
Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

PHP	Connector
DHTMLX	connector	is	a	helper	server-side	library	that	enables	access	to
external	datasources	and	backend	systems.
It	supports	all	DHTMLX	components	operated	on	data.
The	library	itself	provides	wide	server-side	functionality,	such	as	data
loading	(static	or	dynamic),	saving,	filtration,	validation	etc.	Cooperation
with	DHTMLX	Dataprocessor	allows	you	to	manage	insert/delete/update
operations	in	addition.

Release	notes
Guides
Coding	how-tos
Reference
Samples

Release	notes

new	in	version	1.5

Security:

Protection	from	XSS	attacks;
Preventing	CSRF	and	XSRF	attacks.

Flexibility:

New	methods	for	rendering	data	(support	for	stored	procedures	calls,
loading	from	data	arrays);
The	possibility	to	set	userdata	with	all	types	of	connectors;
The	possibility	to	rename	the	query	status	parameter
'!nativeeditor_status';
Better	OOP	support	(support	for	data	model	and	data	behavior
classes);
Better	Touch	Support	(improved	data	formats,	adding	extra
tags/sections	to	data);
Support	for	PHP	frameworks	(CodeIgniter,	YII,	CakePHP).

new	in	version	1.2

SQLite	support
DataConnector,	JSONDataConnector
onDBError	event

server-side	requirements

Fully	supported	DataBases:	MySQL,	PostgreSQL,	Oracle,	MSSQL,
FileSystem
Partially	supported	DataBases:	SQLite,	any	PDO|ODBC	compliant	(
MSAccess,	Excel,	SQLLite,	DB2,	FireBird,	etc.)
PHP	version:	5.x

supported	functionality

Data	loading	for	Grid,	TreeGrid,	Tree,	Combo,	Scheduler,	DataView,
Chart,	Form
Data	saving	for	Grid,	TreeGrid,	Tree,	Scheduler,	DataView,	Form
Server-side	sorting	and	filtering	for	Grid,	Treegrid
Dynamic	loading	(paging)	for	Grid,	Treegrid,	Tree,	Scheduler,
DataView,	Combo

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

migration	from	older	versions

0.9	→	0.96

beforeFilter	and	beforeSorting	events	provide	object	as	parameter
instead	of	plain	data
Order	of	parameters	for	render_*	methods	of	TreeGrid	and	Tree
connectors	was	changed.

//0.9

render_table("table","id","fields","parent	id")

//1.0

render_table("table","id","fields","extra	fields","parent	id"

0.96	→	1.0

beforeOutput	event	has	different	parameters

1.0	→	1.5

new	version	filter	out	html	content	before	saving,	use	the	next	code	if
you	want	to	revert	logic	of	connector	to	the	previous	behavior

				ConnectorSecurity::$xss	=	DHX_SECURITY_TRUSTED;

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

GUIDES
Please	note,	throughout	the	guides	you'll	see	examples	that	relate	to
grid.	If	you	use	a	different	component	that	supports	mentioned
functionality,	just	replace	GridConnector	with	the	appropriate	type.	See	a
list	of	connector	types	here.

Getting	started
General	idea	of	dhtmlxConnector	+	general	list	of	connectors
Initialization
Summarized	components	functionality

Loading	data
Basic	Loading
Dynamic	Loading
Filtering
Formatting/Changing	Data	before	Loading
Sorting

Managing	Create/Update/Delete	operations
Integration	with	dataProcessor	and	changing	default	processing
Making	queries
Multi-user	sync
Security
Validation
Saving	data	changes	made	in	form

Data	export	to	Excel,	PDF
Elementary	DB	operations	with	dhtmlxConnector
Errors	handling	and	logging
Event	handling
Extending	existing	functionality
Using	dhtmlxConnector	with	the	CodeIgniter,	YII,	CakePHP
frameworks

General	idea	of	dhtmlxConnector
dhtmlxConnector	is	a	server-side	library	that	lets	you	access	data
sources.	It	consists	of	individual	component-specific	connectors	and	a	set
of	additional	ones	providing	advanced	functionality.

A	dhtmlxConnector's	job	is	to	provide	necessary	data	exchange
conditions	so	that	you	do	not	have	to	deal	with	the	technical	details	of
working	with	various	data	stores,	systems	or	services.	As	such,	each
type	of	dhtmlxConnector	is	designed	to	use	a	specific	API.

As	the	library	is	server-side	it	provides	different	manipulations	just	on
server	backend:

loading	data	(statically	or	dynamically)	from	database,	File	System,
Excel	file.
server-side	filtration,	sorting	and	validation.

When	you	need	to	deal	with	client-side	as	well,	i.e.	pass	data	back	to
server,	you	should	use	DataProcessor	additionally	(for	more	details	of
this	topic,	see	the	chapter	'Client-side	requirement	-	dataProcessor').

general	list	of	connectors

Component-specific:

ChartConnector	(relates	to	dhtmlxChart)
ComboConnector	(relates	to	dhtmlxCombo)
DataViewConnector	(relates	to	dhtmlxDataView)
FormConnector	(relates	to	dhtmlxForm)
GridConnector	(relates	to	dhtmlxGrid)
SchedulerConnector	(relates	to	dhtmlxScheduler)
TreeConnector	(relates	to	dhtmlxTree)
TreeGridConnector	(relates	to	dhtmlxTreeGrid)

	

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

Additional	(most	important):

JSONDataConnector/DataConnector	(relates	to	touch-oriented
libraries:	DHTMLX	Touch,	DataTable,	dhtmlXDataStore)
KeyGridConnector
SelectOptionsConnector
TreeGroupConnector/TreeGridGroupConnector
TreeMultitableConnector

Throughout	the	documentation	you'll	see	examples	that	use
'GridConnector'.	Subject	to	using	component,	replace	it	with	the

needed	connector.

JSONDataConnector/DataConnector

Common

There	are	2	connectors	you	can	use	for	touch-oriented	DHTMLX	libraries
(such	as	DHTMLX	Touch,	DataTable,	DataStore):

DataConnector
JSONDataConnector

They	both	work	the	same	way,	but	differ	in	type	of	returned	data.

<?php	

require_once("../../connector/data_connector.php");

require_once("../../connector/db_sqlite.php");

	

if	(!$db	=	sqlite_open('db',	0777,	$sqliteerror))	{

	 die($sqliteerror);

}

$data	=	new	JSONDataConnector($db,"SQLite");

$data->render_table("users",	"id",	"name,age,city");

?>

DataConnector

DataConnector	generates	'XML'	data	feed	as	in:

<data>

			<item	id="1"	title="War	and	Peace"		author="Leo	Tolstoy"/>

			<item	id="2"	title="Hamlet"									author="William	Shakespeare"

			<item	id="3"	title="Madame	Bovary"		author="Gustave	Flaubert"

</data>

JSONDataConnector

http://www.php.net/die

JSONDataConnector	generates	'JSON'	data	feed	as	in:

[

			{	id:"1",	title:"War	and	Peace",				author:"Leo	Tolstoy"	},

			{	id:"2",	title:"Hamlet",											author:"Shakespeare"	},

			{	id:"3",	title:"Madame	Bovary",				author:"Gustave	Flaubert"	}

]

Adding	tags/sections	to	data

Starting	from	version	1.5,	there	is	a	possibility	to	add	the	first	child	tags,
sections	to	data	returned	by	the	connector.	To	add	the	tag(section),	use
method	add_section.

DataConnector

For	example,	if	you	call	add_section	as	follows:

$data	=	new	JSONDataConnector($db,"SQLite");

$data->add_section("config",	"some_data");

$data->add_section("config2",	"<column>data1</column><column>data2</column>"

DataConnector	produces	the	next	data:

<data>

				<config>some_data</config>

				<config2><column>data1</column><column>data2</column></config2

				<item	id="1"	attr1="qwe"	attr2="asd"	/>

				<item	id="2"	attr1="qwe"	attr2="asd"	/>

</data>

JSONDataConnector

If	you	call	add_section	as	follows:

$data	=	new	JSONDataConnector($db,"SQLite");

$data->add_section("config",	"'some_data'");

$data->add_section("config2",	"{	column1:	'data1'}");

JSONDataConnector	produces	the	next	data:

{

				data:	[

						{	'id':	'1',	'attr1':'qwe',	'attr2':'asd'},

						{	'id':	'2',	'attr1':'qwe',	'attr2':'asd'}

],

				config:	'some_data',

				config2:	{	'column1':'data1'	},		

}

Simple	Data	Transfer

JSONDataConnector/DataConnector	supports	simplified	protocol	for
CRUD	requests.

get	all	data

	GET		data.php?action=get

server	response	-	collection	of	json	(xml)	objects

get	info	for	some	specific	record

	GET			data.php?action=get&id=123

response	-	json(xml)	object

delete

	GET		data.php?action=delete

	POST	id=123

server	response	-	'true'/'false'

insert

	GET		data.php?action=insert

	POST	id=123&some=value&other=value

response	on	success

true

<new_id>

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

or

	false	

on	failed	insert	operation

update

	GET		data.php?action=delete

	POST	id=123&some=value&other=value

response	-	'true'/'false'

SelectOptionsConnector
SelectOptionsConnector	is	used	by	the	dhtmlxForm	component	to	fill	a
list	of	options	for	the	'select'	item.
Don't	confuse	SelectOptionsConnector	with	OptionsConnector.	The
second	one	is	an	auxiliary	connector	and	used	just	in	the	context	of
dhtmlxGrid	and	dhtmlxScheduler	components.	SelectOptionsConnector
is	an	independent	connector	able	to	generate	output	XML	data.

So,	to	define	options	of	the	select	form's	item	you	should	make	the
following:

1.	 On	client-side	you	should	specify	the	parameter	'connector':

var	formData	=	[

	 	 {type:	"select",	label:	"Categories",

	 	 {type:	"button",	value:	"Proceed"}

];

myForm	=	new	dhtmlXForm("form_container",	formData);

2.	 On	server-side	your	code	will	look	like:

<?php	

require_once("../codebase/connector/options_connector.php"

$res=mysql_connect("localhost","root","");

mysql_select_db("tasks");

	

$data	=	new	SelectOptionsConnector($res,	"MySQL");

$data->render_table("categories","id","value,	label")

	

?>	

http://www.php.net/mysql_connect
http://www.php.net/mysql_select_db

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

Render_table	method	takes	the	following	parameters:

'categories'	-	the	name	of	table.
'id'	-	the	id	column
'value'	-	the	column	that	will	be	used	as	values	of	options.
'label'	-	the	column	that	will	be	used	as	labels	of	options.

Initialization
To	use	functionality	of	DHTMLX	Connector,	first	you	should	initialize	it.
Generally,	both	client-	and	server-sides	are	concerned	in	it.

client-side

if	you	need	just	load	data	from	database	(with	or
without	data	preprocessing)

1.	 Specify	connector	file	in	load	(or	loadXML)	method	of	a
component.

//index.html

myGrid	=	new	dhtmlXGridObject("someContainer");//	initializes	grid

...

myGrid.load("my_connector.php");

if	you	need	to	perform	any	update	operations

1.	 Include	connector.js	file	(located	in
dhtmlxConnector_php/codebase).

2.	 Specify	connector	file	in	load	(or	loadXML)	method	of	a
component.

3.	 Initialize	dhtmlxDataProcessor	on	client-side	(read	more	about	it
here).

//index.html

<script	src="codebase/connector/connector.js"></script

myGrid	=	new	dhtmlXGridObject("someContainer");//	initializes	grid

...

myGrid.load("my_connector.php");

myDP	=	new	dataProcessor("myconnector.php");//	initializes	dhtmlxDataProcessor

myDP.init(myGrid);

Samples	of	client-side	initialization	for	all	components

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

server-side

1.	 Include	appropriate	connector	file	into	the	page.
2.	 Create	Database	connection.
3.	 Instantiate	connector	object.	Linking	variable	is	a	mandatory

parameter	in	all	constructors.	The	second	parameter(database
type)-	optional.	By	default	“MySQL”.	Other	possible	variants	see
here.

4.	 The	last	step	is	data	configuration.

//my_connector.php

require("connector/grid_connector.php");//	connector	file

$res=mysql_connect("localhost","root","");//	db	connection

mysql_select_db("myDatabase");	//	db	connection

$gridConn	=	new	GridConnector($res,"MySQL");	//	connector	object;				parameters:	db	connection	and	the	type	of	the	using	db

$gridConn->render_table("mytable","item_id","item_nm,item_cd"

Samples	of	server-side	initialization	for	all	components

http://www.php.net/mysql_connect
http://www.php.net/mysql_select_db

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

Summarized	components	functionality
Chart
Combo
DataStore
DataView
Form
Grid
Tree
TreeGrid
Scheduler

DHTXML	Touch	Components

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

CHART
Functionality	supported	by	dhtmlxConnector:

Data	loading
Formatting/changing	data	before	loading
Dynamic	loading
Server-side	logging

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

COMBO
Functionality	supported	by	dhtmlxConnector:

Dynamic	loading
Formatting/changing	data	before	loading
Server-side	filtration
Server-side	logging
Server-side	sorting
Static	loading	from	database	tables,	File	System,	Excel	files

Functionality	supported	by	dhtmlConnector	&	dataProcessor:

Client-side	logging
Client-side	validation
Elementary	DB	actions	with	dhtmlxConnector
Making	complex	queries
Making	simple	queries
Multi-user	sync
Server-side	validation

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

DATASTORE
Functionality	supported	by	dhtmlxConnector:

Dynamic	loading
Formatting/changing	data	before	loading
Server-side	filtration
Server-side	logging
Server-side	sorting
Static	loading	from	database	tables,	File	System,	Excel	files

Functionality	supported	by	dhtmlConnector	&	dataProcessor:

Client-side	logging
Client-side	validation
Elementary	DB	actions	with	dhtmlxConnector
Making	complex	queries
Making	simple	queries
Server-side	validation

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

DATAVIEW
Functionality	supported	by	dhtmlxConnector:

Dynamic	loading
Formatting/changing	data	before	loading
Server-side	filtration
Server-side	logging
Server-side	sorting
Static	loading	from	database	tables,	File	System,	Excel	files

Functionality	supported	by	dhtmlConnector	&	dataProcessor:

Client-side	logging
Client-side	validation
Elementary	DB	actions	with	dhtmlxConnector
Making	complex	queries
Making	simple	queries
Multi-user	sync
Server-side	validation

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

FORM
Functionality	supported	by	dhtmlxConnector:

Dynamic	loading
Formatting/changing	data	before	loading
Server-side	filtration
Server-side	logging
Server-side	sorting
Static	loading	from	database	tables,	File	System,	Excel	files

Functionality	supported	by	dhtmlConnector	&	dataProcessor:

Client-side	logging
Client-side	validation
Elementary	DB	actions	with	dhtmlxConnector
Making	complex	queries
Making	simple	queries
Multi-user	sync
Server-side	validation

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

GRID
Functionality	supported	by	dhtmlxConnector:

Defining	grid	structure	on	server-side
Dynamic	loading
Formatting/changing	data	before	loading
Loading	from	tables	that	don't	contain	identity	field
Select/combo	box	columns	in	Grid
Server-side	data	export	to	PDF,	Excel
Server-side	filtration
Server-side	logging
Server-side	sorting
Static	loading	from	database	tables,	File	System,	Excel	files

Functionality	supported	by	dhtmlConnector	&	dataProcessor:

Client-side	logging
Client-side	validation
Elementary	DB	actions	with	dhtmlxConnector
Making	complex	queries
Making	simple	queries
Multi-user	sync
Server-side	validation
Transactions

DEFINING	GRID	STRUCTURE	ON	SERVER-
SIDE
APPLICABLE	TO:	Grid

Starting	from	version	1.0,	connectors	can	be	used	to	define	header	of
grid.
It	can	be	done	in	2	ways:

automatic
manual

automatic	defining

In	case	automatic	defining,	grid	will	use	names	of	table's	fields	as	labels
for	the	columns.

require("../../codebase/grid_connector.php");

$grid	=	new	GridConnector($res);

	

$grid->set_config(new	GridConfiguration());

$grid->render_table("grid50000","item_id","item_nm,item_cd")

If	you	want	to	apply	automatic	server-side	sorting	and	filtration	for
specified	columns,	you	should	specify	true	inside	GridConfiguration:

$grid->set_config(new	GridConfiguration(true));

$grid->render_table("grid50000","item_id","item_nm,item_cd")

manual	defining

In	manual	mode,	headers	and	their	parameters	are	defined	by	php
command.	Names	of	commands	mimic	names	of	js	commands	with
similar	functionality.

$config	=	new	GridConfiguration();

$config->setHeader(array("column	1","column	2"));

$config->setColTypes(array("ro","ed"));

	

$grid->set_config($config);

	

$grid->render_table("grid50000","item_id","item_nm,item_cd")

available	commands

All	commands	below,	get	as	input	parameter	an	array	of	values	or
comma-separated	string,	delimited	by	'header	delimiter'	(default	value	-
',').

//	column	labels

$config->setHeader($names);

//	column	types

$config->setColTypes($typeStr);

//	column	IDs

$config->setColIds($idsStr);

//	column	width,	int	values,	will	be	processed	as	size	in	pixels

$config->setInitWidths($widths);

//	column	width,	int	value,	will	be	threated	as	size	in	percents

$config->setInitWidthsP($widths);

//	column	align

$config->setColAlign($alStr);

//	column	sorting	type

$config->setColSorting($sortStr);

//	column	color

http://www.php.net/array
http://www.php.net/array

$config->setColColor($colorStr);

//	visibility	of	column	

$config->setColHidden($hidStr);//'true'	if	column	must	be	hidden,	'false'	otherwise.

header	and	footer

To	attach	header	to	the	grid	you	should	use	attachHeader()	method:

$config->attachHeader($values,	$styles	=	null);

Parameters:

array	or	string	of	header	names.	In	case	of	string,	names	are
delimited	by	'header	delimiter'	(default	value	-',')
array	or	string	of	header	styles.	In	case	of	string,	styles	are
delimited	by	'header	delimiter'	(default	value	-	',')

To	attach	footer	to	the	grid	you	should	use	attachFooter()	method:

$config->attachFooter($values,	$styles	=	null);

Parameters:

array	or	string	of	footer	names.	In	case	of	string,	names	are
delimited	by	'header	delimiter'	(default	value	-	',')
array	or	string	of	footer	styles.	In	case	of	string,	styles	are
delimited	by	'header	delimiter'	(default	value	-	',')

header	delimiter

Header	delimeter	sets	symbol	or	several	symbols	which	will	be	used	as
delimiter	in	string	arguments.

$config->setHeaderDelimiter($headerDelimiter);

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

Related	samples

defining	grid	structure	on	server-side

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

KeyGridConnector
Normal	grid	connector	expects	that	target	table	has	some	autogenerated
ID	field,	but,	in	some	cases,	data	needs	to	be	loaded	and	saved	from
database	table	which	doesn't	have	such	autofilled	ID.
Normal	grid	connector	can	be	used	for	data	loading	from	such	tables,	but
won't	be	able	to	save	data	back.	KeyGridConnector	can	resolve	such
problem	(use	it	instead	of	GridConnector):

$grid	=	new	KeyGridConnector($res);

$grid->render_table("mytable","name","name,address,phone");

So,	there	are	two	differences	from	the	normal	GridConnector:

name	of	connector	class	(GridConnector→KeyGridConnector).
one	of	data	fields	is	used	as	ID

SELECT/COMBO	BOX	COLUMNS	IN	GRID
When	on	client-side	you	specify	co/coro/combo	columns	(combo-
box/select)	in	grid,	grid	will	automatically	request	data	for	them	in	the
same	manner	as	for	filtration	options.

By	default,	grid	will	use	DISTINCT	select	against	related	field,	and	fetch
all	possible	options.
If	you	need	to	define	custom	list	of	options	you	can	use	one	of	2	ways:

hardcoded	list

$grid->set_options("item_nm",array("1"	=>	"one",	"2"=>"two",

$grid->render_table("grid50","item_id","item_nm,item_cd");

list	created	on	base	of	different	table

$options	=	new	OptionsConnector($res);

$options->render_table("countries","country_id","country_id(value),country_name(label)"

$grid->set_options("item_nm",$options);

	

$grid->render_table("grid50","item_id","item_nm,item_cd");

co/combo	type

when	using	predefined	list	of	data,	both	values	and	labels	need	to	be
provided
when	using	connector,	there	must	be	two	fields	selected,	one	as
(value),	second	as	(label)

coro	type:

only	labels	need	to	be	provided

http://www.php.net/array

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

connector	may	define	only	label	parameter

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

TREE
Functionality	supported	by	dhtmlxConnector:

Dynamic	loading
Formatting/changing	data	before	loading
Loading	tree	data	from	multiple	tables
Loading	tree	data	from	tables	that	don't	contain	relation	field
Marking	an	item	as	a	leaf	or	branch
Server-side	filtration
Server-side	logging
Server-side	sorting
Static	loading	from	database	tables,	File	System,	Excel	files

Functionality	supported	by	dhtmlConnector	&	dataProcessor:

Client-side	logging
Client-side	validation
Elementary	DB	actions	with	dhtmlxConnector
Making	complex	queries
Making	simple	queries
Multi-user	sync
Server-side	validation

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

TREEGRID
Functionality	supported	by	dhtmlxConnector:

Dynamic	loading
Formatting/changing	data	before	loading
Loading	tree	data	from	multiple	tables
Loading	tree	data	from	tables	that	don't	contain	relation	field
Marking	an	item	as	a	leaf	or	branch
Server-side	filtration
Server-side	logging
Server-side	sorting
Static	loading	from	database	tables,	File	System,	Excel	files

Functionality	supported	by	dhtmlConnector	&	dataProcessor:

Client-side	logging
Client-side	validation
Elementary	DB	actions	with	dhtmlxConnector
Making	complex	queries
Making	simple	queries
Multi-user	sync
Server-side	validation

	

TreeMultitableConnector/TreeGridMultitableConnector

Connectors	will	work	only	if	dynamic	loading	mode	on	client-side
is	enabled.

