
C/C++	Reference

General	C/C++

Pre-processor	commands
Operator	Precedence
Escape	Sequences
ASCII	Chart
Data	Types
Keywords

Standard	C	Library

Standard	C	I/O
Standard	C	String	&	Character
Standard	C	Math
Standard	C	Time	&	Date
Standard	C	Memory
Other	standard	C	functions

All	C	Functions

C++

C++	I/O
C++	Strings
C++	String	Streams
Miscellaneous	C++

C++	Standard	Template
Library

C++	Algorithms
C++	Vectors
C++	Double-Ended	Queues
C++	Lists
C++	Priority	Queues
C++	Queues
C++	Stacks
C++	Sets
C++	Multisets
C++	Maps
C++	Multimaps
C++	Bitsets
Iterators

All	C++	Functions

Questions?	Check	out	the	FAQ,	look	at	these	other	language	references,	or
contact	us.

Last	modified	on	11/4/2006	by	Nate	Kohl,	with	help	from	a	lot	of	people.

mailto:comments@cppreference.com

cppreference.com	>	C/C++	Keywords

asm
Syntax:

		asm("instruction");

The	asm	command	allows	you	to	insert	assembly	language	commands	directly
into	your	code.	Various	different	compilers	allow	differing	forms	for	this
command,	such	as

			asm	{

					instruction-sequence

			}												

or

			asm(instruction);										

auto

The	keyword	auto	is	used	to	declare	local	variables,	and	is	purely	optional.

Related	topics:
register

bool

The	keyword	bool	is	used	to	declare	Boolean	logic	variables;	that	is,	variables
which	can	be	either	true	or	false.

For	example,	the	following	code	declares	a	boolean	variable	called	done,
initializes	it	to	false,	and	then	loops	until	that	variable	is	set	to	true.

			bool	done	=	false;

			while(!done)	{

			...

			}												

Also	see	the	data	types	page.

Related	topics:
chardouble
false
float
int
long
short
signed
true
unsigned
wchar_t

break

The	break	keyword	is	used	to	break	out	of	a	do,	for,	or	while	loop.	It	is	also	used
to	finish	each	clause	of	a	switch	statement,	keeping	the	program	from	"falling
through"	to	the	next	case	in	the	code.	An	example:

			while(x	<	100)	{

					if(x	<	0)

							break;

					cout	<<	x	<<	endl;

					x++;

			}												

A	given	break	statement	will	break	out	of	only	the	closest	loop,	no	further.	If	you
have	a	triply-nested	for	loop,	for	example,	you	might	want	to	include	extra	logic
or	a	goto	statement	to	break	out	of	the	loop.

Related	topics:
continue
do
for
goto
switch
while

case

The	case	keyword	is	used	to	test	a	variable	against	a	certain	value	in	a	switch
statement.

Related	topics:
default
switch

catch

The	catch	statement	handles	exceptions	generated	by	the	throw	statement.

Related	topics:
throw
try

char

The	char	keyword	is	used	to	declare	character	variables.	For	more	information
about	variable	types,	see	the	data	types	page.

Related	topics:

bool
double
float
int
long
short
signed
unsigned
void
wchar_t

class
Syntax:

		class	class-name	:	inheritance-list	{

		private-members-list;				

		protected:

		protected-members-list;

		public:

		public-members-list;

		}	object-list;

The	class	keyword	allows	you	to	create	new	classes.	class-name	is	the	name	of
the	class	that	you	wish	to	create,	and	inheritance-list	is	an	optional	list	of	classes
inherited	by	the	new	class.	Members	of	the	class	are	private	by	default,	unless
listed	under	either	the	protected	or	public	labels.	object-list	can	be	used	to
immediately	instantiate	one	or	more	instances	of	the	class,	and	is	also	optional.
For	example:

			class	Date	{

					int	Day;

					int	Month;

					int	Year;

			public:

					void	display();

			};											

Related	topics:
friend

private
protected
public
struct
this
typename
union
virtual

const

The	const	keyword	can	be	used	to	tell	the	compiler	that	a	certain	variable	should
not	be	modified	once	it	has	been	initialized.

It	can	also	be	used	to	declare	functions	of	a	class	that	do	not	alter	any	class	data.

Related	topics:
const_cast
mutable

const_cast
Syntax:

		const_cast<type>	(object);

The	const_cast	keyword	can	be	used	to	remove	the	"const-ness"	of	some	datum.
The	target	data	type	must	be	the	same	as	the	source	type,	except	(of	course)	that
the	target	type	doesn't	have	to	be	const.

Related	topics:
const
dynamic_cast
reinterpret_cast
static_cast

continue

The	continue	statement	can	be	used	to	bypass	iterations	of	a	given	loop.

For	example,	the	following	code	will	display	all	of	the	numbers	between	0	and
20	except	10:

			for(int	i	=	0;	i	<	21;	i++)	{

					if(i	==	10)	{

							continue;

					}

					cout	<<	i	<<	"	";

			}												

Related	topics:
break
do
for
while

default

A	default	case	in	the	switch	statement.

Related	topics:
case
switch

delete
Syntax:

		delete	p;

		delete[]	pArray;

The	delete	operator	frees	the	memory	pointed	to	by	p.	The	argument	should	have
been	previously	allocated	by	a	call	to	new.	The	second	form	of	delete	should	be
used	to	delete	an	array.

Related	topics:
(Standard	C	Memory)	free
(Standard	C	Memory)	malloc
new

do
Syntax:

		do	{

		statement-list;

		}	while(condition);

The	do	construct	evaluates	the	given	statement-list	repeatedly,	until	condition
becomes	false.	Note	that	every	do	loop	will	evaluate	its	statement	list	at	least
once,	because	the	terminating	condition	is	tested	at	the	end	of	the	loop.

Related	topics:
break
continue
for
while

double

The	double	keyword	is	used	to	declare	double	precision	floating-point	variables.
Also	see	the	data	types	page.

Related	topics:

bool
char
float
int
long
short
signed
unsigned
void
wchar_t

dynamic_cast
Syntax:

		dynamic_cast<type>	(object);

The	dynamic_cast	keyword	casts	a	datum	from	one	type	to	another,	performing	a
runtime	check	to	ensure	the	validity	of	the	cast.	If	you	attempt	to	cast	between
incompatible	types,	the	result	of	the	cast	will	be	NULL.

Related	topics:
const_cast
reinterpret_cast
static_cast

else

The	else	keyword	is	used	as	an	alternative	case	for	the	if	statement.

Related	topics:
if

enum
Syntax:

		enum	name	{name-list}	var-list;

The	enum	keyword	is	used	to	create	an	enumerated	type	named	name	that
consists	of	the	elements	in	name-list.	The	var-list	argument	is	optional,	and	can
be	used	to	create	instances	of	the	type	along	with	the	declaration.	For	example,
the	following	code	creates	an	enumerated	type	for	colors:

			enum	ColorT	{red,	orange,	yellow,	green,	blue,	indigo,	violet};

			...

			ColorT	c1	=	indigo;

			if(c1	==	indigo)	{

					cout	<<	"c1	is	indigo"	<<	endl;

			}												

In	the	above	example,	the	effect	of	the	enumeration	is	to	introduce	several	new
constants	named	red,	orange,	yellow,	etc.	By	default,	these	constants	are
assigned	consecutive	integer	values	starting	at	zero.	You	can	change	the	values
of	those	constants,	as	shown	by	the	next	example:

			enum	ColorT	{	red	=	10,	blue	=	15,	green	};

			...

			ColorT	c	=	green;

			cout	<<	"c	is	"	<<	c	<<	endl;

When	executed,	the	above	code	will	display	the	following	output:

			c	is	16

Note	that	the	above	examples	will	only	work	with	C++	compilers.	If	you're
working	in	regular	C,	you	will	need	to	specify	the	enum	keyword	whenever	you
create	an	instance	of	an	enumerated	type:

			enum	ColorT	{	red	=	10,	blue	=	15,	green	};

			...

			enum	ColorT	c	=	green;			//	note	the	aditional	enum	keyword

			printf("c	is	%d\n",	c);

explicit

When	a	constructor	is	specified	as	explicit,	no	automatic	conversion	will	be	used
with	that	constructor	--it	will	only	be	used	when	an	initialization	exactly	matches
a	call	to	that	constructor.

export

The	export	keyword	is	intended	to	allow	definitions	of	C++	templates	to	be
separated	from	their	declarations.	While	officially	part	of	the	C++	standard,	the
export	keyword	is	only	supported	by	a	few	compilers	(such	as	the	Comeau	C++
compiler)	and	is	not	supported	by	such	mainstream	compilers	as	GCC	and
Visual	C++.

extern

The	extern	keyword	is	used	to	inform	the	compiler	about	variables	declared
outside	of	the	current	scope.	Variables	described	by	extern	statements	will	not
have	any	space	allocated	for	them,	as	they	should	be	properly	defined	elsewhere.

Extern	statements	are	frequently	used	to	allow	data	to	span	the	scope	of	multiple
files.

false

The	Boolean	value	of	"false".

Related	topics:
bool
true

float

The	float	keyword	is	used	to	declare	floating-point	variables.	Also	see	the	data
types	page.

Related	topics:
bool
char
double
int
long
short
signed
unsigned
void
wchar_t

for
Syntax:

		for(initialization;	test-condition;	increment)	{

		statement-list;

		}

The	for	construct	is	a	general	looping	mechanism	consisting	of	4	parts:

1.	 the	initialization,	which	consists	of	0	or	more	comma-delimited	variable
initialization	statements

2.	 the	test-condition,	which	is	evaluated	to	determine	if	the	execution	of	the
for	loop	will	continue

3.	 the	increment,	which	consists	of	0	or	more	comma-delimited	statements
that	increment	variables

4.	 and	the	statement-list,	which	consists	of	0	or	more	statements	that	will	be
executed	each	time	the	loop	is	executed.

For	example:

			for(int	i	=	0;	i	<	10;	i++)	{

					cout	<<	"i	is	"	<<	i	<<	endl;

			}

			int	j,	k;

			for(j	=	0,	k	=	10;

								j	<	k;

								j++,	k--)	{

					cout	<<	"j	is	"	<<	j	<<	"	and	k	is	"	<<	k	<<	endl;

			}

			for(;	;)	{

					//	loop	forever!

			}												

Related	topics:
break
continue
do
if
while

friend

The	friend	keyword	allows	classes	or	functions	not	normally	associated	with	a
given	class	to	have	access	to	the	private	data	of	that	class.

Related	topics:
class

goto

Syntax:

		goto	labelA;

		...

		labelA:

The	goto	statement	causes	the	current	thread	of	execution	to	jump	to	the
specified	label.	While	the	use	of	the	goto	statement	is	generally	considered
harmful,	it	can	occasionally	be	useful.	For	example,	it	may	be	cleaner	to	use	a
goto	to	break	out	of	a	deeply-nested	for	loop,	compared	to	the	space	and	time
that	extra	break	logic	would	consume.

Related	topics:
break

if
Syntax:

		if(conditionA)	{

				statement-listA;

		}

		else	if(conditionB)	{

				statement-listB;

		}

		...

		else	{

				statement-listN;

		}

The	if	construct	is	a	branching	mechanism	that	allows	different	code	to	execute
under	different	conditions.	The	conditions	are	evaluated	in	order,	and	the
statement-list	of	the	first	condition	to	evaluate	to	true	is	executed.	If	no
conditions	evaluate	to	true	and	an	else	statement	is	present,	then	the	statement
list	within	the	else	block	will	be	executed.	All	of	the	else	blocks	are	optional.

Related	topics:
else
for

http://www.acm.org/classics/oct95/

switch
while

inline
Syntax:

		inline	int	functionA(int	i)	{

		...

		}

The	inline	keyword	requests	that	the	compiler	expand	a	given	function	in	place,
as	opposed	to	inserting	a	call	to	that	function.	Functions	that	contain	static	data,
loops,	switch	statements,	or	recursive	calls	cannot	be	inlined.	When	a	function
declaration	is	included	in	a	class	declaration,	the	compiler	should	try	to
automatically	inline	that	function.

int

The	int	keyword	is	used	to	declare	integer	variables.	Also	see	the	data	types
page.

Related	topics:
bool
char
double
float
long
short
signed
unsigned
void
wchar_t

long

The	long	keyword	is	a	data	type	modifier	that	is	used	to	declare	long	integer
variables.	For	more	information	on	long,	see	the	data	types	page.

Related	topics:
bool
char
double
float
int
short
signed
void

mutable

The	mutable	keyword	overrides	any	enclosing	const	statement.	A	mutable
member	of	a	const	object	can	be	modified.

Related	topics:
const

namespace
Syntax:

		namespace	name	{

		declaration-list;

		}

The	namespace	keyword	allows	you	to	create	a	new	scope.	The	name	is
optional,	and	can	be	omitted	to	create	an	unnamed	namespace.	Once	you	create	a

namespace,	you'll	have	to	refer	to	it	explicitly	or	use	the	using	keyword.

Example	code:

			namespace	CartoonNameSpace	{

					int	HomersAge;

					void	incrementHomersAge()	{

							HomersAge++;

					}

			}

			int	main()	{

					...

					CartoonNameSpace::HomersAge	=	39;

					CartoonNameSpace::incrementHomersAge();

					cout	<<	CartoonNameSpace::HomersAge	<<	endl;

					...

			}												

Related	topics:
using

new
Syntax:

		pointer	=	new	type;

		pointer	=	new	type(initializer);

		pointer	=	new	type[size];

The	new	operator	allocates	a	new	chunk	of	memory	to	hold	a	variable	of	type
type	and	returns	a	pointer	to	that	memory.	An	optional	initializer	can	be	used	to
initialize	the	memory.	Allocating	arrays	can	be	accomplished	by	providing	a	size
parameter	in	brackets.

Related	topics:
delete
(Standard	C	Memory)	free
(Standard	C	Memory)	malloc

operator
Syntax:

		return-type	class-name::operator#(parameter-list)	{

		...

		}

		return-type	operator#(parameter-list)	{

		...

		}

The	operator	keyword	is	used	to	overload	operators.	The	sharp	sign	(#)	listed
above	in	the	syntax	description	represents	the	operator	which	will	be	overloaded.
If	part	of	a	class,	the	class-name	should	be	specified.	For	unary	operators,
parameter-list	should	be	empty,	and	for	binary	operators,	parameter-list	should
contain	the	operand	on	the	right	side	of	the	operator	(the	operand	on	the	left	side
is	passed	as	this).

For	the	non-member	operator	overload	function,	the	operand	on	the	left	side
should	be	passed	as	the	first	parameter	and	the	operand	on	the	right	side	should
be	passed	as	the	second	parameter.

You	cannot	overload	the	#,	##,	.,	:,	.*,	or	?	tokens.

Related	topics:
this

private

Private	data	of	a	class	can	only	be	accessed	by	members	of	that	class,	except
when	friend	is	used.	The	private	keyword	can	also	be	used	to	inherit	a	base	class
privately,	which	causes	all	public	and	protected	members	of	the	base	class	to
become	private	members	of	the	derived	class.

Related	topics:
class

protected
public

protected

Protected	data	are	private	to	their	own	class	but	can	be	inherited	by	derived
classes.	The	protected	keyword	can	also	be	used	as	an	inheritance	specifier,
which	causes	all	public	and	protected	members	of	the	base	class	to	become
protected	members	of	the	derived	class.

Related	topics:
class
private
public

public

Public	data	in	a	class	are	accessible	to	everyone.	The	public	keyword	can	also	be
used	as	an	inheritance	specifier,	which	causes	all	public	and	protected	members
of	the	base	class	to	become	public	and	protected	members	of	the	derived	class.

Related	topics:
class
private
protected

register

The	register	keyword	requests	that	a	variable	be	optimized	for	speed,	and	fell	out
of	common	use	when	computers	became	better	at	most	code	optimizations	than
humans.

Related	topics:
auto

reinterpret_cast
Syntax:

		reinterpret_cast<type>	(object);

The	reinterpret_cast	operator	changes	one	data	type	into	another.	It	should	be
used	to	cast	between	incompatible	pointer	types.

Related	topics:
const_cast
dynamic_cast
static_cast

return
Syntax:

		return;

		return(value);

The	return	statement	causes	execution	to	jump	from	the	current	function	to
whatever	function	called	the	current	function.	An	optional	value	can	be	returned.
A	function	may	have	more	than	one	return	statement.

short

The	short	keyword	is	a	data	type	modifier	that	is	used	to	declare	short	integer
variables.	See	the	data	types	page.

Related	topics:
bool
char
double
float
int
long
signed
unsigned
void
wchar_t

signed

The	signed	keyword	is	a	data	type	modifier	that	is	usually	used	to	declare	signed
char	variables.	See	the	data	types	page.

Related	topics:
bool
char
double
float
int
long
short
unsigned
void
wchar_t

sizeof

The	sizeof	operator	is	a	compile-time	operator	that	returns	the	size,	in	bytes,	of
the	argument	passed	to	it.	For	example,	the	following	code	uses	sizeof	to	display

the	sizes	of	a	number	of	variables:

		

		struct	EmployeeRecord	{

				int	ID;

				int	age;

				double	salary;

				EmployeeRecord*	boss;

		};

		...

		cout	<<	"sizeof(int):	"	<<	sizeof(int)	<<	endl

							<<	"sizeof(float):	"	<<	sizeof(float)	<<	endl

							<<	"sizeof(double):	"	<<	sizeof(double)	<<	endl

							<<	"sizeof(char):	"	<<	sizeof(char)	<<	endl

							<<	"sizeof(EmployeeRecord):	"	<<	sizeof(EmployeeRecord)	<<	endl;

		int	i;

		float	f;

		double	d;

		char	c;

		EmployeeRecord	er;

		cout	<<	"sizeof(i):	"	<<	sizeof(i)	<<	endl

							<<	"sizeof(f):	"	<<	sizeof(f)	<<	endl

							<<	"sizeof(d):	"	<<	sizeof(d)	<<	endl

							<<	"sizeof(c):	"	<<	sizeof(c)	<<	endl

							<<	"sizeof(er):	"	<<	sizeof(er)	<<	endl;

When	run,	the	above	code	displays	this	output:

		

		sizeof(int):	4

		sizeof(float):	4

		sizeof(double):	8

		sizeof(char):	1

		sizeof(EmployeeRecord):	20

		sizeof(i):	4

		sizeof(f):	4

		sizeof(d):	8

		sizeof(c):	1

		sizeof(er):	20

Note	that	sizeof	can	either	take	a	variable	type	(such	as	int)	or	a	variable	name
(such	as	i	in	the	example	above).

It	is	also	important	to	note	that	the	sizes	of	various	types	of	variables	can	change
depending	on	what	system	you're	on.	Check	out	a	description	of	the	C	and	C++
data	types	for	more	information.

Related	topics:
C/C++	Data	Types

static

The	static	data	type	modifier	is	used	to	create	permanent	storage	for	variables.
Static	variables	keep	their	value	between	function	calls.	When	used	in	a	class,	all
instantiations	of	that	class	share	one	copy	of	the	variable.

static_cast
Syntax:

		static_cast<type>	(object);

The	static_cast	keyword	can	be	used	for	any	normal	conversion	between	types.
No	runtime	checks	are	performed.

Related	topics:
const_cast
dynamic_cast
reinterpret_cast

struct
Syntax:

		struct	struct-name	:	inheritance-list	{

		public-members-list;				

		protected:

		protected-members-list;

		private:

		private-members-list;

		}	object-list;

Structs	are	like	`classes`,	except	that	by	default	members	of	a	struct	are	public
rather	than	private.	In	C,	structs	can	only	contain	data	and	are	not	permitted	to
have	inheritance	lists.	For	example:

			struct	Date	{

					int	Day;

					int	Month;

					int	Year;

			};											

Related	topics:
class
union

switch
Syntax:

		switch(expression)	{

		case	A:

		statement	list;

		break;

		case	B:

		statement	list;

		break;

		...

		case	N:

		statement	list;

		break;

		default:

		statement	list;

		break;

		}

The	switch	statement	allows	you	to	test	an	expression	for	many	values,	and	is

commonly	used	as	a	replacement	for	multiple	if()...else	if()...else	if()...
statements.	break	statements	are	required	between	each	case	statement,
otherwise	execution	will	"fall-through"	to	the	next	case	statement.	The	default
case	is	optional.	If	provided,	it	will	match	any	case	not	explicitly	covered	by	the
preceding	cases	in	the	switch	statement.	For	example:

			char	keystroke	=	getch();

			switch(keystroke)	{

					case	'a':

					case	'b':

					case	'c':

					case	'd':

							KeyABCDPressed();

							break;

					case	'e':

							KeyEPressed();

							break;

					default:

							UnknownKeyPressed();

							break;

			}												

Related	topics:
break
case
default
if

template
Syntax:

		template	<class	data-type>	return-type	name(parameter-list)	{

		statement-list;

		}

Templates	are	used	to	create	generic	functions	and	can	operate	on	data	without
knowing	the	nature	of	that	data.	They	accomplish	this	by	using	a	placeholder
data-type	for	which	many	other	data	types	can	be	substituted.

Example	code:

For	example,	the	following	code	uses	a	template	to	define	a	generic	swap
function	that	can	swap	two	variables	of	any	type:

			template<class	X>	void	genericSwap(X	&a,	X	&b)	{

					X	tmp;													

					tmp	=	a;

					a	=	b;

					b	=	tmp;

			}

			int	main(void)	{

					...

					int	num1	=	5;

					int	num2	=	21;

					cout	<<	"Before,	num1	is	"	<<	num1	<<	"	and	num2	is	"	<<	num2	<<	endl;

					genericSwap(num1,	num2);

					cout	<<	"After,	num1	is	"	<<	num1	<<	"	and	num2	is	"	<<	num2	<<	endl;

					char	c1	=	'a';

					char	c2	=	'z';

					cout	<<	"Before,	c1	is	"	<<	c1	<<	"	and	c2	is	"	<<	c2	<<	endl;

					genericSwap(c1,	c2);

					cout	<<	"After,	c1	is	"	<<	c1	<<	"	and	c2	is	"	<<	c2	<<	endl;

					...

					return(0);

			}												

Related	topics:
typename

this

The	this	keyword	is	a	pointer	to	the	current	object.	All	member	functions	of	a
class	have	a	this	pointer.

Related	topics:
class
operator

throw
Syntax:

		try	{

		statement	list;

		}

		catch(typeA	arg)	{

		statement	list;

		}

		catch(typeB	arg)	{

		statement	list;

		}

		...

		catch(typeN	arg)	{

		statement	list;

		}

The	throw	statement	is	part	of	the	C++	mechanism	for	exception	handling.	This
statement,	together	with	the	try	and	catch	statements,	the	C++	exception
handling	system	gives	programmers	an	elegant	mechanism	for	error	recovery.

You	will	generally	use	a	try	block	to	execute	potentially	error-prone	code.
Somewhere	in	this	code,	a	throw	statement	can	be	executed,	which	will	cause
execution	to	jump	out	of	the	try	block	and	into	one	of	the	catch	blocks.	For
example:

			try	{

					cout	<<	"Before	throwing	exception"	<<	endl;

					throw	42;

					cout	<<	"Shouldn't	ever	see	this"	<<	endl;

			}

			catch(int	error)	{

					cout	<<	"Error:	caught	exception	"	<<	error	<<	endl;

			}												

Related	topics:
catch
try

true

The	Boolean	value	of	"true".

Related	topics:
bool
false

try

The	try	statement	attempts	to	execute	exception-generating	code.	See	the	throw
statement	for	more	details.

Related	topics:
catch
throw

typedef
Syntax:

		typedef	existing-type	new-type;

The	typedef	keyword	allows	you	to	create	a	new	type	from	an	existing	type.

typeid
Syntax:

		typeid(object);

The	typeid	operator	returns	a	reference	to	a	type_info	object	that	describes
`object`.

typename

The	typename	keyword	can	be	used	to	describe	an	undefined	type	or	in	place	of
the	class	keyword	in	a	template	declaration.

Related	topics:
class
template

union
Syntax:

		union	union-name	{

		public-members-list;				

		private:

		private-members-list;

		}	object-list;

A	union	is	like	a	class,	except	that	all	members	of	a	union	share	the	same
memory	location	and	are	by	default	public	rather	than	private.	For	example:

			union	Data	{

					int	i;

					char	c;

			};											

Related	topics:
class
struct

unsigned

The	unsigned	keyword	is	a	data	type	modifier	that	is	usually	used	to	declare
unsigned	int	variables.	See	the	data	types	page.

Related	topics:
bool
char
double
float
int
short
signed
void
wchar_t

using

The	using	keyword	is	used	to	import	a	namespace	(or	parts	of	a	namespace)	into
the	current	scope.

Example	code:

For	example,	the	following	code	imports	the	entire	std	namespace	into	the
current	scope	so	that	items	within	that	namespace	can	be	used	without	a
preceeding	"std::".

	using	namespace	std;											

Alternatively,	the	next	code	snippet	just	imports	a	single	element	of	the	std
namespace	into	the	current	namespace:

	using	std::cout;															

Related	topics:

namespace

virtual
Syntax:

		virtual	return-type	name(parameter-list);

		virtual	return-type	name(parameter-list)	=	0;

The	virtual	keyword	can	be	used	to	create	virtual	functions,	which	can	be
overridden	by	derived	classes.

A	virtual	function	indicates	that	a	function	can	be	overridden	in	a	subclass,
and	that	the	overridden	function	will	actually	be	used.
When	a	base	object	pointer	points	to	a	derived	object	that	contains	a	virtual
function,	the	decision	about	which	version	of	that	function	to	call	is	based
on	the	type	of	object	pointed	to	by	the	pointer,	and	this	process	happens	at
runtime.
A	base	object	can	point	to	different	derived	objects	and	have	different
versions	of	the	virtual	function	run.

If	the	function	is	specified	as	a	pure	virtual	function	(denoted	by	the	=	0),	it	must
be	overridden	by	a	derived	class.

Example	code:

For	example,	the	following	code	snippet	shows	how	a	child	class	can	override	a
virtual	method	of	its	parent,	and	how	a	non-virtual	method	in	the	parent	cannot
be	overridden:

class	Base	{

public:

	void	nonVirtualFunc()	{

			cout	<<	"Base:	non-virtual	function"	<<	endl;

	}

	virtual	void	virtualFunc()	{

			cout	<<	"Base:	virtual	function"	<<	endl;

	}

};														

class	Child	:	public	Base	{

public:

	void	nonVirtualFunc()	{

			cout	<<	"Child:	non-virtual	function"	<<	endl;

	}

	void	virtualFunc()	{

			cout	<<	"Child:	virtual	function"	<<	endl;

	}

};														

int	main()	{

	Base*	basePointer	=	new	Child();

	basePointer->nonVirtualFunc();

	basePointer->virtualFunc();

	return	0;

}															

When	run,	the	above	code	displays:

Base:	non-virtual	function

Child:	virtual	function									

Related	topics:
class

void

The	void	keyword	is	used	to	denote	functions	that	return	no	value,	or	generic
variables	which	can	point	to	any	type	of	data.	Void	can	also	be	used	to	declare	an
empty	parameter	list.	Also	see	the	data	types	page.

Related	topics:
char
double
float
int
long
short
signed

unsigned
wchar_t

volatile

The	volatile	keyword	is	an	implementation-dependent	modifier,	used	when
declaring	variables,	which	prevents	the	compiler	from	optimizing	those
variables.	Volatile	should	be	used	with	variables	whose	value	can	change	in
unexpected	ways	(i.e.	through	an	interrupt),	which	could	conflict	with
optimizations	that	the	compiler	might	perform.

wchar_t

The	keyword	wchar_t	is	used	to	declare	wide	character	variables.	Also	see	the
data	types	page.

Related	topics:
bool
char
double
float
int
short
signed
unsigned
void

while
Syntax:

		while(condition)	{

		statement-list;

		}

The	while	keyword	is	used	as	a	looping	construct	that	will	evaluate	the
statement-list	as	long	as	condition	is	true.	Note	that	if	the	condition	starts	off	as
false,	the	statement-list	will	never	be	executed.	(You	can	use	a	do	loop	to
guarantee	that	the	statement-list	will	be	executed	at	least	once.)	For	example:

			bool	done	=	false;

			while(!done)	{

					ProcessData();

					if(StopLooping())	{

							done	=	true;

					}

			}												

Related	topics:
break
continue
do
for
if

cppreference.com	>	C/C++	Keywords	>	asm

asm
Syntax:

		asm("instruction");

The	asm	command	allows	you	to	insert	assembly	language	commands	directly
into	your	code.	Various	different	compilers	allow	differing	forms	for	this
command,	such	as

			asm	{

					instruction-sequence

			}												

or

			asm(instruction);										

cppreference.com	>	C/C++	Keywords	>	auto

auto

The	keyword	auto	is	used	to	declare	local	variables,	and	is	purely	optional.

Related	topics:
register

cppreference.com	>	C/C++	Keywords	>	bool

bool

The	keyword	bool	is	used	to	declare	Boolean	logic	variables;	that	is,	variables
which	can	be	either	true	or	false.

For	example,	the	following	code	declares	a	boolean	variable	called	done,
initializes	it	to	false,	and	then	loops	until	that	variable	is	set	to	true.

			bool	done	=	false;

			while(!done)	{

			...

			}												

Also	see	the	data	types	page.

Related	topics:
chardouble
false
float
int
long
short
signed
true
unsigned
wchar_t

cppreference.com	>	C/C++	Keywords	>	break

break

The	break	keyword	is	used	to	break	out	of	a	do,	for,	or	while	loop.	It	is	also
used	to	finish	each	clause	of	a	switch	statement,	keeping	the	program	from
"falling	through"	to	the	next	case	in	the	code.	An	example:

			while(x	<	100)	{

					if(x	<	0)

							break;

					cout	<<	x	<<	endl;

					x++;

			}												

A	given	break	statement	will	break	out	of	only	the	closest	loop,	no	further.	If
you	have	a	triply-nested	for	loop,	for	example,	you	might	want	to	include	extra
logic	or	a	goto	statement	to	break	out	of	the	loop.

Related	topics:
continuedo
for
goto
switch
while

cppreference.com	>	C/C++	Keywords	>	case

case

The	case	keyword	is	used	to	test	a	variable	against	a	certain	value	in	a	switch
statement.

Related	topics:
defaultswitch

cppreference.com	>	C/C++	Keywords	>	catch

catch

The	catch	statement	handles	exceptions	generated	by	the	throw	statement.

Related	topics:
throwtry

cppreference.com	>	C/C++	Keywords	>	char

char

The	char	keyword	is	used	to	declare	character	variables.	For	more	information
about	variable	types,	see	the	data	types	page.

Related	topics:
booldouble
float
int
long
short
signed
unsigned
void
wchar_t

cppreference.com	>	C/C++	Keywords	>	class

class
Syntax:

		class	class-name	:	inheritance-list	{

		private-members-list;				

		protected:

		protected-members-list;

		public:

		public-members-list;

		}	object-list;

The	class	keyword	allows	you	to	create	new	classes.	class-name	is	the	name	of
the	class	that	you	wish	to	create,	and	inheritance-list	is	an	optional	list	of
classes	inherited	by	the	new	class.	Members	of	the	class	are	private	by	default,
unless	listed	under	either	the	protected	or	public	labels.	object-list	can	be	used
to	immediately	instantiate	one	or	more	instances	of	the	class,	and	is	also
optional.	For	example:

			class	Date	{

					int	Day;

					int	Month;

					int	Year;

			public:

					void	display();

			};											

Related	topics:
friendprivate
protected
public
struct
this
typename
union
virtual

cppreference.com	>	C/C++	Keywords	>	const

const

The	const	keyword	can	be	used	to	tell	the	compiler	that	a	certain	variable	should
not	be	modified	once	it	has	been	initialized.

It	can	also	be	used	to	declare	functions	of	a	class	that	do	not	alter	any	class	data.

Related	topics:
const_castmutable

cppreference.com	>	C/C++	Keywords	>	const_cast

const_cast
Syntax:

		const_cast<type>	(object);

The	const_cast	keyword	can	be	used	to	remove	the	"const-ness"	of	some	datum.
The	target	data	type	must	be	the	same	as	the	source	type,	except	(of	course)	that
the	target	type	doesn't	have	to	be	const.

Related	topics:
constdynamic_cast
reinterpret_cast
static_cast

cppreference.com	>	C/C++	Keywords	>	continue

continue

The	continue	statement	can	be	used	to	bypass	iterations	of	a	given	loop.

For	example,	the	following	code	will	display	all	of	the	numbers	between	0	and
20	except	10:

			for(int	i	=	0;	i	<	21;	i++)	{

					if(i	==	10)	{

							continue;

					}

					cout	<<	i	<<	"	";

			}												

Related	topics:
breakdo
for
while

cppreference.com	>	C/C++	Keywords	>	default

default

A	default	case	in	the	switch	statement.

Related	topics:
caseswitch

cppreference.com	>	C/C++	Keywords	>	delete

delete
Syntax:

		delete	p;

		delete[]	pArray;

The	delete	operator	frees	the	memory	pointed	to	by	p.	The	argument	should
have	been	previously	allocated	by	a	call	to	new.	The	second	form	of	delete
should	be	used	to	delete	an	array.

Related	topics:
(Standard	C	Memory)	free
(Standard	C	Memory)	malloc
new

cppreference.com	>	C/C++	Keywords	>	do

do
Syntax:

		do	{

		statement-list;

		}	while(condition);

The	do	construct	evaluates	the	given	statement-list	repeatedly,	until	condition
becomes	false.	Note	that	every	do	loop	will	evaluate	its	statement	list	at	least
once,	because	the	terminating	condition	is	tested	at	the	end	of	the	loop.

Related	topics:
breakcontinue
for
while

cppreference.com	>	C/C++	Keywords	>	double

double

The	double	keyword	is	used	to	declare	double	precision	floating-point	variables.
Also	see	the	data	types	page.

Related	topics:
boolchar
float
int
long
short
signed
unsigned
void
wchar_t

cppreference.com	>	C/C++	Keywords	>	dynamic_cast

dynamic_cast
Syntax:

		dynamic_cast<type>	(object);

The	dynamic_cast	keyword	casts	a	datum	from	one	type	to	another,	performing
a	runtime	check	to	ensure	the	validity	of	the	cast.	If	you	attempt	to	cast	between
incompatible	types,	the	result	of	the	cast	will	be	NULL.

Related	topics:
const_castreinterpret_cast
static_cast

cppreference.com	>	C/C++	Keywords	>	else

else

The	else	keyword	is	used	as	an	alternative	case	for	the	if	statement.

Related	topics:
if

cppreference.com	>	C/C++	Keywords	>	enum

enum
Syntax:

		enum	name	{name-list}	var-list;

The	enum	keyword	is	used	to	create	an	enumerated	type	named	name	that
consists	of	the	elements	in	name-list.	The	var-list	argument	is	optional,	and	can
be	used	to	create	instances	of	the	type	along	with	the	declaration.	For	example,
the	following	code	creates	an	enumerated	type	for	colors:

			enum	ColorT	{red,	orange,	yellow,	green,	blue,	indigo,	violet};

			...

			ColorT	c1	=	indigo;

			if(c1	==	indigo)	{

					cout	<<	"c1	is	indigo"	<<	endl;

			}												

In	the	above	example,	the	effect	of	the	enumeration	is	to	introduce	several	new
constants	named	red,	orange,	yellow,	etc.	By	default,	these	constants	are
assigned	consecutive	integer	values	starting	at	zero.	You	can	change	the	values
of	those	constants,	as	shown	by	the	next	example:

			enum	ColorT	{	red	=	10,	blue	=	15,	green	};

			...

			ColorT	c	=	green;

			cout	<<	"c	is	"	<<	c	<<	endl;

When	executed,	the	above	code	will	display	the	following	output:

			c	is	16

Note	that	the	above	examples	will	only	work	with	C++	compilers.	If	you're
working	in	regular	C,	you	will	need	to	specify	the	enum	keyword	whenever	you
create	an	instance	of	an	enumerated	type:

			enum	ColorT	{	red	=	10,	blue	=	15,	green	};

			...

			enum	ColorT	c	=	green;			//	note	the	aditional	enum	keyword

			printf("c	is	%d\n",	c);

cppreference.com	>	C/C++	Keywords	>	explicit

explicit

When	a	constructor	is	specified	as	explicit,	no	automatic	conversion	will	be
used	with	that	constructor	--it	will	only	be	used	when	an	initialization	exactly
matches	a	call	to	that	constructor.

cppreference.com	>	C/C++	Keywords	>	export

export

The	export	keyword	is	intended	to	allow	definitions	of	C++	templates	to	be
separated	from	their	declarations.	While	officially	part	of	the	C++	standard,	the
export	keyword	is	only	supported	by	a	few	compilers	(such	as	the	Comeau	C++
compiler)	and	is	not	supported	by	such	mainstream	compilers	as	GCC	and
Visual	C++.

cppreference.com	>	C/C++	Keywords	>	extern

extern

The	extern	keyword	is	used	to	inform	the	compiler	about	variables	declared
outside	of	the	current	scope.	Variables	described	by	extern	statements	will	not
have	any	space	allocated	for	them,	as	they	should	be	properly	defined
elsewhere.

Extern	statements	are	frequently	used	to	allow	data	to	span	the	scope	of
multiple	files.

cppreference.com	>	C/C++	Keywords	>	false

false

The	Boolean	value	of	"false".

Related	topics:
booltrue

cppreference.com	>	C/C++	Keywords	>	float

float

The	float	keyword	is	used	to	declare	floating-point	variables.	Also	see	the	data
types	page.

Related	topics:
boolchar
double
int
long
short
signed
unsigned
void
wchar_t

cppreference.com	>	C/C++	Keywords	>	for

for
Syntax:

		for(initialization;	test-condition;	increment)	{

		statement-list;

		}

The	for	construct	is	a	general	looping	mechanism	consisting	of	4	parts:

1.	 the	initialization,	which	consists	of	0	or	more	comma-delimited	variable
initialization	statements

2.	 the	test-condition,	which	is	evaluated	to	determine	if	the	execution	of	the
for	loop	will	continue

3.	 the	increment,	which	consists	of	0	or	more	comma-delimited	statements
that	increment	variables

4.	 and	the	statement-list,	which	consists	of	0	or	more	statements	that	will	be
executed	each	time	the	loop	is	executed.

For	example:

			for(int	i	=	0;	i	<	10;	i++)	{

					cout	<<	"i	is	"	<<	i	<<	endl;

			}

			int	j,	k;

			for(j	=	0,	k	=	10;

								j	<	k;

								j++,	k--)	{

					cout	<<	"j	is	"	<<	j	<<	"	and	k	is	"	<<	k	<<	endl;

			}

			for(;	;)	{

					//	loop	forever!

			}												

Related	topics:
breakcontinue
do
if

while

cppreference.com	>	C/C++	Keywords	>	friend

friend

The	friend	keyword	allows	classes	or	functions	not	normally	associated	with	a
given	class	to	have	access	to	the	private	data	of	that	class.

Related	topics:
class

cppreference.com	>	C/C++	Keywords	>	goto

goto
Syntax:

		goto	labelA;

		...

		labelA:

The	goto	statement	causes	the	current	thread	of	execution	to	jump	to	the
specified	label.	While	the	use	of	the	goto	statement	is	generally	considered
harmful,	it	can	occasionally	be	useful.	For	example,	it	may	be	cleaner	to	use	a
goto	to	break	out	of	a	deeply-nested	for	loop,	compared	to	the	space	and	time
that	extra	break	logic	would	consume.

Related	topics:
break

http://www.acm.org/classics/oct95/

cppreference.com	>	C/C++	Keywords	>	if

if
Syntax:

		if(conditionA)	{

				statement-listA;

		}

		else	if(conditionB)	{

				statement-listB;

		}

		...

		else	{

				statement-listN;

		}

The	if	construct	is	a	branching	mechanism	that	allows	different	code	to	execute
under	different	conditions.	The	conditions	are	evaluated	in	order,	and	the
statement-list	of	the	first	condition	to	evaluate	to	true	is	executed.	If	no
conditions	evaluate	to	true	and	an	else	statement	is	present,	then	the	statement
list	within	the	else	block	will	be	executed.	All	of	the	else	blocks	are	optional.

Related	topics:
elsefor
switch
while

cppreference.com	>	C/C++	Keywords	>	inline

inline
Syntax:

		inline	int	functionA(int	i)	{

		...

		}

The	inline	keyword	requests	that	the	compiler	expand	a	given	function	in	place,
as	opposed	to	inserting	a	call	to	that	function.	Functions	that	contain	static	data,
loops,	switch	statements,	or	recursive	calls	cannot	be	inlined.	When	a	function
declaration	is	included	in	a	class	declaration,	the	compiler	should	try	to
automatically	inline	that	function.

cppreference.com	>	C/C++	Keywords	>	int

int

The	int	keyword	is	used	to	declare	integer	variables.	Also	see	the	data	types
page.

Related	topics:
boolchar
double
float
long
short
signed
unsigned
void
wchar_t

cppreference.com	>	C/C++	Keywords	>	long

long

The	long	keyword	is	a	data	type	modifier	that	is	used	to	declare	long	integer
variables.	For	more	information	on	long,	see	the	data	types	page.

Related	topics:
boolchar
double
float
int
short
signed
void

cppreference.com	>	C/C++	Keywords	>	mutable

mutable

The	mutable	keyword	overrides	any	enclosing	const	statement.	A	mutable
member	of	a	const	object	can	be	modified.

Related	topics:
const

cppreference.com	>	C/C++	Keywords	>	namespace

namespace
Syntax:

		namespace	name	{

		declaration-list;

		}

The	namespace	keyword	allows	you	to	create	a	new	scope.	The	name	is
optional,	and	can	be	omitted	to	create	an	unnamed	namespace.	Once	you	create
a	namespace,	you'll	have	to	refer	to	it	explicitly	or	use	the	using	keyword.

Example	code:

			namespace	CartoonNameSpace	{

					int	HomersAge;

					void	incrementHomersAge()	{

							HomersAge++;

					}

			}

			int	main()	{

					...

					CartoonNameSpace::HomersAge	=	39;

					CartoonNameSpace::incrementHomersAge();

					cout	<<	CartoonNameSpace::HomersAge	<<	endl;

					...

			}												

Related	topics:
using

cppreference.com	>	C/C++	Keywords	>	new

new
Syntax:

		pointer	=	new	type;

		pointer	=	new	type(initializer);

		pointer	=	new	type[size];

The	new	operator	allocates	a	new	chunk	of	memory	to	hold	a	variable	of	type
type	and	returns	a	pointer	to	that	memory.	An	optional	initializer	can	be	used	to
initialize	the	memory.	Allocating	arrays	can	be	accomplished	by	providing	a
size	parameter	in	brackets.

Related	topics:
delete(Standard	C	Memory)	free
(Standard	C	Memory)	malloc

cppreference.com	>	C/C++	Keywords	>	operator

operator
Syntax:

		return-type	class-name::operator#(parameter-list)	{

		...

		}

		return-type	operator#(parameter-list)	{

		...

		}

The	operator	keyword	is	used	to	overload	operators.	The	sharp	sign	(#)	listed
above	in	the	syntax	description	represents	the	operator	which	will	be
overloaded.	If	part	of	a	class,	the	class-name	should	be	specified.	For	unary
operators,	parameter-list	should	be	empty,	and	for	binary	operators,	parameter-
list	should	contain	the	operand	on	the	right	side	of	the	operator	(the	operand	on
the	left	side	is	passed	as	this).

For	the	non-member	operator	overload	function,	the	operand	on	the	left	side
should	be	passed	as	the	first	parameter	and	the	operand	on	the	right	side	should
be	passed	as	the	second	parameter.

You	cannot	overload	the	#,	##,	.,	:,	.*,	or	?	tokens.

Related	topics:
this

cppreference.com	>	C/C++	Keywords	>	private

private

Private	data	of	a	class	can	only	be	accessed	by	members	of	that	class,	except
when	friend	is	used.	The	private	keyword	can	also	be	used	to	inherit	a	base
class	privately,	which	causes	all	public	and	protected	members	of	the	base	class
to	become	private	members	of	the	derived	class.

Related	topics:
classprotected
public

cppreference.com	>	C/C++	Keywords	>	protected

protected

Protected	data	are	private	to	their	own	class	but	can	be	inherited	by	derived
classes.	The	protected	keyword	can	also	be	used	as	an	inheritance	specifier,
which	causes	all	public	and	protected	members	of	the	base	class	to	become
protected	members	of	the	derived	class.

Related	topics:
classprivate
public

cppreference.com	>	C/C++	Keywords	>	public

public

Public	data	in	a	class	are	accessible	to	everyone.	The	public	keyword	can	also
be	used	as	an	inheritance	specifier,	which	causes	all	public	and	protected
members	of	the	base	class	to	become	public	and	protected	members	of	the
derived	class.

Related	topics:
classprivate
protected

cppreference.com	>	C/C++	Keywords	>	register

register

The	register	keyword	requests	that	a	variable	be	optimized	for	speed,	and	fell
out	of	common	use	when	computers	became	better	at	most	code	optimizations
than	humans.

Related	topics:
auto

cppreference.com	>	C/C++	Keywords	>	reinterpret_cast

reinterpret_cast
Syntax:

		reinterpret_cast<type>	(object);

The	reinterpret_cast	operator	changes	one	data	type	into	another.	It	should	be
used	to	cast	between	incompatible	pointer	types.

Related	topics:
const_castdynamic_cast
static_cast

cppreference.com	>	C/C++	Keywords	>	return

return
Syntax:

		return;

		return(value);

The	return	statement	causes	execution	to	jump	from	the	current	function	to
whatever	function	called	the	current	function.	An	optional	value	can	be
returned.	A	function	may	have	more	than	one	return	statement.

cppreference.com	>	C/C++	Keywords	>	short

short

The	short	keyword	is	a	data	type	modifier	that	is	used	to	declare	short	integer
variables.	See	the	data	types	page.

Related	topics:
boolchar
double
float
int
long
signed
unsigned
void
wchar_t

cppreference.com	>	C/C++	Keywords	>	signed

signed

The	signed	keyword	is	a	data	type	modifier	that	is	usually	used	to	declare
signed	char	variables.	See	the	data	types	page.

Related	topics:
boolchar
double
float
int
long
short
unsigned
void
wchar_t

cppreference.com	>	C/C++	Keywords	>	sizeof

sizeof

The	sizeof	operator	is	a	compile-time	operator	that	returns	the	size,	in	bytes,	of	the
argument	passed	to	it.	For	example,	the	following	code	uses	sizeof	to	display	the
sizes	of	a	number	of	variables:

		

		struct	EmployeeRecord	{

				int	ID;

				int	age;

				double	salary;

				EmployeeRecord*	boss;

		};

		...

		cout	<<	"sizeof(int):	"	<<	sizeof(int)	<<	endl

							<<	"sizeof(float):	"	<<	sizeof(float)	<<	endl

							<<	"sizeof(double):	"	<<	sizeof(double)	<<	endl

							<<	"sizeof(char):	"	<<	sizeof(char)	<<	endl

							<<	"sizeof(EmployeeRecord):	"	<<	sizeof(EmployeeRecord)	<<	endl;

		int	i;

		float	f;

		double	d;

		char	c;

		EmployeeRecord	er;

		cout	<<	"sizeof(i):	"	<<	sizeof(i)	<<	endl

							<<	"sizeof(f):	"	<<	sizeof(f)	<<	endl

							<<	"sizeof(d):	"	<<	sizeof(d)	<<	endl

							<<	"sizeof(c):	"	<<	sizeof(c)	<<	endl

							<<	"sizeof(er):	"	<<	sizeof(er)	<<	endl;

When	run,	the	above	code	displays	this	output:

		

		sizeof(int):	4

		sizeof(float):	4

		sizeof(double):	8

		sizeof(char):	1

		sizeof(EmployeeRecord):	20

		sizeof(i):	4

		sizeof(f):	4

		sizeof(d):	8

		sizeof(c):	1

		sizeof(er):	20

Note	that	sizeof	can	either	take	a	variable	type	(such	as	int)	or	a	variable	name	(such
as	i	in	the	example	above).

It	is	also	important	to	note	that	the	sizes	of	various	types	of	variables	can	change
depending	on	what	system	you're	on.	Check	out	a	description	of	the	C	and	C++	data
types	for	more	information.

Related	topics:
C/C++	Data	Types

cppreference.com	>	C/C++	Keywords	>	static

static

The	static	data	type	modifier	is	used	to	create	permanent	storage	for	variables.
Static	variables	keep	their	value	between	function	calls.	When	used	in	a	class,
all	instantiations	of	that	class	share	one	copy	of	the	variable.

cppreference.com	>	C/C++	Keywords	>	static_cast

static_cast
Syntax:

		static_cast<type>	(object);

The	static_cast	keyword	can	be	used	for	any	normal	conversion	between	types.
No	runtime	checks	are	performed.

Related	topics:
const_castdynamic_cast
reinterpret_cast

cppreference.com	>	C/C++	Keywords	>	struct

struct
Syntax:

		struct	struct-name	:	inheritance-list	{

		public-members-list;				

		protected:

		protected-members-list;

		private:

		private-members-list;

		}	object-list;

Structs	are	like	`classes`,	except	that	by	default	members	of	a	struct	are	public
rather	than	private.	In	C,	structs	can	only	contain	data	and	are	not	permitted	to
have	inheritance	lists.	For	example:

			struct	Date	{

					int	Day;

					int	Month;

					int	Year;

			};											

Related	topics:
classunion

cppreference.com	>	C/C++	Keywords	>	switch

switch
Syntax:

		switch(expression)	{

		case	A:

		statement	list;

		break;

		case	B:

		statement	list;

		break;

		...

		case	N:

		statement	list;

		break;

		default:

		statement	list;

		break;

		}

The	switch	statement	allows	you	to	test	an	expression	for	many	values,	and	is
commonly	used	as	a	replacement	for	multiple	if()...else	if()...else	if()...
statements.	break	statements	are	required	between	each	case	statement,
otherwise	execution	will	"fall-through"	to	the	next	case	statement.	The	default
case	is	optional.	If	provided,	it	will	match	any	case	not	explicitly	covered	by	the
preceding	cases	in	the	switch	statement.	For	example:

			char	keystroke	=	getch();

			switch(keystroke)	{

					case	'a':

					case	'b':

					case	'c':

					case	'd':

							KeyABCDPressed();

							break;

					case	'e':

							KeyEPressed();

							break;

					default:

							UnknownKeyPressed();

							break;

			}												

Related	topics:
breakcase
default
if

cppreference.com	>	C/C++	Keywords	>	template

template
Syntax:

		template	<class	data-type>	return-type	name(parameter-list)	{

		statement-list;

		}

Templates	are	used	to	create	generic	functions	and	can	operate	on	data	without	knowing
the	nature	of	that	data.	They	accomplish	this	by	using	a	placeholder	data-type	for	which
many	other	data	types	can	be	substituted.

Example	code:

For	example,	the	following	code	uses	a	template	to	define	a	generic	swap	function	that
can	swap	two	variables	of	any	type:

			template<class	X>	void	genericSwap(X	&a,	X	&b)	{

					X	tmp;													

					tmp	=	a;

					a	=	b;

					b	=	tmp;

			}

			int	main(void)	{

					...

					int	num1	=	5;

					int	num2	=	21;

					cout	<<	"Before,	num1	is	"	<<	num1	<<	"	and	num2	is	"	<<	num2	<<	endl;

					genericSwap(num1,	num2);

					cout	<<	"After,	num1	is	"	<<	num1	<<	"	and	num2	is	"	<<	num2	<<	endl;

					char	c1	=	'a';

					char	c2	=	'z';

					cout	<<	"Before,	c1	is	"	<<	c1	<<	"	and	c2	is	"	<<	c2	<<	endl;

					genericSwap(c1,	c2);

					cout	<<	"After,	c1	is	"	<<	c1	<<	"	and	c2	is	"	<<	c2	<<	endl;

					...

					return(0);

			}												

Related	topics:
typename

cppreference.com	>	C/C++	Keywords	>	this

this

The	this	keyword	is	a	pointer	to	the	current	object.	All	member	functions	of	a
class	have	a	this	pointer.

Related	topics:
classoperator

cppreference.com	>	C/C++	Keywords	>	throw

throw
Syntax:

		try	{

		statement	list;

		}

		catch(typeA	arg)	{

		statement	list;

		}

		catch(typeB	arg)	{

		statement	list;

		}

		...

		catch(typeN	arg)	{

		statement	list;

		}

The	throw	statement	is	part	of	the	C++	mechanism	for	exception	handling.	This
statement,	together	with	the	try	and	catch	statements,	the	C++	exception
handling	system	gives	programmers	an	elegant	mechanism	for	error	recovery.

You	will	generally	use	a	try	block	to	execute	potentially	error-prone	code.
Somewhere	in	this	code,	a	throw	statement	can	be	executed,	which	will	cause
execution	to	jump	out	of	the	try	block	and	into	one	of	the	catch	blocks.	For
example:

			try	{

					cout	<<	"Before	throwing	exception"	<<	endl;

					throw	42;

					cout	<<	"Shouldn't	ever	see	this"	<<	endl;

			}

			catch(int	error)	{

					cout	<<	"Error:	caught	exception	"	<<	error	<<	endl;

			}												

Related	topics:
catchtry

cppreference.com	>	C/C++	Keywords	>	true

true

The	Boolean	value	of	"true".

Related	topics:
boolfalse

cppreference.com	>	C/C++	Keywords	>	try

try

The	try	statement	attempts	to	execute	exception-generating	code.	See	the	throw
statement	for	more	details.

Related	topics:
catchthrow

cppreference.com	>	C/C++	Keywords	>	typedef

typedef
Syntax:

		typedef	existing-type	new-type;

The	typedef	keyword	allows	you	to	create	a	new	type	from	an	existing	type.

cppreference.com	>	C/C++	Keywords	>	typeid

typeid
Syntax:

		typeid(object);

The	typeid	operator	returns	a	reference	to	a	type_info	object	that	describes
`object`.

cppreference.com	>	C/C++	Keywords	>	typename

typename

The	typename	keyword	can	be	used	to	describe	an	undefined	type	or	in	place	of
the	class	keyword	in	a	template	declaration.

Related	topics:
classtemplate

cppreference.com	>	C/C++	Keywords	>	union

union
Syntax:

		union	union-name	{

		public-members-list;				

		private:

		private-members-list;

		}	object-list;

A	union	is	like	a	class,	except	that	all	members	of	a	union	share	the	same
memory	location	and	are	by	default	public	rather	than	private.	For	example:

			union	Data	{

					int	i;

					char	c;

			};											

Related	topics:
classstruct

cppreference.com	>	C/C++	Keywords	>	unsigned

unsigned

The	unsigned	keyword	is	a	data	type	modifier	that	is	usually	used	to	declare
unsigned	int	variables.	See	the	data	types	page.

Related	topics:
boolchar
double
float
int
short
signed
void
wchar_t

cppreference.com	>	C/C++	Keywords	>	using

using

The	using	keyword	is	used	to	import	a	namespace	(or	parts	of	a	namespace)	into
the	current	scope.

Example	code:

For	example,	the	following	code	imports	the	entire	std	namespace	into	the
current	scope	so	that	items	within	that	namespace	can	be	used	without	a
preceeding	"std::".

	using	namespace	std;											

Alternatively,	the	next	code	snippet	just	imports	a	single	element	of	the	std
namespace	into	the	current	namespace:

	using	std::cout;															

Related	topics:
namespace

cppreference.com	>	C/C++	Keywords	>	virtual

virtual
Syntax:

		virtual	return-type	name(parameter-list);

		virtual	return-type	name(parameter-list)	=	0;

The	virtual	keyword	can	be	used	to	create	virtual	functions,	which	can	be
overridden	by	derived	classes.

A	virtual	function	indicates	that	a	function	can	be	overridden	in	a	subclass,
and	that	the	overridden	function	will	actually	be	used.
When	a	base	object	pointer	points	to	a	derived	object	that	contains	a	virtual
function,	the	decision	about	which	version	of	that	function	to	call	is	based
on	the	type	of	object	pointed	to	by	the	pointer,	and	this	process	happens	at
runtime.
A	base	object	can	point	to	different	derived	objects	and	have	different
versions	of	the	virtual	function	run.

If	the	function	is	specified	as	a	pure	virtual	function	(denoted	by	the	=	0),	it
must	be	overridden	by	a	derived	class.

Example	code:

For	example,	the	following	code	snippet	shows	how	a	child	class	can	override	a
virtual	method	of	its	parent,	and	how	a	non-virtual	method	in	the	parent	cannot
be	overridden:

class	Base	{

public:

	void	nonVirtualFunc()	{

			cout	<<	"Base:	non-virtual	function"	<<	endl;

	}

	virtual	void	virtualFunc()	{

			cout	<<	"Base:	virtual	function"	<<	endl;

	}

};														

class	Child	:	public	Base	{

public:

	void	nonVirtualFunc()	{

			cout	<<	"Child:	non-virtual	function"	<<	endl;

	}

	void	virtualFunc()	{

			cout	<<	"Child:	virtual	function"	<<	endl;

	}

};														

int	main()	{

	Base*	basePointer	=	new	Child();

	basePointer->nonVirtualFunc();

	basePointer->virtualFunc();

	return	0;

}															

When	run,	the	above	code	displays:

Base:	non-virtual	function

Child:	virtual	function									

Related	topics:
class

cppreference.com	>	C/C++	Keywords	>	void

void

The	void	keyword	is	used	to	denote	functions	that	return	no	value,	or	generic
variables	which	can	point	to	any	type	of	data.	Void	can	also	be	used	to	declare
an	empty	parameter	list.	Also	see	the	data	types	page.

Related	topics:
chardouble
float
int
long
short
signed
unsigned
wchar_t

cppreference.com	>	C/C++	Keywords	>	volatile

volatile

The	volatile	keyword	is	an	implementation-dependent	modifier,	used	when
declaring	variables,	which	prevents	the	compiler	from	optimizing	those
variables.	Volatile	should	be	used	with	variables	whose	value	can	change	in
unexpected	ways	(i.e.	through	an	interrupt),	which	could	conflict	with
optimizations	that	the	compiler	might	perform.

cppreference.com	>	C/C++	Keywords	>	wchar_t

wchar_t

The	keyword	wchar_t	is	used	to	declare	wide	character	variables.	Also	see	the
data	types	page.

Related	topics:
boolchar
double
float
int
short
signed
unsigned
void

cppreference.com	>	C/C++	Keywords	>	while

while
Syntax:

		while(condition)	{

		statement-list;

		}

The	while	keyword	is	used	as	a	looping	construct	that	will	evaluate	the
statement-list	as	long	as	condition	is	true.	Note	that	if	the	condition	starts	off	as
false,	the	statement-list	will	never	be	executed.	(You	can	use	a	do	loop	to
guarantee	that	the	statement-list	will	be	executed	at	least	once.)	For	example:

			bool	done	=	false;

			while(!done)	{

					ProcessData();

					if(StopLooping())	{

							done	=	true;

					}

			}												

Related	topics:
breakcontinue
do
for
if

cppreference.com	>	C/C++	Pre-processor	Commands

C/C++	Pre-processor	Commands

Display	all	entries	for	C/C++	Pre-processor	Commands	on	one	page,	or	view
entries	individually:

#,	## manipulate	strings
#define define	variables
#error display	an	error	message
#if,	#ifdef,	#ifndef,	#else,	#elif,
#endif conditional	operators

#include insert	the	contents	of	another	file
#line set	line	and	file	information
#pragma implementation	specific	command
#undef used	to	undefine	variables

Predefined	preprocessor	variables miscellaneous	preprocessor
variables

cppreference.com	>	C/C++	Pre-processor	Commands	>	#define

#define
Syntax:

		#define	macro-name	replacement-string

The	#define	command	is	used	to	make	substitutions	throughout	the	file	in	which
it	is	located.	In	other	words,	#define	causes	the	compiler	to	go	through	the	file,
replacing	every	occurrence	of	macro-name	with	replacement-string.	The
replacement	string	stops	at	the	end	of	the	line.

Example	code:

Here's	a	typical	use	for	a	#define	(at	least	in	C):

			#define	TRUE	1

			#define	FALSE	0

			...

			int	done	=	0;

			while(done	!=	TRUE)	{

						...

			}												

Another	feature	of	the	#define	command	is	that	it	can	take	arguments,	making	it
rather	useful	as	a	pseudo-function	creator.	Consider	the	following	code:

			#define	absolute_value(x)	(((x)	<	0)	?	-(x)	:	(x))

			...

			int	x	=	-1;

			while(absolute_value(x))	{

						...

			}												

It's	generally	a	good	idea	to	use	extra	parentheses	when	using	complex	macros.
Notice	that	in	the	above	example,	the	variable	"x"	is	always	within	it's	own	set
of	parentheses.	This	way,	it	will	be	evaluated	in	whole,	before	being	compared
to	0	or	multiplied	by	-1.	Also,	the	entire	macro	is	surrounded	by	parentheses,	to
prevent	it	from	being	contaminated	by	other	code.	If	you're	not	careful,	you	run

the	risk	of	having	the	compiler	misinterpret	your	code.

Here	is	an	example	of	how	to	use	the	#define	command	to	create	a	general
purpose	incrementing	for	loop	that	prints	out	the	integers	1	through	20:

	#define	count_up(v,	low,	high)	\

			for((v)	=	(low);	(v)	<=	(high);	(v)++)										

	...												

	int	i;

	count_up(i,	1,	20)	{

			printf("i	is	%d\n",	i);

	}														

Related	topics:
#,	###if,	#ifdef,	#ifndef,	#else,	#elif,	#endif
#undef

cppreference.com	>	C/C++	Pre-processor	Commands	>	#error

#error
Syntax:

		#error	message

The	#error	command	simply	causes	the	compiler	to	stop	when	it	is	encountered.
When	an	#error	is	encountered,	the	compiler	spits	out	the	line	number	and
whatever	message	is.	This	command	is	mostly	used	for	debugging.

cppreference.com	>	C/C++	Pre-processor	Commands	>	#include

#include
Syntax:

		#include	<filename>

		#include	"filename"

This	command	slurps	in	a	file	and	inserts	it	at	the	current	location.	The	main
difference	between	the	syntax	of	the	two	items	is	that	if	filename	is	enclosed	in
angled	brackets,	then	the	compiler	searches	for	it	somehow.	If	it	is	enclosed	in
quotes,	then	the	compiler	doesn't	search	very	hard	for	the	file.

While	the	behavior	of	these	two	searches	is	up	to	the	compiler,	usually	the
angled	brackets	means	to	search	through	the	standard	library	directories,	while
the	quotes	indicate	a	search	in	the	current	directory.	The	spiffy	new	C++
#include	commands	don't	need	to	map	directly	to	filenames,	at	least	not	for	the
standard	libraries.	That's	why	you	can	get	away	with

			#include	<iostream>												

and	not	have	the	compiler	choke	on	you.

cppreference.com	>	C/C++	Pre-processor	Commands	>	#line

#line
Syntax:

		#line	line_number	"filename"

The	#line	command	is	simply	used	to	change	the	value	of	the	__LINE__	and
__FILE__	variables.	The	filename	is	optional.	The	__LINE__	and	__FILE__
variables	represent	the	current	file	and	which	line	is	being	read.	The	command

			#line	10	"main.cpp"																

changes	the	current	line	number	to	10,	and	the	current	file	to	"main.cpp".

cppreference.com	>	C/C++	Pre-processor	Commands	>	#pragma

#pragma

The	#pragma	command	gives	the	programmer	the	ability	to	tell	the	compiler	to
do	certain	things.	Since	the	#pragma	command	is	implementation	specific,	uses
vary	from	compiler	to	compiler.	One	option	might	be	to	trace	program
execution.

cppreference.com	>	C/C++	Pre-processor	Commands	>	#if,	#ifdef,	#ifndef,
#else,	#elif,	#endif

#if,	#ifdef,	#ifndef,	#else,	#elif,
#endif

These	commands	give	simple	logic	control	to	the	compiler.	As	a	file	is	being
compiled,	you	can	use	these	commands	to	cause	certain	lines	of	code	to	be
included	or	not	included.

			#if	expression															

If	the	value	of	expression	is	true,	then	the	code	that	immediately	follows	the
command	will	be	compiled.

			#ifdef	macro									

If	the	macro	has	been	defined	by	a	#define	statement,	then	the	code
immediately	following	the	command	will	be	compiled.

			#ifndef	macro																

If	the	macro	has	not	been	defined	by	a	#define	statement,	then	the	code
immediately	following	the	command	will	be	compiled.

A	few	side	notes:	The	command	#elif	is	simply	a	horribly	truncated	way	to	say
"elseif"	and	works	like	you	think	it	would.	You	can	also	throw	in	a	"defined"	or
"!defined"	after	an	#if	to	get	added	functionality.

Example	code:

Here's	an	example	of	all	these:

			#ifdef	DEBUG

					cout	<<	"This	is	the	test	version,	i="	<<	i	<<	endl;

			#else

					cout	<<	"This	is	the	production	version!"	<<	endl;

			#endif															

You	might	notice	how	that	second	example	could	make	debugging	a	lot	easier
than	inserting	and	removing	a	million	"cout"s	in	your	code.

Related	topics:
#define

cppreference.com	>	C/C++	Pre-processor	Commands	>	Predefined
preprocessor	variables

Predefined	preprocessor	variables
Syntax:

		__LINE__

		__FILE__

		__DATE__

		__TIME__

		_cplusplus

		__STDC__

The	following	variables	can	vary	by	compiler,	but	generally	work:

The	__LINE__	and	__FILE__	variables	represent	the	current	line	and
current	file	being	processed.
The	__DATE__	variable	contains	the	current	date,	in	the	form
month/day/year.	This	is	the	date	that	the	file	was	compiled,	not	necessarily
the	current	date.
The	__TIME__	variable	represents	the	current	time,	in	the	form
hour:minute:second.	This	is	the	time	that	the	file	was	compiled,	not
necessarily	the	current	time.
The	_cplusplus	variable	is	only	defined	when	compiling	a	C++	program.
The	__STDC__	variable	is	defined	when	compiling	a	C	program,	and	may
also	be	defined	when	compiling	C++.

cppreference.com	>	C/C++	Pre-processor	Commands	>	#,	##

#,	##

The	#	and	##	operators	are	used	with	the	#define	macro.	Using	#	causes	the	first
argument	after	the	#	to	be	returned	as	a	string	in	quotes.	Using	##	concatenates
what's	before	the	##	with	what's	after	it.

Example	code:

For	example,	the	command

			#define	to_string(s)	#	s											

will	make	the	compiler	turn	this	command

			cout	<<	to_string(Hello	World!)	<<	endl;															

into

			cout	<<	"Hello	World!"	<<	endl;																

Here	is	an	example	of	the	##	command:

			#define	concatenate(x,	y)	x	##	y

			...

			int	xy	=	10;

			...										

This	code	will	make	the	compiler	turn

			cout	<<	concatenate(x,	y)	<<	endl;													

into

			cout	<<	xy	<<	endl;														

which	will,	of	course,	display	'10'	to	standard	output.

Related	topics:

#define

cppreference.com	>	C/C++	Pre-processor	Commands	>	#undef

#undef

The	#undef	command	undefines	a	previously	defined	macro	variable,	such	as	a
variable	defined	by	a	#define.

Related	topics:
#define

cppreference.com	>	ASCII	chart

ASCII	Chart

The	following	chart	contains	ASCII	decimal,	octal,	hexadecimal
and	character	codes	for	values	from	0	to	127.

DecimalOctalHexCharacter Description
0 0 00 NUL
1 1 01 SOH start	of	header
2 2 02 STX start	of	text
3 3 03 ETX end	of	text
4 4 04 EOT end	of	transmission
5 5 05 ENQ enquiry
6 6 06 ACK acknowledge
7 7 07 BEL bell
8 10 08 BS backspace
9 11 09 HT horizontal	tab
10 12 0A LF line	feed
11 13 0B VT vertical	tab
12 14 0C FF form	feed
13 15 0D CR carriage	return
14 16 0E SO shift	out
15 17 0F SI shift	in
16 20 10 DLE data	link	escape
17 21 11 DC1 no	assignment,	but	usually	XON
18 22 12 DC2
19 23 13 DC3 no	assignment,	but	usually	XOFF
20 24 14 DC4
21 25 15 NAK negative	acknowledge
22 26 16 SYN synchronous	idle
23 27 17 ETB end	of	transmission	block
24 30 18 CAN cancel
25 31 19 EM end	of	medium
26 32 1A SUB substitute

27 33 1B ESC escape
28 34 1C FS file	seperator
29 35 1D GS group	seperator
30 36 1E RS record	seperator
31 37 1F US unit	seperator
32 40 20 SPC space
33 41 21 !
34 42 22 "
35 43 23 #
36 44 24 $
37 45 25 %
38 46 26 &
39 47 27 '
40 50 28 (
41 51 29)
42 52 2A *
43 53 2B +
44 54 2C ,
45 55 2D -
46 56 2E .
47 57 2F /
48 60 30 0
49 61 31 1
50 62 32 2
51 63 33 3
52 64 34 4
53 65 35 5
54 66 36 6
55 67 37 7
56 70 38 8
57 71 39 9
58 72 3A :
59 73 3B ;
60 74 3C <
61 75 3D =
62 76 3E >

63 77 3F ?
64 100 40 @
65 101 41 A
66 102 42 B
67 103 43 C
68 104 44 D
69 105 45 E
70 106 46 F
71 107 47 G
72 110 48 H
73 111 49 I
74 112 4A J
75 113 4B K
76 114 4C L
77 115 4D M
78 116 4E N
79 117 4F O
80 120 50 P
81 121 51 Q
82 122 52 R
83 123 53 S
84 124 54 T
85 125 55 U
86 126 56 V
87 127 57 W
88 130 58 X
89 131 59 Y
90 132 5A Z
91 133 5B [
92 134 5C \
93 135 5D]
94 136 5E ^
95 137 5F _
96 140 60 `
97 141 61 a
98 142 62 b

99 143 63 c
100 144 64 d
101 145 65 e
102 146 66 f
103 147 67 g
104 150 68 h
105 151 69 i
106 152 6A j
107 153 6B k
108 154 6C l
109 155 6D m
110 156 6E n
111 157 6F o
112 160 70 p
113 161 71 q
114 162 72 r
115 163 73 s
116 164 74 t
117 165 75 u
118 166 76 v
119 167 77 w
120 170 78 x
121 171 79 y
122 172 7A z
123 173 7B {
124 174 7C |
125 175 7D }
126 176 7E ~
127 177 7F DEL delete

cppreference.com	>	Escape	Sequences

Constant	Escape	Sequences

The	following	escape	sequences	can	be	used	to	print	out	special	characters.

Escape	SequenceDescription
\' Single	quote
\" Double	quote
\\ Backslash
\nnn Octal	number	(nnn)
\0 Null	character	(really	just	the	octal	number	zero)
\a Audible	bell
\b Backspace
\f Formfeed
\n Newline
\r Carriage	return
\t Horizontal	tab
\v Vertical	tab
\xnnn Hexadecimal	number	(nnn)

An	example	of	this	is	contained	in	the	following	code:

		printf("This\nis\na\ntest\n\nShe	said,	\"How	are	you?\"\n");

which	would	display

		This

		is

		a

		test

		She	said,	"How	are	you?"

cppreference.com	>	C++	Operator	Precedence

C++	Operator	Precedence

The	operators	at	the	top	of	this	list	are	evaluated	first.

Precedence Operator Description Example Associativity

1

()
[]
->
.
::
++
--

Grouping
operator
Array	access
Member
access	from	a
pointer
Member
access	from
an	object
Scoping
operator
Post-
increment
Post-
decrement

(a	+	b)	/	4;
array[4]	=	2;
ptr->age	=	34;
obj.age	=	34;
Class::age	=	2;
for(i	=	0;	i	<	10;
i++)	...
for(i	=	10;	i	>	0;
i--)	...

left	to	right

2

!
~
++
--
-
+
*
&
(type)
sizeof

Logical
negation
Bitwise
complement
Pre-increment
Pre-
decrement
Unary	minus
Unary	plus
Dereference
Address	of
Cast	to	a
given	type
Return	size	in

if(!done)	...
flags	=	~flags;
for(i	=	0;	i	<	10;
++i)	...
for(i	=	10;	i	>	0;
--i)	...
int	i	=	-1;
int	i	=	+1;
data	=	*ptr;
address	=	&obj;
int	i	=	(int)
floatNum;
int	size	=
sizeof(floatNum);

right	to	left

bytes

3 ->*
.*

Member
pointer
selector
Member
pointer
selector

ptr->*var	=	24;
obj.*var	=	24; left	to	right

4
*
/
%

Multiplication
Division
Modulus

int	i	=	2	*	4;
float	f	=	10	/	3;
int	rem	=	4	%	3;

left	to	right

5 +
-

Addition
Subtraction

int	i	=	2	+	3;
int	i	=	5	-	1; left	to	right

6 <<
>>

Bitwise	shift
left
Bitwise	shift
right

int	flags	=	33	<<
1;
int	flags	=	33	>>
1;

left	to	right

7

<
<=
>
>=

Comparison
less-than
Comparison
less-than-or-
equal-to
Comparison
greater-than
Comparison
geater-than-
or-equal-to

if(i	<	42)	...
if(i	<=	42)	...
if(i	>	42)	...
if(i	>=	42)	...

left	to	right

8 ==
!=

Comparison
equal-to
Comparison
not-equal-to

if(i	==	42)	...
if(i	!=	42)	... left	to	right

9 & Bitwise	AND flags	=	flags	&
42; left	to	right

10 ^ Bitwise
exclusive	OR flags	=	flags	^	42; left	to	right

11 | Bitwise
inclusive
(normal)	OR

flags	=	flags	|	42; left	to	right

12 && Logical	AND
if(conditionA
&&	conditionB)
...

left	to	right

13 || Logical	OR if(conditionA	||
conditionB)	... left	to	right

14 ?	:
Ternary
conditional
(if-then-else)

int	i	=	(a	>	b)	?	a
:	b; right	to	left

15

=
+=
-=
*=
/=
%=
&=
^=
|=
<<=
>>=

Assignment
operator
Increment	and
assign
Decrement
and	assign
Multiply	and
assign
Divide	and
assign
Modulo	and
assign
Bitwise	AND
and	assign
Bitwise
exclusive	OR
and	assign
Bitwise
inclusive
(normal)	OR
and	assign
Bitwise	shift
left	and
assign
Bitwise	shift
right	and

int	a	=	b;
a	+=	3;
b	-=	4;
a	*=	5;
a	/=	2;
a	%=	3;
flags	&=
new_flags;
flags	^=
new_flags;
flags	|=
new_flags;
flags	<<=	2;
flags	>>=	2;

right	to	left

assign

16 ,
Sequential
evaluation
operator

for(i	=	0,	j	=	0;	i
<	10;	i++,	j++)
...

left	to	right

It	is	important	to	note	that	there	is	no	specified	precedence	for	the
operation	of	changing	a	variable	into	a	value.	For	example,	consider	the
following	code:

		float	x,	result;

		x	=	1;

		result	=	x	/	++x;

The	value	of	result	is	not	guaranteed	to	be	consistent	across	different
compilers,	because	it	is	not	clear	whether	the	computer	should	change	the
variable	x	(the	one	that	occurs	on	the	left	side	of	the	division	operator)
before	using	it.	Depending	on	which	compiler	you	are	using,	the	variable
result	can	either	be	1.0	or	0.5.	The	bottom	line	is	that	you	should	not	use	the
same	variable	multiple	times	in	a	single	expression	when	using	operators
with	side	effects.

cppreference.com	>	Standard	C	Memory

calloc
Syntax:

		#include	<stdlib.h>

		void*	calloc(size_t	num,	size_t	size);

The	calloc()	function	returns	a	pointer	to	space	for	an	array	of	num	objects,	each
of	size	size.	The	newly	allocated	memory	is	initialized	to	zero.

calloc()	returns	NULL	if	there	is	an	error.

Related	topics:
freemalloc
realloc

free
Syntax:

		#include	<stdlib.h>

		void	free(void*	ptr);

The	free()	function	deallocates	the	space	pointed	to	by	ptr,	freeing	it	up	for
future	use.	ptr	must	have	been	used	in	a	previous	call	to	malloc(),	calloc(),	or
realloc().	An	example:

			typedef	struct	data_type	{

					int	age;

					char	name[20];

			}	data;														

			data	*willy;

			willy	=	(data*)	malloc(sizeof(*willy));

			...

			free(willy);															

Related	topics:
calloc
(C/C++	Keywords)	delete
malloc
(C/C++	Keywords)	new
realloc

malloc
Syntax:

		#include	<stdlib.h>

		void	*malloc(size_t	size);

The	function	malloc()	returns	a	pointer	to	a	chunk	of	memory	of	size	size,	or
NULL	if	there	is	an	error.	The	memory	pointed	to	will	be	on	the	heap,	not	the
stack,	so	make	sure	to	free	it	when	you	are	done	with	it.	An	example:

			typedef	struct	data_type	{

					int	age;

					char	name[20];

			}	data;														

			data	*bob;

			bob	=	(data*)	malloc(sizeof(data));

			if(bob	!=	NULL)	{

					bob->age	=	22;

					strcpy(bob->name,	"Robert");

					printf("%s	is	%d	years	old\n",	bob->name,	bob->age);

			}

			free(bob);									

Related	topics:
calloc
(C/C++	Keywords)	delete
free
(C/C++	Keywords)	new
realloc

realloc
Syntax:

		#include	<stdlib.h>

		void	*realloc(void	*ptr,	size_t	size);

The	realloc()	function	changes	the	size	of	the	object	pointed	to	by	ptr	to	the
given	size.	size	can	be	any	size,	larger	or	smaller	than	the	original.	The	return
value	is	a	pointer	to	the	new	space,	or	NULL	if	there	is	an	error.

Related	topics:
calloc
free
malloc

cppreference.com	>	Standard	C	Memory	>	calloc

calloc
Syntax:

		#include	<stdlib.h>

		void*	calloc(size_t	num,	size_t	size);

The	calloc()	function	returns	a	pointer	to	space	for	an	array	of	num	objects,	each
of	size	size.	The	newly	allocated	memory	is	initialized	to	zero.

calloc()	returns	NULL	if	there	is	an	error.

Related	topics:
freemalloc
realloc

cppreference.com	>	Standard	C	Memory	>	free

free
Syntax:

		#include	<stdlib.h>

		void	free(void*	ptr);

The	free()	function	deallocates	the	space	pointed	to	by	ptr,	freeing	it	up	for
future	use.	ptr	must	have	been	used	in	a	previous	call	to	malloc(),	calloc(),	or
realloc().	An	example:

			typedef	struct	data_type	{

					int	age;

					char	name[20];

			}	data;														

			data	*willy;

			willy	=	(data*)	malloc(sizeof(*willy));

			...

			free(willy);															

Related	topics:
calloc(C/C++	Keywords)	delete
malloc
(C/C++	Keywords)	new
realloc

cppreference.com	>	Standard	C	Memory	>	malloc

malloc
Syntax:

		#include	<stdlib.h>

		void	*malloc(size_t	size);

The	function	malloc()	returns	a	pointer	to	a	chunk	of	memory	of	size	size,	or
NULL	if	there	is	an	error.	The	memory	pointed	to	will	be	on	the	heap,	not	the
stack,	so	make	sure	to	free	it	when	you	are	done	with	it.	An	example:

			typedef	struct	data_type	{

					int	age;

					char	name[20];

			}	data;														

			data	*bob;

			bob	=	(data*)	malloc(sizeof(data));

			if(bob	!=	NULL)	{

					bob->age	=	22;

					strcpy(bob->name,	"Robert");

					printf("%s	is	%d	years	old\n",	bob->name,	bob->age);

			}

			free(bob);									

Related	topics:
calloc(C/C++	Keywords)	delete
free
(C/C++	Keywords)	new
realloc

cppreference.com	>	Standard	C	Memory	>	realloc

realloc
Syntax:

		#include	<stdlib.h>

		void	*realloc(void	*ptr,	size_t	size);

The	realloc()	function	changes	the	size	of	the	object	pointed	to	by	ptr	to	the
given	size.	size	can	be	any	size,	larger	or	smaller	than	the	original.	The	return
value	is	a	pointer	to	the	new	space,	or	NULL	if	there	is	an	error.

Related	topics:
callocfree
malloc

cppreference.com	>	Other	Standard	C	Functions	>	abort

abort
Syntax:

		#include	<stdlib.h>

		void	abort(void);

The	function	abort()	terminates	the	current	program.	Depending	on	the
implementation,	the	return	value	can	indicate	failure.

Related	topics:
assertatexit
exit

cppreference.com	>	Other	Standard	C	Functions

abort
Syntax:

		#include	<stdlib.h>

		void	abort(void);

The	function	abort()	terminates	the	current	program.	Depending	on	the
implementation,	the	return	value	can	indicate	failure.

Related	topics:
assertatexit
exit

assert
Syntax:

		#include	<assert.h>

		void	assert(int	exp);

The	assert()	macro	is	used	to	test	for	errors.	If	exp	evaluates	to	zero,	assert()
writes	information	to	STDERR	and	exits	the	program.	If	the	macro	NDEBUG	is
defined,	the	assert()	macros	will	be	ignored.

Related	topics:
abort

atexit
Syntax:

		#include	<stdlib.h>

		int	atexit(void	(*func)(void));

The	function	atexit()	causes	the	function	pointed	to	by	func	to	be	called	when	the
program	terminates.	You	can	make	multiple	calls	to	atexit()	(at	least	32,
depending	on	your	compiler)	and	those	functions	will	be	called	in	reverse	order
of	their	establishment.	The	return	value	of	atexit()	is	zero	upon	success,	and	non-
zero	on	failure.

Related	topics:
abort
exit

bsearch
Syntax:

		#include	<stdlib.h>

		void	*bsearch(const	void	*key,	const	void	*buf,	size_t	num,	size_t	size,	int	(*compare)(const	void	*,	const	void	*));

The	bsearch()	function	searches	buf[0]	to	buf[num-1]	for	an	item	that	matches
key,	using	a	binary	search.	The	function	compare	should	return	negative	if	its
first	argument	is	less	than	its	second,	zero	if	equal,	and	positive	if	greater.	The
items	in	the	array	buf	should	be	in	ascending	order.	The	return	value	of	bsearch()
is	a	pointer	to	the	matching	item,	or	NULL	if	none	is	found.

Related	topics:
qsort

exit
Syntax:

		#include	<stdlib.h>

		void	exit(int	exit_code);

The	exit()	function	stops	the	program.	exit_code	is	passed	on	to	be	the	return
value	of	the	program,	where	usually	zero	indicates	success	and	non-zero
indicates	an	error.

Related	topics:
abort
atexit
system

getenv
Syntax:

		#include	<stdlib.h>

		char	*getenv(const	char	*name);

The	function	getenv()	returns	environmental	information	associated	with	name,
and	is	very	implementation	dependent.	NULL	is	returned	if	no	information
about	name	is	available.

Related	topics:
system

longjmp
Syntax:

		#include	<setjmp.h>

		void	longjmp(jmp_buf	envbuf,	int	status);

The	function	longjmp()	causes	the	program	to	start	executing	code	at	the	point	of
the	last	call	to	setjmp().	envbuf	is	usually	set	through	a	call	to	setjmp().	status
becomes	the	return	value	of	setjmp()	and	can	be	used	to	figure	out	where
longjmp()	came	from.	status	should	not	be	set	to	zero.

Related	topics:

setjmp

qsort
Syntax:

		#include	<stdlib.h>

		void	qsort(void	*buf,	size_t	num,	size_t	size,	int	(*compare)(const	void	*,	const	void	*));

The	qsort()	function	sorts	buf	(which	contains	num	items,	each	of	size	size)	using
Quicksort.	The	compare	function	is	used	to	compare	the	items	in	buf.	compare
should	return	negative	if	the	first	argument	is	less	than	the	second,	zero	if	they
are	equal,	and	positive	if	the	first	argument	is	greater	than	the	second.	qsort()
sorts	buf	in	ascending	order.

Example	code:

For	example,	the	following	bit	of	code	uses	qsort()	to	sort	an	array	of	integers:

	int	compare_ints(const	void*	a,	const	void*	b)	{

			int*	arg1	=	(int*)	a;

			int*	arg2	=	(int*)	b;

			if(*arg1	<	*arg2)	return	-1;

			else	if(*arg1	==	*arg2)	return	0;

			else	return	1;

	}														

	int	array[]	=	{	-2,	99,	0,	-743,	2,	3,	4	};

	int	array_size	=	7;												

	...												

	printf("Before	sorting:	");

	for(int	i	=	0;	i	<	array_size;	i++)	{

			printf("%d	",	array[i]);

	}

	printf("\n");														

	qsort(array,	array_size,	sizeof(int),	compare_ints);									

	printf("After	sorting:	");

http://en.wikipedia.org/wiki/Quicksort

	for(int	i	=	0;	i	<	array_size;	i++)	{

			printf("%d	",	array[i]);

	}

	printf("\n");														

When	run,	this	code	displays	the	following	output:

	Before	sorting:	-2	99	0	-743	2	3	4

	After	sorting:	-743	-2	0	2	3	4	99														

Related	topics:
bsearch
(C++	Algorithms)	sort

raise
Syntax:

		#include	<signal.h>

		int	raise(int	signal);

The	raise()	function	sends	the	specified	signal	to	the	program.	Some	signals:

Signal Meaning

SIGABRT Termination	error

SIGFPE Floating	pointer	error

SIGILL Bad	instruction

SIGINT User	presed	CTRL-C

SIGSEGV Illegal	memory	access

SIGTERM Terminate	program

The	return	value	is	zero	upon	success,	nonzero	on	failure.

Related	topics:
signal

rand
Syntax:

		#include	<stdlib.h>

		int	rand(void);

The	function	rand()	returns	a	pseudorandom	integer	between	zero	and
RAND_MAX.	An	example:

			srand(time(NULL));

			for(i	=	0;	i	<	10;	i++)

					printf("Random	number	#%d:	%d\n",	i,	rand());										

Related	topics:
srand

setjmp
Syntax:

		#include	<setjmp.h>

		int	setjmp(jmp_buf	envbuf);

The	setjmp()	function	saves	the	system	stack	in	envbuf	for	use	by	a	later	call	to
longjmp().	When	you	first	call	setjmp(),	its	return	value	is	zero.	Later,	when	you
call	longjmp(),	the	second	argument	of	longjmp()	is	what	the	return	value	of
setjmp()	will	be.	Confused?	Read	about	longjmp().

Related	topics:
longjmp

signal
Syntax:

		#include	<signal.h>

		void	(*signal(int	signal,	void	(*	func)	(int)))	(int);

The	signal()	function	sets	func	to	be	called	when	signal	is	recieved	by	your
program.	func	can	be	a	custom	signal	handler,	or	one	of	these	macros	(defined	in
signal.h):

Macro Explanation

SIG_DFL default	signal	handling

SIG_IGN ignore	the	signal

Some	basic	signals	that	you	can	attach	a	signal	handler	to	are:

Signal Description

SIGTERM Generic	stop	signal	that	can	be	caught.

SIGINT Interrupt	program,	normally	ctrl-c.

SIGQUIT Interrupt	program,	similar	to	SIGINT.

SIGKILL Stops	the	program.	Cannot	be	caught.

SIGHUP Reports	a	disconnected	terminal.

The	return	value	of	signal()	is	the	address	of	the	previously	defined	function	for
this	signal,	or	SIG_ERR	is	there	is	an	error.

Example	code:

The	following	example	uses	the	signal()	function	to	call	an	arbitrary	number	of
functions	when	the	user	aborts	the	program.	The	functions	are	stored	in	a	vector,
and	a	single	"clean-up"	function	calls	each	function	in	that	vector	of	functions
when	the	program	is	aborted:

void	f1()	{

		cout	<<	"calling	f1()..."	<<	endl;

}															

void	f2()	{

		cout	<<	"calling	f2()..."	<<	endl;

}															

typedef	void(*endFunc)(void);

vector<endFunc>	endFuncs;									

void	cleanUp(int	dummy)	{

		for(unsigned	int	i	=	0;	i	<	endFuncs.size();	i++)	{

				endFunc	f	=	endFuncs.at(i);

				(*f)();

		}

		exit(-1);

}															

int	main()	{												

		//	connect	various	signals	to	our	clean-up	function

		signal(SIGTERM,	cleanUp);

		signal(SIGINT,	cleanUp);

		signal(SIGQUIT,	cleanUp);

		signal(SIGHUP,	cleanUp);												

		//	add	two	specific	clean-up	functions	to	a	list	of	functions

		endFuncs.push_back(f1);

		endFuncs.push_back(f2);													

		//	loop	until	the	user	breaks

		while(1);											

		return	0;

}															

Related	topics:
raise

srand
Syntax:

		#include	<stdlib.h>

		void	srand(unsigned	seed);

The	function	srand()	is	used	to	seed	the	random	sequence	generated	by	rand().
For	any	given	seed,	rand()	will	generate	a	specific	"random"	sequence	over	and

over	again.

			srand(time(NULL));

			for(i	=	0;	i	<	10;	i++)

					printf("Random	number	#%d:	%d\n",	i,	rand());										

Related	topics:
rand
(Standard	C	Date	&	Time)	time

system
Syntax:

		#include	<stdlib.h>

		int	system(const	char	*command);

The	system()	function	runs	the	given	command	as	a	system	call.	The	return	value
is	usually	zero	if	the	command	executed	without	errors.	If	command	is	NULL,
system()	will	test	to	see	if	there	is	a	command	interpreter	available.	Non-zero
will	be	returned	if	there	is	a	command	interpreter	available,	zero	if	not.

Related	topics:
exit
getenv

va_arg
Syntax:

		#include	<stdarg.h>

		type	va_arg(va_list	argptr,	type);

		void	va_end(va_list	argptr);

		void	va_start(va_list	argptr,	last_parm);

The	va_arg()	macros	are	used	to	pass	a	variable	number	of	arguments	to	a
function.

1.	 First,	you	must	have	a	call	to	va_start()	passing	a	valid	va_list	and	the
mandatory	first	argument	of	the	function.	This	first	argument	can	be
anything;	one	way	to	use	it	is	to	have	it	be	an	integer	describing	the	number
of	parameters	being	passed.

2.	 Next,	you	call	va_arg()	passing	the	va_list	and	the	type	of	the	argument	to
be	returned.	The	return	value	of	va_arg()	is	the	current	parameter.

3.	 Repeat	calls	to	va_arg()	for	however	many	arguments	you	have.
4.	 Finally,	a	call	to	va_end()	passing	the	va_list	is	necessary	for	proper

cleanup.

For	example:

		int	sum(int	num,	...)	{

				int	answer	=	0;

				va_list	argptr;												

				va_start(argptr,	num);												

				for(;	num	>	0;	num--)	{

						answer	+=	va_arg(argptr,	int);

				}											

				va_end(argptr);											

				return(answer);

		}													

																

		int	main(void)	{												

				int	answer	=	sum(4,	4,	3,	2,	1);

				printf("The	answer	is	%d\n",	answer);											

				return(0);

		}													

This	code	displays	10,	which	is	4+3+2+1.

Here	is	another	example	of	variable	argument	function,	which	is	a	simple
printing	function:

	void	my_printf(char	*format,	...)	{

			va_list	argptr;													

			va_start(argptr,	format);										

			while(*format	!=	'\0')	{

					//	string

					if(*format	==	's')	{

							char*	s	=	va_arg(argptr,	char	*);

							printf("Printing	a	string:	%s\n",	s);

					}

					//	character

					else	if(*format	==	'c')	{

							char	c	=	(char)	va_arg(argptr,	int);

							printf("Printing	a	character:	%c\n",	c);

							break;

					}

					//	integer

					else	if(*format	==	'd')	{

							int	d	=	va_arg(argptr,	int);

							printf("Printing	an	integer:	%d\n",	d);

					}										

					*format++;

			}												

			va_end(argptr);

	}														

																

	int	main(void)	{													

			my_printf("sdc",	"This	is	a	string",	29,	'X');									

			return(0);

	}														

This	code	displays	the	following	output	when	run:

	Printing	a	string:	This	is	a	string

	Printing	an	integer:	29

	Printing	a	character:	X																

cppreference.com	>	Other	Standard	C	Functions	>	assert

assert
Syntax:

		#include	<assert.h>

		void	assert(int	exp);

The	assert()	macro	is	used	to	test	for	errors.	If	exp	evaluates	to	zero,	assert()
writes	information	to	STDERR	and	exits	the	program.	If	the	macro	NDEBUG
is	defined,	the	assert()	macros	will	be	ignored.

Related	topics:
abort

cppreference.com	>	Other	Standard	C	Functions	>	atexit

atexit
Syntax:

		#include	<stdlib.h>

		int	atexit(void	(*func)(void));

The	function	atexit()	causes	the	function	pointed	to	by	func	to	be	called	when
the	program	terminates.	You	can	make	multiple	calls	to	atexit()	(at	least	32,
depending	on	your	compiler)	and	those	functions	will	be	called	in	reverse	order
of	their	establishment.	The	return	value	of	atexit()	is	zero	upon	success,	and
non-zero	on	failure.

Related	topics:
abortexit

cppreference.com	>	Other	Standard	C	Functions	>	bsearch

bsearch
Syntax:

		#include	<stdlib.h>

		void	*bsearch(const	void	*key,	const	void	*buf,	size_t	num,	size_t	size,	int	(*compare)(const	void	*,	const	void	*));

The	bsearch()	function	searches	buf[0]	to	buf[num-1]	for	an	item	that	matches	key
negative	if	its	first	argument	is	less	than	its	second,	zero	if	equal,	and	positive	if	greater.	The	items	in	the	array	
The	return	value	of	bsearch()	is	a	pointer	to	the	matching	item,	or	NULL	if	none	is	

Related	topics:
qsort

cppreference.com	>	Other	Standard	C	Functions	>	exit

exit
Syntax:

		#include	<stdlib.h>

		void	exit(int	exit_code);

The	exit()	function	stops	the	program.	exit_code	is	passed	on	to	be	the	return
value	of	the	program,	where	usually	zero	indicates	success	and	non-zero
indicates	an	error.

Related	topics:
abortatexit
system

cppreference.com	>	Other	Standard	C	Functions	>	getenv

getenv
Syntax:

		#include	<stdlib.h>

		char	*getenv(const	char	*name);

The	function	getenv()	returns	environmental	information	associated	with	name,
and	is	very	implementation	dependent.	NULL	is	returned	if	no	information
about	name	is	available.

Related	topics:
system

cppreference.com	>	Other	Standard	C	Functions	>	longjmp

longjmp
Syntax:

		#include	<setjmp.h>

		void	longjmp(jmp_buf	envbuf,	int	status);

The	function	longjmp()	causes	the	program	to	start	executing	code	at	the	point
of	the	last	call	to	setjmp().	envbuf	is	usually	set	through	a	call	to	setjmp().	status
becomes	the	return	value	of	setjmp()	and	can	be	used	to	figure	out	where
longjmp()	came	from.	status	should	not	be	set	to	zero.

Related	topics:
setjmp

cppreference.com	>	Other	Standard	C	Functions	>	qsort

qsort
Syntax:

		#include	<stdlib.h>

		void	qsort(void	*buf,	size_t	num,	size_t	size,	int	(*compare)(const	void	*,	const	void	*));

The	qsort()	function	sorts	buf	(which	contains	num	items,	each	of	size	size)	using	
is	used	to	compare	the	items	in	buf.	compare	should	return	negative	if	the	first	argument	is	less	than	
zero	if	they	are	equal,	and	positive	if	the	first	argument	is	greater	than	the	second.	qsort()	sorts	
order.

Example	code:

For	example,	the	following	bit	of	code	uses	qsort()	to	sort	an	array	of	integers:

	int	compare_ints(const	void*	a,	const	void*	b)	{

			int*	arg1	=	(int*)	a;

			int*	arg2	=	(int*)	b;

			if(*arg1	<	*arg2)	return	-1;

			else	if(*arg1	==	*arg2)	return	0;

			else	return	1;

	}														

	int	array[]	=	{	-2,	99,	0,	-743,	2,	3,	4	};

	int	array_size	=	7;												

	...												

	printf("Before	sorting:	");

	for(int	i	=	0;	i	<	array_size;	i++)	{

			printf("%d	",	array[i]);

	}

	printf("\n");														

	qsort(array,	array_size,	sizeof(int),	compare_ints);									

	printf("After	sorting:	");

	for(int	i	=	0;	i	<	array_size;	i++)	{

			printf("%d	",	array[i]);

	}

	printf("\n");														

When	run,	this	code	displays	the	following	output:

	Before	sorting:	-2	99	0	-743	2	3	4

	After	sorting:	-743	-2	0	2	3	4	99														

Related	topics:
bsearch(C++	Algorithms)	sort

http://en.wikipedia.org/wiki/Quicksort

cppreference.com	>	Other	Standard	C	Functions	>	raise

raise
Syntax:

		#include	<signal.h>

		int	raise(int	signal);

The	raise()	function	sends	the	specified	signal	to	the	program.	Some	signals:

Signal Meaning

SIGABRT Termination	error

SIGFPE Floating	pointer	error

SIGILL Bad	instruction

SIGINT User	presed	CTRL-C

SIGSEGV Illegal	memory	access

SIGTERM Terminate	program

The	return	value	is	zero	upon	success,	nonzero	on	failure.

Related	topics:
signal

cppreference.com	>	Other	Standard	C	Functions	>	rand

rand
Syntax:

		#include	<stdlib.h>

		int	rand(void);

The	function	rand()	returns	a	pseudorandom	integer	between	zero	and
RAND_MAX.	An	example:

			srand(time(NULL));

			for(i	=	0;	i	<	10;	i++)

					printf("Random	number	#%d:	%d\n",	i,	rand());										

Related	topics:
srand

cppreference.com	>	Other	Standard	C	Functions	>	setjmp

setjmp
Syntax:

		#include	<setjmp.h>

		int	setjmp(jmp_buf	envbuf);

The	setjmp()	function	saves	the	system	stack	in	envbuf	for	use	by	a	later	call	to
longjmp().	When	you	first	call	setjmp(),	its	return	value	is	zero.	Later,	when	you
call	longjmp(),	the	second	argument	of	longjmp()	is	what	the	return	value	of
setjmp()	will	be.	Confused?	Read	about	longjmp().

Related	topics:
longjmp

cppreference.com	>	Other	Standard	C	Functions	>	signal

signal
Syntax:

		#include	<signal.h>

		void	(*signal(int	signal,	void	(*	func)	(int)))	(int);

The	signal()	function	sets	func	to	be	called	when	signal	is	recieved	by	your
program.	func	can	be	a	custom	signal	handler,	or	one	of	these	macros	(defined
in	signal.h):

Macro Explanation

SIG_DFL default	signal	handling

SIG_IGN ignore	the	signal

Some	basic	signals	that	you	can	attach	a	signal	handler	to	are:

Signal Description

SIGTERM Generic	stop	signal	that	can	be	caught.

SIGINT Interrupt	program,	normally	ctrl-c.

SIGQUIT Interrupt	program,	similar	to	SIGINT.

SIGKILL Stops	the	program.	Cannot	be	caught.

SIGHUP Reports	a	disconnected	terminal.

The	return	value	of	signal()	is	the	address	of	the	previously	defined	function	for
this	signal,	or	SIG_ERR	is	there	is	an	error.

Example	code:

The	following	example	uses	the	signal()	function	to	call	an	arbitrary	number	of
functions	when	the	user	aborts	the	program.	The	functions	are	stored	in	a	vector,

and	a	single	"clean-up"	function	calls	each	function	in	that	vector	of	functions
when	the	program	is	aborted:

void	f1()	{

		cout	<<	"calling	f1()..."	<<	endl;

}															

void	f2()	{

		cout	<<	"calling	f2()..."	<<	endl;

}															

typedef	void(*endFunc)(void);

vector<endFunc>	endFuncs;									

void	cleanUp(int	dummy)	{

		for(unsigned	int	i	=	0;	i	<	endFuncs.size();	i++)	{

				endFunc	f	=	endFuncs.at(i);

				(*f)();

		}

		exit(-1);

}															

int	main()	{												

		//	connect	various	signals	to	our	clean-up	function

		signal(SIGTERM,	cleanUp);

		signal(SIGINT,	cleanUp);

		signal(SIGQUIT,	cleanUp);

		signal(SIGHUP,	cleanUp);												

		//	add	two	specific	clean-up	functions	to	a	list	of	functions

		endFuncs.push_back(f1);

		endFuncs.push_back(f2);													

		//	loop	until	the	user	breaks

		while(1);											

		return	0;

}															

Related	topics:
raise

cppreference.com	>	Other	Standard	C	Functions	>	srand

srand
Syntax:

		#include	<stdlib.h>

		void	srand(unsigned	seed);

The	function	srand()	is	used	to	seed	the	random	sequence	generated	by	rand().
For	any	given	seed,	rand()	will	generate	a	specific	"random"	sequence	over	and
over	again.

			srand(time(NULL));

			for(i	=	0;	i	<	10;	i++)

					printf("Random	number	#%d:	%d\n",	i,	rand());										

Related	topics:
rand(Standard	C	Date	&	Time)	time

cppreference.com	>	Other	Standard	C	Functions	>	system

system
Syntax:

		#include	<stdlib.h>

		int	system(const	char	*command);

The	system()	function	runs	the	given	command	as	a	system	call.	The	return
value	is	usually	zero	if	the	command	executed	without	errors.	If	command	is
NULL,	system()	will	test	to	see	if	there	is	a	command	interpreter	available.
Non-zero	will	be	returned	if	there	is	a	command	interpreter	available,	zero	if
not.

Related	topics:
exitgetenv

cppreference.com	>	Other	Standard	C	Functions	>	va_arg

va_arg
Syntax:

		#include	<stdarg.h>

		type	va_arg(va_list	argptr,	type);

		void	va_end(va_list	argptr);

		void	va_start(va_list	argptr,	last_parm);

The	va_arg()	macros	are	used	to	pass	a	variable	number	of	arguments	to	a
function.

