbol	is	a	parameter.

SYMFLAG_REGISTER
0x00000008

The	symbol	is	a	register.	The
Register	member	is	used.

SYMFLAG_REGREL
0x00000010

Offsets	are	register	relative.

SYMFLAG_SLOT
0x00008000

The	symbol	is	a	managed	code	slot.

SYMFLAG_THUNK
0x00002000

The	symbol	is	a	thunk.

SYMFLAG_TLSREL
0x00004000

The	symbol	is	an	offset	into	the	TLS
data	area.

SYMFLAG_VALUEPRESENT
0x00000001

The	Value	member	is	used.

SYMFLAG_VIRTUAL
0x00001000

The	symbol	is	a	virtual	symbol
created	by	the	SymAddSymbol
function.

Value
The	value	of	a	constant.

Address
The	virtual	address	of	the	start	of	the	symbol.

Register
The	register.

Scope
The	DIA	scope.	For	more	information,	see	the	Debug	Interface
Access	SDK	in	the	Visual	Studio	documentation.

Tag
The	PDB	classification.	These	values	are	defined	in	Dbghelp.h	in	the
SymTagEnum	enumeration	type.	For	descriptions,	see	the	PDB
documentation.

NameLen
The	length	of	the	name,	in	characters,	not	including	the	null-
terminating	character.

MaxNameLen
The	size	of	the	Name	buffer,	in	characters.	If	this	member	is	0,	the
Name	member	is	not	used.

Name
The	name	of	the	symbol.	The	name	can	be	undecorated	if	the
SYMOPT_UNDNAME	option	is	used	with	the	SymSetOptions
function.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

Unicode Implemented	as	SYMBOL_INFOW	(Unicode)	and
SYMBOL_INFO	(ANSI).

See	Also

SymEnumSymbolsProc
SymFromAddr
SymFromName
SymGetTypeFromName

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SYMBOL_INFO%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SYMSRV_INDEX_INFO	Structure
Contains	symbol	server	index	information.

typedef	struct	{

		DWORD	sizeofstruct;

		TCHAR	file[MAX_PATH	+1];

		BOOL	stripped;

		DWORD	timestamp;

		DWORD	size;

		TCHAR	dbgfile[MAX_PATH	+1];

		TCHAR	pdbfile[MAX_PATH	+	1];

		GUID	guid;

		DWORD	sig;

		DWORD	age;

}	SYMSRV_INDEX_INFO,	

	*PSYMSRV_INDEX_INFO;

Members

sizeofstruct
The	size	of	the	structure,	in	bytes.	This	member	must	be	set	to
sizeof(SYMSRV_INDEX_INFO)	or
sizeof(SYMSRV_INDEX_INFOW).

file
The	name	of	the	.pdb,	.dbg,	or	image	file.

stripped
A	value	that	indicates	whether	the	image	file	is	stripped.

timestamp
The	timestamp	from	the	PE	header.	This	member	is	used	only	for
image	files.

size
The	file	size	from	the	PE	header.	This	member	is	used	only	for	image
files.

dbgfile

If	the	image	file	is	stripped	and	there	is	a	.dbg	file,	this	member	is	the
path	to	the	.dbg	file	from	the	CV	record.

pdbfile
The	.pdb	file	from	the	CV	record.	This	member	is	used	only	for	image
and	.dbg	files.

guid
The	GUID	of	the	.pdb	file.	If	there	is	no	GUID	available,	the	signature
of	the	.pdb	file	is	copied	into	first	DWORD	of	the	GUID.

sig
The	signature	of	the	.pdb	file	(for	use	with	old-style	.pdb	files).	This
value	can	be	0	if	it	is	a	new-style	.pdb	file	that	uses	a	GUID-length
signature.

age
The	age	of	the	.pdb	file.

Requirements

Redistributable Requires	DbgHelp.dll	6.6	or	later.

Header Declared	in	Dbghelp.h.

Unicode Implemented	as	SYMSRV_INDEX_INFOW	(Unicode)
and	SYMSRV_INDEX_INFO	(ANSI).

See	Also

SymSrvGetFileIndexInfo

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SYMSRV_INDEX_INFO%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

TI_FINDCHILDREN_PARAMS	Structure
Contains	type	index	information.	It	is	used	by	the	SymGetTypeInfo
function.

typedef	struct	_TI_FINDCHILDREN_PARAMS	{

		ULONG	Count;

		ULONG	Start;

		ULONG	ChildId[1];

}	TI_FINDCHILDREN_PARAMS;

Members

Count
The	number	of	children.

Start
The	zero-based	index	of	the	child	from	which	the	child	indexes	are	to
be	retrieved.	For	example,	in	an	array	with	five	elements,	if	Start	is
two,	this	indicates	the	third	array	element.	In	most	cases,	this
member	is	zero.

ChildId
An	array	of	type	indexes.	There	is	one	index	per	child.

Requirements

Redistributable Requires	DbgHelp.dll	5.1	or	later.

Header Declared	in	DbgHelp.h.

See	Also

SymGetTypeInfo

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20TI_FINDCHILDREN_PARAMS%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

Image	Help	Library
This	overview	describes	the	function	set	provided	by	the	ImageHlp	DLL.
These	functions	allow	you	to	work	with	a	portable	executable	(PE)	image.

About	ImageHlp

ImageHlp	Reference

You	cannot	redistribute	the	ImageHlp	DLL	that	is	included	with	the
operating	system.	A	subset	of	the	functions	are	included	in	the	Debug
Help	Library,	which	is	restributable.

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20Image Help Library%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

About	ImageHlp
The	ImageHlp	functions	are	used	mostly	by	programming	tools,
application	setup	utilities,	and	other	programs	that	need	access	to	the
data	contained	in	a	PE	image.	All	ImageHlp	functions	are	single
threaded.	Therefore,	calls	from	more	than	one	thread	to	this	function	will
likely	result	in	unexpected	behavior	or	memory	corruption.	To	avoid	this,
you	must	synchronize	all	concurrent	calls	from	more	than	one	thread	to
this	function.

The	following	topics	describe	PE	images	and	the	functionality	provided
by	the	ImageHlp	functions.

PE	Format

Image	Access	Functions

Image	Integrity	Functions

Image	Modification	Functions

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20About ImageHlp%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

PE	Format
Executable	(image)	files	are	structured	according	to	the	Portable
Executable	(PE)	format.	For	a	description	of	this	format,	see	the
specification	available	for	download	from	the	following	location:
http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

Http://go.microsoft.com/FWLink/?LinkId=84140
mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20PE Format%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

Image	Access	Functions
The	image	access	functions	access	the	data	in	an	executable	image.
These	functions	provide	high-level	access	to	the	base	of	images	and	very
specific	access	to	the	most	common	parts	of	an	image's	data.

GetImageConfigInformation

GetImageUnusedHeaderBytes

ImageLoad

ImageUnload

MapAndLoad

SetImageConfigInformation

UnMapAndLoad

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20Image Access Functions%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

Image	Integrity	Functions
The	image	integrity	functions	manage	the	set	of	certificates	in	an	image
file.	Routines	are	provided	to	add,	remove,	and	query	certificates.	There
is	also	a	function	available	for	obtaining	the	byte	stream	of	an	image	file
required	to	calculate	a	message	digest	of	the	image	file.	This	is	needed
to	create	signature	certificates.

Every	certificate	in	a	file	has	an	index	which	can	change	as	certificates
are	removed.	New	certificates	will	always	be	added	"at	the	end"	of	the	list
of	existing	certificates.	That	is,	they	will	be	assigned	indices	that	are
greater	than	any	index	currently	in	use.	In	general,	an	application	should
not	assume	that	a	given	certificate	has	the	same	index	it	had	the	last	time
it	was	referenced.

DigestFunction

ImageAddCertificate

ImageEnumerateCertificates

ImageGetCertificateData

ImageGetCertificateHeader

ImageGetDigestStream

ImageRemoveCertificate

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20Image Integrity Functions%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

ImageHlp	Image	Modification	Functions
The	image	modification	functions	allow	you	to	change	the	executable
image.	They	are	mostly	for	use	by	development	tools	and	install
programs.	They	can	be	used	to	bind	an	image,	compute	its	checksum
(which	is	important	for	ensuring	image	integrity),	change	its	load	address,
and	produce	symbol	files.

The	following	are	the	image	modification	functions.

BindImage

BindImageEx

CheckSumMappedFile

MapFileAndCheckSum

ReBaseImage

SplitSymbols

StatusRoutine

TouchFileTimes

UpdateDebugInfoFile

UpdateDebugInfoFileEx

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20ImageHlp Image Modification Functions%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

ImageHlp	Reference
The	following	elements	are	part	of	ImageHlp.

ImageHlp	Functions

ImageHlp	Structures

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20ImageHlp Reference%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

ImageHlp	Functions
The	following	are	the	ImageHlp	functions.

Image	Access

The	image	access	functions	access	the	data	in	an	executable	image.	The
functions	provide	high-level	access	to	the	base	of	images	and	very
specific	access	to	the	most	common	parts	of	an	image's	data.

GetImageConfigInformation
GetImageUnusedHeaderBytes
ImageLoad
ImageUnload
MapAndLoad
SetImageConfigInformation
UnMapAndLoad

Image	Integrity

The	image	integrity	functions	manage	the	set	of	certificates	in	an	image
file.

DigestFunction
ImageAddCertificate
ImageEnumerateCertificates
ImageGetCertificateData
ImageGetCertificateHeader
ImageGetDigestStream
ImageRemoveCertificate

Image	Modification

The	image	modification	functions	allow	you	to	change	the	executable
image.

BindImage
BindImageEx
CheckSumMappedFile
MapFileAndCheckSum

ReBaseImage
ReBaseImage64
SplitSymbols
StatusRoutine
TouchFileTimes
UpdateDebugInfoFile
UpdateDebugInfoFileEx

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20ImageHlp Functions%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

BindImage	Function
Computes	the	virtual	address	of	each	imported	function.

This	function	has	been	superseded	by	the	BindImageEx	function.	Use
BindImageEx	to	provide	a	status	routine	or	flags	to	control	the	image
binding.

BOOL	BindImage(

		__in										PSTR	ImageName,

		__in										PSTR	DllPath,

		__in										PSTR	SymbolPath

);

Parameters

ImageName
The	name	of	the	file	to	be	bound.	This	value	can	be	a	file	name,	a
partial	path,	or	a	full	path.

DllPath
The	root	of	the	search	path	to	use	if	the	file	specified	by	the
ImageName	parameter	cannot	be	opened.

SymbolPath
The	root	of	the	path	to	search	for	the	file's	corresponding	symbol	file.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

A	call	to	BindImage	is	equivalent	to	the	following	call:	BindImageEx(
0,	ImageName,	DllPath,	SymbolPath,	NULL);

All	ImageHlp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in

unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Client

Requires	Windows	Vista,	Windows	XP,	Windows	2000
Professional,	Windows	NT	Workstation	4.0,	Windows	Me,
Windows	98,	or	Windows	95.

Server Requires	Windows	Server	2008,	Windows	Server	2003,
Windows	2000	Server,	or	Windows	NT	Server	4.0.

Header Declared	in	Imagehlp.h.

Library Use	Imagehlp.lib.

DLL Requires	Imagehlp.dll.

See	Also

ImageHlp	FunctionsBindImageEx

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20BindImage%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

BindImageEx	Function
Computes	the	virtual	address	of	each	function	that	is	imported.

BOOL	BindImageEx(

		__in										DWORD	Flags,

		__in										PSTR	ImageName,

		__in										PSTR	DllPath,

		__in										PSTR	SymbolPath,

		__in										PIMAGEHLP_STATUS_ROUTINE	StatusRoutine

);

Parameters

Flags
The	bind	options.	This	parameter	can	be	a	combination	of	the
following	values.

Value Meaning

BIND_ALL_IMAGES
0x00000004

Bind	all	images	in	the	call	tree	for	this	file.

BIND_CACHE_IMPORT_DLLS
0x00000008

Do	not	discard	DLL	information	in	the
cache	between	calls.	This	improves
performance	when	binding	a	large	number
of	images.

BIND_NO_BOUND_IMPORTS
0x00000001

Do	not	generate	a	new	import	address
table.

Windows	Me/98/95:		This
flag	is	required.

BIND_NO_UPDATE
0x00000002

Do	not	make	changes	to	the	file.

ImageName
The	name	of	the	file	to	be	bound.	This	value	can	be	a	file	name,	a

partial	path,	or	a	full	path.

DllPath
The	root	of	the	search	path	to	use	if	the	file	specified	by	the
ImageName	parameter	cannot	be	opened.

SymbolPath
The	root	of	the	path	to	search	for	the	file's	corresponding	symbol	file.

StatusRoutine
A	pointer	to	a	status	routine.	The	status	routine	is	called	during	the
progress	of	the	image	binding.	For	more	information,	see
StatusRoutine.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

The	process	of	binding	an	image	consists	of	computing	the	virtual
address	of	each	imported	function.	The	computed	virtual	address	is	then
saved	in	the	importing	image's	Import	Address	Table	(IAT).	As	a	result,
the	image	is	loaded	much	faster,	particularly	if	it	uses	many	DLLs,
because	the	system	loader	does	not	have	to	compute	the	address	of
each	imported	function.

If	a	corresponding	symbol	file	can	be	located,	its	time	stamp	and
checksum	are	updated.

All	ImageHlp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Requires	Windows	Vista,	Windows	XP,	Windows	2000

Client Professional,	Windows	NT	Workstation	4.0,	Windows	Me,
Windows	98,	or	Windows	95.

Server Requires	Windows	Server	2008,	Windows	Server	2003,
Windows	2000	Server,	or	Windows	NT	Server	4.0.

Header Declared	in	Imagehlp.h.

Library Use	Imagehlp.lib.

DLL Requires	Imagehlp.dll.

See	Also

ImageHlp	Functions
StatusRoutine

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20BindImageEx%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

CheckSumMappedFile	Function
Computes	the	checksum	of	the	specified	image	file.

PIMAGE_NT_HEADERS	CheckSumMappedFile(

		__in										PVOID	BaseAddress,

		__in										DWORD	FileLength,

		__out									PDWORD	HeaderSum,

		__out									PDWORD	CheckSum

);

Parameters

BaseAddress
The	base	address	of	the	mapped	file.	This	value	is	obtained	by
calling	the	MapViewOfFile	function.