In	many	cases,	tree	or	treegrid	need	to	be	built	from	multiple	tables	(each
table	represent	separate	level	of	tree/treegrid).	For	this	purpose	should
be	used	TreeMultitableConnector/TreeGridMultitableConnector	(instead
of	TreeConnector/TreeGridConector).

tree

require("../../codebase/treemultitable_connector.php");

	

$tree	=	new	TreeMultitableConnector($res);

$tree->setMaxLevel(3);

$level	=	$tree->get_level();

	

switch	($level)	{

	 case	0:

	 	 $tree->render_table("projects2","project_id"

	 	 break;

	 case	1:

	 	 $tree->render_sql("SELECT	teams2.team_id,	teams2.team_name,	project_team2.project_id	FROM	teams2	INNER	JOIN	project_team2	ON	teams2.team_id=project_team2.team_id"

	 	 break;

	 case	2:

	 	 $tree->render_table("developers2",	"developer_id"

	 	 break;

	 case	3:

	 	 $tree->render_table("phones2",	"phone_id",	"phone"

	 	 break;

}

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

treeGrid

require("../../codebase/treegridmultitable_connector.php");

	

$treegrid	=	new	TreeGridMultitableConnector($res);

$treegrid->setMaxLevel(3);

$level	=	$treegrid->get_level();

...

TreeGroupConnector/TreeGridGroupConnector
Default	connector	for	Tree	and	TreeGrid	expects	that	data	in	DB	is	stored
with	child-parent	key	relation.	But,	in	some	cases,	tree	or	treegrid	need	to
be	shown	from	plain	data	(by	grouping	it).	Such	task	can	be	resolved	with
help	of	the	TreeGroupConnector	or	TreeGridGroupConnector.

For	example,	a	table	'products'	grouping	by	category.	As	result,	the	top
level	are	'categories',	the	second	level	-	'products',	related	to	the
category.

//tree

require("./codebase/connector/tree_group_connector.php");

	

$tree	=	new	TreeGroupConnector($res);

$tree->render_table("products2",	"id",	"product_name",	"",	"category"

	

//treeGrid

<code	php>

require_once('../../codebase/treegridgroup_connector.php');

	

$treegrid	=	new	TreeGridGroupConnector($res,"MySQL");

$treegrid->render_table("products2",	"id",	"product_name,scales,colour"

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

SCHEDULER
Functionality	supported	by	dhtmlxConnector:

Select	box	columns
Dynamic	loading
Formatting/changing	data	before	loading
Server-side	filtration
Server-side	logging
Server-side	sorting
Static	loading	from	database	tables,	File	System,	Excel	files

Functionality	supported	by	dhtmlConnector	&	dataProcessor:

Client-side	logging
Client-side	validation
Elementary	DB	actions	with	dhtmlxConnector
Making	complex	queries
Making	simple	queries
Multi-user	sync
Server-side	validation

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

Select-box	columns	in	scheduler
When	scheduler	has	a	select-like	collections	or	unit/timeline	view	-	it's
possible	to	load	a	list	of	related	options	from	a	server.	In	such	case	the
data	loading	need	to	be	defined	on	client-side	as:

some_collection=scheduler.serverList("type");

On	server-side	,	list	of	options	can	be	retrieved	in	2	ways:

hardcoded	list	
//both	values	and	labels	need	to	be	provided

$scheduler->set_options("type",array("1"	=>	"one",	"2"=>"two"

$scheduler->render_table("events","event_id","start_date,end_date,text,type_id"

list	created	on	base	of	different	table

$options	=	new	OptionsConnector($res);

//there	must	be	two	fields	selected,	one	as	(value),	second	as	(label)

$options->render_table("types","type_id","type_id(value),type_name(label)"

$scheduler->set_options("type",$options);

	

$scheduler->render_table("events","event_id","start_date,end_date,text,type_id"

http://www.php.net/array

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

DHTMLX	Touch	Components
Functionality	supported	by	dhtmlxConnector:

Dynamic	loading
Formatting/changing	data	before	loading
Server-side	filtration
Server-side	logging
Server-side	sorting
Static	loading	from	database	tables,	File	System,	Excel	files

Functionality	supported	by	dhtmlConnector	&	Touch	dataProcessor
(differs	from	standard	dataProcessor)	see	in	the	 related	chapter	of
DHTMLX	Touch	documentation.

	

Basic	loading
In	this	chapter	you'll	find	base	information	concerning	static	loading	data
from:

database	table
File	System
PHP	array
Excel	file

In	order	to	data	is	loaded	correctly,	your	'id'	field	in	the	database
must	be	autoincrement.

loading	from	database	table

APPLICABLE	TO:	Grid,	TreeGrid,	Tree,	Combo,	Scheduler,	DataView,
Chart,	Form,	DataStore,	DHTMLX	Touch	components

Loading	characteristics	are	defined	at	stage	of	component	configuration.
There	are	3	ways	to	specify	the	desired	data:

by	render_table()	method	when	you	work	with	one	table
by	render_sql()	method	when	you	work	with	several	tables
by	render_complex_sql()	method	when	you	use	to	call	stored
procedures	in	the	database	+	to	implement	complex	queries

work	with	one	table

When	all	necessary	data	is	placed	in	one	database	table	you	should	use
the	render_table()	method:

$grid->render_table("grid50","item_id","item_nm,item_cd",	"extra1,	extra2"

Parameters:

database	table	name
name	of	identity	field	(optional)
list	of	fields	which	should	be	used	as	values	of	component	item
(cells	of	grid,	item	label	in	tree,	text	of	option	in	combo)
list	of	extra	fields	(know	more	about	extra	fields	here)

If	you	want	to	render	all	fields	from	DB	(except	for	the	key	field),	you	can
use	a	simplified	command:

$grid->render_table("grid50");

That's	enough	to	make	connector	implement	select,	insert,	update	and
delete	operations.

work	with	several	tables

If	your	SQL	statement	contains	more	than	one	table,	connector	won't	be
able	to	generate	insert/update/delete	operations	correctly	and	you	will
need	to	do	one	from	the	next:

1.	 Define	sql	for	each	operation	manually
2.	 Use	server-side	events	to	define	your	own	processing	logic
3.	 Define	different	configs	for	select	and	update	operations

The	3rd	approach	is	shown	in	the	code	snippet	below:

if	($grid->is_select_mode())//code	for	loading	data

				$grid->render_sql("Select	*	from	tableA,	tableB		where		tableA.id=tableB.id"

else	//code	for	other	operations	-	i.e.	update/insert/delete

				$grid->render_table("tableA","id","name,price");

With	such	init	code	grid	will	be	loaded	with	three	columns	of	data	from	2
tables,	but	during	saving	only	data	from	the	first	table	will	be	saved.

complex	queries

You	are	allowed	to	use	any	SQL	statements	to	populate	a	dhtmlx
component	through	dhtmlxConnector.	For	complex	SQL	queries	we
strongly	encourage	you	to	use	the	render_complex_sql()	method:

$grid->render_complex_sql("SELECT	name	from	tableA	WHERE	dept	=	(SELECT	dept	FROM	tableB	where	name	=	'John')"

Parameters:

sql	statement
name	of	identity	field	(optional)
list	of	fields	which	should	be	used	as	values	of	component	item
(cells	for	grid,	item	label	for	tree,	text	of	option	for	combo)
list	of	extra	fields	(know	more	about	extra	fields	here)
parent	ID	field	name	for	hierarchical	structures	(required	for	tree	and
treegrid)

In	case	your	SQL	query	was	against	a	single	table,	it	is	quite	probable
that	insert/update/delete	operations	do	not	require	any	additional	code.
dhtmlxConnector	will	parse	your	SQL	and	generate	insert/update/delete
statements	based	on	used	table	and	fields	names.

calling	stored	procedures

Starting	from	version	1.5,	you	can	load	data	using	in	SQL	statements
stored	procedures.	The	library	provides	a	special	method	for	this	need	-
render_complex_sql.

$grid->render_complex_sql("exec	usp_findusers	'John'",	"id",

extra	data

The	last	parameter	of	render_array,	render_sql,	render_complex_sql,
render_table	methods	allows	you	to	define	a	list	of	fields	which	will	be
extracted	from	database	table	but	won't	be	sent	to	client-side.
These	fields	can	be	used	as	attributes	or	flags,	mapped	to	different
properties	of	records	(userdata,	row	styles,	images,	etc.).

$grid->render_table("tableA","id","name,price","extra1,extra2"

//	or

$grid->render_sql("Select	*	from	tableA,	tableB		where		tableA.id=tableB.id"

extra1	and	extra2	fields	will	be	available	in	all	server-side	events	but
won't	be	sent	to	client-side,	and	won't	be	included	in	update|insert
operations.

tree	and	treegrid	specificity

In	case	of	Tree	and	TreeGrid	,	render_array,	render_sql,
render_complex_sql	and	render_table	accept	one	more	parameter	-	the
relation	ID.	For	default	treegrid	hierarchy	-	it's	the	name	of	a	field	,	which
will	be	used	to	link	parent	and	child	records.

$treeGrid->render_table("tableA","id","name,price","","parent_id"

//	or

$treeGrid->render_sql("Select	*	from	tableA,	tableB		where		tableA.id=tableB.id"

aliases

To	make	usage	of	extracted	data	handier	you	can	use	aliases	for	DB	field
names	(makes	sense	only	if	you	use	server-side	events):

$grid->render_table("tableA","id","name,price(product_price)"

//	or

$grid->render_sql("Select	*,tableA.id	as	aid	from	tableA,	tableB		where		tableA.id=tableB.id"

Back	to	top

loading	from	PHP	array

Starting	from	version	1.5,	instead	of	database	you	can	load	data	from	a
PHP	array	which	can	be	filled	by	any	kind	of	external	logic.
To	load	data	from	a	PHP	array,	use	method	render_array.	Beware,	the
method	can't	be	used	for	storing	data	but	you	still	can	use	event
handlers,	or	custom	model	to	intercept	data	saving	command	and
process	them	in	some	custom	way.

Parameters:

name	of	PHP	array	or	a	PHP	array	itself
name	of	identity	field	(optional)
list	of	fields	which	should	be	used	as	values	of	component	item
(cells	for	grid,	item	label	for	tree,	text	of	option	for	combo)
list	of	extra	fields	(know	more	about	extra	fields	here)
parent	ID	field	name	for	hierarchical	structures	(required	for	tree	and
treegrid)

$data	=	array(

	 array("id"	=>	"1",	"product"	=>	"Phone	AB12",				price

	 array("id"	=>	"2",	"product"	=>	"Tablet	device",	price

);

$conn->render_array($data,	"id",	"product,price");

Back	to	top

http://www.php.net/array
http://www.php.net/array
http://www.php.net/array

loading	from	File	System

APPLICABLE	TO:	Grid,	TreeGrid,	Tree,	Combo,	Scheduler,	DataView,
Chart,	Form

Starting	from	version	1.0,	dhtmlxConnector	allows	to	use	FileSystem	as
datasource	(please	note,	to	start	use	this	functionality	you	should	include
db_filesystem.php	file	located	in	connector's	package).

require("./codebase/connector/db_filesystem.php");

require("./codebase/connector/grid_connector.php");

	

$grid	=	new	GridConnector("",	"FileSystem");

$grid->render_table("../","safe_name","filename,full_filename,size,name,extention,date,is_folder"

In	the	code	snippet	above,	grid	is	filled	with	info	about	files	located	in
'd:/www'	folder

Parameters	of	'render-table'	method:

folder,	for	which	data	listing	is	required
field's	id.	Leave	it	empty	or	use	safe_name	as	ID	of	file
list	of	fields,	possible	values	are:

filename	-	name	of	file
full_filename	-	full	path	to	file
size	-	size	of	file	in	bytes
name	-	name	part	of	file	name
extension	-	extension	part	of	file	name
date	-	timestamp	of	file
is_folder	-	file|folder	flag

limiting	files	in	output

There	are	3	ways	to	limit	files	in	output:

1.	 by	extension	type
2.	 by	regexp	pattern
3.	 by	meta-type

by	extension	type:

$fileTypes	=	FileSystemTypes::getInstance();

$fileTypes->addExtention('png');

by	regexp	pattern:

$fileTypes	=	FileSystemTypes::getInstance();

$fileTypes->addPattern('/^.+\..*$/');

by	meta-type:

The	following	meta-types	can	be	used:

image	-	image	files
document	-	doc,	xls,	txt,	rtf
web	-	php,	html,	js,	css
audio	-	mp3,	wav,	ogg
video	-	avi,	mpg,	mpeg,	mp4
only_dir	-	folders

$fileTypes	=	FileSystemTypes::getInstance();

$fileTypes->setType('web');

Back	to	top

loading	from	Excel	file

APPLICABLE	TO:	Grid,	TreeGrid,	Tree,	Combo,	Scheduler,	DataView,
Chart,	Form

Starting	from	version	1.0,	dhtmlxConnector	allows	to	use	Excel	file	as
datasource.

To	start	use	this	functionlity	you	should:

1.	 Download	phpExcel.
It	isn't	included	in	the	connector's	package.	You	can	grab	it	from	2
sources:

http://support.dhtmlx.com/x-files/connector/phpExcel.zip
http://www.codeplex.com/PHPExcel.

2.	 Unzip	library	to	the	connector's	folder.
3.	 Include	related	files:

'lib/PHPExcel.php'	(phpExcel	package)
'lib/PHPExcel/IOFactory.php'	(phpExcel	package)
'db_excel.php'	(standard	connector's	package)

//files	from	libExcel	package

require_once('lib/PHPExcel.php');

require_once('lib/PHPExcel/IOFactory.php');

	

//connectors

require("../../codebase/db_excel.php");

require("../../codebase/grid_connector.php");

	

$grid	=	new	GridConnector("../some.xls",	"ExcelDBDataWrapper"

$grid->render_table("A18:F83",	"id",	"A,B,C,D,E,F");

Parameters:

http://support.dhtmlx.com/x-files/connector/phpExcel.zip
http://www.codeplex.com/PHPExcel

constructor	GridConnector()
name	of	excel	file,	absolute	path	or	path	related	to	the	php	file
database	type

render_table()	method
first	parameter	can	be

range	of	cells	in	the	spreadsheet,	for	example	A18:F83
$grid->render_table("A18:F83",	"id",	"A,B,C,D,E,F"

number	of	the	top	row,	from	which	output	need	to	be	started,
for	example	A4
$grid->render_table("A1",	"id",	"A,B,C,D,E,F");	

'*',	which	means	include	all	not	empty	rows
$grid->render_table("*",	"id",	"A,B,C,D,E,F");	

name	of	identity	field.	You	can	use	'id'	value	for	auto	id
generation
list	of	fields	which	will	be	used	as	columns	in	the	grid

loading	both	data	and	header

Applicable	to:	Grid

When	you	need	to	load	both	data	and	header	from	excel	file,	you	can
make	it	through	GridConfiguration:

$grid	=	new	GridConnector($excel_file,	"Excel");

	

$config=new	GridConfiguration();

//array	of	cells,	with	labels	for	grid's	header

$config->setHeader($grid->sql->excel_data(array("A3","B3","F13"

$grid->set_config($config);

	

http://www.php.net/array

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

$grid->render_table("A18",	"id",	"A,B,F");

Back	to	top

	

Dynamic	loading
Dynamical	Loading	mode	allows	to	load	data	not	all	at	once,	but	partially,
by	client-side	request.	It	decreases	initial	loading	time	and	loading	of
server.

To	work	correctly,	on	client-side	should	be	enabled	related	mode:

grid	-	smart	rendering	and	paging	modes
treegrid	-	dynamic	branch	loading	mode
tree	-	dynamic	branch	loading	mode
combo	-	partial	autocomplete	(you	don't	need	it	for	normal
autocomplete)
dataview	-	dynamiс	scrolling	or	dynamic	paging

To	activate	the	mode	you	should	use	the	method	dynamic_loading():

$grid->dynamic_loading([$rowsNum]);

In	'dynamic	loading'	mode	you	can't	use	GROUP	BY	within	SQL
query

Parameters:

none	for	a	tree,treegrid.
number	of	rows	which	should	be	initially	loaded	(the	value	should	be
more	than	a	number	of	rows	visible	in	the	grid,	or	at	least	any	positive
number)	for	a	grid.
maximum	number	of	options	which	server	will	send	to	a	combo	in	the
'autocomplete	mode'	for	a	single	data	request.

tree/treegrid	specific

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

Normally,	connector	makes	all	operations	automatically,	and	doesn't	need
customization.
But,	in	case	of	dynamic	loading	in	tree/treeGrid,	database	can	contain
field	indicated	leaf	or	branch	the	current	item	is.	In	beforeRender	event
handler	you	are	allowed	to	mark	an	item	as	a	leaf	or	branch	(it	decreases
a	number	of	SQL	queries	and	increases	perfomance).

function	custom_define($item){

	 	 if	($item->get_value("is_a_branch"))

	 	 	 $item->set_kids(true);

	 	 else

	 	 	 $item->set_kids(false);

}

$tree->event->attach("beforeRender","custom_define");

The	same	approach	can	be	used	for	non-dynamical	mode	of
tree/treeGrid	as	well.	It's	not	obligatory	but	lets	you	increase	data
generation	performance.

Filtering
There	are	3	ways	to	implement	server-side	filtration:

by	specifying	additional	parameters	in	URL
by	using	in-header	filter	types	while	component	configuration
by	means	of	beforeRender	event

Beware,	server-side	filtration	of	dhtmlxTreeGrid	doesn't	maintain	open
states.

URL	manipulation

APPLICABLE	TO:	Grid,	TreeGrid,	Tree,	Combo,	Scheduler,	DataView,
Chart,	Form,	DataStore,	DHTMLX	Touch	components

You	can	control	which	data	is	loaded	into	component	by	specifying
additional	parameters	in	URL.
Check	article	Extending	functionality	for	full	url	parameters	description.

filtration	by	one	field	

grid.load("some.php?connector=true&dhx_filter[1]=mask");

With	such	url	-	data	will	be	taken	with	additional	rule.

WHERE	field_for_column_1	LIKE	%mask%

filtration	by	multiple	fields	

grid.load("some.php?connector=true&dhx_filter[1]=mask&dhx_filter[3]=another"

For	components	other	than	dhtmlxGrid	you	should	provide	exact	field
name	instead	of	column	index.

Beware	that	such	filtering	is	not-secure	and	if	you	need	to	hide	some
data	-	be	sure	to	define	such	limitation	on	server	side,	not	as	part	of	URL.

in-header	filter	types

APPLICABLE	TO:	Grid,	TreeGrid,	Combo

To	enable	server-side	filtering	you	can	use	one	of	the	following	in-header
filter	types	while	configuring	dhtmlxGrid/dhtmlxTreeGrid	on	client-side:

#connector_text_filter	-	text	filter.	Retrieves	values	which	contain
mask	defined	through	text	field
#connector_select_filter	-	select	filter.	Retrieves	values	which
contain	mask	defined	through	dropdown	list	of	possible	values

mygrid.setHeader("Column	A,	Column	B");

mygrid.attachHeader("#connector_text_filter,#connector_select_filter"

text	filter

Text	filter	usage	doesn't	require	any	additional	configuration	code.
Grid/TreeGrid	will	automatically	send	data	about	new	entered	text	and
filter	server-side	data	using	%mask%	pattern.
If	you	need	to	change	filtering	pattern	or	implement	more	advanced	logic
-	beforeFilter	event	should	be	used.

default	filtration	logic

function	custom_filter($filter_by){

										//WHERE	some_field	LIKE	'value'

										if	(!sizeof($filter_by->rules))	

															$filter_by->add("some_field","value","LIKE"

}

$conn->event->attach("beforeFilter","custom_filter");

redefined	filtration	logic

http://www.php.net/sizeof

function	custom_filter($filter_by){

						if	(!sizeof($filter_by->rules))	

															$filter_by->add("some_field","value","LIKE"

										//change	WHERE	some_field	LIKE	'%value%'	to	the	WHERE	some_field	>	'value'

										$index	=	$filter_by->index("some_field");

										if	($index!==false)		//there	is	client	side	input	for	the	filter

															$filter_by->rules[$index]["operation"]=">"

}

$conn->event->attach("beforeFilter","custom_filter");

Through	rules[$index]	you	can	refer	to:

the	name	of	a	field	(rules[$index][“name”]=“age”)
the	value	of	a	field	(rules[$index][“value”]=“30”)
the	type	of	an	operation	(rules[$index][“operation”]=”>”)

select	filter

By	default,	grid/treegrid	will	use	DISTINCT	select	against	related	field,
and	fetch	all	possible	options.
If	you	need	to	define	custom	list	of	options	you	can	use	one	of	2	ways:

hardcoded	list

$grid->set_options("item_nm",array("1"	=>	"1",	"2"=>"two"

$grid->render_table("grid50","item_id","item_nm,item_cd")

list	created	on	base	of	different	table

$filter1	=	new	OptionsConnector($res);

$filter1->render_table("countries","country_id","country_name(value)"

$grid->set_options("item_nm",$filter1);

	

http://www.php.net/sizeof
http://www.php.net/array

$grid->render_table("grid50","item_id","item_nm,item_cd")

You	can	use	both	render_table	and	render_sql	methods	for
OptionsConnector	object,	the	same	as	for	any	normal	connector.

