
Starting	Help Top		Next

C++	Add-In	will	guarantee	to	maximize	the	productivity	and	quality	because	it
helps	a	tool	to	adapt	C++	code	generation	and	reverse	engineering	easily	and
quickly	after	it	transforms	UML	model	to	C++	source	and	C++	source	to	UML
model.

Index	of	C++	Add-In	Help

1. C++	Add-In	Overview

2. C++	Profile

3. C++	Framework

4. Option	Configurations

5. C++	Reverse	Engineering

6. C++	Code	Generation

7. FAQ



C++	Add-In	Overview Top		Previous		Next

This	chapter	contains	a	general	overview	of	C++	Add-In:	functions	and
configuration	procedures.

C++	Add-In	Functions

C++	Add-In	Configurations
	
	



C++	Add-In	Functions Top		Previous		Next

	
C++	Add-In	provides	the	following	functions.

C++	Profile

C++	profile	is	provided	to	allow	visual	modeling	of	C++	concepts	such	as
package,	class,	interface,	imports,	modifier	and	so	on	in	StarUML(tm).	Include
the	C++	profile	when	you	start	your	StarUML(tm)	project,	in	order	to	apply	the
features	of	C++	language	in	your	software	modeling.

C++	Model	Framework

C++	Add-In	provides	Microsoft	MFC	6.0	in	the	Model	Framework	format.

C++	Reverse	Engineering

C++	Add-In	provides	the	reverse	engineering	function	that	generates
StarUML(tm)	models	by	analyzing	C++	codes.

C++	Code	Generation

C++	Add-In	provides	the	forward	engineering	function	that	generates	C++
codes	by	analyzing	StarUML(tm)	models.

	



C++	Add-In	Configurations Top		Previous		Next

Once	C++	Add-In	is	installed,	it	is	enabled	for	use	in	StarUML(tm)	by	default.
Installed	Add-Ins	can	be	enabled	or	disabled	through	Add-In	Manager	in
StarUML(tm).	If	an	Add-In	is	disabled,	no	main	or	popup	menu	items	related	to
it	are	displayed,	and	no	StarUML(tm)	events	are	relayed	to	it.
	

Procedure	for	Enabling	C++	Add-In:

1. Select	the	[Tools]->[Add-In	Manager...]	menu	in	StarUML(tm).
	

2. At	the	Add-In	Manager	dialog	box,	check	the	"C++	Add-In"	checkbox	in
the	Add-In	list.

	

3. Click	the	[OK]	button	to	close	the	dialog	box.

Procedure	for	Disabling	C++	Add-In:

1. Select	the	[Tools]	->	[Add-In	Manager...]	menu	in	StarUML(tm).
	

2. At	the	Add-In	Manager	dialog	box,	uncheck	the	"C++	Add-In"	checkbox
in	the	Add-In	list.

	
3. Click	the	[OK]	button	to	close	the	dialog	box.
	
	



C++	Profile Top		Previous		Next

This	chapter	describes	C++	profile:	configuration	procedures	and	definitions.

Including	C++	Profile

Excluding	C++	Profile

C++	Profile	Definition	List

	
	



Including	C++	Profile Top		Previous		Next

C++	profile	must	be	included	in	the	project	in	order	to	utilize	the	Stereotypes,
TagDefinitions,	and	DataTypes	defined	in	C++	profile.

Procedure	for	Including	C++	Profile	:

1. Select	the	[Model]->[Profiles...]	menu.
	

2. At	the	Profile	Manager	window,	select	"C++	Profile"	from	the	"Available
profiles"	list	on	the	left.

	

	

3. Click	the	[Include]	button	or	hit	Alt-I	to	move	"C++	Profile"	to	the"Included	profiles"	list.
	
4. Click	the	[Close]	button	to	close	the	Profile	Manager	window.
	
5. C++	profile	is	included	in	the	current	project.

Note

Opening	a	project	with	C++	profile	on	another	StarUML(tm)	system	that



does	not	have	C++	profile	installed	may	result	in	loss	of	extension
information	of	model	elements	(Stereotype,	Tag	definition,	etc).

