
Introduction	to	DMOTest
DMOTest	is	a	test	utility	for	Microsoft®	DirectX®	Media	Objects	(DMOs).
DMOTest	helps	you	to	verify	that	a	DMO	meets	the	DMO	specification.	If	you
create	a	DMO,	DMOTest	should	be	part	of	your	testing	process.

DMOTest	supports	two	kinds	of	test:

Streaming	tests:	These	tests	are	designed	to	verify	that	the	DMO	can
process	data	correctly.	In	these	tests,	the	DMOTest	application	gives	the
DMO	sample	data	to	process.	The	application	checks	for	correct	return
codes,	consistent	flags,	and	so	forth.	(Of	course,	it	cannot	verify	whether
the	output	is	correct,	because	that	depends	completely	on	the	DMO.)
API	tests:	These	tests	perform	various	method	calls	on	the	DMO.	The	test
application	checks	for	correct	return	codes,	valid	parameters,	and	so	forth.

For	the	streaming	tests,	DMOTest	uses	test	files	written	in	a	custom	file	format.
The	test	files	contain	sample	data	taken	from	a	media	source	file.	For
information	about	the	format,	see	DMO	Test	Application	File	Format.

To	use	DMOTest,	perform	the	following	steps:

1.	 Create	test	files.

		See	Creating	Test	Files.

2.	 For	each	DMO,	select	which	test	files	to	use.

		See	Selecting	the	DMOs.

3.	 Select	the	tests.

		See	Selecting	Test	Suites.

4.	 Run	the	tests.

		See	Running	the	Tests.



Creating	Test	Files
Before	you	run	a	streaming	test	on	a	DMO,	you	must	generate	a	file	with	test
data	for	that	DMO.	The	file	must	conform	to	a	custom	format	which	is
recognized	by	DMOTest.	For	information	about	the	format,	see	DMO	Test
Application	File	Format.

The	test	data	consists	of	samples	taken	from	a	media	source	file.	The	source	file
must	contain	data	that	the	DMO	can	process.	For	example,	if	you	are	testing	an
audio	effect	filter,	use	an	audio	source	file.

To	create	a	test	file,	you	will	need:

A	media	file	that	contains	the	format	you	want	to	test.
The	DMO	Data	Dump	filter	(included	with	the	Microsoft®	DirectX®	8
SDK).
The	GraphEdit	utility	for	Microsoft®	DirectShow®

Note		If	you're	not	sure	what	media	formats	the	DMO	can	accept,	see	Viewing	a
DMO's	Input	Types.

To	generate	the	test	data,	do	the	following:

1.	 Launch	GraphEdit.
2.	 Render	the	media	file	that	you	want	to	use.

From	the	File	menu,	choose	Render	Media	File.
Select	the	media	file.
Click	OK.
GraphEdit	creates	a	filter	graph	and	displays	it.

3.	 Locate	the	filter	whose	output	pin	produces	the	media	type	you	want	to	test.
Right-click	a	connection	point	(the	arrow	that	connects	an	output	pin
to	an	input	pin).
On	the	pop-up	menu,	choose	Properties.
GraphEdit	displays	a	property	page	that	lists	the	media	type	for	the
connection.
Repeat	these	steps	until	you	locate	the	correct	filter.

4.	 Delete	all	the	downstream	filters.	(Follow	the	arrows	from	the	output	pin.)



For	each	filter,	select	the	filter	and	type	DELETE.
5.	 Add	the	DMO	Data	Dump	filter	to	the	graph.

From	the	Graph	menu,	choose	Insert	Filters.
Expand	the	DirectShow	Filters	node.
Select	DMO	Data	Dump	and	click	Insert	Filters.
Type	a	name	for	the	data	file,	or	select	an	existing	data	file	to
overwrite.
Click	Open.
Click	Close.

6.	 Connect	the	output	pin	from	step	3	to	the	DMO	Data	Dump	filter.
Drag	the	mouse	from	the	output	pin	to	the	DMO	Data	Dump	filter's
input	pin.
Or,	you	can	right-click	the	output	pin	and	choose	Render.

7.	 Run	the	graph.
Click	the	play	button.
Or,	choose	Play	from	the	Graph	menu.
Wait	for	the	graph	to	stop.	(The	play	option	will	become	enabled
again.)

8.	 Exit	GraphEdit.

For	more	information	about	GraphEdit,	see	the	topic	"Using	the	GraphEdit
Utility"	in	the	DirectShow	documentation.	Or,	run	GraphEdit	and	choose
Contents	from	the	Help	menu.