Beware	that	name	of	field,	used	in	select	filter	need	to	have	alias	(value).

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

custom	filters	(using	beforeRender	event)

APPLICABLE	TO:	Grid,	Combo

By	using	beforeRender	event	it's	possible	to	define	filtration	rules	as	PHP
code	(doesn't	work	for	dyn.	modes).

function	custom_filter($data){

					if	($data->get_value("some")<0)

										$data->skip();	//not	include	in	output

}

$conn->event->attach("beforeRender","custom_filter");

Formatting/changing	data	before	loading

base	formatting	methods

APPLICABLE	TO:	Grid,	TreeGrid,	Tree,	Combo,	Scheduler,	DataView,
Chart,	Form,	DataStore,	DHTMLX	Touch	components

When	you	need	to	update	values	which	were	returned	from	database
table	or	set	some	specific	formatting	before	sending	data	to	client-side,
you	should	use	the	beforeRender	event	handler.

common	usage

$res=mysql_connect($mysql_server,$mysql_user,$mysql_pass);

mysql_select_db($mysql_db);

require("../../codebase/grid_connector.php");	

	

function	color_rows($row){

	 if	($row->get_index()%2)

	 $row->set_row_color("red");

}

	

$grid	=	new	GridConnector($res);

$grid->event->attach("beforeRender","color_rows");

$grid->render_table("grid50000","item_id","item_nm,item_cd")

color_rows	function	sets	colors	for	rows	subject	to	their	indices
during	data	generation,	for	each	record	outputed	for	client-side
beforeRender	event	will	be	executed,	i.e.	color_rows	function	will	be
called	for	each	record
$row	is	an	instance	of	GridDataItem	object	related	to	the	current
record

http://www.php.net/mysql_connect
http://www.php.net/mysql_select_db

date	formatting

APPLICABLE	TO:	Grid,	TreeGrid,	Tree,	Combo,	Scheduler,	DataView,
Chart,	Form,	DateStore,	DHTMLX	Touch	Components

function	formatting($row){

																		//render	field	as	details	link

																		$data	=	$row->get_value("some_field");

																		$row->set_value("some_field","Details"

	

																		//formatting	date	field

																		$data	=	$row->get_value("other_field");

																		$row->set_value("other_field",date("m-d-Y"

}

	

$grid	=	new	GridConnector($res);

$grid->event->attach("beforeRender","formatting");

get_value	and	set_value	methods	allow	you	to	get	or	set	value	of
any	field	related	to	the	record	(it	doesn't	affect	actual	values	in	DB)
If	alias	was	used	during	data	configuration	-	you	need	to	use	it
instead	of	real	db	field	name	as	the	first	parameter	of	get|set
command.

http://www.php.net/date
http://www.php.net/strtotime

using	extra	fields

APPLICABLE	TO:	Grid,	TreeGrid,	Tree,	Combo,	Scheduler,	DataView,
Chart,	Form,	DataStore,	DHTMLX	Touch	components

More	complex	formating	rules	can	be	defined	by	using	extra	fields	while
configuration.

function	formatting($row){

											//set	row	color

											$row->set_row_color($row->get_value("color"));

											//save	in	userdata	

											$row->set_userdata("some_data",$row->get_value("count"

}

	

$grid	=	new	GridConnector($res);

$grid->event->attach("beforeRender","formatting");

$grid->render_table("some_table","id","name,price","color,count"

field	color	isn't	outputed	to	client-side	but	used	to	define	property	of
row.
during	update|insert	operation	only	'name'	and	'price'	columns	may
be	changed,	'color'	will	stay	untouched.
'count'	field	will	be	sent	to	client-side	as	userdata	of	the	row	and	it	will
be	possible	to	access	it	on	client-side	through	related	data.

tree/treegrid	specificity

APPLICABLE	TO:	Tree,	TreeGrid

treeGrid	provides	TreeGridDataItem	and	tree	provides	TreeDataItem	as
input	parameter	of	beforeRender	event	handler.	Both	of	them	support
base	operations	and	few	specific	ones.

function	custom_format($item){

																if	($item->get_value("complete")>75)	

	 	 								$item->set_check_state(1);

	

	 	 if	($item->get_value("duration")>10)

	 	 	 $item->set_image("true.gif");

	 	 else

	 	 	 $item->set_image("false.gif");

}

$tree->event->attach("beforeRender","custom_format");

set_image	method	allows	to	set	image	of	tree	element	(for	treegrid	it
accepts	the	only	parameter,	while	for	tree	it	can	be	3	different	images
for	3	states	of	tree's	item)
set_check	method	exists	only	in	TreeDataItem	object	and	allows	to
set	the	state	of	related	checkbox	(tree	need	to	have	checkboxes
enabled	in	js.	configuration	code	as	well)
beforeRender	event	can	be	used	in	dynamic	Tree	and	TreeGrid	to
define	which	elements	of	hierarchy	are	branches	and	which	are	leafs
(see	details	here).

While	deleting	items	that	have	children	you	can	face	the	problem	that	the
parent	item	is	deleted	but	children	are	not.	In	this	case	you	should	use
the	beforeDelete	event:

function	beforeDeleteFunc($data)	{

			//	custom	logic

};

$conn->event->attach("beforeDelete","beforeDeleteFunc");

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

Sorting
There	are	2	ways	to	implement	server-side	sorting:

by	specifying	additional	parameters	in	URL
by	using	sorting	type	'connector'	while	component	configuration

URL	manipulation

APPLICABLE	TO:	Grid,	TreeGrid,	Tree,	Combo,	Scheduler,	DataView,
Chart,	Form,	DataStore,	DHTMXL	Touch	components

You	can	control	how	data	will	be	sorted	inside	column	by	specifying
additional	parameters	in	URL.
Check	article	Extending	functionality	for	full	url	parameters	description.

//ORDER	by	field_2	ASC

grid.load("some.php?connector=true&dhx_sort[2]=asc");

//ORDER	by	field_2	ASC,	field_3	DESC

grid.load("some.php?connector=true&dhx_sort[2]=asc&dhx_sort[3]=desc"

sorting	type	'connector'

APPLICABLE	TO:	Grid,	TreeGrid

To	sort	grid/treegrid	content	with	connectors	you	need	to	use	'connector'
as	sorting	type	while	grid	initialization.

grid.setColSorting("connector,str,na");

In	the	code	snippet	above,	the	first	column	will	be	sorted	on	server-side
with	connectors,	the	second	as	string	on	client-side,	the	third	column
won't	be	sortable.

By	assigning	to	sorting	type	'connector'	you	just	'say'	that	sorting	will	be
implemented	on	server-side.
To	define	the	way,	'behaviour'	of	sorting	you	should	use	beforeSort	event.
Event	doesn't	allow	to	write	custom	sorting	logic,	but	you	can	affect
SORT	BY	clause	of	generated	SQL	request.

default	sorting	by	one	field

function	custom_sort($sorted_by){

										//SORT	BY	some_field	ASC

										if	(!sizeof($sorted_by->rules))	

															$sorted_by->add("some_field","ASC");

}

$conn->event->attach("beforeSort","custom_sort");

default	sorting	by	multiple	fields

function	custom_sort($sorted_by){

										//SORT	BY	some_field	ASC,	some_other	ASC

http://www.php.net/sizeof

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

										if	(!sizeof($sorted_by->rules)){

															$sorted_by->add("some_field","ASC");

															$sorted_by->add("some_other","ASC");

										}

}

	

$conn->event->attach("beforeSort","custom_sort");

custom	sorting	rule

function	custom_sort($sorted_by){

										//	SORT	BY	LENGTH(some_field)

										$sorted_by->rules[0]["name"]="LENGTH(some_field)";

}

	

$conn->event->attach("beforeSort","custom_sort");

http://www.php.net/sizeof

Client-side	requirement	-	dataProcessor
Connector	itself	lets	just	pass	data	from	server-	to	client-side.
When	you	need	to	pass	data	back	(e.g.	you've	updated	record	and	want
to	save	updates	in	database)	you	should	use	dataProcessor	additionally.

Shortly,	data	exchange	with	dataProcessor	can	be	characterized	as
follows:

1.	 After	you	make	some	changes	client	sends	query	with	several
parameters	to	server.	The	parameter	we	are	most	interested	in	is
!nativeeditor_status	(the	parameter	name	can	be	changed.	Go
here	for	details).	It	defines	the	status	of	operation	and	can	have
one	of	the	following	values:

updated
inserted
deleted

2.	 Server	tries	to	implement	the	required	query.	If	the	operation	was
performed	successfully,	server	returns	the	same	status	it	got.
Otherwise	-	status	“error”.

3.	 While	exchanging,	data	is	undergone	default	processing	both	on
server-	and	client-side,	i.e.	data	will	be	updated/inserted/deleted
automatically	(just	initialize	dataProcessor	and	dhtmlxConnector),
no	additional	code	needs	to	be	added.	You	can	affect	on	this
default	processing	by	means	of	events	(see	details	below).

Files	to	include	on	client-side

If	you	use	the	'dhtmlxSuite'	package	(dhtmlx.js,	dhtmlx.css	code	files)	-
you	needn't	to	add	any	additional	files.
But	if	you	use	the	components	standalone	you	should	add	one	additional
file	-	dataprocessor.js.

Beware,	dataprocessor.js	should	be	included	BEFORE	connector.js.

Initialization	and	linking	to	connector

To	initialize	dataProcessor	you	should	write	2	commands:

var	dp	=	new	dataProcessor(url)

dp.init(mygrid)

To	link	dataProcessor	with	connector	you	should	specify	connector	file	as
a	parameter	of	the	constructor:

dp	=	new	dataProcessor("myconnector.php");

dp.init(mygrid);

Client-side	logging

Dataprocessor	has	its	own	client-side	logger,	which	can	be	enabled	by
including	one	additional	js	file	-	dhtmlxdataprocessor_debug.js

Validation

client-side	validation

Dataprocessor	allows	to	validate	data	before	sending	to	server-side	(see
details	here).

server-side	validation

Details	of	server-side	validation	also	see	in	the	related	chapter	of	this
documentation.

Changing	default	processing

As	it	was	mentioned	before,	to	affect	on	default	data	processing	either	on
server-	or	client-side	you	should	use	events	(they	can	be	either
dataProcessor	or	dhtmlxConnector	events).

changing	default	data	processing	on	server-side

There	are	the	following	ways	to	affect	on	server-side	processing:

1.	 To	use	handler	functions	of	dhtmlxConnector	events:
beforeUpdate	Event
beforeInsert	Event
beforeDelete	Event
beforeProcessing	Event

2.	 To	create	data	model	(OOP	style;	available	from	version	1.5)

class	EventModel{

	 function	get($request){

	 	 return	array_of_data();

	 }

	 function	update($action){

	 	 //call	$action->success();	or	$action->invalid();	to	mark	operation	as	completed	or	invalid

	 }

	 function	insert($action){

	 	 //call	$action->success();	or	$action->invalid();	to	mark	operation	as	completed	or	invalid

	 }

	 function	delete($action){

	 	 //call	$action->success();	or	$action->invalid();	to	mark	operation	as	completed	or	invalid

	 }

}

	

$connector	=	new	GridConnector($this->db);

$connector->configure("events",	"event_id",	"start_date,	end_date,	event_name"

$connector->useModel(new	EventModel());

$connector->render();

Any	of	methods	in	the	model	can	be	skipped,	in	such	case	the
connector	will	try	to	generate	its	own	version	of	logic.	

Methods	update(),	insert(),	delete()	take	the	DataAction	object
as	a	parameter	(the	same	as	the	beforeProcessing	event	do).
Method	get()	takes	the	request	object	and	must	return	array	of
hash	(the	same	as	the	render_array	method	do).

You	can	also	combine	2	variants	and	use	data	model	and	events	at	the
same	time.	The	handlers	will	be	invoked	in	the	following	order:

'before'	events	(beforeProcessing,…);
data	model;
'after'	events	(afterUpdate,…).

changing	default	data	processing	on	client-side

Changing	default	data	processing	on	client-side	can	be	done	in	one	of
the	following	ways:

1.	 On	server-side	through	handler	functions	of	dhtmlxConnector
events:

afterUpdate	Event
afterInsert	Event
afterDelete	Event
afterProcessing	Event

2.	 On	client-side	through	handler	functions	of	dataProcessor
events:

onBeforeUpdate
onAfterUpdate

3.	 On	client-side	through	dataProcessor's	method	defineAction().
The	method	allows	to	define	handler	function	of	the	specified
status.

dp.defineAction("update",function(sid,response){

...

return	true;//	return	false	to	cancel	default	data	processing	at	all

})

meanwhile,	you	can	change	status	of	server-side	response
through	dhtmlxConnector's	method	set_status()	and	assign
the	appropriate	processing	through	defineAction().
Status	can	be	changed	in	2	ways:

I.	 by	setting	other	predefined	status	('updated',
'inserted',	'deleted').	In	this	case	you	just	change
default	processing,	write	some	additions	to	it.

II.	 by	setting	custom	status	on	server-side.	In	this	case
you	cancel	default	processing	at	all	and	should	define
all	actions	on	client-side	by	yourself.

$data->set_status("my_status");

For	more	details	see	chapter	'Custom	status'

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

Renaming	the	query	status	parameter

Starting	from	version	1.5	you	get	the	possibility	to	rename	the	query
status	parameter	named	by	default	as	!nativeeditor_status.

When	can	you	use	it?
The	most	obvious	example	-	the	case	when	you	want	to	use
dhtmlxConnector+dataProcessor	with	the	CodeIgniter	framework.
Here	you	face	the	following	problem	-	dataProcessor	protocol	is
incompatible	with	the	framework	cause	the	framework	blocks	the	default
name	of	the	parameter.	The	problem	can	be	fixed	by	renaming	the
parameter	on	both	server	and	client	sides:

Client	side:

var	dp	=	new	dataProcessor(./data);	

dp.action_param	=	"dhx_editor_status";

Server	side:

DataProcessor::$action_param	="dhx_editor_status";

Making	Queries

	

simple	queries

Applicable:	Grid,	TreeGrid,	Tree,	Combo,	Scheduler,	DataView,	Chart,
Form,	DataStore,	DHTMLX	Touch	Components

By	default,	connector	generates	all	INSERT/UPDATE/DELETE	queries
automatically,	based	on	configuration.
For	more	details	of	this	topic,	see	the	'Base	Concepts'	chapter.

In	case	of	dnd,	connector	will	process	an	action	as	a	sequence	of
'insert'	and	'delete'	operations.

complex	queries

When	you	need	to	define	your	own	logic	you	should	use	one	of	two	ways:

defining	custom	SQL	code	for	operation
using	server-side	events	to	customize	operations

custom	queries	for	an	action

Applicable	to:	Grid,	TreeGrid,	Tree,	Combo,	Scheduler,	DataView,
Chart,	Form,	DataStore,	DHTXML	Touch	Components

You	can	define	your	own	SQL	code	for	specific	action	(INSERT,	UPDATE
or	DELETE)	as	follows:

$grid->sql->attach("Update","Update	tableA	set	name='{name}',	price={price}	where	id={id}"

//...

$grid->render_complex_sql("	..	","id","price,name");

Parameters:

action	name.	Possible	values	are:	'Update',	'Insert',	'Delete'
SQL	statement.	It	can	use	fields(or	their	aliases)	which	were
mentioned	in	render_sql	or	render_table	method	while	loading	data.

using	server-side	events

Applicable	to:	Grid,	TreeGrid,	Tree,	Combo,	Scheduler,	DataView,
Chart,	Form,	DataStore,	DHTMLX	Touch	Components

To	customize	operations	you	can	use	the	following	server-side	events:

beforeUpdate
beforeInsert
beforeDelete
beforeProcessing

//data	preprocessing	before	update

function	my_update($data){

							$price	=	$data->get_value("price");

							$price	=	intval($price);

							$data->set_value("price","10");

}	

$conn->event->attach("beforeUpdate","my_update")

//including	additional	field	to	request

function	my_update($data){

							$data->add_field("userId",1);	//will	be	included	in	update	processing

}	

$conn->event->attach("beforeUpdate","my_update")

//fully	custom	code

function	my_update($data){

							global	$conn;

							$price=$data->get_value("price");

							$id=$data->get_value("id");

							$conn->sql->query("UPDATE	some_table	SET	price='{$price}'	where	id={$id}"

							$data->success();	//success()	marks	operation	as	finished	and	stops	any	further	action	processing

}	

$conn->event->attach("beforeUpdate","my_update")

transactions

APPLICABLE	TO:	Grid

Grid	allows	to	use	transactions	,	for	data	INSERT/UPDATE/DELETE

http://www.php.net/intval
http://www.php.net/global

operations	(be	sure	that	used	DB	engine	has	support	for	transactions).
They	can	be	enabled	in	2	modes:

1.	 global

$conn->sql->set_transaction_mode("global");	

Component	uses	single	transaction	for	all	records	inside
single	request.
If	any	operation	fails	-	all	record	operations	will	be	rolled
back,	all	updated	rows	will	be	returned	with	error	status
If	custom	validation	was	assigned	and	block	any	record	-	all
records	inside	request	will	be	blocked

2.	 record

$conn->sql->set_transaction_mode("record");

Component	uses	separate	transactions	for	each	record	in
request
If	any	operation	fails,	it	will	not	affect	other	operations

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

INSERT	operation	in	Oracle	DB

Applicable	to:	Grid,	TreeGrid,	Tree,	Combo,	Scheduler,	DataView,
Chart,	Form,	DataStore,	DHTMLX	Touch	Components

Oracle	doesn't	have	auto	ID	generation	functionality,	so	you	need	to
provide	some	custom	ID	for	each	insert	operations.

There	are	2	ways	to	achive	this:

1.	 custom	ID	generation	-	id	generated	by	PHP	code

function	pre_insert($data){

					 $new_id	=	time()%10000;	//any	other	ID	generation	logic	can	be	used	here

	 $data->add_field("EMPLOYEE_ID",$new_id);

}

$grid->event->attach("beforeInsert","pre_insert");

$grid->render_table("EMPLOYEES","EMPLOYEE_ID","FIRST_NAME,LAST_NAME"

2.	 using	sequence	for	ID	generation

$grid->sql->sequence("EMPLOYEES_INC.nextVal");	//sequence	name

$grid->render_table("EMPLOYEES","EMPLOYEE_ID","FIRST_NAME,LAST_NAME"

http://www.php.net/time

Multi-user	sync
APPLICABLE	TO:	Grid,	TreeGrid,	Tree,	Combo,	Scheduler,	DataView,
Chart,	Form

Starting	from	version	1.0,	dhtmlxConnector	can	work	in	multi-user	mode
that	allows	users	to	see	changes	of	each	other	in	real	time.

To	enable	mode	you	need	to	write	additions	both	to	client-	and	server-
sides:

client-side

1.	 init	component	with	dataprocessor	(if	it	hasn't	initialized	yet)

dp	=	new	dataProcessor("myconnector.php");

dp.init(mygrid);

2.	 call	setAutoUpdate()	method	where	input	parameter	is	delay
between	update	calls

dp.setAutoUpdate(2000);

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

server-side

1.	 call	enable_live_update()	method

			 require("../../codebase/grid_connector.php");

	 $grid	=	new	GridConnector($res);

	 $grid->enable_live_update('actions_table');		

actions_table	-	table	in	database,	which	will	be	used	for	sync.
data	storage.
It	needs	to	have	the	next	structure:

CREATE	TABLE	`actions_table`	(

		`id`	int(11)	NOT	NULL	AUTO_INCREMENT,

		`dataId`	int(11)	NOT	NULL,

		`type`	varchar(255)	NOT	NULL,

		`user`	varchar(255)	NOT	NULL,

		PRIMARY	KEY	(`id`)

)	ENGINE=MyISAM;

Security
dhtmlxConnector	is	open	to	external	access	of	another	programs	and	any
external	user	is	allowed	to	change	data	in	database.
Thus,	adding	some	kind	of	session-based	authentication	is	strongly
recommended.

Basic	security

Built-in	security	manager	allows	you	to	limit	connector	for	certain
operations.

$gridConn->access->deny("read");	//blocks	Select	action

$gridConn->access->deny("insert");	//blocks	Insert	action

$gridConn->access->deny("update");	//blocks	Update	action

$gridConn->access->deny("delete");	//blocks	Delete	action

By	default,	connector	allows	all	operations.

Protection	from	cross-site	scripting	(XSS)

Starting	from	version	1.5,	dhtmlxConnector	allows	you	to	protect	an	app
from	XSS	attacks.

To	avoid	XSS	attacks,	the	library	checks	all	data	inputted	by	users	and
according	to	the	set	security	level	doesn't	allow	html	or	javascript	code	to
be	inserted.

3	security	levels	are	available:

DHX_SECURITY_SAFETEXT	(default)	-	all	html	data	is	removed
from	the	input	field;
DHX_SECURITY_SAFEHTML	-	allows	html	data,	but	removes
possible	script	tags	and	handlers;
DHX_SECURITY_TRUSTED	-	input	fields	are	not	filtered	at	all
(similar	to	previous	version	of	connectors).

