
The	DarkAI	expansion	pack	provides	a	set	of	commands	to	create	and
control	computer	controlled	characters	in	Dark	Basic	Professional.	The
system	is	almost	completely	automatic	allowing	you	to	drop	in	entities
and	obstacles	and	then	letting	them	move	about	on	their	own.	DarkAI
includes	several	features	that	help	you	organise	your	world	and	give	you
a	wide	range	of	control	over	the	AI	system,	including:

Path	Finding
Flexible	waypoint	based	path	finding	system	that	calculates	a	set	of
waypoints	around	all	obstacles	added	to	the	AI	system.	Entities	then	use
an	A*	algorithm	to	calculate	a	path	between	their	position	and
destination.	This	means	your	entities	should	always	use	the	shortest	path
between	two	points,	no	matter	how	complex	the	situation.	You	can	also
create	a	path	between	two	specific	points	allowing	you	to	use	the	path
finding	feature	on	its	own.

Teams
Provides	3	teams	(enemy,	friendly	and	neutral	teams)	to	organise	entities
in	the	AI	world.	Neutral	entities	run	away	from	combat,	friendlies	attack
the	player's	enemies	whilst	enemies	attack	the	player	and	its	allies.

Entity	Commands
By	default	entities	will	automatically	move	about	the	world	and	react	to
events	(e.g.	Sounds)	and	other	entities	according	to	their	team	and
aggressiveness.	Set	the	entity	aggressiveness	and	restrictions	by	using
commands	such	as	'Defend	Point'	or	'Patrol	Path',	the	entity	will	then	act
in	accordance	with	these	restrictions.

Manual	Commands
Entities	can	also	be	moved	around	the	world	using	a	set	of	more	specific
commands	such	as	setting	the	entity	destination	or	look	at	point	directly



with	'Set	Destination'	and	'Look	At'	or	'Look	At	Target',	the	entity	will
create	a	path	automatically	to	its	destination	and	inform	you	when	it's
ready	to	fire.	Entities	will	detect	nearby	enemies	but	not	act	against	them
during	manual	control.

Zones
Add	one	or	more	zones	to	an	entity	that	will	trigger	a	response	when	an
opposing	team	member	enters	it.	Entities	can	be	set	to	ignore	people	if
they	leave	a	zone	or	chase	them	until	they	can	no	longer	see	them.

Direct	Integration
If	using	DarkBasic	Professional	3D	objects	you	can	set	the	AI	system	to
automatically	move	and	turn	your	objects	for	you.

Containers
Areas	of	your	world	can	be	separated	from	each	other	using	containers,
such	as	different	floors	in	a	building.	The	player	can	freely	move	between
containers	whereas	Entities	can	be	restricted	to	the	bounds	of	its
container.

You	can	check	out	examples	of	all	these	features	in	the	provided	demos,
along	with	detailed	descriptions	of	each	in	the	demo	section	of	the	help
file.	The	help	file	also	includes	the	full	command	list	explaining	everything
you	need	to	know	about	how	the	commands	work	and	how	to	use	them.

Dark	AI	©	2006	The	Game	Creators	Ltd.	All	Rights	Reserved.
www.thegamecreators.com

javascript:ol('http://www.thegamecreators.com/');


AI	ADD	CONTAINER

Creates	a	new	container	to	the	AI	system	to	separate	objects	within	it
from	other	containers.	A	container	must	be	added	before	you	can	add
any	objects	to	it.	Container	0	is	created	at	system	start-up	and	is	the
default	location	for	all	AI	data.

Syntax	
AI	Add	Container	Container	Number

Parameters
Container	Number,	the	id	number	you	want	to	use	to	represent	this
container,	must	be	a	non-zero	positive	integer

Return
n/a



OBSTACLES

Obstacles	represent	the	physical	limitations	on	where	entities	can	move
and	see,	such	as	walls	and	scenery.	Entities	will	automatically	work	their
way	around	defined	obstacles	to	reach	their	intended	destination	and	use
them	as	cover	when	appropriate.	There	are	four	main	types	of	obstacle
that	can	be	added	to	the	AI	system:

-	Full	Height	obstacles	define	an	area	that	cannot	been	seen	over	or
passed	through	at	any	time	and	entities	must	always	move	around	it	to
see	the	other	side.

-	Half	Height	obstacles	define	an	area	that	cannot	be	passed	through	but
can	be	seen	over	whilst	the	entity	is	standing.	Ducking	entities	cannot
see	over	half	height	obstacles,	and	also	cannot	be	seen	by	others.

-	Boundary	obstacles	enclose	an	area	beyond	which	an	entity	cannot	see
or	move,	such	as	the	bounds	of	a	level.	Therefore	entities	can	be
restricted	to	the	area	within	the	boundary	obstacle	and	cannot	move	out
of	it.	Only	one	boundary	per	container	should	be	added	to	prevent
problems	with	multiple	confining	areas.

-	View	Blocking	obstacles	are	a	special	type	of	obstacle	that	does	not
block	movement,	entities	are	free	to	move	around	as	if	the	obstacle	didn't
exist,	but	entities	cannot	see	through	it.	As	such	these	obstacles	do	not
affect	the	waypoint	network	and	can	be	added	and	removed	efficiently
whilst	the	system	is	in	motion,	allowing	you	to	use	it	to	represent	a	closed
door	then	remove	it	when	the	door	is	opened.

Obstacles	can	be	added	to	separate	containers	to	divide	the	world	into
enclosed	sections.	For	example	each	floor	of	a	building	can	be
represented	by	a	container	and	the	obstacles	of	each	floor	are	added	to
the	relevant	container,	by	default	a	single	container	(0)	is	created	to	hold
all	obstacles	and	entities.

When	you	have	added	all	your	obstacles	you	must	call	AI	Complete
Obstacles	to	complete	the	setup	and	create	waypoint	and	collision	data
for	all	the	obstacles.	This	does	not	include	view	blocking	obstacles	which



can	be	added	and	removed	at	any	time	without	needing	this	command.



AI	ADD	STATIC	OBSTACLE

This	command	adds	an	obstacle	to	the	AI	system	from	a	specified
DarkBasic	object.	The	AI	system	will	create	a	convex	shape	from	the
object	by	looking	top	down	on	the	object	and	joining	the	outside	points	in
a	circular	fashion.	Therefore	this	is	best	suited	to	objects	that	are	already
convex	in	nature	such	as	cubes	and	spheres,	and	other	more	complex
shapes	should	be	made	using	AI	Start	New	Obstacle.	This	command
does	not	require	the	DarkBasic	object	to	exist	after	it	has	been	called	and
does	not	update	the	internal	state	if	the	object	is	moved	or	rotated.

Obstacles	can	be	created	as	full	height	or	half	height,	the	only	difference
being	that	half	height	objects	do	not	block	an	entity's	view	whilst	it	is
standing,	but	do	when	it	is	ducking.	Both	block	an	entity's	path	from	one
point	to	another.	The	default	is	full	height	(1).

The	container	number	allows	you	to	add	the	obstacle	to	a	different
container,	the	default	is	0.

For	dynamic	obstacles	(that	obstruct	movement)	it	is	recommended	that
you	use	an	external	collision	or	physics	system	and	report	such	collisions
to	the	entity	using	AI	Set	Entity	Collide.

See	AI	Add	View	Blocking	Obstacle	for	adding	obstacles	that	do	not
obstruct	movement.	

You	must	call	AI	Complete	Obstacles	sometime	after	this	command,	after
all	static	obstacles	have	been	added,	to	complete	the	setup	and	create
waypoint	and	collision	data	for	all	obstacles.	If	you	add	an	obstacle	after
calling	AI	Complete	Obstacles	you	must	call	it	again	to	see	any	changes
you	make.

Syntax
AI	Add	Static	Obstacle	Obstacle	Number
AI	Add	Static	Obstacle	Obstacle	Number,	Height
AI	Add	Static	Obstacle	Obstacle	Number,	Height,	Container	Number



Parameters
Obstacle	Number,	The	id	of	the	object	you	want	to	add
Height,	(optional)	1	for	full	height,	0	for	half	height
Container	Number,	The	id	of	the	container	you	want	to	add	the	obstacle
to.

Return
n/a



AI	ADD	VIEW	BLOCKING	OBSTACLE

This	command	adds	an	view	blocking	obstacle	to	the	AI	system	from	a
specified	DarkBasic	object.	The	AI	system	will	create	a	convex	shape
from	the	object	by	looking	top	down	on	the	object	and	joining	the	outside
points	in	a	circular	fashion.	Therefore	this	is	best	suited	to	objects	that
are	already	convex	in	nature	such	as	cubes	and	spheres,	and	other	more
complex	shapes	should	be	made	using	AI	Start	New	Obstacle.	This
command	does	not	require	the	DarkBasic	object	to	exist	after	it	has	been
called	and	does	not	update	the	internal	state	if	the	object	is	moved	or
rotated.

View	blocking	obstacles	are	a	special	type	of	obstacle	that	do	not
obstruct	the	movement	of	entities	but	still	prevent	entities	from	seeing
through	the	edges	of	the	obstacle.	Unlike	normal	obstacles	view	blocking
obstacles	do	not	affect	the	waypoint	network	when	added	or	removed,	as
such	view	blocking	obstacle	can	be	added	or	removed	with	very	little
impact	on	performance	and	can	be	done	in	real-time.	This	could	be	used
to	represent	a	door	which	prevents	entities	from	seeing	through	it,	but
can	be	removed	when	the	door	is	opened,	and	re-added	when	it	is
closed.	

Obstacles	can	be	created	as	full	height	or	half	height,	the	only	difference
being	that	half	height	objects	do	not	block	an	entity's	view	whilst	it	is
standing,	but	do	when	it	is	ducking.	The	default	is	full	height	(1).	The
container	number	allows	you	to	add	the	obstacle	to	a	different	container,
the	default	is	0.

For	dynamic	obstacles	(that	obstruct	movement)	it	is	recommended	that
you	use	an	external	collision	or	physics	system	and	report	such	collisions
to	the	entity	using	AI	Set	Entity	Collide.

See	AI	Add	Static	Obstacle	for	adding	obstacles	that	obstruct	movement.

Syntax
AI	Add	View	Blocking	Obstacle	Obstacle	Number
AI	Add	View	Blocking	Obstacle	Obstacle	Number,	Height



AI	Add	View	Blocking	Obstacle	Obstacle	Number,	Height,	Container
Number

Parameters
Obstacle	Number,	The	id	of	the	object	you	want	to	add
Height,	(optional)	1	for	full	height,	0	for	half	height
Container	Number,	The	id	of	the	container	you	want	to	add	the	obstacle
to.

Return
n/a



AI	REMOVE	OBSTACLE

This	command	removes	all	obstacles	from	all	containers	that	correspond
to	the	specified	obstacle	number	from	the	AI	system.	After	this	command
you	must	call	AI	Complete	Obstacles	to	update	the	waypoint	can	collision
data	which	is	a	slow	command	and	should	not	be	done	in	your	main	loop,
the	exception	being	view	blocking	obstacles.	This	does	not	remove	the
DarkBasic	object	that	represents	the	obstacle,	you	should	remove	that
yourself.

This	can	be	used	to	remove	both	normal	and	view	blocking	obstacles,
when	the	obstacle	number	refers	only	to	view	blocking	obstacles,	and	no
normal	obstacles	are	removed,	this	command	does	not	need	AI
Complete	Obstacles	to	be	called	and	so	can	be	called	in	your	main	loop
to	remove	things	like	doors	when	opened.

Syntax
AI	Remove	Obstacle	Obstacle	Number

Parameters
Obstacle	Number,	The	id	of	the	obstacle	you	want	to	remove

Return
n/a



AI	START	NEW	OBSTACLE

This	command	starts	the	creation	of	a	new	obstacle	that	is	created	by
manually	adding	points	that	define	the	obstacle's	outside	edge.	It	must	be
used	with	the	commands	AI	Add	obstacle	Vertex	and	AI	End	New
Obstacle	to	finish	defining	the	obstacle.	You	must	end	or	discard	a	new
obstacle	before	you	can	begin	another	one.

There	is	no	restriction	on	the	obstacle	number,	two	obstacles	can	have
the	same	id	but	would	both	be	removed	using	AI	Remove	Obstacle.	The
default	id	is	0.	

Syntax
AI	Start	New	Obstacle	
AI	Start	New	Obstacle	Obstacle	Number

Parameters
Obstacle	Number,	(optional)	The	id	you	want	to	use	to	represent	this
obstacle.

Return
n/a



AI	ADD	OBSTACLE	VERTEX

This	command	adds	a	point	to	the	obstacle	started	with	AI	Start	New
Obstacle.	These	points	will	form	the	outside	edge	of	the	obstacle	in	the
order	that	they	are	added,	the	last	point	will	be	joined	with	the	first	point
to	create	an	enclosed	space.	

Points	should	be	defined	in	a	clockwise	order,	from	a	top	down	view,	to
create	an	obstacle	that	entities	will	avoid,	or	anti-clockwise	to	create	a
boundary	that	will	confine	entities	to	an	area.	There	is	no	limit	to	how
many	clockwise	obstacles	can	be	added	per	container	but	only	one	or
less	boundaries	should	be	added	per	container.

Syntax
AI	Add	Obstacle	Vertex	Position	X#,	Position	Z#

Parameters
Position	X#,	The	X	component	of	the	position	in	world	co-ordinates	of	the
vertex	you	want	to	add
Position	Z#,	The	Z	component	of	the	position	in	world	co-ordinates	of	the
vertex	you	want	to	add	

Return
n/a



AI	END	NEW	OBSTACLE

This	command	completes	the	new	obstacle	and	adds	it	to	the	specified
container.	If	you	are	not	using	different	containers	use	the	default	value	of
0.	The	height	defines	if	it	is	a	full	height	or	half	height	obstacle,	the
difference	being	that	half	height	objects	do	not	obstruct	an	entity's	view
whilst	standing,	but	do	whilst	ducking.	Both	block	an	entity's	path	when
moving	to	a	destination.

The	obstacle	type	parameter	allows	you	to	choose	between	an	obstacle
that	blocks	both	movement	and	view	(normal)	or	an	obstacle	that	only
blocks	view,	meaning	an	entity	is	free	to	move	around	as	if	the	obstacle
didn't	exist	but	cannot	see	through	any	edges	of	the	obstacle.	A	bit	like
hanging	cloth	or	a	closed	door	(which	can	be	opened).	Unlike	normal
obstacles	view	blocking	obstacles	do	not	affect	the	waypoint	network
when	added	or	removed,	as	such	view	blocking	obstacle	can	be	added	or
removed	with	very	little	impact	on	performance	and	can	be	done	in	the
main	loop.

You	must	call	AI	Complete	Obstacles	after	this	command	if	you	use	an
obstacle	type	of	0	to	see	the	changes	in	the	AI	system.	This	does	not
apply	if	you	are	creating	view	blocking	obstacles	(type	1).

Syntax
AI	End	New	Obstacle	Container	Number,	Half	Height,	[Obstacle	Type]

Parameters
Container	Number,	The	id	of	the	container	you	want	to	add	the	obstacle
to,	must	exist.
Half	Height,	0	for	a	half	height	object	1	for	a	full	height	object.
Obstacle	Type,	(optional)	0	for	a	normal	obstacle,	1	for	a	view	blocking
obstacle.	Default	is	0.

Return
n/a





AI	DISCARD	NEW	OBSTACLE

This	command	deletes	an	obstacle	that	was	started	using	AI	Start	New
Obstacle,	discards	all	information	about	it,	and	allows	you	to	start	a	new
one	if	you	choose.

Syntax
AI	Discard	New	Obstacle

Parameters
n/a

Return
n/a



AI	ADD	OBSTACLE	FROM	LEVEL

This	command	creates	a	set	of	obstacles	from	a	mesh,	for	example	an
entire	level,	by	using	the	polygons	that	make	it	up	to	work	out	where	the
walls	are.	This	can	be	used	to	quickly	and	easily	add	all	the	collision	data
you	need	for	large	levels	and	then	add	the	smaller	obstacles	afterwards.
You	can	also	make	this	command	output	a	list	of	obstacles	to	a	file	so
that	you	can	change	it	and	add	it	manually	to	your	own	code	if	one	or
more	parts	are	not	quite	right,	this	will	be	put	in	the	same	folder	as	the
.exe	in	a	file	called	'Obstacle	Data.txt'.	Any	file	that	already	exists	with
this	name	will	be	over	written.

It	does	this	by	taking	a	flat	plane,	at	the	height	you	specify,	and
calculating	all	polygons	that	intersect	it.	This	provides	a	rough	idea	of
where	the	polygons	that	represent	walls	are	located,	it	ignores	any
polygons	that	are	orientated	at	less	than	45	degrees	or	that	are	smaller	in
Y	size	than	Min	Height.	The	polygons	create	lines	of	intersection	across
the	plane,	any	lines	that	are	less	that	Min	Length	are	ignored.	Lines	that
are	close	to	each	other	(within	the	radius	defined	with	AI	Set	Radius)	are
merged	and	then	used	directly	as	obstacles	with	two	vertices.	These
create	double	sided	obstacles	that	will	allow	movement	on	both	sides	but
not	through	it,	as	opposed	to	a	boundary	which	will	not	allow	movement
outside	of	it.	You	can	use	AI	Debug	Show	Obstacle	Bounds	to	check	the
obstacles	produced.

The	list	of	obstacles	are	added	to	container	0	as	full	height	obstacles	with
obstacle	id	0.	The	code	to	create	the	list	of	obstacles	produced	can	be
output	to	a	file	by	setting	Output	To	File	to	1,	this	will	not	add	the
obstacles	to	the	AI	system.	You	will	still	need	to	place	obstacles	to
represent	windows	which	may	leave	a	hole	in	a	wall	at	the	height	you
specify.	You	can	do	this	at	any	time	before	or	after	this	command.	You
can	change	the	container	they	are	added	to	and	the	height	(full	height	or
half	height)	using	the	Container	Number	and	Height	parameters.

AI	Complete	Obstacles	must	be	called	some	time	after	this	command,
after	all	static	obstacles	have	been	added,	to	complete	the	setup	and
produce	waypoint	data	for	the	obstacles.



Syntax
AI	Add	Obstacle	From	Level	Object	Number,	Plane	Height#,	Min
Length#,	Min	Height#
AI	Add	Obstacle	From	Level	Object	Number,	Container	Number,	Plane
Height#,	Min	Length#,	Min	Height#
AI	Add	Obstacle	From	Level	Object	Number,	Container	Number,	Height,
Plane	Height#,	Min	Length#,	Min	Height#
AI	Add	Obstacle	From	Level	Object	Number,	Container	Number,	Height,
Plane	Height#,	Min	Length#,	Min	Height#,	Output	To	File

Parameters
Obstacle	Number,	The	id	of	the	object	you	want	to	create	obstacles	from.
Container	Number,	(optional)	The	id	of	the	container	you	want	to	add	the
obstacles	to.
Height,	(optional)	The	height	you	want	the	obstacles	to	be,	full-height(1)
or	half-height(0).
Plane	Height#,	The	height	in	world	co-ordinates	that	you	want	obstacles
from.
Min	Length#,	The	minimum	intersection	length	that	can	create	an
obstacle.
Min	Height#,	The	minimum	height	of	a	polygon	for	it	to	contribute	to
obstacles.
Output	To	File,	(optional)	Set	to	1	to	output	the	code	for	creating	the
obstacles,	0	to	add	straight	to	the	AI	system.	Default	is	0.

Return
n/a



AI	COMPLETE	OBSTACLES

This	command	must	be	called	after	you	have	added	all	your	static	objects
to	the	scene.	It	creates	the	collision	and	waypoint	data	for	all	obstacles	at
once	to	make	sure	expensive	operations	are	performed	only	once,	as
opposed	to	every	time	you	add	an	obstacle.	If	you	make	a	change	by
adding	or	removing	a	static	obstacle	after	this	command	you	must	call	it
again	to	see	the	effects	in	the	scene.	This	does	not	apply	to	View
Blocking	obstacles	which	are	not	involved	in	movement	data	and	can	be
added/removed	in	real-time	with	no	special	commands.	

You	can	specify	a	particular	container	to	update	obstacle	data	for,	you
only	need	to	update	obstacles	in	the	container	that	you	added	or
removed	them,	other	containers	are	not	affected.	The	default	is	-1	which
updates	all	containers.

You	only	need	to	do	this	once	and	since	it	is	an	expensive	command
should	not	be	done	in	your	main	loop.

Syntax
AI	Complete	Obstacles
AI	Complete	Obstacles	Container	Number

Parameters
Container	Number,	(optional)	The	id	of	the	container	you	want	to	update
the	obstacles	data	for.

Return
n/a



WAYPOINTS

Waypoints	define	points	which	entities	can	use	to	avoid	obstacles	in	the
AI	system.	By	default	they	are	positioned	at	corners	and	linked	together
to	build	a	network	that	can	move	an	entity	to	any	valid	position	within	the
system.

Waypoints	are	created	automatically	when	adding	obstacles	but	you	can
choose	to	create	your	own	waypoints	by	adding	them	manually	and
updating	their	connections	using	AI	Update	Waypoint	Visibility.	Adding	an
obstacle	to	a	container	after	changing	the	waypoints	will	reset	the
waypoint	network	back	to	its	default	construction.

This	shows	an	example	of	the	waypoints	(dots)	and	their	connections
(lines)	which	can	be	used	to	make	up	an	entity	path	from	one	position	to
another.



AI	ADD	WAYPOINT

This	command	adds	a	waypoint	to	a	container	at	the	specified	position.
The	waypoint	will	not	be	used	until	it	is	linked	into	the	waypoint	network
using	AI	Update	Waypoint	Visibility	on	the	container,	this	allows	you	to
add	many	waypoints	before	performing	the	expensive	update	operation.
Waypoints	are	linked	by	their	visibility	to	other	waypoints,	so	if	the
waypoint	is	inside	an	obstacle	or	completely	surrounded	by	them	it	will
not	be	used	in	path	finding.

No	obstacle	need	to	exist	to	add	waypoints,	waypoints	can	be	added	to
any	position	in	the	container.	

Waypoints	are	added	to	the	beginning	of	the	waypoint	list.

Syntax
AI	Add	Waypoint	Container	Number,	Position	X#,	Position	Z#

Parameters
Container	Number,	The	id	of	the	container	you	want	to	add	the	waypoint
to,	must	exist.
Position	X#,	The	X	component	of	the	waypoint	position,	in	world	co-
ordinates.
Position	Z#,	The	Z	component	of	the	waypoint	position,	in	world	co-
ordinates.

Return
n/a



AI	REMOVE	WAYPOINT

This	command	removes	the	specified	waypoint	from	the	container.	The
index	should	be	in	the	range	1	up	to	and	including	the	value	returned	by
AI	Count	Waypoints.	Waypoints	are	added	to	the	beginning	of	the	list	so
the	most	recently	added	waypoint	will	be	in	position	1.	The	index	also
relates	to	the	order	of	waypoints	when	a	memblock	is	created	from	them
with	the	first	waypoint	being	index	1.

Syntax
AI	Remove	Waypoint	Container	Number,	Waypoint	Number

Parameters
Container	Number,	The	id	of	the	container	you	want	to	remove	the
waypoint	from.
Waypoint	Number,	The	id	of	the	waypoint	in	the	container	that	you	want
to	remove.

Return
n/a



AI	COUNT	WAYPOINTS

This	command	will	return	the	number	of	waypoints	in	the	specified
container.

Syntax
return	integer	=	AI	Count	Waypoints	(	Container	Number	)

Parameters
Container	Number,	The	id	of	the	container	from	which	you	want	to
retrieve	the	number	of	waypoints.

Return
The	number	of	waypoints	in	the	specified	container.



AI	CLEAR	WAYPOINTS

This	command	clears	all	waypoints	from	the	container	effectively
removing	all	path	finding	data	for	it.	Entities	will	be	restricted	to	straight
line	paths	in	containers	with	no	waypoint	data,	and	any	obstacles	in	the
way	will	result	in	no	path.

Syntax
AI	Clear	Waypoints	Container	Number

Parameters
Container	Number,	The	id	of	the	container	you	want	to	clear	of
waypoints.

Return
n/a



AI	MAKE	MEMBLOCK	FROM	WAYPOINTS

This	command	will	create	a	memblock	containing	the	waypoints	from	the
specified	container.	If	the	memblock	already	exists	it	will	first	be	deleted.

The	structure	of	the	memblock	is	as	follows:
Number	of	waypoints	as	DWORD	(4	bytes)
Number	of	edges	as	DWORD	(4	bytes)

Then	for	each	waypoint:
X#	as	FLOAT	(4	bytes)
Z#	as	FLOAT	(4	bytes)
Cost#	as	FLOAT	(4	bytes)

Then	for	each	edge:
First	Waypoint	Index	as	DWORD	(4	bytes)
Second	Waypoint	Index	as	DWORD	(4	bytes)
Edge	Cost#	as	FLOAT	(4	bytes)

The	cost	for	a	waypoint	defines	the	cost	of	moving	through	that	waypoint
when	using	it	as	a	path,	entities	will	attempt	to	avoid	using	higher	cost
waypoints	if	they	increase	the	path	cost	too	much	and	an	alternative
route	is	available.	The	default	cost	for	all	waypoints	is	0,	and	must	be	a
positive	value.

Edges	reference	waypoints	from	the	waypoint	list	above	it,	with	index	0
being	the	first	waypoint	in	the	list.	The	edge	is	valid	from	the	first
waypoint	to	the	second,	but	not	the	other	way	around.	Therefore,	if	you
want	to	define	that	the	edge	between	two	waypoints	can	be	used	in	both
directions	you	must	define	two	edges,	one	going	from	the	first	waypoint
to	the	second	waypoint	and	the	second	edge	going	from	the	second
waypoint	to	the	first	waypoint.	The	edge	cost	must	always	be	at	least	the
straight	line	distance	between	the	two	waypoints	for	the	path	finding	to
work	correctly,	but	can	be	any	number	above	this.	Entities	will	avoid
edges	with	a	large	cost	where	possible	preferring	the	least	cost	path.

Syntax



AI	Make	Memblock	From	Waypoints	Memblock	Number,	Container
Number

Parameters
Memblock	Number,	The	id	of	the	memblock	you	want	to	use	to	store	the
waypoint	data.
Container	Number,	The	id	of	the	container	you	want	to	use	to	fill	the
memblock.

Return
n/a



AI	MAKE	WAYPOINTS	FROM	MEMBLOCK

This	command	replaces	the	container's	existing	waypoints	with	those
from	the	memblock.	You	can	choose	to	specify	no	edges	and	instead	call
the	AI	Update	Waypoint	Visibility	command	afterwards	to	update	the	links
between	the	waypoints	for	use	in	path	finding	based	on	line	of	sight.

