
Overview v4.0
Deployment	Tools	Foundation	Deployment	Tools	Foundation

Deployment	Tools	Foundation	is	a	rich	set	of	.NET	class	libraries	and
related	resources	that	together	bring	the	Windows	deployment	platform
technologies	into	the	.NET	world.	It	is	designed	to	greatly	simplify
deployment-related	development	tasks	while	still	exposing	the	complete
functionality	of	the	underlying	technology.

The	primary	focus	of	DTF	is	to	provide	a	foundation	for	development	of
various	kinds	of	tools	to	support	deployment	throughout	the	product
lifecycle,	including	setup	authoring,	building,	analysis,	debugging,	and
testing	tools.	In	addition	to	tools,	DTF	can	also	be	useful	for	install-time
activities	such	as	setup	bootstrappers,	external	UI,	and	custom	actions,
and	for	application	run-time	activities	that	need	to	access	the	deployment
platform.

For	a	description	of	the	the	latest	changes,	see	What's	New.

Send	comments	on	this	topic	to	wix-users@lists.sourceforge.net

mailto:wix-users%40lists.sourceforge.net?Subject=Deployment Tools Foundation Documentation


Overview	>	What's	New? 2007-07-03
Deployment	Tools	Foundation	What's	New?

Highlights

New	project	name	name	"Deployment	Tools	Foundation",	and	new
namespaces	Microsoft.Deployment.*

Added	ZIP	compression	library

Added	library	for	reading/writing	Win32	resources	including	file
versions

Managed	custom	action	improvements:

Simplified	authoring	and	building	--	new	MakeSfxCA	tool
automatically	maps	DLL	entrypoints	to	CA	methods.

Managed	custom	action	DLLs	now	run	in	a	separate	process	for
better	reliability	with	respect	to	CLR	versions,	but	still	have	full
access	to	the	MSI	session.

Found	and	fixed	many	bugs	with	extensive	unit	test	suite

LINQ	to	MSI	!	(preview)

Unfortunately,	all	these	changes	do	mean	that	migrating	tools	and
applications	from	the	previous	release	can	be	a	moderate	amount	of
work.

Breaking	Changes

For	the	first	time	since	v1.0,	this	release	contains	some	major	breaking
changes,	due	to	a	significant	redesign	and	cleanup	effort	that	has	been	a
long	time	coming.	The	overall	purpose	of	the	changes	is	to	bring	the
class	libraries	much	closer	to	ship-quality.



All	libraries	use	a	new	namespace	hierarchy	under
Microsoft.Deployment.	The	new	namespace	aligns	with	the	new
project	name,	gives	all	the	various	libraries	an	identity	that	makes
them	obviously	related	to	the	DTF	project,	and	mostly	avoids	"taking
over"	a	namespace	that	might	be	rightfully	owned	by	the	platform
technology	owner.

Assemblies	are	also	renamed	to	follow	namespaces.

A	new	unified	compression	framework	forms	the	basis	for	the	new
ZIP	library	and	a	redesigned	CAB	library.	Additional	archive	formats
can	be	plugged	into	the	framework.	The	stream-based	compression
APIs	have	been	redesigned	to	be	more	object-oriented	and	easier	to
use.	The	file-based	APIs	are	mostly	unchanged	from	the	old	cabinet
library,	although	some	names	have	changed	in	order	to	fit	into	the
new	unified	framework.

Large	parts	of	the	WindowsInstaller	library	have	been	redesigned	to
be	more	object-oriented	and	to	better	follow	.NET	Framework	design
guidelines.	And	various	APIs	throughout	the	library	have	naming	or
other	changes	for	better	consistency	and	to	follow	conventions	and
best	pratices	as	enforced	by	FxCop.

The	WindowsInstaller	APIs	no	longer	make	any	attempt	to	mimic	the
MSI	COM	automation	interfaces.	The	naming	and	object	patterns	in
the	automation	interfaces	often	conflicted	with	with	best	practices	for
.NET	Framework	class	libraries.	Since	most	people	start	using	DTF
without	having	ever	experienced	MSI	scripting,	there	is	little	reason
to	match	the	scripting	object	model.	Making	the	APIs	more
consistent	with	.NET	conventions	will	make	them	much	easier	to	use
for	people	already	experienced	with	the	.NET	Framework.

APIs	in	all	class	libraries	use	generics	where	appropriate,	especially
the	generic	collection	interfaces.	This	means	.NET	Framework	2.0	or
later	is	required.

The	FilePatch	library	is	missing	from	this	release.	An	updated	and
redesigned	file-delta	library	is	in	development.



Other	Changes

New	MakeSfxCA	tool	for	building	managed	custom	action	packages:
In	addition	to	packaging	the	CA	DLL	and	dependencies,	it
automatically	detects	managed	CA	methods	and	generates
corresponding	unmanaged	DLL	entrypoints	in	the	CA	host	DLL
(SfxCA.dll),	where	they	are	called	by	MSI.	Previously	it	was
necessary	to	either	provide	this	mapping	in	a	CustomAction.config
file,	or	live	with	the	generic	"ManagedCustomActionN"	names	when
authoring	the	CustomAction	table	in	the	MSI.	For	more	info,	see	the
help	topic	on	building	managed	custom	actions.

Out-of-proc	managed	custom	action	DLLs:	When	a	managed	custom
action	runs,	it	normally	requests	a	specific	major	version	of	the	CLR
via	CustomAction.config.	However	in	the	previous	implementation,
the	request	could	be	ignored	if	there	was	already	a	different	version
of	the	CLR	loaded	into	the	MSI	process,	either	from	a	previous
custom	action	or	by	some	other	means.	(The	CLR	doesn't	allow
side-by-side	versions	within	the	same	process.)	While	there	have
been	no	reports	of	this	issue	causing	setup	failures	in	practice,	it
may	be	only	a	matter	of	time,	as	new	CLR	versions	keep	coming	out.

The	redesigned	native	host	for	managed	custom	actions,	SfxCA.dll,
re-launches	itself	in	a	separate	process	before	loading	the	CLR	and
invoking	the	managed	CA.	This	ensures	that	the	desired	CLR
version	is	always	loaded,	assuming	it	is	available	on	the	system.	It
also	sets	up	a	named-pipe	remoting	channel	between	the	two
processes.	All	session-related	MSI	API	calls	are	routed	through	that
channel,	so	that	the	custom	action	has	full	access	to	the	installer
session	just	as	if	it	were	running	in-process.

The	new	zip	compression	library	supports	nearly	all	features	of	the
zip	file	format.	This	includes	the	ZIP64	extensions	for	archives
greater	than	4GB,	as	well	as	disk-spanning	capabilities.	Zip
encryption	is	not	supported.	The	zip	library	has	been	tested	against
a	variety	of	third-party	zip	tools;	please	report	any	issues	with
incompatible	packages.



Currently	only	the	basic	DEFLATE	compression	algorithm	is
supported	(via	System.IO.Compression.DeflateStream),	and	the
compression	level	is	not	adjustable	when	packing	an	archive.	The
zip	file	format	has	a	mechanism	for	plugging	in	arbitrary	compression
algorithms,	and	that	capability	is	exposed:	you	can	provide	a	Stream
object	capable	of	compressing	and	decompressing	bytes	as	an
alternative	to	DeflateStream.

Added	support	for	the	few	APIs	new	in	MSI	4.0:

Installer.GetPatchFileList()
InstallLogModes.RMFilesInUse
ComponentAttributes.DisableRegistryReflection
ControlAttributes.ElevationShield

	
The	documentation	is	now	built	with	the	Sandcastle	doc	build
engine,	with	help	from	the	Sandcastle	Help	File	Builder.	(The	old
CHM	was	built	with	NDoc.)

The	documentation	includes	detailed	class	diagrams	for	the
WindowsInstaller	and	Compression	namespaces.

WindowsInstaller	API	doc	topics	now	link	straight	to	the
corresponding	unmanaged	MSI	API	topics	in	MSDN.	If	you	know	an
unmanaged	MSI	API	you	want	to	use	but	don't	know	the	managed
equivalent,	you	can	search	for	it	and	find	what	managed	APIs	link	to
it.

Unit	tests	cover	about	90%	of	the	Compression,	Compression.Zip,
and	Compression.Cab	assemblies	--	basically	everything	except
some	rare	error-handling	cases.

Unit	tests	along	with	samples	cover	over	50%	of	the
WindowsInstaller	and	WindowsInstaller.Package	assemblies
(including	custom	action	functionality).	More	test	cases	are	still	being
added.

Bugfixes

http://msdn2.microsoft.com/en-us/vstudio/bb608422.aspx
http://www.codeplex.com/SHFB


In	addition	to	the	extensive	cleanup	due	to	redesigns	and	unit	tests,	the
following	reported	bugs	have	been	fixed:

Managed	custom	actions	could	in	rare	instances	fail	to	load	with
error	183	(directory	already	exists)

Timestamps	of	files	in	a	cabinet	could	be	incorrectly	offset	based	on
the	timezone.	(This	was	due	to	a	behavior	change	in	the	DateTime
class	between	.NET	1.1	and	2.0.)