To	set	the	necessary	security	level,	use	the	next	code:

ConnectorSecurity::$xss	=	DHX_SECURITY_SAFETEXT;

//ConnectorSecurity::$xss	=	DHX_SECURITY_SAFEHTML;

//ConnectorSecurity::$xss	=	DHX_SECURITY_TRUSTED;

If	you	want	to	enable	the	same	behavior	as	the	previous	versions	of
connectors	have,	set	the	DHX_SECURITY_TRUSTED	mode.

	

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

Preventing	CSRF	and	XSRF	attacks

The	functionality	requires	3.5	or	later	version	of	the	DHTMLX
Suite	package

The	protection	is	available	starting	from	version	1.5	and	can	be	activated
by	the	following	code	line:

ConnectorSecurity::$security_key	=	true;

After	calling	such	a	command,	connectors	start	to	include	additional
security	keys	to	all	data	loading	operations	and	process	data	updating
calls	only	if	they	contain	the	same	keys.	As	a	result	of	this	processing,	it's
impossible	to	trigger	a	data	updating	operation	from	some	third-party	site,
even	if	an	attacker	has	access	to	a	valid	user	session.

The	technique	is	based	on	php	sessions	and	assumes	that	any	php
session	will	be	preserved	between	separate	script	calls	(default	php
behavior).

Please	be	sure	that	you	understand	what	CSRF	attack	is,	cause	the
stated	technique	won't	prevent	access	to	the	connector	from	external
urls,	it	will	only	prevent	execution	actions	through	some	one	elses
session.

Validation
Before	saving	on	server	you	can	validate	data	and	assign	handler
function	for	any	gotten	response.

Shortly,	validation	contains	2	key	points:

1.	 value	checking
2.	 processing	in	case	of	validation	error

common

To	implement	server-side	validation	of	incoming	data	you	can	use	the
following	events:

beforeUpdate
beforeInsert
beforeDelete
beforeProcessing

beforeProcessing	event	occurs	for	all	types	of	operations	while	other
events	occurs	only	for	related	operations,	i.e.	you	can	set	different
validation	rules	for	different	operations	or	for	all	of	them	at	once.

Event	will	receive	DataAction	object	as	the	parameter.	This	object	can	be
used	to	retrieve	related	data	and	allow|deny	operation	(please	note,	it
contains	only	data	which	was	received	from	client-side,	not	the	all	data
related	to	the	record).

value	checking

To	check	value	of	a	field	you	should	use	the	method	get_value()

function	validate($data){

													if	($data->get_value("some_field")=="")

																		...

}

$conn->event->attach("beforeProcessing","validate");

processing	in	case	of	validation	error

In	case	of	error	you	can	go	one	of	two	ways:

1.	 Use	predefined	methods	for	error	processing	on	client-side,	i.e.
set:

$data→invalid()	(invalid	record	will	be	highlighted	in	bold
font)
$data→error()	(invalid	record	will	be	highlighted	in	red	bold
font)
The	difference	between	methods	in	question	consists	just	in
way	of	highlighting.

function	validate($data){

													if	($data->get_value("some")=="")

																		$data->invalid();

}

$conn->event->attach("beforeProcessing","validate"

2.	 Assign	your	own	processing	on	client-side	through
dataProcessor's	method	defineAction()	(see	details	here)

dp.defineAction("invalid",function(sid,response){

var	message	=	response.getAttribute("message");

alert(message);

return	true;//	return	false	to	cancel	default	data	processing	at	all

})

custom	status

You	can	change	returned	status	and	set	you	own	by	means	of	the

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

method	set_status().	In	this	case	any	default	processing	(doesn't	matter
defineAction()	will	return	true	or	false)	will	be	cancelled	and	you	will
specify	data	processing	on	client-side	wholly.

server-side:

function	validate($data){

													if	($data->get_value("some")=="")

																		$data->set_status("my_status")

}

$conn->event->attach("beforeProcessing","validate");

client-side:

dp.defineAction("my_status",function(sid,response){

...

})

adding	custom	information	to	response

You	can	send	some	custom	information	to	client-side	through	the
following	methods:

set_response_text
set_response_xml
set_response_attribute

Saving	data	changes	made	in	form
You	can	use	the	connectors	for	simple	form	saving.	The	connectors	will
recognize	and	automatically	execute	CRUD	operations	for	the	following
patterns:

Get	data	for	some	record	in	DB,	by	id

GET:	connector.php?action=get&id={some}

Returns:	data	in	'json'(if	you	use	JSONDataConnector)	or	'xml'(if	you
use	DataConnector)	format.

Delete	data	for	some	record	in	DB,	by	id

GET:	connector.php?action=delete

POST:	id={some}

Returns:	“true”	as	string,	when	operation	is	executed	correctly.

Update	data	for	some	record	in	DB,	by	id

GET:	connector.php?action=delete

POST:	id={some}&property_name={value}

Returns:	“true”	as	string,	when	operation	is	executed	correctly.

Insert	data	in	DB

GET:	connector.php?action=insert

POST:	property_name={value}

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

Returns:	“true\n{new	id}”	as	string,	when	operation	is	executed
correctly.

Basically,	for	DHTMLX	Touch	components	to	save	data	you	can	use	the
following	code:

dhx.ajax().post("connector.php?action=insert",	$$('form').getValues

Data	export
APPLICABLE	TO:	grid

External	grid-to-pdf	and	grid-to-excel	services	allow	to	convert	grid's	data
to	PDF	or	Excel	format	directly	on	server-side:	from	any	table	without
actually	rendering	data	in	the	grid.	Shortly,	you	should	perform	the
following	steps:

prepare	data.
activate	conversion	service.
start	exporting.

data	preparation

data	to	export	is	defined	by	render_table()	or	render_sql()	method.
to	define	grid	structure	(header,	footer	etc.)	on	server-side,	see
chapter	''.

activation	conversion	service

pdf
$convert	=	new	ConvertService("http://dhtmlx.com/docs/products/devExchange/samples/grid2pdf_02/server/generate.php"

excel
$convert	=	new	ConvertService("http://dhtmlx.com/docs/products/devExchange/samples/grid2excel_02/server/generate.php"

start	exporting

pdf
$convert->pdf("some.pdf",false);

excel
$convert->excel("some.xls",false);

Parameters:

(optional)	name	of	result	file.	The	default	value	-	data.pdf
(data.xls)
(optional)	the	second	parameter	specifies	how	file	will	be
exported:

true	-	as	inline	content	(if	browser	has	related	plugin	-
document	will	be	opened	automatically)
false	-	as	individual	file.
The	default	value	-	false.

Service	automatically	start	to	export	data	defined	through	GridConnector.

samples

pdf

require("../../../codebase/grid_connector.php");

require("../../../codebase/convert.php");	

	

//url	to	data	conversion	service

$convert	=	new	ConvertService("http://dhtmlx.com/docs/products/devExchange/samples/grid2pdf_02/server/generate.php"

$convert->pdf();	//equal	to	calling	pdf("data.pdf",	false)

	

$grid	=	new	GridConnector($res);

$grid->set_config(new	GridConfiguration());	 //mandatory	

$grid->render_table("grid50");	 	 //table	name	and	optional	list	of	fields

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

Excel

require_once("../../config.php");

$res=mysql_connect($mysql_server,$mysql_user,$mysql_pass)

mysql_select_db($mysql_db);

	

require("../../../codebase/grid_connector.php");

require("../../../codebase/convert.php");

	

//url	to	data	conversion	service

$convert	=	new	ConvertService("http://dhtmlx.com/docs/products/devExchange/samples/grid2excel_02/server/generate.php"

$convert->excel();	//equal	to	calling	excel("data.xls",	false)

	

$grid	=	new	GridConnector($res);

$grid->set_config(new	GridConfiguration());	//mandatory	

$grid->render_table("grid50");									//table	name	and	optional	list	of	fields

useful	tips

In	case	of	dynamic	Smart	Rendering	you	can't	use	export	from	client-
side	and	need	to	define	header's	data	on	server-side.	See	details
here.

in	order	to	the	render_sql	method	works	correctly,	you	should
use	full	header	initialization	(not	empty	GridConfiguration()	call).
Otherwise,	the	component	will	try	to	fetch	grid's	structure	directly
from	DB	that	is	unallowable	for	the	render_sql	method.

http://www.php.net/mysql_connect
http://www.php.net/mysql_select_db

Elementary	DB	operations	with	Connector
dhtmlxConnector	allows	to	execute	some	actions	against	DB.

SQL	queries

DBWrapper	object	can	be	accessed	as:

$connector->sql

Then,	it	can	be	used	in	queries	in	the	following	way:

$connector->sql->query("DELETE	FROM	some_table	WHERE	ID=1");

//or

$res	=	$connector->sql->query("SELECT	*	FROM	some_table	WHERE	ID=1"

$data	=		$connector->sql->get_next($res);

//or

$connector->sql->query("INSERT	INTO	some_table(type)	VALUES('simple')"

$id	=	$connector->sql->get_new_id();

INSERT	query

$id	=	$connector->insert(array(

	 	 "type"	=>	"simple",

																	...

));

Parameters:

hash	of	values

http://www.php.net/array

UPDATE	query

$connector->update(array(

	 	 "type_id"	=>	'1'

	 	 "type"	=>	'simple'

));

Parameters:

hash	of	values.	For	successful	result	it	must	contain	identity	field.

http://www.php.net/array

DELETE	query

$connector->delete($id);

Parameters:

ID	of	the	record	that	should	be	deleted

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

Creating	a	new	connector

You	can	create	an	extra	connector	object	on	the	fly	and	use	it	for	DB
operations.

$temp	=	new	Connector($db_connection);

$temp->configure("some_table");

	

$temp->insert(array(

	 "some1"	=>	"value	1",

	 "some2"	=>	"value	2"

));

$temp->delete("2");

http://www.php.net/array

Errors	handling	and	logging
While	developing	we	strongly	recommend	to	use	logs	for	errors
detection.

server-side	logging

DHTMLX	permits	logging	to	be	controlled	in	two	ways:

Basic
Detailed

basic

If	any	error	occurs	during	data	processing,	client-side	data	processor
object	will	receive	“error”	action	containing	short	info	about	the	problem
(full	info	will	be	written	to	the	log).

$conn->enable_log("path");

path	-	absolute	or	relative	path	to	text	file	where	log	will	be	written.

detailed

When	critical	error	occurs	all	log	records	for	current	session	(full	error
info)	will	be	sent	to	client	and	shown	in	browser	(useful	for	debugging,	not
recommended	for	production):

$conn->enable_log("path",true);

path	-	absolute	or	relative	path	to	text	file	where	log	will	be	written.
The	second	parameter	enables	detailed	mode.

adding	custom	records	to	the	log

During	development	you	may	need	to	write	some	custom	data	to	the	log

(can	be	useful	for	custom	server-side	events).
To	add	custom	text	or	data	to	log	file:

Activate	logging	(basic	or	detailed).
Call	log()	function	with	your	data	inside.

$conn->enable_log("temp.log");

LogMaster::log("any	text	here");

http://www.php.net/log

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

client-side	logging

Dataprocessor	has	its	own	client-side	logger,	which	can	be	enabled	by
including	one	additional	js	file	-	dhtmlxdataprocessor_debug.js

Event	handling

common	use

DHTMLX	Connector	uses	events	to	manage	Insert/Update/Delete
operations.

The	code	below	shows	how	to	attach	event:

$conn->event->attach(event_name,handlerFunc);

Parameters:

event_name	-	name	of	the	event.
handlerFunc	-	handler	function.

Handler	functions	get	one	input	parameter	and	this	parameter	depends
on	attaching	event.
In	the	following	table	you'll	see	a	full	list	of	events	and	the	appropriate
input	parameters	of	handler	functions.

Event Input	parameter	of	handler	function
beforeSort SortInterface	Object
beforeFilter FilterInterface	Object
beforeRender DataItem	Object

beforeProcessing
afterProcessing	
beforeInsert
beforeUpdate	
beforeDelete
afterInsert
afterUpdate

DataAction	Object

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

afterDelete
beforeOutput none

data	behavior	models

Starting	from	version	1.5,	the	library	'extends'	OOP	support	and	allows
creating	a	separate	class	for	events	processing.	You	get	the	possibility	to
work	with	one	class	that	will	control	all	processing	instead	of	working	with
separate	handler	functions.

class	SomeBehavior{

	 public	function	beforeRender($data){

	 	 //some	logic

	 }

	 ...	any	other	handlers	...

}

$conn->event->attach(new	SomeBehavior());

The	handlers	of	the	model	class	take	the	same	parameters	as	the
ordinary	events	do.

Extending	functionality

protocol	details

data	fetching

POST

Command	parameters:

none

GET

Command	parameters:

connector=true	-	flag	of	connector	based	request.	The	flag	is	set
automatically,	once	you	include	the	connector.js	file	on	the	page.

dhx_colls=field1,field2…fieldN	-	optional,	can	contain	a	list	of	fields
for	which	collections	will	be	requested.	dhtmlxGrid	use	such
parameters	to	request	data	for	combo	columns	and	select	filters	(
such	requests	are	executed	just	once	,	for	initial	data	loading)

some.php?connector=true&dhx_colls=2,3	

dhx_sort[field]=directon	-	instruct	server-side	connector	to	sort
dataset	by	defined	field

some.php?connector=true&dhx_sort[2]=asc	

dhx_filter[field]=mask	-	instruct	server-side	connector	to	filter
dataset	by	defined	field

//filter	by	%test%

some.php?connector=true&dhx_filter[2]=test

grid	specific

Requsting	part	of	data	(Dynamic	Smart	Rendering	or	Dynamic	Paging)

GET

posStart	-	position	from	which	data	is	requested
count	-	count	of	requested	rows

combo	specific

Requsting	part	of	data

GET

pos	-	position	from	which	data	is	requested

Filter	by	label	field

GET

mask	-	filtering	mask	for	label	field

tree/treeGrid	specific

Requesting	branch	of	tree

GET

id	-	parent	id	for	requested	branch

data	updating	(using	dataProcessor)

GET

editing=true	-	mark	of	dataprocessor-based	call

POST

ids	-	list	of	updated	records
[id]_[property]	-	for	each	field	inside	updated	record	related	field	in
POST	is	generated
[id]_!nativeeditor_status	-	action	type

Back	to	top

porting	connectors	to	another	platforms

when	should	you	use	it?

The	existing	version	of	connectors	supports	a	limited	set	of	server
platforms.	In	case	database/framework/scripting	language	you'd	like	to
use	is	not	supported,	you	can	port	existing	solution	on	your	platform.

when	shouldn't	you	use	it?

Connectors	are	just	wrappers	around	existing	grid	functionality,	that's	why
if	you	need	to	use	this	solution	once,	you	would	better	use	grid	API
directly,	instead	of	creating	your	own	server	connector.

implementation	levels

Connector	supports	many	operations	implementing	data	processing.
There	is	an	opportunity	to	provide	supporting	basic	operations	and	ignore
higher-level	ones,	in	case	they	are	not	used	in	your	project.

basic	support

Data	assignment	is	basic	connector	operation	which	proceeds	in	the
following	way:	connector	connects	to	database,	selects	data	and	outputs
this	in	stdout	using	XML	format	of	the	current	component.

Key	points:

1.	 XML-data	input	must	occur	only	after	sending	the	appropriate
http-header

2.	 XML	must	start	with	XML	declaration	containing	the	appropriate
data	coding

	

3.	 None	other	content	must	be	sent	to	stdout	(neither	before	nor
after	sending	data	by	connector)

header("Content-type:text/xml");

print("<?xml	version='1.0'	encoding='utf-8'	?>");

print(xml_formatted_data);

incoming	parameters	-	there	are	no	any;
restriction	for	output	data	-	there	is	no	restriction.

XML	Format	used	by	connector

Basic	implementation	allows	to	use	resulting	script	as	input	parameter	for
load()/loadXML()	methods.

Technically,	there	is	an	opportunity	to	use	JSON	or	any	other
supported	by	component	format,	but	you	should	bear	in	mind	that

complex	scenarios	are	XML-oriented	and	you	would	better	use	XML

filtration	and	sorting

At	this	stage,	the	number	of	supported	operations	is	considerably
extended:	you	are	allowed	to	use	#connector_text_filter,	sorting	type
'connector'	and	filter/sort	data	through	URL	manipulations.

Key	points:

An	obvious	advantage	of	this	functionality	can	be	estimated	only	for
operating	with	grid,	for	other	components	such	functionality	doesn't
seem	to	be	necessary	(it	can	be	used	only	to	filter/sort	data	through
URL	manipulations).
The	level	'uses'	code	from	the	previous	one.	Beware,	that	now,
before	using	XML,	data	is	sorted/filtered	according	to	incoming	data.

GET

Command	parameters:

dhx_filter	-	hash	of	filtering	rules
filtration	pattern	-	any	entry(like	%x%)
in	case	you	have	a	few	parameters,	you	should	link	them	by	AND
logic
parameter	is	available	only	for	fields	with	active	filter
empty	filter	value	means	that	filter	wasn't	set	and	it	must	be
ignored

//	where	field1	like	%some%	AND	field2	like	%other%

dhx_filter[1]=some&dhx_filter[2]=other

dhx_sort	-	hash	of	sorting	rules
possible	values	for	asc	and	dsc	parameters
in	case	you	have	a	few	parameters,	you	should	link	them	by	AND
logic
order	of	filtering	implementation	-	not	defined,	at	the	moment	no
one	component	is	able	to	create	multi-field	sorting

//	order	by	field1	ASC,	field2	DESC

dhx_sort[1]=asc&dhx_filter[2]=dsc

Hashes	of	rules	in	question	use	name	of	fields	(where	filtration	is
enabled)	or	columns'	indices	(in	case	of	grid).

Restriction	for	output	data:	order	and	structure	are	defined	through
filtering/sorting	parameters.

combo	specific:
dhtmlxCombo	has	an	additional	filtering	GET	parameter:

mask	-	sets	filtration	in	text	label	columns	using	“like	x%”	rule.

some.php?mask=abc	

dynamic	loading

After	data	output	implementation	goes	dynamical	loading.	Dynamical
loading	has	some	particular	features	while	working	with	hierarchical
(tree/treegrid)	and	simple	(grid/combo)	components.

For	hierarchical	components,	loading	of	data	branch	occurs	at	once.

some.php?id=123

Command	parameters:

id	-	'parent	id'	which	defines	the	appropriate	branch	(beware,	all
filtration/sorting	rules	set	while	the	previous	stage	are	applied	to
component).

For	other	components,	data	will	be	outputted	according	to	incoming
parameters.

//grid

some.php?posStart=20&count=50

//combo

some.php?pos=50

Command	parameters:

grid:

posStart	-	index	of	initial	string
count	-	number	of	strings	to	output

combo:

pos	-	index	of	initial	string

http://www.php.net/pos

	

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

number	of	strings	is	defined	by	server	settings

While	working	with	grid,	initial	request	(grid	doesn't	know	yet	how
many	strings	are	expected)	doesn't	contain	any	additional

parameters	('posStart'	and	'count'	are	not	defined)

Back	to	top

XML	format	used	by	connector

Grid

			<rows>

											<row	id="some1"><cell>value	1,1</cell><cell>value	1,2

											<row	id="some2"><cell>value	2,1</cell><cell>value	2,2

			</rows>

row	-	the	tag	represents	row	in	the	grid
cell	-	the	tag	represents	cell	in	the	grid

row@id	-	the	mandatory	attribute,	must	be	unique	for	each	row;	row	and
cell	tags	may	contain	additional	attributes	which	will	be	processed	in
default	way.

In	dynamic	loading	mode

			<rows	total_count="50000"	pos="1230">

											<row	id="some1230"><cell>value	1,1</cell><cell>value	1,2

											<row	id="some1231"><cell>value	2,1</cell><cell>value	2,2

			</rows>

rows@total_count	-	count	of	rows	in	grid,	needs	to	be	sent	only	for
the	first	data	request	(when	posStart	parameter	is	not	defined)
rows@pos	-	equal	to	posStart	parameters,	defines	where	grid	data
will	be	added

TreeGrid

			<rows>

											<row	id="some1">

														<cell	image="some.gif">value	1,1</cell><cell>value	1,2

														<row	id="some11"><cell>child	value	1</cell><cell

											</row>

											<row	id="some2"><cell>value	2,1</cell><cell>value	2,2

			</rows>

row	-	the	tag	represents	row	in	the	grid,	one	row	tag	can	contain
other	row	tags	inside	(parent	-	child	relation	in	the	hierarchy)
cell	-	the	tag	represents	cell	in	the	grid
row@id	-	the	mandatory	attribute,	must	be	unique	for	each	row
cell@image	-	can	define	image	for	tree	cell	in	grid	(optional)

Dyn.	loading

			<rows	parent="id">

											<row	id="some1"	xmlkids="1">

														<cell	image="some.gif">value	1,1</cell><cell>value	1,2

											</row>

											<row	id="some2"><cell>value	2,1</cell><cell>value	2,2

			</rows>

row@xmlkids	-	defines	that	row	can	contain	child	nodes
rows@parent	-	the	name	of	parent	ID	(equal	to	incoming	“id”
parameter)	,	ID	of	virtual	root	-	0

Tree

			<tree>

								<item	id="some"	text="name">

																	<item	id="child1"	text="name	1"/>

																	<item	id="child2"	text="name	2"/>

								</item>

			</tree>

item	tag	-	item	in	a	tree,	can	nest	other	item	tags	to	represent
parent-child	relation
item@id	-	ID,	unique	for	each	item
item@text	-	label

In	case	of	dyn.	loading

			<tree	id="id">

								<item	id="some"	text="name"	childs="1">

								</item>

			</tree>

item@childs	-	defines	that	row	can	contain	child	nodes
tree@id	-	the	name	of	parent	ID	(equal	to	incoming	“id”	parameter)	,
ID	of	virtual	root	-	0

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

Combo

				<data>

								<option	value="some">Some	label</option>

								<option	value="other">Other	label</option>

				</data>

option	-	represents	option	in	combo

In	case	of	dyn.	loading:

				<data	add="true">

								<option	value="some">Some	label</option>

								<option	value="other">Other	label</option>

				</data>

If	“pos”	parameter	was	provided,	response	must	contain	data@add
attribute	,	to	mark	that	it	is	not	a	new	set	of	values,	but	addition	to	existing
one.