The	structure	of	the	memblock	should	be	as	follows:
Number	of	waypoints	as	DWORD	(4	bytes)
Number	of	edges	as	DWORD	(4	bytes)

Then	for	each	waypoint:
X#	as	FLOAT	(4	bytes)
Z#	as	FLOAT	(4	bytes)
Cost#	as	FLOAT	(4	bytes)

Then	for	each	edge:
First	Waypoint	Index	as	DWORD	(4	bytes)
Second	Waypoint	Index	as	DWORD	(4	bytes)
Edge	Cost#	as	FLOAT	(4	bytes)

The	cost	for	a	waypoint	defines	the	cost	of	moving	through	that	waypoint
when	using	it	as	a	path,	entities	will	attempt	to	avoid	using	higher	cost
waypoints	if	they	increase	the	path	cost	too	much	and	an	alternative
route	is	available.	The	default	cost	for	all	waypoints	is	0,	and	must	be	a
positive	value.

Edges	reference	waypoints	from	the	waypoint	list	above	it,	with	index	0
being	the	first	waypoint	in	the	list.	The	edge	is	valid	from	the	first
waypoint	to	the	second,	but	not	the	other	way	around.	Therefore,	if	you
want	to	define	that	the	edge	between	two	waypoints	can	be	used	in	both
directions	you	must	define	two	edges,	one	going	from	the	first	waypoint
to	the	second	waypoint	and	the	second	edge	going	from	the	second
waypoint	to	the	first	waypoint.	The	edge	cost	must	always	be	at	least	the
straight	line	distance	between	the	two	waypoints	for	the	path	finding	to
work	correctly,	but	can	be	any	number	above	this.	Entities	will	avoid
edges	with	a	large	cost	where	possible	preferring	the	least	cost	path.



Syntax
AI	Make	Waypoints	From	Memblock	Container	Number,	Memblock
Number

Parameters
Container	Number,	The	id	of	the	container	you	want	to	fill	with	waypoints,
must	exist.
Memblock	Number,	The	id	of	the	memblock	you	want	to	use	to	use	as
source	data.

Return
n/a



AI	UPDATE	WAYPOINT	VISIBILITY

This	command	updates	the	links	between	waypoints	that	define	valid
routes	between	unobstructed	waypoints.	This	is	automatically	done	when
adding	obstacles	but	should	be	done	manually	when	adding	waypoints
manually	or	using	memblocks	to	replace	waypoints.	You	can	optionally
specify	a	maximum	distance	that	will	restrict	the	distance	at	which
waypoints	can	be	linked,	this	can	be	useful	if	you	want	to	create	lots	of
closely	spaced	waypoints	which	can	create	many	unnecessary	edges	in
large	open	spaces.

Syntax
AI	Update	Waypoint	Visibility	Container	Number
AI	Update	Waypoint	Visibility	Container	Number,	Range	Limit#

Parameters
Container	Number,	The	id	of	the	container	you	want	to	remove	the
waypoint	from.
Range	Limit#,	(optional)	The	maximum	distance	between	two	visible
waypoints	that	will	form	an	edge.

Return
n/a



PATHS

A	path	holds	a	list	of	points	which	can	be	used	to	describe	a	route	in	the
order	the	points	are	defined.	The	main	purpose	for	this	is	to	assign	patrol
routes	to	entities,	but	they	can	also	be	used	as	a	simple	structure	for
holding	a	list	of	unrelated	points.

You	can	create	create	a	path	between	two	points	that	will	take	into
account	any	obstacles	in	the	way,	allowing	you	direct	access	to	the	path
finding	system.	Such	paths	will	follow	waypoints	and	valid	edges	between
them	to	build	up	a	complete	path.	If	the	start	or	end	points	are	inside
obstacles	attempts	will	be	made	to	find	the	closest	point	outside	the
obstacle	(this	may	fail	where	multiple	overlapping	obstacles	create	a
difficult	solution).



AI	MAKE	PATH

This	command	will	create	an	empty	path	with	the	specified	id	to	which
you	can	then	add	points	to.	A	path	contains	a	list	of	points	which	among
other	things	can	be	passed	to	an	entity	to	form	a	patrol	route.

Syntax	
AI	Make	Path	Path	Number

Parameters
Path	Number,	the	id	you	want	to	use	to	represent	this	path.

Return
n/a



AI	DELETE	PATH

This	command	deletes	the	path	corresponding	to	the	specified	id.	Any
entity	that	was	using	this	path	as	a	patrol	route	will	stop	patrolling.

Syntax	
AI	Delete	Path	Path	Number

Parameters
Path	Number,	The	id	of	the	path	you	want	to	delete.	

Return
n/a



AI	PATH	ADD	POINT

This	command	adds	the	specified	point	to	the	end	of	the	path.	Points
need	not	be	related	in	any	way,	a	path	simply	holds	a	list	of	points	that
can	be	used	later	for	various	purposes.	When	adding	points	for	a	patrol
route	the	points	should	be	added	in	the	order	you	want	the	entity	to	visit
them.

Syntax	
AI	Path	Add	Point	Path	Number,	X#,	Y#

Parameters
Path	Number,	The	id	of	the	path	you	want	to	add	the	point	to.
X#,	The	X	component	of	the	point	position	in	world	co-ordinates.
Y#,	The	Y	component	of	the	point	position	in	world	co-ordinates.

Return
n/a



AI	PATH	COUNT	POINTS

This	command	returns	the	number	of	points	in	the	path.

Syntax	
return	integer	=	AI	Path	Count	Points	(	Path	Number	)

Parameters
Path	Number,	The	id	of	the	path	from	which	you	want	to	return	the
number	of	points.

Return
The	number	of	points	contained	in	the	path.



AI	PATH	GET	X

This	command	returns	the	X	component	of	the	specified	point	in	the	path.
The	points	are	stored	in	the	order	they	were	added	and	begin	at	index	1
up	to	and	including	the	value	returned	by	AI	Path	Count	Points.	

Syntax	
return	float	=	AI	Path	Get	X	(	Path	Number,	Point	Index	)

Parameters
Path	Number,	The	id	of	the	path	from	which	you	want	to	return	the	X
position.
Point	Index,	The	id	of	the	point	(starting	at	1)	of	which	you	want	to	return
the	X	position.

Return
The	X	position	of	the	path	point.



AI	PATH	GET	Z

This	command	returns	the	Z	component	of	the	specified	point	in	the	path.
The	points	are	stored	in	the	order	they	were	added	and	begin	at	index	1
up	to	and	including	the	value	returned	by	AI	Path	Count	Points.

Syntax	
return	float	=	AI	Path	Get	Z	(	Path	Number,	Point	Index	)

Parameters
Path	Number,	The	id	of	the	path	from	which	you	want	to	return	the	Z
position.
Point	Index,	The	id	of	the	point	(starting	at	1)	of	which	you	want	to	return
the	Z	position.

Return
The	Z	position	of	the	path	point.



AI	MAKE	PATH	BETWEEN	POINTS

This	command	will	create	a	path	between	the	two	points	specified	and
will	take	into	account	all	obstacles	in	its	way.	This	gives	you	direct	access
to	the	path	finding	system	of	a	particular	container	(default	is	0).	If	the
begin	and	end	points	lie	within	obstacles	an	attempt	will	be	made	to	find
the	closest	point	that	is	not	within	an	obstacle.	If	this	fails,	or	there	is	no
clear	path	between	the	points	then	the	path	will	be	created	with	no	points.

The	Max	Start	Cost	parameter	sets	the	maximum	distance	the	path	can
move	from	the	start	point	without	moving	through	a	waypoint.	Normally	if
the	start	and	end	points	are	not	obstructed	a	path	is	created	directly
between	them,	if	the	max	start	cost	is	less	than	the	distance	between	the
start	and	end	points	the	path	must	connect	to	a	waypoint	(with	the	max
start	cost	range)	in	order	to	reach	the	destination.	The	end	point	must
also	be	within	this	range	of	a	waypoint	for	the	path	to	connect	to	it.	If
either	the	start	or	end	point	are	more	than	the	max	start	cost	from	all
waypoints	then	no	path	is	created,	even	if	the	points	are	unobstructed.
Set	this	to	-1	to	set	no	limit	on	the	start	and	end	distance	(default).

If	successful	the	begin	and	end	points	are	included	as	part	of	the	path.

Syntax	
AI	Make	Path	Between	Points	Path	Number,	X1#,	Y1#,	X2#,	Y2#
AI	Make	Path	Between	Points	Path	Number,	Container	Number,	X1#,
Y1#,	X2#,	Y2#
AI	Make	Path	Between	Points	Path	Number,	Container	Number,	X1#,
Y1#,	X2#,	Y2#,	Max	Start	Cost#

Parameters
Path	Number,	The	id	of	the	path	you	want	to	use	to	hold	the	returned
data,	should	not	exist.
Container	Number,	(optional)	The	id	of	container	you	want	to	create	the
path	through,	default	is	0.
X1#,	The	X	component	of	the	start	position.
Y1#,	The	Y	component	of	the	start	position.
X2#,	The	X	component	of	the	end	position.



Y2#,	The	Y	component	of	the	end	position.
Max	Start	Cost#,	The	maximum	distance	between	the	start/end	points
and	their	connecting	waypoints.	(default	is	-1)

Return
n/a



AI	MAKE	PATH	FROM	CLOSEST	WAYPOINTS

This	command	creates	a	path	that	contains	a	list	of	points	that	represent
the	visible	waypoints	from	the	specified	point.	As	such	this	does	not
represent	a	real	path	but	is	instead	used	to	store	a	list	of	related	points.
The	waypoints	represent	the	places	an	entity	could	move	to	from	its	the
specified	position	which	are	not	obstructed	by	obstacles.	They	can	also
denote	good	places	to	run	for	cover	since	a	waypoint	represents	the
corner	of	an	obstacle.

Syntax	
AI	Make	Path	From	Closest	Waypoints	Path	Number,	Container	Number,
X#,	Y#

Parameters
Path	Number,	The	id	of	the	path	you	want	to	use	to	hold	the	returned
data.
Container	Number,	The	id	of	container	you	want	to	create	the	path	from.
X#,	The	X	component	of	the	position.
Y#,	The	Y	component	of	the	position.

Return
n/a



AI	MAKE	MEMBLOCK	FROM	PATH

This	command	will	create	a	memblock	from	the	specified	path,	if	the
memblock	already	exists	it	will	first	be	deleted.	You	can	then	delete	the
path,	modify	the	memblock,	and	use	AI	Make	Path	From	Memblock	to
modify	the	path.

The	structure	of	the	memblock	is	as	follows:
Number	of	points	as	DWORD	(4	bytes)

Then	for	each	point:
X#	as	FLOAT	(4	bytes)
Z#	as	FLOAT	(4	bytes)

Syntax	
AI	Make	Memblock	From	Path	Memblock	Number,	Path	Number

Parameters
Memblock	Number,	The	id	of	the	memblock	you	want	to	hold	the	data.
Path	Number,	The	id	of	the	path	you	want	to	use	to	fill	the	memblock.

Return
n/a



AI	MAKE	PATH	FROM	MEMBLOCK

This	command	creates	a	path	from	the	specified	memblock.	You	can	use
this	to	create	a	complete	path	from	scratch	or	to	copy	a	path	from	one	id
to	another	along	with	AI	Make	Memblock	From	Path.	

The	structure	of	the	memblock	should	be	as	follows:
Number	of	points	as	DWORD	(4	bytes)

Then	for	each	point:
X#	as	FLOAT	(4	bytes)
Z#	as	FLOAT	(4	bytes)

Syntax	
AI	Make	Path	From	memblock	Path	Number,	Memblock	Number

Parameters
Path	Number,	The	id	of	the	path	you	want	to	create	from	the	memblock,
should	not	exist.
Memblock	Number,	The	id	of	memblock	you	want	to	use	as	source	data.

Return
n/a



ZONES

Zones	define	areas	of	visibility	that	can	be	assigned	to	one	or	more
entities.	When	a	valid	target	enters	a	zone	all	entities	assigned	to	the
zone	are	notified	of	the	event	and	can	act	as	if	the	target	entered	their
line	of	sight.	Entities	will	make	their	way	to	the	event	in	order	to	check	it
out,	and	whilst	the	target	remains	in	the	zone	their	position	will	be	known
to	assigned	entities.	Entities	rate	the	threat	of	zone	targets	as	lower	than
normal	targets	so	an	entity	will	prefer	to	seek	out	targets	it	recently	lost
before	moving	to	zone	targets.

Zones	can	be	assigned	to	friendly	or	enemy	entities	or	both	at	the	same
time,	and	can	replace	their	field	of	view.	If	an	entity's	view	range	is	set	to
0	they	will	only	be	able	to	see	targets	that	enter	any	assigned	zones,	and
as	such	any	target	that	leaves	the	zone	will	be	lost	by	such	an	entity.
Alternatively	entities	with	a	valid	view	range	can	be	set	to	follow	targets
out	of	the	zone	for	as	long	as	they	can	see	them	using	an	aggressive
stance.

Zones	can	be	restricted	to	a	specific	container	so	that	only	entities	from
that	container,	which	enter	the	zone,	will	trigger	an	event.	Zones	can	be
assigned	to	entities	from	any	container	regardless	of	which	container	the
zone	is	in,	this	allows	an	unusual	case	in	which,	for	example,	entities	in
container	1	can	be	assigned	a	zone	from	container	0	and	be	able	to	see
entities	from	container	0	that	enter	the	zone.	

This	could	be	used	to	simulate	a	balcony	scenario	where	the	balcony	is
container	1	and	the	ground	floor	is	container	0,	the	zone	can	be	created
to	cover	the	area	of	the	ground	floor	visible	from	the	balcony	and
assigned	to	all	entities	on	the	balcony.	By	creating	a	half	height	obstacle
around	the	edge	of	the	balcony	entities	will	be	prevented	from	leaving	the
balcony	whilst	still	being	able	to	see	over	it.	Entities	that	enter	the	ground
floor	zone	will	then	be	spotted	by	the	entities	on	the	balcony	and	shoot	at
them.	There	are	some	restrictions	to	this	method,	any	entity	on	the
ground	floor	that	ducks	will	be	hidden	by	the	half	height	balcony	obstacle
and	not	be	shot	at,	obstacles	on	the	ground	floor	container	will	not
obstruct	the	line	of	sight	of	entities	on	the	balcony	zones	provide	a	region
of	complete	visibility	(you	could	use	multiple	overlapping	zones	to	restrict



visibility	only	to	areas	you	want),	entities	on	the	balcony	but	not	near	the
edge	will	still	act	as	if	they	can	see	directly	to	the	ground	floor,	any
balcony	entity	that	is	assigned	the	zone	will	be	notified	of	entities	entering
the	zone	no	matter	where	they	are	(you	may	want	to	assign	entities	to	the
zone	only	when	they	are	on	the	balcony).	The	ground	floor	entities	will
not	be	able	to	see	the	balcony	entities,	but	you	could	apply	the	same
method	by	creating	a	zone	on	the	balcony	in	container	1	and	assigning	it
to	all	the	entities	on	the	ground	in	container	0	to	achieve	the	same	effect.



AI	ADD	ZONE

This	command	creates	a	square	zone	defined	by	the	two	opposing
corners	MinX,	MinZ	and	MaxX,	MaxZ,	and	acts	as	an	area	of	visibility
that	can	be	assigned	to	entities	using	AI	Entity	Assign	Zone.	

The	container	number	parameter	allows	you	to	specify	a	container	to	limit
the	zone	to,	with	which	only	entities	from	that	container	will	trigger	a
response	from	anyone	assigned	to	the	zone.	This	can	be	useful	for
preventing	entities	from	overlapping	containers	from	triggering	each
others	zones.	The	default	is	-1	for	all	containers.	This	can	be	used	to
achieve	a	special	effect	that	entities	assigned	a	zone	from	another
container	can	see	entities	from	that	container.	See	the	Zones	description
for	details	and	an	example	usage

The	Zone	Number	must	be	unique	across	all	containers,	no	two	zones
with	the	same	id	can	exist	at	the	same	time.

Syntax	
AI	Add	Zone	Zone	Number,	MinX#,	MinZ#,	MaxX#,	MaxZ#
AI	Add	Zone	Zone	Number,	MinX#,	MinZ#,	MaxX#,	MaxZ#,	Container
Number

Parameters
Zone	Number,	the	id	you	want	to	use	to	represent	this	zone.
MinX#,	The	minimum	X	bound	of	the	zone.
MinZ#,	The	minimum	Z	bound	of	the	zone.
MaxX#,	The	maximum	X	bound	of	the	zone.
MaxZ#,	The	maximum	Z	bound	of	the	zone.
Container	Number,	(optional)	the	id	of	a	container	to	restrict	the	zone	to.

Return
n/a





AI	REMOVE	ZONE

This	command	removes	the	zone	from	the	AI	system	and	from	any
entities	that	were	assigned	to	it.

Syntax	
AI	Remove	Zone	Zone	Number

Parameters
Zone	Number,	the	id	of	the	zone	you	want	to	remove.

Return
n/a



AI	ZONE	EXIST

This	command	checks	if	the	specified	zone	already	exists	within	the
system.

Syntax	
return	integer	=	AI	Zone	Exist	(	Zone	Number	)

Parameters
Zone	Number,	The	id	of	the	zone	you	want	to	check	exists.

Return
1	if	the	zone	exists,	0	if	not.



SOUNDS

Sounds	act	as	markers	to	entities	that	can	hear	them	and	create	points	of
interest	that	entities	can	choose	to	investigate.	Entities	respond	to
sounds	in	automatic	mode	depending	on	their	stance,	which	can	be	set
to	make	them	run	away	from	or	move	towards	sounds.	In	manual	mode
an	entity	will	still	detect	sounds	but	it	is	up	to	you	to	move	them	in
response.

Sounds	are	not	created	automatically	by	the	AI	system	so	all	sounds
should	be	added	using	the	AI	Create	Sound	command.	Sounds	exist	for
a	short	period	of	time,	usually	about	a	second,	and	are	then	remove
automatically.	During	this	time	any	entity	that	moves	within	range	of	the
sound	can	hear	it	and	respond	to	it.

Sounds	can	be	given	a	priority	level	that	will	make	some	sounds	more
important	than	others,	such	as	gun	shots	compared	with	foot	steps.
Given	a	choice	between	two	sounds	being	heard	at	the	same	time	an
entity	will	investigate	the	high	priority	sound.	An	entity	can	also	have	a
choice	between	following	up	on	a	lost	target,	by	going	to	its	last	position,
or	investigating	a	sound	it	has	just	heard.	In	which	case	if	the	sound	type
is	less	than	10	the	entity	will	go	to	the	target,	otherwise	it	will	investigate
the	sound.	If	an	entity	can	see	a	target	it	will	always	chose	to	attack	the
target	over	any	sound	heard.



AI	CREATE	SOUND

This	command	creates	a	sound	at	the	specified	position	that	can	be
detected	by	nearby	entities.	Sounds	are	not	created	automatically	so	they
must	all	be	created	using	this	command.	You	can	choose	when	and
where	sounds,	such	as	gun	shots,	are	created	and	do	not	have	to
represent	any	real	event.	When	in	automatic	mode,	entities	will	respond
to	sounds	depending	on	their	stance,	more	aggressive	stances	will	move
to	the	point	of	the	sound	to	look	for	targets.

The	type	of	sound	determines	how	important	the	entity	will	rate	a
particular	sound	when	heard,	for	example	footsteps,	gunshots	or
explosions.	Higher	type	values	are	regarded	as	more	important	and	will
be	investigated	before	lower	values.	

The	radius	is	how	large	the	sound	is,	if	the	sound	radius	plus	the	entity
hearing	range	is	greater	than	the	distance	between	the	two,	the	sound
can	be	heard	by	the	entity.	

The	container	parameter	allows	you	to	limit	the	sound	to	a	particular
container,	so	that	only	entities	from	that	container	will	hear	the	sound.
The	default	is	-1	for	all	containers.

Syntax	
AI	Create	Sound	Position	X#,	Position	Z#,	Type,	Radius#
AI	Create	Sound	Position	X#,	Position	Z#,	Type,	Radius#,	Container
Number	

Parameters
Position	X#,	The	X	position	where	you	want	to	sound	to	be.
Position	Z#,	The	Z	position	where	you	want	to	sound	to	be.
Type,	The	type	of	sound	as	a	positive	integer.
Radius#,	The	radius	of	the	sound.	
Container	Number,	(optional)	The	id	of	a	container	to	limit	the	sound	to.

Return
n/a





DEBUG	COMMANDS

The	debug	commands	allow	you	to	view	the	internal	data	of	the	AI
system	in	the	form	of	Dark	Basic	3D	objects.	Free	objects	for	all
debugging	information	are	found	by	starting	at	object	ID	65535	and
decreasing	until	a	free	object	is	found.	This	object	is	then	occupied	until
the	debug	data	is	hidden	again	using	the	appropriate	command,	at	which
point	the	object	is	deleted.

Some	frequently	changing	debug	objects,	such	as	avoidance	angles,	can
cause	a	performance	hit	whilst	displaying	due	to	calculations	required	to
create	the	debug	object	displayed.	Waypoints,	waypoint	edges,	and
obstacle	bounds	are	only	calculated	once	in	the	'show'	command,	and
remain	static	until	hidden.	If	any	changes	are	made	to	waypoints	or
obstacles	after	displaying	the	debug	object	it	needs	to	be	hidden	and	re-
shown	for	the	changes	to	display.

In	addition	to	displaying	data	directly	in	the	Dark	Basic	world,	the	console
commands	can	be	used	to	display	detailed	information	about	the
parameters	of	an	entity,	such	as	destinations,	targets	and	general
parameters,	which	can	sometimes	help	explain	why	an	entity	is	behaving
a	certain	way.	As	such	it's	probably	most	useful	when	using	the	manual
entity	commands	to	create	custom	behaviours.

Finally	there	are	error	control	commands	that	allow	you	to	suppress	or
display	error	messages	in	response	to	invalid	parameters.	The	former	is
useful	when	there	are	parameters	that	are	not	known	before	hand,	such
as	user	defined	or	script	defined	values,	that	you	do	not	want	ending	the
program.	Displaying	error	messages	is	the	recommended	mode	in	most
cases.



AI	DEBUG	SHOW	WAYPOINTS

Turns	on	the	display	of	waypoints	for	the	specified	container.	Waypoints
mark	points	which	entities	can	use	to	get	around	obstacles.	These	are
shown	as	blue	points	along	the	edges	of	obstacles.	

Syntax	
AI	Debug	Show	Waypoints	Container	Number,	Position	Y#

Parameters
Container	Number,	The	id	number	of	the	container	for	which	you	want	to
display	waypoints.
Position	Y#,	The	Y	height	you	want	the	debug	objects	to	appear	in	world
co-ordinates.

Return
n/a



AI	DEBUG	HIDE	WAYPOINTS

Turns	off	the	display	of	waypoints	in	the	specified	container.

Syntax	
AI	Debug	Hide	Waypoints	Container	Number

Parameters
Container	Number,	The	id	of	the	container	for	which	you	want	to	hide
waypoint	debug	data.	

Return
n/a



AI	DEBUG	SHOW	WAYPOINT	EDGES

Turns	on	the	display	of	waypoint	visibility	between	the	waypoints	of	the
specified	container.	If	two	waypoints	are	connected	by	an	edge	then	they
are	not	obstructed	by	any	obstacles	and	entities	can	use	it	as	a	section	of
path	during	path	finding.	Edges	are	shown	as	blue	lines	joining
waypoints.

Syntax	
AI	Debug	Show	Waypoint	Edges	Container	Number,	Position	Y#

Parameters
Container	Number,	The	id	number	of	the	container	for	which	you	want	to
show	waypoint	visibility.
Position	Y#,	The	Y	height	that	you	want	the	debug	objects	to	appear	in
world	co-ordinates.

Return
n/a



AI	DEBUG	HIDE	WAYPOINT	EDGES

Turns	off	the	display	of	waypoint	visibility	for	waypoints	in	the	specified
container.

Syntax	
AI	Debug	Hide	Waypoint	Edges	Container	Number

Parameters
Container	Number,	The	id	of	the	container	for	which	you	want	to	hide
waypoint	visibility.

Return
n/a



AI	DEBUG	SHOW	OBSTACLE	BOUNDS

Turns	on	the	display	of	all	obstacle	boundaries	in	the	specified	container.
These	represent	the	edges	of	all	obstacle	in	the	specified	container.	Half
height	obstacle	bounds	appear	in	a	darker	green	colour	than	full	height
obstacles.	View	blocking	obstacles	appear	in	cyan.	The	bounds	objects
will	flash	white	about	once	a	second	to	help	visualise	them	against
surrounding	objects.

You	need	to	specify	the	Y	height	of	the	debug	objects	since	the	obstacles
themselves	contain	no	Y	axis	data.	

Syntax	
AI	Debug	Show	Obstacle	Bounds	Container	Number,	Position	Y#

Parameters
Container	Number,	The	id	number	of	the	container	you	wish	to	hide	the
obstacle	bounds	for.
Position	Y#,	The	Y	position	at	which	you	want	the	debug	objects	to
appear	in	world	co-ordinates.	

Return
n/a



AI	DEBUG	HIDE	OBSTACLE	BOUNDS

Turns	off	the	display	of	all	obstacle	boundaries	in	the	specified	container.	

Syntax	
AI	Debug	Hide	Obstacle	Bounds	Container	Number

Parameters
Container	Number,	The	id	number	of	the	container	you	wish	to	hide	the
obstacle	bounds	for.

Return
n/a



AI	Debug	Show	Paths

Turns	on	the	display	of	all	entity	paths	in	all	containers.	These	represent
each	entity's	final	destination	and	the	path	they've	calculated	to	get	there.
Paths	are	shown	as	red	points	connected	by	red	lines,	starting	at	the
entity's	current	position	and	ending	at	the	entity's	final	destination.

Syntax	
AI	Debug	Show	Paths	Position	Y#

Parameters
Position	Y#,	The	Y	position	you	would	like	the	debug	objects	to	appear	in
world	co-ordinates.

Return
n/a



AI	Debug	Hide	Paths

Turns	off	the	display	of	all	entity	paths	in	all	containers.

Syntax	
AI	Debug	Hide	Paths

Parameters
n/a

Return
n/a



AI	DEBUG	SHOW	VIEW	ARCS

Turns	on	the	display	of	entity	view	and	hearing	angles	at	the	specified
height.	View	angles	are	shown	as	transparent	red	circular	arcs	and
represent	the	range	and	angle	that	an	entity	can	see	(if	not	obstructed	by
obstacles).	Hearing	ranges	are	shown	as	a	yellow	ring	and	any	sounds
within	this	ring	can	be	heard	by	the	entity.