Unicode	file	paths	for	cabbed	files	could	be	handled	incorrectly	in
some	cases

Installer.DetermineApplicablePatches	just	didn't	work

InstallPackage.ApplyPatch	couldn't	handle	applying	multiple	patches
to	the	same	layout

LINQ	to	MSI

You'll	never	want	to	write	MSI	SQL	again!

Language	INtegrated	Query	is	a	new	feature	in	.NET	Framework	3.5	and
C#	3.0.	Through	a	combination	of	intuitive	language	syntax	and	powerful
query	operations,	LINQ	provides	a	whole	new	level	of	productivity	for
working	with	data	in	your	code.	While	the	.NET	Framework	3.5	provides
LINQ	capability	for	SQL	databases	and	XML	data,	now	you	can	write
LINQ	queries	to	fetch	and	even	update	data	in	MSI	databases!

Look	at	the	following	example:

				var	actions	=	from	a	in	db.InstallExecuteSequences
																		join	ca	in	db.CustomActions	on	a.Action	equals	ca.Action
																		where	ca.Type	==	CustomActionTypes.Dll
																		orderby	a.Sequence
																		select	new	{
																						Name	=	a.Action,
																						Target	=	ca.Target,
																						Sequence	=	a.Sequence	};



										
				foreach	(var	a	in	actions)
				{
								Console.WriteLine(a);
				}
				
The	query	above	gets	automatically	translated	to	MSI	SQL:

				SELECT	`InstallExecuteSequence`.`Action`,	`CustomAction`.`Target`,
`InstallExecuteSequence`.`Sequence`	FROM	`InstallExecuteSequence`,
`CustomAction`	WHERE	`InstallExecuteSequence`.Action`	=
`CustomAction`.`Action`	ORDER	BY	`InstallExecuteSequence`.`Sequence`

But	the	query	is	not	executed	until	the	foreach	enumeration.	Then	records
are	fetched	from	the	results	incrementally	as	the	enumeration
progresses.	The	objects	fetched	are	actually	of	an	anonymous	type
created	there	in	the	query	with	exactly	the	desired	fields.	So	the	result	of
this	code	will	be	to	print	the	Action,	Target,	and	Sequence	of	all	Type	1
custom	actions.

The	query	functionality	is	currently	limited	by	the	capabilities	of	the	MSI
SQL	engine.	For	example,	a	query	can't	use	where	(ca.Type	&
CustomActionTypes.Dll)	!=	0	because	the	bitwise-and	operator	is	not
supported	by	MSI	SQL.	The	preview	version	of	LINQ	to	MSI	will	throw	an
exception	for	cases	like	that,	but	the	eventual	goal	is	to	have	it
automatically	move	the	data	and	operation	outside	of	MSI	when
necessary,	so	that	any	arbitrary	expressions	are	supported	in	the	query.

Note	there	are	no	MSI	handles	(or	IDisposables)	to	worry	about!	Handles
are	all	managed	internally	and	closed	deterministically.	Also,	with	the
entity	object	model	for	common	tables,	the	compiler	will	tell	you	if	you	get
a	column	name	wrong	or	misspelled.	The	entity	objects	even	support
easy	inserting,	updating,	and	deleting	(not	shown	here).

For	more	examples,	see	the	LinqTest	project	in	the	source.	More
documentation	is	being	written.

Obviously,	LINQ	to	MSI	requires	.NET	Framework	3.5.	Everything	else	in



DTF	requires	only	.NET	Framework	2.0.

Note:	The	LINQ	functionality	in	this	DTF	release	is	of	preview	quality	only
and	should	not	be	used	in	production.	While	there	are	unit	tests	covering
a	wide	variety	of	queries,	using	advanced	queries	outside	what	is
covered	by	the	tests	is	likely	to	result	in	unexpected	exceptions,	and
retrieved	data	might	possibly	be	incorrect	or	incomplete.	An	updated
LINQ	to	MSI	library	is	in	development.

	

Send	comments	on	this	topic	to	wix-users@lists.sourceforge.net

mailto:wix-users%40lists.sourceforge.net?Subject=Deployment Tools Foundation Documentation


Overview	>	Change	History
Deployment	Tools	Foundation	Change	History

2007-07-03

See	What's	New?
	
	

2005-03-30

New	custom	action	proxy
Managed	custom	actions	use	an	XML	config	file	to	specify
the	CLR	version.
New	CAPack	module	is	an	unmanaged	self-extracting	CA	DLL
that	can	wrap	both	managed	and	unmanaged	custom	actions.
(The	old	managed	CAProxy	module	is	obsolete.)
Custom	action	build	process	is	different	but	still	complicated	--
see	documentation	for	details.
CustomActionAttribute	no	longer	accepts	the	optional
NativeDependencies	parameter	since	it	does	not	apply	to	the
new	proxy	(all	packaged	files	are	always	extracted	and	available
when	the	CA	executes).

64bit	support
Various	code	fixes	to	pointer/handle	types	and	structure
alignments.
Cabinet	and	MSI	libraries	tested	on	AMD64	CLR.
Unmanaged	and	managed	parts	of	custom	action	proxy	tested
on	AMD64.

MSI	3.1	APIs	added:
Installer.SetExternalUI(ExternalUIRecordHandler)
Installer.NotifySidChange

Code	builds	easier	with	.NET	Famework	2.0
AugmentIL	post-build	step	is	no	longer	necessary	when
compiling	the	cabinet	code	against	.NET	Framework	2.0,	which



has	builtin	support	for	cdecl	delegates.
All	C#	code	compiles	against	.NET	Framework	2.0	without
obsolete	warnings,	when	setting	the	NETFX2	preprocessor
define.
Same	code	is	still	compatible	with	.NET	Framework	1.0	+
AugmentIL.

Miscellaneous	bugfixes/changes:
InstallPackage.ExtractFiles	could	fail	in	some	cominations	of
compressed/uncompressed	files	-	fixed.
Installer.DeterminePatchSequence	was	broken	due	to	an
incorrect	interop	struct	-	fixed.
CabinetInfo	and	CabinetFileInfo	classes	made	serializable.
Added	Session.FormatString	method	to	simplify	formatting	a
string	with	property	substitutions.

Documentation	updates:
Updated	all	documentation	for	new	CA	proxy.
Added	new	topic	discussing	InstallUtil.

2004-04-13

Documentation
Consolidated	all	documentation	into	a	single	CHM	file.
Added	new	topics	about	working	with	MSI	databases	&	cabinet
files,	to	help	new	users	get	oriented	more	easily.

WindowsInstaller
Removed	[Beta]	tags	from	MSI	3.0	APIs,	but	otherwise	there
have	been	no	changes	since	3.0	Beta	1.

Be	warned	these	are	still	the	least-tested	parts	of	the
library,	so	early	users	may	encounter	bugs.

InstallPackage
Fixed	InstallPackage.ExtractFiles()	bug	when	directory	doesn't
exist.
Added	ability	to	handle	uncompressed	files	in	a	package
marked	as	compressed.

Cabinet
Fixed	improper	handling	of	file	attributes.



This	bug	caused	some	packages	to	not	be	extractable	by
other	tools.

Added	support	for	UTF	filenames.
Non-ASCII	filenames	will	automatically	be	stored	as	UTF-8.
(But	note	most	other	tools	don't	know	how	to	extract	them.)

2003-10-13

Cab
Fixed	a	bug	introduced	in	v2.4.0	that	caused	files	to	be	left	in
the	%TEMP%	directory	after	creating	a	cab.
Unsealed	the	CabinetInfo,	CabinetFileInfo,	CabinetStatus
classes	and	made	a	few	methods	protected	and	virtual.

AugmentIL
Fixed	a	bug	that	sometimes	caused	a	crash	when	specifying	a
relative	output	path	on	the	command-line.
Fixed	a	bug	that	sometimes	caused	the	Win32	version	to	be
missing	from	the	output	file.

Samples\Diff:	added	new	sample	tool
Recursively	diffs	directories,	MSIs,	MSPs,	CABs,	other	files.

2003-09-23

Cab
Fixed	a	bug	that	caused	compressing	very	large	files/file	sets	to
use	way	too	much	memory.	Performance	on	large	inputs	is	now
within	a	few	%	of	native	cab	tools	(sometimes	even	a	little
faster!)	for	the	same	compression	level.

