Starting Help

C++ Add-In will guarantee to maximize the productivity and quality because it
helps a tool to adapt C++ code generation and reverse engineering easily and
quickly after it transforms UML model to C++ source and C++ source to UML
model.

Index of C++ Add-In Help

1. C++ Add-In Overview

2. C++ Profile

3. C++ Framework

4. Option Configurations

5. C++ Reverse Engineering

6. C++ Code Generation

7. FAQ

C++ Add-In Overview

This chapter contains a general overview of C++ Add-In: functions and
configuration procedures.

e C++ Add-In Functions

e C++ Add-In Configurations

C++ Add-In Functions

C++ Add-In provides the following functions.

C++ Profile

C++ profile is provided to allow visual modeling of C++ concepts such as
package, class, interface, imports, modifier and so on in StarUML(tm). Include
the C++ profile when you start your StarUML(tm) project, in order to apply the
features of C++ language in your software modeling.

C++ Model Framework
C++ Add-In provides Microsoft MFC 6.0 in the Model Framework format.
C++ Reverse Engineering

C++ Add-In provides the reverse engineering function that generates
StarUML (tm) models by analyzing C++ codes.

C++ Code Generation

C++ Add-In provides the forward engineering function that generates C++
codes by analyzing StarUML(tm) models.

C++ Add-In Configurations

Once C++ Add-In is installed, it is enabled for use in StarUML(tm) by default.
Installed Add-Ins can be enabled or disabled through Add-In Manager in
StarUML(tm). If an Add-In is disabled, no main or popup menu items related to
it are displayed, and no StarUML(tm) events are relayed to it.

Procedure for Enabling C++ Add-In:

1. Select the [Tools]->[Add-In Manager...] menu in StarUML(tm).

At the Add-In Manager dialog box, check the "C++ Add-In" checkbox in

% the Add-In list.
Add-In Manager ; x|

add-Ins

Marme | Version <
EAPgEC++ Acdd-In | 1.0.1.68

[c# add-In 1.0.1.70

£ Java Add-In 1.0.1.9¢

A% Pattern Add-In 1.0.1.63 |
F<®rose Add-In 1.0.1.64

Qmefault Extension Pack 1.0.1.314 _|LI
4| | B

O, I Zancel | Help |

3. Click the [OK] button to close the dialog box.

Procedure for Disabling C++ Add-In:

1. Select the [Tools] -> [Add-In Manager...] menu in StarUML(tm).

At the Add-In Manager dialog box, uncheck the "C++ Add-In" checkbox
"in the Add-In list.

3. Click the [OK] button to close the dialog box.

C++ Profile

This chapter describes C++ profile: configuration procedures and definitions.

¢ Including C++ Profile

e Excluding C++ Profile

e C++ Profile Definition List

Including C++ Profile

C++ profile must be included in the project in order to utilize the Stereotypes,
TagDefinitions, and DataTypes defined in C++ profile.

Procedure for Including C++ Profile :

1. Select the [Model]->[Profiles...] menu.

At the Profile Manager window, select "C++ Profile" from the "Available
" profiles" list on the left.

fwvailable profiles: Included profiles: IE_l
™t & & [

_++ Profile Z# Profile EJE Profile ML Standard
Include = | Profile
;g_’fm = Exclude |
»
Java Profile
Descripkion:

Z++ Language Profile

Close I Help |

Click the [Include] button or hit Alt-I to move "C++ Profile" to the
" "Included profiles" list.

4. Click the [Close] button to close the Profile Manager window.

5. C++ profile is included in the current project.

[Note
Opening a project with C++ profile on another StarUML(tm) system that

e does not have C++ profile installed may result in loss of extension
information of model elements (Stereotype, Tag definition, etc).

Excluding C++ Profile

C++ profile can be excluded from the current project. Once C++ profile is
excluded, Stereotypes, TagDefinitions and DataTypes defined in the profile
cannot be used in the project.

Procedure for Excluding C++ Profile :

1. Select the [Model]->[Profiles...] menu.

At the Profile Manager window, select "C++ Profile" from the "Included
" profiles" list on the right.

fwvailable profiles: Included profiles: IE_l
¢ & & ct M

Z# Profile EJE Profile Java Profile _++ Profile G &)
Include = Profile

< Exclude |

Descripkion:

Z++ Language Profile

Close I Help |

Click the [Exclude] button or hit Alt-E to remove "C++ Profile" from the
" "Included profiles" list.