	
	



Excluding	C++	Profile Top		Previous		Next

C++	profile	can	be	excluded	from	the	current	project.	Once	C++	profile	is
excluded,	Stereotypes,	TagDefinitions	and	DataTypes	defined	in	the	profile
cannot	be	used	in	the	project.

Procedure	for	Excluding	C++	Profile	:

1. Select	the	[Model]->[Profiles...]	menu.
	

2. At	the	Profile	Manager	window,	select	"C++	Profile"	from	the	"Included
profiles"	list	on	the	right.

	

	

3. Click	the	[Exclude]	button	or	hit	Alt-E	to	remove	"C++	Profile"	from	the"Included	profiles"	list.
	
4. Click	the	[Close]	button	to	close	the	Profile	Manager	window.
	
5. C++	profile	is	excluded	from	the	current	project.

	
Note



Re-including	C++	profile	after	excluding	it	does	not	restore	the	previously
edited	tag	definitions	of	the	model	elements.

	
	



Profile	Definition	List Top		Previous		Next

Stereotype

C++	profile	contains	definitions	for	the	following	stereotypes.

Sterotype
Target
Element Description

<<CppSourceFile>> Component Source	file	with	C++	code
<<CppHeaderFile>> Component C++	header	file

<<CppStruct>> Class Indicates	struct,	that	is	a	compound	type
similar	to	class.

<<CppUnion>> Class Indicates	union,	that	can	substitute	value
for	only	one	member	at	a	time.

<<CppOperator>> Operation Indicates	operator	function	that	overrides
operator.

<<CppMacro>> Operation
Used	for	expressing	a	macro	that	defines	a
part	of	member	definition	such	as	class	as
a	UML	operation	element.

<<CppUsing>> Dependency Used	for	referencing	other	namespace	with
the	using	syntax.

<<CppFriend>> Dependency,
Operation

Used	for	expressing	friend	of	class	as
dependency	element	or	expressing	friend
function.

<<CppTypedef>> Class Used	for	expressing	typedef,	which	defines
the	type,	as	class	element.

<<CppSynonym>> Dependency

Indicates	the	dependency	between	the
typedef	class	and	the	original	type	when
defining	a	type	with	a	typedef	of	a
different	name.

<<CppDelegate>> Class Indicates	delegate	function	defined	in
.NET	managed	C++.

TagDefinition

C++	profile	contains	definitions	for	the	following	tag	definitions.

TagDefinition Type Target	Element Description



CppVirtual Boolean
Generalization,
Realization,
Operation

The	CppVirtual	tag
definition	in
Generalization	or
Realization	indicates	that
the	parent	class	is	a	virtual
base	class.	If	the
CppVirtual	tag	definition
is	applied	to	an	operation,
it	indicates	that	the	C++
member	function	is	a
virtual	function	that	can	be
redefined	by	the	derived
class.

CppStatic BooleanAssociationEnd

Indicates	that	the	C++	data
member	matching	with
AssociationEnd	is	a	static
data	member	that	shares
only	one	copy	for	all
instances	of	the	class.

CppMutable BooleanAttribute,AssociationEnd

Indicates	that	the	C++	data
member	matching	with

Attribute	or
AssociationEnd	is	a
mutable	data	member	that
can	be	changed	by	the
const	member	function.

CppVolatile BooleanAttribute,AssociationEnd

Indicates	that	the	C++	data
member	matching	with
Attribute	or
AssociationEnd	is	a
volatile	variable.

CppCollection String Attribute,
AssociationEnd

Defines	the	C++
Collection	type	name.
The	CppConst	tag
definition	used	in
Operation	element
indicates	that	the	C++



CppConst BooleanOperation,Parameter
function	is	a	read-only
function.	If	the	CppConst
tag	definition	is	used	in
Parameter	element,	it
indicates	that	the
parameter	cannot	be
changed	within	the
function.

CppInline BooleanOperation

Indicates	that	the	operation
element	is	an	inline
function	that	compiles	the
function	body	by	inserting
it	in	the	place	where	the
function	is	called.

