DITA Open Toolkit 2.0

This document describes the DITA Open Toolkit project—what the project
is, and how to use the site.

What is the DITA Open Toolkit?

The DITA Open Toolkit, or DITA-OT for short, is a set of Java-based,
open source tools that provide processing for DITA maps and topic
content. You can download the OT and install it for free on your computer
to get started with topic-based writing and publishing. The DITA-OT is
licensed under the CPL 1.0 and Apache 2.0 open source licenses.

Note: While the DITA Standard itself is owned and developed by
OASIS, the DITA Open Toolkit is an independent, open source
implementation of the standard.

Key output formats for the toolkit include:
e XHTML
e PDF (formerly known as PDF2)
e ODT (Open Document Format)
e Eclipse Help
e TocJS (XHTML with a JavaScript frameset)
e HTML Help
e Java Help
¢ Eclipse Content (normalized DITA plus Eclipse project files)
e Word RTF (with some limitations)
e Docbook

o Troff

http://www.opensource.org/licenses/cpl1.0.php
http://www.apache.org/licenses/LICENSE-2.0

Toolkit documentation
There are two primary sources for documentation about the toolkit.

Stable documentation about toolkit usage, parameters, and project
management can be found on this page, using the navigation panel on
the left.

New information about the latest toolkit builds, plans for the next release,
and other changing information can be found on the DITA-OT landing
page at the dita.xml.org site (link below). That site also contains the
release notes for all upcoming and previous releases.

Related concepts
Distribution packages

Related information
Main DITA-OT page at dita.xml.org
Project News for DITA Open Toolkit

Shortcuts to important information
DITA-OT stable release
DITA-OT latest development build

http://dita.xml.org/wiki/the-dita-open-toolkit
http://sourceforge.net/news/?group_id=132728
http://sourceforge.net/projects/dita-ot/files/DITA-OT%20Stable%20Release/
http://sourceforge.net/projects/dita-ot/files/DITA-OT%20Latest%20Test%20Build/

Getting Started with the DITA Open Toolkit

The Getting Started Guide is designed to provide a guided exploration of
the DITA Open Toolkit. It is geared for an audience that has little or no
knowledge of build scripts or DITA-OT parameters. It walks the novice
user through installing the full-easy-install version of the toolkit and
running a prompted build.

1. Installing the full-easy-install package For the simplest installation
experience, install the full-easy-install package. This package can be
installed on Linux, Mac OSX, and Windows. It contains everything
that you need to run the DITA-OT except for Java.

2. Running the demo build
After you install the full-easy-install package, run the demo build to
see the type of output that is produced by the DITA Open Toolkit.

3. Building your own content using the demo build
You can use the demo build to generate output for your own DITA
content.

Installing the full-easy-install package

For the simplest installation experience, install the full-easy-install
package. This package can be installed on Linux, Mac OSX, and
Windows. It contains everything that you need to run the DITA-OT except

for Java.

Before you begin

e Ensure that you have Java JRE or JDK, version 7 or later installed.

e Ensure that you have HTML Help Workshop installed, if you want to
generate HTML Help.

Procedure

1. Download the full-easy package from SourceForge.

Operatin ,
P g File name
system
Linux or Mac DITA-0T2.0.M3_full_easy_install_bin.tar.gz
OSX
Windows DITA-0T2.0.M3_full_easy_install bin.zip

2. Extract the contents of the package to the directory where you want
to install the DITA-OT.

3. Run the startcmd file that is applicable for your operating system.
This defines the necessary environment variables and opens a DOS
prompt or terminal window in which you can invoke the toolkit. You
can use the window to run as many builds as you want; if you close
the window, you will need to run the applicable startcmd file again.

Parent topic: Getting Started with the DITA Open Toolkit
Next topic: Running the demo build

http://sourceforge.net/projects/dita-ot/files/DITA-OT%20Stable%20Release/DITA%20Open%20Toolkit%201.8/

Running the demo build

After you install the full-easy-install package, run the demo build to see
the type of output that is produced by the DITA Open Toolkit.

Procedure

1. Run the startcmd file that is applicable for your operating system.
The startcmd.bat and startcmd. sh files are in the directory where
you installed the DITA-OT.

2. From the DITA-OT shell, enter the following command:

ant -f build_demo.xml

You receive the following prompt:

[echo] Please enter the filename for the DITA map that you
[echo] want to build including the directory path (if any).
[echo] The filename must have the .ditamap extension.

[echo] Note that relative paths that climb (..) are not supp:
[echo] To build the sample, press return without entering an
[input] The DITA map filename: [C:\DITA-0T2.0.M3\samples\hie

3. Press Enter.
You receive the following prompt:

[echo]

[echo] Please enter the name of the output directory or pres
[echo] to accept the default.

[input] The output directory (out): [out]

4. Press Enter.
You receive the following prompt:

[echo] Please enter the type of output to generate.

[echo] Options include: eclipse, tocjs, htmlhelp, javahelp,
[echo] Use lowercase letters.

[echo]

[input] The output type: (eclipse, tocjs, htmlhelp, javahelp

5. Press Enter to accept the default transformation type: web.
This will build XHTML files from the DITA source.

You receive the following prompt:

[echo] Ready to build C:\DITA-0T2.0.M3\samples\hierarchy.diti
[echo] for web in out

[echo]

[input] Continue? (Y, [y], N, n)

6. Press Y ory to start the DITA-OT transformation.
The DITA-OT logs information to the command-prompt or terminal
window. At the end, you see the following information:

prompt.output:

[echo]

[echo] output in the out directory

[echo]

[echo] Before rebuilding, please delete the output or the di
BUILD SUCCESSFUL Total time: X minutes X seconds

7. Go to the out/ directory and open the toc.html file in a Web browser.
Figure 1. XHTML output for the sample files

{1 files///C/DITA-OTL6.M5/out/toc.html

® Garage Tasks
0 Changing the oil in vour car
0 Organizing the workbench and tools
o Shovelling snow
0 Spray painting
o Taking out the garbage
0 Washing the car
® Garage Concepts
o Lawnmower
o Oil
o Paint
o Shelving
o Snow shovel
o Tool box
o Tools
o0 Water hose
0 Wheel barrow
© Workbench
© Windshield washer flmd

Results

The DITA-OT transformed the hierarchy.ditamap file (located in the
samples directory) to XHTML,; it wrote the output to the out/ directory.

Parent topic: Getting Started with the DITA Open Toolkit
Previous topic: Installing the full-easy-install package
Next topic: Building your own content using the demo build

Building your own content using the demo build

You can use the demo build to generate output for your own DITA
content.

Procedure

1.

6.

If necessary, run the startcmd file that is applicable for your operating

system.
You do not need to run the startcmd file if you already have a

command-prompt or terminal window that was invoked by the
startcmd file open.

From the DITA-OT shell, enter the following command:

ant -f build_demo.xml

When prompted, type the name of a map.
You must specify the path for the DITA map. You either can specify a
fully qualified file name, for example, c:\DITA-

0T1.6.M5\doc\userguide.ditamap, Or you can specify a relative path,
for example, doc\userguide.ditamap

When prompted, type the name of the output directory.

When prompted, type the value for the transformation type.

Ouput format Value
Docbook docbook
Eclipse help eclipse
HTML help htmlhelp
PDF pdf
XHTML web

XHTML with a JavaScript frame settocjs

When prompted, press Enter to start the transformation.

Results

The DITA-OT generates output for the specified DITA content. It runs the
transformation that you specified, and writes the output to the directory
that you specified.

What to do next

Explore invoking the DITA-OT from either Ant or the command-line tool.
This enables you to specify a wider array of parameters than those
supported by the demo build.

Using Ant or the command-line tool, you can perform the following tasks
(and more):

e Add a custom CSS file to the transformation
e Generate labels for the sections of task topics
¢ Specify that draft comments are included in the output

e Turn on "Related link" sections in a PDF file

Parent topic: Getting Started with the DITA Open Toolkit
Previous topic: Running the demo build

DITA Open Toolkit User Guide

The DITA Open Toolkit User Guide is designed to provide basic
information about the DITA-OT. It is geared for an audience that needs
information about installing, running, and troubleshooting the toolkit. It
contains documentation of the DITA-OT parameters; it also contains
release notes and information about what components have been tested.

Overview of the DITA Open Toolkit The DITA Open Toolkit (DITA-
OT) is an open-source implementation of the OASIS DITA
specification, which is developed by the OASIS DITA Technical
Committee. The DITA-OT is a set of Java-based, open-source tools
and Ant scripts that transform DITA content (maps and topics) into
deliverable formats, including Eclipse Help, HTML Help, JavaHelp,
PDF, and XHTML.

Installing the DITA Open Toolkit

You can install the DITA Open Toolkit (DITA-OT) on Linux, Mac OSX,
and Windows. The process for installing and setting up the DITA-OT
depends on the type of distribution package that you select.

Publishing DITA content

You can use either Ant or the command-line tool to transform DITA
content to the various output formats that are supported by the DITA
Open Toolkit (DITA-OT).

Extending the DITA Open Toolkit
Plug-ins can be used to extend the functionality and configure the
DITA Open Toolkit.

Globalizing DITA content

The DITA standard supports content that is written in or translated to
any language. In general, the DITA Open Toolkit (DITA-OT) passes
content through to the output format unchanged. The DITA-OT uses
the values for the @xml:lang, @translate, and @dir attributes that
are set in the source content to provides globalization support.

Error messages and troubleshooting
This section contains information about problems that you might
encounter and how to resolve them.

Reference

This section is designed to help users to locate information easily
and quickly. It includes documentation for the DITA Open Toolkit
(DITA-OT) parameters and configuration properties.

Overview of the DITA Open Toolkit

The DITA Open Toolkit (DITA-OT) is an open-source implementation of
the OASIS DITA specification, which is developed by the OASIS DITA
Technical Committee. The DITA-OT is a set of Java-based, open-source
tools and Ant scripts that transform DITA content (maps and topics) into
deliverable formats, including Eclipse Help, HTML Help, JavaHelp, PDF,
and XHTML.

While the DITA standard is owned and developed by OASIS, the DITA-
OT project is governed separately; the DITA-OT is an independent, open-
source implementation of the DITA standard. The DITA-OT is available
without charge and is licensed under the CPL 1.0 and Apache 2.0 open-
source licenses.

DITA Open Toolkit Release 2.0

DITA 1.2 Specification Support

DITA Open Toolkit 2.0 supports the DITA 1.2 specification. Initial
support for this specification was added in version 1.5 of the toolkit;
versions 1.5.1 and 1.5.2 contain minor modifications to keep up with
the latest drafts. The specification itself was approved at
approximately the same time as DITA-OT 1.5.2, which contained the
final versions of the DTD and Schemas. DITA-OT 1.6 updated the
DITA 1.2 XSDs to address minor errata in the standard; the DTDs
remain up to date.

Tested platforms and tools

The DITA Open Toolkit (DITA-OT) has been tested against certain
versions of Ant, ICU for Java, JDK, operating systems, XML parsers,
and XSLT processors.

Parent topic: DITA Open Toolkit User Guide

Related information
Common Public License, version 1.0
Apache License, version 2.0

http://opensource.org/licenses/cpl1.0.php
http://www.apache.org/licenses/LICENSE-2.0

DITA Open Toolkit Release 2.0

Parent topic: Overview of the DITA Open Toolkit

General Enhancements and Changes

Migration from previous releases

Issues

The following items are included in DITA Open Toolkit Release 2.0. Issue
numbers correspond to the tracking number in the GitHub issues tracker.

Feature requests

#1192 Empty kills FOP (milestone 1)

#1267 PDF support for figurelink/tablelink.style (milestone 1)
e #1347 Issue with "xsl/dita2xhtml.xsl|"? (milestone 1)

e #1506 New command line tool (milestone 1)

e #1507 Convert XSLT to version 2.0 (milestone 1)

e #1511 Use lvy for dependency management (milestone 1)

e #1522 Add HTMLS5 transtype (milestone 1)

o #1523 Reduce HTML/XHTML code duplication (milestone 1)
o #1524 Use DITAVAL for print filtering (milestone 1)

e #1548 Support RFC 5147 in coderef (milestone 1)

e #1561 Combine chunkedtopic lists into fullditatopic list (milestone 1)
e #1569 Index capability with FOP (milestone 1)

e #1601 Change output for rendering a single topic to PDF (milestone
1)

o #1602 Add plug-in installation operation to integration (milestone 1)

e #1608 img should be used instead of embed in XHTML output for all
image types (milestone 1)

e #1610 Filtered content leads to total fail of PDF rendering duplicate
(milestone 1)

https://github.com/dita-ot/dita-ot/issues

e #1612 Update Ant to 1.9.2 (milestone 1)

e #1614 ant build should not bail out when fop directory has no lib
folder (milestone 1)

e #1616 Remove legacy PDF from default distributions (milestone 1)
e #1509 Remove deprecated code (in progress)
e #1649 Support DITA 1.3 link syntax (milestone 2)

o #1644 Add more HTML entities to file entities.properties in dost.jar
(milestone 2)

e #1643 Integrator task constructs property constructs with platform-
dependent path separators (milestone 2)

e #1636 Support DITA 1.3 cascade attribute (milestone 2)

o #1635 Implement DITA 1.3 profiling (milestone 2)

e #1631 Process keyrefs before conref (milestone 2)

e #1673 Remove support for generate.copy.outer=2 (milestone 3)

e #1671 Add support for generating back cover on PDF (milestone 3)
e #1667 Remove FrameMaker index syntax support (milestone 3)

o #1512 Alternative preprocessing plug-in (in progress)

e #1544 Use URI and File instead of String (in progress)

e #1654 Add DITA 1.3 div element (in progress)

e #1652 Add DITA 1.3 markup and xml domain support (in progress)
e #1651 Add new DITA 1.3 highlighting elements (in progress)

Bugs
o #1095 Empty tags result in invalid HTML (milestone 1)

#1239 Essentially needs Xerceslmpl (milestone 1)
#1247 Enable specifying MathML file as image/@href (milestone 1)

#1272 chapter numbering confused when chapters and parts in
bookmap (milestone 1)

#1407 "Ambiguous rule match" in PDF processing XSLT when
<imagemap> is used in topic (milestone 1)

#1421 Warnings when converting to PDF with XEP (milestone 1)
#1462 Support for <table> rowheader in PDF output (milestone 1)

#1486 PDF transform does not apply @rowsep correctly (milestone
1)

#1607 Keyref not processed for pushed conrefs (milestone 1)
#1620 ODT plugin fails due to missing getMax() (milestone 2)
#1619 Add validation for attribute generalization (milestone 2)
#1103 DITA-OT doesn't rewite lg/@href (milestone 2)

#1668 Fix table cell @id and @headers attributes #1596 (milestone
3)

#1634 XML Catalog which has a DOCTYPE declaration is not
properly parsed by Integrator task (milestone 3)

#1596 xref to table cell of DITA simple table does not result in correct
target in <a> element (XHTML output) (milestone 3)

#1539 TopicMerge generates multiple topic entries in the merged
middle file. (milestone 3)

#1231 <screen> and <codebock> do not support all frame attributes
(milestone 3)

#1086 metadata in ancestor map not inherited by topics in childmap
(milestone 3)

e #1600 Indirect reference to keys erases one file, causes failures (in
progress)

DITA 1.2 Specification Support

DITA Open Toolkit 2.0 supports the DITA 1.2 specification. Initial support
for this specification was added in version 1.5 of the toolkit; versions
1.5.1 and 1.5.2 contain minor modifications to keep up with the latest
drafts. The specification itself was approved at approximately the same
time as DITA-OT 1.5.2, which contained the final versions of the DTD and
Schemas. DITA-OT 1.6 updated the DITA 1.2 XSDs to address minor
errata in the standard; the DTDs remain up to date.

Earlier versions of the DITA Open Toolkit contained a subset of the
specification material, including descriptions of each DITA element. This
material was shipped in source, CHM and PDF format. This was possible
in part because versions 1.0 and 1.1 of the DITA Specification contained
two separate specification documents: one for the architectural
specification, and one for the language specification.

In DITA 1.2, each of these has been considerably expanded, and the two
have been combined into a single document. The overall document is
much larger, and including the same set of material would double the size
of the DITA-OT package. Rather than include that material in the
package, we've provided the links below to the latest specification
material.

Highlights of DITA 1.2 support in the toolkit include:
e Processing support for all new elements and attributes
e Link redirection and text replacement using keyref

e New processing-role attribute in maps to allow references to topics
that will not produce output artifacts

e New conref extensions, including the ability to reference a range of
elements, to push content into another topic, and to use keys for
resolving a conref attribute.

e The ability to filter content with controlled values and taxonomies,

using the new Subject Scheme Map

e Processing support for both default versions of task (original, limited
task, and the general task with fewer constraints on element order)

e Acronym and abbreviation support with the new <abbreviated-form>
element

e New link grouping abilities available with headers in relationship
tables

e OASIS Subcommittee specializations from the learning and machine
industry domains (note that the core toolkit contains only basic
processing support for these, but can be extended to produce
related artifacts such as SCORM modules)

To find detailed information about any of these features, see the
specification documents at OASIS. The DITA Adoption Technical
Committee has also produced several papers to describe individual new
features. In general, the white papers are geared more towards DITA
users and authors, while the specification is geared more towards tool
implementors, though both may be useful for either audience. The DITA
Adoption papers can be found from that TC’s main web page.

Parent topic: Overview of the DITA Open Toolkit

Related information

DITA 1.2 Specification (XHTML)

DITA 1.2 Specification (PDF)

DITA 1.2 Specification (zip of the DITA source)
DITA 1.2 Specification (zip of the HTML Help)
DITA Adoption Technical Committee

Building subsets of the specification

http://docs.oasis-open.org/dita/v1.2/spec/DITA1.2-spec.html
http://docs.oasis-open.org/dita/v1.2/spec/DITA1.2-spec.pdf
http://docs.oasis-open.org/dita/v1.2/spec/DITA1.2-spec.zip
http://docs.oasis-open.org/dita/v1.2/spec/DITA1.2-spec-chm.zip
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=dita-adoption
http://dita.xml.org/wiki/dita-12-specification-building-specification-subsets

Tested platforms and tools

The DITA Open Toolkit (DITA-OT) has been tested against certain
versions of Ant, ICU for Java, JDK, operating systems, XML parsers, and
XSLT processors.

Application Tested version

Ant1.7.1
Ant
Ant 1.8.2—1.8.4,1.9.2

ICU4J 3.4.4
ICU for Java
ICU4J 49.1
IBM 1.6
JDK OpenJDK 1.7
Oracle 1.6

Mac OS X 10.6—10.9
SLES 10

Operating system
Windows XP

Windows 7

Xerces 2.9.0
XML parser
Xerces 2.11.0

Saxon 6.5

Saxon 9
XSLT processor

Saxon-B 9.1
Saxon-PE/EE 9.3

Parent topic: Overview of the DITA Open Toolkit

Installing the DITA Open Toolkit

You can install the DITA Open Toolkit (DITA-OT) on Linux, Mac OSX, and
Windows. The process for installing and setting up the DITA-OT depends
on the type of distribution package that you select.

Distribution packages The DITA Open Toolkit is distributed in four
packages: minimal, standard, client, and full-easy-install. The source
code is available both as a Git repository and a ZIP file.

Prerequisite software

The prerequisite software that the DITA-OT requires depends on the
type of distribution package that you intend to install and the types of
transformations that you want to use.

Installing the client package

For the simplest installation experience, install the client package.
This package can be installed on Linux, Mac OSX, and Windows. It
contains everything that you need to run the DITA-OT except for
Java.

Installing the full-easy-install package

For the simplest installation experience, install the full-easy-install
package. This package can be installed on Linux, Mac OSX, and
Windows. It contains everything that you need to run the DITA-OT
except for Java.

Installing the minimal or standard package on Linux or Mac
OSX

If you already have locally-installed copies of Ant and the other
required tools, install either the minimal or standard package.

Installing the minimal or standard package on Windows
If you already have locally-installed copies of Ant and the other
required tools, install either the minimal or standard package.

Parent topic: DITA Open Toolkit User Guide

Distribution packages

The DITA Open Toolkit is distributed in four packages: minimal, standard,
client, and full-easy-install. The source code is available both as a Git

repository and a ZIP file.

Minimal package

This package is designed for vendors that embed the toolkit within a
product. It contains all of the core processing code: CSS and XSLT files,
Ant build scripts, Java code (dost.jar), resource files, and the OASIS
DITA DTDs and Schemas. Users need to have their own versions of Ant
and other libraries; they also need to set up environment variables for
each library. The only external files that are included are the DTDs and
Schemas, along with the following open-source libraries:

e Apache Catalog Resolver, version 1.1
e Apache Commons Codec, version 1.8

e Apache Xerces, version 2.11.0

The minimal package has the following file names:

e DITA-0T2.0.M3_minimal bin.zip

® DITA-0T2.0.M3_minimal bin.tar.gz

Standard package

This package is designed for people who want the core toolkit
functionality, but who already have locally-installed copies of Ant and
other required tools. It contains everything in the minimal package, plus
documentation, demo code (for example, legacy support for the old
bookmap), sample Ant scripts, and sample DITA files. The standard
package includes the following open-source libraries:

e Apache Catalog Resolver, version 1.1
e Apache Commons Codec, version 1.8

e Apache Xerces, version 2.11.0

The standard package has the following file names:

® DITA-0T2.0.M3_standard_bin.zip

® DITA-0T2.0.M3_standard_bin.tar.gz

Client package

This package is designed for users who want the simplest installation
experience. In addition to the core DITA-OT code and the external
libraries that are in the minimal and standard packages, it contains
Apache Ant and FOP. The client package also contains scripts for a
guided demo of the DITA-OT. The client package includes the following
external libraries:

Apache Ant, version 1.9.2

Apache Catalog Resolver, version 1.1
Apache Commons Codec, version 1.8
Apache FOP, version 1.1

ICU for Java, version 52.1

Apache Xerces, version 2.11.0

Saxon, version 9.1.0.8

The client package has the following file names:

DITA-0T2.0.M3_client_bin.zip

DITA-0T2.0.M3_client_bin.tar.gz

Full-easy-install package

This package is designed for users who want the simplest installation
experience. In addition to the core DITA-OT code and the external
libraries that are in the minimal and standard packages, it contains
Apache Ant and FOP. The full-easy-install package also contains batch
files designed to set up a build environment using those tools, as well as
a scripts for a guided demo of the DITA-OT. The full-easy-install package
includes the following external libraries:

e Apache Ant, version 1.9.2

Apache Catalog Resolver, version 1.1

Apache Commons Codec, version 1.8

Apache FOP, version 1.1

ICU for Java, version 52.1

Apache Xerces, version 2.11.0

e Saxon, version 9.1.0.8

The full-easy-install package has the following file names:

® DITA-0T2.0.M3_full easy_install bin.zip

® DITA-0T2.0.M3_full easy_install bin.tar.gz

Parent topic: Installing the DITA Open Toolkit

Related information
DITA Open Toolkit distibution package downloads
DITA Open Toolkit source

https://sourceforge.net/projects/dita-ot/files
https://github.com/dita-ot/dita-ot

Prerequisite software

The prerequisite software that the DITA-OT requires depends on the type
of distribution package that you intend to install and the types of
transformations that you want to use.

Software required for core DITA-OT processing

The DITA-OT requires the following software applications:
JRE or JDK, version 7 or later

Provides the basic environment for the DITA-OT. You can
download the Oracle JRE or JDK from
http://www.oracle.com/technetwork/java/javase/downloads/index
If you opt to use the full-easy-install package, this is the only
prerequisite software that you need to install.

Ant, version 1.7.1 or later

Provides the standard setup and sequencing of processing
steps. You can download Ant from http://ant.apache.org/.

XSLT processor

Provides the main transformation services. It must be compliant
with XSLT 2.0. The DITA-OT is tested with Saxon. You can
download Saxon, version 9.1.0.8 from
http://saxon.sourceforge.net/.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://ant.apache.org/
http://saxon.sourceforge.net/

Software required for specific transformations

Depending on the type of output that you want to generate, you might
need the following applications:

ICU for Java

ICU for Java is a cross-platform, Unicode-based, globalization
library. It includes support for comparing locale-sensitive strings;
formatting dates, times, numbers, currencies, and messages;
detecting text boundaries; and converting character sets. You
can download ICU for Java from http://www.icu-

project.org/download/.
Microsoft Help Workshop

Required for generating HTML help. You can download the Help
Workshop from http://msdn.microsoft.com/en-
us/library/windows/desktop/ms669985%28v=vs.85%29.aspx.

XSL-FO processor

Required for generating PDF output. You can download FOP
from http://xmlgraphics.apache.org/fop/download.html; you also
can use Antenna House Formatter or RenderX.

See Tested platforms and tools for detailed information about versions of
the prerequisite applications that have been tested with the current DITA-
OT release.

Parent topic: Installing the DITA Open Toolkit

http://www.icu-project.org/download/
http://msdn.microsoft.com/en-us/library/windows/desktop/ms669985%28v=vs.85%29.aspx
http://xmlgraphics.apache.org/fop/download.html

Installing the client package

For the simplest installation experience, install the client package. This
package can be installed on Linux, Mac OSX, and Windows. It contains
everything that you need to run the DITA-OT except for Java.

Before you begin

e Ensure that you have Java JRE or JDK, version 7 or later installed.

e Ensure that you have HTML Help Workshop installed, if you want to
generate HTML Help.

Procedure

1. Download the client package from SourceForge.

Operatin ,
P g File name
system
Linux or Mac DITA-0T2.0.M3_client_bin.tar.gz
OSX
Windows DITA-0T2.0.M3_client_bin.zip

2. Extract the contents of the package to the directory where you want
to install the DITA-OT.

3. Optional: Add bin directory to PATH system variable.
This defines the necessary environment variable to run the dita
command from the command-line.

Parent topic: Installing the DITA Open Toolkit

http://sourceforge.net/projects/dita-ot/files/DITA-OT%20Stable%20Release/DITA%20Open%20Toolkit%201.8/

Installing the full-easy-install package

For the simplest installation experience, install the full-easy-install
package. This package can be installed on Linux, Mac OSX, and
Windows. It contains everything that you need to run the DITA-OT except

for Java.

Before you begin

e Ensure that you have Java JRE or JDK, version 7 or later installed.

e Ensure that you have HTML Help Workshop installed, if you want to
generate HTML Help.

Procedure

1. Download the full-easy package from SourceForge.

Operatin ,
P g File name
system
Linux or Mac DITA-0T2.0.M3_full_easy_install_bin.tar.gz
OSX
Windows DITA-0T2.0.M3_full_easy_install bin.zip

2. Extract the contents of the package to the directory where you want
to install the DITA-OT.

3. Run the startcmd file that is applicable for your operating system.
This defines the necessary environment variables and opens a DOS
prompt or terminal window in which you can invoke the toolkit. You
can use the window to run as many builds as you want; if you close
the window, you will need to run the applicable startcmd file again.

Parent topic: Installing the DITA Open Toolkit

http://sourceforge.net/projects/dita-ot/files/DITA-OT%20Stable%20Release/DITA%20Open%20Toolkit%201.8/

Installing the minimal or standard package on
Linux or Mac OSX

If you already have locally-installed copies of Ant and the other required
tools, install either the minimal or standard package.

Before you begin
Ensure that you have the following prerequisite software installed:
e Ant, version 1.7.1 or later
e Java runtime environment or development kit, version 7 or later

e XSLT 2.0 processor. You can use Saxon, version 9.1.0.8 or later.

