
	CodeXL	User	Guide
Help	>	Introduction

Introduction

Welcome	to	CodeXL!

CodeXL	is	a	comprehensive	tool	suite	that	allows	developers	to
harness	the	benefits	of	AMD	CPUs,	GPUs,	and	APUs.	Its
capabilities	include:

·									Powerful	Host	and	GPU	debugging
·									Comprehensive	GPU,	CPU	and	Power	profiling
·									DirectX®12	Graphics	Frame	Analysis
·									Static	OpenCL™	kernel	analysis	capabilities
·									Static	OpenGL®,	Vulkan®	and	DirectX®	shader	analysis
capabilities

This	tool	suite	enhances	accessibility	and	lets	software
developers	take	maximum	advantage	of	heterogeneous
computing.	CodeXL	is	available	as	a	Visual	Studio®	extension,
as	well	as	a	stand-alone	user	interface	application	for
Windows®	operating	system	and	Linux®	operating	system.
This	document	is	intended	for	software	developers.	The
chapters	on	GPU	Debugging	and	Profiling	assume	a	working
knowledge	of	OpenCL	and/or	OpenGL.	The	chapter	on	CPU
Profiling	assumes	an	understanding	of	the	concepts	of	threads
and	processes,	as	well	as	familiarity	with	CPU	architecture.
The	chapter	on	Kernel	Analysis	assumes	knowledge	of	OpenCL
and	GPU	architecture.

Latest	Version	of	This	Document

For	the	latest	and	greatest	version	of	the	documentation,	go	to
the	GPUOpen	Website.

http://gpuopen.com/

Contact	Information

GPUOpen	Website
CodeXL	GitHub	Issues	Page

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

http://gpuopen.com/
https://github.com/GPUOpen-Tools/CodeXL/issues

	CodeXL	User	Guide
Help	>	Getting	Started

Getting	Started

This	section	contains	information	about	system	requirements,
installation,	known	issues,	and	support.

·									System	Requirements
·									Installation	Instructions
·									Using	CodeXL	From	a	Remote	Station
·									Known	Issues
·									Support

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Getting	Started	>	System	Requirements

System	Requirements

Operating	Systems

•																					Microsoft	Windows	7-64	bit
•																					Microsoft	Windows	8.1-64	bit
•																					Microsoft	Windows	10	64-bit
•																					Linux	64-bit	(Red	Hat,	Ubuntu,	SUSE)

	

For	detailed	system	requirements	see	the	CodeXL	Release
Notes	in	the	CodeXL	installation	folder	or	on	the
Documentation	section	of	the	CodeXL	web	page.

CodeXL	Visual	Studio	Extension

•																					[Optional]	Microsoft	Visual	Studio	2010
(Standard/Professional/Team	System	Edition)

•																					[Optional]	Microsoft	Visual	Studio	2012
(Professional/Premium/Ultimate	Edition)

•																					[Optional]	Microsoft	Visual	Studio	2013
(Professional/Premium/Ultimate	Edition)

•																					[Optional]	Microsoft	Visual	Studio	2015
(Professional/Premium/Ultimate	Edition)

Profiling	OpenCL™	Applications

•																					[GPU	device]	AMD	Catalyst	driver	with	OpenCL™
GPU	support

•																					[GPU	device]	AMD	Radeon™	HD	5000	series	or
newer

•																					AMD	APP	SDK	(requirements)

http://developer.amd.com/tools-and-sdks/opencl-zone/codexl/
http://developer.amd.com/tools-and-sdks/heterogeneous-computing/amd-accelerated-parallel-processing-app-sdk/system-requirements-driver-compatibility/

Power	Profiling

•																					Kaveri,	Mullins,	Temash	or	Carrizo	APU

For	detailed	system	requirements	see	the	CodeXL	Release
Notes	in	the	CodeXL	installation	folder	or	on	the
Documentation	section	of	the	CodeXL	web	page.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

http://developer.amd.com/tools-and-sdks/opencl-zone/codexl/

	CodeXL	User	Guide
Help	>	Getting	Started	>	Installation	Instructions

Installation	Instructions

1.							Ensure	you	have	the	required	components	specified	in	the
System	Requirements.

2.							Install	CodeXL	using	one	of	the	following	methods:
Windows
Run	CodeXL_Win_x.x.x.exe

Linux	–	plain	tar
Extract	CodeXL	tarball	using:	tar	-xvzf

CodeXL_Linux_x86_64_x.x.x.tar.gz

On	Linux	systems,	the	CodeXL	Debian	and	RPM	packages
perform	the	driver	installation	automatically.
However,	if	you’ve	downloaded	the	CodeXL	tar	archive,	you
have	to	install	the	Power	Profiler’s	Linux	driver	manually.	This
includes	a	simple	step	of	running	<codexl-install-
dir>/AMDTPwrProfDriverInstall.run	with	su	credentials.
Example:

sudo	./AMDTPwrProfDriverInstall.run

Red	Hat	Linux	(including	CentOS,	Fedora)
Install	the	CodeXL	RPM	package	using:	rpm	-Uvh

CodeXL_Linux.x.x.x-0.x86_64.rpm

Ubuntu	and	other	Debian	based	Linux	distributions
Install	the	CodeXL	Debian	package	using:
sudo	dpkg	-i	codexl_x.x.x_64.deb
followed	by
sudo	apt-get	-f	install

Confirm	Installation

Assuming	you	used	the	default	install	location,	confirm	the
CodeXL	binaries	installation	with	the	following	steps.

Windows

·									The	C:\Program	Files		(C:\Program	Files	(x86)	on	64-bit
machines)	folder	should	have	a	new	sub-folder	named
“CodeXL”	(the	full	path	of	the	CodeXL	folder	should	be:
C:\Program	Files\CodeXL,	or	C:\Program	Files	(x86)\CodeXL
on	64-bit	machines)

·									A	CodeXL	shortcut	has	been	created	(unless	you	chose	not
to	have	shortcut).

·									The	Control	Panel	shows	CodeXL	in	the	list	of	installed
Programs.

Linux	using	tarball

1.						Navigate	to	<CodeXL	Directory>
2.						Launch	CodeXL	using	./CodeXL.	
A	GUI	appears.

Linux	RPM	/	Debian

1.							Navigate	to	/opt/AMD/CodeXL_X.Y-ZZZZ/
2.							Launch	CodeXL	using	./CodeXL.	
A	GUI	appears.

Confirm	Visual	Studio	Extension

For	Windows,	to	confirm	that	the	Visual	Studio	Extension	has
been	installed	successfully:
1.						Start	Microsoft	Visual	Studio.
2.	 Click	on	Help	>	About	Microsoft	Visual	Studio	from	the
Visual	Studio	main	menu	bar.

3.	 Under	Installed	products:,	find	CodeXL	x.x.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Getting	Started	>	Using	CodeXL	From	a	Remote	Station

Using	CodeXL	From	a	Remote	Station

CodeXL	can	be	used	remotely	using	the	following	methods:

1.						Desktop	sharing
2.						CodeXL	Remote	Agent

These	methods	are	detailed	below.

Desktop	Sharing

Run	CodeXL	graphic	client	application	on	the	target	platform
via	desktop	sharing	such	as	Windows	Remote	Desktop,	VNC,
SSH	and	X	forwardng,	etc.

Limitations:
1.							OpenGL	applications	that	are	run	for	debugging/profiling	may	not	recognize
the	shared	desktop	as	supporting	their	GL	requirements.	If	this	happens	run
CodeXL	locally	on	the	target	platform	without	desktop	sharing	or	use	the
CodeXL	Remote	Agent	(see	below).

2.							When	CodeXL	is	run	remotely	using	Linux	SSH	access,	CodeXL	requires	X
streaming	such	as	provided	by	applications	like	Xming,	etc.

CodeXL	Remote	Agent

Run	the	CodeXL	Remote	Agent	on	the	target	platform,	and	run
the	CodeXL	graphic	client	application	on	a	local	station.	For
more	details	see	Remote	GPU	Profiling,	Power	Profiling
and	GPU	Debugging.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Getting	Started	>	Known	Issues

Known	Issues

Check	known	issues	in	the	CodeXL	Release	Notes	that	are
found	in	CodeXL	installation	directory,	and	at	the	CodeXL
Forum.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

https://github.com/GPUOpen-Tools/CodeXL/issues

	CodeXL	User	Guide
Help	>	Getting	Started	>	Support

Support

·									CodeXL	Project	in	github
·									OpenCL	Zone
·									AMD	Accelerated	Parallel	Processing	OpenCL
Programming	Guide

Report	a	specific	problem	or	request	help	for	CodeXL	on	the
CodeXL	Forum.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

https://github.com/GPUOpen-Tools/CodeXL/issues
http://developer.amd.com/tools-and-sdks/opencl-zone/
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/documentation/
https://github.com/GPUOpen-Tools/CodeXL/issues

	CodeXL	User	Guide
Help	>	Using	CodeXL

Using	CodeXL

CodeXL	contains	the	following	modules:
·									General	GUI	Controls
·									Frame	Analysis
·									GPU	Debugger
·									CPU	Profiler
·									GPU	Profiler
·									Static	Analyzer
·									Power	Profiler
·									Remote	Frame	Analysis,	GPU	Profiling,	Power
Profiling	and	GPU	Debugging

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	General	GUI	Controls

General	GUI	Controls

Several	CodeXL	views	and	controls	are	used	by	the	debugger,
the	Profiler,	and	the	static	analyzer.

·									CodeXL	Welcome	Page
·									Getting	Started	Dialog
·									Project	Settings
·									Execution	Toolbar
·									Properties	View
·									CodeXL	Explorer
·									Global	Settings	dialog
·									System	Information	Dialog
·									CodeXL	Search	Toolbar

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	General	GUI	Controls	>	CodeXL	Welcome	Page

CodeXL	Welcome	Page

CodeXL	Welcome	Page	lets	you	access	or	create	projects.	It
also	contains	links	to	common	tasks	you	can	be	interested	in.

The	Welcome	Page	is	opened	in	CodeXL	startup.	To	access	the
Welcome	Page,	on	the	View	menu,	click	Start	Page.

The	Welcome	Page	is	divided	into	three	main	sections:

Modes	menu:	Browse	CodeXL	modes,	and	select	a	task	for
quick	project	creation:

Create	New
Project	for
Debugging

Use	this	option	to	create	a	new	CodeXL
project.	After	choosing	this	option,
CodeXL	will	select	“Debug	Mode”	in	the
execution	mode	toolbar,	and	will	prepare
the	project	for	a	debugging	session.

Create	New
Project	for
Profiling

Use	this	option	to	create	a	new	CodeXL
project.	After	choosing	this	option,
CodeXL	will	select	“Profile	Mode”	in	the
execution	mode	toolbar,	and	will	prepare
the	project	for	a	profiling	session.

Attach	to	Process
Select	this	option	when	you	want	to
perform	a	CPU	profiling	session	on	an
existing	process.

System-wide
Profiling

Use	this	option	when	you	want	to
perform	a	CPU	or	power	system-wide
profiling	session	on	the	currently
running	processes	on	your	machine.

Create	a	new

Selecting	this	option	will	create	an
empty	new	OpenCL	kernel	file,	with	a
default	name.	After	editing	the	new

OpenCL	file	for
Analysis

create	kernel	name,	CodeXL	will	allow
you	to	paste	code	or	edit	the	kernel	code
and	then	build	and	analyze	this	code	on
selected	devices.

Add	an	existing
OpenCL	file	for
Analysis

Select	this	to	add	an	existing	OpenCL
kernel	file	and	use	CodeXL	to	build	and
analyze	the	kernel	code	on	selected
devices.

Recent	projects:	The	list	displays	projects	you	have	worked
on	recently.	Clicking	on	one	of	the	links	will	open	the	project
for	work.

Samples:	Click	on	CodeXL	Teapot	sample	link,	to	open	the
sample	project.	The	sample	can	be	used	for	getting	to	know
CodeXL	capabilities.

	

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	General	GUI	Controls	>	Getting	Started	Dialog

Getting	Started	Dialog

Another	way	to	get	start	with	CodeXL	is	using	the	startup
dialog.	Click	the	“Start”	button	(see	the	following	screenshot).
A	dialog	specifying	the	different	options	for	getting	started
with	CodeXL	opens.

	

	

Create	New
Project

Use	this	option	to	create	a	new	CodeXL
project.	The	project	settings	dialog	will
open	and	guide	you	through	the	steps	to
create	a	project	with	your	desired
settings.

Create	New
Use	this	option	to	create	a	new	CodeXL
project.	After	choosing	this	option,

Project	for
Debugging

CodeXL	will	select	“Debug	Mode”	in	the
execution	mode	toolbar,	and	will	prepare
the	project	for	a	debugging	session.

Create	New
Project	for
Profiling

Use	this	option	to	create	a	new	CodeXL
project.	After	choosing	this	option,
CodeXL	will	select	“Profile	Mode”	in	the
execution	mode	toolbar,	and	will	prepare
the	project	for	a	profiling	session.

Attach	to	Process
Select	this	option	when	you	want	to
perform	a	CPU	profiling	session	on	an
existing	process.

System-wide
Profiling

Use	this	option	when	you	want	to
perform	a	CPU	or	power	system-wide
profiling	session	on	the	currently
running	processes	on	your	machine.

Create	a	new
OpenCL	file	for
Analysis

Selecting	this	option	will	create	an
empty	new	OpenCL	kernel	file,	with	a
default	name.	After	editing	the	new
create	kernel	name,	CodeXL	will	allow
you	to	paste	code	or	edit	the	kernel	code
and	then	build	and	analyze	this	code	on
selected	devices.

Add	an	existing
OpenCL	file	for
Analysis

Select	this	to	add	an	existing	OpenCL
kernel	file	and	use	CodeXL	to	build	and
analyze	the	kernel	code	on	selected
devices.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	General	GUI	Controls	>	Project	Settings

Project	Settings

To	start	debugging	or	profiling	an	application:

1.						Create	a	CodeXL	project.
A	CodeXL	project	consists	of	general	information	for	the
debugged	/	profiled	application,	such	as	command-line
arguments,	environment	variables.	The	project	also
configures	debugging	and	profiling	specific	configurations.

2.						Use	the	File	>	New	Project	menu	to	open	the	new	project
dialog.
The	same	dialog	can	be	used	later	to	configure	the	project
settings	during	the	debugging	/	profiling.	(Debug	>	Debug
Settings	and	Profile	>	Profile	Settings	menus)

	
	

General	Project	Settings

CodeXL	Project
Name

The	name	of	the	current	project	used	to
identify	a	project	in	the	Explorer	views.

Target	Host
The	host	on	which	the	executable	file
will	be	debugged	or	profiled	(Local	/
Remote).

Remote	Host
Address

The	remote	host	address	when	the
“Remote	Host”	option	is	selected.

Port
The	port	number	on	the	remote	host
when	the	“Remote	Host”	option	is
selected.

Test	Connection Click	to	test	the	current	connection
settings.

Application	Type
The	type	of	application	that	will	be
debugged	or	profiled.	The	application
can	be	either	a	desktop	application	or	a
Windows	Store	application.

Executable	Path
The	path	to	the	executable	/	Windows
Store	application	to	be	debugged	or
profiled.	Use	the	Browse	button	for
quick	selection.

Working	Directory
The	directory	in	which	the	executable	is
to	be	debugged	or	profiled.	Use	the
Browse	button	for	quick	selection.

Command	Line
Arguments

Arguments	to	be	passed	to	the
executable.

Environment
Variables

A	list	of	environment	variables	and	their
values	to	be	set	in	the	environment	for
the	executable.

Source	Files
Directory

List	of	directories	with	the	source	code
for	the	CPU	profiled	applications	or	the
OpenCL™	kernels.	Use	the	Browse

button	for	quick	selection.

Specific	Project	Settings

·									GPU	Debugging	Settings
·									CPU	Profiling	Settings
·									GPU	Profiling	Settings

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	General	GUI	Controls	>	Execution	Toolbar

Execution	Toolbar

Once	a	CodeXL	project	is	started,	the	initial	interface	is
displayed,	as	shown	in	the	following	screenshot.

CodeXL	Initial	Layout	when	a	project	is	loaded

The	CodeXL	toolbar	allows	quick	access	to	CodeXL	views	and
main	controls.

Debug	Mode
Switch	CodeXL	to	Debug
mode.	This	is	the	default
mode.

Profile	Mode
Switch	CodeXL	to	Profile
mode.	Use	the	Profile
menu	to	switch	between
the	various	profile	modes.

Frame	Analysis
Mode

Switch	CodeXL	to	Frame
Analysis	mode.

Analyze	Mode Switch	CodeXL	to	Analyze
mode.

Start	Debugging	/
Profiling

Start	the	startup	project
with	CodeXL	in	the
selected	mode.

Pause	/	Stop
Debugging	/
Profiling

Pause	/	Stop	the	startup
project	with	CodeXL	in
the	selected	mode.

Debug	Steps
API	step	/	Draw	Step	/
Frame	Step	/	Step	In	/
Step	Over	/	Step	Out	the
debugged	application.

CodeXL	Explorer Show	the	CodeXL
Explorer	tree	view.

Properties	View Show	the	Properties	view.

Output	View Show	the	Output	view

Function	Calls
History	View

Show	the	Function	Calls
History	view.

Debugged	Process
Events	View

Show	the	Debugged
Process	Events	view.

Call	Stack	View Show	the	Debugger	Call
Stack	view.

Locals	View Show	the	Debugger
Locals	view.

Debugger	Watch
View

Show	the	Debugger
Watch	view.

Debugger	OpenGL
State	Variables
View

Show	the	Debugger
OpenGL	State	Variables
view.

OpenCL	Debugger
Multiwatch	View	1,
2,	3

Show	the	OpenCL
Debugger	Multiwatch
views.

Debugger
Breakpoints	View

Show	the	Debugger
Breakpoints	view.

Debugger	Memory
View

Show	the	Debugger
Memory	view.

Debugger
Statistics	View

Show	the	Debugger
Statistics	view.

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	General	GUI	Controls	>	Properties	View

Properties	View

The	CodeXL	properties	view	displays	detailed	information
about	items	appearing	in	other	CodeXL	views.

OpenCL	Image	Properties

1.						Debug	an	OpenCL	sample.
2.						Break	after	clCreateContext.
3.						Click	the	OpenCL	Context	object	in	the	CodeXL
Explorer	to	see	the	properties	view	content.

As	shown	in	the	image,	the	properties	view	specifies	the	image
type,	the	image	handle,	dimensions	and	format.

Clicking	on	the	image	thumbnail	in	the	properties	view	will
open	an	image	view.

OpenCL	Context	Properties

1.						Debug	an	OpenCL	sample	with	images
2.						Break	the	application.
3.						Click	on	an	OpenCL	context	in	the	CodeXL	Explorer	to

see	the	properties	view	content.
The	properties	of	an	OpenCL	context	contains	the	context
run	time	properties.

By	clicking	the	context	platform	or	devices	link,	the	System
Information	Dialog	is	displayed.	This	shows	platform	/
devices	details.

Profile	Session

1.						Set	CodeXL	execution	mode	to	profile.
2.						Click	on	one	of	the	sessions	in	the	CodeXL	Explorer	to
see	the	properties	view	content.
Session	properties	view	displays	the	session	type,	the
session	file	path	and	working	folder,	and	few	of	the	session
properties.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	General	GUI	Controls	>	CodeXL	Explorer

CodeXL	Explorer

The	CodeXL	Explorer	tree	lets	you	navigate	while	debugging,
profiling,	or	analyzing.

The	tree	structure	is	different	for	each	of	the	execution	modes.
In	Debug	mode,	the	tree	contains	the	debugged	application
details	only	when	the	debugged	application	is	paused.
Only	one	debug	tree	can	be	viewed	while	debugging.	In	Profile
mode,	on	the	other	hand,	the	tree	contains	all	the	profiled
sessions	for	the	current	project.	You	can	view	multiple	sessions.
When	switching	to	Analyze	mode,	the	tree	will	display	all	the
OpenCL	kernel	files	added	to	the	current	project,	with	build
and	analyze	results	for	each	of	them.

OpenCL	/	OpenGL	Debugged	Objects	Tree

While	debugging,	the	CodeXL	Explorer	tree	view	lets	you
navigate	and	access	all	OpenCL	and	OpenGL	objects	during	an
application	run.	The	Objects	tree	displays	all	the	debugged
application's	allocated	objects	in	the	hierarchy:	Application	–>
Context	–>	(Object	Type)	–>	(Specific	Object).	Contexts
marked	with	the	sharing	icon	have	their	memory	allocated
objects	shared	by	at	least	one	other	context.	See	cl_khr_gl_sharing
in	the	OpenCL	Specification,	and	wglShareLists	in	the	OpenGL
Specification,	for	more	details	about	context	resource	sharing.
Note	that	sharing	contexts	can	have	memory	sizes	even	after
being	deleted,	as	long	as	there	is	at	least	one	other	context
sharing	their	objects.

CodeXL	Profile	Sessions	Tree

In	Profile	mode,	the	CodeXL	Explorer	lists	the	profiling
sessions	done	for	the	current	project;	it	indicates	the	type	of
profile	for	each	session.	When	a	CodeXL	project	is	opened,	the
Profiler	Session	Explorer	automatically	displays	all	previous
sessions	associated	with	that	project.	Double-click	on	a	session
to	open	the	session	data	view.	Right-click	on	a	session	to
rename	it,	delete	it	or	to	open	the	folder	that	contains	the
session	output	file.	You	can	also	import	a	previously-generated
Profiler	session,	or	delete	all	sessions	using	the	context	menu
in	the	Profiling	Session	Explorer.	A	previously-generated
Profiler	session	can	be	imported	by	dragging	and	dropping	the
session	file	from	the	system	file	browser	to	the	Session
Explorer.

CodeXL	Analyze	Tree

In	Analyze	mode,	the	tree	displays	2	sub	trees:

1.						Tree	of	programs	created	by	the	user,	with	the	output
build	results.

2.						Tree	of	OpenCL	/	DirectX	/	OpenGL	/	Vulkan	shader	and
kernel	files	added	by	the	user	and	used	while	building	the
programs.

·									Double	clicking	on	a	source	file		will	open	the	source
file	in	CodeXL

·									Double	clicking	on	an	output	build	results	will	open
open	a	view	that	will	show	the	source	and	IL	and/or	ISA
if	applicable	for	the	specific	device.	The	build	results	are
grouped	by	kernel	and	then	by	device	families.

·									Double-clicking	the	“Statistics”	and	“Analysis”	nodes
will	open	the	appropriate	information	view.

·									You	can	drag	a	source	file	from	the	tree,	in	order	to
place	it	on	a	program.

The	Tree	also	allows	quick	activation	of	the	“Create	new	source
file”	and	“Add	existing	source	File”	commands	via	double-
clicking	the	two	nodes	at	the	bottom	of	the	tree.

Back	/	Forward	Buttons

The	two	tree	navigation	buttons	are	located	in	CodeXL
Explorer	top	panel.	Use	these	buttons	to	navigate	to	the
previously	viewed	objects	in	the	tree.	The	navigation	history
resets	when	opening	another	project	or	a	debug	session	is
terminated.

	

CodeXL	Explorer	context	menu

Use	the	tree	context	menu	to	navigate	and	manage	the	current
displayed	project	data.

For	example,	see	the	following	context	menus:

·									Context	menu	on	a	CL	buffer	item	when	the	debugged
process	is	paused.	The	menu	will	contain	the	option	to
display	the	buffer	in	an	MDI	window	and	to	view	the	buffer
memory	analysis	and	statistics.

·									Context	menu	on	a	Time-Based	CPU	profile	session.	The
menu	will	contain	the	options	to	open	the	session	in	an

MDI	window,	rename	or	delete	the	session,	and	open	the
folder	that	contains	the	session.

·									Context	menu	on	multiple	sessions	in	profile	mode.	The
menu	will	enable	the	deletion	of	multiple	sessions.

·									Context	menu	on	source	file.	This	menu	enables	one	to
open	the	source	file,	rename	it,	remove	it	from	the	CodeXL
project,	and	open	the	containing	folder.

·									Context	menu	on	a	program.	This	menu	enables	one	to
run	the	build	program	command,	to	rename,	remove	or
change	the	source	of	a	program.
	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	General	GUI	Controls	>	Global	Settings

Global	Settings

This	dialog	box	lets	you	specify	global	settings	for	the	CodeXL
environment.
	

	

General	Global	Settings

Debug	Log
Level

The	debug	log	level	is	an	internal	mechanism
that	helps	fix	CodeXL	problems.	There	are
three	levels.
·			Error:	Log	errors	that	occur	while	running
CodeXL.																																												

·			Info:	Log	errors	and	CodeXL	internal
information	seen	while	running	CodeXL
(default	level).

·			Debug:	Log	CodeXL	debugging	information,
errors,	and	other	internal	information	that	is
generated	while	running	CodeXL.	(This	can
be	used	by	the	CodeXL	support	team	to
locate	a	problem	inside	CodeXL).

·			Extensive:	Log	extensive	CodeXL	debugging
information,	errors,	and	other	internal
information	that	is	generated	while	running
CodeXL.	(This	can	be	used	by	the	CodeXL
support	team	to	locate	a	problem	inside
CodeXL).

Log	Files
and	Images
Directory

The	directory	in	which	the	API	call	log	files
and	temporary	image	and	source	files	are
saved.

I	am	using
an	HTTP
proxy	server

Check	this	option	if	your	computer	connects
to	the	Internet	through	an	HTTP	proxy.	If	you
are	experiencing	problems	with	CodeXL's
online	features	(check	for	updates	and	send
error	report),	changing	the	proxy	settings
might	be	the	solution.

Proxy	server
/	Port
number

If	you	are	using	a	proxy	server,	please	input
its	information	here.	The	server	name	could
be	a	DNS	address	or	an	IP	address.	If	you	are
unsure	of	what	your	HTTP	proxy	server	or
port	are,	contact	your	network	administrator
or	copy	the	settings	from	your	web	browser.
CodeXL	does	not	currently	support	the

HTTP_PROXY	environment	variable.

Remote
Debugging
Ports

Specifies	the	port	numbers	that	are	being
used	for	remote	debugging	sessions.	On	the
client	machine,	all	four	ports	should	be	able	to
receive	incoming	connections,	and	on	the
remote	machine	all	four	ports	should	not	be
blocked	for	outgoing	connections.

Floating-
point
Precision

The	display	precision	for	displaying	floating-
point	numbers.

Alert	when	a
source	file	is
missing

Alert	the	user	when	a	source	file	is	not	found
during	the	profile	session	source	code	display.

Restore
Default
Settings

Click	this	button	to	restore	all	settings	on	all
pages	to	their	default	values.

	

Plugin	Global	Settings

GPU	Debugging	Global	Settings
CPU	Profiling	Global	Settings
Static	Analysis	Global	Settings
	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	General	GUI	Controls	>	System	Information	Dialog

System	Information	Dialog

The	system	information	dialog	displays	computer	configuration
details	and	OpenCL	/	OpenGL	implementation	details.	These
include	operating	system,	memory,	graphic	card	and	driver
details;	available	OpenCL	platforms	and	devices;	monitor
details,	available	pixel	formats,	and	available	OpenGL
extensions.

System	Information	Tabs

System Collects	and	displays	information	about
the	system	configuration.
Collects	and	displays	information	about

Display the	display	system	configuration.

OpenGL
Renderer

Collects	and	displays	information	about
the	graphics	accelerator	configuration.

OpenGL	Pixel
Formats

Collects	and	displays	information	about
the	system’s	supported	pixel	format.

OpenGL
Extensions

Collects	and	displays	information	about
the	system’s	supported	OpenGL
extensions.

OpenCL
Platforms

Collects	and	displays	information	about
the	supported	OpenCL	platforms.

OpenCL	Devices
Collects	and	displays	information	about
the	supported	OpenCL	devices	and	their
capabilities	and	limits.

Save	Button Exports	the	system	information	data	from
all	views	to	a	.csv	file.

													

OpenCL	Devices	View

The	OpenCL	Devices	View	displays	the	OpenCL	devices
available	in	the	32-bit	and	64-bit	OpenCL	runtimes	that	are
installed	on	the	local	station.	The	information	is	collected	using
the	modules	from	the	system	path	and	may	differ	from
runtimes	installed	elsewhere,	such	as	OpenCL	modules
installed	in	the	AMD	APP	SDK	folder.

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	General	GUI	Controls	>	CodeXL	Search	Toolbar

CodeXL	Search	Toolbar

Search	toolbar	appears	when	a	view	with	searchable	text	is	in
focus	and	the	Ctrl+F	shortcut	is	used	or	the	Find	command	is
clicked	in	the	Edit	menu:

	

The	user	can	navigate	through	a	view’s	text	content	using	the
Previous	and	Next	buttons.	Use	the	Match	Case	toggle	button
to	control	the	case	sensitivity	of	the	search.

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Frame	Analysis

Frame	Analysis

CodeXL	Frame	Analysis	allows	the	developer	to	generate	an
API	Trace	with	CPU	side	timing	data	and	a	GPU	Trace	with
GPU	side	timing	data.	Both	sets	of	data	are	displayed	in	a
unified	timeline	which	quickly	allows	the	user	to	identify
expensive	GPU	executions	and	the	CPU	side	API	calls	which
generate	them.	CodeXL	allows	you	capture	one	or	more	frames
from	your	running	application	and	the	captures	are
automatically	saved	to	disk.	The	captured	frames	can	be
inspected	offline	using	the	CodeXL	client	(your	application
does	not	need	to	be	running).

There	are	4	stages	to	viewing	the	API	and	GPU	trace	data	from
your	application.

1.					Creating	a	New	Project
2.					Starting	Your	Application
3.					Capturing	Frames
4.					Viewing	Capture	Data

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Frame	Analysis	>	Creating	a	New	Project

Creating	a	New	Project

The	CodeXL	project	allows	you	to	define	your	application
executable,	its	working	directory,	and	any	command	line
arguments	it	requires.	CodeXL	will	automatically	save	your
project	settings	so	the	next	time	you	want	to	analyze	your
application	you	simply	load	the	project	to	get	started.
1.							Click	“File	->	New	Project”	to	open	the	“Create	a	new	CodeXL	Project”	dialog.
2.							Browse	to	the	executable	you	wish	to	analyze	by	clicking	on	the	folder	to	the
right	of	the	“Executable	Path:”	data	entry	field.

3.							The	project	will	automatically	be	given	the	same	name	as	the	chosen
executable.	If	you	wish	to	use	a	different	project	name,	enter	a	new	name
under	the	“CodeXL	Project	Name:”	field	after	selecting	the	executable.

4.							Enter	any	command	line	arguments,	with	which	to	run	the	executable,	in	the
“Command	Line	Arguments:”	data	entry	field.

Frame	Analysis	settings
1)						In	the	‘CodeXL	Project	Settings’	dialog	or	the	‘Create	a	new	CodeXL	Project’
dialog,	click	on	the	‘Frame	Analysis’	tree	node	to	display	the	‘Frame	Analysis
Settings’.

2)						By	default	the	“Automatically	connect	to	first	active	API”	option	is	turned	on.
When	checked,	this	setting	makes	CodeXL	automatically	connect	to	the	first
DX12	application	it	finds	when	launching	an	analysis	session.	There	are	a
couple	circumstances	where	this	behavior	is	undesired:
a.							If	the	executable	launches	multiple	DX12	processes	and	you	want	to	be
able	to	choose	which	one	to	connect	to.

b.						If	you	have	trouble	connecting	to	the	DX12	application	because
CodeXL	times	out	before	the	program	has	fully	launched.

	
NOTE:	If	you	have	auto-connect	disabled,	the	API	selection	window	will	remain	open
until	you	select	an	API	context	to	connect	to.	Frame	capture	cannot	begin	until	a
connection	has	been	made	to	a	DX12	application.

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Frame	Analysis	>	Starting	Your	Application

Starting	Your	Application

1)						Switch	to	Frame	Analysis	Mode	either	by	clicking	the	Frame	Analysis	button	
	in	the	toolbar,	or	by	selecting	‘Frame	Analysis’	->	‘Switch	to	Frame	Analysis

Mode’	from	the	menu	bar.

2)						Begin	a	frame	capture	session	either	by:
a.							Clicking	the	Play	button	 	in	the	toolbar,	or
b.						Selecting	‘Frame	Analysis’	->	‘Start	Frame	Analysis’	from	the	menu	bar,
or

c.							Pressing	F5.

3)						At	this	point,	your	application	will	launch	and	a	selection	box	will	appear	with
a	list	of	all	the	API	contexts	found	so	far.

The	above	image	shows	the	connection	dialog	with	auto-
connect	disabled.	Auto	connect	will	be	enabled	by	default.

Once	a	connection	is	established	to	a	DX12	application,	focus
will	switch	from	the	launched	program	to	CodeXL,	and	you	will
see	a	central	preview	image	of	the	frames	being	rendered.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Frame	Analysis	>	Capturing	Frames

Capturing	Frames

1)						Once	a	frame	capture	session	is	running,	press	the	Capture	button	 	either
underneath	the	central	preview	image	or	in	the	toolbar	to	capture	a	frame.
Once	a	frame	capture	has	been	initiated,	it	may	take	a	few	seconds	to
complete.	The	capture	is	complete	when	the	capture	button	returns	to	an
enabled	state	and	a	small	preview	image	of	the	captured	frame	appears	in	the
margin	on	the	right	hand	side	of	the	window.

2)						Continue	to	capture	as	many	frames	as	desired,	waiting	for	a	previous	capture
to	finish	before	initiating	a	new	one.	The	right	hand	margin	will	provide	a
running	count	of	the	captured	frames,	as	well	as	a	small	preview	image	and
basic	data	for	each.

3)						When	stopping	the	capture	session,	press	the	Stop	button	 	either
underneath	the	central	preview	image	or	in	the	toolbar.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Frame	Analysis	>	Viewing	Capture	Data

Viewing	Capture	Data

1)						After	stopping	a	capture	session,	the	captured	frames	will	appear	in	the	left
hand	pane	CodeXL	Explorer	Tree	under	“(Project	name	here)	|	Frame	Analysis
Mode	->	Frame	Analysis”.

2)						Expand	the	desired	capture	session	node	(capture	sessions	are	named	with
the	date	and	time	of	capture).

3)						Select	the	desired	frame	sub-node.	There	should	be	a	Timeline	and	Image
item	for	each	frame.

	
4)						Double	click	the	Image	item	to	bring	up	a	full	resolution	image	of	the	captured
frame.

5)						Double	click	the	timeline	item	to	bring	up	GPU	and	CPU	trace	data.

The	timeline	view	displays	the	collected	frame	data.	See:

·									The	Frame	Timeline	View
·									Navigating	the	Frame	Timeline	View

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Frame	Analysis	>	Viewing	Capture	Data	>	The	Frame	Timeline	View

The	Frame	Timeline	View

The	frame	timeline	view	contains	the	following	elements	(from
bottom	to	top).	Each	of	the	elements’	numbers	is	in	the
screenshot	above.
	

1.									A	navigation	chart	that	allows	you	to	zoom	in	and
out,	view	the	whole	frame	timeline	or	focus	on	a	fragment
of	it,	and	display	API	calls	duration,	count	and
concurrency.
2.									A	collapsed	detailed	view	of	the	API	calls	and	their
durations/count/concurrency.
3.									A	timeline	chart	visualizing	the	API	calls	over	the
frame	timeline.
4.									An	API	calls	table	for	each	of	the	CPU	threads.
5.									A	commands	table	for	each	of	the	GPU	command
queues.
6.									Summary	tables	that	summarize	the	time
consumption	for	each	of	the	API	types	in	the	frame.
7.									A	Top	20	calls	table	for	the	currently	selected	API

in	the	summary	table.
	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Frame	Analysis	>	Viewing	Capture	Data	>	View	and	analyze	data	in	API	Summary	tables

View	and	analyze	data	in	API	Summary	tables

The	bottom	pane	of	the	trace	view	contain	hotspot	Summary
tables.	The	table	are	summarizing	the	API	call,	and	display
each	of	the	API	types	significant	times.	These	tables	can	be
used	for	quick	identification	of	performance	bottlenecks	in	the
analyzed	frame.

The	table	below	specified	each	of	the	API	table	columns.

CPU	\	GPU	properties:

Name
Call The	API	call	name

Max	Time The	maximum	duration	for	this	call	type.	Clicking	on	
timeline.

Min	Time The	minimum	duration	for	this	call	type.	Clicking	on	the	link	in	this	column	will	select	the	
timeline.

Average	Time The	average	duration	for	this	API	type.
Cumulative
Time The	cumulative	duration	for	all	calls	with	this	API	

%	of	total The	percentage	of	all	this	API	type	calls,	from	the	frame	duration.

Time
#	of	Calls The	calls	count	for	this	API	type
	

CodeXL	2.1	supports	both	DX12	and	Vulkan	API.	The	hotspot
summary	table	shows	DX12	Command	list	\	Vulkan	command
buffer	properties:

Name
Command
List\Buffer The	command	list	\	buffer	name

Execution
Time The	duration	for	this	command.

Start	Time The	start	time	of	this	command	list	\	buffer.	Clicking	on	the	link	in	this	column	will	select	the	specific	
End	Time The	end	time	of	this	command	list	\	buffer.	Clicking	on	the	link	in	this	column	will	select	the	
#	of
commands The	number	of	commands	in	this	command	list	\	buffer.

GPU	Queue The	GPU	queue	associated	with	this	command	list	\	buffer.
Handle The	address	of	this	command	list	\	buffer.
	

	
	

·									Use	timeline	selection	scope:	when	checked,	the
summary	tables	will	reflect	the	selected	timeline	frame
(which	is	painted	within	the	red	boundaries	above).	When
un-checked,	the	summary	tables	will	display	the	whole
frame	time	range.

Selection	of	a	line	in	the	API	summary	table,	will	fill	the	top	20
calls,	sorted	by	the	time.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Frame	Analysis	>	Viewing	Capture	Data	>	View	data	in	the	Summary	Top	20	Table

View	data	in	the	Summary	Top	20	Table

	

The	screenshot	below	shows	the	API	calls	table,	with
“DrawIndexedInstanced”	selected.	The	Top	20	table	will
display	the	top	20	time	consuming	calls	to
DrawIndexedInstanced.

Name
# The	number	of	the	call	(1	for	the	top	time	consuming	call)
Thread	Id The	thread	on	which	the	call	was	executed
Index The	index	within	the	thread
Time The	call	time	in	ms.	Clicking	on	the	link	in	this	column	will	select	the	specific	call	in	the	API	
	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Frame	Analysis	>	Viewing	Capture	Data	>	View	data	in	CPU	API	Tables

View	data	in	CPU	API	Tables

The	CPU	and	GPU	API	table	monitor	each	of	the	frames	API
calls.	The	table	below	specified	each	of	the	API	table	columns.

Name
Index The	API	call	index	for	this	thread.
Interface The	API	interface.
Call The	API	call	name
Parameters A	string	describing	the	parameters	for	this	call.
CPU	Time The	duration	of	this	API	call	on	the	CPU
Result The	API	return	value
Start	Time The	time	(from	the	frame	start	time	in	ms)	the	API	started
End	Time The	time	(from	the	frame	start	time	in	ms)	the	API	ended
	
*	Notice:	BeginEvent,	EndEvent,	and	SetMarker	API	calls	are

marked	in	yellow	for	easy	navigation.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Frame	Analysis	>	Viewing	Capture	Data	>	View	data	in	GPU	API	Tables

View	data	in	GPU	API	Tables

The	CPU	and	GPU	API	table	monitor	each	of	the	frames	API
calls.	The	table	below	specified	each	of	the	API	table	columns.

Name
Index The	API	call	index	for	this	thread.
Cmd	List	# The	index	of	the	command	list	\	buffer.
Call The	API	call	name.
Parameters A	string	describing	the	parameters	for	this	call.
GPU	Time The	duration	of	this	API	call	on	the	GPU
Result The	API	return	value
Start	Time The	time	(from	the	frame	start	time	in	ms)	the	API	started
End	Time The	time	(from	the	frame	start	time	in	ms)	the	API	ended
	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Frame	Analysis	>	Viewing	Capture	Data	>	Navigating	the	Frame	Timeline	View

Navigating	the	Frame	Timeline	View

A	graphics	frame	can	be	very	busy	and	contains	tens	of
thousands	of	API	calls.	The	following	buttons	and	UI	elements
are	useful	in	navigating	the	frame	timeline	and	highlighting
API	calls	of	interest:

Focused	Timeline	Fragment

Use	the	left	and	right	handles	to	expand/reduce	the	focused
timeline	fragment	in	and	out:

Navigation	Bar	Visualizations

The	navigation	bar	drop-list	contains	3	visualization	aids:

·									Duration
·									Count
·									Concurrency

API	Calls	Duration

Select	“Duration”	in	the	top	left	combo	box,	to	view	the
duration	of	API	calls:

API	Calls	Count

Select	“Count”	in	the	top	left	combo	box,	to	view	the	API	calls
count	for	each	time	fragment:

API	Calls	Concurrency

Select	“Concurrency”	in	the	top	left	combo	box,	to	view	the
max	/	average	busy	threads	concurrency	over	the	frame
timeline:

	

Timeline	chart	and	API	Calls	tables

Double	click	a	CPU	API	table	item,	and	the	timeline	chart	will
zoom	to	the	corresponding	timeline	item	and	highlight	it.	If
there	is	a	linked	GPU	API	item,	it	will	also	be	highlighted	in	the
GPU	API	table

	

Hotspot	Summary	Tables

The	bottom	ribbon	of	the	timeline	view	contains	the	Hotspot
Summary	tables.	These	tables	display	aggregated	data	for	API
calls	and	command	lists	\	buffers,	showing	statistics	for	each
type	of	API	and	the	top	individual	calls	to	that	API	type.

The	Max	Time	and	Min	Time	columns	display	the	execution

time	of	the	longest	and	shortest	API	call	of	the	selected	API
type.	These	are	also	direct	links	–	clicking	them	causes	the	API
tables	and	timeline	chart	to	display	the	individual	call	item.

The	‘Top	20’	table	is	automatically	populated	with	the	20
longest	calls	of	the	API	type	selected	in	the	API	summary	table.

Performance	tip:	The	longest	GPU	command	in	the	frame,	is
always	the	first	API	call	in	the	Top	20	table	when	the	timeline
view	is	opened.

For	command	lists	\	buffers	the	hotspot	table	displays	the
command	lists	\	buffers	which	were	executed	during	the
captured	frame.

The	Execution	Time	column	displays	the	execution	time	of	the
longest	and	shortest	command	lists	\	buffer.	The	start	and	end
time	are	also	direct	links	–	clicking	them	causes	the	timeline
chart	to	display	the	individual	command	list	\	buffer.

The	‘Top	20’	table	is	automatically	populated	with	the	20
longest	GPU	call	which	belongs	to	the	command	list	\	buffer
which	is	selected	in	the	hotspot	summary	table.

Performance	tip:	The	longest	GPU	command	in	the	frame,	is
always	the	first	API	call	in	the	Top	20	table	when	the	timeline
view	is	opened.

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	GPU	Debugger

GPU	Debugger

The	CodeXL	GPU	Debugging	module	traces	application	activity
that	makes	use	of	OpenCL	and	OpenGL	to	provide	application
behavior	information	necessary	for	finding	bugs	and	optimizing
application	performance.
With	CodeXL,	you	can	look	inside	your	OpenCL	and	OpenGL
API	usage	to	see	the	effect	individual	commands	have	on
application	behavior.
CodeXL	also	lets	you	debug	your	OpenCL	kernels	at	runtime,
inspect	variable	values	across	different	work	item	and	work
groups,	inspect	the	kernel	call	stack,	and	more.
There	are	different	ways	to	use	the	analytic	capabilities	of	the
CodeXL	GPU	Debugging	Module:	from	locating	bugs	through
removing	redundant	calls	and	errors	to	performing	regression
tests.
Whether	you	want	to	shorten	debugging	time,	improve
application	quality,	or	optimize	application	performance,
CodeXL	displays	the	information	you	want.
	
The	GPU	debugging	controls	include:

·									Toolbars
·									Views
·									Dialogs

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	GPU	Debugger	>	GPU	Debugging	Toolbars

GPU	Debugging	Toolbars

There	are	two	types	of	GPU	debugging	toolbars:

·									Images	and	Buffers
·									Current	Work	Item

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	GPU	Debugger	>	GPU	Debugging	Toolbars	>	Images	and	Buffers	Toolbar

Images	and	Buffers	Toolbar

The	Images	and	Buffers	toolbar	provides	control	over	the
CodeXL	object	views.

Select	/	pan
Change	the	mouse	click
operation	from	selecting
pixels	to	panning	the	image
view.

Zoom
controls

Control	the	zoom	level	of	the
image	view.

Rotation
controls

Rotate	the	image	and	data
views	clockwise	or
counterclockwise.

Channel
Selection
controls

For	multi-channeled	images
and	textures,	select	which	of
the	RGBA	channels	to	show	in
the	image	and	data	views.

Invert Invert	the	image	view's
displayed	colors.

Grayscale Desaturate	the	image	view's
displayed	image.

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	GPU	Debugger	>	GPU	Debugging	Toolbars	>	Current	Work	Item	toolbar

Current	Work	Item	toolbar

The	Current	Work	Item	toolbar	is	shown	during	debugging.	Use
this	toolbar	to	select	the	active	thread.
When	N-Dimensional	kernel	debugging	is	taking	place
(clEnqueueNDRangeKernel),	use	this	toolbar	to	select	the
current	work	item.
·			When	looking	at	variables	(watch	view,	locals	view,	hovering
over	the	variable	name),	the	values	shown	will	be	those
relevant	to	this	work	item.

·			When	stepping	through	code,	code	locations	where	this	work
item	is	not	valid	will	be	skipped.

·			For	coordinates	that	have	more	than	8	work	items,	the	last
item	in	the	drop	down	list	will	show	the	range	of	available
work	items	(in	the	above	example,	there	are	1048576	work
items,	with	indexes	ranging	between	0	and	1048575).

·			To	reach	a	work	item	whose	index	is	larger	than	7,	you	need
to	type	the	index	manually	and	press	enter	(or	switch	to
another	combo	box).	For	example,	if	you	want	the	X
coordinate	to	be	set	on	the	index	is	8192,	you	should	type	the
string	8192	in	the	X	combo	box	and	press	enter:
	

	

Thread	/	Wavefront	Selection	Combo-box

This	combo-box	contains	a	list	of	the	host	threads	currently
active	in	the	debugged	application.	Selecting	a	thread	shows
its	call	stack	in	the	Call	Stack	view.

During	kernel	debugging,	the	active	wavefronts	are	also	shown
in	this	combo-box.	Selecting	a	wavefront	displays	its	kernel
source	call	stack.

Note	that	when	debugging	with	breakpoint	emulation,	all	work-
items	are	gathered	in	a	single	virtual	wavefront,	which	does
not	represent	the	actual	work-item	distribution	on	the
hardware.

X,	Y,	Z	Combo-boxes

These	combo-boxes	are	filled	with	valid	values	for	the	work-
item	coordinates	(based	on	the	global	work	offset	and	size).	If
the	work	dimension	is	too	low,	the	combo-box	is	disabled	(for
example:	Z	in	a	2-dimensional	work).

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	GPU	Debugger	>	GPU	Debugging	Views

GPU	Debugging	Views

There	are	six	GPU	debugging	views.

·									API	Function	Calls	History
·									Memory	view
·									OpenCL	Multi-Watch
·									Visual	Studio	native	debugging	views
·									Statistics	view
·									Object	views

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	GPU	Debugger	>	GPU	Debugging	Views	>	API	Function	Calls	History	View

API	Function	Calls	History	View

This	view	displays	a	log	of	OpenCL,	OpenGL,	OpenGL
extensions,	as	well	as	WGL	and	glX	function	calls	executed	in
each	context.

Function	Calls	List

The	function	calls	are	displayed	as	a	list,	ordered	by	the	time	in
which	they	were	called.	Each	list	line	represents	a	single
function	call;	it	contains:

·									the	called	function	name,
·									its	arguments	values,	and
·									the	function	type	(as	an	icon).

The	function	types	are	marked	as	shown	in	the	following
screenshot.

	
The	icons	have	the	following	meanings

OpenCL	function.
OpenCL	buffer	and	image
function.
OpenCL	queue	function.
OpenGL	function.
OpenGL	extension	function.
A	WGL	function.
A	GLX	function.
OpenGL	program	and	shader
function.
OpenGL	texture	function.
OpenGL	buffer	function.
GL_string_marker_GREMEDY
function.

The	Viewed	Render	Context

The	list	title	bar	shows	the	viewed	context	and	the	number	of
functions	executed	in	it.	Use	the	CodeXL	Debugging	Objects
Explorer	tree	view	to	change	the	displayed	context.

Breaked-On	Function

A	yellow	arrow	indicates	the	function	called	when	the
debugged	process	was	suspended.	Note	that	the	process	is
suspended	by	CodeXL	before	the	suspending	function	is
executed.	This	lets	you	use	the	Step	(F10)	command	to	observe
the	effect	its	execution	has	on	the	API	and	objects.

Frame	Terminators

When	frame	terminators	are	specified	in	the	project	settings,
then	during	Frame	Terminator	execution	the	list	in	the	context
is	cleared,	and	the	function	calls	count	is	reset	to	0.

Displaying	Function	Call	Properties

Selecting	a	list	line	presents	the	appropriate	function	call	in
the	Properties	view.

HTML	Log	File

You	can	save	the	OpenCL	/	OpenGL	function	calls	history	in	an
HTML	log	file	using	the	Record	button.	After	pressing	the
Record	button,	a	log	file	is	created	for	each	active	context.	This
log	file	contains	the	details	of	each	API	function	call,	program
and	shader	sources	and	image	files	for	image	and	texture
objects	(if	enabled	in	the	Options	dialog).	To	stop	recording,
press	the	record	button	again.	To	view	the	log	file	gathered	so
far,	press	the	Open	Current	HTML	Log	File	button.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	GPU	Debugger	>	GPU	Debugging	Views	>	Memory	view

Memory	view

This	view	gives	you	information	about	your	compute	and
graphic	memory	consumption	and	usage,	as	well	as	detected
graphic	or	compute	memory	leaks.

Graphic	Object	Details	View

The	Graphic	Object	Details	view	lists	all	the	graphic	memory
allocated	objects	of	the	selected	type	in	the	appropriate	context
(for	example,	Context	1	textures).	The	columns	in	the	list	vary
depending	on	the	selected	item	type,	displaying	information
relevant	to	the	current	items'	memory	size.

Object	Creation	Calls	Stack	View

This	view	displays	the	calls	stack	when	the	currently	selected
item	was	created.	Select	a	stack	frame	to	view	its	information.
If	your	application	has	the	appropriate	debug	information	and
source	code,	double-clicking	a	stack	frame	opens	the	Visual
Studio	Source	Code	editor,	highlighting	the	appropriate	line.

Graph	View

This	view	contains	details	of	the	graphic	memory	consumed	by
the	objects	displayed	in	the	Graphic	Objects	Details	view.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	GPU	Debugger	>	GPU	Debugging	Views	>	OpenCL	Multi-Watch	Views

OpenCL	Multi-Watch	Views

This	view	lets	you	compare	the	values	of	an	OpenCL	Kernel
variable	across	work-items	and	work-groups.

Variable	Values

The	Multiwatch	main	window	displays	either	a	graphical
(image	view)	or	spreadsheet	(data	view)	visualization	of	the
selected	kernel	variable	across	the	various	work-items	and
work-groups.	This	view	operates	very	similarly	to	the	Object
views.	The	two	following	screenshots	display	a	multi	watch
view	for	the	kernel	variable	sum.s2.	The	upper	screenshot	shows
an	image	view,	the	lower	shows	a	data	view.

Variable	Name	Combo-box

Select	a	variable	name	from	the	list,	or	type	a	watch
expression.	If	the	expression	can	be	parse	and	evaluated,	the
values	are	updated	in	the	main	view.

Kernel	Work	Geometry	and	Selected	/	Hovered	Details

Selecting,	or	hovering	with	the	cursor	over,	work-items	displays

the	kernel	work	geometry	(local	and	global	work	size	and
offset)	for	the	current	N-dimensional	kernel	execution,	as	well
as	their	location	and	value.

Value	Range	Slider

Shows	the	value	range,	and	allows	marking	the	valid	value
range.	Values	above	and	below	these	lines	are	colored	to	show
they	are	not	in	the	selected	range.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	GPU	Debugger	>	GPU	Debugging	Views	>	Visual	Studio	Native	Debugging	Views

Visual	Studio	Native	Debugging	Views

Many	Visual	Studio	native	views	have	information	from	the
CodeXL	GPU	Debugging	Engine.

Source	Code	Window

·									During	API	debugging,	CodeXL	displays	the	C/C++
source	that	led	to	the	API	function	call	in	the	source	code
window.

·									During	OpenCL	kernel	debugging,	CodeXL	displays	the
kernel	source	code	in	the	source	code	window.	This	is
done	from	a	project	file,	if	available,	or	from	a	temporary
file	for	applications	that	generate	the	kernel	source	at	run
time.

·									Double-clicking	an	OpenCL	kernel	or	program,	or	an
OpenGL	shader	in	the	CodeXL	Debugging	Object	Explorer,
displays	its	source	code	in	the	source	code	window.

·									Double-clicking	an	object	allocation	call	stack	frame	in
the	Memory	view	displays	the	source	location	associated
with	that	stack	frame	in	the	source	code	window.

Breakpoints	View

·									CodeXL	API	function	breakpoints	are	displayed	as	C/C++
function	breakpoints.

·									CodeXL	kernel	function	name	breakpoints	are	displayed
as	function	breakpoints	with	the	prefix	Kernel:	.

·									CodeXL	Error	/	Warning	breakpoints	appear	as	function
breakpoints,	with	their	descriptive	string	as	the
breakpoint.

·									Kernel	source	code	breakpoints	are	displayed	as

breakpoints	in	the	kernel	source	file.	Note	that	if	a
temporary	kernel	source	file	is	created	at	runtime,	the
breakpoints	set	in	it	do	not	work	in	future	runs	of	the
application.	To	associate	a	kernel	with	a	source	file,
include	the	source	file	in	the	debugged	project,	with	a	.cl
file	extension.

Watch	View

During	OpenCL	kernel	debugging,	enter	variable	names	in	the
Watch	view	to	see	them	update	during	debugging	or	when
switching	between	work-items	in	the	Work-Item	toolbar.

Autos	View

During	OpenCL	kernel	debugging,	the	Autos	view	displays	the
values	of	variables	near	the	program	counter,	if	possible.

Locals	View

During	OpenCL	kernel	debugging,	the	Locals	view	displays	all
the	available	kernel	variables	in	the	current	scope.	An
additional	variable,	KernelDispatchDetails,	which	indicates	the
kernel’s	work	size	and	the	selected	work	item	ID	and
workgroup,	is	also	displayed.

Call	Stack	View

During	API	debugging,	the	current	API	function's	call	stack	is
displayed	in	the	Call	Stack	view.	During	OpenCL	kernel
debugging,	the	kernel's	call	stack	is	displayed	in	the	Call	Stack
view.	Note	that	since	the	kernel	is	debugged	at	execution	time,
the	call	stack	does	not	contain	the	clEnqueueNDRangeKernel
or	clEnqueueTask	API	function	call	that	started	the	debugging.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	GPU	Debugger	>	GPU	Debugging	Views	>	Statistics	View

Statistics	View

This	view	lets	you	view	statistical	information	about	your
OpenCL	and	OpenGL	APIs	usage.

Context	Selection

Select	an	OpenCL	or	OpenGL	context	in	the	CodeXL	Debugging
Object	Explorer	to	update	the	statistics	to	that	context's
information.

Graph	View

This	view	contains	a	graphical	representation	of	the
information	in	the	Function	Types,	Function	Calls	Statistics,
State	Change	Statistics,	Deprecated	Function	Statistics,	and
Vertex	Batch	Statistics	views.

Properties	Box

This	box,	located	in	the	lower	right-hand	side	of	the	Statistics
view,	displays	the	selected	object	properties.	The	properties
include	information	about	the	object,	as	well	as	an	explanation
of	any	warnings	(represented	by	exclamation	point	icons	next
to	the	items).

Statistics	Tabs

Statistics	tabs	include:

·									Function	Type	Statistics	-	Displays	details	of	OpenCL	/
OpenGL	function	calls	to	categories.	Note	that	a	function
can	belong	to	multiple	or	none	of	the	categories.	To	see
which	categories	a	function	belongs	to,	find	it	in	the
Function	Calls	Statistics	view.

