
nextCython	0.19.1	documentation	»

Welcome	to	Cython’s
Documentation

Getting	Started
Cython	-	an	overview
Installing	Cython
Building	Cython	code
Faster	code	via	static	typing

Tutorials
Calling	C	functions
Using	C	libraries
Extension	types	(aka.	cdef	classes)
pxd	files
Caveats
Profiling
Unicode	and	passing	strings
Pure	Python	Mode
Working	with	NumPy
Further	reading
Related	work
Appendix:	Installing	MinGW	on	Windows

Users	Guide
Overview
Basic	Tutorial
Language	Basics
Extension	Types
Special	Methods	of	Extension	Types
Sharing	Declarations	Between	Cython	Modules
Interfacing	with	External	C	Code
Source	Files	and	Compilation
Early	Binding	for	Speed
Using	C++	in	Cython

Fused	Types	(Templates)
Porting	Cython	code	to	PyPy
Limitations
Differences	between	Cython	and	Pyrex
Typed	Memoryviews
Using	Parallelism
Debugging	your	Cython	program
Indices	and	tables

Reference	Guide
Compilation
Language	Basics
Extension	Types
Interfacing	with	Other	Code
Special	Mention
Limitations
Compiler	Directives
Indices	and	tables

nextCython	0.19.1	documentation	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

nextprevious	|Cython	0.19.1	documentation	»	Getting	Started	»

Cython	-	an	overview
[Cython]	 is	 a	 programming	 language	 based	 on	 Python,	 with	 extra
syntax	 allowing	 for	 optional	 static	 type	 declarations.	 It	 aims	 to
become	 a	 superset	 of	 the	 [Python]	 language	 which	 gives	 it	 high-
level,	 object-oriented,	 functional,	 and	 dynamic	 programming.	 The
source	 code	 gets	 translated	 into	 optimized	 C/C++	 code	 and
compiled	 as	 Python	 extension	 modules.	 This	 allows	 for	 both	 very
fast	program	execution	and	tight	integration	with	external	C	libraries,
while	 keeping	 up	 the	 high	 programmer	 productivity	 for	 which	 the
Python	language	is	well	known.

The	primary	Python	execution	environment	 is	commonly	referred	to
as	CPython,	as	 it	 is	written	 in	C.	Other	major	 implementations	use
Java	 (Jython	 [Jython]),	 C#	 (IronPython	 [IronPython])	 and	 Python
itself	 (PyPy	 [PyPy]).	Written	 in	C,	CPython	 has	 been	 conducive	 to
wrapping	 many	 external	 libraries	 that	 interface	 through	 the	 C
language.	 It	 has,	 however,	 remained	 non	 trivial	 to	 write	 the
necessary	glue	code	in	C,	especially	for	programmers	who	are	more
fluent	 in	 a	 high-level	 language	 like	 Python	 than	 in	 a	 close-to-the-
metal	language	like	C.

Originally	based	on	the	well-known	Pyrex	[Pyrex],	the	Cython	project
has	approached	 this	problem	by	means	of	a	source	code	compiler
that	 translates	 Python	 code	 to	 equivalent	 C	 code.	 This	 code	 is
executed	within	the	CPython	runtime	environment,	but	at	the	speed
of	compiled	C	and	with	 the	ability	 to	call	directly	 into	C	 libraries.	At
the	 same	 time,	 it	 keeps	 the	original	 interface	of	 the	Python	 source
code,	which	makes	 it	directly	usable	from	Python	code.	These	two-
fold	characteristics	enable	Cython’s	two	major	use	cases:	extending
the	 CPython	 interpreter	 with	 fast	 binary	 modules,	 and	 interfacing
Python	code	with	external	C	libraries.

While	 Cython	 can	 compile	 (most)	 regular	 Python	 code,	 the

generated	 C	 code	 usually	 gains	major	 (and	 sometime	 impressive)
speed	 improvements	 from	optional	 static	 type	declarations	 for	both
Python	and	C	 types.	These	allow	Cython	 to	assign	C	semantics	 to
parts	of	 the	 code,	and	 to	 translate	 them	 into	 very	efficient	C	code.
Type	 declarations	 can	 therefore	 be	 used	 for	 two	 purposes:	 for
moving	 code	 sections	 from	 dynamic	 Python	 semantics	 into	 static-
and-fast	C	semantics,	but	also	for	directly	manipulating	types	defined
in	external	 libraries.	Cython	thus	merges	the	two	worlds	 into	a	very
broadly	applicable	programming	language.

[Cython] G.	Ewing,	R.	W.	Bradshaw,	S.	Behnel,	D.	S.	Seljebotn	et
al.,	The	Cython	compiler,	http://cython.org.

[IronPython] Jim	Hugunin	et	al.,
http://www.codeplex.com/IronPython.

[Jython] J.	Huginin,	B.	Warsaw,	F.	Bock,	et	al.,	Jython:	Python	for
the	Java	platform,	http://www.jython.org.

[PyPy] The	PyPy	Group,	PyPy:	a	Python	implementation	written	in
Python,	http://pypy.org.

[Pyrex] G.	Ewing,	Pyrex:	C-Extensions	for	Python,
http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/

[Python] G.	van	Rossum	et	al.,	The	Python	programming
language,	http://python.org.

nextprevious	|Cython	0.19.1	documentation	»	Getting	Started	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://cython.org
http://www.codeplex.com/IronPython
http://www.jython.org
http://pypy.org
http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/
http://python.org
http://sphinx.pocoo.org/

nextprevious	|Cython	0.19.1	documentation	»	Getting	Started	»

Installing	Cython
Many	scientific	Python	distributions,	 such	as	 the	Enthought	Python
Distribution	[EPD],	Python(x,y)	[Pythonxy],	and	Sage	[Sage],	bundle
Cython	 and	 no	 setup	 is	 needed.	 Note	 however	 that	 if	 your
distribution	ships	a	version	of	Cython	which	 is	 too	old	you	can	still
use	 the	 instructions	 below	 to	 update	 Cython.	 Everything	 in	 this
tutorial	should	work	with	Cython	0.11.2	and	newer,	unless	a	footnote
says	otherwise.

Unlike	most	 Python	 software,	 Cython	 requires	 a	 C	 compiler	 to	 be
present	 on	 the	 system.	 The	 details	 of	 getting	 a	 C	 compiler	 varies
according	to	the	system	used:

Linux	 The	 GNU	 C	 Compiler	 (gcc)	 is	 usually	 present,	 or
easily	available	through	the	package	system.	On	Ubuntu	or
Debian,	 for	 instance,	 the	 command	 sudo	 apt-get	 install
build-essential	will	fetch	everything	you	need.
Mac	OS	X	To	 retrieve	gcc,	one	option	 is	 to	 install	Apple’s
XCode,	which	can	be	retrieved	from	the	Mac	OS	X’s	install
DVDs	or	from	http://developer.apple.com.
Windows	 A	 popular	 option	 is	 to	 use	 the	 open	 source
MinGW	(a	Windows	distribution	of	gcc).	See	 the	appendix
for	 instructions	 for	 setting	 up	 MinGW	manually.	 EPD	 and
Python(x,y)	 bundle	MinGW,	 but	 some	 of	 the	 configuration
steps	 in	 the	 appendix	 might	 still	 be	 necessary.	 Another
option	is	to	use	Microsoft’s	Visual	C.	One	must	then	use	the
same	version	which	the	installed	Python	was	compiled	with.

The	 newest	 Cython	 release	 can	 always	 be	 downloaded	 from
http://cython.org.	Unpack	 the	 tarball	 or	 zip	 file,	 enter	 the	 directory,
and	then	run:

python	setup.py	install

http://developer.apple.com
http://cython.org

If	you	have	Python	setuptools	set	up	on	your	system,	you	should	be
able	to	fetch	Cython	from	PyPI	and	install	it	using:

easy_install	cython

For	 Windows	 there	 is	 also	 an	 executable	 installer	 available	 for
download.

[EPD] http://www.enthought.com/products/epd.php
[Pythonxy] http://www.pythonxy.com/

[Sage]
W.	 Stein	 et	 al.,	 Sage	 Mathematics	 Software,

http://sagemath.org

nextprevious	|Cython	0.19.1	documentation	»	Getting	Started	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://www.enthought.com/products/epd.php
http://www.pythonxy.com/
http://sagemath.org
http://sphinx.pocoo.org/

nextprevious	|Cython	0.19.1	documentation	»	Getting	Started	»

Building	Cython	code
Cython	code	must,	unlike	Python,	be	compiled.	This	happens	in	two
stages:

A	.pyx	file	is	compiled	by	Cython	to	a	.c	file,	containing	the
code	of	a	Python	extension	module
The	.c	file	is	compiled	by	a	C	compiler	to	a	.so	file	(or	.pyd
on	Windows)	which	can	be	import-ed	directly	into	a	Python
session.

There	are	several	ways	to	build	Cython	code:

Write	a	distutils	setup.py.
Use	pyximport,	 importing	Cython	 .pyx	 files	as	 if	 they	were
.py	 files	 (using	 distutils	 to	 compile	 and	 build	 the
background).
Run	 the	 cython	 command-line	 utility	 manually	 to	 produce
the	.c	file	from	the	.pyx	file,	then	manually	compiling	the	.c
file	 into	 a	 shared	 object	 library	 or	 .dll	 suitable	 for	 import
from	 Python.	 (This	 is	 mostly	 for	 debugging	 and
experimentation.)
Use	the	[Sage]	notebook	which	allows	Cython	code	inline.

Currently,	distutils	is	the	most	common	way	Cython	files	are	built	and
distributed.	 The	 other	methods	 are	 described	 in	more	 detail	 in	 the
Source	Files	and	Compilation	section	of	the	reference	manual.

Building	a	Cython	module	using	distutils
Imagine	a	simple	“hello	world”	script	in	a	file	hello.pyx:

def	say_hello_to(name):

				print("Hello	%s!"	%	name)

The	following	could	be	a	corresponding	setup.py	script:

from	distutils.core	import	setup

from	distutils.extension	import	Extension

from	Cython.Distutils	import	build_ext

ext_modules	=	[Extension("hello",	["hello.pyx"])]

setup(

		name	=	'Hello	world	app',

		cmdclass	=	{'build_ext':	build_ext},

		ext_modules	=	ext_modules

)

To	 build,	 run	 python	 setup.py	 build_ext	 --inplace.	 Then	 simply
start	a	Python	session	and	do	from	hello	import	say_hello_to	and
use	the	imported	function	as	you	see	fit.

The	Sage	notebook	allows	transparently	editing	and	compiling
Cython	code	simply	by	typing	%cython	at	the	top	of	a	cell	and
evaluate	it.	Variables	and	functions	defined	in	a	Cython	cell	imported
into	the	running	session.

[Sage]
W.	 Stein	 et	 al.,	 Sage	 Mathematics	 Software,

http://sagemath.org

nextprevious	|Cython	0.19.1	documentation	»	Getting	Started	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://sagemath.org
http://sphinx.pocoo.org/

nextprevious	|Cython	0.19.1	documentation	»	Getting	Started	»

Faster	code	via	static	typing
Cython	is	a	Python	compiler.	This	means	that	it	can	compile	normal
Python	 code	 without	 changes	 (with	 a	 few	 obvious	 exceptions	 of
some	 as-yet	 unsupported	 language	 features).	 However,	 for
performance	 critical	 code,	 it	 is	 often	 helpful	 to	 add	 static	 type
declarations,	 as	 they	 will	 allow	 Cython	 to	 step	 out	 of	 the	 dynamic
nature	of	the	Python	code	and	generate	simpler	and	faster	C	code	-
sometimes	faster	by	orders	of	magnitude.

It	 must	 be	 noted,	 however,	 that	 type	 declarations	 can	 make	 the
source	 code	 more	 verbose	 and	 thus	 less	 readable.	 It	 is	 therefore
discouraged	 to	 use	 them	 without	 good	 reason,	 such	 as	 where
benchmarks	prove	that	they	really	make	the	code	substantially	faster
in	 a	 performance	 critical	 section.	 Typically	 a	 few	 types	 in	 the	 right
spots	go	a	long	way.

All	C	 types	 are	 available	 for	 type	 declarations:	 integer	 and	 floating
point	 types,	 complex	 numbers,	 structs,	 unions	 and	 pointer	 types.
Cython	can	automatically	and	correctly	convert	between	the	types	on
assignment.	This	also	includes	Python’s	arbitrary	size	integer	types,
where	value	overflows	on	conversion	to	a	C	type	will	raise	a	Python
OverflowError	at	 runtime.	(It	does	not,	however,	check	 for	overflow
when	 doing	 arithmetic.)	 The	 generated	 C	 code	 will	 handle	 the
platform	dependent	sizes	of	C	types	correctly	and	safely	in	this	case.

Types	are	declared	via	the	cdef	keyword.

Typing	Variables
Consider	the	following	pure	Python	code:

def	f(x):

				return	x**2-x

def	integrate_f(a,	b,	N):

				s	=	0

				dx	=	(b-a)/N

				for	i	in	range(N):

								s	+=	f(a+i*dx)

				return	s	*	dx

Simply	compiling	this	in	Cython	merely	gives	a	35%	speedup.	This	is
better	than	nothing,	but	adding	some	static	types	can	make	a	much
larger	difference.

With	additional	type	declarations,	this	might	look	like:

def	f(double	x):

				return	x**2-x

def	integrate_f(double	a,	double	b,	int	N):

				cdef	int	i

				cdef	double	s,	dx

				s	=	0

				dx	=	(b-a)/N

				for	i	in	range(N):

								s	+=	f(a+i*dx)

				return	s	*	dx

Since	the	 iterator	variable	 i	 is	 typed	with	C	semantics,	 the	 for-loop
will	be	compiled	to	pure	C	code.	Typing	a,	s	and	dx	 is	 important	as
they	 are	 involved	 in	 arithmetic	withing	 the	 for-loop;	 typing	 b	 and	 N
makes	less	of	a	difference,	but	in	this	case	it	is	not	much	extra	work
to	be	consistent	and	type	the	entire	function.

This	results	in	a	4	times	speedup	over	the	pure	Python	version.

Typing	Functions
Python	 function	 calls	 can	 be	 expensive	 –	 in	 Cython	 doubly	 so
because	one	might	need	to	convert	to	and	from	Python	objects	to	do
the	call.	In	our	example	above,	the	argument	is	assumed	to	be	a	C
double	both	inside	f()	and	in	the	call	to	it,	yet	a	Python	float	object
must	be	constructed	around	the	argument	in	order	to	pass	it.

Therefore	Cython	provides	a	syntax	for	declaring	a	C-style	function,
the	cdef	keyword:

cdef	double	f(double	x)	except?	-2:

				return	x**2-x

Some	 form	 of	 except-modifier	 should	 usually	 be	 added,	 otherwise
Cython	will	not	be	able	to	propagate	exceptions	raised	in	the	function
(or	a	 function	 it	 calls).	The	 except?	-2	means	 that	 an	error	will	 be
checked	for	if	-2	is	returned	(though	the	?	indicates	that	-2	may	also
be	used	as	a	valid	return	value).	Alternatively,	the	slower	except	*	is
always	safe.	An	except	clause	can	be	left	out	if	the	function	returns	a
Python	 object	 or	 if	 it	 is	 guaranteed	 that	 an	 exception	 will	 not	 be
raised	within	the	function	call.

A	side-effect	of	cdef	 is	 that	 the	 function	 is	no	 longer	available	 from
Python-space,	as	Python	wouldn’t	know	how	 to	call	 it.	 It	 is	also	no
longer	possible	to	change	``f`	at	runtime.

Using	the	 cpdef	keyword	 instead	of	 cdef,	a	Python	wrapper	 is	also
created,	 so	 that	 the	 function	 is	 available	 both	 from	 Cython	 (fast,
passing	typed	values	directly)	and	from	Python	(wrapping	values	 in
Python	 objects).	 In	 fact,	 cpdef	 does	 not	 just	 provide	 a	 Python
wrapper,	it	also	installs	logic	to	allow	the	method	to	be	overridden	by
python	 methods,	 even	 when	 called	 from	 within	 cython.	 This	 does

add	a	tiny	overhead	compared	to	cdef	methods.

Speedup:	150	times	over	pure	Python.

Determining	where	to	add	types
Because	 static	 typing	 is	 often	 the	 key	 to	 large	 speed	 gains,
beginners	 often	 have	 a	 tendency	 to	 type	 everything	 in	 sight.	 This
cuts	 down	 on	 both	 readability	 and	 flexibility,	 and	 can	 even	 slow
things	down	(e.g.	by	adding	unnecessary	type	checks,	conversions,
or	 slow	 buffer	 unpacking).	 On	 the	 other	 hand,	 it	 is	 easy	 to	 kill
performance	 by	 forgetting	 to	 type	 a	 critical	 loop	 variable.	 Two
essential	 tools	 to	 help	 with	 this	 task	 are	 profiling	 and	 annotation.
Profiling	should	be	 the	 first	step	of	any	optimization	effort,	and	can
tell	you	where	you	are	spending	your	time.	Cython’s	annotation	can
then	tell	you	why	your	code	is	taking	time.

Using	 the	 -a	 switch	 to	 the	 cython	 command	 line	 program	 (or
following	a	link	from	the	Sage	notebook)	results	in	an	HTML	report	of
Cython	 code	 interleaved	 with	 the	 generated	 C	 code.	 Lines	 are
colored	according	to	the	level	of	“typedness”	–	white	lines	translates
to	 pure	 C	 without	 any	 Python	 API	 calls.	 This	 report	 is	 invaluable
when	optimizing	a	function	for	speed.

nextprevious	|Cython	0.19.1	documentation	»	Getting	Started	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

nextprevious	|Cython	0.19.1	documentation	»	Tutorials	»

Calling	C	functions
This	tutorial	describes	shortly	what	you	need	to	know	in	order	to	call
C	 library	 functions	 from	 Cython	 code.	 For	 a	 longer	 and	 more
comprehensive	 tutorial	 about	 using	 external	 C	 libraries,	 wrapping
them	and	handling	errors,	see	Using	C	libraries.

For	simplicity,	 let’s	start	with	a	 function	 from	the	standard	C	 library.
This	 does	 not	 add	 any	 dependencies	 to	 your	 code,	 and	 it	 has	 the
additional	 advantage	 that	 Cython	 already	 defines	 many	 such
functions	for	you.	So	you	can	just	cimport	and	use	them.

For	example,	let’s	say	you	need	a	low-level	way	to	parse	a	number
from	a	char*	value.	You	could	use	the	atoi()	function,	as	defined	by
the	stdlib.h	header	file.	This	can	be	done	as	follows:

from	libc.stdlib	cimport	atoi

cdef	parse_charptr_to_py_int(char*	s):

				assert	s	is	not	NULL,	"byte	string	value	is	NULL"

				return	atoi(s)			#	note:	atoi()	has	no	error	detection!

You	 can	 find	 a	 complete	 list	 of	 these	 standard	 cimport	 files	 in
Cython’s	source	package	 Cython/Includes/.	 It	also	has	a	complete
set	 of	 declarations	 for	CPython’s	C-API.	 For	 example,	 to	 test	 at	 C
compilation	time	which	CPython	version	your	code	is	being	compiled
with,	you	can	do	this:

from	cpython.version	cimport	PY_VERSION_HEX

print	PY_VERSION_HEX	>=	0x030200F0	#	Python	version	>=	3.2	final

Cython	also	provides	declarations	for	the	C	math	library:

from	libc.math	cimport	sin

cdef	double	f(double	x):

				return	sin(x*x)

Dynamic	linking
The	 libc	math	 library	 is	special	 in	 that	 it	 is	not	 linked	by	default	on
some	Unix-like	systems,	such	as	Linux.	In	addition	to	cimporting	the
declarations,	you	must	configure	your	build	system	to	link	against	the
shared	library	m.	For	distutils,	 it	 is	enough	to	add	it	to	the	libraries
parameter	of	the	Extension()	setup:

from	distutils.core	import	setup

from	distutils.extension	import	Extension

from	Cython.Distutils	import	build_ext

ext_modules=[

				Extension("demo",

														["demo.pyx"],

														libraries=["m"])	#	Unix-like	specific

]

setup(

		name	=	"Demos",

		cmdclass	=	{"build_ext":	build_ext},

		ext_modules	=	ext_modules

)

External	declarations
If	you	want	 to	access	C	code	 for	which	Cython	does	not	provide	a
ready	 to	 use	 declaration,	 you	 must	 declare	 them	 yourself.	 For
example,	the	above	sin()	function	is	defined	as	follows:

cdef	extern	from	"math.h":

				double	sin(double	x)

This	declares	the	sin()	 function	 in	a	way	that	makes	 it	available	to
Cython	code	and	instructs	Cython	to	generate	C	code	that	includes
the	 math.h	 header	 file.	 The	 C	 compiler	 will	 see	 the	 original
declaration	 in	 math.h	 at	 compile	 time,	 but	 Cython	 does	 not	 parse
“math.h”	and	requires	a	separate	definition.

Just	 like	 the	 sin()	 function	 from	 the	math	 library,	 it	 is	 possible	 to
declare	and	call	into	any	C	library	as	long	as	the	module	that	Cython
generates	is	properly	linked	against	the	shared	or	static	library.

Naming	parameters
Both	C	and	Cython	support	signature	declarations	without	parameter
names	like	this:

cdef	extern	from	"string.h":

				char*	strstr(const	char*,	const	char*)

However,	 this	 prevents	 Cython	 code	 from	 calling	 it	 with	 keyword
arguments	 (supported	since	Cython	0.19).	 It	 is	 therefore	preferable
to	write	the	declaration	like	this	instead:

cdef	extern	from	"string.h":

				char*	strstr(const	char	*haystack,	const	char	*needle)

You	can	now	make	it	clear	which	of	the	two	arguments	does	what	in
your	call,	thus	avoiding	any	ambiguities	and	often	making	your	code
more	readable:

cdef	char*	data	=	"hfvcakdfagbcffvschvxcdfgccbcfhvgcsnfxjh"

pos	=	strstr(needle='akd',	haystack=data)

print	pos	!=	NULL

Note	 that	 changing	existing	parameter	names	 later	 is	a	backwards
incompatible	API	modification,	 just	as	for	Python	code.	Thus,	 if	you
provide	your	own	declarations	 for	external	C	or	C++	 functions,	 it	 is
usually	worth	the	additional	bit	of	effort	to	choose	the	names	of	their
arguments	well.

nextprevious	|Cython	0.19.1	documentation	»	Tutorials	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

nextprevious	|Cython	0.19.1	documentation	»	Tutorials	»

Using	C	libraries
Apart	from	writing	fast	code,	one	of	the	main	use	cases	of	Cython	is
to	 call	 external	 C	 libraries	 from	 Python	 code.	 As	 Cython	 code
compiles	down	to	C	code	itself,	it	is	actually	trivial	to	call	C	functions
directly	 in	 the	 code.	 The	 following	 gives	 a	 complete	 example	 for
using	(and	wrapping)	an	external	C	library	in	Cython	code,	including
appropriate	 error	 handling	 and	 considerations	 about	 designing	 a
suitable	API	for	Python	and	Cython	code.

Imagine	you	need	an	efficient	way	to	store	integer	values	in	a	FIFO
queue.	 Since	 memory	 really	 matters,	 and	 the	 values	 are	 actually
coming	 from	C	code,	you	cannot	afford	 to	create	and	store	Python
int	 objects	 in	 a	 list	 or	 deque.	 So	 you	 look	 out	 for	 a	 queue
implementation	in	C.

After	some	web	search,	you	find	the	C-algorithms	library	[CAlg]	and
decide	to	use	its	double	ended	queue	implementation.	To	make	the
handling	 easier,	 however,	 you	 decide	 to	 wrap	 it	 in	 a	 Python
extension	type	that	can	encapsulate	all	memory	management.

[CAlg] Simon	Howard,	C	Algorithms	library,	http://c-
algorithms.sourceforge.net/

http://c-algorithms.sourceforge.net/

Defining	external	declarations
The	 C	 API	 of	 the	 queue	 implementation,	 which	 is	 defined	 in	 the
header	file	libcalg/queue.h,	essentially	looks	like	this:

/*	file:	queue.h	*/

typedef	struct	_Queue	Queue;

typedef	void	*QueueValue;

Queue	*queue_new(void);

void	queue_free(Queue	*queue);

int	queue_push_head(Queue	*queue,	QueueValue	data);

QueueValue	queue_pop_head(Queue	*queue);

QueueValue	queue_peek_head(Queue	*queue);

int	queue_push_tail(Queue	*queue,	QueueValue	data);

QueueValue	queue_pop_tail(Queue	*queue);

QueueValue	queue_peek_tail(Queue	*queue);

int	queue_is_empty(Queue	*queue);

To	get	started,	 the	 first	 step	 is	 to	 redefine	 the	C	API	 in	a	 .pxd	 file,
say,	cqueue.pxd:

#	file:	cqueue.pxd

cdef	extern	from	"libcalg/queue.h":

				ctypedef	struct	Queue:

								pass

				ctypedef	void*	QueueValue

				Queue*	queue_new()

				void	queue_free(Queue*	queue)

				int	queue_push_head(Queue*	queue,	QueueValue	data)

				QueueValue		queue_pop_head(Queue*	queue)

				QueueValue	queue_peek_head(Queue*	queue)

				int	queue_push_tail(Queue*	queue,	QueueValue	data)

				QueueValue	queue_pop_tail(Queue*	queue)

				QueueValue	queue_peek_tail(Queue*	queue)

				bint	queue_is_empty(Queue*	queue)

Note	how	 these	declarations	are	almost	 identical	 to	 the	header	 file
declarations,	so	you	can	often	just	copy	them	over.	However,	you	do
not	need	to	provide	all	declarations	as	above,	just	those	that	you	use
in	your	code	or	 in	other	declarations,	so	 that	Cython	gets	 to	see	a
sufficient	 and	 consistent	 subset	 of	 them.	 Then,	 consider	 adapting
them	 somewhat	 to	 make	 them	 more	 comfortable	 to	 work	 with	 in
Cython.

Specifically,	you	should	take	care	of	choosing	good	argument	names
for	the	C	functions,	as	Cython	allows	you	to	pass	them	as	keyword
arguments.	Changing	them	later	on	is	a	backwards	incompatible	API
modification.	 Choosing	 good	 names	 right	 away	 will	 make	 these
functions	more	pleasant	to	work	with	from	Cython	code.

One	noteworthy	difference	to	the	header	file	that	we	use	above	is	the
declaration	of	 the	 Queue	struct	 in	 the	 first	 line.	 Queue	 is	 in	 this	case
used	as	an	opaque	handle;	only	the	library	that	is	called	knows	what
is	really	inside.	Since	no	Cython	code	needs	to	know	the	contents	of
the	 struct,	 we	 do	 not	 need	 to	 declare	 its	 contents,	 so	 we	 simply
provide	an	empty	definition	(as	we	do	not	want	to	declare	the	_Queue
type	which	is	referenced	in	the	C	header)	[1].

[1]

There’s	a	subtle	difference	between	cdef	struct	Queue:	pass
and	ctypedef	struct	Queue:	pass.	The	former	declares	a	type
which	is	referenced	in	C	code	as	struct	Queue,	while	the	latter
is	referenced	in	C	as	Queue.	This	is	a	C	language	quirk	that
Cython	is	not	able	to	hide.	Most	modern	C	libraries	use	the
ctypedef	kind	of	struct.

Another	 exception	 is	 the	 last	 line.	 The	 integer	 return	 value	 of	 the
queue_is_empty()	function	is	actually	a	C	boolean	value,	i.e.	the	only

interesting	thing	about	it	is	whether	it	is	non-zero	or	zero,	indicating	if
the	queue	is	empty	or	not.	This	is	best	expressed	by	Cython’s	bint
type,	 which	 is	 a	 normal	 int	 type	 when	 used	 in	 C	 but	 maps	 to
Python’s	boolean	values	True	and	False	when	converted	to	a	Python
object.	 This	 way	 of	 tightening	 declarations	 in	 a	 .pxd	 file	 can	 often
simplify	the	code	that	uses	them.

It	 is	 good	 practice	 to	 define	 one	 .pxd	 file	 for	 each	 library	 that	 you
use,	and	sometimes	even	for	each	header	file	(or	functional	group)	if
the	 API	 is	 large.	 That	 simplifies	 their	 reuse	 in	 other	 projects.
Sometimes,	you	may	need	 to	use	C	 functions	 from	 the	standard	C
library,	 or	 want	 to	 call	 C-API	 functions	 from	 CPython	 directly.	 For
common	needs	 like	 this,	Cython	 ships	with	 a	 set	 of	 standard	 .pxd
files	 that	 provide	 these	declarations	 in	a	 readily	 usable	way	 that	 is
adapted	 to	 their	 use	 in	 Cython.	 The	 main	 packages	 are	 cpython,
libc	and	 libcpp.	 The	NumPy	 library	 also	 has	 a	 standard	 .pxd	 file
numpy,	 as	 it	 is	 often	 used	 in	 Cython	 code.	 See	 Cython’s
Cython/Includes/	 source	 package	 for	 a	 complete	 list	 of	 provided
.pxd	files.

Writing	a	wrapper	class
After	declaring	our	C	library’s	API,	we	can	start	to	design	the	Queue
class	 that	 should	 wrap	 the	 C	 queue.	 It	 will	 live	 in	 a	 file	 called
queue.pyx.	[2]

[2]

Note	that	the	name	of	the	.pyx	file	must	be	different	from	the
cqueue.pxd	file	with	declarations	from	the	C	library,	as	both	do
not	describe	the	same	code.	A	.pxd	file	next	to	a	.pyx	file	with
the	same	name	defines	exported	declarations	for	code	in	the
.pyx	file.	As	the	cqueue.pxd	file	contains	declarations	of	a
regular	C	library,	there	must	not	be	a	.pyx	file	with	the	same
name	that	Cython	associates	with	it.

Here	is	a	first	start	for	the	Queue	class:

#	file:	queue.pyx

cimport	cqueue

cdef	class	Queue:

				cdef	cqueue.Queue*	_c_queue

				def	__cinit__(self):

								self._c_queue	=	cqueue.queue_new()

Note	that	 it	says	 __cinit__	 rather	 than	 __init__.	While	 __init__	 is
available	 as	well,	 it	 is	 not	 guaranteed	 to	 be	 run	 (for	 instance,	 one
could	create	a	subclass	and	forget	to	call	the	ancestor’s	constructor).
Because	not	initializing	C	pointers	often	leads	to	hard	crashes	of	the
Python	interpreter,	Cython	provides	__cinit__	which	is	always	called
immediately	on	construction,	before	CPython	even	considers	calling
__init__,	 and	 which	 therefore	 is	 the	 right	 place	 to	 initialise	 cdef
fields	 of	 the	 new	 instance.	However,	 as	 __cinit__	 is	 called	 during
object	construction,	 self	 is	not	 fully	constructed	yet,	and	one	must
avoid	doing	anything	with	self	but	assigning	to	cdef	fields.

Note	 also	 that	 the	 above	 method	 takes	 no	 parameters,	 although
subtypes	 may	 want	 to	 accept	 some.	 A	 no-arguments	 __cinit__()
method	 is	 a	 special	 case	 here	 that	 simply	 does	 not	 receive	 any
parameters	that	were	passed	to	a	constructor,	so	it	does	not	prevent
subclasses	 from	adding	parameters.	 If	 parameters	 are	 used	 in	 the
signature	 of	 __cinit__(),	 they	 must	 match	 those	 of	 any	 declared
__init__	method	of	classes	 in	 the	class	hierarchy	 that	are	used	 to
instantiate	the	type.

Memory	management
Before	we	continue	 implementing	the	other	methods,	 it	 is	 important
to	 understand	 that	 the	 above	 implementation	 is	 not	 safe.	 In	 case
anything	goes	wrong	in	the	call	to	queue_new(),	this	code	will	simply
swallow	 the	 error,	 so	 we	 will	 likely	 run	 into	 a	 crash	 later	 on.
According	to	the	documentation	of	the	queue_new()	function,	the	only
reason	why	the	above	can	fail	 is	due	to	 insufficient	memory.	In	 that
case,	it	will	return	NULL,	whereas	it	would	normally	return	a	pointer	to
the	new	queue.

The	Python	way	 to	get	out	of	 this	 is	 to	 raise	a	 MemoryError	 [3].	We
can	thus	change	the	init	function	as	follows:

cimport	cqueue

cdef	class	Queue:

				cdef	cqueue.Queue*	_c_queue

				def	__cinit__(self):

								self._c_queue	=	cqueue.queue_new()

								if	self._c_queue	is	NULL:

												raise	MemoryError()

[3]

In	the	specific	case	of	a	MemoryError,	creating	a	new	exception
instance	in	order	to	raise	it	may	actually	fail	because	we	are
running	out	of	memory.	Luckily,	CPython	provides	a	C-API
function	PyErr_NoMemory()	that	safely	raises	the	right	exception
for	us.	Since	version	0.14.1,	Cython	automatically	substitutes
this	C-API	call	whenever	you	write	raise	MemoryError	or	raise
MemoryError().	If	you	use	an	older	version,	you	have	to	cimport
the	C-API	function	from	the	standard	package	cpython.exc	and
call	it	directly.

The	next	 thing	 to	do	 is	 to	clean	up	when	 the	Queue	 instance	 is	no
longer	used	(i.e.	all	references	to	it	have	been	deleted).	To	this	end,
CPython	 provides	 a	 callback	 that	 Cython	 makes	 available	 as	 a

special	method	 __dealloc__().	 In	our	 case,	all	we	have	 to	do	 is	 to
free	the	C	Queue,	but	only	if	we	succeeded	in	initialising	it	in	the	init
method:

def	__dealloc__(self):

				if	self._c_queue	is	not	NULL:

								cqueue.queue_free(self._c_queue)

Compiling	and	linking
At	this	point,	we	have	a	working	Cython	module	that	we	can	test.	To
compile	it,	we	need	to	configure	a	setup.py	script	for	distutils.	Here
is	the	most	basic	script	for	compiling	a	Cython	module:

from	distutils.core	import	setup

from	distutils.extension	import	Extension

from	Cython.Distutils	import	build_ext

setup(

				cmdclass	=	{'build_ext':	build_ext},

				ext_modules	=	[Extension("queue",	["queue.pyx"])]

)

To	build	against	the	external	C	library,	we	must	extend	this	script	to
include	the	necessary	setup.	Assuming	the	library	is	installed	in	the
usual	places	 (e.g.	under	 /usr/lib	and	 /usr/include	 on	 a	Unix-like
system),	we	could	simply	change	the	extension	setup	from

ext_modules	=	[Extension("queue",	["queue.pyx"])]

to

ext_modules	=	[

				Extension("queue",	["queue.pyx"],

														libraries=["calg"])

]

If	 it	 is	 not	 installed	 in	 a	 ‘normal’	 location,	 users	 can	 provide	 the
required	 parameters	 externally	 by	 passing	 appropriate	 C	 compiler
flags,	such	as:

CFLAGS="-I/usr/local/otherdir/calg/include"		\

LDFLAGS="-L/usr/local/otherdir/calg/lib"					\

				python	setup.py	build_ext	-i

Once	we	have	compiled	 the	module	 for	 the	 first	 time,	we	can	now
import	it	and	instantiate	a	new	Queue:

$	export	PYTHONPATH=.

$	python	-c	'import	queue.Queue	as	Q	;	Q()'

However,	 this	 is	all	our	Queue	class	can	do	so	 far,	so	 let’s	make	 it
more	usable.

Mapping	functionality
Before	 implementing	 the	 public	 interface	 of	 this	 class,	 it	 is	 good
practice	 to	 look	at	what	 interfaces	Python	offers,	e.g.	 in	 its	 list	 or
collections.deque	 classes.	Since	we	only	need	a	FIFO	queue,	 it’s
enough	 to	 provide	 the	 methods	 append(),	 peek()	 and	 pop(),	 and
additionally	an	extend()	method	to	add	multiple	values	at	once.	Also,
since	we	already	know	that	all	values	will	be	coming	from	C,	it’s	best
to	provide	only	cdef	methods	for	now,	and	to	give	them	a	straight	C
interface.

In	C,	 it	 is	 common	 for	 data	 structures	 to	 store	 data	 as	 a	 void*	 to
whatever	 data	 item	 type.	 Since	 we	 only	 want	 to	 store	 int	 values,
which	 usually	 fit	 into	 the	 size	 of	 a	 pointer	 type,	 we	 can	 avoid
additional	memory	allocations	through	a	trick:	we	cast	our	int	values
to	 void*	and	vice	versa,	and	store	 the	value	directly	as	 the	pointer
value.

Here	is	a	simple	implementation	for	the	append()	method:

cdef	append(self,	int	value):

				cqueue.queue_push_tail(self._c_queue,	<void*>value)

Again,	the	same	error	handling	considerations	as	for	the	__cinit__()
method	apply,	so	that	we	end	up	with	this	implementation	instead:

cdef	append(self,	int	value):

				if	not	cqueue.queue_push_tail(self._c_queue,

																																		<void*>value):

								raise	MemoryError()

Adding	an	extend()	method	should	now	be	straight	forward:

cdef	extend(self,	int*	values,	size_t	count):

				"""Append	all	ints	to	the	queue.

				"""

				cdef	size_t	i

				for	i	in	range(count):

								if	not	cqueue.queue_push_tail(

																self._c_queue,	<void*>values[i]):

												raise	MemoryError()

This	becomes	handy	when	reading	values	from	a	NumPy	array,	 for
example.

So	far,	we	can	only	add	data	to	the	queue.	The	next	step	is	to	write
the	 two	methods	 to	 get	 the	 first	 element:	 peek()	 and	 pop(),	which
provide	read-only	and	destructive	read	access	respectively:

cdef	int	peek(self):

				return	<int>cqueue.queue_peek_head(self._c_queue)

cdef	int	pop(self):

				return	<int>cqueue.queue_pop_head(self._c_queue)

Handling	errors
Now,	 what	 happens	 when	 the	 queue	 is	 empty?	 According	 to	 the
documentation,	the	functions	return	a	NULL	pointer,	which	is	typically
not	a	valid	value.	Since	we	are	simply	casting	 to	and	 from	 ints,	we
cannot	distinguish	anymore	if	the	return	value	was	NULL	because	the
queue	was	empty	or	because	the	value	stored	in	the	queue	was	0.
However,	in	Cython	code,	we	would	expect	the	first	case	to	raise	an
exception,	whereas	the	second	case	should	simply	return	0.	To	deal
with	this,	we	need	to	special	case	this	value,	and	check	if	the	queue
really	is	empty	or	not:

cdef	int	peek(self)	except?	-1:

				value	=	<int>cqueue.queue_peek_head(self._c_queue)

				if	value	==	0:

								#	this	may	mean	that	the	queue	is	empty,	or

								#	that	it	happens	to	contain	a	0	value

								if	cqueue.queue_is_empty(self._c_queue):

												raise	IndexError("Queue	is	empty")

				return	value

Note	how	we	have	effectively	created	a	fast	path	through	the	method
in	 the	hopefully	common	cases	 that	 the	 return	value	 is	not	 0.	Only
that	specific	case	needs	an	additional	check	if	the	queue	is	empty.

The	 except?	 -1	 declaration	 in	 the	 method	 signature	 falls	 into	 the
same	 category.	 If	 the	 function	 was	 a	 Python	 function	 returning	 a
Python	 object	 value,	 CPython	 would	 simply	 return	 NULL	 internally
instead	 of	 a	 Python	 object	 to	 indicate	 an	 exception,	 which	 would
immediately	be	propagated	by	the	surrounding	code.	The	problem	is
that	 the	 return	 type	 is	 int	and	any	 int	value	 is	a	valid	queue	 item
value,	 so	 there	 is	 no	way	 to	explicitly	 signal	 an	error	 to	 the	 calling
code.	In	fact,	without	such	a	declaration,	there	is	no	obvious	way	for
Cython	to	know	what	to	return	on	exceptions	and	for	calling	code	to

even	know	that	this	method	may	exit	with	an	exception.

The	 only	 way	 calling	 code	 can	 deal	 with	 this	 situation	 is	 to	 call
PyErr_Occurred()	 when	 returning	 from	 a	 function	 to	 check	 if	 an
exception	 was	 raised,	 and	 if	 so,	 propagate	 the	 exception.	 This
obviously	has	a	performance	penalty.	Cython	therefore	allows	you	to
declare	 which	 value	 it	 should	 implicitly	 return	 in	 the	 case	 of	 an
exception,	so	that	 the	surrounding	code	only	needs	to	check	for	an
exception	when	receiving	this	exact	value.

We	chose	to	use	-1	as	the	exception	return	value	as	we	expect	it	to
be	an	unlikely	value	to	be	put	into	the	queue.	The	question	mark	in
the	 except?	 -1	 declaration	 indicates	 that	 the	 return	 value	 is
ambiguous	(there	may	be	a	-1	value	in	the	queue,	after	all)	and	that
an	additional	exception	check	using	 PyErr_Occurred()	 is	 needed	 in
calling	 code.	 Without	 it,	 Cython	 code	 that	 calls	 this	 method	 and
receives	 the	 exception	 return	 value	 would	 silently	 (and	 sometimes
incorrectly)	assume	that	an	exception	has	been	raised.	In	any	case,
all	 other	 return	 values	 will	 be	 passed	 through	 almost	 without	 a
penalty,	thus	again	creating	a	fast	path	for	‘normal’	values.

Now	that	the	peek()	method	is	implemented,	the	pop()	method	also
needs	 adaptation.	 Since	 it	 removes	 a	 value	 from	 the	 queue,
however,	 it	 is	 not	 enough	 to	 test	 if	 the	 queue	 is	 empty	 after	 the
removal.	Instead,	we	must	test	it	on	entry:

cdef	int	pop(self)	except?	-1:

				if	cqueue.queue_is_empty(self._c_queue):

								raise	IndexError("Queue	is	empty")

				return	<int>cqueue.queue_pop_head(self._c_queue)

The	return	value	for	exception	propagation	is	declared	exactly	as	for
peek().

Lastly,	we	can	provide	the	Queue	with	an	emptiness	indicator	in	the

normal	Python	way	by	implementing	the	__bool__()	special	method
(note	 that	Python	2	calls	 this	method	 __nonzero__,	whereas	Cython
code	can	use	either	name):

def	__bool__(self):

				return	not	cqueue.queue_is_empty(self._c_queue)

Note	 that	 this	method	 returns	either	 True	 or	 False	 as	we	 declared
the	 return	 type	 of	 the	 queue_is_empty()	 function	 as	 bint	 in
cqueue.pxd.

Testing	the	result
Now	 that	 the	 implementation	 is	 complete,	 you	 may	 want	 to	 write
some	tests	for	it	to	make	sure	it	works	correctly.	Especially	doctests
are	very	nice	for	this	purpose,	as	they	provide	some	documentation
at	the	same	time.	To	enable	doctests,	however,	you	need	a	Python
API	that	you	can	call.	C	methods	are	not	visible	 from	Python	code,
and	thus	not	callable	from	doctests.

A	quick	way	 to	provide	a	Python	API	 for	 the	class	 is	 to	change	the
methods	from	cdef	to	cpdef.	This	will	 let	Cython	generate	two	entry
points,	 one	 that	 is	 callable	 from	 normal	 Python	 code	 using	 the
Python	 call	 semantics	 and	 Python	 objects	 as	 arguments,	 and	 one
that	 is	 callable	 from	 C	 code	 with	 fast	 C	 semantics	 and	 without
requiring	intermediate	argument	conversion	from	or	to	Python	types.
Note	 that	 cpdef	 methods	 ensure	 that	 they	 can	 be	 appropriately
overridden	 by	 Python	 methods	 even	 when	 they	 are	 called	 from
Cython.	This	adds	a	tiny	overhead	compared	to	cdef	methods.

The	 following	 listing	 shows	 the	 complete	 implementation	 that	 uses
cpdef	methods	where	possible:

cimport	cqueue

cdef	class	Queue:

				"""A	queue	class	for	C	integer	values.

				>>>	q	=	Queue()

				>>>	q.append(5)

				>>>	q.peek()

				5

				>>>	q.pop()

				5

				"""

				cdef	cqueue.Queue*	_c_queue

				def	__cinit__(self):

								self._c_queue	=	cqueue.queue_new()

								if	self._c_queue	is	NULL:

												raise	MemoryError()

				def	__dealloc__(self):

								if	self._c_queue	is	not	NULL:

												cqueue.queue_free(self._c_queue)

				cpdef	append(self,	int	value):

								if	not	cqueue.queue_push_tail(self._c_queue,

																																						<void*>value):

												raise	MemoryError()

				cdef	extend(self,	int*	values,	size_t	count):

								cdef	size_t	i

								for	i	in	xrange(count):

												if	not	cqueue.queue_push_tail(

																				self._c_queue,	<void*>values[i]):

																raise	MemoryError()

				cpdef	int	peek(self)	except?	-1:

								cdef	int	value	=	\

												<int>cqueue.queue_peek_head(self._c_queue)

								if	value	==	0:

												#	this	may	mean	that	the	queue	is	empty,

												#	or	that	it	happens	to	contain	a	0	value

												if	cqueue.queue_is_empty(self._c_queue):

																raise	IndexError("Queue	is	empty")

								return	value

				cpdef	int	pop(self)	except?	-1:

								if	cqueue.queue_is_empty(self._c_queue):

												raise	IndexError("Queue	is	empty")

								return	<int>cqueue.queue_pop_head(self._c_queue)

				def	__bool__(self):

								return	not	cqueue.queue_is_empty(self._c_queue)

The	cpdef	feature	is	obviously	not	available	for	the	extend()	method,
as	the	method	signature	is	incompatible	with	Python	argument	types.
However,	 if	wanted,	we	 can	 rename	 the	C-ish	 extend()	method	 to
e.g.	 c_extend(),	 and	 write	 a	 new	 extend()	 method	 instead	 that
accepts	an	arbitrary	Python	iterable:

cdef	c_extend(self,	int*	values,	size_t	count):

				cdef	size_t	i

				for	i	in	range(count):

								if	not	cqueue.queue_push_tail(

																self._c_queue,	<void*>values[i]):

												raise	MemoryError()

cpdef	extend(self,	values):

				for	value	in	values:

								self.append(value)

As	 a	 quick	 test	 with	 10000	 numbers	 on	 the	 author’s	 machine
indicates,	using	 this	Queue	 from	Cython	code	with	C	 int	 values	 is
about	 five	 times	 as	 fast	 as	 using	 it	 from	Cython	 code	with	 Python
object	 values,	 almost	 eight	 times	 faster	 than	 using	 it	 from	 Python
code	 in	 a	 Python	 loop,	 and	 still	 more	 than	 twice	 as	 fast	 as	 using
Python’s	highly	optimised	collections.deque	type	from	Cython	code
with	Python	integers.

Callbacks
Let’s	say	you	want	to	provide	a	way	for	users	to	pop	values	from	the
queue	 up	 to	 a	 certain	 user	 defined	 event	 occurs.	 To	 this	 end,	 you
want	 to	 allow	 them	 to	 pass	 a	 predicate	 function	 that	 determines
when	to	stop,	e.g.:

def	pop_until(self,	predicate):

				while	not	predicate(self.peek()):

								self.pop()

Now,	 let	 us	 assume	 for	 the	 sake	 of	 argument	 that	 the	 C	 queue
provides	 such	 a	 function	 that	 takes	 a	 C	 callback	 function	 as
predicate.	The	API	could	look	as	follows:

/*	C	type	of	a	predicate	function	that	takes	a	queue	value	and	returns

	*	-1	for	errors

	*		0	for	reject

	*		1	for	accept

	*/

typedef	int	(*predicate_func)(void*	user_context,	QueueValue	data);

/*	Pop	values	as	long	as	the	predicate	evaluates	to	true	for	them,

	*	returns	-1	if	the	predicate	failed	with	an	error	and	0	otherwise

	*/

int	queue_pop_head_until(Queue	*queue,	predicate_func	predicate,

																									void*	user_context);

It	 is	 normal	 for	 C	 callback	 functions	 to	 have	 a	 generic	 void*
argument	that	allows	passing	any	kind	of	context	or	state	through	the
C-API	into	the	callback	function.	We	will	use	this	to	pass	our	Python
predicate	function.

First,	 we	 have	 to	 define	 a	 callback	 function	 with	 the	 expected
signature	that	we	can	pass	into	the	C-API	function:

cdef	int	evaluate_predicate(void*	context,	cqueue.QueueValue	value

				"Callback	function	that	can	be	passed	as	predicate_func"

				try:

								#	recover	Python	function	object	from	void*	argument

								func	=	<object>context

								#	call	function,	convert	result	into	0/1	for	True/False

								return	bool(func(<int>value))

				except:

								#	catch	any	Python	errors	and	return	error	indicator

								return	-1

The	main	idea	is	to	pass	a	pointer	(a.k.a.	borrowed	reference)	to	the
function	object	as	the	user	context	argument.	We	will	call	the	C-API
function	as	follows:

def	pop_until(self,	python_predicate_function):

				result	=	cqueue.queue_pop_head_until(

								self._c_queue,	evaluate_predicate,

								<void*>python_predicate_function)

				if	result	==	-1:

								raise	RuntimeError("an	error	occurred")

The	usual	pattern	 is	 to	 first	cast	 the	Python	object	 reference	 into	a
void*	to	pass	it	into	the	C-API	function,	and	then	cast	it	back	into	a
Python	object	in	the	C	predicate	callback	function.	The	cast	to	void*
creates	 a	 borrowed	 reference.	 On	 the	 cast	 to	 <object>,	 Cython
increments	 the	 reference	count	of	 the	object	and	 thus	converts	 the
borrowed	reference	back	into	an	owned	reference.	At	the	end	of	the
predicate	function,	the	owned	reference	goes	out	of	scope	again	and
Cython	discards	it.

The	error	handling	in	the	code	above	is	a	bit	simplistic.	Specifically,
any	exceptions	 that	 the	predicate	 function	 raises	will	essentially	be
discarded	and	only	result	in	a	plain	RuntimeError()	being	raised	after
the	fact.	This	can	be	 improved	by	storing	away	the	exception	 in	an
object	passed	 through	 the	context	parameter	and	 re-raising	 it	 after
the	C-API	function	has	returned	-1	to	indicate	the	error.

nextprevious	|Cython	0.19.1	documentation	»	Tutorials	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

nextprevious	|Cython	0.19.1	documentation	»	Tutorials	»

Extension	types	(aka.	cdef	classes)
To	 support	 object-oriented	 programming,	 Cython	 supports	 writing
normal	Python	classes	exactly	as	in	Python:

class	MathFunction(object):

				def	__init__(self,	name,	operator):

								self.name	=	name

								self.operator	=	operator

				def	__call__(self,	*operands):

								return	self.operator(*operands)

Based	 on	 what	 Python	 calls	 a	 “built-in	 type”,	 however,	 Cython
supports	 a	 second	 kind	 of	 class:	 extension	 types,	 sometimes
referred	 to	 as	 “cdef	 classes”	 due	 to	 the	 keywords	 used	 for	 their
declaration.	 They	 are	 somewhat	 restricted	 compared	 to	 Python
classes,	 but	 are	 generally	 more	 memory	 efficient	 and	 faster	 than
generic	 Python	 classes.	 The	main	 difference	 is	 that	 they	 use	 a	 C
struct	to	store	their	fields	and	methods	instead	of	a	Python	dict.	This
allows	them	to	store	arbitrary	C	types	in	their	fields	without	requiring
a	 Python	 wrapper	 for	 them,	 and	 to	 access	 fields	 and	 methods
directly	 at	 the	C	 level	 without	 passing	 through	 a	 Python	 dictionary
lookup.

Normal	 Python	 classes	 can	 inherit	 from	 cdef	 classes,	 but	 not	 the
other	way	around.	Cython	requires	to	know	the	complete	inheritance
hierarchy	in	order	to	 lay	out	their	C	structs,	and	restricts	 it	 to	single
inheritance.	Normal	Python	 classes,	 on	 the	 other	 hand,	 can	 inherit
from	 any	 number	 of	 Python	 classes	 and	 extension	 types,	 both	 in
Cython	code	and	pure	Python	code.

So	 far	 our	 integration	example	has	not	 been	 very	 useful	 as	 it	 only
integrates	a	single	hard-coded	function.	In	order	to	remedy	this,	with
hardly	 sacrificing	 speed,	 we	 will	 use	 a	 cdef	 class	 to	 represent	 a
function	on	floating	point	numbers:

cdef	class	Function:

				cpdef	double	evaluate(self,	double	x)	except	*:

								return	0

The	directive	cpdef	makes	two	versions	of	the	method	available;	one
fast	for	use	from	Cython	and	one	slower	for	use	from	Python.	Then:

cdef	class	SinOfSquareFunction(Function):

				cpdef	double	evaluate(self,	double	x)	except	*:

								return	sin(x**2)

This	does	slightly	more	 than	providing	a	python	wrapper	 for	a	cdef
method:	unlike	a	cdef	method,	a	cpdef	method	 is	 fully	overrideable
by	 subclasses	 and	 instance	 attributes.	 This	 adds	 a	 little	 calling
overhead	compared	to	a	cdef	method.

Using	this,	we	can	now	change	our	integration	example:

def	integrate(Function	f,	double	a,	double	b,	int	N):

				cdef	int	i

				cdef	double	s,	dx

				if	f	is	None:

								raise	ValueError("f	cannot	be	None")

				s	=	0

				dx	=	(b-a)/N

				for	i	in	range(N):

								s	+=	f.evaluate(a+i*dx)

				return	s	*	dx

print(integrate(SinOfSquareFunction(),	0,	1,	10000))

This	is	almost	as	fast	as	the	previous	code,	however	it	is	much	more
flexible	 as	 the	 function	 to	 integrate	 can	be	 changed.	We	can	even
pass	in	a	new	function	defined	in	Python-space:

>>>	import	integrate

>>>	class	MyPolynomial(integrate.Function):

...					def	evaluate(self,	x):

...									return	2*x*x	+	3*x	-	10

...

>>>	integrate(MyPolynomial(),	0,	1,	10000)

-7.8335833300000077

This	is	about	20	times	slower,	but	still	about	10	times	faster	than	the
original	 Python-only	 integration	 code.	 This	 shows	 how	 large	 the
speed-ups	can	easily	be	when	whole	loops	are	moved	from	Python
code	into	a	Cython	module.

Some	notes	on	our	new	implementation	of	evaluate:

The	 fast	 method	 dispatch	 here	 only	 works	 because
evaluate	 was	 declared	 in	 Function.	 Had	 evaluate	 been
introduced	 in	 SinOfSquareFunction,	 the	 code	 would	 still
work,	 but	 Cython	 would	 have	 used	 the	 slower	 Python
method	dispatch	mechanism	instead.
In	 the	same	way,	had	 the	argument	 f	not	been	 typed,	but
only	 been	 passed	 as	 a	 Python	 object,	 the	 slower	 Python
dispatch	would	be	used.
Since	the	argument	is	typed,	we	need	to	check	whether	it	is
None.	 In	 Python,	 this	 would	 have	 resulted	 in	 an
AttributeError	when	the	evaluate	method	was	looked	up,
but	Cython	would	 instead	 try	 to	 access	 the	 (incompatible)
internal	structure	of	None	as	if	it	were	a	Function,	leading	to
a	crash	or	data	corruption.