Syntax	
AI	Debug	Show	View	Arcs	Position	Y#

Parameters
Position	Y#,	The	Y	height	at	which	you	want	the	debug	objects	to	appear,
in	world	co-ordinates.

Return
n/a



AI	DEBUG	HIDE	VIEW	ARCS

Turns	off	the	display	of	entity	view	and	hearing	ranges	for	all	entities	in	all
containers.

Syntax	
AI	Debug	Hide	View	Arcs

Parameters
n/a

Return
n/a



AI	DEBUG	SHOW	SOUNDS

Turns	on	the	display	of	all	sounds,	as	they	occur,	as	yellow	points	at	the
specified	height.	Sounds	are	displayed	for	as	long	as	they	can	be	heard
by	surrounding	entities.	

Syntax	
AI	Debug	Show	Sounds	Position	Y#

Parameters
Position	Y#,	The	Y	Position	you	want	sounds	to	appear	at	in	world	co-
ordinates.

Return
n/a



AI	DEBUG	HIDE	SOUNDS

Turns	off	the	display	of	sounds.

Syntax	
AI	Debug	Hide	Sounds

Parameters
n/a

Return
n/a



AI	DEBUG	SHOW	AVOIDANCE	ANGLES
Turns	on	the	display	of	entity	avoidance	angles	in	all	containers.	These
represent	areas	where	an	entity	has	detected	another	entity	and	will	not
move	in	blocked	directions.	Avoidance	angles	are	shown	in	green	and
contain	the	area	where	the	entity	will	not	move.	

Syntax	
AI	Debug	Show	View	Arcs	Position	Y#

Parameters
Position	Y#,	the	height	you	want	the	debug	objects	to	appear	in	world	co-
ordinates.

Return
n/a



AI	Debug	Hide	Avoidance	Angles

Turns	off	the	display	of	all	entity	avoidance	angles	in	all	containers.

Syntax	
AI	Debug	Hide	Avoidance	Angles

Parameters
n/a

Return
n/a



AI	SET	CONSOLE	OUTPUT	ON

This	command	opens	a	console	window	that	displays	detailed
information	about	the	specified	entity	such	as	destination,	target	and
general	parameter	information.	If	the	console	window	is	closed	manually
an	error	will	occur,	us	AI	Set	Console	Output	Off	to	safely	remove	the
window.

Syntax	
AI	Set	Console	Output	On	Entity	Number

Parameters
Entity	Number,	The	id	of	the	entity	for	which	you	want	to	display	detailed
information.

Return
n/a



AI	SET	CONSOLE	OUTPUT	OFF

This	removes	any	console	window	currently	displaying	detailed	entity
information.	

Syntax	
AI	Set	Console	Output	Off

Parameters
n/a

Return
n/a



AI	SHOW	ERRORS

This	command	returns	error	displaying	to	the	normal	mode	where	invalid
parameters	result	in	an	error	message.	

Syntax	
AI	Show	Errors

Parameters
n/a

Return
n/a



AI	HIDE	ERRORS

This	command	suppresses	all	error	messages	that	may	occur	from	using
invalid	parameters	in	AI	commands.	Instead	any	failed	commands	will
return	control	to	the	Dark	Basic	program	and	make	no	change	to	the	AI
system.	When	using	this	command	you	should	check	actions	such	as
adding	an	entity	succeed	by	using	the	AI	Entity	Exist	command	and
handle	any	errors	yourself.	

Syntax	
AI	Hide	Errors

Parameters
n/a

Return
n/a



PLAYER

The	player	is	added	to	the	AI	system	only	to	provide	entities	with	the
current	position	of	the	player.	This	can	be	done	directly	through	the	use
of	a	DarkBasic	object	linked	to	the	player	or	through	the	use	of	AI	Set
Player	Position	to	do	it	manually.	The	AI	system	does	not	move	or
change	the	player	in	any	way	nor	does	it	calculate	paths	or	restrict	the
player	from	moving	through	obstacles.	It	is	only	used	to	provide	the
system	with	information	about	where	the	player	is.

You	can	only	add	one	player	to	the	AI	system	and	it	is	automatically
placed	on	the	friendly	team.



AI	ADD	PLAYER

This	command	adds	a	player	to	the	AI	system,	and	optionally	an	object	to
use	as	positional	information.	The	AI	system	does	not	move	or	change
the	object	in	any	way,	it	only	uses	it	to	read	the	new	player	position
directly	from	the	object	to	simplify	the	process.	If	you	do	not	want	this	to
occur	you	can	use	0	for	both	Object	Number	and	Use	Object	and	use	the
AI	Set	Player	Position	command	to	notify	the	AI	system	of	the	player's
positions.	

Only	one	player	can	be	added	to	the	system.

Syntax	
AI	Add	Player	Object	Number
AI	Add	Player	Object	Number,	Use	Object

Parameters
Object	Number,	The	id	of	the	object	that	represents	the	player	(ignored	if
not	using	the	object)
Use	Object,	(optional)	1	to	link	the	player	to	the	specified	object,	0	to	not
use	the	object.	Default	is	1

Return
n/a



AI	KILL	PLAYER

This	command	removes	the	player	from	the	AI	system	so	that	entities
can	no	longer	target	it.	Any	object	that	was	linked	to	the	player	remains
and	you	should	remove	this	yourself.

Syntax	
AI	Kill	Player

Parameters
n/a

Return
n/a



AI	GET	PLAYER	X

This	command	returns	the	X	component	of	the	player	position	that	the	AI
system	is	using	as	the	current	player	position.	If	the	player	is	linked	with
an	object	then	this	returns	the	position	of	the	object.	If	it	is	not	linked	then
this	returns	the	internal	position	that	is	currently	being	used.

Syntax	
return	float	=	AI	Get	Player	X	(	)

Parameters
n/a

Return
The	X	component	of	the	player's	current	position.



AI	GET	PLAYER	Z

This	command	returns	the	Z	component	of	the	player	position	that	the	AI
system	is	using	as	the	current	player	position.	If	the	player	is	linked	with
an	object	then	this	returns	the	position	of	the	object.	If	it	is	not	linked	then
this	returns	the	internal	position	that	is	currently	being	used.

Syntax	
return	float	=	AI	Get	Player	Z	(	)

Parameters
n/a

Return
The	Z	component	of	the	player's	current	position.



AI	SET	PLAYER	POSITION

This	command	sets	the	player	position	when	no	object	is	linked	to	the
player.	If	an	object	is	linked	it	will	also	position	the	object,	but	in	this	case
using	either	this	command	or	positioning	the	DarkBasic	object	manually
is	an	acceptable	method	to	position	the	player.	This	position	is	used	by
entities	to	determine	if	they	can	see	and	attack	the	player.	It	is	also	used
by	allies	when	they	are	set	to	follow	the	player.

Syntax	
AI	Set	Player	Position	X#,	Z#

Parameters
X#,	The	X	component	of	the	new	position.
Z#,	The	Z	component	of	the	new	position.

Return
n/a



AI	SET	PLAYER	ANGLE	Y

This	command	sets	the	internal	Y	angle	for	the	player,	if	the	player	is
linked	to	an	object	the	object's	Y	angle	is	also	set.

Syntax	
AI	Set	Player	Angle	Y	Angle#

Parameters
Angle#,	The	angle	you	want	to	set	the	player	to.

Return
n/a



AI	SET	PLAYER	DUCKING

This	command	sets	the	ducking	state	of	the	player.	You	should	use	this
to	notify	the	AI	system	if	the	player	is	currently	ducking	so	that	entities	will
not	be	able	to	see	the	player	from	behind	half	height	objects.

Syntax	
AI	Set	Player	Ducking	Mode

Parameters
Mode,	1	to	set	the	player	as	ducking,	0	to	set	the	player	as	standing.

Return
n/a



AI	SET	PLAYER	CONTAINER

This	command	tells	the	AI	system	which	container	the	player	is	currently
in.	This	cannot	be	determined	automatically	because	containers	may	be
separated	by	height	which	is	not	recorded	in	the	system.	The	only
purpose	for	setting	the	player	container	is	to	avoid	entities	from	other
containers	from	being	able	to	see	the	player,	only	entities	in	the	same
container	will	be	able	to	see	the	player.

Syntax	
AI	Set	Player	Container	Container	Number

Parameters
Container	Number,	The	id	of	the	container	you	want	the	player	to	be	in.

Return
n/a



AI	GET	PLAYER	IN	ZONE

This	command	will	check	if	the	player	is	in	within	the	bounds	of	the
specified	zone.

Syntax	
return	integer	=	AI	Get	Player	In	Zone	(	Zone	Number	)

Parameters
Zone	Number,	The	id	of	the	zone	you	want	to	check	the	player	is	in.

Return
1	if	the	player	is	within	the	bounds	of	the	zone,	0	if	not.



ENTITIES

Entities	represent	the	computer	controlled	players	within	the	AI	system
and	they	will	move	and	react	according	to	their	surroundings	and	the
values	of	their	parameters.	These	parameters	can	be	set	using
commands	beginning	AI	Set	Entity	___	and	retrieved	using	AI	Get	Entity
___	and	usually	have	no	immediate	impact	on	the	entity	until	an	event
occurs	that	they	need	to	react	to,	such	as	discovering	an	enemy.	The
commands	beginning	AI	Entity	___	are	more	like	commands	to	the	entity
to	tell	it	to	do	something	and	usually	have	an	immediate	effect	on	the
entity's	movement,	depending	on	their	current	mode.

Entities	have	two	main	modes	of	operation,	automatic	mode	and	manual
mode.	The	default	is	automatic	mode	where	an	entity	will	react	according
to	its	stance,	which	can	be	one	of	Run	Away,	Stationary,	Cautious,	or
Aggressive	(see	AI	Set	Entity	Stance).	In	manual	mode	you	are	free	to
instruct	the	entity	to	behave	and	move	where	you	want	by	using	the
range	of	manual	mode	commands,	which	provide	much	of	the
functionality	that	automatic	mode	uses	to	move	entities	around.	

In	both	modes	entities	automatically	avoid	obstacles	and	other	entities	in
their	current	container	when	moving	about,	without	a	need	for	a	separate
collision	system.	However,	dynamic	obstacles	such	as	crates	should	not
be	added	to	the	AI	system,	instead	use	an	external	collision/physics
system	to	detect	collisions	with	dynamic	obstacles	and	use	AI	Set	Entity
Collide.	

Entities	are	grouped	into	three	teams,	the	player's	team,	the	enemy
team,	and	a	neutral	team.	The	player's	team	help	the	player	by	attacking
enemies,	enemies	attack	the	player	and	its	allies.	Neither	will	attack
neutral	entities,	and	neutral	entities	will	not	attack	anyone.



AI	ADD	ENEMY

This	command	adds	an	entity	to	the	enemy	team	(against	the	player)
using	the	id	that	you	specify.	This	should	be	a	non-zero	positive	integer,
and	not	already	be	assigned	to	an	entity.

You	can	call	this	command	with	one,	two	or	three	parameters:

The	second	parameter	allows	you	to	link	the	entity	with	the	Dark	Basic
object	of	the	same	id,	which	will	allow	the	AI	system	to	move	this	object
for	you	in	response	to	any	entity	movement.	The	AI	system	will	move	the
object	in	the	X	and	Z	directions	and	will	not	change	the	objects	Y
position.	If	you	choose	to	disabled	it	you	can	retrieve	the	AI	entity	position
with	AI	Get	Entity	X()	and	AI	Get	Entity	Z()	and	use	it	to	position	your	own
representation	of	the	entity.

The	third	parameter	allows	you	to	choose	which	container	to	assign	the
entity	to,	the	entity	will	be	bound	by	the	obstacles	within	the	specified
container	and	will	not	automatically	move	to	another	container.	You	can
change	an	entity's	container	later	by	using	AI	Set	Entity	Container
command.	If	you	are	not	using	containers	you	can	ignore	this	value.

Syntax
AI	Add	Enemy	Entity	Number
AI	Add	Enemy	Entity	Number,	Use	Object
AI	Add	Enemy	Entity	Number,	Use	Object,	Container	Number

Parameters
Entity	Number,	The	id	you	want	to	use	to	represent	this	entity,	when	set
to	use	a	Dark	Basic	object	this	must	be	the	same	as	the	object	id.
Use	Object,	(optional)	Set	this	to	1	to	link	the	entity	directly	to	the	Dark
Basic	object	with	the	same	id	as	the	entity.	Use	0	if	you	want	to	create	an
entity	that	has	no	links	to	any	objects.	The	default	value	is	1.
Container	Number,	(optional)	The	id	of	the	container	you	want	to	add	this
entity	to,	the	default	value	is	0.



Return
n/a



AI	ADD	FRIENDLY

This	command	adds	an	entity	to	the	friendly	team	(allied	with	the	player)
using	the	id	that	you	specify.	This	should	be	a	non-zero	positive	integer,
and	not	already	be	assigned	to	an	entity.

You	can	call	this	command	with	one,	two	or	three	parameters:

The	second	parameter	allows	you	to	link	the	entity	with	the	Dark	Basic
object	of	the	same	id,	which	will	allow	the	AI	system	to	move	this	object
for	you	in	response	to	any	entity	movement.	The	AI	system	will	move	the
object	in	the	X	and	Z	directions	and	will	not	change	the	objects	Y
position.	If	you	choose	to	disabled	it	you	can	retrieve	the	AI	entity	position
with	AI	Get	Entity	X()	and	AI	Get	Entity	Z()	and	use	it	to	position	your	own
representation	of	the	entity.

The	third	parameter	allows	you	to	choose	which	container	to	assign	the
entity	to,	the	entity	will	be	bound	by	the	obstacles	within	the	specified
container	and	will	not	automatically	move	to	another	container.	You	can
change	an	entity's	container	later	by	using	AI	Set	Entity	Container
command.	If	you	are	not	using	containers	you	can	ignore	this	value.

Syntax
AI	Add	Friendly	Entity	Number
AI	Add	Friendly	Entity	Number,	Use	Object
AI	Add	Friendly	Entity	Number,	Use	Object,	Container	Number

Parameters
Entity	Number,	The	id	you	want	to	use	to	represent	this	entity,	when	set
to	use	a	Dark	Basic	object	this	must	be	the	same	as	the	object	id.
Use	Object,	(optional)	Set	this	to	1	to	link	the	entity	directly	to	the	Dark
Basic	object	with	the	same	id	as	the	entity.	Use	0	if	you	want	to	create	an
entity	that	has	no	links	to	any	objects.	The	default	value	is	1.
Container	Number,	(optional)	The	id	of	the	container	you	want	to	add	this
entity	to,	the	default	value	is	0.

Return



n/a



AI	ADD	NEUTRAL

This	command	adds	an	entity	to	the	neutral	team	(will	not	fight)	using	the
id	that	you	specify.	This	should	be	a	non-zero	positive	integer,	and	not
already	be	assigned	to	an	entity.

You	can	call	this	command	with	one,	two	or	three	parameters:

The	second	parameter	allows	you	to	link	the	entity	with	the	Dark	Basic
object	of	the	same	id,	which	will	allow	the	AI	system	to	move	this	object
for	you	in	response	to	any	entity	movement.	The	AI	system	will	move	the
object	in	the	X	and	Z	directions	and	will	not	change	the	objects	Y
position.	If	you	choose	to	disabled	it	you	can	retrieve	the	AI	entity	position
with	AI	Get	Entity	X()	and	AI	Get	Entity	Z()	and	use	it	to	position	your	own
representation	of	the	entity.

The	third	parameter	allows	you	to	choose	which	container	to	assign	the
entity	to,	the	entity	will	be	bound	by	the	obstacles	within	the	specified
container	and	will	not	automatically	move	to	another	container.	You	can
change	an	entity's	container	later	by	using	AI	Set	Entity	Container
command.	If	you	are	not	using	containers	you	can	ignore	this	value.

Syntax
AI	Add	Neutral	Entity	Number
AI	Add	Neutral	Entity	Number,	Use	Object
AI	Add	Neutral	Entity	Number,	Use	Object,	Container	Number

Parameters
Entity	Number,	The	id	you	want	to	use	to	represent	this	entity,	when	set
to	use	a	Dark	Basic	object	this	must	be	the	same	as	the	object	id.
Use	Object,	(optional)	Set	this	to	1	to	link	the	entity	directly	to	the	Dark
Basic	object	with	the	same	id	as	the	entity.	Use	0	if	you	want	to	create	an
entity	that	has	no	links	to	any	objects.	The	default	value	is	1.
Container	Number,	(optional)	The	id	of	the	container	you	want	to	add	this
entity	to,	the	default	value	is	0.

Return



n/a



AI	KILL	ENTITY

This	command	removes	the	specified	entity	from	the	AI	system,	any
DarkBasic	object	assigned	to	it	remains	and	should	be	deleted	manually.
Other	entities	will	remove	this	entity	from	their	target	list.

Syntax
AI	Kill	Entity	Entity	Number

Parameters
Entity	Number,	The	id	of	the	entity	you	want	to	remove	from	the	AI
system.

Return
n/a



AI	ENTITY	EXIST

This	command	checks	if	the	specified	entity	has	been	added	to	the	AI
system.	Entities	are	not	removed	from	the	system	automatically	once
they	have	been	added,	to	remove	an	entity	use	the	AI	Kill	entity
command.	

Syntax
return	integer	=	AI	Entity	Exist	(	Entity	Number	)

Parameters
Entity	Number,	The	id	of	the	entity	you	want	to	check	exists.

Return
1	if	entity	exists,	0	if	not.



AI	ENTITY	RESET

This	command	resets	the	state	of	an	entity	back	to	'Idle'	when	in
automatic	mode.	However	the	entity	surroundings	can	change	the	state	if
the	entity	is	allowed	to	attack	or	hear.

This	is	an	automatic	mode	command	(see	AI	Set	Entity	Control)

Syntax
AI	Entity	Reset	Entity	Number

Parameters
Entity	Number,	The	id	of	the	entity	you	want	to	reset.

Return
n/a



AI	ENTITY	FOLLOW	PLAYER

This	command	tells	the	entity	to	follow	and	defend	the	player,	as	such
this	command	is	only	for	friendly	entities	that	are	allied	with	the	player.	If
no	player	has	been	added	or	the	entity	is	not	allied	with	the	player	no
change	is	made	to	the	entity.

This	command	is	similar	to	AI	Entity	Defend	Area	except	that	the	defend
position	is	constantly	set	to	the	player's	current	position.	When	the
distance	between	the	entity	and	the	player	exceeds	the	specified
distance	the	entity	will	choose	a	point	close	to	the	player	and	move	to	it.

This	is	an	automatic	mode	command	(see	AI	Set	Entity	Control)

Syntax
AI	Entity	Follow	Player	Entity	Number,	Follow	Distance#

Parameters
Entity	Number,	The	id	of	the	entity	you	want	to	follow	the	player.
Follow	Distance#,	The	maximum	distance	you	want	the	entity	to	be	from
the	player.	

Return
n/a



AI	ENTITY	SEPARATE

This	command	is	used	to	stop	an	entity	following	and	defending	the
player,	it	is	the	opposite	to	AI	Entity	Follow	Player.	This	command
removes	the	entity	from	a	defending	state	and	returns	it	to	behaving	in
accordance	with	it's	stance	(see	AI	Set	Entity	Stance)	

This	is	an	automatic	mode	command	(see	AI	Set	Entity	Control)

Syntax
AI	Entity	Separate	Entity	Number

Parameters
Entity	Number,	The	id	of	the	entity	you	want	to	stop	following	the	player.

Return
n/a



AI	ENTITY	DEFEND	AREA

This	command	sets	the	entity	into	a	defensive	mode	that	will	attempt	to
keep	them	within	the	specified	area	whilst	still	attacking	any	targets	that
come	within	range.	The	entity	still	allowed	to	perform	normal	evasive
moves	such	as	strafing	but	if	it	begins	to	leave	the	specified	area	it	will
automatically	move	itself	back	within	the	area.

This	is	an	automatic	mode	command	(see	AI	Set	Entity	Control)

Syntax
AI	Entity	Defend	Area	Entity	Number,	Position	X#,	Position	Z#,	Radius#

Parameters
Entity	Number,	The	id	of	the	entity	you	want	to	defend	the	area.
Position	X#,	The	X	component	in	world	co-ordinates	of	the	centre	of	the
area	to	defend.
Position	Z#,	The	Z	component	in	world	co-ordinates	of	the	centre	of	the
area	to	defend.
Radius#,	The	radius	of	the	area	you	want	the	entity	to	defend,	from	the
centre.

Return
n/a



AI	ENTITY	DEFEND	POINT

Similar	to	AI	Entity	Defend	Area	this	command	sets	the	entity	into	a
defensive	mode	but	will	keep	the	entity	fixed	at	the	specified	point,	where
the	only	allowed	response	to	attack	is	to	duck/stand	and	return	fire.	This
can	be	useful	for	making	sure	particular	entities	remain	at	key	defence
points	and	not	wonder	off	following	targets.	This	command	resets	the
entity's	idle	position	to	the	defend	point.

This	is	an	automatic	mode	command	(see	AI	Set	Entity	Control)

Syntax
AI	Entity	Defend	Point	Entity	Number,	Position	X#,	Position	Z#

Parameters
Entity	Number,	The	id	of	the	entity	you	want	to	defend	the	point.
Position	X#,	The	X	component	in	world	co-ordinates	of	the	point	to
defend.
Position	Z#,	The	Z	component	in	world	co-ordinates	of	the	point	to
defend.

Return
n/a



AI	ENTITY	SEARCH	AREA

This	command	will	change	the	entity	state	to	search	the	area.	This	is
automatically	called	for	aggressive	entities	when	they	lose	sight	of	all
their	targets,	but	entities	in	other	stances	will	not	follow	or	search	for	their
targets.	Use	this	command	when	you	want	to	force	an	entity	to	search.

This	is	an	automatic	mode	command	(see	AI	Set	Entity	Control)

Syntax
AI	Entity	Search	Area	Entity	Number

Parameters
Entity	Number,	The	id	of	the	entity	you	want	to	start	searching.

Return
n/a



AI	ENTITY	GO	TO	POSITION

This	command	sets	the	entity's	destination	to	the	specified	position,	the
entity	will	immediately	calculate	a	path	to	the	new	destination	and	begin
moving	towards	it.	If	the	destination	lies	inside	an	obstacle	an	attempt	will
be	made	to	choose	the	closest	point	which	is	not	inside	an	obstacle.	If
this	fails,	or	the	path	to	the	destination	is	blocked	completely	by	obstacles
the	entity	will	not	move.

This	is	an	manual	mode	command	(see	AI	Set	Entity	Control)

This	command	will	work	in	automatic	mode	by	changing	the	entity	state,
but	surrounding	conditions	(such	as	a	visible	target)	can	distract	the
entity	from	your	specified	destination.

Syntax
AI	Entity	Go	To	Position	Entity	Number,	Position	X#,	Position	Z#

Parameters
Entity	Number,	The	id	of	the	entity	you	want	to	move
Position	X#,	The	X	component	of	the	position	in	world	co-ordinates	that
you	want	the	entity	to	move	to.
Position	Z#,	The	Z	component	of	the	position	in	world	co-ordinates	that
you	want	the	entity	to	move	to.	

Return
n/a



AI	ENTITY	STOP

This	command	resets	the	entity	destination	to	it's	current	location	so	it	will
stop	moving.	This	does	not	effect	turning.

This	is	a	manual	mode	command	(see	AI	Set	Entity	Control)

Syntax
AI	Entity	Stop	Entity	Number

Parameters
Entity	Number,	The	id	of	the	entity	you	want	to	stop.

Return
n/a



AI	ENTITY	LOOK	AT	POSITION

This	command	turns	the	entity	to	look	in	the	direction	of	the	specified
point.	If	the	entity	is	moving	and	the	view	of	the	specified	point	is
obscured	by	obstacles	the	entity	will	look	in	the	direction	of	its	current
movement,	until	the	point	becomes	visible.	If	the	entity	is	stationary	it	will
look	at	the	point	whether	it	is	visible	or	not.	

This	is	a	manual	mode	command	(see	AI	Set	Entity	Control)

Syntax
AI	Entity	Look	At	Position	Entity	Number,	Position	X#,	Position	Z#

Parameters
Entity	Number,	The	id	of	the	entity	you	want	to	hold	position.
Position	X#,	The	X	component	of	the	position	you	want	the	entity	to	look
at.
Position	Z#,	The	Z	component	of	the	position	you	want	the	entity	to	look
at.

Return
n/a



AI	ENTITY	LOOK	AROUND

This	command	will	make	the	entity	choose	a	random	direction	to	turn,
between	the	two	angles	you	specify.	Angles	are	relative	to	the	entity's
current	angle	so	an	angle	of	180	will	turn	the	entity	180	degrees	from	it's
current	direction.	The	entity	will	choose	randomly	whether	to	turn	left	or
right	in	this	direction.	

This	command	can	be	useful	for	making	the	entity	check	its	current
location	for	targets	that	maybe	behind	it	or	out	of	it's	current	view	arc.	If
the	entity	is	already	turning	this	command	has	no	effect.	Use	AI	Entity
Look	At	Position	to	specify	an	exact	point	to	look	at.

Angles	should	be	in	the	range	0-180,	if	min	and	max	angles	are	the	same
the	entity	will	turn	exactly	that	amount	either	left	or	right.

This	is	a	manual	mode	command	(see	AI	Set	Entity	Control)

Syntax
AI	Entity	Look	Around	Entity	Number,	Min	Angle#,	Max	Angle#

Parameters
Entity	Number,	The	id	of	the	entity	you	want	to	hold	position.
Min	Angle#,	The	minimum	angle	the	entity	will	turn.
Max	Angle#,	The	maximum	angle	the	entity	will	turn.

Return
n/a



AI	ENTITY	RANDOM	MOVE

With	this	command	the	entity	will	choose	a	random	direction	from	0-360
degrees,	and	move	a	random	distance	between	Min	Distance	and	Max
Distance	in	that	direction.	If	the	direction	is	blocked	by	an	obstacle	the
entity	will	move	as	far	as	the	obstacle	and	stop.

This	command	can	be	useful	in	simulating	a	roaming	entity	by	calling	this
command	every	so	often	to	randomly	move	it	about.	

This	is	a	manual	mode	command	(see	AI	Set	Entity	Control)

Syntax
AI	Entity	Random	Move	Entity	Number,	Min	Distance#,	Max	Distance#

Parameters
Entity	Number,	The	id	of	the	entity	you	want	to	move.
Min	Distance#,	The	smallest	distance	you	want	the	entity	to	move.
Max	Distance#,	The	largest	distance	you	want	the	entity	to	move.