1.	 First,	you	must	have	a	call	to	va_start()	passing	a	valid	va_list	and	the
mandatory	first	argument	of	the	function.	This	first	argument	can	be
anything;	one	way	to	use	it	is	to	have	it	be	an	integer	describing	the
number	of	parameters	being	passed.

2.	 Next,	you	call	va_arg()	passing	the	va_list	and	the	type	of	the	argument	to
be	returned.	The	return	value	of	va_arg()	is	the	current	parameter.

3.	 Repeat	calls	to	va_arg()	for	however	many	arguments	you	have.
4.	 Finally,	a	call	to	va_end()	passing	the	va_list	is	necessary	for	proper

cleanup.

For	example:

		int	sum(int	num,	...)	{

				int	answer	=	0;

				va_list	argptr;												

				va_start(argptr,	num);												

				for(;	num	>	0;	num--)	{

						answer	+=	va_arg(argptr,	int);

				}											

				va_end(argptr);											

				return(answer);

		}													

																

		int	main(void)	{												

				int	answer	=	sum(4,	4,	3,	2,	1);

				printf("The	answer	is	%d\n",	answer);											

				return(0);

		}													

This	code	displays	10,	which	is	4+3+2+1.

Here	is	another	example	of	variable	argument	function,	which	is	a	simple
printing	function:

	void	my_printf(char	*format,	...)	{

			va_list	argptr;													

			va_start(argptr,	format);										

			while(*format	!=	'\0')	{

					//	string

					if(*format	==	's')	{

							char*	s	=	va_arg(argptr,	char	*);

							printf("Printing	a	string:	%s\n",	s);

					}

					//	character

					else	if(*format	==	'c')	{

							char	c	=	(char)	va_arg(argptr,	int);

							printf("Printing	a	character:	%c\n",	c);

							break;

					}

					//	integer

					else	if(*format	==	'd')	{

							int	d	=	va_arg(argptr,	int);

							printf("Printing	an	integer:	%d\n",	d);

					}										

					*format++;

			}												

			va_end(argptr);

	}														

																

	int	main(void)	{													

			my_printf("sdc",	"This	is	a	string",	29,	'X');									

			return(0);

	}														

This	code	displays	the	following	output	when	run:

	Printing	a	string:	This	is	a	string

	Printing	an	integer:	29

	Printing	a	character:	X																

cppreference.com	>	Standard	C	Date	&	Time

asctime
Syntax:

		#include	<time.h>

		char	*asctime(const	struct	tm	*ptr);

The	function	asctime()	converts	the	time	in	the	struct	'ptr'	to	a	character	string	of
the	following	format:

			day	month	date	hours:minutes:seconds	year												

An	example:

			Mon	Jun	26	12:03:53	2000													

Related	topics:
clockctime
difftime
gmtime
localtime
mktime
time

clock
Syntax:

		#include	<time.h>

		clock_t	clock(void);

The	clock()	function	returns	the	processor	time	since	the	program	started,	or	-1	if
that	information	is	unavailable.	To	convert	the	return	value	to	seconds,	divide	it
by	CLOCKS_PER_SEC.	(Note:	if	your	compiler	is	POSIX	compliant,	then
CLOCKS_PER_SEC	is	always	defined	as	1000000.)

Related	topics:
asctime
ctime
time

ctime
Syntax:

		#include	<time.h>

		char	*ctime(const	time_t	*time);

The	ctime()	function	converts	the	calendar	time	time	to	local	time	of	the	format:

			day	month	date	hours:minutes:seconds	year												

using	ctime()	is	equivalent	to

			asctime(localtime(tp));										

Related	topics:
asctime
clock
gmtime
localtime
mktime
time

difftime
Syntax:

		#include	<time.h>

		double	difftime(time_t	time2,	time_t	time1);

The	function	difftime()	returns	time2	-	time1,	in	seconds.

Related	topics:
asctime
gmtime
localtime
time

gmtime
Syntax:

		#include	<time.h>

		struct	tm	*gmtime(const	time_t	*time);

The	gmtime()	function	returns	the	given	time	in	Coordinated	Universal	Time
(usually	Greenwich	mean	time),	unless	it's	not	supported	by	the	system,	in	which
case	NULL	is	returned.	Watch	out	for	static	return.

Related	topics:
asctime
ctime
difftime
localtime
mktime
strftime
time

localtime
Syntax:

		#include	<time.h>

		struct	tm	*localtime(const	time_t	*time);

The	function	localtime()	converts	calendar	time	time	into	local	time.	Watch	out
for	the	static	return.

C:\Documents and Settings\Henry_Four\My Documents\eBookProject\CppReference\static_return.html
C:\Documents and Settings\Henry_Four\My Documents\eBookProject\CppReference\static_return.html

Related	topics:
asctime
ctime
difftime
gmtime
strftime
time

mktime
Syntax:

		#include	<time.h>

		time_t	mktime(struct	tm	*time);

The	mktime()	function	converts	the	local	time	in	time	to	calendar	time,	and
returns	it.	If	there	is	an	error,	-1	is	returned.

Related	topics:
asctime
ctime
gmtime
time

setlocale
Syntax:

		#include	<locale.h>

		char	*setlocale(int	category,	const	char	*	locale);

The	setlocale()	function	is	used	to	set	and	retrieve	the	current	locale.	If	locale	is
NULL,	the	current	locale	is	returned.	Otherwise,	locale	is	used	to	set	the	locale
for	the	given	category.

category	can	have	the	following	values:

Value Description

LC_ALL All	of	the	locale

LC_TIME Date	and	time	formatting

LC_NUMERIC Number	formatting

LC_COLLATE String	collation	and	regular	expression	matching

LC_CTYPE
Regular	expression	matching,	conversion,	case-sensitive
comparison,	wide	character	functions,	and	character
classification.

LC_MONETARY For	monetary	formatting

LC_MESSAGES For	natural	language	messages
Related	topics:
(Standard	C	String	and	Character)	strcoll

strftime
Syntax:

		#include	<time.h>

		size_t	strftime(char	*str,	size_t	maxsize,	const	char	*fmt,	struct	tm	*time);

The	function	strftime()	formats	date	and	time	information	from	time	to	a	format
specified	by	fmt,	then	stores	the	result	in	str	(up	to	maxsize	characters).	Certain
codes	may	be	used	in	fmt	to	specify	different	types	of	time:

Code Meaning

%a abbreviated	weekday	name	(e.g.	Fri)

%A full	weekday	name	(e.g.	Friday)

%b abbreviated	month	name	(e.g.	Oct)

%B full	month	name	(e.g.	October)

%c the	standard	date	and	time	string

%d day	of	the	month,	as	a	number	(1-31)

%H hour,	24	hour	format	(0-23)

%I hour,	12	hour	format	(1-12)

%j day	of	the	year,	as	a	number	(1-366)

%m month	as	a	number	(1-12).	Note:	some	versions	of	Microsoft	Visual
C++	may	use	values	that	range	from	0-11.

%M minute	as	a	number	(0-59)

%p locale's	equivalent	of	AM	or	PM

%S second	as	a	number	(0-59)

%U week	of	the	year,	(0-53),	where	week	1	has	the	first	Sunday

%w weekday	as	a	decimal	(0-6),	where	Sunday	is	0

%W week	of	the	year,	(0-53),	where	week	1	has	the	first	Monday

%x standard	date	string

%X standard	time	string

%y year	in	decimal,	without	the	century	(0-99)

%Y year	in	decimal,	with	the	century

%Z time	zone	name

%% a	percent	sign

The	strftime()	function	returns	the	number	of	characters	put	into	str,	or	zero	if	an
error	occurs.

Related	topics:
gmtime
localtime
time

time

Syntax:

		#include	<time.h>

		time_t	time(time_t	*time);

The	function	time()	returns	the	current	time,	or	-1	if	there	is	an	error.	If	the
argument	'time'	is	given,	then	the	current	time	is	stored	in	'time'.

Related	topics:
asctime
clock
ctime
difftime
gmtime
localtime
mktime
(Other	Standard	C	Functions)	srand
strftime

cppreference.com	>	Standard	C	Date	&	Time	>	asctime

asctime
Syntax:

		#include	<time.h>

		char	*asctime(const	struct	tm	*ptr);

The	function	asctime()	converts	the	time	in	the	struct	'ptr'	to	a	character	string	of
the	following	format:

			day	month	date	hours:minutes:seconds	year												

An	example:

			Mon	Jun	26	12:03:53	2000													

Related	topics:
clockctime
difftime
gmtime
localtime
mktime
time

cppreference.com	>	Standard	C	Date	&	Time	>	clock

clock
Syntax:

		#include	<time.h>

		clock_t	clock(void);

The	clock()	function	returns	the	processor	time	since	the	program	started,	or	-1
if	that	information	is	unavailable.	To	convert	the	return	value	to	seconds,	divide
it	by	CLOCKS_PER_SEC.	(Note:	if	your	compiler	is	POSIX	compliant,	then
CLOCKS_PER_SEC	is	always	defined	as	1000000.)

Related	topics:
asctimectime
time

cppreference.com	>	Standard	C	Date	&	Time	>	ctime

ctime
Syntax:

		#include	<time.h>

		char	*ctime(const	time_t	*time);

The	ctime()	function	converts	the	calendar	time	time	to	local	time	of	the	format:

			day	month	date	hours:minutes:seconds	year												

using	ctime()	is	equivalent	to

			asctime(localtime(tp));										

Related	topics:
asctimeclock
gmtime
localtime
mktime
time

cppreference.com	>	Standard	C	Date	&	Time	>	difftime

difftime
Syntax:

		#include	<time.h>

		double	difftime(time_t	time2,	time_t	time1);

The	function	difftime()	returns	time2	-	time1,	in	seconds.

Related	topics:
asctimegmtime
localtime
time

cppreference.com	>	Standard	C	Date	&	Time	>	gmtime

gmtime
Syntax:

		#include	<time.h>

		struct	tm	*gmtime(const	time_t	*time);

The	gmtime()	function	returns	the	given	time	in	Coordinated	Universal	Time
(usually	Greenwich	mean	time),	unless	it's	not	supported	by	the	system,	in
which	case	NULL	is	returned.	Watch	out	for	static	return.

Related	topics:
asctimectime
difftime
localtime
mktime
strftime
time

C:\Documents and Settings\Henry_Four\My Documents\eBookProject\CppReference\static_return.html

cppreference.com	>	Standard	C	Date	&	Time	>	localtime

localtime
Syntax:

		#include	<time.h>

		struct	tm	*localtime(const	time_t	*time);

The	function	localtime()	converts	calendar	time	time	into	local	time.	Watch	out
for	the	static	return.

Related	topics:
asctimectime
difftime
gmtime
strftime
time

C:\Documents and Settings\Henry_Four\My Documents\eBookProject\CppReference\static_return.html

cppreference.com	>	Standard	C	Date	&	Time	>	mktime

mktime
Syntax:

		#include	<time.h>

		time_t	mktime(struct	tm	*time);

The	mktime()	function	converts	the	local	time	in	time	to	calendar	time,	and
returns	it.	If	there	is	an	error,	-1	is	returned.

Related	topics:
asctimectime
gmtime
time

cppreference.com	>	Standard	C	Date	&	Time	>	setlocale

setlocale
Syntax:

		#include	<locale.h>

		char	*setlocale(int	category,	const	char	*	locale);

The	setlocale()	function	is	used	to	set	and	retrieve	the	current	locale.	If	locale	is
NULL,	the	current	locale	is	returned.	Otherwise,	locale	is	used	to	set	the	locale
for	the	given	category.

category	can	have	the	following	values:

Value Description

LC_ALL All	of	the	locale

LC_TIME Date	and	time	formatting

LC_NUMERIC Number	formatting

LC_COLLATE String	collation	and	regular	expression	matching

LC_CTYPE
Regular	expression	matching,	conversion,	case-sensitive
comparison,	wide	character	functions,	and	character
classification.

LC_MONETARY For	monetary	formatting

LC_MESSAGES For	natural	language	messages
Related	topics:
(Standard	C	String	and	Character)	strcoll

cppreference.com	>	Standard	C	Date	&	Time
Standard	C	Date	&	Time

Display	all	entries	for	Standard	C	Date	&	Time	on	one	page,	or	view	entries
individually:

asctime a	textual	version	of	the	time
clock returns	the	amount	of	time	that	the	program	has	been	running
ctime returns	a	specifically	formatted	version	of	the	time
difftime the	difference	between	two	times
gmtime returns	a	pointer	to	the	current	Greenwich	Mean	Time
localtime returns	a	pointer	to	the	current	time
mktime returns	the	calendar	version	of	a	given	time
setlocale sets	the	current	locale
strftime returns	individual	elements	of	the	date	and	time
time returns	the	current	calendar	time	of	the	system

cppreference.com	>	Standard	C	Date	&	Time	>	strftime

strftime
Syntax:

		#include	<time.h>

		size_t	strftime(char	*str,	size_t	maxsize,	const	char	*fmt,	struct	tm	*time);

The	function	strftime()	formats	date	and	time	information	from	time	to	a	format	specified	by	
then	stores	the	result	in	str	(up	to	maxsize	characters).	Certain	codes	may	be	used	in	
different	types	of	time:

Code Meaning

%a abbreviated	weekday	name	(e.g.	Fri)

%A full	weekday	name	(e.g.	Friday)

%b abbreviated	month	name	(e.g.	Oct)

%B full	month	name	(e.g.	October)

%c the	standard	date	and	time	string

%d day	of	the	month,	as	a	number	(1-31)

%H hour,	24	hour	format	(0-23)

%I hour,	12	hour	format	(1-12)

%j day	of	the	year,	as	a	number	(1-366)

%m month	as	a	number	(1-12).	Note:	some	versions	of	Microsoft	Visual	C++	may	use	values
that	range	from	0-11.

%M minute	as	a	number	(0-59)

%p locale's	equivalent	of	AM	or	PM

%S second	as	a	number	(0-59)

%U week	of	the	year,	(0-53),	where	week	1	has	the	first	Sunday

%w weekday	as	a	decimal	(0-6),	where	Sunday	is	0

%W week	of	the	year,	(0-53),	where	week	1	has	the	first	Monday

%x standard	date	string

%X standard	time	string

%y year	in	decimal,	without	the	century	(0-99)

%Y year	in	decimal,	with	the	century

%Z time	zone	name

%% a	percent	sign

The	strftime()	function	returns	the	number	of	characters	put	into	str,	or	zero	if	an	error	occurs.

Related	topics:
gmtimelocaltime
time

cppreference.com	>	Standard	C	Date	&	Time	>	time

time
Syntax:

		#include	<time.h>

		time_t	time(time_t	*time);

The	function	time()	returns	the	current	time,	or	-1	if	there	is	an	error.	If	the
argument	'time'	is	given,	then	the	current	time	is	stored	in	'time'.

Related	topics:
asctimeclock
ctime
difftime
gmtime
localtime
mktime
(Other	Standard	C	Functions)	srand
strftime

cppreference.com	>	Standard	C	Math	>	abs

abs
Syntax:

		#include	<stdlib.h>

		int	abs(int	num);

The	abs()	function	returns	the	absolute	value	of	num.	For	example:

			int	magic_number	=	10;

			cout	<<	"Enter	a	guess:	";

			cin	>>	x;

			cout	<<	"Your	guess	was	"	<<	abs(magic_number	-	x)	<<	"	away	from	the	magic	number."	<<	endl;										

Related	topics:
fabslabs

cppreference.com	>	Standard	C	Math	>	acos

acos
Syntax:

		#include	<math.h>

		double	acos(double	arg);

The	acos()	function	returns	the	arc	cosine	of	arg,	which	will	be	in	the	range	[0,
pi].	arg	should	be	between	-1	and	1.	If	arg	is	outside	this	range,	acos()	returns
NAN	and	raises	a	floating-point	exception.

Related	topics:
asinatan
atan2
cos
cosh
sin
sinh
tan
tanh

cppreference.com	>	Standard	C	Math

abs
Syntax:

		#include	<stdlib.h>

		int	abs(int	num);

The	abs()	function	returns	the	absolute	value	of	num.	For	example:

			int	magic_number	=	10;

			cout	<<	"Enter	a	guess:	";

			cin	>>	x;

			cout	<<	"Your	guess	was	"	<<	abs(magic_number	-	x)	<<	"	away	from	the	magic	number."	<<	endl;										

Related	topics:
fabslabs

acos
Syntax:

		#include	<math.h>

		double	acos(double	arg);

The	acos()	function	returns	the	arc	cosine	of	arg,	which	will	be	in	the	range	[0,
pi].	arg	should	be	between	-1	and	1.	If	arg	is	outside	this	range,	acos()	returns
NAN	and	raises	a	floating-point	exception.

Related	topics:
asin
atan
atan2
cos
cosh
sin

sinh
tan
tanh

asin
Syntax:

		#include	<math.h>

		double	asin(double	arg);

The	asin()	function	returns	the	arc	sine	of	arg,	which	will	be	in	the	range	[-pi/2,
+pi/2].	arg	should	be	between	-1	and	1.	If	arg	is	outside	this	range,	asin()	returns
NAN	and	raises	a	floating-point	exception.

Related	topics:
acos
atan
atan2
cos
cosh
sin
sinh
tan
tanh

atan
Syntax:

		#include	<math.h>

		double	atan(double	arg);

The	function	atan()	returns	the	arc	tangent	of	arg,	which	will	be	in	the	range	[-
pi/2,	+pi/2].

Related	topics:
acos
asin
atan2
cos
cosh
sin
sinh
tan
tanh

atan2
Syntax:

		#include	<math.h>

		double	atan2(double	y,	double	x);

The	atan2()	function	computes	the	arc	tangent	of	y/x,	using	the	signs	of	the
arguments	to	compute	the	quadrant	of	the	return	value.

Note	the	order	of	the	arguments	passed	to	this	function.

Related	topics:
acos
asin
atan
cos
cosh
sin
sinh
tan
tanh

ceil

Syntax:

		#include	<math.h>

		double	ceil(double	num);

The	ceil()	function	returns	the	smallest	integer	no	less	than	num.	For	example,

			y	=	6.04;

			x	=	ceil(y);															

would	set	x	to	7.0.

Related	topics:
floor
fmod

cos
Syntax:

		#include	<math.h>

		double	cos(double	arg);

The	cos()	function	returns	the	cosine	of	arg,	where	arg	is	expressed	in	radians.
The	return	value	of	cos()	is	in	the	range	[-1,1].	If	arg	is	infinite,	cos()	will	return
NAN	and	raise	a	floating-point	exception.

Related	topics:
acos
asin
atan
atan2
cosh
sin
sinh
tan
tanh

cosh
Syntax:

		#include	<math.h>

		double	cosh(double	arg);

The	function	cosh()	returns	the	hyperbolic	cosine	of	arg.

Related	topics:
acos
asin
atan
atan2
cos
sin
sinh
tan
tanh

div
Syntax:

		#include	<stdlib.h>

		div_t	div(int	numerator,	int	denominator);

The	function	div()	returns	the	quotient	and	remainder	of	the	operation	numerator
/	denominator.	The	div_t	structure	is	defined	in	stdlib.h,	and	has	at	least:

			int	quot;			//	The	quotient

			int	rem;				//	The	remainder									

For	example,	the	following	code	displays	the	quotient	and	remainder	of	x/y:

			div_t	temp;

			temp	=	div(x,	y);

			printf("%d	divided	by	%d	yields	%d	with	a	remainder	of	%d\n",

											x,	y,	temp.quot,	temp.rem);									

Related	topics:
ldiv

exp
Syntax:

		#include	<math.h>

		double	exp(double	arg);

The	exp()	function	returns	e	(2.7182818)	raised	to	the	argth	power.

Related	topics:
log
pow
sqrt

fabs
Syntax:

		#include	<math.h>

		double	fabs(double	arg);

The	function	fabs()	returns	the	absolute	value	of	arg.

Related	topics:
abs
fmod
labs

floor
Syntax:

		#include	<math.h>

		double	floor(double	arg);

The	function	floor()	returns	the	largest	integer	not	greater	than	arg.	For	example,

			y	=	6.04;

			x	=	floor(y);														

would	result	in	x	being	set	to	6.0.

Related	topics:
ceil
fmod

fmod
Syntax:

		#include	<math.h>

		double	fmod(double	x,	double	y);

The	fmod()	function	returns	the	remainder	of	x/y.

Related	topics:
ceil
fabs
floor

frexp

Syntax:

		#include	<math.h>

		double	frexp(double	num,	int*	exp);

The	function	frexp()	is	used	to	decompose	num	into	two	parts:	a	mantissa
between	0.5	and	1	(returned	by	the	function)	and	an	exponent	returned	as	exp.
Scientific	notation	works	like	this:

			num	=	mantissa	*	(2	^	exp)											

Related	topics:
ldexp
modf

labs
Syntax:

		#include	<stdlib.h>

		long	labs(long	num);

The	function	labs()	returns	the	absolute	value	of	num.

Related	topics:
abs
fabs

ldexp
Syntax:

		#include	<math.h>

		double	ldexp(double	num,	int	exp);

The	ldexp()	function	returns	num	*	(2	^	exp).	And	get	this:	if	an	overflow	occurs,

HUGE_VAL	is	returned.

Related	topics:
frexp
modf

ldiv
Syntax:

		#include	<stdlib.h>

		ldiv_t	ldiv(long	numerator,	long	denominator);

Testing:	adiv_t,	div_t,	ldiv_t.

The	ldiv()	function	returns	the	quotient	and	remainder	of	the	operation
numerator	/	denominator.	The	ldiv_t	structure	is	defined	in	stdlib.h	and	has	at
least:

			long	quot;		//	the	quotient

			long	rem;			//	the	remainder									

Related	topics:
div

log
Syntax:

		#include	<math.h>

		double	log(double	num);

The	function	log()	returns	the	natural	(base	e)	logarithm	of	num.	There's	a
domain	error	if	num	is	negative,	a	range	error	if	num	is	zero.

In	order	to	calculate	the	logarithm	of	x	to	an	arbitrary	base	b,	you	can	use:

		double	answer	=	log(x)	/	log(b);

Related	topics:
exp
log10
pow
sqrt

log10
Syntax:

		#include	<math.h>

		double	log10(double	num);

The	log10()	function	returns	the	base	10	(or	common)	logarithm	for	num.
There's	a	domain	error	if	num	is	negative,	a	range	error	if	num	is	zero.

Related	topics:
log

modf
Syntax:

		#include	<math.h>

		double	modf(double	num,	double	*i);

The	function	modf()	splits	num	into	its	integer	and	fraction	parts.	It	returns	the
fractional	part	and	loads	the	integer	part	into	i.

Related	topics:
frexp
ldexp

pow
Syntax:

		#include	<math.h>

		double	pow(double	base,	double	exp);

The	pow()	function	returns	base	raised	to	the	expth	power.	There's	a	domain
error	if	base	is	zero	and	exp	is	less	than	or	equal	to	zero.	There's	also	a	domain
error	if	base	is	negative	and	exp	is	not	an	integer.	There's	a	range	error	if	an
overflow	occurs.

Related	topics:
exp
log
sqrt

sin
Syntax:

		#include	<math.h>

		double	sin(double	arg);

The	function	sin()	returns	the	sine	of	arg,	where	arg	is	given	in	radians.	The
return	value	of	sin()	will	be	in	the	range	[-1,1].	If	arg	is	infinite,	sin()	will	return
NAN	and	raise	a	floating-point	exception.

Related	topics:
acos
asin
atan
atan2
cos
cosh
sinh

tan
tanh

sinh
Syntax:

		#include	<math.h>

		double	sinh(double	arg);

The	function	sinh()	returns	the	hyperbolic	sine	of	arg.

Related	topics:
acos
asin
atan
atan2
cos
cosh
sin
tan
tanh

sqrt
Syntax:

		#include	<math.h>

		double	sqrt(double	num);

The	sqrt()	function	returns	the	square	root	of	num.	If	num	is	negative,	a	domain
error	occurs.

Related	topics:
exp
log

pow

tan
Syntax:

		#include	<math.h>

		double	tan(double	arg);

The	tan()	function	returns	the	tangent	of	arg,	where	arg	is	given	in	radians.	If
arg	is	infinite,	tan()	will	return	NAN	and	raise	a	floating-point	exception.

Related	topics:
acos
asin
atan
atan2
cos
cosh
sin
sinh
tanh

tanh
Syntax:

		#include	<math.h>

		double	tanh(double	arg);

The	function	tanh()	returns	the	hyperbolic	tangent	of	arg.

Related	topics:
acos
asin
atan

atan2
cos
cosh
sin
sinh
tan

cppreference.com	>	Standard	C	Math	>	asin

asin
Syntax:

		#include	<math.h>

		double	asin(double	arg);

The	asin()	function	returns	the	arc	sine	of	arg,	which	will	be	in	the	range	[-pi/2,
+pi/2].	arg	should	be	between	-1	and	1.	If	arg	is	outside	this	range,	asin()
returns	NAN	and	raises	a	floating-point	exception.

Related	topics:
acosatan
atan2
cos
cosh
sin
sinh
tan
tanh

cppreference.com	>	Standard	C	Math	>	atan

atan
Syntax:

		#include	<math.h>

		double	atan(double	arg);

The	function	atan()	returns	the	arc	tangent	of	arg,	which	will	be	in	the	range	[-
pi/2,	+pi/2].

Related	topics:
acosasin
atan2
cos
cosh
sin
sinh
tan
tanh

cppreference.com	>	Standard	C	Math	>	atan2

atan2
Syntax:

		#include	<math.h>

		double	atan2(double	y,	double	x);

The	atan2()	function	computes	the	arc	tangent	of	y/x,	using	the	signs	of	the
arguments	to	compute	the	quadrant	of	the	return	value.

Note	the	order	of	the	arguments	passed	to	this	function.

Related	topics:
acosasin
atan
cos
cosh
sin
sinh
tan
tanh

cppreference.com	>	Standard	C	Math	>	ceil

ceil
Syntax:

		#include	<math.h>

		double	ceil(double	num);

The	ceil()	function	returns	the	smallest	integer	no	less	than	num.	For	example,

			y	=	6.04;

			x	=	ceil(y);															

would	set	x	to	7.0.

Related	topics:
floorfmod

cppreference.com	>	Standard	C	Math	>	cos

cos
Syntax:

		#include	<math.h>

		double	cos(double	arg);

The	cos()	function	returns	the	cosine	of	arg,	where	arg	is	expressed	in	radians.
The	return	value	of	cos()	is	in	the	range	[-1,1].	If	arg	is	infinite,	cos()	will	return
NAN	and	raise	a	floating-point	exception.

Related	topics:
acosasin
atan
atan2
cosh
sin
sinh
tan
tanh

cppreference.com	>	Standard	C	Math	>	cosh

cosh
Syntax:

		#include	<math.h>

		double	cosh(double	arg);

The	function	cosh()	returns	the	hyperbolic	cosine	of	arg.

Related	topics:
acosasin
atan
atan2
cos
sin
sinh
tan
tanh

cppreference.com	>	Standard	C	Math	>	div

div
Syntax:

		#include	<stdlib.h>

		div_t	div(int	numerator,	int	denominator);

The	function	div()	returns	the	quotient	and	remainder	of	the	operation
numerator	/	denominator.	The	div_t	structure	is	defined	in	stdlib.h,	and	has	at
least:

			int	quot;			//	The	quotient

			int	rem;				//	The	remainder									

For	example,	the	following	code	displays	the	quotient	and	remainder	of	x/y:

			div_t	temp;

			temp	=	div(x,	y);

			printf("%d	divided	by	%d	yields	%d	with	a	remainder	of	%d\n",

											x,	y,	temp.quot,	temp.rem);									

Related	topics:
ldiv

cppreference.com	>	Standard	C	Math	>	exp

exp
Syntax:

		#include	<math.h>

		double	exp(double	arg);

The	exp()	function	returns	e	(2.7182818)	raised	to	the	argth	power.

Related	topics:
logpow
sqrt

cppreference.com	>	Standard	C	Math	>	fabs

fabs
Syntax:

		#include	<math.h>

		double	fabs(double	arg);

The	function	fabs()	returns	the	absolute	value	of	arg.

Related	topics:
absfmod
labs

cppreference.com	>	Standard	C	Math	>	floor

floor
Syntax:

		#include	<math.h>

		double	floor(double	arg);

The	function	floor()	returns	the	largest	integer	not	greater	than	arg.	For
example,

			y	=	6.04;

			x	=	floor(y);														

would	result	in	x	being	set	to	6.0.

Related	topics:
ceilfmod

cppreference.com	>	Standard	C	Math	>	fmod

fmod
Syntax:

		#include	<math.h>

		double	fmod(double	x,	double	y);

The	fmod()	function	returns	the	remainder	of	x/y.

Related	topics:
ceilfabs
floor

cppreference.com	>	Standard	C	Math	>	frexp

frexp
Syntax:

		#include	<math.h>

		double	frexp(double	num,	int*	exp);

The	function	frexp()	is	used	to	decompose	num	into	two	parts:	a	mantissa
between	0.5	and	1	(returned	by	the	function)	and	an	exponent	returned	as	exp.
Scientific	notation	works	like	this:

			num	=	mantissa	*	(2	^	exp)											

Related	topics:
ldexpmodf

cppreference.com	>	Standard	C	Math	>	labs

labs
Syntax:

		#include	<stdlib.h>

		long	labs(long	num);

The	function	labs()	returns	the	absolute	value	of	num.

Related	topics:
absfabs

cppreference.com	>	Standard	C	Math	>	ldexp

ldexp
Syntax:

		#include	<math.h>

		double	ldexp(double	num,	int	exp);

The	ldexp()	function	returns	num	*	(2	^	exp).	And	get	this:	if	an	overflow
occurs,	HUGE_VAL	is	returned.

Related	topics:
frexpmodf

cppreference.com	>	Standard	C	Math	>	ldiv

ldiv
Syntax:

		#include	<stdlib.h>

		ldiv_t	ldiv(long	numerator,	long	denominator);

Testing:	adiv_t,	div_t,	ldiv_t.

The	ldiv()	function	returns	the	quotient	and	remainder	of	the	operation
numerator	/	denominator.	The	ldiv_t	structure	is	defined	in	stdlib.h	and	has	at
least:

			long	quot;		//	the	quotient

			long	rem;			//	the	remainder									

Related	topics:
div

cppreference.com	>	Standard	C	Math	>	log

log
Syntax:

		#include	<math.h>

		double	log(double	num);

The	function	log()	returns	the	natural	(base	e)	logarithm	of	num.	There's	a
domain	error	if	num	is	negative,	a	range	error	if	num	is	zero.

In	order	to	calculate	the	logarithm	of	x	to	an	arbitrary	base	b,	you	can	use:

		double	answer	=	log(x)	/	log(b);

Related	topics:
explog10
pow
sqrt

cppreference.com	>	Standard	C	Math	>	log10

log10
Syntax:

		#include	<math.h>

		double	log10(double	num);

The	log10()	function	returns	the	base	10	(or	common)	logarithm	for	num.
There's	a	domain	error	if	num	is	negative,	a	range	error	if	num	is	zero.

Related	topics:
log

cppreference.com	>	Standard	C	Math	>	modf

modf
Syntax:

		#include	<math.h>

		double	modf(double	num,	double	*i);

The	function	modf()	splits	num	into	its	integer	and	fraction	parts.	It	returns	the
fractional	part	and	loads	the	integer	part	into	i.

Related	topics:
frexpldexp

cppreference.com	>	Standard	C	Math	>	pow

pow
Syntax:

		#include	<math.h>

		double	pow(double	base,	double	exp);

The	pow()	function	returns	base	raised	to	the	expth	power.	There's	a	domain
error	if	base	is	zero	and	exp	is	less	than	or	equal	to	zero.	There's	also	a	domain
error	if	base	is	negative	and	exp	is	not	an	integer.	There's	a	range	error	if	an
overflow	occurs.

Related	topics:
explog
sqrt

cppreference.com	>	Standard	C	Math

abs
Syntax:

		#include	<stdlib.h>

		int	abs(int	num);

The	abs()	function	returns	the	absolute	value	of	num.	For	example:

			int	magic_number	=	10;

			cout	<<	"Enter	a	guess:	";

			cin	>>	x;

			cout	<<	"Your	guess	was	"	<<	abs(magic_number	-	x)	<<	"	away	from	the	magic	number."	<<	endl;										

Related	topics:
fabslabs

acos
Syntax:

		#include	<math.h>

		double	acos(double	arg);

The	acos()	function	returns	the	arc	cosine	of	arg,	which	will	be	in	the	range	[0,
pi].	arg	should	be	between	-1	and	1.	If	arg	is	outside	this	range,	acos()	returns
NAN	and	raises	a	floating-point	exception.

Related	topics:
asin
atan
atan2
cos
cosh
sin

sinh
tan
tanh

asin
Syntax:

		#include	<math.h>

		double	asin(double	arg);

The	asin()	function	returns	the	arc	sine	of	arg,	which	will	be	in	the	range	[-pi/2,
+pi/2].	arg	should	be	between	-1	and	1.	If	arg	is	outside	this	range,	asin()	returns
NAN	and	raises	a	floating-point	exception.

Related	topics:
acos
atan
atan2
cos
cosh
sin
sinh
tan
tanh

atan
Syntax:

		#include	<math.h>

		double	atan(double	arg);

The	function	atan()	returns	the	arc	tangent	of	arg,	which	will	be	in	the	range	[-
pi/2,	+pi/2].

Related	topics:
acos
asin
atan2
cos
cosh
sin
sinh
tan
tanh

atan2
Syntax:

		#include	<math.h>

		double	atan2(double	y,	double	x);

The	atan2()	function	computes	the	arc	tangent	of	y/x,	using	the	signs	of	the
arguments	to	compute	the	quadrant	of	the	return	value.

Note	the	order	of	the	arguments	passed	to	this	function.

Related	topics:
acos
asin
atan
cos
cosh
sin
sinh
tan
tanh

ceil

Syntax:

		#include	<math.h>

		double	ceil(double	num);

The	ceil()	function	returns	the	smallest	integer	no	less	than	num.	For	example,

			y	=	6.04;

			x	=	ceil(y);															

would	set	x	to	7.0.

Related	topics:
floor
fmod

cos
Syntax:

		#include	<math.h>

		double	cos(double	arg);

The	cos()	function	returns	the	cosine	of	arg,	where	arg	is	expressed	in	radians.
The	return	value	of	cos()	is	in	the	range	[-1,1].	If	arg	is	infinite,	cos()	will	return
NAN	and	raise	a	floating-point	exception.

Related	topics:
acos
asin
atan
atan2
cosh
sin
sinh
tan
tanh

cosh
Syntax:

		#include	<math.h>

		double	cosh(double	arg);

The	function	cosh()	returns	the	hyperbolic	cosine	of	arg.

Related	topics:
acos
asin
atan
atan2
cos
sin
sinh
tan
tanh

div
Syntax:

		#include	<stdlib.h>

		div_t	div(int	numerator,	int	denominator);

The	function	div()	returns	the	quotient	and	remainder	of	the	operation	numerator
/	denominator.	The	div_t	structure	is	defined	in	stdlib.h,	and	has	at	least:

			int	quot;			//	The	quotient

			int	rem;				//	The	remainder									

For	example,	the	following	code	displays	the	quotient	and	remainder	of	x/y:

			div_t	temp;

			temp	=	div(x,	y);

			printf("%d	divided	by	%d	yields	%d	with	a	remainder	of	%d\n",

											x,	y,	temp.quot,	temp.rem);									

Related	topics:
ldiv

exp
Syntax:

		#include	<math.h>

		double	exp(double	arg);

The	exp()	function	returns	e	(2.7182818)	raised	to	the	argth	power.

Related	topics:
log
pow
sqrt

fabs
Syntax:

		#include	<math.h>

		double	fabs(double	arg);

The	function	fabs()	returns	the	absolute	value	of	arg.

Related	topics:
abs
fmod
labs

floor
Syntax:

		#include	<math.h>

		double	floor(double	arg);

The	function	floor()	returns	the	largest	integer	not	greater	than	arg.	For	example,

			y	=	6.04;

			x	=	floor(y);														

would	result	in	x	being	set	to	6.0.

Related	topics:
ceil
fmod

fmod
Syntax:

		#include	<math.h>

		double	fmod(double	x,	double	y);

The	fmod()	function	returns	the	remainder	of	x/y.

Related	topics:
ceil
fabs
floor

frexp

Syntax:

		#include	<math.h>

		double	frexp(double	num,	int*	exp);

The	function	frexp()	is	used	to	decompose	num	into	two	parts:	a	mantissa
between	0.5	and	1	(returned	by	the	function)	and	an	exponent	returned	as	exp.
Scientific	notation	works	like	this:

			num	=	mantissa	*	(2	^	exp)											

Related	topics:
ldexp
modf

labs
Syntax:

		#include	<stdlib.h>

		long	labs(long	num);

The	function	labs()	returns	the	absolute	value	of	num.

Related	topics:
abs
fabs

ldexp
Syntax:

		#include	<math.h>

		double	ldexp(double	num,	int	exp);

The	ldexp()	function	returns	num	*	(2	^	exp).	And	get	this:	if	an	overflow	occurs,

HUGE_VAL	is	returned.

Related	topics:
frexp
modf

ldiv
Syntax:

		#include	<stdlib.h>

		ldiv_t	ldiv(long	numerator,	long	denominator);

Testing:	adiv_t,	div_t,	ldiv_t.

The	ldiv()	function	returns	the	quotient	and	remainder	of	the	operation
numerator	/	denominator.	The	ldiv_t	structure	is	defined	in	stdlib.h	and	has	at
least:

			long	quot;		//	the	quotient

			long	rem;			//	the	remainder									

Related	topics:
div

log
Syntax:

		#include	<math.h>

		double	log(double	num);

The	function	log()	returns	the	natural	(base	e)	logarithm	of	num.	There's	a
domain	error	if	num	is	negative,	a	range	error	if	num	is	zero.

In	order	to	calculate	the	logarithm	of	x	to	an	arbitrary	base	b,	you	can	use:

		double	answer	=	log(x)	/	log(b);

Related	topics:
exp
log10
pow
sqrt

log10
Syntax:

		#include	<math.h>

		double	log10(double	num);

The	log10()	function	returns	the	base	10	(or	common)	logarithm	for	num.
There's	a	domain	error	if	num	is	negative,	a	range	error	if	num	is	zero.

Related	topics:
log

modf
Syntax:

		#include	<math.h>

		double	modf(double	num,	double	*i);

The	function	modf()	splits	num	into	its	integer	and	fraction	parts.	It	returns	the
fractional	part	and	loads	the	integer	part	into	i.

Related	topics:
frexp
ldexp

pow
Syntax:

		#include	<math.h>

		double	pow(double	base,	double	exp);

The	pow()	function	returns	base	raised	to	the	expth	power.	There's	a	domain
error	if	base	is	zero	and	exp	is	less	than	or	equal	to	zero.	There's	also	a	domain
error	if	base	is	negative	and	exp	is	not	an	integer.	There's	a	range	error	if	an
overflow	occurs.

Related	topics:
exp
log
sqrt

sin
Syntax:

		#include	<math.h>

		double	sin(double	arg);

The	function	sin()	returns	the	sine	of	arg,	where	arg	is	given	in	radians.	The
return	value	of	sin()	will	be	in	the	range	[-1,1].	If	arg	is	infinite,	sin()	will	return
NAN	and	raise	a	floating-point	exception.

Related	topics:
acos
asin
atan
atan2
cos
cosh
sinh

tan
tanh

sinh
Syntax:

		#include	<math.h>

		double	sinh(double	arg);

The	function	sinh()	returns	the	hyperbolic	sine	of	arg.

Related	topics:
acos
asin
atan
atan2
cos
cosh
sin
tan
tanh

sqrt
Syntax:

		#include	<math.h>

		double	sqrt(double	num);

The	sqrt()	function	returns	the	square	root	of	num.	If	num	is	negative,	a	domain
error	occurs.

Related	topics:
exp
log

pow

tan
Syntax:

		#include	<math.h>

		double	tan(double	arg);

The	tan()	function	returns	the	tangent	of	arg,	where	arg	is	given	in	radians.	If
arg	is	infinite,	tan()	will	return	NAN	and	raise	a	floating-point	exception.

Related	topics:
acos
asin
atan
atan2
cos
cosh
sin
sinh
tanh

tanh
Syntax:

		#include	<math.h>

		double	tanh(double	arg);

The	function	tanh()	returns	the	hyperbolic	tangent	of	arg.

Related	topics:
acos
asin
atan

atan2
cos
cosh
sin
sinh
tan

cppreference.com	>	Standard	C	Math	>	sin

sin
Syntax:

		#include	<math.h>

		double	sin(double	arg);

The	function	sin()	returns	the	sine	of	arg,	where	arg	is	given	in	radians.	The
return	value	of	sin()	will	be	in	the	range	[-1,1].	If	arg	is	infinite,	sin()	will	return
NAN	and	raise	a	floating-point	exception.

Related	topics:
acosasin
atan
atan2
cos
cosh
sinh
tan
tanh

cppreference.com	>	Standard	C	Math	>	sinh

sinh
Syntax:

		#include	<math.h>

		double	sinh(double	arg);

The	function	sinh()	returns	the	hyperbolic	sine	of	arg.

Related	topics:
acosasin
atan
atan2
cos
cosh
sin
tan
tanh

cppreference.com	>	Standard	C	Math	>	sqrt

sqrt
Syntax:

		#include	<math.h>

		double	sqrt(double	num);

The	sqrt()	function	returns	the	square	root	of	num.	If	num	is	negative,	a	domain
error	occurs.

Related	topics:
explog
pow

cppreference.com	>	Standard	C	Math	>	tan

tan
Syntax:

		#include	<math.h>

		double	tan(double	arg);

The	tan()	function	returns	the	tangent	of	arg,	where	arg	is	given	in	radians.	If
arg	is	infinite,	tan()	will	return	NAN	and	raise	a	floating-point	exception.

Related	topics:
acosasin
atan
atan2
cos
cosh
sin
sinh
tanh

cppreference.com	>	Standard	C	Math	>	tanh

tanh
Syntax:

		#include	<math.h>

		double	tanh(double	arg);

The	function	tanh()	returns	the	hyperbolic	tangent	of	arg.

Related	topics:
acosasin
atan
atan2
cos
cosh
sin
sinh
tan

cppreference.com	>	Standard	C	String	and	Character

atof
Syntax:

		#include	<stdlib.h>

		double	atof(const	char	*str);

The	function	atof()	converts	str	into	a	double,	then	returns	that	value.	str	must
start	with	a	valid	number,	but	can	be	terminated	with	any	non-numerical
character,	other	than	"E"	or	"e".	For	example,

			x	=	atof("42.0is_the_answer");											

results	in	x	being	set	to	42.0.

Related	topics:
atoiatol
(Standard	C	I/O)	sprintf
strtod

atoi
Syntax:

		#include	<stdlib.h>

		int	atoi(const	char	*str);

The	atoi()	function	converts	str	into	an	integer,	and	returns	that	integer.	str
should	start	with	some	sort	of	number,	and	atoi()	will	stop	reading	from	str	as
soon	as	a	non-numerical	character	has	been	read.	For	example,

			i	=	atoi("512.035");													

would	result	in	i	being	set	to	512.

You	can	use	(Standard	C	I/O)	sprintf()	to	convert	a	number	into	a	string.

Related	topics:
atof
atol
(Standard	C	I/O)	sprintf

atol
Syntax:

		#include	<stdlib.h>

		long	atol(const	char	*str);

The	function	atol()	converts	str	into	a	long,	then	returns	that	value.	atol()	will
read	from	str	until	it	finds	any	character	that	should	not	be	in	a	long.	The
resulting	truncated	value	is	then	converted	and	returned.	For	example,

			x	=	atol("1024.0001");											

results	in	x	being	set	to	1024L.

Related	topics:
atof
atoi
(Standard	C	I/O)	sprintf
strtol

isalnum
Syntax:

		#include	<ctype.h>

		int	isalnum(int	ch);

The	function	isalnum()	returns	non-zero	if	its	argument	is	a	numeric	digit	or	a

letter	of	the	alphabet.	Otherwise,	zero	is	returned.

			char	c;

			scanf("%c",	&c);

			if(isalnum(c))

					printf("You	entered	the	alphanumeric	character	%c\n",	c);														

Related	topics:
isalpha
iscntrl
isdigit
isgraph
isprint
ispunct
isspace
isxdigit

isalpha
Syntax:

		#include	<ctype.h>

		int	isalpha(int	ch);

The	function	isalpha()	returns	non-zero	if	its	argument	is	a	letter	of	the	alphabet.
Otherwise,	zero	is	returned.

			char	c;

			scanf("%c",	&c);

			if(isalpha(c))

					printf("You	entered	a	letter	of	the	alphabet\n");														

Related	topics:
isalnum
iscntrl
isdigit
isgraph
isprint
ispunct

isspace
isxdigit

iscntrl
Syntax:

		#include	<ctype.h>

		int	iscntrl(int	ch);

The	iscntrl()	function	returns	non-zero	if	its	argument	is	a	control	character
(between	0	and	0x1F	or	equal	to	0x7F).	Otherwise,	zero	is	returned.

Related	topics:
isalnum
isalpha
isdigit
isgraph
isprint
ispunct
isspace
isxdigit

isdigit
Syntax:

		#include	<ctype.h>

		int	isdigit(int	ch);

The	function	isdigit()	returns	non-zero	if	its	argument	is	a	digit	between	0	and	9.
Otherwise,	zero	is	returned.

			char	c;

			scanf("%c",	&c);

			if(isdigit(c))

					printf("You	entered	the	digit	%c\n",	c);															

Related	topics:
isalnum
isalpha
iscntrl
isgraph
isprint
ispunct
isspace
isxdigit

isgraph
Syntax:

		#include	<ctype.h>

		int	isgraph(int	ch);

The	function	isgraph()	returns	non-zero	if	its	argument	is	any	printable	character
other	than	a	space	(if	you	can	see	the	character,	then	isgraph()	will	return	a	non-
zero	value).	Otherwise,	zero	is	returned.

Related	topics:
isalnum
isalpha
iscntrl
isdigit
isprint
ispunct
isspace
isxdigit

islower
Syntax:

		#include	<ctype.h>

		int	islower(int	ch);

The	islower()	function	returns	non-zero	if	its	argument	is	a	lowercase	letter.
Otherwise,	zero	is	returned.

Related	topics:
isupper

isprint
Syntax:

		#include	<ctype.h>

		int	isprint(int	ch);

The	function	isprint()	returns	non-zero	if	its	argument	is	a	printable	character
(including	a	space).	Otherwise,	zero	is	returned.

Related	topics:
isalnum
isalpha
iscntrl
isdigit
isgraph
ispunct
isspace

ispunct
Syntax:

		#include	<ctype.h>

		int	ispunct(int	ch);

The	ispunct()	function	returns	non-zero	if	its	argument	is	a	printing	character	but

neither	alphanumeric	nor	a	space.	Otherwise,	zero	is	returned.

Related	topics:
isalnum
isalpha
iscntrl
isdigit
isgraph
isprint
isspace
isxdigit

isspace
Syntax:

		#include	<ctype.h>

		int	isspace(int	ch);

The	isspace()	function	returns	non-zero	if	its	argument	is	some	sort	of	space	(i.e.
single	space,	tab,	vertical	tab,	form	feed,	carriage	return,	or	newline).	Otherwise,
zero	is	returned.

Related	topics:
isalnum
isalpha
iscntrl
isdigit
isgraph
isprint
ispunct
isxdigit

isupper

Syntax:

		#include	<ctype.h>

		int	isupper(int	ch);

The	isupper()	function	returns	non-zero	if	its	argument	is	an	uppercase	letter.
Otherwise,	zero	is	returned.

Related	topics:
islower
tolower

isxdigit
Syntax:

		#include	<ctype.h>

		int	isxdigit(int	ch);

The	function	isxdigit()	returns	non-zero	if	its	argument	is	a	hexidecimal	digit
(i.e.	A-F,	a-f,	or	0-9).	Otherwise,	zero	is	returned.

Related	topics:
isalnum
isalpha
iscntrl
isdigit
isgraph
ispunct
isspace

memchr
Syntax:

		#include	<string.h>

		void	*memchr(const	void	*buffer,	int	ch,	size_t	count);

The	memchr()	function	looks	for	the	first	occurrence	of	ch	within	count
characters	in	the	array	pointed	to	by	buffer.	The	return	value	points	to	the
location	of	the	first	occurrence	of	ch,	or	NULL	if	ch	isn't	found.	For	example:

			char	names[]	=	"Alan	Bob	Chris	X	Dave";

			if(memchr(names,'X',strlen(names))	==	NULL)

					printf("Didn't	find	an	X\n");

			else

					printf("Found	an	X\n");																

Related	topics:
memcmp
memcpy
strstr

memcmp
Syntax:

		#include	<string.h>

		int	memcmp(const	void	*buffer1,	const	void	*buffer2,	size_t	count);

The	function	memcmp()	compares	the	first	count	characters	of	buffer1	and
buffer2.	The	return	values	are	as	follows:

Value Explanation

less	than	0 buffer1	is	less	than	buffer2

equal	to	0 buffer1	is	equal	to	buffer2

greater	than	0 buffer1	is	greater	than	buffer2
Related	topics:
memchr
memcpy
memset
strcmp

memcpy
Syntax:

		#include	<string.h>

		void	*memcpy(void	*to,	const	void	*from,	size_t	count);

The	function	memcpy()	copies	count	characters	from	the	array	from	to	the	array
to.	The	return	value	of	memcpy()	is	to.	The	behavior	of	memcpy()	is	undefined
if	to	and	from	overlap.

Related	topics:
memchr
memcmp
memmove
memset
strcpy
strlen
strncpy

memmove
Syntax:

		#include	<string.h>

		void	*memmove(void	*to,	const	void	*from,	size_t	count);

The	memmove()	function	is	identical	to	memcpy(),	except	that	it	works	even	if
to	and	from	overlap.

Related	topics:
memcpy
memset

memset
Syntax:

		#include	<string.h>

		void*	memset(void*	buffer,	int	ch,	size_t	count);

The	function	memset()	copies	ch	into	the	first	count	characters	of	buffer,	and
returns	buffer.	memset()	is	useful	for	intializing	a	section	of	memory	to	some
value.	For	example,	this	command:

			memset(the_array,	'\0',	sizeof(the_array));																

...is	a	very	efficient	way	to	set	all	values	of	the_array	to	zero.

The	table	below	compares	two	different	methods	for	initializing	an	array	of
characters:	a	for-loop	versus	memset().	As	the	size	of	the	data	being	initialized
increases,	memset()	clearly	gets	the	job	done	much	more	quickly:

Input	sizeInitialized	with	a	for-loop Initialized	with	memset()
1000 0.016 0.017
10000 0.055 0.013
100000 0.443 0.029
1000000 4.337 0.291
Related	topics:
memcmp
memcpy
memmove

strcat
Syntax:

		#include	<string.h>

		char	*strcat(char	*str1,	const	char	*str2);

The	strcat()	function	concatenates	str2	onto	the	end	of	str1,	and	returns	str1.	For
example:

			printf("Enter	your	name:	");

			scanf("%s",	name);

			title	=	strcat(name,	"	the	Great");

			printf("Hello,	%s\n",	title);												

Related	topics:
strchr
strcmp
strcpy
strncat

strchr
Syntax:

		#include	<string.h>

		char	*strchr(const	char	*str,	int	ch);

The	function	strchr()	returns	a	pointer	to	the	first	occurence	of	ch	in	str,	or
NULL	if	ch	is	not	found.

Related	topics:
strcat
strcmp
strcpy
strlen
strncat
strncmp
strncpy
strpbrk
strspn
strstr
strtok

strcmp
Syntax:

		#include	<string.h>

		int	strcmp(const	char	*str1,	const	char	*str2);

The	function	strcmp()	compares	str1	and	str2,	then	returns:

Return	value Explanation

less	than	0 ''str1''	is	less	than	''str2''

equal	to	0 ''str1''	is	equal	to	''str2''

greater	than	0 ''str1''	is	greater	than	''str2''

For	example:

			printf("Enter	your	name:	");

			scanf("%s",	name);

			if(strcmp(name,	"Mary")	==	0)

					printf("Hello,	Dr.	Mary!\n");										

Related	topics:
memcmp
strcat
strchr
strcoll
strcpy
strlen
strncmp
strxfrm

strcoll
Syntax:

		#include	<string.h>

		int	strcoll(const	char	*str1,	const	char	*str2);

The	strcoll()	function	compares	str1	and	str2,	much	like	strcmp().	However,
strcoll()	performs	the	comparison	using	the	locale	specified	by	the	(Standard	C
Date	&	Time)	setlocale()	function.

Related	topics:
(Standard	C	Date	&	Time)	setlocale
strcmp
strxfrm

strcpy
Syntax:

		#include	<string.h>

		char	*strcpy(char	*to,	const	char	*from);

The	strcpy()	function	copies	characters	in	the	string	from	to	the	string	to,
including	the	null	termination.	The	return	value	is	to.

Related	topics:
memcpy
strcat
strchr
strcmp
strncmp
strncpy

strcspn
Syntax:

		#include	<string.h>

		size_t	strcspn(const	char	*str1,	const	char	*str2);

The	function	strcspn()	returns	the	index	of	the	first	character	in	str1	that	matches
any	of	the	characters	in	str2.

Related	topics:
strpbrk
strrchr
strstr
strtok

strerror
Syntax:

		#include	<string.h>

		char	*strerror(int	num);

The	function	strerror()	returns	an	implementation	defined	string	corresponding
to	num.

strlen
Syntax:

		#include	<string.h>

		size_t	strlen(char	*str);

The	strlen()	function	returns	the	length	of	str	(determined	by	the	number	of
characters	before	null	termination).

Related	topics:
memcpy
strchr
strcmp
strncmp

strncat
Syntax:

		#include	<string.h>

		char	*strncat(char	*str1,	const	char	*str2,	size_t	count);

The	function	strncat()	concatenates	at	most	count	characters	of	str2	onto	str1,
adding	a	null	termination.	The	resulting	string	is	returned.

Related	topics:
strcat
strchr
strncmp
strncpy

strncmp
Syntax:

		#include	<string.h>

		int	strncmp(const	char	*str1,	const	char	*str2,	size_t	count);

The	strncmp()	function	compares	at	most	count	characters	of	str1	and	str2.	The
return	value	is	as	follows:

Return	value Explanation

less	than	0 ''str1''	is	less	than	''str2''

equal	to	0 ''str1''	is	equal	to	''str2''

greater	than	0 ''str1''	is	greater	than	str2''

If	there	are	less	than	count	characters	in	either	string,	then	the	comparison	will
stop	after	the	first	null	termination	is	encountered.

Related	topics:

strchr
strcmp
strcpy
strlen
strncat
strncpy

strncpy
Syntax:

		#include	<string.h>

		char	*strncpy(char	*to,	const	char	*from,	size_t	count);

The	strncpy()	function	copies	at	most	count	characters	of	from	to	the	string	to.	If
from	has	less	than	count	characters,	the	remainder	is	padded	with	'\0'	characters.
The	return	value	is	the	resulting	string.

Related	topics:
memcpy
strchr
strcpy
strncat
strncmp

strpbrk
Syntax:

		#include	<string.h>

		char*	strpbrk(const	char*	str1,	const	char*	str2);

The	function	strpbrk()	returns	a	pointer	to	the	first	ocurrence	in	str1	of	any
character	in	str2,	or	NULL	if	no	such	characters	are	present.

Related	topics:

(C++	Algorithms)	find_first_of
strchr
strcspn
strrchr
strspn
strstr
strtok

strrchr
Syntax:

		#include	<string.h>

		char	*strrchr(const	char	*str,	int	ch);

The	function	strrchr()	returns	a	pointer	to	the	last	occurrence	of	ch	in	str,	or
NULL	if	no	match	is	found.

Related	topics:
strcspn
strpbrk
strspn
strstr
strtok

strspn
Syntax:

		#include	<string.h>

		size_t	strspn(const	char	*str1,	const	char	*str2);

The	strspn()	function	returns	the	index	of	the	first	character	in	str1	that	doesn't
match	any	character	in	str2.

Related	topics:

strchr
strpbrk
strrchr
strstr
strtok

strstr
Syntax:

		#include	<string.h>

		char	*strstr(const	char	*str1,	const	char	*str2);

The	function	strstr()	returns	a	pointer	to	the	first	occurrence	of	str2	in	str1,	or
NULL	if	no	match	is	found.	If	the	length	of	str2	is	zero,	then	strstr()	will	simply
return	str1.

For	example,	the	following	code	checks	for	the	existence	of	one	string	within
another	string:

		char*	str1	=	"this	is	a	string	of	characters";

		char*	str2	=	"a	string";

		char*	result	=	strstr(str1,	str2);

		if(result	==	NULL)	printf("Could	not	find	'%s'	in	'%s'\n",	str2,	str1);

		else	printf("Found	a	substring:	'%s'\n",	result);

When	run,	the	above	code	displays	this	output:

		Found	a	substring:	'a	string	of	characters'

Related	topics:
memchr
strchr
strcspn
strpbrk
strrchr
strspn
strtok

strtod
Syntax:

		#include	<stdlib.h>

		double	strtod(const	char	*start,	char	**end);

The	function	strtod()	returns	whatever	it	encounters	first	in	start	as	a	double.	end
is	set	to	point	at	whatever	is	left	in	start	after	that	double.	If	overflow	occurs,
strtod()	returns	either	HUGE_VAL	or	-HUGE_VAL.

Related	topics:
atof

strtok
Syntax:

		#include	<string.h>

		char	*strtok(char	*str1,	const	char	*str2);

The	strtok()	function	returns	a	pointer	to	the	next	"token"	in	str1,	where	str2
contains	the	delimiters	that	determine	the	token.	strtok()	returns	NULL	if	no
token	is	found.	In	order	to	convert	a	string	to	tokens,	the	first	call	to	strtok()
should	have	str1	point	to	the	string	to	be	tokenized.	All	calls	after	this	should
have	str1	be	NULL.

For	example:

			char	str[]	=	"now	#	is	the	time	for	all	#	good	men	to	come	to	the	#	aid	of	their	country";

			char	delims[]	=	"#";

			char	*result	=	NULL;

			result	=	strtok(str,	delims);

			while(result	!=	NULL)	{

							printf("result	is	\"%s\"\n",	result);

							result	=	strtok(NULL,	delims);

			}												

The	above	code	will	display	the	following	output:

			result	is	"now	"

			result	is	"	is	the	time	for	all	"

			result	is	"	good	men	to	come	to	the	"

			result	is	"	aid	of	their	country"										

Related	topics:
strchr
strcspn
strpbrk
strrchr
strspn
strstr

strtol
Syntax:

		#include	<stdlib.h>

		long	strtol(const	char	*start,	char	**end,	int	base);

The	strtol()	function	returns	whatever	it	encounters	first	in	start	as	a	long,	doing
the	conversion	to	base	if	necessary.	end	is	set	to	point	to	whatever	is	left	in	start
after	the	long.	If	the	result	can	not	be	represented	by	a	long,	then	strtol()	returns
either	LONG_MAX	or	LONG_MIN.	Zero	is	returned	upon	error.

Related	topics:
atol
strtoul

strtoul
Syntax:

		#include	<stdlib.h>

		unsigned	long	strtoul(const	char	*start,	char	**end,	int	base);

The	function	strtoul()	behaves	exactly	like	strtol(),	except	that	it	returns	an
unsigned	long	rather	than	a	mere	long.

Related	topics:
strtol

strxfrm
Syntax:

		#include	<string.h>

		size_t	strxfrm(char	*str1,	const	char	*str2,	size_t	num);

The	strxfrm()	function	manipulates	the	first	num	characters	of	str2	and	stores
them	in	str1.	The	result	is	such	that	if	a	strcoll()	is	performed	on	str1	and	the	old
str2,	you	will	get	the	same	result	as	with	a	strcmp().

Related	topics:
strcmp
strcoll

tolower
Syntax:

		#include	<ctype.h>

		int	tolower(int	ch);

The	function	tolower()	returns	the	lowercase	version	of	the	character	ch.

Related	topics:
isupper
toupper

toupper
Syntax:

		#include	<ctype.h>

		int	toupper(int	ch);

The	toupper()	function	returns	the	uppercase	version	of	the	character	ch.

Related	topics:
tolower

cppreference.com	>	Standard	C	String	and	Character	>	atof

atof
Syntax:

		#include	<stdlib.h>

		double	atof(const	char	*str);

The	function	atof()	converts	str	into	a	double,	then	returns	that	value.	str	must
start	with	a	valid	number,	but	can	be	terminated	with	any	non-numerical
character,	other	than	"E"	or	"e".	For	example,

			x	=	atof("42.0is_the_answer");											

results	in	x	being	set	to	42.0.

Related	topics:
atoiatol
(Standard	C	I/O)	sprintf
strtod

cppreference.com	>	Standard	C	String	and	Character	>	atoi

atoi
Syntax:

		#include	<stdlib.h>

		int	atoi(const	char	*str);

The	atoi()	function	converts	str	into	an	integer,	and	returns	that	integer.	str
should	start	with	some	sort	of	number,	and	atoi()	will	stop	reading	from	str	as
soon	as	a	non-numerical	character	has	been	read.	For	example,

			i	=	atoi("512.035");													

would	result	in	i	being	set	to	512.

You	can	use	(Standard	C	I/O)	sprintf()	to	convert	a	number	into	a	string.

Related	topics:
atofatol
(Standard	C	I/O)	sprintf

cppreference.com	>	Standard	C	String	and	Character	>	atol

atol
Syntax:

		#include	<stdlib.h>

		long	atol(const	char	*str);

The	function	atol()	converts	str	into	a	long,	then	returns	that	value.	atol()	will
read	from	str	until	it	finds	any	character	that	should	not	be	in	a	long.	The
resulting	truncated	value	is	then	converted	and	returned.	For	example,

			x	=	atol("1024.0001");											

results	in	x	being	set	to	1024L.

Related	topics:
atofatoi
(Standard	C	I/O)	sprintf
strtol

cppreference.com	>	Standard	C	String	and	Character	>	isalnum

isalnum
Syntax:

		#include	<ctype.h>

		int	isalnum(int	ch);

The	function	isalnum()	returns	non-zero	if	its	argument	is	a	numeric	digit	or	a	letter	of	the
alphabet.	Otherwise,	zero	is	returned.

			char	c;

			scanf("%c",	&c);

			if(isalnum(c))

					printf("You	entered	the	alphanumeric	character	%c\n",	c);														

Related	topics:
isalphaiscntrl
isdigit
isgraph
isprint
ispunct
isspace
isxdigit

cppreference.com	>	Standard	C	String	and	Character	>	isalpha

isalpha
Syntax:

		#include	<ctype.h>

		int	isalpha(int	ch);

The	function	isalpha()	returns	non-zero	if	its	argument	is	a	letter	of	the	alphabet.
Otherwise,	zero	is	returned.

			char	c;

			scanf("%c",	&c);

			if(isalpha(c))

					printf("You	entered	a	letter	of	the	alphabet\n");														

Related	topics:
isalnumiscntrl
isdigit
isgraph
isprint
ispunct
isspace
isxdigit

cppreference.com	>	Standard	C	String	and	Character	>	iscntrl

iscntrl
Syntax:

		#include	<ctype.h>

		int	iscntrl(int	ch);

The	iscntrl()	function	returns	non-zero	if	its	argument	is	a	control	character
(between	0	and	0x1F	or	equal	to	0x7F).	Otherwise,	zero	is	returned.

Related	topics:
isalnumisalpha
isdigit
isgraph
isprint
ispunct
isspace
isxdigit

cppreference.com	>	Standard	C	String	and	Character	>	isdigit

isdigit
Syntax:

		#include	<ctype.h>

		int	isdigit(int	ch);

The	function	isdigit()	returns	non-zero	if	its	argument	is	a	digit	between	0	and	9.
Otherwise,	zero	is	returned.

			char	c;

			scanf("%c",	&c);

			if(isdigit(c))

					printf("You	entered	the	digit	%c\n",	c);															

Related	topics:
isalnumisalpha
iscntrl
isgraph
isprint
ispunct
isspace
isxdigit

cppreference.com	>	Standard	C	String	and	Character	>	isgraph

isgraph
Syntax:

		#include	<ctype.h>

		int	isgraph(int	ch);

The	function	isgraph()	returns	non-zero	if	its	argument	is	any	printable
character	other	than	a	space	(if	you	can	see	the	character,	then	isgraph()	will
return	a	non-zero	value).	Otherwise,	zero	is	returned.

Related	topics:
isalnumisalpha
iscntrl
isdigit
isprint
ispunct
isspace
isxdigit

cppreference.com	>	Standard	C	String	and	Character	>	islower

islower
Syntax:

		#include	<ctype.h>

		int	islower(int	ch);

The	islower()	function	returns	non-zero	if	its	argument	is	a	lowercase	letter.
Otherwise,	zero	is	returned.

Related	topics:
isupper

cppreference.com	>	Standard	C	String	and	Character	>	isprint

isprint
Syntax:

		#include	<ctype.h>

		int	isprint(int	ch);

The	function	isprint()	returns	non-zero	if	its	argument	is	a	printable	character
(including	a	space).	Otherwise,	zero	is	returned.

Related	topics:
isalnumisalpha
iscntrl
isdigit
isgraph
ispunct
isspace

cppreference.com	>	Standard	C	String	and	Character	>	ispunct

ispunct
Syntax:

		#include	<ctype.h>

		int	ispunct(int	ch);

The	ispunct()	function	returns	non-zero	if	its	argument	is	a	printing	character
but	neither	alphanumeric	nor	a	space.	Otherwise,	zero	is	returned.

Related	topics:
isalnumisalpha
iscntrl
isdigit
isgraph
isprint
isspace
isxdigit

cppreference.com	>	Standard	C	String	and	Character	>	isspace

isspace
Syntax:

		#include	<ctype.h>

		int	isspace(int	ch);

The	isspace()	function	returns	non-zero	if	its	argument	is	some	sort	of	space
(i.e.	single	space,	tab,	vertical	tab,	form	feed,	carriage	return,	or	newline).
Otherwise,	zero	is	returned.

Related	topics:
isalnumisalpha
iscntrl
isdigit
isgraph
isprint
ispunct
isxdigit

cppreference.com	>	Standard	C	String	and	Character	>	isupper

isupper
Syntax:

		#include	<ctype.h>

		int	isupper(int	ch);

The	isupper()	function	returns	non-zero	if	its	argument	is	an	uppercase	letter.
Otherwise,	zero	is	returned.

Related	topics:
islowertolower

cppreference.com	>	Standard	C	String	and	Character	>	isxdigit

isxdigit
Syntax:

		#include	<ctype.h>

		int	isxdigit(int	ch);

The	function	isxdigit()	returns	non-zero	if	its	argument	is	a	hexidecimal	digit
(i.e.	A-F,	a-f,	or	0-9).	Otherwise,	zero	is	returned.

Related	topics:
isalnumisalpha
iscntrl
isdigit
isgraph
ispunct
isspace

cppreference.com	>	Standard	C	String	and	Character	>	memchr

memchr
Syntax:

		#include	<string.h>

		void	*memchr(const	void	*buffer,	int	ch,	size_t	count);

The	memchr()	function	looks	for	the	first	occurrence	of	ch	within	count
characters	in	the	array	pointed	to	by	buffer.	The	return	value	points	to	the
location	of	the	first	occurrence	of	ch,	or	NULL	if	ch	isn't	found.	For	example:

			char	names[]	=	"Alan	Bob	Chris	X	Dave";

			if(memchr(names,'X',strlen(names))	==	NULL)

					printf("Didn't	find	an	X\n");

			else

					printf("Found	an	X\n");																

Related	topics:
memcmpmemcpy
strstr

cppreference.com	>	Standard	C	String	and	Character	>	memcmp

memcmp
Syntax:

		#include	<string.h>

		int	memcmp(const	void	*buffer1,	const	void	*buffer2,	size_t	count);

The	function	memcmp()	compares	the	first	count	characters	of	buffer1	and	buffer2
The	return	values	are	as	follows:

Value Explanation

less	than	0 buffer1	is	less	than	buffer2

equal	to	0 buffer1	is	equal	to	buffer2

greater	than	0 buffer1	is	greater	than	buffer2
Related	topics:
memchrmemcpy
memset
strcmp

cppreference.com	>	Standard	C	String	and	Character	>	memcpy

memcpy
Syntax:

		#include	<string.h>

		void	*memcpy(void	*to,	const	void	*from,	size_t	count);

The	function	memcpy()	copies	count	characters	from	the	array	from	to	the	array
to.	The	return	value	of	memcpy()	is	to.	The	behavior	of	memcpy()	is	undefined
if	to	and	from	overlap.

Related	topics:
memchrmemcmp
memmove
memset
strcpy
strlen
strncpy

cppreference.com	>	Standard	C	String	and	Character	>	memmove

memmove
Syntax:

		#include	<string.h>

		void	*memmove(void	*to,	const	void	*from,	size_t	count);

The	memmove()	function	is	identical	to	memcpy(),	except	that	it	works	even	if
to	and	from	overlap.

Related	topics:
memcpymemset

cppreference.com	>	Standard	C	String	and	Character	>	memset

memset
Syntax:

		#include	<string.h>

		void*	memset(void*	buffer,	int	ch,	size_t	count);

The	function	memset()	copies	ch	into	the	first	count	characters	of	buffer,	and
returns	buffer.	memset()	is	useful	for	intializing	a	section	of	memory	to	some
value.	For	example,	this	command:

			memset(the_array,	'\0',	sizeof(the_array));																

...is	a	very	efficient	way	to	set	all	values	of	the_array	to	zero.

The	table	below	compares	two	different	methods	for	initializing	an	array	of
characters:	a	for-loop	versus	memset().	As	the	size	of	the	data	being	initialized
increases,	memset()	clearly	gets	the	job	done	much	more	quickly:

Input	sizeInitialized	with	a	for-loop Initialized	with	memset()
1000 0.016 0.017
10000 0.055 0.013
100000 0.443 0.029
1000000 4.337 0.291
Related	topics:
memcmpmemcpy
memmove

cppreference.com	>	Standard	C	String	and	Character	>	strcat

strcat
Syntax:

		#include	<string.h>

		char	*strcat(char	*str1,	const	char	*str2);

The	strcat()	function	concatenates	str2	onto	the	end	of	str1,	and	returns	str1.	For
example:

			printf("Enter	your	name:	");

			scanf("%s",	name);

			title	=	strcat(name,	"	the	Great");

			printf("Hello,	%s\n",	title);												

Related	topics:
strchrstrcmp
strcpy
strncat

cppreference.com	>	Standard	C	String	and	Character	>	strchr

strchr
Syntax:

		#include	<string.h>

		char	*strchr(const	char	*str,	int	ch);

The	function	strchr()	returns	a	pointer	to	the	first	occurence	of	ch	in	str,	or
NULL	if	ch	is	not	found.

Related	topics:
strcatstrcmp
strcpy
strlen
strncat
strncmp
strncpy
strpbrk
strspn
strstr
strtok

cppreference.com	>	Standard	C	String	and	Character	>	strcmp

strcmp
Syntax:

		#include	<string.h>

		int	strcmp(const	char	*str1,	const	char	*str2);

The	function	strcmp()	compares	str1	and	str2,	then	returns:

Return	value Explanation

less	than	0 ''str1''	is	less	than	''str2''

equal	to	0 ''str1''	is	equal	to	''str2''

greater	than	0 ''str1''	is	greater	than	''str2''

For	example:

			printf("Enter	your	name:	");

			scanf("%s",	name);

			if(strcmp(name,	"Mary")	==	0)

					printf("Hello,	Dr.	Mary!\n");										

Related	topics:
memcmpstrcat
strchr
strcoll
strcpy
strlen
strncmp
strxfrm

cppreference.com	>	Standard	C	String	and	Character	>	strcoll

strcoll
Syntax:

		#include	<string.h>

		int	strcoll(const	char	*str1,	const	char	*str2);

The	strcoll()	function	compares	str1	and	str2,	much	like	strcmp().	However,
strcoll()	performs	the	comparison	using	the	locale	specified	by	the	(Standard	C
Date	&	Time)	setlocale()	function.

Related	topics:
(Standard	C	Date	&	Time)	setlocale
strcmp
strxfrm

cppreference.com	>	Standard	C	String	and	Character	>	strcpy

strcpy
Syntax:

		#include	<string.h>

		char	*strcpy(char	*to,	const	char	*from);

The	strcpy()	function	copies	characters	in	the	string	from	to	the	string	to,
including	the	null	termination.	The	return	value	is	to.

Related	topics:
memcpystrcat
strchr
strcmp
strncmp
strncpy

cppreference.com	>	Standard	C	String	and	Character	>	strcspn

strcspn
Syntax:

		#include	<string.h>

		size_t	strcspn(const	char	*str1,	const	char	*str2);

The	function	strcspn()	returns	the	index	of	the	first	character	in	str1	that
matches	any	of	the	characters	in	str2.

Related	topics:
strpbrkstrrchr
strstr
strtok

cppreference.com	>	Standard	C	String	and	Character	>	strerror

strerror
Syntax:

		#include	<string.h>

		char	*strerror(int	num);

The	function	strerror()	returns	an	implementation	defined	string	corresponding
to	num.

cppreference.com	>	Standard	C	String	and	Character	>	strlen

strlen
Syntax:

		#include	<string.h>

		size_t	strlen(char	*str);

The	strlen()	function	returns	the	length	of	str	(determined	by	the	number	of
characters	before	null	termination).

Related	topics:
memcpystrchr
strcmp
strncmp

cppreference.com	>	Standard	C	String	and	Character	>	strncat

strncat
Syntax:

		#include	<string.h>

		char	*strncat(char	*str1,	const	char	*str2,	size_t	count);

The	function	strncat()	concatenates	at	most	count	characters	of	str2	onto	str1,
adding	a	null	termination.	The	resulting	string	is	returned.

Related	topics:
strcatstrchr
strncmp
strncpy

cppreference.com	>	Standard	C	String	and	Character	>	strncmp

strncmp
Syntax:

		#include	<string.h>

		int	strncmp(const	char	*str1,	const	char	*str2,	size_t	count);

The	strncmp()	function	compares	at	most	count	characters	of	str1	and	str2.	The
return	value	is	as	follows:

Return	value Explanation

less	than	0 ''str1''	is	less	than	''str2''

equal	to	0 ''str1''	is	equal	to	''str2''

greater	than	0 ''str1''	is	greater	than	str2''

If	there	are	less	than	count	characters	in	either	string,	then	the	comparison	will
stop	after	the	first	null	termination	is	encountered.

Related	topics:
strchrstrcmp
strcpy
strlen
strncat
strncpy

cppreference.com	>	Standard	C	String	and	Character	>	strncpy

strncpy
Syntax:

		#include	<string.h>

		char	*strncpy(char	*to,	const	char	*from,	size_t	count);

The	strncpy()	function	copies	at	most	count	characters	of	from	to	the	string	to.	If
from	has	less	than	count	characters,	the	remainder	is	padded	with	'\0'	characters.
The	return	value	is	the	resulting	string.

Related	topics:
memcpystrchr
strcpy
strncat
strncmp

cppreference.com	>	Standard	C	String	and	Character	>	strpbrk

strpbrk
Syntax:

		#include	<string.h>

		char*	strpbrk(const	char*	str1,	const	char*	str2);

The	function	strpbrk()	returns	a	pointer	to	the	first	ocurrence	in	str1	of	any
character	in	str2,	or	NULL	if	no	such	characters	are	present.

Related	topics:
(C++	Algorithms)	find_first_of
strchr
strcspn
strrchr
strspn
strstr
strtok

cppreference.com	>	Standard	C	String	and	Character	>	strrchr

strrchr
Syntax:

		#include	<string.h>

		char	*strrchr(const	char	*str,	int	ch);

The	function	strrchr()	returns	a	pointer	to	the	last	occurrence	of	ch	in	str,	or
NULL	if	no	match	is	found.

Related	topics:
strcspnstrpbrk
strspn
strstr
strtok

cppreference.com	>	Standard	C	String	and	Character	>	strspn

strspn
Syntax:

		#include	<string.h>

		size_t	strspn(const	char	*str1,	const	char	*str2);

The	strspn()	function	returns	the	index	of	the	first	character	in	str1	that	doesn't
match	any	character	in	str2.

Related	topics:
strchrstrpbrk
strrchr
strstr
strtok

cppreference.com	>	Standard	C	String	and	Character	>	strstr

strstr
Syntax:

		#include	<string.h>

		char	*strstr(const	char	*str1,	const	char	*str2);

The	function	strstr()	returns	a	pointer	to	the	first	occurrence	of	str2	in	str1,	or	NULL
match	is	found.	If	the	length	of	str2	is	zero,	then	strstr()	will	simply	return	str1.

For	example,	the	following	code	checks	for	the	existence	of	one	string	within	another	string:

		char*	str1	=	"this	is	a	string	of	characters";

		char*	str2	=	"a	string";

		char*	result	=	strstr(str1,	str2);

		if(result	==	NULL)	printf("Could	not	find	'%s'	in	'%s'\n",	str2,	str1);

		else	printf("Found	a	substring:	'%s'\n",	result);

When	run,	the	above	code	displays	this	output:

		Found	a	substring:	'a	string	of	characters'

Related	topics:
memchrstrchr
strcspn
strpbrk
strrchr
strspn
strtok

cppreference.com	>	Standard	C	String	and	Character	>	strtod

strtod
Syntax:

		#include	<stdlib.h>

		double	strtod(const	char	*start,	char	**end);

The	function	strtod()	returns	whatever	it	encounters	first	in	start	as	a	double.
end	is	set	to	point	at	whatever	is	left	in	start	after	that	double.	If	overflow
occurs,	strtod()	returns	either	HUGE_VAL	or	-HUGE_VAL.

Related	topics:
atof

cppreference.com	>	Standard	C	String	and	Character	>	strtok

strtok
Syntax:

		#include	<string.h>

		char	*strtok(char	*str1,	const	char	*str2);

The	strtok()	function	returns	a	pointer	to	the	next	"token"	in	str1,	where	str2	contains	the	delimiters	that
determine	the	token.	strtok()	returns	NULL	if	no	token	is	found.	In	order	to	convert	a	string	to	tokens,	the	first
call	to	strtok()	should	have	str1	point	to	the	string	to	be	tokenized.	All	calls	after	
NULL.

For	example:

			char	str[]	=	"now	#	is	the	time	for	all	#	good	men	to	come	to	the	#	aid	of	their	country";

			char	delims[]	=	"#";

			char	*result	=	NULL;

			result	=	strtok(str,	delims);

			while(result	!=	NULL)	{

							printf("result	is	\"%s\"\n",	result);

							result	=	strtok(NULL,	delims);

			}												

The	above	code	will	display	the	following	output:

			result	is	"now	"

			result	is	"	is	the	time	for	all	"

			result	is	"	good	men	to	come	to	the	"

			result	is	"	aid	of	their	country"										

Related	topics:
strchrstrcspn
strpbrk
strrchr
strspn
strstr

cppreference.com	>	Standard	C	String	and	Character	>	strtol

strtol
Syntax:

		#include	<stdlib.h>

		long	strtol(const	char	*start,	char	**end,	int	base);

The	strtol()	function	returns	whatever	it	encounters	first	in	start	as	a	long,	doing
the	conversion	to	base	if	necessary.	end	is	set	to	point	to	whatever	is	left	in	start
after	the	long.	If	the	result	can	not	be	represented	by	a	long,	then	strtol()	returns
either	LONG_MAX	or	LONG_MIN.	Zero	is	returned	upon	error.

Related	topics:
atolstrtoul

cppreference.com	>	Standard	C	String	and	Character	>	strtoul

strtoul
Syntax:

		#include	<stdlib.h>

		unsigned	long	strtoul(const	char	*start,	char	**end,	int	base);

The	function	strtoul()	behaves	exactly	like	strtol(),	except	that	it	returns	an
unsigned	long	rather	than	a	mere	long.

Related	topics:
strtol

cppreference.com	>	Standard	C	String	and	Character	>	strxfrm

strxfrm
Syntax:

		#include	<string.h>

		size_t	strxfrm(char	*str1,	const	char	*str2,	size_t	num);

The	strxfrm()	function	manipulates	the	first	num	characters	of	str2	and	stores
them	in	str1.	The	result	is	such	that	if	a	strcoll()	is	performed	on	str1	and	the	old
str2,	you	will	get	the	same	result	as	with	a	strcmp().

Related	topics:
strcmpstrcoll

cppreference.com	>	Standard	C	String	and	Character	>	tolower

tolower
Syntax:

		#include	<ctype.h>

		int	tolower(int	ch);

The	function	tolower()	returns	the	lowercase	version	of	the	character	ch.

Related	topics:
isuppertoupper

cppreference.com	>	Standard	C	String	and	Character	>	toupper

toupper
Syntax:

		#include	<ctype.h>

		int	toupper(int	ch);

The	toupper()	function	returns	the	uppercase	version	of	the	character	ch.

Related	topics:
tolower

cppreference.com	>	Standard	C	I/O

clearerr
Syntax:

		#include	<stdio.h>

		void	clearerr(FILE	*stream);

The	clearerr	function	resets	the	error	flags	and	EOF	indicator	for	the	given
stream.	When	an	error	occurs,	you	can	use	perror()	to	figure	out	which	error
actually	occurred.

Related	topics:
feofferror
perror

fclose
Syntax:

		#include	<stdio.h>

		int	fclose(FILE	*stream);		

The	function	fclose()	closes	the	given	file	stream,	deallocating	any	buffers
associated	with	that	stream.	fclose()	returns	0	upon	success,	and	EOF	otherwise.

Related	topics:
fflush
fopen
freopen
setbuf

feof

Syntax:

		#include	<stdio.h>

		int	feof(FILE	*stream);		

The	function	feof()	returns	a	nonzero	value	if	the	end	of	the	given	file	stream	has
been	reached.

Related	topics:
clearerr
ferror
getc
perror
putc

ferror
Syntax:

		#include	<stdio.h>

		int	ferror(FILE	*stream);

The	ferror()	function	looks	for	errors	with	stream,	returning	zero	if	no	errors
have	occured,	and	non-zero	if	there	is	an	error.	In	case	of	an	error,	use	perror()	to
determine	which	error	has	occured.

Related	topics:
clearerr
feof
perror

fflush
Syntax:

		#include	<stdio.h>

		int	fflush(FILE	*stream);

If	the	given	file	stream	is	an	output	stream,	then	fflush()	causes	the	output	buffer
to	be	written	to	the	file.	If	the	given	stream	is	of	the	input	type,	then	fflush()
causes	the	input	buffer	to	be	cleared.	fflush()	is	useful	when	debugging,	if	a
program	segfaults	before	it	has	a	chance	to	write	output	to	the	screen.	Calling
fflush(STDOUT)	directly	after	debugging	output	will	ensure	that	your	output	is
displayed	at	the	correct	time.

			printf("Before	first	call\n");

			fflush(STDOUT);

			shady_function();

			printf("Before	second	call\n");

			fflush(STDOUT);

			dangerous_dereference();													

Related	topics:
fclose
fopen
fread
fwrite
getc
putc

fgetc
Syntax:

		#include	<stdio.h>

		int	fgetc(FILE	*stream);

The	fgetc()	function	returns	the	next	character	from	stream,	or	EOF	if	the	end	of
file	is	reached	or	if	there	is	an	error.

Related	topics:
fopen
fputc
fread

fwrite
getc
getchar
gets
putc

fgetpos
Syntax:

		#include	<stdio.h>

		int	fgetpos(FILE	*stream,	fpos_t	*position);

The	fgetpos()	function	stores	the	file	position	indicator	of	the	given	file	stream	in
the	given	position	variable.	The	position	variable	is	of	type	fpos_t	(which	is
defined	in	stdio.h)	and	is	an	object	that	can	hold	every	possible	position	in	a
FILE.	fgetpos()	returns	zero	upon	success,	and	a	non-zero	value	upon	failure.

Related	topics:
fseek
fsetpos
ftell

fgets
Syntax:

		#include	<stdio.h>

		char	*fgets(char	*str,	int	num,	FILE	*stream);

The	function	fgets()	reads	up	to	num	-	1	characters	from	the	given	file	stream
and	dumps	them	into	str.	The	string	that	fgets()	produces	is	always	NULL-
terminated.	fgets()	will	stop	when	it	reaches	the	end	of	a	line,	in	which	case	str
will	contain	that	newline	character.	Otherwise,	fgets()	will	stop	when	it	reaches
num	-	1	characters	or	encounters	the	EOF	character.	fgets()	returns	str	on
success,	and	NULL	on	an	error.

Related	topics:
fputs
fscanf
gets
scanf

fopen
Syntax:

		#include	<stdio.h>

		FILE	*fopen(const	char	*fname,	const	char	*mode);

The	fopen()	function	opens	a	file	indicated	by	fname	and	returns	a	stream
associated	with	that	file.	If	there	is	an	error,	fopen()	returns	NULL.	mode	is	used
to	determine	how	the	file	will	be	treated	(i.e.	for	input,	output,	etc)

Mode Meaning

"r" Open	a	text	file	for	reading

"w" Create	a	text	file	for	writing

"a" Append	to	a	text	file

"rb" Open	a	binary	file	for	reading

"wb" Create	a	binary	file	for	writing

"ab" Append	to	a	binary	file

"r+" Open	a	text	file	for	read/write

"w+" Create	a	text	file	for	read/write

"a+" Open	a	text	file	for	read/write

"rb+" Open	a	binary	file	for	read/write

"wb+" Create	a	binary	file	for	read/write

"ab+" Open	a	binary	file	for	read/write

An	example:

			int	ch;

			FILE	*input	=	fopen("stuff",	"r");

			ch	=	getc(input);										

Related	topics:
fclose
fflush
fgetc
fputc
fread
freopen
fseek
fwrite
getc
getchar
setbuf

fprintf
Syntax:

		#include	<stdio.h>

		int	fprintf(FILE	*stream,	const	char	*format,	...);

The	fprintf()	function	sends	information	(the	arguments)	according	to	the
specified	format	to	the	file	indicated	by	stream.	fprintf()	works	just	like	printf()
as	far	as	the	format	goes.	The	return	value	of	fprintf()	is	the	number	of	characters
outputted,	or	a	negative	number	if	an	error	occurs.	An	example:

			char	name[20]	=	"Mary";

			FILE	*out;

			out	=	fopen("output.txt",	"w");

			if(out	!=	NULL)

					fprintf(out,	"Hello	%s\n",	name);														

Related	topics:
fputc

fputs
fscanf
printf
sprintf

fputc
Syntax:

		#include	<stdio.h>

		int	fputc(int	ch,	FILE	*stream);

The	function	fputc()	writes	the	given	character	ch	to	the	given	output	stream.
The	return	value	is	the	character,	unless	there	is	an	error,	in	which	case	the	return
value	is	EOF.

Related	topics:
fgetc
fopen
fprintf
fread
fwrite
getc
getchar
putc

fputs
Syntax:

		#include	<stdio.h>

		int	fputs(const	char	*str,	FILE	*stream);

The	fputs()	function	writes	an	array	of	characters	pointed	to	by	str	to	the	given
output	stream.	The	return	value	is	non-negative	on	success,	and	EOF	on	failure.

Related	topics:
fgets
fprintf
fscanf
gets
puts

fread
Syntax:

		#include	<stdio.h>

		int	fread(void	*buffer,	size_t	size,	size_t	num,	FILE	*stream);

The	function	fread()	reads	num	number	of	objects	(where	each	object	is	size
bytes)	and	places	them	into	the	array	pointed	to	by	buffer.	The	data	comes	from
the	given	input	stream.	The	return	value	of	the	function	is	the	number	of	things
read.	You	can	use	feof()	or	ferror()	to	figure	out	if	an	error	occurs.

Related	topics:
fflush
fgetc
fopen
fputc
fscanf
fwrite
getc

freopen
Syntax:

		#include	<stdio.h>

		FILE	*freopen(const	char	*fname,	const	char	*mode,	FILE	*stream);

The	freopen()	function	is	used	to	reassign	an	existing	stream	to	a	different	file

and	mode.	After	a	call	to	this	function,	the	given	file	stream	will	refer	to	fname
with	access	given	by	mode.	The	return	value	of	freopen()	is	the	new	stream,	or
NULL	if	there	is	an	error.

Related	topics:
fclose
fopen

fscanf
Syntax:

		#include	<stdio.h>

		int	fscanf(FILE	*stream,	const	char	*format,	...);

The	function	fscanf()	reads	data	from	the	given	file	stream	in	a	manner	exactly
like	scanf().	The	return	value	of	fscanf()	is	the	number	of	variables	that	are
actually	assigned	values,	or	EOF	if	no	assignments	could	be	made.

Related	topics:
fgets
fprintf
fputs
fread
fwrite
scanf
sscanf

fseek
Syntax:

		#include	<stdio.h>

		int	fseek(FILE	*stream,	long	offset,	int	origin);

The	function	fseek()	sets	the	file	position	data	for	the	given	stream.	The	origin

value	should	have	one	of	the	following	values	(defined	in	stdio.h):

Name Explanation

SEEK_SET Seek	from	the	start	of	the	file

SEEK_CUR Seek	from	the	current	location

SEEK_END Seek	from	the	end	of	the	file

fseek()	returns	zero	upon	success,	non-zero	on	failure.	You	can	use	fseek()	to
move	beyond	a	file,	but	not	before	the	beginning.	Using	fseek()	clears	the	EOF
flag	associated	with	that	stream.

Related	topics:
fgetpos
fopen
fsetpos
ftell
rewind

fsetpos
Syntax:

		#include	<stdio.h>

		int	fsetpos(FILE	*stream,	const	fpos_t	*position);

The	fsetpos()	function	moves	the	file	position	indicator	for	the	given	stream	to	a
location	specified	by	the	position	object.	fpos_t	is	defined	in	stdio.h.	The	return
value	for	fsetpos()	is	zero	upon	success,	non-zero	on	failure.

Related	topics:
fgetpos
fseek
ftell

ftell
Syntax:

		#include	<stdio.h>

		long	ftell(FILE	*stream);

The	ftell()	function	returns	the	current	file	position	for	stream,	or	-1	if	an	error
occurs.

Related	topics:
fgetpos
fseek
fsetpos

fwrite
Syntax:

		#include	<stdio.h>

		int	fwrite(const	void	*buffer,	size_t	size,	size_t	count,	FILE	*stream);

The	fwrite()	function	writes,	from	the	array	buffer,	count	objects	of	size	size	to
stream.	The	return	value	is	the	number	of	objects	written.

Related	topics:
fflush
fgetc
fopen
fputc
fread
fscanf
getc

getc
Syntax:

		#include	<stdio.h>

		int	getc(FILE	*stream);

The	getc()	function	returns	the	next	character	from	stream,	or	EOF	if	the	end	of
file	is	reached.	getc()	is	identical	to	fgetc().	For	example:

			int	ch;

			FILE	*input	=	fopen("stuff",	"r");													

			ch	=	getc(input);

			while(ch	!=	EOF)	{

					printf("%c",	ch);

					ch	=	getc(input);

			}												

Related	topics:
feof
fflush
fgetc
fopen
fputc
fread
fwrite
putc
ungetc

getchar
Syntax:

		#include	<stdio.h>

		int	getchar(void);

The	getchar()	function	returns	the	next	character	from	STDIN,	or	EOF	if	the
end	of	file	is	reached.

Related	topics:
fgetc
fopen
fputc
putc

gets
Syntax:

		#include	<stdio.h>

		char	*gets(char	*str);

The	gets()	function	reads	characters	from	STDIN	and	loads	them	into	str,	until	a
newline	or	EOF	is	reached.	The	newline	character	is	translated	into	a	null
termination.	The	return	value	of	gets()	is	the	read-in	string,	or	NULL	if	there	is
an	error.

Related	topics:
fgetc
fgets
fputs
puts

perror
Syntax:

		#include	<stdio.h>

		void	perror(const	char	*str);

The	perror()	function	prints	str	and	an	implementation-defined	error	message
corresponding	to	the	global	variable	errno.

Related	topics:
clearerr
feof
ferror

printf
Syntax:

		#include	<stdio.h>

		int	printf(const	char	*format,	...);

The	printf()	function	prints	output	to	STDOUT,	according	to	format	and	other
arguments	passed	to	printf().	The	string	format	consists	of	two	types	of	items	-
characters	that	will	be	printed	to	the	screen,	and	format	commands	that	define
how	the	other	arguments	to	printf()	are	displayed.	Basically,	you	specify	a
format	string	that	has	text	in	it,	as	well	as	"special"	characters	that	map	to	the
other	arguments	of	printf().	For	example,	this	code

			char	name[20]	=	"Bob";

			int	age	=	21;

			printf("Hello	%s,	you	are	%d	years	old\n",	name,	age);											

displays	the	following	output:

			Hello	Bob,	you	are	21	years	old														

The	%s	means,	"insert	the	first	argument,	a	string,	right	here."	The	%d	indicates
that	the	second	argument	(an	integer)	should	be	placed	there.	There	are	different
%-codes	for	different	variable	types,	as	well	as	options	to	limit	the	length	of	the
variables	and	whatnot.

Code Format

%c character

%d signed	integers

%i signed	integers

%e scientific	notation,	with	a	lowercase	"e"

%E scientific	notation,	with	a	uppercase	"E"

%f floating	point

%g use	%e	or	%f,	whichever	is	shorter

%G use	%E	or	%f,	whichever	is	shorter

%o octal

%s a	string	of	characters

%u unsigned	integer

%x unsigned	hexadecimal,	with	lowercase	letters

%X unsigned	hexadecimal,	with	uppercase	letters

%p a	pointer

%n the	argument	shall	be	a	pointer	to	an	integer	into	which	is	placed	the
number	of	characters	written	so	far

%% a	'%'	sign

An	integer	placed	between	a	%	sign	and	the	format	command	acts	as	a	minimum
field	width	specifier,	and	pads	the	output	with	spaces	or	zeros	to	make	it	long
enough.	If	you	want	to	pad	with	zeros,	place	a	zero	before	the	minimum	field
width	specifier:

			%012d																

You	can	also	include	a	precision	modifier,	in	the	form	of	a	.N	where	N	is	some
number,	before	the	format	command:

			%012.4d														

The	precision	modifier	has	different	meanings	depending	on	the	format
command	being	used:

With	%e,	%E,	and	%f,	the	precision	modifier	lets	you	specify	the	number	of
decimal	places	desired.	For	example,	%12.6f	will	display	a	floating	number
at	least	12	digits	wide,	with	six	decimal	places.
With	%g	and	%G,	the	precision	modifier	determines	the	maximum	number

of	significant	digits	displayed.
With	%s,	the	precision	modifer	simply	acts	as	a	maximumfield	length,	to
complement	the	minimum	field	length	that	precedes	the	period.

All	of	printf()'s	output	is	right-justified,	unless	you	place	a	minus	sign	right	after
the	%	sign.	For	example,

			%-12.4f														

will	display	a	floating	point	number	with	a	minimum	of	12	characters,	4	decimal
places,	and	left	justified.	You	may	modify	the	%d,	%i,	%o,	%u,	and	%x	type
specifiers	with	the	letter	l	and	the	letter	h	to	specify	long	and	short	data	types
(e.g.	%hd	means	a	short	integer).	The	%e,	%f,	and	%g	type	specifiers	can	have
the	letter	l	before	them	to	indicate	that	a	double	follows.	The	%g,	%f,	and	%e
type	specifiers	can	be	preceded	with	the	character	'#'	to	ensure	that	the	decimal
point	will	be	present,	even	if	there	are	no	decimal	digits.	The	use	of	the	'#'
character	with	the	%x	type	specifier	indicates	that	the	hexidecimal	number
should	be	printed	with	the	'0x'	prefix.	The	use	of	the	'#'	character	with	the	%o
type	specifier	indicates	that	the	octal	value	should	be	displayed	with	a	0	prefix.

You	can	also	include	constant	escape	sequences	in	the	output	string.

The	return	value	of	printf()	is	the	number	of	characters	printed,	or	a	negative
number	if	an	error	occurred.

Related	topics:
fprintf
puts
scanf
sprintf

putc
Syntax:

		#include	<stdio.h>

		int	putc(int	ch,	FILE	*stream);

The	putc()	function	writes	the	character	ch	to	stream.	The	return	value	is	the
character	written,	or	EOF	if	there	is	an	error.	For	example:

			int	ch;

			FILE	*input,	*output;

			input	=	fopen("tmp.c",	"r");

			output	=	fopen("tmpCopy.c",	"w");

			ch	=	getc(input);

			while(ch	!=	EOF)	{

					putc(ch,	output);

					ch	=	getc(input);

			}

			fclose(input);

			fclose(output);												

generates	a	copy	of	the	file	tmp.c	called	tmpCopy.c.

Related	topics:
feof
fflush
fgetc
fputc
getc
getchar
putchar
puts

putchar
Syntax:

		#include	<stdio.h>

		int	putchar(int	ch);

The	putchar()	function	writes	ch	to	STDOUT.	The	code

			putchar(ch);															

is	the	same	as

			putc(ch,	STDOUT);									

The	return	value	of	putchar()	is	the	written	character,	or	EOF	if	there	is	an	error.

Related	topics:
putc

puts
Syntax:

		#include	<stdio.h>

		int	puts(char	*str);

The	function	puts()	writes	str	to	STDOUT.	puts()	returns	non-negative	on
success,	or	EOF	on	failure.

Related	topics:
fputs
gets
printf
putc

remove
Syntax:

		#include	<stdio.h>

		int	remove(const	char	*fname);

The	remove()	function	erases	the	file	specified	by	fname.	The	return	value	of
remove()	is	zero	upon	success,	and	non-zero	if	there	is	an	error.

Related	topics:
rename

rename
Syntax:

		#include	<stdio.h>

		int	rename(const	char	*oldfname,	const	char	*newfname);

The	function	rename()	changes	the	name	of	the	file	oldfname	to	newfname.	The
return	value	of	rename()	is	zero	upon	success,	non-zero	on	error.

Related	topics:
remove

rewind
Syntax:

		#include	<stdio.h>

		void	rewind(FILE	*stream);

The	function	rewind()	moves	the	file	position	indicator	to	the	beginning	of	the
specified	stream,	also	clearing	the	error	and	EOF	flags	associated	with	that
stream.

Related	topics:
fseek

scanf
Syntax:

		#include	<stdio.h>

		int	scanf(const	char	*format,	...);

The	scanf()	function	reads	input	from	STDIN,	according	to	the	given	format,

and	stores	the	data	in	the	other	arguments.	It	works	a	lot	like	printf().	The	format
string	consists	of	control	characters,	whitespace	characters,	and	non-whitespace
characters.	The	control	characters	are	preceded	by	a	%	sign,	and	are	as	follows:

Control	Character Explanation

%c a	single	character

%d a	decimal	integer

%i an	integer

%e,	%f,	%g a	floating-point	number

%o an	octal	number

%s a	string

%x a	hexadecimal	number

%p a	pointer

%n an	integer	equal	to	the	number	of	characters	read	so	far

%u an	unsigned	integer

%[] a	set	of	characters

%%	a	percent	sign

scanf()	reads	the	input,	matching	the	characters	from	format.	When	a	control
character	is	read,	it	puts	the	value	in	the	next	variable.	Whitespace	(tabs,	spaces,
etc)	are	skipped.	Non-whitespace	characters	are	matched	to	the	input,	then
discarded.	If	a	number	comes	between	the	%	sign	and	the	control	character,	then
only	that	many	characters	will	be	converted	into	the	variable.	If	scanf()
encounters	a	set	of	characters,	denoted	by	the	%[]	control	character,	then	any
characters	found	within	the	brackets	are	read	into	the	variable.	The	return	value
of	scanf()	is	the	number	of	variables	that	were	successfully	assigned	values,	or
EOF	if	there	is	an	error.

Example	code:

This	code	snippet	repeatedly	uses	scanf()	to	read	integers	and	floats	from	the
user.	Note	that	the	variable	arguments	to	scanf()	are	passed	in	by	reference,	as
denoted	by	the	ampersand	(&)	preceding	each	variable:

	int	i;

	float	f;															

	while(1)	{

			printf("Enter	an	integer:	");

			scanf("%d",	&i);													

			printf("Enter	a	float:	");

			scanf("%f",	&f);													

			printf("You	entered	%d	and	then	%f\n",	i,	f);

	}														

Related	topics:
fgets
fscanf
printf
sscanf

setbuf
Syntax:

		#include	<stdio.h>

		void	setbuf(FILE	*stream,	char	*buffer);

The	setbuf()	function	sets	stream	to	use	buffer,	or,	if	buffer	is	null,	turns	off
buffering.	If	a	non-standard	buffer	size	is	used,	it	should	be	BUFSIZ	characters
long.

Related	topics:
fclose
fopen
setvbuf

setvbuf
Syntax:

		#include	<stdio.h>

		int	setvbuf(FILE	*stream,	char	*buffer,	int	mode,	size_t	size);

The	function	setvbuf()	sets	the	buffer	for	stream	to	be	buffer,	with	a	size	of	size.
mode	can	be:

_IOFBF,	which	indicates	full	buffering
_IOLBF,	which	means	line	buffering
_IONBF,	which	means	no	buffering

Related	topics:
setbuf

sprintf
Syntax:

		#include	<stdio.h>

		int	sprintf(char	*buffer,	const	char	*format,	...);

The	sprintf()	function	is	just	like	printf(),	except	that	the	output	is	sent	to	buffer.
The	return	value	is	the	number	of	characters	written.	For	example:

			char	string[50];

			int	file_number	=	0;									

			sprintf(string,	"file.%d",	file_number);

			file_number++;

			output_file	=	fopen(string,	"w");																

Note	that	sprintf()	does	the	opposite	of	a	function	like	(Standard	C	String	and
Character)	atoi()	--	where	(Standard	C	String	and	Character)	atoi()	converts	a
string	into	a	number,	sprintf()	can	be	used	to	convert	a	number	into	a	string.