CppDimension Integer

Attribute,
AssociationEnd,
Operation,
Parameter

Indicates	the	array
dimension	of	the	declared
object.

CppBitField Integer Attribute Indicates	the	bit	field	of
the	data	member.

CppEnumLiteralValue String EnumerationLiteral
Records	the	value	of	each
item	for	C++	enumeration
(enum)	objects.

CppPointer String Attribute,	Parameter
Indicates	the	pointer
symbols	(*,	&,	etc.)	for
Attributes	and	Parameters.

CppFunctionTemplate String Operation
Records	the	template
declaration	for	template
function.

CppThrow String Operation
Records	the	expression	in
the	throw	clause	for
function.

CppTypedefPointer String Class
Indicates	the	pointer
symbols	(*,	&,	etc.)	for
typedef	declaration.

CppTypedefDefinition String Class
Records	the	type
declaration	for	typedef



declaration.

Cpp__Declspec String

Class,	Interface,
Attribute,
AssociationEnd,
Operation

Records	the	modifier	list
of	__declspec	keyword	for
the	tag	definition	grammar
used	in	Microsoft	Visual
C++.

Cpp__Gc Boolean
Class,	Interface,
Attribute,
AssociationEnd

Indicates	the	__gc
keyword	defined	in
Microsoft's	Managed
Extension	for	C++.

Cpp__Nogc Boolean
Class,	Interface,
Attribute,
AssociationEnd

Indicates	the	__nogc
keyword	defined	in
Microsoft's	Managed
Extension	for	C++.

Cpp__Value BooleanClass

Indicates	the	__value
keyword	defined	in
Microsoft's	Managed
Extension	for	C++.

Cpp__Event Boolean Interface,	Attribute,Operation

Indicates	the	__event
keyword	that	is	used	to
signify	events	in	C++,
COM,	and	Managed
Extension	for	C++.

Cpp__W64 BooleanAttribute
Indicates	that	the	__w64
keyword	is	being	used	for
Microsoft	Visual	C++.

Cpp__Based String Attribute

	
Tag	definition	that
supports	Based
Addressing,	which	is	used
in	Microsoft	Visual	C++.

Cpp__Cdecl BooleanOperation

	
Indicates	that	__cdecl
keyword,	which	is	one	of
the	function	calling
methods	in	Microsoft
Visual	C++,	is	being	used.



Cpp__Stdcall BooleanOperation

	
Indicates	that	__stdcall
keyword,	which	is	one	of
the	function	calling
methods	in	Microsoft
Visual	C++,	is	being	used.

Cpp__Fastcall BooleanOperation

	
Indicates	that	__fastcall
keyword,	which	is	one	of
the	function	calling
methods	in	Microsoft
Visual	C++,	is	being	used.

Cpp__Inline BooleanOperation

Indicates	the	inline
function	that	uses	the
__inline	keyword	in
Microsoft	Visual	C++.

Cpp__ForceInline BooleanOperation

	
Indicates	the	inline
function	that	uses	the
__forceinline	keyword	in
Microsoft	Visual	C++.

Cpp__Property BooleanOperation

	
Indicates	the	__property
defined	in	Microsoft's
Managed	Extension
for	C++.

DataTypes

C++	profile	contains	definitions	for	the	following	basic	C++	data	types.
	
int

unsigned	int

bool



char

unsigned	char

short

unsigned	short

long

long	long

unsigned	long

void

float

double

long	double

wchar_t

__int8

__int16

__int32

__int64

__m64

__m128

__m128d

__m128i



	
	



C++	Framework Top		Previous		Next

C++	Add-In	provides	MFC	6.0	Framework,	which	is	a	model	conversion	of	the
MFC	class	library	included	in	Microsoft	Visual	C++	6.0.	When	modeling
software	that	uses	MFC	in	the	C++	language	platform,	using	MFC	6.0
Framework	greatly	increases	productivity	and	convenience	as	the	classes
defined	in	MFC	can	be	used	directly,	without	having	to	create	them	from
scratch.