4. Click the [Close] button to close the Profile Manager window.

5. C++ profile is excluded from the current project.

E'Note

e Re-including C++ profile after excluding it does not restore the previously
edited tag definitions of the model elements.

Profile Definition List

Stereotype

C++ profile contains definitions for the following stereotypes.

‘Target
Sterotype Element Description
<<CppSourceFile>>|Component |Source file with C++ code
<<CppHeaderFile>>|Component C++ header file
<<CppStruct>> Class glriljg';eti sctlr;lscst, that is a compound type
<<CppUnion>> Class Indicates union, that can sqbstltute value
for only one member at a time.
<<CppOperator>> |Operation irrl)delrc;toers operator function that overrides
Used for expressing a macro that defines a
<<CppMacro>> Operation part of member definition such as class as
a UML operation element.
: Used for referencing other namespace with
<<CppUsing>> Dependency the using syntax. i P
Dependenc Used for expressing friend of class as
<<CppFriend>> pERTEncy, dependency element or expressing friend
Operation function.
<<CpoTvpedef>> |Class Used for expressing typedef, which defines
PPEYP the type, as class element.
Indicates the dependency between the
typedef class and the original type when
<< >>
CppSynonym Dependency defining a type with a typedef of a
different name.
<<CppDelegate>> |Class I;%%a;iz I?;glggaée_ﬁmcﬂon defined in
TagDefinition

C++ profile contains definitions for the following tag definitions.

TagDefinition

Type

Target Element

Description

Cpp Virtual

Boolean

Generalization,
Realization,
Operation

The CppVirtual tag
definition in
Generalization or
Realization indicates that
the parent class is a virtual
base class. If the

Cpp Virtual tag definition
is applied to an operation,
it indicates that the C++
member function is a
virtual function that can be
redefined by the derived
class.

CppStatic

Boolean

AssociationEnd

Indicates that the C++ data
member matching with
AssociationEnd is a static
data member that shares
only one copy for all
instances of the class.

CppMutable

Boolean

Attribute,
AssociationEnd

Indicates that the C++ data
member matching with

Attribute or
AssociationEnd is a
mutable data member that
can be changed by the
const member function.

CppVolatile

Boolean

Attribute,
AssociationEnd

Indicates that the C++ data
member matching with
Attribute or
AssociationEnd is a
volatile variable.

CppCollection

String

Attribute,
AssociationEnd

Defines the C++
Collection type name.

The CppConst tag
definition used in
Operation element
indicates that the C++

CppConst

Boolean

Operation,
Parameter

function is a read-only
function. If the CppConst
tag definition is used in
Parameter element, it
indicates that the
parameter cannot be
changed within the
function.

Cpplnline

Boolean

Operation

Indicates that the operation
element is an inline
function that compiles the
function body by inserting
it in the place where the
function is called.

CppDimension

Integer

Attribute,
AssociationEnd,
Operation,
Parameter

Indicates the array
dimension of the declared
object.

CppBitField

Integer

Attribute

Indicates the bit field of
the data member.

CppEnumlLiteral Value

String

EnumerationLiteral

Records the value of each
item for C++ enumeration
(enum) objects.

CppPointer

String

Attribute, Parameter

Indicates the pointer
symbols (*, &, etc.) for
Attributes and Parameters.

CppFunctionTemplate

String

Operation

Records the template
declaration for template
function.

CppThrow

String

Operation

Records the expression in
the throw clause for
function.

CppTypedefPointer

String

Class

Indicates the pointer
symbols (*, &, etc.) for
typedef declaration.

CppTypedefDefinition

String

Class

Records the type
declaration for typedef

declaration.