In addition, determine the specific DITA-OT transformations that you
intend to support and ensure that you have the prerequisite software
installed for them.

For more information, see Prerequisite software and Tested platforms
and toaols.

Procedure

1. Download the minimal or standard package from SourceForge.

Package File name
Minimal DITA-0T2.0.M3_minimal_bin.tar.gz

StandardDITA-0T2.0.M3_standard_bin.tar.gz

For production use, we recommend that you use the latest stable
release.

2. Extract the contents of the package into an installation directory.

Note: You can extract the files either to your private home
directory for your exclusive use or to the /usr/local/share/

directory, if you want to share the DITA-OT with other users.

3. Verify that the JAVA_ HOME environment variable is set.

export JAVA HOME=<JRE_dir>

4. Verify that the ANT_HOME environment variable is been set.

export ANT_HOME=<Ant_dir>

5. Verify that the PATH environment variable includes the Java and Ant
executable files.

export PATH=$JAVA_HOME/bin:$ANT_HOME/bin:$PATH

6. Setthe DITA_HOME environment variable to point to the DITA-OT
installation directory.

export DITA HOME=<DITA-OT_dir>

7. Set up the CLASSPATH environment variable.

export CLASSPATH=$DITA_HOME/lib/dost.jar :$CLASSPATH
export CLASSPATH=$DITA_HOME/lib:$CLASSPATH

http://sourceforge.net/projects/dita-ot/files/DITA-OT%20Stable%20Release/DITA%20Open%20Toolkit%201.8/

10.

11.

12.

export CLASSPATH=$DITA_HOME/lib/resolver.jar :$CLASSPATH
export CLASSPATH=$DITA HOME/lib/commons-codec-1.8.jar:$CLASS

Optional: If you use Ant, version 1.8 or later, set up the
CLASSPATH environment variable to include Apache Xerces.

export CLASSPATH=<xerces_dir>/xercesImpl.jar:<xerces_dir>/xm

Set up the XSLT processor:

Set up the CLASSPATH environment variable to include the Saxon
JAR files, for example:

export CLASSPATH=<saxon_dir>/saxon9.jar :<saxon_dir>/saxon9-di

Set up the ANT_oPTS environment variable, for example:

export ANT_OPTS=$ANT_OPTS -Djavax.xml.transform.TransformerF:

Optional: For index processing, set up ICU for Java.

export CLASSPATH=<icu4j_dir>/icu4j.jar:$CLASSPATH

Optional: For JavaHelp, set the JHHOME environment variable.

export JHHOME=<javahelp dir>
Optional: For PDF output, set up the XSL-FO processor:
ProcessorAction

Add the FOP installation directory to the
local.properties file as the fop.home property, for

FOP
example:

fop.home=/usr/share/java/fop

Add the RenderX installation directory to the

local.properties file as the xep.dir property, for
RenderX example:

xep.dir=/usr/share/java/xep

13.

Add the AH Formatter installation directory to the
local.properties file as the axf.path property, for

Antenna
example:

House
axf.path=/usr/share/java/AHFormatterVeé

Test the DITA-OT installation by transforming the sample files.
The samples\ant_sample directory contains Ant scripts designed to

build various output formats.

/usr/local/share/DITA-0T2.0.M3$% ant -f samples/ant_sample/sa

The generated output is written to the DITA-dir\out\samples
directory. The following output formats are generated:

e Docbook

e Eclipse help
e HTML Help
e ODT

e JavaHelp

e PDF

e TocJS

e TROFF

e XHTML

Parent topic: Installing the DITA Open Toolkit

Installing the minimal or standard package on
Windows

If you already have locally-installed copies of Ant and the other required
tools, install either the minimal or standard package.

Before you begin
Ensure that you have the following prerequisite software installed:
e Ant, version 1.7.1 or later
e Java runtime environment or development kit, version 7 or later

e XSLT 2.0 processor. You can use Saxon, version 9.1.0.8 or later.

In addition, determine the specific DITA-OT transformations that you
intend to support and ensure that you have the prerequisite software
installed for them.

For more information, see Prerequisite software and Tested platforms
and toaols.

Procedure

1.

Download the minimal or standard package from SourceForge.

Package File name
Minimal DITA-0T2.0.M3_minimal_bin.zip

StandardDITA-0T2.0.M3_standard_bin.zip

For production use, we recommend that you use the latest stable
release.

Extract the contents of the package into an installation directory.
For example, C:\pkg\DITA-0T2.0.M3.

Verify that the JAVA_ HOME environment variable is set.

set JAVA_HOME=<JRE_dir>

Verify that the ANT_HOME environment variable is set.

set ANT_HOME=<Ant_dir>

Verify that the PATH environment variable includes the Java and Ant
executable files.

set PATH=%JAVA_HOME%\bin;%ANT_HOME%\bin;%PATH%

Set the DITA_HOME environment variable to point to the DITA-OT
installation directory.

set DITA HOME=<DITA-OT_dir>

Set up the CLASSPATH environment variable.

set CLASSPATH=%DITA_HOME%\lib\dost.jar ; %CLASSPATH%

set CLASSPATH=%DITA_HOME%\1lib;%CLASSPATH%

set CLASSPATH=%DITA_HOME%\lib\resolver.jar ; %CLASSPATH%

set CLASSPATH=%DITA_ HOME%\lib\commons-codec-1.8.jar;%CLASSPA

http://sourceforge.net/projects/dita-ot/files/DITA-OT%20Stable%20Release/DITA%20Open%20Toolkit%201.8/

8.

10.

11.

12.

13.

Optional: If you use Ant, version 1.8 or later, set up the
CLASSPATH environment variable to include Apache Xerces.

set CLASSPATH=<xerces_dir>\xercesImpl.jar;<xerces_dir>\xml-a

Set up the XSLT processor:

Set up the CLASSPATH environment variable to include the Saxon
JAR files, for example:

set CLASSPATH=<saxon_dir>\saxon9.jar;<saxon_dir>\saxon9-dom.:

Set up the ANT_oPTS environment variable, for example:

set ANT_OPTS=%ANT_OPTS% -Djavax.xml.transform.TransformerFac

Optional: For index processing, set up ICU for Java.

set CLASSPATH=<icu4j_dir>\icu4j.jar ; %CLASSPATH%

Optional: For JavaHelp, set the JHHOME environment variable.

set JHHOME=<javahelp_dir>

Optional: For HTML Help, add the installation directory for the
HTML Help Workshop to the local.properties file as the hhc.dir

property.
hhc.dir=C:\\Program Files (x86)\\HTML Help Workshop

Optional: For PDF output, set up the XSL-FO processor:
ProcessorAction

Add the FOP installation directory to the
local.properties file as the fop.home property, for

FOP
example:

fop.home=C:\\Program Files\\fop

Add the RenderX installation directory to the

RenderX

Antenna
House

local.properties file as the xep.dir property, for
example:

xep.dir=C:\\Program Files\\xep

Add the AH Formatter installation directory to the
local.properties file as the axf.path property, for
example:

axf.path=C:\\Program Files\\AHFormatterVé

14. Test the DITA-OT installation by transforming the sample files.
The samples\ant_sample directory contains Ant scripts designed to

build various output formats.

C:\DITA-0T2.0.M3>ant -f samples\ant_samplel\sample all.xml

The generated output is written to the DITA-dir\out\samples
directory. The following output formats are generated:

Docbook
Eclipse help
HTML Help
oDT
JavaHelp
PDF
TocJdS
TROFF
XHTML

Parent topic: Installing the DITA Open Toolkit

Publishing DITA content

You can use either Ant or the command-line tool to transform DITA
content to the various output formats that are supported by the DITA
Open Toolkit (DITA-OT).

DITA-OT transformations The DITA Open Toolkit (DITA-OT) ships
with several core transformations. Each core transformation
represents an implementation of all processing that is defined by
OASIS in the DITA specification.

Publishing DITA content with dita command
DITA-OT includes a dita command-line tool. You can invoke the
DITA-OT from the command-line tool and generate output.

Publishing DITA content from Ant

You can use Ant to invoke the DITA Open Toolkit (DITA-OT) and
generate output. This is the most robust method of transforming
DITA content; you can use the complete set of parameters that are
supported by the toolkit.

Publishing DITA content from the command-line tool

The DITA Open Toolkit (DITA-OT) includes a command-line tool
designed for users who are unfamiliar with Ant. You can invoke the
DITA-OT from the command-line tool and generate output. This
method is less robust than Ant.

Parent topic: DITA Open Toolkit User Guide

DITA-OT transformations

The DITA Open Toolkit (DITA-OT) ships with several core
transformations. Each core transformation represents an implementation
of all processing that is defined by OASIS in the DITA specification.

DITA to Docbook The docbook transformation converts DITA maps
and topics into a Docbook output file. Complex DITA markup might
not be supported, but the transformation supports most common
DITA structures.

DITA to Eclipse Content

The eclipsecontent transformation generates normalized DITA files
and Eclipse control files. It originally was designed for an Eclipse
plug-in that dynamically rendered DITA content, but the output from
the transformation can be used by other applications that work with
DITA.

DITA to Eclipse help
The eclipsehelp transformation generates XHTML output, CSS files,
and the control files that are needed for Eclipse help.

DITA to HTML5
The html5 transformation generates HTMLS5 output and a table of
contents (TOC) file.

DITA to HTML Help (CHM)

The htmlhelp transformation generates HTML output, CSS files, and
the control files that are needed to produce a Microsoft HTML Help
file.

DITA to Open Document Type
The odt transformation produces output files that use the Open
Document format, which is used by tools such as Open Office.

DITA to PDF (PDF2)
The pdf (or pdf2) transformation generates PDF output.

DITA to Rich Text Format
The wordrtf transformation produces an RTF file for use by
Microsoft Word.

DITA to TocJS

The tocjs transformation generates HTMLS5 output, a frameset, and
a JavaScript-based table of contents with expandable and
collapsible entries. The transformation was originally created by
Shawn McKenzie as a plug-in and was added to the default
distribution in DITA OT, release 1.5.4.

DITA to Troff

The troff transformation produces output for use with the Troff
viewer on Unix-style platforms, particularly for programs such as the
Man page viewer.

DITA to XHTML

The xhtml transformation generates XHTML output and a table of
contents (TOC) file. This was the first transformation created for the
DITA Open Toolkit, and it is the basis for all the HTML-based
transformations.

Parent topic: Publishing DITA content

DITA to Docbook

The docbook transformation converts DITA maps and topics into a
Docbook output file. Complex DITA markup might not be supported, but
the transformation supports most common DITA structures.

Parent topic: DITA-OT transformations

DITA to Eclipse Content

The eclipsecontent transformation generates normalized DITA files and
Eclipse control files. It originally was designed for an Eclipse plug-in that
dynamically rendered DITA content, but the output from the
transformation can be used by other applications that work with DITA.

Normalized DITA files have been through the DITA Open Toolkit pre-
processing operation. In comparison to the source DITA files, the
normalized DITA file are modified in the following ways:

e Map-based links, such as those generated by map hierarchy and
relationship tables, are added to the topics.

e Link text is resolved.
e Any DTD or Schema reference is removed.

e Class attributes that are defaulted in the DTD or Schema are made
explicit in the topics.

e Map attributes that cascade are made explicit on child elements.

The normalized DITA files have an extension of .xml.

Parent topic: DITA-OT transformations

Related reference
Ant parameters: Eclipse content transformation
Command-line tool parameters: Eclipse content transformation

DITA to Eclipse help

The eclipsehelp transformation generates XHTML output, CSS files, and
the control files that are needed for Eclipse help.

In addition to the XHTML output and CSS files, this transformation
returns the following files, where mapname is the name of the master
DITA map.

File name Description

plugin.xml Control file for the Eclipse plug-in
mapname . xml Table of contents

index.xml Index file

plugin.properties
META-INF/MANIFEST.MF

Parent topic: DITA-OT transformations

Related reference
Ant parameters: Eclipse help transformation
Command-line tool parameters: Eclipse help transformation

Related information
Official Eclipse Web site

http://eclipse.org

DITA to HTMLS5

The html5 transformation generates HTMLS5 output and a table of
contents (TOC) file.

The HTML5 output is always associated with the default DITA-OT CSS
file (commonltr.css or commonrtl.css for right-to-left languages). You can

use toolkit parameters to add a custom style sheets to override the
default styles.

To run the HTMLS5 transformation, set the transtype parameter to htmi5.

Parent topic: DITA-OT transformations

Related reference
Ant parameters: HTML5 and XHTML transformation
Command-line tool parameters: HTML5 and XHTML transformation

DITA to HTML Help (CHM)

The htmlhelp transformation generates HTML output, CSS files, and the
control files that are needed to produce a Microsoft HTML Help file.

In addition to the HTML output and CSS files, this transformation returns
the following files, where mapname is the name of the master DITA map.

File name Description

mapname . hhc Table of contents
mapname . hhk Sorted index

mapname . hhp HTML Help project file

Compiled HTML Help

Note: This file is generated only if the
HTML Help Workshop is installed on
the build system.

mapname .chm

Parent topic: DITA-OT transformations

Related reference
Ant parameters: HTML Help transformation
Command-line tool parameters: HTML help transformation

DITA to Open Document Type

The odt transformation produces output files that use the Open
Document format, which is used by tools such as Open Office.

This transform returns an ODT document, which is a zip file that contains
the ODF XML file (content.xml), referenced images, and default styling

(in the file styles.xml).

Parent topic: DITA-OT transformations

Related reference
Ant parameters: ODT transformation
Command-line tool parameters: ODT transformation

DITA to PDF (PDF2)

The pdf (or pdf2) transformation generates PDF output.

This transformation was originally created as a plug-in and maintained
outside of the main toolkit code. It was created as a more robust
alternative to the demo PDF transformation in the original toolkit, and
thus was known as PDF2. The plug-in was bundled into the default toolkit
distribution with release 1.4.3.

Parent topic: DITA-OT transformations

Related reference
Ant parameters: PDF transformation
Command-line tool parameters: PDF transformation

DITA to Rich Text Format

The wordrtf transformation produces an RTF file for use by Microsoft
Word.

The structure of the generated RTF file is the same as the navigation
structure in the DITA map. To avoid losing files in the final output, make
sure the DITA map contains all topics that are referenced from any
individual topics.

The wordrtf transformation has the following limitations:
e Flagging, filtering, and revision bars are not supported.
e Style attributes for tables are not supported.
e Tables within list items are not supported.

e Output styles supported by other DITA-OT transformations, for
example, X and Y, are not supported.

Parent topic: DITA-OT transformations

DITA to TocJS

The tocjs transformation generates HTMLS5 output, a frameset, and a
JavaScript-based table of contents with expandable and collapsible
entries. The transformation was originally created by Shawn McKenzie as
a plug-in and was added to the default distribution in DITA OT, release
1.5.4.

The tocjs transformation was updated so that it produces HTML5 output
and uses a default frameset. This transformation also was added to the
build_demo.xml SCript as a transformation-type option.

Parent topic: DITA-OT transformations

DITA to Troff

The troff transformation produces output for use with the Troff viewer on
Unix-style platforms, particularly for programs such as the Man page
viewer,

Each DITA topic generally produces one troff output file. The troff
transformation supports most common DITA structures, but it does not
support <table> or <simpletable> elements. Most testing of troff output
was performed using the Cygwin Linux emulator.

Parent topic: DITA-OT transformations

DITA to XHTML

The xhtml transformation generates XHTML output and a table of
contents (TOC) file. This was the first transformation created for the DITA
Open Toolkit, and it is the basis for all the HTML-based transformations.

The XHTML output is always associated with the default DITA-OT CSS
file (commonltr.css or commonrtl.css for right-to-left languages). You can

use toolkit parameters to add a custom style sheets to override the
default styles.

To run the XHTML transformation, set the transtype parameter to xhtml.
If you are running the demo build, specify web rather than xhtml.

Parent topic: DITA-OT transformations

Related reference
Ant parameters: HTML5 and XHTML transformation
Command-line tool parameters: HTML5 and XHTML transformation

Publishing DITA content with dita command

DITA-OT includes a dita command-line tool. You can invoke the DITA-OT
from the command-line tool and generate output.

Building output using the dita command You can invoke DITA-OT
and build output using the dita command.

Parent topic: Publishing DITA content

Building output using the dita command

You can invoke DITA-OT and build output using the dita command.

Procedure
From the command prompt, issue the following command:

installation-directory\bin\dita -i input-file -f transformation-i

where;:

e input-file is the DITA map or DITA file that you want to process.
o transformation-type is the transformation type.
e parameter-name is the name of an optional parameter.

e value is an applicable value for the optional parameter.

If you add installation-directory\bin directory to PATH system
variable, you can invoke the dita command without the absolute path.

If you do not specify an output directory, by default, the DITA-OT writes
the output to out subdirectory of current directory.

Example

The following command generates HTMLS5 output for the
sequence.ditamap file and specifies the output is written to the test

directory

dita -i samples/sequence.ditamap -o test -f html5

Parent topic: Publishing DITA content with dita command

Publishing DITA content from Ant

You can use Ant to invoke the DITA Open Toolkit (DITA-OT) and generate
output. This is the most robust method of transforming DITA content; you
can use the complete set of parameters that are supported by the toolkit.

Ant Ant is a Java-based, open-source tool that is provided by the
Apache Foundation. It can be used to declare a sequence of build
actions. It is well suited for both development and document builds.
The full-easy-install version of the toolkit ships with a copy of Ant.

Building output using Ant

You can build output by running the ant command and specifying the
DITA-OT parameters at the command prompt. You also can use an
Ant build script to provide the DITA-OT parameters

Creating an Ant build script

Instead of typing the DITA-OT parameters at the command prompt,
you might want to create an Ant build script that contains all of the
parameters.

Parent topic: Publishing DITA content

Related concepts
Ant

Related reference
Ant parameters

Ant

Ant is a Java-based, open-source tool that is provided by the Apache
Foundation. It can be used to declare a sequence of build actions. It is
well suited for both development and document builds. The full-easy-
install version of the toolkit ships with a copy of Ant.

The DITA-OT uses Ant to manage the XSLT scripts that are used to
perform the various transformation; it also uses Ant to manage
intermediate steps that are written in Java.

The most important Ant script is the build.xml file. This script defines and

combines common pre-processing and output transformation routines; it
also defines the DITA-OT extension points.

Parent topic: Publishing DITA content from Ant

Related tasks

Building output using Ant
Creating an Ant build script
Publishing DITA content from Ant

Related reference
Ant parameters
Apache Ant documentation

http://ant.apache.org/manual/index.html

Building output using Ant

You can build output by running the ant command and specifying the
DITA-OT parameters at the command prompt. You also can use an Ant
build script to provide the DITA-OT parameters

Procedure

1. Run the startcmd file that is applicable for your operating system.
The startcmd.bat and startcmd. sh files are in the directory where
you installed the DITA-OT.

2. To provide the DITA-OT parameters from the command prompt,
issue the following command:

ant -Dargs.input=input-file -Dtranstype=transformation-type
where:
e input-file is the DITA map or DITA file that you want to process.
e transformation-type is the transformation type.
e parameter-name is the name of an optional parameter.
e value is an applicable value for the optional parameter.

If you do not specify an output directory, by default, the DITA-OT
writes the output to the installation-directory\out directory.

3. If you use a build script, issue the following command:

ant -f build-script target
where:
e build-script is name of the Ant build script.

e target is an optional switch that specifies the name of the Ant
target that you want to run. If you do not specify a target, the
value of the @default attribute for the Ant project is used.

Parent topic: Publishing DITA content from Ant

Related concepts
Ant

Related tasks
Creating an Ant build script

Related reference
Ant parameters
Apache Ant documentation

http://ant.apache.org/manual/index.html

Creating an Ant build script

Instead of typing the DITA-OT parameters at the command prompt, you
might want to create an Ant build script that contains all of the
parameters.

Procedure

1. Create an XML file that contains the following content:

<?xml version="1.0" encoding="UTF-8" ?>
<project name="@project-name@" default="@default-target@" ba

<property name="dita.dir" location="@path-to-DITA-0T@"/>

<target name="@target-name@">
<ant antfile="${dita.dir}${file.separator}build.xml">
<property name="args.input" value="@DITA-input@"/>
<property name="transtype" value="html5"/>
</ant>
</target>

</project>

You will replace the placeholder content (indicated by the @ signs)
with content applicable to your environment.

2. Specify project information:
1. Set the value of the @name attribute to X.

2. Set the value of the @default attribute to the name of a target in
the build script.
If the build script is invoked without specifying a target, this
target will be run.

3. Set the value of the dita.dir property to the location of the DITA-OT.
This can be a fully qualified path, or you can specify it relative to the
location of the Ant build script that you are writing.

4. Create the Ant target:

1. Set the value of the @name attribute.

2. Specify the value for the args.input property.

3. Specify the value of the transtype property.

5. Save the build script.

Example

The following Ant build script generates CHM and PDF output for the
userguide.ditamap file.

<?xml version="1.0" encoding="UTF-8" ?>
<project name="Toolkit-documentation" default="all" basedir=".">

<property name="dita.dir" location="C:\DITA-0T1.6.M5"/>
<target name="all" description="build CHM and PDF" depends="«

<target name="chm" description="build CHM">
<ant antfile="${dita.dir}\build.xml">
<property name="args.input" value="C:\dita-ot\src\ma:
<property name="args.gen.task.lbl" value="YES"/>
<property name="output.dir" value="C:\kje\temp\out'"/:
<property name="transtype" value="htmlhelp"/>
</ant>
</target>

<target name="pdf" description="build PDF">
<ant antfile="${dita.dir}\build.xml">
<property name="args.input" value="C:\dita-ot\src\ma:
<property name="args.gen.task.lbl" value="YES"/>
<property name="args.rellinks" value="nofamily"/>
<property name="output.dir" value="C:\kje\temp\out'"/:
<property name="transtype" value="pdf"/>
</ant>
</target>

</project>

In addition to the mandatory parameters (args.input and transtype), the
chm and pdf targets each specify some optional parameters:

e The args.gen.task.lbl property is set to YES, which ensures that
headings are automatically generated for the sections of task topics.

e The output.dir property specifies where the DITA OT writes the
output of the transformations.

The pdf target also specifies that related links should be generated in the
PDF, but only those links that are created by relationship tables and
<link> elements.

Finally, the all target simply specifies that both the chm and pdf target
should be run.

What to do next

Another resource for learning about Ant scripts are the files in the
samples/ant_samples directory. This directory contains the Ant build files
used by the demo build, as well as templates that you can use to create
Ant scripts.

Parent topic: Publishing DITA content from Ant

Related concepts
Ant

Related tasks
Building output using Ant

Related reference
Ant parameters
Apache Ant documentation

http://ant.apache.org/manual/index.html

Publishing DITA content from the command-line
tool

The DITA Open Toolkit (DITA-OT) includes a command-line tool designed
for users who are unfamiliar with Ant. You can invoke the DITA-OT from
the command-line tool and generate output. This method is less robust
than Ant.

Command-line tool The DITA Open Toolkit (DITA-OT) provides a
command-line tool for users with little knowledge of Ant. The
command-line tool supports a subset of the parameters that are
available to the Ant builds.

Building output using the command-line tool
If you are unfamiliar with Ant, you can invoke the DITA Open Toolkit
(DITA-OT) and build output from the command-line tool.

Parent topic: Publishing DITA content

Related concepts
Command-line tool

Related reference
Command-line tool parameters

Command-line tool

The DITA Open Toolkit (DITA-OT) provides a command-line tool for users
with little knowledge of Ant. The command-line tool supports a subset of
the parameters that are available to the Ant builds.

The command-line tool is a wrapper around the Ant interface; it takes the
simplified parameters as input, converts them to Ant parameters, and
then runs an Ant build. The Ant parameters that are passed to the DITA-
OT are saved to the property. temp file that is written to the output

directory.

For individual builds, the additional Java overhead is minimal, but for
repeated or server-based builds, the extra memory usage might become
an issue. Applications that embed the toolkit should invoke Ant directly.

Parent topic: Publishing DITA content from the command-line tool

Related tasks
Building output using the command-line tool
Publishing DITA content from the command-line tool

Related reference
Command-line tool parameters

Building output using the command-Iline tool

If you are unfamiliar with Ant, you can invoke the DITA Open Toolkit
(DITA-OT) and build output from the command-line tool.

Procedure

1. Run the startcmd file that is applicable for your operating system.
The startcmd.bat and startcmd. sh files are in the directory where

you installed the DITA-OT.

2. From the command prompt, issue the following command:

java -jar lib/dost.jar /i:input-file /transtype:transfori
where:
e input-file is the DITA map or DITA file that you want to process.
e transformation-type is the transformation type.
e parameter-name is the name of an optional parameter.
e value is an applicable value for the optional parameter.

If you do not specify an output directory, by default, the DITA-OT
writes the output to the installation-directory\out directory.

Example

The following command generates HTMLS5 output for the
sequence.ditamap file and specifies the output is written to the test
directory

java -jar lib/dost.jar /i:samples/sequence.ditamap /outdir:test ,

Parent topic: Publishing DITA content from the command-line tool

Related concepts
Command-line tool

Related reference
Command-line tool parameters

Extending the DITA Open Toolkit

Plug-ins can be used to extend the functionality and configure the DITA
Open Toolkit.

Installing plug-ins Plug-ins are distributed as zip files and can be
installed using either the command line tool or Ant.

Removing plug-ins
Plug-ins can be installed by running uninstallation process.

Parent topic: DITA Open Toolkit User Guide

Installing plug-ins

Plug-ins are distributed as zip files and can be installed using either the
command line tool or Ant.

Procedure

Run plug-in installation process.
e Using the dita command line tool, run the installation command:
dita -install plug-in-zip
e Using Ant, from the toolkit directory run the installation target:
ant -f integrator.xml install -Dplugin.file=plug-in-zip
The plug-in-zip can be either a local file path or a URL.

Parent topic: Extending the DITA Open Toolkit

Removing plug-ins

Plug-ins can be installed by running uninstallation process.

Procedure

Run plug-in uninstallation process.
e Using the dita command line tool, run the uninstallation command:
dita -uninstall plug-in-id
e Using Ant, from the toolkit directory run the uninstallation target:

ant -f integrator.xml uninstall -Dplugin.id=plug-in-id

Parent topic: Extending the DITA Open Toolkit

Globalizing DITA content

The DITA standard supports content that is written in or translated to any
language. In general, the DITA Open Toolkit (DITA-OT) passes content
through to the output format unchanged. The DITA-OT uses the values
for the @xml:lang, @translate, and @dir attributes that are set in the
source content to provides globalization support.

Globalization support offered by the DITA-OT The DITA Open
Toolkit (DITA-OT) offers globalization support in the following areas:
Generated text, index sorting, and bi-directional text.

Supported languages: HTML-based transformations

The DITA Open Toolkit (DITA-OT) supports over 50 languages and
language variants for the HTML-based transformations, for example,
Eclipse Help, HTML Help, and TocJS.

Supported languages: PDF transformations

The DITA Open Toolkit (DITA-OT) supports a smaller set of
languages for the PDF (pdf2) transformation. This transformation
was donated to the DITA-OT project after the project inception, and it
uses a different and larger set of generated text than the HTML-
based transformations.

Parent topic: DITA Open Toolkit User Guide

Related reference
Localization overview in the OASIS DITA standard

http://docs.oasis-open.org/dita/v1.2/os/spec/archSpec/translation.html

Globalization support offered by the DITA-OT

The DITA Open Toolkit (DITA-OT) offers globalization support in the
following areas: Generated text, index sorting, and bi-directional text.