For	example,	the	following	code	uses	sprintf()	to	convert	an	integer	into	a	string
of	characters:

			char	result[100];

			int	num=24;

			sprintf(result,	"%d",	num);														

Related	topics:
(Standard	C	String	and	Character)	atof
(Standard	C	String	and	Character)	atoi
(Standard	C	String	and	Character)	atol
fprintf
printf

sscanf
Syntax:

		#include	<stdio.h>

		int	sscanf(const	char	*buffer,	const	char	*format,	...);

The	function	sscanf()	is	just	like	scanf(),	except	that	the	input	is	read	from
buffer.

Related	topics:
fscanf
scanf

tmpfile
Syntax:

		#include	<stdio.h>

		FILE	*tmpfile(void);

The	function	tempfile()	opens	a	temporary	file	with	an	unique	filename	and
returns	a	pointer	to	that	file.	If	there	is	an	error,	null	is	returned.

Related	topics:
tmpnam

tmpnam
Syntax:

		#include	<stdio.h>

		char	*tmpnam(char	*name);

The	tmpnam()	function	creates	an	unique	filename	and	stores	it	in	name.
tmpnam()	can	be	called	up	to	TMP_MAX	times.

Related	topics:
tmpfile

ungetc
Syntax:

		#include	<stdio.h>

		int	ungetc(int	ch,	FILE	*stream);

The	function	ungetc()	puts	the	character	ch	back	in	stream.

Related	topics:
getc
(C++	I/O)	putback

vprintf,	vfprintf,	and	vsprintf
Syntax:

		#include	<stdarg.h>

		#include	<stdio.h>

		int	vprintf(char	*format,	va_list	arg_ptr);

		int	vfprintf(FILE	*stream,	const	char	*format,	va_list	arg_ptr);

		int	vsprintf(char	*buffer,	char	*format,	va_list	arg_ptr);

These	functions	are	very	much	like	printf(),	fprintf(),	and	sprintf().	The
difference	is	that	the	argument	list	is	a	pointer	to	a	list	of	arguments.	va_list	is
defined	in	stdarg.h,	and	is	also	used	by	(Other	Standard	C	Functions)	va_arg().
For	example:

			void	error(char	*fmt,	...)	{

					va_list	args;

					va_start(args,	fmt);

					fprintf(stderr,	"Error:	");

					vfprintf(stderr,	fmt,	args);

					fprintf(stderr,	"\n");

					va_end(args);

					exit(1);

			}												

cppreference.com	>	Standard	C	I/O	>	clearerr

clearerr
Syntax:

		#include	<stdio.h>

		void	clearerr(FILE	*stream);

The	clearerr	function	resets	the	error	flags	and	EOF	indicator	for	the	given
stream.	When	an	error	occurs,	you	can	use	perror()	to	figure	out	which	error
actually	occurred.

Related	topics:
feofferror
perror

cppreference.com	>	Standard	C	I/O	>	fclose

fclose
Syntax:

		#include	<stdio.h>

		int	fclose(FILE	*stream);		

The	function	fclose()	closes	the	given	file	stream,	deallocating	any	buffers
associated	with	that	stream.	fclose()	returns	0	upon	success,	and	EOF
otherwise.

Related	topics:
fflushfopen
freopen
setbuf

cppreference.com	>	Standard	C	I/O	>	feof

feof
Syntax:

		#include	<stdio.h>

		int	feof(FILE	*stream);		

The	function	feof()	returns	a	nonzero	value	if	the	end	of	the	given	file	stream
has	been	reached.

Related	topics:
clearerrferror
getc
perror
putc

cppreference.com	>	Standard	C	I/O	>	ferror

ferror
Syntax:

		#include	<stdio.h>

		int	ferror(FILE	*stream);

The	ferror()	function	looks	for	errors	with	stream,	returning	zero	if	no	errors
have	occured,	and	non-zero	if	there	is	an	error.	In	case	of	an	error,	use	perror()
to	determine	which	error	has	occured.

Related	topics:
clearerrfeof
perror

cppreference.com	>	Standard	C	I/O	>	fflush

fflush
Syntax:

		#include	<stdio.h>

		int	fflush(FILE	*stream);

If	the	given	file	stream	is	an	output	stream,	then	fflush()	causes	the	output
buffer	to	be	written	to	the	file.	If	the	given	stream	is	of	the	input	type,	then
fflush()	causes	the	input	buffer	to	be	cleared.	fflush()	is	useful	when	debugging,
if	a	program	segfaults	before	it	has	a	chance	to	write	output	to	the	screen.
Calling	fflush(STDOUT)	directly	after	debugging	output	will	ensure	that	your
output	is	displayed	at	the	correct	time.

			printf("Before	first	call\n");

			fflush(STDOUT);

			shady_function();

			printf("Before	second	call\n");

			fflush(STDOUT);

			dangerous_dereference();													

Related	topics:
fclosefopen
fread
fwrite
getc
putc

cppreference.com	>	Standard	C	I/O	>	fgetc

fgetc
Syntax:

		#include	<stdio.h>

		int	fgetc(FILE	*stream);

The	fgetc()	function	returns	the	next	character	from	stream,	or	EOF	if	the	end
of	file	is	reached	or	if	there	is	an	error.

Related	topics:
fopenfputc
fread
fwrite
getc
getchar
gets
putc

cppreference.com	>	Standard	C	I/O	>	fgetpos

fgetpos
Syntax:

		#include	<stdio.h>

		int	fgetpos(FILE	*stream,	fpos_t	*position);

The	fgetpos()	function	stores	the	file	position	indicator	of	the	given	file	stream
in	the	given	position	variable.	The	position	variable	is	of	type	fpos_t	(which	is
defined	in	stdio.h)	and	is	an	object	that	can	hold	every	possible	position	in	a
FILE.	fgetpos()	returns	zero	upon	success,	and	a	non-zero	value	upon	failure.

Related	topics:
fseekfsetpos
ftell

cppreference.com	>	Standard	C	I/O	>	fgets

fgets
Syntax:

		#include	<stdio.h>

		char	*fgets(char	*str,	int	num,	FILE	*stream);

The	function	fgets()	reads	up	to	num	-	1	characters	from	the	given	file	stream
and	dumps	them	into	str.	The	string	that	fgets()	produces	is	always	NULL-
terminated.	fgets()	will	stop	when	it	reaches	the	end	of	a	line,	in	which	case	str
will	contain	that	newline	character.	Otherwise,	fgets()	will	stop	when	it	reaches
num	-	1	characters	or	encounters	the	EOF	character.	fgets()	returns	str	on
success,	and	NULL	on	an	error.

Related	topics:
fputsfscanf
gets
scanf

cppreference.com	>	Standard	C	I/O	>	fopen

fopen
Syntax:

		#include	<stdio.h>

		FILE	*fopen(const	char	*fname,	const	char	*mode);

The	fopen()	function	opens	a	file	indicated	by	fname	and	returns	a	stream
associated	with	that	file.	If	there	is	an	error,	fopen()	returns	NULL.	mode	is
used	to	determine	how	the	file	will	be	treated	(i.e.	for	input,	output,	etc)

Mode Meaning

"r" Open	a	text	file	for	reading

"w" Create	a	text	file	for	writing

"a" Append	to	a	text	file

"rb" Open	a	binary	file	for	reading

"wb" Create	a	binary	file	for	writing

"ab" Append	to	a	binary	file

"r+" Open	a	text	file	for	read/write

"w+" Create	a	text	file	for	read/write

"a+" Open	a	text	file	for	read/write

"rb+" Open	a	binary	file	for	read/write

"wb+" Create	a	binary	file	for	read/write

"ab+" Open	a	binary	file	for	read/write

An	example:

			int	ch;

			FILE	*input	=	fopen("stuff",	"r");

			ch	=	getc(input);										

Related	topics:
fclosefflush
fgetc
fputc
fread
freopen
fseek
fwrite
getc
getchar
setbuf

cppreference.com	>	Standard	C	I/O	>	fprintf

fprintf
Syntax:

		#include	<stdio.h>

		int	fprintf(FILE	*stream,	const	char	*format,	...);

The	fprintf()	function	sends	information	(the	arguments)	according	to	the
specified	format	to	the	file	indicated	by	stream.	fprintf()	works	just	like	printf()
as	far	as	the	format	goes.	The	return	value	of	fprintf()	is	the	number	of
characters	outputted,	or	a	negative	number	if	an	error	occurs.	An	example:

			char	name[20]	=	"Mary";

			FILE	*out;

			out	=	fopen("output.txt",	"w");

			if(out	!=	NULL)

					fprintf(out,	"Hello	%s\n",	name);														

Related	topics:
fputcfputs
fscanf
printf
sprintf

cppreference.com	>	Standard	C	I/O	>	fputc

fputc
Syntax:

		#include	<stdio.h>

		int	fputc(int	ch,	FILE	*stream);

The	function	fputc()	writes	the	given	character	ch	to	the	given	output	stream.
The	return	value	is	the	character,	unless	there	is	an	error,	in	which	case	the
return	value	is	EOF.

Related	topics:
fgetcfopen
fprintf
fread
fwrite
getc
getchar
putc

cppreference.com	>	Standard	C	I/O	>	fputs

fputs
Syntax:

		#include	<stdio.h>

		int	fputs(const	char	*str,	FILE	*stream);

The	fputs()	function	writes	an	array	of	characters	pointed	to	by	str	to	the	given
output	stream.	The	return	value	is	non-negative	on	success,	and	EOF	on	failure.

Related	topics:
fgetsfprintf
fscanf
gets
puts

cppreference.com	>	Standard	C	I/O	>	fread

fread
Syntax:

		#include	<stdio.h>

		int	fread(void	*buffer,	size_t	size,	size_t	num,	FILE	*stream);

The	function	fread()	reads	num	number	of	objects	(where	each	object	is	size
bytes)	and	places	them	into	the	array	pointed	to	by	buffer.	The	data	comes	from
the	given	input	stream.	The	return	value	of	the	function	is	the	number	of	things
read.	You	can	use	feof()	or	ferror()	to	figure	out	if	an	error	occurs.

Related	topics:
fflushfgetc
fopen
fputc
fscanf
fwrite
getc

cppreference.com	>	Standard	C	I/O	>	freopen

freopen
Syntax:

		#include	<stdio.h>

		FILE	*freopen(const	char	*fname,	const	char	*mode,	FILE	*stream);

The	freopen()	function	is	used	to	reassign	an	existing	stream	to	a	different	file	and
mode.	After	a	call	to	this	function,	the	given	file	stream	will	refer	to	fname	with
access	given	by	mode.	The	return	value	of	freopen()	is	the	new	stream,	or	NULL
there	is	an	error.

Related	topics:
fclosefopen

cppreference.com	>	Standard	C	I/O	>	fscanf

fscanf
Syntax:

		#include	<stdio.h>

		int	fscanf(FILE	*stream,	const	char	*format,	...);

The	function	fscanf()	reads	data	from	the	given	file	stream	in	a	manner	exactly
like	scanf().	The	return	value	of	fscanf()	is	the	number	of	variables	that	are
actually	assigned	values,	or	EOF	if	no	assignments	could	be	made.

Related	topics:
fgetsfprintf
fputs
fread
fwrite
scanf
sscanf

cppreference.com	>	Standard	C	I/O	>	fseek

fseek
Syntax:

		#include	<stdio.h>

		int	fseek(FILE	*stream,	long	offset,	int	origin);

The	function	fseek()	sets	the	file	position	data	for	the	given	stream.	The	origin
value	should	have	one	of	the	following	values	(defined	in	stdio.h):

Name Explanation

SEEK_SET Seek	from	the	start	of	the	file

SEEK_CUR Seek	from	the	current	location

SEEK_END Seek	from	the	end	of	the	file

fseek()	returns	zero	upon	success,	non-zero	on	failure.	You	can	use	fseek()	to
move	beyond	a	file,	but	not	before	the	beginning.	Using	fseek()	clears	the	EOF
flag	associated	with	that	stream.

Related	topics:
fgetposfopen
fsetpos
ftell
rewind

cppreference.com	>	Standard	C	I/O	>	fsetpos

fsetpos
Syntax:

		#include	<stdio.h>

		int	fsetpos(FILE	*stream,	const	fpos_t	*position);

The	fsetpos()	function	moves	the	file	position	indicator	for	the	given	stream	to	a
location	specified	by	the	position	object.	fpos_t	is	defined	in	stdio.h.	The	return
value	for	fsetpos()	is	zero	upon	success,	non-zero	on	failure.

Related	topics:
fgetposfseek
ftell

cppreference.com	>	Standard	C	I/O	>	ftell

ftell
Syntax:

		#include	<stdio.h>

		long	ftell(FILE	*stream);

The	ftell()	function	returns	the	current	file	position	for	stream,	or	-1	if	an	error
occurs.

Related	topics:
fgetposfseek
fsetpos

cppreference.com	>	Standard	C	I/O	>	fwrite

fwrite
Syntax:

		#include	<stdio.h>

		int	fwrite(const	void	*buffer,	size_t	size,	size_t	count,	FILE	*stream);

The	fwrite()	function	writes,	from	the	array	buffer,	count	objects	of	size	size	to	stream
return	value	is	the	number	of	objects	written.

Related	topics:
fflushfgetc
fopen
fputc
fread
fscanf
getc

cppreference.com	>	Standard	C	I/O	>	getc

getc
Syntax:

		#include	<stdio.h>

		int	getc(FILE	*stream);

The	getc()	function	returns	the	next	character	from	stream,	or	EOF	if	the	end	of
file	is	reached.	getc()	is	identical	to	fgetc().	For	example:

			int	ch;

			FILE	*input	=	fopen("stuff",	"r");													

			ch	=	getc(input);

			while(ch	!=	EOF)	{

					printf("%c",	ch);

					ch	=	getc(input);

			}												

Related	topics:
feoffflush
fgetc
fopen
fputc
fread
fwrite
putc
ungetc

cppreference.com	>	Standard	C	I/O	>	getchar

getchar
Syntax:

		#include	<stdio.h>

		int	getchar(void);

The	getchar()	function	returns	the	next	character	from	STDIN,	or	EOF	if	the
end	of	file	is	reached.

Related	topics:
fgetcfopen
fputc
putc

cppreference.com	>	Standard	C	I/O	>	gets

gets
Syntax:

		#include	<stdio.h>

		char	*gets(char	*str);

The	gets()	function	reads	characters	from	STDIN	and	loads	them	into	str,	until
a	newline	or	EOF	is	reached.	The	newline	character	is	translated	into	a	null
termination.	The	return	value	of	gets()	is	the	read-in	string,	or	NULL	if	there	is
an	error.

Related	topics:
fgetcfgets
fputs
puts

cppreference.com	>	Standard	C	I/O	>	perror

perror
Syntax:

		#include	<stdio.h>

		void	perror(const	char	*str);

The	perror()	function	prints	str	and	an	implementation-defined	error	message
corresponding	to	the	global	variable	errno.

Related	topics:
clearerrfeof
ferror

cppreference.com	>	Standard	C	I/O	>	printf

printf
Syntax:

		#include	<stdio.h>

		int	printf(const	char	*format,	...);

The	printf()	function	prints	output	to	STDOUT,	according	to	format	and	other
arguments	passed	to	printf().	The	string	format	consists	of	two	types	of	items	-
characters	that	will	be	printed	to	the	screen,	and	format	commands	that	define	how
the	other	arguments	to	printf()	are	displayed.	Basically,	you	specify	a	format	string
that	has	text	in	it,	as	well	as	"special"	characters	that	map	to	the	other	arguments	of
printf().	For	example,	this	code

			char	name[20]	=	"Bob";

			int	age	=	21;

			printf("Hello	%s,	you	are	%d	years	old\n",	name,	age);											

displays	the	following	output:

			Hello	Bob,	you	are	21	years	old														

The	%s	means,	"insert	the	first	argument,	a	string,	right	here."	The	%d	indicates
that	the	second	argument	(an	integer)	should	be	placed	there.	There	are	different	%-
codes	for	different	variable	types,	as	well	as	options	to	limit	the	length	of	the
variables	and	whatnot.

Code Format

%c character

%d signed	integers

%i signed	integers

%e scientific	notation,	with	a	lowercase	"e"

%E scientific	notation,	with	a	uppercase	"E"

%f floating	point

%g use	%e	or	%f,	whichever	is	shorter

%G use	%E	or	%f,	whichever	is	shorter

%o octal

%s a	string	of	characters

%u unsigned	integer

%x unsigned	hexadecimal,	with	lowercase	letters

%X unsigned	hexadecimal,	with	uppercase	letters

%p a	pointer

%n the	argument	shall	be	a	pointer	to	an	integer	into	which	is	placed	the
number	of	characters	written	so	far

%% a	'%'	sign

An	integer	placed	between	a	%	sign	and	the	format	command	acts	as	a	minimum
field	width	specifier,	and	pads	the	output	with	spaces	or	zeros	to	make	it	long
enough.	If	you	want	to	pad	with	zeros,	place	a	zero	before	the	minimum	field	width
specifier:

			%012d																

You	can	also	include	a	precision	modifier,	in	the	form	of	a	.N	where	N	is	some
number,	before	the	format	command:

			%012.4d														

The	precision	modifier	has	different	meanings	depending	on	the	format	command
being	used:

With	%e,	%E,	and	%f,	the	precision	modifier	lets	you	specify	the	number	of
decimal	places	desired.	For	example,	%12.6f	will	display	a	floating	number	at
least	12	digits	wide,	with	six	decimal	places.
With	%g	and	%G,	the	precision	modifier	determines	the	maximum	number	of
significant	digits	displayed.
With	%s,	the	precision	modifer	simply	acts	as	a	maximumfield	length,	to
complement	the	minimum	field	length	that	precedes	the	period.

All	of	printf()'s	output	is	right-justified,	unless	you	place	a	minus	sign	right	after	the
%	sign.	For	example,

			%-12.4f														

will	display	a	floating	point	number	with	a	minimum	of	12	characters,	4	decimal
places,	and	left	justified.	You	may	modify	the	%d,	%i,	%o,	%u,	and	%x	type
specifiers	with	the	letter	l	and	the	letter	h	to	specify	long	and	short	data	types	(e.g.
%hd	means	a	short	integer).	The	%e,	%f,	and	%g	type	specifiers	can	have	the	letter
l	before	them	to	indicate	that	a	double	follows.	The	%g,	%f,	and	%e	type	specifiers
can	be	preceded	with	the	character	'#'	to	ensure	that	the	decimal	point	will	be
present,	even	if	there	are	no	decimal	digits.	The	use	of	the	'#'	character	with	the	%x
type	specifier	indicates	that	the	hexidecimal	number	should	be	printed	with	the	'0x'
prefix.	The	use	of	the	'#'	character	with	the	%o	type	specifier	indicates	that	the	octal
value	should	be	displayed	with	a	0	prefix.

You	can	also	include	constant	escape	sequences	in	the	output	string.

The	return	value	of	printf()	is	the	number	of	characters	printed,	or	a	negative
number	if	an	error	occurred.

Related	topics:
fprintfputs
scanf
sprintf

cppreference.com	>	Standard	C	I/O	>	putc

putc
Syntax:

		#include	<stdio.h>

		int	putc(int	ch,	FILE	*stream);

The	putc()	function	writes	the	character	ch	to	stream.	The	return	value	is	the
character	written,	or	EOF	if	there	is	an	error.	For	example:

			int	ch;

			FILE	*input,	*output;

			input	=	fopen("tmp.c",	"r");

			output	=	fopen("tmpCopy.c",	"w");

			ch	=	getc(input);

			while(ch	!=	EOF)	{

					putc(ch,	output);

					ch	=	getc(input);

			}

			fclose(input);

			fclose(output);												

generates	a	copy	of	the	file	tmp.c	called	tmpCopy.c.

Related	topics:
feoffflush
fgetc
fputc
getc
getchar
putchar
puts

cppreference.com	>	Standard	C	I/O	>	putchar

putchar
Syntax:

		#include	<stdio.h>

		int	putchar(int	ch);

The	putchar()	function	writes	ch	to	STDOUT.	The	code

			putchar(ch);															

is	the	same	as

			putc(ch,	STDOUT);									

The	return	value	of	putchar()	is	the	written	character,	or	EOF	if	there	is	an	error.

Related	topics:
putc

cppreference.com	>	Standard	C	I/O	>	puts

puts
Syntax:

		#include	<stdio.h>

		int	puts(char	*str);

The	function	puts()	writes	str	to	STDOUT.	puts()	returns	non-negative	on
success,	or	EOF	on	failure.

Related	topics:
fputsgets
printf
putc

cppreference.com	>	Standard	C	I/O	>	remove

remove
Syntax:

		#include	<stdio.h>

		int	remove(const	char	*fname);

The	remove()	function	erases	the	file	specified	by	fname.	The	return	value	of
remove()	is	zero	upon	success,	and	non-zero	if	there	is	an	error.

Related	topics:
rename

cppreference.com	>	Standard	C	I/O	>	rename

rename
Syntax:

		#include	<stdio.h>

		int	rename(const	char	*oldfname,	const	char	*newfname);

The	function	rename()	changes	the	name	of	the	file	oldfname	to	newfname.	The
return	value	of	rename()	is	zero	upon	success,	non-zero	on	error.

Related	topics:
remove

cppreference.com	>	Standard	C	I/O	>	rewind

rewind
Syntax:

		#include	<stdio.h>

		void	rewind(FILE	*stream);

The	function	rewind()	moves	the	file	position	indicator	to	the	beginning	of	the
specified	stream,	also	clearing	the	error	and	EOF	flags	associated	with	that
stream.

Related	topics:
fseek

cppreference.com	>	Standard	C	I/O	>	scanf

scanf
Syntax:

		#include	<stdio.h>

		int	scanf(const	char	*format,	...);

The	scanf()	function	reads	input	from	STDIN,	according	to	the	given	format,
and	stores	the	data	in	the	other	arguments.	It	works	a	lot	like	printf().	The
format	string	consists	of	control	characters,	whitespace	characters,	and	non-
whitespace	characters.	The	control	characters	are	preceded	by	a	%	sign,	and	are
as	follows:

Control	Character Explanation

%c a	single	character

%d a	decimal	integer

%i an	integer

%e,	%f,	%g a	floating-point	number

%o an	octal	number

%s a	string

%x a	hexadecimal	number

%p a	pointer

%n an	integer	equal	to	the	number	of	characters	read	so	far

%u an	unsigned	integer

%[] a	set	of	characters

%%	a	percent	sign

scanf()	reads	the	input,	matching	the	characters	from	format.	When	a	control
character	is	read,	it	puts	the	value	in	the	next	variable.	Whitespace	(tabs,	spaces,

etc)	are	skipped.	Non-whitespace	characters	are	matched	to	the	input,	then
discarded.	If	a	number	comes	between	the	%	sign	and	the	control	character,	then
only	that	many	characters	will	be	converted	into	the	variable.	If	scanf()
encounters	a	set	of	characters,	denoted	by	the	%[]	control	character,	then	any
characters	found	within	the	brackets	are	read	into	the	variable.	The	return	value
of	scanf()	is	the	number	of	variables	that	were	successfully	assigned	values,	or
EOF	if	there	is	an	error.

Example	code:

This	code	snippet	repeatedly	uses	scanf()	to	read	integers	and	floats	from	the
user.	Note	that	the	variable	arguments	to	scanf()	are	passed	in	by	reference,	as
denoted	by	the	ampersand	(&)	preceding	each	variable:

	int	i;

	float	f;															

	while(1)	{

			printf("Enter	an	integer:	");

			scanf("%d",	&i);													

			printf("Enter	a	float:	");

			scanf("%f",	&f);													

			printf("You	entered	%d	and	then	%f\n",	i,	f);

	}														

Related	topics:
fgetsfscanf
printf
sscanf

cppreference.com	>	Standard	C	I/O	>	setbuf

setbuf
Syntax:

		#include	<stdio.h>

		void	setbuf(FILE	*stream,	char	*buffer);

The	setbuf()	function	sets	stream	to	use	buffer,	or,	if	buffer	is	null,	turns	off
buffering.	If	a	non-standard	buffer	size	is	used,	it	should	be	BUFSIZ	characters
long.

Related	topics:
fclosefopen
setvbuf

cppreference.com	>	Standard	C	I/O	>	setvbuf

setvbuf
Syntax:

		#include	<stdio.h>

		int	setvbuf(FILE	*stream,	char	*buffer,	int	mode,	size_t	size);

The	function	setvbuf()	sets	the	buffer	for	stream	to	be	buffer,	with	a	size	of	size.
mode	can	be:

_IOFBF,	which	indicates	full	buffering
_IOLBF,	which	means	line	buffering
_IONBF,	which	means	no	buffering

Related	topics:
setbuf

cppreference.com	>	Standard	C	I/O	>	sprintf

sprintf
Syntax:

		#include	<stdio.h>

		int	sprintf(char	*buffer,	const	char	*format,	...);

The	sprintf()	function	is	just	like	printf(),	except	that	the	output	is	sent	to	buffer.
The	return	value	is	the	number	of	characters	written.	For	example:

			char	string[50];

			int	file_number	=	0;									

			sprintf(string,	"file.%d",	file_number);

			file_number++;

			output_file	=	fopen(string,	"w");																

Note	that	sprintf()	does	the	opposite	of	a	function	like	(Standard	C	String	and
Character)	atoi()	--	where	(Standard	C	String	and	Character)	atoi()	converts	a
string	into	a	number,	sprintf()	can	be	used	to	convert	a	number	into	a	string.

For	example,	the	following	code	uses	sprintf()	to	convert	an	integer	into	a	string
of	characters:

			char	result[100];

			int	num=24;

			sprintf(result,	"%d",	num);														

Related	topics:
(Standard	C	String	and	Character)	atof
(Standard	C	String	and	Character)	atoi
(Standard	C	String	and	Character)	atol
fprintf
printf

cppreference.com	>	Standard	C	I/O	>	sscanf

sscanf
Syntax:

		#include	<stdio.h>

		int	sscanf(const	char	*buffer,	const	char	*format,	...);

The	function	sscanf()	is	just	like	scanf(),	except	that	the	input	is	read	from
buffer.

Related	topics:
fscanfscanf

cppreference.com	>	Standard	C	I/O	>	tmpfile

tmpfile
Syntax:

		#include	<stdio.h>

		FILE	*tmpfile(void);

The	function	tempfile()	opens	a	temporary	file	with	an	unique	filename	and
returns	a	pointer	to	that	file.	If	there	is	an	error,	null	is	returned.

Related	topics:
tmpnam

cppreference.com	>	Standard	C	I/O	>	tmpnam

tmpnam
Syntax:

		#include	<stdio.h>

		char	*tmpnam(char	*name);

The	tmpnam()	function	creates	an	unique	filename	and	stores	it	in	name.
tmpnam()	can	be	called	up	to	TMP_MAX	times.

Related	topics:
tmpfile

cppreference.com	>	Standard	C	I/O	>	ungetc

ungetc
Syntax:

		#include	<stdio.h>

		int	ungetc(int	ch,	FILE	*stream);

The	function	ungetc()	puts	the	character	ch	back	in	stream.

Related	topics:
getc(C++	I/O)	putback

cppreference.com	>	Standard	C	I/O	>	vprintf,	vfprintf,	and	vsprintf

vprintf,	vfprintf,	and	vsprintf
Syntax:

		#include	<stdarg.h>

		#include	<stdio.h>

		int	vprintf(char	*format,	va_list	arg_ptr);

		int	vfprintf(FILE	*stream,	const	char	*format,	va_list	arg_ptr);

		int	vsprintf(char	*buffer,	char	*format,	va_list	arg_ptr);

These	functions	are	very	much	like	printf(),	fprintf(),	and	sprintf().	The
difference	is	that	the	argument	list	is	a	pointer	to	a	list	of	arguments.	va_list	is
defined	in	stdarg.h,	and	is	also	used	by	(Other	Standard	C	Functions)	va_arg().
For	example:

			void	error(char	*fmt,	...)	{

					va_list	args;

					va_start(args,	fmt);

					fprintf(stderr,	"Error:	");

					vfprintf(stderr,	fmt,	args);

					fprintf(stderr,	"\n");

					va_end(args);

					exit(1);

			}												

cppreference.com	>	C++	String	Streams

String	Stream	Constructors
Syntax:

		#include	<sstream>

		stringstream()

		stringstream(openmode	mode)

		stringstream(string	s,	openmode	mode)

		ostringstream()

		ostringstream(openmode	mode)

		ostringstream(string	s,	openmode	mode)

		istringstream()

		istringstream(openmode	mode)

		istringstream(string	s,	openmode	mode)

The	stringstream,	ostringstream,	and	istringstream	objects	are	used	for	input	and
output	to	a	string.	They	behave	in	a	manner	similar	to	fstream,	ofstream	and
ifstream	objects.

The	optional	mode	parameter	defines	how	the	file	is	to	be	opened,	according	to
the	io	stream	mode	flags.

An	ostringstream	object	can	be	used	to	write	to	a	string.	This	is	similar	to	the	C
sprintf()	function.	For	example:

		ostringstream	s1;

		int	i	=	22;

		s1	<<	"Hello	"	<<	i	<<	endl;

		string	s2	=	s1.str();

		cout	<<	s2;

An	istringstream	object	can	be	used	to	read	from	a	string.	This	is	similar	to	the
C	sscanf()	function.	For	example:

		istringstream	stream1;

		string	string1	=	"25";

		stream1.str(string1);

		int	i;

		stream1	>>	i;

		cout	<<	i	<<	endl;		//	displays	25

You	can	also	specify	the	input	string	in	the	istringstream	constructor	as	in	this
example:

		string	string1	=	"25";

		istringstream	stream1(string1);

		int	i;

		stream1	>>	i;

		cout	<<	i	<<	endl;		//	displays	25

A	stringstream	object	can	be	used	for	both	input	and	output	to	a	string	like	an
fstream	object.

Related	topics:
C++	I/O	Streams

String	Stream	Operators
Syntax:

		#include	<sstream>

		operator<<

		operator>>

Like	C++	I/O	Streams,	the	simplest	way	to	use	string	streams	is	to	take
advantage	of	the	overloaded	<<	and	>>	operators.

The	<<	operator	inserts	data	into	the	stream.	For	example:

		stream1	<<	"hello"	<<	i;

This	example	inserts	the	string	"hello"	and	the	variable	i	into	stream1.	In
contrast,	the	>>	operator	extracts	data	out	of	a	string	stream:

		stream1	>>	i;

This	code	reads	a	value	from	stream1	and	assigns	the	variable	i	that	value.

Related	topics:

C++	I/O	Streams

rdbuf
Syntax:

		#include	<sstream>

		stringbuf*	rdbuf();

The	rdbuf()	function	returns	a	pointer	to	the	string	buffer	for	the	current	string
stream.

Related	topics:
str()
C++	I/O	Streams

str
Syntax:

		#include	<sstream>

		void	str(string	s);

		string	str();

The	function	str()	can	be	used	in	two	ways.	First,	it	can	be	used	to	get	a	copy	of
the	string	that	is	being	manipulated	by	the	current	stream	string.	This	is	most
useful	with	output	strings.	For	example:

		ostringstream	stream1;

		stream1	<<	"Testing!"	<<	endl;

		cout	<<	stream1.str();

Second,	str()	can	be	used	to	copy	a	string	into	the	stream.	This	is	most	useful
with	input	strings.	For	example:

		istringstream	stream1;

		string	string1	=	"25";

		stream1.str(string1);

str(),	along	with	clear(),	is	also	handy	when	you	need	to	clear	the	stream	so	that
it	can	be	reused:

		istringstream	stream1;

		float	num;

		//	use	it	once

		string	string1	=	"25	1	3.235\n1111111\n222222";

		stream1.str(string1);

		while(stream1	>>	num)	cout	<<	"num:	"	<<	num	<<	endl;		//	displays	numbers,	one	per	line

		//	use	the	same	string	stream	again	with	clear()	and	str()

		string	string2	=	"1	2	3	4	5		6	7	8	9	10";

		stream1.clear();

		stream1.str(string2);

		while(stream1	>>	num)	cout	<<	"num:	"	<<	num	<<	endl;		//	displays	numbers,	one	per	line

Related	topics:
rdbuf()
C++	I/O	Streams

cppreference.com	>	C++	String	Streams	>	Constructors

String	Stream	Constructors
Syntax:

		#include	<sstream>

		stringstream()

		stringstream(openmode	mode)

		stringstream(string	s,	openmode	mode)

		ostringstream()

		ostringstream(openmode	mode)

		ostringstream(string	s,	openmode	mode)

		istringstream()

		istringstream(openmode	mode)

		istringstream(string	s,	openmode	mode)

The	stringstream,	ostringstream,	and	istringstream	objects	are	used	for	input	and
output	to	a	string.	They	behave	in	a	manner	similar	to	fstream,	ofstream	and
ifstream	objects.

The	optional	mode	parameter	defines	how	the	file	is	to	be	opened,	according	to
the	io	stream	mode	flags.

An	ostringstream	object	can	be	used	to	write	to	a	string.	This	is	similar	to	the	C
sprintf()	function.	For	example:

		ostringstream	s1;

		int	i	=	22;

		s1	<<	"Hello	"	<<	i	<<	endl;

		string	s2	=	s1.str();

		cout	<<	s2;

An	istringstream	object	can	be	used	to	read	from	a	string.	This	is	similar	to	the
C	sscanf()	function.	For	example:

		istringstream	stream1;

		string	string1	=	"25";

		stream1.str(string1);

		int	i;

		stream1	>>	i;

		cout	<<	i	<<	endl;		//	displays	25

You	can	also	specify	the	input	string	in	the	istringstream	constructor	as	in	this
example:

		string	string1	=	"25";

		istringstream	stream1(string1);

		int	i;

		stream1	>>	i;

		cout	<<	i	<<	endl;		//	displays	25

A	stringstream	object	can	be	used	for	both	input	and	output	to	a	string	like	an
fstream	object.

Related	topics:
C++	I/O	Streams

cppreference.com	>	C++	String	Streams	>	Operators

String	Stream	Operators
Syntax:

		#include	<sstream>

		operator<<

		operator>>

Like	C++	I/O	Streams,	the	simplest	way	to	use	string	streams	is	to	take
advantage	of	the	overloaded	<<	and	>>	operators.

The	<<	operator	inserts	data	into	the	stream.	For	example:

		stream1	<<	"hello"	<<	i;

This	example	inserts	the	string	"hello"	and	the	variable	i	into	stream1.	In
contrast,	the	>>	operator	extracts	data	out	of	a	string	stream:

		stream1	>>	i;

This	code	reads	a	value	from	stream1	and	assigns	the	variable	i	that	value.

Related	topics:
C++	I/O	Streams

cppreference.com	>	C++	String	Streams	>	rdbuf

rdbuf
Syntax:

		#include	<sstream>

		stringbuf*	rdbuf();

The	rdbuf()	function	returns	a	pointer	to	the	string	buffer	for	the	current	string
stream.

Related	topics:
str()C++	I/O	Streams

cppreference.com	>	C++	String	Streams	>	str

str
Syntax:

		#include	<sstream>

		void	str(string	s);

		string	str();

The	function	str()	can	be	used	in	two	ways.	First,	it	can	be	used	to	get	a	copy	of	the	string	that	is	being
manipulated	by	the	current	stream	string.	This	is	most	useful	with	output	strings.	For	example:

		ostringstream	stream1;

		stream1	<<	"Testing!"	<<	endl;

		cout	<<	stream1.str();

Second,	str()	can	be	used	to	copy	a	string	into	the	stream.	This	is	most	useful	with	input	strings.	For	example:

		istringstream	stream1;

		string	string1	=	"25";

		stream1.str(string1);

str(),	along	with	clear(),	is	also	handy	when	you	need	to	clear	the	stream	so	that	it	can	be	reused:

		istringstream	stream1;

		float	num;

		//	use	it	once

		string	string1	=	"25	1	3.235\n1111111\n222222";

		stream1.str(string1);

		while(stream1	>>	num)	cout	<<	"num:	"	<<	num	<<	endl;		//	displays	numbers,	one	per	line

		//	use	the	same	string	stream	again	with	clear()	and	str()

		string	string2	=	"1	2	3	4	5		6	7	8	9	10";

		stream1.clear();

		stream1.str(string2);

		while(stream1	>>	num)	cout	<<	"num:	"	<<	num	<<	endl;		//	displays	numbers,	one	per	line

Related	topics:
rdbuf()C++	I/O	Streams

cppreference.com	>	C++	Strings

append
Syntax:

		#include	<string>

		string&	append(const	string&	str);

		string&	append(const	char*	str);

		string&	append(const	string&	str,	size_type	index,	size_type	len);

		string&	append(const	char*	str,	size_type	num);

		string&	append(size_type	num,	char	ch);

		string&	append(input_iterator	start,	input_iterator	end);

The	append()	function	either:

appends	str	on	to	the	end	of	the	current	string,
appends	a	substring	of	str	starting	at	index	that	is	len	characters	long	on	to
the	end	of	the	current	string,
appends	num	characters	of	str	on	to	the	end	of	the	current	string,
appends	num	repititions	of	ch	on	to	the	end	of	the	current	string,
or	appends	the	sequence	denoted	by	start	and	end	on	to	the	end	of	the
current	string.

For	example,	the	following	code	uses	append()	to	add	10	copies	of	the	'!'
character	to	a	string:

			string	str	=	"Hello	World";

			str.append(10,	'!');

			cout	<<	str	<<	endl;													

That	code	displays:

			Hello	World!!!!!!!!!!																

In	the	next	example,	append()	is	used	to	concatenate	a	substring	of	one	string
onto	another	string:

	string	str1	=	"Eventually	I	stopped	caring...";

	string	str2	=	"but	that	was	the	'80s	so	nobody	noticed.";

	str1.append(str2,	25,	15);

	cout	<<	"str1	is	"	<<	str1	<<	endl;	

When	run,	the	above	code	displays:

	str1	is	Eventually	I	stopped	caring...nobody	noticed.										

assign
Syntax:

		#include	<string>

		void	assign(size_type	num,	const	char&	val);

		void	assign(input_iterator	start,	input_iterator	end);

		string&	assign(const	string&	str);

		string&	assign(const	char*	str);

		string&	assign(const	char*	str,	size_type	num);

		string&	assign(const	string&	str,	size_type	index,	size_type	len);

		string&	assign(size_type	num,	const	char&	ch);

The	deafult	assign()	function	gives	the	current	string	the	values	from	start	to
end,	or	gives	it	num	copies	of	val.

In	addition	to	the	normal	(C++	Lists)	assign()	functionality	that	all	C++
containers	have,	strings	possess	an	assign()	function	that	also	allows	them	to:

assign	str	to	the	current	string,
assign	the	first	num	characters	of	str	to	the	current	string,
assign	a	substring	of	str	starting	at	index	that	is	len	characters	long	to	the
current	string,

For	example,	the	following	code:

			string	str1,	str2	=	"War	and	Peace";

			str1.assign(str2,	4,	3);

			cout	<<	str1	<<	endl;												

displays

			and										

This	function	will	destroy	the	previous	contents	of	the	string.

Related	topics:
(C++	Lists)	assign

at
Syntax:

		#include	<string>

		TYPE&	at(size_type	loc);

		const	TYPE&	at(size_type	loc)	const;

The	at()	function	returns	a	reference	to	the	element	in	the	string	at	index	loc.	The
at()	function	is	safer	than	the	[]	operator,	because	it	won't	let	you	reference	items
outside	the	bounds	of	the	string.

For	example,	consider	the	following	code:

	vector<int>	v(5,	1);

	for(int	i	=	0;	i	<	10;	i++)	{

			cout	<<	"Element	"	<<	i	<<	"	is	"	<<	v[i]	<<	endl;

	}														

This	code	overrunns	the	end	of	the	vector,	producing	potentially	dangerous
results.	The	following	code	would	be	much	safer:

	vector<int>	v(5,	1);

	for(int	i	=	0;	i	<	10;	i++)	{

			cout	<<	"Element	"	<<	i	<<	"	is	"	<<	v.at(i)	<<	endl;

	}														

Instead	of	attempting	to	read	garbage	values	from	memory,	the	at()	function	will
realize	that	it	is	about	to	overrun	the	vector	and	will	throw	an	exception.

Related	topics:
(C++	Multimaps)	Container	operators
(C++	Double-ended	Queues)	Container	operators

begin
Syntax:

		#include	<string>

		iterator	begin();

		const_iterator	begin()	const;

The	function	begin()	returns	an	iterator	to	the	first	element	of	the	string.	begin()
should	run	in	constant	time.

For	example,	the	following	code	uses	begin()	to	initialize	an	iterator	that	is	used
to	traverse	a	list:

			//	Create	a	list	of	characters

			list<char>	charList;

			for(int	i=0;	i	<	10;	i++)	{

					charList.push_front(i	+	65);

			}

			//	Display	the	list

			list<char>::iterator	theIterator;

			for(theIterator	=	charList.begin();	theIterator	!=	charList.end();	theIterator++)	{

					cout	<<	*theIterator;

			}												

Related	topics:
end
rbegin
rend

c_str
Syntax:

		#include	<string>

		const	char*	c_str();

The	function	c_str()	returns	a	const	pointer	to	a	regular	C	string,	identical	to	the
current	string.	The	returned	string	is	null-terminated.

Note	that	since	the	returned	pointer	is	of	type	(C/C++	Keywords)	const,	the
character	data	that	c_str()	returns	cannot	be	modified.

Related	topics:
String	operators
data

capacity
Syntax:

		#include	<string>

		size_type	capacity()	const;

The	capacity()	function	returns	the	number	of	elements	that	the	string	can	hold
before	it	will	need	to	allocate	more	space.

For	example,	the	following	code	uses	two	different	methods	to	set	the	capacity
of	two	vectors.	One	method	passes	an	argument	to	the	constructor	that	suggests
an	initial	size,	the	other	method	calls	the	reserve	function	to	achieve	a	similar
goal:

	vector<int>	v1(10);

	cout	<<	"The	capacity	of	v1	is	"	<<	v1.capacity()	<<	endl;

	vector<int>	v2;

	v2.reserve(20);

	cout	<<	"The	capacity	of	v2	is	"	<<	v2.capacity()	<<	endl;									

When	run,	the	above	code	produces	the	following	output:

	The	capacity	of	v1	is	10

	The	capacity	of	v2	is	20															

C++	containers	are	designed	to	grow	in	size	dynamically.	This	frees	the
programmer	from	having	to	worry	about	storing	an	arbitrary	number	of	elements
in	a	container.	However,	sometimes	the	programmer	can	improve	the

performance	of	her	program	by	giving	hints	to	the	compiler	about	the	size	of	the
containers	that	the	program	will	use.	These	hints	come	in	the	form	of	the
reserve()	function	and	the	constructor	used	in	the	above	example,	which	tell	the
compiler	how	large	the	container	is	expected	to	get.

The	capacity()	function	runs	in	constant	time.

Related	topics:
reserve
resize
size

clear
Syntax:

		#include	<string>

		void	clear();

The	function	clear()	deletes	all	of	the	elements	in	the	string.	clear()	runs	in	linear
time.

Related	topics:
(C++	Lists)	erase

compare
Syntax:

		#include	<string>

		int	compare(const	string&	str);

		int	compare(const	char*	str);

		int	compare(size_type	index,	size_type	length,	const	string&	str);

		int	compare(size_type	index,	size_type	length,	const	string&	str,	

		size_type	length2);

		int	compare(size_type	index,	size_type	length,	const	char*	str,	size_type

The	compare()	function	either	compares	str	to	the	current	string	in	a	variety	of
ways,	returning

Return	Value Case

less	than	zero this	<	str

zero this	==	str

greater	than	zero this	>	str

The	various	functions	either:

compare	str	to	the	current	string,
compare	str	to	a	substring	of	the	current	string,	starting	at	index	for	length
characters,
compare	a	substring	of	str	to	a	substring	of	the	current	string,	where	index2
and	length2	refer	to	str	and	index	and	length	refer	to	the	current	string,
or	compare	a	substring	of	str	to	a	substring	of	the	current	string,	where	the
substring	of	str	begins	at	zero	and	is	length2	characters	long,	and	the
substring	of	the	current	string	begins	at	index	and	is	length	characters	long.

For	example,	the	following	code	uses	compare()	to	compare	four	strings	with
eachother:

	string	names[]	=	{"Homer",	"Marge",	"3-eyed	fish",	"inanimate	carbon	rod"};												

	for(int	i	=	0;	i	<	4;	i++)	{

			for(int	j	=	0;	j	<	4;	j++)	{

					cout	<<	names[i].compare(names[j])	<<	"	";

			}

			cout	<<	endl;

	}														

Data	from	the	above	code	was	used	to	generate	this	table,	which	shows	how	the
various	strings	compare	to	eachother:

Homer Marge 3-eyed
fish

inanimate
carbon	rod

"Homer".compare(x) 0 -1 1 -1

"Marge".compare(x) 1 0 1 -1

"3-eyed	fish".compare(x) -1 -1 0 -1

"inanimate	carbon
rod".compare(x) 1 1 1 0

Related	topics:
String	operators

copy
Syntax:

		#include	<string>

		size_type	copy(char*	str,	size_type	num,	size_type	index	=	0);

The	copy()	function	copies	num	characters	of	the	current	string	(starting	at	index
if	it's	specified,	0	otherwise)	into	str.

The	return	value	of	copy()	is	the	number	of	characters	copied.

For	example,	the	following	code	uses	copy()	to	extract	a	substring	of	a	string
into	an	array	of	characters:

	char	buf[30];

	memset(buf,	'\0',	30);

	string	str	=	"Trying	is	the	first	step	towards	failure.";

	str.copy(buf,	24);

	cout	<<	buf	<<	endl;															

When	run,	this	code	displays:

	Trying	is	the	first	step															

Note	that	before	calling	copy(),	we	first	call	(Standard	C	String	and	Character)
memset()	to	fill	the	destination	array	with	copies	of	the	NULL	character.	This
step	is	included	to	make	sure	that	the	resulting	array	of	characters	is	NULL-
terminated.

Related	topics:

substr

data
Syntax:

		#include	<string>

		const	char	*data();

The	function	data()	returns	a	pointer	to	the	first	character	in	the	current	string.

Related	topics:
String	operators
c_str

empty
Syntax:

		#include	<string>

		bool	empty()	const;

The	empty()	function	returns	true	if	the	string	has	no	elements,	false	otherwise.

For	example,	the	following	code	uses	empty()	as	the	stopping	condition	on	a
(C/C++	Keywords)	while	loop	to	clear	a	string	and	display	its	contents	in	reverse
order:

	vector<int>	v;

	for(int	i	=	0;	i	<	5;	i++)	{

			v.push_back(i);

	}

	while(!v.empty())	{

			cout	<<	v.back()	<<	endl;

			v.pop_back();

	}														

Related	topics:

size

end
Syntax:

		#include	<string>

		iterator	end();

		const_iterator	end()	const;

The	end()	function	returns	an	iterator	just	past	the	end	of	the	string.

Note	that	before	you	can	access	the	last	element	of	the	string	using	an	iterator
that	you	get	from	a	call	to	end(),	you'll	have	to	decrement	the	iterator	first.

For	example,	the	following	code	uses	begin()	and	end()	to	iterate	through	all	of
the	members	of	a	vector:

	vector<int>	v1(5,	789);

	vector<int>::iterator	it;

	for(it	=	v1.begin();	it	!=	v1.end();	it++)	{

			cout	<<	*it	<<	endl;

	}														

The	iterator	is	initialized	with	a	call	to	begin().	After	the	body	of	the	loop	has
been	executed,	the	iterator	is	incremented	and	tested	to	see	if	it	is	equal	to	the
result	of	calling	end().	Since	end()	returns	an	iterator	pointing	to	an	element	just
after	the	last	element	of	the	vector,	the	loop	will	only	stop	once	all	of	the
elements	of	the	vector	have	been	displayed.

end()	runs	in	constant	time.

Related	topics:
begin
rbegin
rend

erase
Syntax:

		#include	<string>

		iterator	erase(iterator	loc);

		iterator	erase(iterator	start,	iterator	end);

		string&	erase(size_type	index	=	0,	size_type	num	=	npos);

The	erase()	function	either:

removes	the	character	pointed	to	by	loc,	returning	an	iterator	to	the	next
character,
removes	the	characters	between	start	and	end	(including	the	one	at	start	but
not	the	one	at	end),	returning	an	iterator	to	the	character	after	the	last
character	removed,
or	removes	num	characters	from	the	current	string,	starting	at	index,	and
returns	*this.

The	parameters	index	and	num	have	default	values,	which	means	that	erase()	can
be	called	with	just	index	to	erase	all	characters	after	index	or	with	no	arguments
to	erase	all	characters.

For	example:

			string	s("So,	you	like	donuts,	eh?	Well,	have	all	the	donuts	in	the	world!");

			cout	<<	"The	original	string	is	'"	<<	s	<<	"'"	<<	endl;										

			s.erase(50,	14);

			cout	<<	"Now	the	string	is	'"	<<	s	<<	"'"	<<	endl;

			s.erase(24);

			cout	<<	"Now	the	string	is	'"	<<	s	<<	"'"	<<	endl;

			s.erase();

			cout	<<	"Now	the	string	is	'"	<<	s	<<	"'"	<<	endl;															

will	display

			The	original	string	is	'So,	you	like	donuts,	eh?	Well,	have	all	the	donuts	in	the	world!'

			Now	the	string	is	'So,	you	like	donuts,	eh?	Well,	have	all	the	donuts'

			Now	the	string	is	'So,	you	like	donuts,	eh?'

			Now	the	string	is	''									

erase()	runs	in	linear	time.

Related	topics:
insert

find
Syntax:

		#include	<string>

		size_type	find(const	string&	str,	size_type	index);

		size_type	find(const	char*	str,	size_type	index);

		size_type	find(const	char*	str,	size_type	index,	size_type	length);

		size_type	find(char	ch,	size_type	index);

The	function	find()	either:

returns	the	first	occurrence	of	str	within	the	current	string,	starting	at	index,
string::npos	if	nothing	is	found,
returns	the	first	occurrence	of	str	within	the	current	string	and	within	length
characters,	starting	at	index,	string::npos	if	nothing	is	found,
or	returns	the	index	of	the	first	occurrence	ch	within	the	current	string,
starting	at	index,	string::npos	if	nothing	is	found.

For	example:

			string	str1("Alpha	Beta	Gamma	Delta");

			string::size_type	loc	=	str1.find("Omega",	0);

			if(loc	!=	string::npos)

					cout	<<	"Found	Omega	at	"	<<	loc	<<	endl;

			else

					cout	<<	"Didn't	find	Omega"	<<	endl;									

Related	topics:
find_first_not_of
find_first_of
find_last_not_of
find_last_of

rfind

find_first_not_of
Syntax:

		#include	<string>

		size_type	find_first_not_of(const	string&	str,	size_type	index	=	0);

		size_type	find_first_not_of(const	char*	str,	size_type	index	=	0);

		size_type	find_first_not_of(const	char*	str,	size_type	index,	size_type

		size_type	find_first_not_of(char	ch,	size_type	index	=	0);

The	find_first_not_of()	function	either:

returns	the	index	of	the	first	character	within	the	current	string	that	does	not
match	any	character	in	str,	beginning	the	search	at	index,	string::npos	if
nothing	is	found,
returns	the	index	of	the	first	character	within	the	current	string	that	does	not
match	any	character	in	str,	beginning	the	search	at	index	and	searching	at
most	num	characters,	string::npos	if	nothing	is	found,
or	returns	the	index	of	the	first	occurrence	of	a	character	that	does	not
match	ch	in	the	current	string,	starting	the	search	at	index,	string::npos	if
nothing	is	found.

For	example,	the	following	code	searches	a	string	of	text	for	the	first	character
that	is	not	a	lower-case	character,	space,	comma,	or	hypen:

	string	lower_case	=	"abcdefghijklmnopqrstuvwxyz	,-";

	string	str	=	"this	is	the	lower-case	part,	AND	THIS	IS	THE	UPPER-CASE	PART";

	cout	<<	"first	non-lower-case	letter	in	str	at:	"	<<	str.find_first_not_of(lower_case)	<<	endl;												

When	run,	find_first_not_of()	finds	the	first	upper-case	letter	in	str	at	index	29
and	displays	this	output:

	first	non-lower-case	letter	in	str	at:	29														

Related	topics:
find
find_first_not_of

find_first_of
find_last_not_of
find_last_of
rfind

find_first_of
Syntax:

		#include	<string>

		size_type	find_first_of(const	string	&str,	size_type	index	=	0);

		size_type	find_first_of(const	char*	str,	size_type	index	=	0);

		size_type	find_first_of(const	char*	str,	size_type	index,	size_type

		size_type	find_first_of(char	ch,	size_type	index	=	0);

The	find_first_of()	function	either:

returns	the	index	of	the	first	character	within	the	current	string	that	matches
any	character	in	str,	beginning	the	search	at	index,	string::npos	if	nothing	is
found,
returns	the	index	of	the	first	character	within	the	current	string	that	matches
any	character	in	str,	beginning	the	search	at	index	and	searching	at	most
num	characters,	string::npos	if	nothing	is	found,
or	returns	the	index	of	the	first	occurrence	of	ch	in	the	current	string,
starting	the	search	at	index,	string::npos	if	nothing	is	found.

Related	topics:
find
find_first_not_of
find_last_not_of
find_last_of
rfind

find_last_not_of
Syntax:

		#include	<string>

		size_type	find_last_not_of(const	string&	str,	size_type	index	=	npos);

		size_type	find_last_not_of(const	char*	str,	size_type	index	=	npos);

		size_type	find_last_not_of(const	char*	str,	size_type	index,	size_type

		size_type	find_last_not_of(char	ch,	size_type	index	=	npos);

The	find_last_not_of()	function	either:

returns	the	index	of	the	last	character	within	the	current	string	that	does	not
match	any	character	in	str,	doing	a	reverse	search	from	index,	string::npos	if
nothing	is	found,
returns	the	index	of	the	last	character	within	the	current	string	that	does	not
match	any	character	in	str,	doing	a	reverse	search	from	index	and	searching
at	most	num	characters	of	str,	or	returning	string::npos	if	nothing	is	found,
or	returns	the	index	of	the	last	occurrence	of	a	character	that	does	not	match
ch	in	the	current	string,	doing	a	reverse	search	from	index,	string::npos	if
nothing	is	found.

For	example,	the	following	code	searches	for	the	last	non-lower-case	character
in	a	mixed	string	of	characters:

	string	lower_case	=	"abcdefghijklmnopqrstuvwxyz";

	string	str	=	"abcdefgABCDEFGhijklmnop";

	cout	<<	"last	non-lower-case	letter	in	str	at:	"	<<	str.find_last_not_of(lower_case)	<<	endl;														

This	code	displays	the	following	output:

	last	non-lower-case	letter	in	str	at:	13															

Related	topics:
find
find_first_not_of
find_first_of
find_last_of
rfind

find_last_of
Syntax:

		#include	<string>

		size_type	find_last_of(const	string&	str,	size_type	index	=	npos);

		size_type	find_last_of(const	char*	str,	size_type	index	=	npos);

		size_type	find_last_of(const	char*	str,	size_type	index,	size_type

		size_type	find_last_of(char	ch,	size_type	index	=	npos);

The	find_last_of()	function	either:

returns	the	index	of	the	first	character	within	the	current	string	that	matches
any	character	in	str,	doing	a	reverse	search	from	index,	string::npos	if
nothing	is	found,
returns	the	index	of	the	first	character	within	the	current	string	that	matches
any	character	in	str,	doing	a	reverse	search	from	index	and	searching	at
most	num	characters,	string::npos	if	nothing	is	found,
or	returns	the	index	of	the	first	occurrence	of	ch	in	the	current	string,	doing
a	reverse	search	from	index,	string::npos	if	nothing	is	found.

Related	topics:
find
find_first_not_of
find_first_of
find_last_not_of
rfind

getline
Syntax:

		#include	<string>

		istream&	getline(istream&	is,	string&	s,	char	delimiter	=	'\n');

The	C++	string	class	defines	the	global	function	getline()	to	read	strings	from
and	I/O	stream.	The	getline()	function,	which	is	not	part	of	the	string	class,	reads
a	line	from	is	and	stores	it	into	s.	If	a	character	delimiter	is	specified,	then
getline()	will	use	delimiter	to	decide	when	to	stop	reading	data.

For	example,	the	following	code	reads	a	line	of	text	from	STDIN	and	displays	it
to	STDOUT:

	string	s;

	getline(cin,	s);

	cout	<<	"You	entered	"	<<	s	<<	endl;															

Related	topics:
(C++	I/O)	get
(C++	I/O)	getline

insert
Syntax:

		#include	<string>

		iterator	insert(iterator	i,	const	char&	ch);

		string&	insert(size_type	index,	const	string&	str);

		string&	insert(size_type	index,	const	char*	str);

		string&	insert(size_type	index1,	const	string&	str,	size_type	index2,	

		string&	insert(size_type	index,	const	char*	str,	size_type	num);

		string&	insert(size_type	index,	size_type	num,	char	ch);

		void	insert(iterator	i,	size_type	num,	const	char&	ch);

		void	insert(iterator	i,	iterator	start,	iterator	end);

The	very	multi-purpose	insert()	function	either:

inserts	ch	before	the	character	denoted	by	i,
inserts	str	into	the	current	string,	at	location	index,
inserts	a	substring	of	str	(starting	at	index2	and	num	characters	long)	into
the	current	string,	at	location	index1,
inserts	num	characters	of	str	into	the	current	string,	at	location	index,
inserts	num	copies	of	ch	into	the	current	string,	at	location	index,
inserts	num	copies	of	ch	into	the	current	string,	before	the	character	denoted
by	i,
or	inserts	the	characters	denoted	by	start	and	end	into	the	current	string,
before	the	character	specified	by	i.

Related	topics:
erase
replace

length
Syntax:

		#include	<string>

		size_type	length()	const;

The	length()	function	returns	the	number	of	elements	in	the	current	string,	performing	the	same	role	as	the	

Related	topics:
size

max_size
Syntax:

		#include	<string>

		size_type	max_size()	const;

The	max_size()	function	returns	the	maximum	number	of	elements	that	the
string	can	hold.	The	max_size()	function	should	not	be	confused	with	the	size()
or	capacity()	functions,	which	return	the	number	of	elements	currently	in	the
string	and	the	the	number	of	elements	that	the	string	will	be	able	to	hold	before
more	memory	will	have	to	be	allocated,	respectively.

Related	topics:
size

push_back
Syntax:

		#include	<string>

		void	push_back(const	TYPE&	val);

The	push_back()	function	appends	val	to	the	end	of	the	string.

For	example,	the	following	code	puts	10	integers	into	a	list:

			list<int>	the_list;

			for(int	i	=	0;	i	<	10;	i++)

					the_list.push_back(i);											

When	displayed,	the	resulting	list	would	look	like	this:

	0	1	2	3	4	5	6	7	8	9												

push_back()	runs	in	constant	time.

Related	topics:
(C++	Lists)	assign
(C++	Lists)	insert
(C++	Lists)	pop_back
(C++	Lists)	push_front

rbegin
Syntax:

		#include	<string>

		reverse_iterator	rbegin();

		const_reverse_iterator	rbegin()	const;

The	rbegin()	function	returns	a	reverse_iterator	to	the	end	of	the	current	string.

rbegin()	runs	in	constant	time.

Related	topics:
begin
end
rend

rend
Syntax:

		#include	<string>

		reverse_iterator	rend();

		const_reverse_iterator	rend()	const;

The	function	rend()	returns	a	reverse_iterator	to	the	beginning	of	the	current
string.

rend()	runs	in	constant	time.

Related	topics:
begin
end
rbegin

replace
Syntax:

		#include	<string>

		string&	replace(size_type	index,	size_type	num,	const	string&	str);

		string&	replace(size_type	index1,	size_type	num1,	const	string&	str,	

		string&	replace(size_type	index,	size_type	num,	const	char*	str);

		string&	replace(size_type	index,	size_type	num1,	const	char*	str,	

		string&	replace(size_type	index,	size_type	num1,	size_type	num2,	char	ch);

		string&	replace(iterator	start,	iterator	end,	const	string&	str);

		string&	replace(iterator	start,	iterator	end,	const	char*	str);

		string&	replace(iterator	start,	iterator	end,	const	char*	str,	size_type

		string&	replace(iterator	start,	iterator	end,	size_type	num,	char	ch);

The	function	replace()	either:

replaces	characters	of	the	current	string	with	up	to	num	characters	from	str,
beginning	at	index,

replaces	up	to	num1	characters	of	the	current	string	(starting	at	index1)	with
up	to	num2	characters	from	str	beginning	at	index2,
replaces	up	to	num	characters	of	the	current	string	with	characters	from	str,
beginning	at	index	in	str,
replaces	up	to	num1	characters	in	the	current	string	(beginning	at	index1)
with	num2	characters	from	str	beginning	at	index2,
replaces	up	to	num1	characters	in	the	current	string	(beginning	at	index)
with	num2	copies	of	ch,
replaces	the	characters	in	the	current	string	from	start	to	end	with	str,
replaces	characters	in	the	current	string	from	start	to	end	with	num
characters	from	str,
or	replaces	the	characters	in	the	current	string	from	start	to	end	with	num
copies	of	ch.

For	example,	the	following	code	displays	the	string	"They	say	he	carved	it
himself...find	your	soul-mate,	Homer."

			string	s	=	"They	say	he	carved	it	himself...from	a	BIGGER	spoon";

			string	s2	=	"find	your	soul-mate,	Homer.";

			s.replace(32,	s2.length(),	s2);

			cout	<<	s	<<	endl;															

Related	topics:
insert

reserve
Syntax:

		#include	<string>

		void	reserve(size_type	size);

The	reserve()	function	sets	the	capacity	of	the	string	to	at	least	size.

reserve()	runs	in	linear	time.

Related	topics:
capacity

resize
Syntax:

		#include	<string>

		void	resize(size_type	num,	const	TYPE&	val	=	TYPE());

The	function	resize()	changes	the	size	of	the	string	to	size.	If	val	is	specified	then
any	newly-created	elements	will	be	initialized	to	have	a	value	of	val.

This	function	runs	in	linear	time.

Related	topics:
(C++	Multimaps)	Container	constructors	&	destructors
capacity
size

rfind
Syntax:

		#include	<string>

		size_type	rfind(const	string&	str,	size_type	index);

		size_type	rfind(const	char*	str,	size_type	index);

		size_type	rfind(const	char*	str,	size_type	index,	size_type	num);

		size_type	rfind(char	ch,	size_type	index);

The	rfind()	function	either:

returns	the	location	of	the	first	occurrence	of	str	in	the	current	string,	doing
a	reverse	search	from	index,	string::npos	if	nothing	is	found,
returns	the	location	of	the	first	occurrence	of	str	in	the	current	string,	doing
a	reverse	search	from	index,	searching	at	most	num	characters,	string::npos
if	nothing	is	found,
or	returns	the	location	of	the	first	occurrence	of	ch	in	the	current	string,
doing	a	reverse	search	from	index,	string::npos	if	nothing	is	found.

For	example,	in	the	following	code,	the	first	call	to	rfind()	returns	string::npos,
because	the	target	word	is	not	within	the	first	8	characters	of	the	string.
However,	the	second	call	returns	9,	because	the	target	word	is	within	20
characters	of	the	beginning	of	the	string.

			int	loc;

			string	s	=	"My	cat's	breath	smells	like	cat	food.";

			loc	=	s.rfind("breath",	8);

			cout	<<	"The	word	breath	is	at	index	"	<<	loc	<<	endl;

			loc	=	s.rfind("breath",	20);

			cout	<<	"The	word	breath	is	at	index	"	<<	loc	<<	endl;											

Related	topics:
find
find_first_not_of
find_first_of
find_last_not_of
find_last_of

size
Syntax:

		#include	<string>

		size_type	size()	const;

The	size()	function	returns	the	number	of	elements	in	the	current	string.

Related	topics:
capacity
empty
length
max_size
resize

String	constructors

Syntax:

		#include	<string>

		string();

		string(const	string&	s);

		string(size_type	length,	const	char&	ch);

		string(const	char*	str);

		string(const	char*	str,	size_type	length);

		string(const	string&	str,	size_type	index,	size_type	length);

		string(input_iterator	start,	input_iterator	end);

		~string();

The	string	constructors	create	a	new	string	containing:

nothing;	an	empty	string,
a	copy	of	the	given	string	s,
length	copies	of	ch,
a	duplicate	of	str	(optionally	up	to	length	characters	long),
a	substring	of	str	starting	at	index	and	length	characters	long
a	string	of	characterss	denoted	by	the	start	and	end	iterators

For	example,

			string	str1(5,	'c');

			string	str2("Now	is	the	time...");

			string	str3(str2,	11,	4);

			cout	<<	str1	<<	endl;

			cout	<<	str2	<<	endl;

			cout	<<	str3	<<	endl;												

displays

			ccccc

			Now	is	the	time...

			time									

The	string	constructors	usually	run	in	linear	time,	except	the	empty	constructor,
which	runs	in	constant	time.

String	operators

Syntax:

		#include	<string>

		bool	operator==(const	string&	c1,	const	string&	c2);

		bool	operator!=(const	string&	c1,	const	string&	c2);

		bool	operator<(const	string&	c1,	const	string&	c2);

		bool	operator>(const	string&	c1,	const	string&	c2);

		bool	operator<=(const	string&	c1,	const	string&	c2);

		bool	operator>=(const	string&	c1,	const	string&	c2);

		string	operator+(const	string&	s1,	const	string&	s2);

		string	operator+(const	char*	s,	const	string&	s2);

		string	operator+(char	c,	const	string&	s2);

		string	operator+(const	string&	s1,	const	char*	s);

		string	operator+(const	string&	s1,	char	c);

		ostream&	operator<<(ostream&	os,	const	string&	s);

		istream&	operator>>(istream&	is,	string&	s);

		string&	operator=(const	string&	s);

		string&	operator=(const	char*	s);

		string&	operator=(char	ch);

		char&	operator[](size_type	index);

C++	strings	can	be	compared	and	assigned	with	the	standard	comparison
operators:	==,	!=,	<=,	>=,	<,	>,	and	=.	Performing	a	comparison	or	assigning	one
string	to	another	takes	linear	time.

Two	strings	are	equal	if:

		1.	Their	size	is	the	same,	and

		2.	Each	member	in	location	i	in	one	string	is	equal	to	the	the	member	in	location	i	in	the	other	string.														

Comparisons	among	strings	are	done	lexicographically.

In	addition	to	these	normal	(C++	Multimaps)	Container	operators,	strings	can
also	be	concatenated	with	the	+	operator	and	fed	to	the	C++	I/O	stream	classes
with	the	<<	and	>>	operators.

For	example,	the	following	code	concatenates	two	strings	and	displays	the	result:

	string	s1	=	"Now	is	the	time...";

	string	s2	=	"for	all	good	men...";

	string	s3	=	s1	+	s2;

	cout	<<	"s3	is	"	<<	s3	<<	endl;												

Furthermore,	strings	can	be	assigned	values	that	are	other	strings,	character
arrays,	or	even	single	characters.	The	following	code	is	perfectly	valid:

	char	ch	=	'N';

	string	s	=	ch;									

Individual	characters	of	a	string	can	be	examined	with	the	[]	operator,	which
runs	in	constant	time.

Related	topics:
(C++	Multimaps)	Container	operators
c_str
compare
data

substr
Syntax:

		#include	<string>

		string	substr(size_type	index,	size_type	num	=	npos);

The	substr()	function	returns	a	substring	of	the	current	string,	starting	at	index,
and	num	characters	long.	If	num	is	omitted,	it	will	default	to	string::npos,	and	the
substr()	function	will	simply	return	the	remainder	of	the	string	starting	at	index.

For	example:

			string	s("What	we	have	here	is	a	failure	to	communicate");

			string	sub	=	s.substr(21);

			cout	<<	"The	original	string	is	"	<<	s	<<	endl;

			cout	<<	"The	substring	is	"	<<	sub	<<	endl;														

displays

			The	original	string	is	What	we	have	here	is	a	failure	to	communicate

			The	substring	is	a	failure	to	communicate												

Related	topics:
copy

swap
Syntax:

		#include	<string>

		void	swap(const	container&	from);

The	swap()	function	exchanges	the	elements	of	the	current	string	with	those	of
from.	This	function	operates	in	constant	time.

For	example,	the	following	code	uses	the	swap()	function	to	exchange	the	values
of	two	strings:

			string	first("This	comes	first");

			string	second("And	this	is	second");

			first.swap(second);

			cout	<<	first	<<	endl;

			cout	<<	second	<<	endl;										

The	above	code	displays:

			And	this	is	second

			This	comes	first													

Related	topics:
(C++	Lists)	splice

cppreference.com	>	C++	Strings	>	append

append
Syntax:

		#include	<string>

		string&	append(const	string&	str);

		string&	append(const	char*	str);

		string&	append(const	string&	str,	size_type	index,	size_type	len);

		string&	append(const	char*	str,	size_type	num);

		string&	append(size_type	num,	char	ch);

		string&	append(input_iterator	start,	input_iterator	end);

The	append()	function	either:

appends	str	on	to	the	end	of	the	current	string,
appends	a	substring	of	str	starting	at	index	that	is	len	characters	long	on	to
the	end	of	the	current	string,
appends	num	characters	of	str	on	to	the	end	of	the	current	string,
appends	num	repititions	of	ch	on	to	the	end	of	the	current	string,
or	appends	the	sequence	denoted	by	start	and	end	on	to	the	end	of	the
current	string.

For	example,	the	following	code	uses	append()	to	add	10	copies	of	the	'!'
character	to	a	string:

			string	str	=	"Hello	World";

			str.append(10,	'!');

			cout	<<	str	<<	endl;													

That	code	displays:

			Hello	World!!!!!!!!!!																

In	the	next	example,	append()	is	used	to	concatenate	a	substring	of	one	string
onto	another	string:

	string	str1	=	"Eventually	I	stopped	caring...";

	string	str2	=	"but	that	was	the	'80s	so	nobody	noticed.";

	str1.append(str2,	25,	15);

	cout	<<	"str1	is	"	<<	str1	<<	endl;	

When	run,	the	above	code	displays:

	str1	is	Eventually	I	stopped	caring...nobody	noticed.										

cppreference.com	>	C++	Strings	>	assign

assign
Syntax:

		#include	<string>

		void	assign(size_type	num,	const	char&	val);

		void	assign(input_iterator	start,	input_iterator	end);

		string&	assign(const	string&	str);

		string&	assign(const	char*	str);

		string&	assign(const	char*	str,	size_type	num);

		string&	assign(const	string&	str,	size_type	index,	size_type	len);

		string&	assign(size_type	num,	const	char&	ch);

The	deafult	assign()	function	gives	the	current	string	the	values	from	start	to
end,	or	gives	it	num	copies	of	val.

In	addition	to	the	normal	(C++	Lists)	assign()	functionality	that	all	C++
containers	have,	strings	possess	an	assign()	function	that	also	allows	them	to:

assign	str	to	the	current	string,
assign	the	first	num	characters	of	str	to	the	current	string,
assign	a	substring	of	str	starting	at	index	that	is	len	characters	long	to	the
current	string,

For	example,	the	following	code:

			string	str1,	str2	=	"War	and	Peace";

			str1.assign(str2,	4,	3);

			cout	<<	str1	<<	endl;												

displays

			and										

This	function	will	destroy	the	previous	contents	of	the	string.

Related	topics:
(C++	Lists)	assign

cppreference.com	>	C++	Strings	>	at

at
Syntax:

		#include	<string>

		TYPE&	at(size_type	loc);

		const	TYPE&	at(size_type	loc)	const;

The	at()	function	returns	a	reference	to	the	element	in	the	string	at	index	loc.
The	at()	function	is	safer	than	the	[]	operator,	because	it	won't	let	you	reference
items	outside	the	bounds	of	the	string.

For	example,	consider	the	following	code:

	vector<int>	v(5,	1);

	for(int	i	=	0;	i	<	10;	i++)	{

			cout	<<	"Element	"	<<	i	<<	"	is	"	<<	v[i]	<<	endl;

	}														

This	code	overrunns	the	end	of	the	vector,	producing	potentially	dangerous
results.	The	following	code	would	be	much	safer:

	vector<int>	v(5,	1);

	for(int	i	=	0;	i	<	10;	i++)	{

			cout	<<	"Element	"	<<	i	<<	"	is	"	<<	v.at(i)	<<	endl;

	}														

Instead	of	attempting	to	read	garbage	values	from	memory,	the	at()	function	will
realize	that	it	is	about	to	overrun	the	vector	and	will	throw	an	exception.

Related	topics:
(C++	Multimaps)	Container	operators
(C++	Double-ended	Queues)	Container	operators

cppreference.com	>	C++	Strings	>	begin

begin
Syntax:

		#include	<string>

		iterator	begin();

		const_iterator	begin()	const;

The	function	begin()	returns	an	iterator	to	the	first	element	of	the	string.	begin()	should	run	in	
time.

For	example,	the	following	code	uses	begin()	to	initialize	an	iterator	that	is	used	to	traverse	a	list:

			//	Create	a	list	of	characters

			list<char>	charList;

			for(int	i=0;	i	<	10;	i++)	{

					charList.push_front(i	+	65);

			}

			//	Display	the	list

			list<char>::iterator	theIterator;

			for(theIterator	=	charList.begin();	theIterator	!=	charList.end();	theIterator++)	{

					cout	<<	*theIterator;

			}												

Related	topics:
endrbegin
rend

cppreference.com	>	C++	Strings	>	c_str

c_str
Syntax:

		#include	<string>

		const	char*	c_str();

The	function	c_str()	returns	a	const	pointer	to	a	regular	C	string,	identical	to	the
current	string.	The	returned	string	is	null-terminated.

Note	that	since	the	returned	pointer	is	of	type	(C/C++	Keywords)	const,	the
character	data	that	c_str()	returns	cannot	be	modified.

Related	topics:
String	operatorsdata

cppreference.com	>	C++	Strings	>	capacity

capacity
Syntax:

		#include	<string>

		size_type	capacity()	const;

The	capacity()	function	returns	the	number	of	elements	that	the	string	can	hold
before	it	will	need	to	allocate	more	space.

For	example,	the	following	code	uses	two	different	methods	to	set	the	capacity	of
two	vectors.	One	method	passes	an	argument	to	the	constructor	that	suggests	an
initial	size,	the	other	method	calls	the	reserve	function	to	achieve	a	similar	goal:

	vector<int>	v1(10);

	cout	<<	"The	capacity	of	v1	is	"	<<	v1.capacity()	<<	endl;

	vector<int>	v2;

	v2.reserve(20);

	cout	<<	"The	capacity	of	v2	is	"	<<	v2.capacity()	<<	endl;									

When	run,	the	above	code	produces	the	following	output:

	The	capacity	of	v1	is	10

	The	capacity	of	v2	is	20															

C++	containers	are	designed	to	grow	in	size	dynamically.	This	frees	the
programmer	from	having	to	worry	about	storing	an	arbitrary	number	of	elements
in	a	container.	However,	sometimes	the	programmer	can	improve	the
performance	of	her	program	by	giving	hints	to	the	compiler	about	the	size	of	the
containers	that	the	program	will	use.	These	hints	come	in	the	form	of	the
reserve()	function	and	the	constructor	used	in	the	above	example,	which	tell	the
compiler	how	large	the	container	is	expected	to	get.

The	capacity()	function	runs	in	constant	time.

Related	topics:
reserveresize

size

cppreference.com	>	C++	Strings	>	clear

clear
Syntax:

		#include	<string>

		void	clear();

The	function	clear()	deletes	all	of	the	elements	in	the	string.	clear()	runs	in
linear	time.

Related	topics:
(C++	Lists)	erase

cppreference.com	>	C++	Strings	>	compare

compare
Syntax:

		#include	<string>

		int	compare(const	string&	str);

		int	compare(const	char*	str);

		int	compare(size_type	index,	size_type	length,	const	string&	str);

		int	compare(size_type	index,	size_type	length,	const	string&	str,	

		size_type	length2);

		int	compare(size_type	index,	size_type	length,	const	char*	str,	

The	compare()	function	either	compares	str	to	the	current	string	in	a	variety	of	ways,	returning

Return	Value Case

less	than	zero this	<	str

zero this	==	str

greater	than	zero this	>	str

The	various	functions	either:

compare	str	to	the	current	string,
compare	str	to	a	substring	of	the	current	string,	starting	at	index	for	length	characters,
compare	a	substring	of	str	to	a	substring	of	the	current	string,	where	index2	and	
and	index	and	length	refer	to	the	current	string,
or	compare	a	substring	of	str	to	a	substring	of	the	current	string,	where	the	substring	of	
zero	and	is	length2	characters	long,	and	the	substring	of	the	current	string	begins	at	
length	characters	long.

For	example,	the	following	code	uses	compare()	to	compare	four	strings	with	eachother:

	string	names[]	=	{"Homer",	"Marge",	"3-eyed	fish",	"inanimate	carbon	rod"};												

	for(int	i	=	0;	i	<	4;	i++)	{

			for(int	j	=	0;	j	<	4;	j++)	{

					cout	<<	names[i].compare(names[j])	<<	"	";

			}

			cout	<<	endl;

	}														

Data	from	the	above	code	was	used	to	generate	this	table,	which	shows	how	the	various	strings	compare
to	eachother:

Homer Marge 3-eyed	fish inanimate	carbon	rod

"Homer".compare(x) 0 -1 1 -1

"Marge".compare(x) 1 0 1 -1

"3-eyed	fish".compare(x) -1 -1 0 -1

"inanimate	carbon	rod".compare(x) 1 1 1 0
Related	topics:
String	operators

cppreference.com	>	C++	Strings	>	copy

copy
Syntax:

		#include	<string>

		size_type	copy(char*	str,	size_type	num,	size_type	index	=	0);

The	copy()	function	copies	num	characters	of	the	current	string	(starting	at	index
if	it's	specified,	0	otherwise)	into	str.

The	return	value	of	copy()	is	the	number	of	characters	copied.

For	example,	the	following	code	uses	copy()	to	extract	a	substring	of	a	string
into	an	array	of	characters:

	char	buf[30];

	memset(buf,	'\0',	30);

	string	str	=	"Trying	is	the	first	step	towards	failure.";

	str.copy(buf,	24);

	cout	<<	buf	<<	endl;															

When	run,	this	code	displays:

	Trying	is	the	first	step															

Note	that	before	calling	copy(),	we	first	call	(Standard	C	String	and	Character)
memset()	to	fill	the	destination	array	with	copies	of	the	NULL	character.	This
step	is	included	to	make	sure	that	the	resulting	array	of	characters	is	NULL-
terminated.

Related	topics:
substr

cppreference.com	>	C++	Strings	>	data

data
Syntax:

		#include	<string>

		const	char	*data();

The	function	data()	returns	a	pointer	to	the	first	character	in	the	current	string.

Related	topics:
String	operatorsc_str

cppreference.com	>	C++	Strings	>	empty

empty
Syntax:

		#include	<string>

		bool	empty()	const;

The	empty()	function	returns	true	if	the	string	has	no	elements,	false	otherwise.

For	example,	the	following	code	uses	empty()	as	the	stopping	condition	on	a
(C/C++	Keywords)	while	loop	to	clear	a	string	and	display	its	contents	in
reverse	order:

	vector<int>	v;

	for(int	i	=	0;	i	<	5;	i++)	{

			v.push_back(i);

	}

	while(!v.empty())	{

			cout	<<	v.back()	<<	endl;

			v.pop_back();

	}														

Related	topics:
size

cppreference.com	>	C++	Strings	>	end

end
Syntax:

		#include	<string>

		iterator	end();

		const_iterator	end()	const;

The	end()	function	returns	an	iterator	just	past	the	end	of	the	string.

Note	that	before	you	can	access	the	last	element	of	the	string	using	an	iterator
that	you	get	from	a	call	to	end(),	you'll	have	to	decrement	the	iterator	first.

For	example,	the	following	code	uses	begin()	and	end()	to	iterate	through	all	of
the	members	of	a	vector:

	vector<int>	v1(5,	789);

	vector<int>::iterator	it;

	for(it	=	v1.begin();	it	!=	v1.end();	it++)	{

			cout	<<	*it	<<	endl;

	}														

The	iterator	is	initialized	with	a	call	to	begin().	After	the	body	of	the	loop	has
been	executed,	the	iterator	is	incremented	and	tested	to	see	if	it	is	equal	to	the
result	of	calling	end().	Since	end()	returns	an	iterator	pointing	to	an	element	just
after	the	last	element	of	the	vector,	the	loop	will	only	stop	once	all	of	the
elements	of	the	vector	have	been	displayed.

end()	runs	in	constant	time.

Related	topics:
beginrbegin
rend

cppreference.com	>	C++	Strings	>	erase

erase
Syntax:

		#include	<string>

		iterator	erase(iterator	loc);

		iterator	erase(iterator	start,	iterator	end);

		string&	erase(size_type	index	=	0,	size_type	num	=	npos);

The	erase()	function	either:

removes	the	character	pointed	to	by	loc,	returning	an	iterator	to	the	next	character,
removes	the	characters	between	start	and	end	(including	the	one	at	start	but	not	the	one	at	
an	iterator	to	the	character	after	the	last	character	removed,
or	removes	num	characters	from	the	current	string,	starting	at	index,	and	returns	*this.

The	parameters	index	and	num	have	default	values,	which	means	that	erase()	can	be	called	with	just	
erase	all	characters	after	index	or	with	no	arguments	to	erase	all	characters.

For	example:

			string	s("So,	you	like	donuts,	eh?	Well,	have	all	the	donuts	in	the	world!");

			cout	<<	"The	original	string	is	'"	<<	s	<<	"'"	<<	endl;										

			s.erase(50,	14);

			cout	<<	"Now	the	string	is	'"	<<	s	<<	"'"	<<	endl;

			s.erase(24);

			cout	<<	"Now	the	string	is	'"	<<	s	<<	"'"	<<	endl;

			s.erase();

			cout	<<	"Now	the	string	is	'"	<<	s	<<	"'"	<<	endl;															

will	display

			The	original	string	is	'So,	you	like	donuts,	eh?	Well,	have	all	the	donuts	in	the	world!'

			Now	the	string	is	'So,	you	like	donuts,	eh?	Well,	have	all	the	donuts'

			Now	the	string	is	'So,	you	like	donuts,	eh?'

			Now	the	string	is	''									

erase()	runs	in	linear	time.

Related	topics:
insert

cppreference.com	>	C++	Strings	>	find

find
Syntax:

		#include	<string>

		size_type	find(const	string&	str,	size_type	index);

		size_type	find(const	char*	str,	size_type	index);

		size_type	find(const	char*	str,	size_type	index,	size_type	length);

		size_type	find(char	ch,	size_type	index);

The	function	find()	either:

returns	the	first	occurrence	of	str	within	the	current	string,	starting	at	index,
string::npos	if	nothing	is	found,
returns	the	first	occurrence	of	str	within	the	current	string	and	within
length	characters,	starting	at	index,	string::npos	if	nothing	is	found,
or	returns	the	index	of	the	first	occurrence	ch	within	the	current	string,
starting	at	index,	string::npos	if	nothing	is	found.

For	example:

			string	str1("Alpha	Beta	Gamma	Delta");

			string::size_type	loc	=	str1.find("Omega",	0);

			if(loc	!=	string::npos)

					cout	<<	"Found	Omega	at	"	<<	loc	<<	endl;

			else

					cout	<<	"Didn't	find	Omega"	<<	endl;									

Related	topics:
find_first_not_offind_first_of
find_last_not_of
find_last_of
rfind

cppreference.com	>	C++	Strings	>	find_first_not_of

find_first_not_of
Syntax:

		#include	<string>

		size_type	find_first_not_of(const	string&	str,	size_type	index	=	0);

		size_type	find_first_not_of(const	char*	str,	size_type	index	=	0);

		size_type	find_first_not_of(const	char*	str,	size_type	index,	size_type

		size_type	find_first_not_of(char	ch,	size_type	index	=	0);

The	find_first_not_of()	function	either:

returns	the	index	of	the	first	character	within	the	current	string	that	does	not	match	any	character	in	
at	index,	string::npos	if	nothing	is	found,
returns	the	index	of	the	first	character	within	the	current	string	that	does	not	match	any	character	in	
at	index	and	searching	at	most	num	characters,	string::npos	if	nothing	is	found,
or	returns	the	index	of	the	first	occurrence	of	a	character	that	does	not	match	
index,	string::npos	if	nothing	is	found.

For	example,	the	following	code	searches	a	string	of	text	for	the	first	character	that	is	not	a	lower-case	character,	space,	comma,
or	hypen:

	string	lower_case	=	"abcdefghijklmnopqrstuvwxyz	,-";

	string	str	=	"this	is	the	lower-case	part,	AND	THIS	IS	THE	UPPER-CASE	PART";

	cout	<<	"first	non-lower-case	letter	in	str	at:	"	<<	str.find_first_not_of(lower_case)	<<	endl;												

When	run,	find_first_not_of()	finds	the	first	upper-case	letter	in	str	at	index	29	and	displays	this	output:

	first	non-lower-case	letter	in	str	at:	29														

Related	topics:
findfind_first_not_of
find_first_of
find_last_not_of
find_last_of
rfind

cppreference.com	>	C++	Strings	>	find_first_of

find_first_of
Syntax:

		#include	<string>

		size_type	find_first_of(const	string	&str,	size_type	index	=	0);

		size_type	find_first_of(const	char*	str,	size_type	index	=	0);

		size_type	find_first_of(const	char*	str,	size_type	index,	size_type

		size_type	find_first_of(char	ch,	size_type	index	=	0);

The	find_first_of()	function	either:

returns	the	index	of	the	first	character	within	the	current	string	that	matches
any	character	in	str,	beginning	the	search	at	index,	string::npos	if	nothing	is
found,
returns	the	index	of	the	first	character	within	the	current	string	that	matches
any	character	in	str,	beginning	the	search	at	index	and	searching	at	most	num
characters,	string::npos	if	nothing	is	found,
or	returns	the	index	of	the	first	occurrence	of	ch	in	the	current	string,	starting
the	search	at	index,	string::npos	if	nothing	is	found.

Related	topics:
findfind_first_not_of
find_last_not_of
find_last_of
rfind

cppreference.com	>	C++	Strings	>	find_last_not_of

find_last_not_of
Syntax:

		#include	<string>

		size_type	find_last_not_of(const	string&	str,	size_type	index	=	npos);

		size_type	find_last_not_of(const	char*	str,	size_type	index	=	npos);

		size_type	find_last_not_of(const	char*	str,	size_type	index,	size_type

		size_type	find_last_not_of(char	ch,	size_type	index	=	npos);

The	find_last_not_of()	function	either:

returns	the	index	of	the	last	character	within	the	current	string	that	does	not	match	any	character	in	
search	from	index,	string::npos	if	nothing	is	found,
returns	the	index	of	the	last	character	within	the	current	string	that	does	not	match	any	character	in	
search	from	index	and	searching	at	most	num	characters	of	str,	or	returning	string::npos	if	nothing	is	found,
or	returns	the	index	of	the	last	occurrence	of	a	character	that	does	not	match	
from	index,	string::npos	if	nothing	is	found.

For	example,	the	following	code	searches	for	the	last	non-lower-case	character	in	a	mixed	string	of	characters:

	string	lower_case	=	"abcdefghijklmnopqrstuvwxyz";

	string	str	=	"abcdefgABCDEFGhijklmnop";

	cout	<<	"last	non-lower-case	letter	in	str	at:	"	<<	str.find_last_not_of(lower_case)	<<	endl;														

This	code	displays	the	following	output:

	last	non-lower-case	letter	in	str	at:	13															

Related	topics:
findfind_first_not_of
find_first_of
find_last_of
rfind

cppreference.com	>	C++	Strings	>	find_last_of

find_last_of
Syntax:

		#include	<string>

		size_type	find_last_of(const	string&	str,	size_type	index	=	npos);

		size_type	find_last_of(const	char*	str,	size_type	index	=	npos);

		size_type	find_last_of(const	char*	str,	size_type	index,	size_type

		size_type	find_last_of(char	ch,	size_type	index	=	npos);

The	find_last_of()	function	either:

returns	the	index	of	the	first	character	within	the	current	string	that	matches
any	character	in	str,	doing	a	reverse	search	from	index,	string::npos	if
nothing	is	found,
returns	the	index	of	the	first	character	within	the	current	string	that	matches
any	character	in	str,	doing	a	reverse	search	from	index	and	searching	at	most
num	characters,	string::npos	if	nothing	is	found,
or	returns	the	index	of	the	first	occurrence	of	ch	in	the	current	string,	doing	a
reverse	search	from	index,	string::npos	if	nothing	is	found.

Related	topics:
findfind_first_not_of
find_first_of
find_last_not_of
rfind

cppreference.com	>	C++	Strings	>	getline

getline
Syntax:

		#include	<string>

		istream&	getline(istream&	is,	string&	s,	char	delimiter	=	'\n');

The	C++	string	class	defines	the	global	function	getline()	to	read	strings	from	and
I/O	stream.	The	getline()	function,	which	is	not	part	of	the	string	class,	reads	a	line
from	is	and	stores	it	into	s.	If	a	character	delimiter	is	specified,	then	getline()	will
use	delimiter	to	decide	when	to	stop	reading	data.

For	example,	the	following	code	reads	a	line	of	text	from	STDIN	and	displays	it
to	STDOUT:

	string	s;

	getline(cin,	s);

	cout	<<	"You	entered	"	<<	s	<<	endl;															

Related	topics:
(C++	I/O)	get
(C++	I/O)	getline

cppreference.com	>	C++	Strings	>	insert

insert
Syntax:

		#include	<string>

		iterator	insert(iterator	i,	const	char&	ch);

		string&	insert(size_type	index,	const	string&	str);

		string&	insert(size_type	index,	const	char*	str);

		string&	insert(size_type	index1,	const	string&	str,	size_type	index2,	

		string&	insert(size_type	index,	const	char*	str,	size_type	num);

		string&	insert(size_type	index,	size_type	num,	char	ch);

		void	insert(iterator	i,	size_type	num,	const	char&	ch);

		void	insert(iterator	i,	iterator	start,	iterator	end);

The	very	multi-purpose	insert()	function	either:

inserts	ch	before	the	character	denoted	by	i,
inserts	str	into	the	current	string,	at	location	index,
inserts	a	substring	of	str	(starting	at	index2	and	num	characters	long)	into
the	current	string,	at	location	index1,
inserts	num	characters	of	str	into	the	current	string,	at	location	index,
inserts	num	copies	of	ch	into	the	current	string,	at	location	index,
inserts	num	copies	of	ch	into	the	current	string,	before	the	character
denoted	by	i,
or	inserts	the	characters	denoted	by	start	and	end	into	the	current	string,
before	the	character	specified	by	i.

Related	topics:
erasereplace

cppreference.com	>	C++	Strings	>	length

length
Syntax:

		#include	<string>

		size_type	length()	const;

The	length()	function	returns	the	number	of	elements	in	the	current	string,	performing	the	same	role	as	the	

Related	topics:
size

cppreference.com	>	C++	Strings	>	max_size

max_size
Syntax:

		#include	<string>

		size_type	max_size()	const;

The	max_size()	function	returns	the	maximum	number	of	elements	that	the
string	can	hold.	The	max_size()	function	should	not	be	confused	with	the	size()
or	capacity()	functions,	which	return	the	number	of	elements	currently	in	the
string	and	the	the	number	of	elements	that	the	string	will	be	able	to	hold	before
more	memory	will	have	to	be	allocated,	respectively.

Related	topics:
size

cppreference.com	>	C++	Strings	>	push_back

push_back
Syntax:

		#include	<string>

		void	push_back(const	TYPE&	val);

The	push_back()	function	appends	val	to	the	end	of	the	string.

For	example,	the	following	code	puts	10	integers	into	a	list:

			list<int>	the_list;

			for(int	i	=	0;	i	<	10;	i++)

					the_list.push_back(i);											

When	displayed,	the	resulting	list	would	look	like	this:

	0	1	2	3	4	5	6	7	8	9												

push_back()	runs	in	constant	time.

Related	topics:
(C++	Lists)	assign
(C++	Lists)	insert
(C++	Lists)	pop_back
(C++	Lists)	push_front

cppreference.com	>	C++	Strings	>	rbegin

rbegin
Syntax:

		#include	<string>

		reverse_iterator	rbegin();

		const_reverse_iterator	rbegin()	const;

The	rbegin()	function	returns	a	reverse_iterator	to	the	end	of	the	current	string.

rbegin()	runs	in	constant	time.

Related	topics:
beginend
rend

cppreference.com	>	C++	Strings	>	rend

rend
Syntax:

		#include	<string>

		reverse_iterator	rend();

		const_reverse_iterator	rend()	const;

The	function	rend()	returns	a	reverse_iterator	to	the	beginning	of	the	current
string.

rend()	runs	in	constant	time.

Related	topics:
beginend
rbegin

cppreference.com	>	C++	Strings	>	replace

replace
Syntax:

		#include	<string>

		string&	replace(size_type	index,	size_type	num,	const	string&	str);

		string&	replace(size_type	index1,	size_type	num1,	const	string&	str,	

		string&	replace(size_type	index,	size_type	num,	const	char*	str);

		string&	replace(size_type	index,	size_type	num1,	const	char*	str,	

		string&	replace(size_type	index,	size_type	num1,	size_type	num2,	char	ch);

		string&	replace(iterator	start,	iterator	end,	const	string&	str);

		string&	replace(iterator	start,	iterator	end,	const	char*	str);

		string&	replace(iterator	start,	iterator	end,	const	char*	str,	size_type

		string&	replace(iterator	start,	iterator	end,	size_type	num,	char	ch);

The	function	replace()	either:

replaces	characters	of	the	current	string	with	up	to	num	characters	from	str,	beginning	at
index,
replaces	up	to	num1	characters	of	the	current	string	(starting	at	index1)	with	up	to	
characters	from	str	beginning	at	index2,
replaces	up	to	num	characters	of	the	current	string	with	characters	from	str,	beginning	at
index	in	str,
replaces	up	to	num1	characters	in	the	current	string	(beginning	at	index1)	with	
characters	from	str	beginning	at	index2,
replaces	up	to	num1	characters	in	the	current	string	(beginning	at	index)	with	
of	ch,
replaces	the	characters	in	the	current	string	from	start	to	end	with	str,
replaces	characters	in	the	current	string	from	start	to	end	with	num	characters	from	
or	replaces	the	characters	in	the	current	string	from	start	to	end	with	num	copies	of	

For	example,	the	following	code	displays	the	string	"They	say	he	carved	it	himself...find	your
soul-mate,	Homer."

			string	s	=	"They	say	he	carved	it	himself...from	a	BIGGER	spoon";

			string	s2	=	"find	your	soul-mate,	Homer.";

			s.replace(32,	s2.length(),	s2);

			cout	<<	s	<<	endl;															

Related	topics:
insert

cppreference.com	>	C++	Strings	>	reserve

reserve
Syntax:

		#include	<string>

		void	reserve(size_type	size);

The	reserve()	function	sets	the	capacity	of	the	string	to	at	least	size.

reserve()	runs	in	linear	time.

Related	topics:
capacity

cppreference.com	>	C++	Strings	>	resize

resize
Syntax:

		#include	<string>

		void	resize(size_type	num,	const	TYPE&	val	=	TYPE());

The	function	resize()	changes	the	size	of	the	string	to	size.	If	val	is	specified
then	any	newly-created	elements	will	be	initialized	to	have	a	value	of	val.

This	function	runs	in	linear	time.

Related	topics:
(C++	Multimaps)	Container	constructors	&	destructors
capacity
size

cppreference.com	>	C++	Strings	>	rfind

rfind
Syntax:

		#include	<string>

		size_type	rfind(const	string&	str,	size_type	index);

		size_type	rfind(const	char*	str,	size_type	index);

		size_type	rfind(const	char*	str,	size_type	index,	size_type	num);

		size_type	rfind(char	ch,	size_type	index);

The	rfind()	function	either:

returns	the	location	of	the	first	occurrence	of	str	in	the	current	string,	doing	a
reverse	search	from	index,	string::npos	if	nothing	is	found,
returns	the	location	of	the	first	occurrence	of	str	in	the	current	string,	doing	a
reverse	search	from	index,	searching	at	most	num	characters,	string::npos	if
nothing	is	found,
or	returns	the	location	of	the	first	occurrence	of	ch	in	the	current	string,
doing	a	reverse	search	from	index,	string::npos	if	nothing	is	found.

For	example,	in	the	following	code,	the	first	call	to	rfind()	returns	string::npos,
because	the	target	word	is	not	within	the	first	8	characters	of	the	string.	However,
the	second	call	returns	9,	because	the	target	word	is	within	20	characters	of	the
beginning	of	the	string.

			int	loc;

			string	s	=	"My	cat's	breath	smells	like	cat	food.";

			loc	=	s.rfind("breath",	8);

			cout	<<	"The	word	breath	is	at	index	"	<<	loc	<<	endl;

			loc	=	s.rfind("breath",	20);

			cout	<<	"The	word	breath	is	at	index	"	<<	loc	<<	endl;											

Related	topics:
findfind_first_not_of
find_first_of
find_last_not_of
find_last_of

cppreference.com	>	C++	Strings	>	size

size
Syntax:

		#include	<string>

		size_type	size()	const;

The	size()	function	returns	the	number	of	elements	in	the	current	string.

Related	topics:
capacityempty
length
max_size
resize

cppreference.com	>	C++	Strings	>	String	constructors

String	constructors
Syntax:

		#include	<string>

		string();

		string(const	string&	s);

		string(size_type	length,	const	char&	ch);

		string(const	char*	str);

		string(const	char*	str,	size_type	length);

		string(const	string&	str,	size_type	index,	size_type	length);

		string(input_iterator	start,	input_iterator	end);

		~string();

The	string	constructors	create	a	new	string	containing:

nothing;	an	empty	string,
a	copy	of	the	given	string	s,
length	copies	of	ch,
a	duplicate	of	str	(optionally	up	to	length	characters	long),
a	substring	of	str	starting	at	index	and	length	characters	long
a	string	of	characterss	denoted	by	the	start	and	end	iterators

For	example,

			string	str1(5,	'c');

			string	str2("Now	is	the	time...");

			string	str3(str2,	11,	4);

			cout	<<	str1	<<	endl;

			cout	<<	str2	<<	endl;

			cout	<<	str3	<<	endl;												

displays

			ccccc

			Now	is	the	time...

			time									

The	string	constructors	usually	run	in	linear	time,	except	the	empty	constructor,

which	runs	in	constant	time.

cppreference.com	>	C++	Strings	>	String	operators

String	operators
Syntax:

		#include	<string>

		bool	operator==(const	string&	c1,	const	string&	c2);

		bool	operator!=(const	string&	c1,	const	string&	c2);

		bool	operator<(const	string&	c1,	const	string&	c2);

		bool	operator>(const	string&	c1,	const	string&	c2);

		bool	operator<=(const	string&	c1,	const	string&	c2);

		bool	operator>=(const	string&	c1,	const	string&	c2);

		string	operator+(const	string&	s1,	const	string&	s2);

		string	operator+(const	char*	s,	const	string&	s2);

		string	operator+(char	c,	const	string&	s2);

		string	operator+(const	string&	s1,	const	char*	s);

		string	operator+(const	string&	s1,	char	c);

		ostream&	operator<<(ostream&	os,	const	string&	s);

		istream&	operator>>(istream&	is,	string&	s);

		string&	operator=(const	string&	s);

		string&	operator=(const	char*	s);

		string&	operator=(char	ch);

		char&	operator[](size_type	index);

C++	strings	can	be	compared	and	assigned	with	the	standard	comparison	operators:	==,	!=,	<=,	>=,	<,	>,	and	=.	Performing	a	
assigning	one	string	to	another	takes	linear	time.

Two	strings	are	equal	if:

		1.	Their	size	is	the	same,	and

		2.	Each	member	in	location	i	in	one	string	is	equal	to	the	the	member	in	location	i	in	the	other	string.														

Comparisons	among	strings	are	done	lexicographically.

In	addition	to	these	normal	(C++	Multimaps)	Container	operators,	strings	can	also	be	concatenated	with	the	+	operator	and	
stream	classes	with	the	<<	and	>>	operators.

For	example,	the	following	code	concatenates	two	strings	and	displays	the	result:

	string	s1	=	"Now	is	the	time...";

	string	s2	=	"for	all	good	men...";

	string	s3	=	s1	+	s2;

	cout	<<	"s3	is	"	<<	s3	<<	endl;												

Furthermore,	strings	can	be	assigned	values	that	are	other	strings,	character	arrays,	or	even	single	characters.	The	following	code	is	
valid:

	char	ch	=	'N';

	string	s	=	ch;									

Individual	characters	of	a	string	can	be	examined	with	the	[]	operator,	which	runs	in	

Related	topics:
(C++	Multimaps)	Container	operators
c_str
compare
data

cppreference.com	>	C++	Strings	>	substr

substr
Syntax:

		#include	<string>

		string	substr(size_type	index,	size_type	num	=	npos);

The	substr()	function	returns	a	substring	of	the	current	string,	starting	at	index,	and
num	characters	long.	If	num	is	omitted,	it	will	default	to	string::npos,	and	the	substr()
function	will	simply	return	the	remainder	of	the	string	starting	at	index.

For	example:

			string	s("What	we	have	here	is	a	failure	to	communicate");

			string	sub	=	s.substr(21);

			cout	<<	"The	original	string	is	"	<<	s	<<	endl;

			cout	<<	"The	substring	is	"	<<	sub	<<	endl;														

displays

			The	original	string	is	What	we	have	here	is	a	failure	to	communicate

			The	substring	is	a	failure	to	communicate												

Related	topics:
copy

cppreference.com	>	C++	Strings	>	swap

swap
Syntax:

		#include	<string>

		void	swap(const	container&	from);

The	swap()	function	exchanges	the	elements	of	the	current	string	with	those	of
from.	This	function	operates	in	constant	time.