There	 is	 a	 compiler	 directive	 nonecheck	 which	 turns	 on	 checks	 for
this,	at	the	cost	of	decreased	speed.	Here’s	how	compiler	directives
are	used	to	dynamically	switch	on	or	off	nonecheck:

#cython:	nonecheck=True

#								^^^	Turns	on	nonecheck	globally

import	cython

#	Turn	off	nonecheck	locally	for	the	function

@cython.nonecheck(False)

def	func():

				cdef	MyClass	obj	=	None

				try:

								#	Turn	nonecheck	on	again	for	a	block

								with	cython.nonecheck(True):

												print	obj.myfunc()	#	Raises	exception

				except	AttributeError:

								pass

				print	obj.myfunc()	#	Hope	for	a	crash!

Attributes	in	cdef	classes	behave	differently	from	attributes	in	regular
classes:

All	attributes	must	be	pre-declared	at	compile-time
Attributes	are	by	default	only	accessible	from	Cython	(typed
access)
Properties	can	be	declared	to	expose	dynamic	attributes	to
Python-space

cdef	class	WaveFunction(Function):

				#	Not	available	in	Python-space:

				cdef	double	offset

				#	Available	in	Python-space:

				cdef	public	double	freq

				#	Available	in	Python-space:

				property	period:

								def	__get__(self):

												return	1.0	/	self.freq

								def	__set__(self,	value):

												self.freq	=	1.0	/	value

				<...>

nextprevious	|Cython	0.19.1	documentation	»	Tutorials	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

nextprevious	|Cython	0.19.1	documentation	»	Tutorials	»

pxd	files
In	 addition	 to	 the	 .pyx	 source	 files,	 Cython	 uses	 .pxd	 files	 which
work	 like	 C	 header	 files	 –	 they	 contain	 Cython	 declarations	 (and
sometimes	 code	 sections)	 which	 are	 only	 meant	 for	 inclusion	 by
Cython	modules.	A	 pxd	 file	 is	 imported	 into	a	 pyx	module	by	using
the	cimport	keyword.

pxd	files	have	many	use-cases:

1.	 They	can	be	used	for	sharing	external	C	declarations.

2.	 They	can	contain	functions	which	are	well	suited	for	inlining
by	 the	 C	 compiler.	 Such	 functions	 should	 be	 marked
inline,	example:

cdef	inline	int	int_min(int	a,	int	b):

				return	b	if	b	<	a	else	a

3.	 When	 accompanying	 an	 equally	 named	 pyx	 file,	 they
provide	 a	 Cython	 interface	 to	 the	 Cython	 module	 so	 that
other	 Cython	 modules	 can	 communicate	 with	 it	 using	 a
more	efficient	protocol	than	the	Python	one.

In	 our	 integration	 example,	 we	might	 break	 it	 up	 into	 pxd	 files	 like
this:

1.	 Add	 a	 cmath.pxd	 function	 which	 defines	 the	 C	 functions
available	from	the	C	math.h	header	file,	like	sin.	Then	one
would	simply	do	from	cmath	cimport	sin	in	integrate.pyx.

2.	 Add	 a	 integrate.pxd	 so	 that	 other	 modules	 written	 in
Cython	can	define	fast	custom	functions	to	integrate.

cdef	class	Function:

				cpdef	evaluate(self,	double	x)

cpdef	integrate(Function	f,	double	a,

																double	b,	int	N)

Note	 that	 if	 you	 have	 a	 cdef	 class	 with	 attributes,	 the
attributes	must	be	declared	in	the	class	declaration	pxd	file
(if	you	use	one),	not	 the	 pyx	 file.	The	compiler	will	 tell	you
about	this.

nextprevious	|Cython	0.19.1	documentation	»	Tutorials	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

nextprevious	|Cython	0.19.1	documentation	»	Tutorials	»

Caveats
Since	Cython	mixes	C	and	Python	semantics,	some	things	may	be	a
bit	 surprising	 or	 unintuitive.	Work	 always	 goes	 on	 to	make	Cython
more	natural	for	Python	users,	so	this	list	may	change	in	the	future.

10**-2	==	0,	instead	of	0.01	like	in	Python.
Given	two	typed	int	variables	a	and	b,	a	%	b	has	the	same
sign	as	the	second	argument	(following	Python	semantics)
rather	than	having	the	same	sign	as	the	first	(as	in	C).	The
C	 behavior	 can	 be	 obtained,	 at	 some	 speed	 gain,	 by
enabling	 the	 cdivision	 directive	 (versions	 prior	 to	 Cython
0.12	always	followed	C	semantics).
Care	 is	 needed	 with	 unsigned	 types.	 cdef	 unsigned	 n	 =

10;	 print(range(-n,	 n))	 will	 print	 an	 empty	 list,	 since	 -n
wraps	 around	 to	 a	 large	 positive	 integer	 prior	 to	 being
passed	to	the	range	function.
Python’s	 float	 type	 actually	 wraps	 C	 double	 values,	 and
Python’s	int	type	wraps	C	long	values.

nextprevious	|Cython	0.19.1	documentation	»	Tutorials	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

nextprevious	|Cython	0.19.1	documentation	»	Tutorials	»

Profiling
This	part	describes	the	profiling	abilities	of	Cython.	If	you	are	familiar
with	profiling	pure	Python	code,	 you	can	only	 read	 the	 first	 section
(Cython	Profiling	Basics).	If	you	are	not	familiar	with	Python	profiling
you	should	also	read	the	tutorial	(Profiling	Tutorial)	which	takes	you
through	a	complete	example	step	by	step.

Cython	Profiling	Basics
Profiling	in	Cython	is	controlled	by	a	compiler	directive.	It	can	be	set
either	 for	 an	 entire	 file	 or	 on	 a	 per	 function	 basis	 via	 a	 Cython
decorator.

Enabling	profiling	for	a	complete	source	file

Profiling	is	enabled	for	a	complete	source	file	via	a	global	directive	to
the	Cython	compiler	at	the	top	of	a	file:

#	cython:	profile=True

Note	 that	 profiling	 gives	 a	 slight	 overhead	 to	 each	 function	 call
therefore	 making	 your	 program	 a	 little	 slower	 (or	 a	 lot,	 if	 you	 call
some	small	functions	very	often).

Once	enabled,	your	Cython	code	will	behave	 just	 like	Python	code
when	 called	 from	 the	 cProfile	 module.	 This	 means	 you	 can	 just
profile	your	Cython	code	 together	with	your	Python	code	using	 the
same	tools	as	for	Python	code	alone.

Disabling	profiling	function	wise

If	your	profiling	is	messed	up	because	of	the	call	overhead	to	some
small	 functions	 that	 you	 rather	 do	not	want	 to	 see	 in	 your	 profile	 -
either	because	you	plan	 to	 inline	 them	anyway	or	because	you	are
sure	 that	 you	 can’t	make	 them	any	 faster	 -	 you	 can	 use	 a	 special
decorator	to	disable	profiling	for	one	function	only:

cimport	cython

@cython.profile(False)

def	my_often_called_function():

			pass

Profiling	Tutorial
This	 will	 be	 a	 complete	 tutorial,	 start	 to	 finish,	 of	 profiling	 Python
code,	 turning	 it	 into	 Cython	 code	 and	 keep	 profiling	 until	 it	 is	 fast
enough.

As	a	 toy	example,	we	would	 like	 to	evaluate	 the	summation	of	 the
reciprocals	of	squares	up	to	a	certain	integer	n	for	evaluating	\pi.	The
relation	we	want	 to	 use	 has	 been	 proven	 by	 Euler	 in	 1735	 and	 is
known	as	the	Basel	problem.

\pi^2	=	6	\sum_{k=1}^{\infty}	\frac{1}{k^2}	=	6	\lim_{k	\to	\infty}	\big(
\frac{1}{1^2}	+	\frac{1}{2^2}	+	\dots	+	\frac{1}{k^2}	\big)	\approx	6
\big(\frac{1}{1^2}	+	\frac{1}{2^2}	+	\dots	+	\frac{1}{n^2}	\big)

A	 simple	 Python	 code	 for	 evaluating	 the	 truncated	 sum	 looks	 like
this:

#!/usr/bin/env	python

#	encoding:	utf-8

#	filename:	calc_pi.py

def	recip_square(i):

				return	1./i**2

def	approx_pi(n=10000000):

				val	=	0.

				for	k	in	range(1,n+1):

								val	+=	recip_square(k)

				return	(6	*	val)**.5

On	my	box,	this	needs	approximately	4	seconds	to	run	the	function
with	 the	 default	 n.	 The	 higher	 we	 choose	 n,	 the	 better	 will	 be	 the
approximation	 for	 \pi.	 An	 experienced	 Python	 programmer	 will
already	see	plenty	of	places	to	optimize	this	code.	But	remember	the
golden	 rule	of	 optimization:	Never	optimize	without	 having	profiled.
Let	me	repeat	this:	Never	optimize	without	having	profiled	your	code.

http://en.wikipedia.org/wiki/Basel_problem

Your	thoughts	about	which	part	of	your	code	takes	too	much	time	are
wrong.	At	least,	mine	are	always	wrong.	So	let’s	write	a	short	script
to	profile	our	code:

#!/usr/bin/env	python

#	encoding:	utf-8

#	filename:	profile.py

import	pstats,	cProfile

import	calc_pi

cProfile.runctx("calc_pi.approx_pi()",	globals(),	locals(),	"Profile.prof"

s	=	pstats.Stats("Profile.prof")

s.strip_dirs().sort_stats("time").print_stats()

Running	this	on	my	box	gives	the	following	output:

TODO:	how	to	display	this	not	as	code	but	verbatimly?

Sat	Nov		7	17:40:54	2009				Profile.prof

									10000004	function	calls	in	6.211	CPU	seconds

			Ordered	by:	internal	time

			ncalls		tottime		percall		cumtime		percall	filename:lineno(function

								1				3.243				3.243				6.211				6.211	calc_pi.py:7(approx_pi

	10000000				2.526				0.000				2.526				0.000	calc_pi.py:4(recip_square

								1				0.442				0.442				0.442				0.442	{range}

								1				0.000				0.000				6.211				6.211	<string>:1(<module>)

								1				0.000				0.000				0.000				0.000	{method	'disable'	of

This	contains	the	information	that	the	code	runs	in	6.2	CPU	seconds.
Note	that	the	code	got	slower	by	2	seconds	because	it	ran	inside	the
cProfile	 module.	 The	 table	 contains	 the	 real	 valuable	 information.
You	might	want	to	check	the	Python	profiling	documentation	for	 the
nitty	gritty	details.	The	most	important	columns	here	are	totime	(total
time	spent	in	this	function	not	counting	functions	that	were	called	by

http://docs.python.org/library/profile.html

this	 function)	 and	 cumtime	 (total	 time	 spent	 in	 this	 function	 also
counting	the	functions	called	by	this	function).	Looking	at	the	tottime
column,	 we	 see	 that	 approximately	 half	 the	 time	 is	 spent	 in
approx_pi	 and	 the	 other	 half	 is	 spent	 in	 recip_square.	 Also	 half	 a
second	is	spent	 in	range	...	of	course	we	should	have	used	xrange
for	 such	a	big	 iteration.	And	 in	 fact,	 just	 changing	 range	 to	 xrange
makes	the	code	run	in	5.8	seconds.

We	could	optimize	a	lot	in	the	pure	Python	version,	but	since	we	are
interested	 in	 Cython,	 let’s	 move	 forward	 and	 bring	 this	 module	 to
Cython.	We	would	do	this	anyway	at	some	time	to	get	the	 loop	run
faster.	Here	is	our	first	Cython	version:

#	encoding:	utf-8

#	cython:	profile=True

#	filename:	calc_pi.pyx

def	recip_square(int	i):

				return	1./i**2

def	approx_pi(int	n=10000000):

				cdef	double	val	=	0.

				cdef	int	k

				for	k	in	xrange(1,n+1):

								val	+=	recip_square(k)

				return	(6	*	val)**.5

Note	the	second	line:	We	have	to	tell	Cython	that	profiling	should	be
enabled.	This	makes	the	Cython	code	slightly	slower,	but	without	this
we	would	not	 get	meaningful	 output	 from	 the	 cProfile	module.	The
rest	 of	 the	 code	 is	mostly	 unchanged,	 I	 only	 typed	 some	variables
which	will	likely	speed	things	up	a	bit.

We	 also	 need	 to	 modify	 our	 profiling	 script	 to	 import	 the	 Cython
module	 directly.	Here	 is	 the	 complete	 version	 adding	 the	 import	 of
the	pyximport	module:

#!/usr/bin/env	python

#	encoding:	utf-8

#	filename:	profile.py

import	pstats,	cProfile

import	pyximport

pyximport.install()

import	calc_pi

cProfile.runctx("calc_pi.approx_pi()",	globals(),	locals(),	"Profile.prof"

s	=	pstats.Stats("Profile.prof")

s.strip_dirs().sort_stats("time").print_stats()

We	 only	 added	 two	 lines,	 the	 rest	 stays	 completely	 the	 same.
Alternatively,	 we	 could	 also	 manually	 compile	 our	 code	 into	 an
extension;	we	wouldn’t	need	to	change	the	profile	script	 then	at	all.
The	script	now	outputs	the	following:

Sat	Nov		7	18:02:33	2009				Profile.prof

									10000004	function	calls	in	4.406	CPU	seconds

			Ordered	by:	internal	time

			ncalls		tottime		percall		cumtime		percall	filename:lineno(function

								1				3.305				3.305				4.406				4.406	calc_pi.pyx:7(approx_pi

	10000000				1.101				0.000				1.101				0.000	calc_pi.pyx:4(recip_square

								1				0.000				0.000				4.406				4.406	{calc_pi.approx_pi}

								1				0.000				0.000				4.406				4.406	<string>:1(<module>)

								1				0.000				0.000				0.000				0.000	{method	'disable'	of

We	gained	 1.8	 seconds.	 Not	 too	 shabby.	 Comparing	 the	 output	 to
the	previous,	we	see	that	recip_square	function	got	faster	while	the
approx_pi	 function	has	not	 changed	a	 lot.	 Let’s	 concentrate	on	 the
recip_square	function	a	bit	more.	First	note,	that	this	function	is	not
to	be	called	from	code	outside	of	our	module;	so	it	would	be	wise	to
turn	it	into	a	cdef	to	reduce	call	overhead.	We	should	also	get	rid	of
the	 power	 operator:	 it	 is	 turned	 into	 a	 pow(i,2)	 function	 call	 by
Cython,	but	we	could	instead	just	write	i*i	which	could	be	faster.	The

whole	function	is	also	a	good	candidate	for	inlining.	Let’s	look	at	the
necessary	changes	for	these	ideas:

#	encoding:	utf-8

#	cython:	profile=True

#	filename:	calc_pi.pyx

cdef	inline	double	recip_square(int	i):

				return	1./(i*i)

def	approx_pi(int	n=10000000):

				cdef	double	val	=	0.

				cdef	int	k

				for	k	in	xrange(1,n+1):

								val	+=	recip_square(k)

				return	(6	*	val)**.5

Now	running	the	profile	script	yields:

Sat	Nov		7	18:10:11	2009				Profile.prof

									10000004	function	calls	in	2.622	CPU	seconds

			Ordered	by:	internal	time

			ncalls		tottime		percall		cumtime		percall	filename:lineno(function

								1				1.782				1.782				2.622				2.622	calc_pi.pyx:7(approx_pi

	10000000				0.840				0.000				0.840				0.000	calc_pi.pyx:4(recip_square

								1				0.000				0.000				2.622				2.622	{calc_pi.approx_pi}

								1				0.000				0.000				2.622				2.622	<string>:1(<module>)

								1				0.000				0.000				0.000				0.000	{method	'disable'	of

That	 bought	 us	 another	 1.8	 seconds.	Not	 the	 dramatic	 change	we
could	have	expected.	And	why	is	recip_square	still	in	this	table;	it	is
supposed	to	be	inlined,	isn’t	it?	The	reason	for	this	is	that	Cython	still
generates	profiling	code	even	if	 the	function	call	 is	eliminated.	Let’s
tell	 it	 to	 not	 profile	 recip_square	 any	 more;	 we	 couldn’t	 get	 the
function	to	be	much	faster	anyway:

#	encoding:	utf-8

#	cython:	profile=True

#	filename:	calc_pi.pyx

cimport	cython

@cython.profile(False)

cdef	inline	double	recip_square(int	i):

				return	1./(i*i)

def	approx_pi(int	n=10000000):

				cdef	double	val	=	0.

				cdef	int	k

				for	k	in	xrange(1,n+1):

								val	+=	recip_square(k)

				return	(6	*	val)**.5

Running	this	shows	an	interesting	result:

Sat	Nov		7	18:15:02	2009				Profile.prof

									4	function	calls	in	0.089	CPU	seconds

			Ordered	by:	internal	time

			ncalls		tottime		percall		cumtime		percall	filename:lineno(function

								1				0.089				0.089				0.089				0.089	calc_pi.pyx:10(approx_pi

								1				0.000				0.000				0.089				0.089	{calc_pi.approx_pi}

								1				0.000				0.000				0.089				0.089	<string>:1(<module>)

								1				0.000				0.000				0.000				0.000	{method	'disable'	of

First	note	the	tremendous	speed	gain:	this	version	only	takes	1/50	of
the	time	of	our	first	Cython	version.	Also	note	that	recip_square	has
vanished	 from	 the	 table	 like	we	wanted.	But	 the	most	peculiar	and
import	 change	 is	 that	 approx_pi	 also	 got	 much	 faster.	 This	 is	 a
problem	with	 all	 profiling:	 calling	 a	 function	 in	 a	 profile	 run	 adds	 a
certain	overhead	to	the	function	call.	This	overhead	is	not	added	to
the	 time	 spent	 in	 the	 called	 function,	 but	 to	 the	 time	 spent	 in	 the
calling	 function.	 In	 this	 example,	 approx_pi	 didn’t	 need	 2.622
seconds	 in	 the	 last	 run;	but	 it	called	 recip_square	10000000	 times,
each	time	taking	a	little	to	set	up	profiling	for	it.	This	adds	up	to	the
massive	 time	 loss	of	around	2.6	seconds.	Having	disabled	profiling

for	 the	 often	 called	 function	 now	 reveals	 realistic	 timings	 for
approx_pi;	we	could	continue	optimizing	it	now	if	needed.

This	 concludes	 this	 profiling	 tutorial.	 There	 is	 still	 some	 room	 for
improvement	 in	 this	 code.	 We	 could	 try	 to	 replace	 the	 power
operator	in	approx_pi	with	a	call	to	sqrt	from	the	C	stdlib;	but	this	is
not	necessarily	faster	than	calling	pow(x,0.5).

Even	so,	the	result	we	achieved	here	is	quite	satisfactory:	we	came
up	with	a	solution	that	is	much	faster	then	our	original	Python	version
while	retaining	functionality	and	readability.

nextprevious	|Cython	0.19.1	documentation	»	Tutorials	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

nextprevious	|Cython	0.19.1	documentation	»	Tutorials	»

Unicode	and	passing	strings
Similar	 to	 the	 string	 semantics	 in	 Python	 3,	 Cython	 also	 strictly
separates	 byte	 strings	 and	 unicode	 strings.	 Above	 all,	 this	 means
that	by	default	there	is	no	automatic	conversion	between	byte	strings
and	 unicode	 strings	 (except	 for	 what	 Python	 2	 does	 in	 string
operations).	All	encoding	and	decoding	must	pass	through	an	explicit
encoding/decoding	 step.	 For	 simple	 cases,	 the	 module-level
c_string_type	 and	 c_string_encoding	 directives	 can	 be	 used	 to
implicitly	 insert	 these	 encoding/decoding	 steps	 to	 ease	 conversion
between	Python	and	C	strings.

General	notes	about	C	strings
In	many	use	cases,	C	strings	(a.k.a.	character	pointers)	are	slow	and
cumbersome.	 For	 one,	 they	 usually	 require	 manual	 memory
management	 in	 one	way	or	 another,	which	makes	 it	more	 likely	 to
introduce	bugs	into	your	code.

Then,	Python	string	objects	cache	their	length,	so	requesting	it	(e.g.
to	 validate	 the	bounds	of	 index	access	or	when	 concatenating	 two
strings	 into	one)	 is	an	efficient	constant	 time	operation.	 In	contrast,
calling	 strlen()	 to	get	 this	 information	 from	a	C	string	 takes	 linear
time,	which	makes	many	operations	on	C	strings	rather	costly.

Regarding	text	processing,	Python	has	built-in	support	 for	Unicode,
which	C	 lacks	completely.	 If	you	are	dealing	with	Unicode	text,	you
are	usually	better	off	using	Python	Unicode	string	objects	than	trying
to	work	with	encoded	data	in	C	strings.	Cython	makes	this	quite	easy
and	efficient.

Generally	 speaking:	 unless	 you	 know	 what	 you	 are	 doing,	 avoid
using	 C	 strings	 where	 possible	 and	 use	 Python	 string	 objects
instead.	 The	 obvious	 exception	 to	 this	 is	when	 passing	 them	back
and	forth	from	and	to	external	C	code.	Also,	C++	strings	remember
their	 length	 as	 well,	 so	 they	 can	 provide	 a	 suitable	 alternative	 to
Python	bytes	objects	in	some	cases.

Passing	byte	strings
It	 is	 very	 easy	 to	 pass	 byte	 strings	 between	 C	 code	 and	 Python.
When	 receiving	 a	 byte	 string	 from	 a	C	 library,	 you	 can	 let	 Cython
convert	it	into	a	Python	byte	string	by	simply	assigning	it	to	a	Python
variable:

cdef	char*	c_string	=	c_call_returning_a_c_string()

cdef	bytes	py_string	=	c_string

A	type	cast	to	object	or	bytes	will	do	the	same	thing:

py_string	=	<bytes>	c_string

This	 creates	 a	 Python	 byte	 string	 object	 that	 holds	 a	 copy	 of	 the
original	C	string.	It	can	be	safely	passed	around	in	Python	code,	and
will	 be	 garbage	 collected	when	 the	 last	 reference	 to	 it	 goes	 out	 of
scope.	It	is	important	to	remember	that	null	bytes	in	the	string	act	as
terminator	 character,	 as	 generally	 known	 from	 C.	 The	 above	 will
therefore	 only	 work	 correctly	 for	 C	 strings	 that	 do	 not	 contain	 null
bytes.

Besides	not	working	for	null	bytes,	the	above	is	also	very	inefficient
for	 long	 strings,	 since	Cython	 has	 to	 call	 strlen()	 on	 the	C	 string
first	to	find	out	the	length	by	counting	the	bytes	up	to	the	terminating
null	byte.	In	many	cases,	the	user	code	will	know	the	length	already,
e.g.	because	a	C	 function	returned	 it.	 In	 this	case,	 it	 is	much	more
efficient	 to	 tell	 Cython	 the	 exact	 number	 of	 bytes	 by	 slicing	 the	 C
string:

cdef	char*	c_string	=	NULL

cdef	Py_ssize_t	length	=	0

#	get	pointer	and	length	from	a	C	function

get_a_c_string(&c_string,	&length)

py_bytes_string	=	c_string[:length]

Here,	no	additional	byte	counting	is	required	and	length	bytes	from
the	 c_string	 will	 be	 copied	 into	 the	Python	 bytes	 object,	 including
any	null	bytes.	Keep	in	mind	that	the	slice	indices	are	assumed	to	be
accurate	 in	 this	case	and	no	bounds	checking	 is	done,	so	 incorrect
slice	indices	will	lead	to	data	corruption	and	crashes.

Note	 that	 the	 creation	 of	 the	 Python	 bytes	 string	 can	 fail	 with	 an
exception,	e.g.	due	to	insufficient	memory.	If	you	need	to	free()	the
string	after	the	conversion,	you	should	wrap	the	assignment	in	a	try-
finally	construct:

cimport	stdlib

cdef	bytes	py_string

cdef	char*	c_string	=	c_call_creating_a_new_c_string()

try:

				py_string	=	c_string

finally:

				stdlib.free(c_string)

To	 convert	 the	 byte	 string	 back	 into	 a	 C	 char*,	 use	 the	 opposite
assignment:

cdef	char*	other_c_string	=	py_string

This	is	a	very	fast	operation	after	which	other_c_string	points	to	the
byte	string	buffer	of	the	Python	string	itself.	It	is	tied	to	the	life	time	of
the	Python	string.	When	the	Python	string	 is	garbage	collected,	 the
pointer	becomes	invalid.	It	is	therefore	important	to	keep	a	reference
to	 the	Python	 string	as	 long	as	 the	 char*	 is	 in	 use.	Often	enough,
this	only	spans	 the	call	 to	a	C	 function	 that	 receives	 the	pointer	as
parameter.	 Special	 care	 must	 be	 taken,	 however,	 when	 the	 C
function	stores	the	pointer	for	later	use.	Apart	from	keeping	a	Python
reference	 to	 the	 string	 object,	 no	manual	 memory	management	 is

required.

Dealing	with	“const”
Many	C	 libraries	use	 the	 const	modifier	 in	 their	API	 to	declare	 that
they	will	not	modify	a	string,	or	to	require	that	users	must	not	modify
a	string	they	return,	for	example:

typedef	const	char	specialChar;

int	process_string(const	char*	s);

const	unsigned	char*	look_up_cached_string(const	unsigned	char*	key

Since	version	0.18,	Cython	has	support	for	the	const	modifier	in	the
language,	so	you	can	declare	 the	above	functions	straight	away	as
follows:

cdef	extern	from	"someheader.h":

				ctypedef	const	char	specialChar

				int	process_string(const	char*	s)

				const	unsigned	char*	look_up_cached_string(const	unsigned	char

Previous	 versions	 required	 users	 to	 make	 the	 necessary
declarations	at	a	 textual	 level.	 If	 you	need	 to	 support	 older	Cython
versions,	you	can	use	the	following	approach.

In	general,	for	arguments	of	external	C	functions,	the	const	modifier
does	not	matter	and	can	be	left	out	in	the	Cython	declaration	(e.g.	in
a	 .pxd	 file).	The	C	 compiler	will	 still	 do	 the	 right	 thing,	 even	 if	 you
declare	this	to	Cython:

cdef	extern	from	"someheader.h":

				int	process_string(char*	s)			#	note:	looses	API	information!

However,	 in	 most	 other	 situations,	 such	 as	 for	 return	 values	 and
variables	 that	 use	 specifically	 typedef-ed	API	 types,	 it	 does	matter

and	the	C	compiler	will	emit	at	least	a	warning	if	used	incorrectly.	To
help	with	 this,	 you	 can	 use	 the	 type	 definitions	 in	 the	 libc.string
module,	e.g.:

from	libc.string	cimport	const_char,	const_uchar

cdef	extern	from	"someheader.h":

				ctypedef	const_char	specialChar

				int	process_string(const_char*	s)

				const_uchar*	look_up_cached_string(const_uchar*	key)

Note:	even	if	the	API	only	uses	const	for	function	arguments,	it	is	still
preferable	to	properly	declare	them	using	these	provided	const_char
types	in	order	to	simplify	adaptations.	In	Cython	0.18,	these	standard
declarations	have	been	changed	 to	use	 the	correct	 const	modifier,
so	your	code	will	automatically	benefit	from	the	new	const	support	if
it	uses	them.

Decoding	bytes	to	text
The	 initially	 presented	 way	 of	 passing	 and	 receiving	 C	 strings	 is
sufficient	 if	 your	 code	 only	 deals	 with	 binary	 data	 in	 the	 strings.
When	 we	 deal	 with	 encoded	 text,	 however,	 it	 is	 best	 practice	 to
decode	 the	C	byte	 strings	 to	Python	Unicode	 strings	 on	 reception,
and	to	encode	Python	Unicode	strings	to	C	byte	strings	on	the	way
out.

With	 a	 Python	 byte	 string	 object,	 you	 would	 normally	 just	 call	 the
.decode()	method	to	decode	it	into	a	Unicode	string:

ustring	=	byte_string.decode('UTF-8')

Cython	 allows	 you	 to	 do	 the	 same	 for	 a	 C	 string,	 as	 long	 as	 it
contains	no	null	bytes:

cdef	char*	some_c_string	=	c_call_returning_a_c_string()

ustring	=	some_c_string.decode('UTF-8')

And,	more	efficiently,	for	strings	where	the	length	is	known:

cdef	char*	c_string	=	NULL

cdef	Py_ssize_t	length	=	0

#	get	pointer	and	length	from	a	C	function

get_a_c_string(&c_string,	&length)

ustring	=	c_string[:length].decode('UTF-8')

The	same	should	be	used	when	 the	string	contains	null	bytes,	e.g.
when	 it	 uses	 an	 encoding	 like	 UCS-4,	 where	 each	 character	 is
encoded	in	four	bytes	most	of	which	tend	to	be	0.

Again,	no	bounds	checking	 is	done	 if	slice	 indices	are	provided,	so
incorrect	 indices	 lead	 to	 data	 corruption	 and	 crashes.	 However,

using	negative	indices	is	possible	since	Cython	0.17	and	will	inject	a
call	 to	 strlen()	 in	 order	 to	 determine	 the	 string	 length.	 Obviously,
this	 only	 works	 for	 0-terminated	 strings	 without	 internal	 null	 bytes.
Text	encoded	in	UTF-8	or	one	of	the	ISO-8859	encodings	is	usually
a	 good	 candidate.	 If	 in	 doubt,	 it’s	 better	 to	 pass	 indices	 that	 are
‘obviously’	correct	than	to	rely	on	the	data	to	be	as	expected.

It	is	common	practice	to	wrap	string	conversions	(and	non-trivial	type
conversions	 in	general)	 in	dedicated	 functions,	as	 this	needs	 to	be
done	in	exactly	the	same	way	whenever	receiving	text	from	C.	This
could	look	as	follows:

cimport	python_unicode

cimport	stdlib

cdef	unicode	tounicode(char*	s):

				return	s.decode('UTF-8',	'strict')

cdef	unicode	tounicode_with_length(

								char*	s,	size_t	length):

				return	s[:length].decode('UTF-8',	'strict')

cdef	unicode	tounicode_with_length_and_free(

								char*	s,	size_t	length):

				try:

								return	s[:length].decode('UTF-8',	'strict')

				finally:

								stdlib.free(s)

Most	likely,	you	will	prefer	shorter	function	names	in	your	code	based
on	the	kind	of	string	being	handled.	Different	 types	of	content	often
imply	 different	 ways	 of	 handling	 them	 on	 reception.	 To	 make	 the
code	 more	 readable	 and	 to	 anticipate	 future	 changes,	 it	 is	 good
practice	 to	 use	 separate	 conversion	 functions	 for	 different	 types	 of
strings.

Encoding	text	to	bytes
The	reverse	way,	converting	a	Python	unicode	string	to	a	C	char*,	is
pretty	 efficient	 by	 itself,	 assuming	 that	what	 you	 actually	want	 is	 a
memory	managed	byte	string:

py_byte_string	=	py_unicode_string.encode('UTF-8')

cdef	char*	c_string	=	py_byte_string

As	 noted	 before,	 this	 takes	 the	 pointer	 to	 the	 byte	 buffer	 of	 the
Python	 byte	 string.	 Trying	 to	 do	 the	 same	 without	 keeping	 a
reference	to	the	Python	byte	string	will	fail	with	a	compile	error:

#	this	will	not	compile	!

cdef	char*	c_string	=	py_unicode_string.encode('UTF-8')

Here,	the	Cython	compiler	notices	that	the	code	takes	a	pointer	to	a
temporary	 string	 result	 that	 will	 be	 garbage	 collected	 after	 the
assignment.	Later	access	 to	 the	 invalidated	pointer	will	 read	 invalid
memory	and	likely	result	in	a	segfault.	Cython	will	therefore	refuse	to
compile	this	code.

C++	strings
When	wrapping	a	C++	library,	strings	will	usually	come	in	the	form	of
the	 std::string	 class.	 As	 with	 C	 strings,	 Python	 byte	 strings
automatically	coerce	from	and	to	C++	strings:

#	distutils:	language	=	c++

from	libcpp.string	cimport	string

cdef	string	s	=	py_bytes_object

try:

				s.append('abc')

				py_bytes_object	=	s

finally:

				del	s

The	memory	management	 situation	 is	 different	 than	 in	 C	 because
the	creation	of	a	C++	string	makes	an	independent	copy	of	the	string
buffer	which	 the	 string	object	 then	owns.	 It	 is	 therefore	possible	 to
convert	temporarily	created	Python	objects	directly	into	C++	strings.
A	 common	 way	 to	 make	 use	 of	 this	 is	 when	 encoding	 a	 Python
unicode	string	into	a	C++	string:

cdef	string	cpp_string	=	py_unicode_string.encode('UTF-8')

Note	that	this	involves	a	bit	of	overhead	because	it	first	encodes	the
Unicode	 string	 into	 a	 temporarily	 created	 Python	 bytes	 object	 and
then	copies	its	buffer	into	a	new	C++	string.

For	 the	 other	 direction,	 efficient	 decoding	 support	 is	 available	 in
Cython	0.17	and	later:

cdef	string	s	=	string('abcdefg')

ustring1	=	s.decode('UTF-8')

ustring2	=	s[2:-2].decode('UTF-8')

For	C++	strings,	decoding	slices	will	always	take	the	proper	length	of
the	 string	 into	 account	 and	 apply	 Python	 slicing	 semantics	 (e.g.
return	empty	strings	for	out-of-bounds	indices).

Auto	encoding	and	decoding
Cython	 0.19	 comes	 with	 two	 new	 directives:	 c_string_type	 and
c_string_encoding.	They	 can	 be	 used	 to	 change	 the	Python	 string
types	 that	C/C++	 strings	 coerce	 from	and	 to.	By	 default,	 they	 only
coerce	 from	and	 to	 the	bytes	 type,	and	encoding	or	decoding	must
be	done	explicitly,	as	described	above.

There	 are	 two	 use	 cases	where	 this	 is	 inconvenient.	 First,	 if	 all	 C
strings	that	are	being	processed	(or	the	large	majority)	contain	text,
automatic	 encoding	 and	 decoding	 from	 and	 to	 Python	 unicode
objects	can	reduce	the	code	overhead	a	little.	In	this	case,	you	can
set	 the	 c_string_type	 directive	 in	 your	module	 to	 unicode	 and	 the
c_string_encoding	 to	 the	 encoding	 that	 your	 C	 code	 uses,	 for
example:

#	cython:	c_string_type=unicode,	c_string_encoding=utf8

cdef	char*	c_string	=	'abcdefg'

#	implicit	decoding:

cdef	object	py_unicode_object	=	c_string

#	explicit	conversion	to	Python	bytes:

py_bytes_object	=	<bytes>c_string

The	second	use	case	is	when	all	C	strings	that	are	being	processed
only	 contain	 ASCII	 encodable	 characters	 (e.g.	 numbers)	 and	 you
want	your	code	to	use	the	native	 legacy	string	 type	 in	Python	2	 for
them,	instead	of	always	using	Unicode.	In	this	case,	you	can	set	the
string	type	to	str:

#	cython:	c_string_type=str,	c_string_encoding=ascii

cdef	char*	c_string	=	'abcdefg'

#	implicit	decoding	in	Py3,	bytes	conversion	in	Py2:

cdef	object	py_str_object	=	c_string

#	explicit	conversion	to	Python	bytes:

py_bytes_object	=	<bytes>c_string

#	explicit	conversion	to	Python	unicode:

py_bytes_object	=	<unicode>c_string

The	 other	 direction,	 i.e.	 automatic	 encoding	 to	 C	 strings,	 is	 only
supported	for	the	ASCII	codec	(and	the	“default	encoding”,	which	is
runtime	 specific	 and	 may	 or	 may	 not	 be	 ASCII).	 This	 is	 because
CPython	handles	the	memory	management	 in	this	case	by	keeping
an	encoded	copy	of	the	string	alive	together	with	the	original	unicode
string.	Otherwise,	 there	would	be	no	way	 to	 limit	 the	 lifetime	of	 the
encoded	 string	 in	 any	 sensible	way,	 thus	 rendering	 any	 attempt	 to
extract	a	C	string	pointer	from	it	a	dangerous	endeavour.	As	long	as
you	stick	to	the	ASCII	encoding	for	the	c_string_encoding	directive,
though,	the	following	will	work:

#	cython:	c_string_type=unicode,	c_string_encoding=ascii

def	func():

				ustring	=	u'abc'

				cdef	char*	s	=	ustring

				return	s[0]				#	returns	u'a'

(This	example	uses	a	 function	context	 in	order	 to	safely	control	 the
lifetime	 of	 the	 Unicode	 string.	 Global	 Python	 variables	 can	 be
modified	 from	the	outside,	which	makes	 it	dangerous	to	rely	on	the
lifetime	of	their	values.)

Source	code	encoding
When	string	literals	appear	in	the	code,	the	source	code	encoding	is
important.	It	determines	the	byte	sequence	that	Cython	will	store	 in
the	 C	 code	 for	 bytes	 literals,	 and	 the	 Unicode	 code	 points	 that
Cython	 builds	 for	 unicode	 literals	 when	 parsing	 the	 byte	 encoded
source	 file.	 Following	 PEP	 263,	 Cython	 supports	 the	 explicit
declaration	 of	 source	 file	 encodings.	 For	 example,	 putting	 the
following	 comment	 at	 the	 top	 of	 an	 ISO-8859-15	 (Latin-9)	 encoded
source	 file	 (into	 the	 first	 or	 second	 line)	 is	 required	 to	 enable	 ISO-
8859-15	decoding	in	the	parser:

#	-*-	coding:	ISO-8859-15	-*-

When	no	explicit	encoding	declaration	 is	provided,	 the	source	code
is	parsed	as	UTF-8	encoded	text,	as	specified	by	PEP	3120.	UTF-8
is	a	very	common	encoding	that	can	represent	the	entire	Unicode	set
of	characters	and	is	compatible	with	plain	ASCII	encoded	text	that	it
encodes	efficiently.	This	makes	it	a	very	good	choice	for	source	code
files	which	usually	consist	mostly	of	ASCII	characters.

As	 an	 example,	 putting	 the	 following	 line	 into	 a	 UTF-8	 encoded
source	 file	will	 print	 5,	 as	UTF-8	 encodes	 the	 letter	 'ö'	 in	 the	 two
byte	sequence	'\xc3\xb6':

print(len(b'abcö'))

whereas	 the	 following	 ISO-8859-15	 encoded	 source	 file	will	 print	 4,
as	the	encoding	uses	only	1	byte	for	this	letter:

#	-*-	coding:	ISO-8859-15	-*-

print(len(b'abcö'))

http://www.python.org/dev/peps/pep-0263/
http://www.python.org/dev/peps/pep-3120/
http://en.wikipedia.org/wiki/UTF-8

Note	 that	 the	 unicode	 literal	 u'abcö'	 is	 a	 correctly	 decoded	 four
character	 Unicode	 string	 in	 both	 cases,	 whereas	 the	 unprefixed
Python	str	literal	'abcö'	will	become	a	byte	string	in	Python	2	(thus
having	 length	 4	 or	 5	 in	 the	 examples	 above),	 and	 a	 4	 character
Unicode	 string	 in	 Python	 3.	 If	 you	 are	 not	 familiar	 with	 encodings,
this	may	not	appear	obvious	at	first	read.	See	CEP	108	for	details.

As	 a	 rule	 of	 thumb,	 it	 is	 best	 to	 avoid	 unprefixed	 non-ASCII	 str
literals	 and	 to	 use	 unicode	 string	 literals	 for	 all	 text.	 Cython	 also
supports	 the	 __future__	 import	 unicode_literals	 that	 instructs	 the
parser	 to	read	all	unprefixed	 str	 literals	 in	a	source	 file	as	unicode
string	literals,	just	like	Python	3.

http://wiki.cython.org/enhancements/stringliterals

Single	bytes	and	characters
The	Python	C-API	uses	the	normal	C	char	type	to	represent	a	byte
value,	but	 it	has	two	special	 integer	types	for	a	Unicode	code	point
value,	 i.e.	 a	 single	 Unicode	 character:	 Py_UNICODE	 and	 Py_UCS4.
Since	 version	 0.13,	 Cython	 supports	 the	 first	 natively,	 support	 for
Py_UCS4	 is	 new	 in	Cython	 0.15.	 Py_UNICODE	 is	 either	 defined	 as	 an
unsigned	2-byte	or	4-byte	 integer,	or	as	 wchar_t,	depending	on	 the
platform.	The	exact	type	is	a	compile	time	option	in	the	build	of	the
CPython	interpreter	and	extension	modules	inherit	this	definition	at	C
compile	time.	The	advantage	of	Py_UCS4	is	that	it	is	guaranteed	to	be
large	 enough	 for	 any	 Unicode	 code	 point	 value,	 regardless	 of	 the
platform.	It	is	defined	as	a	32bit	unsigned	int	or	long.

In	Cython,	the	char	type	behaves	differently	from	the	Py_UNICODE	and
Py_UCS4	 types	 when	 coercing	 to	 Python	 objects.	 Similar	 to	 the
behaviour	of	the	bytes	type	in	Python	3,	the	char	 type	coerces	to	a
Python	 integer	value	by	default,	so	 that	 the	 following	prints	65	and
not	A:

#	-*-	coding:	ASCII	-*-

cdef	char	char_val	=	'A'

assert	char_val	==	65			#	ASCII	encoded	byte	value	of	'A'

print(char_val)

If	 you	 want	 a	 Python	 bytes	 string	 instead,	 you	 have	 to	 request	 it
explicitly,	and	the	following	will	print	A	(or	b'A'	in	Python	3):

print(<bytes>char_val)

The	explicit	coercion	works	for	any	C	integer	type.	Values	outside	of
the	range	of	a	char	or	unsigned	char	will	 raise	an	 OverflowError	at

http://docs.python.org/3.3/c-api/unicode.html#Py_UNICODE
http://docs.python.org/3.3/c-api/unicode.html#Py_UCS4
http://docs.python.org/3.3/c-api/unicode.html#Py_UCS4
http://docs.python.org/3.3/c-api/unicode.html#Py_UNICODE
http://docs.python.org/3.3/c-api/unicode.html#Py_UCS4
http://docs.python.org/3.3/c-api/unicode.html#Py_UNICODE
http://docs.python.org/3.3/c-api/unicode.html#Py_UCS4

runtime.	Coercion	will	also	happen	automatically	when	assigning	to	a
typed	variable,	e.g.:

cdef	bytes	py_byte_string

py_byte_string	=	char_val

On	the	other	hand,	the	Py_UNICODE	and	Py_UCS4	types	are	rarely	used
outside	 of	 the	 context	 of	 a	 Python	 unicode	 string,	 so	 their	 default
behaviour	is	to	coerce	to	a	Python	unicode	object.	The	following	will
therefore	 print	 the	 character	 A,	 as	 would	 the	 same	 code	 with	 the
Py_UNICODE	type:

cdef	Py_UCS4	uchar_val	=	u'A'

assert	uchar_val	==	65	#	character	point	value	of	u'A'

print(uchar_val)

Again,	explicit	casting	will	allow	users	to	override	this	behaviour.	The
following	will	print	65:

cdef	Py_UCS4	uchar_val	=	u'A'

print(<long>uchar_val)

Note	that	casting	to	a	C	long	 (or	 unsigned	long)	will	work	 just	 fine,
as	the	maximum	code	point	value	that	a	Unicode	character	can	have
is	1114111	(0x10FFFF).	On	platforms	with	32bit	or	more,	int	is	just	as
good.

http://docs.python.org/3.3/c-api/unicode.html#Py_UNICODE
http://docs.python.org/3.3/c-api/unicode.html#Py_UCS4
http://docs.python.org/3.3/c-api/unicode.html#Py_UNICODE

Narrow	Unicode	builds
In	narrow	Unicode	builds	of	CPython	before	version	3.3,	 i.e.	builds
where	 sys.maxunicode	 is	 65535	 (such	 as	 all	 Windows	 builds,	 as
opposed	to	1114111	in	wide	builds),	it	is	still	possible	to	use	Unicode
character	code	points	that	do	not	fit	 into	the	16	bit	wide	Py_UNICODE
type.	 For	 example,	 such	 a	 CPython	 build	 will	 accept	 the	 unicode
literal	u'\U00012345'.	However,	the	underlying	system	level	encoding
leaks	into	Python	space	in	this	case,	so	that	the	length	of	this	literal
becomes	 2	 instead	 of	 1.	 This	 also	 shows	when	 iterating	 over	 it	 or
when	 indexing	 into	 it.	 The	 visible	 substrings	 are	 u'\uD808'	 and
u'\uDF45'	in	this	example.	They	form	a	so-called	surrogate	pair	that
represents	the	above	character.

For	more	information	on	this	topic,	 it	 is	worth	reading	the	Wikipedia
article	about	the	UTF-16	encoding.

The	same	properties	apply	to	Cython	code	that	gets	compiled	for	a
narrow	 CPython	 runtime	 environment.	 In	 most	 cases,	 e.g.	 when
searching	for	a	substring,	this	difference	can	be	ignored	as	both	the
text	and	the	substring	will	contain	the	surrogates.	So	most	Unicode
processing	code	will	work	correctly	also	on	narrow	builds.	Encoding,
decoding	and	printing	will	work	as	expected,	so	that	the	above	literal
turns	into	exactly	the	same	byte	sequence	on	both	narrow	and	wide
Unicode	platforms.

However,	 programmers	 should	 be	 aware	 that	 a	 single	 Py_UNICODE
value	 (or	 single	 ‘character’	 unicode	 string	 in	CPython)	may	 not	 be
enough	 to	 represent	 a	 complete	 Unicode	 character	 on	 narrow
platforms.	For	example,	if	an	independent	search	for	u'\uD808'	and
u'\uDF45'	 in	 a	 unicode	 string	 succeeds,	 this	 does	 not	 necessarily
mean	 that	 the	 character	 u'\U00012345	 is	 part	 of	 that	 string.	 It	may

http://docs.python.org/3.3/c-api/unicode.html#Py_UNICODE
http://en.wikipedia.org/wiki/UTF-16/UCS-2
http://docs.python.org/3.3/c-api/unicode.html#Py_UNICODE

well	be	that	two	different	characters	are	in	the	string	that	just	happen
to	 share	 a	 code	 unit	 with	 the	 surrogate	 pair	 of	 the	 character	 in
question.	 Looking	 for	 substrings	 works	 correctly	 because	 the	 two
code	units	in	the	surrogate	pair	use	distinct	value	ranges,	so	the	pair
is	always	identifiable	in	a	sequence	of	code	points.

As	of	version	0.15,	Cython	has	extended	support	for	surrogate	pairs
so	that	you	can	safely	use	an	in	test	to	search	character	values	from
the	full	Py_UCS4	range	even	on	narrow	platforms:

cdef	Py_UCS4	uchar	=	0x12345

print(uchar	in	some_unicode_string)

Similarly,	 it	 can	 coerce	 a	 one	 character	 string	with	 a	 high	Unicode
code	 point	 value	 to	 a	 Py_UCS4	 value	 on	 both	 narrow	 and	 wide
Unicode	platforms:

cdef	Py_UCS4	uchar	=	u'\U00012345'

assert	uchar	==	0x12345

In	 CPython	 3.3	 and	 later,	 the	 Py_UNICODE	 type	 is	 an	 alias	 for	 the
system	 specific	 wchar_t	 type	 and	 is	 no	 longer	 tied	 to	 the	 internal
representation	of	the	Unicode	string.	Instead,	any	Unicode	character
can	 be	 represented	 on	 all	 platforms	 without	 resorting	 to	 surrogate
pairs.	 This	 implies	 that	 narrow	 builds	 no	 longer	 exist	 from	 that
version	on,	 regardless	 of	 the	 size	 of	 Py_UNICODE.	See	PEP	393	 for
details.

Cython	0.16	 and	 later	 handles	 this	 change	 internally	 and	 does	 the
right	 thing	 also	 for	 single	 character	 values	 as	 long	 as	 either	 type
inference	is	applied	to	untyped	variables	or	the	portable	Py_UCS4	type
is	explicitly	used	 in	the	source	code	instead	of	 the	platform	specific
Py_UNICODE	 type.	 Optimisations	 that	 Cython	 applies	 to	 the	 Python
unicode	type	will	automatically	adapt	to	PEP	393	at	C	compile	time,
as	usual.

http://docs.python.org/3.3/c-api/unicode.html#Py_UCS4
http://docs.python.org/3.3/c-api/unicode.html#Py_UNICODE
http://docs.python.org/3.3/c-api/unicode.html#Py_UNICODE
http://www.python.org/dev/peps/pep-0393/
http://docs.python.org/3.3/c-api/unicode.html#Py_UCS4
http://docs.python.org/3.3/c-api/unicode.html#Py_UNICODE

Iteration
Cython	 0.13	 supports	 efficient	 iteration	 over	 char*,	 bytes	 and
unicode	strings,	as	 long	as	 the	 loop	variable	 is	appropriately	 typed.
So	the	following	will	generate	the	expected	C	code:

cdef	char*	c_string	=	...

cdef	char	c

for	c	in	c_string[:100]:

				if	c	==	'A':	...

The	same	applies	to	bytes	objects:

cdef	bytes	bytes_string	=	...

cdef	char	c

for	c	in	bytes_string:

				if	c	==	'A':	...

For	 unicode	objects,	Cython	will	 automatically	 infer	 the	 type	 of	 the
loop	variable	as	Py_UCS4:

cdef	unicode	ustring	=	...

#	NOTE:	no	typing	required	for	'uchar'	!

for	uchar	in	ustring:

				if	uchar	==	u'A':	...

The	 automatic	 type	 inference	 usually	 leads	 to	much	more	 efficient
code	here.	However,	note	that	some	unicode	operations	still	require
the	value	to	be	a	Python	object,	so	Cython	may	end	up	generating
redundant	conversion	code	 for	 the	 loop	variable	value	 inside	of	 the
loop.	If	 this	 leads	to	a	performance	degradation	for	a	specific	piece
of	 code,	 you	 can	 either	 type	 the	 loop	 variable	 as	 a	 Python	 object
explicitly,	or	assign	 its	value	to	a	Python	typed	variable	somewhere
inside	 of	 the	 loop	 to	 enforce	 one-time	 coercion	 before	 running

http://docs.python.org/3.3/c-api/unicode.html#Py_UCS4

Python	operations	on	it.

There	are	also	optimisations	for	in	 tests,	so	that	the	following	code
will	run	in	plain	C	code,	(actually	using	a	switch	statement):

cdef	Py_UCS4	uchar_val	=	get_a_unicode_character()

if	uchar_val	in	u'abcABCxY':

				...

Combined	with	the	looping	optimisation	above,	this	can	result	in	very
efficient	character	switching	code,	e.g.	in	unicode	parsers.

Windows	and	wide	character	APIs
Windows	system	APIs	natively	support	Unicode	in	the	form	of	zero-
terminated	 UTF-16	 encoded	 wchar_t*	 strings,	 so	 called	 “wide
strings”.

By	 default,	 Windows	 builds	 of	 CPython	 define	 Py_UNICODE	 as	 a
synonym	 for	 wchar_t.	 This	 makes	 internal	 unicode	 representation
compatible	 with	 UTF-16	 and	 allows	 for	 efficient	 zero-copy
conversions.	 This	 also	 means	 that	 Windows	 builds	 are	 always
Narrow	Unicode	builds	with	all	the	caveats.

To	aid	interoperation	with	Windows	APIs,	Cython	0.19	supports	wide
strings	 (in	 the	 form	of	 Py_UNICODE*)	 and	 implicitly	 converts	 them	 to
and	 from	 unicode	 string	 objects.	 These	 conversions	 behave	 the
same	way	as	 they	do	 for	 char*	and	 bytes	as	described	 in	Passing
byte	strings.

In	addition	to	automatic	conversion,	unicode	literals	that	appear	in	C
context	become	C-level	wide	string	literals	and	len()	built-in	function
is	specialized	to	compute	the	length	of	zero-terminated	Py_UNICODE*
string	or	array.

Here	 is	 an	 example	 of	 how	 one	 would	 call	 a	 Unicode	 API	 on
Windows:

cdef	extern	from	"Windows.h":

				ctypedef	Py_UNICODE	WCHAR

				ctypedef	const	WCHAR*	LPCWSTR

				ctypedef	void*	HWND

				int	MessageBoxW(HWND	hWnd,	LPCWSTR	lpText,	LPCWSTR	lpCaption,	

title	=	u"Windows	Interop	Demo	-	Python	%d.%d.%d"	%	sys.version_info

MessageBoxW(NULL,	u"Hello	Cython	\u263a",	title,	0)

http://docs.python.org/3.3/c-api/unicode.html#Py_UNICODE
http://docs.python.org/3.3/library/functions.html#len

Warning: 	The	use	of	Py_UNICODE*	strings	outside	of	Windows	is
strongly	discouraged.	Py_UNICODE	is	inherently	not	portable
between	different	platforms	and	Python	versions.

CPython	 3.3	 has	 moved	 to	 a	 flexible	 internal	 representation	 of
unicode	 strings	 (PEP	 393),	 making	 all	 Py_UNICODE	 related	 APIs
deprecated	and	inefficient.

One	consequence	of	CPython	3.3	changes	is	that	len()	of	unicode
strings	 is	 always	 measured	 in	 code	 points	 (“characters”),	 while
Windows	API	expect	the	number	of	UTF-16	code	units	(where	each
surrogate	is	counted	individually).	To	always	get	the	number	of	code
units,	call	PyUnicode_GetSize()	directly.

nextprevious	|Cython	0.19.1	documentation	»	Tutorials	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://docs.python.org/3.3/c-api/unicode.html#Py_UNICODE
http://www.python.org/dev/peps/pep-0393
http://docs.python.org/3.3/c-api/unicode.html#Py_UNICODE
http://docs.python.org/3.3/library/functions.html#len
http://docs.python.org/3.3/c-api/unicode.html#PyUnicode_GetSize
http://sphinx.pocoo.org/

nextprevious	|Cython	0.19.1	documentation	»	Tutorials	»

Pure	Python	Mode
Cython	 provides	 language	 constructs	 to	 let	 the	 same	 file	 be	 either
interpreted	or	compiled.	This	 is	accomplished	by	 the	same	 “magic”
module	cython	that	directives	use	and	which	must	be	imported.	This
is	available	for	both	.py	and	.pyx	files.

This	 is	 accomplished	 via	 special	 functions	 and	 decorators	 and	 an
(optional)	augmenting	.pxd	file.