FileLength
The	size	of	the	file,	in	bytes.

HeaderSum
A	pointer	to	a	variable	that	receives	the	original	checksum	from	the
image	file,	or	zero	if	there	is	an	error.

CheckSum
A	pointer	to	the	variable	that	receives	the	computed	checksum.

Return	Value

If	the	function	succeeds,	the	return	value	is	a	pointer	to	the
IMAGE_NT_HEADERS	structure	contained	in	the	mapped	image.
If	the	function	fails,	the	return	value	is	NULL.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

The	CheckSumMappedFile	function	computes	a	new	checksum	for	the
file	and	returns	it	in	the	CheckSum	parameter.	This	function	is	used	by
any	application	that	creates	or	modifies	an	executable	image.
Checksums	are	required	for	kernel-mode	drivers	and	some	system	DLLs.

The	linker	computes	the	original	checksum	at	link	time,	if	you	use	the
appropriate	linker	switch.	For	more	details,	see	your	linker
documentation.

It	is	recommended	that	all	images	have	valid	checksums.	It	is	the	caller's
responsibility	to	place	the	newly	computed	checksum	into	the	mapped
image	and	update	the	on-disk	image	of	the	file.

All	ImageHlp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Client

Requires	Windows	Vista,	Windows	XP,	Windows	2000
Professional,	Windows	NT	Workstation	4.0,	Windows	Me,
Windows	98,	or	Windows	95.

Server Requires	Windows	Server	2008,	Windows	Server	2003,
Windows	2000	Server,	or	Windows	NT	Server	4.0.

Header Declared	in	Imagehlp.h.

Library Use	Imagehlp.lib.

DLL Requires	Imagehlp.dll.

See	Also

ImageHlp	FunctionsIMAGE_NT_HEADERS
MapFileAndCheckSum
MapViewOfFile

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20CheckSumMappedFile%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

DigestFunction	Callback	Function
An	application-defined	callback	function	used	by	the
ImageGetDigestStream	function	to	process	data.

The	DIGEST_FUNCTION	type	defines	a	pointer	to	this	callback	function.
DigestFunction	is	a	placeholder	for	the	application-defined	function
name.

BOOL	DigestFunction(

		[in]																	DIGEST_HANDLE	refdata,

		[in]																	PBYTE	pData,

		[in]																	DWORD	dwLength

);

Parameters

refdata
A	user-supplied	handle	to	the	digest.	This	value	is	passed	as	a
parameter	to	the	ImageGetDigestStream	function.

pData
The	data	stream.

dwLength
The	size	of	the	data	stream,	in	bytes.

Return	Value

If	the	function	succeeds,	the	return	value	should	be	TRUE.	If	the	function
fails,	the	return	value	should	be	FALSE.

Remarks

All	ImageHlp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Client

Requires	Windows	Vista,	Windows	XP,	Windows	2000
Professional,	Windows	NT	Workstation	4.0,	Windows	Me,
Windows	98,	or	Windows	95.

Server Requires	Windows	Server	2008,	Windows	Server	2003,
Windows	2000	Server,	or	Windows	NT	Server	4.0.

Header Declared	in	Imagehlp.h.

See	Also

ImageHlp	FunctionsImageGetDigestStream

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20DigestFunction%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

GetImageConfigInformation	Function
Locates	and	returns	the	load	configuration	data	of	an	image.

BOOL	GetImageConfigInformation(

		__in										PLOADED_IMAGE	LoadedImage,

		__out									PIMAGE_LOAD_CONFIG_DIRECTORY	ImageConfigInformation

);

Parameters

LoadedImage
A	pointer	to	a	LOADED_IMAGE	structure	that	is	returned	from	a	call
to	MapAndLoad	or	ImageLoad.

ImageConfigInformation
A	pointer	to	an	IMAGE_LOAD_CONFIG_DIRECTORY64	structure
that	receives	the	configuration	information.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

The	SetImageConfigInformation	function	locates	and	changes	the	load
configuration	data	of	an	image.

All	ImageHlp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Requires	Windows	Vista,	Windows	XP,	Windows	2000

Client Professional,	Windows	NT	Workstation	4.0,	Windows	Me,
Windows	98,	or	Windows	95.

Server Requires	Windows	Server	2008,	Windows	Server	2003,
Windows	2000	Server,	or	Windows	NT	Server	4.0.

Header Declared	in	Imagehlp.h.

Library Use	Imagehlp.lib.

DLL Requires	Imagehlp.dll.

See	Also

ImageHlp	FunctionsIMAGE_LOAD_CONFIG_DIRECTORY64
LOADED_IMAGE
SetImageConfigInformation

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20GetImageConfigInformation%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

GetImageUnusedHeaderBytes	Function
Retrieves	the	offset	and	size	of	the	part	of	the	PE	header	that	is	currently
unused.

DWORD	GetImageUnusedHeaderBytes(

		__in										PLOADED_IMAGE	LoadedImage,

		__out									PDWORD	SizeUnusedHeaderBytes

);

Parameters

LoadedImage
A	pointer	to	a	LOADED_IMAGE	structure	that	is	returned	from	a	call
to	MapAndLoad	or	ImageLoad.

SizeUnusedHeaderBytes
A	pointer	to	a	variable	to	receive	the	size,	in	bytes,	of	the	part	of	the
image's	header	which	is	unused.

Return	Value

If	the	function	succeeds,	the	return	value	is	the	offset	from	the	base
address	of	the	first	unused	header	byte.

If	the	function	fails,	the	return	value	is	zero.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

All	ImageHlp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Client
Requires	Windows	Vista,	Windows	XP,	Windows	2000
Professional,	Windows	NT	Workstation	4.0,	Windows	Me,

Windows	98,	or	Windows	95.

Server Requires	Windows	Server	2008,	Windows	Server	2003,
Windows	2000	Server,	or	Windows	NT	Server	4.0.

Header Declared	in	Imagehlp.h.

Library Use	Imagehlp.lib.

DLL Requires	Imagehlp.dll.

See	Also

ImageHlp	FunctionsLOADED_IMAGE

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20GetImageUnusedHeaderBytes%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

ImageAddCertificate	Function
Adds	a	certificate	to	the	specified	file.

BOOL	ImageAddCertificate(

		__in										HANDLE	FileHandle,

		__in										LPWIN_CERTIFICATE	Certificate,

		__out									PDWORD	Index

);

Parameters

FileHandle
A	handle	to	the	image	file	to	be	modified.	This	handle	must	be
opened	for	FILE_READ_DATA	and	FILE_WRITE_DATA	access.

Certificate
A	pointer	to	a	WIN_CERTIFICATE	header	and	all	associated
sections.	The	Length	member	in	the	certificate	header	will	be	used
to	determine	the	length	of	this	buffer.

Index
A	pointer	to	a	variable	that	receives	the	index	of	the	newly	added
certificate.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

The	certificate	is	added	at	the	end	of	the	existing	list	of	certificates	and	is
assigned	an	index.

All	ImageHlp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this

function.

Requirements

Client

Requires	Windows	Vista,	Windows	XP,	Windows	2000
Professional,	Windows	NT	Workstation	4.0,	Windows	Me,
Windows	98,	or	Windows	95.

Server Requires	Windows	Server	2008,	Windows	Server	2003,
Windows	2000	Server,	or	Windows	NT	Server	4.0.

Header Declared	in	Imagehlp.h.

Library Use	Imagehlp.lib.

DLL Requires	Imagehlp.dll.

See	Also

ImageHlp	FunctionsImageRemoveCertificate

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20ImageAddCertificate%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

ImageEnumerateCertificates	Function
Retrieves	information	about	the	certificates	currently	contained	in	an
image	file.

BOOL	ImageEnumerateCertificates(

		__in										HANDLE	FileHandle,

		__in										WORD	TypeFilter,

		__out									PDWORD	CertificateCount,

		__in_out						PDWORD	Indices,

		__in_opt						DWORD	IndexCount

);

Parameters

FileHandle
A	handle	to	the	image	file	to	be	examined.	This	handle	must	be
opened	for	FILE_READ_DATA	access.

TypeFilter
The	certificate	section	type	to	be	used	as	a	filter	when	returning
certificate	information.	CERT_SECTION_TYPE_ANY	should	be
passed	for	information	on	all	section	types	present	in	the	image.

CertificateCount
A	pointer	to	a	variable	that	receives	the	number	of	certificates	in	the
image	containing	sections	of	the	type	specified	by	the	TypeFilter
parameter.	If	none	are	found,	this	parameter	is	zero.

Indices
Optionally	provides	a	buffer	to	use	to	return	an	array	of	indices	to	the
certificates	containing	sections	of	the	specified	type.	No	ordering
should	be	assumed	for	the	index	values,	nor	are	they	guaranteed	to
be	contiguous	when	CERT_SECTION_TYPE_ANY	is	queried.

IndexCount
The	size	of	the	Indices	buffer,	in	DWORDs.	This	parameter	will	be
examined	whenever	Indices	is	present.	If	CertificateCount	is	greater
than	IndexCount,	Indices	will	be	filled	in	with	the	first	IndexCount

sections	found	in	the	image;	any	others	will	not	be	returned.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

The	ImageEnumerateCertificates	function	returns	information	about	the
certificates	currently	contained	in	an	image	file.	It	has	filtering	capabilities
which	allow	certificates	containing	sections	of	any	single	type	(or	of	any
type)	to	be	returned.

After	the	indices	of	interesting	certificates	are	discovered,	they	can	be
passed	to	the	ImageGetCertificateData	function	to	obtain	the	actual
bodies	of	the	certificates.

All	ImageHlp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Client

Requires	Windows	Vista,	Windows	XP,	Windows	2000
Professional,	Windows	NT	Workstation	4.0,	Windows	Me,
Windows	98,	or	Windows	95.

Server Requires	Windows	Server	2008,	Windows	Server	2003,
Windows	2000	Server,	or	Windows	NT	Server	4.0.

Header Declared	in	Imagehlp.h.

Library Use	Imagehlp.lib.

DLL Requires	Imagehlp.dll.

See	Also

ImageHlp	FunctionsImageGetCertificateData

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20ImageEnumerateCertificates%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

ImageGetCertificateData	Function
Retrieves	a	complete	certificate	from	a	file.

BOOL	ImageGetCertificateData(

		__in										HANDLE	FileHandle,

		__in										DWORD	CertificateIndex,

		__out									LPWIN_CERTIFICATE	Certificate,

		__in_out						PDWORD	RequiredLength

);

Parameters

FileHandle
A	handle	to	the	image	file.	This	handle	must	be	opened	for
FILE_READ_DATA	access.

CertificateIndex
The	index	of	the	certificate	to	be	returned.

Certificate
A	pointer	to	a	WIN_CERTIFICATE	structure	that	receives	the
certificate	data.	If	the	buffer	is	not	large	enough	to	contain	the
structure,	the	function	fails	and	the	last	error	code	is	set	to
ERROR_INSUFFICIENT_BUFFER.

RequiredLength
On	input,	this	parameter	specifies	the	length	of	the	Certificate	buffer
in	bytes.	On	success,	it	receives	the	length	of	the	certificate.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

The	WIN_CERTIFICATE	structure	is	defined	as	follows:

typedef	struct	_WIN_CERTIFICATE	{

				DWORD							dwLength;

				WORD								wRevision;

				WORD								wCertificateType;			//	WIN_CERT_TYPE_xxx

				BYTE								bCertificate[ANYSIZE_ARRAY];

}	WIN_CERTIFICATE,	*LPWIN_CERTIFICATE;

All	ImageHlp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Client

Requires	Windows	Vista,	Windows	XP,	Windows	2000
Professional,	Windows	NT	Workstation	4.0,	Windows	Me,
Windows	98,	or	Windows	95.

Server Requires	Windows	Server	2008,	Windows	Server	2003,
Windows	2000	Server,	or	Windows	NT	Server	4.0.

Header Declared	in	Imagehlp.h.

Library Use	Imagehlp.lib.

DLL Requires	Imagehlp.dll.

See	Also

ImageHlp	Functions

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20ImageGetCertificateData%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

©	2007	Microsoft	Corporation.	All	rights	reserved.

ImageGetCertificateHeader	Function
Retrieves	the	header	of	the	specified	certificate,	up	to,	but	not	including,
the	section	offset	array.

BOOL	ImageGetCertificateHeader(

		__in										HANDLE	FileHandle,

		__in										DWORD	CertificateIndex,

		__in_out						LPWIN_CERTIFICATE	CertificateHeader

);

Parameters

FileHandle
A	handle	to	the	image	file.	This	handle	must	be	opened	for
FILE_READ_DATA	access.

CertificateIndex
The	index	of	the	certificate	whose	header	is	to	be	returned.

CertificateHeader
A	pointer	to	the	WIN_CERTIFICATE	structure	that	receives	the
certificate	header.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

All	ImageHlp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Client

Requires	Windows	Vista,	Windows	XP,	Windows	2000
Professional,	Windows	NT	Workstation	4.0,	Windows	Me,
Windows	98,	or	Windows	95.

Server Requires	Windows	Server	2008,	Windows	Server	2003,
Windows	2000	Server,	or	Windows	NT	Server	4.0.

Header Declared	in	Imagehlp.h.

Library Use	Imagehlp.lib.

DLL Requires	Imagehlp.dll.

See	Also

ImageHlp	Functions

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20ImageGetCertificateHeader%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

ImageGetDigestStream	Function
Retrieves	the	requested	data	from	the	specified	image	file.

BOOL	ImageGetDigestStream(

		__in										HANDLE	FileHandle,

		__in										DWORD	DigestLevel,

		__in										DIGEST_FUNCTION	DigestFunction,

		__in										DIGEST_HANDLE	DigestHandle

);

Parameters

FileHandle
A	handle	to	the	image	file.	This	handle	must	be	opened	for
FILE_READ_DATA	access.

DigestLevel
The	aspects	of	the	image	that	are	to	be	included	in	the	returned	data
stream.	This	parameter	can	be	one	or	more	of	the	following	values.

Value Meaning

CERT_PE_IMAGE_DIGEST_ALL_IMPORT_INFO
0x04

Include	all
import
information.