Using	MFC	6.0	Framework
	
	



Using	MFC	6.0	Framework Top		Previous		Next

Procedure	for	Importing	MFC	6.0	Framework:

1. Select	the	[File]	->	[Import]	->	[Framework...]	menu.
	

2. At	the	[Import	Framework]	dialog,	select	MFC	6.0	Framework	from	the
list	and	click	the	[OK]	button.

	

	

3.

The	Select	Element	dialog	box	will	appear,	to	determine	in	which	element
MFC	6.0	Framework	will	be	located.	Select	an	element	(package,	model,
subsystem	or	project)	to	contain	the	framework	and	then	click	the	[OK]
button.
	



4. The	framework	is	included	in	the	selected	element.

	Note

Importing	a	framework	does	not	store	the	framework	elements	in	the
project.	Since	framework	units	are	referenced	by	the	project,	the
framework	unit	files	must	be	present	when	opening	the	project.
To	delete	the	imported	frameworks,	remove	the	respective	framework
units.

	
	



Option	Configurations Top		Previous		Next

This	chapter	discusses	procedures	for	configuring	the	C++	Add-In	environment
and	describes	the	option	items	in	detail.

Code	Generation	Option	Configuration

Reverse	Engineering	Option	Configuration
	
	



Code	Generation	Option	Configuration Top		Previous		Next

Code	Generation	Option	([Tools]	->	[Options...])	is	the	group	of	option	items
for	code	generation	by	C++	Add-In.	This	category	includes	the	[General],
[Code	Generation],	[Editing],	and	[File	Header]	sub-categories.

General

Option	Item Default Description
Generate	codes
even	when	there	is
no	profile

False
Specifies	whether	to	generate	codes	even	when
C++	profile	is	not	loaded	in	the	project	(not
recommended).

File	Generation

Option	Item Default Description
Header	file	extension
name .h Specifies	the	extension	name	for	C++	header

files	(e.g.	.h).
Implementation	file
extension	name .cpp Specifies	the	extension	name	for	C++

implementation	files	(e.g.	.cpp).
Specifies	the	subdirectory	for	saving	the	C++



Header	file
subdirectory

header	file	generated.	If	unspecified,	the	file	is
saved	in	the	current	directory.

Implementation	file
subdirectory

Specifies	the	subdirectory	for	saving	the	C++
implementation	file	generated.	If	unspecified,
the	file	is	saved	in	the	current	directory.

Filename	format

Same
as	the
model
name

Specifies	the	format	for	the	C++	source	file
name.

Generate	namespace	as
subdirectory False Generates	namespace	as	subdirectory.

Code	Generation

Option	Item Default Description
Generate	package	as
namespace False Generates	package	elements	as	namespaces.

Use	Microsoft	Visual
C++	grammar False Generates	code	using	Microsoft	Visual	C++

grammar.
.NET	Managed	C++
support False Generates	code	using	.NET	Managed	C++

grammar.

Member	order
Public
member
first

Determines	the	code	generation	order	for	the
members	defined	in	classes	and	interfaces.

Code	Style

Option	Item Default Description
Insert	tabs	as	spaces False Uses	space	instead	of	tab	for	indentation.

Tab	width 4 Specifies	the	number	of	spaces	to	be	used
when	inserting	tabs	as	spaces.

Place	the	opening	curly
brace	in	the	new	line False Places	the	opening	curly	brace	"{"	in	the	new

line.

File	Header

Option	Item Default Description
Adds	the	comments	in	the	beginning	of	the



File	Header	Comments Seedescription

source	file.

(Default)

//
//
//	Generated	by	StarUML(tm)	C++	Add-In
//
//	@@	Project	:	@p
//	@@	File	Name	:	@f
//	@@	Date	:	@d
//	@@	Author	:	@a
//
//

Default	Include	text	for
header	file

Contains	the	#include	text	that	is	included
in	all	header	files	generated.

Default	Include	text	for
implementation	file

Contains	the	#include	text	that	is	included
in	all	implementation	files
generated.