Magic	Attributes
The	currently	supported	attributes	of	the	cython	module	are:

declare	 declares	 a	 typed	 variable	 in	 the	 current	 scope,	 which
can	be	used	in	place	of	the	cdef	type	var	[=	value]	construct.
This	 has	 two	 forms,	 the	 first	 as	 an	 assignment	 (useful	 as	 it
creates	a	declaration	in	interpreted	mode	as	well):

x	=	cython.declare(cython.int)													#	cdef	int	x

y	=	cython.declare(cython.double,	0.57721)	#	cdef	double	y	=	0.57721

and	the	second	mode	as	a	simple	function	call:

cython.declare(x=cython.int,	y=cython.double)	#	cdef	int	x;	cdef	double	y

locals	 is	a	decorator	 that	 is	used	 to	specify	 the	 types	of	 local
variables	 in	 the	 function	 body	 (including	 any	 or	 all	 of	 the
argument	types):

@cython.locals(a=cython.double,	b=cython.double,	n=cython.p_double

def	foo(a,	b,	x,	y):

				...

address	is	used	in	place	of	the	&	operator:

cython.declare(x=cython.int,	x_ptr=cython.p_int)

x_ptr	=	cython.address(x)

sizeof	emulates	the	sizeof	operator.	It	can	take	both	types	and
expressions.:

cython.declare(n=cython.longlong)

print	cython.sizeof(cython.longlong),	cython.sizeof(n)

struct	can	be	used	to	create	struct	types.:

MyStruct	=	cython.struct(x=cython.int,	y=cython.int,	data=cython

a	=	cython.declare(MyStruct)

is	equivalent	to	the	code:

cdef	struct	MyStruct:

				int	x

				int	y

				double	data

cdef	MyStruct	a

union	 creates	 union	 types	 with	 exactly	 the	 same	 syntax	 as
struct

typedef	creates	a	new	type:

T	=	cython.typedef(cython.p_int)			#	ctypedef	int*	T

compiled	 is	 a	 special	 variable	 which	 is	 set	 to	 True	 when	 the
compiler	runs,	and	False	in	the	interpreter.	Thus	the	code:

if	cython.compiled:

				print	"Yep,	I'm	compiled."

else:

				print	"Just	a	lowly	interpreted	script."

will	behave	differently	depending	on	whether	or	not	the	code	is
loaded	as	a	compiled	.so	file	or	a	plain	.py	file.

Augmenting	.pxd
If	 a	 .pxd	 file	 is	 found	with	 the	 same	 name	 as	 a	 .py	 file,	 it	 will	 be
searched	for	cdef	classes	and	cdef/cpdef	functions	and	methods.	It
will	then	convert	the	corresponding	classes/functions/methods	in	the
.py	file	to	be	of	the	correct	type.	Thus	if	one	had	a.pxd:

cdef	class	A:

				cpdef	foo(self,	int	i)

the	file	a.py:

class	A:

				def	foo(self,	i):

								print	"Big"	if	i	>	1000	else	"Small"

would	be	interpreted	as:

cdef	class	A:

				cpdef	foo(self,	int	i):

								print	"Big"	if	i	>	1000	else	"Small"

The	 special	 Cython	module	 can	 also	 be	 imported	 and	 used	within
the	augmenting	 .pxd	 file.	 This	makes	 it	 possible	 to	 add	 types	 to	 a
pure	 Python	 file	 without	 changing	 the	 file	 itself.	 For	 example,	 the
following	Python	file	dostuff.py:

def	dostuff(n):

				t	=	0

				for	i	in	range(n):

								t	+=	i

				return	t

could	be	augmented	with	the	following	.pxd	file	dostuff.pxd:

import	cython

@cython.locals(t	=	cython.int,	i	=	cython.int)

cpdef	int	dostuff(int	n)

Besides	the	cython.locals	decorator,	the	cython.declare()	 function
can	also	be	used	to	add	types	to	global	variables	in	the	augmenting
.pxd	file.

Note	that	normal	Python	(def)	functions	cannot	be	declared	in	.pxd
files,	 so	 it	 is	 currently	 impossible	 to	 override	 the	 types	 of	 Python
functions	in	.pxd	files	if	they	use	*args	or	**kwargs	in	their	signature,
for	instance.

http://docs.python.org/3.3/reference/compound_stmts.html#def

Types
There	are	numerous	types	built	in	to	the	Cython	module.	One	has	all
the	 standard	C	 types,	 namely	 char,	 short,	 int,	 long,	 longlong	 as
well	 as	 their	 unsigned	 versions	 uchar,	 ushort,	 uint,	 ulong,
ulonglong.	One	also	has	bint	and	Py_ssize_t.	For	each	type,	there
are	 pointer	 types	 p_int,	 pp_int,	 .	 .	 .,	 up	 to	 three	 levels	 deep	 in
interpreted	mode,	and	infinitely	deep	in	compiled	mode.	The	Python
types	 int,	 long	 and	 bool	 are	 interpreted	 as	 C	 int,	 long	 and	 bint
respectively.	Also,	 the	Python	 types	 list,	 dict,	 tuple,	 .	 .	 .	may	be
used,	as	well	as	any	user	defined	types.

Pointer	types	may	be	constructed	with	cython.pointer(cython.int),
and	arrays	as	cython.int[10].	A	limited	attempt	is	made	to	emulate
these	more	complex	types,	but	only	so	much	can	be	done	from	the
Python	language.

Extension	types	and	cdef	functions
Use	the	@cython.cclass	decorator	to	create	a	cdef	class.

Use	 the	 @cython.cfunc	 decorator	 for	 cdef	 functions	 and	 the
@cython.ccall	decorators	for	cpdef	functions	respectively.	To	declare
the	 argument	 types,	 use	 the	 @cython.locals()	 decorator.	 For	 the
return	type,	use	@cython.returns(a_type).

Here	is	an	example	of	a	cdef	function:

@cython.cfunc

@cython.returns(cython.bint)

@cython.locals(a=cython.int,	b=cython.int)

def	c_compare(a,b):

				return	a	==	b

nextprevious	|Cython	0.19.1	documentation	»	Tutorials	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

nextprevious	|Cython	0.19.1	documentation	»	Tutorials	»

Working	with	NumPy
You	 can	 use	 NumPy	 from	 Cython	 exactly	 the	 same	 as	 in	 regular
Python,	 but	 by	 doing	 so	 you	 are	 loosing	 potentially	 high	 speedups
because	Cython	has	support	for	fast	access	to	NumPy	arrays.	Let’s
see	how	this	works	with	a	simple	example.

The	 code	 below	 does	 2D	 discrete	 convolution	 of	 an	 image	 with	 a
filter	(and	I’m	sure	you	can	do	better!,	 let	 it	serve	for	demonstration
purposes).	It	is	both	valid	Python	and	valid	Cython	code.	I’ll	refer	to	it
as	both	convolve_py.py	for	the	Python	version	and	convolve1.pyx	for
the	Cython	version	–	Cython	uses	”.pyx”	as	its	file	suffix.

from	__future__	import	division

import	numpy	as	np

def	naive_convolve(f,	g):

				#	f	is	an	image	and	is	indexed	by	(v,	w)

				#	g	is	a	filter	kernel	and	is	indexed	by	(s,	t),

				#			it	needs	odd	dimensions

				#	h	is	the	output	image	and	is	indexed	by	(x,	y),

				#			it	is	not	cropped

				if	g.shape[0]	%	2	!=	1	or	g.shape[1]	%	2	!=	1:

								raise	ValueError("Only	odd	dimensions	on	filter	supported"

				#	smid	and	tmid	are	number	of	pixels	between	the	center	pixel

				#	and	the	edge,	ie	for	a	5x5	filter	they	will	be	2.

				#

				#	The	output	size	is	calculated	by	adding	smid,	tmid	to	each

				#	side	of	the	dimensions	of	the	input	image.

				vmax	=	f.shape[0]

				wmax	=	f.shape[1]

				smax	=	g.shape[0]

				tmax	=	g.shape[1]

				smid	=	smax	//	2

				tmid	=	tmax	//	2

				xmax	=	vmax	+	2*smid

				ymax	=	wmax	+	2*tmid

				#	Allocate	result	image.

				h	=	np.zeros([xmax,	ymax],	dtype=f.dtype)

				#	Do	convolution

				for	x	in	range(xmax):

								for	y	in	range(ymax):

												#	Calculate	pixel	value	for	h	at	(x,y).	Sum	one	component

												#	for	each	pixel	(s,	t)	of	the	filter	g.

												s_from	=	max(smid	-	x,	-smid)

												s_to	=	min((xmax	-	x)	-	smid,	smid	+	1)

												t_from	=	max(tmid	-	y,	-tmid)

												t_to	=	min((ymax	-	y)	-	tmid,	tmid	+	1)

												value	=	0

												for	s	in	range(s_from,	s_to):

																for	t	in	range(t_from,	t_to):

																				v	=	x	-	smid	+	s

																				w	=	y	-	tmid	+	t

																				value	+=	g[smid	-	s,	tmid	-	t]	*	f[v,	w]

												h[x,	y]	=	value

				return	h

This	should	be	compiled	to	produce	yourmod.so	(for	Linux	systems).
We	run	a	Python	session	to	 test	both	 the	Python	version	(imported
from	.py-file)	and	the	compiled	Cython	module.

In	[1]:	import	numpy	as	np

In	[2]:	import	convolve_py

In	[3]:	convolve_py.naive_convolve(np.array([[1,	1,	1]],	dtype=np.

...					np.array([[1],[2],[1]],	dtype=np.int))

Out	[3]:

array([[1,	1,	1],

				[2,	2,	2],

				[1,	1,	1]])

In	[4]:	import	convolve1

In	[4]:	convolve1.naive_convolve(np.array([[1,	1,	1]],	dtype=np.int

...					np.array([[1],[2],[1]],	dtype=np.int))

Out	[4]:

array([[1,	1,	1],

				[2,	2,	2],

				[1,	1,	1]])

In	[11]:	N	=	100

In	[12]:	f	=	np.arange(N*N,	dtype=np.int).reshape((N,N))

In	[13]:	g	=	np.arange(81,	dtype=np.int).reshape((9,	9))

In	[19]:	%timeit	-n2	-r3	convolve_py.naive_convolve(f,	g)

2	loops,	best	of	3:	1.86	s	per	loop

In	[20]:	%timeit	-n2	-r3	convolve1.naive_convolve(f,	g)

2	loops,	best	of	3:	1.41	s	per	loop

There’s	 not	 such	 a	 huge	 difference	 yet;	 because	 the	 C	 code	 still
does	 exactly	 what	 the	 Python	 interpreter	 does	 (meaning,	 for
instance,	that	a	new	object	is	allocated	for	each	number	used).	Look
at	 the	 generated	 html	 file	 and	 see	 what	 is	 needed	 for	 even	 the
simplest	 statements	 you	 get	 the	 point	 quickly.	 We	 need	 to	 give
Cython	more	information;	we	need	to	add	types.

Adding	types
To	add	types	we	use	custom	Cython	syntax,	so	we	are	now	breaking
Python	 source	 compatibility.	 Consider	 this	 code	 (read	 the
comments!)

from	__future__	import	division

import	numpy	as	np

#	"cimport"	is	used	to	import	special	compile-time	information

#	about	the	numpy	module	(this	is	stored	in	a	file	numpy.pxd	which	is

#	currently	part	of	the	Cython	distribution).

cimport	numpy	as	np

#	We	now	need	to	fix	a	datatype	for	our	arrays.	I've	used	the	variable

#	DTYPE	for	this,	which	is	assigned	to	the	usual	NumPy	runtime

#	type	info	object.

DTYPE	=	np.int

#	"ctypedef"	assigns	a	corresponding	compile-time	type	to	DTYPE_t.	For

#	every	type	in	the	numpy	module	there's	a	corresponding	compile-time

#	type	with	a	_t-suffix.

ctypedef	np.int_t	DTYPE_t

#	"def"	can	type	its	arguments	but	not	have	a	return	type.	The	type	of	the

#	arguments	for	a	"def"	function	is	checked	at	run-time	when	entering	the

#	function.

#

#	The	arrays	f,	g	and	h	is	typed	as	"np.ndarray"	instances.	The	only	effect

#	this	has	is	to	a)	insert	checks	that	the	function	arguments	really	are

#	NumPy	arrays,	and	b)	make	some	attribute	access	like	f.shape[0]	much

#	more	efficient.	(In	this	example	this	doesn't	matter	though.)

def	naive_convolve(np.ndarray	f,	np.ndarray	g):

				if	g.shape[0]	%	2	!=	1	or	g.shape[1]	%	2	!=	1:

								raise	ValueError("Only	odd	dimensions	on	filter	supported"

				assert	f.dtype	==	DTYPE	and	g.dtype	==	DTYPE

				#	The	"cdef"	keyword	is	also	used	within	functions	to	type	variables.	It

				#	can	only	be	used	at	the	top	indendation	level	(there	are	non-trivial

				#	problems	with	allowing	them	in	other	places,	though	we'd	love	to	see

				#	good	and	thought	out	proposals	for	it).

				#

				#	For	the	indices,	the	"int"	type	is	used.	This	corresponds	to	a	C	int,

				#	other	C	types	(like	"unsigned	int")	could	have	been	used	instead.

				#	Purists	could	use	"Py_ssize_t"	which	is	the	proper	Python	type	for

				#	array	indices.

				cdef	int	vmax	=	f.shape[0]

				cdef	int	wmax	=	f.shape[1]

				cdef	int	smax	=	g.shape[0]

				cdef	int	tmax	=	g.shape[1]

				cdef	int	smid	=	smax	//	2

				cdef	int	tmid	=	tmax	//	2

				cdef	int	xmax	=	vmax	+	2*smid

				cdef	int	ymax	=	wmax	+	2*tmid

				cdef	np.ndarray	h	=	np.zeros([xmax,	ymax],	dtype=DTYPE)

				cdef	int	x,	y,	s,	t,	v,	w

				#	It	is	very	important	to	type	ALL	your	variables.	You	do	not	get	any

				#	warnings	if	not,	only	much	slower	code	(they	are	implicitly	typed	as

				#	Python	objects).

				cdef	int	s_from,	s_to,	t_from,	t_to

				#	For	the	value	variable,	we	want	to	use	the	same	data	type	as	is

				#	stored	in	the	array,	so	we	use	"DTYPE_t"	as	defined	above.

				#	NB!	An	important	side-effect	of	this	is	that	if	"value"	overflows	its

				#	datatype	size,	it	will	simply	wrap	around	like	in	C,	rather	than	raise

				#	an	error	like	in	Python.

				cdef	DTYPE_t	value

				for	x	in	range(xmax):

								for	y	in	range(ymax):

												s_from	=	max(smid	-	x,	-smid)

												s_to	=	min((xmax	-	x)	-	smid,	smid	+	1)

												t_from	=	max(tmid	-	y,	-tmid)

												t_to	=	min((ymax	-	y)	-	tmid,	tmid	+	1)

												value	=	0

												for	s	in	range(s_from,	s_to):

																for	t	in	range(t_from,	t_to):

																				v	=	x	-	smid	+	s

																				w	=	y	-	tmid	+	t

																				value	+=	g[smid	-	s,	tmid	-	t]	*	f[v,	w]

												h[x,	y]	=	value

				return	h

After	building	 this	and	continuing	my	 (very	 informal)	 benchmarks,	 I
get:

In	[21]:	import	convolve2

In	[22]:	%timeit	-n2	-r3	convolve2.naive_convolve(f,	g)

2	loops,	best	of	3:	828	ms	per	loop

Efficient	indexing
There’s	 still	 a	 bottleneck	 killing	 performance,	 and	 that	 is	 the	 array
lookups	 and	 assignments.	 The	 []-operator	 still	 uses	 full	 Python
operations	–	what	we	would	like	to	do	instead	is	to	access	the	data
buffer	directly	at	C	speed.

What	 we	 need	 to	 do	 then	 is	 to	 type	 the	 contents	 of	 the	 ndarray
objects.	We	do	this	with	a	special	“buffer”	syntax	which	must	be	told
the	 datatype	 (first	 argument)	 and	 number	 of	 dimensions	 (“ndim”
keyword-only	 argument,	 if	 not	 provided	 then	 one-dimensional	 is
assumed).

These	are	the	needed	changes:

...

def	naive_convolve(np.ndarray[DTYPE_t,	ndim=2]	f,	np.ndarray[DTYPE_t

...

cdef	np.ndarray[DTYPE_t,	ndim=2]	h	=	...

Usage:

In	[18]:	import	convolve3

In	[19]:	%timeit	-n3	-r100	convolve3.naive_convolve(f,	g)

3	loops,	best	of	100:	11.6	ms	per	loop

Note	the	importance	of	this	change.

Gotcha:	This	efficient	indexing	only	affects	certain	index	operations,
namely	those	with	exactly	ndim	number	of	typed	integer	indices.	So	if
v	for	instance	isn’t	typed,	then	the	lookup	f[v,	w]	isn’t	optimized.	On
the	 other	 hand	 this	 means	 that	 you	 can	 continue	 using	 Python
objects	for	sophisticated	dynamic	slicing	etc.	just	as	when	the	array
is	not	typed.

Tuning	indexing	further
The	array	lookups	are	still	slowed	down	by	two	factors:

1.	 Bounds	checking	is	performed.

2.	 Negative	 indices	 are	 checked	 for	 and	 handled	 correctly.	 The
code	 above	 is	 explicitly	 coded	 so	 that	 it	 doesn’t	 use	 negative
indices,	and	it	(hopefully)	always	access	within	bounds.	We	can
add	a	decorator	to	disable	bounds	checking:

...

cimport	cython

@cython.boundscheck(False)	#	turn	of	bounds-checking	for	entire	function

def	naive_convolve(np.ndarray[DTYPE_t,	ndim=2]	f,	np.ndarray[

...

Now	bounds	checking	is	not	performed	(and,	as	a	side-effect,	if	you
‘’do’’	happen	to	access	out	of	bounds	you	will	in	the	best	case	crash
your	 program	and	 in	 the	worst	 case	 corrupt	 data).	 It	 is	 possible	 to
switch	 bounds-checking	 mode	 in	 many	 ways,	 see
[:reference/directives:compiler	directives]	for	more	information.

Negative	 indices	are	dealt	with	by	ensuring	Cython	 that	 the	 indices
will	be	positive,	by	casting	the	variables	to	unsigned	integer	types	(if
you	 do	 have	 negative	 values,	 then	 this	 casting	 will	 create	 a	 very
large	 positive	 value	 instead	 and	 you	will	 attempt	 to	 access	 out-of-
bounds	values).	Casting	is	done	with	a	special	<>-syntax.	The	code
below	 is	 changed	 to	 use	 either	 unsigned	 ints	 or	 casting	 as
appropriate:

...

cdef	int	s,	t																																																																												

cdef	unsigned	int	x,	y,	v,	w																																																													

cdef	int	s_from,	s_to,	t_from,	t_to

cdef	DTYPE_t	value

for	x	in	range(xmax):

				for	y	in	range(ymax):

								s_from	=	max(smid	-	x,	-smid)

								s_to	=	min((xmax	-	x)	-	smid,	smid	+	1)

								t_from	=	max(tmid	-	y,	-tmid)

								t_to	=	min((ymax	-	y)	-	tmid,	tmid	+	1)

								value	=	0

								for	s	in	range(s_from,	s_to):

												for	t	in	range(t_from,	t_to):

																v	=	<unsigned	int>(x	-	smid	+	s)																																									

																w	=	<unsigned	int>(y	-	tmid	+	t)																																									

																value	+=	g[<unsigned	int>(smid	-	s),	<unsigned	int

								h[x,	y]	=	value

...

The	function	call	overhead	now	starts	to	play	a	role,	so	we	compare
the	latter	two	examples	with	larger	N:

In	[11]:	%timeit	-n3	-r100	convolve4.naive_convolve(f,	g)

3	loops,	best	of	100:	5.97	ms	per	loop

In	[12]:	N	=	1000

In	[13]:	f	=	np.arange(N*N,	dtype=np.int).reshape((N,N))

In	[14]:	g	=	np.arange(81,	dtype=np.int).reshape((9,	9))

In	[17]:	%timeit	-n1	-r10	convolve3.naive_convolve(f,	g)

1	loops,	best	of	10:	1.16	s	per	loop

In	[18]:	%timeit	-n1	-r10	convolve4.naive_convolve(f,	g)

1	loops,	best	of	10:	597	ms	per	loop

(Also	this	is	a	mixed	benchmark	as	the	result	array	is	allocated	within
the	function	call.)

Warning: 	Speed	comes	with	some	cost.	Especially	it	can	be
dangerous	to	set	typed	objects	(like	f,	g	and	h	in	our	sample	code)
to	None.	Setting	such	objects	to	None	is	entirely	legal,	but	all	you
can	do	with	them	is	check	whether	they	are	None.	All	other	use
(attribute	lookup	or	indexing)	can	potentially	segfault	or	corrupt
data	(rather	than	raising	exceptions	as	they	would	in	Python).

The	actual	rules	are	a	bit	more	complicated	but	the	main	message

is	clear:	Do	not	use	typed	objects	without	knowing	that	they	are	not
set	to	None.

More	generic	code
It	would	be	possible	to	do:

def	naive_convolve(object[DTYPE_t,	ndim=2]	f,	...):

i.e.	 use	 object	 rather	 than	 np.ndarray.	 Under	 Python	 3.0	 this	 can
allow	your	algorithm	to	work	with	any	 libraries	supporting	the	buffer
interface;	and	support	for	e.g.	the	Python	Imaging	Library	may	easily
be	added	if	someone	is	interested	also	under	Python	2.x.

There	 is	 some	 speed	 penalty	 to	 this	 though	 (as	 one	makes	more
assumptions	compile-time	if	the	type	is	set	to	np.ndarray,	specifically
it	is	assumed	that	the	data	is	stored	in	pure	strided	mode	and	not	in
indirect	mode).

nextprevious	|Cython	0.19.1	documentation	»	Tutorials	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://docs.python.org/3.3/library/functions.html#object
http://sphinx.pocoo.org/

nextprevious	|Cython	0.19.1	documentation	»	Tutorials	»

Further	reading
The	main	documentation	is	located	at	http://docs.cython.org/.	Some
recent	 features	might	 not	 have	 documentation	 written	 yet,	 in	 such
cases	 some	 notes	 can	 usually	 be	 found	 in	 the	 form	 of	 a	 Cython
Enhancement	 Proposal	 (CEP)	 on
http://wiki.cython.org/enhancements.

[Seljebotn09]	 contains	more	 information	 about	 Cython	 and	NumPy
arrays.	If	you	intend	to	use	Cython	code	in	a	multi-threaded	setting,	it
is	essential	to	read	up	on	Cython’s	features	for	managing	the	Global
Interpreter	Lock	(the	GIL).	The	same	paper	contains	an	explanation
of	the	GIL,	and	the	main	documentation	explains	the	Cython	features
for	managing	it.

Finally,	 don’t	 hesitate	 to	 ask	 questions	 (or	 post	 reports	 on
successes!)	on	the	Cython	users	mailing	 list	 [UserList].	The	Cython
developer	 mailing	 list,	 [DevList],	 is	 also	 open	 to	 everybody,	 but
focusses	on	core	development	issues.	Feel	free	to	use	it	to	report	a
clear	bug,	 to	ask	 for	guidance	 if	you	have	time	to	spare	to	develop
Cython,	or	if	you	have	suggestions	for	future	development.

[DevList] Cython	developer	mailing	list:
http://mail.python.org/mailman/listinfo/cython-devel

[Seljebotn09]
D.	S.	Seljebotn,	Fast	numerical	computations	with
Cython,	Proceedings	of	the	8th	Python	in	Science
Conference,	2009.

[UserList] Cython	users	mailing	list:
http://groups.google.com/group/cython-users

nextprevious	|Cython	0.19.1	documentation	»	Tutorials	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://docs.cython.org/
http://wiki.cython.org/enhancements
http://mail.python.org/mailman/listinfo/cython-devel
http://groups.google.com/group/cython-users
http://sphinx.pocoo.org/

nextprevious	|Cython	0.19.1	documentation	»	Tutorials	»

Related	work
Pyrex	 [Pyrex]	 is	 the	 compiler	 project	 that	 Cython	 was	 originally
based	 on.	 Many	 features	 and	 the	 major	 design	 decisions	 of	 the
Cython	 language	 were	 developed	 by	 Greg	 Ewing	 as	 part	 of	 that
project.	 Today,	 Cython	 supersedes	 the	 capabilities	 of	 Pyrex	 by
providing	 a	 substantially	 higher	 compatibility	with	Python	 code	and
Python	 semantics,	 as	 well	 as	 superior	 optimisations	 and	 better
integration	with	scientific	Python	extensions	like	NumPy.

ctypes	 [ctypes]	 is	 a	 foreign	 function	 interface	 (FFI)	 for	 Python.	 It
provides	 C	 compatible	 data	 types,	 and	 allows	 calling	 functions	 in
DLLs	 or	 shared	 libraries.	 It	 can	 be	 used	 to	wrap	 these	 libraries	 in
pure	Python	code.	Compared	to	Cython,	it	has	the	major	advantage
of	being	in	the	standard	library	and	being	usable	directly	from	Python
code,	without	any	additional	dependencies.	The	major	drawback	 is
its	performance,	which	suffers	 from	the	Python	call	overhead	as	all
operations	 must	 pass	 through	 Python	 code	 first.	 Cython,	 being	 a
compiled	 language,	 can	 avoid	 much	 of	 this	 overhead	 by	 moving
more	functionality	and	long-running	loops	into	fast	C	code.

SWIG	[SWIG]	is	a	wrapper	code	generator.	It	makes	it	very	easy	to
parse	 large	 API	 definitions	 in	C/C++	 header	 files,	 and	 to	 generate
straight	 forward	 wrapper	 code	 for	 a	 large	 set	 of	 programming
languages.	As	opposed	to	Cython,	however,	it	is	not	a	programming
language	 itself.	 Thin	wrappers	 are	 easy	 to	 generate,	 but	 the	more
functionality	 a	 wrapper	 needs	 to	 provide,	 the	 harder	 it	 gets	 to
implement	 it	with	SWIG.	Cython,	 on	 the	 other	 hand,	makes	 it	 very
easy	to	write	very	elaborate	wrapper	code	specifically	for	the	Python
language,	 and	 to	make	 it	 as	 thin	 or	 thick	 as	 needed	 at	 any	 given
place.	Also,	 there	exists	 third	party	code	 for	parsing	C	header	 files
and	using	it	to	generate	Cython	definitions	and	module	skeletons.

ShedSkin	 [ShedSkin]	 is	an	experimental	Python-to-C++	compiler.	 It

uses	 a	 very	 powerful	 whole-module	 type	 inference	 engine	 to
generate	a	C++	program	from	(restricted)	Python	source	code.	The
main	drawback	is	that	it	has	no	support	for	calling	the	Python/C	API
for	operations	it	does	not	support	natively,	and	supports	very	few	of
the	standard	Python	modules.

[ctypes] http://docs.python.org/library/ctypes.html.

[Pyrex] G.	Ewing,	Pyrex:	C-Extensions	for	Python,
http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/

[ShedSkin] M.	Dufour,	J.	Coughlan,	ShedSkin,
http://code.google.com/p/shedskin/

[SWIG]
David	M.	Beazley	et	al.,	SWIG:	An	Easy	to	Use	Tool	for
Integrating	Scripting	Languages	with	C	and	C++,
http://www.swig.org.

nextprevious	|Cython	0.19.1	documentation	»	Tutorials	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://docs.python.org/library/ctypes.html
http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/
http://code.google.com/p/shedskin/
http://www.swig.org
http://sphinx.pocoo.org/

nextprevious	|Cython	0.19.1	documentation	»	Tutorials	»

Appendix:	Installing	MinGW	on
Windows

1.	 Download	 the	 MinGW	 installer	 from
http://www.mingw.org/wiki/HOWTO_Install_the_MinGW_GCC_Compiler_Suite
(As	of	this	writing,	the	download	link	is	a	bit	difficult	to	find;
it’s	 under	 “About”	 in	 the	menu	 on	 the	 left-hand	 side).	 You
want	the	file	entitled	“Automated	MinGW	Installer”	(currently
version	5.1.4).

2.	 Run	it	and	install	MinGW.	Only	the	basic	package	is	strictly
needed	for	Cython,	although	you	might	want	to	grab	at	least
the	C++	compiler	as	well.

3.	 You	need	to	set	up	Windows’	“PATH”	environment	variable
so	that	includes	e.g.	“c:\mingw\bin”	(if	you	installed	MinGW
to	 “c:\mingw”).	 The	 following	 web-page	 describes	 the
procedure	 in	Windows	XP	 (the	Vista	procedure	 is	similar):
http://support.microsoft.com/kb/310519

4.	 Finally,	 tell	 Python	 to	 use	MinGW	 as	 the	 default	 compiler
(otherwise	 it	 will	 try	 for	 Visual	 C).	 If	 Python	 is	 installed	 to
“c:\Python26”,	 create	 a	 file	 named
“c:\Python26\Lib\distutils\distutils.cfg”	containing:

[build]

compiler	=	mingw32

The	 [WinInst]	 wiki	 page	 contains	 updated	 information	 about	 this
procedure.	 Any	 contributions	 towards	 making	 the	 Windows	 install
process	smoother	is	welcomed;	it	is	an	unfortunate	fact	that	none	of
the	regular	Cython	developers	have	convenient	access	to	Windows.

[WinInst] http://wiki.cython.org/InstallingOnWindows

http://www.mingw.org/wiki/HOWTO_Install_the_MinGW_GCC_Compiler_Suite
http://support.microsoft.com/kb/310519
http://wiki.cython.org/InstallingOnWindows

nextprevious	|Cython	0.19.1	documentation	»	Tutorials	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

nextprevious	|Cython	0.19.1	documentation	»	Users	Guide	»

Overview

About	Cython
Cython	is	a	language	that	makes	writing	C	extensions	for	the	Python
language	 as	 easy	 as	 Python	 itself.	 Cython	 is	 based	 on	 the	 well-
known	Pyrex	 language	 by	 Greg	 Ewing,	 but	 supports	 more	 cutting
edge	functionality	and	optimizations	[1].	The	Cython	language	is	very
close	 to	 the	 Python	 language,	 but	 Cython	 additionally	 supports
calling	 C	 functions	 and	 declaring	 C	 types	 on	 variables	 and	 class
attributes.	This	allows	the	compiler	to	generate	very	efficient	C	code
from	Cython	code.

This	 makes	 Cython	 the	 ideal	 language	 for	 wrapping	 external	 C
libraries,	 and	 for	 fast	 C	 modules	 that	 speed	 up	 the	 execution	 of
Python	code.

http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/

Future	Plans
Cython	is	not	 finished.	Substantial	 tasks	remaining.	See	Limitations
for	a	current	list.

Footnotes

[1] For	differences	with	Pyrex	see	Differences	between	Cython
and	Pyrex.

nextprevious	|Cython	0.19.1	documentation	»	Users	Guide	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

nextprevious	|Cython	0.19.1	documentation	»	Users	Guide	»

Basic	Tutorial

The	Basics	of	Cython
The	 fundamental	 nature	 of	 Cython	 can	 be	 summed	 up	 as	 follows:
Cython	is	Python	with	C	data	types.

Cython	 is	 Python:	 Almost	 any	 piece	 of	 Python	 code	 is	 also	 valid
Cython	 code.	 (There	 are	 a	 few	 Limitations,	 but	 this	 approximation
will	 serve	 for	now.)	The	Cython	compiler	will	 convert	 it	 into	C	code
which	makes	equivalent	calls	to	the	Python/C	API.

But	 Cython	 is	 much	 more	 than	 that,	 because	 parameters	 and
variables	 can	 be	 declared	 to	 have	 C	 data	 types.	 Code	 which
manipulates	Python	 values	and	C	values	 can	be	 freely	 intermixed,
with	 conversions	 occurring	 automatically	 wherever	 possible.
Reference	 count	 maintenance	 and	 error	 checking	 of	 Python
operations	 is	 also	 automatic,	 and	 the	 full	 power	 of	 Python’s
exception	 handling	 facilities,	 including	 the	 try-except	 and	 try-finally
statements,	is	available	to	you	–	even	in	the	midst	of	manipulating	C
data.

Cython	Hello	World
As	Cython	can	accept	almost	any	valid	python	source	file,	one	of	the
hardest	 things	 in	 getting	 started	 is	 just	 figuring	out	 how	 to	 compile
your	extension.

So	lets	start	with	the	canonical	python	hello	world:

print	"Hello	World"

So	the	first	thing	to	do	is	rename	the	file	to	helloworld.pyx.	Now	we
need	to	make	the	setup.py,	which	is	like	a	python	Makefile	(for	more
information	see	Source	Files	and	Compilation).	Your	setup.py	should
look	like:

from	distutils.core	import	setup

from	distutils.extension	import	Extension

from	Cython.Distutils	import	build_ext

setup(

				cmdclass	=	{'build_ext':	build_ext},

				ext_modules	=	[Extension("helloworld",	["helloworld.pyx"])]

)

To	use	this	to	build	your	Cython	file	use	the	commandline	options:

$	python	setup.py	build_ext	--inplace

Which	will	leave	a	file	in	your	local	directory	called	helloworld.so	in
unix	 or	 helloworld.dll	 in	Windows.	 Now	 to	 use	 this	 file:	 start	 the
python	 interpreter	and	simply	 import	 it	as	 if	 it	was	a	 regular	python
module:

>>>	import	helloworld

Hello	World

Congratulations!	You	now	know	how	to	build	a	Cython	extension.	But
so	far	this	example	doesn’t	really	give	a	feeling	why	one	would	ever
want	to	use	Cython,	so	lets	create	a	more	realistic	example.

pyximport:	Cython	Compilation	the	Easy
Way
If	your	module	doesn’t	require	any	extra	C	libraries	or	a	special	build
setup,	then	you	can	use	the	pyximport	module	by	Paul	Prescod	and
Stefan	Behnel	to	load	.pyx	files	directly	on	import,	without	having	to
write	a	setup.py	file.	It	is	shipped	and	installed	with	Cython	and	can
be	used	like	this:

>>>	import	pyximport;	pyximport.install()

>>>	import	helloworld

Hello	World

Since	 Cython	 0.11,	 the	 pyximport	 module	 also	 has	 experimental
compilation	support	 for	normal	Python	modules.	This	allows	you	 to
automatically	run	Cython	on	every	.pyx	and	.py	module	that	Python
imports,	 including	 the	 standard	 library	 and	 installed	 packages.
Cython	will	still	fail	to	compile	a	lot	of	Python	modules,	in	which	case
the	 import	 mechanism	 will	 fall	 back	 to	 loading	 the	 Python	 source
modules	instead.	The	.py	import	mechanism	is	installed	like	this:

>>>	pyximport.install(pyimport	=	True)

Fibonacci	Fun
From	the	official	Python	tutorial	a	simple	fibonacci	function	is	defined
as:

def	fib(n):

				"""Print	the	Fibonacci	series	up	to	n."""

				a,	b	=	0,	1

				while	b	<	n:

								print	b,

								a,	b	=	b,	a	+	b

Now	following	the	steps	for	the	Hello	World	example	we	first	rename
the	file	to	have	a	.pyx	extension,	lets	say	fib.pyx,	then	we	create	the
setup.py	file.	Using	the	file	created	for	the	Hello	World	example,	all
that	you	need	to	change	is	the	name	of	the	Cython	filename,	and	the
resulting	module	name,	doing	this	we	have:

from	distutils.core	import	setup

from	distutils.extension	import	Extension

from	Cython.Distutils	import	build_ext

setup(

				cmdclass	=	{'build_ext':	build_ext},

				ext_modules	=	[Extension("fib",	["fib.pyx"])]

)

Build	 the	 extension	 with	 the	 same	 command	 used	 for	 the
helloworld.pyx:

$	python	setup.py	build_ext	--inplace

And	use	the	new	extension	with:

>>>	import	fib

>>>	fib.fib(2000)

1	1	2	3	5	8	13	21	34	55	89	144	233	377	610	987	1597

Primes
Here’s	a	small	 example	showing	some	of	what	 can	be	done.	 It’s	a
routine	 for	 finding	prime	numbers.	You	 tell	 it	how	many	primes	you
want,	and	it	returns	them	as	a	Python	list.

primes.pyx:

	1

	2

	3

	4

	5

	6

	7

	8

	9

10

11

12

13

14

15

16

17

18

def	primes(int	kmax):

				cdef	int	n,	k,	i

				cdef	int	p[1000]

				result	=	[]

				if	kmax	>	1000:

								kmax	=	1000

				k	=	0

				n	=	2

				while	k	<	kmax:

								i	=	0

								while	i	<	k	and	n	%	p[i]	!=	0:

												i	=	i	+	1

								if	i	==	k:

												p[k]	=	n

												k	=	k	+	1

												result.append(n)

								n	=	n	+	1

				return	result

You’ll	 see	 that	 it	 starts	 out	 just	 like	 a	 normal	 Python	 function
definition,	except	 that	 the	parameter	 kmax	 is	declared	 to	be	of	 type
int	 .	 This	means	 that	 the	 object	 passed	 will	 be	 converted	 to	 a	 C
integer	(or	a	TypeError.	will	be	raised	if	it	can’t	be).

Lines	 2	 and	 3	 use	 the	 cdef	 statement	 to	 define	 some	 local	 C
variables.	Line	4	 creates	a	Python	 list	which	will	 be	used	 to	 return
the	 result.	 You’ll	 notice	 that	 this	 is	 done	 exactly	 the	 same	 way	 it
would	be	in	Python.	Because	the	variable	result	hasn’t	been	given	a

type,	it	is	assumed	to	hold	a	Python	object.

Lines	 7-9	 set	 up	 for	 a	 loop	 which	 will	 test	 candidate	 numbers	 for
primeness	until	the	required	number	of	primes	has	been	found.	Lines
11-12,	which	try	dividing	a	candidate	by	all	 the	primes	found	so	far,
are	of	particular	interest.	Because	no	Python	objects	are	referred	to,
the	loop	is	translated	entirely	into	C	code,	and	thus	runs	very	fast.

When	 a	 prime	 is	 found,	 lines	 14-15	 add	 it	 to	 the	 p	 array	 for	 fast
access	 by	 the	 testing	 loop,	 and	 line	 16	 adds	 it	 to	 the	 result	 list.
Again,	 you’ll	 notice	 that	 line	 16	 looks	 very	 much	 like	 a	 Python
statement,	and	 in	 fact	 it	 is,	with	 the	 twist	 that	 the	C	parameter	 n	 is
automatically	 converted	 to	 a	Python	object	 before	being	passed	 to
the	 append	 method.	 Finally,	 at	 line	 18,	 a	 normal	 Python	 return
statement	returns	the	result	list.

Compiling	 primes.pyx	 with	 the	 Cython	 compiler	 produces	 an
extension	module	which	we	can	try	out	 in	 the	 interactive	 interpreter
as	follows:

>>>	import	primes

>>>	primes.primes(10)

[2,	3,	5,	7,	11,	13,	17,	19,	23,	29]

See,	 it	 works!	 And	 if	 you’re	 curious	 about	 how	much	work	Cython
has	saved	you,	take	a	look	at	the	C	code	generated	for	this	module.

Language	Details
For	more	about	the	Cython	language,	see	Language	Basics.	To	dive
right	 in	 to	 using	 Cython	 in	 a	 numerical	 computation	 context,	 see
Cython	for	NumPy	users.

nextprevious	|Cython	0.19.1	documentation	»	Users	Guide	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

nextprevious	|Cython	0.19.1	documentation	»	Users	Guide	»

Language	Basics

C	variable	and	type	definitions
The	 cdef	 statement	 is	 used	 to	 declare	 C	 variables,	 either	 local	 or
module-level:

cdef	int	i,	j,	k

cdef	float	f,	g[42],	*h

and	C	struct,	union	or	enum	types:

cdef	struct	Grail:

				int	age

				float	volume

cdef	union	Food:

				char	*spam

				float	*eggs

cdef	enum	CheeseType:

				cheddar,	edam,

				camembert

cdef	enum	CheeseState:

				hard	=	1

				soft	=	2

				runny	=	3

See	also	Styles	of	struct,	union	and	enum	declaration

There	is	currently	no	special	syntax	for	defining	a	constant,	but	you
can	 use	 an	 anonymous	 enum	 declaration	 for	 this	 purpose,	 for
example,:

cdef	enum:

				tons_of_spam	=	3

Note: 	the	words	struct,	union	and	enum	are	used	only	when
defining	a	type,	not	when	referring	to	it.	For	example,	to	declare	a

variable	pointing	to	a	Grail	you	would	write:

cdef	Grail	*gp

and	not:

cdef	struct	Grail	*gp	#	WRONG

There	is	also	a	ctypedef	statement	for	giving	names	to	types,	e.g.:

ctypedef	unsigned	long	ULong

ctypedef	int*	IntPtr

Grouping	multiple	C	declarations

If	you	have	a	series	of	declarations	that	all	begin	with	cdef,	you	can
group	them	into	a	cdef	block	like	this:

cdef:

				struct	Spam:

								int	tons

				int	i

				float	f

				Spam	*p

				void	f(Spam	*s):

								print	s.tons,	"Tons	of	spam"

Python	functions	vs.	C	functions
There	are	two	kinds	of	function	definition	in	Cython:

Python	functions	are	defined	using	the	def	statement,	as	in	Python.
They	take	Python	objects	as	parameters	and	return	Python	objects.

C	 functions	 are	 defined	 using	 the	 new	 cdef	 statement.	 They	 take
either	 Python	 objects	 or	 C	 values	 as	 parameters,	 and	 can	 return
either	Python	objects	or	C	values.

Within	a	Cython	module,	Python	 functions	and	C	functions	can	call
each	 other	 freely,	 but	 only	 Python	 functions	 can	 be	 called	 from
outside	 the	module	 by	 interpreted	 Python	 code.	 So,	 any	 functions
that	you	want	to	“export”	from	your	Cython	module	must	be	declared
as	Python	functions	using	def.	There	is	also	a	hybrid	function,	called
cpdef.	A	 cpdef	can	be	called	 from	anywhere,	but	uses	the	faster	C
calling	 conventions	 when	 being	 called	 from	 other	 Cython	 code.	 A
cpdef	can	also	be	overridden	by	a	Python	method	on	a	subclass	or
an	instance	attribute,	even	when	called	from	Cython.	If	this	happens,
most	performance	gains	are	of	 course	 lost	and	even	 if	 it	 does	not,
there	 is	 a	 tiny	 overhead	 in	 calling	 a	 cpdef	 method	 from	 Cython
compared	to	calling	a	cdef	method.

Parameters	of	either	type	of	function	can	be	declared	to	have	C	data
types,	using	normal	C	declaration	syntax.	For	example,:

def	spam(int	i,	char	*s):

				...

cdef	int	eggs(unsigned	long	l,	float	f):

				...

When	a	parameter	of	a	Python	function	is	declared	to	have	a	C	data
type,	it	is	passed	in	as	a	Python	object	and	automatically	converted

to	 a	 C	 value,	 if	 possible.	 Automatic	 conversion	 is	 currently	 only
possible	 for	 numeric	 types,	 string	 types	 and	 structs	 (composed
recusively	of	any	of	 these	 types);	attempting	 to	use	any	other	 type
for	 the	parameter	of	 a	Python	 function	will	 result	 in	 a	 compile-time
error.	Care	must	 be	 taken	with	 strings	 to	ensure	a	 reference	 if	 the
pointer	 is	 to	 be	 used	 after	 the	 call.	 Structs	 can	 be	 obtained	 from
Python	 mappings,	 and	 again	 care	 must	 be	 taken	 with	 string
attributes	if	they	are	to	be	used	after	the	function	returns.

C	 functions,	 on	 the	 other	 hand,	 can	 have	 parameters	 of	 any	 type,
since	they’re	passed	in	directly	using	a	normal	C	function	call.

A	more	complete	comparison	of	the	pros	and	cons	of	these	different
method	types	can	be	found	at	Early	Binding	for	Speed.

Python	objects	as	parameters	and	return	values

If	no	type	is	specified	for	a	parameter	or	return	value,	it	is	assumed
to	 be	 a	 Python	 object.	 (Note	 that	 this	 is	 different	 from	 the	 C
convention,	where	it	would	default	to	int.)	For	example,	the	following
defines	 a	 C	 function	 that	 takes	 two	 Python	 objects	 as	 parameters
and	returns	a	Python	object:

cdef	spamobjs(x,	y):

				...

Reference	 counting	 for	 these	 objects	 is	 performed	 automatically
according	 to	 the	 standard	 Python/C	 API	 rules	 (i.e.	 borrowed
references	 are	 taken	 as	 parameters	 and	 a	 new	 reference	 is
returned).

The	name	object	can	also	be	used	to	explicitly	declare	something	as
a	Python	object.	This	can	be	useful	if	the	name	being	declared	would
otherwise	be	taken	as	the	name	of	a	type,	for	example,:

cdef	ftang(object	int):

				...

declares	 a	 parameter	 called	 int	which	 is	 a	Python	 object.	 You	 can
also	use	object	as	the	explicit	return	type	of	a	function,	e.g.:

cdef	object	ftang(object	int):

				...

In	 the	 interests	 of	 clarity,	 it	 is	 probably	 a	 good	 idea	 to	 always	 be
explicit	about	object	parameters	in	C	functions.

Error	return	values

If	 you	don’t	 do	anything	 special,	 a	 function	declared	with	 cdef	 that
does	 not	 return	 a	 Python	 object	 has	 no	 way	 of	 reporting	 Python
exceptions	to	its	caller.	If	an	exception	is	detected	in	such	a	function,
a	warning	message	is	printed	and	the	exception	is	ignored.

If	you	want	a	C	function	 that	does	not	 return	a	Python	object	 to	be
able	 to	 propagate	 exceptions	 to	 its	 caller,	 you	 need	 to	 declare	 an
exception	value	for	it.	Here	is	an	example:

cdef	int	spam()	except	-1:

				...

With	this	declaration,	whenever	an	exception	occurs	inside	spam,	it
will	 immediately	 return	with	 the	value	 -1.	Furthermore,	whenever	a
call	 to	 spam	 returns	 -1,	 an	 exception	 will	 be	 assumed	 to	 have
occurred	and	will	be	propagated.

When	 you	 declare	 an	 exception	 value	 for	 a	 function,	 you	 should
never	 explicitly	 return	 that	 value.	 If	 all	 possible	 return	 values	 are
legal	and	you	can’t	reserve	one	entirely	for	signalling	errors,	you	can
use	an	alternative	form	of	exception	value	declaration:

cdef	int	spam()	except?	-1:

				...

The	”?”	indicates	that	the	value	-1	only	indicates	a	possible	error.	In
this	 case,	 Cython	 generates	 a	 call	 to	 PyErr_Occurred()	 if	 the
exception	value	is	returned,	to	make	sure	it	really	is	an	error.

There	is	also	a	third	form	of	exception	value	declaration:

cdef	int	spam()	except	*:

				...

This	form	causes	Cython	to	generate	a	call	to	PyErr_Occurred()	after
every	call	to	spam,	regardless	of	what	value	it	returns.	If	you	have	a
function	returning	void	that	needs	to	propagate	errors,	you	will	have
to	use	this	form,	since	there	isn’t	any	return	value	to	test.	Otherwise
there	is	little	use	for	this	form.

An	 external	 C++	 function	 that	 may	 raise	 an	 exception	 can	 be
declared	with:

cdef	int	spam()	except	+

See	Using	C++	in	Cython	for	more	details.

Some	things	to	note:

Exception	 values	 can	 only	 declared	 for	 functions	 returning	 an
integer,	 enum,	 float	 or	 pointer	 type,	 and	 the	 value	 must	 be	 a
constant	expression.	Void	 functions	can	only	use	 the	 except	*
form.

The	exception	value	specification	is	part	of	the	signature	of	the
function.	If	you’re	passing	a	pointer	to	a	function	as	a	parameter
or	assigning	it	to	a	variable,	the	declared	type	of	the	parameter
or	variable	must	have	the	same	exception	value	specification	(or
lack	 thereof).	 Here	 is	 an	 example	 of	 a	 pointer-to-function

http://docs.python.org/3.3/c-api/exceptions.html#PyErr_Occurred
http://docs.python.org/3.3/c-api/exceptions.html#PyErr_Occurred

declaration	with	an	exception	value:

int	(*grail)(int,	char*)	except	-1

You	don’t	need	 to	 (and	shouldn’t)	declare	exception	values	 for
functions	 which	 return	 Python	 objects.	 Remember	 that	 a
function	with	no	declared	return	type	implicitly	returns	a	Python
object.	 (Exceptions	on	such	 functions	are	 implicitly	propagated
by	returning	NULL.)

Checking	return	values	of	non-Cython	functions

It’s	 important	 to	understand	 that	 the	except	 clause	does	not	 cause
an	 error	 to	 be	 raised	 when	 the	 specified	 value	 is	 returned.	 For
example,	you	can’t	write	something	like:

cdef	extern	FILE	*fopen(char	*filename,	char	*mode)	except	NULL	#	WRONG!

and	 expect	 an	 exception	 to	 be	 automatically	 raised	 if	 a	 call	 to
fopen()	 returns	 NULL.	The	except	clause	doesn’t	work	 that	way;	 its
only	purpose	is	for	propagating	Python	exceptions	that	have	already
been	 raised,	 either	 by	 a	Cython	 function	 or	 a	C	 function	 that	 calls
Python/C	 API	 routines.	 To	 get	 an	 exception	 from	 a	 non-Python-
aware	 function	 such	 as	 fopen(),	 you	will	 have	 to	 check	 the	 return
value	and	raise	it	yourself,	for	example,:

cdef	FILE*	p

p	=	fopen("spam.txt",	"r")

if	p	==	NULL:

				raise	SpamError("Couldn't	open	the	spam	file")

Automatic	type	conversions
In	most	 situations,	automatic	 conversions	will	 be	performed	 for	 the
basic	 numeric	 and	 string	 types	when	 a	Python	 object	 is	 used	 in	 a
context	 requiring	 a	 C	 value,	 or	 vice	 versa.	 The	 following	 table
summarises	the	conversion	possibilities.

C	types From	Python
types To	Python	types

[unsigned]	char	[unsigned]
short	int,	long int,	long int

unsigned	int	unsigned	long
[unsigned]	long	long int,	long long

float,	double,	long	double int,	long,	float float
char* str/bytes str/bytes	[1]
struct 	 dict

[1] The	conversion	is	to/from	str	for	Python	2.x,	and	bytes	for
Python	3.x.

Caveats	when	using	a	Python	string	in	a	C	context

You	 need	 to	 be	 careful	 when	 using	 a	 Python	 string	 in	 a	 context
expecting	a	 char*.	 In	 this	situation,	a	pointer	 to	 the	contents	of	 the
Python	string	is	used,	which	is	only	valid	as	long	as	the	Python	string
exists.	 So	 you	 need	 to	make	 sure	 that	 a	 reference	 to	 the	 original
Python	 string	 is	 held	 for	 as	 long	 as	 the	C	 string	 is	 needed.	 If	 you
can’t	guarantee	that	the	Python	string	will	 live	long	enough,	you	will
need	to	copy	the	C	string.

Cython	 detects	 and	 prevents	 some	 mistakes	 of	 this	 kind.	 For
instance,	if	you	attempt	something	like:

cdef	char	*s

s	=	pystring1	+	pystring2

then	Cython	will	 produce	 the	error	message	 Obtaining	 char*	 from
temporary	 Python	 value.	 The	 reason	 is	 that	 concatenating	 the	 two
Python	 strings	 produces	 a	 new	 Python	 string	 object	 that	 is
referenced	 only	 by	 a	 temporary	 internal	 variable	 that	 Cython
generates.	 As	 soon	 as	 the	 statement	 has	 finished,	 the	 temporary
variable	will	be	decrefed	and	the	Python	string	deallocated,	leaving	s
dangling.	Since	this	code	could	not	possibly	work,	Cython	refuses	to
compile	it.

The	solution	is	to	assign	the	result	of	the	concatenation	to	a	Python
variable,	and	then	obtain	the	char*	from	that,	i.e.:

cdef	char	*s

p	=	pystring1	+	pystring2

s	=	p

It	 is	 then	 your	 responsibility	 to	 hold	 the	 reference	 p	 for	 as	 long	 as
necessary.

Keep	 in	 mind	 that	 the	 rules	 used	 to	 detect	 such	 errors	 are	 only
heuristics.	 Sometimes	 Cython	 will	 complain	 unnecessarily,	 and
sometimes	it	will	 fail	 to	detect	a	problem	that	exists.	Ultimately,	you
need	to	understand	the	issue	and	be	careful	what	you	do.

Statements	and	expressions
Control	structures	and	expressions	follow	Python	syntax	for	the	most
part.	When	applied	to	Python	objects,	they	have	the	same	semantics
as	in	Python	(unless	otherwise	noted).	Most	of	the	Python	operators
can	also	be	applied	to	C	values,	with	the	obvious	semantics.

If	 Python	 objects	 and	 C	 values	 are	 mixed	 in	 an	 expression,
conversions	 are	 performed	 automatically	 between	 Python	 objects
and	C	numeric	or	string	types.

Reference	 counts	 are	 maintained	 automatically	 for	 all	 Python
objects,	 and	 all	 Python	 operations	 are	 automatically	 checked	 for
errors,	with	appropriate	action	taken.

Differences	between	C	and	Cython	expressions

There	 are	 some	 differences	 in	 syntax	 and	 semantics	 between	 C
expressions	 and	 Cython	 expressions,	 particularly	 in	 the	 area	 of	 C
constructs	which	have	no	direct	equivalent	in	Python.

An	 integer	 literal	 is	 treated	 as	 a	 C	 constant,	 and	 will	 be
truncated	 to	whatever	 size	your	C	compiler	 thinks	appropriate.
To	get	a	Python	integer	(of	arbitrary	precision)	cast	immediately
to	 an	 object	 (e.g.	 <object>100000000000000000000).	 The	 L,	 LL,
and	U	suffixes	have	the	same	meaning	as	in	C.

There	is	no	->	operator	in	Cython.	Instead	of	p->x,	use	p.x

There	is	no	unary	*	operator	in	Cython.	Instead	of	*p,	use	p[0]

There	is	an	&	operator,	with	the	same	semantics	as	in	C.

The	null	C	pointer	is	called	NULL,	not	0	(and	NULL	 is	a	reserved

word).

Type	casts	are	written	<type>value	,	for	example,:

cdef	char*	p,	float*	q

p	=	<char*>q

Scope	rules

Cython	determines	whether	a	variable	belongs	to	a	local	scope,	the
module	 scope,	 or	 the	 built-in	 scope	 completely	 statically.	 As	 with
Python,	 assigning	 to	 a	 variable	 which	 is	 not	 otherwise	 declared
implicitly	 declares	 it	 to	 be	 a	 Python	 variable	 residing	 in	 the	 scope
where	it	is	assigned.