Generated text

Generated text is text that is rendered automatically in the
output that is generated by the DITA-OT; this text is not located
in the DITA source files. The following are examples of
generated text:

e The word "Chapter in a PDF file.

e The phrases "Related concepts," "Related tasks," and
"Related reference" in XHTML output.

Index sorting

The DITA-OT can use only a single language to sort indexes.

Bi-directional text

The DITA-OT contains style sheets (CSS files) that support both
left-to-right (LTR) and right-to-left (RTL) languages.

When the DITA-OT generates output, it takes the first value for the
@xml:lang attribute that it encounters, and then it uses that value to
create generated text, perform index sorting, and determine which default
CSS file is used. If no value for the @xml:lang attribute is found, the
toolkit defaults to US English.

Parent topic: Globalizing DITA content

Supported languages: HTML-based
transformations

The DITA Open Toolkit (DITA-OT) supports over 50 languages and
language variants for the HTML-based transformations, for example,
Eclipse Help, HTML Help, and TocJS.

Table 1. Supported languages: HTML-based

transformations
Language Language code
Arabic ar or ar-eg
Belarusian be or be-by
Brazilian Portuguese pt-br
Bulgarian bg or bg-bg
Catalan ca-es
Chinese (simplified) zh-cn or zh-hans
Chinese (traditional) zh-tw or zh-hant
Croatian hr or hr-hr
Czech CS Or cS-Cz
Danish da or da-dk
Dutch nl or nl-nl
Dutch (Belgian) nl-be
English (US) en or en-us
English (British) en-gb
English (Canadian) en-ca
Estonian et or et-ee
Finnish fi or fifi
French fr or fr-fr
French (Belgian) fr-be
French (Canadian) fr-ca
French (Swiss) fr-ch
German de or de-de
German (Swiss) de-ch
Greek el or el-gr

Hebrew he or he-il

Hindi hi or hi-hi
Hungarian hu or hu-hu
Icelandic IS or is-is
Indonesian id or id-id
Italian it or it-it
ltalian(Swiss) it-ch
Japanese ja or ja-jp
Kazakh kk or kk-kz
Korean ko or ko-kr
Latvian lv or Iv-lv
Lithuanian It or It-It
Macedonian mk or mk-mk
Malay ms or ms-my
Norwegian No Oor no-no
Polish pl or pl-pl
Portuguese pt or pt-pt
Romanian ro or ro-ro
Russian ru or ru-ru
Serbian (Cyrillic script) st sr-rs, or sr-sp
Serbian (Latin script) sr-latn-rs
Slovak sk or sk-sk
Slovenian sl or sl-si
Spanish es or es-es
Spanish (Latin American) es-419
Swedish SV Or sv-se
Thai th or th-th
Turkish tr or tr-tr
Ukrainian uk or uk-ua
Urdu ur or ur-pk

Parent topic: Globalizing DITA content

Related reference
How to add support for new languages in XHTML

Supported languages: PDF transformations

The DITA Open Toolkit (DITA-OT) supports a smaller set of languages for
the PDF (pdf2) transformation. This transformation was donated to the
DITA-OT project after the project inception, and it uses a different and
larger set of generated text than the HTML-based transformations.

Table 1. Supported languages: PDF
transformation

Language Language code
Chinese (simplified) zh-cn or zh-hans
Dutch nl or nl-nl
English (US) en or en-us
Finnish fi or fi-fi

French fr or fr-fr
German de or de-de
Hebrew he or he-il

[talian it or it-it
Japanese ja or ja-jp
Romanian ro or ro-ro
Russian ru or ru-ru
Slovenian sl or s|-SI
Spanish es or es-es
Swedish SV Or Sv-se

Parent topic: Globalizing DITA content

Error messages and troubleshooting

This section contains information about problems that you might
encounter and how to resolve them.

DITA-OT error messages The error messages generated by the
DITA Open Toolkit contain a message ID, severity information, and
message text. This topic lists each error message generated by the
toolkit and provides additional information that might be helpful in
understanding and resolving the error condition.

Other error messages

In addition to error messages generated by the DITA Open Toolkit,
you might also encounter error messages generated by Java or
other tools.

Log files
When you run the DITA-OT, key information is logged on the screen.

This information can also be written to a log file. If you encounter a
problem, you can analyze this information to determine the source of
the problem and then take action to resolve it.

Accessing help from the command-line tool
You can access a list of supported parameters for the command-line
tool by issuing the -help parameter.

Determing the version of the DITA Open Toolkit
You can use the command-line tool to determine the version of the
DITA OT.

Enabling debug mode

When the debug mode is enabled, additional diagnostic information
is written to the log file. This information, which includes environment
variables and stack trace data, can help you determine the root
cause of a problem.

Increasing Java memory allocation

If you are working with large documents with extensive metadata or
key references, you will need to increase the memory allocation for
the Java process. You can do this from the command-line prompt for
a specific session, or you can increase the value of the ANT_OPTS

environmental variable.

Parent topic: DITA Open Toolkit User Guide

DITA-OT error messages

The error messages generated by the DITA Open Toolkit contain a
message ID, severity information, and message text. This topic lists each
error message generated by the toolkit and provides additional
information that might be helpful in understanding and resolving the error
condition.

Each message ID is composed of a message prefix, a message number,
and a letter that indicates the severity (I, W, E, or F). The toolkit uses the
following severity scale:

Informational (I)

The toolkit encountered a condition of which you should be
aware. For example, draft comments are enabled and will be

rendered in the output.
Warning (W)

The toolkit encountered a problem that should be corrected.
Processing will continue, but the output might not be as
expected.

Error (E)

The toolkit encountered a more severe problem, and the output
is affected. For example, some content is missing or invalid, or
the content is not rendered in the output

Fatal (F)

The toolkit encountered a severe condition, processing stopped,
and no output is generated.

:\I/:I)essage Severity Message text Add
Defa
ship

"%J1" is not a recognized transformation
xhtmr

DOTAOO1F Fatal

DOTAOQOO02F Fatal

DOTAOQOO3F Fatal

DOTAOO4F Fatal

DOTAO06W Warning

type. Supported transformation types are
docbook, eclipsecontent, eclipsehelp,
html5, htmlhelp, javahelp,
net.sourceforge.dita-ot.html, odt, pdf,
pdf2, tocjs, troff, wordrtf, xhtml.

Input file is not specified, or is specified
using the wrong parameter.

Cannot find the user specified XSLT
stylesheet '%1".

Invalid DITA topic extension '%1".
Supported values are ".dita' and ".xml".

tocjs
eclip
and’
trans
avail
insta

The
spec
DITA
Enst
prop
argu
Com
you
the il
An a
spec
defa
but t
load:
para
style
This
to Se
topic
temg
Only
".Xm
If the
absc
that

Absolute paths on the local file system are the f

not supported for the CSSPATH
parameter. Please use a relative path or
full URI instead.

Syste
http
Absc
Syste
cont
Syste

DOTAOOQO7E Error

DOTAOOQOS8E Error

DOTAOQQE Error

DOTAO011W Warning

DOTAO012W Warning

DOTAO66F Fatal

Cannot find the running-footer file "%1".
Please double check the value to ensure
it is specified correctly.

Cannot find the running-header file "%1".
Please double check the value to ensure
it is specified correctly.

Cannot find the specified heading file
"%1". Please double check the value to
ensure it is specified correctly.

Argument "%1" is deprecated. This
argument is no longer supported in the
toolkit.

Argument "%1" is deprecated. Please use
the argument "%2" instead.

Cannot find the user specified XSLT
stylesheet '%1".

The
cont:
the k
outp
orre
by a
value
that
with
The
cont:
the t
topic
This
in th
shot
value
as a

The
cont:
the <
XHT
locai
caus
para
also
spec

An a
spec
defa
but t
load:
para

DOTAO067W Warning

DOTAO068W Warning

DOTAO69F Fatal

DOTAO069W Warning

DOTJO01F [Fatal

DOTJO02F Fatal

DOTJO03F [Fatal

style
Ignoring index-see '%1' inside parent
index entry '%2' because the parent
indexterm contains indexterm children. This
According to the DITA Specification, the instr
index-see element should be ignored if Stan
the parent indexterm contains other
indexterm children.
Ignoring index-see-also '%1' inside parent
index entry '%2' because the parent
indexterm contains indexterm children. This
According to the DITA Specification, the instr
index-see-also element should be ignored |Stan
if the parent indexterm contains other
indexterm children.
Input file '%1' cannot be located or read. Plea
Ensure that file was specified properly path
and that you have permission to access it. corre
Target "%1" is deprecated. Remove
references to this target from your custom
XSLT or plug-ins.
Invalid command line syntax for the

parameter '%1'. Parameters to the Se?rea
command line tool should use the syntax %

/parameter:value.

Unsupported parameter '%1'. Please refer See
to the DITA-OT User Guide for supported para
parameters. para

Parameter '%1' was specified without a
value. Parameters to the command line
tool should use the syntax
/parameter:value.

See

para
para

The
crea
direc
by a
prev
direc

Cannot create temporary processing local

DOTJO04F Fatal directory '%1'. Please ensure that you have
have permission to create the directory defa

‘%1 alter

local

argu

Com

ford

temg

Failed to create new instance for '9%1".
DOTJOO5F Fatal Please ensure that '%1' exists and that
you have permission to access it.

This
I o Ant |
An Ant build file used the following illegal .

: . pipel
syntax when calling Antinvoker: of U<
extparam='%1'. Please correct the call to |

DOTJ006F Fatal Antinvoker when directly calling DITA-OT mod
Java code from Ant; for example, para
extparam="maplinks=XXXX;other=YYYY". Z}?(tg

"nan
If a c
Duplicate condition in filter file for rule than

DOTJOO7E Error '%1'. The first encountered condition will audi
be used. rese

first

Cannot overwrite file '%1" with file '%2".

The modified result may not be consumed The
by the following steps in the transform crea
pipeline. Check to see whether the file is trans
locked by some other application during expe
the transformation process.

DOTJO09E Error

This
inval
accic
file a
map

DOTJO12F Fatal

DOTJO13E Error

DOTJ014W Warning

DOTJO015F Fatal

DOTJO16F [Fatal

Failed to parse the input file '%1'. The
XML parser reported the following error:

Failed to parse the referenced file '%1".
The XML parser reported the following
error:

Found an indexterm element with no
content. Setting the term to ***,

Log directory cannot be null. Please
specify a valid directory for the build log.
Failed to create log directory '%1'. Please
specify a valid directory for the build log.

elenr
are r
has
as X
using
docL
extel
pars
ISSue
shot
infor
caus
This
refer
as a
PDF
was
uses
allow
file tl
be p
also
docL
extel
pars
ISSue
shot
infor
caus

An e
was
the il
shot
sour

The

No input file was specified; failed to the il

DOTJ017F Fatal initialize log name based on input file. log fi
nam

coul

Log file '%1' was generated successfully
in directory '%2'. Any messages from the
transformation process are available in
the log file; additional details about each
message are available in the DITA-OT

DOTJ018I |Informational

user guide.
e . This
At least one plug-in in '%1" is required by .
plug-in '%2". Plug-in '%2' cannot be nsta
DOTJ020W Warning loaded. Check and see whether all anot
prerequisite plug-ins are installed in corre
toolkit. n1s
plug:
This
File '9%1" will not generate output since it is c?ng
invalid or all of its content has been ,?0 ﬁe
DOTJ021W Warning filtered out by the ditaval file. Please ‘
check the file '%1' and the ditaval file to ltirllteesr‘
see if this is the intended result.
to th
build

Failed to parse the input file '%1' because
all of its content has been filtered out. This Eithe

DOTJO22E Eatal will hg.ppen if the input file has filter file s
conditions on the root element, and a your
ditaval excludes all content based on all cc
those conditions.

: - : Che

Failed to get the specified image file '%1', .
DOTJO23E |Error so it will not be included with your output. 'QX;[;'
This

appe

DOTJO025E Error

DOTJO026E Error

DOTJ028E Error

The input to the "topic merge" transform
process could not be found. Correct any
earlier transform errors and try the build
again, or see the DITA-OT User Guide for
additional causes.

The "topic merge" did not generate any
output. Correct any earlier transform
errors and try the build again, or see the
DITA-OT User Guide for additional
causes.

No format attribute was found on a
reference to file '%1’', which does not
appear to be a DITA file. If this is not a

This
appe
is dir
topic
error
som
mer¢
COrre
prog
repo
deve
bug_
Whe
file, 1
indic
refer
HTV

https://github.com/dita-ot/dita-ot/issues

DITA file, set the format attribute to an
appropriate value, otherwise set the
format attribute to "dita".

No 'domains' attribute was found for
element '<%1>". This generally indicates

DOTJO0291 Informationalthat your DTD or Schema was not

developed properly according to the DITA
specification.

No ‘class' attribute for was found for
element '<%1>". This generally indicates

DOTJO030I Informationalthat your DTD or Schema was not

developed properly according to the DITA
specification.

No specified rule for '%1' was found in the
ditaval file. This value will use the default

DOTJO031l [Informational action, or a parent prop action if specified.

DOTJO33E Error

DOTJ034F [Fatal

To remove this message, you can specify
a rule for '%1" in the ditaval file.

No valid content is found in topicref '%1'
during chunk processing. Please specify
an existing and valid topic for the topicref.

Failed to parse the input file '%1' (the
content of the file is not valid). If the input
file '%1' does not have a DOCTYPE
declaration, please make sure that all
class attributes are present in the file.

The file "%1" referenced by "%2" is

files)
may
refer
topic

The
spec
help
elenr
mes:
spec
prop
All s|
mus!
prov
This
spec
not ¢
This
inter
conc
spec
IS co

DITA
class
elernr
defa
Sche
IS us
musi
map
This
outsi
for e
map

DOTJO35F Fatal

DOTJO036W Warning

DOTJ037W Warning

DOTJO38E Error

outside the scope of the input dita/map
directory. If you want to lower the severity
level, please use the Ant parameter
‘outer.control’, and set the value to "warn"
or "quiet”. Otherwise, move the
referenced file "%1" into the input
dita/map directory.

The file "%1" referenced by "%2" is
outside the scope of the input dita/map
directory. If you do not want to see the
warning message, please use the Ant
parameter 'outer.control’, and set the
value to "quiet". Otherwise, move the
referenced file "%1" into the input
dita/map directory.

The XML schema and DTD validation
function of the parser is turned off. Please
make sure the input is normalized DITA
with class attributes included, otherwise it
will not be processed correctly.

The tag "%1" is specialized from
unrecognized metadata. Please make
sure that tag "%1" is specialized from an
existing metadata tag in the core DITA
vocabulary.

DITA
There is no target specified for conref

push action "pushafter”. Found in Plea
DOTIO39E Error file="%1", element:"%Zu". Please af,jd Pust
<elementname conref="pushtarget for d
conaction="mark"> before current for tt
element.
An element uses the attribute Plea
DOTJO40E Error _conaction:"r‘eplace", but a conref- attribute Pust
is not found in the expected location. for d
Found in file="%1", element="%2". for tt
The

The attribute conref="%21" uses invalid
syntax. The value should contain #'

DOTJO41E Error followed by a topic or map ID, optionally
followed by '/elemID’ for a sub-topic
element.

URI
elernr
on U
DITA
the €

The

usec

with

Two elements both use conref push to Only
DOTJO042E Error replace the target "%1". Please delete reple
one of the duplicate "replace" actions. pust
DITA

infor

pust

The

actia

maki

corre

The conref push function is trying to exist
DOTJ043W Warning replace an element that does not exist base
(element "%1" in file "%2"). spec
expe

corre

targe

build

There is a redundant conref action Plea

http://docs.oasis-open.org/dita/v1.2/os/spec/common/theconactionattribute.html
http://docs.oasis-open.org/dita/v1.2/os/spec/common/theconactionattribute.html
http://docs.oasis-open.org/dita/v1.2/os/spec/archSpec/uri-based-addressing.html
http://docs.oasis-open.org/dita/v1.2/os/spec/archSpec/uri-based-addressing.html

DOTJ044W Warning "pushbefore”. Found in file="%1", Pust
element="%2". Please make sure that for d
"mark" and "pushbefore” occur in pairs. for tt

The key "%1" is defined more than once Eé) 2
DOTJO045] Informationalin the same map file. The reference thiz i
href="9%2" is ignored.
catcl
Conkeyref="%21" can not be resolved
because it does not contain a key or the See
DOTJO46E Error : . o deta
key is not defined. The build will use the USac
conref attribute for fallback, if one exists. N
This
Unable to find key definition for help
DOTJO0471 Informational keyref="%1", href may be used as fallback spec
if it exists. spec
may
i _ngyan A DI
The attribute value %1="%3" on element
"%2" does not comply with the specified Was_l
DOTJ049W Warning subject scheme. According to the subject a;{[a_lk
scheme map, the following values are a r!k
valid for the %1 attribute: %4 attri
the ¢
The
valut
othe
Found an <index-see> or <index-see- not €
DOTJO50W Warning also> reference to the term '%1’', but that refer
term is not defined in the index. this |
Eclig
defir
term
The
eler
extel
not k
verif

Ccorre

http://docs.oasis-open.org/dita/v1.2/os/spec/common/theconactionattribute.html
http://docs.oasis-open.org/dita/v1.2/os/spec/common/theconactionattribute.html

DOTJO51E Error

DOTJO52E Error

DOTJO053W Warning

DOTJO54E Error
DOTJO55E Error

Unable to load target for coderef "%1".

Code reference charset "%1" not
supported. See the DITA-OT User guide
for supported charset values on the
format attribute.

Input file '%1" is not valid DITA file name.
Please check '%1' to see if it is correct.
The extensions ".dita" or ".xml" are
supported for DITA topics.

Unable to parse invalid %1 attribute value
ll%2ll

Invalid key name "%1".

Note
refer
outsi
direc
defa
refer
any |
the <
that
shou
work
para
refer
argu
gene
OT(
argu

/gen

The
synt:
spec
targe
funci
expe
By d
supg
and '
man
Spec
your
extel
toolk
extel

http://docs.oasis-open.org/dita/v1.2/os/spec/common/theconkeyrefattribute.html

DOTJO56E Error
DOTJO57E Error

DOTJO58E Error

DOTJO59E Error

DOTJO60W Warning

DOTX001W Warning

DOTX002W Warning

DOTX003! [Informational

Invalid xml:lang "%1".

The id attribute value "%1" is not unique
within the topic that contains it.

Both %1 and %2 attributes defined. A
single element may not contain both
generalized and specialized values for the
same attribute.

Invalid key scope name "%1".

Key "%1" was used in conkeyref but is not
bound to a DITA topic or map. Cannot
resolve conkeyref value "%2" as a valid
conref reference.

No string named '%1' was found for
language '%2'. Using the default language
'%3'. Add a mapping between default
language and desired language for the
string '%1".

The title element or attribute in the
ditamap is required for Eclipse output.

The anchorref attribute should either
reference another dita map or an Eclipse
XML TOC file. The value '%1' does not
appear to reference either.

This
such
infor
aboy
toolk
strin
lang!
appe
This
toolk
upde
lang!
settil
The
requ
gene
Plea
map
outp
Eclig
to cc
For t
gene
anct
refer
Eclig

DOTX004! [Informational

DOTXOO5E Error

DOTXOO06E Error

DOTX007! |[Informational

DOTXOO08E Error

Found a navref element that does not
reference anything. The navref element
should either reference another dita map
or an Eclipse XML file.

Unable to find navigation title for
reference to '%1'. The build will use '%1'
as the title in the Eclipse Table of
Contents.

Unknown file extension in href="%21".
References to non-DITA resources should
set the format attribute to match the
resource (for example, 'txt', 'pdf’, or ‘html").

Only DITA topics, HTML files, and images
may be included in your compiled CHM
file. The reference to "%1" will be ignored.
To remove this message, you can set the
toc="no" or processing-role="resource-
only" attribute on your topicref.

File '%1' does not exist or cannot be
loaded.

anot
pres
an kE
Eclig
<na\
Eclig
foun
does
file; 1
To re
prov
refer
topic
refer
targe
Set t
iden
the r
docL
docL
extel
extel

The
only
infor
CHN
will r

Enst
can |
of th
have
stani
(.dit;
origil
file; |
the t
than

DOTX008W Warning

DOTX009W Warning

DOTXO010E Error

File '%1' cannot be loaded, and no
navigation title is specified for the table of
contents.

Could not retrieve a title from '%1'. Using
'%2" instead.

Unable to find target for conref="%1".

To fi
spec
map
refer
be a
nam
may
stani
(.dit:
origil
file; |
the t
than

No ti
spec
cont
fallb:

The

URI

DITA
topic
in th
deta
Note
this i
char
topic
"xml
extel
may
temg
to th

If the
your
sure
build
will r

DOTX011W Warning

DOTX012W Warning

DOTXO013E Error

There is more than one possible target for
the reference conref="%21". Only the first
will be used. Remove the duplicate id in
the referenced file.

When you conref another topic or an item
in another topic, the domains attribute of
the target topic must be equal to or a
subset of the current topic's domains
attribute. Put your target under an
appropriate domain. You can see the
messages guide for more help.

A element with attribute conref="%1"
indirectly includes itself, which results in
an infinite loop.

conr

Whe
conr
pull 1
the t
the r
ther
mes:
to us
extel
inste
usec
inclu
direc
origil

This
shot
logs.

This
you |
refer
that

refer
will r
toolk
conr
dete
corre
sour
of th
have
stani
(.dit;
origil

http://docs.oasis-open.org/dita/v1.2/os/spec/archSpec/uri-based-addressing.html

DOTXO014E Error

DOTXO015E Error

DOTX016W Warning

The attribute conref="%21" uses invalid
syntax. Conref references to a map
element should contain '# followed by an
ID, such as mymap.ditamap#mytopicrefid.

The attribute conref="%1" uses invalid
syntax. The value should contain '#
followed by a topic or map ID, optionally
followed by '/elemID’ for a sub-topic
element.

A reference to "%2" appears to reference
a DITA document, but the format attribute
has inherited a value of "%1". The

document will not be processed as DITA.

file; i
the t
than

The
URI
elernr
on U
DITA
the €

The
URI
elernr
on U
DITA
the €
ther
mes:
to us
extel
inste
usec
inclu
direc
origil
This
catcl
DITA
unex
DITA
the t
To re
form
indic
ther
mes:
to us
extel
inste

http://docs.oasis-open.org/dita/v1.2/os/spec/archSpec/uri-based-addressing.html
http://docs.oasis-open.org/dita/v1.2/os/spec/archSpec/uri-based-addressing.html

DOTXO017E Error

Found a link or cross reference with an
empty href attribute (href=""). Remove the
empty href attribute or provide a value.

The type attribute on a topicref was set to
'%1', but the topicref references a more

DOTX018I Informational specific '%2' topic. Note that the type

DOTX019W Warning

attribute cascades in maps, so the value
'%1' may come from an ancestor topicref.

The type attribute on a topicref was set to
'%1', but the topicref references a '%2'
topic. This may cause your links to sort
incorrectly in the output. Note that the
type attribute cascades in maps, so the
value '%1' may come from an ancestor
topicref.

usec
inclu
direc
origil
Four
href-
emp
servi
caus
tools
remc
spec
The
inter
the t
refer
may
Geni
optic
will ¢
value
case
more
actui
error
unex
this 1

The
inter
the t
refer
may
Geni
optic
will ¢
value
case
does

DOTXO020E Error

DOTXO021E Error

DOTX022W Warning

DOTX023W Warning

DOTXO024E Error

DOTXO025E Error

DOTX026W Warning

Missing navtitle attribute or element for
peer topic "%1". References must provide
a local navigation title when the target is
not a local DITA resource.

Missing navtitle attribute or element for
non-DITA resource "%1". References
must provide a local navigation title when
the target is not a local DITA resource.

Unable to retrieve navtitle from target:
'%1'. Using linktext (specified in
topicmeta) as the navigation title.

Unable to retrieve navtitle from target:
'%1".

Missing linktext and navtitle for peer topic
"%1". References must provide a local
navigation title when the target is not a
local DITA resource.

Missing linktext and navtitle for non-DITA
resource "%1". References must provide
a local navigation title when the target is

not a local DITA resource.

Unable to retrieve linktext from target:
'%1'. Using navigation title as fallback.

may
inap|
The
dyne
the t
extel

The
dyne
the t
reso

The
title 1
inste
crea
<link
<top
If the
enstL
and-
Othe
title,
form
appr
The
dyne
link t
local
reso

The
dyne
the t
reso
The
didr
gene
navi
fallbs
The

DOTX027W Warning

DOTXO028E Error

DOTX029I |[Informational

DOTX030W Warning

Unable to retrieve linktext from target:
'%1'.

Link or cross reference must contain a
valid href or keyref attribute; no link target
Is specified.

The type attribute on a %1 element was
set to %3, but the reference is to a more
specific %4 %2. This may cause your
links to sort incorrectly in the output.

The type attribute on a %1 element was
set to %3, but the reference is to a %4
%2. This may cause your links to sort
incorrectly in the output.

spec
gene
no fe
locai
from
incol

The
no te
gene
The
inter
the t
refer
may
Gen
optic
will &
value
case
more
actui
error
unex
this 1

The
inter
the t
refer
may
Geni
optic
will &
value
case
does
may
inap|
The

DOTXO031E Error

DOTXO032E Error

DOTXO033E Error

DOTXO034E Error

The file %1 is not available to resolve link
information.

Unable to retrieve link text from target:
'%1'. If the target is not accessible at build
time, or does not have a title, provide the
link text inside the reference.

Unable to generate link text for a cross
reference to a list item: '%1"

Unable to generate link text for a cross
reference to an undered list item: '%1"

the <
retri
desc
be fc
pOSS
usec
cont
awal
aboy
your
Whe
does
will ¢
title 1
targe
set tl
appr
does
whel
sure
the ¢
An <
type:
to a
num
to us
spec
refer
arer
item.

The
list it
proc
gene
list it
prov
refer

An <

DOTXO035E Error

DOTXO036E Error

DOTX037W Warning

DOTX038I [Informational

DOTX039W Warning

type:
toa

Unable to generate the correct number for num

a cross reference to a footnote: '%1'

Unable to generate link text for a cross
reference to a dlentry (the dlentry or term
could not be found): '%1"

No title found for this document; using
"Fxx in XHTML title bar.

The longdescref attribute on tag '%1" will
be ignored. Accessibility for object
elements needs to be handled another
way.

Required cleanup area found. To remove
this message and hide the content, build
your content without using the DRAFT
parameter.

to us
spec
refer
are r
footr
An <
type:
link t
the t
use
link t
ensL
an a

No ti
docL
file v
This
the t
brow

The
does
long:
mak
may
after
be a
<par
obje:
This
whel
orde
topic
up; t
appe
stylir

The
the ¢

This
whel

Draft comment area found. To remove this orde

message and hide the comments, build
your content without using the DRAFT
parameter.

DOTX040! [Informational

Found more than one title element in a
DOTX041W Warning section. Using the first one for the
section’'s title.

DITAVAL based flagging is not currently
DOTX0421 Informational supported for inline phrases in XHTML,;
ignoring flag value on '%1" attribute.

