
DITA	Open	Toolkit	2.0
This	document	describes	the	DITA	Open	Toolkit	project—what	the	project
is,	and	how	to	use	the	site.

What	is	the	DITA	Open	Toolkit?

The	DITA	Open	Toolkit,	or	DITA-OT	for	short,	is	a	set	of	Java-based,
open	source	tools	that	provide	processing	for	DITA	maps	and	topic
content.	You	can	download	the	OT	and	install	it	for	free	on	your	computer
to	get	started	with	topic-based	writing	and	publishing.	The	DITA-OT	is
licensed	under	the	CPL	1.0	and	Apache	2.0	open	source	licenses.

Note:	While	the	DITA	Standard	itself	is	owned	and	developed	by
OASIS,	the	DITA	Open	Toolkit	is	an	independent,	open	source
implementation	of	the	standard.

Key	output	formats	for	the	toolkit	include:

XHTML

PDF	(formerly	known	as	PDF2)

ODT	(Open	Document	Format)

Eclipse	Help

TocJS	(XHTML	with	a	JavaScript	frameset)

HTML	Help

Java	Help

Eclipse	Content	(normalized	DITA	plus	Eclipse	project	files)

Word	RTF	(with	some	limitations)

Docbook

Troff

http://www.opensource.org/licenses/cpl1.0.php
http://www.apache.org/licenses/LICENSE-2.0

Toolkit	documentation

There	are	two	primary	sources	for	documentation	about	the	toolkit.

Stable	documentation	about	toolkit	usage,	parameters,	and	project
management	can	be	found	on	this	page,	using	the	navigation	panel	on
the	left.

New	information	about	the	latest	toolkit	builds,	plans	for	the	next	release,
and	other	changing	information	can	be	found	on	the	DITA-OT	landing
page	at	the	dita.xml.org	site	(link	below).	That	site	also	contains	the
release	notes	for	all	upcoming	and	previous	releases.

Related	concepts
Distribution	packages

Related	information
Main	DITA-OT	page	at	dita.xml.org
Project	News	for	DITA	Open	Toolkit

Shortcuts	to	important	information
DITA-OT	stable	release
DITA-OT	latest	development	build

http://dita.xml.org/wiki/the-dita-open-toolkit
http://sourceforge.net/news/?group_id=132728
http://sourceforge.net/projects/dita-ot/files/DITA-OT%20Stable%20Release/
http://sourceforge.net/projects/dita-ot/files/DITA-OT%20Latest%20Test%20Build/

Getting	Started	with	the	DITA	Open	Toolkit
The	Getting	Started	Guide	is	designed	to	provide	a	guided	exploration	of
the	DITA	Open	Toolkit.	It	is	geared	for	an	audience	that	has	little	or	no
knowledge	of	build	scripts	or	DITA-OT	parameters.	It	walks	the	novice
user	through	installing	the	full-easy-install	version	of	the	toolkit	and
running	a	prompted	build.

1.	 Installing	the	full-easy-install	package	For	the	simplest	installation
experience,	install	the	full-easy-install	package.	This	package	can	be
installed	on	Linux,	Mac	OSX,	and	Windows.	It	contains	everything
that	you	need	to	run	the	DITA-OT	except	for	Java.

2.	 Running	the	demo	build
After	you	install	the	full-easy-install	package,	run	the	demo	build	to
see	the	type	of	output	that	is	produced	by	the	DITA	Open	Toolkit.

3.	 Building	your	own	content	using	the	demo	build
You	can	use	the	demo	build	to	generate	output	for	your	own	DITA
content.

Installing	the	full-easy-install	package
For	the	simplest	installation	experience,	install	the	full-easy-install
package.	This	package	can	be	installed	on	Linux,	Mac	OSX,	and
Windows.	It	contains	everything	that	you	need	to	run	the	DITA-OT	except
for	Java.

Before	you	begin

Ensure	that	you	have	Java	JRE	or	JDK,	version	7	or	later	installed.

Ensure	that	you	have	HTML	Help	Workshop	installed,	if	you	want	to
generate	HTML	Help.

Procedure

1.	 Download	the	full-easy	package	from	SourceForge.

Operating
system File	name

Linux	or	Mac
OSX

DITA-OT2.0.M3_full_easy_install_bin.tar.gz

Windows DITA-OT2.0.M3_full_easy_install_bin.zip

2.	 Extract	the	contents	of	the	package	to	the	directory	where	you	want
to	install	the	DITA-OT.

3.	 Run	the	startcmd	file	that	is	applicable	for	your	operating	system.
This	defines	the	necessary	environment	variables	and	opens	a	DOS
prompt	or	terminal	window	in	which	you	can	invoke	the	toolkit.	You
can	use	the	window	to	run	as	many	builds	as	you	want;	if	you	close
the	window,	you	will	need	to	run	the	applicable	startcmd	file	again.

Parent	topic:	Getting	Started	with	the	DITA	Open	Toolkit
Next	topic:	Running	the	demo	build

http://sourceforge.net/projects/dita-ot/files/DITA-OT%20Stable%20Release/DITA%20Open%20Toolkit%201.8/

Running	the	demo	build
After	you	install	the	full-easy-install	package,	run	the	demo	build	to	see
the	type	of	output	that	is	produced	by	the	DITA	Open	Toolkit.

Procedure

1.	 Run	the	startcmd	file	that	is	applicable	for	your	operating	system.
The	startcmd.bat	and	startcmd.sh	files	are	in	the	directory	where
you	installed	the	DITA-OT.

2.	 From	the	DITA-OT	shell,	enter	the	following	command:

ant	-f	build_demo.xml

You	receive	the	following	prompt:

[echo]	Please	enter	the	filename	for	the	DITA	map	that	you	

[echo]	want	to	build	including	the	directory	path	(if	any).	

[echo]	The	filename	must	have	the	.ditamap	extension.	

[echo]	Note	that	relative	paths	that	climb	(..)	are	not	supported	yet.	

[echo]	To	build	the	sample,	press	return	without	entering	anything.	

[input]	The	DITA	map	filename:	[C:\DITA-OT2.0.M3\samples\hierarchy.ditamap]

3.	 Press	Enter.
You	receive	the	following	prompt:

[echo]	

[echo]	Please	enter	the	name	of	the	output	directory	or	press	return	

[echo]	to	accept	the	default.	

[input]	The	output	directory	(out):	[out]

4.	 Press	Enter.
You	receive	the	following	prompt:

[echo]	Please	enter	the	type	of	output	to	generate.	

[echo]	Options	include:	eclipse,	tocjs,	htmlhelp,	javahelp,	pdf,	or	web	

[echo]	Use	lowercase	letters.	

[echo]	

[input]	The	output	type:	(eclipse,	tocjs,	htmlhelp,	javahelp,	pdf,	[web],	docbook)

5.	 Press	Enter	to	accept	the	default	transformation	type:	web.
This	will	build	XHTML	files	from	the	DITA	source.

You	receive	the	following	prompt:

[echo]	Ready	to	build	C:\DITA-OT2.0.M3\samples\hierarchy.ditamap	

[echo]	for	web	in	out	

[echo]	

[input]	Continue?	(Y,	[y],	N,	n)

6.	 Press	Y	or	y	to	start	the	DITA-OT	transformation.
The	DITA-OT	logs	information	to	the	command-prompt	or	terminal
window.	At	the	end,	you	see	the	following	information:

prompt.output:	

[echo]	

[echo]	output	in	the	out	directory	

[echo]	

[echo]	Before	rebuilding,	please	delete	the	output	or	the	directory.	

BUILD	SUCCESSFUL	Total	time:	X	minutes	X	seconds

7.	 Go	to	the	out/	directory	and	open	the	toc.html	file	in	a	Web	browser.
Figure	1.	XHTML	output	for	the	sample	files

Results

The	DITA-OT	transformed	the	hierarchy.ditamap	file	(located	in	the
samples	directory)	to	XHTML;	it	wrote	the	output	to	the	out/	directory.

Parent	topic:	Getting	Started	with	the	DITA	Open	Toolkit
Previous	topic:	Installing	the	full-easy-install	package
Next	topic:	Building	your	own	content	using	the	demo	build

Building	your	own	content	using	the	demo	build
You	can	use	the	demo	build	to	generate	output	for	your	own	DITA
content.

Procedure

1.	 If	necessary,	run	the	startcmd	file	that	is	applicable	for	your	operating
system.
You	do	not	need	to	run	the	startcmd	file	if	you	already	have	a
command-prompt	or	terminal	window	that	was	invoked	by	the
startcmd	file	open.

2.	 From	the	DITA-OT	shell,	enter	the	following	command:

ant	-f	build_demo.xml

3.	 When	prompted,	type	the	name	of	a	map.
You	must	specify	the	path	for	the	DITA	map.	You	either	can	specify	a
fully	qualified	file	name,	for	example,	C:\DITA-
OT1.6.M5\doc\userguide.ditamap,	or	you	can	specify	a	relative	path,
for	example,	doc\userguide.ditamap

4.	 When	prompted,	type	the	name	of	the	output	directory.

5.	 When	prompted,	type	the	value	for	the	transformation	type.

Ouput	format Value
Docbook docbook
Eclipse	help eclipse
HTML	help htmlhelp
PDF pdf
XHTML web
XHTML	with	a	JavaScript	frame	set tocjs

6.	 When	prompted,	press	Enter	to	start	the	transformation.

Results

The	DITA-OT	generates	output	for	the	specified	DITA	content.	It	runs	the
transformation	that	you	specified,	and	writes	the	output	to	the	directory
that	you	specified.

What	to	do	next

Explore	invoking	the	DITA-OT	from	either	Ant	or	the	command-line	tool.
This	enables	you	to	specify	a	wider	array	of	parameters	than	those
supported	by	the	demo	build.

Using	Ant	or	the	command-line	tool,	you	can	perform	the	following	tasks
(and	more):

Add	a	custom	CSS	file	to	the	transformation

Generate	labels	for	the	sections	of	task	topics

Specify	that	draft	comments	are	included	in	the	output

Turn	on	"Related	link"	sections	in	a	PDF	file

Parent	topic:	Getting	Started	with	the	DITA	Open	Toolkit
Previous	topic:	Running	the	demo	build

DITA	Open	Toolkit	User	Guide
The	DITA	Open	Toolkit	User	Guide	is	designed	to	provide	basic
information	about	the	DITA-OT.	It	is	geared	for	an	audience	that	needs
information	about	installing,	running,	and	troubleshooting	the	toolkit.	It
contains	documentation	of	the	DITA-OT	parameters;	it	also	contains
release	notes	and	information	about	what	components	have	been	tested.

Overview	of	the	DITA	Open	Toolkit	The	DITA	Open	Toolkit	(DITA-
OT)	is	an	open-source	implementation	of	the	OASIS	DITA
specification,	which	is	developed	by	the	OASIS	DITA	Technical
Committee.	The	DITA-OT	is	a	set	of	Java-based,	open-source	tools
and	Ant	scripts	that	transform	DITA	content	(maps	and	topics)	into
deliverable	formats,	including	Eclipse	Help,	HTML	Help,	JavaHelp,
PDF,	and	XHTML.

Installing	the	DITA	Open	Toolkit
You	can	install	the	DITA	Open	Toolkit	(DITA-OT)	on	Linux,	Mac	OSX,
and	Windows.	The	process	for	installing	and	setting	up	the	DITA-OT
depends	on	the	type	of	distribution	package	that	you	select.

Publishing	DITA	content
You	can	use	either	Ant	or	the	command-line	tool	to	transform	DITA
content	to	the	various	output	formats	that	are	supported	by	the	DITA
Open	Toolkit	(DITA-OT).

Extending	the	DITA	Open	Toolkit
Plug-ins	can	be	used	to	extend	the	functionality	and	configure	the
DITA	Open	Toolkit.

Globalizing	DITA	content
The	DITA	standard	supports	content	that	is	written	in	or	translated	to
any	language.	In	general,	the	DITA	Open	Toolkit	(DITA-OT)	passes
content	through	to	the	output	format	unchanged.	The	DITA-OT	uses
the	values	for	the	@xml:lang,	@translate,	and	@dir	attributes	that
are	set	in	the	source	content	to	provides	globalization	support.

Error	messages	and	troubleshooting
This	section	contains	information	about	problems	that	you	might
encounter	and	how	to	resolve	them.

Reference
This	section	is	designed	to	help	users	to	locate	information	easily
and	quickly.	It	includes	documentation	for	the	DITA	Open	Toolkit
(DITA-OT)	parameters	and	configuration	properties.

Overview	of	the	DITA	Open	Toolkit
The	DITA	Open	Toolkit	(DITA-OT)	is	an	open-source	implementation	of
the	OASIS	DITA	specification,	which	is	developed	by	the	OASIS	DITA
Technical	Committee.	The	DITA-OT	is	a	set	of	Java-based,	open-source
tools	and	Ant	scripts	that	transform	DITA	content	(maps	and	topics)	into
deliverable	formats,	including	Eclipse	Help,	HTML	Help,	JavaHelp,	PDF,
and	XHTML.

While	the	DITA	standard	is	owned	and	developed	by	OASIS,	the	DITA-
OT	project	is	governed	separately;	the	DITA-OT	is	an	independent,	open-
source	implementation	of	the	DITA	standard.	The	DITA-OT	is	available
without	charge	and	is	licensed	under	the	CPL	1.0	and	Apache	2.0	open-
source	licenses.

DITA	Open	Toolkit	Release	2.0

DITA	1.2	Specification	Support
DITA	Open	Toolkit	2.0	supports	the	DITA	1.2	specification.	Initial
support	for	this	specification	was	added	in	version	1.5	of	the	toolkit;
versions	1.5.1	and	1.5.2	contain	minor	modifications	to	keep	up	with
the	latest	drafts.	The	specification	itself	was	approved	at
approximately	the	same	time	as	DITA-OT	1.5.2,	which	contained	the
final	versions	of	the	DTD	and	Schemas.	DITA-OT	1.6	updated	the
DITA	1.2	XSDs	to	address	minor	errata	in	the	standard;	the	DTDs
remain	up	to	date.

Tested	platforms	and	tools
The	DITA	Open	Toolkit	(DITA-OT)	has	been	tested	against	certain
versions	of	Ant,	ICU	for	Java,	JDK,	operating	systems,	XML	parsers,
and	XSLT	processors.

Parent	topic:	DITA	Open	Toolkit	User	Guide

Related	information
Common	Public	License,	version	1.0
Apache	License,	version	2.0

http://opensource.org/licenses/cpl1.0.php
http://www.apache.org/licenses/LICENSE-2.0

DITA	Open	Toolkit	Release	2.0
Parent	topic:	Overview	of	the	DITA	Open	Toolkit

General	Enhancements	and	Changes

Migration	from	previous	releases

Issues

The	following	items	are	included	in	DITA	Open	Toolkit	Release	2.0.	Issue
numbers	correspond	to	the	tracking	number	in	the	GitHub	issues	tracker.

Feature	requests

#1192	Empty		kills	FOP	(milestone	1)

#1267	PDF	support	for	figurelink/tablelink.style	(milestone	1)

#1347	Issue	with	"xsl/dita2xhtml.xsl"?	(milestone	1)

#1506	New	command	line	tool	(milestone	1)

#1507	Convert	XSLT	to	version	2.0	(milestone	1)

#1511	Use	Ivy	for	dependency	management	(milestone	1)

#1522	Add	HTML5	transtype	(milestone	1)

#1523	Reduce	HTML/XHTML	code	duplication	(milestone	1)

#1524	Use	DITAVAL	for	print	filtering	(milestone	1)

#1548	Support	RFC	5147	in	coderef	(milestone	1)

#1561	Combine	chunkedtopic	lists	into	fullditatopic	list	(milestone	1)

#1569	Index	capability	with	FOP	(milestone	1)

#1601	Change	output	for	rendering	a	single	topic	to	PDF	(milestone
1)

#1602	Add	plug-in	installation	operation	to	integration	(milestone	1)

#1608	img	should	be	used	instead	of	embed	in	XHTML	output	for	all
image	types	(milestone	1)

#1610	Filtered	content	leads	to	total	fail	of	PDF	rendering	duplicate
(milestone	1)

https://github.com/dita-ot/dita-ot/issues

#1612	Update	Ant	to	1.9.2	(milestone	1)

#1614	ant	build	should	not	bail	out	when	fop	directory	has	no	lib
folder	(milestone	1)

#1616	Remove	legacy	PDF	from	default	distributions	(milestone	1)

#1509	Remove	deprecated	code	(in	progress)

#1649	Support	DITA	1.3	link	syntax	(milestone	2)

#1644	Add	more	HTML	entities	to	file	entities.properties	in	dost.jar
(milestone	2)

#1643	Integrator	task	constructs	property	constructs	with	platform-
dependent	path	separators	(milestone	2)

#1636	Support	DITA	1.3	cascade	attribute	(milestone	2)

#1635	Implement	DITA	1.3	profiling	(milestone	2)

#1631	Process	keyrefs	before	conref	(milestone	2)

#1673	Remove	support	for	generate.copy.outer=2	(milestone	3)

#1671	Add	support	for	generating	back	cover	on	PDF	(milestone	3)

#1667	Remove	FrameMaker	index	syntax	support	(milestone	3)

#1512	Alternative	preprocessing	plug-in	(in	progress)

#1544	Use	URI	and	File	instead	of	String	(in	progress)

#1654	Add	DITA	1.3	div	element	(in	progress)

#1652	Add	DITA	1.3	markup	and	xml	domain	support	(in	progress)

#1651	Add	new	DITA	1.3	highlighting	elements	(in	progress)

Bugs

#1095	Empty	tags	result	in	invalid	HTML	(milestone	1)

#1239	Essentially	needs	XercesImpl	(milestone	1)

#1247	Enable	specifying	MathML	file	as	image/@href	(milestone	1)

#1272	chapter	numbering	confused	when	chapters	and	parts	in
bookmap	(milestone	1)

#1407	"Ambiguous	rule	match"	in	PDF	processing	XSLT	when
<imagemap>	is	used	in	topic	(milestone	1)

#1421	Warnings	when	converting	to	PDF	with	XEP	(milestone	1)

#1462	Support	for	<table>	rowheader	in	PDF	output	(milestone	1)

#1486	PDF	transform	does	not	apply	@rowsep	correctly	(milestone
1)

#1607	Keyref	not	processed	for	pushed	conrefs	(milestone	1)

#1620	ODT	plugin	fails	due	to	missing	getMax()	(milestone	2)

#1619	Add	validation	for	attribute	generalization	(milestone	2)

#1103	DITA-OT	doesn't	rewite	lq/@href	(milestone	2)

#1668	Fix	table	cell	@id	and	@headers	attributes	#1596	(milestone
3)

#1634	XML	Catalog	which	has	a	DOCTYPE	declaration	is	not
properly	parsed	by	Integrator	task	(milestone	3)

#1596	xref	to	table	cell	of	DITA	simple	table	does	not	result	in	correct
target	in	<a>	element	(XHTML	output)	(milestone	3)

#1539	TopicMerge	generates	multiple	topic	entries	in	the	merged
middle	file.	(milestone	3)

#1231	<screen>	and	<codebock>	do	not	support	all	frame	attributes
(milestone	3)

#1086	metadata	in	ancestor	map	not	inherited	by	topics	in	childmap
(milestone	3)

#1600	Indirect	reference	to	keys	erases	one	file,	causes	failures	(in
progress)

DITA	1.2	Specification	Support
DITA	Open	Toolkit	2.0	supports	the	DITA	1.2	specification.	Initial	support
for	this	specification	was	added	in	version	1.5	of	the	toolkit;	versions
1.5.1	and	1.5.2	contain	minor	modifications	to	keep	up	with	the	latest
drafts.	The	specification	itself	was	approved	at	approximately	the	same
time	as	DITA-OT	1.5.2,	which	contained	the	final	versions	of	the	DTD	and
Schemas.	DITA-OT	1.6	updated	the	DITA	1.2	XSDs	to	address	minor
errata	in	the	standard;	the	DTDs	remain	up	to	date.

Earlier	versions	of	the	DITA	Open	Toolkit	contained	a	subset	of	the
specification	material,	including	descriptions	of	each	DITA	element.	This
material	was	shipped	in	source,	CHM	and	PDF	format.	This	was	possible
in	part	because	versions	1.0	and	1.1	of	the	DITA	Specification	contained
two	separate	specification	documents:	one	for	the	architectural
specification,	and	one	for	the	language	specification.

In	DITA	1.2,	each	of	these	has	been	considerably	expanded,	and	the	two
have	been	combined	into	a	single	document.	The	overall	document	is
much	larger,	and	including	the	same	set	of	material	would	double	the	size
of	the	DITA-OT	package.	Rather	than	include	that	material	in	the
package,	we’ve	provided	the	links	below	to	the	latest	specification
material.

Highlights	of	DITA	1.2	support	in	the	toolkit	include:

Processing	support	for	all	new	elements	and	attributes

Link	redirection	and	text	replacement	using	keyref

New	processing-role	attribute	in	maps	to	allow	references	to	topics
that	will	not	produce	output	artifacts

New	conref	extensions,	including	the	ability	to	reference	a	range	of
elements,	to	push	content	into	another	topic,	and	to	use	keys	for
resolving	a	conref	attribute.

The	ability	to	filter	content	with	controlled	values	and	taxonomies,

using	the	new	Subject	Scheme	Map

Processing	support	for	both	default	versions	of	task	(original,	limited
task,	and	the	general	task	with	fewer	constraints	on	element	order)

Acronym	and	abbreviation	support	with	the	new	<abbreviated-form>
element

New	link	grouping	abilities	available	with	headers	in	relationship
tables

OASIS	Subcommittee	specializations	from	the	learning	and	machine
industry	domains	(note	that	the	core	toolkit	contains	only	basic
processing	support	for	these,	but	can	be	extended	to	produce
related	artifacts	such	as	SCORM	modules)

To	find	detailed	information	about	any	of	these	features,	see	the
specification	documents	at	OASIS.	The	DITA	Adoption	Technical
Committee	has	also	produced	several	papers	to	describe	individual	new
features.	In	general,	the	white	papers	are	geared	more	towards	DITA
users	and	authors,	while	the	specification	is	geared	more	towards	tool
implementors,	though	both	may	be	useful	for	either	audience.	The	DITA
Adoption	papers	can	be	found	from	that	TC’s	main	web	page.

Parent	topic:	Overview	of	the	DITA	Open	Toolkit

Related	information
DITA	1.2	Specification	(XHTML)
DITA	1.2	Specification	(PDF)
DITA	1.2	Specification	(zip	of	the	DITA	source)
DITA	1.2	Specification	(zip	of	the	HTML	Help)
DITA	Adoption	Technical	Committee
Building	subsets	of	the	specification

http://docs.oasis-open.org/dita/v1.2/spec/DITA1.2-spec.html
http://docs.oasis-open.org/dita/v1.2/spec/DITA1.2-spec.pdf
http://docs.oasis-open.org/dita/v1.2/spec/DITA1.2-spec.zip
http://docs.oasis-open.org/dita/v1.2/spec/DITA1.2-spec-chm.zip
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=dita-adoption
http://dita.xml.org/wiki/dita-12-specification-building-specification-subsets

Tested	platforms	and	tools
The	DITA	Open	Toolkit	(DITA-OT)	has	been	tested	against	certain
versions	of	Ant,	ICU	for	Java,	JDK,	operating	systems,	XML	parsers,	and
XSLT	processors.

Application Tested	version

Ant
Ant	1.7.1

Ant	1.8.2—1.8.4,	1.9.2

ICU	for	Java
ICU4J	3.4.4

ICU4J	49.1

JDK

IBM	1.6

OpenJDK	1.7

Oracle	1.6

Operating	system

Mac	OS	X	10.6—10.9

SLES	10

Windows	XP

Windows	7

XML	parser
Xerces	2.9.0

Xerces	2.11.0

XSLT	processor

Saxon	6.5

Saxon	9

Saxon-B	9.1

Saxon-PE/EE	9.3

Parent	topic:	Overview	of	the	DITA	Open	Toolkit

Installing	the	DITA	Open	Toolkit
You	can	install	the	DITA	Open	Toolkit	(DITA-OT)	on	Linux,	Mac	OSX,	and
Windows.	The	process	for	installing	and	setting	up	the	DITA-OT	depends
on	the	type	of	distribution	package	that	you	select.

Distribution	packages	The	DITA	Open	Toolkit	is	distributed	in	four
packages:	minimal,	standard,	client,	and	full-easy-install.	The	source
code	is	available	both	as	a	Git	repository	and	a	ZIP	file.

Prerequisite	software
The	prerequisite	software	that	the	DITA-OT	requires	depends	on	the
type	of	distribution	package	that	you	intend	to	install	and	the	types	of
transformations	that	you	want	to	use.

Installing	the	client	package
For	the	simplest	installation	experience,	install	the	client	package.
This	package	can	be	installed	on	Linux,	Mac	OSX,	and	Windows.	It
contains	everything	that	you	need	to	run	the	DITA-OT	except	for
Java.

Installing	the	full-easy-install	package
For	the	simplest	installation	experience,	install	the	full-easy-install
package.	This	package	can	be	installed	on	Linux,	Mac	OSX,	and
Windows.	It	contains	everything	that	you	need	to	run	the	DITA-OT
except	for	Java.

Installing	the	minimal	or	standard	package	on	Linux	or	Mac
OSX
If	you	already	have	locally-installed	copies	of	Ant	and	the	other
required	tools,	install	either	the	minimal	or	standard	package.

Installing	the	minimal	or	standard	package	on	Windows
If	you	already	have	locally-installed	copies	of	Ant	and	the	other
required	tools,	install	either	the	minimal	or	standard	package.

Parent	topic:	DITA	Open	Toolkit	User	Guide

Distribution	packages
The	DITA	Open	Toolkit	is	distributed	in	four	packages:	minimal,	standard,
client,	and	full-easy-install.	The	source	code	is	available	both	as	a	Git
repository	and	a	ZIP	file.

Minimal	package

This	package	is	designed	for	vendors	that	embed	the	toolkit	within	a
product.	It	contains	all	of	the	core	processing	code:	CSS	and	XSLT	files,
Ant	build	scripts,	Java	code	(dost.jar),	resource	files,	and	the	OASIS
DITA	DTDs	and	Schemas.	Users	need	to	have	their	own	versions	of	Ant
and	other	libraries;	they	also	need	to	set	up	environment	variables	for
each	library.	The	only	external	files	that	are	included	are	the	DTDs	and
Schemas,	along	with	the	following	open-source	libraries:

Apache	Catalog	Resolver,	version	1.1

Apache	Commons	Codec,	version	1.8

Apache	Xerces,	version	2.11.0

The	minimal	package	has	the	following	file	names:

DITA-OT2.0.M3_minimal_bin.zip

DITA-OT2.0.M3_minimal_bin.tar.gz

Standard	package

This	package	is	designed	for	people	who	want	the	core	toolkit
functionality,	but	who	already	have	locally-installed	copies	of	Ant	and
other	required	tools.	It	contains	everything	in	the	minimal	package,	plus
documentation,	demo	code	(for	example,	legacy	support	for	the	old
bookmap),	sample	Ant	scripts,	and	sample	DITA	files.	The	standard
package	includes	the	following	open-source	libraries:

Apache	Catalog	Resolver,	version	1.1

Apache	Commons	Codec,	version	1.8

Apache	Xerces,	version	2.11.0

The	standard	package	has	the	following	file	names:

DITA-OT2.0.M3_standard_bin.zip

DITA-OT2.0.M3_standard_bin.tar.gz

Client	package

This	package	is	designed	for	users	who	want	the	simplest	installation
experience.	In	addition	to	the	core	DITA-OT	code	and	the	external
libraries	that	are	in	the	minimal	and	standard	packages,	it	contains
Apache	Ant	and	FOP.	The	client	package	also	contains	scripts	for	a
guided	demo	of	the	DITA-OT.	The	client	package	includes	the	following
external	libraries:

Apache	Ant,	version	1.9.2

Apache	Catalog	Resolver,	version	1.1

Apache	Commons	Codec,	version	1.8

Apache	FOP,	version	1.1

ICU	for	Java,	version	52.1

Apache	Xerces,	version	2.11.0

Saxon,	version	9.1.0.8

The	client	package	has	the	following	file	names:

DITA-OT2.0.M3_client_bin.zip

DITA-OT2.0.M3_client_bin.tar.gz

Full-easy-install	package

This	package	is	designed	for	users	who	want	the	simplest	installation
experience.	In	addition	to	the	core	DITA-OT	code	and	the	external
libraries	that	are	in	the	minimal	and	standard	packages,	it	contains
Apache	Ant	and	FOP.	The	full-easy-install	package	also	contains	batch
files	designed	to	set	up	a	build	environment	using	those	tools,	as	well	as
a	scripts	for	a	guided	demo	of	the	DITA-OT.	The	full-easy-install	package
includes	the	following	external	libraries:

Apache	Ant,	version	1.9.2

Apache	Catalog	Resolver,	version	1.1

Apache	Commons	Codec,	version	1.8

Apache	FOP,	version	1.1

ICU	for	Java,	version	52.1

Apache	Xerces,	version	2.11.0

Saxon,	version	9.1.0.8

The	full-easy-install	package	has	the	following	file	names:

DITA-OT2.0.M3_full_easy_install_bin.zip

DITA-OT2.0.M3_full_easy_install_bin.tar.gz

Parent	topic:	Installing	the	DITA	Open	Toolkit

Related	information
DITA	Open	Toolkit	distibution	package	downloads
DITA	Open	Toolkit	source

https://sourceforge.net/projects/dita-ot/files
https://github.com/dita-ot/dita-ot

Prerequisite	software
The	prerequisite	software	that	the	DITA-OT	requires	depends	on	the	type
of	distribution	package	that	you	intend	to	install	and	the	types	of
transformations	that	you	want	to	use.

Software	required	for	core	DITA-OT	processing

The	DITA-OT	requires	the	following	software	applications:

JRE	or	JDK,	version	7	or	later

Provides	the	basic	environment	for	the	DITA-OT.	You	can
download	the	Oracle	JRE	or	JDK	from
http://www.oracle.com/technetwork/java/javase/downloads/index.html
If	you	opt	to	use	the	full-easy-install	package,	this	is	the	only
prerequisite	software	that	you	need	to	install.

Ant,	version	1.7.1	or	later

Provides	the	standard	setup	and	sequencing	of	processing
steps.	You	can	download	Ant	from	http://ant.apache.org/.

XSLT	processor

Provides	the	main	transformation	services.	It	must	be	compliant
with	XSLT	2.0.	The	DITA-OT	is	tested	with	Saxon.	You	can
download	Saxon,	version	9.1.0.8	from
http://saxon.sourceforge.net/.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://ant.apache.org/
http://saxon.sourceforge.net/

Software	required	for	specific	transformations

Depending	on	the	type	of	output	that	you	want	to	generate,	you	might
need	the	following	applications:

ICU	for	Java

ICU	for	Java	is	a	cross-platform,	Unicode-based,	globalization
library.	It	includes	support	for	comparing	locale-sensitive	strings;
formatting	dates,	times,	numbers,	currencies,	and	messages;
detecting	text	boundaries;	and	converting	character	sets.	You
can	download	ICU	for	Java	from	http://www.icu-
project.org/download/.

Microsoft	Help	Workshop

Required	for	generating	HTML	help.	You	can	download	the	Help
Workshop	from	http://msdn.microsoft.com/en-
us/library/windows/desktop/ms669985%28v=vs.85%29.aspx.

XSL-FO	processor

Required	for	generating	PDF	output.	You	can	download	FOP
from	http://xmlgraphics.apache.org/fop/download.html;	you	also
can	use	Antenna	House	Formatter	or	RenderX.

See	Tested	platforms	and	tools	for	detailed	information	about	versions	of
the	prerequisite	applications	that	have	been	tested	with	the	current	DITA-
OT	release.

Parent	topic:	Installing	the	DITA	Open	Toolkit

http://www.icu-project.org/download/
http://msdn.microsoft.com/en-us/library/windows/desktop/ms669985%28v=vs.85%29.aspx
http://xmlgraphics.apache.org/fop/download.html

Installing	the	client	package
For	the	simplest	installation	experience,	install	the	client	package.	This
package	can	be	installed	on	Linux,	Mac	OSX,	and	Windows.	It	contains
everything	that	you	need	to	run	the	DITA-OT	except	for	Java.

Before	you	begin

Ensure	that	you	have	Java	JRE	or	JDK,	version	7	or	later	installed.

Ensure	that	you	have	HTML	Help	Workshop	installed,	if	you	want	to
generate	HTML	Help.

Procedure

1.	 Download	the	client	package	from	SourceForge.

Operating
system File	name

Linux	or	Mac
OSX

DITA-OT2.0.M3_client_bin.tar.gz

Windows DITA-OT2.0.M3_client_bin.zip

2.	 Extract	the	contents	of	the	package	to	the	directory	where	you	want
to	install	the	DITA-OT.

3.	 Optional:	Add	bin	directory	to	PATH	system	variable.
This	defines	the	necessary	environment	variable	to	run	the	dita
command	from	the	command-line.

Parent	topic:	Installing	the	DITA	Open	Toolkit

http://sourceforge.net/projects/dita-ot/files/DITA-OT%20Stable%20Release/DITA%20Open%20Toolkit%201.8/

Installing	the	full-easy-install	package
For	the	simplest	installation	experience,	install	the	full-easy-install
package.	This	package	can	be	installed	on	Linux,	Mac	OSX,	and
Windows.	It	contains	everything	that	you	need	to	run	the	DITA-OT	except
for	Java.

Before	you	begin

Ensure	that	you	have	Java	JRE	or	JDK,	version	7	or	later	installed.

Ensure	that	you	have	HTML	Help	Workshop	installed,	if	you	want	to
generate	HTML	Help.

Procedure

1.	 Download	the	full-easy	package	from	SourceForge.

Operating
system File	name

Linux	or	Mac
OSX

DITA-OT2.0.M3_full_easy_install_bin.tar.gz

Windows DITA-OT2.0.M3_full_easy_install_bin.zip

2.	 Extract	the	contents	of	the	package	to	the	directory	where	you	want
to	install	the	DITA-OT.

3.	 Run	the	startcmd	file	that	is	applicable	for	your	operating	system.
This	defines	the	necessary	environment	variables	and	opens	a	DOS
prompt	or	terminal	window	in	which	you	can	invoke	the	toolkit.	You
can	use	the	window	to	run	as	many	builds	as	you	want;	if	you	close
the	window,	you	will	need	to	run	the	applicable	startcmd	file	again.

Parent	topic:	Installing	the	DITA	Open	Toolkit

http://sourceforge.net/projects/dita-ot/files/DITA-OT%20Stable%20Release/DITA%20Open%20Toolkit%201.8/

Installing	the	minimal	or	standard	package	on
Linux	or	Mac	OSX
If	you	already	have	locally-installed	copies	of	Ant	and	the	other	required
tools,	install	either	the	minimal	or	standard	package.

Before	you	begin

Ensure	that	you	have	the	following	prerequisite	software	installed:

Ant,	version	1.7.1	or	later

Java	runtime	environment	or	development	kit,	version	7	or	later

XSLT	2.0	processor.	You	can	use	Saxon,	version	9.1.0.8	or	later.

In	addition,	determine	the	specific	DITA-OT	transformations	that	you
intend	to	support	and	ensure	that	you	have	the	prerequisite	software
installed	for	them.

For	more	information,	see	Prerequisite	software	and	Tested	platforms
and	tools.

Procedure

1.	 Download	the	minimal	or	standard	package	from	SourceForge.

Package File	name
Minimal DITA-OT2.0.M3_minimal_bin.tar.gz

StandardDITA-OT2.0.M3_standard_bin.tar.gz

For	production	use,	we	recommend	that	you	use	the	latest	stable
release.

2.	 Extract	the	contents	of	the	package	into	an	installation	directory.

Note:	You	can	extract	the	files	either	to	your	private	home
directory	for	your	exclusive	use	or	to	the	/usr/local/share/
directory,	if	you	want	to	share	the	DITA-OT	with	other	users.

3.	 Verify	that	the	JAVA_HOME	environment	variable	is	set.

export	JAVA_HOME=<JRE_dir>

4.	 Verify	that	the	ANT_HOME	environment	variable	is	been	set.

export	ANT_HOME=<Ant_dir>

5.	 Verify	that	the	PATH	environment	variable	includes	the	Java	and	Ant
executable	files.

export	PATH=$JAVA_HOME/bin:$ANT_HOME/bin:$PATH

6.	 Set	the	DITA_HOME	environment	variable	to	point	to	the	DITA-OT
installation	directory.

export	DITA_HOME=<DITA-OT_dir>

7.	 Set	up	the	CLASSPATH	environment	variable.

export	CLASSPATH=$DITA_HOME/lib/dost.jar:$CLASSPATH

export	CLASSPATH=$DITA_HOME/lib:$CLASSPATH

http://sourceforge.net/projects/dita-ot/files/DITA-OT%20Stable%20Release/DITA%20Open%20Toolkit%201.8/

export	CLASSPATH=$DITA_HOME/lib/resolver.jar:$CLASSPATH

export	CLASSPATH=$DITA_HOME/lib/commons-codec-1.8.jar:$CLASSPATH

8.	 Optional:	If	you	use	Ant,	version	1.8	or	later,	set	up	the
CLASSPATH	environment	variable	to	include	Apache	Xerces.

export	CLASSPATH=<xerces_dir>/xercesImpl.jar:<xerces_dir>/xml-apis.jar:$CLASSPATH

9.	 Set	up	the	XSLT	processor:

Set	up	the	CLASSPATH	environment	variable	to	include	the	Saxon
JAR	files,	for	example:

export	CLASSPATH=<saxon_dir>/saxon9.jar:<saxon_dir>/saxon9-dom.jar:$CLASSPATH

Set	up	the	ANT_OPTS	environment	variable,	for	example:

export	ANT_OPTS=$ANT_OPTS	-Djavax.xml.transform.TransformerFactory=net.sf.saxon.TransformerFactoryImpl

10.	 Optional:	For	index	processing,	set	up	ICU	for	Java.
export	CLASSPATH=<icu4j_dir>/icu4j.jar:$CLASSPATH

11.	 Optional:	For	JavaHelp,	set	the	JHHOME	environment	variable.
export	JHHOME=<javahelp_dir>

12.	 Optional:	For	PDF	output,	set	up	the	XSL-FO	processor:

ProcessorAction

FOP

Add	the	FOP	installation	directory	to	the
local.properties	file	as	the	fop.home	property,	for
example:

fop.home=/usr/share/java/fop

RenderX

Add	the	RenderX	installation	directory	to	the
local.properties	file	as	the	xep.dir	property,	for
example:

xep.dir=/usr/share/java/xep

Antenna
House

Add	the	AH	Formatter	installation	directory	to	the
local.properties	file	as	the	axf.path	property,	for
example:

axf.path=/usr/share/java/AHFormatterV6

13.	 Test	the	DITA-OT	installation	by	transforming	the	sample	files.
The	samples\ant_sample	directory	contains	Ant	scripts	designed	to
build	various	output	formats.