Note: 	A	consequence	of	these	rules	is	that	the	module-level
scope	behaves	the	same	way	as	a	Python	local	scope	if	you	refer
to	a	variable	before	assigning	to	it.	In	particular,	tricks	such	as	the
following	will	not	work	in	Cython:

try:

				x	=	True

except	NameError:

				True	=	1

because,	due	to	the	assignment,	the	True	will	always	be	looked	up
in	 the	module-level	 scope.	 You	would	 have	 to	 do	 something	 like
this	instead:

import	__builtin__

try:

				True	=	__builtin__.True

except	AttributeError:

				True	=	1

Built-in	Functions

Cython	compiles	calls	to	most	built-in	functions	into	direct	calls	to	the
corresponding	Python/C	API	routines,	making	them	particularly	fast.

Only	direct	function	calls	using	these	names	are	optimised.	If	you	do
something	else	with	one	of	these	names	that	assumes	it’s	a	Python
object,	such	as	assign	it	to	a	Python	variable,	and	later	call	it,	the	call
will	be	made	as	a	Python	function	call.

Function	and	arguments Return
type

Python/C	API
Equivalent

abs(obj) object,
double,	...

PyNumber_Absolute,
fabs,	fabsf,	...

callable(obj) bint PyObject_Callable
delattr(obj,	name) None PyObject_DelAttr

exec(code,	[glob,	[loc]]) object

dir(obj) list PyObject_Dir
divmod(a,	b) tuple PyNumber_Divmod
getattr(obj,	name,	[default])
(Note	1) object PyObject_GetAttr

hasattr(obj,	name) bint PyObject_HasAttr
hash(obj) int	/	long PyObject_Hash
intern(obj) object Py*_InternFromString
isinstance(obj,	type) bint PyObject_IsInstance
issubclass(obj,	type) bint PyObject_IsSubclass
iter(obj,	[sentinel]) object PyObject_GetIter
len(obj) Py_ssize_t PyObject_Length
pow(x,	y,	[z]) object PyNumber_Power
reload(obj) object PyImport_ReloadModule
repr(obj) object PyObject_Repr
setattr(obj,	name) void PyObject_SetAttr

Note	 1:	 Pyrex	 originally	 provided	 a	 function	 getattr3(obj,	 name,

default)()	corresponding	to	the	three-argument	form	of	the	Python
builtin	getattr().	Cython	still	supports	this	function,	but	the	usage	is

http://docs.python.org/3.3/library/functions.html#getattr

deprecated	 in	 favour	 of	 the	 normal	 builtin,	 which	 Cython	 can
optimise	in	both	forms.

Operator	Precedence

Keep	in	mind	that	there	are	some	differences	in	operator	precedence
between	 Python	 and	 C,	 and	 that	 Cython	 uses	 the	 Python
precedences,	not	the	C	ones.

Integer	for-loops

Cython	 recognises	 the	 usual	 Python	 for-in-range	 integer	 loop
pattern:

for	i	in	range(n):

				...

If	i	is	declared	as	a	cdef	integer	type,	it	will	optimise	this	into	a	pure
C	loop.	This	restriction	is	required	as	otherwise	the	generated	code
wouldn’t	be	correct	due	 to	potential	 integer	overflows	on	 the	 target
architecture.	 If	you	are	worried	 that	 the	 loop	 is	not	being	converted
correctly,	use	the	annotate	feature	of	the	cython	commandline	(-a)	to
easily	see	the	generated	C	code.	See	Automatic	range	conversion

For	backwards	compatibility	to	Pyrex,	Cython	also	supports	another
form	of	for-loop:

for	i	from	0	<=	i	<	n:

				...

or:

for	i	from	0	<=	i	<	n	by	s:

				...

where	s	is	some	integer	step	size.

Some	things	to	note	about	the	for-from	loop:

The	target	expression	must	be	a	variable	name.
The	 name	 between	 the	 lower	 and	 upper	 bounds	must	 be	 the
same	as	the	target	name.
The	direction	of	 iteration	 is	determined	by	 the	 relations.	 If	 they
are	both	from	the	set	{<,	<=}	then	it	is	upwards;	if	they	are	both
from	 the	 set	 {>,	 >=}	 then	 it	 is	 downwards.	 (Any	 other
combination	is	disallowed.)

Like	 other	 Python	 looping	 statements,	 break	 and	 continue	may	 be
used	in	the	body,	and	the	loop	may	have	an	else	clause.

The	include	statement
Warning: 	Historically	the	include	statement	was	used	for	sharing
declarations.	Use	Sharing	Declarations	Between	Cython	Modules
instead.

A	Cython	source	 file	can	 include	material	 from	other	 files	using	 the
include	statement,	for	example,:

include	"spamstuff.pxi"

The	 contents	 of	 the	 named	 file	 are	 textually	 included	at	 that	 point.
The	 included	 file	 can	 contain	 any	 complete	 statements	 or
declarations	that	are	valid	in	the	context	where	the	include	statement
appears,	 including	 other	 include	 statements.	 The	 contents	 of	 the
included	file	should	begin	at	an	indentation	level	of	zero,	and	will	be
treated	 as	 though	 they	 were	 indented	 to	 the	 level	 of	 the	 include
statement	that	is	including	the	file.

Note: 	There	are	other	mechanisms	available	for	splitting	Cython
code	into	separate	parts	that	may	be	more	appropriate	in	many
cases.	See	Sharing	Declarations	Between	Cython	Modules.

Conditional	Compilation
Some	features	are	available	for	conditional	compilation	and	compile-
time	constants	within	a	Cython	source	file.

Compile-Time	Definitions

A	compile-time	constant	can	be	defined	using	the	DEF	statement:

DEF	FavouriteFood	=	"spam"

DEF	ArraySize	=	42

DEF	OtherArraySize	=	2	*	ArraySize	+	17

The	 right-hand	 side	 of	 the	 DEF	 must	 be	 a	 valid	 compile-time
expression.	 Such	 expressions	 are	 made	 up	 of	 literal	 values	 and
names	 defined	 using	 DEF	 statements,	 combined	 using	 any	 of	 the
Python	expression	syntax.

The	following	compile-time	names	are	predefined,	corresponding	to
the	values	returned	by	os.uname().

UNAME_SYSNAME,	UNAME_NODENAME,
UNAME_RELEASE,	UNAME_VERSION,	UNAME_MACHINE

The	 following	 selection	 of	 builtin	 constants	 and	 functions	 are	 also
available:

None,	True,	False,	abs,	bool,	chr,	cmp,	complex,	dict,	divmod,
enumerate,	float,	hash,	hex,	int,	len,	list,	long,	map,	max,	min,
oct,	ord,	pow,	range,	reduce,	repr,	round,	slice,	str,	sum,	tuple,
xrange,	zip

A	name	defined	using	 DEF	 can	be	used	anywhere	an	 identifier	 can
appear,	 and	 it	 is	 replaced	 with	 its	 compile-time	 value	 as	 though	 it
were	written	into	the	source	at	that	point	as	a	literal.	For	this	to	work,

http://docs.python.org/3.3/library/os.html#os.uname

the	compile-time	expression	must	evaluate	to	a	Python	value	of	type
int,	long,	float	or	str.:

cdef	int	a1[ArraySize]

cdef	int	a2[OtherArraySize]

print	"I	like",	FavouriteFood

Conditional	Statements

The	 IF	 statement	 can	 be	 used	 to	 conditionally	 include	 or	 exclude
sections	of	code	at	compile	time.	It	works	in	a	similar	way	to	the	#if
preprocessor	directive	in	C.:

IF	UNAME_SYSNAME	==	"Windows":

				include	"icky_definitions.pxi"

ELIF	UNAME_SYSNAME	==	"Darwin":

				include	"nice_definitions.pxi"

ELIF	UNAME_SYSNAME	==	"Linux":

				include	"penguin_definitions.pxi"

ELSE:

				include	"other_definitions.pxi"

The	ELIF	and	ELSE	clauses	are	optional.	An	IF	statement	can	appear
anywhere	that	a	normal	statement	or	declaration	can	appear,	and	it
can	 contain	 any	 statements	 or	 declarations	 that	 would	 be	 valid	 in
that	context,	including	DEF	statements	and	other	IF	statements.

The	expressions	in	the	IF	and	ELIF	clauses	must	be	valid	compile-
time	 expressions	 as	 for	 the	 DEF	 statement,	 although	 they	 can
evaluate	 to	 any	 Python	 value,	 and	 the	 truth	 of	 the	 result	 is
determined	in	the	usual	Python	way.

nextprevious	|Cython	0.19.1	documentation	»	Users	Guide	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

nextprevious	|Cython	0.19.1	documentation	»	Users	Guide	»

Extension	Types

Introduction
As	 well	 as	 creating	 normal	 user-defined	 classes	 with	 the	 Python
class	 statement,	 Cython	 also	 lets	 you	 create	 new	 built-in	 Python
types,	known	as	extension	types.	You	define	an	extension	type	using
the	cdef	class	statement.	Here’s	an	example:

cdef	class	Shrubbery:

				cdef	int	width,	height

				def	__init__(self,	w,	h):

								self.width	=	w

								self.height	=	h

				def	describe(self):

								print	"This	shrubbery	is",	self.width,	\

												"by",	self.height,	"cubits."

As	you	can	see,	a	Cython	extension	type	definition	looks	a	lot	like	a
Python	class	definition.	Within	it,	you	use	the	def	statement	to	define
methods	that	can	be	called	from	Python	code.	You	can	even	define
many	 of	 the	 special	methods	 such	 as	 __init__()	 as	 you	would	 in
Python.

The	main	difference	is	that	you	can	use	the	cdef	statement	to	define
attributes.	The	attributes	may	be	Python	objects	(either	generic	or	of
a	particular	extension	type),	or	they	may	be	of	any	C	data	type.	So
you	can	use	extension	types	to	wrap	arbitrary	C	data	structures	and
provide	a	Python-like	interface	to	them.

Attributes
Attributes	of	an	extension	 type	are	stored	directly	 in	 the	object’s	C
struct.	 The	 set	 of	 attributes	 is	 fixed	 at	 compile	 time;	 you	 can’t	 add
attributes	 to	 an	 extension	 type	 instance	 at	 run	 time	 simply	 by
assigning	to	 them,	as	you	could	with	a	Python	class	 instance.	(You
can	 subclass	 the	 extension	 type	 in	 Python	 and	 add	 attributes	 to
instances	of	the	subclass,	however.)

There	 are	 two	 ways	 that	 attributes	 of	 an	 extension	 type	 can	 be
accessed:	 by	Python	attribute	 lookup,	 or	 by	direct	 access	 to	 the	C
struct	 from	 Cython	 code.	 Python	 code	 is	 only	 able	 to	 access
attributes	of	an	extension	type	by	the	first	method,	but	Cython	code
can	use	either	method.

By	 default,	 extension	 type	 attributes	 are	 only	 accessible	 by	 direct
access,	 not	 Python	 access,	 which	 means	 that	 they	 are	 not
accessible	from	Python	code.	To	make	them	accessible	from	Python
code,	you	need	to	declare	them	as	public	or	readonly.	For	example:

cdef	class	Shrubbery:

				cdef	public	int	width,	height

				cdef	readonly	float	depth

makes	 the	 width	 and	 height	 attributes	 readable	 and	 writable	 from
Python	code,	and	the	depth	attribute	readable	but	not	writable.

Note: 	You	can	only	expose	simple	C	types,	such	as	ints,	floats,
and	strings,	for	Python	access.	You	can	also	expose	Python-
valued	attributes.

Note: 	Also	the	public	and	readonly	options	apply	only	to	Python
access,	not	direct	access.	All	the	attributes	of	an	extension	type
are	always	readable	and	writable	by	C-level	access.

Type	declarations
Before	 you	 can	directly	 access	 the	attributes	of	 an	extension	 type,
the	Cython	 compiler	must	 know	 that	 you	 have	 an	 instance	 of	 that
type,	and	not	 just	a	generic	Python	object.	 It	 knows	 this	already	 in
the	case	of	 the	 self	 parameter	of	 the	methods	of	 that	 type,	but	 in
other	cases	you	will	have	to	use	a	type	declaration.

For	example,	in	the	following	function:

cdef	widen_shrubbery(sh,	extra_width):	#	BAD

				sh.width	=	sh.width	+	extra_width

because	 the	 sh	 parameter	 hasn’t	 been	 given	 a	 type,	 the	 width
attribute	will	be	accessed	by	a	Python	attribute	lookup.	If	the	attribute
has	been	declared	public	or	 readonly	 then	this	will	work,	but	 it	will
be	very	inefficient.	If	the	attribute	is	private,	it	will	not	work	at	all	–	the
code	will	compile,	but	an	attribute	error	will	be	raised	at	run	time.

The	solution	is	to	declare	sh	as	being	of	type	Shrubbery,	as	follows:

cdef	widen_shrubbery(Shrubbery	sh,	extra_width):

				sh.width	=	sh.width	+	extra_width

Now	 the	 Cython	 compiler	 knows	 that	 sh	 has	 a	 C	 attribute	 called
width	and	will	generate	code	to	access	it	directly	and	efficiently.	The
same	consideration	applies	to	local	variables,	for	example,:

cdef	Shrubbery	another_shrubbery(Shrubbery	sh1):

				cdef	Shrubbery	sh2

				sh2	=	Shrubbery()

				sh2.width	=	sh1.width

				sh2.height	=	sh1.height

				return	sh2

Type	Testing	and	Casting

Suppose	 I	 have	a	method	 quest()	which	 returns	an	object	 of	 type
Shrubbery.	To	access	it’s	width	I	could	write:

cdef	Shrubbery	sh	=	quest()

print	sh.width

which	requires	the	use	of	a	local	variable	and	performs	a	type	test	on
assignment.	 If	you	know	 the	 return	value	of	 quest()	will	be	of	 type
Shrubbery	you	can	use	a	cast	to	write:

print	(<Shrubbery>quest()).width

This	may	be	dangerous	 if	 quest()	 is	not	actually	a	 Shrubbery,	as	 it
will	try	to	access	width	as	a	C	struct	member	which	may	not	exist.	At
the	 C	 level,	 rather	 than	 raising	 an	 AttributeError,	 either	 an
nonsensical	result	will	be	returned	(interpreting	whatever	data	is	at	at
that	address	as	an	int)	or	a	segfault	may	result	from	trying	to	access
invalid	memory.	Instead,	one	can	write:

print	(<Shrubbery?>quest()).width

which	 performs	 a	 type	 check	 (possibly	 raising	 a	 TypeError)	 before
making	the	cast	and	allowing	the	code	to	proceed.

To	explicitly	test	the	type	of	an	object,	use	the	isinstance()	method.
By	 default,	 in	 Python,	 the	 isinstance()	 method	 checks	 the
__class__	 attribute	 of	 the	 first	 argument	 to	 determine	 if	 it	 is	 of	 the
required	 type.	However,	 this	 is	 potentially	 unsafe	 as	 the	 __class__
attribute	 can	 be	 spoofed	 or	 changed,	 but	 the	 C	 structure	 of	 an
extension	type	must	be	correct	to	access	its	cdef	attributes	and	call
its	cdef	methods.	Cython	detects	if	the	second	argument	is	a	known
extension	type	and	does	a	type	check	instead,	analogous	to	Pyrex’s

typecheck().	The	old	behavior	is	always	available	by	passing	a	tuple
as	the	second	parameter:

print	isinstance(sh,	Shrubbery)					#	Check	the	type	of	sh

print	isinstance(sh,	(Shrubbery,))		#	Check	sh.__class__

Extension	types	and	None
When	 you	 declare	 a	 parameter	 or	 C	 variable	 as	 being	 of	 an
extension	type,	Cython	will	allow	it	to	take	on	the	value	None	as	well
as	 values	 of	 its	 declared	 type.	 This	 is	 analogous	 to	 the	 way	 a	 C
pointer	 can	 take	 on	 the	 value	 NULL,	 and	 you	 need	 to	 exercise	 the
same	caution	because	of	it.	There	is	no	problem	as	long	as	you	are
performing	 Python	 operations	 on	 it,	 because	 full	 dynamic	 type
checking	will	be	applied.	However,	when	you	access	C	attributes	of
an	extension	type	(as	in	the	widen_shrubbery	function	above),	it’s	up
to	you	to	make	sure	the	reference	you’re	using	 is	not	 None	–	 in	 the
interests	of	efficiency,	Cython	does	not	check	this.

You	need	to	be	particularly	careful	when	exposing	Python	functions
which	 take	 extension	 types	 as	 arguments.	 If	 we	 wanted	 to	 make
widen_shrubbery()	 a	 Python	 function,	 for	 example,	 if	 we	 simply
wrote:

def	widen_shrubbery(Shrubbery	sh,	extra_width):	#	This	is

				sh.width	=	sh.width	+	extra_width											#	dangerous!

then	users	of	our	module	could	crash	 it	by	passing	 None	 for	 the	 sh
parameter.

One	way	to	fix	this	would	be:

def	widen_shrubbery(Shrubbery	sh,	extra_width):

				if	sh	is	None:

								raise	TypeError

				sh.width	=	sh.width	+	extra_width

but	 since	 this	 is	 anticipated	 to	 be	 such	 a	 frequent	 requirement,
Cython	 provides	 a	 more	 convenient	 way.	 Parameters	 of	 a	 Python
function	declared	as	an	extension	type	can	have	a	not	None	clause:

def	widen_shrubbery(Shrubbery	sh	not	None,	extra_width):

				sh.width	=	sh.width	+	extra_width

Now	the	 function	will	automatically	check	 that	 sh	 is	 not	None	along
with	checking	that	it	has	the	right	type.

Note: 	not	None	clause	can	only	be	used	in	Python	functions
(defined	with	def)	and	not	C	functions	(defined	with	cdef).	If	you
need	to	check	whether	a	parameter	to	a	C	function	is	None,	you
will	need	to	do	it	yourself.

Note: 	Some	more	things:

The	 self	 parameter	 of	 a	 method	 of	 an	 extension	 type	 is
guaranteed	never	to	be	None.
When	comparing	a	value	with	None,	keep	in	mind	that,	if	x	is	a
Python	object,	x	is	None	and	x	is	not	None	are	very	efficient
because	 they	 translate	 directly	 to	 C	 pointer	 comparisons,
whereas	 x	 ==	 None	 and	 x	 !=	 None,	 or	 simply	 using	 x	 as	 a
boolean	value	(as	in	if	x:	...)	will	invoke	Python	operations
and	therefore	be	much	slower.

http://docs.python.org/3.3/reference/compound_stmts.html#def

Special	methods
Although	the	principles	are	similar,	 there	are	substantial	differences
between	many	of	the	__xxx__()	special	methods	of	extension	types
and	their	Python	counterparts.	There	is	a	separate	page	devoted	to
this	subject,	and	you	should	read	it	carefully	before	attempting	to	use
any	special	methods	in	your	extension	types.

Properties
There	 is	 a	 special	 syntax	 for	 defining	 properties	 in	 an	 extension
class:

cdef	class	Spam:

				property	cheese:

								"A	doc	string	can	go	here."

								def	__get__(self):

												#	This	is	called	when	the	property	is	read.

												...

								def	__set__(self,	value):

												#	This	is	called	when	the	property	is	written.

												...

								def	__del__(self):

												#	This	is	called	when	the	property	is	deleted.

The	__get__(),	__set__()	and	__del__()	methods	are	all	optional;	if
they	are	omitted,	an	exception	will	be	raised	when	the	corresponding
operation	is	attempted.

Here’s	a	complete	example.	It	defines	a	property	which	adds	to	a	list
each	time	it	is	written	to,	returns	the	list	when	it	is	read,	and	empties
the	list	when	it	is	deleted.:

#	cheesy.pyx

cdef	class	CheeseShop:

				cdef	object	cheeses

				def	__cinit__(self):

								self.cheeses	=	[]

				property	cheese:

								def	__get__(self):

												return	"We	don't	have:	%s"	%	self.cheeses

								def	__set__(self,	value):

												self.cheeses.append(value)

								def	__del__(self):

												del	self.cheeses[:]

#	Test	input

from	cheesy	import	CheeseShop

shop	=	CheeseShop()

print	shop.cheese

shop.cheese	=	"camembert"

print	shop.cheese

shop.cheese	=	"cheddar"

print	shop.cheese

del	shop.cheese

print	shop.cheese

#	Test	output

We	don't	have:	[]

We	don't	have:	['camembert']

We	don't	have:	['camembert',	'cheddar']

We	don't	have:	[]

Subclassing
An	 extension	 type	 may	 inherit	 from	 a	 built-in	 type	 or	 another
extension	type:

cdef	class	Parrot:

				...

cdef	class	Norwegian(Parrot):

				...

A	complete	definition	of	the	base	type	must	be	available	to	Cython,
so	 if	 the	 base	 type	 is	 a	 built-in	 type,	 it	must	 have	 been	 previously
declared	as	an	extern	extension	type.	 If	 the	base	type	 is	defined	 in
another	 Cython	 module,	 it	 must	 either	 be	 declared	 as	 an	 extern
extension	type	or	imported	using	the	cimport	statement.

An	 extension	 type	 can	 only	 have	 one	 base	 class	 (no	 multiple
inheritance).

Cython	extension	types	can	also	be	subclassed	in	Python.	A	Python
class	 can	 inherit	 from	 multiple	 extension	 types	 provided	 that	 the
usual	 Python	 rules	 for	multiple	 inheritance	 are	 followed	 (i.e.	 the	C
layouts	of	all	the	base	classes	must	be	compatible).

Since	Cython	0.13.1,	there	is	a	way	to	prevent	extension	types	from
being	 subtyped	 in	 Python.	 This	 is	 done	 via	 the	 final	 directive,
usually	set	on	an	extension	type	using	a	decorator:

cimport	cython

@cython.final

cdef	class	Parrot:

			def	done(self):	pass

Trying	 to	 create	 a	 Python	 subclass	 from	 this	 type	 will	 raise	 a

TypeError	at	runtime.	Cython	will	also	prevent	subtyping	a	final	type
inside	of	the	same	module,	i.e.	creating	an	extension	type	that	uses
a	final	type	as	its	base	type	will	fail	at	compile	time.	Note,	however,
that	 this	 restriction	does	not	 currently	propagate	 to	other	extension
modules,	so	even	final	extension	types	can	still	be	subtyped	at	the	C
level	by	foreign	code.

C	methods
Extension	 types	 can	 have	C	methods	 as	well	 as	Python	methods.
Like	 C	 functions,	 C	 methods	 are	 declared	 using	 cdef	 or	 cpdef
instead	 of	 def.	 C	methods	 are	 “virtual”,	 and	may	 be	 overridden	 in
derived	 extension	 types.	 In	 addition,	 cpdef	 methods	 can	 even	 be
overridden	by	python	methods	when	called	as	C	method.	This	adds
a	little	to	their	calling	overhead	compared	to	a	cdef	methd:

#	pets.pyx

cdef	class	Parrot:

				cdef	void	describe(self):

								print	"This	parrot	is	resting."

cdef	class	Norwegian(Parrot):

				cdef	void	describe(self):

								Parrot.describe(self)

								print	"Lovely	plumage!"

cdef	Parrot	p1,	p2

p1	=	Parrot()

p2	=	Norwegian()

print	"p1:"

p1.describe()

print	"p2:"

p2.describe()

#	Output

p1:

This	parrot	is	resting.

p2:

This	parrot	is	resting.

Lovely	plumage!

The	 above	 example	 also	 illustrates	 that	 a	 C	 method	 can	 call	 an
inherited	C	method	using	the	usual	Python	technique,	i.e.:

http://docs.python.org/3.3/reference/compound_stmts.html#def

Parrot.describe(self)

Forward-declaring	extension	types
Extension	 types	 can	 be	 forward-declared,	 like	 struct	 and	 union
types.	 This	will	 be	 necessary	 if	 you	 have	 two	 extension	 types	 that
need	to	refer	to	each	other,	e.g.:

cdef	class	Shrubbery	#	forward	declaration

cdef	class	Shrubber:

				cdef	Shrubbery	work_in_progress

cdef	class	Shrubbery:

				cdef	Shrubber	creator

If	you	are	forward-declaring	an	extension	type	that	has	a	base	class,
you	must	specify	the	base	class	in	both	the	forward	declaration	and
its	subsequent	definition,	for	example,:

cdef	class	A(B)

...

cdef	class	A(B):

				#	attributes	and	methods

Fast	instantiation
Cython	provides	two	ways	to	speed	up	the	instantiation	of	extension
types.	 The	 first	 one	 is	 a	 direct	 call	 to	 the	 __new__()	 special	 static
method,	as	known	from	Python.	For	an	extension	type	Penguin,	you
could	use	the	following	code:

cdef	class	Penguin:

				cdef	object	food

				def	__cinit__(self,	food):

								self.food	=	food

				def	__init__(self,	food):

								print("eating!")

normal_penguin	=	Penguin('fish')

fast_penguin	=	Penguin.__new__(Penguin,	'wheat')		#	note:	not	calling	__init__()	!

Note	 that	 the	 path	 through	 __new__()	 will	 not	 call	 the	 type’s
__init__()	 method	 (again,	 as	 known	 from	 Python).	 Thus,	 in	 the
example	 above,	 the	 first	 instantiation	 will	 print	 eating!,	 but	 the
second	will	not.	This	is	only	one	of	the	reasons	why	the	__cinit__()
method	 is	safer	and	preferable	over	 the	normal	 __init__()	method
for	extension	types.

The	 second	 performance	 improvement	 applies	 to	 types	 that	 are
often	created	and	deleted	 in	a	 row,	so	 that	 they	can	benefit	 from	a
freelist.	Cython	provides	the	decorator	@cython.freelist(N)	for	this,
which	 creates	 a	 statically	 sized	 freelist	 of	 N	 instances	 for	 a	 given
type.	Example:

cimport	cython

@cython.freelist(8)

cdef	class	Penguin:

				cdef	object	food

				def	__cinit__(self,	food):

								self.food	=	food

penguin	=	Penguin('fish	1')

penguin	=	None

penguin	=	Penguin('fish	2')		#	does	not	need	to	allocate	memory!

Making	extension	types	weak-
referenceable
By	default,	extension	 types	do	not	support	having	weak	 references
made	 to	 them.	You	 can	 enable	weak	 referencing	 by	 declaring	 a	C
attribute	of	type	object	called	__weakref__.	For	example,:

cdef	class	ExplodingAnimal:

				"""This	animal	will	self-destruct	when	it	is

				no	longer	strongly	referenced."""

				cdef	object	__weakref__

Public	and	external	extension	types
Extension	 types	 can	 be	 declared	 extern	 or	 public.	 An	 extern
extension	 type	 declaration	 makes	 an	 extension	 type	 defined	 in
external	 C	 code	 available	 to	 a	 Cython	module.	 A	 public	 extension
type	 declaration	 makes	 an	 extension	 type	 defined	 in	 a	 Cython
module	available	to	external	C	code.

External	extension	types

An	extern	extension	type	allows	you	to	gain	access	to	the	 internals
of	 Python	 objects	 defined	 in	 the	 Python	 core	 or	 in	 a	 non-Cython
extension	module.

Note: 	In	previous	versions	of	Pyrex,	extern	extension	types	were
also	used	to	reference	extension	types	defined	in	another	Pyrex
module.	While	you	can	still	do	that,	Cython	provides	a	better
mechanism	for	this.	See	Sharing	Declarations	Between	Cython
Modules.

Here	is	an	example	which	will	let	you	get	at	the	C-level	members	of
the	built-in	complex	object.:

cdef	extern	from	"complexobject.h":

				struct	Py_complex:

								double	real

								double	imag

				ctypedef	class	__builtin__.complex	[object	PyComplexObject]:

								cdef	Py_complex	cval

#	A	function	which	uses	the	above	type

def	spam(complex	c):

				print	"Real:",	c.cval.real

				print	"Imag:",	c.cval.imag

Note: 	Some	important	things:

1.	 In	 this	 example,	 ctypedef	 class	 has	 been	 used.	 This	 is
because,	 in	 the	 Python	 header	 files,	 the	 PyComplexObject
struct	is	declared	with:

typedef	struct	{

				...

}	PyComplexObject;

2.	 As	 well	 as	 the	 name	 of	 the	 extension	 type,	 the	 module	 in
which	 its	 type	object	can	be	 found	 is	also	specified.	See	 the
implicit	importing	section	below.

3.	 When	declaring	an	external	extension	type,	you	don’t	declare
any	methods.	Declaration	of	methods	 is	not	required	 in	order
to	call	them,	because	the	calls	are	Python	method	calls.	Also,
as	with	struct	and	union,	if	your	extension	class	declaration	is
inside	 a	 cdef	 extern	 from	 block,	 you	 only	 need	 to	 declare
those	C	members	which	you	wish	to	access.

Name	specification	clause

The	 part	 of	 the	 class	 declaration	 in	 square	 brackets	 is	 a	 special
feature	 only	 available	 for	 extern	 or	 public	 extension	 types.	 The	 full
form	of	this	clause	is:

[object	object_struct_name,	type	type_object_name]

where	 object_struct_name	 is	 the	 name	 to	 assume	 for	 the	 type’s	C
struct,	and	 type_object_name	 is	 the	name	to	assume	for	 the	 type’s
statically	declared	type	object.	(The	object	and	type	clauses	can	be
written	in	either	order.)

If	 the	extension	type	declaration	 is	 inside	a	 cdef	extern	 from	block,

the	 object	 clause	 is	 required,	 because	 Cython	 must	 be	 able	 to
generate	code	that	is	compatible	with	the	declarations	in	the	header
file.	 Otherwise,	 for	 extern	 extension	 types,	 the	 object	 clause	 is
optional.

For	 public	 extension	 types,	 the	 object	 and	 type	 clauses	 are	 both
required,	 because	 Cython	 must	 be	 able	 to	 generate	 code	 that	 is
compatible	with	external	C	code.

Implicit	importing

Cython	 requires	 you	 to	 include	 a	 module	 name	 in	 an	 extern
extension	class	declaration,	for	example,:

cdef	extern	class	MyModule.Spam:

				...

The	type	object	will	be	implicitly	imported	from	the	specified	module
and	bound	to	the	corresponding	name	in	this	module.	In	other	words,
in	this	example	an	implicit:

from	MyModule	import	Spam

statement	will	be	executed	at	module	load	time.

The	module	name	can	be	a	dotted	name	to	refer	to	a	module	inside
a	package	hierarchy,	for	example,:

cdef	extern	class	My.Nested.Package.Spam:

				...

You	can	also	specify	an	alternative	name	under	which	to	import	the
type	using	an	as	clause,	for	example,:

cdef	extern	class	My.Nested.Package.Spam	as	Yummy:

			...

which	corresponds	to	the	implicit	import	statement:

from	My.Nested.Package	import	Spam	as	Yummy

Type	names	vs.	constructor	names

Inside	a	Cython	module,	the	name	of	an	extension	type	serves	two
distinct	purposes.	When	used	in	an	expression,	it	refers	to	a	module-
level	 global	 variable	 holding	 the	 type’s	 constructor	 (i.e.	 its	 type-
object).	However,	 it	can	also	be	used	as	a	C	 type	name	to	declare
variables,	arguments	and	return	values	of	that	type.

When	you	declare:

cdef	extern	class	MyModule.Spam:

				...

the	name	Spam	serves	both	these	roles.	There	may	be	other	names
by	 which	 you	 can	 refer	 to	 the	 constructor,	 but	 only	 Spam	 can	 be
used	as	a	 type	name.	For	 example,	 if	 you	were	 to	 explicity	 import
MyModule,	 you	 could	 use	 MyModule.Spam()	 to	 create	 a	 Spam
instance,	but	 you	wouldn’t	 be	able	 to	use	 MyModule.Spam	 as	 a	 type
name.

When	an	as	clause	is	used,	the	name	specified	in	the	as	clause	also
takes	over	both	roles.	So	if	you	declare:

cdef	extern	class	MyModule.Spam	as	Yummy:

				...

then	 Yummy	 becomes	 both	 the	 type	 name	 and	 a	 name	 for	 the
constructor.	Again,	 there	are	other	ways	 that	 you	could	get	hold	of
the	constructor,	but	only	Yummy	is	usable	as	a	type	name.

Public	extension	types
An	extension	type	can	be	declared	public,	in	which	case	a	.h	file	is
generated	 containing	 declarations	 for	 its	 object	 struct	 and	 type
object.	By	including	the	.h	file	in	external	C	code	that	you	write,	that
code	can	access	the	attributes	of	the	extension	type.

nextprevious	|Cython	0.19.1	documentation	»	Users	Guide	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

nextprevious	|Cython	0.19.1	documentation	»	Users	Guide	»

Special	Methods	of	Extension
Types
This	 page	 describes	 the	 special	 methods	 currently	 supported	 by
Cython	 extension	 types.	 A	 complete	 list	 of	 all	 the	 special	methods
appears	in	the	table	at	the	bottom.	Some	of	these	methods	behave
differently	 from	 their	 Python	 counterparts	 or	 have	 no	 direct	 Python
counterparts,	and	require	special	mention.

Declaration
Special	methods	of	extension	types	must	be	declared	with	 def,	not
cdef.	This	does	not	impact	their	performance–Python	uses	different
calling	conventions	to	invoke	these	special	methods.

http://docs.python.org/3.3/reference/compound_stmts.html#def

Docstrings
Currently,	 docstrings	 are	 not	 fully	 supported	 in	 some	 special
methods	of	extension	types.	You	can	place	a	docstring	in	the	source
to	 serve	as	 a	 comment,	 but	 it	won’t	 show	up	 in	 the	 corresponding
__doc__	attribute	at	run	time.	(This	seems	to	be	is	a	Python	limitation
–	 there’s	 nowhere	 in	 the	PyTypeObject	 data	 structure	 to	 put	 such
docstrings.)

Initialisation	methods:	__cinit__()	and
__init__()

There	are	two	methods	concerned	with	initialising	the	object.

The	__cinit__()	method	is	where	you	should	perform	basic	C-level
initialisation	 of	 the	 object,	 including	 allocation	 of	 any	 C	 data
structures	that	your	object	will	own.	You	need	to	be	careful	what	you
do	 in	 the	 __cinit__()	method,	 because	 the	 object	may	 not	 yet	 be
fully	valid	Python	object	when	it	 is	called.	Therefore,	you	should	be
careful	invoking	any	Python	operations	which	might	touch	the	object;
in	particular,	its	methods.

By	 the	 time	 your	 __cinit__()	method	 is	 called,	memory	 has	 been
allocated	 for	 the	 object	 and	 any	 C	 attributes	 it	 has	 have	 been
initialised	 to	 0	 or	 null.	 (Any	 Python	 attributes	 have	 also	 been
initialised	 to	 None,	 but	 you	 probably	 shouldn’t	 rely	 on	 that.)	 Your
__cinit__()	method	is	guaranteed	to	be	called	exactly	once.

If	 your	extension	 type	has	a	base	 type,	 the	 __cinit__()	method	of
the	 base	 type	 is	 automatically	 called	 before	 your	 __cinit__()

method	is	called;	you	cannot	explicitly	call	the	inherited	__cinit__()
method.	 If	 you	 need	 to	 pass	 a	modified	 argument	 list	 to	 the	 base
type,	you	will	have	 to	do	 the	relevant	part	of	 the	 initialisation	 in	 the
__init__()	 method	 instead	 (where	 the	 normal	 rules	 for	 calling
inherited	methods	apply).

Any	 initialisation	 which	 cannot	 safely	 be	 done	 in	 the	 __cinit__()
method	 should	 be	 done	 in	 the	 __init__()	 method.	 By	 the	 time
__init__()	 is	called,	the	object	 is	a	fully	valid	Python	object	and	all
operations	 are	 safe.	 Under	 some	 circumstances	 it	 is	 possible	 for
__init__()	to	be	called	more	than	once	or	not	to	be	called	at	all,	so

your	 other	 methods	 should	 be	 designed	 to	 be	 robust	 in	 such
situations.

Any	arguments	passed	to	the	constructor	will	be	passed	to	both	the
__cinit__()	 method	 and	 the	 __init__()	 method.	 If	 you	 anticipate
subclassing	your	extension	type	in	Python,	you	may	find	it	useful	to
give	 the	 __cinit__()	 method	 *	 and	 **	 arguments	 so	 that	 it	 can
accept	and	ignore	extra	arguments.	Otherwise,	any	Python	subclass
which	 has	 an	 __init__()	 with	 a	 different	 signature	 will	 have	 to
override	 __new__()	 [1]	 as	well	 as	 __init__(),	which	 the	writer	 of	 a
Python	 class	 wouldn’t	 expect	 to	 have	 to	 do.	 Alternatively,	 as	 a
convenience,	 if	 you	 declare	 your	 __cinit__`()	 method	 to	 take	 no
arguments	(other	than	self)	it	will	simply	ignore	any	extra	arguments
passed	 to	 the	 constructor	 without	 complaining	 about	 the	 signature
mismatch.

[1] http://docs.python.org/reference/datamodel.html#object.__new__

http://docs.python.org/reference/datamodel.html#object.__new__

Finalization	method:	__dealloc__()
The	 counterpart	 to	 the	 __cinit__()	 method	 is	 the	 __dealloc__()
method,	 which	 should	 perform	 the	 inverse	 of	 the	 __cinit__()

method.	Any	C	data	 that	you	explicitly	allocated	(e.g.	via	malloc)	 in
your	 __cinit__()	 method	 should	 be	 freed	 in	 your	 __dealloc__()
method.

You	need	to	be	careful	what	you	do	in	a	__dealloc__()	method.	By
the	time	your	__dealloc__()	method	is	called,	the	object	may	already
have	been	partially	destroyed	and	may	not	be	in	a	valid	state	as	far
as	Python	 is	 concerned,	 so	 you	 should	 avoid	 invoking	 any	Python
operations	which	might	touch	the	object.	In	particular,	don’t	call	any
other	methods	 of	 the	 object	 or	 do	 anything	which	might	 cause	 the
object	 to	be	 resurrected.	 It’s	best	 if	 you	stick	 to	 just	deallocating	C
data.

You	don’t	need	to	worry	about	deallocating	Python	attributes	of	your
object,	 because	 that	 will	 be	 done	 for	 you	 by	 Cython	 after	 your
__dealloc__()	method	returns.

When	subclassing	extension	types,	be	aware	that	the	__dealloc__()
method	 of	 the	 superclass	 will	 always	 be	 called,	 even	 if	 it	 is
overridden.	 This	 is	 in	 contrast	 to	 typical	 Python	 behavior	 where
superclass	methods	will	 not	 be	 executed	 unless	 they	 are	 explicitly
called	by	the	subclass.

Note: 	There	is	no	__del__()	method	for	extension	types.

Arithmetic	methods
Arithmetic	operator	methods,	such	as	 __add__(),	behave	differently
from	 their	 Python	 counterparts.	 There	 are	 no	 separate	 “reversed”
versions	 of	 these	 methods	 (__radd__(),	 etc.)	 Instead,	 if	 the	 first
operand	 cannot	 perform	 the	 operation,	 the	 same	 method	 of	 the
second	operand	is	called,	with	the	operands	in	the	same	order.

This	 means	 that	 you	 can’t	 rely	 on	 the	 first	 parameter	 of	 these
methods	being	“self”	or	being	the	right	type,	and	you	should	test	the
types	 of	 both	 operands	 before	 deciding	 what	 to	 do.	 If	 you	 can’t
handle	 the	 combination	 of	 types	 you’ve	 been	 given,	 you	 should
return	NotImplemented.

This	 also	 applies	 to	 the	 in-place	 arithmetic	 method	 __ipow__().	 It
doesn’t	apply	to	any	of	the	other	in-place	methods	(__iadd__(),	etc.)
which	always	take	self	as	the	first	argument.

Rich	comparisons
There	 are	 no	 separate	methods	 for	 the	 individual	 rich	 comparison
operations	 (__eq__(),	 __le__(),	 etc.)	 Instead	 there	 is	 a	 single
method	 __richcmp__()	 which	 takes	 an	 integer	 indicating	 which
operation	is	to	be	performed,	as	follows:

< 0
== 2
> 4
<= 1
!= 3
>= 5

The	__next__()	method
Extension	 types	 wishing	 to	 implement	 the	 iterator	 interface	 should
define	a	method	called	__next__(),	not	next.	The	Python	system	will
automatically	supply	a	next	method	which	calls	your	__next__().	Do
NOT	explicitly	give	your	 type	a	 next()	method,	or	bad	things	could
happen.

Special	Method	Table
This	 table	 lists	 all	 of	 the	 special	 methods	 together	 with	 their
parameter	and	return	types.	In	the	table	below,	a	parameter	name	of
self	 is	 used	 to	 indicate	 that	 the	 parameter	 has	 the	 type	 that	 the
method	belongs	 to.	Other	parameters	with	no	 type	specified	 in	 the
table	are	generic	Python	objects.

You	 don’t	 have	 to	 declare	 your	method	 as	 taking	 these	 parameter
types.	 If	 you	declare	different	 types,	 conversions	will	 be	performed
as	necessary.

General

Name Parameters Return
type Description

__cinit__ self,	... 	
Basic	initialisation	(no
direct	Python
equivalent)

__init__ self,	... 	 Further	initialisation

__dealloc__ self 	
Basic	deallocation	(no
direct	Python
equivalent)

__cmp__ x,	y int 3-way	comparison

__richcmp__ x,	y,	int	op object
Rich	comparison	(no
direct	Python
equivalent)

__str__ self object str(self)
__repr__ self object repr(self)
__hash__ self int Hash	function
__call__ self,	... object self(...)

__iter__ self object Return	iterator	for
sequence

__getattr__ self,	name object Get	attribute

__getattribute__ self,	name object Get	attribute,
unconditionally

__setattr__ self,	name,	val 	 Set	attribute
__delattr__ self,	name 	 Delete	attribute

Arithmetic	operators

Name Parameters Return
type Description

__add__ x,	y object binary	+	operator
__sub__ x,	y object binary	-	operator
__mul__ x,	y object *	operator

__div__ x,	y object /	operator	for	old-style
division

__floordiv__ x,	y object //	operator

__truediv__ x,	y object /	operator	for	new-style
division

__mod__ x,	y object %	operator
__divmod__ x,	y object combined	div	and	mod

__pow__ x,	y,	z object **	operator	or	pow(x,	y,
z)

__neg__ self object unary	-	operator
__pos__ self object unary	+	operator
__abs__ self object absolute	value
__nonzero__ self int convert	to	boolean
__invert__ self object ~	operator
__lshift__ x,	y object <<	operator
__rshift__ x,	y object >>	operator
__and__ x,	y object &	operator
__or__ x,	y object |	operator
__xor__ x,	y object ^	operator

Numeric	conversions

Name Parameters Return
type Description

__int__ self object Convert	to	integer
__long__ self object Convert	to	long	integer
__float__ self object Convert	to	float
__oct__ self object Convert	to	octal
__hex__ self object Convert	to	hexadecimal
__index__
(2.5+	only) self object Convert	to	sequence

index

In-place	arithmetic	operators

Name Parameters Return
type Description

__iadd__ self,	x object +=	operator
__isub__ self,	x object -=	operator
__imul__ self,	x object *=	operator

__idiv__ self,	x object /=	operator	for	old-style
division

__ifloordiv__ self,	x object //=	operator

__itruediv__ self,	x object /=	operator	for	new-style
division

__imod__ self,	x object %=	operator
__ipow__ x,	y,	z object **=	operator
__ilshift__ self,	x object <<=	operator
__irshift__ self,	x object >>=	operator
__iand__ self,	x object &=	operator
__ior__ self,	x object |=	operator
__ixor__ self,	x object ^=	operator

Sequences	and	mappings

Name Parameters Return
type Description

__len__ self	int 	 len(self)
__getitem__ self,	x object self[x]
__setitem__ self,	x,	y 	 self[x]	=	y

__delitem__ self,	x 	 del	self[x]

__getslice__ self,	Py_ssize_t	i,
Py_ssize_t	j object self[i:j]

__setslice__ self,	Py_ssize_t	i,
Py_ssize_t	j,	x 	 self[i:j]	=	x

__delslice__ self,	Py_ssize_t	i,
Py_ssize_t	j 	 del	self[i:j]

__contains__ self,	x int x	in	self

Iterators

Name Parameters Return
type Description

__next__ self object Get	next	item	(called	next
in	Python)

Buffer	interface	[PEP	3118]	(no	Python	equivalents
-	see	note	1)

Name Parameters Return
type Description

__getbuffer__ self,	Py_buffer
*view,	int	flags 	 	

__releasebuffer__ self,	Py_buffer
*view 	 	

Buffer	interface	[legacy]	(no	Python	equivalents	-
see	note	1)

Name Parameters Return
type Description

__getreadbuffer__ self,	Py_ssize_t
i,	void	**p 	 	

__getwritebuffer__ self,	Py_ssize_t
i,	void	**p 	 	

self,	Py_ssize_t

__getsegcount__ *p 	 	

__getcharbuffer__ self,	Py_ssize_t
i,	char	**p 	 	

Descriptor	objects	(see	note	2)

Name Parameters Return
type Description

__get__ self,	instance,
class object Get	value	of	attribute

__set__ self,	instance,
value 	 Set	value	of	attribute

__delete__ self,	instance 	 Delete	attribute

Note: 	(1)	The	buffer	interface	was	intended	for	use	by	C	code	and
is	not	directly	accessible	from	Python.	It	is	described	in	the
Python/C	API	Reference	Manual	of	Python	2.x	under	sections	6.6
and	10.6.	It	was	superseded	by	the	new	PEP	3118	buffer	protocol
in	Python	2.6	and	is	no	longer	available	in	Python	3.

Note: 	(2)	Descriptor	objects	are	part	of	the	support	mechanism
for	new-style	Python	classes.	See	the	discussion	of	descriptors	in
the	Python	documentation.	See	also	PEP	252,	“Making	Types
Look	More	Like	Classes”,	and	PEP	253,	“Subtyping	Built-In	Types”.

nextprevious	|Cython	0.19.1	documentation	»	Users	Guide	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

nextprevious	|Cython	0.19.1	documentation	»	Users	Guide	»

Sharing	Declarations	Between
Cython	Modules
This	 section	 describes	 a	 new	 set	 of	 facilities	 for	 making	 C
declarations,	 functions	 and	 extension	 types	 in	 one	 Cython	module
available	 for	 use	 in	 another	 Cython	 module.	 These	 facilities	 are
closely	 modeled	 on	 the	 Python	 import	 mechanism,	 and	 can	 be
thought	of	as	a	compile-time	version	of	it.

Definition	and	Implementation	files
A	Cython	module	can	be	split	 into	 two	parts:	a	definition	 file	with	a
.pxd	suffix,	containing	C	declarations	that	are	to	be	available	to	other
Cython	 modules,	 and	 an	 implementation	 file	 with	 a	 .pyx	 suffix,
containing	everything	else.	When	a	module	wants	to	use	something
declared	 in	 another	 module’s	 definition	 file,	 it	 imports	 it	 using	 the
cimport	statement.

A	.pxd	 file	that	consists	solely	of	extern	declarations	does	not	need
to	 correspond	 to	 an	 actual	 .pyx	 file	 or	 Python	 module.	 This	 can
make	it	a	convenient	place	to	put	common	declarations,	for	example
declarations	of	 functions	 from	an	external	 library	 that	 one	wants	 to
use	in	several	modules.

What	a	Definition	File	contains
A	definition	file	can	contain:

Any	kind	of	C	type	declaration.
extern	C	function	or	variable	declarations.
Declarations	of	C	functions	defined	in	the	module.
The	definition	part	of	an	extension	type	(see	below).

It	cannot	contain	the	implementations	of	any	C	or	Python	functions,
or	any	Python	class	definitions,	or	any	executable	statements.	 It	 is
needed	when	one	wants	to	access	 cdef	attributes	and	methods,	or
to	inherit	from	cdef	classes	defined	in	this	module.

Note: 	You	don’t	need	to	(and	shouldn’t)	declare	anything	in	a
declaration	file	public	in	order	to	make	it	available	to	other	Cython
modules;	its	mere	presence	in	a	definition	file	does	that.	You	only
need	a	public	declaration	if	you	want	to	make	something	available
to	external	C	code.

What	an	Implementation	File	contains
An	 implementation	 file	 can	 contain	 any	 kind	 of	 Cython	 statement,
although	 there	 are	 some	 restrictions	 on	 the	 implementation	 part	 of
an	extension	type	if	the	corresponding	definition	file	also	defines	that
type	(see	below).	 If	one	doesn’t	need	to	 cimport	anything	from	this
module,	then	this	is	the	only	file	one	needs.

The	cimport	statement
The	 cimport	statement	 is	used	 in	a	definition	or	 implementation	file
to	gain	access	to	names	declared	in	another	definition	file.	Its	syntax
exactly	parallels	that	of	the	normal	Python	import	statement:

cimport	module	[,	module...]

from	module	cimport	name	[as	name]	[,	name	[as	name]	...]

Here	is	an	example.	dishes.pxd	is	a	definition	file	which	exports	a	C
data	type.	restaurant.pxd	an	implementation	file	which	imports	and
uses	it.

dishes.pxd:

cdef	enum	otherstuff:

				sausage,	eggs,	lettuce

cdef	struct	spamdish:

				int	oz_of_spam

				otherstuff	filler

restaurant.pyx:

cimport	dishes

from	dishes	cimport	spamdish

cdef	void	prepare(spamdish	*d):

				d.oz_of_spam	=	42

				d.filler	=	dishes.sausage

def	serve():

				cdef	spamdish	d

				prepare(&d)

				print	"%d	oz	spam,	filler	no.	%d"	%	(d.oz_of_spam,	d.filler)

It	is	important	to	understand	that	the	cimport	statement	can	only	be
used	 to	 import	 C	 data	 types,	 C	 functions	 and	 variables,	 and
extension	types.	It	cannot	be	used	to	import	any	Python	objects,	and
(with	one	exception)	it	doesn’t	imply	any	Python	import	at	run	time.	If
you	want	to	refer	to	any	Python	names	from	a	module	that	you	have
cimported,	you	will	have	to	 include	a	regular	 import	statement	 for	 it
as	well.

The	exception	is	that	when	you	use	cimport	 to	 import	an	extension
type,	 its	 type	object	 is	 imported	at	 run	 time	and	made	available	by
the	 name	 under	 which	 you	 imported	 it.	 Using	 cimport	 to	 import
extension	types	is	covered	in	more	detail	below.

If	a	.pxd	file	changes,	any	modules	that	cimport	from	it	may	need	to
be	 recompiled.	The	 Cython.Build.cythonize	 utility	 can	 take	 care	of
this	for	you.

Search	paths	for	definition	files

When	you	cimport	a	module	called	modulename,	the	Cython	compiler
searches	 for	a	 file	 called	 modulename.pxd	 along	 the	search	path	 for
include	files,	as	specified	by	-I	command	line	options.

Also,	whenever	you	compile	a	file	modulename.pyx,	the	corresponding
definition	 file	 modulename.pxd	 is	 first	 searched	 for	 along	 the	 same
path,	and	if	found,	it	is	processed	before	processing	the	.pyx	file.

Using	cimport	to	resolve	naming	conflicts

The	 cimport	mechanism	provides	a	clean	and	simple	way	 to	solve
the	problem	of	wrapping	external	C	 functions	with	Python	 functions
of	 the	 same	 name.	 All	 you	 need	 to	 do	 is	 put	 the	 extern	 C
declarations	 into	 a	 .pxd	 file	 for	 an	 imaginary	module,	 and	 cimport

that	module.	You	can	then	refer	to	the	C	functions	by	qualifying	them
with	the	name	of	the	module.	Here’s	an	example:

c_lunch.pxd:

cdef	extern	from	"lunch.h":

				void	eject_tomato(float)

lunch.pyx:

cimport	c_lunch

def	eject_tomato(float	speed):

				c_lunch.eject_tomato(speed)

You	don’t	need	any	c_lunch.pyx	file,	because	the	only	things	defined
in	 c_lunch.pxd	 are	 extern	 C	 entities.	 There	 won’t	 be	 any	 actual
c_lunch	module	at	run	time,	but	that	doesn’t	matter;	the	c_lunch.pxd
file	has	done	its	job	of	providing	an	additional	namespace	at	compile
time.

Sharing	C	Functions
C	 functions	 defined	 at	 the	 top	 level	 of	 a	 module	 can	 be	 made
available	via	cimport	by	putting	headers	for	them	in	the	.pxd	file,	for
example,:

:file:`volume.pxd`::

cdef	float	cube(float)

volume.pyx:

cdef	float	cube(float	x):

				return	x	*	x	*	x

spammery.pyx:

from	volume	cimport	cube

def	menu(description,	size):

				print	description,	":",	cube(size),	\

								"cubic	metres	of	spam"

menu("Entree",	1)

menu("Main	course",	3)

menu("Dessert",	2)

Note: 	When	a	module	exports	a	C	function	in	this	way,	an	object
appears	in	the	module	dictionary	under	the	function’s	name.
However,	you	can’t	make	use	of	this	object	from	Python,	nor	can
you	use	it	from	Cython	using	a	normal	import	statement;	you	have
to	use	cimport.

Sharing	Extension	Types
An	extension	type	can	be	made	available	via	cimport	by	splitting	its
definition	 into	 two	parts,	one	 in	a	definition	 file	and	 the	other	 in	 the
corresponding	implementation	file.

The	definition	part	of	the	extension	type	can	only	declare	C	attributes
and	C	methods,	not	Python	methods,	and	it	must	declare	all	of	that
type’s	C	attributes	and	C	methods.

The	 implementation	 part	 must	 implement	 all	 of	 the	 C	 methods
declared	 in	 the	 definition	 part,	 and	 may	 not	 add	 any	 further	 C
attributes.	It	may	also	define	Python	methods.

Here	 is	 an	 example	 of	 a	 module	 which	 defines	 and	 exports	 an
extension	type,	and	another	module	which	uses	it:

Shrubbing.pxd:

cdef	class	Shrubbery:

				cdef	int	width

				cdef	int	length

Shrubbing.pyx:

cdef	class	Shrubbery:

				def	__cinit__(self,	int	w,	int	l):

								self.width	=	w

								self.length	=	l

def	standard_shrubbery():

				return	Shrubbery(3,	7)

Landscaping.pyx:

cimport	Shrubbing

import	Shrubbing

cdef	Shrubbing.Shrubbery	sh

sh	=	Shrubbing.standard_shrubbery()

print	"Shrubbery	size	is	%d	x	%d"	%	(sh.width,	sh.length)

One	would	then	need	to	compile	both	of	these	modules,	e.g.	using

setup.py:

from	distutils.core	import	setup

from	Cython.Build	import	cythonize

setup(ext_modules	=	cythonize(["Landscaping.pyx",	"Shrubbing.pyx"]))

Some	things	to	note	about	this	example:

There	 is	 a	 cdef	 class	 Shrubbery	 declaration	 in	 both
Shrubbing.pxd	and	Shrubbing.pyx.	When	the	Shrubbing	module
is	compiled,	these	two	declarations	are	combined	into	one.
In	 Landscaping.pyx,	 the	 cimport	 Shrubbing	 declaration	 allows
us	to	refer	to	the	Shrubbery	type	as	Shrubbing.Shrubbery.	But	it
doesn’t	 bind	 the	 name	 Shrubbing	 in	 Landscaping’s	 module
namespace	 at	 run	 time,	 so	 to	 access
Shrubbing.standard_shrubbery()	 we	 also	 need	 to	 import

Shrubbing.

nextprevious	|Cython	0.19.1	documentation	»	Users	Guide	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

nextprevious	|Cython	0.19.1	documentation	»	Users	Guide	»

Interfacing	with	External	C	Code
One	of	 the	main	uses	of	Cython	 is	wrapping	existing	 libraries	of	C
code.	This	is	achieved	by	using	external	declarations	to	declare	the
C	functions	and	variables	from	the	library	that	you	want	to	use.