WindowsInstaller
All	the	new	MSI	3.0	beta	APIs	are	wrapped,	resulting	in	the
following	additions:

New	classes	-	Product,	Patch	(for	accessing	sourcelist	and
other	config)
New	methods	on	Install	class	-	GetProducts,	GetPatches,
RemovePatches,	ApplyMultiplePatches,



DetermineApplicablePatches,	ExtractPatchXmlData
New	enumerations	-	InstallContext,	PatchStates,
SourceType
Additional	InstallProperty	values

Note,	MSI	3.0	support	should	be	considered	preliminary	for	now,
as	APIs	(both	native	and	managed)	are	subject	to	change.
For	MSI	2.0	compatibility,	developers	should	not	use	any
classes	or	methods	that	are	marked	as	[MSI	3.0	beta]	in	the
documentation.
And	unrelated	to	3.0,	a	few	additional	enums	have	been	added:
DialogAttributes,	ControlAttributes,	CustomActionTypes,
IniFileAction,	RegistryRoot,	RemoveFileInstallMode,
ServiceControlEvents,	ServiceInstallFlags,	TextStyles,
UpgradeAttributes,	LocatorType
Also	made	a	few	minor	non-breaking	changes	to	keep	the
library	FxCop-clean.

AugmentIL
Added	support	for	strongname	signing	and	delay-signing.
AugmentIL	tries	to	locate	the	keyfile	using	the
AssemblyKeyFileAttribute,	or	you	may	specify	the	path	with	the
new	/key	option.
All	"released"	assemblies	will	now	be	strongname-signed	(with
an	unofficial	key).

CAProxy
Added	support	for	NativeDependencies	property	on
CustomActionAttribute.	This	enables	custom	actions	to	P/Invoke
into	native	DLLs	that	are	carried	with	them.

Samples\SampleCAs
In	SampleCA2,	changed	MessageBox.Show("")	to
session.Message(User,""),	because	generally	it	is	a	bad	practice
for	CAs	to	show	independent	UI.
Added	test	of	CustomActionAttribute.NativeDependencies
functionality.

Samples\CabPack:	added	new	sample
Demonstrates	&	tests	the	cab	library	by	creating	self-extracting
packages

Samples\Inventory:	added	new	sample



Shows	a	hierarchical,	relational,	searchable	view	of	all	of	the
product,	feature,	component,	file,	and	patch	data	managed	by
MSI,	for	all	products	installed	on	the	system.

2003-09-12

Cab:
Added	CabinetInfo.CompressDirectory	method,	capable	of
compressing	an	entire	directory	tree	structure.
Updated	documentation	of	various	methods	concerning	support
of	directory	structure	inside	cabs.
CabinetInfo	case-sensitivity	was	inconsistent	-	now	it	is	case-
insensitive	by	default,	though	case	is	still	preserved
Separated	assembly	attributes	into	assembly.cs

Msi:
InstallerException	and	subclasses	automatically	get	extended
error	data	from	MSI's	last-error-record	when	available.	The	data
is	stored	in	the	exception	and	made	available	through	the
GetErrorRecord()	method,	and	the	exception's	Message
includes	the	formatted	error	message	and	data.	This	makes
most	exceptions	extremely	informative!
Added	View.GetValidationErrors()	method,	and	supporting
ValidationErrorInfo	struct	and	ValidationError	enum.	This
wrapper	for	the	MsiViewGetError	API	had	been	accidentally	left
out.
Session.Message()	now	supports	message-box	flags	to	specify
buttons	&	icon
Added	doc	remarks	to	various	methods	about	closing	handles.
Separated	assembly	attributes	into	assembly.cs

AugmentIL:
Recent	builds	of	ildasm	v2.0.*	have	a	slightly	different	output
format,	which	could	break	AugmentIL	in	some	cases	-	fixed

SampleCAs:
Removed	'using'	clause	from	SampleCA1	--	there's	no	need	to
close	the	session's	active	database	handle

Documentation:



Added	note	to	ReadMe	about	compiling	the	cab	source	into
another	assembly

2003-08-07

Cab:
CabinetInfo.IsValid()	usually	returned	false	even	for	valid	cabs	-
fixed
Extracting	cab	files	with	null	timestamps	generated	exception	-
fixed

Msi:
Added	InstallCanceledException,	subclass	of	InstallerException;
Methods	which	may	be	canceled	by	the	user	can	throw	this
exception
Added	MessageResult	enumeration;	Used	by
Session.Message()	and	ExternalUIHandler	delegate
Installer.EnableLog()	now	supports	extended	attributes	correctly:
Append	mode	and	flush-every-line
Added	Session.DoActionSequence()	-	This	wrapper	for	the
MsiSequence	API	had	been	accidentally	left	out

CAProxy:
Catches	InstallCanceledException,	returns
ERROR_INSTALL_USEREXIT	so	CA	developer	doesn't
necessarily	have	to	handle	the	exception

Msi\Package:
Added	TransformInfo	class:	metadata	about	an	individual	patch
transform
Added	PatchPackage.GetTransform*()	methods	which	return
TransformInfo

Documentation:
Added	section	to	ReadMe.htm	about	building	managed	custom
actions

2003-06-02



Msi:
Validation	didn't	work	on	merge	modules	-	fixed

CAProxy:
Was	broken	in	2.1	-	fixed

2003-05-14

Msi:
External	UI	handler	didn't	survive	a	garbage	collection	-	fixed
Validation	engine	was	completely	broken	-	now	it	should	work	at
least	for	MSIs	which	are	already	mostly	valid
Added	DynamicLoad	property	to	CustomActionAttribute
Usage:	set	DynamicLoad=false	when	using	XmlSerialization;
default	is	true

Msi\Package:
File	extraction	and	update	methods	didn't	work	on	merge
modules	-	fixed
Made	file	update	code	slightly	more	robust
Removed	hard-reference	to	the	FilePatch	assembly	-	now	it	is
only	loaded	if	working	with	binary	file	patches

AugmentIL:
AugmentIL	would	crash	if	some	input	files	had	read-only	attr	-
fixed
Made	/verbose	switch	slightly	more	verbose

CAProxy:
Added	support	for	the	DynamicLoad	property	of
CustomActionAttribute
Added	MMsiBreak	debugging	functionality	-	see	doc

Samples\WiFile:
Added	/l	(list	files)	switch

Samples\SampleCAs:
In	the	makefile	the	comments	about	debug	builds	had	an	error;
Now	the	sample	builds	debug	packages	(correctly)	by	default.

Documentation:
Wrote	AugmentIL.htm	describing	the	AugmentIL	tool	and	its
options.



Wrote	WiFile.htm	describing	the	WiFile	sample	tool.
Added	section	to	ReadMe.htm	about	debugging	managed
custom	actions.

2003-03-31

Msi:	Implemented	the	remaining	APIs,	also	minor	improvements	and
bugfixes

All	published	APIs	are	wrapped,	with	the	exception	of	four:
MsiGetFileSignatureInformation	(because	I	don't	know	of	a	.NET
analog	for	the	returned	certificate	structure),	and	3	APIs	for
previewing	UI
Database.OpenView	and	Database.Execute*	now	take
String.Format	style	params
Database.ApplyTransform	can	optionally	use	the	error-
suppression	flags	stored	in	the	transform	summary	info
Added	a	few	supporting	enumerations	and	structures	for	the
remaining	APIs
InstallerException	gets	a	descriptive	message	for	any	MSI	or
system	error
Fixed	a	bug	in	InstallerException	which	would	usually	report
"error	0"
Added	optimization	for	setting	a	Record	field	to	a
MemoryStream
Record.GetStream	is	capable	of	extracting	substorages
Moved	InstallPath	class	to	Microsoft.WindowsInstaller.Package
assembly

Msi\FilePatch:	added	new	project
Binary	file	patch	API	wrapper

Msi\Package:	added	new	project
Helper	classes	for	working	with	MSI	and	MSP	packages

Cab:	some	minor	bugfixes
Cabinet.Extract(stream,	name)	threw	a	NullReferenceException
if	the	file	didn't	exist	in	the	cab	--	now	it	returns	null
CabinetInfo.CompressFileSet()	was	broken	--	fixed
If	a	Cabinet	callback	throws	an	exception,	it	is	propogated	as



the	inner-exception	of	the	CabinetException
Samples\WiFile:	added	new	sample

Demonstrates	some	features	of	InstallPackage	class	in
Msi\Package	project

2003-03-20

Documentation!

Msi	and	Cab	sources	include	complete	C#	XML	documentation.
Msi	and	Cab	makefiles	generate	XML	documentation	files.
Reference	CHM	compiled	from	XML	documentation	with	NDoc.

I	am	aware	that	exceptions	are	still	not	documented	in	most	areas.	Other
than	that,	feel	free	to	send	me	a	note	if	it's	still	not	clear	how	to	use	parts
of	the	API	after	reading	the	documentation.

Version	is	still	1.1	because	there	are	no	code	changes	in	this	release.