The link to '%1' may appear more than

DOTX043l [Informational once in '%2".

topic
Eact
your
com!
the ¢

Becs
DITA
not
seco
editil
com
spec
title ¢
Whe
only
the ¢
If it i
of inf
on tt
cont:
wani
the
imac
docL
The
dupli
How
sam
attrik
pOSS
toge
sam
role=

DOTXO044E Error

DOTX045W Warning

DOTX046W Warning

DOTX047W Warning

DOTX048I

Informational

spec
both
arel
gene
DITA
attrik

The
The area element in an image map does map
not specify a link target. Please add an for tt
xref element with a link target to the area add.
element. child
it Spt
Cros
<are
prov
The area element in an image map should read
specify link text for greater accessibility. diffel
Link text should be specified directly when If tex
the target is not a local DITA resource. auto
DITA
spec
refer
Area shape should be: default, rect, circle, The
poly, or blank (no value). The value '%1' is as-is
not recognized. eler

The
defir
map
spec
regic
The
extel
your
be ir
refer
that
canr
Proje

Area coordinates are blank. Coordinate
points for the shape need to be specified.

In order to include peer or external topic
'%1" in your help file, you may need to
recompile the CHM file after making the

file available.

References to non-dita files will be

DOTX049I Informationalignored by the PDF, ODT, and RTF output

DOTX050W Warning

DOTX052W Warning

transforms.

Default id "org.sample.help.doc" is used
for Eclipse plug-in. If you want to use your
own plug-in id, please specify it using the
id attribute on your map.

No string named '%1' was found when
creating generated text; using the value
'%1' in your output file.

A element that references another map
indirectly includes itself, which results in

toc ¢
topic
chec
was
was
in th
othe
The
proc
conv
DITA
the r
refer

Eclig
spec
Eclig
expe
root
The
gene
strin
appe
requ
foun
outp
strin
that
strin
error
over
requ
neec
the <
you |
This
refer
then
anot

DOTXO0O53E Error

DOTX054W Warning

DOTX055W Warning

DOTX056W Warning

an infinite loop. The original map refer

reference is to '%1'. resu
map.
of m
circu
Conflict text style is applied on the current his
element based on DITAVAL flagging rules. fi
. : ile c
Please check ditaval and dita source to |
make sure there is no style conflict on the eler;
element which needs to be flagged.
The

Customized stylesheet uses deprecated depr
template "flagit”. Conditional processing is 1.4,"
no longer supported using this template. form
Please update your stylesheet to use The
template "start-flagit” instead of DITA
deprecated template "flagit". usec
upde
The
the <
retriy
desc
be fc
POSS
usec

The file '%1" is not available to resolve link gggg

information.
locai

ther
was

onlyl
[only
spec
path
matc

The link or cross reference target '%1'
cannot be found, which may cause errors

DOTX057W Warning creating links or cross references in your canr
output file. that

not r

DITA

Proc
or ak
assao
elemr
glos:
This
key \
assao
topic
the k
(usu
refer
Proc
elemr
from
attrik
(glos
Key '%1' was used in an abbreviated-form mes:

element, but the key is not associated was

DOTX060W Warning with a glossary entry. Abbreviated-form assac
should ONLY be used to referencetoa topic

glossary entry. Supf

assao

the €

any t

refer

elemr

Accc
Spec
map.
Map
ID '%1' was used in topicref tag but did DITA
not reference a topic element. The href belo
attribute on a topicref element should only be ir

No glossary entry was found associated
with key '%1' on %2 element. The build

DOTX058W Warning will try to determine the best display text
and hover text for terms and
abbreviations.

DOTX061W Warning

reference topic level elements.

It appears that this document uses
constraints, but the conref processor

DOTX062I [Informational cannot validate that the target of a conref

DOTX063W Warning

DOTX064W Warning

DOTX065W Warning

is valid. To enable constraint checking,
please upgrade to an XSLT 2.0 processor.

The dita document '%1' is linked to from
your content, but is not referenced by a
topicref tag in the ditamap file. Include the
topic in your map to avoid a broken link.

The copy-to attribute [copy-to="%1"] uses
the name of a file that already exists, so
this attribute is ignored.

Two unique source files each specify
copy-to="%2", which results in a collision.
The value associated with href="%1" is
ignored.

Template "%1" is deprecated. Remove

(usir
of a’
href
OAS
the t

This
gene
that
topic
not
will r
shou
map
build
The
copy
that .
sure
use i
copy
cont
Two
to th
to; a
woul
first i
value
COrre
attrik
This
your
rely
remc

http://docs.oasis-open.org/dita/v1.2/os/spec/langref/topicref.html

DOTX066W Warning

DOTXO67E Error

DOTX068W Warning

PDFJOO1E Error

PDFJO02E Error

PDFX001W Warning

PDFX002W Warning

PDFX003W Warning

PDFX004F Fatal

references to this template from your
custom XSLT or plug-ins.

No string named '%1' was found for
language '%2'. Add a mapping for the
string '%1'.

A topicref element that references a map
contains child topicref elements. Child
topicref elements are ignored.

Index entry '%1' is dropped, because
corresponding group is not found.

Build stopped. Problems occured during
Index preprocess task. Please check the
messages above.

There is no index entry found which
closing range for ID="%1".

There are multiple index entry found
which is opening range for ID="%1" but
there is only one which close it or ranges
are overlapping.

There are multiple index entry found
which closing range for ID="%1".

Empty href was specified for some topic
reference. Please correct your ditamap or
bookmap file.

relec
whel
beer
temg
depr
upde
This
text,
"Rel:
gene
grou
to lo
spec
will ¢
lang!
indic
neec
your
lang!

PDFX005F Fatal

PDFXO06E [Error
PDFX007W Warning

PDFX008W Warning

PDFXO09E Error
PDFX010W Warning

PDFX011E Error

PDFX012F Fatal

XEPJOO1W Warning
XEPJOO2E |Error
XEPJOO3E Error

Topic reference (href : %1) not found.
Reference may be incorrect. Please
correct your ditamap or bookmap file.
Number of columns must be specified.
There is no index entry found which
opening range for ID="%1".

Font definition not found for the logical
name or alias '%1'.

Attribute set reflection can't handle XSLT
element %1.

Index generation is not supported in FOP.

Both index-see and %1 defined for index
entry '%2'. Recovering by treating the
index-see as an index-see-also.

Unrecognized PDF formatter '%1'. Use
"fop" for FOP, "xep" for RenderX XEP, or
"ah" for AH Formatter.

%1
%1
%1

Parent topic: Error messages and troubleshooting

Other error messages

In addition to error messages generated by the DITA Open Toolkit, you
might also encounter error messages generated by Java or other tools.

Out of Memory error

In some cases, you might receive a message stating the build has failed
due to an out of Memory error. Try the following approaches to resolve

the problem:

1. Increase the memory available to Java; see Increasing Java memory
allocation.

2. Reduce memory consumption by setting the generate-debug-
attributes option to false. This option is set in the

lib/configuration.properties file. This will disable debug attribute

generation (used to trace DITA-OT error messages back to source
files) and will reduce memory consumption.

3. Setdita.preprocess.reloadstylesheet Ant property to true. This will

allow the XSLT processor to release memory when converting
multiple files.

4. Run the transformation again.

java.io.lOException: Can't store Document

After running a JavaHelp transformation, you may receive a
java.io.IOException: Can't store Document message.

This problem occurs when HTML files unrelated to the current
transformation are found in the output directory. Delete the content of the
output directory and run the transformation again.

Stack Overflow error

If you receive an error about a stack memory overflow, increase the JVM
and run the transformation again. See Increasing Java memory
allocation.

Parent topic: Error messages and troubleshooting

Log files

When you run the DITA-OT, key information is logged on the screen. This
information can also be written to a log file. If you encounter a problem,
you can analyze this information to determine the source of the problem
and then take action to resolve it.

The logging behavior varies depending on whether you use the dita
command, DITA-OT command-line tool, or Ant to invoke a toolkit build.

dita command

By default, only warning and error messages are written to the
screen. If you use the -v option, logging will be more verbose
and informative messages are also written out. The -l option can
be used to write the log messages into a file.

Ant

By default, status information is written to the screen. If you
issue the -l parameter, the build runs silently and the information
is written to a log file with the name and location that you
specified. (You also can use other Ant loggers; see the Ant
documentation for more information.)

Command-line tool

Status information is written to the screen and the log file. The
log file name contains the input file name and transformation
type; by default, it is located in the output directory. If you issue
the llogdir parameter, you can specify a different location for
where the log file is written.

Parent topic: Error messages and troubleshooting

Accessing help from the command-line tool

You can access a list of supported parameters for the command-line tool
by issuing the -help parameter.

Procedure

1. Run the startcmd file that is applicable for your operating system.
The startcmd.bat and startcmd. sh files are in the directory where

you installed the DITA-OT.

2. From the command prompt, issue the following command:

java -jar lib/dost.jar -help

Results

You can see the brief description of the supported parameters in the
command-line window.

Parent topic: Error messages and troubleshooting

Determing the version of the DITA Open ToolKkit

You can use the command-line tool to determine the version of the DITA
OT.

Procedure

1. Run the startcmd file that is applicable for your operating system.
The startcmd.bat and startcmd. sh files are in the directory where

you installed the DITA-OT.

2. From the command prompt, issue the following command:

java -jar lib/dost.jar -version

Parent topic: Error messages and troubleshooting

Enabling debug mode

When the debug mode is enabled, additional diagnostic information is
written to the log file. This information, which includes environment
variables and stack trace data, can help you determine the root cause of

a problem.

Procedure

From the command prompt, add the following parameters:

Application Parameters
dita command -d or -debug
Ant -v -Dargs.debug=yes

Command-line tool /d or -debug

You also can add a <property> element to an Ant target in your build file,
for example:

<property name="args.debug" value="yes'"/>

Parent topic: Error messages and troubleshooting

Increasing Java memory allocation

If you are working with large documents with extensive metadata or key
references, you will need to increase the memory allocation for the Java
process. You can do this from the command-line prompt for a specific

session, or you can increase the value of the ANT_OPTS environmental

variable.

Procedure

e To change the value for an specific session, from the command
prompt, issue the following command:

Platform Command
Windows set ANT_OPTS=%ANT_OPTS% -Xmx1024M

Linux/OS Xexport ANT_OPTS=$ANT_OPTS -Xmx1024M

This increases the JVM memory allocation to 1024 megabytes. The
amount of memory which can be allocated is limited by available
system memory and the operating system.

e To persistently change the value, change the value allocated to the
ANT_OPTS environment variable on your system. If you use the
startcmd file from the Full Easy Install to set up a toolkit session, edit

that file to change the value.

Parent topic: Error messages and troubleshooting

Reference

This section is designed to help users to locate information easily and
quickly. It includes documentation for the DITA Open Toolkit (DITA-OT)
parameters and configuration properties.

Ant parameters Certain parameters apply to all DITA-OT
transformations. Other parameters are common to the HTML-based
transformations. Finally, some parameters apply only to the specific
transformation types.

dita command arguments and options

The dita command takes mandatory arguments to process DITA,
manage plug-in, or print information about the command. Options
can be used modify the command behaviour or provide additional
configuration.

Command-line tool parameters

Certain parameters apply to all DITA-OT transformations. Other
parameters are common to the HTML-based transformations.
Finally, some parameters apply only to the specific transformation

types.

lib/configuration.properties file
The lib/configuration.properties file controls certain common

properties, as well as some properties that control PDF processing.

Parent topic: DITA Open Toolkit User Guide

Ant parameters

Certain parameters apply to all DITA-OT transformations. Other
parameters are common to the HTML-based transformations. Finally,
some parameters apply only to the specific transformation types.

Ant parameters: All transformations Certain parameters apply to
all transformations that are supported by the DITA Open ToolkKit.

Ant parameters: Common HTML-based transformations
Certain parameters apply to all the HTML-based transformation
types: Eclipse help, HTML Help, JavaHelp, TocJS, HTML5, and
XHTML.

Ant parameters: Eclipse content transformation
Certain parameters are specific to the Eclipse content
transformation.

Ant parameters: Eclipse help transformation
Certain parameters are specific to the Eclipse help transformation.

Ant parameters: HTML Help transformation
Certain parameters are specific to the HTML Help transformation.

Ant parameters: JavaHelp transformation
Certain parameters are specific to the JavaHelp transformation.

Ant parameters: ODT transformation
Certain parameters are specific to the ODT transformation.

Ant parameters: Other
These Ant parameters enable you to reload style sheets that the
DITA-OT uses for specific pre-processing stages.

Ant parameters: PDF transformation
Certain parameters are specific to the PDF2 transformation.

Ant parameters: HTML5 and XHTML transformation

Certain parameters are specific to the HTML5 and XHTML
transformation.

Parent topic: Reference

Related concepts
Ant

Related tasks
Publishing DITA content from Ant

Ant parameters: All transformations

Certain parameters apply to all transformations that are supported by the
DITA Open Toolkit.

Figure 1. Ant parameters: All transformations
args.debug

Specifies whether debugging information is included in the log.
The allowed values are yes and no; the default value is no.

args.draft

Specifies whether the content of <draft-comment> and
<required-cleanup> elements is included in the output. The
allowed values are yes and no; the default value is no.
Corresponds to XSLT parameter DRAFT in most XSLT
modules.

Tip: For PDF output, setting the args.draft parameter to
yes causes the contents of the <titlealts> element to be
rendered below the title.

args.figurelink.style

Specifies how cross references to figures are styled in output.
The allowed values are NUMBER and TITLE. Specifying
NUMBER results in "Figure 5"; specifying TITLE results in the
title of the figure. Corresponds to the XSLT parameter
FIGURELINK.

Note: Support for PDF was added in DITA-OT 2.0. By
default PDF uses the value NUMTITLE, which is not
supported for other transform types; this results in "Figure
5. Title".

args.filter

Specifies a filter file to be used to include, exclude, or flag

content.
args.grammar.cache

Specifies whether the grammar-caching feature of the XML
parser is used. The allowed values are yes and no; the default
value is no.

Note: This option dramatically speeds up processing time.
However, there is a known problem with using this feature
for documents that use XML entities. If your build fails with
parser errors about entity resolution, set this parameter to
no.

args.input

Specifies the master file for your documentation project.
Typically this is a DITA map, however it also can be a DITA topic
if you want to transform a single DITA file. The path can be
absolute, relative to args.input.dir, or relative to the directory
where your project's ant build script resides if args.input.dir is
not defined.

args.input.dir

Specifies the base directory for your documentation project. The
default value is the parent directory of the file specified by
args.input.

args.logdir

Specifies the location where the DITA-OT places log files for
your project.

args.rellinks

Specifies which links to include in the output. The following
values are supported:

e none — No links are included.

e all — All links are included.

o nofamily — Parent, child, next, and previous links are not
included.

Default value depends on the transformation type.
args.tablelink.style

Specifies how cross references to tables are styled. Specifying
NUMBER results in "Table 5"; specifying TITLE results in the
title of the table. Corresponds to the XSLT parameter
TABLELINK.

Note: Support for PDF was added in DITA-OT 2.0. By
default PDF uses the value NUMTITLE, which is not
supported for other transform types; this results in "Table 5.
Title".

clean.temp

Specifies whether the DITA-OT deletes the files in the temporary
directory after it finishes a build. The allowed values are yes and
no; the default value is yes.

dita.dir
Specifies where the DITA-OT is installed.
dita.temp.dir

Specifies the location of the temporary directory. The temporary
directory is where the DITA-OT writes temporary files that are
generated during the transformation process.

dita.input.valfile

Specifies a filter file to be used to include, exclude, or flag
content. Filter files must have a .ditaval or .DITAVAL extension.

Note: Deprecated in favor of the args.filter parameter.

generate.copy.outer

Specifies whether to generate output files for content that is not
located in or beneath the directory containing the DITA map file.
The following values are supported:

¢ 1 (default) — Do not generate output for content that is
located outside the DITA map directory.

o 3 — Shift the output directory so that it contains all output for
the publication.

See generate.outer.copy parameter for more information.

onlytopic.in.map

Specifies whether files that are linked to, or referenced with a
@conref attribute, generate output. If set to yes, only files that
are referenced directly from the map will generate output.

outer.control

Specifies how the DITA OT handles content files that are located
in or below the directory containing the master DITA map. The
following values are supported:

e fail — Fail quickly if files are going to be generated or copied
outside of the directory

e warn (default) — Complete the operation if files will be
generated or copied outside of the directory, but log a
warning

e quiet — Quietly finish with only those files; do not generate
warnings or errors.

The gen-list-without-flagging Ant task generates a harmless
warning for content that is located outside the map directory;
you can suppress these warnings by setting the property to
quiet.

Warning: Microsoft HTML Help Compiler cannot produce
HTML Help for documentation projects that use outer
content. The content files must reside in or below the
directory containing the master DITA map file, and the map
file cannot specify ".." at the start of the @href attributes for
<topicref> elements.

output.dir

Specifies the name and location of the output directory. By
default, the output is written to DITA-dir\out.

transtype

Specifies the output format. You can create plug-ins to add new
values for this parameter; by default, the following values are
available:

validate

docbook
eclipsehelp
eclipsecontent
htmI5

htmlhelp
javahelp

odt

pdf

wordrtf

troff

xhtml

Specifies whether the DITA-OT validates the content. The
allowed values are true and false; the default value is true.

Parent topic: Ant parameters

Ant parameters: Common HTML-based
transformations

Certain parameters apply to all the HTML-based transformation types:
Eclipse help, HTML Help, JavaHelp, TocJS, HTML5, and XHTML.

Figure 1. Ant parameters: HTML-based transformations
args.artlbl

Specifies whether to generate a label for each image; the label
will contain the image file name. The allowed values are yes
and no; the default value is no.

args.breadcrumbs

Specifies whether to generate breadcrumb links. The allowed
values are yes and no; the default value is no. Corresponds to
the XSLT parameter BREADCRUMBS.

args.copycss

Specifies whether to copy the custom .css file to the output
directory.

args.css
Specifies the name of a custom .css file.
args.csspath

Specifies the location of a copied .css file relative to the output
directory. Corresponds to XSLT parameter CSSPATH.

args.cssroot

Specifies the directory that contains the custom .css file. DITA-
OT will copy the file from this location.

args.dita.locale

Specifies the language locale file to use for sorting index entries.

Note: This parameter is not available for the XHTML
transformation.

args.ftr

Specifies an XML file that contains content for a running footer.
Corresponds to XSLT parameter FTR.

Note: The XML file must contain valid XML. A common
practice is to place all content into a <div> element.

args.gen.default.meta

Specifies whether to generate extra metadata that targets
parental control scanners, meta elements with name="security"
and name="Robots". The allowed values are yes and no; the
default value is no. Corresponds to the XSLT parameter
genDefMeta.

args.gen.task.lbl

Specifies whether to generate headings for sections within task
topics. The allowed values are YES and NO; the default value is
NO. Corresponds to the XSLT parameter GENERATE-TASK-
LABELS.

args.hdf

Specifies an XML file that contains content to be placed in the
document head.

args.hdr

Specifies an XML file that contains content for a running header.
Corresponds to the XSLT parameter HDR.

Note: The XML file must contain valid XML. A common
practice is to place all content into a <div> element.

args.hide.parent.link

Specifies whether to hide links to parent topics in the HTML or
XHTML output. The allowed values are yes and no; the default
value is no. Corresponds to the XSLT parameter
NOPARENTLINK.

Note: This parameter is deprecated in favor of the
args.rellinks parameter.

args.indexshow

Specifies whether the content of <indexterm> elements are
rendered in the output. The allowed values are yes and no; the
default value is no.

args.outext

Specifies the file extension for HTML or XHTML output. The
default value is html. Corresponds to XSLT parameter
OUTEXT.

args.xhtml.classattr

Specifies whether to include the DITA class ancestry inside the
XHTML elements .For example, the <prereq> element (which is
specialized from section) would generate class="section
prereq. The allowed values are yes and no; the default value is
yes. Corresponds to the XSLT parameter PRESERVE-DITA-
CLASS.

Note: Beginning with DITA OT release 1.5.2, the default
value is yes. For release 1.5 and 1.5.1, the default value
was no.

args.xsl

Specifies a custom XSL file to be used instead of the default
XSL transformation (xs1\dita2xhtml.xs1). The parameter must

specify a fully qualified file name.

generate.outer.copy parameter Elaboration on how the
generate.outer.copy parameter functions.

Parent topic: Ant parameters

Related reference

Ant parameters: Eclipse content transformation

Ant parameters: Eclipse help transformation

Ant parameters: HTML Help transformation

Ant parameters: JavaHelp transformation

Ant parameters: HTML5 and XHTML transformation

Ant parameters: Eclipse content transformation

Certain parameters are specific to the Eclipse content transformation.

Figure 1. Ant parameters: Eclipse content transformation
args.eclipsecontent.toc

Specifies the name of the TOC file

Parent topic: Ant parameters

Related concepts
Eclipse content transformation

Related reference
Ant parameters: All transformations
Ant parameters: Common HTML-based transformations

Ant parameters: Eclipse help transformation

Certain parameters are specific to the Eclipse help transformation.

Figure 1. Ant parameters: Eclipse help transformation
args.eclipsehelp.toc
Specifies the name of the TOC file.
args.eclipse.country

Specifies the region for the language that is specified by the
args.eclipse.language parameter. For example, us, ca, and gb
would clarify a value of en set for the args.eclipse.language
parameter. The content will be moved into the appropriate
directory structure for an Eclipse fragment.

args.eclipse.language

Specifies the base language for translated content, such as en
for English. This parameter is a prerequisite for the
args.eclipse.country parameter. The content will be moved
into the appropriate directory structure for an Eclipse fragment.

args.eclipse.provider

Specifies the name of the person or organization that provides
the Eclipse help. The default value is DITA.

Tip: The toolkit ignores the value of this parameter when it
processes an Eclipse map.

args.eclipse.version

Specifies the version number to include in the output. The
default value is 0.0.0.

Tip: The toolkit ignores the value of this parameter when it
processes an Eclipse map.

args.eclipse.symbolic.name

Specifies the symbolic name (aka plugin ID) in the output for an
Eclipse Help project. The @id value from the DITA map or the
Eclipse map collection (Eclipse help specialization) is the
symbolic name for the plugin in Eclipse. The default value is
org.sample.help.doc.

Tip: The toolkit ignores the value of this parameter when it
processes an Eclipse map.

Parent topic: Ant parameters

Related concepts
Eclipse help transformation

Related reference
Ant parameters: All transformations
Ant parameters: Common HTML-based transformations

Ant parameters: HTML Help transformation

Certain parameters are specific to the HTML Help transformation.

Figure 1. Ant parameters: HTML Help transformation
args.htmlhelp.includefile

Specifies the name of a file that you want included in the HTML
Help.

Parent topic: Ant parameters

Related concepts
HTML help transformation

Related reference
Ant parameters: All transformations
Ant parameters: Common HTML-based transformations

Ant parameters: JavaHelp transformation

Certain parameters are specific to the JavaHelp transformation.

Figure 1. Ant parameters: JavaHelp transformation
args.javahelp.map
Specifies the name of the ditamap file for a JavaHelp project.
args.javahelp.toc

Specifies the name of the file containing the TOC in your
JavaHelp output. Default value is the name of the ditamap file
for your project.

Parent topic: Ant parameters

Related concepts
JavaHelp transformation

Related reference
Ant parameters: All transformations
Ant parameters: Common HTML-based transformations

Ant parameters: ODT transformation

Certain parameters are specific to the ODT transformation.

Figure 1. Ant parameters: ODT transformation
args.odt.img.embed

Determines whether images are embedded as binary objects
within the ODT file.

Parent topic: Ant parameters

Related concepts
ODT transformation

Related reference
Ant parameters: All transformations

Ant parameters: Other

These Ant parameters enable you to reload style sheets that the DITA-
OT uses for specific pre-processing stages.

Figure 1. Ant parameters: Other

dita.preprocess.reloadstylesheet
dita.preprocess.reloadstylesheet.conref
dita.preprocess.reloadstylesheet.mapref
dita.preprocess.reloadstylesheet.mappull
dita.preprocess.reloadstylesheet.maplink
dita.preprocess.reloadstylesheet.topicpull

Specifies whether the DITA-OT reloads the XSL style sheets
that are used for the transformation. The allowed values are
true and false; the default value is false.

Tip: Set the parameter to true if you want to use more than
one set of style sheets to process a collection of topics. The
parameter also is useful for large projects that generate
Java out-of-memory errors during transformation.
Alternatively, you can adjust the size of your Java memory
heap if setting dita.preprocess.reloadstylesheet for this

reason.

Parent topic: Ant parameters

Ant parameters: PDF transformation

Certain parameters are specific to the PDF2 transformation.

Figure 1. Ant parameters: PDF transformation
args.bookmap-order

Specifies if the frontmatter and backmatter content order is
retained in bookmap. The allowed values are retain and
discard; the default value is discard.

args.fo.userconfig
Specifies the user configuration file for FOP.
args.gen.task.lbl

Specifies whether to generate headings for sections within task
topics. The allowed values are YES and NO; the default value is
NO. Corresponds to the XSLT parameter GENERATE-TASK-
LABELS.

args.rellinks

Specifies which links to include in the output. The following
values are supported:

e none — No links are included.
e all — All links are included.

e nofamily — Parent, child, next, and previous links are not
included.

Default value depends on the transformation type.
args.xsl.pdf

Specifies an XSL file that is used to override the default XSL
transformation

(plugins\org.dita.pdf2\xs1\fo\topic2fo_shell.xsl1). YOou must
specify the fully qualified file name.

custom.xep.config

Specifies the user configuration file for RenderX.
customization.dir

Specifies the customization directory.
pdf.formatter

Specifies the XSL processor. The following values are
supported:

e ah — Antenna House Formatter
o fop (default) — Apache FOP
o xep — RenderX XEP Engine

The full-easy-install package comes with Apache FOP; other
XSL processors must be separately installed.

publish.required.cleanup

Specifies whether draft-comment and required-cleanup
elements are included in the output. The allowed values are yes
and no; the default value is the value of the args.draft
parameter. Corresponds to XSLT parameter
publishRequiredCleanup.

Note: This parameter is deprecated in favor of the
args.draft parameter.

retain.topic.fo

Specifies whether to retain the generated FO file. The allowed
values are yes and no; the default value is no. If the
configuration property org.dita.pdf2.use-out-temp is set to

false, this parameter is ignored.

Parent topic: Ant parameters

Related concepts
PDF transformation

Related reference
Ant parameters: All transformations

Ant parameters: HTML5 and XHTML
transformation

Certain parameters are specific to the HTML5 and XHTML
transformation.

Figure 1. Ant parameters: HTML5 and XHTML transformation
args.xhtml.contenttarget

Specifies the value of the @target attribute on the <base>
element in the TOC file. The default value is contentwin.

args.xhtml.toc

Specifies the base name of the TOC file. The default value is
index.

args.xhtml.toc.class

Specifies the value of the @class attribute on the <body>
element in the TOC file. Found in map2htmltoc.xsl.

Parent topic: Ant parameters

Related concepts
XHTML transformation
HTML5 transformation

Related reference
Ant parameters: All transformations
Ant parameters: Common HTML-based transformations

dita command arguments and options

The dita command takes mandatory arguments to process DITA, manage
plug-in, or print information about the command. Options can be used
modify the command behaviour or provide additional configuration.

Usage

dita -f name -i file [options |
dita -install { file | url }

dita -uninstall id

dita -help

dita -version

Arguments
-f, -format name

Specifies the output format. You can create plug-ins to add new
values for this parameter; by default, the following values are
available:

e docbhook
e eclipsehelp
e eclipsecontent
e html5
e htmlhelp
e javahelp
e odt
o pdf
o wordrtf
o troff
e xhtml
-, -input file

Specifies the master file for your documentation project.
Typically this is a DITA map, however it also can be a DITA topic
if you want to transform a single DITA file. The path can be
absolute, relative to args.input.dir, or relative to the directory
where your project's ant build script resides if args.input.dir is
not defined.