You	 can	 also	 use	 public	 declarations	 to	 make	 C	 functions	 and
variables	defined	 in	a	Cython	module	available	 to	external	C	code.
The	need	for	this	is	expected	to	be	less	frequent,	but	you	might	want
to	 do	 it,	 for	 example,	 if	 you	 are	 embedding	 Python	 in	 another
application	as	a	scripting	language.	Just	as	a	Cython	module	can	be
used	as	a	bridge	to	allow	Python	code	to	call	C	code,	it	can	also	be
used	to	allow	C	code	to	call	Python	code.

http://www.freenet.org.nz/python/embeddingpyrex/

External	declarations
By	 default,	C	 functions	 and	 variables	 declared	 at	 the	module	 level
are	 local	 to	 the	module	 (i.e.	 they	 have	 the	C	 static	 storage	 class).
They	 can	 also	 be	 declared	 extern	 to	 specify	 that	 they	 are	 defined
elsewhere,	for	example,:

cdef	extern	int	spam_counter

cdef	extern	void	order_spam(int	tons)

Referencing	C	header	files

When	 you	 use	 an	 extern	 definition	 on	 its	 own	 as	 in	 the	 examples
above,	Cython	 includes	a	 declaration	 for	 it	 in	 the	generated	C	 file.
This	can	cause	problems	if	the	declaration	doesn’t	exactly	match	the
declaration	that	will	be	seen	by	other	C	code.	If	you’re	wrapping	an
existing	 C	 library,	 for	 example,	 it’s	 important	 that	 the	 generated	 C
code	 is	 compiled	with	exactly	 the	 same	declarations	as	 the	 rest	 of
the	library.

To	achieve	 this,	you	can	 tell	Cython	 that	 the	declarations	are	 to	be
found	in	a	C	header	file,	like	this:

cdef	extern	from	"spam.h":

				int	spam_counter

				void	order_spam(int	tons)

The	cdef	extern	from	clause	does	three	things:

1.	 It	 directs	Cython	 to	place	a	 #include	 statement	 for	 the	named
header	file	in	the	generated	C	code.

2.	 It	 prevents	 Cython	 from	 generating	 any	 C	 code	 for	 the

declarations	found	in	the	associated	block.
3.	 It	 treats	all	declarations	within	the	block	as	though	they	started

with	cdef	extern.

It’s	 important	 to	 understand	 that	Cython	 does	 not	 itself	 read	 the	C
header	 file,	 so	 you	 still	 need	 to	 provide	 Cython	 versions	 of	 any
declarations	from	it	 that	you	use.	However,	the	Cython	declarations
don’t	always	have	to	exactly	match	the	C	ones,	and	in	some	cases
they	shouldn’t	or	can’t.	In	particular:

1.	 Leave	 out	 any	 platform-specific	 extensions	 to	 C	 declarations
such	as	__declspec().

2.	 If	the	header	file	declares	a	big	struct	and	you	only	want	to	use
a	 few	members,	you	only	need	 to	declare	 the	members	you’re
interested	in.	Leaving	the	rest	out	doesn’t	do	any	harm,	because
the	C	compiler	will	use	the	full	definition	from	the	header	file.

In	some	cases,	you	might	not	need	any	of	the	struct’s	members,
in	 which	 case	 you	 can	 just	 put	 pass	 in	 the	 body	 of	 the	 struct
declaration,	e.g.:

cdef	extern	from	"foo.h":

				struct	spam:

								pass

Note: 	you	can	only	do	this	inside	a	cdef	extern	from	block;
struct	declarations	anywhere	else	must	be	non-empty.

3.	 If	 the	header	 file	uses	 typedef	names	such	as	 word	 to	 refer	 to
platform-dependent	 flavours	 of	 numeric	 types,	 you	will	 need	 a
corresponding	ctypedef	statement,	but	you	don’t	need	to	match
the	type	exactly,	just	use	something	of	the	right	general	kind	(int,
float,	etc).	For	example,:

ctypedef	int	word

will	work	 okay	whatever	 the	 actual	 size	 of	 a	 word	 is	 (provided
the	 header	 file	 defines	 it	 correctly).	 Conversion	 to	 and	 from
Python	types,	if	any,	will	also	be	used	for	this	new	type.

4.	 If	 the	 header	 file	 uses	 macros	 to	 define	 constants,	 translate
them	 into	a	normal	external	 variable	declaration.	You	 can	 also
declare	them	as	an	enum	if	they	contain	normal	int	values.	Note
that	Cython	considers	enum	to	be	equivalent	to	int,	so	do	not	do
this	for	non-int	values.

5.	 If	the	header	file	defines	a	function	using	a	macro,	declare	it	as
though	 it	were	an	ordinary	 function,	with	appropriate	argument
and	result	types.

6.	 For	 archaic	 reasons	 C	 uses	 the	 keyword	 void	 to	 declare	 a
function	 taking	 no	 parameters.	 In	Cython	as	 in	Python,	 simply
declare	such	functions	as	foo().

A	few	more	tricks	and	tips:

If	 you	 want	 to	 include	 a	 C	 header	 because	 it’s	 needed	 by
another	header,	but	don’t	want	 to	use	any	declarations	 from	 it,
put	pass	in	the	extern-from	block:

cdef	extern	from	"spam.h":

				pass

If	you	want	to	include	some	external	declarations,	but	don’t	want
to	 specify	 a	 header	 file	 (because	 it’s	 included	 by	 some	 other
header	 that	you’ve	already	 included)	you	can	put	 *	 in	place	of
the	header	file	name:

cdef	extern	from	*:

				...

Styles	of	struct,	union	and	enum	declaration

There	 are	 two	 main	 ways	 that	 structs,	 unions	 and	 enums	 can	 be
declared	 in	 C	 header	 files:	 using	 a	 tag	 name,	 or	 using	 a	 typedef.
There	 are	 also	 some	 variations	 based	 on	 various	 combinations	 of
these.

It’s	important	to	make	the	Cython	declarations	match	the	style	used
in	the	header	file,	so	that	Cython	can	emit	the	right	sort	of	references
to	 the	 type	 in	 the	code	 it	generates.	To	make	 this	possible,	Cython
provides	two	different	syntaxes	for	declaring	a	struct,	union	or	enum
type.	 The	 style	 introduced	 above	 corresponds	 to	 the	 use	 of	 a	 tag
name.	 To	 get	 the	 other	 style,	 you	 prefix	 the	 declaration	 with
ctypedef,	as	illustrated	below.

The	 following	 table	 shows	 the	 various	 possible	 styles	 that	 can	 be
found	in	a	header	file,	and	the	corresponding	Cython	declaration	that
you	should	put	in	the	cdef	extern	from	block.	Struct	declarations	are
used	as	an	example;	 the	same	applies	equally	 to	union	and	enum
declarations.

C	code
Possibilities	for
corresponding	Cython
Code

Comments

struct	Foo	{

		...

};

cdef	struct	Foo:

		...

Cython	will
refer	to	the
as	struct
Foo	in	the
generated
C	code.

typedef	struct	{

		...

}	Foo;

ctypedef	struct	Foo:

		...

Cython	will
refer	to	the
type	simply
as	Foo	in
the
generated

C	code.

typedef	struct	foo	{

		...

}	Foo;

cdef	struct	foo:

		...

ctypedef	foo	Foo	#optional

or:

ctypedef	struct	Foo:

		...

If	the	C
header
uses	both	a
tag	and	a
typedef	with
different
names,	you
can	use
either	form
of
declaration
in	Cython
(although	if
you	need	to
forward
reference
the	type,
you’ll	have
to	use	the
first	form).

typedef	struct	Foo	{

		...

}	Foo;

cdef	struct	Foo:

		...

If	the
header
uses	the
same	name
for	the	tag
and
typedef,	you
won’t	be
able	to
include	a
ctypedef	for
it	–	but
then,	it’s	not
necessary.

Note	that	in	all	the	cases	below,	you	refer	to	the	type	in	Cython	code

simply	as	Foo,	not	struct	Foo.

Accessing	Python/C	API	routines

One	particular	use	of	the	cdef	extern	from	statement	 is	 for	gaining
access	to	routines	in	the	Python/C	API.	For	example,:

cdef	extern	from	"Python.h":

				object	PyString_FromStringAndSize(char	*s,	Py_ssize_t	len)

will	allow	you	to	create	Python	strings	containing	null	bytes.

Special	Types

Cython	predefines	 the	name	 Py_ssize_t	 for	use	with	Python/C	API
routines.	 To	make	 your	 extensions	 compatible	with	 64-bit	 systems,
you	 should	 always	 use	 this	 type	 where	 it	 is	 specified	 in	 the
documentation	of	Python/C	API	routines.

Windows	Calling	Conventions

The	 __stdcall	 and	 __cdecl	 calling	 convention	 specifiers	 can	 be
used	 in	Cython,	with	 the	 same	 syntax	 as	 used	 by	C	 compilers	 on
Windows,	for	example,:

cdef	extern	int	__stdcall	FrobnicateWindow(long	handle)

cdef	void	(__stdcall	*callback)(void	*)

If	__stdcall	is	used,	the	function	is	only	considered	compatible	with
other	__stdcall	functions	of	the	same	signature.

Resolving	naming	conflicts	-	C	name	specifications

Each	Cython	module	has	a	single	module-level	namespace	for	both
Python	and	C	names.	This	can	be	inconvenient	if	you	want	to	wrap
some	external	C	functions	and	provide	the	Python	user	with	Python
functions	of	the	same	names.

Cython	provides	a	couple	of	different	ways	of	solving	 this	problem.
The	best	way,	 especially	 if	 you	 have	many	C	 functions	 to	wrap,	 is
probably	 to	 put	 the	 extern	 C	 function	 declarations	 into	 a	 different
namespace	 using	 the	 facilities	 described	 in	 the	 section	 on	 sharing
declarations	between	Cython	modules.

The	 other	 way	 is	 to	 use	 a	 C	 name	 specification	 to	 give	 different
Cython	and	C	names	to	the	C	function.	Suppose,	 for	example,	 that
you	want	to	wrap	an	external	 function	called	eject_tomato().	 If	you
declare	it	as:

cdef	extern	void	c_eject_tomato	"eject_tomato"	(float	speed)

then	 its	 name	 inside	 the	 Cython	 module	 will	 be	 c_eject_tomato,
whereas	 its	 name	 in	C	will	 be	 eject_tomato.	 You	 can	 then	wrap	 it
with:

def	eject_tomato(speed):

				c_eject_tomato(speed)

so	that	users	of	your	module	can	refer	to	it	as	eject_tomato.

Another	 use	 for	 this	 feature	 is	 referring	 to	 external	 names	 that
happen	to	be	Cython	keywords.	For	example,	if	you	want	to	call	an
external	function	called	print,	you	can	rename	it	to	something	else	in
your	Cython	module.

As	well	as	functions,	C	names	can	be	specified	for	variables,	structs,
unions,	 enums,	 struct	 and	 union	members,	 and	 enum	 values.	 For
example,:

cdef	extern	int	one	"ein",	two	"zwei"

cdef	extern	float	three	"drei"

cdef	struct	spam	"SPAM":

		int	i	"eye"

cdef	enum	surprise	"inquisition":

		first	"alpha"

		second	"beta"	=	3

Using	Cython	Declarations	from	C
Cython	 provides	 two	 methods	 for	 making	 C	 declarations	 from	 a
Cython	 module	 available	 for	 use	 by	 external	 C	 code—public
declarations	and	C	API	declarations.

Note: 	You	do	not	need	to	use	either	of	these	to	make	declarations
from	one	Cython	module	available	to	another	Cython	module	–	you
should	use	the	cimport	statement	for	that.	Sharing	Declarations
Between	Cython	Modules.

Public	Declarations

You	can	make	C	types,	variables	and	functions	defined	in	a	Cython
module	 accessible	 to	 C	 code	 that	 is	 linked	 with	 the	 module,	 by
declaring	them	with	the	public	keyword:

cdef	public	struct	Bunny:	#	public	type	declaration

				int	vorpalness

cdef	public	int	spam	#	public	variable	declaration

cdef	public	void	grail(Bunny	*):	#	public	function	declaration

				print	"Ready	the	holy	hand	grenade"

If	there	are	any	public	declarations	in	a	Cython	module,	a	header	file
called	 modulename.h	 file	 is	 generated	 containing	 equivalent	 C
declarations	for	inclusion	in	other	C	code.

Users	who	are	 embedding	Python	 in	C	with	Cython	need	 to	make
sure	 to	 call	 Py_Initialize()	 and	 Py_Finalize().	 For	 example,	 in	 the
following	snippet	that	includes	modulename.h:

#include	<Python.h>

#include	"modulename.h"

void	grail()	{

				Py_Initialize();

				initmodulename();

				Bunny	b;

				grail(b);

				Py_Finalize();

}

Any	C	code	wanting	to	make	use	of	these	declarations	will	need	to
be	linked,	either	statically	or	dynamically,	with	the	extension	module.

If	the	Cython	module	resides	within	a	package,	then	the	name	of	the
.h	file	consists	of	the	full	dotted	name	of	the	module,	e.g.	a	module
called	foo.spam	would	have	a	header	file	called	foo.spam.h.

C	API	Declarations

The	 other	 way	 of	 making	 declarations	 available	 to	 C	 code	 is	 to
declare	them	with	the	api	keyword.	You	can	use	this	keyword	with	C
functions	and	extension	types.	A	header	file	called	modulename_api.h
is	 produced	 containing	 declarations	 of	 the	 functions	 and	 extension
types,	and	a	function	called	import_modulename().

C	code	wanting	to	use	these	functions	or	extension	types	needs	to
include	 the	 header	 and	 call	 the	 import_modulename()	 function.	 The
other	functions	can	then	be	called	and	the	extension	types	used	as
usual.

Any	 public	 C	 type	 or	 extension	 type	 declarations	 in	 the	 Cython
module	 are	 also	 made	 available	 when	 you	 include
modulename_api.h.:

#	delorean.pyx

cdef	public	struct	Vehicle:

				int	speed

				float	power

cdef	api	void	activate(Vehicle	*v):

				if	v.speed	>=	88	and	v.power	>=	1.21:

								print	"Time	travel	achieved"

#	marty.c

#include	"delorean_api.h"

Vehicle	car;

int	main(int	argc,	char	*argv[])	{

				import_delorean();

				car.speed	=	atoi(argv[1]);

				car.power	=	atof(argv[2]);

				activate(&car);

}

Note: 	Any	types	defined	in	the	Cython	module	that	are	used	as
argument	or	return	types	of	the	exported	functions	will	need	to	be
declared	public,	otherwise	they	won’t	be	included	in	the	generated
header	file,	and	you	will	get	errors	when	you	try	to	compile	a	C	file
that	uses	the	header.

Using	 the	 api	 method	 does	 not	 require	 the	 C	 code	 using	 the
declarations	 to	be	 linked	with	 the	extension	module	 in	any	way,	as
the	 Python	 import	 machinery	 is	 used	 to	 make	 the	 connection
dynamically.	However,	only	functions	can	be	accessed	this	way,	not
variables.

You	can	use	both	 public	and	 api	on	 the	same	 function	 to	make	 it
available	by	both	methods,	e.g.:

cdef	public	api	void	belt_and_braces():

				...

However,	 note	 that	 you	 should	 include	 either	 modulename.h	 or
modulename_api.h	 in	a	given	C	file,	not	both,	otherwise	you	may	get
conflicting	dual	definitions.

If	the	Cython	module	resides	within	a	package,	then:

The	name	of	the	header	file	contains	of	the	full	dotted	name	of
the	module.
The	name	of	 the	 importing	 function	contains	 the	full	name	with
dots	replaced	by	double	underscores.

E.g.	a	module	called	foo.spam	would	have	an	API	header	file	called
foo.spam_api.h	and	an	importing	function	called	import_foo__spam().

Multiple	public	and	API	declarations

You	can	declare	a	whole	group	of	items	as	public	and/or	api	all	at
once	by	enclosing	them	in	a	cdef	block,	for	example,:

cdef	public	api:

				void	order_spam(int	tons)

				char	*get_lunch(float	tomato_size)

This	 can	 be	 a	 useful	 thing	 to	 do	 in	 a	 .pxd	 file	 (see	 Sharing
Declarations	Between	Cython	Modules)	to	make	the	module’s	public
interface	available	by	all	three	methods.

Acquiring	and	Releasing	the	GIL

Cython	 provides	 facilities	 for	 acquiring	 and	 releasing	 the	 Global
Interpreter	Lock	(GIL).	This	may	be	useful	when	calling	into	(external
C)	 code	 that	may	 block,	 or	when	wanting	 to	 use	Python	 from	a	C
callback.

Releasing	the	GIL

You	 can	 release	 the	GIL	 around	 a	 section	 of	 code	 using	 the	 with
nogil	statement:

http://docs.python.org/dev/glossary.html#term-global-interpreter-lock

with	nogil:

				<code	to	be	executed	with	the	GIL	released>

Code	 in	 the	 body	 of	 the	 statement	 must	 not	 manipulate	 Python
objects	 in	 any	 way,	 and	 must	 not	 call	 anything	 that	 manipulates
Python	 objects	 without	 first	 re-acquiring	 the	 GIL.	 Cython	 currently
does	not	check	this.

Acquiring	the	GIL

A	C	 function	 that	 is	 to	 be	 used	 as	 a	 callback	 from	C	 code	 that	 is
executed	 without	 the	 GIL	 needs	 to	 acquire	 the	 GIL	 before	 it	 can
manipulate	Python	objects.	This	can	be	done	by	specifying	with	gil
in	the	function	header:

cdef	void	my_callback(void	*data)	with	gil:

				...

If	 the	callback	may	be	called	 from	another	non-Python	thread,	care
must	 be	 taken	 to	 initialize	 the	 GIL	 first,	 through	 a	 call	 to
PyEval_InitThreads().	 If	 you’re	already	using	cython.parallel	 in	your
module,	this	will	already	have	been	taken	care	of.

The	GIL	may	also	be	acquired	through	the	with	gil	statement:

with	gil:

				<execute	this	block	with	the	GIL	acquired>

Declaring	a	function	as	callable	without	the	GIL

You	 can	 specify	 nogil	 in	 a	 C	 function	 header	 or	 function	 type	 to
declare	that	it	is	safe	to	call	without	the	GIL.:

cdef	void	my_gil_free_func(int	spam)	nogil:

				...

http://docs.python.org/dev/c-api/init.html#PyEval_InitThreads

If	 you	 are	 implementing	 such	 a	 function	 in	 Cython,	 it	 cannot	 have
any	Python	arguments,	Python	local	variables,	or	Python	return	type,
and	 cannot	 manipulate	 Python	 objects	 in	 any	 way	 or	 call	 any
function	that	does	so	without	acquiring	 the	GIL	first.	Some	of	 these
restrictions	are	currently	checked	by	Cython,	but	not	all.	It	is	possible
that	more	stringent	checking	will	be	performed	in	the	future.

Note: 	This	declaration	declares	that	it	is	safe	to	call	the	function
without	the	GIL,	it	does	not	in	itself	release	the	GIL.

Declaring	 a	 function	 with	 gil	 also	 implicitly	 makes	 its	 signature
nogil.

nextprevious	|Cython	0.19.1	documentation	»	Users	Guide	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

nextprevious	|Cython	0.19.1	documentation	»	Users	Guide	»

Source	Files	and	Compilation
Note: 	See	Compilation	reference	section	for	more	details

Cython	source	file	names	consist	of	the	name	of	the	module	followed
by	a	.pyx	extension,	for	example	a	module	called	primes	would	have
a	source	file	named	primes.pyx.

Once	you	have	written	your	.pyx	 file,	there	are	a	couple	of	ways	of
turning	 it	 into	 an	 extension	 module.	 One	 way	 is	 to	 compile	 it
manually	with	the	Cython	compiler,	e.g.:

$	cython	primes.pyx

This	 will	 produce	 a	 file	 called	 primes.c,	 which	 then	 needs	 to	 be
compiled	with	the	C	compiler	using	whatever	options	are	appropriate
on	 your	 platform	 for	 generating	 an	 extension	 module.	 For	 these
options	look	at	the	official	Python	documentation.

The	 other,	 and	 probably	 better,	 way	 is	 to	 use	 the	 distutils

extension	provided	with	Cython.	The	benifit	of	 this	method	 is	 that	 it
will	 give	 the	 platform	 specific	 compilation	 options,	 acting	 like	 a
stripped	down	autotools.

http://docs.python.org/3.3/library/distutils.html#distutils

Basic	setup.py
The	distutils	extension	provided	with	Cython	allows	you	to	pass	.pyx
files	directly	to	the	Extension	constructor	in	your	setup	file.

If	you	have	a	single	Cython	file	that	you	want	to	turn	into	a	compiled
extension,	 say	 with	 filename	 example.pyx	 the	 associated	 setup.py
would	be:

from	distutils.core	import	setup

from	distutils.extension	import	Extension

from	Cython.Distutils	import	build_ext

setup(

				cmdclass	=	{'build_ext':	build_ext},

				ext_modules	=	[Extension("example",	["example.pyx"])]

)

To	understand	the	 setup.py	more	fully	 look	at	 the	official	 distutils
documentation.	 To	 compile	 the	 extension	 for	 use	 in	 the	 current
directory	use:

$	python	setup.py	build_ext	--inplace

http://docs.python.org/3.3/library/distutils.html#distutils

Cython	Files	Depending	on	C	Files
When	you	have	come	C	 files	 that	 have	been	wrapped	with	 cython
and	you	want	to	compile	them	into	your	extension	the	basic	setup.py
file	to	do	this	would	be:

from	distutils.core	import	setup

from	distutils.extension	import	Extension

from	Cython.Distutils	import	build_ext

sourcefiles	=	['example.pyx',	'helper.c',	'another_helper.c']

setup(

				cmdclass	=	{'build_ext':	build_ext},

				ext_modules	=	[Extension("example",	sourcefiles)]

)

Notice	that	the	files	have	been	given	a	name,	this	is	not	necessary,
but	it	makes	the	file	easier	to	format	if	the	list	gets	long.

The	 Extension	 class	 takes	 many	 options,	 and	 a	 fuller	 explanation
can	be	found	in	the	distutils	documentation.	Some	useful	options	to
know	 about	 are	 include_dirs,	 libraries,	 and	 library_dirs	 which
specify	where	to	find	the	.h	and	library	files	when	linking	to	external
libraries.

http://docs.python.org/extending/building.html

Multiple	Cython	Files	in	a	Package
TODO

Distributing	Cython	modules
It	is	strongly	recommended	that	you	distribute	the	generated	.c	files
as	 well	 as	 your	 Cython	 sources,	 so	 that	 users	 can	 install	 your
module	without	needing	to	have	Cython	available.

It	 is	also	 recommended	 that	Cython	compilation	not	be	enabled	by
default	 in	 the	 version	 you	 distribute.	 Even	 if	 the	 user	 has	 Cython
installed,	 he	 probably	 doesn’t	 want	 to	 use	 it	 just	 to	 install	 your
module.	 Also,	 the	 version	 he	 has	 may	 not	 be	 the	 same	 one	 you
used,	and	may	not	compile	your	sources	correctly.

This	simply	means	 that	 the	 setup.py	 file	 that	you	ship	with	will	 just
be	 a	 normal	 distutils	 file	 on	 the	 generated	 .c	 files,	 for	 the	 basic
example	we	would	have	instead:

from	distutils.core	import	setup

from	distutils.extension	import	Extension

setup(

				ext_modules	=	[Extension("example",	["example.c"])]

)

Pyximport
Cython	 is	a	compiler.	Therefore	 it	 is	natural	 that	people	 tend	 to	go
through	 an	 edit/compile/test	 cycle	 with	 Cython	 modules.	 But	 my
personal	 opinion	 is	 that	 one	 of	 the	 deep	 insights	 in	 Python’s
implementation	is	that	a	language	can	be	compiled	(Python	modules
are	 compiled	 to	 .pyc)	 files	 and	 hide	 that	 compilation	 process	 from
the	end-user	 so	 that	 they	do	not	have	 to	worry	about	 it.	Pyximport
does	 this	 for	 Cython	 modules.	 For	 instance	 if	 you	 write	 a	 Cython
module	called	foo.pyx,	with	Pyximport	you	can	import	it	in	a	regular
Python	module	like	this:

import	pyximport;	pyximport.install()

import	foo

Doing	 so	will	 result	 in	 the	 compilation	 of	 foo.pyx	 (with	 appropriate
exceptions	if	it	has	an	error	in	it).

If	you	would	always	like	to	import	Cython	files	without	building	them
specially,	you	can	also	the	first	line	above	to	your	sitecustomize.py.
That	will	 install	 the	hook	every	 time	you	 run	Python.	Then	you	can
use	Cython	modules	just	with	simple	import	statements.	I	like	to	test
my	Cython	modules	like	this:

$	python	-c	"import	foo"

Dependency	Handling

In	Pyximport	1.1	 it	 is	possible	to	declare	that	your	module	depends
on	multiple	 files,	 (likely	 .h	and	 .pxd	 files).	 If	your	Cython	module	 is
named	foo	and	thus	has	the	filename	foo.pyx	then	you	should	make
another	 file	 in	 the	 same	 directory	 called	 foo.pyxdep.	 The
modname.pyxdep	file	can	be	a	list	of	filenames	or	“globs”	(like	*.pxd	or

include/*.h).	 Each	 filename	 or	 glob	 must	 be	 on	 a	 separate	 line.
Pyximport	 will	 check	 the	 file	 date	 for	 each	 of	 those	 files	 before
deciding	whether	to	rebuild	the	module.	In	order	to	keep	track	of	the
fact	that	the	dependency	has	been	handled,	Pyximport	updates	the
modification	 time	of	your	 ”.pyx”	source	 file.	Future	versions	may	do
something	 more	 sophisticated	 like	 informing	 distutils	 of	 the
dependencies	directly.

Limitations

Pyximport	does	not	give	you	any	control	over	how	your	Cython	file	is
compiled.	Usually	the	defaults	are	fine.	You	might	run	into	problems
if	you	wanted	to	write	your	program	in	half-C,	half-Cython	and	build
them	into	a	single	library.	Pyximport	1.2	will	probably	do	this.

Pyximport	 does	 not	 hide	 the	 Distutils/GCC	 warnings	 and	 errors
generated	by	 the	 import	process.	Arguably	 this	will	 give	you	better
feedback	 if	 something	 went	 wrong	 and	 why.	 And	 if	 nothing	 went
wrong	it	will	give	you	the	warm	fuzzy	that	pyximport	really	did	rebuild
your	module	as	it	was	supposed	to.

For	further	thought	and	discussion

I	 don’t	 think	 that	 Python’s	 reload()	 will	 do	 anything	 for	 changed
.so‘s	 on	 some	 (all?)	 platforms.	 It	 would	 require	 some	 (easy)
experimentation	that	 I	haven’t	gotten	around	to.	But	reload	 is	rarely
used	in	applications	outside	of	the	Python	interactive	interpreter	and
certainly	 not	 used	 much	 for	 C	 extension	 modules.	 Info	 about
Windows	 http://mail.python.org/pipermail/python-list/2001-
July/053798.html

setup.py	install	does	not	modify	sitecustomize.py	for	you.	Should
it?	Modifying	Python’s	“standard	interpreter”	behaviour	may	be	more
than	most	people	expect	of	a	package	they	install..

http://mail.python.org/pipermail/python-list/2001-July/053798.html

Pyximport	puts	your	.c	file	beside	your	.pyx	 file	(analogous	to	.pyc
beside	 .py).	 But	 it	 puts	 the	 platform-specific	 binary	 in	 a	 build
directory	as	per	 normal	 for	Distutils.	 If	 I	 could	wave	a	magic	wand
and	 get	 Cython	 or	 distutils	 or	 whoever	 to	 put	 the	 build	 directory	 I
might	 do	 it	 but	 not	 necessarily:	 having	 it	 at	 the	 top	 level	 is	VERY
HELPFUL	for	debugging	Cython	problems.

nextprevious	|Cython	0.19.1	documentation	»	Users	Guide	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

nextprevious	|Cython	0.19.1	documentation	»	Users	Guide	»

Early	Binding	for	Speed
As	a	dynamic	language,	Python	encourages	a	programming	style	of
considering	 classes	 and	 objects	 in	 terms	 of	 their	 methods	 and
attributes,	more	than	where	they	fit	into	the	class	hierarchy.

This	can	make	Python	a	very	relaxed	and	comfortable	language	for
rapid	development,	but	with	a	price	-	the	‘red	tape’	of	managing	data
types	 is	 dumped	 onto	 the	 interpreter.	 At	 run	 time,	 the	 interpreter
does	 a	 lot	 of	 work	 searching	 namespaces,	 fetching	 attributes	 and
parsing	argument	and	keyword	tuples.	This	run-time	‘late	binding’	is
a	 major	 cause	 of	 Python’s	 relative	 slowness	 compared	 to	 ‘early
binding’	languages	such	as	C++.

However	 with	 Cython	 it	 is	 possible	 to	 gain	 significant	 speed-ups
through	the	use	of	‘early	binding’	programming	techniques.

For	example,	consider	the	following	(silly)	code	example:

cdef	class	Rectangle:

				cdef	int	x0,	y0

				cdef	int	x1,	y1

				def	__init__(self,	int	x0,	int	y0,	int	x1,	int	y1):

								self.x0	=	x0;	self.y0	=	y0;	self.x1	=	x1;	self.y1	=	y1

				def	area(self):

								area	=	(self.x1	-	self.x0)	*	(self.y1	-	self.y0)

								if	area	<	0:

												area	=	-area

								return	area

def	rectArea(x0,	y0,	x1,	y1):

				rect	=	Rectangle(x0,	y0,	x1,	y1)

				return	rect.area()

In	 the	 rectArea()	 method,	 the	 call	 to	 rect.area()	 and	 the	 area()
method	contain	a	lot	of	Python	overhead.

However,	in	Cython,	it	is	possible	to	eliminate	a	lot	of	this	overhead

in	cases	where	calls	occur	within	Cython	code.	For	example:

cdef	class	Rectangle:

				cdef	int	x0,	y0

				cdef	int	x1,	y1

				def	__init__(self,	int	x0,	int	y0,	int	x1,	int	y1):

								self.x0	=	x0;	self.y0	=	y0;	self.x1	=	x1;	self.y1	=	y1

				cdef	int	_area(self):

								cdef	int	area

								area	=	(self.x1	-	self.x0)	*	(self.y1	-	self.y0)

								if	area	<	0:

												area	=	-area

								return	area

				def	area(self):

								return	self._area()

def	rectArea(x0,	y0,	x1,	y1):

				cdef	Rectangle	rect

				rect	=	Rectangle(x0,	y0,	x1,	y1)

				return	rect._area()

Here,	 in	 the	 Rectangle	 extension	 class,	 we	 have	 defined	 two
different	 area	 calculation	methods,	 the	 efficient	 _area()	 C	method,
and	 the	 Python-callable	 area()	 method	 which	 serves	 as	 a	 thin
wrapper	around	 _area().	Note	also	 in	 the	 function	 rectArea()	 how
we	‘early	bind’	by	declaring	the	local	variable	rect	which	is	explicitly
given	 the	 type	Rectangle.	By	using	 this	 declaration,	 instead	of	 just
dynamically	 assigning	 to	 rect,	 we	 gain	 the	 ability	 to	 access	 the
much	more	efficient	C-callable	_rect()	method.

But	Cython	offers	us	more	simplicity	again,	by	allowing	us	to	declare
dual-access	methods	 -	methods	 that	 can	 be	 efficiently	 called	 at	 C
level,	but	can	also	be	accessed	from	pure	Python	code	at	the	cost	of
the	Python	access	overheads.	Consider	this	code:

cdef	class	Rectangle:

				cdef	int	x0,	y0

				cdef	int	x1,	y1

				def	__init__(self,	int	x0,	int	y0,	int	x1,	int	y1):

								self.x0	=	x0;	self.y0	=	y0;	self.x1	=	x1;	self.y1	=	y1

				cpdef	int	area(self):

								cdef	int	area

								area	=	(self.x1	-	self.x0)	*	(self.y1	-	self.y0)

								if	area	<	0:

												area	=	-area

								return	area

def	rectArea(x0,	y0,	x1,	y1):

				cdef	Rectangle	rect

				rect	=	Rectangle(x0,	y0,	x1,	y1)

				return	rect.area()

Note: 	in	earlier	versions	of	Cython,	the	cpdef	keyword	is	rdef	-
but	has	the	same	effect).

Here,	we	just	have	a	single	area	method,	declared	as	cpdef	to	make
it	 efficiently	 callable	 as	 a	C	 function,	 but	 still	 accessible	 from	 pure
Python	(or	late-binding	Cython)	code.

If	within	Cython	code,	we	have	a	variable	already	 ‘early-bound’	 (ie,
declared	 explicitly	 as	 type	 Rectangle,	 (or	 cast	 to	 type	 Rectangle),
then	invoking	its	area	method	will	use	the	efficient	C	code	path	and
skip	the	Python	overhead.	But	if	in	Pyrex	or	regular	Python	code	we
have	 a	 regular	 object	 variable	 storing	 a	 Rectangle	 object,	 then
invoking	the	area	method	will	require:

an	attribute	lookup	for	the	area	method
packing	 a	 tuple	 for	 arguments	 and	 a	 dict	 for	 keywords	 (both
empty	in	this	case)
using	the	Python	API	to	call	the	method

and	within	the	area	method	itself:

parsing	the	tuple	and	keywords
executing	the	calculation	code
converting	the	result	to	a	python	object	and	returning	it

So	within	Cython,	it	is	possible	to	achieve	massive	optimisations	by

using	strong	typing	in	declaration	and	casting	of	variables.	For	tight
loops	which	use	method	calls,	and	where	these	methods	are	pure	C,
the	difference	can	be	huge.

nextprevious	|Cython	0.19.1	documentation	»	Users	Guide	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

nextprevious	|Cython	0.19.1	documentation	»	Users	Guide	»

Using	C++	in	Cython

Overview
Cython	 v0.13	 introduces	 native	 support	 for	 most	 of	 the	 C++
language.	This	means	that	the	previous	tricks	that	were	used	to	wrap
C++	 classes	 (as	 described	 in
http://wiki.cython.org/WrappingCPlusPlus_ForCython012AndLower)
are	no	longer	needed.

Wrapping	 C++	 classes	 with	 Cython	 is	 now	 much	 more
straightforward.	 This	 document	 describe	 in	 details	 the	 new	way	 of
wrapping	C++	code.

What’s	new	in	Cython	v0.13	about	C++

For	users	of	previous	Cython	versions,	here	is	a	brief	overview	of	the
main	new	features	of	Cython	v0.13	regarding	C++	support:

C++	objects	can	now	be	dynamically	allocated	with	new	and	del
keywords.
C++	objects	can	be	stack-allocated.
C++	classes	can	be	declared	with	the	new	keyword	cppclass.
Templated	classes	are	supported.
Overloaded	functions	are	supported.
Overloading	of	C++	operators	(such	as	operator+,	operator[],...)
is	supported.

Procedure	Overview

The	general	procedure	for	wrapping	a	C++	file	can	now	be	described
as	follows:

Specify	C++	 language	 in	 setup.py	 script	 or	 locally	 in	 a	 source
file.

http://wiki.cython.org/WrappingCPlusPlus_ForCython012AndLower

Create	one	or	more	.pxd	files	with	cdef	extern	from	blocks	and
(if	existing)	the	C++	namespace	name.	In	these	blocks,

declare	classes	as	cdef	cppclass	blocks
declare	public	names	(variables,	methods	and	constructors)

Write	an	extension	modules,	cimport	from	the	.pxd	file	and	use
the	declarations.

A	simple	Tutorial

An	example	C++	API

Here	is	a	tiny	C++	API	which	we	will	use	as	an	example	throughout
this	 document.	 Let’s	 assume	 it	 will	 be	 in	 a	 header	 file	 called
Rectangle.h:

namespace	shapes	{

				class	Rectangle	{

				public:

								int	x0,	y0,	x1,	y1;

								Rectangle(int	x0,	int	y0,	int	x1,	int	y1);

								~Rectangle();

								int	getLength();

								int	getHeight();

								int	getArea();

								void	move(int	dx,	int	dy);

				};

}

and	the	implementation	in	the	file	called	Rectangle.cpp:

#include	"Rectangle.h"

using	namespace	shapes;

Rectangle::Rectangle(int	X0,	int	Y0,	int	X1,	int	Y1)

{

				x0	=	X0;

				y0	=	Y0;

				x1	=	X1;

				y1	=	Y1;

}

Rectangle::~Rectangle()

{

}

int	Rectangle::getLength()

{

				return	(x1	-	x0);

}

int	Rectangle::getHeight()

{

				return	(y1	-	y0);

}

int	Rectangle::getArea()

{

				return	(x1	-	x0)	*	(y1	-	y0);

}

void	Rectangle::move(int	dx,	int	dy)

{

				x0	+=	dx;

				y0	+=	dy;

				x1	+=	dx;

				y1	+=	dy;

}

This	 is	 pretty	 dumb,	 but	 should	 suffice	 to	 demonstrate	 the	 steps
involved.

Specify	C++	language	in	setup.py

The	 best	 way	 to	 build	 Cython	 code	 from	 setup.py	 scripts	 is	 the
cythonize()	 function.	 To	 make	 Cython	 generate	 and	 compile	 C++
code	with	distutils,	you	just	need	to	pass	the	option	language="c++":

from	distutils.core	import	setup

from	Cython.Build	import	cythonize

setup(ext_modules	=	cythonize(

											"rect.pyx",																	#	our	Cython	source

											sources=["Rectangle.cpp"],		#	additional	source	file(s)

											language="c++",													#	generate	C++	code

))

Cython	 will	 generate	 and	 compile	 the	 rect.cpp	 file	 (from	 the

rect.pyx),	 then	it	will	compile	Rectangle.cpp	 (implementation	of	 the
Rectangle	 class)	 and	 link	 both	 objects	 files	 together	 into	 rect.so,
which	you	can	then	import	in	Python	using	import	rect	(if	you	forget
to	link	the	Rectangle.o,	you	will	get	missing	symbols	while	importing
the	library	in	Python).

The	options	can	also	be	passed	directly	from	the	source	file,	which	is
often	 preferable.	 Starting	 with	 version	 0.17,	 Cython	 also	 allows	 to
pass	external	 source	 files	 into	 the	 cythonize()	 command	 this	way.
Here	is	a	simplified	setup.py	file:

from	distutils.core	import	setup

from	Cython.Build	import	cythonize

setup(

				name	=	"rectangleapp",

				ext_modules	=	cythonize('*.pyx'),

)

And	 in	 the	 .pyx	 source	 file,	write	 this	 into	 the	 first	 comment	 block,
before	 any	 source	 code,	 to	 compile	 it	 in	 C++	 mode	 and	 link	 it
statically	against	the	Rectange.cpp	code	file:

#	distutils:	language	=	c++

#	distutils:	sources	=	Rectangle.cpp

To	 compile	 manually	 (e.g.	 using	 make),	 the	 cython	 command-line
utility	can	be	used	 to	generate	a	C++	 .cpp	 file,	and	then	compile	 it
into	 a	 python	 extension.	 C++	 mode	 for	 the	 cython	 command	 is
turned	on	with	the	--cplus	option.

Declaring	a	C++	class	interface

The	procedure	 for	wrapping	a	C++	class	 is	quite	 similar	 to	 that	 for
wrapping	 normal	 C	 structs,	 with	 a	 couple	 of	 additions.	 Let’s	 start

here	by	creating	the	basic	cdef	extern	from	block:

cdef	extern	from	"Rectangle.h"	namespace	"shapes":

This	will	make	 the	C++	class	def	 for	Rectangle	available.	Note	 the
namespace	declaration.	Namespaces	are	simply	used	 to	make	 the
fully	 qualified	 name	 of	 the	 object,	 and	 can	 be	 nested	 (e.g.
"outer::inner")	or	even	 refer	 to	classes	 (e.g.	 "namespace::MyClass
to	declare	static	members	on	MyClass).

Declare	class	with	cdef	cppclass

Now,	 let’s	 add	 the	Rectangle	 class	 to	 this	 extern	 from	 block	 -	 just
copy	the	class	name	from	Rectangle.h	and	adjust	for	Cython	syntax,
so	now	it	becomes:

cdef	extern	from	"Rectangle.h"	namespace	"shapes":

				cdef	cppclass	Rectangle:

Add	public	attributes

We	 now	 need	 to	 declare	 the	 attributes	 and	 methods	 for	 use	 on
Cython:

cdef	extern	from	"Rectangle.h"	namespace	"shapes":

				cdef	cppclass	Rectangle:

								Rectangle(int,	int,	int,	int)	except	+

								int	x0,	y0,	x1,	y1

								int	getLength()

								int	getHeight()

								int	getArea()

								void	move(int,	int)

Note	that	the	constructor	is	declared	as	“except	+”.	If	the	C++	code
or	the	initial	memory	allocation	raises	an	exception	due	to	a	failure,
this	 will	 let	 Cython	 safely	 raise	 an	 appropriate	 Python	 exception
instead	 (see	 below).	 Without	 this	 declaration,	 C++	 exceptions

originating	from	the	constructor	will	not	be	handled	by	Cython.

Declare	a	var	with	the	wrapped	C++	class

Now,	 we	 use	 cdef	 to	 declare	 a	 var	 of	 the	 class	 with	 the	 C++	 new
statement:

cdef	Rectangle	*rec	=	new	Rectangle(1,	2,	3,	4)

try:

				recLength	=	rec.getLength()

				...

finally:

				del	rec					#	delete	heap	allocated	object

It’s	also	possible	to	declare	a	stack	allocated	object,	as	long	as	it	has
a	“default”	constructor:

cdef	extern	from	"Foo.h":

				cdef	cppclass	Foo:

								Foo()

def	func():

				cdef	Foo	foo

				...

Note	that,	 like	C++,	if	 the	class	has	only	one	constructor	and	it	 is	a
default	one,	it’s	not	necessary	to	declare	it.

Create	Cython	wrapper	class

At	 this	 point,	 we	 have	 exposed	 into	 our	 pyx	 file’s	 namespace	 the
interface	 of	 the	 C++	 Rectangle	 type.	 Now,	 we	 need	 to	 make	 this
accessible	from	external	Python	code	(which	is	our	whole	point).

Common	programming	practice	is	to	create	a	Cython	extension	type
which	 holds	 a	 C++	 instance	 pointer	 as	 an	 attribute	 thisptr,	 and
create	 a	 bunch	 of	 forwarding	 methods.	 So	 we	 can	 implement	 the
Python	extension	type	as:

cdef	class	PyRectangle:

				cdef	Rectangle	*thisptr						#	hold	a	C++	instance	which	we're	wrapping

				def	__cinit__(self,	int	x0,	int	y0,	int	x1,	int	y1):

								self.thisptr	=	new	Rectangle(x0,	y0,	x1,	y1)

				def	__dealloc__(self):

								del	self.thisptr

				def	getLength(self):

								return	self.thisptr.getLength()

				def	getHeight(self):

								return	self.thisptr.getHeight()

				def	getArea(self):

								return	self.thisptr.getArea()

				def	move(self,	dx,	dy):

								self.thisptr.move(dx,	dy)

And	there	we	have	it.	From	a	Python	perspective,	this	extension	type
will	 look	and	feel	 just	 like	a	natively	defined	Rectangle	class.	 If	you
want	 to	 give	 attribute	 access,	 you	 could	 just	 implement	 some
properties:

property	x0:

				def	__get__(self):	return	self.thisptr.x0

				def	__set__(self,	x0):	self.thisptr.x0	=	x0

...

Advanced	C++	features
We	describe	here	all	the	C++	features	that	were	not	discussed	in	the
above	tutorial.

Overloading

Overloading	 is	 very	 simple.	 Just	 declare	 the	method	 with	 different
parameters	and	use	any	of	them:

cdef	extern	from	"Foo.h":

				cdef	cppclass	Foo:

								Foo(int)

								Foo(bool)

								Foo(int,	bool)

								Foo(int,	int)

Overloading	operators

Cython	uses	C++	for	overloading	operators:

cdef	extern	from	"foo.h":

				cdef	cppclass	Foo:

								Foo()

								Foo*	operator+(Foo*)

								Foo*	operator-(Foo)

								int	operator*(Foo*)

								int	operator/(int)

cdef	Foo*	foo	=	new	Foo()

cdef	int	x

cdef	Foo*	foo2	=	foo[0]	+	foo

foo2	=	foo[0]	-	foo[0]

x	=	foo[0]	*	foo2

x	=	foo[0]	/	1

cdef	Foo	f

foo	=	f	+	&f

foo2	=	f	-	f

del	foo,	foo2

Nested	class	declarations

C++	allows	nested	class	declaration.	Class	declarations	can	also	be
nested	in	Cython:

cdef	extern	from	"<vector>"	namespace	"std":

				cdef	cppclass	vector[T]:

								cppclass	iterator:

												T	operator*()

												iterator	operator++()

												bint	operator==(iterator)

												bint	operator!=(iterator)

								vector()

								void	push_back(T&)

								T&	operator[](int)

								T&	at(int)

								iterator	begin()

								iterator	end()

cdef	vector[int].iterator	iter		#iter	is	declared	as	being	of	type	vector<int>::iterator

Note	that	the	nested	class	is	declared	with	a	cppclass	but	without	a
cdef.

C++	operators	not	compatible	with	Python	syntax

Cython	try	to	keep	a	syntax	as	close	as	possible	to	standard	Python.
Because	of	this,	certain	C++	operators,	 like	the	preincrement	++foo
or	 the	 dereferencing	 operator	 *foo	 cannot	 be	 used	 with	 the	 same
syntax	as	C++.	Cython	provides	functions	replacing	these	operators
in	a	special	module	cython.operator.	The	functions	provided	are:

cython.operator.dereference	 for	 dereferencing.

dereference(foo)	will	produce	the	C++	code	*(foo)
cython.operator.preincrement	 for	 pre-incrementation.
preincrement(foo)	will	produce	the	C++	code	++(foo)
...

These	 functions	 need	 to	 be	 cimported.	 Of	 course,	 one	 can	 use	 a
from	 ...	 cimport	 ...	 as	 to	 have	 shorter	 and	 more	 readable
functions.	For	example:	 from	cython.operator	cimport	dereference
as	deref.

Templates

Cython	uses	a	bracket	syntax	 for	 templating.	A	simple	example	 for
wrapping	C++	vector:

#	import	dereference	and	increment	operators

from	cython.operator	cimport	dereference	as	deref,	preincrement	as

cdef	extern	from	"<vector>"	namespace	"std":

				cdef	cppclass	vector[T]:

								cppclass	iterator:

												T	operator*()

												iterator	operator++()

												bint	operator==(iterator)

												bint	operator!=(iterator)

								vector()

								void	push_back(T&)

								T&	operator[](int)

								T&	at(int)

								iterator	begin()

								iterator	end()

cdef	vector[int]	*v	=	new	vector[int]()

cdef	int	i

for	i	in	range(10):

				v.push_back(i)

cdef	vector[int].iterator	it	=	v.begin()

while	it	!=	v.end():

				print	deref(it)

				inc(it)

del	v

Multiple	template	parameters	can	be	defined	as	a	list,	such	as	[T,	U,
V]	or	[int,	bool,	char].

Standard	library

Most	 of	 the	 containers	 of	 the	 C++	 Standard	 Library	 have	 been
declared	 in	 pxd	 files	 located	 in	 /Cython/Includes/libcpp.	 These
containers	are:	deque,	list,	map,	pair,	queue,	set,	stack,	vector.

For	example:

from	libcpp.vector	cimport	vector

cdef	vector[int]	vect

cdef	int	i

for	i	in	range(10):

				vect.push_back(i)

for	i	in	range(10):

				print	vect[i]

The	 pxd	 files	 in	 /Cython/Includes/libcpp	 also	 work	 as	 good
examples	on	how	to	declare	C++	classes.

Since	 Cython	 0.17,	 the	 STL	 containers	 coerce	 from	 and	 to	 the
corresponding	 Python	 builtin	 types.	 The	 conversion	 is	 triggered
either	by	an	assignment	to	a	typed	variable	(including	typed	function
arguments)	or	by	an	explicit	cast,	e.g.:

from	libcpp.string	cimport	string

from	libcpp.vector	cimport	vector

cdef	string	s	=	py_bytes_object

print(s)

cpp_string	=	<string>	py_unicode_object.encode('utf-8')

cdef	vector[int]	vect	=	xrange(1,	10,	2)

print(vect)														#	[1,	3,	5,	7,	9]

cdef	vector[string]	cpp_strings	=	b'ab	cd	ef	gh'.split()

print(cpp_strings.get(1))			#	b'cd'

The	following	coercions	are	available:

Python	type	=> C++	type =>	Python	type
bytes std::string bytes
iterable std::vector list
iterable std::list list
iterable std::set set
iterable	(len	2) std::pair tuple	(len	2)

All	conversions	create	a	new	container	and	copy	the	data	into	it.	The
items	 in	 the	 containers	 are	 converted	 to	 a	 corresponding	 type
automatically,	 which	 includes	 recursively	 converting	 containers
inside	of	containers,	e.g.	a	C++	vector	of	maps	of	strings.

Exceptions

Cython	 cannot	 throw	 C++	 exceptions,	 or	 catch	 them	 with	 a	 try-
except	 statement,	 but	 it	 is	 possible	 to	 declare	 a	 function	 as
potentially	raising	an	C++	exception	and	converting	 it	 into	a	Python
exception.	For	example,

cdef	extern	from	"some_file.h":

				cdef	int	foo()	except	+

This	will	 translate	 try	and	 the	C++	error	 into	an	appropriate	Python
exception.	 The	 translation	 is	 performed	 according	 to	 the	 following
table	(the	std::	prefix	is	omitted	from	the	C++	identifiers):

C++ Python
bad_alloc MemoryError

bad_cast TypeError

domain_error ValueError

invalid_argument ValueError

ios_base::failure IOError

out_of_range IndexError

overflow_error OverflowError

range_error ArithmeticError

underflow_error ArithmeticError

(all	others) RuntimeError

The	 what()	 message,	 if	 any,	 is	 preserved.	 Note	 that	 a	 C++
ios_base_failure	 can	 denote	 EOF,	 but	 does	 not	 carry	 enough
information	 for	Cython	 to	discern	 that,	 so	watch	out	with	exception
masks	on	IO	streams.

cdef	int	bar()	except	+MemoryError

This	will	catch	any	C++	error	and	raise	a	Python	MemoryError	in	its
place.	(Any	Python	exception	is	valid	here.)

cdef	int	raise_py_error()

cdef	int	something_dangerous()	except	+raise_py_error

If	something_dangerous	raises	a	C++	exception	then	raise_py_error
will	 be	 called,	which	allows	one	 to	do	 custom	C++	 to	Python	error
“translations.”	If	raise_py_error	does	not	actually	raise	an	exception
a	RuntimeError	will	be	raised.

Static	member	method

If	the	Rectangle	class	has	a	static	member:

namespace	shapes	{

				class	Rectangle	{

				...

				public:

								static	void	do_something();

				};

}

you	can	declare	it	as	a	function	living	in	the	class	namespace,	i.e.:

cdef	extern	from	"Rectangle.h"	namespace	"shapes::Rectangle":

				void	do_something()

Caveats	and	Limitations

Access	to	C-only	functions

Whenever	 generating	C++	 code,	Cython	 generates	 declarations	 of
and	 calls	 to	 functions	 assuming	 these	 functions	 are	 C++	 (ie,	 not
declared	as	extern	"C"	{...}.	This	is	ok	if	the	C	functions	have	C++
entry	points,	but	if	they’re	C	only,	you	will	hit	a	roadblock.	If	you	have
a	 C++	 Cython	module	 needing	 to	make	 calls	 to	 pure-C	 functions,
you	will	need	to	write	a	small	C++	shim	module	which:

includes	the	needed	C	headers	in	an	extern	“C”	block
contains	 minimal	 forwarding	 functions	 in	 C++,	 each	 of	 which
calls	the	respective	pure-C	function

Declaring/Using	References

Question:	 How	 do	 you	 declare	 and	 call	 a	 function	 that	 takes	 a
reference	as	an	argument?

C++	left-values

C++	allows	functions	returning	a	reference	to	be	 left-values.	This	 is
currently	 not	 supported	 in	 Cython.
cython.operator.dereference(foo)	 is	 also	 not	 considered	 a	 left-
value.

nextprevious	|Cython	0.19.1	documentation	»	Users	Guide	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

nextprevious	|Cython	0.19.1	documentation	»	Users	Guide	»

Fused	Types	(Templates)
Fused	 types	allow	you	 to	have	one	 type	definition	 that	can	 refer	 to
multiple	 types.	This	allows	you	 to	write	a	single	static-typed	cython
algorithm	 that	 can	operate	on	values	of	multiple	 types.	Thus	 fused
types	allow	generic	programming	and	are	akin	 to	 templates	 in	C++
or	generics	in	languages	like	Java	/	C#.

Note: 	Support	is	experimental	and	new	in	this	release,	there	may
be	bugs!

http://en.wikipedia.org/wiki/Generic_programming

Quickstart
cimport	cython

ctypedef	fused	char_or_float:

				cython.char

				cython.float

cpdef	char_or_float	plus_one(char_or_float	var):

				return	var	+	1

def	show_me():

				cdef:

								cython.char	a	=	127

								cython.float	b	=	127

				print	'char',	plus_one(a)

				print	'float',	plus_one(b)

This	gives:

>>>	show_me()

char	-128

float	128.0

plus_one(a)	 “specializes”	 the	 fused	 type	 char_or_float	 as	 a	 char,
whereas	plus_one(b)	specializes	char_or_float	as	a	float.