Return
n/a



AI	ENTITY	MOVE	CLOSE

This	command	moves	the	entity	close	to	a	specified	point.	The	entity
picks	a	random	point	that	is	at	most	Max	Distance	from	the	position	and
moves	to	it.	If	many	obstacles	surround	the	specified	point	the	chosen
point	maybe	on	the	opposite	side	of	an	obstacle,	the	entity	will	attempt	to
choose	a	point	that	is	not	inside	an	obstacle.	Where	it	fails	to	do	this	(due
to	many	overlapping	obstacles)	the	entity	will	not	move.

This	is	a	manual	mode	command	(see	AI	Set	Entity	Control)

Syntax
AI	Entity	Move	Close	Entity	Number,	Position	X#,	Position	Z#,	Max
Distance#

Parameters
Entity	Number,	The	id	of	the	entity	you	want	to	move.
Position	X#,	The	X	component	of	the	position	you	want	the	entity	to	move
towards.
Position	Z#,	The	Z	component	of	the	position	you	want	the	entity	to	move
towards.
Max	Distance#,	The	maximum	distance	the	entity	will	be	from	the
specified	position	after	moving.

Return
n/a



AI	ENTITY	MOVE	TO	COVER

This	command	will	tell	the	entity	to	pick	a	destination	from	which	it	can	no
longer	see	the	specified	position.	It	checks	nearby	waypoints	to	see
which	would	provide	cover	from	the	position	and	moves	to	the	closest,
preferring	points	behind	it.	If	no	nearby	waypoints	can	be	found,	or	none
provide	cover,	the	entity	moves	directly	away	from	the	position.	If	the
entity	is	already	covered	from	the	specified	position	and	cannot	see	it,	it
does	not	move.

This	is	a	manual	mode	command	(see	AI	Set	Entity	Control)

Syntax
AI	Entity	Move	To	Cover	Entity	Number,	Position	X#,	Position	Z#

Parameters
Entity	Number,	The	id	of	the	entity	you	want	to	move.
Position	X#,	The	X	component	of	the	position	you	want	the	entity	to	hide
from.
Position	Z#,	The	Z	component	of	the	position	you	want	the	entity	to	hide
from.

Return
n/a



AI	ENTITY	MOVE	TO	IDLE	POSITION

This	command	sets	the	entity	destination	to	its	stored	idle	position.	This
can	be	set	using	AI	Set	Entity	Idle	Position	and	defaults	to	the	position
the	entity	was	when	it	was	added	to	the	AI	system.

This	command	replicates	the	usual	behaviour	of	an	entity	in	the	idle	state
in	automatic	mode.	In	manual	mode	this	feature	can	be	used	to
remember	a	position	and	move	to	it	using	this	command.

This	is	a	manual	mode	command	(see	AI	Set	Entity	Control)

Syntax
AI	Entity	Move	To	Idle	Position	Entity	Number

Parameters
Entity	Number,	The	id	of	the	entity	you	want	to	move.

Return
n/a



AI	ENTITY	MOVE	TO	CLOSEST	SOUND

This	command	will	move	the	entity	towards	the	closest	detected	sound,	if
the	entity	has	not	heard	a	sound	it	will	not	move.	You	can	detect	if	the
entity	has	heard	a	sound	using	the	AI	Get	Entity	Heard	Sound	command.

The	entity	will	automatically	calculate	any	necessary	paths	to	its
destination.

This	is	a	manual	mode	command	(see	AI	Set	Entity	Control)

Syntax
AI	Entity	Move	To	Closest	Sound	Entity	Number

Parameters
Entity	Number,	The	id	of	the	entity	you	want	to	move.

Return
n/a



AI	ENTITY	MOVE	AWAY	FROM	SOUND

This	command	will	move	the	entity	away	from	the	closest	sound.	The
entity	will	pick	a	point	in	the	opposite	direction	from	the	sound	and	move
towards	it.	You	can	check	if	the	entity	has	heard	anything	using	AI	Get
Entity	Heard	Sound	command.	If	the	entity	has	not	heard	a	sound	this
command	has	no	effect.

This	is	a	manual	mode	command	(see	AI	Set	Entity	Control)

Syntax
AI	Entity	Move	Away	From	Sound	Entity	Number

Parameters
Entity	Number,	The	id	of	the	entity	you	want	to	move.

Return
n/a



AI	ENTITY	ADD	TARGET

This	command	will	add	an	entity	or	player	(Target	ID)	to	another	entity's
target	list	(Entity	Number)	which	will	then	be	regarded	as	a	valid	target
and	fired	upon	as	if	the	target	was	an	enemy	of	the	entity.	The	target	will
remain	in	the	target	list	whilst	the	entity	can	see	the	target	and	for	a	short
time	after.	Once	the	target	has	been	lost	for	a	certain	amount	of	time	it
will	be	removed	from	the	target	list	and	will	not	be	re-added	unless	it	is
re-spotted	and	is	naturally	a	valid	target	or	you	add	it	again.

For	example,	normally	enemy	entities	will	only	attack	friendly	entities	or
the	player,	but	using	this	command	you	can	add	enemy	entities	to	each
others	target	lists	and	they	will	attack	each	other	so	long	as	they	can	see
each	other.	To	create	a	free	for	all	style	scenario	you	can	create	a	group
of	entities,	all	on	the	same	team,	and	use	the	AI	Get	Entity	Can	See
command	to	check	if	each	entity	can	see	any	other,	and	if	so	to	add	it	to
the	target	list	using	this	command.	

If	the	target	already	exists	in	the	target	list	it	will	not	be	added	again,	so
this	command	can	safely	be	used	many	times	on	the	same	target.	If	you
want	to	remove	a	target	from	the	list	before	it	loses	sight	use	the	AI	Entity
Remove	Target	command.	The	target	does	not	have	to	exist,	if	it	does
not	no	change	is	made.

Entities	are	allowed	any	number	of	targets	in	their	target	list	and	it	will	be
sorted	automatically	to	select	what	the	entity	thinks	is	the	biggest	threat
to	it	at	the	time,	this	is	mostly	based	on	distance.

Syntax
AI	Entity	Add	Target	Entity	Number,	Target	ID

Parameters
Entity	Number,	The	id	of	the	entity	you	want	to	add	the	target	to
Target	ID,	The	id	of	the	target	object	you	want	to	add	to	the	entity's	target
list.



Return
n/a



AI	ENTITY	REMOVE	TARGET

This	command	will	remove	the	specified	target	from	the	entity's	target	list,
whether	it	was	added	automatically	or	by	using	the	AI	Entity	Add	Target
command.	If	the	target	was	added	automatically	and	the	AI	Set	Entity
Can	Select	Targets	parameter	is	still	set	to	1	then	the	target	will	be	re-
added	as	soon	as	the	entity	sees	it.	

If	the	entity	does	not	have	the	specified	target	currently	in	its	target	list
then	no	change	is	made	to	the	entity.	

Syntax
AI	Entity	Remove	Target	Entity	Number,	Target	ID

Parameters
Entity	Number,	The	id	of	the	entity	you	want	to	remove	the	target	from.
Target	ID,	The	id	of	the	target	object	you	want	to	remove	from	the	entity's
target	list.

Return
n/a



AI	ENTITY	STRAFE	TARGET

This	command	will	set	the	entity	destination	to	a	point	that	will	move	it
sideways	relative	to	the	entity's	current	target.	If	the	entity	has	no	targets
the	entity	will	not	move.	Strafing	is	good	to	avoid	getting	hit	as	it	moves
the	entity	across	the	view	of	their	target	forcing	them	to	continually
update	their	point	of	fire.	Call	this	command	every	so	often	to	set	a	strafe
movement,	calling	it	continuously	will	reset	the	movement	point	too	often
and	result	in	jumpy	movement.

This	is	a	manual	mode	command	(see	AI	Set	Entity	Control)

Syntax
AI	Entity	Strafe	Target	Entity	Number

Parameters
Entity	Number,	The	id	of	the	entity	you	want	to	strafe.

Return
n/a



AI	ENTITY	HOLD	POSITION

This	command	will	stop	the	entity,	move	them	back	to	their	idle	position
and	prevent	them	from	setting	their	destination.	It	sets	the	entity	stance	to
2,	which	corresponds	to	a	stationary	behaviour.	The	entity	will	still	turn
and	react	to	visible	targets	but	will	not	move	in	response.	

This	is	an	automatic	mode	command	(see	AI	Set	Entity	Control)

Syntax
AI	Entity	Hold	Position	Entity	Number

Parameters
Entity	Number,	The	id	of	the	entity	you	want	to	hold	position.

Return
n/a



AI	ENTITY	DUCK

This	command	tells	the	AI	system	that	the	entity	should	act	as	if	it	was
ducking.	Ducking	means	the	entity	cannot	see,	or	be	seen,	over	half
height	obstacles	(see	Obstacles)	and	moves	at	a	slower	speed.	Any	3D
object	linked	to	the	entity	will	not	be	changed	in	any	way	since	there	are
many	different	ways	of	displaying	a	ducking	stance,	so	it	is	left	to	the
programmer	to	implement	in	their	world.

This	is	a	manual	mode	command	(see	AI	Set	Entity	Control)

Syntax
AI	Entity	Duck	Entity	Number

Parameters
Entity	Number,	The	id	of	the	entity	you	want	to	set	as	ducking

Return
n/a



AI	ENTITY	STAND

This	command	sets	the	entity	to	behave	as	if	it	was	standing,	this	is	the
opposite	of	the	AI	Entity	Duck	command,	the	default	mode	is	standing.
Standing	entities	can	see	and	shoot	over	half	height	obstacles,	but
cannot	see	entities	that	are	ducking	behind	half	height	obstacles.	In
automatic	mode,	entities	duck	and	stand	depending	on	their	stance	and
surroundings.	

This	is	a	manual	mode	command	(see	AI	Set	Entity	Control)

Syntax
AI	Entity	Stand	Entity	Number

Parameters
Entity	Number,	The	id	of	the	entity	you	want	to	stand.

Return
n/a



AI	ENTITY	ASSIGN	ZONE	

Use	this	command	to	assign	an	existing	zone	to	an	entity	that	will	provide
an	area	of	complete	visibility	for	the	entity.	Any	opposing	entity	or	player
that	enters	the	specified	zone	will	be	added	to	the	entity's	target	list	and
acted	upon.	Multiple	zones	can	be	assigned	to	entities	at	the	same	time.

Zones	can	replace	or	add	to	an	entity's	view	range,	so	that	if	the	entity's
view	range	is	set	to	0	it	will	still	be	able	to	see	enemies	that	enter	any
assigned	zones.	If	the	entity's	target	leaves	such	a	zone	the	entity	will	act
as	if	it	lost	sight	of	its	target.

Syntax
AI	Entity	Assign	Zone	Entity	Number,	Zone	Number

Parameters
Entity	Number,	The	id	of	the	entity	you	want	to	assign	the	zone	to.
Zone	Number,	The	id	of	the	zone	you	want	to	assign	to	the	entity.

Return
n/a



AI	ENTITY	REMOVE	ZONE	

This	command	removes	an	entity	from	a	previously	assigned	zone	so
that	the	entity	will	no	longer	be	notified	of	any	target	that	enters	the	zone.

Syntax
AI	Entity	Remove	Zone	Entity	Number,	Zone	Number

Parameters
Entity	Number,	The	id	of	the	entity	you	want	to	remove	from	the	zone.
Zone	Number,	The	id	of	the	zone	you	want	to	remove	the	entity	from.

Return
n/a



AI	ENTITY	ASSIGN	PATROL	PATH

This	command	assigns	an	existing	path	to	the	specified	entity	for	use	as
a	set	of	patrol	points.	If	the	specified	path	contains	one	or	more	points
then	the	entity's	idle	state	is	replaced	with	a	patrol	state,	such	that
whenever	the	entity	would	be	idle,	it	now	patrols	along	the	points	in	the
patrol	path.	Using	this	command	with	a	path	with	no	points	will	return	the
entity's	idle	state.

When	the	entity	reaches	the	end	of	the	path	it	returns	to	the	first	point
and	cycles	around	again.	Any	changes	made	to	the	path	at	the	specified
number	instantly	effect	the	patrol	path	of	any	entities	using	it	as	a	patrol
path.	

This	is	an	automatic	mode	command	(see	AI	Set	Entity	Control)

Syntax
AI	Entity	Assign	Patrol	Path	Entity	Number,	Path	Number

Parameters
Entity	Number,	The	id	of	the	entity	you	want	to	assign	the	path	to.
Path	Number,	The	id	of	the	path	you	want	to	assign	to	the	entity.

Return
n/a



AI	GET	ENTITY	X

This	command	gets	the	current	position	of	the	entity.	If	the	entity	is	linked
to	an	object	then	it	returns	the	current	position	of	the	object.	If	it	is	not
linked	to	an	object	this	returns	the	internal	position	of	the	entity	and	you
should	use	this	to	position	your	representation	of	the	entity.	

Syntax
return	float	=	AI	Get	Entity	X	(	Entity	Number	)

Parameters
Entity	Number,	The	id	of	the	entity	you	want	to	check.

Return
The	X	component	of	the	entity's	position.



AI	GET	ENTITY	Z

This	command	gets	the	current	position	of	the	entity.	If	the	entity	is	linked
to	an	object	then	it	returns	the	current	position	of	the	object.	If	it	is	not
linked	to	an	object	this	returns	the	internal	position	of	the	entity	and	you
should	use	this	to	position	your	representation	of	the	entity.	

Syntax
return	float	=	AI	Get	Entity	Z	(	Entity	Number	)

Parameters
Entity	Number,	The	id	of	the	entity	you	want	to	check.

Return
The	Z	component	of	the	entity's	position.



AI	GET	ENTITY	MOVE	X

This	command	returns	the	distance	the	entity	moved	in	the	X	direction
during	the	last	call	to	AI	Update.	

Syntax
return	float	=	AI	Get	Entity	Move	X	(	Entity	Number	)

Parameters
Entity	Number,	The	id	of	the	entity	you	want	to	check.

Return
The	X	component	of	the	entity's	move	direction.



AI	GET	ENTITY	MOVE	Z

This	command	returns	the	distance	the	entity	moved	in	the	Z	direction
during	the	last	call	to	AI	Update.	

Syntax
return	float	=	AI	Get	Entity	Move	Z	(	Entity	Number	)

Parameters
Entity	Number,	The	id	of	the	entity	you	want	to	check.

Return
The	Z	component	of	the	entity's	move	direction.



AI	GET	ENTITY	DESTINATION	X

This	command	returns	the	entity's	final	destination	that	it	is	currently
heading	towards.	This	does	not	include	any	paths	the	entity	is	taking	to
avoid	obstacles	which	involve	an	intermediate	destination	to	the	path
points.

Syntax
return	float	=	AI	Get	Entity	Destination	X	(	Entity	Number	)

Parameters
Entity	Number,	The	id	of	the	entity	for	which	you	want	to	get	the
destination.

Return
The	X	component	of	the	entity's	destination.



AI	GET	ENTITY	DESTINATION	Z

This	command	returns	the	entity's	final	destination	that	it	is	currently
heading	towards.	This	does	not	include	any	paths	the	entity	is	taking	to
avoid	obstacles	which	involve	an	intermediate	destination	to	the	path
points.

Syntax
return	float	=	AI	Get	Entity	Destination	Z	(	Entity	Number	)

Parameters
Entity	Number,	The	id	of	the	entity	for	which	you	want	to	get	the
destination.

Return
The	Z	component	of	the	entity's	destination.



AI	GET	ENTITY	TARGET	X

This	command	gets	the	position	of	the	target	at	the	top	of	the	entity's
target	list.	The	top	target	is	one	that	is	the	closest	and	visible.	If	no
targets	are	visible	the	top	target	is	the	one	that	was	most	recently	visible.

Syntax
return	float	=	AI	Get	Entity	Target	X	(	Entity	Number	)

Parameters
Entity	Number,	The	id	of	the	entity	you	want	to	check.

Return
The	X	component	of	the	entity's	target's	position.



AI	GET	ENTITY	TARGET	Z

This	command	gets	the	position	of	the	target	at	the	top	of	the	entity's
target	list.	The	top	target	is	one	that	is	the	closest	and	visible.	If	no
targets	are	visible	the	top	target	is	the	one	that	was	most	recently	visible.

Syntax
return	float	=	AI	Get	Entity	Target	Z	(	Entity	Number	)

Parameters
Entity	Number,	The	id	of	the	entity	you	want	to	check.

Return
The	Z	component	of	the	entity's	target's	position.



AI	GET	ENTITY	ANGLE	Y

This	command	returns	the	current	Y	angle	the	entity	is	facing.	If	the	entity
is	linked	to	an	object	the	Y	angle	of	the	object	is	returned.	If	the	entity	is
not	linked	to	an	object	then	the	internal	Y	angle	that	the	entity	is	facing	is
returned	and	you	should	use	this	value	to	rotate	your	own	representation
to	the	correct	angle.

Syntax
return	float	=	AI	Get	Entity	Angle	(	Entity	Number	)

Parameters
Entity	Number,	The	id	of	the	entity	for	which	you	want	to	get	the	Y	angle.

Return
The	Y	angle	of	the	entity	in	degrees.



AI	GET	ENTITY	STATE$

This	command	gets	a	string	description	of	the	current	state	which	is
controlling	the	entity.	In	automatic	mode	the	entity	is	controlled	by	a	finite
state	machine	which	contains	a	set	of	states	each	with	a	different
behaviour.	An	entity	switches	states	depending	on	its	surroundings	for
example	the	'attack'	state	is	used	when	the	entity	spots	a	target.	This
command	can	be	useful	to	see	why	an	entity	is	doing	what	it	is	doing.

The	states	that	can	be	returned	are:
Manual	–	The	entity	is	under	manual	control	and	will	not	do	anything
itself.
Idle	–	The	entity	has	nothing	to	do	and	will	return	to	its	idle	position.
Patrol	–	The	entity	will	patrol	its	patrol	path.	
Go	To	Destination	–	The	entity	will	move	to	its	destination.
Investigate	–	The	entity	has	detected	something	(e.g.	a	sound)	and	will
investigate	it.
Attack	–	The	entity	has	spotted	a	target	and	will	attempt	to	attack	it.
Run	And	Attack	–	The	entity	has	spotted	a	target	and	will	move	towards
it.
Strafe	And	Attack	–	The	entity	has	spotted	a	target	and	is	moving
sideways.
Defend	–	The	entity	is	will	return	to	its	defend	area.
Search	Area	–	The	entity	will	check	a	possible	path	a	target	could	have
taken.
Wait	In	Cover	–	The	entity	will	duck	behind	available	cover	and	wait	to
pop	up	and	shoot.

Syntax
return	string	=	AI	Get	Entity	State$	(	Entity	Number	)

Parameters
Entity	Number,	The	id	of	the	entity	to	check.

Return
A	string	representing	a	description	of	the	state.





AI	GET	ENTITY	ACTION$

This	command	gets	a	string	description	of	the	entity's	current	action,
such	as	moving	or	attacking.	This	will	tell	you	in	which	direction	the	entity
is	moving	and	if	it	is	currently	in	an	attack	state.	If	an	entity	is	attacking	it
may	be	shooting,	if	it	is	not	attacking	it	will	not	be	shooting.	This	can	be
used	to	set	the	entity's	animation	to	an	appropriate	walking	direction,	or
you	can	use	AI	Get	Entity	Move	X(	)	and	AI	Get	Entity	Move	Z(	)	to
calculate	this	yourself.

The	possible	returned	values	are:
Stopped
Moving	Forwards
Moving	Backwards
Strafing	Left
Strafing	Right
Stopped	And	Attacking
Moving	Forwards	And	Attacking
Moving	Backwards	And	Attacking
Strafing	Left	And	Attacking
Strafing	Right	And	Attacking

Syntax
return	string	=	AI	Get	Entity	Action$	(	Entity	Number	)

Parameters
Entity	Number,	The	id	of	the	entity	to	check.

Return
A	string	representing	a	description	of	the	current	action.



AI	GET	ENTITY	CAN	FIRE

This	command	will	return	true	if	the	entity	has	a	target,	can	see	it,	and	the
target	is	within	the	fire	angle	set	with	AI	Set	Entity	Fire	Arc.	Entities	will
not	fire	automatically	as	there	are	many	different	ways	to	represent	an
attack	so	you	will	need	to	create	your	own	bullets	and	move	them.

Syntax
return	integer	=	AI	Get	Entity	Can	Fire	(	Entity	Number	)

Parameters
Entity	Number,	The	id	of	the	entity	you	want	to	know	can	fire.

Return
1	if	the	entity	can	fire,	0	if	not.



AI	GET	ENTITY	CAN	SEE

This	command	will	return	if	the	entity	can	see	the	specified	point.	If	the
entity	is	ducking,	or	Height	is	0	then	half	height	objects	will	register	as
blocking	the	entity's	view.	This	command	will	return	which	view	angle	the
point	is	in,	if	it	can	be	seen,	in	the	order	specified	below.	If	the	point	is
beyond	the	entity's	view	range	(see	AI	Set	Entity	View	Range)	then	0	will
be	returned.	

Syntax
return	integer	=	AI	Get	Entity	Can	See	(	Entity	Number,	X#,	Z#,	Height	)

Parameters
Entity	Number,	The	id	of	the	entity	you	want	to	know	can	see.
X#,	The	X	position	of	the	point	to	see.
Z#,	The	Z	position	of	the	point	to	see.
Height,	1	if	the	point	to	see	is	at	eye	level,	above	half	height	objects,	0	if
low.	

Return
2	if	the	the	point	is	within	the	inner	view	arc,	1	if	the	point	is	within	the
outer	view	arc,	0	if	the	point	cannot	be	seen.



AI	GET	ENTITY	COUNT	TARGETS

This	command	returns	the	number	of	targets	the	entity	has	in	its	target
list.	Targets	remain	in	the	entity's	list	for	a	short	time	after	it	loses	sight	of
it	which	allows	the	entity	to	remember	where	previous	targets	were.	As
such	not	all	targets	in	the	list	may	currently	be	visible	but	gives	a	rough
idea	of	how	outnumbered	an	entity	may	be.

This	command	works	in	both	manual	and	automatic	mode,	in	manual
mode	an	entity	just	doesn't	act	against	the	targets.

Syntax
return	integer	=	AI	Get	Entity	Count	Targets	(	Entity	Number	)

Parameters
Entity	Number,	The	id	of	the	entity	to	get	the	number	of	targets.

Return
The	number	of	targets	the	entity	has.



AI	GET	ENTITY	TARGET	ID

This	command	will	get	the	id	of	the	target	from	the	specified	index	in	the
entity's	target	list.	The	target	list	contains	all	opponents	that	have	been
spotted	by	this	entity	including	those	that	have	recently	disappeared.	The
list	is	sorted	in	order	of	distance	for	visible	targets,	with	non-visible
targets	stored	after	all	visible	targets	sorted	by	the	time	they	were	last
seen.	After	a	few	seconds	of	not	being	seen	a	target	will	be	removed
from	the	target	list.

If	Target	Index	is	not	in	the	range	1	up	to	and	including	the	value	returned
by	AI	Get	Entity	Count	Targets	then	this	command	returns	0.

Syntax
return	integer	=	AI	Get	Entity	Target	ID	(	Entity	Number,	Target	Index	)

Parameters
Entity	Number,	The	id	of	the	entity	for	which	you	want	to	retrieve	the
container.
Target	Number,	The	index	of	the	target	from	the	entity	target	list	you	want
the	id	of.	Starts	at	1.

Return
The	id	of	the	target	entity	or	player,	0	if	not	found.



AI	GET	ENTITY	TEAM

This	command	will	return	an	integer	representing	the	team	the	entity	is
assigned	to.

Syntax
return	integer	=	AI	Get	Entity	Team	(	Entity	Number	)

Parameters
Entity	Number,	The	id	of	the	entity	for	which	you	want	to	retrieve	the
container.

Return
0	for	the	neutral	team,	1	for	the	friendly	team	or	2	for	the	enemy	team.



AI	GET	ENTITY	IS	MOVING

This	command	will	return	if	the	entity	is	currently	moving	towards	its
destination.	If	the	entity	has	no	destination	this	will	return	0.	If	the	entity
has	a	destination	but	cannot	reach	it,	or	is	stuck,	this	will	return	0.

Syntax
return	integer	=	AI	Get	Entity	Is	Moving	(	Entity	Number	)

Parameters
Entity	Number,	The	id	of	the	entity	to	check.

Return
1	if	the	entity	is	moving,	0	if	not.



AI	GET	ENTITY	IS	TURNING

This	command	will	return	if	the	entity	is	currently	turning	to	face	a
specified	point.	If	no	look	at	point	has	been	given	(see	AI	Set	Entity	No
Look	At	Point)	this	will	return	true	whilst	the	entity	is	moving.	This	can	be
used	with	AI	Entity	Look	Around	to	detect	when	an	entity	has	reached	its
intended	angle.	

Syntax
return	integer	=	AI	Get	Entity	Is	Turning	(	Entity	Number	)

Parameters
Entity	Number,	The	id	of	the	entity	to	check.

Return
1	if	the	entity	is	turning,	0	if	not.



AI	GET	ENTITY	IS	DUCKING

This	command	returns	if	the	entity	is	currently	ducking	or	standing.	In
automatic	mode	an	entity	may	occasionally	duck	according	to	its	state
and	stance.	You	should	use	this	command	to	detect	when	an	entity	is
ducking	and	represent	that	in	the	object,	as	there	are	many	ways	to
represent	ducking	the	AI	system	will	not	do	it	automatically.

Syntax
return	integer	=	AI	Get	Entity	Is	Ducking	(	Entity	Number	)

Parameters
Entity	Number,	The	id	of	the	entity	to	check.

Return
1	if	the	entity	is	ducking,	0	if	not.



AI	GET	ENTITY	AVOIDING

This	command	returns	if	the	entity	is	involved	in	an	avoiding	movement
around	some	unexpected	object	from	the	AI	Set	Entity	Collide	command.
Once	this	command	returns	0	then	the	entity	will	assume	it	has	avoided
the	object	and	attempt	to	continue	on	its	normal	path.	This	command	will
not	notify	when	an	entity	avoids	an	expected	object	such	as	an	obstacle
or	other	entity.	

Syntax
return	integer	=	AI	Get	Entity	Avoiding	(	Entity	Number	)

Parameters
Entity	Number,	The	id	of	the	entity	you	want	to	know	is	avoiding.

Return
1	if	the	entity	is	avoiding	something,	0	if	not.



AI	GET	ENTITY	HEARD	SOUND

This	command	returns	if	the	entity	has	heard	a	sound	during	the	last	call
of	the	AI	Update	command.