Class, Interface,

Records the modifier list
of __declspec keyword for

Cpp__Declspec String ﬁttrlbgte., the tag definition grammar
ssociationEnd, ! . .
Operation used in Microsoft Visual
C++.
Class, Interface, Lndlcateg Ctlh?_gc
Cpp__Gc Boolean|Attribute, eywor 'e med
AssociationEnd Microsoft's Managed
Extension for C++.
Class, Interface, Lndlcateg (tlh?_gqgc
Cpp__Nogc Boolean|Attribute, eywor 'e nea i
AssociationEnd Microsoft's Managed
Extension for C++.
Indicates the __ value
keyword defined in
Cpp__Value Boolean|Class Microsoft's Managed
Extension for C++.
Indicates the __event
Interface, Attribute, k.e yword that 1? used to
Cpp__Event Boolean Operation signify events in C++,
COM, and Managed
Extension for C++.
Indicates that the _ w64
Cpp__W64 Boolean|Attribute keyword is being used for
Microsoft Visual C++.
Tag definition that
Cpp__Based String |Attribute supports Based
Addressing, which is used
in Microsoft Visual C++.
Indicates that __cdecl
keyword, which is one of
Cpp__Cdecl Boolean|Operation the function calling

methods in Microsoft
Visual C++, is being used.

Cpp__Stdcall

Boolean

Operation

Indicates that __stdcall
keyword, which is one of
the function calling
methods in Microsoft
Visual C++, is being used.

Cpp__Fastcall

Boolean

Operation

Indicates that __ fastcall
keyword, which is one of
the function calling
methods in Microsoft
Visual C++, is being used.

Cpp__Inline

Boolean

Operation

Indicates the inline
function that uses the
__inline keyword in
Microsoft Visual C++.

Cpp__Forcelnline

Boolean

Operation

Indicates the inline
function that uses the
__forceinline keyword in
Microsoft Visual C++.

Cpp___Property

Boolean

Operation

Indicates the __property
defined in Microsoft's
Managed Extension

for C++.

DataTypes

C++ profile contains definitions for the following basic C++ data types.

e int
e unsigned int

e bool

e char

unsigned char

short

unsigned short
e long

¢ long long

¢ unsigned long
e void

e float

e double

¢ long double

e wchar t
e int8

e intl6
e int32
e int64
e mb4

e ml28
e ml28d

e ml28i

C++ Framework

C++ Add-In provides MFC 6.0 Framework, which is a model conversion of the
MEFC class library included in Microsoft Visual C++ 6.0. When modeling
software that uses MFC in the C++ language platform, using MFC 6.0
Framework greatly increases productivity and convenience as the classes
defined in MFC can be used directly, without having to create them from
scratch.

e Using MFC 6.0 Framework

Using MFC 6.0 Framework

Procedure for Importing MFC 6.0 Framework:

1. Select the [File] -> [Import] -> [Framework...] menu.

At the [Import Framework] dialog, select MFC 6.0 Framework from the
"list and click the [OK] button.

Import Framework X

Erameworks list: Em
et & &

.MET Base Java 2 Java 2
lass Librar,.,, Enterprise 1.4 Standard 1.3

Descripkion:

Microsoft Foundation Classes (MFC) 6,0 Framework,

The Select Element dialog box will appear, to determine in which element
MFC 6.0 Framework will be located. Select an element (package, model,

" subsystem or project) to contain the framework and then click the [OK]
button.

=-*§ Untitled
--[&] Scenarios

2] Development View
i[Z] Process Yiew

------ 2] Physical Yiew

|: :Logical Wiew |

O, I Zancel | Help |

4. The framework is included in the selected element.

[Note
Importing a framework does not store the framework elements in the
e project. Since framework units are referenced by the project, the
framework unit files must be present when opening the project.

, To delete the imported frameworks, remove the respective framework
units.

Option Configurations

This chapter discusses procedures for configuring the C++ Add-In environment
and describes the option items in detail.

e Code Generation Option Configuration

e Reverse Engineering Option Configuration

Code Generation Option Configuration

Code Generation Option ([Tools] -> [Options...]) is the group of option items
for code generation by C++ Add-In. This category includes the [General],
[Code Generation], [Editing], and [File Header] sub-categories.