Declaring	Fused	Types
Fused	types	may	be	declared	as	follows:

cimport	cython

ctypedef	fused	my_fused_type:

				cython.int

				cython.double

This	declares	a	new	type	called	 my_fused_type	which	can	be	either
an	int	or	a	double.	Alternatively,	the	declaration	may	be	written	as:

my_fused_type	=	cython.fused_type(cython.int,	cython.float)

Only	names	may	be	used	for	the	constituent	types,	but	they	may	be
any	(non-fused)	type,	including	a	typedef.	i.e.	one	may	write:

ctypedef	double	my_double

my_fused_type	=	cython.fused_type(cython.int,	my_double)

Using	Fused	Types
Fused	 types	 can	 be	 used	 to	 declare	 parameters	 of	 functions	 or
methods:

cdef	cfunc(my_fused_type	arg):

				return	arg	+	1

If	the	you	use	the	same	fused	type	more	than	once	in	an	argument
list,	then	each	specialization	of	the	fused	type	must	be	the	same:

cdef	cfunc(my_fused_type	arg1,	my_fused_type	arg2):

				return	cython.typeof(arg1)	==	cython.typeof(arg2)

In	this	case,	the	type	of	both	parameters	is	either	an	int,	or	a	double
(according	 to	 the	 previous	 examples).	 However,	 because	 these
arguments	are	the	same	fused	type	of	my_fused_type,	both	arg1	and
arg2	must	be	specialized	 to	 the	same	 type.	Therefore	 this	 function
returns	True	 for	every	possible	valid	 invocation.	You	are	allowed	 to
mix	fused	types	however:

def	func(A	x,	B	y):

				...

where	A	and	B	are	different	fused	types.	This	will	result	in	specialized
code	paths	for	all	combinations	of	types	contained	in	A	and	B.

Fused	types	and	arrays

Note	 that	 specializations	 of	 only	 numeric	 types	 may	 not	 be	 very
useful,	as	one	can	usually	rely	on	promotion	of	types.	This	is	not	true
for	 arrays,	 pointers	 and	 typed	 views	 of	 memory	 however.	 Indeed,
one	may	write:

def	myfunc(A[:,	:]	x):

				...

#	and

cdef	otherfunc(A	*x):

				...

Selecting	Specializations
You	 can	 select	 a	 specialization	 (an	 instance	 of	 the	 function	 with
specific	or	specialized	(i.e.,	non-fused)	argument	types)	in	two	ways:
either	by	indexing	or	by	calling.

Indexing

You	can	index	functions	with	types	to	get	certain	specializations,	i.e.:

cfunc[cython.p_double](p1,	p2)

#	From	Cython	space

func[float,	double](myfloat,	mydouble)

#	From	Python	space

func[cython.float,	cython.double](myfloat,	mydouble)

If	a	fused	type	is	used	as	a	base	type,	this	will	mean	that	 the	base
type	 is	 the	 fused	 type,	 so	 the	 base	 type	 is	 what	 needs	 to	 be
specialized:

cdef	myfunc(A	*x):

				...

#	Specialize	using	int,	not	int	*

myfunc[int](myint)

Calling

A	 fused	 function	 can	 also	 be	 called	 with	 arguments,	 where	 the
dispatch	is	figured	out	automatically:

cfunc(p1,	p2)

func(myfloat,	mydouble)

For	a	cdef	or	cpdef	function	called	from	Cython	this	means	that	the
specialization	 is	 figured	 out	 at	 compile	 time.	 For	 def	 functions	 the
arguments	are	typechecked	at	runtime,	and	a	best-effort	approach	is
performed	to	 figure	out	which	specialization	 is	needed.	This	means
that	 this	may	 result	 in	a	 runtime	 TypeError	 if	 no	specialization	was
found.	A	cpdef	function	is	treated	the	same	way	as	a	def	function	if
the	type	of	the	function	is	unknown	(e.g.	if	it	is	external	and	there	is
no	cimport	for	it).

The	automatic	dispatching	 rules	are	 typically	as	 follows,	 in	order	of
preference:

try	to	find	an	exact	match
choose	the	biggest	corresponding	numerical	type	(biggest	float,
biggest	complex,	biggest	int)

Built-in	Fused	Types
There	are	some	built-in	fused	types	available	for	convenience,	these
are:

cython.integral	#	short,	int,	long

cython.floating	#	float,	double

cython.numeric		#	short,	int,	long,	float,	double,	float	complex,	double	complex

Casting	Fused	Functions
Fused	 cdef	 and	 cpdef	 functions	 may	 be	 cast	 or	 assigned	 to	 C
function	pointers	as	follows:

cdef	myfunc(cython.floating,	cython.integral):

				...

#	assign	directly

cdef	object	(*funcp)(float,	int)

funcp	=	myfunc

funcp(f,	i)

#	alternatively,	cast	it

(<object	(*)(float,	int)>	myfunc)(f,	i)

#	This	is	also	valid

funcp	=	myfunc[float,	int]

funcp(f,	i)

Type	Checking	Specializations
Decisions	 can	 be	made	 based	 on	 the	 specializations	 of	 the	 fused
parameters.	False	conditions	are	pruned	to	avoid	invalid	code.	One
may	check	with	 is,	 is	not	and	 ==	and	 !=	 to	see	 if	a	 fused	 type	 is
equal	to	a	certain	other	non-fused	type	(to	check	the	specialization),
or	use	in	and	not	in	to	figure	out	whether	a	specialization	is	part	of
another	set	of	types	(specified	as	a	fused	type).	In	example:

ctypedef	fused	bunch_of_types:

				...

ctypedef	fused	string_t:

				cython.p_char

				bytes

				unicode

cdef	cython.integral	myfunc(cython.integral	i,	bunch_of_types	s):

				cdef	int	*int_pointer

				cdef	long	*long_pointer

				#	Only	one	of	these	branches	will	be	compiled	for	each	specialization!

				if	cython.integral	is	int:

								int_pointer	=	&i

				else:

								long_pointer	=	&i

				if	bunch_of_types	in	string_t:

								print	"s	is	a	string!"

__signatures__
Finally,	function	objects	from	def	or	cpdef	functions	have	an	attribute
__signatures__,	 which	 maps	 the	 signature	 strings	 to	 the	 actual
specialized	 functions.	 This	 may	 be	 useful	 for	 inspection.	 Listed
signature	strings	may	also	be	used	as	indices	to	the	fused	function,
but	the	index	format	may	change	between	Cython	versions:

specialized_function	=	fused_function["MyExtensionClass|int|float"

It	would	usually	be	preferred	to	index	like	this,	however:

specialized_function	=	fused_function[MyExtensionClass,	int,	float

Although	 the	 latter	 will	 select	 the	 biggest	 types	 for	 int	 and	 float
from	Python	space,	as	they	are	not	 type	 identifiers	but	builtin	 types
there.	 Passing	 cython.int	 and	 cython.float	 would	 resolve	 that,
however.

For	 memoryview	 indexing	 from	 python	 space	 we	 can	 do	 the
following:

ctypedef	fused	my_fused_type:

				int[:,	::1]

				float[:,	::1]

def	func(my_fused_type	array):

				...

my_fused_type[cython.int[:,	::1]](myarray)

The	same	goes	for	when	using	e.g.	cython.numeric[:,	:].

nextprevious	|Cython	0.19.1	documentation	»	Users	Guide	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

nextprevious	|Cython	0.19.1	documentation	»	Users	Guide	»

Porting	Cython	code	to	PyPy
Since	version	0.17,	Cython	has	basic	support	for	cpyext,	the	layer	in
PyPy	 that	 emulates	 CPython’s	 C-API.	 This	 is	 achieved	 by	making
the	 generated	 C	 code	 adapt	 at	 C	 compile	 time,	 so	 the	 generated
code	will	compile	in	both	CPython	and	PyPy	unchanged.

However,	 beyond	what	Cython	 can	 cover	 and	 adapt	 internally,	 the
cpyext	C-API	emulation	involves	some	differences	to	the	real	C-API
in	CPython	that	have	a	visible	 impact	on	user	code.	This	page	 lists
major	 differences	 and	 ways	 to	 deal	 with	 them	 in	 order	 to	 write
Cython	code	that	works	in	both	CPython	and	PyPy.

http://pypy.org

Reference	counts
A	general	design	difference	in	PyPy	is	that	the	runtime	does	not	use
reference	 counting	 internally	 but	 always	 a	 garbage	 collector.
Reference	counting	is	only	emulated	at	the	cpyext	layer	by	counting
references	 being	 held	 in	 C	 space.	 This	 implies	 that	 the	 reference
count	 in	PyPy	is	generally	different	from	that	 in	CPython	because	it
does	not	count	any	references	held	in	Python	space.

Object	lifetime
As	 a	 direct	 consequence	 of	 the	 different	 garbage	 collection
characteristics,	 objects	 may	 see	 the	 end	 of	 their	 lifetime	 at	 other
points	than	in	CPython.	Special	care	therefore	has	to	be	taken	when
objects	are	expected	to	have	died	in	CPython	but	may	not	in	PyPy.
Specifically,	 a	 deallocator	 method	 of	 an	 extension	 type
(__dealloc__())	 may	 get	 called	 at	 a	 much	 later	 point	 than	 in
CPython,	triggered	rather	by	memory	getting	tighter	than	by	objects
dying.

If	the	point	in	the	code	is	known	when	an	object	is	supposed	to	die
(e.g.	when	 it	 is	 tied	 to	another	object	or	 to	 the	execution	 time	of	a
function),	 it	 is	worth	considering	if	 it	can	be	invalidated	and	cleaned
up	manually	at	that	point,	rather	than	relying	on	a	deallocator.

As	 a	 side	 effect,	 this	 can	 sometimes	 even	 lead	 to	 a	 better	 code
design,	e.g.	when	context	managers	can	be	used	 together	with	 the
with	statement.

Borrowed	references	and	data	pointers
The	 memory	 management	 in	 PyPy	 is	 allowed	 to	 move	 objects
around	in	memory.	The	C-API	layer	is	only	an	indirect	view	on	PyPy
objects	and	often	 replicates	data	or	state	 into	C	space	 that	 is	 then
tied	to	the	lifetime	of	a	C-API	object	rather	then	the	underlying	PyPy
object.	 It	 is	 important	 to	 understand	 that	 these	 two	 objects	 are
separate	things	in	cpyext.

The	 effect	 can	 be	 that	when	 data	 pointers	 or	 borrowed	 references
are	used,	and	the	owning	object	is	no	longer	directly	referenced	from
C	space,	the	reference	or	data	pointer	may	become	invalid	at	some
point,	even	if	the	object	itself	is	still	alive.	As	opposed	to	CPython,	it
is	not	enough	 to	 keep	 the	 reference	 to	 the	object	alive	 in	a	 list	 (or
other	 Python	 container),	 because	 the	 contents	 of	 those	 is	 only
managed	in	Python	space	and	thus	only	references	the	PyPy	object.
A	reference	in	a	Python	container	will	not	keep	the	C-API	view	on	it
alive.	Entries	in	a	Python	class	dict	will	obviously	not	work	either.

One	 of	 the	 more	 visible	 places	 where	 this	 may	 happen	 is	 when
accessing	 the	 char*	 buffer	 of	 a	 byte	 string.	 In	 PyPy,	 this	 will	 only
work	as	long	as	the	Cython	code	holds	a	direct	reference	to	the	byte
string	object	itself.

Another	point	is	when	CPython	C-API	functions	are	used	directly	that
return	 borrowed	 references,	 e.g.	 PyTuple_GET_ITEM()	 and	 similar
functions,	but	also	some	functions	that	return	borrowed	references	to
built-in	modules	or	low-level	objects	of	the	runtime	environment.	The
GIL	in	PyPy	only	guarantees	that	the	borrowed	reference	stays	valid
up	 to	 the	 next	 call	 into	 PyPy	 (or	 its	 C-API),	 but	 not	 necessarily
longer.

When	accessing	 the	 internals	of	Python	objects	or	using	borrowed
references	 longer	 than	 up	 to	 the	 next	 call	 into	 PyPy,	 including

http://docs.python.org/3.3/c-api/tuple.html#PyTuple_GET_ITEM

reference	 counting	 or	 anything	 that	 frees	 the	 GIL,	 it	 is	 therefore
required	 to	 additionally	 keep	 direct	 owned	 references	 to	 these
objects	alive	in	C	space,	e.g.	in	local	variables	in	a	function	or	in	the
attributes	of	an	extension	type.

When	 in	 doubt,	 avoid	 using	 C-API	 functions	 that	 return	 borrowed
references,	or	surround	the	usage	of	a	borrowed	reference	explicitly
by	 a	 pair	 of	 calls	 to	 Py_INCREF()	 when	 getting	 the	 reference	 and
Py_DECREF()	when	done	with	it	to	convert	it	into	an	owned	reference.

http://docs.python.org/3.3/c-api/refcounting.html#Py_INCREF
http://docs.python.org/3.3/c-api/refcounting.html#Py_DECREF

Builtin	types,	slots	and	fields
The	 following	 builtin	 types	 are	 not	 currently	 available	 in	 cpyext	 in
form	of	their	C	level	representation:	PyComplexObject,	PyFloatObject
and	PyBoolObject.

Many	of	 the	 type	slot	 functions	of	builtin	 types	are	not	 initialised	 in
cpyext	and	can	therefore	not	be	used	directly.

Similarly,	almost	none	of	the	(implementation)	specific	struct	fields	of
builtin	types	is	exposed	at	the	C	level,	such	as	the	ob_digit	field	of
PyLongObject	 or	 the	 allocated	 field	 of	 the	 PyListObject	 struct	 etc.
Although	 the	 ob_size	 field	 of	 containers	 (used	 by	 the	 Py_SIZE()
macro)	is	available,	it	is	not	guaranteed	to	be	accurate.

It	is	best	not	to	access	any	of	these	struct	fields	and	slots	and	to	use
the	 normal	 Python	 types	 instead	 as	 well	 as	 the	 normal	 Python
protocols	 for	 object	 operations.	 Cython	 will	 map	 them	 to	 an
appropriate	usage	of	the	C-API	in	both	CPython	and	cpyext.

http://docs.python.org/3.3/c-api/complex.html#PyComplexObject
http://docs.python.org/3.3/c-api/float.html#PyFloatObject
http://docs.python.org/3.3/c-api/long.html#PyLongObject
http://docs.python.org/3.3/c-api/list.html#PyListObject

Efficiency
Simple	 functions	and	especially	macros	 that	 are	used	 for	 speed	 in
CPython	 may	 exhibit	 substantially	 different	 performance
characteristics	in	cpyext.

Functions	returning	borrowed	references	were	already	mentioned	as
requiring	 special	 care,	 but	 they	 also	 induce	 substantially	 more
runtime	 overhead	 because	 they	 often	 create	 weak	 references	 in
PyPy	 where	 they	 only	 return	 a	 plain	 pointer	 in	 CPython.	 A	 visible
example	is	PyTuple_GET_ITEM().

Some	 more	 high-level	 functions	 may	 also	 show	 entirely	 different
performance	 characteristics,	 e.g.	 PyDict_Next()	 for	 dict	 iteration.
While	being	the	fastest	way	to	iterate	over	a	dict	in	CPython,	having
linear	time	complexity	and	a	low	overhead,	it	currently	has	quadratic
runtime	 in	 PyPy	 because	 it	 maps	 to	 normal	 dict	 iteration,	 which
cannot	keep	track	of	the	current	position	between	two	calls	and	thus
needs	to	restart	the	iteration	on	each	call.

The	general	advice	applies	here	even	more	than	in	CPython,	that	it
is	always	best	to	rely	on	Cython	generating	appropriately	adapted	C-
API	handling	code	for	you	than	to	use	the	C-API	directly	-	unless	you
really	know	what	you	are	doing.	And	if	you	find	a	better	way	of	doing
something	 in	PyPy	and	cpyext	 than	Cython	currently	does,	 it’s	best
to	fix	Cython	for	everyone’s	benefit.

http://docs.python.org/3.3/c-api/tuple.html#PyTuple_GET_ITEM
http://docs.python.org/3.3/c-api/dict.html#PyDict_Next

Known	problems
As	 of	 PyPy	 1.9,	 subtyping	 builtin	 types	 can	 result	 in	 infinite
recursion	on	method	calls	in	some	rare	cases.
Docstrings	 of	 special	 methods	 are	 not	 propagated	 to	 Python
space.

Bugs	and	crashes
The	 cpyext	 implementation	 in	 PyPy	 is	 much	 younger	 and
substantially	 less	 mature	 than	 the	 well	 tested	 C-API	 and	 its
underlying	 native	 implementation	 in	 CPython.	 This	 should	 be
remembered	 when	 running	 into	 crashes,	 as	 the	 problem	 may	 not
always	 be	 in	 your	 code	 or	 in	 Cython.	 Also,	 PyPy	 and	 its	 cpyext
implementation	are	less	easy	to	debug	at	the	C	level	than	CPython
and	Cython,	simply	because	they	were	not	designed	for	it.

nextprevious	|Cython	0.19.1	documentation	»	Users	Guide	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

nextprevious	|Cython	0.19.1	documentation	»	Users	Guide	»

Limitations
This	 page	 used	 to	 list	 bugs	 in	Cython	 that	made	 the	 semantics	 of
compiled	 code	 differ	 from	 that	 in	 Python.	 Most	 of	 the	 missing
features	have	been	fixed	in	Cython	0.15.	The	bug	tracker	has	an	up-
to-date	 list	 of	 remaining	 compatibility	 issues.	 Note	 that	 a	 future
version	 1.0	 of	 Cython	 is	 planned	 to	 provide	 full	 Python	 language
compatibility.

nextprevious	|Cython	0.19.1	documentation	»	Users	Guide	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://trac.cython.org/cython_trac/query?status=assigned&status=new&status=reopened&component=Python+Semantics&component=Python3+Semantics&order=priority&col=id&col=summary&col=component&col=status&col=type&col=priority&col=milestone
http://sphinx.pocoo.org/

nextprevious	|Cython	0.19.1	documentation	»	Users	Guide	»

Differences	between	Cython	and
Pyrex
Warning: 	Both	Cython	and	Pyrex	are	moving	targets.	It	has	come
to	the	point	that	an	explicit	list	of	all	the	differences	between	the
two	projects	would	be	laborious	to	list	and	track,	but	hopefully	this
high-level	list	gives	an	idea	of	the	differences	that	are	present.	It
should	be	noted	that	both	projects	make	an	effort	at	mutual
compatibility,	but	Cython’s	goal	is	to	be	as	close	to	and	complete
as	Python	as	reasonable.

Python	3	Support
Cython	creates	.c	 files	that	can	be	built	and	used	with	both	Python
2.x	and	Python	3.x.	In	fact,	compiling	your	module	with	Cython	may
very	well	be	the	easiest	way	to	port	code	to	Python	3.	We	are	also
working	to	make	the	compiler	run	in	both	Python	2.x	and	3.x.

Many	Python	3	constructs	are	already	supported	by	Cython.

List/Set/Dict	Comprehensions

Cython	supports	 the	different	comprehensions	defined	by	Python	3
for	lists,	sets	and	dicts:

[expr(x)	for	x	in	A]													#	list

{expr(x)	for	x	in	A}													#	set

{key(x)	:	value(x)	for	x	in	A}			#	dict

Looping	is	optimized	if	A	is	a	list,	tuple	or	dict.	You	can	use	the	for	...
from	syntax,	too,	but	it	is	generally	preferred	to	use	the	usual	for	...
in	range(...)	syntax	with	a	C	run	variable	(e.g.	cdef	int	i).

Note: 	see	Automatic	range	conversion

Note	that	Cython	also	supports	set	literals	starting	from	Python	2.3.

Keyword-only	arguments

Python	functions	can	have	keyword-only	arguments	listed	after	the	*
parameter	and	before	the	**	parameter	if	any,	e.g.:

def	f(a,	b,	*args,	c,	d	=	42,	e,	**kwds):

				...

http://docs.python.org/3.3/reference/compound_stmts.html#for
http://docs.python.org/3.3/reference/simple_stmts.html#from
http://docs.python.org/3.3/reference/compound_stmts.html#for
http://docs.python.org/3.3/reference/expressions.html#in

Here	c,	d	and	e	cannot	be	passed	as	position	arguments	and	must
be	 passed	 as	 keyword	 arguments.	 Furthermore,	 c	 and	 e	 are
required	keyword	arguments,	since	they	do	not	have	a	default	value.

If	 the	 parameter	 name	 after	 the	 *	 is	 omitted,	 the	 function	 will	 not
accept	any	extra	positional	arguments,	e.g.:

def	g(a,	b,	*,	c,	d):

				...

takes	 exactly	 two	 positional	 parameters	 and	 has	 two	 required
keyword	parameters.

Conditional	expressions	“x	if	b	else	y”
(Python	2.5)
Conditional	 expressions	 as	 described	 in
http://www.python.org/dev/peps/pep-0308/:

X	if	C	else	Y

Only	one	of	X	and	Y	is	evaluated	(depending	on	the	value	of	C).

http://www.python.org/dev/peps/pep-0308/

cdef	inline
Module	 level	 functions	can	now	be	declared	 inline,	with	 the	 inline
keyword	 passed	 on	 to	 the	 C	 compiler.	 These	 can	 be	 as	 fast	 as
macros.:

cdef	inline	int	something_fast(int	a,	int	b):

				return	a*a	+	b

Note	that	class-level	cdef	functions	are	handled	via	a	virtual	function
table,	 so	 the	 compiler	 won’t	 be	 able	 to	 inline	 them	 in	 almost	 all
cases.

Assignment	on	declaration	(e.g.	“cdef	int
spam	=	5”)
In	Pyrex,	one	must	write:

cdef	int	i,	j,	k

i	=	2

j	=	5

k	=	7

Now,	with	cython,	one	can	write:

cdef	int	i	=	2,	j	=	5,	k	=	7

The	expression	on	the	right	hand	side	can	be	arbitrarily	complicated,
e.g.:

cdef	int	n	=	python_call(foo(x,y),	a	+	b	+	c)	-	32

‘by’	expression	in	for	loop	(e.g.	“for	i	from	0
<=	i	<	10	by	2”)
for	i	from	0	<=	i	<	10	by	2:

				print	i

yields:

0

2

4

6

8

Note: 	Usage	of	this	syntax	is	discouraged	as	it	is	redundant	with
the	normal	Python	for	loop.	See	Automatic	range	conversion.

http://docs.python.org/3.3/reference/compound_stmts.html#for

Boolean	int	type	(e.g.	it	acts	like	a	c	int,	but
coerces	to/from	python	as	a	boolean)
In	C,	ints	are	used	for	truth	values.	In	python,	any	object	can	be	used
as	a	truth	value	(using	the	__nonzero__()	method),	but	the	canonical
choices	are	 the	 two	boolean	objects	 True	and	 False.	The	 bint	 (for
“boolean	 int”)	 type	 is	 compiled	 to	 a	C	 int,	 but	 coerces	 to	 and	 from
Python	 as	 booleans.	 The	 return	 type	 of	 comparisons	 and	 several
builtins	is	a	bint	as	well.	This	reduces	the	need	for	wrapping	things
in	bool().	For	example,	one	can	write:

def	is_equal(x):

				return	x	==	y

which	 would	 return	 1	 or	 0	 in	 Pyrex,	 but	 returns	 True	 or	 False	 in
Cython.	One	can	declare	variables	and	return	values	for	functions	to
be	of	the	bint	type.	For	example:

cdef	int	i	=	x

cdef	bint	b	=	x

The	 first	 conversion	 would	 happen	 via	 x.__int__()	 whereas	 the
second	 would	 happen	 via	 x.__nonzero__().	 (Actually,	 if	 x	 is	 the
python	object	True	or	False	then	no	method	call	is	made.)

http://docs.python.org/3.3/library/functions.html#bool

Executable	class	bodies
Including	a	working	classmethod():

cdef	class	Blah:

				def	some_method(self):

								print	self

				some_method	=	classmethod(some_method)

				a	=	2*3

				print	"hi",	a

http://docs.python.org/3.3/library/functions.html#classmethod

cpdef	functions
Cython	adds	a	third	function	type	on	top	of	the	usual	def	and	cdef.	If
a	function	is	declared	cpdef	it	can	be	called	from	and	overridden	by
both	 extension	 and	normal	 python	 subclasses.	You	 can	essentially
think	 of	 a	 cpdef	method	 as	 a	 cdef	method	 +	 some	extras.	 (That’s
how	 it’s	 implemented	 at	 least.)	 First,	 it	 creates	 a	 def	 method	 that
does	 nothing	 but	 call	 the	 underlying	 cdef	 method	 (and	 does
argument	 unpacking/coercion	 if	 needed).	 At	 the	 top	 of	 the	 cdef
method	a	little	bit	of	code	is	added	to	check	to	see	if	it’s	overridden.
Specifically,	in	pseudocode:

if	type(self)	has	a	__dict__:

				foo	=	self.getattr('foo')

				if	foo	is	not	wrapper_foo:

								return	foo(args)

[cdef	method	body]

To	detect	whether	or	not	a	 type	has	a	dictionary,	 it	 just	checks	 the
tp_dictoffset	slot,	which	 is	 NULL	 (by	default)	 for	extension	types,	but
non-	null	for	instance	classes.	If	the	dictionary	exists,	it	does	a	single
attribute	lookup	and	can	tell	(by	comparing	pointers)	whether	or	not
the	 returned	 result	 is	 actually	 a	new	 function.	 If,	 and	only	 if,	 it	 is	 a
new	 function,	 then	 the	 arguments	 packed	 into	 a	 tuple	 and	 the
method	called.	This	is	all	very	fast.	A	flag	is	set	so	this	lookup	does
not	occur	if	one	calls	the	method	on	the	class	directly,	e.g.:

cdef	class	A:

				cpdef	foo(self):

								pass

x	=	A()

x.foo()		#	will	check	to	see	if	overridden

A.foo(x)	#	will	call	A's	implementation	whether	overridden	or	not

http://docs.python.org/3.3/reference/compound_stmts.html#def
http://docs.python.org/3.3/reference/compound_stmts.html#def

See	Early	Binding	for	Speed	for	explanation	and	usage	tips.

Automatic	range	conversion
This	will	convert	statements	of	the	form	for	i	in	range(...)	 to	 for
i	from	...	when	i	 is	any	cdef’d	integer	type,	and	the	direction	(i.e.
sign	of	step)	can	be	determined.

Warning: 	This	may	change	the	semantics	if	the	range	causes
assignment	to	i	to	overflow.	Specifically,	if	this	option	is	set,	an
error	will	be	raised	before	the	loop	is	entered,	whereas	without	this
option	the	loop	will	execute	until	a	overflowing	value	is
encountered.	If	this	effects	you	change
Cython/Compiler/Options.py	(eventually	there	will	be	a	better	way
to	set	this).

More	friendly	type	casting
In	Pyrex,	if	one	types	<int>x	where	x	is	a	Python	object,	one	will	get
the	memory	address	of	x.	Likewise,	if	one	types	<object>i	where	i
is	a	C	int,	one	will	get	an	“object”	at	location	i	in	memory.	This	leads
to	confusing	results	and	segfaults.

In	Cython	 <type>x	will	 try	 and	do	a	 coercion	 (as	would	happen	on
assignment	of	x	to	a	variable	of	type	type)	if	exactly	one	of	the	types
is	a	python	object.	It	does	not	stop	one	from	casting	where	there	is
no	conversion	(though	it	will	emit	a	warning).	If	one	really	wants	the
address,	cast	to	a	void	*	first.

As	 in	Pyrex	 <MyExtensionType>x	will	cast	 x	 to	 type	 MyExtensionType
without	 any	 type	 checking.	 Cython	 supports	 the	 syntax
<MyExtensionType?>	 to	 do	 the	 cast	 with	 type	 checking	 (i.e.	 it	 will
throw	an	error	if	x	is	not	a	(subclass	of)	MyExtensionType.

Optional	arguments	in	cdef/cpdef	functions
Cython	 now	 supports	 optional	 arguments	 for	 cdef	 and	 cpdef

functions.

The	syntax	 in	 the	 .pyx	 file	 remains	as	 in	Python,	but	one	declares
such	functions	in	the	.pxd	file	by	writing	cdef	foo(x=*).	The	number
of	arguments	may	increase	on	subclassing,	but	the	argument	types
and	 order	 must	 remain	 the	 same.	 There	 is	 a	 slight	 performance
penalty	 in	 some	 cases	 when	 a	 cdef/cpdef	 function	 without	 any
optional	 is	 overridden	 with	 one	 that	 does	 have	 default	 argument
values.

For	example,	one	can	have	the	.pxd	file:

cdef	class	A:

				cdef	foo(self)

cdef	class	B(A)

				cdef	foo(self,	x=*)

cdef	class	C(B):

				cpdef	foo(self,	x=*,	int	k=*)

with	corresponding	.pyx	file:

cdef	class	A:

				cdef	foo(self):

								print	"A"

cdef	class	B(A)

				cdef	foo(self,	x=None)

								print	"B",	x

cdef	class	C(B):

				cpdef	foo(self,	x=True,	int	k=3)

								print	"C",	x,	k

Note: 	this	also	demonstrates	how	cpdef	functions	can	override
cdef	functions.

Function	pointers	in	structs
Functions	declared	in	struct	are	automatically	converted	to	function
pointers	for	convenience.

C++	Exception	handling
cdef	functions	can	now	be	declared	as:

cdef	int	foo(...)	except	+

cdef	int	foo(...)	except	+TypeError

cdef	int	foo(...)	except	+python_error_raising_function

in	which	case	a	Python	exception	will	be	raised	when	a	C++	error	is
caught.	See	Using	C++	in	Cython	for	more	details.

Synonyms
cdef	import	from	means	the	same	thing	as	cdef	extern	from

Source	code	encoding
Cython	 supports	 PEP	 3120	 and	 PEP	 263,	 i.e.	 you	 can	 start	 your
Cython	 source	 file	 with	 an	 encoding	 comment	 and	 generally	 write
your	source	code	in	UTF-8.	This	impacts	the	encoding	of	byte	strings
and	the	conversion	of	unicode	string	literals	 like	u'abcd'	to	unicode
objects.

Automatic	typecheck
Rather	 than	 introducing	 a	 new	 keyword	 typecheck	 as	 explained	 in
the	 Pyrex	 docs,	 Cython	 emits	 a	 (non-spoofable	 and	 faster)
typecheck	whenever	isinstance()	is	used	with	an	extension	type	as
the	second	parameter.

http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/version/Doc/Manual/special_methods.html
http://docs.python.org/3.3/library/functions.html#isinstance

From	__future__	directives
Cython	 supports	 several	 from	 __future__	 directives,	 namely
unicode_literals	and	division.

With	statements	are	always	enabled.

Pure	Python	mode
Cython	 has	 support	 for	 compiling	 .py	 files,	 and	 accepting	 type
annotations	 using	 decorators	 and	 other	 valid	 Python	 syntax.	 This
allows	 the	 same	 source	 to	 be	 interpreted	 as	 straight	 Python,	 or
compiled	 for	 optimized	 results.	 See	 http://wiki.cython.org/pure	 for
more	details.

nextprevious	|Cython	0.19.1	documentation	»	Users	Guide	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://wiki.cython.org/pure
http://sphinx.pocoo.org/

nextprevious	|Cython	0.19.1	documentation	»	Users	Guide	»

Typed	Memoryviews
Typed	memoryviews	allow	efficient	access	to	memory	buffers,	such
as	 those	 underlying	 NumPy	 arrays,	 without	 incurring	 any	 Python
overhead.	 Memoryviews	 are	 similar	 to	 the	 current	 NumPy	 array
buffer	 support	 (np.ndarray[np.float64_t,	 ndim=2]),	 but	 they	 have
more	features	and	cleaner	syntax.

Memoryviews	 are	 more	 general	 than	 the	 old	 NumPy	 aray	 buffer
support,	because	they	can	handle	a	wider	variety	of	sources	of	array
data.	For	example,	 they	can	handle	C	arrays	and	 the	Cython	array
type	(Cython	arrays).

A	 memoryview	 can	 be	 used	 in	 any	 context	 (function	 parameters,
module-level,	 cdef	 class	 attribute,	 etc)	 and	 can	 be	 obtained	 from
nearly	any	object	that	exposes	writable	buffer	through	the	PEP	3118
buffer	interface.

http://www.python.org/peps/pep-3118.html

Quickstart
from	cython.view	cimport	array	as	cvarray

import	numpy	as	np

#	Memoryview	on	a	NumPy	array

narr	=	np.arange(27,	dtype=np.dtype("i")).reshape((3,	3,	3))

cdef	int	[:,	:,	:]	narr_view	=	narr

#	Memoryview	on	a	C	array

cdef	int	carr[3][3][3]

cdef	int	[:,	:,	:]	carr_view	=	carr

#	Memoryview	on	a	Cython	array

cyarr	=	cvarray(shape=(3,	3,	3),	itemsize=sizeof(int),	format="i")

cdef	int	[:,	:,	:]	cyarr_view	=	cyarr

#	Show	the	sum	of	all	the	arrays	before	altering	it

print	"NumPy	sum	of	the	NumPy	array	before	assignments:",	narr.sum

#	We	can	copy	the	values	from	one	memoryview	into	another	using	a	single

#	statement,	by	either	indexing	with	...	or	(NumPy-style)	with	a	colon.

carr_view[...]	=	narr_view

cyarr_view[:]	=	narr_view

#	NumPy-style	syntax	for	assigning	a	single	value	to	all	elements.

narr_view[:,	:,	:]	=	3

#	Just	to	distinguish	the	arrays

carr_view[0,	0,	0]	=	100

cyarr_view[0,	0,	0]	=	1000

#	Assigning	into	the	memoryview	on	the	NumPy	array	alters	the	latter

print	"NumPy	sum	of	NumPy	array	after	assignments:",	narr.sum()

#	A	function	using	a	memoryview	does	not	usually	need	the	GIL

cpdef	int	sum3d(int[:,	:,	:]	arr)	nogil:

				cdef	int	total	=	0

				I	=	arr.shape[0]

				J	=	arr.shape[1]

				K	=	arr.shape[2]

				for	i	in	range(I):

								for	j	in	range(J):

												for	k	in	range(K):

																total	+=	arr[i,	j,	k]

				return	total

#	A	function	accepting	a	memoryview	knows	how	to	use	a	NumPy	array,

#	a	C	array,	a	Cython	array...

print	"Memoryview	sum	of	NumPy	array	is",	sum3d(narr)

print	"Memoryview	sum	of	C	array	is",	sum3d(carr)

print	"Memoryview	sum	of	Cython	array	is",	sum3d(cyarr)

#	...	and	of	course,	a	memoryview.

print	"Memoryview	sum	of	C	memoryview	is",	sum3d(carr_view)

This	code	should	give	the	following	output:

NumPy	sum	of	the	NumPy	array	before	assignments:	351

NumPy	sum	of	NumPy	array	after	assignments:	81

Memoryview	sum	of	NumPy	array	is	81

Memoryview	sum	of	C	array	is	451

Memoryview	sum	of	Cython	array	is	1351

Memoryview	sum	of	C	memoryview	is	451

Using	memoryviews

Indexing	and	Slicing

Indexing	and	slicing	can	be	done	with	or	without	the	GIL.	It	basically
works	 like	NumPy.	 If	 indices	are	specified	 for	every	dimension	you
will	get	an	element	of	the	base	type	(e.g.	int),	otherwise	you	will	get	a
new	 view.	 An	 Ellipsis	 means	 you	 get	 consecutive	 slices	 for	 every
unspecified	dimension:

cdef	int[:,	:,	:]	my_view	=	...

#	These	are	all	equivalent

my_view[10]

my_view[10,	:,	:]

my_view[10,	...]

Copying

Memoryviews	can	be	copied	inplace:

cdef	int[:,	:,	:]	to_view,	from_view

...

#	copy	the	elements	in	from_view	to	to_view

to_view[...]	=	from_view

#	or

to_view[:]	=	from_view

#	or

to_view[:,	:,	:]	=	from_view

They	 can	 also	 be	 copied	 with	 the	 copy()	 and	 copy_fortran()

methods;	see	C	and	Fortran	contiguous	copies.

Transposing

In	most	 cases	 (see	 below),	 the	memoryview	 can	 be	 transposed	 in
the	same	way	that	NumPy	slices	can	be	transposed:

cdef	int[:,	::1]	c_contig	=	...

cdef	int[::1,	:]	f_contig	=	c_contig.T

This	gives	a	new,	transposed,	view	on	the	data.

Transposing	requires	that	all	dimensions	of	the	memoryview	have	a
direct	access	memory	 layout	 (i.e.,	 there	are	no	 indirections	 through
pointers).	See	Specifying	more	general	memory	layouts	for	details.

Newaxis

As	for	NumPy,	new	axes	can	be	introduced	by	indexing	an	array	with
None

cdef	double[:]	myslice	=	np.linspace(0,	10,	num=50)

#	2D	array	with	shape	(1,	50)

myslice[None]	#	or

myslice[None,	:]

#	2D	array	with	shape	(50,	1)

myslice[:,	None]

One	may	mix	new	axis	indexing	with	all	other	forms	of	indexing	and
slicing.	See	also	an	example.

http://www.scipy.org/Numpy_Example_List#newaxis

Comparison	to	the	old	buffer	support
You	will	probably	prefer	memoryviews	to	the	older	syntax	because:

The	syntax	is	cleaner
Memoryviews	 do	 not	 usually	 need	 the	GIL	 (see	Memoryviews
and	the	GIL)
Memoryviews	are	considerably	faster

For	example,	 this	 is	 the	old	syntax	equivalent	of	 the	 sum3d	 function
above:

cpdef	int	old_sum3d(object[int,	ndim=3,	mode='strided']	arr):

				cdef	int	I,	J,	K,	total	=	0

				I	=	arr.shape[0]

				J	=	arr.shape[1]

				K	=	arr.shape[2]

				for	i	in	range(I):

								for	j	in	range(J):

												for	k	in	range(K):

																total	+=	arr[i,	j,	k]

				return	total

Note	that	we	can’t	use	nogil	for	the	buffer	version	of	the	function	as
we	could	for	the	memoryview	version	of	sum3d	above,	because	buffer
objects	are	Python	objects.	However,	even	if	we	don’t	use	nogil	with
the	memoryview,	 it	 is	 significantly	 faster.	 This	 is	 a	 output	 from	 an
IPython	session	after	importing	both	versions:

In	[2]:	import	numpy	as	np

In	[3]:	arr	=	np.zeros((40,	40,	40),	dtype=int)

In	[4]:	timeit	-r15	old_sum3d(arr)

1000	loops,	best	of	15:	298	us	per	loop

In	[5]:	timeit	-r15	sum3d(arr)

1000	loops,	best	of	15:	219	us	per	loop

Python	buffer	support
Cython	 memoryviews	 support	 nearly	 all	 objects	 exporting	 the
interface	 of	 Python	 new	 style	 buffers.	 This	 is	 the	 buffer	 interface
described	in	PEP	3118.	NumPy	arrays	support	 this	 interface,	as	do
Cython	arrays.	The	“nearly	all”	is	because	the	Python	buffer	interface
allows	 the	 elements	 in	 the	 data	 array	 to	 themselves	 be	 pointers;
Cython	memoryviews	do	not	yet	support	this.

http://docs.python.org/c-api/buffer.html
http://www.python.org/peps/pep-3118.html

Memory	layout
The	buffer	interface	allows	objects	to	identify	the	underlying	memory
in	a	variety	of	ways.	With	the	exception	of	pointers	for	data	elements,
Cython	memoryviews	support	all	Python	new-type	buffer	 layouts.	 It
can	be	useful	to	know	or	specify	memory	layout	if	the	memory	has	to
be	 in	 a	 particular	 format	 for	 an	 external	 routine,	 or	 for	 code
optimization.

Background

The	concepts	are	as	follows:	there	is	data	access	and	data	packing.
Data	 access	 means	 either	 direct	 (no	 pointer)	 or	 indirect	 (pointer).
Data	packing	means	your	data	may	be	contiguous	or	not	contiguous
in	 memory,	 and	 may	 use	 strides	 to	 identify	 the	 jumps	 in	 memory
consecutive	indices	need	to	take	for	each	dimension.

NumPy	arrays	provide	a	good	model	of	 strided	direct	data	access,
so	we’ll	use	 them	for	a	 refresher	on	 the	concepts	of	C	and	Fortran
contiguous	arrays,	and	data	strides.

Brief	recap	on	C,	Fortran	and	strided	memory
layouts

The	simplest	data	layout	might	be	a	C	contiguous	array.	This	is	the
default	 layout	 in	 NumPy	 and	 Cython	 arrays.	 C	 contiguous	 means
that	 the	 array	 data	 is	 continuous	 in	 memory	 (see	 below)	 and	 that
neighboring	elements	in	the	first	dimension	of	the	array	are	furthest
apart	 in	 memory,	 whereas	 neighboring	 elements	 in	 the	 last
dimension	are	closest	together.	For	example,	in	NumPy:

In	[2]:	arr	=	np.array([['0',	'1',	'2'],	['3',	'4',	'5']],	dtype='S1'

Here,	 arr[0,	 0]	 and	 arr[0,	 1]	 are	 one	 byte	 apart	 in	 memory,
whereas	arr[0,	0]	and	arr[1,	0]	are	3	bytes	apart.	This	leads	us	to
the	idea	of	strides.	Each	axis	of	the	array	has	a	stride	length,	which
is	the	number	of	bytes	needed	to	go	from	one	element	on	this	axis	to
the	next	element.	In	the	case	above,	the	strides	for	axes	0	and	1	will
obviously	be:

In	[3]:	arr.strides

Out[4]:	(3,	1)

For	a	3D	C	contiguous	array:

In	[5]:	c_contig	=	np.arange(24,	dtype=np.int8).reshape((2,3,4))

In	[6]	c_contig.strides

Out[6]:	(12,	4,	1)

A	Fortran	contiguous	array	has	 the	opposite	memory	ordering,	with
the	elements	on	the	first	axis	closest	togther	in	memory:

In	[7]:	f_contig	=	np.array(c_contig,	order='F')

In	[8]:	np.all(f_contig	==	c_contig)

Out[8]:	True

In	[9]:	f_contig.strides

Out[9]:	(1,	2,	6)

A	 contiguous	 array	 is	 one	 for	 which	 a	 single	 continuous	 block	 of
memory	 contains	 all	 the	 data	 for	 the	 elements	 of	 the	 array,	 and
therefore	 the	 memory	 block	 length	 is	 the	 product	 of	 number	 of
elements	 in	 the	array	and	 the	size	of	 the	elements	 in	bytes.	 In	 the
example	above,	the	memory	block	is	2	*	3	*	4	*	1	bytes	long,	where	1
is	the	length	of	an	int8.

An	array	can	be	contiguous	without	being	C	or	Fortran	order:

In	[10]:	c_contig.transpose((1,	0,	2)).strides

Out[10]:	(4,	12,	1)

Slicing	an	NumPy	array	can	easily	make	it	not	contiguous:

In	[11]:	sliced	=	c_contig[:,1,:]

In	[12]:	sliced.strides

Out[12]:	(12,	1)

In	[13]:	sliced.flags

Out[13]:

C_CONTIGUOUS	:	False

F_CONTIGUOUS	:	False

OWNDATA	:	False

WRITEABLE	:	True

ALIGNED	:	True

UPDATEIFCOPY	:	False

Default	behavior	for	memoryview	layouts

As	you’ll	 see	 in	Specifying	more	general	memory	 layouts,	 you	 can
specify	memory	layout	for	any	dimension	of	an	memoryview.	For	any
dimension	for	which	you	don’t	specify	a	layout,	then	the	data	access
is	assumed	to	be	direct,	and	the	data	packing	assumed	to	be	strided.
For	example,	that	will	be	the	assumption	for	memoryviews	like:

int	[:,	:,	:]	my_memoryview	=	obj

C	and	Fortran	contiguous	memoryviews

You	 can	 specify	 C	 and	 Fortran	 contiguous	 layouts	 for	 the
memoryview	by	using	the	::1	step	syntax	at	definition.	For	example,
if	 you	 know	 for	 sure	 your	 memoryview	 will	 be	 on	 top	 of	 a	 3D	 C
contiguous	layout,	you	could	write:

cdef	int[:,	:,	::1]	c_contiguous	=	c_contig

where	 c_contig	 could	be	a	C	contiguous	NumPy	array.	The	 ::1	 at
the	3rd	position	means	 that	 the	elements	 in	 this	3rd	dimension	will
be	 one	 element	 apart	 in	memory.	 If	 you	 know	 you	 will	 have	 a	 3D
Fortran	contiguous	array:

cdef	int[::1,	:,	:]	f_contiguous	=	f_contig

If	you	try	to	do	this	kind	of	thing:

#	This	array	is	C	contiguous

c_contig	=	np.arange(24).reshape((2,3,4))

cdef	int[:,	:,	::1]	c_contiguous	=	c_contig

#	But	this	isn't

c_contiguous	=	np.array(c_contig,	order='F')

you	will	get	a	ValueError	like	this	at	runtime:

/Users/mb312/dev_trees/minimal-cython/mincy.pyx	in	init	mincy	(mincy

				69

				70	#	But	this	isn't

--->	71	c_contiguous	=	np.array(c_contig,	order='F')

				72

				73	#	Show	the	sum	of	all	the	arrays	before	altering	it

/Users/mb312/dev_trees/minimal-cython/stringsource	in	View.MemoryView

/Users/mb312/dev_trees/minimal-cython/stringsource	in	View.MemoryView

ValueError:	ndarray	is	not	C-contiguous

Thus	 the	 ::1	 in	 the	 slice	 type	 specification	 indicates	 in	 which
dimension	the	data	is	contiguous.	It	can	only	be	used	to	specify	full
C	or	Fortran	contiguity.

C	and	Fortran	contiguous	copies

Copies	can	be	made	C	or	Fortran	contiguous	using	the	.copy()	and
.copy_fortran()	methods:

#	This	view	is	C	contiguous

cdef	int[:,	:,	::1]	c_contiguous	=	myview.copy()

#	This	view	is	Fortran	contiguous

cdef	int[::1,	:]	f_contiguous_slice	=	myview.copy_fortran()

Specifying	more	general	memory	layouts

Data	 layout	 can	 be	 specified	 using	 the	 previously	 seen	 ::1	 slice
syntax,	 or	 by	 using	 any	 of	 the	 constants	 in	 cython.view.	 If	 no
specifier	is	given	in	any	dimension,	then	the	data	access	is	assumed
to	be	direct,	and	the	data	packing	assumed	to	be	strided.	If	you	don’t
know	whether	a	dimension	will	be	direct	or	indirect	(because	you’re
getting	an	object	with	a	buffer	 interface	from	some	library	perhaps),
then	 you	 can	 specify	 the	 generic	 flag,	 in	 which	 case	 it	 will	 be
determined	at	runtime.

The	flags	are	as	follows:

generic	-	strided	and	direct	or	indirect
strided	-	strided	and	direct	(this	is	the	default)
indirect	-	strided	and	indirect
contiguous	-	contiguous	and	direct
indirect_contiguous	-	the	list	of	pointers	is	contiguous

and	they	can	be	used	like	this:

from	cython	cimport	view

#	direct	access	in	both	dimensions,	strided	in	the	first	dimension,	contiguous	in	the	last

cdef	int[:,	::view.contiguous]	a

#	contiguous	list	of	pointers	to	contiguous	lists	of	ints

cdef	int[::view.indirect_contiguous,	::1]	b

#	direct	or	indirect	in	the	first	dimension,	direct	in	the	second	dimension

#	strided	in	both	dimensions

cdef	int[::view.generic,	:]	c

Only	 the	 first,	 last	or	 the	dimension	 following	an	 indirect	dimension
may	be	specified	contiguous:

#	INVALID

cdef	int[::view.contiguous,	::view.indirect,	:]	a

cdef	int[::1,	::view.indirect,	:]	b

#	VALID

cdef	int[::view.indirect,	::1,	:]	a

cdef	int[::view.indirect,	:,	::1]	b

cdef	int[::view.indirect_contiguous,	::1,	:]

The	difference	between	 the	contiguous	 flag	and	 the	 ::1	 specifier	 is
that	the	former	specifies	contiguity	for	only	one	dimension,	whereas
the	 latter	specifies	contiguity	 for	all	 following	 (Fortran)	or	preceding
(C)	dimensions:

cdef	int[:,	::1]	c_contig	=	...

#	VALID

cdef	int[:,	::view.contiguous]	myslice	=	c_contig[::2]

#	INVALID

cdef	int[:,	::1]	myslice	=	c_contig[::2]

The	 former	 case	 is	 valid	 because	 the	 last	 dimension	 remains
contiguous,	 but	 the	 first	 dimension	 does	 not	 “follow”	 the	 last	 one
anymore	(meaning,	 it	was	strided	already,	but	 it	 is	not	C	or	Fortran
contiguous	any	longer),	since	it	was	sliced.

Memoryviews	and	the	GIL
As	you	will	 see	 from	 the	Quickstart	section,	memoryviews	often	do
not	need	the	GIL:

cpdef	int	sum3d(int[:,	:,	:]	arr)	nogil:

				...

In	 particular,	 you	 do	 not	 need	 the	 GIL	 for	 memoryview	 indexing,
slicing	 or	 transposing.	 Memoryviews	 require	 the	 GIL	 for	 the	 copy
methods	 (C	 and	 Fortran	 contiguous	 copies),	 or	 when	 the	 dtype	 is
object	and	an	object	element	is	read	or	written.

Memoryview	Objects	and	Cython	Arrays
These	typed	memoryviews	can	be	converted	to	Python	memoryview
objects	 (cython.view.memoryview).	 These	 Python	 objects	 are
indexable,	 slicable	 and	 transposable	 in	 the	 same	 way	 that	 the
original	 memoryviews	 are.	 They	 can	 also	 be	 converted	 back	 to
Cython-space	memoryviews	at	any	time.

They	have	the	following	attributes:

shape
strides
suboffsets
ndim
size
itemsize
nbytes
base

And	of	course	 the	aforementioned	 T	attribute	 (Transposing).	 These
attributes	have	 the	 same	semantics	as	 in	NumPy.	 For	 instance,	 to
retrieve	the	original	object:

import	numpy

cimport	numpy	as	cnp

cdef	cnp.int32_t[:]	a	=	numpy.arange(10,	dtype=numpy.int32)

a	=	a[::2]

print	a,	numpy.asarray(a),	a.base

#	this	prints:	<MemoryView	of	'ndarray'	object>	[0	2	4	6	8]	[0	1	2	3	4	5	6	7	8	9]

Note	that	this	example	returns	the	original	object	from	which	the	view
was	obtained,	and	that	the	view	was	resliced	in	the	meantime.

http://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html#memory-layout

Cython	arrays
Whenever	a	Cython	memoryview	is	copied	(using	any	of	the	copy	or
copy_fortran	methods),	you	get	a	new	memoryview	slice	of	a	newly
created	 cython.view.array	 object.	 This	 array	 can	 also	 be	 used
manually,	and	will	automatically	allocate	a	block	of	data.	It	can	later
be	assigned	to	a	C	or	Fortran	contiguous	slice	(or	a	strided	slice).	It
can	be	used	like:

from	cython	cimport	view

my_array	=	view.array(shape=(10,	2),	itemsize=sizeof(int),	format=

cdef	int[:,	:]	my_slice	=	my_array

It	 also	 takes	 an	 optional	 argument	 mode	 (‘c’	 or	 ‘fortran’)	 and	 a
boolean	allocate_buffer,	 that	 indicates	 whether	 a	 buffer	 should	 be
allocated	and	freed	when	it	goes	out	of	scope:

cdef	view.array	my_array	=	view.array(...,	mode="fortran",	allocate_buffer

my_array.data	=	<char	*>	my_data_pointer

#	define	a	function	that	can	deallocate	the	data	(if	needed)

my_array.callback_free_data	=	free

You	can	also	cast	pointers	to	array,	or	C	arrays	to	arrays:

cdef	view.array	my_array	=	<int[:10,	:2]>	my_data_pointer

cdef	view.array	my_array	=	<int[:,	:]>	my_c_array

Of	course,	you	can	also	immediately	assign	a	cython.view.array	to	a
typed	memoryview	 slice.	 A	 C	 array	may	 be	 assigned	 directly	 to	 a
memoryview	slice:

cdef	int[:,	::1]	myslice	=	my_2d_c_array

The	 arrays	 are	 indexable	 and	 slicable	 from	Python	 space	 just	 like
memoryview	objects,	and	have	the	same	attributes	as	memoryview
objects.

CPython	array	module
An	 alternative	 to	 cython.view.array	 is	 the	 array	 module	 in	 the
Python	standard	library.	In	Python	3,	the	array.array	 type	supports
the	 buffer	 interface	 natively,	 so	 memoryviews	 work	 on	 top	 of	 it
without	additional	setup.

Starting	with	Cython	0.17,	however,	it	is	possible	to	use	these	arrays
as	buffer	providers	also	 in	Python	2.	This	 is	done	 through	explicitly
cimporting	the	cpython.array	module	as	follows:

cimport	cpython.array

def	sum_array(int[:]	view):

				"""

				>>>	from	array	import	array

				>>>	sum_array(array('i',	[1,2,3]))

				6

				"""

				cdef	int	total

				for	i	in	range(view.shape[0]):

								total	+=	view[i]

				return	total

Note	that	the	cimport	also	enables	the	old	buffer	syntax	for	the	array
type.	Therefore,	the	following	also	works:

from	cpython	cimport	array

def	sum_array(array.array[int]	arr):		#	using	old	buffer	syntax

				...

Coercion	to	NumPy
Memoryview	 (and	 array)	 objects	 can	 be	 coerced	 to	 a	 NumPy
ndarray,	without	having	to	copy	the	data.	You	can	e.g.	do:

cimport	numpy	as	np

import	numpy	as	np

numpy_array	=	np.asarray(<np.int32_t[:10,	:10]>	my_pointer)

Of	 course,	 you	 are	 not	 restricted	 to	 using	 NumPy’s	 type	 (such	 as
np.int32_t	here),	you	can	use	any	usable	type.

None	Slices
Although	memoryview	slices	are	not	objects	they	can	be	set	to	None
and	they	can	be	be	checked	for	being	None	as	well:

def	func(double[:]	myarray	=	None):

				print	myarray	is	None

If	 the	 function	 requires	 real	memory	 views	 as	 input,	 it	 is	 therefore
best	 to	 reject	 None	 input	 straight	 away	 in	 the	 signature,	 which	 is
supported	in	Cython	0.17	and	later	as	follows:

def	func(double[:]	myarray	not	None):

				...

Unlike	object	attributes	of	extension	classes,	memoryview	slices	are
not	initialized	to	None.

nextprevious	|Cython	0.19.1	documentation	»	Users	Guide	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

nextprevious	|Cython	0.19.1	documentation	»	Users	Guide	»

Using	Parallelism
Cython	 supports	 native	 parallelism	 through	 the	 cython.parallel
module.	 To	 use	 this	 kind	 of	 parallelism,	 the	GIL	must	 be	 released
(see	Releasing	the	GIL).	 It	currently	supports	OpenMP,	but	 later	on
more	backends	might	be	supported.