CERT_PE_IMAGE_DIGEST_DEBUG_INFO
0x01

Include
symbolic
debugging
information.

CERT_PE_IMAGE_DIGEST_RESOURCES
0x02

Include
resource
information.

DigestFunction
A	pointer	to	a	callback	routine	to	process	the	data.	For	more
information,	see	DigestFunction.

DigestHandle
A	user-supplied	handle	to	the	digest.	This	parameter	is	passed	to
DigestFunction	as	the	first	argument.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

The	ImageGetDigestStream	function	returns	the	data	to	be	digested
from	a	specified	image	file,	subject	to	the	passed	DigestLevel	parameter.
The	order	of	the	bytes	will	be	consistent	for	different	calls,	which	is
required	to	ensure	that	the	same	message	digest	is	always	produced
from	the	retrieved	byte	stream.

To	ensure	cross-platform	compatibility,	all	implementations	of	this
function	must	behave	in	a	consistent	manner	with	respect	to	the	order	in
which	the	various	parts	of	the	image	file	are	returned.

Data	should	be	returned	in	the	following	order:

1.	 Image	(executable	and	static	data)	information.

2.	 Resource	data.

3.	 Debugging	information.

If	any	of	these	are	not	specified,	the	remaining	parts	must	be	returned	in
the	same	order.

All	ImageHlp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Requires	Windows	Vista,	Windows	XP,	Windows	2000

Client Professional,	Windows	NT	Workstation	4.0,	Windows	Me,
Windows	98,	or	Windows	95.

Server Requires	Windows	Server	2008,	Windows	Server	2003,
Windows	2000	Server,	or	Windows	NT	Server	4.0.

Header Declared	in	Imagehlp.h.

Library Use	Imagehlp.lib.

DLL Requires	Imagehlp.dll.

See	Also

ImageHlp	Functions

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20ImageGetDigestStream%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

ImageLoad	Function
Maintains	a	list	of	loaded	DLLs.

PLOADED_IMAGE	ImageLoad(

		__in										PSTR	DllName,

		__in										PSTR	DllPath

);

Parameters

DllName
The	name	of	the	image.

DllPath
The	path	used	to	locate	the	image	if	the	name	provided	cannot	be
found.	If	NULL	is	used,	then	the	search	path	rules	set	forth	in	the
SearchPath	function	apply.

Return	Value

If	the	function	succeeds,	the	return	value	is	a	pointer	to	a
LOADED_IMAGE	structure.
If	the	function	fails,	the	return	value	is	NULL.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

The	ImageLoad	function	is	used	to	maintain	a	list	of	loaded	DLLs.	If	the
image	has	already	been	loaded,	the	prior	LOADED_IMAGE	is	returned.
Otherwise,	the	new	image	is	added	to	the	list.

The	LOADED_IMAGE	structure	must	be	deallocated	by	the
ImageUnload	function.
All	ImageHlp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Client

Requires	Windows	Vista,	Windows	XP,	Windows	2000
Professional,	Windows	NT	Workstation	4.0,	Windows	Me,
Windows	98,	or	Windows	95.

Server Requires	Windows	Server	2008,	Windows	Server	2003,
Windows	2000	Server,	or	Windows	NT	Server	4.0.

Header Declared	in	Imagehlp.h.

Library Use	Imagehlp.lib.

DLL Requires	Imagehlp.dll.

See	Also

ImageHlp	FunctionsImageUnload
LOADED_IMAGE

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20ImageLoad%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

ImageRemoveCertificate	Function
Removes	the	specified	certificate	from	the	given	file.

BOOL	ImageRemoveCertificate(

		__in										HANDLE	FileHandle,

		__in										DWORD	Index

);

Parameters

FileHandle
A	handle	to	the	image	file	to	be	modified.	This	handle	must	be
opened	for	FILE_READ_DATA	and	FILE_WRITE_DATA	access.

Index
The	index	of	the	certificate	to	be	removed.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

All	ImageHlp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Client

Requires	Windows	Vista,	Windows	XP,	Windows	2000
Professional,	Windows	NT	Workstation	4.0,	Windows	Me,
Windows	98,	or	Windows	95.

Server Requires	Windows	Server	2008,	Windows	Server	2003,

Windows	2000	Server,	or	Windows	NT	Server	4.0.

Header Declared	in	Imagehlp.h.

Library Use	Imagehlp.lib.

DLL Requires	Imagehlp.dll.

See	Also

ImageHlp	FunctionsImageAddCertificate

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20ImageRemoveCertificate%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

ImageUnload	Function
Deallocates	resources	from	a	previous	call	to	the	ImageLoad	function.

BOOL	ImageUnload(

		__in										PLOADED_IMAGE	LoadedImage

);

Parameters

LoadedImage
A	pointer	to	a	LOADED_IMAGE	structure	that	is	returned	from	a	call
to	the	ImageLoad	function.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.
ImageLoad	and	ImageUnload	share	internal	data	that	can	be	corrupted
if	multiple	consecutive	calls	to	ImageLoad	are	performed.	Therefore,
make	sure	that	you	have	called	ImageLoad	only	once	before	calling
ImageUnload.

Remarks

All	ImageHlp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Client

Requires	Windows	Vista,	Windows	XP,	Windows	2000
Professional,	Windows	NT	Workstation	4.0,	Windows	Me,
Windows	98,	or	Windows	95.

Server Requires	Windows	Server	2008,	Windows	Server	2003,
Windows	2000	Server,	or	Windows	NT	Server	4.0.

Header Declared	in	Imagehlp.h.

Library Use	Imagehlp.lib.

DLL Requires	Imagehlp.dll.

See	Also

ImageHlp	FunctionsImageLoad
LOADED_IMAGE

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20ImageUnload%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

MapAndLoad	Function
Maps	an	image	and	preloads	data	from	the	mapped	file.

BOOL	MapAndLoad(

		__in										PSTR	ImageName,

		__in										PSTR	DllPath,

		__out									PLOADED_IMAGE	LoadedImage,

		__in										BOOL	DotDll,

		__in										BOOL	ReadOnly

);

Parameters

ImageName
The	file	name	of	the	image	(executable	file	or	DLL)	that	is	loaded.

DllPath
The	path	used	to	locate	the	image	if	the	name	provided	cannot	be
found.	If	this	parameter	is	NULL,	then	the	search	path	rules	set	using
the	SearchPath	function	apply.

LoadedImage
A	pointer	to	a	LOADED_IMAGE	structure	that	receives	information
about	the	image	after	it	is	loaded.

DotDll
The	default	extension	to	be	used	if	the	image	name	does	not	contain
a	file	extension.	If	the	value	is	TRUE,	a	.DLL	extension	is	used.	If	the
value	is	FALSE,	then	an	.EXE	extension	is	used.

ReadOnly
The	access	mode.	If	this	value	is	TRUE,	the	file	is	mapped	for	read-
access	only.	If	the	value	is	FALSE,	the	file	is	mapped	for	read	and
write	access.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error

information,	call	GetLastError.

Remarks

The	MapAndLoad	function	maps	an	image	and	preloads	data	from	the
mapped	file.	The	corresponding	function,	UnMapAndLoad,	must	be
used	to	deallocate	all	resources	that	are	allocated	by	the	MapAndLoad
function.

All	ImageHlp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Client

Requires	Windows	Vista,	Windows	XP,	Windows	2000
Professional,	Windows	NT	Workstation,	Windows	Me,
Windows	98,	or	Windows	95.

Server Requires	Windows	Server	2008,	Windows	Server	2003,
Windows	2000	Server,	or	Windows	NT	Server.

Header Declared	in	Imagehlp.h.

Library Use	Imagehlp.lib.

DLL Requires	Imagehlp.dll.

See	Also

ImageHlp	FunctionsLOADED_IMAGE
UnMapAndLoad

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MapAndLoad%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

MapFileAndCheckSum	Function
Computes	the	checksum	of	the	specified	file.

DWORD	MapFileAndCheckSum(

		__in										PTSTR	Filename,

		__out									PDWORD	HeaderSum,

		__out									PDWORD	CheckSum

);

Parameters

Filename
The	file	name	of	the	file	for	which	the	checksum	is	to	be	computed.

HeaderSum
A	pointer	to	a	variable	that	receives	the	original	checksum	from	the
image	file,	or	zero	if	there	is	an	error.

CheckSum
A	pointer	to	a	variable	that	receives	the	computed	checksum.

Return	Value

If	the	function	succeeds,	the	return	value	is	CHECKSUM_SUCCESS	(0).

If	the	function	fails,	the	return	value	is	one	of	the	following.

Return	code/value Description

CHECKSUM_MAP_FAILURE
2

Could	not	map	the	file.

CHECKSUM_MAPVIEW_FAILURE
3

Could	not	map	a	view	of	the	file.

CHECKSUM_OPEN_FAILURE
1

Could	not	open	the	file.

CHECKSUM_UNICODE_FAILURE
4

Could	not	convert	the	file	name	to
Unicode.

Remarks

The	MapFileAndCheckSum	function	computes	a	new	checksum	for	the
file	and	returns	it	in	the	CheckSum	parameter.	This	function	is	used	by
any	application	that	creates	or	modifies	an	executable	image.
Checksums	are	required	for	kernel-mode	drivers	and	some	system	DLLs.
The	linker	computes	the	original	checksum	at	link	time,	if	you	use	the
appropriate	linker	switch.	For	more	details,	see	your	linker
documentation.

It	is	recommended	that	all	images	have	valid	checksums.	It	is	the	caller's
responsibility	to	place	the	newly	computed	checksum	into	the	mapped
image	and	update	the	on-disk	image	of	the	file.

All	ImageHlp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Client

Requires	Windows	Vista,	Windows	XP,	Windows	2000
Professional,	Windows	NT	Workstation,	Windows	Me,
Windows	98,	or	Windows	95.

Server Requires	Windows	Server	2008,	Windows	Server	2003,
Windows	2000	Server,	or	Windows	NT	Server.

Header Declared	in	Imagehlp.h.

Library Use	Imagehlp.lib.

DLL Requires	Imagehlp.dll.

Unicode Implemented	as	MapFileAndCheckSumW	(Unicode)	and
MapFileAndCheckSumA	(ANSI).

See	Also

ImageHlp	Functions
CheckSumMappedFile

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20MapFileAndCheckSum%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

ReBaseImage	Function
Changes	the	load	address	for	the	specified	image,	which	reduces	the
required	load	time	for	a	DLL.

Alternatively,	you	can	use	the	Rebase	tool.	This	tool	is	available	in	Visual
Studio	and	the	Platform	SDK.

Note	that	this	function	is	implemented	as	a	call	to	the	ReBaseImage64
function.

BOOL	ReBaseImage(

		__in										PCSTR	CurrentImageName,

		__in										PCSTR	SymbolPath,

		__in										BOOL	fReBase,

		__in										BOOL	fRebaseSysfileOk,

		__in										BOOL	fGoingDown,

		__in										ULONG	CheckImageSize,

		__out									ULONG*	OldImageSize,

		__out									ULONG_PTR*	OldImageBase,

		__out									ULONG*	NewImageSize,

		__in_out						ULONG_PTR*	NewImageBase,

		__in										ULONG	TimeStamp

);

Parameters

CurrentImageName
The	name	of	the	file	to	be	rebased.

SymbolPath
The	path	used	to	find	the	corresponding	symbol	file.

fReBase
If	this	value	is	TRUE,	the	image	is	rebased.	Otherwise,	the	image	is
not	rebased.

fRebaseSysfileOk
If	this	value	is	TRUE,	the	system	image	is	rebased.	Otherwise,	the
system	image	is	not	rebased.

Http://go.microsoft.com/FWLink/?LinkId=84091

fGoingDown
If	this	value	is	TRUE,	the	image	can	be	rebased	below	the	given
base;	otherwise,	it	cannot.

CheckImageSize
The	maximum	size	that	the	image	can	grow	to,	in	bytes,	or	zero	if
there	is	no	limit.

OldImageSize
A	pointer	to	a	variable	that	receives	the	original	image	size,	in	bytes.

OldImageBase
A	pointer	to	a	variable	that	receives	the	original	image	base.

NewImageSize
A	pointer	to	a	variable	that	receives	the	new	image	size	after	the
rebase	operation,	in	bytes.

NewImageBase
A	pointer	to	a	variable	that	receives	the	new	image	base	after	the
rebase	operation.

TimeStamp
The	new	time	date	stamp	for	the	image	file	header.	The	value	must
be	represented	in	the	number	of	seconds	elapsed	since	midnight
(00:00:00),	January	1,	1970,	Universal	Coordinated	Time,	according
to	the	system	clock.

If	this	parameter	is	0,	the	current	file	header	time	date	stamp	is
incremented	by	1	second.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

The	ReBaseImage	function	changes	the	desired	load	address	for	the
specified	image.	This	operation	involves	reading	the	entire	image	and
updating	all	fixups,	debugging	information,	checksum,	and	time	stamp

values.	You	can	rebase	an	image	to	reduce	the	required	load	time	for	its
DLLs.	If	an	application	can	rely	on	a	DLL	being	loaded	at	the	desired	load
address,	then	the	system	loader	does	not	have	to	relocate	the	image.
The	image	is	simply	loaded	into	the	application's	virtual	address	space
and	the	DllMain	function	is	called,	if	one	is	present.
All	ImageHlp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Client

Requires	Windows	Vista,	Windows	XP,	Windows	2000
Professional,	Windows	NT	Workstation,	Windows	Me,
Windows	98,	or	Windows	95.

Server Requires	Windows	Server	2008,	Windows	Server	2003,
Windows	2000	Server,	or	Windows	NT	Server.

Header Declared	in	Imagehlp.h.

Library Use	Imagehlp.lib.

DLL Requires	Imagehlp.dll.

See	Also

ImageHlp	FunctionsDllMain

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20ReBaseImage%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

ReBaseImage64	Function
Changes	the	load	address	for	the	specified	image,	which	reduces	the
required	load	time	for	a	DLL.

Alternatively,	you	can	use	the	Rebase	tool.	This	tool	is	available	in	Visual
Studio	and	the	Platform	SDK.