Using	dhtmlxConnector	with	CodeIgniter,	YII,
CakePHP	frameworks
Starting	from	version	1.5	dhtmlxConnector	can	be	used	with	popular	PHP
frameworks.	You	can	built	web	applications	with	your	favorite	frameworks
and	still	use	dhtmlxConnector.

In	this	article	we	will	give	you	the	brief	tips	referring	to	such	use-case	of
dhtmlxConnector.	The	detail	information	you	can	get	in	the	related
tutorials:

1.	 Using	dhtmlxConnector	with	the	CodeIgniter	framework;
2.	 Using	dhtmlxConnector	with	the	YII	framework;
3.	 Using	dhtmlxConnector	with	the	CakePHP	framework.

As	an	example,	let's	take	creating	an	app	that	presents	grid	loaded	data
from	db.	The	app	is	built	with	one	of	the	frameworks	and	use
dhtmlxConnector	to	load	data	in.

Tips	common	for	all	frameworks

Model:	Doesn't	have	any	specificity	and	created	as	usual.

View:

View	contains	a	standard	JavaScript	code	of	the	component	and
defines	the	client	side	logic;
To	load	data	use	standard	'loading'	methods	of	the	components	but
as	the	URL	parameter	specify	the	relative	path	to	an	action	that
answers	for	loading	logic.	If	you	use	dataProcessor,	specify	in	its
constructor	this	relative	path	to	the	action	as	well;

mygrid	=	new	dhtmlXGridObject('grid_here');	

...

mygrid.init();																											

mygrid.loadXML("./data");	//refers	to	the	'data'	action	

	

var	dp	=	new	dataProcessor("./data");	//refers	to	the	'data'	action	as	well

dp.init(mygrid);

Controller:

Controller	defines	the	server	side	logic	and	contains	at	least	2
actions:	the	one	loads	the	view,	the	other	loads	the	data;
To	handle	an	event,	add	a	function	of	the	corresponding	event	name
(e.g.	to	handle	beforeRender	event,	add	public	function
beforeRender($action){…})	and	define	the	handling	logic	as	usual.
The	functions	will	take	the	same	parameters	as	the	ordinary	events
do;
SQL	query	to	database	is	configured	with	the	help	of	configure()
method	that	takes	as	parameters:

$sql	-	any	sql	code	that	will	be	used	as	the	base	for	data
selection	(for	the	Yii	framework	the	hard	coded	value	-	'-');
$id	-	the	name	of	the	id	field;
$text	-	a	comma	separated	list	of	rendered	data	fields;

$extra	-	(optional)	a	comma	separated	list	of	extra	fields;
relation_id	-	(optional)	used	for	building	hierarchy	in	case	of	Tree
and	TreeGrid.

GridConnector	(or	any	other	connector)	takes	as	parameters:
the	DB	connection	variable	that	refers	to	the	model	used	in	the
app)
the	hard	coded	value	specified	the	framework	(“phpCI”,	“PHPYii”
or	“PHPCake”).

//sample	code	for	the	YII	framework

<?php

require_once(dirname(__FILE__)."/../../../dhtmlx/connector/grid_connector.php"

require_once(dirname(__FILE__)."/../../../dhtmlx/connector/db_phpyii.php"

	

class	EventController	extends	Controller

{

	 public	function	actionIndex(){	$this->render('index'

	 public	function	actionGrid()	{	$this->render('grid')

	

	 public	function	actionGrid_data()

	 {

	 	 $grid	=	new	GridConnector(Events::model(),	"PHPYii"

	 	 $grid->configure("-",	"event_id",	"start_date,	end_date,	event_name"

	 	 $grid->render();

	 }

	

	 public	function	beforeProcessing($action){

	 	 //validation	before	saving

	 	 if	($action->get_value("event_name")	==	""){

	 	 	 $action->invalid();//	if	data	isn't	validate		-	call	$action->invalid();

	 	 	 $action->set_response_attribute("details"

	 	 }

	 }	

}

http://www.php.net/dirname
http://www.php.net/dirname

Framework-specific	tips

CodeIgniter

View

While	working	with	CodeIgniter	you	should	rename	the	query	status
parameter	!nativeeditor_status	cause	the	default	name	of	the
parameter	is	blocked	by	the	framework.	Renaming	must	be	repeated
on	the	server	side.

var	dp	=	new	dataProcessor("./data");	//refers	to	the	'data'	action	

dp.action_param	=	"dhx_editor_status";

dp.init(mygrid);

Controller

Required	connector	file	-	db_phpci.php	(and	of	course,	you	should
also	include	connector	files	related	to	components	used	in	the	app,
e.g.	if	you	use	dhtmlxGrid	-	you	also	include	grid_connector.php);
The	query	status	parameter	!nativeeditor_status	must	be	renamed
on	the	server	side	as	well.

require_once("./dhtmlx/connector/grid_connector.php");

require_once("./dhtmlx/connector/db_phpci.php");

DataProcessor::$action_param	="dhx_editor_status";

	

class	Grid	extends	CI_Controller	{

	 public	function	index()

	 {

	 	 $this->load->view('grid');	//grid's	view

	 }

	 public	function	data()

	 {

	 	 $this->load->database();

	

	 	 $connector	=	new	GridConnector($this->db,	"phpCI"

	 	 $connector->configure("events",	"event_id",	

	 	 $connector->render();

	 }

}

YII

Controller

Required	connector	file	-	db_phpyii.php.

<?php	

				require_once(dirname(__FILE__)."/../../../dhtmlx/connector/grid_connector.php"

				require_once(dirname(__FILE__)."/../../../dhtmlx/connector/db_phpyii.php"

	

							class	EventController	extends	Controller	{

														public	function	actionIndex()	{	$this->render(

														public	function	actionGrid()		{	$this->render(

														public	function	actionGrid_data()	

														{

	 											$grid	=	new	GridConnector(Events::model()

	 											$grid->configure("-",	"event_id",	"start_date,	end_date,	event_name"

	 											$grid->render();

														}

							}

?>

CakePHP

http://www.php.net/dirname
http://www.php.net/dirname

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

Controller

Required	connector	file	-	db_phpyii.php.

<?php	

require_once("../Vendor/connector/grid_connector.php");

require_once("../Vendor/connector/db_phpcake.php");

	

							class	EventController	extends	AppController	{

	 						public	function	grid(){}

														public	function	index(){}

														public	function	grid_data()

														{

																		$this->autoRender	=	false;

	

	 										$connector	=	new	GridConnector($this->Event

	 										$connector->configure("events",	"event_id"

	 										$connector->render();

														}

							}

?>

How	can	I:
General:

…	assign	aliases	to	DB	fields?
…	attach	event?
…	check	value	of	an	item?
…	create	custom	database
error	message?
…	customize	content	of	a	cell?
…	deny	access	to	a	certain
operation?
…	filter	data	on	server-side?
…	handle	errors	and	log	them?
…	set	value	of	an	item?
…	sort	data	on	server-side?
…	validate	data	on	client-side?
…	validate	data	on	server-side?

Loading	data:

…	enable	dynamic	loading?
…	format/change	data	before
loading?
…	load	data	from	database
table?
…	load	data	from	Excel	file?
…	load	data	from	File	System?
…	send	additional	information
to	client-side?

Updating	data:

…	alter	the	default	styles	set	for
responses?
…	avoid	updating	certain
field(s)	on	server-side?

Components-specific:

Combo:
…	populate	combo	with	data	from	db?

Form:
…	populate	'select'	item	with	data	from
db?
…	populate	'combo'	item	with	data	from
db?
…	load	data	from	db?
…	save	changes	made	in	a	form	to	db?

Grid:
…	define	grid	configuration	on	server-
side?
…	export	grid's	data	from	server	to
Excel	file?
…	export	grid's	data	from	server	to	pdf
file?
…	load	data	from	a	table	that	doesn't
contain	identity	field?
…	populate	select/combo	columns	with
data?
…	set	a	custom	style	for	a	row	or	a
cell?

Tree	and	TreeGrid:
…	load	data	from	multiple	tables?
…	load	data	from	table	that	doesn't
contain	relation	field?
…	mark	an	item	as	a	leaf	or	branch?

DataStore:
…	use	connector	functionality	for
dhtmlXDataStore	objects?

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

…	change	default	data
processing	while	updating?
…	set	custom	status	of
operation?
…	terminate	any	further
processing?
…	change	values	before
saving?
…	implement	transactions?
…	link	dataProcessor	with
connector?
…	realize	multi-user	sync?
…	save	data	changes	made	in
form?
…	update	data	on	server-side?

General	how-tos

How	can	I	assign	aliases	to	DB	columns?

Using	render_sql()	or	render_table()	you	can	assign	aliases	to	required
tables	or	columns.	To	do	this,	in	sql	statement	you	should	use	word	'as'
(as	in	any	usual	sql	statement),	in	other	parameters	-	parentheses.

$grid->render_table("tableA","id","name,price(product_price)"

//or

$grid->render_sql("Select	*,tableA.id	as	aid	from	tableA,	tableB		where		tableA.id=tableB.id"

How	can	I	attach	event?

To	attach	event	you	should	use	event→attach().	For	more	details	of	this
topic,	see	'Event	handling'	quide.

$conn->event->attach(event_name,handlerFunc);

How	can	I	check	value	of	an	item?

Using	get_value()	method	you	can	check	value	of	any	item.

$grid->get_value($name);

How	can	I	create	custom	database	error

message?

To	add	a	custom	error	message	you	can	use	the	event	onDBError	and
write	the	desired	message	in	the	appropriate	handler.

function	doOnDBError($action,	$exception){

							$action->set_response_text("Some	details	about	error"

}

$conn->event->attach("onDBError",doOnDBError);

How	can	I	deny	access	to	a	certain	operation?

By	default,	connector	allows	all	operations.	To	deny	some	operation	use
deny(name_of_operation)	method	that	can	get	one	of	the
following:read/update/insert/delete.	For	more	details	see	'Security'	guide.

$conn->access->deny("update");

How	can	I	customize	content	of	a	cell?

You	can	use	beforeRender	event	to	define	how	content	of	a	cell	must	be
formatted.

function	custom_data($row){

						$data	=	$row_get_value("some_column");

						$row->set_value("some_column",	"$data	<input	type='text'	/>"

}

	

$grid->event->attach("beforeRender","custom_data");

In	the	sample	above,	the	grid	will	have	custom	content	-	html	input	'text'.

How	can	I	filter	data	on	server-side?

You	have	3	ways	to	filter	data	on	server	backend:

by	specifying	additional	parameters	in	URL	(on	client-side)

grid.load("some.php?connector=true&dhx_filter[1]=mask");

by	using	in-header	filter	types	while	component	configuration	(on
client-side)

mygrid.setHeader("Column	A,	Column	B");

mygrid.attachHeader("#connector_text_filter,#connector_select_filter"

by	means	of	beforeRender	event	(on	server-side)

function	custom_filter($data){

		...

}

$conn->event->attach("beforeRender","custom_filter");

See	the	guide	'Filtration'	for	more	information.

How	can	I	handle	errors	and	log	them?

You	can	enable	logging	using	enable_log()	method.	For	more	details	see
'Error	handling	and	logging'	guide.

$conn->enable_log("path	to	log	file");//	to	show	short	info	on	client-side

//or

$conn->enable_log("path	to	log	file",	true);//	to	show	full	info	on	client-side

How	can	I	set	value	to	an	item?

Using	set_value()	method,	you	can	set	value	to	any	item	of	component.

$dataItem->set_value($name,$value)

How	can	I	sort	data	on	server-side?

You	have	2	ways	to	sort	data	on	server	backend:

by	specifying	additional	parameters	in	URL	(on	client-side)

grid.load("some.php?connector=true&dhx_sort[2]=asc");

by	using	sorting	type	'connector'	while	component	configuration	(on
client-side)

grid.setColSorting("connector,str,na);

See	the	guide	'Sorting'	for	more	information.

How	can	I	validate	data	on	client-side

dataProcessor	lets	you	validate	data	on	client-side.	Use
setVerificator(index,method)	method	to	define	the	appropriate	columns

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

and	validators.	See	details	in	the	related	chapter	of	dataProcessor'
documentation.

dp.setVerificator(column_index,verification_func)

How	can	I	validate	data	on	server-side

To	perform	server-side	validation	you	should	use	one	of	the
dhtmlxConnector	events	stated	below	and	specify	the	needed	validation
rules	in	the	appropriate	events'	handlers	functions:

beforeUpdate
beforeInsert
beforeDelete
beforeProcessing

function	validate($data){

...

}

$conn->event->attach("beforeProcessing","validate");

For	more	details	of	server-side	validation,	see	guide	'Validation'.

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

This	topic	does	not	exist	yet
You've	followed	a	link	to	a	topic	that	doesn't	exist	yet.	If	permissions
allow,	you	may	create	it	by	using	the	Create	this	page	button.

Create	this	page

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

This	topic	does	not	exist	yet
You've	followed	a	link	to	a	topic	that	doesn't	exist	yet.	If	permissions
allow,	you	may	create	it	by	using	the	Create	this	page	button.

Create	this	page

Data	management	how-tos	(loading	data)

How	can	I	enable	dynamic	loading?

To	enable	dynamic	loading	you	should:

on	client-side	enable	the	related	mode	(e.g.	smart	rendering	or
paging	for	grid)

grid.enableSmartRendering(mode,buffer);

on	server-side	call	method	dynamic_loading()

$grid->dynamic_loading([$rowsNum]);

See	the	guide	'Dynamic	loading'	for	more	information.

How	can	I	format/change	data	before	loading?

To	set	some	specific	formatting	or	change	data	before	sending	to	client-
side,	you	should	use	the	beforeRender	event	handler.	For	more	details	of
this	topic,	see	'Formatting/Changing	Data	before	Loading'

function	color_rows($row){

	 if	($row->get_index()%2)

	 $row->set_row_color("red");

}

	

$grid->event->attach("beforeRender","color_rows");

How	can	I	load	data	from	database	table?

To	load	data	from	database	table	you	should	use	one	of	two	methods:

render_table()	(for	loading	from	single	table)

$grid->render_table("tableA","item_id","column1,column2",

render_sql()	(for	loading	from	several	tables)

$grid->render_sql("Select	*	from	tableA,	tableB		where		tableA.id=tableB.id"

How	can	I	load	data	from	Excel	file?

To	load	data	from	Excel	file	you	should	download	phpExcel	library	from
http://support.dhtmlx.com/x-files/connector/phpExcel.zip	and	include

additional	files:

'lib/PHPExcel.php'	(phpExcel	package)
'lib/PHPExcel/IOFactory.php'	(phpExcel	package)
'db_excel.php'	(standard	connector's	package)

Then,	call	render_table())	method	where	as	parameters	you	should
specify	cell	range	and	Excel	columns.	Set	the	second	parameter	to	'id'	for
auto	id	generation.

//files	from	phpExcel	package

require_once('lib/PHPExcel.php');

require_once('lib/PHPExcel/IOFactory.php');

//connectors

require("../../codebase/db_excel.php");

require("../../codebase/grid_connector.php");

	

$grid	=	new	GridConnector("../some.xls",	"ExcelDBDataWrapper"

$grid->render_table("A18:F83",	"id",	"A,B,C,D,E,F");

For	more	details,	see	the	guide	chapter	'loading	from	Excel	file'	in	'Base
concepts'	guide.

http://support.dhtmlx.com/x-files/connector/phpExcel.zip

How	can	I	load	data	from	File	System?

To	load	data	from	File	System	you	should	include	one	additional	file
db_filesystem.php	and	call	render_table()	method	where	as	parameters
you	should	specify	folder	(that	requires	data	listing),	field's	id	(leave	it
empty	or	use	safe_name	as	ID	of	file)	and	lists	of	fields.

require("./codebase/connector/db_filesystem.php");

require("./codebase/connector/grid_connector.php");

	

$grid	=	new	GridConnector("",	"FileSystem");

$grid->render_table("../","safe_name","filename,full_filename,size,name,extention,date,is_folder"

For	more	details,	see	the	guide	chapter	'loading	from	File	System'	in
'Base	concepts'	guide.

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

How	can	I	send	additional	information	to	client-side?

To	send	additional	information	to	client-side	that	won't	be	outputed	but
you'll	have	access	to	it,	use	the	fourth(optional)	parameter	of
render_table()	method.	There	you	should	specify	columns	that	contain
desired	additional	information.

$grid->render_table("some_table","id","name,price","color,count"

For	more	inoformation,	see	the	chapter	'Using	extra	fields'	in
'Formatting/Changing	Data	before	Loading'	guide.

Data	management	how-tos	(updating	data)

How	can	I	alter	the	default	styles	set	for
responses?

You	can	alter	the	default	styles	for	each	state,	like:

dp.styles.error	=	"";	//avoids	a	special	style	for	the	'error'	response

//you	should	write	it	on	the	client-side	(in	your	HTML	file)

//dp	-		dataProcessor	object

How	can	I	avoid	updating	certain	field(s)?

To	remove	some	field	from	updating,	you	can	use	the	following
technique:

//write	it	before	'$grid->render_table'

function	filter_set($action){

			$action->remove_field("id");	//the	named	field	won't	be	included	in	CRUD	operations

}

$grid->event->attach("beforeProcessing",	filter_set);

How	can	I	change	default	data	processing	while
updating?

To	affect	on	default	data	processing	either	on	server-	or	client-side	you
should	use	events	either	of	dataProcessor	or	dhtmlxConnector.	For	more
details,	see	the	chapter	'changing	default	precessing'	in	'Client-side

requirement	-	dataProcessor'.

How	can	I	set	custom	status	of	operation?

Using	set_status()	method	you	can	set	status	(custom	or	another
predefined)	of	operation.	Using	defineAction()	method	of	dataProcessor
you	can	assign	the	appropriate	processing	for	this	status.

//server-side

$data->set_status("my_status");

//client-side

dp.defineAction("my_status",function(sid,response){

...

return	true;//	return	false	to	cancel	default	data	processing	at	all

})

How	can	I	terminate	any	further	processing?

Calling	success()	method	you	terminate	any	further	action	processing,
i.e.	data	updating	will	be	stopped	and	considered	as	finished.

function	my_update($data){

			...

			$data->success();	//	marks	operation	as	finished	

}	

$conn->event->attach("beforeUpdate","my_update")

How	can	I	change	values	before	saving?

To	customize	values	before	saving	you	should	use	server-side	events
stated	below:

beforeUpdate
beforeInsert
beforeDelete
beforeProcessing

function	my_update($data){

			...

}	

$conn->event->attach("beforeUpdate","my_update")

For	more	information,	see	'Using	server-side	events'	in	'Making	queries'
guide.

How	can	I	implement	transactions?

Connector	allows	to	use	transactions	for	INSERT/UPDATE/DELETE
operations	(be	sure	that	used	DB	engine	has	support	for	transactions).
To	activate	transaction	mode	-	use	set_transaction_mode()	method.	For
more	details	see	the	chapter	'Transactions'	in	'Making	queries'	guide.

$conn->sql->set_transaction_mode("global");	//for	all	records	inside	single	request

//or	

$conn->sql->set_transaction_mode("record");//	for	each	record	in	request

How	can	I	link	dataProcessor	with	connector?

To	link	dataProcessor	with	connector	you	should	specify	connector	file	as
a	parameter	of	dataProcessor	constructor:

dp	=	new	dataProcessor("myconnector.php");

dp.init("mygrid");

How	can	I	realize	multi-users	sync?

To	activate	multi-user	mode	that	will	allow	users	to	see	changes	of	each
other	in	real-time,	you	must	add	code	both	on	client-	and	server-side.
On	server-side,	to	basic	initialization	connector	code	you	should	add:

$conn->enable_live_update('actions_table');		//actions_table	is	used	for	sync	data	storage

On	client-side,	you	should	initialize	dataprocessor	and	call
setAutoUpdate():

dp.setAutoUpdate(2000);//input	parameter	is	delay	between	update	calls

See	Multi-user	sync	for	more	information.

How	can	I	update	data	on	server-side?

To	update	data	on	server-side,	on	client-side	you	should	initialize
dataProcessor	and	link	dhtmlxConnector	to	it.	Default	updating	will	be
done	automatically.	For	more	details,	see	the	guide	'Client-side
requirement	-	dataProcessor'.	

How	can	I	save	data	changes	made	in	form
(simple	way)?