2003-03-13

Msi:	lots	of	small	improvements	for	usability	and	consistency
Reworked	ExternalUIHandler	support
Added	Installer	properties/methods:

Components
ComponentClients()
ComponentState()
ComponentPath()
EnableLog()

Added	Session.EvaluateCondition()	method
Improved	exception-handling	in	many	methods	in	Installer,
Database,	&	Session	classes
Added	extensive	XML	doc-comments	to	Installer,	Database,
View,	&	Session	classes
A	few	breaking	changes:

View.ModifyMode	enumeration	moved	outside	View	and



renamed	ViewModifyMode
InstallLogMode	enumeration	renamed	to	InstallLogModes
(naming	convention	for	bitfields)
Record	constructor	takes	arbitrary	number	of	parameters

AugmentIL:	almost	completely	rewritten
Ildasm/ilasm	steps	are	built-in

The	round-trip	can	be	done	in	one	step
IL	source	input/output	is	still	supported

Never	throws	an	unhandled	exception
Organized	command-line	options,	consistent	with	other	.NET
tools
Uses	a	plugin	architecture	to	allow	additional	augmentations

CAProxy:	Added	AIL_CAProxy.cs	-	AugmentIL	plugin	generates	CA
proxy	methods
SampleCAs:	Updated	makefile	for	new	AugmentIL	usage

2003-01-16

ReadMe.htm:	Added	section	on	writing	managed	CAs
SampleCAs:	Added	missing	reference	to	System.Windows.Forms.dll
to	the	makefile
AugmentIL:	Added	specific	warning	messages	for	when	CA	method
has	wrong	signature
Put	sources	in	Toolbox-hosted	Source	Depot.

2003-01-14

Initial	posting	to	http://toolbox
	

Send	comments	on	this	topic	to	wix-users@lists.sourceforge.net

mailto:wix-users%40lists.sourceforge.net?Subject=Deployment Tools Foundation Documentation


Overview	>	Dependencies
Deployment	Tools	Foundation	Dependencies

This	page	lists	all	the	components	that	the	DTF	project	depends	on,	at
build	time	and	at	run-time.

Build-time	Dependencies

Visual	Studio	/	.NET	Framework	-	Most	of	DTF	can	be	built	with
Visual	Studio	2005	&	.NET	Framework	2.0.	However,	the	LINQ
project	requires	VS	2008	&	.NET	Framework	3.5.

Sandcastle	-	.NET	documentation	build	engine	from	Microsoft,	used
to	process	all	the	XML	doc-comments	in	DTF	libraries	into
DTFAPI.chm.	(official	site)

Sandcastle	Builder	-	Sandcastle	by	itself	is	complex	and	difficult	to
use;	this	free	tool	from	Codeplex	provides	an	easy-to-use	project
system	around	it	to	automate	the	documentation	build	process.
(project	link)

HTML	Help	Workshop	-	Tools	for	building	HTML	Help	1.x	(CHM
files).	Used	to	build	DTF.chm.	(download	link)

Run-time	Dependencies

.NET	Framework	-	Most	of	DTF	requires	.NET	Framework	2.0.
(.NET	1.1	is	no	longer	supported.)	The	only	exception	is	the	LINQ
assembly	which	requires	.NET	Framework	3.5.

Windows	Installer	-	Windows	Installer	introduced	new	APIs	and
capabilities	with	each	successive	version.	Obviously,	the
corresponding	functionality	in	the	managed	APIs	is	only	available
when	the	required	version	of	the	Windows	Instaler	(msi.dll)	is
installed	on	the	system.	Use	the	Installer.Version	property	to	easily
check	the	currently	installed	MSI	version.	Attempting	to	use	an	API
not	supported	by	the	current	version	will	result	in	an

http://www.codeplex.com/Sandcastle/
http://www.codeplex.com/SHFB/
http://msdn2.microsoft.com/en-us/library/ms669985.aspx


EntryPointNotFoundException.	To	check	what	version	is	required	for
a	particular	API,	see	the	documentation	link	to	the	corresponding
unmanaged	API	in	MSI.chm.

In	some	instances	when	a	newer	version	of	MSI	provides	an	"Ex"
alternative	to	a	function,	only	the	"Ex"	function	is	used	by	the
managed	library.	This	may	hide	some	functionality	that	would	have
otherwise	been	available	on	a	system	with	an	older	version	of	MSI.

cabinet.dll	-	The	DTF	cabinet	compression	library	uses	cabinet.dll	to
implement	the	low-level	cabinet	compression	and	decompression.
This	DLL	is	part	of	all	versions	of	Windows,	located	in	the	system
directory.

System.IO.Compression.DeflateStream	-	The	DTF	zip
compression	library	uses	this	class	to	implement	the	low-level	zip
compression	and	decompression.	This	class	is	part	of	.NET
Framework	2.0	and	later.

Send	comments	on	this	topic	to	wix-users@lists.sourceforge.net

mailto:wix-users%40lists.sourceforge.net?Subject=Deployment Tools Foundation Documentation


Overview	>	Support/Bugs
Deployment	Tools	Foundation	Support/Bugs

Please	send	general	support	questions	or	comments	to	the	wix-users
discussion	list.

Bugs,	suggestions,	or	feature	requests	can	be	submitted	at	the	WiX
project	on	Sourceforge.net.

Send	comments	on	this	topic	to	wix-users@lists.sourceforge.net

mailto:wix-users@sourceforge.net
http://wix.sourceforge.net/
mailto:wix-users%40lists.sourceforge.net?Subject=Deployment Tools Foundation Documentation


Development	Guide

Deployment	Tools	Foundation	Deployment	Tools	Foundation
Development	Guide

Managed	Custom	Actions
Working	with	MSI	Databases
Working	with	Cabinet	Files
Working	with	Install	Packages
Sample	Applications

Send	comments	on	this	topic	to	wix-users@lists.sourceforge.net

mailto:wix-users%40lists.sourceforge.net?Subject=Deployment Tools Foundation Documentation


Development	Guide	>	Managed	CAs
Deployment	Tools	Foundation	Managed	Custom	Actions

Writing	Managed	Custom	Actions
Specifying	the	Runtime	Version
Building	Managed	Custom	Actions
Debugging	Managed	Custom	Actions
About	InstallUtil

Send	comments	on	this	topic	to	wix-users@lists.sourceforge.net

mailto:wix-users%40lists.sourceforge.net?Subject=Deployment Tools Foundation Documentation


Development	Guide	>	Managed	CAs	>	Writing	CAs

Deployment	Tools	Foundation	Writing	Managed	Custom
Actions

Caveats

Before	choosing	to	write	a	custom	action	in	managed	code	instead	of
traditional	native	C++	code,	you	should	carefully	consider	the	following:

Obviously,	it	introduces	a	dependency	on	the	.NET	Framework.	Your
MSI	package	should	probably	have	a	LaunchCondition	to	check	for
the	presence	of	the	correct	version	of	the	.NET	Framework	before
anything	else	happens.

If	the	custom	action	runs	at	uninstall	time,	then	even	the	uninstall	of
your	product	may	fail	if	the	.NET	Framework	is	not	present.	This
means	a	user	could	run	into	a	problem	if	they	uninstall	the	.NET
Framework	before	your	product.

A	managed	custom	action	should	be	configured	to	run	against	a
specific	version	of	the	.NET	Framework,	and	that	version	should
match	the	version	your	actual	product	runs	against.	Allowing	the
version	to	"float"	to	the	latest	installed	.NET	Framework	is	likely	to
lead	to	compatibility	problems	with	future	versions.	The	.NET
Framework	provides	side-by-side	functionality	for	good	reason	--	use
it.

How	To

A	custom	action	function	needs	to	be	declared	as	public	static
(aka	Public	Shared	in	VB.NET).	It	takes	one	parameter	which	is	a
Session	object,	and	returns	a	ActionResult	enumeration.

				[CustomAction]
				public	static	ActionResult	MyCustomAction(Session	session)

DTFAPI.chm::/html/T_Microsoft_Deployment_WindowsInstaller_Session.htm
DTFAPI.chm::/html/T_Microsoft_Deployment_WindowsInstaller_ActionResult.htm


The	function	must	have	a	CustomActionAttribute,	which	enables	it
to	be	linked	to	a	proxy	function.	The	attribute	can	take	an	optional
"name"	parameter,	which	is	the	name	of	the	entrypoint	that	is
exported	from	the	custom	action	DLL.

Fill	in	MSI	CustomAction	table	entries	just	like	you	would	for	a
normal	type	1	native-DLL	CA.	Managed	CAs	can	also	work	just	as
well	in	deferred,	rollback,	and	commit	modes.

If	the	custom	action	function	throws	any	kind	of	Exception	that	isn't
handled	internally,	then	it	will	be	caught	by	the	proxy	function.	The
Exception	message	and	stack	trace	will	be	printed	to	the	MSI	log	if
logging	is	enabled,	and	the	CA	will	return	a	failure	code.