-install file
-install url/

Install plug-in from a local ZIP file or from a URL.
-uninstall id

Uninstall plug-in with the ID.
-h, -help

Print command usage help.
-version

Print version information and exit.

Options
-0, -output dir

Specifies the name and location of the output directory. By
default, the output is written to out subdirectory of the current

directory.
-filter file

Specifies a filter file to be used to include, exclude, or flag
content.

-temp dir

Specifies the location of the temporary directory. The temporary
directory is where the DITA-OT writes temporary files that are
generated during the transformation process.

-v, -verbose
Verbose logging.
-d, -debug
Debug logging.
-1, -lodfile file
Output logging messages into a file.
-Dproperty=value

Specify a value for a property. Supported properties are the
same as Ant parameters and are transformation type specific.

-propertyfile file

Load all properties from a file. Properties specified with -D
option take precedence.

Parent topic: Reference

Command-line tool parameters

Certain parameters apply to all DITA-OT transformations. Other
parameters are common to the HTML-based transformations. Finally,
some parameters apply only to the specific transformation types.

You must supply the parameters to the command-line tool using the
following syntax:

/parameter:value

Command-line tool parameters: All transformations Certain
parameters apply to all transformations that are supported by the
DITA Open Toolkit.

Command-line tool parameters: All HTML-based
transformations

Certain parameters apply to all the HTML-based transformation
types: Eclipse content, Eclipse help, HTML5, HTML Help, JavaHelp,
TocJS, and XHTML.

Command-line tool parameters: Eclipse content transformation
Certain parameters are specific to the Eclipse content
transformation.

Command-line tool parameters: Eclipse help transformation
Certain parameters are specific to the Eclipse help transformation.

Command-line tool parameters: HTML help transformation
Certain parameters are specific to the HTML help transformation.

Command-line tool parameters: JavaHelp transformation
Certain parameters are specific to the JavaHelp transformation.

Command-line tool parameters: ODT transformation
Certain parameters are specific to the ODT transformation.

Command-line tool parameters: PDF transformation

Certain parameters are specific to the PDF2 transformation.

Command-line tool parameters: HTML5 and XHTML
transformation

Certain parameters are specific to the HTML5 and XHTML
transformation.

Parent topic: Reference

Related concepts
Command-line tool

Related tasks
Publishing DITA content from the command-line tool

Command-Iline tool parameters: All
transformations

Certain parameters apply to all transformations that are supported by the
DITA Open Toolkit.

Figure 1. Command-line tool parameters: All transformations
basedir

The directory where your project's ant build script resides. The
DITA-OT will look for your .dita files relative to this directory.
DITA-OT's default build script sets this as an attribute of the
project, but you can also define it as a project property.

cleantemp

Specifies whether the DITA-OT deletes the files in the temporary
directory after it finishes a build. The allowed values are yes and
no; the default value is yes.

debug

Specifies whether debugging information is included in the log.
The allowed values are yes and no; the default value is no.

ditadir
Specifies where the DITA-OT is installed.
ditalocale
Specifies the language locale file to use for sorting index entries.

Note: This parameter is not available for the XHTML
transformation.

draft

Specifies whether the content of <draft-comment> and
<required-cleanup> elements is included in the output. The

allowed values are yes and no; the default value is no.
Corresponds to XSLT parameter DRAFT in most XSLT
modules.

Tip: For PDF output, setting the args.draft parameter to
yes causes the contents of the <titlealts> element to be
rendered below the title.

filter

Specifies a filter file to be used to include, exclude, or flag
content. Filter files must have a .ditaval or .DITAVAL extension.

Note: Deprecated in favor of the args.filter parameter.
grammarcache

Specifies whether the grammar-caching feature of the XML
parser is used. The allowed values are yes and no; the default
value is no.

Note: This option dramatically speeds up processing time.
However, there is a known problem with using this feature
for documents that use XML entities. If your build fails with
parser errors about entity resolution, set this parameter to
no.

Specifies the master file for your documentation project.
Typically this is a DITA map, however it also can be a DITA topic
if you want to transform a single DITA file. The path can be
absolute, relative to args.input.dir, or relative to the directory
where your project's ant build script resides if args.input.dir is
not defined.

logdir

Specifies the location where the DITA-OT places log files for
your project.

outdir

Specifies the name and location of the output directory. By
default, the output is written to bITA-dir\out.

tempdir

Specifies the location of the temporary directory. The temporary
directory is where the DITA-OT writes temporary files that are
generated during the transformation process.

transtype

Specifies the output format. You can create plug-ins to add new
values for this parameter; by default, the following values are
available:

e docbook

e eclipsehelp

¢ eclipsecontent

e html5

e htmlhelp

e javahelp

e odt

e pdf

o wordrtf

o troff

e xhtml
validate

Specifies whether the DITA-OT validates the content. The
allowed values are true and false; the default value is true.

Parent topic: Command-line tool parameters

Command-line tool parameters: All HTML-based
transformations

Certain parameters apply to all the HTML-based transformation types:
Eclipse content, Eclipse help, HTML5, HTML Help, JavaHelp, TocJS, and
XHTML.

Note: You must specify an absolute path as the value for the
following parameters:

o ftr
e hdr
o hdf

Figure 1. Command-line tool parameters: All HTML-based
transformations

args.css
Specifies the name of a custom .css file.
artlbl

Specifies whether to generate a label for each image; the label
will contain the image file name. The allowed values are yes
and no; the default value is no.

copycss

Specifies whether to copy the custom .css file to the output
directory.

csspath

Specifies the location of a copied .css file relative to the output
directory. Corresponds to XSLT parameter CSSPATH.

cssroot

Specifies the directory that contains the custom .css file. DITA-
OT will copy the file from this location.

ftr

Specifies an XML file that contains content for a running footer.
Corresponds to XSLT parameter FTR.

Note: The XML file must contain valid XML. A common
practice is to place all content into a <div> element.

generateouter

Specifies whether to generate output files for content that is not
located in or beneath the directory containing the DITA map file.
The following values are supported:

¢ 1 (default) — Do not generate output for content that is
located outside the DITA map directory.

e 3 — Shift the output directory so that it contains all output for
the publication.

See generate.outer.copy parameter for more information.

hdf

Specifies an XML file that contains content to be placed in the
document head.

hdr

Specifies an XML file that contains content for a running header.
Corresponds to the XSLT parameter HDR.

Note: The XML file must contain valid XML. A common
practice is to place all content into a <div> element.

indexshow

Specifies whether the content of <indexterm> elements are

rendered in the output. The allowed values are yes and no; the
default value is no.

onlytopicinmap

Specifies whether files that are linked to, or referenced with a
@conref attribute, generate output. If set to yes, only files that
are referenced directly from the map will generate output.

outercontrol

Specifies how the DITA OT handles content files that are located
in or below the directory containing the master DITA map. The
following values are supported:

o fail — Fail quickly if files are going to be generated or copied
outside of the directory

e warn (default) — Complete the operation if files will be
generated or copied outside of the directory, but log a
warning

e quiet — Quietly finish with only those files; do not generate
warnings or errors.

The gen-list-without-flagging Ant task generates a harmless
warning for content that is located outside the map directory;
you can suppress these warnings by setting the property to
quiet.

Warning: Microsoft HTML Help Compiler cannot produce
HTML Help for documentation projects that use outer
content. The content files must reside in or below the
directory containing the master DITA map file, and the map
file cannot specify ".." at the start of the @href attributes for
<topicref> elements.

usetasklabels

Specifies whether to generate headings for sections within task

topics. The allowed values are YES and NO; the default value is
NO. Corresponds to the XSLT parameter GENERATE-TASK-
LABELS.

xhtmliclass

Specifies whether to include the DITA class ancestry inside the
XHTML elements .For example, the <prereq> element (which is
specialized from section) would generate class="section

prereq. The allowed values are yes and no; the default value is

yes. Corresponds to the XSLT parameter PRESERVE-DITA-
CLASS.

Note: Beginning with DITA OT release 1.5.2, the default
value is yes. For release 1.5 and 1.5.1, the default value
was no.

xsl

Specifies a custom XSL file to be used instead of the default
XSL transformation (xs1\dita2xhtml.xs1). The parameter must

specify a fully qualified file name.

Parent topic: Command-line tool parameters

Related reference

Command-line tool parameters: Eclipse content transformation
Command-line tool parameters: Eclipse help transformation
Command-line tool parameters: HTML help transformation
Command-line tool parameters: JavaHelp transformation
Command-line tool parameters: HTML5 and XHTML transformation

Command-Iline tool parameters: Eclipse content
transformation

Certain parameters are specific to the Eclipse content transformation.

Figure 1. Command-line tool parameters: Eclipse content transformation
eclipsecontenttoc

Specifies the name of the TOC file

Parent topic: Command-line tool parameters

Related concepts
Eclipse content transformation

Related reference
Command-line tool parameters: All transformations
Command-line tool parameters: All HTML-based transformations

Command-line tool parameters: Eclipse help
transformation

Certain parameters are specific to the Eclipse help transformation.

Figure 1. Command-line tool parameters: Eclipse help transformation
eclipsehelptoc
Specifies the name of the TOC file.
provider

Specifies the name of the person or organization that provides
the Eclipse help. The default value is DITA.

Tip: The toolkit ignores the value of this parameter when it
processes an Eclipse map.

version

Specifies the version number to include in the output. The
default value is 0.0.0.

Tip: The toolkit ignores the value of this parameter when it
processes an Eclipse map.

Parent topic: Command-line tool parameters

Related concepts
Eclipse help transformation

Related reference
Command-line tool parameters: All transformations
Command-line tool parameters: All HTML-based transformations

Command-line tool parameters: HTML help
transformation

Certain parameters are specific to the HTML help transformation.
Figure 1. Command-line tool parameters: HTML help transformation
htmlhelpincludefile

Specifies the name of a file that you want included in the HTML
Help.

Parent topic: Command-line tool parameters

Related concepts
HTML help transformation

Related reference
Command-line tool parameters: All transformations
Command-line tool parameters: All HTML-based transformations

Command-line tool parameters: JavaHelp
transformation

Certain parameters are specific to the JavaHelp transformation.

Figure 1. Command-line tool parameters: JavaHelp transformation
javahelpmap
Specifies the name of the ditamap file for a JavaHelp project.
javahelptoc

Specifies the name of the file containing the TOC in your
JavaHelp output. Default value is the name of the ditamap file
for your project.

Parent topic: Command-line tool parameters

Related concepts
JavaHelp transformation

Related reference
Command-line tool parameters: All transformations
Command-line tool parameters: All HTML-based transformations

Command-line tool parameters: ODT
transformation

Certain parameters are specific to the ODT transformation.
Figure 1. Command-line tool parameters: ODT transformation
odtimgembed

Determines whether images are embedded as binary objects
within the ODT file.

Parent topic: Command-line tool parameters

Related concepts
ODT transformation

Related reference
Command-line tool parameters: All transformations

Command-line tool parameters: PDF
transformation

Certain parameters are specific to the PDF2 transformation.

Figure 1. Command-line tool parameters: PDF transformation
fooutputrellinks

Specifies whether to render related links in the output. The
allowed values are yes and no; the default value is no. If the
args.fo.include.rellinks parameter is specified, this parameter
Is ignored.

fouserconfig
Specifies the user configuration file for FOP.
retaintopicfo

Specifies whether to retain the generated FO file. The allowed
values are yes and no; the default value is no. If the
configuration property org.dita.pdf2.use-out-temp is set to
false, this parameter is ignored.

xslpdf

Specifies an XSL file that is used to override the default XSL
transformation
(plugins\org.dita.pdf2\xs1l\fo\topic2fo_shell.xsl1). YOou must

specify the fully qualified file name.

Parent topic: Command-line tool parameters

Related concepts
PDF transformation

Related reference
Command-line tool parameters: All transformations

Command-Iline tool parameters: HTML5 and
XHTML transformation

Certain parameters are specific to the HTML5 and XHTML
transformation.

Figure 1. Command-line tool parameters: HTML5 and XHTML
transformation

xhtmltoc

Specifies the base name of the TOC file. The default value is
index.

Parent topic: Command-line tool parameters

Related concepts
XHTML transformation
HTML5 transformation

Related reference
Command-line tool parameters: All transformations
Command-line tool parameters: All HTML-based transformations

lib/configuration.properties file

The lib/configuration.properties file controls certain common
properties, as well as some properties that control PDF processing.

Table 1. Properties set in the 1ib/configuration.properties file

Property

default.language

generate-debug-attributes

Description

Specifies the language that is used if the
input file does not have the @xml:lang
attribute set on the root element. By default,
this is set to en. The allowed values are
those that are defined in IETF BCP 47, Tags
for the Identification of Languages.

Specifies whether the @xtrf and @xtrc
debugging attributes are generated in the
temporary files. The following values are
allowed:

¢ true (default) — Enables generation of
debugging attributes

o false —Disables generation of
debugging attributes

Note: Disabling debugging attributes
reduces the size of temporary files and
thus reduces memory consumption.
However, the log messages no longer
have the source information available
and thus the ability to debug problems
might deteriorate.

Specifies how the DITA-OT handles errors
and error recovery. The following values are
allowed:

e strict — When an error is encountered,
the DITA-OT stops processing.

https://tools.ietf.org/html/bcp47

processing-mode

org.dita.pdf2.i18n.enabled

org.dita.pdf2.use-out-
temp

plugindirs

plugin.ignores

¢ lax (default) — When an error is
encountered, the DITA-OT attempts to
recover from it.

e skip — When an error is encountered,
the DITA continues processing but does
not attempt error recovery.

(PDF transformation only) Enables I18N font
processing. The following values are
allowed:

¢ true (default) — Enables I18N
processing

o false — Disables I18N processing

(PDF transformation only) Specifies whether
the XSL-FO processing writes the
intermediate files (for example, the topic.fo
file) to the output directory. The following
values are allowed:

¢ true — Write intermediate files to the
output directory

o false (default) — Write intermediate
files to the temporary directory

A semicolon-separated list of directory paths
that the DITA-OT searches for plug-ins to
integrate; any relative paths are resolved
against the DITA-OT base directory. Any
immediate subdirectory that contains a
plugin.xml file is integrated

A semicolon-separated list of directory
names to be ignored during plug-in
integration; any relative paths are resolved
against the DITA-OT base directory.

Parent topic: Reference

DITA Open Toolkit Developer Reference

The DITA Open Toolkit Developer Reference is designed to provide more
advanced information about the DITA-OT. It is geared to an audience that
needs information about the DITA-OT architecture, configuring and
extending the DITA-OT, and creating DITA-OT plug-ins.

Architecture of the DITA Open Toolkit The DITA Open Toolkit
(DITA-OT) is an open-source implementation of the OASIS
specification for the Darwin Information Typing Architecture (DITA).
The toolkit uses Ant, XSLT, and Java to transform DITA content
(maps and topics) into different deliverable formats.

Extending the DITA Open Toolkit

There are several methods that can be used to extend the toolkit; not
all of them are recommended or supported. The best way to create
most extensions is with a plug-in; extended documentation for
creating plug-ins is provided in the next section.

Configuring the DITA Open Toolkit
The DITA OT uses .properties files that store configuration settings

for the DITA OT and its plug-ins. The configuration properties are
available to both Ant and Java processes, but unlike argument
properties, they cannot be set at run time.

Creating DITA-OT plug-ins

The DITA Open Toolkit comes with a built in mechanism for adding in
extensions through plug-ins. These plug-ins may do a wide variety of
things, such as adding support for specialized DITA DTDs or
Schemas, integrating processing overrides, or even providing
entirely new output transforms. Plug-ins are the best way to extend
the toolkit in a way that is consistent, easily sharable, and easy to
preserve through toolkit upgrades.

Customizing PDF output
You can build a DITA-OT plug-in that contains a customized PDF

transformation.

Internal Ant properties
Reference list of Ant properties used by DITA-OT internally.

Implementation dependent features

Extended functionality

Architecture of the DITA Open Toolkit

The DITA Open Toolkit (DITA-OT) is an open-source implementation of
the OASIS specification for the Darwin Information Typing Architecture
(DITA). The toolkit uses Ant, XSLT, and Java to transform DITA content
(maps and topics) into different deliverable formats.

DITA-OT processing structure The DITA-OT implements a multi-
stage, map-driven architecture to process DITA content. Each stage
in the process examines some or all of the content; some stages
result in temporary files that are used by later steps, while others
stages result in updated copies of the DITA content. Most of the
processing takes place in a temporary working directory; the source
files themselves are never modified.

DITA-OT processing modules

The DITA-OT processing pipeline is implemented using Ant.
Individual modules within the Ant script are implemented in either
Java or XSLT, depending on such factors as performance or
requirements for customization. Virtually all Ant and XSLT modules
can be extended by adding a plug-in to the toolkit; new Ant targets
may be inserted before or after common processing, and new rules
may be imported into common XSLT modules to override default
processing.

DITA-OT processing order

The order of processing is often significant when evaluating DITA
content. Although the DITA specification does not mandate a specific
order for processing, the DITA-OT has determined that performing
filtering before conref resolution best meets user expectations.
Switching the order of processing, while legal, may give different
results.

Pre-processing modules
The pre-processing operation is a set of steps that typically runs at
the beginning of every DITA-OT transformation. Each step or stage

corresponds to an Ant target in the build pipeline; the preprocess
target calls the entire set of steps.

HTML-based processing modules

The DITA-OT ships with several varieties of HTML output, each of
which follows roughly the same path through the processing pipeline.
All HTML-based transformation begin with the same call to the pre-
processing module, after which they generate HTML files and then
branch to create the transformation-specific navigation files.

PDF processing modules

The PDF (formerly known as PDF2) transformation process runs the
pre-processing routine and follows it by a series of additional targets.
These steps work together to create a merged set of content,
convert the merged content to XSL-FO, and then format the XSL-FO
file to PDF.

Open Document Format processing modules
The odt transformation creates a binary file using the OASIS Open
Document Format.

Parent topic: DITA Open Toolkit Developer Reference

DITA-OT processing structure

The DITA-OT implements a multi-stage, map-driven architecture to
process DITA content. Each stage in the process examines some or all of
the content; some stages result in temporary files that are used by later
steps, while others stages result in updated copies of the DITA content.
Most of the processing takes place in a temporary working directory; the
source files themselves are never modified.

The DITA-OT is designed as a pipeline. Most of the pipeline is common
to all output formats; it is known as the pre-processing stage. In general,
any DITA process begins with this common set of pre-processing
routines. Once the pre-processing is completed, the pipeline diverges
based on the requested output format. Some processing is still common
to multiple output formats; for example, Eclipse Help and HTML Help
both use the same routines to generate XHTML topics, after which the
two pipelines branch to create different sets of navigation files.

The following image illustrates how the pipeline works for some common
output types: Docbook, PDF, Eclipse Help, XHTML, JavaHelp, and HTML
Help.

all ditamap and

] xmi files .. j

preprocess
preprocessed

ditamap and xmil
files

outp lated style
transfomm
topic to html

output dochoglk

dochoolk
process

generate html
help navigation

transform to
¥sl-fo

fo

docbook xml transform fo

to pdf

compile html
help

Parent topic: Architecture of the DITA Open Toolkit

DITA-OT processing modules

The DITA-OT processing pipeline is implemented using Ant. Individual
modules within the Ant script are implemented in either Java or XSLT,
depending on such factors as performance or requirements for
customization. Virtually all Ant and XSLT modules can be extended by
adding a plug-in to the toolkit; new Ant targets may be inserted before or
after common processing, and new rules may be imported into common
XSLT modules to override default processing.

XSLT modules

The XSLT modules use shell files. Typically, each shell file begins by
importing common rules that apply to all topics. This set of common
processing rules may in turn import additional common modules, such as
those used for reporting errors or determining the document locale. After
the common rules are imported, additional imports can be included in
order to support processing for DITA specializations.

For example, XHTML processing is controlled by the xs1\dita2xhtml.xsl

file. The shell begins by importing common rules that are applicable to all
general topics: xslhtml\dita2htmlImpl.xsl. After that, additional XSLT

overrides are imported for specializations that require modified
processing. For example, an override for reference topics is imported in
order to add default headers to property tables. Additional modules are
imported for tasks, for the highlighting domain, and for several other
standard specializations. After the standard XSLT overrides occur, plug-
ins may add in additional processing rules for local styles or for additional
specializations.

Java modules

Java modules are typically used when XSLT is a poor fit, such as for
processes that make use of standard Java libraries (like those used for
index sorting). Java modules are also used in many cases where a step
involves copying files, such as the initial process where source files are
parsed and copied to a temporary processing directory.

Parent topic: Architecture of the DITA Open Toolkit

DITA-OT processing order

The order of processing is often significant when evaluating DITA
content. Although the DITA specification does not mandate a specific
order for processing, the DITA-OT has determined that performing
filtering before conref resolution best meets user expectations. Switching
the order of processing, while legal, may give different results.

The DITA-OT project has found that filtering first provides several
benefits. Consider the following sample that contains a <note> element
that both uses conref and contains a @product attribute:

<note conref="documentA.dita#doc/note" product="MyProd"/>

If the @conref attribute is evaluated first, then documentA must be
parsed in order to retrieve the note content. That content is then stored in
the current document (or in a representation of that document in
memory). However, if all content with product="MyProd" is filtered out,
then that work is all discarded later in the build.

If the filtering is done first (as in the DITA-OT), this element is discarded
immediately, and documentA is never examined. This provides several
important benefits:

e Time is saved by discarding unused content as early as possible; all
future steps can load the document without this extra content.

¢ Additional time is saved case by not evaluating the @conref
attribute; in fact, documentA does not even need to be parsed.

e Any user reproducing this build does not need documentA. If the
content is sent to a translation team, that team can reproduce an
error-free build without documentA; this means documentA can be
kept back from translation, preventing accidental translation and
increased costs.

If the order of these two steps is reversed, so that conref is evaluated
first, it is possible that results will differ. For example, in the code sample
above, the @product attribute will override the product setting on the

referencing note. Assume that the <note> elements in documentA is
defined as follows:

<note id="note" product="SomeOtherProduct">This is an important

A process that filters out product="SomeOtherProduct” will remove the
target of the original conref before that conref is ever evaluated, which
will result in a broken reference. Evaluating conref first would resolve the
reference, and only later filter out the target of the conref. While some
use cases can be found where this is the desired behavior, benefits such
as those described above resulted in the current processing order used
by the DITA-OT..

Parent topic: Architecture of the DITA Open Toolkit

Pre-processing modules

The pre-processing operation is a set of steps that typically runs at the
beginning of every DITA-OT transformation. Each step or stage
corresponds to an Ant target in the build pipeline; the preprocess target
calls the entire set of steps.

1.

Generate lists (gen-list) The gen-1ist step examines the input files

and creates lists of topics, images, document properties, or other
content. These lists are used by later steps in the pipeline. For
example, one list includes all topics that make use of the conref
attribute; only those files are processed during the conref stage of
the build. This step is implemented in Java.

Debug and filter (debug-filter)

The debug-filter step processes all referenced DITA content and
creates copies in a temporary directory. As the DITA content is
copied, filtering is performed, debugging information is inserted, and
table column names are adjusted. This step is implemented in Java.

Copy related files (copy-files)

The copy-files step copies non-DITA resources to the output
directory, such as HTML files that are referenced in a map or images
that are referenced by a DITAVAL file.

Resolve keyref (keyref)
The keyref step examines all the keys that are defined in the DITA

source and resolved the key references. Links that make use of keys
are updated so that any @href value is replaced by the appropriate
target; key-based text replacement is also performed. This step is
implemented in Java.

Conref push (conrefpush)

The conrefpush step resolves "conref push” references. This step
only processes documents that use conref push or that are updated
due to the push action. This step is implemented in Java.

10.

11.

12.

13.

Conref (conref)

The conref step resolves conref attributes, processing only the DITA
maps or topics that use the @conref attribute. This step is
implemented in XSLT.

Move metadata (move-meta-entries)
The move-meta-entries step pushes metadata back and forth

between maps and topics. For example, index entries and copyrights
in the map are pushed into affected topics, so that the topics can be
processed later in isolation while retaining all relevant metadata. This
step is implemented in Java.

Resolve code references (codref)
The coderef step resolves references made with the <coderef>

element. This step is implemented in Java.

Resolve map references (mapref)
The mapref step resolves references from one DITA map to another.

This step is implemented in XSLT.

Pull content into maps (mappull)
The mappull step pulls content from referenced topics into maps, and

then cascades data within maps. This step is implemented in XSLT.

Chunk topics (chunk)
The chunk step breaks apart and assembles referenced DITA content

based on the @chunk attribute in maps. This step is implemented in
Java.

Map based linking (maplink and move-links)

These two steps work together to create links based on a map and
move those links into the referenced topics. The links are created
based on hierarchy in the DITA map, the @collection-type attribute,
and relationship tables. This step is implemented in XSLT and Java.

Pull content into topics (topicpull)

The topicpull step pulls content into <xref> and <link> elements.
This step is implemented in XSLT.

14. Flagging in the toolkit
Beginning with DITA-OT 1.7, flagging support is implemented as a
common preprocess module. The module evaluates the DITAVAL
against all flagging attributes, and adds DITA-OT specific hints in to
the topic when flags are active. Any extended transform type may
use these hints to support flagging without adding logic to interpret
the DITAVAL.

Parent topic: Architecture of the DITA Open Toolkit

Generate lists (gen-list)

The gen-1ist step examines the input files and creates lists of topics,

images, document properties, or other content. These lists are used by
later steps in the pipeline. For example, one list includes all topics that

make use of the conref attribute; only those files are processed during

the conref stage of the build. This step is implemented in Java.

The result of this list is a set of several list files in the temporary directory,
including dita.list and dita.xml.properties.

List file property List file List pr¢
canditopicsfile canditopics.list candito|
codereffile coderef.list coderef
conreffile conref.list conreflis
conrefpushfile conrefpush.list conrefp
conreftargetsfile conreftargets.list conrefte
copytosourcefile copytosource.list copytos
copytotarget2sourcemapfile copytotarget2sourcemap.list copytot:
flagimagefile flagimage.list flagima

fullditamapandtopicfile fullditamapandtopic.list fullditan

fullditamapfile

fullditatopicfile

hrefditatopicfile

hreftargetsfile
htmlfile

imagefile

keyreffile

outditafilesfile
relflagimagefile
resourceonlyfile
skipchunkfile
subjectschemefile
subtargetsfile

tempdirToinputmapdir.relative.value

uplevels

user.input.dir

user.input.file.listfile

user.input.file

fullditamap.list

fullditatopic.list

hrefditatopic.list

hreftargets.list
html.list

image.list

keyref.list

outditafiles.list
relflagimage.list
resourceonly.list
skipchunk.list
subjectscheme.list
subtargets.list

Parent topic: Pre-processing modules

fullditan

fullditatc

hrefdita

hreftarg
htmllist

imagelis

keyreflis

outditaf
relflagin
resourc
skipchu
subject:
subtarg

Next topic: Debug and filter (debug-filter)

Debug and filter (debug-filter)

The debug-filter step processes all referenced DITA content and

creates copies in a temporary directory. As the DITA content is copied,
filtering is performed, debugging information is inserted, and table column
names are adjusted. This step is implemented in Java.