·									Function	Call	Statistics	-	Displays	a	breakdown	of	all
the	OpenCL	and	OpenGL	functions	used,	as	well	as	useful
tips	and	information	about	unrecommended	functions.

·									Deprecated	Function	Statistics	-	Displays	a	breakdown
of	the	usage	of	functions	deprecated	by	any	OpenCL	or
OpenGL	version.	In	Analyze	Mode,	this	view	also	displays
details	about	usage	of	deprecated	features	in	partially
deprecated	functions.

·									Calls	History	-	Displays	the	history	of	API	calls	executed
for	last	frame	on	the	current	displayed	context.

·									Vertex	Batch	Statistics	-	Displays	a	breakdown	of	vertex
drawing	OpenGL	function	calls	(or	vertex	batches)	by	the
number	of	vertices	drawn	in	each.
	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	GPU	Debugger	>	GPU	Debugging	Views	>	Statistics	View	>	Function	Type	Statistics	view

Function	Type	Statistics	view

The	Function	Types	Statistics	view	displays	a	breakdown	of
OpenCL	/	OpenGL	function	calls	to	categories.

Note	that	a	function	can	belong	to	multiple	or	none	of	the
categories.	If	you	wish	to	know	which	categories	does	a
function	belong	to,	find	it	in	the	Function	Calls	Statistics	view.

Graph	and	Properties	Views

Graph	View

When	in	the	Function	Types	Statistics	view,	the	Graph	view
displays	a	bar	graph	showing	the	part	each	function	type	takes.
The	grid	lines	represent	25,	50,	and	75	percent	of	all	function
calls.	Selecting	a	function	type	in	the	list	highlights	it	in	the
graph.	Redundant	State	Change	functions	(when	available)	are
marked	in	red;	the	Get	functions	are	marked	in	orange.

Properties	Box

When	in	the	Function	Types	Statistics	view,	the	Properties	box
shows	information	about	the	currently	selected	function	type.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	GPU	Debugger	>	GPU	Debugging	Views	>	Statistics	View	>	Function	Call	Statistics	View

Function	Call	Statistics	View

The	Function	Calls	Statistics	view	shows	the	number	of	times
each	OpenCL	/	OpenGL	function	call	was	executed	in	the
previously	rendered	frame,	as	well	as	its	percentage	of	the
total	functions	execution.
	

Detailed	Function	Calls

For	most	of	the	functions,	the	calls	to	that	function	are
displayed	using	a	single	entry	regardless	of	the	arguments
passed	to	the	function.

For	the	following	functions,	CodeXL	provides	a	separation
based	on	one	of	the	arguments	used	in	the	function	call	to
provide	more	precise	information,	i.e.	they	are	listed	by	their
enumerators.

·			glBegin

·			glBindBuffer
·			glBindBufferARB
·			glBindTexture
·			glDisable
·			glDisableClientState
·			glDrawArrays
·			glDrawArraysIndirect
·			glDrawArraysInstanced
·			glDrawArraysInstancedARB
·			glDrawArraysInstancedBaseInstance
·			glDrawArraysInstancedEXT
·			glDrawElements
·			glDrawElementsIndirect
·			glDrawElementsInstanced
·			glDrawElementsInstancedARB
·			glDrawElementsInstancedBaseInstance
·			glDrawElementsInstancedBaseVertexBaseInstance
·			glDrawElementsInstancedEXT
·			glDrawRangeElements
·			glDrawTransformFeedback
·			glDrawTransformFeedbackInstanced
·			glDrawTransformFeedbackStream
·			glDrawTransformFeedbackStreamInstanced
·			glEnable
·			glEnableClientState
·			glIsEnabled
·			glMultiDrawArrays
·			glMultiDrawArraysEXT
·			glMultiDrawArraysIndirect
·			glMultiDrawElements
·			glMultiDrawElementsEXT
·			glMultiDrawElementsIndirect
·			glTexParameter*

Exporting	Function	Calls	Statistics	Data	Into	a
file

The	Function	Calls	Statistics	data	can	be	exported	to	a	file
(.csv)	using	the	right-click	context	menu	"Export	Function	Calls
Statistics"	command.	Exporting	the	function	calls	statistics
data	can	help	you	compare	the	function	calls	statistics	of
different	frames.	It	also	allows	you	to	perform	regression	tests
by	comparing	the	function	calls	statistics	data	of	two	versions
of	your	application.

Functions	Not	Recommended

The	Usage	of	certain	OpenCL	and	OpenGL	functions	is
unrecommended,	mostly	for	performance	taxing	reasons.	These
functions	are	noted	as	such	in	this	view	in	varying	degrees	-
mildly	unrecommended	(yellow	warning	sign),	intermediately
unrecommended	(orange	warning	sign)	and	highly
unrecommended	(red	warning	sign).	Click	on	an
unrecommended	function	to	display	information	about	it	and	a
better	alternative	to	using	it	in	the	Properties	view.

Graph	and	Properties	Views

Graph	View

When	in	the	Function	Calls	Statistics	view,	the	Statistics	view
Graph	view	will	display	a	pie	chart	of	the	OpenCL	/	OpenGL
function	calls.	Each	pie	"slice"	is	one	API	function	(or	in	some
cases,	a	combination	of	an	OpenGL	function	and	enumerator).
Selecting	a	function	or	functions	in	the	list	causes	their
respective	slice	in	the	graph	to	be	highlighted.	The	graph	can
be	rotated	by	clicking	on	it	and	dragging.

Properties	Box

When	in	the	Function	Calls	Statistics	view,	the	Statistics	view
Properties	Box	will	display	the	function	name.	If	the	function	is
an	unrecommended	one,	the	Properties	Box	will	also	display	an
explanation	of	why	using	this	function	is	unrecommended,	as
well	as	a	recommendation	for	an	alternative	to	using	this

function.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	GPU	Debugger	>	GPU	Debugging	Views	>	Statistics	View	>	Deprecated	Function	Statistics
view

Deprecated	Function	Statistics	view

The	Deprecated	Function	Statistics	view	displays	information
about	your	usage	of	functions	deprecated	by	any	OpenCL	or
OpenGL	version.

Each	of	the	lines	in	the	list	displays	the	usage	of	one
Deprecated	function	or	a	combination	of	a	partially	deprecated
function	and	a	deprecated	feature.	The	number	of	calls	to	this
function	or	deprecated	uses	of	this	function	and	feature
combination	is	displayed	(as	well	as	a	percentage	of	the	total
API	function	calls).	Finally,	the	OpenCL	/	OpenGL	version	when
this	feature	was	deprecated	and	the	version	it	was	removed	(if
any)	are	displayed.

Graph	and	Properties	Views

Graph	View

When	in	the	Deprecated	Function	Statistics	view,	the	Statistics
view	Graph	view	displays	a	pie	chart,	representing	a
breakdown	of	the	deprecated	function	calls	per	combination	of
deprecated	function	and	deprecated	feature.

Properties	View

When	in	the	Deprecated	Function	Statistics	view,	the	Statistics
view	Properties	view	displays	the	currently	selected
deprecated	function's	name,	as	well	as	information	about	the
deprecated	feature	it	is	a	part	of,	and	other	functions	and
behaviors	belonging	to	the	same	deprecated	feature.	A
forward-compatible	alternative	to	this	feature	is	supplied	in
bold	font.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	GPU	Debugger	>	GPU	Debugging	Views	>	Statistics	View	>	API	Function	Calls	History	View

API	Function	Calls	History	View

This	view	displays	a	log	of	OpenCL,	OpenGL,	OpenGL
extensions,	as	well	as	WGL	and	glX	function	calls	executed	in
each	context.

Function	Calls	List

The	function	calls	are	displayed	as	a	list,	ordered	by	the	time	in
which	they	were	called.	Each	list	line	represents	a	single
function	call;	it	contains:

·									the	called	function	name,
·									its	arguments	values,	and
·									the	function	type	(as	an	icon).

The	function	types	are	marked	as	shown	in	the	following
screenshot.

	
The	icons	have	the	following	meanings

OpenCL	function.
OpenCL	buffer	and	image
function.
OpenCL	queue	function.
OpenGL	function.
OpenGL	extension	function.
A	WGL	function.
A	GLX	function.
OpenGL	program	and	shader
function.
OpenGL	texture	function.

OpenGL	buffer	function.
GL_string_marker_GREMEDY
function.

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	GPU	Debugger	>	GPU	Debugging	Views	>	Statistics	View	>	Vertex	Batch	Statistics	view

Vertex	Batch	Statistics	view

The	Vertex	Batch	Statistics	view	displays	information	about
your	usage	of	OpenGL	vertex	drawing	functions	or	vertex
batches,	divided	by	the	batch	size	(i.e.	how	many	vertices	were
drawn	with	a	single	OpenGL	function	call).

	

Vertex	Batches

Each	of	the	lines	in	the	view	displays	statistics	for	a	range	of
vertex	batch	sizes	(normal	view)	or	a	specific	batch	size
(detailed	view).	The	number	and	percentage	of	batches	of	this
size	represents	the	"cost"	of	drawing	with	this	batch	size.	The
number	and	percentage	of	vertices	represent	the	"benefit"
gained	from	drawing	with	this	batch	size.	Batches	which	are
small	in	relation	to	the	application	(have	a	higher	percentage	of
batches	than	is	expected	from	their	percentage	of	vertices)	are
noted	with	a	warning	icon.

Show	Detailed	Batch	Statistics

Toggles	between	the	Vertex	Batch	Statistics	view's	normal
(gather	batch	sizes	into	ranges	by	amount)	and	detailed	(show
each	vertex	batch	size	separately)	views.

Graph	and	Properties	Views

Graph	View

When	in	the	Vertex	Batch	Statistics	view,	the	Statistics	view
Graph	view	displays	a	bar	chart,	in	which	each	bar	is	a	range	of
batch	sizes.	The	height	of	the	bar	is	the	number	of	batches
drawn	in	this	range,	and	the	bar's	color	represents	the	range's
position	in	the	application's	distribution	(Red	bars	are	the
smallest	batches	and	green	bars	are	the	largest	ones).	The	grid
lines	represent	25,	50	and	75	percent	of	vertex	drawing
function	calls.	When	the	Vertex	Batch	Statistics	shows	the
detailed	view,	this	graph	becomes	a	histogram	of	the	vertex
batch	sizes.

Properties	View

When	in	the	Vertex	Batch	Statistics	view,	the	Statistics	view
Properties	view	displays	the	currently	selected	batch	size
range,	the	percentage	statistics	for	this	range	and	a	short
explanation	about	vertex	batches.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	GPU	Debugger	>	GPU	Debugging	Views	>	Object	Views

Object	Views

The	Object	views	-	Image	view	and	Data	view	-	allow	you	to
view	all	OpenCL	buffers	and	images,	and	OpenGL	textures,
static	buffers,	VBOs	(vertex	buffer	objects),	FBOs	(frame	buffer
objects),	render	buffers	and	pbuffers	(pixel	buffers).
Each	object	can	be	viewed	both	as	an	image	in	the	Image	view
(except	OpenCL	Buffers	and	OpenGL	VBOs)	and	as	a
spreadsheet	containing	the	object	raw	data	in	the	Data	view.
The	object	properties	and	parameters	will	appear	in	the
properties	view.
Image	View
Data	View

Information	Panel

The	information	panel	helps	you	make	fast	inquiries	and
adjustments	to	the	currently	viewed	object	pixels/texels.
The	information	panel	is	composed	of	a	few	main	elements
(which	are	only	shown	when	relevant:

Current	and	Previous	Pixel

When	hovering	with	the	mouse	over	the	Image	view,	the
currently	highlighted	pixel	data	is	displayed	as	the	current
pixel;	Both	RGBA	values	and	raw	data	value	are	displayed.	If
you	wish	to	compare	between	two	different	pixels,	you	can	save
a	specific	pixel	value	by	clicking	on	it	with	the	left	mouse
button.	The	pixel	data	will	be	stored	as	the	"Selected	Pixel",
allowing	you	to	make	fast	comparison	to	another	pixel.

Single	Channel	Range	Adjustment	Slider

When	viewing	an	object	that	has	a	single	component	data
format	("Depth"	/	"Luminance"	/	"Intensity"	/	etc.)	the	image
view	translates	these	values	to	grayscale	values.	Use	the	single
channel	range	adjustment	slider	to	adjust	the	data	translation
to	grayscale	values.

3D	Layer	Slider

When	viewing	3D	images	or	textures,	you	can	scroll	through
the	2D	images	that	make	up	the	3D	image	using	the	3D	layer
slider	located	in	the	information	panel.

Texture	Array	Layer	Slider

When	viewing	texture	arrays,	you	can	scroll	through	the

textures	that	make	up	the	array	using	the	Texture	array	layer
slider	located	in	the	information	panel.

Texture	Mipmap	Slider

When	viewing	a	texture	which	has	automatic	or	manual
mipmaps	defined,	you	can	scroll	through	the	different	texture
levels	using	the	Mipmap	slider	located	inside	the	information
panel.

OpenCL	buffer	/	OpenGL	VBO	Format	Controls

When	viewing	an	OpenCL	buffer	or	an	OpenGL	VBO,	the
information	panel	will	contain	several	items	that	allow
choosing	how	the	VBO	data	is	displayed:
·			Data	combo-box	-	choose	which	kind	of	data	the	buffer
contains.	Each	option	in	this	combo-box	matches	either	the
OpenCL	C	types	or	an	OpenGL	gl*Pointer	function
("Interleaved"	matches	glInterleavedArrays).	Choose	"All"	to
display	all	formats.	An	exception	to	this	is	the	"Index"	option
which	also	matches	the	glDrawElements	(and	variants)
function's	indices	parameter	and	not	only	glIndexPointer.

·			Format	combo-box	-	choose	the	format	the	data	is	stored	in,
matching	the	OpenCL	C	type	the	kernel	uses	(__global	XXXX*)
size	and	type	parameters	of	the	gl*Pointer	function	or	the
format	parameter	of	glInterleavedArrays.	The	formats	are
named	as	data-components-format,	for	example	C4UB	stands
for	color	data	stored	in	4	components	of	unsigned	byte	type.

·			Offset	spin	control	-	choose	the	offset	from	the	beginning	of
the	VBO	to	the	start	of	the	data.	This	should	match	the	pointer
parameter	of	the	gl*Pointer	function.

·			Stride	spin	control	-	choose	the	stride	(space	in	bytes	between
the	end	of	one	vertex's	data	and	the	next	one's)	to	match	the
stride	parameter	of	the	gl*Pointer	function.
	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	GPU	Debugger	>	GPU	Debugging	Views	>	Object	Views	>	Object	Image	view

Object	Image	view

You	can	view	an	image,	a	buffer	or	a	texture	object	loaded
image	using	the	Image	view.

Images	and	Buffers	toolbar

Use	the	Images	and	Buffers	toolbar	to	control	the	Image	view

Click	on	the	data	tab	to	see	the	image	data

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	GPU	Debugger	>	GPU	Debugging	Views	>	Object	Views	>	Object	Data	view

Object	Data	view

You	can	view	a	buffer,	an	image	or	a	texture	object	raw	data
using	the	Data	view.

Grid	Zoom

The	grid	zoom	slider	allows	you	to	set	the	zoom	level	of	the
displayed	raw	data	cells.

Link	Image	and	Data	Views

When	enabled,	clicking	on	a	pixel	at	the	image	view	will	select
this	pixel	at	the	data	view	grid.

Show	Normalized	Values

The	values	showed	in	the	grid	are	the	original	data	values	of
the	object	as	held	by	OpenCL	and	OpenGL.	These	values	may
be	in	various	data	formats	such	as	OpenCL	C	types,	or
GL_FLOAT,	GL_INT,	GL_SHORT	and	GL_BYTE.	When	enabled,
the	data	view	will	display	the	values	in	the	grid	normalized	to
the	GL_BYTE	type	([0..255]	range),	regardless	of	the	original
data	type.

Viewing	OpenCL	buffers	and	OpenGL	Vertex	Buffer
Objects	(VBOs)

These	buffers	can	only	be	shown	in	the	Data	View.	After
choosing	the	VBO's	data,	format,	offset	and	stride;	each
vertex's	data	will	be	shown	as	a	separate	line	in	the	view.	The
column	headers	represent	the	meaning	of	each	value	-	X,	Y,	Z,
W	for	vertex	position;	Nx,	Ny,	Nz	for	normal	direction;	R,	G,	B,
A	for	vertex	color	and	S,	T,	R,	Q	for	texture	coordinates.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	GPU	Debugger	>	GPU	Debugging	Dialogs

GPU	Debugging	Dialogs

This	section	provides	information	on:

·									Adding	/	removing	breakpoints
·									GPU	debugging	project	settings
·									GPU	debugging	global	settings

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	GPU	Debugger	>	GPU	Debugging	Dialogs	>	Add	/	Remove	CodeXL	Breakpoints	Dialog

Add	/	Remove	CodeXL	Breakpoints	Dialog

The	Breakpoint	dialog	lets	you	choose	OpenCL	and	OpenGL
API	function	breakpoints,	as	well	as	kernel	function	name
breakpoints.
Breakpoints	added	this	way	are	added	as	C/C++	function
breakpoints	to	the	Visual	Studio	Breakpoints	view.	Adding	an
OpenCL	or	OpenGL	function	as	a	Visual	Studio	breakpoint
(Debug	>	Breakpoints	>	New	Breakpoint...)	adds	it	to	this
dialog.
The	debugged	process	execution	is	suspended	when	a
debugged	process	thread	calls	an	API	function	marked	as	a
breakpoint.	The	process	run	is	suspended	before	the	function	is
executed;	this	lets	you	observe	the	effect	the	breakpoint
function	has	on	the	application	behavior.
The	debugged	process	execution	is	suspended	when	a	kernel
with	a	function	name	marked	as	a	breakpoint	starts	executing.
This	lets	you	start	kernel	debugging	without	having	to	use	the
clEnqueueNDRangeKernel	function	call.

Breakpoints

API	Functions Contains	OpenCL	and	OpenGL	API	functions,	as	well	as	
supported	by	CodeXL.

Kernel	Functions When	an	OpenCL	application	is	debugged,	contains	the	

These	are	special	breakpoints	that	can	be	set	on	the	
·			Break	on	OpenGL	error	-	This	is	hit	whenever	an	OpenGL	
error	code.	Note	that	if	your	application	uses	glGetError	for	validation,	its	flow	might	

·			Break	on	OpenCL	error	–	This	is	hit	whenever	an	OpenCL	

Error	/	Warning error	code.
·			Break	on	Detected	error	-	The	CodeXL	OpenCL	and	OpenGL	
specifications.	This	breakpoint	is	hit	when	such	an	error	is	detected.	The	output	window	

·			Break	on	Deprecated	function	-	OpenGL	3.0	and	up	and	
marked	as	deprecated	and	must	be	removed	to	maintain	forward	compatibility.	This	
is	called.

Text	Filter Enables	filtering	the	Breakpoints	list.	Entering	multiple	
containing	all	the	strings.

Active	Breakpoints
Contains	the	currently	selected	API	and	kernel	function	
checking	/	unchecking	the	box	next	to	the	function	name.	You	also	can	type	in	kernel	
were	not	created	yet	in	the	application.

Add	Breakpoint To	add	a	breakpoint,	select	one	or	more	functions	from	
Breakpoints	list	by	double-clicking	on	it,	or	by	pressing	the	

Remove
Breakpoint

To	remove	a	breakpoint,	select	the	function	from	the	
pressing	the	Remove	button.

Remove	all
Breakpoints Press	this	button	to	remove	all	of	the	active	

	

Settings

Enable	/Disable	all	Function	Breakpoints

This	section	describes	how	to	change	the	enabled	status	of	all
active	breakpoints.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	GPU	Debugger	>	GPU	Debugging	Dialogs	>	GPU	Debugging	Project	settings

GPU	Debugging	Project	settings

Use	the	File	>	Project	Settings	menu	(Ctrl-P)	to	open	the
project	settings	dialog.	Navigate	to	the	“Debug”	node	in	the
project	settings	tree	displayed	in	the	left	panel	of	the	dialog.

	
	

OpenCL	frame	terminators	are	the	functions
that	end	your	application	computation

OpenCL
Frame
Terminators

frame.	They	let	you	view	the	log	of	a	single
computation	frame,	not	the	entire	calls	log.
Available	Frame	Terminators	are:
cl_gremedy_computation_frame,	clFlush,
clFinish,	and	clWaitForEvents.

OpenGL
Frame
Terminators

OpenGL	frame	terminators	are	the	functions
that	end	your	application	render	frame.	They
let	you	view	the	log	of	a	single	render	frame,
not	the	entire	calls	log.	Available	Frame
Terminators	are:	glClear,	glFlush,	glFinish,
wglSwapBuffers,	wglMakeCurrent,
wglSwapLayerBuffers,	and
glFrameTerminatorGREMEDY.
For	example:
glFlush	is	usually	chosen	for	single-buffered
applications.
wglSwapBuffers								is	usually	chosen	for
double-buffered	applications.
You	must	select	at	least	one	OpenGL	Frame
Terminator.	See	Frames	and	Frame
Terminators[A1]		for	more	details.

Add	/	Remove
Breakpoints

Click	this	button	to	open	the	Add	/	Remove
CodeXL	Breakpoints	dialog.

	

	

	
	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	GPU	Debugger	>	GPU	Debugging	Dialogs	>	GPU	Debugging	Global	Settings

GPU	Debugging	Global	Settings

The	GPU	Debug	global	settings	are	set	when	the	project	is
initially	created,	and	affect	every	session.
To	set	the	options:
1.						In	the	CodeXL	menu,	click	CodeXL	Options.	
The	Edit	CodeXL	Global	Settings	dialog	box	is	displayed.

2.						Select	the	GPU	Debug	tab.	See	the	descriptions	below	for
each	of	the	global	debug	settings.

3.						Click	OK	to	activate	the	new	options	and	close	the	dialog
box,	or	click	Restore	Default	Settings	to	reset	the	dialog
box	selections	to	the	system	default,	or	click	Cancel	to
close	without	changes.

	

Call	Stack

Additional
Source	Code
Directories

When	specifying	additional	source	code
directories,	If	the	source	code	file	is	not
found	at	its	debug	information	path,	it	will
searched,	by	file	name	only,	in	the	additional
source	code	directories.	The	search	is
performed	according	to	the	order	in	which
the	directories	are	specified.	The	additional
source	code	directories	are	semicolon
separated.

When	specifying	a	source	code	root	location,

Source	Code
Root
Location

the	root	location	is	prefixed	to	each	source
code	file	path.	Only	one	source	code	root
location	can	be	specified.	Example:	If	the
source	code	root	is	"D:\Dir1\"	and	the	debug
information	source	code	path	is
"\Dir2\Dir3\MyFile.cpp",	the	Source	Code
editor	input	path	will	be
"D:\Dir1\Dir2\Dir3\MyFile.cpp".

Collect
Allocated
Objects'
Creation
Calls	Stacks

Deselect	this	checkbox	if	you	don't	want
CodeXL	to	collect	the	graphic	memory
allocated	objects	creation	calls	stacks	(which
are	displayed	in	the	Memory	View).	This	can
improve	Debug	Mode	performance	in	some
cases	when	many	graphic	memory	objects	are
allocated.

	

HTML	Log	File

Enable	Texture
Images	Logging	in
the	Calls	History
HTML	Log

When	this	box	is	checked,	textures
data	is	saved	and	displayed	in	the	calls
log	file.

Textures	Data	File
Format

You	can	select	the	format	by	choosing
the	appropriate	radio	button.	Available
formats	are:	JPG,	BMP,	PNG,	and	TIFF.
3D	textures	are	stored	as	tiff	images.

	

Calls	Logging

Set	the	logging	limit	for	OpenGL	API	function	calls	and	OpenCL

API	function	calls.	If	this	limit	is	exceeded,	the	log	is	cleared.
Define	frame	terminators	in	the	project	settings	to	avoid	this
automatic	clearing.

Advanced

Floating-Point
Precision

The	maximum	number	of	significant
digits	that	will	be	displayed	in	the	Object
and	Multi-Watch	views.

Flush	Log	File
After	Every
Monitored
Function	Call

When	the	Flush	log	file	after	every
monitored	function	call	check	box	is
checked,	CodeXL	will	flush	the	OpenCL	/
OpenGL	calls	history	log	file	after	every
API	function	call	instead	of	not	use
memory	cached	batches.	This	feature
can	help	tracking	the	function	call	that
led	to	a	debugged	application	crash.
Using	this	feature	dramatically	slows
down	the	debugged	application
performance	and	therefore	it	is	not
recommended	for	regular	use.

Restore	Default
Settings

Click	this	button	to	restore	all	settings
on	all	pages	to	their	default	values.

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	GPU	Debugger	>	GPU	Debugging	API	Support

GPU	Debugging	API	Support

CodeXL	GPU	debugging	supports	OpenCL	up	to	and	including
version	2.0,	OpenGL	up	to	and	including	version	4.5	(including
compatibility	profiles)	and	a	large	variety	of	OpenCL	and
OpenGL	extensions.
Kernel	debugging	is	not	supported	for	OpenCL	2.0	kernels.
The	supported	extensions	include:

	

OpenCL	Extensions

Extension	name
cl_khr_3d_image_writes
cl_khr_byte_addressable_store
cl_khr_dx9_media_sharing
cl_khr_d3d10_sharing
cl_khr_d3d11_sharing
cl_khr_fp64
cl_khr_gl_sharing
cl_khr_icd
cl_khr_global_int32_base_atomics
cl_khr_global_int32_extended_atomics
cl_khr_local_int32_base_atomics
cl_khr_local_int32_extended_atomics
cl_ext_atomic_counters_32
cl_ext_cl20_atomics
cl_ext_cl20_svm
cl_ext_device_fission
cl_amd_c11_atomics

cl_amd_device_attribute_query
cl_amd_fp64
cl_amd_media_ops
cl_amd_popcnt
cl_amd_printf
cl_amd_svm
cl_amd_vec3
cl_nv_d3d9_sharing
cl_nv_d3d10_sharing
cl_nv_d3d11_sharing
*	Using	this	extension	in	a	kernel	might	prevent	the	kernel	from	being	debuggable.	If	
	

OpenGL	extensions

Extension	name Support	level
GL_ARB_arrays_of_arrays Standard
GL_ARB_base_instance Full
GL_ARB_blend_func_extended Standard
GL_ARB_clear_buffer_object Standard
GL_ARB_color_buffer_float Standard
GL_ARB_compatibility Full
GL_ARB_compressed_texture_pixel_storage Standard
GL_ARB_compute_shader Full
GL_ARB_conservative_depth Standard
GL_ARB_copy_buffer Full
GL_ARB_copy_image Standard
GL_ARB_debug_output Full
GL_ARB_debug_output Full
GL_ARB_depth_buffer_float Standard
GL_ARB_depth_clamp Full
GL_ARB_depth_clamp Standard
GL_ARB_depth_texture Standard
GL_ARB_draw_buffers Standard
GL_ARB_draw_buffers_blend Standard
GL_ARB_draw_elements_base_vertex Full

GL_ARB_draw_elemnts_base_vertex Full
GL_ARB_draw_indirect Full
GL_ARB_draw_instanced Full
GL_ARB_ES2_compatibility Standard
GL_ARB_ES3_compatibility Standard
GL_ARB_explicit_attrib_location Standard
GL_ARB_explicit_uniform_location Standard
GL_ARB_fragment_coord_conventions Full
GL_ARB_fragment_coord_conventions Standard
GL_ARB_fragment_layer_viewport Standard
GL_ARB_fragment_program Standard
GL_ARB_fragment_program_shadow Standard
GL_ARB_fragment_shader Full
GL_ARB_framebuffer_no_attachments Standard
GL_ARB_framebuffer_object Full
GL_ARB_framebuffer_sRGB Full
GL_ARB_geometry_shader4 Full
GL_ARB_geometry_shader4 Full
GL_ARB_get_program_binary Standard
GL_ARB_gpu_shader_fp64 Full
GL_ARB_gpu_shader5 Full
GL_ARB_half_float_pixel Standard
GL_ARB_half_float_vertex Standard
GL_ARB_instanced_arrays Full
GL_ARB_instanced_arrays Full
GL_ARB_internalformat_query Standard
GL_ARB_internalformat_query2 Standard
GL_ARB_invalidate_subdata Standard
GL_ARB_map_buffer_alignment Standard
GL_ARB_map_buffer_range Standard
GL_ARB_matrix_palette Standard
GL_ARB_multi_draw_indirect Full
GL_ARB_multisample Standard
GL_ARB_multitexture Full
GL_ARB_occlusion_query Standard
GL_ARB_occlusion_query2 Standard

GL_ARB_pixel_buffer_object Standard
GL_ARB_point_parameters Full
GL_ARB_point_sprite Standard
GL_ARB_program_interface_query Standard
GL_ARB_provoking_vertex Full
GL_ARB_provoking_vertex Standard
GL_ARB_robust_buffer_access_behavior Standard
GL_ARB_sample_shading Standard
GL_ARB_sampler_objects Standard
GL_ARB_seamless_cube_map Full
GL_ARB_seamless_cube_map Standard
GL_ARB_separate_shader_objects Standard
GL_ARB_shader_atomic_counters Full
GL_ARB_shader_bit_encoding Standard
GL_ARB_shader_image_load_store Standard
GL_ARB_shader_image_size Standard
GL_ARB_shader_objects Full
GL_ARB_shader_precision Standard
GL_ARB_shader_storage_buffer_object Standard
GL_ARB_shader_subroutine Standard
GL_ARB_shading_language_100 Full
GL_ARB_shading_language_420pack Standard
GL_ARB_shading_language_packing Standard
GL_ARB_shadow Full
GL_ARB_shadow_ambient Standard
GL_ARB_stencil_texturing Standard
GL_ARB_sync Full
GL_ARB_sync Full
GL_ARB_tessellation_shader Full
GL_ARB_texture_border_clamp Full
GL_ARB_texture_buffer_object Full
GL_ARB_texture_buffer_object_rgb32 Standard
GL_ARB_texture_buffer_range Standard
GL_ARB_texture_compression Full
GL_ARB_texture_compression_rgtc Standard

GL_ARB_texture_cube_map Full
GL_ARB_texture_cube_map_array Full
GL_ARB_texture_env_add Full
GL_ARB_texture_env_combine Full
GL_ARB_texture_env_crossbar Full
GL_ARB_texture_env_dot3 Full
GL_ARB_texture_float Standard
GL_ARB_texture_gather Standard
GL_ARB_texture_mirrored_repeat Full
GL_ARB_texture_multisample Full
GL_ARB_texture_multisample Standard
GL_ARB_texture_non_power_of_two Full
GL_ARB_texture_query_levels Standard
GL_ARB_texture_rectangle Full
GL_ARB_texture_rg Standard
GL_ARB_texture_rgb10_a2ui Standard
GL_ARB_texture_storage Standard
GL_ARB_texture_storage_multisample Standard
GL_ARB_texture_swizzle Standard
GL_ARB_texture_view Standard
GL_ARB_timer_query Standard
GL_ARB_transform_feedback_instanced Standard
GL_ARB_transform_feedback2 Standard
GL_ARB_transform_feedback3 Standard
GL_ARB_transpose_matrix Full
GL_ARB_uniform_buffer_object Full
GL_ARB_vertex_array_bgra Full
GL_ARB_vertex_array_bgra Standard
GL_ARB_vertex_array_object Full
GL_ARB_vertex_attrib_64bit Standard
GL_ARB_vertex_attrib_binding Standard
GL_ARB_vertex_blend Full
GL_ARB_vertex_buffer_object Standard
GL_ARB_vertex_program Standard
GL_ARB_vertex_shader Full

GL_ARB_vertex_type_2_10_10_10_rev Standard
GL_ARB_viewport_array Standard
GL_ARB_window_pos Full
GL_EXT_bgra Full
GL_EXT_bindable_uniform Full
GL_EXT_blend_logic_op Full
GL_EXT_blend_minmax Full
GL_EXT_blend_subtract Full
GL_EXT_compiled_vertex_array Full
GL_EXT_direct_state_access Full
GL_EXT_draw_instanced Full
GL_EXT_framebuffer_blit Full
GL_EXT_framebuffer_multisample Full
GL_EXT_framebuffer_object Full
GL_EXT_geometry_shader4 Full
GL_EXT_multi_draw_arrays Full
GL_EXT_packed_pixels Full
GL_EXT_stencil_two_side Full
GL_EXT_texture Full
GL_EXT_texture_array Full
GL_EXT_texture_buffer_object Full
GL_EXT_texture_integer Full
GL_EXT_texture_rectangle Full
GL_EXT_texture_shared_exponent Full
GL_EXT_texture3D Full
GL_EXT_vertex_shader Standard
GL_AMD_debug_output Full
GL_AMDX_debug_output Full
GL_APPLE_aux_depth_stencil Full
GL_APPLE_client_storage Full
GL_APPLE_element_array Full
GL_APPLE_fence Standard
GL_APPLE_float_pixels Full
GL_APPLE_flush_buffer_range Standard
GL_APPLE_flush_render Standard

GL_APPLE_object_purgeable Standard
GL_APPLE_packed_pixels Full
GL_APPLE_pixel_buffer Standard
GL_APPLE_specular_vector Full
GL_APPLE_texture_range Standard
GL_APPLE_transform_hint Full
GL_APPLE_vertex_array_object Standard
GL_APPLE_vertex_array_range Standard
GL_APPLE_vertex_program_evaluators Full
GL_APPLE_ycbcr_422 Full
GL_ATI_draw_buffers Standard
GL_ATI_fragment_shader Standard
GL_ATI_text_fragment_shader Standard
GL_GREMEDY_frame_terminator Full
GL_GREMEDY_string_marker Full
GL_HP_occlusion_test Standard
GL_KHR_debug Standard
GL_NV_fragment_program Standard
GL_NV_fragment_program_option Standard
GL_NV_fragment_program2 Standard
GL_NV_geometry_shader4 Full
GL_NV_occlusion_query Standard
GL_NV_primitive_restart Full
GL_NV_texgen_reflection Full
GL_NV_texture_rectangle Full
GL_NV_texture_shader Standard
GL_NV_texture_shader3 Standard
GL_NV_vertex_program Standard
GL_NV_vertex_program1_1 Standard
GL_NV_vertex_program2 Standard
GL_NV_vertex_program2_option Standard
GL_NV_vertex_program3 Standard
GL_OES_draw_texture Standard
GL_SGIS_generate_mipmap Full
GL_SGIS_texture_border_clamp Full

GL_SGIS_texture_edge_clamp Full
GL_SGIS_texture_lod Full
GL_SGIS_texture_select Full
GL_SGIX_depth_texture Full
GL_SGIX_interlace Full
GL_SGIX_shadow Full
GL_SGIX_shadow_ambient Full
GLX_ARB_create_context Full
GLX_ARB_create_context_profile Full
GLX_ARB_fbconfig_float Standard
GLX_ARB_framebuffer_sRGB Full
GLX_ARB_get_proc_address Full
GLX_ARB_multisample Standard
GLX_SGI_video_sync Standard
GLX_SGIX_fbconfig Standard
WGL_AMD_gpu_association Standard
WGL_ARB_buffer_region Standard
WGL_ARB_create_context Full
WGL_ARB_create_context_profile Full
WGL_ARB_extensions_string Full
WGL_ARB_framebuffer_sRGB Full
WGL_ARB_make_current_read Standard
WGL_ARB_multisample Standard
WGL_ARB_pbuffer Standard
WGL_ARB_pixel_format Standard
WGL_ARB_pixel_format_float Standard
WGL_ARB_render_texture Standard
WGL_I3D_genlock Standard
WGL_NV_gpu_affinity Standard
WGL_NV_present_video Standard
WGL_NV_swap_group Standard
WGL_NV_video_out Standard
	

Standard	Extension	Support	Level

The	Standard	Extension	Support	Level	enables	one	to	log	the
calls	and	arguments	of	the	extension	functions,	set	breakpoints
at	the	extension	functions,	and	watch	the	values	of	the
extension	states	variables.

	

Full	Extension	Support	Level

In	addition	to	supporting	the	Standard	Extension	Support	Level
features,	the	Full	Extension	Support	Level	enables	one	to	view
the	extension-related	data	in	the	corresponding	CodeXL	views.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	GPU	Debugger	>	GPU	Kernel	Debugging	Support

GPU	Kernel	Debugging	Support

CodeXL	GPU	debugging	supports	OpenCL	kernel	debugging.	In
order	to	step	into	a	kernel,	and	start	debugging,	use	one	of	the
following	methods:
1.						Breakpoint	in	clEnqueueNDRangeKernel
2.						Break	in	a	kernel

Breakpoint	in	clEnqueueNDRangeKernel

1.						Put	a	breakpoint	in	clEnqueueNDRangeKernel	using	the
breakpoints	dialog.

2.						Once	the	breakpoint	hits,	click	F11,	or	step-in	button	

3.						The	kernel	source	file	is	opened,	and	you	can	use	step-
over,	step-in	and	step-out	buttons.

Break	in	a	kernel

1.						Run	your	application.

2.						After	the	kernel	is	created,	break	into	the	debugger.

3.						Open	the	breakpoints	dialog.

4.						Navigate	to	the	“Kernel	Functions”	tab

5.						Select	the	kernel	in	which	you	want	to	break,	and	click
the	“Add	button”.

6.						Click	Ok.

7.						Resume	the	debugged	application.

8.						Next	time	this	kernel	is	executed,	the	kernel	source	file
will	open,	and	you	will	be	able	to	use	step-over,	step-in	and
step-out	buttons.

	
	

	

Kernel	Debugging

Once	CodeXL	goes	into	kernel	debugging	mode,	the	kernel
source	code	is	opened.	If	the	kernel	was	created	with	a	string,
a	temporary	file	with	the	kernel	source	is	created.

	

While	debugging	the	kernel	you	can:

1.						Put	a	breakpoint	in	any	of	the	kernel	source	code	lines.

2.						Step-in,	Step-out	and	Step-over	the	kernel	source	code
lines.

3.						See	the	values	of	variables	in	various	views:

·									Locals	view

The	locals	view	display	a	tree	of	the	current	local	variables.

·									Watch	view

Type	an	expression,	or	drag	an	expression	from	the	source
code	view	to	see	the	current	variable	value.

Use	the	work	item	toolbar	in	order	to	change	the	currently
viewed	work	item	both	in	Watch	view	and	Locals	view.

·									Multi-watch	view

In	order	to	see	multiple	work	item	view	of	a	variable,	open	the
Multi-watch	view	and	use	the	visual	and	numeric	data
representation	to	see	the	variable’s	values.

·									Use	the	mouse	to	hover	a	variable	and	watch	its
value	in	a	tooltip

As	seen	in	the	attached	screenshot,	once	CodeXL	is	in	Kernel
Debugging	mode,	when	the	mouse	cursor	hovers	over	the
variable	name,	a	tooltip	with	the	variable	value	is	displayed.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	CPU	Profiler

CPU	Profiler

CodeXL's	CPU	Profiler	is	used	for	performance	analysis	and
tuning	of	applications	running	on	CPU.
The	CPU	Profiler	lets	you	identify	main	performance
bottlenecks	of	the	profiled	application	or	the	entire	system.

Features

·									Three	profile	modes:
‒				Time-Based	Profile	(TBP)	can	identify	the	“hot-spots”	in
the	profiled	applications.	(Hot-spots	are	code	areas	that
use	significantly	more	time	compared	to	other	areas	in
the	code.)

‒				Event-Based	Profile	(EBP)	can	identify	CPU	and	memory
related	performance	issues	in	the	profiled	applications.

‒				Instruction-Based	Sampling	(IBS)	can	record	and	count
the	instructions	that	trigger	HW	events,	as	well	as
calculate	various	metrics,	such	as	data	cache	latency.

·									Per-Process	mode	and	System-Wide	mode	profiling:
‒				Per-process	mode	profiles	a	process	and	its	children.
‒				System-wide	mode	profiles	the	entire	system.

·									Attach	to	process	for	profiling.
·									User-mode	profiling	and	Kernel-mode	profiling	(Windows
only).

·									Native	applications	profiling	(C,	C++	and	Fortran).
·									Profiling	C++	inline	functions.
·									CLR/.NET	applications	profiling	(only	on	Windows).
·									Java	applications	profiling.
·									Call	Stack	Sampling	(CSS)	for	all	profile	modes.
·									Aggregation	of	the	collected	samples	at	various	levels:

Process/Modules/Functions/Source	and	Disassembly.
·									HW	events	counter	multiplexing.
·									Debugging	Data	Formats	Supported:

‒				CodeXL	supports	symbol	information	for	unmanaged
Executables	compiled	by	MS	Visual	Studio	or	GCC	(under
Linux	or	other	Unix-like	systems	(like	Cygwin	and
MinGW)).	That	includes	the	following	debugging	data
formats:	PDB,	COFF,	DWARF,	STABS.

‒				For	managed	Executables,	CodeXL	supports	Java	and
.NET	applications’	debug	information.

·									Time-Based	Profile	(TBP)	and	Event-Based	Profile	(EBP)	are
supported	in	guest	OS	running	on	VMware	Workstation	11.0
or	later.

·									Time-Based	Profile	(TBP)	and	Event-Based	Profile	(EBP)	are
supported	on	Microsoft	Hyper-V.

·									Time-Based	Profile	(TBP)	is	supported	on	Xen	Project
hypervisor.

·									Time-Based	Profile	(TBP)	is	supported	on	Linux	KVM
hypervisor.

·									Controlling	CPU	Profiling	i.e.	pause	and	resume	profiling,
from	target	application	to	limit	profiling	scope.

·									Aggregated	instruction	based	(IMIX)	report	generation	from
CPU	Profiler	CLI.

Limitations

·									CPU	Profiler	expects	the	profiled	application	executable
binaries	must	not	be	compressed	or	obfuscated	by	any
software	protector	tools,	e.g.	VMProtect.

Using	the	CPU	Profiler

This	section	explains	various	key	concepts	related	to	CPU
Profiling.	It	consists	of	the	following	subsections.

·									CPU	Profile	Key	Concepts
·									CPU	Profile	Configurations

·									CPU	Profile	Session
·									CPU	Profile	Data	Analysis
·									CPU	Profile	Command	Line	Interface
·									CPU	Profile	C/C++	Inline	Functions
·									CPU	Profile	PLT	Relocations
·									CPU	Profile	on	Virtual	Machine
·									CPU	Profile	Control	APIs
·									CPU	Profile	IMIX	report	generation

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	CPU	Profiler	>	CPU	Profile	Key	Concepts

CPU	Profile	Key	Concepts

This	section	explains	various	key	concepts	related	to	CPU
Profiling.

CPU	Profiling	in	CodeXL

The	CodeXL	CPU	Profiler	follows	a	statistical	sampling-based
approach	to	gather	the	profile	data	periodically.	It	uses	a
variety	of	SW	and	HW	resources	available	in	AMD	x86	based
processor	families.	CPU	Profiler	uses	the	SW	timer,	HW
Performance	Monitor	Counters	(PMC),	and	HW	IBS	feature.
The	most	time-consuming	parts	of	a	program	have	a	larger
number	of	samples;	this	is	because	they	have	a	higher
probability	of	being	executed	while	samples	are	being	taken	by
the	CPU	Profiler.

Sampling	Interval

The	time	between	the	collection	of	every	two	samples	is	the
Sampling	Interval.	For	example,	in	TBP,	if	the	time	interval	is	1
millisecond,	then	roughly	1,000	TBP	samples	are	being
collected	every	second	for	each	processor	core.

HW	Performance	Monitor	Counters	(PMC)

AMD's	x86-based	processors	have	Performance	Monitor
Counters	(PMC)	that	let	them	monitor	various	micro-
architectural	events	in	a	CPU	core.	The	PMC	counters	are	used
in	two	modes:

·									In	counting	mode,	these	counters	are	used	to	count	the
specific	events	that	occur	in	a	CPU	core.

·									In	sampling	mode,	these	counters	are	programmed	to
count	a	specific	number	of	events;	once	the	count	is
reached	the	appropriate	number	of	times	(called	sampling
interval),	an	interrupt	is	triggered.	During	the	interrupt
handling,	the	CPU	Profiler	collects	profile	data.

The	number	of	hardware	performance	event	counters	available
in	each	processor	is	implementation-dependent	(see	the	BIOS
and	Kernel	Developer's	Guide	[BKDG]	of	the	specific	processor
for	the	exact	number	of	hardware	performance	counters).	The
operating	system	and/or	BIOS	can	reserve	one	or	more
counters	for	internal	use.	Thus,	the	actual	number	of	available
hardware	counters	may	be	less	than	the	number	of	hardware
counters.	The	CPU	Profiler	uses	all	available	counters	for
profiling.

Time-Based	Profile	(TBP)

In	this	profile	mode,	the	profile	data	is	periodically	collected
based	on	the	specified	timer	interval.	It	is	used	to	identify	the
hot-spots	of	the	profiled	applications.

Event-Based	Profile	(EBP)

In	this	mode,	the	CPU	Profiler	uses	the	PMCs	to	monitor	the
various	micro-architectural	events	supported	by	the	AMD	x86-
based	processor.	It	helps	to	identify	the	CPU	and	memory
related	performance	issues	in	profiled	applications.	CodeXL
provides	a	number	of	predefined	EBP	profile	configurations.	To
analyze	a	particular	aspect	of	the	profiled	application	(or
system),	a	specific	set	of	relevant	events	are	grouped	and
monitored	together.	The	CPU	Profiler	provides	a	list	of	pre-
defined	event	configurations,	such	as	Assess	Performance	and
Investigate	Branching,	etc.	You	can	select	any	of	these	pre-
define	configurations	to	profile	and	analyze	the	runtime
characteristics	of	your	application.	You	also	can	create	their
custom	configurations	of	events	to	profile.
This	profile	mode	is	supported	on	the	various	AMD	processor

models,	such	as	Family	10h,	Family	11h,	Family	12h,	Family
14h,	Family	15h	models	00h-0Fh,	10-1Fh,	30-3Fh	and	Family
16h	models	00-0Fh.
In	this	profile	mode,	a	delay	called	skid	occurs	between	the
time	at	which	the	sampling	interrupt	occurs	and	the	time	at
which	the	sampled	instruction	address	is	collected.	This	skid
distributes	the	samples	in	the	neighborhood	near	the	actual
instruction	that	triggered	a	sampling	interrupt.	This	produces
an	inaccurate	distribution	of	samples	and	events	are	often
attributed	to	the	wrong	instructions.

Instruction-Based	Sampling	(IBS)

In	this	mode,	the	CPU	Profiler	uses	the	IBS	HW	supported	by
the	AMD	x86-based	processor	to	observe	the	effect	of
instructions	on	the	processor	and	on	the	memory	subsystem.	In
IBS,	HW	events	are	linked	with	the	instruction	that	caused
them.	Also,	HW	events	are	being	used	by	the	CPU	Profiler	to
derive	various	metrics,	such	as	data	cache	latency.
IBS	is	supported	starting	from	the	AMD	processor	family	10h.

Event-Counter	Multiplexing

If	the	number	of	monitored	PMC	events	is	less	than,	or	equal
to,	the	number	of	available	performance	counters,	then	each
event	can	be	assigned	to	a	counter,	and	each	event	can	be
monitored	100%	of	the	time.	In	a	single-profile	measurement,	if
the	number	of	monitored	events	is	larger	than	the	number	of
available	counters,	the	CPU	Profiler	time-shares	the	available
HW	PMC	counters.	(This	is	called	event	counter
multiplexing.)	It	helps	monitor	more	events	and	decreases	the
actual	number	of	samples	for	each	event,	thus	reducing	data
accuracy.	The	CPU	Profiler	auto-scales	the	sample	counts	to
compensate	for	this	event	counter	multiplexing.	For	example,	if
an	event	is	monitored	50%	of	the	time,	the	CPU	Profiler	scales
the	number	of	event	samples	by	factor	of	2.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	CPU	Profiler	>	CPU	Profile	Configurations

CPU	Profile	Configurations

CodeXL	handles	all	of	the	details	and	mechanics	of	data
collection	and	profile	formation.
CodeXL	uses	statistical	sampling	to	collect	and	build	a	program
profile.	Because	all	profiles	rely	on	statistical	sampling,	it	is
important	for	the	CPU	Profiler	to	take	enough	samples.	The
number	of	samples	collected	during	a	session	depends	on	the
following:

·									how	frequently	samples	are	taken	(the	sampling	period	or
interval)

·									the	measurement	length;	that	is,	the	amount	of	time
which	takes	for	the	CPU	Profiler	to	take	a	specific	sample

·									whether	the	profiling	is	system-wide
	

CodeXL	provides	the	following	profile	sessions	types:

Time-Based	Profiling
Assess	Performance
Instruction-Based	Sampling
Investigate	Branching
Investigate	Data	Access
Investigate	Instruction	Access
Investigate	L2	Cache	Access
Cache	Line	Utilization
Custom	Profile
The	type	and	frequency	of	the	profiled	events	can	indicate	the
presence	of	a	pipeline	bottleneck,	poor	memory	access	pattern,

poorly	predicted	conditional	branches,	or	some	other
performance	issues.	Once	hot-spots	are	found	through	time-
based	profiling,	EBP	and	IBS	are	used	identify	opportunities	for
optimization.	AMD	processors	provide	a	wide	range	of
hardware	events	that	can	be	monitored	and	measured.	The
number	of	counters	and	the	hardware	events	that	can	be
measured	are	processor-dependent.
When	compiling	your	application	to	use	for	profiling,	consider
generating	debug	information	as	well.	If	present,	the	debug
information	can	help	identify	profiled	areas	in	the	code;
however,	debug	information	is	not	required.	Performance	data
can	be	collected	for	an	application	program	that	was	compiled
without	debug	information;	in	this	case	the	results	displayed	by
CodeXL	are	less	descriptive.	For	example,	CodeXL	displays
assembly	code	rather	than	function	names	or	source	code.
The	CPU	Profiler	measures	CPU	execution	time	of	a	program.
Through	these	measurements	it	helps	you	optimize	the
program.	The	Profiler	records	which	functions	were	opened
and	how	long	it	took	to	execute	each	one.	CodeXL	does	this	by
taking	samples.	To	take	a	sample,	CodeXL	interrupts	the
program’s	execution	at	specified	intervals,	and	logs	the	state	of
the	program’s	call	chain.
CodeXL	samples	all	of	the	various	performance	monitoring
registers	to	obtain	detailed	information	about	the	running
application	or	the	entire	system.	While	all	work	can	be	done
through	the	GUI,	profiles	also	can	be	collected	and	analyzed
through	Visual	Studio	by	using	the	CodeXL	Visual	Studio
extension.
System	profiling	identifies	a	hot-spot	anywhere	in	the	system
or	an	application	under	test.	Any	software	component	(an
executable	image,	dynamically	loaded	library,	device	driver,	or
even	the	operating	system	kernel)	that	executes	during	the
measurement	period	can	be	sampled.	Any	child	processes
spawned	by	a	profiled	process	are	profiled	automatically.
During	the	profiling	process,	the	application	to	be	analyzed	is
run	at	full	speed	on	the	same	machine	that	is	running	CodeXL.

Time-based	samples	(collected	at	1	ms	intervals	on	each	core)
can	be	used	to	identify	possible	bottlenecks,	execution
penalties,	or	optimization	opportunities.	The	TBP	feature	can
be	used	on	both	AMD	and	non-AMD	processors	with	an
Advanced	Programmable	Interrupt	Controller	(APIC)	timer.
Event-based	samples	and	instruction-based	samples	can	be
used	to	help	determine	the	cause	of	hot-spots	or	optimization
opportunities.	The	sampling	intervals	are	weighted	so	the	types
of	view	analysis	are	valid.	The	EBP	and	IBS	features	are	only
available	on	AMD	processors.
Call	chain	sampling	collects	function	call	information,	including
caller-to-called	relationships	between	functions.	It	is	used	in
conjunction	with	the	selected	profile.	When	call	chain	sampling
is	enabled,	CodeXL	collects	information	from	the	run-time	call
stack	of	a	monitored	application	process	(and	child	processes)
whenever	a	regular	profile	sample	is	taken	for	the	process.
When	compared	to	other	techniques,	such	as	instrumentation,
call	chain	sampling	is	a	relatively	low-overhead	approach	to	the
collection	of	function	call	information.	However,	call	chain
sampling	results	are	subject	to	statistical	variation.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	CPU	Profiler	>	CPU	Profile	Configurations	>	Time-Based	Profiling

Time-Based	Profiling

When	time-based	profiling	is	enabled	and	started,	CodeXL
configures	a	timer	that	periodically	interrupts	the	program
executing	on	a	processor	core.
When	a	timer	interrupt	occurs,	a	sample	is	created	and	saved
for	post-processing.	Post-processing	builds	up	a	type	of
histogram,	which	describes	what	the	system	and	its	software
components	were	doing.	The	most	time-consuming	parts	of	a
program	have	the	most	samples	because,	most	likely,	the
program	is	executing	in	those	regions	when	a	timer	interrupt	is
generated	and	a	sample	is	taken.
The	frequency	of	sample	taking	is	controlled	by	the	timer
interval.	This	sometimes	is	called	the	"sampling	period."	The
timer	interval	is	1	millisecond:	roughly	1,000	TBP	samples	are
taken	each	second	for	each	processor	core.
The	second	factor	is	the	length	of	time	during	which	the
samples	are	taken..	The	measurement	period	depends	on	the
overall	execution	time	of	the	workload	and	the	way	in	which
CodeXL	data	collection	is	configured.	Using	the	CPU	Profile
Options,	CodeXL	can	be	configured	to	collect	samples	for	all,	or
part,	of	the	time	that	the	test	workload	is	executing.	If	program
run-time	is	short	(less	than	15	seconds),	it	may	be	necessary	to
increase	program	run-time	by	using	a	larger	data	set	or	more
loop	iterations	to	obtain	a	statistically	useful	result.
Deciding	how	many	samples	are	enough	requires	a	working
knowledge	about	the	characteristics	of	the	workload	under
test.	Scientific	applications	often	have	tight	inner	loops	that	are
executed	several	times.	In	these	situations,	samples	are	being
aggregated	rapidly	within	the	inner	loops,	and	even	a	fairly

short	run-time	yields	a	statistically	useful	number	of	samples.
Other	workloads,	like	transaction	processing,	usually	have	just
a	few	inner	loops,	and	the	profiles	are	relatively	"flat."	For	flat
workloads,	a	longer	measurement	period	is	required	to
aggregate	samples	in	code	regions	of	interest.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	CPU	Profiler	>	CPU	Profile	Configurations	>	Assess	Performance

Assess	Performance

This	pre-defined	configuration	is	intended	to	get	an	overall
assessment	of	hardware	performance	and	to	give	an	idea	of	the
possible	causes	of	performance	issues.

Hardware	Events:	(the	numeric	hardware	event	codes	are	the
codes	the	CPU	uses	to	identify	these	events)

·									[0C0]	Retired	Instructions
·									[076]	CPU	clock	cycles	not	halted
·									[0C2]	Retired	branch	instructions
·									[0C3]	Retired	mispredicted	branch	instructions
·									[040]	Data	cache	accesses
·									[041]	Data	cache	misses
·									[046]	L1	DTLB	and	L2	DTLB	misses
·									[047]	Misaligned	accesses

This	profile	configuration	measures	eight	different	events	and
requires	event	counter	multiplexing.	Each	event	is	sampled
approximately	half	of	the	time	(a	50%	duty	cycle)	when	four
hardware	performance	counters	are	available.	When	using	a
profile	configuration	that	requires	event	counter	multiplexing,
ensure	run	time	is	long	enough	to	build	up	a	statistically
accurate	picture	of	program	behavior.
The	available	views	for	profiles	with	this	data	are:

·									All	Data
·									Branch	assessment
·									DTLB	assessment
·									Data	access	assessment
·									IPC	assessment
·									Misaligned	access	assessment

·									Overall	assessment

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	CPU	Profiler	>	CPU	Profile	Configurations	>	Instruction-Based	Sampling

Instruction-Based	Sampling

Instruction-Based	Sampling	(IBS)	identifies	and	diagnoses
performance	issues	in	program	hot-spots.	It	collects	data	on
how	instructions	behave	on	the	processor	and	in	the	memory
subsystem;	it	also	provides	a	range	of	measurable	data	for	each
sample.	When	running	IBS,

·									hardware	events	are	linked	with	the	instructions	that
caused	them.

·									it	produces	a	wealth	of	event	data	in	a	single	test	run.
·									latency	is	measured	for	key	performance	factors	such	as
data	cache	miss	latency.