BOOL	ReBaseImage(

		__in										PCSTR	CurrentImageName,

		__in										PCSTR	SymbolPath,

		__in										BOOL	fReBase,

		__in										BOOL	fRebaseSysfileOk,

		__in										BOOL	fGoingDown,

		__in										ULONG	CheckImageSize,

		__out									ULONG*	OldImageSize,

		__out									ULONG64*	OldImageBase,

		__out									ULONG*	NewImageSize,

		__in_out						ULONG64*	NewImageBase,

		__in										ULONG	TimeStamp

);

Parameters

CurrentImageName
The	name	of	the	file	to	be	rebased.

SymbolPath
The	path	used	to	find	the	corresponding	symbol	file.

fReBase
If	this	value	is	TRUE,	the	image	is	rebased.	Otherwise,	the	image	is
not	rebased.

fRebaseSysfileOk
If	this	value	is	TRUE,	the	system	image	is	rebased.	Otherwise,	the
system	image	is	not	rebased.

fGoingDown
If	this	value	is	TRUE,	the	image	can	be	rebased	below	the	given

Http://go.microsoft.com/FWLink/?LinkId=84091

base;	otherwise,	it	cannot.

CheckImageSize
The	maximum	size	that	the	image	can	grow	to,	in	bytes,	or	zero	if
there	is	no	limit.

OldImageSize
A	pointer	to	a	variable	that	receives	the	original	image	size,	in	bytes.

OldImageBase
A	pointer	to	a	variable	that	receives	the	original	image	base.

NewImageSize
A	pointer	to	a	variable	that	receives	the	new	image	size	after	the
rebase	operation,	in	bytes.

NewImageBase
A	pointer	to	a	variable	that	receives	the	new	image	base	after	the
rebase	operation.

TimeStamp
The	new	time	date	stamp	for	the	image	file	header.	The	value	must
be	represented	in	the	number	of	seconds	elapsed	since	midnight
(00:00:00),	January	1,	1970,	Universal	Coordinated	Time,	according
to	the	system	clock.

If	this	parameter	is	0,	the	current	file	header	time	date	stamp	is
incremented	by	1	second.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

The	ReBaseImage64	function	changes	the	desired	load	address	for	the
specified	image.	This	operation	involves	reading	the	entire	image	and
updating	all	fixups,	debugging	information,	checksum,	and	time	stamp
values.	You	can	rebase	an	image	to	reduce	the	required	load	time	for	its
DLLs.	If	an	application	can	rely	on	a	DLL	being	loaded	at	the	desired	load

address,	then	the	system	loader	does	not	have	to	relocate	the	image.
The	image	is	simply	loaded	into	the	application's	virtual	address	space
and	the	DllMain	function	is	called,	if	one	is	present.
All	ImageHlp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Client Requires	Windows	Vista,	Windows	XP,	or	Windows	2000
Professional.

Server Requires	Windows	Server	2008,	Windows	Server	2003,	or
Windows	2000	Server.

Header Declared	in	Imagehlp.h.

Library Use	Imagehlp.lib.

DLL Requires	Imagehlp.dll.

See	Also

ImageHlp	FunctionsDllMain

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20ReBaseImage64%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SetImageConfigInformation	Function
Locates	and	changes	the	load	configuration	data	of	an	image.

BOOL	SetImageConfigInformation(

		__in										PLOADED_IMAGE	LoadedImage,

		__in										PIMAGE_LOAD_CONFIG_DIRECTORY	ImageConfigInformation

);

Parameters

LoadedImage
A	pointer	to	a	LOADED_IMAGE	structure	that	is	returned	from	a	call
to	MapAndLoad	or	LoadImage.

ImageConfigInformation
A	pointer	to	an	IMAGE_LOAD_CONFIG_DIRECTORY64	structure.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

The	SetImageConfigInformation	function	locates	and	returns	the	load
configuration	data	of	an	image.

All	ImageHlp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Requires	Windows	Vista,	Windows	XP,	Windows	2000
Professional,	Windows	NT	Workstation	4.0,	Windows	Me,

Client Windows	98,	or	Windows	95.

Server Requires	Windows	Server	2008,	Windows	Server	2003,
Windows	2000	Server,	or	Windows	NT	Server	4.0.

Header Declared	in	Imagehlp.h.

Library Use	Imagehlp.lib.

DLL Requires	Imagehlp.dll.

See	Also

ImageHlp	FunctionsGetImageConfigInformation
IMAGE_LOAD_CONFIG_DIRECTORY64
LOADED_IMAGE

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SetImageConfigInformation%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

SplitSymbols	Function
Strips	symbols	from	the	specified	image.

BOOL	SplitSymbols(

		__in										PSTR	ImageName,

		__in										PSTR	SymbolsPath,

		__out									PSTR	SymbolFilePath,

		__in										DWORD	Flags

);

Parameters

ImageName
The	name	of	the	image	from	which	to	split	symbols.

SymbolsPath
The	subdirectory	for	storing	symbols.	This	parameter	is	optional.

SymbolFilePath
The	name	of	the	generated	symbol	file.	This	file	typically	has	a	.dbg
extension.

Flags
The	information	to	be	split	from	the	image.	This	parameter	can	be
zero	or	a	combination	of	the	following	values.

Value Meaning

SPLITSYM_EXTRACT_ALL
0x00000002

Usually,	an	image	with	the
symbols	split	off	will	still
contain	a	MISC	debug
directory	with	the	name	of	the
symbol	file.	Therefore,	the
debugger	can	still	find	the
symbols.	Using	this	flag
removes	this	link.	The	end
result	is	similar	to	using	the	
debug:none	switch	on	the
Microsoft	linker.

SPLITSYM_REMOVE_PRIVATE
0x00000001

This	strips	off	the	private
CodeView	symbolic
information	when	generating
the	symbol	file.

SPLITSYM_SYMBOLPATH_IS_SRC
0x00000004

The	symbol	file	path	contains
an	alternate	path	to	locate	the
.pdb	file.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

The	SplitSymbols	function	should	be	used	when	stripping	symbols	from
an	image.	It	will	create	a	symbol	file	that	all	compatible	debuggers
understand.	The	format	is	defined	in	Winnt.h	and	consists	of	an	image
header,	followed	by	the	array	of	section	headers,	the	FPO	information,
and	all	debugging	symbolic	information	from	the	image.

If	the	SymbolsPath	parameter	is	NULL,	the	symbol	file	is	stored	in	the
directory	where	the	image	exists.	Otherwise,	it	is	stored	in	the
subdirectory	below	SymbolsPath	that	matches	the	extension	of	the
image.	Using	this	method	reduces	the	chances	of	symbol	file	collision.
For	example,	the	symbols	for	myapp.exe	will	be	in	the	SymbolsPath\exe
directory	and	the	symbols	for	myapp.dll	will	be	in	the	SymbolsPath\dll
directory.

All	ImageHlp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Client

Requires	Windows	Vista,	Windows	XP,	Windows	2000
Professional,	Windows	NT	Workstation	4.0,	Windows	Me,
Windows	98,	or	Windows	95.

Server Requires	Windows	Server	2008,	Windows	Server	2003,
Windows	2000	Server,	or	Windows	NT	Server	4.0.

Header Declared	in	Imagehlp.h.

Library Use	Imagehlp.lib.

DLL Requires	Imagehlp.dll.

See	Also

ImageHlp	Functions

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20SplitSymbols%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

StatusRoutine	Callback	Function
An	application-defined	callback	function	used	with	the	BindImageEx
function.	The	status	routine	is	called	during	the	process	of	the	image
binding.

The	PIMAGEHLP_STATUS_ROUTINE	type	defines	a	pointer	to	this
callback	function.	StatusRoutine	is	a	placeholder	for	the	application-
defined	function	name.

BOOL	StatusRoutine(

		[in]																	IMAGEHLP_STATUS_REASON	Reason

		[in]																	PSTR	ImageName,

		[in]																	PSTR	DllName,

		[in]																	ULONG_PTR	Va,

		[in]																	ULONG_PTR	Parameter

);

Parameters

Reason
The	current	status	of	the	bind	operation.	This	parameter	can	be	one
of	the	following	values.

Value Meaning

BindOutOfMemory
0

Out	of	memory.	The	Parameter	value
is	the	number	of	bytes	in	the	allocation
attempt.

BindRvaToVaFailed
1

The	relative	virtual	address	is	invalid
for	the	image.	The	Parameter	value	is
not	used.

BindNoRoomInImage
2

No	room	in	the	image	for	new	format
import	table.	The	Parameter	value	is
not	used.

BindImportModuleFailed Module	import	failed.	The	Parameter

3 value	is	not	used.

BindImportProcedureFailed
4

Procedure	import	failed.	The
Parameter	value	is	the	name	of	the
function.

BindImportModule
5

Module	import	is	starting.	The
Parameter	value	is	not	used.

BindImportProcedure
6

Procedure	import	is	starting.	The
Parameter	value	is	the	name	of	the
function.

BindForwarder
7

The	Parameter	value	is	the	name	of
the	function	forwarded.

BindForwarderNOT
8

The	Parameter	value	is	the	name	of
the	function	not	forwarded.

BindImageModified
9

Image	modified.	The	Parameter	value
is	not	used.

BindExpandFileHeaders
10

File	headers	expanded.	The	Parameter
value	is	the	number	of	bytes

BindImageComplete
11

Binding	is	complete.	For	more
information	on	the	Parameter	value,
see	the	following	Remarks	section.

BindMismatchedSymbols
12

Checksum	did	not	match.	The
Parameter	value	is	the	name	of	the
symbol	file.

BindSymbolsNotUpdated
13

Symbol	file	was	not	updated.	The
Parameter	value	is	the	name	of	the
symbol	file	not	updated.

ImageName
The	name	of	the	file	to	be	bound.	This	value	can	be	a	file	name,	a

partial	path,	or	a	full	path.

DllName
The	name	of	the	DLL.

Va
The	computed	virtual	address.

Parameter
Any	additional	status	information.	This	value	depends	on	the	value	of
the	Reason	parameter.	For	more	information,	see	the	code	fragment
in	the	following	Remarks	section.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

All	ImageHlp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

The	following	code	fragment	describes	the	contents	of	the	Parameter
value	when	the	status	is	BindImageComplete.

case	BindImageComplete:

				if	(fVerbose)	{

								fprintf(stderr,	"BIND:	Details	of	binding	%s\n",	ImageName);

								NewImports	=	(PIMAGE_BOUND_IMPORT_DESCRIPTOR)Va;

								NewImport	=	NewImports;

								while	(NewImport->OffsetModuleName)	{

												fprintf(stderr,	"				Import	from	%s	[%x]",

																					(LPSTR)NewImports	+	NewImport->OffsetModuleName,

																					NewImport->TimeDateStamp

);

												if	(NewImport->NumberOfModuleForwarderRefs	!=	0)	{

																fprintf(stderr,	"	with	%u	forwarders",	NewImport->	

																									NumberOfModuleForwarderRefs);

												}

												fprintf(stderr,	"\n");

												NewForwarder	=	(PIMAGE_BOUND_FORWARDER_REF)(NewImport+1);

												for	(i=0;	i<NewImport->NumberOfModuleForwarderRefs;	i++)	

												{

																fprintf(stderr,	"								Forward	to	%s	[%x]\n",

																			(LPSTR)NewImports	+	NewForwarder->OffsetModuleName,

																			NewForwarder->TimeDateStamp);

																NewForwarder	+=	1;

												}

												NewImport	=	(PIMAGE_BOUND_IMPORT_DESCRIPTOR)NewForwarder;

								}

				}

				break;

Requirements

Client

Requires	Windows	Vista,	Windows	XP,	Windows	2000
Professional,	Windows	NT	Workstation	4.0,	Windows	Me,
Windows	98,	or	Windows	95.

Server Requires	Windows	Server	2008,	Windows	Server	2003,
Windows	2000	Server,	or	Windows	NT	Server	4.0.

Header Declared	in	Imagehlp.h.

See	Also

ImageHlp	Functions
BindImageEx

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20StatusRoutine%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

TouchFileTimes	Function
Updates	the	date	and	time	at	which	the	specified	file	was	last	modified.

BOOL	TouchFileTimes(

		__in										HANDLE	FileHandle,

		__in										PSYSTEMTIME	pSystemTime

);

Parameters

FileHandle
A	handle	to	the	file	of	interest.

pSystemTime
A	pointer	to	a	SYSTEMTIME	structure.	If	this	parameter	is	NULL,	the
current	system	date	and	time	is	used.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

All	ImageHlp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Client Requires	Windows	Vista,	Windows	XP,	or	Windows	2000
Professional.

Server Requires	Windows	Server	2008,	Windows	Server	2003,	or
Windows	2000	Server.

Header Declared	in	Imagehlp.h.

Library Use	Imagehlp.lib.

DLL Requires	Imagehlp.dll.

See	Also

Image	Help	Library	OverviewImageHlp	Functions
SYSTEMTIME

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20TouchFileTimes%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

UnMapAndLoad	Function
Deallocate	all	resources	that	are	allocated	by	a	previous	call	to	the
MapAndLoad	function.

BOOL	UnMapAndLoad(

		__in										PLOADED_IMAGE	LoadedImage

);

Parameters

LoadedImage
A	pointer	to	a	LOADED_IMAGE	structure.	This	structure	is	obtained
through	a	call	to	the	MapAndLoad	function.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

The	UnMapAndLoad	function	must	be	used	to	deallocate	all	resources
that	are	allocated	by	a	previous	call	to	MapAndLoad.	This	function	also
writes	a	new	checksum	value	into	the	image	before	the	file	is	closed.	This
ensures	that	if	a	file	is	changed,	it	can	be	successfully	loaded	by	the
system	loader.

All	ImageHlp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Client
Requires	Windows	Vista,	Windows	XP,	Windows	2000
Professional,	Windows	NT	Workstation	4.0,	Windows	Me,

Windows	98,	or	Windows	95.

Server Requires	Windows	Server	2008,	Windows	Server	2003,
Windows	2000	Server,	or	Windows	NT	Server	4.0.

Header Declared	in	Imagehlp.h.

Library Use	Imagehlp.lib.

DLL Requires	Imagehlp.dll.

See	Also

ImageHlp	FunctionsLOADED_IMAGE
MapAndLoad

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20UnMapAndLoad%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

UpdateDebugInfoFile	Function
Uses	the	specified	information	to	update	the	corresponding	fields	in	the
symbol	file.