	



Reverse	Engineering	Option
Configuration

Top		Previous	
Next

Reverse	Engineering	Option	Configuration	([Tools]	->	[Options...])	is	the
group	of	reverse	engineering	option	items	for	C++	Add-In.	This	category
includes	the	[Model	Generation],	[Diagram]	and	[View]	sub-categories.

Model	Generation

Option	Item Default Description
Generate	public
member True Specifies	whether	to	generate	class	and	interface

members	with	public	visibility.
Generate	package
member True Specifies	whether	to	generate	class	and	interface

members	with	package	visibility.
Generate	private
member True Specifies	whether	to	generate	class	and	interface

members	with	private	visibility.
Omit	initial	value
for	data	members False Does	not	include	the	initial	data	member	value	in

the	Attribute	model	information.

Generate	data
Analyzes	the	field	information	in	the	source	code
to	establish	association	relationships	with	the



members	as
Association

False respective	data	member	type	models.	If
unchecked,	data	member	information	is	generated
as	attribute	for	the	respective	class	model.

Diagram

Option	Item Default Description

Generate
Overview	diagram True

Specifies	whether	to	generate	the	Overview
diagram	for	the	generated	model.	If	unchecked,
the	following	diagram	and	view	options	are
ignored.

Diagram	name Overview
of	%s

Specifies	the	Overview	diagram	name.	The
package	name	can	be	included	in	the	diagram
name	by	using	%s	(e.g.	Overview	of	%s).

View

Option	Item Default Description
Suppress	the
Attribute
compartment	of
Class

False
Suppresses	the	Attribute	compartment	of	the
Class	View	when	generating	the	Overview
diagram.

Suppress	the
Operation
compartment	of
Class

False
Suppresses	the	Operation	compartment	of	the
Class	View	when	generating	the	Overview
diagram.

Hide	operation
signature False Hides	the	operation	signature	when	generating	the

Overview	diagram.
	
Generate
Generalization	and
Realization
views	only	for
relations

False

Generates	generalization	and	realization	views
only	for	relations	when	generating	the	Overview
diagram.	When	used	appropriately	with	other
view	options,	this	option	is	very	useful	for
drawing	the	inheritance	relations	of	overall
classes	and	interfaces	within	the	package.

	



C++	Reverse	Engineering Top		Previous		Next

C++	reverse	engineering	analyzes	C++	sourse	files	and	converts	them	into
UML	models.	This	is	useful	for	source	inspection,	system	structure	analysis	and
re-designing.

C++	Reverse	Engineering

Reverse	Engineering	Option	Configuration
	
	



C++	Reverse	Engineering Top		Previous		Next

Procedure	for	Reverse	Engineering:

1.
In	StarUML(tm),	select	the	[Tools]	->	[C++]	->	[Code	Reverse

Engineering...]	menu.

2.
At	the	[Select	Source	Code]	page	in	the	[C++	Reverse	Engineering]
dialog	box,	select	a	source	and	click	[Add].	Click	[Next]	once	you	have
completed	adding	the	target	sources	for	reverse	engineering.
	

	

3. At	the	[Select	the	Package	to	Contain	Result]	page,	select	a	package	tocontain	the	output	results	from	the	package	tree	and	click	[Next].
	



	

4. At	the	[Option	Setup]	page,	select	the	reverse	engineering	options	andclick	[Run].	Reverse	engineering	will	start	now.
	



	

5. The	[Reverse	Engineering]	page	will	show	the	reverse	engineeringprogress	status	and	return	reverse	engineering	failure	or	success	results.
	



Note

If	C++	reverse	engineering	is	executed	without	including	C++	profile,	the
following	dialog	box	will	appear	asking	whether	you	want	to	include	C++
profile.	Select	"Yes(Y)"	to	continue	the	reverse	engineering	process.
	

	



Reverse	Engineering	Option
Configuration

Top		Previous	
Next

	
Reverse	Engineering	Option	Configuration	Screen

This	is	the	screen	for	configuring	the	options	required	for	C++	reverse
engineering.