IBS	provides	the	most	common	types	of	information	needed	for
program	performance	analysis.	It	uses	a	hardware	sampling
technique	to	generate	event	information	similar	to	that
produced	by	event-based	profiling.	Event-based	profiling,
however,	offers	a	wider	range	of	events	that	can	be	monitored,
such	as	those	related	to	HyperTransport™	links.
Processor	pipeline	stages	can	be	categorized	into	two	main
phases:	instruction	fetch	and	execution.	Each	instruction	fetch
operation	produces	a	block	of	instruction	data	that	is	passed	to
the	decode	stages	in	the	pipeline.	The	decoder	identifies
AMD64	instructions	in	the	fetch	block.	These	AMD64
instructions	are	translated	to	one	or	more	macro-operations,
called	"macro-ops"	or	"ops,"	that	are	executed	in	the	execution
phase.
Note:	For	more	information	about	instruction-based	sampling,
see	the	following	documents	which	are	available	at	AMD’s
Developer	Guides	&	Manuals	page:
-										Software	Optimization	Guide	for	AMD	Family	16h

http://developer.amd.com/resources/documentation-articles/developer-guides-manuals/
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/SOG_16h_52128_PUB_Rev1_1.pdf

Processors
-										Preliminary	BIOS	and	Kernel	Developer’s	Guide	(BKDG)
for	AMD	Family	16h	Models	00h-0Fh	(Kabini)	Processors

-										BIOS	and	Kernel	Developer	Guide	(BKDG)	for	AMD
Family	15h	Models	00h-0Fh	Processors

-										Software	Optimization	Guide	for	AMD	Family	15h
Processors	

-										BIOS	and	Kernel	Developer	Guide	(BKDG)	for	AMD
Family	14h	Models	00h-0Fh	Processors	

-										BIOS	and	Kernel	Developer’s	Guide	(BKDG)	For	AMD
Family	12h	Processors	

How	IBS	Works

IBS	provides	separate	means	to	sample	fetch	operations	and
macro-ops.	IBS	fetch	sampling	and	IBS	op	sampling	can	be
enabled	and	collected	separately	or	together.

IBS	Fetch	Sampling

This	is	a	statistical	sampling	method.	IBS	fetch	sampling	counts
the	completed	fetch	operations.	When	the	number	of	completed
fetch	operations	reaches	the	maximum	fetch	count	(the
sampling	period),	IBS	tags	the	fetch	operation	and	monitors
that	fetch	operation	until	it	either	completes	or	aborts.
When	a	tagged	fetch	completes	or	aborts,	a	sampling	interrupt
is	generated,	and	an	IBS	fetch	sample	is	taken.	An	IBS	fetch
sample	contains	a	timestamp,	the	identifier	of	the	interrupted
process,	the	virtual	fetch	address,	and	several	event	flags	and
values	that	describe	what	happened	during	the	fetch	operation.
Similar	to	time-based	profiling	and	event-based	profiling,
CodeXL	uses	the	IBS	sample	data	and	information	from	the
executable	images,	debug	information,	and	source	to	build	a
profile	IBS	for	software	components	executed	on	the	system.
IBS	is	also	available	in	system-wide	profiling.
The	event	data	reported	in	an	IBS	sample	includes	the

http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/48751_BKDG_Fam_16h_Mod_00h-0Fh.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/42301_15h_Mod_00h-0Fh_BKDG1.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/03/47414_15h_sw_opt_guide.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/43170_14h_Mod_00h-0Fh_BKDG.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/41131.pdf

following:
·									If	the	fetch	completed	or	aborted.
·									If	the	address	translation	initially	missed	in	the	level	one
(L1)	or	level	two	(L2)	instruction	translation	lookaside
buffer	(ITLB).

·									The	page	size	of	the	L1	ITLB	address	translation	(4K,
2M).

·									Whether	the	fetch	initially	missed	in	the	instruction	cache
(IC).

·									Fetch	latency	(number	of	processor	cycles	from	when	the
fetch	was	initiated	to	when	the	fetch	completed	or
aborted).

Event-based	profiling	requires	several	counters	to	collect	as
much	information	as	IBS.	The	fetch	address	precisely	identifies
the	fetch	operation	associated	with	the	hardware	events.	The
IBS	fetch	address	may	be	the	address	of	a	fetch	block,	the
target	of	a	branch,	or	the	address	of	an	instruction	that	is	the
fall-through	of	a	conditional	branch.	A	fetch	block	does	not
always	start	with	a	complete,	valid	AMD64	instruction;	this
occurs	when	an	AMD64	instruction	straddles	two	fetch	blocks.
In	this	case,	CodeXL	associates	the	IBS	fetch	sample	with	the
AMD64	instruction	in	the	preceding	fetch	block.
A	fetch	can	be	abandoned	before	it	delivers	data	to	the
decoder,	or	due	to	a	control	flow	redirection;	this	can	happen	at
any	time	during	the	fetch	process.	A	fetch	abandoned	before
initial	access	to	the	ITLB	(before	address	translation)	is	not
regarded	as	useful	for	analysis.	These	early	abandoned	fetches
are	called	killed	fetches.
CodeXL	identifies	killed	fetches.	The	fetch	operations
remaining	after	killed	fetches	are	removed	from	consideration
are	called	attempted	fetches:	these	fetches	represent	valid
attempts	to	obtain	instruction	bytes.
A	completed	fetch	is	an	attempted	fetch	that	successfully
delivered	instruction	data	to	the	decoder.	An	aborted	fetch	is
an	attempted	fetch	that	did	not	complete.

Note:	Instruction	fetch	is	an	aggressive,	speculative	activity,
and	even	instruction	data	produced	by	a	completed	fetch	may
not	be	used.

IbsOps	IBS	Op	Sampling

IBS	op	sampling	operates	like	fetch	sampling.	It	provides	two
methods	for	op	selection:

·									Cycles	mode	‒	IBS	hardware	counts	processor	cycles.
When	reaching	the	maximum	cycle	count	(the	sampling
period),	IBS	tags	an	available	valid	op.

·									Dispatched	op	mode	‒	IBS	hardware	counts	ops	as	they
are	issued	into	the	pipeline.	When	the	number	of
dispatched	ops	reaches	the	maximum	op	count	(the
sampling	period),	IBS	tags	the	op.	Dispatched	op	mode	is
preferred	because	Cycles	mode	selection	is	susceptible	to
delay	induced	sampling	bias.

Note:	Some	processors	do	not	support	dispatched	op	mode.	For
more	details,	see	the	BKDG	for	the	AMD	processor	for	your
platform.	The	execution	stages	of	the	pipeline	monitor	the
tagged	macro-op.	When	the	tagged	macro-op	retires,	a
sampling	interrupt	is	generated,	and	an	IBS	op	sample	is	taken.
An	IBS	op	sample	contains:

·									a	timestamp,
·									the	identifier	of	the	interrupted	process,
·									the	virtual	address	of	the	AMD64	instruction	from	which
the	op	was	issued,	and

·									several	event	flags	and	values	that	describe	what
happened	when	the	macro-op	executed.

CodeXL	uses	this	and	other	information	to	build	an	IBS	profile.

Cycle-based	op	sampling	can	be	susceptible	to	timing	bias:	it
can	cause	ops	from	some	instructions	to	be	selected	more	often
than	other	instructions.	Dispatched	op-based	sampling	is	the
preferred	IBS	operating	mode	because	it	is	not	biased	by
timing.

http://developer.amd.com/Resources/documentation/guides/Pages/default.aspx

IBS	op	samples	are	taken	only	for	ops	that	retire.	Thus,	IBS	op
event	information	does	not	measure	speculative	execution
activity.	The	cycles-based	tagging	scheme	can	introduce
statistical	bias	due	to	stalls	at	the	decoding	stage	of	the
pipeline.	If	a	macro-op	is	not	available	for	tagging	when	the
maximum	op	count	is	reached,	the	hardware	tags	a	macro-op
and	starts	counting	again	from	a	small,	pseudo-random	initial
count.
IBS	op	sampling	reports	the	following	values	for	all	ops:

·									Virtual	address	of	the	parent	AMD64	instruction	from
which	the	tagged	op	was	issued.

·									Tag-to-retire	time	(the	number	of	processor	cycles	from
when	the	op	was	tagged	to	when	the	op	retired).

·									Completion-to-retire	time	(the	number	of	processor	cycles
from	when	the	op	completed	to	when	the	op	was	retired).

Attribution	of	event	information	is	precise	because	the	IBS
hardware	reports	the	address	of	the	AMD64	instruction
causing	the	events.	For	example,	branch	mispredictions	are
attributed	to	the	mispredicted	branch,	and	cache	misses	are
attributed	to	the	AMD64	instruction	that	caused	the	cache
miss.	IBS	makes	it	easier	to	identify	the	performance-
degrading	instructions.
Some	ops	implement	branch	semantics.	Branches	include
unconditional	and	conditional	branches,	subroutine	calls,	and
subroutine	returns.
Event	information	reported	for	branch	ops	include	whether	the
branch	was	mispredicted	or	was	taken.
IBS	also	indicates	whether	a	branch	operation	was	a
subroutine	return,	and	if	the	return	was	mispredicted.	Some
ops	can	perform	a	load	(memory	read),	store	(memory	write),
or	a	load	and	a	store	to	the	same	memory	address,	as	in	the
case	of	a	read-op-write	sequence.
When	an	op	performs	a	load	and/or	store,	event	information
includes	the	following:

·									Whether	a	load	was	performed.

·									Whether	a	store	was	performed.
·									Whether	address	translation	initially	missed	in	the	L1
and/or	L2	data	translation	lookaside	buffer	(DTLB).

·									Whether	the	load	or	store	initially	missed	in	the	data
cache	(DC).

·									Virtual	data	address	for	the	memory	operation.
·									Latency	when	a	load	misses	the	DC.

Requests	made	through	the	Northbridge	produce	additional
event	information:

·									Whether	the	access	was	local	or	remote.
·									Data	source	that	fulfilled	the	request.

A	full	list	of	IBS	op	event	information	appears	in	the	section	on
IBS-Derive	events	below.	For	hardware-level	details,	see	the
BIOS	and	Kernel	Developer's	Guide	(BKDG)	for	the	AMD
processor	for	your	platform.

IBS-Derived	Events

CodeXL	translates	the	IBS	information	produced	by	the
hardware	into	derived	event	sample	counts	that	resemble	EBP
sample	counts.	All	IBS-derived	events	have	"IBS"	in	the	event
name	and	abbreviation.	Although	IBS-derived	events	and
sample	counts	look	similar	to	EBP	events	and	sample	counts,
the	source	and	sampling	basis	for	the	IBS	event	information
are	different.
Arithmetic	should	never	be	performed	between	IBS	derived
event	sample	counts	and	EBP	event	sample	counts.	It	is	not
meaningful	to	directly	compare	the	number	of	samples	taken
for	events	that	represent	the	same	hardware	condition.	For
example,	fewer	IBS	DC	miss	samples	is	not	necessarily	better
than	a	larger	quantity	of	EBP	DC	miss	samples.

Event Description

All	IBS	fetch
samples

The	number	of	all	IBS	fetch	samples.
This	derived	event	counts	the	number	of
all	IBS	fetch	samples	that	were

http://developer.amd.com/Resources/documentation/guides/Pages/default.aspx

collected	including	IBS-killed	fetch
samples

IBS	fetch	killed

The	number	of	IBS	sampled	fetches	that
were	killed	fetches.	A	fetch	operation	is
killed	if	the	fetch	did	not	reach	ITLB	or
IC	access.	The	number	of	killed	fetch
samples	is	not	generally	useful	for
analysis	and	are	filtered	out	in	other
derived	IBS	fetch	events	(except	Event
Select	0xF000	which	counts	all	IBS
fetch	samples	including	IBS	killed	fetch
samples.)

IBS	fetch	attempted

The	number	of	IBS	sampled	fetches	that
were	not	killed	fetch	attempts.	This
derived	event	measures	the	number	of
useful	fetch	attempts	and	does	not
include	the	number	of	IBS	killed	fetch
samples.	This	event	should	be	used	to
compute	ratios	such	as	the	ratio	of	IBS
fetch	IC	misses	to	attempted	fetches.
The	number	of	attempted	fetches	should
equal	the	sum	of	the	number	of
completed	fetches	and	the	number	of
aborted	fetches.

IBS	fetch
completed

The	number	of	IBS	sampled	fetches	that
completed.	A	fetch	is	completed	if	the
attempted	fetch	delivers	instruction
data	to	the	instruction	decoder.
Although	the	instruction	data	was
delivered,	it	may	still	not	be	used	(e.g.,
the	instruction	data	may	have	been	on
the	"wrong	path"	of	an	incorrectly
predicted	branch.)

The	number	of	IBS	sampled	fetches	that
aborted.	An	attempted	fetch	is	aborted

IBS	fetch	aborted

if	it	did	not	complete	and	deliver
instruction	data	to	the	decoder.	An
attempted	fetch	may	abort	at	any	point
in	the	process	of	fetching	instruction
data.	An	abort	may	be	due	to	a	branch
redirection	as	the	result	of	a
mispredicted	branch.	The	number	of
IBS	aborted	fetch	samples	is	a	lower
bound	on	the	amount	of	unsuccessful,
speculative	fetch	activity.	It	is	a	lower
bound	since	the	instruction	data
delivered	by	completed	fetches	may	not
be	used.

IBS	ITLB	hit
The	number	of	IBS	attempted	fetch
samples	where	the	fetch	operation
initially	hit	in	the	L1	ITLB	(Instruction
Translation	Lookaside	Buffer).

IBS	L1	ITLB	misses
(and	L2	ITLB	hits)

The	number	of	IBS	attempted	fetch
samples	where	the	fetch	operation
initially	missed	in	the	L1	ITLB	and	hit	in
the	L2	ITLB.

IBS	L1	L2	ITLB
miss

The	number	of	IBS	attempted	fetch
samples	where	the	fetch	operation
initially	missed	in	both	the	L1	ITLB	and
the	L2	ITLB.

IBS	instruction
cache	misses

The	number	of	IBS	attempted	fetch
samples	where	the	fetch	operation
initially	missed	in	the	IC	(instruction
cache).

IBS	instruction
cache	hit

The	number	of	IBS	attempted	fetch
samples	where	the	fetch	operation
initially	hit	in	the	IC.

The	number	of	IBS	attempted	fetch

IBS	4K	page
translation

samples	where	the	fetch	operation
produced	a	valid	physical	address	(i.e.,
address	translation	completed
successfully)	and	used	a	4-KByte	page
entry	in	the	L1	ITLB.

IBS	2M	page
translation

The	number	of	IBS	attempted	fetch
samples	where	the	fetch	operation
produced	a	valid	physical	address	(i.e.,
address	translation	completed
successfully)	and	used	a	2-MByte	page
entry	in	the	L1	ITLB.

IBS	fetch	latency

The	total	latency	of	all	IBS	attempted
fetch	samples.	Divide	the	total	IBS	fetch
latency	by	the	number	of	IBS	attempted
fetch	samples	to	obtain	the	average
latency	of	the	attempted	fetches	that
were	sampled.

IBS	fetch	L2	cache
miss

The	instruction	fetch	missed	in	the	L2
Cache.

IBS	ITLB	refill
latency

The	number	of	cycles	when	the	fetch
engine	is	stalled	for	an	ITLB	reload	for
the	sampled	fetch.	If	there	is	no	reload,
the	latency	will	be	0.

All	IBS	op	samples

The	number	of	all	IBS	op	samples	that
were	collected.	These	op	samples	may
be	branch	ops,	resync	ops,	ops	that
perform	load/store	operations,	or
undifferentiated	ops	(e.g.,	those	ops
that	perform	arithmetic	operations,
logical	operations,	etc.).	IBS	collects
data	for	retired	ops.	No	data	is	collected
for	ops	that	are	aborted	due	to	pipeline
flushes,	etc.	Thus,	all	sampled	ops	are
architecturally	significant	and

contribute	to	the	successful	forward
progress	of	executing	programs.

IBS	tag-to-retire
cycles

The	total	number	of	tag-to-retire	cycles
across	all	IBS	op	samples.	The	tag-to-
retire	time	of	an	op	is	the	number	of
cycles	from	when	the	op	was	tagged
(selected	for	sampling)	to	when	the	op
retired.

IBS	completion-to-
retire	cycles

The	total	number	of	completion-to-retire
cycles	across	all	IBS	op	samples.	The
completion-to-retire	time	of	an	op	is	the
number	of	cycles	from	when	the	op
completed	to	when	the	op	retired.

IBS	branch	op

The	number	of	IBS	retired	branch	op
samples.	A	branch	operation	is	a	change
in	program	control	flow	and	includes
unconditional	and	conditional	branches,
subroutine	calls	and	subroutine	returns.
Branch	ops	are	used	to	implement
AMD64	branch	semantics.

IBS	mispredicted
branch	op

The	number	of	IBS	samples	for	retired
branch	operations	that	were
mispredicted.	This	event	should	be	used
to	compute	the	ratio	of	mispredicted
branch	operations	to	all	branch
operations.

IBS	taken	branch
op

The	number	of	IBS	samples	for	retired
branch	operations	that	were	taken
branches.

IBS	mispredicted
taken	branch	op

The	number	of	IBS	samples	for	retired
branch	operations	that	were
mispredicted	taken	branches.

IBS	return	op
The	number	of	IBS	retired	branch	op
samples	where	the	operation	was	a
subroutine	return.	These	samples	are	a
subset	of	all	IBS	retired	branch	op
samples.

IBS	mispredicted
return	op

The	number	of	IBS	retired	branch	op
samples	where	the	operation	was	a
mispredicted	subroutine	return.	This
event	should	be	used	to	compute	the
ratio	of	mispredicted	returns	to	all
subroutine	returns.

IBS	resync	op
The	number	of	IBS	resync	op	samples.	A
resync	op	is	only	found	in	certain
microcoded	AMD64	instructions	and
causes	a	complete	pipeline	flush.

IBS	all	load	store
ops

The	number	of	IBS	op	samples	for	ops
that	perform	either	a	load	and/or	store
operation.	An	AMD64	instruction	may
be	translated	into	one	("single
fastpath"),	two	("double	fastpath"),	or
several	("vector	path")	ops.	Each	op
may	perform	a	load	operation,	a	store
operation	or	both	a	load	and	store
operation	(each	to	the	same	address).
Some	op	samples	attributed	to	an
AMD64	instruction	may	perform	a
load/store	operation	while	other	op
samples	attributed	to	the	same
instruction	may	not.	Further,	some
branch	instructions	perform	load/store
operations.	Thus,	a	mix	of	op	sample
types	may	be	attributed	to	a	single
AMD64	instruction	depending	upon	the
ops	that	are	issued	from	the	AMD64
instruction	and	the	op	types.

IBS	load	ops The	number	of	IBS	op	samples	for	ops
that	perform	a	load	operation.

IBS	store	ops The	number	of	IBS	op	samples	for	ops
that	perform	a	store	operation.

IBS	L1	DTLB	hit
The	number	of	IBS	op	samples	where
either	a	load	or	store	operation	initially
hit	in	the	L1	DTLB	(data	translation
lookaside	buffer).

IBS	L1	DTLB
misses	L2	hits

The	number	of	IBS	op	samples	where
either	a	load	or	store	operation	initially
missed	in	the	L1	DTLB	and	hit	in	the	L2
DTLB.

IBS	L1	and	L2
DTLB	misses

The	number	of	IBS	op	samples	where
either	a	load	or	store	operation	initially
missed	in	both	the	L1	DTLB	and	the	L2
DTLB.

IBS	data	cache
misses

The	number	of	IBS	op	samples	where
either	a	load	or	store	operation	initially
missed	in	the	data	cache	(DC).

IBS	data	cache	hits
The	number	of	IBS	op	samples	where
either	a	load	or	store	operation	initially
hit	in	the	data	cache	(DC).

IBS	misaligned	data
access

The	number	of	IBS	op	samples	where
either	a	load	or	store	operation	caused
a	misaligned	access	(i.e.,	the	load	or
store	operation	crossed	a	128-bit
boundary).

IBS	bank	conflict	on
load	op

The	number	of	IBS	op	samples	where
either	a	load	or	store	operation	caused
a	bank	conflict	with	a	load	operation.

IBS	bank	conflict	on
The	number	of	IBS	op	samples	where

store	op either	a	load	or	store	operation	caused
a	bank	conflict	with	a	store	operation.

IBS	store-to-load
forwarded

The	number	of	IBS	op	samples	where
data	for	a	load	operation	was	forwarded
from	a	store	operation.

IBS	store-to-load
cancelled

The	number	of	IBS	op	samples	where
data	forwarding	to	a	load	operation
from	a	store	was	cancelled.

IBS	UC	memory
access

The	number	of	IBS	op	samples	where	a
load	or	store	operation	accessed
uncacheable	(UC)	memory.

IBS	WC	memory
access

The	number	of	IBS	op	samples	where	a
load	or	store	operation	accessed	write
combining	(WC)	memory.

IBS	locked
operation

The	number	of	IBS	op	samples	where	a
load	or	store	operation	was	a	locked
operation.

IBS	MAB	hit
The	number	of	IBS	op	samples	where	a
load	or	store	operation	hit	an	already
allocated	entry	in	the	Miss	Address
Buffer	(MAB).

IBS	L1	DTLB	4K
page

The	number	of	IBS	op	samples	where	a
load	or	store	operation	produced	a	valid
linear	(virtual)	address	and	a	4-KByte
page	entry	in	the	L1	DTLB	was	used	for
address	translation.

IBS	L1	DTLB	2M
page

The	number	of	IBS	op	samples	where	a
load	or	store	operation	produced	a	valid
linear	(virtual)	address	and	a	2-MByte
page	entry	in	the	L1	DTLB	was	used	for
address	translation.

IBS	L1	DTLB	1G
page

The	number	of	IBS	op	samples	where	a
load	or	store	operation	produced	a	valid
linear	(virtual)	address	and	a	1-GByte
page	entry	in	the	L1	DTLB	was	used	for
address	translation.

IBS	L2	DTLB	4K
page

The	number	of	IBS	op	samples	where	a
load	or	store	operation	produced	a	valid
linear	(virtual)	address,	hit	the	L2
DTLB,	and	used	a	4	KByte	page	entry
for	address	translation.

IBS	L2	DTLB	2M
page

The	number	of	IBS	op	samples	where	a
load	or	store	operation	produced	a	valid
linear	(virtual)	address,	hit	the	L2
DTLB,	and	used	a	2-MByte	page	entry
for	address	translation.

IBS	L2	DTLB	1G
page

The	number	of	IBS	op	samples	where	a
load	or	store	operation	produced	a	valid
linear	(virtual)	address,	hit	the	L2
DTLB,	and	used	a	1-GByte	page	entry
for	address	translation.

IBS	data	cache	miss
load	latency

The	total	DC	miss	load	latency	(in
processor	cycles)	across	all	IBS	op
samples	that	performed	a	load
operation	and	missed	in	the	data	cache.
The	miss	latency	is	the	number	of	clock
cycles	from	when	the	data	cache	miss
was	detected	to	when	data	was
delivered	to	the	core.	Divide	the	total
DC	miss	load	latency	by	the	number	of
data	cache	misses	to	obtain	the	average
DC	miss	load	latency.

IBS	load	resync Load	Resync.

The	number	of	IBS	op	samples	where	a

IBS	Northbridge
local

load	operation	was	serviced	from	the
local	processor.	Northbridge	IBS	data	is
only	valid	for	load	operations	that	miss
in	both	the	L1	data	cache	and	the	L2
data	cache.	If	a	load	operation	crosses	a
cache	line	boundary,	then	the	IBS	data
reflects	the	access	to	the	lower	cache
line.

IBS	Northbridge
remote

The	number	of	IBS	op	samples	where	a
load	operation	was	serviced	from	a
remote	processor.

IBS	Northbridge
local	L3

The	number	of	IBS	op	samples	where	a
load	operation	was	serviced	by	the	local
L3	cache.

IBS	Northbridge
local	core	L1	or	L2
cache

The	number	of	IBS	op	samples	where	a
load	operation	was	serviced	by	a	cache
(L1	data	cache	or	L2	cache)	belonging
to	a	local	core	which	is	a	sibling	of	the
core	making	the	memory	request.

IBS	Northbridge
local	core	L1,	L2,
L3	cache

The	number	of	IBS	op	samples	where	a
load	operation	was	serviced	by	a	remote
L1	data	cache,	L2	cache	or	L3	cache
after	traversing	one	or	more	coherent
HyperTransport	links.

IBS	Northbridge
local	DRAM

The	number	of	IBS	op	samples	where	a
load	operation	was	serviced	by	local
system	memory	(local	DRAM	via	the
memory	controller).

IBS	Northbridge
remote	DRAM

The	number	of	IBS	op	samples	where	a
load	operation	was	serviced	by	remote
system	memory	(after	traversing	one	or
more	coherent	HyperTransport	links
and	through	a	remote	memory

controller).

IBS	Northbridge
local	APIC	MMIO
Config	PCI

The	number	of	IBS	op	samples	where	a
load	operation	was	serviced	from	local
MMIO,	configuration	or	PCI	space,	or
from	the	local	APIC.

IBS	Northbridge
remote	APIC	MMIO
Config	PCI

The	number	of	IBS	op	samples	where	a
load	operation	was	serviced	from
remote	MMIO,	configuration	or	PCI
space.

IBS	Northbridge
cache	modified
state

The	number	of	IBS	op	samples	where	a
load	operation	was	serviced	from	local
or	remote	cache,	and	the	cache	hit	state
was	the	Modified	(M)	state.

IBS	Northbridge
cache	owned	state

The	number	of	IBS	op	samples	where	a
load	operation	was	serviced	from	local
or	remote	cache,	and	the	cache	hit	state
was	the	Owned	(O)	state.

IBS	Northbridge
local	cache	latency

The	total	data	cache	miss	latency	(in
processor	cycles)	for	load	operations
that	were	serviced	by	the	local
processor.

IBS	Northbridge
remote	cache
latency

The	total	data	cache	miss	latency	(in
processor	cycles)	for	load	operations
that	were	serviced	by	a	remote
processor.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	CPU	Profiler	>	CPU	Profile	Configurations	>	Investigate	Branching

Investigate	Branching

This	pre-defined	configuration	is	intended	to	assist	an
investigation	into	branching	and	near-return	performance.

Hardware	Events:	(the	numeric	hardware	event	codes	are	the
codes	the	CPU	uses	to	identify	these	events)

·									[0C0]	Retired	Instructions
·									[0C2]	Retired	branch	instructions
·									[0C3]	Retired	mispredicted	branch	instructions
·									[0C4]	Retired	taken	branch	instructions
·									[0C8]	Retired	near	returns
·									[0C9]	Retired	mispredicted	near	returns
·									[0CA]	Retired	mispredicted	indirect	branches

The	available	views	for	profiles	with	this	data	are:
·									All	Data
·									Branch	assessment
·									Near	return	report
·									Taken	branch	report

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	CPU	Profiler	>	CPU	Profile	Configurations	>	Investigate	Data	Access

Investigate	Data	Access

This	pre-defined	configuration	helps	investigate	data	locality
and	poor	DTLB	behavior.

Hardware	Events:	(the	numeric	hardware	event	codes	are	the
codes	the	CPU	uses	to	identify	these	events)

·									[0C0]	Retired	Instructions
·									[040]	Data	cache	accesses
·									[041]	Data	cache	misses
·									[042]	Data	cache	refills	from	L2	or	Northbridge
·									[045]	L1	DTLB	miss	and	L2	DTLB	hit
·									[046]	L1	DTLB	and	L2	DTLB	misses
·									[047]	Misaligned	accesses

The	available	views	for	profiles	with	this	data	are:
·									All	Data
·									DTLB	assessment
·									DTLB	report
·									Data	access	assessment
·									Data	access	report
·									Misaligned	access	assessment

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	CPU	Profiler	>	CPU	Profile	Configurations	>	Investigate	Instruction	Access

Investigate	Instruction	Access

This	pre-defined	configuration	helps	investigate	instruction
fetches	with	poor	L1	locality	and	poor	ITLB	behavior.

Hardware	Events:	(the	numeric	hardware	event	codes	are	the
codes	the	CPU	uses	to	identify	these	events)

·									[0C0]	Retired	Instructions
·									[080]	Instruction	Cache	fetches
·									[081]	Instruction	Cache	misses
·									[084]	L1	ITLB	miss	and	L2	ITLB	hits
·									[085]	L1	ITLB	miss	and	L2	ITLB	miss

The	available	views	for	profiles	with	this	data	are:
·									All	Data
·									ITLB	report
·									Instruction	Cache	Report

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	CPU	Profiler	>	CPU	Profile	Configurations	>	Investigate	L2	Cache	Access

Investigate	L2	Cache	Access

This	pre-defined	configuration	helps	investigate	memory	access
operations	with	poor	L2	cache	locality.

Hardware	Events:	(the	numeric	hardware	event	codes	are	the
codes	the	CPU	uses	to	identify	these	events)

·									[0C0]	Retired	Instructions
·									[07D]	Requests	to	L2	cache
·									[07E]	L2	cache	misses
·									[07F]	L2	fill/writeback

The	available	views	for	profiles	with	this	data	are:
·									All	Data
·									L2	Access	Report

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	CPU	Profiler	>	CPU	Profile	Configurations	>	Cache	Line	Utilization

Cache	Line	Utilization

This	feature	is	a	first	step	towards	providing	data-centric
application	profiling	capabilities.	This	feature	models	the
behavior	of	the	processor	L1	data	cache	and	uses	the	Load	and
Store	Instruction-Based	Sampling	(IBS)	records	to	provide	a
measure	of	how	efficiently	an	application	utilizes	the	L1	data
cache.
A	cache	is	a	relatively	small	amount	of	on-chip	memory	which
is	extremely	fast	compare	to	main	memory.	When	the	processor
needs	to	access	a	location	in	main	memory,	it	first	checks
whether	a	copy	of	that	data	is	in	the	cache.	If	the	data	is
present	in	cache,	it	is	called	a	cache	hit	and	the	processor
immediately	accesses	the	data	from	cache.	If	the	data	is	not	in
the	cache,	it	is	called	a	cache	miss.	In	this	case	processor	has
to	wait	for	the	data	to	be	fetched	from	main	memory	before	it
can	continue	to	execute.	All	of	the	data	required	by	all	of	the
processes	running	on	a	processor	cannot	simultaneously	fit	in
the	cache,	so	the	processor	removes,	or	evicts,	data	from	the
cache	when	new	data	is	needed	and	the	cache	is	full.	Data	is
transferred	between	memory	and	cache	in	blocks	of	fixed	size,
called	cache	lines.
The	cache	misses	directly	influence	the	performance	of	the
application.	Having	the	data	in	the	cache	when	the	processor
needs	it	is	one	way	to	optimize	performance	of	an	application.
Additionally,	because	cache	size	is	small,	it	is	desirable	to	fill
the	cache	with	data	that	will	be	used	before	it	is	evicted	from
the	cache.
AMD	processors	have	a	separate	instruction	and	data	cache
per	core	(L1	(Level	1)	instruction	and	L1	data	caches)	as	well
as	a	unified	L2	(per	module)	cache	and	L3	(per-chip)	cache.

However,	CLU	models	the	L1	data	cache	only.	CLU	measures
how	much	of	a	cache	line	is	used	(read	or	written)	before	it	is
evicted	from	the	cache.	The	percent	cache	line	utilization	is
defined	as	percentage	of	number	of	bytes	in	the	cache	line	had
been	accessed	before	the	cache	line	has	been	evicted.
A	low	CLU	value	implies	that	the	cache	is	being	filled	with	data
that	is	never	or	less	accessed	before	it	is	evicted,	implying
cache	capacity	pressure,	as	well	as	main	memory	bandwidth
pressure	(reading	data	from	main	memory	that	is	not	accessed
before	being	evicted).
A	high	usage	percentage	(CLU)	means	that	the	application	is
properly	exploiting	spatial	and	temporal	locality	of	its	data.
Ideally,	one	would	like	to	have	100	percent	CLU.	Practically
speaking	however,	a	good	CLU	is	about	20	to	30	percent,
primarily	due	to	the	sampling	nature	of	the	core	in	its
collection	of	the	load	and	store	data.
Note:	See	the	BIOS	and	Kernel	Developer's	Guide	for	AMD
Family	10h	Processors	(order	#31116)	for	detailed	information
about	caches.
The	following	table	describes	the	data	that	can	be	shown	for
each	module,	function,	source	and	disassembly

Event Description

Cache	Line
Utilization
Percentage

The	cache	line	utilization	percentage	for
all	cache	lines	on	all	cores	accessed	by
this	instruction	/	function	/	module.

Line	Boundary
Crossings

The	number	of	accesses	to	the	cache
line	that	spanned	two	cache	lines.	This
happens	when	an	unaligned	access	is
made	that	causes	two	cache	lines	to	be
touched.

Bytes/L1	Eviction The	number	of	bytes	accessed	between
cache	line	evictions.

The	number	of	accesses	(loads	plus

http://developer.amd.com/Resources/documentation/guides/Pages/default.aspx

Accesses/L1
Eviction

stores)	to	a	cache	line	between
evictions.

L1	Evictions
The	number	of	times	a	cache	line	was
evicted	where	this	instruction	depended
on	the	data	in	the	cache	line.

Accesses
The	total	number	of	loads	and	stores
samples	for	this	instruction	/	function	/
module.

Bytes	Accessed The	total	number	of	bytes	accessed	by
this	instruction	/	function	/	module.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	CPU	Profiler	>	CPU	Profile	Configurations	>	Custom	Profile

Custom	Profile

This	configuration	is	intended	for	advanced	users	who	know
what	hardware	events	or	combinations	of	events	are	important
for	specific	analysis.
It	allows	a	combination	of	hardware	events,	timer	samples,	and
instruction-based	sampling	events.	At	least	one	event	must	be
monitored	for	CodeXL	to	make	the	profiling.
Use	of	a	smaller	sampling	period	increases	data	collection
overhead.	Since	data	collection	must	be	performed	on	the	same
platform	as	the	test	workload,	more	frequent	sampling
increases	the	intrusiveness	of	event-based	profiling,	and	the
sampling	process	adversely	affects	shared	hardware	resources
such	as	instruction	and	data	caches,	translation	lookaside
buffers,	and	branch	history	tables.	Extremely	small	sampling
periods	also	can	cause	system	instability.	Start	off
conservatively	and	slowly	decrease	the	sampling	period	for	an
event	until	the	appropriate	volume	of	samples	is	generated.
					
				Warning	You	can	demand	too	much	sampling,	causing	the
system	to	hang	or	crash.	If	this	occurs,	the	easiest	solution	is
to	increase	the	sample	intervals	for	the	most	popular	events.

A	factor	when	choosing	the	sampling	period	for	an	event	is	the
workload	behavior.	Some	workloads	are	CPU-intensive;	other
workloads	are	memory-intensive.	Some	workloads	can	be	CPU-
intensive	and	require	high	memory	bandwidth	to	stream	data
into	the	CPU.	For	example,	a	CPU-intensive	application	that
does	not	accesses	memory	very	often	causes	relatively	few
data-cache	miss	events.	The	characteristics	of	the	workload
can	even	vary	by	phase,	where	the	phase	setting	up	a

computation	has	a	different	behavior	from	the	computation
phase	itself.	Thus,	the	workload	behavior	determines	the
frequency	of	certain	kinds	of	events,	requiring	changes	to	the
sample	period.
The	available	views	for	the	profile	data	depend	on	the	events
selected.	The	events	are	selected	through	the	_Ref371333729
Dialog.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	CPU	Profiler	>	CPU	Profile	Session

CPU	Profile	Session

A	CodeXL	CPU	profile	session	collects	profile	data	of	a	single
execution	of	the	profiled	application.	The	profile	session	results
can	be	viewed	and	analyzed	using	CodeXL	tabbed	views.	After
making	the	recommended	changes	to	the	profiled	application,
you	can	execute	the	same	application	and	analyze	the	new
bottlenecks	after	the	change.
To	create	and	run	a	CPU	profile	session	in	CodeXL	requires
Executing	CPU	Profile	Session	Other	options	can	be
configured	in	the	project	and	global	settings:
1.						Changing	CPU	Profiling	Global	Settings

2.						Changing	CPU	Profiling	Project	Settings

3.						Changing	CPU	Profiling	Configuration	Events

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	CPU	Profiler	>	CPU	Profile	Session	>	Execute	a	CPU	Profile	Session

Execute	a	CPU	Profile	Session

To	run	a	CPU	Profile	session:

1.						Open	or	create	a	CodeXL	project

2.						Select	a	CPU	profile	type.	See	detailed	information	for
each	of	CodeXL	supported	CPU	Profile	Types	
In	the	Active	Mode	toolbar,	click	the	Profile	Mode	toolbar
button	to	change	the	mode	to	Profiling	(Profile	>	Profile
Mode).	Select	any	CodeXL	CPU	type	of	profile	(Profile	>
CPU:	Assess	Performance	for	example).

3.						Use	the	CPU	Profile	Setting	dialog	to	configure	the
profile	session	parameters.

4.						Click	the	Start	CodeXL	Profiling	toolbar	button,	 ,	to
start	profiling.

5.						Optional:	Pause	/	Stop	the	data	collection	of	the	profiled

application	using	the	execution	toolbar	buttons:	 .	
Stopping/pausing	the	profile	session	is	optional.	You	can
let	the	application	run	to	its	end	and	then	the	profiling
session	will	automatically	end.	For	long	running
applications,	pausing	allows	you	to	control	when	the
profiling	data	collection	occurs	so	it	matches	the	stage	in
your	application	execution	that	you	want	to	profile.

6.						When	the	profiled	application	execution	is	over,	CodeXL
processes	the	data	collected,	and	a	profile	session	window
is	opened.	See	the	View	and	Analyze	the	Profile
Session	Data	Analysis	section.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	CPU	Profiler	>	CPU	Profile	Session	>	Attach	to	Process

Attach	to	Process

To	start	a	CPU	Profile	session	of	an	already	running	process:

1.						Select	a	CPU	profile	type.	See	detailed	information	for
each	of	CodeXL	supported	CPU	Profile	Types.
In	the	Active	Mode	toolbar,	click	the	Profile	Mode	toolbar
button	to	change	the	mode	to	Profiling	(Profile	>	Profile
Mode).	Select	any	CodeXL	CPU	type	of	profile	(Profile	>
CPU:	Assess	Performance,	for	example).

2.						Use	the	CPU	Profile	Setting	dialog	to	configure	the
profile	session	parameters.	Note	that	if	a	CodeXL	project
is	not	opened	when	changing	the	profile	settings,	then	a
generic	new	project	is	automatically	created.

3.						Open	the	“Attach	to	Process…”	dialog	from	the	menu	bar
(Profile	>	Attach	to	Process…).	Note	that	if	a	CodeXL
project	is	not	opened	(or	created)	when	the	profiling
session	starts,	then	a	generic	new	project	is	automatically
created.

4.						Select	the	desired	process	from	the	list	of	attachable
processes	and	click	the	“Attach”	button	to	start	profiling.

5.						Optional:	Pause	/	Stop	the	data	collection	of	the	profiled
application	using	the	execution	toolbar	buttons:	 .	
Stopping/pausing	the	profile	session	is	optional.	You	can
let	the	application	run	to	its	end	and	then	the	profiling
session	will	automatically	end.	For	long	running
applications,	pausing	allows	you	to	control	when	the
profiling	data	collection	occurs	so	that	you	can	match	the
stage	in	your	application	execution	that	you	want	to
profile.

6.						When	the	profiled	application	execution	is	over,	CodeXL
processes	the	data	collected,	and	a	profile	session	window
is	opened.	See	the	View	and	Analyze	the	Profile
Session	Data	Analysis	section.

Attach	to	Process	dialog

	
The	dialog	shows	all	the	processes	in	the	system,	which	are
divided	into	2	groups:
1.						Attachable	processes:	These	are	the	processes	which
the	current	user	may	attach	to.	Note	that	a	user	may	not
attach	to	other	users’	processes	without	having
administrative	privileges.

2.						Non-attachable	processes:	These	processes	cannot	be
attached	to	due	to	certain	privilege	protections.	These
processes	are	not	viewed	by	default,	and	are	viewed	only	if
the	“Show	non-attachable	processes”	checkbox	is	checked.

The	list	of	processes	is	static,	and	may	be	refreshed	by	clicking
the	“Refresh”	button	(or	reopening	the	dialog).

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	CPU	Profiler	>	CPU	Profile	Session	>	CPU	Profile	Global	Settings

CPU	Profile	Global	Settings

The	CPU	Profile	global	settings	are	set	when	the	project	is
initially	created.	These	settings	affect	every	session	and	control
how	AMD	CodeXL	displays	profile	data.
To	set	the	options:
1.						In	the	CodeXL	menu,	click	CodeXL	Options.	
The	Edit	CodeXL	Global	Settings	dialog	box	is	displayed.

2.						Select	the	CPU	Profile	tab.	
The	CPU	Profile	tab	controls	the	display	of	source	files	and
symbolic	information.	See	the	description	for	each	of	the
global	profile	settings	below.

3.						Do	one	of	the	following:
Click	OK	to	activate	the	new	options	and	close	the	dialog
box,	
Click	Restore	Default	Settings	to	reset	the	dialog	box
selections	to	the	system	default,	or	
Click	Cancel	to	close	without	committing	any	changes.

	

Additional	Debug
Symbol	Paths Select	least	one	symbol	server.

Symbol	Server
Directories

Select	directories	for	the	symbol
server.

Block	size	in	bytes	to
fetch	when	scrolling
through	disassembly

The	size	of	the	data	block	that	is
being	automatically	fetched
when	scrolling	through
disassembly.

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	CPU	Profiler	>	CPU	Profile	Session	>	CPU	Profile	Project	Options

CPU	Profile	Project	Options

Use	the	CodeXL	Project	Settings	dialog	to	configure	the
current	project	CPU	profile	settings:

General	Settings	Page

To	configure	a	specific	application	for	profiling,	enter	the	path
to	the	application	executable	in	the	‘Executable	Path’	field.

This	field	can	be	left	empty	if	you	intend	to	perform	System
Wide	profiling.

To	profile	a	Java	application:
·									Enter	the	path	of	the	Java	runtime	executable	in	the	‘Executable	Path’	field,
e.g.	“C:\Program	Files\Java\jre7\bin\java.exe”

·									Enter	the	path	of	the	java	classes	top	folder	in	the	“Working	Directory”	field,
e.g.	“C:\Scimark2”

·									Enter	the	name	of	the	main	java	class	in	the	command	line	arguments,	e.g.
“jnt.scimark2.commandline”

The	screenshot	below	shows	an	example	of	configuring	a	Java
application	for	profiling.

	

Profile	Settings	Page

Click	File	->	Project	Settings	and	select	the	Profile	tree	node.

The	“Profile	Type”	settings	page	will	help	you	set	the	profile
type	of	the	current	project	and	the	profile	scope:

	

	

Displays	the	currently	selected	Profile	Type.

Profile
Session
Type

The	combo	box	contains	both	CPU	and	GPU
profile	types.	Use	this	to	select	which	type	of
data	you	want	to	collect	while	running	the	next
profile	session.
Use	the	text	below	the	profile	type	combo	box	to
get	a	description	of	each	of	the	profile	types.

Profile
Scope

Defines	the	scope	that	the	next	profile	session
will	monitor.
Single	Application	–	the	profile	session	will
collect	data	for	only	the	profiled	application
(defined	in	the	“General”	settings	page).
System-Wide	Profile	–	the	profile	session	will
collect	data	for	each	of	the	running	processes	in
the	system.
System-Wide	Profile	with	focus	on	application	–
the	profile	session	will	collect	data	for	each	of
the	running	processes	in	the	system.	The	profile
session	will	also	collect	call	stack	details	for	the
focused	application	(defined	in	the	“General”
settings	page).

	

CPU	Profile	Settings	Page

Click	Profile	->	Profile	Settings	to	open	this	settings	page.

The	CPU	Profile	settings	page	contains	CPU	profile	specific
configurations.

	

	

Checking	this	option	will	set	CodeXL	to

Collect	call
stack	details

collect	call	stack	details	while	profiling.
Note:	Call	stack	collection	has	higher
overhead	compared	to	sessions	without	call
stack	sampling,	because	stack	unwinding	is
done	whenever	a	sample	is	taken	for	the
target	process.	The	unwind	operation,
combined	with	the	larger	amount	of	data	that
must	be	written	to	the	trace	file,	creates	the
higher	overhead.		Also,	because	of	OS	limits,
the	complete	call	stack	might	not	be	available.
Set	the	appropriate	“Call	stack	collection
depth”	and	“Call	stack	every”	options,	to
balance	between	performance	overhead	and
statistical	accuracy.

Collect	for
code
executed	in

Limits	the	collection	of	call	stacks	only	for
code	running	in	User	space,	Kernel	space	or
both	(User	space	and	Kernel	space).

Collect	call
stack	every

This	parameter	will	define	the	frequency	of
call	stack	collection.

Call	Stack
Collection
Depth

Defines	the	level	of	depth	for	the	collected
call	stack.	A	higher	depth	will	require
performance	overhead,	but	the	data	of	the
collected	call	stack	will	be	more	accurate.
Options	are:	Minimal	/	Low	/	Medium	/	High	/
Maximal.
Selecting	one	of	these	options	will	sample	the
call	stack	with	an	up	to	the	depth	of	2	/	32	/
64	/	128	/	392	levels.
Note:	This	option	is	set	separately	for	Time-
Based	Sampling	and	other	CPU	Profiling
session	types.

Reproduce
missing	call
stack	info

Perform	additional	analysis	to	overcome
frame-pointer	omission	(FPO)	in	32-bit	apps
and	lack	of	unwind	info	in	64-bit.	The	profiler
will	store	additional	data	during	the	profile
session	and	require	more	time	during	post-
session	processing.
Note:	This	option	is	set	separately	for	Time-
Based	Sampling	and	other	CPU	Profiling
session	types.

Collection
Schedule

Configures	the	schedule	of	collecting	data
during	the	profile	session	execution.
Throughout	entire	duration	–	collect	data
throughout	entire	profile	session	execution
Start	profile	with	collection	paused	–	the
profile	session	will	start	with	no	data
collection.	Use	the	“Pause”	button	to	resume
data	collection	on	the	profiled	application.
Scheduled	–	set	the	specific	timing	for	data
collection	during	the	execution	of	the	profile
session.

Start	data
collection
after

Start	data	collection	with	a	delay	of	‘X’
seconds	from	the	start	of	the	profile	session

End	data
collection
after

When	selected,	the	profile	session	data
collection	will	end	after	‘X’	seconds.

Then,
terminate
the	process

When	checked,	after	‘X’	seconds	selected	to
end	the	data	collection	after,	the	profiled
process	will	be	terminated	by	CodeXL.

Profile
hardware
scope

Use	the	tree	structure	of	the	existing
hardware	cores,	or	the	affinity	mask,	to	define
the	cores	on	which	the	profiled	data	will	be
collected.

Restore
Default
Settings

Restore	the	original	default	settings.

	

	

CPU	Profile	Custom	Settings	Page

Click	Profile	->	Profile	Settings	to	open	this	settings	page.
Select	“Profile	->	CPU	Profile	->	Custom”	tree	node	to	go	to
the	custom	settings	page.

	

This	settings	page	configures	the	list	of	events	collected
while	running	a	session	of	type	“Custom	Profile”.

Available	Events	lists	all	the	available	events.	
Monitored	Events	lists	the	events	which	are	selected	for
monitoring.	
Use	Add,	Remove,	Remove	All	buttons	to	add	the
selected	event(s),	remove	the	selected	event(s),	or	remove
all	the	selected	events.

1.						Some	events	have	a	checkbox:
o				Usr	Enables	the	collection	of	user-level	samples	for	an
event.

o				Os	Enables	the	collection	of	operating	system-level
samples	for	an	event.

o				Edge	Enables	the	edge-	and	level-	detection	that	control
the	way	an	event	signal	is	sensed;	this	affects	the	way
an	event	is	counted	in	a	performance	counter.

The	available	events	depend	on	the	CPU	hardware	in	your
system.	Note	that	only	one	Timer	event,	IBS	all	op	samples
event,	or	IBS	fetch	sample	event	can	be	monitored	at	a	time.

Available
Events

Lists	the	available	hardware	events	for
profiling,	nested	within	the	configurations.

Add	/
Remove
buttons

Adds	to,	or	removes	from	the	Monitored
Events	table	the	selected	available	event	or
configuration.

A	list	containing	the	selected	events	for	data
collection	in	the	“Custom	Profile”	sessions.
A	monitored	event	item	in	this	list	will	contain:
Name	-	The	name	of	the	monitored	event.
Interval	–	the	period	of	how	often	a	sample	is
to	be	taken	(for	counting	occurring	events).
Unit	Masks	-	Used	to	specify	the	unit	mask
setting	for	the	selected	event.	Each	bit	set	has
a	different	meaning.	The	Event	Settings	pane
gives	you	a	description	of	the	current	setting.

Monitored
Events

Usr	-	Enables	collection	of	user-level	samples
for	an	event.
Os	-	Enables	collection	of	operating	system-
level	samples	for	an	event.
Edge	-	Edge	detection	and	level	detection
control	the	way	an	event	signal	is	sensed;	it
affects	the	way	an	event	is	accumulated	as	a
count	in	a	performance	counter.	The
occurrence	of	an	event	(a	hardware	condition)
is	asserted	as	a	physical	hardware	signal.	An
event	has	a	duration	that	can	be	as	short	as	a
single	CPU	clock	cycle	or	it	can	be	several
cycles	long.
When	OK	is	clicked	and	the	Edge	checkbox	is
checked,	the	"Custom	Profile"	configuration	is
selected	automatically,	and	profiling	can	start
immediately.

	

Notable	Available	Events

[E000]	Timer	event
Hardware	APIC	timer	event.	The
default	is	1ms.	The	minimum
interval	is	0.1ms.

[F000]	IBS	fetch
samples

Determines	how	often	an	IBS
fetch	sample	is	taken.	IBS	fetch
sampling	counts	completed
fetches	to	determine	when	the
next	IBS	fetch	sample	is	taken.

Determines	how	often	an	IBS	op
sample	is	taken.	When	the	Unit
Mask	is	0x0	(Count	clock	cycles),
IBS	op	sampling	counts
processor	cycles	to	determine

[F100]	IBS	all	op
samples

when	the	next	IBS	op	sample	is
taken.	When	the	Unit	Mask	is	1
(Count	ops	dispatched),	IBS	op
sampling	counts	dispatched	ops
to	determine	when	the	next	IBS
op	sample	is	taken.	Dispatched
op	counting	is	the	preferred
mode	because	profiles	produced
through	cycle	counting	can	be
biased	by	instruction	timing.

Events	by	Hardware
Source

Performance	monitoring	counter
events	that	vary	according	to	the
system's	hardware.	The
individual	descriptions	are
displayed	when	the	event	is
selected.

A	hardware	event	can	be	added
multiple	times,	but	the	unit
mask,	Usr,	or	Os	settings	must
be	different.	When	an	available
event	or	configuration	is
selected,	a	description	is	shown
below	the	list.	Most	event	details
can	be	directly	edited	within	the
table	by	clicking	on	the	detail	to
change.	When	an	event	is
selected,	the	unit	mask	details
are	also	shown	below	the
Monitored	Events	table.
The	presence	of	a	hardware
condition	is	asserted	when	the
event	signal	is	high.	Absence	of
the	condition	is	asserted	when
the	event	signal	is	low.	When
edge	detection	is	used,	each	low-

HardwareEventNotes
Hardware	Performance
Counter	Notes

to-high	transition	of	the	event
signal	is	counted	as	a	single
event;	that	is,	the	performance
counter	is	incremented	by	one.
When	level	detection	is	used,	the
level	is	sensed	during	each	clock
cycle,	and	the	performance
counter	is	incremented	by	one
for	each	cycle	during	which	the
event	signal	is	asserted.
The	typical	setting	for	an	event	is
level-detect	(the	Edge	box	is
unchecked).	For	example,	if	the
event	signal	represents	the	"NOT
HALTED"	CPU	state,	then	the
performance	counter	counts	the
number	of	CPU	clocks	that	the
CPU	spent	in	the	"NOT	HALTED"
state.	This	configuration
corresponds	to	the	conventional
"CPU	Clocks	Not	Halted"	event.
Performance	counters	count
either	specific	processor	events
or	the	duration	of	events.	The
"Dispatch	Stalls"	counter	event,
for	example,	measures	the
number	of	processor	cycles	when
the	instruction	decoder	has
stalled	for	any	reason.	Edge
detection	and	level	detection	can
be	used	to	determine	the
average	number	of	cycles	per
stall	by:

·									Counting	the	number	of
dispatch	stall	cycles	(level
detection).

·									Counting	the	number	of
dispatch	stalls	(edge
detection).

·									Dividing	the	number	of
stall	cycles	by	the	number	of
stalls.

	
	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	CPU	Profiler	>	CPU	Profile	Data	Analysis

CPU	Profile	Data	Analysis

The	data	and	source	results	of	a	profile	session	are	displayed	in
the	form	of	tabulated	information	and	annotated	source	code.
Use	the	CodeXL	Explorer	to	navigate	between	tabs	of	the	same
sessions,	and	between	different	sessions.
Profile	session	results	contain	several	pages	that	can	be
accessed	through	the	CodeXL	Explorer	and	by	using	the
context	menus	for	any	of	the	profile	session	data	tables.
The	following	views	can	be	displayed	for	each	session:
CPU	Profile	Session	Explorer
Overview	Page
Profile	Session	Modules	View
Profile	Session	Functions	View
Profile	Session	Call	Graph	View
Profile	Session	Source	or	Disassembly	View
Profile	Session	Display	Settings
Import	a	Profile	Session
Save	CPU	Profile	Data

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	CPU	Profiler	>	CPU	Profile	Data	Analysis	>	CPU	Profile	Session	Explorer

CPU	Profile	Session	Explorer

The	CPU	Profiling	project	consists	of	the	CodeXL	Explorer
pane,	the	data	pane,	menu	and	toolbar	commands,	and
subsequent	tabs	and	views	that	are	displayed	during	the	profile
sessions.
The	CodeXL	Explorer	pane	lists	the	profile	sessions	collected
for	the	current	project,	organized	by	profile	session	type.
The	CodeXL	Explorer	lets	you:

·									Double-click	on	a	session	node	in	the	tree,	to	open	it	in
the	data	pane.

·									Right-click	on	a	tree	node	to	delete,	rename,	or	import
sessions.

·									Right-click	on	a	session	tree	node	to	browse	the	folder
that	contains	the	session.	In	the	screenshot	below	you	can
see	the	CodeXL	explorer	for	“classic”	project.	The	session
in	bold	is	the	currently	selected	profile	session,	and	the
profile	type	in	bold	font	(CPU:	Assess	Performance)	is	the
profile	type	for	the	currently	selected	session.

	
	

Session	Views	Right-Click	Menus

Another	way	to	navigate	between	the	profile	session	views	is	to
use	the	session	views'	right-click	menus.	For	example,	in	the
screenshot	below,	the	function	"multply_matrices"	is	marked	as
a	hot-spot	in	the	overview	page.	Right-click	on	the	function	to
see	the	following	context	menu	commands:
Opening	Source	Code	opens	the	source	code	for
"multply_matrices"	to	show	how	the	data	samples	are
distributed	within	the	selected	function	lines.
Display	in	Call	Graph	View	opens	the	call	graph	view	to
show	the	"multply_matrices"'	call	paths.
Display	in	Functions	View	opens	the	functions	view	to	see
how	the	data	is	distributed	within	the	functions	in	this
module	(classic.exe).

After	clicking	the	"Display	in	Call	Graph"	command,	the	call
graph	view	is	opened,	with	the	function	"multiply_matrices"
selected.	When	right-clicking	on	the	function,	a	context	menu	is
opened	with	the	option	to	either	display	the	function	in	source
code	or	in	functions	view.

CodeXL	Explorer	Navigation	Arrows

The	CodeXL	Explorer	arrows	record	the	navigation	to	each	of
the	session	views	that	were	opened.	Use	these	arrows	to	go
back	and	forward	between	the	displayed	session	views.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	CPU	Profiler	>	CPU	Profile	Data	Analysis	>	Profile	Session	Overview	Page

Profile	Session	Overview	Page

The	CPU	Profile	Session	Overview	Page	describes	an	overview
of	the	data	collected	during	the	profile	session.
The	top	section	of	the	overview	page	contains	the	following
data	tables:	Hot	Spot	Functions	table,	Hot	Spot	Modules	table
and	Hot	Spot	Processes	table.	Note	that	the	Processes	table	is
only	displayed	when	running	a	system-wide	profile	session.
The	overview	data	tables	can	get	a	zoom-out	image	of	the
performance	of	the	executed	application.	Use	these	tables	to
review	the	summary	of	hot	spot	locations	in	your	application.
The	tables	display	the	data	organized	by	a	'hot	spot	indicator'.
The	bottom	section	of	the	overview	page	contains	general
information	for	this	session.
	