This	function	has	been	superseded	by	the	UpdateDebugInfoFileEx
function.	Use	UpdateDebugInfoFileEx	to	verify	the	checksum	value.

BOOL	UpdateDebugInfoFile(

		__in										PSTR	ImageFileName,

		__in										PSTR	SymbolPath,

		__out									PSTR	DebugFilePath,

		__in										PIMAGE_NT_HEADERS	NtHeaders

);

Parameters

ImageFileName
The	name	of	the	image	that	is	now	out	of	date	with	respect	to	its
symbol	file.

SymbolPath
The	path	in	which	to	look	for	the	symbol	file.

DebugFilePath
A	pointer	to	a	buffer	that	receives	the	name	of	the	symbol	file	that
was	updated.

NtHeaders
A	pointer	to	an	IMAGE_NT_HEADERS	structure	that	specifies	the
new	header	information.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.	To	retrieve	extended	error
information,	call	GetLastError.

Remarks

The	UpdateDebugInfoFile	function	takes	the	information	stored	in	the
IMAGE_NT_HEADERS	structure	and	updates	the	corresponding	fields	in
the	symbol	file.	Any	time	an	image	file	is	modified,	this	function	should	be
called	to	keep	the	numbers	in	sync.	Specifically,	whenever	an	image
checksum	changes,	the	symbol	file	should	be	updated	to	match.

All	ImageHlp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Client

Requires	Windows	Vista,	Windows	XP,	Windows	2000
Professional,	Windows	NT	Workstation	4.0,	Windows	Me,
Windows	98,	or	Windows	95.

Server Requires	Windows	Server	2008,	Windows	Server	2003,
Windows	2000	Server,	or	Windows	NT	Server	4.0.

Header Declared	in	Imagehlp.h.

Library Use	Imagehlp.lib.

DLL Requires	Imagehlp.dll.

See	Also

ImageHlp	FunctionsIMAGE_NT_HEADERS
UpdateDebugInfoFileEx

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20UpdateDebugInfoFile%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

©	2007	Microsoft	Corporation.	All	rights	reserved.

UpdateDebugInfoFileEx	Function
Uses	the	specified	extended	information	to	update	the	corresponding
fields	in	the	symbol	file.

BOOL	UpdateDebugInfoFileEx(

		__in										PSTR	ImageFileName,

		__in										PSTR	SymbolPath,

		__out									PSTR	DebugFilePath,

		__in										PIMAGE_NT_HEADERS	NtHeaders,

		__in										DWORD	OldChecksum

);

Parameters

ImageFileName
The	name	of	the	image	that	is	now	out	of	date	with	respect	to	its
symbol	file.

SymbolPath
The	path	in	which	to	look	for	the	symbol	file.

DebugFilePath
A	pointer	to	a	buffer	that	receives	the	name	of	the	symbol	file	that
was	updated.

NtHeaders
A	pointer	to	an	IMAGE_NT_HEADERS	structure	that	specifies	the
new	header	information.

OldChecksum
The	original	checksum	value.	If	this	value	does	not	match	the
checksum	that	is	present	in	the	mapped	image,	the	flags	in	the
symbol	file	contain	IMAGE_SEPARATE_DEBUG_MISMATCH	and
the	last	error	value	is	set	to	ERROR_INVALID_DATA.

Return	Value

If	the	function	succeeds,	the	return	value	is	TRUE.

If	the	function	fails,	the	return	value	is	FALSE.

Remarks

The	UpdateDebugInfoFileEx	function	takes	the	information	stored	in	the
IMAGE_NT_HEADERS	structure	and	updates	the	corresponding	fields	in
the	symbol	file.	Any	time	an	image	file	is	modified,	this	function	should	be
called	to	keep	the	numbers	in	sync.	Specifically,	whenever	an	image
checksum	changes,	the	symbol	file	should	be	updated	to	match.

All	ImageHlp	functions,	such	as	this	one,	are	single	threaded.	Therefore,
calls	from	more	than	one	thread	to	this	function	will	likely	result	in
unexpected	behavior	or	memory	corruption.	To	avoid	this,	you	must
synchronize	all	concurrent	calls	from	more	than	one	thread	to	this
function.

Requirements

Client

Requires	Windows	Vista,	Windows	XP,	Windows	2000
Professional,	Windows	NT	Workstation	4.0,	Windows	Me,
Windows	98,	or	Windows	95.

Server Requires	Windows	Server	2008,	Windows	Server	2003,
Windows	2000	Server,	or	Windows	NT	Server	4.0.

Header Declared	in	Imagehlp.h.

Library Use	Imagehlp.lib.

DLL Requires	Imagehlp.dll.

See	Also

ImageHlp	FunctionsIMAGE_NT_HEADERS

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20UpdateDebugInfoFileEx%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

©	2007	Microsoft	Corporation.	All	rights	reserved.

ImageHlp	Structures
The	following	are	the	ImageHlp	data	structures:

IMAGE_COFF_SYMBOLS_HEADER
IMAGE_DATA_DIRECTORY
IMAGE_DEBUG_DIRECTORY
IMAGE_FILE_HEADER
IMAGE_FUNCTION_ENTRY
IMAGE_LOAD_CONFIG_DIRECTORY64
IMAGE_NT_HEADERS
IMAGE_OPTIONAL_HEADER
IMAGE_SECTION_HEADER

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20ImageHlp Structures%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

IMAGE_COFF_SYMBOLS_HEADER	Structure
Represents	the	COFF	symbols	header.

typedef	struct	_IMAGE_COFF_SYMBOLS_HEADER	{

		DWORD	NumberOfSymbols;

		DWORD	LvaToFirstSymbol;

		DWORD	NumberOfLinenumbers;

		DWORD	LvaToFirstLinenumber;

		DWORD	RvaToFirstByteOfCode;

		DWORD	RvaToLastByteOfCode;

		DWORD	RvaToFirstByteOfData;

		DWORD	RvaToLastByteOfData;

}	IMAGE_COFF_SYMBOLS_HEADER,	

	*PIMAGE_COFF_SYMBOLS_HEADER;

Members

NumberOfSymbols
The	number	of	symbols.

LvaToFirstSymbol
The	virtual	address	of	the	first	symbol.

NumberOfLinenumbers
The	number	of	line-number	entries.

LvaToFirstLinenumber
The	virtual	address	of	the	first	line-number	entry.

RvaToFirstByteOfCode
The	relative	virtual	address	of	the	first	byte	of	code.

RvaToLastByteOfCode
The	relative	virtual	address	of	the	last	byte	of	code.

RvaToFirstByteOfData
The	relative	virtual	address	of	the	first	byte	of	data.

RvaToLastByteOfData
The	relative	virtual	address	of	the	last	byte	of	data.

Requirements

Client

Requires	Windows	Vista,	Windows	XP,	Windows	2000
Professional,	Windows	NT	Workstation	4.0,	Windows	Me,
Windows	98,	or	Windows	95.

Server Requires	Windows	Server	2008,	Windows	Server	2003,
Windows	2000	Server,	or	Windows	NT	Server	4.0.

Header Declared	in	Winnt.h;	include	Windows.h.

See	Also

ImageHlp	Structures

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20IMAGE_COFF_SYMBOLS_HEADER%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

IMAGE_DATA_DIRECTORY	Structure
Represents	the	data	directory.

typedef	struct	_IMAGE_DATA_DIRECTORY	{

		DWORD	VirtualAddress;

		DWORD	Size;

}	IMAGE_DATA_DIRECTORY,	

	*PIMAGE_DATA_DIRECTORY;

Members

VirtualAddress
The	relative	virtual	address	of	the	table.

Size
The	size	of	the	table,	in	bytes.

Remarks

The	following	is	a	list	of	the	data	directories.	Offsets	are	relative	to	the
beginning	of	the	optional	header.

Offset	(PE/PE32+) Description
96/112 Export	table	address	and	size

104/120 Import	table	address	and	size

112/128 Resource	table	address	and	size

120/136 Exception	table	address	and	size

128/144 Certificate	table	address	and	size

136/152 Base	relocation	table	address	and	size

144/160 Debugging	information	starting	address	and	size

152/168 Architecture-specific	data	address	and	size

160/176 Global	pointer	register	relative	virtual	address

168/184 Thread	local	storage	(TLS)	table	address	and	size

176/192 Load	configuration	table	address	and	size

184/200 Bound	import	table	address	and	size

192/208 Import	address	table	address	and	size

200/216 Delay	import	descriptor	address	and	size

208/224 The	CLR	header	address	and	size

216/232 Reserved

Requirements

Client

Requires	Windows	Vista,	Windows	XP,	Windows	2000
Professional,	Windows	NT	Workstation	4.0,	Windows	Me,
Windows	98,	or	Windows	95.

Server Requires	Windows	Server	2008,	Windows	Server	2003,
Windows	2000	Server,	or	Windows	NT	Server	4.0.

Header Declared	in	Winnt.h;	include	Windows.h.

See	Also

ImageHlp	Structures
IMAGE_OPTIONAL_HEADER

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20IMAGE_DATA_DIRECTORY%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

IMAGE_DEBUG_DIRECTORY	Structure
Represents	the	debug	directory	format.

typedef	struct	_IMAGE_DEBUG_DIRECTORY	{

		DWORD	Characteristics;

		DWORD	TimeDateStamp;

		WORD	MajorVersion;

		WORD	MinorVersion;

		DWORD	Type;

		DWORD	SizeOfData;

		DWORD	AddressOfRawData;

		DWORD	PointerToRawData;

}	IMAGE_DEBUG_DIRECTORY,	

	*PIMAGE_DEBUG_DIRECTORY;

Members

Characteristics
Reserved.

TimeDateStamp
The	ime	and	date	the	debugging	information	was	created.

MajorVersion
The	major	version	number	of	the	debugging	information	format.

MinorVersion
The	minor	version	number	of	the	debugging	information	format.

Type
The	format	of	the	debugging	information.	This	member	can	be	one	of
the	following	values.

Constant Meaning

IMAGE_DEBUG_TYPE_UNKNOWN
0

Unknown	value,	ignored	by
all	tools.

IMAGE_DEBUG_TYPE_COFF COFF	debugging

1 information	(line	numbers,
symbol	table,	and	string
table).	This	type	of
debugging	information	is
also	pointed	to	by	fields	in
the	file	headers.

IMAGE_DEBUG_TYPE_CODEVIEW
2

CodeView	debugging
information.	The	format	of
the	data	block	is	described
by	the	CodeView	4.0
specification.

IMAGE_DEBUG_TYPE_FPO
3

Frame	pointer	omission
(FPO)	information.	This
information	tells	the
debugger	how	to	interpret
nonstandard	stack	frames,
which	use	the	EBP	register
for	a	purpose	other	than	as
a	frame	pointer.

IMAGE_DEBUG_TYPE_MISC
4

Miscellaneous	information.

IMAGE_DEBUG_TYPE_EXCEPTION
5

Exception	information.

IMAGE_DEBUG_TYPE_FIXUP
6

Fixup	information.

IMAGE_DEBUG_TYPE_BORLAND
9

Borland	debugging
information.

SizeOfData
The	size	of	the	debugging	information,	in	bytes.	This	value	does	not
include	the	debug	directory	itself.

AddressOfRawData

The	address	of	the	debugging	information	when	the	image	is	loaded,
relative	to	the	image	base.

PointerToRawData
A	file	pointer	to	the	debugging	information.

Requirements

Client

Requires	Windows	Vista,	Windows	XP,	Windows	2000
Professional,	Windows	NT	Workstation	4.0,	Windows	Me,
Windows	98,	or	Windows	95.

Server Requires	Windows	Server	2008,	Windows	Server	2003,
Windows	2000	Server,	or	Windows	NT	Server	4.0.

Header Declared	in	Winnt.h;	include	Windows.h.

See	Also

ImageHlp	Structures

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20IMAGE_DEBUG_DIRECTORY%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

IMAGE_FILE_HEADER	Structure
Represents	the	COFF	header	format.

typedef	struct	_IMAGE_FILE_HEADER	{

		WORD	Machine;

		WORD	NumberOfSections;

		DWORD	TimeDateStamp;

		DWORD	PointerToSymbolTable;

		DWORD	NumberOfSymbols;

		WORD	SizeOfOptionalHeader;

		WORD	Characteristics;

}	IMAGE_FILE_HEADER,	

	*PIMAGE_FILE_HEADER;

Members

Machine
The	architecture	type	of	the	computer.	An	image	file	can	only	be	run
on	the	specified	computer	or	a	system	that	emulates	the	specified
computer.	This	member	can	be	one	of	the	following	values.

Value Meaning

IMAGE_FILE_MACHINE_I386
0x014c

x86

IMAGE_FILE_MACHINE_IA64
0x0200

Intel	IPF

IMAGE_FILE_MACHINE_AMD64
0x8664

x64

NumberOfSections
The	number	of	sections.	This	indicates	the	size	of	the	section	table,
which	immediately	follows	the	headers.	Note	that	the	Windows
loader	limits	the	number	of	sections	to	96.

TimeDateStamp

The	low	32	bits	of	the	time	stamp	of	the	image.	This	represents	the
date	and	time	the	image	was	created	by	the	linker.	The	value	is
represented	in	the	number	of	seconds	elapsed	since	midnight
(00:00:00),	January	1,	1970,	Universal	Coordinated	Time,	according
to	the	system	clock.

PointerToSymbolTable
The	offset	of	the	symbol	table,	in	bytes,	or	zero	if	no	COFF	symbol
table	exists.

NumberOfSymbols
The	number	of	symbols	in	the	symbol	table.

SizeOfOptionalHeader
The	size	of	the	optional	header,	in	bytes.	This	value	should	be	0	for
object	files.

Characteristics
The	characteristics	of	the	image.	This	member	can	be	one	or	more	of
the	following	values.

Value Meaning

IMAGE_FILE_RELOCS_STRIPPED
0x0001

Relocation
information	was
stripped	from
the	file.	The	file
must	be	loaded
at	its	preferred
base	address.	If
the	base
address	is	not
available,	the
loader	reports
an	error.

IMAGE_FILE_EXECUTABLE_IMAGE
0x0002

The	file	is
executable
(there	are	no
unresolved

external
references).