Syntax
return	integer	=	AI	Get	Entity	Heard	Sound	(	Entity	Number	)

Parameters
Entity	Number,	The	id	of	the	entity	to	check.

Return
1	if	the	entity	has	heard	a	sound,	0	if	not.



AI	GET	ENTITY	STANCE

This	command	will	get	the	current	stance	of	the	entity.	The	stance	can	be
defined	using	AI	Set	Entity	Stance,	and	is	not	changing	by	the	AI	system.
See	AI	Set	Entity	Stance	for	the	different	behaviours	that	the	stances
correspond	to.

In	manual	mode	this	value	has	no	effect	and	can	be	used	to	store	an
integer	value	for	any	purpose.

Syntax
return	integer	=	AI	Get	Entity	Stance	(	Entity	Number	)

Parameters
Entity	Number,	The	id	of	the	entity	to	check.

Return
The	entity	stance	as	a	positive	integer.



AI	GET	ENTITY	CONTAINER

This	command	will	get	the	id	of	the	container	that	the	entity	is	currently
assigned	to,	note	that	this	is	not	the	same	as	which	container	the	entity
may	currently	be	standing	in	as	the	AI	system	cannot	tell	where	one
container	ends	and	another	begins.	Use	AI	Set	Entity	Container	to	tell	the
AI	system	when	an	entity	has	changed	containers.	By	default	all	entities
are	assign	to	container	0.	If	an	entity	has	no	container	it	cannot	be
updated.

Syntax
return	integer	=	AI	Get	Entity	Container	(	Entity	Number	)

Parameters
Entity	Number,	The	id	of	the	entity	for	which	you	want	to	retrieve	the
container.

Return
The	id	of	the	container	the	entity	is	assigned	to.	-1	if	it	has	no	container.



AI	GET	ENTITY	IN	ZONE

This	command	will	check	if	the	entity	is	in	within	the	bounds	of	the
specified	zone.	The	entity	does	not	need	to	be	assigned	to	the	zone,	any
entity	can	be	checked	against	any	zone.	

Syntax
return	integer	=	AI	Get	Entity	In	Zone	(	Entity	Number,	Zone	Number	)

Parameters
Entity	Number,	The	id	of	the	entity	you	want	to	check	is	within	the	zone.
Zone	Number,	The	id	of	the	zone	you	want	to	check	the	entity	is	in.

Return
1	if	the	entity	is	within	the	bounds	of	the	zone,	0	if	not.



AI	SET	ENTITY	ACTIVE

This	command	sets	whether	the	entity	is	updated	when	the	AI	Update
command	is	called.	When	the	entity	is	deactivated	the	AI	system	will	not
move	the	entity,	in	neither	manual	nor	automatic	mode,	but	you	can	still
move	the	object	in	DarkBasic	and	the	AI	system	will	use	the	new	position
when	re-activated.	The	default	mode	is	1.

Syntax
AI	Set	Entity	Active	Entity	Number,	Mode

Parameters
Entity	Number,	The	id	of	the	entity	you	want	to	set	the	active	mode.
Mode,	0	to	deactivate	the	entity,	1	for	normal	behaviour.	

Return
n/a



AI	SET	ENTITY	AVOID	DISTANCE

This	command	sets	the	avoidance	distance	an	entity	will	use	when
attacking	another	entity.	If	the	target	becomes	closer	than	this	distance,
by	either	one	of	them	moving,	this	entity	will	move	away	from	the	target
to	a	point	at	least	this	distance	from	the	target	in	a	strafing	backwards
action	(whether	or	not	Can	Strafe	is	set).	This	effects	both	Cautious	and
Aggressive	stances.

This	distance	should	be	less	than	the	entity's	attack	distance	(see	AI	Set
Entity	Attack	Distance),	avoidance	distance	overrides	attack	distance.

A	value	of	0	will	cause	the	entity	to	never	perform	avoiding	actions	with
its	target	but	will	still	be	bound	by	any	entity-entity	avoidance	resulting
from	two	entities	getting	closer	than	twice	the	radius	apart.	(see	AI	Set
Avoid	Mode).

Syntax
AI	Set	Entity	Avoid	Distance	Entity	Number,	Distance#

Parameters
Entity	Number,	The	id	of	the	entity	to	set	the	distance.
Distance#,	The	distance	for	the	entity	to	use.

Return
n/a



AI	SET	ENTITY	ATTACK	DISTANCE

This	command	sets	the	distance	an	entity	will	attack	from	when	in	an
aggressive	stance(stance	1).	If	the	entity	spots	a	target	that	is	further
than	this	distance	it	will	move	towards	it	until	either	this	distance	is
reached	or	it	becomes	too	close	and	moves	to	avoid	the	target	(see	AI
Set	Entity	Avoid	Distance).	

This	distance	should	normally	be	greater	than	twice	the	set	radius
otherwise	the	entity	will	attempt	to	continually	move	on	top	of	its	target,
and	will	be	prevented	from	doing	so	if	entity-entity	avoidance	is	on.	(see
AI	Set	Avoid	Mode)

This	distance	should	normally	be	greater	than	the	entity's	avoid	distance
(see	AI	Set	Entity	Avoid	Distance)	otherwise	the	entity	will	move	towards
the	target,	go	beyond	its	avoid	distance	triggering	it	move	further	away,
then	move	back	towards	the	target	possibly	in	rapid	succession.

Syntax
AI	Set	Entity	Attack	Distance	Entity	Number,	Distance#

Parameters
Entity	Number,	The	id	of	the	entity	to	set	the	distance.
Distance#,	The	distance	for	the	entity	to	use.

Return
n/a



AI	SET	ENTITY	CONTROL

Use	this	command	to	set	an	entity	into	automatic	or	manual	control.	The
default	is	automatic	mode.	

In	automatic	mode	an	entity	will	move	and	respond	to	its	surroundings,
such	as	spotting	an	enemy	and	moving	towards	it,	and	you	can	use
commands	denoted	as	automatic	mode	commands	to	control	entity
behaviour.	You	can	use	manual	mode	commands,	such	as	AI	Entity	Look
At	Position,	but	their	effects	can	quickly	be	overridden	by	the	entity	so	are
not	guaranteed	to	work.

In	manual	mode	an	entity	will	make	no	movements	or	actions	by	itself
and	you	must	use	the	commands	denoted	as	manual	mode	commands
to	move	the	entity	around.	Automatic	mode	commands,	such	as	AI	Entity
Defend	Area,	have	no	effect	when	an	entity	is	in	manual	mode,	except	to
modify	the	entity	parameters	that	may	take	effect	when	the	entity	is	next
put	into	automatic	mode.	

Syntax
AI	Set	Entity	Control	Entity	Number,	Mode

Parameters
Entity	Number,	The	id	of	the	entity	to	set	the	control	mode.
Mode,	Use	1	to	set	automatic	control,	0	to	set	manual	control.

Return
n/a



AI	SET	ENTITY	STANCE

This	command	sets	the	entity	stance	mode	which	controls	behaviour
during	automatic	mode	control	(see	AI	Set	Entity	Control).	During	manual
control	this	has	no	effect	except	to	store	the	value.	

There	are	4	main	behaviours	which	have	been	implemented	in	automatic
mode	that	you	can	use	to	define	how	you	want	entities	to	behave.	These
can	be	described	as	Run	Away,	Stationary,	Cautious	and	Aggressive.

-	Run	Away	is	the	default	state	for	neutral	entities	and	results	in	an	entity
moving	away	from	any	sound	it	hears	or	damage	it	receives	from	a
known	direction.	Entities	are	still	able	to	fire	in	this	mode	(except	neutral
entities)	but	are	likely	to	quickly	move	out	of	sight	and	lose	their	target.
(mode=3)

-	Stationary	limits	the	entity	to	their	idle	position	but	they	are	still	allowed
to	return	fire	and	duck.	The	entity	will	not	investigate	sounds	nor	move
when	attacked.	(mode=2)

-	Cautious	allows	the	entity	to	move	about	freely	whilst	attacking	a	target
but	will	not	attempt	to	follow	or	search	for	a	target	that	goes	out	of	sight.
Also	it	does	not	readily	approach	a	target	preferring	to	shoot	from	a
distance.	(mode=0)

-	Aggressive	is	similar	to	cautious	except	that	the	entity	will	move	towards
targets	and	follow	them	when	they	go	out	of	sight.	It	will	also	briefly
search	for	targets	that	remain	out	of	sight	for	extended	periods	before
returning	to	its	idle	position.	(mode=1)

You	can	then	use	the	AI	Set	Entity	Can	____	commands	to	refine	the
behaviour	to	further	restrict	or	allow	certain	actions	that	the	entity	can
perform.

Syntax
AI	Set	Entity	Stance	Entity	Number,	Mode



Parameters
Entity	Number,	The	id	of	the	entity	to	set	the	stance.
Mode,	The	new	stance	for	the	entity	as	a	positive	integer.

Return
n/a



AI	SET	ENTITY	AGGRESSIVE

This	command	sets	the	entity	stance	to	1,	which	corresponds	to	an
aggressive	behaviour	in	automatic	mode.	See	AI	Set	Entity	Stance	for	a
full	list	of	behaviours.

This	is	an	automatic	mode	command	(see	AI	Set	Entity	Control)

Syntax
AI	Set	Entity	Aggressive	Entity	Number

Parameters
Entity	Number,	The	id	of	the	entity	you	want	to	set	as	aggressive.

Return
n/a



AI	SET	ENTITY	SPEED

This	command	sets	the	entity	movement	speed	in	units	per	second.
When	calling	AI	Update	it	will	use	timer	based	movement	to	keep	entities
moving	their	defined	speed	regardless	of	the	current	frames	per	second.
The	default	speed	is	5	DarkBasic	units	per	second.	When	the	entity	is
ducking	this	speed	is	halved.	

Syntax
AI	Set	Entity	Idle	Position	Entity	Number,	Speed#

Parameters
Entity	Number,	The	id	of	the	entity	to	set	the	speed.
Speed#,	The	new	speed	in	units	per	second.

Return
n/a



AI	SET	ENTITY	TURN	SPEED

This	command	sets	the	speed	at	which	the	entity	can	rotate	in	degrees
per	second.	Calling	AI	Update	will	use	timer	based	movement	to	keep	the
entity	to	its	defined	rotate	speed	regardless	of	the	current	frames	per
second.	The	default	value	is	240	degrees	per	second.

Syntax
AI	Set	Entity	Turn	Speed	Entity	Number,	Speed#

Parameters
Entity	Number,	The	id	of	the	entity	to	set	the	turn	speed.
Speed#,	The	new	speed	in	degrees	per	second.

Return
n/a



AI	SET	ENTITY	PATROL	TIME

This	command	sets	the	average	time	an	entity	will	wait	at	each	patrol
point	along	its	patrol	path.	The	actual	time	is	worked	out	by	taking	this
value	and	adding	a	random	value	between	-0.5	and	0.5.	So	if	you	want	to
ensure	the	entity	never	waits	at	its	patrol	points	you	need	to	use	a	time
value	less	than	-0.5

This	value	is	in	seconds.

Syntax
AI	Set	Entity	Patrol	Time	Entity	Number,	Time#

Parameters
Entity	Number,	The	id	of	the	entity	to	set	the	turn	speed.
Time#,	The	time	you	want	the	entity	to	wait	in	seconds.

Return
n/a



AI	SET	ENTITY	HEARING	RANGE

This	command	sets	the	range	at	which	an	entity	can	hear	sounds	added
to	the	AI	system.	Sounds	can	also	have	a	radius	of	their	own,	if	this
radius	plus	the	entity's	hearing	range	is	greater	than	the	distance
between	the	two	then	the	sound	is	heard.	If	you	want	to	stop	the	entity
hearing	sounds	altogether	use	the	AI	Set	Entity	Can	Hear	command.

Syntax
AI	Set	Entity	Hearing	Range	Entity	Number,	Radius#

Parameters
Entity	Number,	The	id	of	the	entity	to	set	the	hearing	range.
Radius#,	The	radius	within	which	the	entity	can	detect	sounds.

Return
n/a



AI	SET	ENTITY	HEARING	THRESHOLD

This	command	sets	the	lowest	priority	sound	the	entity	can	hear.	If	the
sound	type	is	less	then	this	value	the	entity	will	not	hear	it	and	will	not
react	to	it.	If	you	want	to	stop	the	entity	hearing	sounds	altogether	use	the
AI	Set	Entity	Can	Hear	command.

Syntax
AI	Set	Entity	Hearing	Treshold	Entity	Number,	Threshold

Parameters
Entity	Number,	The	id	of	the	entity	to	set	the	hearing	range.
Threshold,	The	lowest	type	of	sound	to	hear.	Default	is	0.

Return
n/a



AI	SET	ENTITY	VIEW	RANGE

This	command	sets	the	distance	the	entity	can	see	from	its	current
location.	Anything	within	this	distance	and	within	its	view	angle	can	be
seen	by	the	entity.	The	default	value	is	60	DarkBasic	units.

This	command	should	be	used	with	AI	Set	Entity	View	Arcs	to	completely
define	the	area	the	entity	can	see.

Syntax
AI	Set	Entity	View	Range	Entity	Number,	Distance#

Parameters
Entity	Number,	The	id	of	the	entity	to	set	the	view	range.
Distance#,	The	maximum	distance	the	entity	can	see.

Return
n/a



AI	SET	ENTITY	VIEW	ARC

This	command	will	set	the	angles	at	which	an	entity	can	see	its
surroundings.	The	angles	should	be	specified	in	degrees	in	the	range	1-
360	with	360	meaning	the	entity	can	see	all	around	it,	and	1	meaning	the
entity	can	only	see	the	exact	direction	it	is	facing.	The	default	value	is
360	degrees.

The	inner	and	outer	angles	allow	you	to	divide	up	the	view	into	two
sections.	Although	only	the	outer	angle	matters	during	automatic	mode,
the	AI	Get	Entity	Can	See	command	will	return	a	different	value
depending	on	what	angle	contains	the	view	point.

This	command	should	be	used	with	AI	Set	Entity	View	Range	to
completely	define	the	area	an	entity	can	see.

Syntax
AI	Set	Entity	View	Arc	Entity	Number,	Inner	Angle#,	Outer	Angle#

Parameters
Entity	Number,	The	id	of	the	entity	to	set	the	view	angles.
Inner	Angle#,	The	inner	angle	that	the	entity	can	see,	in	degrees.
Outer	Angle#,	The	outer	angle	that	the	entity	can	see,	in	degrees.

Return
n/a



AI	SET	ENTITY	FIRE	ARC

This	command	sets	the	angle	at	which	the	entity	is	able	to	fire.	This	angle
is	used	in	the	AI	Get	Entity	Can	Fire	command	to	calculate	not	only	if	an
entity	can	see	a	target	but	also	if	the	target	is	within	this	angle.

The	angle	should	be	specified	in	the	range	1-360	with	360	meaning	the
entity	can	shoot	all	around	itself	and	1	meaning	it	can	only	shoot	the
direction	it	is	facing.	

Syntax
AI	Set	Entity	Fire	Arc	Entity	Number,	Angle#

Parameters
Entity	Number,	The	id	of	the	entity	to	set	the	fire	arc.
Angle#,	The	angle	that	the	entity	will	be	able	to	fire.

Return
n/a



AI	SET	ENTITY	DEFEND	DISTANCE

This	command	changes	the	distance	that	an	entity	will	use	as	the	radius
when	using	AI	Entity	Defend	Area	or	AI	Entity	Follow	Player.	The	radius
is	used	to	keep	the	entity	within	the	containing	area.	

This	does	not	effect	the	AI	Entity	Defend	Point	action.	If	the	entity	is	not
involved	in	a	defending	action	this	command	has	no	effect.

Syntax
AI	Set	Entity	Defend	Distance	Entity	Number,	Distance#

Parameters
Entity	Number,	The	id	of	the	entity	to	set	the	distance.
Distance#,	The	distance	for	the	entity	to	use.

Return
n/a



AI	SET	ENTITY	DEFENDING

This	command	can	be	used	to	toggle	the	defend	mode	of	the	entity.
When	using	the	commands	AI	Entity	Defend	Area	and	AI	Entity	Follow
Player	the	entity	will	remain	in	a	defending	state	until	the	defend	mode	is
set	back	to	0.	This	command	will	also	remove	the	restriction	on	the	entity
from	AI	Entity	Defend	Point	command	and	it	be	allowed	to	move	about
again.

This	command	can	also	be	used	to	turn	defending	on,	in	which	case	the
entity	will	act	as	if	AI	Entity	Defend	Area	had	been	called	with	no	change
to	any	previously	set	defend	point	and	radius.

Syntax
AI	Set	Entity	Defending	Entity	Number,	Mode

Parameters
Entity	Number,	The	id	of	the	entity	to	set	the	defending	state.
Mode,	1	to	set	the	entity	as	defending,	0	to	stop	defending.

Return
n/a



AI	SET	ENTITY	IDLE	POSITION

This	command	sets	the	position	an	entity	will	return	to	when	in	automatic
mode,	in	the	'Idle'	state,	and	is	not	allowed	to	roam	(see	AI	Set	Entity
Can	Roam).	The	default	position	is	the	position	the	entity	was	in	when	it
was	added	to	the	AI	system	and	can	be	changed	at	any	time	including
whilst	the	entity	is	in	the	Idle	state.

In	manual	mode	this	command	has	no	effect	but	to	store	the	position	for
use	with	AI	Entity	Move	To	Idle	Position.

Syntax
AI	Set	Entity	Idle	Position	Entity	Number,	X#,	Z#

Parameters
Entity	Number,	The	id	of	the	entity	to	set	the	idle	position.
X#,	The	X	component	of	the	new	position.
Z#,	The	Z	component	of	the	new	position.

Return
n/a



AI	SET	ENTITY	POSITION

This	command	sets	the	current	entity	position	both	within	the	AI	system
and	to	any	linked	object.	When	linked	to	an	object	this	is	the	preferred
method	of	resetting	the	position	of	an	entity	as	opposed	to	positioning	the
object	in	DarkBasic.	When	not	linked	to	an	object	this	command	sets	the
position	within	the	AI	system	and	you	should	position	any	representation
yourself.

Syntax
AI	Set	Entity	Position	Entity	Number,	X#,	Z#

Parameters
Entity	Number,	The	id	of	the	entity	to	set	the	position.
X#,	The	X	component	of	the	new	position.
Z#,	The	Z	component	of	the	new	position.

Return
n/a



AI	SET	ENTITY	ANGLE	Y

This	command	sets	the	internal	Y	angle	for	this	entity,	if	the	entity	is
linked	to	an	object	the	object's	Y	angle	is	also	set.

Syntax
AI	Set	Entity	Angle	Y	Entity	Number,	Angle#

Parameters
Entity	Number,	The	id	of	the	entity	for	which	you	want	to	set	the	Y	angle.
Angle#,	The	angle	you	want	to	set	the	entity	to.

Return
The	Y	angle	of	the	entity	in	degrees.



AI	SET	ENTITY	CAN	DUCK

This	command	can	be	used	to	prevent	an	entity	from	ducking	whilst	in
automatic	mode,	if	you	do	not	want	to	handle	that	behaviour.	The	default
mode	is	to	allow	ducking	and	an	entity	will	occasionally	duck	depending
on	its	stance	and	surroundings.	Ducking	allows	an	entity	to	hide	behind
half	height	obstacles	which	normally	do	not	obstruct	sight.

Syntax
AI	Set	Entity	Can	Duck	Entity	Number,	Mode

Parameters
Entity	Number,	The	id	of	the	entity	for	which	you	want	to	set	the	duck
mode.
Mode,	Use	1	to	allow	the	entity	to	duck,	0	to	prevent	ducking.

Return
n/a



AI	SET	ENTITY	CAN	ATTACK

This	command	sets	if	the	entity	is	allowed	to	attack	other	entities	whilst	in
automatic	mode,	the	default	mode	is	to	allow	attacks.	When	disabled	the
entity	will	not	enter	any	'Attack'	state	but	will	still	respond	to	other	events
such	as	sounds.	The	entity	will	still	keep	a	target	list	but	won't	move	to
attack	the	targets.

Syntax
AI	Set	Entity	Can	Attack	Entity	Number,	Mode

Parameters
Entity	Number,	The	id	of	the	entity	you	want	to	set	the	attack	mode.
Mode,	Use	1	to	allow	the	entity	to	attack,	0	to	prevent	attacking.

Return
n/a



AI	SET	ENTITY	CAN	STRAFE

This	command	sets	whether	an	entity	is	allowed	to	strafe	a	target	in
either	automatic	mode	or	manual	mode.	The	default	mode	is	to	allow
strafing.	If	enabled	in	automatic	mode,	an	entity	will	attempt	to	strafe
every	so	often	whilst	attacking	to	avoid	taking	damage	from	its	targets.

Syntax
AI	Set	Entity	Can	Strafe	Entity	Number,	Mode

Parameters
Entity	Number,	The	id	of	the	entity	for	which	you	want	to	set	the	strafe
mode.
Mode,	Use	1	to	allow	the	entity	to	strafe,	0	to	prevent	strafing.

Return
n/a



AI	SET	ENTITY	CAN	SEARCH

This	command	sets	whether	an	entity	is	allowed	to	search	for	a	target
when	in	aggressive	mode	and	has	moved	to	the	target's	last	known
position.	By	default	this	is	set	to	1,	which	allows	the	entity	to	briefly
search	likely	points	around	the	target's	last	known	position.	When	set	to	0
the	entity	will	still	move	to	the	target's	last	known	position	but	if	the	target
still	cannot	be	seen	it	will	return	to	the	idle	state.	

Syntax
AI	Set	Entity	Can	Search	Entity	Number,	Mode

Parameters
Entity	Number,	The	id	of	the	entity	for	which	you	want	to	set	the	strafe
mode.
Mode,	Use	1	to	allow	the	entity	to	search,	0	to	prevent	searching.

Return
n/a



AI	SET	ENTITY	CAN	HEAR

This	command	can	be	used	to	stop	an	entity	responding	to	sounds	in
automatic	mode.	The	default	mode	is	to	allow	an	entity	to	respond	by
investigating	sounds	within	its	range	of	hearing.

Syntax
AI	Set	Entity	Can	Hear	Entity	Number,	Mode

Parameters
Entity	Number,	The	id	of	the	entity	for	which	you	want	to	set	the	hearing
mode.
Mode,	Use	1	to	allow	the	entity	to	hear,	0	to	prevent	hearing.

Return
n/a



AI	SET	ENTITY	CAN	ROAM

This	command	can	be	used	to	make	the	entity	move	around	whist	in	the
'Idle'	state	in	automatic	mode.	The	default	mode	is	for	the	entity	to	remain
at	the	idle	position	and	not	roam	about.	When	allowed	to	roam	an	entity
will	randomly	pick	a	nearby	point	every	so	often	and	move	to	it.

Syntax
AI	Set	Entity	Can	Roam	Entity	Number,	Mode

Parameters
Entity	Number,	The	id	of	the	entity	for	which	you	want	to	set	the	roaming
mode.
Mode,	Use	1	to	allow	the	entity	to	roam,	0	to	prevent	roaming.

Return
n/a



AI	ENTITY	CAN	SELECT	TARGETS

This	command	will	set	whether	an	entity	can	select	targets	based	on	its
team	and	the	target	of	the	possible	target.	If	the	entities	are	on	opposing
teams	(friendly/enemy)	then	they	will	automatically	add	each	other	as
targets	when	they	see	each	other.	This	is	the	default	behaviour.

If	the	mode	is	set	to	0	then	the	entity	will	not	be	allowed	to	select	any
targets	based	on	teams	and	will	only	receive	targets	from	the	AI	Entity
Add	Target	command.

Syntax
AI	Set	Entity	Can	Select	Targets	Entity	Number,	mode

Parameters
Entity	Number,	The	id	of	the	entity	for	which	you	want	to	change	the
target	selection	mode.
Mode,	1	to	allow	the	entity	to	select	targets	(default),	0	to	prevent
selection	of	targets.

Return
n/a



AI	SET	ENTITY	NO	LOOK	AT	POINT

This	command	removes	any	set	point	the	entity	has	been	given	to	focus
on.	If	a	point	is	set	the	entity	will	look	in	its	direction	so	long	as	it	has	a
clear	line	of	sight	to	the	point.	If	it	does	not	have	line	of	sight,	or	no	point
is	set,	it	will	look	in	the	direction	it	is	currently	travelling.	

This	is	a	manual	mode	command	(see	AI	Set	Entity	Control).

Syntax
AI	Set	Entity	No	Look	At	Point	Entity	Number

Parameters
Entity	Number,	The	id	of	the	entity	to	remove	its	look	at	point.

Return
n/a



AI	SET	ENTITY	COLLIDE

Use	this	command	to	notify	the	entity	when	it	has	collided	with	an	object
that	is	not	in	the	AI	system,	for	example	from	an	external	collision	or
physics	system.	The	entity	will	move	sideways	for	a	brief	period	to	try	and
avoid	this	object,	during	which	time	AI	Get	Entity	Avoiding	will	return	1.
Since	the	entity	has	no	knowledge	of	the	object's	size	it	may	not	succeed
in	going	around	it	in	one	move.	You	should	detect	when	the	entity	has
decided	to	stop	avoiding	and	repeat	the	AI	Set	Entity	Collide	command	if
necessary.	

This	does	not	apply	to	objects	set	as	obstacles	or	entities	in	the	AI
system,	the	entity	will	avoid	these	automatically.

Syntax
AI	Set	Entity	Collide	Entity	Number,	Collide	Object

Parameters
Entity	Number,	The	id	of	the	entity	that	has	hit	something.
Collide	Object,	The	id	of	the	object	the	entity	has	hit,	0	for	none.

Return
n/a



AI	SET	ENTITY	HIT

Use	this	command	to	notify	an	entity	when	it	gets	struck	by	a	bullet	or
other	noteworthy	damage	from	a	particular	direction.	In	automatic	mode
the	entity	will	respond	by	looking	for	the	source	of	the	damage	and	acting
against	it	if	found.	The	direction	should	be	specified	as	the	direction	the
the	projectile	was	travelling	when	it	hit,	i.e.	pointing	towards	the	entity.	In
the	case	that	a	direction	is	not	available	use	a	value	of	0	for	both	X	and	Z
and	the	entity	will	look	around	itself.	

Syntax
AI	Set	Entity	Hit	Entity	Number,	X#,	Z#

Parameters
Entity	Number,	The	id	of	the	entity	that	is	hit.
X#,	The	X	direction	that	the	projectile	was	travelling.
Z#,	The	Z	direction	that	the	projectile	was	travelling.

Return
n/a



AI	SET	ENTITY	RUN	AWAY	WHEN	HIT

This	command	sets	the	entity	stance	to	3,	which	corresponds	to	a	run
away	behaviour.	The	entity	will	also	move	away	from	any	sounds	it
detects	within	range.	See	AI	Set	Entity	Stance	for	a	full	list	of	behaviours.