	

Hot	Spot	Indicator

The	screenshot	above	displays	an	Assess	Performance	session
overview.	The	combo	box	at	the	right	side	of	the	view	is	a	hot-
spot	indicator	combo	box.	Selecting	another	field	in	this	combo
box	causes	the	data	in	the	view	to	be	re-calculated.	The
samples	column	contains	the	hot	spot
functions/modules/processes	calculated	with	the	new	indicator.
The	screenshot	below	displays	the	same	session	overview,	after
selecting	"CPU	clocks	not	halted	(cycles)"	in	the	hot	spot
indicator	combo	box.	The	tables	are	updated	to	display	hottest
functions	/	modules/	processes	according	to	each	of	the
monitored	event	/	data	field	listed	in	the	combo	box.	The	table
is	updated	with	the	CPU	clocks	sample	count	and	percent,	and
the	"Samples"	column	tooltip	now	specifies	the	CPU	Clocks
event.

Session	Properties	Section

The	bottom	section	of	the	overview	page	contains	the	profiled
session	properties.

	

Execution

Contains	the	session	execution	properties:
·			Target	Path,	Working	Folder,	Data	Folder,
Command	Line	Arguments	and	Environment
Variables.	These	session	settings	are	general
CodeXL	project	settings.	Use	the	CodeXL
Project	Settings	Dialog	to	configure	them.

·			CPU	Affinity,	Call	Stack	Sampling,	System-Wide
Profile,	Call	Stack	Information	-these	settings
are	CPU	profile	project	settings.	Use	the
CodeXL	CPU	Profile	Project	Settings
Dialog	to	configure	them.

Profile
Details

Contains	the	following	information	of	the	profile
session:	Profile	session	type	(See	CPU	Profile
Types	for	details),	Profile	start-end	time,
Duration,	CPU	Family	and	Total	Amount	of
Processes	and	Threads.	This	section	also
contains	a	list	of	monitored	events	collected	for
this	session.

	

Navigating	to	other	views

The	Overview	page	describes	a	zoomed-out	image	of	the
profiled	session.	For	more	information	about	bottle	necks	in
your	application,	use	Modules	View,	Functions	View	,	and
Call	Graph	View.	You	can	also	open	a	Source-Code	View	to
see	a	source-line	level	performance	data.	These	views	can	be
opened	using	the	CodeXL	Explorer	Tree	.	Each	of	the	tables
in	the	overview	page	implements	a	right-click	menu	that	lets
you	navigate	between	session	views.

	

Per-Process	vs	System-Wide	Profile	Session

A	CPU	Profile	session	can	be:

·									Per-process	‒	Only	the	target	application	is	profiled.	This
is	the	default.

·									System-Wide	‒	Samples	are	taken	for	all	running
processes	in	the	system.	Use	the	CodeXL	CPU	Profile
Project	Settings	Dialog	to	check	/	un-check	the	system-
wide	profile	option.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	CPU	Profiler	>	CPU	Profile	Data	Analysis	>	Profile	Session	Modules	View

Profile	Session	Modules	View

This	displays	a	module-by-module	detailing	of	performance
data.	Use	this	view	to	see	the	distribution	of	hot	spots	among
the	modules	of	your	application.	The	data	displayed	in	this	view
is	collected	for	the	session	profile	type.	The	screenshot	below
displays	an	Assess	Performance	profile	session,	with	a	single
process	(classic.exe).	Modules	with	a	high	sample	count	usually
indicate	performance	bottlenecks.	Sort	the	modules	table
according	to	a	specific	counter	to	highlight	potential
bottlenecks.

	
The	modules	view	displays	two	tables:	processes	and	modules.
The	following	screenshot	shows	the	“classic”	project	in	a

system-wide	session.	The	combo-box	on	the	right	side	of	the
view	lets	you	select	display	processes	or	modules	in	the	top
table.

Display	Modules	View	by	Processes

The	top	table	displays	processes.	Select	one	or	more	processes
in	the	top	table,	and	the	bottom	table	displays	only	the	modules
used	by	the	selected	processes.

Display	by	Modules

The	top	table	displays	modules.	Select	one	or	more	modules	in
the	top	table,	and	the	bottom	table	displays	only	the	processes
used	by	the	selected	modules.

Modules	View	Context	Menus

The	following	two	screenshots	display	the	context	menus	for
the	modules	and	processes	tables.	The	context	menus	lets	you:

·									Display	in	Functions	View	‒	Displays	the	selected	module
/	process	in	the	functions	view.

·									Select	"ModuleName.dll"	in	modules	table	‒	Switches	to

"Display	by	Modules"	and	selects	ModuleName.dll	in	the
modules	table.

Modules	View	Display	Settings

Use	the	display	filter	link	to	open	the	Display	Settings	Dialog
and	change	the	properties	of	the	currently	displayed	session.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	CPU	Profiler	>	CPU	Profile	Data	Analysis	>	Profile	Session	Functions	View

Profile	Session	Functions	View

Function	view	displays	list	of	functions	called	during	profiling
of	the	current	session	in	a	table.
	

	

Open	Functions	View

This	view	can	be	opened	in	any	of	the	following	ways.
·									Double-click	the	Functions	node	of	a	session.	It	opens
the	functions	view	with	Process	selected	as	All	Processes.
If	the	view	was	already	there,	it	just	opens	the	view	tab.

·									Double-click	the	process	table	in	the	Profile	Session
Overview	Page.	This	opens	the	Function	view	selecting
that	process.	All	the	functions	from	that	process	are	listed.
This	way	of	opening	the	Function	view	is	possible	only
when	multiple	processes	exist.

·									Double-click	the	Module	table	in	Profile	Session	Overview
Page.	This	opens	the	Function	view	selecting	only	that
module.

·									Double-click	the	process	table	in	Profile	Session	Modules
View.	This	opens	the	Function	view	selecting	that	process.

·									Double-click	the	Module	table	in	Profile	Session	Modules
View.	This	opens	the	Function	view	selecting	only	that
module.

·									Selecting	the	"Display	in	Functions	View"	option	from
context	menu	of	any	of	the	four	tables	of	the	Call	Graph
View.	This	opens	the	Function	view	selecting	the	function
that	was	selected	in	Call	Graph	view	on	the	current	table.

Columns

This	table	shows	two	columns:

·									Function	‒	Contains	the	name	of	the	function,	if	available,
or	a	NO_SYMBOL	string	if	the	function	name	could	not	be
determined	from	the	available	symbol.	There	is	an	icon
before	each	function	name	in	this	column	indicating	if	the
function	is	a	system	function	or	a	function	from	a	user
module.	It	also	indicates	if	the	corresponding	library	is	32-
bit	or	64-bit.

·									Module	‒	This	column	lists	the	corresponding	module	of
the	function.	It	lists	the	module	name	only,	without	path.
Full	path	information	is	visible	on	the	tooltips	of	the
corresponding	module.

Other	optional	columns	are	displayed	only	if	the	corresponding
events	are	profiled	and	those	columns	are	selected	for	display.
For	TBP,	the	only	available	variable	column	is	timer.	Multiple
views	are	possible	for	EBP	or	IBS.
Each	of	the	views	has	a	corresponding	list	of	selectable
columns	for	display	in	the	functions	view.	The	combo-box	at	the
beginning	of	Column	section	of	Display	Settings	dialog	lists
the	available	views	for	the	selected	profile	type	of	the	current
session.
Below	the	view	combo-box	is	a	list	of	checkboxes,	each	of
which	controls	the	visibility	of	a	certain	column.	When	the
combo-box	is	checked,	the	corresponding	column	is	visible;
when	the	combo-box	is	unchecked,	the	corresponding	column
is	hidden	(see	CodeXL	CPU	Profile	Display	Settings
Dialog).	For	a	full	list	of	views	and	available	columns,	see	the
CodeXL	CPU	Profile	Types	section.

Filters

Functions	table	data	can	be	filtered	with	one	of	the	three
options.

·									Display	Settings	dialog	‒	This	is	opened	from	the
hyperlink	above	the	table,	labeled	Display.	This	dialog	lets
you	select	the	view,	the	displayed	column(s)	from	them.	It
also	let	you	specify	whether	to	display	system	modules,

split	the	data	based	on	core	or	NUMA	nodes(splitting	data
based	on	NUMA	nodes	is	available	on	Windows	only),	and
display	the	absolute	value	of	data	or	some	percentage	with
a	bar.	(For	details,	see	the	CodeXL	CPU	Profile	Display
Settings	Dialog.)

·									Module	Filter	‒	This	is	opened	from	the	hyperlink	above
the	table.	It	shows	the	number	of	visible	and	hidden
modules.	Clicking	on	this	hyperlink	opens	the	Module
Filter	dialog.	It	contains	a	table	with	two	columns:
Modules	and	Path.	Modules	column	lists	the	modules
name	(the	icons	have	the	same	meaning	as	described	in
the	function	table),	and	Path	contains	the	path	of	that
module.	Both	columns	are	sortable	by	clicking	on	the
respective	heading.

The	following	screenshot	shows	an	example	result	after
clicking	the	hyperlink	shown	in	the	red	boundary	above.

	

Modules

This	column	contains	one	checkbox	per	cell
which	indicates	whether	to	display	functions
of	this	module	in	functions	view.	There	are
two	checkboxes	below	the	table.	The	Select
all	modules	checkbox	is	used	to	select/un-
select	all	the	modules	currently	displayed	in
the	table.	This	checkbox	is	always	enabled.
The	Display	System	modules	in	Modules
Filter	checkbox	is	enabled	only	if	the	Display
system	modules	checkbox	is	checked	(in	the
Display	Settings	dialog).	When	enabled,	it
shows	/	hides	the	system	modules	in	the
table.	On	selecting	some	modules	in	this
table	with	the	checkboxes	and	clicking	the
OK	button,	the	functions	view	is	updated.	It
shows	the	function	only	from	selected
modules,	and	the	link	above	the	table	shows
the	updated	count	of	shown	and	hidden
modules.

Processes

Process	combo-box	lists	all	the	processes	in
process-name	(process-id)	format.	It	also
has	one	option	called	All	Processes.	If	a
process	is	selected	in	this	combo-box,	all	the
functions	from	that	process	are	listed	in	the
table.	If	All	Processes	is	selected,	all	the
functions	from	all	the	modules	of	the	current
session	are	displayed	in	the	current	table.

	

Context	Menu

The	Function	table	provides	a	context	menu.	Open	it	by	right
clicking	on	the	table.	The	context	menu	has	four	items
separated	into	two	groups.	The	following	list	describes	each	of
the	four	items.

·									Opening	Source	Code	‒	Opens	the	source	code	or

disassembly	view	for	the	currently	selected	function	in	the
function	table.

·									Display	in	Call	Graph	View	‒	Opens	the	Call	Graph	view
for	the	currently	selected	function	in	the	function	table.

·									Copy	‒	Copies	the	selected	column(s)	in	the	function
table,	along	with	the	headers	of	the	column	in	buffer,	for
pasting	into	another	application	such	as	Notepad,
Microsoft	word,	Microsoft	Excel,	etc.	See	the	common
context	menu	section.

·									Select	All	‒	Selects	all	the	rows	and	all	the	columns	of	the
function	table.	See	the	common	context	menu	section.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	CPU	Profiler	>	CPU	Profile	Data	Analysis	>	Profile	Session	Call	Graph	View

Profile	Session	Call	Graph	View

The	Call	Graph	view	displays	a	list	of	functions	with	their	Call
Graph	information,	including	caller-to-called	relationship.	This
can	be	enabled	or	disabled	from	the	Call	stack	collection	check-
box	of	the	CPU	Profile	Project	Options	for	a	C++	based
session.	Call	Graph	is	not	supported	for	a	CLR-	or	Java-based
session.

	

Open	Call	Graph	View

Open	this	view	in	one	of	the	following	ways.
·									Double	click	the	Call	Graph	node	of	a	session.	If	the	Call
Graph	view	was	already	there,	this	opens	the	Call	Graph
view	tab.

	
·									Click	the	context	menu	item	Display	in	Call	Graph	View
of	the	functions	table	in	the	Profile	Session	Overview.

	
·									Click	the	context	menu	item	Open	Call	Graph	of	Call
Graph	node	of	a	session	Page.	This	opens	the	Call	Graph
view	with	that	process	selected.	All	the	functions	from	that
process	are	listed.	This	way	of	invoking	Function	view	is
possible	only	when	multiple	processes	exist.

	
·									Click	the	context	menu	item	Display	in	Call	Graph	View
of	the	functions	table	in	the	Profile	Session	Function	View.

Tables	in	Call	Graph	View

There	are	four	tables	in	the	Call	Graph	View.
·									Function	Table	‒	Appears	at	the	top	of	the	page	and
contains	the	list	of	all	functions	(of	the	selected	process	or
all	processes	if	All	Processes	option	is	selected).

This	table	has	the	following	columns.

Function

Function	name	that	appeared	in	the	call
stack	when	the	chosen	monitored	event
triggered	a	sample	collection.	Based	on	the
configuration	of	Display	system	modules
in	the	Display	Settings	dialog,	this
includes	the	function	from	system	modules.

Self
Samples

This	shows	the	number	of	times	this
function	was	on	the	top	of	call	stack	when
the	chosen	monitored	event	triggered	a
sample	collection.

Deep
Samples

Number	of	times	this	function	was	present
in	the	call	stack	when	the	chosen	monitored
event	triggered	a	sample	collection.

%	of	Deep
Samples

Percentage	of	deep	samples	out	of	the	total
count	of	the	samples	gathered
100*(Deep	Sample)/(Total	Sample
collected)

No.	of	Paths Number	of	unique	paths	containing	this
function.

Source	File The	source	files	containing	the	function.
The	line	number	is	shown	in	parentheses.

Module
The	name	of	the	module	that	contains	this
function.	Full	path	is	available	on	tooltips
text	of	the	corresponding	cell	of	the	table.

	

·									Parent	Table	‒	Appears	on	the	left	side	of	the	two	tables
in	the	middle	of	the	page.	It	shows	the	parents	(the
functions	that	call	the	current	function)	of	the	selected
function	in	the	function	table.	This	table	is	updated	when
changing	the	selection	on	function	table.

This	table	has	the	following	columns:

Parents

Lists	all	the	function	names	that	called	the
current	function.	In	the	call	stack	samples,
those	parents	(direct	ancestors)	are
immediately	below	the	currently	selected
function.

Samples The	distribution	of	the	currently	selected
function’s	deep-samples	between	its	parents.

%	of
Samples

Percentage	of	the	paths	samples	from	the	total
deep	samples	of	the	currently	selected
function.

	
	

·									Children	Table	‒	Appears	in	the	right	side	of	two	tables
in	the	middle	of	the	page.	It	shows	the	Children	(the
functions	called	by	the	current	function)	of	the	selected
function	in	the	function	table.	This	table	is	updated	on
changing	the	selection	on	function	table.

This	table	has	the	following	columns:
Lists	all	of	the	function	names	called	by	the

Self	+
children

current	function.	In	the	call	stack	samples,
those	children	(direct	descendants)	are
immediately	above	the	current	function.	It	also
lists	one	entry	called	[self].	This	entry	is	on
the	selected	function	in	the	function	table.

Samples

The	distribution	of	the	currently	selected
function’s	deep-samples	between	its	children.
For	the	[self]	function	it	is	the	self-samples	(as
there	are	no	descendants	to	the	function	when
it	has	been	sampled	itself).

%	of
Samples

Percentage	of	the	paths	samples	from	the	total
deep	samples	of	the	currently	selected
function.

	
	

·									Path	Graph	Table	‒	Represents	the	call	chain	in	the
form	of	a	tree.	In	the	tree,	a	child	node	represents	a
function	called	by	the	function	represented	by	parent
node.

This	table	has	the	following	columns:

Function The	names	of	functions	represented	in
the	call	chain	tree.

Self	samples Number	of	samples	in	this	function.
Downstream-
samples

From	this	point	down	in	the	path,	not
including	the	function	samples.

%	of
Downstream-
samples

Percentage	of	downstream-samples	out
of	all	samples	for	the	specific	call	path.

	
o			Show	Call	Graph	selection	path	–	This	checkbox
controls	whether	to	show	a	line	that	connects	all	the
functions	in	the	sub-tree	that	form	a	unique	path,
ending	in	the	selected	function.	The	small	number	at
the	end	of	the	path’s	line	is	the	length	of	the	path
(starting	with	0).
The	path	of	the	selected	function	is	colored	in	yellow,
while	the	path	of	the	function	on	which	the	cursor	is
currently	hovering	above	is	colored	in	red.

Filters

·									Processes	‒	List	all	the	processes	in	process-
name(process-id)	format

	

It	also	has	the	All	Processes	option.	If	a	process	is
selected	in	this	combo-box,	all	the	functions	from	that
process	are	listed	in	the	table.	If	All	Processes	is	selected,

then	all	the	functions	from	all	the	modules	of	the	current
session	are	displayed	in	the	current	table.

	

·									Monitored	event	‒	Combo-box	at	the	top	right
	

This	lists	the	set	of	monitored	events	observed	during
current	profiling.	Only	the	samples,	that	were	collected
when	the	event	selected	in	this	combo-box	was	triggered,
are	listed.

	

·									Display	Settings	dialog	‒	Opened	from	the	hyperlink-
labeled	Display	above	the	table

Only	one	checkbox,	Display	system	modules,	is	enabled
when	opened	from	Call	Graph	view,	which	is	used	to
show/hide	the	system	modules	in	the	view.

Context	Menu

The	context	menu	provides	the	same	information	for	each	table
discussed	above,	except	Display	Call	Graph	details,	which	are
not	available	in	the	Function	Table.

Context	menu	items	consist	of	the	following.

Open
Source
Code

Opens	the	source	code	or	disassembly	view	for
the	currently	selected	function	in	the	current
table.

Display	in
Call	Graph

Opens	the	Call	Graph	view	for	the	currently
selected	function	in	the	current	table.	This
menu	item	is	not	available	for	Function	table.

Display	in
Functions
View

Opens	the	Function	view	for	the	currently
selected	function	in	the	current	table.	This
menu	item	is	not	enabled	for	functions	that
are	not	present	in	Functions	View	(this	can
happen	if	the	function	was	back-traced	from
another	function	(that	may	have	been	actually
sampled),	but	not	sampled	–	the	monitored
event	was	never	triggered	directly	for	that
function).

Copy
Copies	the	selected	column(s)	in	the	current
table,	along	with	the	headers	to	the	clipboard.
See	the	common	context	menu	section.

Expand	All Expands	all	the	nodes	below	the	selected
function’s	node	in	the	tree.

Collapse	All Collapses	all	the	nodes	below	the	selected
function’s	node	in	the	tree.

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	CPU	Profiler	>	CPU	Profile	Data	Analysis	>	Profile	Session	Source	or	Disassembly	View

Profile	Session	Source	or	Disassembly	View

The	Source	Code	/	Disassembly	view	shows	the	source	lines
annotated	with	assembly	instructions	and	sample	count	for	a
selected	function.
	

	

Opening	the	Source	Code	View

This	view	can	be	opened	from	one	of	the	following	ways:
·									Overview	Page:	Double-click	on	a	function	in	the

functions	table,	or	right-click	on	a	function,	and	select
Open	Source	Code.

·									Functions	View:	Double-click	on	a	function	in	the
functions	table,	or	right-click	on	a	function,	and	select
Open	Source	Code.

·									Call-Graph	View:	Right-click	on	a	function	in	the
functions,	and	select	Open	Source	Code.
	

Open	Source	Code	View	from	Overview
Page																																																																																																																														
				Open	Source	Code	View	from	Call	Graph	View

	
After	selecting	a	function	and	clicking	Open	Source	Code,	a
source	code	view	will	be	created.
A	separate	instance	of	source	code	view	is	opened	for	each
module.	When	the	source	code	is	created,	a	node	is	added	in
the	CodeXL	Explorer,	called	Source	Code.	Under	this	node,	a
node	will	be	created	for	the	module’s	source	code	view.

	
If	CodeXL	cannot	locate	the	source	file,	a	file	selection	dialog	is
opened,	and	the	user	will	be	asked	to	locate	the	source	file.	If
the	source	file	will	not	be	located,	the	source	code	view	will
display	only	disassembly.
On	the	top	of	the	source	code	view,	a	combo-box	is	created	with
the	list	of	the	module’s	functions.	The	function	that	was	right-
clicked	will	be	selected	in	the	functions	combo-box,	and	will	be
highlighted	in	the	code.
	

Source	Code	View	opened	for	"multiply_matrices"	function

Data	Displayed	in	Source	Code	View

The	source	code	consists	of	a	table	displaying	the	following
data	for	each	source	code	line	/	disassembly	line	in	the	current
displayed	source	file:

Line The	source	code	line	number.

Address Memory	address	where	each	instruction	is
located.

Source	Code The	source	code	for	the	current	line.

Code	Bytes Byte	representations	of	the	actual	machine
instructions.

Hotspot
Samples

The	amount	of	samples	collected	for	the
current	hotspot	indicator	event	/	metric.	The
hotspot	indicator	is	selected	in	the	hotspot
indicator	combo-box.

%	of	Hotspot
Samples

The	precentage	of	samples	collected	for	the
current	hotspot	indicator	event	/	metric.	The
percentage	is	calculated	relatively	to	the
currently	display	function	(all	the	function
source	code	lines	will	sum	up	to	100%).	The
hotspot	indicator	is	selected	in	the	hotspot
indicator	combo-box.

Samples
count	for
each	of	the
collected	/
calculated
data	of	the
current
session

The	following	columns	will	contain	the
amount	of	samples	collected	for	the
monitored	events	and	calculated	metrics.
Use	the	Display	Settings	Dialog	to	select
which	of	the	metrics	will	be	displayed
currently	in	the	table.

	
Functions	combo-box

The	functions	combo-box	contain	the	list	of	the	current
module’s	functions.	Selecting	a	function	will	highlight	the
function	in	the	displayed	source	code,	or	will	display
disassembly	code	for	the	requested	function.
	

Process	IDs	combo-box

	

Thread	IDs	combo-box

	
Process	ID	/	Thread	ID	combo-boxes
	

The	process	IDs	/	Thread	IDs	combo-boxes	are	displayed	only
in	cases	where	the	displayed	module	is	multi-process	or	multi-
threaded.	Use	the	process	IDs	and	thread	IDs	combo-boxes	to
display	the	selected	process	/	thread	ID	collected	samples.
	

Navigating	through	the	presented	data

The	navigation	can	be	done	using	the	mouse	wheel,	the	Page
Down\Up	keyboard	keys	or	the	Down\Up	Arrow	keyboard	keys.
While	you	navigate	through	a	large	disassembly,	CodeXL	will
fetch	another	block	of	disassembly	data	as	you	scroll	down	and
reach	the	bottom.	The	size	of	the	data	block	that	is	being
automatically	fetched	can	be	configured	in	the	CPU	Profiling
global	settings.	To	open	the	CPU	Profiling	global	settings,	go	to
the	CodeXL	menu	bar	and	click	on	Tools->Options.	Then,
choose	the	CPU	Profile	tab,	and	edit	the	value	in	the	text	box	to
set	the	data	block	size	in	bytes:

Changing	the	size	of	the	data	block	which	is	being	automatically	fetched
when	scrolling	through	disassmbly

	

	

Source	Code	View	Display	Settings

In	order	to	configure	the	source	code	view	display	settings,
click	the	display	settings	link	on	the	top	of	the	source	code
view.

The	display	settings	dialog	can	be	used	to	select	which	columns
will	be	displayed	in	the	source	code	view	table,	to	display	the
data	separately	for	each	core	/	NUMA	node	etc’.	See	more
details	on	the	display	settings	in	Profile	Session	Display
Settings.

The	function	"initialize_matrices"	is	highlighted	after	being	selected	in	the
functions	combo-box

	
Hotspot	Indicator	combo-box
	
The	hotspot	indicator	combo-box	contains	the	list	of	monitored
events	/	metrics	that	is	currently	displayed	in	the	source	code
view.	Each	of	these	events	/	metrics	can	be	selected.	The
selection	of	an	event	/	metric	will	update	the	‘Hotspot
Samples’	and	‘%	of	Hotspot	Samples’	columns	to	contain	the
data	collected	for	this	event	/	metric.	Use	the	hotspot	indicator

combo-box	to	look	for	the	most	significant	performance
bottlenecks	of	your	application.
	

Hotspot	Indicator	combo-box	for	Assess	Performance	Profile	Session

	

Context	Menu

The	source	code	context	menu	can	be	opened	by	right-clicking
on	one	of	the	items	in	the	table.

The	context	menu	contain	the	following	commands:

Copy	the	selected	row/s	in	the	source	code

Copy view	table.

Select	All Select	all	the	rows	in	the	source	code	view
table.

Expand	All Expand	all	the	items	in	the	source	code	table
(show	all	the	disassembly	lines)

Collapse	All Collapse	all	the	items	in	the	source	code	table
(hide	all	the	disassembly	lines)

Show	Code
Bytes

Show	/	hide	the	code	bytes	column	in	the
source	code	view	table

Show
Address

Show	/	hide	the	address	column	in	the	source
code	view	table

	
	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	CPU	Profiler	>	CPU	Profile	Data	Analysis	>	Profile	Session	Display	Settings

Profile	Session	Display	Settings

This	dialog	can	be	used	to	configure	the	display	of	the	CPU
profile	for	the	currently	opened	sessions.
Click	on	the	display	link,	and	open	the	display	settings	dialog.

Columns

This	section	lets	you	select	the	group	of	columns	displayed	by

the	current	profiled	session.	Each	of	the	groups	in	this	combo-
box	is	a	set	of	data	columns	for	the	current	displayed	session.
The	list	of	groups	in	this	check	box	depends	on	the	current
session	profile	type.

Display	System	Modules

Display	or	hide	the	data	collected	from	system	modules.	This
option	is	global	and	affects	the	content	of	each	of	the	opened
views.

Show	Percentage	Bars

When	this	option	is	unchecked,	the	profile	session	data	is
displayed	as	values.	When	checked,	the	data	is	displayed	as
percentages,	and	percentage	bars	are	displayed	within	the
tables.

CPU	Cores

Select	the	list	of	cores	for	which	the	results	are	to	be	displayed.

Separate	Data	Per	Core	/	NUMA

Display	a	separate	column	for	each	core	/	NUMA.
After	setting	the	options	in	this	dialog,	click	OK.	CodeXL
updates	each	of	the	opened	sessions	with	the	global	options
(percentage	and	system	dll	display);	it	also	updates	the	current
view	with	the	local	settings.	The	display	filter	link	on	the	top	of
the	views	contains	the	current	display	settings.	For	example:
The	following	Functions	view	display	settings	are:	"Branch
Assessment,	System	Modules	Hidden,	Percentages,	2	Cores"
This	means	that	the	list	of	columns	displayed	for	the	current
session	are	the	Branch	Assessment	data	columns.	In	the
modules	table,	below	the	displayed	columns,	are	the	columns
related	to	branch	assessment.	The	data	is	displayed	in
percentages,	and	only	two	cores	are	selected.

Modules	Filter	Dialog

The	below	screenshot	contain	the	display	settings	link	for	the
Functions	View.	The	right	section	of	the	string	contain	the
amount	hidden	and	shown	modules	in	the	functions	view.	Click
on	the	right	link	to	open	the	modules	filter	dialog.
	

	
	

Display	System	modules	in	Modules	Filter

When	this	box	is	checked,	the	table	above	it	includes	the
system	modules.	When	un-checked,	these	modules	are	not
shown.	This	option	is	enabled	when	system	modules	are	hidden
in	all	views.
The	modules	table	icons	represent	the	modules	type.

		 32/64	bit	user
module

		 32/64	bit	system
module

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	CPU	Profiler	>	CPU	Profile	Data	Analysis	>	Importing	Profile	Data

Importing	Profile	Data

The	profile	data	in	a	CodeXL	EBP	file	can	be	imported	into	a
CodeXL	project.	A	new	session	is	created	for	the	profile	data.
To	import	profile	data:
1.						If	a	CodeXL	project	is	not	already	opened,	create	a	new
CodeXL	project	or	open	an	existing	CodeXL	project.

2.						Right-click	the	project	name	in	the	CodeXL	Explorer
pane.	The	shortcut	menu	is	displayed.

	

	
3.						Click	Import	Session...	.
4.						Select	the	CodeXL	EBP	file	to	be	imported	into	the

project.

	
5.						A	new	session	is	created	and	displayed	for	the	imported

profile	data.
	

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	CPU	Profiler	>	CPU	Profile	Data	Analysis	>	Saving	Profile	Data

Saving	Profile	Data

You	can	save	the	profile	data	in	the	tables	of	different	profile
session	views	for	later	analysis.	This	data	is	save	in	the	CSV
files.
To	save	profile	data:
1.						Right	click	the	table	having	the	profile	data	to	be	saved.
A	context-menu	is	displayed.

2.						Click	‘Select	All’
3.						Right-click	and	click	‘Copy’
	

	
	
	

	
4.						Open	notepad,	and	paste	the	copied	profile	data.
5.						Save	the	file	as	a	CSV	file	(with	.csv	extension).

	
6.						To	view	the	profile	data,	open	the	CSV	file	in	a	a
spreadsheet	program,	such	as	Microsoft	Excel	or
OpenOffice.org	Calc.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	CPU	Profiler	>	CPU	Profile	Command	Line	Interface

CPU	Profile	Command	Line	Interface

CodeXL	CPU	Profiler	provides	a	command	line	interface	utility
for	users	who	prefer	to	use	command	interpreters	like
cmd.exe	on	Windows	and	bash	on	Linux.	This	CLI	utility	will
be	used	to	collect	and	analyze	the	profile	data.	It	can	also	be
used	from	a	batch	file	or	a	test	script.
Usage:	CodeXLCpuProfiler.exe	command	<options>
[<InputApplication>]	[<InputApplication’s	command	line
arguments>]
Following	commands	are	supported:

collect Run	the	given	input	application	and	collect
cpu	profile	samples.

report Process	the	given	cpu	profile	data	file	and
generate	a	cpu	profile	report	in	CSV	format.

	
Following	options	are	supported	with	collect	command.

-m	<profile	type>

Predefined	profile	type	to	be
used	to	collect	samples.
Supported	profile	types	are:
tbp:	Time-based	Sampling
assess:	Assess	Performance
branch:	Investigate	Branching
data_access:	Investigate	Data
Access
ibs:	Instruction-based
Sampling

inst_access:	Investigate
Instruction	Access
l2_access:	Investigate	L2
Cache	Access
clu:	Cache	Line	Utilization
(Windows	only)

-T	<n>
Sampling	interval	for	custom
time-based	profiling	(tbp).
Sampling	interval	<n>	is
specified	in	milliseconds.

-d	<n> Profile	duration	in	seconds.

-o	<file	name>

Base	name	of	the	output	file.	If
this	option	is	specified,	default
path	will	be	used.	The	default
path	will	be	%Temp%\Codexl-
CpuProfile-<timestamp>	on
Windows	and	/tmp/Codexl-
CpuProfile-<timestamp>	on
Linux.

-p	<PID,PID,..>
Profile	existing	processes
(processes	to	attach	to).
Process	IDs	are	separated	by
comma.

-a

System	Wide	Profile	(SWP).	If
this	flag	is	not	set	then	the
command	line	tool	will	profile
only	the	launched	application
or	the	PIDs	attached.

-G

Enable	callstack	sampling	with
default	Callstack	collection
sampling	interval	and	Unwind
Depth.	The	default	values	are:

Callstack	Collection
Sampling	Interval:	1
Unwind	Depth:	128

-g
<Interval:Depth:Scope:Fpo>

Enable	callstack	sampling	with
user	defined	callstack
collection	sampling	interval,
unwind	depth,	scope	and	FPO
values.	Scope	and	FPO	are
Windows	only	options.
(Windows	only)
Scope	should	contain	one	of
these	options:
user:	Collect	callstacks	only
for	code	executed	in	user
space.
kernel:	Collect	callstacks	only
for	code	executed	in	kernel
space.
all:	Collect	callstacks	for	code
executed	in	user	space	and
kernel	space.
To	collect	missing	frames	due
to	omission	of	frame	pointers
by	compiler.
fpo:	Collect	missing	callstack
frames.
nofpo:	Do	not	collect	missing
callstack	frames.	(default)

-c

Core	Affinity	Mask.	Default
affinity	is	all	the	available
cores.	In	System-wide	profiling,
samples	are	collected	only
from	these	cores.	In	Per-

Process	profile,	processor
affinity	is	set	for	the	launched
application.

-f
Profile	the	children	of	the
launched	application	(i.e.
processes	launched	by	the
profiled	application).

-b
Terminate	the	launched
application	after	profile
collection.

-s	<n>
Start	profiling	after	the
specified	delay	duration	<n>	in
seconds.

-v Print	version	string.

-w
Specify	the	working	directory.
Default	will	be	the	path	of	the
launched	application.

-h Displays	this	help	information.

-C	<Custom	profile> Path	to	the	custom	profile	XML
file.

	
Following	options	are	supported	with	report	command.

-i	<file	name>
Input	file	name.	Either	the	raw	profile	data
file	(.prd	on	Windows	and	.caperf	on	Linux)
or	the	processed	data	file	(.ebp)	can	be
specified.

-o	<output	dir>

Output	directory	in	which	the	processed
data	file	(ebp	and	imd)	will	be	created.	The
default	path	will	be	%Temp%\<base-name-
of-input-file>	on	Windows	and	/tmp/<base-

name-of-input-file>	on	Linux.

-V	<view	xml> Specify	the	View	configuration	XML	file.	All
the	raw	data	will	be	reported.

-R	<section,..>

Specify	the	report	sections	to	be	generated.
Supported	report	sections	are:
all:	Report	all	the	sections.
overview:	Report	Overview	section.
process:	Report	process	details.
module:	Report	module	details.
callgraph:	Report	callgraph.
Options	process	and	module	are	mutually
exclusive.	Options	module	and	callgraph
are	mutually	exclusive.

-e
Specify	the	event	index	for	which	callgraph
will	be	generated.	This	event	is	also	used	to
find	the	hot	functions	in	the	Overview
section.

-I Ignore	samples	from	System	Modules.

-P Show	Percentage.

	
Examples

·									Launch	the	application	classic.exe	and	collect	Time-based
profile	(TBP)	samples:
CodeXLCpuProfiler.exe	collect	-m	tbp	-o	c:\Temp\cpuprof-tbp	classic.exe

·									Launch	the	application	classic.exe	and	collect	assess
performance	profile	samples	for	the	duration	of	10
seconds:
CodeXLCpuProfiler.exe	collect	-m	assess	-o	c:\Temp\cpuprof-assess	-d	10	classic

·									Launch	the	application	classic.exe	and	collect	Instruction
Based	Sampling	(IBS)	samples	in	System	wide	profile

(SWP)	mode:
CodeXLCpuProfiler.exe	collect	-m	ibs	-a	-o	c:\Temp\cpuprof-ibs-swp	classic

·									Collect	Time-based	profile	samples	in	System	wide	profile
mode	for	the	duration	of	10	seconds:
CodeXLCpuProfiler.exe	collect	-m	tbp	-a	-o	c:\Temp\cpuprof-TBP-swp	-d	10

·									Launch	the	application	classic.exe	and	collect	Time-based
profile	(TBP)	samples.	Also	enable	collecting	callstack
samples	whenever	the	TBP	samples	are	collected:
CodeXLCpuProfiler.exe	collect	-m	tbp	-G	-o	c:\Temp\cpuprof-tbp	classic.exe

·									Print	help:
CodeXLCpuProfiler.exe	-v

·									Print	version	string:
CodeXLCpuProfiler.exe	-h

·									Once	the	raw	cpu	profile	data	file	is	generated,
CodeXLCpuProfiler	report	command	can	be	used	to
generate	CSV	report	from	that	raw	data	file:
CodeXLCpuProfiler.exe	report	-i	c:\Temp\cpuprof-tbp.prd	-o	c:\Temp\cpuprof-tbp-out

	
Once	the	raw	CPU	profile	data	file	is	generated	using	the
command	line	utility,	the	results	can	be	viewed	within	CodeXL
using	the	Import	Session	command	in	the	CodeXL	Explorer.
	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	CPU	Profiler	>	CPU	Profile	Command	Line	Interface	>	Profile	Configuration	File	Format

Profile	Configuration	File	Format

This	section	describes	the	XML	configuration	file	passed	to	–C
option.	This	data	collection	configuration	file	describes	how
CodeXL	CPU	Profiler	is	to	be	configured	for	data	collection.
Pre-defined	configurations	are	provided	with	CodeXL.
Advanced	users	can	create	their	own	data	collection
configuration	by	writing	an	XML	file.	A	data	configuration	XML
file	contains	only	one	configuration.
The	<dc_configuration>	and	</dc_configuration>	tags	mark
the	beginning	and	end	of	configuration	information	within	a
data	collection	configuration	file.

<dc_configuration>
…
</dc_configuration>
	

A	collection	configuration	contains	<tbp>,	>ebp>,	<ibs>	or
<clu>	elements.	Each	element	describes	a	data	collection
configuration	of	type	indicated	by	its	element	name.	A
collection	configuration	should	contain	one	or	more	non
duplicate	elements.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	CPU	Profiler	>	CPU	Profile	Command	Line	Interface	>	Profile	Configuration	File	Format	>	TBP
Collection	Configuration

TBP	Collection	Configuration

The	<tbp>	and	</tbp>	tags	mark	the	beginning	and	end	of	a
time-based	profile	data	collection	configuration.	This	element
has	the	following	attributes:

name Configuration	name	(string)

interval Sampling	interval	in	milliseconds	(float)

	
Sample	TBP	configuration:

<dc_configuration>
																								<tbp	name=”time	based	profile”
interval=”10.0”>
																																				<tool_tip>	Find	program	hotspots
</tool_tip>
																																				<description>	Configuration	to	identify
where	an	application	is	spending	its	time
																																				</description>
																								</tbp>

</dc_configuration>
	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	CPU	Profiler	>	CPU	Profile	Command	Line	Interface	>	Profile	Configuration	File	Format	>	EBP
Collection	Configuration

EBP	Collection	Configuration

The	<ebp>	and	</ebp>	tags	mark	the	beginning	and	end	of	an
event-based	profile	data	collection	configuration.	This	element
has	the	following	attributes:

name Configuration	name	(string)

	
The	sampling	events	are	specified	using	<event>	element.	One
are	more	events	can	be	specified.	The	tag	<event>	</event>
mark	the	beginning	and	end	of	an	event	element.	It	describes
how	an	individual	event	counter	is	configured	for	data
collection.
An	event	has	the	following	attributes:

select Event	select	value	(integer)

mask Unit	mask	value	(integer)

os Enables	OS	sampling	(Boolean)

user Enables	user	level	sampling	(Boolean)

count Sampling	period	(integer)

edge_detect Enables	edge	detect	when	counting	events
(Boolean).	This	is	optional.

host Enables	host	mode	event	counting
(Boolean).	This	is	optional.

guest Enables	guest	mode	event	counting
(Boolean).	This	is	optional.

	
The	values	must	be	validated	against	the	events	and	specific
capabilities	supported	by	the	measurement	platform.	The
maximum	number	of	events	depends	upon	the	number	of
counters	supported	by	the	platform	on	which	the
measurements	are	taken.
	
Sample	EBP	configuration:

<dc_configuration>
																								<ebp	name=”event	based	profile”>
																																				<event	select=”C0”	mask=”00”	os=”T”
user=”T”	count=”250000>	</event>
																																				<event	select=”76”	mask=”00”	os=”T”
user=”T”	count=”250000>	</event>
	
																																				<tool_tip>	HW	PMC	events	based
profiling	</tool_tip>
																																				<description>	Configuration	to	find
potential	issues	for	investigation
																																				</description>
																								</ebp>

</dc_configuration>
	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	CPU	Profiler	>	CPU	Profile	Command	Line	Interface	>	Profile	Configuration	File	Format	>	IBS
Collection	Configuration

IBS	Collection	Configuration

The	<ibs>	and	</ibs>	tags	mark	the	beginning	and	end	of	an
instruction-based	sampling	(IBS)	data	collection	configuration.
This	element	has	the	following	attributes:

name Configuration	name	(string)

fetch_sampling Enables	IBS	fetch	sampling	(Boolean)

fetch_max_count Maximum	periodic	fetch	count/samplingperiod	(integer)

op_sampling Enables	IBS	Op	sampling	(Boolean)

op_max_count Maximum	periodic	op	count/sampling
period	(integer)

op_cycle_count Count	clock	cycles	(Boolean).

	
Sample	IBS	configuration:

<dc_configuration>
																								<ibs	name=”instruction	based	sampling”
																																				fetch_sampling=”T”
																																				op_sampling=”T”
																																				fetch_max_count=”250000”
																																				op_max_count=”250000”
	
																																				<tool_tip>	Collect	data	using	IBS
</tool_tip>

																																				<description>	Configuration	to	attribute
samples	to	instructions	precisely
																																				</description>
																								</ibs>

</dc_configuration>
	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	CPU	Profiler	>	CPU	Profile	Command	Line	Interface	>	Profile	Configuration	File	Format	>	CLU
Collection	Configuration

CLU	Collection	Configuration

The	<clu>	and	</clu>	tags	mark	the	beginning	and	end	of	a
Cache	line	utilization	(CLU)	data	collection	configuration.	This
element	has	the	following	attributes:

name Configuration	name	(string)

clu_sampling Enables	CLU	sampling	(Boolean)

clu_max_count Maximum	sampling	period	(integer)

	
Sample	CLU	configuration:

<dc_configuration>
																								<clu	name=”cache	line	utilization”
																																				clu_sampling=”T”
																																				clu_max_count=”250000”
	
																																				<tool_tip>	measure	of	cache	line
utilization	of	L1	data	cache	</tool_tip>
																																				<description>	Configuration	to	find
potential	issues	related	to	data	locality	and
																																																data	access	pattern.
																																				</description>
																								</clu>

</dc_configuration>
	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	CPU	Profiler	>	CPU	Profile	Command	Line	Interface	>	Profile	Configuration	File	Format	>
Miscellaneous	tags

Miscellaneous	tags

The	tags	<tool_tip>	and	</tool_tip>	mark	the	beginning	and
end	of	a	short	tool	tip	description	of	a	configuration.	The	text
between	the	tags	is	the	tool	tip	description.	It	is	usually	only	a
few	key	words	with	no	line	breaks.
The	tags	<description>	and	</description>	mark	the
beginning	and	end	of	a	short	description	of	a	configuration.
The	text	between	the	tags	is	the	description.	It	is	usually	only	a
few	sentences	long	and	may	contain	line	breaks.	Line	breaks
will	be	replaced	by	spaces	and	runs	of	spaces	will	be	replaced
by	single	space	character.
The	valid	values	for	a	Boolean	attribute	is	one	of	the	strings	“T”
or	“F”	which	denotes	TRUE	and	FALSE	respectively.	The
default	value	for	Boolean	attribute	is	“F”
	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	CPU	Profiler	>	CPU	Profile	C/C++	Inline	Functions

CPU	Profile	C/C++	Inline	Functions

CodeXL	CPU	Profiler	reports	functions	that	are	inlined	and
attributes	samples	which	belong	to	the	code	region	of	the
instances	of	inlined	functions.	In	the	CodeXL	session	views	the
inlined	functions	are	displayed	with	the	word	“[inlined]”
prefixed	to	the	function	name.	CPU	Profiler	can	identify	the
inlined	functions	only	if	the	target	application	binary	includes
the	information	about	the	instances	of	inlined	functions.	If	the
target	application	binary	does	not	contain	the	information
about	the	inlined	functions,	then	CodeXL	CPU	Profiler	would
attribute	the	samples	to	the	non-inlined	caller	function.

Overview,	Functions	View,	Call	Graph	View	and	Source	Code
view	display	information	about	inlined	functions.

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	CPU	Profiler	>	CPU	Profile	PLT	Relocations

CPU	Profile	PLT	Relocations

On	Linux	platforms,	CodeXL	CPU	Profiler	attributes	and
reports	the	samples	that	belong	to	Procedure	Linkage	Table
(PLT)	section.	PLT	information	is	generated	by	compiler,	which
is	used	by	dynamic	linker/loader	to	link	the	application	with	its
dependent	dynamic	libraries.	Samples	that	are	attributed	to
PLT	instructions	are	reported	against	“[PLT]	<function-name>”
symbol.	For	example,	an	application	calling	a	library	function
rand()	will	have	an	corresponding	entry	for	this	function	in	the
PLT	section.	Samples	attributed	to	this	PLT	entry	will	be	shown
as	“[PLT]	rand”	and	samples	due	to	actual	rand()	function	will
be	attributed	to	“rand()”	function	entry	in	the	session	views.

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	CPU	Profiler	>	CPU	Profile	on	Virtual	Machine	>	VMware	Workstation

VMware	Workstation

CPU	Profiler	supports	TBP	and	EBP	on	Guest	OS	running	on
VMware	Workstation	11.0	or	later.	It	is	always	recommended	to
use	latest	version	of	VMware	Workstation.	Recent	AMD	Carrizo
processor	is	not	yet	supported	by	VMware	Workstation	11.1.x.

To	run	TBP	within	guest	OS,	no	additional	configuration	needed
in	host	OS	or	guest	OS.

To	run	EBP	within	guest	OS,	please	ensure	the	following
settings	are	done:

‒				Enable	Virtualization	or	SVM	(AMD-V)	in	BIOS	settings	before	booting	the	host
OS.

‒				Enable	AMD-V	in	guest	OS	VM	settings.	Edit	virtual	machine	settings	>
Hardware	>	Processors>	Virtualization	engine	>	Enable	“Virtualize	AMD-V/RVI”

‒				Enable	vPMC	in	guest	OS	VM	settings.	Edit	virtual	machine	settings	>	Hardware
>	Processors>	Virtualization	engine	>	Enable	“Virtualize	CPU	performance
counters”

Known	Issues	on	Windows	7	Host	OS:
‒				When	CPU	Profiler	EBP	is	running	on	Windows	7	host	OS	and	a	Linux	guest	OS	is
launched,	crash	is	observed	on	Windows	7	due	to	VMware	driver.

‒				If	EBP	is	performed	on	Windows	7	host	OS	and	EBP	is	performed	on	Linux	guest
OS	simultaneously,	then	crash	is	observed	on	Windows	7	due	to	VMware	driver.

These	scenarios	work	fine	when	host	OS	is	Windows	8,	8.1	and
10.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	CPU	Profiler	>	CPU	Profile	on	Virtual	Machine	>	Microsoft	Hyper-V

Microsoft	Hyper-V

CPU	Profiler	supports	TBP	on	Windows	Host	OS,
Windows/Linux	Guest	OS	running	on	Hyper-V.

CPU	Profiler	supports	EBP	only	on	Windows	10	Host	and
Windows	10	Guest	OS	(running	on	Windows	10	Host	OS).
Please	enable	Virtualization	or	SVM	(AMD-V)	in	BIOS	settings
before	booting	the	host	OS.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	CPU	Profiler	>	CPU	Profile	on	Virtual	Machine	>	Xen	Project

Xen	Project

CPU	Profiler	supports	only	TBP	on	Windows/Linux	OS	running
on	Xen	hypervisor.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	CPU	Profiler	>	CPU	Profile	on	Virtual	Machine	>	Linux	KVM

Linux	KVM

CPU	Profiler	supports	only	TBP	on	Windows/Linux	OS	running
on	KVM	hypervisor.

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	CPU	Profiler	>	CPU	Profile	Control	APIs

CPU	Profile	Control	APIs

CPU	Profiler	control	APIs	allow	user	to	limit	the	profiling	scope
to	a	specific	portion	of	the	code	within	the	target	application.
Usually,	when	the	profiling	done,	it	captures	the	samples	for
the	complete	application,	i.e.	start	of	execution	till	end	of	the
application	execution.	The	control	APIs	can	be	used	to	enable
the	profiler	only	for	a	specific	part	of	application,	e.g.	a	CPU
intensive	loop,	a	hot	function,	etc.	The	target	application	need
to	be	recompiled	after	adding	the	control	APIs	within	the
application.

The	control	APIs:
//	To	pause	CPU	profiling,	call	one	of	the	below	two	APIs.

int	amdtStopProfiling(amdtProfilingControlMode);	//	Set	mode	to	AMDT_CPU_PROFILING

int	amdtStopProfilingEx(void);

//	To	resume	CPU	profiling,	call	one	of	the	below	two	APIs.

int	amdtResumeProfiling(amdtProfilingControlMode);	//	Set	mode	to	AMDT_CPU_PROFILING

int	amdtResumeProfilingEx(void);

	

CPU	Profiler	only	profiles	the	code	within	each	Resume,	Stop
APIs	pair.	Refer	“CPU	Profiler	Tutorial”	on	how	to	use	these
APIs,	compile	your	target	application	and	profile	only	the
desired	part	of	code.

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	CPU	Profiler	>	CPU	Profile	IMIX	report	generation

CPU	Profile	IMIX	report	generation

If	you	are	interested	in	the	hot	instructions	for	a	target
application	then	in	such	IMIX	report	will	be	useful.	IMIX	report
generates	report	on	hotspot	instructions	summary.

Sample	IMIX	report	summary:

Disassembly Samples
Percentage

Samples
Count

mov	[rsp+08h],rcx 5.54 111
retnq 3.54 71
mov	rax,[rsp+08h] 3.09 62
sub	rsp,28h 2.79 56
mov	[rsp+18h],r8d 2.44 49
mov	[rsp+10h],edx 2.34 47

	

Only	CPU	Profiler	CLI	interface	supports	IMIX	report
generation.	Use	option	‘-R	imix’	in	CLI	during	report
generation	to	generate	IMIX	information.	Refer
CodeXLCpuProfiler	help	(-h)	option	to	get	more	details.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	GPU	Profiler

GPU	Profiler

The	GPU	Profiler	component	in	CodeXL	is	a	performance
analysis	tool	that	gathers	data	from	the	API	run-time	and	GPU
for	OpenCL™	,	HSA	or	DirectCompute	applications.
This	information	can	be	used	by	developers	to	discover
bottlenecks	in	the	application	and	find	ways	to	optimize	the
application's	performance.	The	GPU	Profiler	can	also	be	used
as	a	command-line	tool.
Features	of	the	GPU	Profiler	include:

·									Measure	the	execution	time	of	an	OpenCL™,	HSA	or
DirectCompute	kernel.

·									Query	the	hardware	performance	counters	on	an	AMD
Radeon™	graphics	card.

·									Use	the	AMDTActivityLogger	API	to	trace	and	measure
the	execution	of	segments	in	the	program.

·									Compare	multiple	runs	(sessions)	of	the	same	or	different
programs.

·									Store	the	profile	data	for	each	run	in	a	text	file.
·									Display	the	IL/HSAIL	and	ISA	(hardware	disassembly)
code	of	the	kernel	for	OpenCL™	kernels	and	DXASM	code
for	DirectCompute	kernels.

·									Show	a	timeline	(including	data	transfer	and	kernel
dispatch)	and	an	API	trace	for	OpenCL™	or	HSA
programs.

·									Calculate	and	display	kernel	occupancy	info,	which
estimates	the	number	of	in-flight	wavefronts	on	a	compute
unit	as	a	percentage	of	the	theoretical	maximum	number
of	wavefronts	that	the	compute	unit	can	support.

The	following	screenshots	display	the	results	of	the	Application
Timeline	Trace	and	Performance	Counters	sessions	for	an

OpenCL™	program.

	

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	GPU	Profiler	>	Using	the	GPU	Profiler

Using	the	GPU	Profiler

The	GPU	Profiler	provides	two	modes:

Application
Timeline	Trace

This	mode	provides	a	high-level	overview	of	an	OpenCL™	or	HSA	application.	It	displays:
1.	An	API	Trace,	showing	all	OpenCL™	of	HSA	APIs	called	by	the	application.
2.	A	timeline	showing	the	call	sequence	and	duration	of	all	OpenCL™	or	HSA	APIs	
as	data	transfers	(OpenCL™	only)	and	kernels	
3.	A	set	of	Summary	Pages,	providing	a	set	of	statistics	for	the	application,	
analysis	of	the	application.
For	more	information,	see:
Application	Timeline	Trace	Session
Application	Timeline	Trace	Summary	Pages

Performance
Counters

This	mode	collects	performance	counters	from	the	AMD	GPU	or	APU	for	each	kernel	dispatched	to	
device	by	either	and	OpenCL™,	HSA	or	DirectCompute	application.
It	also	displays	statistics	from	the	shader	compiler	for	each	kernel	
The	performance	counters	and	statistics	can	be	used	to	discover	bottlenecks	
This	mode	also	can	also	display	the	kernel	source	code,	the	generated	IL	code,	
for	an	OpenCL™,	DirectCompute	kernel	dispatched	to	
For	more	information,	see:
GPU	Profiler	Performance	Counters	Session
GPU	Profiler	Code	Viewer.

For	OpenCL™	programs,	both	profiling	modes	can	also
generate	Kernel	Occupancy	information	for	each	kernel
dispatched	to	a	GPU.	For	HSA	applications	Kernel	Occupancy
information	is	only	available	in	Performance	Counter	mode.	For
more	information,	see	GPU	Profiler	Kernel	Occupancy
Viewer	and	GPU	Profiler	Kernel	Occupancy
To	use	the	GPU	Profiler:
1.						Create	a	new	project,	or	open	an	existing	project.

2.						Switch	to	Profile	Mode	in	CodeXL.
You	can	switch	to	Profile	Mode	using	the	CodeXL	Toolbar
or	the	CodeXL	menu.

3.						In	Profile	Mode,	use	the	menu	to	select	one	of	the	above
two	modes.

4.						Start	the	profile	session	using	the	"Start	CodeXL
Profiling"	toolbar	or	menu	item.	Profiling	results	are
gathered	while	the	application	is	running.

Once	the	application	terminates,	a	new	session	is	added	to	the
CodeXL	Explorer.	The	results	of	the	profile	also	are	displayed
by	CodeXL.
The	following	links	provide	more	information	on	the	features
available	in	the	GPU	Profiler.
Application	Timeline	Trace	Session
GPU	Profiler	Performance	Counters	Session
GPU	Profiler	Summary	Pages
GPU	Profiler	Code	Viewer
GPU	Profiler	Kernel	Occupancy	Viewer
GPU	Profiler	Kernel	Occupancy
GPU	Profile	Project	Settings
Description	of	Output	Files
Description	of	Configuration	Files
Using	the	Command-Line	Interface
AMDTActivityLogger	Library

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	GPU	Profiler	>	Using	the	GPU	Profiler	>	Application	Timeline	Trace	Session

Application	Timeline	Trace	Session

The	following	screenshot	shows	the	timeline	and	API	trace	data
for	a	profile	session.	To	get	the	.atp	file	of	the	result,	right-click
the	session	in	the	CodeXL	Explorer	,	and	select	"Open
Containing	Folder"	from	the	menu.	See	Description	of
Output	Files	for	a	detailed	description	of	the	format	of	this
file.
	

	
From	the	application	trace	data,	you	can:

·									Discover	the	high-level	structure	of	the	application	with

the	Timeline	View.	For	OpenCL™	programs,	you	can	use
this	view	to	determine	the	number	of	OpenCL™	contexts
and	command	queues	created,	as	well	as	the	relationships
between	these	items	in	the	application.

·									Determine	if	an	OpenCL™	application	is	bound	by	kernel
execution	or	data	transfer	operations.

·									View	and	debug	the	input	parameters	and	output	results
for	all	API	calls	made	by	the	application	with	the	API	Trace
View.

·									View	and	analyze	the	performance	for	sections	in	the
program,	using	AMDTActivityLogger.

The	panel	is	divided	into	two	sections.	The	upper	section	shows
the	application	timeline,	the	lower	section	shows	the	API	trace.