Model	Generation

Model	Generation	includes	various	options	for	model	generation.
Item Description
Omit	field	initial
value	for	data
member

Does	not	include	the	initial	data	member	value	in	the
Attribute	model	information.

public Specifies	whether	to	generate	class	and	interface	members
with	public	visibility.

protected Specifies	whether	to	generate	class	and	interface	members



with	protected	visibility.

private Specifies	whether	to	generate	class	and	interface	members
with	private	visibility.

Reference	Data	Member	Generation

Reference	Data	Member	Generation	specifies	generation	methods	for	reference
fields	when	generating	models.
Item Description
Create	the	data
member	to	the
Attribute

Specifies	whether	to	generate	C++	data	members	as
attribute	elements.

Create	the	data
member	to	the
Association

Specifies	whether	to	generate	C++	data	members	as
association	elements.

Diagram

Diagram	specifies	diagram	generation	and	the	default	generation	names.
Item Description

Create	Overview
diagram

Specifies	whether	to	create	Overview	diagram	when
generating	model.	If	not	selected,	all	options	related	to
diagram	and	views	are	ignored.

The	name	of
diagram

Specifies	names	for	Overview	diagram	generation.	The
string	%s	is	automatically	replaced	by	the	package	name
(e.g.	Overview	of	%s).

View

View	specifies	view-related	options	after	model	generation.
Item Description
Suppress	the
Attribute
compartment

Suppresses	the	attribute	compartment	of	class	models.

Suppress	the
Operation
compartment

Suppresses	the	operation	compartment	of	the	class	models.

Hide	operation Specifies	whether	to	display	all	signatures	for	operation



signatures elements.
Generate
generalization	and
realization	views
only

Specifies	whether	to	generate	generalization	and	realization
views	only	for	the	models	generated.	This	option	is	useful
if	used	with	other	view	options	to	express	inheritance
relations	between	classes	and	interfaces	within	the	package.

	



C++	Source	Code	Generation Top		Previous		Next

C++	code	generation	generates	C++	source	files	from	StarUML(tm)	models.

C++	Code	Generation

Code	Generation	Option	Configuration
	
	



C++	Code	Generation Top		Previous		Next
	
Procedure	for	Code	Generation	:

	
1. In	StarUML(tm),	select	the	[Tools]->[C++]->[Code	Generation...]	menu.

2. At	the	[Select	Starting	Package	Location]	page	in	the	[C++	CodeGeneration]	dialog	box,	select	a	package	and	click	[Next].
	

	

3. At	the	[Select	the	code	generation	element]	page,	select	the	elementsand	click	[Next].
	



	

4. At	the	[Output	Directory	Setup]	page,	select	a	directory	to	save	theoutput	sources	and	click	[Next].
	



	

5. At	the	[Option	Setup]	page,	select	options	and	click	[Run].	Reverseengineering	will	start	now.
	



	

6. The	[Code	Generation]	page	will	show	the	code	generation	progressstatus	and	return	code	generation	failure	or	success	results.
	



Note

The	following	error	will	occur	if	C++	code	generation	is	executed	without
including	C++	profile.	Please	ensure	that	C++	profile	is	included	in	the
project	before	executing	code	generation.
	

	



Code	Generation	Option	Configuration Top		Previous		Next
	
Code	Generation	Option	configuration	Screen

This	is	the	screen	for	configuring	the	options	required	for	code	generation.

Generation	file	Setup

"Generation	file	setup"	defines	the	file	name	and	path	for	source	file	generation.
Item Description
Header	file Specifies	the	extension	name	for	C++	header	file	(e.g.	.h).
Implementation
file

Specifies	the	extension	name	for	C++	implementation	file
(e.g.	.cpp).

File	name
Specifies	the	format	of	the	C++	source	file	name.	Four
options	are	available:	"same	as	the	model	name",	"lower
case",	"upper	case",	and	"lower	case	with	'_'	".

Header	file
subdirectory Specifies	the	subdirectory	name	for	the	C++	header	file.