X
Oipkion categary Cipkion item
(1 Environment =l -
] C++ Generate codes even when the]
=" nde Generation E File Generation
Reverse Engineeting Header file extension name h
s Implementation file extension n .cpp
(1 Java Header file subdirectory
Implementation file subdirector —
Filenarme Format Same as Model
Generate namespace as subdin]
H Code Generation
Generate package as namespa |:|
IUse Microsoft Yisual C++ grami] LI
Description: Code Generation
Zontains options For generating C++ code From modeling elements.,
Reset to defaulk values Revert to the last value Ok, I Zancel
General
Option Item Default Description
Generate codes Specifies whether to generate codes even when
even when there is|False |C++ profile is not loaded in the project (not
no profile recommended).
File Generation
Option Item Default Description
Header file extension h Specifies the extension name for C++ header
name ’ files (e.g. .h).
Implementation file epp Specifies the extension name for C++
extension name ' implementation files (e.g. .cpp).
Specifies the subdirectory for saving the C++

Header file
subdirectory

header file generated. If unspecified, the file is
saved in the current directory.

Implementation file

Specifies the subdirectory for saving the C++
implementation file generated. If unspecified,

subdirector N : .
y the file is saved in the current directory.
Same
. as the |Specifies the format for the C++ source file
Filename format
model |name.
name
nerate nam :
Ge erale Namespace as \p.1so |Generates namespace as subdirectory.
subdirectory
Code Generation
Option Item Default Description
ner k
Generate package as False |Generates package elements as namespaces.
namespace
Use Microsoft Visual False Generates code using Microsoft Visual C++
C++ grammar grammar.
.NET Managed C++ False Generates code using .NET Managed C++
support grammar.
Publi : :
ublic Determines the code generation order for the
Member order member o .
first members defined in classes and interfaces.
Code Style
Option Item Default Description
Insert tabs as spaces |False |Uses space instead of tab for indentation.
. ifies the number of
Tab width 4 Spec les t enu ber of spaces to be used
when inserting tabs as spaces.
Place the opening curly False Places the opening curly brace "{" in the new
brace in the new line line.
File Header
Option Item Default Description

Adds the comments in the beginning of the

File Header Comments

See
description

source file.
(Default)

//
//
// Generated by StarUML(tm) C++ Add-In
//

/l @@ Project : @p
/| @@ File Name : @f

// @@ Date : @d

// @@ Author : @a
//
//

Default Include text for
header file

Contains the #include text that is included
in all header files generated.

Default Include text for
implementation file

Contains the #include text that is included
in all implementation files
generated.

Reverse Engineering Option

Configuration

Reverse Engineering Option Configuration ([Tools] -> [Options...]) is the
group of reverse engineering option items for C++ Add-In. This category
includes the [Model Generation], [Diagram] and [View] sub-categories.

X
Oipkion categary Cipkion item
] C++ Generate public member
Code Generation Generake protected member
L@ F =verse Engineering Generate private member
s ok initial walue For data memk]
(1 Java Generate data member as Assc]
El Diagram
Generate Cverview diagram
Diagram name Owerview of %as
El ¥iew =
Suppress the attribute compart]
Suppress the Operation compal |:| LI
Description: Reverse Enginesting
Zontains options For reverse engineering C++ code into model information.
Reset to defaulk values Revert to the last value Ok, I Zancel
Model Generation
Option Item Default Description
Generate public True Specifies whether to generate class and interface
member members with public visibility.
Generate package True Specifies whether to generate class and interface
member members with package visibility.
Generate private True Specifies whether to generate class and interface
member members with private visibility.
Onmit initial value Does not include the initial data member value in
False . . .
for data members the Attribute model information.
Analyzes the field information in the source code
Generate data to establish association relationships with the

members as False |respective data member type models. If
Association unchecked, data member information is generated
as attribute for the respective class model.
Diagram
Option Item Default Description
Specifies whether to generate the Overview
Generate True diagram for the generated model. If unchecked,
Overview diagram the following diagram and view options are
ignored.
0 . |Specifies the Overview diagram name. The
: verview : : :
Diagram name of %s package name can be included in the diagram
name by using %s (e.g. Overview of %s).
View
Option Item Default Description
Sup press the Suppresses the Attribute compartment of the
Attribute . . :
False |Class View when generating the Overview
compartment of diagram
Class '
Supp ress the Suppresses the Operation compartment of the
Operation . . .
False |Class View when generating the Overview
compartment of diagram
Class '
Hide operation False Hides the operation signature when generating the
signature Overview diagram.
Generates generalization and realization views
Generate only for relations when generating the Overview
Generalization and False diagram. When used appropriately with other
Realization view options, this option is very useful for
views only for drawing the inheritance relations of overall
relations classes and interfaces within the package.