Application	Timeline	Trace

The	application	timeline	provides	a	visual	representation	of	the
execution	of	the	application.	Along	the	top	of	the	timeline	is	the
time	grid,	which	shows	the	total	elapsed	time,	in	milliseconds,
of	the	application.	Timing	begins	when	the	first	OpenCL™		of
HSA	call	is	made	by	the	application;	it	ends	when	the	final
OpenCL™	or	HSA	call	is	made.
Directly	below	the	time	grid,	each	host	(OS)	thread	that	made
at	least	one	OpenCL™	or	HSA	call	is	listed.	For	each	host
thread,	the	API	calls	are	plotted	along	the	time	grid,	showing
the	start	time	and	duration	of	each	call.	Below	the	host
threads,	an	API-specific	tree	shows	device-specific
information.		For	OpenCL™,	the	tree	shows	all	contexts	and
queues	created	by	the	application,	along	with	data	transfer
operations	and	kernel	execution	operations	for	each	queue.	For
HSA,	the	tree	shows	all	kernels	dispatched	to	a	particular
device.
The	Timeline	View	can	be	useful	for	debugging	your	OpenCL™
application.	Using	the	data	displayed	in	the	timeline,	you	can:

·									Easily	confirm	that	the	high-level	structure	of	your
application	is	correct.	By	examining	the	timeline,	you	can

verify	that	the	number	of	queues	and	contexts	created
matches	your	expectations	for	the	application.

·									Confirm	that	synchronization	has	been	performed
properly	in	the	application.	For	example,	if	kernel	A
execution	is	dependent	on	a	buffer	operation	and	outputs
from	kernel	B	execution,	then	kernel	A	execution	appears
after	the	completion	of	the	buffer	execution	and	kernel	B
execution	in	the	time	grid.	It	can	be	hard	to	find	this	type
of	synchronization	error	using	traditional	debugging
techniques.

·									Confirm	that	the	application	has	been	using	the	hardware
efficiently.	For	example,	the	timeline	shows	that	non-
dependent	kernel	executions	and	data	transfer	operations
occur	simultaneously.

Navigating	the	Application	Timeline

The	application	timeline	provides	many	ways	to	view	and
analyze	the	profile	result:	through	zooming,	navigating,	and
expanding/collapsing.

Zooming

When	first	opened,	the	timeline	view	is	fully	zoomed	out:	the
entire	application	timeline	is	visible	in	the	timeline.	It	can	be
useful	to	zoom	in	to	specific	parts	of	the	timeline	in	order	to
better	understand	the	profiling	data.	As	you	zoom	in	and	out,
the	time	grid	at	the	top	changes	to	display	the	timestamp	of	the
currently	displayed	timeline	subsection.
1.						Manual	zoom	‒	Use	the	mouse	wheel	to	manually	zoom
in	and	out.	Roll	the	mouse	wheel	up	to	zoom	in,	and	down
to	zoom	out.	If	using	a	mouse	not	equipped	with	a	mouse
wheel,	or	if	you	prefer	to	use	the	keyboard,	you	can	use
the	plus	key	to	zoom	in,	and	the	minus	key	to	zoom	out.
The	current	zoom	pivot	point	(displayed	as	a	vertical	line
over	the	entire	timeline)	represents	the	point	in	the
timeline	into	which	the	view	is	zoomed.	The	zoom	pivot

point	tracks	the	mouse	cursor	as	it	moves	over	the
timeline.	The	current	timestamp	represented	by	the	zoom
pivot	is	displayed	as	a	hint	in	the	grid	displayed	at	the	top
of	the	timeline.

2.						Zoom	into	specific	API	call	‒	To	zoom	into	a	particular
API	call,	double-click	the	API	call	in	the	API	Trace	list.

3.						Zoom	into	specified	region	‒	To	zoom	into	a	specific
region	of	the	timeline,	hold	down	the	Control	key	and	drag
the	mouse	to	highlight	a	specific	region.	When	you	release
the	mouse	button,	the	timeline	is	zoomed	into	the
highlighted	region.	While	you	are	dragging,	hints	are
displayed	in	the	grid	at	the	top	of	the	timeline,	showing
the	start	and	end	timestamps	for	the	selected	region,	as
well	as	the	duration	of	the	selected	region.

Navigation

When	the	timeline	is	zoomed	in,	you	can	navigate	to	different
parts	of	the	timeline.	You	can	use	either	the	horizontal
scrollbar	(located	along	the	bottom	of	the	timeline),	or	you	can
click	and	drag	the	mouse	to	pan	the	timeline	within	the
viewable	area.	You	also	can	use	the	left	or	right	arrow	keys	on
the	keyboard	to	pan	the	timeline	within	the	viewable	area.

Expanding	and	Collapsing	the	timeline	tree

When	the	timeline	is	first	displayed,	its	tree	is	fully	expanded.
You	can	collapse	parts	of	the	tree	in	order	to	limit	the	amount
of	data	shown.	Use	the	tree	view	controls	within	the	timeline	to
collapse	or	expand	parts	of	the	timeline	tree.	When	a	branch	of
the	tree	is	collapsed,	timeline	items	from	the	collapsed	sub-
branches	are	displayed	in	the	parent	branch.

Viewing	timeline	item	details

There	are	several	ways	to	view	more	information	about	items

shown	in	the	timeline	view.
1.						Tooltip	hints	‒	Hover	the	mouse	over	a	block	shown	in
the	timeline,	and	a	tooltip	hint	appears.	It	gives	additional
details	about	that	block.

2.						Navigating	to	the	API	trace	‒	Click	an	API	block	in	a
"Host	Thread"	row,	and	that	block	is	selected	in	the	API
Trace.	There,	additional	details	for	that	particular	API	call
are	shown.	Click	an	item	in	the	"Data	Transfer"	or	"Kernel
Execution"	row,	and	the	enqueue	API	that	enqueued	the
data	transfer	or	kernel	execution	is	selected	in	the	API
Trace.

API	Trace

The	API	trace	is	a	list	of	all	the	OpenCL™	or	HSA	API	calls
made	by	the	application.	Each	host	thread	that	makes	at	least
one	API	call	is	listed	in	a	separate	tab.	Each	tab	contains	a	list
of	all	the	API	calls	made	by	that	particular	thread.	For	each
call,	the	list	displays:

·									the	index	of	the	call	(representing	execution	order),
·									the	name	of	the	API	function,
·									a	semi-colon	delimited	list	of	parameters	passed	to	the
function,	and

·									the	value	returned	by	the	function.
When	displaying	parameters,	the	Profiler	tries	to	dereference
pointers	and	decode	enumeration	values;	this	is	in	order	to	give
as	much	information	as	possible	about	the	data	being	passed
in,	or	returned	from,	the	function.	Double-clicking	an	item	in
the	API	Trace	list	displays	and	zooms	into	that	API	call	in	the
Host	Thread	row	in	the	Application	Timeline.
For	OpenCL™	Enqueue	API	calls	that	result	in	either	a	kernel
execution	or	a	data	transfer	operation,	there	is	a	clickable
entry	in	the	"Device	Block"	column.	Clicking	this	entry	zooms
into	the	corresponding	timeline	block	under	the	OpenCL™	tree

in	the	timeline.
For	OpenCL™	Enqueue	API	calls	that	result	in	a	kernel
execution	on	a	GPU,	there	is	a	clickable	value	in	the	"Kernel
Occupancy"	column.	Clicking	this	entry	opens	the	GPU
Profiler	Kernel	Occupancy	Viewer,	which	provides	more
information	about	the	kernel	occupancy.
If	the	option	to	Enable	navigation	to	source	code	is	checked	on
the	Application	Timeline	Trace	page,	you	can	right-click	any
item	in	the	API	trace	and	choose	Go	to	source	code	from	the
context	menu.	This	uses	the	symbol	information	generated
during	the	trace	to	navigate	to	the	source	code	location	of	the
API	call.	Note	that	this	feature	only	works	if	the	profiled
application	was	built	with	debugging	information.
The	API	Trace	lets	you	analyze	and	debug	the	input	parameters
and	output	results	for	each	API	call.	For	example,	you	can
easily	check	that	all	the	API	calls	are	returning	CL_SUCCESS
(OpenCL™)	or	HSA_STATUS_SUCCESS	(HSA),	or	that	all	the
OpenCL™	buffers	are	created	with	the	correct	flags.	You	also
can	identify	redundant	API	calls	using	the	API	Trace.

Colors

Colors	are	used	in	both	the	application	timeline	and	the	API
Trace	to	help	distinguish	data	transfer	and	kernel	dispatch.
Green	is	used	on	kernel	dispatch	items	for	both	the	OpenCL™
Enqueue	calls	from	the	host	and	the	kernels	themselves	on	the
device.	Shades	of	blue	are	used	to	color	OpenCL™	data
transfer	items,	with	slight	color	variations	for	read,	write,	and
copy	calls.

Note:	Special	case	when	the	OpenCL™	trace	may
be	incomplete

When	the	setting	to	write	trace	data	in	intervals	during
program	execution	is	enabled	on	the		Application	Timeline
Trace	page	(which	is	the	default	and	only	supported	mode	on

Linux),	the	application	trace	might	not	include	the	full	trace	of
all	APIs	called	by	the	application.	This	is	because	any	APIs
called	after	the	final	interval	in	the	application's	lifetime	might
be	omitted.	To	limit	the	number	of	APIs	omitted	in	this
scenario,	the	Profiler	also	writes	all	queued-up	trace	data	when
the	clReleaseContext	API	is	called.	However,	if	an	application
does	not	call	clReleaseContext	to	clean	up	any	OpenCL™
contexts	it	has	created,	or	if	it	calls	any	OpenCL™	APIs	after
the	final	clReleaseContext	call,	then	the	trace	might	not
contain	all	APIs	called.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	GPU	Profiler	>	Using	the	GPU	Profiler	>	GPU	Profiler	Performance	Counters	Session

GPU	Profiler	Performance	Counters	Session

The	following	panel	shows	the	GPU	performance	counters	for
an	OpenCL™	profile	session.	To	get	the	.csv	file	of	the	result,
right-click	the	session	in	the	CodeXL	Explorer,	and	select
"Open	Containing	Folder"	from	the	menu.	See	Description	of
Output	Files	for	a	detailed	description	of	the	format	of	this
file.

At	the	top	of	the	panel,	there	is	a	""Show	Zero	Columns""
checkbox.	When	checked,	the	session	table	shows	all	columns.
When	unchecked,	any	column	that	has	a	zero	or	empty	value
for	every	row	is	hidden.
The	first	several	columns	in	the	session	are	always	displayed,
even	if	no	performance	counters	are	selected	for	the	profile.	A
description	of	these	columns	for	OpenCL™	applications	is	given
in	the	following	table.

Name
Method The	kernel	name	(appended	with	__k[KernelID]_[DeviceName][DeviceID]	to	differentiate	unique	
ExecutionOrder The	order	of	execution	for	the	kernel	dispatch	operations	in	the	program.
ThreadID The	thread	ID	of	the	host	thread	that	made	the	OpenCL™	API	call	that	initiated	the	kernel	dispatch	
CallIndex The	call	index	of	the	OpenCL™	API	call	that	initiated	the	kernel	dispatch	operation.
GlobalWorkSize The	global	work-item	size	of	the	kernel.
WorkGroupSize The	work-group	size	of	the	kernel.
Time The	time	spent	(in	milliseconds)	executing	the	kernel.	This	does	not	include	the	kernel	set-up	
LocalMemSize The	amount	of	local	memory	(LDS	for	GPU)	in	bytes	being	used	by	the	kernel.
VGPRs The	number	of	general-purpose	vector	registers	used	by	the	kernel	(valid	only	for	GPU	devices).
SGPRs The	number	of	general-purpose	scalar	registers	used	by	the	kernel	(valid	only	for	GPU	devices).

ScratchRegs The	number	of	scratch	registers	used	by	the	kernel	(valid	only	for	GPU	devices).	If	non	zero,	this	
bottleneck.	To	reduce	this	number,	reduce	the	number	of	

KernelOccupancy The	kernel	occupancy	(valid	only	for	GPU	devices).	This	is	an	estimate	of	the	number	of	in-flight	
as	a	percentage	of	the	theoretical	maximum	

	
The	following	table	gives	a	description	of	these	columns	for	an
HSA	application.

Name
Method The	kernel	name	(appended	with	the	Device	Name).
ExecutionOrder The	order	of	execution	for	the	kernel	dispatch	operations	in	the	program.
ThreadID The	thread	ID	of	the	host	thread	that	made	the	HSA	API	call	that	initiated	the	kernel	dispatch	
GlobalWorkSize The	global	work-item	size	of	the	kernel.
WorkGroupSize The	work-group	size	of	the	kernel.
LocalMemSize The	amount	of	local	memory	(LDS)	in	bytes	being	used	by	the	kernel.
VGPRs The	number	of	general-purpose	vector	registers	used	by	the	kernel.
SGPRs The	number	of	general-purpose	scalar	registers	used	by	the	kernel.

KernelOccupancy The	kernel	occupancy.	This	is	an	estimate	of	the	number	of	in-flight	wavefronts	on	a	compute	unit	
theoretical	maximum	number	of	wavefronts	that	the	

	
The	following	table	gives	a	description	of	these	columns	for	a
DirectCompute	application.

Name Description

Identifier The	kernel	name	(appended	with	a	pointer	value	that	is	unique	for	each	kernel
instance)	or	the	data	transfer	operation	name.

ExecutionOrder The	order	of	execution	for	the	kernel	and	data	transfer	operations	from	the
program.

ThreadGroup The	thread	group	size	of	the	kernel.
WorkGroupSize The	work-group	size	of	the	kernel.

Time
For	a	kernel	dispatch	operation:	time	spent	(in	milliseconds)	executing	the
kernel;	does	not	include	the	kernel	setup	time.	For	a	data	transfer	operation,
time	spent	(in	milliseconds)	transferring	data.

The	GPU	Profile:	Performance	Counters	page	of	the	GPU
Profiling	Project	Settings	contains	the	description	of	the
performance	counters.	This	description	is	also	shown	if	you
hover	the	mouse	cursor	over	the	counter	name	in	the	Session
panel.
To	show	the	source,	IL,	or	ISA	code	of	an	OpenCL™	kernel,	or
the	DXASM	code	of	a	DirectCompute	kernel,	click	on	the	kernel
name	in	the	first	column	to	open	the	GPU	Profiler	Code
Viewer.
For	OpenCL™	applications,	if	a	kernel	is	run	on	a	CPU	device,
only	the	global	work	size,	work	group	size,	local	memory,	and
the	execution	time	for	the	kernel	is	available.
Using	the	performance	counters	lets	you:

·									Find	the	number	of	resources	(general-purpose	registers,
local	memory	size,	and	flow	control	stack	size)	allocated
for	the	kernel.	These	resources	affect	the	possible	number
of	in-flight	wavefronts	in	the	GPU.	A	higher	number	can
hide	data	latency	better.

·									Determine	the	number	of	ALU,	global,	and	local	memory
instructions	executed	by	the	GPU.

·									Determine	the	number	of	bytes	fetched	from,	and	written
to,	the	global	memory.

·									Determine	the	use	of	the	SIMD	engines	and	memory	units
in	the	system.

·									View	the	efficiency	of	the	shader	compiler	in	packing	ALU
instructions	into	the	VLIW	instructions	used	by	AMD
GPUs.

·									View	any	local	memory	(local	data	share	-	LDS)	bank
conflicts.

·									View	Kernel	occupancy	percentage	,	which	estimates
the	number	of	in-flight	wavefronts	on	a	compute	unit	as	a
percentage	of	the	theoretical	maximum	number	of
wavefronts	that	the	compute	unit	can	support.

To	view	more	information	about	the	kernel	occupancy	figure
for	an	OpenCL™	kernel,	click	on	the	percentage	value	in	the
Kernel	Occupancy	column	to	open	the	GPU	Profiler	Kernel
Occupancy	Viewer.

Note:	Special	case	when	other	workloads	are
using	the	GPU	while	profiling
When	collecting	performance	counters,	it	is	strongly	recommended	that	no	other
workloads	(i.e.	graphics	workloads)	are	running	on	the	GPU.		Performance	counters	on
AMD	Radeon™	GPUs	are	global	in	nature,	meaning	that	graphics	workloads	running
on	the	GPU	concurrently	with	a	compute	workload	that	is	being	profiled	can	affect	the
counter	values	reported.		It	is	recommended	that	all	other	applications	are	closed
before	profiling.	Note:	The	Windows	user	interface	itself	uses	the	GPU	for	rendering
and	it	may	not	be	possible	to	disable	this.		Because	of	this,	there	may	be	some	rare
occurrences	where	the	counters	for	a	particular	kernel	dispatch	may	be	incorrect.

Note:	Special	case	when	an	OpenCL™	kernel	uses
printf

When	profiling	an	OpenCL™	kernel	that	contains	one	or	more
printf	calls,	the	Performance	Counter	results	will	show	values
as	if	the	kernel	was	dispatched	with	a	single	wavefront
(regardless	of	how	many	actual	wavefronts	are	launched).		This
is	due	to	the	way	printf	is	implemented	in	the	OpenCL

runtime.		When	a	kernel	contains	printf,	internally,	the	runtime
dispatches	each	wavefront	separately.		It	is	recommended	that
you	remove	all	printf	statements	from	a	kernel	before	you
attempt	to	profile	it.
	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	GPU	Profiler	>	Using	the	GPU	Profiler	>	Application	Timeline	Trace	Summary	Pages

Application	Timeline	Trace	Summary	Pages

The	GPU	Profiler	Summary	Pages	show	the	statistics	for	your
OpenCL™	or	HSA	application.	They	can	provide	you	with	a
general	idea	of	the	location	of	the	application's	bottlenecks.
They	also	provide	information	such	as	the	number	of	buffers
and	number	of	images	created	on	each	context	(for	OpenCL™),
the	most	expensive	kernel	call,	etc.	One	Summary	Page,	the
"Warning(s)/Error(s)"	page,	shows	the	result	of	a	rule-based
analysis	of	the	API	trace	and	timeline	data.	You	can	sort	each
column	in	a	summary	page	by	clicking	the	table	header.	You
also	can	rearrange	the	columns	by	dragging	them	to	a	new
location.	By	default,	the	Summary	Pages	are	generated	when
performing	an	Application	Trace	profile	from	CodeXL.	You	can
control	whether	the	Summary	Pages	are	generated	by
changing	the	settings	on	the	Application	Timeline	Trace
page.	To	generate	summary	pages	from	the	command	line,	see
Using	the	Command	Line	Interface.	You	can	find	summary
pages	under	the	same	directory	as	the	.atp	file.	You	can	view
each	summary	page	in	your	default	web	browser	because	all
summary	pages	are	in	html	format.

API	Summary	Page

The	API	Summary	page	shows	statistics	for	all	OpenCL™	or
HSA	API	calls	made	by	the	application.	This	page	can	help	to
identify	any	API	hotspots.

API	Name #	of
Calls

Total
Time(ms)

Ave
Time(ms)

clSetKernelArg 60884 106.42239 0.00175
clGetKernelInfo 4332 8.29252 0.00191
clEnqueueNDRangeKernel 4332 178.09443 0.04111
clReleaseMemObject 4265 537.25810 0.12597
clCreateBuffer 4265 13.41322 0.00314
clEnqueueReadBuffer 938 2403.70320 2.56258
clEnqueueWriteBuffer 231 318.01591 1.37669
clEnqueueWriteBufferRect 63 1286.34994 20.41825
clEnqueueReadBufferRect 63 4288.33441 68.06880
clReleaseKernel 13 0.03764 0.00290

clCreateKernel 13 0.06600 0.00508
clGetDeviceInfo 11 0.03422 0.00311
clGetPlatformInfo 5 0.02396 0.00479
clGetContextInfo 4 0.02396 0.00599
clReleaseContext 2 0.00831 0.00415
clCreateContextFromType 2 0.06844 0.03422
clReleaseProgram 1 2.08413 2.08413
clReleaseCommandQueue 1 97.29672 97.29672
clFinish 1 0.06307 0.06307
clCreateProgramWithBinary 1 0.58276 0.58276
clCreateCommandQueue 1 227.11189 227.11189
clBuildProgram 1 1492.02943 1492.02943

OpenCL™	Context	Summary	Page

The	Context	summary	page	shows	the	statistics	for	all	the
OpenCL™	kernel	dispatch	and	data	transfer	operations	for
each	context.	It	also	shows	the	number	of	buffers	and	images
created	for	each	context.
	

Context
ID

#	of
Buffers

#	of
Images

#	of	Kernel
Dispatch	-
CPU_Device

Total
Kernel
Time(ms)	-
CPU_Device

#	of
Kernel
Dispatch
-	Juniper

Total
Kernel
Time(ms)
-	Juniper

0 2 0 1 69.07170 1 4.10271

1 2 0 1 35.53000 NA NA

2 2 0 NA NA 1 3.41856

3 2 0 1 35.73143 NA NA

4 2 0 NA NA 1 1.38896

Total 10 0 3 140.33313 3 8.91023

Kernel	Summary	Page

The	Kernel	summary	page	shows	statistics	for	all	the	kernels
that	are	dispatched	by	the	application.
	
Kernel	Name Device

Name
#	of
Calls

Total
Time(ms)

Avg
Time(ms)

Max
Time(ms)

Min
Time(ms)

multiDeviceKernel CPU_Device 3 140.33313 46.77771 69.07170 35.53000
multiDeviceKernel Juniper 3 8.91023 2.97008 4.10271 1.38896

OpenCL™Top	10	Data	Transfer	Summary	Page

The	Top	10	Data	transfer	summary	page	shows	a	sorted	list	of
the	ten	most	time-consuming	OpenCL™	data	transfers
operations.	Clicking	on	a	hyperlink	takes	you	to	the
corresponding	item	in	the	Timeline	view.
Since	data	transfer	operations	can	have	a	great	impact	on
application	performance,	ensuring	that	kernel	execution
operations	and	data	transfer	operations	overlap	can	lead	to
better	overall	performance.
	
Command
Type

Context
ID

Command
Queue	ID Duration(ms) Transfer

Size
Transfer
Rate(MB/s)

WRITE_BUFFER 4 5 1.45957 256.00
KB 171.284

WRITE_BUFFER 0 1 0.94618 256.00
KB 264.220

WRITE_BUFFER 2 3 0.68449 256.00
KB 365.237

WRITE_BUFFER 1 2 0.21951 256.00
KB 1138.895

WRITE_BUFFER 3 4 0.17307 256.00
KB 1444.527

WRITE_BUFFER 0 0 0.13885 256.00
KB 1800.569

Top	10	Kernel	Summary	Page

The	Top	10	kernel	summary	page	shows	a	sorted	list	of	the	10

most	time-consuming	kernel	execution	operations.	Clicking	on
a	hyperlink	takes	you	to	the	corresponding	item	in	Timeline
view.
	

Kernel	Name Context
ID

Command
Queue	ID

Device
Name Duration(ms)

Global
Work
Size

multiDeviceKernel 0 0 CPU_Device 69.07170 {65536}
multiDeviceKernel 3 4 CPU_Device 35.73143 {65536}
multiDeviceKernel 1 2 CPU_Device 35.53000 {65536}
multiDeviceKernel 0 1 Juniper 4.10271 {65536}
multiDeviceKernel 2 3 Juniper 3.41856 {65536}
multiDeviceKernel 4 5 Juniper 1.38896 {65536}

Warning(s)/Error(s)	Page

The	Warning(s)/Error(s)	Page	shows	potential	problems	in	your
OpenCL™	or	HSA	application.	It	can	detect	unreleased
resources,		API	failures,	and	it	can	provide	suggestions	for
better	performance.	Clicking	on	a	hyperlink	takes	you	to	the
corresponding		API.
	
Index Call

Index
Thread
ID Type Message

0 542 2268 Warning
Memory	leak	detected	[Ref	=
1,	Handle	=	0x0B1730B0]:
Object	created	by
clEnqueueNDRangeKernel

216 208 2268 Best
Practices

clEnqueueNDRangeKernel:
Work-group	size	is	too	small	-
[1,1,1].	Recommended	work-
group	size	is	a	multiple	of	64.

270 319 2268 Best
Practices

clEnqueueNDRangeKernel:
Global	work	size	is	too	small	-
[111],	resulting	in	low	GPU
utilization.

144 482 1932 Error
clEnqueueNDRangeKernel
returns
CL_INVALID_KERNEL_ARGS.

	

From	these	summary	pages,	it	is	possible	to	determine	whether
an	OpenCL™	application	is	bound	by	kernel	execution	or	data
transfer	(Context	Summary	page).	If	the	application	is	bound
by	kernel	execution,	you	can	determine	which	device	is	the
bottleneck.	From	the	Kernel	Summary	page,	you	can	find	the
name	of	the	kernel	with	the	highest	total	execution	time.	From
the	Top	10	Kernel	Summary	page,	you	can	find	the	individual
kernel	instance	with	the	highest	execution	time.	If	the	kernel
execution	on	a	GPU	device	is	the	bottleneck,	the	GPU
performance	counters	can	then	be	used	to	investigate	the
bottleneck	inside	the	kernel.
If	the	application	is	bound	by	the	data	transfers,	it	is	possible
to	determine	the	most	expensive	data	transfer	type	(read,
write,	copy	or	map)	in	the	application	from	the	Context
Summary	page.	You	can	then	investigate	whether	you	can
minimize	this	type	of	data	transfer	by	modifying	the	algorithm
if	necessary.	With	help	from	the	Timeline	View,	you	can
investigate	whether	data	transfers	have	been	executed	in	the
most	efficient	way	(concurrently	with	a	kernel	execution).

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	GPU	Profiler	>	Using	the	GPU	Profiler	>	GPU	Profiler	Code	Viewer

GPU	Profiler	Code	Viewer

The	Code	Viewer	appears	when	you	click	on	the	name	of	a
kernel	in	the	first	column	of	the	GPU	Profiler	Performance
Counters	Session	panel.

For	OpenCL™	kernels,	this	panel	shows	the	generated	ISA	or
IL/HSAIL	code	of	the	kernel.	It	also	shows	the	CL	source	code
of	the	kernel,	if	the	kernel	source	is	available	from	the
OpenCL™	runtime.
For	DirectCompute	kernels,	this	panel	shows	the	DXASM	code
of	the	kernel.
For	OpenCL™	kernels,	you	can	select	different	modes	in	the
combo	box	at	the	top	of	the	panel	to	switch	between	displaying
the	IL	code,	ISA	code,	and	CL	source	code.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	GPU	Profiler	>	Using	the	GPU	Profiler	>	GPU	Profiler	Kernel	Occupancy	Viewer

GPU	Profiler	Kernel	Occupancy	Viewer

	

There	are	two	ways	to	open	the	Kernel	Occupancy	panel:
Click	on	the	kernel	occupancy	percentage	in	the	Kernel
Occupancy	column	of	the	GPU	Profiler	Performance
Counters	Session	panel	(OpenCL™	and	HSA).
or
Click	on	the	kernel	occupancy	percentage	in	the	Kernel
Occupancy	column	of	the	API	Trace	in	the	GPU	Profiler
Profiler	Application	Trace	Session	panel	(OpenCL™
only).

For	kernels,	this	panel	displays	an	HTML	webpage	which
provides	information	about	the	occupancy	of	a	particular
kernel	dispatch.
The	top	part	of	the	page	shows	four	graphs	that	provide	a
visual	indication	of	how	kernel	resources	affect	the	theoretical
number	of	in-flight	wavefronts	on	a	compute	unit.	The	graph
representing	the	limiting	resource	has	its	title	displayed	in	red
text.	More	than	one	graph	can	have	a	red	title	if	there	is	more
than	one	limiting	resource.	In	each	graph,	the	actual	usage	of
the	particular	resource	being	graphed	is	highlighted	with	an
orange	square.	If	you	hover	the	mouse	over	a	point	in	the
graph,	a	popup	hint	is	displayed	showing	you	the	current	X	and
Y	values	at	that	location.
The	first	graph,	titled	Number	of	waves	limited	by	Work-
group	size,	shows	how	the	number	of	active	wavefronts	is
affected	by	the	size	of	the	work-group	for	the	dispatched
kernel.	In	the	screenshot	above,	you	can	see	that	the	highest
number	of	wavefronts	is	achieved	when	the	work-group	size	is
in	the	between	64	and	256.
The	second	graph,	titled	Number	of	waves	limited	by
VGPRs,	shows	how	the	number	of	active	wavefronts	is	affected
by	the	number	of	vector	GPRs	used	by	the	dispatched	kernel.
In	the	screenshot	above,	you	can	see	that	as	the	number	of
VGPRs	used	increases,	and	the	number	active	wavefronts
decreases,	in	steps.	Note	this	graph	shows	that	more	than	62
VGPRs	can	be	allocated,	even	though	62	is	the	maximum
number	of	VGPRs	that	can	be	allocated,	since	the	shader

compiler	assumes	the	work-group	size	is	256	items	by	default
(the	largest	possible	work-group	size).	For	the	shader	compiler
to	allocate	more	than	62	VGPRs,	the	kernel	source	code	must
be	marked	with	the	required_work_group_size	kernel	attribute.
This	attribute	specifies	to	the	shader	compiler	that	the	kernel	is
launched	with	a	work-group	size	smaller	than	the	maximum,
allowing	it	to	allocate	more	VGPRs.	Thus,	for	X-axis	values
greater	than	62,	the	VGPR	graph	shows	the	theoretical	number
of	wavefronts	that	can	be	launched	if	the	kernel	specified	a
smaller	work-group	size	using	the	attribute.
The	third	graph,	titled	Number	of	waves	limited	by	SGPRs,
shows	how	the	number	of	active	wavefronts	is	affected	by	the
number	of	scalar	GPRs	used	by	the	dispatched	kernel.	In	the
above	screenshot,	you	can	see	that	as	the	number	of	SGPRs
used	increases,	the	number	active	wavefronts	decreases	in
steps.
The	fourth	graph,	titled	Number	of	waves	limited	by	LDS,
shows	how	the	number	of	active	wavefronts	is	affected	by	the
amount	of	LDS	used	by	the	dispatched	kernel.	In	the	above
screenshot,	you	can	see	that	as	the	amount	of	LDS	used
increases,	the	number	active	wavefronts	decreases	in	steps.
A	table,	below	the	four	graphs,	provides	information	about	the
device,	the	kernel,	and	the	kernel	occupancy.	In	the	Kernel
Occupancy	section,	you	can	see	the	limits	imposed	by	each
kernel	resource,	as	well	as	which	resource	is	currently	limiting
the	number	of	waves	for	the	kernel	dispatch.	This	section	also
displays	the	kernel	occupancy	percentage.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	GPU	Profiler	>	Using	the	GPU	Profiler	>	GPU	Profiler	Kernel	Occupancy

GPU	Profiler	Kernel	Occupancy

This	page	provides	an	overview	of	the	kernel	occupancy
calculation,	providing	the	definition	of	the	parameter	and
discussing	the	factors	influencing	the	value	and	its
interpretation.
Kernel	occupancy	is	a	measure	of	the	use	of	the	resources	of	a
compute	unit	on	a	GPU,	the	use	being	measured	by	the	number
of	in-flight	wavefronts,	for	a	given	kernel,	relative	to	the
number	of	wavefronts	that	can	be	launched	given	the	ideal
kernel	dispatch	configuration	(dependent	on	the	work-group
size	and	resource	use	in	the	kernel).
The	number	of	wavefronts	that	are	scheduled	when	a	kernel	is
dispatched	is	constrained	by	three	significant	factors:

·									the	number	of	general	purpose	registers	(GPR)	required
by	each	work-item,

·									the	amount	of	shared	memory	(LDS	for	local	data	store)
used	by	each	work-group,	and

·									the	configuration	of	the	work-group	(the	work-group
size).

The	basic	definition	of	the	occupancy	(O)	is	given	by:

where	NWA	is	the	number	of	in-flight	wavefronts	on	the
compute	unit,	and	NWT	is	the	theoretical	number	of	wavefronts
that	the	compute	unit	can	execute	concurrently.
The	first	constraint	is	that	work	that	is	assigned	to	a	compute
unit	is	scheduled	as	groups	of	individual	work-items,	called

wavefronts,	which	have	a	fixed	size	defined	by	the	hardware.
The	characteristic	of	a	wavefront	is	that	each	work-item
executes	in	step	with	the	other	work-items	in	the	wavefront.
The	number	of	work-items	that	can	be	executed	on	a	compute
unit	must	be	a	multiple	of	a	wavefront.	In	an	ideal	situation,	the
number	of	wavefronts	that	can	be	scheduled	corresponds	to	the
maximum	number	of	wavefronts	supported	by	the	compute
unit.
However,	because	there	are	resources	that	are	shared	among
work-groups,	which	is	the	basic	unit	of	processing	on	the
compute	unit,	wavefronts	are	scheduled	as	part	of	a	work-
group.	A	work-group	consists	of	a	collection	of	work-items	that
make	use	of	a	common	block	of	local	data	storage	(LDS)	that	is
shared	among	the	members	of	the	work-group,	as	well	as
registers.	Each	work-group	consists	of	one	or	more	wavefronts.
Thus,	the	total	number	of	wavefronts	that	can	be	launched	on	a
compute	unit	is	also	constrained	by	the	number	of	work-groups
as	this	must	correspond	to	an	integral	number	of	workgroups,
even	if	the	compute	unit	has	capacity	for	additional	wavefronts.
In	the	ideal	situation,	the	number	of	wavefronts	that	can	be
launched	is	an	integral	multiple	of	the	number	of	wavefronts
per	work-group,	which	means	that	the	maximum	number	of
wavefronts	the	GPU	is	capable	of	allocating,	can	be	achieved.
When	this	is	not	the	case,	changing	the	size	of	the	work-items
in	the	work-group	can	change	the	number	of	wavefronts	in	the
work-group.

Kernel	Occupancy	for	AMD	Radeon™	HD
5000/6000	Series	Based	on	VLIW5/VLIW4
Architecture

1.					LDS	limits	on	the	number	of	in-flight

In	the	case	that	the	LDS	is	the	only	constraint	on	the	number	of
in-flight	wavefronts,	the	compute	unit	can	support	the	launch
of	a	number	of	in-flight	work-groups	given	by:

where	WGmax	is	the	maximum	number	of	work-groups	on	a
compute	unit,	LDSCU	is	the	shared	memory	available	on	the
compute	unit,	and	LDSwg	is	the	shared	memory	required	by	the
work-group	(based	on	the	resources	required	by	the	kernel).
The	corresponding	number	of	wavefronts	is	given	as:

where	WFmax	is	the	maximum	number	of	wavefronts,	WGmax	is
the	maximum	number	of	work-groups,	and	WFWG	is	the	number
of	wavefronts	in	a	work-group.
There	is	also	another	constraint	whereby	a	compute	unit	can
only	support	a	fixed	number	of	work-groups,	a	hard	limit	of
WGmax=8	(denoted	by	WGmaxCU).	This	also	limits	the
effectiveness	of	reducing	the	work-group	size	excessively,	as
the	number	of	wavefronts	is	also	limited	by	the	maximum
workgroup	size.	Currently,	the	maximum	work-group	size	is
256	work-items,	which	means	that	the	maximum	number	of
wavefronts	is	4	when	the	wavefront	size	is	64	(and	8	when	the
wavefront	size	is	32).
Thus,	when	the	only	limit	to	the	number	of	wavefronts	on	a
compute	unit	is	set	by	the	LDS	usage	(for	a	given	kernel),	then
the	maximum	number	of	wavefronts,	(LDS-limited)	is	given	by:

2.					GPR	limits	on	the	number	of	in-flight	wavefronts>

Another	limit	on	the	number	of	in-flight	wavefronts	is	the
number	of	general-purpose	registers	(GPRs).	Each	compute
unit	has	16384	registers.	These	are	divided	among	the	work-
items	in	a	wavefront.	Thus,	the	number	of	registers	per	work-
item	limits	the	number	of	wavefronts	that	can	be	launched.
This	can	be	expressed	as:

where	Nreg	is	the	number	of	registers	per	work-item;	the
superscripts	max	and	used	refer	to	the	maximum	number	of
registers	per	thread	and	the	actual	number	of	registers	used.
The	number	of	in-flight	wavefronts	being	constrained	by	the
work-group	granularity,	the	number	of	GPR-limited	wavefronts
is	given	by:

3.					Other	constraints

Another	limit	on	the	number	of	in-flight	wavefronts	is	the
FCStack;	however,	this	is	really	an	insignificant	constraint,	so
this	is	not	considered	here.
The	final	factor	in	the	occupancy	is	the	work-group	size,	as
briefly	discussed	above.	If	there	are	no	other	constraints	on	the
number	of	wavefronts	on	the	compute	unit,	the	maximum
number	of	wavefronts	is	given	by:

where	WFmaxCU	is	the	maximum	number	of	wavefronts	on	the
compute	unit	and	WFWGmax	is	the	maximum	number	of
wavefronts	on	a	compute	unit	when	there	are	no	other
constraints	than	the	work-group	size.
This	equation	shows	that	having	a	workgroup	size	where	the
number	of	wavefronts	divides	the	maximum	number	of
wavefronts	on	the	compute	unit	evenly	generally	yields	the
greatest	number	of	in-flight	wavefronts,	while	at	the	same	time
indicating	that	making	the	work-group	size	too	small	yields	a
reduced	number	of	wavefronts.	For	example,	setting	a
workgroup	consisting	of	only	1	wavefront	yields	only	8	in-flight
wavefronts,	whereas	(for	example,	given	a	maximum	number	of

wavefronts	on	the	compute	unit	of	32),	a	work-group	of	2
wavefronts	will	yield	16	wavefronts.	Furthermore,	having	a
single	wavefront	per	work-group	doubles	the	LDS	usage
relative	to	having	2	wavefronts	per	work-group	as	the	LDS	is
only	shared	among	the	wavefronts	in	a	same	work-group	(but
not	between	work-groups).
Given	these	constraints,	the	maximum	number	of	in-flight
wavefronts	is	given	by:

Thus,	the	occupancy,	O,	is	given	by:

The	occupancy	shown	here	is	the	estimated	occupancy	on	a
single	compute	unit.	It	is	independent	of	the	work-loads	on	the
other	compute	units	on	the	GPU	because	the	occupancy	is	only
really	meaningful	if	there	are	sufficient	work-items	to	require
all	the	resources	of	at	least	one	compute	unit	(and	even	then,
ideally,	there	should	be	a	sufficient	work-load	to	ensure	that
more	than	one	compute	unit	is	needed	to	execute	the	work	in
order	to	gain	the	benefits	of	parallel	operations).	Higher
occupancy	allows	for	increased	global	memory	latency	hiding
as	it	allows	wavefronts	to	be	swapped	when	there	are	global
memory	accesses.	However,	once	there	is	a	sufficient	number
of	wavefronts	on	the	compute	unit	to	hide	any	global	memory
accesses,	increasing	occupancy	may	not	increase	performance.

Kernel	Occupancy	for	AMD	Radeon™	HD	7000
Series	or	Newer,	Based	on	Graphics	Core	Next
Architecture

There	are	a	number	of	significant	differences	from	the	previous
occupancy	calculation	due	to	the	different	architecture.	In	the
Graphics	Core	Next	architecture,	each	compute	unit	is	actually
made	up	of	four	SIMDs.	While	some	features,	such	as	the	GPR,

are	still	computed	on	the	basis	of	individual	SIMDs,	these	must
be	scaled	to	the	whole	compute	unit.	On	the	other	hand,	work-
group	limits	must	be	computed	over	the	whole	compute	unit.
These	are	detailed	below.
The	first	limit	to	the	number	of	active	wavefronts	on	the
compute	unit	is	the	work-group	size.	Each	Compute	unit	(CU),
has	up	to	40	slots	for	wavefronts.	If	each	work-group	is	exactly
one	wavefront,	then	the	maximum	number	of	wavefronts	is:

Otherwise,	if	there	is	more	than	one	wavefront	(WF)	per	work-
group	(WG),	there	is	an	upper	limit	of	16	work-groups	(WG)	per
compute	unit	(CU).	Then,	the	maximum	number	of	wavefronts
on	the	compute	unit	is	given	by:

where	WFWG	is	the	number	of	wavefronts	per	work	group.
The	second	limit	on	the	number	of	active	wavefronts	is	the
number	of	VGPR	per	SIMD.

Where	VGPRmax	is	maximum	number	of	registers	per	work-item
and	VGPRused	is	the	actual	number	of	registers	used	per	work-
item.	However,	we	are	interested	in	the	total	number	of
wavefronts	per	CU,	so	we	have	to	scale	this	value	by	the
number	of	CU.

At	the	same	time,	the	number	of	wavefronts	cannot	exceed
WFmax,	so

However,	the	wavefronts	are	constrained	by	work-group
granularity,	so	the	maximum	number	of	wavefronts	limited	by
the	VGPR	is	given	by

The	third	limit	on	the	number	of	active	wavefronts	is	the
number	of	SGPR.	Similar	to	VGPR,	SGPR	is	calculated	by

The	final	limit	on	the	number	of	active	wavefronts	is	the	LDS.
The	LDS	limited	number	of	wavefronts	is	given	by:

where	WGmax	is	the	maximum	number	of	work-groups
determined	by	the	LDS.	Then,	the	maximum	number	of
wavefronts	is	given	by:

Thus,	the	occupancy,	O,	is	given	by:

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	GPU	Profiler	>	Using	the	GPU	Profiler	>	GPU	Profiling	Project	Settings

GPU	Profiling	Project	Settings

These	Project	Settings	pages	let	you	configure	various	aspects
of	the	GPU	Profiler	for	the	active	project.
The	following	pages	contain	the	settings	that	can	be
configured:
Application	Timeline	Trace	page
GPU	Profile:	Performance	Counters	page

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	GPU	Profiler	>	Using	the	GPU	Profiler	>	GPU	Profiling	Project	Settings	>	Application	Timeline
Trace	page

Application	Timeline	Trace	page

This	page	lets	you	configure	the	behavior	of	the	Profiler	when
it	performs	an	application	timeline	trace.

Application	Timeline	Trace	settings	page

	

Profile	applications

Select	the	API	to	trace.	When	one	of
the	OpenCL	/	HSA	radio	buttons	is
clicked,	the	project	setting	pages	will

that	use display	the	options	relevant	to	the
selected	API.

Enable	navigation	to
source	code	(high
overhead)

When	checked,	the	Profiler	generates
a	symbol	information	file	from	an
application's	debugging	information
(the	.pdb	file	on	Windows),
containing	one	entry	for	each	called
OpenCL™	API.	This	symbol
information	file	lets	you	navigate
from	an	item	in	the	API	Trace	in	the
Application	Timeline	Trace
Session	panel	to	the	source	location
of	the	API	call.

Write	trace	data	in
intervals	during
program	execution
(ms)

When	selected,	the	Profiler
periodically	writes	all	queued	trace
data	to	disk	during	program
execution.	The	interval	(in
milliseconds)	at	which	to	write	trace
data	is	specified	using	the	value
following	the	checkbox.	When
checked,	in	addition	to	writing	data
periodically,	the	Profiler	also	writes
all	queued	trace	data	when	the
clReleaseContext	OpenCL™	API	is
called.	However,	if	an	application
does	not	call	clReleaseContext,	or	if
it	calls	any	OpenCL™	APIs	after	the
final	clReleaseContext	call,	then	it
is	possible	that	not	all	trace	data	is
written	to	the	disk.	When	unchecked,
all	trace	data	is	written	to	disk	when
the	application	terminates.	On	Linux,
this	is	the	default	(and	only
supported)	mode	for	writing	trace
data.	Thus	on	Linux,	the	UI	lets	you

specify	the	interval	but	does	not	let
you	enable	or	disable	writing	the
data	in	intervals.

Maximum	number
of	APIs	to	trace

This	controls	how	many	APIs	are
traced	over	an	application's	lifetime.
The	default	number	of	APIs	to	trace
is	1	million.	Limiting	the	number	of
APIs	traced	helps	to	prevent	running
out	of	memory	while	profiling.	After
the	limit	is	reached,	no	additional
APIs	is	traced,	and	the	trace	results
do	not	include	any	additional
information.	Because	of	this,	any
information	provided	in	the	GPU
Profiler	Summary	Pages	might	not
be	correct,	as	a	complete	trace	is
required	to	provide	a	fully-accurate
application	summary.

Always	show	API
error	codes

When	checked,	the	Profiler	reports
the	return	codes	for	all	OpenCL™	API
calls.	Some	OpenCL™	API	functions
return	an	error	code	through	a
passed-in	parameter.	If	the	host
application	passes	in	NULL	for	that
parameter,	then	the	OpenCL™
runtime	does	not	report	an	error
code.	The	Profiler	substitutes	a	non-
null	parameter	in	this	case,	and	the
API	Trace	can	show	the	return	code.

Some	OpenCL™	applications	wait	for
certain	Enqueue	API	calls	to
complete	by	continuously	checking
the	status	of	the	event	returned	by
the	Enqueue	API.	These	applications
do	this	by	calling	clGetEventInfo

Collapse
consecutive
identical
clGetEventInfo	calls

within	a	loop	until	the	event	status
reaches	a	certain	state	(typically
CL_COMPLETE).	For	these
applications,	the	timeline	and	API
trace	can	contain	thousands	of
clGetEventInfo	calls,	making	it
difficult	to	easily	analyze	the	timeline
and	trace	data.	To	make	analysis
easier,	the	Profiler	can	collapse
consecutive	clGetEventInfo	calls	that
have	the	same	parameters	and	return
values	into	a	single	entry	in	the
timeline	and	API	trace.

Generate	occupancy
information	for	each
OpenCL	kernel
profiled

When	checked,	the	Profiler	generates
kernel	occupancy	data	for	each
OpenCL™	kernel	dispatched	to	a
GPU	device.

	

Generate	summary	pages

When	checked,	the	Profiler	automatically	generates	GPU
Profiler	Summary	Pages	using	the	API	trace	and	timeline
data.	You	can	further	configure	the	summary	pages	by
selecting	rules	to	be	used	when	generating	the
Warning(s)/Error(s)	Summary	page.	The	following	table	shows
the	currently	supported	rules.
	

Rule Description

Detect	resource	leaks Tracks	the	reference	count	for	all	OpenCL™	or	HSA	objects,	and	reports	any
objects	not	released

Detect	deprecated	API
calls

Detects	calls	to	OpenCL™	API	functions	that	have	been	deprecated	in	recent
versions	of	OpenCL™

Detect	unnecessary
blocking	writes

Detects	unnecessary	blocking	write	operations

Detect	non-optimized
work	size

Detects	clEnqueueNDRangeKernel	calls	that	specify	a	global	or	local	workgroup
size	that	is	non-optimal	for	AMD	Hardware

Detect	non-optimized
data	transfer

1.	Detects	non-Fusion	APU	access	to	Device-Visible	Host	Memory	directly
2.	Detects	host-visible	Device	Memory	read	back	to	CPU	directly

Detect	redundant
synchronization Detects	redundant	synchronization	that	results	in	low	host	and	device	use

Detect	failed	API	calls
Detects	OpenCL™	API	calls	that	do	not	return	CL_SUCCESS.
Detects	HSA	API	calls	that	do	not	return	HSA_STATUS_SUCCESS.
Some	of	the	return	codes	from	OpenCL™	APIs	might	not	be	detected	unless	the
Always	show	API	error	codes	option	is	checked

	

·									APIs	to	trace	When	checked,	you	can	tell	the	Profiler
which	APIs	you	want	traced.	By	limiting	the	APIs	to	trace,
you	can	focus	attention	on	particular	APIs	when	analyzing
trace	data	while	also	reducing	the	overhead	of	performing
a	trace.	Because	a	full	trace	is	required	in	order	to
generate	the	Summary	pages,	this	option	is	mutually
exclusive	with	the	Generate	summary	pages	option.	Use
the	treeview	below	the	option	to	select	the	APIs	for	the
Profiler	to	trace.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	GPU	Profiler	>	Using	the	GPU	Profiler	>	GPU	Profiling	Project	Settings	>	GPU	Profile:
Performance	Counters	page

GPU	Profile:	Performance	Counters	page

This	page	lets	you	configure	the	behavior	of	the	Profiler	when
it	collects	performance	counters.	

	
	

Settings

·									Measure	kernel	execution	time	when	checked,
requires	an	additional	pass	during	collection.	(only
applicable	for	OpenCL)

·									Generate	occupancy	information	for	each	OpenCL™
or	HSA	kernel	profiled	When	checked,	the	Profiler
generates	kernel	occupancy	data	for	each	OpenCL™
kernel	dispatched	to	a	GPU	device.

·									Profile	specific	kernels	Profile	only	kernels	that	their
names	are	specified.

·									Counter	selection	TreeView	This	treeview	displays	the
available	GPU	performance	counters	that	can	be	enabled
for	a	profile	session.	The	performance	counters	are
grouped	by	counter	type.	The	counters	shown	depend	on
the	type	of	GPU	installed	on	the	system.	If	the	system	has
multiple	GPU	devices	from	multiple	hardware	families,	the
tree	contains	a	top-level	node	for	each	available	hardware
family.	For	instance,	if	a	system	has	both	an	AMD
Radeon™	HD	7000	series	GPU	device	(one	based	on
Graphics	Core	Next	Architecture)	and	an	AMD	Radeon™
HD	5000	series	device,	then	the	counter	selection
treeview	includes	counters	supported	by	each	device	(see
screenshot	below).

·									Some	counter	selection	combinations	require	multi-pass
collection.		When	profiling	using	multiple	passes,	any
OpenCL	kernels	that	use	shared	virtual	memory	or	pipes
as	arguments	will	not	be	profiled.

·									When	more	than	one	pass	is	required,	the	number	of
required	passes	will	be	displayed	next	to	the	device	name.

·									To	load	and	save	the	counter	selections	to	a	file,	click	on
the	Load	Selection	and	Save	Selection	buttons.

	
Below	is	a	list	and	brief	description	of	available	counters.	You
also	can	use	the	cursor	to	hover	over	the	counter	names	in	the
treeview	to	view	the	descriptions.

·									The	full	set	of	counters	for	AMD	Radeon™	HD	7000
series	GPU	devices	or	newer	(based	on	Graphics	Core

Name Description
Wavefronts Total	wavefronts.

VALUInsts The	average	number	of	vector	ALU	instructions	executed	per	work-item
(affected	by	flow	control).

SALUInsts The	average	number	of	scalar	ALU	instructions	executed	per	work-item
(affected	by	flow	control).

VFetchInsts The	average	number	of	vector	fetch	instructions	from	the	video	memory
executed	per	work-item	(affected	by	flow	control).

SFetchInsts The	average	number	of	scalar	fetch	instructions	from	the	video	memory
executed	per	work-item	(affected	by	flow	control).

VWriteInsts The	average	number	of	vector	write	instructions	to	the	video	memory	executed
per	work-item	(affected	by	flow	control).

FlatVMemInsts
The	average	number	of	FLAT	instructions	that	read	from	or	write	to	the	video
memory	executed	per	work	item	(affected	by	flow	control).	Includes	FLAT
instructions	that	read	from	or	write	to	scratch.

GDSInsts The	average	number	of	GDS	read	or	GDS	write	instructions	executed	per	work
item	(affected	by	flow	control).

VALUUtilization
The	percentage	of	active	vector	ALU	threads	in	a	wave.	A	lower	number	can
mean	either	more	thread	divergence	in	a	wave	or	that	the	work-group	size	is
not	a	multiple	of	64.	Value	range:	0%	(bad),	100%	(ideal	-	no	thread
divergence).

VALUBusy The	percentage	of	GPUTime	vector	ALU	instructions	are	processed.	Value
range:	0%	(bad)	to	100%	(optimal).

SALUBusy The	percentage	of	GPUTime	scalar	ALU	instructions	are	processed.	Value
range:	0%	(bad)	to	100%	(optimal).

LDSInsts The	average	number	of	LDS	read	or	LDS	write	instructions	executed	per	work-
item	(affected	by	flow	control).

FlatLDSInsts The	average	number	of	FLAT	instructions	that	read	or	write	to	LDS	executed
per	work	item	(affected	by	flow	control).

LDSBankConflict The	percentage	of	GPUTime	LDS	is	stalled	by	bank	conflicts.	Value	range:	0%

Next	Architecture)	are	described	in	the	following	table.
	

(optimal)	to	100%	(bad).

FetchSize The	total	kilobytes	fetched	from	the	video	memory.	This	is	measured	with	all
extra	fetches	and	any	cache	or	memory	effects	taken	into	account.

WriteSize The	total	kilobytes	written	to	the	video	memory.	This	is	measured	with	all	extra
fetches	and	any	cache	or	memory	effects	taken	into	account.

CacheHit The	percentage	of	fetch,	write,	atomic,	and	other	instructions	that	hit	the	data
cache.	Value	range:	0%	(no	hit)	to	100%	(optimal).

MemUnitBusy
The	percentage	of	GPUTime	the	memory	unit	is	active.	The	result	includes	the
stall	time	(MemUnitStalled).	This	is	measured	with	all	extra	fetches	and	writes
and	any	cache	or	memory	effects	taken	into	account.	Value	range:	0%	to	100%
(fetch-bound).

MemUnitStalled
The	percentage	of	GPUTime	the	memory	unit	is	stalled.	Try	reducing	the
number	or	size	of	fetches	and	writes	if	possible.	Value	range:	0%	(optimal)	to
100%	(bad).

WriteUnitStalled The	percentage	of	GPUTime	the	Write	unit	is	stalled.	Value	range:	0%	to	100%
(bad).

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	GPU	Profiler	>	Using	the	GPU	Profiler	>	Description	of	Output	Files

Description	of	Output	Files

SESSION_NAME.csv

This	comma-delimited	file	is	generated	when	a	profile	collects
performance	counters.
The	file	starts	with	a	file	header	section	(in	comments)	that
indicates	the	Profiler	version	number	and	information	about
the	application	that	was	profiled.	Following	the	file	header	is	a
line	containing	the	list	of	the	column	headers	shown	in	the
GPU	Profiler	Performance	Counters	Session	panel.	Most
items	in	this	row	represent	the	performance	counters	that	were
collected.
Each	additional	line	contains	data	collected	by	the	Profiler.
There	will	be	one	line	for	each	kernel	dispatched	by	the
profiled	application.

SESSION_NAME.atp

This	file	is	generated	when	performing	a	profile	that	collects	an
application	timeline	trace.	The	file	starts	with	a	file	header
section	which	contains	the	trace	file	version	number,	the
Profiler	version	number,	and	information	about	the	application
that	was	profiled.	Following	the	file	header	are	several
sections:	the	first	section	contains	the	API	Trace	data	for	the
profile	session;	the	second	contains	timestamp	data	for	the
profile	session.		For	HSA	traces	that	include	HSA	kernel
dispatches,	there	will	be	a	section	containing	the	kernel
dispatch	timestamp	data.		If	the	option	to	Enable	navigation	to
source	code	is	checked	on	the	Application	Timeline	Trace
page,	there	will	be	a	section	containing	the	source	code

information	for	the	profile	section.
The	API	Trace	section	contains	one	or	more	thread	blocks.
An	API	Trace	thread	block	consists	of	the	following.

·									A	line	giving	the	thread	ID.
·									A	line	giving	the	number	of	APIs	for	that	thread,	followed
by	a	line	for	each	API.

Each	API	is	listed	in	the	format:	ReturnValue	=	APIName	(
ParameterList).
The	ParameterList	is	a	semi-colon	delimited	list	of	the
parameters	passed	to	the	API.
The	Timestamp	section	contains	one	or	more	thread	blocks.
In	the	Timestamp	section,	all	time	counter	data	represents
CPU-based	time	expressed	in	nanoseconds.	A	Timestamp
thread	block	consists	of	the	following.

·									A	line	giving	the	thread	ID.
·									A	line	giving	the	number	of	APIs	for	that	thread,	followed
by	an	API	line	for	each	API.	An	API	line	consists	of	at
least	4	pieces	of	data:
‒				An	integer	representing	the	API	type.
‒				A	string	showing	the	API	name.
‒				The	time	counter	value	for	the	start	of	the	API.
‒				The	time	counter	value	for	the	end	of	the	API.

Most	OpenCL™	Enqueue	APIs	contain	the	following	additional
data,	appended	to	the	end	of	the	API	line.

·									An	integer	representing	the	enqueue	command	type.
·									A	string	showing	the	enqueue	command	name.
·									The	time	counter	value	for	the	time	the	command	was
queued	by	the	host	–	this	corresponds	to
CL_PROFILING_COMMAND_QUEUED.

·									The	time	counter	value	for	the	time	the	command	was
submitted	by	the	host	to	the	target	device	–	this
corresponds	to	CL_PROFILING_COMMAND_SUBMIT.

·									The	time	counter	value	for	the	time	the	command	started
executing	on	the	target	device	–	this	corresponds	to

CL_PROFILING_COMMAND_START.
·									The	time	counter	value	for	the	time	the	command	finished
executing	on	the	target	device	–	this	corresponds	to
CL_PROFILING_COMMAND_END.

·									The	unique	numerical	ID	of	the	queue.
·									The	handle	of	the	queue.
·									The	unique	numerical	ID	of	the	context.
·									The	handle	of	the	context.
·									The	device	name.