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

dhtmlxConnector	automatically	exec	CRUD	operations	for	next	patterns:

//to	get	data	of	a	DB	record

			GET:	connector.php?action=get&id={some}

//to	delete	data	of	a	DB	record

			GET:	connector.php?action=delete

//to	update	data	of	a	DB	record

			GET:	connector.php?action=delete

			POST:	id={some}&property_name={value}

//to	insert	a	new	record	to	DB

			GET:	connector.php?action=insert

			POST:	property_name={value}

For	more	details,	see	the	guide	'Saving	data	changes	made	in	form'.

Component-specific	how-tos	(combo)

How	can	I	populate	combo	with	data	from	db?

To	define	options	of	combo	you	should	use	ComboConnector	on	the
server-side	and	specify	the	connector	file	in	the	loadXML(url)	method	on
client-side:

client-side:

var	combo=new	dhtmlXCombo("combo_zone2","alfa2",200);

combo.loadXML("connector.php");

server-side:

<?php	

require_once("../codebase/connector/combo_connector.php");

$res=mysql_connect("localhost","root","");

mysql_select_db("mydb");

	

$data	=	new	ComboConnector($res,	"MySQL");

$data->render_table("categories","id","valueColumn,	labelColumn"

?>

Names	of	the	fields	can	have	aliases	(value	or	label)	to	identify	the
appropriate	attribute.

$data->render_sql("SELECT	*,	CONCAT(FirstName,	LastName)	as	label	FROM	table1"

Note,	in	the	filtering	mode	a	combo	filters	data	by	the	“label”	field.

http://www.php.net/mysql_connect
http://www.php.net/mysql_select_db

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

Component-specific	how-tos	(form)

How	can	I	populate	'select'	item	with	data	from
db?

To	define	options	of	the	select	item	you	should	use
SelectOptionsConnector	on	the	server-side	and	specify	the	connector
parameter	for	the	appropriate	item	on	client-side:

client-side:

var	formData	=	[{type:	"select",	label:	"Categories",	connector

server-side:

<?php	

require_once("../codebase/connector/options_connector.php");

$res=mysql_connect("localhost","root","");

mysql_select_db("myDB");

	

$data	=	new	SelectOptionsConnector($res,	"MySQL");

$data->render_table("categories","id","valueColumn,	labelColumn"

	

?>

For	more	information	of	this	topic,	see	'SelectOptionsConnector'	article.

How	can	I	populate	'combo'	item	with	data	from
db?

To	define	options	of	the	'combo'	item	you	should	use	ComboConnector
on	the	server-side	and	specify	the	connector	parameter	for	the
appropriate	item	on	client-side:

client-side:

var	formData	=	[{type:	"combo",	name:	"myCombo",	label:	"Select	type"

server-side:

<?php	

require_once("../codebase/connector/combo_connector.php");

$res=mysql_connect("localhost","root","");

mysql_select_db("myDB");

	

$data	=	new	ComboConnector($res,	"MySQL");

$data->render_table("categories","id","valueColumn,	labelColumn"

?>

Names	of	the	fields	can	have	aliases	(value	or	label)	to	identify	the
appropriate	attribute.

$data->render_sql("SELECT	*,	CONCAT(FirstName,	LastName)	as	label	FROM	table1"

Note,	in	the	filtering	mode	a	combo	filters	data	by	the	“label”	field.

How	can	I	load	data	from	db?

To	load	data	to	a	form	you	should	use	FormConnector	on	server-side
and	the	method	load	(id)	on	client_side:

client-side

myForm.load('formdata.php?id=1');

where	as	the	parameter	must	be	specified	a	connector	file	with	the	id	of
loading	record.
Values	of	record's	columns	will	be	used	as	values	of	form's	controls.

server-side

<?php	

require_once("../codebase/connector/form_connector.php");//	includes	the	appropriate	connector	

$res=mysql_connect("localhost","root","");//connects	to	a	server	that	contains	the	desired	DB

mysql_select_db("tasks");//	connects	to	the	DB.	'tasks'	is	the	name	of	our	DB

$conn	=	new	FormConnector($res,"MySQL");//	connector	initialization

$conn->render_table("customers","id","name,	address,	email")

?>

For	more	information	of	this	topic,	see	'dhtmlxForm:easy	dealing	with
server-side'	tutorial.

How	can	I	save	changes	made	in	a	form	to	db?

To	save	form	changes	to	DB,	you	should	use	the	method	save()	on	client-
side.
You	can	call	this	method,	for	example,	on	clicks	of	some	button.

myForm.attachEvent("onButtonClick",	function(id){

								if	(id=='saveButton'){

																myForm.save();

								}

}

http://www.php.net/mysql_connect
http://www.php.net/mysql_select_db

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

For	more	information	of	this	topic,	see	'dhtmlxForm:easy	dealing	with
server-side'	tutorial.

Component-specific	how-tos	(grid)

How	can	I	define	grid	structure	on	server-side?

To	define	grid	structure	on	server-side	you	can	use	one	of	two	modes:

automatic
manual

In	both	modes	you	should	use	set_config()	method	where	as	input
parameter	GridConfiguration	object	must	be	specified.

In	automatic	mode,	grid	will	use	names	of	table's	fields	as	labels	for	the
columns.

$config	=	new	GridConfiguration();

$grid->set_config($config);

$grid->render_table("grid50000","item_id","item_nm,item_cd")

In	manual	mode,	structure	is	defined	by	php	command.	Names	of
commands	mimic	names	of	js	commands	with	similar	functionality.

$config	=	new	GridConfiguration();

$config->setHeader(array("column	1","column	2"));

$config->setColTypes(array("ro","ed"));

$grid->set_config($config);

$grid->render_table("grid50000","item_id","item_nm,item_cd")

For	more	information	of	the	topics	covered	here,	see	'defining	grid
structure	on	server-side'	guide.

http://www.php.net/array
http://www.php.net/array

How	can	I	export	grid's	data	from	server	to	Excel
file?

To	export	data	to	Excel	file	you	should:

1.	 Include	one	additional	file

require("../../../codebase/convert.php");

2.	 Activate	conversion	service

$convert	=	new	ConvertService("http://dhtmlx.com/docs/products/devExchange/samples/grid2excel_02/server/generate.php"

3.	 Start	exporting

$convert->excel("some.xls",false);

Both	method's	parameters	are	optional.	The	first	parameter	is	a
name	of	output	file.	The	second	parameter	specifies	how	file	will
be	exported:	true	-	as	inline	content,	false	-	as	individual	file.

After	you	call	the	method	excel(),	service	automatically	will	start	to	export
data	defined	through	GridConnector.

For	more	information	of	this	topic,	see	'Data	export'	guide.

How	can	I	export	grid's	data	from	server	to	pdf

file?

To	export	data	to	pdf	file	you	should:

1.	 Include	one	additional	file

require("../../../codebase/convert.php");

2.	 Activate	conversion	service

$convert	=	new	ConvertService("http://dhtmlx.com/docs/products/devExchange/samples/grid2pdf_02/server/generate.php"

3.	 Start	exporting

$convert->pdf("some.pdf",false);

Both	method's	parameters	are	optional.	The	first	parameter	is	a
name	of	output	file.	The	second	parameter	specifies	how	file	will
be	exported:	true	-	as	inline	content,	false	-	as	individual	file.

After	you	call	the	method	pdf(),	service	automatically	will	start	to	export
data	defined	through	GridConnector.	

For	more	information	of	this	topic,	see	'Data	export'	guide.

How	can	I	populate	select/combo	columns	with
data?

To	define	options	of	select/combo	columns	you	have	2	ways:

1.	 to	load	data	from	the	same	table	the	grid	is	populated	with	data
from

$grid->set_options("item_nm",array("1"	=>	"one",	"2"=>

$grid->render_table("grid50","item_id","item_nm,item_cd"

2.	 to	load	data	from	another	table

$options	=	new	OptionsConnector($res);

$options->render_table("countries","country_id","country_id(value),country_name(label)"

$grid->set_options("item_nm",$options);

	

$grid->render_table("grid50","item_id","item_nm,item_cd"

For	more	information	of	this	topic,	see	'Select/combobox	columns	in	grid'
article.

How	can	I	load	data	from	a	table	that	doesn't
contain	identity	field?

Using	KeyGridConnector	instead	of	GridConnector,	you	can	load	data
from	a	table	without	identity	field.	In	this	case,	any	data	field	will	serve	as
identity.

$grid	=	new	KeyGridConnector($res);

$grid->render_table("mytable","name","name,address,phone");

For	more	details,	see	'KeyGridConnector'	guide.

http://www.php.net/array

How	can	I	set	a	custom	style	for	a	row	or	a	cell?

dhtmlxConnector	contains	a	bit	of	methods	that	allow	to	set	the
appearance	of	a	grid.
These	methods	can	be	divided	into	2	groups:

for	a	cell	customization:

set_cell_attribute
set_cell_class
set_cell_style

for	a	row	customization:

set_row_attribute
set_row_color
set_row_style

function	color_rows($row){

	 if	($row->get_index()%2)

	 $row->set_row_color("red");

}

	

$grid	=	new	GridConnector($res);

$grid->event->attach("beforeRender","color_rows");

$grid->render_table("records","item_id","item_nm,item_cd");

Tips:

to	overwrite	background	you	should	use	'background'	not
'background-color'	attribute.
skin's	css	can	overwrite	a	number	of	css	attributes.	To	avoid	it	-	use
the	!important	flag.

$row->set_row_attribute("class","backrgroundclass");

.backrgroundclass{

			background:red	!important;

}

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

Component-specific	how-tos	(tree/treegrid)

How	can	I	load	data	from	multiple	tables?

Using	TreeMultitableConnector/TreeGridMultitableConnector	instead	of
TreeConnector/TreeGridConector	you	can	load	data	from	multiple	tables.

require("../../codebase/treemultitable_connector.php");

	

$tree	=	new	TreeMultitableConnector($res);

$tree->setMaxLevel(3);

$level	=	$tree->get_level();

For	more	details,	see
'TreeMultitableConnector/TreeGridMultitableConnector'	guide.

How	can	I	load	data	from	table	that	doesn't	contain
relation	field?

Using	TreeGroupConnector/TreeGridGroupConnector	instead	of
TreeConnector/TreeGridConector	you	can	load	data	from	table	that
doesn't	contain	relation	field.

require("./codebase/connector/tree_group_connector.php");

	

$tree	=	new	TreeGroupConnector($res);

$tree->render_table("products2",	"id",	"product_name",	"",	"category"

For	more	details,	see	'TreeGroupConnector/TreeGridGroupConnector'
guide.

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

How	can	I	mark	an	item	as	a	leaf	or	branch	of	tree?

In	beforeRender	event	handler	you	are	allowed	to	mark	an	item	as	a	leaf
or	branch.	For	this	purpose,	you	should	use	set_kids()	method.	As	input
parameter	true	or	false	must	be	specified.	true	marks	an	item	as	a
branch,	false	-	as	a	leaf.

$item->set_kids(false);

For	more	details	see	'tree/treeGrid	specific'	chapter	in	'Dynamic	loading'
guide.

Component-specific	how-tos	(DataStore)

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

How	can	I	use	connector	functionality	for
dhtmlXDataStore	objects?

There	are	2	connector	types	you	can	use	for	dhtmlXDataStore	objects:

JSONDataConnector
DataConnector
For	more	details,	see	the	related	chapter	of	this	documentation.

DHTMLX	Touch	how-tos

How	can	I	use	connector	functionality	for	DHTMLX
Touch	components?

There	are	2	connector	types	you	can	use	for	touch	components:

JSONDataConnector
DataConnector
For	more	details,	see	the	related	chapter	of	this	documentation.

To	implement	CRUD	operation	you	should	use	connectors	mentioned
above	together	with	Touch	dataProcessor.	For	more	details,	see
DHTMLX	Touch	documentation.

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

How	can	I	save	data	changes	made	in	form	(simple
way)?

Basically,	to	save	data	changes	you	can	use	code	like:

dhx.ajax().post("connector.php?action=insert",	$$('form').getValues

For	more	details,	see	the	guide	'Saving	data	changes	made	in	form'.

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

Reference
API	methods
Events

API	methods
All	the	methods	can	be	divided	into	main	2	categories:

Connector	methods	-	methods	of	dhtmlxConnector	instance.
Available	throughout	the	program.

Connector	Object	-	relates	to	dhtmlxConnector	instance.
Event	methods	-	methods	available	just	inside	events'	handler
functions	(different	events	provide	different	methods.	The	appropriate
ones	depend	on	input	object).

DataAction	Object	-	relates	to	action	queries.
Input	object	of:	beforeInsert,	beforeUpdate,	beforeDelete,
beforeProcessing,	afterProcessing,	afterDelete,	afterUpdate,
afterInsert	events.
DataItem	Object	-	relates	to	used	dhtmlx	component.
Input	object	of:	beforeRender	event.
SortInterface	Object	-	relates	to	collection	of	sorting	rules.
Input	object	of:	beforeSort	event.
FilterInterface	Object	-	relates	to	collection	of	filtration	rules.
Input	object	of:	beforeFilter	event.

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

Order	of	execution

Connector	Object	-	methods	of	the	main	object
render_table
render_sql
set_encoding
dynamic_loading
enable_log
is_select_mode

Events	objects	-	objects	that	are	passed	as	input	parameters	to
events.	Mentioned	here	methods	can	be	used	only	inside	handlers'
functions	of	the	appropriate	events.

DataAction	Object
DataItem	Object
SortInterface	Object
FilterInterface	Object

Connector	object

add_section

(available	from	version	1.5	and	applicable	just	to
DataConnector/JSONDataConnector)
adds	the	first	child	tag(section)	to	data

$conn->add_section($name,	$value);

Parameters:

$name	-	the	section	name
$value	-the	section	value

See	also:

JSONDataConnector/DataConnector

dynamic_loading

enables	the	dynamical	loading	mode	for	connector.

$conn->dynamic_loading([$rowsNum]);

Parameters:

tree,	treegrid	-	no	parameters
grid	-	number	of	rows	which	should	be	initially	loaded	(the	value
should	be	more	than	number	of	rows	visible	in	grid,	or	at	least	any
positive	number)
combo	-	maximum	number	of	options	which	server	will	send	for	a
single	data	request	in	autocomplete	mode

See	also:

Dynamic	loading

enable_log

enables	logging	for	connector.

$conn->enable_log("path	to	log	file");

Parameters:

path	-	absolute	or	relative	path	to	text	file	where	log	will	be	written.

See	also:

Errors	handling	and	logging

is_select_mode

returns	current	active	mode.

$conn->is_select_mode();

Parameters:

none.

Returns:

true,	if	select	mode	is	active.
false,	if	update	mode	is	active.

render_array

configures	connector	to	take	data	from	a	PHP	array	which	can	be	filled
by	any	kind	of	external	logic.

$conn->render_array($data,$id,$text,$extra,$relation_id);

Parameters:

$data	-	name	of	PHP	array.
$id	-	name	of	id	field.
$text	-	comma	separated	list	of	data	fields.
$extra	-	comma	separated	list	of	extra	fields,	optional.
$relation_id	-	used	for	building	hierarchy	in	case	of	Tree	and
TreeGrid.

See	Also:

render_sql
render_complex_sql
Basic	concepts

render_sql

configures	connector	to	take	data	based	on	provided	SQL	text.

$conn->render_sql($sql,$id,$text,$extra,$relation_id);

Parameters:

$sql	-	any	sql	code,	which	will	be	used	as	a	base	for	data	selection.
$id	-	name	of	id	field.
$text	-	comma	separated	list	of	data	fields.
$extra	-	comma	separated	list	of	extra	fields,	optional.
$relation_id	-	used	for	building	hierarchy	in	case	of	Tree	and
TreeGrid.

See	Also:

render_table
Basic	concepts

render_complex_sql

configures	connector	to	take	data	based	on	provided	SQL	text.
Works	similar	to	render_sql,	but	have	2	differences:

1.	 Uses	provided	sql	exactly	as	it	is;
2.	 Can	be	used	only	for	data	loading	(for	data	saving	you	can	use

separate	connector,	event	handlers,	or	custom	model).

The	method	can	be	used	to	call	stored	procedures	in	the	database.

$conn->render_complex_sql($sql,$id,$text,$extra,$relation_id

Parameters:

$sql	-	any	sql	code,	which	will	be	used	as	a	base	for	data	selection	or
the	name	of	a	stored	procedure.
$id	-	name	of	id	field.
$text	-	comma	separated	list	of	data	fields.
$extra	-	comma	separated	list	of	extra	fields,	optional.
$relation_id	-	used	for	building	hierarchy	in	case	of	Tree	and
TreeGrid.

See	Also:

render_sql
render_table
Basic	concepts

render_table

configures	connector	to	take	data	from	single	table.

$conn->render_table($table,$id,$text,$extra,$relation);

Parameters:

$table	-	name	of	table.
$id	-	name	of	id	field.
$text	-	comma	separated	list	of	data	fields.
$extra	-	comma	separated	list	of	extra	fields,	optional.
$relation_id	-	used	for	building	hierarchy	in	case	of	Tree	and
TreeGrid.

Description:

If	you	want	to	render	all	fields	from	DB	(except	of	identity	field),	you
can	use	simplified	command:

$conn->render_table($table);

See	Also:

render_sql
render_complex_sql
Basic	concepts

set_encoding

allows	you	to	set	encoding	that	will	be	applied	to	generated	XML	(default
encoding	is	UTF-8).

$conn->set_encoding("iso-8859-1");

Parameters:

encoding	name.

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

set_limit

limits	the	number	of	data	items	that	will	be	loaded	to	a	component.

$conn->set_limit([$rowsNum]);

Parameters:

number	of	data	items	which	should	be	loaded

DataAction	Object

add_field()

allows	you	to	register	field	for	usage	while	INSERT/UPDATE/DELETE
operation.

$action->add_field($name,$value);

Parameters:

$name	-	name	or	alias	of	the	field
$value	-	value	of	the	field	in	question

See	also:

remove_field
Making	queries

error()

marks	provided	data	as	invalid	and	cancels	default	UPDATE	processing
(invalid	record	will	be	highlighted	in	red	bold	font).

$action->error()

Parameters:

none

See	Also:

invalid
Validation

get_data()

returns	hash	of	data	values	that	will	take	part	in
INSERT/UPDATE/DELETE	operations.

$action->get_data();

Parameters:

none.

get_id()

returns	the	id	of	the	currently	selected	record.

$action->get_id();

Parameters:

none.

get_new_id()

returns	the	ID	received	after	INSERT	operation	(valid	for	afterProcessing
event	only).

$action->get_new_id()

Parameters:

none.

get_status()

returns	action	type	of	the	item.

$action->get_status()

Returns:

update,	insert,	delete,	error	or	custom	status	set	through	set_status()
method

Parameters:

none.

See	Also:

set_status

get_value()

returns	value	of	a	field.

$action->get_value($name);

Parameters:

$name	-	name	of	column	or	alias.

See	Also:

set_value
Validation

invalid()

marks	provided	data	as	invalid	and	cancels	default	UPDATE	processing
(invalid	record	will	be	highlighted	in	bold	font).

$action->invalid()

Parameters:

none.

See	Also:

error
Validation

remove_field()

allows	to	remove	one	of	default	fields	from	INSERT/UPDATE/DELETE
operation.

$action->remove_field($name,$value);

Parameters:

$name	-	name	or	alias	of	the	field.
$value	-	value	of	the	field	in	question.

See	Also:

add_field

set_response_attribute()

allows	you	to	define	custom	attribute	which	will	be	added	to	the	related
action	tag	in	XML	response.

$action->set_response_attribute($name,$value);

Parameters:

$name	-	name	of	the	attribute.
$value	-	value	of	the	attribute	in	question.

See	Also:

set_response_text
set_response_xml

set_response_text()

allows	you	to	set	string	that	will	be	included	in	response

$action->set_response_text($text);

Parameters:

$text	-	any	text	value	that	will	be	returned	on	client-side	with	related
action.

See	Also:

set_response_xml
set_response_attribute

set_response_xml()

allows	you	to	set	xml-string	that	will	be	included	in	response	(if	you	need
to	provide	just	a	text	-	use	set_response_text()	method).

$action->set_response_xml($text);

Parameters:

$text	-	any	text	value	that	will	be	returned	on	client-side	with	related
action.

See	Also:

set_response_text
set_response_attribute

set_status()

sets	the	status	of	operation.

$action->set_status($value)

Parameters:

$value	-	status	of	operation.
It	can	be	either	some	predefined	value	(updated,	inserted,	deleted,
error)	or	any	custom	status.	Beware,	when	you	set	custom	status	you
cancel	default	data	processing.

See	Also:

get_status
Validation

set_value()

sets	value	of	a	field.

$action->set_value($name,$value)

Parameters:

$name	-	name	or	alias	of	the	field
$value	-	value	of	the	field	in	question

See	Also:

get_value

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

success()

confirms	that	operation	has	been	executed	correctly	and	cancels	any
default	data	processing.

$action->success()

Parameters:

in	case	INSERT	operation:	a	new	ID	of	element	(which	will	be
updated	on	client-side)

See	also:

Making	queries

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

DataItem	Object
Different	components	have	different	sets	of	methods.	Follow	the	link	of
component	you	use.

dhtmlxChart
dhtmlxCombo
dhtmlxDataView
dhtmlxForm
dhtmlxGrid
dhtmlxTree
dhtmlxTreeGrid
dhtmlxScheduler

dhtmlxChart

get_id

returns	the	id	of	an	item.