The following modifications are made to the DITA source:

o If a DITAVAL file is specified, the DITA source is filtered according to
the entries in the DITAVAL file.

e Debug information is inserted into each element using the @xtrf and
@xtrc attributes. The values of these attributes enable messages
later in the build to reliably indicate the original source of the error.
For example, a message might trace back to the fifth <ph> element
in a specific DITA topic. Without these attributes, that count might no
longer be available due to filtering and other processing.

e The table column names are adjusted to use a common naming
scheme. This is done only to simplify later conref processing. For
example, if a table row is pulled into another table, this ensures that
a reference to "column 5 properties” will continue to work in the fifth
column of the new table.

Parent topic: Pre-processing modules
Previous topic: Generate lists (gen-list)
Next topic: Copy related files (copy-files)

Copy related files (copy-files)

The copy-files step copies non-DITA resources to the output directory,

such as HTML files that are referenced in a map or images that are
referenced by a DITAVAL file.

Parent topic: Pre-processing modules
Previous topic: Debug and filter (debug-filter)
Next topic: Resolve keyref (keyref)

Resolve keyref (keyref)

The keyref step examines all the keys that are defined in the DITA

source and resolved the key references. Links that make use of keys are
updated so that any @href value is replaced by the appropriate target;
key-based text replacement is also performed. This step is implemented
in Java.

Parent topic: Pre-processing modules
Previous topic: Copy related files (copy-files)
Next topic: Conref push (conrefpush)

Conref push (conrefpush)

The conrefpush step resolves "conref push” references. This step only

processes documents that use conref push or that are updated due to the
push action. This step is implemented in Java.

Parent topic: Pre-processing modules
Previous topic: Resolve keyref (keyref)
Next topic: Conref (conref)

Conref (conref)

The conref step resolves conref attributes, processing only the DITA

maps or topics that use the @conref attribute. This step is implemented
in XSLT.

The values of the @id attribute on referenced content are changed as the
elements are pulled into the new locations. This ensures that the values
of the @id attribute within the referencing topic remain unique.

If an element is pulled into a new context along with a cross reference
that references the target, both the values of the @id and @xref
attributes are updated so that they remain valid in the new location. For
example, a referenced topic might include a section as in the following
example:

Figure 1. Referenced topic that contains a section and cross reference

<topic id="referenced_topic">
<title>...</title>
<body>
<section id="sect'"><title>Sample section</title>
<p>Figure <xref href="#referenced_topic/fig"/> contains an
<fig id="fig"><title>Code sample</title>
<codeblock>....</codeblock>
</fig>
</section>
</body>
</topic>

When the section is referenced using a @conref attribute, the value of
the @id attribute on the <fig> element is modified to ensure that it
remains unique in the new context. At the same time, the <xref> element
is also modified so that it remains valid as a local reference. For example,
if the referencing topic has an @id set to "new_topic", then the conrefed
<section> element may look like this in the intermediate document.
Figure 2. Resolved conrefed <section> element after the conref step
<section id="sect"><title>Sample section</title>
<p>Figure <xref href="#new_topic/dle25"/> contains an code s
<fig id="d1e25"><title>Code sample</title>
<codeblock>....</codeblock>
</fig>
</section>

In this case, the value of the @id attribute on the <fig> element has been
changed to a generated value of "d1e25". At the same time, the <xref>
element has been updated to use that new generated ID, so that the
cross reference remains valid.

Parent topic: Pre-processing modules
Previous topic: Conref push (conrefpush)
Next topic: Move metadata (move-meta-entries)

Move metadata (move-meta-entries)

The move-meta-entries step pushes metadata back and forth between
maps and topics. For example, index entries and copyrights in the map
are pushed into affected topics, so that the topics can be processed later
in isolation while retaining all relevant metadata. This step is
implemented in Java.

Parent topic: Pre-processing modules
Previous topic: Conref (conref)
Next topic: Resolve code references (codref)

Resolve code references (codref)

The coderef step resolves references made with the <coderef> element.
This step is implemented in Java.

The <coderef> is used to reference code stored externally in non-XML
documents. During the pre-processing step, the referenced content is
pulled into the containing <codeblock> element.

Parent topic: Pre-processing modules
Previous topic: Move metadata (move-meta-entries)
Next topic: Resolve map references (mapref)

Resolve map references (mapref)

The mapref step resolves references from one DITA map to another. This
step is implemented in XSLT.

Maps reference other maps by using the following sorts of markup:

<topicref href="other.ditamap" format="ditamap"/>

<mapref href="other.ditamap"/>

As a result of the mapref step, the element that references another map
is replaced by the topic references from the other map. Relationship
tables are pulled into the referencing map as a child of the root element
(<map> or a specialization of <map>).

Parent topic: Pre-processing modules
Previous topic: Resolve code references (codref)
Next topic: Pull content into maps (mappull)

Pull content into maps (mappull)

The mappull step pulls content from referenced topics into maps, and
then cascades data within maps. This step is implemented in XSLT.

The mappull step makes the following changes to the DITA map:

Titles are pulled from referenced DITA topics. Unless the @locktitle
attribute is set to "yes", the pulled titles replace the navigation titles
specified on the <topicref> elements.

The <linktext> element is set based on the title of the referenced
topic, unless it is already specified locally.

The <shortdesc> element is set based on the short description of the
referenced topic, unless it is already specified locally.

The @type attribute is set on <topicref> elements that reference
local DITA topics. The value of the @type attribute is set to value of
the root element of the topic; for example, a <topicref> element that
references a task topic is given a @type attribute set to "task™.

Attributes that cascade, such as @toc and print, are made explicit on
any child <topicref >elements. This allows future steps to work with
the attributes directly, without reevaluating the cascading behavior.

Parent topic: Pre-processing modules
Previous topic: Resolve map references (mapref)
Next topic: Chunk topics (chunk)

Chunk topics (chunk)

The chunk step breaks apart and assembles referenced DITA content

based on the @chunk attribute in maps. This step is implemented in
Java.

The DITA-OT has implemented processing for the following values of the
@chunk attribute:

select-topic
select-document
select-branch
by-topic
by-document
to-content

to-navigation

Parent topic: Pre-processing modules
Previous topic: Pull content into maps (mappull)
Next topic: Map based linking (maplink and move-links)

Related information
Chunking definition in the DITA 1.2 specification

http://docs.oasis-open.org/dita/v1.2/os/spec/archSpec/chunking.html

Map based linking (maplink and move-links)

These two steps work together to create links based on a map and move
those links into the referenced topics. The links are created based on
hierarchy in the DITA map, the @collection-type attribute, and
relationship tables. This step is implemented in XSLT and Java.

The maplink module runs an XSLT program that evaluates the map; it

places all the generated links into a single file in the temporary directory.
The move-1inks module then runs a Java program that pushes the

generated links into the applicable topics.

Parent topic: Pre-processing modules
Previous topic: Chunk topics (chunk)
Next topic:

Pull content into topics (topicpull)

The topicpull step pulls content into <xref> and <link> elements. This
step is implemented in XSLT.

If an <xref> element does not contain link text, the target is examined and
the link text is pulled. For example, a reference to a topic pulls the title of
the topic; a reference to a list item pulls the number of the item. If the
<xref> element references a topic that has a short description, and the
<xref> element does not already contain a child <desc> element, a
<desc> element is created that contains the text from the topic short
description.

The process is similar for <link> elements. If the <link> element does not
have a child <linktext> element, one is created with the appropriate link
text. Similarly, if the <link> element does not have a child <desc>
element, and the short description of the target can be determined, a
<desc> element is created that contains the text from the topic short
description.

Parent topic: Pre-processing modules
Previous topic: Map based linking (maplink and move-Ilinks)
Next topic: Flagging in the toolkit

Flagging in the toolkit

Beginning with DITA-OT 1.7, flagging support is implemented as a
common preprocess module. The module evaluates the DITAVAL against
all flagging attributes, and adds DITA-OT specific hints in to the topic
when flags are active. Any extended transform type may use these hints
to support flagging without adding logic to interpret the DITAVAL.

Evaluating the DITAVAL flags

Flagging is implemented as a reusable module during the preprocess
stage. If a DITAVAL file is not used with a build, this step is skipped with
no change to the file.

When a flag is active, relevant sections of the DITAVAL itself are copied
into the topic as a sub-element of the current topic. The active flags are
enclosed in a pseudo-specialization of the <foreign> element (referred to

as a pseudo-specialization because it is used only under the covers, with
all topic types; it is not integrated into any shipped document types).

<ditaval-startprop>

When any flag is active on an element, a <ditaval-startprop>
element will be created as the first child of the flagged element:

<ditaval-startprop class="+ topic/foreign ditaot-d/ditav

The <ditaval-startprop> element will contain the following:

¢ |f the active flags should create a new style, that style is
included using standard CSS markup on the @outputclass
attribute. Output types that make use of CSS, such as
XHTML, can use this value as-is.

e |f styles conflict, and a <style-conflict> element exists in
the DITAVAL, it will be copied as a child of <ditaval-

startprop>.

e Any <prop> Or <revprop> elements that define active flags
will be copied in as children of the <ditaval-startprop>
element. Any <startflag> children of the properties will be
included, but <endflag> children will not.

<ditaval-endprop>

When any flag is active on an element, a <ditaval-endprop>
element will be created as the last child of the flagged element:

<ditaval-endprop class="+ topic/foreign ditaot-d/ditaval

CSS values and <styleconflict> elements are not included on
this element.

Any <prop> Or <revprop> elements that define active flags will be
copied in as children of <ditaval-prop>. Any <endflag> children
of the properties will be included, but <startflag> children will
not.

Supporting flags in overrides or custom transform types

For most transform types, the <foreign> element should be ignored by

default, because arbitrary non-DITA content may not mix well unless
coded for ahead of time. If the <foreign> element is ignored by default, or

if a rule is added to specifically ignore <ditaval-startprop> and
<ditaval-endprop>, then the added elements will have no impact on a

transform. If desired, flagging support may be integrated at any time in
the future.

The processing described above runs as part of the common preprocess,
so any transform that uses the default preprocess will get the topic
updates. To support generating flags as images, XSLT based transforms
can use default fallthrough processing in most cases. For example, if a
paragraph is flagged, the first child of <p> will contain the start flag

information; adding a rule to handle images in <ditaval-startprop> Will
cause the image to appear at the start of the paragraph content.

In some cases fallthrough processing will not result in valid output; for
those cases, the flags must be explicitly processed. This is done in the
XHTML transform for elements like <o1>, because fallthrough processing

would place images in between <o1> and <1i>. To handle this, the code
processes <ditaval-startprop> before starting the element, and
<ditaval-endprop> at the end. Fallthrough processing is then disabled for
those elements as children of .

Example DITAVAL

Assume the following DITAVAL file is in use during a build. This DITAVAL
will be used for each of the following content examples.

<?xml version="1.0" encoding="UTF-8"?>

<val>
<!-- Define what happens in the case of conflicting styles -->
<style-conflict background-conflict-color="red"/>

<!-- Define two flagging properties that give styles (no image.
<prop action="flag" att="audience" style="underline" val="user'
<prop action="flag" att="platform" style="overline" val="win" I

<!-- Define a property that includes start and end image flags
<prop action="flag" att="platform" val="linux" style="overline'
<startflag imageref="startlin.png"><alt-text>Start linux</alf
<endflag imageref="endlin.png"><alt-text>End linux</alt-text:
</prop>

<!-- Define a revision that includes start and end image flags
<revprop action="flag" style="double-underline" val="rev2">
<startflag imageref="start_rev.gif'"><alt-text>ssssssssssstart
<endflag imageref="end_rev.gif'"><alt-text>eeeeeeeeeeeeeend</:
</revprop>
</val>

Content example 1: adding style

Now assume the following paragraph exists in a topic. Class attributes
are included, as they would normally be in the middle of the preprocess
routine; @xtrf and @xtrc are left off for clarity.

<p audience="user'">Simple user; includes style but no images</p>

Based on the DITAVAL above, audience="user" results in a style with
underlining and with a green background. The interpreted CSS value is
added to @outputclass on <ditaval-startprop>, and the actual property

definition is included at the start and end of the element. The output from
the flagging step looks like this (with newlines added for clarity, and class
attributes added as they would appear in the temporary file):

The resulting file after the flagging step looks like this; for clarity, newlines
are added, while @xtrf and @xtrc are removed:

<p audience="user" class="- topic/p ">
<ditaval-startprop class="+ topic/foreign ditaot-d/ditaval-stai
outputclass="background-color:green;text-decoration:ui
<prop action="flag" att="audience" style="underline" val="us
</ditaval-startprop>
Simple user; includes style but no images
<ditaval-endprop class="+ topic/foreign ditaot-d/ditaval-endpr«
<prop action="flag" att="audience" style="underline" val="us
</ditaval-endprop>
</p>

Content example 2: conflicting styles

This example includes a paragraph with conflicting styles. When the
audience and platform attributes are both evaluated, the DITAVAL
indicates that the background color is both green and blue. In this
situation, the <style-conflict> element is evaluated to determine how to

style the content.

<p audience="user" platform="win">Conflicting styles (still no ir

The <style-conflict> element results in a background color of red, so
this value is added to @outputclass on <ditaval-startprop>. As above,
active properties are copied into the generated elements; the <style-
conflict> element itself is also copied into the generated <ditaval-
startprop> element.

The resulting file after the flagging step looks like this; for clarity, newlines
are added, while @xtrf and @xtrc are removed:

<p audience="user" platform="win" class="- topic/p ">
<ditaval-startprop class="+ topic/foreign ditaot-d/ditaval-stai
outputclass="background-color:red;">
<style-conflict background-conflict-color="red"/>
<prop action="flag" att="audience" style="underline" val="us
<prop action="flag" att="platform" style="overline" val="win'
</ditaval-startprop>
Conflicting styles (still no images)
<ditaval-endprop class="+ topic/foreign ditaot-d/ditaval-endpr«
<prop action="flag" att="platform" style="overline" val="win'
<prop action="flag" att="audience" style="underline" val="us
</ditaval-endprop>
</p>

Content example 3: adding image flags

This example includes image flags for both @platform and @rev, which
are defined in DITAVAL <prop> and <revprop> elements.

<ol platform="1linux" rev="rev2'">
Generate images for platform="linux" and rev="2"</1i>
</o0l>

As above, the <ditaval-startprop> and <ditaval-endprop> nest the

active property definitions, with the calculated CSS value on
@outputclass. The <ditaval-startprop> drops the ending image, and

<ditaval-endprop> drops the starting image. To make document-order

processing more consistent, property flags are always included before
revisions in <ditaval-startprop>, and the order is reversed for <ditaval-

endprop>.

The resulting file after the flagging step looks like this; for clarity, newlines
are added, while @xtrf and @xtrc are removed:

<ol platform="linux" rev="rev2" class="- topic/ol ">
<ditaval-startprop class="+ topic/foreign ditaot-d/ditaval-stai
outputclass="background-color:blue; text-decoration:unc
<prop action="flag" att="platform" val="linux" style="overlil
<startflag imageref="startlin.png"><alt-text>Start linux</:
</prop>
<revprop action="flag" style="double-underline" val="rev2">
<startflag imageref="start_rev.gif"><alt-text>ssssssssssst:
</revprop>
</ditaval-startprop>
<li class="- topic/li ">Generate images for platform="linux" ar
<ditaval-endprop class="+ topic/foreign ditaot-d/ditaval-endpr«
<revprop action="flag" style="double-underline" val="rev2">
<endflag imageref="end_rev.gif"><alt-text>eeeeeeeeeeeeeend:
</revprop>
<prop action="flag" att="platform" val="linux" style="overlil
<endflag imageref="endlin.png"><alt-text>End linux</alt-te;
</prop>
</ditaval-endprop>
</0l>

Parent topic: Pre-processing modules

Previous topic:

HTML-based processing modules

The DITA-OT ships with several varieties of HTML output, each of which
follows roughly the same path through the processing pipeline. All HTML-
based transformation begin with the same call to the pre-processing
module, after which they generate HTML files and then branch to create
the transformation-specific navigation files.

Common HTML-based processing After the pre-processing
operation runs, HTML-based builds each run a common series of
Ant targets to generate HTML file. Navigation may be created before
or after this set of common routines.

XHTML processing
After the XHTML files are generated by the common routine, the
dita.map.xhtml target is called by the xhtml transformation. This

target generates a TOC file called index.html, which can be loaded
into a frameset.

HTML5 processing
After the HTMLS5 files are generated by the common routine, the
dita.map.xhtml target is called by the html5 transformation. This

target generates a TOC file called index.html, which can be loaded
into a frameset.

Eclipse help processing

The eclipsehelp transformation generates XHTML-based output
and files that are needing to create an Eclipse Help system plug-in.
Once the normal XHTML process has run, the dita.map.eclipse

target is used to create a set of control files and navigation files.

TocJS processing

The tocjs transformation was originally created as a plug-in that
distributed outside of the toolkit, but it now ships bundled in the
default packages. This HTML5-based output type creates a
JavaScript based frameset with TOC entries that expand and

collapse.

HTML Help processing

The htmlhelp transformation created HTML Help control files. If the
build runs on a system that has the HTML Help compiler installed,
the control files are compiled into a CHM file.

JavaHelp processing

The javahelp transformation runs several additional Ant targets after
the XHTML processing is completed in order to create control files
for the JavaHelp output.

Parent topic: Architecture of the DITA Open Toolkit

Common HTML-based processing

After the pre-processing operation runs, HTML-based builds each run a
common series of Ant targets to generate HTML file. Navigation may be
created before or after this set of common routines.

After the pre-processing is completed, the following targets are run for all
of the HTML-based builds:

o If the arg.css parameter is passed to the build to add a CSS file, the
copy-css target copies the CSS file from its source location to the

relative location in the output directory.

o |f a DITAVAL file is used, the copy-revflag target copies the default
start- and end-revision flags into the output directory.

e The DITA topics are converted to HTML files. Unless the @chunk
attribute was specified, each DITA topic in the temporary directory
now corresponds to one HTML file. Thedita.inner.topics.xhtml
target is used to process documents that are in the map directory (or
subdirectories of the map directory). The dita.outer.topics.xhtml
target is used to process documents that are outside of the scope of
the map, and thus might end up outside of the designated output
directory. Various DITA-OT parameters control how documents
processed by the dita.outer.topics.xhtml target are handled.

Parent topic: HTML-based processing modules

XHTML processing

After the XHTML files are generated by the common routine, the
dita.map.xhtml target is called by the xhtml transformation. This target

generates a TOC file called index.html, which can be loaded into a
frameset.

Parent topic: HTML-based processing modules

HTML5 processing

After the HTMLS5 files are generated by the common routine, the
dita.map.xhtml target is called by the html5 transformation. This target

generates a TOC file called index.html, which can be loaded into a
frameset.

Parent topic: HTML-based processing modules

Eclipse help processing

The eclipsehelp transformation generates XHTML-based output and
files that are needing to create an Eclipse Help system plug-in. Once the
normal XHTML process has run, the dita.map.eclipse target is used to

create a set of control files and navigation files.

Eclipse use multiple files to control the plug-in behavior. Some of these
control files are generated by the build, while others might be created
manually. The following Ant targets control the Eclipse help processing:

dita.map.eclipse.init

Sets up various default properties

dita.map.eclipse.toc

Creates the XML file that defines an Eclipse table of contents

dita.map.eclipse.index
Creates the sorted XML file that defines an Eclipse index
dita.map.eclipse.plugin

Creates the plugin.xml file that controls the behavior of an
Eclipse plug-in

dita.map.eclipse.plugin.properties

Creates a Java properties file that sets properties for the plug-in,
such as name and version information

dita.map.eclipse.manifest.file

Creates a MANIFEST.MF file that contains additional information
used by Eclipse

copy-plugin-files

Checks for the presence of certain control files in the source

directory, and copies those found to the output directory

dita.map.eclipse.fragment.language.init

Works in conjunction with the
dita.map.eclipse.fragment.language.country.init and
dita.map.eclipse.fragment.error targets to control Eclipse

fragment files, which are used for versions of a plug-in created
for a new language or locale

Several of the targets listed above have matching templates for
processing content that is located outside of the scope of the map
directory, such as dita.out.map.eclipse.toc.

Parent topic: HTML-based processing modules

TocJS processing

The tocjs transformation was originally created as a plug-in that
distributed outside of the toolkit, but it now ships bundled in the default
packages. This HTML5-based output type creates a JavaScript based
frameset with TOC entries that expand and collapse.

The following Ant targets control most of the TocJS processing:

tocjsInit

Sets up default properties. This target detects whether builds
have already specified a name for JavaScript control file; if not,
the default name toctree.js is used.

map2tocjs

Calls the dita.map.tocjs target, which generates the contents
frame for TocJS output.

tocjsDefaultOutput

Ensures that the HTML5 processing module is run. If scripts are
missing required information, such as a name for the default
frameset, this target copies default style and control files. This
target was add to the DITA-OT in version 1.5.4; earlier versions
of the TocJS transformation created only the JavaScript control
file by default.

Parent topic: HTML-based processing modules

HTML Help processing

The htmlhelp transformation created HTML Help control files. If the build
runs on a system that has the HTML Help compiler installed, the control
files are compiled into a CHM file.

Once the pre-processing and XHTML processes are completed, most of
the HTML Help processing is handled by the following targets:

dita.map.htmlhelp

Create the HHP, HHC, and HHK files. The HHK file is sorted
based on the language of the map.

dita.htmlhelp.convertlang

Ensures that the content can be processed correctly by the
compiler, and that the appropriate code pages and languages
are used.

compile.HTML.Help

Attempts to detect the HTML Help compiler. If the compiler is
found, the full project is compiled into a single CHM file.

Parent topic: HTML-based processing modules

JavaHelp processing

The javahelp transformation runs several additional Ant targets after the
XHTML processing is completed in order to create control files for the
JavaHelp output.

There are two primary Ant targets:

dita.map.javahelp

Creates all of the files that are needed to compile JavaHelp,
including a table of contents, sorted index, and help map file.

compile.Java.Help

Searches for a JavaHelp compiler on the system. If a compiler is
found, the help project is compiled.

Parent topic: HTML-based processing modules

PDF processing modules

The PDF (formerly known as PDF2) transformation process runs the pre-
processing routine and follows it by a series of additional targets. These
steps work together to create a merged set of content, convert the
merged content to XSL-FO, and then format the XSL-FO file to PDF.

The PDF process includes many Ant targets. During a typical conversion
from map to PDF, the following targets are most significant.

map2pdf2
Creates a merged file by calling a common Java merge module.

It then calls the publish.map.pdf target to do the remainder of
the work.

publish.map.pdf

Performs some initialization and then calls the
transform.topic2pdf target to do the remainder of processing.

transform.topic2pdf

Converts the merged file to XSL-FO, generates the PDF, and
deletes the topic.fo file, unless instructed to keep it. Uses the

following targets to perform those tasks:
transform.topic2fo

Convert the merged file to an XSL-FO file. This
process is composed of several Ant targets.

Ant target Description
Runs a Java process to
set up index processing,
based on the document
_ , language. This step
transform.topic2fo.index generates the file

stagel.xml in the

transform.topic2fo.flagging

transform.topic2fo.main

transform.topic2fo.i18n

transform.fo2pdf

temporary processing
directory.

Sets up preprocessing for
flagging based on a
DITAVAL file. This step
generates the file
stagela.xml in the
temporary processing
directory.

Does the bulk of the
conversion from DITA to
XSL-FO. It runs the XSLT
based process that creates
stage2.fo in the temporary
processing directory
Does additional
localization processing on
the FO file; it runs a Java
process that converts
stage2.fo INtO stage3. fo,
followed by an XSLT
process that converts
stage3.fo iNto topic. fo.

Converts the topic.fo file into PDF using the specified
FO processor (Antenna House, XEP, or Apache FOP).

delete.fo2pdf.topic.fo

Deletes the topic. fo file, unless otherwise specified by
setting an Ant property or command-line option.

Parent topic: Architecture of the DITA Open Toolkit

Open Document Format processing modules

The odt transformation creates a binary file using the OASIS Open
Document Format.

The odt transformation begins with pre-processing. It then runs either the
dita.odt.package.topic Or dita.odt.package.map target, depending on
whether the input to the transformation is a DITA topic or a DITA map.
The following description focuses on the map process, which is made up
of the following targets:

dita.map.odt

Converts the map into a merged XML file using the Java-based
topicmerge module. Then an XSLT process converts the merged

file into the content.xml file.
dita.map.odt.stylesfile

Reads the input DITA map, and then uses XSLT to create a
styles.xml file in the temporary directory.

dita.out.odt.manifest.file

Creates the manifest.xml file

Once these targets have run, the generated files are zipped up together
with other required files to create the output ODT file.

Parent topic: Architecture of the DITA Open Toolkit

Extending the DITA Open Toolkit

There are several methods that can be used to extend the toolkit; not all
of them are recommended or supported. The best way to create most
extensions is with a plug-in; extended documentation for creating plug-ins
Is provided in the next section.

e Creating a plug-in can be very simple to very complex, and is
generally the best method for changing or extending the toolkit. Plug-
ins can be used to accomplish almost any modification that is
needed for toolkit processing, from minor style tweaks to extensive,
complicated new output formats.

e The PDF process was initially developed independently of the toolkit,
and created its own extension mechanism using customization
directories. Many (but not quite all) of the capabilities available
through PDF customization directories are now available through
plug-ins.

e Using a single XSL file as an override by passing it in as a
parameter. For example, when building XHTML content, the XSL
parameter allows users to specify a single local XSL file (inside or
outside of the toolkit) that is called in place of the default XHTML
code. Typically, this code imports the default processing code, and
overrides a couple of processing routines. This approach is best
when the override is very minimal, or when the style varies from
build to build. However, any extension made with this sort of override
is also possible with a plug-in.

e Editing DITA-OT code directly may work in some cases, but is not
advised. Modifying the code directly significantly increases the work
and risk involved with future upgrades. It is also likely that such
modifications will break plug-ins provided by others, limiting the
function available to the toolkit.

Manually installing plug-ins Plug-ins are generally distributed as
zip files. There are two steps to installing a plug-in: unzipping and

integrating.

Manually removing plug-ins
Plug-ins can be installed by removing the plug-in and running
integration process.

Rebuilding the DITA-OT documentation

The DITA-OT ships with Ant scripts that enable you to rebuild the
toolkit documentation. This is especially helpful if your environment
contains plug-ins that integrate additional messages into the toolkit.

Parent topic: DITA Open Toolkit Developer Reference

Related tasks

Installing plug-ins
Removing plug-ins

Manually installing plug-ins

Plug-ins are generally distributed as zip files. There are two steps to
installing a plug-in: unzipping and integrating.

About this task

It is possible to define a plug-in so that it may be installed anywhere,
although most expect to be placed in plugins/ directory inside of the
DITA-OT. Most plug-ins do not require a specific install directory and can

go in either of the default locations, but some may come with instructions
for a particular install directory.

Procedure

1. The unzip the plug-in file to plugins subdirectory.

The plug-in directory should be named after plug-in ID and version,
for example plugins/com.example.xhtml_1.0.0.

2. Run plug-in integration process.

e From the toolkit directory, run the following command to
integrate all installed plug-ins:

ant -f integrator.xml

e Any build that uses the Java command line interface
automatically runs the integrator before processing begins.

e Ant based builds may import the integrator.xml file, and add
integrate to the start of the dependency chain for the build.