Selecting	the	DMOs
To	select	which	DMOs	you	want	to	test,	do	the	following:

1.	 In	the	Tests	menu,	choose	Select	DMOs...
2.	 Select	the	check	box	next	to	each	DMO	that	you	want	to	test.
3.	 If	you	are	running	streaming	tests,	select	the	test	files	that	will	provide	the

test	data.
Right-click	the	DMO.
In	the	pop-up	menu,	choose	Select	Test	File
To	add	test	files,	click	Add	File.
To	remove	files,	click	Remove	File	or	Remove	All.

For	information	about	generating	test	files,	see	Creating	Test	Files.



Selecting	Test	Suites
The	DMOTest	application	provides	two	test	suites,	a	streaming	test	suite	and	an
IMediaObject	interface	test	suite.	You	can	select	an	entire	suite,	or	select
individual	tests	from	within	a	suite.

For	information	about	the	test	suites,	see	Test	Suites.	For	information	about	how
to	run	the	tests,	see	Running	the	Tests.



Select	an	Individual	Test

1.	 From	the	Tests	menu,	choose	Select	Tests...
2.	 Expand	the	DMOTest	node.
3.	 Expand	the	Streaming	Test	node	or	the	IMediaObject	Interface	Test

node.
4.	 Select	a	test.
5.	 Click	Add	Item.



Select	an	Entire	Suite

1.	 From	the	Tests	menu,	choose	Select	Tests...
2.	 Expand	the	DMOTest	node.
3.	 Select	either	the	Streaming	Test	node	or	the	IMediaObject	Interface	Test

node.
4.	 Click	Add	Item.



Select	All	Tests

1.	 From	the	Tests	menu,	choose	Select	Tests...
2.	 Select	the	DMOTest	node.
3.	 Click	Add	Item.



Running	the	Tests
To	run	tests	on	one	or	more	DMOs,	do	the	following:

1.	 Select	the	DMOs	you	want	to	test.

			See	Selecting	the	DMOs.

2.	 Select	test	suites.

		See	Selecting	Test	Suites.

3.	 From	the	Tests	menu,	choose	Run	Tests.

The	output	from	the	tests	appears	in	the	application	window.	The	application
also	writes	the	output	to	a	log	file.	For	information	about	setting	the	log	file,	see
Setting	the	Log	File.

The	test	output	includes	the	following	information:

The	API	calls	made	for	each	test.
Whether	each	DMO	passed	or	failed	a	given	test.
The	cause	of	any	failures.	If	the	DMO	did	not	handle	a	parameter	correctly,
the	parameter	value	is	listed.	If	the	DMO	gave	an	invalid	return	value,	the
HRESULT	is	listed.
A	summary	of	the	results.



Viewing	a	DMO's	Input	Types
To	view	the	preferred	media	types	on	a	DMO's	input	streams,	do	the	following:

1.	 From	the	Tests	menu,	choose	Select	DMOs...
2.	 Right-click	the	DMO	you	want	to	test.
3.	 On	the	pop-up	menu,	choose	Get	Properties.
4.	 DMOTest	displays	a	list	of	the	DMO's	preferred	formats	for	each	input

stream.



Saving	Test	Configurations
By	default,	the	DMOTest	application	saves	your	most	recent	configuration	in	a
file	called	Dmotest.ini.	This	file	is	located	in	the	same	directory	as	the
application.	The	next	time	you	run	DMOTest,	it	loads	the	configuration	from	this
file.

You	can	also	save	a	configuration	into	a	separate	project	file.	Do	the	following:

1.	 From	the	File	menu,	choose	Save	Settings	As.
2.	 Type	the	name	of	the	project	file.	The	file	name	extension	is	.pro.
3.	 Click	Save.

To	load	a	saved	project	file,	do	the	following:

1.	 From	the	File	menu,	choose	Load	Settings.
2.	 Select	a	project	file.
3.	 Click	Open.



Setting	the	Log	File
To	specify	the	log	file	where	DMOTest	saves	test	results,	do	the	following:

1.	 From	the	Options	menu,	choose	Set	Logging.
2.	 In	the	Destination	list,	click	Log	File.
3.	 Click	Setup.
4.	 In	the	File	Name	box,	type	the	file	name.
5.	 Or,	click	Browse	and	select	a	file.



DMO	Test	Application	File	Format
This	section	describes	the	file	format	what	is	used	by	the	DMOTest	application.
For	information	about	how	to	create	a	test	file,	see	Creating	a	Test	File.

This	section	contains	the	following	topics.

File	Format	Structure
Packet	Header	Description
Media-Type	Packet	Description
Data	Packet	Description



File	Format	Structure

The	file	format	consists	of	a	globally	unique	identifier	(GUID)	followed	by	a
series	of	packets.	Each	packet	contains	data	for	the	DMO	to	process.	Some
packets	define	a	media	type,	other	packets	contain	media	samples.	The	file	must
have	the	following	format.