OpenCL™	Kernel	dispatch	Enqueue	commands	contain	the
following	additional	data	appended	to	the	end	of	the	API	line.

·									The	handle	of	the	kernel.
·									The	name	of	the	kernel.
·									The	global	work	size	for	the	kernel	–	one	value	is	given
for	each	work	dimension.

·									The	work-group	size	for	the	kernel	–	one	value	is	given	for
each	work	dimension.

OpenCL™	Data	transfer	Enqueue	commands	contain	the	data
transfer	size	appended	to	the	end	of	the	API	line.
The	HSA	Kernel	Timestamp	section	contains	the	following
information

·									A	line	giving	the	number	of	HSA	kernel	dispatches,
followed	by	a	Kernel	Timestamp	line	for	each	kernel
dispatched	by	the	application.	A	Kernel	Timestamp	line
consists	of	the	following	pieces	of	data:
‒				A	string	showing	the	kernel	symbol	name.
‒				The	handle	of	the	kernel.
‒				The	time	counter	value	for	the	time	the	kernel	started
executing	on	the	device.

‒				The	time	counter	value	for	the	time	the	kernel	finished
executing	on	the	device.

‒				The	name	of	the	agent	the	where	the	kernel	was
dispatched.

‒				The	handle	of	the	agent	where	the	kernel	was
dispatched.

‒				The	zero-based	index	of	the	queue	that	was	used	to

dispatch	the	kernel.
‒				The	handle	of	the	queue	that	was	used	to	dispatch	the
kernel.

The	Source	Code	section	contains	one	or	more	thread	blocks.
A	Source	Code	thread	block	consists	of	the	following.

·									A	line	giving	the	thread	ID.
·									A	line	giving	the	number	of	APIs	for	that	thread,	followed
by	a	Source	Code	line	for	each	API.	A	Source	Code	line
consists	of	the	following	4	pieces	of	data:
‒				A	string	showing	the	API	name.
‒				A	string	showing	the	name	of	the	function	that	called	the
API	(or	an	address	if	no	debug	information	was	found).

‒				An	integer	representing	the	line	number	for	the	location
of	the	API	call.

‒				A	string	showing	the	name	of	the	file	for	the	location	of
the	API	call	(this	is	not	shown	if	no	debug	information
was	found).

	

SESSION_NAME.occupancy

This	comma-delimited	file	is	generated	when	a	profile	collects
kernel	occupancy	information.
The	file	starts	with	a	file	header	section	(in	comments)	that
indicates	the	Profiler	version	number	and	information	about
the	application	that	was	profiled.	Following	the	file	header	is	a
line	containing	the	list	of	names	of	the	data	used	in	order	to
compute	kernel	occupancy.
Each	additional	line	contains	data	collected	by	the	Profiler.
There	will	be	one	line	for	each	kernel	dispatched	by	the
profiled	application	to	a	GPU	device.

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	GPU	Profiler	>	Using	the	GPU	Profiler	>	Description	of	Configuration	Files

Description	of	Configuration	Files

Format	of	counter	configuration	file	(argument	passed	to
--counterfile)

To	specify	a	set	of	performance	counters	to	enable	when
profiling	from	the	command	line,	pass	the	name	of	a
configuration	file	to	the	--counterfile	option.	You	can	generate
a	counter	configuration	file	from	within	the	Visual	Studio	client
by	using	the	"Save	Counters"	button	on	the	GPU	Profile:
Performance	Counters	page	of	the	Project	Settings	dialog.
The	format	of	this	configuration	file	is	one	counter	name	per
line.	Counter	names	are	case-sensitive.	An	example	of	the
contents	of	this	file	is	given	below.
Wavefronts
VALUInsts
SALUInsts
VFetchInsts
SFetchInsts
VWriteInsts
LDSInsts
GDSInsts
VALUUtilization
VALUBusy
SALUBusy
FetchSize
WriteSize
CacheHit
MemUnitBusy
MemUnitStalled
WriteUnitStalled
LDSBankConflict

Format	of	kernel	list	configuration	file	(argument	passed
to	--kernellistfile)

To	specify	a	set	of	kernels	to	profile	when	collecting

performance	counters	from	the	command	line,	pass	the	name
of	a	configuration	file	to	the	--kernellistfile		option.	The
format	of	this	configuration	file	is	one	kernel	name	per	line.
Kernel	names	are	case-sensitive.		When	specified,	any	kernels
dispatched	by	the	application	that	are	not	contained	in	the
kernel	list	configuration	file	will	not	be	profiled.		An	example	of
the	contents	of	this	file	is	given	below.
MatrixMultiplyKernel
binarySearch
binomial_options

Format	of	API	rules	configuration	file	(argument	passed
to	--apirulesfile)

To	specify	a	set	of	rules	to	use	when	generating	the	summary
pages	from	a	trace	file	when	using	the	command	line,	pass	the
name	of	a	configuration	file	to	the	--apirulesfile	option.	The
format	of	this	file	is	one	rule	per	line	in	the	NAME=VALUE
format.	An	example	of	the	contents	of	this	file	is	given	below.
Note	that	the	"VALUE"	can	be	either	"True"	or	"False".
APITrace.APIRules.RefTracker=True
APITrace.APIRules.BlockingWrite=False
APITrace.APIRules.BadWorkGroupSize=True
APITrace.APIRules.RetCodeAnalyzer=True
APITrace.APIRules.DataTransferAnalyzer=True
APITrace.APIRules.SyncAnalyzer=True
APITrace.APIRules.DeprecatedFunctionAnalyzer=True

Format	of	API	filter	configuration	file	(argument	passed
to	--apifilterfile)

To	ignore	a	set	of	APIs	when	collecting	an	API	trace	using	the
command	line,	pass	the	name	of	a	configuration	file	to	the	--
apifilterfile	option.	The	format	of	this	file	is	one	API	name	per
line.	An	example	of	the	contents	of	this	file		for	an	OpenCL™	is
given	below.
clGetPlatformIDs
clGetPlatformInfo
clGetDeviceIDs
clGetDeviceInfo
clGetContextInfo

clGetCommandQueueInfo
clGetSupportedImageFormats
clGetMemObjectInfo
clGetImageInfo
clGetSamplerInfo
clGetProgramInfo
clGetProgramBuildInfo
clGetKernelInfo
clGetKernelWorkGroupInfo
clGetEventInfo
clGetEventProfilingInfo

Format	of	environment	variable	file	(argument	passed	to
--envvarfile)

To	specify	a	set	of	environment	variables	to	be	defined	for	the
application	being	profiled,	pass	the	name	of	a	configuration	file
to	the	--envvarfile	option.	The	format	of	this	file	is	one
environment	variable	per	line	in	the	NAME=VALUE	format.	An
example	of	the	contents	of	this	file	is	given	below.
APPLICATION_DATA_DIR=c:\path\to\app\data
DEBUG_FLAG=True
LOG_FILE=c:\temp\logfile.log

Format	of	occupancy	display	configuration	file	(argument
passed	to	--occupancydisplay)

To	generate	a	Kernel	Occupancy	HTML	display	file	using	the
command	line,	pass	the	name	of	a	configuration	file	to	the	--
occupancydisplay	option.	The	format	of	this	configuration	file
is	one	parameter	per	line	in	the	NAME=VALUE	format.	An
example	of	the	contents	of	this	file	is	given	below.	The
"VALUES"	are	taken	from	a	generated	.occupancy	file	for	a
particular	kernel.
ThreadID=3364
CallIndex=101
KernelName=reduce
DeviceName=Capeverde
ComputeUnits=10
MaxWavesPerComputeUnit=40
MaxWorkGroupPerComputeUnit=16
MaxVGPRs=256
MaxSGPRs=512
MaxLDS=32768

UsedVGPRs=11
UsedSGPRs=20
UsedLDS=4096
WavefrontSize=64
WorkGroupSize=256
WavesPerWorkGroup=4
MaxWorkGroupSize=256
MaxWavesPerWorkGroup=4
GlobalWorkSize=256
MaxGlobalWorkSize=16777216
WavesLimitedByVGPR=40
WavesLimitedBySGPR=40
WavesLimitedByLDS=32
WavesLimitedByWorkgroup=40
Occupancy=80

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

-d	[--startdisabled] Start	the	application	with	profiling	disabled.	This	is	
amdtStopProfiling	and	amdtResumeProfiling	

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	GPU	Profiler	>	Using	the	GPU	Profiler	>	Using	the	Command	Line	Interface

Using	the	Command	Line	Interface

1.						Go	to	the	location	of	the	GPU	Profiler	binaries.	
The	GPU	Profiler	binaries	are	located	in	either	the	x86	or
x64	(x86_64	on	Linux)	subdirectory	under	the	CodeXL
installation	directory.	Alternatively,	you	can	include	the
location	of	the	Profiler	binaries	into	the	system's	path
environment	variable.

2.						Run	the	Profiler	using	the	following	instructions.
Usage:	CodeXLGpuProfiler	<options>	InputApplication
[InputApplication's	command	line	arguments]
	
Note:	When	profiling	JOCL	(Java	OpenCL)	application	the	full
path	to	the	java	VM	must	be	provided.	E.g	CodeXLGpuProfiler
<options>	/usr/bin/java	–jar	<jar_file>
Note:	On	some	Linux	systems	which	have	an	older	version	of
the	libstdc++	shared	object,	you	may	get	an	error	when	trying
to	profile	an	application	from	the	command	line.	The	error	will
say	“Failed	to	generate	profile	result”.	If	you	encounter	this
error,	please	try	using	the	CodeXLGpuProfilerRun	shell
script	to	profile.	This	shell	script	will	first	set	up	the
LD_LIBRARY_PATH	environment	variable	to	allow	the	profiler
to	find	the	correct	version	of	the	libstdc++	shared	object.	The
command-line	syntax	for	the	CodeXLGpuProfilerRun	shell
script	is	identical	to	the	syntax	used	for	CodeXLGpuProfiler.

General	options:

-e	[--envvar]	arg Environment	variable	that	should	be	defined	when	running	
should	be	in	the	format	NAME=VALUE.

-E	[--envvarfile]
arg

Path	to	a	file	containing	a	list	of	environment	variables	
profiled	application.	The	file	should	contain	one	line	for	each	variable	in	the	format	NAME=VALUE.

-f	[--fullenv]
The	environment	variables	specified	with	the	envvar	
not	specified,	then	the	environment	variables	represent	additions	or	changes	to	the	system
environment	block.

-l	[--list] Print	the	list	of	valid	counter	names.

-N	[--sessionname]
arg Name	of	the	generated	session.	If	not	specified,	the	name	

-o	[--outputfile]
arg

Path	to	OutputFile.	If	not	provided,	the	default	is	
current	user's	Documents	directory;	when	performing	an	
same	location.		For	Linux,	the	default	location	is	the	current	user’s	home	

-v	[--version] Print	the	CodeXLGpuProfiler	version	number.

-w	[--
workingdirectory]
arg

Set	the	working	directory.	If	not	provided,	the	default	

-h	[--help] Show	a	help	message.

-t	[--apitrace]
Trace	OpenCL™	application	and
generate	CPU	and	GPU	time	stamps
and	detailed	API	call	traces.

-p	[--perfcounter
]

Get	the	performance	counters	for
each	OpenCL™or	DirectCompute
kernel	dispatched	by	the	application.

-A	[--hsatrace]
Trace	HSA	application	and	generate
CPU	and	GPU	time	stamps	and
detailed	API	call	traces.	(Linux	only)

Get	the	performance	counters	for

Profile	mode	options:

-C	[--hsapmc] each	HSA	kernel	dispatched	by	the
application.

-O	[--occupancy] Generate	kernel	occupancy
information	file	(.occupancy).

-P	[--
occupancydisplay
]	arg

Path	to	configuration	file	to	use	to
generate	an	occupancy	display	file.
Specify	the	occupancy	display	file	that
is	to	be	generated	with	--outputfile.
See	below	for	information	about	the
configuration	file	format.

-T	[--
tracesummary]

Generate	summary	page	from	an
input	.atp	file.

-F	[--
apifilterfile]

Path	to	the	API	filter	file	which	contains	a
list	of	OpenCL™	APIs	to	be	filtered	out
when	performing	an	API	trace.		See	below
for	information	about	the	API	filter	file
format.

-i	[--interval]
arg	(=100)

Timeout	interval.	Ignored	when	not
performing	an	API	trace	and	using	timeout
mode.

	
	
	
	
	
	
	
	
	
Application	Trace	mode	options	(for	--apitrace	and	--
hsatrace):

-m	[--timeout
]

Flush	Trace	data	periodically,	default
timeout	interval	is	100	milliseconds	(can
be	changed	with	-i	option).	Ignored	when
not	performing	an	API	trace.	(Windows
only,	this	is	the	default	mode	for	Linux.)

-M	[--
maxapicalls]
(=1000000)

Maximum	number	of	API	calls.

-n	[--
nocollapse]

Do	not	collapse	consecutive	identical
clGetEventInfo	calls	into	a	single	call	in
the	trace	output.	Ignored	when	not
performing	an	API	trace.

-r	[--ret]
Always	include	the	OpenCL™	API	return
code	in	API	trace,	even	if	client
application	does	not	query	it.	Ignored
when	not	performing	an	API	trace.

-y	[--sym]
Generate	symbol	information	file	(.st)	for
API	trace,	if	available.	Ignored	when	not
performing	an	API	trace.

	
	
	
	
	
	
	
	
	
	
	
Performance	Counter	mode	options	(for	--perfcounter	
and	--hsapmc):

-c	[--counterfile
]	arg

Path	to	the	counter	file	to	enable
selected	counters	(case-sensitive).	If
not	provided,	all	counters	are	used.
Ignored	when	performing	an	API	trace.
	See	below	for	information	about	the
counter	file	format.

-g	[--singlepass]

Only	allow	a	single	pass	when
collecting	performance	counters.	Any
counters	that	cannot	fit	into	a	single
pass	will	be	ignored.	If	specified,	the
GPUTime	will	not	be	collected,	as	a
separate	pass	is	required	to	query	the
GPUTime	(OpenCL™or	DirectCompute
only,	this	is	the	default	for	HSA).

-G	[--nogputime
]

Skip	collection	of	GPUTime	when
profiling	a	kernel	(GPUTime	requires	a
separate	pass)	(OpenCL™or
DirectCompute	only,	this	is	the	default
for	HSA).

-k	[--
kerneloutput]
arg

Output	the	specified	kernel	file
(OpenCL™or	DirectCompute	only).
Valid	argument	values	are:
		il:				output	kernel	IL	files
		isa:			output	kernel	ISA	files
		cl:				output	kernel	CL	files
		hsail:	output	kernel	HSAIL	files
		asm:			output	DirectCompute	shader
ASM	files
		all:			output	all	files

-K	[--
kernellistfile]
arg

Path	to	the	kernel	list	file	which
contains	a	case-sensitive	list	of	kernels
to	profile.	If	not	provided,	all	kernels
will	be	profiled.	See	below	for
information	about	the	kernel	list	file
format.

-s	[--
outputseparator
]	arg

Character	used	to	separate	fields	in	the
OutputFile.	Ignored	when	performing
an	API	trace.

-x	[--
maxkernels]	arg
(=100000)

Maximum	number	of	kernels	to	profile.

-a	[--atpfile]
arg

Path	to	the	.atp	file	from	which	to
generate	summary	pages.	Optional	when
performing	an	API	trace.	Required	if	-T	is
specified	when	not	performing	an	API
trace.	The	handle	of	the	kernel.

-R	[--
apirulesfile]
arg

Path	to	OpenCL™	API	analyzer
configuration	file.	If	not	specified,	all	rules
are	enabled.	Ignored	when	–tracesummary
is	not	specified.		See	below	for	information

	
	
	
	
	
	
	
	
	
	
	
	
	
	
Trace	Summary	mode	options	(for	--tracesummary):

about	the	configuration	file	format.
	
	
	
	
	

Examples

·									An	example	to	collect	OpenCL™	or	DirectCompute
performance	counters:
CodeXLGpuProfiler	-o	"/path/to/output.csv"	-p	-w	"/path/to/app/working/directory"
"/path/to/app.exe"	--device	gpu

·									An	example	to	collect	an	OpenCL™	API	trace:
CodeXLGpuProfiler	-o	"/path/to/output.atp"	-t	-w	"/path/to/app/working/directory"
"/path/to/app.exe"	--device	gpu

·									An	example	to	collect	HSA	performance	counters:
CodeXLGpuProfiler	-o	"/path/to/output.csv"	-C	-w	"/path/to/app/working/directory"
"/path/to/app.exe"

·									An	example	to	collect	an	HSA	API	trace:
CodeXLGpuProfiler	-o	"/path/to/output.atp"	-A	-w	"/path/to/app/working/directory"
"/path/to/app.exe"

·									An	example	to	collect	an	OpenCL™	API	trace	with
summary	pages:
CodeXLGpuProfiler	-o	"/path/to/output.atp"	-t	-T	-w	"/path/to/app/working/directory"
"/path/to/app.exe"	--device	gpu

·									An	example	to	generate	summary	pages	from	an	.atp	file:
CodeXLGpuProfiler	-a	"/path/to/output.atp"	-T

·									An	example	to	generate	an	occupancy	display	page:
CodeXLGpuProfiler	-P	"/path/to/occupancy/params/file.txt"	-o	"path/to/output.html"

After	you	have	used	the	command	line	to	profile	an
application.,	you	can	view	the	results	within	CodeXL	using	the
Import	Session	command	in	the	CodeXL	Explorer	.
The	format	of	the	configuration	files	passed	to	the	--counterfile,
--apirulesfile,	--apifilterfile,	--envvarfile	and	--occupancydisplay

options	can	be	found	in	the	Description	of	Configuration
Files	topic.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	GPU	Profiler	>	Using	the	GPU	Profiler	>	AMDTActivityLogger	Library

AMDTActivityLogger	Library

The	AMDT	Activity	Logger	(previously	named
CLPerfMarkerAMD)	library	provides	a	simple	host-code
instrumentation	API	that	can	help	you	analyze	your	OpenCL
applications.
It	lets	you	instrument	your	code	with	calls	to
amdtBeginMarker()	and	amdtEndMarker	().	These	calls	are
then	used	by	the	GPU	Profiler	to	annotate	the	host-code
timeline	in	a	hierarchical	way.
The	library	also	lets	you	instrument	your	code	with	calls	to
amdtStopProfiling()	and	amdtResumeProfiling()	to	control
which	parts	of	your	application	are	profiled.
The	following	screenshot	shows	an	application	that	has	been
instrumented	with	this	API.	In	the	image,	the	rows	labeled
Smoke	and	TeapotOGL	under	the	Host	Thread	4864	branch
represent	performance	markers	added	to	the	host	code.

	
For	more	information	on	this	API,	see	the
AMDTActivityLogger.pdf	file	in	the
AMDTActivityLogger/Doc	subdirectory	under	the	CodeXL
installation	directory.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Static	Analyzer

Static	Analyzer

In	Analyze	mode,	you	can	compile	shaders	and	kernels	for	a
variety	of	AMD	GPUs	and	APUs,	independent	from	the
GPU/APU	that	is	physically	installed	on	your	system,	and
generate	AMD	ISA,	intermediate	language	and	performance
statistics	for	each	target	platform.	CodeXL	Analyzer	supports
the	following	inputs:
-										OpenCL	kernels
-										DirectX	shaders
-										OpenGL	and	Vulkan	programs
	

·									Switching	to	Analyze	mode
·									Creating	a	new	project	for	Analysis
·									Working	with	the	new	CodeXL	Analyzer	Explorer
Tree

·									Working	with	Programs
·									Working	with	Folders
·									Build	Options-	Defining	OpenCL	and	DirectX	build
options

·									Output	Tab
·									Kernel	Statistics	Tab
·									Shader	Statistics	Tab
·									Viewing	compilation	output:	IL	and	ISA
·									Export	binaries
·									Remove	items	from	Project
·									Static	Analyze	Toolbar	–	for	OpenCL	source	files
·									Static	Analyze	Toolbar	–	for	DirectX	source	files
·									CodeXLAnalyzer	Command	Line	Interface

	
©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Static	Analyzer	>	Switching	to	Analyze	mode

Switching	to	Analyze	mode

Option	1-	Analyze	mode	button:

Click	on	the	Analyze	Mode	button	in	the	CodeXL	Mode	toolbar:

	

Option	2-	Main	menu:

Open	the	Analyze	menu	from	menu	bar	and	select	the	‘Switch
to	Analyze	Mode’	command:

After	you	switch	to	Analyze	mode,	you	can	also	create	a	new
project,	open	a	previously	saved	project,	or	load	the	Teapot	or
Matrix	Multiply	samples.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Static	Analyzer	>	Creating	a	new	project	for	Analysis

Creating	a	new	project	for	Analysis

Click	on	the	“File->Create	Project”,	or	use	the	Ctrl+N	shortcut.
The	following	CodeXL	Project	Settings	dialog	will	appear:

Rename	the	project,	and	click	on	the	OK.

After	the	new	project	has	been	created,	the	CodeXL	Analyzer
Explorer	Tree	should	appear	in	the	left	pane:

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Static	Analyzer	>	Working	with	the	new	CodeXL	Analyzer	Explorer	Tree

Working	with	the	new	CodeXL	Analyzer	Explorer	Tree

If	you	are	familiar	with	the	former	versions	of	the	Analyzer,	you
probably	noticed	that	the	tree	has	a	different	structure	than
the	one	used	in	previous	versions.	Let’s	examine	the	structure
of	the	new	CodeXL	Analyzer	Explorer:

	
1.							Programs	and	Folders:	before	describing	how	to	technically	create
Programs	and	Folders,	let’s	first	discuss	what	those	objects	are,	and	why	they
can	be	useful.
a.							Programs	(OpenGL,	Vulkan):
As	of	version	2.0,	CodeXL	can	compile	and	link	together
multiple	source	files	for	OpenGL	and	Vulkan.	This	is
especially	important	when	different	shaders	have
mutual	impact	on	one	another’s	ISA	and	performance
statistics.	To	provide	that	type	of	support,	CodeXL
Analyzer	introduced	the	concept	of	a	Program.	There
are	two	types	of	Programs	in	CodeXL	2.0:
-										Rendering	Programs
-										Compute	Programs

A	Rendering	Program	represents	a	graphics	pipeline,
and	can	have	a	single	shader	attached	to	each	of	its
stages:
-										Vertex
-										Tessellation	Control
-										Tessellation	Evaluation
-										Geometry
-										Fragment

A	Compute	Program	represents	a	compute	pipeline,	and
can	have	a	single	compute	shader	attached	to	its	single
stage.
When	you	build	a	program	that	has	multiple	shaders	attached	to	it,	all
shaders	are	being	compiled	and	linked	together.	This	way,	you	get	more

accurate	ISA	and	performance	statistics	than	those	generated	using
previous	versions	of	CodeXL.

b.						Folders	(OpenCL,	DirectX):
Folders	are	logical	containers	of	source	files.	When	you	build	a	folder	that
has	multiple	source	files	attached	to	it,	the	source	files	are	simply	being
built	one	after	the	other.	Unlike	programs,	there	is	no	kind	of
interdependency	between	the	source	files	in	a	given	folder:	when	a	folder	is
being	built,	each	source	file	is	being	compiled	independently.	Folders	can	be
used	to	organize	the	project,	by	serving	as	a	logical	separator.	They	can	also
be	used	to	ease	the	process	of	comparing	build	results,	since	now	the	build
results	are	being	maintained	per-folder:	you	can	create	two	different
Folders,	each	containing	the	same	source	files,	but	have	a	different
configuration	(for	example,	create	two	DirectX	Folders,	each	with	a	different
shader	model).	After	building	the	two	Folders,	you	can	toggle	between	the
performance	statistics	of	the	two	Folders	to	see	the	differences.
	
You	may	ask	yourself	why	CodeXL	does	not	support	the	concept	of	DirectX
Programs,	just	like	it	does	for	OpenGL	and	Vulkan.	This	is	a	good	point.
Supporting	DirectX	Programs	is	at	a	high	priority	in	the	Analyzer’s	roadmap,
and	we	will	do	our	best	to	add	that	feature	in	the	upcoming	versions	of	the
product.
Creating	a	new	Program	or	Folder
To	create	a	new	Program	or	a	Folder,	double-click	on	the	“Create	new
program/folder”	item	in	CodeXL	Analyzer	Explorer	Tree:

	

					Then,	the	following	dialog	would	pop-up:

Select	the	Program/Folder	type	of	choice,	and	click	OK.

Then,	the	empty	Program/Folder	would	appear	in	the
Explorer	Tree.	For	Example,	if	you	choose	an	OpenGL
Rendering	Program,	you	will	see	an	empty	OpenGL
Rendering	Program	created:

	

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Static	Analyzer	>	Working	with	Programs

Working	with	Programs

After	creating	a	new	program,	you	will	see	that	it	contains	an
empty	placeholder	for	every	pipeline	stage.	Right-click	on	any
stage	to	add	an	existing	shader	or	create	a	new	one:

	

	

Note:	You	can	also	double-click	on	a	stage	to	create	a	new
shader	and	automatically	attach	it	to	that	Program’s	stage.

To	build	the	program,	right-click	on	it	and	select	the	Build
option,	or	use	the	F7	shortcut:

	

You	can	also	select	the	Program	and	manually	click	on	the
Build	button	in	the	Analyzer	toolbar:

	

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Static	Analyzer	>	Working	with	Folders

Working	with	Folders

After	creating	a	new	OpenCL	or	DirectX	Folder,	an	empty
Folder	would	be	listed	in	the	Explorer	Tree:

	

To	create	a	new	source	file,	and	automatically	add	it	to	the
Folder,	double-click	on	the	“Create	new	source	file	item…”	item
of	the	folder:

	

To	add	an	existing	source	file,	and	automatically	add	it	to	the
Folder,	double-click	on	the	“Add	existing	source	file	item…”
item	of	the	folder:

	

To	configure	the	build	properties	of	a	source	file	under	a
specific	Folder,	click	on	that	source	file	and	use	the	Analyzer
toolbar’s	Type	and	Entry	point	drop-down	lists.	The	first	sets
the	type	of	the	shader	and	the	latter	specifies	the	specific
target	shader	(among	the	shaders	in	the	source	file).	This

configuration	is	Folder-specific.	That	is,	the	same	source	file
can	be	set	with	different	properties	under	different	Folders.
CodeXL	will	remember	those	configurations	for	you.

To	configure	the	build	properties	of	the	Folder,	click	on	the
Folder	and	adjust	the	enabled	items	in	the	Analyzer	toolbar.	For
CodeXL	2.0,	this	is	only	relevant	to	the	DX	Shader	Model
property	of	DX	Folders:

Once	set,	the	DX	Shader	Model	value	will	hold	for	all	the
shaders	in	the	selected	Folder.	For	example,	if	you	choose	5_0
as	the	DX	Shader	Model,	any	D3D	vertex	shader	in	that	Folder
will	be	compiled	using	shader	model	vs_5_0.

To	build	the	whole	Folder,	right-click	on	it	and	select	the	Build
item:

Unlike	the	case	with	Programs,	Folders	are	more	flexible	as
they	allow	you	to	build	selected	source	files,	without	being
required	to	build	the	whole	Folder.	To	build	selected	source
files,	click	on	the	selected	source	files	under	the	program,
while	holding	the	Ctrl	key.	Then,	right-click	on	one	of	the
selected	files	and	select	the	build	option:

	

	

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Static	Analyzer	>	Selecting	target	devices

Selecting	target	devices

CodeXL	Analyzer	can	target	a	variety	of	devices,	independent
of	the	device	that	is	physically	installed	on	your	system.	To
select	the	target	devices,	for	which	the	build	would	be
performed,	first	click	on	the	Select	Devices	button	in	the
Analyzer	toolbar:

	

	

Then,	the	CodeXL	Options	dialog	would	pop-pup	with	its
Analyze	tab	activated.	The	devices	are	grouped	by	generations.
You	can	use	the	check	boxes	to	select	and	remove	devices:

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Static	Analyzer	>	Build	Options-	Defining	OpenCL	and	DirectX	build	options

Build	Options-	Defining	OpenCL	and	DirectX	build
options

In	the	Static	Analyze	toolbar,	you	can	define	specific	OpenCL	or
HLSL	build	options:

The	Build	Options	box	is	a	place	to	set	compiler	build	flags
such	as	–x	clc++	or	–o3.	Any	compiler	build	flag	can	be	placed	in
this	box.

You	can	set	the	build	options	by	typing	the	options	directly	in
the	designated	text	box	or	by	using	the	OpenCL/HLSL	Build
Options	dialog.

OpenCL	Build	Options	Dialog

This	dialog	will	help	you	choose	the	correct	OpenCL	build
options	for	you	and	hopefully	will	prevent	making	spelling
mistakes	while	typing	the	options	manually.

To	open	the	dialog,	press	The	 	button.	The	dialog	will	be
opened.	You	can	switch	between	the	”General	&	Optimization”
tab	and	the	”Other”	tab	to	view	all	the	available	options.	Once
you	choose	an	option,	the	option	text	is	displayed	in	the
”OpenCL	Build	Command	Line”	text	box	that	appears	below.
This	string	will	also	appear	in	the	menu	bar	after	you	click	the
OK	button.

While	typing	a	command	in	the	“OpenCL	Build	Command	Line”
text	box,	you	will	notice	that	the	relevant	controls	are	being
updated	accordingly	(for	example,	if	you	will	type	“-w”,	you	will
be	able	to	see	that	the	“Disable	all	warnings”	check	box
becomes	checked).

Usage	Example:	build	options

For	building	the	tpAdvectFieldScalar.cl	kernel	from	CodeXL’s

AMDTTeaPot	sample	project,	enter	the	following	options:
-D	GRID_NUM_CELLS_X=64	-D	GRID_NUM_CELLS_Y=64	-D	GRID_NUM_CELLS_Z=64	-D
GRID_INV_SPACING=1.000000f	-D	GRID_SPACING=1.000000f	-D	GRID_SHIFT_X=6	-D
GRID_SHIFT_Y=6	-D	GRID_SHIFT_Z=6	-D	GRID_STRIDE_Y=64	-D	GRID_STRIDE_SHIFT_Y=6	-D
GRID_STRIDE_Z=4096	-D	GRID_STRIDE_SHIFT_Z=12	-I	path_to_example_src

On	windows,	path_to_example_src	should	be:
C:\Program	Files\CodeXL\Examples\Teapot\res

On	Linux,	path_to_example_src	should	be:
/opt//CodeXL/bin/examples/Teapot/AMDTTeaPotLib/AMDTTeaPotLib/

Adding	the	option	‘-h’	will	dump	the	list	of	OpenCL	compiler
available	options	in	the	output	tab.	For	additional	details,
‘Compile	Build	Options’	Appendix.

Build	Options

General	Options

-D Predefined
macros

Predefine	macros	should	be	separated	by	';'.	If
the	Predefined	macro	needs	to	include	a	
enclose	the	macro	within	parentheses.

-I
Additional
include
directories.

Additional	include	directories	should	be
separated	by	';'.	If	the	directory	path	
space,	enclose	the	path	within	parentheses.

-x	clc,-x
clc++

OpenCL
format 	

-w Disable	all
warnings Inhibit	all	warning	messages.

-Werror
Treat	any
warning	as
an	error

Make	all	warnings	into	errors.

Optimization	Options
-O0,-O1,-O2,- Optimization

O3,-O4,-O5 level 	

-cl-single-
precision-
constant

Treat	double
float-point
constant	as
single	one

Treat	double	precision	floating-point	constant
as	single	precision	constant

-cl-denorms-
are-zero

Flush
denormalized
floating	point
numbers	as
zeros

This	option	controls	how	single	precision	and
double	precision	denormalized	numbers	are
handled.	If	specified	as	a	build	option,	the
single	precision	denormalized	numbers	may	be
flushed	to	zero	and	if	the	optional	extension	for
double	precision	is	supported,	double	precision
denormalized	numbers	may	also	be	
zero.	This	is	intended	to	be	a	performance	hint
and	the	OpenCL	compiler	can	choose	not	to
flush	denorms	to	zero	if	the	device	supports
single	precision	(or	double	precision)
denormalized	numbers.	This	option	is	
for	single	precision	numbers	if	the	device	does
not	support	single	precision	denormalized
numbers	i.e.	if	CL_FP_DENORM	bit	is	not	set
in	CL_DEVICE_SINGLE_FP_CONFIG.	
option	is	ignored	for	double	precision	numbers
if	the	device	does	not	support	double	precision
or	if	it	does	support	double	precision	but
CL_FP_DENORM	bit	is	not	set	in
CL_DEVICE_DOUBLE_FP_CONFIG.	This	flag
only	applies	to	scalar	and	vector	single
precision	floating-point	variables	and	to
computations	on	these	floating-point	variables
inside	a	program.	It	does	not	apply	to	reading
from	or	writing	to	image	objects.

-cl-strict-
aliasing

Compiler
assumes	the
strict

This	option	allows	the	compiler	to	assume	the
strictest	aliasing	rules.

aliasing	rules

-cl-mad-
enable Enable	MAD

Allow	a	*	b	+	c	to	be	replaced	by	a	mad.	The
mad	computes	a	*	b	+	c	with	reduced	
For	example,	some	OpenCL	devices	implement
mad	as	truncate	the	result	of	a	*	b	before
adding	it	to	c.

-cl-no-signed-
zeros

Ignore	the
signedness	of
zero

Allow	optimizations	for	floating-point
arithmetic	that	ignore	the	signedness	of	
IEEE	754	arithmetic	specifies	the	behavior	of
distinct	+0.0	and	-0.0	values,	which	then
prohibits	the	simplification	of	expressions	such
as	x+0.0	or	0.0*x	(even	with	-cl-finite-math-
only).	This	option	implies	that	the	sign	
zero	result	isn't	significant.

-cl-unsafe-
math-
optimizations

	

Allow	unsafe
optimization

	

Allow	optimizations	for	floating-point
arithmetic	that	(a)	assume	that	arguments	
results	are	valid,	(b)	may	violate	IEEE	754
standard	and	(c)	may	violate	the	OpenCL
numerical	compliance	requirements	as	defined
in	section	7.4	for	single-precision	floating-
point,	section	9.3.9	for	double-precision
floating-point,	and	edge	case	behavior	in
section	7.5.	This	option	includes	
signed-zeros	and	-cl-mad-enable	options.

-cl-finite-
math-only

Assume	no
NaN	nor
infinite

Allow	optimizations	for	floating-point
arithmetic	that	assume	that	arguments	and
results	are	not	NaNs	or	±?.	This	option	may
violate	the	OpenCL	numerical	compliance
requirements	defined	in	in	section	7.4	for
single-precision	floating-point,	section	9.3.9	for
double-precision	floating-point,	and	edge	
behavior	in	section	7.5.

Sets	the	optimization	options	-cl-finite-math-

-cl-fast-
relaxed-math

Do
aggressive
Math
Optimization

	

only	and	-cl-unsafe-math-optimizations.	
allows	optimizations	for	floating-point
arithmetic	that	may	violate	the	IEEE	754
standard	and	the	OpenCL	numerical
compliance	requirements	defined	in	
specification	in	section	7.4	for	single-precision
floating-point,	section	9.3.9	for	double-
precision	floating-point,	and	edge	case
behavior	in	section	7.5.	This	option	causes	the
preprocessor	macro
__FAST_RELAXED_MATH__	to	be	
the	OpenCL	program.

-cl-fp32-
correctly-
rounded-
divide-sqrt

Correctly
round	single-
precision	FP
divide	&	sqrt

The	-cl-fp32-correctly-rounded-divide-sqrt	build
option	to	clBuildProgram	or	clCompileProgram
allows	an	application	to	specify	that	single
precision	floating-point	divide	(x/y	and	1/x)	and
sqrt	used	in	the	program	source	are	
rounded.	If	this	build	option	is	not	specified,
the	minimum	numerical	accuracy	of	single
precision	floating-point	divide	and	sqrt	are	as
defined	in	section	7.4	of	the	OpenCL
specification.\nThis	build	option	can	
specified	if	the
CL_FP_CORRECTLY_ROUNDED_DIVIDE_SQRT
is	set	in	CL_DEVICE_SINGLE_FP_CONFIG	(as
defined	in	in	the	table	of	allowed	values	for
param_name	for	clGetDeviceInfo)	for	devices
that	the	program	is	being	build.
clBuildProgram	or	clCompileProgram	will	fail
to	compile	the	program	for	a	device	if	the	-cl-
fp32-correctly-rounded-divide-sqrt	option	is
specified	and
CL_FP_CORRECTLY_ROUNDED_DIVIDE_SQRT
is	not	set	for	the	device.

Other	Options

-cl-std CL	version
supported

Determine	the	OpenCL	C	language	version	to
use.	A	value	for	this	option	must	be	
Valid	values	are:\nCL1.1	-	Support	all	OpenCL
C	programs	that	use	the	OpenCL	C	language
features	defined	in	section	6	of	the	OpenCL	1.1
specification.\nCL1.2	–	Support	all	OpenCL	C
programs	that	use	the	OpenCL	C	
features	defined	in	section	6	of	the	OpenCL	1.2
specification.

-cl-kernel-
arg-info

Kernel
argument
info

This	option	allows	the	compiler	to	store
information	about	the	arguments	of	a	kernel(s)
in	the	program	executable.	The	argument
information	stored	includes	the	argument
name,	its	type,	the	address	and	access
qualifiers	used.	Refer	to	the	description	of
clGetKernelArgInfo	for	information	about	how
to	query	this	information.

-create-
library

Create
library

Create	a	library	of	compiled	binaries	specified
in	input_programs	argument	to	clLinkProgram.

-enable-link-
options

Enable	link
options

Allows	the	linker	to	modify	the	library	behavior
based	on	one	or	more	link	options	
in	Program	Linking	Options,	below)	when	this
library	is	linked	with	a	program	executable.
This	option	must	be	specified	with	the	
library	option.

-g
Produce
debugging
information

This	is	an	experimental	feature	that	lets	you
use	the	GNU	project	debugger,	GDB,	to	
kernels	on	x86	CPUs	running	Linux,	or
cygwin/minGW	under	Windows.	For	
details,	see	Chapter	3,	“Debugging	OpenCL.”
This	option	does	not	affect	the	default
optimization	of	the	OpenCL	code.

Specify	that

-fper-pointer-
uav
-fno-per-
pointer-uav

UAV	per
pointer
should	be
used
(HD5XXX
and	HD6XXX
series	GPU's
only)

	

-fbin-bif30
-fno-bin-bif30

Allow
OpenCL
binary	to	be
BIF3.0
format

	

-fbin-encrypt
-fno-bin-
encrypt

Generate	an
encrypted
OpenCL
binary	(not
by	default)

	

-save-temps

Store
temporary
files	in
current
directory

This	option	dumps	intermediate	temporary
files,	such	as	IL	and	ISA	code,	for	each	OpenCL
kernel.	If	<prefix>	is	not	given,	temporary	files
are	saved	in	the	default	temporary	directory
(the	current	directory	for	Linux,	
<user>\\AppData\\Local	for	Windows).	If	\\
<prefix\\>	is	given,	those	temporary	files	are
saved	with	the	given	<prefix>.	If	
an	absolute	path	prefix,	such	as
C:\\your\\work\\dir\\mydumpprefix,	
temporaries	are	saved	under
C:\\your\\work\\dir,	with	mydumpprefix	as
prefix	to	all	temporary	names.	For	example,
under	the	default	directory

-fuse-jit
Use	JIT	for
CPU	target

-fno-use-jit (disable	if
debugging	is
enabled

	

-fforce-jit
-fno-force-jit

Force	use	JIT
for	CPU
target	(even
if	debugging
is	enabled)

	

-fdisable-avx
-fno-disable-
avx

Disable	AVX
code
generation

	

-ffma-enable
-fno-fma-
enable

Enable	fma
for	a*b+c

	
	

-fuse-native

Replace
math
function	calls
with	native
version

	

	

	

HLSL	Build	Options	Dialog

This	dialog	will	help	you	choose	the	correct	HLSL	build	options
for	you	and	hopefully	will	prevent	making	spelling	mistakes
while	typing	the	options	manually.

To	open	the	dialog,	press	The	 	Button.	The	dialog	will	be
opened.	Click	the	”HLSL	Build	Options”	node	to	view	the
available	options.	
Once	you	choose	an	option,	the	option	text	is	displayed	in	the
”HLSL	Build	Command	Line”	text	box	that	appears	below.	

This	build	option	string	will	also	appear	in	the	toolbar’s	build
options	box	after	you	click	the	OK	button.

As	an	alternative	to	selecting	options	through	the	radio
buttons,	it	is	possible	to	type	a	command	in	the	“HLSL	Build
Command	Line”	text	box.	Build	options	types	in	the	text	box
will	automatically	be	translated	to	update	of	the	relevant
controls	accordingly.	For	example,	typing
“D3DCOMPILE_DEBUG”	in	the	lower	text	box	automatically
updates	the	“Debug”	check	box	to	be	checked.

	

	

Build	Options
The	compilation	of	DirectX	shaders	can	be	executed	either	by
directly	referencing	the	D3D	compiler	DLL	or	by	going	through
Microsoft’s	FXC	tool.

The	CodeXL	installation	includes	a	copy	of	the	Microsoft
DirectX	compiler	DLL:	d3dcompiler_47.dll.	You	may	specify	a
different	path	if	you	want	CodeXL	to	use	a	different
d3dcompiler	module.	If	you	select	the	FXC	compiler	tool,	you

must	specify	a	path	to	the	location	of	FXC.exe.

To	select	the	path	of	the	compiler	module,	click	the	‘Browse…”
option	from	the	combo-box.		When	selecting	Browse,	a	dialog
box	will	open	for	selecting	the	compiler	file.

·									For	D3D	compiler	–	any	file	called	d3compiler_*.dll	can	be
selected.

·									For	FXC	compiler	–	only	files	named	FXC.exe	can	be
selected.

D3D	compile	command FXC	Compile
command

-D

-I

D3DCOMPILE_AVOID_FLOW_CONTROL /Gfa

D3DCOMPILE_DEBUG /Zi

D3DCOMPILE_ENABLE_BACKWARDS_COMPATIBILITY /Gec

D3DCOMPILE_ENABLE_STRICTNESS /Ges

D3DCOMPILE_FORCE_PS_SOFTWARE_NO_OPT 	

D3DCOMPILE_FORCE_VS_SOFTWARE_NO_OPT 	

D3DCOMPILE_IEEE_STRICTNESS /Gis

D3DCOMPILE_NO_PRESHADER /Op

*	D3DCOMPILE_SKIP_OPTIMIZATION
*	D3DCOMPILE_OPTIMIZATION_LEVEL0
*	..	(no	flag	for	default	optimization)
*	D3DCOMPILE_OPTIMIZATION_LEVEL2

	
*	/Od
*	/O0
*	..	(no	flag
for	default)
*	/O1

*	D3DCOMPILE_OPTIMIZATION_LEVEL3 *	/O2
*	/O3

D3DCOMPILE_PACK_MATRIX_COLUMN_MAJOR /Zpc

D3DCOMPILE_PACK_MATRIX_ROW_MAJOR /Zpr

D3DCOMPILE_PARTIAL_PRECISION /Gpp

D3DCOMPILE_PREFER_FLOW_CONTROL /Gfp

D3DCOMPILE_RESOURCES_MAY_ALIAS /res_may_alias

D3DCOMPILE_SKIP_VALIDATION /Vd

D3DCOMPILE_WARNINGS_ARE_ERRORS /WX

	 /Lx

	 /Ni

	 /No

	 /Qstrip_debug

	 /Qstrip_priv

	 /Qstrip_reflect

	
·									Note:	some	of	the	flags	are	only	relevant	to	the	FXC	tool.
	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Static	Analyzer	>	Output	Tab

Output	Tab

The	compiler	output	appears	in	the	Output	tab.	The	example
below	shows	successful	builds	(no	warnings	or	errors)	for	4
devices.

If	there	were	errors,	the	output	will	display	the	error	and	the
line	where	the	error	occurred:
																																																																																																																																									

															

Double	clicking	on	an	error	navigates	the	user	to	the	Source
Code	view,	displaying	the	kernel	source	code:

																																																																																																																																		

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Static	Analyzer	>	Kernel	Statistics	Tab

Kernel	Statistics	Tab

The	statistics	tab	gives	detailed	statistics	for	the	selected
kernel	for	each	target	device.	
To	open	the	statistics	tab,	expand	the	desired	kernel	in	the
project	tree,	and	double-click	the	statistics	node:

	

You	can	see	in	this	statistics	output	that	Northern	Islands
devices	do	not	use	scalar	registers	(SGPRs	and	MaxSGPRs	are
N/A).	Northern	Islands	VGPRs	are	quad-sized	so	the	20	VGPRs
actually	represent	80	float	values.	You	can	also	see	that
Southern	Islands	devices	use	44	scalar	GPRs	that	are	shared

across	the	wavefront	and	49	VGPRs	that	are	used	per	thread
equaling	49	float	values.

This	view	puts	the	emphasis	on	giving	the	programmer	the
wave	constraints	based	on	the	SGPRs,	VGPRs	and	LDS	size.

In	the	upper	section	there	is	a	table	that	shows	the	current
constraints	based	on	the	kernels	information	for	the	current
selected	device.

In	the	lower	section,	there	is	a	reference	table	to	help	the
programmer	see	the	effect	of	the	resources	usage	on	the
number	of	concurrent	waves.

The	LDS	is	constructed	from	the	static	&	dynamic	values.	The
dynamic	value	can	be	defined	by	the	user	to	and	its	possible
effect	on	the	constraint	can	be	immediately	viewed.	LDS	is	also
affected	by	local	workgroups	size,	so	the	values	can	be
changed	in	order	to	see	the	impact	on	the	performance	of	the
kernel.

The	middle	table	shows	if	the	“ISA	size”	and	“Scratch
Registers”	might	have	impact	on	the	performance	and	what	are
the	recommended	values.

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Static	Analyzer	>	Shader	Statistics	Tab

Shader	Statistics	Tab

The	statistics	tab	gives	detailed	statistics	about	the	selected
shader	for	each	target	device.	
To	open	the	statistics	tab	expand	the	desired	shader	in	the
project	tree,	and	double-click	the	statistics	node:

There	is	no	support	for	shader	statistics	for	v5	and	earlier
generation	devices.

Statistics	page	for	GCN	devices	(v6	and	later
generations):

The	displayed	information	is	explained	in	the	following	table:
Column
Name Explanation

SGPRs The	number	of	scalar	General	Purpose	Registers
allocated	by	the	shader

VGPRs

The	number	of	vector	General	Purpose	Registers
allocated	by	the	kernel.	ReqdWorkGroupX	-
Required	workgroup	X	size	specified	for	kernel.
N/A	without	optional
__attribute__((reqd_work_group_size(X,	Y,	Z)))

ISA	size Compiled	code	size

Scratch
Registers

The	number	of	scratch	registers	used	by	the
kernel.	If	this	value	is	bigger	than	0,	the	shader
may	be	incurring	a	performance	penalty

MaxSGPRs The	maximum	number	of	scalar	General	PurposeRegisters	per	kernel	supported	by	the	device

MaxVGPRs The	maximum	number	of	vector	General	PurposeRegisters	per	kernel	supported	by	the	device
	

This	view	puts	the	emphasis	on	giving	the	programmer	the
wave	constraints	based	on	the	SGPRs	and	VGPRs.

In	the	upper	section	there	is	a	table	that	shows	the	current
constraints	based	on	the	shaders	information	for	the	current
selected	device.

In	the	lower	section	there	is	a	reference	table	to	help	the
programmer	see	the	effect	of	the	resources	usage	on	the
number	of	concurrent	waves.

The	middle	table	shows	if	the	“ISA	size”	and	“Scratch
Registers”	might	have	impact	on	the	performance	and	what	are
the	recommended	values.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Static	Analyzer	>	Viewing	compilation	output:	IL	and	ISA

Viewing	compilation	output:	IL	and	ISA

The	performance	statistics	tab	will	be	opened	automatically
when	the	build	process	is	over.	To	view	the	compilation	output,
double	click	the	node	of	the	desired	ASIC	in	the	explorer	tree,
under	the	Program/Folder	and	configuration	(32-bit	or	64-bit):

	

s

	

This	will	open	a	tab	containing	the	source	code,	the	IL	and	the
ISA.	The	program	source	code	and	the	IL	code	will	be
presented	as	standard	text	documents.	The	ISA	will	be
presented	in	the	“Enhanced	ISA	View”	for	GCN	devices,	and	as
a	standard	text	document	for	pre-GCN	devices.

	

	

	

	

The	context	menu	also	enables	showing/hiding	line	numbers	for
each	source	code/IL/ISA	tab.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Static	Analyzer	>	Navigating	through	ISA	code	with	the	Enhanced	ISA	View

Navigating	through	ISA	code	with	the	Enhanced	ISA
View

Using	this	view,	you	can	inspect	the	ISA	code	of	GCN	devices
and	see	the	estimation	for	instruction	cost	in	clock	cycle.	The
view	contains	5	columns:

-										Address:	the	instruction’s	offset	within	the	program	(in
bytes)

-										Opcode:	the	operation	to	be	performed
-										Operands:	the	data	for	the	operation
-										Cycles:	the	number	of	clock	cycles	which	are	required	by
a	Compute	Unit	in	order	to	process	the	instruction	for	a
64-thread	Wavefront,	while	neglecting	the	system	load	and
any	other	runtime-related	factor.

-										Instruction	Type:	the	category	of	instructions	to	which
the	instruction	belongs

-										Hex:	binary	representation	of	the	instruction,	in
hexadecimal	format

Notes:

1.	Note	that	code	labels	which	appear	in	the	Operands	column
are	clickable.	By	clicking	on	a	label	link,	you	can	navigate	to
the	label’s	spot	in	the	code.

2.	Note	that	this	view	is	only	available	for	GCN	devices.	For
pre-GCN	devices,	the	plain	textual	ISA	view	will	be	displayed.

	

	

	

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Static	Analyzer	>	Export	binaries

Export	binaries

You	can	export	the	binaries	of	the	last	build	by	right	clicking	on
the	folder	or	file	in	the	explorer	tree	and	selecting	the	“Export
binaries…”	option.

	

When	you	select	the	“Export	Binaries…”	option,	an	“Export
Binaries”	dialog	will	open	where	you	can	select	the	destination
folder	as	well	as	which	parts	of	the	binaries	will	be	included.

You	can	change	the	default	base	name	by	entering	desired
name	into	“Base	file	name”	text	field.	All	binary	files	will	be
created	with	the	chosen	base	name	followed	by	device	name.	

All	the	devices	that	were	built	will	be	exported.

*	Notice:	this	option	in	only	supported	in	OpenCL	mode.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Static	Analyzer	>	Remove	items	from	Project

Remove	items	from	Project

Programs,	Folders	and	source	files	can	be	removed	from	the
project.	To	remove	an	item	from	the	project,	right-click	on	it
and	select	the	Remove	option.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Static	Analyzer	>	Static	Analyze	Toolbar	–	for	OpenCL	source	files

Static	Analyze	Toolbar	–	for	OpenCL	source	files

	

Build	command
Kernel	Build	options
Opens	the	“Build	Options”	dialog
The	bitness	of	the	compilation	process	(for
example,	choose	OpenCL,	64-bit	to	compile
the	files	in	using	the	64-bit	OpenCL
compiler).
Displays	the	last	selected	kernel	for	the
selected	file.	Jumps	to	the	selected	kernel
in	the	active	source	if	the	source	code	is
open.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Static	Analyzer	>	Static	Analyze	Toolbar	–	for	DirectX	shaders

Static	Analyze	Toolbar	–	for	DirectX	shaders

	

Build	only	command
Shader	Build	options
Opens	the	“Build	Options”	dialog
The	bitness	of	the	compilation
process	(for	example,	choose
OpenCL,	64-bit	to	compile	the
files	in	using	the	64-bit	OpenCL
compiler).
The	selected	shader	model.	This
parameter	is	set	once	at	the
Folder	level,	and	holds	for	all	the
shaders	in	that	Folder.
The	type	of	the	selected	shader
(Vertex,	Pixel,	Hull,	etc.)
The	target	shader	for	the
compilation	process.

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Static	Analyzer	>	CodeXLAnalyzer	Command	Line	Interface

CodeXLAnalyzer	Command	Line	Interface

CodeXLAnalyzer	(formerly	CodeXLKernelAnalyzer)	enables
compiling	and	generating	performance	statistics	for	OpenCL
kernels,	DirectX	Shaders	and	OpenGL	shaders.	The	compilation
and	statistics	generation	processes	can	be	targeted	at	a	variety
of	AMD	GPUs	and	APUs,	regardless	to	the	actual	GPU/APU
type	that	is	installed	on	your	system.	The	application
capabilities	were	expanded.	OpenCL	Kernels	as	well	as	DirectX
shaders	can	now	be	compiled.

CodeXLAnalyzer	can	be	executed	from	a	shell	window	using
the	CodeXLAnalyzer	console	application	which	is	located	in	the
CodeXL	installation	directory.

Note:	On	Windows,	CodeXLAnalyzer	is	available	in	both	32-bit
and	64-bit	versions.	To	execute	the	compilation	and	statistics
generation	in	64-bit,	invoke	CodeXLAnalyzer-x64.exe.	On
Linux,	only	a	64-bit	version	is	available.

Using	CodeXLAnalyzer	Command	Line	Interface	to
compile	OpenCL	Kernels
Using	CodeXLAnalyzer	Command	Line	Interface	to
compile	DirectX	shaders
Using	CodeXLAnalyzer	Command	Line	Interface	to
compile	OpenGL	and	Vulkan	programs
Generating	and	interpreting	CodeXLAnalyzer	CLI’s	live
register	analysis	report

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Static	Analyzer	>	CodeXLAnalyzer	Command	Line	Interface	>	Using	CodeXLAnalyzer
Command	Line	Interface	to	compile	OpenCL	Kernels

Using	CodeXLAnalyzer	Command	Line	Interface	to
compile	OpenCL	Kernels

OpenCL	is	the	default	language	for	CodeXLAnalyzer,	so	in
order	to	compile	OpenCL	kernels	specifying	the	input	source
code	language	is	optional.

CodeXLAnalyzer	uses	the	actual	AMD	OpenCL	Driver	installed
on	the	computer,	i.e	the	Catalyst	driver	to	perform	offline
compilation.

If	no	GPU	is	present,	the	OpenCL	driver	installed	with	APP	SDK
can	be	used.

Details	of	available	commands:

-h View	available	options
CodeXLAnalyzer.exe		-h

	

-s
Specify	the	source	language	for	the	compilation.	“cl”	is	the
default	which	means	that	for	OpenCL	kernel	compilation
there	is	no	need	to	specify	the	–s	switch
CodeXLAnalyzer.exe		-s	cl	-l

	

-l	[--list-asics] List	known	ASIC	targets.
CodeXLAnalyzer.exe		-l

	

--verbose									 	View	supported	ASICS	with	detailed	marketing	names
CodeXLAnalyzer.exe		-l	--verbose									

	

--version										 	Print	version	string.
CodeXLAnalyzer.exe		--version									

	
-a	[--analysis]	arg Path	to	output	analysis	file.		Requires	--kernel.

	 CodeXLAnalyzer.exe	foo.cl	--kernel	myKernel	--analysis	foo.csv
	

-c	[--asic]	arg			 Which	ASIC	to	target.		Repeatable.
CodeXLAnalyzer.exe	foo.cl	--kernel	myKernel	-isa	foo.isa	--asic	Bonaire

	

--list-kernels						 List	the	kernels	functions	available	in	the	specify	cl	file
CodeXLAnalyzer	foo.cl	--list-kernels

	

--isa	arg										

Path	to	output	ISA	disassembly	file(s).	This	command
requires	compilation	switches	identifying	the	required	kernel	-
-kernel
CodeXLAnalyzer.exe	foo.cl	--kernel	Foo	--isa	c:\files\Foo
	
Detailed	explanation:
--kernel	FooKernel:	compile	and	get	ISA	for	“Foo”	kernel
--isa	c:\files\Foo:	specify	the	designated	output	location	and	prefix.	This	will
creates	files	such	as	c:\files\Foo-Bonaire.amdisa,	c:\files\Foo-Hawaii.amdisa,
etc.