Implementation
file	subdirectory

Specifies	the	subdirectory	name	for	the	C++
implementation	file.	If	unspecified,	the	current	directory	is
used.

Generate
Namespace	as
subdirectory

Specifies	whether	to	generate	namespace	as	subdirectory.

Code	Style

Code	Style	defines	the	code	style	for	the	C++	code	generated.
Item Description
Insert	tab	as	space Specifies	whether	to	insert	space	strings	instead	of	tabs.

Tab	width Specifies	the	number	of	spaces	for	a	tab.	Effective	only	if
the	"Insert	tab	as	space"	option	is	selected.

Place	opening
curly	brace	"{"	in
the	new	line

Specifies	the	location	of	the	opening	curly	brace	"{"	for
code	generation.

Code	Generation

Code	generation	configures	the	general	options	for	source	code	generation.
Item Description
Generate	package
as	namespace

Generates	package	element	as	C++	namespace.	Classes	and
interfaces	included	in	package	are	declared	in	namespace.

Use	Microsoft
Visual	C++
grammar

Generates	code	using	Microsoft's	Visual	C++	grammar.

Support	.NET
Managed	C++

Generates	code	using	grammar	defined	in	.NET's	Managed
C++.	Effective	only	when	the	"Use	Microsoft	Visual	C++
grammar"	option	is	selected.

Member	in	order

Specifies	the	code	generation	order	for	the	members
defined	in	classes	and	interfaces.	Three	options	are
available:	"Public	member	first",	"Private	member	first",
and	"Unordered".

	
	



	
File	Header	Comments	and	Default	Include

"File	Header	Comments	and	Default	Include"	defines	the	comments	for	each
file	header	and	the	common	include	clause	for	all	files.

Item Description

File	Header
Comment

Contains	the	comments	to	be	inserted	in	the	beginning	of
the	source	file.	As	described	in	the	"header	comments
description"	section,	the	'@'	symbol	and	alphanumeric
characters	can	be	used	to	insert	specific	values	here.

Initial	header
#includes Contains	the	common	#include	clause	for	all	header	files.

Initial
implementation
#includes

Contains	the	common	#include	clause	for	all
implementation	files.

	



FAQ Top		Previous	

The	following	are	frequently	asked	questions	and	answers	for	C++	Add-In.

1. The	"C++"	menu	cannot	be	found	under	the	[Tools]	menu.

2. When	reverse	engineering	with	C++	Add-In	the	"Analysis	failure"	error
occurs	even	through	the	source	has	no	C++	grammar	problems.
	

3. Not	all	of	the	C++	reverse	engineering	results	are	displayed	in	thediagram.
	

4. The	pointer	indicators	in	Attribute	type	properties	are	omitted	in	the	C++reverse	engineered	models.
	
5. The	reverse	engineered	diagram	is	too	complicated	to	view.

	
1. The	"C++"	menu	cannot	be	found	under	the	[Tools]	menu.
	
There	are	two	possible	reasons	why	the	menu	does	not	show	up.	One	is	that
C++	Add-In	is	not	installed	in	StarUML(tm)	or	related	files	are	damaged.
To	correct	this,	run	the	installation	program	to	reinstall	StarUML(tm)	or
select	to	reinstall	C++	Add-In	only.	If	you	are	familiar	with	the	structure	of
StarUML(tm)	Add-Ins,	you	may	examine	the	registry	or	menu	files	to
check	for	damage	in	the	Add-In	and	correct	the	problem.	Another	possible
reason	for	the	problem	is	that	C++	Add-In	is	disabled	by	Add-In	Manager.
If	so,	go	to	Add-In	Manager	and	enable	C++	Add-In.	For	the	procedure	to
enable	C++	Add-In,	see	the	"1.2	C++	Add-In	Configurations"	section.
	

	

2.When	reverse	engineering	with	C++	Add-In	the	"Analysis	failure"
error	occurs	even	though	the	source	has	no	C++	grammar	problems.
	
Source	file	analysis	failure	in	reverse	engineering	occurs	mostly	with	the
codes	written	with	macros.