/usr/local/share/DITA-OT2.0.M3$	ant	-f	samples/ant_sample/sample_all.xml

The	generated	output	is	written	to	the	DITA-dir\out\samples
directory.	The	following	output	formats	are	generated:

Docbook

Eclipse	help

HTML	Help

ODT

JavaHelp

PDF

TocJS

TROFF

XHTML

Parent	topic:	Installing	the	DITA	Open	Toolkit

Installing	the	minimal	or	standard	package	on
Windows
If	you	already	have	locally-installed	copies	of	Ant	and	the	other	required
tools,	install	either	the	minimal	or	standard	package.

Before	you	begin

Ensure	that	you	have	the	following	prerequisite	software	installed:

Ant,	version	1.7.1	or	later

Java	runtime	environment	or	development	kit,	version	7	or	later

XSLT	2.0	processor.	You	can	use	Saxon,	version	9.1.0.8	or	later.

In	addition,	determine	the	specific	DITA-OT	transformations	that	you
intend	to	support	and	ensure	that	you	have	the	prerequisite	software
installed	for	them.

For	more	information,	see	Prerequisite	software	and	Tested	platforms
and	tools.

Procedure

1.	 Download	the	minimal	or	standard	package	from	SourceForge.

Package File	name
Minimal DITA-OT2.0.M3_minimal_bin.zip

StandardDITA-OT2.0.M3_standard_bin.zip

For	production	use,	we	recommend	that	you	use	the	latest	stable
release.

2.	 Extract	the	contents	of	the	package	into	an	installation	directory.
For	example,	C:\pkg\DITA-OT2.0.M3.

3.	 Verify	that	the	JAVA_HOME	environment	variable	is	set.

set	JAVA_HOME=<JRE_dir>

4.	 Verify	that	the	ANT_HOME	environment	variable	is	set.

set	ANT_HOME=<Ant_dir>

5.	 Verify	that	the	PATH	environment	variable	includes	the	Java	and	Ant
executable	files.

set	PATH=%JAVA_HOME%\bin;%ANT_HOME%\bin;%PATH%

6.	 Set	the	DITA_HOME	environment	variable	to	point	to	the	DITA-OT
installation	directory.

set	DITA_HOME=<DITA-OT_dir>

7.	 Set	up	the	CLASSPATH	environment	variable.

set	CLASSPATH=%DITA_HOME%\lib\dost.jar;%CLASSPATH%

set	CLASSPATH=%DITA_HOME%\lib;%CLASSPATH%

set	CLASSPATH=%DITA_HOME%\lib\resolver.jar;%CLASSPATH%

set	CLASSPATH=%DITA_HOME%\lib\commons-codec-1.8.jar;%CLASSPATH%

http://sourceforge.net/projects/dita-ot/files/DITA-OT%20Stable%20Release/DITA%20Open%20Toolkit%201.8/

8.	 Optional:	If	you	use	Ant,	version	1.8	or	later,	set	up	the
CLASSPATH	environment	variable	to	include	Apache	Xerces.

set	CLASSPATH=<xerces_dir>\xercesImpl.jar;<xerces_dir>\xml-apis.jar;%CLASSPATH%

9.	 Set	up	the	XSLT	processor:

Set	up	the	CLASSPATH	environment	variable	to	include	the	Saxon
JAR	files,	for	example:

set	CLASSPATH=<saxon_dir>\saxon9.jar;<saxon_dir>\saxon9-dom.jar;%CLASSPATH%

Set	up	the	ANT_OPTS	environment	variable,	for	example:

set	ANT_OPTS=%ANT_OPTS%	-Djavax.xml.transform.TransformerFactory=net.sf.saxon.TransformerFactoryImpl

10.	 Optional:	For	index	processing,	set	up	ICU	for	Java.
set	CLASSPATH=<icu4j_dir>\icu4j.jar;%CLASSPATH%

11.	 Optional:	For	JavaHelp,	set	the	JHHOME	environment	variable.
set	JHHOME=<javahelp_dir>

12.	 Optional:	For	HTML	Help,	add	the	installation	directory	for	the
HTML	Help	Workshop	to	the	local.properties	file	as	the	hhc.dir
property.

hhc.dir=C:\\Program	Files	(x86)\\HTML	Help	Workshop

13.	 Optional:	For	PDF	output,	set	up	the	XSL-FO	processor:

ProcessorAction

FOP

Add	the	FOP	installation	directory	to	the
local.properties	file	as	the	fop.home	property,	for
example:

fop.home=C:\\Program	Files\\fop

Add	the	RenderX	installation	directory	to	the

RenderX local.properties	file	as	the	xep.dir	property,	for
example:

xep.dir=C:\\Program	Files\\xep

Antenna
House

Add	the	AH	Formatter	installation	directory	to	the
local.properties	file	as	the	axf.path	property,	for
example:

axf.path=C:\\Program	Files\\AHFormatterV6

14.	 Test	the	DITA-OT	installation	by	transforming	the	sample	files.
The	samples\ant_sample	directory	contains	Ant	scripts	designed	to
build	various	output	formats.

C:\DITA-OT2.0.M3>ant	-f	samples\ant_sample\sample_all.xml

The	generated	output	is	written	to	the	DITA-dir\out\samples
directory.	The	following	output	formats	are	generated:

Docbook

Eclipse	help

HTML	Help

ODT

JavaHelp

PDF

TocJS

TROFF

XHTML

Parent	topic:	Installing	the	DITA	Open	Toolkit

Publishing	DITA	content
You	can	use	either	Ant	or	the	command-line	tool	to	transform	DITA
content	to	the	various	output	formats	that	are	supported	by	the	DITA
Open	Toolkit	(DITA-OT).

DITA-OT	transformations	The	DITA	Open	Toolkit	(DITA-OT)	ships
with	several	core	transformations.	Each	core	transformation
represents	an	implementation	of	all	processing	that	is	defined	by
OASIS	in	the	DITA	specification.

Publishing	DITA	content	with	dita	command
DITA-OT	includes	a	dita	command-line	tool.	You	can	invoke	the
DITA-OT	from	the	command-line	tool	and	generate	output.

Publishing	DITA	content	from	Ant
You	can	use	Ant	to	invoke	the	DITA	Open	Toolkit	(DITA-OT)	and
generate	output.	This	is	the	most	robust	method	of	transforming
DITA	content;	you	can	use	the	complete	set	of	parameters	that	are
supported	by	the	toolkit.

Publishing	DITA	content	from	the	command-line	tool
The	DITA	Open	Toolkit	(DITA-OT)	includes	a	command-line	tool
designed	for	users	who	are	unfamiliar	with	Ant.	You	can	invoke	the
DITA-OT	from	the	command-line	tool	and	generate	output.	This
method	is	less	robust	than	Ant.

Parent	topic:	DITA	Open	Toolkit	User	Guide

DITA-OT	transformations
The	DITA	Open	Toolkit	(DITA-OT)	ships	with	several	core
transformations.	Each	core	transformation	represents	an	implementation
of	all	processing	that	is	defined	by	OASIS	in	the	DITA	specification.

DITA	to	Docbook	The	docbook	transformation	converts	DITA	maps
and	topics	into	a	Docbook	output	file.	Complex	DITA	markup	might
not	be	supported,	but	the	transformation	supports	most	common
DITA	structures.

DITA	to	Eclipse	Content
The	eclipsecontent	transformation	generates	normalized	DITA	files
and	Eclipse	control	files.	It	originally	was	designed	for	an	Eclipse
plug-in	that	dynamically	rendered	DITA	content,	but	the	output	from
the	transformation	can	be	used	by	other	applications	that	work	with
DITA.

DITA	to	Eclipse	help
The	eclipsehelp	transformation	generates	XHTML	output,	CSS	files,
and	the	control	files	that	are	needed	for	Eclipse	help.

DITA	to	HTML5
The	html5	transformation	generates	HTML5	output	and	a	table	of
contents	(TOC)	file.

DITA	to	HTML	Help	(CHM)
The	htmlhelp	transformation	generates	HTML	output,	CSS	files,	and
the	control	files	that	are	needed	to	produce	a	Microsoft	HTML	Help
file.

DITA	to	Open	Document	Type
The	odt	transformation	produces	output	files	that	use	the	Open
Document	format,	which	is	used	by	tools	such	as	Open	Office.

DITA	to	PDF	(PDF2)
The	pdf	(or	pdf2)	transformation	generates	PDF	output.

DITA	to	Rich	Text	Format
The	wordrtf	transformation	produces	an	RTF	file	for	use	by
Microsoft	Word.

DITA	to	TocJS
The	tocjs	transformation	generates	HTML5	output,	a	frameset,	and
a	JavaScript-based	table	of	contents	with	expandable	and
collapsible	entries.	The	transformation	was	originally	created	by
Shawn	McKenzie	as	a	plug-in	and	was	added	to	the	default
distribution	in	DITA	OT,	release	1.5.4.

DITA	to	Troff
The	troff	transformation	produces	output	for	use	with	the	Troff
viewer	on	Unix-style	platforms,	particularly	for	programs	such	as	the
Man	page	viewer.

DITA	to	XHTML
The	xhtml	transformation	generates	XHTML	output	and	a	table	of
contents	(TOC)	file.	This	was	the	first	transformation	created	for	the
DITA	Open	Toolkit,	and	it	is	the	basis	for	all	the	HTML-based
transformations.

Parent	topic:	Publishing	DITA	content

DITA	to	Docbook
The	docbook	transformation	converts	DITA	maps	and	topics	into	a
Docbook	output	file.	Complex	DITA	markup	might	not	be	supported,	but
the	transformation	supports	most	common	DITA	structures.

Parent	topic:	DITA-OT	transformations

DITA	to	Eclipse	Content
The	eclipsecontent	transformation	generates	normalized	DITA	files	and
Eclipse	control	files.	It	originally	was	designed	for	an	Eclipse	plug-in	that
dynamically	rendered	DITA	content,	but	the	output	from	the
transformation	can	be	used	by	other	applications	that	work	with	DITA.

Normalized	DITA	files	have	been	through	the	DITA	Open	Toolkit	pre-
processing	operation.	In	comparison	to	the	source	DITA	files,	the
normalized	DITA	file	are	modified	in	the	following	ways:

Map-based	links,	such	as	those	generated	by	map	hierarchy	and
relationship	tables,	are	added	to	the	topics.

Link	text	is	resolved.

Any	DTD	or	Schema	reference	is	removed.

Class	attributes	that	are	defaulted	in	the	DTD	or	Schema	are	made
explicit	in	the	topics.

Map	attributes	that	cascade	are	made	explicit	on	child	elements.

The	normalized	DITA	files	have	an	extension	of	.xml.

Parent	topic:	DITA-OT	transformations

Related	reference
Ant	parameters:	Eclipse	content	transformation
Command-line	tool	parameters:	Eclipse	content	transformation

DITA	to	Eclipse	help
The	eclipsehelp	transformation	generates	XHTML	output,	CSS	files,	and
the	control	files	that	are	needed	for	Eclipse	help.

In	addition	to	the	XHTML	output	and	CSS	files,	this	transformation
returns	the	following	files,	where	mapname	is	the	name	of	the	master
DITA	map.

File	name Description
plugin.xml Control	file	for	the	Eclipse	plug-in
mapname.xml Table	of	contents
index.xml Index	file
plugin.properties 	
META-INF/MANIFEST.MF 	

Parent	topic:	DITA-OT	transformations

Related	reference
Ant	parameters:	Eclipse	help	transformation
Command-line	tool	parameters:	Eclipse	help	transformation

Related	information
Official	Eclipse	Web	site

http://eclipse.org

DITA	to	HTML5
The	html5	transformation	generates	HTML5	output	and	a	table	of
contents	(TOC)	file.

The	HTML5	output	is	always	associated	with	the	default	DITA-OT	CSS
file	(commonltr.css	or	commonrtl.css	for	right-to-left	languages).	You	can
use	toolkit	parameters	to	add	a	custom	style	sheets	to	override	the
default	styles.

To	run	the	HTML5	transformation,	set	the	transtype	parameter	to	html5.

Parent	topic:	DITA-OT	transformations

Related	reference
Ant	parameters:	HTML5	and	XHTML	transformation
Command-line	tool	parameters:	HTML5	and	XHTML	transformation

DITA	to	HTML	Help	(CHM)
The	htmlhelp	transformation	generates	HTML	output,	CSS	files,	and	the
control	files	that	are	needed	to	produce	a	Microsoft	HTML	Help	file.

In	addition	to	the	HTML	output	and	CSS	files,	this	transformation	returns
the	following	files,	where	mapname	is	the	name	of	the	master	DITA	map.

File	name Description
mapname.hhc Table	of	contents
mapname.hhk Sorted	index
mapname.hhp HTML	Help	project	file

mapname.chm

Compiled	HTML	Help

Note:	This	file	is	generated	only	if	the
HTML	Help	Workshop	is	installed	on
the	build	system.

Parent	topic:	DITA-OT	transformations

Related	reference
Ant	parameters:	HTML	Help	transformation
Command-line	tool	parameters:	HTML	help	transformation

DITA	to	Open	Document	Type
The	odt	transformation	produces	output	files	that	use	the	Open
Document	format,	which	is	used	by	tools	such	as	Open	Office.

This	transform	returns	an	ODT	document,	which	is	a	zip	file	that	contains
the	ODF	XML	file	(content.xml),	referenced	images,	and	default	styling
(in	the	file	styles.xml).

Parent	topic:	DITA-OT	transformations

Related	reference
Ant	parameters:	ODT	transformation
Command-line	tool	parameters:	ODT	transformation

DITA	to	PDF	(PDF2)
The	pdf	(or	pdf2)	transformation	generates	PDF	output.

This	transformation	was	originally	created	as	a	plug-in	and	maintained
outside	of	the	main	toolkit	code.	It	was	created	as	a	more	robust
alternative	to	the	demo	PDF	transformation	in	the	original	toolkit,	and
thus	was	known	as	PDF2.	The	plug-in	was	bundled	into	the	default	toolkit
distribution	with	release	1.4.3.

Parent	topic:	DITA-OT	transformations

Related	reference
Ant	parameters:	PDF	transformation
Command-line	tool	parameters:	PDF	transformation

DITA	to	Rich	Text	Format
The	wordrtf	transformation	produces	an	RTF	file	for	use	by	Microsoft
Word.

The	structure	of	the	generated	RTF	file	is	the	same	as	the	navigation
structure	in	the	DITA	map.	To	avoid	losing	files	in	the	final	output,	make
sure	the	DITA	map	contains	all	topics	that	are	referenced	from	any
individual	topics.

The	wordrtf	transformation	has	the	following	limitations:

Flagging,	filtering,	and	revision	bars	are	not	supported.

Style	attributes	for	tables	are	not	supported.

Tables	within	list	items	are	not	supported.

Output	styles	supported	by	other	DITA-OT	transformations,	for
example,	X	and	Y,	are	not	supported.

Parent	topic:	DITA-OT	transformations

DITA	to	TocJS
The	tocjs	transformation	generates	HTML5	output,	a	frameset,	and	a
JavaScript-based	table	of	contents	with	expandable	and	collapsible
entries.	The	transformation	was	originally	created	by	Shawn	McKenzie	as
a	plug-in	and	was	added	to	the	default	distribution	in	DITA	OT,	release
1.5.4.

The	tocjs	transformation	was	updated	so	that	it	produces	HTML5	output
and	uses	a	default	frameset.	This	transformation	also	was	added	to	the
build_demo.xml	script	as	a	transformation-type	option.

Parent	topic:	DITA-OT	transformations

DITA	to	Troff
The	troff	transformation	produces	output	for	use	with	the	Troff	viewer	on
Unix-style	platforms,	particularly	for	programs	such	as	the	Man	page
viewer.

Each	DITA	topic	generally	produces	one	troff	output	file.	The	troff
transformation	supports	most	common	DITA	structures,	but	it	does	not
support	<table>	or	<simpletable>	elements.	Most	testing	of	troff	output
was	performed	using	the	Cygwin	Linux	emulator.

Parent	topic:	DITA-OT	transformations

DITA	to	XHTML
The	xhtml	transformation	generates	XHTML	output	and	a	table	of
contents	(TOC)	file.	This	was	the	first	transformation	created	for	the	DITA
Open	Toolkit,	and	it	is	the	basis	for	all	the	HTML-based	transformations.

The	XHTML	output	is	always	associated	with	the	default	DITA-OT	CSS
file	(commonltr.css	or	commonrtl.css	for	right-to-left	languages).	You	can
use	toolkit	parameters	to	add	a	custom	style	sheets	to	override	the
default	styles.

To	run	the	XHTML	transformation,	set	the	transtype	parameter	to	xhtml.
If	you	are	running	the	demo	build,	specify	web	rather	than	xhtml.

Parent	topic:	DITA-OT	transformations

Related	reference
Ant	parameters:	HTML5	and	XHTML	transformation
Command-line	tool	parameters:	HTML5	and	XHTML	transformation

Publishing	DITA	content	with	dita	command
DITA-OT	includes	a	dita	command-line	tool.	You	can	invoke	the	DITA-OT
from	the	command-line	tool	and	generate	output.

Building	output	using	the	dita	command	You	can	invoke	DITA-OT
and	build	output	using	the	dita	command.

Parent	topic:	Publishing	DITA	content

Building	output	using	the	dita	command
You	can	invoke	DITA-OT	and	build	output	using	the	dita	command.

Procedure

From	the	command	prompt,	issue	the	following	command:
installation-directory\bin\dita	-i	input-file	-f	transformation-type

where:

input-file	is	the	DITA	map	or	DITA	file	that	you	want	to	process.

transformation-type	is	the	transformation	type.

parameter-name	is	the	name	of	an	optional	parameter.

value	is	an	applicable	value	for	the	optional	parameter.

If	you	add	installation-directory\bin	directory	to	PATH	system
variable,	you	can	invoke	the	dita	command	without	the	absolute	path.

If	you	do	not	specify	an	output	directory,	by	default,	the	DITA-OT	writes
the	output	to	out	subdirectory	of	current	directory.

Example

The	following	command	generates	HTML5	output	for	the
sequence.ditamap	file	and	specifies	the	output	is	written	to	the	test
directory

dita	-i	samples/sequence.ditamap	-o	test	-f	html5

Parent	topic:	Publishing	DITA	content	with	dita	command

Publishing	DITA	content	from	Ant
You	can	use	Ant	to	invoke	the	DITA	Open	Toolkit	(DITA-OT)	and	generate
output.	This	is	the	most	robust	method	of	transforming	DITA	content;	you
can	use	the	complete	set	of	parameters	that	are	supported	by	the	toolkit.

Ant	Ant	is	a	Java-based,	open-source	tool	that	is	provided	by	the
Apache	Foundation.	It	can	be	used	to	declare	a	sequence	of	build
actions.	It	is	well	suited	for	both	development	and	document	builds.
The	full-easy-install	version	of	the	toolkit	ships	with	a	copy	of	Ant.

Building	output	using	Ant
You	can	build	output	by	running	the	ant	command	and	specifying	the
DITA-OT	parameters	at	the	command	prompt.	You	also	can	use	an
Ant	build	script	to	provide	the	DITA-OT	parameters

Creating	an	Ant	build	script
Instead	of	typing	the	DITA-OT	parameters	at	the	command	prompt,
you	might	want	to	create	an	Ant	build	script	that	contains	all	of	the
parameters.

Parent	topic:	Publishing	DITA	content

Related	concepts
Ant

Related	reference
Ant	parameters

Ant
Ant	is	a	Java-based,	open-source	tool	that	is	provided	by	the	Apache
Foundation.	It	can	be	used	to	declare	a	sequence	of	build	actions.	It	is
well	suited	for	both	development	and	document	builds.	The	full-easy-
install	version	of	the	toolkit	ships	with	a	copy	of	Ant.

The	DITA-OT	uses	Ant	to	manage	the	XSLT	scripts	that	are	used	to
perform	the	various	transformation;	it	also	uses	Ant	to	manage
intermediate	steps	that	are	written	in	Java.

The	most	important	Ant	script	is	the	build.xml	file.	This	script	defines	and
combines	common	pre-processing	and	output	transformation	routines;	it
also	defines	the	DITA-OT	extension	points.

Parent	topic:	Publishing	DITA	content	from	Ant

Related	tasks
Building	output	using	Ant
Creating	an	Ant	build	script
Publishing	DITA	content	from	Ant

Related	reference
Ant	parameters
Apache	Ant	documentation

http://ant.apache.org/manual/index.html

Building	output	using	Ant
You	can	build	output	by	running	the	ant	command	and	specifying	the
DITA-OT	parameters	at	the	command	prompt.	You	also	can	use	an	Ant
build	script	to	provide	the	DITA-OT	parameters

Procedure

1.	 Run	the	startcmd	file	that	is	applicable	for	your	operating	system.
The	startcmd.bat	and	startcmd.sh	files	are	in	the	directory	where
you	installed	the	DITA-OT.

2.	 To	provide	the	DITA-OT	parameters	from	the	command	prompt,
issue	the	following	command:

ant	-Dargs.input=input-file	-Dtranstype=transformation-type	-D

where:

input-file	is	the	DITA	map	or	DITA	file	that	you	want	to	process.

transformation-type	is	the	transformation	type.

parameter-name	is	the	name	of	an	optional	parameter.

value	is	an	applicable	value	for	the	optional	parameter.

If	you	do	not	specify	an	output	directory,	by	default,	the	DITA-OT
writes	the	output	to	the	installation-directory\out	directory.

3.	 If	you	use	a	build	script,	issue	the	following	command:

ant	-f	build-script	target

where:

build-script	is	name	of	the	Ant	build	script.

target	is	an	optional	switch	that	specifies	the	name	of	the	Ant
target	that	you	want	to	run.	If	you	do	not	specify	a	target,	the
value	of	the	@default	attribute	for	the	Ant	project	is	used.

Parent	topic:	Publishing	DITA	content	from	Ant

Related	concepts
Ant

Related	tasks
Creating	an	Ant	build	script

Related	reference
Ant	parameters
Apache	Ant	documentation

http://ant.apache.org/manual/index.html

Creating	an	Ant	build	script
Instead	of	typing	the	DITA-OT	parameters	at	the	command	prompt,	you
might	want	to	create	an	Ant	build	script	that	contains	all	of	the
parameters.

Procedure

1.	 Create	an	XML	file	that	contains	the	following	content:

<?xml	version="1.0"	encoding="UTF-8"	?>

<project	name="@project-name@"	default="@default-target@"	basedir=".">

		<property	name="dita.dir"	location="@path-to-DITA-OT@"/>

	

		<target	name="@target-name@">

				<ant	antfile="${dita.dir}${file.separator}build.xml">

						<property	name="args.input"	value="@DITA-input@"/>

						<property	name="transtype"	value="html5"/>

				</ant>

		</target>

</project>

You	will	replace	the	placeholder	content	(indicated	by	the	@	signs)
with	content	applicable	to	your	environment.

2.	 Specify	project	information:

1.	 Set	the	value	of	the	@name	attribute	to	X.

2.	 Set	the	value	of	the	@default	attribute	to	the	name	of	a	target	in
the	build	script.
If	the	build	script	is	invoked	without	specifying	a	target,	this
target	will	be	run.

3.	 Set	the	value	of	the	dita.dir	property	to	the	location	of	the	DITA-OT.
This	can	be	a	fully	qualified	path,	or	you	can	specify	it	relative	to	the
location	of	the	Ant	build	script	that	you	are	writing.

4.	 Create	the	Ant	target:

1.	 Set	the	value	of	the	@name	attribute.

2.	 Specify	the	value	for	the	args.input	property.

3.	 Specify	the	value	of	the	transtype	property.

5.	 Save	the	build	script.

Example

The	following	Ant	build	script	generates	CHM	and	PDF	output	for	the
userguide.ditamap	file.

<?xml	version="1.0"	encoding="UTF-8"	?>

<project	name="Toolkit-documentation"	default="all"	basedir=".">

				

				<property	name="dita.dir"	location="C:\DITA-OT1.6.M5"/>

				

				<target	name="all"	description="build	CHM	and	PDF"	depends="chm,pdf"/>

				

				<target	name="chm"	description="build	CHM">

								<ant	antfile="${dita.dir}\build.xml">

												<property	name="args.input"	value="C:\dita-ot\src\main\doc\userguide.ditamap"/>

												<property	name="args.gen.task.lbl"	value="YES"/>			

												<property	name="output.dir"	value="C:\kje\temp\out"/>

												<property	name="transtype"	value="htmlhelp"/>

								</ant>

				</target>

				

				<target	name="pdf"	description="build	PDF">

								<ant	antfile="${dita.dir}\build.xml">

												<property	name="args.input"	value="C:\dita-ot\src\main\doc\userguide.ditamap"/>

												<property	name="args.gen.task.lbl"	value="YES"/>			

												<property	name="args.rellinks"	value="nofamily"/>			

												<property	name="output.dir"	value="C:\kje\temp\out"/>

												<property	name="transtype"	value="pdf"/>

								</ant>

				</target>

				

</project>

In	addition	to	the	mandatory	parameters	(args.input	and	transtype),	the
chm	and	pdf	targets	each	specify	some	optional	parameters:

The	args.gen.task.lbl	property	is	set	to	YES,	which	ensures	that
headings	are	automatically	generated	for	the	sections	of	task	topics.

The	output.dir	property	specifies	where	the	DITA	OT	writes	the
output	of	the	transformations.

The	pdf	target	also	specifies	that	related	links	should	be	generated	in	the
PDF,	but	only	those	links	that	are	created	by	relationship	tables	and
<link>	elements.

Finally,	the	all	target	simply	specifies	that	both	the	chm	and	pdf	target
should	be	run.

What	to	do	next

Another	resource	for	learning	about	Ant	scripts	are	the	files	in	the
samples/ant_samples	directory.	This	directory	contains	the	Ant	build	files
used	by	the	demo	build,	as	well	as	templates	that	you	can	use	to	create
Ant	scripts.

Parent	topic:	Publishing	DITA	content	from	Ant

Related	concepts
Ant

Related	tasks
Building	output	using	Ant

Related	reference
Ant	parameters
Apache	Ant	documentation

http://ant.apache.org/manual/index.html

Publishing	DITA	content	from	the	command-line
tool
The	DITA	Open	Toolkit	(DITA-OT)	includes	a	command-line	tool	designed
for	users	who	are	unfamiliar	with	Ant.	You	can	invoke	the	DITA-OT	from
the	command-line	tool	and	generate	output.	This	method	is	less	robust
than	Ant.

Command-line	tool	The	DITA	Open	Toolkit	(DITA-OT)	provides	a
command-line	tool	for	users	with	little	knowledge	of	Ant.	The
command-line	tool	supports	a	subset	of	the	parameters	that	are
available	to	the	Ant	builds.

Building	output	using	the	command-line	tool
If	you	are	unfamiliar	with	Ant,	you	can	invoke	the	DITA	Open	Toolkit
(DITA-OT)	and	build	output	from	the	command-line	tool.

Parent	topic:	Publishing	DITA	content

Related	concepts
Command-line	tool

Related	reference
Command-line	tool	parameters

Command-line	tool
The	DITA	Open	Toolkit	(DITA-OT)	provides	a	command-line	tool	for	users
with	little	knowledge	of	Ant.	The	command-line	tool	supports	a	subset	of
the	parameters	that	are	available	to	the	Ant	builds.

The	command-line	tool	is	a	wrapper	around	the	Ant	interface;	it	takes	the
simplified	parameters	as	input,	converts	them	to	Ant	parameters,	and
then	runs	an	Ant	build.	The	Ant	parameters	that	are	passed	to	the	DITA-
OT	are	saved	to	the	property.temp	file	that	is	written	to	the	output
directory.

For	individual	builds,	the	additional	Java	overhead	is	minimal,	but	for
repeated	or	server-based	builds,	the	extra	memory	usage	might	become
an	issue.	Applications	that	embed	the	toolkit	should	invoke	Ant	directly.

Parent	topic:	Publishing	DITA	content	from	the	command-line	tool

Related	tasks
Building	output	using	the	command-line	tool
Publishing	DITA	content	from	the	command-line	tool

Related	reference
Command-line	tool	parameters

Building	output	using	the	command-line	tool
If	you	are	unfamiliar	with	Ant,	you	can	invoke	the	DITA	Open	Toolkit
(DITA-OT)	and	build	output	from	the	command-line	tool.

Procedure

1.	 Run	the	startcmd	file	that	is	applicable	for	your	operating	system.
The	startcmd.bat	and	startcmd.sh	files	are	in	the	directory	where
you	installed	the	DITA-OT.

2.	 From	the	command	prompt,	issue	the	following	command:

				java	-jar	lib/dost.jar	/i:input-file	/transtype:transformation-type

where:

input-file	is	the	DITA	map	or	DITA	file	that	you	want	to	process.

transformation-type	is	the	transformation	type.

parameter-name	is	the	name	of	an	optional	parameter.

value	is	an	applicable	value	for	the	optional	parameter.

If	you	do	not	specify	an	output	directory,	by	default,	the	DITA-OT
writes	the	output	to	the	installation-directory\out	directory.

Example

The	following	command	generates	HTML5	output	for	the
sequence.ditamap	file	and	specifies	the	output	is	written	to	the	test
directory

java	-jar	lib/dost.jar	/i:samples/sequence.ditamap	/outdir:test	/transtype:html5

Parent	topic:	Publishing	DITA	content	from	the	command-line	tool

Related	concepts
Command-line	tool

Related	reference
Command-line	tool	parameters

Extending	the	DITA	Open	Toolkit
Plug-ins	can	be	used	to	extend	the	functionality	and	configure	the	DITA
Open	Toolkit.

Installing	plug-ins	Plug-ins	are	distributed	as	zip	files	and	can	be
installed	using	either	the	command	line	tool	or	Ant.

Removing	plug-ins
Plug-ins	can	be	installed	by	running	uninstallation	process.

Parent	topic:	DITA	Open	Toolkit	User	Guide

Installing	plug-ins
Plug-ins	are	distributed	as	zip	files	and	can	be	installed	using	either	the
command	line	tool	or	Ant.

Procedure

Run	plug-in	installation	process.

Using	the	dita	command	line	tool,	run	the	installation	command:

dita	-install	plug-in-zip

Using	Ant,	from	the	toolkit	directory	run	the	installation	target:

ant	-f	integrator.xml	install	-Dplugin.file=plug-in-zip

The	plug-in-zip	can	be	either	a	local	file	path	or	a	URL.

Parent	topic:	Extending	the	DITA	Open	Toolkit

Removing	plug-ins
Plug-ins	can	be	installed	by	running	uninstallation	process.

Procedure

Run	plug-in	uninstallation	process.

Using	the	dita	command	line	tool,	run	the	uninstallation	command:

dita	-uninstall	plug-in-id

Using	Ant,	from	the	toolkit	directory	run	the	uninstallation	target:

ant	-f	integrator.xml	uninstall	-Dplugin.id=plug-in-id

Parent	topic:	Extending	the	DITA	Open	Toolkit

Globalizing	DITA	content
The	DITA	standard	supports	content	that	is	written	in	or	translated	to	any
language.	In	general,	the	DITA	Open	Toolkit	(DITA-OT)	passes	content
through	to	the	output	format	unchanged.	The	DITA-OT	uses	the	values
for	the	@xml:lang,	@translate,	and	@dir	attributes	that	are	set	in	the
source	content	to	provides	globalization	support.

Globalization	support	offered	by	the	DITA-OT	The	DITA	Open
Toolkit	(DITA-OT)	offers	globalization	support	in	the	following	areas:
Generated	text,	index	sorting,	and	bi-directional	text.

Supported	languages:	HTML-based	transformations
The	DITA	Open	Toolkit	(DITA-OT)	supports	over	50	languages	and
language	variants	for	the	HTML-based	transformations,	for	example,
Eclipse	Help,	HTML	Help,	and	TocJS.

Supported	languages:	PDF	transformations
The	DITA	Open	Toolkit	(DITA-OT)	supports	a	smaller	set	of
languages	for	the	PDF	(pdf2)	transformation.	This	transformation
was	donated	to	the	DITA-OT	project	after	the	project	inception,	and	it
uses	a	different	and	larger	set	of	generated	text	than	the	HTML-
based	transformations.

Parent	topic:	DITA	Open	Toolkit	User	Guide

Related	reference
Localization	overview	in	the	OASIS	DITA	standard

http://docs.oasis-open.org/dita/v1.2/os/spec/archSpec/translation.html

Globalization	support	offered	by	the	DITA-OT
The	DITA	Open	Toolkit	(DITA-OT)	offers	globalization	support	in	the
following	areas:	Generated	text,	index	sorting,	and	bi-directional	text.

Generated	text

Generated	text	is	text	that	is	rendered	automatically	in	the
output	that	is	generated	by	the	DITA-OT;	this	text	is	not	located
in	the	DITA	source	files.	The	following	are	examples	of
generated	text:

The	word	"Chapter	in	a	PDF	file.

The	phrases	"Related	concepts,"	"Related	tasks,"	and
"Related	reference"	in	XHTML	output.

Index	sorting

The	DITA-OT	can	use	only	a	single	language	to	sort	indexes.

Bi-directional	text

The	DITA-OT	contains	style	sheets	(CSS	files)	that	support	both
left-to-right	(LTR)	and	right-to-left	(RTL)	languages.

When	the	DITA-OT	generates	output,	it	takes	the	first	value	for	the
@xml:lang	attribute	that	it	encounters,	and	then	it	uses	that	value	to
create	generated	text,	perform	index	sorting,	and	determine	which	default
CSS	file	is	used.	If	no	value	for	the	@xml:lang	attribute	is	found,	the
toolkit	defaults	to	US	English.

Parent	topic:	Globalizing	DITA	content

Supported	languages:	HTML-based
transformations
The	DITA	Open	Toolkit	(DITA-OT)	supports	over	50	languages	and
language	variants	for	the	HTML-based	transformations,	for	example,
Eclipse	Help,	HTML	Help,	and	TocJS.

Table	1.	Supported	languages:	HTML-based
transformations

Language Language	code
Arabic ar	or	ar-eg
Belarusian be	or	be-by
Brazilian	Portuguese pt-br
Bulgarian bg	or	bg-bg
Catalan ca-es
Chinese	(simplified) zh-cn	or	zh-hans
Chinese	(traditional) zh-tw	or	zh-hant
Croatian hr	or	hr-hr
Czech cs	or	cs-cz
Danish da	or	da-dk
Dutch nl	or	nl-nl
Dutch	(Belgian) nl-be
English	(US) en	or	en-us
English	(British) en-gb
English	(Canadian) en-ca
Estonian et	or	et-ee
Finnish fi	or	fi-fi
French fr	or	fr-fr
French	(Belgian) fr-be
French	(Canadian) fr-ca
French	(Swiss) fr-ch
German de	or	de-de
German	(Swiss) de-ch
Greek el	or	el-gr
Hebrew he	or	he-il

Hindi hi	or	hi-hi
Hungarian hu	or	hu-hu
Icelandic is	or	is-is
Indonesian id	or	id-id
Italian it	or	it-it
Italian(Swiss) it-ch
Japanese ja	or	ja-jp
Kazakh kk	or	kk-kz
Korean ko	or	ko-kr
Latvian lv	or	lv-lv
Lithuanian lt	or	lt-lt
Macedonian mk	or	mk-mk
Malay ms	or	ms-my
Norwegian no	or	no-no
Polish pl	or	pl-pl
Portuguese pt	or	pt-pt
Romanian ro	or	ro-ro
Russian ru	or	ru-ru
Serbian	(Cyrillic	script) sr,	sr-rs,	or	sr-sp
Serbian	(Latin	script) sr-latn-rs
Slovak sk	or	sk-sk
Slovenian sl	or	sl-si
Spanish es	or	es-es
Spanish	(Latin	American) es-419
Swedish sv	or	sv-se
Thai th	or	th-th
Turkish tr	or	tr-tr
Ukrainian uk	or	uk-ua
Urdu ur	or	ur-pk

Parent	topic:	Globalizing	DITA	content

Related	reference
How	to	add	support	for	new	languages	in	XHTML

Supported	languages:	PDF	transformations
The	DITA	Open	Toolkit	(DITA-OT)	supports	a	smaller	set	of	languages	for
the	PDF	(pdf2)	transformation.	This	transformation	was	donated	to	the
DITA-OT	project	after	the	project	inception,	and	it	uses	a	different	and
larger	set	of	generated	text	than	the	HTML-based	transformations.

Table	1.	Supported	languages:	PDF
transformation

Language Language	code
Chinese	(simplified) zh-cn	or	zh-hans
Dutch nl	or	nl-nl
English	(US) en	or	en-us
Finnish fi	or	fi-fi
French fr	or	fr-fr
German de	or	de-de
Hebrew he	or	he-il
Italian it	or	it-it
Japanese ja	or	ja-jp
Romanian ro	or	ro-ro
Russian ru	or	ru-ru
Slovenian sl	or	sl-SI
Spanish es	or	es-es
Swedish sv	or	sv-se

Parent	topic:	Globalizing	DITA	content

Error	messages	and	troubleshooting
This	section	contains	information	about	problems	that	you	might
encounter	and	how	to	resolve	them.

DITA-OT	error	messages	The	error	messages	generated	by	the
DITA	Open	Toolkit	contain	a	message	ID,	severity	information,	and
message	text.	This	topic	lists	each	error	message	generated	by	the
toolkit	and	provides	additional	information	that	might	be	helpful	in
understanding	and	resolving	the	error	condition.

Other	error	messages
In	addition	to	error	messages	generated	by	the	DITA	Open	Toolkit,
you	might	also	encounter	error	messages	generated	by	Java	or
other	tools.

Log	files
When	you	run	the	DITA-OT,	key	information	is	logged	on	the	screen.
This	information	can	also	be	written	to	a	log	file.	If	you	encounter	a
problem,	you	can	analyze	this	information	to	determine	the	source	of
the	problem	and	then	take	action	to	resolve	it.

Accessing	help	from	the	command-line	tool
You	can	access	a	list	of	supported	parameters	for	the	command-line
tool	by	issuing	the	-help	parameter.

Determing	the	version	of	the	DITA	Open	Toolkit
You	can	use	the	command-line	tool	to	determine	the	version	of	the
DITA	OT.

Enabling	debug	mode
When	the	debug	mode	is	enabled,	additional	diagnostic	information
is	written	to	the	log	file.	This	information,	which	includes	environment
variables	and	stack	trace	data,	can	help	you	determine	the	root
cause	of	a	problem.

Increasing	Java	memory	allocation

If	you	are	working	with	large	documents	with	extensive	metadata	or
key	references,	you	will	need	to	increase	the	memory	allocation	for
the	Java	process.	You	can	do	this	from	the	command-line	prompt	for
a	specific	session,	or	you	can	increase	the	value	of	the	ANT_OPTS
environmental	variable.