IMAGE_FILE_LINE_NUMS_STRIPPED
0x0004

COFF	line
numbers	were
stripped	from
the	file.

IMAGE_FILE_LOCAL_SYMS_STRIPPED
0x0008

COFF	symbol
table	entries
were	stripped
from	file.

IMAGE_FILE_AGGRESIVE_WS_TRIM
0x0010

Aggressively
trim	the	working
set.	This	value
is	obsolete	as	of
Windows	2000.

IMAGE_FILE_LARGE_ADDRESS_AWARE
0x0020

The	application
can	handle
addresses
larger	than	2
GB.

IMAGE_FILE_BYTES_REVERSED_LO
0x0080

The	bytes	of	the
word	are
reversed.	This
flag	is	obsolete.

IMAGE_FILE_32BIT_MACHINE
0x0100

The	computer
supports	32-bit
words.

IMAGE_FILE_DEBUG_STRIPPED
0x0200

Debugging
information	was
removed	and
stored
separately	in

another	file.

IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP
0x0400

If	the	image	is
on	removable
media,	copy	it	to
and	run	it	from
the	swap	file.

IMAGE_FILE_NET_RUN_FROM_SWAP
0x0800

If	the	image	is
on	the	network,
copy	it	to	and
run	it	from	the
swap	file.

IMAGE_FILE_SYSTEM
0x1000

The	image	is	a
system	file.

IMAGE_FILE_DLL
0x2000

The	image	is	a
DLL	file.	While	it
is	an	executable
file,	it	cannot	be
run	directly.

IMAGE_FILE_UP_SYSTEM_ONLY
0x4000

The	file	should
be	run	only	on	a
uniprocessor
computer.

IMAGE_FILE_BYTES_REVERSED_HI
0x8000

The	bytes	of	the
word	are
reversed.	This
flag	is	obsolete.

Requirements

Client

Requires	Windows	Vista,	Windows	XP,	Windows	2000
Professional,	Windows	NT	Workstation	4.0,	Windows	Me,
Windows	98,	or	Windows	95.

Server Requires	Windows	Server	2008,	Windows	Server	2003,
Windows	2000	Server,	or	Windows	NT	Server	4.0.

Header Declared	in	Winnt.h;	include	Windows.h.

See	Also

ImageHlp	Structures
IMAGE_NT_HEADERS

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20IMAGE_FILE_HEADER%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

IMAGE_FUNCTION_ENTRY	Structure
Represents	an	entry	in	the	function	table.

typedef	struct	_IMAGE_FUNCTION_ENTRY	{

		DWORD	StartingAddress;

		DWORD	EndingAddress;

		DWORD	EndOfPrologue;

}	IMAGE_FUNCTION_ENTRY,	

	*PIMAGE_FUNCTION_ENTRY;

Members

StartingAddress
The	image	address	of	the	start	of	the	function.

EndingAddress
The	image	address	of	the	end	of	the	function.

EndOfPrologue
The	image	address	of	the	end	of	the	prologue	code.

Remarks

The	following	definition	exists	for	64-bit	support.

typedef	struct	_IMAGE_FUNCTION_ENTRY64	{

				ULONGLONG			StartingAddress;

				ULONGLONG			EndingAddress;

				union	{

								ULONGLONG			EndOfPrologue;

								ULONGLONG			UnwindInfoAddress;

				};

}	IMAGE_FUNCTION_ENTRY64,	*PIMAGE_FUNCTION_ENTRY64;

Requirements

Client

Requires	Windows	Vista,	Windows	XP,	Windows	2000
Professional,	Windows	NT	Workstation	4.0,	Windows	Me,
Windows	98,	or	Windows	95.

Server Requires	Windows	Server	2008,	Windows	Server	2003,
Windows	2000	Server,	or	Windows	NT	Server	4.0.

Header Declared	in	Winnt.h;	include	Windows.h.

See	Also

ImageHlp	Structures
STACKFRAME64

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20IMAGE_FUNCTION_ENTRY%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

IMAGE_LOAD_CONFIG_DIRECTORY64	Structure
Contains	the	load	configuration	data	of	an	image.

typedef	struct	{

		DWORD	Size;

		DWORD	TimeDateStamp;

		WORD	MajorVersion;

		WORD	MinorVersion;

		DWORD	GlobalFlagsClear;

		DWORD	GlobalFlagsSet;

		DWORD	CriticalSectionDefaultTimeout;

		ULONGLONG	DeCommitFreeBlockThreshold;

		ULONGLONG	DeCommitTotalFreeThreshold;

		ULONGLONG	LockPrefixTable;

		ULONGLONG	MaximumAllocationSize;

		ULONGLONG	VirtualMemoryThreshold;

		ULONGLONG	ProcessAffinityMask;

		DWORD	ProcessHeapFlags;

		WORD	CSDVersion;

		WORD	Reserved1;

		ULONGLONG	EditList;

		ULONGLONG	SecurityCookie;

		ULONGLONG	SEHandlerTable;

		ULONGLONG	SEHandlerCount;

}	IMAGE_LOAD_CONFIG_DIRECTORY64,	

	*PIMAGE_LOAD_CONFIG_DIRECTORY64;

Members

Size
The	size	of	the	structure.	For	Windows	XP	and	Windows	2000,	the
size	must	be	specified	as	64	for	x86	images.

TimeDateStamp
The	date	and	time	stamp	value.	The	value	is	represented	in	the
number	of	seconds	elapsed	since	midnight	(00:00:00),	January	1,
1970,	Universal	Coordinated	Time,	according	to	the	system	clock.

The	time	stamp	can	be	printed	using	the	C	run-time	(CRT)	function
ctime.

MajorVersion
The	major	version	number.

MinorVersion
The	minor	version	number.

GlobalFlagsClear
The	global	flags	that	control	system	behavior.	For	more	information,
see	Gflags.exe.

GlobalFlagsSet
The	global	flags	that	control	system	behavior.	For	more	information,
see	Gflags.exe.

CriticalSectionDefaultTimeout
The	critical	section	default	time-out	value.

DeCommitFreeBlockThreshold
The	size	of	the	minimum	block	that	must	be	freed	before	it	is	freed
(de-committed),	in	bytes.	This	value	is	advisory.

DeCommitTotalFreeThreshold
The	size	of	the	minimum	total	memory	that	must	be	freed	in	the
process	heap	before	it	is	freed	(de-comitted),	in	bytes.	This	value	is
advisory.

LockPrefixTable
The	VA	of	a	list	of	addresses	where	the	LOCK	prefix	is	used.	These
will	be	replaced	by	NOP	on	single-processor	systems.	This	member
is	available	only	for	x86.

MaximumAllocationSize
The	maximum	allocation	size,	in	bytes.	This	member	is	obsolete	and
is	used	only	for	debugging	purposes.

VirtualMemoryThreshold
The	maximum	block	size	that	can	be	allocated	from	heap	segments,
in	bytes.

ProcessAffinityMask

The	process	affinity	mask.	For	more	information,	see
GetProcessAffinityMask.	This	member	is	available	only	for	.exe
files.

ProcessHeapFlags
The	process	heap	flags.	For	more	information,	see	HeapCreate.

CSDVersion
The	service	pack	version.

Reserved1
Reserved	for	use	by	the	operating	system.

EditList
Reserved	for	use	by	the	system.

SecurityCookie
A	pointer	to	a	cookie	that	is	used	by	Visual	C++	or	GS
implementation.

SEHandlerTable
The	VA	of	the	sorted	table	of	RVAs	of	each	valid,	unique	handler	in
the	image.	This	member	is	available	only	for	x86.

SEHandlerCount
The	count	of	unique	handlers	in	the	table.	This	member	is	available
only	for	x86.

Remarks

If	_WIN64	is	defined,	then	IMAGE_LOAD_CONFIG_DIRECTORY	is
defined	as	IMAGE_LOAD_CONFIG_DIRECTORY64.	However,	if
_WIN64	is	not	defined,	then	IMAGE_LOAD_CONFIG_DIRECTORY	is
defined	as	IMAGE_LOAD_CONFIG_DIRECTORY32.

typedef	struct	{

				DWORD			Size;

				DWORD			TimeDateStamp;

				WORD				MajorVersion;

				WORD				MinorVersion;

				DWORD			GlobalFlagsClear;

				DWORD			GlobalFlagsSet;

				DWORD			CriticalSectionDefaultTimeout;

				DWORD			DeCommitFreeBlockThreshold;

				DWORD			DeCommitTotalFreeThreshold;

				DWORD			LockPrefixTable;												//	VA

				DWORD			MaximumAllocationSize;

				DWORD			VirtualMemoryThreshold;

				DWORD			ProcessHeapFlags;

				DWORD			ProcessAffinityMask;

				WORD				CSDVersion;

				WORD				Reserved1;

				DWORD			EditList;																			//	VA

				DWORD			SecurityCookie;													//	VA

				DWORD			SEHandlerTable;													//	VA

				DWORD			SEHandlerCount;

}	IMAGE_LOAD_CONFIG_DIRECTORY32,	*PIMAGE_LOAD_CONFIG_DIRECTORY32;

Requirements

Client

Requires	Windows	Vista,	Windows	XP,	Windows	2000
Professional,	Windows	NT	Workstation	3.51	and	later,
Windows	Me,	Windows	98,	or	Windows	95.

Server Requires	Windows	Server	2008,	Windows	Server	2003,
Windows	2000	Server,	or	Windows	NT	Server	3.51	and	later.

Header Declared	in	Winnt.h;	include	Windows.h.

See	Also

ImageHlp	Structures
GetImageConfigInformation
GetProcessAffinityMask
SetImageConfigInformation

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20IMAGE_LOAD_CONFIG_DIRECTORY64%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

IMAGE_NT_HEADERS	Structure
Represents	the	PE	header	format.

typedef	struct	_IMAGE_NT_HEADERS	{

		DWORD	Signature;

		IMAGE_FILE_HEADER	FileHeader;

		IMAGE_OPTIONAL_HEADER	OptionalHeader;

}	IMAGE_NT_HEADERS,	

	*PIMAGE_NT_HEADERS;

Members

Signature
A	4-byte	signature	identifying	the	file	as	a	PE	image.	The	bytes	are
"PE\0\0".

FileHeader
An	IMAGE_FILE_HEADER	structure	that	specifies	the	file	header.

OptionalHeader
An	IMAGE_OPTIONAL_HEADER	structure	that	specifies	the
optional	file	header.

Remarks

The	actual	structure	in	Winnt.h	is	named	IMAGE_NT_HEADERS32	and
IMAGE_NT_HEADERS	is	defined	as	IMAGE_NT_HEADERS32.
However,	if	_WIN64	is	defined,	then	IMAGE_NT_HEADERS	is	defined
as	IMAGE_NT_HEADERS64.

typedef	struct	_IMAGE_NT_HEADERS64	{

				DWORD	Signature;

				IMAGE_FILE_HEADER	FileHeader;

				IMAGE_OPTIONAL_HEADER64	OptionalHeader;

}	IMAGE_NT_HEADERS64,	*PIMAGE_NT_HEADERS64;

Requirements

Client

Requires	Windows	Vista,	Windows	XP,	Windows	2000
Professional,	Windows	NT	Workstation	4.0,	Windows	Me,
Windows	98,	or	Windows	95.

Server Requires	Windows	Server	2008,	Windows	Server	2003,
Windows	2000	Server,	or	Windows	NT	Server	4.0.

Header Declared	in	Winnt.h;	include	Windows.h.

See	Also

ImageHlp	Structures
CheckSumMappedFile
IMAGE_FILE_HEADER
IMAGE_OPTIONAL_HEADER
ImageNtHeader
ImageRvaToSection
ImageRvaToVa
LOADED_IMAGE
UpdateDebugInfoFile

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20IMAGE_NT_HEADERS%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

IMAGE_OPTIONAL_HEADER	Structure
Represents	the	optional	header	format.

typedef	struct	_IMAGE_OPTIONAL_HEADER	{

		WORD	Magic;

		BYTE	MajorLinkerVersion;

		BYTE	MinorLinkerVersion;

		DWORD	SizeOfCode;

		DWORD	SizeOfInitializedData;

		DWORD	SizeOfUninitializedData;

		DWORD	AddressOfEntryPoint;

		DWORD	BaseOfCode;

		DWORD	BaseOfData;

		DWORD	ImageBase;

		DWORD	SectionAlignment;

		DWORD	FileAlignment;

		WORD	MajorOperatingSystemVersion;

		WORD	MinorOperatingSystemVersion;

		WORD	MajorImageVersion;

		WORD	MinorImageVersion;

		WORD	MajorSubsystemVersion;

		WORD	MinorSubsystemVersion;

		DWORD	Win32VersionValue;

		DWORD	SizeOfImage;

		DWORD	SizeOfHeaders;

		DWORD	CheckSum;

		WORD	Subsystem;

		WORD	DllCharacteristics;

		DWORD	SizeOfStackReserve;

		DWORD	SizeOfStackCommit;

		DWORD	SizeOfHeapReserve;

		DWORD	SizeOfHeapCommit;

		DWORD	LoaderFlags;

		DWORD	NumberOfRvaAndSizes;

		IMAGE_DATA_DIRECTORY	DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES];

}	IMAGE_OPTIONAL_HEADER,	

	*PIMAGE_OPTIONAL_HEADER;

Members

Magic
The	state	of	the	image	file.	This	member	can	be	one	of	the	following
values.

Value Meaning

IMAGE_NT_OPTIONAL_HDR_MAGIC The	file	is	an	executable	image.	This
value	is	defined	as
IMAGE_NT_OPTIONAL_HDR32_MAGIC
in	a	32-bit	application	and	as
IMAGE_NT_OPTIONAL_HDR64_MAGIC
in	a	64-bit	application.

IMAGE_NT_OPTIONAL_HDR32_MAGIC
0x10b

The	file	is	an	executable	image.

IMAGE_NT_OPTIONAL_HDR64_MAGIC
0x20b

The	file	is	an	executable	image.

IMAGE_ROM_OPTIONAL_HDR_MAGIC
0x107

The	file	is	a	ROM	image.

MajorLinkerVersion
The	major	version	number	of	the	linker.