To	be	technically	correct,	any	MSI	handles	obtained	should	be
closed	before	a	custom	action	function	exits	--	otherwise	a	warning
gets	printed	to	the	log.	The	handle	classes	in	the	managed	library
(Database,	View,	Record,	SummaryInfo)	all	implement	the
IDisposable	interface,	which	makes	them	easily	managed	with	C#'s
using	statement.	Alternatively,	they	can	be	closed	in	a	finally	block.
As	a	general	rule,	methods	return	new	handle	objects	that	should	be
managed	and	closed	by	the	user	code,	while	properties	only	return	a
reference	to	a	prexisting	handle	object.

Don't	forget	to	use	a	CustomAction.config	file	to	specify	what
version	of	the	.NET	Framework	the	custom	action	should	run
against.

See	also:

Sample	C#	Custom	Actions
Specifying	the	Runtime	Version
Working	with	MSI	Databases
Building	Managed	Custom	Actions
Debugging	Managed	Custom	Actions

DTFAPI.chm::/html/T_Microsoft_Deployment_WindowsInstaller_CustomActionAttribute.htm
DTFAPI.chm::/html/T_Microsoft_Deployment_WindowsInstaller_Database.htm
DTFAPI.chm::/html/T_Microsoft_Deployment_WindowsInstaller_View.htm
DTFAPI.chm::/html/T_Microsoft_Deployment_WindowsInstaller_Record.htm
DTFAPI.chm::/html/T_Microsoft_Deployment_WindowsInstaller_SummaryInfo.htm


Send	comments	on	this	topic	to	wix-users@lists.sourceforge.net

mailto:wix-users%40lists.sourceforge.net?Subject=Deployment Tools Foundation Documentation


Development	Guide	>	Managed	CAs	>	Writing	CAs	>
CustomAction.config

Deployment	Tools	Foundation	Specifying	the	Runtime	Version

Every	managed	custom	action	package	should	contain	a
CustomAction.config	file,	even	though	it	is	not	required	by	the	toolset.
Here	is	a	sample:

<?xml	version="1.0"	encoding="utf-8"	?>
<configuration>
				<startup>
								<supportedRuntime	version="v2.0.50727"/>
				</startup>
</configuration>

The	configuration	file	follows	the	standard	schema	for	.NET	Framework
configuration	files	documented	on	MSDN.

Supported	Runtime	Version

In	the	startup	section,	use	supportedRuntime	tags	to	explicitly	specify
the	version(s)	of	the	.NET	Framework	that	the	custom	action	should	run
on.	If	no	versions	are	specified,	the	chosen	version	of	the	.NET
Framework	will	be	the	"best"	match	to	what
Microsoft.Deployment.WindowsInstaller.dll	was	built	against.

Warning:	leaving	the	version	unspecified	is	dangerous	as	it
introduces	a	risk	of	compatibility	problems	with	future	versions	of	the
.NET	Framework.	It	is	highly	recommended	that	you	specify	only	the
version(s)	of	the	.NET	Framework	that	you	have	tested	against.

Other	Configuration

http://msdn2.microsoft.com/en-us/library/9w519wzk(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/w4atty68(VS.80).aspx


Various	other	kinds	of	configuration	settings	may	also	be	added	to	this
file,	as	it	is	a	standard	.NET	Framework	application	config	file	for	the
custom	action.

See	also:

Writing	Managed	Custom	Actions
Building	Managed	Custom	Actions
Proxy	for	Managed	Custom	Actions

Send	comments	on	this	topic	to	wix-users@lists.sourceforge.net

http://msdn2.microsoft.com/en-us/library/kza1yk3a(VS.80).aspx
mailto:wix-users%40lists.sourceforge.net?Subject=Deployment Tools Foundation Documentation


Development	Guide	>	Managed	CAs	>	Writing	CAs	>	C#	Sample
Deployment	Tools	Foundation	Sample	C#	Custom	Action

MSI	custom	actions	are	MUCH	easier	to	write	in	C#	than	in	C++!

				[CustomAction]
				public	static	ActionResult	SampleCustomAction1(Session	session)
				{
								session.Log("Hello	from	SampleCA1");
								
								string	testProp	=	session["SampleCATest"];
								string	testProp2;
								testProp2	=	(string)	session.Database.ExecuteScalar(
												"SELECT	`Value`	FROM	`Property`	WHERE	`Property`	=	'SampleCATest'"
								
								if(testProp	==	testProp2)
								{
												session.Log("Simple	property	test	passed.");
												return	ActionResult.Success;
								}
								else
												return	ActionResult.Failure;
				}
												
A	sample	CA	project	with	two	CAs	is	included	in	the
Samples\ManagedCA	directory.		Running	the	CustomActionTest	project
will	package	the	CA	and	insert	it	into	a	test	MSI.	The	MSI	will	invoke	the
custom	actions,	but	it	will	not	install	anything	since	the	second	sample	CA
returns	ActionResult.UserExit.

See	also:

Writing	Managed	Custom	Actions
Specifying	the	Runtime	Version
Working	with	MSI	Databases
Building	Managed	Custom	Actions



Debugging	Managed	Custom	Actions

Send	comments	on	this	topic	to	wix-users@lists.sourceforge.net

mailto:wix-users%40lists.sourceforge.net?Subject=Deployment Tools Foundation Documentation


Development	Guide	>	Managed	CAs	>	Building

Deployment	Tools	Foundation	Building	Managed	Custom
Actions

The	build	process	for	managed	CA	DLLs	is	a	little	complicated	becuase
of	the	proxy-wrapper	and	dll-export	requirements.	Here's	an	overview:

1.	 Compile	your	CA	assembly,	which	references
Microsoft.Deployment.WindowsInstaller.dll	and	marks	exported
custom	actions	with	a	CustomActionAttribute.

2.	 Package	the	CA	assembly,	CustomAction.config,
Microsoft.Deployment.WindowsInstaller.dll,	and	any	other
dependencies	using	MakeSfxCA.exe.	The	filenames	of
CustomAction.config	and	Microsoft.Deployment.WindowsInstaller.dll
must	not	be	changed,	since	the	custom	action	proxy	specifically
looks	for	those	files.

Compiling

				csc.exe
								/target:library
								/r:$(DTFbin)\Microsoft.Deployment.WindowsInstaller.dll
								/out:SampleCAs.dll
								*.cs
												
Wrapping

				MakeSfxCA.exe
								$(OutDir)\SampleCAsPackage.dll
								$(DTFbin)\SfxCA.dll
								SampleCAs.dll
								CustomAction.config
								$(DTFbin)\Microsoft.Deployment.WindowsInstaller.dll



												

Now	the	resulting	package,	SampleCAsPackage.dll,	is	ready	to	be
inserted	into	the	Binary	table	of	the	MSI.

For	a	working	example	of	building	a	managed	custom	action	package
you	can	look	at	included	sample	ManagedCAs	project.

See	also:

Writing	Managed	Custom	Actions
Specifying	the	Runtime	Version

Send	comments	on	this	topic	to	wix-users@lists.sourceforge.net

mailto:wix-users%40lists.sourceforge.net?Subject=Deployment Tools Foundation Documentation


Development	Guide	>	Managed	CAs	>	Debugging

Deployment	Tools	Foundation	Debugging	Managed	Custom
Actions

There	are	two	ways	to	attach	a	debugger	to	a	managed	custom	action.

Attach	to	message-box:	Add	some	temporary	code	to	your	custom
action	to	display	a	message	box.	Then	when	the	message	box	pops	up
at	install	time,	you	can	attch	your	debugger	to	that	process	(usually
identifiable	by	the	title	of	the	message	box).	Once	attached,	you	can
ensure	that	symbols	are	loaded	if	necessary	(they	will	be	automatically
loaded	if	PDB	files	were	embedded	in	the	CA	assembly	at	build	time),
then	set	breakpoints	anywhere	in	the	custom	action	code.

MMsiBreak	environment	variable:	When	debugging	managed	custom
actions,	you	should	use	the	MMsiBreak	environment	variable	instead	of
MsiBreak.	Set	the	MMsiBreak	variable	to	the	custom	action	entrypoint
name.	(Remember	this	might	be	different	from	the	method	name	if	it	was
overridden	by	the	CustomActionAttribute.)	When	the	CA	proxy	finds	a
matching	name,	the	CLR	JIT-debugging	dialog	will	appear	with	text
similar	to	"An	exception	'Launch	for	user'	has	occurred	in
YourCustomActionName."	The	debug	break	occurs	after	the	custom
action	assembly	has	been	loaded,	but	just	before	custom	action	method
is	invoked.	Once	attached,	you	can	ensure	that	symbols	are	loaded	if
necessary,	then	set	breakpoints	anywhere	in	the	custom	action	code.
Note:	the	MMsiBreak	environment	variable	can	also	accept	a	comma-
separated	list	of	action	names,	any	of	which	will	cause	a	break	when	hit.

Send	comments	on	this	topic	to	wix-users@lists.sourceforge.net

mailto:wix-users%40lists.sourceforge.net?Subject=Deployment Tools Foundation Documentation


Development	Guide	>	Managed	CAs	>	InstallUtil
Deployment	Tools	Foundation	About	InstallUtil

InstallUtil	is	often	considered	as	another	option	for	executing	MSI	custom
actions	written	in	managed	code.	But	in	most	cases	it	is	not	the	best
solution,	for	a	number	of	reasons.