Parent	topic:	DITA	Open	Toolkit	User	Guide

DITA-OT	error	messages
The	error	messages	generated	by	the	DITA	Open	Toolkit	contain	a
message	ID,	severity	information,	and	message	text.	This	topic	lists	each
error	message	generated	by	the	toolkit	and	provides	additional
information	that	might	be	helpful	in	understanding	and	resolving	the	error
condition.

Each	message	ID	is	composed	of	a	message	prefix,	a	message	number,
and	a	letter	that	indicates	the	severity	(I,	W,	E,	or	F).	The	toolkit	uses	the
following	severity	scale:

Informational	(I)

The	toolkit	encountered	a	condition	of	which	you	should	be
aware.	For	example,	draft	comments	are	enabled	and	will	be
rendered	in	the	output.

Warning	(W)

The	toolkit	encountered	a	problem	that	should	be	corrected.
Processing	will	continue,	but	the	output	might	not	be	as
expected.

Error	(E)

The	toolkit	encountered	a	more	severe	problem,	and	the	output
is	affected.	For	example,	some	content	is	missing	or	invalid,	or
the	content	is	not	rendered	in	the	output

Fatal	(F)

The	toolkit	encountered	a	severe	condition,	processing	stopped,
and	no	output	is	generated.

Message
ID Severity Message	text Additional	details

"%1"	is	not	a	recognized	transformation

Default	transformation	types	that
ship	with	the	toolkit	include
xhtml,	eclipsehelp,	pdf	(or	pdf2),

DOTA001F Fatal
type.	Supported	transformation	types	are
docbook,	eclipsecontent,	eclipsehelp,
html5,	htmlhelp,	javahelp,
net.sourceforge.dita-ot.html,	odt,	pdf,
pdf2,	tocjs,	troff,	wordrtf,	xhtml.

tocjs,	htmlhelp,	javahelp,	odt,
eclipsecontent,	troff,	docbook,
and	wordrtf.	
transformation	types	may	be
available	if	toolkit	plug-ins	are
installed.

DOTA002F Fatal Input	file	is	not	specified,	or	is	specified
using	the	wrong	parameter.

The	input	parameter	was	not
specified,	so	there	is	no	DITA	or
DITAMAP	file	to	transform.
Ensure	the	parameter	is	set
properly;	see	
arguments
Command	line	tool	arguments
you	are	unsure	how	to	specify
the	input	file.

DOTA003F Fatal Cannot	find	the	user	specified	XSLT
stylesheet	'%1'.

An	alternate	stylesheet	was
specified	to	run	in	place	of	the
default	XSLT	output	process,
but	that	stylesheet	could	not	be
loaded.	Please	correct	the
parameter	to	specify	a	valid
stylesheet.

DOTA004F Fatal Invalid	DITA	topic	extension	'%1'.
Supported	values	are	'.dita'	and	'.xml'.

This	optional	parameter	is	used
to	set	an	extension	for	DITA
topic	documents	in	the
temporary	processing	directory.
Only	"dita",	".dita",	"xml",	or
".xml"	are	allowed.

DOTA006WWarning

Absolute	paths	on	the	local	file	system	are
not	supported	for	the	CSSPATH
parameter.	Please	use	a	relative	path	or
full	URI	instead.

If	the	CSSPATH	uses	an
absolute	path,	it	should	be	one
that	can	still	be	accessed	after
the	files	are	moved	to	another
system	(such	as
http://www.example.org/

Absolute	paths	on	the	local	file
system	will	be	broken	if	the
content	is	moved	to	a	new
system.

DOTA007E Error
Cannot	find	the	running-footer	file	"%1".
Please	double	check	the	value	to	ensure
it	is	specified	correctly.

The	running	footer	file,	which
contains	content	to	be	added	to
the	bottom	of	each	XHTML
output	topic,	cannot	be	located
or	read.	This	is	usually	caused
by	a	typo	in	the	parameter
value.	You	should	also	ensure
that	the	value	is	not	specified
with	"file:"	as	a	prefix.

DOTA008E Error
Cannot	find	the	running-header	file	"%1".
Please	double	check	the	value	to	ensure
it	is	specified	correctly.

The	running	header	file,	which
contains	content	to	be	added	to
the	top	of	each	XHTML	output
topic,	cannot	be	located	or	read.
This	is	usually	caused	by	a	typo
in	the	parameter	value.	You
should	also	ensure	that	the
value	is	not	specified	with	"file:"
as	a	prefix.

DOTA009E Error
Cannot	find	the	specified	heading	file
"%1".	Please	double	check	the	value	to
ensure	it	is	specified	correctly.

The	running	heading	file,	which
contains	content	to	be	added	to
the	<head>	section	of	each
XHTML	output	topic,	cannot	be
located	or	read.	This	is	usually
caused	by	a	typo	in	the
parameter	value.	You	should
also	ensure	that	the	value	is	not
specified	with	"file:"	as	a	prefix.

DOTA011W Warning
Argument	"%1"	is	deprecated.	This
argument	is	no	longer	supported	in	the
toolkit.

	

DOTA012WWarning Argument	"%1"	is	deprecated.	Please	use
the	argument	"%2"	instead. 	

DOTA066F Fatal Cannot	find	the	user	specified	XSLT
stylesheet	'%1'.

An	alternate	stylesheet	was
specified	to	run	in	place	of	the
default	XSL-FO	output	process,
but	that	stylesheet	could	not	be
loaded.	Please	correct	the
parameter	to	specify	a	valid

stylesheet.

DOTA067WWarning

Ignoring	index-see	'%1'	inside	parent
index	entry	'%2'	because	the	parent
indexterm	contains	indexterm	children.
According	to	the	DITA	Specification,	the
index-see	element	should	be	ignored	if
the	parent	indexterm	contains	other
indexterm	children.

This	condition	is	ignored,	as
instructed	in	the	OASIS	DITA
Standard.

DOTA068WWarning

Ignoring	index-see-also	'%1'	inside	parent
index	entry	'%2'	because	the	parent
indexterm	contains	indexterm	children.
According	to	the	DITA	Specification,	the
index-see-also	element	should	be	ignored
if	the	parent	indexterm	contains	other
indexterm	children.

This	condition	is	ignored,	as
instructed	in	the	OASIS	DITA
Standard.

DOTA069F Fatal
Input	file	'%1'	cannot	be	located	or	read.
Ensure	that	file	was	specified	properly
and	that	you	have	permission	to	access	it.

Please	ensure	that	the	input	file
path	and	file	name	were	entered
correctly.

DOTA069WWarning
Target	"%1"	is	deprecated.	Remove
references	to	this	target	from	your	custom
XSLT	or	plug-ins.

	

DOTJ001F Fatal

Invalid	command	line	syntax	for	the
parameter	'%1'.	Parameters	to	the
command	line	tool	should	use	the	syntax
/parameter:value.

See	
parameters
parameters	and	values.

DOTJ002F Fatal
Unsupported	parameter	'%1'.	Please	refer
to	the	DITA-OT	User	Guide	for	supported
parameters.

See	
parameters
parameters	and	values.

DOTJ003F Fatal

Parameter	'%1'	was	specified	without	a
value.	Parameters	to	the	command	line
tool	should	use	the	syntax
/parameter:value.

See	
parameters
parameters	and	values.

The	transform	was	unable	to
create	a	temporary	processing
directory;	this	is	usually	caused
by	account	control	settings	that
prevent	creating	a	temporary
directory	in	the	specified

DOTJ004F Fatal
Cannot	create	temporary	processing
directory	'%1'.	Please	ensure	that	you
have	permission	to	create	the	directory
'%1'.

location.	Please	verify	that	you
have	permission	to	write	to	the
default	location,	or	specify	an
alternate	temporary	directory
location.	See	
arguments
Command	line	tool	arguments
for	details	on	how	to	specify	the
temporary	directory.

DOTJ005F Fatal
Failed	to	create	new	instance	for	'%1'.
Please	ensure	that	'%1'	exists	and	that
you	have	permission	to	access	it.

	

DOTJ006F Fatal

An	Ant	build	file	used	the	following	illegal
syntax	when	calling	AntInvoker:
extparam='%1'.	Please	correct	the	call	to
AntInvoker	when	directly	calling	DITA-OT
Java	code	from	Ant;	for	example,
extparam="maplinks=XXXX;other=YYYY".

This	message	occurs	when	an
Ant	build	calls	a	DITA-OT
pipeline	module	directly	instead
of	using	the	default	call	to	that
module.	Please	check	that	all
parameters	are	set	correctly	in
your	Ant	build.	The	syntax	for
extparam	is
"name1=value1;name2=value2".

DOTJ007E Error
Duplicate	condition	in	filter	file	for	rule
'%1'.	The	first	encountered	condition	will
be	used.

If	a	condition	is	defined	more
than	once	(such	as	setting
audience="all"	to	include,	then
resetting	it	to	exclude),	only	the
first	definition	will	be	used.

DOTJ009E Error

Cannot	overwrite	file	'%1'	with	file	'%2'.
The	modified	result	may	not	be	consumed
by	the	following	steps	in	the	transform
pipeline.	Check	to	see	whether	the	file	is
locked	by	some	other	application	during
the	transformation	process.

The	transform	was	unable	to
create	files	properly	during	the
transform;	results	may	not	be	as
expected.

This	message	may	indicate	an
invalid	input	file	(such	as
accidentally	specifying	a	PDF
file	as	input	rather	than	a	DITA
map	file),	an	input	file	that	uses

DOTJ012F Fatal Failed	to	parse	the	input	file	'%1'.	The
XML	parser	reported	the	following	error:

elements	which	are	not	allowed,
are	not	part	or	a	DITA	file	that
has	errors	and	cannot	be	parsed
as	XML.	You	could	also	be
using	a	specialized	DITA
document	type	that	needs
external	plug-ins	in	order	to	be
parsed	correctly.	The	message
issued	by	the	XML	parser
should	provide	additional
information	to	help	diagnose	the
cause.

DOTJ013E Error
Failed	to	parse	the	referenced	file	'%1'.
The	XML	parser	reported	the	following
error:

This	message	may	indicate	a
reference	to	an	invalid	file	(such
as	accidentally	referencing	a
PDF	or	unknown	XML	file	as	if	it
was	DITA),	a	referenced	file	that
uses	elements	which	are	not
allowed,	or	a	referenced	DITA
file	that	has	errors	and	cannot
be	parsed	as	XML.	You	could
also	be	using	a	specialized	DITA
document	type	that	needs
external	plug-ins	in	order	to	be
parsed	correctly.	The	message
issued	by	the	XML	parser
should	provide	additional
information	to	help	diagnose	the
cause.

DOTJ014W Warning Found	an	indexterm	element	with	no
content.	Setting	the	term	to	***.

An	empty	<indexterm>	element
was	found,	and	will	appear	in
the	index	as	***.	This	index	term
should	be	removed	from	the
source.

DOTJ015F Fatal Log	directory	cannot	be	null.	Please
specify	a	valid	directory	for	the	build	log. 	

DOTJ016F Fatal Failed	to	create	log	directory	'%1'.	Please
specify	a	valid	directory	for	the	build	log. 	

DOTJ017F Fatal No	input	file	was	specified;	failed	to
initialize	log	name	based	on	input	file.

The	transform	failed	because
the	input	file	was	not	specified;
log	file	names	are	based	on	the
name	of	the	input	file,	so	no	log
could	be	generated.

DOTJ018I Informational

Log	file	'%1'	was	generated	successfully
in	directory	'%2'.	Any	messages	from	the
transformation	process	are	available	in
the	log	file;	additional	details	about	each
message	are	available	in	the	DITA-OT
user	guide.

	

DOTJ020W Warning

At	least	one	plug-in	in	'%1'	is	required	by
plug-in	'%2'.	Plug-in	'%2'	cannot	be
loaded.	Check	and	see	whether	all
prerequisite	plug-ins	are	installed	in
toolkit.

This	will	appear	when	one
installed	plug-in	requires
another	in	order	to	function
correctly,	but	the	required	plug-
in	is	not	found.	The	installed
plug-in	will	be	ignored.

DOTJ021W Warning

File	'%1'	will	not	generate	output	since	it	is
invalid	or	all	of	its	content	has	been
filtered	out	by	the	ditaval	file.	Please
check	the	file	'%1'	and	the	ditaval	file	to
see	if	this	is	the	intended	result.

This	may	appear	if	filter
conditions	on	the	root	element
of	a	topic	cause	the	entire	topic
to	be	filtered	out.	To	remove	this
message,	you	could	place	any
filter	conditions	on	the	reference
to	this	file,	which	will	prevent	the
build	from	accessing	this	file.

DOTJ022F Fatal

Failed	to	parse	the	input	file	'%1'	because
all	of	its	content	has	been	filtered	out.	This
will	happen	if	the	input	file	has	filter
conditions	on	the	root	element,	and	a
ditaval	excludes	all	content	based	on
those	conditions.

Either	the	input	file	or	the	ditaval
file	should	change,	otherwise
your	build	is	explicitly	excluding
all	content.

DOTJ023E Error Failed	to	get	the	specified	image	file	'%1',
so	it	will	not	be	included	with	your	output.

Check	whether	the	image	exists
in	the	source	location	or	already
exists	in	the	output	directory.
This	message	should	only
appear	in	the	following	cases:

DOTJ025E Error

The	input	to	the	"topic	merge"	transform
process	could	not	be	found.	Correct	any
earlier	transform	errors	and	try	the	build
again,	or	see	the	DITA-OT	User	Guide	for
additional	causes.

DOTJ026E Error

The	"topic	merge"	did	not	generate	any
output.	Correct	any	earlier	transform
errors	and	try	the	build	again,	or	see	the
DITA-OT	User	Guide	for	additional
causes.

This	message	should	only
appear	if	an	Ant	build	or	plug-in
is	directly	calling	the	toolkit's
topic	merge	module,	or	if	earlier
errors	resulted	in	problems	with
some	of	the	content.	If	the	topic
merge	module	is	called
correctly,	then	this	indicates	a
program	error	that	should	be
reported	to	the	DITA-OT
development	team,	at	
bug	and	feature	tracker

DOTJ028E Error

No	format	attribute	was	found	on	a
reference	to	file	'%1',	which	does	not
appear	to	be	a	DITA	file.	If	this	is	not	a

When	referencing	a	non-DITA
file,	the	format	attribute	should
indicate	the	type	of	file
referenced	(such	as	"html"	for
HTML	topics	or	"pdf"	for	PDF

https://github.com/dita-ot/dita-ot/issues

DITA	file,	set	the	format	attribute	to	an
appropriate	value,	otherwise	set	the
format	attribute	to	"dita".

files).	Otherwise,	the	transform
may	attempt	to	parse	the
referenced	document	as	a	DITA
topic.

DOTJ029I Informational

No	'domains'	attribute	was	found	for
element	'<%1>'.	This	generally	indicates
that	your	DTD	or	Schema	was	not
developed	properly	according	to	the	DITA
specification.

The	domains	attribute	is	used	in
specialized	DITA	documents	to
help	determine	which	domain
elements	are	legal.	This
message	will	only	appear	if	DITA
specialization	was	not	defined
properly.

DOTJ030I Informational

No	'class'	attribute	for	was	found	for
element	'<%1>'.	This	generally	indicates
that	your	DTD	or	Schema	was	not
developed	properly	according	to	the	DITA
specification.

All	specialized	DITA	elements
must	define	a	class	attribute	to
provide	ancestry	information.
This	message	will	only	appear	a
specialized	DITA	element	did
not	define	a	class	attribute.

DOTJ031I Informational

No	specified	rule	for	'%1'	was	found	in	the
ditaval	file.	This	value	will	use	the	default
action,	or	a	parent	prop	action	if	specified.
To	remove	this	message,	you	can	specify
a	rule	for	'%1'	in	the	ditaval	file.

This	informational	message	is
intended	to	help	you	catch	filter
conditions	that	may	have	been
specified	improperly;	if	the	value
is	correct,	no	action	is	needed.

DOTJ033E Error
No	valid	content	is	found	in	topicref	'%1'
during	chunk	processing.	Please	specify
an	existing	and	valid	topic	for	the	topicref.

	

DOTJ034F Fatal

Failed	to	parse	the	input	file	'%1'	(the
content	of	the	file	is	not	valid).	If	the	input
file	'%1'	does	not	have	a	DOCTYPE
declaration,	please	make	sure	that	all
class	attributes	are	present	in	the	file.

DITA	processing	is	based	on
class	attributes	defined	for	every
element.	Usually	these	are
defaulted	in	the	DTD	or
Schema;	if	no	DTD	or	Schema
is	used,	the	class	attributes
must	be	explicitly	included	in	the
map	or	topic.

The	file	"%1"	referenced	by	"%2"	is

This	
outside	the	scope	of	the	map;
for	example,	if	the	main	input
map	references	

DOTJ035F Fatal

outside	the	scope	of	the	input	dita/map
directory.	If	you	want	to	lower	the	severity
level,	please	use	the	Ant	parameter
'outer.control',	and	set	the	value	to	"warn"
or	"quiet".	Otherwise,	move	the
referenced	file	"%1"	into	the	input
dita/map	directory.

directory/some.dita"

result	would	cause	an	output	file
to	be	created	outside	of	the
output	directory.	Please	see
DITA-OT	Ant	arguments
(outer.control	and
generate.copy.outer)
OT	Command	line	tool
arguments	(/outercontrol	and
/generateouter)

DOTJ036W Warning

The	file	"%1"	referenced	by	"%2"	is
outside	the	scope	of	the	input	dita/map
directory.	If	you	do	not	want	to	see	the
warning	message,	please	use	the	Ant
parameter	'outer.control',	and	set	the
value	to	"quiet".	Otherwise,	move	the
referenced	file	"%1"	into	the	input
dita/map	directory.

This	
outside	the	scope	of	the	map;
for	example,	if	the	main	input
map	references	
directory/some.dita"

result	would	cause	an	output	file
to	be	created	outside	of	the
output	directory.	
DITA-OT	Ant	arguments
(outer.control	and
generate.copy.outer)
OT	Command	line	tool
arguments	(/outercontrol	and
/generateouter)

DOTJ037W Warning

The	XML	schema	and	DTD	validation
function	of	the	parser	is	turned	off.	Please
make	sure	the	input	is	normalized	DITA
with	class	attributes	included,	otherwise	it
will	not	be	processed	correctly.

DITA	processing	is	based	on
class	attributes	defined	for	every
element.	Usually	these	are
defaulted	in	the	DTD	or
Schema;	if	validation	against	the
DTD	or	Schema	is	turned	off,
the	class	attributes	must	be
explicitly	included	in	the	map	or
topic.

DOTJ038E Error

The	tag	"%1"	is	specialized	from
unrecognized	metadata.	Please	make
sure	that	tag	"%1"	is	specialized	from	an
existing	metadata	tag	in	the	core	DITA
vocabulary.

This	appears	to	indicate	an	error
in	creating	specialized	metadata
elements.	Please	verify	that	the
document	type	you	are	using	is
complete	and	complies	with

DITA	Specialization	rules.

DOTJ039E Error

There	is	no	target	specified	for	conref
push	action	"pushafter".	Found	in
file="%1",	element="%2".	Please	add
<elementname	conref="pushtarget"
conaction="mark">	before	current
element.

Please	see	the	topic	on	
Push
for	details	on	expected	syntax
for	this	function.

DOTJ040E Error

An	element	uses	the	attribute
conaction="replace",	but	a	conref	attribute
is	not	found	in	the	expected	location.
Found	in	file="%1",	element="%2".

Please	see	the	topic	on	
Push
for	details	on	expected	syntax
for	this	function.

DOTJ041E Error

The	attribute	conref="%1"	uses	invalid
syntax.	The	value	should	contain	'#'
followed	by	a	topic	or	map	ID,	optionally
followed	by	'/elemID'	for	a	sub-topic
element.

The	conref	attribute	must	be	a
URI	reference	to	a	DITA
element.	Please	see	the	topic
on	URI-based	addressing
DITA	specification	for	details	on
the	expected	syntax.

DOTJ042E Error
Two	elements	both	use	conref	push	to
replace	the	target	"%1".	Please	delete
one	of	the	duplicate	"replace"	actions.

The	conref	push	function	was
used	to	replace	a	single	element
with	two	or	more	alternatives.
Only	one	element	may	directly
replace	another	using	conref
push.	See	
DITA	specification	for	more
information	about	the	conref
push	"replace"	function.

DOTJ043W Warning
The	conref	push	function	is	trying	to
replace	an	element	that	does	not	exist
(element	"%1"	in	file	"%2").

The	target	for	a	conref	push
action	does	not	exist;	please
make	sure	that	the	syntax	is
correct	and	that	the	target
exists.	See	the	topic	on	
based	addressing
specification	for	details	on	the
expected	syntax.	If	the	syntax	is
correct,	it	is	possible	that	the
target	was	filtered	out	of	your
build	using	a	DITAVAL	file.

There	is	a	redundant	conref	action Please	see	the	topic	on	

http://docs.oasis-open.org/dita/v1.2/os/spec/common/theconactionattribute.html
http://docs.oasis-open.org/dita/v1.2/os/spec/common/theconactionattribute.html
http://docs.oasis-open.org/dita/v1.2/os/spec/archSpec/uri-based-addressing.html
http://docs.oasis-open.org/dita/v1.2/os/spec/archSpec/uri-based-addressing.html

DOTJ044W Warning "pushbefore".	Found	in	file="%1",
element="%2".	Please	make	sure	that
"mark"	and	"pushbefore"	occur	in	pairs.

Push
for	details	on	expected	syntax
for	this	function.

DOTJ045I Informational
The	key	"%1"	is	defined	more	than	once
in	the	same	map	file.	The	reference
href="%2"	is	ignored.

No	response	is	needed	if	the
keys	are	defined	as	expected;
this	is	informational	only,	to	help
catch	incorrectly	defined	keys.

DOTJ046E Error

Conkeyref="%1"	can	not	be	resolved
because	it	does	not	contain	a	key	or	the
key	is	not	defined.	The	build	will	use	the
conref	attribute	for	fallback,	if	one	exists.

See	
details	on	expected	syntax	and
usage.

DOTJ047I Informational
Unable	to	find	key	definition	for
keyref="%1",	href	may	be	used	as	fallback
if	it	exists.

This	message	is	intended	to
help	you	locate	incorrectly
specified	keys;	if	the	key	was
specified	correctly,	this	message
may	be	ignored.

DOTJ049W Warning

The	attribute	value	%1="%3"	on	element
"%2"	does	not	comply	with	the	specified
subject	scheme.	According	to	the	subject
scheme	map,	the	following	values	are
valid	for	the	%1	attribute:	%4

A	DITA	
was	used	to	limit	values	that	are
available	to	the	specified
attribute.	Please	correct	the
attribute	so	that	it	uses	one	of
the	allowed	values.

DOTJ050W Warning
Found	an	<index-see>	or	<index-see-
also>	reference	to	the	term	'%1',	but	that
term	is	not	defined	in	the	index.

The	Eclipse	index	will	contain	a
value	such	as	"See	also
otherEntry",	but	otherEntry	does
not	exist	in	this	index.	The	index
reference	will	be	broken	unless
this	plug-in	is	
Eclipse	with	another	plug-in	that
defines	otherEntry	as	an	index
term.
The	target	for	a	coderef
element,	which	specifies	an
external	text-based	file,	could
not	be	located	or	loaded.	Please
verify	that	the	reference	is
correct.

http://docs.oasis-open.org/dita/v1.2/os/spec/common/theconactionattribute.html
http://docs.oasis-open.org/dita/v1.2/os/spec/common/theconactionattribute.html

DOTJ051E Error Unable	to	load	target	for	coderef	"%1".

Note	that	for	security	reasons,
references	to	code	samples
outside	of	the	scope	of	the	map
directory	are	not	supported	by
default,	as	this	could	allow	a
reference	to	access	and	display
any	restricted	or	hidden	file	on
the	system.	If	you	are	certain
that	the	path	is	valid	and	the	file
should	be	loaded,	the	current
workaround	is	to	set	a
parameter	to	allow	these
references.	See	
arguments	(outer.control	and
generate.copy.outer)
OT	Command	line	tool
arguments	(/outercontrol	and
/generateouter)

DOTJ052E Error

Code	reference	charset	"%1"	not
supported.	See	the	DITA-OT	User	guide
for	supported	charset	values	on	the
format	attribute.

The	DITA-OT	supports	a	special
syntax	on	coderef	elements	to
specify	the	character	set	of	the
target	document.	See	
functionality
expected	syntax.

DOTJ053W Warning

Input	file	'%1'	is	not	valid	DITA	file	name.
Please	check	'%1'	to	see	if	it	is	correct.
The	extensions	".dita"	or	".xml"	are
supported	for	DITA	topics.

By	default,	the	DITA-OT
supports	the	extensions	"dita"
and	"xml"	for	DITA	topics,	as
mandated	by	the	DITA
Specification.	Please	verify	that
your	topics	use	one	of	these
extensions,	or	configure	the
toolkit	to	allow	additional
extensions.

DOTJ054E Error Unable	to	parse	invalid	%1	attribute	value
"%2" 	

DOTJ055E Error Invalid	key	name	"%1". 	

http://docs.oasis-open.org/dita/v1.2/os/spec/common/theconkeyrefattribute.html

DOTJ056E Error Invalid	xml:lang	"%1". 	

DOTJ057E Error The	id	attribute	value	"%1"	is	not	unique
within	the	topic	that	contains	it. 	

DOTJ058E Error

Both	%1	and	%2	attributes	defined.	A
single	element	may	not	contain	both
generalized	and	specialized	values	for	the
same	attribute.

	

DOTJ059E Error Invalid	key	scope	name	"%1". 	

DOTJ060W Warning

Key	"%1"	was	used	in	conkeyref	but	is	not
bound	to	a	DITA	topic	or	map.	Cannot
resolve	conkeyref	value	"%2"	as	a	valid
conref	reference.

	

DOTX001WWarning

No	string	named	'%1'	was	found	for
language	'%2'.	Using	the	default	language
'%3'.	Add	a	mapping	between	default
language	and	desired	language	for	the
string	'%1'.

This	build	uses	generated	text,
such	as	the	phrase	"Related
information"	(which	is	generated
above	many	link	groups).	The
toolkit	was	unable	to	locate	the
string	
language,	so	the	string	will
appear	in	the	default	language.
This	generally	indicates	that	the
toolkit's	strings	needs	to	be
updated	to	support	your
language,	or	that	your	language
setting	is	incorrect.

DOTX002WWarning The	title	element	or	attribute	in	the
ditamap	is	required	for	Eclipse	output.

The	Eclipse	help	system
requires	a	title	in	the	project	files
generated	from	your	map.
Please	add	a	title	to	your	input
map	to	get	valid	Eclipse	help
output.

DOTX003I Informational

The	anchorref	attribute	should	either
reference	another	dita	map	or	an	Eclipse
XML	TOC	file.	The	value	'%1'	does	not
appear	to	reference	either.

Eclipse	uses	anchor	references
to	connect	with	other	TOC	files.
For	this	to	work	in	content
generated	from	a	DITA	map,	the
anchorref	element	must
reference	either	an	existing
Eclipse	TOC	XML	file,	or

another	DITA	map	(which	will
presumably	also	be	converted	to
an	Eclipse	TOC).

DOTX004I Informational

Found	a	navref	element	that	does	not
reference	anything.	The	navref	element
should	either	reference	another	dita	map
or	an	Eclipse	XML	file.

Eclipse	builds	use	DITA's
<navref>	element	to	pull	in	other
Eclipse	TOC	files.	The	build
found	a	<navref>	element	that
does	not	reference	any	other
file;	the	element	will	be	ignored.

DOTX005E Error

Unable	to	find	navigation	title	for
reference	to	'%1'.	The	build	will	use	'%1'
as	the	title	in	the	Eclipse	Table	of
Contents.

To	remove	this	message,
provide	a	navigation	title	for	the
referenced	object	in	the	map	or
topic,	or	ensure	that	you	are
referencing	a	valid	local	DITA
target.

DOTX006E Error

Unknown	file	extension	in	href="%1".
References	to	non-DITA	resources	should
set	the	format	attribute	to	match	the
resource	(for	example,	'txt',	'pdf',	or	'html').

Set	the	format	attribute	to
identify	the	format	of	the	file.	If
the	reference	is	to	a	DITA
document,	ensure	that	the
document	uses	a	valid	DITA
extension	(default	supported
extensions	are	"dita"	and	"xml").

DOTX007I Informational

Only	DITA	topics,	HTML	files,	and	images
may	be	included	in	your	compiled	CHM
file.	The	reference	to	"%1"	will	be	ignored.
To	remove	this	message,	you	can	set	the
toc="no"	or	processing-role="resource-
only"	attribute	on	your	topicref.

The	HTML	Help	compiler	will
only	include	some	types	of
information	in	the	compiled
CHM	file;	the	current	reference
will	not	be	included.

DOTX008E Error File	'%1'	does	not	exist	or	cannot	be
loaded.

Ensure	that	the	file	exists	and
can	be	read.	
of	the	file	in	this	message	may
have	be	changed	to	use	a
standard	dita	topic	file	extension
('.dita'	or	'.xml'),	instead	of	the
original	extension	used	by	the
file;	it	may	also	include	a	path	to
the	temporary	directory	rather
than	to	the	original.

DOTX008WWarning
File	'%1'	cannot	be	loaded,	and	no
navigation	title	is	specified	for	the	table	of
contents.

To	fix	the	table	of	contents,
specify	a	navigation	title	in	your
map	or	ensure	that	the
referenced	file	is	local	and	can
be	accessed.	
name	of	the	file	in	this	message
may	have	be	changed	to	use	a
standard	dita	topic	file	extension
('.dita'	or	'.xml'),	instead	of	the
original	extension	used	by	the
file;	it	may	also	include	a	path	to
the	temporary	directory	rather
than	to	the	original.

DOTX009WWarning Could	not	retrieve	a	title	from	'%1'.	Using
'%2'	instead.

No	title	was	found	in	the
specified	topic,	so	the	table	of
contents	will	use	the	indicated
fallback	value	for	this	topic.

DOTX010E Error Unable	to	find	target	for	conref="%1".

The	conref	attribute	must	be	a
URI	reference	to	an	existing
DITA	element.	Please	see	the
topic	on	
in	the	DITA	specification	for
details	on	the	expected	syntax.
Note	that	the	name	of	the	file	in
this	message	may	have	be
changed	to	use	a	standard	dita
topic	file	extension	('.dita'	or
'.xml'),	instead	of	the	original
extension	used	by	the	file;	it
may	also	include	a	path	to	the
temporary	directory	rather	than
to	the	original.

If	the	target	element	exists	in
your	source	file,	check	to	make
sure	it	is	not	filtered	out	of	the
build	with	a	DITAVAL	file	(which
will	remove	the	target	before

conref	processing	runs).

DOTX011WWarning

There	is	more	than	one	possible	target	for
the	reference	conref="%1".	Only	the	first
will	be	used.	Remove	the	duplicate	id	in
the	referenced	file.

When	pulling	content	with	a
conref	attribute,	you	may	only
pull	from	a	single	element,	but
the	target	ID	appears	twice	in
the	referenced	topic.	
the	name	of	the	file	in	this
message	may	have	be	changed
to	use	a	standard	dita	topic	file
extension	('.dita'	or	'.xml'),
instead	of	the	original	extension
used	by	the	file;	it	may	also
include	a	path	to	the	temporary
directory	rather	than	to	the
original.

DOTX012WWarning

When	you	conref	another	topic	or	an	item
in	another	topic,	the	domains	attribute	of
the	target	topic	must	be	equal	to	or	a
subset	of	the	current	topic's	domains
attribute.	Put	your	target	under	an
appropriate	domain.	You	can	see	the
messages	guide	for	more	help.

This	message	is	deprecated	and
should	no	longer	appear	in	any
logs.

DOTX013E Error
A	element	with	attribute	conref="%1"
indirectly	includes	itself,	which	results	in
an	infinite	loop.

This	may	appear	if	(for	example)
you	have	a	
references	another	phrase,	but
that	phrase	itself	contains	a
reference	to	the	original.	This
will	result	in	an	infinite	loop.	The
toolkit	will	stop	following	the
conref	trail	when	this	is
detected;	you	will	need	to
correct	the	reference	in	your
source	files.	
of	the	file	in	this	message	may
have	be	changed	to	use	a
standard	dita	topic	file	extension
('.dita'	or	'.xml'),	instead	of	the
original	extension	used	by	the

http://docs.oasis-open.org/dita/v1.2/os/spec/archSpec/uri-based-addressing.html

file;	it	may	also	include	a	path	to
the	temporary	directory	rather
than	to	the	original.

DOTX014E Error

The	attribute	conref="%1"	uses	invalid
syntax.	Conref	references	to	a	map
element	should	contain	'#'	followed	by	an
ID,	such	as	mymap.ditamap#mytopicrefid.

The	conref	attribute	must	be	a
URI	reference	to	a	DITA
element.	Please	see	the	topic
on	URI-based	addressing
DITA	specification	for	details	on
the	expected	syntax.

DOTX015E Error

The	attribute	conref="%1"	uses	invalid
syntax.	The	value	should	contain	'#'
followed	by	a	topic	or	map	ID,	optionally
followed	by	'/elemID'	for	a	sub-topic
element.

The	conref	attribute	must	be	a
URI	reference	to	a	DITA
element.	Please	see	the	topic
on	URI-based	addressing
DITA	specification	for	details	on
the	expected	syntax.	
the	name	of	the	file	in	this
message	may	have	be	changed
to	use	a	standard	dita	topic	file
extension	('.dita'	or	'.xml'),
instead	of	the	original	extension
used	by	the	file;	it	may	also
include	a	path	to	the	temporary
directory	rather	than	to	the
original.

DOTX016WWarning

A	reference	to	"%2"	appears	to	reference
a	DITA	document,	but	the	format	attribute
has	inherited	a	value	of	"%1".	The
document	will	not	be	processed	as	DITA.

This	warning	is	intended	to
catch	instances	where	a	non-
DITA	format	setting
unexpectedly	cascades	to	a
DITA	topic,	which	will	prevent
the	topic	from	being	processed.
To	remove	this	message,	set	the
format	attribute	directly	on	the
indicated	reference.	
the	name	of	the	file	in	this
message	may	have	be	changed
to	use	a	standard	dita	topic	file
extension	('.dita'	or	'.xml'),
instead	of	the	original	extension

http://docs.oasis-open.org/dita/v1.2/os/spec/archSpec/uri-based-addressing.html
http://docs.oasis-open.org/dita/v1.2/os/spec/archSpec/uri-based-addressing.html

used	by	the	file;	it	may	also
include	a	path	to	the	temporary
directory	rather	than	to	the
original.

DOTX017E Error
Found	a	link	or	cross	reference	with	an
empty	href	attribute	(href="").	Remove	the
empty	href	attribute	or	provide	a	value.

Found	a	value	such	as	<xref
href="">link	text</xref>.	The
empty	href	attribute	is	not
serving	a	purpose	and	has
caused	problems	with	some
tools	in	the	past;	you	should
remove	the	attribute	entirely	or
specify	a	value.

DOTX018I Informational

The	type	attribute	on	a	topicref	was	set	to
'%1',	but	the	topicref	references	a	more
specific	'%2'	topic.	Note	that	the	type
attribute	cascades	in	maps,	so	the	value
'%1'	may	come	from	an	ancestor	topicref.

The	type	attribute	in	DITA	is
intended	to	describe	the	type	of
the	target;	for	example,	a
reference	to	a	concept	topic
may	use	type="concept".
Generally,	this	attribute	is
optional,	and	the	DITA-OT	build
will	automatically	determine	the
value	during	processing.	In	this
case,	the	type	attribute	lists	a
more	general	type	than	what	is
actually	found.	This	is	not	an
error	but	may	result	in
unexpected	sorting	for	links	to
this	topic.

DOTX019WWarning

The	type	attribute	on	a	topicref	was	set	to
'%1',	but	the	topicref	references	a	'%2'
topic.	This	may	cause	your	links	to	sort
incorrectly	in	the	output.	Note	that	the
type	attribute	cascades	in	maps,	so	the
value	'%1'	may	come	from	an	ancestor
topicref.

The	type	attribute	in	DITA	is
intended	to	describe	the	type	of
the	target;	for	example,	a
reference	to	a	concept	topic
may	use	type="concept".
Generally,	this	attribute	is
optional,	and	the	DITA-OT	build
will	automatically	determine	the
value	during	processing.	In	this
case,	the	specified	type	value
does	not	match	the	target,	which

may	cause	your	links	to	sort
inappropriately.

DOTX020E Error

Missing	navtitle	attribute	or	element	for
peer	topic	"%1".	References	must	provide
a	local	navigation	title	when	the	target	is
not	a	local	DITA	resource.

The	DITA-OT	is	only	able	to
dynamically	retrieve	titles	when
the	target	is	a	local	(not	peer	or
external)	DITA	resource.

DOTX021E Error

Missing	navtitle	attribute	or	element	for
non-DITA	resource	"%1".	References
must	provide	a	local	navigation	title	when
the	target	is	not	a	local	DITA	resource.

The	DITA-OT	is	only	able	to
dynamically	retrieve	titles	when
the	target	is	a	local	DITA
resource.

DOTX022WWarning
Unable	to	retrieve	navtitle	from	target:
'%1'.	Using	linktext	(specified	in
topicmeta)	as	the	navigation	title.

The	build	was	unable	to	get	a
title	from	the	referenced	topic;
instead,	a	navigation	title	will	be
created	based	on	the	specified
<linktext>	element	inside	of
<topicmeta>.

DOTX023WWarning Unable	to	retrieve	navtitle	from	target:
'%1'.

If	the	target	is	a	local	DITA	topic,
ensure	the	reference	is	correct
and	the	topic	is	available.
Otherwise,	provide	a	
title,	and	ensure	the	scope	and
format	attributes	are	set
appropriately.

DOTX024E Error

Missing	linktext	and	navtitle	for	peer	topic
"%1".	References	must	provide	a	local
navigation	title	when	the	target	is	not	a
local	DITA	resource.

The	DITA-OT	is	only	able	to
dynamically	retrieve	titles	and
link	text	when	the	target	is	a
local	(not	peer	or	external)	DITA
resource.

DOTX025E Error

Missing	linktext	and	navtitle	for	non-DITA
resource	"%1".	References	must	provide
a	local	navigation	title	when	the	target	is
not	a	local	DITA	resource.

The	DITA-OT	is	only	able	to
dynamically	retrieve	titles	when
the	target	is	a	local	DITA
resource.

DOTX026WWarning Unable	to	retrieve	linktext	from	target:
'%1'.	Using	navigation	title	as	fallback.

The	referenc	to	this	document
did	not	specify	any	link	text	for
generated	map-based	links;	the
navigation	title	will	be	used	as
fallback.
The	referenced	file	did	not

DOTX027WWarning Unable	to	retrieve	linktext	from	target:
'%1'.

specify	any	link	text	for
generated	map-based	links,	and
no	fallback	text	could	be
located.	Any	links	generated
from	this	reference	will	have
incorrect	link	text.