For	example,	the	following	code	uses	the	swap()	function	to	exchange	the
values	of	two	strings:

			string	first("This	comes	first");

			string	second("And	this	is	second");

			first.swap(second);

			cout	<<	first	<<	endl;

			cout	<<	second	<<	endl;										

The	above	code	displays:

			And	this	is	second

			This	comes	first													

Related	topics:
(C++	Lists)	splice

cppreference.com	>	C++	I/O

bad
Syntax:

		#include	<fstream>

		bool	bad();

The	bad()	function	returns	true	if	a	fatal	error	with	the	current	stream	has
occurred,	false	otherwise.

Related	topics:
eoffail
good
rdstate

clear
Syntax:

		#include	<fstream>

		void	clear(iostate	flags	=	ios::goodbit);

The	function	clear()	does	two	things:

it	clears	all	io	stream	state	flags	associated	with	the	current	stream,
and	sets	the	flags	denoted	by	flags

The	flags	argument	defaults	to	ios::goodbit,	which	means	that	by	default,	all
flags	will	be	cleared	and	ios::goodbit	will	be	set.

Example	code:

For	example,	the	following	code	uses	the	clear()	function	to	reset	the	flags	of	an
output	file	stream,	after	an	attempt	is	made	to	read	from	that	output	stream:

	fstream	outputFile("output.txt",	fstream::out);												

	//	try	to	read	from	the	output	stream;	this	shouldn't	work

	int	val;

	outputFile	>>	val;

	if(outputFile.fail())	{

			cout	<<	"Error	reading	from	the	output	stream"	<<	endl;

			//	reset	the	flags	associated	with	the	stream

			outputFile.clear();

	}														

																

	for(int	i	=	0;	i	<	10;	i++)	{

			outputFile	<<	i	<<	"	";

	}

	outputFile	<<	endl;														

Related	topics:
eof
fail
good
rdstate

close
Syntax:

		#include	<fstream>

		void	close();

The	close()	function	closes	the	associated	file	stream.

Related	topics:
I/O	Constructors
open

I/O	Constructors

Syntax:

		#include	<fstream>

		fstream(const	char	*filename,	openmode	mode);

		ifstream(const	char	*filename,	openmode	mode);

		ofstream(const	char	*filename,	openmode	mode);

The	fstream,	ifstream,	and	ofstream	objects	are	used	to	do	file	I/O.	The	optional
mode	defines	how	the	file	is	to	be	opened,	according	to	the	io	stream	mode	flags.
The	optional	filename	specifies	the	file	to	be	opened	and	associated	with	the
stream.

Input	and	output	file	streams	can	be	used	in	a	similar	manner	to	C++	predefined
I/O	streams,	cin	and	cout.

Example	code:

The	following	code	reads	input	data	and	appends	the	result	to	an	output	file.

		ifstream	fin("/tmp/data.txt");

		ofstream	fout("/tmp/results.txt",	ios::app);

		while(fin	>>	temp)

				fout	<<	temp	+	2	<<	endl;

		fin.close();

		fout.close();									

Related	topics:
close
open

eof
Syntax:

		#include	<fstream>

		bool	eof();

The	function	eof()	returns	true	if	the	end	of	the	associated	input	file	has	been
reached,	false	otherwise.

For	example,	the	following	code	reads	data	from	an	input	stream	in	and	writes	it
to	an	output	stream	out,	using	eof()	at	the	end	to	check	if	an	error	occurred:

	char	buf[BUFSIZE];

	do	{

			in.read(buf,	BUFSIZE);

			std::streamsize	n	=	in.gcount();

			out.write(buf,	n);

	}	while(in.good());

	if(in.bad()	||	!in.eof())	{

			//	fatal	error	occurred

	}

	in.close();												

Related	topics:
bad
clear
fail
good
rdstate

fail
Syntax:

		#include	<fstream>

		bool	fail();

The	fail()	function	returns	true	if	an	error	has	occurred	with	the	current	stream,
false	otherwise.

Related	topics:
bad
clear
eof
good
rdstate

fill
Syntax:

		#include	<fstream>

		char	fill();

		char	fill(char	ch);

The	function	fill()	either	returns	the	current	fill	character,	or	sets	the	current	fill
character	to	ch.

The	fill	character	is	defined	as	the	character	that	is	used	for	padding	when	a
number	is	smaller	than	the	specified	width().	The	default	fill	character	is	the
space	character.

Related	topics:
precision
width

flags
Syntax:

		#include	<fstream>

		fmtflags	flags();

		fmtflags	flags(fmtflags	f);

The	flags()	function	either	returns	the	io	stream	format	flags	for	the	current
stream,	or	sets	the	flags	for	the	current	stream	to	be	f.

Related	topics:
setf
unsetf

flush
Syntax:

		#include	<fstream>

		ostream&	flush();

The	flush()	function	causes	the	buffer	for	the	current	output	stream	to	be	actually
written	out	to	the	attached	device.

This	function	is	useful	for	printing	out	debugging	information,	because
sometimes	programs	abort	before	they	have	a	chance	to	write	their	output
buffers	to	the	screen.	Judicious	use	of	flush()	can	ensure	that	all	of	your
debugging	statements	actually	get	printed.

Related	topics:
put
write

gcount
Syntax:

		#include	<fstream>

		streamsize	gcount();

The	function	gcount()	is	used	with	input	streams,	and	returns	the	number	of
characters	read	by	the	last	input	operation.

Related	topics:
get
getline
read

get
Syntax:

		#include	<fstream>

		int	get();

		istream&	get(char&	ch);

		istream&	get(char*	buffer,	streamsize	num);

		istream&	get(char*	buffer,	streamsize	num,	char	delim);

		istream&	get(streambuf&	buffer);

		istream&	get(streambuf&	buffer,	char	delim);

The	get()	function	is	used	with	input	streams,	and	either:

reads	a	character	and	returns	that	value,
reads	a	character	and	stores	it	as	ch,
reads	characters	into	buffer	until	num	-	1	characters	have	been	read,	or	EOF
or	newline	encountered,
reads	characters	into	buffer	until	num	-	1	characters	have	been	read,	or	EOF
or	the	delim	character	encountered	(delim	is	not	read	until	next	time),
reads	characters	into	buffer	until	a	newline	or	EOF	is	encountered,
or	reads	characters	into	buffer	until	a	newline,	EOF,	or	delim	character	is
encountered	(again,	delim	isn't	read	until	the	next	get()).

For	example,	the	following	code	displays	the	contents	of	a	file	called	temp.txt,
character	by	character:

			char	ch;

			ifstream	fin("temp.txt");

			while(fin.get(ch))

					cout	<<	ch;

			fin.close();									

Related	topics:
gcount
getline
(C++	Strings)	getline
ignore
peek
put

read

getline
Syntax:

		#include	<fstream>

		istream&	getline(char*	buffer,	streamsize	num);

		istream&	getline(char*	buffer,	streamsize	num,	char	delim);

The	getline()	function	is	used	with	input	streams,	and	reads	characters	into	buffer
until	either:

num	-	1	characters	have	been	read,
a	newline	is	encountered,
an	EOF	is	encountered,
or,	optionally,	until	the	character	delim	is	read.	The	delim	character	is	not
put	into	buffer.

Those	using	a	Microsoft	compiler	may	find	that	getline()	reads	an	extra
character,	and	should	consult	the	documentation	on	the	Microsoft	getline	bug.

Related	topics:
gcount
get
(C++	Strings)	getline
ignore
read

good
Syntax:

		#include	<fstream>

		bool	good();

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q240015

The	function	good()	returns	true	if	no	errors	have	occurred	with	the	current
stream,	false	otherwise.

Related	topics:
bad
clear
eof
fail
rdstate

ignore
Syntax:

		#include	<fstream>

		istream&	ignore(streamsize	num=1,	int	delim=EOF);

The	ignore()	function	is	used	with	input	streams.	It	reads	and	throws	away
characters	until	num	characters	have	been	read	(where	num	defaults	to	1)	or	until
the	character	delim	is	read	(where	delim	defaults	to	EOF).

The	ignore()	function	can	sometimes	be	useful	when	using	the	getline()	function
together	with	the	>>	operator.	For	example,	if	you	read	some	input	that	is
followed	by	a	newline	using	the	>>	operator,	the	newline	will	remain	in	the	input
as	the	next	thing	to	be	read.	Since	getline()	will	by	default	stop	reading	input
when	it	reaches	a	newline,	a	subsequent	call	to	getline()	will	return	an	empty
string.	In	this	case,	the	ignore()	function	could	be	called	before	getline()	to
"throw	away"	the	newline.

Related	topics:
get
getline

open
Syntax:

		#include	<fstream>

		void	open(const	char	*filename);

		void	open(const	char	*filename,	openmode	mode	=	default_mode);

The	function	open()	is	used	with	file	streams.	It	opens	filename	and	associates	it
with	the	current	stream.	The	optional	io	stream	mode	flag	mode	defaults	to
ios::in	for	ifstream,	ios::out	for	ofstream,	and	ios::in|ios::out	for	fstream.

If	open()	fails,	the	resulting	stream	will	evaluate	to	false	when	used	in	a	Boolean
expression.	For	example:

	ifstream	inputStream;

	inputStream.open("file.txt");

	if(!inputStream)	{

			cerr	<<	"Error	opening	input	stream"	<<	endl;

			return;

	}														

Related	topics:
I/O	Constructors
close

peek
Syntax:

		#include	<fstream>

		int	peek();

The	function	peek()	is	used	with	input	streams,	and	returns	the	next	character	in
the	stream	or	EOF	if	the	end	of	file	is	read.	peek()	does	not	remove	the	character
from	the	stream.

Related	topics:
get
putback

precision
Syntax:

		#include	<fstream>

		streamsize	precision();

		streamsize	precision(streamsize	p);

The	precision()	function	either	sets	or	returns	the	current	number	of	digits	that	is
displayed	for	floating-point	variables.

For	example,	the	following	code	sets	the	precision	of	the	cout	stream	to	5:

			float	num	=	314.15926535;

			cout.precision(5);

			cout	<<	num;											

This	code	displays	the	following	output:

			314.16															

Related	topics:
fill
width

put
Syntax:

		#include	<fstream>

		ostream&	put(char	ch);

The	function	put()	is	used	with	output	streams,	and	writes	the	character	ch	to	the
stream.

Related	topics:
flush

get
write

putback
Syntax:

		#include	<fstream>

		istream&	putback(char	ch);

The	putback()	function	is	used	with	input	streams,	and	returns	the	previously-
read	character	ch	to	the	input	stream.

Related	topics:
peek
(Standard	C	I/O)	ungetc

rdstate
Syntax:

		#include	<fstream>

		iostate	rdstate();

The	rdstate()	function	returns	the	io	stream	state	flags	of	the	current	stream.

Related	topics:
bad
clear
eof
fail
good

read

Syntax:

		#include	<fstream>

		istream&	read(char*	buffer,	streamsize	num);

The	function	read()	is	used	with	input	streams,	and	reads	num	bytes	from	the
stream	before	placing	them	in	buffer.	If	EOF	is	encountered,	read()	stops,
leaving	however	many	bytes	it	put	into	buffer	as	they	are.

For	example:

			struct	{

					int	height;

					int	width;

			}	rectangle;									

			input_file.read((char	*)(&rectangle),	sizeof(rectangle));

			if(input_file.bad())	{

					cerr	<<	"Error	reading	data"	<<	endl;

					exit(0);

			}												

Related	topics:
gcount
get
getline
write

seekg
Syntax:

		#include	<fstream>

		istream&	seekg(off_type	offset,	ios::seekdir	origin);

		istream&	seekg(pos_type	position);

The	function	seekg()	is	used	with	input	streams,	and	it	repositions	the	"get"
pointer	for	the	current	stream	to	offset	bytes	away	from	origin,	or	places	the
"get"	pointer	at	position.

Related	topics:
seekp
tellg
tellp

seekp
Syntax:

		#include	<fstream>

		ostream&	seekp(off_type	offset,	ios::seekdir	origin);

		ostream&	seekp(pos_type	position);

The	seekp()	function	is	used	with	output	streams,	but	is	otherwise	very	similar	to
seekg().

Related	topics:
seekg
tellg
tellp

setf
Syntax:

		#include	<fstream>

		fmtflags	setf(fmtflags	flags);

		fmtflags	setf(fmtflags	flags,	fmtflags	needed);

The	function	setf()	sets	the	io	stream	format	flags	of	the	current	stream	to	flags.
The	optional	needed	argument	specifies	that	only	the	flags	that	are	in	both	flags
and	needed	should	be	set.	The	return	value	is	the	previous	configuration	of	io
stream	format	flags.

For	example:

			int	number	=	0x3FF;

			cout.setf(ios::dec);

			cout	<<	"Decimal:	"	<<	number	<<	endl;

			cout.unsetf(ios::dec);

			cout.setf(ios::hex);

			cout	<<	"Hexadecimal:	"	<<	number	<<	endl;															

Note	that	the	preceding	code	is	functionally	identical	to:

			int	number	=	0x3FF;

			cout	<<	"Decimal:	"	<<	number	<<	endl	<<	hex	<<	"Hexadecimal:	"	<<	number	<<	dec	<<	endl;																

thanks	to	io	stream	manipulators.

Related	topics:
flags
unsetf

sync_with_stdio
Syntax:

		#include	<fstream>

		static	bool	sync_with_stdio(bool	sync=true);

The	sync_with_stdio()	function	allows	you	to	turn	on	and	off	the	ability	for	the
C++	I/O	system	to	work	with	the	C	I/O	system.

tellg
Syntax:

		#include	<fstream>

		pos_type	tellg();

The	tellg()	function	is	used	with	input	streams,	and	returns	the	current	"get"
position	of	the	pointer	in	the	stream.

Related	topics:
seekg
seekp
tellp

tellp
Syntax:

		#include	<fstream>

		pos_type	tellp();

The	tellp()	function	is	used	with	output	streams,	and	returns	the	current	"put"
position	of	the	pointer	in	the	stream.

For	example,	the	following	code	displays	the	file	pointer	as	it	writes	to	a	stream:

	string	s("In	Xanadu	did	Kubla	Khan...");

	ofstream	fout("output.txt");

	for(int	i=0;	i	<	s.length();	i++)	{

			cout	<<	"File	pointer:	"	<<	fout.tellp();

			fout.put(s[i]);

			cout	<<	"	"	<<	s[i]	<<	endl;

	}

	fout.close();										

Related	topics:
seekg
seekp
tellg

unsetf
Syntax:

		#include	<fstream>

		void	unsetf(fmtflags	flags);

The	function	unsetf()	uses	flags	to	clear	the	io	stream	format	flags	associated
with	the	current	stream.

Related	topics:
flags
setf

width
Syntax:

		#include	<fstream>

		int	width();

		int	width(int	w);

The	function	width()	returns	the	current	width,	which	is	defined	as	the	minimum
number	of	characters	to	display	with	each	output.	The	optional	argument	w	can
be	used	to	set	the	width.

For	example:

			cout.width(5);

			cout	<<	"2";									

displays

							2																

(that's	four	spaces	followed	by	a	'2')

Related	topics:
fill
precision

write
Syntax:

		#include	<fstream>

		ostream&	write(const	char*	buffer,	streamsize	num);

The	write()	function	is	used	with	output	streams,	and	writes	num	bytes	from
buffer	to	the	current	output	stream.

Related	topics:
flush
put
read

cppreference.com	>	C++	I/O	>	bad

bad
Syntax:

		#include	<fstream>

		bool	bad();

The	bad()	function	returns	true	if	a	fatal	error	with	the	current	stream	has
occurred,	false	otherwise.

Related	topics:
eoffail
good
rdstate

cppreference.com	>	C++	I/O	>	clear

clear
Syntax:

		#include	<fstream>

		void	clear(iostate	flags	=	ios::goodbit);

The	function	clear()	does	two	things:

it	clears	all	io	stream	state	flags	associated	with	the	current	stream,
and	sets	the	flags	denoted	by	flags

The	flags	argument	defaults	to	ios::goodbit,	which	means	that	by	default,	all
flags	will	be	cleared	and	ios::goodbit	will	be	set.

Example	code:

For	example,	the	following	code	uses	the	clear()	function	to	reset	the	flags	of	an
output	file	stream,	after	an	attempt	is	made	to	read	from	that	output	stream:

	fstream	outputFile("output.txt",	fstream::out);												

	//	try	to	read	from	the	output	stream;	this	shouldn't	work

	int	val;

	outputFile	>>	val;

	if(outputFile.fail())	{

			cout	<<	"Error	reading	from	the	output	stream"	<<	endl;

			//	reset	the	flags	associated	with	the	stream

			outputFile.clear();

	}														

																

	for(int	i	=	0;	i	<	10;	i++)	{

			outputFile	<<	i	<<	"	";

	}

	outputFile	<<	endl;														

Related	topics:
eoffail

good
rdstate

cppreference.com	>	C++	I/O	>	close

close
Syntax:

		#include	<fstream>

		void	close();

The	close()	function	closes	the	associated	file	stream.

Related	topics:
I/O	Constructorsopen

cppreference.com	>	C++	I/O	>	I/O	Constructors

I/O	Constructors
Syntax:

		#include	<fstream>

		fstream(const	char	*filename,	openmode	mode);

		ifstream(const	char	*filename,	openmode	mode);

		ofstream(const	char	*filename,	openmode	mode);

The	fstream,	ifstream,	and	ofstream	objects	are	used	to	do	file	I/O.	The	optional
mode	defines	how	the	file	is	to	be	opened,	according	to	the	io	stream	mode
flags.	The	optional	filename	specifies	the	file	to	be	opened	and	associated	with
the	stream.

Input	and	output	file	streams	can	be	used	in	a	similar	manner	to	C++	predefined
I/O	streams,	cin	and	cout.

Example	code:

The	following	code	reads	input	data	and	appends	the	result	to	an	output	file.

		ifstream	fin("/tmp/data.txt");

		ofstream	fout("/tmp/results.txt",	ios::app);

		while(fin	>>	temp)

				fout	<<	temp	+	2	<<	endl;

		fin.close();

		fout.close();									

Related	topics:
closeopen

cppreference.com	>	C++	I/O	>	eof

eof
Syntax:

		#include	<fstream>

		bool	eof();

The	function	eof()	returns	true	if	the	end	of	the	associated	input	file	has	been
reached,	false	otherwise.

For	example,	the	following	code	reads	data	from	an	input	stream	in	and	writes	it
to	an	output	stream	out,	using	eof()	at	the	end	to	check	if	an	error	occurred:

	char	buf[BUFSIZE];

	do	{

			in.read(buf,	BUFSIZE);

			std::streamsize	n	=	in.gcount();

			out.write(buf,	n);

	}	while(in.good());

	if(in.bad()	||	!in.eof())	{

			//	fatal	error	occurred

	}

	in.close();												

Related	topics:
badclear
fail
good
rdstate

cppreference.com	>	C++	I/O	>	fail

fail
Syntax:

		#include	<fstream>

		bool	fail();

The	fail()	function	returns	true	if	an	error	has	occurred	with	the	current	stream,
false	otherwise.

Related	topics:
badclear
eof
good
rdstate

cppreference.com	>	C++	I/O	>	fill

fill
Syntax:

		#include	<fstream>

		char	fill();

		char	fill(char	ch);

The	function	fill()	either	returns	the	current	fill	character,	or	sets	the	current	fill
character	to	ch.

The	fill	character	is	defined	as	the	character	that	is	used	for	padding	when	a
number	is	smaller	than	the	specified	width().	The	default	fill	character	is	the
space	character.

Related	topics:
precisionwidth

cppreference.com	>	C++	I/O	>	flags

flags
Syntax:

		#include	<fstream>

		fmtflags	flags();

		fmtflags	flags(fmtflags	f);

The	flags()	function	either	returns	the	io	stream	format	flags	for	the	current
stream,	or	sets	the	flags	for	the	current	stream	to	be	f.

Related	topics:
setfunsetf

cppreference.com	>	C++	I/O	>	flush

flush
Syntax:

		#include	<fstream>

		ostream&	flush();

The	flush()	function	causes	the	buffer	for	the	current	output	stream	to	be
actually	written	out	to	the	attached	device.

This	function	is	useful	for	printing	out	debugging	information,	because
sometimes	programs	abort	before	they	have	a	chance	to	write	their	output
buffers	to	the	screen.	Judicious	use	of	flush()	can	ensure	that	all	of	your
debugging	statements	actually	get	printed.

Related	topics:
putwrite

cppreference.com	>	C++	I/O	>	gcount

gcount
Syntax:

		#include	<fstream>

		streamsize	gcount();

The	function	gcount()	is	used	with	input	streams,	and	returns	the	number	of
characters	read	by	the	last	input	operation.

Related	topics:
getgetline
read

cppreference.com	>	C++	I/O	>	get

get
Syntax:

		#include	<fstream>

		int	get();

		istream&	get(char&	ch);

		istream&	get(char*	buffer,	streamsize	num);

		istream&	get(char*	buffer,	streamsize	num,	char	delim);

		istream&	get(streambuf&	buffer);

		istream&	get(streambuf&	buffer,	char	delim);

The	get()	function	is	used	with	input	streams,	and	either:

reads	a	character	and	returns	that	value,
reads	a	character	and	stores	it	as	ch,
reads	characters	into	buffer	until	num	-	1	characters	have	been	read,	or
EOF	or	newline	encountered,
reads	characters	into	buffer	until	num	-	1	characters	have	been	read,	or
EOF	or	the	delim	character	encountered	(delim	is	not	read	until	next	time),
reads	characters	into	buffer	until	a	newline	or	EOF	is	encountered,
or	reads	characters	into	buffer	until	a	newline,	EOF,	or	delim	character	is
encountered	(again,	delim	isn't	read	until	the	next	get()).

For	example,	the	following	code	displays	the	contents	of	a	file	called	temp.txt,
character	by	character:

			char	ch;

			ifstream	fin("temp.txt");

			while(fin.get(ch))

					cout	<<	ch;

			fin.close();									

Related	topics:
gcountgetline
(C++	Strings)	getline
ignore
peek

put
read

cppreference.com	>	C++	I/O	>	getline

getline
Syntax:

		#include	<fstream>

		istream&	getline(char*	buffer,	streamsize	num);

		istream&	getline(char*	buffer,	streamsize	num,	char	delim);

The	getline()	function	is	used	with	input	streams,	and	reads	characters	into
buffer	until	either:

num	-	1	characters	have	been	read,
a	newline	is	encountered,
an	EOF	is	encountered,
or,	optionally,	until	the	character	delim	is	read.	The	delim	character	is	not
put	into	buffer.

Those	using	a	Microsoft	compiler	may	find	that	getline()	reads	an	extra
character,	and	should	consult	the	documentation	on	the	Microsoft	getline	bug.

Related	topics:
gcountget
(C++	Strings)	getline
ignore
read

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q240015

cppreference.com	>	C++	I/O	>	good

good
Syntax:

		#include	<fstream>

		bool	good();

The	function	good()	returns	true	if	no	errors	have	occurred	with	the	current
stream,	false	otherwise.

Related	topics:
badclear
eof
fail
rdstate

cppreference.com	>	C++	I/O	>	ignore

ignore
Syntax:

		#include	<fstream>

		istream&	ignore(streamsize	num=1,	int	delim=EOF);

The	ignore()	function	is	used	with	input	streams.	It	reads	and	throws	away
characters	until	num	characters	have	been	read	(where	num	defaults	to	1)	or
until	the	character	delim	is	read	(where	delim	defaults	to	EOF).

The	ignore()	function	can	sometimes	be	useful	when	using	the	getline()	function
together	with	the	>>	operator.	For	example,	if	you	read	some	input	that	is
followed	by	a	newline	using	the	>>	operator,	the	newline	will	remain	in	the
input	as	the	next	thing	to	be	read.	Since	getline()	will	by	default	stop	reading
input	when	it	reaches	a	newline,	a	subsequent	call	to	getline()	will	return	an
empty	string.	In	this	case,	the	ignore()	function	could	be	called	before	getline()
to	"throw	away"	the	newline.

Related	topics:
getgetline

cppreference.com	>	C++	I/O	>	open

open
Syntax:

		#include	<fstream>

		void	open(const	char	*filename);

		void	open(const	char	*filename,	openmode	mode	=	default_mode);

The	function	open()	is	used	with	file	streams.	It	opens	filename	and	associates	it
with	the	current	stream.	The	optional	io	stream	mode	flag	mode	defaults	to
ios::in	for	ifstream,	ios::out	for	ofstream,	and	ios::in|ios::out	for	fstream.

If	open()	fails,	the	resulting	stream	will	evaluate	to	false	when	used	in	a	Boolean
expression.	For	example:

	ifstream	inputStream;

	inputStream.open("file.txt");

	if(!inputStream)	{

			cerr	<<	"Error	opening	input	stream"	<<	endl;

			return;

	}														

Related	topics:
I/O	Constructorsclose

cppreference.com	>	C++	I/O	>	peek

peek
Syntax:

		#include	<fstream>

		int	peek();

The	function	peek()	is	used	with	input	streams,	and	returns	the	next	character	in
the	stream	or	EOF	if	the	end	of	file	is	read.	peek()	does	not	remove	the
character	from	the	stream.

Related	topics:
getputback

cppreference.com	>	C++	I/O	>	precision

precision
Syntax:

		#include	<fstream>

		streamsize	precision();

		streamsize	precision(streamsize	p);

The	precision()	function	either	sets	or	returns	the	current	number	of	digits	that	is
displayed	for	floating-point	variables.

For	example,	the	following	code	sets	the	precision	of	the	cout	stream	to	5:

			float	num	=	314.15926535;

			cout.precision(5);

			cout	<<	num;											

This	code	displays	the	following	output:

			314.16															

Related	topics:
fillwidth

cppreference.com	>	C++	I/O	>	put

put
Syntax:

		#include	<fstream>

		ostream&	put(char	ch);

The	function	put()	is	used	with	output	streams,	and	writes	the	character	ch	to	the
stream.

Related	topics:
flushget
write

cppreference.com	>	C++	I/O	>	putback

putback
Syntax:

		#include	<fstream>

		istream&	putback(char	ch);

The	putback()	function	is	used	with	input	streams,	and	returns	the	previously-
read	character	ch	to	the	input	stream.

Related	topics:
peek(Standard	C	I/O)	ungetc

cppreference.com	>	C++	I/O	>	rdstate

rdstate
Syntax:

		#include	<fstream>

		iostate	rdstate();

The	rdstate()	function	returns	the	io	stream	state	flags	of	the	current	stream.

Related	topics:
badclear
eof
fail
good

cppreference.com	>	C++	I/O	>	read

read
Syntax:

		#include	<fstream>

		istream&	read(char*	buffer,	streamsize	num);

The	function	read()	is	used	with	input	streams,	and	reads	num	bytes	from	the
stream	before	placing	them	in	buffer.	If	EOF	is	encountered,	read()	stops,
leaving	however	many	bytes	it	put	into	buffer	as	they	are.

For	example:

			struct	{

					int	height;

					int	width;

			}	rectangle;									

			input_file.read((char	*)(&rectangle),	sizeof(rectangle));

			if(input_file.bad())	{

					cerr	<<	"Error	reading	data"	<<	endl;

					exit(0);

			}												

Related	topics:
gcountget
getline
write

cppreference.com	>	C++	I/O	>	seekg

seekg
Syntax:

		#include	<fstream>

		istream&	seekg(off_type	offset,	ios::seekdir	origin);

		istream&	seekg(pos_type	position);

The	function	seekg()	is	used	with	input	streams,	and	it	repositions	the	"get"
pointer	for	the	current	stream	to	offset	bytes	away	from	origin,	or	places	the
"get"	pointer	at	position.

Related	topics:
seekptellg
tellp

cppreference.com	>	C++	I/O	>	seekp

seekp
Syntax:

		#include	<fstream>

		ostream&	seekp(off_type	offset,	ios::seekdir	origin);

		ostream&	seekp(pos_type	position);

The	seekp()	function	is	used	with	output	streams,	but	is	otherwise	very	similar
to	seekg().

Related	topics:
seekgtellg
tellp

cppreference.com	>	C++	I/O	>	setf

setf
Syntax:

		#include	<fstream>

		fmtflags	setf(fmtflags	flags);

		fmtflags	setf(fmtflags	flags,	fmtflags	needed);

The	function	setf()	sets	the	io	stream	format	flags	of	the	current	stream	to	flags.	The	optional	
the	flags	that	are	in	both	flags	and	needed	should	be	set.	The	return	value	is	the	previous	configuration	of	

For	example:

			int	number	=	0x3FF;

			cout.setf(ios::dec);

			cout	<<	"Decimal:	"	<<	number	<<	endl;

			cout.unsetf(ios::dec);

			cout.setf(ios::hex);

			cout	<<	"Hexadecimal:	"	<<	number	<<	endl;															

Note	that	the	preceding	code	is	functionally	identical	to:

			int	number	=	0x3FF;

			cout	<<	"Decimal:	"	<<	number	<<	endl	<<	hex	<<	"Hexadecimal:	"	<<	number	<<	dec	<<	endl;																

thanks	to	io	stream	manipulators.

Related	topics:
flagsunsetf

cppreference.com	>	C++	I/O	>	sync_with_stdio

sync_with_stdio
Syntax:

		#include	<fstream>

		static	bool	sync_with_stdio(bool	sync=true);

The	sync_with_stdio()	function	allows	you	to	turn	on	and	off	the	ability	for	the
C++	I/O	system	to	work	with	the	C	I/O	system.

cppreference.com	>	C++	I/O	>	tellg

tellg
Syntax:

		#include	<fstream>

		pos_type	tellg();

The	tellg()	function	is	used	with	input	streams,	and	returns	the	current	"get"
position	of	the	pointer	in	the	stream.

Related	topics:
seekgseekp
tellp

cppreference.com	>	C++	I/O	>	tellp

tellp
Syntax:

		#include	<fstream>

		pos_type	tellp();

The	tellp()	function	is	used	with	output	streams,	and	returns	the	current	"put"
position	of	the	pointer	in	the	stream.

For	example,	the	following	code	displays	the	file	pointer	as	it	writes	to	a	stream:

	string	s("In	Xanadu	did	Kubla	Khan...");

	ofstream	fout("output.txt");

	for(int	i=0;	i	<	s.length();	i++)	{

			cout	<<	"File	pointer:	"	<<	fout.tellp();

			fout.put(s[i]);

			cout	<<	"	"	<<	s[i]	<<	endl;

	}

	fout.close();										

Related	topics:
seekgseekp
tellg

cppreference.com	>	C++	I/O	>	unsetf

unsetf
Syntax:

		#include	<fstream>

		void	unsetf(fmtflags	flags);

The	function	unsetf()	uses	flags	to	clear	the	io	stream	format	flags	associated
with	the	current	stream.

Related	topics:
flagssetf

cppreference.com	>	C++	I/O	>	width

width
Syntax:

		#include	<fstream>

		int	width();

		int	width(int	w);

The	function	width()	returns	the	current	width,	which	is	defined	as	the
minimum	number	of	characters	to	display	with	each	output.	The	optional
argument	w	can	be	used	to	set	the	width.

For	example:

			cout.width(5);

			cout	<<	"2";									

displays

							2																

(that's	four	spaces	followed	by	a	'2')

Related	topics:
fillprecision

cppreference.com	>	C++	I/O	>	write

write
Syntax:

		#include	<fstream>

		ostream&	write(const	char*	buffer,	streamsize	num);

The	write()	function	is	used	with	output	streams,	and	writes	num	bytes	from
buffer	to	the	current	output	stream.

Related	topics:
flushput
read

cppreference.com	>	I/O	Flags

C++	I/O	Flags

Format	flags

C++	defines	some	format	flags	for	standard	input	and	output,	which	can	be
manipulated	with	the	flags(),	setf(),	and	unsetf()	functions.	For	example,

	cout.setf(ios::left);	

turns	on	left	justification	for	all	output	directed	to	cout.

Flag Meaning

boolalpha Boolean	values	can	be	input/output	using	the	words	"true"	and"false".
dec Numeric	values	are	displayed	in	decimal.

fixed Display	floating	point	values	using	normal	notation	(as	opposed	to
scientific).

hex Numeric	values	are	displayed	in	hexidecimal.

internal If	a	numeric	value	is	padded	to	fill	a	field,	spaces	are	inserted
between	the	sign	and	base	character.

left Output	is	left	justified.
oct Numeric	values	are	displayed	in	octal.
right Output	is	right	justified.
scientific Display	floating	point	values	using	scientific	notation.
showbase Display	the	base	of	all	numeric	values.
showpointDisplay	a	decimal	and	extra	zeros,	even	when	not	needed.
showpos Display	a	leading	plus	sign	before	positive	numeric	values.

skipws Discard	whitespace	characters	(spaces,	tabs,	newlines)	when	reading
from	a	stream.

unitbuf Flush	the	buffer	after	each	insertion.

uppercase Display	the	"e"	of	scientific	notation	and	the	"x"	of	hexidecimalnotation	as	capital	letters.

Manipulators

You	can	also	manipulate	flags	indirectly,	using	the	following	manipulators.
Most	programmers	are	familiar	with	the	endl	manipulator,	which	might	give
you	an	idea	of	how	manipulators	are	used.	For	example,	to	set	the	dec	flag,	you
might	use	the	following	command:

		cout	<<	dec;

Manipulators	defined	in	<iostream>
Manipulator Description InputOutput
boolalpha Turns	on	the	boolalpha	flag X X
dec Turns	on	the	dec	flag X X
endl Output	a	newline	character,	flush	the	stream X
ends Output	a	null	character X
fixed Turns	on	the	fixed	flag X
flush Flushes	the	stream X
hex Turns	on	the	hex	flag X X
internal Turns	on	the	internal	flag X
left Turns	on	the	left	flag X
noboolalpha Turns	off	the	boolalpha	flag X X
noshowbase Turns	off	the	showbase	flag X
noshowpoint Turns	off	the	showpoint	flag X
noshowpos Turns	off	the	showpos	flag X
noskipws Turns	off	the	skipws	flag X
nounitbuf Turns	off	the	unitbuf	flag X
nouppercase Turns	off	the	uppercase	flag X
oct Turns	on	the	oct	flag X X
right Turns	on	the	right	flag X
scientific Turns	on	the	scientific	flag X
showbase Turns	on	the	showbase	flag X
showpoint Turns	on	the	showpoint	flag X
showpos Turns	on	the	showpos	flag X
skipws Turns	on	the	skipws	flag X
unitbuf Turns	on	the	unitbuf	flag X

uppercase Turns	on	the	uppercase	flag X
ws Skip	any	leading	whitespace X

Manipulators	defined	in	<iomanip>
Manipulator Description InputOutput

resetiosflags(long	f)Turn	off	the	flags	specified	by	f X X
setbase(int	base) Sets	the	number	base	to	base X
setfill(int	ch) Sets	the	fill	character	to	ch X
setiosflags(long	f) Turn	on	the	flags	specified	by	f X X
setprecision(int	p) Sets	the	number	of	digits	of	precision X
setw(int	w) Sets	the	field	width	to	w X

State	flags

The	I/O	stream	state	flags	tell	you	the	current	state	of	an	I/O	stream.	The	flags
are:

Flag Meaning
badbit a	fatal	error	has	occurred
eofbit EOF	has	been	found
failbit a	nonfatal	error	has	occurred
goodbit no	errors	have	occurred

Mode	flags

The	I/O	stream	mode	flags	allow	you	to	access	files	in	different	ways.	The	flags
are:

Mode Meaning
ios::app append	output
ios::ate seek	to	EOF	when	opened
ios::binaryopen	the	file	in	binary	mode
ios::in open	the	file	for	reading
ios::out open	the	file	for	writing
ios::trunc overwrite	the	existing	file

cppreference.com	>	C++	Standard	Template	Library

C++	Standard	Template	Library

The	C++	STL	(Standard	Template	Library)	is	a	generic
collection	of	class	templates	and	algorithms	that	allow
programmers	to	easily	implement	standard	data	structures	like
queues,	lists,	and	stacks.

The	C++	STL	provides	programmers	with	the	following
constructs,	grouped	into	three	categories:

Sequences
C++	Vectors
C++	Lists
C++	Double-Ended	Queues

Container	Adapters
C++	Stacks
C++	Queues
C++	Priority	Queues

Associative	Containers
C++	Bitsets
C++	Maps
C++	Multimaps
C++	Sets
C++	Multisets

The	idea	behind	the	C++	STL	is	that	the	hard	part	of	using
complex	data	structures	has	already	been	completed.	If	a
programmer	would	like	to	use	a	stack	of	integers,	all	that	she	has
to	do	is	use	this	code:

stack<int>	myStack;

With	minimal	effort,	she	can	now	push()	and	pop()	integers	onto
this	stack.	Through	the	magic	of	C++	Templates,	she	could
specify	any	data	type,	not	just	integers.	The	STL	Stack	class	will
provide	generic	functionality	of	a	stack,	regardless	of	the	data	in
the	stack.

cppreference.com	>	C++	Priority	Queues

empty
Syntax:

		#include	<queue>

		bool	empty()	const;

The	empty()	function	returns	true	if	the	priority	queue	has	no	elements,	false
otherwise.

For	example,	the	following	code	uses	empty()	as	the	stopping	condition	on	a
(C/C++	Keywords)	while	loop	to	clear	a	priority	queue	and	display	its	contents
in	reverse	order:

	vector<int>	v;

	for(int	i	=	0;	i	<	5;	i++)	{

			v.push_back(i);

	}

	while(!v.empty())	{

			cout	<<	v.back()	<<	endl;

			v.pop_back();

	}														

Related	topics:
size

pop
Syntax:

		#include	<queue>

		void	pop();

The	function	pop()	removes	the	top	element	of	the	priority	queue	and	discards	it.

Related	topics:

pushtop

Priority	queue	constructors
Syntax:

		#include	<queue>

		priority_queue(const	Compare&	cmp	=	Compare(),	const	Container&	c	=	Container());

		priority_queue(input_iterator	start,	input_iterator	end,	const	Compare&	comp	=	Compare(),	const	Container&	c	=	Container());

Priority	queues	can	be	constructed	with	an	optional	compare	function	cmp'	and
an	optional	container	c.	If	start	and	end	are	specified,	the	priority	queue	will	be
constructed	with	the	elements	between	start	and	end.

push
Syntax:

		#include	<queue>

		void	push(const	TYPE&	val);

The	function	push()	adds	val	to	the	end	of	the	current	priority	queue.

For	example,	the	following	code	uses	the	push()	function	to	add	ten	integers	to
the	end	of	a	queue:

			queue<int>	q;

			for(int	i=0;	i	<	10;	i++)

					q.push(i);									

size
Syntax:

		#include	<queue>

		size_type	size()	const;

The	size()	function	returns	the	number	of	elements	in	the	current	priority	queue.

Related	topics:
(C++	Strings)	capacity
empty
(C++	Strings)	length
(C++	Multimaps)	max_size
(C++	Strings)	resize

top
Syntax:

		#include	<queue>

		TYPE&	top();

The	function	top()	returns	a	reference	to	the	top	element	of	the	priority	queue.

For	example,	the	following	code	removes	all	of	the	elements	from	a	stack	and
uses	top()	to	display	them:

			while(!s.empty())	{

					cout	<<	s.top()	<<	"	";

					s.pop();

			}												

Related	topics:
pop

cppreference.com	>	C++	Priority	Queues	>	empty

empty
Syntax:

		#include	<queue>

		bool	empty()	const;

The	empty()	function	returns	true	if	the	priority	queue	has	no	elements,	false
otherwise.

For	example,	the	following	code	uses	empty()	as	the	stopping	condition	on	a
(C/C++	Keywords)	while	loop	to	clear	a	priority	queue	and	display	its	contents
in	reverse	order:

	vector<int>	v;

	for(int	i	=	0;	i	<	5;	i++)	{

			v.push_back(i);

	}

	while(!v.empty())	{

			cout	<<	v.back()	<<	endl;

			v.pop_back();

	}														

Related	topics:
size

cppreference.com	>	C++	Priority	Queues	>	pop

pop
Syntax:

		#include	<queue>

		void	pop();

The	function	pop()	removes	the	top	element	of	the	priority	queue	and	discards
it.

Related	topics:
pushtop

cppreference.com	>	C++	Priority	Queues	>	Priority	queue	constructors

Priority	queue	constructors
Syntax:

		#include	<queue>

		priority_queue(const	Compare&	cmp	=	Compare(),	const	Container&	c	=	Container());

		priority_queue(input_iterator	start,	input_iterator	end,	const	Compare&	comp	=	Compare(),	const	Container&	c	=	Container());

Priority	queues	can	be	constructed	with	an	optional	compare	function	cmp'	and	an	optional	container	
If	start	and	end	are	specified,	the	priority	queue	will	be	constructed	with	the	elements	between	
and	end.

cppreference.com	>	C++	Priority	Queues	>	push

push
Syntax:

		#include	<queue>

		void	push(const	TYPE&	val);

The	function	push()	adds	val	to	the	end	of	the	current	priority	queue.

For	example,	the	following	code	uses	the	push()	function	to	add	ten	integers	to
the	end	of	a	queue:

			queue<int>	q;

			for(int	i=0;	i	<	10;	i++)

					q.push(i);									

cppreference.com	>	C++	Priority	Queues	>	size

size
Syntax:

		#include	<queue>

		size_type	size()	const;

The	size()	function	returns	the	number	of	elements	in	the	current	priority	queue.

Related	topics:
(C++	Strings)	capacity
empty
(C++	Strings)	length
(C++	Multimaps)	max_size
(C++	Strings)	resize

cppreference.com	>	C++	Priority	Queues	>	top

top
Syntax:

		#include	<queue>

		TYPE&	top();

The	function	top()	returns	a	reference	to	the	top	element	of	the	priority	queue.

For	example,	the	following	code	removes	all	of	the	elements	from	a	stack	and
uses	top()	to	display	them:

			while(!s.empty())	{

					cout	<<	s.top()	<<	"	";

					s.pop();

			}												

Related	topics:
pop

cppreference.com	>	C++	Vectors

assign
Syntax:

		#include	<vector>

		void	assign(size_type	num,	const	TYPE&	val);

		void	assign(input_iterator	start,	input_iterator	end);

The	assign()	function	either	gives	the	current	vector	the	values	from	start	to
end,	or	gives	it	num	copies	of	val.

This	function	will	destroy	the	previous	contents	of	the	vector.

For	example,	the	following	code	uses	assign()	to	put	10	copies	of	the	integer	42
into	a	vector:

	vector<int>	v;

	v.assign(10,	42);

	for(int	i	=	0;	i	<	v.size();	i++)	{

			cout	<<	v[i]	<<	"	";

	}

	cout	<<	endl;												

The	above	code	displays	the	following	output:

	42	42	42	42	42	42	42	42	42	42										

The	next	example	shows	how	assign()	can	be	used	to	copy	one	vector	to
another:

	vector<int>	v1;

	for(int	i	=	0;	i	<	10;	i++)	{

			v1.push_back(i);

	}														

	vector<int>	v2;

	v2.assign(v1.begin(),	v1.end());													

	for(int	i	=	0;	i	<	v2.size();	i++)	{

			cout	<<	v2[i]	<<	"	";

	}

	cout	<<	endl;												

When	run,	the	above	code	displays	the	following	output:

	0	1	2	3	4	5	6	7	8	9												

Related	topics:
(C++	Strings)	assign
insert
push_back
(C++	Lists)	push_front

at
Syntax:

		#include	<vector>

		TYPE&	at(size_type	loc);

		const	TYPE&	at(size_type	loc)	const;

The	at()	function	returns	a	reference	to	the	element	in	the	vector	at	index	loc.
The	at()	function	is	safer	than	the	[]	operator,	because	it	won't	let	you	reference
items	outside	the	bounds	of	the	vector.

For	example,	consider	the	following	code:

	vector<int>	v(5,	1);

	for(int	i	=	0;	i	<	10;	i++)	{

			cout	<<	"Element	"	<<	i	<<	"	is	"	<<	v[i]	<<	endl;

	}														

This	code	overrunns	the	end	of	the	vector,	producing	potentially	dangerous
results.	The	following	code	would	be	much	safer:

	vector<int>	v(5,	1);

	for(int	i	=	0;	i	<	10;	i++)	{

			cout	<<	"Element	"	<<	i	<<	"	is	"	<<	v.at(i)	<<	endl;

	}														

Instead	of	attempting	to	read	garbage	values	from	memory,	the	at()	function	will
realize	that	it	is	about	to	overrun	the	vector	and	will	throw	an	exception.

Related	topics:
Vector	operators

back
Syntax:

		#include	<vector>

		TYPE&	back();

		const	TYPE&	back()	const;

The	back()	function	returns	a	reference	to	the	last	element	in	the	vector.

For	example:

	vector<int>	v;

	for(int	i	=	0;	i	<	5;	i++)	{

			v.push_back(i);

	}

	cout	<<	"The	first	element	is	"	<<	v.front()

						<<	"	and	the	last	element	is	"	<<	v.back()	<<	endl;											

This	code	produces	the	following	output:

	The	first	element	is	0	and	the	last	element	is	4															

The	back()	function	runs	in	constant	time.

Related	topics:
front
pop_back

begin

Syntax:

		#include	<vector>

		iterator	begin();

		const_iterator	begin()	const;

The	function	begin()	returns	an	iterator	to	the	first	element	of	the	vector.	begin()
should	run	in	constant	time.

For	example,	the	following	code	uses	begin()	to	initialize	an	iterator	that	is	used
to	traverse	a	list:

			//	Create	a	list	of	characters

			list<char>	charList;

			for(int	i=0;	i	<	10;	i++)	{

					charList.push_front(i	+	65);

			}

			//	Display	the	list

			list<char>::iterator	theIterator;

			for(theIterator	=	charList.begin();	theIterator	!=	charList.end();	theIterator++)	{

					cout	<<	*theIterator;

			}												

Related	topics:
end
rbegin
rend

capacity
Syntax:

		#include	<vector>

		size_type	capacity()	const;

The	capacity()	function	returns	the	number	of	elements	that	the	vector	can	hold
before	it	will	need	to	allocate	more	space.

For	example,	the	following	code	uses	two	different	methods	to	set	the	capacity
of	two	vectors.	One	method	passes	an	argument	to	the	constructor	that	suggests

an	initial	size,	the	other	method	calls	the	reserve	function	to	achieve	a	similar
goal:

	vector<int>	v1(10);

	cout	<<	"The	capacity	of	v1	is	"	<<	v1.capacity()	<<	endl;

	vector<int>	v2;

	v2.reserve(20);

	cout	<<	"The	capacity	of	v2	is	"	<<	v2.capacity()	<<	endl;									

When	run,	the	above	code	produces	the	following	output:

	The	capacity	of	v1	is	10

	The	capacity	of	v2	is	20															

C++	containers	are	designed	to	grow	in	size	dynamically.	This	frees	the
programmer	from	having	to	worry	about	storing	an	arbitrary	number	of	elements
in	a	container.	However,	sometimes	the	programmer	can	improve	the
performance	of	her	program	by	giving	hints	to	the	compiler	about	the	size	of	the
containers	that	the	program	will	use.	These	hints	come	in	the	form	of	the
reserve()	function	and	the	constructor	used	in	the	above	example,	which	tell	the
compiler	how	large	the	container	is	expected	to	get.

The	capacity()	function	runs	in	constant	time.

Related	topics:
reserve
resize
size

clear
Syntax:

		#include	<vector>

		void	clear();

The	function	clear()	deletes	all	of	the	elements	in	the	vector.	clear()	runs	in	linear
time.

Related	topics:
erase

empty
Syntax:

		#include	<vector>

		bool	empty()	const;

The	empty()	function	returns	true	if	the	vector	has	no	elements,	false	otherwise.

For	example,	the	following	code	uses	empty()	as	the	stopping	condition	on	a
(C/C++	Keywords)	while	loop	to	clear	a	vector	and	display	its	contents	in
reverse	order:

	vector<int>	v;

	for(int	i	=	0;	i	<	5;	i++)	{

			v.push_back(i);

	}

	while(!v.empty())	{

			cout	<<	v.back()	<<	endl;

			v.pop_back();

	}														

Related	topics:
size

end
Syntax:

		#include	<vector>

		iterator	end();

		const_iterator	end()	const;

The	end()	function	returns	an	iterator	just	past	the	end	of	the	vector.

Note	that	before	you	can	access	the	last	element	of	the	vector	using	an	iterator
that	you	get	from	a	call	to	end(),	you'll	have	to	decrement	the	iterator	first.	This
is	because	end()	doesn't	point	to	the	end	of	the	vector;	it	points	just	past	the	end
of	the	vector.

For	example,	in	the	following	code,	the	first	"cout"	statement	will	display
garbage,	whereas	the	second	statement	will	actually	display	the	last	element	of
the	vector:

		vector<int>	v1;

		v1.push_back(0);

		v1.push_back(1);

		v1.push_back(2);

		v1.push_back(3);

		int	bad_val	=	*(v1.end());

		cout	<<	"bad_val	is	"	<<	bad_val	<<	endl;

		int	good_val	=	*(v1.end()	-	1);

		cout	<<	"good_val	is	"	<<	good_val	<<	endl;

The	next	example	shows	how	begin()	and	end()	can	be	used	to	iterate	through	all
of	the	members	of	a	vector:

	vector<int>	v1(5,	789

);	vector<int>::iterator	it;	for(it	=	v1.begin();	it	!=

		v1.end();	it++)	{	cout	<<	*it	<<	endl;	}	

The	iterator	is	initialized	with	a	call	to	begin().	After	the	body	of	the	loop	has
been	executed,	the	iterator	is	incremented	and	tested	to	see	if	it	is	equal	to	the
result	of	calling	end().	Since	end()	returns	an	iterator	pointing	to	an	element	just
after	the	last	element	of	the	vector,	the	loop	will	only	stop	once	all	of	the
elements	of	the	vector	have	been	displayed.

end()	runs	in	constant	time.

Related	topics:
begin
rbegin
rend

erase
Syntax:

		#include	<vector>

		iterator	erase(iterator	loc);

		iterator	erase(iterator	start,	iterator	end);

The	erase()	function	either	deletes	the	element	at	location	loc,	or	deletes	the
elements	between	start	and	end	(including	start	but	not	including	end).	The
return	value	is	the	element	after	the	last	element	erased.

The	first	version	of	erase	(the	version	that	deletes	a	single	element	at	location
loc)	runs	in	constant	time	for	lists	and	linear	time	for	vectors,	dequeues,	and
strings.	The	multiple-element	version	of	erase	always	takes	linear	time.

For	example:

	//	Create	a	vector,	load	it	with	the	first	ten	characters	of	the	alphabet

	vector<char>	alphaVector;

	for(int	i=0;	i	<	10;	i++)	{

			alphaVector.push_back(i	+	65);

	}

	int	size	=	alphaVector.size();

	vector<char>::iterator	startIterator;

	vector<char>::iterator	tempIterator;

	for(int	i=0;	i	<	size;	i++)	{

			startIterator	=	alphaVector.begin();

			alphaVector.erase(startIterator);

			//	Display	the	vector

			for(tempIterator	=	alphaVector.begin();	tempIterator	!=	alphaVector.end();	tempIterator++)	{

					cout	<<	*tempIterator;

			}

			cout	<<	endl;

	}														

That	code	would	display	the	following	output:

	BCDEFGHIJ

	CDEFGHIJ

	DEFGHIJ

	EFGHIJ

	FGHIJ

	GHIJ

	HIJ

	IJ

	J														

In	the	next	example,	erase()	is	called	with	two	iterators	to	delete	a	range	of
elements	from	a	vector:

	//	create	a	vector,	load	it	with	the	first	ten	characters	of	the	alphabet

	vector<char>	alphaVector;

	for(int	i=0;	i	<	10;	i++)	{

			alphaVector.push_back(i	+	65);

	}

	//	display	the	complete	vector

	for(int	i	=	0;	i	<	alphaVector.size();	i++)	{

			cout	<<	alphaVector[i];

	}

	cout	<<	endl;												

	//	use	erase	to	remove	all	but	the	first	two	and	last	three	elements

	//	of	the	vector

	alphaVector.erase(alphaVector.begin()+2,	alphaVector.end()-3);

	//	display	the	modified	vector

	for(int	i	=	0;	i	<	alphaVector.size();	i++)	{

			cout	<<	alphaVector[i];

	}

	cout	<<	endl;												

When	run,	the	above	code	displays:

	ABCDEFGHIJ

	ABHIJ										

Related	topics:
clear
insert
pop_back
(C++	Lists)	pop_front
(C++	Lists)	remove
(C++	Lists)	remove_if

front
Syntax:

		#include	<vector>

		TYPE&	front();

		const	TYPE&	front()	const;

The	front()	function	returns	a	reference	to	the	first	element	of	the	vector,	and
runs	in	constant	time.

Related	topics:
back
(C++	Lists)	pop_front
(C++	Lists)	push_front

insert
Syntax:

		#include	<vector>

		iterator	insert(iterator	loc,	const	TYPE&	val);

		void	insert(iterator	loc,	size_type	num,	const	TYPE&	val);

		template<TYPE>	void	insert(iterator	loc,	input_iterator	start,	input_iterator

The	insert()	function	either:

inserts	val	before	loc,	returning	an	iterator	to	the	element	inserted,
inserts	num	copies	of	val	before	loc,	or
inserts	the	elements	from	start	to	end	before	loc.

Note	that	inserting	elements	into	a	vector	can	be	relatively	time-intensive,	since
the	underlying	data	structure	for	a	vector	is	an	array.	In	order	to	insert	data	into
an	array,	you	might	need	to	displace	a	lot	of	the	elements	of	that	array,	and	this
can	take	linear	time.	If	you	are	planning	on	doing	a	lot	of	insertions	into	your
vector	and	you	care	about	speed,	you	might	be	better	off	using	a	container	that

has	a	linked	list	as	its	underlying	data	structure	(such	as	a	List	or	a	Deque).

For	example,	the	following	code	uses	the	insert()	function	to	splice	four	copies
of	the	character	'C'	into	a	vector	of	characters:

	//	Create	a	vector,	load	it	with	the	first	10	characters	of	the	alphabet

	vector<char>	alphaVector;

	for(int	i=0;	i	<	10;	i++)	{

			alphaVector.push_back(i	+	65);

	}														

	//	Insert	four	C's	into	the	vector

	vector<char>::iterator	theIterator	=	alphaVector.begin();

	alphaVector.insert(theIterator,	4,	'C');													

	//	Display	the	vector

	for(theIterator	=	alphaVector.begin();	theIterator	!=	alphaVector.end();	theIterator++)				{

			cout	<<	*theIterator;

	}														

This	code	would	display:

	CCCCABCDEFGHIJ									

Here	is	another	example	of	the	insert()	function.	In	this	code,	insert()	is	used	to
append	the	contents	of	one	vector	onto	the	end	of	another:

		vector<int>	v1;

		v1.push_back(0);

		v1.push_back(1);

		v1.push_back(2);

		v1.push_back(3);

		vector<int>	v2;

		v2.push_back(5);

		v2.push_back(6);

		v2.push_back(7);

		v2.push_back(8);

		cout	<<	"Before,	v2	is:	";

		for(int	i	=	0;	i	<	v2.size();	i++)	{

				cout	<<	v2[i]	<<	"	";

		}

		cout	<<	endl;

		v2.insert(v2.end(),	v1.begin(),	v1.end());

		cout	<<	"After,	v2	is:	";

		for(int	i	=	0;	i	<	v2.size();	i++)	{

				cout	<<	v2[i]	<<	"	";

		}

		cout	<<	endl;

When	run,	this	code	displays:

		Before,	v2	is:	5	6	7	8

		After,	v2	is:	5	6	7	8	0	1	2	3

Related	topics:
assign
erase
push_back
(C++	Lists)	merge
(C++	Lists)	push_front
(C++	Lists)	splice

max_size
Syntax:

		#include	<vector>

		size_type	max_size()	const;

The	max_size()	function	returns	the	maximum	number	of	elements	that	the
vector	can	hold.	The	max_size()	function	should	not	be	confused	with	the	size()
or	capacity()	functions,	which	return	the	number	of	elements	currently	in	the
vector	and	the	the	number	of	elements	that	the	vector	will	be	able	to	hold	before
more	memory	will	have	to	be	allocated,	respectively.

Related	topics:
size

pop_back
Syntax:

		#include	<vector>

		void	pop_back();

The	pop_back()	function	removes	the	last	element	of	the	vector.

pop_back()	runs	in	constant	time.

Related	topics:
back
erase
(C++	Lists)	pop_front
push_back

push_back
Syntax:

		#include	<vector>

		void	push_back(const	TYPE&	val);

The	push_back()	function	appends	val	to	the	end	of	the	vector.

For	example,	the	following	code	puts	10	integers	into	a	list:

			list<int>	the_list;

			for(int	i	=	0;	i	<	10;	i++)

					the_list.push_back(i);											

When	displayed,	the	resulting	list	would	look	like	this:

	0	1	2	3	4	5	6	7	8	9												

push_back()	runs	in	constant	time.

Related	topics:
assign
insert
pop_back
(C++	Lists)	push_front

rbegin
Syntax:

		#include	<vector>

		reverse_iterator	rbegin();

		const_reverse_iterator	rbegin()	const;

The	rbegin()	function	returns	a	reverse_iterator	to	the	end	of	the	current	vector.

rbegin()	runs	in	constant	time.

Related	topics:
begin
end
rend

rend
Syntax:

		#include	<vector>

		reverse_iterator	rend();

		const_reverse_iterator	rend()	const;

The	function	rend()	returns	a	reverse_iterator	to	the	beginning	of	the	current
vector.

rend()	runs	in	constant	time.

Related	topics:
begin
end
rbegin

reserve
Syntax:

		#include	<vector>

		void	reserve(size_type	size);

The	reserve()	function	sets	the	capacity	of	the	vector	to	at	least	size.

reserve()	runs	in	linear	time.

Related	topics:
capacity

resize
Syntax:

		#include	<vector>

		void	resize(size_type	num,	const	TYPE&	val	=	TYPE());

The	function	resize()	changes	the	size	of	the	vector	to	size.	If	val	is	specified
then	any	newly-created	elements	will	be	initialized	to	have	a	value	of	val.

This	function	runs	in	linear	time.

Related	topics:
Vector	constructors	&	destructors
capacity
size

size
Syntax:

		#include	<vector>

		size_type	size()	const;

The	size()	function	returns	the	number	of	elements	in	the	current	vector.

Related	topics:
capacity
empty
(C++	Strings)	length
max_size
resize

swap
Syntax:

		#include	<vector>

		void	swap(const	container&	from);

The	swap()	function	exchanges	the	elements	of	the	current	vector	with	those	of
from.	This	function	operates	in	constant	time.

For	example,	the	following	code	uses	the	swap()	function	to	exchange	the	values
of	two	strings:

			string	first("This	comes	first");

			string	second("And	this	is	second");

			first.swap(second);

			cout	<<	first	<<	endl;

			cout	<<	second	<<	endl;										

The	above	code	displays:

			And	this	is	second

			This	comes	first													

Related	topics:
(C++	Lists)	splice

Vector	constructors
Syntax:

		#include	<vector>

		vector();

		vector(const	vector&	c);

		vector(size_type	num,	const	TYPE&	val	=	TYPE());

		vector(input_iterator	start,	input_iterator	end);

		~vector();

The	default	vector	constructor	takes	no	arguments,	creates	a	new	instance	of	that
vector.

The	second	constructor	is	a	default	copy	constructor	that	can	be	used	to	create	a
new	vector	that	is	a	copy	of	the	given	vector	c.

The	third	constructor	creates	a	vector	with	space	for	num	objects.	If	val	is
specified,	each	of	those	objects	will	be	given	that	value.	For	example,	the
following	code	creates	a	vector	consisting	of	five	copies	of	the	integer	42:

	vector<int>	v1(5,	42);									

The	last	constructor	creates	a	vector	that	is	initialized	to	contain	the	elements
between	start	and	end.	For	example:

	//	create	a	vector	of	random	integers

	cout	<<	"original	vector:	";

	vector<int>	v;

	for(int	i	=	0;	i	<	10;	i++)	{

			int	num	=	(int)	rand()	%	10;

			cout	<<	num	<<	"	";

			v.push_back(num);

	}

	cout	<<	endl;												

	//	find	the	first	element	of	v	that	is	even

	vector<int>::iterator	iter1	=	v.begin();

	while(iter1	!=	v.end()	&&	*iter1	%	2	!=	0)	{

			iter1++;

	}														

	//	find	the	last	element	of	v	that	is	even

	vector<int>::iterator	iter2	=	v.end();

	do	{

			iter2--;

	}	while(iter2	!=	v.begin()	&&	*iter2	%	2	!=	0);														

	//	only	proceed	if	we	find	both	numbers

	if(iter1	!=	v.end()	&&	iter2	!=	v.begin())	{

			cout	<<	"first	even	number:	"	<<	*iter1	<<	",	last	even	number:	"	<<	*iter2	<<	endl;									

			cout	<<	"new	vector:	";

			vector<int>	v2(iter1,	iter2);

			for(int	i	=	0;	i	<	v2.size();	i++)	{

					cout	<<	v2[i]	<<	"	";

			}

			cout	<<	endl;

	}

When	run,	this	code	displays	the	following	output:

	original	vector:	1	9	7	9	2	7	2	1	9	8

	first	even	number:	2,	last	even	number:	8

	new	vector:	2	7	2	1	9										

All	of	these	constructors	run	in	linear	time	except	the	first,	which	runs	in
constant	time.

The	default	destructor	is	called	when	the	vector	should	be	destroyed.

Vector	operators
Syntax:

		#include	<vector>

		TYPE&	operator[](size_type	index);

		const	TYPE&	operator[](size_type	index)	const;

		vector	operator=(const	vector&	c2);

		bool	operator==(const	vector&	c1,	const	vector&	c2);

		bool	operator!=(const	vector&	c1,	const	vector&	c2);

		bool	operator<(const	vector&	c1,	const	vector&	c2);

		bool	operator>(const	vector&	c1,	const	vector&	c2);

		bool	operator<=(const	vector&	c1,	const	vector&	c2);

		bool	operator>=(const	vector&	c1,	const	vector&	c2);

All	of	the	C++	containers	can	be	compared	and	assigned	with	the	standard
comparison	operators:	==,	!=,	<=,	>=,	<,	>,	and	=.	Individual	elements	of	a
vector	can	be	examined	with	the	[]	operator.

Performing	a	comparison	or	assigning	one	vector	to	another	takes	linear	time.
The	[]	operator	runs	in	constant	time.

Two	vectors	are	equal	if:

1.	 Their	size	is	the	same,	and
2.	 Each	member	in	location	i	in	one	vector	is	equal	to	the	the	member	in

location	i	in	the	other	vector.

Comparisons	among	vectors	are	done	lexicographically.

For	example,	the	following	code	uses	the	[]	operator	to	access	all	of	the	elements
of	a	vector:

	vector<int>	v(5,	1);

	for(int	i	=	0;	i	<	v.size();	i++)	{

			cout	<<	"Element	"	<<	i	<<	"	is	"	<<	v[i]	<<	endl;

	}														

Related	topics:
at

cppreference.com	>	C++	Vectors	>	assign

assign
Syntax:

		#include	<vector>

		void	assign(size_type	num,	const	TYPE&	val);

		void	assign(input_iterator	start,	input_iterator	end);

The	assign()	function	either	gives	the	current	vector	the	values	from	start	to
end,	or	gives	it	num	copies	of	val.

This	function	will	destroy	the	previous	contents	of	the	vector.

For	example,	the	following	code	uses	assign()	to	put	10	copies	of	the	integer	42
into	a	vector:

	vector<int>	v;

	v.assign(10,	42);

	for(int	i	=	0;	i	<	v.size();	i++)	{

			cout	<<	v[i]	<<	"	";

	}

	cout	<<	endl;												

The	above	code	displays	the	following	output:

	42	42	42	42	42	42	42	42	42	42										

The	next	example	shows	how	assign()	can	be	used	to	copy	one	vector	to
another:

	vector<int>	v1;

	for(int	i	=	0;	i	<	10;	i++)	{

			v1.push_back(i);

	}														

	vector<int>	v2;

	v2.assign(v1.begin(),	v1.end());													

	for(int	i	=	0;	i	<	v2.size();	i++)	{

http://www.cppreference.com/index.html
http://www.cppreference.com/cppvector/index.html
http://www.cppreference.com/cppvector/assign.html
http://www.cppreference.com/containers.html
http://www.cppreference.com/iterators.html
http://www.cppreference.com/iterators.html

			cout	<<	v2[i]	<<	"	";

	}

	cout	<<	endl;												

When	run,	the	above	code	displays	the	following	output:

	0	1	2	3	4	5	6	7	8	9												

Related	topics:
(C++	Strings)	assign
insert
push_back
(C++	Lists)	push_front

http://www.cppreference.com/cppstring/assign1.html
http://www.cppreference.com/cppvector/insert.html
http://www.cppreference.com/cppvector/push_back.html
http://www.cppreference.com/cpplist/push_front.html

cppreference.com	>	C++	Vectors	>	at

at
Syntax:

		#include	<vector>

		TYPE&	at(size_type	loc);

		const	TYPE&	at(size_type	loc)	const;

The	at()	function	returns	a	reference	to	the	element	in	the	vector	at	index	loc.
The	at()	function	is	safer	than	the	[]	operator,	because	it	won't	let	you	reference
items	outside	the	bounds	of	the	vector.

For	example,	consider	the	following	code:

	vector<int>	v(5,	1);

	for(int	i	=	0;	i	<	10;	i++)	{

			cout	<<	"Element	"	<<	i	<<	"	is	"	<<	v[i]	<<	endl;

	}														

This	code	overrunns	the	end	of	the	vector,	producing	potentially	dangerous
results.	The	following	code	would	be	much	safer:

	vector<int>	v(5,	1);

	for(int	i	=	0;	i	<	10;	i++)	{

			cout	<<	"Element	"	<<	i	<<	"	is	"	<<	v.at(i)	<<	endl;

	}														

Instead	of	attempting	to	read	garbage	values	from	memory,	the	at()	function	will
realize	that	it	is	about	to	overrun	the	vector	and	will	throw	an	exception.

Related	topics:
Vector	operators

http://www.cppreference.com/index.html
http://www.cppreference.com/cppvector/index.html
http://www.cppreference.com/cppvector/at.html
http://www.cppreference.com/containers.html
http://www.cppreference.com/containers.html
http://www.cppreference.com/cppvector/vector_operators.html

cppreference.com	>	C++	Vectors	>	back

back
Syntax:

		#include	<vector>

		TYPE&	back();

		const	TYPE&	back()	const;

The	back()	function	returns	a	reference	to	the	last	element	in	the	vector.

For	example:

	vector<int>	v;

	for(int	i	=	0;	i	<	5;	i++)	{

			v.push_back(i);

	}

	cout	<<	"The	first	element	is	"	<<	v.front()

						<<	"	and	the	last	element	is	"	<<	v.back()	<<	endl;											

This	code	produces	the	following	output:

	The	first	element	is	0	and	the	last	element	is	4															

The	back()	function	runs	in	constant	time.

Related	topics:
frontpop_back

http://www.cppreference.com/index.html
http://www.cppreference.com/cppvector/index.html
http://www.cppreference.com/cppvector/back.html
http://www.cppreference.com/containers.html
http://www.cppreference.com/containers.html
http://www.cppreference.com/complexity.html
http://www.cppreference.com/cppvector/front.html
http://www.cppreference.com/cppvector/pop_back.html

cppreference.com	>	C++	Vectors	>	begin

begin
Syntax:

		#include	<vector>

		iterator	begin();

		const_iterator	begin()	const;

The	function	begin()	returns	an	iterator	to	the	first	element	of	the	vector.	begin()	should	run	in	
time.

For	example,	the	following	code	uses	begin()	to	initialize	an	iterator	that	is	used	to	traverse	a	list:

			//	Create	a	list	of	characters

			list<char>	charList;

			for(int	i=0;	i	<	10;	i++)	{

					charList.push_front(i	+	65);

			}

			//	Display	the	list

			list<char>::iterator	theIterator;

			for(theIterator	=	charList.begin();	theIterator	!=	charList.end();	theIterator++)	{

					cout	<<	*theIterator;

			}												

Related	topics:
endrbegin
rend

http://www.cppreference.com/index.html
http://www.cppreference.com/cppvector/index.html
http://www.cppreference.com/cppvector/begin.html
http://www.cppreference.com/complexity.html
http://www.cppreference.com/cppvector/end.html
http://www.cppreference.com/cppvector/rbegin.html
http://www.cppreference.com/cppvector/rend.html

cppreference.com	>	C++	Vectors	>	capacity

capacity
Syntax:

		#include	<vector>

		size_type	capacity()	const;

The	capacity()	function	returns	the	number	of	elements	that	the	vector	can	hold
before	it	will	need	to	allocate	more	space.

For	example,	the	following	code	uses	two	different	methods	to	set	the	capacity	of
two	vectors.	One	method	passes	an	argument	to	the	constructor	that	suggests	an
initial	size,	the	other	method	calls	the	reserve	function	to	achieve	a	similar	goal:

	vector<int>	v1(10);

	cout	<<	"The	capacity	of	v1	is	"	<<	v1.capacity()	<<	endl;

	vector<int>	v2;

	v2.reserve(20);

	cout	<<	"The	capacity	of	v2	is	"	<<	v2.capacity()	<<	endl;									

When	run,	the	above	code	produces	the	following	output:

	The	capacity	of	v1	is	10

	The	capacity	of	v2	is	20															

C++	containers	are	designed	to	grow	in	size	dynamically.	This	frees	the
programmer	from	having	to	worry	about	storing	an	arbitrary	number	of	elements
in	a	container.	However,	sometimes	the	programmer	can	improve	the
performance	of	her	program	by	giving	hints	to	the	compiler	about	the	size	of	the
containers	that	the	program	will	use.	These	hints	come	in	the	form	of	the
reserve()	function	and	the	constructor	used	in	the	above	example,	which	tell	the
compiler	how	large	the	container	is	expected	to	get.

The	capacity()	function	runs	in	constant	time.

Related	topics:
reserveresize

http://www.cppreference.com/index.html
http://www.cppreference.com/cppvector/index.html
http://www.cppreference.com/cppvector/capacity.html
http://www.cppreference.com/cppvector/reserve.html
http://www.cppreference.com/complexity.html
http://www.cppreference.com/cppvector/reserve.html
http://www.cppreference.com/cppvector/resize.html

size

http://www.cppreference.com/cppvector/size.html

cppreference.com	>	C++	Vectors	>	clear

clear
Syntax:

		#include	<vector>

		void	clear();

The	function	clear()	deletes	all	of	the	elements	in	the	vector.	clear()	runs	in
linear	time.

Related	topics:
erase

http://www.cppreference.com/index.html
http://www.cppreference.com/cppvector/index.html
http://www.cppreference.com/cppvector/clear.html
http://www.cppreference.com/complexity.html
http://www.cppreference.com/cppvector/erase.html

cppreference.com	>	C++	Vectors	>	empty

empty
Syntax:

		#include	<vector>

		bool	empty()	const;

The	empty()	function	returns	true	if	the	vector	has	no	elements,	false	otherwise.

For	example,	the	following	code	uses	empty()	as	the	stopping	condition	on	a
(C/C++	Keywords)	while	loop	to	clear	a	vector	and	display	its	contents	in
reverse	order:

	vector<int>	v;

	for(int	i	=	0;	i	<	5;	i++)	{

			v.push_back(i);

	}

	while(!v.empty())	{

			cout	<<	v.back()	<<	endl;

			v.pop_back();

	}														

Related	topics:
size

http://www.cppreference.com/index.html
http://www.cppreference.com/cppvector/index.html
http://www.cppreference.com/cppvector/empty.html
http://www.cppreference.com/keywords/while.html
http://www.cppreference.com/cppvector/size.html

cppreference.com	>	C++	Vectors	>	end

end
Syntax:

		#include	<vector>

		iterator	end();

		const_iterator	end()	const;

The	end()	function	returns	an	iterator	just	past	the	end	of	the	vector.

Note	that	before	you	can	access	the	last	element	of	the	vector	using	an	iterator
that	you	get	from	a	call	to	end(),	you'll	have	to	decrement	the	iterator	first.	This
is	because	end()	doesn't	point	to	the	end	of	the	vector;	it	points	just	past	the
end	of	the	vector.

For	example,	in	the	following	code,	the	first	"cout"	statement	will	display
garbage,	whereas	the	second	statement	will	actually	display	the	last	element	of
the	vector:

		vector<int>	v1;

		v1.push_back(0);

		v1.push_back(1);

		v1.push_back(2);

		v1.push_back(3);

		int	bad_val	=	*(v1.end());

		cout	<<	"bad_val	is	"	<<	bad_val	<<	endl;

		int	good_val	=	*(v1.end()	-	1);

		cout	<<	"good_val	is	"	<<	good_val	<<	endl;

The	next	example	shows	how	begin()	and	end()	can	be	used	to	iterate	through
all	of	the	members	of	a	vector:

	vector<int>	v1(5,	789

);	vector<int>::iterator	it;	for(it	=	v1.begin();	it	!=

		v1.end();	it++)	{	cout	<<	*it	<<	endl;	}	

The	iterator	is	initialized	with	a	call	to	begin().	After	the	body	of	the	loop	has

http://www.cppreference.com/index.html
http://www.cppreference.com/cppvector/index.html
http://www.cppreference.com/cppvector/end.html
http://www.cppreference.com/cppvector/begin.html
http://www.cppreference.com/cppvector/begin.html

been	executed,	the	iterator	is	incremented	and	tested	to	see	if	it	is	equal	to	the
result	of	calling	end().	Since	end()	returns	an	iterator	pointing	to	an	element	just
after	the	last	element	of	the	vector,	the	loop	will	only	stop	once	all	of	the
elements	of	the	vector	have	been	displayed.

end()	runs	in	constant	time.

Related	topics:
beginrbegin
rend

http://www.cppreference.com/complexity.html
http://www.cppreference.com/cppvector/begin.html
http://www.cppreference.com/cppvector/rbegin.html
http://www.cppreference.com/cppvector/rend.html

cppreference.com	>	C++	Vectors	>	erase

erase
Syntax:

		#include	<vector>

		iterator	erase(iterator	loc);

		iterator	erase(iterator	start,	iterator	end);

The	erase()	function	either	deletes	the	element	at	location	loc,	or	deletes	the	elements	between	
(including	start	but	not	including	end).	The	return	value	is	the	element	after	the	last	element	erased.

The	first	version	of	erase	(the	version	that	deletes	a	single	element	at	location	loc
linear	time	for	vectors,	dequeues,	and	strings.	The	multiple-element	version	of	erase	always	takes	

For	example:

	//	Create	a	vector,	load	it	with	the	first	ten	characters	of	the	alphabet

	vector<char>	alphaVector;

	for(int	i=0;	i	<	10;	i++)	{

			alphaVector.push_back(i	+	65);

	}

	int	size	=	alphaVector.size();

	vector<char>::iterator	startIterator;

	vector<char>::iterator	tempIterator;

	for(int	i=0;	i	<	size;	i++)	{

			startIterator	=	alphaVector.begin();

			alphaVector.erase(startIterator);

			//	Display	the	vector

			for(tempIterator	=	alphaVector.begin();	tempIterator	!=	alphaVector.end();	tempIterator++)	{

					cout	<<	*tempIterator;

			}

			cout	<<	endl;

	}														

That	code	would	display	the	following	output:

	BCDEFGHIJ

	CDEFGHIJ

	DEFGHIJ

	EFGHIJ

http://www.cppreference.com/index.html
http://www.cppreference.com/cppvector/index.html
http://www.cppreference.com/cppvector/erase.html
http://www.cppreference.com/complexity.html

	FGHIJ

	GHIJ

	HIJ

	IJ

	J														

In	the	next	example,	erase()	is	called	with	two	iterators	to	delete	a	range	of	elements	from	a	vector:

	//	create	a	vector,	load	it	with	the	first	ten	characters	of	the	alphabet

	vector<char>	alphaVector;

	for(int	i=0;	i	<	10;	i++)	{

			alphaVector.push_back(i	+	65);

	}

	//	display	the	complete	vector

	for(int	i	=	0;	i	<	alphaVector.size();	i++)	{

			cout	<<	alphaVector[i];

	}

	cout	<<	endl;												

	//	use	erase	to	remove	all	but	the	first	two	and	last	three	elements

	//	of	the	vector

	alphaVector.erase(alphaVector.begin()+2,	alphaVector.end()-3);

	//	display	the	modified	vector

	for(int	i	=	0;	i	<	alphaVector.size();	i++)	{

			cout	<<	alphaVector[i];

	}

	cout	<<	endl;												

When	run,	the	above	code	displays:

	ABCDEFGHIJ

	ABHIJ										

Related	topics:
clearinsert
pop_back
(C++	Lists)	pop_front
(C++	Lists)	remove
(C++	Lists)	remove_if

http://www.cppreference.com/complexity.html
http://www.cppreference.com/complexity.html
http://www.cppreference.com/cppvector/clear.html
http://www.cppreference.com/cppvector/insert.html
http://www.cppreference.com/cppvector/pop_back.html
http://www.cppreference.com/cpplist/pop_front.html
http://www.cppreference.com/cpplist/remove.html
http://www.cppreference.com/cpplist/remove_if.html

cppreference.com	>	C++	Vectors	>	front

front
Syntax:

		#include	<vector>

		TYPE&	front();

		const	TYPE&	front()	const;

The	front()	function	returns	a	reference	to	the	first	element	of	the	vector,	and
runs	in	constant	time.

Related	topics:
back(C++	Lists)	pop_front
(C++	Lists)	push_front

http://www.cppreference.com/index.html
http://www.cppreference.com/cppvector/index.html
http://www.cppreference.com/cppvector/front.html
http://www.cppreference.com/containers.html
http://www.cppreference.com/containers.html
http://www.cppreference.com/complexity.html
http://www.cppreference.com/cppvector/back.html
http://www.cppreference.com/cpplist/pop_front.html
http://www.cppreference.com/cpplist/push_front.html

cppreference.com	>	C++	Vectors	>	insert

insert
Syntax:

		#include	<vector>

		iterator	insert(iterator	loc,	const	TYPE&	val);

		void	insert(iterator	loc,	size_type	num,	const	TYPE&	val);

		template<TYPE>	void	insert(iterator	loc,	input_iterator	start,	input_iterator

The	insert()	function	either:

inserts	val	before	loc,	returning	an	iterator	to	the	element	inserted,
inserts	num	copies	of	val	before	loc,	or
inserts	the	elements	from	start	to	end	before	loc.

Note	that	inserting	elements	into	a	vector	can	be	relatively	time-intensive,	since	the	underlying	data	structure	for	a
vector	is	an	array.	In	order	to	insert	data	into	an	array,	you	might	need	to	displace	a	
array,	and	this	can	take	linear	time.	If	you	are	planning	on	doing	a	lot	of	insertions	into	your	vector	and	you	care
about	speed,	you	might	be	better	off	using	a	container	that	has	a	linked	list	as	its	underlying	data	structure	(such
as	a	List	or	a	Deque).

For	example,	the	following	code	uses	the	insert()	function	to	splice	four	copies	of	the	character	'C'	into	a	vector	of
characters:

	//	Create	a	vector,	load	it	with	the	first	10	characters	of	the	alphabet

	vector<char>	alphaVector;

	for(int	i=0;	i	<	10;	i++)	{

			alphaVector.push_back(i	+	65);

	}														

	//	Insert	four	C's	into	the	vector

	vector<char>::iterator	theIterator	=	alphaVector.begin();

	alphaVector.insert(theIterator,	4,	'C');													

	//	Display	the	vector

	for(theIterator	=	alphaVector.begin();	theIterator	!=	alphaVector.end();	theIterator++)				{

			cout	<<	*theIterator;

	}														

http://www.cppreference.com/index.html
http://www.cppreference.com/cppvector/index.html
http://www.cppreference.com/cppvector/insert.html
http://www.cppreference.com/containers.html
http://www.cppreference.com/containers.html
http://www.cppreference.com/containers.html
http://www.cppreference.com/iterators.html
http://www.cppreference.com/iterators.html
http://www.cppreference.com/complexity.html
http://www.cppreference.com/cpplist/index.html
http://www.cppreference.com/cppdeque/index.html

This	code	would	display:

	CCCCABCDEFGHIJ									

Here	is	another	example	of	the	insert()	function.	In	this	code,	insert()	is	used	to	append	the	contents	of	one	vector
onto	the	end	of	another:

		vector<int>	v1;

		v1.push_back(0);

		v1.push_back(1);

		v1.push_back(2);

		v1.push_back(3);

		vector<int>	v2;

		v2.push_back(5);

		v2.push_back(6);

		v2.push_back(7);

		v2.push_back(8);

		cout	<<	"Before,	v2	is:	";

		for(int	i	=	0;	i	<	v2.size();	i++)	{

				cout	<<	v2[i]	<<	"	";

		}

		cout	<<	endl;

		v2.insert(v2.end(),	v1.begin(),	v1.end());

		cout	<<	"After,	v2	is:	";

		for(int	i	=	0;	i	<	v2.size();	i++)	{

				cout	<<	v2[i]	<<	"	";

		}

		cout	<<	endl;

When	run,	this	code	displays:

		Before,	v2	is:	5	6	7	8

		After,	v2	is:	5	6	7	8	0	1	2	3

Related	topics:
assignerase
push_back
(C++	Lists)	merge
(C++	Lists)	push_front
(C++	Lists)	splice

http://www.cppreference.com/cppvector/assign.html
http://www.cppreference.com/cppvector/erase.html
http://www.cppreference.com/cppvector/push_back.html
http://www.cppreference.com/cpplist/merge.html
http://www.cppreference.com/cpplist/push_front.html
http://www.cppreference.com/cpplist/splice.html

cppreference.com	>	C++	Vectors	>	max_size

max_size
Syntax:

		#include	<vector>

		size_type	max_size()	const;

The	max_size()	function	returns	the	maximum	number	of	elements	that	the
vector	can	hold.	The	max_size()	function	should	not	be	confused	with	the	size()
or	capacity()	functions,	which	return	the	number	of	elements	currently	in	the
vector	and	the	the	number	of	elements	that	the	vector	will	be	able	to	hold	before
more	memory	will	have	to	be	allocated,	respectively.

Related	topics:
size

http://www.cppreference.com/index.html
http://www.cppreference.com/cppvector/index.html
http://www.cppreference.com/cppvector/max_size.html
http://www.cppreference.com/cppvector/size.html
http://www.cppreference.com/cppvector/capacity.html
http://www.cppreference.com/cppvector/size.html

cppreference.com	>	C++	Vectors	>	pop_back

pop_back
Syntax:

		#include	<vector>

		void	pop_back();

The	pop_back()	function	removes	the	last	element	of	the	vector.

pop_back()	runs	in	constant	time.

Related	topics:
backerase
(C++	Lists)	pop_front
push_back

http://www.cppreference.com/index.html
http://www.cppreference.com/cppvector/index.html
http://www.cppreference.com/cppvector/pop_back.html
http://www.cppreference.com/complexity.html
http://www.cppreference.com/cppvector/back.html
http://www.cppreference.com/cppvector/erase.html
http://www.cppreference.com/cpplist/pop_front.html
http://www.cppreference.com/cppvector/push_back.html

cppreference.com	>	C++	Vectors	>	push_back

push_back
Syntax:

		#include	<vector>

		void	push_back(const	TYPE&	val);

The	push_back()	function	appends	val	to	the	end	of	the	vector.

For	example,	the	following	code	puts	10	integers	into	a	list:

			list<int>	the_list;

			for(int	i	=	0;	i	<	10;	i++)

					the_list.push_back(i);											

When	displayed,	the	resulting	list	would	look	like	this:

	0	1	2	3	4	5	6	7	8	9												

push_back()	runs	in	constant	time.

Related	topics:
assigninsert
pop_back
(C++	Lists)	push_front

http://www.cppreference.com/index.html
http://www.cppreference.com/cppvector/index.html
http://www.cppreference.com/cppvector/push_back.html
http://www.cppreference.com/containers.html
http://www.cppreference.com/complexity.html
http://www.cppreference.com/cppvector/assign.html
http://www.cppreference.com/cppvector/insert.html
http://www.cppreference.com/cppvector/pop_back.html
http://www.cppreference.com/cpplist/push_front.html

cppreference.com	>	C++	Vectors	>	rbegin

rbegin
Syntax:

		#include	<vector>

		reverse_iterator	rbegin();

		const_reverse_iterator	rbegin()	const;

The	rbegin()	function	returns	a	reverse_iterator	to	the	end	of	the	current	vector.

rbegin()	runs	in	constant	time.

Related	topics:
beginend
rend

http://www.cppreference.com/index.html
http://www.cppreference.com/cppvector/index.html
http://www.cppreference.com/cppvector/rbegin.html
http://www.cppreference.com/iterators.html
http://www.cppreference.com/iterators.html
http://www.cppreference.com/iterators.html
http://www.cppreference.com/complexity.html
http://www.cppreference.com/cppvector/begin.html
http://www.cppreference.com/cppvector/end.html
http://www.cppreference.com/cppvector/rend.html

cppreference.com	>	C++	Vectors	>	rend

rend
Syntax:

		#include	<vector>

		reverse_iterator	rend();

		const_reverse_iterator	rend()	const;

The	function	rend()	returns	a	reverse_iterator	to	the	beginning	of	the	current
vector.

rend()	runs	in	constant	time.

Related	topics:
beginend
rbegin

http://www.cppreference.com/index.html
http://www.cppreference.com/cppvector/index.html
http://www.cppreference.com/cppvector/rend.html
http://www.cppreference.com/iterators.html
http://www.cppreference.com/iterators.html
http://www.cppreference.com/iterators.html
http://www.cppreference.com/complexity.html
http://www.cppreference.com/cppvector/begin.html
http://www.cppreference.com/cppvector/end.html
http://www.cppreference.com/cppvector/rbegin.html

cppreference.com	>	C++	Vectors	>	reserve

reserve
Syntax:

		#include	<vector>

		void	reserve(size_type	size);

The	reserve()	function	sets	the	capacity	of	the	vector	to	at	least	size.

reserve()	runs	in	linear	time.

Related	topics:
capacity

http://www.cppreference.com/index.html
http://www.cppreference.com/cppvector/index.html
http://www.cppreference.com/cppvector/reserve.html
http://www.cppreference.com/complexity.html
http://www.cppreference.com/cppvector/capacity.html

cppreference.com	>	C++	Vectors	>	resize

resize
Syntax:

		#include	<vector>

		void	resize(size_type	num,	const	TYPE&	val	=	TYPE());

The	function	resize()	changes	the	size	of	the	vector	to	size.	If	val	is	specified
then	any	newly-created	elements	will	be	initialized	to	have	a	value	of	val.

This	function	runs	in	linear	time.

Related	topics:
Vector	constructors	&	destructorscapacity
size

http://www.cppreference.com/index.html
http://www.cppreference.com/cppvector/index.html
http://www.cppreference.com/cppvector/resize.html
http://www.cppreference.com/containers.html
http://www.cppreference.com/containers.html
http://www.cppreference.com/complexity.html
http://www.cppreference.com/cppvector/vector_constructors.html
http://www.cppreference.com/cppvector/capacity.html
http://www.cppreference.com/cppvector/size.html

cppreference.com	>	C++	Vectors	>	size

size
Syntax:

		#include	<vector>

		size_type	size()	const;

The	size()	function	returns	the	number	of	elements	in	the	current	vector.

Related	topics:
capacityempty
(C++	Strings)	length
max_size
resize

http://www.cppreference.com/index.html
http://www.cppreference.com/cppvector/index.html
http://www.cppreference.com/cppvector/size.html
http://www.cppreference.com/cppvector/capacity.html
http://www.cppreference.com/cppvector/empty.html
http://www.cppreference.com/cppstring/length.html
http://www.cppreference.com/cppvector/max_size.html
http://www.cppreference.com/cppvector/resize.html

cppreference.com	>	C++	Vectors	>	swap

swap
Syntax:

		#include	<vector>

		void	swap(const	container&	from);

The	swap()	function	exchanges	the	elements	of	the	current	vector	with	those	of
from.	This	function	operates	in	constant	time.

For	example,	the	following	code	uses	the	swap()	function	to	exchange	the
values	of	two	strings:

			string	first("This	comes	first");

			string	second("And	this	is	second");

			first.swap(second);

			cout	<<	first	<<	endl;

			cout	<<	second	<<	endl;										

The	above	code	displays:

			And	this	is	second

			This	comes	first													

Related	topics:
(C++	Lists)	splice

http://www.cppreference.com/index.html
http://www.cppreference.com/cppvector/index.html
http://www.cppreference.com/cppvector/swap.html
http://www.cppreference.com/complexity.html
http://www.cppreference.com/cpplist/splice.html

cppreference.com	>	C++	Vectors	>	Vector	constructors

Vector	constructors
Syntax:

		#include	<vector>

		vector();

		vector(const	vector&	c);

		vector(size_type	num,	const	TYPE&	val	=	TYPE());

		vector(input_iterator	start,	input_iterator	end);

		~vector();

The	default	vector	constructor	takes	no	arguments,	creates	a	new	instance	of	that	vector.

The	second	constructor	is	a	default	copy	constructor	that	can	be	used	to	create	a	new	vector	that	is	a	copy	of	the
given	vector	c.

The	third	constructor	creates	a	vector	with	space	for	num	objects.	If	val	is	specified,	each	of	those	objects	will	be
given	that	value.	For	example,	the	following	code	creates	a	vector	consisting	of	five	copies	of	the	integer	42:

	vector<int>	v1(5,	42);									

The	last	constructor	creates	a	vector	that	is	initialized	to	contain	the	elements	between	

	//	create	a	vector	of	random	integers

	cout	<<	"original	vector:	";

	vector<int>	v;

	for(int	i	=	0;	i	<	10;	i++)	{

			int	num	=	(int)	rand()	%	10;

			cout	<<	num	<<	"	";

			v.push_back(num);

	}

	cout	<<	endl;												

	//	find	the	first	element	of	v	that	is	even

	vector<int>::iterator	iter1	=	v.begin();

	while(iter1	!=	v.end()	&&	*iter1	%	2	!=	0)	{

			iter1++;

	}														

	//	find	the	last	element	of	v	that	is	even

	vector<int>::iterator	iter2	=	v.end();

	do	{

			iter2--;

	}	while(iter2	!=	v.begin()	&&	*iter2	%	2	!=	0);														

	//	only	proceed	if	we	find	both	numbers

	if(iter1	!=	v.end()	&&	iter2	!=	v.begin())	{

			cout	<<	"first	even	number:	"	<<	*iter1	<<	",	last	even	number:	"	<<	*iter2	<<	endl;									

			cout	<<	"new	vector:	";

			vector<int>	v2(iter1,	iter2);

			for(int	i	=	0;	i	<	v2.size();	i++)	{

					cout	<<	v2[i]	<<	"	";

			}

			cout	<<	endl;

	}

When	run,	this	code	displays	the	following	output:

	original	vector:	1	9	7	9	2	7	2	1	9	8

	first	even	number:	2,	last	even	number:	8

	new	vector:	2	7	2	1	9										

All	of	these	constructors	run	in	linear	time	except	the	first,	which	runs	in	constant	time

The	default	destructor	is	called	when	the	vector	should	be	destroyed.

cppreference.com	>	C++	Vectors	>	Vector	operators

Vector	operators
Syntax:

		#include	<vector>

		TYPE&	operator[](size_type	index);

		const	TYPE&	operator[](size_type	index)	const;

		vector	operator=(const	vector&	c2);

		bool	operator==(const	vector&	c1,	const	vector&	c2);

		bool	operator!=(const	vector&	c1,	const	vector&	c2);

		bool	operator<(const	vector&	c1,	const	vector&	c2);

		bool	operator>(const	vector&	c1,	const	vector&	c2);

		bool	operator<=(const	vector&	c1,	const	vector&	c2);

		bool	operator>=(const	vector&	c1,	const	vector&	c2);

All	of	the	C++	containers	can	be	compared	and	assigned	with	the	standard
comparison	operators:	==,	!=,	<=,	>=,	<,	>,	and	=.	Individual	elements	of	a
vector	can	be	examined	with	the	[]	operator.

Performing	a	comparison	or	assigning	one	vector	to	another	takes	linear	time.
The	[]	operator	runs	in	constant	time.

Two	vectors	are	equal	if:

1.	 Their	size	is	the	same,	and
2.	 Each	member	in	location	i	in	one	vector	is	equal	to	the	the	member	in

location	i	in	the	other	vector.

Comparisons	among	vectors	are	done	lexicographically.

For	example,	the	following	code	uses	the	[]	operator	to	access	all	of	the
elements	of	a	vector:

	vector<int>	v(5,	1);

	for(int	i	=	0;	i	<	v.size();	i++)	{

			cout	<<	"Element	"	<<	i	<<	"	is	"	<<	v[i]	<<	endl;

	}														

Related	topics:

at

cppreference.com	>	C++	Algorithms	>	accumulate

accumulate
Syntax:

		#include	<numeric>

		TYPE	accumulate(iterator	start,	iterator	end,	TYPE	val);

		TYPE	accumulate(iterator	start,	iterator	end,	TYPE	val,	BinaryFunction	f);

The	accummulate()	function	computes	the	sum	of	val	and	all	of	the	elements	in
the	range	[start,end).

If	the	binary	function	f	if	specified,	it	is	used	instead	of	the	+	operator	to
perform	the	summation.

accumulate()	runs	in	linear	time.

Related	topics:
adjacent_differencecount
inner_product
partial_sum

cppreference.com	>	C++	Algorithms	>	adjacent_difference

adjacent_difference
Syntax:

		#include	<numeric>

		iterator	adjacent_difference(iterator	start,	iterator	end,	iterator	result);

		iterator	adjacent_difference(iterator	start,	iterator	end,	iterator	result,	BinaryFunction	f);

The	adjacent_difference()	function	calculates	the	differences	between	adjacent	elements	in	the	range	[
stores	the	result	starting	at	result.

If	a	binary	function	f	is	given,	it	is	used	instead	of	the	-	operator	to	compute	the	differences.

adjacent_difference()	runs	in	linear	time.

Related	topics:
accumulatecount
inner_product
partial_sum

cppreference.com	>	C++	Algorithms	>	adjacent_find

adjacent_find
Syntax:

		#include	<algorithm>

		iterator	adjacent_find(iterator	start,	iterator	end);

		iterator	adjacent_find(iterator	start,	iterator	end,	BinPred	pr);

The	adjacent_find()	function	searches	between	start	and	end	for	two	consecutive	identical
elements.	If	the	binary	predicate	pr	is	specified,	then	it	is	used	to	test	whether	two	
are	the	same	or	not.

The	return	value	is	an	iterator	that	points	to	the	first	of	the	two	elements	that	are	found.	If	no
matching	elements	are	found,	the	returned	iterator	points	to	end.

For	example,	the	following	code	creates	a	vector	containing	the	integers	between	0	and	10
with	7	appearing	twice	in	a	row.	adjacent_find()	is	then	used	to	find	the	location	of	the	pair	of
7's:

	vector<int>	v1;

	for(int	i	=	0;	i	<	10;	i++)	{

			v1.push_back(i);

			//	add	a	duplicate	7	into	v1

			if(i	==	7)	{

					v1.push_back(i);											

			}

	}														

	vector<int>::iterator	result;

	result	=	adjacent_find(v1.begin(),	v1.end());																

	if(result	==	v1.end())	{

			cout	<<	"Did	not	find	adjacent	elements	in	v1"	<<	endl;

	}														

	else	{

			cout	<<	"Found	matching	adjacent	elements	starting	at	"	<<	*result	<<	endl;

	}														

Related	topics:
findfind_end
find_first_of
find_if
unique
unique_copy

cppreference.com	>	C++	Algorithms

accumulate
Syntax:

		#include	<numeric>

		TYPE	accumulate(iterator	start,	iterator	end,	TYPE	val);

		TYPE	accumulate(iterator	start,	iterator	end,	TYPE	val,	BinaryFunction	f);

The	accummulate()	function	computes	the	sum	of	val	and	all	of	the	elements	in
the	range	[start,end).

If	the	binary	function	f	if	specified,	it	is	used	instead	of	the	+	operator	to
perform	the	summation.

accumulate()	runs	in	linear	time.

Related	topics:
adjacent_differencecount
inner_product
partial_sum

adjacent_difference
Syntax:

		#include	<numeric>

		iterator	adjacent_difference(iterator	start,	iterator	end,	iterator	result);

		iterator	adjacent_difference(iterator	start,	iterator	end,	iterator	result,	BinaryFunction	f);

The	adjacent_difference()	function	calculates	the	differences	between	adjacent
elements	in	the	range	[start,end)	and	stores	the	result	starting	at	result.

If	a	binary	function	f	is	given,	it	is	used	instead	of	the	-	operator	to	compute	the
differences.

adjacent_difference()	runs	in	linear	time.

Related	topics:
accumulate
count
inner_product
partial_sum

adjacent_find
Syntax:

		#include	<algorithm>

		iterator	adjacent_find(iterator	start,	iterator	end);

		iterator	adjacent_find(iterator	start,	iterator	end,	BinPred	pr);

The	adjacent_find()	function	searches	between	start	and	end	for	two	consecutive
identical	elements.	If	the	binary	predicate	pr	is	specified,	then	it	is	used	to	test
whether	two	elements	are	the	same	or	not.

The	return	value	is	an	iterator	that	points	to	the	first	of	the	two	elements	that	are
found.	If	no	matching	elements	are	found,	the	returned	iterator	points	to	end.

For	example,	the	following	code	creates	a	vector	containing	the	integers	between
0	and	10	with	7	appearing	twice	in	a	row.	adjacent_find()	is	then	used	to	find	the
location	of	the	pair	of	7's:

	vector<int>	v1;

	for(int	i	=	0;	i	<	10;	i++)	{

			v1.push_back(i);

			//	add	a	duplicate	7	into	v1

			if(i	==	7)	{

					v1.push_back(i);											

			}

	}														

	vector<int>::iterator	result;

	result	=	adjacent_find(v1.begin(),	v1.end());																

	if(result	==	v1.end())	{

			cout	<<	"Did	not	find	adjacent	elements	in	v1"	<<	endl;

	}														

	else	{

			cout	<<	"Found	matching	adjacent	elements	starting	at	"	<<	*result	<<	endl;

	}														

Related	topics:
find
find_end
find_first_of
find_if
unique
unique_copy

binary_search
Syntax:

		#include	<algorithm>

		bool	binary_search(iterator	start,	iterator	end,	const	TYPE&	val);

		bool	binary_search(iterator	start,	iterator	end,	const	TYPE&	val,	Comp	f);

The	binary_search()	function	searches	from	start	to	end	for	val.	The	elements
between	start	and	end	that	are	searched	should	be	in	ascending	order	as	defined
by	the	<	operator.	Note	that	a	binary	search	will	not	work	unless	the	elements
being	searched	are	in	order.

If	val	is	found,	binary_search()	returns	true,	otherwise	false.

If	the	function	f	is	specified,	then	it	is	used	to	compare	elements.

For	example,	the	following	code	uses	binary_search()	to	determine	if	the
integers	0-9	are	in	an	array	of	integers:

	int	nums[]	=	{	-242,	-1,	0,	5,	8,	9,	11	};

	int	start	=	0;

	int	end	=	7;											

	for(int	i	=	0;	i	<	10;	i++)	{

			if(binary_search(nums+start,	nums+end,	i))	{

					cout	<<	"nums[]	contains	"	<<	i	<<	endl;

			}	else	{

					cout	<<	"nums[]	DOES	NOT	contain	"	<<	i	<<	endl;

			}

	}														

When	run,	this	code	displays	the	following	output:

	nums[]	contains	0

	nums[]	DOES	NOT	contain	1

	nums[]	DOES	NOT	contain	2

	nums[]	DOES	NOT	contain	3

	nums[]	DOES	NOT	contain	4

	nums[]	contains	5

	nums[]	DOES	NOT	contain	6

	nums[]	DOES	NOT	contain	7

	nums[]	contains	8

	nums[]	contains	9														

Related	topics:
equal_range
is_sorted
lower_bound
partial_sort
partial_sort_copy
sort
stable_sort
upper_bound

copy
Syntax:

		#include	<algorithm>

		iterator	copy(iterator	start,	iterator	end,	iterator	dest);

The	copy()	function	copies	the	elements	between	start	and	end	to	dest.	In	other
words,	after	copy()	has	run,

	*dest	==	*start

	*(dest+1)	==	*(start+1)

	*(dest+2)	==	*(start+2)

	...

	*(dest+N)	==	*(start+N)																

The	return	value	is	an	iterator	to	the	last	element	copied.	copy()	runs	in	linear
time.

For	example,	the	following	code	uses	copy()	to	copy	the	contents	of	one	vector
to	another:

	vector<int>	from_vector;

	for(int	i	=	0;	i	<	10;	i++)	{

			from_vector.push_back(i);

	}														

	vector<int>	to_vector(10);															

	copy(from_vector.begin(),	from_vector.end(),	to_vector.begin());													

	cout	<<	"to_vector	contains:	";

	for(unsigned	int	i	=	0;	i	<	to_vector.size();	i++)	{

			cout	<<	to_vector[i]	<<	"	";

	}

	cout	<<	endl;												

Related	topics:
copy_backward
copy_n
generate
remove_copy
swap
transform

copy_backward
Syntax:

		#include	<algorithm>

		iterator	copy_backward(iterator	start,	iterator	end,	iterator	dest);

copy_backward()	is	similar	to	(C++	Strings)	copy(),	in	that	both	functions	copy
elements	from	start	to	end	to	dest.	The	copy_backward()	function	,	however,
starts	depositing	elements	at	dest	and	then	works	backwards,	such	that:

	*(dest-1)	==	*(end-1)

	*(dest-2)	==	*(end-2)

	*(dest-3)	==	*(end-3)

	...