C++ Reverse Engineering

C++ reverse engineering analyzes C++ sourse files and converts them into
UML models. This is useful for source inspection, system structure analysis and

re-designing.

e C++ Reverse Engineering
e Reverse Engineering Option Configuration

C++ Reverse Engineering

Procedure for Reverse Engineering:

In StarUML(tm), select the [Tools] -> [C++] -> [Code Reverse
. Engineering...] menu.

At the [Select Source Code] page in the [C++ Reverse Engineering]
2. dialog box, select a source and click [Add]. Click [Next] once you have
completed adding the target sources for reverse engineering.

C++ Reverse Engineering 5[

Select Source Code
Select source code for reverse engineeting.

Direckory: _++ source file in the current direckory

:ﬂ Desktop Mame | Size | Type
F¥l- My Documents [application. b 1KE HFile
-4 My Computer Document.h LKE HFile

S My Mebwork Places ImageProxy.h 1KE HFile
il Recycle Bin

- & Internet Explorer

<] | |

add | E— | fld il |

Source File For reverse engineeting:
File name | Fath |

< Back [ext = Zancel |

At the [Select the Package to Contain Result] page, select a package to

3 contain the output results from the package tree and click [Next].

C++ Reverse Engineering = ﬂ

Select the Package to Contain Result
Select the package to contain result of reverse engineesting.

Project Structure:

= *§ Untitled
2] Use Case Model
[FEARe<ion Model

2] Implementation Model
2] Deployment Model

< Back Mext = Zancel |

At the [Option Setup] page, select the reverse engineering options and
“click [Run]. Reverse engineering will start now.

C++ Reverse Engineering

Option Setup

Configure options for reverse engineering.

~Model Generation

[~ ©mik the initial value of data member

Generate the Following visibility only

—Reference Data member Creation
{* Create the Data member ko the Attribute

{ Create the Data member ko the Associakion

v public [protected ~Diagrarm
[private ¥ Create Cverview diagram
The name of a diagram : e.g. Overview of s
IOverview of %es
=l

[~ Suppress the Attribute comparkment

[~ Suppress the Operation comparkment

[~ Hide the Operation signakure

[~ Generate Generalization and Realizakion wiews only

< Back Mext = Zancel

The [Reverse Engineering] page will show the reverse engineering
" progress status and return reverse engineering failure or success results.

C++ Reverse Engineering 5[

Reverse Engineering
Reverse engineers the source code.

Source Files: (14114}
File Marne | Fath | Skatus | - |
@ Earshader.h E: W TestWCPPSrcWeMulen, 30d-Sources Wsre Complete
@ EtnsT.h E: W TestWCPPSrcWeMulen, 30d-Sources Wsre Complete
@ CatDialog.h E: W TestWCPPSrcWeMulen, 30d-Sources Wsre Complete
@ CBasec4Coding.hpp E: W TestWCPPSrcWeMulen, 30d-Sources Wsre Complete
@ Chatselector.b E: W TestWCPPSrcWeMulen, 30d-Sources Wsre Complete
@ chatwnd.h E: W TestWCPPSrcWeMulen, 30d-Sources Wsre Complete
@ ClientCredits.h E: W TestWCPPSrcWeMulen, 30d-Sources Wsre Complete
¢ Y lientDetailDialog. b E: W TestWCPPSrceMuled, 30d-Sources Wsrc Complete

-

Z++ reverse engineering has been completed successfully,
Refer the occurred event to Information window,

Finish{F}

E'Note
If C++ reverse engineering is executed without including C++ profile, the
e following dialog box will appear asking whether you want to include C++
profile. Select "Yes(Y)" to continue the reverse engineering process.

To C++ reverse engineering, C++ Profile is needed.
Do you want boinclude C++ Profile to the current project?

Reverse Engineering Option

Configuration

Reverse Engineering Option Configuration Screen

This is the screen for configuring the options required for C++ reverse

engineering.

C++ Reverse Engineering 5[

Option Setup

Configure options for reverse engineering.