DOTX028E Error
Link	or	cross	reference	must	contain	a
valid	href	or	keyref	attribute;	no	link	target
is	specified.

The	link	or	cross	reference	has
no	target	specified	and	will	not
generate	a	link.

DOTX029I Informational

The	type	attribute	on	a	%1	element	was
set	to	%3,	but	the	reference	is	to	a	more
specific	%4	%2.	This	may	cause	your
links	to	sort	incorrectly	in	the	output.

The	type	attribute	in	DITA	is
intended	to	describe	the	type	of
the	target;	for	example,	a
reference	to	a	concept	topic
may	use	type="concept".
Generally,	this	attribute	is
optional,	and	the	DITA-OT	build
will	automatically	determine	the
value	during	processing.	In	this
case,	the	type	attribute	lists	a
more	general	type	than	what	is
actually	found.	This	is	not	an
error	but	may	result	in
unexpected	sorting	for	links	to
this	topic.

DOTX030WWarning

The	type	attribute	on	a	%1	element	was
set	to	%3,	but	the	reference	is	to	a	%4
%2.	This	may	cause	your	links	to	sort
incorrectly	in	the	output.

The	type	attribute	in	DITA	is
intended	to	describe	the	type	of
the	target;	for	example,	a
reference	to	a	concept	topic
may	use	type="concept".
Generally,	this	attribute	is
optional,	and	the	DITA-OT	build
will	automatically	determine	the
value	during	processing.	In	this
case,	the	specified	type	value
does	not	match	the	target,	which
may	cause	your	links	to	sort
inappropriately.
The	build	attempted	to	access

DOTX031E Error The	file	%1	is	not	available	to	resolve	link
information.

the	specified	file	in	order	to
retrive	a	title	or	short
description,	but	the	file	could	not
be	found.	If	the	file	exists,	it	is
possible	that	
used	to	remove	the	file's
contents	from	the	build.	Be
aware	that	the	path	information
above	may	not	match	the	link	in
your	topic.

DOTX032E Error

Unable	to	retrieve	link	text	from	target:
'%1'.	If	the	target	is	not	accessible	at	build
time,	or	does	not	have	a	title,	provide	the
link	text	inside	the	reference.

When	a	link	or	cross	reference
does	not	have	content,	the	build
will	attempt	to	pull	the	target's
title	for	use	as	link	text.	If	the
target	is	unavailable,	be	sure	to
set	the	scope	attribute	to	an
appropriate	value.	If	the	target
does	not	have	a	title	(such	as
when	linking	to	a	paragraph),	be
sure	to	provide	link	text	inside
the	cross	reference.

DOTX033E Error Unable	to	generate	link	text	for	a	cross
reference	to	a	list	item:	'%1'

An	<xref>	element	specifies
type="li",	which	indicates	a	link
to	a	list	item,	but	the	item
number	could	not	be	determined
to	use	as	link	text.	Please
specify	link	text	inside	the
reference,	or	ensure	that	you
are	referencing	an	available	list
item.

DOTX034E Error Unable	to	generate	link	text	for	a	cross
reference	to	an	undered	list	item:	'%1'

The	cross	reference	goes	to	a
list	item	in	an	unordered	list.	The
process	could	not	automatically
generate	link	text	because	the
list	item	is	not	numbered.	Please
provide	link	text	within	the	cross
reference.
An	<xref>	element	specifies

DOTX035E Error Unable	to	generate	the	correct	number	for
a	cross	reference	to	a	footnote:	'%1'

type="fn",	which	indicates	a	link
to	a	footnote,	but	the	footnote
number	could	not	be	determined
to	use	as	link	text.	Please
specify	link	text	inside	the
reference,	or	ensure	that	you
are	referencing	an	available
footnote.

DOTX036E Error
Unable	to	generate	link	text	for	a	cross
reference	to	a	dlentry	(the	dlentry	or	term
could	not	be	found):	'%1'

An	<xref>	element	specifies
type="dlentry",	which	indicates	a
link	to	a	definition	list	entry,	but
the	term	could	not	be	located	to
use	as	link	text.	Please	specify
link	text	inside	the	reference,	or
ensure	that	you	are	referencing
an	available	definition	list	entry

DOTX037WWarning No	title	found	for	this	document;	using
"***"	in	XHTML	title	bar.

No	title	was	found	for	the	current
document,	so	the	XHTML	output
file	will	set	the	<title>	to	"***".
This	value	generally	appears	in
the	title	bar	at	the	top	of	a
browser.

DOTX038I Informational

The	longdescref	attribute	on	tag	'%1'	will
be	ignored.	Accessibility	for	object
elements	needs	to	be	handled	another
way.

The	<object>	element	in	XHTML
does	not	support	using
longdescref	for	accessibility.	To
make	the	object	accessible,	you
may	need	to	add	text	before	or
after	the	element.	You	may	also
be	able	to	handle	it	with	a
<param>	element	inside	the
object.

DOTX039WWarning

Required	cleanup	area	found.	To	remove
this	message	and	hide	the	content,	build
your	content	without	using	the	DRAFT
parameter.

This	message	is	generated
when	creating	draft	output	in
order	to	help	you	locate	all
topics	that	need	to	be	cleaned
up;	the	cleanup	items	will
appear	in	your	output	with
styling	that	makes	it	stand	out.

The	content	will	be	hidden	when
the	draft	parameter	is	not	active.

DOTX040I Informational

Draft	comment	area	found.	To	remove	this
message	and	hide	the	comments,	build
your	content	without	using	the	DRAFT
parameter.

This	message	is	generated
when	creating	draft	output	in
order	to	help	you	locate	all
topics	that	have	draft	comments.
Each	comment	will	appear	in
your	XHTML	output;	the
comments	will	be	hidden	when
the	draft	parameter	is	not	active.

DOTX041WWarning
Found	more	than	one	title	element	in	a
section.	Using	the	first	one	for	the
section's	title.

Because	of	the	way	XML	and
DITA	are	defined,	it	is	generally
not	possible	to	prohibit	adding	a
second	title	to	a	section	during
editing	(or	to	force	that	title	to
come	first).	However,	the	DITA
specification	states	that	only	one
title	should	be	used	in	a	section.
When	multiple	titles	are	found,
only	the	first	one	will	appear	in
the	output.

DOTX042I Informational
DITAVAL	based	flagging	is	not	currently
supported	for	inline	phrases	in	XHTML;
ignoring	flag	value	on	'%1'	attribute.

If	it	is	important	to	flag	this	piece
of	information,	try	placing	a	flag
on	the	block	element	that
contains	your	phrase.	If	you	just
want	to	have	an	image	next	to
the	phrase,	you	may	place	an
image	directly	into	the
document.

DOTX043I Informational The	link	to	'%1'	may	appear	more	than
once	in	'%2'.

The	DITA-OT	is	able	to	remove
duplicate	links	in	most	cases.
However,	if	two	links	to	the
same	resource	use	different
attributes	or	link	text,	it	is
possible	for	them	to	appear
together.	For	example,	if	the
same	link	shows	up	with
role="next"	and	again	with	no

specified	role,	it	may	show	up	as
both	the	"Next	topic"	link	and	as
a	related	link.	Note	that	links
generated	from	a	<reltable>	in	a
DITA	Map	will	have	the	role
attribute	set	to	"friend".

DOTX044E Error

The	area	element	in	an	image	map	does
not	specify	a	link	target.	Please	add	an
xref	element	with	a	link	target	to	the	area
element.

The	<area>	element	in	an	image
map	must	provide	a	link	target
for	the	specified	area.	Please
add	an	<xref>	element	as	a
child	of	<area>	and	ensure	that
it	specifies	a	link	target.

DOTX045WWarning

The	area	element	in	an	image	map	should
specify	link	text	for	greater	accessibility.
Link	text	should	be	specified	directly	when
the	target	is	not	a	local	DITA	resource.

Cross	reference	text	inside	the
<area>	element	is	used	to
provide	accessibility	for	screen
readers	that	can	identify
different	areas	of	an	image	map.
If	text	cannot	be	retrieved
automatically	by	referencing	a
DITA	element,	it	should	be
specified	directly	in	the	cross
reference.

DOTX046WWarning
Area	shape	should	be:	default,	rect,	circle,
poly,	or	blank	(no	value).	The	value	'%1'	is
not	recognized.

The	specified	value	was	passed
as-is	through	to	the	area
element	in	the	XHTML.

DOTX047WWarning Area	coordinates	are	blank.	Coordinate
points	for	the	shape	need	to	be	specified.

The	area	element	is	intended	to
define	a	region	in	an	image
map;	coordinates	must	be
specified	in	order	to	define	that
region.

DOTX048I Informational

In	order	to	include	peer	or	external	topic
'%1'	in	your	help	file,	you	may	need	to
recompile	the	CHM	file	after	making	the

The	build	will	not	look	for	peer	or
external	topics	before	compiling
your	CHM	file,	so	they	may	not
be	included.	If	you	are
referencing	an	actual	HTML	file
that	will	not	be	available,	it
cannot	be	included	in	the
project,	and	you	should	set	the

file	available. toc	attribute	to	"no"	on	your
topicref	element.	Otherwise,
check	to	be	sure	your	HTML	file
was	included	in	the	CHM;	if	it
was	not,	you	will	need	to	place	it
in	the	correct	location	with	your
other	output	files	and	recompile.

DOTX049I Informational
References	to	non-dita	files	will	be
ignored	by	the	PDF,	ODT,	and	RTF	output
transforms.

The	PDF,	ODT,	and	RTF	output
processes	cannot	automatically
convert	non-DITA	content	into
DITA	in	order	to	merge	it	with
the	rest	of	your	content.	The
referenced	items	are	ignored.

DOTX050WWarning

Default	id	"org.sample.help.doc"	is	used
for	Eclipse	plug-in.	If	you	want	to	use	your
own	plug-in	id,	please	specify	it	using	the
id	attribute	on	your	map.

Eclipse	requires	that	an	ID	be
specified	when	creating	an
Eclipse	Help	project;	the	toolkit
expects	to	locate	that	ID	on	the
root	element	of	your	input	map.

DOTX052WWarning
No	string	named	'%1'	was	found	when
creating	generated	text;	using	the	value
'%1'	in	your	output	file.

The	toolkit	is	attempting	to	add
generated	text,	such	as	the
string	"Related	information"	that
appears	above	links.	The
requested	string	could	not	be
found	in	any	language.	Your
output	may	contain	a	meaningful
string,	or	it	may	contain	a	code
that	was	intended	to	map	to	a
string.	This	likely	indicates	an
error	in	a	plug-in	or	XSL
override;	either	the	string	was
requested	incorrectly,	or	you	will
need	to	provide	a	mapping	for
the	string	in	all	of	the	languages
you	require.

A	element	that	references	another	map
indirectly	includes	itself,	which	results	in

This	will	occur	if	a	map
references	another	map,	and
then	that	second	map	(or
another	further	nested	map)

DOTX053E Error an	infinite	loop.	The	original	map
reference	is	to	'%1'.

references	the	original	map.	The
result	is	an	infinite	nesting	of
maps;	please	correct	the	chain
of	map	references	to	remove
circular	reference.

DOTX054WWarning

Conflict	text	style	is	applied	on	the	current
element	based	on	DITAVAL	flagging	rules.
Please	check	ditaval	and	dita	source	to
make	sure	there	is	no	style	conflict	on	the
element	which	needs	to	be	flagged.

This	will	occur	when	a	DITAVAL
file	contains	multiple	styling
rules	that	apply	to	the	same
element.

DOTX055WWarning

Customized	stylesheet	uses	deprecated
template	"flagit".	Conditional	processing	is
no	longer	supported	using	this	template.
Please	update	your	stylesheet	to	use
template	"start-flagit"	instead	of
deprecated	template	"flagit".

The	"flagit"	
deprecated	in	DITA-OT	version
1.4,	when	the	OASIS	standard
formalized	the	DITAVAL	syntax.
The	template	is	removed	in
DITA-OT	1.6.	Stylesheets	that
used	this	template	need	to	be
updated.

DOTX056WWarning The	file	'%1'	is	not	available	to	resolve	link
information.

The	build	attempted	to	access
the	specified	file	in	order	to
retrive	a	title	or	short
description,	but	the	file	could	not
be	found.	If	the	file	exists,	it	is
possible	that	a	DITAVAL	file	was
used	to	remove	the	file's
contents	from	the	build.	Another
possibility	is	that	the	file	is
located	outside	of	the	scope	of
the	main	input	directory,	and
was	not	available	because	the
onlytopic.in.map
/onlytopicinmap
specified.	Be	aware	that	the
path	information	above	may	not
match	the	link	in	your	topic.

The	link	or	cross	reference	target	'%1'
cannot	be	found,	which	may	cause	errors

The	link	appears	to	use	valid
syntax	to	reference	a	DITA
element,	but	that	element

DOTX057WWarning creating	links	or	cross	references	in	your
output	file.

cannot	be	found.	Please	verify
that	the	element	exists,	and	is
not	removed	from	the	build	by
DITAVAL	based	filtering.

DOTX058WWarning

No	glossary	entry	was	found	associated
with	key	'%1'	on	%2	element.	The	build
will	try	to	determine	the	best	display	text
and	hover	text	for	terms	and
abbreviations.

Processing	for	terms,	acronyms,
or	abbreviated	forms	will
associate	the	key	from	the
element's	keyref	attribute	with	a
glossentry	(glossary	entry)	topic.
This	message	will	appear	if	the
key	was	defined,	but	was	not
associated	with	a	glossentry
topic.	The	process	will	try	to	use
the	best	available	fallback
(usually	the	title	of	the
referenced	topic).

DOTX060WWarning

Key	'%1'	was	used	in	an	abbreviated-form
element,	but	the	key	is	not	associated
with	a	glossary	entry.	Abbreviated-form
should	ONLY	be	used	to	reference	to	a
glossary	entry.

Processing	for	abbreviated	form
elements	will	associate	the	key
from	the	element's	keyref
attribute	with	a	glossentry
(glossary	entry)	topic.	This
message	will	appear	if	the	key
was	defined,	but	was	not
associated	with	a	glossentry
topic.	This	element	is	only
supported	with	keys	that	are
associated	with	glossary	topics;
the	element	will	not	generate
any	output.	Please	correct	the
reference,	or	use	a	different
element	to	reference	your	topic.

DOTX061WWarning

ID	'%1'	was	used	in	topicref	tag	but	did
not	reference	a	topic	element.	The	href
attribute	on	a	topicref	element	should	only

According	to	the	DITA
Specification,	references	from
maps	should	either	go	to	DITA
Maps,	DITA	Topics,	
DITA	resource.	References
below	the	topic	level	should	only
be	made	from	cross	references

reference	topic	level	elements. (using	<xref>	or	similar)	inside
of	a	topic.	For	details,	see	the
href	attribute	description	in	the
OASIS	standard's	definition	of
the	topicref	element

DOTX062I Informational

It	appears	that	this	document	uses
constraints,	but	the	conref	processor
cannot	validate	that	the	target	of	a	conref
is	valid.	To	enable	constraint	checking,
please	upgrade	to	an	XSLT	2.0	processor.

	

DOTX063WWarning

The	dita	document	'%1'	is	linked	to	from
your	content,	but	is	not	referenced	by	a
topicref	tag	in	the	ditamap	file.	Include	the
topic	in	your	map	to	avoid	a	broken	link.

This	will	appear	when
generating	PDF	or	ODT	output
that	includes	a	link	to	a	local
topic,	but	the	referenced	topic	is
not	part	of	the	map	itself.	This
will	result	in	a	broken	link.	You
should	include	the	topic	in	your
map	or	remove	the	link	from	the
build.

DOTX064WWarning
The	copy-to	attribute	[copy-to="%1"]	uses
the	name	of	a	file	that	already	exists,	so
this	attribute	is	ignored.

The	copy-to	attribute	is	used	to
copy	a	topic	over	a	document
that	already	exists.	Please	make
sure	that	any	copy-to	attributes
use	a	unique	name	so	that	the
copy	will	not	overwrite	existing
content.

DOTX065WWarning

Two	unique	source	files	each	specify
copy-to="%2",	which	results	in	a	collision.
The	value	associated	with	href="%1"	is
ignored.

Two	different	topics	are	copied
to	the	same	location	using	copy-
to;	as	a	result,	one	of	these	files
would	be	over-written.	Only	the
first	instance	of	this	copy-to
value	will	be	recognized.	Please
correct	the	use	of	copy-to
attributes.

Template	"%1"	is	deprecated.	Remove

This	message	indicates	that
your	custom	XSLT	or	plug-ins
rely	on	templates	that	will	be
removed	in	an	upcoming

http://docs.oasis-open.org/dita/v1.2/os/spec/langref/topicref.html

DOTX066WWarning references	to	this	template	from	your
custom	XSLT	or	plug-ins.

release.	Typically	this	occurs
when	a	named	template	has
been	converted	to	a	mode
template;	any	code	that	uses	the
deprecated	template	should	be
updated.

DOTX067E Error
No	string	named	'%1'	was	found	for
language	'%2'.	Add	a	mapping	for	the
string	'%1'.

This	PDF	build	uses	generated
text,	such	as	the	phrase
"Related	information"	(which	is
generated	above	many	link
groups).	The	toolkit	was	unable
to	locate	the	string	
specified	language,	so	the	string
will	appear	in	the	default
language.	This	generally
indicates	that	the	toolkit's	strings
needs	to	be	updated	to	support
your	language,	or	that	your
language	setting	is	incorrect.

DOTX068WWarning
A	topicref	element	that	references	a	map
contains	child	topicref	elements.	Child
topicref	elements	are	ignored.

	

PDFJ001E Error Index	entry	'%1'	is	dropped,	because
corresponding	group	is	not	found. 	

PDFJ002E Error
Build	stopped.	Problems	occured	during
Index	preprocess	task.	Please	check	the
messages	above.

	

PDFX001W Warning There	is	no	index	entry	found	which
closing	range	for	ID="%1". 	

PDFX002W Warning

There	are	multiple	index	entry	found
which	is	opening	range	for	ID="%1"	but
there	is	only	one	which	close	it	or	ranges
are	overlapping.

	

PDFX003W Warning There	are	multiple	index	entry	found
which	closing	range	for	ID="%1". 	

PDFX004F Fatal
Empty	href	was	specified	for	some	topic
reference.	Please	correct	your	ditamap	or
bookmap	file.

	

PDFX005F Fatal
Topic	reference	(href	:	%1)	not	found.
Reference	may	be	incorrect.	Please
correct	your	ditamap	or	bookmap	file.

	

PDFX006E Error Number	of	columns	must	be	specified. 	

PDFX007W Warning There	is	no	index	entry	found	which
opening	range	for	ID="%1". 	

PDFX008W Warning Font	definition	not	found	for	the	logical
name	or	alias	'%1'. 	

PDFX009E Error Attribute	set	reflection	can't	handle	XSLT
element	%1. 	

PDFX010W Warning Index	generation	is	not	supported	in	FOP. 	

PDFX011E Error
Both	index-see	and	%1	defined	for	index
entry	'%2'.	Recovering	by	treating	the
index-see	as	an	index-see-also.

	

PDFX012F Fatal
Unrecognized	PDF	formatter	'%1'.	Use
"fop"	for	FOP,	"xep"	for	RenderX	XEP,	or
"ah"	for	AH	Formatter.

	

XEPJ001W Warning %1 	
XEPJ002E Error %1 	
XEPJ003E Error %1 	

Parent	topic:	Error	messages	and	troubleshooting

Other	error	messages
In	addition	to	error	messages	generated	by	the	DITA	Open	Toolkit,	you
might	also	encounter	error	messages	generated	by	Java	or	other	tools.

Out	of	Memory	error

In	some	cases,	you	might	receive	a	message	stating	the	build	has	failed
due	to	an	Out	of	Memory	error.	Try	the	following	approaches	to	resolve
the	problem:

1.	 Increase	the	memory	available	to	Java;	see	Increasing	Java	memory
allocation.

2.	 Reduce	memory	consumption	by	setting	the	generate-debug-
attributes	option	to	false.	This	option	is	set	in	the
lib/configuration.properties	file.	This	will	disable	debug	attribute
generation	(used	to	trace	DITA-OT	error	messages	back	to	source
files)	and	will	reduce	memory	consumption.

3.	 Set	dita.preprocess.reloadstylesheet	Ant	property	to	true.	This	will
allow	the	XSLT	processor	to	release	memory	when	converting
multiple	files.

4.	 Run	the	transformation	again.

java.io.IOException:	Can't	store	Document

After	running	a	JavaHelp	transformation,	you	may	receive	a
java.io.IOException:	Can't	store	Document	message.

This	problem	occurs	when	HTML	files	unrelated	to	the	current
transformation	are	found	in	the	output	directory.	Delete	the	content	of	the
output	directory	and	run	the	transformation	again.

Stack	Overflow	error

If	you	receive	an	error	about	a	stack	memory	overflow,	increase	the	JVM
and	run	the	transformation	again.	See	Increasing	Java	memory
allocation.

Parent	topic:	Error	messages	and	troubleshooting

Log	files
When	you	run	the	DITA-OT,	key	information	is	logged	on	the	screen.	This
information	can	also	be	written	to	a	log	file.	If	you	encounter	a	problem,
you	can	analyze	this	information	to	determine	the	source	of	the	problem
and	then	take	action	to	resolve	it.

The	logging	behavior	varies	depending	on	whether	you	use	the	dita
command,	DITA-OT	command-line	tool,	or	Ant	to	invoke	a	toolkit	build.

dita	command

By	default,	only	warning	and	error	messages	are	written	to	the
screen.	If	you	use	the	-v	option,	logging	will	be	more	verbose
and	informative	messages	are	also	written	out.	The	-l	option	can
be	used	to	write	the	log	messages	into	a	file.

Ant

By	default,	status	information	is	written	to	the	screen.	If	you
issue	the	-l	parameter,	the	build	runs	silently	and	the	information
is	written	to	a	log	file	with	the	name	and	location	that	you
specified.	(You	also	can	use	other	Ant	loggers;	see	the	Ant
documentation	for	more	information.)

Command-line	tool

Status	information	is	written	to	the	screen	and	the	log	file.	The
log	file	name	contains	the	input	file	name	and	transformation
type;	by	default,	it	is	located	in	the	output	directory.	If	you	issue
the	/logdir	parameter,	you	can	specify	a	different	location	for
where	the	log	file	is	written.

Parent	topic:	Error	messages	and	troubleshooting

Accessing	help	from	the	command-line	tool
You	can	access	a	list	of	supported	parameters	for	the	command-line	tool
by	issuing	the	-help	parameter.

Procedure

1.	 Run	the	startcmd	file	that	is	applicable	for	your	operating	system.
The	startcmd.bat	and	startcmd.sh	files	are	in	the	directory	where
you	installed	the	DITA-OT.

2.	 From	the	command	prompt,	issue	the	following	command:

				java	-jar	lib/dost.jar	-help				

Results

You	can	see	the	brief	description	of	the	supported	parameters	in	the
command-line	window.

Parent	topic:	Error	messages	and	troubleshooting

Determing	the	version	of	the	DITA	Open	Toolkit
You	can	use	the	command-line	tool	to	determine	the	version	of	the	DITA
OT.

Procedure

1.	 Run	the	startcmd	file	that	is	applicable	for	your	operating	system.
The	startcmd.bat	and	startcmd.sh	files	are	in	the	directory	where
you	installed	the	DITA-OT.

2.	 From	the	command	prompt,	issue	the	following	command:

java	-jar	lib/dost.jar	-version

Parent	topic:	Error	messages	and	troubleshooting

Enabling	debug	mode
When	the	debug	mode	is	enabled,	additional	diagnostic	information	is
written	to	the	log	file.	This	information,	which	includes	environment
variables	and	stack	trace	data,	can	help	you	determine	the	root	cause	of
a	problem.

Procedure

From	the	command	prompt,	add	the	following	parameters:

Application Parameters
dita	command -d	or	-debug
Ant -v	-Dargs.debug=yes

Command-line	tool/d	or	-debug

You	also	can	add	a	<property>	element	to	an	Ant	target	in	your	build	file,
for	example:

<property	name="args.debug"	value="yes"/>

Parent	topic:	Error	messages	and	troubleshooting

Increasing	Java	memory	allocation
If	you	are	working	with	large	documents	with	extensive	metadata	or	key
references,	you	will	need	to	increase	the	memory	allocation	for	the	Java
process.	You	can	do	this	from	the	command-line	prompt	for	a	specific
session,	or	you	can	increase	the	value	of	the	ANT_OPTS	environmental
variable.

Procedure

To	change	the	value	for	an	specific	session,	from	the	command
prompt,	issue	the	following	command:

Platform Command
Windows set	ANT_OPTS=%ANT_OPTS%	-Xmx1024M

Linux/OS	Xexport	ANT_OPTS=$ANT_OPTS	-Xmx1024M

This	increases	the	JVM	memory	allocation	to	1024	megabytes.	The
amount	of	memory	which	can	be	allocated	is	limited	by	available
system	memory	and	the	operating	system.

To	persistently	change	the	value,	change	the	value	allocated	to	the
ANT_OPTS	environment	variable	on	your	system.	If	you	use	the
startcmd	file	from	the	Full	Easy	Install	to	set	up	a	toolkit	session,	edit
that	file	to	change	the	value.

Parent	topic:	Error	messages	and	troubleshooting

Reference
This	section	is	designed	to	help	users	to	locate	information	easily	and
quickly.	It	includes	documentation	for	the	DITA	Open	Toolkit	(DITA-OT)
parameters	and	configuration	properties.

Ant	parameters	Certain	parameters	apply	to	all	DITA-OT
transformations.	Other	parameters	are	common	to	the	HTML-based
transformations.	Finally,	some	parameters	apply	only	to	the	specific
transformation	types.

dita	command	arguments	and	options
The	dita	command	takes	mandatory	arguments	to	process	DITA,
manage	plug-in,	or	print	information	about	the	command.	Options
can	be	used	modify	the	command	behaviour	or	provide	additional
configuration.

Command-line	tool	parameters
Certain	parameters	apply	to	all	DITA-OT	transformations.	Other
parameters	are	common	to	the	HTML-based	transformations.
Finally,	some	parameters	apply	only	to	the	specific	transformation
types.

lib/configuration.properties	file
The	lib/configuration.properties	file	controls	certain	common
properties,	as	well	as	some	properties	that	control	PDF	processing.

Parent	topic:	DITA	Open	Toolkit	User	Guide

Ant	parameters
Certain	parameters	apply	to	all	DITA-OT	transformations.	Other
parameters	are	common	to	the	HTML-based	transformations.	Finally,
some	parameters	apply	only	to	the	specific	transformation	types.

Ant	parameters:	All	transformations	Certain	parameters	apply	to
all	transformations	that	are	supported	by	the	DITA	Open	Toolkit.

Ant	parameters:	Common	HTML-based	transformations
Certain	parameters	apply	to	all	the	HTML-based	transformation
types:	Eclipse	help,	HTML	Help,	JavaHelp,	TocJS,	HTML5,	and
XHTML.

Ant	parameters:	Eclipse	content	transformation
Certain	parameters	are	specific	to	the	Eclipse	content
transformation.

Ant	parameters:	Eclipse	help	transformation
Certain	parameters	are	specific	to	the	Eclipse	help	transformation.

Ant	parameters:	HTML	Help	transformation
Certain	parameters	are	specific	to	the	HTML	Help	transformation.

Ant	parameters:	JavaHelp	transformation
Certain	parameters	are	specific	to	the	JavaHelp	transformation.

Ant	parameters:	ODT	transformation
Certain	parameters	are	specific	to	the	ODT	transformation.

Ant	parameters:	Other
These	Ant	parameters	enable	you	to	reload	style	sheets	that	the
DITA-OT	uses	for	specific	pre-processing	stages.

Ant	parameters:	PDF	transformation
Certain	parameters	are	specific	to	the	PDF2	transformation.

Ant	parameters:	HTML5	and	XHTML	transformation

Certain	parameters	are	specific	to	the	HTML5	and	XHTML
transformation.

Parent	topic:	Reference

Related	concepts
Ant

Related	tasks
Publishing	DITA	content	from	Ant

Ant	parameters:	All	transformations
Certain	parameters	apply	to	all	transformations	that	are	supported	by	the
DITA	Open	Toolkit.

Figure	1.	Ant	parameters:	All	transformations

args.debug

Specifies	whether	debugging	information	is	included	in	the	log.
The	allowed	values	are	yes	and	no;	the	default	value	is	no.

args.draft

Specifies	whether	the	content	of	<draft-comment>	and
<required-cleanup>	elements	is	included	in	the	output.	The
allowed	values	are	yes	and	no;	the	default	value	is	no.
Corresponds	to	XSLT	parameter	DRAFT	in	most	XSLT
modules.

Tip:	For	PDF	output,	setting	the	args.draft	parameter	to
yes	causes	the	contents	of	the	<titlealts>	element	to	be
rendered	below	the	title.

args.figurelink.style

Specifies	how	cross	references	to	figures	are	styled	in	output.
The	allowed	values	are	NUMBER	and	TITLE.	Specifying
NUMBER	results	in	"Figure	5";	specifying	TITLE	results	in	the
title	of	the	figure.	Corresponds	to	the	XSLT	parameter
FIGURELINK.

Note:	Support	for	PDF	was	added	in	DITA-OT	2.0.	By
default	PDF	uses	the	value	NUMTITLE,	which	is	not
supported	for	other	transform	types;	this	results	in	"Figure
5.	Title".

args.filter

Specifies	a	filter	file	to	be	used	to	include,	exclude,	or	flag

content.

args.grammar.cache

Specifies	whether	the	grammar-caching	feature	of	the	XML
parser	is	used.	The	allowed	values	are	yes	and	no;	the	default
value	is	no.

Note:	This	option	dramatically	speeds	up	processing	time.
However,	there	is	a	known	problem	with	using	this	feature
for	documents	that	use	XML	entities.	If	your	build	fails	with
parser	errors	about	entity	resolution,	set	this	parameter	to
no.

args.input

Specifies	the	master	file	for	your	documentation	project.
Typically	this	is	a	DITA	map,	however	it	also	can	be	a	DITA	topic
if	you	want	to	transform	a	single	DITA	file.	The	path	can	be
absolute,	relative	to	args.input.dir,	or	relative	to	the	directory
where	your	project's	ant	build	script	resides	if	args.input.dir	is
not	defined.

args.input.dir

Specifies	the	base	directory	for	your	documentation	project.	The
default	value	is	the	parent	directory	of	the	file	specified	by
args.input.

args.logdir

Specifies	the	location	where	the	DITA-OT	places	log	files	for
your	project.

args.rellinks

Specifies	which	links	to	include	in	the	output.	The	following
values	are	supported:

none	–	No	links	are	included.

all	–	All	links	are	included.

nofamily	–	Parent,	child,	next,	and	previous	links	are	not
included.

Default	value	depends	on	the	transformation	type.

args.tablelink.style

Specifies	how	cross	references	to	tables	are	styled.	Specifying
NUMBER	results	in	"Table	5";	specifying	TITLE	results	in	the
title	of	the	table.	Corresponds	to	the	XSLT	parameter
TABLELINK.

Note:	Support	for	PDF	was	added	in	DITA-OT	2.0.	By
default	PDF	uses	the	value	NUMTITLE,	which	is	not
supported	for	other	transform	types;	this	results	in	"Table	5.
Title".

clean.temp

Specifies	whether	the	DITA-OT	deletes	the	files	in	the	temporary
directory	after	it	finishes	a	build.	The	allowed	values	are	yes	and
no;	the	default	value	is	yes.

dita.dir

Specifies	where	the	DITA-OT	is	installed.

dita.temp.dir

Specifies	the	location	of	the	temporary	directory.	The	temporary
directory	is	where	the	DITA-OT	writes	temporary	files	that	are
generated	during	the	transformation	process.

dita.input.valfile

Specifies	a	filter	file	to	be	used	to	include,	exclude,	or	flag
content.	Filter	files	must	have	a	.ditaval	or	.DITAVAL	extension.

Note:	Deprecated	in	favor	of	the	args.filter	parameter.

generate.copy.outer

Specifies	whether	to	generate	output	files	for	content	that	is	not
located	in	or	beneath	the	directory	containing	the	DITA	map	file.
The	following	values	are	supported:

1	(default)	–	Do	not	generate	output	for	content	that	is
located	outside	the	DITA	map	directory.

3	–	Shift	the	output	directory	so	that	it	contains	all	output	for
the	publication.

See	generate.outer.copy	parameter	for	more	information.

onlytopic.in.map

Specifies	whether	files	that	are	linked	to,	or	referenced	with	a
@conref	attribute,	generate	output.	If	set	to	yes,	only	files	that
are	referenced	directly	from	the	map	will	generate	output.

outer.control

Specifies	how	the	DITA	OT	handles	content	files	that	are	located
in	or	below	the	directory	containing	the	master	DITA	map.	The
following	values	are	supported:

fail	–	Fail	quickly	if	files	are	going	to	be	generated	or	copied
outside	of	the	directory

warn	(default)	–	Complete	the	operation	if	files	will	be
generated	or	copied	outside	of	the	directory,	but	log	a
warning

quiet	–	Quietly	finish	with	only	those	files;	do	not	generate
warnings	or	errors.

The	gen-list-without-flagging	Ant	task	generates	a	harmless
warning	for	content	that	is	located	outside	the	map	directory;
you	can	suppress	these	warnings	by	setting	the	property	to
quiet.

Warning:	Microsoft	HTML	Help	Compiler	cannot	produce
HTML	Help	for	documentation	projects	that	use	outer
content.	The	content	files	must	reside	in	or	below	the
directory	containing	the	master	DITA	map	file,	and	the	map
file	cannot	specify	".."	at	the	start	of	the	@href	attributes	for
<topicref>	elements.

output.dir

Specifies	the	name	and	location	of	the	output	directory.	By
default,	the	output	is	written	to	DITA-dir\out.

transtype

Specifies	the	output	format.	You	can	create	plug-ins	to	add	new
values	for	this	parameter;	by	default,	the	following	values	are
available:

docbook

eclipsehelp

eclipsecontent

html5

htmlhelp

javahelp

odt

pdf

wordrtf

troff

xhtml

validate

Specifies	whether	the	DITA-OT	validates	the	content.	The
allowed	values	are	true	and	false;	the	default	value	is	true.

Parent	topic:	Ant	parameters

Ant	parameters:	Common	HTML-based
transformations
Certain	parameters	apply	to	all	the	HTML-based	transformation	types:
Eclipse	help,	HTML	Help,	JavaHelp,	TocJS,	HTML5,	and	XHTML.

Figure	1.	Ant	parameters:	HTML-based	transformations

args.artlbl

Specifies	whether	to	generate	a	label	for	each	image;	the	label
will	contain	the	image	file	name.	The	allowed	values	are	yes
and	no;	the	default	value	is	no.

args.breadcrumbs

Specifies	whether	to	generate	breadcrumb	links.	The	allowed
values	are	yes	and	no;	the	default	value	is	no.	Corresponds	to
the	XSLT	parameter	BREADCRUMBS.

args.copycss

Specifies	whether	to	copy	the	custom	.css	file	to	the	output
directory.

args.css

Specifies	the	name	of	a	custom	.css	file.

args.csspath

Specifies	the	location	of	a	copied	.css	file	relative	to	the	output
directory.	Corresponds	to	XSLT	parameter	CSSPATH.

args.cssroot

Specifies	the	directory	that	contains	the	custom	.css	file.	DITA-
OT	will	copy	the	file	from	this	location.

args.dita.locale

Specifies	the	language	locale	file	to	use	for	sorting	index	entries.

Note:	This	parameter	is	not	available	for	the	XHTML
transformation.

args.ftr

Specifies	an	XML	file	that	contains	content	for	a	running	footer.
Corresponds	to	XSLT	parameter	FTR.

Note:	The	XML	file	must	contain	valid	XML.	A	common
practice	is	to	place	all	content	into	a	<div>	element.

args.gen.default.meta

Specifies	whether	to	generate	extra	metadata	that	targets
parental	control	scanners,	meta	elements	with	name="security"
and	name="Robots".	The	allowed	values	are	yes	and	no;	the
default	value	is	no.	Corresponds	to	the	XSLT	parameter
genDefMeta.

args.gen.task.lbl

Specifies	whether	to	generate	headings	for	sections	within	task
topics.	The	allowed	values	are	YES	and	NO;	the	default	value	is
NO.	Corresponds	to	the	XSLT	parameter	GENERATE-TASK-
LABELS.

args.hdf

Specifies	an	XML	file	that	contains	content	to	be	placed	in	the
document	head.

args.hdr

Specifies	an	XML	file	that	contains	content	for	a	running	header.
Corresponds	to	the	XSLT	parameter	HDR.

Note:	The	XML	file	must	contain	valid	XML.	A	common
practice	is	to	place	all	content	into	a	<div>	element.

args.hide.parent.link

Specifies	whether	to	hide	links	to	parent	topics	in	the	HTML	or
XHTML	output.	The	allowed	values	are	yes	and	no;	the	default
value	is	no.	Corresponds	to	the	XSLT	parameter
NOPARENTLINK.

Note:	This	parameter	is	deprecated	in	favor	of	the
args.rellinks	parameter.

args.indexshow

Specifies	whether	the	content	of	<indexterm>	elements	are
rendered	in	the	output.	The	allowed	values	are	yes	and	no;	the
default	value	is	no.

args.outext

Specifies	the	file	extension	for	HTML	or	XHTML	output.	The
default	value	is	html.	Corresponds	to	XSLT	parameter
OUTEXT.

args.xhtml.classattr

Specifies	whether	to	include	the	DITA	class	ancestry	inside	the
XHTML	elements	.For	example,	the	<prereq>	element	(which	is
specialized	from	section)	would	generate	class="section
prereq.	The	allowed	values	are	yes	and	no;	the	default	value	is
yes.	Corresponds	to	the	XSLT	parameter	PRESERVE-DITA-
CLASS.

Note:	Beginning	with	DITA	OT	release	1.5.2,	the	default
value	is	yes.	For	release	1.5	and	1.5.1,	the	default	value
was	no.

args.xsl

Specifies	a	custom	XSL	file	to	be	used	instead	of	the	default
XSL	transformation	(xsl\dita2xhtml.xsl).	The	parameter	must
specify	a	fully	qualified	file	name.

generate.outer.copy	parameter	Elaboration	on	how	the
generate.outer.copy	parameter	functions.

Parent	topic:	Ant	parameters

Related	reference
Ant	parameters:	Eclipse	content	transformation
Ant	parameters:	Eclipse	help	transformation
Ant	parameters:	HTML	Help	transformation
Ant	parameters:	JavaHelp	transformation
Ant	parameters:	HTML5	and	XHTML	transformation

Ant	parameters:	Eclipse	content	transformation
Certain	parameters	are	specific	to	the	Eclipse	content	transformation.