	

--il	arg												 Path	to	output	IL	file(s).		Requires	--kernel.
CodeXLAnalyzer	foo.cl	--kernel	myKernel	--il	foo.il	--asic	Tahity

	

--debugil	arg						 Path	to	output	Debug	IL	file(s).
CodeXLAnalyzer	foo.cl	--kernel	myKernel	--debugil	foo.debugil

	

--metadata	arg						 Path	to	output	Metadata	file(s).	Requires	--kernel.
CodeXLAnalyzer	foo.cl	--kernel	myKernel	--	metadata	foo.metadata

	
-b	[--binary]
arg		

Path	to	binary	output	file(s).
CodeXLAnalyzer	foo.cl	--kernel	myKernel	–b	foo.bin

	
--suppress
arg							

Section	to	omit	from	binary	output.	
Repeatable.

	 CodeXLAnalyzer	foo.cl	--kernel	myKernel	–suppress	.source	–b	foo.bin
	

-k	[--kernel]	arg		
Kernel	to	analyze	or	make	IL	or	ISA.
CodeXLAnalyzer	foo.cl	--kernel	myKernel	–b	foo.bin

	
--
OpenCLoption

OpenCL	compiler	options.		Repeatable.

CodeXLAnalyzer	foo.cl	--kernel	myKernel	--isa	foo.isa	--OpenCLoption	-cl-

arg		 enable-mad	--OpenCLoption	-w

	

-D	[--define]	arg 	Define	symbol	or	symbol=value.		Repeatable.
CodeXLAnalyzer	foo.cl	--kernel	myKernel	--isa	foo.isa	–D	myDefine

	

--csv-separator	arg
	Override	to	default	separator	for	analysis	items.
CodeXLAnalyzer	foo.cl	--kernel	myKernel	--analysis	foo.csv	–csv-
separator	#

	

--livereg	arg

Path	to	the	live	register	analysis	output	file	(note	that	“--isa
arg"	must	be	used	in	conjunction	with	the	--livereg	switch
for	live	register	analysis	to	be	performed,	since	the	live
register	analysis	engine	works	by	analyzing	the	ISA
disassembly).
Note:	this	is	a	beta	feature	of	CodeXLAnalyzer	CLI.	You	can
find	more	info	about	it	in	the	“Generating	and	Interpreting
CodeXLAnalyzer	CLI’s	Live	Register	Analysis	Report”
CodeXLAnalyzer	–s	cl	–c	Bonaire	--kernel	myKernel	--isa	foo.isa	--livereg
fooLiveRegFile.txt	--il	fooIl.il	myClFile.cl

	

Usage	examples:

		Create	binary	files	output/foo-ASIC.bin	for	foo.cl.
				CodeXLAnalyzer	foo.cl	--bin	outdir/foo

	
		List	the	kernels	available	in	foo.cl.
				CodeXLAnalyzer	foo.cl	--list-kernels

	
		Generate	ISA	and	performance	statistics	for	all	ASICs	for
kernel	myKernel	which	is	defined	in	foo.cl
				CodeXLAnalyzer	foo.cl	--kernel	myKernel	--analysis	foo.csv

	
		List	the	ASICs	that	the	runtime	supports.
				CodeXLAnalyzer	--list-asics

	
Generate	ISA	and	IL	code	for	Cypress	(ASIC)	for	kernel
myKernel	which	is	defined	in	source	file	foo.cl

				CodeXLAnalyzer	foo.cl	--kernel	myKernel	--il	foo	--isa	foo	--asic	Cypress
	

Generate	ISA	code	and	live	register	analysis	report	for	Iceland
(ASIC),	for	kernel	myKernel	which	is	defined	in	source	file
foo.cl
				CodeXLAnalyzer	foo.cl	--kernel	myKernel	–livereg	livereg.txt	--isa	foo	--asic	Iceland
	

											

	
©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Static	Analyzer	>	CodeXLAnalyzer	Command	Line	Interface	>	Using	CodeXLAnalyzer
Command	Line	Interface	to	compile	DirectX	shaders

Using	CodeXLAnalyzer	Command	Line	Interface	to
compile	DirectX	shaders

CodeXLAnalyzer	command	line	tool	supports	offline
compilation	and	statistics	generation	for	DirectX	shaders.
Naturally,	it	is	supported	on	Windows	only.

The	Analyzer	works	in	2	stages:
1.							By	default,	CodeXLAnalyzer	compiles	the	shader	using	the	D3D	Compiler.
CodeXL	ships	with	a	default	compiler	(d3dcompiler_47.dll).	Unless	the	--
DXLocation	command	line	switch	is	specified,	CodeXL	will	use	the	default
compiler.	The	compilation	can	also	go	through	Microsoft’s	FXC	tool	instead	of
directly	through	the	D3D	compiler.	To	use	FXC,	you	need	to	specify	the	–FXC
command	line	switch	with	the	location	of	FXC.exe.

2.							CodeXLAnalyzer	compiles	the	D3D	ASM	code	generated	by	the	D3D	Compiler
into	AMD	ISA,	and	generates	statistics.

Regardless	to	the	chosen	compilation	chain,	all	build	errors
and	warnings	will	be	printed	in	the	command	line	window.

Details	of	available	commands:

Details	of	available	commands:

-h View	available	options
CodeXLAnalyzer.exe		-h

	

-s

Specify	the	source	language	for	the
compilation.	For	all	DX	options,	you	need	to
specify	the	source	since	OpenCL	is	the
default	language.	Available	options:	DXAsm,
HLSL,	CL	(default)
CodeXLAnalyzer.exe		-s	hlsl

	

-s	hlsl	–l
View	supported	ASICS	for	DirectX	(also-	this
is	default	ASICs	list	for	compilation)
CodeXLAnalyzer.exe		-s	hlsl	–l

	

-s	hlsl	-l	--
verbose

View	supported	ASICS	with	detailed
marketing	names
CodeXLAnalyzer.exe		-s	hlsl	–l	–	verbose

	

--isa
arg										

Path	to	output	ISA	disassembly	file(s).	This
command	requires	compilation	switches	such
as	–f,	-p.
CodeXLAnalyzer.exe	-s	hlsl	-f	VsMain	-p	vs_5_0	-p
vs_5_0	c:/files/myShader.fx	--isa	c:/files/myShader.isa
	
Detailed	explanation:
–s	HLSL:	run	HSLS	compilation	(vs	CL)
–f	VsMain:	compile	and	get	ISA	for	“VsMain”	function
–p	vs_5_0:	the	target	in	D3DCompile:	ps_5_0,	vs_5_0,
gs_5_0
c:/files/myShader.fx:	the	file	to	compile
–isa	c:/files/myShader.isa:	specify	the	designated	output
file.
	

	

-c	[--asic]
arg			

By	default,	compilation	will	be	done	to	all
default	available	devices	(run	–s	hlsl	–l	to
view	the	list).	This	option	enables	you	to
choose	which	ASIC	to	target.	This	option	is
repeatable.
CodeXLAnalyzer.exe	-s	hlsl	-f	VsMain		-p	vs_5_0
c:/files/myShader.fx	--isa	c:/files/myShader.isa						-c
Hawaii	-c	Kaldini

	

-a	[--analysis
]

Path	to	output	analysis	file.		Requires
compilation.

CodeXLAnalyzer.exe	-s	hlsl	-f	VsMain
c:/files/myShader.fx	-p	vs_5_0		-a	c:/files/myShader.csv

	

-D
To	compile	using	defines	use	–D,	repeatable.
CodeXLAnalyzer.exe	-s	hlsl	-f	VsMain
c:/files/myShader.fx	--isa	c:/files/myShader.isa	-p
vs_5_0			–D	MyDefine

	

--	DXFlags
Compile	using	DXFlags
CodeXLAnalyzer.exe	-s	hlsl	-f	VsMain
c:/files/myShader.fx	--isa	c:/files/myShader.isa	-p
vs_5_0			--DXFlagx	1

	

--version View	the	Catalyst	driver	version	installed
CodeXLAnalyzer_d.exe	-s	hlsl	–version

	

--DXLocation

Compile	with	a	specific	D3Dcompiler	DLL.
Note	that	the	path	need	to	be	in	quotes	if	it
contains	spaces.

CodeXLAnalyzer.exe	-s	hlsl	-f	VsMain		-p	vs_5_0
c:/files/myShader.fx	--isa	c:/files/myShader.isa							-c
Hawaii	--DXLocation	"C:\Program	Files
(x86)\Windows	Kits\8.1\bin\x86\d3dcompiler_47.dll"

	

-s	DXAsm

Compile	from	a	blob.	In	this	case,	the
application	assumes	D3DCompilation	is
done	so	it	skips	this	and	does	the	AMD	DX
Compilation	only.
CodeXLAnalyzer.exe		-f		VsMain	-s	DXAsm	-p	vs_5_0
c:/files/myShader.obj		--isa	c:\temp\dxTest.isa

	
Compile	using	FXC.	You	need	to	provide	the
full	FXC	path	and	arguments,	and	need	to
use	/Fo	switch.	Also,	the	output	of	the	FXC

--FXC

file	should	be	the	input	file	for	KA.	Use	with
the	DXAsm	switch.
CodeXLAnalyzer.exe		-s	DXAsm	-f		VsMain	-p	vs_5_0	
c:/files/myShader.fx	--isa	c:\files\myShader.isa	-c	tahiti	-
-FXC	"\"C:\Program	Files	(x86)\Windows
Kits\8.1\bin\x86\fxc.exe\"	/E	VsMain	/T	vs_5_0		/Fo
c:/files/myShader.obj	c:/files/myShader.fx"
	

	

-s	DXAsmT

Compile	from	a	blob	represented	as	text
(DX	ASM	as	Text)	.	In	this	case,	the
application	assumes	D3DCompilation	is
done	so	it	skips	this	and	does	the	AMD	DX
Compilation	only.
CodeXLAnalyzer.exe		-s	DXAsmT	-f		VsMain	-p
vs_5_0		c:/files/myShaderAsText.asm	--isa
c:\files\myShader.isa	-c	tahiti

	

--
DumpMSIntermediate
arg

When	using	this	option,	the	MS
Compilation	output	will	be	saved	in
the	designated	file
CodeXLAnalyzer.exe	-s	hlsl	-f	ps_main
c:\temp\Pixel.psh		--isa	c:\temp\dxOutput.isa	-c
Tahiti	-c	Bonaire	-p	ps_5_0		--
DumpMSIntermediate
c:\temp\DumpMSIntermediate.txt
	

	

--livereg	arg

Path	to	the	live	register	analysis	output	file	(note	that	“--isa
arg"	must	be	used	in	conjunction	with	the	--livereg	switch
for	live	register	analysis	to	be	performed,	since	the	live
register	analysis	engine	works	by	analyzing	the	ISA
disassembly).
Note:	this	is	a	beta	feature	of	CodeXLAnalyzer	CLI.	You	can
find	more	info	about	it	in	the	“Generating	and	Interpreting
CodeXLAnalyzer	CLI’s	Live	Register	Analysis	Report”
CodeXLAnalyzer.exe	-s	hlsl	-c	Fiji	-f	VSMain	-p	vs_5_0	--isa	c:\temp\.txt	-
-livereg	c:\temp\lreg.txt	c:\temp\dx\BasicHLSL11_VS.hlsl

	
	

Usage	examples:

1.						Suppose	that	you	would	like	to	compile	and	generate	the
ISA	code	of	a	DirectX	pixel	shader
(C:\Users\shaders\Render.hlsl),	using	a	the	default	D3D
compiler	that	ships	with	CodeXL,	and	would	like	the
output	files	which	contain	the	ISA	code	to		be	located	at
c:\temp\	and	be	named	myISA-<device-name>.isa:

CodeXLAnalyzer.exe	-s	hlsl	-p	ps_5_0	-f	RenderPS	--isa
c:\temp\myISA.isa	C:\Users\shaders\Render.hlsl

2.						Suppose	that	you	would	like	to	compile	and	generate	the
ISA	code	of	a	DirectX	pixel	shader
(C:\Users\shaders\Render.hlsl),	using	a	specific	D3D
compiler	(C:\Program	Files	(x86)\Windows
Kits\8.1\bin\x86\d3dcompiler_47.dll),	and	would	like	the
output	files	which	contain	the	ISA	code	to		be	located	at
c:\temp\	and	be	named	myISA-<device-name>.isa:

CodeXLAnalyzer.exe	-s	hlsl	-p	ps_5_0	-f	RenderPS	--
DXLocation	"C:\Program	Files	(x86)\Windows
Kits\8.1\bin\x86\d3dcompiler_47.dll"	--isa	c:\temp\myISA.isa
C:\Users\shaders\Render.hlsl

3.						Suppose	that	you	would	like	to	compile	and	generate	the
ISA	code	of	a	DirectX	pixel	shader
(C:\Users\shaders\Render.hlsl)	only	for	“Iceland”,	using	a
specific	D3D	compiler	(C:\Program	Files	(x86)\Windows
Kits\8.1\bin\x86\d3dcompiler_47.dll),	and	would	like	the
output	files	which	contain	the	ISA	code	to		be	located	at
c:\temp\	and	be	named	myISA-<device-name>.isa:

CodeXLAnalyzer.exe	-s	hlsl	-p	ps_5_0	-f	RenderPS	–c
Iceland	--DXLocation	"C:\Program	Files	(x86)\Windows
Kits\8.1\bin\x86\d3dcompiler_47.dll"	--isa	c:\temp\myISA.isa

C:\Users\shaders\Render.hlsl

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

Details	of	available	commands:

-h View	available	options
CodeXLAnalyzer.exe		-h

	

-s

Specify	the	source	platform	for	the
compilation.
CodeXLAnalyzer.exe		-s	opengl
CodeXLAnalyzer.exe		-s	vulkan

	
-s
<platform>	-
l

View	supported	ASICS	for	DirectX	(also-
this	is	default	ASICs	list	for	compilation)
CodeXLAnalyzer.exe		-s	opengl	–l

	
--isa
arg										 Path	to	output	ISA	disassembly	file(s).

--vert	<arg> Full	path	to	vertex	shader’s	location

--tesc	<arg> Full	path	to	tessellation	control	shader’s
location

--tese	<arg> Full	path	to	tessellation	evaluation
shader’s	location

--geom Full	path	to	geometry	shader’s	location

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Static	Analyzer	>	CodeXLAnalyzer	Command	Line	Interface	>	Using	CodeXLAnalyzer
Command	Line	Interface	to	compile	OpenGL	and	Vulkan	programs

Using	CodeXLAnalyzer	Command	Line	Interface	to
compile	OpenGL	and	Vulkan	programs

CodeXLAnalyzer.exe	command	line	tool	supports	compilation
and	statistics	generation	OpenGL	and	Vulkan	programs.

Details	of	available	commands:

<arg>
--frag	<arg> Full	path	to	fragment	shader’s	location
																																		

-c	[--asic]
arg			

By	default,	compilation	will	be	done	to	all
default	available	devices		This	option	is
repeatable.
	
	

	
-a	[--analysis
]

Path	to	the	performance	statistics	output
file.		Requires	compilation.

	 	

--version View	the	Catalyst	driver	version	installed
CodeXLAnalyzer_d.exe	-s	opengl	–version

	

Usage	examples:

1.						To	build	an	OpenGL	program	with	a	vertex	shader	and	a
fragment	shader	attached	and	generate	ISA

CodeXLAnalyzer.exe	-s	opengl	--vert
c:\shaders\glVertex.vert	--geom	c:\shaders\glGeom.geom	--isa
c:\output\myISA.txt

2.						To	build	an	Vulkan	program	with	a	vertex	shader	and	a
geometry	shader	attached,	and	generate	ISA	and
performance	statistics

CodeXLAnalyzer.exe	-s	vulkan	--vert
c:\shaders\vkVertex.glsl	--geom	c:\shaders\vkGeom.geom	--isa
c:\output\myISA.isa	–a	c:\output\myStats.txt

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Static	Analyzer	>	CodeXLAnalyzer	Command	Line	Interface	>	Generating	and	Interpreting
CodeXLAnalyzer	CLI’s	Live	Register	Analysis	Report

Generating	and	Interpreting	CodeXLAnalyzer	CLI’s	Live
Register	Analysis	Report

Using	CodeXLAnalyzer	CLI’s	live	register	analysis	report,	you	can	better	understand
the	register	usage	of	your	HLSL	shaders	and	OpenCL	kernels	throughout	their
execution.	Live	register	analysis	is	a	beta	feature	of	CodeXLAnalyzer	CLI,	and	it
currently	only	fully	supports	HLSL	shaders	and	partially	supports	OpenCL	kernels.
	

Generating	a	live	register	analysis	report	for	your	kernel	or	shader:
As	mentioned	in	the	“Details	of	available	commands”	section	above,	in	order	to
generate	a	live	register	analysis	report,	you	need	to	make	sure	that	your	invocation
command	includes	the	following	command	line	switches:

1.		--	isa	<arg>	which	instructs	CodeXLAnalyzer	to	generate	ISA	disassembly	for
your	kernel/shader

2.		--livereg	<arg>	which	instructs	CodeXLAnalyzer	to	perform	a	live	register
analysis	of	the	generated	ISA	disassembly

	
Usage	examples:
CodeXLAnalyzer.exe	–s	cl	–c	Fiji	--kernel	DCT	--isa	c:\output\.isa	--livereg
c:\output\livereg.txt	DCT_Kernels.cl
Let’s	break	down	the	above	command	to	understand	its	structure:
1.							“-s	cl”	instructs	CodeXLAnalyzer	to	work	in	OpenCL	mode
2.							“-c	Fiji”	sets	Fiji	as	the	target	ASIC
3.							“--kernel	DCT”	sets	DCT	as	the	target	kernel	(this	is	the	kernel	to	be	analyzed;
it	is	defined	in	DCT_Kernels.cl,	which	is	the	last	argument	in	the	above
command)

4.							“--isa	c:\output\.isa”	instructs	CodeXLAnalyzer	to	generate	an	ISA	disassembly
file	and	save	it	in	c:\output	with	a	“.isa”	file	extension.	The	output	file	name	is
generated	automatically.

5.							“--livereg	“c:\output\livereg.txt”	instructs	CodeXLAnalyzer	to	perform	live
register	analysis,	save	the	report	in	c:\output,	and	use	“livereg.txt”	as	the
report	file	name’s	suffix	and	extension.

	
After	running	the	above	command,	we	see	the	following	output	files	in	c:\output	(our

destination	folder):
Fiji_DCT.isa
Fiji_DCT_livereg.txt
	
The	live	register	analysis	report	file	is	Fiji_DCT_livereg.txt.
	
For	HLSL,	the	usage	is	similar:
CodeXLAnalyzer.exe	-s	hlsl	-c	Fiji	-f	VSMain	-p	vs_5_0	--isa	c:\temp\.txt	--livereg
c:\temp\lreg.txt	c:\temp\dx\BasicHLSL11_VS.hlsl
1.							“-s	hlsl”	instructs	CodeXLAnalyzer	to	work	in	HLSL	mode
2.							“-c	Fiji”	sets	Fiji	as	the	target	ASIC
3.							“-f	VSMain”	sets	VSMain	as	the	target	shader
4.								“--isa	c:\output\.isa”	instructs	CodeXLAnalyzer	to	generate	an	ISA
disassembly	file	and	save	it	in	c:\output	with	a	“.isa”	file	extension.	The	output
file	name	is	generated	automatically.

5.							“--livereg	“c:\output\livereg.txt”	instructs	CodeXLAnalyzer	to	perform	live
register	analysis,	save	the	report	in	c:\output,	and	use	“livereg.txt”	as	the
report	file	name’s	suffix	and	extension.

	
Report	structure:
If	you	open	up	the	live	register	analysis	report	file,	you	will	see	that	it	is	a	plain
textual	file.	Each	line	in	the	file	gives	a	snapshot	of	the	register	usage	when	the	PC	is
at	that	specific	ISA	line.		Each	line	in	the	report	is	of	the	following	format:
<line	number>	|	<number	of	live	registers>	|	<list	of	registers
+	access	type>	|	<ISA	instruction>
Where:
1.							<line	number>	is	the	number	of	the	current	ISA	disassembly	line
2.							<number	of	live	registers>	is	the	number	of	live	registers	when	the	PC	is	at
that	ISA	line

3.							<list	of	registers	+	access	type>	is	a	list	of	n	columns.	Each	column	(except
for	the	first	one)	refers	to	a	register:
a.							‘^’	indicates	a	register	is	written	to
b.						‘v’	indicates	a	register	is	read
c.							‘x’	is	used	for	a	register	which	is	written	and	read
d.						‘:’	is	used	for	register	where	the	contents	must	be	preserved	across	this
instruction	(live	register)

e.						A	blank	means	that	the	register	is	not	used
4.							<ISA	instruction>	is	the	ISA	disassembly	of	the	relevant	instruction

At	the	end	of	the	report,	you	will	find	a	summary	in	the

following	format:
Maximum	#	VGPR	used		<Max	VGPR	used>,	#	VGPR
allocated:		<Number	of	VGPR	allocated>
Where:

1.							<Max	VGPR	used>	is	the	number	of	VGPRs	actually	used	throughout	the
code

2.							<Number	of	VGPR	allocated>	is	the	number	of	VGPRs	that	were	allocated

Two	things	to	remember	when	inspecting	the	live	register
analysis	report	are:

1.					If	the	number	of	live	registers	is	lower	than	the	number	of	allocated
registers,	it	indicates	that	the	SC	could	reduce	VGPRs	without	spilling	by
introducing	moves.

2.					If	registers	have	a	very	long	liveness	range	without
read/write	access,	those	registers	could	be	likely	spilled
at	low	cost.

Here	is	a	sample	live	register	analysis	report:
	
				1	|			9	|					:::::::	::	|	label_basic_block_1:	s_swappc_b64	s[2:3],	s[2:3]
				2	|			9	|					:::::::	::	|	s_andn2_b32	s0,	s9,	0x3fff0000
				3	|			9	|					:::::::	::	|	s_mov_b32	s1,	s0
				4	|			9	|					:::::::	::	|	s_mov_b32	s2,	s10
				5	|			9	|					:::::::	::	|	s_mov_b32	s3,	s11
				6	|			9	|					:::::::	::	|	s_mov_b32	s0,	s8
				7	|			9	|					:::::::	::	|	s_buffer_load_dwordx8	s[4:11],	s[0:3],	0x00
				8	|			9	|					:::::::	::	|	s_buffer_load_dwordx8	s[12:19],	s[0:3],	0x20
				9	|			9	|					:::::::	::	|	s_waitcnt	lgkmcnt(0)
			10	|		10	|	^			:::v:::	::	|	v_mul_f32	v0,	s7,	v7
			11	|		11	|	:^		:::v:::	::	|	v_mul_f32	v1,	s11,	v7
			12	|		12	|	::^	:::v:::	::	|	v_mul_f32	v2,	s15,	v7
			13	|		13	|	:::^:::v:::	::	|	v_mul_f32	v3,	s19,	v7
			14	|		12	|	x:::::v	:::	::	|	v_mac_f32	v0,	s6,	v6
			15	|		12	|	:x::::v	:::	::	|	v_mac_f32	v1,	s10,	v6
			16	|		12	|	::x:::v	:::	::	|	v_mac_f32	v2,	s14,	v6
			17	|		12	|	:::x::v	:::	::	|	v_mac_f32	v3,	s18,	v6
			18	|		11	|	x::::v		:::	::	|	v_mac_f32	v0,	s5,	v5
			19	|		11	|	:x:::v		:::	::	|	v_mac_f32	v1,	s9,	v5

			20	|		11	|	::x::v		:::	::	|	v_mac_f32	v2,	s13,	v5
			21	|		11	|	:::x:v		:::	::	|	v_mac_f32	v3,	s17,	v5
			22	|		10	|	x:::v			:::	::	|	v_mac_f32	v0,	s4,	v4
			23	|		10	|	:x::v			:::	::	|	v_mac_f32	v1,	s8,	v4
			24	|		10	|	::x:v			:::	::	|	v_mac_f32	v2,	s12,	v4
			25	|		10	|	:::xv			:::	::	|	v_mac_f32	v3,	s16,	v4
			26	|			9	|	vvvv				:::	::	|	exp	pos0,	v0,	v1,	v2,	v3
			27	|			5	|									:::	::	|	s_buffer_load_dwordx4	s[4:7],	s[0:3],	0x40
			28	|			5	|									:::	::	|	s_buffer_load_dwordx4	s[8:11],	s[0:3],	0x50
			29	|			5	|									:::	::	|	s_buffer_load_dwordx4	s[0:3],	s[0:3],	0x60
			30	|			5	|									:::	::	|	s_waitcnt	expcnt(0)
			31	|			6	|	^							::v	::	|	v_mul_f32	v0,	s6,	v10
			32	|			7	|	:^						::v	::	|	v_mul_f32	v1,	s10,	v10
			33	|			8	|	::^					::v	::	|	v_mul_f32	v2,	s2,	v10
			34	|			7	|	x::					:v		::	|	v_mac_f32	v0,	s5,	v9
			35	|			7	|	:x:					:v		::	|	v_mac_f32	v1,	s9,	v9
			36	|			7	|	::x					:v		::	|	v_mac_f32	v2,	s1,	v9
			37	|			6	|	x::					v			::	|	v_mac_f32	v0,	s4,	v8
			38	|			6	|	:x:					v			::	|	v_mac_f32	v1,	s8,	v8
			39	|			6	|	::x					v			::	|	v_mac_f32	v2,	s0,	v8
			40	|			6	|	:::^								::	|	v_mov_b32	v3,	1.0
			41	|			7	|	::::^							::	|	v_mov_b32	v4,	0
			42	|			7	|	vvvv:							::	|	exp	param0,	v0,	v1,	v2,	v3
			43	|			4	|				vv							vv	|	exp	param1,	v12,	v13,	v4,	v3
			44	|			0	|																|	s_endpgm
	
Maximum	#	VGPR	used		13,	#	VGPR	allocated:		14
	

	

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Power	Profiler

Power	Profiler

CodeXL's	Power	Profiler	is	a	powerful	tool	to	help	analyze	the
energy	efficiency	of	systems	based	on	AMD	APUs	and	majority
of	the	recent	dGPU(discrete	GPU).

Features	of	the	Power	Profiler	include:
·									Report	the	following	data:

o			Estimated	average	power	consumed	by	APU	and	supported	dGPU
subcomponents.

o			Average	frequency	of	the	CPU	cores	and	the	internal	GPU	and	supported
dGPU.

o			Thermal	trend	of	the	CPU	compute-units	and	the	internal	GPU.
o			Thermal	trend	of	supported	dGPU.
o			CPU	cores	P-States.

·									A	command-line	tool	to	for	data	collection	and	dump	to	text/binary	format.
·									The	CodeXL	graphic	client	provides	these	Power	Profiling	capabilities:

o			Real-time	monitoring
o			Timeline	view
o			Summary	view
o			Offline	review	of	session	data

·									Following	hardware’s	are	supported
o			AMD	APUs:	Carrizo,	Kaveri,	Mullins,	Temash,	Stoney,	Bristol
o			AMD	dGPUs:	Graphics	IP	7	GPUs,	Radeon	and	FirePro	models.

	
Installing	the	Power	Profiler	Linux	Driver
Wider	Linux	power	profiling	support	(DKMS)
Power	Profiler’s	Performance	Counters
Power	Profiler	Command	Line	Interface
Power	Profiler	Project	Settings
Power	Profiler	Counters	Selection	Dialog
Power	Profiler	Session	Tree
Power	Profiler	Timeline	View

Power	Profiler	Summary	View
Power	Profiler	Session	Control
Remote	Power	Profiling
AMDTPowerProfileAPI	Library
Limitations
	

Legal	Disclaimer

The	reports	generated	from	this	Software	may	include	thermal
and	power	estimates	which	may	contain	errors.	The	report
values	may	deviate	from	the	actual	values	and/or	the	published
specifications.	Therefore,	these	reports	should	not	be	relied
upon	for	any	commercial	or	production	systems	and	the	user	is
responsible	for	obtaining	accurate	thermal	and	power
measurements.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Power	Profiler	>	Installing	the	Power	Profiler	Linux	Driver

Installing	the	Power	Profiler	Linux	Driver

On	Linux	systems,	the	CodeXL	Debian	and	RPM	packages
perform	the	driver	installation	automatically.	However,	if	you’ve
downloaded	the	CodeXL	tar	archive,	you	have	to	install	the
Power	Profiler’s	Linux	driver	manually.	This	includes	a	simple
step	of	running	AMDTPwrProfDriver.sh	script	with	root
credentials.
	
Example:
$	tar	–xf	CodeXL_Linux_x86_64_2.0.XXXX.tar.gz
$	cd	CodeXL_Linux_x86_64_2.0.XXXX
$	sudo	./AMDTPwrProfDriver.sh	install
	
Installer	will	create	a	source	tree	for	power	profiler	driver
under	/usr/src/	amdtPwrProf	-<version	number>.	All	the	source
files	required	for	module	compilation	is	located	in	this
directory	are	under	MIT	license.

To	uninstall	the	driver	run	the	following	command:

$	$	cd	<codexl-install-dir>
$	sudo	./AMDTPwrProfDriver.sh	uninstall
	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Power	Profiler	>	Wider	Linux	power	profiling	support	(DKMS)

Wider	Linux	power	profiling	support	(DKMS)

On	Linux	machine	Power	Profiler	driver	can	also	be	installed
with	Dynamic	Kernel	Module	Support	(DKMS)	framework
support.	DKMS	framework	automatically	upgrades	the	power
profiler	driver	module	whenever	there	is	a	change	in	the
existing	kernel.	This	saves	user	from	manually	upgrading	the
power	profiler	driver	module.

The	DKMS	package	needs	to	be	installed	on	target	machines
before	running	the	installation	steps	mentioned	in	the	above
section.	AMDTPwrProfDriver.sh	installer	script	will
automatically	takes	care	of	DKMS	related	configuration	if
DKMS	package	is	installed	in	the	target	machine.
	
Example	(for	Ubuntu	system):
$	sudo	apt-get	install	dkms
$	tar	–xf	CodeXL_Linux_x86_64_2.0.XXXX.tar.gz
$	cd	CodeXL_Linux_x86_64_2.0.XXXX
$	sudo	./AMDTPwrProfDriver.sh	install
	
If	the	user	upgrades	the	kernel	version	frequently	it	is
recommended	to	use	DKMS	for	installation.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Power	Profiler	>	Power	Profiler’s	Performance	Counters

Power	Profiler’s	Performance	Counters

Category Name Description Notes

Total	APU
Power

Average	APU
Power	for	the
sampling	period,
reported	in
Watts.	This	is	an
estimated
consumption
value	which	is
calculated	based
on	APU	activity
levels.

	

CPU	Compute
Unit	0	Power
CPU	Compute
Unit	1	Power

Average	CPU
Compute	Unit
Power	for	the
sampling	period,
reported	in
Watts.	This	is	an
estimated
consumption
value	which	is
calculated	based
on	APU	activity
levels.

	

Average
Integrated-GPU
Power	for	the
sampling	period,
reported	in

Power

iGPU	Power Watts.	This	is	an
estimated
consumption
value	which	is
calculated	based
on	APU	activity
levels.

	

PCIe-
Controller
Power

Average	PCIe-
Controller	Power
for	the	sampling
period,	reported
in	Watts.	This	is
an	estimated
consumption
value	which	is
calculated	based
on	APU	activity
levels.	This	value
does	not	include
the	power
consumed	by
PCIe	devices
connected	to	the
PCIe	bus.

	

Memory-
Controller
Power

Average	DDR
Memory-
Controller	Power
for	the	sampling
period,	reported
in	Watts.	This	is
an	estimated
consumption
value	which	is
calculated	based
on	APU	activity
levels.	This	value
does	not	include

	

the	power
consumed	by	the
memory	DIMMs.

Display-
Controller
Power

Average	Display-
Controller	Power
for	the	sampling
period,	reported
in	Watts.	This
value	refers	to
the	APU's
internal	display
controller	which
may	be	used	in
notebook	and
embedded
configurations.
This	is	an
estimated
consumption
value	which	is
calculated	based
on	APU	activity
levels.	This	value
does	not	include
the	power
consumed	by	the
display.

	

Cumulative
APU	Power

The	accumulated
energy	consumed
by	the	APU
throughout	the
profile	session.
Reported	in
Joules.

Available
only	in
the
command
line	tool

Cumulative
Compute	Unit

The	accumulated
energy	consumed
by	the	CPU Available

0	Power
Cumulative
Compute	Unit
1	Power

Compute	Unit
throughout	the
profile	session.
Reported	in
Joules.

only	in
the
command
line	tool

Cumulative
iGPU	Power

The	accumulated
energy	consumed
by	the	APU’s
Internal	GPU
throughout	the
profile	session.
Reported	in
Joules.

Available
only	in
the
command
line	tool

dGPU	power

Average	Discrete-
GPU	Power	for
the	sampling
period,	reported
in	Watts.	This	is
an	estimated
consumption
value	which	is
calculated	based
on	dGPU	activity
levels.

The
dGPU
family
name	is
prefixed
with	this
counter
name.

CPU	Core	0
Average
Frequency
CPU	Core	1
Average
Frequency
CPU	Core	2
Average
Frequency

Average	CPU
Core	Frequency
for	the	sampling
period,	reported
in	MHz.	This	is
the	Core
Effective
Frequency	(CEF).
The	core	can	go
into	various	P-
States	within	the
sampling	period,

	

Frequency

CPU	Core	3
Average
Frequency

each	with	its	own
frequency.	The
CEF	is	the
average	of	the
core	frequencies
over	the	sampling
period.

iGPU	Average
Frequency

Average
Integrated-GPU
Frequency	for	the
sampling	period,
reported	in	MHz.

	

dGPU	Average
Frequency

Average	Discrete-
GPU	Frequency
for	the	sampling
period,	reported
in	MHz.

The
dGPU
family
name	is
prefixed
with	this
counter
name.

CPU	Core	0
Frequency
Histogram
CPU	Core	1
Frequency
Histogram
CPU	Core	2
Frequency
Histogram
CPU	Core	3
Frequency
Histogram

Histogram	of
CPU	Core
Effective
Frequency
(average
frequency	for	the
sampling	period).

Available
only	in
the
command
line	tool

iGPU
Frequency
Histogram

Histogram	of
Internal-GPU
Effective
Frequency
(average

Available
only	in
the
command

frequency	for	the
sampling	period).

line	tool

Temperature

CPU	Compute-
Unit	0
Measured
Temperature
CPU	Compute-
Unit	1
Measured
Temperature

Measured	CPU
Compute	Unit
Average
Temperature,
reported	in
Celsius.	The
reported	value	is
normalized	and
scaled,	relative	to
the	specific
processor's
maximum
operating
temperature.	This
value	can	be	used
to	indicate	rise
and	decline	of
temperature.

	

iGPU
Measured
Temperature

Measured
Integrated-GPU
Average
Temperature,
reported	in
Celsius.	The
reported	value	is
normalized	and
scaled,	relative	to
the	specific
processor's
maximum
operating
temperature.	This
value	can	be	used
to	indicate	rise
and	decline	of

	

temperature.

dGPU
Measured
Temperature

Measured
Discrete-GPU
Average
Temperature,
reported	in
Celsius.	The
reported	value	is
normalized	and
scaled,	relative	to
the	specific
processor's
maximum
operating
temperature.	This
value	can	be	used
to	indicate	rise
and	decline	of
temperature.

The
dGPU
family
name	is
prefixed
with	this
counter
name.

CPU	Core
State

CPU	Core	0	P-
State
CPU	Core	1	P-
State
CPU	Core	2	P-
State
CPU	Core	3	P-
State

CPU	Core	P-State
at	the	time	when
sampling	was
performed.

	

Other
counters

Core	0	Process
ID
Core	1	Process
ID
Core	2	Process
ID
Core	3	Process
ID

Process	Id	of	the
process	that	was
executed	by	the
CPU	core	at	the
point	in	time
when	the	core
was	sampled.

Available
only	in
the
command
line	tool

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Power	Profiler	>	Power	Profiler	Command	Line	Interface

Power	Profiler	Command	Line	Interface

CodeXL	Power	Profiler	provides	a	command	line	interface
utility	for	users	who	prefer	to	use	command	interpreters	like
cmd.exe	on	Windows	and	bash	on	Linux.	This	CLI	utility	can
be	used	to	collect	and	analyze	the	profile	data.	It	can	also	be
used	from	a	batch	file	or	a	test	script.
Usage:
On	Windows:

CodeXLPowerProfiler.exe	<options>
On	Linux:

CodeXLPowerProfiler	<options>
The	following	options	are	supported:

-P	<profile
options>

Specify	what	types	of	data	will	be	collected
during	the	profile	session.	The	following
data	types	are	supported.
power	-	collect	all	the	available	power
counters
temperature	-	collect	all	the	available
temperature	counters
frequency	-	collect	all	the	available
frequency	counters
cu_power	-	collect	cpu	compute-unit	power
counters
cu_temperature	-	collect	cpu	compute-unit
temperature	counters
gpu_power	-	collect	gpu	power	counters

gpu_temperature	-	collect	gpu
temperature	counters
core	-	collect	core	specific	attributes.	This
includes	core	frequency,	p-state	and
process	id	executing	on	the	core.
all	-	collect	all	the	supported	counters

-l

List	all	the	counters	supported	by	the	local
hardware,	and	the	hardware	devices	that
the	profiler	recognizes.
The	counter	IDs	can	be	used	with	the	‘-e’
option.
The	hardware	device	IDs	can	be	used	with
the	‘-D’	option.

-e	<counter,...>

Specify	the	comma	separated	list	of	counter
names	to	be	collected.
Use	option	‘-l’	to	get	the	supported	counter
names.
Note:	use	any	one	of	the	options	-P	or	-e.

-D	<counter,...>

Specify	the	comma	separated	list	of	device
ids.	All	the	counters	of	these	devices	will	be
profiled	and	collected.
Use	option	(-l)	to	get	the	supported	devices.

-T	<sampling
interval>

Sampling	interval	in	milli-seconds.	The
minimum	value	is	20ms.

-d	<duration> Profile	duration	in	seconds.

-o	<path>
Specify	the	output	file	path.	The	default
path	will	be	%Temp%\Codexl-
Power_<timestamp>	on	Windows	and	/tmp/
Codexl-Power_<timestamp>	on	Linux.

Define	the	output	file	format:
·									csv	-	Comma	Separated	Value	text	file

-F	<csv|txt> ·									txt	-	plain	text	file

The	default	file	format	is	CSV	file.

-C	<core	mask>

Specify	core	affinity	mask	for	the
application	to	be	launched.	Default	affinity
mask	is	all	the	available	CPU	cores.
0x1	=	Core	0
0x2	=	Core	1
0x4	=	Core	2
0x8	=	Core	3

-b Terminate	the	launched	application	after
the	specified	profile	duration.

-w Specify	the	working	directory.	Default	will
be	the	path	of	the	launched	application.

-h Displays	this	help	information.

-v Print	version	string.

-z	<db	file
output	dir>

Export	results	to	a	*.cxldb	file	which	can	be
imported	to	CodeXL	GUI	application.

-M	process

Process	profiling	is	based	on	the	IPC	load.	Collects	power
consumption	of	all	running	processes	during	their	profile
run.	These	power	values	may	differ	with	the	actual	power
consumption.	These	power	values	can	be	used	to	get	a
notion	of	power	trend	and	relative	power	consumption
among	running	processes.

Note:	Currently	PMC	counters	are
supported	only	on	windows	operating
system.	Supported	AMD	platforms	are
	Kaveri,	Mullins,	Temash	and	Carrizo.
Please	refer	limitation	section	for	further
details.

	

Examples
·									Collect	power	values	for	CPU	Compute	Units	and	GPU	for	the	duration	of	10
seconds,	with	sampling	interval	of	100	milliseconds:
CodeXLPowerProfiler.exe	–P	cpu_power	-P	gpu_power	-o	c:\Temp\powerprof-out.txt	–T	100	–d	10

·									Collect	all	the	supported	counter	values	for	the	duration	of	10	seconds	with
sampling	interval	of	100	milliseconds:
CodeXLPowerProfiler.exe	–P	all	-o	c:\Temp\powerprof-out.txt	–T	100	–d	10

·									Collect	all	the	supported	counter	values	for	the	duration	of	300	seconds	with
sampling	interval	of	100	milliseconds,	and	output	the	data	to	a	binary	file	that
can	be	imported	into	the	graphic	client:
CodeXLPowerProfiler.exe	–P	all	–C	0x3	-z	c:\Temp\PowerOutput	–T	100	–d	300

·									Collect	all	running	process	with	their	energy	consumption	shares	as	well	as	all
counters	during	a	particular	profile	run.	Where	profile	duration	is	set	to	300
seconds	and	profile	sampling	period	is	set	to	10	milliseconds.

			CodeXLPowerProfiler.exe	–M	process	–e	all	c:\Temp\PowerOutput	–T	10	–d	300

·									Display	help:
CodeXLPowerProfiler.exe	-h

·									Display	version	string:
CodeXLPowerProfiler.exe	-v

Sample	Text	output	files

Sample	1:	Collecting	non-cumulative	counters

The	following	command	collects	all	non-cumulative	power	counters	for	10	seconds,
sampling	them	every	500	milliseconds	and	dumping	the	results	to	a	text	file:

CodeXLPowerProfiler.exe	-P	power	-d	10	-T	500	-o	C:\temp\pwr_out.txt	–F	txt

When	run	on	a	Kaveri	APU,	the	content	of	the	result	text	file	is
as	below:
CODEXL	POWER	PROFILE	REPORT

																					

PROFILE	DETAILS

				CPU	Details:																			Family(0x15)	Model(48)

				CPU	Core	Mask:																	0xf

				Sampling	Interval:													500	milli-seconds

				Profile	Start	Time:												Dec-09-2014_18-10-08

				Profile	Duration:														10	seconds

	

PROFILED	COUNTERS

				COUNTER	ID						NAME																						CATEGORY								UNIT												DESCRIPTION			

									0.									pcie-ctrl-power											Power											Watt												Average	PCIe-Controller	Power	for	the	sampling	period,	…								

									1.									mem-ctrl-power												Power											Watt												Average	DDR	Memory-Controller	Power	for	the	sampling	period,…

									2.									total-apu-power											Power											Watt												Average	APU	Power	for	the	sampling	period,	reported	in	Watts…

									4.									display-ctrl-power								Power											Watt												Average	Display-Controller	Power	for	the	sampling	period,…

									5.									cpu-cu0-power													Power											Watt												Average	CPU	Compute	Unit	Power	for	the	sampling	period,	…

								16.									cpu-cu1-power													Power											Watt												Average	CPU	Compute	Unit	Power	for	the	sampling	period,…

								27.									igpu-power																Power											Watt												Average	Integrated-GPU	Power	for	the	sampling	period,	…

PROFILE	RECORDS

RecordId		Timestamp							pcie-ctrl-power			mem-ctrl-power				total-apu-power			display-ctrl-powe	cpu-cu0-power					cpu-cu1-power				
igpu-power							

	

					0				18:10:9:002								0.56														4.88													56.28														0.00													15.49													17.36													17.98										

					1				18:10:9:501								0.56														4.79													39.92														0.00													13.29													13.19														8.08										

					2				18:10:10:003							0.56														4.83													38.00														0.00													12.86													11.58														8.17										

					3				18:10:10:503							0.56														4.80													38.05														0.00													12.70													12.02														7.96										

					4				18:10:11:003							0.56														4.79													38.80														0.00													12.84													12.53														8.07										

					5				18:10:11:503							0.56														4.79													38.95														0.00													13.05													12.63														7.92										

					6				18:10:12:003							0.56														4.82													38.16														0.00													12.15													12.57														8.06										

					7				18:10:12:503							0.56														4.81													37.93														0.00													12.23													12.42														7.91										

					8				18:10:13:003							0.56														4.80													37.46														0.00													11.97													12.06														8.05										

					9				18:10:13:503							0.56														4.80													37.64														0.00													12.32													11.97														7.99										

				10				18:10:14:003							0.56														4.83													38.91														0.00													12.49													12.99														8.04										

				11				18:10:14:501							0.56														4.79													38.56														0.00													12.54													12.71														7.96										

				12				18:10:15:003							0.56														4.81													38.89														0.00													12.38													13.08														8.06										

				13				18:10:15:501							0.56														4.80													39.38														0.00													12.71													13.30														8.00										

				14				18:10:16:003							0.56														4.80													39.37														0.00													13.03													12.91														8.07										

				15				18:10:16:503							0.56														4.80													39.25														0.00													12.99													12.91														7.99										

				16				18:10:17:003							0.56														4.80													39.72														0.00													12.50													13.80														8.05										

				17				18:10:17:503							0.56														4.80													38.97														0.00													12.93													12.67														8.01										

				18				18:10:18:003							0.56														4.81													38.95														0.00													12.97													12.56														8.05										

				19				18:10:18:503							0.56														4.80													39.21														0.00													12.75													13.11														7.99										

				20				18:10:19:003							0.56														4.80													38.66														0.00													12.69													12.56														8.05										

Sample	2:	Collecting	cumulative	counters
The	following	command	collects	the	cumulative	power	counters	for	10	seconds	and
dumping	the	results	to	a	text	file:

CodeXLPowerProfiler.exe	-d	10	-o	c:\temp\cumulative.txt	-e	3,6,17,28	–F	txt

When	run	on	a	Kaveri	APU,	the	content	of	the	result	text	file	is
as	below:

	
CODEXL	POWER	PROFILE	REPORT

	

	

PROFILE	DETAILS

				CPU	Details:																			Family(0x15)	Model(48)

				CPU	Core	Mask:																	0xf

				Sampling	Interval:													100	milli-seconds

				Profile	Start	Time:												Dec-11-2014_15-57-44

				Profile	Duration:														10	seconds

	

PROFILED	COUNTERS

				COUNTER	ID						NAME																						CATEGORY								UNIT												DESCRIPTION			

									3.									total-apu-power-cuml						Power											Joule											Cumulative	APU	Power,	reported	in	Joules.

									6.									cpu-cu0-power-cuml								Power											Joule											Cumulative	CPU	Compute	Unit	Power,	reported	in	Joules.

								17.									cpu-cu1-power-cuml								Power											Joule											Cumulative	CPU	Compute	Unit	Power,	reported	in	Joules.

								28.									igpu-power-cuml											Power											Joule											Cumulative	Integrated-GPU	Power,	reported	in	Joules.

	

	

CUMULATIVE	COUNTERS

				COUNTER																			CUMULATIVE	VALUE	

				total-apu-power-cuml										228.11								

				cpu-cu0-power-cuml													48.85								

				cpu-cu1-power-cuml													50.30								

				igpu-power-cuml																78.65								

Sample	3:	Collecting	histogram	counters
The	following	command	collects	the	frequency	histogram	counters	for	10	seconds	and
dumping	the	results	to	a	text	file:

CodeXLPowerProfiler.exe	-d	10	-o	c:\temp\histogram.txt	-e	10,14,21,25,31	–F	txt

When	run	on	a	Kaveri	APU,	the	content	of	the	result	text	file	is
as	below:
	
CODEXL	POWER	PROFILE	REPORT

	

	

PROFILE	DETAILS

				CPU	Details:																			Family(0x15)	Model(48)

				CPU	Core	Mask:																	0xf

				Sampling	Interval:													100	milli-seconds

				Profile	Start	Time:												Dec-11-2014_16-00-35

				Profile	Duration:														10	seconds

	

PROFILED	COUNTERS

				COUNTER	ID						NAME																						CATEGORY								UNIT												DESCRIPTION			

								10.									cpu-core0-frequency-hist		Frequency							MHz													Histogram	of	CPU	Core	Effective	Frequency.

								14.									cpu-core1-frequency-hist		Frequency							MHz													Histogram	of	CPU	Core	Effective	Frequency.

								21.									cpu-core2-frequency-hist		Frequency							MHz													Histogram	of	CPU	Core	Effective	Frequency.

								25.									cpu-core3-frequency-hist		Frequency							MHz													Histogram	of	CPU	Core	Effective	Frequency.

								31.									igpu-frequency-hist							Frequency							MHz													Histogram	of	Integrated-GPU	Frequency.

	

	

HISTOGRAMS	OF	COUNTERS

	

				COUNTER																		cpu-core0-frequency-hist	

						HISTOGRAM											

							low						high						count

									0							200									0

							200							400									0

							400							600									0

							600							800								16

							800						1000								16

						1000						1200									5

						1200						1400								22

						1400						1600								29

						1600						1800								11

						1800						2000									1

						2000						2200									0

						2200						2400									0

						2400						2600									0

						2600						2800									0

						2800						3000									0

						3000						3200									0

						3200						3400									0

						3400						3600									0

						3600						3800									0

						3800						4000									0

	

				COUNTER																		cpu-core1-frequency-hist	

						HISTOGRAM											

							low						high						count

									0							200									0

							200							400									0

							400							600									0

							600							800									6

							800						1000								79

						1000						1200								13

						1200						1400									1

						1400						1600									1

						1600						1800									0

						1800						2000									0

						2000						2200									0

						2200						2400									0

						2400						2600									0

						2600						2800									0

						2800						3000									0

						3000						3200									0

						3200						3400									0

						3400						3600									0

						3600						3800									0

						3800						4000									0

	

				COUNTER																		cpu-core2-frequency-hist	

						HISTOGRAM											

							low						high						count

									0							200									0

							200							400									0

							400							600									0

							600							800									0

							800						1000									0

						1000						1200									0

						1200						1400									0

						1400						1600									2

						1600						1800								98

						1800						2000									0

						2000						2200									0

						2200						2400									0

						2400						2600									0

						2600						2800									0

						2800						3000									0

						3000						3200									0

						3200						3400									0

						3400						3600									0

						3600						3800									0

						3800						4000									0

	

				COUNTER																		cpu-core3-frequency-hist	

						HISTOGRAM											

							low						high						count

									0							200									0

							200							400									0

							400							600									0

							600							800									0

							800						1000								28

						1000						1200								45

						1200						1400								25

						1400						1600									1

						1600						1800									1

						1800						2000									0

						2000						2200									0

						2200						2400									0

						2400						2600									0

						2600						2800									0

						2800						3000									0

						3000						3200									0

						3200						3400									0

						3400						3600									0

						3600						3800									0

						3800						4000									0

	

				COUNTER																		igpu-frequency-hist						

						HISTOGRAM											

							low						high						count

									0							100									0

							100							200									0

							200							300									0

							300							400							100

							400							500									0

							500							600									0

							600							700									0

							700							800									0

							800							900									0

							900						1000									0

Sample	3:	Collecting	process	profiling	data
The	following	command	collects	the	process	profiling	data	for	100	seconds	and
dumping	the	results	to	a	text	file:

CodeXLPowerProfiler.exe	-d	10	–T	10	-o	c:\temp\histogram.txt	–M	process	–F	txt

When	run	on	a	Carrizo	APU,	the	content	of	the	result	text	file	is
as	below:
CODEXL	POWER	PROFILE	REPORT
PROFILE	DETAILS
				CPU	Details:																			Family(0x15)	Model(0x60)
				CPU	Core	Mask:																	0xf
				Sampling	Interval:													10	milli-seconds
				Profile	Start	Time:												Mar-30-2016_00-20-44
				Profile	Duration:														100	seconds
	
PROCESS	PROFILING	DATA
SNo					PID						Samples	IPC			Power(Joules)											Power(%)					
Name																										Path
	
0										4956			11								3.34					0.04																	0.03																
CodeXLPowerProfiler.exe													\Program	Files	(x86)\CodeXL
1										0										383503											31755			109.58																
95.28														[System	Process]																																							Unable
to	read	path
2										648					1										0.38					0.01																	0.01																
lsass.exe																																																C:\Windows\System32
3										900					54								13.72		0.06																	0.05																
dwm.exe																																																		C:\Windows\System32
4										4										224					96.76		0.24																	0.21																
System																																																			Unable	to	read	path
5										2140			294					232.54												0.82																
0.71																	explorer.exe																																												
C:\Windows
6										760					4										1.04					0.00																	0.00																
svchost.exe																																														C:\Windows\System32

7										1648			16								5.71					0.02																	0.01																
MsMpEng.exe																																	Unable	to	read	path
8										548					15								2.21					0.01																	0.01																
csrss.exe																																																Unable	to	read	path
9										4396			1066			710.18												3.86																
3.36																	iexplore.exe																																												
C:\Program	Files	(x86)\Internet	Explorer
10								680					178					170.15												0.29																
0.25																	svchost.exe																																													
C:\Windows\System32
11								5296			1										0.44					0.00																	0.00																
conhost.exe																																														C:\Windows\System32
12								2500			2										0.29					0.00																	0.00																
svchost.exe																																														C:\Windows\System32
13								1320			6										2.57					0.01																	0.01																
svchost.exe																																														C:\Windows\System32
14								1160			2										0.80					0.00																	0.00																
SearchIndexer.exe																									C:\Windows\System32
15								456					35								15.70		0.04																	0.03																
svchost.exe																																														C:\Windows\System32
16								1108			11								7.65					0.02																	0.01																
svchost.exe																																														C:\Windows\System32
17								640					3										0.84					0.00																	0.00																
services.exe																																													Unable	to	read	path
18								936					2										1.00					0.00																	0.00																
svchost.exe																																														C:\Windows\System32
19								1448			3										1.22					0.00																	0.00																
taskhostex.exe																																											C:\Windows\System32
20								720					2										0.46					0.00																	0.00																
svchost.exe																																														C:\Windows\System32
21								1612			2										0.63					0.00																	0.00																
WUDFHost.exe																															C:\Windows\System32
22								1296			4										1.42					0.00																	0.00																

spoolsv.exe																																														C:\Windows\System32
23								2736			1										0.25					0.00																	0.00																
sppsvc.exe																																															Unable	to	read	path
	
Profile	Sesssion	Power	Consumption:								115.00
Total	PID	record	collected	385440

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Power	Profiler	>	Power	Profiler	Project	Settings

Power	Profiler	Project	Settings

After	switching	to	Profile	mode,	the	Power	Profiler	Project
Settings	are	accessible	by	any	of	these	methods:

·									In	the	Standalone	application
o			Pressing	CTRL	+	P
o			From	the	Profile	menu,	selecting	“Profile	Settings…”

·									In	Visual	Studio
o			From	the	CodeXL	menu,	selecting	“CodeXL	Project	Settings…”

The	CodeXL	Project	Settings	dialog	appears.	Navigate	to	the
Power	Profile	sub-node	under	the	Profile	node	in	the	options
tree	on	the	left.

The	“Counters	sampling	interval	(ms)”	field	sets	the	amount	of
time	between	every	two	consecutive	sample	operations	of	the
profiler.	The	units	used	in	this	field	are	milliseconds.	Setting	an
interval	smaller	than	100	milliseconds	is	discouraged	as	the
overhead	of	the	frequent	sampling	may	skew	the	results	and
the	design	of	the	counters	mechanism	is	not	optimal	for	higher
sample	rates.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Power	Profiler	>	Power	Profiler	Counters	Selection	Dialog

Power	Profiler	Counters	Selection	Dialog

The	counter	selection	dialog	allows	you	to	choose	which
performance	counters	will	be	monitored	in	the	next	power
profiling	session.	The	available	counters	are	divided	into	4
categories:	Power,	Frequency,	Temperature,	and	CPU	Core
State.	At	the	right	side	of	the	dialog	window	you	will	find	the
list	of	Active	Counters.	These	are	the	counters	which	will	be
monitored	in	the	next	power	profiling	session.	To	get	the
description	of	a	specific	counter,	click	on	it	in	the	Available
Counters	pane	at	the	left	side	of	the	dialog	window.

Note:	The	Total	APU	Power	counter	is	enabled	by	default,	and
cannot	be	deactivated.	Except	for	the	Total	APU	Power	counter,
the	activation	of	all	other	counters	is	optional.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Power	Profiler	>	Power	Profiler	Session	Tree

Power	Profiler	Session	Tree

Navigating	and	displaying	power	profiling	sessions	is
performed	using	the	CodeXL	Explorer	tree,	same	as	for	other
types	of	CodeXL	profiling	sessions.	Each	power	profiling
session	is	represented	by	a	node	in	the	tree,	containing	two
sub-nodes	for	the	Timeline	and	Summary	views.	Double
clicking	a	node	opens	its	respective	view	in	the	MDI	space.

A	session	can	be	imported	into	the	CodeXL	project	by	right-
clicking	on	the	Power	Profiling	node	and	selecting	‘Import
Session’.	The	dialog	that	opens	allows	you	to	navigate	to	the
location	of	the	session	to	import,	and	displays	a	filtered	list	of
files	that	correspond	to	the	*.clxdb	naming	format.