~Model Generation

[~ ©mik the initial value of data member {* Create the Data member ko the Attribute

Generate the Following visibility only

—Reference Data member Creation

{ Create the Data member ko the Associakion

v public [protected ~Diagrarm
[private ¥ Create Cverview diagram
The name of a diagram : e.g. Overview of s
IOverview of %es
=l

[~ Suppress the Attribute comparkment [~ Hide the Operation signakure

[~ Suppress the Operation comparkment | Generake Generalization and Realization views only

< Back Mext = Zancel

Model Generation

Model Generation includes various options for model generation.

Item Description
mit field initial))
Omit field initia Does not include the initial data member value in the
value for data .])
Attribute model information.
member
public Specifies whether to generate class and interface members

with public visibility.

protected

Specifies whether to generate class and interface members

with protected visibility.

private

Specifies whether to generate class and interface members
with private visibility.

Reference Data Member Generation

Reference Data Member Generation specifies generation methods for reference
fields when generating models.

Item

Description

Create the data
member to the
Attribute

Specifies whether to generate C++ data members as
attribute elements.

Create the data
member to the
Association

Specifies whether to generate C++ data members as
association elements.

Diagram

Diagram specifies diagram generation and the default generation names.

Item

Description

Create Overview
diagram

Specifies whether to create Overview diagram when
generating model. If not selected, all options related to
diagram and views are ignored.

The name of
diagram

Specifies names for Overview diagram generation. The
string %s is automatically replaced by the package name
(e.g. Overview of %s).

View

View specifies view-related options after model generation.

Item

Description

Suppress the
Attribute
compartment

Suppresses the attribute compartment of class models.

Suppress the
Operation
compartment

Suppresses the operation compartment of the class models.

Hide operation

Specifies whether to display all signatures for operation

signatures elements.

Generate Specifies whether to generate generalization and realization
generalization and |views only for the models generated. This option is useful
realization views |if used with other view options to express inheritance

only relations between classes and interfaces within the package.

C++ Source Code Generation

C++ code generation generates C++ source files from StarUML(tm) models.

e C++ Code Generation

e Code Generation Option Configuration

C++ Code Generation

Procedure for Code Generation :

1. In StarUML(tm), select the [Tools]->[C++]->[Code Generation...] menu.

At the [Select Starting Package Location] page in the [C++ Code
" Generation] dialog box, select a package and click [Next].

C++ Code Generation : x|

Select Starting Package Location
Select the starting package for C++ code generation,

Seleck the Package:
=l] Application Model
[=I' 7 Modeling Elements o
= 27 UML Model Elements
g odel Management
[=l 7 Foundation
7] Data_Tvpes
7 Core
[=I- 71 Behavioral_Elements
1 Common_Behavior
1 Use_tases
7 State_Machines
1 Collaborations
7 Activity_iGraphs
7 UML Wiew Elements

7 wiewZore Elements
1 Cnre Flements j

Mext = Zancel |

At the [Select the code generation element] page, select the elements
“and click [Next].

C++ Code Generation

Select the code generation element(s)
Select elements to generate by C++ code,

Zode Generation Element:

[¥ B umMLPackage

¥ = umMiModel

¥ B umMLsubsystem
[¥ = umMLElementImport
[¥ = umMLProject

Select all Deselect Al

< Back

Mexk =

Zancel

At the [Output Directory Setup] page, select a directory to save the

“output sources and click [Next].

C++ Code Generation

Output Directory Setup

Specify the directory to save generated codes,

] 1B

o Recyvcle Bin
- Internet Explorer

< Back Mext = Zancel

At the [Option Setup] page, select options and click [Run]. Reverse
"engineering will start now.

C++ Code Generation

Option Setup

Configure options for code generation,

~aeneration file Setup

[~ Insert kab as space

Tat width: |4 3'

[Place opening curly brace "{" in the new line

Header file: I.h LI [~ Header file subdirectory I

Implementation File: I.l:pp LI [Implementation file subdirecl I

File name: ISame as Model LI [~ Generate Mamespace to subdireckory
Code Skyle —Code Generation

[~ GEenerate Package to Namespace

[~ Use Microsaft Visual C++ grammar

[T Suppork MET Managed 4+

Membet in order IF‘uI:uIiu: member First LI

Code Generation Options | File Header Comment and Defaulk Include I

< Back Zancel

The [Code Generation] page will show the code generation progress
" status and return code generation failure or success results.