MinorLinkerVersion
The	minor	version	number	of	the	linker.

SizeOfCode
The	size	of	the	code	section,	in	bytes,	or	the	sum	of	all	such	sections
if	there	are	multiple	code	sections.

SizeOfInitializedData
The	size	of	the	initialized	data	section,	in	bytes,	or	the	sum	of	all
such	sections	if	there	are	multiple	initialized	data	sections.

SizeOfUninitializedData

The	size	of	the	uninitialized	data	section,	in	bytes,	or	the	sum	of	all
such	sections	if	there	are	multiple	uninitialized	data	sections.

AddressOfEntryPoint
A	pointer	to	the	entry	point	function,	relative	to	the	image	base
address.	For	executable	files,	this	is	the	starting	address.	For	device
drivers,	this	is	the	address	of	the	initialization	function.	The	entry
point	function	is	optional	for	DLLs.	When	no	entry	point	is	present,
this	member	is	zero.

BaseOfCode
A	pointer	to	the	beginning	of	the	code	section,	relative	to	the	image
base.

BaseOfData
A	pointer	to	the	beginning	of	the	data	section,	relative	to	the	image
base.

ImageBase
The	preferred	address	of	the	first	byte	of	the	image	when	it	is	loaded
in	memory.	This	value	is	a	multiple	of	64K	bytes.	The	default	value
for	DLLs	is	0x10000000.	The	default	value	for	applications	is
0x00400000,	except	on	Windows	CE	where	it	is	0x00010000.

SectionAlignment
The	alignment	of	sections	loaded	in	memory,	in	bytes.	This	value
must	be	greater	than	or	equal	to	the	FileAlignment	member.	The
default	value	is	the	page	size	for	the	system.

FileAlignment
The	alignment	of	the	raw	data	of	sections	in	the	image	file,	in	bytes.
The	value	should	be	a	power	of	2	between	512	and	64K	(inclusive).
The	default	is	512.	If	the	SectionAlignment	member	is	less	than	the
system	page	size,	this	member	must	be	the	same	as
SectionAlignment.

MajorOperatingSystemVersion
The	major	version	number	of	the	required	operating	system.

MinorOperatingSystemVersion
The	minor	version	number	of	the	required	operating	system.

MajorImageVersion
The	major	version	number	of	the	image.

MinorImageVersion
The	minor	version	number	of	the	image.

MajorSubsystemVersion
The	major	version	number	of	the	subsystem.

MinorSubsystemVersion
The	minor	version	number	of	the	subsystem.

Win32VersionValue
This	member	is	reserved	and	must	be	0.

SizeOfImage
The	size	of	the	image,	in	bytes,	including	all	headers.	Must	be	a
multiple	of	SectionAlignment.

SizeOfHeaders
The	combined	size	of	the	MS-DOS	stub,	the	PE	header,	and	the
section	headers,	rounded	to	a	multiple	of	the	value	specified	in	the
FileAlignment	member.

CheckSum
The	image	file	checksum.	The	following	files	are	validated	at	load
time:	all	drivers,	any	DLL	loaded	at	boot	time,	and	any	DLL	loaded
into	a	critical	system	process.

Subsystem
The	subsystem	required	to	run	this	image.	The	following	values	are
defined.

Value Meaning

IMAGE_SUBSYSTEM_UNKNOWN
0

Unknown
subsystem.

IMAGE_SUBSYSTEM_NATIVE
1

No
subsystem
required
(device

drivers	and
native
system
processes).

IMAGE_SUBSYSTEM_WINDOWS_GUI
2

Windows
graphical
user
interface
(GUI)
subsystem.

IMAGE_SUBSYSTEM_WINDOWS_CUI
3

Windows
character-
mode	user
interface
(CUI)
subsystem.

IMAGE_SUBSYSTEM_OS2_CUI
5

OS/2	CUI
subsystem.

IMAGE_SUBSYSTEM_POSIX_CUI
7

POSIX	CUI
subsystem.

IMAGE_SUBSYSTEM_WINDOWS_CE_GUI
9

Windows
CE	system.

IMAGE_SUBSYSTEM_EFI_APPLICATION
10

Extensible
Firmware
Interface
(EFI)
application.

IMAGE_SUBSYSTEM_EFI_BOOT_SERVICE_DRIVER
11

EFI	driver
with	boot
services.

IMAGE_SUBSYSTEM_EFI_RUNTIME_DRIVER EFI	driver

12 with	run-
time
services.

IMAGE_SUBSYSTEM_EFI_ROM
13

EFI	ROM
image.

IMAGE_SUBSYSTEM_XBOX
14

Xbox
system.

IMAGE_SUBSYSTEM_WINDOWS_BOOT_APPLICATION
16

Boot
application.

DllCharacteristics
The	DLL	characteristics	of	the	image.	The	following	values	are
defined.

Value

0x0001

0x0002

0x0004

0x0008

IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE
0x0040

IMAGE_DLLCHARACTERISTICS_FORCE_INTEGRITY
0x0080

IMAGE_DLLCHARACTERISTICS_NX_COMPAT

0x0100

IMAGE_DLLCHARACTERISTICS_NO_ISOLATION
0x0200

IMAGE_DLLCHARACTERISTICS_NO_SEH
0x0400

IMAGE_DLLCHARACTERISTICS_NO_BIND
0x0800

0x1000

IMAGE_DLLCHARACTERISTICS_WDM_DRIVER
0x2000

0x4000

IMAGE_DLLCHARACTERISTICS_TERMINAL_SERVER_AWARE
0x8000

SizeOfStackReserve
The	number	of	bytes	to	reserve	for	the	stack.	Only	the	memory
specified	by	the	SizeOfStackCommit	member	is	committed	at	load
time;	the	rest	is	made	available	one	page	at	a	time	until	this	reserve
size	is	reached.

SizeOfStackCommit
The	number	of	bytes	to	commit	for	the	stack.

SizeOfHeapReserve
The	number	of	bytes	to	reserve	for	the	local	heap.	Only	the	memory
specified	by	the	SizeOfHeapCommit	member	is	committed	at	load
time;	the	rest	is	made	available	one	page	at	a	time	until	this	reserve
size	is	reached.

SizeOfHeapCommit
The	number	of	bytes	to	commit	for	the	local	heap.

LoaderFlags
This	member	is	obsolete.

NumberOfRvaAndSizes
The	number	of	directory	entries	in	the	remainder	of	the	optional
header.	Each	entry	describes	a	location	and	size.

DataDirectory
A	pointer	to	the	first	IMAGE_DATA_DIRECTORY	structure	in	the
data	directory.

Remarks

The	number	of	directories	is	not	fixed.	Check	the
NumberOfRvaAndSizes	member	before	looking	for	a	specific	directory.
The	actual	structure	in	Winnt.h	is	named
IMAGE_OPTIONAL_HEADER32	and	IMAGE_OPTIONAL_HEADER	is
defined	as	IMAGE_OPTIONAL_HEADER32.	However,	if	_WIN64	is
defined,	then	IMAGE_OPTIONAL_HEADER	is	defined	as
IMAGE_OPTIONAL_HEADER64.

typedef	struct	_IMAGE_OPTIONAL_HEADER64	{

	WORD								Magic;

	BYTE								MajorLinkerVersion;

	BYTE								MinorLinkerVersion;

	DWORD							SizeOfCode;

	DWORD							SizeOfInitializedData;

	DWORD							SizeOfUninitializedData;

	DWORD							AddressOfEntryPoint;

	DWORD							BaseOfCode;

	ULONGLONG			ImageBase;

	DWORD							SectionAlignment;

	DWORD							FileAlignment;

	WORD								MajorOperatingSystemVersion;

	WORD								MinorOperatingSystemVersion;

	WORD								MajorImageVersion;

	WORD								MinorImageVersion;

	WORD								MajorSubsystemVersion;

	WORD								MinorSubsystemVersion;

	DWORD							Win32VersionValue;

	DWORD							SizeOfImage;

	DWORD							SizeOfHeaders;

	DWORD							CheckSum;

	WORD								Subsystem;

	WORD								DllCharacteristics;

	ULONGLONG			SizeOfStackReserve;

	ULONGLONG			SizeOfStackCommit;

	ULONGLONG			SizeOfHeapReserve;

	ULONGLONG			SizeOfHeapCommit;

	DWORD							LoaderFlags;

	DWORD							NumberOfRvaAndSizes;

	IMAGE_DATA_DIRECTORY	DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES];

}	IMAGE_OPTIONAL_HEADER64,	*PIMAGE_OPTIONAL_HEADER64;

Requirements

Client

Requires	Windows	Vista,	Windows	XP,	Windows	2000
Professional,	Windows	NT	Workstation	4.0,	Windows	Me,
Windows	98,	or	Windows	95.

Server Requires	Windows	Server	2008,	Windows	Server	2003,
Windows	2000	Server,	or	Windows	NT	Server	4.0.

Header Declared	in	Winnt.h;	include	Windows.h.

See	Also

ImageHlp	Structures
IMAGE_DATA_DIRECTORY

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20IMAGE_OPTIONAL_HEADER%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

IMAGE_SECTION_HEADER	Structure
Represents	the	image	section	header	format.

typedef	struct	_IMAGE_SECTION_HEADER	{

		BYTE	Name[IMAGE_SIZEOF_SHORT_NAME];

		union	{

				DWORD	PhysicalAddress;

				DWORD	VirtualSize;

		}	Misc;

		DWORD	VirtualAddress;

		DWORD	SizeOfRawData;

		DWORD	PointerToRawData;

		DWORD	PointerToRelocations;

		DWORD	PointerToLinenumbers;

		WORD	NumberOfRelocations;

		WORD	NumberOfLinenumbers;

		DWORD	Characteristics;

}	IMAGE_SECTION_HEADER,	

	*PIMAGE_SECTION_HEADER;

Members

Name
An	8-byte,	null-padded	UTF-8	string.	There	is	no	terminating	null
character	if	the	string	is	exactly	eight	characters	long.	For	longer
names,	this	member	contains	a	forward	slash	(/)	followed	by	an
ASCII	representation	of	a	decimal	number	that	is	an	offset	into	the
string	table.	Executable	images	do	not	use	a	string	table	and	do	not
support	section	names	longer	than	eight	characters.

Misc

PhysicalAddress
The	file	address.

VirtualSize
The	total	size	of	the	section	when	loaded	into	memory,	in	bytes.
If	this	value	is	greater	than	the	SizeOfRawData	member,	the

section	is	filled	with	zeroes.	This	field	is	valid	only	for	executable
images	and	should	be	set	to	0	for	object	files.

VirtualAddress
The	address	of	the	first	byte	of	the	section	when	loaded	into	memory,
relative	to	the	image	base.	For	object	files,	this	is	the	address	of	the
first	byte	before	relocation	is	applied.

SizeOfRawData
The	size	of	the	initialized	data	on	disk,	in	bytes.	This	value	must	be	a
multiple	of	the	FileAlignment	member	of	the
IMAGE_OPTIONAL_HEADER	structure.	If	this	value	is	less	than	the
VirtualSize	member,	the	remainder	of	the	section	is	filled	with
zeroes.	If	the	section	contains	only	uninitialized	data,	the	member	is
zero.

PointerToRawData
A	file	pointer	to	the	first	page	within	the	COFF	file.	This	value	must
be	a	multiple	of	the	FileAlignment	member	of	the
IMAGE_OPTIONAL_HEADER	structure.	If	a	section	contains	only
uninitialized	data,	this	member	is	zero.

PointerToRelocations
A	file	pointer	to	the	beginning	of	the	relocation	entries	for	the	section.
If	there	are	no	relocations,	this	value	is	zero.

PointerToLinenumbers
A	file	pointer	to	the	beginning	of	the	line-number	entries	for	the
section.	If	there	are	no	COFF	line	numbers,	this	value	is	zero.

NumberOfRelocations
The	number	of	relocation	entries	for	the	section.	This	value	is	zero
for	executable	images.

NumberOfLinenumbers
The	number	of	line-number	entries	for	the	section.

Characteristics
The	characteristics	of	the	image.	The	following	values	are	defined.

Flag Meaning

0x00000000 Reserved.

0x00000001 Reserved.

0x00000002 Reserved.

0x00000004 Reserved.

IMAGE_SCN_TYPE_NO_PAD
0x00000008

The	section	should	not	be	padded	to
the	next	boundary.	This	flag	is
obsolete	and	is	replaced	by
IMAGE_SCN_ALIGN_1BYTES.

0x00000010 Reserved.

IMAGE_SCN_CNT_CODE
0x00000020

The	section	contains	executable
code.

IMAGE_SCN_CNT_INITIALIZED_DATA
0x00000040

The	section	contains	initialized	data.

IMAGE_SCN_CNT_UNINITIALIZED_DATA
0x00000080

The	section	contains	uninitialized
data.

IMAGE_SCN_LNK_OTHER
0x00000100

Reserved.

IMAGE_SCN_LNK_INFO
0x00000200

The	section	contains	comments	or
other	information.	This	is	valid	only
for	object	files.

0x00000400 Reserved.

IMAGE_SCN_LNK_REMOVE
0x00000800

The	section	will	not	become	part	of
the	image.	This	is	valid	only	for
object	files.

IMAGE_SCN_LNK_COMDAT
0x00001000

The	section	contains	COMDAT	data.
This	is	valid	only	for	object	files.

0x00002000 Reserved.

IMAGE_SCN_NO_DEFER_SPEC_EXC
0x00004000

Reset	speculative	exceptions
handling	bits	in	the	TLB	entries	for
this	section.

IMAGE_SCN_GPREL
0x00008000

The	section	contains	data
referenced	through	the	global
pointer.

0x00010000 Reserved.

IMAGE_SCN_MEM_PURGEABLE
0x00020000

Reserved.

IMAGE_SCN_MEM_LOCKED
0x00040000

Reserved.

IMAGE_SCN_MEM_PRELOAD
0x00080000

Reserved.

IMAGE_SCN_ALIGN_1BYTES
0x00100000

Align	data	on	a	1-byte	boundary.
This	is	valid	only	for	object	files.

IMAGE_SCN_ALIGN_2BYTES
0x00200000

Align	data	on	a	2-byte	boundary.
This	is	valid	only	for	object	files.