	*(dest-N)	==	*(end-N)										

The	following	code	uses	copy_backward()	to	copy	10	integers	into	the	end	of	an
empty	vector:

	vector<int>	from_vector;

	for(int	i	=	0;	i	<	10;	i++)	{

			from_vector.push_back(i);

	}														

	vector<int>	to_vector(15);															

	copy_backward(from_vector.begin(),	from_vector.end(),	to_vector.end());														

	cout	<<	"to_vector	contains:	";

	for(unsigned	int	i	=	0;	i	<	to_vector.size();	i++)	{

			cout	<<	to_vector[i]	<<	"	";

	}

	cout	<<	endl;												

The	above	code	produces	the	following	output:

	to_vector	contains:	0	0	0	0	0	0	1	2	3	4	5	6	7	8	9														

Related	topics:
copy
copy_n
swap

copy_n
Syntax:

		#include	<algorithm>

		iterator	copy_n(iterator	from,	size_t	num,	iterator	to);	

The	copy_n()	function	copies	num	elements	starting	at	from	to	the	destination
pointed	at	by	to.	To	put	it	another	way,	copy_n()	performs	num	assignments	and
duplicates	a	subrange.

The	return	value	of	copy_n()	is	an	iterator	that	points	to	the	last	element	that	was
copied,	i.e.	(to	+	num).

This	function	runs	in	linear	time.

Related	topics:
copy
copy_backward
swap

count
Syntax:

		#include	<algorithm>

		size_t	count(iterator	start,	iterator	end,	const	TYPE&	val);

The	count()	function	returns	the	number	of	elements	between	start	and	end	that
match	val.

For	example,	the	following	code	uses	count()	to	determine	how	many	integers	in
a	vector	match	a	target	value:

	vector<int>	v;

	for(int	i	=	0;	i	<	10;	i++)	{

			v.push_back(i);

	}														

	int	target_value	=	3;

	int	num_items	=	count(v.begin(),	v.end(),	target_value);													

	cout	<<	"v	contains	"	<<	num_items	<<	"	items	matching	"	<<	target_value	<<	endl;												

The	above	code	displays	the	following	output:

	v	contains	1	items	matching	3										

Related	topics:
accumulate
adjacent_difference
count_if
inner_product
partial_sum

count_if
Syntax:

		#include	<algorithm>

		size_t	count_if(iterator	start,	iterator	end,	UnaryPred	p);

The	count_if()	function	returns	the	number	of	elements	between	start	and	end
for	which	the	predicate	p	returns	true.

For	example,	the	following	code	uses	count_if()	with	a	predicate	that	returns	true
for	the	integer	3	to	count	the	number	of	items	in	an	array	that	are	equal	to	3:

	int	nums[]	=	{	0,	1,	2,	3,	4,	5,	9,	3,	13	};

	int	start	=	0;

	int	end	=	9;											

	int	target_value	=	3;

	int	num_items	=	count_if(nums+start,

																				nums+end,

																				bind2nd(equal_to<int>(),	target_value));													

	cout	<<	"nums[]	contains	"	<<	num_items	<<	"	items	matching	"	<<	target_value	<<	endl;															

When	run,	the	above	code	displays	the	following	output:

	nums[]	contains	2	items	matching	3													

Related	topics:

count

equal
Syntax:

		#include	<algorithm>

		bool	equal(iterator	start1,	iterator	end1,	iterator	start2);

		bool	equal(iterator	start1,	iterator	end1,	iterator	start2,	BinPred	p);

The	equal()	function	returns	true	if	the	elements	in	two	ranges	are	the	same.	The
first	range	of	elements	are	those	between	start1	and	end1.	The	second	range	of
elements	has	the	same	size	as	the	first	range	but	starts	at	start2.

If	the	binary	predicate	p	is	specified,	then	it	is	used	instead	of	==	to	compare
each	pair	of	elements.

For	example,	the	following	code	uses	equal()	to	compare	two	vectors	of	integers:

	vector<int>	v1;

	for(int	i	=	0;	i	<	10;	i++)	{

			v1.push_back(i);

	}														

	vector<int>	v2;

	for(int	i	=	0;	i	<	10;	i++)	{

			v2.push_back(i);

	}														

	if(equal(v1.begin(),	v1.end(),	v2.begin()))	{

			cout	<<	"v1	and	v2	are	equal"	<<	endl;

	}	else	{

			cout	<<	"v1	and	v2	are	NOT	equal"	<<	endl;

	}														

Related	topics:
find_if
lexicographical_compare
mismatch
search

equal_range
Syntax:

		#include	<algorithm>

		pair<iterator,iterator>	equal_range(iterator	first,	iterator	last,	const	

		pair<iterator,iterator>	equal_range(iterator	first,	iterator	last,	const	

The	equal_range()	function	returns	the	range	of	elements	between	first	and	last
that	are	equal	to	val.	This	function	assumes	that	the	elements	between	first	and
last	are	in	order	according	to	comp,	if	it	is	specified,	or	the	<	operator	otherwise.

equal_range()	can	be	thought	of	as	a	combination	of	the	lower_bound()	and
`upper_bound1`()	functions,	since	the	first	of	the	pair	of	iterators	that	it	returns	is
what	lower_bound()	returns	and	the	second	iterator	in	the	pair	is	what
`upper_bound1`()	returns.

For	example,	the	following	code	uses	equal_range()	to	determine	all	of	the
possible	places	that	the	number	8	can	be	inserted	into	an	ordered	vector	of
integers	such	that	the	existing	ordering	is	preserved:

	vector<int>	nums;

	nums.push_back(-242);

	nums.push_back(-1);

	nums.push_back(0);

	nums.push_back(5);

	nums.push_back(8);

	nums.push_back(8);

	nums.push_back(11);										

	pair<vector<int>::iterator,	vector<int>::iterator>	result;

	int	new_val	=	8;															

	result	=	equal_range(nums.begin(),	nums.end(),	new_val);													

	cout	<<	"The	first	place	that	"	<<	new_val	<<	"	could	be	inserted	is	before	"

						<<	*result.first	<<	",	and	the	last	place	that	it	could	be	inserted	is	before	"

						<<	*result.second	<<	endl;												

The	above	code	produces	the	following	output:

	The	first	place	that	8	could	be	inserted	is	before	8,

	and	the	last	place	that	it	could	be	inserted	is	before	11														

Related	topics:
binary_search
lower_bound
upper_bound

fill
Syntax:

		#include	<algorithm>

		#include	<algorithm>

		void	fill(iterator	start,	iterator	end,	const	TYPE&	val);

The	function	fill()	assigns	val	to	all	of	the	elements	between	start	and	end.

For	example,	the	following	code	uses	fill()	to	set	all	of	the	elements	of	a	vector
of	integers	to	-1:

	vector<int>	v1;

	for(int	i	=	0;	i	<	10;	i++)	{

			v1.push_back(i);

	}														

	cout	<<	"Before,	v1	is:	";

	for(unsigned	int	i	=	0;	i	<	v1.size();	i++)	{

			cout	<<	v1[i]	<<	"	";

	}

	cout	<<	endl;												

	fill(v1.begin(),	v1.end(),	-1);														

	cout	<<	"After,	v1	is:	";

	for(unsigned	int	i	=	0;	i	<	v1.size();	i++)	{

			cout	<<	v1[i]	<<	"	";

	}

	cout	<<	endl;												

When	run,	the	above	code	displays:

	Before,	v1	is:	0	1	2	3	4	5	6	7	8	9

	After,	v1	is:	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1												

Related	topics:
fill_n
generate
iota
transform

fill_n
Syntax:

		#include	<algorithm>

		#include	<algorithm>

		iterator	fill_n(iterator	start,	size_t	n,	const	TYPE&	val);

The	fill_n()	function	is	similar	to	(C++	I/O)	fill().	Instead	of	assigning	val	to	a
range	of	elements,	however,	fill_n()	assigns	val	to	the	first	n	elements	starting	at
start.

For	example,	the	following	code	uses	fill_n()	to	assign	-1	to	the	first	half	of	a
vector	of	integers:

	vector<int>	v1;

	for(int	i	=	0;	i	<	10;	i++)	{

			v1.push_back(i);

	}														

	cout	<<	"Before,	v1	is:	";

	for(unsigned	int	i	=	0;	i	<	v1.size();	i++)	{

			cout	<<	v1[i]	<<	"	";

	}

	cout	<<	endl;												

	fill_n(v1.begin(),	v1.size()/2,	-1);									

	cout	<<	"After,	v1	is:	";

	for(unsigned	int	i	=	0;	i	<	v1.size();	i++)	{

			cout	<<	v1[i]	<<	"	";

	}

	cout	<<	endl;												

When	run,	this	code	displays:

	Before,	v1	is:	0	1	2	3	4	5	6	7	8	9

	After,	v1	is:	-1	-1	-1	-1	-1	5	6	7	8	9									

Related	topics:
fill

find
Syntax:

		#include	<algorithm>

		iterator	find(iterator	start,	iterator	end,	const	TYPE&	val);

The	find()	algorithm	looks	for	an	element	matching	val	between	start	and	end.	If
an	element	matching	val	is	found,	the	return	value	is	an	iterator	that	points	to
that	element.	Otherwise,	the	return	value	is	an	iterator	that	points	to	end.

For	example,	the	following	code	uses	find()	to	search	a	vector	of	integers	for	the
number	3:

	int	num_to_find	=	3;											

	vector<int>	v1;

	for(int	i	=	0;	i	<	10;	i++)	{

			v1.push_back(i);

	}														

	vector<int>::iterator	result;

	result	=	find(v1.begin(),	v1.end(),	num_to_find);												

	if(result	==	v1.end())	{

			cout	<<	"Did	not	find	any	element	matching	"	<<	num_to_find	<<	endl;

	}														

	else	{

			cout	<<	"Found	a	matching	element:	"	<<	*result	<<	endl;

	}														

In	the	next	example,	shown	below,	the	find()	function	is	used	on	an	array	of
integers.	This	example	shows	how	the	C++	Algorithms	can	be	used	to
manipulate	arrays	and	pointers	in	the	same	manner	that	they	manipulate
containers	and	iterators:

	int	nums[]	=	{	3,	1,	4,	1,	5,	9	};

	int	num_to_find	=	5;

	int	start	=	0;

	int	end	=	2;

	int*	result	=	find(nums	+	start,	nums	+	end,	num_to_find);																

	if(result	==	nums	+	end)	{

			cout	<<	"Did	not	find	any	number	matching	"	<<	num_to_find	<<	endl;

	}	else	{

			cout	<<	"Found	a	matching	number:	"	<<	*result	<<	endl;

	}														

Related	topics:
adjacent_find
find_end
find_first_of
find_if
mismatch
search

find_end
Syntax:

		#include	<algorithm>

		iterator	find_end(iterator	start,	iterator	end,	iterator	seq_start,	iterator	seq_end);

		iterator	find_end(iterator	start,	iterator	end,	iterator	seq_start,	iterator	seq_end,	BinPred	bp);

The	find_end()	function	searches	for	the	sequence	of	elements	denoted	by
seq_start	and	seq_end.	If	such	a	sequence	if	found	between	start	and	end,	an
iterator	to	the	first	element	of	the	last	found	sequence	is	returned.	If	no	such
sequence	is	found,	an	iterator	pointing	to	end	is	returned.

If	the	binary	predicate	bp	is	specified,	then	it	is	used	to	when	elements	match.

For	example,	the	following	code	uses	find_end()	to	search	for	two	different
sequences	of	numbers.	The	the	first	chunk	of	code,	the	last	occurence	of	"1	2	3"
is	found.	In	the	second	chunk	of	code,	the	sequence	that	is	being	searched	for	is
not	found:

	int	nums[]	=	{	1,	2,	3,	4,	1,	2,	3,	4,	1,	2,	3,	4	};

	int*	result;

	int	start	=	0;

	int	end	=	11;										

	int	target1[]	=	{	1,	2,	3	};

	result	=	find_end(nums	+	start,	nums	+	end,	target1	+	0,	target1	+	2);

	if(*result	==	nums[end])	{

			cout	<<	"Did	not	find	any	subsequence	matching	{	1,	2,	3	}"	<<	endl;

	}	else	{

			cout	<<	"The	last	matching	subsequence	is	at:	"	<<	*result	<<	endl;

	}														

	int	target2[]	=	{	3,	2,	3	};

	result	=	find_end(nums	+	start,	nums	+	end,	target2	+	0,	target2	+	2);

	if(*result	==	nums[end])	{

			cout	<<	"Did	not	find	any	subsequence	matching	{	3,	2,	3	}"	<<	endl;

	}	else	{

			cout	<<	"The	last	matching	subsequence	is	at:	"	<<	*result	<<	endl;

	}														

Related	topics:
adjacent_find
find
find_first_of
find_if
search_n

find_first_of
Syntax:

		#include	<algorithm>

		iterator	find_first_of(iterator	start,	iterator	end,	iterator	find_start,	iterator	find_end);

		iterator	find_first_of(iterator	start,	iterator	end,	iterator	find_start,	iterator	find_end,	BinPred	bp);

The	find_first_of()	function	searches	for	the	first	occurence	of	any	element
between	find_start	and	find_end.	The	data	that	are	searched	are	those	between
start	and	end.

If	any	element	between	find_start	and	find_end	is	found,	an	iterator	pointing	to
that	element	is	returned.	Otherwise,	an	iterator	pointing	to	end	is	returned.

For	example,	the	following	code	searches	for	a	9,	4,	or	7	in	an	array	of	integers:

	int	nums[]	=	{	0,	1,	2,	3,	4,	5,	6,	7,	8,	9,	10	};

	int*	result;

	int	start	=	0;

	int	end	=	10;										

	int	targets[]	=	{	9,	4,	7	};

	result	=	find_first_of(nums	+	start,	nums	+	end,	targets	+	0,	targets	+	2);

	if(*result	==	nums[end])	{

			cout	<<	"Did	not	find	any	of	{	9,	4,	7	}"	<<	endl;

	}	else	{

			cout	<<	"Found	a	matching	target:	"	<<	*result	<<	endl;

	}														

Related	topics:
adjacent_find
find
find_end
find_if
(Standard	C	String	and	Character)	strpbrk

find_if
Syntax:

		#include	<algorithm>

		iterator	find_if(iterator	start,	iterator	end,	UnPred	up);

The	find_if()	function	searches	for	the	first	element	between	start	and	end	for
which	the	unary	predicate	up	returns	true.

If	such	an	element	is	found,	an	iterator	pointing	to	that	element	is	returned.

Otherwise,	an	iterator	pointing	to	end	is	returned.

For	example,	the	following	code	uses	find_if()	and	a	"greater-than-zero"	unary
predicate	to	the	first	positive,	non-zero	number	in	a	list	of	numbers:

	int	nums[]	=	{	0,	-1,	-2,	-3,	-4,	342,	-5	};

	int*	result;

	int	start	=	0;

	int	end	=	7;											

	result	=	find_if(nums	+	start,	nums	+	end,	bind2nd(greater<int>(),	0));

	if(*result	==	nums[end])	{

			cout	<<	"Did	not	find	any	number	greater	than	zero"	<<	endl;

	}	else	{

			cout	<<	"Found	a	positive	non-zero	number:	"	<<	*result	<<	endl;

	}														

Related	topics:
adjacent_find
equal
find
find_end
find_first_of
search_n

for_each
Syntax:

		#include	<algorithm>

		UnaryFunction	for_each(iterator	start,	iterator	end,	UnaryFunction	f);

The	for_each()	algorithm	applies	the	function	f	to	each	of	the	elements	between
start	and	end.	The	return	value	of	for_each()	is	f.

For	example,	the	following	code	snippets	define	a	unary	function	then	use	it	to
increment	all	of	the	elements	of	an	array:

	template<class	TYPE>	struct	increment	:	public	unary_function<TYPE,	void>	{

			void	operator()	(TYPE&	x)	{

					x++;

			}

	};													

	...												

	int	nums[]	=	{3,	4,	2,	9,	15,	267};

	const	int	N	=	6;															

	cout	<<	"Before,	nums[]	is:	";

	for(int	i	=	0;	i	<	N;	i++)	{

			cout	<<	nums[i]	<<	"	";

	}

	cout	<<	endl;												

	for_each(nums,	nums	+	N,	increment<int>());												

	cout	<<	"After,	nums[]	is:	";

	for(int	i	=	0;	i	<	N;	i++)	{

			cout	<<	nums[i]	<<	"	";

	}

	cout	<<	endl;												

The	above	code	displays	the	following	output:

	Before,	nums[]	is:	3	4	2	9	15	267

	After,	nums[]	is:	4	5	3	10	16	268														

generate
Syntax:

		#include	<algorithm>

		void	generate(iterator	start,	iterator	end,	Generator	g);

The	generate()	function	runs	the	Generator	function	object	g	a	number	of	times,
saving	the	result	of	each	execution	in	the	range	[start,end).

Related	topics:
copy
fill

generate_n
iota
transform

generate_n
Syntax:

		#include	<algorithm>

		iterator	generate_n(iterator	result,	size_t	num,	Generator	g);

The	generate_n()	function	runs	the	Generator	function	object	g	num	times,
saving	the	result	of	each	execution	in	result,	(result+1),	etc.

Related	topics:
generate

includes
Syntax:

		#include	<algorithm>

		bool	includes(iterator	start1,	iterator	end1,	iterator	start2,	iterator	end2);

		bool	includes(iterator	start1,	iterator	end1,	iterator	start2,	iterator	end2,	StrictWeakOrdering	cmp);

The	includes()	algorithm	returns	true	if	every	element	in	[start2,end2)	is	also	in
[start1,end1).	Both	of	the	given	ranges	must	be	sorted	in	ascending	order.

By	default,	the	<	operator	is	used	to	compare	elements.	If	the	strict	weak
ordering	function	object	cmp	is	given,	then	it	is	used	instead.

includes()	runs	in	linear	time.

Related	topics:
set_difference
set_intersection

set_symmetric_difference
set_union

inner_product
Syntax:

		#include	<numeric>

		TYPE	inner_product(iterator	start1,	iterator	end1,	iterator	start2,	

		TYPE	inner_product(iterator	start1,	iterator	end1,	iterator	start2,	

The	inner_product()	function	computes	the	inner	product	of	[start1,end1)	and	a
range	of	the	same	size	starting	at	start2.

inner_product()	runs	in	linear	time.

Related	topics:
accumulate
adjacent_difference
count
partial_sum

inplace_merge
Syntax:

		#include	<algorithm>

		inline	void	inplace_merge(iterator	start,	iterator	middle,	iterator	end);

		inline	void	inplace_merge(iterator	start,	iterator	middle,	iterator	end,	StrictWeakOrdering	cmp);

The	inplace_merge()	function	is	similar	to	the	merge()	function,	but	instead	of
creating	a	new	sorted	range	of	elements,	inplace_merge()	alters	the	existing
ranges	to	perform	the	merge	in-place.

Related	topics:
merge

iota
Syntax:

		#include	<numeric>

		void	iota(iterator	start,	iterator	end,	TYPE	value);

The	iota()	algorithm	assigns	value	to	the	first	element	in	the	range	[start,end),
value+1	to	the	second	element,	and	so	on.

iota()	runs	in	linear	time.

Related	topics:
fill
generate
partial_sum

is_heap
Syntax:

		#include	<algorithm>

		bool	is_heap(iterator	start,	iterator	end);

		bool	is_heap(iterator	start,	iterator	end,	StrictWeakOrdering	cmp);

The	is_heap()	function	returns	true	if	the	given	range	[start,end)	is	a	heap.

If	the	strict	weak	ordering	comparison	function	object	cmp	is	given,	then	it	is
used	instead	of	the	<	operator	to	compare	elements.

is_heap()	runs	in	linear	time.

Related	topics:
make_heap
pop_heap
push_heap

sort_heap

is_sorted
Syntax:

		#include	<algorithm>

		bool	is_sorted(iterator	start,	iterator	end);

		bool	is_sorted(iterator	start,	iterator	end,	StrictWeakOrdering	cmp);

The	is_sorted()	algorithm	returns	true	if	the	elements	in	the	range	[start,end)	are
sorted	in	ascending	order.

By	default,	the	<	operator	is	used	to	compare	elements.	If	the	strict	weak	order
function	object	cmp	is	given,	then	it	is	used	instead.

is_sorted()	runs	in	linear	time.

Related	topics:
binary_search
partial_sort
partial_sort_copy
sort
stable_sort

iter_swap
Syntax:

		#include	<algorithm>

		inline	void	iter_swap(iterator	a,	iterator	b);

A	call	to	iter_swap()	exchanges	the	values	of	two	elements	exactly	as	a	call	to

	swap(*a,	*b);																

would.

Related	topics:
swap
swap_ranges

lexicographical_compare
Syntax:

		#include	<algorithm>

		bool	lexicographical_compare(iterator	start1,	iterator	end1,	iterator	start2,	iterator	end2);

		bool	lexicographical_compare(iterator	start1,	iterator	end1,	iterator	start2,	iterator	end2,	BinPred	p);

The	lexicographical_compare()	function	returns	true	if	the	range	of	elements
[start1,end1)	is	lexicographically	less	than	the	range	of	elements	[start2,end2).

If	you're	confused	about	what	lexicographic	means,	it	might	help	to	know	that
dictionaries	are	ordered	lexicographically.

lexicographical_compare()	runs	in	linear	time.

Related	topics:
equal
lexicographical_compare_3way
mismatch
search

lexicographical_compare_3way
Syntax:

		#include	<algorithm>

		int	lexicographical_compare_3way(iterator	start1,	iterator	end1,	iterator	start2,	iterator	end2);

The	lexicographical_compare_3way()	function	compares	the	first	range,	defined

by	[start1,end1)	to	the	second	range,	defined	by	[start2,end2).

If	the	first	range	is	lexicographically	less	than	the	second	range,	this	function
returns	a	negative	number.	If	the	first	range	is	lexicographically	greater	than	the
second,	a	positive	number	is	returned.	Zero	is	returned	if	neither	range	is
lexicographically	greater	than	the	other.

lexicographical_compare_3way()	runs	in	linear	time.

Related	topics:
lexicographical_compare

lower_bound
Syntax:

		#include	<algorithm>

		iterator	lower_bound(iterator	first,	iterator	last,		const	TYPE&	val);

		iterator	lower_bound(iterator	first,	iterator	last,	const	TYPE&	val,	CompFn	f);

The	lower_bound()	function	is	a	type	of	binary_search().	This	function	searches
for	the	first	place	that	val	can	be	inserted	into	the	ordered	range	defined	by	first
and	last	that	will	not	mess	up	the	existing	ordering.

The	return	value	of	lower_bound()	is	an	iterator	that	points	to	the	location	where
val	can	be	safely	inserted.	Unless	the	comparison	function	f	is	specified,	the	<
operator	is	used	for	ordering.

For	example,	the	following	code	uses	lower_bound()	to	insert	the	number	7	into
an	ordered	vector	of	integers:

	vector<int>	nums;

	nums.push_back(-242);

	nums.push_back(-1);

	nums.push_back(0);

	nums.push_back(5);

	nums.push_back(8);

	nums.push_back(8);

	nums.push_back(11);										

	cout	<<	"Before	nums	is:	";

	for(unsigned	int	i	=	0;	i	<	nums.size();	i++)	{

			cout	<<	nums[i]	<<	"	";

	}

	cout	<<	endl;												

	vector<int>::iterator	result;

	int	new_val	=	7;															

	result	=	lower_bound(nums.begin(),	nums.end(),	new_val);													

	nums.insert(result,	new_val);																

	cout	<<	"After,	nums	is:	";

	for(unsigned	int	i	=	0;	i	<	nums.size();	i++)	{

			cout	<<	nums[i]	<<	"	";

	}

	cout	<<	endl;												

The	above	code	produces	the	following	output:

	Before	nums	is:	-242	-1	0	5	8	8	11

	After,	nums	is:	-242	-1	0	5	7	8	8	11											

Related	topics:
binary_search
equal_range

make_heap
Syntax:

		#include	<algorithm>

		void	make_heap(iterator	start,	iterator	end);

		void	make_heap(iterator	start,	iterator	end,	StrictWeakOrdering	cmp);

The	make_heap()	function	turns	the	given	range	of	elements	[start,end)	into	a
heap.

If	the	strict	weak	ordering	comparison	function	object	cmp	is	given,	then	it	is
used	instead	of	the	<	operator	to	compare	elements.

make_heap()	runs	in	linear	time.

Related	topics:
is_heap
pop_heap
push_heap
sort_heap

max
Syntax:

		#include	<algorithm>

		const	TYPE&	max(const	TYPE&	x,	const	TYPE&	y);

		const	TYPE&	max(const	TYPE&	x,	const	TYPE&	y,	BinPred	p);

The	max()	function	returns	the	greater	of	x	and	y.

If	the	binary	predicate	p	is	given,	then	it	will	be	used	instead	of	the	<	operator	to
compare	the	two	elements.

Example	code:

For	example,	the	following	code	snippet	displays	various	uses	of	the	max()
function:

	cout	<<	"Max	of	1	and	9999	is	"	<<	max(1,	9999)	<<	endl;

	cout	<<	"Max	of	'a'	and	'b'	is	"	<<	max('a',	'b')	<<	endl;

	cout	<<	"Max	of	3.14159	and	2.71828	is	"	<<	max(3.14159,	2.71828)	<<	endl;																

When	run,	this	code	displays:

	Max	of	1	and	9999	is	9999

	Max	of	'a'	and	'b'	is	b

	Max	of	3.14159	and	2.71828	is	3.14159										

Related	topics:
max_element
min

min_element

max_element
Syntax:

		#include	<algorithm>

		iterator	max_element(iterator	start,	iterator	end);

		iterator	max_element(iterator	start,	iterator	end,	BinPred	p);

The	max_element()	function	returns	an	iterator	to	the	largest	element	in	the
range	[start,end).

If	the	binary	predicate	p	is	given,	then	it	will	be	used	instead	of	the	<	operator	to
determine	the	largest	element.

Example	code:

For	example,	the	following	code	uses	the	max_element()	function	to	determine
the	largest	integer	in	an	array	and	the	largest	character	in	a	vector	of	characters:

	int	array[]	=	{	3,	1,	4,	1,	5,	9	};

	unsigned	int	array_size	=	6;

	cout	<<	"Max	element	in	array	is	"	<<	*max_element(array,	array+array_size)	<<	endl;														

	vector<char>	v;

	v.push_back('a');	v.push_back('b');	v.push_back('c');	v.push_back('d');

	cout	<<	"Max	element	in	the	vector	v	is	"	<<	*max_element(v.begin(),	v.end())	<<	endl;											

When	run,	the	above	code	displays	this	output:

	Max	element	in	array	is	9

	Max	element	in	the	vector	v	is	d															

Related	topics:
max
min
min_element

merge
Syntax:

		#include	<algorithm>

		iterator	merge(iterator	start1,	iterator	end1,	iterator	start2,	iterator	end2,	iterator	result);

		iterator	merge(iterator	start1,	iterator	end1,	iterator	start2,	iterator	end2,	iterator	result,	StrictWeakOrdering	cmp);

The	merge()	function	combines	two	sorted	ranges	[start1,end1)	and	[start2,end2)
into	a	single	sorted	range,	stored	starting	at	result.	The	return	value	of	this
function	is	an	iterator	to	the	end	of	the	merged	range.

If	the	strict	weak	ordering	function	object	cmp	is	given,	then	it	is	used	in	place	of
the	<	operator	to	perform	comparisons	between	elements.

merge()	runs	in	linear	time.

Related	topics:
inplace_merge
set_union
sort

min
Syntax:

		#include	<algorithm>

		const	TYPE&	min(const	TYPE&	x,	const	TYPE&	y);

		const	TYPE&	min(const	TYPE&	x,	const	TYPE&	y,	BinPred	p);

The	min()	function,	unsurprisingly,	returns	the	smaller	of	x	and	y.

By	default,	the	<	operator	is	used	to	compare	the	two	elements.	If	the	binary
predicate	p	is	given,	it	will	be	used	instead.

Related	topics:

max
max_element
min_element

min_element
Syntax:

		#include	<algorithm>

		iterator	min_element(iterator	start,	iterator	end);

		iterator	min_element(iterator	start,	iterator	end,	BinPred	p);

The	min_element()	function	returns	an	iterator	to	the	smallest	element	in	the
range	[start,end).

If	the	binary	predicate	p	is	given,	then	it	will	be	used	instead	of	the	<	operator	to
determine	the	smallest	element.

Related	topics:
max
max_element
min

mismatch
Syntax:

		#include	<algorithm>

		pair	<iterator1,iterator2>	mismatch(iterator	start1,	iterator	end1,	iterator	start2);

		pair	<iterator1,iterator2>	mismatch(iterator	start1,	iterator	end1,	iterator	start2,	BinPred	p);

The	mismatch()	function	compares	the	elements	in	the	range	defined	by
[start1,end1)	to	the	elements	in	a	range	of	the	same	size	starting	at	start2.	The
return	value	of	mismatch()	is	the	first	location	where	the	two	ranges	differ.

If	the	optional	binary	predicate	p	is	given,	then	it	is	used	to	compare	elements

from	the	two	ranges.

The	mismatch()	algorithm	runs	in	linear	time.

Related	topics:
equal
find
lexicographical_compare
search

next_permutation
Syntax:

		#include	<algorithm>

		bool	next_permutation(iterator	start,	iterator	end);

		bool	next_permutation(iterator	start,	iterator	end,	StrictWeakOrdering	cmp);

The	next_permutation()	function	attempts	to	transform	the	given	range	of
elements	[start,end)	into	the	next	lexicographically	greater	permutation	of
elements.	If	it	succeeds,	it	returns	true,	otherwise,	it	returns	false.

If	a	strict	weak	ordering	function	object	cmp	is	provided,	it	is	used	in	lieu	of	the
<	operator	when	comparing	elements.

Related	topics:
prev_permutation
random_sample
random_sample_n
random_shuffle

nth_element
Syntax:

		#include	<algorithm>

		void	nth_element(iterator	start,	iterator	middle,	iterator	end);

		void	nth_element(iterator	start,	iterator	middle,	iterator	end,	StrictWeakOrdering	cmp);

The	nth_element()	function	semi-sorts	the	range	of	elements	defined	by
[start,end).	It	puts	the	element	that	middle	points	to	in	the	place	that	it	would	be
if	the	entire	range	was	sorted,	and	it	makes	sure	that	none	of	the	elements	before
that	element	are	greater	than	any	of	the	elements	that	come	after	that	element.

nth_element()	runs	in	linear	time	on	average.

Related	topics:
partial_sort

partial_sort
Syntax:

		#include	<algorithm>

		void	partial_sort(iterator	start,	iterator	middle,	iterator	end);

		void	partial_sort(iterator	start,	iterator	middle,	iterator	end,	StrictWeakOrdering	cmp);

The	partial_sort()	function	arranges	the	first	N	elements	of	the	range	[start,end)
in	ascending	order.	N	is	defined	as	the	number	of	elements	between	start	and
middle.

By	default,	the	<	operator	is	used	to	compare	two	elements.	If	the	strict	weak
ordering	comparison	function	cmp	is	given,	it	is	used	instead.

Related	topics:
binary_search
is_sorted
nth_element
partial_sort_copy
sort
stable_sort

partial_sort_copy
Syntax:

		#include	<algorithm>

		iterator	partial_sort_copy(iterator	start,	iterator	end,	iterator	result_start,	iterator	result_end);

		iterator	partial_sort_copy(iterator	start,	iterator	end,	iterator	result_start,	iterator	result_end,	StrictWeakOrdering	cmp);

The	partial_sort_copy()	algorithm	behaves	like	partial_sort(),	except	that	instead
of	partially	sorting	the	range	in-place,	a	copy	of	the	range	is	created	and	the
sorting	takes	place	in	the	copy.	The	initial	range	is	defined	by	[start,end)	and	the
location	of	the	copy	is	defined	by	[result_start,result_end).

partial_sort_copy()	returns	an	iterator	to	the	end	of	the	copied,	partially-sorted
range	of	elements.

Related	topics:
binary_search
is_sorted
partial_sort
sort
stable_sort

partial_sum
Syntax:

		#include	<numeric>

		iterator	partial_sum(iterator	start,	iterator	end,	iterator	result);

		iterator	partial_sum(iterator	start,	iterator	end,	iterator	result,	BinOp	p);

The	partial_sum()	function	calculates	the	partial	sum	of	a	range	defined	by
[start,end),	storing	the	output	at	result.

start	is	assigned	to	*result,	the	sum	of	*start	and	*(start	+	1)	is	assigned	to
*(result	+	1),	etc.

partial_sum()	runs	in	linear	time.

Related	topics:
accumulate
adjacent_difference
count
inner_product
iota

partition
Syntax:

		#include	<algorithm>

		iterator	partition(iterator	start,	iterator	end,	Predicate	p);

The	partition()	algorithm	re-orders	the	elements	in	[start,end)	such	that	the
elements	for	which	the	predicate	p	returns	true	come	before	the	elements	for
which	p	returns	false.

In	other	words,	partition()	uses	p	to	divide	the	elements	into	two	groups.

The	return	value	of	partition()	is	an	iterator	to	the	first	element	for	which	p
returns	false.

parition()	runs	in	linear	time.

Related	topics:
stable_partition

pop_heap
Syntax:

		#include	<algorithm>

		void	pop_heap(iterator	start,	iterator	end);

		void	pop_heap(iterator	start,	iterator	end,	StrictWeakOrdering	cmp);

The	pop_heap()	function	removes	the	larges	element	(defined	as	the	element	at
the	front	of	the	heap)	from	the	given	heap.

If	the	strict	weak	ordering	comparison	function	object	cmp	is	given,	then	it	is
used	instead	of	the	<	operator	to	compare	elements.

pop_heap()	runs	in	logarithmic	time.

Related	topics:
is_heap
make_heap
push_heap
sort_heap

power
Syntax:

		#include	<numeric>

		inline	TYPE	power(TYPE	x,	int	N);

The	power()	function	returns	x	raised	to	the	power	of	N,	where	N	is	some	non-
negative	integer.

prev_permutation
Syntax:

		#include	<algorithm>

		bool	prev_permutation(iterator	start,	iterator	end);

		bool	prev_permutation(iterator	start,	iterator	end,	StrictWeakOrdering	cmp);

The	prev_permutation()	function	attempts	to	transform	the	given	range	of
elements	[start,end)	into	the	next	lexicographically	smaller	permutation	of

elements.	If	it	succeeds,	it	returns	true,	otherwise,	it	returns	false.

If	a	strict	weak	ordering	function	object	cmp	is	provided,	it	is	used	instead	of	the
<	operator	when	comparing	elements.

Related	topics:
next_permutation
random_sample
random_sample_n
random_shuffle

push_heap
Syntax:

		#include	<algorithm>

		void	push_heap(iterator	start,	iterator	end);

		void	push_heap(iterator	start,	iterator	end,	StrictWeakOrdering	cmp);

The	push_heap()	function	adds	an	element	(defined	as	the	last	element	before
end)	to	a	heap	(defined	as	the	range	of	elements	between	[start,''end-1).

If	the	strict	weak	ordering	comparison	function	object	cmp	is	given,	then	it	is
used	instead	of	the	<	operator	to	compare	elements.

push_heap()	runs	in	logarithmic	time.

Related	topics:
is_heap
make_heap
pop_heap
sort_heap

random_sample
Syntax:

		#include	<algorithm>

		iterator	random_sample(iterator	start1,	iterator	end1,	iterator	start2,	iterator	end2);

		iterator	random_sample(iterator	start1,	iterator	end1,	iterator	start2,	iterator	end2,	RandomNumberGenerator&	rnd);

The	random_sample()	algorithm	randomly	copies	elements	from	[start1,end1)	to
[start2,end2).	Elements	are	chosen	with	uniform	probability	and	elements	from
the	input	range	will	appear	at	most	once	in	the	output	range.

If	a	random	number	generator	function	object	rnd	is	supplied,	then	it	will	be
used	instead	of	an	internal	random	number	generator.

The	return	value	of	random_sample()	is	an	iterator	to	the	end	of	the	output
range.

random_sample()	runs	in	linear	time.

Related	topics:
next_permutation
prev_permutation
random_sample_n
random_shuffle

random_sample_n
Syntax:

		#include	<algorithm>

		iterator	random_sample_n(iterator	start,	iterator	end,	iterator	result,	size_t	N);

		iterator	random_sample_n(iterator	start,	iterator	end,	iterator	result,	size_t	N,	RandomNumberGenerator&	rnd);

The	random_sample_n()	algorithm	randomly	copies	N	elements	from	[start,end)
to	result.	Elements	are	chosen	with	uniform	probability	and	elements	from	the
input	range	will	appear	at	most	once	in	the	output	range.	Element	order	is
preserved	from	the	input	range	to	the	output	range.

If	a	random	number	generator	function	object	rnd	is	supplied,	then	it	will	be
used	instead	of	an	internal	random	number	generator.

The	return	value	of	random_sample_n()	is	an	iterator	to	the	end	of	the	output
range.

random_sample_n()	runs	in	linear	time.

Related	topics:
next_permutation
prev_permutation
random_sample
random_shuffle

random_shuffle
Syntax:

		#include	<algorithm>

		void	random_shuffle(iterator	start,	iterator	end);

		void	random_shuffle(iterator	start,	iterator	end,	RandomNumberGenerator&	rnd);

The	random_shuffle()	function	randomly	re-orders	the	elements	in	the	range
[start,end).	If	a	random	number	generator	function	object	rnd	is	supplied,	it	will
be	used	instead	of	an	internal	random	nunber	generator.

Related	topics:
next_permutation
prev_permutation
random_sample
random_sample_n

remove
Syntax:

		#include	<algorithm>

		iterator	remove(iterator	start,	iterator	end,	const	TYPE&	val);

The	remove()	algorithm	removes	all	of	the	elements	in	the	range	[start,end)	that
are	equal	to	val.

The	return	value	of	this	function	is	an	iterator	to	the	last	element	of	the	new
sequence	that	should	contain	no	elements	equal	to	val.

The	remove()	function	runs	in	linear	time.

Related	topics:
remove_copy
remove_copy_if
remove_if
unique
unique_copy

remove_copy
Syntax:

		#include	<algorithm>

		iterator	remove_copy(iterator	start,	iterator	end,	iterator	result,	const	

The	remove_copy()	algorithm	copies	the	range	[start,end)	to	result	but	omits	any
elements	that	are	equal	to	val.

remove_copy()	returns	an	iterator	to	the	end	of	the	new	range,	and	runs	in	linear
time.

Related	topics:
copy
remove
remove_copy_if
remove_if

remove_copy_if

Syntax:

		#include	<algorithm>

		iterator	remove_copy_if(iterator	start,	iterator	end,	iterator	result,	Predicate	p);

The	remove_copy_if()	function	copies	the	range	of	elements	[start,end)	to	result,
omitting	any	elements	for	which	the	predicate	function	p	returns	true.

The	return	value	of	remove_copy_if()	is	an	iterator	the	end	of	the	new	range.

remove_copy_if()	runs	in	linear	time.

Related	topics:
remove
remove_copy
remove_if

remove_if
Syntax:

		#include	<algorithm>

		iterator	remove_if(iterator	start,	iterator	end,	Predicate	p);

The	remove_if()	function	removes	all	elements	in	the	range	[start,end)	for	which
the	predicate	p	returns	true.

The	return	value	of	this	function	is	an	iterator	to	the	last	element	of	the	pruned
range.

remove_if()	runs	in	linear	time.

Related	topics:
remove
remove_copy
remove_copy_if

replace
Syntax:

		#include	<algorithm>

		void	replace(iterator	start,	iterator	end,	const	TYPE&	old_value,	const	

The	replace()	function	sets	every	element	in	the	range	[start,end)	that	is	equal	to
old_value	to	have	new_value	instead.

replace()	runs	in	linear	time.

Related	topics:
replace_copy
replace_copy_if
replace_if

replace_copy
Syntax:

		#include	<algorithm>

		iterator	replace_copy(iterator	start,	iterator	end,	iterator	result,	const	

The	replace_copy()	function	copies	the	elements	in	the	range	[start,end)	to	the
destination	result.	Any	elements	in	the	range	that	are	equal	to	old_value	are
replaced	with	new_value.

Related	topics:
replace

replace_copy_if
Syntax:

		#include	<algorithm>

		iterator	replace_copy_if(iterator	start,	iterator	end,	iterator	result,	Predicate	p,	const	

The	replace_copy_if()	function	copies	the	elements	in	the	range	[start,end)	to	the
destination	result.	Any	elements	for	which	the	predicate	p	is	true	are	replaced
with	new_value.

Related	topics:
replace

replace_if
Syntax:

		#include	<algorithm>

		void	replace_if(iterator	start,	iterator	end,	Predicate	p,	const	

The	replace_if()	function	assigns	every	element	in	the	range	[start,end)	for
which	the	predicate	function	p	returns	true	the	value	of	new_value.

This	function	runs	in	linear	time.

Related	topics:
replace

reverse
Syntax:

		#include	<algorithm>

		void	reverse(iterator	start,	iterator	end);

The	reverse()	algorithm	reverses	the	order	of	elements	in	the	range	[start,end).

Related	topics:
reverse_copy

reverse_copy
Syntax:

		#include	<algorithm>

		iterator	reverse_copy(iterator	start,	iterator	end,	iterator	result);

The	reverse_copy()	algorithm	copies	the	elements	in	the	range	[start,end)	to
result	such	that	the	elements	in	the	new	range	are	in	reverse	order.

The	return	value	of	the	reverse_copy()	function	is	an	iterator	the	end	of	the	new
range.

Related	topics:
reverse

rotate
Syntax:

		#include	<algorithm>

		inline	iterator	rotate(iterator	start,	iterator	middle,	iterator	end);

The	rotate()	algorithm	moves	the	elements	in	the	range	[start,end)	such	that	the
middle	element	is	now	where	start	used	to	be,	(middle+1)	is	now	at	(start+1),
etc.

The	return	value	of	rotate()	is	an	iterator	to	start	+	(end-middle).

rotate()	runs	in	linear	time.

Related	topics:
rotate_copy

rotate_copy
Syntax:

		#include	<algorithm>

		iterator	rotate_copy(iterator	start,	iterator	middle,	iterator	end,	iterator	result);

The	rotate_copy()	algorithm	is	similar	to	the	rotate()	algorithm,	except	that	the
range	of	elements	is	copied	to	result	before	being	rotated.

Related	topics:
rotate

search
Syntax:

		#include	<algorithm>

		iterator	search(iterator	start1,	iterator	end1,	iterator	start2,	iterator	end2);

		iterator	search(iterator	start1,	iterator	end1,	iterator	start2,	iterator	end2,	BinPred	p);

The	search()	algorithm	looks	for	the	elements	[start2,end2)	in	the	range
[start1,end1).	If	the	optional	binary	predicate	p	is	provided,	then	it	is	used	to
perform	comparisons	between	elements.

If	search()	finds	a	matching	subrange,	then	it	returns	an	iterator	to	the	beginning
of	that	matching	subrange.	If	no	match	is	found,	an	iterator	pointing	to	end1	is
returned.

In	the	worst	case,	search()	runs	in	quadratic	time,	on	average,	it	runs	in	linear
time.

Related	topics:
equal
find
lexicographical_compare

mismatch
search_n

search_n
Syntax:

		#include	<algorithm>

		iterator	search_n(iterator	start,	iterator	end,	size_t	num,	const	

		iterator	search_n(iterator	start,	iterator	end,	size_t	num,	const	

The	search_n()	function	looks	for	num	occurances	of	val	in	the	range	[start,end).

If	num	consecutive	copies	of	val	are	found,	search_n()	returns	an	iterator	to	the
beginning	of	that	sequence.	Otherwise	it	returns	an	iterator	to	end.

If	the	optional	binary	predicate	p	is	given,	then	it	is	used	to	perform	comparisons
between	elements.

This	function	runs	in	linear	time.

Related	topics:
find_end
find_if
search

set_difference
Syntax:

		#include	<algorithm>

		iterator	set_difference(iterator	start1,	iterator	end1,	iterator	start2,	iterator	end2,	iterator	result);

		iterator	set_difference(iterator	start1,	iterator	end1,	iterator	start2,	iterator	end2,	iterator	result,	StrictWeakOrdering	cmp);

The	set_difference()	algorithm	computes	the	difference	between	two	sets	defined
by	[start1,end1)	and	[start2,end2)	and	stores	the	difference	starting	at	result.

Both	of	the	sets,	given	as	ranges,	must	be	sorted	in	ascending	order.

The	return	value	of	set_difference()	is	an	iterator	to	the	end	of	the	result	range.

If	the	strict	weak	ordering	comparison	function	object	cmp	is	not	specified,
set_difference()	will	use	the	<	operator	to	compare	elements.

Related	topics:
includes
set_intersection
set_symmetric_difference
set_union

set_intersection
Syntax:

		#include	<algorithm>

		iterator	set_intersection(iterator	start1,	iterator	end1,	iterator	start2,	iterator	end2,	iterator	result);

		iterator	set_intersection(iterator	start1,	iterator	end1,	iterator	start2,	iterator	end2,	iterator	result,	StrictWeakOrdering	cmp);

The	set_intersection()	algorithm	computes	the	intersection	of	the	two	sets
defined	by	[start1,end1)	and	[start2,end2)	and	stores	the	intersection	starting	at
result.

Both	of	the	sets,	given	as	ranges,	must	be	sorted	in	ascending	order.

The	return	value	of	set_intersection()	is	an	iterator	to	the	end	of	the	intersection
range.

If	the	strict	weak	ordering	comparison	function	object	cmp	is	not	specified,
set_intersection()	will	use	the	<	operator	to	compare	elements.

Related	topics:
includes
set_difference
set_symmetric_difference
set_union

set_symmetric_difference
Syntax:

		#include	<algorithm>

		iterator	set_symmetric_difference(iterator	start1,	iterator	end1,	iterator	start2,	iterator	end2,	iterator	result);

		iterator	set_symmetric_difference(iterator	start1,	iterator	end1,	iterator	start2,	iterator	end2,	iterator	result,	StrictWeakOrdering	cmp);

The	set_symmetric_difference()	algorithm	computes	the	symmetric	difference	of
the	two	sets	defined	by	[start1,end1)	and	[start2,end2)	and	stores	the	difference
starting	at	result.

Both	of	the	sets,	given	as	ranges,	must	be	sorted	in	ascending	order.

The	return	value	of	set_symmetric_difference()	is	an	iterator	to	the	end	of	the
result	range.

If	the	strict	weak	ordering	comparison	function	object	cmp	is	not	specified,
set_symmetric_difference()	will	use	the	<	operator	to	compare	elements.

Related	topics:
includes
set_difference
set_intersection
set_union

set_union
Syntax:

		#include	<algorithm>

		iterator	set_union(iterator	start1,	iterator	end1,	iterator	start2,	iterator	end2,	iterator	result);

		iterator	set_union(iterator	start1,	iterator	end1,	iterator	start2,	iterator	end2,	iterator	result,	StrictWeakOrdering	cmp);

The	set_union()	algorithm	computes	the	union	of	the	two	ranges	[start1,end1)
and	[start2,end2)	and	stores	it	starting	at	result.

The	return	value	of	set_union()	is	an	iterator	to	the	end	of	the	union	range.

set_union()	runs	in	linear	time.

Related	topics:
includes
merge
set_difference
set_intersection
set_symmetric_difference

sort
Syntax:

		#include	<algorithm>

		void	sort(iterator	start,	iterator	end);

		void	sort(iterator	start,	iterator	end,	StrictWeakOrdering	cmp);

The	sort()	algorithm	sorts	the	elements	in	the	range	[start,end)	into	ascending
order.	If	two	elements	are	equal,	there	is	no	guarantee	what	order	they	will	be	in.

If	the	strict	weak	ordering	function	object	cmp	is	given,	then	it	will	be	used	to
compare	two	objects	instead	of	the	<	operator.

The	algorithm	behind	sort()	is	the	introsort	algorithm.	sort()	runs	in	O(N	log(N))
time	(average	and	worst	case)	which	is	faster	than	polynomial	time	but	slower
than	linear	time.

Example	code:

For	example,	the	following	code	sorts	a	vector	of	integers	into	ascending	order:

	vector<int>	v;

	v.push_back(23);

	v.push_back(-1);

	v.push_back(9999);

	v.push_back(0);

	v.push_back(4);														

	cout	<<	"Before	sorting:	";

	for(unsigned	int	i	=	0;	i	<	v.size();	i++)	{

			cout	<<	v[i]	<<	"	";

	}

	cout	<<	endl;												

	sort(v.begin(),	v.end());												

	cout	<<	"After	sorting:	";

	for(unsigned	int	i	=	0;	i	<	v.size();	i++)	{

			cout	<<	v[i]	<<	"	";

	}

	cout	<<	endl;												

When	run,	the	above	code	displays	this	output:

	Before	sorting:	23	-1	9999	0	4

	After	sorting:	-1	0	4	23	9999										

Alternatively,	the	following	code	uses	the	sort()	function	to	sort	a	normal	array
of	integers,	and	displays	the	same	output	as	the	previous	example:

	int	array[]	=	{	23,	-1,	9999,	0,	4	};

	unsigned	int	array_size	=	5;											

	cout	<<	"Before	sorting:	";

	for(unsigned	int	i	=	0;	i	<	array_size;	i++)	{

			cout	<<	array[i]	<<	"	";

	}

	cout	<<	endl;												

	sort(array,	array	+	array_size);													

	cout	<<	"After	sorting:	";

	for(unsigned	int	i	=	0;	i	<	array_size;	i++)	{

			cout	<<	array[i]	<<	"	";

	}

	cout	<<	endl;												

This	next	example	shows	how	to	use	sort()	with	a	user-specified	comparison
function.	The	function	cmp	is	defined	to	do	the	opposite	of	the	<	operator.	When
sort()	is	called	with	cmp	used	as	the	comparison	function,	the	result	is	a	list
sorted	in	descending,	rather	than	ascending,	order:

	bool	cmp(int	a,	int	b)	{

			return	a	>	b;

	}														

	...												

	vector<int>	v;

	for(int	i	=	0;	i	<	10;	i++)	{

			v.push_back(i);

	}														

	cout	<<	"Before:	";

	for(int	i	=	0;	i	<	10;	i++)	{

			cout	<<	v[i]	<<	"	";

	}

	cout	<<	endl;												

	sort(v.begin(),	v.end(),	cmp);															

	cout	<<	"After:	";

	for(int	i	=	0;	i	<	10;	i++)	{

			cout	<<	v[i]	<<	"	";

	}

	cout	<<	endl;												

Related	topics:
binary_search
is_sorted
merge
partial_sort
partial_sort_copy
stable_sort
(Other	Standard	C	Functions)	qsort

sort_heap
Syntax:

		#include	<algorithm>

		void	sort_heap(iterator	start,	iterator	end);

		void	sort_heap(iterator	start,	iterator	end,	StrictWeakOrdering	cmp);

The	sort_heap()	function	turns	the	heap	defined	by	[start,end)	into	a	sorted
range.

If	the	strict	weak	ordering	comparison	function	object	cmp	is	given,	then	it	is
used	instead	of	the	<	operator	to	compare	elements.

Related	topics:
is_heap
make_heap
pop_heap
push_heap

stable_partition
Syntax:

		#include	<algorithm>

		iterator	stable_partition(iterator	start,	iterator	end,	Predicate	p);

The	stable_partition()	function	behaves	similarily	to	partition().	The	difference
between	the	two	algorithms	is	that	stable_partition()	will	preserve	the	initial
ordering	of	the	elements	in	the	two	groups.

Related	topics:
partition

stable_sort
Syntax:

		#include	<algorithm>

		void	stable_sort(iterator	start,	iterator	end);

		void	stable_sort(iterator	start,	iterator	end,	StrictWeakOrdering	cmp);

The	stable_sort()	algorithm	is	like	the	sort()	algorithm,	in	that	it	sorts	a	range	of
elements	into	ascending	order.	Unlike	sort(),	however,	stable_sort()	will	preserve

the	original	ordering	of	elements	that	are	equal	to	eachother.

This	functionality	comes	at	a	small	cost,	however,	as	stable_sort()	takes	a	few
more	comparisons	that	sort()	in	the	worst	case:	N	(log	N)^2	instead	of	N	log	N.

Related	topics:
binary_search
is_sorted
partial_sort
partial_sort_copy
sort

swap
Syntax:

		#include	<algorithm>

		void	swap(Assignable&	a,	Assignable&	b);

The	swap()	function	swaps	the	values	of	a	and	b.

swap()	expects	that	its	arguments	will	conform	to	the	Assignable	model;	that	is,
they	should	have	a	copy	constructor	and	work	with	the	=	operator.	This	function
performs	one	copy	and	two	assignments.

Related	topics:
copy
copy_backward
copy_n
iter_swap
swap_ranges

swap_ranges
Syntax:

		#include	<algorithm>

		iterator	swap_ranges(iterator	start1,	iterator	end1,	iterator	start2);

The	swap_ranges()	function	exchanges	the	elements	in	the	range	[start1,end1)
with	the	range	of	the	same	size	starting	at	start2.

The	return	value	of	swap_ranges()	is	an	iterator	to	start2	+	(end1-start1).

Related	topics:
iter_swap
swap

transform
Syntax:

		#include	<algorithm>

		iterator	transform(iterator	start,	iterator	end,	iterator	result,	UnaryFunction	f);

		iterator	transform(iterator	start1,	iterator	end1,	iterator	start2,	iterator	result,	BinaryFunction	f);

The	transform()	algorithm	applies	the	function	f	to	some	range	of	elements,
storing	the	result	of	each	application	of	the	function	in	result.

The	first	version	of	the	function	applies	f	to	each	element	in	[start,end)	and
assigns	the	first	output	of	the	function	to	result,	the	second	output	to	(result+1),
etc.

The	second	version	of	the	transform()	works	in	a	similar	manner,	except	that	it	is
given	two	ranges	of	elements	and	calls	a	binary	function	on	a	pair	of	elements.

Related	topics:
copy
fill
generate

unique

Syntax:

		#include	<algorithm>

		iterator	unique(iterator	start,	iterator	end);

		iterator	unique(iterator	start,	iterator	end,	BinPred	p);

The	unique()	algorithm	removes	all	consecutive	duplicate	elements	from	the
range	[start,end).	If	the	binary	predicate	p	is	given,	then	it	is	used	to	test	to	test
two	elements	to	see	if	they	are	duplicates.

The	return	value	of	unique()	is	an	iterator	to	the	end	of	the	modified	range.

unique()	runs	in	linear	time.

Related	topics:
adjacent_find
remove
unique_copy

unique_copy
Syntax:

		#include	<algorithm>

		iterator	unique_copy(iterator	start,	iterator	end,	iterator	result);

		iterator	unique_copy(iterator	start,	iterator	end,	iterator	result,	BinPred	p);

The	unique_copy()	function	copies	the	range	[start,end)	to	result,	removing	all
consecutive	duplicate	elements.	If	the	binary	predicate	p	is	provided,	then	it	is
used	to	test	two	elements	to	see	if	they	are	duplicates.

The	return	value	of	unique_copy()	is	an	iterator	to	the	end	of	the	new	range.

unique_copy()	runs	in	linear	time.

Related	topics:
adjacent_find
remove

unique

upper_bound
Syntax:

		#include	<algorithm>

		iterator	upper_bound(iterator	start,	iterator	end,	const	TYPE&	val);

		iterator	upper_bound(iterator	start,	iterator	end,	const	TYPE&	val,	StrictWeakOrdering	cmp);

The	upper_bound()	algorithm	searches	the	ordered	range	[start,end)	for	the	last
location	that	val	could	be	inserted	without	disrupting	the	order	of	the	range.

If	the	strict	weak	ordering	function	object	cmp	is	given,	it	is	used	to	compare
elements	instead	of	the	<	operator.

upper_bound()	runs	in	logarithmic	time.

Related	topics:
binary_search
equal_range

cppreference.com	>	C++	Algorithms	>	binary_search

binary_search
Syntax:

		#include	<algorithm>

		bool	binary_search(iterator	start,	iterator	end,	const	TYPE&	val);

		bool	binary_search(iterator	start,	iterator	end,	const	TYPE&	val,	Comp	f);

The	binary_search()	function	searches	from	start	to	end	for	val.	The	elements
between	start	and	end	that	are	searched	should	be	in	ascending	order	as	defined
by	the	<	operator.	Note	that	a	binary	search	will	not	work	unless	the	elements
being	searched	are	in	order.

If	val	is	found,	binary_search()	returns	true,	otherwise	false.

If	the	function	f	is	specified,	then	it	is	used	to	compare	elements.

For	example,	the	following	code	uses	binary_search()	to	determine	if	the
integers	0-9	are	in	an	array	of	integers:

	int	nums[]	=	{	-242,	-1,	0,	5,	8,	9,	11	};

	int	start	=	0;

	int	end	=	7;											

	for(int	i	=	0;	i	<	10;	i++)	{

			if(binary_search(nums+start,	nums+end,	i))	{

					cout	<<	"nums[]	contains	"	<<	i	<<	endl;

			}	else	{

					cout	<<	"nums[]	DOES	NOT	contain	"	<<	i	<<	endl;

			}

	}														

When	run,	this	code	displays	the	following	output:

	nums[]	contains	0

	nums[]	DOES	NOT	contain	1

	nums[]	DOES	NOT	contain	2

	nums[]	DOES	NOT	contain	3

	nums[]	DOES	NOT	contain	4

	nums[]	contains	5

	nums[]	DOES	NOT	contain	6

	nums[]	DOES	NOT	contain	7

	nums[]	contains	8

	nums[]	contains	9														

Related	topics:
equal_rangeis_sorted
lower_bound
partial_sort
partial_sort_copy
sort
stable_sort
upper_bound

cppreference.com	>	C++	Algorithms	>	copy

copy
Syntax:

		#include	<algorithm>

		iterator	copy(iterator	start,	iterator	end,	iterator	dest);

The	copy()	function	copies	the	elements	between	start	and	end	to	dest.	In	other	words,	after
copy()	has	run,

	*dest	==	*start

	*(dest+1)	==	*(start+1)

	*(dest+2)	==	*(start+2)

	...

	*(dest+N)	==	*(start+N)																

The	return	value	is	an	iterator	to	the	last	element	copied.	copy()	runs	in	linear	time

For	example,	the	following	code	uses	copy()	to	copy	the	contents	of	one	vector	to	another:

	vector<int>	from_vector;

	for(int	i	=	0;	i	<	10;	i++)	{

			from_vector.push_back(i);

	}														

	vector<int>	to_vector(10);															

	copy(from_vector.begin(),	from_vector.end(),	to_vector.begin());													

	cout	<<	"to_vector	contains:	";

	for(unsigned	int	i	=	0;	i	<	to_vector.size();	i++)	{

			cout	<<	to_vector[i]	<<	"	";

	}

	cout	<<	endl;												

Related	topics:
copy_backwardcopy_n
generate
remove_copy

swap
transform

cppreference.com	>	C++	Algorithms	>	copy_backward

copy_backward
Syntax:

		#include	<algorithm>

		iterator	copy_backward(iterator	start,	iterator	end,	iterator	dest);

copy_backward()	is	similar	to	(C++	Strings)	copy(),	in	that	both	functions	copy	elements	from	
end	to	dest.	The	copy_backward()	function	,	however,	starts	depositing	elements	at	
backwards,	such	that:

	*(dest-1)	==	*(end-1)

	*(dest-2)	==	*(end-2)

	*(dest-3)	==	*(end-3)

	...

	*(dest-N)	==	*(end-N)										

The	following	code	uses	copy_backward()	to	copy	10	integers	into	the	end	of	an	empty	vector:

	vector<int>	from_vector;

	for(int	i	=	0;	i	<	10;	i++)	{

			from_vector.push_back(i);

	}														

	vector<int>	to_vector(15);															

	copy_backward(from_vector.begin(),	from_vector.end(),	to_vector.end());														

	cout	<<	"to_vector	contains:	";

	for(unsigned	int	i	=	0;	i	<	to_vector.size();	i++)	{

			cout	<<	to_vector[i]	<<	"	";

	}

	cout	<<	endl;												

The	above	code	produces	the	following	output:

	to_vector	contains:	0	0	0	0	0	0	1	2	3	4	5	6	7	8	9														

Related	topics:
copycopy_n

swap

cppreference.com	>	C++	Algorithms	>	copy_n

copy_n
Syntax:

		#include	<algorithm>

		iterator	copy_n(iterator	from,	size_t	num,	iterator	to);	

The	copy_n()	function	copies	num	elements	starting	at	from	to	the	destination
pointed	at	by	to.	To	put	it	another	way,	copy_n()	performs	num	assignments	and
duplicates	a	subrange.

The	return	value	of	copy_n()	is	an	iterator	that	points	to	the	last	element	that
was	copied,	i.e.	(to	+	num).

This	function	runs	in	linear	time.

Related	topics:
copycopy_backward
swap

cppreference.com	>	C++	Algorithms	>	count

count
Syntax:

		#include	<algorithm>

		size_t	count(iterator	start,	iterator	end,	const	TYPE&	val);

The	count()	function	returns	the	number	of	elements	between	start	and	end	that	match	

For	example,	the	following	code	uses	count()	to	determine	how	many	integers	in	a	vector	match	a	target	value:

	vector<int>	v;

	for(int	i	=	0;	i	<	10;	i++)	{

			v.push_back(i);

	}														

	int	target_value	=	3;

	int	num_items	=	count(v.begin(),	v.end(),	target_value);													

	cout	<<	"v	contains	"	<<	num_items	<<	"	items	matching	"	<<	target_value	<<	endl;												

The	above	code	displays	the	following	output:

	v	contains	1	items	matching	3										

Related	topics:
accumulateadjacent_difference
count_if
inner_product
partial_sum

cppreference.com	>	C++	Algorithms	>	count_if

count_if
Syntax:

		#include	<algorithm>

		size_t	count_if(iterator	start,	iterator	end,	UnaryPred	p);

The	count_if()	function	returns	the	number	of	elements	between	start	and	end	for	which	the	predicate	

For	example,	the	following	code	uses	count_if()	with	a	predicate	that	returns	true	for	the	integer	3	to	count	the	number	of
items	in	an	array	that	are	equal	to	3:

	int	nums[]	=	{	0,	1,	2,	3,	4,	5,	9,	3,	13	};

	int	start	=	0;

	int	end	=	9;											

	int	target_value	=	3;

	int	num_items	=	count_if(nums+start,

																				nums+end,

																				bind2nd(equal_to<int>(),	target_value));													

	cout	<<	"nums[]	contains	"	<<	num_items	<<	"	items	matching	"	<<	target_value	<<	endl;															

When	run,	the	above	code	displays	the	following	output:

	nums[]	contains	2	items	matching	3													

Related	topics:
count

cppreference.com	>	C++	Algorithms	>	equal

equal
Syntax:

		#include	<algorithm>

		bool	equal(iterator	start1,	iterator	end1,	iterator	start2);

		bool	equal(iterator	start1,	iterator	end1,	iterator	start2,	BinPred	p);

The	equal()	function	returns	true	if	the	elements	in	two	ranges	are	the	same.	The	first	range
of	elements	are	those	between	start1	and	end1.	The	second	range	of	elements	has	the	same
size	as	the	first	range	but	starts	at	start2.

If	the	binary	predicate	p	is	specified,	then	it	is	used	instead	of	==	to	compare	each	pair	of
elements.

For	example,	the	following	code	uses	equal()	to	compare	two	vectors	of	integers:

	vector<int>	v1;

	for(int	i	=	0;	i	<	10;	i++)	{

			v1.push_back(i);

	}														

	vector<int>	v2;

	for(int	i	=	0;	i	<	10;	i++)	{

			v2.push_back(i);

	}														

	if(equal(v1.begin(),	v1.end(),	v2.begin()))	{

			cout	<<	"v1	and	v2	are	equal"	<<	endl;

	}	else	{

			cout	<<	"v1	and	v2	are	NOT	equal"	<<	endl;

	}														

Related	topics:
find_iflexicographical_compare
mismatch
search

cppreference.com	>	C++	Algorithms	>	equal_range

equal_range
Syntax:

		#include	<algorithm>

		pair<iterator,iterator>	equal_range(iterator	first,	iterator	last,	const	

		pair<iterator,iterator>	equal_range(iterator	first,	iterator	last,	const	

The	equal_range()	function	returns	the	range	of	elements	between	first	and	last	that	are	equal	to	
This	function	assumes	that	the	elements	between	first	and	last	are	in	order	according	to	
specified,	or	the	<	operator	otherwise.

equal_range()	can	be	thought	of	as	a	combination	of	the	lower_bound()	and	`upper_bound1`()
functions,	since	the	first	of	the	pair	of	iterators	that	it	returns	is	what	lower_bound
second	iterator	in	the	pair	is	what	`upper_bound1`()	returns.

For	example,	the	following	code	uses	equal_range()	to	determine	all	of	the	possible	places	that	the
number	8	can	be	inserted	into	an	ordered	vector	of	integers	such	that	the	existing	ordering	is
preserved:

	vector<int>	nums;

	nums.push_back(-242);

	nums.push_back(-1);

	nums.push_back(0);

	nums.push_back(5);

	nums.push_back(8);

	nums.push_back(8);

	nums.push_back(11);										

	pair<vector<int>::iterator,	vector<int>::iterator>	result;

	int	new_val	=	8;															

	result	=	equal_range(nums.begin(),	nums.end(),	new_val);													

	cout	<<	"The	first	place	that	"	<<	new_val	<<	"	could	be	inserted	is	before	"

						<<	*result.first	<<	",	and	the	last	place	that	it	could	be	inserted	is	before	"

						<<	*result.second	<<	endl;												

The	above	code	produces	the	following	output:

	The	first	place	that	8	could	be	inserted	is	before	8,

	and	the	last	place	that	it	could	be	inserted	is	before	11														

Related	topics:
binary_searchlower_bound
upper_bound

cppreference.com	>	C++	Algorithms	>	fill

fill
Syntax:

		#include	<algorithm>

		#include	<algorithm>

		void	fill(iterator	start,	iterator	end,	const	TYPE&	val);

The	function	fill()	assigns	val	to	all	of	the	elements	between	start	and	end.

For	example,	the	following	code	uses	fill()	to	set	all	of	the	elements	of	a	vector
of	integers	to	-1:

	vector<int>	v1;

	for(int	i	=	0;	i	<	10;	i++)	{

			v1.push_back(i);

	}														

	cout	<<	"Before,	v1	is:	";

	for(unsigned	int	i	=	0;	i	<	v1.size();	i++)	{

			cout	<<	v1[i]	<<	"	";

	}

	cout	<<	endl;												

	fill(v1.begin(),	v1.end(),	-1);														

	cout	<<	"After,	v1	is:	";

	for(unsigned	int	i	=	0;	i	<	v1.size();	i++)	{

			cout	<<	v1[i]	<<	"	";

	}

	cout	<<	endl;												

When	run,	the	above	code	displays:

	Before,	v1	is:	0	1	2	3	4	5	6	7	8	9

	After,	v1	is:	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1												

Related	topics:
fill_ngenerate
iota

transform

cppreference.com	>	C++	Algorithms	>	fill_n

fill_n
Syntax:

		#include	<algorithm>

		#include	<algorithm>

		iterator	fill_n(iterator	start,	size_t	n,	const	TYPE&	val);

The	fill_n()	function	is	similar	to	(C++	I/O)	fill().	Instead	of	assigning	val	to	a
range	of	elements,	however,	fill_n()	assigns	val	to	the	first	n	elements	starting	at
start.

For	example,	the	following	code	uses	fill_n()	to	assign	-1	to	the	first	half	of	a
vector	of	integers:

	vector<int>	v1;

	for(int	i	=	0;	i	<	10;	i++)	{

			v1.push_back(i);

	}														

	cout	<<	"Before,	v1	is:	";

	for(unsigned	int	i	=	0;	i	<	v1.size();	i++)	{

			cout	<<	v1[i]	<<	"	";

	}

	cout	<<	endl;												

	fill_n(v1.begin(),	v1.size()/2,	-1);									

	cout	<<	"After,	v1	is:	";

	for(unsigned	int	i	=	0;	i	<	v1.size();	i++)	{

			cout	<<	v1[i]	<<	"	";

	}

	cout	<<	endl;												

When	run,	this	code	displays:

	Before,	v1	is:	0	1	2	3	4	5	6	7	8	9

	After,	v1	is:	-1	-1	-1	-1	-1	5	6	7	8	9									

Related	topics:

fill

cppreference.com	>	C++	Algorithms	>	find

find
Syntax:

		#include	<algorithm>

		iterator	find(iterator	start,	iterator	end,	const	TYPE&	val);

The	find()	algorithm	looks	for	an	element	matching	val	between	start	and	end.	If	an	element
matching	val	is	found,	the	return	value	is	an	iterator	that	points	to	that	element.	Otherwise,
the	return	value	is	an	iterator	that	points	to	end.

For	example,	the	following	code	uses	find()	to	search	a	vector	of	integers	for	the	number	3:

	int	num_to_find	=	3;											

	vector<int>	v1;

	for(int	i	=	0;	i	<	10;	i++)	{

			v1.push_back(i);

	}														

	vector<int>::iterator	result;

	result	=	find(v1.begin(),	v1.end(),	num_to_find);												

	if(result	==	v1.end())	{

			cout	<<	"Did	not	find	any	element	matching	"	<<	num_to_find	<<	endl;

	}														

	else	{

			cout	<<	"Found	a	matching	element:	"	<<	*result	<<	endl;

	}														

In	the	next	example,	shown	below,	the	find()	function	is	used	on	an	array	of	integers.	This
example	shows	how	the	C++	Algorithms	can	be	used	to	manipulate	arrays	and	pointers	in
the	same	manner	that	they	manipulate	containers	and	iterators:

	int	nums[]	=	{	3,	1,	4,	1,	5,	9	};

	int	num_to_find	=	5;

	int	start	=	0;

	int	end	=	2;

	int*	result	=	find(nums	+	start,	nums	+	end,	num_to_find);																

	if(result	==	nums	+	end)	{

			cout	<<	"Did	not	find	any	number	matching	"	<<	num_to_find	<<	endl;

	}	else	{

			cout	<<	"Found	a	matching	number:	"	<<	*result	<<	endl;

	}														

Related	topics:
adjacent_findfind_end
find_first_of
find_if
mismatch
search

cppreference.com	>	C++	Algorithms	>	find_end

find_end
Syntax:

		#include	<algorithm>

		iterator	find_end(iterator	start,	iterator	end,	iterator	seq_start,	iterator	seq_end);

		iterator	find_end(iterator	start,	iterator	end,	iterator	seq_start,	iterator	seq_end,	BinPred	bp);

The	find_end()	function	searches	for	the	sequence	of	elements	denoted	by	seq_start
found	between	start	and	end,	an	iterator	to	the	first	element	of	the	last	found	sequence	is	returned.	If	no	such	sequence	is
found,	an	iterator	pointing	to	end	is	returned.

If	the	binary	predicate	bp	is	specified,	then	it	is	used	to	when	elements	match.

For	example,	the	following	code	uses	find_end()	to	search	for	two	different	sequences	of	numbers.	The	the	first	chunk	of
code,	the	last	occurence	of	"1	2	3"	is	found.	In	the	second	chunk	of	code,	the	sequence	
found:

	int	nums[]	=	{	1,	2,	3,	4,	1,	2,	3,	4,	1,	2,	3,	4	};

	int*	result;

	int	start	=	0;

	int	end	=	11;										

	int	target1[]	=	{	1,	2,	3	};

	result	=	find_end(nums	+	start,	nums	+	end,	target1	+	0,	target1	+	2);

	if(*result	==	nums[end])	{

			cout	<<	"Did	not	find	any	subsequence	matching	{	1,	2,	3	}"	<<	endl;

	}	else	{

			cout	<<	"The	last	matching	subsequence	is	at:	"	<<	*result	<<	endl;

	}														

	int	target2[]	=	{	3,	2,	3	};

	result	=	find_end(nums	+	start,	nums	+	end,	target2	+	0,	target2	+	2);

	if(*result	==	nums[end])	{

			cout	<<	"Did	not	find	any	subsequence	matching	{	3,	2,	3	}"	<<	endl;

	}	else	{

			cout	<<	"The	last	matching	subsequence	is	at:	"	<<	*result	<<	endl;

	}														

Related	topics:

adjacent_findfind
find_first_of
find_if
search_n

cppreference.com	>	C++	Algorithms	>	find_first_of

find_first_of
Syntax:

		#include	<algorithm>

		iterator	find_first_of(iterator	start,	iterator	end,	iterator	find_start,	iterator	find_end);

		iterator	find_first_of(iterator	start,	iterator	end,	iterator	find_start,	iterator	find_end,	BinPred	bp);

The	find_first_of()	function	searches	for	the	first	occurence	of	any	element	between	
searched	are	those	between	start	and	end.

If	any	element	between	find_start	and	find_end	is	found,	an	iterator	pointing	to	that	element	is	returned.	Otherwise,	an	
pointing	to	end	is	returned.

For	example,	the	following	code	searches	for	a	9,	4,	or	7	in	an	array	of	integers:

	int	nums[]	=	{	0,	1,	2,	3,	4,	5,	6,	7,	8,	9,	10	};

	int*	result;

	int	start	=	0;

	int	end	=	10;										

	int	targets[]	=	{	9,	4,	7	};

	result	=	find_first_of(nums	+	start,	nums	+	end,	targets	+	0,	targets	+	2);

	if(*result	==	nums[end])	{

			cout	<<	"Did	not	find	any	of	{	9,	4,	7	}"	<<	endl;

	}	else	{

			cout	<<	"Found	a	matching	target:	"	<<	*result	<<	endl;

	}														

Related	topics:
adjacent_findfind
find_end
find_if
(Standard	C	String	and	Character)	strpbrk

cppreference.com	>	C++	Algorithms	>	find_if

find_if
Syntax:

		#include	<algorithm>

		iterator	find_if(iterator	start,	iterator	end,	UnPred	up);

The	find_if()	function	searches	for	the	first	element	between	start	and	end	for	which
the	unary	predicate	up	returns	true.

If	such	an	element	is	found,	an	iterator	pointing	to	that	element	is	returned.	Otherwise,
an	iterator	pointing	to	end	is	returned.

For	example,	the	following	code	uses	find_if()	and	a	"greater-than-zero"	unary
predicate	to	the	first	positive,	non-zero	number	in	a	list	of	numbers:

	int	nums[]	=	{	0,	-1,	-2,	-3,	-4,	342,	-5	};

	int*	result;

	int	start	=	0;

	int	end	=	7;											

	result	=	find_if(nums	+	start,	nums	+	end,	bind2nd(greater<int>(),	0));

	if(*result	==	nums[end])	{

			cout	<<	"Did	not	find	any	number	greater	than	zero"	<<	endl;

	}	else	{

			cout	<<	"Found	a	positive	non-zero	number:	"	<<	*result	<<	endl;

	}														

Related	topics:
adjacent_findequal
find
find_end
find_first_of
search_n

cppreference.com	>	C++	Algorithms	>	for_each

for_each
Syntax:

		#include	<algorithm>

		UnaryFunction	for_each(iterator	start,	iterator	end,	UnaryFunction	f);

The	for_each()	algorithm	applies	the	function	f	to	each	of	the	elements	between	start
end.	The	return	value	of	for_each()	is	f.

For	example,	the	following	code	snippets	define	a	unary	function	then	use	it	to	increment
all	of	the	elements	of	an	array:

	template<class	TYPE>	struct	increment	:	public	unary_function<TYPE,	void>	{

			void	operator()	(TYPE&	x)	{

					x++;

			}

	};													

	...												

	int	nums[]	=	{3,	4,	2,	9,	15,	267};

	const	int	N	=	6;															

	cout	<<	"Before,	nums[]	is:	";

	for(int	i	=	0;	i	<	N;	i++)	{

			cout	<<	nums[i]	<<	"	";

	}

	cout	<<	endl;												

	for_each(nums,	nums	+	N,	increment<int>());												

	cout	<<	"After,	nums[]	is:	";

	for(int	i	=	0;	i	<	N;	i++)	{

			cout	<<	nums[i]	<<	"	";

	}

	cout	<<	endl;												

The	above	code	displays	the	following	output:

	Before,	nums[]	is:	3	4	2	9	15	267

	After,	nums[]	is:	4	5	3	10	16	268														

cppreference.com	>	C++	Algorithms	>	generate

generate
Syntax:

		#include	<algorithm>

		void	generate(iterator	start,	iterator	end,	Generator	g);

The	generate()	function	runs	the	Generator	function	object	g	a	number	of	times,
saving	the	result	of	each	execution	in	the	range	[start,end).

Related	topics:
copyfill
generate_n
iota
transform

cppreference.com	>	C++	Algorithms	>	generate_n

generate_n
Syntax:

		#include	<algorithm>

		iterator	generate_n(iterator	result,	size_t	num,	Generator	g);

The	generate_n()	function	runs	the	Generator	function	object	g	num	times,
saving	the	result	of	each	execution	in	result,	(result+1),	etc.

Related	topics:
generate

cppreference.com	>	C++	Algorithms	>	includes

includes
Syntax:

		#include	<algorithm>

		bool	includes(iterator	start1,	iterator	end1,	iterator	start2,	iterator	end2);

		bool	includes(iterator	start1,	iterator	end1,	iterator	start2,	iterator	end2,	StrictWeakOrdering	cmp);

The	includes()	algorithm	returns	true	if	every	element	in	[start2,end2)	is	also	in	[
sorted	in	ascending	order.

By	default,	the	<	operator	is	used	to	compare	elements.	If	the	strict	weak	ordering	function	object	
instead.

includes()	runs	in	linear	time.

Related	topics:
set_differenceset_intersection
set_symmetric_difference
set_union

cppreference.com	>	C++	Algorithms	>	inner_product

inner_product
Syntax:

		#include	<numeric>

		TYPE	inner_product(iterator	start1,	iterator	end1,	iterator	start2,	

		TYPE	inner_product(iterator	start1,	iterator	end1,	iterator	start2,	

The	inner_product()	function	computes	the	inner	product	of	[start1,end1)	and	a	range	of
the	same	size	starting	at	start2.

inner_product()	runs	in	linear	time.

Related	topics:
accumulateadjacent_difference
count
partial_sum

cppreference.com	>	C++	Algorithms	>	inplace_merge

inplace_merge
Syntax:

		#include	<algorithm>

		inline	void	inplace_merge(iterator	start,	iterator	middle,	iterator	end);

		inline	void	inplace_merge(iterator	start,	iterator	middle,	iterator	end,	StrictWeakOrdering	cmp);

The	inplace_merge()	function	is	similar	to	the	merge()	function,	but	instead	of	creating	a	new	sorted	range	of	elements,
inplace_merge()	alters	the	existing	ranges	to	perform	the	merge	in-place.

Related	topics:
merge

cppreference.com	>	C++	Algorithms	>	iota

iota
Syntax:

		#include	<numeric>

		void	iota(iterator	start,	iterator	end,	TYPE	value);

The	iota()	algorithm	assigns	value	to	the	first	element	in	the	range	[start,end),
value+1	to	the	second	element,	and	so	on.

iota()	runs	in	linear	time.

Related	topics:
fillgenerate
partial_sum

cppreference.com	>	C++	Algorithms	>	is_heap

is_heap
Syntax:

		#include	<algorithm>

		bool	is_heap(iterator	start,	iterator	end);

		bool	is_heap(iterator	start,	iterator	end,	StrictWeakOrdering	cmp);

The	is_heap()	function	returns	true	if	the	given	range	[start,end)	is	a	heap.

If	the	strict	weak	ordering	comparison	function	object	cmp	is	given,	then	it	is	used
instead	of	the	<	operator	to	compare	elements.

is_heap()	runs	in	linear	time.

Related	topics:
make_heappop_heap
push_heap
sort_heap

cppreference.com	>	C++	Algorithms	>	is_sorted

is_sorted
Syntax:

		#include	<algorithm>

		bool	is_sorted(iterator	start,	iterator	end);

		bool	is_sorted(iterator	start,	iterator	end,	StrictWeakOrdering	cmp);

The	is_sorted()	algorithm	returns	true	if	the	elements	in	the	range	[start,end)	are	sorted
in	ascending	order.

By	default,	the	<	operator	is	used	to	compare	elements.	If	the	strict	weak	order	function
object	cmp	is	given,	then	it	is	used	instead.

is_sorted()	runs	in	linear	time.

Related	topics:
binary_searchpartial_sort
partial_sort_copy
sort
stable_sort

cppreference.com	>	C++	Algorithms	>	iter_swap

iter_swap
Syntax:

		#include	<algorithm>

		inline	void	iter_swap(iterator	a,	iterator	b);

A	call	to	iter_swap()	exchanges	the	values	of	two	elements	exactly	as	a	call	to

	swap(*a,	*b);																

would.

Related	topics:
swapswap_ranges

cppreference.com	>	C++	Algorithms	>	lexicographical_compare

lexicographical_compare
Syntax:

		#include	<algorithm>

		bool	lexicographical_compare(iterator	start1,	iterator	end1,	iterator	start2,	iterator	end2);

		bool	lexicographical_compare(iterator	start1,	iterator	end1,	iterator	start2,	iterator	end2,	BinPred	p);

The	lexicographical_compare()	function	returns	true	if	the	range	of	elements	[start1
of	elements	[start2,end2).

If	you're	confused	about	what	lexicographic	means,	it	might	help	to	know	that	dictionaries	are	ordered	lexicographically.

lexicographical_compare()	runs	in	linear	time.

Related	topics:
equallexicographical_compare_3way
mismatch
search

cppreference.com	>	C++	Algorithms	>	lexicographical_compare_3way

lexicographical_compare_3way
Syntax:

		#include	<algorithm>

		int	lexicographical_compare_3way(iterator	start1,	iterator	end1,	iterator	start2,	iterator	end2);

The	lexicographical_compare_3way()	function	compares	the	first	range,	defined	by	[
defined	by	[start2,end2).

If	the	first	range	is	lexicographically	less	than	the	second	range,	this	function	returns	a	negative	number.	If	the	first	range
is	lexicographically	greater	than	the	second,	a	positive	number	is	returned.	Zero	is	returned	if	neither	range	is
lexicographically	greater	than	the	other.

lexicographical_compare_3way()	runs	in	linear	time.

Related	topics:
lexicographical_compare

cppreference.com	>	C++	Algorithms	>	lower_bound

lower_bound
Syntax:

		#include	<algorithm>

		iterator	lower_bound(iterator	first,	iterator	last,		const	TYPE&	val);

		iterator	lower_bound(iterator	first,	iterator	last,	const	TYPE&	val,	CompFn	f);

The	lower_bound()	function	is	a	type	of	binary_search().	This	function	searches	for
the	first	place	that	val	can	be	inserted	into	the	ordered	range	defined	by	first	and	last
that	will	not	mess	up	the	existing	ordering.

The	return	value	of	lower_bound()	is	an	iterator	that	points	to	the	location	where	
can	be	safely	inserted.	Unless	the	comparison	function	f	is	specified,	the	<	operator	is
used	for	ordering.

For	example,	the	following	code	uses	lower_bound()	to	insert	the	number	7	into	an
ordered	vector	of	integers:

	vector<int>	nums;

	nums.push_back(-242);

	nums.push_back(-1);

	nums.push_back(0);

	nums.push_back(5);

	nums.push_back(8);

	nums.push_back(8);

	nums.push_back(11);										

	cout	<<	"Before	nums	is:	";

	for(unsigned	int	i	=	0;	i	<	nums.size();	i++)	{

			cout	<<	nums[i]	<<	"	";

	}

	cout	<<	endl;												

	vector<int>::iterator	result;

	int	new_val	=	7;															

	result	=	lower_bound(nums.begin(),	nums.end(),	new_val);													

	nums.insert(result,	new_val);																

	cout	<<	"After,	nums	is:	";

	for(unsigned	int	i	=	0;	i	<	nums.size();	i++)	{

			cout	<<	nums[i]	<<	"	";

	}

	cout	<<	endl;												

The	above	code	produces	the	following	output:

	Before	nums	is:	-242	-1	0	5	8	8	11

	After,	nums	is:	-242	-1	0	5	7	8	8	11											

Related	topics:
binary_searchequal_range

cppreference.com	>	C++	Algorithms	>	make_heap

make_heap
Syntax:

		#include	<algorithm>

		void	make_heap(iterator	start,	iterator	end);

		void	make_heap(iterator	start,	iterator	end,	StrictWeakOrdering	cmp);

The	make_heap()	function	turns	the	given	range	of	elements	[start,end)	into	a	heap.

If	the	strict	weak	ordering	comparison	function	object	cmp	is	given,	then	it	is	used
instead	of	the	<	operator	to	compare	elements.

make_heap()	runs	in	linear	time.

Related	topics:
is_heappop_heap
push_heap
sort_heap

cppreference.com	>	C++	Algorithms	>	max

max
Syntax:

		#include	<algorithm>

		const	TYPE&	max(const	TYPE&	x,	const	TYPE&	y);

		const	TYPE&	max(const	TYPE&	x,	const	TYPE&	y,	BinPred	p);

The	max()	function	returns	the	greater	of	x	and	y.

If	the	binary	predicate	p	is	given,	then	it	will	be	used	instead	of	the	<	operator	to	compare	the	two	elements.

Example	code:

For	example,	the	following	code	snippet	displays	various	uses	of	the	max()	function:

	cout	<<	"Max	of	1	and	9999	is	"	<<	max(1,	9999)	<<	endl;

	cout	<<	"Max	of	'a'	and	'b'	is	"	<<	max('a',	'b')	<<	endl;

	cout	<<	"Max	of	3.14159	and	2.71828	is	"	<<	max(3.14159,	2.71828)	<<	endl;																

When	run,	this	code	displays:

	Max	of	1	and	9999	is	9999

	Max	of	'a'	and	'b'	is	b

	Max	of	3.14159	and	2.71828	is	3.14159										

Related	topics:
max_elementmin
min_element

cppreference.com	>	C++	Algorithms	>	max_element

max_element
Syntax:

		#include	<algorithm>

		iterator	max_element(iterator	start,	iterator	end);

		iterator	max_element(iterator	start,	iterator	end,	BinPred	p);

The	max_element()	function	returns	an	iterator	to	the	largest	element	in	the	range	[

If	the	binary	predicate	p	is	given,	then	it	will	be	used	instead	of	the	<	operator	to	determine	the	largest	element.

Example	code:

For	example,	the	following	code	uses	the	max_element()	function	to	determine	the	largest	integer	in	an	array	and	the
largest	character	in	a	vector	of	characters:

	int	array[]	=	{	3,	1,	4,	1,	5,	9	};

	unsigned	int	array_size	=	6;

	cout	<<	"Max	element	in	array	is	"	<<	*max_element(array,	array+array_size)	<<	endl;														

	vector<char>	v;

	v.push_back('a');	v.push_back('b');	v.push_back('c');	v.push_back('d');

	cout	<<	"Max	element	in	the	vector	v	is	"	<<	*max_element(v.begin(),	v.end())	<<	endl;											

When	run,	the	above	code	displays	this	output:

	Max	element	in	array	is	9

	Max	element	in	the	vector	v	is	d															

Related	topics:
maxmin
min_element

cppreference.com	>	C++	Algorithms	>	merge

merge
Syntax:

		#include	<algorithm>

		iterator	merge(iterator	start1,	iterator	end1,	iterator	start2,	iterator	end2,	iterator	result);

		iterator	merge(iterator	start1,	iterator	end1,	iterator	start2,	iterator	end2,	iterator	result,	StrictWeakOrdering	cmp);

The	merge()	function	combines	two	sorted	ranges	[start1,end1)	and	[start2,end2)	into	a	
of	this	function	is	an	iterator	to	the	end	of	the	merged	range.

If	the	strict	weak	ordering	function	object	cmp	is	given,	then	it	is	used	in	place	of	the	<	operator	to	perform	comparisons	between	

merge()	runs	in	linear	time.

Related	topics:
inplace_mergeset_union
sort

cppreference.com	>	C++	Algorithms	>	min

min
Syntax:

		#include	<algorithm>

		const	TYPE&	min(const	TYPE&	x,	const	TYPE&	y);

		const	TYPE&	min(const	TYPE&	x,	const	TYPE&	y,	BinPred	p);

The	min()	function,	unsurprisingly,	returns	the	smaller	of	x	and	y.

By	default,	the	<	operator	is	used	to	compare	the	two	elements.	If	the	binary
predicate	p	is	given,	it	will	be	used	instead.

Related	topics:
maxmax_element
min_element

cppreference.com	>	C++	Algorithms	>	min_element

min_element
Syntax:

		#include	<algorithm>

		iterator	min_element(iterator	start,	iterator	end);

		iterator	min_element(iterator	start,	iterator	end,	BinPred	p);

The	min_element()	function	returns	an	iterator	to	the	smallest	element	in	the
range	[start,end).

If	the	binary	predicate	p	is	given,	then	it	will	be	used	instead	of	the	<	operator	to
determine	the	smallest	element.

Related	topics:
maxmax_element
min

cppreference.com	>	C++	Algorithms	>	mismatch

mismatch
Syntax:

		#include	<algorithm>

		pair	<iterator1,iterator2>	mismatch(iterator	start1,	iterator	end1,	iterator	start2);

		pair	<iterator1,iterator2>	mismatch(iterator	start1,	iterator	end1,	iterator	start2,	BinPred	p);

The	mismatch()	function	compares	the	elements	in	the	range	defined	by	[start1,end1
same	size	starting	at	start2.	The	return	value	of	mismatch()	is	the	first	location	where	the	two	ranges	differ.

If	the	optional	binary	predicate	p	is	given,	then	it	is	used	to	compare	elements	from	the	two	ranges.

The	mismatch()	algorithm	runs	in	linear	time.

Related	topics:
equalfind
lexicographical_compare
search

cppreference.com	>	C++	Algorithms	>	next_permutation

next_permutation
Syntax:

		#include	<algorithm>

		bool	next_permutation(iterator	start,	iterator	end);

		bool	next_permutation(iterator	start,	iterator	end,	StrictWeakOrdering	cmp);

The	next_permutation()	function	attempts	to	transform	the	given	range	of	elements	[
into	the	next	lexicographically	greater	permutation	of	elements.	If	it	succeeds,	it	returns	true,
otherwise,	it	returns	false.

If	a	strict	weak	ordering	function	object	cmp	is	provided,	it	is	used	in	lieu	of	the	<	operator	when
comparing	elements.

Related	topics:
prev_permutationrandom_sample
random_sample_n
random_shuffle

cppreference.com	>	C++	Algorithms	>	nth_element

nth_element
Syntax:

		#include	<algorithm>

		void	nth_element(iterator	start,	iterator	middle,	iterator	end);

		void	nth_element(iterator	start,	iterator	middle,	iterator	end,	StrictWeakOrdering	cmp);

The	nth_element()	function	semi-sorts	the	range	of	elements	defined	by	[start,end
middle	points	to	in	the	place	that	it	would	be	if	the	entire	range	was	sorted,	and	it	makes	sure	that	none	of	the
elements	before	that	element	are	greater	than	any	of	the	elements	that	come	after	that	element.

nth_element()	runs	in	linear	time	on	average.

Related	topics:
partial_sort

cppreference.com	>	C++	Algorithms	>	partial_sort

partial_sort
Syntax:

		#include	<algorithm>

		void	partial_sort(iterator	start,	iterator	middle,	iterator	end);

		void	partial_sort(iterator	start,	iterator	middle,	iterator	end,	StrictWeakOrdering	cmp);

The	partial_sort()	function	arranges	the	first	N	elements	of	the	range	[start,end)	in	ascending	order.	N	is	defined
as	the	number	of	elements	between	start	and	middle.

By	default,	the	<	operator	is	used	to	compare	two	elements.	If	the	strict	weak	ordering	comparison	function	
is	given,	it	is	used	instead.

Related	topics:
binary_searchis_sorted
nth_element
partial_sort_copy
sort
stable_sort

cppreference.com	>	C++	Algorithms	>	partial_sort_copy

partial_sort_copy
Syntax:

		#include	<algorithm>

		iterator	partial_sort_copy(iterator	start,	iterator	end,	iterator	result_start,	iterator	result_end);

		iterator	partial_sort_copy(iterator	start,	iterator	end,	iterator	result_start,	iterator	result_end,	StrictWeakOrdering	cmp);

The	partial_sort_copy()	algorithm	behaves	like	partial_sort(),	except	that	instead	of	partially	sorting	the	range	in-place,	a	copy	of	the	
the	sorting	takes	place	in	the	copy.	The	initial	range	is	defined	by	[start,end)	and	the	location	of	the	

partial_sort_copy()	returns	an	iterator	to	the	end	of	the	copied,	partially-sorted	range	of	elements.

Related	topics:
binary_searchis_sorted
partial_sort
sort
stable_sort

cppreference.com	>	C++	Algorithms	>	partial_sum

partial_sum
Syntax:

		#include	<numeric>

		iterator	partial_sum(iterator	start,	iterator	end,	iterator	result);

		iterator	partial_sum(iterator	start,	iterator	end,	iterator	result,	BinOp	p);

The	partial_sum()	function	calculates	the	partial	sum	of	a	range	defined	by	[start,
output	at	result.

start	is	assigned	to	*result,	the	sum	of	*start	and	*(start	+	1)	is	assigned	to	*(

partial_sum()	runs	in	linear	time.

Related	topics:
accumulateadjacent_difference
count
inner_product
iota

cppreference.com	>	C++	Algorithms	>	partition

partition
Syntax:

		#include	<algorithm>

		iterator	partition(iterator	start,	iterator	end,	Predicate	p);

The	partition()	algorithm	re-orders	the	elements	in	[start,end)	such	that	the
elements	for	which	the	predicate	p	returns	true	come	before	the	elements	for
which	p	returns	false.

In	other	words,	partition()	uses	p	to	divide	the	elements	into	two	groups.

The	return	value	of	partition()	is	an	iterator	to	the	first	element	for	which	p
returns	false.

parition()	runs	in	linear	time.

Related	topics:
stable_partition

cppreference.com	>	C++	Algorithms	>	pop_heap

pop_heap
Syntax:

		#include	<algorithm>

		void	pop_heap(iterator	start,	iterator	end);

		void	pop_heap(iterator	start,	iterator	end,	StrictWeakOrdering	cmp);

The	pop_heap()	function	removes	the	larges	element	(defined	as	the	element	at	the
front	of	the	heap)	from	the	given	heap.

If	the	strict	weak	ordering	comparison	function	object	cmp	is	given,	then	it	is	used
instead	of	the	<	operator	to	compare	elements.

pop_heap()	runs	in	logarithmic	time.

Related	topics:
is_heapmake_heap
push_heap
sort_heap

cppreference.com	>	C++	Algorithms	>	power

power
Syntax:

		#include	<numeric>

		inline	TYPE	power(TYPE	x,	int	N);

The	power()	function	returns	x	raised	to	the	power	of	N,	where	N	is	some	non-
negative	integer.

cppreference.com	>	C++	Algorithms	>	prev_permutation

prev_permutation
Syntax:

		#include	<algorithm>

		bool	prev_permutation(iterator	start,	iterator	end);

		bool	prev_permutation(iterator	start,	iterator	end,	StrictWeakOrdering	cmp);

The	prev_permutation()	function	attempts	to	transform	the	given	range	of	elements	[
into	the	next	lexicographically	smaller	permutation	of	elements.	If	it	succeeds,	it	returns	true,
otherwise,	it	returns	false.

If	a	strict	weak	ordering	function	object	cmp	is	provided,	it	is	used	instead	of	the	<	operator
when	comparing	elements.

Related	topics:
next_permutationrandom_sample
random_sample_n
random_shuffle

cppreference.com	>	C++	Algorithms	>	push_heap

push_heap
Syntax:

		#include	<algorithm>

		void	push_heap(iterator	start,	iterator	end);

		void	push_heap(iterator	start,	iterator	end,	StrictWeakOrdering	cmp);

The	push_heap()	function	adds	an	element	(defined	as	the	last	element	before	end
heap	(defined	as	the	range	of	elements	between	[start,''end-1).

If	the	strict	weak	ordering	comparison	function	object	cmp	is	given,	then	it	is	used
instead	of	the	<	operator	to	compare	elements.

push_heap()	runs	in	logarithmic	time.

Related	topics:
is_heapmake_heap
pop_heap
sort_heap

cppreference.com	>	C++	Algorithms	>	random_sample

random_sample
Syntax:

		#include	<algorithm>

		iterator	random_sample(iterator	start1,	iterator	end1,	iterator	start2,	iterator	end2);

		iterator	random_sample(iterator	start1,	iterator	end1,	iterator	start2,	iterator	end2,	RandomNumberGenerator&	rnd);

The	random_sample()	algorithm	randomly	copies	elements	from	[start1,end1)	to	[
and	elements	from	the	input	range	will	appear	at	most	once	in	the	output	range.

If	a	random	number	generator	function	object	rnd	is	supplied,	then	it	will	be	used	instead	of	an	internal	random	number	generator.

The	return	value	of	random_sample()	is	an	iterator	to	the	end	of	the	output	range.

random_sample()	runs	in	linear	time.

Related	topics:
next_permutationprev_permutation
random_sample_n
random_shuffle

cppreference.com	>	C++	Algorithms	>	random_sample_n

random_sample_n
Syntax:

		#include	<algorithm>

		iterator	random_sample_n(iterator	start,	iterator	end,	iterator	result,	size_t	N);

		iterator	random_sample_n(iterator	start,	iterator	end,	iterator	result,	size_t	N,	RandomNumberGenerator&	rnd);

The	random_sample_n()	algorithm	randomly	copies	N	elements	from	[start,end)	to	
and	elements	from	the	input	range	will	appear	at	most	once	in	the	output	range.	Element	order	is	preserved
output	range.

If	a	random	number	generator	function	object	rnd	is	supplied,	then	it	will	be	used	instead	of	an	internal	random	number	generator.

The	return	value	of	random_sample_n()	is	an	iterator	to	the	end	of	the	output	range.

random_sample_n()	runs	in	linear	time.

Related	topics:
next_permutationprev_permutation
random_sample
random_shuffle

cppreference.com	>	C++	Algorithms	>	random_shuffle

random_shuffle
Syntax:

		#include	<algorithm>

		void	random_shuffle(iterator	start,	iterator	end);

		void	random_shuffle(iterator	start,	iterator	end,	RandomNumberGenerator&	rnd);

The	random_shuffle()	function	randomly	re-orders	the	elements	in	the	range	[start
random	number	generator	function	object	rnd	is	supplied,	it	will	be	used	instead	of	an	internal
random	nunber	generator.

Related	topics:
next_permutationprev_permutation
random_sample
random_sample_n

cppreference.com	>	C++	Algorithms	>	remove

remove
Syntax:

		#include	<algorithm>

		iterator	remove(iterator	start,	iterator	end,	const	TYPE&	val);

The	remove()	algorithm	removes	all	of	the	elements	in	the	range	[start,end)	that
are	equal	to	val.

The	return	value	of	this	function	is	an	iterator	to	the	last	element	of	the	new
sequence	that	should	contain	no	elements	equal	to	val.

The	remove()	function	runs	in	linear	time.

Related	topics:
remove_copyremove_copy_if
remove_if
unique
unique_copy

cppreference.com	>	C++	Algorithms	>	remove_copy

remove_copy
Syntax:

		#include	<algorithm>

		iterator	remove_copy(iterator	start,	iterator	end,	iterator	result,	const	

The	remove_copy()	algorithm	copies	the	range	[start,end)	to	result	but	omits	any	elements
that	are	equal	to	val.

remove_copy()	returns	an	iterator	to	the	end	of	the	new	range,	and	runs	in	linear	time

Related	topics:
copyremove
remove_copy_if
remove_if

cppreference.com	>	C++	Algorithms	>	remove_copy_if

remove_copy_if
Syntax:

		#include	<algorithm>

		iterator	remove_copy_if(iterator	start,	iterator	end,	iterator	result,	Predicate	p);

The	remove_copy_if()	function	copies	the	range	of	elements	[start,end)	to	result,	omitting	any	elements
for	which	the	predicate	function	p	returns	true.

The	return	value	of	remove_copy_if()	is	an	iterator	the	end	of	the	new	range.

remove_copy_if()	runs	in	linear	time.

Related	topics:
removeremove_copy
remove_if

cppreference.com	>	C++	Algorithms	>	remove_if

remove_if
Syntax:

		#include	<algorithm>

		iterator	remove_if(iterator	start,	iterator	end,	Predicate	p);

The	remove_if()	function	removes	all	elements	in	the	range	[start,end)	for
which	the	predicate	p	returns	true.

The	return	value	of	this	function	is	an	iterator	to	the	last	element	of	the	pruned
range.

remove_if()	runs	in	linear	time.

Related	topics:
removeremove_copy
remove_copy_if

cppreference.com	>	C++	Algorithms	>	replace

replace
Syntax:

		#include	<algorithm>

		void	replace(iterator	start,	iterator	end,	const	TYPE&	old_value,	const	

The	replace()	function	sets	every	element	in	the	range	[start,end)	that	is	equal	to
old_value	to	have	new_value	instead.

replace()	runs	in	linear	time.

Related	topics:
replace_copyreplace_copy_if
replace_if

cppreference.com	>	C++	Algorithms	>	replace_copy

replace_copy
Syntax:

		#include	<algorithm>

		iterator	replace_copy(iterator	start,	iterator	end,	iterator	result,	const	

The	replace_copy()	function	copies	the	elements	in	the	range	[start,end)	to	the	destination
result.	Any	elements	in	the	range	that	are	equal	to	old_value	are	replaced	with	new_value

Related	topics:
replace

cppreference.com	>	C++	Algorithms	>	replace_copy_if

replace_copy_if
Syntax:

		#include	<algorithm>

		iterator	replace_copy_if(iterator	start,	iterator	end,	iterator	result,	Predicate	p,	const	

The	replace_copy_if()	function	copies	the	elements	in	the	range	[start,end)	to	the	destination	
for	which	the	predicate	p	is	true	are	replaced	with	new_value.

Related	topics:
replace

cppreference.com	>	C++	Algorithms	>	replace_if

replace_if
Syntax:

		#include	<algorithm>

		void	replace_if(iterator	start,	iterator	end,	Predicate	p,	const	

The	replace_if()	function	assigns	every	element	in	the	range	[start,end)	for	which
the	predicate	function	p	returns	true	the	value	of	new_value.