InstallUtil	(in	either	InstallUtil.exe	or	InstallUtilLib.dll	form)	is	a	.NET
Framework	tool	for	executing	the	System.Configuration.Installer	classes
that	are	implemented	in	an	assembly.	That	way	the	assembly	can	contain
any	special	code	required	to	install	itself	and	uninstall	itself.	Essentially	it
is	the	.NET	replacement	for	COM	self-registration	aka	DllRegisterServer.

Self-reg	or	System.Configuration.Installer	is	convenient	for	development
use	in	order	to	test	code	without	creating	an	actual	setup	package,	or	for
an	IDE	which	wants	to	generate	self-installing	code.	But	experienced
setup	developers	and	the	Windows	Installer	documentation	all	agree
that	self-reg	is	a	bad	practice	for	a	production-quality	setup.	The	current
theory	of	state-of-the-art	setup	is	that	it	should	be	as	data-driven	as
possible.	That	is,	the	setup	package	describes	as	fully	as	possible	the
desired	state	of	the	system,	and	then	the	installer	engine	calculates	the
necessary	actions	to	install,	uninstall,	patch,	etc.

S.C.I	encourages	developers	to	write	code	for	things	such	as	registering
services	or	registering	COM	classes	or	other	things	which	are	more
appropriately	done	using	built-in	MSI	functionality	(the	ServiceInstall	and
Registry	tables).	The	Visual	Studio	.NET	wizards	also	tend	to	generate
this	kind	of	install	code.	Again,	that	is	nice	for	development	but	not	good
for	real	installations.	You	end	up	with	similar	but	slightly	different	code	in
many	places	for	doing	the	same	thing.	And	that	code	is	a	black-box	to	the
installer	engine.

An	ideal	MSI	custom	action	is	a	logical	extension	of	the	setup	engine,
meaning	it	is	data-driven	and	written	in	a	very	generic	way	to	read	from
existing	or	custom	tables	in	the	MSI	database,	following	a	very	similar
pattern	to	the	built-in	actions.	This	makes	the	CA	re-usable,	and	makes
the	installation	more	transparent.	S.C.I	custom	actions	invoked	by

MSI.chm::/setup/selfreg_table.htm


InstallUtil	cannot	be	data-driven	because	they	don't	have	full	access	to
the	install	session	or	database.	They	also	cannot	write	to	the	install
session's	regular	MSI	log,	but	instead	use	a	separate	log	which	is	bad	for
supportability.

InstallUtil	also	requires	that	the	assembly	be	installed	before	the	CA	is
able	to	execute.	This	is	a	problem	for	CAs	that	need	to	execute	during
the	UI	phase,	or	gather	information	before	installation.	For	that	purpose
MSI	allows	custom	action	binaries	to	be	embedded	as	non-installed	files,
but	InstallUtil	cannot	make	use	of	those.

Custom	actions	developed	with	DTF	have	none	of	the	limitations	of
InstallUtil,	giving	a	setup	developer	full	capabilities	to	write	well-designed
custom	actions,	only	now	in	managed	code.

	

Send	comments	on	this	topic	to	wix-users@lists.sourceforge.net

mailto:wix-users%40lists.sourceforge.net?Subject=Deployment Tools Foundation Documentation


Development	Guide	>	MSI	Databases
Deployment	Tools	Foundation	Working	with	MSI	Databases

Querying	a	database

				using	(Database	db	=	new	Database("product.msi",	DatabaseOpenMode.ReadOnly))
				{
								string	value	=	(string)	db.ExecuteScalar(
												"SELECT	`Value`	FROM	`Property`	WHERE	`Property`	=	'{0}'",	propName);
				}

1.		Create	a	new	Database	instance	referring	to	the	location	of	the	.msi
or	.msm	file.

2.		Execute	the	query:

The	ExecuteScalar	method	is	a	shortcut	for	opening	a	view,
executing	the	view,	and	fetching	a	single	value.
The	ExecuteQuery	method	is	a	shortcut	for	opening	a	view,
executing	the	view,	and	fetching	all	values.
Or	do	it	all	manually	with	Database.OpenView,	View.Execute,	and
View.Fetch.

Updating	a	binary

				Database	db	=	null;
				View	view	=	null;
				Record	rec	=	null;
				try
				{
								db	=	new	Database("product.msi",	DatabaseOpenMode.Direct);
								view	=	db.OpenView("UPDATE	`Binary`	SET	`Data`	=	?	WHERE	`Name`	=	'{0}'"
								rec	=	new	Record(1);
								rec.SetStream(1,	binFile);
								view.Execute(rec);

DTFAPI.chm::/html/Overload_Microsoft_Deployment_WindowsInstaller_Database__ctor.htm
DTFAPI.chm::/html/Overload_Microsoft_Deployment_WindowsInstaller_Database_ExecuteScalar.htm
DTFAPI.chm::/html/Overload_Microsoft_Deployment_WindowsInstaller_Database_ExecuteQuery.htm
DTFAPI.chm::/html/M_Microsoft_Deployment_WindowsInstaller_Database_OpenView.htm
DTFAPI.chm::/html/Overload_Microsoft_Deployment_WindowsInstaller_View_Execute.htm
DTFAPI.chm::/html/M_Microsoft_Deployment_WindowsInstaller_View_Fetch.htm


								db.Commit();
				}
				finally
				{
								if	(rec	!=	null)	rec.Close();
								if	(view	!=	null)	view.Close();
								if	(db	!=	null)	db.Close();
				}

1.		Create	a	new	Database	instance	referring	to	the	location	of	the	.msi
or	.msm	file.

2.		Open	a	view	by	calling	one	of	the	Database.OpenView	overloads.

Parameters	can	be	substituted	in	the	SQL	string	using	the
String.Format	syntax.

3.		Create	a	record	with	one	field	containing	the	new	binary	value.

4.		Execute	the	view	by	calling	one	of	the	View.Execute	overloads.

A	record	can	be	supplied	for	substitution	of	field	tokens	(?)	in	the
query.

5.		Commit	the	Database.

6.		Close	the	handles.

About	handles

Handle	objects	(Database,	View,	Record,	SummaryInfo,	Session)	will
remain	open	until	they	are	explicitly	closed	or	until	the	objects	are
collected	by	the	GC.	So	for	the	tightest	code,	handle	objects	should	be
explicitly	closed	when	they	are	no	longer	needed,	since	closing	them	can
release	significant	resources,	and	too	many	unnecessary	open	handles
can	degrade	performance.	This	is	especially	important	within	a	loop
construct:	for	example	when	iterating	over	all	the	Records	in	a	table,	it	is

DTFAPI.chm::/html/Overload_Microsoft_Deployment_WindowsInstaller_Database__ctor.htm
DTFAPI.chm::/html/M_Microsoft_Deployment_WindowsInstaller_Database_OpenView.htm
DTFAPI.chm::/html/Overload_Microsoft_Deployment_WindowsInstaller_View_Execute.htm
DTFAPI.chm::/html/M_Microsoft_Deployment_WindowsInstaller_Database_Commit.htm
DTFAPI.chm::/html/M_Microsoft_Deployment_WindowsInstaller_InstallerHandle_Close.htm


much	cleaner	and	faster	to	close	each	Record	after	it	is	used.

The	handle	classes	in	the	managed	library	all	extend	the	InstallerHandle
class,	which	implements	the	IDisposable	interface.	This	makes	them
easily	managed	with	C#'s	using	statement.	Alternatively,	they	can	be
closed	in	a	finally	block.

As	a	general	rule,	methods	in	the	library	return	new	handle	objects	that
should	be	managed	and	closed	by	the	calling	code,	while	properties	only
return	a	reference	to	a	prexisting	handle	object.

See	also:

MSI	Diff	Sample	Tool
Database	Class

Send	comments	on	this	topic	to	wix-users@lists.sourceforge.net

DTFAPI.chm::/html/T_Microsoft_Deployment_WindowsInstaller_InstallerHandle.htm
DTFAPI.chm::/html/T_Microsoft_Deployment_WindowsInstaller_Database.htm
mailto:wix-users%40lists.sourceforge.net?Subject=Deployment Tools Foundation Documentation


Development	Guide	>	Cabinet	Files
Deployment	Tools	Foundation	Working	with	Cabinet	Files

Creating	a	cabinet

				CabInfo	cabInfo	=	new	CabInfo("package.cab");
				cabInfo.Pack("D:\\FilesToCompress");

1.		Create	a	new	CabInfo	instance	referring	to	the	(future)	location	of	the
.cab	file.

2.		Compress	files:

Easily	compress	an	entire	directory	with	the	Pack	method.
Compress	a	specific	list	of	exernal	and	internal	filenames	with	the
PackFiles	method.
Compress	a	dictionary	mapping	of	internal	to	external	filenames	with
the	PackFileSet	method.