IMAGE_SCN_ALIGN_4BYTES
0x00300000

Align	data	on	a	4-byte	boundary.
This	is	valid	only	for	object	files.

IMAGE_SCN_ALIGN_8BYTES
0x00400000

Align	data	on	a	8-byte	boundary.
This	is	valid	only	for	object	files.

IMAGE_SCN_ALIGN_16BYTES
0x00500000

Align	data	on	a	16-byte	boundary.
This	is	valid	only	for	object	files.

IMAGE_SCN_ALIGN_32BYTES
0x00600000

Align	data	on	a	32-byte	boundary.
This	is	valid	only	for	object	files.

IMAGE_SCN_ALIGN_64BYTES
0x00700000

Align	data	on	a	64-byte	boundary.
This	is	valid	only	for	object	files.

IMAGE_SCN_ALIGN_128BYTES
0x00800000

Align	data	on	a	128-byte	boundary.
This	is	valid	only	for	object	files.

IMAGE_SCN_ALIGN_256BYTES
0x00900000

Align	data	on	a	256-byte	boundary.
This	is	valid	only	for	object	files.

IMAGE_SCN_ALIGN_512BYTES
0x00A00000

Align	data	on	a	512-byte	boundary.
This	is	valid	only	for	object	files.

IMAGE_SCN_ALIGN_1024BYTES
0x00B00000

Align	data	on	a	1024-byte	boundary.
This	is	valid	only	for	object	files.

IMAGE_SCN_ALIGN_2048BYTES
0x00C00000

Align	data	on	a	2048-byte	boundary.
This	is	valid	only	for	object	files.

IMAGE_SCN_ALIGN_4096BYTES
0x00D00000

Align	data	on	a	4096-byte	boundary.
This	is	valid	only	for	object	files.

IMAGE_SCN_ALIGN_8192BYTES
0x00E00000

Align	data	on	a	8192-byte	boundary.
This	is	valid	only	for	object	files.

IMAGE_SCN_LNK_NRELOC_OVFL
0x01000000

The	section	contains	extended
relocations.	The	count	of	relocations
for	the	section	exceeds	the	16	bits
that	is	reserved	for	it	in	the	section
header.	If	the
NumberOfRelocations
section	header	is	0xffff,	the	actual
relocation	count	is	stored	in	the
VirtualAddress	field	of	the	first
relocation.	It	is	an	error	if
IMAGE_SCN_LNK_NRELOC_OVFL
is	set	and	there	are	fewer	than	0xffff
relocations	in	the	section.

IMAGE_SCN_MEM_DISCARDABLE The	section	can	be	discarded	as

0x02000000 needed.

IMAGE_SCN_MEM_NOT_CACHED
0x04000000

The	section	cannot	be	cached.

IMAGE_SCN_MEM_NOT_PAGED
0x08000000

The	section	cannot	be	paged.

IMAGE_SCN_MEM_SHARED
0x10000000

The	section	can	be	shared	in
memory.

IMAGE_SCN_MEM_EXECUTE
0x20000000

The	section	can	be	executed	as
code.

IMAGE_SCN_MEM_READ
0x40000000

The	section	can	be	read.

IMAGE_SCN_MEM_WRITE
0x80000000

The	section	can	be	written	to.

Requirements

Client

Requires	Windows	Vista,	Windows	XP,	Windows	2000
Professional,	Windows	NT	Workstation	4.0,	Windows	Me,
Windows	98,	or	Windows	95.

Server Requires	Windows	Server	2008,	Windows	Server	2003,
Windows	2000	Server,	or	Windows	NT	Server	4.0.

Header Declared	in	Winnt.h;	include	Windows.h.

See	Also

ImageHlp	Structures
ImageDirectoryEntryToDataEx
ImageRvaToSection
ImageRvaToVa
LOADED_IMAGE

Send	comments	about	this	topic	to	Microsoft

Build	date:	9/25/2007

	

©	2007	Microsoft	Corporation.	All	rights	reserved.

mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback [base]:%20IMAGE_SECTION_HEADER%20 RELEASE:%20(9/25/2007)&body=%0A%0APRIVACY STATEMENT%0A%0AThe SDK team uses the feedback submitted to improve the SDK documentation. We do not use your e-mail address for any other purpose. We will remove your e-mail address from our system after the issue you are reporting has been resolved. While we are working to resolve this issue, we may send you an e-mail message to request more information about your feedback. After the issues have been addressed, we may send you an e-mail message to let you know that your feedback has been addressed.%0A%0AFor more information about Microsoft's privacy policy, see http://privacy.microsoft.com/en-us/default.aspx.

	Debug Help Library
	About DbgHelp
	DbgHelp Versions
	Symbol Files
	Symbol Handling
	Symbol Handler Initialization
	Symbol Paths
	Symbol Loading
	Deferred Symbol Loading
	Decorated Symbol Names
	Finding Symbols
	Public, Global, and Local Symbols
	Symbol Handler Cleanup

	Symbol Servers and Symbol Stores
	Using SymSrv
	Using SymStore
	Using Other Symbol Stores
	SymStore Command-Line Options
	Symbol Servers and Internet Firewalls

	Minidump Files
	Source Server
	Updated Platform Support

	Using DbgHelp
	Initializing the Symbol Handler
	Loading a Symbol Module
	Enumerating Symbol Modules
	Enumerating Symbols
	Retrieving Symbol Information by Name
	Retrieving Symbol Information by Address
	Retrieving Undecorated Symbol Names
	Unloading a Symbol Module
	Terminating the Symbol Handler

	DbgHelp Reference
	DbgHelp Enumerations
	IMAGEHLP_SYMBOL_TYPE_INFO
	MINIDUMP_CALLBACK_TYPE
	MINIDUMP_HANDLE_OBJECT_INFORMATION_TYPE
	MINIDUMP_SECONDARY_FLAGS
	MINIDUMP_STREAM_TYPE
	MINIDUMP_TYPE
	MODULE_WRITE_FLAGS
	THREAD_WRITE_FLAGS

	DbgHelp Functions
	EnumDirTree
	EnumDirTreeProc
	EnumerateLoadedModules64
	EnumerateLoadedModulesEx
	EnumerateLoadedModulesProc64
	FindDebugInfoFile
	FindDebugInfoFileEx
	FindDebugInfoFileProc
	FindExecutableImage
	FindExecutableImageEx
	FindExecutableImageProc
	FunctionTableAccessProc64
	GetModuleBaseProc64
	GetTimestampForLoadedLibrary
	ImageDirectoryEntryToData
	ImageDirectoryEntryToDataEx
	ImagehlpApiVersion
	ImagehlpApiVersionEx
	ImageNtHeader
	ImageRvaToSection
	ImageRvaToVa
	MakeSureDirectoryPathExists
	MapDebugInformation
	MiniDumpCallback
	MiniDumpReadDumpStream
	MiniDumpWriteDump
	ReadProcessMemoryProc64
	SearchTreeForFile
	StackWalk64
	SymAddSourceStream
	SymAddSymbol
	SymbolServer
	SymbolServerCallback
	SymbolServerClose
	SymbolServerGetOptions
	SymbolServerSetOptions
	SymCleanup
	SymDeleteSymbol
	SymEnumerateModules64
	SymEnumerateModulesProc64
	SymEnumerateSymbols64
	SymEnumerateSymbolsProc64
	SymEnumLines
	SymEnumLinesProc
	SymEnumProcesses
	SymEnumProcessesProc
	SymEnumSourceFiles
	SymEnumSourceFilesProc
	SymEnumSourceFileTokens
	SymEnumSourceFileTokensProc
	SymEnumSourceLines
	SymEnumSymbols
	SymEnumSymbolsForAddr
	SymEnumSymbolsProc
	SymEnumTypes
	SymEnumTypesByName
	SymFindDebugInfoFile
	SymFindExecutableImage
	SymFindFileInPath
	SymFindFileInPathProc
	SymFromAddr
	SymFromIndex
	SymFromName
	SymFromToken
	SymFunctionTableAccess64
	SymGetFileLineOffsets64
	SymGetHomeDirectory
	SymGetLineFromAddr64
	SymGetLineFromName64
	SymGetLineNext64
	SymGetLinePrev64
	SymGetModuleBase64
	SymGetModuleInfo64
	SymGetOmaps
	SymGetOptions
	SymGetScope
	SymGetSearchPath
	SymGetSourceFile
	SymGetSourceFileFromToken
	SymGetSourceFileToken
	SymGetSourceVarFromToken
	SymGetSymbolFile
	SymGetSymFromAddr64
	SymGetSymFromName64
	SymGetSymNext64
	SymGetSymPrev64
	SymGetTypeFromName
	SymGetTypeInfo
	SymGetTypeInfoEx
	SymGetUnwindInfo
	SymInitialize
	SymLoadModule64
	SymLoadModuleEx
	SymMatchFileName
	SymMatchString
	SymNext
	SymPrev
	SymRefreshModuleList
	SymRegisterCallback64
	SymRegisterCallbackProc64
	SymRegisterFunctionEntryCallback64
	SymRegisterFunctionEntryCallbackProc64
	SymSearch
	SymSetContext
	SymSetHomeDirectory
	SymSetOptions
	SymSetParentWindow
	SymSetScopeFromAddr
	SymSetScopeFromIndex
	SymSetSearchPath
	SymSrvDeltaName
	SymSrvGetFileIndexes
	SymSrvGetFileIndexInfo
	SymSrvGetFileIndexString
	SymSrvGetSupplement
	SymSrvIsStore
	SymSrvStoreFile
	SymSrvStoreSupplement
	SymUnDName64
	SymUnloadModule64
	TranslateAddressProc64
	UnDecorateSymbolName
	UnmapDebugInformation

	DbgHelp Structures
	_IMAGE_RUNTIME_FUNCTION_ENTRY
	ADDRESS64
	API_VERSION
	FPO_DATA
	IMAGE_DEBUG_INFORMATION
	IMAGEHLP_CBA_EVENT
	IMAGEHLP_CBA_READ_MEMORY
	IMAGEHLP_DEFERRED_SYMBOL_LOAD64
	IMAGEHLP_DUPLICATE_SYMBOL64
	IMAGEHLP_GET_TYPE_INFO_PARAMS
	IMAGEHLP_LINE64
	IMAGEHLP_MODULE64
	IMAGEHLP_STACK_FRAME
	IMAGEHLP_SYMBOL64
	KDHELP64
	LOADED_IMAGE
	MINIDUMP_CALLBACK_INFORMATION
	MINIDUMP_CALLBACK_INPUT
	MINIDUMP_CALLBACK_OUTPUT
	MINIDUMP_DIRECTORY
	MINIDUMP_EXCEPTION
	MINIDUMP_EXCEPTION_INFORMATION
	MINIDUMP_EXCEPTION_STREAM
	MINIDUMP_FUNCTION_TABLE_DESCRIPTOR
	MINIDUMP_FUNCTION_TABLE_STREAM
	MINIDUMP_HANDLE_DATA_STREAM
	MINIDUMP_HANDLE_DESCRIPTOR
	MINIDUMP_HANDLE_DESCRIPTOR_2
	MINIDUMP_HANDLE_OBJECT_INFORMATION
	MINIDUMP_HANDLE_OPERATION_LIST
	MINIDUMP_HEADER
	MINIDUMP_INCLUDE_MODULE_CALLBACK
	MINIDUMP_INCLUDE_THREAD_CALLBACK
	MINIDUMP_IO_CALLBACK
	MINIDUMP_LOCATION_DESCRIPTOR
	MINIDUMP_MEMORY_DESCRIPTOR
	MINIDUMP_MEMORY_INFO
	MINIDUMP_MEMORY_INFO_LIST
	MINIDUMP_MEMORY_LIST
	MINIDUMP_MISC_INFO
	MINIDUMP_MISC_INFO_2
	MINIDUMP_MODULE
	MINIDUMP_MODULE_CALLBACK
	MINIDUMP_MODULE_LIST
	MINIDUMP_READ_MEMORY_FAILURE_CALLBACK
	MINIDUMP_STRING
	MINIDUMP_SYSTEM_INFO
	MINIDUMP_THREAD
	MINIDUMP_THREAD_CALLBACK
	MINIDUMP_THREAD_EX
	MINIDUMP_THREAD_EX_CALLBACK
	MINIDUMP_THREAD_EX_LIST
	MINIDUMP_THREAD_INFO
	MINIDUMP_THREAD_INFO_LIST
	MINIDUMP_THREAD_LIST
	MINIDUMP_UNLOADED_MODULE
	MINIDUMP_UNLOADED_MODULE_LIST
	MINIDUMP_USER_STREAM
	MINIDUMP_USER_STREAM_INFORMATION
	MODLOAD_CVMISC
	MODLOAD_DATA
	OMAP
	SOURCEFILE
	SRCCODEINFO
	STACKFRAME64
	SYMBOL_INFO
	SYMSRV_INDEX_INFO
	TI_FINDCHILDREN_PARAMS

	Image Help Library
	About ImageHlp
	PE Format
	Image Access Functions
	ImageHlp Image Integrity Functions
	ImageHlp Image Modification Functions

	ImageHlp Reference
	ImageHlp Functions
	BindImage
	BindImageEx
	CheckSumMappedFile
	DigestFunction
	GetImageConfigInformation
	GetImageUnusedHeaderBytes
	ImageAddCertificate
	ImageEnumerateCertificates
	ImageGetCertificateData
	ImageGetCertificateHeader
	ImageGetDigestStream
	ImageLoad
	ImageRemoveCertificate
	ImageUnload
	MapAndLoad
	MapFileAndCheckSum
	ReBaseImage
	ReBaseImage64
	SetImageConfigInformation
	SplitSymbols
	StatusRoutine
	TouchFileTimes
	UnMapAndLoad
	UpdateDebugInfoFile
	UpdateDebugInfoFileEx

	ImageHlp Structures
	IMAGE_COFF_SYMBOLS_HEADER
	IMAGE_DATA_DIRECTORY
	IMAGE_DEBUG_DIRECTORY
	IMAGE_FILE_HEADER
	IMAGE_FUNCTION_ENTRY
	IMAGE_LOAD_CONFIG_DIRECTORY64
	IMAGE_NT_HEADERS
	IMAGE_OPTIONAL_HEADER
	IMAGE_SECTION_HEADER