Figure	1.	Ant	parameters:	Eclipse	content	transformation

args.eclipsecontent.toc

Specifies	the	name	of	the	TOC	file

Parent	topic:	Ant	parameters

Related	concepts
Eclipse	content	transformation

Related	reference
Ant	parameters:	All	transformations
Ant	parameters:	Common	HTML-based	transformations

Ant	parameters:	Eclipse	help	transformation
Certain	parameters	are	specific	to	the	Eclipse	help	transformation.

Figure	1.	Ant	parameters:	Eclipse	help	transformation

args.eclipsehelp.toc

Specifies	the	name	of	the	TOC	file.

args.eclipse.country

Specifies	the	region	for	the	language	that	is	specified	by	the
args.eclipse.language	parameter.	For	example,	us,	ca,	and	gb
would	clarify	a	value	of	en	set	for	the	args.eclipse.language
parameter.	The	content	will	be	moved	into	the	appropriate
directory	structure	for	an	Eclipse	fragment.

args.eclipse.language

Specifies	the	base	language	for	translated	content,	such	as	en
for	English.	This	parameter	is	a	prerequisite	for	the
args.eclipse.country	parameter.	The	content	will	be	moved
into	the	appropriate	directory	structure	for	an	Eclipse	fragment.

args.eclipse.provider

Specifies	the	name	of	the	person	or	organization	that	provides
the	Eclipse	help.	The	default	value	is	DITA.

Tip:	The	toolkit	ignores	the	value	of	this	parameter	when	it
processes	an	Eclipse	map.

args.eclipse.version

Specifies	the	version	number	to	include	in	the	output.	The
default	value	is	0.0.0.

Tip:	The	toolkit	ignores	the	value	of	this	parameter	when	it
processes	an	Eclipse	map.

args.eclipse.symbolic.name

Specifies	the	symbolic	name	(aka	plugin	ID)	in	the	output	for	an
Eclipse	Help	project.	The	@id	value	from	the	DITA	map	or	the
Eclipse	map	collection	(Eclipse	help	specialization)	is	the
symbolic	name	for	the	plugin	in	Eclipse.	The	default	value	is
org.sample.help.doc.

Tip:	The	toolkit	ignores	the	value	of	this	parameter	when	it
processes	an	Eclipse	map.

Parent	topic:	Ant	parameters

Related	concepts
Eclipse	help	transformation

Related	reference
Ant	parameters:	All	transformations
Ant	parameters:	Common	HTML-based	transformations

Ant	parameters:	HTML	Help	transformation
Certain	parameters	are	specific	to	the	HTML	Help	transformation.

Figure	1.	Ant	parameters:	HTML	Help	transformation

args.htmlhelp.includefile

Specifies	the	name	of	a	file	that	you	want	included	in	the	HTML
Help.

Parent	topic:	Ant	parameters

Related	concepts
HTML	help	transformation

Related	reference
Ant	parameters:	All	transformations
Ant	parameters:	Common	HTML-based	transformations

Ant	parameters:	JavaHelp	transformation
Certain	parameters	are	specific	to	the	JavaHelp	transformation.

Figure	1.	Ant	parameters:	JavaHelp	transformation

args.javahelp.map

Specifies	the	name	of	the	ditamap	file	for	a	JavaHelp	project.

args.javahelp.toc

Specifies	the	name	of	the	file	containing	the	TOC	in	your
JavaHelp	output.	Default	value	is	the	name	of	the	ditamap	file
for	your	project.

Parent	topic:	Ant	parameters

Related	concepts
JavaHelp	transformation

Related	reference
Ant	parameters:	All	transformations
Ant	parameters:	Common	HTML-based	transformations

Ant	parameters:	ODT	transformation
Certain	parameters	are	specific	to	the	ODT	transformation.

Figure	1.	Ant	parameters:	ODT	transformation

args.odt.img.embed

Determines	whether	images	are	embedded	as	binary	objects
within	the	ODT	file.

Parent	topic:	Ant	parameters

Related	concepts
ODT	transformation

Related	reference
Ant	parameters:	All	transformations

Ant	parameters:	Other
These	Ant	parameters	enable	you	to	reload	style	sheets	that	the	DITA-
OT	uses	for	specific	pre-processing	stages.

Figure	1.	Ant	parameters:	Other

dita.preprocess.reloadstylesheet
dita.preprocess.reloadstylesheet.conref
dita.preprocess.reloadstylesheet.mapref
dita.preprocess.reloadstylesheet.mappull
dita.preprocess.reloadstylesheet.maplink
dita.preprocess.reloadstylesheet.topicpull

Specifies	whether	the	DITA-OT	reloads	the	XSL	style	sheets
that	are	used	for	the	transformation.	The	allowed	values	are
true	and	false;	the	default	value	is	false.

Tip:	Set	the	parameter	to	true	if	you	want	to	use	more	than
one	set	of	style	sheets	to	process	a	collection	of	topics.	The
parameter	also	is	useful	for	large	projects	that	generate
Java	out-of-memory	errors	during	transformation.
Alternatively,	you	can	adjust	the	size	of	your	Java	memory
heap	if	setting	dita.preprocess.reloadstylesheet	for	this
reason.

Parent	topic:	Ant	parameters

Ant	parameters:	PDF	transformation
Certain	parameters	are	specific	to	the	PDF2	transformation.

Figure	1.	Ant	parameters:	PDF	transformation

args.bookmap-order

Specifies	if	the	frontmatter	and	backmatter	content	order	is
retained	in	bookmap.	The	allowed	values	are	retain	and
discard;	the	default	value	is	discard.

args.fo.userconfig

Specifies	the	user	configuration	file	for	FOP.

args.gen.task.lbl

Specifies	whether	to	generate	headings	for	sections	within	task
topics.	The	allowed	values	are	YES	and	NO;	the	default	value	is
NO.	Corresponds	to	the	XSLT	parameter	GENERATE-TASK-
LABELS.

args.rellinks

Specifies	which	links	to	include	in	the	output.	The	following
values	are	supported:

none	–	No	links	are	included.

all	–	All	links	are	included.

nofamily	–	Parent,	child,	next,	and	previous	links	are	not
included.

Default	value	depends	on	the	transformation	type.

args.xsl.pdf

Specifies	an	XSL	file	that	is	used	to	override	the	default	XSL
transformation

(plugins\org.dita.pdf2\xsl\fo\topic2fo_shell.xsl).	You	must
specify	the	fully	qualified	file	name.

custom.xep.config

Specifies	the	user	configuration	file	for	RenderX.

customization.dir

Specifies	the	customization	directory.

pdf.formatter

Specifies	the	XSL	processor.	The	following	values	are
supported:

ah	–	Antenna	House	Formatter

fop	(default)	–	Apache	FOP

xep	–	RenderX	XEP	Engine

The	full-easy-install	package	comes	with	Apache	FOP;	other
XSL	processors	must	be	separately	installed.

publish.required.cleanup

Specifies	whether	draft-comment	and	required-cleanup
elements	are	included	in	the	output.	The	allowed	values	are	yes
and	no;	the	default	value	is	the	value	of	the	args.draft
parameter.	Corresponds	to	XSLT	parameter
publishRequiredCleanup.

Note:	This	parameter	is	deprecated	in	favor	of	the
args.draft	parameter.

retain.topic.fo

Specifies	whether	to	retain	the	generated	FO	file.	The	allowed
values	are	yes	and	no;	the	default	value	is	no.	If	the
configuration	property	org.dita.pdf2.use-out-temp	is	set	to

false,	this	parameter	is	ignored.

Parent	topic:	Ant	parameters

Related	concepts
PDF	transformation

Related	reference
Ant	parameters:	All	transformations

Ant	parameters:	HTML5	and	XHTML
transformation
Certain	parameters	are	specific	to	the	HTML5	and	XHTML
transformation.

Figure	1.	Ant	parameters:	HTML5	and	XHTML	transformation

args.xhtml.contenttarget

Specifies	the	value	of	the	@target	attribute	on	the	<base>
element	in	the	TOC	file.	The	default	value	is	contentwin.

args.xhtml.toc

Specifies	the	base	name	of	the	TOC	file.	The	default	value	is
index.

args.xhtml.toc.class

Specifies	the	value	of	the	@class	attribute	on	the	<body>
element	in	the	TOC	file.	Found	in	map2htmltoc.xsl.

Parent	topic:	Ant	parameters

Related	concepts
XHTML	transformation
HTML5	transformation

Related	reference
Ant	parameters:	All	transformations
Ant	parameters:	Common	HTML-based	transformations

dita	command	arguments	and	options
The	dita	command	takes	mandatory	arguments	to	process	DITA,	manage
plug-in,	or	print	information	about	the	command.	Options	can	be	used
modify	the	command	behaviour	or	provide	additional	configuration.

Usage

dita	-f	name	-i	file	[options]

dita	-install	{	file	|	url	}

dita	-uninstall	id

dita	-help

dita	-version

Arguments

-f,	-format	name

Specifies	the	output	format.	You	can	create	plug-ins	to	add	new
values	for	this	parameter;	by	default,	the	following	values	are
available:

docbook

eclipsehelp

eclipsecontent

html5

htmlhelp

javahelp

odt

pdf

wordrtf

troff

xhtml

-i,	-input	file

Specifies	the	master	file	for	your	documentation	project.
Typically	this	is	a	DITA	map,	however	it	also	can	be	a	DITA	topic
if	you	want	to	transform	a	single	DITA	file.	The	path	can	be
absolute,	relative	to	args.input.dir,	or	relative	to	the	directory
where	your	project's	ant	build	script	resides	if	args.input.dir	is
not	defined.

-install	file
-install	url

Install	plug-in	from	a	local	ZIP	file	or	from	a	URL.

-uninstall	id

Uninstall	plug-in	with	the	ID.

-h,	-help

Print	command	usage	help.

-version

Print	version	information	and	exit.

Options

-o,	-output	dir

Specifies	the	name	and	location	of	the	output	directory.	By
default,	the	output	is	written	to	out	subdirectory	of	the	current
directory.

-filter	file

Specifies	a	filter	file	to	be	used	to	include,	exclude,	or	flag
content.

-temp	dir

Specifies	the	location	of	the	temporary	directory.	The	temporary
directory	is	where	the	DITA-OT	writes	temporary	files	that	are
generated	during	the	transformation	process.

-v,	-verbose

Verbose	logging.

-d,	-debug

Debug	logging.

-l,	-logfile	file

Output	logging	messages	into	a	file.

-Dproperty=value

Specify	a	value	for	a	property.	Supported	properties	are	the
same	as	Ant	parameters	and	are	transformation	type	specific.

-propertyfile	file

Load	all	properties	from	a	file.	Properties	specified	with	-D
option	take	precedence.

Parent	topic:	Reference

Command-line	tool	parameters
Certain	parameters	apply	to	all	DITA-OT	transformations.	Other
parameters	are	common	to	the	HTML-based	transformations.	Finally,
some	parameters	apply	only	to	the	specific	transformation	types.

You	must	supply	the	parameters	to	the	command-line	tool	using	the
following	syntax:

/parameter:value

Command-line	tool	parameters:	All	transformations	Certain
parameters	apply	to	all	transformations	that	are	supported	by	the
DITA	Open	Toolkit.

Command-line	tool	parameters:	All	HTML-based
transformations
Certain	parameters	apply	to	all	the	HTML-based	transformation
types:	Eclipse	content,	Eclipse	help,	HTML5,	HTML	Help,	JavaHelp,
TocJS,	and	XHTML.

Command-line	tool	parameters:	Eclipse	content	transformation
Certain	parameters	are	specific	to	the	Eclipse	content
transformation.

Command-line	tool	parameters:	Eclipse	help	transformation
Certain	parameters	are	specific	to	the	Eclipse	help	transformation.

Command-line	tool	parameters:	HTML	help	transformation
Certain	parameters	are	specific	to	the	HTML	help	transformation.

Command-line	tool	parameters:	JavaHelp	transformation
Certain	parameters	are	specific	to	the	JavaHelp	transformation.

Command-line	tool	parameters:	ODT	transformation
Certain	parameters	are	specific	to	the	ODT	transformation.

Command-line	tool	parameters:	PDF	transformation

Certain	parameters	are	specific	to	the	PDF2	transformation.

Command-line	tool	parameters:	HTML5	and	XHTML
transformation
Certain	parameters	are	specific	to	the	HTML5	and	XHTML
transformation.

Parent	topic:	Reference

Related	concepts
Command-line	tool

Related	tasks
Publishing	DITA	content	from	the	command-line	tool

Command-line	tool	parameters:	All
transformations
Certain	parameters	apply	to	all	transformations	that	are	supported	by	the
DITA	Open	Toolkit.

Figure	1.	Command-line	tool	parameters:	All	transformations

basedir

The	directory	where	your	project's	ant	build	script	resides.	The
DITA-OT	will	look	for	your	.dita	files	relative	to	this	directory.
DITA-OT's	default	build	script	sets	this	as	an	attribute	of	the
project,	but	you	can	also	define	it	as	a	project	property.

cleantemp

Specifies	whether	the	DITA-OT	deletes	the	files	in	the	temporary
directory	after	it	finishes	a	build.	The	allowed	values	are	yes	and
no;	the	default	value	is	yes.

debug

Specifies	whether	debugging	information	is	included	in	the	log.
The	allowed	values	are	yes	and	no;	the	default	value	is	no.

ditadir

Specifies	where	the	DITA-OT	is	installed.

ditalocale

Specifies	the	language	locale	file	to	use	for	sorting	index	entries.

Note:	This	parameter	is	not	available	for	the	XHTML
transformation.

draft

Specifies	whether	the	content	of	<draft-comment>	and
<required-cleanup>	elements	is	included	in	the	output.	The

allowed	values	are	yes	and	no;	the	default	value	is	no.
Corresponds	to	XSLT	parameter	DRAFT	in	most	XSLT
modules.

Tip:	For	PDF	output,	setting	the	args.draft	parameter	to
yes	causes	the	contents	of	the	<titlealts>	element	to	be
rendered	below	the	title.

filter

Specifies	a	filter	file	to	be	used	to	include,	exclude,	or	flag
content.	Filter	files	must	have	a	.ditaval	or	.DITAVAL	extension.

Note:	Deprecated	in	favor	of	the	args.filter	parameter.

grammarcache

Specifies	whether	the	grammar-caching	feature	of	the	XML
parser	is	used.	The	allowed	values	are	yes	and	no;	the	default
value	is	no.

Note:	This	option	dramatically	speeds	up	processing	time.
However,	there	is	a	known	problem	with	using	this	feature
for	documents	that	use	XML	entities.	If	your	build	fails	with
parser	errors	about	entity	resolution,	set	this	parameter	to
no.

i

Specifies	the	master	file	for	your	documentation	project.
Typically	this	is	a	DITA	map,	however	it	also	can	be	a	DITA	topic
if	you	want	to	transform	a	single	DITA	file.	The	path	can	be
absolute,	relative	to	args.input.dir,	or	relative	to	the	directory
where	your	project's	ant	build	script	resides	if	args.input.dir	is
not	defined.

logdir

Specifies	the	location	where	the	DITA-OT	places	log	files	for
your	project.

outdir

Specifies	the	name	and	location	of	the	output	directory.	By
default,	the	output	is	written	to	DITA-dir\out.

tempdir

Specifies	the	location	of	the	temporary	directory.	The	temporary
directory	is	where	the	DITA-OT	writes	temporary	files	that	are
generated	during	the	transformation	process.

transtype

Specifies	the	output	format.	You	can	create	plug-ins	to	add	new
values	for	this	parameter;	by	default,	the	following	values	are
available:

docbook

eclipsehelp

eclipsecontent

html5

htmlhelp

javahelp

odt

pdf

wordrtf

troff

xhtml

validate

Specifies	whether	the	DITA-OT	validates	the	content.	The
allowed	values	are	true	and	false;	the	default	value	is	true.

Parent	topic:	Command-line	tool	parameters

Command-line	tool	parameters:	All	HTML-based
transformations
Certain	parameters	apply	to	all	the	HTML-based	transformation	types:
Eclipse	content,	Eclipse	help,	HTML5,	HTML	Help,	JavaHelp,	TocJS,	and
XHTML.

Note:	You	must	specify	an	absolute	path	as	the	value	for	the
following	parameters:

ftr

hdr

hdf

Figure	1.	Command-line	tool	parameters:	All	HTML-based
transformations

args.css

Specifies	the	name	of	a	custom	.css	file.

artlbl

Specifies	whether	to	generate	a	label	for	each	image;	the	label
will	contain	the	image	file	name.	The	allowed	values	are	yes
and	no;	the	default	value	is	no.

copycss

Specifies	whether	to	copy	the	custom	.css	file	to	the	output
directory.

csspath

Specifies	the	location	of	a	copied	.css	file	relative	to	the	output
directory.	Corresponds	to	XSLT	parameter	CSSPATH.

cssroot

Specifies	the	directory	that	contains	the	custom	.css	file.	DITA-
OT	will	copy	the	file	from	this	location.

ftr

Specifies	an	XML	file	that	contains	content	for	a	running	footer.
Corresponds	to	XSLT	parameter	FTR.

Note:	The	XML	file	must	contain	valid	XML.	A	common
practice	is	to	place	all	content	into	a	<div>	element.

generateouter

Specifies	whether	to	generate	output	files	for	content	that	is	not
located	in	or	beneath	the	directory	containing	the	DITA	map	file.
The	following	values	are	supported:

1	(default)	–	Do	not	generate	output	for	content	that	is
located	outside	the	DITA	map	directory.

3	–	Shift	the	output	directory	so	that	it	contains	all	output	for
the	publication.

See	generate.outer.copy	parameter	for	more	information.

hdf

Specifies	an	XML	file	that	contains	content	to	be	placed	in	the
document	head.

hdr

Specifies	an	XML	file	that	contains	content	for	a	running	header.
Corresponds	to	the	XSLT	parameter	HDR.

Note:	The	XML	file	must	contain	valid	XML.	A	common
practice	is	to	place	all	content	into	a	<div>	element.

indexshow

Specifies	whether	the	content	of	<indexterm>	elements	are

rendered	in	the	output.	The	allowed	values	are	yes	and	no;	the
default	value	is	no.

onlytopicinmap

Specifies	whether	files	that	are	linked	to,	or	referenced	with	a
@conref	attribute,	generate	output.	If	set	to	yes,	only	files	that
are	referenced	directly	from	the	map	will	generate	output.

outercontrol

Specifies	how	the	DITA	OT	handles	content	files	that	are	located
in	or	below	the	directory	containing	the	master	DITA	map.	The
following	values	are	supported:

fail	–	Fail	quickly	if	files	are	going	to	be	generated	or	copied
outside	of	the	directory

warn	(default)	–	Complete	the	operation	if	files	will	be
generated	or	copied	outside	of	the	directory,	but	log	a
warning

quiet	–	Quietly	finish	with	only	those	files;	do	not	generate
warnings	or	errors.

The	gen-list-without-flagging	Ant	task	generates	a	harmless
warning	for	content	that	is	located	outside	the	map	directory;
you	can	suppress	these	warnings	by	setting	the	property	to
quiet.

Warning:	Microsoft	HTML	Help	Compiler	cannot	produce
HTML	Help	for	documentation	projects	that	use	outer
content.	The	content	files	must	reside	in	or	below	the
directory	containing	the	master	DITA	map	file,	and	the	map
file	cannot	specify	".."	at	the	start	of	the	@href	attributes	for
<topicref>	elements.

usetasklabels

Specifies	whether	to	generate	headings	for	sections	within	task

topics.	The	allowed	values	are	YES	and	NO;	the	default	value	is
NO.	Corresponds	to	the	XSLT	parameter	GENERATE-TASK-
LABELS.

xhtmlclass

Specifies	whether	to	include	the	DITA	class	ancestry	inside	the
XHTML	elements	.For	example,	the	<prereq>	element	(which	is
specialized	from	section)	would	generate	class="section
prereq.	The	allowed	values	are	yes	and	no;	the	default	value	is
yes.	Corresponds	to	the	XSLT	parameter	PRESERVE-DITA-
CLASS.

Note:	Beginning	with	DITA	OT	release	1.5.2,	the	default
value	is	yes.	For	release	1.5	and	1.5.1,	the	default	value
was	no.

xsl

Specifies	a	custom	XSL	file	to	be	used	instead	of	the	default
XSL	transformation	(xsl\dita2xhtml.xsl).	The	parameter	must
specify	a	fully	qualified	file	name.

Parent	topic:	Command-line	tool	parameters

Related	reference
Command-line	tool	parameters:	Eclipse	content	transformation
Command-line	tool	parameters:	Eclipse	help	transformation
Command-line	tool	parameters:	HTML	help	transformation
Command-line	tool	parameters:	JavaHelp	transformation
Command-line	tool	parameters:	HTML5	and	XHTML	transformation

Command-line	tool	parameters:	Eclipse	content
transformation
Certain	parameters	are	specific	to	the	Eclipse	content	transformation.

Figure	1.	Command-line	tool	parameters:	Eclipse	content	transformation

eclipsecontenttoc

Specifies	the	name	of	the	TOC	file

Parent	topic:	Command-line	tool	parameters

Related	concepts
Eclipse	content	transformation

Related	reference
Command-line	tool	parameters:	All	transformations
Command-line	tool	parameters:	All	HTML-based	transformations

Command-line	tool	parameters:	Eclipse	help
transformation
Certain	parameters	are	specific	to	the	Eclipse	help	transformation.

Figure	1.	Command-line	tool	parameters:	Eclipse	help	transformation

eclipsehelptoc

Specifies	the	name	of	the	TOC	file.

provider

Specifies	the	name	of	the	person	or	organization	that	provides
the	Eclipse	help.	The	default	value	is	DITA.

Tip:	The	toolkit	ignores	the	value	of	this	parameter	when	it
processes	an	Eclipse	map.

version

Specifies	the	version	number	to	include	in	the	output.	The
default	value	is	0.0.0.

Tip:	The	toolkit	ignores	the	value	of	this	parameter	when	it
processes	an	Eclipse	map.

Parent	topic:	Command-line	tool	parameters

Related	concepts
Eclipse	help	transformation

Related	reference
Command-line	tool	parameters:	All	transformations
Command-line	tool	parameters:	All	HTML-based	transformations

Command-line	tool	parameters:	HTML	help
transformation
Certain	parameters	are	specific	to	the	HTML	help	transformation.

Figure	1.	Command-line	tool	parameters:	HTML	help	transformation

htmlhelpincludefile

Specifies	the	name	of	a	file	that	you	want	included	in	the	HTML
Help.

Parent	topic:	Command-line	tool	parameters

Related	concepts
HTML	help	transformation

Related	reference
Command-line	tool	parameters:	All	transformations
Command-line	tool	parameters:	All	HTML-based	transformations

Command-line	tool	parameters:	JavaHelp
transformation
Certain	parameters	are	specific	to	the	JavaHelp	transformation.

Figure	1.	Command-line	tool	parameters:	JavaHelp	transformation

javahelpmap

Specifies	the	name	of	the	ditamap	file	for	a	JavaHelp	project.

javahelptoc

Specifies	the	name	of	the	file	containing	the	TOC	in	your
JavaHelp	output.	Default	value	is	the	name	of	the	ditamap	file
for	your	project.

Parent	topic:	Command-line	tool	parameters

Related	concepts
JavaHelp	transformation

Related	reference
Command-line	tool	parameters:	All	transformations
Command-line	tool	parameters:	All	HTML-based	transformations

Command-line	tool	parameters:	ODT
transformation
Certain	parameters	are	specific	to	the	ODT	transformation.

Figure	1.	Command-line	tool	parameters:	ODT	transformation

odtimgembed

Determines	whether	images	are	embedded	as	binary	objects
within	the	ODT	file.

Parent	topic:	Command-line	tool	parameters

Related	concepts
ODT	transformation

Related	reference
Command-line	tool	parameters:	All	transformations

Command-line	tool	parameters:	PDF
transformation
Certain	parameters	are	specific	to	the	PDF2	transformation.

Figure	1.	Command-line	tool	parameters:	PDF	transformation

fooutputrellinks

Specifies	whether	to	render	related	links	in	the	output.	The
allowed	values	are	yes	and	no;	the	default	value	is	no.	If	the
args.fo.include.rellinks	parameter	is	specified,	this	parameter
is	ignored.

fouserconfig

Specifies	the	user	configuration	file	for	FOP.

retaintopicfo

Specifies	whether	to	retain	the	generated	FO	file.	The	allowed
values	are	yes	and	no;	the	default	value	is	no.	If	the
configuration	property	org.dita.pdf2.use-out-temp	is	set	to
false,	this	parameter	is	ignored.

xslpdf

Specifies	an	XSL	file	that	is	used	to	override	the	default	XSL
transformation
(plugins\org.dita.pdf2\xsl\fo\topic2fo_shell.xsl).	You	must
specify	the	fully	qualified	file	name.

Parent	topic:	Command-line	tool	parameters

Related	concepts
PDF	transformation

Related	reference
Command-line	tool	parameters:	All	transformations

Command-line	tool	parameters:	HTML5	and
XHTML	transformation
Certain	parameters	are	specific	to	the	HTML5	and	XHTML
transformation.

Figure	1.	Command-line	tool	parameters:	HTML5	and	XHTML
transformation

xhtmltoc

Specifies	the	base	name	of	the	TOC	file.	The	default	value	is
index.

Parent	topic:	Command-line	tool	parameters

Related	concepts
XHTML	transformation
HTML5	transformation

Related	reference
Command-line	tool	parameters:	All	transformations
Command-line	tool	parameters:	All	HTML-based	transformations

lib/configuration.properties	file
The	lib/configuration.properties	file	controls	certain	common
properties,	as	well	as	some	properties	that	control	PDF	processing.

Table	1.	Properties	set	in	the	lib/configuration.properties	file
Property Description

default.language

Specifies	the	language	that	is	used	if	the
input	file	does	not	have	the	@xml:lang
attribute	set	on	the	root	element.	By	default,
this	is	set	to	en.	The	allowed	values	are
those	that	are	defined	in	IETF	BCP	47,	Tags
for	the	Identification	of	Languages.

generate-debug-attributes

Specifies	whether	the	@xtrf	and	@xtrc
debugging	attributes	are	generated	in	the
temporary	files.	The	following	values	are
allowed:

true	(default)	—	Enables	generation	of
debugging	attributes

false	—Disables	generation	of
debugging	attributes

Note:	Disabling	debugging	attributes
reduces	the	size	of	temporary	files	and
thus	reduces	memory	consumption.
However,	the	log	messages	no	longer
have	the	source	information	available
and	thus	the	ability	to	debug	problems
might	deteriorate.

Specifies	how	the	DITA-OT	handles	errors
and	error	recovery.	The	following	values	are
allowed:

strict	—	When	an	error	is	encountered,
the	DITA-OT	stops	processing.

https://tools.ietf.org/html/bcp47

processing-mode lax	(default)	—	When	an	error	is
encountered,	the	DITA-OT	attempts	to
recover	from	it.

skip	—	When	an	error	is	encountered,
the	DITA	continues	processing	but	does
not	attempt	error	recovery.

org.dita.pdf2.i18n.enabled

(PDF	transformation	only)	Enables	I18N	font
processing.	The	following	values	are
allowed:

true	(default)	—	Enables	I18N
processing

false	—	Disables	I18N	processing

org.dita.pdf2.use-out-
temp

(PDF	transformation	only)	Specifies	whether
the	XSL-FO	processing	writes	the
intermediate	files	(for	example,	the	topic.fo
file)	to	the	output	directory.	The	following
values	are	allowed:

true	—	Write	intermediate	files	to	the
output	directory

false	(default)	—	Write	intermediate
files	to	the	temporary	directory

plugindirs

A	semicolon-separated	list	of	directory	paths
that	the	DITA-OT	searches	for	plug-ins	to
integrate;	any	relative	paths	are	resolved
against	the	DITA-OT	base	directory.	Any
immediate	subdirectory	that	contains	a
plugin.xml	file	is	integrated

plugin.ignores
A	semicolon-separated	list	of	directory
names	to	be	ignored	during	plug-in
integration;	any	relative	paths	are	resolved
against	the	DITA-OT	base	directory.

Parent	topic:	Reference

DITA	Open	Toolkit	Developer	Reference
The	DITA	Open	Toolkit	Developer	Reference	is	designed	to	provide	more
advanced	information	about	the	DITA-OT.	It	is	geared	to	an	audience	that
needs	information	about	the	DITA-OT	architecture,	configuring	and
extending	the	DITA-OT,	and	creating	DITA-OT	plug-ins.

Architecture	of	the	DITA	Open	Toolkit	The	DITA	Open	Toolkit
(DITA-OT)	is	an	open-source	implementation	of	the	OASIS
specification	for	the	Darwin	Information	Typing	Architecture	(DITA).
The	toolkit	uses	Ant,	XSLT,	and	Java	to	transform	DITA	content
(maps	and	topics)	into	different	deliverable	formats.

Extending	the	DITA	Open	Toolkit
There	are	several	methods	that	can	be	used	to	extend	the	toolkit;	not
all	of	them	are	recommended	or	supported.	The	best	way	to	create
most	extensions	is	with	a	plug-in;	extended	documentation	for
creating	plug-ins	is	provided	in	the	next	section.

Configuring	the	DITA	Open	Toolkit
The	DITA	OT	uses	.properties	files	that	store	configuration	settings
for	the	DITA	OT	and	its	plug-ins.	The	configuration	properties	are
available	to	both	Ant	and	Java	processes,	but	unlike	argument
properties,	they	cannot	be	set	at	run	time.

Creating	DITA-OT	plug-ins
The	DITA	Open	Toolkit	comes	with	a	built	in	mechanism	for	adding	in
extensions	through	plug-ins.	These	plug-ins	may	do	a	wide	variety	of
things,	such	as	adding	support	for	specialized	DITA	DTDs	or
Schemas,	integrating	processing	overrides,	or	even	providing
entirely	new	output	transforms.	Plug-ins	are	the	best	way	to	extend
the	toolkit	in	a	way	that	is	consistent,	easily	sharable,	and	easy	to
preserve	through	toolkit	upgrades.

Customizing	PDF	output
You	can	build	a	DITA-OT	plug-in	that	contains	a	customized	PDF

transformation.

Internal	Ant	properties
Reference	list	of	Ant	properties	used	by	DITA-OT	internally.

Implementation	dependent	features

Extended	functionality

Architecture	of	the	DITA	Open	Toolkit
The	DITA	Open	Toolkit	(DITA-OT)	is	an	open-source	implementation	of
the	OASIS	specification	for	the	Darwin	Information	Typing	Architecture
(DITA).	The	toolkit	uses	Ant,	XSLT,	and	Java	to	transform	DITA	content
(maps	and	topics)	into	different	deliverable	formats.

DITA-OT	processing	structure	The	DITA-OT	implements	a	multi-
stage,	map-driven	architecture	to	process	DITA	content.	Each	stage
in	the	process	examines	some	or	all	of	the	content;	some	stages
result	in	temporary	files	that	are	used	by	later	steps,	while	others
stages	result	in	updated	copies	of	the	DITA	content.	Most	of	the
processing	takes	place	in	a	temporary	working	directory;	the	source
files	themselves	are	never	modified.

DITA-OT	processing	modules
The	DITA-OT	processing	pipeline	is	implemented	using	Ant.
Individual	modules	within	the	Ant	script	are	implemented	in	either
Java	or	XSLT,	depending	on	such	factors	as	performance	or
requirements	for	customization.	Virtually	all	Ant	and	XSLT	modules
can	be	extended	by	adding	a	plug-in	to	the	toolkit;	new	Ant	targets
may	be	inserted	before	or	after	common	processing,	and	new	rules
may	be	imported	into	common	XSLT	modules	to	override	default
processing.

DITA-OT	processing	order
The	order	of	processing	is	often	significant	when	evaluating	DITA
content.	Although	the	DITA	specification	does	not	mandate	a	specific
order	for	processing,	the	DITA-OT	has	determined	that	performing
filtering	before	conref	resolution	best	meets	user	expectations.
Switching	the	order	of	processing,	while	legal,	may	give	different
results.

Pre-processing	modules
The	pre-processing	operation	is	a	set	of	steps	that	typically	runs	at
the	beginning	of	every	DITA-OT	transformation.	Each	step	or	stage

corresponds	to	an	Ant	target	in	the	build	pipeline;	the	preprocess
target	calls	the	entire	set	of	steps.

HTML-based	processing	modules
The	DITA-OT	ships	with	several	varieties	of	HTML	output,	each	of
which	follows	roughly	the	same	path	through	the	processing	pipeline.
All	HTML-based	transformation	begin	with	the	same	call	to	the	pre-
processing	module,	after	which	they	generate	HTML	files	and	then
branch	to	create	the	transformation-specific	navigation	files.

PDF	processing	modules
The	PDF	(formerly	known	as	PDF2)	transformation	process	runs	the
pre-processing	routine	and	follows	it	by	a	series	of	additional	targets.
These	steps	work	together	to	create	a	merged	set	of	content,
convert	the	merged	content	to	XSL-FO,	and	then	format	the	XSL-FO
file	to	PDF.

Open	Document	Format	processing	modules
The	odt	transformation	creates	a	binary	file	using	the	OASIS	Open
Document	Format.

Parent	topic:	DITA	Open	Toolkit	Developer	Reference

DITA-OT	processing	structure
The	DITA-OT	implements	a	multi-stage,	map-driven	architecture	to
process	DITA	content.	Each	stage	in	the	process	examines	some	or	all	of
the	content;	some	stages	result	in	temporary	files	that	are	used	by	later
steps,	while	others	stages	result	in	updated	copies	of	the	DITA	content.
Most	of	the	processing	takes	place	in	a	temporary	working	directory;	the
source	files	themselves	are	never	modified.

The	DITA-OT	is	designed	as	a	pipeline.	Most	of	the	pipeline	is	common
to	all	output	formats;	it	is	known	as	the	pre-processing	stage.	In	general,
any	DITA	process	begins	with	this	common	set	of	pre-processing
routines.	Once	the	pre-processing	is	completed,	the	pipeline	diverges
based	on	the	requested	output	format.	Some	processing	is	still	common
to	multiple	output	formats;	for	example,	Eclipse	Help	and	HTML	Help
both	use	the	same	routines	to	generate	XHTML	topics,	after	which	the
two	pipelines	branch	to	create	different	sets	of	navigation	files.

The	following	image	illustrates	how	the	pipeline	works	for	some	common
output	types:	Docbook,	PDF,	Eclipse	Help,	XHTML,	JavaHelp,	and	HTML
Help.

Parent	topic:	Architecture	of	the	DITA	Open	Toolkit

DITA-OT	processing	modules
The	DITA-OT	processing	pipeline	is	implemented	using	Ant.	Individual
modules	within	the	Ant	script	are	implemented	in	either	Java	or	XSLT,
depending	on	such	factors	as	performance	or	requirements	for
customization.	Virtually	all	Ant	and	XSLT	modules	can	be	extended	by
adding	a	plug-in	to	the	toolkit;	new	Ant	targets	may	be	inserted	before	or
after	common	processing,	and	new	rules	may	be	imported	into	common
XSLT	modules	to	override	default	processing.

XSLT	modules

The	XSLT	modules	use	shell	files.	Typically,	each	shell	file	begins	by
importing	common	rules	that	apply	to	all	topics.	This	set	of	common
processing	rules	may	in	turn	import	additional	common	modules,	such	as
those	used	for	reporting	errors	or	determining	the	document	locale.	After
the	common	rules	are	imported,	additional	imports	can	be	included	in
order	to	support	processing	for	DITA	specializations.

For	example,	XHTML	processing	is	controlled	by	the	xsl\dita2xhtml.xsl
file.	The	shell	begins	by	importing	common	rules	that	are	applicable	to	all
general	topics:	xslhtml\dita2htmlImpl.xsl.	After	that,	additional	XSLT
overrides	are	imported	for	specializations	that	require	modified
processing.	For	example,	an	override	for	reference	topics	is	imported	in
order	to	add	default	headers	to	property	tables.	Additional	modules	are
imported	for	tasks,	for	the	highlighting	domain,	and	for	several	other
standard	specializations.	After	the	standard	XSLT	overrides	occur,	plug-
ins	may	add	in	additional	processing	rules	for	local	styles	or	for	additional
specializations.

Java	modules

Java	modules	are	typically	used	when	XSLT	is	a	poor	fit,	such	as	for
processes	that	make	use	of	standard	Java	libraries	(like	those	used	for
index	sorting).	Java	modules	are	also	used	in	many	cases	where	a	step
involves	copying	files,	such	as	the	initial	process	where	source	files	are
parsed	and	copied	to	a	temporary	processing	directory.

Parent	topic:	Architecture	of	the	DITA	Open	Toolkit

DITA-OT	processing	order
The	order	of	processing	is	often	significant	when	evaluating	DITA
content.	Although	the	DITA	specification	does	not	mandate	a	specific
order	for	processing,	the	DITA-OT	has	determined	that	performing
filtering	before	conref	resolution	best	meets	user	expectations.	Switching
the	order	of	processing,	while	legal,	may	give	different	results.

The	DITA-OT	project	has	found	that	filtering	first	provides	several
benefits.	Consider	the	following	sample	that	contains	a	<note>	element
that	both	uses	conref	and	contains	a	@product	attribute:

<note	conref="documentA.dita#doc/note"	product="MyProd"/>

If	the	@conref	attribute	is	evaluated	first,	then	documentA	must	be
parsed	in	order	to	retrieve	the	note	content.	That	content	is	then	stored	in
the	current	document	(or	in	a	representation	of	that	document	in
memory).	However,	if	all	content	with	product="MyProd"	is	filtered	out,
then	that	work	is	all	discarded	later	in	the	build.

If	the	filtering	is	done	first	(as	in	the	DITA-OT),	this	element	is	discarded
immediately,	and	documentA	is	never	examined.	This	provides	several
important	benefits:

Time	is	saved	by	discarding	unused	content	as	early	as	possible;	all
future	steps	can	load	the	document	without	this	extra	content.

Additional	time	is	saved	case	by	not	evaluating	the	@conref
attribute;	in	fact,	documentA	does	not	even	need	to	be	parsed.

Any	user	reproducing	this	build	does	not	need	documentA.	If	the
content	is	sent	to	a	translation	team,	that	team	can	reproduce	an
error-free	build	without	documentA;	this	means	documentA	can	be
kept	back	from	translation,	preventing	accidental	translation	and
increased	costs.

If	the	order	of	these	two	steps	is	reversed,	so	that	conref	is	evaluated
first,	it	is	possible	that	results	will	differ.	For	example,	in	the	code	sample
above,	the	@product	attribute	will	override	the	product	setting	on	the

referencing	note.	Assume	that	the	<note>	elements	in	documentA	is
defined	as	follows:

<note	id="note"	product="SomeOtherProduct">This	is	an	important	note!</note>

A	process	that	filters	out	product="SomeOtherProduct"	will	remove	the
target	of	the	original	conref	before	that	conref	is	ever	evaluated,	which
will	result	in	a	broken	reference.	Evaluating	conref	first	would	resolve	the
reference,	and	only	later	filter	out	the	target	of	the	conref.	While	some
use	cases	can	be	found	where	this	is	the	desired	behavior,	benefits	such
as	those	described	above	resulted	in	the	current	processing	order	used
by	the	DITA-OT..