Note: The integration process in considered part of the
installation process and running it before each conversion
will incur a performance penalty.

The integration process has two modes, lax and strict. In the strict
mode the integration process will immediately fail if it encounters
errors in plug-in configurations or installation process. In the lax
mode, the integration process will continue to finish regardless of
errors; the lax mode does not imply error recovery and may leave
the DITA-OT installation into a broken state. The default mode is lax
due to backwards compatibility, to run the integration in strict mode:

ant -f integrator.xml strict

To get more information about the integration process, run Ant in
verbose mode:

ant -f integrator.xml -verbose strict

Parent topic: Extending the DITA Open Toolkit

Manually removing plug-ins

Plug-ins can be installed by removing the plug-in and running integration
process.

Procedure
1. Remove plug-in installation directory.

2. Run integration process.

ant -f integrator.xml

Parent topic: Extending the DITA Open Toolkit

Rebuilding the DITA-OT documentation

The DITA-OT ships with Ant scripts that enable you to rebuild the toolkit
documentation. This is especially helpful if your environment contains
plug-ins that integrate additional messages into the toolkit.

Procedure

1. Change to the doc directory.

2. Run the following command:

ant -f build.xml target

The target parameter is optional and specifies a specific
transformation type. It takes the following values:

e build-html
¢ build-htmlhelp
e build-pdf

If you do not specify an Ant target, all three output formats (HTMLS5,
HTML help, and PDF) are generated.

Parent topic: Extending the DITA Open Toolkit

Configuring the DITA Open Toolkit

The DITA OT uses .properties files that store configuration settings for

the DITA OT and its plug-ins. The configuration properties are available to
both Ant and Java processes, but unlike argument properties, they
cannot be set at run time.

plugin.properties file The plugin.properties file is used to store
configuration properties that are set by the integration process. The
file is located in the 1ib\org.dita.dost.platform directory; it is
regenerated each time the integration process is run and so should
not be edited manually.

Parent topic: DITA Open Toolkit Developer Reference

plugin.properties file

The plugin.properties file is used to store configuration properties that

are set by the integration process. The file is located in the
lib\org.dita.dost.platform directory; it is regenerated each time the

integration process is run and so should not be edited manually.

Parent topic: Configuring the DITA Open Toolkit

Creating DITA-OT plug-ins

The DITA Open Toolkit comes with a built in mechanism for adding in
extensions through plug-ins. These plug-ins may do a wide variety of
things, such as adding support for specialized DITA DTDs or Schemas,
integrating processing overrides, or even providing entirely new output
transforms. Plug-ins are the best way to extend the toolkit in a way that is
consistent, easily sharable, and easy to preserve through toolkit
upgrades.

A plug-in consists of a directory, typically stored directly within the
plugins/ directory inside of the DITA-OT. Every plug-in is controlled by a

file named plugin.xml, located in the plug-in's root directory.

Benefits of extending the toolkit through plug-ins include:

e Plug-ins are easily sharable with other users, teams, or companies;
typically, all that is needed is to unzip and run a single integration
step. With many builds, even that integration step is automatic.

o Allows overrides or customizations to grow from simple to complex
over time, with no increased complexity to the extension mechanism.

¢ Plug-ins can be moved from version to version with an upgraded
toolkit simply by unzipping again, or by copying the directory from
one install to another; there is no need to re-integrate code based on
updates to the core processing.

¢ Plug-ins can build upon each other. If you like a plug-in provided by
one user, simply install that plug-in, and then create your own that
builds on that extension. The two plug-ins can then be distributed to
your team as a unit, or you can even share your own extensions with
the original provider.

Plug-in configuration file The plugin.xml controls all aspects of a
plug-in, making each extension visible to the rest of the toolkit. The
file uses pre-defined extension points to locate changes, and
integrates those changes into the core code.

Extending the XML Catalog

The XML Catalogs extension point is used to update the XML
Catalogs used to resolve DTD or Schema document types, or to add
URI mappings. This is required in order to support DITA
specializations or new DITA document type shells.

Adding new targets to the Ant build process

The Ant conductor extension point is used to make new targets
available to the Ant processing pipeline. This may be done as part of
creating a new transform, extending pre-processing, or simply to
provide Ant targets for the use of other plug-ins.

Adding Ant targets to the pre-process pipeline

Every step in the pre-process pipeline defines an extension point
before and after the step, to allow plug-ins to integrate additional
processing. This allows a plug-in to insert a new step before any pre-
processing step, as well as before or after the entire preprocess
pipeline.

Integrating a new transform type

Plug-ins may integrate an entire new transform type. The new
transform type can be very simple, such as an XHTML build that
creates an additional control file; it can also be very complex, adding
any number of new processing steps.

Override styles with XSLT

The XSLT import extension points are used to override various steps
of XSLT processing. For this, the extension attribute indicates the
step that the override applies to; the file attribute is a relative path
to the override within the current plugin. The plugin installer will add
an XSL import statement to the default code so that your override
becomes a part of the normal build.

Modifying or adding generated text
Generated text is the term for strings that are automatically added by
the build, such as "Note" before the contents of a <note> element.

Passing parameters to existing XSLT steps

Plug-ins can define new parameters to be passed from the Ant build
into existing XSLT pipeline stages, usually to have those parameters
available as global <xs1:param> values within XSLT overrides.

Adding Java libraries to the classpath

If your Ant or XSLT extensions require additional Java libraries in the
classpath, you can add them to the global DITA-OT classpath with
the following feature.

Adding diagnostic messages

Plug-in specific warning and error messages can be added to the set
of messages supplied by the DITA-OT. These messages can then be
used by any XSLT override.

Managing plug-in dependencies
The <require> element in a plugin.xml file is used to create a

dependency on another plug-in. The <require> element requires the
plugin attribute in order to reference the dependency.

Version and support information
The following extension points are used by convention to define
version and support info within a plug-in.

Creating a new plug-in extension point

If your plug-in needs to define its own extension point in an XML file,
add the string "_template" to the filename before the file

suffix. During integration, this file will be processed like the built-in
DITA-OT templates.

Example plugin.xml file
The following is a sample of a plugin.xml file. This file adds support

for a new set of specialized DTDs, and includes an override for the
XHTML output processor.

Parent topic: DITA Open Toolkit Developer Reference

Plug-in configuration file

The plugin.xml controls all aspects of a plug-in, making each extension

visible to the rest of the toolkit. The file uses pre-defined extension points
to locate changes, and integrates those changes into the core code.

The root element of the plugin.xml file is <plugin>, and must specify an id
attribute. The id attribute is used to identify the plug-in, as well as to
identify whether pre-requisite plug-ins are available. The id attribute
should follow the syntax rules:

id

token ::

token('.'token)*
([0..9] | [a..zA..Z2] | "_" | "-")+

The <plugin> element supports the following child elements:

e <feature> defines an extension to contribute to a defined extension
point. The following attributes are supported:

Attribute Description Required

extension extension point identifier yes

value comma separated string value of the either value or
extension file

file file path value of the extension, relative to either value or
plugin.xml file

type type of the value attribute no

e extension-point defines new a extension point that can be used by
other plug-ins. The following attributes are supported:

Attribute Description Required
id extension point identifier yes
name extension point name no

e <require> defines plug-in dependencies. The following attributes are
supported:

Attribute Description Required
vertical bar separated list of plug-ins that are
required

importance flag whether plug-in is required or optional no

plugin yes

e <template> defines files that should be treated as templates. The
following attributes are supported:

Attribute Description Required
file file path to the template, relative to plugin.xmlyes

o <meta> defines metadata. The following attributes are supported:

Attribute Description Required
type metadata nameyes
value metadata value yes

Any extension that is not recognized by the DITA-OT is ignored; all
elements other than <plugin> are optional. Since version 1.5.3 multiple
extension definitions within a plug-in configuration file are combined; in
older versions only the last extension definition is used.

Parent topic: Creating DITA-OT plug-ins

Extending the XML Catalog

The XML Catalogs extension point is used to update the XML Catalogs
used to resolve DTD or Schema document types, or to add URI
mappings. This is required in order to support DITA specializations or
new DITA document type shells.

To do this, first create a catalog with only your new values, using the
OASIS Catalog format, and place that in your plug-in. Local file
references in the catalog should be relative to the location of the catalog.
The following extension points are available to work with catalogs.

dita.specialization.catalog.relative

dita.specialization.catalog

Adds the content of the catalog file defined in file attribute to
main DITA-OT catalog file.

Remember: The dita.specialization.catalog extension is
deprecated. Use dita.specialization.catalog.relative
instead.

org.dita.pdf2.catalog.relative

Adds the content of the catalog file defined in file attribute to
main PDF plug-in catalog file.

Example

This example assumes that "catalog-dita.xml" contains an OASIS

catalog for any DTDs or Schemas inside this plug-in. The catalog entries
inside of catalog-dita.xml are relative to the catalog itself; when the

plug-in is integrated, they will be added to the core DITA-OT catalog (with
the correct path).

<plugin id="com.example.catalog">
<feature extension="dita.specialization.catalog.relative" file:

</plugin>

Parent topic: Creating DITA-OT plug-ins

Adding new targets to the Ant build process

The Ant conductor extension point is used to make new targets available
to the Ant processing pipeline. This may be done as part of creating a
new transform, extending pre-processing, or simply to provide Ant targets
for the use of other plug-ins.

dita.conductor.target.relative
dita.conductor.target

Add Ant import to main Ant build file.

Remember: The dita.conductor.target extension is
deprecated. Use dita.conductor.target.relative instead.

Example

To extend And processing, first place your extensions in an Ant project
file within your plug-in, such as myantstuff.xml. Next, create a small

wrapper file myAntstuffwrapper.xml in the same directory:

<dummy> <import file="myAntStuff.xml"/> </dummy>

Then create the following feature:

<plugin id="com.example.ant">
<feature extension="dita.conductor.target.relative" file="myAnt
</plugin>

When the plug-in is integrated, the imports from myAntStuffwrapper .xml
will be copied into build.xml (using the correct path). This makes targets
in myAntStuff.xml available to any other processing.

Parent topic: Creating DITA-OT plug-ins

Adding Ant targets to the pre-process pipeline

Every step in the pre-process pipeline defines an extension point before
and after the step, to allow plug-ins to integrate additional processing.
This allows a plug-in to insert a new step before any pre-processing step,
as well as before or after the entire preprocess pipeline.

The group of preprocessing steps defines extension points before and
after the full preprocessing chain.

depend.preprocess.pre

Preprocessing pre-target; extending this target runs your Ant
target before the full preprocess routine begins.

depend.preprocess.post

Preprocessing post-target; extending this target runs your Ant
target after the full preprocess routine completes.

In addition, there are extension points to execute an Ant target before
individual preprocessing steps.

depend.preprocess.clean-temp.pre
Clean temp pre-target
depend.preprocess.gen-list.pre
Generate list pre-target
depend.preprocess.debug-filter.pre
Debug and filter pre-target
depend.preprocess.conrefpush.pre
Content reference push pre-target

depend.preprocess.move-meta-entries.pre

Move meta entries pre-target

depend.preprocess.conref.pre

Content reference pre-target

depend.preprocess.coderef.pre
Code reference pre-target
depend.preprocess.mapref.pre
Map reference pre-target
depend.preprocess.keyref.pre
Resolve key reference pre-target

depend.preprocess.mappull.pre

Map pull pre-target
depend.preprocess.chunk.pre
Chunking pre-target
depend.preprocess.maplink.pre
Map link pre-target
depend.preprocess.move-links.pre
Move links pre-target
depend.preprocess. topicpull.pre
Topic pull pre-target
depend.preprocess.copy-files.pre
Copy files pre-target
depend.preprocess.copy-image.pre

Copy images pre-target

depend.preprocess.copy-html.pre

Copy HTML pre-target

depend.preprocess.copy-flag.pre

Copy flag pre-target

depend.preprocess.copy-subsidiary.pre

Copy subsidiary pre-target

depend.preprocess.copy-generated-files.pre

Copy generated files pre-target

Example

The following feature adds "myAntTargetBeforeChunk™ Ant target to be
executed before the chunk step in preprocessing. It assumes that an Ant
file defining that target has already been integrated.

<plugin id="com.example.extendchunk">

<feature extension="depend.preprocess.chunk.pre" value="myAntT:
</plugin>

When integrated, the Ant target "myAntTargetBeforeChunk™ will be added
to the Ant dependency list so that it always runs immediately before the
Chunk step.

Parent topic: Creating DITA-OT plug-ins

Integrating a new transform type

Plug-ins may integrate an entire new transform type. The new transform
type can be very simple, such as an XHTML build that creates an
additional control file; it can also be very complex, adding any number of
new processing steps.

The transtype extension point is used to define a new "transtype", or
transform type, which makes use of targets in your Ant extensions. When
a transform type is defined, the build expects Ant code to be integrated to
define the transform process. The Ant code must define a target based
on the name of the transform type; if the transform type is "mystuff”’, the
Ant code must define a target named dita2mystulff.

dita.conductor.transtype.check
Add new value to list of valid transformation type names.

dita.transtype.print

Declare transtype as a print type.

Example

The following feature defines a transform type of "newtext" and declares
it as a print type; using this transform type will cause the build to look for
a target dita2newtext, defined in a related Ant extension from the third

feature:

<plugin id="com.example.newtext">
<feature extension="dita.conductor.transtype.check" value="newi
<feature extension="dita.transtype.print" value="newtext"/>
<feature extension="dita.conductor.target.relative" file="antWi

</plugin>

Parent topic: Creating DITA-OT plug-ins

Override styles with XSLT

The XSLT import extension points are used to override various steps of
XSLT processing. For this, the extension attribute indicates the step that
the override applies to; the file attribute is a relative path to the override

within the current plugin. The plugin installer will add an XSL import
statement to the default code so that your override becomes a part of the
normal build.

The following XSLT steps are available to override in the core toolkit:

dita.xsl.xhtml

Overrides default (X)HTML output (including HTML Help and
Eclipse Help). The referenced file is integrated directly into the
XSLT step that generates XHTML.

dita.xsl.xslfo

Overrides default PDF output (formerly known as PDF2). The
referenced file is integrated directly into the XSLT step that
generates XSL-FO for PDF.

dita.xsl.docbook

Overrides default DocBook output.

dita.xsl.rtf

Overrides default RTF output.

dita.xsl.eclipse.plugin

Overrides the step that generates plugin.xml for Eclipse.

dita.xsl.conref

Overrides the preprocess step that resolves conref.

dita.xsl.topicpull

Overrides the preprocess step "topicpull” (the step that pulls text
into <xref> elements, among other things).

dita.xsl.mapref

Overrides the preprocess step "mapref" (the step that resolves
references to other maps).

dita.xsl.mappull

Overrides the preprocess step "mappull” (the step that updates
navtitles in maps and causes attributes to cascade).

dita.xsl.maplink

Overrides the preprocess step "maplink” (the step that
generates map-based links).

Example

The following two files represent a complete, simple style plug-in. The
plugin.xml file declares an XSLT file that extends XHTML processing; the

XSLT file overrides default header processing to provide a (theoretical)
banner.

plugin.xml:
<?xml version="1.0" encoding="UTF-8"?>
<plugin id="com.example.brandheader'">
<feature extension="dita.xsl.xhtml" file="xsl/header.xsl"/>
</plugin>

xsl/header.xsl:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform":
<xsl:template name="gen-user-header">
<div><img src="http://www.example.com/company_banner.jpg"
alt="Example Company Banner'"/></div>

</xsl:template>

</xsl:stylesheet>

Parent topic: Creating DITA-OT plug-ins

Modifying or adding generated text

Generated text is the term for strings that are automatically added by the
build, such as "Note" before the contents of a <note> element.

The generated text extension point is used to add new strings to the
default set of generated text. There are several reasons you may want to
use this:

e |t can be used to add new text for your own processing extensions;
for example, it could be used to add localized versions of the string
"User response” to aid in rendering troubleshooting information.

¢ |t can be used to override the default strings in the toolkit; for
example, it could be used to reset the English string "Figure" to "Fig".

e |t can be used to add support for new languages (for non-PDF
transforms only; PDF requires more complicated localization
support). For example, it could be used to add support for
Vietnamese or Gaelic; it could also be used to support a new variant
of a previously supported language, such as Australian English.

dita.xsl.strings

Add new strings to generated text file.

Example: adding new strings

First copy the file xs1/common/strings.xml to your plug-in, and edit it to
contain the languages that you are providing translations for ("en-us"
must be present). For this sample, copy the file into your plug-in as
xs1l/my-new-strings.xml. The new strings file will look something like this:

<!-- Provide strings for my plug-in; this plug-in supports
English, Icelandic, and Russian. -->

<langlist>
<lang xml:lang="en" filename="mystring-en-us.xml"/>
<lang xml:lang="en-us" filename="mystring-en-us.xml"/>
<lang xml:lang="is" filename="mystring-is-is.xml"/>
<lang xml:lang="is-is" filename="mystring-is-is.xml"/>
<lang xml:lang="ru" filename="mystring-ru-ru.xml"/>
<lang xml:lang="ru-ru" filename="mystring-ru-ru.xml"/>

</langlist>

Next, copy the file xs1/common/strings-en-us.xml to your plug-in, and

replace the content with your own strings (be sure to give them unique
name attributes). Do the same for each language that you are providing a
translation for. For example, the file mystring-en-us.xml might contain:

<strings xml:lang="en-us">

<str name="Stringl">English generated text</str>

<str name="Another String">Another String in English</str>
</strings>

Use the following extension code to include your strings in the set of
generated text:
<plugin id="com.example.strings">

<feature extension="dita.xsl.strings" file="xsl/my-new-strings
</plugin>

The string is now available to the "getString" template used in many
DITA-OT XSLT files. For example, if processing in a context where the
xml:lang value is "en-us", the following call would return "Another String
in English:

<xsl:call-template name="getString">
<xsl:with-param name="stringName" select="'Another String'"/>

</xsl:call-template>

Note: If two plug-ins define the same string, the results will be non-
deterministic, so multiple plug-ins should not try to create the same
generated text string. One common way to avoid this problem is to
ensure the name attributes used to look up the string value are
related to the ID or purpose of your plug-in.

Example: modifying existing strings

The process for modifying existing generated text is exactly the same as
for adding new text, except that the strings you provide override values
that already exist. To begin, set up the xs1/my-new-strings.xml file in your

plug-in as in the previous example.

Next, copy the file xs1/common/strings-en-us.xml to your plug-in, and

choose the strings you wish to change (be sure to leave the name
attribute unchanged, because this is the key used to look up the string).
Create a strings file for each language that needs to modify existing
strings. For example, the new file mystring-en-us.xml might contain:

<strings xml:lang="en-us">

<str name="Figure'">Fig</str>

<str name="Draft comment'">ADDRESS THIS DRAFT COMMENT</str>
</strings>

To integrate the new strings, use the same method as above to add these
strings to your plugin.xml file. Once this plug-in is integrated, where

XHTML output previously generated the term "Figure”, it will now
generate "Fig"; where it previously generated "Draft comment", it will now
generate "ADDRESS THIS DRAFT COMMENT". The same strings in
other languages will not be modified unless you also provide new
versions for those languages.

Note: If two plug-ins override the same string in the same language,
the results will be non-deterministic (either string may be used under
different conditions). Multiple plug-ins should not override the same
generated text string for a single language.

Example: adding a new language

The process for adding a new language is exactly the same as for adding
new text, except you are effectively just translating an existing strings file.
To begin, set up the xs1/my-new-strings.xml file in your plug-in as in the
previous examples. In this case, the only difference is that you are adding
a mapping to new languages; for example, the following file would be
used to set up support for Vietnamese:

<!-- Map languages with xml:lang="vi" or xml:lang="vi-vn"
to the translations in this plug-in. -->
<langlist>
<lang xml:lang="vi" filename="strings-vi.xml"/>
<lang xml:lang="vi-vn" filename="strings-vi.xml"/>
</langlist>

Next, copy the file xs1/common/strings-en-us.xml to your plug-in, and

rename it to match the language you wish to add. For example, to
support Viethamese strings you may want to pick a name like strings-

vi.xml. In that file, change the xml1:1lang attribute on the root element to
match your new language.

Once the file is ready, translate the contents of each <str> element (be

sure to leave the name attribute unchanged). Repeat this process for
each new language you wish to add.

To integrate the new languages, use the same method as above to add
these strings to your plugin.xml file. Once this plug-in is integrated, non-

PDF builds will include support for Viethamese; instead of generating the
English word "Caution”, the element <note type="caution"

xml:lang="vi"> may generate something like "cha y".

Note: If two plug-ins add support for the same language using
different values, the results will be non-deterministic (translations
from either plug-in may be picked up under different conditions).

Parent topic: Creating DITA-OT plug-ins

Related reference
Languages supported by the core toolkit

Passing parameters to existing XSLT steps

Plug-ins can define new parameters to be passed from the Ant build into
existing XSLT pipeline stages, usually to have those parameters
available as global <xs1:param> values within XSLT overrides.

To create new parameters, create a file insertpParameters.xml which
contains one or more Ant <param> elements. It also needs a <dummy>
wrapper element around the parameters. For example, the following
parameter will be passed in to the XSLT file with a value of
${antProperty}, but only if that parameter is defined:

<dummy>
<!-- Any Ant code allowed in xslt task is possible. Common exar
<param name="paramNameinXSLT" expression="${antProperty}" if="¢
</dummy>

Pass the value using the following extensions:

dita.conductor.html.param

Pass parameters to HTML and HTML Help XSLT

dita.conductor.xhtml.param

Pass parameters to XHTML and Eclipse Help XSLT

dita.conductor.xhtml. toc.param

Pass parameters to XHTML TOC XSLT
dita.conductor.eclipse.toc.param

Pass parameters to Eclipse Help TOC XSLT
dita.preprocess.conref.param

Pass parameters to conref XSLT

dita.preprocess.mapref.param

Pass parameters to mapref XSLT

dita.preprocess.mappull.param

Pass parameters to mappull XSLT
dita.preprocess.maplink.param

Pass parameters to maplink XSLT
dita.preprocess.topicpull.param

Pass parameters to topicpull XSLT

dita.conductor.pdf2.param

Pass parameters to PDF2 XSLT

Example

The following plug-in will pass the parameters defined inside of
insertParameter.xml as input to the XHTML process. Generally, an
additional XSLT override will make use of the parameter to do something
new with the generated content.

<plugin id="com.example.newparam">

<feature extension="dita.conductor.xhtml.param" file="insertPai
</plugin>

Parent topic: Creating DITA-OT plug-ins

Adding Java libraries to the classpath

If your Ant or XSLT extensions require additional Java libraries in the
classpath, you can add them to the global DITA-OT classpath with the
following feature.

dita.conductor.lib.import

Add Java libraries to DITA-OT classpath.

Example

The following plug-in adds the compiled Java code from
myJavalLibrary.jar into the global DITA-OT classpath. XSLT or Ant code

can then make use of the added code.

<plugin id="com.example.addjar">
<feature extension="dita.conductor.lib.import" file="myJavalLibi
</plugin>

Now assume that in this case myJavalLibrary.jar performs some
validation step in the middle of processing, and you always want it to run
immediately before the conref step. In that case you need to make use of
several features in this plug-in

e The JAR file must be added to the classpath.

e An Ant target must be created that uses this class, and the Ant
wrapper integrated into the code.

e The Ant target must be added to the dependency chain for conref.

In this extended example, the files might look something like this.

plugin.xml:
<?xml version="1.0" encoding="UTF-8"?>
<plugin id="com.example.samplejava'>
<!-- Add the JAR file to the DITA-OT CLASSPATH -->
<feature extension="dita.conductor.lib.import" file="com.examp:
<!-- Integrate the Ant code -->
<feature extension="dita.conductor.target.relative" file="antWi
<!-- Define the Ant target that is called, and the location (bs
<feature extension="depend.preprocess.conref.pre" value="valid:
</plugin>

antWrapper.xml imports the new Ant code:
<?xml version="1.0" encoding="UTF-8"?>
<dummy>

<import file="calljava-antcode.xml"/>
</dummy>

calljava-antcode.xml:
<?xml version="1.0" encoding="UTF-8"?>

<project default="validatewWithJava'">
<target name="validateWithJava">
<java classname="com.example.sampleValidation">
<!-- The class was added to dost.class.path (the DITA-OT c.
<classpath refid="dost.class.path"/>
</java>
</target>
</project>

Parent topic: Creating DITA-OT plug-ins

Adding diagnhostic messages

Plug-in specific warning and error messages can be added to the set of
messages supplied by the DITA-OT. These messages can then be used
by any XSLT override.

dita.xsl.messages

Add new messages to diagnostic message file.

Example

To add your own messages, create the new messages in an XML file
such as myMessages.xml:

<dummy>
<!-- See resource/messages.xml for the details. -->
<message id="DOTXmy-msg-numW" type="WARN">
<reason>Message text</reason>
<response>How to resolve</response>
</message>
</dummy>

There are three components to the message ID:

1. The prefix DOTX is used by all DITA-OT XSLT transforms, and must
be part of the ID.

2. This is followed by the message number ("my-msg-num" in the
sample above). By convention, this should be a three digit integer.

3. Finally, a letter corresponds to the severity. This should be one of:
e | = Informational, used with type="INFO"
e W = Warning, used with type="WARN"
e E = Error, used with type="ERROR"
e F = Fatal, used with type="FATAL"

Once the message file is defined, it is incorporated with this extension:

<plugin id="com.example.newmsg">
<feature extension="dita.xsl.messages" file="myMessages.xml"/>
</plugin>

XSLT modules can then generate the message using the following call:

<xsl:call-template name="output-message">
<xsl:with-param name="msgnum">my-msg-num</xsl:with-param>
<xsl:with-param name="msgsev'">W</xsl:with-param>
</xsl:call-template>

Parent topic: Creating DITA-OT plug-ins

Managing plug-in dependencies

The <require> element in a plugin.xml file is used to create a
dependency on another plug-in. The <require> element requires the
plugin attribute in order to reference the dependency.

If the current plug-in requires a plug-in with id="plugin-id" before it can
be installed, it would include the following:

<require plugin="plugin-id">

Prerequisite plug-ins are integrated before the current plug-in is
integrated. This does the right thing with respect to XSLT overrides. If
your plug-in is a specialization of a specialization, it should <require> its
base plug-ins, in order from general to specific.

If a prerequisite plug-in is missing, a warning will be printed during
integration. To suppress this, but keep the integration order if both plug-
ins are present, add importance="optional" to the <require> element.

If your plug-in can depend on any one of several optional plug-ins,
separate the plug-in ids with a vertical bar. This is most useful when
combined with importance="optional":

Example

The following plug-in will only be installed if the plug-in with
id="com.example.primary" is available. If that one is not available, a
warning will be generated during the integration process.

<plugin id="com.example.builds-on-primary">

<!-- ...extensions here -->
<require plugin="com.example.primary"/>
</plugin>

The following plug-in will only be installed if either the plug-in with
id="pluginA" or the plug-in with id="pluginB" are available. If neither of
those are installed, the current plug-in will be ignored.
<plugin id="pluginC">
<!-- ...extensions here -->

<require plugin="pluginA|pluginB" importance="optional"/>
</plugin>

Parent topic: Creating DITA-OT plug-ins

Version and support information

The following extension points are used by convention to define version
and support info within a plug-in.

® package.support.name

® package.support.email

® package.version
Note:

The toolkit does not currently do anything with these values, but may
do so in the future.