This	is	an	automatic	mode	command	(see	AI	Set	Entity	Control)

Syntax
AI	Set	Entity	Run	Away	When	Hit	Entity	Number

Parameters
Entity	Number,	The	id	of	the	entity	to	set	the	stance.

Return
n/a



AI	SET	ENTITY	CONTAINER

This	command	sets	the	container	the	entity	is	assigned	to.	An	entity	will
only	avoid	obstacles	and	only	see	entities	that	are	in	its	current	container.
By	default	all	entities	and	obstacles	are	added	to	container	0	creating	a
single	complete	world,	but	it	does	not	detect	differences	in	height.	Use
containers	to	separate	floors	so	that	entities	only	avoid	obstacles	that	are
on	their	floor.	If	you	want	to	move	entities	between	floors	you	will	need	to
detect	when	an	entity	moves	into	a	new	container	and	use	this	command
to	notify	the	AI	system.

Syntax
AI	Set	Entity	Container	Entity	Number,	Container	Number

Parameters
Entity	Number,	The	id	of	the	entity	to	set	the	container.
Container	Number,	The	id	of	the	container	you	want	to	assign	the	entity
to.

Return
n/a



TEAMS

There	are	three	teams	within	the	AI	system,	the	friendly	team,	the	enemy
team	and	the	neutral	team.	The	friendly	team	assists	the	player	by
attacking	the	enemy	team	and	can	be	set	to	follow	the	player	around	the
map.	The	enemy	team	attacks	the	player	and	its	allies	and	can	be	set	to
defend	key	points	or	allowed	to	roam	about	the	map.	The	neutral	team
represents	civilians	that	do	not	engage	in	any	combat	and	by	default	run
away	from	sounds	and	received	damage.	The	run	away	behaviour	can
be	changed	but	they	will	not	keep	a	target	list	and	therefore	not	attack
anything.	The	friendly	and	enemy	teams	will	not	attack	neutral	entities.



AI	TEAM	FOLLOW	PLAYER

This	command	sets	all	entities	in	the	friendly	team	to	follow	the	player	to
within	the	specified	distance.	This	can	be	useful	for	making	the	players
allies	defend	the	player,	any	enemies	encountered	will	most	likely	be
distracted	by	the	group	of	targets	and	only	a	few	may	engage	the	player.
Using	a	negative	value	for	the	maximum	distance	preserves	the	entities'
current	defend	distances,	otherwise	all	entities	will	use	the	new	value.

Alternatively	use	the	AI	Entity	Follow	Player	command	to	make	individual
entities	follow	the	player.	You	can	also	use	the	AI	Set	Entity	Defend
Distance	to	change	the	maximum	distance	on	a	per	entity	basis.	

Syntax	
AI	Team	Follow	Player	Maximum	Distance#

Parameters
Maximum	Distance#,	The	maximum	distance	the	entities	will	allow
between	the	player	and	themselves	before	moving	closer.	

Return
n/a



AI	TEAM	SEPARATE

This	command	sets	all	entities	in	the	friendly	team	to	stop	following	the
player	and	return	to	normal	behaviour.	You	can	Also	use	AI	Entity
Separate	to	stop	individual	entities	from	following	the	player.	

Syntax	
AI	Team	Separate

Parameters
n/a

Return
n/a



CONTAINERS

Containers	divide	the	system	into	separate	areas	which	do	not	interact
with	each	other.	By	default	a	single	container	(0)	is	created	to	represent
the	entire	system,	but	you	may	create	new	containers	to	add	to	it.

Containers	can	be	used	to	represent	different	floors	each	with	their	own
set	of	obstacles	and	entities,	such	that	an	entity	can	occupy	the	same	X
and	Z	positions	as	an	entity	from	another	container	but	they	will	not
interfere	with	each	other.	Entities	can	be	moved	between	containers
manually	by	detecting	when	an	entity	has	moved	into	another	container
and	setting	it	to	the	new	container.

Path	finding	also	occurs	only	within	the	container	it	is	started	from,
allowing	it	to	detect	impossible	paths	sooner	if	containers	are	kept	small,
and	also	preventing	an	entity	from	leaving	its	container	automatically.



AI	CONTAINER	EXIST

Checks	if	the	specified	container	has	been	added	to	the	AI	system.

Syntax	
return	integer	=	AI	Container	Exist	(	Container	Number	)

Parameters
Container	Number,	the	id	number	of	the	container	you	want	to	check
exists.	

Return
1	if	container	does	exist,	0	if	not.



AI	REMOVE	CONTAINER

Deletes	the	container	from	the	AI	system,	any	obstacles	that	belong	to
the	container	are	deleted	with	it,	any	entities	that	are	assigned	to	the
container	must	be	assigned	a	new	container	to	remain	active.	

Syntax	
AI	Remove	Container	Container	Number

Parameters
Container	Number,	the	id	of	the	container	you	want	to	remove

Return
n/a



AI	SET	CONTAINER	ACTIVE

This	allows	you	to	set	the	active	mode	of	a	container	and	the	entities	it
contains.	A	deactivated	container	will	not	be	updated	during	the	AI
Update	command	and	its	entities	will	not	move	or	react,	even	to	manual
commands.	An	active	container	behaves	as	normal.

Syntax	
AI	Add	Container	Container	Number,	Active	Mode

Parameters
Container	Number,	the	id	number	of	the	container	you	want	to	change
Active	Mode,	0	to	deactivate	the	container,	1	to	active	the	container.	

Return
n/a



AI	RESET

This	command	will	remove	all	data	from	the	AI	system	and	return	it	to	its
starting	state.	All	obstacles,	entities,	etc.	are	removed	from	the	system
and	must	be	re-added	after	this	command.

Syntax
AI	Reset

Parameters
n/a

Return
n/a



AI	START

This	command	will	create	the	AI	system	and	must	be	called	before	any
other	AI	command.	It	sets	up	function	pointers	to	allow	the	AI	system	to
interact	with	DarkBasic.

Syntax
AI	Start

Parameters
n/a

Return
n/a



AI	SET	RADIUS

This	command	sets	the	global	radius	that	will	be	used	by	all	entities.	This
controls	how	much	space	is	allowed	between	the	edge	of	obstacles	and
the	waypoints	that	define	movement	around	them.	Since	entities	use	the
waypoints	to	navigate	around	their	world	they	will	attempt	to	maintain	at
least	radius#	distance	from	all	obstacles.

This	command	rebuilds	the	waypoint	network	for	all	containers	which
takes	time	and	should	not	be	used	in	your	main	loop.

Syntax
AI	Set	Radius	Radius#

Parameters
Radius#,	The	global	radius	you	want	to	use	for	all	entities	in	the	AI
system.

Return
n/a



AI	SET	AVOID	MODE

This	command	sets	the	avoidance	mode	for	entities	when	two	entities
become	closer	than	twice	their	radius	apart.	There	are	4	modes	to
choose	from,	

No	Avoidance	(mode	3)	entities	will	not	avoid	each	other	and	are	free	to
move	through	each	other,	

Delayed	Update	(mode	2)	entities	will	avoid	each	other	but	only	check	for
nearby	entities	only	every	so	often,	this	can	help	increase	the
performance,	compared	with	mode	1,	when	many	entities	are	present	but
may	result	in	some	entities	getting	closer	then	normal	or	sometimes
moving	through	each	other.

Real-Time	(mode	1)	entities	will	avoid	each	other	and	check	for	other
nearby	entities	every	update,	constantly	changing	positions	can	result	in
an	entity	jumping	about	as	its	movement	direction	changes	every	update.
This	was	the	only	mode	in	the	original	release	version	and	is	default.

Smoothed	(mode	0)	entities	will	avoid	each	other	as	in	mode	1	but	their
movement	directions	will	be	smoothed	over	20	updates	where	rapid
changes	in	movement	is	not	desired.	However,	this	may	cause	delays	in
movement	when	an	entity	has	to	make	a	rapid	change	of	direction	in
normal	circumstances.	

This	value	can	be	changed	whilst	the	system	is	in	motion.	

Syntax
AI	Set	Avoid	Mode	Mode

Parameters
Mode,	The	avoidance	mode	to	use	(0-3).

Return
n/a





AI	UPDATE

This	command	will	update	and	move	all	entities	within	the	AI	system.	You
should	call	this	command	once	per	frame	(in	the	same	manner	as	sync).
The	internal	timer	will	make	sure	that	objects	move	in	accordance	with
their	set	speed	in	units	per	second,	you	can	override	this	by	using	the
optional	Time	Step	parameter	to	advance	the	internal	state	by	Time	Step
seconds.

The	recommended	usage	is	to	call	AI	Update	with	no	parameter.

Syntax
AI	Update	
AI	Update	Time	Step#

Parameters
Time	Step#,	(optional)	This	amount	of	time	you	want	to	move	the	scene
on	in	seconds.

Return
n/a



2D	DEMO

This	demo	shows	the	use	of	the	AI	system	in	a	non-3D	environment	and
details	the	methods	to	move	entities	around	when	the	AI	system	cannot
move	your	entities	automatically.	

This	section	will	detail	the	AI	commands	used	to	construct	this	demo	in
the	context	they	are	used.	For	general	use	of	each	command	you	can
look	them	up	in	the	command	list	section	of	the	help	file.

AI	Start
AI	Set	Radius	10.0

The	AI	Start	command	creates	the	AI	system	and	is	always	called	first,
the	Set	Radius	command	sets	the	radius	for	all	entities	and	is	usually	the
second	command	called.	The	radius	should	be	set	in	the	main	setup
code	since	it	can	become	an	expensive	operation	when	many	obstacles
have	already	been	added.

AI	Add	Enemy	1,0
AI	Set	Entity	Speed	1,70
AI	Set	Entity	Position	1,entityX,	entityY
AI	Set	Entity	Idle	Position	1,entityX,	entityY

This	section	creates	our	single	enemy,	in	this	case	the	entity	ID	can	be
any	value	since	we	are	not	linking	it	with	an	object	and	we	use	this	value



to	refer	to	the	entity	from	now	on.	The	speed,	in	this	case,	is	set	in	pixels
per	second	since	that	is	what	we	will	be	using	as	our	units	and	the	AI
system	will	make	sure	that	any	movement	happens	at	a	speed	that	is
consistent	with	70	pixels	per	second	no	matter	how	often	AI	Update	is
called.	We	then	set	our	entity	to	a	position	on	the	screen	using	a
predefined	X	and	Y	position,	we	must	also	set	the	position	we	want	the
entity	to	return	to	when	it	becomes	idle	(i.e.	Bored)	since	our	entity
defaults	to	automatic	mode.

AI	Start	New	Obstacle
AI	Add	Obstacle	Vertex	5,310
AI	Add	Obstacle	Vertex	5,330
AI	Add	Obstacle	Vertex	500,330
AI	Add	Obstacle	Vertex	500,310
AI	End	New	Obstacle	0,1

AI	Start	New	Obstacle
AI	Add	Obstacle	Vertex	140,180
AI	Add	Obstacle	Vertex	140,200
AI	Add	Obstacle	Vertex	635,200
AI	Add	Obstacle	Vertex	635,180
AI	End	New	Obstacle	0,1

rem	Boundary
AI	Start	New	Obstacle
AI	Add	Obstacle	Vertex	0,0
AI	Add	Obstacle	Vertex	640,0
AI	Add	Obstacle	Vertex	640,480
AI	Add	Obstacle	Vertex	0,480
AI	End	New	Obstacle	0,1

This	section	(in	the	MakeLevel	function)	creates	all	our	obstacles,	since
we	cannot	use	AI	Add	Static	Obstacle	when	not	using	DarkBasic	objects.
The	first	two	create	the	two	long	walls	in	the	middle	of	the	demo,	in	a
clockwise	direction	for	obstacles,	and	the	third	creates	a	boundary	which
surrounds	the	visible	area,	in	an	anti-clockwise	direction,	to	prevent	the
entity	leaving	the	screen.	Remember	the	AI	system	is	still	using	an	X,	Z
system	so	the	co-ordinates	should	be	specified	in	clockwise	as	if	looking
down	on	to	the	X,	Z	axes	even	though	we	are	using	a	2D	co-ordinate



system.

For	example,	the	first	obstacles	uses	the	corners	(5,310)	(5,330)
(500,330)	(500,310)	in	that	order.	If	we	were	to	draw	that	on	the	screen
taking	the	co-ordinates	as	X,Y	values	(where	0,0	is	in	the	top	left	corner)
we	would	be	drawing	in	an	anti-clockwise	direction:

But	from	the	AI's	point	of	view	it	is	being	defined	in	X,Z	co-ordinates
(where	0,0	is	in	the	centre	of	the	screen)	in	which	case	we	are	drawing	in
a	clockwise	direction:

It	is	the	AI's	point	of	view	which	is	important,	and	which	ultimately	defines
whether	the	obstacle	is	a	boundary	or	localized	obstacle	so	always	order
your	points	as	if	you	are	drawing	in	the	X,Z	system	no	matter	how	it	may
appear	in	your	co-ordinate	system.

The	third	obstacle	in	the	list	is	the	boundary	which	prevents	the	entity
leaving	the	screen,	so	is	specified	in	an	anti-clockwise	direction	(in	X,Z
co-ordinates)	effectively	making	everything	'behind'	it	one	big	obstacle.

At	this	point	the	AI	setup	is	complete	and	we	enter	our	main	loop	where
we	call	AI	Update	to	start	updating	our	system.	These	commands	are
included	in	our	main	loop.	

entityX	=	int(	AI	Get	Entity	X(1)	)



entityY	=	int(	AI	Get	Entity	Z(1)	)
angle#	=	AI	Get	Entity	Angle	Y(1)

if	mouseclick()=1	then	AI	Entity	Go	To	Position	1,mousex(),mousey()

AI	Update

The	first	three	commands	get	the	updated	position	and	angle	of	the	entity
so	that	it	can	be	drawn	to	the	screen,	the	entity	position	is	updated	after
every	call	to	AI	Update	and	since	we	are	not	using	DarkBasic	objects	we
need	to	position	the	entity	ourselves.	The	next	command	sets	a	new
destination	for	the	entity	when	the	mouse	is	clicked,	the	entity	will	then
begin	moving	towards	the	destination,	wait	a	while,	then	move	back	to	its
idle	position.	



DIRECT	INTEGRATION	DEMO

This	demo	shows	a	very	simple	AI	program	to	show	how	DarkAI	can	take
direct	control	of	DarkBasic	objects,	and	therefore	serves	as	a	good
starting	place	to	learn	the	main	structure	of	an	AI	controlled	program.

sync	on	:	sync	rate	0
AI	Start

The	AI	Start	command	creates	the	AI	system	and	must	always	be	called
before	other	AI	commands.	

make	object	cube	1,10
AI	Add	Enemy	1
AI	Entity	Go	To	Position	1,0,30

This	creates	our	single	entity	as	a	DarkBasic	cube	and	adds	it	to	the	AI
system	as	an	enemy.	In	this	case	it	does	not	matter	which	team	we	add	it
to	since	there	will	be	no	other	entities	added.	We	then	give	the	entity
something	to	do	by	telling	it	to	move	30	units	forward,	away	from	the
camera.	

do

AI	Update
sync	

loop

This	is	the	main	loop	and	simply	updates	the	AI	system	and	draws
everything	to	the	screen.	The	AI	Update	command	moves	our	entity	to
his	destination,	then	it	will	wait	a	while	and	move	back	to	its	idle	position
(the	position	it	was	at	when	added	to	the	system).	The	cube	is
automatically	move	for	us	because	by	default	an	entity	is	linked	to	the
object	with	the	same	number,	in	this	case	the	cube,	and	will	move	it	in	the
X	and	Z	directions	as	well	as	rotate	on	the	Y	axis.	No	other	change	will



be	made	to	the	object.



PATH	FINDING	DEMO

This	demo	shows	a	single	entity	working	its	way	through	a	cluster	of
obstacles	to	a	user	defined	point	by	calculating	the	shortest	available
path	around	the	obstacles	to	its	destination.	The	demo	incorporates
obstacles	created	with	both	automatic	calculation,	using	an	existing
object	to	create	a	convex	shape,	and	manual	creation,	to	create	the
boundary	around	the	outside.	The	smaller	obstacles	are	randomly
positioned	each	the	demo	is	run	to	create	a	different	scenario	every	time.

This	document	will	detail	the	AI	commands	used	to	create	and	control	the
demo	in	the	context	they	are	used.	For	general	usage	of	the	commands
you	can	find	them	in	the	command	list	section	of	the	help	file.	
The	demo	begins	with:

AI	Start

AI	Set	Radius	2.5

This	creates	the	AI	system	and	sets	the	radius	for	all	entities	to	2.5	and
all	obstacles	added	will	use	this	new	value.	It	is	advised	that	the	Set
Radius	command	be	called	early	in	the	setup	since	using	it	once	several
obstacles	have	been	added	means	the	system	has	to	spend	time	re-
adjusting	those	obstacles.	

make	object	box	111,80,10,2



position	object	111,-10,5,-10

make	object	box	112,80,10,2
position	object	112,10,5,10

rem	add	them	to	the	AI	system
AI	Add	Static	Obstacle	111
AI	Add	Static	Obstacle	112

We	then	create	the	two	long	horizontal	walls	you	see	in	the	screenshot,
position	them	and	add	them	to	the	AI	system.	You	must	position	your
obstacles	before	you	add	them	since	the	Add	Static	command	will	use
the	object's	current	position	for	its	internal	use,	and	this	cannot	be
changed	once	added.	Using	default	values	these	obstacles	are	created
as	full	height	obstacles	and	added	to	container	0	(container	0	is	created
by	default	when	the	AI	system	is	started).

for	i=113	to	120

make	object	box	i,rnd(10)+5,5,rnd(10)+5
position	object	i,rnd(100)-50,2.5,rnd(100)-50
yrotate	object	i,rnd(360)

AI	Add	Static	Obstacle	i

next	i

This	section	creates	the	smaller	randomly	placed	obstacles	which	are
also	added	to	the	AI	system.	The	obstacles	also	have	a	Y	rotation	which
will	be	taken	into	account,	again	this	must	be	done	before	calling	Add
Static	and	only	the	Y	angle	will	be	read.

AI	Start	New	Obstacle	10
AI	Add	Obstacle	Vertex	-50,-50
AI	Add	Obstacle	Vertex	50,-50
AI	Add	Obstacle	Vertex	50,50
AI	Add	Obstacle	Vertex	-50,50
AI	End	New	Obstacle	0,1



Next	the	boundary	is	created	that	prevents	the	entity	moving	beyond	the
edges	of	the	floor.	It	is	specified	in	an	anti-clockwise	direction	(assuming
X,Z	co-ordinates)	to	enclose	the	area	and	make	everything	'behind'	it	as
one	big	obstacle	that	the	entity	will	avoid.	In	this	case	we	have	given	the
obstacle	an	id	of	10,	which	would	only	be	used	to	remove	it	later	and
does	not	link	it	to	anything	with	that	number.	More	than	one	obstacle	can
have	the	same	id	in	which	case	they	would	both	be	removed	together.	It
has	no	other	effect	on	an	obstacle.	We	then	finish	the	new	obstacle	and
add	it	to	container	0,	as	a	full	height	object.	

AI	Complete	Obstacles

We	call	this	command	to	tell	the	AI	system	we	have	finished	adding	our
static	obstacles	so	that	it	can	process	them	and	create	waypoint	and
visibility	data	all	at	once	instead	of	doing	it	every	time	we	add	an
obstacle.	This	can	be	a	slow	process	when	lots	of	obstacles	are	involved
but	it	only	needs	to	be	performed	once.

make	object	cone	2,5
xrotate	object	2,90
fix	object	pivot	2
position	object	2,0,2.5,40

AI	Add	Enemy	2
AI	Set	Entity	Speed	2,10.0

This	adds	our	single	entity	to	the	system,	making	sure	to	use	the	same
value	for	the	entity	as	the	object	since	the	default	values	link	the	entity	to
the	object.	We	also	set	the	entity	speed	to	10	units	per	second	which,
with	the	level	being	100	units	across,	means	it	would	take	10	seconds	for
the	entity	to	get	from	one	side	to	the	other	(100/10	=	10	seconds).

That	completes	the	setup	and	we	now	enter	the	main	loop	where	we	use
the	mouse	position	to	place	the	mouse	marker	object	(object	1)	on	our
floor.	We	then	find:

if	mouseclick()=1	then	AI	Entity	Go	To	Position	2,object	position
x(1),object	position	z(1)



Which	sets	the	entity	destination	to	the	mouse	marker's	position
whenever	the	mouse	is	clicked.	The	destination	will	automatically	be
moved	outside	any	obstacles	where	possible,	you	can	see	this	by
watching	the	path's	final	point	which	represents	the	destination.	There
may	be	a	situation	when	the	entity	and	its	destination	are	completely
blocked	by	obstacles	in	which	case	the	entity	will	not	attempt	to	move
towards	it.	There	are	also	4	debug	controls	defined	like	this:

if	keystate(2)=1	and	ptimer<timer()

ptimer	=	timer()+300
pMode	=	1-pMode

if	(	pMode=0	)	then	AI	Debug	Hide	Paths	else	AI	Debug	Show	Paths	2.5

endif

This	one	registers	when	the	number	1	key	is	pressed	and	toggles	the
display	of	the	current	entity	path.	The	timer	variable	prevents	the	display
toggling	too	often	and	the	mode	variable	switches	between	showing	and
hiding	the	path.	This	is	the	same	format	for	the	other	3	debug	controls.

print	"Entity	State:	";AI	Get	Entity	State$(2)

The	Get	Entity	State	command	is	used	during	automatic	mode	to	get	the
current	state	that	is	controlling	the	entity.	In	automatic	mode	an	entity
switches	between	states	based	on	what	it	thinks	it	should	be	doing	given
it	current	surroundings	and	recent	events.	A	state	can	be	as	simple	as
keeping	an	entity	en	route	to	a	destination	such	as	in	the	'Go	To
Destination'	state,	or	a	sequence	of	actions	to	perform	an	action	as	in	the
'Search	Area'	state.

AI	Update
sync

And	finally	we	update	the	system	and	draw	it.





PATROLLING	DEMO

This	demo	shows	the	use	of	paths	to	create	a	patrol	route	for	one	or
more	entities,	in	this	case	two	paths	are	created	and	two	entities	are
assigned	to	each	path.	The	two	paths	are	created	with	the	same	points
but	in	opposite	directions,	making	entities	patrol	both	clockwise	and	anti-
clockwise	around	the	level.	This	also	demonstrates	entities	avoiding	each
other	when	they	meet	and	how	they	cope	with	overcrowded	destinations.

This	document	will	describe	the	main	AI	commands	used	to	create	and
control	this	demo	in	the	context	they	are	used.	This	demo	starts	very
similar	to	the	Path	Finding	demo	so	obstacle	creation	will	not	be	covered
here.	It	is	advised	you	familiarise	yourself	with	the	path	finding	demo	first
to	see	how	obstacles	are	setup.

AI	Make	Path	1
AI	Path	Add	Point	1,40,40
AI	Path	Add	Point	1,40,-40
AI	Path	Add	Point	1,-40,-40
AI	Path	Add	Point	1,-40,40

AI	Make	Path	2
AI	Path	Add	Point	2,-40,40
AI	Path	Add	Point	2,-40,-40
AI	Path	Add	Point	2,40,-40
AI	Path	Add	Point	2,40,40



After	the	obstacle	setup	we	come	to	creating	the	two	paths	we	want	to
use.	The	first	is	the	clockwise	path	(path	1),	starting	in	the	top	right	hand
corner,	and	the	second	(path	2)	is	the	anti-clockwise	path	starting	in	the
top	left	hand	corner.	We	will	refer	to	these	later	when	we	assign	them	to
the	entities.

for	i	=	2	to	5

make	object	cone	i,5
xrotate	object	i,90
fix	object	pivot	i
position	object	i,i*5	–	30,2.5,40

AI	Add	Enemy	i,1
AI	Set	Entity	Speed	i,10.0

next	i

AI	Entity	Assign	Patrol	Path	2,2
AI	Entity	Assign	Patrol	Path	3,2
AI	Entity	Assign	Patrol	Path	4,1
AI	Entity	Assign	Patrol	Path	5,1

This	creates	4	entities	(id's	2-5	inclusive)	and	sets	their	speed.	The
second	parameter	when	adding	the	entities	is	to	set	link	the	entity	to	its
object,	this	would	be	set	by	default	anyway	but	shows	the	usage	of	the
second	parameter.	We	then	get	to	assign	the	entities	their	patrol	paths,
two	to	the	clockwise	path,	two	to	the	anti-clockwise	path	and	immediately
changes	the	behaviour	of	the	entity	to	patrol	whenever	it	would	normally
go	into	an	idle	state.	This	allows	it	to	perform	all	the	normal	actions	of	an
entity	such	as	attacking	and	moving	but	be	able	to	return	to	the	patrol
when	it	has	nothing	else	to	do.	Any	changes	to	the	path,	for	example
adding	extra	points,	will	take	an	immediate	effect	to	any	entity	using	it	as
a	path.	To	remove	the	patrol	state	from	an	entity	and	return	its	idle	state
assign	the	entity	a	path	with	no	points,	or	delete	the	path	that	is	assigned
to	the	entity.

AI	Update



sync

We	then	call	these	two	commands	in	the	main	loop	and	the	entity
movement	is	automatically	handled	for	us.	Entities	will	start	at	the
beginning	of	their	patrol	paths	and	patrol	forever,	starting	at	the	beginning
again	when	they	reach	the	end.



ZONES	DEMO

This	demo	shows	the	zone	feature	and	how	it	can	be	assigned	to	entities
to	trigger	a	response,	and	also	has	a	user	controlled	object	that	acts	as	a
player	in	the	AI	system.	It	creates	two	entities	and	positions	them	out	of
sight	of	the	player,	and	a	zone	(blue)	which	is	assigned	to	both	entities.
When	the	player	moves	over	the	zone	the	entities	will	be	notified	and
move	to	attack	the	player,	even	though	they	have	not	seen	the	player
themselves.	If	the	player	leaves	the	zone	the	entities	will	still	check	out
the	area	the	player	entered	but	unless	they	can	see	the	player	they	will
return	to	their	idle	positions.	