Parent	topic:	Architecture	of	the	DITA	Open	Toolkit

Pre-processing	modules
The	pre-processing	operation	is	a	set	of	steps	that	typically	runs	at	the
beginning	of	every	DITA-OT	transformation.	Each	step	or	stage
corresponds	to	an	Ant	target	in	the	build	pipeline;	the	preprocess	target
calls	the	entire	set	of	steps.

1.	 Generate	lists	(gen-list)	The	gen-list	step	examines	the	input	files
and	creates	lists	of	topics,	images,	document	properties,	or	other
content.	These	lists	are	used	by	later	steps	in	the	pipeline.	For
example,	one	list	includes	all	topics	that	make	use	of	the	conref
attribute;	only	those	files	are	processed	during	the	conref	stage	of
the	build.	This	step	is	implemented	in	Java.

2.	 Debug	and	filter	(debug-filter)
The	debug-filter	step	processes	all	referenced	DITA	content	and
creates	copies	in	a	temporary	directory.	As	the	DITA	content	is
copied,	filtering	is	performed,	debugging	information	is	inserted,	and
table	column	names	are	adjusted.	This	step	is	implemented	in	Java.

3.	 Copy	related	files	(copy-files)
The	copy-files	step	copies	non-DITA	resources	to	the	output
directory,	such	as	HTML	files	that	are	referenced	in	a	map	or	images
that	are	referenced	by	a	DITAVAL	file.

4.	 Resolve	keyref	(keyref)
The	keyref	step	examines	all	the	keys	that	are	defined	in	the	DITA
source	and	resolved	the	key	references.	Links	that	make	use	of	keys
are	updated	so	that	any	@href	value	is	replaced	by	the	appropriate
target;	key-based	text	replacement	is	also	performed.	This	step	is
implemented	in	Java.

5.	 Conref	push	(conrefpush)
The	conrefpush	step	resolves	"conref	push"	references.	This	step
only	processes	documents	that	use	conref	push	or	that	are	updated
due	to	the	push	action.	This	step	is	implemented	in	Java.

6.	 Conref	(conref)
The	conref	step	resolves	conref	attributes,	processing	only	the	DITA
maps	or	topics	that	use	the	@conref	attribute.	This	step	is
implemented	in	XSLT.

7.	 Move	metadata	(move-meta-entries)
The	move-meta-entries	step	pushes	metadata	back	and	forth
between	maps	and	topics.	For	example,	index	entries	and	copyrights
in	the	map	are	pushed	into	affected	topics,	so	that	the	topics	can	be
processed	later	in	isolation	while	retaining	all	relevant	metadata.	This
step	is	implemented	in	Java.

8.	 Resolve	code	references	(codref)
The	coderef	step	resolves	references	made	with	the	<coderef>
element.	This	step	is	implemented	in	Java.

9.	 Resolve	map	references	(mapref)
The	mapref	step	resolves	references	from	one	DITA	map	to	another.
This	step	is	implemented	in	XSLT.

10.	 Pull	content	into	maps	(mappull)
The	mappull	step	pulls	content	from	referenced	topics	into	maps,	and
then	cascades	data	within	maps.	This	step	is	implemented	in	XSLT.

11.	 Chunk	topics	(chunk)
The	chunk	step	breaks	apart	and	assembles	referenced	DITA	content
based	on	the	@chunk	attribute	in	maps.	This	step	is	implemented	in
Java.

12.	 Map	based	linking	(maplink	and	move-links)
These	two	steps	work	together	to	create	links	based	on	a	map	and
move	those	links	into	the	referenced	topics.	The	links	are	created
based	on	hierarchy	in	the	DITA	map,	the	@collection-type	attribute,
and	relationship	tables.	This	step	is	implemented	in	XSLT	and	Java.

13.	 Pull	content	into	topics	(topicpull)

The	topicpull	step	pulls	content	into	<xref>	and	<link>	elements.
This	step	is	implemented	in	XSLT.

14.	 Flagging	in	the	toolkit
Beginning	with	DITA-OT	1.7,	flagging	support	is	implemented	as	a
common	preprocess	module.	The	module	evaluates	the	DITAVAL
against	all	flagging	attributes,	and	adds	DITA-OT	specific	hints	in	to
the	topic	when	flags	are	active.	Any	extended	transform	type	may
use	these	hints	to	support	flagging	without	adding	logic	to	interpret
the	DITAVAL.

Parent	topic:	Architecture	of	the	DITA	Open	Toolkit

Generate	lists	(gen-list)
The	gen-list	step	examines	the	input	files	and	creates	lists	of	topics,
images,	document	properties,	or	other	content.	These	lists	are	used	by
later	steps	in	the	pipeline.	For	example,	one	list	includes	all	topics	that
make	use	of	the	conref	attribute;	only	those	files	are	processed	during
the	conref	stage	of	the	build.	This	step	is	implemented	in	Java.

The	result	of	this	list	is	a	set	of	several	list	files	in	the	temporary	directory,
including	dita.list	and	dita.xml.properties.

List	file	property List	file List	property
canditopicsfile canditopics.list canditopicslist

codereffile coderef.list codereflist

conreffile conref.list conreflist

conrefpushfile conrefpush.list conrefpushlist
conreftargetsfile conreftargets.list conreftargetslist
copytosourcefile copytosource.list copytosourcelist
copytotarget2sourcemapfile copytotarget2sourcemap.list copytotarget2sourcemaplist
flagimagefile flagimage.list flagimagelist

fullditamapandtopicfile fullditamapandtopic.list fullditamapandtopiclist

fullditamapfile fullditamap.list fullditamaplist

fullditatopicfile fullditatopic.list fullditatopiclist

hrefditatopicfile hrefditatopic.list hrefditatopiclist

hreftargetsfile hreftargets.list hreftargetslist
htmlfile html.list htmllist

imagefile image.list imagelist

keyreffile keyref.list keyreflist

outditafilesfile outditafiles.list outditafileslist
relflagimagefile relflagimage.list relflagimagelist
resourceonlyfile resourceonly.list resourceonlylist
skipchunkfile skipchunk.list skipchunklist
subjectschemefile subjectscheme.list subjectschemelist
subtargetsfile subtargets.list subtargetslist
tempdirToinputmapdir.relative.value 	 	
uplevels 	 	

user.input.dir 	 	

user.input.file.listfile 	 	

user.input.file 	 	

Parent	topic:	Pre-processing	modules

Next	topic:	Debug	and	filter	(debug-filter)

Debug	and	filter	(debug-filter)
The	debug-filter	step	processes	all	referenced	DITA	content	and
creates	copies	in	a	temporary	directory.	As	the	DITA	content	is	copied,
filtering	is	performed,	debugging	information	is	inserted,	and	table	column
names	are	adjusted.	This	step	is	implemented	in	Java.

The	following	modifications	are	made	to	the	DITA	source:

If	a	DITAVAL	file	is	specified,	the	DITA	source	is	filtered	according	to
the	entries	in	the	DITAVAL	file.

Debug	information	is	inserted	into	each	element	using	the	@xtrf	and
@xtrc	attributes.	The	values	of	these	attributes	enable	messages
later	in	the	build	to	reliably	indicate	the	original	source	of	the	error.
For	example,	a	message	might	trace	back	to	the	fifth	<ph>	element
in	a	specific	DITA	topic.	Without	these	attributes,	that	count	might	no
longer	be	available	due	to	filtering	and	other	processing.

The	table	column	names	are	adjusted	to	use	a	common	naming
scheme.	This	is	done	only	to	simplify	later	conref	processing.	For
example,	if	a	table	row	is	pulled	into	another	table,	this	ensures	that
a	reference	to	"column	5	properties"	will	continue	to	work	in	the	fifth
column	of	the	new	table.

Parent	topic:	Pre-processing	modules
Previous	topic:	Generate	lists	(gen-list)
Next	topic:	Copy	related	files	(copy-files)

Copy	related	files	(copy-files)
The	copy-files	step	copies	non-DITA	resources	to	the	output	directory,
such	as	HTML	files	that	are	referenced	in	a	map	or	images	that	are
referenced	by	a	DITAVAL	file.

Parent	topic:	Pre-processing	modules
Previous	topic:	Debug	and	filter	(debug-filter)
Next	topic:	Resolve	keyref	(keyref)

Resolve	keyref	(keyref)
The	keyref	step	examines	all	the	keys	that	are	defined	in	the	DITA
source	and	resolved	the	key	references.	Links	that	make	use	of	keys	are
updated	so	that	any	@href	value	is	replaced	by	the	appropriate	target;
key-based	text	replacement	is	also	performed.	This	step	is	implemented
in	Java.

Parent	topic:	Pre-processing	modules
Previous	topic:	Copy	related	files	(copy-files)
Next	topic:	Conref	push	(conrefpush)

Conref	push	(conrefpush)
The	conrefpush	step	resolves	"conref	push"	references.	This	step	only
processes	documents	that	use	conref	push	or	that	are	updated	due	to	the
push	action.	This	step	is	implemented	in	Java.

Parent	topic:	Pre-processing	modules
Previous	topic:	Resolve	keyref	(keyref)
Next	topic:	Conref	(conref)

Conref	(conref)
The	conref	step	resolves	conref	attributes,	processing	only	the	DITA
maps	or	topics	that	use	the	@conref	attribute.	This	step	is	implemented
in	XSLT.

The	values	of	the	@id	attribute	on	referenced	content	are	changed	as	the
elements	are	pulled	into	the	new	locations.	This	ensures	that	the	values
of	the	@id	attribute	within	the	referencing	topic	remain	unique.

If	an	element	is	pulled	into	a	new	context	along	with	a	cross	reference
that	references	the	target,	both	the	values	of	the	@id	and	@xref
attributes	are	updated	so	that	they	remain	valid	in	the	new	location.	For
example,	a	referenced	topic	might	include	a	section	as	in	the	following
example:
Figure	1.	Referenced	topic	that	contains	a	section	and	cross	reference

<topic	id="referenced_topic">

		<title>...</title>

		<body>

				<section	id="sect"><title>Sample	section</title>

						<p>Figure	<xref	href="#referenced_topic/fig"/>	contains	an	code	sample	that	demonstrates</p>

						<fig	id="fig"><title>Code	sample</title>

								<codeblock>....</codeblock>

						</fig>

				</section>

		</body>

</topic>

When	the	section	is	referenced	using	a	@conref	attribute,	the	value	of
the	@id	attribute	on	the	<fig>	element	is	modified	to	ensure	that	it
remains	unique	in	the	new	context.	At	the	same	time,	the	<xref>	element
is	also	modified	so	that	it	remains	valid	as	a	local	reference.	For	example,
if	the	referencing	topic	has	an	@id	set	to	"new_topic",	then	the	conrefed
<section>	element	may	look	like	this	in	the	intermediate	document.
Figure	2.	Resolved	conrefed	<section>	element	after	the	conref	step

<section	id="sect"><title>Sample	section</title>

				<p>Figure	<xref	href="#new_topic/d1e25"/>	contains	an	code	sample	that	demonstrates</p>

				<fig	id="d1e25"><title>Code	sample</title>

								<codeblock>....</codeblock>

				</fig>

</section>

In	this	case,	the	value	of	the	@id	attribute	on	the	<fig>	element	has	been
changed	to	a	generated	value	of	"d1e25".	At	the	same	time,	the	<xref>
element	has	been	updated	to	use	that	new	generated	ID,	so	that	the
cross	reference	remains	valid.

Parent	topic:	Pre-processing	modules
Previous	topic:	Conref	push	(conrefpush)
Next	topic:	Move	metadata	(move-meta-entries)

Move	metadata	(move-meta-entries)
The	move-meta-entries	step	pushes	metadata	back	and	forth	between
maps	and	topics.	For	example,	index	entries	and	copyrights	in	the	map
are	pushed	into	affected	topics,	so	that	the	topics	can	be	processed	later
in	isolation	while	retaining	all	relevant	metadata.	This	step	is
implemented	in	Java.

Parent	topic:	Pre-processing	modules
Previous	topic:	Conref	(conref)
Next	topic:	Resolve	code	references	(codref)

Resolve	code	references	(codref)
The	coderef	step	resolves	references	made	with	the	<coderef>	element.
This	step	is	implemented	in	Java.

The	<coderef>	is	used	to	reference	code	stored	externally	in	non-XML
documents.	During	the	pre-processing	step,	the	referenced	content	is
pulled	into	the	containing	<codeblock>	element.

Parent	topic:	Pre-processing	modules
Previous	topic:	Move	metadata	(move-meta-entries)
Next	topic:	Resolve	map	references	(mapref)

Resolve	map	references	(mapref)
The	mapref	step	resolves	references	from	one	DITA	map	to	another.	This
step	is	implemented	in	XSLT.

Maps	reference	other	maps	by	using	the	following	sorts	of	markup:
<topicref	href="other.ditamap"	format="ditamap"/>

...

<mapref	href="other.ditamap"/>

As	a	result	of	the	mapref	step,	the	element	that	references	another	map
is	replaced	by	the	topic	references	from	the	other	map.	Relationship
tables	are	pulled	into	the	referencing	map	as	a	child	of	the	root	element
(<map>	or	a	specialization	of	<map>).

Parent	topic:	Pre-processing	modules
Previous	topic:	Resolve	code	references	(codref)
Next	topic:	Pull	content	into	maps	(mappull)

Pull	content	into	maps	(mappull)
The	mappull	step	pulls	content	from	referenced	topics	into	maps,	and
then	cascades	data	within	maps.	This	step	is	implemented	in	XSLT.

The	mappull	step	makes	the	following	changes	to	the	DITA	map:

Titles	are	pulled	from	referenced	DITA	topics.	Unless	the	@locktitle
attribute	is	set	to	"yes",	the	pulled	titles	replace	the	navigation	titles
specified	on	the	<topicref>	elements.

The	<linktext>	element	is	set	based	on	the	title	of	the	referenced
topic,	unless	it	is	already	specified	locally.

The	<shortdesc>	element	is	set	based	on	the	short	description	of	the
referenced	topic,	unless	it	is	already	specified	locally.

The	@type	attribute	is	set	on	<topicref>	elements	that	reference
local	DITA	topics.	The	value	of	the	@type	attribute	is	set	to	value	of
the	root	element	of	the	topic;	for	example,	a	<topicref>	element	that
references	a	task	topic	is	given	a	@type	attribute	set	to	"task"".

Attributes	that	cascade,	such	as	@toc	and	print,	are	made	explicit	on
any	child	<topicref	>elements.	This	allows	future	steps	to	work	with
the	attributes	directly,	without	reevaluating	the	cascading	behavior.

Parent	topic:	Pre-processing	modules
Previous	topic:	Resolve	map	references	(mapref)
Next	topic:	Chunk	topics	(chunk)

Chunk	topics	(chunk)
The	chunk	step	breaks	apart	and	assembles	referenced	DITA	content
based	on	the	@chunk	attribute	in	maps.	This	step	is	implemented	in
Java.

The	DITA-OT	has	implemented	processing	for	the	following	values	of	the
@chunk	attribute:

select-topic

select-document

select-branch

by-topic

by-document

to-content

to-navigation

Parent	topic:	Pre-processing	modules
Previous	topic:	Pull	content	into	maps	(mappull)
Next	topic:	Map	based	linking	(maplink	and	move-links)

Related	information
Chunking	definition	in	the	DITA	1.2	specification

http://docs.oasis-open.org/dita/v1.2/os/spec/archSpec/chunking.html

Map	based	linking	(maplink	and	move-links)
These	two	steps	work	together	to	create	links	based	on	a	map	and	move
those	links	into	the	referenced	topics.	The	links	are	created	based	on
hierarchy	in	the	DITA	map,	the	@collection-type	attribute,	and
relationship	tables.	This	step	is	implemented	in	XSLT	and	Java.

The	maplink	module	runs	an	XSLT	program	that	evaluates	the	map;	it
places	all	the	generated	links	into	a	single	file	in	the	temporary	directory.
The	move-links	module	then	runs	a	Java	program	that	pushes	the
generated	links	into	the	applicable	topics.

Parent	topic:	Pre-processing	modules
Previous	topic:	Chunk	topics	(chunk)
Next	topic:

Pull	content	into	topics	(topicpull)
The	topicpull	step	pulls	content	into	<xref>	and	<link>	elements.	This
step	is	implemented	in	XSLT.

If	an	<xref>	element	does	not	contain	link	text,	the	target	is	examined	and
the	link	text	is	pulled.	For	example,	a	reference	to	a	topic	pulls	the	title	of
the	topic;	a	reference	to	a	list	item	pulls	the	number	of	the	item.	If	the
<xref>	element	references	a	topic	that	has	a	short	description,	and	the
<xref>	element	does	not	already	contain	a	child	<desc>	element,	a
<desc>	element	is	created	that	contains	the	text	from	the	topic	short
description.

The	process	is	similar	for	<link>	elements.	If	the	<link>	element	does	not
have	a	child	<linktext>	element,	one	is	created	with	the	appropriate	link
text.	Similarly,	if	the	<link>	element	does	not	have	a	child	<desc>
element,	and	the	short	description	of	the	target	can	be	determined,	a
<desc>	element	is	created	that	contains	the	text	from	the	topic	short
description.

Parent	topic:	Pre-processing	modules
Previous	topic:	Map	based	linking	(maplink	and	move-links)
Next	topic:	Flagging	in	the	toolkit

Flagging	in	the	toolkit
Beginning	with	DITA-OT	1.7,	flagging	support	is	implemented	as	a
common	preprocess	module.	The	module	evaluates	the	DITAVAL	against
all	flagging	attributes,	and	adds	DITA-OT	specific	hints	in	to	the	topic
when	flags	are	active.	Any	extended	transform	type	may	use	these	hints
to	support	flagging	without	adding	logic	to	interpret	the	DITAVAL.

Evaluating	the	DITAVAL	flags

Flagging	is	implemented	as	a	reusable	module	during	the	preprocess
stage.	If	a	DITAVAL	file	is	not	used	with	a	build,	this	step	is	skipped	with
no	change	to	the	file.

When	a	flag	is	active,	relevant	sections	of	the	DITAVAL	itself	are	copied
into	the	topic	as	a	sub-element	of	the	current	topic.	The	active	flags	are
enclosed	in	a	pseudo-specialization	of	the	<foreign>	element	(referred	to
as	a	pseudo-specialization	because	it	is	used	only	under	the	covers,	with
all	topic	types;	it	is	not	integrated	into	any	shipped	document	types).

<ditaval-startprop>

When	any	flag	is	active	on	an	element,	a	<ditaval-startprop>
element	will	be	created	as	the	first	child	of	the	flagged	element:

<ditaval-startprop	class="+	topic/foreign	ditaot-d/ditaval-startprop	">

The	<ditaval-startprop>	element	will	contain	the	following:

If	the	active	flags	should	create	a	new	style,	that	style	is
included	using	standard	CSS	markup	on	the	@outputclass
attribute.	Output	types	that	make	use	of	CSS,	such	as
XHTML,	can	use	this	value	as-is.

If	styles	conflict,	and	a	<style-conflict>	element	exists	in
the	DITAVAL,	it	will	be	copied	as	a	child	of	<ditaval-
startprop>.

Any	<prop>	or	<revprop>	elements	that	define	active	flags
will	be	copied	in	as	children	of	the	<ditaval-startprop>
element.	Any	<startflag>	children	of	the	properties	will	be
included,	but	<endflag>	children	will	not.

<ditaval-endprop>

When	any	flag	is	active	on	an	element,	a	<ditaval-endprop>
element	will	be	created	as	the	last	child	of	the	flagged	element:

<ditaval-endprop	class="+	topic/foreign	ditaot-d/ditaval-endprop	">

CSS	values	and	<styleconflict>	elements	are	not	included	on
this	element.

Any	<prop>	or	<revprop>	elements	that	define	active	flags	will	be
copied	in	as	children	of	<ditaval-prop>.	Any	<endflag>	children
of	the	properties	will	be	included,	but	<startflag>	children	will
not.

Supporting	flags	in	overrides	or	custom	transform	types

For	most	transform	types,	the	<foreign>	element	should	be	ignored	by
default,	because	arbitrary	non-DITA	content	may	not	mix	well	unless
coded	for	ahead	of	time.	If	the	<foreign>	element	is	ignored	by	default,	or
if	a	rule	is	added	to	specifically	ignore	<ditaval-startprop>	and
<ditaval-endprop>,	then	the	added	elements	will	have	no	impact	on	a
transform.	If	desired,	flagging	support	may	be	integrated	at	any	time	in
the	future.

The	processing	described	above	runs	as	part	of	the	common	preprocess,
so	any	transform	that	uses	the	default	preprocess	will	get	the	topic
updates.	To	support	generating	flags	as	images,	XSLT	based	transforms
can	use	default	fallthrough	processing	in	most	cases.	For	example,	if	a
paragraph	is	flagged,	the	first	child	of	<p>	will	contain	the	start	flag
information;	adding	a	rule	to	handle	images	in	<ditaval-startprop>	will
cause	the	image	to	appear	at	the	start	of	the	paragraph	content.

In	some	cases	fallthrough	processing	will	not	result	in	valid	output;	for
those	cases,	the	flags	must	be	explicitly	processed.	This	is	done	in	the
XHTML	transform	for	elements	like	,	because	fallthrough	processing
would	place	images	in	between		and	.	To	handle	this,	the	code
processes	<ditaval-startprop>	before	starting	the	element,	and
<ditaval-endprop>	at	the	end.	Fallthrough	processing	is	then	disabled	for
those	elements	as	children	of	.

Example	DITAVAL

Assume	the	following	DITAVAL	file	is	in	use	during	a	build.	This	DITAVAL
will	be	used	for	each	of	the	following	content	examples.

<?xml	version="1.0"	encoding="UTF-8"?>

<val>

		<!--	Define	what	happens	in	the	case	of	conflicting	styles	-->

		<style-conflict	background-conflict-color="red"/>

		<!--	Define	two	flagging	properties	that	give	styles	(no	image)	-->

		<prop	action="flag"	att="audience"	style="underline"	val="user"	backcolor="green"/>

		<prop	action="flag"	att="platform"	style="overline"	val="win"	backcolor="blue"/>

		<!--	Define	a	property	that	includes	start	and	end	image	flags	-->

		<prop	action="flag"	att="platform"	val="linux"	style="overline"	backcolor="blue">

				<startflag	imageref="startlin.png"><alt-text>Start	linux</alt-text></startflag>

				<endflag	imageref="endlin.png"><alt-text>End	linux</alt-text></endflag>

		</prop>

		<!--	Define	a	revision	that	includes	start	and	end	image	flags	-->

		<revprop	action="flag"	style="double-underline"	val="rev2">

				<startflag	imageref="start_rev.gif"><alt-text>ssssssssssstart</alt-text></startflag>

				<endflag	imageref="end_rev.gif"><alt-text>eeeeeeeeeeeeeend</alt-text></endflag>

		</revprop>

</val>

Content	example	1:	adding	style

Now	assume	the	following	paragraph	exists	in	a	topic.	Class	attributes
are	included,	as	they	would	normally	be	in	the	middle	of	the	preprocess
routine;	@xtrf	and	@xtrc	are	left	off	for	clarity.

<p	audience="user">Simple	user;	includes	style	but	no	images</p>

Based	on	the	DITAVAL	above,	audience="user"	results	in	a	style	with
underlining	and	with	a	green	background.	The	interpreted	CSS	value	is
added	to	@outputclass	on	<ditaval-startprop>,	and	the	actual	property
definition	is	included	at	the	start	and	end	of	the	element.	The	output	from
the	flagging	step	looks	like	this	(with	newlines	added	for	clarity,	and	class
attributes	added	as	they	would	appear	in	the	temporary	file):

The	resulting	file	after	the	flagging	step	looks	like	this;	for	clarity,	newlines
are	added,	while	@xtrf	and	@xtrc	are	removed:

<p	audience="user"	class="-	topic/p	">

		<ditaval-startprop	class="+	topic/foreign	ditaot-d/ditaval-startprop	"	

											outputclass="background-color:green;text-decoration:underline;">

				<prop	action="flag"	att="audience"	style="underline"	val="user"	backcolor="green"/>

		</ditaval-startprop>

		Simple	user;	includes	style	but	no	images

		<ditaval-endprop	class="+	topic/foreign	ditaot-d/ditaval-endprop	">

				<prop	action="flag"	att="audience"	style="underline"	val="user"	backcolor="green"/>

		</ditaval-endprop>

</p>

Content	example	2:	conflicting	styles

This	example	includes	a	paragraph	with	conflicting	styles.	When	the
audience	and	platform	attributes	are	both	evaluated,	the	DITAVAL
indicates	that	the	background	color	is	both	green	and	blue.	In	this
situation,	the	<style-conflict>	element	is	evaluated	to	determine	how	to
style	the	content.

<p	audience="user"	platform="win">Conflicting	styles	(still	no	images)</p>

The	<style-conflict>	element	results	in	a	background	color	of	red,	so
this	value	is	added	to	@outputclass	on	<ditaval-startprop>.	As	above,
active	properties	are	copied	into	the	generated	elements;	the	<style-
conflict>	element	itself	is	also	copied	into	the	generated	<ditaval-
startprop>	element.

The	resulting	file	after	the	flagging	step	looks	like	this;	for	clarity,	newlines
are	added,	while	@xtrf	and	@xtrc	are	removed:

<p	audience="user"	platform="win"	class="-	topic/p	">

		<ditaval-startprop	class="+	topic/foreign	ditaot-d/ditaval-startprop	"	

											outputclass="background-color:red;">

				<style-conflict	background-conflict-color="red"/>

				<prop	action="flag"	att="audience"	style="underline"	val="user"	backcolor="green"/>

				<prop	action="flag"	att="platform"	style="overline"	val="win"	backcolor="blue"/>

		</ditaval-startprop>

		Conflicting	styles	(still	no	images)

		<ditaval-endprop	class="+	topic/foreign	ditaot-d/ditaval-endprop	">

				<prop	action="flag"	att="platform"	style="overline"	val="win"	backcolor="blue"/>

				<prop	action="flag"	att="audience"	style="underline"	val="user"	backcolor="green"/>

		</ditaval-endprop>

</p>

Content	example	3:	adding	image	flags

This	example	includes	image	flags	for	both	@platform	and	@rev,	which
are	defined	in	DITAVAL	<prop>	and	<revprop>	elements.

<ol	platform="linux"	rev="rev2">

		Generate	images	for	platform="linux"	and	rev="2"

As	above,	the	<ditaval-startprop>	and	<ditaval-endprop>	nest	the
active	property	definitions,	with	the	calculated	CSS	value	on
@outputclass.	The	<ditaval-startprop>	drops	the	ending	image,	and
<ditaval-endprop>	drops	the	starting	image.	To	make	document-order
processing	more	consistent,	property	flags	are	always	included	before
revisions	in	<ditaval-startprop>,	and	the	order	is	reversed	for	<ditaval-
endprop>.

The	resulting	file	after	the	flagging	step	looks	like	this;	for	clarity,	newlines
are	added,	while	@xtrf	and	@xtrc	are	removed:

<ol	platform="linux"	rev="rev2"	class="-	topic/ol	">

		<ditaval-startprop	class="+	topic/foreign	ditaot-d/ditaval-startprop	"	

											outputclass="background-color:blue;text-decoration:underline;text-decoration:overline;">

				<prop	action="flag"	att="platform"	val="linux"	style="overline"	backcolor="blue">

						<startflag	imageref="startlin.png"><alt-text>Start	linux</alt-text></startflag>

				</prop>

				<revprop	action="flag"	style="double-underline"	val="rev2">

						<startflag	imageref="start_rev.gif"><alt-text>ssssssssssstart</alt-text></startflag>

				</revprop>

		</ditaval-startprop>

		<li	class="-	topic/li	">Generate	images	for	platform="linux"	and	rev="2"

		<ditaval-endprop	class="+	topic/foreign	ditaot-d/ditaval-endprop	">

				<revprop	action="flag"	style="double-underline"	val="rev2">

						<endflag	imageref="end_rev.gif"><alt-text>eeeeeeeeeeeeeend</alt-text></endflag>

				</revprop>

				<prop	action="flag"	att="platform"	val="linux"	style="overline"	backcolor="blue">

						<endflag	imageref="endlin.png"><alt-text>End	linux</alt-text></endflag>

				</prop>

		</ditaval-endprop>

Parent	topic:	Pre-processing	modules

Previous	topic:

HTML-based	processing	modules
The	DITA-OT	ships	with	several	varieties	of	HTML	output,	each	of	which
follows	roughly	the	same	path	through	the	processing	pipeline.	All	HTML-
based	transformation	begin	with	the	same	call	to	the	pre-processing
module,	after	which	they	generate	HTML	files	and	then	branch	to	create
the	transformation-specific	navigation	files.

Common	HTML-based	processing	After	the	pre-processing
operation	runs,	HTML-based	builds	each	run	a	common	series	of
Ant	targets	to	generate	HTML	file.	Navigation	may	be	created	before
or	after	this	set	of	common	routines.

XHTML	processing
After	the	XHTML	files	are	generated	by	the	common	routine,	the
dita.map.xhtml	target	is	called	by	the	xhtml	transformation.	This
target	generates	a	TOC	file	called	index.html,	which	can	be	loaded
into	a	frameset.

HTML5	processing
After	the	HTML5	files	are	generated	by	the	common	routine,	the
dita.map.xhtml	target	is	called	by	the	html5	transformation.	This
target	generates	a	TOC	file	called	index.html,	which	can	be	loaded
into	a	frameset.

Eclipse	help	processing
The	eclipsehelp	transformation	generates	XHTML-based	output
and	files	that	are	needing	to	create	an	Eclipse	Help	system	plug-in.
Once	the	normal	XHTML	process	has	run,	the	dita.map.eclipse
target	is	used	to	create	a	set	of	control	files	and	navigation	files.

TocJS	processing
The	tocjs	transformation	was	originally	created	as	a	plug-in	that
distributed	outside	of	the	toolkit,	but	it	now	ships	bundled	in	the
default	packages.	This	HTML5-based	output	type	creates	a
JavaScript	based	frameset	with	TOC	entries	that	expand	and

collapse.

HTML	Help	processing
The	htmlhelp	transformation	created	HTML	Help	control	files.	If	the
build	runs	on	a	system	that	has	the	HTML	Help	compiler	installed,
the	control	files	are	compiled	into	a	CHM	file.

JavaHelp	processing
The	javahelp	transformation	runs	several	additional	Ant	targets	after
the	XHTML	processing	is	completed	in	order	to	create	control	files
for	the	JavaHelp	output.

Parent	topic:	Architecture	of	the	DITA	Open	Toolkit

Common	HTML-based	processing
After	the	pre-processing	operation	runs,	HTML-based	builds	each	run	a
common	series	of	Ant	targets	to	generate	HTML	file.	Navigation	may	be
created	before	or	after	this	set	of	common	routines.

After	the	pre-processing	is	completed,	the	following	targets	are	run	for	all
of	the	HTML-based	builds:

If	the	arg.css	parameter	is	passed	to	the	build	to	add	a	CSS	file,	the
copy-css	target	copies	the	CSS	file	from	its	source	location	to	the
relative	location	in	the	output	directory.

If	a	DITAVAL	file	is	used,	the	copy-revflag	target	copies	the	default
start-	and	end-revision	flags	into	the	output	directory.

The	DITA	topics	are	converted	to	HTML	files.	Unless	the	@chunk
attribute	was	specified,	each	DITA	topic	in	the	temporary	directory
now	corresponds	to	one	HTML	file.	Thedita.inner.topics.xhtml
target	is	used	to	process	documents	that	are	in	the	map	directory	(or
subdirectories	of	the	map	directory).	The	dita.outer.topics.xhtml
target	is	used	to	process	documents	that	are	outside	of	the	scope	of
the	map,	and	thus	might	end	up	outside	of	the	designated	output
directory.	Various	DITA-OT	parameters	control	how	documents
processed	by	the	dita.outer.topics.xhtml	target	are	handled.

Parent	topic:	HTML-based	processing	modules

XHTML	processing
After	the	XHTML	files	are	generated	by	the	common	routine,	the
dita.map.xhtml	target	is	called	by	the	xhtml	transformation.	This	target
generates	a	TOC	file	called	index.html,	which	can	be	loaded	into	a
frameset.

Parent	topic:	HTML-based	processing	modules

HTML5	processing
After	the	HTML5	files	are	generated	by	the	common	routine,	the
dita.map.xhtml	target	is	called	by	the	html5	transformation.	This	target
generates	a	TOC	file	called	index.html,	which	can	be	loaded	into	a
frameset.

Parent	topic:	HTML-based	processing	modules

Eclipse	help	processing
The	eclipsehelp	transformation	generates	XHTML-based	output	and
files	that	are	needing	to	create	an	Eclipse	Help	system	plug-in.	Once	the
normal	XHTML	process	has	run,	the	dita.map.eclipse	target	is	used	to
create	a	set	of	control	files	and	navigation	files.

Eclipse	use	multiple	files	to	control	the	plug-in	behavior.	Some	of	these
control	files	are	generated	by	the	build,	while	others	might	be	created
manually.	The	following	Ant	targets	control	the	Eclipse	help	processing:

dita.map.eclipse.init

Sets	up	various	default	properties

dita.map.eclipse.toc

Creates	the	XML	file	that	defines	an	Eclipse	table	of	contents

dita.map.eclipse.index

Creates	the	sorted	XML	file	that	defines	an	Eclipse	index

dita.map.eclipse.plugin

Creates	the	plugin.xml	file	that	controls	the	behavior	of	an
Eclipse	plug-in

dita.map.eclipse.plugin.properties

Creates	a	Java	properties	file	that	sets	properties	for	the	plug-in,
such	as	name	and	version	information

dita.map.eclipse.manifest.file

Creates	a	MANIFEST.MF	file	that	contains	additional	information
used	by	Eclipse

copy-plugin-files

Checks	for	the	presence	of	certain	control	files	in	the	source

directory,	and	copies	those	found	to	the	output	directory

dita.map.eclipse.fragment.language.init

Works	in	conjunction	with	the
dita.map.eclipse.fragment.language.country.init	and
dita.map.eclipse.fragment.error	targets	to	control	Eclipse
fragment	files,	which	are	used	for	versions	of	a	plug-in	created
for	a	new	language	or	locale

Several	of	the	targets	listed	above	have	matching	templates	for
processing	content	that	is	located	outside	of	the	scope	of	the	map
directory,	such	as	dita.out.map.eclipse.toc.

Parent	topic:	HTML-based	processing	modules

TocJS	processing
The	tocjs	transformation	was	originally	created	as	a	plug-in	that
distributed	outside	of	the	toolkit,	but	it	now	ships	bundled	in	the	default
packages.	This	HTML5-based	output	type	creates	a	JavaScript	based
frameset	with	TOC	entries	that	expand	and	collapse.

The	following	Ant	targets	control	most	of	the	TocJS	processing:

tocjsInit

Sets	up	default	properties.	This	target	detects	whether	builds
have	already	specified	a	name	for	JavaScript	control	file;	if	not,
the	default	name	toctree.js	is	used.

map2tocjs

Calls	the	dita.map.tocjs	target,	which	generates	the	contents
frame	for	TocJS	output.

tocjsDefaultOutput

Ensures	that	the	HTML5	processing	module	is	run.	If	scripts	are
missing	required	information,	such	as	a	name	for	the	default
frameset,	this	target	copies	default	style	and	control	files.	This
target	was	add	to	the	DITA-OT	in	version	1.5.4;	earlier	versions
of	the	TocJS	transformation	created	only	the	JavaScript	control
file	by	default.

Parent	topic:	HTML-based	processing	modules

HTML	Help	processing
The	htmlhelp	transformation	created	HTML	Help	control	files.	If	the	build
runs	on	a	system	that	has	the	HTML	Help	compiler	installed,	the	control
files	are	compiled	into	a	CHM	file.

Once	the	pre-processing	and	XHTML	processes	are	completed,	most	of
the	HTML	Help	processing	is	handled	by	the	following	targets:

dita.map.htmlhelp

Create	the	HHP,	HHC,	and	HHK	files.	The	HHK	file	is	sorted
based	on	the	language	of	the	map.

dita.htmlhelp.convertlang

Ensures	that	the	content	can	be	processed	correctly	by	the
compiler,	and	that	the	appropriate	code	pages	and	languages
are	used.

compile.HTML.Help

Attempts	to	detect	the	HTML	Help	compiler.	If	the	compiler	is
found,	the	full	project	is	compiled	into	a	single	CHM	file.

Parent	topic:	HTML-based	processing	modules

JavaHelp	processing
The	javahelp	transformation	runs	several	additional	Ant	targets	after	the
XHTML	processing	is	completed	in	order	to	create	control	files	for	the
JavaHelp	output.

There	are	two	primary	Ant	targets:

dita.map.javahelp

Creates	all	of	the	files	that	are	needed	to	compile	JavaHelp,
including	a	table	of	contents,	sorted	index,	and	help	map	file.

compile.Java.Help

Searches	for	a	JavaHelp	compiler	on	the	system.	If	a	compiler	is
found,	the	help	project	is	compiled.

Parent	topic:	HTML-based	processing	modules

PDF	processing	modules
The	PDF	(formerly	known	as	PDF2)	transformation	process	runs	the	pre-
processing	routine	and	follows	it	by	a	series	of	additional	targets.	These
steps	work	together	to	create	a	merged	set	of	content,	convert	the
merged	content	to	XSL-FO,	and	then	format	the	XSL-FO	file	to	PDF.

The	PDF	process	includes	many	Ant	targets.	During	a	typical	conversion
from	map	to	PDF,	the	following	targets	are	most	significant.

map2pdf2

Creates	a	merged	file	by	calling	a	common	Java	merge	module.
It	then	calls	the	publish.map.pdf	target	to	do	the	remainder	of
the	work.

publish.map.pdf

Performs	some	initialization	and	then	calls	the
transform.topic2pdf	target	to	do	the	remainder	of	processing.

transform.topic2pdf

Converts	the	merged	file	to	XSL-FO,	generates	the	PDF,	and
deletes	the	topic.fo	file,	unless	instructed	to	keep	it.	Uses	the
following	targets	to	perform	those	tasks:

transform.topic2fo

Convert	the	merged	file	to	an	XSL-FO	file.	This
process	is	composed	of	several	Ant	targets.