C++ Code Generation : EI

Code Generation
Generate codes,

Zode generation elements: (5)5)
Element | Location | Skatus |
@ UMLPackage svApplication Model; :Modeling Elerments: :UML Mod.., Complete
@ UrLrModel vApplication Model; :Modeling Elerments: :UML Mod.., Complete
@ UrLsubsystem svaApplication Model; :Modeling Elerments: :UML Mod... Complete
@ UMLElementImport svaApplication Model; :Modeling Elerments: :UML Mod... Complete

Compleke

e T ML Project vapplication Madel: :Modeling Elerments: ;LML Mod. ..

Z++ code generated successtully,

Finish

E'Note
The following error will occur if C++ code generation is executed without
e including C++ profile. Please ensure that C++ profile is included in the
project before executing code generation.

C++ Profile has not been included.
Generate code after including the profile ko the project (check the "Generate codes even when there is no
profile" option ko generate codes without the profile),

Code Generation Option Configuration

Code Generation Option configuration Screen

This is the screen for configuring the options required for code generation.

C++ Code Generation

Option Setup

Configure options for code generation,

~aeneration file Setup

Header File: |-|‘|

LI [~ Header file subdirectory I

Implementation File: I.u:pp

LI [Implementation file subdirec! I

File narne: ISame as Model LI [T Generate Mamespace to subdirectary

Code Skyle

[~ Insert kab as space

Tab width: m [~ Use Microsaft Visual C++ grammar

[Place opening curly brace "{" in the new line

—Code Generation

[~ GEenerate Package to Namespace

[T Suppork MET Managed 4+

Membet in order IF‘uI:uIiu: member First LI

Code Generation Options | File Header Comment and Defaulk Include I

< Back

Zancel

Generation file Setup

"Generation file setup" defines the file name and path for source file generation.

subdirectory

Item Description
Header file Specifies the extension name for C++ header file (e.g. .h).
Implementation |Specifies the extension name for C++ implementation file
file (e.g. .cpp).
Specifies the format of the C++ source file name. Four
File name options are available: "same as the model name", "lower
case", "upper case", and "lower case with"_"".
Header file

Specifies the subdirectory name for the C++ header file.

Implementation
file subdirectory

Specifies the subdirectory name for the C++
implementation file. If unspecified, the current directory is
used.

Generate
Namespace as
subdirectory

Specifies whether to generate namespace as subdirectory.

Code Style

Code Style defines the code style for the C++ code generated.

Item

Description

Insert tab as space

Specifies whether to insert space strings instead of tabs.

Tab width

Specifies the number of spaces for a tab. Effective only if
the "Insert tab as space" option is selected.

Place opening
curly brace "{" in
the new line

Specifies the location of the opening curly brace "{" for
code generation.

Code Generation

Code generation configures the general options for source code generation.

Item

Description

Generate package
as namespace

Generates package element as C++ namespace. Classes and
interfaces included in package are declared in namespace.

Use Microsoft
Visual C++
grammar

Generates code using Microsoft's Visual C++ grammar.

Support .NET
Managed C++

Generates code using grammar defined in .NET's Managed
C++. Effective only when the "Use Microsoft Visual C++
grammar" option is selected.

Member in order

Specifies the code generation order for the members
defined in classes and interfaces. Three options are
available: "Public member first", "Private member first",
and "Unordered".

C++ Code Generation _ i x|

Option Setup

Configure options for code generation,

File Header Comment: Descripion:

ﬂ 1| @p:Title

Il Generated by Agora Plastic(tm) C++ Add-In g? -: Eua:nepany

i Da I: Author

Il @@ Project : @p @r : Copyright

I} @@ File Mame : @F @rf : File name

i @@ Date : @d i@e : Elerment name
ﬁ @@ Authar : @a @@ : Characker@
<] _’|_I

Initial header #includes: Initial implementation #includes:

Code Generation Options File Header Comment and Default Incude

< Back Zancel

File Header Comments and Default Include

"File Header Comments and Default Include" defines the comments for each
file header and the common include clause for all files.

Item Description

Contains the comments to be inserted in the beginning of
File Header the source file. As described in the "header comments
Comment description” section, the '@' symbol and alphanumeric

characters can be used to insert specific values here.

Initial header

) Contains the common #include clause for all header files.
#includes

Initial
implementation
#includes

Contains the common #include clause for all
implementation files.