This	demo	also	shows	how	you	can	create	a	basic	visual	attack,	like	a
laser,	by	drawing	a	line	between	the	entity	and	its	target.	This	demo	will
not	cover	the	setup	of	obstacles,	you	should	review	the	path	finding
demo	for	details	on	obstacle	setup.	The	only	point	to	note	on	obstacles
with	this	demo	is	the	use	of	convex	(in	this	case	square)	obstacles	to
create	more	complex	walls,	as	long	as	the	walls	are	no	more	than	than
the	entity	radius	apart	they	will	overlap	and	create	a	solid	wall.	This
document	will	cover	the	AI	commands	used	to	create	and	control	the
demo	in	the	context	they	are	used.

dim	shootTimer(3)	as	float

This	line	creates	an	array	that	we	will	use	to	store	a	timer	for	each	entity
to	prevent	entities	firing	too	quickly.	The	AI	system	will	return	the	'ready	to



fire'	signal	continuously	whilst	an	entity	can	see	a	valid	target	so	we	must
handle	delayed	firing	in	DarkBasic	to	prevent	continuous	fire.	Or	we	could
not	if	continuous	fire	is	what	we	wanted,	but	for	this	demo	we	will	handle
delayed	firing.	

for	i	=	2	to	3
make	object	i,1,0
position	object	i,(i-2)*40	–	20,2.5,15
color	object	i,rgb(255,0,0)

make	object	i+1000,2,1
set	object	light	i+1000,0
hide	object	i+1000

AI	Add	Enemy	i
AI	Set	Entity	Speed	i,10.0
AI	Set	Entity	View	Arc	i,90,170
AI	Set	Entity	View	Range	i,50
AI	Set	Entity	Can	Strafe	i,0
next	i	

This	loop	creates	two	entities	along	with	two	attack	objects	(i+1000)	that
we	will	use	later	to	represent	attacks,	and	sets	some	entity	parameters
for	the	AI	system.	The	Set	View	Arc	command	defines	the	angle	at	which
the	entities	can	see	with	in	an	inner	(90)	and	outer	(170)	angle,	in	this
case	the	inner	angle	does	not	matter	since	automatic	mode	does	not
make	use	of	it,	it	would	only	be	used	by	using	the	Can	See	command.
The	outer	angle	of	170	defines	just	short	of	a	forward	half	circle	which
allows	the	entity	to	effectively	spot	targets	out	of	the	corner	of	its	eye	but
not	behind	it.	An	angle	of	90	defines	a	forward	cone	which	means	a
target	has	to	be	mostly	in	front	of	the	entity	to	be	spotted.	An	angle	of
360,	which	is	the	default,	means	the	entity	can	see	all	around	it.	The	Set
View	Range	defines	the	distance	the	entity	can	see	in	any	direction	that
is	within	its	outer	view	angle,	once	both	the	angle	and	distance
restrictions	are	checked	an	entity	can	determine	if	is	can	see	a	target.
The	Can	Strafe	command	is	used	for	finer	control	over	the	behaviour	of
the	entity,	in	this	case	the	entity	is	prevented	from	moving	sideways
relative	to	its	target,	which	can	normally	be	used	to	avoid	fire.	Since	the
player	cannot	shoot	in	this	demo	there	is	no	reason	to	strafe.	



AI	Add	Zone	1,-10,-15,10,-5
make	object	box	11,17,0.1,10
position	object	11,0,0.05,-10
color	object	11,rgb(0,0,255)

AI	Entity	Assign	Zone	2,1
AI	Entity	Assign	Zone	3,1

This	creates	the	zone	and	makes	the	blue	object	to	show	it	on	screen,
which	is	not	required	for	the	zone	to	function	it	is	just	used	to	display	the
extent	of	the	zone.	The	zone	is	specified	using	the	minimum	and
maximum	corners	relative	to	the	X,Z	co-ordinate	system,	(-10,-15)	is	the
bottom	left	corner	of	the	zone	and	(10,-5)	is	the	top	right	corner	of	the
zone.	The	first	two	values	must	always	be	lower	than	the	last	two	so
(10,-15)	(-10,-5)	is	incorrect.	Zones	can	only	be	rectangular,	and	cannot
be	rotated.	We	then	assign	our	two	entities	to	this	zone	so	that	they	will
be	notified	when	the	player	enters	it.

make	object	sphere	1,5
position	object	1,20,2.5,-40
AI	Add	Player	1

Next	we	create	a	sphere	to	represent	the	player	and	add	it	to	the	AI
system.	This	is	all	we	need	to	do	for	the	player	since	the	AI	system	will
now	read	the	player	object's	position	automatically	every	frame	and
update	its	internal	values	since	the	default	values	link	the	player	to	the
object.

After	some	debugging	controls	and	display	output	we	come	to	calling	AI
Update	and	displaying	any	attacks	that	are	currently	occurring.

for	i	=	2	to	3
if	AI	Entity	Exist(i)=1
if	AI	Get	Entity	Can	Fire(i)	and	shootTimer(i)<=0
tx#	=	AI	Get	Entity	Target	X(i)
tz#	=	AI	Get	Entity	Target	Z(i)
x#	=	object	position	x(i)
z#	=	object	position	z(i)



dx#	=	(	x#	+	tx#	)	/	2.0
dz#	=	(	z#	+	tz#	)	/	2.0
dist#	=	sqrt	(	(tx#-x#)*(tx#-x#)	+	(tz#-z#)*(tz#-z#)	)
ang#	=	acos	(	(tz#-z#)	/	dist#	)
if	(	(tx#-x#)	<	0	)	then	ang#	=	360	–	ang#
position	object	i+1000,dx#,2.5,dz#
yrotate	object	i+1000,ang#+0.1
scale	object	i+1000,100,100,100*dist#
show	object	i+1000

shootTimer(i)=100
endif
endif

if	shootTimer(i)>0	then	shootTimer(i)	=	shootTimer(i)-(speed#*3)
next	i

The	loop	cycles	through	both	entities,	first	checking	that	they	both	exist
within	the	AI	system	and	then	checking	if	they	can	see	a	valid	target	by
calling	Can	Fire.	If	this	returns	1	we	check	the	entity	timer	to	make	sure
they	have	not	already	fired	recently,	if	so	we	let	them	wait	a	bit	longer,	if
not	then	we	display	a	new	attack	and	reset	the	timer.	This	is	what
separates	the	continuous	attack	from	a	delayed	attack.

To	position	the	attack	object	for	this	entity	we	take	the	co-ordinates	of	the
target	the	entity	is	firing	at	and	the	current	position	of	the	entity	and
average	them	to	place	the	attack	object	between	the	two	(stored	in	dx#
and	dz#).	Next	we	calculate	the	distance	between	the	entity	and	its	target
to	be	able	to	scale	the	attack	object	the	correct	length	to	reach	between
the	two.	Finally	we	calculate	the	Y	angle	between	the	two	to	rotate	the
attack	object	correctly	and	apply	all	the	values	to	the	object	(i+1000).
Then	the	entity	timer	is	reset	to	100	to	prevent	the	entity	firing	again	until
it	has	reached	zero.

The	entity	timer	is	decreased	every	frame	by	a	value	that	is	proportional
to	the	frame	rate,	stored	in	speed#,	to	make	sure	the	entities	fire	at
roughly	the	same	rate	no	matter	the	frame	rate.





SOUNDS	DEMO

This	demo	shows	the	use	of	sounds	to	attract	the	attention	of	nearby
entities.	It	allows	a	player	object	to	make	a	sound	at	it	current	location
causing	entities	that	hear	it	to	move	to	investigate,	resulting	in	an	attack	if
the	player	is	found	at	the	location	of	the	sound.	Entities	that	attack	also
cause	a	sound	in	this	demo	which	attracts	further	attention	from	entities
which	hear	it.	A	conveniently	placed	wall	allows	the	player	to	make	a
sound	above	it	and	run	and	hide	from	view	that,	as	long	as	the	player
remains	hidden,	will	cause	the	entities	to	investigate,	find	nothing,	and
return	to	their	idle	positions.

This	demo	is	very	similar	to	the	Zone	demo	with	a	simple	visual	attack
and	obstacle	layout.	The	obstacle	setup	will	not	be	covered	in	this	demo,
you	should	familiarise	yourself	with	the	Path	Finding	demo	for	details	on
obstacle	setup.	The	attack	method	will	be	covered	in	this	demo.

dim	shootTimer(3)	as	float

This	line	creates	an	array	that	we	will	use	to	store	a	timer	for	each	entity
to	prevent	entities	firing	too	quickly.	The	AI	system	will	return	the	'ready	to
fire'	signal	continuously	whilst	an	entity	can	see	a	valid	target	so	we	must
handle	delayed	firing	in	DarkBasic	to	prevent	continuous	fire.	Or	we	could
not	if	continuous	fire	is	what	we	wanted,	but	for	this	demo	we	will	handle
delayed	firing.



for	i	=	2	to	3

make	object	i,1,0
position	object	i,(i-2)*40	–	20,2.5,15
color	object	i,rgb(255,0,0)

make	object	i+1000,2,1
set	object	light	i+1000,0
hide	object	i+1000

AI	Add	Enemy	i
AI	Set	Entity	Speed	i,10.0
AI	Set	Entity	View	Arc	i,90,170
AI	Set	Entity	View	Range	i,80
AI	Set	Entity	Hearing	Range	i,80
AI	Set	Entity	Can	Strafe	i,0

next	i	

This	loop	creates	two	entities	along	with	two	attack	objects	(i+1000)	that
we	will	use	later	to	represent	attacks,	and	sets	some	entity	parameters
for	the	AI	system.	The	Set	View	Arc	command	defines	the	angle	at	which
the	entities	can	see	with	in	an	inner	(90)	and	outer	(170)	angle,	in	this
case	the	inner	angle	does	not	matter	since	automatic	mode	does	not
make	use	of	it,	it	would	only	be	used	by	using	the	Can	See	command.
The	outer	angle	of	170	defines	just	short	of	a	forward	half	circle	which
allows	the	entity	to	effectively	spot	targets	out	of	the	corner	of	its	eye	but
not	behind	it.	An	angle	of	90	defines	a	forward	cone	which	means	a
target	has	to	be	mostly	in	front	of	the	entity	to	be	spotted.	An	angle	of
360,	which	is	the	default,	means	the	entity	can	see	all	around	it.	The	Set
View	Range	defines	the	distance	the	entity	can	see	in	any	direction	that
is	within	its	outer	view	angle,	once	both	the	angle	and	distance
restrictions	are	checked	an	entity	can	determine	if	is	can	see	a	target.
The	Hearing	Range	defines	the	radius	within	which	the	entity	can	hear
sounds	from	its	current	location,	this	also	applies	to	sounds	behind	walls
which	have	no	effect	in	blocking	the	detection	of	sounds.	The	Can	Strafe
command	is	used	for	finer	control	over	the	behaviour	of	the	entity,	in	this
case	the	entity	is	prevented	from	moving	sideways	relative	to	its	target,
which	can	normally	be	used	to	avoid	fire.	Since	the	player	cannot	shoot



in	this	demo	there	is	no	reason	to	strafe.	

make	object	sphere	1,5
position	object	1,20,2.5,-40
AI	Add	Player	1

Next	we	create	a	sphere	to	represent	the	player	and	add	it	to	the	AI
system.	This	is	all	we	need	to	do	for	the	player	since	the	AI	system	will
now	read	the	player	object's	position	automatically	every	frame	and
update	its	internal	values	since	the	default	values	link	the	player	to	the
object.	

In	the	main	loop	are	the	controls	for	moving	the	player	object,	which	is
automatically	transferred	to	the	AI	system	in	when	AI	Update	is	called,
along	with	this	line:

if	spacekey()=1	then	AI	Create	Sound	object	position	x(1),object	position
z(1),0,1

Which	creates	a	sound	at	the	player's	current	position.	The	sound	is
created	as	type	0,	which	is	the	lowest	valid	type	and	signals	a	low	priority
sound,	e.g.	foot	steps.	The	entity	will	prefer	to	investigate	higher	priority
sounds	if	more	than	one	type	can	be	heard	at	the	same	time,	but	since
this	is	a	quiet	environment	with	no	other	sounds	present	the	entity	will
investigate	this	low	value	sound.	The	radius	is	set	to	1	which	does	not
significantly	increase	the	range	of	the	sound,	this	radius	is	added	to	the
entity's	hearing	range	and	if	the	two	combined	are	greater	than	the
distance	between	the	two	then	it	is	heard.	The	radius	provides	a	way	of
allowing	larger	sounds	to	be	heard	by	entities	that	would	normally	be	too
far	away	to	hear	it.	

for	i	=	2	to	3

if	AI	Entity	Exist(i)=1

if	AI	Get	Entity	Can	Fire(i)	and	shootTimer(i)<=0

tx#	=	AI	Get	Entity	Target	X(i)
tz#	=	AI	Get	Entity	Target	Z(i)



x#	=	object	position	x(i)
z#	=	object	position	z(i)
dx#	=	(	x#	+	tx#	)	/	2.0
dz#	=	(	z#	+	tz#	)	/	2.0
dist#	=	sqrt	(	(tx#-x#)*(tx#-x#)	+	(tz#-z#)*(tz#-z#)	)
ang#	=	acos	(	(tz#-z#)	/	dist#	)
if	(	(tx#-x#)	<	0	)	then	ang#	=	360	–	ang#
position	object	i+1000,dx#,2.5,dz#
yrotate	object	i+1000,ang#+0.1
scale	object	i+1000,100,100,100*dist#
show	object	i+1000

shootTimer(i)=100

AI	Create	Sound	x#,z#,1,1

endif

endif

if	shootTimer(i)>0	then	shootTimer(i)	=	shootTimer(i)-(speed#*3)

next	i

This	loop	cycles	through	both	entities,	first	checking	that	they	both	exist
within	the	AI	system	and	then	checking	if	they	can	see	a	valid	target	by
calling	Can	Fire.	If	this	returns	1	we	check	the	entity	timer	to	make	sure
they	have	not	already	fired	recently,	if	so	we	let	them	wait	a	bit	longer,	if
not	then	we	display	a	new	attack	and	reset	the	timer.	This	is	what
separates	the	continuous	attack	from	a	delayed	attack.

To	position	the	attack	object	for	this	entity	we	take	the	co-ordinates	of	the
target	the	entity	is	firing	at	and	the	current	position	of	the	entity	and
average	them	to	place	the	attack	object	between	the	two	(stored	in	dx#
and	dz#).	Next	we	calculate	the	distance	between	the	entity	and	its	target
to	be	able	to	scale	the	attack	object	the	correct	length	to	reach	between
the	two.	Finally	we	calculate	the	Y	angle	between	the	two	to	rotate	the
attack	object	correctly	and	apply	all	the	values	to	the	object	(i+1000).
Then	the	entity	timer	is	reset	to	100	to	prevent	the	entity	firing	again	until



it	has	reached	zero.

The	difference	here	between	this	and	the	zone	demo	is	we	also	create	a
new	sound,	of	type	1,	whenever	an	entity	attacks	drawing	more	attention
to	the	scene	of	the	combat.

The	entity	timer	is	decreased	every	frame	by	a	value	that	is	proportional
to	the	frame	rate,	stored	in	speed#,	to	make	sure	the	entities	fire	at
roughly	the	same	rate	no	matter	the	frame	rate.



TEAMS	DEMO

This	demo	combines	several	features	with	the	built	in	teams	to	create	a
simple	fight	scene.	It	includes	obstacle	avoidance	from	the	Path	Finding
demo,	patrol	paths	from	the	Patrolling	demo,	the	visual	attack	and
sounds	from	the	Sound	demo	and	introduces	friendly	and	neutral	entities.
Friendly	entities	support	the	player	by	attacking	nearby	enemies	and
following	the	player	when	ordered	to.	Neutral	entities	do	not	engage	in
combat	and	by	default	run	away	from	sounds,	their	exact	behaviour	can
be	set	use	the	Set	Stance	command	or	controlled	manually	as	with	other
entities,	but	they	will	never	pick	targets	and	always	return	Can	Fire	as	0.
Neutral	entities	will	also	not	be	shot	at	by	other	entities.

This	document	will	not	cover	obstacle	setup	or	patrolling	since	these	are
covered	in	detail	in	the	Path	Finding	and	Patrolling	demos	respectively.
The	visual	attack	is	also	the	same	as	that	found	in	the	Zone	or	Sound
demos	the	only	difference	being	this	demo	deals	with	more	entities.	It
does	not	matter	which	team	the	entity	is	on	or	who	they	are	firing	at	since
this	method	of	visualising	the	attack	is	handled	the	same	for	all	entities
and	targets.

First	we	will	cover	the	creation	and	addition	of	the	enemy	entities.

for	i	=	2	to	4

make	object	i,1,0
position	object	i,i*5	–	30,2.5,40



color	object	i,rgb(255,0,0)

make	object	i+1000,2,1
set	object	light	i+1000,0
hide	object	i+1000

AI	Add	Enemy	i
AI	Set	Entity	Speed	i,10.0
AI	Set	Entity	Aggressive	i
AI	Set	Entity	View	Arc	i,90,180
AI	Set	Entity	View	Range	i,60
AI	Set	Entity	Hearing	Range	i,100

next	i

AI	Entity	Assign	Patrol	Path	2,1
AI	Entity	Assign	Patrol	Path	3,1
AI	Entity	Assign	Patrol	Path	4,1

The	entity	objects	are	created	from	a	mesh	and	positioned	where	we
want	them	to	start	along	the	top	of	the	level.	We	create	the	attack	object,
one	per	entity,	and	then	set	the	initial	entity	parameters.	We	use	the	Set
Aggressive	command	to	make	the	enemies	approach	and	follow	their
targets	so	that	they	will	continue	to	attack	until	either,	one	of	them	dies
(not	featured	in	this	demo),	a	closer	target	is	spotted,	or	it	loses	sight	of
all	targets	and	cannot	find	them.	We	give	the	enemies	a	generous
hearing	range	so	they	can	hear	and	respond	to	any	entity	attacking	on
the	level.	Entities	are	also	given	a	view	angle	of	180	so	they	cannot	see
behind	themselves,	and	a	view	range	of	60	so	they	cannot	immediately
spot	the	player	and	its	allies	on	the	other	side	of	the	level.	The	entities
are	then	all	assigned	the	same	patrol	route,	to	move	back	and	forth
across	the	top	of	the	level.	

Next	we	create	and	add	the	neutral	entities.

for	i	=	11	to	13

make	object	i,1,0
position	object	i,rnd(50)-25,2.5,rnd(50)-25



AI	Add	Neutral	i
AI	Set	Entity	Speed	i,10.0
AI	Set	Entity	View	Arc	i,90,180
AI	Set	Entity	Hearing	Range	i,100

next	i

Since	neutral	entities	cannot	attack	we	do	not	give	them	an	attack	object,
and	we	position	them	randomly	around	the	level.	Neutral	entities	will	run
away	by	default,	and	since	we	don't	want	to	change	this	behaviour	we
will	just	set	the	range	at	which	the	entity	will	be	able	to	hear	and	see.	You
could	also	use	the	Can	Roam	command	here	if	you	wanted	neutral
players	to	randomly	move	about	instead	of	remaining	fixed	until	an	event
occurs.

Finally	we	create	and	add	the	friendly	entities.

for	i	=	21	to	22

make	object	i,1,0
position	object	i,i*5	–	120,2.5,-40
color	object	i,rgb(0,255,0)

make	object	i+1000,2,2
set	object	light	i+1000,0
hide	object	i+1000

AI	Add	Friendly	i
AI	Set	Entity	Speed	i,10.0
AI	Set	Entity	View	Arc	i,90,180
AI	Set	Entity	View	Range	i,60
AI	Set	Entity	Hearing	Range	i,80

next	i

There	is	little	difference	here	to	the	enemy	setup,	except	instead	of
calling	Add	Enemy	we	use	Add	Friendly	to	specify	the	team.	It	does	not
matter	in	which	order	the	different	teams	are	created,	or	which	id's	they



are	given	as	all	entities	are	processed	the	same	way.	Friendly	entities
default	to	a	cautious	stance	which	means	they	will	not	approach	and
follow	targets,	if	you	wish	this	can	be	changed	by	setting	the	entity
stance.

make	object	sphere	1,5
position	object	1,20,2.5,-40
AI	Add	Player	1

This	creates	the	player	object	and	adds	it	to	the	AI	system.	This	is	all	we
need	to	do	for	the	player	since	the	AI	system	will	now	read	the	player
object's	position	automatically	every	frame	and	update	its	internal	values
since	the	default	values	link	the	player	to	the	object.

Once	the	setup	is	complete	the	AI	system	now	has	enough	information	to
move	and	control	entities	based	on	their	team	and	current	surroundings
to	produce	a	believable	responses	completely	automatically	by	calling	AI
Update.	The	main	loop	provides	a	'follow	player'	command	for	the	friendly
team	to	provide	some	control	over	the	movement	of	allies.

if	keystate(33)=1	and	ftimer<timer()

ftimer	=	timer()+300
AI	Team	Follow	Player	20

endif

if	keystate(31)=1	and	stimer<timer()

stimer	=	timer()+300
AI	Team	Separate

endif

The	Follow	Player	command	takes	a	distance	as	its	parameter,
specifying	the	maximum	distance	friendly	entities	should	remain	from	the
player.	When	the	distance	between	the	player	and	the	entity	exceeds	this
value	the	entity	will	move	towards	the	player,	otherwise	it	will	be	content
with	its	current	location.	The	Separate	command	tells	all	friendly	entities



to	stop	following	the	player	and	return	to	worrying	about	themselves.



COMMANDS	DEMO

This	demo	makes	use	of	the	entity's	manual	mode	to	demonstrate	some
of	the	commands	used	by	the	automatic	mode	to	control	entities,	allowing
you	to	create	custom	behaviours	that	are	not	covered	by	the	automatic
mode's	stance	mode	and	command	set.	This	involves	setting	the	entity
destination	and	look	at	point	depending	on	the	information	an	entity	has
about	its	surroundings,	such	as	recently	seen	targets	or	heard	sounds.

The	demo	itself	allows	you	to	position	a	marker	object	(magenta)	and
apply	various	commands	to	an	enemy	entity	that	use	this	marker	for
different	purposes,	like	looking	or	moving	towards	it.	A	stationary	friendly
entity	is	provided	to	serve	as	a	target	when	the	enemy	gets	within	sight,
including	a	couple	of	obstacles	to	show	path	finding	still	working	in
manual	mode	and	blocking	line	of	sight.	This	demo	does	not	include	any
form	of	attack	as	it	focuses	on	the	manual	mode	commands.

The	first	loop	sets	up	the	two	entities.

for	i	=	2	to	3

make	object	i,1,0
position	object	i,(i*2	-	5)	*	30,2.5,0

if	(	i=2	)

AI	Add	Enemy	i	



color	object	i,rgb(255,0,0)

else

AI	Add	Friendly	i
color	object	i,rgb(0,255,0)

endif

AI	Set	Entity	Speed	i,10.0
AI	Set	Entity	View	Arc	i,90,170
AI	Set	Entity	View	Range	i,50
AI	Set	Entity	Control	i,0

next	i

Entity	2	becomes	the	enemy	and	3	becomes	the	friendly,	both	have	the
same	view	angle	and	range	set	and	both	use	the	Set	Control	command
to	set	them	to	manual	mode.	The	friendly	entity	is	set	to	manual	mode	to
prevent	it	moving	on	its	own	which	helps	to	keep	the	scene	a	little
cleaner.

The	main	loop	sets	the	marker	object	under	the	mouse	when	clicked	and
provides	10	commands	that	can	be	given	by	the	user.

AI	Entity	Go	To	Position	2,	x#,	z#

This	command	tells	the	entity	to	move	to	the	marker's	position	avoiding
any	obstacles	along	the	way.	If	the	marker	is	inside	an	obstacle	the	entity
will	move	to	the	closest	point	outside	the	obstacle.	If	the	destination	is
completely	blocked	by	obstacles	(the	destination	is	valid	but
unreachable)	the	entity	will	not	move.	This	is	the	standard	method	of
moving	entities	around.

AI	Entity	Stop	2

This	command	stops	the	entity	moving	by	setting	its	destination	to	its
current	location	no	matter	what	it	is	currently	doing.



AI	Entity	Look	At	Position	2,	x#,	z#

This	command	tells	the	entity	to	look	at	the	marker's	position	and	sets	the
entity	as	having	a	look	at	point.	An	entity	with	a	look	at	point	will	always
look	at	it	whilst	it	can	see	it	and	is	not	blocked	by	obstacles	(not	including
half	height	obstacles),	even	when	moving	away	from	it.	If	the	entity
cannot	see	its	look	at	point	it	looks	in	its	direction	of	travel	until	the	point
becomes	visible	again;	being	visible	does	not	require	the	point	to	be	in
the	entity's	view	angle	just	that	the	entity	has	a	clear	line	of	sight	to	the
point.

AI	Entity	Look	Around	2,	90,	180

This	command	picks	a	random	angle	between	90	and	180	and	turns	the
entity	either	left	or	right	(random	choice)	by	that	angle	by	setting	the	look
at	point.	The	entity	will	continue	to	look	at	this	point	when	moving.

AI	Entity	Random	Move	2,	10,	20

This	command	picks	a	random	direction	from	all	possible	directions,	and
a	random	distance	between	10	and	20	for	the	entity	to	move.	The	entity's
destination	is	then	set	to	the	point	at	the	end	of	this	direction	and
distance.

AI	Entity	Move	Close	2,	x#,	z#,	10

This	command	moves	the	entity	to	within	10	units	of	the	marker's
position.	If	the	entity	is	already	within	10	units	of	the	marker	it	picks	a	new
point	within	10	units	of	the	marker	to	move	to.

tx#	=	AI	Get	Entity	Target	X(2)
tz#	=	AI	Get	Entity	Target	Z(2)
AI	Entity	Look	At	Position	2,	tx#,	tz#

This	set	of	commands	retrieves	the	position	of	the	entity's	current	target
and	sets	the	entity	to	look	at	it.	This	point	will	need	to	be	updated	each
frame	if	you	want	the	entity	to	continue	looking	at	its	target.	The	entity
may	have	more	than	one	target	in	its	list	but	the	first	target,	and	the	one
for	which	data	is	returned,	is	always	the	closest	visible	target	in	its	list.



AI	Set	Entity	Position	2,	x#,	z#
AI	Entity	Stop	2

This	sets	the	entity's	position	directly	creating	a	teleport	effect	where	the
entity	will	jump	from	its	current	position	to	the	new	position.	Since	this
does	not	also	set	the	entity's	destination	Stop	should	be	called	to	prevent
the	entity	moving	back	to	its	original	location.	An	entity's	destination	is
always	in	effect	and	an	entity	doesn't	move	only	because	its	destination
is	under	its	feet.	Therefore,	if	the	entity's	position	is	changed	its
destination	should	be	set	also	for	the	entity	to	remain	stationary.

AI	Set	Entity	No	Look	At	Point	2

This	removes	any	look	at	point	the	entity	currently	has	and	returns	it	to
always	looking	in	its	direction	of	travel.	When	an	entity	stops	moving	it
will	continue	looking	in	the	last	direction	it	was	moving.