Ant	target Description

transform.topic2fo.index

Runs	a	Java	process	to
set	up	index	processing,
based	on	the	document
language.	This	step
generates	the	file
stage1.xml	in	the

temporary	processing
directory.

transform.topic2fo.flagging

Sets	up	preprocessing	for
flagging	based	on	a
DITAVAL	file.	This	step
generates	the	file
stage1a.xml	in	the
temporary	processing
directory.

transform.topic2fo.main

Does	the	bulk	of	the
conversion	from	DITA	to
XSL-FO.	It	runs	the	XSLT
based	process	that	creates
stage2.fo	in	the	temporary
processing	directory

transform.topic2fo.i18n

Does	additional
localization	processing	on
the	FO	file;	it	runs	a	Java
process	that	converts
stage2.fo	into	stage3.fo,
followed	by	an	XSLT
process	that	converts
stage3.fo	into	topic.fo.

transform.fo2pdf

Converts	the	topic.fo	file	into	PDF	using	the	specified
FO	processor	(Antenna	House,	XEP,	or	Apache	FOP).

delete.fo2pdf.topic.fo

Deletes	the	topic.fo	file,	unless	otherwise	specified	by
setting	an	Ant	property	or	command-line	option.

Parent	topic:	Architecture	of	the	DITA	Open	Toolkit

Open	Document	Format	processing	modules
The	odt	transformation	creates	a	binary	file	using	the	OASIS	Open
Document	Format.

The	odt	transformation	begins	with	pre-processing.	It	then	runs	either	the
dita.odt.package.topic	or	dita.odt.package.map	target,	depending	on
whether	the	input	to	the	transformation	is	a	DITA	topic	or	a	DITA	map.
The	following	description	focuses	on	the	map	process,	which	is	made	up
of	the	following	targets:

dita.map.odt

Converts	the	map	into	a	merged	XML	file	using	the	Java-based
topicmerge	module.	Then	an	XSLT	process	converts	the	merged
file	into	the	content.xml	file.

dita.map.odt.stylesfile

Reads	the	input	DITA	map,	and	then	uses	XSLT	to	create	a
styles.xml	file	in	the	temporary	directory.

dita.out.odt.manifest.file

Creates	the	manifest.xml	file

Once	these	targets	have	run,	the	generated	files	are	zipped	up	together
with	other	required	files	to	create	the	output	ODT	file.

Parent	topic:	Architecture	of	the	DITA	Open	Toolkit

Extending	the	DITA	Open	Toolkit
There	are	several	methods	that	can	be	used	to	extend	the	toolkit;	not	all
of	them	are	recommended	or	supported.	The	best	way	to	create	most
extensions	is	with	a	plug-in;	extended	documentation	for	creating	plug-ins
is	provided	in	the	next	section.

Creating	a	plug-in	can	be	very	simple	to	very	complex,	and	is
generally	the	best	method	for	changing	or	extending	the	toolkit.	Plug-
ins	can	be	used	to	accomplish	almost	any	modification	that	is
needed	for	toolkit	processing,	from	minor	style	tweaks	to	extensive,
complicated	new	output	formats.

The	PDF	process	was	initially	developed	independently	of	the	toolkit,
and	created	its	own	extension	mechanism	using	customization
directories.	Many	(but	not	quite	all)	of	the	capabilities	available
through	PDF	customization	directories	are	now	available	through
plug-ins.

Using	a	single	XSL	file	as	an	override	by	passing	it	in	as	a
parameter.	For	example,	when	building	XHTML	content,	the	XSL
parameter	allows	users	to	specify	a	single	local	XSL	file	(inside	or
outside	of	the	toolkit)	that	is	called	in	place	of	the	default	XHTML
code.	Typically,	this	code	imports	the	default	processing	code,	and
overrides	a	couple	of	processing	routines.	This	approach	is	best
when	the	override	is	very	minimal,	or	when	the	style	varies	from
build	to	build.	However,	any	extension	made	with	this	sort	of	override
is	also	possible	with	a	plug-in.

Editing	DITA-OT	code	directly	may	work	in	some	cases,	but	is	not
advised.	Modifying	the	code	directly	significantly	increases	the	work
and	risk	involved	with	future	upgrades.	It	is	also	likely	that	such
modifications	will	break	plug-ins	provided	by	others,	limiting	the
function	available	to	the	toolkit.

Manually	installing	plug-ins	Plug-ins	are	generally	distributed	as
zip	files.	There	are	two	steps	to	installing	a	plug-in:	unzipping	and

integrating.

Manually	removing	plug-ins
Plug-ins	can	be	installed	by	removing	the	plug-in	and	running
integration	process.

Rebuilding	the	DITA-OT	documentation
The	DITA-OT	ships	with	Ant	scripts	that	enable	you	to	rebuild	the
toolkit	documentation.	This	is	especially	helpful	if	your	environment
contains	plug-ins	that	integrate	additional	messages	into	the	toolkit.

Parent	topic:	DITA	Open	Toolkit	Developer	Reference

Related	tasks
Installing	plug-ins
Removing	plug-ins

Manually	installing	plug-ins
Plug-ins	are	generally	distributed	as	zip	files.	There	are	two	steps	to
installing	a	plug-in:	unzipping	and	integrating.

About	this	task

It	is	possible	to	define	a	plug-in	so	that	it	may	be	installed	anywhere,
although	most	expect	to	be	placed	in	plugins/	directory	inside	of	the
DITA-OT.	Most	plug-ins	do	not	require	a	specific	install	directory	and	can
go	in	either	of	the	default	locations,	but	some	may	come	with	instructions
for	a	particular	install	directory.

Procedure

1.	 The	unzip	the	plug-in	file	to	plugins	subdirectory.
The	plug-in	directory	should	be	named	after	plug-in	ID	and	version,
for	example	plugins/com.example.xhtml_1.0.0.

2.	 Run	plug-in	integration	process.

From	the	toolkit	directory,	run	the	following	command	to
integrate	all	installed	plug-ins:

ant	-f	integrator.xml	

Any	build	that	uses	the	Java	command	line	interface
automatically	runs	the	integrator	before	processing	begins.

Ant	based	builds	may	import	the	integrator.xml	file,	and	add
integrate	to	the	start	of	the	dependency	chain	for	the	build.

Note:	The	integration	process	in	considered	part	of	the
installation	process	and	running	it	before	each	conversion
will	incur	a	performance	penalty.

The	integration	process	has	two	modes,	lax	and	strict.	In	the	strict
mode	the	integration	process	will	immediately	fail	if	it	encounters
errors	in	plug-in	configurations	or	installation	process.	In	the	lax
mode,	the	integration	process	will	continue	to	finish	regardless	of
errors;	the	lax	mode	does	not	imply	error	recovery	and	may	leave
the	DITA-OT	installation	into	a	broken	state.	The	default	mode	is	lax
due	to	backwards	compatibility,	to	run	the	integration	in	strict	mode:

ant	-f	integrator.xml	strict

To	get	more	information	about	the	integration	process,	run	Ant	in
verbose	mode:

ant	-f	integrator.xml	-verbose	strict

Parent	topic:	Extending	the	DITA	Open	Toolkit

Manually	removing	plug-ins
Plug-ins	can	be	installed	by	removing	the	plug-in	and	running	integration
process.

Procedure

1.	 Remove	plug-in	installation	directory.

2.	 Run	integration	process.

ant	-f	integrator.xml

Parent	topic:	Extending	the	DITA	Open	Toolkit

Rebuilding	the	DITA-OT	documentation
The	DITA-OT	ships	with	Ant	scripts	that	enable	you	to	rebuild	the	toolkit
documentation.	This	is	especially	helpful	if	your	environment	contains
plug-ins	that	integrate	additional	messages	into	the	toolkit.

Procedure

1.	 Change	to	the	doc	directory.

2.	 Run	the	following	command:

ant	-f	build.xml	target

The	target	parameter	is	optional	and	specifies	a	specific
transformation	type.	It	takes	the	following	values:

build-html

build-htmlhelp

build-pdf

If	you	do	not	specify	an	Ant	target,	all	three	output	formats	(HTML5,
HTML	help,	and	PDF)	are	generated.

Parent	topic:	Extending	the	DITA	Open	Toolkit

Configuring	the	DITA	Open	Toolkit
The	DITA	OT	uses	.properties	files	that	store	configuration	settings	for
the	DITA	OT	and	its	plug-ins.	The	configuration	properties	are	available	to
both	Ant	and	Java	processes,	but	unlike	argument	properties,	they
cannot	be	set	at	run	time.

plugin.properties	file	The	plugin.properties	file	is	used	to	store
configuration	properties	that	are	set	by	the	integration	process.	The
file	is	located	in	the	lib\org.dita.dost.platform	directory;	it	is
regenerated	each	time	the	integration	process	is	run	and	so	should
not	be	edited	manually.

Parent	topic:	DITA	Open	Toolkit	Developer	Reference

plugin.properties	file
The	plugin.properties	file	is	used	to	store	configuration	properties	that
are	set	by	the	integration	process.	The	file	is	located	in	the
lib\org.dita.dost.platform	directory;	it	is	regenerated	each	time	the
integration	process	is	run	and	so	should	not	be	edited	manually.

Parent	topic:	Configuring	the	DITA	Open	Toolkit

Creating	DITA-OT	plug-ins
The	DITA	Open	Toolkit	comes	with	a	built	in	mechanism	for	adding	in
extensions	through	plug-ins.	These	plug-ins	may	do	a	wide	variety	of
things,	such	as	adding	support	for	specialized	DITA	DTDs	or	Schemas,
integrating	processing	overrides,	or	even	providing	entirely	new	output
transforms.	Plug-ins	are	the	best	way	to	extend	the	toolkit	in	a	way	that	is
consistent,	easily	sharable,	and	easy	to	preserve	through	toolkit
upgrades.

A	plug-in	consists	of	a	directory,	typically	stored	directly	within	the
plugins/	directory	inside	of	the	DITA-OT.	Every	plug-in	is	controlled	by	a
file	named	plugin.xml,	located	in	the	plug-in's	root	directory.

Benefits	of	extending	the	toolkit	through	plug-ins	include:

Plug-ins	are	easily	sharable	with	other	users,	teams,	or	companies;
typically,	all	that	is	needed	is	to	unzip	and	run	a	single	integration
step.	With	many	builds,	even	that	integration	step	is	automatic.

Allows	overrides	or	customizations	to	grow	from	simple	to	complex
over	time,	with	no	increased	complexity	to	the	extension	mechanism.

Plug-ins	can	be	moved	from	version	to	version	with	an	upgraded
toolkit	simply	by	unzipping	again,	or	by	copying	the	directory	from
one	install	to	another;	there	is	no	need	to	re-integrate	code	based	on
updates	to	the	core	processing.

Plug-ins	can	build	upon	each	other.	If	you	like	a	plug-in	provided	by
one	user,	simply	install	that	plug-in,	and	then	create	your	own	that
builds	on	that	extension.	The	two	plug-ins	can	then	be	distributed	to
your	team	as	a	unit,	or	you	can	even	share	your	own	extensions	with
the	original	provider.

Plug-in	configuration	file	The	plugin.xml	controls	all	aspects	of	a
plug-in,	making	each	extension	visible	to	the	rest	of	the	toolkit.	The
file	uses	pre-defined	extension	points	to	locate	changes,	and
integrates	those	changes	into	the	core	code.

Extending	the	XML	Catalog
The	XML	Catalogs	extension	point	is	used	to	update	the	XML
Catalogs	used	to	resolve	DTD	or	Schema	document	types,	or	to	add
URI	mappings.	This	is	required	in	order	to	support	DITA
specializations	or	new	DITA	document	type	shells.

Adding	new	targets	to	the	Ant	build	process
The	Ant	conductor	extension	point	is	used	to	make	new	targets
available	to	the	Ant	processing	pipeline.	This	may	be	done	as	part	of
creating	a	new	transform,	extending	pre-processing,	or	simply	to
provide	Ant	targets	for	the	use	of	other	plug-ins.

Adding	Ant	targets	to	the	pre-process	pipeline
Every	step	in	the	pre-process	pipeline	defines	an	extension	point
before	and	after	the	step,	to	allow	plug-ins	to	integrate	additional
processing.	This	allows	a	plug-in	to	insert	a	new	step	before	any	pre-
processing	step,	as	well	as	before	or	after	the	entire	preprocess
pipeline.

Integrating	a	new	transform	type
Plug-ins	may	integrate	an	entire	new	transform	type.	The	new
transform	type	can	be	very	simple,	such	as	an	XHTML	build	that
creates	an	additional	control	file;	it	can	also	be	very	complex,	adding
any	number	of	new	processing	steps.

Override	styles	with	XSLT
The	XSLT	import	extension	points	are	used	to	override	various	steps
of	XSLT	processing.	For	this,	the	extension	attribute	indicates	the
step	that	the	override	applies	to;	the	file	attribute	is	a	relative	path
to	the	override	within	the	current	plugin.	The	plugin	installer	will	add
an	XSL	import	statement	to	the	default	code	so	that	your	override
becomes	a	part	of	the	normal	build.

Modifying	or	adding	generated	text
Generated	text	is	the	term	for	strings	that	are	automatically	added	by
the	build,	such	as	"Note"	before	the	contents	of	a	<note>	element.

Passing	parameters	to	existing	XSLT	steps
Plug-ins	can	define	new	parameters	to	be	passed	from	the	Ant	build
into	existing	XSLT	pipeline	stages,	usually	to	have	those	parameters
available	as	global	<xsl:param>	values	within	XSLT	overrides.

Adding	Java	libraries	to	the	classpath
If	your	Ant	or	XSLT	extensions	require	additional	Java	libraries	in	the
classpath,	you	can	add	them	to	the	global	DITA-OT	classpath	with
the	following	feature.

Adding	diagnostic	messages
Plug-in	specific	warning	and	error	messages	can	be	added	to	the	set
of	messages	supplied	by	the	DITA-OT.	These	messages	can	then	be
used	by	any	XSLT	override.

Managing	plug-in	dependencies
The	<require>	element	in	a	plugin.xml	file	is	used	to	create	a
dependency	on	another	plug-in.	The	<require>	element	requires	the
plugin	attribute	in	order	to	reference	the	dependency.

Version	and	support	information
The	following	extension	points	are	used	by	convention	to	define
version	and	support	info	within	a	plug-in.

Creating	a	new	plug-in	extension	point
If	your	plug-in	needs	to	define	its	own	extension	point	in	an	XML	file,
add	the	string	"_template"	to	the	filename	before	the	file
suffix.	During	integration,	this	file	will	be	processed	like	the	built-in
DITA-OT	templates.

Example	plugin.xml	file
The	following	is	a	sample	of	a	plugin.xml	file.	This	file	adds	support
for	a	new	set	of	specialized	DTDs,	and	includes	an	override	for	the
XHTML	output	processor.

Parent	topic:	DITA	Open	Toolkit	Developer	Reference

Plug-in	configuration	file
The	plugin.xml	controls	all	aspects	of	a	plug-in,	making	each	extension
visible	to	the	rest	of	the	toolkit.	The	file	uses	pre-defined	extension	points
to	locate	changes,	and	integrates	those	changes	into	the	core	code.

The	root	element	of	the	plugin.xml	file	is	<plugin>,	and	must	specify	an	id
attribute.	The	id	attribute	is	used	to	identify	the	plug-in,	as	well	as	to
identify	whether	pre-requisite	plug-ins	are	available.	The	id	attribute
should	follow	the	syntax	rules:

id				::=	token('.'token)*

token	::=	([0..9]	|	[a..zA..Z]	|	’_’	|	’-’)+

The	<plugin>	element	supports	the	following	child	elements:

<feature>	defines	an	extension	to	contribute	to	a	defined	extension
point.	The	following	attributes	are	supported:

Attribute Description Required
extension extension	point	identifier yes

value
comma	separated	string	value	of	the
extension

either	value	or
file

file file	path	value	of	the	extension,	relative	to
plugin.xml

either	value	or
file

type type	of	the	value	attribute no

extension-point	defines	new	a	extension	point	that	can	be	used	by
other	plug-ins.	The	following	attributes	are	supported:

Attribute Description Required
id extension	point	identifier yes
name extension	point	name no

<require>	defines	plug-in	dependencies.	The	following	attributes	are
supported:

Attribute Description Required

plugin
vertical	bar	separated	list	of	plug-ins	that	are
required yes

importance flag	whether	plug-in	is	required	or	optional no

<template>	defines	files	that	should	be	treated	as	templates.	The
following	attributes	are	supported:

Attribute Description Required
file file	path	to	the	template,	relative	to	plugin.xml yes

<meta>	defines	metadata.	The	following	attributes	are	supported:

Attribute Description Required
type metadata	nameyes
value metadata	value yes

Any	extension	that	is	not	recognized	by	the	DITA-OT	is	ignored;	all
elements	other	than	<plugin>	are	optional.	Since	version	1.5.3	multiple
extension	definitions	within	a	plug-in	configuration	file	are	combined;	in
older	versions	only	the	last	extension	definition	is	used.

Parent	topic:	Creating	DITA-OT	plug-ins

Extending	the	XML	Catalog
The	XML	Catalogs	extension	point	is	used	to	update	the	XML	Catalogs
used	to	resolve	DTD	or	Schema	document	types,	or	to	add	URI
mappings.	This	is	required	in	order	to	support	DITA	specializations	or
new	DITA	document	type	shells.

To	do	this,	first	create	a	catalog	with	only	your	new	values,	using	the
OASIS	Catalog	format,	and	place	that	in	your	plug-in.	Local	file
references	in	the	catalog	should	be	relative	to	the	location	of	the	catalog.
The	following	extension	points	are	available	to	work	with	catalogs.

dita.specialization.catalog.relative

dita.specialization.catalog

Adds	the	content	of	the	catalog	file	defined	in	file	attribute	to
main	DITA-OT	catalog	file.

Remember:	The	dita.specialization.catalog	extension	is
deprecated.	Use	dita.specialization.catalog.relative
instead.

org.dita.pdf2.catalog.relative

Adds	the	content	of	the	catalog	file	defined	in	file	attribute	to
main	PDF	plug-in	catalog	file.

Example

This	example	assumes	that	"catalog-dita.xml"	contains	an	OASIS
catalog	for	any	DTDs	or	Schemas	inside	this	plug-in.	The	catalog	entries
inside	of	catalog-dita.xml	are	relative	to	the	catalog	itself;	when	the
plug-in	is	integrated,	they	will	be	added	to	the	core	DITA-OT	catalog	(with
the	correct	path).

<plugin	id="com.example.catalog">

		<feature	extension="dita.specialization.catalog.relative"	file="catalog-dita.xml"/>

</plugin>

Parent	topic:	Creating	DITA-OT	plug-ins

Adding	new	targets	to	the	Ant	build	process
The	Ant	conductor	extension	point	is	used	to	make	new	targets	available
to	the	Ant	processing	pipeline.	This	may	be	done	as	part	of	creating	a
new	transform,	extending	pre-processing,	or	simply	to	provide	Ant	targets
for	the	use	of	other	plug-ins.

dita.conductor.target.relative

dita.conductor.target

Add	Ant	import	to	main	Ant	build	file.

Remember:	The	dita.conductor.target	extension	is
deprecated.	Use	dita.conductor.target.relative	instead.

Example

To	extend	And	processing,	first	place	your	extensions	in	an	Ant	project
file	within	your	plug-in,	such	as	myAntStuff.xml.	Next,	create	a	small
wrapper	file	myAntStuffWrapper.xml	in	the	same	directory:

<dummy>	<import	file="myAntStuff.xml"/>	</dummy>

Then	create	the	following	feature:

<plugin	id="com.example.ant">

		<feature	extension="dita.conductor.target.relative"	file="myAntStuffWrapper.xml"/>

</plugin>

When	the	plug-in	is	integrated,	the	imports	from	myAntStuffWrapper.xml
will	be	copied	into	build.xml	(using	the	correct	path).	This	makes	targets
in	myAntStuff.xml	available	to	any	other	processing.

Parent	topic:	Creating	DITA-OT	plug-ins

Adding	Ant	targets	to	the	pre-process	pipeline
Every	step	in	the	pre-process	pipeline	defines	an	extension	point	before
and	after	the	step,	to	allow	plug-ins	to	integrate	additional	processing.
This	allows	a	plug-in	to	insert	a	new	step	before	any	pre-processing	step,
as	well	as	before	or	after	the	entire	preprocess	pipeline.

The	group	of	preprocessing	steps	defines	extension	points	before	and
after	the	full	preprocessing	chain.

depend.preprocess.pre

Preprocessing	pre-target;	extending	this	target	runs	your	Ant
target	before	the	full	preprocess	routine	begins.

depend.preprocess.post

Preprocessing	post-target;	extending	this	target	runs	your	Ant
target	after	the	full	preprocess	routine	completes.

In	addition,	there	are	extension	points	to	execute	an	Ant	target	before
individual	preprocessing	steps.

depend.preprocess.clean-temp.pre

Clean	temp	pre-target

depend.preprocess.gen-list.pre

Generate	list	pre-target

depend.preprocess.debug-filter.pre

Debug	and	filter	pre-target

depend.preprocess.conrefpush.pre

Content	reference	push	pre-target

depend.preprocess.move-meta-entries.pre

Move	meta	entries	pre-target

depend.preprocess.conref.pre

Content	reference	pre-target

depend.preprocess.coderef.pre

Code	reference	pre-target

depend.preprocess.mapref.pre

Map	reference	pre-target

depend.preprocess.keyref.pre

Resolve	key	reference	pre-target

depend.preprocess.mappull.pre

Map	pull	pre-target

depend.preprocess.chunk.pre

Chunking	pre-target

depend.preprocess.maplink.pre

Map	link	pre-target

depend.preprocess.move-links.pre

Move	links	pre-target

depend.preprocess.topicpull.pre

Topic	pull	pre-target

depend.preprocess.copy-files.pre

Copy	files	pre-target

depend.preprocess.copy-image.pre

Copy	images	pre-target

depend.preprocess.copy-html.pre

Copy	HTML	pre-target

depend.preprocess.copy-flag.pre

Copy	flag	pre-target

depend.preprocess.copy-subsidiary.pre

Copy	subsidiary	pre-target

depend.preprocess.copy-generated-files.pre

Copy	generated	files	pre-target

Example

The	following	feature	adds	"myAntTargetBeforeChunk"	Ant	target	to	be
executed	before	the	chunk	step	in	preprocessing.	It	assumes	that	an	Ant
file	defining	that	target	has	already	been	integrated.

<plugin	id="com.example.extendchunk">

		<feature	extension="depend.preprocess.chunk.pre"	value="myAntTargetBeforeChunk"/>

</plugin>

When	integrated,	the	Ant	target	"myAntTargetBeforeChunk"	will	be	added
to	the	Ant	dependency	list	so	that	it	always	runs	immediately	before	the
Chunk	step.

Parent	topic:	Creating	DITA-OT	plug-ins

Integrating	a	new	transform	type
Plug-ins	may	integrate	an	entire	new	transform	type.	The	new	transform
type	can	be	very	simple,	such	as	an	XHTML	build	that	creates	an
additional	control	file;	it	can	also	be	very	complex,	adding	any	number	of
new	processing	steps.

The	transtype	extension	point	is	used	to	define	a	new	"transtype",	or
transform	type,	which	makes	use	of	targets	in	your	Ant	extensions.	When
a	transform	type	is	defined,	the	build	expects	Ant	code	to	be	integrated	to
define	the	transform	process.	The	Ant	code	must	define	a	target	based
on	the	name	of	the	transform	type;	if	the	transform	type	is	"mystuff",	the
Ant	code	must	define	a	target	named	dita2mystuff.

dita.conductor.transtype.check

Add	new	value	to	list	of	valid	transformation	type	names.

dita.transtype.print

Declare	transtype	as	a	print	type.

Example

The	following	feature	defines	a	transform	type	of	"newtext"	and	declares
it	as	a	print	type;	using	this	transform	type	will	cause	the	build	to	look	for
a	target	dita2newtext,	defined	in	a	related	Ant	extension	from	the	third
feature:

<plugin	id="com.example.newtext">

		<feature	extension="dita.conductor.transtype.check"	value="newtext"/>

		<feature	extension="dita.transtype.print"	value="newtext"/>

		<feature	extension="dita.conductor.target.relative"	file="antWrapper.xml"/>

</plugin>

Parent	topic:	Creating	DITA-OT	plug-ins

Override	styles	with	XSLT
The	XSLT	import	extension	points	are	used	to	override	various	steps	of
XSLT	processing.	For	this,	the	extension	attribute	indicates	the	step	that
the	override	applies	to;	the	file	attribute	is	a	relative	path	to	the	override
within	the	current	plugin.	The	plugin	installer	will	add	an	XSL	import
statement	to	the	default	code	so	that	your	override	becomes	a	part	of	the
normal	build.

The	following	XSLT	steps	are	available	to	override	in	the	core	toolkit:

dita.xsl.xhtml

Overrides	default	(X)HTML	output	(including	HTML	Help	and
Eclipse	Help).	The	referenced	file	is	integrated	directly	into	the
XSLT	step	that	generates	XHTML.

dita.xsl.xslfo

Overrides	default	PDF	output	(formerly	known	as	PDF2).	The
referenced	file	is	integrated	directly	into	the	XSLT	step	that
generates	XSL-FO	for	PDF.

dita.xsl.docbook

Overrides	default	DocBook	output.

dita.xsl.rtf

Overrides	default	RTF	output.

dita.xsl.eclipse.plugin

Overrides	the	step	that	generates	plugin.xml	for	Eclipse.

dita.xsl.conref

Overrides	the	preprocess	step	that	resolves	conref.

dita.xsl.topicpull

Overrides	the	preprocess	step	"topicpull"	(the	step	that	pulls	text
into	<xref>	elements,	among	other	things).

dita.xsl.mapref

Overrides	the	preprocess	step	"mapref"	(the	step	that	resolves
references	to	other	maps).

dita.xsl.mappull

Overrides	the	preprocess	step	"mappull"	(the	step	that	updates
navtitles	in	maps	and	causes	attributes	to	cascade).

dita.xsl.maplink

Overrides	the	preprocess	step	"maplink"	(the	step	that
generates	map-based	links).

Example

The	following	two	files	represent	a	complete,	simple	style	plug-in.	The
plugin.xml	file	declares	an	XSLT	file	that	extends	XHTML	processing;	the
XSLT	file	overrides	default	header	processing	to	provide	a	(theoretical)
banner.

plugin.xml:

<?xml	version="1.0"	encoding="UTF-8"?>

<plugin	id="com.example.brandheader">

		<feature	extension="dita.xsl.xhtml"	file="xsl/header.xsl"/>

</plugin>

xsl/header.xsl:

<?xml	version="1.0"	encoding="UTF-8"?>

<xsl:stylesheet	version="1.0"	

																xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

		<xsl:template	name="gen-user-header">

				<div><img	src="http://www.example.com/company_banner.jpg"	

														alt="Example	Company	Banner"/></div>

		</xsl:template>

</xsl:stylesheet>

Parent	topic:	Creating	DITA-OT	plug-ins

Modifying	or	adding	generated	text
Generated	text	is	the	term	for	strings	that	are	automatically	added	by	the
build,	such	as	"Note"	before	the	contents	of	a	<note>	element.

The	generated	text	extension	point	is	used	to	add	new	strings	to	the
default	set	of	generated	text.	There	are	several	reasons	you	may	want	to
use	this:

It	can	be	used	to	add	new	text	for	your	own	processing	extensions;
for	example,	it	could	be	used	to	add	localized	versions	of	the	string
"User	response"	to	aid	in	rendering	troubleshooting	information.

It	can	be	used	to	override	the	default	strings	in	the	toolkit;	for
example,	it	could	be	used	to	reset	the	English	string	"Figure"	to	"Fig".

It	can	be	used	to	add	support	for	new	languages	(for	non-PDF
transforms	only;	PDF	requires	more	complicated	localization
support).	For	example,	it	could	be	used	to	add	support	for
Vietnamese	or	Gaelic;	it	could	also	be	used	to	support	a	new	variant
of	a	previously	supported	language,	such	as	Australian	English.

dita.xsl.strings

Add	new	strings	to	generated	text	file.

Example:	adding	new	strings

First	copy	the	file	xsl/common/strings.xml	to	your	plug-in,	and	edit	it	to
contain	the	languages	that	you	are	providing	translations	for	("en-us"
must	be	present).	For	this	sample,	copy	the	file	into	your	plug-in	as
xsl/my-new-strings.xml.	The	new	strings	file	will	look	something	like	this:

<!--	Provide	strings	for	my	plug-in;	this	plug-in	supports

					English,	Icelandic,	and	Russian.	-->

<langlist>

		<lang	xml:lang="en"					filename="mystring-en-us.xml"/>

		<lang	xml:lang="en-us"		filename="mystring-en-us.xml"/>

		<lang	xml:lang="is"					filename="mystring-is-is.xml"/>

		<lang	xml:lang="is-is"		filename="mystring-is-is.xml"/>

		<lang	xml:lang="ru"					filename="mystring-ru-ru.xml"/>

		<lang	xml:lang="ru-ru"		filename="mystring-ru-ru.xml"/>

</langlist>

Next,	copy	the	file	xsl/common/strings-en-us.xml	to	your	plug-in,	and
replace	the	content	with	your	own	strings	(be	sure	to	give	them	unique
name	attributes).	Do	the	same	for	each	language	that	you	are	providing	a
translation	for.	For	example,	the	file	mystring-en-us.xml	might	contain:

<strings	xml:lang="en-us">

		<str	name="String1">English	generated	text</str>

		<str	name="Another	String">Another	String	in	English</str>

</strings>

Use	the	following	extension	code	to	include	your	strings	in	the	set	of
generated	text:

<plugin	id="com.example.strings">

		<feature	extension="dita.xsl.strings"	file="xsl/my-new-strings.xml"/>

</plugin>

The	string	is	now	available	to	the	"getString"	template	used	in	many
DITA-OT	XSLT	files.	For	example,	if	processing	in	a	context	where	the
xml:lang	value	is	"en-us",	the	following	call	would	return	"Another	String
in	English":

<xsl:call-template	name="getString">

		<xsl:with-param	name="stringName"	select="'Another	String'"/>

</xsl:call-template>

Note:	If	two	plug-ins	define	the	same	string,	the	results	will	be	non-
deterministic,	so	multiple	plug-ins	should	not	try	to	create	the	same
generated	text	string.	One	common	way	to	avoid	this	problem	is	to
ensure	the	name	attributes	used	to	look	up	the	string	value	are
related	to	the	ID	or	purpose	of	your	plug-in.

Example:	modifying	existing	strings

The	process	for	modifying	existing	generated	text	is	exactly	the	same	as
for	adding	new	text,	except	that	the	strings	you	provide	override	values
that	already	exist.	To	begin,	set	up	the	xsl/my-new-strings.xml	file	in	your
plug-in	as	in	the	previous	example.

Next,	copy	the	file	xsl/common/strings-en-us.xml	to	your	plug-in,	and
choose	the	strings	you	wish	to	change	(be	sure	to	leave	the	name
attribute	unchanged,	because	this	is	the	key	used	to	look	up	the	string).
Create	a	strings	file	for	each	language	that	needs	to	modify	existing
strings.	For	example,	the	new	file	mystring-en-us.xml	might	contain:

<strings	xml:lang="en-us">

		<str	name="Figure">Fig</str>

		<str	name="Draft	comment">ADDRESS	THIS	DRAFT	COMMENT</str>

</strings>

To	integrate	the	new	strings,	use	the	same	method	as	above	to	add	these
strings	to	your	plugin.xml	file.	Once	this	plug-in	is	integrated,	where
XHTML	output	previously	generated	the	term	"Figure",	it	will	now
generate	"Fig";	where	it	previously	generated	"Draft	comment",	it	will	now
generate	"ADDRESS	THIS	DRAFT	COMMENT".	The	same	strings	in
other	languages	will	not	be	modified	unless	you	also	provide	new
versions	for	those	languages.

Note:	If	two	plug-ins	override	the	same	string	in	the	same	language,
the	results	will	be	non-deterministic	(either	string	may	be	used	under
different	conditions).	Multiple	plug-ins	should	not	override	the	same
generated	text	string	for	a	single	language.

Example:	adding	a	new	language

The	process	for	adding	a	new	language	is	exactly	the	same	as	for	adding
new	text,	except	you	are	effectively	just	translating	an	existing	strings	file.
To	begin,	set	up	the	xsl/my-new-strings.xml	file	in	your	plug-in	as	in	the
previous	examples.	In	this	case,	the	only	difference	is	that	you	are	adding
a	mapping	to	new	languages;	for	example,	the	following	file	would	be
used	to	set	up	support	for	Vietnamese:

<!--	Map	languages	with	xml:lang="vi"	or	xml:lang="vi-vn"

					to	the	translations	in	this	plug-in.	-->

<langlist>

		<lang	xml:lang="vi"					filename="strings-vi.xml"/>

		<lang	xml:lang="vi-vn"		filename="strings-vi.xml"/>

</langlist>

Next,	copy	the	file	xsl/common/strings-en-us.xml	to	your	plug-in,	and
rename	it	to	match	the	language	you	wish	to	add.	For	example,	to
support	Vietnamese	strings	you	may	want	to	pick	a	name	like	strings-
vi.xml.	In	that	file,	change	the	xml:lang	attribute	on	the	root	element	to
match	your	new	language.

Once	the	file	is	ready,	translate	the	contents	of	each	<str>	element	(be
sure	to	leave	the	name	attribute	unchanged).	Repeat	this	process	for
each	new	language	you	wish	to	add.

To	integrate	the	new	languages,	use	the	same	method	as	above	to	add
these	strings	to	your	plugin.xml	file.	Once	this	plug-in	is	integrated,	non-
PDF	builds	will	include	support	for	Vietnamese;	instead	of	generating	the
English	word	"Caution",	the	element	<note	type="caution"
xml:lang="vi">	may	generate	something	like	"chú	ý".

Note:	If	two	plug-ins	add	support	for	the	same	language	using
different	values,	the	results	will	be	non-deterministic	(translations
from	either	plug-in	may	be	picked	up	under	different	conditions).

Parent	topic:	Creating	DITA-OT	plug-ins

Related	reference
Languages	supported	by	the	core	toolkit

Passing	parameters	to	existing	XSLT	steps
Plug-ins	can	define	new	parameters	to	be	passed	from	the	Ant	build	into
existing	XSLT	pipeline	stages,	usually	to	have	those	parameters
available	as	global	<xsl:param>	values	within	XSLT	overrides.

To	create	new	parameters,	create	a	file	insertParameters.xml	which
contains	one	or	more	Ant	<param>	elements.	It	also	needs	a	<dummy>
wrapper	element	around	the	parameters.	For	example,	the	following
parameter	will	be	passed	in	to	the	XSLT	file	with	a	value	of
${antProperty},	but	only	if	that	parameter	is	defined:

<dummy>

		<!--	Any	Ant	code	allowed	in	xslt	task	is	possible.	Common	example:	-->

		<param	name="paramNameinXSLT"	expression="${antProperty}"	if="antProperty"/>

</dummy>

Pass	the	value	using	the	following	extensions:

dita.conductor.html.param

Pass	parameters	to	HTML	and	HTML	Help	XSLT

dita.conductor.xhtml.param

Pass	parameters	to	XHTML	and	Eclipse	Help	XSLT

dita.conductor.xhtml.toc.param

Pass	parameters	to	XHTML	TOC	XSLT

dita.conductor.eclipse.toc.param

Pass	parameters	to	Eclipse	Help	TOC	XSLT

dita.preprocess.conref.param

Pass	parameters	to	conref	XSLT

dita.preprocess.mapref.param

Pass	parameters	to	mapref	XSLT

dita.preprocess.mappull.param

Pass	parameters	to	mappull	XSLT

dita.preprocess.maplink.param

Pass	parameters	to	maplink	XSLT

dita.preprocess.topicpull.param

Pass	parameters	to	topicpull	XSLT

dita.conductor.pdf2.param

Pass	parameters	to	PDF2	XSLT

Example

The	following	plug-in	will	pass	the	parameters	defined	inside	of
insertParameter.xml	as	input	to	the	XHTML	process.	Generally,	an
additional	XSLT	override	will	make	use	of	the	parameter	to	do	something
new	with	the	generated	content.

<plugin	id="com.example.newparam">

		<feature	extension="dita.conductor.xhtml.param"	file="insertParameters.xml"/>

</plugin>

Parent	topic:	Creating	DITA-OT	plug-ins

Adding	Java	libraries	to	the	classpath
If	your	Ant	or	XSLT	extensions	require	additional	Java	libraries	in	the
classpath,	you	can	add	them	to	the	global	DITA-OT	classpath	with	the
following	feature.

dita.conductor.lib.import

Add	Java	libraries	to	DITA-OT	classpath.

Example

The	following	plug-in	adds	the	compiled	Java	code	from
myJavaLibrary.jar	into	the	global	DITA-OT	classpath.	XSLT	or	Ant	code
can	then	make	use	of	the	added	code.

<plugin	id="com.example.addjar">

		<feature	extension="dita.conductor.lib.import"	file="myJavaLibrary.jar"/>

</plugin>

Now	assume	that	in	this	case	myJavaLibrary.jar	performs	some
validation	step	in	the	middle	of	processing,	and	you	always	want	it	to	run
immediately	before	the	conref	step.	In	that	case	you	need	to	make	use	of
several	features	in	this	plug-in

The	JAR	file	must	be	added	to	the	classpath.

An	Ant	target	must	be	created	that	uses	this	class,	and	the	Ant
wrapper	integrated	into	the	code.

The	Ant	target	must	be	added	to	the	dependency	chain	for	conref.

In	this	extended	example,	the	files	might	look	something	like	this.

plugin.xml:

<?xml	version="1.0"	encoding="UTF-8"?>

<plugin	id="com.example.samplejava">

		<!--	Add	the	JAR	file	to	the	DITA-OT	CLASSPATH	-->

		<feature	extension="dita.conductor.lib.import"	file="com.example.sampleValidation.jar"/>

		<!--	Integrate	the	Ant	code	-->

		<feature	extension="dita.conductor.target.relative"	file="antWrapper.xml"/>

		<!--	Define	the	Ant	target	that	is	called,	and	the	location	(before	conref)	-->

		<feature	extension="depend.preprocess.conref.pre"	value="validateWithJava"/>

</plugin>

antWrapper.xml	imports	the	new	Ant	code:

<?xml	version="1.0"	encoding="UTF-8"?>

<dummy>

		<import	file="calljava-antcode.xml"/>

</dummy>

calljava-antcode.xml:

<?xml	version="1.0"	encoding="UTF-8"?>

<project	default="validateWithJava">

		<target	name="validateWithJava">

				<java	classname="com.example.sampleValidation">

						<!--	The	class	was	added	to	dost.class.path	(the	DITA-OT	classpath)	-->

						<classpath	refid="dost.class.path"/>

				</java>

		</target>

</project>

Parent	topic:	Creating	DITA-OT	plug-ins

Adding	diagnostic	messages
Plug-in	specific	warning	and	error	messages	can	be	added	to	the	set	of
messages	supplied	by	the	DITA-OT.	These	messages	can	then	be	used
by	any	XSLT	override.

dita.xsl.messages

Add	new	messages	to	diagnostic	message	file.