FAQ

The following are frequently asked questions and answers for C++ Add-In.

1. The "C++" menu cannot be found under the [Tools] menu.

When reverse engineering with C++ Add-In the "Analysis failure" error
" occurs even through the source has no C++ grammar problems.

3 Not all of the C++ reverse engineering results are displayed in the
" diagram.

The pointer indicators in Attribute type properties are omitted in the C++
"reverse engineered models.

5. The reverse engineered diagram is too complicated to view.

1. The "C++" menu cannot be found under the [Tools] menu.

There are two possible reasons why the menu does not show up. One is that
C++ Add-In is not installed in StarUML(tm) or related files are damaged.
To correct this, run the installation program to reinstall StarUML(tm) or
select to reinstall C++ Add-In only. If you are familiar with the structure of
StarUML(tm) Add-Ins, you may examine the registry or menu files to
check for damage in the Add-In and correct the problem. Another possible
reason for the problem is that C++ Add-In is disabled by Add-In Manager.
If so, go to Add-In Manager and enable C++ Add-In. For the procedure to
enable C++ Add-In, see the "1.2 C++ Add-In Configurations" section.

When reverse engineering with C++ Add-In the "Analysis failure"
"error occurs even though the source has no C++ grammar problems.

Source file analysis failure in reverse engineering occurs mostly with the
codes written with macros.

While general C++ compilers perform another pre-process cycle prior to
compiling the source code, C++ Add-In does not perform a complete pre-
process cycle. This is because replacing all the macros requires analysis of
the source files that contain the declarations of the macros. This requires
separate management of the source file paths for searching, takes a longer
time analyzing the macro declaration source files, and some sources written
in specific development environments such as Visual C++ cannot be
analyzed properly unless the development environment is installed in the
system. Including macro comments in the analyzed model may also result
in a complicated model view, which may make it difficult for the user to
analyze the model.

Consequently, C++ Add-In flexibly modifies parts of the grammar used in
analysis so that the macros used in member declaration in class are
identified as macros in the model. However, since it is difficult to identify
macros in any location due to the nature of the grammar, macros in
unexpected locations may not be identified correctly. In such rare cases, the
"analysis failure" error occurs. Nevertheless, even through some parts of
source file analysis may fail, the rest of the file is analyzed correctly,
returning the proper reverse engineering results.

Not all of the C++ reverse engineering results are displayed in the
" diagram.

Not all of the reverse engineering results are displayed in the diagram
because the current diagram is not large enough to contain all of the
generated views. Select the [Tools]->[Options...] menu to open the Options
dialog box, and at the [Environment]->[Diagram] section, adjust the
"Default Diagram Height" and "Default Diagram Width" to make the
diagram size larger.

The pointer indicators in Attribute type properties are omitted in the
" C++ reverse engineered models.

UML does not include model properties for the C++ pointer concept.
Therefore, it is not technically correct to use pointer indicators in Attribute

type properties. Nevertheless, C++ Add-In uses the CppPointer tag
definition for expressing pointer type and reference type. Select the
Attribute and hit Ctrl + F7 to verify the CppPointer tag definition value in
the tag definition editor window.

5. The reverse engineered diagram is too complicated to view.

One of the main functions of reverse engineering is to convert an existing
source code into models and facilitate easier analysis. However, if all

of the reverse engineered model information is expressed in diagram, it
would be difficult to view and analyze the information.

In order to assist the user in this aspect, C++ Add-In provides various
options for reverse engineering. The user can specify the diagram format by
manipulating these options. For example, selecting "Suppress the Attribute
compartment"”, "Suppress the Operation compartment”, and "Generate
Generalization and Realization views only" outputs only the class
inheritance structure in diagram.

	Starting Help
	C++ Add-In Overview
	C++ Add-In Functions
	C++ Add-In Configurations

	C++ Profile
	Including C++ Profile
	Excluding C++ Profile
	Profile Definition List

	C++ Framework
	Using MFC 6.0 Framework

	Option Configurations
	Code Generation Option Configuration
	Reverse Engineering Option Configuration

	C++ Reverse Engineering
	C++ Reverse Engineering
	Reverse Engineering Option Configuration

	C++ Code Generation
	C++ Code Generation
	Code Generation Option Configuration

	FAQ