This	function	runs	in	linear	time.

Related	topics:
replace

cppreference.com	>	C++	Algorithms	>	reverse

reverse
Syntax:

		#include	<algorithm>

		void	reverse(iterator	start,	iterator	end);

The	reverse()	algorithm	reverses	the	order	of	elements	in	the	range	[start,end).

Related	topics:
reverse_copy

cppreference.com	>	C++	Algorithms	>	reverse_copy

reverse_copy
Syntax:

		#include	<algorithm>

		iterator	reverse_copy(iterator	start,	iterator	end,	iterator	result);

The	reverse_copy()	algorithm	copies	the	elements	in	the	range	[start,end)	to	result
that	the	elements	in	the	new	range	are	in	reverse	order.

The	return	value	of	the	reverse_copy()	function	is	an	iterator	the	end	of	the	new	range.

Related	topics:
reverse

cppreference.com	>	C++	Algorithms	>	rotate

rotate
Syntax:

		#include	<algorithm>

		inline	iterator	rotate(iterator	start,	iterator	middle,	iterator	end);

The	rotate()	algorithm	moves	the	elements	in	the	range	[start,end)	such	that	the	middle
element	is	now	where	start	used	to	be,	(middle+1)	is	now	at	(start+1),	etc.

The	return	value	of	rotate()	is	an	iterator	to	start	+	(end-middle).

rotate()	runs	in	linear	time.

Related	topics:
rotate_copy

cppreference.com	>	C++	Algorithms	>	rotate_copy

rotate_copy
Syntax:

		#include	<algorithm>

		iterator	rotate_copy(iterator	start,	iterator	middle,	iterator	end,	iterator	result);

The	rotate_copy()	algorithm	is	similar	to	the	rotate()	algorithm,	except	that	the	range	of	elements	is	copied
to	result	before	being	rotated.

Related	topics:
rotate

cppreference.com	>	C++	Algorithms	>	search

search
Syntax:

		#include	<algorithm>

		iterator	search(iterator	start1,	iterator	end1,	iterator	start2,	iterator	end2);

		iterator	search(iterator	start1,	iterator	end1,	iterator	start2,	iterator	end2,	BinPred	p);

The	search()	algorithm	looks	for	the	elements	[start2,end2)	in	the	range	[start1,end1
predicate	p	is	provided,	then	it	is	used	to	perform	comparisons	between	elements.

If	search()	finds	a	matching	subrange,	then	it	returns	an	iterator	to	the	beginning	of	that	matching	subrange.	If	no
match	is	found,	an	iterator	pointing	to	end1	is	returned.

In	the	worst	case,	search()	runs	in	quadratic	time,	on	average,	it	runs	in	linear	time

Related	topics:
equalfind
lexicographical_compare
mismatch
search_n

cppreference.com	>	C++	Algorithms	>	search_n

search_n
Syntax:

		#include	<algorithm>

		iterator	search_n(iterator	start,	iterator	end,	size_t	num,	const	

		iterator	search_n(iterator	start,	iterator	end,	size_t	num,	const	

The	search_n()	function	looks	for	num	occurances	of	val	in	the	range	[start,end).

If	num	consecutive	copies	of	val	are	found,	search_n()	returns	an	iterator	to	the
beginning	of	that	sequence.	Otherwise	it	returns	an	iterator	to	end.

If	the	optional	binary	predicate	p	is	given,	then	it	is	used	to	perform	comparisons
between	elements.

This	function	runs	in	linear	time.

Related	topics:
find_endfind_if
search

cppreference.com	>	C++	Algorithms	>	set_difference

set_difference
Syntax:

		#include	<algorithm>

		iterator	set_difference(iterator	start1,	iterator	end1,	iterator	start2,	iterator	end2,	iterator	result);

		iterator	set_difference(iterator	start1,	iterator	end1,	iterator	start2,	iterator	end2,	iterator	result,	StrictWeakOrdering	cmp);

The	set_difference()	algorithm	computes	the	difference	between	two	sets	defined	by	[

Both	of	the	sets,	given	as	ranges,	must	be	sorted	in	ascending	order.

The	return	value	of	set_difference()	is	an	iterator	to	the	end	of	the	result	range.

If	the	strict	weak	ordering	comparison	function	object	cmp	is	not	specified,	set_difference()	will	use	the	<	operator	to	compare	

Related	topics:
includesset_intersection
set_symmetric_difference
set_union

cppreference.com	>	C++	Algorithms	>	set_intersection

set_intersection
Syntax:

		#include	<algorithm>

		iterator	set_intersection(iterator	start1,	iterator	end1,	iterator	start2,	iterator	end2,	iterator	result);

		iterator	set_intersection(iterator	start1,	iterator	end1,	iterator	start2,	iterator	end2,	iterator	result,	StrictWeakOrdering	cmp);

The	set_intersection()	algorithm	computes	the	intersection	of	the	two	sets	defined	by	[

Both	of	the	sets,	given	as	ranges,	must	be	sorted	in	ascending	order.

The	return	value	of	set_intersection()	is	an	iterator	to	the	end	of	the	intersection	range.

If	the	strict	weak	ordering	comparison	function	object	cmp	is	not	specified,	set_intersection()	will	use	the	<	operator	to	compare	

Related	topics:
includesset_difference
set_symmetric_difference
set_union

cppreference.com	>	C++	Algorithms	>	set_symmetric_difference

set_symmetric_difference
Syntax:

		#include	<algorithm>

		iterator	set_symmetric_difference(iterator	start1,	iterator	end1,	iterator	start2,	iterator	end2,	iterator	result);

		iterator	set_symmetric_difference(iterator	start1,	iterator	end1,	iterator	start2,	iterator	end2,	iterator	result,	StrictWeakOrdering	cmp);

The	set_symmetric_difference()	algorithm	computes	the	symmetric	difference	of	the	two	sets	defined	by	[
result.

Both	of	the	sets,	given	as	ranges,	must	be	sorted	in	ascending	order.

The	return	value	of	set_symmetric_difference()	is	an	iterator	to	the	end	of	the	result	range.

If	the	strict	weak	ordering	comparison	function	object	cmp	is	not	specified,	set_symmetric_difference()	will	use	the	<	operator	to	

Related	topics:
includesset_difference
set_intersection
set_union

cppreference.com	>	C++	Algorithms	>	set_union

set_union
Syntax:

		#include	<algorithm>

		iterator	set_union(iterator	start1,	iterator	end1,	iterator	start2,	iterator	end2,	iterator	result);

		iterator	set_union(iterator	start1,	iterator	end1,	iterator	start2,	iterator	end2,	iterator	result,	StrictWeakOrdering	cmp);

The	set_union()	algorithm	computes	the	union	of	the	two	ranges	[start1,end1)	and	[

The	return	value	of	set_union()	is	an	iterator	to	the	end	of	the	union	range.

set_union()	runs	in	linear	time.

Related	topics:
includesmerge
set_difference
set_intersection
set_symmetric_difference

cppreference.com	>	C++	Algorithms	>	sort

sort
Syntax:

		#include	<algorithm>

		void	sort(iterator	start,	iterator	end);

		void	sort(iterator	start,	iterator	end,	StrictWeakOrdering	cmp);

The	sort()	algorithm	sorts	the	elements	in	the	range	[start,end)	into	ascending
order.	If	two	elements	are	equal,	there	is	no	guarantee	what	order	they	will	be	in.

If	the	strict	weak	ordering	function	object	cmp	is	given,	then	it	will	be	used	to
compare	two	objects	instead	of	the	<	operator.

The	algorithm	behind	sort()	is	the	introsort	algorithm.	sort()	runs	in	O(N	log(N))
time	(average	and	worst	case)	which	is	faster	than	polynomial	time	but	slower
than	linear	time.

Example	code:

For	example,	the	following	code	sorts	a	vector	of	integers	into	ascending	order:

	vector<int>	v;

	v.push_back(23);

	v.push_back(-1);

	v.push_back(9999);

	v.push_back(0);

	v.push_back(4);														

	cout	<<	"Before	sorting:	";

	for(unsigned	int	i	=	0;	i	<	v.size();	i++)	{

			cout	<<	v[i]	<<	"	";

	}

	cout	<<	endl;												

	sort(v.begin(),	v.end());												

	cout	<<	"After	sorting:	";

	for(unsigned	int	i	=	0;	i	<	v.size();	i++)	{

			cout	<<	v[i]	<<	"	";

	}

	cout	<<	endl;												

When	run,	the	above	code	displays	this	output:

	Before	sorting:	23	-1	9999	0	4

	After	sorting:	-1	0	4	23	9999										

Alternatively,	the	following	code	uses	the	sort()	function	to	sort	a	normal	array	of
integers,	and	displays	the	same	output	as	the	previous	example:

	int	array[]	=	{	23,	-1,	9999,	0,	4	};

	unsigned	int	array_size	=	5;											

	cout	<<	"Before	sorting:	";

	for(unsigned	int	i	=	0;	i	<	array_size;	i++)	{

			cout	<<	array[i]	<<	"	";

	}

	cout	<<	endl;												

	sort(array,	array	+	array_size);													

	cout	<<	"After	sorting:	";

	for(unsigned	int	i	=	0;	i	<	array_size;	i++)	{

			cout	<<	array[i]	<<	"	";

	}

	cout	<<	endl;												

This	next	example	shows	how	to	use	sort()	with	a	user-specified	comparison
function.	The	function	cmp	is	defined	to	do	the	opposite	of	the	<	operator.	When
sort()	is	called	with	cmp	used	as	the	comparison	function,	the	result	is	a	list	sorted
in	descending,	rather	than	ascending,	order:

	bool	cmp(int	a,	int	b)	{

			return	a	>	b;

	}														

	...												

	vector<int>	v;

	for(int	i	=	0;	i	<	10;	i++)	{

			v.push_back(i);

	}														

	cout	<<	"Before:	";

	for(int	i	=	0;	i	<	10;	i++)	{

			cout	<<	v[i]	<<	"	";

	}

	cout	<<	endl;												

	sort(v.begin(),	v.end(),	cmp);															

	cout	<<	"After:	";

	for(int	i	=	0;	i	<	10;	i++)	{

			cout	<<	v[i]	<<	"	";

	}

	cout	<<	endl;												

Related	topics:
binary_searchis_sorted
merge
partial_sort
partial_sort_copy
stable_sort
(Other	Standard	C	Functions)	qsort

cppreference.com	>	C++	Algorithms	>	sort_heap

sort_heap
Syntax:

		#include	<algorithm>

		void	sort_heap(iterator	start,	iterator	end);

		void	sort_heap(iterator	start,	iterator	end,	StrictWeakOrdering	cmp);

The	sort_heap()	function	turns	the	heap	defined	by	[start,end)	into	a	sorted	range.

If	the	strict	weak	ordering	comparison	function	object	cmp	is	given,	then	it	is	used
instead	of	the	<	operator	to	compare	elements.

Related	topics:
is_heapmake_heap
pop_heap
push_heap

cppreference.com	>	C++	Algorithms	>	stable_partition

stable_partition
Syntax:

		#include	<algorithm>

		iterator	stable_partition(iterator	start,	iterator	end,	Predicate	p);

The	stable_partition()	function	behaves	similarily	to	partition().	The	difference	between
the	two	algorithms	is	that	stable_partition()	will	preserve	the	initial	ordering	of	the
elements	in	the	two	groups.

Related	topics:
partition

cppreference.com	>	C++	Algorithms	>	stable_sort

stable_sort
Syntax:

		#include	<algorithm>

		void	stable_sort(iterator	start,	iterator	end);

		void	stable_sort(iterator	start,	iterator	end,	StrictWeakOrdering	cmp);

The	stable_sort()	algorithm	is	like	the	sort()	algorithm,	in	that	it	sorts	a	range	of	elements
into	ascending	order.	Unlike	sort(),	however,	stable_sort()	will	preserve	the	original
ordering	of	elements	that	are	equal	to	eachother.

This	functionality	comes	at	a	small	cost,	however,	as	stable_sort()	takes	a	few	more
comparisons	that	sort()	in	the	worst	case:	N	(log	N)^2	instead	of	N	log	N.

Related	topics:
binary_searchis_sorted
partial_sort
partial_sort_copy
sort

cppreference.com	>	C++	Algorithms	>	swap

swap
Syntax:

		#include	<algorithm>

		void	swap(Assignable&	a,	Assignable&	b);

The	swap()	function	swaps	the	values	of	a	and	b.

swap()	expects	that	its	arguments	will	conform	to	the	Assignable	model;	that	is,
they	should	have	a	copy	constructor	and	work	with	the	=	operator.	This	function
performs	one	copy	and	two	assignments.

Related	topics:
copycopy_backward
copy_n
iter_swap
swap_ranges

cppreference.com	>	C++	Algorithms	>	swap_ranges

swap_ranges
Syntax:

		#include	<algorithm>

		iterator	swap_ranges(iterator	start1,	iterator	end1,	iterator	start2);

The	swap_ranges()	function	exchanges	the	elements	in	the	range	[start1,end1)	with	the
range	of	the	same	size	starting	at	start2.

The	return	value	of	swap_ranges()	is	an	iterator	to	start2	+	(end1-start1).

Related	topics:
iter_swapswap

cppreference.com	>	C++	Algorithms	>	transform

transform
Syntax:

		#include	<algorithm>

		iterator	transform(iterator	start,	iterator	end,	iterator	result,	UnaryFunction	f);

		iterator	transform(iterator	start1,	iterator	end1,	iterator	start2,	iterator	result,	BinaryFunction	f);

The	transform()	algorithm	applies	the	function	f	to	some	range	of	elements,	storing	the	result	of	each	application	of	the	function
in	result.

The	first	version	of	the	function	applies	f	to	each	element	in	[start,end)	and	assigns	the	first	output	of	the	function	
second	output	to	(result+1),	etc.

The	second	version	of	the	transform()	works	in	a	similar	manner,	except	that	it	is	given	two	ranges	of	elements	and	calls	a	binary
function	on	a	pair	of	elements.

Related	topics:
copyfill
generate

cppreference.com	>	C++	Algorithms	>	unique

unique
Syntax:

		#include	<algorithm>

		iterator	unique(iterator	start,	iterator	end);

		iterator	unique(iterator	start,	iterator	end,	BinPred	p);

The	unique()	algorithm	removes	all	consecutive	duplicate	elements	from	the
range	[start,end).	If	the	binary	predicate	p	is	given,	then	it	is	used	to	test	to	test
two	elements	to	see	if	they	are	duplicates.

The	return	value	of	unique()	is	an	iterator	to	the	end	of	the	modified	range.

unique()	runs	in	linear	time.

Related	topics:
adjacent_findremove
unique_copy

cppreference.com	>	C++	Algorithms	>	unique_copy

unique_copy
Syntax:

		#include	<algorithm>

		iterator	unique_copy(iterator	start,	iterator	end,	iterator	result);

		iterator	unique_copy(iterator	start,	iterator	end,	iterator	result,	BinPred	p);

The	unique_copy()	function	copies	the	range	[start,end)	to	result,	removing	all	consecutive	
elements.	If	the	binary	predicate	p	is	provided,	then	it	is	used	to	test	two	elements	to	see	if	they	are
duplicates.

The	return	value	of	unique_copy()	is	an	iterator	to	the	end	of	the	new	range.

unique_copy()	runs	in	linear	time.

Related	topics:
adjacent_findremove
unique

cppreference.com	>	C++	Algorithms	>	upper_bound

upper_bound
Syntax:

		#include	<algorithm>

		iterator	upper_bound(iterator	start,	iterator	end,	const	TYPE&	val);

		iterator	upper_bound(iterator	start,	iterator	end,	const	TYPE&	val,	StrictWeakOrdering	cmp);

The	upper_bound()	algorithm	searches	the	ordered	range	[start,end)	for	the	last
location	that	val	could	be	inserted	without	disrupting	the	order	of	the	range.

If	the	strict	weak	ordering	function	object	cmp	is	given,	it	is	used	to	compare
elements	instead	of	the	<	operator.

upper_bound()	runs	in	logarithmic	time.

Related	topics:
binary_searchequal_range

cppreference.com	>	C++	Double-ended	Queues

assign
Syntax:

		#include	<deque>

		void	assign(size_type	num,	const	TYPE&	val);

		void	assign(input_iterator	start,	input_iterator	end);

The	assign()	function	either	gives	the	current	dequeue	the	values	from	start	to
end,	or	gives	it	num	copies	of	val.

This	function	will	destroy	the	previous	contents	of	the	dequeue.

For	example,	the	following	code	uses	assign()	to	put	10	copies	of	the	integer	42
into	a	vector:

	vector<int>	v;

	v.assign(10,	42);

	for(int	i	=	0;	i	<	v.size();	i++)	{

			cout	<<	v[i]	<<	"	";

	}

	cout	<<	endl;												

The	above	code	displays	the	following	output:

	42	42	42	42	42	42	42	42	42	42										

The	next	example	shows	how	assign()	can	be	used	to	copy	one	vector	to
another:

	vector<int>	v1;

	for(int	i	=	0;	i	<	10;	i++)	{

			v1.push_back(i);

	}														

	vector<int>	v2;

	v2.assign(v1.begin(),	v1.end());													

	for(int	i	=	0;	i	<	v2.size();	i++)	{

			cout	<<	v2[i]	<<	"	";

	}

	cout	<<	endl;												

When	run,	the	above	code	displays	the	following	output:

	0	1	2	3	4	5	6	7	8	9												

Related	topics:
(C++	Strings)	assign
insert
push_back
push_front

at
Syntax:

		#include	<deque>

		TYPE&	at(size_type	loc);

		const	TYPE&	at(size_type	loc)	const;

The	at()	function	returns	a	reference	to	the	element	in	the	dequeue	at	index	loc.
The	at()	function	is	safer	than	the	[]	operator,	because	it	won't	let	you	reference
items	outside	the	bounds	of	the	dequeue.

For	example,	consider	the	following	code:

	vector<int>	v(5,	1);

	for(int	i	=	0;	i	<	10;	i++)	{

			cout	<<	"Element	"	<<	i	<<	"	is	"	<<	v[i]	<<	endl;

	}														

This	code	overrunns	the	end	of	the	vector,	producing	potentially	dangerous
results.	The	following	code	would	be	much	safer:

	vector<int>	v(5,	1);

	for(int	i	=	0;	i	<	10;	i++)	{

			cout	<<	"Element	"	<<	i	<<	"	is	"	<<	v.at(i)	<<	endl;

	}														

Instead	of	attempting	to	read	garbage	values	from	memory,	the	at()	function	will
realize	that	it	is	about	to	overrun	the	vector	and	will	throw	an	exception.

Related	topics:
(C++	Multimaps)	Container	operators
Container	operators

back
Syntax:

		#include	<deque>

		TYPE&	back();

		const	TYPE&	back()	const;

The	back()	function	returns	a	reference	to	the	last	element	in	the	dequeue.

For	example:

	vector<int>	v;

	for(int	i	=	0;	i	<	5;	i++)	{

			v.push_back(i);

	}

	cout	<<	"The	first	element	is	"	<<	v.front()

						<<	"	and	the	last	element	is	"	<<	v.back()	<<	endl;											

This	code	produces	the	following	output:

	The	first	element	is	0	and	the	last	element	is	4															

The	back()	function	runs	in	constant	time.

Related	topics:
front
pop_back

begin

Syntax:

		#include	<deque>

		iterator	begin();

		const_iterator	begin()	const;

The	function	begin()	returns	an	iterator	to	the	first	element	of	the	dequeue.
begin()	should	run	in	constant	time.

For	example,	the	following	code	uses	begin()	to	initialize	an	iterator	that	is	used
to	traverse	a	list:

			//	Create	a	list	of	characters

			list<char>	charList;

			for(int	i=0;	i	<	10;	i++)	{

					charList.push_front(i	+	65);

			}

			//	Display	the	list

			list<char>::iterator	theIterator;

			for(theIterator	=	charList.begin();	theIterator	!=	charList.end();	theIterator++)	{

					cout	<<	*theIterator;

			}												

Related	topics:
end
rbegin
rend

clear
Syntax:

		#include	<deque>

		void	clear();

The	function	clear()	deletes	all	of	the	elements	in	the	dequeue.	clear()	runs	in
linear	time.

Related	topics:
erase

Container	[]	operator
Syntax:

		TYPE&	operator[](size_type	index);		const	TYPE&	operator[](size_type

Individual	elements	of	a	dequeue	can	be	examined	with	the	[]	operator.

For	example,	the	following	code	uses	the	[]	operator	to	access	all	of	the	elements
of	a	vector:

	vector<int>	v(5,	1);

	for(int	i	=	0;	i	<	v.size();	i++)	{

			cout	<<	"Element	"	<<	i	<<	"	is	"	<<	v[i]	<<	endl;

	}

	 	

The	[]	operator	runs	in	constant	time.

Related	topics:
at

Container	[]	operator
Syntax:

		TYPE&	operator[](size_type	index);		const	TYPE&	operator[](size_type

Individual	elements	of	a	dequeue	can	be	examined	with	the	[]	operator.

For	example,	the	following	code	uses	the	[]	operator	to	access	all	of	the	elements
of	a	vector:

	vector<int>	v(5,	1);

	for(int	i	=	0;	i	<	v.size();	i++)	{

			cout	<<	"Element	"	<<	i	<<	"	is	"	<<	v[i]	<<	endl;

	}

	 	

The	[]	operator	runs	in	constant	time.

Related	topics:
at

Container	constructors	&
destructors

Syntax:

		container();		container(const	container&	c);		~container();

Every	dequeue	has	a	default	constructor,	copy	constructor,	and	destructor.

The	default	constructor	takes	no	arguments,	creates	a	new	instance	of	that
dequeue,	and	runs	in	constant	time.	The	default	copy	constructor	runs	in	linear
time	and	can	be	used	to	create	a	new	dequeue	that	is	a	copy	of	the	given	dequeue
c.

The	default	destructor	is	called	when	the	dequeue	should	be	destroyed.

For	example,	the	following	code	creates	a	pointer	to	a	vector	of	integers	and	then
uses	the	default	dequeue	constructor	to	allocate	a	memory	for	a	new	vector:

	vector<int>*	v;

	v	=	new	vector<int>();

	 	

Related	topics:
Special	container	constructors,	resize

Container	constructors
Syntax:

		#include	<deque>

		container();

		container(const	container&	c);

		container(size_type	num,	const	TYPE&	val	=	TYPE());

		container(input_iterator	start,	input_iterator	end);

		~container();

The	default	dequeue	constructor	takes	no	arguments,	creates	a	new	instance	of
that	dequeue.

The	second	constructor	is	a	default	copy	constructor	that	can	be	used	to	create	a
new	dequeue	that	is	a	copy	of	the	given	dequeue	c.

The	third	constructor	creates	a	dequeue	with	space	for	num	objects.	If	val	is
specified,	each	of	those	objects	will	be	given	that	value.	For	example,	the
following	code	creates	a	vector	consisting	of	five	copies	of	the	integer	42:

	vector<int>	v1(5,	42);									

The	last	constructor	creates	a	dequeue	that	is	initialized	to	contain	the	elements
between	start	and	end.	For	example:

	//	create	a	vector	of	random	integers

	cout	<<	"original	vector:	";

	vector<int>	v;

	for(int	i	=	0;	i	<	10;	i++)	{

			int	num	=	(int)	rand()	%	10;

			cout	<<	num	<<	"	";

			v.push_back(num);

	}

	cout	<<	endl;												

	//	find	the	first	element	of	v	that	is	even

	vector<int>::iterator	iter1	=	v.begin();

	while(iter1	!=	v.end()	&&	*iter1	%	2	!=	0)	{

			iter1++;

	}														

	//	find	the	last	element	of	v	that	is	even

	vector<int>::iterator	iter2	=	v.end();

	do	{

			iter2--;

	}	while(iter2	!=	v.begin()	&&	*iter2	%	2	!=	0);														

	cout	<<	"first	even	number:	"	<<	*iter1	<<	",	last	even	number:	"	<<	*iter2	<<	endl;									

	cout	<<	"new	vector:	";

	vector<int>	v2(iter1,	iter2);

	for(int	i	=	0;	i	<	v2.size();	i++)	{

			cout	<<	v2[i]	<<	"	";

	}

	cout	<<	endl;												

When	run,	this	code	displays	the	following	output:

	original	vector:	1	9	7	9	2	7	2	1	9	8

	first	even	number:	2,	last	even	number:	8

	new	vector:	2	7	2	1	9										

All	of	these	constructors	run	in	linear	time	except	the	first,	which	runs	in
constant	time.

The	default	destructor	is	called	when	the	dequeue	should	be	destroyed.

Container	operators
Syntax:

		#include	<deque>

		TYPE&	operator[](size_type	index);

		const	TYPE&	operator[](size_type	index)	const;

		container	operator=(const	container&	c2);

		bool	operator==(const	container&	c1,	const	container&	c2);

		bool	operator!=(const	container&	c1,	const	container&	c2);

		bool	operator<(const	container&	c1,	const	container&	c2);

		bool	operator>(const	container&	c1,	const	container&	c2);

		bool	operator<=(const	container&	c1,	const	container&	c2);

		bool	operator>=(const	container&	c1,	const	container&	c2);

All	of	the	C++	containers	can	be	compared	and	assigned	with	the	standard
comparison	operators:	==,	!=,	<=,	>=,	<,	>,	and	=.	Individual	elements	of	a
dequeue	can	be	examined	with	the	[]	operator.

Performing	a	comparison	or	assigning	one	dequeue	to	another	takes	linear	time.
The	[]	operator	runs	in	constant	time.

Two	`containers`	are	equal	if:

1.	 Their	size	is	the	same,	and
2.	 Each	member	in	location	i	in	one	dequeue	is	equal	to	the	the	member	in

location	i	in	the	other	dequeue.

Comparisons	among	dequeues	are	done	lexicographically.

For	example,	the	following	code	uses	the	[]	operator	to	access	all	of	the	elements
of	a	vector:

	vector<int>	v(5,	1);

	for(int	i	=	0;	i	<	v.size();	i++)	{

			cout	<<	"Element	"	<<	i	<<	"	is	"	<<	v[i]	<<	endl;

	}														

Related	topics:
at

empty
Syntax:

		#include	<deque>

		bool	empty()	const;

The	empty()	function	returns	true	if	the	dequeue	has	no	elements,	false
otherwise.

For	example,	the	following	code	uses	empty()	as	the	stopping	condition	on	a
(C/C++	Keywords)	while	loop	to	clear	a	dequeue	and	display	its	contents	in
reverse	order:

	vector<int>	v;

	for(int	i	=	0;	i	<	5;	i++)	{

			v.push_back(i);

	}

	while(!v.empty())	{

			cout	<<	v.back()	<<	endl;

			v.pop_back();

	}														

Related	topics:
size

end
Syntax:

		#include	<deque>

		iterator	end();

		const_iterator	end()	const;

The	end()	function	returns	an	iterator	just	past	the	end	of	the	dequeue.

Note	that	before	you	can	access	the	last	element	of	the	dequeue	using	an	iterator
that	you	get	from	a	call	to	end(),	you'll	have	to	decrement	the	iterator	first.

For	example,	the	following	code	uses	begin()	and	end()	to	iterate	through	all	of
the	members	of	a	vector:

	vector<int>	v1(5,	789);

	vector<int>::iterator	it;

	for(it	=	v1.begin();	it	!=	v1.end();	it++)	{

			cout	<<	*it	<<	endl;

	}														

The	iterator	is	initialized	with	a	call	to	begin().	After	the	body	of	the	loop	has
been	executed,	the	iterator	is	incremented	and	tested	to	see	if	it	is	equal	to	the
result	of	calling	end().	Since	end()	returns	an	iterator	pointing	to	an	element	just
after	the	last	element	of	the	vector,	the	loop	will	only	stop	once	all	of	the
elements	of	the	vector	have	been	displayed.

end()	runs	in	constant	time.

Related	topics:
begin
rbegin
rend

erase
Syntax:

		#include	<deque>

		iterator	erase(iterator	loc);

		iterator	erase(iterator	start,	iterator	end);

The	erase()	function	either	deletes	the	element	at	location	loc,	or	deletes	the
elements	between	start	and	end	(including	start	but	not	including	end).	The
return	value	is	the	element	after	the	last	element	erased.

The	first	version	of	erase	(the	version	that	deletes	a	single	element	at	location
loc)	runs	in	constant	time	for	lists	and	linear	time	for	vectors,	dequeues,	and
strings.	The	multiple-element	version	of	erase	always	takes	linear	time.

For	example:

	//	Create	a	vector,	load	it	with	the	first	ten	characters	of	the	alphabet

	vector<char>	alphaVector;

	for(int	i=0;	i	<	10;	i++)	{

			alphaVector.push_back(i	+	65);

	}

	int	size	=	alphaVector.size();

	vector<char>::iterator	startIterator;

	vector<char>::iterator	tempIterator;

	for(int	i=0;	i	<	size;	i++)	{

			startIterator	=	alphaVector.begin();

			alphaVector.erase(startIterator);

			//	Display	the	vector

			for(tempIterator	=	alphaVector.begin();	tempIterator	!=	alphaVector.end();	tempIterator++)	{

					cout	<<	*tempIterator;

			}

			cout	<<	endl;

	}														

That	code	would	display	the	following	output:

	BCDEFGHIJ

	CDEFGHIJ

	DEFGHIJ

	EFGHIJ

	FGHIJ

	GHIJ

	HIJ

	IJ

	J														

In	the	next	example,	erase()	is	called	with	two	iterators	to	delete	a	range	of
elements	from	a	vector:

	//	create	a	vector,	load	it	with	the	first	ten	characters	of	the	alphabet

	vector<char>	alphaVector;

	for(int	i=0;	i	<	10;	i++)	{

			alphaVector.push_back(i	+	65);

	}

	//	display	the	complete	vector

	for(int	i	=	0;	i	<	alphaVector.size();	i++)	{

			cout	<<	alphaVector[i];

	}

	cout	<<	endl;												

	//	use	erase	to	remove	all	but	the	first	two	and	last	three	elements

	//	of	the	vector

	alphaVector.erase(alphaVector.begin()+2,	alphaVector.end()-3);

	//	display	the	modified	vector

	for(int	i	=	0;	i	<	alphaVector.size();	i++)	{

			cout	<<	alphaVector[i];

	}

	cout	<<	endl;												

When	run,	the	above	code	displays:

	ABCDEFGHIJ

	ABHIJ										

Related	topics:
clear
insert
pop_back
pop_front
(C++	Lists)	remove
(C++	Lists)	remove_if

front
Syntax:

		#include	<deque>

		TYPE&	front();

		const	TYPE&	front()	const;

The	front()	function	returns	a	reference	to	the	first	element	of	the	dequeue,	and
runs	in	constant	time.

Related	topics:
back
pop_front
push_front

insert
Syntax:

		#include	<deque>

		iterator	insert(iterator	loc,	const	TYPE&	val);

		void	insert(iterator	loc,	size_type	num,	const	TYPE&	val);

		template<TYPE>	void	insert(iterator	loc,	input_iterator	start,	input_iterator

The	insert()	function	either:

inserts	val	before	loc,	returning	an	iterator	to	the	element	inserted,
inserts	num	copies	of	val	before	loc,	or
inserts	the	elements	from	start	to	end	before	loc.

For	example:

	//	Create	a	vector,	load	it	with	the	first	10	characters	of	the	alphabet

	vector<char>	alphaVector;

	for(int	i=0;	i	<	10;	i++)	{

			alphaVector.push_back(i	+	65);

	}														

	//	Insert	four	C's	into	the	vector

	vector<char>::iterator	theIterator	=	alphaVector.begin();

	alphaVector.insert(theIterator,	4,	'C');													

	//	Display	the	vector

	for(theIterator	=	alphaVector.begin();	theIterator	!=	alphaVector.end();	theIterator++)				{

			cout	<<	*theIterator;

	}														

This	code	would	display:

	CCCCABCDEFGHIJ									

Related	topics:
assign
erase
(C++	Lists)	merge
push_back
push_front
(C++	Lists)	splice

max_size
Syntax:

		#include	<deque>

		size_type	max_size()	const;

The	max_size()	function	returns	the	maximum	number	of	elements	that	the
dequeue	can	hold.	The	max_size()	function	should	not	be	confused	with	the
size()	or	(C++	Strings)	capacity()	functions,	which	return	the	number	of
elements	currently	in	the	dequeue	and	the	the	number	of	elements	that	the
dequeue	will	be	able	to	hold	before	more	memory	will	have	to	be	allocated,
respectively.

Related	topics:
size

pop_back
Syntax:

		#include	<deque>

		void	pop_back();

The	pop_back()	function	removes	the	last	element	of	the	dequeue.

pop_back()	runs	in	constant	time.

Related	topics:
back
erase
pop_front
push_back

pop_front
Syntax:

		#include	<deque>

		void	pop_front();

The	function	pop_front()	removes	the	first	element	of	the	dequeue.

The	pop_front()	function	runs	in	constant	time.

Related	topics:
erase
front
pop_back
push_front

push_back
Syntax:

		#include	<deque>

		void	push_back(const	TYPE&	val);

The	push_back()	function	appends	val	to	the	end	of	the	dequeue.

For	example,	the	following	code	puts	10	integers	into	a	list:

			list<int>	the_list;

			for(int	i	=	0;	i	<	10;	i++)

					the_list.push_back(i);											

When	displayed,	the	resulting	list	would	look	like	this:

	0	1	2	3	4	5	6	7	8	9												

push_back()	runs	in	constant	time.

Related	topics:
assign
insert
pop_back
push_front

push_front
Syntax:

		#include	<deque>

		void	push_front(const	TYPE&	val);

The	push_front()	function	inserts	val	at	the	beginning	of	dequeue.

push_front()	runs	in	constant	time.

Related	topics:
assign
front
insert
pop_front
push_back

rbegin
Syntax:

		#include	<deque>

		reverse_iterator	rbegin();

		const_reverse_iterator	rbegin()	const;

The	rbegin()	function	returns	a	reverse_iterator	to	the	end	of	the	current
dequeue.

rbegin()	runs	in	constant	time.

Related	topics:
begin
end
rend

rend
Syntax:

		#include	<deque>

		reverse_iterator	rend();

		const_reverse_iterator	rend()	const;

The	function	rend()	returns	a	reverse_iterator	to	the	beginning	of	the	current
dequeue.

rend()	runs	in	constant	time.

Related	topics:
begin
end
rbegin

resize
Syntax:

		#include	<deque>

		void	resize(size_type	num,	const	TYPE&	val	=	TYPE());

The	function	resize()	changes	the	size	of	the	dequeue	to	size.	If	val	is	specified
then	any	newly-created	elements	will	be	initialized	to	have	a	value	of	val.

This	function	runs	in	linear	time.

Related	topics:
(C++	Multimaps)	Container	constructors	&	destructors
(C++	Strings)	capacity
size

size
Syntax:

		#include	<deque>

		size_type	size()	const;

The	size()	function	returns	the	number	of	elements	in	the	current	dequeue.

Related	topics:
(C++	Strings)	capacity
empty

(C++	Strings)	length
max_size
resize

swap
Syntax:

		#include	<deque>

		void	swap(const	container&	from);

The	swap()	function	exchanges	the	elements	of	the	current	dequeue	with	those	of
from.	This	function	operates	in	constant	time.

For	example,	the	following	code	uses	the	swap()	function	to	exchange	the	values
of	two	strings:

			string	first("This	comes	first");

			string	second("And	this	is	second");

			first.swap(second);

			cout	<<	first	<<	endl;

			cout	<<	second	<<	endl;										

The	above	code	displays:

			And	this	is	second

			This	comes	first													

Related	topics:
(C++	Lists)	splice

cppreference.com	>	C++	Double-ended	Queues	>	assign

assign
Syntax:

		#include	<deque>

		void	assign(size_type	num,	const	TYPE&	val);

		void	assign(input_iterator	start,	input_iterator	end);

The	assign()	function	either	gives	the	current	dequeue	the	values	from	start	to
end,	or	gives	it	num	copies	of	val.

This	function	will	destroy	the	previous	contents	of	the	dequeue.

For	example,	the	following	code	uses	assign()	to	put	10	copies	of	the	integer	42
into	a	vector:

	vector<int>	v;

	v.assign(10,	42);

	for(int	i	=	0;	i	<	v.size();	i++)	{

			cout	<<	v[i]	<<	"	";

	}

	cout	<<	endl;												

The	above	code	displays	the	following	output:

	42	42	42	42	42	42	42	42	42	42										

The	next	example	shows	how	assign()	can	be	used	to	copy	one	vector	to
another:

	vector<int>	v1;

	for(int	i	=	0;	i	<	10;	i++)	{

			v1.push_back(i);

	}														

	vector<int>	v2;

	v2.assign(v1.begin(),	v1.end());													

	for(int	i	=	0;	i	<	v2.size();	i++)	{

			cout	<<	v2[i]	<<	"	";

	}

	cout	<<	endl;												

When	run,	the	above	code	displays	the	following	output:

	0	1	2	3	4	5	6	7	8	9												

Related	topics:
(C++	Strings)	assign
insert
push_back
push_front

cppreference.com	>	C++	Double-ended	Queues	>	at

at
Syntax:

		#include	<deque>

		TYPE&	at(size_type	loc);

		const	TYPE&	at(size_type	loc)	const;

The	at()	function	returns	a	reference	to	the	element	in	the	dequeue	at	index	loc.
The	at()	function	is	safer	than	the	[]	operator,	because	it	won't	let	you	reference
items	outside	the	bounds	of	the	dequeue.

For	example,	consider	the	following	code:

	vector<int>	v(5,	1);

	for(int	i	=	0;	i	<	10;	i++)	{

			cout	<<	"Element	"	<<	i	<<	"	is	"	<<	v[i]	<<	endl;

	}														

This	code	overrunns	the	end	of	the	vector,	producing	potentially	dangerous
results.	The	following	code	would	be	much	safer:

	vector<int>	v(5,	1);

	for(int	i	=	0;	i	<	10;	i++)	{

			cout	<<	"Element	"	<<	i	<<	"	is	"	<<	v.at(i)	<<	endl;

	}														

Instead	of	attempting	to	read	garbage	values	from	memory,	the	at()	function	will
realize	that	it	is	about	to	overrun	the	vector	and	will	throw	an	exception.

Related	topics:
(C++	Multimaps)	Container	operators
Container	operators

cppreference.com	>	C++	Double-ended	Queues	>	back

back
Syntax:

		#include	<deque>

		TYPE&	back();

		const	TYPE&	back()	const;

The	back()	function	returns	a	reference	to	the	last	element	in	the	dequeue.

For	example:

	vector<int>	v;

	for(int	i	=	0;	i	<	5;	i++)	{

			v.push_back(i);

	}

	cout	<<	"The	first	element	is	"	<<	v.front()

						<<	"	and	the	last	element	is	"	<<	v.back()	<<	endl;											

This	code	produces	the	following	output:

	The	first	element	is	0	and	the	last	element	is	4															

The	back()	function	runs	in	constant	time.

Related	topics:
frontpop_back

cppreference.com	>	C++	Double-ended	Queues	>	begin

begin
Syntax:

		#include	<deque>

		iterator	begin();

		const_iterator	begin()	const;

The	function	begin()	returns	an	iterator	to	the	first	element	of	the	dequeue.	begin()	should	run	in	
time.

For	example,	the	following	code	uses	begin()	to	initialize	an	iterator	that	is	used	to	traverse	a	list:

			//	Create	a	list	of	characters

			list<char>	charList;

			for(int	i=0;	i	<	10;	i++)	{

					charList.push_front(i	+	65);

			}

			//	Display	the	list

			list<char>::iterator	theIterator;

			for(theIterator	=	charList.begin();	theIterator	!=	charList.end();	theIterator++)	{

					cout	<<	*theIterator;

			}												

Related	topics:
endrbegin
rend

cppreference.com	>	C++	Double-ended	Queues	>	clear

clear
Syntax:

		#include	<deque>

		void	clear();

The	function	clear()	deletes	all	of	the	elements	in	the	dequeue.	clear()	runs	in
linear	time.

Related	topics:
erase

cppreference.com	>	C++	Double-ended	Queues	>	Container	constructors

Container	constructors
Syntax:

		#include	<deque>

		container();

		container(const	container&	c);

		container(size_type	num,	const	TYPE&	val	=	TYPE());

		container(input_iterator	start,	input_iterator	end);

		~container();

The	default	dequeue	constructor	takes	no	arguments,	creates	a	new	instance	of	that	dequeue.

The	second	constructor	is	a	default	copy	constructor	that	can	be	used	to	create	a	new	dequeue	that	is	a	copy	of
the	given	dequeue	c.

The	third	constructor	creates	a	dequeue	with	space	for	num	objects.	If	val	is	specified,	each	of	those	objects	will
be	given	that	value.	For	example,	the	following	code	creates	a	vector	consisting	of	

	vector<int>	v1(5,	42);									

The	last	constructor	creates	a	dequeue	that	is	initialized	to	contain	the	elements	between	
example:

	//	create	a	vector	of	random	integers

	cout	<<	"original	vector:	";

	vector<int>	v;

	for(int	i	=	0;	i	<	10;	i++)	{

			int	num	=	(int)	rand()	%	10;

			cout	<<	num	<<	"	";

			v.push_back(num);

	}

	cout	<<	endl;												

	//	find	the	first	element	of	v	that	is	even

	vector<int>::iterator	iter1	=	v.begin();

	while(iter1	!=	v.end()	&&	*iter1	%	2	!=	0)	{

			iter1++;

	}														

	//	find	the	last	element	of	v	that	is	even

	vector<int>::iterator	iter2	=	v.end();

	do	{

			iter2--;

	}	while(iter2	!=	v.begin()	&&	*iter2	%	2	!=	0);														

	cout	<<	"first	even	number:	"	<<	*iter1	<<	",	last	even	number:	"	<<	*iter2	<<	endl;									

	cout	<<	"new	vector:	";

	vector<int>	v2(iter1,	iter2);

	for(int	i	=	0;	i	<	v2.size();	i++)	{

			cout	<<	v2[i]	<<	"	";

	}

	cout	<<	endl;												

When	run,	this	code	displays	the	following	output:

	original	vector:	1	9	7	9	2	7	2	1	9	8

	first	even	number:	2,	last	even	number:	8

	new	vector:	2	7	2	1	9										

All	of	these	constructors	run	in	linear	time	except	the	first,	which	runs	in	constant	time

The	default	destructor	is	called	when	the	dequeue	should	be	destroyed.

cppreference.com	>	C++	Double-ended	Queues	>	Container	operators

Container	operators
Syntax:

		#include	<deque>

		TYPE&	operator[](size_type	index);

		const	TYPE&	operator[](size_type	index)	const;

		container	operator=(const	container&	c2);

		bool	operator==(const	container&	c1,	const	container&	c2);

		bool	operator!=(const	container&	c1,	const	container&	c2);

		bool	operator<(const	container&	c1,	const	container&	c2);

		bool	operator>(const	container&	c1,	const	container&	c2);

		bool	operator<=(const	container&	c1,	const	container&	c2);

		bool	operator>=(const	container&	c1,	const	container&	c2);

All	of	the	C++	containers	can	be	compared	and	assigned	with	the	standard
comparison	operators:	==,	!=,	<=,	>=,	<,	>,	and	=.	Individual	elements	of	a
dequeue	can	be	examined	with	the	[]	operator.

Performing	a	comparison	or	assigning	one	dequeue	to	another	takes	linear	time.
The	[]	operator	runs	in	constant	time.

Two	`containers`	are	equal	if:

1.	 Their	size	is	the	same,	and
2.	 Each	member	in	location	i	in	one	dequeue	is	equal	to	the	the	member	in

location	i	in	the	other	dequeue.

Comparisons	among	dequeues	are	done	lexicographically.

For	example,	the	following	code	uses	the	[]	operator	to	access	all	of	the
elements	of	a	vector:

	vector<int>	v(5,	1);

	for(int	i	=	0;	i	<	v.size();	i++)	{

			cout	<<	"Element	"	<<	i	<<	"	is	"	<<	v[i]	<<	endl;

	}														

Related	topics:

at

cppreference.com	>	C++	Double-ended	Queues	>	empty

empty
Syntax:

		#include	<deque>

		bool	empty()	const;

The	empty()	function	returns	true	if	the	dequeue	has	no	elements,	false
otherwise.

For	example,	the	following	code	uses	empty()	as	the	stopping	condition	on	a
(C/C++	Keywords)	while	loop	to	clear	a	dequeue	and	display	its	contents	in
reverse	order:

	vector<int>	v;

	for(int	i	=	0;	i	<	5;	i++)	{

			v.push_back(i);

	}

	while(!v.empty())	{

			cout	<<	v.back()	<<	endl;

			v.pop_back();

	}														

Related	topics:
size

cppreference.com	>	C++	Double-ended	Queues	>	end

end
Syntax:

		#include	<deque>

		iterator	end();

		const_iterator	end()	const;

The	end()	function	returns	an	iterator	just	past	the	end	of	the	dequeue.

Note	that	before	you	can	access	the	last	element	of	the	dequeue	using	an	iterator
that	you	get	from	a	call	to	end(),	you'll	have	to	decrement	the	iterator	first.

For	example,	the	following	code	uses	begin()	and	end()	to	iterate	through	all	of
the	members	of	a	vector:

	vector<int>	v1(5,	789);

	vector<int>::iterator	it;

	for(it	=	v1.begin();	it	!=	v1.end();	it++)	{

			cout	<<	*it	<<	endl;

	}														

The	iterator	is	initialized	with	a	call	to	begin().	After	the	body	of	the	loop	has
been	executed,	the	iterator	is	incremented	and	tested	to	see	if	it	is	equal	to	the
result	of	calling	end().	Since	end()	returns	an	iterator	pointing	to	an	element	just
after	the	last	element	of	the	vector,	the	loop	will	only	stop	once	all	of	the
elements	of	the	vector	have	been	displayed.

end()	runs	in	constant	time.

Related	topics:
beginrbegin
rend

cppreference.com	>	C++	Double-ended	Queues	>	erase

erase
Syntax:

		#include	<deque>

		iterator	erase(iterator	loc);

		iterator	erase(iterator	start,	iterator	end);

The	erase()	function	either	deletes	the	element	at	location	loc,	or	deletes	the	elements	between	
(including	start	but	not	including	end).	The	return	value	is	the	element	after	the	last	element	erased.

The	first	version	of	erase	(the	version	that	deletes	a	single	element	at	location	loc
linear	time	for	vectors,	dequeues,	and	strings.	The	multiple-element	version	of	erase	always	takes	

For	example:

	//	Create	a	vector,	load	it	with	the	first	ten	characters	of	the	alphabet

	vector<char>	alphaVector;

	for(int	i=0;	i	<	10;	i++)	{

			alphaVector.push_back(i	+	65);

	}

	int	size	=	alphaVector.size();

	vector<char>::iterator	startIterator;

	vector<char>::iterator	tempIterator;

	for(int	i=0;	i	<	size;	i++)	{

			startIterator	=	alphaVector.begin();

			alphaVector.erase(startIterator);

			//	Display	the	vector

			for(tempIterator	=	alphaVector.begin();	tempIterator	!=	alphaVector.end();	tempIterator++)	{

					cout	<<	*tempIterator;

			}

			cout	<<	endl;

	}														

That	code	would	display	the	following	output:

	BCDEFGHIJ

	CDEFGHIJ

	DEFGHIJ

	EFGHIJ

	FGHIJ

	GHIJ

	HIJ

	IJ

	J														

In	the	next	example,	erase()	is	called	with	two	iterators	to	delete	a	range	of	elements	from	a	vector:

	//	create	a	vector,	load	it	with	the	first	ten	characters	of	the	alphabet

	vector<char>	alphaVector;

	for(int	i=0;	i	<	10;	i++)	{

			alphaVector.push_back(i	+	65);

	}

	//	display	the	complete	vector

	for(int	i	=	0;	i	<	alphaVector.size();	i++)	{

			cout	<<	alphaVector[i];

	}

	cout	<<	endl;												

	//	use	erase	to	remove	all	but	the	first	two	and	last	three	elements

	//	of	the	vector

	alphaVector.erase(alphaVector.begin()+2,	alphaVector.end()-3);

	//	display	the	modified	vector

	for(int	i	=	0;	i	<	alphaVector.size();	i++)	{

			cout	<<	alphaVector[i];

	}

	cout	<<	endl;												

When	run,	the	above	code	displays:

	ABCDEFGHIJ

	ABHIJ										

Related	topics:
clearinsert
pop_back
pop_front
(C++	Lists)	remove
(C++	Lists)	remove_if

cppreference.com	>	C++	Double-ended	Queues	>	front

front
Syntax:

		#include	<deque>

		TYPE&	front();

		const	TYPE&	front()	const;

The	front()	function	returns	a	reference	to	the	first	element	of	the	dequeue,	and
runs	in	constant	time.

Related	topics:
backpop_front
push_front

cppreference.com	>	C++	Double-ended	Queues	>	insert

insert
Syntax:

		#include	<deque>

		iterator	insert(iterator	loc,	const	TYPE&	val);

		void	insert(iterator	loc,	size_type	num,	const	TYPE&	val);

		template<TYPE>	void	insert(iterator	loc,	input_iterator	start,	input_iterator

The	insert()	function	either:

inserts	val	before	loc,	returning	an	iterator	to	the	element	inserted,
inserts	num	copies	of	val	before	loc,	or
inserts	the	elements	from	start	to	end	before	loc.

For	example:

	//	Create	a	vector,	load	it	with	the	first	10	characters	of	the	alphabet

	vector<char>	alphaVector;

	for(int	i=0;	i	<	10;	i++)	{

			alphaVector.push_back(i	+	65);

	}														

	//	Insert	four	C's	into	the	vector

	vector<char>::iterator	theIterator	=	alphaVector.begin();

	alphaVector.insert(theIterator,	4,	'C');													

	//	Display	the	vector

	for(theIterator	=	alphaVector.begin();	theIterator	!=	alphaVector.end();	theIterator++)				{

			cout	<<	*theIterator;

	}														

This	code	would	display:

	CCCCABCDEFGHIJ									

Related	topics:
assignerase
(C++	Lists)	merge

push_back
push_front
(C++	Lists)	splice

cppreference.com	>	C++	Double-ended	Queues	>	max_size

max_size
Syntax:

		#include	<deque>

		size_type	max_size()	const;

The	max_size()	function	returns	the	maximum	number	of	elements	that	the
dequeue	can	hold.	The	max_size()	function	should	not	be	confused	with	the
size()	or	(C++	Strings)	capacity()	functions,	which	return	the	number	of
elements	currently	in	the	dequeue	and	the	the	number	of	elements	that	the
dequeue	will	be	able	to	hold	before	more	memory	will	have	to	be	allocated,
respectively.

Related	topics:
size

cppreference.com	>	C++	Double-ended	Queues	>	pop_back

pop_back
Syntax:

		#include	<deque>

		void	pop_back();

The	pop_back()	function	removes	the	last	element	of	the	dequeue.

pop_back()	runs	in	constant	time.

Related	topics:
backerase
pop_front
push_back

cppreference.com	>	C++	Double-ended	Queues	>	pop_front

pop_front
Syntax:

		#include	<deque>

		void	pop_front();

The	function	pop_front()	removes	the	first	element	of	the	dequeue.

The	pop_front()	function	runs	in	constant	time.

Related	topics:
erasefront
pop_back
push_front

cppreference.com	>	C++	Double-ended	Queues	>	push_back

push_back
Syntax:

		#include	<deque>

		void	push_back(const	TYPE&	val);

The	push_back()	function	appends	val	to	the	end	of	the	dequeue.

For	example,	the	following	code	puts	10	integers	into	a	list:

			list<int>	the_list;

			for(int	i	=	0;	i	<	10;	i++)

					the_list.push_back(i);											

When	displayed,	the	resulting	list	would	look	like	this:

	0	1	2	3	4	5	6	7	8	9												

push_back()	runs	in	constant	time.

Related	topics:
assigninsert
pop_back
push_front

cppreference.com	>	C++	Double-ended	Queues	>	push_front

push_front
Syntax:

		#include	<deque>

		void	push_front(const	TYPE&	val);

The	push_front()	function	inserts	val	at	the	beginning	of	dequeue.

push_front()	runs	in	constant	time.

Related	topics:
assignfront
insert
pop_front
push_back

cppreference.com	>	C++	Double-ended	Queues	>	rbegin

rbegin
Syntax:

		#include	<deque>

		reverse_iterator	rbegin();

		const_reverse_iterator	rbegin()	const;

The	rbegin()	function	returns	a	reverse_iterator	to	the	end	of	the	current
dequeue.

rbegin()	runs	in	constant	time.

Related	topics:
beginend
rend

cppreference.com	>	C++	Double-ended	Queues	>	rend

rend
Syntax:

		#include	<deque>

		reverse_iterator	rend();

		const_reverse_iterator	rend()	const;

The	function	rend()	returns	a	reverse_iterator	to	the	beginning	of	the	current
dequeue.

rend()	runs	in	constant	time.

Related	topics:
beginend
rbegin

cppreference.com	>	C++	Double-ended	Queues	>	resize

resize
Syntax:

		#include	<deque>

		void	resize(size_type	num,	const	TYPE&	val	=	TYPE());

The	function	resize()	changes	the	size	of	the	dequeue	to	size.	If	val	is	specified
then	any	newly-created	elements	will	be	initialized	to	have	a	value	of	val.

This	function	runs	in	linear	time.

Related	topics:
(C++	Multimaps)	Container	constructors	&	destructors
(C++	Strings)	capacity
size

cppreference.com	>	C++	Double-ended	Queues	>	size

size
Syntax:

		#include	<deque>

		size_type	size()	const;

The	size()	function	returns	the	number	of	elements	in	the	current	dequeue.

Related	topics:
(C++	Strings)	capacity
empty
(C++	Strings)	length
max_size
resize

cppreference.com	>	C++	Double-ended	Queues	>	swap

swap
Syntax:

		#include	<deque>

		void	swap(const	container&	from);

The	swap()	function	exchanges	the	elements	of	the	current	dequeue	with	those
of	from.	This	function	operates	in	constant	time.

For	example,	the	following	code	uses	the	swap()	function	to	exchange	the
values	of	two	strings:

			string	first("This	comes	first");

			string	second("And	this	is	second");

			first.swap(second);

			cout	<<	first	<<	endl;

			cout	<<	second	<<	endl;										

The	above	code	displays:

			And	this	is	second

			This	comes	first													

Related	topics:
(C++	Lists)	splice

cppreference.com	>	C++	Lists

assign
Syntax:

		#include	<list>

		void	assign(size_type	num,	const	TYPE&	val);

		void	assign(input_iterator	start,	input_iterator	end);

The	assign()	function	either	gives	the	current	list	the	values	from	start	to	end,	or
gives	it	num	copies	of	val.

This	function	will	destroy	the	previous	contents	of	the	list.

For	example,	the	following	code	uses	assign()	to	put	10	copies	of	the	integer	42
into	a	vector:

	vector<int>	v;

	v.assign(10,	42);

	for(int	i	=	0;	i	<	v.size();	i++)	{

			cout	<<	v[i]	<<	"	";

	}

	cout	<<	endl;												

The	above	code	displays	the	following	output:

	42	42	42	42	42	42	42	42	42	42										

The	next	example	shows	how	assign()	can	be	used	to	copy	one	vector	to
another:

	vector<int>	v1;

	for(int	i	=	0;	i	<	10;	i++)	{

			v1.push_back(i);

	}														

	vector<int>	v2;

	v2.assign(v1.begin(),	v1.end());													

	for(int	i	=	0;	i	<	v2.size();	i++)	{

			cout	<<	v2[i]	<<	"	";

	}

	cout	<<	endl;												

When	run,	the	above	code	displays	the	following	output:

	0	1	2	3	4	5	6	7	8	9												

Related	topics:
(C++	Strings)	assign
insert
push_back
push_front

back
Syntax:

		#include	<list>

		TYPE&	back();

		const	TYPE&	back()	const;

The	back()	function	returns	a	reference	to	the	last	element	in	the	list.

For	example:

	vector<int>	v;

	for(int	i	=	0;	i	<	5;	i++)	{

			v.push_back(i);

	}

	cout	<<	"The	first	element	is	"	<<	v.front()

						<<	"	and	the	last	element	is	"	<<	v.back()	<<	endl;											

This	code	produces	the	following	output:

	The	first	element	is	0	and	the	last	element	is	4															

The	back()	function	runs	in	constant	time.

Related	topics:

front
pop_back

begin
Syntax:

		#include	<list>

		iterator	begin();

		const_iterator	begin()	const;

The	function	begin()	returns	an	iterator	to	the	first	element	of	the	list.	begin()
should	run	in	constant	time.

For	example,	the	following	code	uses	begin()	to	initialize	an	iterator	that	is	used
to	traverse	a	list:

			//	Create	a	list	of	characters

			list<char>	charList;

			for(int	i=0;	i	<	10;	i++)	{

					charList.push_front(i	+	65);

			}

			//	Display	the	list

			list<char>::iterator	theIterator;

			for(theIterator	=	charList.begin();	theIterator	!=	charList.end();	theIterator++)	{

					cout	<<	*theIterator;

			}												

Related	topics:
end
rbegin
rend

clear
Syntax:

		#include	<list>

		void	clear();

The	function	clear()	deletes	all	of	the	elements	in	the	list.	clear()	runs	in	linear
time.

Related	topics:
erase

Container	constructors	&
destructors

Syntax:

		container();		container(const	container&	c);		~container();

Every	list	has	a	default	constructor,	copy	constructor,	and	destructor.

The	default	constructor	takes	no	arguments,	creates	a	new	instance	of	that	list,
and	runs	in	constant	time.	The	default	copy	constructor	runs	in	linear	time	and
can	be	used	to	create	a	new	list	that	is	a	copy	of	the	given	list	c.

The	default	destructor	is	called	when	the	list	should	be	destroyed.

For	example,	the	following	code	creates	a	pointer	to	a	vector	of	integers	and	then
uses	the	default	list	constructor	to	allocate	a	memory	for	a	new	vector:

	vector<int>*	v;

	v	=	new	vector<int>();

	 	

Related	topics:
Special	container	constructors,	resize

Container	constructors

Syntax:

		#include	<list>

		container();

		container(const	container&	c);

		container(size_type	num,	const	TYPE&	val	=	TYPE());

		container(input_iterator	start,	input_iterator	end);

		~container();

The	default	list	constructor	takes	no	arguments,	creates	a	new	instance	of	that
list.

The	second	constructor	is	a	default	copy	constructor	that	can	be	used	to	create	a
new	list	that	is	a	copy	of	the	given	list	c.

The	third	constructor	creates	a	list	with	space	for	num	objects.	If	val	is	specified,
each	of	those	objects	will	be	given	that	value.	For	example,	the	following	code
creates	a	vector	consisting	of	five	copies	of	the	integer	42:

	vector<int>	v1(5,	42);									

The	last	constructor	creates	a	list	that	is	initialized	to	contain	the	elements
between	start	and	end.	For	example:

	//	create	a	vector	of	random	integers

	cout	<<	"original	vector:	";

	vector<int>	v;

	for(int	i	=	0;	i	<	10;	i++)	{

			int	num	=	(int)	rand()	%	10;

			cout	<<	num	<<	"	";

			v.push_back(num);

	}

	cout	<<	endl;												

	//	find	the	first	element	of	v	that	is	even

	vector<int>::iterator	iter1	=	v.begin();

	while(iter1	!=	v.end()	&&	*iter1	%	2	!=	0)	{

			iter1++;

	}														

	//	find	the	last	element	of	v	that	is	even

	vector<int>::iterator	iter2	=	v.end();

	do	{

			iter2--;

	}	while(iter2	!=	v.begin()	&&	*iter2	%	2	!=	0);														

	cout	<<	"first	even	number:	"	<<	*iter1	<<	",	last	even	number:	"	<<	*iter2	<<	endl;									

	cout	<<	"new	vector:	";

	vector<int>	v2(iter1,	iter2);

	for(int	i	=	0;	i	<	v2.size();	i++)	{

			cout	<<	v2[i]	<<	"	";

	}

	cout	<<	endl;												

When	run,	this	code	displays	the	following	output:

	original	vector:	1	9	7	9	2	7	2	1	9	8

	first	even	number:	2,	last	even	number:	8

	new	vector:	2	7	2	1	9										

All	of	these	constructors	run	in	linear	time	except	the	first,	which	runs	in
constant	time.

The	default	destructor	is	called	when	the	list	should	be	destroyed.

Container	operators
Syntax:

		#include	<list>

		container	operator=(const	container&	c2);

		bool	operator==(const	container&	c1,	const	container&	c2);

		bool	operator!=(const	container&	c1,	const	container&	c2);

		bool	operator<(const	container&	c1,	const	container&	c2);

		bool	operator>(const	container&	c1,	const	container&	c2);

		bool	operator<=(const	container&	c1,	const	container&	c2);

		bool	operator>=(const	container&	c1,	const	container&	c2);

All	of	the	C++	containers	can	be	compared	and	assigned	with	the	standard
comparison	operators:	==,	!=,	<=,	>=,	<,	>,	and	=.	Performing	a	comparison	or
assigning	one	list	to	another	takes	linear	time.

Two	lists	are	equal	if:

1.	 Their	size	is	the	same,	and
2.	 Each	member	in	location	i	in	one	list	is	equal	to	the	the	member	in	location

i	in	the	other	list.

Comparisons	among	lists	are	done	lexicographically.

Related	topics:
(C++	Strings)	String	operators
(C++	Strings)	at
merge
unique

empty
Syntax:

		#include	<list>

		bool	empty()	const;

The	empty()	function	returns	true	if	the	list	has	no	elements,	false	otherwise.

For	example,	the	following	code	uses	empty()	as	the	stopping	condition	on	a
(C/C++	Keywords)	while	loop	to	clear	a	list	and	display	its	contents	in	reverse
order:

	vector<int>	v;

	for(int	i	=	0;	i	<	5;	i++)	{

			v.push_back(i);

	}

	while(!v.empty())	{

			cout	<<	v.back()	<<	endl;

			v.pop_back();

	}														

Related	topics:
size

end
Syntax:

		#include	<list>

		iterator	end();

		const_iterator	end()	const;

The	end()	function	returns	an	iterator	just	past	the	end	of	the	list.

Note	that	before	you	can	access	the	last	element	of	the	list	using	an	iterator	that
you	get	from	a	call	to	end(),	you'll	have	to	decrement	the	iterator	first.

For	example,	the	following	code	uses	begin()	and	end()	to	iterate	through	all	of
the	members	of	a	vector:

	vector<int>	v1(5,	789);

	vector<int>::iterator	it;

	for(it	=	v1.begin();	it	!=	v1.end();	it++)	{

			cout	<<	*it	<<	endl;

	}														

The	iterator	is	initialized	with	a	call	to	begin().	After	the	body	of	the	loop	has
been	executed,	the	iterator	is	incremented	and	tested	to	see	if	it	is	equal	to	the
result	of	calling	end().	Since	end()	returns	an	iterator	pointing	to	an	element	just
after	the	last	element	of	the	vector,	the	loop	will	only	stop	once	all	of	the
elements	of	the	vector	have	been	displayed.

end()	runs	in	constant	time.

Related	topics:
begin
rbegin
rend

erase

Syntax:

		#include	<list>

		iterator	erase(iterator	loc);

		iterator	erase(iterator	start,	iterator	end);

The	erase()	function	either	deletes	the	element	at	location	loc,	or	deletes	the
elements	between	start	and	end	(including	start	but	not	including	end).	The
return	value	is	the	element	after	the	last	element	erased.

The	first	version	of	erase	(the	version	that	deletes	a	single	element	at	location
loc)	runs	in	constant	time	for	lists	and	linear	time	for	vectors,	dequeues,	and
strings.	The	multiple-element	version	of	erase	always	takes	linear	time.

For	example:

	//	Create	a	vector,	load	it	with	the	first	ten	characters	of	the	alphabet

	vector<char>	alphaVector;

	for(int	i=0;	i	<	10;	i++)	{

			alphaVector.push_back(i	+	65);

	}

	int	size	=	alphaVector.size();

	vector<char>::iterator	startIterator;

	vector<char>::iterator	tempIterator;

	for(int	i=0;	i	<	size;	i++)	{

			startIterator	=	alphaVector.begin();

			alphaVector.erase(startIterator);

			//	Display	the	vector

			for(tempIterator	=	alphaVector.begin();	tempIterator	!=	alphaVector.end();	tempIterator++)	{

					cout	<<	*tempIterator;

			}

			cout	<<	endl;

	}														

That	code	would	display	the	following	output:

	BCDEFGHIJ

	CDEFGHIJ

	DEFGHIJ

	EFGHIJ

	FGHIJ

	GHIJ

	HIJ

	IJ

	J														

In	the	next	example,	erase()	is	called	with	two	iterators	to	delete	a	range	of
elements	from	a	vector:

	//	create	a	vector,	load	it	with	the	first	ten	characters	of	the	alphabet

	vector<char>	alphaVector;

	for(int	i=0;	i	<	10;	i++)	{

			alphaVector.push_back(i	+	65);

	}

	//	display	the	complete	vector

	for(int	i	=	0;	i	<	alphaVector.size();	i++)	{

			cout	<<	alphaVector[i];

	}

	cout	<<	endl;												

	//	use	erase	to	remove	all	but	the	first	two	and	last	three	elements

	//	of	the	vector

	alphaVector.erase(alphaVector.begin()+2,	alphaVector.end()-3);

	//	display	the	modified	vector

	for(int	i	=	0;	i	<	alphaVector.size();	i++)	{

			cout	<<	alphaVector[i];

	}

	cout	<<	endl;												

When	run,	the	above	code	displays:

	ABCDEFGHIJ

	ABHIJ										

Related	topics:
clear
insert
pop_back
pop_front
remove
remove_if

front
Syntax:

		#include	<list>

		TYPE&	front();

		const	TYPE&	front()	const;

The	front()	function	returns	a	reference	to	the	first	element	of	the	list,	and	runs	in
constant	time.

Related	topics:
back
pop_front
push_front

insert
Syntax:

		#include	<list>

		iterator	insert(iterator	loc,	const	TYPE&	val);

		void	insert(iterator	loc,	size_type	num,	const	TYPE&	val);

		template<TYPE>	void	insert(iterator	loc,	input_iterator	start,	input_iterator

The	insert()	function	either:

inserts	val	before	loc,	returning	an	iterator	to	the	element	inserted,
inserts	num	copies	of	val	before	loc,	or
inserts	the	elements	from	start	to	end	before	loc.

For	example:

	//	Create	a	vector,	load	it	with	the	first	10	characters	of	the	alphabet

	vector<char>	alphaVector;

	for(int	i=0;	i	<	10;	i++)	{

			alphaVector.push_back(i	+	65);

	}														

	//	Insert	four	C's	into	the	vector

	vector<char>::iterator	theIterator	=	alphaVector.begin();

	alphaVector.insert(theIterator,	4,	'C');													

	//	Display	the	vector

	for(theIterator	=	alphaVector.begin();	theIterator	!=	alphaVector.end();	theIterator++)				{

			cout	<<	*theIterator;

	}														

This	code	would	display:

	CCCCABCDEFGHIJ									

Related	topics:
assign
erase
merge
push_back
push_front
splice

max_size
Syntax:

		#include	<list>

		size_type	max_size()	const;

The	max_size()	function	returns	the	maximum	number	of	elements	that	the	list
can	hold.	The	max_size()	function	should	not	be	confused	with	the	size()	or
(C++	Strings)	capacity()	functions,	which	return	the	number	of	elements
currently	in	the	list	and	the	the	number	of	elements	that	the	list	will	be	able	to
hold	before	more	memory	will	have	to	be	allocated,	respectively.

Related	topics:
size

merge
Syntax:

		#include	<list>

		void	merge(list	&lst);

		void	merge(list	&lst,	BinPred	compfunction);

The	function	merge()	merges	the	list	with	lst,	producing	a	combined	list	that	is
ordered	with	respect	to	the	<	operator.	If	compfunction	is	specified,	then	it	is
used	as	the	comparison	function	for	the	lists	instead	of	<.

merge()	runs	in	linear	time.

Related	topics:
Container	operators
insert
splice

pop_back
Syntax:

		#include	<list>

		void	pop_back();

The	pop_back()	function	removes	the	last	element	of	the	list.

pop_back()	runs	in	constant	time.

Related	topics:
back
erase
pop_front
push_back

pop_front
Syntax:

		#include	<list>

		void	pop_front();

The	function	pop_front()	removes	the	first	element	of	the	list.

The	pop_front()	function	runs	in	constant	time.

Related	topics:
erase
front
pop_back
push_front

push_back
Syntax:

		#include	<list>

		void	push_back(const	TYPE&	val);

The	push_back()	function	appends	val	to	the	end	of	the	list.

For	example,	the	following	code	puts	10	integers	into	a	list:

			list<int>	the_list;

			for(int	i	=	0;	i	<	10;	i++)

					the_list.push_back(i);											

When	displayed,	the	resulting	list	would	look	like	this:

	0	1	2	3	4	5	6	7	8	9												

push_back()	runs	in	constant	time.

Related	topics:
assign
insert
pop_back
push_front

push_front
Syntax:

		#include	<list>

		void	push_front(const	TYPE&	val);

The	push_front()	function	inserts	val	at	the	beginning	of	list.

push_front()	runs	in	constant	time.

Related	topics:
assign
front
insert
pop_front
push_back

rbegin
Syntax:

		#include	<list>

		reverse_iterator	rbegin();

		const_reverse_iterator	rbegin()	const;

The	rbegin()	function	returns	a	reverse_iterator	to	the	end	of	the	current	list.

rbegin()	runs	in	constant	time.

Related	topics:
begin
end
rend

remove
Syntax:

		#include	<list>

		void	remove(const	TYPE	&val);

The	function	remove()	removes	all	elements	that	are	equal	to	val	from	the	list.

For	example,	the	following	code	creates	a	list	of	the	first	10	characters	of	the
alphabet,	then	uses	remove()	to	remove	the	letter	'E'	from	the	list:

			//	Create	a	list	that	has	the	first	10	letters	of	the	alphabet

			list<char>	charList;

			for(int	i=0;	i	<	10;	i++)

					charList.push_front(i	+	65);

			//	Remove	all	instances	of	'E'

			charList.remove('E');														

Remove	runs	in	linear	time.

Related	topics:
erase
remove_if
unique

remove_if
Syntax:

		#include	<list>

		void	remove_if(UnPred	pr);

The	remove_if()	function	removes	all	elements	from	the	list	for	which	the	unary
predicate	pr	is	true.

remove_if()	runs	in	linear	time.

Related	topics:
erase
remove
unique

rend
Syntax:

		#include	<list>

		reverse_iterator	rend();

		const_reverse_iterator	rend()	const;

The	function	rend()	returns	a	reverse_iterator	to	the	beginning	of	the	current	list.

rend()	runs	in	constant	time.

Related	topics:
begin
end
rbegin

resize
Syntax:

		#include	<list>

		void	resize(size_type	num,	const	TYPE&	val	=	TYPE());

The	function	resize()	changes	the	size	of	the	list	to	size.	If	val	is	specified	then
any	newly-created	elements	will	be	initialized	to	have	a	value	of	val.

This	function	runs	in	linear	time.

Related	topics:
(C++	Multimaps)	Container	constructors	&	destructors

(C++	Strings)	capacity
size

reverse
Syntax:

		#include	<list>

		void	reverse();

The	function	reverse()	reverses	the	list,	and	takes	linear	time.

Related	topics:
sort

size
Syntax:

		#include	<list>

		size_type	size()	const;

The	size()	function	returns	the	number	of	elements	in	the	current	list.

Related	topics:
(C++	Strings)	capacity
empty
(C++	Strings)	length
max_size
resize

sort
Syntax:

		#include	<list>

		void	sort();

		void	sort(BinPred	p);

The	sort()	function	is	used	to	sort	lists	into	ascending	order.	Ordering	is	done	via
the	<	operator,	unless	p	is	specified,	in	which	case	it	is	used	to	determine	if	an
element	is	less	than	another.

Sorting	takes	N	log	N	time.

Related	topics:
reverse

splice
Syntax:

		#include	<list>

		void	splice(iterator	pos,	list&	lst);

		void	splice(iterator	pos,	list&	lst,	iterator	del);

		void	splice(iterator	pos,	list&	lst,	iterator	start,	iterator	end);

The	splice()	function	inserts	lst	at	location	pos.	If	specified,	the	element(s)	at	del
or	from	start	to	end	are	removed.

splice()	simply	moves	elements	from	one	list	to	another,	and	doesn't	actually	do
any	copying	or	deleting.	Because	of	this,	splice()	runs	in	constant	time.

Related	topics:
insert
merge
swap

swap
Syntax:

		#include	<list>

		void	swap(const	container&	from);

The	swap()	function	exchanges	the	elements	of	the	current	list	with	those	of
from.	This	function	operates	in	constant	time.

For	example,	the	following	code	uses	the	swap()	function	to	exchange	the	values
of	two	strings:

			string	first("This	comes	first");

			string	second("And	this	is	second");

			first.swap(second);

			cout	<<	first	<<	endl;

			cout	<<	second	<<	endl;										

The	above	code	displays:

			And	this	is	second

			This	comes	first													

Related	topics:
splice

assign
Syntax:

		#include	<list>

		void	assign(size_type	num,	const	TYPE&	val);

		void	assign(input_iterator	start,	input_iterator	end);

The	assign()	function	either	gives	the	current	list	the	values	from	start	to	end,	or
gives	it	num	copies	of	val.

This	function	will	destroy	the	previous	contents	of	the	list.

For	example,	the	following	code	uses	assign()	to	put	10	copies	of	the	integer	42
into	a	vector:

	vector<int>	v;

	v.assign(10,	42);

	for(int	i	=	0;	i	<	v.size();	i++)	{

			cout	<<	v[i]	<<	"	";

	}

	cout	<<	endl;												

The	above	code	displays	the	following	output:

	42	42	42	42	42	42	42	42	42	42										

The	next	example	shows	how	assign()	can	be	used	to	copy	one	vector	to	another:

	vector<int>	v1;

	for(int	i	=	0;	i	<	10;	i++)	{

			v1.push_back(i);

	}														

	vector<int>	v2;

	v2.assign(v1.begin(),	v1.end());													

	for(int	i	=	0;	i	<	v2.size();	i++)	{

			cout	<<	v2[i]	<<	"	";

	}

	cout	<<	endl;												

When	run,	the	above	code	displays	the	following	output:

	0	1	2	3	4	5	6	7	8	9												

Related	topics:
(C++	Strings)	assign
insert
push_back
push_front

back
Syntax:

		#include	<list>

		TYPE&	back();

		const	TYPE&	back()	const;

The	back()	function	returns	a	reference	to	the	last	element	in	the	list.

For	example:

	vector<int>	v;

	for(int	i	=	0;	i	<	5;	i++)	{

			v.push_back(i);

	}

	cout	<<	"The	first	element	is	"	<<	v.front()

						<<	"	and	the	last	element	is	"	<<	v.back()	<<	endl;											

This	code	produces	the	following	output:

	The	first	element	is	0	and	the	last	element	is	4															

The	back()	function	runs	in	constant	time.

Related	topics:
front
pop_back

begin
Syntax:

		#include	<list>

		iterator	begin();

		const_iterator	begin()	const;

The	function	begin()	returns	an	iterator	to	the	first	element	of	the	list.	begin()
should	run	in	constant	time.

For	example,	the	following	code	uses	begin()	to	initialize	an	iterator	that	is	used
to	traverse	a	list:

			//	Create	a	list	of	characters

			list<char>	charList;

			for(int	i=0;	i	<	10;	i++)	{

					charList.push_front(i	+	65);

			}

			//	Display	the	list

			list<char>::iterator	theIterator;

			for(theIterator	=	charList.begin();	theIterator	!=	charList.end();	theIterator++)	{

					cout	<<	*theIterator;

			}												

Related	topics:
end
rbegin
rend

clear
Syntax:

		#include	<list>

		void	clear();

The	function	clear()	deletes	all	of	the	elements	in	the	list.	clear()	runs	in	linear
time.

Related	topics:
erase

Container	constructors
Syntax:

		#include	<list>

		container();

		container(const	container&	c);

		container(size_type	num,	const	TYPE&	val	=	TYPE());

		container(input_iterator	start,	input_iterator	end);

		~container();

The	default	list	constructor	takes	no	arguments,	creates	a	new	instance	of	that
list.

The	second	constructor	is	a	default	copy	constructor	that	can	be	used	to	create	a
new	list	that	is	a	copy	of	the	given	list	c.

The	third	constructor	creates	a	list	with	space	for	num	objects.	If	val	is	specified,
each	of	those	objects	will	be	given	that	value.	For	example,	the	following	code
creates	a	vector	consisting	of	five	copies	of	the	integer	42:

	vector<int>	v1(5,	42);									

The	last	constructor	creates	a	list	that	is	initialized	to	contain	the	elements
between	start	and	end.	For	example:

	//	create	a	vector	of	random	integers

	cout	<<	"original	vector:	";

	vector<int>	v;

	for(int	i	=	0;	i	<	10;	i++)	{

			int	num	=	(int)	rand()	%	10;

			cout	<<	num	<<	"	";

			v.push_back(num);

	}

	cout	<<	endl;												

	//	find	the	first	element	of	v	that	is	even

	vector<int>::iterator	iter1	=	v.begin();

	while(iter1	!=	v.end()	&&	*iter1	%	2	!=	0)	{

			iter1++;

	}														

	//	find	the	last	element	of	v	that	is	even

	vector<int>::iterator	iter2	=	v.end();

	do	{

			iter2--;

	}	while(iter2	!=	v.begin()	&&	*iter2	%	2	!=	0);														

	cout	<<	"first	even	number:	"	<<	*iter1	<<	",	last	even	number:	"	<<	*iter2	<<	endl;									

	cout	<<	"new	vector:	";

	vector<int>	v2(iter1,	iter2);

	for(int	i	=	0;	i	<	v2.size();	i++)	{

			cout	<<	v2[i]	<<	"	";

	}

	cout	<<	endl;												

When	run,	this	code	displays	the	following	output:

	original	vector:	1	9	7	9	2	7	2	1	9	8

	first	even	number:	2,	last	even	number:	8

	new	vector:	2	7	2	1	9										

All	of	these	constructors	run	in	linear	time	except	the	first,	which	runs	in
constant	time.

The	default	destructor	is	called	when	the	list	should	be	destroyed.

Container	operators
Syntax:

		#include	<list>

		container	operator=(const	container&	c2);

		bool	operator==(const	container&	c1,	const	container&	c2);

		bool	operator!=(const	container&	c1,	const	container&	c2);

		bool	operator<(const	container&	c1,	const	container&	c2);

		bool	operator>(const	container&	c1,	const	container&	c2);

		bool	operator<=(const	container&	c1,	const	container&	c2);

		bool	operator>=(const	container&	c1,	const	container&	c2);

All	of	the	C++	containers	can	be	compared	and	assigned	with	the	standard
comparison	operators:	==,	!=,	<=,	>=,	<,	>,	and	=.	Performing	a	comparison	or
assigning	one	list	to	another	takes	linear	time.

Two	lists	are	equal	if:

1.	 Their	size	is	the	same,	and
2.	 Each	member	in	location	i	in	one	list	is	equal	to	the	the	member	in	location

i	in	the	other	list.

Comparisons	among	lists	are	done	lexicographically.

Related	topics:
(C++	Strings)	String	operators
(C++	Strings)	at
merge
unique

empty
Syntax:

		#include	<list>

		bool	empty()	const;

The	empty()	function	returns	true	if	the	list	has	no	elements,	false	otherwise.

For	example,	the	following	code	uses	empty()	as	the	stopping	condition	on	a
(C/C++	Keywords)	while	loop	to	clear	a	list	and	display	its	contents	in	reverse
order:

	vector<int>	v;

	for(int	i	=	0;	i	<	5;	i++)	{

			v.push_back(i);

	}

	while(!v.empty())	{

			cout	<<	v.back()	<<	endl;

			v.pop_back();

	}														

Related	topics:
size

end
Syntax:

		#include	<list>

		iterator	end();

		const_iterator	end()	const;

The	end()	function	returns	an	iterator	just	past	the	end	of	the	list.

Note	that	before	you	can	access	the	last	element	of	the	list	using	an	iterator	that
you	get	from	a	call	to	end(),	you'll	have	to	decrement	the	iterator	first.

For	example,	the	following	code	uses	begin()	and	end()	to	iterate	through	all	of
the	members	of	a	vector:

	vector<int>	v1(5,	789);

	vector<int>::iterator	it;

	for(it	=	v1.begin();	it	!=	v1.end();	it++)	{

			cout	<<	*it	<<	endl;

	}														

The	iterator	is	initialized	with	a	call	to	begin().	After	the	body	of	the	loop	has
been	executed,	the	iterator	is	incremented	and	tested	to	see	if	it	is	equal	to	the
result	of	calling	end().	Since	end()	returns	an	iterator	pointing	to	an	element	just
after	the	last	element	of	the	vector,	the	loop	will	only	stop	once	all	of	the
elements	of	the	vector	have	been	displayed.

end()	runs	in	constant	time.

Related	topics:
begin
rbegin
rend

erase
Syntax:

		#include	<list>

		iterator	erase(iterator	loc);

		iterator	erase(iterator	start,	iterator	end);

The	erase()	function	either	deletes	the	element	at	location	loc,	or	deletes	the
elements	between	start	and	end	(including	start	but	not	including	end).	The
return	value	is	the	element	after	the	last	element	erased.

The	first	version	of	erase	(the	version	that	deletes	a	single	element	at	location
loc)	runs	in	constant	time	for	lists	and	linear	time	for	vectors,	dequeues,	and
strings.	The	multiple-element	version	of	erase	always	takes	linear	time.

For	example:

	//	Create	a	vector,	load	it	with	the	first	ten	characters	of	the	alphabet

	vector<char>	alphaVector;

	for(int	i=0;	i	<	10;	i++)	{

			alphaVector.push_back(i	+	65);

	}

	int	size	=	alphaVector.size();

	vector<char>::iterator	startIterator;

	vector<char>::iterator	tempIterator;

	for(int	i=0;	i	<	size;	i++)	{

			startIterator	=	alphaVector.begin();

			alphaVector.erase(startIterator);

			//	Display	the	vector

			for(tempIterator	=	alphaVector.begin();	tempIterator	!=	alphaVector.end();	tempIterator++)	{

					cout	<<	*tempIterator;

			}

			cout	<<	endl;

	}														

That	code	would	display	the	following	output:

	BCDEFGHIJ

	CDEFGHIJ

	DEFGHIJ

	EFGHIJ

	FGHIJ

	GHIJ

	HIJ

	IJ

	J														

In	the	next	example,	erase()	is	called	with	two	iterators	to	delete	a	range	of
elements	from	a	vector:

	//	create	a	vector,	load	it	with	the	first	ten	characters	of	the	alphabet

	vector<char>	alphaVector;

	for(int	i=0;	i	<	10;	i++)	{

			alphaVector.push_back(i	+	65);

	}

	//	display	the	complete	vector

	for(int	i	=	0;	i	<	alphaVector.size();	i++)	{

			cout	<<	alphaVector[i];

	}

	cout	<<	endl;												

	//	use	erase	to	remove	all	but	the	first	two	and	last	three	elements

	//	of	the	vector

	alphaVector.erase(alphaVector.begin()+2,	alphaVector.end()-3);

	//	display	the	modified	vector

	for(int	i	=	0;	i	<	alphaVector.size();	i++)	{

			cout	<<	alphaVector[i];

	}

	cout	<<	endl;												

When	run,	the	above	code	displays:

	ABCDEFGHIJ

	ABHIJ										

Related	topics:
clear
insert
pop_back
pop_front
remove
remove_if

front
Syntax:

		#include	<list>

		TYPE&	front();

		const	TYPE&	front()	const;

The	front()	function	returns	a	reference	to	the	first	element	of	the	list,	and	runs	in
constant	time.

Related	topics:
back
pop_front
push_front

insert

Syntax:

		#include	<list>

		iterator	insert(iterator	loc,	const	TYPE&	val);

		void	insert(iterator	loc,	size_type	num,	const	TYPE&	val);

		template<TYPE>	void	insert(iterator	loc,	input_iterator	start,	input_iterator

The	insert()	function	either:

inserts	val	before	loc,	returning	an	iterator	to	the	element	inserted,
inserts	num	copies	of	val	before	loc,	or
inserts	the	elements	from	start	to	end	before	loc.

For	example:

	//	Create	a	vector,	load	it	with	the	first	10	characters	of	the	alphabet

	vector<char>	alphaVector;

	for(int	i=0;	i	<	10;	i++)	{

			alphaVector.push_back(i	+	65);

	}														

	//	Insert	four	C's	into	the	vector

	vector<char>::iterator	theIterator	=	alphaVector.begin();

	alphaVector.insert(theIterator,	4,	'C');													

	//	Display	the	vector

	for(theIterator	=	alphaVector.begin();	theIterator	!=	alphaVector.end();	theIterator++)				{

			cout	<<	*theIterator;

	}														

This	code	would	display:

	CCCCABCDEFGHIJ									

Related	topics:
assign
erase
merge
push_back
push_front
splice

max_size
Syntax:

		#include	<list>

		size_type	max_size()	const;

The	max_size()	function	returns	the	maximum	number	of	elements	that	the	list
can	hold.	The	max_size()	function	should	not	be	confused	with	the	size()	or
(C++	Strings)	capacity()	functions,	which	return	the	number	of	elements
currently	in	the	list	and	the	the	number	of	elements	that	the	list	will	be	able	to
hold	before	more	memory	will	have	to	be	allocated,	respectively.

Related	topics:
size

merge
Syntax:

		#include	<list>

		void	merge(list	&lst);

		void	merge(list	&lst,	BinPred	compfunction);

The	function	merge()	merges	the	list	with	lst,	producing	a	combined	list	that	is
ordered	with	respect	to	the	<	operator.	If	compfunction	is	specified,	then	it	is
used	as	the	comparison	function	for	the	lists	instead	of	<.

merge()	runs	in	linear	time.

Related	topics:
Container	operators
insert
splice

pop_back
Syntax:

		#include	<list>

		void	pop_back();

The	pop_back()	function	removes	the	last	element	of	the	list.

pop_back()	runs	in	constant	time.

Related	topics:
back
erase
pop_front
push_back

pop_front
Syntax:

		#include	<list>

		void	pop_front();

The	function	pop_front()	removes	the	first	element	of	the	list.

The	pop_front()	function	runs	in	constant	time.

Related	topics:
erase
front
pop_back
push_front

push_back
Syntax:

		#include	<list>

		void	push_back(const	TYPE&	val);

The	push_back()	function	appends	val	to	the	end	of	the	list.

For	example,	the	following	code	puts	10	integers	into	a	list:

			list<int>	the_list;

			for(int	i	=	0;	i	<	10;	i++)

					the_list.push_back(i);											

When	displayed,	the	resulting	list	would	look	like	this:

	0	1	2	3	4	5	6	7	8	9												

push_back()	runs	in	constant	time.

Related	topics:
assign
insert
pop_back
push_front

push_front
Syntax:

		#include	<list>

		void	push_front(const	TYPE&	val);

The	push_front()	function	inserts	val	at	the	beginning	of	list.

push_front()	runs	in	constant	time.

Related	topics:
assign
front
insert
pop_front
push_back

rbegin
Syntax:

		#include	<list>

		reverse_iterator	rbegin();

		const_reverse_iterator	rbegin()	const;

The	rbegin()	function	returns	a	reverse_iterator	to	the	end	of	the	current	list.

rbegin()	runs	in	constant	time.

Related	topics:
begin
end
rend

remove
Syntax:

		#include	<list>

		void	remove(const	TYPE	&val);

The	function	remove()	removes	all	elements	that	are	equal	to	val	from	the	list.

For	example,	the	following	code	creates	a	list	of	the	first	10	characters	of	the
alphabet,	then	uses	remove()	to	remove	the	letter	'E'	from	the	list:

			//	Create	a	list	that	has	the	first	10	letters	of	the	alphabet

			list<char>	charList;

			for(int	i=0;	i	<	10;	i++)

					charList.push_front(i	+	65);

			//	Remove	all	instances	of	'E'

			charList.remove('E');														

Remove	runs	in	linear	time.

Related	topics:
erase
remove_if
unique

remove_if
Syntax:

		#include	<list>

		void	remove_if(UnPred	pr);

The	remove_if()	function	removes	all	elements	from	the	list	for	which	the	unary
predicate	pr	is	true.

remove_if()	runs	in	linear	time.

Related	topics:
erase
remove
unique

rend
Syntax:

		#include	<list>

		reverse_iterator	rend();

		const_reverse_iterator	rend()	const;

The	function	rend()	returns	a	reverse_iterator	to	the	beginning	of	the	current	list.

rend()	runs	in	constant	time.

Related	topics:
begin
end
rbegin

resize
Syntax:

		#include	<list>

		void	resize(size_type	num,	const	TYPE&	val	=	TYPE());

The	function	resize()	changes	the	size	of	the	list	to	size.	If	val	is	specified	then
any	newly-created	elements	will	be	initialized	to	have	a	value	of	val.

This	function	runs	in	linear	time.

Related	topics:
(C++	Multimaps)	Container	constructors	&	destructors
(C++	Strings)	capacity
size

reverse
Syntax:

		#include	<list>

		void	reverse();

The	function	reverse()	reverses	the	list,	and	takes	linear	time.

Related	topics:
sort

size
Syntax:

		#include	<list>

		size_type	size()	const;

The	size()	function	returns	the	number	of	elements	in	the	current	list.

Related	topics:
(C++	Strings)	capacity
empty
(C++	Strings)	length
max_size
resize

sort
Syntax:

		#include	<list>

		void	sort();

		void	sort(BinPred	p);

The	sort()	function	is	used	to	sort	lists	into	ascending	order.	Ordering	is	done	via
the	<	operator,	unless	p	is	specified,	in	which	case	it	is	used	to	determine	if	an
element	is	less	than	another.

Sorting	takes	N	log	N	time.

Related	topics:
reverse

splice
Syntax:

		#include	<list>

		void	splice(iterator	pos,	list&	lst);

		void	splice(iterator	pos,	list&	lst,	iterator	del);

		void	splice(iterator	pos,	list&	lst,	iterator	start,	iterator	end);

The	splice()	function	inserts	lst	at	location	pos.	If	specified,	the	element(s)	at	del
or	from	start	to	end	are	removed.

splice()	simply	moves	elements	from	one	list	to	another,	and	doesn't	actually	do
any	copying	or	deleting.	Because	of	this,	splice()	runs	in	constant	time.

Related	topics:
insert
merge
swap

swap
Syntax:

		#include	<list>

		void	swap(const	container&	from);

The	swap()	function	exchanges	the	elements	of	the	current	list	with	those	of
from.	This	function	operates	in	constant	time.

For	example,	the	following	code	uses	the	swap()	function	to	exchange	the	values
of	two	strings:

			string	first("This	comes	first");

			string	second("And	this	is	second");

			first.swap(second);

			cout	<<	first	<<	endl;

			cout	<<	second	<<	endl;										

The	above	code	displays:

			And	this	is	second

			This	comes	first													

Related	topics:
splice

unique
Syntax:

		#include	<list>

		void	unique();

		void	unique(BinPred	pr);

The	function	unique()	removes	all	consecutive	duplicate	elements	from	the	list.
Note	that	only	consecutive	duplicates	are	removed,	which	may	require	that	you
sort()	the	list	first.

Equality	is	tested	using	the	==	operator,	unless	pr	is	specified	as	a	replacement.
The	ordering	of	the	elements	in	a	list	should	not	change	after	a	call	to	unique().

unique()	runs	in	linear	time.

Related	topics:
Container	operators
remove
remove_if

unique
Syntax:

		#include	<list>

		void	unique();

		void	unique(BinPred	pr);

The	function	unique()	removes	all	consecutive	duplicate	elements	from	the	list.
Note	that	only	consecutive	duplicates	are	removed,	which	may	require	that	you
sort()	the	list	first.

Equality	is	tested	using	the	==	operator,	unless	pr	is	specified	as	a	replacement.
The	ordering	of	the	elements	in	a	list	should	not	change	after	a	call	to	unique().

unique()	runs	in	linear	time.

Related	topics:
Container	operators
remove
remove_if

cppreference.com	>	C++	Lists	>	assign

assign
Syntax:

		#include	<list>

		void	assign(size_type	num,	const	TYPE&	val);

		void	assign(input_iterator	start,	input_iterator	end);

The	assign()	function	either	gives	the	current	list	the	values	from	start	to	end,	or
gives	it	num	copies	of	val.

This	function	will	destroy	the	previous	contents	of	the	list.

For	example,	the	following	code	uses	assign()	to	put	10	copies	of	the	integer	42
into	a	vector:

	vector<int>	v;

	v.assign(10,	42);

	for(int	i	=	0;	i	<	v.size();	i++)	{

			cout	<<	v[i]	<<	"	";

	}

	cout	<<	endl;												

The	above	code	displays	the	following	output:

	42	42	42	42	42	42	42	42	42	42										

The	next	example	shows	how	assign()	can	be	used	to	copy	one	vector	to
another:

	vector<int>	v1;

	for(int	i	=	0;	i	<	10;	i++)	{

			v1.push_back(i);

	}														

	vector<int>	v2;

	v2.assign(v1.begin(),	v1.end());													

	for(int	i	=	0;	i	<	v2.size();	i++)	{

			cout	<<	v2[i]	<<	"	";

	}

	cout	<<	endl;												

When	run,	the	above	code	displays	the	following	output:

	0	1	2	3	4	5	6	7	8	9												

Related	topics:
(C++	Strings)	assign
insert
push_back
push_front

cppreference.com	>	C++	Lists	>	back

back
Syntax:

		#include	<list>

		TYPE&	back();

		const	TYPE&	back()	const;

The	back()	function	returns	a	reference	to	the	last	element	in	the	list.

For	example:

	vector<int>	v;

	for(int	i	=	0;	i	<	5;	i++)	{

			v.push_back(i);

	}

	cout	<<	"The	first	element	is	"	<<	v.front()

						<<	"	and	the	last	element	is	"	<<	v.back()	<<	endl;											

This	code	produces	the	following	output:

	The	first	element	is	0	and	the	last	element	is	4															

The	back()	function	runs	in	constant	time.

Related	topics:
frontpop_back

cppreference.com	>	C++	Lists	>	begin

begin
Syntax:

		#include	<list>

		iterator	begin();

		const_iterator	begin()	const;

The	function	begin()	returns	an	iterator	to	the	first	element	of	the	list.	begin()	should	run	in	

For	example,	the	following	code	uses	begin()	to	initialize	an	iterator	that	is	used	to	traverse	a	list:

			//	Create	a	list	of	characters

			list<char>	charList;

			for(int	i=0;	i	<	10;	i++)	{

					charList.push_front(i	+	65);

			}

			//	Display	the	list

			list<char>::iterator	theIterator;

			for(theIterator	=	charList.begin();	theIterator	!=	charList.end();	theIterator++)	{

					cout	<<	*theIterator;

			}												

Related	topics:
endrbegin
rend

cppreference.com	>	C++	Lists	>	clear

clear
Syntax:

		#include	<list>

		void	clear();

The	function	clear()	deletes	all	of	the	elements	in	the	list.	clear()	runs	in	linear
time.

Related	topics:
erase

cppreference.com	>	C++	Lists	>	Container	constructors

Container	constructors
Syntax:

		#include	<list>

		container();

		container(const	container&	c);

		container(size_type	num,	const	TYPE&	val	=	TYPE());

		container(input_iterator	start,	input_iterator	end);

		~container();

The	default	list	constructor	takes	no	arguments,	creates	a	new	instance	of	that	list.

The	second	constructor	is	a	default	copy	constructor	that	can	be	used	to	create	a	new	list	that	is	a	copy	of	the
given	list	c.

The	third	constructor	creates	a	list	with	space	for	num	objects.	If	val	is	specified,	each	of	those	objects	will	be
given	that	value.	For	example,	the	following	code	creates	a	vector	consisting	of	five	copies	of	the	integer	42:

	vector<int>	v1(5,	42);									

The	last	constructor	creates	a	list	that	is	initialized	to	contain	the	elements	between	

	//	create	a	vector	of	random	integers

	cout	<<	"original	vector:	";

	vector<int>	v;

	for(int	i	=	0;	i	<	10;	i++)	{

			int	num	=	(int)	rand()	%	10;

			cout	<<	num	<<	"	";

			v.push_back(num);

	}

	cout	<<	endl;												

	//	find	the	first	element	of	v	that	is	even

	vector<int>::iterator	iter1	=	v.begin();

	while(iter1	!=	v.end()	&&	*iter1	%	2	!=	0)	{

			iter1++;

	}														

	//	find	the	last	element	of	v	that	is	even

	vector<int>::iterator	iter2	=	v.end();

	do	{

			iter2--;

	}	while(iter2	!=	v.begin()	&&	*iter2	%	2	!=	0);														

	cout	<<	"first	even	number:	"	<<	*iter1	<<	",	last	even	number:	"	<<	*iter2	<<	endl;									

	cout	<<	"new	vector:	";

	vector<int>	v2(iter1,	iter2);

	for(int	i	=	0;	i	<	v2.size();	i++)	{

			cout	<<	v2[i]	<<	"	";

	}

	cout	<<	endl;												

When	run,	this	code	displays	the	following	output:

	original	vector:	1	9	7	9	2	7	2	1	9	8

	first	even	number:	2,	last	even	number:	8

	new	vector:	2	7	2	1	9										

All	of	these	constructors	run	in	linear	time	except	the	first,	which	runs	in	constant	time

The	default	destructor	is	called	when	the	list	should	be	destroyed.

cppreference.com	>	C++	Lists	>	Container	operators

Container	operators
Syntax:

		#include	<list>

		container	operator=(const	container&	c2);

		bool	operator==(const	container&	c1,	const	container&	c2);

		bool	operator!=(const	container&	c1,	const	container&	c2);

		bool	operator<(const	container&	c1,	const	container&	c2);

		bool	operator>(const	container&	c1,	const	container&	c2);

		bool	operator<=(const	container&	c1,	const	container&	c2);

		bool	operator>=(const	container&	c1,	const	container&	c2);

All	of	the	C++	containers	can	be	compared	and	assigned	with	the	standard
comparison	operators:	==,	!=,	<=,	>=,	<,	>,	and	=.	Performing	a	comparison	or
assigning	one	list	to	another	takes	linear	time.

Two	lists	are	equal	if:

1.	 Their	size	is	the	same,	and
2.	 Each	member	in	location	i	in	one	list	is	equal	to	the	the	member	in	location

i	in	the	other	list.

Comparisons	among	lists	are	done	lexicographically.

Related	topics:
(C++	Strings)	String	operators
(C++	Strings)	at
merge
unique

cppreference.com	>	C++	Lists	>	empty

empty
Syntax:

		#include	<list>

		bool	empty()	const;

The	empty()	function	returns	true	if	the	list	has	no	elements,	false	otherwise.

For	example,	the	following	code	uses	empty()	as	the	stopping	condition	on	a
(C/C++	Keywords)	while	loop	to	clear	a	list	and	display	its	contents	in	reverse
order:

	vector<int>	v;

	for(int	i	=	0;	i	<	5;	i++)	{

			v.push_back(i);

	}

	while(!v.empty())	{

			cout	<<	v.back()	<<	endl;

			v.pop_back();

	}														

Related	topics:
size

cppreference.com	>	C++	Lists	>	end

end
Syntax:

		#include	<list>

		iterator	end();

		const_iterator	end()	const;

The	end()	function	returns	an	iterator	just	past	the	end	of	the	list.

Note	that	before	you	can	access	the	last	element	of	the	list	using	an	iterator	that
you	get	from	a	call	to	end(),	you'll	have	to	decrement	the	iterator	first.

For	example,	the	following	code	uses	begin()	and	end()	to	iterate	through	all	of
the	members	of	a	vector:

	vector<int>	v1(5,	789);

	vector<int>::iterator	it;

	for(it	=	v1.begin();	it	!=	v1.end();	it++)	{

			cout	<<	*it	<<	endl;

	}														

The	iterator	is	initialized	with	a	call	to	begin().	After	the	body	of	the	loop	has
been	executed,	the	iterator	is	incremented	and	tested	to	see	if	it	is	equal	to	the
result	of	calling	end().	Since	end()	returns	an	iterator	pointing	to	an	element	just
after	the	last	element	of	the	vector,	the	loop	will	only	stop	once	all	of	the
elements	of	the	vector	have	been	displayed.

end()	runs	in	constant	time.

Related	topics:
beginrbegin
rend

cppreference.com	>	C++	Lists	>	erase

erase
Syntax:

		#include	<list>

		iterator	erase(iterator	loc);

		iterator	erase(iterator	start,	iterator	end);

The	erase()	function	either	deletes	the	element	at	location	loc,	or	deletes	the	elements	between	
(including	start	but	not	including	end).	The	return	value	is	the	element	after	the	last	element	erased.