The	first	16	bytes	of	data	contain	the	following	GUID:

{3A337620-9497-11D3-B30B-444553540000}

After	the	GUID,	the	file	contains	media-type	packets	and	data	packets.	A
media-type	packet	defines	the	media	type	for	one	input	stream	on	the
DMO.	A	data	packet	contains	media	samples	for	an	input	stream	to	process.
For	each	input	stream,	at	least	one	media-type	packet	must	appear	before
any	data	packets	appear.	Otherwise,	the	test	application	cannot	set	the	input
stream's	media	type,	and	the	DMO	will	reject	the	data.
A	stream	can	change	media	types	by	including	another	media-type	packet.
The	new	format	applies	to	the	subsequent	data	packets	for	that	stream,	until
the	next	media-type	packet.
Packets	for	different	input	streams	can	be	interleaved.	The	test	application
does	not	assume	that	streams	are	ordered	in	any	particular	way.
A	media-type	packet	does	not	need	to	be	followed	by	any	data	packets.
The	file	is	not	required	to	have	multiple	streams,	and	a	stream	is	not
required	to	have	multiple	media-type	packets.

The	following	illustration	schematizes	the	file	structure.





Packet	Header	Description

Each	packet	starts	with	a	packet	header.

Packet	headers	enable	the	test	application	to	determine	a	packet's	type,	length,
and	stream	index.

Byte	Offset Field Size	(Bytes)
0–3 Packet	Length 4
4–7 Packet	Type 4
8–11 Stream	Index 4

Packet	Length	(Unsigned	Integer)
The	number	of	bytes	stored	in	the	packet.	For	media-type	packets,	the
length	includes	the	optional	format	structure,	which	is	appended	to	the	end
of	the	packet.	For	data	packets,	the	length	includes	the	length	of	the	media
sample.

Packet	Type	(Unsigned	Integer)
This	field	contains	an	ANSI	string,	which	does	not	include	a	terminating
Null	character.	The	string	identifies	the	packet	type.

Media-type	packet:	TYPE
Data	packet:	DATA

Stream	Index	(Unsigned	Integer)
The	index	of	an	input	stream	on	the	DMO.	For	a	media-type	packet,	the	test
application	sets	the	stream's	media	type	to	the	type	specified	by	the	packet.
For	a	data	packet,	the	application	calls	the	DMO	to	process	the	packet's
media	sample.	The	stream	index	is	zero-based.



Media-Type	Packet	Description

Media-type	packets	instruct	the	test	application	to	set	the	media	type	on	one	of
the	DMO's	input	streams.	For	each	input	stream,	the	first	packet	must	be	a
media-type	packet.	Otherwise,	the	DMO	cannot	decode	the	information
contained	in	the	data	packets.

Byte	Offset Field Size	(Bytes)
0–11 Packet	Header 12
12–15 Reserved 4
16–87 Media	Type	Structure 72
88–End	of	packet Optional	Format	Structure Variable

Packet	Header
For	a	description	of	this	field,	see	Packet	Header	Description.

Reserved	(Unsigned	Integer)
Must	be	zero.

Media	Type	Structure	(DMO_MEDIA_TYPE)
This	field	defines	the	media	type.	For	a	description	of	the
DMO_MEDIA_TYPE	structure,	refer	to	the	Microsoft®	DirectX®
documentation.	Structure	members	are	stored	in	the	order	they	are	declared.
The	punk	and	pbFormat	members	must	equal	NULL	(zero).	If	the
cbFormat	member	is	not	zero,	the	format	structure	must	be	appended	to
the	packet.

Optional	Format	Structure
If	you	include	this	field,	specify	the	size	of	the	field	in	the	cbFormat
member	of	the	DMO_MEDIA_TYPE	structure.	If	the	cbFormat	member	is
zero,	the	packet	must	not	include	this	field.	For	more	information,	see	the
documentation	for	the	DMO_MEDIA_TYPE	structure.



Data	Packet	Description

Data	packets	contain	media	samples	for	the	DMO	to	process.	Each	data	packet
also	contains	the	sample's	time	stamp,	duration,	and	associated	flags.

Byte	Offset Field Size	(Bytes)
0–11 Packet	Header 12
12–15 Sample	Flags 4
16–23 Sample	Start	Time 8
24–31 Sample	Duration 8
32–End	of	packet Sample	Data Variable

Packet	Header
For	a	description	of	this	field,	see	Packet	Header	Description.

Sample	Flags
This	field	can	have	the	same	values	as	the	dwFlags	parameter	of	the
IMediaObject::ProcessInput	method.	For	more	information,	see	the
documentation	for	the	IMediaObject	interface.

Sample	Start	Time
This	field	can	have	the	same	values	as	the	rtTimestamp	parameter	of	the
IMediaObject::ProcessInput	method.	For	more	information,	see	the
documentation	for	the	IMediaObject	interface.