While	general	C++	compilers	perform	another	pre-process	cycle	prior	to
compiling	the	source	code,	C++	Add-In	does	not	perform	a	complete	pre-
process	cycle.	This	is	because	replacing	all	the	macros	requires	analysis	of
the	source	files	that	contain	the	declarations	of	the	macros.	This	requires
separate	management	of	the	source	file	paths	for	searching,	takes	a	longer
time	analyzing	the	macro	declaration	source	files,	and	some	sources	written
in	specific	development	environments	such	as	Visual	C++	cannot	be
analyzed	properly	unless	the	development	environment	is	installed	in	the
system.	Including	macro	comments	in	the	analyzed	model	may	also	result
in	a	complicated	model	view,	which	may	make	it	difficult	for	the	user	to
analyze	the	model.
	
Consequently,	C++	Add-In	flexibly	modifies	parts	of	the	grammar	used	in
analysis	so	that	the	macros	used	in	member	declaration	in	class	are
identified	as	macros	in	the	model.	However,	since	it	is	difficult	to	identify
macros	in	any	location	due	to	the	nature	of	the	grammar,	macros	in
unexpected	locations	may	not	be	identified	correctly.	In	such	rare	cases,	the
"analysis	failure"	error	occurs.	Nevertheless,	even	through	some	parts	of
source	file	analysis	may	fail,	the	rest	of	the	file	is	analyzed	correctly,
returning	the	proper	reverse	engineering	results.
	

	

3. Not	all	of	the	C++	reverse	engineering	results	are	displayed	in	thediagram.
	
Not	all	of	the	reverse	engineering	results	are	displayed	in	the	diagram
because	the	current	diagram	is	not	large	enough	to	contain	all	of	the
generated	views.	Select	the	[Tools]->[Options...]	menu	to	open	the	Options
dialog	box,	and	at	the	[Environment]->[Diagram]	section,	adjust	the
"Default	Diagram	Height"	and	"Default	Diagram	Width"	to	make	the
diagram	size	larger.
	

	

4. The	pointer	indicators	in	Attribute	type	properties	are	omitted	in	theC++	reverse	engineered	models.
	
UML	does	not	include	model	properties	for	the	C++	pointer	concept.
Therefore,	it	is	not	technically	correct	to	use	pointer	indicators	in	Attribute



type	properties.	Nevertheless,	C++	Add-In	uses	the	CppPointer	tag
definition	for	expressing	pointer	type	and	reference	type.	Select	the
Attribute	and	hit	Ctrl	+	F7	to	verify	the	CppPointer	tag	definition	value	in
the	tag	definition	editor	window.
	

	
5. The	reverse	engineered	diagram	is	too	complicated	to	view.
	
One	of	the	main	functions	of	reverse	engineering	is	to	convert	an	existing
source	code	into	models	and	facilitate	easier	analysis.	However,	if	all
of	the	reverse	engineered	model	information	is	expressed	in	diagram,	it
would	be	difficult	to	view	and	analyze	the	information.
In	order	to	assist	the	user	in	this	aspect,	C++	Add-In	provides	various
options	for	reverse	engineering.	The	user	can	specify	the	diagram	format	by
manipulating	these	options.	For	example,	selecting	"Suppress	the	Attribute
compartment",	"Suppress	the	Operation	compartment",	and	"Generate
Generalization	and	Realization	views	only"	outputs	only	the	class
inheritance	structure	in	diagram.
	


	Starting Help
	C++ Add-In Overview
	C++ Add-In Functions
	C++ Add-In Configurations

	C++ Profile
	Including C++ Profile
	Excluding C++ Profile
	Profile Definition List

	C++ Framework
	Using MFC 6.0 Framework

	Option Configurations
	Code Generation Option Configuration
	Reverse Engineering Option Configuration

	C++ Reverse Engineering
	C++ Reverse Engineering
	Reverse Engineering Option Configuration

	C++ Code Generation
	C++ Code Generation
	Code Generation Option Configuration

	FAQ