The	first	version	of	erase	(the	version	that	deletes	a	single	element	at	location	loc
linear	time	for	vectors,	dequeues,	and	strings.	The	multiple-element	version	of	erase	always	takes	

For	example:

	//	Create	a	vector,	load	it	with	the	first	ten	characters	of	the	alphabet

	vector<char>	alphaVector;

	for(int	i=0;	i	<	10;	i++)	{

			alphaVector.push_back(i	+	65);

	}

	int	size	=	alphaVector.size();

	vector<char>::iterator	startIterator;

	vector<char>::iterator	tempIterator;

	for(int	i=0;	i	<	size;	i++)	{

			startIterator	=	alphaVector.begin();

			alphaVector.erase(startIterator);

			//	Display	the	vector

			for(tempIterator	=	alphaVector.begin();	tempIterator	!=	alphaVector.end();	tempIterator++)	{

					cout	<<	*tempIterator;

			}

			cout	<<	endl;

	}														

That	code	would	display	the	following	output:

	BCDEFGHIJ

	CDEFGHIJ

	DEFGHIJ

	EFGHIJ

	FGHIJ

	GHIJ

	HIJ

	IJ

	J														

In	the	next	example,	erase()	is	called	with	two	iterators	to	delete	a	range	of	elements	from	a	vector:

	//	create	a	vector,	load	it	with	the	first	ten	characters	of	the	alphabet

	vector<char>	alphaVector;

	for(int	i=0;	i	<	10;	i++)	{

			alphaVector.push_back(i	+	65);

	}

	//	display	the	complete	vector

	for(int	i	=	0;	i	<	alphaVector.size();	i++)	{

			cout	<<	alphaVector[i];

	}

	cout	<<	endl;												

	//	use	erase	to	remove	all	but	the	first	two	and	last	three	elements

	//	of	the	vector

	alphaVector.erase(alphaVector.begin()+2,	alphaVector.end()-3);

	//	display	the	modified	vector

	for(int	i	=	0;	i	<	alphaVector.size();	i++)	{

			cout	<<	alphaVector[i];

	}

	cout	<<	endl;												

When	run,	the	above	code	displays:

	ABCDEFGHIJ

	ABHIJ										

Related	topics:
clearinsert
pop_back
pop_front
remove
remove_if

cppreference.com	>	C++	Lists	>	front

front
Syntax:

		#include	<list>

		TYPE&	front();

		const	TYPE&	front()	const;

The	front()	function	returns	a	reference	to	the	first	element	of	the	list,	and	runs
in	constant	time.

Related	topics:
backpop_front
push_front

cppreference.com	>	C++	Lists	>	insert

insert
Syntax:

		#include	<list>

		iterator	insert(iterator	loc,	const	TYPE&	val);

		void	insert(iterator	loc,	size_type	num,	const	TYPE&	val);

		template<TYPE>	void	insert(iterator	loc,	input_iterator	start,	input_iterator

The	insert()	function	either:

inserts	val	before	loc,	returning	an	iterator	to	the	element	inserted,
inserts	num	copies	of	val	before	loc,	or
inserts	the	elements	from	start	to	end	before	loc.

For	example:

	//	Create	a	vector,	load	it	with	the	first	10	characters	of	the	alphabet

	vector<char>	alphaVector;

	for(int	i=0;	i	<	10;	i++)	{

			alphaVector.push_back(i	+	65);

	}														

	//	Insert	four	C's	into	the	vector

	vector<char>::iterator	theIterator	=	alphaVector.begin();

	alphaVector.insert(theIterator,	4,	'C');													

	//	Display	the	vector

	for(theIterator	=	alphaVector.begin();	theIterator	!=	alphaVector.end();	theIterator++)				{

			cout	<<	*theIterator;

	}														

This	code	would	display:

	CCCCABCDEFGHIJ									

Related	topics:
assignerase
merge

push_back
push_front
splice

cppreference.com	>	C++	Lists	>	max_size

max_size
Syntax:

		#include	<list>

		size_type	max_size()	const;

The	max_size()	function	returns	the	maximum	number	of	elements	that	the	list
can	hold.	The	max_size()	function	should	not	be	confused	with	the	size()	or
(C++	Strings)	capacity()	functions,	which	return	the	number	of	elements
currently	in	the	list	and	the	the	number	of	elements	that	the	list	will	be	able	to
hold	before	more	memory	will	have	to	be	allocated,	respectively.

Related	topics:
size

cppreference.com	>	C++	Lists	>	merge

merge
Syntax:

		#include	<list>

		void	merge(list	&lst);

		void	merge(list	&lst,	BinPred	compfunction);

The	function	merge()	merges	the	list	with	lst,	producing	a	combined	list	that	is
ordered	with	respect	to	the	<	operator.	If	compfunction	is	specified,	then	it	is
used	as	the	comparison	function	for	the	lists	instead	of	<.

merge()	runs	in	linear	time.

Related	topics:
Container	operatorsinsert
splice

cppreference.com	>	C++	Lists	>	pop_back

pop_back
Syntax:

		#include	<list>

		void	pop_back();

The	pop_back()	function	removes	the	last	element	of	the	list.

pop_back()	runs	in	constant	time.

Related	topics:
backerase
pop_front
push_back

cppreference.com	>	C++	Lists	>	pop_front

pop_front
Syntax:

		#include	<list>

		void	pop_front();

The	function	pop_front()	removes	the	first	element	of	the	list.

The	pop_front()	function	runs	in	constant	time.

Related	topics:
erasefront
pop_back
push_front

cppreference.com	>	C++	Lists	>	push_back

push_back
Syntax:

		#include	<list>

		void	push_back(const	TYPE&	val);

The	push_back()	function	appends	val	to	the	end	of	the	list.

For	example,	the	following	code	puts	10	integers	into	a	list:

			list<int>	the_list;

			for(int	i	=	0;	i	<	10;	i++)

					the_list.push_back(i);											

When	displayed,	the	resulting	list	would	look	like	this:

	0	1	2	3	4	5	6	7	8	9												

push_back()	runs	in	constant	time.

Related	topics:
assigninsert
pop_back
push_front

cppreference.com	>	C++	Lists	>	push_front

push_front
Syntax:

		#include	<list>

		void	push_front(const	TYPE&	val);

The	push_front()	function	inserts	val	at	the	beginning	of	list.

push_front()	runs	in	constant	time.

Related	topics:
assignfront
insert
pop_front
push_back

cppreference.com	>	C++	Lists	>	rbegin

rbegin
Syntax:

		#include	<list>

		reverse_iterator	rbegin();

		const_reverse_iterator	rbegin()	const;

The	rbegin()	function	returns	a	reverse_iterator	to	the	end	of	the	current	list.

rbegin()	runs	in	constant	time.

Related	topics:
beginend
rend

cppreference.com	>	C++	Lists	>	remove

remove
Syntax:

		#include	<list>

		void	remove(const	TYPE	&val);

The	function	remove()	removes	all	elements	that	are	equal	to	val	from	the	list.

For	example,	the	following	code	creates	a	list	of	the	first	10	characters	of	the
alphabet,	then	uses	remove()	to	remove	the	letter	'E'	from	the	list:

			//	Create	a	list	that	has	the	first	10	letters	of	the	alphabet

			list<char>	charList;

			for(int	i=0;	i	<	10;	i++)

					charList.push_front(i	+	65);

			//	Remove	all	instances	of	'E'

			charList.remove('E');														

Remove	runs	in	linear	time.

Related	topics:
eraseremove_if
unique

cppreference.com	>	C++	Lists	>	remove_if

remove_if
Syntax:

		#include	<list>

		void	remove_if(UnPred	pr);

The	remove_if()	function	removes	all	elements	from	the	list	for	which	the	unary
predicate	pr	is	true.

remove_if()	runs	in	linear	time.

Related	topics:
eraseremove
unique

cppreference.com	>	C++	Lists	>	rend

rend
Syntax:

		#include	<list>

		reverse_iterator	rend();

		const_reverse_iterator	rend()	const;

The	function	rend()	returns	a	reverse_iterator	to	the	beginning	of	the	current	list.

rend()	runs	in	constant	time.

Related	topics:
beginend
rbegin

cppreference.com	>	C++	Lists	>	resize

resize
Syntax:

		#include	<list>

		void	resize(size_type	num,	const	TYPE&	val	=	TYPE());

The	function	resize()	changes	the	size	of	the	list	to	size.	If	val	is	specified	then
any	newly-created	elements	will	be	initialized	to	have	a	value	of	val.

This	function	runs	in	linear	time.

Related	topics:
(C++	Multimaps)	Container	constructors	&	destructors
(C++	Strings)	capacity
size

cppreference.com	>	C++	Lists	>	reverse

reverse
Syntax:

		#include	<list>

		void	reverse();

The	function	reverse()	reverses	the	list,	and	takes	linear	time.

Related	topics:
sort

cppreference.com	>	C++	Lists	>	size

size
Syntax:

		#include	<list>

		size_type	size()	const;

The	size()	function	returns	the	number	of	elements	in	the	current	list.

Related	topics:
(C++	Strings)	capacity
empty
(C++	Strings)	length
max_size
resize

cppreference.com	>	C++	Lists	>	sort

sort
Syntax:

		#include	<list>

		void	sort();

		void	sort(BinPred	p);

The	sort()	function	is	used	to	sort	lists	into	ascending	order.	Ordering	is	done
via	the	<	operator,	unless	p	is	specified,	in	which	case	it	is	used	to	determine	if
an	element	is	less	than	another.

Sorting	takes	N	log	N	time.

Related	topics:
reverse

cppreference.com	>	C++	Lists	>	splice

splice
Syntax:

		#include	<list>

		void	splice(iterator	pos,	list&	lst);

		void	splice(iterator	pos,	list&	lst,	iterator	del);

		void	splice(iterator	pos,	list&	lst,	iterator	start,	iterator	end);

The	splice()	function	inserts	lst	at	location	pos.	If	specified,	the	element(s)	at	del	or
from	start	to	end	are	removed.

splice()	simply	moves	elements	from	one	list	to	another,	and	doesn't	actually	do	any
copying	or	deleting.	Because	of	this,	splice()	runs	in	constant	time.

Related	topics:
insertmerge
swap

cppreference.com	>	C++	Lists	>	swap

swap
Syntax:

		#include	<list>

		void	swap(const	container&	from);

The	swap()	function	exchanges	the	elements	of	the	current	list	with	those	of
from.	This	function	operates	in	constant	time.

For	example,	the	following	code	uses	the	swap()	function	to	exchange	the
values	of	two	strings:

			string	first("This	comes	first");

			string	second("And	this	is	second");

			first.swap(second);

			cout	<<	first	<<	endl;

			cout	<<	second	<<	endl;										

The	above	code	displays:

			And	this	is	second

			This	comes	first													

Related	topics:
splice

cppreference.com	>	C++	Lists	>	unique

unique
Syntax:

		#include	<list>

		void	unique();

		void	unique(BinPred	pr);

The	function	unique()	removes	all	consecutive	duplicate	elements	from	the	list.
Note	that	only	consecutive	duplicates	are	removed,	which	may	require	that	you
sort()	the	list	first.

Equality	is	tested	using	the	==	operator,	unless	pr	is	specified	as	a	replacement.
The	ordering	of	the	elements	in	a	list	should	not	change	after	a	call	to	unique().

unique()	runs	in	linear	time.

Related	topics:
Container	operatorsremove
remove_if

cppreference.com	>	C++	Queues

back
Syntax:

		#include	<queue>

		TYPE&	back();

		const	TYPE&	back()	const;

The	back()	function	returns	a	reference	to	the	last	element	in	the	queue.

For	example:

	vector<int>	v;

	for(int	i	=	0;	i	<	5;	i++)	{

			v.push_back(i);

	}

	cout	<<	"The	first	element	is	"	<<	v.front()

						<<	"	and	the	last	element	is	"	<<	v.back()	<<	endl;											

This	code	produces	the	following	output:

	The	first	element	is	0	and	the	last	element	is	4															

The	back()	function	runs	in	constant	time.

Related	topics:
front(C++	Lists)	pop_back

empty
Syntax:

		#include	<queue>

		bool	empty()	const;

The	empty()	function	returns	true	if	the	queue	has	no	elements,	false	otherwise.

For	example,	the	following	code	uses	empty()	as	the	stopping	condition	on	a
(C/C++	Keywords)	while	loop	to	clear	a	queue	and	display	its	contents	in
reverse	order:

	vector<int>	v;

	for(int	i	=	0;	i	<	5;	i++)	{

			v.push_back(i);

	}

	while(!v.empty())	{

			cout	<<	v.back()	<<	endl;

			v.pop_back();

	}														

Related	topics:
size

front
Syntax:

		#include	<queue>

		TYPE&	front();

		const	TYPE&	front()	const;

The	front()	function	returns	a	reference	to	the	first	element	of	the	queue,	and
runs	in	constant	time.

Related	topics:
back
(C++	Lists)	pop_front
(C++	Lists)	push_front

pop
Syntax:

		#include	<queue>

		void	pop();

The	function	pop()	removes	the	top	element	of	the	queue	and	discards	it.

Related	topics:
push
(C++	Priority	Queues)	top

push
Syntax:

		#include	<queue>

		void	push(const	TYPE&	val);

The	function	push()	adds	val	to	the	end	of	the	current	queue.

For	example,	the	following	code	uses	the	push()	function	to	add	ten	integers	to
the	end	of	a	queue:

			queue<int>	q;

			for(int	i=0;	i	<	10;	i++)

					q.push(i);									

Queue	constructor
Syntax:

		#include	<queue>

		queue();

		queue(const	Container&	con);

Queues	have	an	empty	constructor	and	a	constructor	that	can	be	used	to	specify	a
container	type.

size
Syntax:

		#include	<queue>

		size_type	size()	const;

The	size()	function	returns	the	number	of	elements	in	the	current	queue.

Related	topics:
(C++	Strings)	capacity
empty
(C++	Strings)	length
(C++	Multimaps)	max_size
(C++	Strings)	resize

cppreference.com	>	C++	Queues	>	back

back
Syntax:

		#include	<queue>

		TYPE&	back();

		const	TYPE&	back()	const;

The	back()	function	returns	a	reference	to	the	last	element	in	the	queue.

For	example:

	vector<int>	v;

	for(int	i	=	0;	i	<	5;	i++)	{

			v.push_back(i);

	}

	cout	<<	"The	first	element	is	"	<<	v.front()

						<<	"	and	the	last	element	is	"	<<	v.back()	<<	endl;											

This	code	produces	the	following	output:

	The	first	element	is	0	and	the	last	element	is	4															

The	back()	function	runs	in	constant	time.

Related	topics:
front(C++	Lists)	pop_back

cppreference.com	>	C++	Queues	>	empty

empty
Syntax:

		#include	<queue>

		bool	empty()	const;

The	empty()	function	returns	true	if	the	queue	has	no	elements,	false	otherwise.

For	example,	the	following	code	uses	empty()	as	the	stopping	condition	on	a
(C/C++	Keywords)	while	loop	to	clear	a	queue	and	display	its	contents	in
reverse	order:

	vector<int>	v;

	for(int	i	=	0;	i	<	5;	i++)	{

			v.push_back(i);

	}

	while(!v.empty())	{

			cout	<<	v.back()	<<	endl;

			v.pop_back();

	}														

Related	topics:
size

cppreference.com	>	C++	Queues	>	front

front
Syntax:

		#include	<queue>

		TYPE&	front();

		const	TYPE&	front()	const;

The	front()	function	returns	a	reference	to	the	first	element	of	the	queue,	and
runs	in	constant	time.

Related	topics:
back(C++	Lists)	pop_front
(C++	Lists)	push_front

cppreference.com	>	C++	Queues	>	pop

pop
Syntax:

		#include	<queue>

		void	pop();

The	function	pop()	removes	the	top	element	of	the	queue	and	discards	it.

Related	topics:
push(C++	Priority	Queues)	top

cppreference.com	>	C++	Queues	>	push

push
Syntax:

		#include	<queue>

		void	push(const	TYPE&	val);

The	function	push()	adds	val	to	the	end	of	the	current	queue.

For	example,	the	following	code	uses	the	push()	function	to	add	ten	integers	to
the	end	of	a	queue:

			queue<int>	q;

			for(int	i=0;	i	<	10;	i++)

					q.push(i);									

cppreference.com	>	C++	Queues	>	Queue	constructor

Queue	constructor
Syntax:

		#include	<queue>

		queue();

		queue(const	Container&	con);

Queues	have	an	empty	constructor	and	a	constructor	that	can	be	used	to	specify
a	container	type.

cppreference.com	>	C++	Queues	>	size

size
Syntax:

		#include	<queue>

		size_type	size()	const;

The	size()	function	returns	the	number	of	elements	in	the	current	queue.

Related	topics:
(C++	Strings)	capacity
empty
(C++	Strings)	length
(C++	Multimaps)	max_size
(C++	Strings)	resize

cppreference.com	>	C++	Stacks

empty
Syntax:

		#include	<stack>

		bool	empty()	const;

The	empty()	function	returns	true	if	the	stack	has	no	elements,	false	otherwise.

For	example,	the	following	code	uses	empty()	as	the	stopping	condition	on	a
(C/C++	Keywords)	while	loop	to	clear	a	stack	and	display	its	contents	in
reverse	order:

	vector<int>	v;

	for(int	i	=	0;	i	<	5;	i++)	{

			v.push_back(i);

	}

	while(!v.empty())	{

			cout	<<	v.back()	<<	endl;

			v.pop_back();

	}														

Related	topics:
size

pop
Syntax:

		#include	<stack>

		void	pop();

The	function	pop()	removes	the	top	element	of	the	stack	and	discards	it.

Related	topics:
(C++	Priority	Queues)	push

top

push
Syntax:

		#include	<stack>

		void	push(const	TYPE&	val);

The	function	push()	adds	val	to	the	top	of	the	current	stack.

For	example,	the	following	code	uses	the	push()	function	to	add	ten	integers	to
the	top	of	a	stack:

			stack<int>	s;

			for(int	i=0;	i	<	10;	i++)

					s.push(i);									

Related	topics:
pop

size
Syntax:

		#include	<stack>

		size_type	size()	const;

The	size()	function	returns	the	number	of	elements	in	the	current	stack.

Related	topics:
(C++	Strings)	capacity
empty
(C++	Strings)	length
(C++	Multimaps)	max_size
(C++	Strings)	resize

Stack	constructors
Syntax:

		#include	<stack>

		stack();

		stack(const	Container&	con);

Stacks	have	an	empty	constructor	and	a	constructor	that	can	be	used	to	specify	a
container	type.

top
Syntax:

		#include	<stack>

		TYPE&	top();

The	function	top()	returns	a	reference	to	the	top	element	of	the	stack.

For	example,	the	following	code	removes	all	of	the	elements	from	a	stack	and
uses	top()	to	display	them:

			while(!s.empty())	{

					cout	<<	s.top()	<<	"	";

					s.pop();

			}												

Related	topics:
pop

cppreference.com	>	C++	Stacks	>	empty

empty
Syntax:

		#include	<stack>

		bool	empty()	const;

The	empty()	function	returns	true	if	the	stack	has	no	elements,	false	otherwise.

For	example,	the	following	code	uses	empty()	as	the	stopping	condition	on	a
(C/C++	Keywords)	while	loop	to	clear	a	stack	and	display	its	contents	in
reverse	order:

	vector<int>	v;

	for(int	i	=	0;	i	<	5;	i++)	{

			v.push_back(i);

	}

	while(!v.empty())	{

			cout	<<	v.back()	<<	endl;

			v.pop_back();

	}														

Related	topics:
size

http://www.cppreference.com/index.html
http://www.cppreference.com/cppstack/index.html
http://www.cppreference.com/cppstack/empty.html
http://www.cppreference.com/keywords/while.html
http://www.cppreference.com/cppstack/size.html

cppreference.com	>	C++	Stacks	>	pop

pop
Syntax:

		#include	<stack>

		void	pop();

The	function	pop()	removes	the	top	element	of	the	stack	and	discards	it.

Related	topics:
(C++	Priority	Queues)	push
top

http://www.cppreference.com/index.html
http://www.cppreference.com/cppstack/index.html
http://www.cppreference.com/cppstack/pop.html
http://www.cppreference.com/cpppriority_queue/push.html
http://www.cppreference.com/cppstack/top.html

cppreference.com	>	C++	Stacks	>	push

push
Syntax:

		#include	<stack>

		void	push(const	TYPE&	val);

The	function	push()	adds	val	to	the	top	of	the	current	stack.

For	example,	the	following	code	uses	the	push()	function	to	add	ten	integers	to
the	top	of	a	stack:

			stack<int>	s;

			for(int	i=0;	i	<	10;	i++)

					s.push(i);									

Related	topics:
pop

http://www.cppreference.com/index.html
http://www.cppreference.com/cppstack/index.html
http://www.cppreference.com/cppstack/push.html
http://www.cppreference.com/containers.html
http://www.cppreference.com/cppstack/pop.html

cppreference.com	>	C++	Stacks	>	size

size
Syntax:

		#include	<stack>

		size_type	size()	const;

The	size()	function	returns	the	number	of	elements	in	the	current	stack.

Related	topics:
(C++	Strings)	capacity
empty
(C++	Strings)	length
(C++	Multimaps)	max_size
(C++	Strings)	resize

http://www.cppreference.com/index.html
http://www.cppreference.com/cppstack/index.html
http://www.cppreference.com/cppstack/size.html
http://www.cppreference.com/cppstring/capacity.html
http://www.cppreference.com/cppstack/empty.html
http://www.cppreference.com/cppstring/length.html
http://www.cppreference.com/cppmultimap/max_size.html
http://www.cppreference.com/cppstring/resize.html

cppreference.com	>	C++	Stacks	>	Stack	constructors

Stack	constructors
Syntax:

		#include	<stack>

		stack();

		stack(const	Container&	con);

Stacks	have	an	empty	constructor	and	a	constructor	that	can	be	used	to	specify	a
container	type.

cppreference.com	>	C++	Stacks	>	top

top
Syntax:

		#include	<stack>

		TYPE&	top();

The	function	top()	returns	a	reference	to	the	top	element	of	the	stack.

For	example,	the	following	code	removes	all	of	the	elements	from	a	stack	and
uses	top()	to	display	them:

			while(!s.empty())	{

					cout	<<	s.top()	<<	"	";

					s.pop();

			}												

Related	topics:
pop

http://www.cppreference.com/index.html
http://www.cppreference.com/cppstack/index.html
http://www.cppreference.com/cppstack/top.html
http://www.cppreference.com/containers.html
http://www.cppreference.com/cppstack/pop.html

cppreference.com	>	C++	Sets

begin
Syntax:

		#include	<set>

		iterator	begin();

		const_iterator	begin()	const;

The	function	begin()	returns	an	iterator	to	the	first	element	of	the	set.	begin()	should	run	in	

For	example,	the	following	code	uses	begin()	to	initialize	an	iterator	that	is	used	to	traverse	a	list:

			//	Create	a	list	of	characters

			list<char>	charList;

			for(int	i=0;	i	<	10;	i++)	{

					charList.push_front(i	+	65);

			}

			//	Display	the	list

			list<char>::iterator	theIterator;

			for(theIterator	=	charList.begin();	theIterator	!=	charList.end();	theIterator++)	{

					cout	<<	*theIterator;

			}												

Related	topics:
endrbegin
rend

clear
Syntax:

		#include	<set>

		void	clear();

The	function	clear()	deletes	all	of	the	elements	in	the	set.	clear()	runs	in	linear
time.

Related	topics:
(C++	Lists)	erase

Container	constructors	&
destructors

Syntax:

		#include	<set>

		container();

		container(const	container&	c);

		~container();

Every	set	has	a	default	constructor,	copy	constructor,	and	destructor.

The	default	constructor	takes	no	arguments,	creates	a	new	instance	of	that	set,
and	runs	in	constant	time.	The	default	copy	constructor	runs	in	linear	time	and
can	be	used	to	create	a	new	set	that	is	a	copy	of	the	given	set	c.

The	default	destructor	is	called	when	the	set	should	be	destroyed.

For	example,	the	following	code	creates	a	pointer	to	a	vector	of	integers	and	then
uses	the	default	set	constructor	to	allocate	a	memory	for	a	new	vector:

	vector<int>*	v;

	v	=	new	vector<int>();											

Related	topics:
(C++	Strings)	resize

Container	operators
Syntax:

		#include	<set>

		container	operator=(const	container&	c2);

		bool	operator==(const	container&	c1,	const	container&	c2);

		bool	operator!=(const	container&	c1,	const	container&	c2);

		bool	operator<(const	container&	c1,	const	container&	c2);

		bool	operator>(const	container&	c1,	const	container&	c2);

		bool	operator<=(const	container&	c1,	const	container&	c2);

		bool	operator>=(const	container&	c1,	const	container&	c2);

All	of	the	C++	containers	can	be	compared	and	assigned	with	the	standard
comparison	operators:	==,	!=,	<=,	>=,	<,	>,	and	=.	Performing	a	comparison	or
assigning	one	set	to	another	takes	linear	time.

Two	sets	are	equal	if:

1.	 Their	size	is	the	same,	and
2.	 Each	member	in	location	i	in	one	set	is	equal	to	the	the	member	in	location	i

in	the	other	set.

Comparisons	among	sets	are	done	lexicographically.

Related	topics:
(C++	Strings)	String	operators
(C++	Strings)	at
(C++	Lists)	merge
(C++	Lists)	unique

count
Syntax:

		#include	<set>

		size_type	count(const	key_type&	key);

The	function	count()	returns	the	number	of	occurrences	of	key	in	the	set.

count()	should	run	in	logarithmic	time.

empty
Syntax:

		#include	<set>

		bool	empty()	const;

The	empty()	function	returns	true	if	the	set	has	no	elements,	false	otherwise.

For	example,	the	following	code	uses	empty()	as	the	stopping	condition	on	a
(C/C++	Keywords)	while	loop	to	clear	a	set	and	display	its	contents	in	reverse
order:

	vector<int>	v;

	for(int	i	=	0;	i	<	5;	i++)	{

			v.push_back(i);

	}

	while(!v.empty())	{

			cout	<<	v.back()	<<	endl;

			v.pop_back();

	}														

Related	topics:
size

end
Syntax:

		#include	<set>

		iterator	end();

		const_iterator	end()	const;

The	end()	function	returns	an	iterator	just	past	the	end	of	the	set.

Note	that	before	you	can	access	the	last	element	of	the	set	using	an	iterator	that
you	get	from	a	call	to	end(),	you'll	have	to	decrement	the	iterator	first.

For	example,	the	following	code	uses	begin()	and	end()	to	iterate	through	all	of
the	members	of	a	vector:

	vector<int>	v1(5,	789);

	vector<int>::iterator	it;

	for(it	=	v1.begin();	it	!=	v1.end();	it++)	{

			cout	<<	*it	<<	endl;

	}														

The	iterator	is	initialized	with	a	call	to	begin().	After	the	body	of	the	loop	has
been	executed,	the	iterator	is	incremented	and	tested	to	see	if	it	is	equal	to	the
result	of	calling	end().	Since	end()	returns	an	iterator	pointing	to	an	element	just
after	the	last	element	of	the	vector,	the	loop	will	only	stop	once	all	of	the
elements	of	the	vector	have	been	displayed.

end()	runs	in	constant	time.

Related	topics:
begin
rbegin
rend

equal_range
Syntax:

		#include	<set>

		pair<iterator,	iterator>	equal_range(const	key_type&	key);

The	function	equal_range()	returns	two	iterators	-	one	to	the	first	element	that
contains	key,	another	to	a	point	just	after	the	last	element	that	contains	key.

erase
Syntax:

		#include	<set>

		void	erase(iterator	pos);

		void	erase(iterator	start,	iterator	end);

		size_type	erase(const	key_type&	key);

The	erase	function()	either	erases	the	element	at	pos,	erases	the	elements
between	start	and	end,	or	erases	all	elements	that	have	the	value	of	key.

find
Syntax:

		#include	<set>

		iterator	find(const	key_type&	key);

The	find()	function	returns	an	iterator	to	key,	or	an	iterator	to	the	end	of	the	set	if
key	is	not	found.

find()	runs	in	logarithmic	time.

insert
Syntax:

		#include	<set>

		iterator	insert(iterator	i,	const	TYPE&	val);

		void	insert(input_iterator	start,	input_iterator	end);

		pair<iterator,bool>	insert(const	TYPE&	val);

The	function	insert()	either:

inserts	val	after	the	element	at	pos	(where	pos	is	really	just	a	suggestion	as
to	where	val	should	go,	since	sets	and	maps	are	ordered),	and	returns	an
iterator	to	that	element.
inserts	a	range	of	elements	from	start	to	end.
inserts	val,	but	only	if	val	doesn't	already	exist.	The	return	value	is	an

iterator	to	the	element	inserted,	and	a	boolean	describing	whether	an
insertion	took	place.

Related	topics:
(C++	Maps)	Map	operators

key_comp
Syntax:

		#include	<set>

		key_compare	key_comp()	const;

The	function	key_comp()	returns	the	function	that	compares	keys.

key_comp()	runs	in	constant	time.

Related	topics:
value_comp

lower_bound
Syntax:

		#include	<set>

		iterator	lower_bound(const	key_type&	key);

The	lower_bound()	function	returns	an	iterator	to	the	first	element	which	has	a
value	greater	than	or	equal	to	key.

lower_bound()	runs	in	logarithmic	time.

Related	topics:
upper_bound

max_size
Syntax:

		#include	<set>

		size_type	max_size()	const;

The	max_size()	function	returns	the	maximum	number	of	elements	that	the	set
can	hold.	The	max_size()	function	should	not	be	confused	with	the	size()	or
(C++	Strings)	capacity()	functions,	which	return	the	number	of	elements
currently	in	the	set	and	the	the	number	of	elements	that	the	set	will	be	able	to
hold	before	more	memory	will	have	to	be	allocated,	respectively.

Related	topics:
size

rbegin
Syntax:

		#include	<set>

		reverse_iterator	rbegin();

		const_reverse_iterator	rbegin()	const;

The	rbegin()	function	returns	a	reverse_iterator	to	the	end	of	the	current	set.

rbegin()	runs	in	constant	time.

Related	topics:
begin
end
rend

rend

Syntax:

		#include	<set>

		reverse_iterator	rend();

		const_reverse_iterator	rend()	const;

The	function	rend()	returns	a	reverse_iterator	to	the	beginning	of	the	current	set.

rend()	runs	in	constant	time.

Related	topics:
begin
end
rbegin

size
Syntax:

		#include	<set>

		size_type	size()	const;

The	size()	function	returns	the	number	of	elements	in	the	current	set.

Related	topics:
(C++	Strings)	capacity
empty
(C++	Strings)	length
max_size
(C++	Strings)	resize

swap
Syntax:

		#include	<set>

		void	swap(const	container&	from);

The	swap()	function	exchanges	the	elements	of	the	current	set	with	those	of
from.	This	function	operates	in	constant	time.

For	example,	the	following	code	uses	the	swap()	function	to	exchange	the	values
of	two	strings:

			string	first("This	comes	first");

			string	second("And	this	is	second");

			first.swap(second);

			cout	<<	first	<<	endl;

			cout	<<	second	<<	endl;										

The	above	code	displays:

			And	this	is	second

			This	comes	first													

Related	topics:
(C++	Lists)	splice

upper_bound
Syntax:

		#include	<set>

		iterator	upper_bound(const	key_type&	key);

The	function	upper_bound()	returns	an	iterator	to	the	first	element	in	the	set	with
a	key	greater	than	key.

Related	topics:
lower_bound

value_comp

Syntax:

		#include	<set>

		value_compare	value_comp()	const;

The	value_comp()	function	returns	the	function	that	compares	values.

value_comp()	runs	in	constant	time.

Related	topics:
key_comp

cppreference.com	>	C++	Sets	>	begin

begin
Syntax:

		#include	<set>

		iterator	begin();

		const_iterator	begin()	const;

The	function	begin()	returns	an	iterator	to	the	first	element	of	the	set.	begin()	should	run	in	

For	example,	the	following	code	uses	begin()	to	initialize	an	iterator	that	is	used	to	traverse	a	list:

			//	Create	a	list	of	characters

			list<char>	charList;

			for(int	i=0;	i	<	10;	i++)	{

					charList.push_front(i	+	65);

			}

			//	Display	the	list

			list<char>::iterator	theIterator;

			for(theIterator	=	charList.begin();	theIterator	!=	charList.end();	theIterator++)	{

					cout	<<	*theIterator;

			}												

Related	topics:
endrbegin
rend

cppreference.com	>	C++	Sets	>	clear

clear
Syntax:

		#include	<set>

		void	clear();

The	function	clear()	deletes	all	of	the	elements	in	the	set.	clear()	runs	in	linear
time.

Related	topics:
(C++	Lists)	erase

cppreference.com	>	C++	Sets	>	Container	constructors	&	destructors

Container	constructors	&
destructors

Syntax:

		#include	<set>

		container();

		container(const	container&	c);

		~container();

Every	set	has	a	default	constructor,	copy	constructor,	and	destructor.

The	default	constructor	takes	no	arguments,	creates	a	new	instance	of	that	set,
and	runs	in	constant	time.	The	default	copy	constructor	runs	in	linear	time	and
can	be	used	to	create	a	new	set	that	is	a	copy	of	the	given	set	c.

The	default	destructor	is	called	when	the	set	should	be	destroyed.

For	example,	the	following	code	creates	a	pointer	to	a	vector	of	integers	and
then	uses	the	default	set	constructor	to	allocate	a	memory	for	a	new	vector:

	vector<int>*	v;

	v	=	new	vector<int>();											

Related	topics:
(C++	Strings)	resize

cppreference.com	>	C++	Sets	>	Container	operators

Container	operators
Syntax:

		#include	<set>

		container	operator=(const	container&	c2);

		bool	operator==(const	container&	c1,	const	container&	c2);

		bool	operator!=(const	container&	c1,	const	container&	c2);

		bool	operator<(const	container&	c1,	const	container&	c2);

		bool	operator>(const	container&	c1,	const	container&	c2);

		bool	operator<=(const	container&	c1,	const	container&	c2);

		bool	operator>=(const	container&	c1,	const	container&	c2);

All	of	the	C++	containers	can	be	compared	and	assigned	with	the	standard
comparison	operators:	==,	!=,	<=,	>=,	<,	>,	and	=.	Performing	a	comparison	or
assigning	one	set	to	another	takes	linear	time.

Two	sets	are	equal	if:

1.	 Their	size	is	the	same,	and
2.	 Each	member	in	location	i	in	one	set	is	equal	to	the	the	member	in	location

i	in	the	other	set.

Comparisons	among	sets	are	done	lexicographically.

Related	topics:
(C++	Strings)	String	operators
(C++	Strings)	at
(C++	Lists)	merge
(C++	Lists)	unique

cppreference.com	>	C++	Sets	>	count

count
Syntax:

		#include	<set>

		size_type	count(const	key_type&	key);

The	function	count()	returns	the	number	of	occurrences	of	key	in	the	set.

count()	should	run	in	logarithmic	time.

cppreference.com	>	C++	Sets	>	empty

empty
Syntax:

		#include	<set>

		bool	empty()	const;

The	empty()	function	returns	true	if	the	set	has	no	elements,	false	otherwise.

For	example,	the	following	code	uses	empty()	as	the	stopping	condition	on	a
(C/C++	Keywords)	while	loop	to	clear	a	set	and	display	its	contents	in	reverse
order:

	vector<int>	v;

	for(int	i	=	0;	i	<	5;	i++)	{

			v.push_back(i);

	}

	while(!v.empty())	{

			cout	<<	v.back()	<<	endl;

			v.pop_back();

	}														

Related	topics:
size

cppreference.com	>	C++	Sets	>	end

end
Syntax:

		#include	<set>

		iterator	end();

		const_iterator	end()	const;

The	end()	function	returns	an	iterator	just	past	the	end	of	the	set.

Note	that	before	you	can	access	the	last	element	of	the	set	using	an	iterator	that
you	get	from	a	call	to	end(),	you'll	have	to	decrement	the	iterator	first.

For	example,	the	following	code	uses	begin()	and	end()	to	iterate	through	all	of
the	members	of	a	vector:

	vector<int>	v1(5,	789);

	vector<int>::iterator	it;

	for(it	=	v1.begin();	it	!=	v1.end();	it++)	{

			cout	<<	*it	<<	endl;

	}														

The	iterator	is	initialized	with	a	call	to	begin().	After	the	body	of	the	loop	has
been	executed,	the	iterator	is	incremented	and	tested	to	see	if	it	is	equal	to	the
result	of	calling	end().	Since	end()	returns	an	iterator	pointing	to	an	element	just
after	the	last	element	of	the	vector,	the	loop	will	only	stop	once	all	of	the
elements	of	the	vector	have	been	displayed.

end()	runs	in	constant	time.

Related	topics:
beginrbegin
rend

cppreference.com	>	C++	Sets	>	equal_range

equal_range
Syntax:

		#include	<set>

		pair<iterator,	iterator>	equal_range(const	key_type&	key);

The	function	equal_range()	returns	two	iterators	-	one	to	the	first	element	that
contains	key,	another	to	a	point	just	after	the	last	element	that	contains	key.

cppreference.com	>	C++	Sets	>	erase

erase
Syntax:

		#include	<set>

		void	erase(iterator	pos);

		void	erase(iterator	start,	iterator	end);

		size_type	erase(const	key_type&	key);

The	erase	function()	either	erases	the	element	at	pos,	erases	the	elements
between	start	and	end,	or	erases	all	elements	that	have	the	value	of	key.

cppreference.com	>	C++	Sets	>	find

find
Syntax:

		#include	<set>

		iterator	find(const	key_type&	key);

The	find()	function	returns	an	iterator	to	key,	or	an	iterator	to	the	end	of	the	set
if	key	is	not	found.

find()	runs	in	logarithmic	time.

cppreference.com	>	C++	Sets	>	insert

insert
Syntax:

		#include	<set>

		iterator	insert(iterator	i,	const	TYPE&	val);

		void	insert(input_iterator	start,	input_iterator	end);

		pair<iterator,bool>	insert(const	TYPE&	val);

The	function	insert()	either:

inserts	val	after	the	element	at	pos	(where	pos	is	really	just	a	suggestion	as
to	where	val	should	go,	since	sets	and	maps	are	ordered),	and	returns	an
iterator	to	that	element.
inserts	a	range	of	elements	from	start	to	end.
inserts	val,	but	only	if	val	doesn't	already	exist.	The	return	value	is	an
iterator	to	the	element	inserted,	and	a	boolean	describing	whether	an
insertion	took	place.

Related	topics:
(C++	Maps)	Map	operators

cppreference.com	>	C++	Sets	>	key_comp

key_comp
Syntax:

		#include	<set>

		key_compare	key_comp()	const;

The	function	key_comp()	returns	the	function	that	compares	keys.

key_comp()	runs	in	constant	time.

Related	topics:
value_comp

cppreference.com	>	C++	Sets	>	lower_bound

lower_bound
Syntax:

		#include	<set>

		iterator	lower_bound(const	key_type&	key);

The	lower_bound()	function	returns	an	iterator	to	the	first	element	which	has	a
value	greater	than	or	equal	to	key.

lower_bound()	runs	in	logarithmic	time.

Related	topics:
upper_bound

cppreference.com	>	C++	Sets	>	max_size

max_size
Syntax:

		#include	<set>

		size_type	max_size()	const;

The	max_size()	function	returns	the	maximum	number	of	elements	that	the	set
can	hold.	The	max_size()	function	should	not	be	confused	with	the	size()	or
(C++	Strings)	capacity()	functions,	which	return	the	number	of	elements
currently	in	the	set	and	the	the	number	of	elements	that	the	set	will	be	able	to
hold	before	more	memory	will	have	to	be	allocated,	respectively.

Related	topics:
size

cppreference.com	>	C++	Sets	>	rbegin

rbegin
Syntax:

		#include	<set>

		reverse_iterator	rbegin();

		const_reverse_iterator	rbegin()	const;

The	rbegin()	function	returns	a	reverse_iterator	to	the	end	of	the	current	set.

rbegin()	runs	in	constant	time.

Related	topics:
beginend
rend

cppreference.com	>	C++	Sets	>	rend

rend
Syntax:

		#include	<set>

		reverse_iterator	rend();

		const_reverse_iterator	rend()	const;

The	function	rend()	returns	a	reverse_iterator	to	the	beginning	of	the	current	set.

rend()	runs	in	constant	time.

Related	topics:
beginend
rbegin

cppreference.com	>	C++	Sets	>	size

size
Syntax:

		#include	<set>

		size_type	size()	const;

The	size()	function	returns	the	number	of	elements	in	the	current	set.

Related	topics:
(C++	Strings)	capacity
empty
(C++	Strings)	length
max_size
(C++	Strings)	resize

cppreference.com	>	C++	Sets	>	swap

swap
Syntax:

		#include	<set>

		void	swap(const	container&	from);

The	swap()	function	exchanges	the	elements	of	the	current	set	with	those	of
from.	This	function	operates	in	constant	time.

For	example,	the	following	code	uses	the	swap()	function	to	exchange	the
values	of	two	strings:

			string	first("This	comes	first");

			string	second("And	this	is	second");

			first.swap(second);

			cout	<<	first	<<	endl;

			cout	<<	second	<<	endl;										

The	above	code	displays:

			And	this	is	second

			This	comes	first													

Related	topics:
(C++	Lists)	splice

cppreference.com	>	C++	Sets	>	upper_bound

upper_bound
Syntax:

		#include	<set>

		iterator	upper_bound(const	key_type&	key);

The	function	upper_bound()	returns	an	iterator	to	the	first	element	in	the	set
with	a	key	greater	than	key.

Related	topics:
lower_bound

cppreference.com	>	C++	Sets	>	value_comp

value_comp
Syntax:

		#include	<set>

		value_compare	value_comp()	const;

The	value_comp()	function	returns	the	function	that	compares	values.

value_comp()	runs	in	constant	time.

Related	topics:
key_comp

cppreference.com	>	C++	Multisets

begin
Syntax:

		#include	<set>

		iterator	begin();

		const_iterator	begin()	const;

The	function	begin()	returns	an	iterator	to	the	first	element	of	the	multiset.	begin()	should	run	in	
time.

For	example,	the	following	code	uses	begin()	to	initialize	an	iterator	that	is	used	to	traverse	a	list:

			//	Create	a	list	of	characters

			list<char>	charList;

			for(int	i=0;	i	<	10;	i++)	{

					charList.push_front(i	+	65);

			}

			//	Display	the	list

			list<char>::iterator	theIterator;

			for(theIterator	=	charList.begin();	theIterator	!=	charList.end();	theIterator++)	{

					cout	<<	*theIterator;

			}												

Related	topics:
endrbegin
rend

clear
Syntax:

		#include	<set>

		void	clear();

The	function	clear()	deletes	all	of	the	elements	in	the	multiset.	clear()	runs	in

linear	time.

Related	topics:
(C++	Lists)	erase

Container	constructors	&
destructors

Syntax:

		#include	<set>

		container();

		container(const	container&	c);

		~container();

Every	multiset	has	a	default	constructor,	copy	constructor,	and	destructor.

The	default	constructor	takes	no	arguments,	creates	a	new	instance	of	that
multiset,	and	runs	in	constant	time.	The	default	copy	constructor	runs	in	linear
time	and	can	be	used	to	create	a	new	multiset	that	is	a	copy	of	the	given	multiset
c.

The	default	destructor	is	called	when	the	multiset	should	be	destroyed.

For	example,	the	following	code	creates	a	pointer	to	a	vector	of	integers	and	then
uses	the	default	multiset	constructor	to	allocate	a	memory	for	a	new	vector:

	vector<int>*	v;

	v	=	new	vector<int>();											

Related	topics:
(C++	Strings)	resize

Container	operators
Syntax:

		#include	<set>

		container	operator=(const	container&	c2);

		bool	operator==(const	container&	c1,	const	container&	c2);

		bool	operator!=(const	container&	c1,	const	container&	c2);

		bool	operator<(const	container&	c1,	const	container&	c2);

		bool	operator>(const	container&	c1,	const	container&	c2);

		bool	operator<=(const	container&	c1,	const	container&	c2);

		bool	operator>=(const	container&	c1,	const	container&	c2);

All	of	the	C++	containers	can	be	compared	and	assigned	with	the	standard
comparison	operators:	==,	!=,	<=,	>=,	<,	>,	and	=.	Performing	a	comparison	or
assigning	one	multiset	to	another	takes	linear	time.

Two	multisets	are	equal	if:

1.	 Their	size	is	the	same,	and
2.	 Each	member	in	location	i	in	one	multiset	is	equal	to	the	the	member	in

location	i	in	the	other	multiset.

Comparisons	among	multisets	are	done	lexicographically.

Related	topics:
(C++	Strings)	String	operators
(C++	Strings)	at
(C++	Lists)	merge
(C++	Lists)	unique

count
Syntax:

		#include	<set>

		size_type	count(const	key_type&	key);

The	function	count()	returns	the	number	of	occurrences	of	key	in	the	multiset.

count()	should	run	in	logarithmic	time.

empty
Syntax:

		#include	<set>

		bool	empty()	const;

The	empty()	function	returns	true	if	the	multiset	has	no	elements,	false
otherwise.

For	example,	the	following	code	uses	empty()	as	the	stopping	condition	on	a
(C/C++	Keywords)	while	loop	to	clear	a	multiset	and	display	its	contents	in
reverse	order:

	vector<int>	v;

	for(int	i	=	0;	i	<	5;	i++)	{

			v.push_back(i);

	}

	while(!v.empty())	{

			cout	<<	v.back()	<<	endl;

			v.pop_back();

	}														

Related	topics:
size

end
Syntax:

		#include	<set>

		iterator	end();

		const_iterator	end()	const;

The	end()	function	returns	an	iterator	just	past	the	end	of	the	multiset.

Note	that	before	you	can	access	the	last	element	of	the	multiset	using	an	iterator
that	you	get	from	a	call	to	end(),	you'll	have	to	decrement	the	iterator	first.

For	example,	the	following	code	uses	begin()	and	end()	to	iterate	through	all	of
the	members	of	a	vector:

	vector<int>	v1(5,	789);

	vector<int>::iterator	it;

	for(it	=	v1.begin();	it	!=	v1.end();	it++)	{

			cout	<<	*it	<<	endl;

	}														

The	iterator	is	initialized	with	a	call	to	begin().	After	the	body	of	the	loop	has
been	executed,	the	iterator	is	incremented	and	tested	to	see	if	it	is	equal	to	the
result	of	calling	end().	Since	end()	returns	an	iterator	pointing	to	an	element	just
after	the	last	element	of	the	vector,	the	loop	will	only	stop	once	all	of	the
elements	of	the	vector	have	been	displayed.

end()	runs	in	constant	time.

Related	topics:
begin
rbegin
rend

equal_range
Syntax:

		#include	<set>

		pair<iterator,	iterator>	equal_range(const	key_type&	key);

The	function	equal_range()	returns	two	iterators	-	one	to	the	first	element	that
contains	key,	another	to	a	point	just	after	the	last	element	that	contains	key.

erase
Syntax:

		#include	<set>

		void	erase(iterator	pos);

		void	erase(iterator	start,	iterator	end);

		size_type	erase(const	key_type&	key);

The	erase	function()	either	erases	the	element	at	pos,	erases	the	elements
between	start	and	end,	or	erases	all	elements	that	have	the	value	of	key.

find
Syntax:

		#include	<set>

		iterator	find(const	key_type&	key);

The	find()	function	returns	an	iterator	to	key,	or	an	iterator	to	the	end	of	the
multiset	if	key	is	not	found.

find()	runs	in	logarithmic	time.

insert
Syntax:

		#include	<set>

		iterator	insert(iterator	pos,	const	TYPE&	val);

		iterator	insert(const	TYPE&	val);

		void	insert(input_iterator	start,	input_iterator	end);

The	function	insert()	either:

inserts	val	after	the	element	at	pos	(where	pos	is	really	just	a	suggestion	as
to	where	val	should	go,	since	multisets	and	multimaps	are	ordered),	and
returns	an	iterator	to	that	element.
inserts	val	into	the	multiset,	returning	an	iterator	to	the	element	inserted.
inserts	a	range	of	elements	from	start	to	end.

key_comp
Syntax:

		#include	<set>

		key_compare	key_comp()	const;

The	function	key_comp()	returns	the	function	that	compares	keys.

key_comp()	runs	in	constant	time.

Related	topics:
value_comp

lower_bound
Syntax:

		#include	<set>

		iterator	lower_bound(const	key_type&	key);

The	lower_bound()	function	returns	an	iterator	to	the	first	element	which	has	a
value	greater	than	or	equal	to	key.

lower_bound()	runs	in	logarithmic	time.

Related	topics:
upper_bound

max_size
Syntax:

		#include	<set>

		size_type	max_size()	const;

The	max_size()	function	returns	the	maximum	number	of	elements	that	the
multiset	can	hold.	The	max_size()	function	should	not	be	confused	with	the
size()	or	(C++	Strings)	capacity()	functions,	which	return	the	number	of
elements	currently	in	the	multiset	and	the	the	number	of	elements	that	the
multiset	will	be	able	to	hold	before	more	memory	will	have	to	be	allocated,
respectively.

Related	topics:
size

rbegin
Syntax:

		#include	<set>

		reverse_iterator	rbegin();

		const_reverse_iterator	rbegin()	const;

The	rbegin()	function	returns	a	reverse_iterator	to	the	end	of	the	current	multiset.

rbegin()	runs	in	constant	time.

Related	topics:
begin
end
rend

rend
Syntax:

		#include	<set>

		reverse_iterator	rend();

		const_reverse_iterator	rend()	const;

The	function	rend()	returns	a	reverse_iterator	to	the	beginning	of	the	current
multiset.

rend()	runs	in	constant	time.

Related	topics:
begin
end
rbegin

size
Syntax:

		#include	<set>

		size_type	size()	const;

The	size()	function	returns	the	number	of	elements	in	the	current	multiset.

Related	topics:
(C++	Strings)	capacity
empty
(C++	Strings)	length
max_size
(C++	Strings)	resize

swap
Syntax:

		#include	<set>

		void	swap(const	container&	from);

The	swap()	function	exchanges	the	elements	of	the	current	multiset	with	those	of
from.	This	function	operates	in	constant	time.

For	example,	the	following	code	uses	the	swap()	function	to	exchange	the	values
of	two	strings:

			string	first("This	comes	first");

			string	second("And	this	is	second");

			first.swap(second);

			cout	<<	first	<<	endl;

			cout	<<	second	<<	endl;										

The	above	code	displays:

			And	this	is	second

			This	comes	first													

Related	topics:
(C++	Lists)	splice

upper_bound
Syntax:

		#include	<set>

		iterator	upper_bound(const	key_type&	key);

The	function	upper_bound()	returns	an	iterator	to	the	first	element	in	the	multiset
with	a	key	greater	than	key.

Related	topics:
lower_bound

value_comp
Syntax:

		#include	<set>

		value_compare	value_comp()	const;

The	value_comp()	function	returns	the	function	that	compares	values.

value_comp()	runs	in	constant	time.

Related	topics:
key_comp

cppreference.com	>	C++	Multisets	>	begin

begin
Syntax:

		#include	<set>

		iterator	begin();

		const_iterator	begin()	const;

The	function	begin()	returns	an	iterator	to	the	first	element	of	the	multiset.	begin()	should	run	in	
time.

For	example,	the	following	code	uses	begin()	to	initialize	an	iterator	that	is	used	to	traverse	a	list:

			//	Create	a	list	of	characters

			list<char>	charList;

			for(int	i=0;	i	<	10;	i++)	{

					charList.push_front(i	+	65);

			}

			//	Display	the	list

			list<char>::iterator	theIterator;

			for(theIterator	=	charList.begin();	theIterator	!=	charList.end();	theIterator++)	{

					cout	<<	*theIterator;

			}												

Related	topics:
endrbegin
rend

cppreference.com	>	C++	Multisets	>	clear

clear
Syntax:

		#include	<set>

		void	clear();

The	function	clear()	deletes	all	of	the	elements	in	the	multiset.	clear()	runs	in
linear	time.

Related	topics:
(C++	Lists)	erase

cppreference.com	>	C++	Multisets	>	Container	constructors	&	destructors

Container	constructors	&
destructors

Syntax:

		#include	<set>

		container();

		container(const	container&	c);

		~container();

Every	multiset	has	a	default	constructor,	copy	constructor,	and	destructor.

The	default	constructor	takes	no	arguments,	creates	a	new	instance	of	that
multiset,	and	runs	in	constant	time.	The	default	copy	constructor	runs	in	linear
time	and	can	be	used	to	create	a	new	multiset	that	is	a	copy	of	the	given	multiset
c.

The	default	destructor	is	called	when	the	multiset	should	be	destroyed.

For	example,	the	following	code	creates	a	pointer	to	a	vector	of	integers	and
then	uses	the	default	multiset	constructor	to	allocate	a	memory	for	a	new	vector:

	vector<int>*	v;

	v	=	new	vector<int>();											

Related	topics:
(C++	Strings)	resize

cppreference.com	>	C++	Multisets	>	Container	operators

Container	operators
Syntax:

		#include	<set>

		container	operator=(const	container&	c2);

		bool	operator==(const	container&	c1,	const	container&	c2);

		bool	operator!=(const	container&	c1,	const	container&	c2);

		bool	operator<(const	container&	c1,	const	container&	c2);

		bool	operator>(const	container&	c1,	const	container&	c2);

		bool	operator<=(const	container&	c1,	const	container&	c2);

		bool	operator>=(const	container&	c1,	const	container&	c2);

All	of	the	C++	containers	can	be	compared	and	assigned	with	the	standard
comparison	operators:	==,	!=,	<=,	>=,	<,	>,	and	=.	Performing	a	comparison	or
assigning	one	multiset	to	another	takes	linear	time.

Two	multisets	are	equal	if:

1.	 Their	size	is	the	same,	and
2.	 Each	member	in	location	i	in	one	multiset	is	equal	to	the	the	member	in

location	i	in	the	other	multiset.

Comparisons	among	multisets	are	done	lexicographically.

Related	topics:
(C++	Strings)	String	operators
(C++	Strings)	at
(C++	Lists)	merge
(C++	Lists)	unique

cppreference.com	>	C++	Multisets	>	count

count
Syntax:

		#include	<set>

		size_type	count(const	key_type&	key);

The	function	count()	returns	the	number	of	occurrences	of	key	in	the	multiset.

count()	should	run	in	logarithmic	time.

cppreference.com	>	C++	Multisets	>	empty

empty
Syntax:

		#include	<set>

		bool	empty()	const;

The	empty()	function	returns	true	if	the	multiset	has	no	elements,	false
otherwise.

For	example,	the	following	code	uses	empty()	as	the	stopping	condition	on	a
(C/C++	Keywords)	while	loop	to	clear	a	multiset	and	display	its	contents	in
reverse	order:

	vector<int>	v;

	for(int	i	=	0;	i	<	5;	i++)	{

			v.push_back(i);

	}

	while(!v.empty())	{

			cout	<<	v.back()	<<	endl;

			v.pop_back();

	}														

Related	topics:
size

cppreference.com	>	C++	Multisets	>	end

end
Syntax:

		#include	<set>

		iterator	end();

		const_iterator	end()	const;

The	end()	function	returns	an	iterator	just	past	the	end	of	the	multiset.

Note	that	before	you	can	access	the	last	element	of	the	multiset	using	an	iterator
that	you	get	from	a	call	to	end(),	you'll	have	to	decrement	the	iterator	first.

For	example,	the	following	code	uses	begin()	and	end()	to	iterate	through	all	of
the	members	of	a	vector:

	vector<int>	v1(5,	789);

	vector<int>::iterator	it;

	for(it	=	v1.begin();	it	!=	v1.end();	it++)	{

			cout	<<	*it	<<	endl;

	}														

The	iterator	is	initialized	with	a	call	to	begin().	After	the	body	of	the	loop	has
been	executed,	the	iterator	is	incremented	and	tested	to	see	if	it	is	equal	to	the
result	of	calling	end().	Since	end()	returns	an	iterator	pointing	to	an	element	just
after	the	last	element	of	the	vector,	the	loop	will	only	stop	once	all	of	the
elements	of	the	vector	have	been	displayed.

end()	runs	in	constant	time.

Related	topics:
beginrbegin
rend

cppreference.com	>	C++	Multisets	>	equal_range

equal_range
Syntax:

		#include	<set>

		pair<iterator,	iterator>	equal_range(const	key_type&	key);

The	function	equal_range()	returns	two	iterators	-	one	to	the	first	element	that
contains	key,	another	to	a	point	just	after	the	last	element	that	contains	key.

cppreference.com	>	C++	Multisets	>	erase

erase
Syntax:

		#include	<set>

		void	erase(iterator	pos);

		void	erase(iterator	start,	iterator	end);

		size_type	erase(const	key_type&	key);

The	erase	function()	either	erases	the	element	at	pos,	erases	the	elements
between	start	and	end,	or	erases	all	elements	that	have	the	value	of	key.

cppreference.com	>	C++	Multisets	>	find

find
Syntax:

		#include	<set>

		iterator	find(const	key_type&	key);

The	find()	function	returns	an	iterator	to	key,	or	an	iterator	to	the	end	of	the
multiset	if	key	is	not	found.

find()	runs	in	logarithmic	time.

cppreference.com	>	C++	Multisets	>	insert

insert
Syntax:

		#include	<set>

		iterator	insert(iterator	pos,	const	TYPE&	val);

		iterator	insert(const	TYPE&	val);

		void	insert(input_iterator	start,	input_iterator	end);

The	function	insert()	either:

inserts	val	after	the	element	at	pos	(where	pos	is	really	just	a	suggestion	as
to	where	val	should	go,	since	multisets	and	multimaps	are	ordered),	and
returns	an	iterator	to	that	element.
inserts	val	into	the	multiset,	returning	an	iterator	to	the	element	inserted.
inserts	a	range	of	elements	from	start	to	end.

cppreference.com	>	C++	Multisets	>	key_comp

key_comp
Syntax:

		#include	<set>

		key_compare	key_comp()	const;

The	function	key_comp()	returns	the	function	that	compares	keys.

key_comp()	runs	in	constant	time.

Related	topics:
value_comp

cppreference.com	>	C++	Multisets	>	lower_bound

lower_bound
Syntax:

		#include	<set>

		iterator	lower_bound(const	key_type&	key);

The	lower_bound()	function	returns	an	iterator	to	the	first	element	which	has	a
value	greater	than	or	equal	to	key.

lower_bound()	runs	in	logarithmic	time.

Related	topics:
upper_bound

cppreference.com	>	C++	Multisets	>	max_size

max_size
Syntax:

		#include	<set>

		size_type	max_size()	const;

The	max_size()	function	returns	the	maximum	number	of	elements	that	the
multiset	can	hold.	The	max_size()	function	should	not	be	confused	with	the
size()	or	(C++	Strings)	capacity()	functions,	which	return	the	number	of
elements	currently	in	the	multiset	and	the	the	number	of	elements	that	the
multiset	will	be	able	to	hold	before	more	memory	will	have	to	be	allocated,
respectively.

Related	topics:
size

cppreference.com	>	C++	Multisets	>	rbegin

rbegin
Syntax:

		#include	<set>

		reverse_iterator	rbegin();

		const_reverse_iterator	rbegin()	const;

The	rbegin()	function	returns	a	reverse_iterator	to	the	end	of	the	current
multiset.

rbegin()	runs	in	constant	time.

Related	topics:
beginend
rend

cppreference.com	>	C++	Multisets	>	rend

rend
Syntax:

		#include	<set>

		reverse_iterator	rend();

		const_reverse_iterator	rend()	const;

The	function	rend()	returns	a	reverse_iterator	to	the	beginning	of	the	current
multiset.

rend()	runs	in	constant	time.

Related	topics:
beginend
rbegin

cppreference.com	>	C++	Multisets	>	size

size
Syntax:

		#include	<set>

		size_type	size()	const;

The	size()	function	returns	the	number	of	elements	in	the	current	multiset.

Related	topics:
(C++	Strings)	capacity
empty
(C++	Strings)	length
max_size
(C++	Strings)	resize

cppreference.com	>	C++	Multisets	>	swap

swap
Syntax:

		#include	<set>

		void	swap(const	container&	from);

The	swap()	function	exchanges	the	elements	of	the	current	multiset	with	those
of	from.	This	function	operates	in	constant	time.

For	example,	the	following	code	uses	the	swap()	function	to	exchange	the
values	of	two	strings:

			string	first("This	comes	first");

			string	second("And	this	is	second");

			first.swap(second);

			cout	<<	first	<<	endl;

			cout	<<	second	<<	endl;										

The	above	code	displays:

			And	this	is	second

			This	comes	first													

Related	topics:
(C++	Lists)	splice

cppreference.com	>	C++	Multisets	>	upper_bound

upper_bound
Syntax:

		#include	<set>

		iterator	upper_bound(const	key_type&	key);

The	function	upper_bound()	returns	an	iterator	to	the	first	element	in	the
multiset	with	a	key	greater	than	key.

Related	topics:
lower_bound

cppreference.com	>	C++	Multisets	>	value_comp

value_comp
Syntax:

		#include	<set>

		value_compare	value_comp()	const;

The	value_comp()	function	returns	the	function	that	compares	values.

value_comp()	runs	in	constant	time.

Related	topics:
key_comp

cppreference.com	>	C++	Maps

begin
Syntax:

		#include	<map>

		iterator	begin();

		const_iterator	begin()	const;

The	function	begin()	returns	an	iterator	to	the	first	element	of	the	map.	begin()	should	run	in	
time.

For	example,	the	following	code	uses	begin()	to	initialize	an	iterator	that	is	used	to	traverse	a	list:

			//	Create	a	list	of	characters

			list<char>	charList;

			for(int	i=0;	i	<	10;	i++)	{

					charList.push_front(i	+	65);

			}

			//	Display	the	list

			list<char>::iterator	theIterator;

			for(theIterator	=	charList.begin();	theIterator	!=	charList.end();	theIterator++)	{

					cout	<<	*theIterator;

			}												

Related	topics:
endrbegin
rend

clear
Syntax:

		#include	<map>

		void	clear();

The	function	clear()	deletes	all	of	the	elements	in	the	map.	clear()	runs	in	linear

time.

Related	topics:
(C++	Lists)	erase

count
Syntax:

		#include	<map>

		size_type	count(const	key_type&	key);

The	function	count()	returns	the	number	of	occurrences	of	key	in	the	map.

count()	should	run	in	logarithmic	time.

empty
Syntax:

		#include	<map>

		bool	empty()	const;

The	empty()	function	returns	true	if	the	map	has	no	elements,	false	otherwise.

For	example,	the	following	code	uses	empty()	as	the	stopping	condition	on	a
while	loop	to	clear	a	map	and	display	its	contents	in	order:

		struct	strCmp	{

				bool	operator()(const	char*	s1,	const	char*	s2)	const	{

						return	strcmp(s1,	s2)	<	0;

				}

		};

		...

		map<const	char*,	int,	strCmp>	ages;

		ages["Homer"]	=	38;

		ages["Marge"]	=	37;

		ages["Lisa"]	=	8;

		ages["Maggie"]	=	1;

		ages["Bart"]	=	11;

		while(!ages.empty())	{

				cout	<<	"Erasing:	"	<<	(*ages.begin()).first	<<	",	"	<<	(*ages.begin()).second	<<	endl;

				ages.erase(ages.begin());

		}

When	run,	the	above	code	displays:

		Erasing:	Bart,	11

		Erasing:	Homer,	38

		Erasing:	Lisa,	8

		Erasing:	Maggie,	1

		Erasing:	Marge,	37

Related	topics:
begin
erase
size

end
Syntax:

		#include	<map>

		iterator	end();

		const_iterator	end()	const;

The	end()	function	returns	an	iterator	just	past	the	end	of	the	map.

Note	that	before	you	can	access	the	last	element	of	the	map	using	an	iterator	that
you	get	from	a	call	to	end(),	you'll	have	to	decrement	the	iterator	first.

For	example,	the	following	code	uses	begin()	and	end()	to	iterate	through	all	of
the	members	of	a	vector:

	vector<int>	v1(5,	789);

	vector<int>::iterator	it;

	for(it	=	v1.begin();	it	!=	v1.end();	it++)	{

			cout	<<	*it	<<	endl;

	}														

The	iterator	is	initialized	with	a	call	to	begin().	After	the	body	of	the	loop	has
been	executed,	the	iterator	is	incremented	and	tested	to	see	if	it	is	equal	to	the
result	of	calling	end().	Since	end()	returns	an	iterator	pointing	to	an	element	just
after	the	last	element	of	the	vector,	the	loop	will	only	stop	once	all	of	the
elements	of	the	vector	have	been	displayed.

end()	runs	in	constant	time.

Related	topics:
begin
rbegin
rend

equal_range
Syntax:

		#include	<map>

		pair<iterator,	iterator>	equal_range(const	key_type&	key);

The	function	equal_range()	returns	two	iterators	-	one	to	the	first	element	that
contains	key,	another	to	a	point	just	after	the	last	element	that	contains	key.

erase
Syntax:

		#include	<map>

		void	erase(iterator	pos);

		void	erase(iterator	start,	iterator	end);

		size_type	erase(const	key_type&	key);

The	erase	function()	either	erases	the	element	at	pos,	erases	the	elements
between	start	and	end,	or	erases	all	elements	that	have	the	value	of	key.

For	example,	the	following	code	uses	erase()	in	a	while	loop	to	incrementally
clear	a	map	and	display	its	contents	in	order:

		struct	strCmp	{

				bool	operator()(const	char*	s1,	const	char*	s2)	const	{

						return	strcmp(s1,	s2)	<	0;

				}

		};

		...

		map<const	char*,	int,	strCmp>	ages;

		ages["Homer"]	=	38;

		ages["Marge"]	=	37;

		ages["Lisa"]	=	8;

		ages["Maggie"]	=	1;

		ages["Bart"]	=	11;

		while(!ages.empty())	{

				cout	<<	"Erasing:	"	<<	(*ages.begin()).first	<<	",	"	<<	(*ages.begin()).second	<<	endl;

				ages.erase(ages.begin());

		}

When	run,	the	above	code	displays:

		Erasing:	Bart,	11

		Erasing:	Homer,	38

		Erasing:	Lisa,	8

		Erasing:	Maggie,	1

		Erasing:	Marge,	37

Related	topics:
begin
empty
size

find
Syntax:

		#include	<map>

		iterator	find(const	key_type&	key);

The	find()	function	returns	an	iterator	to	key,	or	an	iterator	to	the	end	of	the	map
if	key	is	not	found.

find()	runs	in	logarithmic	time.

insert
Syntax:

		#include	<map>

		iterator	insert(iterator	i,	const	TYPE&	pair);

		void	insert(input_iterator	start,	input_iterator	end);

		pair<iterator,bool>	insert(const	TYPE&	pair);

The	function	insert()	either:

inserts	pair	after	the	element	at	pos	(where	pos	is	really	just	a	suggestion	as
to	where	pair	should	go,	since	sets	and	maps	are	ordered),	and	returns	an
iterator	to	that	element.
inserts	a	range	of	elements	from	start	to	end.
inserts	pair,	but	only	if	pair	doesn't	already	exist.	The	return	value	is	an
iterator	to	the	element	inserted,	and	a	boolean	describing	whether	an
insertion	took	place.

For	example,	the	following	code	uses	the	insert()	function	to	insert	some	data
into	a	map:

		map<const	char*,	int>	m;

		m.insert(make_pair("test",5));

Related	topics:
Map	operators

key_comp
Syntax:

		#include	<map>

		key_compare	key_comp()	const;

The	function	key_comp()	returns	the	function	that	compares	keys.

key_comp()	runs	in	constant	time.

Related	topics:
value_comp

lower_bound
Syntax:

		#include	<map>

		iterator	lower_bound(const	key_type&	key);

The	lower_bound()	function	returns	an	iterator	to	the	first	element	which	has	a
value	greater	than	or	equal	to	key.

lower_bound()	runs	in	logarithmic	time.

Related	topics:
upper_bound

Map	Constructors	&	Destructors
Syntax:

		#include	<map>

		map();

		map(const	map&	m);

		map(iterator	start,	iterator	end);

		map(iterator	start,	iterator	end,	const	key_compare&	cmp);

		map(const	key_compare&	cmp);

		~map();

The	default	constructor	takes	no	arguments,	creates	a	new	instance	of	that	map,
and	runs	in	constant	time.	The	default	copy	constructor	runs	in	linear	time	and
can	be	used	to	create	a	new	map	that	is	a	copy	of	the	given	map	m.

You	can	also	create	a	map	that	will	contain	a	copy	of	the	elements	between	start
and	end,	or	specify	a	comparison	function	cmp.

The	default	destructor	is	called	when	the	map	should	be	destroyed.

For	example,	the	following	code	creates	a	map	that	associates	a	string	with	an
integer:

		struct	strCmp	{

				bool	operator()(const	char*	s1,	const	char*	s2)	const	{

						return	strcmp(s1,	s2)	<	0;

				}

		};

		...

		map<const	char*,	int,	strCmp>	ages;

		ages["Homer"]	=	38;

		ages["Marge"]	=	37;

		ages["Lisa"]	=	8;

		ages["Maggie"]	=	1;

		ages["Bart"]	=	11;

		cout	<<	"Bart	is	"	<<	ages["Bart"]	<<	"	years	old"	<<	endl;

Related	topics:
Map	Operators

Map	operators
Syntax:

		#include	<map>

		TYPE&	operator[](const	key_type&	key);

		map	operator=(const	map&	c2);

		bool	operator==(const	map&	c1,	const	map&	c2);

		bool	operator!=(const	map&	c1,	const	map&	c2);

		bool	operator<(const	map&	c1,	const	map&	c2);

		bool	operator>(const	map&	c1,	const	map&	c2);

		bool	operator<=(const	map&	c1,	const	map&	c2);

		bool	operator>=(const	map&	c1,	const	map&	c2);

Maps	can	be	compared	and	assigned	with	the	standard	comparison	operators:
==,	!=,	<=,	>=,	<,	>,	and	=.	Individual	elements	of	a	map	can	be	examined	with
the	[]	operator.

Performing	a	comparison	or	assigning	one	map	to	another	takes	linear	time.

Two	maps	are	equal	if:

1.	 Their	size	is	the	same,	and
2.	 Each	member	in	location	i	in	one	map	is	equal	to	the	the	member	in

location	i	in	the	other	map.

Comparisons	among	maps	are	done	lexicographically.

For	example,	the	following	code	defines	a	map	between	strings	and	integers	and
loads	values	into	the	map	using	the	[]	operator:

		struct	strCmp	{

				bool	operator()(const	char*	s1,	const	char*	s2)	const	{

						return	strcmp(s1,	s2)	<	0;

				}

		};

		map<const	char*,	int,	strCmp>	ages;

		ages["Homer"]	=	38;

		ages["Marge"]	=	37;

		ages["Lisa"]	=	8;

		ages["Maggie"]	=	1;

		ages["Bart"]	=	11;

		cout	<<	"Bart	is	"	<<	ages["Bart"]	<<	"	years	old"	<<	endl;

		cout	<<	"In	alphabetical	order:	"	<<	endl;

		for(map<const	char*,	int,	strCmp>::iterator	iter	=	ages.begin();	iter	!=	ages.end();	iter++)	{

				cout	<<	(*iter).first	<<	"	is	"	<<	(*iter).second	<<	"	years	old"	<<	endl;

		}

When	run,	the	above	code	displays	this	output:

		Bart	is	11	years	old

		In	alphabetical	order:

		Bart	is	11	years	old

		Homer	is	38	years	old

		Lisa	is	8	years	old

		Maggie	is	1	years	old

		Marge	is	37	years	old		

Related	topics:
insert
Map	Constructors	&	Destructors

max_size
Syntax:

		#include	<map>

		size_type	max_size()	const;

The	max_size()	function	returns	the	maximum	number	of	elements	that	the	map
can	hold.	The	max_size()	function	should	not	be	confused	with	the	size()	or
(C++	Strings)	capacity()	functions,	which	return	the	number	of	elements
currently	in	the	map	and	the	the	number	of	elements	that	the	map	will	be	able	to
hold	before	more	memory	will	have	to	be	allocated,	respectively.

Related	topics:
size

rbegin
Syntax:

		#include	<map>

		reverse_iterator	rbegin();

		const_reverse_iterator	rbegin()	const;

The	rbegin()	function	returns	a	reverse_iterator	to	the	end	of	the	current	map.

rbegin()	runs	in	constant	time.

Related	topics:
begin
end
rend

rend
Syntax:

		#include	<map>

		reverse_iterator	rend();

		const_reverse_iterator	rend()	const;

The	function	rend()	returns	a	reverse_iterator	to	the	beginning	of	the	current
map.

rend()	runs	in	constant	time.

Related	topics:
begin
end
rbegin

size
Syntax:

		#include	<map>

		size_type	size()	const;

The	size()	function	returns	the	number	of	elements	in	the	current	map.

Related	topics:
empty
max_size

swap
Syntax:

		#include	<map>

		void	swap(const	container&	from);

The	swap()	function	exchanges	the	elements	of	the	current	map	with	those	of
from.	This	function	operates	in	constant	time.

For	example,	the	following	code	uses	the	swap()	function	to	exchange	the	values
of	two	strings:

			string	first("This	comes	first");

			string	second("And	this	is	second");

			first.swap(second);

			cout	<<	first	<<	endl;

			cout	<<	second	<<	endl;										

The	above	code	displays:

			And	this	is	second

			This	comes	first													

Related	topics:
(C++	Lists)	splice

upper_bound
Syntax:

		#include	<map>

		iterator	upper_bound(const	key_type&	key);

The	function	upper_bound()	returns	an	iterator	to	the	first	element	in	the	map
with	a	key	greater	than	key.

Related	topics:
lower_bound

value_comp
Syntax:

		#include	<map>

		value_compare	value_comp()	const;

The	value_comp()	function	returns	the	function	that	compares	values.

value_comp()	runs	in	constant	time.

Related	topics:
key_comp

cppreference.com	>	C++	Maps	>	begin

begin
Syntax:

		#include	<map>

		iterator	begin();

		const_iterator	begin()	const;

The	function	begin()	returns	an	iterator	to	the	first	element	of	the	map.	begin()	should	run	in	
time.

For	example,	the	following	code	uses	begin()	to	initialize	an	iterator	that	is	used	to	traverse	a	list:

			//	Create	a	list	of	characters

			list<char>	charList;

			for(int	i=0;	i	<	10;	i++)	{

					charList.push_front(i	+	65);

			}

			//	Display	the	list

			list<char>::iterator	theIterator;

			for(theIterator	=	charList.begin();	theIterator	!=	charList.end();	theIterator++)	{

					cout	<<	*theIterator;

			}												

Related	topics:
endrbegin
rend

cppreference.com	>	C++	Maps	>	clear

clear
Syntax:

		#include	<map>

		void	clear();

The	function	clear()	deletes	all	of	the	elements	in	the	map.	clear()	runs	in	linear
time.

Related	topics:
(C++	Lists)	erase

cppreference.com	>	C++	Maps	>	count

count
Syntax:

		#include	<map>

		size_type	count(const	key_type&	key);

The	function	count()	returns	the	number	of	occurrences	of	key	in	the	map.

count()	should	run	in	logarithmic	time.

cppreference.com	>	C++	Maps	>	empty

empty
Syntax:

		#include	<map>

		bool	empty()	const;

The	empty()	function	returns	true	if	the	map	has	no	elements,	false	otherwise.

For	example,	the	following	code	uses	empty()	as	the	stopping	condition	on	a	while
display	its	contents	in	order:

		struct	strCmp	{

				bool	operator()(const	char*	s1,	const	char*	s2)	const	{

						return	strcmp(s1,	s2)	<	0;

				}

		};

		...

		map<const	char*,	int,	strCmp>	ages;

		ages["Homer"]	=	38;

		ages["Marge"]	=	37;

		ages["Lisa"]	=	8;

		ages["Maggie"]	=	1;

		ages["Bart"]	=	11;

		while(!ages.empty())	{

				cout	<<	"Erasing:	"	<<	(*ages.begin()).first	<<	",	"	<<	(*ages.begin()).second	<<	endl;

				ages.erase(ages.begin());

		}

When	run,	the	above	code	displays:

		Erasing:	Bart,	11

		Erasing:	Homer,	38

		Erasing:	Lisa,	8

		Erasing:	Maggie,	1

		Erasing:	Marge,	37

Related	topics:
beginerase
size

cppreference.com	>	C++	Maps	>	end

end
Syntax:

		#include	<map>

		iterator	end();

		const_iterator	end()	const;

The	end()	function	returns	an	iterator	just	past	the	end	of	the	map.

Note	that	before	you	can	access	the	last	element	of	the	map	using	an	iterator
that	you	get	from	a	call	to	end(),	you'll	have	to	decrement	the	iterator	first.

For	example,	the	following	code	uses	begin()	and	end()	to	iterate	through	all	of
the	members	of	a	vector:

	vector<int>	v1(5,	789);

	vector<int>::iterator	it;

	for(it	=	v1.begin();	it	!=	v1.end();	it++)	{

			cout	<<	*it	<<	endl;

	}														

The	iterator	is	initialized	with	a	call	to	begin().	After	the	body	of	the	loop	has
been	executed,	the	iterator	is	incremented	and	tested	to	see	if	it	is	equal	to	the
result	of	calling	end().	Since	end()	returns	an	iterator	pointing	to	an	element	just
after	the	last	element	of	the	vector,	the	loop	will	only	stop	once	all	of	the
elements	of	the	vector	have	been	displayed.

end()	runs	in	constant	time.

Related	topics:
beginrbegin
rend

cppreference.com	>	C++	Maps	>	equal_range

equal_range
Syntax:

		#include	<map>

		pair<iterator,	iterator>	equal_range(const	key_type&	key);

The	function	equal_range()	returns	two	iterators	-	one	to	the	first	element	that
contains	key,	another	to	a	point	just	after	the	last	element	that	contains	key.

cppreference.com	>	C++	Maps	>	erase

erase
Syntax:

		#include	<map>

		void	erase(iterator	pos);

		void	erase(iterator	start,	iterator	end);

		size_type	erase(const	key_type&	key);

The	erase	function()	either	erases	the	element	at	pos,	erases	the	elements	between	
elements	that	have	the	value	of	key.

For	example,	the	following	code	uses	erase()	in	a	while	loop	to	incrementally	clear	a	map	and	display	its
contents	in	order:

		struct	strCmp	{

				bool	operator()(const	char*	s1,	const	char*	s2)	const	{

						return	strcmp(s1,	s2)	<	0;

				}

		};

		...

		map<const	char*,	int,	strCmp>	ages;

		ages["Homer"]	=	38;

		ages["Marge"]	=	37;

		ages["Lisa"]	=	8;

		ages["Maggie"]	=	1;

		ages["Bart"]	=	11;

		while(!ages.empty())	{

				cout	<<	"Erasing:	"	<<	(*ages.begin()).first	<<	",	"	<<	(*ages.begin()).second	<<	endl;

				ages.erase(ages.begin());

		}

When	run,	the	above	code	displays:

		Erasing:	Bart,	11

		Erasing:	Homer,	38

		Erasing:	Lisa,	8

		Erasing:	Maggie,	1

		Erasing:	Marge,	37

Related	topics:
beginempty
size

cppreference.com	>	C++	Maps	>	find

find
Syntax:

		#include	<map>

		iterator	find(const	key_type&	key);

The	find()	function	returns	an	iterator	to	key,	or	an	iterator	to	the	end	of	the	map
if	key	is	not	found.

find()	runs	in	logarithmic	time.

cppreference.com	>	C++	Maps	>	insert

insert
Syntax:

		#include	<map>

		iterator	insert(iterator	i,	const	TYPE&	pair);

		void	insert(input_iterator	start,	input_iterator	end);

		pair<iterator,bool>	insert(const	TYPE&	pair);

The	function	insert()	either:

inserts	pair	after	the	element	at	pos	(where	pos	is	really	just	a	suggestion
as	to	where	pair	should	go,	since	sets	and	maps	are	ordered),	and	returns
an	iterator	to	that	element.
inserts	a	range	of	elements	from	start	to	end.
inserts	pair,	but	only	if	pair	doesn't	already	exist.	The	return	value	is	an
iterator	to	the	element	inserted,	and	a	boolean	describing	whether	an
insertion	took	place.

For	example,	the	following	code	uses	the	insert()	function	to	insert	some	data
into	a	map:

		map<const	char*,	int>	m;

		m.insert(make_pair("test",5));

Related	topics:
Map	operators

cppreference.com	>	C++	Maps	>	key_comp

key_comp
Syntax:

		#include	<map>

		key_compare	key_comp()	const;

The	function	key_comp()	returns	the	function	that	compares	keys.

key_comp()	runs	in	constant	time.

Related	topics:
value_comp

cppreference.com	>	C++	Maps	>	lower_bound

lower_bound
Syntax:

		#include	<map>

		iterator	lower_bound(const	key_type&	key);

The	lower_bound()	function	returns	an	iterator	to	the	first	element	which	has	a
value	greater	than	or	equal	to	key.

lower_bound()	runs	in	logarithmic	time.

Related	topics:
upper_bound

cppreference.com	>	C++	Maps	>	Map	Constructors	&	Destructors

Map	Constructors	&	Destructors
Syntax:

		#include	<map>

		map();

		map(const	map&	m);

		map(iterator	start,	iterator	end);

		map(iterator	start,	iterator	end,	const	key_compare&	cmp);

		map(const	key_compare&	cmp);

		~map();

The	default	constructor	takes	no	arguments,	creates	a	new	instance	of	that	map,
and	runs	in	constant	time.	The	default	copy	constructor	runs	in	linear	time	and
can	be	used	to	create	a	new	map	that	is	a	copy	of	the	given	map	m.

You	can	also	create	a	map	that	will	contain	a	copy	of	the	elements	between	start
and	end,	or	specify	a	comparison	function	cmp.

The	default	destructor	is	called	when	the	map	should	be	destroyed.

For	example,	the	following	code	creates	a	map	that	associates	a	string	with	an
integer:

		struct	strCmp	{

				bool	operator()(const	char*	s1,	const	char*	s2)	const	{

						return	strcmp(s1,	s2)	<	0;

				}

		};

		...

		map<const	char*,	int,	strCmp>	ages;

		ages["Homer"]	=	38;

		ages["Marge"]	=	37;

		ages["Lisa"]	=	8;

		ages["Maggie"]	=	1;

		ages["Bart"]	=	11;

		cout	<<	"Bart	is	"	<<	ages["Bart"]	<<	"	years	old"	<<	endl;

Related	topics:
Map	Operators

cppreference.com	>	C++	Maps	>	Map	operators

Map	operators
Syntax:

		#include	<map>

		TYPE&	operator[](const	key_type&	key);

		map	operator=(const	map&	c2);

		bool	operator==(const	map&	c1,	const	map&	c2);

		bool	operator!=(const	map&	c1,	const	map&	c2);

		bool	operator<(const	map&	c1,	const	map&	c2);

		bool	operator>(const	map&	c1,	const	map&	c2);

		bool	operator<=(const	map&	c1,	const	map&	c2);

		bool	operator>=(const	map&	c1,	const	map&	c2);

Maps	can	be	compared	and	assigned	with	the	standard	comparison	operators:	==,	!=,	<=,	>=,	<,	>,	and	=.	Individual
elements	of	a	map	can	be	examined	with	the	[]	operator.

Performing	a	comparison	or	assigning	one	map	to	another	takes	linear	time.

Two	maps	are	equal	if:

1.	 Their	size	is	the	same,	and
2.	 Each	member	in	location	i	in	one	map	is	equal	to	the	the	member	in	location	

Comparisons	among	maps	are	done	lexicographically.

For	example,	the	following	code	defines	a	map	between	strings	and	integers	and	loads	values	into	the	map	using	the
[]	operator:

		struct	strCmp	{

				bool	operator()(const	char*	s1,	const	char*	s2)	const	{

						return	strcmp(s1,	s2)	<	0;

				}

		};

		map<const	char*,	int,	strCmp>	ages;

		ages["Homer"]	=	38;

		ages["Marge"]	=	37;

		ages["Lisa"]	=	8;

		ages["Maggie"]	=	1;

		ages["Bart"]	=	11;

		cout	<<	"Bart	is	"	<<	ages["Bart"]	<<	"	years	old"	<<	endl;

		cout	<<	"In	alphabetical	order:	"	<<	endl;

		for(map<const	char*,	int,	strCmp>::iterator	iter	=	ages.begin();	iter	!=	ages.end();	iter++)	{

				cout	<<	(*iter).first	<<	"	is	"	<<	(*iter).second	<<	"	years	old"	<<	endl;

		}

When	run,	the	above	code	displays	this	output:

		Bart	is	11	years	old

		In	alphabetical	order:

		Bart	is	11	years	old

		Homer	is	38	years	old

		Lisa	is	8	years	old

		Maggie	is	1	years	old

		Marge	is	37	years	old		

Related	topics:
insertMap	Constructors	&	Destructors

cppreference.com	>	C++	Maps	>	max_size

max_size
Syntax:

		#include	<map>

		size_type	max_size()	const;

The	max_size()	function	returns	the	maximum	number	of	elements	that	the	map
can	hold.	The	max_size()	function	should	not	be	confused	with	the	size()	or
(C++	Strings)	capacity()	functions,	which	return	the	number	of	elements
currently	in	the	map	and	the	the	number	of	elements	that	the	map	will	be	able	to
hold	before	more	memory	will	have	to	be	allocated,	respectively.

Related	topics:
size

cppreference.com	>	C++	Maps	>	rbegin

rbegin
Syntax:

		#include	<map>

		reverse_iterator	rbegin();

		const_reverse_iterator	rbegin()	const;

The	rbegin()	function	returns	a	reverse_iterator	to	the	end	of	the	current	map.

rbegin()	runs	in	constant	time.

Related	topics:
beginend
rend

cppreference.com	>	C++	Maps	>	rend

rend
Syntax:

		#include	<map>

		reverse_iterator	rend();

		const_reverse_iterator	rend()	const;

The	function	rend()	returns	a	reverse_iterator	to	the	beginning	of	the	current
map.

rend()	runs	in	constant	time.

Related	topics:
beginend
rbegin

cppreference.com	>	C++	Maps	>	size

size
Syntax:

		#include	<map>

		size_type	size()	const;

The	size()	function	returns	the	number	of	elements	in	the	current	map.

Related	topics:
emptymax_size

cppreference.com	>	C++	Maps	>	swap

swap
Syntax:

		#include	<map>

		void	swap(const	container&	from);

The	swap()	function	exchanges	the	elements	of	the	current	map	with	those	of
from.	This	function	operates	in	constant	time.

For	example,	the	following	code	uses	the	swap()	function	to	exchange	the
values	of	two	strings:

			string	first("This	comes	first");

			string	second("And	this	is	second");

			first.swap(second);

			cout	<<	first	<<	endl;

			cout	<<	second	<<	endl;										

The	above	code	displays:

			And	this	is	second

			This	comes	first													

Related	topics:
(C++	Lists)	splice

cppreference.com	>	C++	Maps	>	upper_bound

upper_bound
Syntax:

		#include	<map>

		iterator	upper_bound(const	key_type&	key);

The	function	upper_bound()	returns	an	iterator	to	the	first	element	in	the	map
with	a	key	greater	than	key.

Related	topics:
lower_bound

cppreference.com	>	C++	Maps	>	value_comp

value_comp
Syntax:

		#include	<map>

		value_compare	value_comp()	const;

The	value_comp()	function	returns	the	function	that	compares	values.

value_comp()	runs	in	constant	time.

Related	topics:
key_comp

cppreference.com	>	C++	Multimaps

begin
Syntax:

		#include	<map>

		iterator	begin();

		const_iterator	begin()	const;

The	function	begin()	returns	an	iterator	to	the	first	element	of	the	multimap.	begin()	should	run	in
constant	time.

For	example,	the	following	code	uses	begin()	to	initialize	an	iterator	that	is	used	to	traverse	a	list:

			//	Create	a	list	of	characters

			list<char>	charList;

			for(int	i=0;	i	<	10;	i++)	{

					charList.push_front(i	+	65);

			}

			//	Display	the	list

			list<char>::iterator	theIterator;

			for(theIterator	=	charList.begin();	theIterator	!=	charList.end();	theIterator++)	{

					cout	<<	*theIterator;

			}												

Related	topics:
endrbegin
rend

clear
Syntax:

		#include	<map>

		void	clear();

The	function	clear()	deletes	all	of	the	elements	in	the	multimap.	clear()	runs	in

linear	time.

Related	topics:
(C++	Lists)	erase

Container	constructors	&
destructors

Syntax:

		#include	<map>

		container();

		container(const	container&	c);

		~container();

Every	multimap	has	a	default	constructor,	copy	constructor,	and	destructor.

The	default	constructor	takes	no	arguments,	creates	a	new	instance	of	that
multimap,	and	runs	in	constant	time.	The	default	copy	constructor	runs	in	linear
time	and	can	be	used	to	create	a	new	multimap	that	is	a	copy	of	the	given
multimap	c.

The	default	destructor	is	called	when	the	multimap	should	be	destroyed.

For	example,	the	following	code	creates	a	pointer	to	a	vector	of	integers	and	then
uses	the	default	multimap	constructor	to	allocate	a	memory	for	a	new	vector:

	vector<int>*	v;

	v	=	new	vector<int>();											

Related	topics:
(C++	Strings)	resize

Container	operators
Syntax:

		#include	<map>

		container	operator=(const	container&	c2);

		bool	operator==(const	container&	c1,	const	container&	c2);

		bool	operator!=(const	container&	c1,	const	container&	c2);

		bool	operator<(const	container&	c1,	const	container&	c2);

		bool	operator>(const	container&	c1,	const	container&	c2);

		bool	operator<=(const	container&	c1,	const	container&	c2);

		bool	operator>=(const	container&	c1,	const	container&	c2);

All	of	the	C++	containers	can	be	compared	and	assigned	with	the	standard
comparison	operators:	==,	!=,	<=,	>=,	<,	>,	and	=.	Performing	a	comparison	or
assigning	one	multimap	to	another	takes	linear	time.

Two	multimaps	are	equal	if:

1.	 Their	size	is	the	same,	and
2.	 Each	member	in	location	i	in	one	multimap	is	equal	to	the	the	member	in

location	i	in	the	other	multimap.

Comparisons	among	multimaps	are	done	lexicographically.

Related	topics:
(C++	Strings)	String	operators
(C++	Strings)	at
(C++	Lists)	merge
(C++	Lists)	unique

count
Syntax:

		#include	<map>

		size_type	count(const	key_type&	key);

The	function	count()	returns	the	number	of	occurrences	of	key	in	the	multimap.

count()	should	run	in	logarithmic	time.

empty
Syntax:

		#include	<map>

		bool	empty()	const;

The	empty()	function	returns	true	if	the	multimap	has	no	elements,	false
otherwise.

For	example,	the	following	code	uses	empty()	as	the	stopping	condition	on	a
(C/C++	Keywords)	while	loop	to	clear	a	multimap	and	display	its	contents	in
reverse	order:

	vector<int>	v;

	for(int	i	=	0;	i	<	5;	i++)	{

			v.push_back(i);

	}

	while(!v.empty())	{

			cout	<<	v.back()	<<	endl;

			v.pop_back();

	}														

Related	topics:
size

end
Syntax:

		#include	<map>

		iterator	end();

		const_iterator	end()	const;

The	end()	function	returns	an	iterator	just	past	the	end	of	the	multimap.

Note	that	before	you	can	access	the	last	element	of	the	multimap	using	an
iterator	that	you	get	from	a	call	to	end(),	you'll	have	to	decrement	the	iterator

first.

For	example,	the	following	code	uses	begin()	and	end()	to	iterate	through	all	of
the	members	of	a	vector:

	vector<int>	v1(5,	789);

	vector<int>::iterator	it;

	for(it	=	v1.begin();	it	!=	v1.end();	it++)	{

			cout	<<	*it	<<	endl;

	}														

The	iterator	is	initialized	with	a	call	to	begin().	After	the	body	of	the	loop	has
been	executed,	the	iterator	is	incremented	and	tested	to	see	if	it	is	equal	to	the
result	of	calling	end().	Since	end()	returns	an	iterator	pointing	to	an	element	just
after	the	last	element	of	the	vector,	the	loop	will	only	stop	once	all	of	the
elements	of	the	vector	have	been	displayed.

end()	runs	in	constant	time.

Related	topics:
begin
rbegin
rend

equal_range
Syntax:

		#include	<map>

		pair<iterator,	iterator>	equal_range(const	key_type&	key);

The	function	equal_range()	returns	two	iterators	-	one	to	the	first	element	that
contains	key,	another	to	a	point	just	after	the	last	element	that	contains	key.

erase

Syntax:

		#include	<map>

		void	erase(iterator	pos);

		void	erase(iterator	start,	iterator	end);

		size_type	erase(const	key_type&	key);

The	erase	function()	either	erases	the	element	at	pos,	erases	the	elements
between	start	and	end,	or	erases	all	elements	that	have	the	value	of	key.

find
Syntax:

		#include	<map>

		iterator	find(const	key_type&	key);

The	find()	function	returns	an	iterator	to	key,	or	an	iterator	to	the	end	of	the
multimap	if	key	is	not	found.

find()	runs	in	logarithmic	time.

insert
Syntax:

		#include	<map>

		iterator	insert(iterator	pos,	const	TYPE&	val);

		iterator	insert(const	TYPE&	val);

		void	insert(input_iterator	start,	input_iterator	end);

The	function	insert()	either:

inserts	val	after	the	element	at	pos	(where	pos	is	really	just	a	suggestion	as
to	where	val	should	go,	since	multisets	and	multimaps	are	ordered),	and
returns	an	iterator	to	that	element.

inserts	val	into	the	multimap,	returning	an	iterator	to	the	element	inserted.
inserts	a	range	of	elements	from	start	to	end.

key_comp
Syntax:

		#include	<map>

		key_compare	key_comp()	const;

The	function	key_comp()	returns	the	function	that	compares	keys.

key_comp()	runs	in	constant	time.

Related	topics:
value_comp

lower_bound
Syntax:

		#include	<map>

		iterator	lower_bound(const	key_type&	key);

The	lower_bound()	function	returns	an	iterator	to	the	first	element	which	has	a
value	greater	than	or	equal	to	key.

lower_bound()	runs	in	logarithmic	time.

Related	topics:
upper_bound

max_size

Syntax:

		#include	<map>

		size_type	max_size()	const;

The	max_size()	function	returns	the	maximum	number	of	elements	that	the
multimap	can	hold.	The	max_size()	function	should	not	be	confused	with	the
size()	or	(C++	Strings)	capacity()	functions,	which	return	the	number	of
elements	currently	in	the	multimap	and	the	the	number	of	elements	that	the
multimap	will	be	able	to	hold	before	more	memory	will	have	to	be	allocated,
respectively.

Related	topics:
size

rbegin
Syntax:

		#include	<map>

		reverse_iterator	rbegin();

		const_reverse_iterator	rbegin()	const;

The	rbegin()	function	returns	a	reverse_iterator	to	the	end	of	the	current
multimap.

rbegin()	runs	in	constant	time.

Related	topics:
begin
end
rend

rend
Syntax:

		#include	<map>

		reverse_iterator	rend();

		const_reverse_iterator	rend()	const;

The	function	rend()	returns	a	reverse_iterator	to	the	beginning	of	the	current
multimap.

rend()	runs	in	constant	time.

Related	topics:
begin
end
rbegin

size
Syntax:

		#include	<map>

		size_type	size()	const;

The	size()	function	returns	the	number	of	elements	in	the	current	multimap.

Related	topics:
(C++	Strings)	capacity
empty
(C++	Strings)	length
max_size
(C++	Strings)	resize

swap
Syntax:

		#include	<map>

		void	swap(const	container&	from);

The	swap()	function	exchanges	the	elements	of	the	current	multimap	with	those
of	from.	This	function	operates	in	constant	time.

For	example,	the	following	code	uses	the	swap()	function	to	exchange	the	values
of	two	strings:

			string	first("This	comes	first");

			string	second("And	this	is	second");

			first.swap(second);

			cout	<<	first	<<	endl;

			cout	<<	second	<<	endl;										

The	above	code	displays:

			And	this	is	second

			This	comes	first													

Related	topics:
(C++	Lists)	splice

upper_bound
Syntax:

		#include	<map>

		iterator	upper_bound(const	key_type&	key);

The	function	upper_bound()	returns	an	iterator	to	the	first	element	in	the
multimap	with	a	key	greater	than	key.

Related	topics:
lower_bound

value_comp
Syntax:

		#include	<map>

		value_compare	value_comp()	const;

The	value_comp()	function	returns	the	function	that	compares	values.

value_comp()	runs	in	constant	time.

Related	topics:
key_comp

cppreference.com	>	C++	Multimaps	>	begin

begin
Syntax:

		#include	<map>

		iterator	begin();

		const_iterator	begin()	const;

The	function	begin()	returns	an	iterator	to	the	first	element	of	the	multimap.	begin()	should	run	in
constant	time.

For	example,	the	following	code	uses	begin()	to	initialize	an	iterator	that	is	used	to	traverse	a	list:

			//	Create	a	list	of	characters

			list<char>	charList;

			for(int	i=0;	i	<	10;	i++)	{

					charList.push_front(i	+	65);

			}

			//	Display	the	list

			list<char>::iterator	theIterator;

			for(theIterator	=	charList.begin();	theIterator	!=	charList.end();	theIterator++)	{

					cout	<<	*theIterator;

			}												

Related	topics:
endrbegin
rend

cppreference.com	>	C++	Multimaps	>	clear

clear
Syntax:

		#include	<map>

		void	clear();

The	function	clear()	deletes	all	of	the	elements	in	the	multimap.	clear()	runs	in
linear	time.

Related	topics:
(C++	Lists)	erase

cppreference.com	>	C++	Multimaps	>	Container	constructors	&	destructors

Container	constructors	&
destructors

Syntax:

		#include	<map>

		container();

		container(const	container&	c);

		~container();

Every	multimap	has	a	default	constructor,	copy	constructor,	and	destructor.

The	default	constructor	takes	no	arguments,	creates	a	new	instance	of	that
multimap,	and	runs	in	constant	time.	The	default	copy	constructor	runs	in	linear
time	and	can	be	used	to	create	a	new	multimap	that	is	a	copy	of	the	given
multimap	c.

The	default	destructor	is	called	when	the	multimap	should	be	destroyed.

For	example,	the	following	code	creates	a	pointer	to	a	vector	of	integers	and
then	uses	the	default	multimap	constructor	to	allocate	a	memory	for	a	new
vector:

	vector<int>*	v;

	v	=	new	vector<int>();											

Related	topics:
(C++	Strings)	resize

cppreference.com	>	C++	Multimaps	>	Container	operators

Container	operators
Syntax:

		#include	<map>

		container	operator=(const	container&	c2);

		bool	operator==(const	container&	c1,	const	container&	c2);

		bool	operator!=(const	container&	c1,	const	container&	c2);

		bool	operator<(const	container&	c1,	const	container&	c2);

		bool	operator>(const	container&	c1,	const	container&	c2);

		bool	operator<=(const	container&	c1,	const	container&	c2);

		bool	operator>=(const	container&	c1,	const	container&	c2);

All	of	the	C++	containers	can	be	compared	and	assigned	with	the	standard
comparison	operators:	==,	!=,	<=,	>=,	<,	>,	and	=.	Performing	a	comparison	or
assigning	one	multimap	to	another	takes	linear	time.

Two	multimaps	are	equal	if:

1.	 Their	size	is	the	same,	and
2.	 Each	member	in	location	i	in	one	multimap	is	equal	to	the	the	member	in

location	i	in	the	other	multimap.

Comparisons	among	multimaps	are	done	lexicographically.

Related	topics:
(C++	Strings)	String	operators
(C++	Strings)	at
(C++	Lists)	merge
(C++	Lists)	unique

cppreference.com	>	C++	Multimaps	>	count

count
Syntax:

		#include	<map>

		size_type	count(const	key_type&	key);

The	function	count()	returns	the	number	of	occurrences	of	key	in	the	multimap.

count()	should	run	in	logarithmic	time.

cppreference.com	>	C++	Multimaps	>	empty

empty
Syntax:

		#include	<map>

		bool	empty()	const;

The	empty()	function	returns	true	if	the	multimap	has	no	elements,	false
otherwise.

For	example,	the	following	code	uses	empty()	as	the	stopping	condition	on	a
(C/C++	Keywords)	while	loop	to	clear	a	multimap	and	display	its	contents	in
reverse	order:

	vector<int>	v;

	for(int	i	=	0;	i	<	5;	i++)	{

			v.push_back(i);

	}

	while(!v.empty())	{

			cout	<<	v.back()	<<	endl;

			v.pop_back();

	}														

Related	topics:
size

cppreference.com	>	C++	Multimaps	>	end

end
Syntax:

		#include	<map>

		iterator	end();

		const_iterator	end()	const;

The	end()	function	returns	an	iterator	just	past	the	end	of	the	multimap.

Note	that	before	you	can	access	the	last	element	of	the	multimap	using	an
iterator	that	you	get	from	a	call	to	end(),	you'll	have	to	decrement	the	iterator
first.

For	example,	the	following	code	uses	begin()	and	end()	to	iterate	through	all	of
the	members	of	a	vector:

	vector<int>	v1(5,	789);

	vector<int>::iterator	it;

	for(it	=	v1.begin();	it	!=	v1.end();	it++)	{

			cout	<<	*it	<<	endl;

	}														

The	iterator	is	initialized	with	a	call	to	begin().	After	the	body	of	the	loop	has
been	executed,	the	iterator	is	incremented	and	tested	to	see	if	it	is	equal	to	the
result	of	calling	end().	Since	end()	returns	an	iterator	pointing	to	an	element	just
after	the	last	element	of	the	vector,	the	loop	will	only	stop	once	all	of	the
elements	of	the	vector	have	been	displayed.

end()	runs	in	constant	time.