The package.version value should follow the syntax rules:

version = major ('.' minor ('.' micro ('.' qualifier)?)-
major = number

minor = number

micro = number

qualifier ::= ([0..9] | [a..zA..Z] | "’ L)+

The default value is 0.0.0.

Example

<plugin id="com.example.WithSupportInfo">
<feature extension="package.support.name" value="Joe the Authoi
<feature extension="package.support.email" value="joe@example.
<feature extension="package.version" value="1.2.3"/>

</plugin>

Parent topic: Creating DITA-OT plug-ins

Creating a new plug-in extension point

If your plug-in needs to define its own extension point in an XML file, add
the string "_template" to the filename before the file suffix. During

integration, this file will be processed like the built-in DITA-OT templates.

Template files are used to integrate most DITA-OT extensions. For
example, the file dita2xhtml_template.xsl contains all of the default rules
for converting DITA topics to XHTML, along with an integration point for
plug-in extensions. When the integrator runs, the file dita2xhtml.xsl is
recreated, and the integration point is replaced with references to all
appropriate plug-ins.

To mark a new file as a template file, use the <template> element.

The template extension namespace has the URI http://dita-
ot.sourceforge.net. It is used to identify elements and attributes that

have a special meaning in template processing. This documentation uses
a prefix of dita: for referring to elements in the template extension
namespace. However, template files are free to use any prefix, provided
that there is a namespace declaration that binds the prefix to the URI of
the template extension namespace.

dita:extension element

The dita:extension elements are used to insert generated content during
integration process. There are two required attributes:

e The id attribute defines the extension point ID which provides the
argument data.

e The behaviour attribute defines which processing action is used.

Supported values for behavior attribute:

org.dita.dost.platform.CheckTranstypeAction

Create Ant condition elements to check if ${transtype} property
value equals a supported transtype value.

org.dita.dost.platform.ImportAntLibAction

Create Ant pathelement elements for library imported extension
point. The id attribute is used to define the extension point ID.

org.dita.dost.platform.ImportPluginCatalogAction

Include plug-in metadata catalog content.

org.dita.dost.platform.ImportPluginInfoAction

Create plug-in metadata Ant properties.

org.dita.dost.platform.ImportStringsAction

Include plug-in string file content base on generated text
extension point. The id attribute is used to define the extension

point ID.

org.dita.dost.platform.ImportXSLAction

Create xsl1:import elements based on XSLT import extension

point. The id attribute is used to define the extension point ID.

org.dita.dost.platform.InsertAction

Include plug-in conductor content based on Ant import extension
point. The id attribute is used to define the extension point ID.

org.dita.dost.platform.InsertAntActionRelative

Include plug-in conductor content based on relative Ant import
extension point. The id attribute is used to define the extension

point ID.

org.dita.dost.platform.InsertCatalogActionRelative

Include plug-in catalog content based on catalog import
extension point. The id attribute is used to define the extension

point ID.

org.dita.dost.platform.ListTranstypeAction

Create a pipe delimited list of supported transtypes.

dita:extension attribute

The dita:extension attribute is used to process attributes in elements
which are not in template extension namespace. The value of the
attribute is a space delimited tuple, where the first item is the name of the
attribute to process and the second item is the action ID.

Supported values:

depends org.dita.dost.platform.InsertDependsAction

Ant target dependency list is processed to replace all target
names which start with an open curly bracket and end with a
close curly bracket. The value of the extension point is the ID
between the curly brackets.

Example

The following plug-in defines myBuildFile_template.xml as a new
template for extensions, and two new extension points.

<plugin id="com.example.new-extensions">
<extension-point id="com.example.new-extensions.pre"
name="Custom target preprocess"/>
<extension-point id="com.example.new-extensions.content"
name="Custom target content"/>
<template file="myBuildFile_ template.xml"/>
</plugin>

When the integrator runs, this will be used to recreate myBuildFile.xml,
replacing Ant file content based on extension point use.

<project xmlns:dita="http://dita-ot.sourceforge.net">
<target name="dita2custom"
depends="dita2custom.init,
{com.example.new-extensions.pre},
dita2xhtml"
dita:extension="depends org.dita.dost.platform.InsertDe¢
<dita:extension id="com.example.new-extensions.content"
behaviour="org.dita.dost.platform.InsertActic
<target>
</project>

Parent topic: Creating DITA-OT plug-ins

Example plugin.xml file

The following is a sample of a plugin.xml file. This file adds support for a

new set of specialized DTDs, and includes an override for the XHTML
output processor.

This plugin.xml file would go into a directory such as DITA-
oT\plugins\music\ and referenced supporting files would also exist in that

directory. A more extensive sample using these values is available in the
actual music plug-in, available at the DITA-OT download page at
SourceForge

<plugin id="org.metadita.specialization.music">
<feature extension="dita.specialization.catalog.relative" file:
<feature extension="dita.xsl.xhtml" file="xsl/music2xhtml.xsl",
</plugin>

Parent topic: Creating DITA-OT plug-ins

http://sourceforge.net/projects/dita-ot/files/

XHTML migration for flagging updates in DITA-
OT 1.7

This topic is primarily of interest to developers with XHTML transform
overrides written prior to DITA-OT 1.7. Due to significant changes in the
flagging process with the 1.7 release, some changes may be needed to
make overrides work properly with DITAVAL based flagging. The new
design is significantly simpler than the old design; in many cases,
migration will consist of deleting old code that is no longer needed.

Which XHTML overrides need to migrate?

If your override does not contain any code related to DITAVAL flagging,
then there is nothing to migrate.

If your builds do not make use of DITAVAL based flagging, but calls the
deprecated flagging templates, then you should override but there is little
urgency. You will not see any difference in the output, but those
templates will be removed in a future release.

If you do make use of DITAVAL based flagging, try using your override
with 1.7. Check the elements you override:

1. In some cases flags may be doubled. This will be the case if you call
routines such as "start-flagit".

2. In some cases flags may be removed. This will be the case if you
call shortcut routines such as "revtext" or "revblock".

3. In other cases, flags may still appear properly, in which case
migration is less urgent

For any migration that needs migration, please see the instructions that
follow.

Deprecated templates in DITA-OT 1.7

All of the old DITAVAL based templates are deprecated in DITA-OT 1.7. If
your overrides include any of the following templates, they should be
migrated for the new release; in many cases the templates below will not
have any effect on your output, but all instances should be migrated.

e The "gen-style" template used to add CSS styling

e The "start-flagit" and "end-flagit" templates used to generate
image flags based on property attributes like @audience

e The "start-revflag" and "end-revflag" templates, used to generate
images for active revisions

e Shortcut templates that group these templates into a single call, such
as:

e "start-flags-and-rev" and "end-flags-and-rev", used to
combine flags and revisions into one call

e "revblock" and "revtext", both used to output start revisions,
element content, and end revisions

e The modes "outputContentswithFlags" and
"outputContentswWithFlagsAndStyle", both used to combine
processing for property/revision flags with content processing

e All other templates that make use of the $flagrules variable, which
is no longer used in any of the DITA-OT 1.7 code

o All templates within flag.xsl that were called from the templates
listed above

¢ Element processing handled with mode="elementname-fmt", such
as mode="ul-fmt" for processing unordered lists and mode="section-

fmt" for sections.

What replaces the templates?

The new flagging design described in the preprocess design section now
adds literal copies of relevant DITAVAL elements, along with CSS based
flagging information, into the relevant section of the topic. This allows
most flags to be processed in document order; in addition, there is never
a need to read the DITAVAL, interpret CSS, or evaluate flagging logic.
The htmlflag.xsl file contains a few rules to match and process the

start/end flags; in most cases, all code to explicitly process flags can be
deleted.

For example, the common logic for most element rules before DITA-OT
1.7 could be boiled down to the following:

Match element
Create "flagrules" variable by reading DITAVAL for active flags
Output start tag such as <div> or
Call "commonattributes" and ID processing
Call "gen-style" with $flagrules, to create DITAVAL based CSS
Call "start-flagit" with $flagrules, to create start flag images
Call "start-revflag" with $flagrules, to create start revision images

Output contents
Call "end-revflag" with $flagrules, to create end revision images

Call "end-flagit" with $flagrules, to create end flag images
Output end tag such as </div> or

In DITA-OT 1.7, style and images are typically handled with XSLT
fallthrough processing. This removes virtually all special flag coding from
element rules, because flags are already part of the document and
processed in document order. The sample above is reduced to:

Match element
Output start tag such as <div> or

Call "commonattributes" and ID processing
Output contents

Output end tag such as </div> or

Migrating "gen-style" named template

Calls to the "gen-style" template should be deleted. There is no need to
replace this call for most elements.

The "gen-style" template was designed to read a DITAVAL file, find

active style-based flagging (such as colored or bold text), and add it to
the generated @style attribute in HTML.

With DITA-OT 1.7, the style is calculated in the pre-process flagging
module. The result is created as @outputclass on a <ditaval-startprop>
sub-element. The "commonattributes" template now includes a line to
process that value; the result is that for every element that calls
"commonattributes", DITAVAL style will be processed when needed.
Because virtually every element includes a call to this common template,
there is little chance that your override needs to explicitly process the
style. The new line in "commonattributes" that handles the style is:

<xsl:apply-templates select="*[contains(@class,' ditaot-d/ditava.

Migrating "start-flagit", "start-revflag", "end-flagit", and
"end-flagit" nhamed templates

Calls to these templates fall into two general groups.

If the flow of your element rule is to create a start tag like <div>, "start-
flagit"/"start-revflag", process contents, "end-revflag"/"end-flagit",

end tag - you just need to delete the calls to these templates. Flags will
be generated simply by processing the element contents in document
order.

If the flow of your element rule processes flags outside of the normal
document-order. There are generally two reasons this is done. The first
case is for elements like <o1>, where flags must appear before the in
order to create valid XHTML. The second is for elements like <section>,
where start flags are created, followed by the title or some generated
text, element contents, and finally end flags. In either of these cases,
support for processing flags in document order is disabled, so they must
be explicitly processed out-of-line. This is done with the following two
lines (one for start flag/revision, one for end flag/revision):

Create starting flag and revision images:
<xsl:apply-templates select="*[contains(@class,' ditaot-d/ditava.

Create ending flag and revision images:
<xsl:apply-templates select="*[contains(@class,' ditaot-d/ditava.

For example, the following lines are used in DITA-OT 1.7 to process the
 element (replacing the 29 lines used in DITA-OT 1.6):

<xsl:template match="*[contains(@class,' topic/ul ')]">
<xsl:apply-templates select="*[contains(@class,' ditaot-d/dita\
<xsl:call-template name="setaname"/>

<xsl:call-template name="commonattributes"/>
<xsl:apply-templates select="@compact"/>
<xsl:call-template name="setid"/>
<xsl:apply-templates/>

<xsl:apply-templates select="*[contains(@class,' ditaot-d/dita\
<xsl:value-of select="$newline"/>
</xsl:template>

Migrating "start-flags-and-rev" and "end-flags-and-rev"

e "start-flags-and-rev" iS equivalent to calling "start-flagit"

followed by "start-revflag"; it should be migrated as in the previous
section.

e "end-flags-and-rev" iS equivalent to calling "end-revflag" followed
by "end-flagit"; it should be migrated as in the previous section.

Migrating "revblock" and "revtext"

Calls to these two templates can be replaced with a simple call to
<xsl:apply-templates/>.

Migrating modes "outputContentswithFlags" and
"outputContentsWithFlagsAndStyle"

Processing an element with either of these modes can be replaced with a
simple call to <xs1l:apply-templates/>.

Migrating mode="elementname-fmt"

Prior to DITA-OT 1.7, many elements were processed with the following
logic:

Match element
Set variable to determine if revisions are acti
If active
create division with rev style
process element with mode="elementname -
end division
Else
process element with mode="elementname-fmt"

Match element with mode="elementname-fmt"
Process as needed

Beginning with DITA-OT 1.7, styling from revisions is handled
automatically with the "commonattributes" template. This means there is

no need for the extra testing, or the indirection to mode="elementname-
fmt". These templates are deprecated, and element processing will move

into the main element rule. Overrides that include this indirection may
remove it; overrides should also be sure to match the default rule, rather
than matching with mode="elementname-fmt".

Parent topic: DITA Open Toolkit Developer Reference

Customizing PDF output

You can build a DITA-OT plug-in that contains a customized PDF
transformation.

About this task

This topic demonstrates the process of building a plug-in
(com.example.print-pdf) that creates a new transformation type: print-
pdf. The print-pdf transformation has the following characteristics:

e Uses A4 paper
e Renders figures with a title at the top and a description at the bottom

e Use em dashes as the symbols for unordered lists

Procedure

1. In the plugins directory, create a directory named

com.example.print-pdf.

2. In the new com.example.print-pdf directory, create a plug-in
configuration file (plugin.xml) that declares the new print-pdf

transformation and its dependencies.
Figure 1. plugin.xml file

<?xml version='1.0' encoding='UTF-8'?>
<plugin id="com.example.print-pdf">
<require plugin="org.dita.pdf2"/>
<feature extension="dita.conductor.transtype.check" value=
<feature extension="dita.transtype.print" value="print-pdf
<feature extension="dita.conductor.target.relative" file=":
</plugin>

3. Add an Ant script (integrator.xml) to define the transformation type.
Figure 2. integrator.xml file

<?xml version='1.0' encoding='UTF-8'?>
<project name="com.example.print-pdf">
<target name="dita2print-pdf.init">
<property name="customization.dir" location="${dita.plug:
</target>
<target name="dita2print-pdf" depends="dita2print-pdf.init
</project>

4. In the new plug-in directory, add a cfg/catalog.xml file that specifies

the custom XSLT style sheets.
Figure 3. cfg/catalog.xml file

<?xml version="1.0" encoding="UTF-8"?>
<catalog prefer="system" xmlns="urn:oasis:names:tc:entity:xm
<uri name="cfg:fo/attrs/custom.xsl" uri="fo/attrs/custom.x

<uri name="cfg:fo/xsl/custom.xsl" uri="fo/xsl/custom.xsl"/:
</catalog>

. Create the cfg/fo/attrs/custom.xsl file, and add attribute and

variable overrides to it.

For example, add the content highlighted with bold to change the
page size to A4,

Figure 4. cfg/fo/attrs/custom. xs1 file

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transfi
version="2.0">
<!-- Change page size to A4 -->
<xsl:variable name="page-width">2106mm</xsl:variable>
<xsl:variable name="page-height">297mm</xsl:variable>
</xsl:stylesheet>

. Create the cfg/fo/xsl/custom.xsl file, and add XSLT overrides to it.

For example, the following code changes the rendering of <figure>
elements.
Figure 5. cfg/fo/xs1/custom.xs1 file

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transfi
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:fo="http://www.w3.0rg/1999/XSL/Format"
version="2.0">
<!-- Move figure title to top and description to bottom --:
<xsl:template match="*[contains(@class,' topic/fig ')]">
<fo:block xsl:use-attribute-sets="fig">
<xsl:call-template name="commonattributes"/>
<xsl:if test="not(@id)">
<xsl:attribute name="id">
<xsl:call-template name='"get-id"/>
</xsl:attribute>
</xsl:if>

<xsl:apply-templates select="*[contains(@class,' topic.
<xsl:apply-templates select="*[not(contains(@class, ' ti
<xsl:apply-templates select="*[contains(@class,' topic.
</fo:block>
</xsl:template>
</xsl:stylesheet>

. Create an English-language variable-definition file
(cfg/common/vars/en.xml) and make any necessary modifications to
it.

For example, the following code removes the period after the
number for an ordered-list item; it also specifies that the bullet for an
unordered list item should be an em dash.

Figure 6. cfg/common/vars/en.xml file

<?xml version="1.0" encoding="UTF-8"?>
<vars xmlns="http://www.idiominc.com/opentopic/vars">
<!-- Remove dot from list number -->
<variable id="Ordered List Number"><param ref-name="number
<!-- Change unordered list bullet to an em dash -->
<variable id="Unordered List bullet">—</variable>
</vars>

Results

The new plug-in directory has the following layout and files:

com.example.print-pdf/
cfg/
common/
vars/
en.xml
fo/
attrs/
custom.xsl
xsl/
custom.xsl
catalog.xml
integrator.xml
plugin.xml

What to do next

Run the integration process to install the plug-in and make the print-pdf
transformation available.

Parent topic: DITA Open Toolkit Developer Reference

Internal Ant properties
Reference list of Ant properties used by DITA-OT internally.
include.rellinks

Space separated list of link roles to be output; value token
#default denotes default role value. Property default value

depends on transformation type. Defined by args.rellinks, but
may be overridden directly.

Parent topic: DITA Open Toolkit Developer Reference

Implementation dependent features

Chunking
Supported chunking methods:
e select-topic

select-document

select-branch

by-topic

by-document

to-content

e to-navigation.

When no chunk attribute values are given, no chunking is performed.

Note: In effect, for HTML based transformation types this is
equivalent to select-document and by-document defaults.

Error recovery:

e When two tokens from the same category are used, no error or
warning is thrown.

e When an unrecognized chunking method is used, no error or
warning is thrown.

Filtering
Error recovery:

e When there are multiple revprop elements with the same val
attribute, no error or warning is thrown

e When multiple prop elements define a duplicate attribute and value

combination, attribute default, or fall-back behaviour, DOTJO07E
error is thrown.

Debug attributes

The debug attributes are populated as follows:
xtrf
absolute system path of the source document
xtrc

element counter that uses the format

element-name ":" integer-counter ";" line-number ":" col

Image scaling

If both height and width attributes are given, image is scaled non-
uniformly.

If scale attribute is not an unsigned integer, no error or warning is thrown
during preprocessing.

Map processing

When a topicref element that references a map contains child topicref
elements, DOTX068W error is thrown and the child topicref elements
are ignored.

Link processing

When the value of href attribute is not a valid URI reference, DOTJO54E
error is thrown. Depending on error recover mode, error recover may be
attempted.

Copy-to processing

When the copy-to attribute is specified on a topicref, the content of the
shortdesc element is not used to override the short description of the

topic.

Parent topic: DITA Open Toolkit Developer Reference

Extended functionality

Parent topic: DITA Open Toolkit Developer Reference

Code reference processing

Charset definition

DITA-OT supports defining the code reference target file encoding using
the format attribute. The supported format is:

format (";" space* '"charset=" charset)?

If charset is not defined system default charset will be used. If charset is
not recognized or supported, DOTJO52E error is thrown and system
default charset is used as a fall-back.

<coderef href="unicode.txt" format="txt; charset=UTF-8"/>

Line range extraction

Code reference can extract only a given line ranges with line-range
pointer in the URI fragment. The format is:

uri ("#line-range(" start ("," end)? ")")?

Start and end line numbers start from 1 and are inclusive. If end range is
omitted, range ends in last line of the file.

<coderef href="Parser.scala#line-range(5, 10)" format="scala"/>

Only lines from 5 to 10 will be included in the output.

RFC 5147

DITA-OT implements line position and range from RFEC 5147. The format
for line range is:

uri ("#line=" start? "," end?)?
Start and end line numbers start from 0 and are inclusive and exclusive,

respectively. If the start range is omitted, range starts from the first line; if
end range is omitted, range ends in last line of the file. The format for line

http://tools.ietf.org/html/rfc5147

position is:

uri ("#line=" position)?
Position line number starts from 0.

<coderef href="Parser.scala#line=4,10" format="scala"/>

Only lines from 5 to 10 will be included in the output.

DITA and DITA-OT resources

In addition to the DITA-OT documentation, there are other resources
about DITA and the DITA-OT that you might find helpful.

DITA-OT project page at dita.xml.org The DITA-OT project page at
dita.xml.org provides news about the latest toolkit builds, plans for
the next milestone release, and other rapidly-changing information. It
also contains release notes for all past and upcoming releases.

Yahoo! dita-users group

This list-serv is a vital resource for the DITA community. People post
regularly, both asking for and offering help. While the archived
messages can be difficult to search, this is a treasure trove of
information.

Home page for the OASIS DITA Technical Committee
The OASIS DITA Technical Committee develops the DITA standard.

Web-based resources
There are many vital DITA resources online, including the Yahoo!
dita-users group and the DITA-OT project page at dita.xml.org.

developerWorks articles
Between 2001 and 2005, IBM DITA experts published an important
collection of articles on the developerWorks Web site.

http://dita.xml.org/wiki/the-dita-open-toolkit
http://groups.yahoo.com/group/dita-users/
http://www.oasis-open.org/committees/dita/

Web-based resources

There are many vital DITA resources online, including the Yahoo! dita-
users group and the DITA-OT project page at dita.xml.org.

DITA-OT project page at dita.xml.org

The DITA-OT project page at dita.xml.org provides news about
the latest toolkit builds, plans for the next milestone release, and
other rapidly-changing information. It also contains release
notes for all past and upcoming releases.

Yahoo! dita-users group

The DITA-OT project page at dita.xml.org provides news about
the latest toolkit builds, plans for the next milestone release, and
other rapidly-changing information. It also contains release
notes for all past and upcoming releases.

Home page for the OASIS DITA Technical Committee

The OASIS DITA Technical Committee develops the DITA
standard.

Parent topic: DITA and DITA-OT resources

http://dita.xml.org/wiki/the-dita-open-toolkit
http://groups.yahoo.com/group/dita-users/
http://www.oasis-open.org/committees/dita/

developerWorks articles

Between 2001 and 2005, IBM DITA experts published an important
collection of articles on the developerWorks Web site.

Introduction to the Darwin Information Typing Architecture

Specializing topic types in DITA

Specializing domains in DITA

Frequently Asked Questions about the Darwin Information Typing
Architecture

Why use DITA to produce HTML deliverables?

Design patterns for information architecture with DITA map domains

Migrating HTML to DITA, Part 1: Simple steps to move from HTML to
DITA

Migrating HTML to DITA, Part 2: Extend the migration for more
robust results

Transform Eclipse navigation files to DITA navigation files

Parent topic: DITA and DITA-OT resources

http://www-128.ibm.com/developerworks/xml/library/x-dita1/
http://www-128.ibm.com/developerworks/xml/library/x-dita2/index.html
http://www-128.ibm.com/developerworks/xml/library/x-dita5/index.html
http://www-128.ibm.com/developerworks/xml/library/x-dita3/index.html
http://www-128.ibm.com/developerworks/xml/library/x-dita6/index.html
http://www-128.ibm.com/developerworks/xml/library/x-dita7/index.html
http://www-128.ibm.com/developerworks/xml/library/x-dita8a/
http://www-128.ibm.com/developerworks/xml/library/x-dita8b/
http://www-128.ibm.com/developerworks/xml/library/x-ecldita/

generate.outer.copy parameter

Elaboration on how the generate.outer.copy parameter functions.

Background

This is an issue in the following situations:

e The DITA map is in a directory that is a peer to directories that
contain referenced objects.

e The DITA map is in a directory that is below the directories that
contain the referenced objects.

Let's assume that the directory structure for the DITA content looks like
the following:

maps
topics
images

The DITA map is in the maps directory, the topics are in the topics
directory, and the images are in the images directory.

Setting the generate.outer.copy parameter to 1

Let's assume that you run the HTML5 transformation and specify an
output directory of c:\A-test. By default, The DITA-OT uses the
generate.outer.copy parameter with a value of 1. Output is not built for
the topics. You receive only the following output:

C:\A-test

--- 1index.html
--- commonltr.css
--- commonrtl.css

The index.html file contains the navigation structure, but all the links are
broken, since no HTMLS5 files were built for the topics.

How do you fix this? By specifying a value of 3 for the
generate.outer.copy parameter.

Setting the generate.outer.copy parameter to 3

Now your output directory structure looks like this:

C:\A-test
--- 1mages\
--- maps\
--- topics\

The index.html file is in the maps directory, and the CSS and other files
are located in the output directory, c:\A-test. Copying the output
directory is simplified.

Parent topic: Ant parameters: Common HTML-based transformations

	DITA Open Toolkit 2.0
	Getting Started
	Installing the full-easy-install package
	Running the demo build
	Building your own content using the demo build

	User Guide
	Overview of the DITA Open Toolkit
	Release notes
	DITA 1.2 Specification Support
	Tested platforms and tools

	Installing the DITA-OT
	Distribution packages
	Prerequisite software
	Installing the client package
	Installing the full-easy-install package
	Installing the minimal or standard package on Linux or Mac OSX
	Installing the minimal or standard package on Windows

	Publishing DITA content
	DITA-OT transformations
	DITA to Docbook
	DITA to Eclipse Content
	DITA to Eclipse help
	DITA to HTML5
	DITA to HTML Help (CHM)
	DITA to ODT
	DITA to PDF (PDF2)
	DITA to RTF
	DITA to TocJS
	DITA to Troff
	DITA to XHTML

	Publishing DITA content with dita command
	Building output using the dita command

	Publishing DITA content from Ant
	Ant
	Building output using Ant
	Creating an Ant build script

	Publishing DITA content from the command-line tool
	Command-line tool
	Building output using the command-line tool

	Extending the DITA-OT
	Installing plug-ins
	Removing plug-ins

	Globalizing DITA content
	Globalization support offered by the DITA-OT
	Supported languages: HTML-based transformations
	Supported languages: PDF transformations

	Error messages and troubleshooting
	DITA-OT error messages
	Other error messages
	Log files
	Accessing help from the command-line tool
	Determing the version of the DITA Open Toolkit
	Enabling debug mode
	Increasing Java memory allocation

	Reference
	Ant parameters
	All transformations
	All HTML-based transformations
	Eclipse content
	Eclipse help
	HTML Help
	JavaHelp
	ODT
	Other
	PDF
	HTML5 and XHTML

	dita command arguments and options
	Command-line tool parameters
	All transformations
	All HTML-based transformations
	Eclipse content
	Eclipse help
	HTML help
	JavaHelp
	ODT
	PDF transformation
	HTML5 and XHTML

	lib/configuration.properties file

	Developer Reference
	Architecture of the DITA-OT
	DITA-OT processing structure
	DITA-OT processing modules
	DITA-OT processing order
	Pre-processing modules
	Generate lists (gen-list)
	Debug and filter (debug-filter)
	Copy related files (copy-files)
	Resolve keyref (keyref)
	Conref push (conrefpush)
	Conref (conref)
	Move metadata (move-meta-entries)
	Resolve code references (codref)
	Resolve map references (mapref)
	Pull content into maps (mappull)
	Chunk topics (chunk)
	Map based linking (maplink and move-links)
	Pull content into topics (topicpull)
	Flagging in the toolkit

	HTML-based processing modules
	Common HTML-based processing
	XHTML processing
	HTML5 processing
	Eclipse help processing
	TocJS processing
	HTML Help processing
	JavaHelp processing

	PDF processing modules
	Open Document Format processing modules

	Extending the DITA-OT
	Manually installing plug-ins
	Manually removing plug-ins
	Rebuilding the DITA-OT documentation

	Configuring the DITA-OT
	plugin.properties file

	Creating DITA-OT plug-ins
	Plug-in configuration file
	Extending the XML Catalog
	Adding new targets to the Ant build process
	Adding Ant targets to the pre-process pipeline
	Integrating a new transform type
	Override styles with XSLT
	Modifying or adding generated text
	Passing parameters to existing XSLT steps
	Adding Java libraries to the classpath
	Adding diagnostic messages
	Managing plug-in dependencies
	Version and support information
	Creating a new plug-in extension point
	Example plugin.xml file

	Customizing PDF output
	Internal Ant properties
	Implementation dependent features
	Extended functionality

	DITA and DITA-OT resources
	Web-based resources
	developerWorks articles