AI	Entity	Strafe	Target	2

This	command	requires	the	entity	to	have	a	target	in	its	list,	if	so	it	picks	a
sideways	direction	relative	to	the	direction	of	the	target	and	moves	to	a
destination	randomly	placed	at	the	end	of	this	direction.	The	direction	is
chosen	internally	to	be	either	left	or	right.

Finally	the	demo	displays	some	information	about	some	entity
parameters	that	can	help	in	deciding	what	commands	to	give	the	entity.

print	"Enemy	State:	";AI	Get	Entity	State$(2)
print	"Num	Targets:	";AI	Get	Entity	Count	Targets(2)
print	"Moving:	";AI	Get	Entity	Is	Moving(2)
print	"Turning:	";AI	Get	Entity	IS	Turning(2)
print	"Can	Fire:	";AI	Get	Entity	Can	Fire(2)

-Get	State	returns	a	description	of	the	current	entity	state	and	is	most
useful	in	viewing	automatic	behaviour,	its	function	here	is	to	display	the
state	as	being	manual	and	not	under	automatic	control.	
-Count	Targets	returns	the	number	of	targets	currently	in	the	entity's
target	list,	but	visible	and	recently	seen.	Targets	will	slowly	be	removed



from	the	list	when	they	are	not	visible	for	extended	periods	of	time.	
-Get	Is	Moving	returns	if	the	entity	is	currently	attempting	to	move	to	a
destination,	whether	it	is	succeeding	or	not.	An	unreachable	destination
will	produce	a	moving	result	of	true	even	though	the	entity	may	not
actually	be	moving.	
-Get	Is	Turning	depends	if	the	entity	has	a	look	at	point,	if	so	it	will
calculate	if	it	is	looking	at	the	point	and	return	false	if	it	is	already	within
0.1	degrees,	if	it	does	not	have	a	look	at	point	it	returns	true	when	moving
and	false	when	not	moving.	
-Get	Can	Fire	returns	true	when	the	entity	has	at	least	one	target,	at	least
one	target	is	within	its	view	angle	and	range	and	the	target	is	within	its
fire	arc	angle.

AI	Update

This	moves	the	entity	to	its	destination	and	turns	it	to	its	look	at	point	in
response	to	any	commands	that	have	change	these	values,	and	updates
the	entity's	target	list	by	adding	any	new	and	removing	any	old	targets.



CONTAINER	DEMO

This	demo	shows	the	use	of	containers	to	represent	two	floors,	each
occupying	the	same	space	but	completely	separated	from	each	other
inside	the	AI	system.	A	player	controlled	object	is	created	which	is	free	to
move	between	the	containers	by	means	of	a	ramp	and	can	only	be	seen
by	the	occupants	of	the	container	it	is	currently	in.	Obstacles	are	also
created	for	a	ground	floor,	which	prevent	the	movement	of	ground	floor
entities	but	do	not	hinder	the	upper	floor	entities.	Entities	will	not	display
any	attacks	in	this	demo	but	will	move	towards	targets	as	if	they	were
going	to	attack.	This	is	to	keep	the	focus	on	containers	and	using	them	to
separate	entities	and	floors.

The	demo	begins	with	the	following	setup	code.

AI	Start
AI	Set	Radius	2.5
AI	Add	Container	1

This	starts	the	AI	system	and	sets	the	radius	as	with	most	demos,	and
also	creates	a	new	container	with	id	1.	The	ground	floor	is	represented
using	the	default	container	0,	which	is	created	automatically	in	AI	Start,
and	the	new	container	1	is	added	to	represent	the	upper	floor.	The
container	can	be	given	any	positive	id,	but	it	must	not	already	exist.
Obstacles	are	added	as	in	the	Path	Finding	demo	except	for	the	one
boundary	on	the	upper	floor.



AI	End	New	Obstacle	1,1

Which	specifies	a	container	number	of	1	for	the	upper	floor.	By	default
obstacles	are	added	to	container	0	so	we	only	need	to	change	the
container	number	parameter	when	we	want	to	assign	things	to	other
containers.

for	i=2	to	4

make	object	i,1,0
position	object	i,rnd(80)-40,2.5,rnd(80)-40
color	object	i,rgb(255,0,0)
AI	Add	Enemy	i,1,0

next	i

for	i=10	to	12

make	object	i,1,0
position	object	i,rnd(80)-40,9,rnd(80)-40
color	object	i,rgb(255,0,0)
AI	Add	Enemy	i,1,1

next	i

This	creates	two	sets	of	entities,	the	first	for	the	ground	floor	and
container	0,	the	second	for	the	upper	floor	and	container	1.	The	entity
parameters	are	left	as	default	since	this	demo	focuses	on	containers	and
the	separation	of	the	floors.	The	default	values	will	allow	the	entities	to
see	all	around	themselves	at	a	reasonable	distance,	in	this	case	about
half	the	level.

In	the	main	loop	we	need	to	detect	when	the	user	moves	the	player	over
the	ramp	in	order	to	control	both	its	height	and	which	container	it	is
currently	in.

if	object	position	x(1)>40



position	object	1,object	position	x(1),(object	position	z(1)+50)*
(6.5/100.0)+2.5,object	position	z(1)
if	object	position	y(1)>5.75	then	playerLevel	=	1	else	playerLevel	=	0

else

position	object	1,object	position	x(1),playerLevel*6.5	+	2.5,object
position	z(1)

endif

The	ramp	is	on	the	right	side	of	the	screen	starting	at	X	=	40	and	ending
at	X	=	50,	and	runs	in	the	Z	direction	from	-50	to	50.	So	if	the	player	has
an	X	co-ordinate	greater	than	40	it	is	on	the	ramp	and	we	need	to	adjust
its	height	relative	to	how	far	along	the	ramp	in	the	Z	direction	it	is.	This	is
done	by	(PosZ+50)*(6.5/100.0)+2.5,	which	takes	the	Z	position	between
-50	to	50,	converts	it	into	a	value	between	0	and	100,	then	divides	by	100
to	get	it	into	the	range	0.0	to	1.0.	This	represents	a	value	of	0.0	when	the
entity	is	at	the	bottom	of	the	ramp,	and	1.0	when	the	entity	is	at	the	top	of
the	ramp.	Since	the	height	difference	between	the	floors	is	6.5	we
multiply	this	0.0	to	1.0	value	by	6.5	so	that	when	at	the	top	of	the	ramp
the	entity	has	moved	up	a	whole	floor	height.	Finally	2.5,	the	radius	of	the
entity,	is	added	to	bring	the	entity	up	out	of	the	floor	to	sit	on	top	of	it.

Alternatively	this	can	be	handled	by	a	separate	collision	system	that
keeps	the	player	and/or	entities	on	the	floor	whilst	they	move	about	in
their	X	and	Z	directions.	The	AI	system	does	not	mind	objects	being
moved	about	in	DarkBasic	in	the	Y	direction	since	from	a	top	down	view	it
makes	no	difference.	You	can	also	move	the	entity's	object	in	the	X	and	Z
directions	and	the	AI	system	will	register	the	move	but	you	may	hinder
entities	from	moving	where	they	are	trying	to	get	to.

To	check	which	floor	the	player	is	on	we	look	at	its	object's	Y	position,	if	it
is	greater	than	the	half-way	point	between	the	floors	we	set	it	as	on	floor
1,	otherwise	we	set	it	as	being	on	floor	0,	we'll	use	this	value	next	to	set
the	player	container.	If	the	player	is	not	on	the	ramp	then	its	Y	position	is
set	using	the	playerLevel	variable	and	multiplying	it	by	the	height
difference	between	the	floors.



AI	Set	Player	Container	playerLevel

Here	we	tell	the	AI	system	which	container	the	player	is	in,	1	for	the	top
floor,	0	for	the	ground	floor.	This	cannot	be	calculated	automatically	since
no	height	information	is	stored	about	the	containers	so	the	AI	system
would	not	be	able	to	tell	the	difference	between	container	1	and	container
0.	You	can	continuously	set	the	player	container	to	the	same	value	every
frame	as	it	simply	sets	a	value	in	the	AI	system	and	does	not	do	any
calculation.

if	showBounds=1

if	currentShowBounds<>playerLevel

AI	Debug	Hide	Obstacle	Bounds	currentShowBounds
AI	Debug	Show	Obstacle	Bounds	playerLevel,playerLevel*6.5	+
2.5
currentShowBounds	=	playerLevel

endif

else

AI	Debug	Hide	Obstacle	Bounds	0
AI	Debug	Hide	Obstacle	Bounds	1

endif

This	is	an	addition	to	the	debug	control	that	displays	obstacle	edges	to
detect	when	the	player	changes	floors	whilst	the	debug	object	is	visible.	If
this	happens	it	switches	between	showing	the	obstacles	bounds	for	floor
0	or	floor	1	and	at	the	height	of	the	floor	they	represent.	This	is	done	for
clarity	to	only	show	the	bounds	for	one	floor	at	one	time	although	you
could	show	both	at	the	same	if	this	was	desired.

AI	Update

Finally	the	Update	command	handles	all	the	details	of	moving	and
controlling	entities	in	all	containers.	Entities	will	only	register	that	they	can



see	the	player	when	the	player	is	assigned	to	the	same	container	as
them.	When	the	player	leaves	the	container	the	entity	will	behave	as	if	it
lost	sight	of	the	player,	and	in	some	cases	search	for	it.	Although	the
entity	cannot	see	it	again	until	it	re-enters	the	entity's	container.



DEBUG	DEMO

This	demo	shows	the	complete	range	of	debugging	commands	available
for	viewing	what	is	going	on	inside	the	AI	system.	These	function	by
creating	new	DarkBasic	objects	and	manipulating	them	within	the	AI
system	to	display	the	desired	information,	therefore	these	commands
work	best	when	you	are	using	a	3D	world	to	represent	the	world.	The
information	available	for	display	includes	waypoints,	waypoint	edges,
obstacle	bounds,	sounds,	entity	paths,	entity	view	and	hearing	ranges,
entity-entity	avoidance	data,	and	detailed	entity	parameter	information.

It	demonstrates	each	command	in	turn	by	showing	a	simple	example	of
the	command's	display	then	removing	it	for	the	next.	As	such	this	demo
does	not	follow	the	usual	pattern	of	setup	->	main	loop	->	end,	but
instead	has	several	mini	setups	with	a	pause	to	let	the	user	move	to	the
next.

AI	Start
AI	Set	Radius	2.5

As	usual,	we	start	by	creating	the	AI	system	and	setting	the	radius	we
want	to	use.	The	Start	command	creates	container	0	where	we	will	be
adding	our	objects	and	displaying	them.	We	then	move	to	the	first	debug
command,	showing	waypoints.

AI	Add	Static	Obstacle	101



backdrop	off
cls

AI	Debug	Show	Waypoints	0,2.5
print	"Debug	Commands	Demo,	Press	Any	Key	To	Continue"
print
print	"1	-	Displaying	Waypoint	Data"
wait	key

This	adds	a	single	obstacle	in	the	centre	of	the	screen,	adds	it	to	the	AI
system	which	automatically	creates	four	waypoints	for	it,	then	displays
the	waypoints	for	container	0	at	a	height	of	2.5.	The	height	is	necessary
because	there	is	no	Y	data	stored	for	waypoints	or	obstacles	so	you	can
choose	a	Y	position	for	them	to	appear.	Waypoints	are	shown	as	blue
dots	that	represent	the	corners	of	obstacles	so	entities	have	a	point	of
reference	about	how	to	move	around	an	obstacle.	The	debug	command
chooses	a	DarkBasic	object	id	by	starting	at	65535	and	decreasing	until	a
free	object	is	found	or	it	reaches	0,	in	which	case	the	command	fails	and
has	no	effect.	The	Show	Waypoint	command	only	calculates	its	object
once,	and	so	does	not	automatically	update	its	display	if	you	add/remove
waypoints	whilst	it	is	displaying.	You	would	have	to	call	Show	Waypoints
again	to	re-calculate	it.	The	program	then	waits	for	the	user	to	press	a
key	before	continuing.

AI	Debug	Hide	Waypoints	0
cls
AI	Debug	Show	Waypoint	Edges	0,2.5

Next	we	hide	the	waypoints	and	display	the	waypoint	edges.	These
represent	the	visibility	of	waypoints	from	each	other,	an	edge	between
two	waypoints	means	an	entity	can	use	it	as	a	valid	section	of	path	when
moving	around	obstacles.	Edges	are	shown	as	blue	lines	and	again	you
choose	the	Y	position	you	want	the	debug	object	to	appear	and	the
object	number	is	chosen	by	starting	at	65535.	Edges	are	not	re-
calculated	automatically	so	you	need	to	call	Show	again	to	display
changes.

AI	Debug	Hide	Waypoint	Edges	0
cls



AI	Debug	Show	Obstacle	Bounds	0,2.5

This	hides	the	edges	and	displays	the	obstacle	bounds	which	define	the
extent	of	all	obstacles	with	the	radius	(set	above)	added.	The	difference
between	waypoint	edges	and	obstacle	bounds	is	that	obstacle	bounds
are	drawn	surrounding	each	and	every	obstacle	even	when	they	overlap,
whereas	waypoints	take	the	obstacles	as	a	whole	and	draw	around
overlapping	obstacles	as	if	they	were	one.	Waypoints	edges	can	also	link
obstacles	together.	The	debug	object	is	chosen	by	starting	at	65535	and
is	not	re-calculated	automatically.	Call	Show	again	to	update	any
changes	to	the	debug	display.

AI	Debug	Hide	Obstacle	Bounds	0
cls
AI	Debug	Show	Sounds	2.5

We	now	move	on	to	displaying	sounds	which	can	attract	nearby	entities,
they	are	shown	as	yellow	dots	and	they	are	updated	in	real	time.	The
DarkBasic	objects	to	display	them	are	chosen	by	starting	at	object	id
65535	and	decreasing.	This	requires	some	sounds	exist	in	order	to	view
the	debug	output.

repeat

if	scancode()<>0	then	hold=1
set	cursor	0,0
print	"Debug	Commands	Demo,	Press	Any	Key	To	Continue"
print
print	"4	-	Displaying	Random	Sounds"
AI	Update
if	rnd(screen	fps())	=	0	then	AI	Create	Sound
rnd(80)-40,rnd(80)-40,0,0

until	scancode()=0	and	hold=1

This	loop	creates	random	sounds	around	the	level,	which	will	be
displayed	by	debug	objects,	until	the	user	presses	a	key.	The	yellow	dot
will	remain	for	as	long	as	the	sound	can	be	heard,	about	1	second,	and
then	be	removed	from	system.	The	Update	command	is	needed	to



remove	and	display	sounds	as	it	is	a	real	time	debugging	command.	The
next	debug	command	involves	entity	paths.	

AI	Add	Enemy	1
AI	Make	Path	1
AI	Path	Add	Point	1,20,0
AI	Path	Add	Point	1,-20,0
AI	Entity	Assign	Patrol	Path	1,1

AI	Debug	Show	Paths	2.5

This	creates	an	entity	and	a	patrol	path	to	use	in	the	next	debug
command.	The	patrol	path	deliberately	crosses	the	obstacle	from	the
previous	setup	to	create	a	more	interesting	path,	which	is	display	in	red.
The	final	point	in	the	path	represents	the	entity's	final	destination,	which	it
has	generated	the	path	to,	and	the	intermediate	points	are	shown	as	red
dots	which	represent	the	waypoints	the	entity	is	using	to	get	to	its
destination,	if	any.	The	points	are	connected	by	red	lines	which	represent
the	order	the	points	will	be	visited	in.	Path	displays	are	updated	in	real
time	and	you	can	specify	a	Y	position	for	the	debug	object.	Paths	will	be
displayed	for	all	entities.	Another	loop	updates	the	AI	system	to	move	the
entity	and	update	the	path.	

AI	Debug	Hide	Paths
AI	Set	Entity	View	Arc	1,90,170
AI	Debug	Show	View	Arcs	2.5

A	view	angle	is	assigned	to	the	entity	from	the	previous	setup	for	the	next
debug	command,	which	displays	view	angles,	view	range,	and	hearing
range.	The	view	is	shown	as	a	transparent	red	circle	that	extends	to	the
distance	of	the	view	range	and	angle	within	which	points	can	potentially
be	seen.	The	hearing	range	is	shown	as	a	yellow	circle	within	which
sounds	can	be	heard.	The	calculation	for	the	display	object	is	only	done
once	since	view	angles	and	ranges	rarely	change	it	is	faster	to	keep	the
object	from	frame	to	frame.	Any	changes	to	the	view	range,	angle	or
hearing	range	need	a	call	to	Show	View	Arcs	to	update.	The	position	and
rotation	of	the	display	object	will	be	updated	in	real	time	when	Update	is
called	as	this	can	be	done	quickly.



AI	Debug	Hide	View	Arcs
make	object	sphere	2,5
position	object	2,9.5,2.5,4
AI	Add	Enemy	2
AI	Debug	Show	Avoidance	Angles	2.5

The	next	command	requires	another	entity	to	display	entity	to	entity
avoidance	data.	This	is	where	an	entity	detects	nearby	entities	and	marks
their	area	as	blocked,	restricting	movement	in	that	direction.	Blocked
directions	are	shown	as	a	small	green	arc	extending	to	the	full	width	of
the	marked	area	and	update	in	real	time.	This	is	a	slow	command	as	it
must	re-calculate	the	avoidance	object	every	time	it	changes	which	is
every	frame	when	it	is	close	to	one	or	more	entities.

AI	Debug	Hide	Avoidance	Angles
AI	Kill	Entity	2
delete	object	2
AI	Set	Console	Output	On	1

The	second	entity	is	no	longer	needed	so	is	removed	from	the	AI	system
and	deleted,	always	remove	an	entity	before	deleting	its	object	if	the
object	is	linked	to	it.	The	Set	Console	Output	command	is	different	in	that
it	opens	a	new	window	to	display	a	detailed	list	of	the	main	entity
parameters	that	is	updated	in	real	time.	Closing	this	new	window
manually	will	result	in	the	program	crashing,	you	should	use	Set	Console
Output	Off	to	close	it.

AI	Set	Console	Output	Off
AI	Hide	Errors

Hiding	errors	is	used	to	prevent	the	AI	system	exiting	the	program	and
displaying	error	messages	when	an	invalid	action	or	command	is
performed,	such	as	setting	a	parameter	for	an	entity	that	does	not	exist.	It
is	useful	if	you	want	to	handle	errors	yourself,	for	example	adding	an
entity	and	then	checking	if	the	entity	exists	will	let	you	know	if	the	addition
succeeded	or	failed.

AI	Set	Entity	Speed	3,10



In	this	case	the	loop	contains	an	invalid	command	since	entity	3	has	not
been	added,	with	errors	off	the	command	will	have	no	effect.



Compatibility	With	A	Physics	System

The	main	issue	with	combining	DarkAI	with	a	physics	system,	such	as
DarkPhysics,	is	that	physics	will	also	want	to	control	the	DarkBasic
objects	representing	your	entities	to	stop	them	moving	through	each
other.	If	you	link	the	objects	with	the	AI	system	with	the	physics	system
trying	to	move	them	conflicts	may	arise	between	which	position	the	object
should	be	moved	to.	The	solution	to	this	is	to	give	control	of	the	object
over	to	physics	as	normal	and	to	not	link	the	object	to	the	AI	system,
instead	using	the	Set	Position	and	Get	X/Z	commands	to	change	and
retrieve	the	entities'	positions.

If	the	physics	system	can	detect	when	an	object	is	re-positioned	and
update	its	internal	values	then	the	two	systems	should	work	together	as
long	as	AI	Update	is	called	before	updating	physics.	This	avoids	the
possibility	that	after	physics	has	prevented	collisions	the	AI	moves	the
entity	into	a	new	collision.	If	this	is	not	the	case	then	you	can	remove	the
AI	system	from	controlling	the	entity	and	use	the	physics	system	to
position	the	entity	where	the	AI	wants	it	to	go.	

When	not	linked	to	an	object	DarkAI	will	use	internal	values	that
represent	where	it	thinks	the	entity	should	be	when	AI	Update	is	called,
use	AI	Get	Entity	X	and	AI	Get	Entity	Z	commands	to	get	these	values.
You	should	then	use	methods	provided	by	the	physics	system	to	move
the	DarkBasic	object	to	this	position,	for	example	using	forces,	velocities
or	positions	whichever	the	physics	system	prefers,	and	let	the	physics
system	move	the	DarkBasic	object.	Then	update	the	physics	system	so
that	it	positions	the	DarkBasic	object	for	you	and	adjusts	for	collisions,
etc,	automatically.	Then	get	the	new	position	of	the	object	using	the
normal	DarkBasic	commands	Object	Position	X	and	Object	Position	Z
and	use	the	AI	Set	Entity	position	command	to	set	the	new	internal
position	for	DarkAI	to	work	with.	This	new	value	will	then	be	used	by	the
AI	system	in	the	next	AI	Update	to	work	out	where	it	wants	the	entity	to
move	to,	it	stores	these	new	values	internally	and	the	cycle	repeats.	It	is
recommended	you	always	update	the	AI	before	you	update	the	physics	in
your	loop.	

You	can	use	AI	Set	Entity	Collide	to	tell	an	entity	when	it	is	blocked	by



something	it	doesn't	know	exists	(a	physics	object	that	is	not	an	obstacle
in	the	AI	system)	which	the	AI	would	constantly	try	to	move	through	and
physics	would	keep	stopping	it.	This	tells	the	entity	to	move	sideways	for
a	bit.


	DarkAI
	Commands
	Obstacles
	Obstacles
	AI Add Static Obstacle
	AI Add View Blocking Obstacle
	AI Remove Static Obstacle
	AI Start New Obstacle
	AI Add Obstacle Vertex
	AI End New Obstacle
	AI Discard New Obstacle
	AI Add Obstacle From Level
	AI Complete Obstacles

	Waypoints
	Waypoints
	AI Add Waypoint
	AI Remove Waypoint
	AI Count Waypoints
	AI Clear Waypoints
	AI Make Memblock From Waypoints
	AI Make Waypoints From Memblock
	AI Update Waypoint Visibility

	Paths
	Paths
	AI Make Path
	AI Delete Path
	AI Path Add Point
	AI Path Count Points
	AI Path Get Point X
	AI Path Get Point Z
	AI Make Path Between Points
	AI Make Path From Closest Waypoints
	AI Make Memblock From Path
	AI Make Path From Memblock

	Zones
	Zones
	AI Add Zone
	AI Remove Zone
	AI Zone Exist

	Sounds
	Sounds
	AI Create Sound

	Debug
	Debug Commands
	AI Debug Show Waypoints
	AI Debug Hide Waypoints
	AI Debug Show Waypoint Edges
	AI Debug Hide Waypoint Edges
	AI Debug Show Obstacle Bounds
	AI Debug Hide Obstacle Bounds
	AI Debug Show Paths
	AI Debug Hide Paths
	AI Debug Show View Arcs
	AI Debug Hide View Arcs
	AI Debug Show Sounds
	AI Debug Hide Sounds
	AI Debug Show Avoidance Angles
	AI Debug Hide Avoidance Angles
	AI Set Console Output On
	AI Set Console Output Off
	AI Show Errors
	AI Hide Errors

	Player
	Player
	AI Add Player
	AI Kill Player
	AI Get Player X
	AI Get Player Z
	AI Set Player Position
	AI Set Player Angle Y
	AI Set Player Ducking
	AI Set Player Container
	AI Get Player In Zone

	Entity
	Entities
	AI Add Enemy
	AI Add Friendly
	AI Add Neutral
	AI Kill Entity
	AI Entity Exist
	AI Entity Reset
	Actions
	AI Entity Follow Player
	AI Entity Separate
	AI Entity Defend Area
	AI Entity Defend Point
	AI Entity Search Area
	AI Entity Go To Position
	AI Entity Stop
	AI Entity Look At Position
	AI Entity Look Around
	AI Entity Random Move
	AI Entity Move Close
	AI Entity Move To Cover
	AI Entity Move To Idle Position
	AI Entity Move To Closest Sound
	AI Entity Move Away From Sound
	AI Entity Add Target
	AI Entity Remove Target
	AI Entity Strafe Target
	AI Entity Hold Position
	AI Entity Duck
	AI Entity Stand
	AI Entity Assign Zone
	AI Entity Remove Zone
	AI Entity Assign Patrol Path

	Get Parameters
	AI Get Entity X
	AI Get Entity Z
	AI Get Entity Move X
	AI Get Entity Move Z
	AI Get Entity Destination X
	AI Get Entity Destination Z
	AI Get Entity Target X
	AI Get Entity Target Z
	AI Get Entity Angle Y
	AI Get Entity State$
	AI Get Entity Action$
	AI Get Entity Can Fire
	AI Get Entity Can See
	AI Get Entity Count Targets
	AI Get Entity Target ID
	AI Get Entity Team
	AI Get Entity Is Moving.
	AI Get Entity Is Turning
	AI Get Entity Is Ducking
	AI Get Entity Avoiding
	AI Get Entity Heard Sound
	AI Get Entity Stance
	AI Get Entity Container
	AI Get Entity In Zone

	Set Parameters
	AI Set Entity Active
	AI Set Entity Aviod Distance
	AI Set Entity Attack Distance
	AI Set Entity Control
	AI Set Entity Stance
	AI Set Entity Aggressive
	AI Set Entity Speed
	AI Set Entity Turn Speed
	AI Set Entity Patrol Time
	AI Set Entity Hearing Range
	AI Set Entity Hearing Threshold
	AI Set Entity View Range
	AI Set Entity View Arc
	AI Set Entity Fire Arc
	AI Set Entity Defend Distance
	AI Set Entity Defending
	AI Set Entity Idle Position
	AI Set Entity Position
	AI Set Entity Angle Y
	AI Set Entity Can Duck
	AI Set Entity Can Attack
	AI Set Entity Can Strafe
	AI Set Entity Can Search
	AI Set Entity Can Hear
	AI Set Entity Can Roam
	AI Set Entity Can Select Targets
	AI Set Entity No Look At Point
	AI Set Entity Collide
	AI Set Entity Hit
	AI Set Entity Run Away When Hit
	AI Set Entity Container


	Team
	Teams
	AI Team Follow Player
	AI Team Separate

	Container
	Containers
	AI Add Container
	AI Container Exist
	AI Remove Container
	AI Set Container Active

	Other
	AI Start
	AI Reset
	AI Set Radius
	AI Set Avoid Mode
	AI Update


	Demos
	2D
	Direct Integration
	Path Finding
	Patrolling
	Zones
	Sounds
	Teams
	Commands
	Container
	Debug
	A Note On Physics