Note: 	Functionality	in	this	module	may	only	be	used	from	the
main	thread	or	parallel	regions	due	to	OpenMP	restrictions.

cython.parallel.prange([start,]	stop[,	step][,	nogil=False][,
schedule=None[,	chunksize=None]][,	num_threads=None])

This	 function	 can	 be	 used	 for	 parallel	 loops.	 OpenMP
automatically	 starts	 a	 thread	 pool	 and	 distributes	 the	 work
according	to	the	schedule	used.	step	must	not	be	0.	This	function
can	only	be	used	with	the	GIL	released.	If	nogil	is	true,	the	loop
will	be	wrapped	in	a	nogil	section.

Thread-locality	 and	 reductions	 are	 automatically	 inferred	 for
variables.

If	 you	 assign	 to	 a	 variable	 in	 a	 prange	 block,	 it	 becomes
lastprivate,	meaning	that	 the	variable	will	contain	 the	value	from
the	 last	 iteration.	 If	you	use	an	 inplace	operator	on	a	variable,	 it
becomes	a	 reduction,	meaning	 that	 the	values	 from	 the	 thread-
local	copies	of	the	variable	will	be	reduced	with	the	operator	and
assigned	to	the	original	variable	after	the	loop.	The	index	variable
is	always	lastprivate.	Variables	assigned	to	in	a	parallel	with	block
will	 be	 private	 and	 unusable	 after	 the	 block,	 as	 there	 is	 no
concept	of	a	sequentially	last	value.

The	 schedule	 is	 passed	 to	 OpenMP	 and	 can	 be	 one	 of	 the
following:

static:
If	 a	 chunksize	 is	 provided,	 iterations	 are	 distributed	 to	 all
threads	ahead	of	time	in	blocks	of	the	given	chunksize.	If	no
chunksize	 is	given,	 the	 iteration	space	 is	divided	 into	chunks
that	are	approximately	equal	in	size,	and	at	most	one	chunk	is
assigned	to	each	thread	in	advance.

This	 is	 most	 appropriate	 when	 the	 scheduling	 overhead
matters	and	 the	problem	can	be	cut	down	 into	equally	sized
chunks	 that	 are	 known	 to	 have	 approximately	 the	 same
runtime.

dynamic:
The	iterations	are	distributed	to	threads	as	they	request	them,
with	a	default	chunk	size	of	1.

This	is	suitable	when	the	runtime	of	each	chunk	differs	and	is
not	 known	 in	 advance	 and	 therefore	 a	 larger	 number	 of
smaller	chunks	is	used	in	order	to	keep	all	threads	busy.

guided:
As	with	 dynamic	 scheduling,	 the	 iterations	 are	 distributed	 to
threads	as	they	request	them,	but	with	decreasing	chunk	size.
The	 size	 of	 each	 chunk	 is	 proportional	 to	 the	 number	 of
unassigned	 iterations	 divided	 by	 the	 number	 of	 participating
threads,	decreasing	to	1	(or	the	chunksize	if	provided).

This	has	an	advantage	over	pure	dynamic	scheduling	when	it
turns	out	that	the	last	chunks	take	more	time	than	expected	or
are	 otherwise	 being	 badly	 scheduled,	 so	 that	 most	 threads
start	 running	 idle	while	 the	 last	 chunks	are	being	worked	on
by	only	a	smaller	number	of	threads.

runtime:
The	 schedule	 and	 chunk	 size	 are	 taken	 from	 the	 runtime

scheduling	 variable,	 which	 can	 be	 set	 through	 the
openmp.omp_set_schedule()	 function	 call,	 or	 the
OMP_SCHEDULE	 environment	 variable.	 Note	 that	 this
essentially	 disables	 any	 static	 compile	 time	 optimisations	 of
the	scheduling	code	 itself	and	may	 therefore	show	a	slightly
worse	performance	than	when	the	same	scheduling	policy	 is
statically	configured	at	compile	time.

cython.parallel.parallel(num_threads=None)
This	directive	can	be	used	as	part	of	a	with	statement	to	execute
code	 sequences	 in	 parallel.	 This	 is	 currently	 useful	 to	 setup
thread-local	buffers	used	by	a	prange.	A	contained	prange	will	be
a	worksharing	 loop	that	 is	not	parallel,	so	any	variable	assigned
to	 in	 the	parallel	section	 is	also	private	 to	 the	prange.	Variables
that	 are	 private	 in	 the	 parallel	 block	 are	 unavailable	 after	 the
parallel	block.

Example	with	thread-local	buffers:

from	cython.parallel	import	parallel,	prange

from	libc.stdlib	cimport	abort,	malloc,	free

cdef	Py_ssize_t	idx,	i,	n	=	100

cdef	int	*	local_buf

cdef	size_t	size	=	10

with	nogil,	parallel():

				local_buf	=	<int	*>	malloc(sizeof(int)	*	size)

				if	local_buf	==	NULL:

								abort()

				#	populate	our	local	buffer	in	a	sequential	loop

				for	i	in	xrange(size):

								local_buf[i]	=	i	*	2

				#	share	the	work	using	the	thread-local	buffer(s)

				for	i	in	prange(n,	schedule='guided'):

								func(local_buf)

				free(local_buf)

Later	 on	 sections	 might	 be	 supported	 in	 parallel	 blocks,	 to
distribute	code	sections	of	work	among	threads.

cython.parallel.threadid()
Returns	the	id	of	the	thread.	For	n	threads,	the	ids	will	range	from
0	to	n-1.

Compiling
To	actually	use	the	OpenMP	support,	you	need	to	tell	the	C	or	C++
compiler	to	enable	OpenMP.	For	gcc	this	can	be	done	as	follows	in	a
setup.py:

from	distutils.core	import	setup

from	distutils.extension	import	Extension

from	Cython.Distutils	import	build_ext

ext_module	=	Extension(

				"hello",

				["hello.pyx"],

				extra_compile_args=['-fopenmp'],

				extra_link_args=['-fopenmp'],

)

setup(

				name	=	'Hello	world	app',

				cmdclass	=	{'build_ext':	build_ext},

				ext_modules	=	[ext_module],

)

Breaking	out	of	loops
The	parallel	with	 and	prange	blocks	 support	 the	 statements	break,
continue	 and	 return	 in	 nogil	mode.	 Additionally,	 it	 is	 valid	 to	 use	 a
with	gil	block	inside	these	blocks,	and	have	exceptions	propagate
from	them.	However,	because	the	blocks	use	OpenMP,	they	can	not
just	be	left,	so	the	exiting	procedure	is	best-effort.	For	prange()	this
means	 that	 the	 loop	body	 is	 skipped	after	 the	 first	 break,	 return	or
exception	for	any	subsequent	iteration	in	any	thread.	It	is	undefined
which	 value	 shall	 be	 returned	 if	 multiple	 different	 values	 may	 be
returned,	as	the	iterations	are	in	no	particular	order:

from	cython.parallel	import	prange

cdef	int	func(Py_ssize_t	n):

				cdef	Py_ssize_t	i

				for	i	in	prange(n,	nogil=True):

								if	i	==	8:

												with	gil:

																raise	Exception()

								elif	i	==	4:

												break

								elif	i	==	2:

												return	i

In	the	example	above	it	 is	undefined	whether	an	exception	shall	be
raised,	whether	it	will	simply	break	or	whether	it	will	return	2.

Using	OpenMP	Functions
OpenMP	functions	can	be	used	by	cimporting	openmp:

from	cython.parallel	cimport	parallel

cimport	openmp

cdef	int	num_threads

openmp.omp_set_dynamic(1)

with	nogil,	parallel():

				num_threads	=	openmp.omp_get_num_threads()

				...

References

[1] http://www.openmp.org/mp-documents/spec30.pdf

nextprevious	|Cython	0.19.1	documentation	»	Users	Guide	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://www.openmp.org/mp-documents/spec30.pdf
http://sphinx.pocoo.org/

nextprevious	|Cython	0.19.1	documentation	»	Users	Guide	»

Debugging	your	Cython	program
Cython	comes	with	an	extension	 for	 the	GNU	Debugger	 that	helps
users	debug	Cython	code.	To	use	this	functionality,	you	will	need	to
install	gdb	7.2	or	higher,	built	with	Python	support	(linked	to	Python
2.5	or	higher).	The	debugger	supports	debuggees	with	versions	2.6
and	higher.	For	Python	3,	code	should	be	built	with	Python	3	and	the
debugger	should	be	run	with	Python	2	(or	at	least	it	should	be	able	to
find	the	Python	2	Cython	installation).

The	debugger	will	need	debug	information	that	the	Cython	compiler
can	 export.	 This	 can	 be	 achieved	 from	 within	 the	 setup	 script	 by
passing	pyrex_gdb=True	to	your	Cython	Extenion	class:

from	Cython.Distutils	import	extension

ext	=	extension.Extension('source',	['source.pyx'],	pyrex_gdb=True

setup(...,	ext_modules=[ext])

With	 this	 approach	 debug	 information	 can	 be	 enabled	 on	 a	 per-
module	basis.	Another	 (easier)	way	 is	 to	 simply	 pass	 the	 --pyrex-
gdb	flag	as	a	command	line	argument:

python	setup.py	build_ext	--pyrex-gdb

For	development	it’s	often	easy	to	use	the	--inplace	flag	also,	which
makes	 distutils	 build	 your	 project	 “in	 place”,	 i.e.,	 not	 in	 a	 separate
build	directory.

When	invoking	Cython	from	the	command	line	directly	you	can	have
it	write	debug	information	using	the	--gdb	flag:

cython	--gdb	myfile.pyx

Running	the	Debugger
To	 run	 the	 Cython	 debugger	 and	 have	 it	 import	 the	 debug
information	exported	by	Cython,	run	cygdb	in	the	build	directory:

$	python	setup.py	build_ext	--pyrex-gdb	--inplace

$	cygdb

GNU	gdb	(GDB)	7.2

...

(gdb)

When	using	the	Cython	debugger,	 it’s	preferable	that	you	build	and
run	 your	 code	 with	 an	 interpreter	 that	 is	 compiled	 with	 debugging
symbols	(i.e.	configured	with	--with-pydebug	or	compiled	with	the	-g
CFLAG).	 If	your	Python	 is	 installed	and	managed	by	your	package
manager	you	probably	need	to	install	debug	support	separately,	e.g.
for	ubuntu:

$	sudo	apt-get	install	python-dbg

$	python-dbg	setup.py	build_ext	--pyrex-gdb	--inplace

Then	you	need	to	run	your	script	with	python-dbg	also.

You	can	also	pass	additional	arguments	to	gdb:

$	cygdb	/path/to/build/directory/	GDBARGS

i.e.:

$	cygdb	.	--args	python-dbg	mainscript.py

To	tell	cygdb	not	 to	 import	any	debug	information,	supply	 --	as	 the
first	argument:

$	cygdb	--

Using	the	Debugger
The	Cython	debugger	comes	with	a	set	of	 commands	 that	support
breakpoints,	stack	inspection,	source	code	listing,	stepping,	stepping
over,	etc.	Most	of	these	commands	are	analogous	to	their	respective
gdb	command.

cy	break	breakpoints...

Break	 in	 a	 Python,	 Cython	 or	 C	 function.	 First	 it	 will	 look	 for	 a
Cython	 function	with	 that	 name,	 if	 cygdb	 doesn’t	 know	 about	 a
function	 (or	 method)	 with	 that	 name,	 it	 will	 set	 a	 (pending)	 C
breakpoint.	 The	 -p	 option	 can	 be	 used	 to	 specify	 a	 Python
breakpoint.

Breakpoints	can	be	set	for	either	the	function	or	method	name,	or
they	can	be	fully	“qualified”,	which	means	that	the	entire	“path”	to
a	function	is	given:

(gdb)	cy	break	cython_function_or_method

(gdb)	cy	break	packagename.cython_module.cython_function

(gdb)	cy	break	packagename.cython_module.ClassName.cython_method

(gdb)	cy	break	c_function

You	can	also	break	on	Cython	line	numbers:

(gdb)	cy	break	:14

(gdb)	cy	break	cython_module:14

(gdb)	cy	break	packagename.cython_module:14

Python	breakpoints	 currently	 support	 names	of	 the	module	 (not
the	entire	package	path)	and	the	function	or	method:

(gdb)	cy	break	-p	python_module.python_function_or_method

(gdb)	cy	break	-p	python_function_or_method

Note: 	Python	breakpoints	only	work	in	Python	builds	where	the
Python	frame	information	can	be	read	from	the	debugger.	To
ensure	this,	use	a	Python	debug	build	or	a	non-stripped	build
compiled	with	debug	support.

cy	step

Step	 through	Python,	Cython	or	C	code.	Python,	Cython	and	C
functions	 called	 directly	 from	 Cython	 code	 are	 considered
relevant	and	will	be	stepped	into.

cy	next

Step	over	Python,	Cython	or	C	code.

cy	run

Run	 the	 program.	 The	 default	 interpreter	 is	 the	 interpreter	 that
was	used	to	build	your	extensions	with,	or	the	interpreter	cygdb	is
run	with	 in	case	the	“don’t	 import	debug	information”	option	was
in	 effect.	 The	 interpreter	 can	 be	 overridden	 using	 gdb’s	 file
command.

cy	cont

Continue	the	program.

cy	up

cy	down

Go	 up	 and	 down	 the	 stack	 to	 what	 is	 considered	 a	 relevant
frame.

cy	finish

Execute	until	an	upward	relevant	frame	is	met	or	something	halts
execution.

cy	bt

cy	backtrace

Print	a	traceback	of	all	frames	considered	relevant.	The	-a	option
makes	it	print	the	full	traceback	(all	C	frames).

cy	select

Select	a	stack	 frame	by	number	as	 listed	by	 cy	backtrace.	This
command	is	 introduced	because	cy	backtrace	prints	a	reversed
stack	trace,	so	frame	numbers	differ	from	gdb’s	bt.

cy	print	varname

Print	a	 local	or	global	Cython,	Python	or	C	variable	 (depending
on	the	context).	Variables	may	also	be	dereferenced:

(gdb)	cy	print	x

x	=	1

(gdb)	cy	print	*x

*x	=	(PyObject)	{

				_ob_next	=	0x93efd8,

				_ob_prev	=	0x93ef88,

				ob_refcnt	=	65,

				ob_type	=	0x83a3e0

}

cy	set	cython_variable	=	value

Set	a	Cython	variable	on	the	Cython	stack	to	value.

cy	list

List	the	source	code	surrounding	the	current	line.

cy	locals

cy	globals

Print	all	the	local	and	global	variables	and	their	values.

cy	import	FILE...

Import	 debug	 information	 from	 files	 given	 as	 arguments.	 The
easiest	 way	 to	 import	 debug	 information	 is	 to	 use	 the	 cygdb
command	line	tool.

cy	exec	code

Execute	code	in	the	current	Python	or	Cython	frame.	This	works
like	Python’s	interactive	interpreter.

For	Python	frames	it	uses	the	globals	and	locals	from	the	Python
frame,	 for	Cython	frames	 it	uses	the	dict	of	globals	used	on	the
Cython	 module	 and	 a	 new	 dict	 filled	 with	 the	 local	 Cython
variables.

Note: 	cy	exec	modifies	state	and	executes	code	in	the	debuggee
and	is	therefore	potentially	dangerous.

Example:

(gdb)	cy	exec	x	+	1

2

(gdb)	cy	exec	import	sys;	print	sys.version_info

(2,	6,	5,	'final',	0)

(gdb)	cy	exec

>global	foo

>

>foo	=	'something'

>end

Convenience	functions
The	following	functions	are	gdb	functions,	which	means	they	can	be
used	in	a	gdb	expression.

cy_cname(varname)
Returns	 the	 C	 variable	 name	 of	 a	 Cython	 variable.	 For	 global
variables	this	may	not	be	actually	valid.

cy_cvalue(varname)
Returns	the	value	of	a	Cython	variable.

cy_eval(expression)
Evaluates	 Python	 code	 in	 the	 nearest	 Python	 or	 Cython	 frame
and	 returns	 the	 result	 of	 the	 expression	 as	 a	 gdb	 value.	 This
gives	a	new	reference	if	successful,	NULL	on	error.

cy_lineno()
Returns	the	current	line	number	in	the	selected	Cython	frame.

Example:

(gdb)	print	$cy_cname("x")

$1	=	"__pyx_v_x"

(gdb)	watch	$cy_cvalue("x")

Hardware	watchpoint	13:	$cy_cvalue("x")

(gdb)	cy	set	my_cython_variable	=	$cy_eval("{'spam':	'ham'}")

(gdb)	print	$cy_lineno()

$2	=	12

Configuring	the	Debugger
A	few	aspects	of	the	debugger	are	configurable	with	gdb	parameters.
For	instance,	colors	can	be	disabled,	the	terminal	background	color
and	breakpoint	autocompletion	can	be	configured.

cy_complete_unqualified

Tells	 the	 Cython	 debugger	 whether	 cy	 break	 should	 also
complete	plain	 function	names,	 i.e.	not	prefixed	by	 their	module
name.	 E.g.	 if	 you	 have	 a	 function	 named	 spam,	 in	module	 M,	 it
tells	whether	to	only	complete	M.spam	or	also	just	spam.

The	default	is	true.

cy_colorize_code

Tells	 the	debugger	whether	 to	colorize	source	code.	The	default
is	true.

cy_terminal_background_color

Tells	 the	 debugger	 about	 the	 terminal	 background	 color,	 which
affects	source	code	coloring.	The	default	 is	“dark”,	another	valid
option	is	“light”.

This	is	how	these	parameters	can	be	used:

(gdb)	set	cy_complete_unqualified	off

(gdb)	set	cy_terminal_background_color	light

(gdb)	show	cy_colorize_code

nextprevious	|Cython	0.19.1	documentation	»	Users	Guide	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

nextprevious	|Cython	0.19.1	documentation	»	Reference	Guide	»

Compilation
Cython	code,	unlike	Python,	must	be	compiled.	This	happens	in	two
stages:

A	.pyx	file	is	compiles	by	Cython	to	a	.c	file.
The	 .c	 file	 is	compiled	by	a	C	compiler	 to	a	 .so	 file	 (or	a
.pyd	file	on	Windows)

The	 following	 sub-sections	 describe	 several	 ways	 to	 build	 your
extension	 modules,	 and	 how	 to	 pass	 directives	 to	 the	 Cython
compiler.

Compiling	from	the	command	line
Run	the	Cython	compiler	command	with	your	options	and	list	of	.pyx
files	to	generate.	For	example:

$	cython	-a	yourmod.pyx

This	 creates	 a	 yourmod.c	 file,	 and	 the	 -a	 switch	 produces	 a
generated	html	file.	Pass	the	-h	flag	for	a	complete	list	of	supported
flags.

Compiling	 your	 .c	 files	 will	 vary	 depending	 on	 your	 operating
system.	Python	documentation	for	writing	extension	modules	should
have	some	details	 for	your	system.	Here	we	give	an	example	on	a
Linux	system:

$	gcc	-shared	-pthread	-fPIC	-fwrapv	-O2	-Wall	-fno-strict-aliasing

						-I/usr/include/python2.5	-o	yourmod.so	yourmod.c

[gcc	will	need	to	have	paths	to	your	included	header	files	and	paths
to	libraries	you	need	to	link	with]

A	 yourmod.so	 file	 is	 now	 in	 the	 same	 directory	 and	 your	 module,
yourmod,	is	available	for	you	to	import	as	you	normally	would.

Compiling	with	distutils
First,	make	sure	that	distutils	package	is	installed	in	your	system.
It	 normally	 comes	 as	 part	 of	 the	 standard	 library.	 The	 following
assumes	a	Cython	file	to	be	compiled	called	hello.pyx.	Now,	create	a
setup.py	script:

from	distutils.core	import	setup

from	Cython.Build	import	cythonize

setup(

				name	=	"My	hello	app",

				ext_modules	=	cythonize('hello.pyx'),	#	accepts	a	glob	pattern

)

Run	 the	 command	 python	 setup.py	 build_ext	 --inplace	 in	 your
system’s	 command	 shell	 and	 you	 are	 done.	 Import	 your	 new
extension	module	into	your	python	shell	or	script	as	normal.

The	 cythonize	command	also	allows	 for	multi-threaded	compilation
and	 dependency	 resolution.	 Recompilation	 will	 be	 skipped	 if	 the
target	file	is	up	to	date	with	its	main	source	file	and	dependencies.

Compiling	with	pyximport
For	 generating	Cython	 code	 right	 in	 your	 pure	 python	module	 just
type:

>>>	import	pyximport;	pyximport.install()

>>>	import	helloworld

Hello	World

This	 allows	 you	 to	 automatically	 run	 Cython	 on	 every	 .pyx	 that
Python	 is	 trying	 to	 import.	 You	 should	 use	 this	 for	 simple	 Cython
builds	only	where	no	extra	C	libraries	and	no	special	building	setup
is	needed.

In	the	case	that	Cython	fails	to	compile	a	Python	module,	pyximport
will	fall	back	to	loading	the	source	modules	instead.

It	 is	 also	 possible	 to	 compile	 new	 .py	 modules	 that	 are	 being
imported	(including	the	standard	library	and	installed	packages).	For
using	this	feature,	just	tell	that	to	pyximport:

>>>	pyximport.install(pyimport	=	True)

Compiling	with	cython.inline
One	 can	 also	 compile	 Cython	 in	 a	 fashion	 similar	 to	 SciPy’s
weave.inline.	For	example:

>>>	import	cython

>>>	def	f(a):

...					ret	=	cython.inline("return	a+b",	b=3)

...

Unbound	 variables	 are	 automatically	 pulled	 from	 the	 surrounding
local	and	global	scopes,	and	the	result	of	the	compilation	is	cached
for	efficient	re-use.

Compiling	with	Sage
The	 Sage	 notebook	 allows	 transparently	 editing	 and	 compiling
Cython	 code	 simply	 by	 typing	 %cython	 at	 the	 top	 of	 a	 cell	 and
evaluate	 it.	 Variables	 and	 functions	 defined	 in	 a	 Cython	 cell	 are
imported	 into	 the	 running	 session.	 Please	 check	 Sage
documentation	for	details.

You	can	tailor	the	behavior	of	the	Cython	compiler	by	specifying	the
directives	below.

http://www.sagemath.org/doc/

Compiler	directives
Compiler	 directives	 are	 instructions	 which	 affect	 the	 behavior	 of
Cython	code.	Here	is	the	list	of	currently	supported	directives:

boundscheck	(True	/	False)
If	set	to	False,	Cython	is	free	to	assume	that	indexing	operations
([]-operator)	 in	 the	 code	 will	 not	 cause	 any	 IndexErrors	 to	 be
raised.	Lists,	tuples,	and	strings	are	affected	only	if	the	index	can
be	 determined	 to	 be	 non-negative	 (or	 if	 wraparound	 is	 False).
Conditions	 which	 would	 normally	 trigger	 an	 IndexError	 may
instead	cause	segfaults	or	data	corruption	 if	 this	 is	set	 to	False.
Default	is	True.

wraparound	(True	/	False)
In	Python	arrays	can	be	indexed	relative	to	the	end.	For	example
A[-1]	indexes	the	last	value	of	a	list.	In	C	negative	indexing	is	not
supported.	 If	 set	 to	 False,	 Cython	 will	 neither	 check	 for	 nor
correctly	 handle	 negative	 indices,	 possibly	 causing	 segfaults	 or
data	corruption.	Default	is	True.

nonecheck	(True	/	False)
If	 set	 to	 False,	 Cython	 is	 free	 to	 assume	 that	 native	 field
accesses	 on	 variables	 typed	 as	 an	 extension	 type,	 or	 buffer
accesses	on	a	buffer	variable,	never	occurs	when	the	variable	is
set	 to	 None.	 Otherwise	 a	 check	 is	 inserted	 and	 the	 appropriate
exception	 is	 raised.	 This	 is	 off	 by	 default	 for	 performance
reasons.	Default	is	False.

overflowcheck	(True	/	False)
If	 set	 to	 True,	 raise	 errors	 on	 overflowing	 C	 integer	 arithmetic
operations.	 Incurs	a	modest	 runtime	penalty,	 but	 is	much	 faster
than	using	Python	ints.	Default	is	False.

overflowcheck.fold	(True	/	False)

If	set	 to	True,	and	overflowcheck	 is	True,	check	the	overflow	bit
for	 nested,	 side-effect-free	 arithmetic	 expressions	 once	 rather
than	at	every	step.	Depending	on	the	compiler,	architecture,	and
optimization	settings,	this	may	help	or	hurt	performance.	A	simple
suite	 of	 benchmarks	 can	 be	 found	 in	 Demos/overflow_perf.pyx.
Default	is	True.

embedsignature	(True	/	False)
If	 set	 to	 True,	 Cython	 will	 embed	 a	 textual	 copy	 of	 the	 call
signature	 in	 the	 docstring	 of	 all	 Python	 visible	 functions	 and
classes.	 Tools	 like	 IPython	 and	 epydoc	 can	 thus	 display	 the
signature,	which	cannot	otherwise	be	retrieved	after	compilation.
Default	is	False.

cdivision	(True	/	False)
If	 set	 to	 False,	 Cython	 will	 adjust	 the	 remainder	 and	 quotient
operators	 C	 types	 to	 match	 those	 of	 Python	 ints	 (which	 differ
when	 the	 operands	 have	 opposite	 signs)	 and	 raise	 a
ZeroDivisionError	when	the	right	operand	is	0.	This	has	up	to	a
35%	speed	penalty.	If	set	to	True,	no	checks	are	performed.	See
CEP	516.	Default	is	False.

cdivision_warnings	(True	/	False)
If	 set	 to	 True,	 Cython	 will	 emit	 a	 runtime	 warning	 whenever
division	 is	 performed	 with	 negative	 operands.	 See	 CEP	 516.
Default	is	False.

always_allow_keywords	(True	/	False)
Avoid	 the	 METH_NOARGS	 and	 METH_O	 when	 constructing
functions/methods	 which	 take	 zero	 or	 one	 arguments.	 Has	 no
effect	 on	 special	 methods	 and	 functions	 with	 more	 than	 one
argument.	The	METH_NOARGS	and	METH_O	signatures	provide	faster
calling	conventions	but	disallow	the	use	of	keywords.

profile	(True	/	False)
Add	hooks	for	Python	profilers	into	the	compiled	C	code.	Default
is	False.

http://wiki.cython.org/enhancements/division
http://wiki.cython.org/enhancements/division

linetrace	(True	/	False)
Add	 line	 tracing	 hooks	 for	 Python	 profilers	 into	 the	 compiled	C
code.	This	also	enables	profiling.	Default	 is	False.	Note	 that	 the
generated	module	 will	 not	 actually	 use	 line	 tracing,	 unless	 you
additionally	pass	the	C	macro	definition	CYTHON_TRACE=1	to	the	C
compiler	(e.g.	using	the	distutils	option	define_macros).

Note	 that	 this	 feature	 is	 currently	 EXPERIMENTAL.	 It	 will	 slow
down	your	code,	may	not	work	at	all	for	what	you	want	to	do	with
it,	and	may	even	crash	arbitrarily.

infer_types	(True	/	False)
Infer	 types	 of	 untyped	 variables	 in	 function	 bodies.	 Default	 is
None,	 indicating	 that	 on	 safe	 (semantically-unchanging)
inferences	are	allowed.

language_level	(2/3)
Globally	 set	 the	 Python	 language	 level	 to	 be	 used	 for	 module
compilation.	 Default	 is	 compatibility	 with	 Python	 2.	 To	 enable
Python	 3	 source	 code	 semantics,	 set	 this	 to	 3	 at	 the	 start	 of	 a
module	 or	 pass	 the	 “-3”	 command	 line	 option	 to	 the	 compiler.
Note	 that	cimported	and	 included	source	 files	 inherit	 this	setting
from	 the	module	being	 compiled,	 unless	 they	explicitly	 set	 their
own	language	level.

c_string_type	(bytes	/	str	/	unicode)
Globally	 set	 the	 type	 of	 an	 implicit	 coercion	 from	 char*	 or
std::string.

c_string_encoding	(ascii,	default,	utf-8,	etc.)
Globally	set	the	encoding	to	use	when	implicitly	coercing	char*	or
std:string	to	a	unicode	object.	Coercion	from	a	unicode	object	to
C	 type	 is	 only	 allowed	when	 set	 to	 ascii	 or	 default,	 the	 latter
being	utf-8	in	Python	3	and	nearly-always	ascii	in	Python	2.

type_version_tag	(True	/	False)
Enables	 the	 attribute	 cache	 for	 extension	 types	 in	 CPython	 by

setting	 the	 type	 flag	 Py_TPFLAGS_HAVE_VERSION_TAG.	 Default	 is
True,	meaning	that	the	cache	is	enabled	for	Cython	implemented
types.	To	disable	it	explicitly	in	the	rare	cases	where	a	type	needs
to	 juggle	 with	 its	 tp_dict	 internally	 without	 paying	 attention	 to
cache	consistency,	this	option	can	be	set	to	False.

How	to	set	directives

Globally

One	can	set	compiler	directives	 through	a	special	header	comment
at	the	top	of	the	file,	like	this:

#!python

#cython:	boundscheck=False

The	 comment	must	 appear	 before	 any	 code	 (but	 can	 appear	 after
other	comments	or	whitespace).

One	can	also	pass	a	directive	on	the	command	line	by	using	the	-X
switch:

$	cython	-X	boundscheck=True	...

Directives	passed	on	the	command	line	will	override	directives	set	in
header	comments.

Locally

For	 local	 blocks,	 you	 need	 to	 cimport	 the	 special	 builtin	 cython
module:

#!python

cimport	cython

Then	 you	 can	 use	 the	 directives	 either	 as	 decorators	 or	 in	 a	 with
statement,	like	this:

#!python

@cython.boundscheck(False)	#	turn	off	boundscheck	for	this	function

def	f():

				...

				with	cython.boundscheck(True):	#	turn	it	temporarily	on	again	for	this	block

								...

Warning: 	These	two	methods	of	setting	directives	are	not
affected	by	overriding	the	directive	on	the	command-line	using	the
-X	option.

nextprevious	|Cython	0.19.1	documentation	»	Reference	Guide	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

nextprevious	|Cython	0.19.1	documentation	»	Reference	Guide	»

Language	Basics

Cython	File	Types
There	are	three	file	types	in	Cython:

Implementation	files	carry	a	.pyx	suffix
Definition	files	carry	a	.pxd	suffix
Include	files	which	carry	a	.pxi	suffix

Implementation	File

What	can	it	contain?

Basically	anything	Cythonic,	but	see	below.

What	can’t	it	contain?

There	are	some	restrictions	when	it	comes	to	extension	types,
if	 the	extension	 type	 is	already	defined	else	where...	more	on
this	later

Definition	File

What	can	it	contain?

Any	kind	of	C	type	declaration.
extern	C	function	or	variable	declarations.
Declarations	for	module	implementations.
The	definition	parts	of	extension	types.
All	declarations	of	functions,	etc.,	for	an	external	library

What	can’t	it	contain?

Any	non-extern	C	variable	declaration.

Implementations	of	C	or	Python	functions.
Python	class	definitions
Python	executable	statements.
Any	declaration	that	 is	defined	as	public	 to	make	 it	accessible
to	other	Cython	modules.

This	is	not	necessary,	as	it	is	automatic.
a	public	declaration	is	only	needed	to	make	it	accessible	to
external	C	code.

What	else?

cimport

Use	 the	 cimport	 statement,	 as	 you	 would	 Python’s	 import
statement,	 to	 access	 these	 files	 from	 other	 definition	 or
implementation	files.
cimport	does	not	need	to	be	called	in	.pyx	 file	 for	 for	 .pxd	 file
that	 has	 the	 same	 name,	 as	 they	 are	 already	 in	 the	 same
namespace.
For	cimport	 to	 find	 the	stated	definition	 file,	 the	path	 to	 the	 file
must	 be	 appended	 to	 the	 -I	 option	 of	 the	 Cython	 compile
command.

compilation	order

When	a	.pyx	file	is	to	be	compiled,	Cython	first	checks	to	see	if
a	corresponding	.pxd	file	exits	and	processes	it	first.

Include	File

What	can	it	contain?

Any	 Cythonic	 code	 really,	 because	 the	 entire	 file	 is	 textually

embedded	at	the	location	you	prescribe.

How	do	I	use	it?

Include	 the	 .pxi	 file	 with	 an	 include	 statement	 like:	 include
"spamstuff.pxi

The	include	statement	can	appear	anywhere	in	your	Cython	file
and	at	any	indentation	level
The	 code	 in	 the	 .pxi	 file	 needs	 to	 be	 rooted	 at	 the	 “zero”
indentation	level.
The	included	code	can	itself	contain	other	include	statements.

Declaring	Data	Types
As	a	dynamic	language,	Python	encourages	a	programming	style	of
considering	 classes	 and	 objects	 in	 terms	 of	 their	 methods	 and
attributes,	more	than	where	they	fit	into	the	class	hierarchy.

This	can	make	Python	a	very	relaxed	and	comfortable	language	for
rapid	development,	but	with	a	price	-	the	‘red	tape’	of	managing	data
types	 is	 dumped	 onto	 the	 interpreter.	 At	 run	 time,	 the	 interpreter
does	 a	 lot	 of	 work	 searching	 namespaces,	 fetching	 attributes	 and
parsing	argument	and	keyword	tuples.	This	run-time	‘late	binding’	is
a	 major	 cause	 of	 Python’s	 relative	 slowness	 compared	 to	 ‘early
binding’	languages	such	as	C++.

However	 with	 Cython	 it	 is	 possible	 to	 gain	 significant	 speed-ups
through	the	use	of	‘early	binding’	programming	techniques.

Note: 	Typing	is	not	a	necessity

Providing	static	typing	to	parameters	and	variables	is	convenience
to	 speed	up	 your	 code,	 but	 it	 is	 not	 a	 necessity.	Optimize	where
and	when	needed.

The	cdef	Statement

The	cdef	statement	is	used	to	make	C	level	declarations	for:

Variables:

cdef	int	i,	j,	k

cdef	float	f,	g[42],	*h

Structs:

cdef	struct	Grail:

				int	age

				float	volume

Unions:

cdef	union	Food:

				char	*spam

				float	*eggs

Enums:

cdef	enum	CheeseType:

				cheddar,	edam,

				camembert

cdef	enum	CheeseState:

				hard	=	1

				soft	=	2

				runny	=	3

Functions:

cdef	int	eggs(unsigned	long	l,	float	f):

				...

Extension	Types:
	

cdef	class	Spam:

				...

Note: 	Constants

Constants	can	be	defined	by	using	an	anonymous	enum:

cdef	enum:

				tons_of_spam	=	3

Grouping	cdef	Declarations

A	series	of	declarations	can	grouped	into	a	cdef	block:

cdef:

				struct	Spam:

								int	tons

				int	i

				float	f

				Spam	*p

				void	f(Spam	*s):

				print	s.tons,	"Tons	of	spam"

Note: 	ctypedef	statement

The	ctypedef	statement	is	provided	for	naming	types:

ctypedef	unsigned	long	ULong

ctypedef	int	*IntPtr

Parameters

Both	 C	 and	 Python	 function	 types	 can	 be	 declared	 to	 have
parameters	C	data	types.

Use	normal	C	declaration	syntax:

def	spam(int	i,	char	*s):

				...

				cdef	int	eggs(unsigned	long	l,	float	f):

								...

As	 these	 parameters	 are	 passed	 into	 a	 Python	 declared
function,	 they	are	magically	converted	 to	 the	specified	C	 type
value.

This	holds	true	for	only	numeric	and	string	types

If	 no	 type	 is	 specified	 for	 a	 parameter	 or	 a	 return	 value,	 it	 is
assumed	to	be	a	Python	object

The	following	takes	two	Python	objects	as	parameters	and
returns	a	Python	object:

cdef	spamobjs(x,	y):

				...

Note: 	–

This	is	different	then	C	language	behavior,	where	it	is	an
int	by	default.

Python	 object	 types	 have	 reference	 counting	 performed
according	to	the	standard	Python	C-API	rules:

Borrowed	references	are	taken	as	parameters
New	references	are	returned

Todo: 	link	or	label	here	the	one	ref	count	caveat	for	NumPy.

The	name	object	can	be	used	to	explicitly	declare	something	as
a	Python	Object.

For	 sake	 of	 code	 clarity,	 it	 recommended	 to	 always	 use
object	explicitly	in	your	code.

This	 is	 also	 useful	 for	 cases	 where	 the	 name	 being
declared	would	otherwise	be	taken	for	a	type:

cdef	foo(object	int):

				...

As	a	return	type:

cdef	object	foo(object	int):

				...

Todo: 	Do	a	see	also	here	..??

Optional	Arguments

Are	supported	for	cdef	and	cpdef	functions
There	 differences	 though	whether	 you	 declare	 them	 in	 a	 .pyx
file	or	a	.pxd	file

When	 in	 a	 .pyx	 file,	 the	 signature	 is	 the	 same	 as	 it	 is	 in
Python	itself:

cdef	class	A:

				cdef	foo(self):

								print	"A"

cdef	class	B(A)

				cdef	foo(self,	x=None)

								print	"B",	x

cdef	class	C(B):

				cpdef	foo(self,	x=True,	int	k=3)

								print	"C",	x,	k

When	 in	 a	 .pxd	 file,	 the	 signature	 is	 different	 like	 this
example:	cdef	foo(x=*):

cdef	class	A:

				cdef	foo(self)

cdef	class	B(A)

				cdef	foo(self,	x=*)

cdef	class	C(B):

				cpdef	foo(self,	x=*,	int	k=*)

The	 number	 of	 arguments	 may	 increase	 when
subclassing,	but	 the	arg	 types	and	order	must	be	 the
same.

There	may	 be	 a	 slight	 performance	 penalty	when	 the	 optional
arg	is	overridden	with	one	that	does	not	have	default	values.

Keyword-only	Arguments

As	 in	 Python	 3,	 def	 functions	 can	 have	 keyword-only
argurments	 listed	 after	 a	 "*"	 parameter	 and	 before	 a	 "**"
parameter	if	any:

def	f(a,	b,	*args,	c,	d	=	42,	e,	**kwds):

				...

Shown	above,	the	c,	d	and	e	arguments	can	not	be	passed
as	 positional	 arguments	 and	must	 be	 passed	 as	 keyword
arguments.
Furthermore,	 c	 and	 e	 are	 required	 keyword	 arguments
since	they	do	not	have	a	default	value.

If	the	parameter	name	after	the	"*"	 is	omitted,	the	function	will
not	accept	any	extra	positional	arguments:

def	g(a,	b,	*,	c,	d):

				...

Shown	 above,	 the	 signature	 takes	 exactly	 two	 positional
parameters	and	has	two	required	keyword	parameters

Automatic	Type	Conversion

For	basic	numeric	and	string	 types,	 in	most	situations,	when	a
Python	object	is	used	in	the	context	of	a	C	value	and	vice	versa.

The	 following	 table	 summarizes	 the	 conversion	 possibilities,
assuming	sizeof(int)	==	sizeof(long):

C	types From	Python
types

To	Python
types

[unsigned]	char
int,	long int[unsigned]	short

int,	long
unsigned	int

int,	long longunsigned	long
[unsigned]	long	long
float,	double,	long
double int,	long,	float float

char	* str/bytes str/bytes	[1]
struct 	 dict

Note: 	Python	String	in	a	C	Context

A	Python	string,	passed	to	C	context	expecting	a	char*,	is	only
valid	as	long	as	the	Python	string	exists.
A	 reference	 to	 the	Python	string	must	 be	 kept	 around	 for	 as
long	as	the	C	string	is	needed.
If	this	can’t	be	guaranteed,	then	make	a	copy	of	the	C	string.
Cython	may	produce	an	error	message:	Obtaining	char*	from
a	 temporary	 Python	 value	 and	 will	 not	 resume	 compiling	 in
situations	like	this:

cdef	char	*s

s	=	pystring1	+	pystring2

The	reason	is	that	concatenating	to	strings	in	Python	produces
a	temporary	variable.

The	 variable	 is	 decrefed,	 and	 the	 Python	 string
deallocated	as	soon	as	the	statement	has	finished,
Therefore	the	lvalue	``s``	is	left	dangling.

The	solution	 is	 to	assign	 the	 result	of	 the	concatenation	 to	a

Python	variable,	and	then	obtain	the	char*	from	that:

cdef	char	*s

p	=	pystring1	+	pystring2

s	=	p

Note: 	It	is	up	to	you	to	be	aware	of	this,	and	not	to	depend
on	Cython’s	error	message,	as	it	is	not	guaranteed	to	be
generated	for	every	situation.

Type	Casting

The	syntax	used	in	type	casting	are	"<"	and	">"

Note: 	The	syntax	is	different	from	C	convention

cdef	char	*p,	float	*q

p	=	<char*>q

If	one	of	the	types	is	a	python	object	for	<type>x,	Cython	will	try
and	do	a	coercion.

Note: 	Cython	will	not	stop	a	casting	where	there	is	no
conversion,	but	it	will	emit	a	warning.

If	the	address	is	what	is	wanted,	cast	to	a	void*	first.

Type	Checking

A	 cast	 like	 <MyExtensionType>x	 will	 cast	 x	 to	 type
MyExtensionType	without	type	checking	at	all.
To	 have	 a	 cast	 type	 checked,	 use	 the	 syntax	 like:
<MyExtensionType?>x.

In	 this	 case,	 Cython	 will	 throw	 an	 error	 if	 "x"	 is	 not	 a
(subclass)	of	MyExtensionType

Automatic	 type	 checking	 for	 extension	 types	 can	 be	 obtained
whenever	isinstance()	is	used	as	the	second	parameter

Python	Objects

Statements	and	Expressions
For	 the	 most	 part,	 control	 structures	 and	 expressions	 follow
Python	syntax.
When	 applied	 to	 Python	 objects,	 the	 semantics	 are	 the	 same
unless	otherwise	noted.
Most	 Python	 operators	 can	 be	 applied	 to	 C	 values	 with	 the
obvious	semantics.
An	 expression	 with	 mixed	 Python	 and	 C	 values	 will	 have
conversions	performed	automatically.
Python	operations	are	automatically	checked	for	errors,	with	the
appropriate	action	taken.

Differences	Between	Cython	and	C

Most	notable	are	C	constructs	which	have	no	direct	equivalent
in	Python.

An	integer	literal	is	treated	as	a	C	constant

It	 will	 be	 truncated	 to	 whatever	 size	 your	 C	 compiler
thinks	appropriate.

Cast	to	a	Python	object	like	this:

<object>10000000000000000000

The	 "L",	 "LL"	 and	 the	 "U"	 suffixes	 have	 the	 same
meaning	as	in	C

There	is	no	->	operator	in	Cython..	instead	of	p->x,	use	p.x.
There	is	no	*	operator	in	Cython..	instead	of	*p,	use	p[0].
&	is	permissible	and	has	the	same	semantics	as	in	C.
NULL	is	the	null	C	pointer.

Do	NOT	use	0.
NULL	is	a	reserved	word	in	Cython

Syntax	for	Type	casts	are	<type>value.

Scope	Rules

All	determination	of	scoping	(local,	module,	built-in)	in	Cython	is
determined	statically.
As	 with	 Python,	 a	 variable	 assignment	 which	 is	 not	 declared
explicitly	is	implicitly	declared	to	be	a	Python	variable	residing	in
the	scope	where	it	was	assigned.

Note:

Module-level	scope	behaves	the	same	way	as	a	Python	local
scope	if	you	refer	to	the	variable	before	assigning	to	it.

Tricks,	like	the	following	will	NOT	work	in	Cython:

try:

				x	=	True

except	NameError:

				True	=	1

The	 above	 example	 will	 not	 work	 because	 True	 will
always	 be	 looked	 up	 in	 the	module-level	 scope.	 Do	 the
following	instead:

import	__builtin__

try:

				True	=	__builtin__.True

except	AttributeError:

				True	=	1

Built-in	Constants

Predefined	Python	built-in	constants:

None
True
False

Operator	Precedence

Cython	uses	Python	precedence	order,	not	C

For-loops

range()	is	C	optimized	when	the	index	value	has	been	declared
by	cdef:

cdef	i

for	i	in	range(n):

				...

Iteration	over	C	arrays	is	also	permitted,	e.g.:

cdef	double	x

cdef	double*	data

for	x	in	data[:10]:

				...

Iterating	 over	 many	 builtin	 types	 such	 as	 lists	 and	 tuples	 is
optimized.

There	is	also	a	more	C-style	for-from	syntax

The	target	expression	must	be	a	variable	name.

The	 name	 between	 the	 lower	 and	 upper	 bounds	must	 be
the	same	as	the	target	name.

for	i	from	0	<=	i	<	n:
...

Or	when	using	a	step	size:

for	i	from	0	<=	i	<	n	by	s:

				...

To	reverse	the	direction,	reverse	the	conditional	operation:

for	i	from	n	>	i	>=	0:

				...

The	break	and	continue	are	permissible.
Can	contain	an	else	clause.

Functions	and	Methods
There	are	three	types	of	function	declarations	in	Cython	as	the
sub-sections	show	below.
Only	“Python”	functions	can	be	called	outside	a	Cython	module
from	Python	interpreted	code.

Callable	from	Python

Are	declared	with	the	def	statement
Are	called	with	Python	objects
Return	Python	objects
See	Parameters	for	special	consideration

Callable	from	C

Are	declared	with	the	cdef	statement.
Are	called	with	either	Python	objects	or	C	values.
Can	return	either	Python	objects	or	C	values.

Callable	from	both	Python	and	C

Are	declared	with	the	cpdef	statement.
Can	 be	 called	 from	 anywhere,	 because	 it	 uses	 a	 little	 Cython
magic.
Uses	 the	 faster	 C	 calling	 conventions	when	 being	 called	 from
other	Cython	code.

Overriding

cpdef	functions	can	override	cdef	functions:

cdef	class	A:

				cdef	foo(self):

								print	"A"

cdef	class	B(A)

				cdef	foo(self,	x=None)

								print	"B",	x

cdef	class	C(B):

				cpdef	foo(self,	x=True,	int	k=3)

								print	"C",	x,	k

Function	Pointers

Functions	 declared	 in	 a	 struct	 are	 automatically	 converted	 to
function	pointers.
see	using	exceptions	with	function	pointers

Python	Built-ins

Cython	compiles	calls	to	most	built-in	functions	into	direct	calls	to	the
corresponding	Python/C	API	routines,	making	them	particularly	fast.

Only	direct	function	calls	using	these	names	are	optimised.	If	you	do
something	else	with	one	of	these	names	that	assumes	it’s	a	Python
object,	such	as	assign	it	to	a	Python	variable,	and	later	call	it,	the	call
will	be	made	as	a	Python	function	call.

Function	and	arguments Return
type

Python/C	API
Equivalent

abs(obj) object,
double,	...

PyNumber_Absolute,
fabs,	fabsf,	...

callable(obj) bint PyObject_Callable
delattr(obj,	name) None PyObject_DelAttr

exec(code,	[glob,	[loc]]) object

dir(obj) list PyObject_Dir
divmod(a,	b) tuple PyNumber_Divmod
getattr(obj,	name,	[default]) object PyObject_GetAttr

(Note	1)
hasattr(obj,	name) bint PyObject_HasAttr
hash(obj) int	/	long PyObject_Hash
intern(obj) object Py*_InternFromString
isinstance(obj,	type) bint PyObject_IsInstance
issubclass(obj,	type) bint PyObject_IsSubclass
iter(obj,	[sentinel]) object PyObject_GetIter
len(obj) Py_ssize_t PyObject_Length
pow(x,	y,	[z]) object PyNumber_Power
reload(obj) object PyImport_ReloadModule
repr(obj) object PyObject_Repr
setattr(obj,	name) void PyObject_SetAttr

Note	 1:	 Pyrex	 originally	 provided	 a	 function	 getattr3(obj,	 name,

default)()	corresponding	to	the	three-argument	form	of	the	Python
builtin	getattr().	Cython	still	supports	this	function,	but	the	usage	is
deprecated	 in	 favour	 of	 the	 normal	 builtin,	 which	 Cython	 can
optimise	in	both	forms.

http://docs.python.org/3.3/library/functions.html#getattr

Error	and	Exception	Handling
A	 plain	 cdef	 declared	 function,	 that	 does	 not	 return	 a	 Python
object...

Has	no	way	of	reporting	a	Python	exception	to	it’s	caller.
Will	 only	 print	 a	 warning	 message	 and	 the	 exception	 is
ignored.

In	order	to	propagate	exceptions	like	this	to	it’s	caller,	you	need
to	declare	an	exception	value	for	it.
There	 are	 three	 forms	 of	 declaring	 an	 exception	 for	 a	 C
compiled	program.

First:

cdef	int	spam()	except	-1:

				...

In	the	example	above,	if	an	error	occurs	inside	spam,	it
will	immediately	return	with	the	value	of	-1,	causing	an
exception	to	be	propagated	to	it’s	caller.
Functions	 declared	 with	 an	 exception	 value,	 should
explicitly	prevent	a	return	of	that	value.

Second:

cdef	int	spam()	except?	-1:

				...

Used	when	a	-1	may	possibly	be	returned	and	is	not	to
be	considered	an	error.
The	 "?"	 tells	Cython	 that	 -1	only	 indicates	a	possible
error.

Now,	each	time	-1	is	returned,	Cython	generates	a	call
to	PyErr_Occurred	to	verify	it	is	an	actual	error.

Third:

cdef	int	spam()	except	*

A	 call	 to	 PyErr_Occurred	 happens	 every	 time	 the
function	gets	called.

Note: 	Returning	void

A	need	to	propagate	errors	when	returning	void	must
use	this	version.

Exception	 values	 can	 only	 be	 declared	 for	 functions	 returning
an..

integer
enum
float
pointer	type
Must	be	a	constant	expression

Note:

Note: 	Function	pointers

Require	 the	same	exception	value	specification	as	 it’s	user
has	declared.
Use	 cases	 here	 are	 when	 used	 as	 parameters	 and	 when
assigned	to	a	variable:

int	(*grail)(int,	char	*)	except	-1

Note: 	Python	Objects

Declared	exception	values	are	not	need.
Remember	 that	 Cython	 assumes	 that	 a	 function	 function
without	a	declared	return	value,	returns	a	Python	object.
Exceptions	 on	 such	 functions	 are	 implicitly	 propagated	 by
returning	NULL

Note: 	C++

For	exceptions	from	C++	compiled	programs,	see	Wrapping
C++	Classes

Checking	return	values	for	non-Cython	functions..

Do	not	try	to	raise	exceptions	by	returning	the	specified	value..
Example:

cdef	extern	FILE	*fopen(char	*filename,	char	*mode)	except	NULL

The	except	clause	does	not	work	that	way.
It’s	 only	 purpose	 is	 to	 propagate	 Python	 exceptions	 that
have	already	been	raised	by	either...

A	Cython	function
A	C	function	that	calls	Python/C	API	routines.

To	propagate	an	exception	for	these	circumstances	you	need	to
raise	it	yourself:

cdef	FILE	*p

p	=	fopen("spam.txt",	"r")

if	p	==	NULL:

				raise	SpamError("Couldn't	open	the	spam	file")

Conditional	Compilation
The	 expressions	 in	 the	 following	 sub-sections	 must	 be	 valid
compile-time	expressions.
They	can	evaluate	to	any	Python	value.
The	truth	of	the	result	is	determined	in	the	usual	Python	way.

Compile-Time	Definitions

Defined	using	the	DEF	statement:

DEF	FavouriteFood	=	"spam"

DEF	ArraySize	=	42

DEF	OtherArraySize	=	2	*	ArraySize	+	17

The	 right	 hand	 side	 must	 be	 a	 valid	 compile-time	 expression
made	up	of	either:

Literal	values
Names	defined	by	other	DEF	statements

They	 can	 be	 combined	 using	 any	 of	 the	 Python	 expression
syntax
Cython	provides	the	following	predefined	names

Corresponding	to	the	values	returned	by	os.uname()

UNAME_SYSNAME
UNAME_NODENAME
UNAME_RELEASE
UNAME_VERSION
UNAME_MACHINE

A	name	defined	by	 DEF	can	appear	anywhere	an	 identifier	can

appear.
Cython	 replaces	 the	 name	 with	 the	 literal	 value	 before
compilation.

The	compile-time	expression,	in	this	case,	must	evaluate	to
a	Python	value	of	int,	long,	float,	or	str:

cdef	int	a1[ArraySize]

cdef	int	a2[OtherArraySize]

print	"I	like",	FavouriteFood

Conditional	Statements

Similar	semantics	of	the	C	pre-processor
The	following	statements	can	be	used	to	conditionally	include	or
exclude	sections	of	code	to	compile.

IF

ELIF

ELSE

IF	UNAME_SYSNAME	==	"Windows":

				include	"icky_definitions.pxi"

ELIF	UNAME_SYSNAME	==	"Darwin":

				include	"nice_definitions.pxi"

ELIF	UNAME_SYSNAME	==	"Linux":

				include	"penguin_definitions.pxi"

ELSE:

				include	"other_definitions.pxi"

ELIF	and	ELSE	are	optional.
IF	can	appear	anywhere	that	a	normal	statement	or	declaration
can	appear
It	can	contain	any	statements	or	declarations	that	would	be	valid
in	that	context.

This	includes	other	IF	and	DEF	statements

[1] The	conversion	is	to/from	str	for	Python	2.x,	and	bytes	for
Python	3.x.

nextprevious	|Cython	0.19.1	documentation	»	Reference	Guide	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

nextprevious	|Cython	0.19.1	documentation	»	Reference	Guide	»

Extension	Types
Normal	 Python	 as	 well	 as	 extension	 type	 classes	 can	 be
defined.
Extension	types:

Are	considered	by	Python	as	“built-in”	types.
Can	 be	 used	 to	 wrap	 arbitrary	 C-data	 structures,	 and
provide	a	Python-like	interface	to	them	from	Python.
Attributes	 and	 methods	 can	 be	 called	 from	 Python	 or
Cython	code
Are	defined	by	the	cdef	class	statement.

cdef	class	Shrubbery:

				cdef	int	width,	height

				def	__init__(self,	w,	h):

								self.width	=	w

								self.height	=	h

				def	describe(self):

								print	"This	shrubbery	is",	self.width,	\

												"by",	self.height,	"cubits."

Attributes
Are	stored	directly	in	the	object’s	C	struct.
Are	fixed	at	compile	time.

You	can’t	add	attributes	to	an	extension	type	instance	at	run
time	like	in	normal	Python.
You	 can	 sub-class	 the	 extenstion	 type	 in	 Python	 to	 add
attributes	at	run-time.

There	are	two	ways	to	access	extension	type	attributes:

By	Python	look-up.

Python	code’s	only	method	of	access.

By	direct	access	to	the	C	struct	from	Cython	code.

Cython	code	can	use	either	method	of	access,	though.

By	default,	extension	type	attributes	are:

Only	accessible	by	direct	access.
Not	accessible	from	Python	code.