Listing	a	cabinet

				CabInfo	cabInfo	=	new	CabInfo("package.cab");
				foreach	(CabFileInfo	fileInfo	in	cabInfo.GetFiles())
								Console.WriteLine(fileInfo.Name	+	"\t"	+	fileInfo.Length);

1.		Create	a	new	CabInfo	instance	referring	to	the	location	of	the	.cab
file.

2.		Enumerate	files	returned	by	the	GetFiles	method.

Each	CabFileInfo	instance	contains	metadata	about	one	file.

Extracting	a	cabinet

DTFAPI.chm::/html/M_Microsoft_Deployment_Compression_Cab_CabInfo__ctor_1.htm
DTFAPI.chm::/html/Overload_Microsoft_Deployment_Compression_ArchiveInfo_Pack.htm
DTFAPI.chm::/html/Overload_Microsoft_Deployment_Compression_ArchiveInfo_PackFiles.htm
DTFAPI.chm::/html/Overload_Microsoft_Deployment_Compression_ArchiveInfo_PackFileSet.htm
DTFAPI.chm::/html/M_Microsoft_Deployment_Compression_Cab_CabInfo__ctor_1.htm
DTFAPI.chm::/html/Overload_Microsoft_Deployment_Compression_Cab_CabInfo_GetFiles.htm
DTFAPI.chm::/html/T_Microsoft_Deployment_Compression_Cab_CabFileInfo.htm


				CabInfo	cabInfo	=	new	CabInfo("package.cab");
				cabInfo.Unpack("D:\\ExtractedFiles");

1.		Create	a	new	CabInfo	instance	referring	to	the	location	of	the	.cab
file.

2.		Extract	files:

Easily	extract	all	files	to	a	directory	with	the	Unpack	method.
Easily	extract	a	single	file	with	the	UnpackFile	method.
Extract	a	specific	list	of	filenames	with	the	UnpackFiles	method.
Extract	a	dictionary	mapping	of	internal	to	external	filenames	with	the
UnpackFileSet	method.

Getting	progress

Most	cabinet	operation	methods	have	an	overload	that	allows	you	to
specify	a	event	handler	for	receiving	archive	progress	events.	The
XPack	sample	demonstrates	use	of	the	callback	to	report	detailed
progress	to	the	console.

Stream-based	compression

The	CabEngine	class	contains	static	methods	for	performing
compression/decompression	operations	directly	on	any	kind	of	Stream.
However	these	methods	are	more	difficult	to	use,	since	the	caller	must
implement	a	stream	context	that	provides	the	file	metadata	which	would
otherwise	have	been	provided	by	the	filesystem.	The	CabInfo	class	uses
the	CabEngine	class	with	FileStreams	to	provide	the	more	traditional	file-
based	interface.

See	also:

CabInfo	class

DTFAPI.chm::/html/M_Microsoft_Deployment_Compression_Cab_CabInfo__ctor_1.htm
DTFAPI.chm::/html/Overload_Microsoft_Deployment_Compression_ArchiveInfo_Unpack.htm
DTFAPI.chm::/html/M_Microsoft_Deployment_Compression_ArchiveInfo_UnpackFile.htm
DTFAPI.chm::/html/Overload_Microsoft_Deployment_Compression_ArchiveInfo_UnpackFiles.htm
DTFAPI.chm::/html/Overload_Microsoft_Deployment_Compression_ArchiveInfo_UnpackFileSet.htm
DTFAPI.chm::/html/T_Microsoft_Deployment_Compression_ArchiveProgressEventArgs.htm
DTFAPI.chm::/html/T_Microsoft_Deployment_Compression_ArchiveFileStreamContext.htm
DTFAPI.chm::/html/T_Microsoft_Deployment_Compression_Cab_CabInfo.htm


CabEngine	class
XPack	Sample	Tool

Send	comments	on	this	topic	to	wix-users@lists.sourceforge.net

DTFAPI.chm::/html/T_Microsoft_Deployment_Compression_Cab_CabEngine.htm
mailto:wix-users%40lists.sourceforge.net?Subject=Deployment Tools Foundation Documentation


Development	Guide	>	Install	Packages
Deployment	Tools	Foundation	Working	with	Install	Packages

Updating	files	in	a	product	layout

The	InstallPackage	class	makes	it	easy	to	work	with	files	and	cabinets	in
the	context	of	a	compressed	or	uncompressed	product	layout.

This	hypothetical	example	takes	an	IDictionary	'files'	which	maps	file	keys
to	file	paths.	Each	file	is	to	be	updated	in	the	package	layout;	cabinets
are	even	recompressed	if	necessary	to	include	the	new	files.

				using	(InstallPackage	pkg	=	new	InstallPackage("d:\builds\product.msi",
								DatabaseOpenMode.Transact))
				{
								pkg.WorkingDirectory	=	Path.Combine(Path.GetTempFolder(),	"pkgtmp"
								foreach	(string	fileKey	in	files.Keys)
								{
												string	sourceFilePath	=	files[fileKey];
												string	destFilePath	=	pkg.Files[fileKey].SourcePath;
												destFilePath	=	Path.Combine(pkg.WorkingDirectory,	destFilePath);
												File.Copy(sourceFilePath,	destFilePath,	true);
								}
								pkg.UpdateFiles(new	ArrayList(files.Keys));
								pkg.Commit();
								Directory.Delete(pkg.WorkingDirectory,	true);
				}

1.		Create	a	new	InstallPackage	instance	referring	to	the	location	of	the
.msi.	This	is	actually	just	a	specialized	subclass	of	a	Database.

2.		Set	the	WorkingDirectory.	This	is	the	root	directory	where	the
package	expects	to	find	the	new	source	files.

3.		Copy	each	file	to	its	proper	location	in	the	working	directory.	The
InstallPackage.Files	property	is	used	to	look	up	the	relative	source	path
of	each	file.

DTFAPI.chm::/html/Overload_Microsoft_Deployment_WindowsInstaller_Package_InstallPackage__ctor.htm
DTFAPI.chm::/html/P_Microsoft_Deployment_WindowsInstaller_Package_InstallPackage_WorkingDirectory.htm
DTFAPI.chm::/html/P_Microsoft_Deployment_WindowsInstaller_Package_InstallPackage_Files.htm


4.		Call	InstallPackage.UpdateFiles	with	the	list	of	file	keys.	This	will	re-
compress	and	package	the	files	if	necessary,	and	also	update	the
following	data:	File.FileSize,	File.Version,	File.Language,
MsiFileHash.HashPart*.

5.		Commit	the	database	changes	and	cleanup	the	working	directory.

See	also:

WiFile	Sample	Tool	-	a	more	complete	tool	that	expands	on	the
above	example.
InstallPackage	Class

Send	comments	on	this	topic	to	wix-users@lists.sourceforge.net

DTFAPI.chm::/html/Overload_Microsoft_Deployment_WindowsInstaller_Package_InstallPackage_UpdateFiles.htm
DTFAPI.chm::/html/T_Microsoft_Deployment_WindowsInstaller_Package_InstallPackage.htm
mailto:wix-users%40lists.sourceforge.net?Subject=Deployment Tools Foundation Documentation


Development	Guide	>	Samples
Deployment	Tools	Foundation	Sample	Applications

Besides	the	simple	managed	custom	action	sample,	there	are	three
functional	and	useful	sample	tools	included	in	this	distribution:

MSI	Inventory
Shows	a	hierarchical,	relational,	searchable	view	of	all	of	the	product,
feature,	component,	file,	and	patch	data	managed	by	MSI,	for	all
products	installed	on	the	system.

WiFile
Extracts	and	updates	cabbed	files	in	an	MSI	setup.

CabPack
Creates	simple	self-extracting	cab	packages.	OK,	so	this	one	isn't
especially	useful	as	a	tool,	but	the	code	should	be	helpful.

DDiff
Recursively	diffs	MSI,	MSP,	CAB,	and	other	files	and	directories.	Much
more	thorough	than	widiffdb.vbs.

Send	comments	on	this	topic	to	wix-users@lists.sourceforge.net

mailto:wix-users%40lists.sourceforge.net?Subject=Deployment Tools Foundation Documentation


Development	Guide	>	Samples	>	Inventory

Deployment	Tools	Foundation	Windows	Installer	System
Inventory	Viewer

This	application	shows	a	hierarchical,	relational,	searchable	view	of	all	of
the	product,	feature,	component,	file,	and	patch	data	managed	by	MSI,
for	all	products	installed	on	the	system.

Navigation

1.	 The	tree	on	the	left	is	self-explanatory.

2.	 Click	on	a	row-header	(grey	box	on	the	left	side	of	the	grid)	to	jump
to	a	table	with	more	details	about	the	item	referred	to	by	that	row.
For	example,	clicking	on	a	row-header	of	a	table	that	lists
components	will	take	you	to	a	table	that	lists	the	files	in	that
component.	Not	every	table	has	this	ability,	but	the	cursor	will	turn	to
a	hand	shape	to	indicate	when	this	is	possible.