$dataItem->get_id();

Parameters:

none.

See	also:

set_id

get_index

returns	the	index	of	the	currently	selected	item	(for	example,	in	grid,	it	will
be	the	index	of	a	row)

$dataItem->get_index();

Parameters:

none.

get_value

returns	the	value	of	a	field.

$dataItem->get_value($name);

Parameters:

$name	-	name	or	alias	of	the	field.

See	Also:

set_value

set_id

sets	the	id	of	an	item.

$dataItem->set_id($value);

Parameters:

$value	-	id	of	the	item.

See	also:

get_id

skip

ignores	the	current	item	while	rendering	output.	Allows	you	to	define
custom	filtration	rules.

$dataItem->skip()

Parameters:

none.

set_value

sets	the	value	of	a	field.

$dataItem->set_value($name,$value)

Parameters:

$name	-	name	or	alias	of	the	field
$value	-	value	of	the	item	in	question

See	Also:

get_value

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

set_userdata

(available	from	version	1.5)	sets	user	data	for	the	item.

$dataItem->set_userdata($name,$value)

Parameters:

$name	-	the	user	data	name
$value	-	user	data	string

See	also:

Formatting/changing	data	before	loading

dhtmlxCombo

get_id

returns	the	id	of	an	item.

$dataItem->get_id();

See	also:

set_id

get_index

returns	the	index	of	the	currently	selected	item	(for	example,	in	grid,	it	will
be	the	index	of	a	row)

$dataItem->get_index();

Parameters:

none.

get_value

returns	the	value	of	a	field.

$dataItem->get_value($name);

Parameters:

$name	-	name	or	alias	of	the	field.

See	Also:

set_value

select

marks	the	specified	combo	option	as	selected.

$dataItem->select();

Parameters:

none.

set_id

sets	the	id	of	an	item.

$dataItem->set_id($value);

Parameters:

$value	-	id	of	the	item.

See	also:

get_id

skip

ignores	the	current	item	while	rendering	output.	Allows	you	to	define
custom	filtration	rules.

$dataItem->skip()

Parameters:

none

set_value

sets	the	value	of	a	field.

$dataItem->set_value($name,$value)

Parameters:

$name	-	name	or	alias	of	the	field
$value	-	value	of	the	field	in	question

See	Also:

get_value

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

set_userdata

(available	from	version	1.5)	sets	user	data	for	the	item.

$dataItem->set_userdata($name,$value)

Parameters:

$name	-	the	user	data	name
$value	-	user	data	string

See	also:

Formatting/changing	data	before	loading

dhtmlxDataView

get_id

returns	the	id	of	an	item.

$dataItem->get_id();

See	also:

set_id

get_index

returns	the	index	of	the	currently	selected	item	(for	example,	in	grid,	it	will
be	the	index	of	a	row)

$dataItem->get_index();

Parameters:

none.

get_value

returns	the	value	of	a	field.

$dataItem->get_value($name);

Parameters:

$name	-	name	or	alias	of	the	field.

See	Also:

set_value

set_id

sets	the	id	of	an	item.

$dataItem->set_id($value);

Parameters:

$value	-	id	of	the	item.

See	also:

get_id

skip

ignores	the	current	item	while	rendering	output.	Allows	you	to	define
custom	filtration	rules.

$dataItem->skip()

Parameters:

none

set_value

sets	the	value	of	a	field.

$dataItem->set_value($name,$value)

Parameters:

$name	-	name	or	alias	of	the	field
$value	-	value	of	the	field	in	question

See	Also:

get_value

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

set_userdata

(available	from	version	1.5)	sets	user	data	for	the	item.

$dataItem->set_userdata($name,$value)

Parameters:

$name	-	the	user	data	name
$value	-	user	data	string

See	also:

Formatting/changing	data	before	loading

dhtmlxForm

get_id

returns	the	id	of	an	item.

$dataItem->get_id();

See	also:

set_id

get_index

returns	the	index	of	the	currently	selected	item	(for	example,	in	grid,	it	will
be	the	index	of	a	row)

$dataItem->get_index();

Parameters:

none.

get_value

returns	the	value	of	a	field.

$dataItem->get_value($name);

Parameters:

$name	-	name	or	alias	of	the	field.

See	Also:

set_value

set_id

sets	the	id	of	an	item.

$dataItem->set_id($value);

Parameters:

$value	-	id	of	the	item.

See	also:

get_id

skip

ignores	the	current	item	while	rendering	output.	Allows	you	to	define
custom	filtration	rules.

$dataItem->skip()

Parameters:

none

set_value

sets	the	value	of	a	field.

$dataItem->set_value($name,$value)

Parameters:

$name	-	name	or	alias	of	the	field
$value	-	value	of	the	field	in	question

See	Also:

get_value

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

set_userdata

(available	from	version	1.5)	sets	user	data	for	the	item.

$dataItem->set_userdata($name,$value)

Parameters:

$name	-	the	user	data	name
$value	-	user	data	string

See	also:

Formatting/changing	data	before	loading

dhtmlxGrid

get_id

returns	the	id	of	an	item.

$dataItem->get_id();

See	also:

set_id

get_index

returns	the	index	of	the	currently	selected	item	(for	example,	in	grid,	it	will
be	the	index	of	a	row)

$dataItem->get_index();

Parameters:

none.

get_value

returns	the	value	of	a	field.

$dataItem->get_value($name);

Parameters:

$name	-	name	or	alias	of	the	field.

See	Also:

set_value

set_cell_attribute

sets	an	attribute	for	a	cell	of	item.

$dataItem->set_cell_attribute($name,$attr,$value)

Parameters:

$name	-	name	of	alias	of	the	cell
$attr	-	name	of	attribute
$value	-	value	of	attribute

See	Also:

set_cell_style
set_cell_class

set_cell_class

sets	a	css	class	for	a	cell	of	item.

$dataItem->set_cell_class($name,$value);

Parameters:

$name	-	name	or	alias	of	the	cell
$value	-	css	class	for	the	cell

See	Also:

set_cell_style
set_cell_attribute

set_cell_style

sets	the	style	for	a	cell	of	item.

$dataItem->set_cell_style($style);

Parameters:

$style	-	HTML	style	attributes.

See	Also:

set_cell_class
set_cell_attribute

set_id

sets	the	id	of	an	item.

$dataItem->set_id($value);

Parameters:

$value	-	id	of	the	item.

See	also:

get_id

set_options

assigns	options	collection	to	a	column.

$dataItem->set_options($name,$options);

Parameters:

$name	-	the	name	of	the	column
$options	-	an	array	of	options	or	a	connector	object

Sample:

$grid->set_options("column_id",array("1"	=>	"one",	"2"=>"two"

//or

$filter1	=	new	OptionsConnector($res);

$filter1->render_table("countries","country_id","country_name(value)"

$grid->set_options("column_id",$filter1);

http://www.php.net/array

skip

ignores	the	current	item	while	rendering	output.	Allows	to	define	custom
filtration	rules.

$dataItem->skip()

Parameters:

none

set_row_attribute

sets	attribute	for	any	row	in	the	component.

$dataItem->set_row_attribute($attr,$value);

Parameters:

$attr	-	name	of	attribute
$value	-	value	of	attribute

See	Also:

set_row_style
set_row_attribute

set_row_color

sets	color	for	any	row	in	the	component.

$dataItem->set_row_color($color)

Parameters:

$color	-	color	of	a	row

See	Also:

set_row_style
set_row_attribute

set_row_style

sets	style	for	any	row	of	the	component.

$dataItem->set_row_style($style);

Parameters:

$style	-	HTML	style	attributes

See	Also:

set_row_color
set_row_attribute

set_value

sets	value	of	a	field.

$dataItem->set_value($name,$value)

Parameters:

$name	-	name	or	alias	of	the	field
$value	-	value	of	the	field	in	question

See	Also:

get_value

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

set_userdata

(available	from	version	1.5)	sets	user	data	for	the	item.

$dataItem->set_userdata($name,$value)

Parameters:

$name	-	the	user	data	name
$value	-	user	data	string

See	also:

Formatting/changing	data	before	loading

dhtmlxTree

get_check_state

returns	the	state	of	the	selected	item.

$dataItem->get_check_state();

Returns:

state	of	checkbox	related	to	the	item:
'0'	-	unchecked
'1'	-	checked.
'-1'	-	third	(custom)	state.

See	also:

set_check_state

get_id

returns	the	id	of	an	item.

$dataItem->get_id();

See	also:

set_id

get_index

returns	the	index	of	the	currently	selected	item	(for	example,	in	grid,	it	will
be	the	index	of	a	row)

$dataItem->get_index();

Parameters:

none.

get_parent_id

returns	the	parent	id	of	the	selected	item.

$dataItem->get_parent_id();

Parameters:

none

get_value

returns	the	value	of	a	field.

$dataItem->get_value($name);

Parameters:

$name	-	name	or	alias	of	the	field.

See	Also:

set_value

set_attribute

allows	you	to	set	some	attribute	for	a	item.

$dataItem->set_attribute($name,	$value);

Parameters:

$name	-	the	name	of	an	attribute.
$value	-	the	value	that	an	attribute	is	set	to.

set_check_state

allows	you	to	set	the	state	of	the	checkbox	related	to	an	item.

$dataItem->set_check_state($value);

Parameters:

$value	-	state	of	the	item.
Valid	values	are:

'0'	-	unchecked.
'1'	-	checked.
'-1'	-	third	custom	state.

See	also:

get_check_state

set_id

sets	the	id	of	an	item.

$dataItem->set_id($value);

Parameters:

$value	-	id	of	the	item.

See	also:

get_id

set_image

allows	you	to	set	image	for	any	item	in	tree.

$dataItem->set_image($img);

Parameters:

$img	-	relative	path	to	image	which	will	be	set	for	a	item.

Description:

Can	be	used	with	variable	number	of	parameters.

$dataItem->set_image($img1,$img2,$img3)	

$img1	-	image	of	folder	in	opened	state
$img2	-	image	of	folder	in	closed	state
$img3	-	image	of	leaf	item

set_kids

allows	you	to	mark	an	item	as	a	leaf	or	branch	of	tree.

$dataItem->set_kids($is_enabled);

Parameters:

$is_enabled	-	(boolean)	specifies	whether	an	item	must	be	marked
as	a	branch.

true	-	item	will	be	marked	as	a	branch.
false	-	item	will	be	marked	as	a	leaf.

See	also:

Dynamic	loading

skip

ignores	the	current	item	while	rendering	output.	Allows	you	to	define
custom	filtration	rules.

$dataItem->skip()

Parameters:

none

set_value

sets	the	value	of	a	field.

$dataItem->set_value($name,$value)

Parameters:

$name	-	name	or	alias	of	the	field
$value	-	value	of	the	field	in	question

See	Also:

get_value

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

set_userdata

(available	from	version	1.5)	
sets	user	data	for	the	item.

$dataItem->set_userdata($name,$value)

Parameters:

$name	-	the	user	data	name
$value	-	user	data	string

See	also:

Formatting/changing	data	before	loading

dhtmlxTreeGrid

get_id

returns	the	id	of	an	item.

$dataItem->get_id();

See	also:

set_id

get_index

returns	the	index	of	the	currently	selected	item	(for	example,	in	grid,	it	will
be	the	index	of	a	row)

$dataItem->get_index();

Parameters:

none.

get_parent_id

returns	the	parent	id	of	the	selected	item.

$dataItem->get_parent_id();

Parameters:

none

get_value

returns	the	value	of	a	field.

$dataItem->get_value($name);

Parameters:

$name	-	name	or	alias	of	the	field.

See	Also:

set_value

set_cell_attribute

sets	an	attribute	for	a	cell	of	item.

$dataItem->set_cell_attribute($name,$attr,$value)

Parameters:

$name	-	name	of	alias	of	the	cell
$attr	-	name	of	attribute
$value	-	value	of	attribute

See	Also:

set_cell_style
set_cell_class

set_cell_class

sets	the	css	class	for	a	cell	of	item.

$dataItem->set_cell_class($name,$value);

Parameters:

$name	-	name	or	alias	of	the	cell
$value	-	css	class	for	the	cell

See	Also:

set_cell_style
set_cell_attribute

set_cell_style

sets	the	style	for	a	cell	of	item.

$dataItem->set_cell_style($style);

Parameters:

$style	-	HTML	style	attributes.

See	Also:

set_cell_class
set_cell_attribute

set_id

sets	the	id	of	the	item.

$dataItem->set_id($value);

Parameters:

$value	-	id	of	the	item.

See	also:

get_id

set_image

sets	image	for	all	check	states	of	the	node	in	tree.

$dataItem->set_image($img);

Parameters:

$img	-	relative	path	to	image	which	will	be	set	for	the	item	of	tree
(relative	to	the	folder	with	tree's	icons).

skip

ignores	the	current	item	while	rendering	output.	Allows	you	to	define
custom	filtration	rules.

$dataItem->skip()

Parameters:

none

set_row_attribute

sets	an	attribute	for	any	row	in	the	component.

$dataItem->set_row_attribute($attr,$value);

Parameters:

$attr	-	name	of	attribute
$value	-	value	of	attribute

See	Also:

set_row_style
set_row_attribute

set_row_color

sets	color	for	any	row	in	the	component.

$dataItem->set_row_color($color)

Parameters:

$color	-	color	of	a	row

See	Also:

set_row_style
set_row_attribute

set_row_style

sets	the	style	for	any	row	of	the	component.

$dataItem->set_row_style($style);

Parameters:

$style	-	HTML	style	attributes

See	Also:

set_row_color
set_row_attribute

set_value

sets	the	value	of	a	field.

$dataItem->set_value($name,$value)

Parameters:

$name	-	name	or	alias	of	the	field
$value	-	value	of	the	field	in	question

See	Also:

get_value

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

set_userdata

(available	from	version	1.5)	sets	user	data	for	the	item.

$dataItem->set_userdata($name,$value)

Parameters:

$name	-	the	user	data	name
$value	-	user	data	string

See	also:

Formatting/changing	data	before	loading

dhtmlxScheduler

get_id

returns	the	id	of	an	item.

$dataItem->get_id();

See	also:

set_id

get_index

returns	the	index	of	the	currently	selected	item	(for	example,	in	grid,	it	will
be	the	index	of	a	row).

$dataItem->get_index();

Parameters:

none.

get_value

returns	the	value	of	a	field.

$dataItem->get_value($name);

Parameters:

$name	-	name	or	alias	of	the	field.

See	Also:

set_value

set_id

sets	the	id	of	an	item.

$dataItem->set_id($value);

Parameters:

$value	-	id	of	the	item.

See	also:

get_id

skip

ignores	the	current	item	while	rendering	output.	Allows	you	to	define
custom	filtration	rules.

$dataItem->skip()

Parameters:

none

set_options

assigns	options	collection	to	a	column.

$dataItem->set_options($name,$options);

Parameters:

$name	-	the	name	of	the	column
$options	-	an	array	of	options	or	a	connector	object

Sample:

$scheduler->set_options("type",array("1"	=>	"one",	"2"=>"two"

//or

$options	=	new	OptionsConnector($res);

$options->render_table("types","type_id","type_id(value),type_name(label)"

$scheduler->set_options("type",$options);

http://www.php.net/array

set_value

sets	the	value	of	a	field.

$dataItem->set_value($name,$value)

Parameters:

$name	-	name	or	alias	of	the	field
$value	-	value	of	the	field	in	question

See	Also:

get_value

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

set_userdata

(available	from	version	1.5)	sets	user	data	for	the	item.

$dataItem->set_userdata($name,$value)

Parameters:

$name	-	the	user	data	name
$value	-	user	data	string

See	also:

Formatting/changing	data	before	loading

SortInterface	Object

add

adds	a	new	sorting	rule	to	collection

$coll->add("name","type");

Parameters:

name	-	name	of	the	field.
type	-	sorting	type:	ASC	or	DESC

See	also:

Sorting

clear

clears	collection	(deletes	all	specified	sorting	rules).

$coll->clear();

Parameters:

none.

index

checks	if	there	are	some	rules	in	collection	for	the	specified	field	and
returns	the	related	hash.

$index	=	$coll->index("name");

Parameters:

name	-	name	of	the	field

Returns:

true	-	if	collection	contains	rule(s)	for	the	specified	field.
false	-	if	collection	doesn't	contain	any	rules	for	the	field.

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

rules

array	of	all	specified	sorting	rules.

$name	=	$coll->rules[0]["name"];

$coll->rules[0]["direction"]="DESC";

Properties:

name	-	name	of	related	field
direction	-	direction	of	sorting

See	also:

Sorting

FilterInterface	Object

add

adds	a	new	filtration	rule	to	collection.

$coll->add("name","value");		//	$name	LIKE	$value

//or

$coll->add("name","value","comp_oper");	//name	<	value

Parameters:

name	-	name	of	the	field.
value	-	comporison	value	(filtration	criteria).
comp_oper	-	comparison	operator:	'>'	or	'<'.

See	also:

Filtering

clear

clears	collection	(deletes	all	specified	filtration	rules).

$coll->clear();

Parameters:

none.

index

checks	if	there	are	some	rules	in	collection	for	the	specified	field	and
returns	related	hash.

$index	=	$coll->index("name");

Parameters:

name	-	name	of	the	field

Returns:

true	-	if	collection	contains	rule(s)	for	the	specified	field.
false	-	if	collection	doesn't	contain	any	rules	for	the	field.

See	also:

Filtering

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

rules

array	of	all	specified	sorting	rules.

$name	=	$coll->rules[0]["name"]

$coll->rules[0]["value"]="cde";

Properties:

name	-	name	of	related	field.
value	-	comporison	value	(filtration	criteria).
operation	-	comporison	operator.	If	empty	-	default	LIKE	instruction	is
used.

See	also:

Filtering

Events

events	list

beforeSort	Event
beforeFilter	Event
beforeRender	Event
beforeOutput	Event

beforeUpdate	Event
beforeInsert	Event
beforeDelete	Event

afterUpdate	Event
afterInsert	Event
afterDelete	Event

beforeProcessing	Event
afterProcessing	Event

onDBError	Event

order	of	execution

data	loading

-	incoming	request	parsed
beforeSort
beforeFilter
-	sql	select	executed
-	for	each	selected	record

beforeRender
-	generate	xml	for	record

-	output	data	to	client

data	updating

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

-	incoming	request	parsed
-	global	transaction	started	(if	enabled)
beforeProcessing
for	each	record

-	record	level	transaction	if	started	(if	enabled)
beforeInsert|beforeDelete|beforeUpdate
-	record	level	transaction	commited	(if	enabled)

afterProcessing
-	global	transaction	commited	(if	enabled)

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

beforeSort
The	event	occurs	before	data	loading	and	allows	to	customize	sorting	of
dataset

$conn->event->attach("beforeSort",handlerFunc);

Parameters	handlerFunc:

$sort_by	-	SortInterface	object

Availability:

Available	for	Grid,	Treegrid

Sample:

function	custom_sort($sorted_by){

			$sorted_by->rules[0]["name"]="LENGTH(some_field)";//	SORT	BY	LENGTH(some_field)

}

$conn->attach->event("beforeSort","custom_sort");

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

beforeFilter
The	event	occurs	before	data	loading	and	allows	to	customize	filtering	of
dataset.

$conn->event->attach("beforeFilter",handlerFunc);

Parameters	handlerFunc:

$filter_by	-	FilterInterface	object

Availability:

Available	for	Grid,	Combo

Sample:

function	custom_filter($filter_by){

							if	(!sizeof($filter_by->rules))	

													$filter_by->add("some_field","value","LIKE");

//change	WHERE	some_field	LIKE	'%value%'	to	the	WHERE	some_field	>	'value'

							$index	=	$filter_by->index("some_field");

							if	($index!==false)		//there	is	client	side	input	for	the	filter

													$filter_by->rules[$index]["operation"]=">";

}

$conn->event->attach("beforeFilter","custom_filter");

http://www.php.net/sizeof

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

beforeRender
The	event	occurs	event	occurs	after	data	has	been	selected	from	the
database	but	before	its	outputting	to	client.

$conn->event->attach("beforeRender",handlerFunc);

Parameters	handlerFunc:

$dataItem	-	DataItem	Object

Availability:

Available	for	Grid,	TreeGrid,	Tree,	Combo,	Scheduler,	DataView,
Chart,	Form

Sample:

function	color_rows($row){

	 if	($row->get_index()%2)

	 $row->set_row_color("red");

}

	

$conn->event->attach("beforeRender","color_rows");

beforeOutput
The	event	occurs	event	occurs	after	data	has	been	selected	from	the
database	and	ready	to	be	sent	to	client	side.	Event	can	be	used	to	mix
some	custom	data	in	XML	output.	The	most	common	use-case	-	header
structure	for	the	grid.