Example

To	add	your	own	messages,	create	the	new	messages	in	an	XML	file
such	as	myMessages.xml:

<dummy>

		<!--	See	resource/messages.xml	for	the	details.	-->

		<message	id="DOTXmy-msg-numW"	type="WARN">

				<reason>Message	text</reason>

				<response>How	to	resolve</response>

		</message>

</dummy>

There	are	three	components	to	the	message	ID:

1.	 The	prefix	DOTX	is	used	by	all	DITA-OT	XSLT	transforms,	and	must
be	part	of	the	ID.

2.	 This	is	followed	by	the	message	number	("my-msg-num"	in	the
sample	above).	By	convention,	this	should	be	a	three	digit	integer.

3.	 Finally,	a	letter	corresponds	to	the	severity.	This	should	be	one	of:

I	=	Informational,	used	with	type="INFO"

W	=	Warning,	used	with	type="WARN"

E	=	Error,	used	with	type="ERROR"

F	=	Fatal,	used	with	type="FATAL"

Once	the	message	file	is	defined,	it	is	incorporated	with	this	extension:

<plugin	id="com.example.newmsg">

		<feature	extension="dita.xsl.messages"	file="myMessages.xml"/>

</plugin>

XSLT	modules	can	then	generate	the	message	using	the	following	call:

<xsl:call-template	name="output-message">

		<xsl:with-param	name="msgnum">my-msg-num</xsl:with-param>

		<xsl:with-param	name="msgsev">W</xsl:with-param>

</xsl:call-template>

Parent	topic:	Creating	DITA-OT	plug-ins

Managing	plug-in	dependencies
The	<require>	element	in	a	plugin.xml	file	is	used	to	create	a
dependency	on	another	plug-in.	The	<require>	element	requires	the
plugin	attribute	in	order	to	reference	the	dependency.

If	the	current	plug-in	requires	a	plug-in	with	id="plugin-id"	before	it	can
be	installed,	it	would	include	the	following:

<require	plugin="plugin-id">

Prerequisite	plug-ins	are	integrated	before	the	current	plug-in	is
integrated.	This	does	the	right	thing	with	respect	to	XSLT	overrides.	If
your	plug-in	is	a	specialization	of	a	specialization,	it	should	<require>	its
base	plug-ins,	in	order	from	general	to	specific.

If	a	prerequisite	plug-in	is	missing,	a	warning	will	be	printed	during
integration.	To	suppress	this,	but	keep	the	integration	order	if	both	plug-
ins	are	present,	add	importance="optional"	to	the	<require>	element.

If	your	plug-in	can	depend	on	any	one	of	several	optional	plug-ins,
separate	the	plug-in	ids	with	a	vertical	bar.	This	is	most	useful	when
combined	with	importance="optional":

Example

The	following	plug-in	will	only	be	installed	if	the	plug-in	with
id="com.example.primary"	is	available.	If	that	one	is	not	available,	a
warning	will	be	generated	during	the	integration	process.

<plugin	id="com.example.builds-on-primary">

		<!--	...extensions	here	-->

		<require	plugin="com.example.primary"/>

</plugin>

The	following	plug-in	will	only	be	installed	if	either	the	plug-in	with
id="pluginA"	or	the	plug-in	with	id="pluginB"	are	available.	If	neither	of
those	are	installed,	the	current	plug-in	will	be	ignored.

<plugin	id="pluginC">

		<!--	...extensions	here	-->

		<require	plugin="pluginA|pluginB"	importance="optional"/>

</plugin>

Parent	topic:	Creating	DITA-OT	plug-ins

Version	and	support	information
The	following	extension	points	are	used	by	convention	to	define	version
and	support	info	within	a	plug-in.

package.support.name

package.support.email

package.version

Note:

The	toolkit	does	not	currently	do	anything	with	these	values,	but	may
do	so	in	the	future.

The	package.version	value	should	follow	the	syntax	rules:

version			::=	major	('.'	minor	('.'	micro	('.'	qualifier)?)?)?

major					::=	number

minor					::=	number

micro					::=	number

qualifier	::=	([0..9]	|	[a..zA..Z]	|	’_’	|	'-')+

The	default	value	is	0.0.0.

Example
<plugin	id="com.example.WithSupportInfo">

		<feature	extension="package.support.name"	value="Joe	the	Author"/>

		<feature	extension="package.support.email"	value="joe@example.com"/>

		<feature	extension="package.version"	value="1.2.3"/>

</plugin>

Parent	topic:	Creating	DITA-OT	plug-ins

Creating	a	new	plug-in	extension	point
If	your	plug-in	needs	to	define	its	own	extension	point	in	an	XML	file,	add
the	string	"_template"	to	the	filename	before	the	file	suffix.	During
integration,	this	file	will	be	processed	like	the	built-in	DITA-OT	templates.

Template	files	are	used	to	integrate	most	DITA-OT	extensions.	For
example,	the	file	dita2xhtml_template.xsl	contains	all	of	the	default	rules
for	converting	DITA	topics	to	XHTML,	along	with	an	integration	point	for
plug-in	extensions.	When	the	integrator	runs,	the	file	dita2xhtml.xsl	is
recreated,	and	the	integration	point	is	replaced	with	references	to	all
appropriate	plug-ins.

To	mark	a	new	file	as	a	template	file,	use	the	<template>	element.

The	template	extension	namespace	has	the	URI	http://dita-
ot.sourceforge.net.	It	is	used	to	identify	elements	and	attributes	that
have	a	special	meaning	in	template	processing.	This	documentation	uses
a	prefix	of		dita:		for	referring	to	elements	in	the	template	extension
namespace.	However,	template	files	are	free	to	use	any	prefix,	provided
that	there	is	a	namespace	declaration	that	binds	the	prefix	to	the	URI	of
the	template	extension	namespace.

dita:extension	element

The	dita:extension	elements	are	used	to	insert	generated	content	during
integration	process.	There	are	two	required	attributes:

The	id	attribute	defines	the	extension	point	ID	which	provides	the
argument	data.

The	behaviour	attribute	defines	which	processing	action	is	used.

Supported	values	for	behavior	attribute:

org.dita.dost.platform.CheckTranstypeAction

Create	Ant	condition	elements	to	check	if	${transtype}	property
value	equals	a	supported	transtype	value.

org.dita.dost.platform.ImportAntLibAction

Create	Ant	pathelement	elements	for	library	imported	extension
point.	The	id	attribute	is	used	to	define	the	extension	point	ID.

org.dita.dost.platform.ImportPluginCatalogAction

Include	plug-in	metadata	catalog	content.

org.dita.dost.platform.ImportPluginInfoAction

Create	plug-in	metadata	Ant	properties.

org.dita.dost.platform.ImportStringsAction

Include	plug-in	string	file	content	base	on	generated	text
extension	point.	The	id	attribute	is	used	to	define	the	extension
point	ID.

org.dita.dost.platform.ImportXSLAction

Create	xsl:import	elements	based	on	XSLT	import	extension

point.	The	id	attribute	is	used	to	define	the	extension	point	ID.

org.dita.dost.platform.InsertAction

Include	plug-in	conductor	content	based	on	Ant	import	extension
point.	The	id	attribute	is	used	to	define	the	extension	point	ID.

org.dita.dost.platform.InsertAntActionRelative

Include	plug-in	conductor	content	based	on	relative	Ant	import
extension	point.	The	id	attribute	is	used	to	define	the	extension
point	ID.

org.dita.dost.platform.InsertCatalogActionRelative

Include	plug-in	catalog	content	based	on	catalog	import
extension	point.	The	id	attribute	is	used	to	define	the	extension
point	ID.

org.dita.dost.platform.ListTranstypeAction

Create	a	pipe	delimited	list	of	supported	transtypes.

dita:extension	attribute

The	dita:extension	attribute	is	used	to	process	attributes	in	elements
which	are	not	in	template	extension	namespace.	The	value	of	the
attribute	is	a	space	delimited	tuple,	where	the	first	item	is	the	name	of	the
attribute	to	process	and	the	second	item	is	the	action	ID.

Supported	values:

depends	org.dita.dost.platform.InsertDependsAction

Ant	target	dependency	list	is	processed	to	replace	all	target
names	which	start	with	an	open	curly	bracket	and	end	with	a
close	curly	bracket.	The	value	of	the	extension	point	is	the	ID
between	the	curly	brackets.

Example

The	following	plug-in	defines	myBuildFile_template.xml	as	a	new
template	for	extensions,	and	two	new	extension	points.

<plugin	id="com.example.new-extensions">

		<extension-point	id="com.example.new-extensions.pre"

																			name="Custom	target	preprocess"/>

		<extension-point	id="com.example.new-extensions.content"

																			name="Custom	target	content"/>

		<template	file="myBuildFile_template.xml"/>

</plugin>

When	the	integrator	runs,	this	will	be	used	to	recreate	myBuildFile.xml,
replacing	Ant	file	content	based	on	extension	point	use.

<project	xmlns:dita="http://dita-ot.sourceforge.net">

		<target	name="dita2custom"

										depends="dita2custom.init,

																			{com.example.new-extensions.pre},

																			dita2xhtml"

										dita:extension="depends	org.dita.dost.platform.InsertDependsAction">

				<dita:extension	id="com.example.new-extensions.content"

																				behaviour="org.dita.dost.platform.InsertAction"/>

		<target>

</project>

Parent	topic:	Creating	DITA-OT	plug-ins

Example	plugin.xml	file
The	following	is	a	sample	of	a	plugin.xml	file.	This	file	adds	support	for	a
new	set	of	specialized	DTDs,	and	includes	an	override	for	the	XHTML
output	processor.

This	plugin.xml	file	would	go	into	a	directory	such	as	DITA-
OT\plugins\music\	and	referenced	supporting	files	would	also	exist	in	that
directory.	A	more	extensive	sample	using	these	values	is	available	in	the
actual	music	plug-in,	available	at	the	DITA-OT	download	page	at
SourceForge

<plugin	id="org.metadita.specialization.music">

		<feature	extension="dita.specialization.catalog.relative"	file="catalog-dita.xml">

		<feature	extension="dita.xsl.xhtml"	file="xsl/music2xhtml.xsl"/>

</plugin>

Parent	topic:	Creating	DITA-OT	plug-ins

http://sourceforge.net/projects/dita-ot/files/

XHTML	migration	for	flagging	updates	in	DITA-
OT	1.7
This	topic	is	primarily	of	interest	to	developers	with	XHTML	transform
overrides	written	prior	to	DITA-OT	1.7.	Due	to	significant	changes	in	the
flagging	process	with	the	1.7	release,	some	changes	may	be	needed	to
make	overrides	work	properly	with	DITAVAL	based	flagging.	The	new
design	is	significantly	simpler	than	the	old	design;	in	many	cases,
migration	will	consist	of	deleting	old	code	that	is	no	longer	needed.

Which	XHTML	overrides	need	to	migrate?

If	your	override	does	not	contain	any	code	related	to	DITAVAL	flagging,
then	there	is	nothing	to	migrate.

If	your	builds	do	not	make	use	of	DITAVAL	based	flagging,	but	calls	the
deprecated	flagging	templates,	then	you	should	override	but	there	is	little
urgency.	You	will	not	see	any	difference	in	the	output,	but	those
templates	will	be	removed	in	a	future	release.

If	you	do	make	use	of	DITAVAL	based	flagging,	try	using	your	override
with	1.7.	Check	the	elements	you	override:

1.	 In	some	cases	flags	may	be	doubled.	This	will	be	the	case	if	you	call
routines	such	as	"start-flagit".

2.	 In	some	cases	flags	may	be	removed.	This	will	be	the	case	if	you
call	shortcut	routines	such	as	"revtext"	or	"revblock".

3.	 In	other	cases,	flags	may	still	appear	properly,	in	which	case
migration	is	less	urgent

For	any	migration	that	needs	migration,	please	see	the	instructions	that
follow.

Deprecated	templates	in	DITA-OT	1.7

All	of	the	old	DITAVAL	based	templates	are	deprecated	in	DITA-OT	1.7.	If
your	overrides	include	any	of	the	following	templates,	they	should	be
migrated	for	the	new	release;	in	many	cases	the	templates	below	will	not
have	any	effect	on	your	output,	but	all	instances	should	be	migrated.

The	"gen-style"	template	used	to	add	CSS	styling

The	"start-flagit"	and	"end-flagit"	templates	used	to	generate
image	flags	based	on	property	attributes	like	@audience

The	"start-revflag"	and	"end-revflag"	templates,	used	to	generate
images	for	active	revisions

Shortcut	templates	that	group	these	templates	into	a	single	call,	such
as:

"start-flags-and-rev"	and	"end-flags-and-rev",	used	to
combine	flags	and	revisions	into	one	call

"revblock"	and	"revtext",	both	used	to	output	start	revisions,
element	content,	and	end	revisions

The	modes	"outputContentsWithFlags"	and
"outputContentsWithFlagsAndStyle",	both	used	to	combine
processing	for	property/revision	flags	with	content	processing

All	other	templates	that	make	use	of	the	$flagrules	variable,	which
is	no	longer	used	in	any	of	the	DITA-OT	1.7	code

All	templates	within	flag.xsl	that	were	called	from	the	templates
listed	above

Element	processing	handled	with	mode="elementname-fmt",	such
as	mode="ul-fmt"	for	processing	unordered	lists	and	mode="section-
fmt"	for	sections.

What	replaces	the	templates?

The	new	flagging	design	described	in	the	preprocess	design	section	now
adds	literal	copies	of	relevant	DITAVAL	elements,	along	with	CSS	based
flagging	information,	into	the	relevant	section	of	the	topic.	This	allows
most	flags	to	be	processed	in	document	order;	in	addition,	there	is	never
a	need	to	read	the	DITAVAL,	interpret	CSS,	or	evaluate	flagging	logic.
The	htmlflag.xsl	file	contains	a	few	rules	to	match	and	process	the
start/end	flags;	in	most	cases,	all	code	to	explicitly	process	flags	can	be
deleted.

For	example,	the	common	logic	for	most	element	rules	before	DITA-OT
1.7	could	be	boiled	down	to	the	following:

Match	element
				Create	"flagrules"	variable	by	reading	DITAVAL	for	active	flags
				Output	start	tag	such	as	<div>	or	
								Call	"commonattributes"	and	ID	processing
								Call	"gen-style"	with	$flagrules,	to	create	DITAVAL	based	CSS
								Call	"start-flagit"	with	$flagrules,	to	create	start	flag	images
								Call	"start-revflag"	with	$flagrules,	to	create	start	revision	images
								Output	contents
								Call	"end-revflag"	with	$flagrules,	to	create	end	revision	images
								Call	"end-flagit"	with	$flagrules,	to	create	end	flag	images
				Output	end	tag	such	as	</div>	or	

In	DITA-OT	1.7,	style	and	images	are	typically	handled	with	XSLT
fallthrough	processing.	This	removes	virtually	all	special	flag	coding	from
element	rules,	because	flags	are	already	part	of	the	document	and
processed	in	document	order.	The	sample	above	is	reduced	to:

Match	element
			Output	start	tag	such	as	<div>	or	
						Call	"commonattributes"	and	ID	processing
						Output	contents

			Output	end	tag	such	as	</div>	or	

Migrating	"gen-style"	named	template

Calls	to	the	"gen-style"	template	should	be	deleted.	There	is	no	need	to
replace	this	call	for	most	elements.

The	"gen-style"	template	was	designed	to	read	a	DITAVAL	file,	find
active	style-based	flagging	(such	as	colored	or	bold	text),	and	add	it	to
the	generated	@style	attribute	in	HTML.

With	DITA-OT	1.7,	the	style	is	calculated	in	the	pre-process	flagging
module.	The	result	is	created	as	@outputclass	on	a	<ditaval-startprop>
sub-element.	The	"commonattributes"	template	now	includes	a	line	to
process	that	value;	the	result	is	that	for	every	element	that	calls
"commonattributes",	DITAVAL	style	will	be	processed	when	needed.
Because	virtually	every	element	includes	a	call	to	this	common	template,
there	is	little	chance	that	your	override	needs	to	explicitly	process	the
style.	The	new	line	in	"commonattributes"	that	handles	the	style	is:

<xsl:apply-templates	select="*[contains(@class,'	ditaot-d/ditaval-startprop	')]/@outputclass"	mode="add-ditaval-style"/>

Migrating	"start-flagit",	"start-revflag",	"end-flagit",	and
"end-flagit"	named	templates

Calls	to	these	templates	fall	into	two	general	groups.

If	the	flow	of	your	element	rule	is	to	create	a	start	tag	like	<div>,	"start-
flagit"/"start-revflag",	process	contents,	"end-revflag"/"end-flagit",
end	tag	-	you	just	need	to	delete	the	calls	to	these	templates.	Flags	will
be	generated	simply	by	processing	the	element	contents	in	document
order.

If	the	flow	of	your	element	rule	processes	flags	outside	of	the	normal
document-order.	There	are	generally	two	reasons	this	is	done.	The	first
case	is	for	elements	like	,	where	flags	must	appear	before	the		in
order	to	create	valid	XHTML.	The	second	is	for	elements	like	<section>,
where	start	flags	are	created,	followed	by	the	title	or	some	generated
text,	element	contents,	and	finally	end	flags.	In	either	of	these	cases,
support	for	processing	flags	in	document	order	is	disabled,	so	they	must
be	explicitly	processed	out-of-line.	This	is	done	with	the	following	two
lines	(one	for	start	flag/revision,	one	for	end	flag/revision):

Create	starting	flag	and	revision	images:

<xsl:apply-templates	select="*[contains(@class,'	ditaot-d/ditaval-startprop	')]"	mode="out-of-line"/>

Create	ending	flag	and	revision	images:

<xsl:apply-templates	select="*[contains(@class,'	ditaot-d/ditaval-endprop	')]"	mode="out-of-line"/>

For	example,	the	following	lines	are	used	in	DITA-OT	1.7	to	process	the
	element	(replacing	the	29	lines	used	in	DITA-OT	1.6):

<xsl:template	match="*[contains(@class,'	topic/ul	')]">

		<xsl:apply-templates	select="*[contains(@class,'	ditaot-d/ditaval-startprop	')]"	mode="out-of-line"/>

		<xsl:call-template	name="setaname"/>

		

				<xsl:call-template	name="commonattributes"/>

				<xsl:apply-templates	select="@compact"/>

				<xsl:call-template	name="setid"/>

				<xsl:apply-templates/>

		

		<xsl:apply-templates	select="*[contains(@class,'	ditaot-d/ditaval-endprop	')]"	mode="out-of-line"/>

		<xsl:value-of	select="$newline"/>

</xsl:template>

Migrating	"start-flags-and-rev"	and	"end-flags-and-rev"

"start-flags-and-rev"	is	equivalent	to	calling	"start-flagit"
followed	by	"start-revflag";	it	should	be	migrated	as	in	the	previous
section.

"end-flags-and-rev"	is	equivalent	to	calling	"end-revflag"	followed
by	"end-flagit";	it	should	be	migrated	as	in	the	previous	section.

Migrating	"revblock"	and	"revtext"

Calls	to	these	two	templates	can	be	replaced	with	a	simple	call	to
<xsl:apply-templates/>.

Migrating	modes	"outputContentsWithFlags"	and
"outputContentsWithFlagsAndStyle"

Processing	an	element	with	either	of	these	modes	can	be	replaced	with	a
simple	call	to	<xsl:apply-templates/>.

Migrating	mode="elementname-fmt"

Prior	to	DITA-OT	1.7,	many	elements	were	processed	with	the	following
logic:

Match	element

				Set	variable	to	determine	if	revisions	are	active	and	$DRAFT	is	on

				If	active

								create	division	with	rev	style

												process	element	with	mode="elementname-fmt"

								end	division

				Else

								process	element	with	mode="elementname-fmt"

Match	element	with	mode="elementname-fmt"

				Process	as	needed

Beginning	with	DITA-OT	1.7,	styling	from	revisions	is	handled
automatically	with	the	"commonattributes"	template.	This	means	there	is
no	need	for	the	extra	testing,	or	the	indirection	to	mode="elementname-
fmt".	These	templates	are	deprecated,	and	element	processing	will	move
into	the	main	element	rule.	Overrides	that	include	this	indirection	may
remove	it;	overrides	should	also	be	sure	to	match	the	default	rule,	rather
than	matching	with	mode="elementname-fmt".

Parent	topic:	DITA	Open	Toolkit	Developer	Reference

Customizing	PDF	output
You	can	build	a	DITA-OT	plug-in	that	contains	a	customized	PDF
transformation.

About	this	task

This	topic	demonstrates	the	process	of	building	a	plug-in
(com.example.print-pdf)	that	creates	a	new	transformation	type:	print-
pdf.	The	print-pdf	transformation	has	the	following	characteristics:

Uses	A4	paper

Renders	figures	with	a	title	at	the	top	and	a	description	at	the	bottom

Use	em	dashes	as	the	symbols	for	unordered	lists

Procedure

1.	 In	the	plugins	directory,	create	a	directory	named
com.example.print-pdf.

2.	 In	the	new	com.example.print-pdf	directory,	create	a	plug-in
configuration	file	(plugin.xml)	that	declares	the	new	print-pdf
transformation	and	its	dependencies.
Figure	1.	plugin.xml	file

<?xml	version='1.0'	encoding='UTF-8'?>

<plugin	id="com.example.print-pdf">

		<require	plugin="org.dita.pdf2"/>

		<feature	extension="dita.conductor.transtype.check"	value="print-pdf"/>

		<feature	extension="dita.transtype.print"	value="print-pdf"/>

		<feature	extension="dita.conductor.target.relative"	file="integrator.xml"/>

</plugin>

3.	 Add	an	Ant	script	(integrator.xml)	to	define	the	transformation	type.
Figure	2.	integrator.xml	file

<?xml	version='1.0'	encoding='UTF-8'?>

<project	name="com.example.print-pdf">

		<target	name="dita2print-pdf.init">

				<property	name="customization.dir"	location="${dita.plugin.com.example.print-pdf.dir}/cfg"/>

		</target>

		<target	name="dita2print-pdf"	depends="dita2print-pdf.init,	dita2pdf2"/>

</project>

4.	 In	the	new	plug-in	directory,	add	a	cfg/catalog.xml	file	that	specifies
the	custom	XSLT	style	sheets.
Figure	3.	cfg/catalog.xml	file

<?xml	version="1.0"	encoding="UTF-8"?>

<catalog	prefer="system"	xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">

		<uri	name="cfg:fo/attrs/custom.xsl"	uri="fo/attrs/custom.xsl"/>

		<uri	name="cfg:fo/xsl/custom.xsl"	uri="fo/xsl/custom.xsl"/>

</catalog>

5.	 Create	the	cfg/fo/attrs/custom.xsl	file,	and	add	attribute	and
variable	overrides	to	it.
For	example,	add	the	content	highlighted	with	bold	to	change	the
page	size	to	A4.
Figure	4.	cfg/fo/attrs/custom.xsl	file

<?xml	version="1.0"	encoding="UTF-8"?>

<xsl:stylesheet	xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

																version="2.0">

		<!--	Change	page	size	to	A4	-->

		<xsl:variable	name="page-width">210mm</xsl:variable>

		<xsl:variable	name="page-height">297mm</xsl:variable>

</xsl:stylesheet>

6.	 Create	the	cfg/fo/xsl/custom.xsl	file,	and	add	XSLT	overrides	to	it.
For	example,	the	following	code	changes	the	rendering	of	<figure>
elements.
Figure	5.	cfg/fo/xsl/custom.xsl	file

<?xml	version="1.0"	encoding="UTF-8"?>

<xsl:stylesheet	xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

																xmlns:xs="http://www.w3.org/2001/XMLSchema"

																xmlns:fo="http://www.w3.org/1999/XSL/Format"

																version="2.0">

		<!--	Move	figure	title	to	top	and	description	to	bottom	-->

		<xsl:template	match="*[contains(@class,'	topic/fig	')]">

				<fo:block	xsl:use-attribute-sets="fig">

						<xsl:call-template	name="commonattributes"/>

						<xsl:if	test="not(@id)">

								<xsl:attribute	name="id">

										<xsl:call-template	name="get-id"/>

								</xsl:attribute>

						</xsl:if>

						<xsl:apply-templates	select="*[contains(@class,'	topic/title	')]"/>

						<xsl:apply-templates	select="*[not(contains(@class,'	topic/title	')	or	contains(@class,'	topic/desc	'))]"/>

						<xsl:apply-templates	select="*[contains(@class,'	topic/desc	')]"/>

				</fo:block>

		</xsl:template>

</xsl:stylesheet>

7.	 Create	an	English-language	variable-definition	file
(cfg/common/vars/en.xml)	and	make	any	necessary	modifications	to
it.
For	example,	the	following	code	removes	the	period	after	the
number	for	an	ordered-list	item;	it	also	specifies	that	the	bullet	for	an
unordered	list	item	should	be	an	em	dash.
Figure	6.	cfg/common/vars/en.xml	file

<?xml	version="1.0"	encoding="UTF-8"?>

<vars	xmlns="http://www.idiominc.com/opentopic/vars">

		<!--	Remove	dot	from	list	number	-->

		<variable	id="Ordered	List	Number"><param	ref-name="number"/></variable>

		<!--	Change	unordered	list	bullet	to	an	em	dash	-->

		<variable	id="Unordered	List	bullet">—</variable>

</vars>

Results

The	new	plug-in	directory	has	the	following	layout	and	files:

com.example.print-pdf/

		cfg/

				common/

						vars/

								en.xml

				fo/

						attrs/

								custom.xsl

						xsl/

								custom.xsl

				catalog.xml

		integrator.xml

		plugin.xml

What	to	do	next

Run	the	integration	process	to	install	the	plug-in	and	make	the	print-pdf
transformation	available.

Parent	topic:	DITA	Open	Toolkit	Developer	Reference

Internal	Ant	properties
Reference	list	of	Ant	properties	used	by	DITA-OT	internally.

include.rellinks

Space	separated	list	of	link	roles	to	be	output;	value	token
#default	denotes	default	role	value.	Property	default	value
depends	on	transformation	type.	Defined	by	args.rellinks,	but
may	be	overridden	directly.

Parent	topic:	DITA	Open	Toolkit	Developer	Reference

Implementation	dependent	features

Chunking

Supported	chunking	methods:

select-topic

select-document

select-branch

by-topic

by-document

to-content

to-navigation.

When	no	chunk	attribute	values	are	given,	no	chunking	is	performed.

Note:	In	effect,	for	HTML	based	transformation	types	this	is
equivalent	to	select-document	and	by-document	defaults.

Error	recovery:

When	two	tokens	from	the	same	category	are	used,	no	error	or
warning	is	thrown.

When	an	unrecognized	chunking	method	is	used,	no	error	or
warning	is	thrown.

Filtering

Error	recovery:

When	there	are	multiple	revprop	elements	with	the	same	val
attribute,	no	error	or	warning	is	thrown

When	multiple	prop	elements	define	a	duplicate	attribute	and	value
combination,	attribute	default,	or	fall-back	behaviour,	DOTJ007E
error	is	thrown.

Debug	attributes

The	debug	attributes	are	populated	as	follows:

xtrf

absolute	system	path	of	the	source	document

xtrc

element	counter	that	uses	the	format

element-name	":"	integer-counter	";"	line-number	":"	column-number

Image	scaling

If	both	height	and	width	attributes	are	given,	image	is	scaled	non-
uniformly.

If	scale	attribute	is	not	an	unsigned	integer,	no	error	or	warning	is	thrown
during	preprocessing.

Map	processing

When	a	topicref	element	that	references	a	map	contains	child	topicref
elements,	DOTX068W	error	is	thrown	and	the	child	topicref	elements
are	ignored.

Link	processing

When	the	value	of	href	attribute	is	not	a	valid	URI	reference,	DOTJ054E
error	is	thrown.	Depending	on	error	recover	mode,	error	recover	may	be
attempted.

Copy-to	processing

When	the	copy-to	attribute	is	specified	on	a	topicref,	the	content	of	the
shortdesc	element	is	not	used	to	override	the	short	description	of	the
topic.

Parent	topic:	DITA	Open	Toolkit	Developer	Reference

Extended	functionality
Parent	topic:	DITA	Open	Toolkit	Developer	Reference

Code	reference	processing

Charset	definition

DITA-OT	supports	defining	the	code	reference	target	file	encoding	using
the	format	attribute.	The	supported	format	is:

format	(";"	space*	"charset="	charset)?

If	charset	is	not	defined	system	default	charset	will	be	used.	If	charset	is
not	recognized	or	supported,	DOTJ052E	error	is	thrown	and	system
default	charset	is	used	as	a	fall-back.

<coderef	href="unicode.txt"	format="txt;	charset=UTF-8"/>

Line	range	extraction

Code	reference	can	extract	only	a	given	line	ranges	with	line-range
pointer	in	the	URI	fragment.	The	format	is:

uri	("#line-range("	start	(","	end)?	")")?

Start	and	end	line	numbers	start	from	1	and	are	inclusive.	If	end	range	is
omitted,	range	ends	in	last	line	of	the	file.

<coderef	href="Parser.scala#line-range(5,	10)"	format="scala"/>

Only	lines	from	5	to	10	will	be	included	in	the	output.

RFC	5147

DITA-OT	implements	line	position	and	range	from	RFC	5147.	The	format
for	line	range	is:

uri	("#line="	start?	","	end?)?

Start	and	end	line	numbers	start	from	0	and	are	inclusive	and	exclusive,
respectively.	If	the	start	range	is	omitted,	range	starts	from	the	first	line;	if
end	range	is	omitted,	range	ends	in	last	line	of	the	file.	The	format	for	line

http://tools.ietf.org/html/rfc5147

position	is:

uri	("#line="	position)?

Position	line	number	starts	from	0.

<coderef	href="Parser.scala#line=4,10"	format="scala"/>

Only	lines	from	5	to	10	will	be	included	in	the	output.

DITA	and	DITA-OT	resources
In	addition	to	the	DITA-OT	documentation,	there	are	other	resources
about	DITA	and	the	DITA-OT	that	you	might	find	helpful.

DITA-OT	project	page	at	dita.xml.org	The	DITA-OT	project	page	at
dita.xml.org	provides	news	about	the	latest	toolkit	builds,	plans	for
the	next	milestone	release,	and	other	rapidly-changing	information.	It
also	contains	release	notes	for	all	past	and	upcoming	releases.

Yahoo!	dita-users	group
This	list-serv	is	a	vital	resource	for	the	DITA	community.	People	post
regularly,	both	asking	for	and	offering	help.	While	the	archived
messages	can	be	difficult	to	search,	this	is	a	treasure	trove	of
information.

Home	page	for	the	OASIS	DITA	Technical	Committee
The	OASIS	DITA	Technical	Committee	develops	the	DITA	standard.

Web-based	resources
There	are	many	vital	DITA	resources	online,	including	the	Yahoo!
dita-users	group	and	the	DITA-OT	project	page	at	dita.xml.org.

developerWorks	articles
Between	2001	and	2005,	IBM	DITA	experts	published	an	important
collection	of	articles	on	the	developerWorks	Web	site.

http://dita.xml.org/wiki/the-dita-open-toolkit
http://groups.yahoo.com/group/dita-users/
http://www.oasis-open.org/committees/dita/

Web-based	resources
There	are	many	vital	DITA	resources	online,	including	the	Yahoo!	dita-
users	group	and	the	DITA-OT	project	page	at	dita.xml.org.

DITA-OT	project	page	at	dita.xml.org

The	DITA-OT	project	page	at	dita.xml.org	provides	news	about
the	latest	toolkit	builds,	plans	for	the	next	milestone	release,	and
other	rapidly-changing	information.	It	also	contains	release
notes	for	all	past	and	upcoming	releases.

Yahoo!	dita-users	group

The	DITA-OT	project	page	at	dita.xml.org	provides	news	about
the	latest	toolkit	builds,	plans	for	the	next	milestone	release,	and
other	rapidly-changing	information.	It	also	contains	release
notes	for	all	past	and	upcoming	releases.

Home	page	for	the	OASIS	DITA	Technical	Committee

The	OASIS	DITA	Technical	Committee	develops	the	DITA
standard.

Parent	topic:	DITA	and	DITA-OT	resources

http://dita.xml.org/wiki/the-dita-open-toolkit
http://groups.yahoo.com/group/dita-users/
http://www.oasis-open.org/committees/dita/

developerWorks	articles
Between	2001	and	2005,	IBM	DITA	experts	published	an	important
collection	of	articles	on	the	developerWorks	Web	site.

Introduction	to	the	Darwin	Information	Typing	Architecture

Specializing	topic	types	in	DITA

Specializing	domains	in	DITA

Frequently	Asked	Questions	about	the	Darwin	Information	Typing
Architecture

Why	use	DITA	to	produce	HTML	deliverables?

Design	patterns	for	information	architecture	with	DITA	map	domains

Migrating	HTML	to	DITA,	Part	1:	Simple	steps	to	move	from	HTML	to
DITA

Migrating	HTML	to	DITA,	Part	2:	Extend	the	migration	for	more
robust	results

Transform	Eclipse	navigation	files	to	DITA	navigation	files

Parent	topic:	DITA	and	DITA-OT	resources

http://www-128.ibm.com/developerworks/xml/library/x-dita1/
http://www-128.ibm.com/developerworks/xml/library/x-dita2/index.html
http://www-128.ibm.com/developerworks/xml/library/x-dita5/index.html
http://www-128.ibm.com/developerworks/xml/library/x-dita3/index.html
http://www-128.ibm.com/developerworks/xml/library/x-dita6/index.html
http://www-128.ibm.com/developerworks/xml/library/x-dita7/index.html
http://www-128.ibm.com/developerworks/xml/library/x-dita8a/
http://www-128.ibm.com/developerworks/xml/library/x-dita8b/
http://www-128.ibm.com/developerworks/xml/library/x-ecldita/

generate.outer.copy	parameter
Elaboration	on	how	the	generate.outer.copy	parameter	functions.

Background

This	is	an	issue	in	the	following	situations:

The	DITA	map	is	in	a	directory	that	is	a	peer	to	directories	that
contain	referenced	objects.

The	DITA	map	is	in	a	directory	that	is	below	the	directories	that
contain	the	referenced	objects.

Let's	assume	that	the	directory	structure	for	the	DITA	content	looks	like
the	following:

maps

topics

images

The	DITA	map	is	in	the	maps	directory,	the	topics	are	in	the	topics
directory,	and	the	images	are	in	the	images	directory.

Setting	the	generate.outer.copy	parameter	to	1

Let's	assume	that	you	run	the	HTML5	transformation	and	specify	an
output	directory	of	C:\A-test.	By	default,	The	DITA-OT	uses	the
generate.outer.copy	parameter	with	a	value	of	1.	Output	is	not	built	for
the	topics.	You	receive	only	the	following	output:

C:\A-test

---	index.html

---	commonltr.css

---	commonrtl.css

The	index.html	file	contains	the	navigation	structure,	but	all	the	links	are
broken,	since	no	HTML5	files	were	built	for	the	topics.

How	do	you	fix	this?	By	specifying	a	value	of	3	for	the
generate.outer.copy	parameter.

Setting	the	generate.outer.copy	parameter	to	3

Now	your	output	directory	structure	looks	like	this:

C:\A-test

---	images\

---	maps\

---	topics\

The	index.html	file	is	in	the	maps	directory,	and	the	CSS	and	other	files
are	located	in	the	output	directory,	C:\A-test.	Copying	the	output
directory	is	simplified.

Parent	topic:	Ant	parameters:	Common	HTML-based	transformations

	DITA Open Toolkit 2.0
	Getting Started
	Installing the full-easy-install package
	Running the demo build
	Building your own content using the demo build

	User Guide
	Overview of the DITA Open Toolkit
	Release notes
	DITA 1.2 Specification Support
	Tested platforms and tools

	Installing the DITA-OT
	Distribution packages
	Prerequisite software
	Installing the client package
	Installing the full-easy-install package
	Installing the minimal or standard package on Linux or Mac OSX
	Installing the minimal or standard package on Windows

	Publishing DITA content
	DITA-OT transformations
	DITA to Docbook
	DITA to Eclipse Content
	DITA to Eclipse help
	DITA to HTML5
	DITA to HTML Help (CHM)
	DITA to ODT
	DITA to PDF (PDF2)
	DITA to RTF
	DITA to TocJS
	DITA to Troff
	DITA to XHTML

	Publishing DITA content with dita command
	Building output using the dita command

	Publishing DITA content from Ant
	Ant
	Building output using Ant
	Creating an Ant build script

	Publishing DITA content from the command-line tool
	Command-line tool
	Building output using the command-line tool

	Extending the DITA-OT
	Installing plug-ins
	Removing plug-ins

	Globalizing DITA content
	Globalization support offered by the DITA-OT
	Supported languages: HTML-based transformations
	Supported languages: PDF transformations

	Error messages and troubleshooting
	DITA-OT error messages
	Other error messages
	Log files
	Accessing help from the command-line tool
	Determing the version of the DITA Open Toolkit
	Enabling debug mode
	Increasing Java memory allocation

	Reference
	Ant parameters
	All transformations
	All HTML-based transformations
	Eclipse content
	Eclipse help
	HTML Help
	JavaHelp
	ODT
	Other
	PDF
	HTML5 and XHTML

	dita command arguments and options
	Command-line tool parameters
	All transformations
	All HTML-based transformations
	Eclipse content
	Eclipse help
	HTML help
	JavaHelp
	ODT
	PDF transformation
	HTML5 and XHTML

	lib/configuration.properties file

	Developer Reference
	Architecture of the DITA-OT
	DITA-OT processing structure
	DITA-OT processing modules
	DITA-OT processing order
	Pre-processing modules
	Generate lists (gen-list)
	Debug and filter (debug-filter)
	Copy related files (copy-files)
	Resolve keyref (keyref)
	Conref push (conrefpush)
	Conref (conref)
	Move metadata (move-meta-entries)
	Resolve code references (codref)
	Resolve map references (mapref)
	Pull content into maps (mappull)
	Chunk topics (chunk)
	Map based linking (maplink and move-links)
	Pull content into topics (topicpull)
	Flagging in the toolkit

	HTML-based processing modules
	Common HTML-based processing
	XHTML processing
	HTML5 processing
	Eclipse help processing
	TocJS processing
	HTML Help processing
	JavaHelp processing

	PDF processing modules
	Open Document Format processing modules

	Extending the DITA-OT
	Manually installing plug-ins
	Manually removing plug-ins
	Rebuilding the DITA-OT documentation

	Configuring the DITA-OT
	plugin.properties file

	Creating DITA-OT plug-ins
	Plug-in configuration file
	Extending the XML Catalog
	Adding new targets to the Ant build process
	Adding Ant targets to the pre-process pipeline
	Integrating a new transform type
	Override styles with XSLT
	Modifying or adding generated text
	Passing parameters to existing XSLT steps
	Adding Java libraries to the classpath
	Adding diagnostic messages
	Managing plug-in dependencies
	Version and support information
	Creating a new plug-in extension point
	Example plugin.xml file

	Customizing PDF output
	Internal Ant properties
	Implementation dependent features
	Extended functionality

	DITA and DITA-OT resources
	Web-based resources
	developerWorks articles