3.	 Also	you	can	navigate	back	and	forward	through	your	history	using
the	buttons	in	the	application	or	mouse	buttons	4	and	5.

Searching

The	search	feature	is	not	hard	to	find.	By	default,	searches	are	limited	to
the	current	table.	However,	if	you	choose	to	find	"In	Subtree"	by	checking
the	box,	the	search	will	include	the	current	table	as	well	as	all	tables
under	the	current	location	in	the	tree.	While	this	can	take	a	long	time	if
there	is	a	lot	of	data	under	the	current	node,	you	can	stop	the	search	at
any	time	with	the	stop	button.	The	search	pauses	when	a	match	is	found,
but	clicking	"Find"	again	will	continue	the	same	search	from	that	point
(unless	you	uncheck	the	"Continue"	checkbox	or	change	the	search



string).

Send	comments	on	this	topic	to	wix-users@lists.sourceforge.net

mailto:wix-users%40lists.sourceforge.net?Subject=Deployment Tools Foundation Documentation


Development	Guide	>	Samples	>	WiFile

Deployment	Tools	Foundation	Windows	Installer	Package	File
Manipulation	Tool

Usage:	WiFile.exe	package.msi	/l	[filename,filename2,...]
Usage:	WiFile.exe	package.msi	/x	[filename,filename2,...]
Usage:	WiFile.exe	package.msi	/u	[filename,filename2,...]

Lists	(/l),	extracts	(/x)	or	updates	(/u)	files	in	an	MSI	or	MSM.
Files	are	extracted	using	their	source	path	relative	to	the	package.
Specified	filenames	do	not	include	paths.
Filenames	may	be	a	pattern	such	as	*.exe	or	file?.dll

Example

The	most	powerful	use	of	WiFile.exe	is	to	do	a	round-trip	update	of	files
in	a	compressed	MSI/MSM	package.	It	works	like	this:

1.	 Extract	specific	file(s)	or	all	files	from	the	package:	WiFile.exe
package.msi	/x	*

2.	 The	files	are	now	expanded	into	their	directory	structure.	You	can
edit/update	the	files	however	you	like.

3.	 Update	the	package	with	the	changed	files:	WiFile.exe	package.msi
/u	*		This	also	updates	the	file	metadata	in	the	MSI	including	the	file
version,	size,	and	hash.

Notes

Also	works	with	packages	that	have	multiple	and/or	external	cab(s).



Send	comments	on	this	topic	to	wix-users@lists.sourceforge.net

mailto:wix-users%40lists.sourceforge.net?Subject=Deployment Tools Foundation Documentation


Development	Guide	>	Samples	>	XPack
Deployment	Tools	Foundation	Archive	Pack/Unpack	Tool

Usage:	CabPack.exe	<directory>	<package.cab>
Usage:	XPack	/P	<archive.cab>	<directory>
Usage:	XPack	/P	<archive.zip>	<directory>

Packs	all	files	in	a	directory	tree	into	an	archive,
using	either	the	cab	or	zip	format.	Any	existing	archive
with	the	same	name	will	be	overwritten.

Usage:	XPack	/U	<archive.cab>	<directory>
Usage:	XPack	/U	<archive.zip>	<directory>

Unpacks	all	files	from	a	cab	or	zip	archive	to	the
specified	directory.	Any	existing	files	with	the	same
names	will	be	overwritten.

Send	comments	on	this	topic	to	wix-users@lists.sourceforge.net

mailto:wix-users%40lists.sourceforge.net?Subject=Deployment Tools Foundation Documentation


Development	Guide	>	Samples	>	DDiff
Deployment	Tools	Foundation	MSI,	MSP,	CAB	Diff	Tool



MSI,	MSP,	CAB	Diff	Tool
Usage:	DDiff	target1	target2	[options]
Example:	DDiff	d:\dir1	d:\dir2
Example:	DDiff	setup1.msi	setup2.msi
Example:	DDiff	patch1.msp	patch2.msp	-patchtarget	target.msi
Example:	DDiff	package1.cab	package2.cab

Options:
		/o	[filename]				Output	results	to	text	file	(UTF8)
		/p	[package.msi]	Diff	patches	relative	to	target	MSI

The	following	types	of	inputs	can	be	diffed:

Directories:	files	and	subdirectories	are	compared.
Cab	files:	internal	file	list	and	files	are	compared.
MSI/MSM	database	files:	summary	info,	tables,	and	embedded
binary	and	cab	streams	are	compared.
MSP	files:	summary	info	and	embedded	file	cab	are	compared.
When	a	patch	target	MSI	is	provided,	the	MSP's	tables	are	also
compared.
Versioned	files:	Win32	file	version	is	compared.
Text	files:	if	diff.exe	is	in	the	path,	it	is	used	to	get	a	line-by-line	diff.
Other	files:	file	size	and	bytes	are	compared.

All	processing	is	done	recursively.	So	a	versioned	file	within	a	cab	within
an	MSI	within	a	directory	will	have	meaningful	diff	results.

Send	comments	on	this	topic	to	wix-users@lists.sourceforge.net

mailto:wix-users%40lists.sourceforge.net?Subject=Deployment Tools Foundation Documentation


Managed	Libraries	for	Windows	Installer



Proxy	for	Managed	Custom	Actions
The	custom	action	proxy	allows	an	MSI	developer	to	write	custom
actions	in	managed	code,	while	maintaing	all	the	advantages	of	type	1
DLL	custom	actions	including	full	access	to	installer	state,	properties,
and	the	session	database.

There	are	generally	four	problems	that	needed	to	be	solved	in	order	to
create	a	type	1	custom	action	in	managed	code:

1.	 Exporting	the	CA	function	as	a	native	entry	point	callable	by
MSI:	The	Windows	Installer	engine	expects	to	call	a	LoadLibrary
and	GetProcAddress	on	the	custom	action	DLL,	so	an	unmanaged
DLL	needs	to	implement	the	function	that	is	initially	called	by
MSI	and	ultimately	returns	the	result.	This	function	acts	as	a
proxy	to	relay	the	custom	action	call	into	the	managed	custom
action	assembly,	and	relay	the	result	back	to	the	caller.

2.	 Providing	supporting	assemblies	without	requiring	them	to	be
installed	as	files:	If	a	DLL	custom	action	runs	before	the
product's	files	are	installed,	then	it	is	difficult	to	provide	any
supporting	files,	because	of	the	way	the	CA	DLL	is	singly
extracted	and	executed	from	a	temp	file.	(This	can	be	a	problem
for	unmanaged	CAs	as	well.)	With	managed	custom	actions	we
have	already	hit	that	problem	since	both	the	CA	assembly	and	the
MSI	wrapper	assembly	need	to	be	loaded.	To	solve	this,	the	proxy
DLL	carries	an	appended	cab	package.	When	invoked,	it	will
extract	all	contents	of	the	cab	package	to	a	temporary	working
directory.	This	way	the	cab	package	can	carry	any	arbitrary
dependencies	the	custom	action	may	require.

3.	 Hosting	and	configuring	the	Common	Language	Runtime:	In



order	to	invoke	a	method	in	a	managed	assembly	from	a
previously	unmanaged	process,	the	CLR	needs	to	be	"hosted".
This	involves	choosing	the	correct	version	of	the	.NET
Framework	to	use	out	of	the	available	version(s)	on	the	system,
binding	that	version	to	the	current	process,	and	configuring	it	to
load	assemblies	from	the	temporary	working	directory.

4.	 Converting	the	integer	session	handle	into	a	Session	object:
The	Session	class	in	the	managed	wrapper	library	has	a
constructor	which	takes	an	integer	session	handle	as	its	parameter.
So	the	proxy	simply	instantiates	this	object	before	calling	the	real
CA	function.

The	unmanaged	CAPack	module,	when	used	in	combination	with	the
managed	proxy	in	the	Microsoft.WindowsInstaller	assembly,
accomplishes	the	tasks	above	to	enable	fully-functional	managed	DLL
custom	actions.

See	also:

Writing	Managed	Custom	Actions
Writing	the	CustomAction.config	file
Sample	C#	Custom	Actions
Building	Managed	Custom	Actions


	Deployment Tools Foundation Overview
	What's New?
	Change History
	Dependencies
	Support/Bugs

	Deployment Tools Foundation Development Guide
	Managed Custom Actions
	Writing Managed Custom Actions
	Specifying the Runtime Version
	Sample C# Custom Actions

	Building Managed Custom Actions
	Debugging Managed Custom Actions
	InstallUtil Notes

	Working with MSI Databases
	Working with Cabinet Files
	Working with Install Packages
	Sample Applications
	MSI Inventory
	WiFile
	XPack
	DDiff