$conn->event->attach("beforeOutput",handlerFunc);

Parameters	handlerFunc:

Doesn't	get	any	parameters

Availability:

Available	for	Grid,	TreeGrid,	Tree,	Combo,	Scheduler,	DataView,
Chart,	Form

Sample:

function	grid_header(){

	 echo	'<head>

	 <column	width="50"	type="dyn"	align="right"	color="white"	sort="str">Sales</column>

	 <column	width="150"	type="ed"	align="left"	color="#d5f1ff"	sort="str">Book	Title</column>

	 </head>';

}

$conn->event->attach("beforeOutput","grid_header");

	

//In	case	of	dyn.	loading	mode,	one	more	check	need	to	be	added,	to	prevent	data	output	for	additional	data	calls.	

function	grid_header(){

								if	(!isset($_GET["posStart"]))

	 	 echo	'<head>

	 								<column	width="50"	type="dyn"	align="right"	color="white"	sort="str">Sales</column>

	 								<column	width="150"	type="ed"	align="left"	color="#d5f1ff"	sort="str">Book	Title</column>

	 	 </head>';

}

http://www.php.net/echo
http://www.php.net/isset
http://www.php.net/echo

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

$conn->event->attach("beforeOutput","grid_header");

$conn->dynamic_loading(100);

beforeUpdate
The	event	occurs	before	updating	values	in	database	and	can	cancel
default	update	statement	or	validate	incoming	values.

$conn->event->attach("beforeUpdate",handlerFunc);

Parameters	handlerFunc:

$action	-	DataAction	Object

Availability:

Available	for	Grid,	TreeGrid,	Tree,	Scheduler,	DataView,	Form

Sample:

//creates	and	runs	own	update	statement	using	values	came	in	request,	cancels	default	update

function	myUpdate($action){

								mysql_query("UPDATE	Countries	SET	item_nm='{$action->get_value('name')}'	WHERE	item_id='{$action->get_id()}'"

								$action->success();

}

//or__

//checks	if	value	of	name	is	empty,	then	cancel	update.	Otherwise,	proceeds	with	default	update.		

function	myUpdate($action){

								if($action->get_value("name")=="")

								$action->invalid();

}	

//or__

//sets	new	value	for	name	and	proceeds	with	default	update.	

function	myUpdate($action){

								$new_value	=	rand(0,100);

								$action->set_value("name",$new_value);

}

	

$conn->event->attach("beforeUpdate","myUpdate");

http://www.php.net/mysql_query
http://www.php.net/rand

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

beforeInsert
The	event	occurs	before	inserting	values	into	database	and	can	cancel
default	insert	statement	or	validate	incoming	values.

$conn->event->attach("beforeInsert",handlerFunc);

Parameters	handlerFunc:

$action	-	DataAction	Object

Availability:

Available	for	Grid,	TreeGrid,	Tree,	Scheduler,	DataView,	Form

Sample:

See	related	beforeUpdate	sample.

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

beforeDelete
The	event	occurs	before	deleting	record	in	database	and	can	cancel
default	delete	statement	or	validate	incoming	values.

$conn->event->attach("beforeDelete",handlerFunc);

Parameters	handlerFunc:

$action	-	DataAction	Object

Availability:

Available	for	Grid,	TreeGrid,	Tree,	Scheduler,	DataView,	Form

Sample:

See	related	beforeUpdate	sample.

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

afterUpdate
The	event	occurs	after	updating	values	in	database	and	can	can	be	used
to	pass	additional	values	to	client-side.

$conn->event->attach("afterUpdate",handlerFunc);

Parameters	handlerFunc:

$action	-	DataAction	Object

Availability:

Available	for	Grid,	TreeGrid,	Tree,	Scheduler,	DataView,	Form

Sample:

See	related	afterProcessing	sample.

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

afterInsert
The	event	occurs	after	inserting	values	into	database	and	can	can	be
used	to	pass	additional	values	to	client-side.

$conn->event->attach("afterInsert",handlerFunc);

Parameters	handlerFunc:

$action	-	DataAction	Object

Availability:

Available	for	Grid,	TreeGrid,	Tree,	Scheduler,	DataView,	Form

Sample:

See	related	afterProcessing	sample.

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

afterDelete
The	event	occurs	after	deleting	record	in	database	and	can	be	used	to
pass	additional	values	to	client-side.

$conn->event->attach("afterDelete",handlerFunc);

Parameters	handlerFunc:

$action	-	DataAction	Object

Availability:

Available	for	Grid,	TreeGrid,	Tree,	Scheduler,	DataView,	Form

Sample:	See	related	afterProcessing	sample.

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

beforeProcessing
The	event	occurs	before	beforeInsert,	beforeUpdate,	beforeDelete	events
occur	and	relates	to	all	operations:	Insert,	Update	and	Delete.	It	can	be
cancelled	in	the	same	way	as	the	aforementioned	events.

$conn->event->attach("beforeProcessing",handlerFunc);

Parameters	handlerFunc:

$action	-	DataAction	Object

Availability:

Available	for	Grid,	TreeGrid,	Tree,	Scheduler,	DataView,	Form

Sample:	See	related	beforeUpdate	sample.

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

afterProcessing
The	event	occurs	after	beforeInsert,	beforeUpdate,	beforeDelete	events
occur	and	relates	to	all	operations:	Insert,	Update	and	Delete.	It	can	be
used	to	pass	additional	values	to	client	side.

$conn->event->attach("afterProcessing",handlerFunc);

Parameters	handlerFunc:

$action	-	DataAction	Object

Availability:

Available	for	Grid,	TreeGrid,	Tree,	Scheduler,	DataView,	Form

Sample:

	//adds	new	xml	as	a	child	of	default	<action>	tag	which	is	passed	to	client	side	as	response

function	doAfterProcessing($action){

							$action->set_response_xml("<guid>some	value</guid>")

}

$conn->event->attach("afterProcessing",doAfterProcessing);

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

onDBError
The	event	occurs	when	some	DB	level	error	occurs,	during	data	saving
operations.	It	is	relates	to	all	operations:	Insert,	Update	and	Delete.	It	can
be	used	to	pass	error	info	to	the	client	side.

$conn->event->attach("onDBError",handlerFunc);

Parameters	handlerFunc:

$action	-	DataAction	Object
$exception	-	SQL	related	exception	object

Availability:

Available	for	Grid,	TreeGrid,	Tree,	Scheduler,	DataView,	Form

Sample:

	//adds	new	xml	as	a	child	of	default	<action>	tag	which	is	passed	to	client	side	as	response

function	doOnDBError($action,	$exception){

							$action->set_response_xml("<errorinfo>".((String)$exception

}

$conn->event->attach("onDBError",doOnDBError);

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

Samples
Client-side	initialization	of	components
Server-side	initialization	of	components
Defining	grid	structure	on	server-side
dhtmlxConnector	for	grid	(including	filtration,	sorting,	formatting)
dhtmlxConnector	for	form

Samples	of	client-side	initialization

grid

myGrid	=	new	dhtmlXGridObject("myContainer");

//...	grid	configuration	commands

myGrid.load("myconnector.php");

treeGrid

static	mode

myGrid	=	new	dhtmlXGridObject("myContainer");

myGrid.setColTypes("tree,...");

//...grid	configuration	commands

myGrid.loadXML("myconnector.php");

dynamic	mode

myGrid	=	new	dhtmlXGridObject('myContainer');

myGrid.setColTypes("tree,...");

//...

myGrid.kidsXmlFile="connector.php";

myGrid.loadXML("connector.php");

tree

static	mode

tree=new	dhtmlXTreeObject("treeboxbox_tree","100%","100%",0)

//...

tree.loadXML("connector.php");

dynamic	mode

tree=new	dhtmlXTreeObject("treeboxbox_tree","100%","100%",0)

//...

tree.setXMLAutoLoading("connector.php");

tree.loadXML("connector.php");

combo

static	mode

var	combo=new	dhtmlXCombo("combo_zone2","alfa2",200);

combo.loadXML("connector.php");

auto-complete	mode

var	combo=new	dhtmlXCombo("combo_zone2","alfa2",200);

combo.enableFilteringMode(true,"connector.php",true);

combo.loadXML("connector.php");

scheduler

scheduler.init(some_obj)

scheduler.load("connector.php");

form

var	form	=	new	dhtmlXForm(someId);

form.load("connector.php");

dataView

var	view	=	new	dhtmlXDataView({...});

view.load("connector.php");

chart

var	mychart	=	new	dhtmlXChart({...});

mychart.load("connector.php");

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

dataStore

var	myDataStore	=	new	dhtmlXDataStore();

myDataStore.load("connector.php");

Samples	of	server-side	initialization

db	types

MySQL	(php_mysql)

require("connector/grid_connector.php");

	

$res=mysql_connect("localhost","root","");

mysql_select_db("myDatabase");

	

$gridConn	=	new	GridConnector($res,"MySQL");

MySQLi	(php_mysqli)

require("connector/grid_connector.php");

require("connector/db_mysqli.php");

	

$mysqli	=	new	mysqli($server,	$user,	$pass,	$mysql_db);	

$gridConn	=	new	GridConnector($mysqli,"MySQLi");

SQLite	(php_sqlite)

require("connector/grid_connector.php");

require("connector/db_sqlite.php");

if	(!$db	=	sqlite_open('db',	0777,	$sqliteerror))	{

	 die($sqliteerror);

}

	

$gridConn	=	new	GridConnector($db,"SQLite");

PostgreSQL	(php_pg)

require("connector/grid_connector.php");

require("connector/db_postgre.php");

	

http://www.php.net/mysql_connect
http://www.php.net/mysql_select_db
http://www.php.net/die

$res	=	pg_connect("host=localhost	port=5432	dbname=mary");

	

$gridConn	=	new	GridConnector($res,"Postgre");

Oracle	(php_oci)

require("connector/grid_connector.php");

require("connector/db_oracle.php");

	

$res	=	oci_connect("scott",	"tiger",	$db);

	

$gridConn	=	new	GridConnector($res,"Oracle");

MSSQL	(php_mssql)

require("connector/grid_connector.php");

require("connector/db_mssql.php");

	

$res=mssql_connect('.\SQLEXPRESS',"sa","1",false);

mssql_select_db("sampleDB");

	

$gridConn	=	new	GridConnector($res,"MsSQL");

MSSQL	(php_sqlsrv)

require("connector/grid_connector.php");

require("connector/db_sqlsrv.php");

	

$conn	=	sqlsrv_connect($serverName,	$connectionInfo);

	

	

$gridConn	=	new	GridConnector($conn,"SQLSrv");

PDO	(php_pdo)

http://www.php.net/pg_connect

require("connector/grid_connector.php");

require("connector/db_pdo.php");

	

$res	=	new	PDO('mysql:host=localhost;dbname=test',	$user,	$pass

	

$gridConn	=	new	GridConnector($res,"PDO");

File	System

require("connector/grid_connector.php");

require("connector/db_pdo.php");

	

$gridConn	=	new	GridConnector("/var/www/test","FileSystem");

$grid->render_table("./",	"id",	"A,B,C,D,E,F");

Excel	file

require("connector/grid_connector.php");

require("connector/db_excel.php");

	

$res	=	new	PDO('mysql:host=localhost;dbname=test',	$user,	$pass

	

$grid	=	new	GridConnector("some.xls",	"ExcelDBDataWrapper");

$grid->render_table("A18:F83",	"id",	"A,B,C,D,E,F");

Component	types

For	other	components	syntax	of	constructor	exactly	the	same,	except,	the
“Grid”	in	object	name	replaced	with	component's	name

Grid

require("connector/grid_connector.php");

//...

$gridConn	=	new	GridConnector($res,"MySQL");

TreeGrid

require("connector/treegrid_connector.php");

//...

$treeGridConn	=	new	TreeGridConnector($res,"MySQL");

Tree

require("connector/tree_connector.php");

//...

$treeConn	=	new	TreeConnector($res,"MySQL");

Combo

require("connector/combo_connector.php");

//...

$comboConn	=	new	ComboConnector($res,"MySQL");

Scheduler

require("connector/scheduler_connector.php");

//...

$schedulerConn	=	new	SchedulerConnector($res,"MySQL");

Form

require("connector/form_connector.php");

//...

$formConn	=	new	FormConnector($res,"MySQL");

DataView

require("connector/dataview_connector.php");

//...

$dataConn	=	new	DataViewConnector($res,"MySQL");

Chart

require("connector/chart_connector.php");

//...

$chartConn	=	new	ChartConnector($res,"MySQL");

DataStore

require_once("../../connector/data_connector.php");

require_once("../../connector/db_sqlite.php");

	

if	(!$db	=	sqlite_open('db',	0777,	$sqliteerror))	{

	 die($sqliteerror);

}

$storeConn	=	new	JSONDataConnector($db,"SQLite");

DHTMLX	Touch	Components

http://www.php.net/die

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

require_once("../../connector/data_connector.php");

require_once("../../connector/db_sqlite.php");

	

if	(!$db	=	sqlite_open('db',	0777,	$sqliteerror))	{

	 die($sqliteerror);

}

$touchConn	=	new	JSONDataConnector($db,"SQLite");

http://www.php.net/die

Defining	grid	structure	on	server-side

client-side

index.html

<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	XHTML	1.0	Transitional//EN"	"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html	xmlns="http://www.w3.org/1999/xhtml">

<head>

				<script	src="codebase/dhtmlx.js"	type="text/javascript"></script>

				<script	src="codebase/connector/connector.js"></script>

				<link	rel="STYLESHEET"	type="text/css"	href="codebase/dhtmlx.css">

				<div	id="gridbox"	style="width:350px;height:250px";border:1px	solid	#A4BED4;></div>

	

				<script	type="text/javascript">

	

					function	doOnLoad(){

									var	mygrid	=	new	dhtmlXGridObject('gridbox');

									mygrid.setImagePath("codebase/imgs/");

									mygrid.setSkin("dhx_skyblue");

									mygrid.load("griddata.php");

					}

				</script>

</head>

<body	onload="doOnLoad()">

</body>

</html>

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

server-side

griddata.php

<?php	

require_once("../codebase/connector/grid_config.php");

require_once("../codebase/connector/grid_connector.php");

	

$res=mysql_connect("localhost","root","");

mysql_select_db("tasks");

$conn	=	new	GridConnector($res);

								$config	=	new	GridConfiguration();

	

	 $config->setHeader("Item	Name,Item	CD");

	 $config->attachHeader("Item	Name	Test,#rspan");

	 $config->attachFooter("Item	Name,Item	CD",	Array("background:	#ff0000;"

	 $config->attachFooter("Item	Name	Test,#rspan",	"background:	#0000ff;color:white;"

	 $config->setColIds("col1,col2");

	 $config->setInitWidths('120,*');

	 $config->setColSorting("connector,connector");

	 $config->setColColor("null,#dddddd");

	 $config->setColHidden("false,false");

	 $config->setColTypes("ro,ed");

	 $config->setColAlign('center,center');

	

$conn->set_config($config);

$conn->render_table("grid50000","id","item_nm,item_cd");

	

?>

http://www.php.net/mysql_connect
http://www.php.net/mysql_select_db
http://www.php.net/array

dhtmlxConnector	for	grid

client-side

index.html

<!DOCTYPE	html>

<head>

				<script	src="codebase/dhtmlx.js"	type="text/javascript"></script>

				<script	src="codebase/connector/connector.js"></script>

				<script	src="codebase/connector/dataprocessor.js"></script>

				<link	rel="STYLESHEET"	type="text/css"	href="codebase/dhtmlx.css">

				<div	id="gridbox"	style="width:450px;height:250px";border:1px	solid	#A4BED4;></div>

<script	type="text/javascript">

	

	

	

var	mygrid,myDP;

function	doOnLoad(){

				mygrid	=	new	dhtmlXGridObject('gridbox');

	 mygrid.setImagePath("codebase/imgs/");

	 mygrid.setHeader("Name,Category,Ingredients");

	 mygrid.attachHeader("#connector_text_filter,#connector_select_filter,#connector_select_filter"

	 mygrid.setInitWidths("200,80,*");

	 mygrid.setColTypes("ro,ed,ed");

	 mygrid.setColSorting("str,connector,str");

	 mygrid.init();

								mygrid.load("xml/griddata.php");

	

	 myDP	=	new	dataProcessor("xml/griddata.php");

								myDP.init(mygrid);

	

}

</script>

</head>

<body	onload="doOnLoad()"	>

</body>

</html>

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

server-side

griddata.php

<?php	

require_once("../codebase/connector/grid_connector.php");

	

$res=mysql_connect("localhost","root","");

mysql_select_db("tasks");

$conn	=	new	GridConnector($res);

$conn->enable_log("temp.log");

	

function	custom_sort($sorted_by){

										if	(!sizeof($sorted_by->rules))	

															$sorted_by->add("group","DESC");

}

function	formatting($row){

																		//render	field	as	details	link

	 	 	 	 		if	($row->get_value("vegetarian"

																																							$row->set_value("name"

	 }

function	validate($data){

													if	($data->get_value("group")=="")

																		$data->error();

}

$conn->event->attach("beforeProcessing","validate");

$conn->event->attach("beforeSort","custom_sort");

$conn->event->attach("beforeRender","formatting");

	

$conn->render_table("meals","id","name,group,	ingredients",	

	

?>

http://www.php.net/mysql_connect
http://www.php.net/mysql_select_db
http://www.php.net/sizeof

dhtmlxConnector	for	form

index.html

<!DOCTYPE	HTML>

<html>

<head>

	 <link	rel="STYLESHEET"	type="text/css"	href="../codebase/dhtmlx.css">

	 <script		src="../codebase/dhtmlx.js"></script>	

	 <script	type="text/javascript"	src="../codebase/connector.js"></script>

	 <div	id="box"	style="width:250px;	height:160px;	background-color:white;"></div>

</head>

	

<body>

<script	type="text/javascript">

//---form	configuration.	Defining	controls

	 formData	=	[

	 	 	 	 {type:	"block",	list:[

	 	 	 	 {type:	"fieldset",		name:	"mydata"

	 	 	 	 	 {type:	"input",	name

	 	 	 	 	 {type:	"input",	name

	 	 	 	 	 {type:	"input",	name

	 	 	 	 	 {type:	"button",	name

]}]},

	 	 	 	 {type:	"block",	list:[

	 	 	 	 {type:	"button",	name:"button1"

	 	 	 	 {type:"newcolumn"},

	 	 	 	 {type:	"button",	name:"button2"

];

Copyright	©	1998-2011	DHTMLX	LTD.
All	rights	reserved.

//---form	initialization

	 var	myForm	=	new	dhtmlXForm("box",formData);//object	constructor

//---loading	data	from	db.	

								myForm.load('formdata.php?id=1');//	as	the	parameter	is	a	connector	file	with	the	id	of	loading	record

//---dataProcessor	initialization	

	 var	mydp	=	new	dataProcessor	("formdata.php");//	object	constructor.	Here	you	should	specify	a	connector	file

	 mydp.init(myForm);//	initializes	dataProcessor.	As	the	parameter	you	should	specify	your	grid

	

	 myForm.attachEvent("onButtonClick",	function(id){

	 	 	 if	(id=='button1'){//

	 	 	 	 myForm.load('formdata.php?id=1'

	 	 	 }

	 	 	 else	if	(id=='button2'){

	 	 	 	 myForm.load('formdata.php?id=2'

	 	 	 }

	 	 	 else	if	(id=='save'){

	 	 	 	 myForm.save();//	saves	data	to	db

	 	 	 }

				});

</script>

</body>

</html>

formdata.php

<?php	

		require_once("../codebase/connector/form_connector.php");

		$res=mysql_connect("localhost","root","");

		mysql_select_db("tasks");

		$conn	=	new	FormConnector($res,"MySQL");

		$conn->render_table("customers","id","name,	address,	email"

?>

http://www.php.net/mysql_connect
http://www.php.net/mysql_select_db

	PHP Connector
	Release notes
	GUIDES
	General idea of dhtmlxConnector
	JSONDataConnector/DataConnector
	SelectOptionsConnector

	Initialization
	Summarized components functionality
	CHART
	COMBO
	DATASTORE
	DATAVIEW
	FORM
	GRID
	DEFINING GRID STRUCTURE ON SERVER-SIDE
	KeyGridConnector
	SELECT/COMBO BOX COLUMNS IN GRID

	TREE
	TREEGRID
	TreeMultitableConnector/TreeGridMultitableConnecto
	TreeGroupConnector/TreeGridGroupConnector

	SCHEDULER
	Select-box columns in scheduler

	DHTMLX Touch Components

	Basic loading
	Dynamic loading
	Filtering
	Formatting/changing data before loading
	Sorting
	Client-side requirement - dataProcessor
	Making Queries
	Multi-user sync
	Security
	Validation
	Saving data changes made in form
	Data export
	Elementary DB operations with Connector
	Errors handling and logging
	Event handling
	Extending functionality
	XML format used by connector

	Using dhtmlxConnector with CodeIgniter, YII, CakeP

	How can I:
	General how-tos
	This topic does not exist yet
	This topic does not exist yet

	Data management how-tos (loading data)
	Data management how-tos (updating data)
	Component-specific how-tos (combo)
	Component-specific how-tos (form)
	Component-specific how-tos (grid)
	Component-specific how-tos (tree/treegrid)
	Component-specific how-tos (DataStore)
	DHTMLX Touch how-tos

	Reference
	API methods
	Connector object
	DataAction Object
	DataItem Object
	dhtmlxChart
	dhtmlxCombo
	dhtmlxDataView
	dhtmlxForm
	dhtmlxGrid
	dhtmlxTree
	dhtmlxTreeGrid
	dhtmlxScheduler

	SortInterface Object
	FilterInterface Object

	Events
	beforeSort
	beforeFilter
	beforeRender
	beforeOutput
	beforeUpdate
	beforeInsert
	beforeDelete
	afterUpdate
	afterInsert
	afterDelete
	beforeProcessing
	afterProcessing
	onDBError

	Samples
	Samples of client-side initialization
	Samples of server-side initialization
	Defining grid structure on server-side
	dhtmlxConnector for grid
	dhtmlxConnector for form