Sample	Flags
This	field	can	have	the	same	values	as	the	rtTimelength	parameter	of	the
IMediaObject::ProcessInput	method.	For	more	information,	see	the
documentation	for	the	IMediaObject	interface.

Sample	Data
The	data	in	the	sample,	which	is	processed	by	DMO.	The	length	of	the
sample	data	is	equal	to	the	length	of	the	packet	(given	in	the	packet	header)
minus	32.	Zero-length	samples	are	invalid.



Test	Suites
DMOTest	supports	two	test	suites:

Streaming	Tests
API	Tests



Streaming	Tests

These	tests	are	designed	to	test	whether	the	DMO	processes	data	correctly.	They
require	a	file	with	test	data.	For	more	information,	see	DMO	Test	Application
File	Format	and	Creating	Test	Files.

1.0	DMO	Streaming	Test	1:	Positive	Timestamp	Offset	Test

This	test	uses	the	DMO	to	process	all	of	the	data	in	the	test	file.	It	writes	the
output	to	a	temporary	file.	Then,	it	makes	a	second	pass	using	the	same
data.	In	the	second	pass,	the	test	application	adds	a	positive	offset	to	each
time	stamp	on	the	input	data.	It	writes	the	output	to	a	second	temporary	file,
and	compares	the	two	files.	They	should	contain	the	same	data.

1.1	DMO	Streaming	Test	2:	Negative	Timestamp	Offset	Test

This	test	is	identical	to	the	test	described	in	1.0,	except	that	it	adds	a
negative	offset	on	the	second	pass,	rather	than	a	positive	offset.

1.2	Test	DMO_SET_TYPEF_CLEAR	flag

This	test	verifies	that	the	DMO	correctly	handles	the
DMO_SET_TYPEF_TEST_ONLY	flag.	If	the	media	types	are	cleared	on
all	of	the	DMO's	streams,	the	DMO	should	accept	new	media	types.	The
test	sets	media	types	for	all	the	streams.	Then	it	clears	all	the	media	types
and	tries	to	set	the	original	types	again.

1.3	Test	zero-size	buffers	on	ProcessInput

This	method	verifies	that	the	DMO	correctly	handles	zero-size	buffers.	First
it	calls	the	IMediaObject::ProcessInput	method	with	a	zero-size	buffer.
The	DMO	should	return	an	error	code.	Then	it	calls	the
IMediaObject::ProcessOutput	method.	Again,	the	DMO	should	return	an
error	code.	Also,	it	should	not	return	the
DMO_OUTPUT_DATA_BUFFERF_INCOMPLETE	flag.

1.4	Test	consistency	of	DMO_INPUT_STATUSF_ACCEPT_DATA	flag



In	the	IMediaObject::GetInputStatus	method,	the	DMO	should	return	the
DMO_INPUT_STATUSF_ACCEPT_DATA	flag	if	it	can	accept	more
input.	The	reverse	is	also	true:	If	the	DMO	does	not	return	this	flag,	it
should	not	accept	more	input.

This	test	attempts	to	process	input	in	both	situations.	It	verifies	that	the
return	code	from	the	IMediaObject::ProcessInput	method	is	consistent
with	the	status	reported	by	GetInputStatus.



API	Tests

These	tests	are	designed	to	verify	that	the	DMO	follows	the	IMediaObject
specification,	with	regard	to	error	codes,	parameter	checking,	and	so	forth.

2.0	Test	GetStreamCount

This	test	verifies	that	the	IMediaObject::GetStreamCount	method	returns
E_POINTER	when	given	a	NULL	parameter.

2.1	Test	GetInputType

This	test	verifies	that	the	IMediaObject::GetInputType	method	correctly
handles	invalid	parameters	for	the	stream	index	and	the	media-type	index.

2.2	Test	Stream	Index	on	GetInputStreamInfo

This	test	verifies	that	the	IMediaObject::GetInputStreamInfo	method
correctly	handles	invalid	stream	indices.	It	also	validates	the	flags	returned
by	this	method.

2.3	Test	Stream	Index	on	GetOutputStreamInfo

This	test	verifies	that	the	IMediaObject::GetOutputStreamInfo	method
correctly	handles	invalid	stream	indices.	It	also	validates	the	flags	returned
by	this	method.

2.4	Test	Invalid	Parameter	on	GetInputStreamInfo

This	test	verifies	that	the	IMediaObject::GetInputStreamInfo	method
correctly	handles	NULL	parameters.	It	also	validates	the	flags	returned	by
this	method.

2.5	Test	Invalid	Parameter	on	GetOutputStreamInfo

This	test	verifies	that	the	IMediaObject::GetOutputStreamInfo	method
correctly	handles	NULL	parameters.	It	also	validates	the	flags	returned	by
this	method.


	Introduction to DMOTest