To	make	attributes	accessible	to	Python,	they	must	be	declared
public	or	readonly:

cdef	class	Shrubbery:

				cdef	public	int	width,	height

				cdef	readonly	float	depth

The	 width	and	 height	attributes	are	 readable	and	writable
from	Python	code.
The	depth	attribute	is	readable	but	not	writable.

Note:

Note: 	You	can	only	expose	simple	C	types,	such	as	ints,	floats,
and	strings,	for	Python	access.	You	can	also	expose	Python-
valued	attributes.

Note: 	The	public	and	readonly	options	apply	only	to	Python
access,	not	direct	access.	All	the	attributes	of	an	extension	type
are	always	readable	and	writable	by	C-level	access.

Methods
self	is	used	in	extension	type	methods	just	like	it	normally	is	in
Python.
See	Functions	and	Methods;	all	of	which	applies	here.

Properties
Cython	provides	a	special	syntax:

cdef	class	Spam:

				property	cheese:

								"A	doc	string	can	go	here."

								def	__get__(self):

												#	This	is	called	when	the	property	is	read.

												...

								def	__set__(self,	value):

												#	This	is	called	when	the	property	is	written.

												...

								def	__del__(self):

												#	This	is	called	when	the	property	is	deleted.

The	 __get__(),	 __set__(),	 and	 __del__()	 methods	 are	 all
optional.

If	 they	 are	 ommitted,	 An	 exception	 is	 raised	 when	 an
access	attempt	is	made.

Below,	is	a	full	example	that	defines	a	property	which	can..

Add	to	a	list	each	time	it	is	written	to	("__set__").
Return	the	list	when	it	is	read	("__get__").
Empty	the	list	when	it	is	deleted	("__del__").

#	cheesy.pyx

cdef	class	CheeseShop:

				cdef	object	cheeses

				def	__cinit__(self):

								self.cheeses	=	[]

				property	cheese:

								def	__get__(self):

												return	"We	don't	have:	%s"	%	self.cheeses

								def	__set__(self,	value):

												self.cheeses.append(value)

								def	__del__(self):

												del	self.cheeses[:]

#	Test	input

from	cheesy	import	CheeseShop

shop	=	CheeseShop()

print	shop.cheese

shop.cheese	=	"camembert"

print	shop.cheese

shop.cheese	=	"cheddar"

print	shop.cheese

del	shop.cheese

print	shop.cheese

#	Test	output

We	don't	have:	[]

We	don't	have:	['camembert']

We	don't	have:	['camembert',	'cheddar']

We	don't	have:	[]

Special	Methods
Note:

1.	 The	 semantics	 of	 Cython’s	 special	 methods	 are	 similar	 in
principle	to	that	of	Python’s.

2.	 There	are	substantial	differences	in	some	behavior.
3.	 Some	Cython	special	methods	have	no	Python	counter-part.

See	the	Special	Methods	Table	for	the	many	that	are	available.

Declaration

Must	be	declared	with	def	and	cannot	be	declared	with	cdef.
Performance	 is	not	affected	by	 the	 def	 declaration	because	of
special	calling	conventions

Docstrings

Docstrings	 are	 not	 supported	 yet	 for	 some	 special	 method
types.
They	can	be	included	in	the	source,	but	may	not	appear	 in	the
corresponding	__doc__	attribute	at	run-time.

This	 a	 Python	 library	 limitation	 because	 the	 PyTypeObject
data	structure	is	limited

Initialization:	__cinit__()	and	__init__()

Any	arguments	passed	 to	 the	extension	 type’s	constructor,	will
be	passed	to	both	initialization	methods.
__cinit__()	is	where	you	should	perform	C-level	initialization	of

the	object

This	includes	any	allocation	of	C	data	structures.
Caution	is	warranted	as	to	what	you	do	in	this	method.

The	object	may	not	be	fully	valid	Python	object	when	it
is	called.
Calling	 Python	 objects,	 including	 the	 extensions	 own
methods,	may	be	hazardous.

By	the	time	__cinit__()	is	called...

Memory	has	been	allocated	for	the	object.
All	C-level	attributes	have	been	initialized	to	0	or	null.
Python	have	been	 initialized	 to	 None,	 but	 you	 can	not
rely	on	that	for	each	occasion.
This	 initialization	 method	 is	 guaranteed	 to	 be	 called
exactly	once.

For	Extensions	types	that	inherit	a	base	type:

The	 __cinit__()	 method	 of	 the	 base	 type	 is
automatically	called	before	this	one.
The	 inherited	 __cinit__()	 method	 can	 not	 be	 called
explicitly.
Passing	modified	argument	lists	to	the	base	type	must
be	done	through	__init__().
It	 may	 be	 wise	 to	 give	 the	 __cinit__()	 method	 both
"*"	and	"**"	arguments.

Allows	 the	method	 to	 accept	 or	 ignore	 additional
arguments.
Eliminates	 the	need	 for	 a	Python	 level	 sub-class,
that	 changes	 the	 __init__()	 method’s	 signature,
to	 have	 to	 override	 both	 the	 __new__()	 and

__init__()	methods.

If	__cinit__()	is	declared	to	take	no	arguments	except
self,	 it	will	 ignore	any	extra	arguments	passed	 to	 the
constructor	without	complaining	about	a	signature	mis-
match

__init__()	is	for	higher-level	initialization	and	is	safer	for	Python
access.

By	 the	 time	 this	method	 is	 called,	 the	 extension	 type	 is	 a
fully	valid	Python	object.
All	operations	are	safe.
This	method	may	sometimes	be	called	more	than	once,	or
possibly	not	at	all.

Take	this	into	consideration	to	make	sure	the	design	of
your	other	methods	are	robust	of	this	fact.

Finalization:	__dealloc__()

This	method	is	the	counter-part	to	__cinit__().
Any	 C-data	 that	 was	 explicitly	 allocated	 in	 the	 __cinit__()
method	should	be	freed	here.
Use	caution	in	this	method:

The	Python	object	to	which	this	method	belongs	may	not	be
completely	intact	at	this	point.
Avoid	 invoking	 any	 Python	 operations	 that	may	 touch	 the
object.
Don’t	call	any	of	this	object’s	methods.
It’s	best	to	just	deallocate	C-data	structures	here.

All	 Python	 attributes	 of	 your	 extension	 type	 object	 are
deallocated	by	Cython	after	the	__dealloc__()	method	returns.

Arithmetic	Methods

Note: 	Most	of	these	methods	behave	differently	than	in	Python

There	 are	 not	 “reversed”	 versions	 of	 these	methods...	 there	 is
no	__radd__()	for	instance.
If	 the	 first	 operand	 cannot	 perform	 the	 operation,	 the	 same
method	 of	 the	 second	 operand	 is	 called,	with	 the	 operands	 in
the	same	order.
Do	 not	 rely	 on	 the	 first	 parameter	 of	 these	 methods,	 being
"self"	or	the	right	type.
The	 types	 of	 both	 operands	 should	 be	 tested	 before	 deciding
what	to	do.
Return	 NotImplemented	 for	 unhandled,	 mis-matched	 operand
types.
The	previously	mentioned	points..

Also	apply	to	‘in-place’	method	__ipow__().
Do	not	apply	to	other	‘in-place’	methods	like	__iadd__(),	 in
that	these	always	take	self	as	the	first	argument.

Rich	Comparisons

Note: 	There	are	no	separate	methods	for	individual	rich
comparison	operations.

A	 single	 special	 method	 called	 __richcmp__()	 replaces	 all	 the
individual	rich	compare,	special	method	types.

__richcmp__()	 takes	 an	 integer	 argument,	 indicating	 which
operation	is	to	be	performed	as	shown	in	the	table	below.

< 0
== 2

> 4
<= 1
!= 3
>= 5

The	__next__()	Method

Extension	 types	 used	 to	 expose	 an	 iterator	 interface	 should
define	a	__next__()	method.
Do	not	explicitly	supply	a	next()	method,	because	Python	does
that	for	you	automatically.

Subclassing
An	 extension	 type	 may	 inherit	 from	 a	 built-in	 type	 or	 another
extension	type:

cdef	class	Parrot:

				...

cdef	class	Norwegian(Parrot):

				...

A	 complete	 definition	 of	 the	 base	 type	 must	 be	 available	 to
Cython

If	 the	 base	 type	 is	 a	 built-in	 type,	 it	 must	 have	 been
previously	declared	as	an	extern	extension	type.
cimport	can	be	used	to	 import	 the	base	type,	 if	 the	extern
declared	base	type	is	in	a	.pxd	definition	file.
In	 Cython,	 multiple	 inheritance	 is	 not	 permitted..	 singlular
inheritance	only

Cython	extenstion	types	can	also	be	sub-classed	in	Python.

Here	 multiple	 inhertance	 is	 permissible	 as	 is	 normal	 for
Python.
Even	 multiple	 extension	 types	 may	 be	 inherited,	 but	 C-
layout	of	all	the	base	classes	must	be	compatible.

Forward	Declarations
Extension	types	can	be	“forward-declared”.

This	is	necessary	when	two	extension	types	refer	to	each	other:

cdef	class	Shrubbery	#	forward	declaration

cdef	class	Shrubber:

				cdef	Shrubbery	work_in_progress

cdef	class	Shrubbery:

				cdef	Shrubber	creator

An	 extension	 type	 that	 has	 a	 base-class,	 requires	 that	 both
forward-declarations	be	specified:

cdef	class	A(B)

...

cdef	class	A(B):

				#	attributes	and	methods

Extension	Types	and	None
Parameters	 and	 C-variables	 declared	 as	 an	 Extension	 type,
may	take	the	value	of	None.
This	 is	analogous	to	the	way	a	C-pointer	can	take	the	value	of
NULL.

Note:

1.	 Exercise	caution	when	using	None
2.	 Read	this	section	carefully.

There	 is	 no	 problem	 as	 long	 as	 you	 are	 performing	 Python
operations	on	it.

This	is	because	full	dynamic	type	checking	is	applied

When	accessing	an	extension	type’s	C-attributes,	make	sure	 it
is	not	None.

Cython	does	not	check	this	for	reasons	of	efficency.

Be	very	aware	of	exposing	Python	functions	that	take	extension
types	as	arguments:

def	widen_shrubbery(Shrubbery	sh,	extra_width):	#	This	is

sh.width	=	sh.width	+	extra_width

*	Users	could	**crash**	the	program	by	passing	``None``	for	the

*	This	could	be	avoided	by::

				def	widen_shrubbery(Shrubbery	sh,	extra_width):

								if	sh	is	None:

												raise	TypeError

								sh.width	=	sh.width	+	extra_width

*	Cython	provides	a	more	convenient	way	with	a	``not	None``	clause

				def	widen_shrubbery(Shrubbery	sh	not	None,	extra_width):

								sh.width	=	sh.width	+	extra_width

*	Now	this	function	automatically	checks	that	``sh``	is	not	``

not	 None	 can	 only	 be	 used	 in	Python	 functions	 (declared	with
def	not	cdef).

For	cdef	functions,	you	will	have	to	provide	the	check	yourself.

The	self	parameter	of	an	extension	type	is	guaranteed	to	never
be	None.

When	comparing	a	value	x	with	None,	and	x	is	a	Python	object,
note	the	following:

x	is	None	and	x	is	not	None	are	very	efficient.

They	translate	directly	to	C-pointer	comparisons.

x	 ==	 None	 and	 x	 !=	 None	 or	 if	 x:	 ...	 (a	 boolean
condition),	will	 invoke	Python	operations	and	will	 therefore
be	much	slower.

Weak	Referencing
By	default,	weak	references	are	not	supported.

It	can	be	enabled	by	declaring	a	C	attribute	of	 the	 object	 type
called	__weakref__():

cdef	class	ExplodingAnimal:

				"""This	animal	will	self-destruct	when	it	is

				no	longer	strongly	referenced."""

				cdef	object	__weakref__

External	and	Public	Types

Public

When	an	extention	type	is	declared	public,	Cython	will	generate
a	C-header	(”.h”)	file.
The	header	file	will	contain	the	declarations	for	it’s	object-struct
and	it’s	type-object.
External	C-code	can	now	access	the	attributes	of	the	extension
type.

External

An	 extern	 extension	 type	 allows	 you	 to	 gain	 access	 to	 the
internals	of:

Python	objects	defined	in	the	Python	core.
Non-Cython	extension	modules

The	 following	 example	 lets	 you	 get	 at	 the	C-level	members	 of
Python’s	built-in	“complex”	object:

cdef	extern	from	"complexobject.h":

				struct	Py_complex:

								double	real

								double	imag

				ctypedef	class	__builtin__.complex	[object	PyComplexObject

								cdef	Py_complex	cval

#	A	function	which	uses	the	above	type

def	spam(complex	c):

				print	"Real:",	c.cval.real

				print	"Imag:",	c.cval.imag

Note: 	Some	important	things	in	the	example:	#.	ctypedef	has
been	used	because	because	Python’s	header	file	has	the	struct
decalared	with:

ctypedef	struct	{

...

}	PyComplexObject;

1.	 The	module	of	where	this	type	object	can	be	found	is	specified
along	 side	 the	 name	 of	 the	 extension	 type.	 See	 Implicit
Importing.

2.	 When	declaring	an	external	extension	type...

Don’t	 declare	 any	 methods,	 because	 they	 are	 Python
method	class	the	are	not	needed.
Similiar	 to	 structs	 and	 unions,	 extension	 classes
declared	 inside	 a	 cdef	 extern	 from	 block	 only	 need	 to
declare	 the	 C	members	 which	 you	 will	 actually	 need	 to
access	in	your	module.

Name	Specification	Clause

Note: 	Only	available	to	public	and	extern	extension	types.

Example:

[object	object_struct_name,	type	type_object_name]

object_struct_name	 is	 the	 name	 to	 assume	 for	 the	 type’s	 C-
struct.

type_object_name	is	the	name	to	assume	for	the	type’s	statically
declared	type-object.

The	object	and	type	clauses	can	be	written	in	any	order.

For	cdef	extern	from	declarations,	This	clause	is	required.

The	 object	 clause	 is	 required	 because	 Cython	 must
generate	 code	 that	 is	 compatible	 with	 the	 declarations	 in
the	header	file.
Otherwise	the	object	clause	is	optional.

For	public	extension	types,	both	the	object	and	type	clauses	are
required	 for	 Cython	 to	 generate	 code	 that	 is	 compatible	 with
external	C-code.

Type	Names	vs.	Constructor	Names
In	a	Cython	module,	the	name	of	an	extension	type	serves	two
distinct	purposes:

1.	 When	 used	 in	 an	 expression,	 it	 refers	 to	 a	 “module-level”
global	variable	holding	 the	 type’s	constructor	 (i.e.	 it’s	 type-
object)

2.	 It	can	also	be	used	as	a	C-type	name	to	declare	a	“type”	for
variables,	arguments,	and	return	values.

Example:

cdef	extern	class	MyModule.Spam:

				...

The	name	“Spam”	serves	both	of	these	roles.
Only	“Spam”	can	be	used	as	the	type-name.
The	constructor	can	be	referred	to	by	other	names.
Upon	an	explicit	import	of	“MyModule”...

MyModule.Spam()	could	be	used	as	the	constructor	call.
MyModule.Spam	could	not	be	used	as	a	type-name

When	 an	 “as”	 clause	 is	 used,	 the	 name	 specified	 takes	 over
both	roles:

cdef	extern	class	MyModule.Spam	as	Yummy:

				...

Yummy	 becomes	 both	 type-name	 and	 a	 name	 for	 the
constructor.
There	other	ways	of	course,	 to	get	hold	of	 the	constructor,
but	Yummy	is	the	only	usable	type-name.

nextprevious	|Cython	0.19.1	documentation	»	Reference	Guide	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

nextprevious	|Cython	0.19.1	documentation	»	Reference	Guide	»

Interfacing	with	Other	Code

C++

Fortran

NumPy

nextprevious	|Cython	0.19.1	documentation	»	Reference	Guide	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

nextprevious	|Cython	0.19.1	documentation	»	Reference	Guide	»

Special	Mention

nextprevious	|Cython	0.19.1	documentation	»	Reference	Guide	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

nextprevious	|Cython	0.19.1	documentation	»	Reference	Guide	»

Limitations

nextprevious	|Cython	0.19.1	documentation	»	Reference	Guide	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

nextprevious	|Cython	0.19.1	documentation	»	Reference	Guide	»

Compiler	Directives
See	Compilation.

nextprevious	|Cython	0.19.1	documentation	»	Reference	Guide	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

previousCython	0.19.1	documentation	»	Reference	Guide	»

Special	Methods	Table
This	 table	 lists	 all	 of	 the	 special	 methods	 together	 with	 their
parameter	and	return	types.	In	the	table	below,	a	parameter	name	of
self	 is	 used	 to	 indicate	 that	 the	 parameter	 has	 the	 type	 that	 the
method	belongs	 to.	Other	parameters	with	no	 type	specified	 in	 the
table	are	generic	Python	objects.

You	 don’t	 have	 to	 declare	 your	method	 as	 taking	 these	 parameter
types.	 If	 you	declare	different	 types,	 conversions	will	 be	performed
as	necessary.

General
Name Parameters Return

type Description

__cinit__ self,	... 	
Basic	initialisation	(no
direct	Python
equivalent)

__init__ self,	... 	 Further	initialisation

__dealloc__ self 	
Basic	deallocation	(no
direct	Python
equivalent)

__cmp__ x,	y int 3-way	comparison

__richcmp__ x,	y,	int	op object
Rich	comparison	(no
direct	Python
equivalent)

__str__ self object str(self)
__repr__ self object repr(self)
__hash__ self int Hash	function
__call__ self,	... object self(...)

__iter__ self object Return	iterator	for
sequence

__getattr__ self,	name object Get	attribute

__getattribute__ self,	name object Get	attribute,
unconditionally

__setattr__ self,	name,	val 	 Set	attribute
__delattr__ self,	name 	 Delete	attribute

Arithmetic	operators
Name Parameters Return

type Description

__add__ x,	y object binary	+	operator
__sub__ x,	y object binary	-	operator
__mul__ x,	y object *	operator

__div__ x,	y object /	operator	for	old-style
division

__floordiv__ x,	y object //	operator

__truediv__ x,	y object /	operator	for	new-style
division

__mod__ x,	y object %	operator
__divmod__ x,	y object combined	div	and	mod

__pow__ x,	y,	z object **	operator	or	pow(x,	y,
z)

__neg__ self object unary	-	operator
__pos__ self object unary	+	operator
__abs__ self object absolute	value
__nonzero__ self int convert	to	boolean
__invert__ self object ~	operator
__lshift__ x,	y object <<	operator
__rshift__ x,	y object >>	operator
__and__ x,	y object &	operator
__or__ x,	y object |	operator
__xor__ x,	y object ^	operator

Numeric	conversions
Name Parameters Return

type Description

__int__ self object Convert	to	integer
__long__ self object Convert	to	long	integer
__float__ self object Convert	to	float
__oct__ self object Convert	to	octal
__hex__ self object Convert	to	hexadecimal
__index__
(2.5+	only) self object Convert	to	sequence

index

In-place	arithmetic	operators
Name Parameters Return

type Description

__iadd__ self,	x object +=	operator
__isub__ self,	x object -=	operator
__imul__ self,	x object *=	operator

__idiv__ self,	x object /=	operator	for	old-style
division

__ifloordiv__ self,	x object //=	operator

__itruediv__ self,	x object /=	operator	for	new-style
division

__imod__ self,	x object %=	operator
__ipow__ x,	y,	z object **=	operator
__ilshift__ self,	x object <<=	operator
__irshift__ self,	x object >>=	operator
__iand__ self,	x object &=	operator
__ior__ self,	x object |=	operator
__ixor__ self,	x object ^=	operator

Sequences	and	mappings
Name Parameters Return

type Description

__len__ self	int 	 len(self)
__getitem__ self,	x object self[x]
__setitem__ self,	x,	y 	 self[x]	=	y
__delitem__ self,	x 	 del	self[x]

__getslice__ self,	Py_ssize_t	i,
Py_ssize_t	j object self[i:j]

__setslice__ self,	Py_ssize_t	i,
Py_ssize_t	j,	x 	 self[i:j]	=	x

__delslice__ self,	Py_ssize_t	i,
Py_ssize_t	j 	 del	self[i:j]

__contains__ self,	x int x	in	self

Iterators
Name Parameters Return

type Description

__next__ self object Get	next	item	(called	next
in	Python)

Buffer	interface
Note: 	The	buffer	interface	is	intended	for	use	by	C	code	and	is
not	directly	accessible	from	Python.	It	is	described	in	the	Python/C
API	Reference	Manual	under	sections	6.6	and	10.6.

Name Parameters Return
type Description

__getreadbuffer__ self,	int	i,	void
**p 	 	

__getwritebuffer__ self,	int	i,	void
**p 	 	

__getsegcount__ self,	int	*p 	 	

__getcharbuffer__ self,	int	i,	char
**p 	 	

Descriptor	objects
Note: 	Descriptor	objects	are	part	of	the	support	mechanism	for
new-style	Python	classes.	See	the	discussion	of	descriptors	in	the
Python	documentation.	See	also	PEP	252,	“Making	Types	Look
More	Like	Classes”,	and	PEP	253,	“Subtyping	Built-In	Types”.

Name Parameters Return
type Description

__get__ self,	instance,
class object Get	value	of	attribute

__set__ self,	instance,
value 	 Set	value	of	attribute

__delete__ self,	instance 	 Delete	attribute

previousCython	0.19.1	documentation	»	Reference	Guide	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

nextprevious	|Cython	0.19.1	documentation	»

Getting	Started
Cython	-	an	overview
Installing	Cython
Building	Cython	code

Building	a	Cython	module	using	distutils
Faster	code	via	static	typing

Typing	Variables
Typing	Functions
Determining	where	to	add	types

nextprevious	|Cython	0.19.1	documentation	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

nextprevious	|Cython	0.19.1	documentation	»

Tutorials
Calling	C	functions

Dynamic	linking
External	declarations
Naming	parameters

Using	C	libraries
Defining	external	declarations
Writing	a	wrapper	class
Memory	management
Compiling	and	linking
Mapping	functionality
Handling	errors
Testing	the	result
Callbacks

Extension	types	(aka.	cdef	classes)
pxd	files
Caveats
Profiling

Cython	Profiling	Basics
Profiling	Tutorial

Unicode	and	passing	strings
General	notes	about	C	strings
Passing	byte	strings
Dealing	with	“const”
Decoding	bytes	to	text
Encoding	text	to	bytes
C++	strings
Auto	encoding	and	decoding
Source	code	encoding
Single	bytes	and	characters
Narrow	Unicode	builds
Iteration

Windows	and	wide	character	APIs
Pure	Python	Mode

Magic	Attributes
Augmenting	.pxd
Types
Extension	types	and	cdef	functions

Working	with	NumPy
Adding	types
Efficient	indexing
Tuning	indexing	further
More	generic	code

Further	reading
Related	work
Appendix:	Installing	MinGW	on	Windows

nextprevious	|Cython	0.19.1	documentation	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

nextprevious	|Cython	0.19.1	documentation	»

Users	Guide
Contents:

Overview
About	Cython
Future	Plans

Basic	Tutorial
The	Basics	of	Cython
Cython	Hello	World
pyximport:	Cython	Compilation	the	Easy	Way
Fibonacci	Fun
Primes
Language	Details

Language	Basics
C	variable	and	type	definitions
Python	functions	vs.	C	functions
Automatic	type	conversions
Statements	and	expressions
The	include	statement
Conditional	Compilation

Extension	Types
Introduction
Attributes
Type	declarations
Extension	types	and	None
Special	methods
Properties
Subclassing
C	methods
Forward-declaring	extension	types
Fast	instantiation
Making	extension	types	weak-referenceable

Public	and	external	extension	types
Public	extension	types

Special	Methods	of	Extension	Types
Declaration
Docstrings
Initialisation	methods:	__cinit__()	and	__init__()
Finalization	method:	__dealloc__()
Arithmetic	methods
Rich	comparisons
The	__next__()	method
Special	Method	Table

Sharing	Declarations	Between	Cython	Modules
Definition	and	Implementation	files
What	a	Definition	File	contains
What	an	Implementation	File	contains
The	cimport	statement
Sharing	C	Functions
Sharing	Extension	Types

Interfacing	with	External	C	Code
External	declarations
Using	Cython	Declarations	from	C

Source	Files	and	Compilation
Basic	setup.py
Cython	Files	Depending	on	C	Files
Multiple	Cython	Files	in	a	Package
Distributing	Cython	modules
Pyximport

Early	Binding	for	Speed
Using	C++	in	Cython

Overview
A	simple	Tutorial
Advanced	C++	features
Caveats	and	Limitations

Fused	Types	(Templates)

Quickstart
Declaring	Fused	Types
Using	Fused	Types
Selecting	Specializations
Built-in	Fused	Types
Casting	Fused	Functions
Type	Checking	Specializations
__signatures__

Porting	Cython	code	to	PyPy
Reference	counts
Object	lifetime
Borrowed	references	and	data	pointers
Builtin	types,	slots	and	fields
Efficiency
Known	problems
Bugs	and	crashes

Limitations
Differences	between	Cython	and	Pyrex

Python	3	Support
Conditional	expressions	“x	if	b	else	y”	(Python	2.5)
cdef	inline
Assignment	on	declaration	(e.g.	“cdef	int	spam	=	5”)
‘by’	expression	in	for	loop	(e.g.	“for	i	from	0	<=	i	<	10	by	2”)
Boolean	int	type	(e.g.	it	acts	like	a	c	int,	but	coerces	to/from
python	as	a	boolean)
Executable	class	bodies
cpdef	functions
Automatic	range	conversion
More	friendly	type	casting
Optional	arguments	in	cdef/cpdef	functions
Function	pointers	in	structs
C++	Exception	handling
Synonyms
Source	code	encoding

Automatic	typecheck
From	__future__	directives
Pure	Python	mode

Typed	Memoryviews
Quickstart
Using	memoryviews
Comparison	to	the	old	buffer	support
Python	buffer	support
Memory	layout
Memoryviews	and	the	GIL
Memoryview	Objects	and	Cython	Arrays
Cython	arrays
CPython	array	module
Coercion	to	NumPy
None	Slices

Using	Parallelism
Compiling
Breaking	out	of	loops
Using	OpenMP	Functions

Debugging	your	Cython	program
Running	the	Debugger
Using	the	Debugger
Convenience	functions
Configuring	the	Debugger

Indices	and	tables
Index
Module	Index
Search	Page

nextprevious	|Cython	0.19.1	documentation	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

nextprevious	|Cython	0.19.1	documentation	»

Reference	Guide
Note:

Todo: 	Most	of	the	boldface	is	to	be	changed	to	refs	or	other
markup	later.

Contents:

Compilation
Compiling	from	the	command	line
Compiling	with	distutils
Compiling	with	pyximport
Compiling	with	cython.inline
Compiling	with	Sage
Compiler	directives

Language	Basics
Cython	File	Types
Declaring	Data	Types
Statements	and	Expressions
Functions	and	Methods
Error	and	Exception	Handling
Conditional	Compilation

Extension	Types
Attributes
Methods
Properties
Special	Methods
Subclassing
Forward	Declarations
Extension	Types	and	None
Weak	Referencing
External	and	Public	Types

Type	Names	vs.	Constructor	Names
Interfacing	with	Other	Code

C
C++
Fortran
NumPy

Special	Mention
Limitations
Compiler	Directives

Indices	and	tables
Special	Methods	Table

General
Arithmetic	operators
Numeric	conversions
In-place	arithmetic	operators
Sequences	and	mappings
Iterators
Buffer	interface
Descriptor	objects

Index
Module	Index
Search	Page

nextprevious	|Cython	0.19.1	documentation	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://sphinx.pocoo.org/

Cython	0.19.1	documentation	»

Cython	for	NumPy	users
This	tutorial	is	aimed	at	NumPy	users	who	have	no	experience	with
Cython	at	all.	If	you	have	some	knowledge	of	Cython	you	may	want
to	 skip	 to	 the	 ‘’Efficient	 indexing’’	 section	 which	 explains	 the	 new
improvements	made	in	summer	2008.

The	 main	 scenario	 considered	 is	 NumPy	 end-use	 rather	 than
NumPy/SciPy	 development.	 The	 reason	 is	 that	 Cython	 is	 not	 (yet)
able	 to	 support	 functions	 that	 are	 generic	with	 respect	 to	 datatype
and	the	number	of	dimensions	in	a	high-level	fashion.	This	restriction
is	 much	 more	 severe	 for	 SciPy	 development	 than	 more	 specific,
“end-user”	 functions.	 See	 the	 last	 section	 for	 more	 information	 on
this.

The	 style	 of	 this	 tutorial	 will	 not	 fit	 everybody,	 so	 you	 can	 also
consider:

Robert	 Bradshaw’s	 slides	 on	 cython	 for	 SciPy2008	 (a	 higher-
level	and	quicker	introduction)
Basic	Cython	documentation	(see	Cython	front	page).
[:enhancements/buffer:Spec	for	the	efficient	indexing]

Note: 	The	fast	array	access	documented	below	is	a	completely
new	feature,	and	there	may	be	bugs	waiting	to	be	discovered.	It
might	be	a	good	idea	to	do	a	manual	sanity	check	on	the	C	code
Cython	generates	before	using	this	for	serious	purposes,	at	least
until	some	months	have	passed.

http://wiki.sagemath.org/scipy08?action=AttachFile&do=get&target=scipy-cython.tgz
http://cython.org

Cython	at	a	glance
Cython	 is	 a	 compiler	 which	 compiles	 Python-like	 code	 files	 to	 C
code.	 Still,	 ‘’Cython	 is	 not	 a	 Python	 to	 C	 translator’‘.	 That	 is,	 it
doesn’t	take	your	full	program	and	“turns	it	into	C”	–	rather,	the	result
makes	full	use	of	the	Python	runtime	environment.	A	way	of	looking
at	 it	may	be	 that	 your	 code	 is	 still	 Python	 in	 that	 it	 runs	within	 the
Python	runtime	environment,	but	rather	than	compiling	to	interpreted
Python	bytecode	one	compiles	to	native	machine	code	(but	with	the
addition	of	extra	syntax	for	easy	embedding	of	faster	C-like	code).

This	has	two	important	consequences:

Speed.	How	much	depends	very	much	on	the	program	involved
though.	Typical	Python	numerical	programs	would	 tend	 to	gain
very	little	as	most	time	is	spent	in	lower-level	C	that	is	used	in	a
high-level	 fashion.	 However	 for-loop-style	 programs	 can	 gain
many	 orders	 of	 magnitude,	 when	 typing	 information	 is	 added
(and	is	so	made	possible	as	a	realistic	alternative).
Easy	calling	 into	C	code.	One	of	Cython’s	purposes	 is	 to	allow
easy	wrapping	of	C	 libraries.	When	writing	code	 in	Cython	you
can	call	into	C	code	as	easily	as	into	Python	code.

Some	 Python	 constructs	 are	 not	 yet	 supported,	 though	 making
Cython	 compile	 all	 Python	 code	 is	 a	 stated	 goal	 (among	 the	more
important	omissions	are	inner	functions	and	generator	functions).

Your	Cython	environment
Using	Cython	consists	of	these	steps:

1.	 Write	a	.pyx	source	file
2.	 Run	the	Cython	compiler	to	generate	a	C	file
3.	 Run	a	C	compiler	to	generate	a	compiled	library
4.	 Run	the	Python	interpreter	and	ask	it	to	import	the	module

However	there	are	several	options	to	automate	these	steps:

1.	 The	 SAGE	 mathematics	 software	 system	 provides	 excellent
support	 for	 using	 Cython	 and	 NumPy	 from	 an	 interactive
command	 line	 (like	 IPython)	 or	 through	 a	 notebook	 interface
(like	Maple/Mathematica).	See	this	documentation.

2.	 A	version	of	pyximport	 is	shipped	with	Cython,	so	 that	you	can
import	 pyx-files	 dynamically	 into	 Python	 and	 have	 them
compiled	automatically	(See	Pyximport).

3.	 Cython	supports	distutils	so	that	you	can	very	easily	create	build
scripts	which	automate	the	process,	this	is	the	preferred	method
for	full	programs.

4.	 Manual	compilation	(see	below)

Note: 	If	using	another	interactive	command	line	environment	than
SAGE,	like	IPython	or	Python	itself,	it	is	important	that	you	restart
the	process	when	you	recompile	the	module.	It	is	not	enough	to
issue	an	“import”	statement	again.

http://sagemath.org
http://www.sagemath.org/doc/prog/node40.html
http://www.prescod.net/pyximport/

Installation
Unless	 you	 are	 used	 to	 some	 other	 automatic	 method:	 download
Cython	 (0.9.8.1.1	 or	 later),	 unpack	 it,	 and	 run	 the	 usual	 `python
setup.py	 install.	 This	 will	 install	 a	 cython	 executable	 on	 your
system.	 It	 is	also	possible	 to	use	Cython	 from	 the	source	directory
without	installing	(simply	launch	cython.py	in	the	root	directory).

As	of	this	writing	SAGE	comes	with	an	older	release	of	Cython	than
required	for	this	tutorial.	So	if	using	SAGE	you	should	download	the
newest	Cython	and	then	execute

$	cd	path/to/cython-distro

$	path-to-sage/sage	-python	setup.py	install

This	will	install	the	newest	Cython	into	SAGE.

http://cython.org/#download

Manual	compilation
As	 it	 is	always	 important	 to	know	what	 is	going	on,	 I’ll	describe	 the
manual	method	here.	First	Cython	is	run:

$	cython	yourmod.pyx

This	creates	yourmod.c	which	is	the	C	source	for	a	Python	extension
module.	 A	 useful	 additional	 switch	 is	 -a	 which	 will	 generate	 a
document	yourmod.html)	that	shows	which	Cython	code	translates	to
which	C	code	line	by	line.

Then	we	compile	the	C	file.	This	may	vary	according	to	your	system,
but	 the	 C	 file	 should	 be	 built	 like	 Python	 was	 built.	 Python
documentation	for	writing	extensions	should	have	some	details.	On
Linux	this	often	means	something	like:

$	gcc	-shared	-pthread	-fPIC	-fwrapv	-O2	-Wall	-fno-strict-aliasing

gcc	should	have	access	to	the	NumPy	C	header	files	so	if	they	are
not	installed	at	/usr/include/numpy	or	similar	you	may	need	to	pass
another	option	for	those.

This	creates	yourmod.so	in	the	same	directory,	which	is	importable	by
Python	by	using	a	normal	import	yourmod	statement.

The	first	Cython	program
The	 code	 below	 does	 2D	 discrete	 convolution	 of	 an	 image	 with	 a
filter	(and	I’m	sure	you	can	do	better!,	 let	 it	serve	for	demonstration
purposes).	It	is	both	valid	Python	and	valid	Cython	code.	I’ll	refer	to	it
as	both	convolve_py.py	for	the	Python	version	and	convolve1.pyx	for
the	Cython	version	–	Cython	uses	”.pyx”	as	its	file	suffix.

from	__future__	import	division

import	numpy	as	np

def	naive_convolve(f,	g):

				#	f	is	an	image	and	is	indexed	by	(v,	w)

				#	g	is	a	filter	kernel	and	is	indexed	by	(s,	t),

				#			it	needs	odd	dimensions

				#	h	is	the	output	image	and	is	indexed	by	(x,	y),

				#			it	is	not	cropped

				if	g.shape[0]	%	2	!=	1	or	g.shape[1]	%	2	!=	1:

								raise	ValueError("Only	odd	dimensions	on	filter	supported"

				#	smid	and	tmid	are	number	of	pixels	between	the	center	pixel

				#	and	the	edge,	ie	for	a	5x5	filter	they	will	be	2.

				#

				#	The	output	size	is	calculated	by	adding	smid,	tmid	to	each

				#	side	of	the	dimensions	of	the	input	image.

				vmax	=	f.shape[0]

				wmax	=	f.shape[1]

				smax	=	g.shape[0]

				tmax	=	g.shape[1]

				smid	=	smax	//	2

				tmid	=	tmax	//	2

				xmax	=	vmax	+	2*smid

				ymax	=	wmax	+	2*tmid

				#	Allocate	result	image.

				h	=	np.zeros([xmax,	ymax],	dtype=f.dtype)

				#	Do	convolution

				for	x	in	range(xmax):

								for	y	in	range(ymax):

												#	Calculate	pixel	value	for	h	at	(x,y).	Sum	one	component

												#	for	each	pixel	(s,	t)	of	the	filter	g.

												s_from	=	max(smid	-	x,	-smid)

												s_to	=	min((xmax	-	x)	-	smid,	smid	+	1)

												t_from	=	max(tmid	-	y,	-tmid)

												t_to	=	min((ymax	-	y)	-	tmid,	tmid	+	1)

												value	=	0

												for	s	in	range(s_from,	s_to):

																for	t	in	range(t_from,	t_to):

																				v	=	x	-	smid	+	s

																				w	=	y	-	tmid	+	t

																				value	+=	g[smid	-	s,	tmid	-	t]	*	f[v,	w]

												h[x,	y]	=	value

				return	h

This	should	be	compiled	to	produce	yourmod.so	(for	Linux	systems).
We	run	a	Python	session	to	 test	both	 the	Python	version	(imported
from	.py-file)	and	the	compiled	Cython	module.

In	[1]:	import	numpy	as	np

In	[2]:	import	convolve_py

In	[3]:	convolve_py.naive_convolve(np.array([[1,	1,	1]],	dtype=np.

...					np.array([[1],[2],[1]],	dtype=np.int))

Out	[3]:

array([[1,	1,	1],

				[2,	2,	2],

				[1,	1,	1]])

In	[4]:	import	convolve1

In	[4]:	convolve1.naive_convolve(np.array([[1,	1,	1]],	dtype=np.int

...					np.array([[1],[2],[1]],	dtype=np.int))

Out	[4]:

array([[1,	1,	1],

				[2,	2,	2],

				[1,	1,	1]])

In	[11]:	N	=	100

In	[12]:	f	=	np.arange(N*N,	dtype=np.int).reshape((N,N))

In	[13]:	g	=	np.arange(81,	dtype=np.int).reshape((9,	9))

In	[19]:	%timeit	-n2	-r3	convolve_py.naive_convolve(f,	g)

2	loops,	best	of	3:	1.86	s	per	loop

In	[20]:	%timeit	-n2	-r3	convolve1.naive_convolve(f,	g)

2	loops,	best	of	3:	1.41	s	per	loop

There’s	 not	 such	 a	 huge	 difference	 yet;	 because	 the	 C	 code	 still
does	 exactly	 what	 the	 Python	 interpreter	 does	 (meaning,	 for
instance,	that	a	new	object	is	allocated	for	each	number	used).	Look
at	 the	 generated	 html	 file	 and	 see	 what	 is	 needed	 for	 even	 the
simplest	 statements	 you	 get	 the	 point	 quickly.	 We	 need	 to	 give

Cython	more	information;	we	need	to	add	types.

Adding	types
To	add	types	we	use	custom	Cython	syntax,	so	we	are	now	breaking
Python	 source	 compatibility.	 Here’s	 convolve2.pyx.	 Read	 the
comments!

from	__future__	import	division

import	numpy	as	np

#	"cimport"	is	used	to	import	special	compile-time	information

#	about	the	numpy	module	(this	is	stored	in	a	file	numpy.pxd	which	is

#	currently	part	of	the	Cython	distribution).

cimport	numpy	as	np

#	We	now	need	to	fix	a	datatype	for	our	arrays.	I've	used	the	variable

#	DTYPE	for	this,	which	is	assigned	to	the	usual	NumPy	runtime

#	type	info	object.

DTYPE	=	np.int

#	"ctypedef"	assigns	a	corresponding	compile-time	type	to	DTYPE_t.	For

#	every	type	in	the	numpy	module	there's	a	corresponding	compile-time

#	type	with	a	_t-suffix.

ctypedef	np.int_t	DTYPE_t

#	The	builtin	min	and	max	functions	works	with	Python	objects,	and	are

#	so	very	slow.	So	we	create	our	own.

#		-	"cdef"	declares	a	function	which	has	much	less	overhead	than	a	normal

#				def	function	(but	it	is	not	Python-callable)

#		-	"inline"	is	passed	on	to	the	C	compiler	which	may	inline	the	functions

#		-	The	C	type	"int"	is	chosen	as	return	type	and	argument	types

#		-	Cython	allows	some	newer	Python	constructs	like	"a	if	x	else	b",	but

#				the	resulting	C	file	compiles	with	Python	2.3	through	to	Python	3.0	beta.

cdef	inline	int	int_max(int	a,	int	b):	return	a	if	a	>=	b	else	b

cdef	inline	int	int_min(int	a,	int	b):	return	a	if	a	<=	b	else	b

#	"def"	can	type	its	arguments	but	not	have	a	return	type.	The	type	of	the

#	arguments	for	a	"def"	function	is	checked	at	run-time	when	entering	the

#	function.

#

#	The	arrays	f,	g	and	h	is	typed	as	"np.ndarray"	instances.	The	only	effect

#	this	has	is	to	a)	insert	checks	that	the	function	arguments	really	are

#	NumPy	arrays,	and	b)	make	some	attribute	access	like	f.shape[0]	much

#	more	efficient.	(In	this	example	this	doesn't	matter	though.)

def	naive_convolve(np.ndarray	f,	np.ndarray	g):

				if	g.shape[0]	%	2	!=	1	or	g.shape[1]	%	2	!=	1:

								raise	ValueError("Only	odd	dimensions	on	filter	supported"

				assert	f.dtype	==	DTYPE	and	g.dtype	==	DTYPE

				#	The	"cdef"	keyword	is	also	used	within	functions	to	type	variables.	It

				#	can	only	be	used	at	the	top	indendation	level	(there	are	non-trivial

				#	problems	with	allowing	them	in	other	places,	though	we'd	love	to	see

				#	good	and	thought	out	proposals	for	it).

				#

				#	For	the	indices,	the	"int"	type	is	used.	This	corresponds	to	a	C	int,

				#	other	C	types	(like	"unsigned	int")	could	have	been	used	instead.

				#	Purists	could	use	"Py_ssize_t"	which	is	the	proper	Python	type	for

				#	array	indices.

				cdef	int	vmax	=	f.shape[0]

				cdef	int	wmax	=	f.shape[1]

				cdef	int	smax	=	g.shape[0]

				cdef	int	tmax	=	g.shape[1]

				cdef	int	smid	=	smax	//	2

				cdef	int	tmid	=	tmax	//	2

				cdef	int	xmax	=	vmax	+	2*smid

				cdef	int	ymax	=	wmax	+	2*tmid

				cdef	np.ndarray	h	=	np.zeros([xmax,	ymax],	dtype=DTYPE)

				cdef	int	x,	y,	s,	t,	v,	w

				#	It	is	very	important	to	type	ALL	your	variables.	You	do	not	get	any

				#	warnings	if	not,	only	much	slower	code	(they	are	implicitly	typed	as

				#	Python	objects).

				cdef	int	s_from,	s_to,	t_from,	t_to

				#	For	the	value	variable,	we	want	to	use	the	same	data	type	as	is

				#	stored	in	the	array,	so	we	use	"DTYPE_t"	as	defined	above.

				#	NB!	An	important	side-effect	of	this	is	that	if	"value"	overflows	its

				#	datatype	size,	it	will	simply	wrap	around	like	in	C,	rather	than	raise

				#	an	error	like	in	Python.

				cdef	DTYPE_t	value

				for	x	in	range(xmax):

								for	y	in	range(ymax):

												s_from	=	int_max(smid	-	x,	-smid)

												s_to	=	int_min((xmax	-	x)	-	smid,	smid	+	1)

												t_from	=	int_max(tmid	-	y,	-tmid)

												t_to	=	int_min((ymax	-	y)	-	tmid,	tmid	+	1)

												value	=	0

												for	s	in	range(s_from,	s_to):

																for	t	in	range(t_from,	t_to):

																				v	=	x	-	smid	+	s

																				w	=	y	-	tmid	+	t

																				value	+=	g[smid	-	s,	tmid	-	t]	*	f[v,	w]

												h[x,	y]	=	value

				return	h

At	this	point,	have	a	look	at	the	generated	C	code	for	convolve1.pyx
and	 convolve2.pyx.	 Click	 on	 the	 lines	 to	 expand	 them	 and	 see

corresponding	 C.	 (Note	 that	 this	 code	 annotation	 is	 currently
experimental	and	especially	 “trailing”	cleanup	code	 for	a	block	may
stick	to	the	last	expression	in	the	block	and	make	it	look	worse	than
it	is	–	use	some	common	sense).

Especially	 have	 a	 look	 at	 the	 for	 loops:	 In	 convolve1.c,	 these	 are
~20	 lines	of	C	code	 to	 set	 up	while	 in	 convolve2.c	 a	 normal	C	 for
loop	is	used.

After	building	 this	and	continuing	my	 (very	 informal)	 benchmarks,	 I
get:

In	[21]:	import	convolve2

In	[22]:	%timeit	-n2	-r3	convolve2.naive_convolve(f,	g)

2	loops,	best	of	3:	828	ms	per	loop

Efficient	indexing
There’s	 still	 a	 bottleneck	 killing	 performance,	 and	 that	 is	 the	 array
lookups	 and	 assignments.	 The	 []-operator	 still	 uses	 full	 Python
operations	–	what	we	would	like	to	do	instead	is	to	access	the	data
buffer	directly	at	C	speed.

What	 we	 need	 to	 do	 then	 is	 to	 type	 the	 contents	 of	 the	 ndarray
objects.	We	do	this	with	a	special	“buffer”	syntax	which	must	be	told
the	 datatype	 (first	 argument)	 and	 number	 of	 dimensions	 (“ndim”
keyword-only	 argument,	 if	 not	 provided	 then	 one-dimensional	 is
assumed).

More	information	on	this	syntax	[:enhancements/buffer:can	be	found
here].

Showing	the	changes	needed	to	produce	convolve3.pyx	only:

...

def	naive_convolve(np.ndarray[DTYPE_t,	ndim=2]	f,	np.ndarray[DTYPE_t

...

cdef	np.ndarray[DTYPE_t,	ndim=2]	h	=	...

Usage:

In	[18]:	import	convolve3

In	[19]:	%timeit	-n3	-r100	convolve3.naive_convolve(f,	g)

3	loops,	best	of	100:	11.6	ms	per	loop

Note	the	importance	of	this	change.

Gotcha:	This	efficient	indexing	only	affects	certain	index	operations,
namely	those	with	exactly	ndim	number	of	typed	integer	indices.	So	if
v	for	instance	isn’t	typed,	then	the	lookup	f[v,	w]	isn’t	optimized.	On

the	 other	 hand	 this	 means	 that	 you	 can	 continue	 using	 Python
objects	for	sophisticated	dynamic	slicing	etc.	just	as	when	the	array
is	not	typed.

Tuning	indexing	further
The	array	lookups	are	still	slowed	down	by	two	factors:

1.	 Bounds	checking	is	performed.

2.	 Negative	 indices	 are	 checked	 for	 and	 handled	 correctly.	 The
code	 above	 is	 explicitly	 coded	 so	 that	 it	 doesn’t	 use	 negative
indices,	and	it	(hopefully)	always	access	within	bounds.	We	can
add	a	decorator	to	disable	bounds	checking:

...

cimport	cython

@cython.boundscheck(False)	#	turn	of	bounds-checking	for	entire	function

def	naive_convolve(np.ndarray[DTYPE_t,	ndim=2]	f,	np.ndarray[

...

Now	bounds	checking	is	not	performed	(and,	as	a	side-effect,	if	you
‘’do’’	happen	to	access	out	of	bounds	you	will	in	the	best	case	crash
your	 program	and	 in	 the	worst	 case	 corrupt	 data).	 It	 is	 possible	 to
switch	 bounds-checking	 mode	 in	 many	 ways,	 see
[:docs/compilerdirectives:compiler	directives]	for	more	information.

Negative	 indices	are	dealt	with	by	ensuring	Cython	 that	 the	 indices
will	be	positive,	by	casting	the	variables	to	unsigned	integer	types	(if
you	 do	 have	 negative	 values,	 then	 this	 casting	 will	 create	 a	 very
large	 positive	 value	 instead	 and	 you	will	 attempt	 to	 access	 out-of-
bounds	values).	Casting	is	done	with	a	special	<>-syntax.	The	code
below	 is	 changed	 to	 use	 either	 unsigned	 ints	 or	 casting	 as
appropriate:

...

cdef	int	s,	t																																																																												

cdef	unsigned	int	x,	y,	v,	w																																																													

cdef	int	s_from,	s_to,	t_from,	t_to

cdef	DTYPE_t	value

for	x	in	range(xmax):

				for	y	in	range(ymax):

								s_from	=	max(smid	-	x,	-smid)

								s_to	=	min((xmax	-	x)	-	smid,	smid	+	1)

								t_from	=	max(tmid	-	y,	-tmid)

								t_to	=	min((ymax	-	y)	-	tmid,	tmid	+	1)

								value	=	0

								for	s	in	range(s_from,	s_to):

												for	t	in	range(t_from,	t_to):

																v	=	<unsigned	int>(x	-	smid	+	s)																																									

																w	=	<unsigned	int>(y	-	tmid	+	t)																																									

																value	+=	g[<unsigned	int>(smid	-	s),	<unsigned	int

								h[x,	y]	=	value

...

(In	the	next	Cython	release	we	will	likely	add	a	compiler	directive	or
argument	 to	 the	 np.ndarray[]-type	 specifier	 to	 disable	 negative
indexing	so	that	casting	so	much	isn’t	necessary;	feedback	on	this	is
welcome.)

The	function	call	overhead	now	starts	to	play	a	role,	so	we	compare
the	latter	two	examples	with	larger	N:

In	[11]:	%timeit	-n3	-r100	convolve4.naive_convolve(f,	g)

3	loops,	best	of	100:	5.97	ms	per	loop

In	[12]:	N	=	1000

In	[13]:	f	=	np.arange(N*N,	dtype=np.int).reshape((N,N))

In	[14]:	g	=	np.arange(81,	dtype=np.int).reshape((9,	9))

In	[17]:	%timeit	-n1	-r10	convolve3.naive_convolve(f,	g)

1	loops,	best	of	10:	1.16	s	per	loop

In	[18]:	%timeit	-n1	-r10	convolve4.naive_convolve(f,	g)

1	loops,	best	of	10:	597	ms	per	loop

(Also	this	is	a	mixed	benchmark	as	the	result	array	is	allocated	within
the	function	call.)

Warning: 	Speed	comes	with	some	cost.	Especially	it	can	be
dangerous	to	set	typed	objects	(like	f,	g	and	h	in	our	sample	code)
to	None.	Setting	such	objects	to	None	is	entirely	legal,	but	all	you

can	do	with	them	is	check	whether	they	are	None.	All	other	use
(attribute	lookup	or	indexing)	can	potentially	segfault	or	corrupt
data	(rather	than	raising	exceptions	as	they	would	in	Python).

The	actual	rules	are	a	bit	more	complicated	but	the	main	message
is	clear:	Do	not	use	typed	objects	without	knowing	that	they	are	not
set	to	None.

More	generic	code
It	would	be	possible	to	do:

def	naive_convolve(object[DTYPE_t,	ndim=2]	f,	...):

i.e.	 use	 object	 rather	 than	 np.ndarray.	 Under	 Python	 3.0	 this	 can
allow	your	algorithm	to	work	with	any	 libraries	supporting	the	buffer
interface;	and	support	for	e.g.	the	Python	Imaging	Library	may	easily
be	added	if	someone	is	interested	also	under	Python	2.x.

There	 is	 some	 speed	 penalty	 to	 this	 though	 (as	 one	makes	more
assumptions	compile-time	if	the	type	is	set	to	np.ndarray,	specifically
it	is	assumed	that	the	data	is	stored	in	pure	strided	more	and	not	in
indirect	mode).

[:enhancements/buffer:More	information]

http://docs.python.org/3.3/library/functions.html#object

The	future
These	 are	 some	 points	 to	 consider	 for	 further	 development.	 All
points	 listed	 here	 has	 gone	 through	 a	 lot	 of	 thinking	 and	 planning
already;	 still	 they	may	 or	may	 not	 happen	 depending	 on	 available
developer	time	and	resources	for	Cython.

1.	 Support	 for	efficient	access	 to	 structs/records	stored	 in	arrays;
currently	only	primitive	types	are	allowed.

2.	 Support	 for	 efficient	 access	 to	 complex	 floating	 point	 types	 in
arrays.	 The	 main	 obstacle	 here	 is	 getting	 support	 for	 efficient
complex	datatypes	in	Cython.

3.	 Calling	 NumPy/SciPy	 functions	 currently	 has	 a	 Python	 call
overhead;	 it	would	be	possible	 to	 take	a	short-cut	 from	Cython
directly	 to	 C.	 (This	 does	 however	 require	 some	 isolated	 and
incremental	changes	to	those	libraries;	mail	 the	Cython	mailing
list	for	details).

4.	 Efficient	 code	 that	 is	 generic	 with	 respect	 to	 the	 number	 of
dimensions.	 This	 can	 probably	 be	 done	 today	 by	 calling	 the
NumPy	 C	 multi-dimensional	 iterator	 API	 directly;	 however	 it
would	 be	 nice	 to	 have	 for-loops	 over	 enumerate()	 and
ndenumerate()	on	NumPy	arrays	create	efficient	code.

5.	 A	high-level	construct	for	writing	type-generic	code,	so	that	one
can	 write	 functions	 that	 work	 simultaneously	 with	 many
datatypes.	Note	 however	 that	 a	macro	 preprocessor	 language
can	help	with	doing	this	for	now.

Cython	0.19.1	documentation	»

©	Copyright	2012,	Stefan	Behnel,	Robert	Bradshaw,	Dag	Sverre	Seljebotn,	Greg	Ewing,	William
Stein,	Gabriel	Gellner,	et	al..	Created	using	Sphinx	1.1.3.

http://docs.python.org/3.3/library/functions.html#enumerate
http://sphinx.pocoo.org/

	Cython 0.19.1 documentation
	Getting Started
	Cython - an overview
	Installing Cython
	Building Cython code
	Faster code via static typing

	Tutorials
	Calling C functions
	Using C libraries
	Extension types (aka. cdef classes)
	pxd files
	Caveats
	Profiling
	Unicode and passing strings
	Pure Python Mode
	Working with NumPy
	Further reading
	Related work
	Appendix: Installing MinGW on Windows

	Users Guide
	Overview
	Basic Tutorial
	Language Basics
	Extension Types
	Special Methods of Extension Types
	Sharing Declarations Between Cython Modules
	Interfacing with External C Code
	Source Files and Compilation
	Early Binding for Speed
	Using C++ in Cython
	Fused Types (Templates)
	Porting Cython code to PyPy
	Limitations
	Differences between Cython and Pyrex
	Typed Memoryviews
	Using Parallelism
	Debugging your Cython program

	Reference Guide
	Compilation
	Language Basics
	Extension Types
	Interfacing with Other Code
	Special Mention
	Limitations
	Compiler Directives