Related	topics:
beginrbegin
rend

cppreference.com	>	C++	Multimaps	>	equal_range

equal_range
Syntax:

		#include	<map>

		pair<iterator,	iterator>	equal_range(const	key_type&	key);

The	function	equal_range()	returns	two	iterators	-	one	to	the	first	element	that
contains	key,	another	to	a	point	just	after	the	last	element	that	contains	key.

cppreference.com	>	C++	Multimaps	>	erase

erase
Syntax:

		#include	<map>

		void	erase(iterator	pos);

		void	erase(iterator	start,	iterator	end);

		size_type	erase(const	key_type&	key);

The	erase	function()	either	erases	the	element	at	pos,	erases	the	elements
between	start	and	end,	or	erases	all	elements	that	have	the	value	of	key.

cppreference.com	>	C++	Multimaps	>	find

find
Syntax:

		#include	<map>

		iterator	find(const	key_type&	key);

The	find()	function	returns	an	iterator	to	key,	or	an	iterator	to	the	end	of	the
multimap	if	key	is	not	found.

find()	runs	in	logarithmic	time.

cppreference.com	>	C++	Multimaps	>	insert

insert
Syntax:

		#include	<map>

		iterator	insert(iterator	pos,	const	TYPE&	val);

		iterator	insert(const	TYPE&	val);

		void	insert(input_iterator	start,	input_iterator	end);

The	function	insert()	either:

inserts	val	after	the	element	at	pos	(where	pos	is	really	just	a	suggestion	as
to	where	val	should	go,	since	multisets	and	multimaps	are	ordered),	and
returns	an	iterator	to	that	element.
inserts	val	into	the	multimap,	returning	an	iterator	to	the	element	inserted.
inserts	a	range	of	elements	from	start	to	end.

cppreference.com	>	C++	Multimaps	>	key_comp

key_comp
Syntax:

		#include	<map>

		key_compare	key_comp()	const;

The	function	key_comp()	returns	the	function	that	compares	keys.

key_comp()	runs	in	constant	time.

Related	topics:
value_comp

cppreference.com	>	C++	Multimaps	>	lower_bound

lower_bound
Syntax:

		#include	<map>

		iterator	lower_bound(const	key_type&	key);

The	lower_bound()	function	returns	an	iterator	to	the	first	element	which	has	a
value	greater	than	or	equal	to	key.

lower_bound()	runs	in	logarithmic	time.

Related	topics:
upper_bound

cppreference.com	>	C++	Multimaps	>	max_size

max_size
Syntax:

		#include	<map>

		size_type	max_size()	const;

The	max_size()	function	returns	the	maximum	number	of	elements	that	the
multimap	can	hold.	The	max_size()	function	should	not	be	confused	with	the
size()	or	(C++	Strings)	capacity()	functions,	which	return	the	number	of
elements	currently	in	the	multimap	and	the	the	number	of	elements	that	the
multimap	will	be	able	to	hold	before	more	memory	will	have	to	be	allocated,
respectively.

Related	topics:
size

cppreference.com	>	C++	Multimaps	>	rbegin

rbegin
Syntax:

		#include	<map>

		reverse_iterator	rbegin();

		const_reverse_iterator	rbegin()	const;

The	rbegin()	function	returns	a	reverse_iterator	to	the	end	of	the	current
multimap.

rbegin()	runs	in	constant	time.

Related	topics:
beginend
rend

cppreference.com	>	C++	Multimaps	>	rend

rend
Syntax:

		#include	<map>

		reverse_iterator	rend();

		const_reverse_iterator	rend()	const;

The	function	rend()	returns	a	reverse_iterator	to	the	beginning	of	the	current
multimap.

rend()	runs	in	constant	time.

Related	topics:
beginend
rbegin

cppreference.com	>	C++	Multimaps	>	size

size
Syntax:

		#include	<map>

		size_type	size()	const;

The	size()	function	returns	the	number	of	elements	in	the	current	multimap.

Related	topics:
(C++	Strings)	capacity
empty
(C++	Strings)	length
max_size
(C++	Strings)	resize

cppreference.com	>	C++	Multimaps	>	swap

swap
Syntax:

		#include	<map>

		void	swap(const	container&	from);

The	swap()	function	exchanges	the	elements	of	the	current	multimap	with	those
of	from.	This	function	operates	in	constant	time.

For	example,	the	following	code	uses	the	swap()	function	to	exchange	the
values	of	two	strings:

			string	first("This	comes	first");

			string	second("And	this	is	second");

			first.swap(second);

			cout	<<	first	<<	endl;

			cout	<<	second	<<	endl;										

The	above	code	displays:

			And	this	is	second

			This	comes	first													

Related	topics:
(C++	Lists)	splice

cppreference.com	>	C++	Multimaps	>	upper_bound

upper_bound
Syntax:

		#include	<map>

		iterator	upper_bound(const	key_type&	key);

The	function	upper_bound()	returns	an	iterator	to	the	first	element	in	the
multimap	with	a	key	greater	than	key.

Related	topics:
lower_bound

cppreference.com	>	C++	Multimaps	>	value_comp

value_comp
Syntax:

		#include	<map>

		value_compare	value_comp()	const;

The	value_comp()	function	returns	the	function	that	compares	values.

value_comp()	runs	in	constant	time.

Related	topics:
key_comp

cppreference.com	>	C++	Bitsets

any
Syntax:

		#include	<bitset>

		bool	any();

The	any()	function	returns	true	if	any	bit	of	the	bitset	is	1,	otherwise,	it	returns
false.

Related	topics:
countnone

Bitset	Operators
Syntax:

		#include	<bitset>

		!=,	==,	&=,	^=,	|=,	~,	<<=,	>>=,	[]

These	operators	all	work	with	bitsets.	They	can	be	described	as	follows:

!=	returns	true	if	the	two	bitsets	are	not	equal.
==	returns	true	if	the	two	bitsets	are	equal.
&=	performs	the	AND	operation	on	the	two	bitsets.
^=	performs	the	XOR	operation	on	the	two	bitsets.
|=	performs	the	OR	operation	on	the	two	bitsets.
~	reverses	the	bitset	(same	as	calling	flip())
<<=	shifts	the	bitset	to	the	left
>>=	shifts	the	bitset	to	the	right
[x]	returns	a	reference	to	the	xth	bit	in	the	bitset.

For	example,	the	following	code	creates	a	bitset	and	shifts	it	to	the	left	4	places:

	//	create	a	bitset	out	of	a	number

	bitset<8>	bs2((long)	131);

	cout	<<	"bs2	is	"	<<	bs2	<<	endl;

	//	shift	the	bitset	to	the	left	by	4	digits

	bs2	<<=	4;

	cout	<<	"now	bs2	is	"	<<	bs2	<<	endl;														

When	the	above	code	is	run,	it	displays:

	bs2	is	10000011

	now	bs2	is	00110000												

Bitset	Constructors
Syntax:

		#include	<bitset>

		bitset();

		bitset(unsigned	long	val);

Bitsets	can	either	be	constructed	with	no	arguments	or	with	an	unsigned	long
number	val	that	will	be	converted	into	binary	and	inserted	into	the	bitset.	When
creating	bitsets,	the	number	given	in	the	place	of	the	template	determines	how
long	the	bitset	is.

For	example,	the	following	code	creates	two	bitsets	and	displays	them:

	//	create	a	bitset	that	is	8	bits	long

	bitset<8>	bs;

	//	display	that	bitset

	for(int	i	=	(int)	bs.size()-1;	i	>=	0;	i--)	{

			cout	<<	bs[i]	<<	"	";

	}

	cout	<<	endl;

	//	create	a	bitset	out	of	a	number

	bitset<8>	bs2((long)	131);

	//	display	that	bitset,	too

	for(int	i	=	(int)	bs2.size()-1;	i	>=	0;	i--)	{

			cout	<<	bs2[i]	<<	"	";

	}

	cout	<<	endl;												

count
Syntax:

		#include	<bitset>

		size_type	count();

The	function	count()	returns	the	number	of	bits	that	are	set	to	1	in	the	bitset.

Related	topics:
any

flip
Syntax:

		#include	<bitset>

		bitset<N>&	flip();

		bitset<N>&	flip(size_t	pos);

The	flip()	function	inverts	all	of	the	bits	in	the	bitset,	and	returns	the	bitset.	If	pos
is	specified,	only	the	bit	at	position	pos	is	flipped.

none
Syntax:

		#include	<bitset>

		bool	none();

The	none()	function	only	returns	true	if	none	of	the	bits	in	the	bitset	are	set	to	1.

Related	topics:

any

reset
Syntax:

		#include	<bitset>

		bitset<N>&	reset();

		bitset<N>&	reset(size_t	pos);

The	reset()	fucntion	clears	all	of	the	bits	in	the	bitset,	and	returns	the	bitset.	If
pos	is	specified,	then	only	the	bit	at	position	pos	is	cleared.

set
Syntax:

		#include	<bitset>

		bitset<N>&	set();

		bitset<N>&	set(size_t	pos,	int	val=1);

The	set()	fucntion	sets	all	of	the	bits	in	the	bitset,	and	returns	the	bitset.	If	pos	is
specified,	then	only	the	bit	at	position	pos	is	set.

size
Syntax:

		#include	<bitset>

		size_t	size();

The	size()	function	returns	the	number	of	bits	that	the	bitset	can	hold.

test
Syntax:

		#include	<bitset>

		bool	test(size_t	pos);

The	function	test()	returns	the	value	of	the	bit	at	position	pos.

to_string
Syntax:

		#include	<bitset>

		string	to_string();

The	to_string()	function	returns	a	string	representation	of	the	bitset.

Related	topics:
to_ulong

to_ulong
Syntax:

		#include	<bitset>

		unsigned	long	to_ulong();

The	function	to_ulong()	returns	the	bitset,	converted	into	an	unsigned	long
integer.

Related	topics:
to_string

cppreference.com	>	C++	Bitsets	>	any

any
Syntax:

		#include	<bitset>

		bool	any();

The	any()	function	returns	true	if	any	bit	of	the	bitset	is	1,	otherwise,	it	returns
false.

Related	topics:
countnone

cppreference.com	>	C++	Bitsets	>	Bitset	Operators

Bitset	Operators
Syntax:

		#include	<bitset>

		!=,	==,	&=,	^=,	|=,	~,	<<=,	>>=,	[]

These	operators	all	work	with	bitsets.	They	can	be	described	as	follows:

!=	returns	true	if	the	two	bitsets	are	not	equal.
==	returns	true	if	the	two	bitsets	are	equal.
&=	performs	the	AND	operation	on	the	two	bitsets.
^=	performs	the	XOR	operation	on	the	two	bitsets.
|=	performs	the	OR	operation	on	the	two	bitsets.
~	reverses	the	bitset	(same	as	calling	flip())
<<=	shifts	the	bitset	to	the	left
>>=	shifts	the	bitset	to	the	right
[x]	returns	a	reference	to	the	xth	bit	in	the	bitset.

For	example,	the	following	code	creates	a	bitset	and	shifts	it	to	the	left	4	places:

	//	create	a	bitset	out	of	a	number

	bitset<8>	bs2((long)	131);

	cout	<<	"bs2	is	"	<<	bs2	<<	endl;

	//	shift	the	bitset	to	the	left	by	4	digits

	bs2	<<=	4;

	cout	<<	"now	bs2	is	"	<<	bs2	<<	endl;														

When	the	above	code	is	run,	it	displays:

	bs2	is	10000011

	now	bs2	is	00110000												

cppreference.com	>	C++	Bitsets	>	Bitset	Constructors

Bitset	Constructors
Syntax:

		#include	<bitset>

		bitset();

		bitset(unsigned	long	val);

Bitsets	can	either	be	constructed	with	no	arguments	or	with	an	unsigned	long
number	val	that	will	be	converted	into	binary	and	inserted	into	the	bitset.	When
creating	bitsets,	the	number	given	in	the	place	of	the	template	determines	how
long	the	bitset	is.

For	example,	the	following	code	creates	two	bitsets	and	displays	them:

	//	create	a	bitset	that	is	8	bits	long

	bitset<8>	bs;

	//	display	that	bitset

	for(int	i	=	(int)	bs.size()-1;	i	>=	0;	i--)	{

			cout	<<	bs[i]	<<	"	";

	}

	cout	<<	endl;

	//	create	a	bitset	out	of	a	number

	bitset<8>	bs2((long)	131);

	//	display	that	bitset,	too

	for(int	i	=	(int)	bs2.size()-1;	i	>=	0;	i--)	{

			cout	<<	bs2[i]	<<	"	";

	}

	cout	<<	endl;												

cppreference.com	>	C++	Bitsets	>	count

count
Syntax:

		#include	<bitset>

		size_type	count();

The	function	count()	returns	the	number	of	bits	that	are	set	to	1	in	the	bitset.

Related	topics:
any

cppreference.com	>	C++	Bitsets	>	flip

flip
Syntax:

		#include	<bitset>

		bitset<N>&	flip();

		bitset<N>&	flip(size_t	pos);

The	flip()	function	inverts	all	of	the	bits	in	the	bitset,	and	returns	the	bitset.	If
pos	is	specified,	only	the	bit	at	position	pos	is	flipped.

cppreference.com	>	C++	Bitsets	>	none

none
Syntax:

		#include	<bitset>

		bool	none();

The	none()	function	only	returns	true	if	none	of	the	bits	in	the	bitset	are	set	to	1.

Related	topics:
any

cppreference.com	>	C++	Bitsets	>	reset

reset
Syntax:

		#include	<bitset>

		bitset<N>&	reset();

		bitset<N>&	reset(size_t	pos);

The	reset()	fucntion	clears	all	of	the	bits	in	the	bitset,	and	returns	the	bitset.	If
pos	is	specified,	then	only	the	bit	at	position	pos	is	cleared.

cppreference.com	>	C++	Bitsets	>	set

set
Syntax:

		#include	<bitset>

		bitset<N>&	set();

		bitset<N>&	set(size_t	pos,	int	val=1);

The	set()	fucntion	sets	all	of	the	bits	in	the	bitset,	and	returns	the	bitset.	If	pos	is
specified,	then	only	the	bit	at	position	pos	is	set.

cppreference.com	>	C++	Bitsets	>	size

size
Syntax:

		#include	<bitset>

		size_t	size();

The	size()	function	returns	the	number	of	bits	that	the	bitset	can	hold.

cppreference.com	>	C++	Bitsets	>	test

test
Syntax:

		#include	<bitset>

		bool	test(size_t	pos);

The	function	test()	returns	the	value	of	the	bit	at	position	pos.

cppreference.com	>	C++	Bitsets	>	to_string

to_string
Syntax:

		#include	<bitset>

		string	to_string();

The	to_string()	function	returns	a	string	representation	of	the	bitset.

Related	topics:
to_ulong

cppreference.com	>	C++	Bitsets	>	to_ulong

to_ulong
Syntax:

		#include	<bitset>

		unsigned	long	to_ulong();

The	function	to_ulong()	returns	the	bitset,	converted	into	an	unsigned	long
integer.

Related	topics:
to_string

cppreference.com	>	C++	Iterators

C++	Iterators

Iterators	are	used	to	access	members	of	the	container	classes,	and	can	be	used	in
a	similar	manner	to	pointers.	For	example,	one	might	use	an	iterator	to	step
through	the	elements	of	a	vector.	There	are	several	different	types	of	iterators:

Iterator Description

input_iterator Read	values	with	forward	movement.	These	can	be
incremented,	compared,	and	dereferenced.

output_iterator Write	values	with	forward	movement.	These	can	be
incremented	and	dereferenced.

forward_iterator
Read	or	write	values	with	forward	movement.	These
combine	the	functionality	of	input	and	output	iterators
with	the	ability	to	store	the	iterators	value.

bidirectional_iterator
Read	and	write	values	with	forward	and	backward
movement.	These	are	like	the	forward	iterators,	but	you
can	increment	and	decrement	them.

random_iterator

Read	and	write	values	with	random	access.	These	are	the
most	powerful	iterators,	combining	the	functionality	of
bidirectional	iterators	with	the	ability	to	do	pointer
arithmetic	and	pointer	comparisons.

reverse_iterator Either	a	random	iterator	or	a	bidirectional	iterator	that
moves	in	reverse	direction.

Each	of	the	container	classes	is	associated	with	a	type	of	iterator,	and	each	of
the	STL	algorithms	uses	a	certain	type	of	iterator.	For	example,	vectors	are
associated	with	random-access	iterators,	which	means	that	they	can	use
algorithms	that	require	random	access.	Since	random-access	iterators
encompass	all	of	the	characteristics	of	the	other	iterators,	vectors	can	use
algorithms	designed	for	other	iterators	as	well.

The	following	code	creates	and	uses	an	iterator	with	a	vector:

		vector<int>	the_vector;

		vector<int>::iterator	the_iterator;

		for(int	i=0;	i	<	10;	i++)

				the_vector.push_back(i);

		int	total	=	0;

		the_iterator	=	the_vector.begin();

		while(the_iterator	!=	the_vector.end())	{

				total	+=	*the_iterator;

				the_iterator++;

		}

		cout	<<	"Total="	<<	total	<<	endl;

Notice	that	you	can	access	the	elements	of	the	container	by	dereferencing	the
iterator.

cppreference.com	>	Containers

C++	Containers
The	C++	Containers	(vectors,	lists,	etc.)	are	generic	vessels	capable	of	holding
many	different	types	of	data.	For	example,	the	following	statement	creates	a
vector	of	integers:

vector<int>	v;

Containers	can	hold	standard	objects	(like	the	int	in	the	above	example)	as	well
as	custom	objects,	as	long	as	the	objects	in	the	container	meet	a	few
requirements:

The	object	must	have	a	default	constructor,
an	accessible	destructor,	and
an	accessible	assignment	operator.

When	describing	the	functions	associated	with	these	various	containers,	this
website	defines	the	word	TYPE	to	be	the	object	type	that	the	container	holds.
For	example,	in	the	above	statement,	TYPE	would	be	int.	Similarily,	when
referring	to	containers	associated	with	pairs	of	data	(map	for	example)
key_type	and	value_type	are	used	to	refer	to	the	key	and	value	types	for	that
container.

cppreference.com	>	Miscellaneous	C++

auto_ptr
Syntax:

		#include	<memory>

		auto_ptr<class	TYPE>	name

The	auto_ptr	class	allows	the	programmer	to	create	pointers	that	point	to	other
objects.	When	auto_ptr	pointers	are	destroyed,	the	objects	to	which	they	point
are	also	destroyed.

The	auto_ptr	class	supports	normal	pointer	operations	like	=,	*,	and	->,	as	well
as	two	functions	TYPE*	get()	and	TYPE*	release().	The	get()	function	returns	a
pointer	to	the	object	that	the	auto_ptr	points	to.	The	release()	function	acts
similarily	to	the	get()	function,	but	also	relieves	the	auto_ptr	of	its	memory
destruction	duties.	When	an	auto_ptr	that	has	been	released	goes	out	of	scope,	it
will	not	call	the	destructor	of	the	object	that	it	points	to.

Warning:	It	is	generally	a	bad	idea	to	put	auto_ptr	objects	inside	C++	STL
containers.	C++	containers	can	do	funny	things	with	the	data	inside	them,
including	frequent	reallocation	(when	being	copied,	for	instance).	Since	calling
the	destructor	of	an	auto_ptr	object	will	free	up	the	memory	associated	with	that
object,	any	C++	container	reallocation	will	cause	any	auto_ptr	objects	to
become	invalid.

Example	code:

	#include	<memory>

	using	namespace	std;											

	class	MyClass	{

	public:

			MyClass()	{}	//	nothing

			~MyClass()	{}	//	nothing

			void	myFunc()	{}	//	nothing

	};													

	int	main()	{

			auto_ptr<MyClass>	ptr1(new	MyClass),	ptr2;													

			ptr2	=	ptr1;

			ptr2->myFunc();											

			MyClass*	ptr	=	ptr2.get();											

			ptr->myFunc();												

			return	0;

	}														

cppreference.com	>	Miscellaneous	C++	>	auto_ptr

auto_ptr
Syntax:

		#include	<memory>

		auto_ptr<class	TYPE>	name

The	auto_ptr	class	allows	the	programmer	to	create	pointers	that	point	to	other
objects.	When	auto_ptr	pointers	are	destroyed,	the	objects	to	which	they	point
are	also	destroyed.

The	auto_ptr	class	supports	normal	pointer	operations	like	=,	*,	and	->,	as	well
as	two	functions	TYPE*	get()	and	TYPE*	release().	The	get()	function	returns	a
pointer	to	the	object	that	the	auto_ptr	points	to.	The	release()	function	acts
similarily	to	the	get()	function,	but	also	relieves	the	auto_ptr	of	its	memory
destruction	duties.	When	an	auto_ptr	that	has	been	released	goes	out	of	scope,	it
will	not	call	the	destructor	of	the	object	that	it	points	to.

Warning:	It	is	generally	a	bad	idea	to	put	auto_ptr	objects	inside	C++	STL
containers.	C++	containers	can	do	funny	things	with	the	data	inside	them,
including	frequent	reallocation	(when	being	copied,	for	instance).	Since	calling
the	destructor	of	an	auto_ptr	object	will	free	up	the	memory	associated	with	that
object,	any	C++	container	reallocation	will	cause	any	auto_ptr	objects	to
become	invalid.

Example	code:

	#include	<memory>

	using	namespace	std;											

	class	MyClass	{

	public:

			MyClass()	{}	//	nothing

			~MyClass()	{}	//	nothing

			void	myFunc()	{}	//	nothing

	};													

	int	main()	{

			auto_ptr<MyClass>	ptr1(new	MyClass),	ptr2;													

			ptr2	=	ptr1;

			ptr2->myFunc();											

			MyClass*	ptr	=	ptr2.get();											

			ptr->myFunc();												

			return	0;

	}														

cppreference.com	>	All	C	Functions

All	C	Functions
#,	## manipulate	strings
#define define	variables
#error display	an	error	message
#if,	#ifdef,
#ifndef,	#else,
#elif,	#endif

conditional	operators

#include insert	the	contents	of	another	file
#line set	line	and	file	information
#pragma implementation	specific	command
#undef used	to	undefine	variables
Predefined
preprocessor
variables

miscellaneous	preprocessor
variables

abort stops	the	program
abs absolute	value
acos arc	cosine
asctime a	textual	version	of	the	time
asin arc	sine

assert stops	the	program	if	an	expression
isn't	true

atan arc	tangent

atan2 arc	tangent,	using	signs	to	determine
quadrants

atexit sets	a	function	to	be	called	when	the
program	exits

atof converts	a	string	to	a	double
atoi converts	a	string	to	an	integer
atol converts	a	string	to	a	long
bsearch perform	a	binary	search

allocates	and	clears	a	two-

calloc dimensional	chunk	of	memory

ceil the	smallest	integer	not	less	than	a
certain	value

clearerr clears	errors

clock returns	the	amount	of	time	that	the
program	has	been	running

cos cosine
cosh hyperbolic	cosine

ctime returns	a	specifically	formatted
version	of	the	time

difftime the	difference	between	two	times

div returns	the	quotient	and	remainder
of	a	division

exit stop	the	program
exp returns	"e"	raised	to	a	given	power

fabs absolute	value	for	floating-point
numbers

fclose close	a	file
feof true	if	at	the	end-of-file
ferror checks	for	a	file	error

fflush writes	the	contents	of	the	output
buffer

fgetc get	a	character	from	a	stream
fgetpos get	the	file	position	indicator

fgets get	a	string	of	characters	from	a
stream

floor returns	the	largest	integer	not
greater	than	a	given	value

fmod returns	the	remainder	of	a	division
fopen open	a	file
fprintf print	formatted	output	to	a	file
fputc write	a	character	to	a	file
fputs write	a	string	to	a	file
fread read	from	a	file

free returns	previously	allocated	memory
to	the	operating	system

freopen
open	an	existing	stream	with	a
different	name

frexp decomposes	a	number	into	scientific
notation

fscanf read	formatted	input	from	a	file
fseek move	to	a	specific	location	in	a	file
fsetpos move	to	a	specific	location	in	a	file

ftell returns	the	current	file	position
indicator

fwrite write	to	a	file
getc read	a	character	from	a	file
getchar read	a	character	from	STDIN

getenv get	enviornment	information	about	a
variable

gets read	a	string	from	STDIN

gmtime returns	a	pointer	to	the	current
Greenwich	Mean	Time

isalnum true	if	a	character	is	alphanumeric
isalpha true	if	a	character	is	alphabetic

iscntrl true	if	a	character	is	a	control
character

isdigit true	if	a	character	is	a	digit

isgraph true	if	a	character	is	a	graphical
character

islower true	if	a	character	is	lowercase

isprint true	if	a	character	is	a	printing
character

ispunct true	if	a	character	is	punctuation

isspace true	if	a	character	is	a	space
character

isupper true	if	a	character	is	an	uppercase
character

isxdigit true	if	a	character	is	a	hexidecimal

character
labs absolute	value	for	long	integers
ldexp computes	a	number	in	scientific

notation

ldiv returns	the	quotient	and	remainder
of	a	division,	in	long	integer	form

localtime returns	a	pointer	to	the	current	time
log natural	logarithm
log10 natural	logarithm,	in	base	10

longjmp start	execution	at	a	certain	point	in
the	program

malloc allocates	memory

memchr searches	an	array	for	the	first
occurance	of	a	character

memcmp compares	two	buffers
memcpy copies	one	buffer	to	another
memmove moves	one	buffer	to	another
memset fills	a	buffer	with	a	character

mktime returns	the	calendar	version	of	a
given	time

modf decomposes	a	number	into	integer
and	fractional	parts

perror displays	a	string	version	of	the
current	error	to	STDERR

pow returns	a	given	number	raised	to
another	number

printf write	formatted	output	to	STDOUT
putc write	a	character	to	a	stream
putchar write	a	character	to	STDOUT
puts write	a	string	to	STDOUT
qsort perform	a	quicksort
raise send	a	signal	to	the	program
rand returns	a	pseudorandom	number

realloc changes	the	size	of	previously
allocated	memory

remove erase	a	file
rename rename	a	file

rewind
move	the	file	position	indicator	to
the	beginning	of	a	file

scanf read	formatted	input	from	STDIN
setbuf set	the	buffer	for	a	specific	stream

setjmp set	execution	to	start	at	a	certain
point

setlocale sets	the	current	locale

setvbuf set	the	buffer	and	size	for	a	specific
stream

signal register	a	function	as	a	signal
handler

sin sine
sinh hyperbolic	sine
sprintf write	formatted	output	to	a	buffer
sqrt square	root

srand initialize	the	random	number
generator

sscanf read	formatted	input	from	a	buffer
strcat concatenates	two	strings

strchr finds	the	first	occurance	of	a
character	in	a	string

strcmp compares	two	strings

strcoll compares	two	strings	in	accordance
to	the	current	locale

strcpy copies	one	string	to	another

strcspn searches	one	string	for	any
characters	in	another

strerror returns	a	text	version	of	a	given
error	code

strftime returns	individual	elements	of	the
date	and	time

strlen returns	the	length	of	a	given	string
concatenates	a	certain	amount	of

strncat characters	of	two	strings

strncmp compares	a	certain	amount	of
characters	of	two	strings

strncpy

copies	a	certain	amount	of
characters	from	one	string	to
another

strpbrk
finds	the	first	location	of	any
character	in	one	string,	in	another
string

strrchr finds	the	last	occurance	of	a
character	in	a	string

strspn returns	the	length	of	a	substring	of
characters	of	a	string

strstr finds	the	first	occurance	of	a
substring	of	characters

strtod converts	a	string	to	a	double
strtok finds	the	next	token	in	a	string
strtol converts	a	string	to	a	long

strtoul converts	a	string	to	an	unsigned
long

strxfrm converts	a	substring	so	that	it	can	be
used	by	string	comparison	functions

system perform	a	system	call
tan tangent
tanh hyperbolic	tangent

time returns	the	current	calendar	time	of
the	system

tmpfile return	a	pointer	to	a	temporary	file
tmpnam return	a	unique	filename
tolower converts	a	character	to	lowercase
toupper converts	a	character	to	uppercase
ungetc puts	a	character	back	into	a	stream
va_arg use	variable	length	parameter	lists
vprintf,	vfprintf, write	formatted	output	with	variable

and	vsprintf argument	lists

cppreference.com	>	All	C++	Functions

All	C++	Functions
Bitset	Constructors	(C++
Bitsets) create	new	bitsets

Bitset	Operators	(C++	Bitsets) compare	and	assign
bitsets

Vector	constructors
create	containers	and
initialize	them	with
some	data

Container	constructors	(C++
Double-ended	Queues)

create	containers	and
initialize	them	with
some	data

Container	constructors	(C++
Lists)

create	containers	and
initialize	them	with
some	data

Container	constructors	&
destructors	(C++	Sets)

default	methods	to
allocate,	copy,	and
deallocate	containers

Container	constructors	&
destructors	(C++	Multisets)

default	methods	to
allocate,	copy,	and
deallocate	containers

Container	constructors	&
destructors	(C++	Maps)

default	methods	to
allocate,	copy,	and
deallocate	containers

Container	constructors	&
destructors	(C++	Multimaps)

default	methods	to
allocate,	copy,	and
deallocate	containers

Container	operators	(C++
Lists)

assign	and	compare
containers

Container	operators	(C++	Sets) assign	and	compare
containers

Container	operators	(C++
Multisets)

assign	and	compare
containers

Container	operators	(C++
Multimaps)

assign	and	compare
containers

Vector	operators
compare,	assign,	and
access	elements	of	a
vector

Container	operators	(C++
Double-ended	Queues)

compare,	assign,	and
access	elements	of	a
container

I/O	Constructors	(C++	I/O) constructors

Map	operators	(C++	Maps)
assign,	compare,	and
access	elements	of	a
map

Priority	queue	constructors
(C++	Priority	Queues)

construct	a	new
priority	queue

Queue	constructor	(C++
Queues) construct	a	new	queue

Stack	constructors	(C++
Stacks) construct	a	new	stack

String	constructors	(C++
Strings)

create	strings	from
arrays	of	characters
and	other	strings

String	operators	(C++	Strings)

concatenate	strings,
assign	strings,	use
strings	for	I/O,
compare	strings

accumulate	(C++	Algorithms) sum	up	a	range	of
elements

adjacent_difference	(C++
Algorithms)

compute	the
differences	between
adjacent	elements	in	a
range

adjacent_find	(C++
Algorithms)

finds	two	items	that
are	adjacent	to
eachother

any	(C++	Bitsets) true	if	any	bits	are	set

append	(C++	Strings) append	characters	and

strings	onto	a	string

assign	(C++	Vectors) assign	elements	to	a
container

assign	(C++	Double-ended
Queues)

assign	elements	to	a
container

assign	(C++	Lists) assign	elements	to	a
container

assign	(C++	Strings)

give	a	string	values
from	strings	of
characters	and	other
C++	strings

at	(C++	Vectors) returns	an	element	at	a
specific	location

at	(C++	Double-ended	Queues) returns	an	element	at	a
specific	location

at	(C++	Strings) returns	an	element	at	a
specific	location

auto_ptr	(Miscellaneous	C++)
create	pointers	that
automatically	destroy
objects

back	(C++	Vectors)
returns	a	reference	to
last	element	of	a
container

back	(C++	Double-ended
Queues)

returns	a	reference	to
last	element	of	a
container

back	(C++	Lists)
returns	a	reference	to
last	element	of	a
container

back	(C++	Queues)
returns	a	reference	to
last	element	of	a
container

bad	(C++	I/O)
true	if	an	error
occurred

begin	(C++	Strings)
returns	an	iterator	to
the	beginning	of	the

container

begin	(C++	Vectors)
returns	an	iterator	to
the	beginning	of	the
container

begin	(C++	Double-ended
Queues)

returns	an	iterator	to
the	beginning	of	the
container

begin	(C++	Lists)
returns	an	iterator	to
the	beginning	of	the
container

begin	(C++	Sets)
returns	an	iterator	to
the	beginning	of	the
container

begin	(C++	Multisets)
returns	an	iterator	to
the	beginning	of	the
container

begin	(C++	Maps)
returns	an	iterator	to
the	beginning	of	the
container

begin	(C++	Multimaps)
returns	an	iterator	to
the	beginning	of	the
container

binary_search	(C++
Algorithms)

determine	if	an
element	exists	in	a
certain	range

c_str	(C++	Strings)
returns	a	standard	C
character	array
version	of	the	string

capacity	(C++	Vectors)
returns	the	number	of
elements	that	the
container	can	hold

capacity	(C++	Strings)
returns	the	number	of
elements	that	the
container	can	hold

clear	(C++	I/O) clear	and	set	status
flags
removes	all	elements

clear	(C++	Strings) from	the	container

clear	(C++	Vectors) removes	all	elements
from	the	container

clear	(C++	Double-ended
Queues)

removes	all	elements
from	the	container

clear	(C++	Lists) removes	all	elements
from	the	container

clear	(C++	Sets) removes	all	elements
from	the	container

clear	(C++	Multisets) removes	all	elements
from	the	container

clear	(C++	Maps) removes	all	elements
from	the	container

clear	(C++	Multimaps) removes	all	elements
from	the	container

close	(C++	I/O) close	a	stream
compare	(C++	Strings) compares	two	strings

copy	(C++	Strings) copies	characters	from
a	string	into	an	array

copy	(C++	Algorithms)
copy	some	range	of
elements	to	a	new
location

copy_backward	(C++
Algorithms)

copy	a	range	of
elements	in
backwards	order

copy_n	(C++	Algorithms) copy	N	elements

count	(C++	Sets)
returns	the	number	of
elements	matching	a
certain	key

count	(C++	Multisets)
returns	the	number	of
elements	matching	a
certain	key

count	(C++	Maps)
returns	the	number	of
elements	matching	a
certain	key
returns	the	number	of

count	(C++	Multimaps) elements	matching	a
certain	key

count	(C++	Bitsets) returns	the	number	of
set	bits

count	(C++	Algorithms)
return	the	number	of
elements	matching	a
given	value

count_if	(C++	Algorithms)
return	the	number	of
elements	for	which	a
predicate	is	true

data	(C++	Strings)
returns	a	pointer	to	the
first	character	of	a
string

empty	(C++	Strings) true	if	the	container
has	no	elements

empty	(C++	Vectors) true	if	the	container
has	no	elements

empty	(C++	Double-ended
Queues)

true	if	the	container
has	no	elements

empty	(C++	Lists) true	if	the	container
has	no	elements

empty	(C++	Sets)
true	if	the	container
has	no	elements

empty	(C++	Multisets) true	if	the	container
has	no	elements

empty	(C++	Maps) true	if	the	container
has	no	elements

empty	(C++	Multimaps) true	if	the	container
has	no	elements

empty	(C++	Stacks) true	if	the	container
has	no	elements

empty	(C++	Queues) true	if	the	container
has	no	elements

empty	(C++	Priority	Queues) true	if	the	container
has	no	elements
returns	an	iterator	just

end	(C++	Strings) past	the	last	element
of	a	container

end	(C++	Vectors)
returns	an	iterator	just
past	the	last	element
of	a	container

end	(C++	Double-ended
Queues)

returns	an	iterator	just
past	the	last	element
of	a	container

end	(C++	Lists)
returns	an	iterator	just
past	the	last	element
of	a	container

end	(C++	Sets)
returns	an	iterator	just
past	the	last	element
of	a	container

end	(C++	Multisets)
returns	an	iterator	just
past	the	last	element
of	a	container

end	(C++	Maps)
returns	an	iterator	just
past	the	last	element
of	a	container

end	(C++	Multimaps)
returns	an	iterator	just
past	the	last	element
of	a	container

eof	(C++	I/O) true	if	at	the	end-of-
file

equal	(C++	Algorithms)
determine	if	two	sets
of	elements	are	the
same

equal_range	(C++	Sets)

returns	iterators	to	the
first	and	just	past	the
last	elements
matching	a	specific
key

equal_range	(C++	Multisets)

returns	iterators	to	the
first	and	just	past	the
last	elements
matching	a	specific

key

equal_range	(C++	Maps)

returns	iterators	to	the
first	and	just	past	the
last	elements
matching	a	specific
key

equal_range	(C++	Multimaps)

returns	iterators	to	the
first	and	just	past	the
last	elements
matching	a	specific
key

equal_range	(C++	Algorithms)

search	for	a	range	of
elements	that	are	all
equal	to	a	certain
element

erase	(C++	Strings) removes	elements
from	a	string

erase	(C++	Vectors) removes	elements
from	a	container

erase	(C++	Double-ended
Queues)

removes	elements
from	a	container

erase	(C++	Lists) removes	elements
from	a	container

erase	(C++	Sets) removes	elements
from	a	container

erase	(C++	Multisets) removes	elements
from	a	container

erase	(C++	Maps) removes	elements
from	a	container

erase	(C++	Multimaps) removes	elements
from	a	container

fail	(C++	I/O) true	if	an	error
occurred

fill	(C++	I/O) manipulate	the	default
fill	character

fill	(C++	Algorithms)
assign	a	range	of
elements	a	certain

value

fill_n	(C++	Algorithms) assign	a	value	to	some
number	of	elements

find	(C++	Algorithms) find	a	value	in	a	given
range

find	(C++	Sets) returns	an	iterator	to
specific	elements

find	(C++	Multisets) returns	an	iterator	to
specific	elements

find	(C++	Maps) returns	an	iterator	to
specific	elements

find	(C++	Multimaps) returns	an	iterator	to
specific	elements

find	(C++	Strings) find	characters	in	the
string

find_end	(C++	Algorithms)
find	the	last	sequence
of	elements	in	a
certain	range

find_first_not_of	(C++	Strings) find	first	absence	of
characters

find_first_of	(C++	Strings) find	first	occurrence
of	characters

find_first_of	(C++	Algorithms) search	for	any	one	of
a	set	of	elements

find_if	(C++	Algorithms)
find	the	first	element
for	which	a	certain
predicate	is	true

find_last_not_of	(C++	Strings) find	last	absence	of
characters

find_last_of	(C++	Strings) find	last	occurrence	of
characters

flags	(C++	I/O) access	or	manipulate
io	stream	format	flags

flip	(C++	Bitsets) reverses	the	bitset
flush	(C++	I/O) empty	the	buffer

for_each	(C++	Algorithms) apply	a	function	to	a

range	of	elements

front	(C++	Vectors)
returns	a	reference	to
the	first	element	of	a
container

front	(C++	Double-ended
Queues)

returns	a	reference	to
the	first	element	of	a
container

front	(C++	Lists)
returns	a	reference	to
the	first	element	of	a
container

front	(C++	Queues)
returns	a	reference	to
the	first	element	of	a
container

gcount	(C++	I/O) number	of	characters
read	during	last	input

generate	(C++	Algorithms) saves	the	result	of	a
function	in	a	range

generate_n	(C++	Algorithms)
saves	the	result	of	N
applications	of	a
function

get	(C++	I/O) read	characters

getline	(C++	I/O) read	a	line	of
characters

getline	(C++	Strings) read	data	from	an	I/O
stream	into	a	string

good	(C++	I/O) true	if	no	errors	have
occurred

ignore	(C++	I/O) read	and	discard
characters

includes	(C++	Algorithms) returns	true	if	one	set
is	a	subset	of	another

inner_product	(C++
Algorithms)

compute	the	inner
product	of	two	ranges
of	elements

inplace_merge	(C++
Algorithms)

merge	two	ordered
ranges	in-place
insert	characters	into	a

insert	(C++	Strings) string

insert	(C++	Vectors) inserts	elements	into
the	container

insert	(C++	Double-ended
Queues)

inserts	elements	into
the	container

insert	(C++	Lists) inserts	elements	into
the	container

insert	(C++	Sets) insert	items	into	a
container

insert	(C++	Multisets) inserts	items	into	a
container

insert	(C++	Multimaps) inserts	items	into	a
container

insert	(C++	Maps) insert	items	into	a
container

iota	(C++	Algorithms)
assign	increasing
values	to	a	range	of
elements

is_heap	(C++	Algorithms) returns	true	if	a	given
range	is	a	heap

is_sorted	(C++	Algorithms)
returns	true	if	a	range
is	sorted	in	ascending
order

iter_swap	(C++	Algorithms)
swaps	the	elements
pointed	to	by	two
iterators

key_comp	(C++	Sets) returns	the	function
that	compares	keys

key_comp	(C++	Multisets) returns	the	function
that	compares	keys

key_comp	(C++	Maps) returns	the	function
that	compares	keys

key_comp	(C++	Multimaps) returns	the	function
that	compares	keys

length	(C++	Strings) returns	the	length	of
the	string

lexicographical_compare	(C++
Algorithms)

returns	true	if	one
range	is
lexicographically	less
than	another

lexicographical_compare_3way
(C++	Algorithms)

determines	if	one
range	is
lexicographically	less
than	or	greater	than
another

lower_bound	(C++	Sets)

returns	an	iterator	to
the	first	element
greater	than	or	equal
to	a	certain	value

lower_bound	(C++	Multisets)

returns	an	iterator	to
the	first	element
greater	than	or	equal
to	a	certain	value

lower_bound	(C++	Maps)

returns	an	iterator	to
the	first	element
greater	than	or	equal
to	a	certain	value

lower_bound	(C++	Multimaps)

returns	an	iterator	to
the	first	element
greater	than	or	equal
to	a	certain	value

lower_bound	(C++	Algorithms)

search	for	the	first
place	that	a	value	can
be	inserted	while
preserving	order

make_heap	(C++	Algorithms) creates	a	heap	out	of	a
range	of	elements

max	(C++	Algorithms) returns	the	larger	of
two	elements

max_element	(C++
Algorithms)

returns	the	largest
element	in	a	range
returns	the	maximum
number	of	elements

max_size	(C++	Strings) that	the	container	can
hold

max_size	(C++	Vectors)

returns	the	maximum
number	of	elements
that	the	container	can
hold

max_size	(C++	Double-ended
Queues)

returns	the	maximum
number	of	elements
that	the	container	can
hold

max_size	(C++	Lists)
returns	the	maximum
number	of	elements
that	the	container	can
hold

max_size	(C++	Sets)

returns	the	maximum
number	of	elements
that	the	container	can
hold

max_size	(C++	Multisets)

returns	the	maximum
number	of	elements
that	the	container	can
hold

max_size	(C++	Maps)

returns	the	maximum
number	of	elements
that	the	container	can
hold

max_size	(C++	Multimaps)

returns	the	maximum
number	of	elements
that	the	container	can
hold

merge	(C++	Lists) merge	two	lists

merge	(C++	Algorithms) merge	two	sorted
ranges

min	(C++	Algorithms) returns	the	smaller	of
two	elements

min_element	(C++	Algorithms) returns	the	smallest

element	in	a	range

mismatch	(C++	Algorithms)
finds	the	first	position
where	two	ranges
differ

next_permutation	(C++
Algorithms)

generates	the	next
greater	lexicographic
permutation	of	a	range
of	elements

none	(C++	Bitsets) true	if	no	bits	are	set

nth_element	(C++	Algorithms)

put	one	element	in	its
sorted	location	and
make	sure	that	no
elements	to	its	left	are
greater	than	any
elements	to	its	right

open	(C++	I/O) create	an	input	stream

partial_sort	(C++	Algorithms) sort	the	first	N
elements	of	a	range

partial_sort_copy	(C++
Algorithms)

copy	and	partially	sort
a	range	of	elements

partial_sum	(C++	Algorithms)
compute	the	partial
sum	of	a	range	of
elements

partition	(C++	Algorithms)
divide	a	range	of
elements	into	two
groups

peek	(C++	I/O) check	the	next	input
character

pop	(C++	Stacks) removes	the	top
element	of	a	container

pop	(C++	Queues) removes	the	top
element	of	a	container

pop	(C++	Priority	Queues) removes	the	top
element	of	a	container

pop_back	(C++	Vectors) removes	the	last
element	of	a	container

pop_back	(C++	Double-ended
Queues)

removes	the	last
element	of	a	container

pop_back	(C++	Lists) removes	the	last
element	of	a	container

pop_front	(C++	Double-ended
Queues)

removes	the	first
element	of	the
container

pop_front	(C++	Lists)
removes	the	first
element	of	the
container

pop_heap	(C++	Algorithms) remove	the	largest
element	from	a	heap

power	(C++	Algorithms)
compute	the	value	of
some	number	raised	to
the	Nth	power

precision	(C++	I/O) manipulate	the
precision	of	a	stream

prev_permutation	(C++
Algorithms)

generates	the	next
smaller	lexicographic
permutation	of	a	range
of	elements

push	(C++	Stacks) adds	an	element	to	the
top	of	the	container

push	(C++	Queues) adds	an	element	to	the
end	of	the	container

push	(C++	Priority	Queues) adds	an	element	to	the
end	of	the	container

push_back	(C++	Vectors) add	an	element	to	the
end	of	the	container

push_back	(C++	Double-ended
Queues)

add	an	element	to	the
end	of	the	container

push_back	(C++	Lists) add	an	element	to	the
end	of	the	container

push_back	(C++	Strings) add	an	element	to	the
end	of	the	container

push_front	(C++	Double-ended add	an	element	to	the

Queues) front	of	the	container

push_front	(C++	Lists) add	an	element	to	the
front	of	the	container

push_heap	(C++	Algorithms) add	an	element	to	a
heap

put	(C++	I/O) write	characters

putback	(C++	I/O) return	characters	to	a
stream

random_sample	(C++
Algorithms)

randomly	copy
elements	from	one
range	to	another

random_sample_n	(C++
Algorithms)

sample	N	random
elements	from	a	range

random_shuffle	(C++
Algorithms)

randomly	re-order
elements	in	some
range

rbegin	(C++	Vectors)
returns	a
reverse_iterator	to	the
end	of	the	container

rbegin	(C++	Strings)
returns	a
reverse_iterator	to	the
end	of	the	container

rbegin	(C++	Double-ended
Queues)

returns	a
reverse_iterator	to	the
end	of	the	container

rbegin	(C++	Lists)
returns	a
reverse_iterator	to	the
end	of	the	container

rbegin	(C++	Sets)
returns	a
reverse_iterator	to	the
end	of	the	container

rbegin	(C++	Multisets)
returns	a
reverse_iterator	to	the
end	of	the	container

rbegin	(C++	Maps)
returns	a
reverse_iterator	to	the
end	of	the	container

rbegin	(C++	Multimaps)
returns	a
reverse_iterator	to	the
end	of	the	container

rdstate	(C++	I/O) returns	the	state	flags
of	the	stream

read	(C++	I/O) read	data	into	a	buffer

remove	(C++	Lists) removes	elements
from	a	list

remove	(C++	Algorithms) remove	elements
equal	to	certain	value

remove_copy	(C++
Algorithms)

copy	a	range	of
elements	omitting
those	that	match	a
certian	value

remove_copy_if	(C++
Algorithms)

create	a	copy	of	a
range	of	elements,
omitting	any	for
which	a	predicate	is
true

remove_if	(C++	Lists) removes	elements
conditionally

remove_if	(C++	Algorithms)
remove	all	elements
for	which	a	predicate
is	true

rend	(C++	Vectors)

returns	a
reverse_iterator	to	the
beginning	of	the
container

rend	(C++	Strings)

returns	a
reverse_iterator	to	the
beginning	of	the
container

rend	(C++	Double-ended
Queues)

returns	a
reverse_iterator	to	the
beginning	of	the
container

rend	(C++	Lists)
returns	a
reverse_iterator	to	the
beginning	of	the
container

rend	(C++	Sets)

returns	a
reverse_iterator	to	the
beginning	of	the
container

rend	(C++	Multisets)

returns	a
reverse_iterator	to	the
beginning	of	the
container

rend	(C++	Maps)

returns	a
reverse_iterator	to	the
beginning	of	the
container

rend	(C++	Multimaps)

returns	a
reverse_iterator	to	the
beginning	of	the
container

replace	(C++	Strings) replace	characters	in
the	string

replace	(C++	Algorithms)

replace	every
occurrence	of	some
value	in	a	range	with
another	value

replace_copy	(C++
Algorithms)

copy	a	range,
replacing	certain
elements	with	new
ones

replace_copy_if	(C++
Algorithms)

copy	a	range	of
elements,	replacing
those	for	which	a
predicate	is	true

replace_if	(C++	Algorithms)
change	the	values	of
elements	for	which	a
predicate	is	true

reserve	(C++	Vectors)
sets	the	minimum
capacity	of	the
container

reserve	(C++	Strings)
sets	the	minimum
capacity	of	the
container

reset	(C++	Bitsets) sets	bits	to	zero

resize	(C++	Vectors) change	the	size	of	the
container

resize	(C++	Double-ended
Queues)

change	the	size	of	the
container

resize	(C++	Lists) change	the	size	of	the
container

resize	(C++	Strings) change	the	size	of	the
container

reverse	(C++	Lists) reverse	the	list

reverse	(C++	Algorithms) reverse	elements	in
some	range

reverse_copy	(C++
Algorithms)

create	a	copy	of	a
range	that	is	reversed

rfind	(C++	Strings)
find	the	last
occurrence	of	a
substring

rotate	(C++	Algorithms)

move	the	elements	in
some	range	to	the	left
by	some	amount

rotate_copy	(C++	Algorithms) copy	and	rotate	a
range	of	elements

search	(C++	Algorithms) search	for	a	range	of
elements

search_n	(C++	Algorithms)

search	for	N
consecutive	copies	of
an	element	in	some
range

seekg	(C++	I/O)
perform	random
access	on	an	input

stream

seekp	(C++	I/O)
perform	random
access	on	output
streams

set	(C++	Bitsets) sets	bits

set_difference	(C++
Algorithms)

computes	the
difference	between
two	sets

set_intersection	(C++
Algorithms)

computes	the
intersection	of	two
sets

set_symmetric_difference	(C++
Algorithms)

computes	the
symmetric	difference
between	two	sets

set_union	(C++	Algorithms) computes	the	union	of
two	sets

setf	(C++	I/O) set	format	flags

size	(C++	Strings) returns	the	number	of
items	in	the	container

size	(C++	Vectors) returns	the	number	of
items	in	the	container

size	(C++	Double-ended
Queues)

returns	the	number	of
items	in	the	container

size	(C++	Lists) returns	the	number	of
items	in	the	container

size	(C++	Sets) returns	the	number	of
items	in	the	container

size	(C++	Multisets) returns	the	number	of
items	in	the	container

size	(C++	Maps) returns	the	number	of
items	in	the	container

size	(C++	Multimaps) returns	the	number	of
items	in	the	container

size	(C++	Stacks) returns	the	number	of
items	in	the	container
returns	the	number	of

size	(C++	Queues) items	in	the	container

size	(C++	Priority	Queues) returns	the	number	of
items	in	the	container

size	(C++	Bitsets) number	of	bits	that	the
bitset	can	hold

sort	(C++	Lists) sorts	a	list	into
ascending	order

sort	(C++	Algorithms) sort	a	range	into
ascending	order

sort_heap	(C++	Algorithms)
turns	a	heap	into	a
sorted	range	of
elements

splice	(C++	Lists) merge	two	lists	in
constant	time

stable_partition	(C++
Algorithms)

divide	elements	into
two	groups	while
preserving	their
relative	order

stable_sort	(C++	Algorithms)

sort	a	range	of
elements	while
preserving	order
between	equal
elements

substr	(C++	Strings) returns	a	certain
substring

swap	(C++	Strings)
swap	the	contents	of
this	container	with
another

swap	(C++	Vectors)
swap	the	contents	of
this	container	with
another

swap	(C++	Double-ended
Queues)

swap	the	contents	of
this	container	with
another

swap	(C++	Lists)
swap	the	contents	of
this	container	with

another

swap	(C++	Sets)
swap	the	contents	of
this	container	with
another

swap	(C++	Multisets)
swap	the	contents	of
this	container	with
another

swap	(C++	Maps)
swap	the	contents	of
this	container	with
another

swap	(C++	Multimaps)
swap	the	contents	of
this	container	with
another

swap	(C++	Algorithms) swap	the	values	of
two	objects

swap_ranges	(C++	Algorithms) swaps	two	ranges	of
elements

sync_with_stdio	(C++	I/O) synchronize	with
standard	I/O

tellg	(C++	I/O) read	input	stream
pointers

tellp	(C++	I/O) read	output	stream
pointers

test	(C++	Bitsets) returns	the	value	of	a
given	bit

to_string	(C++	Bitsets) string	representation
of	the	bitset

to_ulong	(C++	Bitsets)
returns	an	integer
representation	of	the
bitset

top	(C++	Stacks)
returns	the	top
element	of	the
container

top	(C++	Priority	Queues)
returns	the	top
element	of	the
container
applies	a	function	to	a

transform	(C++	Algorithms) range	of	elements

unique	(C++	Lists) removes	consecutive
duplicate	elements

unique	(C++	Algorithms)
remove	consecutive
duplicate	elements	in
a	range

unique_copy	(C++	Algorithms)

create	a	copy	of	some
range	of	elements	that
contains	no
consecutive	duplicates

unsetf	(C++	I/O) clear	io	stream	format
flags

upper_bound	(C++	Sets)
returns	an	iterator	to
the	first	element
greater	than	a	certain
value

upper_bound	(C++	Multisets)

returns	an	iterator	to
the	first	element
greater	than	a	certain
value

upper_bound	(C++	Maps)

returns	an	iterator	to
the	first	element
greater	than	a	certain
value

upper_bound	(C++	Multimaps)

returns	an	iterator	to
the	first	element
greater	than	a	certain
value

upper_bound	(C++	Algorithms)

searches	for	the	last
possible	location	to
insert	an	element	into
an	ordered	range

value_comp	(C++	Sets) returns	the	function
that	compares	values

value_comp	(C++	Multisets) returns	the	function
that	compares	values

value_comp	(C++	Maps) returns	the	function
that	compares	values

value_comp	(C++	Multimaps) returns	the	function
that	compares	values

width	(C++	I/O)
access	and	manipulate
the	minimum	field
width

write	(C++	I/O) write	characters

cppreference.com	>	FAQ

Frequently	Asked	Questions
Can	I	get	a	copy	of	this	site?

We	do	provide	a	downloadable	archived	version	of	cppreference.com.	If	you're
interested	in	getting	archived	versions	of	websites	in	general,	you	might	want	to
check	out	utilities	like	GNU's	wget	(Windows	version	here).

Can	I	translate	this	site	to	some	other	language?

Sure,	that	would	be	great!	All	that	we	would	ask	is	that	you	include	a	link	back
to	this	site	so	that	people	know	where	to	get	the	most	up-to-date	content.

Who	is	this	site	meant	for?

There	are	no	"Introduction	to	Programming"	tutorials	here.	This	site	is	meant	to
be	used	by	more-or-less	experienced	C++	programmers,	who	have	a	good	idea
of	what	they	want	to	do	and	simply	need	to	look	up	the	syntax.	If	you're
interested	in	learning	C/C++,	try	one	of	these	sites:

How	C	Programming	Works
C	Programming
C++	Language	Tutorial

Does	this	site	contain	a	complete	and	definitive	list	of	C/C++
functions?

Few	things	in	life	are	absolute.	If	you	don't	find	what	you	are	looking	for	here,
don't	assume	that	it	doesn't	exist.	Do	a	search	on	Google	for	it.

Some	of	the	examples	on	this	site	don't	work	on	my	system.
What's	going	on?

Most	of	the	code	on	this	site	was	compiled	under	Linux	(Red	Hat,	Debian,	or
Ubuntu)	with	the	GNU	Compiler	Collection.	Since	this	site	is	merely	a

http://www.gnu.org/software/wget/wget.html
http://www.interlog.com/~tcharron/wgetwin.html
http://www.howstuffworks.com/c.htm
http://www.its.strath.ac.uk/courses/c
http://www.cplusplus.com/doc/tutorial/
http://www.google.com/
http://www.linux.com/
http://www.redhat.com/
http://www.debian.org/
http://www.ubuntu.com/
http://www.gnu.org/
http://www.gnu.org/software/gcc/gcc.html

reference	for	the	Standard	C	and	C++	specification,	not	every	compiler	will
support	every	function	listed	here.	For	example,

Header	files	change	like	mad.	To	include	the	necessary	support	for	C++
Vectors,	you	might	have	to	use	any	of	these:

		#include	<vector>

		#include	<Vector>

		#include	<vector.h>

(according	to	the	spec,	the	first	of	those	should	work,	and	the	compiler
should	know	enough	to	use	it	to	reference	the	real	vector	header	file.)
Another	header	file	issue	is	that	newer	compilers	can	use	a	more	platform-
independent	commands	to	include	standard	C	libraries.	For	example,	you
might	be	able	to	use

		#include	<cstdio>

instead	of

		#include	<stdio.h>

All	of	the	code	on	this	site	assumes	that	the	correct	namespace	has	been
designated.	If	your	compiler	is	a	little	old,	then	you	might	be	able	to	get
away	with	using	simple	statements	like:

		cout	<<	"hello	world!";

However,	newer	compilers	require	that	you	either	use

		std::cout	<<	"hello	world!";

or	declare	what	namespace	to	use	with	the	"using	namespace"	command.
Certain	popular	compilers	(like	the	one	shipped	with	Microsoft's	Visual
C++)	have	added	alternative	or	additional	functionality	to	the	C++
Standard	Template	Library.	For	example,	the	MFC	in	Visual	C++	provides
you	with	the	string	type	"CString",	which	has	string	functionality	but	is	not
part	of	the	C++	STL.

...The	list	goes	on	and	on.	In	other	words,	individual	results	may	vary.

You've	got	an	error	in	this	site.

http://www.ncits.org/cplusplus.htm

If	you	find	any	errors	in	this	reference,	please	feel	free	to	contact	us	--	feedback
and	code	examples	are	always	welcome.

What's	up	with	this	site?

Think	of	it	as	a	community	service,	for	geeks.

mailto:comments@cppreference.com

cppreference.com	>	Complexity

Complexity

There	are	different	measurements	of	the	speed	of	any	given	algorithm.	Given	an
input	size	of	N,	they	can	be	described	as	follows:

Name Speed Description
exponential
time slow takes	an	amount	of	time	proportional	to	a	constant	raised

to	the	Nth	power	(K^N)
polynomial
time fast takes	an	amount	of	time	proportional	to	N	raised	to	some

constant	power	(N^K)
linear	time faster takes	an	amount	of	time	directly	proportional	to	N	(K	*	N)
logarithmic
time

much
faster

takes	an	amount	of	time	proportional	to	the	logarithm	of	N
(log(N))

constant
time fastest takes	a	fixed	amount	of	time,	no	matter	how	large	the	input

is	(K)

cppreference.com	>	Links

http://www.cppreference.com/index.html

Links
Here	are	some	links	to	other	language	references:

C++	(Dinkumware)
C++	Language	and	Library
Java	1.5	(Sun)
MySQL
Perl
Python
Ruby
Tcl
Visual	C++	STL	(Microsoft)

http://www.dinkumware.com/manuals/
http://www.glenmccl.com/lang.htm
http://java.sun.com/j2se/1.5.0/docs/api/index.html
http://dev.mysql.com/doc/
http://www.perl.com/pub/q/documentation
http://www.python.org/doc/current/
http://phrogz.net/ProgrammingRuby/
http://wiki.tcl.tk/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcstdlib/html/vclrfcpluspluslibraryoverview.asp

cppreference.com	>	Credits

Huge	thanks	to	all	these	people	for	sending	in	bug	fixes	and	suggestions	on	how
to	improve	the	site:

Ted	Felix

A.J.M.	van	den	Berg	-	Adrian	Pfisterer	-	Alex	Vinokur	-	Alex	Wilson	-
Alexandre	Kostine	-	Andre	-	Andre	Gillibert	-	Andrew	L	Roth	-	Annamalai
Gurusami	-	Art	Stamness	-	Arvid	Norberg	-	Benjamin	Lee	Hansen	-	Brian
Higgins	-	Brian	T	Stadler	-	Carl	-	Cedric	Blaser	-	Chip	Lemon	-	Chris	Frey	-
Chris	H	-	Chris	Rimmer	-	Chris	Yate	-	Christian	Foerg	-	Christoph	Vogelbusch	-
Damian	(doublenegative)	-	Dan	Stronger	-	Daniel	Goering	-	Daniel	Lorch	-
Darsh	Ranjan	-	Dave	Schuyler	-	Dave	T	-	Davoud	Taghawi-Nejad	-	Deepak
Goyal	-	Devin	Pratt	-	Diggory	Hardy	-	Drew	Dormann	-	Dzu	Nguyen	-
E.Guadalupe	-	Edgardo	Rossetto	-	Emmanuel	Viaud	-	Enrique	Pineda	-	Fred	Ma
-	Frederik	Hertzum	-	Gerhard	Grossauer	-	Guillaume	Bouchez	-	Henning
Diedrich	-	Henrik	Huttunen	-	Iain	Staffell	-	JP	(Pete)	Donnell	-	James	Bliese	-
James	Dennett	-	James	Jones	-	Jan	-	Jann	Poppinga	-	Jari	Karppinen	-	Jeff
Bowden	-	Jeff	Dwork	-	Jeroen	Missinne	-	Jonathan	Kleid	-	Joseph	Bruni	-
Joshua	Haberman	-	Joshua	R.	Warr	-	Justin	M.	Lee	-	Katherine	Haines	-	Ken
Sedgwick	-	Kien	Nguyen	-	Kiyoshi	Aman	-	Kuang-che	Wu	-	Kurt	McKee	-
Leor	Zolman	-	Lucas	Fisher	-	Mael	Herz	-	Magnus	Kulke	-	Manish	Malik	-
Martin	-	Martin	Milata	-	Martin	Richardt	-	Martijn	van	de	Giessen	-	Mike
Angstadt	-	Mike	Clarke	-	Mike	Ekoka	-	Mike	Jennings	-	Milan	Mimica	-
Moonrie	-	Nadia	De	Bode	-	Neelesh	Bodas	-	Nick	Gianakas	-	Nicolas	Boichat	-
Olivier	Ricou	-	Onur	Tugcu	-	Osku	Salerma	-	Patrick	Spendrin	-	Paul	L.
Tomlinson	-	Philip	Dunstan	-	Phillip	Lee	-	Piers	Daniell	-	Rex	Kerr	-	Rodrigo
Cesar	Dias	-	Roger	D	Pack	-	Salman	Mahbub	-	Selim	T.	Erdogan	-	Sergio
Martinez	-	Shibukawa	Yoshiki	-	Simon	Perkins	-	snlee	-	Stefan	Suffa	-	Stefan
Voegel	-	Thomas	Volk	-	Tiaan	van	Aardt	-	Tom	(prkchp)	-	Tor	Husab	-	Vegard
Nossum	-	Victor	Rachels	-	Vijay	S.	-	William	Charles	Deich	IV	-	William	Dye	-
Wouter	Lievens	-	XenteX

Thank	you!

http://www.cppreference.com/index.html

附录

　

				说明:	本帮助文档的内容完全来自
http://www.cppreference.com	.在此,感谢	CppReference	官方提供
的资料,给广大	C++	程序员带来了方便.	本人也是受益人.由于感
觉上网查询有一点点不便(或者如果无法上网的时候),于是做成本
帮助文档,	希望能给大家提供一些额外的便利.	同时请使用参考者
不要将此用于任何商业行为.

由于时间仓促,可能存在不少错误,如果您发现了,十分感谢您提醒我!

　

联系官方	:	comments@cppreference.com

　

编辑作者:

				王凌斌

School:	天津大学软件学院

E-Name:	Henry_Four

QQ				:	107005566

E-Mail:	henry_four@163.com

Time			:2006-11-20

http://www.cppreference.com
http://www.cppreference.com
mailto:comments@cppreference.com
mailto:%20henry_four@163.com

cppreference.com	>	C/C++	Pre-processor	Commands

C/C++	Pre-processor	Commands

Display	all	entries	for	C/C++	Pre-processor	Commands	on	one	page,	or	view
entries	individually:

#,	## manipulate	strings
#define define	variables
#error display	an	error	message
#if,	#ifdef,	#ifndef,	#else,	#elif,
#endif conditional	operators

#include insert	the	contents	of	another	file
#line set	line	and	file	information
#pragma implementation	specific	command
#undef used	to	undefine	variables

Predefined	preprocessor	variables miscellaneous	preprocessor
variables

cppreference.com	>	C/C++	Data	Types

C/C++	Data	Types
There	are	five	data	types	for	C:	void,	integer,	float,	double,	and	char.

Type Description
void associated	with	no	data	type
int integer
float floating-point	number
doubledouble	precision	floating-point	number
char character

C++	defines	two	more:	bool	and	wchar_t.

Type Description
bool Boolean	value,	true	or	false
wchar_t wide	character

Type	Modifiers

Several	of	these	types	can	be	modified	using	signed,	unsigned,	short,	and	long.
When	one	of	these	type	modifiers	is	used	by	itself,	a	data	type	of	int	is
assumed.	A	complete	list	of	possible	data	types	follows:

bool
char
unsigned	char
signed	char
int
unsigned	int
signed	int
short	int
unsigned	short	int
signed	short	int
long	int
signed	long	int
unsigned	long	int
float
double
long	double
wchar_t

Type	Sizes	and	Ranges

The	size	and	range	of	any	data	type	is	compiler	and	architecture
dependent.	The	"cfloat"	(or	"float.h")	header	file	often	defines
minimum	and	maximum	values	for	the	various	data	types.	You
can	use	the	sizeof	operator	to	determine	the	size	of	any	data
type,	in	bytes.	However,	many	architectures	implement	data
types	of	a	standard	size.	ints	and	floats	are	often	32-bit,	chars	8-
bit,	and	doubles	are	usually	64-bit.	bools	are	often	implemented
as	8-bit	data	types.

cppreference.com	>	C/C++	Keywords

C/C++	Keywords

Display	all	entries	for	C/C++	Keywords	on	one	page,	or	view	entries
individually:

asm insert	an	assembly	instruction
auto declare	a	local	variable
bool declare	a	boolean	variable
break break	out	of	a	loop
case a	block	of	code	in	a	switch	statement
catch handles	exceptions	from	throw
char declare	a	character	variable
class declare	a	class

const declare	immutable	data	or	functions	that	do	not
change	data

const_cast cast	from	const	variables
continue bypass	iterations	of	a	loop
default default	handler	in	a	case	statement
delete make	memory	available
do looping	construct
double declare	a	double	precision	floating-point	variable
dynamic_cast perform	runtime	casts
else alternate	case	for	an	if	statement
enum create	enumeration	types
explicit only	use	constructors	when	they	exactly	match

export allows	template	definitions	to	be	separated	from	their
declarations

extern tell	the	compiler	about	variables	defined	elsewhere
false the	boolean	value	of	false
float declare	a	floating-point	variable
for looping	construct

friend grant	non-member	function	access	to	private	data
goto jump	to	a	different	part	of	the	program
if execute	code	based	off	of	the	result	of	a	test
inline optimize	calls	to	short	functions
int declare	a	integer	variable
long declare	a	long	integer	variable
mutable override	a	const	variable
namespace partition	the	global	namespace	by	defining	a	scope
new allocate	dynamic	memory	for	a	new	variable
operator create	overloaded	operator	functions
private declare	private	members	of	a	class
protected declare	protected	members	of	a	class
public declare	public	members	of	a	class
register request	that	a	variable	be	optimized	for	speed
reinterpret_cast change	the	type	of	a	variable
return return	from	a	function
short declare	a	short	integer	variable
signed modify	variable	type	declarations
sizeof return	the	size	of	a	variable	or	type
static create	permanent	storage	for	a	variable
static_cast perform	a	nonpolymorphic	cast
struct define	a	new	structure

switch execute	code	based	off	of	different	possible	values	for
a	variable

template create	generic	functions
this a	pointer	to	the	current	object
throw throws	an	exception
true the	boolean	value	of	true
try execute	code	that	can	throw	an	exception
typedef create	a	new	type	name	from	an	existing	type
typeid describes	an	object
typename declare	a	class	or	undefined	type

union a	structure	that	assigns	multiple	variables	to	the	same
memory	location

unsigned declare	an	unsigned	integer	variable

using
import	complete	or	partial	namespaces	into	the	current
scope

virtual create	a	function	that	can	be	overridden	by	a	derived
class

void declare	functions	or	data	with	no	associated	data	type

volatile warn	the	compiler	about	variables	that	can	be
modified	unexpectedly

wchar_t declare	a	wide-character	variable
while looping	construct

cppreference.com	>	Standard	C	I/O

Standard	C	I/O

Display	all	entries	for	Standard	C	I/O	on	one	page,	or	view	entries	individually:

clearerr clears	errors
fclose close	a	file
feof true	if	at	the	end-of-file
ferror checks	for	a	file	error
fflush writes	the	contents	of	the	output	buffer
fgetc get	a	character	from	a	stream
fgetpos get	the	file	position	indicator
fgets get	a	string	of	characters	from	a	stream
fopen open	a	file
fprintf print	formatted	output	to	a	file
fputc write	a	character	to	a	file
fputs write	a	string	to	a	file
fread read	from	a	file
freopen open	an	existing	stream	with	a	different	name
fscanf read	formatted	input	from	a	file
fseek move	to	a	specific	location	in	a	file
fsetpos move	to	a	specific	location	in	a	file
ftell returns	the	current	file	position	indicator
fwrite write	to	a	file
getc read	a	character	from	a	file
getchar read	a	character	from	STDIN
gets read	a	string	from	STDIN

perror displays	a	string	version	of	the	current	error	to
STDERR

printf write	formatted	output	to	STDOUT
putc write	a	character	to	a	stream
putchar write	a	character	to	STDOUT

puts write	a	string	to	STDOUT
remove erase	a	file
rename rename	a	file

rewind move	the	file	position	indicator	to	the
beginning	of	a	file

scanf read	formatted	input	from	STDIN
setbuf set	the	buffer	for	a	specific	stream
setvbuf set	the	buffer	and	size	for	a	specific	stream
sprintf write	formatted	output	to	a	buffer
sscanf read	formatted	input	from	a	buffer
tmpfile return	a	pointer	to	a	temporary	file
tmpnam return	a	unique	filename
ungetc puts	a	character	back	into	a	stream
vprintf,	vfprintf,	and
vsprintf

write	formatted	output	with	variable	argument
lists

cppreference.com	>	Standard	C	String	and	Character

Standard	C	String	and	Character

Display	all	entries	for	Standard	C	String	and	Character	on	one	page,	or	view
entries	individually:

atof converts	a	string	to	a	double
atoi converts	a	string	to	an	integer
atol converts	a	string	to	a	long
isalnum true	if	a	character	is	alphanumeric
isalpha true	if	a	character	is	alphabetic
iscntrl true	if	a	character	is	a	control	character
isdigit true	if	a	character	is	a	digit
isgraph true	if	a	character	is	a	graphical	character
islower true	if	a	character	is	lowercase
isprint true	if	a	character	is	a	printing	character
ispunct true	if	a	character	is	punctuation
isspace true	if	a	character	is	a	space	character
isupper true	if	a	character	is	an	uppercase	character
isxdigit true	if	a	character	is	a	hexidecimal	character
memchr searches	an	array	for	the	first	occurance	of	a	character
memcmp compares	two	buffers
memcpy copies	one	buffer	to	another
memmove moves	one	buffer	to	another
memset fills	a	buffer	with	a	character
strcat concatenates	two	strings
strchr finds	the	first	occurance	of	a	character	in	a	string
strcmp compares	two	strings
strcoll compares	two	strings	in	accordance	to	the	current	locale
strcpy copies	one	string	to	another
strcspn searches	one	string	for	any	characters	in	another
strerror returns	a	text	version	of	a	given	error	code

strlen returns	the	length	of	a	given	string
strncat concatenates	a	certain	amount	of	characters	of	two	strings
strncmp compares	a	certain	amount	of	characters	of	two	strings

strncpy copies	a	certain	amount	of	characters	from	one	string	to
another

strpbrk finds	the	first	location	of	any	character	in	one	string,	in
another	string

strrchr finds	the	last	occurance	of	a	character	in	a	string
strspn returns	the	length	of	a	substring	of	characters	of	a	string
strstr finds	the	first	occurance	of	a	substring	of	characters
strtod converts	a	string	to	a	double
strtok finds	the	next	token	in	a	string
strtol converts	a	string	to	a	long
strtoul converts	a	string	to	an	unsigned	long

strxfrm converts	a	substring	so	that	it	can	be	used	by	string
comparison	functions

tolower converts	a	character	to	lowercase
toupper converts	a	character	to	uppercase

cppreference.com	>	Standard	C	Math

Standard	C	Math

Display	all	entries	for	Standard	C	Math	on	one	page,	or	view	entries
individually:

abs absolute	value
acos arc	cosine
asin arc	sine
atan arc	tangent
atan2 arc	tangent,	using	signs	to	determine	quadrants
ceil the	smallest	integer	not	less	than	a	certain	value
cos cosine
cosh hyperbolic	cosine
div returns	the	quotient	and	remainder	of	a	division
exp returns	"e"	raised	to	a	given	power
fabs absolute	value	for	floating-point	numbers
floor returns	the	largest	integer	not	greater	than	a	given	value
fmod returns	the	remainder	of	a	division
frexp decomposes	a	number	into	scientific	notation
labs absolute	value	for	long	integers
ldexp computes	a	number	in	scientific	notation

ldiv returns	the	quotient	and	remainder	of	a	division,	in	long	integer
form

log natural	logarithm	(to	base	e)
log10 common	logarithm	(to	base	10)
modf decomposes	a	number	into	integer	and	fractional	parts
pow returns	a	given	number	raised	to	another	number
sin sine
sinh hyperbolic	sine
sqrt square	root
tan tangent

tanh hyperbolic	tangent

cppreference.com	>	Standard	C	Date	&	Time

Standard	C	Date	&	Time

Display	all	entries	for	Standard	C	Date	&	Time	on	one	page,	or	view	entries
individually:

asctime a	textual	version	of	the	time

clock returns	the	amount	of	time	that	the	program	has	been
running

ctime returns	a	specifically	formatted	version	of	the	time
difftime the	difference	between	two	times
gmtime returns	a	pointer	to	the	current	Greenwich	Mean	Time
localtime returns	a	pointer	to	the	current	time
mktime returns	the	calendar	version	of	a	given	time
setlocale sets	the	current	locale
strftime returns	individual	elements	of	the	date	and	time
time returns	the	current	calendar	time	of	the	system

cppreference.com	>	Standard	C	Memory

Standard	C	Memory

Display	all	entries	for	Standard	C	Memory	on	one	page,	or	view	entries
individually:

calloc allocates	and	clears	a	two-dimensional	chunk	of	memory
free returns	previously	allocated	memory	to	the	operating	system
malloc allocates	memory
realloc changes	the	size	of	previously	allocated	memory

cppreference.com	>	Other	Standard	C	Functions

Other	Standard	C	Functions

Display	all	entries	for	Other	Standard	C	Functions	on	one	page,	or	view	entries
individually:

abort stops	the	program
assert stops	the	program	if	an	expression	isn't	true
atexit sets	a	function	to	be	called	when	the	program	exits
bsearch perform	a	binary	search
exit stop	the	program
getenv get	enviornment	information	about	a	variable
longjmp start	execution	at	a	certain	point	in	the	program
qsort perform	a	quicksort
raise send	a	signal	to	the	program
rand returns	a	pseudorandom	number
setjmp set	execution	to	start	at	a	certain	point
signal register	a	function	as	a	signal	handler
srand initialize	the	random	number	generator
system perform	a	system	call
va_arg use	variable	length	parameter	lists

cppreference.com	>	C++	I/O

C++	I/O

The	<iostream>	library	automatically	defines	a	few	standard
objects:

cout,	an	object	of	the	ostream	class,	which	displays	data	to
the	standard	output	device.
cerr,	another	object	of	the	ostream	class	that	writes
unbuffered	output	to	the	standard	error	device.
clog,	like	cerr,	but	uses	buffered	output.
cin,	an	object	of	the	istream	class	that	reads	data	from	the
standard	input	device.

The	<fstream>	library	allows	programmers	to	do	file	input	and
output	with	the	ifstream	and	ofstream	classes.

C++	programmers	can	also	do	input	and	output	from	strings	by
using	the	String	Stream	class.

Some	of	the	behavior	of	the	C++	I/O	streams	(precision,
justification,	etc)	may	be	modified	by	manipulating	various	io
stream	format	flags.

Display	all	entries	for	C++	I/O	on	one	page,	or	view	entries
individually:

I/O
Constructors constructors

bad true	if	an	error	occurred
clear clear	and	set	status	flags
close close	a	stream
eof true	if	at	the	end-of-file
fail true	if	an	error	occurred
fill manipulate	the	default	fill	character

flags access	or	manipulate	io	stream	format
flags

flush empty	the	buffer

gcount number	of	characters	read	during	last
input

get read	characters
getline read	a	line	of	characters
good true	if	no	errors	have	occurred
ignore read	and	discard	characters
open create	an	input	stream
peek check	the	next	input	character
precision manipulate	the	precision	of	a	stream
put write	characters
putback return	characters	to	a	stream
rdstate returns	the	state	flags	of	the	stream
read read	data	into	a	buffer

seekg perform	random	access	on	an	input
stream

seekp perform	random	access	on	output
streams

setf set	format	flags
sync_with_stdio synchronize	with	standard	I/O
tellg read	input	stream	pointers
tellp read	output	stream	pointers
unsetf clear	io	stream	format	flags

width access	and	manipulate	the	minimum
field	width

write write	characters

cppreference.com	>	C++	Strings

C++	Strings

Display	all	entries	for	C++	Strings	on	one	page,	or	view	entries	individually:

String
constructors

create	strings	from	arrays	of	characters	and	other
strings

String	operators concatenate	strings,	assign	strings,	use	strings	for
I/O,	compare	strings

append append	characters	and	strings	onto	a	string

assign give	a	string	values	from	strings	of	characters	and
other	C++	strings

at returns	an	element	at	a	specific	location
begin returns	an	iterator	to	the	beginning	of	the	string

c_str returns	a	standard	C	character	array	version	of	the
string

capacity returns	the	number	of	elements	that	the	string	can
hold

clear removes	all	elements	from	the	string
compare compares	two	strings
copy copies	characters	from	a	string	into	an	array
data returns	a	pointer	to	the	first	character	of	a	string
empty true	if	the	string	has	no	elements

end returns	an	iterator	just	past	the	last	element	of	a
string

erase removes	elements	from	a	string
find find	characters	in	the	string
find_first_not_of find	first	absence	of	characters
find_first_of find	first	occurrence	of	characters
find_last_not_of find	last	absence	of	characters
find_last_of find	last	occurrence	of	characters
getline read	data	from	an	I/O	stream	into	a	string
insert insert	characters	into	a	string

length returns	the	length	of	the	string

max_size returns	the	maximum	number	of	elements	that	the
string	can	hold

push_back add	an	element	to	the	end	of	the	string
rbegin returns	a	reverse_iterator	to	the	end	of	the	string

rend returns	a	reverse_iterator	to	the	beginning	of	the
string

replace replace	characters	in	the	string
reserve sets	the	minimum	capacity	of	the	string
resize change	the	size	of	the	string
rfind find	the	last	occurrence	of	a	substring
size returns	the	number	of	items	in	the	string
substr returns	a	certain	substring
swap swap	the	contents	of	this	string	with	another

cppreference.com	>	C++	String	Streams

C++	String	Streams

String	streams	are	similar	to	the	<iostream>	and	<fstream>	libraries,	except	that
string	streams	allow	you	to	perform	I/O	on	strings	instead	of	streams.	The
<sstream>	library	provides	functionality	similar	to	sscanf()	and	sprintf()	in	the
standard	C	library.	Three	main	classes	are	available	in	<sstream>:

stringstream	-	allows	input	and	output
istringstream	-	allows	input	only
ostringstream	-	allows	output	only

String	streams	are	actually	subclasses	of	iostreams,	so	all	of	the	functions
available	for	iostreams	are	also	available	for	stringstream.	See	the	C++	I/O
functions	for	more	information.

Display	all	entries	for	C++	String	Streams	on	one	page,	or	view	entries
individually:

Constructors create	new	string	streams
Operators read	from	and	write	to	string	strings
rdbuf get	the	buffer	for	a	string	stream
str get	or	set	the	stream's	string

cppreference.com	>	Miscellaneous	C++

Miscellaneous	C++

Display	all	entries	for	Miscellaneous	C++	on	one	page,	or	view	entries
individually:

auto_ptr create	pointers	that	automatically	destroy	objects

cppreference.com	>	C++	Algorithms

C++	Algorithms

Display	all	entries	for	C++	Algorithms	on	one	page,	or	view
entries	individually:

accumulate sum	up	a	range	of
elements

adjacent_difference

compute	the
differences	between
adjacent	elements	in	a
range

adjacent_find
finds	two	items	that
are	adjacent	to
eachother

binary_search
determine	if	an
element	exists	in	a
certain	range

copy
copy	some	range	of
elements	to	a	new
location

copy_backward
copy	a	range	of
elements	in
backwards	order

copy_n copy	N	elements

count
return	the	number	of
elements	matching	a
given	value

count_if
return	the	number	of
elements	for	which	a
predicate	is	true

equal
determine	if	two	sets
of	elements	are	the
same

equal_range
search	for	a	range	of
elements	that	are	all
equal	to	a	certain
element

fill
assign	a	range	of
elements	a	certain
value

fill_n assign	a	value	to	some
number	of	elements

find find	a	value	in	a	given
range

find_end
find	the	last	sequence
of	elements	in	a
certain	range

find_first_of search	for	any	one	of
a	set	of	elements

find_if
find	the	first	element
for	which	a	certain
predicate	is	true

for_each apply	a	function	to	a
range	of	elements

generate saves	the	result	of	a
function	in	a	range

generate_n
saves	the	result	of	N
applications	of	a
function

includes returns	true	if	one	set
is	a	subset	of	another

inner_product
compute	the	inner
product	of	two	ranges
of	elements

inplace_merge merge	two	ordered
ranges	in-place

iota
assign	increasing
values	to	a	range	of
elements

is_heap returns	true	if	a	given
range	is	a	heap

is_sorted
returns	true	if	a	range
is	sorted	in	ascending
order

iter_swap
swaps	the	elements
pointed	to	by	two
iterators

lexicographical_compare

returns	true	if	one
range	is
lexicographically	less
than	another

lexicographical_compare_3way

determines	if	one
range	is
lexicographically	less
than	or	greater	than
another

lower_bound

search	for	the	first
place	that	a	value	can
be	inserted	while
preserving	order

make_heap creates	a	heap	out	of	a
range	of	elements

max returns	the	larger	of
two	elements

max_element returns	the	largest
element	in	a	range

merge merge	two	sorted
ranges

min returns	the	smaller	of
two	elements

min_element returns	the	smallest
element	in	a	range

mismatch
finds	the	first	position
where	two	ranges
differ

generates	the	next

next_permutation greater	lexicographic
permutation	of	a	range
of	elements

nth_element

put	one	element	in	its
sorted	location	and
make	sure	that	no
elements	to	its	left	are
greater	than	any
elements	to	its	right

partial_sort sort	the	first	N
elements	of	a	range

partial_sort_copy copy	and	partially	sort
a	range	of	elements

partial_sum
compute	the	partial
sum	of	a	range	of
elements

partition
divide	a	range	of
elements	into	two
groups

pop_heap remove	the	largest
element	from	a	heap

power
compute	the	value	of
some	number	raised	to
the	Nth	power

prev_permutation

generates	the	next
smaller	lexicographic
permutation	of	a	range
of	elements

push_heap add	an	element	to	a
heap

random_sample
randomly	copy
elements	from	one
range	to	another

random_sample_n sample	N	random
elements	from	a	range

random_shuffle
randomly	re-order
elements	in	some

range

remove remove	elements
equal	to	certain	value

remove_copy

copy	a	range	of
elements	omitting
those	that	match	a
certian	value

remove_copy_if

create	a	copy	of	a
range	of	elements,
omitting	any	for
which	a	predicate	is
true

remove_if
remove	all	elements
for	which	a	predicate
is	true

replace

replace	every
occurrence	of	some
value	in	a	range	with
another	value

replace_copy

copy	a	range,
replacing	certain
elements	with	new
ones

replace_copy_if

copy	a	range	of
elements,	replacing
those	for	which	a
predicate	is	true

replace_if
change	the	values	of
elements	for	which	a
predicate	is	true

reverse reverse	elements	in
some	range

reverse_copy create	a	copy	of	a
range	that	is	reversed

rotate
move	the	elements	in
some	range	to	the	left

by	some	amount

rotate_copy copy	and	rotate	a
range	of	elements

search search	for	a	range	of
elements

search_n

search	for	N
consecutive	copies	of
an	element	in	some
range

set_difference
computes	the
difference	between
two	sets

set_intersection
computes	the
intersection	of	two
sets

set_symmetric_difference
computes	the
symmetric	difference
between	two	sets

set_union computes	the	union	of
two	sets

sort sort	a	range	into
ascending	order

sort_heap
turns	a	heap	into	a
sorted	range	of
elements

stable_partition

divide	elements	into
two	groups	while
preserving	their
relative	order

stable_sort

sort	a	range	of
elements	while
preserving	order
between	equal
elements

swap swap	the	values	of
two	objects
swaps	two	ranges	of

swap_ranges elements

transform applies	a	function	to	a
range	of	elements

unique
remove	consecutive
duplicate	elements	in
a	range

unique_copy

create	a	copy	of	some
range	of	elements	that
contains	no
consecutive	duplicates

upper_bound

searches	for	the	last
possible	location	to
insert	an	element	into
an	ordered	range

cppreference.com	>	C++	Vectors

C++	Vectors

Vectors	contain	contiguous	elements	stored	as	an	array.	Accessing	members	of	a
vector	or	appending	elements	can	be	done	in	constant	time,	whereas	locating	a
specific	value	or	inserting	elements	into	the	vector	takes	linear	time.

Display	all	entries	for	C++	Vectors	on	one	page,	or	view	entries	individually:

Vector
constructors create	vectors	and	initialize	them	with	some	data

Vector
operators compare,	assign,	and	access	elements	of	a	vector

assign assign	elements	to	a	vector
at returns	an	element	at	a	specific	location
back returns	a	reference	to	last	element	of	a	vector
begin returns	an	iterator	to	the	beginning	of	the	vector

capacity returns	the	number	of	elements	that	the	vector	can
hold

clear removes	all	elements	from	the	vector
empty true	if	the	vector	has	no	elements
end returns	an	iterator	just	past	the	last	element	of	a	vector
erase removes	elements	from	a	vector
front returns	a	reference	to	the	first	element	of	a	vector
insert inserts	elements	into	the	vector

max_size returns	the	maximum	number	of	elements	that	the
vector	can	hold

pop_back removes	the	last	element	of	a	vector
push_back add	an	element	to	the	end	of	the	vector
rbegin returns	a	reverse_iterator	to	the	end	of	the	vector

rend returns	a	reverse_iterator	to	the	beginning	of	the
vector

reserve sets	the	minimum	capacity	of	the	vector

resize change	the	size	of	the	vector
size returns	the	number	of	items	in	the	vector
swap swap	the	contents	of	this	vector	with	another

cppreference.com	>	C++	Double-ended	Queues

C++	Double-ended	Queues

Double-ended	queues	are	like	vectors,	except	that	they	allow	fast	insertions	and
deletions	at	the	beginning	(as	well	as	the	end)	of	the	container.

Display	all	entries	for	C++	Double-ended	Queues	on	one	page,	or	view	entries
individually:

Container
constructors create	dequeues	and	initialize	them	with	some	data

Container
operators compare,	assign,	and	access	elements	of	a	dequeue

assign assign	elements	to	a	dequeue
at returns	an	element	at	a	specific	location
back returns	a	reference	to	last	element	of	a	dequeue
begin returns	an	iterator	to	the	beginning	of	the	dequeue
clear removes	all	elements	from	the	dequeue
empty true	if	the	dequeue	has	no	elements

end returns	an	iterator	just	past	the	last	element	of	a
dequeue

erase removes	elements	from	a	dequeue
front returns	a	reference	to	the	first	element	of	a	dequeue
insert inserts	elements	into	the	dequeue

max_size returns	the	maximum	number	of	elements	that	the
dequeue	can	hold

pop_back removes	the	last	element	of	a	dequeue
pop_front removes	the	first	element	of	the	dequeue
push_back add	an	element	to	the	end	of	the	dequeue
push_front add	an	element	to	the	front	of	the	dequeue
rbegin returns	a	reverse_iterator	to	the	end	of	the	dequeue

rend returns	a	reverse_iterator	to	the	beginning	of	the
dequeue

resize change	the	size	of	the	dequeue
size returns	the	number	of	items	in	the	dequeue
swap swap	the	contents	of	this	dequeue	with	another

cppreference.com	>	C++	Lists

C++	Lists

Lists	are	sequences	of	elements	stored	in	a	linked	list.	Compared	to	vectors,
they	allow	fast	insertions	and	deletions,	but	slower	random	access.

Display	all	entries	for	C++	Lists	on	one	page,	or	view	entries	individually:

Container
constructors create	lists	and	initialize	them	with	some	data

Container
operators assign	and	compare	lists

assign assign	elements	to	a	list
back returns	a	reference	to	last	element	of	a	list
begin returns	an	iterator	to	the	beginning	of	the	list
clear removes	all	elements	from	the	list
empty true	if	the	list	has	no	elements
end returns	an	iterator	just	past	the	last	element	of	a	list
erase removes	elements	from	a	list
front returns	a	reference	to	the	first	element	of	a	list
insert inserts	elements	into	the	list

max_size returns	the	maximum	number	of	elements	that	the
list	can	hold

merge merge	two	lists
pop_back removes	the	last	element	of	a	list
pop_front removes	the	first	element	of	the	list
push_back add	an	element	to	the	end	of	the	list
push_front add	an	element	to	the	front	of	the	list
rbegin returns	a	reverse_iterator	to	the	end	of	the	list
remove removes	elements	from	a	list
remove_if removes	elements	conditionally
rend returns	a	reverse_iterator	to	the	beginning	of	the	list

resize change	the	size	of	the	list
reverse reverse	the	list
size returns	the	number	of	items	in	the	list
sort sorts	a	list	into	ascending	order
splice merge	two	lists	in	constant	time
swap swap	the	contents	of	this	list	with	another
unique removes	consecutive	duplicate	elements

cppreference.com	>	C++	Priority	Queues

C++	Priority	Queues

C++	Priority	Queues	are	like	queues,	but	the	elements	inside	the	the	data
structure	are	ordered	by	some	predicate.

Display	all	entries	for	C++	Priority	Queues	on	one	page,	or	view	entries
individually:

Priority	queue
constructors construct	a	new	priority	queue

empty true	if	the	priority	queue	has	no	elements
pop removes	the	top	element	of	a	priority	queue

push adds	an	element	to	the	end	of	the	priority
queue

size returns	the	number	of	items	in	the	priority
queue

top returns	the	top	element	of	the	priority	queue

cppreference.com	>	C++	Queues

C++	Queues

The	C++	Queue	is	a	container	adapter	that	gives	the	programmer	a	FIFO	(first-
in,	first-out)	data	structure.

Display	all	entries	for	C++	Queues	on	one	page,	or	view	entries	individually:

Queue	constructor construct	a	new	queue
back returns	a	reference	to	last	element	of	a	queue
empty true	if	the	queue	has	no	elements
front returns	a	reference	to	the	first	element	of	a	queue
pop removes	the	top	element	of	a	queue
push adds	an	element	to	the	end	of	the	queue
size returns	the	number	of	items	in	the	queue

cppreference.com	>	C++	Stacks

C++	Stacks

The	C++	Stack	is	a	container	adapter	that	gives	the	programmer	the
functionality	of	a	stack	--	specifically,	a	FILO	(first-in,	last-out)	data	structure.

Display	all	entries	for	C++	Stacks	on	one	page,	or	view	entries	individually:

Stack	constructors construct	a	new	stack
empty true	if	the	stack	has	no	elements
pop removes	the	top	element	of	a	stack
push adds	an	element	to	the	top	of	the	stack
size returns	the	number	of	items	in	the	stack
top returns	the	top	element	of	the	stack

cppreference.com	>	C++	Sets

C++	Sets

The	C++	Set	is	an	associative	container	that	contains	a	sorted	set	of	unique
objects.

Display	all	entries	for	C++	Sets	on	one	page,	or	view	entries	individually:

Container
constructors	&
destructors

default	methods	to	allocate,	copy,	and	deallocate
sets

Container	operators assign	and	compare	sets
begin returns	an	iterator	to	the	beginning	of	the	set
clear removes	all	elements	from	the	set

count returns	the	number	of	elements	matching	a
certain	key

empty true	if	the	set	has	no	elements

end returns	an	iterator	just	past	the	last	element	of	a
set

equal_range returns	iterators	to	the	first	and	just	past	the	last
elements	matching	a	specific	key

erase removes	elements	from	a	set
find returns	an	iterator	to	specific	elements
insert insert	items	into	a	set
key_comp returns	the	function	that	compares	keys

lower_bound returns	an	iterator	to	the	first	element	greater
than	or	equal	to	a	certain	value

max_size returns	the	maximum	number	of	elements	that
the	set	can	hold

rbegin returns	a	reverse_iterator	to	the	end	of	the	set

rend returns	a	reverse_iterator	to	the	beginning	of	the
set

size returns	the	number	of	items	in	the	set

swap swap	the	contents	of	this	set	with	another

upper_bound returns	an	iterator	to	the	first	element	greater
than	a	certain	value

value_comp returns	the	function	that	compares	values

cppreference.com	>	C++	Multisets

C++	Multisets

C++	Multisets	are	like	sets,	in	that	they	are	associative	containers	containing	a
sorted	set	of	objects,	but	differ	in	that	they	allow	duplicate	objects.

Display	all	entries	for	C++	Multisets	on	one	page,	or	view	entries	individually:

Container
constructors	&
destructors

default	methods	to	allocate,	copy,	and	deallocate
multisets

Container	operators assign	and	compare	multisets

begin returns	an	iterator	to	the	beginning	of	the
multiset

clear removes	all	elements	from	the	multiset

count returns	the	number	of	elements	matching	a
certain	key

empty true	if	the	multiset	has	no	elements

end returns	an	iterator	just	past	the	last	element	of	a
multiset

equal_range returns	iterators	to	the	first	and	just	past	the	last
elements	matching	a	specific	key

erase removes	elements	from	a	multiset
find returns	an	iterator	to	specific	elements
insert inserts	items	into	a	multiset
key_comp returns	the	function	that	compares	keys

lower_bound returns	an	iterator	to	the	first	element	greater
than	or	equal	to	a	certain	value

max_size returns	the	maximum	number	of	elements	that
the	multiset	can	hold

rbegin returns	a	reverse_iterator	to	the	end	of	the
multiset
returns	a	reverse_iterator	to	the	beginning	of	the

rend multiset

size returns	the	number	of	items	in	the	multiset
swap swap	the	contents	of	this	multiset	with	another

upper_bound returns	an	iterator	to	the	first	element	greater
than	a	certain	value

value_comp returns	the	function	that	compares	values

cppreference.com	>	C++	Maps

C++	Maps

C++	Maps	are	sorted	associative	containers	that	contain	unique	key/value	pairs.
For	example,	you	could	create	a	map	that	associates	a	string	with	an	integer,	and
then	use	that	map	to	associate	the	number	of	days	in	each	month	with	the	name
of	each	month.

Display	all	entries	for	C++	Maps	on	one	page,	or	view	entries	individually:

Map	constructors
&	destructors

default	methods	to	allocate,	copy,	and	deallocate
maps

Map	operators assign,	compare,	and	access	elements	of	a	map
begin returns	an	iterator	to	the	beginning	of	the	map
clear removes	all	elements	from	the	map

count returns	the	number	of	elements	matching	a	certain
key

empty true	if	the	map	has	no	elements

end returns	an	iterator	just	past	the	last	element	of	a
map

equal_range returns	iterators	to	the	first	and	just	past	the	last
elements	matching	a	specific	key

erase removes	elements	from	a	map
find returns	an	iterator	to	specific	elements
insert insert	items	into	a	map
key_comp returns	the	function	that	compares	keys

lower_bound returns	an	iterator	to	the	first	element	greater	than
or	equal	to	a	certain	value

max_size returns	the	maximum	number	of	elements	that	the
map	can	hold

rbegin returns	a	reverse_iterator	to	the	end	of	the	map

rend returns	a	reverse_iterator	to	the	beginning	of	the
map

size returns	the	number	of	items	in	the	map
swap swap	the	contents	of	this	map	with	another

upper_bound returns	an	iterator	to	the	first	element	greater	than	a
certain	value

value_comp returns	the	function	that	compares	values

cppreference.com	>	C++	Multimaps

C++	Multimaps

C++	Multimaps	are	like	maps,	in	that	they	are	sorted	associative	containers,	but
differ	from	maps	in	that	they	allow	duplicate	keys.

Display	all	entries	for	C++	Multimaps	on	one	page,	or	view	entries	individually:

Container
constructors	&
destructors

default	methods	to	allocate,	copy,	and	deallocate
multimaps

Container	operators assign	and	compare	multimaps

begin returns	an	iterator	to	the	beginning	of	the
multimap

clear removes	all	elements	from	the	multimap

count returns	the	number	of	elements	matching	a
certain	key

empty true	if	the	multimap	has	no	elements

end returns	an	iterator	just	past	the	last	element	of	a
multimap

equal_range returns	iterators	to	the	first	and	just	past	the	last
elements	matching	a	specific	key

erase removes	elements	from	a	multimap
find returns	an	iterator	to	specific	elements
insert inserts	items	into	a	multimap
key_comp returns	the	function	that	compares	keys

lower_bound returns	an	iterator	to	the	first	element	greater
than	or	equal	to	a	certain	value

max_size returns	the	maximum	number	of	elements	that
the	multimap	can	hold

rbegin returns	a	reverse_iterator	to	the	end	of	the
multimap
returns	a	reverse_iterator	to	the	beginning	of	the

rend multimap

size returns	the	number	of	items	in	the	multimap
swap swap	the	contents	of	this	multimap	with	another

upper_bound returns	an	iterator	to	the	first	element	greater
than	a	certain	value

value_comp returns	the	function	that	compares	values

cppreference.com	>	C++	Bitsets

C++	Bitsets

C++	Bitsets	give	the	programmer	a	set	of	bits	as	a	data	structure.	Bitsets	can	be
manipulated	by	various	binary	operators	such	as	logical	AND,	OR,	and	so	on.

Display	all	entries	for	C++	Bitsets	on	one	page,	or	view	entries	individually:

Bitset	Constructors create	new	bitsets
Bitset	Operators compare	and	assign	bitsets
any true	if	any	bits	are	set
count returns	the	number	of	set	bits
flip reverses	the	bitset
none true	if	no	bits	are	set
reset sets	bits	to	zero
set sets	bits
size number	of	bits	that	the	bitset	can	hold
test returns	the	value	of	a	given	bit
to_string string	representation	of	the	bitset
to_ulong returns	an	integer	representation	of	the	bitset

	www.cppreference.com
	C++ Standard Template Library
	C++ Priority Queues
	C++ Priority Queues
	empty
	C++ Priority Queues
	pop
	Priority queue constructors
	push
	size
	top

	C++ Vectors
	C++ Vectors
	assign
	at
	back
	begin
	capacity
	clear
	empty
	end
	erase
	front
	C++ Vectors
	insert
	max size
	pop back
	push back
	rbegin
	rend
	reserve
	resize
	size
	swap
	Vector constructors
	Vector operators

	C++ Algorithms
	accumulate
	adjacent difference
	adjacent find
	C++ Algorithms
	binary search
	copy
	copy backward
	copy n
	count
	count if
	equal
	equal range
	fill
	fill n
	find
	find end
	find first of
	find if
	for each
	generate
	generate n
	includes
	C++ Algorithms
	inner product
	inplace merge
	iota
	is heap
	is sorted
	iter swap
	lexicographical compare
	lexicographical compare 3way
	lower bound
	make heap
	max
	max element
	merge
	min
	min element
	mismatch
	next permutation
	nth element
	partial sort
	partial sort copy
	partial sum
	partition
	pop heap
	power
	prev permutation
	push heap
	random sample
	random sample n
	random shuffle
	remove
	remove copy
	remove copy if
	remove if
	replace
	replace copy
	replace copy if
	replace if
	reverse
	reverse copy
	rotate
	rotate copy
	search
	search n
	set difference
	set intersection
	set symmetric difference
	set union
	sort
	sort heap
	stable partition
	stable sort
	swap
	swap ranges
	transform
	unique
	unique copy
	upper bound

	C++ Double-Ended Queues
	C++ Double-ended Queues
	assign
	at
	back
	begin
	clear
	Container constructors
	Container operators
	empty
	end
	erase
	front
	C++ Double-ended Queues
	insert
	max size
	pop back
	pop front
	push back
	push front
	rbegin
	rend
	resize
	size
	swap

	C++ Lists
	C++ Lists
	assign
	back
	begin
	clear
	Container constructors
	Container operators
	empty
	end
	erase
	front
	C++ Lists
	insert
	max size
	merge
	pop back
	pop front
	push back
	push front
	rbegin
	remove
	remove if
	rend
	resize
	reverse
	size
	sort
	splice
	swap
	unique

	C++ Queues
	C++ Queues
	back
	empty
	front
	C++ Queues
	pop
	push
	Queue constructor
	size

	C++ Stacks
	C++ Stacks
	empty
	C++ Stacks
	pop
	push
	size
	Stack constructors
	top

	C++ Sets
	C++ Sets
	begin
	clear
	Container constructors & destructors
	Container operators
	count
	empty
	end
	equal range
	erase
	find
	C++ Sets
	insert
	key comp
	lower bound
	max size
	rbegin
	rend
	size
	swap
	upper bound
	value comp

	C++ Multisets
	C++ Multisets
	begin
	clear
	Container constructors & destructors
	Container operators
	count
	empty
	end
	equal range
	erase
	find
	C++ Multisets
	insert
	key comp
	lower bound
	max size
	rbegin
	rend
	size
	swap
	upper bound
	value comp

	C++ Maps
	C++ Maps
	begin
	clear
	count
	empty
	end
	equal range
	erase
	find
	C++ Maps
	insert
	key comp
	lower bound
	Map Constructors & Destructors
	Map operators
	max size
	rbegin
	rend
	size
	swap
	upper bound
	value comp

	C++ Multimaps
	C++ Multimaps
	begin
	clear
	Container constructors & destructors
	Container operators
	count
	empty
	end
	equal range
	erase
	find
	C++ Multimaps
	insert
	key comp
	lower bound
	max size
	rbegin
	rend
	size
	swap
	upper bound
	value comp

	C++ Bitsets
	C++ Bitsets
	any
	Bitset Operators
	Bitset Constructors
	count
	flip
	C++ Bitsets
	none
	reset
	set
	size
	test
	to string
	to ulong

	Iterators
	Containers

	Miscellaneous C++
	Miscellaneous C++
	auto ptr
	Miscellaneous C++

	All C Functions
	All C++ Functions
	FAQ
	Complexity
	Links
	Credits
	Comments