By	clicking	the	“New	Power	Session…”	node	a	new	session	is
created,	but	sampling	of	data	does	not	yet	begin.	The	Timeline
and	Summary	view	tab	will	appear,	and	you	can	select	which
counters	will	be	collected	during	the	profile	session	by	either

·									Double-clicking	the	last	line	in	the	timeline	charts	legend	table	“Double-click
to	add	or	remove	counters…”

·									Selecting	the	“Select	Power	Profiling	Counters…”	command	from	the	menu.
This	command	is	located	in	the	standalone	CodeXL	app’s	Profile	menu,	and	in
the	Visual	Studio	CodeXL	menu.

To	begin	the	sampling	of	data	in	the	new	session,	click	the
“Start	Profiling”	toolbar	button,	or	select	“Start	Profiling”	from
the	Profile	menu	(standalone	CodeXL)	or	CodeXL	menu	in
Visual	Studio.

Right-click	on	a	session	node	in	the	explorer	tree	will	display
the	session	context	menu	which	is	identical	to	the	context
menu	for	other	profile	session	types.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Power	Profiler	>	Power	Profiler	Timeline	View

Power	Profiler	Timeline	View

The	Power	Profiler	Timeline	View	displays	the	measured	values
of	the	activated	counters	throughout	the	session.	The
horizontal	axis	of	all	charts	represents	the	time	that	has	passed
since	the	beginning	of	the	session.	During	profiling	sessions,	all
of	the	charts	in	the	Timeline	View	are	being	updated	in	real-
time	with	the	measured	values	which	are	streaming	in.	The
uppermost	ribbon	(titled	“Total	APU	Power”)	displays	the
overall	power	consumption	of	the	APU	throughout	the	session.

The	top	chart	has	an	adjustable	range	slider	that	controls	the
display	of	all	the	other	timeline	charts.	By	performing	such
actions	as	dragging	the	slider	sideways,	extending	or
retracting	it,	you	set	the	scope	of	attention	and	the	focus	of	the
timeline	charts.	Each	of	the	charts	below	displays	only	the	data
that	was	collected	in	the	time	range	corresponding	to	the
slider’s	position	and	length.	That	is,	the	data	in	all	timeline
charts,	except	for	the	Total	APU	Power	chart	itself,	is	dictated
by	the	time	range	which	is	selected	by	the	Total	APU	Power
chart’s	range	slider.

Below	the	Total	APU	Power	ribbon,	you	will	find	additional
ribbons	containing	more	graphs,	according	to	the	set	of
activated	counters:	A	Power	chart	which	displays	the	power
consumed	by	specific	APU	components	(such	as	CPU	cores	or
integrated	GPU),	a	Frequency	chart	which	displays	the
frequency	of	the	selected	components,	a	Temperature	chart
which	displays	the	thermal	trend	of	the	selected	components,
and	a	CPU	State	chart	which	displays	the	CPU	core	states.	The
APU	Power	graph	is	always	displayed,	since	the	Total	APU
Power	counter	is	activated	by	default	and	cannot	be

deactivated.	The	other	charts	(frequency,	temperature	and	CPU
core	state)	are	optional,	and	will	only	be	displayed	if	the
relevant	counters	were	activated.

To	the	right	side	of	each	chart	you	will	find	a	legend	that
displays	the	measured	values	at	a	specific	point	in	time.	To
change	the	point	in	time	for	which	the	values	are	displayed,
reposition	the	mouse	cursor	horizontally	on	one	of	the	graphs.
The	list	of	counters	in	the	legends	is	customizable,	and	specific
counters	can	be	removed/added	between	profile	sessions.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Power	Profiler	>	Power	Profiler	Summary	View

Power	Profiler	Summary	View

The	Power	Profiler	Summary	View	displays	an	analysis	of	the
values	measured	throughout	the	session.	Similarly	to	the
Timeline	View,	this	view	is	updated	in	real-time	when	power
profiling	sessions	are	running.	At	the	upper-left	side	of	the
summary	view,	you	can	see	the	session	duration	which	is	the
amount	of	time	that	the	profiling	session	was	in	progress.	The
uppermost	chart	(titled	“Power”)	shows	the	Total	APU
Power/Energy	consumption.	This	chart	has	two	modes:
Cumulative	and	Average.	The	Cumulative	mode	displays	the
cumulative	energy	consumed	by	the	APU	components,
measured	in	Joules.	The	Average	mode	displays	the	average
power	consumption	of	the	APU	components,	measured	in
Watts.	For	each	of	these	two	modes,	the	Total	APU	Power
Consumption	value	at	the	top	of	the	summary	view	represents
the	value	consumed	by	the	whole	APU.

If	CPU	or	GPU	frequency	counters	were	activated	for	the
session,	you	will	find	additional	histogram	graphs	below	the
Power	graph	in	the	Summary	View:

CPU	Frequency	Graph

This	stacked	histogram	displays	for	each	CPU	core	how	much
time	it	spent	at	each	frequencies	range.

GPU	Frequency	Graph

This	histogram	displays	how	much	time	the	GPU	spent	at	each
frequencies	range.

At	the	bottom	of	the	Summary	View	you	can	find	useful
information	about	the	current	session:

-										Target	Path:	The	target	application’s	path.	In	system-wide	sessions,	this
field	will	be	left	empty.

-										Working	directory:	the	target	application’s	working	directory.	In	system-
wide	sessions,	this	field	will	be	left	empty.

-										Profile	Session	Directory:	the	directory	where	CodeXL	stored	the
session	file.

-										Command	Line	Arguments:	the	target	application’s	command	line
arguments	(if	any).	In	system-wide	sessions,	this	field	will	be	left	empty.

-										Environment	Variables:	the	target	application’s	environment	variables
(if	any).	In	system-wide	sessions,	this	field	will	be	left	empty.

-										Profile	Scope:	the	scope	of	the	current	session	(either	system-wide,	or
system-wide	with	focus	on	an	application).

-										Profile	Session	Type:	the	type	of	this	profiling	session.	This	field	will
always	be	filled	with	the	“Power”	value	for	power	profiling	sessions.

-										Profile	Start	Time:	the	time	when	the	current	session	began.
-										Profile	End	Time:	the	time	when	the	current	session	ended.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Power	Profiler	>	Power	Profiler	Session	Control

Power	Profiler	Session	Control

The	control	of	power	profiling	sessions	is	very	simple:
-										To	start	a	power	profiling	session,	open	the	Counters	Selection	Dialog	(in
the	CodeXL	menu,	click	on	Profile->Select	Power	Profiling	Counters…)	and
select	the	counters	which	will	be	monitored	during	the	session.	Click	OK,
then	click	the	‘Start’	button	on	CodeXL’s	session	control	toolbar.

-										To	stop	a	power	profiling	session,	click	the	‘Stop’	button	on	CodeXL’s
session	control	toolbar.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Power	Profiler	>	Remote	Power	Profiling

Remote	Power	Profiling

For	a	detailed	description	of	how	to	run	a	power	profiling
session	on	a	remote	machine,	consult	the	Remote	GPU
Profiling,	Power	Profiling	and	Debugging	section.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Power	Profiler	>	AMDTPowerProfileAPI	Library

AMDTPowerProfileAPI	Library

The	CodeXL	Power	Profile	API	library	is	useful	to	analyze	the
energy	efficiency	of	systems	based	on	AMD	CPUs,	APUs	and
dGPUs	(Discrete	GPU).	These	APIs	provide	interface	to	read
the	power,	thermal	and	frequency	characteristics	of	APU/dGPU
and	their	subcomponents.

These	APIs	are	targeted	for	software	developers	who	want	to
write	their	own	application	to	sample	the	power	counters	based
on	their	specific	use	case.

For	detail	information	of	these	APIs,	refer
AMDTPowerProfileAPI.chm	(on	Windows	platforms)	or
AMDTPowerProfileAPI.pdf	(on	Linux	based	platforms)	file	in
the	SDK/AMDTPowerProfile/doc	subdirectory	under	the
CodeXL	installation	directory.
	
AMDTPowerProfileAPI	shared	library	has	dependencies	on
AMDTBaseTools	and	AMDTOSWrappers	shared	libraries,	so	the
corresponding	.DLL	(on	Windows	system)	and	.SO	(on	Linux
system)	should	be	added.
	
To	build	and	execute	a	test	application	(test.cpp)	following
steps	should	be	performed	on	Linux	machine.
1.							Assuming	test.cpp	is	located	at		in	/home/<user-dir>/samples

$	cd	/home/<user-dir>/samples
2.							Set	LD_LIBRARY_PATH

$	export	LD_LIBRARY_PATH=<codexl-install-dir>
3.							Compile	application	code

$	g++	test.cpp	–I<codexl-install-dir>/SDK/AMDTPowerProfile/inc
–L<codexl-install-dir>/SDK/AMDTPowerProfile/bin/x86_64	–
lAMDTPowerProfileAPI	-L<codexl-install-dir>	-lAMDTOSWrappers	-
lAMDTBaseTools	-o	test

4.							Execute
$./test

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Power	Profiler	>	Limitations

Limitations

·									Multiple	instance	of	CodeXL	Power	Profiler	cannot	be	run	simultaneously.	If	the
CodeXL	graphic	client	is	conducting	a	power	profile	session	then	no	other
instance	of	the	graphic	client	can	perform	a	power	profile	and	the	command
line	tool	cannot	be	run	either,	until	the	original	profile	session	ends.

·									ICELAND	discrete	GPU(Topaz-XT,	Topaz	PRO,	Topaz	XTL,	Topaz	LE)	series	is	not
support	in	2.0	release.

·									Please	make	sure	you	have	latest	catalyst	driver	installed	before	running
power	profiler.	Newer	version	of	discrete	GPU	may	go	to	sleep	(low	power)	state
frequently	if	there	is	no	activity	in	that	GPU.	In	that	case,	power	profiler	may
emits	a	warning	AMDT_WARN_SMU_DISABLED.	Counters	may	not	be	accessible
during	this	state.	It	is	advisable	to	bring	discrete	GPU	to	active	state	by	running
some	openCL	or	openGL	application,	then	run	power	profiling	on	that	GPU.

·									Process	profiling	is	supported	only	with	command	line	tool.	If	PMC
(Performance	Monitoring	Counters)	counters	are	not	accessible	and	unable	to
calculate	the	IPC	load,	then	compute	unit	power	is	distribute	equally	to	each
core.	In	that	case	power	distribution	to	each	process	may	not	be	accurate.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Remote	GPU	Profiling,	Power	Profiling	and	GPU	Debugging

Remote	GPU	Profiling,	Power	Profiling	and	GPU
Debugging

CodeXL	provides	remote	profiling	and	debugging	capabilities.
Using	these	features,	you	can	execute	GPU	profiling,	power
profiling	and	debugging	sessions	of	applications	that	run	on	a
remote	machine.	This	is	useful	for	working	with	tablets	and
headless	server	units.

·									Running	CodeXL	Remote	Agent
·									The	Agent’s	Configuration	File
·									Performing	Remote	GPU	Profiling
·									Performing	Remote	Power	Profiling
·									Performing	Remote	GPU	Debugging

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Remote	GPU	Profiling,	Power	Profiling	and	GPU	Debugging	>	Running	CodeXL	Remote	Agent

Running	CodeXL	Remote	Agent

As	a	first	step,	be	sure	that	the	remote	machine	has	CodeXL
Remote	Agent	installed.	CodeXL	Remote	Agent	ships	with	the
CodeXL	installer,	and	it	is	installed	by	default	when	installing
CodeXL.	You	can	also	choose	to	install	only	CodeXL	Remote
Agent	when	using	the	installer.
CodeXL	Remote	Agent	runs	on	the	remote	machine,	and	allows
CodeXL	clients	located	on	other	machines	to	connect	the
remote	machine	and	execute	GPU	profiling	and	debugging
sessions	of	applications	on	that	machine.
When	the	remote	is	launched,	it	will	output	to	the	console	a
message	in	the	following	format:

In	case	the	remote	agent	failed	to	launch	successfully,	it	will
output	to	the	console	a	message	describing	the	problem.
	

Please	notice	that	by	default	the	remote	agent	binds	itself	to
the	first	valid	IP	address	that	it	finds.	In	most	cases,	this

would	be	your	desired	behavior.	However,	if	the	remote
machine	has	multiple	IP	addresses,	and	you	would	like	to
force	CodeXL	remote	agent	to	bind	itself	to	a	particular
address,	you	can	use	the	--ip	command	line	switch	(--ip
<ip_address>).	For	example,	to	force	the	remote	agent	to
bind	itself	to	10.20.0.155,	use	the	following	command:
On	Windows:	CodeXLRemoteAgent	--ip	10.20.0.155
On	Linux:	CodeXLRemoteAgent-bin	--ip	10.20.0.155
	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Remote	GPU	Profiling,	Power	Profiling	and	GPU	Debugging	>	The	Agent’s	Configuration	File

The	Agent’s	Configuration	File

CodeXL	Remote	Agent	ships	with	a	simple	configuration	file
named	CodeXLRemoteAgent.xml,	which	is	located	at	the	same
folder	as	the	CodeXLRemoteAgent	executable.	This
configuration	file	defines	several	parameters	which	are	being
used	by	the	agent.	These	parameters	are	being	read	by	the
agent	just	before	it	starts	running.	Therefore,	if	you	change	one
of	the	values	in	the	configuration	file,	you	must	rerun	the	agent
for	it	to	read	the	new	values.
Here	is	a	screenshot	of	the	agent’s	configuration	file:

Field Description

PortNumber The	port	number	on	which	the	remote
agent	listens	to	incoming	connections.

ReadTimeoutMs Read	timeout	to	be	used	by	the	remote
agent	for	incoming	connections.

WriteTimeoutMs Write	timeout	to	be	used	by	the	remote
agent	for	incoming	connections.

Version Version	type,	do	not	change	this	value.

Please	pay	special	attention	to	the	<PortNumber>	parameter.
This	is	the	port	on	which	the	remote	agent	will	listen	to
incoming	connections.	Prior	to	starting	CodeXL	remote	Agent,
you	should	verify	that:
1.						CodeXL	Remote	Agent	is	not	blocked	by	the	firewall	on
the	remote	machine.

2.						The	port	number	(27015	in	the	example	above)	is
available	(not	being	used	by	any	other	process),	and	that	it
is	not	blocked	by	a	firewall.	If	there	is	a	problem	with	the
port,	you	can	change	this	value	and	rerun	the	agent.

	
That’s	it	for	the	remote	machine.	Now,	go	back	to	the	local
machine	where	the	CodeXL	application	is	installed.	The
following	sections	describe	how	to	perform	remote	GPU
Profiling	and	Debugging.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Remote	GPU	Profiling,	Power	Profiling	and	GPU	Debugging	>	Performing	Remote	GPU
Profiling

Performing	Remote	GPU	Profiling

1.	 Setting	the	remote	target:

							When	you	open	the	CodeXL	project	settings,	look	at	the
general	tab:

	

UI	Control Description

These	two	radio	buttons	determine	whether

Local	Host
and	Remote
Host	radio
buttons

we	are	in	a	remote	or	local	session.	If	Remote
Host	is	selected,	all	locations	under	the
Target	Application	box	will	refer	to	paths	on
the	remote	machine.	Otherwise,	all	locations
will	refer	to	paths	on	the	local	machine,	as
usual.

Remote	Host
text	box

The	IP	address	of	the	remote	machine	(the
machine	on	which	the	remote	agent	is
running).	In	the	above	screenshot,	the	remote
host	is	10.20.0.144.
Alternatively,	the	host	name	of	the	remote
machine	can	be	used	instead	of	its	IP
address,	provided	the	name	is	recognized	by
the	network	DNS.

Port	text	box

The	port	(in	the	remote	machine)	on	which
the	remote	agent	is	listening.	Note	that	the
value	of	Port	should	match	the	PortNumber
element	value	in
CodeXLRemoteAgentConfig.xml	which	is
located	on	the	remote	machine.

Test
Connection
Button

When	this	button	is	pressed,	CodeXL	will	try
to	connect	to	the	remote	agent	running	on
IP:Port	(according	to	the	text	in	the	Remote
Host	Address	and	Port	text	boxes).	This
button	can	be	used	to	verify	that	the	remote
agent	is	running	on	the	remote	machine	and
that	it	is	reachable	by	the	CodeXL	client.
Note	that	if	the	remote	agent	is	not	running
on	the	remote	machine	or	if	a	firewall	blocks
either	CodeXL	client	or	the	remote	agent	–
the	connection	test	would	fail.

	

2.						For	remote	GPU	performance	counters	profiling,	have	a
look	at	the	GPU	Profile:	Performance	Counters	tab
(application	trace	settings	act	the	same	as	in	local
sessions):

	
	

In	a	remote	session,	CodeXL	does	not	know	which
counters	are	supported	by	the	remote	target’s	GPU.

Therefore,	all	possible	HW	families	are	available.	In	case
that	you	picked	a	counter	that	is	not	supported	by	the
remote	host,	you	will	see	a	blank	column	in	the	result
spreadsheet	(can	be	easily	eliminated	by	using	the	“Hide
zero	columns”	feature).

3.	 To	launch	Remote	GPU	profiling,	click	OK.	Then,	start
profiling	as	usual.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Remote	GPU	Profiling,	Power	Profiling	and	GPU	Debugging	>	Performing	Remote	Power
Profiling

Performing	Remote	Power	Profiling

1.						Set	the	remote	target	as	for	remote	GPU	profiling	(you
can	find	a	description	of	how	to	set	the	remote	target	in
section	1	under	Performing	Remote	GPU	Profiling	above).	
Make	sure	that	the	remote	agent	is	running	and	is
reachable	via	network	by	CodeXL	client.	Also,	make	sure
that	the	remote	machine	supports	power	profiling.	See	the
CodeXL	System	Requirements	section	for	a	list	of	AMD
devices	that	support	power	profiling.

2.						Open	the	Counter	Selection	Dialog	and	choose	the
desired	set	of	counters,	just	like	you	do	for	local	sessions.
Note	that	a	valid	connection	to	the	remote	agent	is
required	in	order	for	CodeXL	to	populate	the	Counter
Selection	Dialog	with	the	counters	that	are	relevant	to	the
specific	remote	machine.

3.						Start	the	power	profiling	session	by	clicking	the	Start
button,	as	you	do	for	local	sessions.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Using	CodeXL	>	Remote	GPU	Profiling,	Power	Profiling	and	GPU	Debugging	>	Performing	Remote	GPU
Debugging

Performing	Remote	GPU	Debugging

1.	 Setting	the	remote	debugging	ports:

Go	to	Tools->Options,	open	the	General	tab	and	look	at	the
Connection	section.	In	the	Remote	Debugging	Ports
subsection,	there	are	4	ports	which	are	being	used	by
CodeXL	on	the	local	machine	for	remote	debugging
purposes.	Please	verify	that	the	following	requirements
are	fulfilled:

a.							All	4	port	values	are	distinct.
b.						None	of	the	4	ports	is	blocked	by	a	firewall.
c.							None	of	the	4	ports	is	being	used	by	another
process.

If	necessary,	you	can	change	the	port	values	to	fulfill	the
above	requirements.
	

2.						Setting	the	remote	target:

							When	you	open	the	CodeXL	project	settings,	look	at	the
general	tab:

	

	

UI	Control Description

Local	Host
and	Remote
Host	radio
buttons

These	two	radio	buttons	determine	whether	we
are	in	a	remote	or	local	session.	If	Remote
Host	is	selected,	all	locations	under	the	Target
Application	box	will	refer	to	paths	on	the
remote	machine.	Otherwise,	all	locations	will
refer	to	paths	on	the	local	machine,	as	usual.

Remote
Host	text
box

The	IP	address	of	the	remote	machine	(the
machine	on	which	the	remote	agent	is
running).	In	the	above	screenshot,	the	remote
host	is	10.20.0.144.
Alternatively,	the	host	name	of	the	remote
machine	can	be	used	instead	of	its	IP	address,
provided	the	name	is	recognized	by	the
network	DNS.

Port	text
box

The	port	(in	the	remote	machine)	on	which	the
remote	agent	is	listening.	Note	that	the	value
of	Port	should	match	the	PortNumber	element
value	in	CodeXLRemoteAgentConfig.xml	which
is	located	on	the	remote	machine.

	

3.						Click	OK,	and	start	debugging	as	usual.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Glossary	>	Compute	or	Graphic	Memory	Allocated	Object

Compute	or	Graphic	Memory	Allocated	Object

A	compute	or	graphic	memory	allocated	object	is	an	OpenCL	or
OpenGL	object	created	by	a	computer	application,	which	is
allocated	on	the	memory	of	the	OpenCL	or	OpenGL	device.
An	allocated	object	can	reside	in	the	computer's	main	memory
(as	part	of	the	driver's	used	virtual	memory),	in	the	device's
internal	memory,	or	in	both.	In	multi-device	OpenCL	contexts
and	multi-renderer	OpenGL	contexts,	an	object's	data	can	even
reside	in	multiple	devices	at	the	same	time.	CodeXL	currently
supports	the	following	allocated	object	types.

·									OpenCL	compute	contexts
·									OpenCL	command	queues
·									OpenCL	command	events*
·									OpenCL	Image	objects
·									OpenCL	buffer	objects
·									OpenCL	computation	programs
·									OpenCL	kernel	objects*
·									OpenCL	sampler	objects*
·									OpenGL	render	contexts
·									OpenGL	render	contexts'	static	buffers
·									OpenGL	texture	objects
·									OpenGL	render	buffers
·									OpenGL	framebuffer	objects	(FBOs)*
·									OpenGL	vertex	buffer	objects	(VBOs)
·									OpenGL	shading	programs*
·									OpenGL	shaders
·									OpenGL	display	lists
·									OpenGL	pixel	buffer	objects	(PBuffers)*

The	memory	consumption	of	these	objects	is	insignificant,	but
their	creation	and	deletion	is	still	monitored	by	CodeXL.

Function	Types:	OpenCL	functions	can	be	divided	into	groups
by	their	effect	on	the	OpenCL	implementation	or	by	their
outputs.	Note	that	an	OpenCL	function	can	belong	to	more
than	one	of	these	groups,	or	to	none	at	all:

·									Get	Functions	retrieve	information	from	the	OpenCL	ICD.
·									Buffer	and	Image	Functions	are	functions	related	to
buffer	and	image	objects.

·									Program	and	Kernel	Functions	are	related	to	computation
programs	and	kernels.

·									Queue	Functions	are	related	to	command	queue	objects.
·									Synchronization	Functions	perform	synchronization
operations.

OpenGL	functions	can	be	grouped	by	their	effect	on	the
OpenGL	implementation	or	by	their	outputs.	Note	that	an
OpenGL	function	can	belong	to	more	than	one	of	these	groups,
or	to	none	at	all:

·									Get	Functions	retrieve	information	from	the	OpenGL
driver.

·									State	Change	Functions	change	the	values	of	OpenGL
State	Variables.

·									Draw	Functions	can	have	a	visible	effect	on	the	draw
buffer.

·									Raster	Functions	copy	pixels	from	or	to	frame	buffers.
·									Programs	and	Shaders	Functions	are	related	to	shaders
and	shading	programs.

·									Texture	Functions	create,	delete,	or	manipulate	textures.
·									Matrix	Functions	are	related	to	the	matrix	stacks
(modelview	matrix,	projection	matrix,	color	matrix,	etc.).

·									Name	Functions	are	related	to	the	OpenGL	selection
mode.

·									Query	Functions	are	related	to	OpenGL	query	items.
·									Buffer	Functions	are	related	to	OpenGL	buffer	objects.

To	find	out	what	groups	a	given	function	belongs	to,	look	for	its
entry	in	the	Function	Calls	Statistics	tab	(in	the	CodeXL
Statistics	view).	The	information	is	displayed	under	the
"Function	Type"	column.	The	Statistics	view's	Function	Types

Statistics	tab	shows	details	of	your	API	usage	by	these	groups,
as	well	as	more	detailed	information	about	the	use	of	each
function	type.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Glossary	>	Frames	and	Frame	Terminators

Frames	and	Frame	Terminators

Computation	Frame:	A	computation	frame	is	a	set	of	OpenCL
API	calls,	typically	the	largest	set	of	calls	an	OpenCL	compute
context	performs	that	can	be	considered	a	single	logical
operation.	A	computation	frame	is	comparable	to	a	render
frame	in	a	graphics	engine.	It	is	recommended	for	applications
rendering	graphics	to	define	the	computation	frame	as	the	set
of	commands	used	to	calculate	the	data	for	a	single	render
frame.	Having	a	notion	and	boundary	of	what	comprises	a
frame	permits	measurements	such	as	frame	times	and	frame
rates,	as	well	as	API	call	statistics,	which	are	useful	in
debugging	and	profiling.
Frame	Terminator:	Frame	terminators	are	the	functions	that
end	your	application	computation	and	render	frames.	CodeXL
uses	frame	terminators	for	frame-per-second	calculations,
statistics	analysis,	and	other	measurements,	as	well	as	for
determining	when	to	stop	the	execution	after	you	press	the
Step	Out	button	(Shift+F11).	When	choosing	frame	terminators
for	your	project,	ensure	that	at	least	one	of	the	functions	you
choose	is	called	for	each	frame	you	render.	If	you	are	using	the
OpenGL	debug	engine,	you	must	select	at	least	one	render
(OpenGL)	frame	terminator.	A	typical	selection	of	Frame
Terminators	is	clFinish	for	OpenCL	and	the	SwapBuffers	option
for	OpenGL.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Glossary	>	Vertex	Batch

Vertex	Batch

Vertex	Batch:	A	vertex	batch	is	a	group	of	vertices	sent	to	the
graphic	driver	in	a	single	API	call.	In	OpenGL,	this	effectively
means	the	number	of	vertices	sent	to	the	graphic	pipeline	with
a	single	function	call.	For	example,	the	function	glVertex3f
always	generates	a	1-vertex	batch,	while	glDrawElements
creates	a	batch	of	the	size	determined	by	its	count	parameter
value.	The	number	of	vertex	batches	sent	to	the	driver
represents	the	cost	of	drawing,	while	the	batch	size	is	the
benefit	of	each	function	call.	Drawing	200	1-vertex	batches
has	the	same	benefit	as	drawing	a	single	200-vertex	batch,	for
200	times	the	cost.	For	this	reason,	it	is	best	to	draw	as	many
vertices	using	as	few	batches	as	possible.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Bundled	Sample	Applications

Bundled	Sample	Applications

CodeXL	contains	several	bundled	sample	applications	to
demonstrate	CodeXL	usage	scenarios	and	features.
The	bundled	sample	applications	are:

·									Teapot
·									Matrix	Multiply
·									D3DMultiThreading

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Bundled	Sample	Applications	>	Teapot

Teapot

The	Teapot	sample	application	draws	a	spinning	teapot	with
steam	coming	out	of	its	spout.	The	steam	vapors	movement	is
simulated	using	OpenCL.	The	rendering	of	the	teapot	and
steam	is	implemented	using	OpenGL.	In	the	Linux	version	of
Teapot,	the	window,	menu	bar	and	UI	widgets	are	implemented
using	the	FLTK	library.
The	Teapot	application	can	be	used	to	demonstrate	the	features
of	CodeXL’s	GPU	Debugger,	GPU	Profiler	and	Static	Analyzer.

Building	the	Teapot	sample	application

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

http://www.fltk.org/

	CodeXL	User	Guide
Help	>	Bundled	Sample	Applications	>	Teapot	>	Building	the	Teapot	sample	application

Building	the	Teapot	sample	application

CodeXL	includes	a	pre-built	binary	of	the	Teapot	application.
Follow	the	steps	below	if	you	wish	to	build	it	yourself.

On	Windows

Follow	these	steps	to	build	AMDTTeapot	on	Windows	from	the
default	install	location:

·									Launch	Visual	Studio	with	administrator	privileges.
·									From	the	CodeXL	menu,	select	the	‘Open	Teapot	Sample
Project’	command.

·									Wait	for	the	project	to	open	and	press	F7.

On	Linux

Follow	these	steps	to	build	AMDTTeapot	on	Linux:
·									Install	the	FLTK	library

o			The	bundled	binaries	of	AMD	Teapot	were	built	with
64-bit	binaries	of	FLTK	1.1.10.

o			Download	FLTK	sources	from	http://www.fltk.org
o			Extract	and	build	the	fltk	libraries	from	the	source
files,	then	install	the	created	fltk	libraries

·									Modifying	The	AMDTTeaPot	Makefile
o			There	are	two	makefiles	in	the	Teapot	sample	folder.
One	is	the	/examples/Teapot/AMDTTeaPot/Makefile
which	you’ll	need	to	edit,	and	the	other	is	the
/examples/Teapot/AMDTTeaPotLib/Makefile	that	does
not	need	to	be	changed.

http://www.fltk.org

o			Open	/examples/Teapot/AMDTTeaPot/Makefile	in	a
text	editor.

o			Replace	the	-L"Replace	with	path	to	your	local	FLTK
lib	folder"	with	the	path	of	your	local	FLTK	libraries,
for	example	–L/usr/lib64	in	case	you	placed	the
libraries	in	the	system	folder	and	you	are	running	a
64bit	system

o			Replace	the	-I"Replace	with	path	to	your	local	FLTK
headers	folder"	with	the	path	of	your	local	FLTK
include	files.	Please	note	that	the	FLTK	headers	are
placed	in	a	folder	named	“FL”	and	the	path	you
provide	should	point	to	the	parent	of	the	“FL”	folder.
Example	–I/user/include	if	you	placed	them	in	the
system	include	and	not	–I/user/include/FL

·									Building	the	Teapot
o			Teapot	consists	of	a	library	and	an	application	so	first
the	library	needs	to	be	built.

o			cd	to	the	/examples/Teapot/AMDTTeaPotLib	folder
o			make	all
o			if	everything	went	well	you’ll	see	libAMDTTeaPot.a	in
that	folder

o			Now	the	main	application	can	be	built.
o			cd	to	/examples/Teapot/AMDTTeaPot
o			make	all
o			If	successful	the	output	should	be	in
/examples/Teapot/release.	Look	for	a	file	named
AMDTTeaPot-bin.

	

Note	that	CodeXL	RPM	and	Debian	packages	install	CodeXL
and	is	bundled	sample	applications	under	the	/opt	folder,	which
requires	elevated	privileges	to	write	to	on	some	Linux
distributions.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Bundled	Sample	Applications	>	Matrix	Multiply

Matrix	Multiply

The	matrix	multiplication	sample	application	performs
multiplication	of	two	matrices	using	3	different
implementations.	All	implementations	are	using	ANSI	C	code.

The	sample	takes	a	command	line	argument	that	defines	which
of	the	matrix	multiplication	implementations	will	be	executed.
See	the	following	table	for	descriptions	of	the	3
implementations	and	the	command	line	argument	that	invokes
each	one.

	

This	sample	demonstrates	how	the	CPU	Profiler	can	be	used	to
detect	bottlenecks,	identify	problematic	memory	access
patterns,	and	verify	improved	performance.

To	select	which	implementation	of	the	matrix	multiplication	will
be	performed,	open	the	CodeXL	Project	Settings	dialog,	or	in
Visual	Studio	open	the	VS	Project	Settings	dialog.

Multiplication
Implementation

Command
line
argument

Description

1.					
	 Inefficient 	

Inefficient
implementation	that
performs	redundant
loop	iterations.

2.					
	 Classic -c

Classic	textbook
implementation	that
uses	naïve	nested
loops.	The	loops
perform	a	sub-optimal
memory	access
pattern.

3.					
	 Improved -i

Improved
implementation	that
uses	nested	loops	with
continuous	memory
access	pattern.

	

Project	Settings	for	launching	the	classic	implementation	of	matrix
multiplication	using	the	–c	command	line	argument

Use	Time-Based	Profiling	to	detect	the	redundant	loop
iterations	in	the	inefficient	implementation	(launched	by	not

supplying	any	command	line	argument).

Double	clicking	the	inefficient_multiply_matrices(void)	opens
the	source	code	view	which	demonstrates	why	this	function	is
not	efficient:

Use	Event-Based	Profiling	with	the	Assess	Performance	session
type	to	diagnose	the	problems	in	the	classic	implementation
(launched	by	supplying	“-c”	as	the	command	line	argument):

Large	number	of	cache	misses	in	the	internal	nested	loop	non-sequential
access	to	arrays

Finally,	executing	the	improved	implementation	(launched	by
supplying	“-i”	as	the	command	line	argument)	shows	the
number	of	cache	misses	is	significantly	reduced:

Building	the	Matrix	Multiply	sample	application

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Bundled	Sample	Applications	>	Matrix	Multiply	>	Building	the	Matrix	Multiply	sample	application

Building	the	Matrix	Multiply	sample	application

CodeXL	includes	a	pre-built	binary	of	the	Matrix	Multiply
application.	Follow	the	steps	below	if	you	wish	to	build	it
yourself.

On	Windows

Follow	these	steps	to	build	Matrix	Multiply	on	Windows	from
the	default	install	location:

·									Launch	Visual	Studio	with	administrator	privileges.
·									From	the	CodeXL	menu,	select	the	‘Open	Matrix	Multiply
Sample	Project’	command.

·									Wait	for	the	project	to	open	and	press	F7.

On	Linux

Follow	these	steps	to	build	Matrix	Multiply	on	Linux:
·									Navigate	to
codexl_folder_path/examples/ClassicMatMul/src

o			codexl_folder_path	is	the	folder	in	which	you	installed
or	unzipped	CodeXL

·									Type	‘make’	and	hit	Enter.
Note	that	CodeXL	RPM	and	Debian	packages	install	CodeXL
and	is	bundled	sample	applications	under	the	/opt	folder,	which
requires	elevated	privileges	to	write	to	on	some	Linux
distributions.
	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Bundled	Sample	Applications	>	D3D12Multithreading

D3D12Multithreading

The	D3D12Multithreading	is	a	sample	from	the	Microsoft	D3D
SDK,	which	is	bundled	with	CodeXL.

The	sample	demonstrates	the	use	of	multiple	thread	with
Direct3D	12.

The	D3D12Multithreading	sample	can	be	used	to	get	to	know
the	Frame	Analysis	feature	in	CodeXL.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Bundled	Sample	Applications	>	D3D12Multithreading	>	Building	the	D3D12Multithreading	sample	application

Building	the	D3D12Multithreading	sample	application

CodeXL	includes	a	pre-built	binary	of	the	D3D12Multithreading
application.	Follow	the	steps	below	if	you	wish	to	build	it
yourself.

The	D3D12Multithreading	sample	is	a	windows	only	sample,
and	can	only	be	built	in	Visual	Studio	2015,	with	the	Windows
10	SDK	installed.

On	Windows

Follow	these	steps	to	build	D3D12Multithreading	on	Windows
from	the	default	install	location:

·									Make	sure	that	you	have	a	Visual	Studio	2015	IDE
installed.

·									Make	sure	that	the	Windows	10	SDK	is	installed	on	your
system.

·									Launch	Visual	Studio	2015
·									From	the	CodeXL	menu,	select	the	‘Open
D3D12Multithreading	Sample	Project’	command.

·									Wait	for	the	project	to	open	and	press	F7.
	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials

Tutorials

GPU	Debugger	Tutorial
CPU	Profiler	Tutorial
GPU	Profiler	Tutorial
Static	Kernel	Analyzer	Tutorial

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	GPU	Debugger	Tutorial

GPU	Debugger	Tutorial

Host	Debugging
API-Level	Debugging
Kernel	Debugging
Additional	Information

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	GPU	Debugger	Tutorial	>	Host	Debugging

Host	Debugging

Host	Debugging	is	currently	only	available	in	the	following
configurations:
1.	Linux	CodeXL	Standalone	application
2.	Windows	CodeXL	Visual	Studio	extension	[native	(C/C++)
32-bit	target	apps	only]
Other	configurations	support	only	API-Level	debugging.

In	the	supported	configurations,	CodeXL	allows	Host
debugging	of	any	application,	regardless	of	any	APIs	used.

The	following	features	are	supported:
1.	Host	source	code	breakpoints
2.	Host	stepping	(step-in,	step-over,	step-out)
3.	Host	break
4.	Host	locals	display
5.	Host	expression	evaluation	(watch	window)

CodeXL	provides	information	directly	from	the	system's	native
debugger,	supporting	any	code	and	debug	information	that	is
available	as	those	debuggers.

In	the	CodeXL	standalone	application,	the	debug	controls	are
located	in	the	Execution	toolbar,	next	to	the	"Start	Debugging"
and	"Stop	Debugging"	buttons.	Setting	source	code
breakpoints	is	as	simple	as	opening	a	source	file	(Ctrl+O)	and
clicking	the	margins	(F9).	The	Locals	and	Watch	views	are
shared	between	Host	Debugging	and	Kernel	Debugging	for	a
seamless	experience.

In	the	CodeXL	Visual	Studio	extension,	Visual	Studio's	built-in
views	are	used,	providing	a	debugging	experience	as	close	to
Visual	Studio's	built-in	debug	engines	as	possible.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	GPU	Debugger	Tutorial	>	API-Level	Debugging

API-Level	Debugging

CodeXL	allows	API-level	debugging	of	any	OpenCL	and	/	or
OpenGL	based	application,	regardless	of	implementation
version	and	underlying	hardware.

API	Debugging	Basics

CodeXL	API-level	debugging	is	how	CodeXL	displays	the	CPU
(client)	side	of	your	OpenCL	or	OpenGL	application.	This
means	CodeXL	can	suspend	the	debugged	application	at	any
OpenCL	and	OpenGL	API	function,	display	the	call	stack	for
these	function	calls,	display	API	calls	history	and	give	many
analysis	options	for	debugging	this	part	of	the	application.
To	run	the	debugged	application,	press	the	Go	button	(F5).
Once	the	application	is	running,	you	can	suspend	it	by	adding
an	API	breakpoint	or	by	pressing	the	"break"	button.
Once	the	application	is	suspended,	you	can	use	the	API	steps
drop-down	to	choose	between	API	Step	(Ctrl	+	F10	-	run	to	the
next	API	function	call),	Draw	Step	(Ctrl	+	Shift	+	F10	-	run	to
the	next	OpenGL	draw	call)	and	Frame	Step	(Ctrl	+	F11	-	run
to	the	next	frame	terminator	API	function	call).
The	CodeXL	Explorer	tree	view	is	an	invaluable	view	in
CodeXL.	When	the	debugged	application	is	suspended	(by	a
breakpoint,	a	step	command,	a	break	command,	etc.),	this	view
fills	with	the	hierarchy	of	all	OpenCL	and	OpenGL	objects
allocated	by	the	debugged	application.	Each	context	or
category	can	be	expanded	to	show	its	contained	objects,	and
the	CodeXL	Properties	view	updates	with	the	details	of	the
selected	object.	Double-clicking	any	of	the	objects	usually
shows	the	contents	of	the	object	in	some	form.

CodeXL	Explorer

View	Compute	and	Graphic	Memory	Consumption

All	of	the	compute	and	graphic	memory	information	collected
by	CodeXL	is	displayed	in	the	Memory	view.	To	open	this	view,
right-click	on	the	object	in	the	object	tree,	and	select	the
"Memory	analysis"	option	of	the	object.	This	view	lists	all	the
allocated	objects	of	a	given	type	(for	example,	context	1's
buffers),	as	well	as	information	regarding	their	memory
consumption	depending	on	the	kind	of	objects	listed.	The	graph
view	shows	a	breakdown	of	all	the	graphic	memory	consumed
by	the	items	in	the	current	category.	To	see	the	scenario	that
led	to	an	object's	creation,	use	the	Creation	Calls	Stack	view.	If
the	debugged	application	has	debug	information,	double-
clicking	on	a	line	in	the	Creation	Calls	Stack	view	opens	the

location	in	the	source	file.
Memory	View

Find	Unrecommended	Function	Calls

Open	the	Statistics	view.	In	the	"Function	Calls	Statistics"	tab,
you	might	see	warning	icons	next	to	some	of	the	function
names.	Click	any	of	these	functions	to	display	an	explanation	of
why	is	it	unrecommended,	and	what	alternative	is	available.
	
Statistics	View

	

View	Buffers,	Images,	and	Textures	Information	and	Data

Double-clicking	the	main	branch	for	buffers,	images,	or
textures	in	the	CodeXL	Explorer	(such	as	"CL	Context	1
Images"	or	"GL	Context	3	VBOs")	opens	a	thumbnail	view	for
those	objects,	to	give	a	quick	overview.	Clicking	an	object	in
this	view	or	double-clicking	it	in	the	CodeXL	Explorer	opens	an
Object	view	for	it	in	the	main	views	area.	This	view	has	a	Data
view	spreadsheet	showing	the	raw	object	data	where	each	cell

in	the	spreadsheet	shows	the	value	of	each	pixel,	and	an	Image
view	that	visualizes	the	object.	Clicking	on	a	pixel	samples	it
and	keep	its	information	in	the	"Selected	Pixel"	entry	in	the
Information	Panel	on	the	right	section	of	the	view.	Using	the
Images	and	Buffers	toolbar,	you	can	disable	some	or	all	the
channels	and	zoom	in	and	out	on	the	image.	You	also	can	invert
the	image's	colors,	convert	it	to	grayscale	and	rotate	it.	The
Image	Information	panel	on	the	right	gives	you	controls	over
multi-imaged	or	multi-layered	objects,	such	as	3D	images,
array	textures,	or	mipmapped	textures.	Use	the	various	sliders
to	change	between	the	object	elements.
	
Objects	View

	
OpenCL	buffers	and	OpenGL	VBOs	do	not	have	the	context	of
pixels,	coordinates,	and	channels;	thus,	they	are	not	visualized
by	the	image	view.	Since	they	contain	raw	byte	data,	they	even
have	no	type	or	format	information	built-in	into	them.	Instead,
the	Information	panel	has	a	combo-box	letting	you	choose	from
the	available	data	types	and	formats	for	use	in	their	respective

APIs.

	

View	OpenCL	Program	and	OpenGL	Shader	Source	Code

To	view	an	OpenCL	program	or	OpenGL	shader's	source	code,
double-click	it	in	the	CodeXL	Explorer.	If	you	are	using	*.cl	files

for	OpenCL	program	source,	adding	the	directory	as	the	kernel
source	files	folder	in	the	Debug	Settings	dialog	lets	CodeXL	to
identify	the	source.	This	means	you	can	set	breakpoints	inside
the	program	before	it	was	created	and	built	at	runtime,	and
you	can	persist	breakpoints	between	debug	sessions.	Source
viewing,	of	course,	only	applies	to	objects	compiled	at	run	time,
and	does	not	work	with	objects	created	with	binaries.	Double-
clicking	a	kernel	highlights	the	kernel	function	inside	the
program	source.	Applications	that	load	program	or	shader
source	from	strings	or	generate	it	at	run	time,	have	the	sources
saved	to	temporary	files.	Use	the	"File	>	Save	As..."	option	to
keep	these	files	for	comparison	or	analysis.
	

	
	

View	OpenGL	Program	Pipeline	and	Sampler	Objects

To	view	an	OpenGL	Program	Pipeline	or	Sampler	object,	click
on	the	object’s	node	in	the	CodeXL	Explorer.	This	will	display
the	object’s	current	state	in	the	CodeXL	Properties	view.	The
state	of	Program	Pipelines	may	contain	references	to	OpenGL
Shaders.	These	references	will	be	displayed	in	the	CodeXL
Properties	view	as	links.	To	view	an	OpenGL	Shader’s	source

code,	just	click	on	the	link.	Here	is	a	snapshot	of	the	CodeXL
Properties	view	after	clicking	on	a	Program	Pipeline	object.
	

	
Here	is	a	snapshot	of	the	CodeXL	Properties	view	displaying
the	state	of	an	OpenGL	Sampler	object.	Note	that	the	“Bound
to	the	following	Texture	Units”	field	may	contain	more	than	one
texture	(in	a	comma	separated	list	between	the	curly	brackets).

	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	

	
	
	

Work	with	API	Function	Breakpoints

Any	CodeXL-supported	OpenCL	or	OpenGL	function	can	be	set
as	a	breakpoint	in	the	Breakpoints	dialog	(Alt+Shift+B).	The
API	Functions	list	contains	all	the	supported	functions.	The
Active	Breakpoints	list	contains	all	the	currently	selected
breakpoints.	Each	selected	breakpoint	has	a	checkbox	next	to
it,	representing	whether	the	breakpoint	is	currently	enabled.
Disabling	breakpoints	instead	of	removing	them	saves	the	time
of	finding	the	function	each	time	you	want	to	enable	the
breakpoint.	To	add	a	function	to	the	breakpoints	list,	select	it	in
the	API	functions	list	and	press	Add	or	double-click	it.	To
remove	a	breakpoint,	select	it	in	the	breakpoints	list	and	press
Remove	or	double	click	it.	Using	breakpoints	can	help	you	see
the	exact	API	status	before	the	function	is	called,	also	allowing
a	comparison	of	the	status	before	and	after	the	function	call	(by
pressing	the	Step	Over	button	(F10)	after	the	breakpoint	hit).
You	also	can	use	breakpoints	to	find	where	in	your	code	each
function	is	called,	by	looking	at	the	Call	Stack	view	after	the
breakpoint	is	hit.	if	you	have	debug	information	for	the	stack
item,	you	can	double-click	it	to	see	the	exact	location	in	the
MDI	source	view.
	
Break	point	Dialog

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	GPU	Debugger	Tutorial	>	Kernel	Debugging

Kernel	Debugging

View	Statistical	Information	About	API	Usage

Open	the	CodeXL	Statistics	view.	The	best	way	to	overview
your	application's	API	usage	is	to	collect	the	statistics	for	a	few
complete	frames.	Let	your	application	run	for	a	few	frames,

then	suspend	it	by	pressing	Break	All	(F6).	If	you	are	using
frame	terminators,	press	the	Step	Out	button	(Shift+F11)	to
advance	to	the	end	of	the	current	frame.	Alternatively,	set	a
breakpoint	on	a	frame	terminator,	and	Continue	(F5)	past	it	a
few	times	to	collect	enough	information.	This	gives	you	the
clearest	statistical	information	about	your	API	usage.	To
change	between	the	statistics	for	different	OpenCL	and
OpenGL	contexts,	choose	them	in	the	CodeXL	Explorer.
The	Function	Types	Statistics	tab	shows	your	OpenCL	and
OpenGL	usage	by	function	types.	The	percentages	here	do	not
always	add	up	to	100%	because	an	API	function	can	belong	to
many	or	none	of	the	categories.	In	the	Function	Calls	Statistics
tab,	you	can	see	details	of	specific	functions,	including	the
function	types	each	function	belongs	to.	In	the	Vertex	Batch
Statistics	tab,	you	can	see	details	of	your	application's	vertex
batches	by	size,	giving	an	overview	of	the	vertex	sizes	and
occurrence,	as	well	as	the	total	number	of	vertices	drawn	with
each	batch	size.

	

	

	

Kernel	Debugging

On	AMD	GPU	hardware	,CodeXL	allows	debugging	OpenCL
kernels	in	real	time	on	AMD	GPU	hardware,	with	only	a	single
machine	and	single	device,	and	with	hardware	results.

Enter	Kernel	Debugging

There	are	three	ways	to	enter	kernel	debugging:
·									After	starting	debugging	and	suspending	the	process
(with	Break	/	F6	or	an	API	function	breakpoint),	use	the
Step	command	or	an	API	function	breakpoint	to	get	to	an
API	call	of	clEnqueueNDRangeKernel	or	clEnqueueTask.
Then,	press	Step	Into	(F11)	to	start	debugging	the	kernel.

·									Add	the	kernel	function	name	as	a	kernel	function

breakpoint	in	the	breakpoints	dialog	(Alt+Shift+B),	by
switching	to	the	Kernel	Functions	tab	or	by	manually
typing	in	the	kernel	name	in	the	Active	Breakpoints	list.
When	a	kernel	matching	the	function	name	starts
executing,	the	debugged	process	stops	at	the	kernel’s
beginning.

·									From	the	CodeXL	Explorer	view,	open	the	OpenCL
program,	and	set	a	breakpoint	inside	the	code.	The
application	stops	inside	the	kernel	when	it	hits	the
breakpoint.

Kernel	Debugging	Control

While	in	kernel	debugging,	press	step	over	(F10)	to	step	to	the
next	line	in	the	same	scope,	step	in	(F11)	to	enter	functions
called	inside	the	kernel,	or	step	out	(Shift+F11)	to	leave	the
current	function	or	kernel.
You	can	also	set	kernel	source	breakpoints	by	selecting	a	line
in	the	kernel	and	pressing	Add	Breakpoint	(F9),	or	clicking	in
the	margin	next	to	the	line.	Press	Continue	(F5)	to	run	up	to
the	breakpoint.	You	can	also	set	a	breakpoint	inside	a	function
to	enter	that	function	(as	with	stepping	in).

Focus	On	a	Specific	Work-Item

CodeXL's	Current	Work-Item	toolbar	lets	you	select	a	single
work-item	to	focus	on	in	CodeXL.	If	the	toolbar	is	not	open,
right-click	in	the	toolbars	area,	and	select	it	from	the	dropdown
menu.	The	combo-boxes	for	X,	Y,	and	Z	coordinates	are	enabled
and	offer	values	depending	on	the	currently	debugged	kernel's
N-Dimensional	global	work	size.	Selecting	a	work-item	has	the
following	effects:

·									The	locals	and	Watch	views	display	variable	values	for
this	work-item.

·									When	stepping	through	kernel	debugging,	"if"	or	"else"

clauses	not	entered	by	the	selected	work-item	are	skipped.

·									The	work-item	is	selected	in	the	MultiWatch	views.

Inspect	Variable	Values

Use	the	Local	and	Watch	views	to	inspect	variable	values.	The
Locals	view	displays	all	variables	that	are	currently	in-scope.
Use	the	Watch	view	to	dereference	pointers	(*p)	or	access
array	members	(a[150]).
The	values	shown	in	all	these	views	are	the	at	the	current
work-item,	as	selected	by	the	current	work-item	toolbar.

Compare	Variable	Values	Across	Work-Items	and	Work-
Groups

Use	CodeXL	Multi-Watch	views	to	compare	the	values	of
variables	across	various	work-items	and	work-groups.	To	open
a	Multi-Watch	view,	select	it	from	the	Views	toolbar	or	menu,	or
right-click	a	variable	and	select	"OpenCL	Multi-Watch...".	The
view's	variable	selection	combo-box	offers	all	variables	that	can
be	viewed	(similar	to	the	Locals	view	list).	Select	a	variable	to
view	its	values.	The	main	view	displays	a	spreadsheet	or
graphical	representation	of	the	values	along	a	sliding	scale
ranging	from	the	lowest	value	to	the	highest.	Move	the	pointers
in	the	Active	Range	slider	to	quickly	highlight	values	outside	a
given	range.
In	Data	(spreadsheet)	view,	the	variable	values	are	placed	into
cells	according	to	their	work-item	coordinates.	Work-groups

are	alternately	colored	white	and	gray,	letting	you	easily	see
the	edge	of	a	work-group.
In	Image	view,	variables	inside	the	range	are	colored	on	a
gradient	scale	from	black	(lowest)	to	white	(highest).	Values
below	the	range	are	red;	values	above	the	range	are	purple;
work-items	that	are	out	of	scope	are	yellow.
For	three-dimensional	work	sizes,	use	the	Z	coordinate	slider	to
navigate	between	the	various	XY	planes	in	the	global	work.
The	"hovered"	controls	display	the	location,	value,	and	color	for
the	mouse	cursor's	location.	Click	the	view	to	set	the	current
values	to	the	"selected"	control	for	an	easy	comparison	against
a	single	work-item.	This	also	centers	the	Data	view	on	the
selected	item.

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	GPU	Debugger	Tutorial	>	Keyboard	Shortcuts

Keyboard	Shortcuts

Views	and	Dialogs
New	Project	wizard Ctrl+N
Debug	Settings
dialog Ctrl+O

Breakpoints	dialog Alt+Shift+B
Common	Debugging

Go	(Start	/	Continue
Debugging) F5

Stop	Debugging Shift+F5
API-Level	Debugging

Break	at	next	API
function	call F6

Step	to	next	API
function	call F10

Step	into	kernel
debugging F11

Step	to	next	frame
terminator Ctrl+F11

Kernel	Debugging
Step	Over F10
Step	Into	function F11
Step	Out	of	function	/
kernel Shift+F11

Set	/	remove
breakpoint	at	kernel
source

F9

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial

CPU	Profiler	Tutorial

The	CPU	Profiler	component	in	CodeXL	is	used	for
performance	analysis	and	tuning	of	applications	running	on
CPU.	It	is	used	to	identify	the	various	factors	affecting	the
performance	of	the	profiled	application	or	the	entire	system.
This	tutorial	provides	step-by-step	instructions	for	using
CodeXL	to	analyze	the	performance	of	an	application	program.
It	consists	of	the	following	modules.
Preparing	an	Application	for	CPU	Profiling
Create	a	CodeXL	Project	for	CPU	Profiling
Set	the	global	options	for	CPU	Profiling
Set	the	CPU	Profile	Session	Options
Analysis	with	Time-based	Profiling(TBP)
Analysis	with	Event-based	Profiling(EBP)
Analysis	with	Instruction	Based	Sampling(IBS)
Analysis	with	Cache	Line	Utilization	(CLU)
Settings	for	C++	Inline	Functions
Settings	for	CPU	Profiler	to	run	on	Virtual	Machine
How	to	use	CPU	Profiler	Control	APIs
	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Preparing	an	Application	for	CPU	Profiling

Preparing	an	Application	for	CPU	Profiling

The	CodeXL	CPU	Profiler	uses	the	debug	information
generated	by	the	compiler	to	show	the	correct	function	names
in	various	analysis	views	and	to	attribute	the	collected	samples
to	source	statements	in	Source	View.	Otherwise,	the	results	of
the	CPU	Profiler	would	be	less	descriptive,	displaying	only	the
assembly	code,	and	the	functions	would	be	reported	as	NO
SYMBOL.

Generate	Debug	Information	on	Windows

When	compiling	an	application	in	release	mode,	you	can
produce	the	debug	information	to	enable	CodeXL	to	perform	an
analysis.	When	using	Microsoft	Visual	C++	to	compile	the
application	in	release	mode,	set	the	following	options	to	ensure
that	the	debug	information	is	generated	and	saved	in	a
program	database	file(with	a	.pdb	extension).
To	set	the	compiler	option	to	generate	the	debug	information
for	a	Win32	application	in	release	mode:
1.						Right	click	on	the	project	and	select	Properties	menu
item.

2.						In	the	Configuration	list,	select	Active(Release).
3.						In	the	Platform	list,	select	Active(Win32).
4.						In	the	project	pane,	expand	the	Configuration	Properties
folder,	then	expand	the	C/C++	folder.

5.						Select	General.
6.						In	the	work	pane,	select	Debug	Information	Format,
and	from	the	drop-down	list	select	Program	Database
(Zi)	or	Program	Database	for	Edit	&	Continue	(/ZI).

	

	
7.						In	the	project	pane,	expand	the	Linker	folder;	then
expand	the	Debugging	folder.

8.						In	the	Generate	Debug	Info	list,	select	Yes	(/DEBUG).

Generate	Debug	Information	on	Linux

The	application	must	be	compiled	with	the	-g	option	to	enable
the	compiler	to	generate	debug	information.	Modify	either	the
Makefile	or	the	respective	build	scripts	accordingly.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Create	a	CodeXL	Project	for	CPU	Profiling

Create	a	CodeXL	Project	for	CPU	Profiling

To	start	profiling	their	application,	you	must	create	a	new
CodeXL	Project	and	set	the	appropriate	settings.	The	following
steps	explain	how	to	create	a	new	CodeXL	Project.
1.						Once	CodeXL	is	launched,	click	on	Create	New	Project
link	in	the	main	pane,	or	select	File	>	New	Project...	
The	Create	a	new	CodeXL	Project	dialog	box	is
displayed.

2.						Select	the	General	tree	node	on	the	left	pane.
3.						In	the	Executable	Path	box,	click	Browse,	and	select
the	application	to	be	profiled.

4.						By	default,	CodeXL	uses	the	name	of	the	application	as
the	project	name.	To	modify	the	project	name,	edit	the
CodeXL	Project	Name	box.

5.						Edit	the	other	boxes	that	are	required	for	executing	the
application	to	be	profiled.
·									Working	Directory
·									Command	Line	Arguments	(optional)
·									Environment	Variables	(optional)
·									Source	Files	Directories	(optional)

	

	
6.						Click	OK.	
A	new	CodeXL	project	is	created	and	displayed	in	the
Session	Explorer	window.

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Create	a	CodeXL	Project	for	CPU	Profiling	>	Creating	CPU	Profiling	Project	for
Windows	Store	(Metro)	Apps

Creating	CPU	Profiling	Project	for	Windows	Store
(Metro)	Apps

1.						Once	CodeXL	is	launched,	click	on	Create	New	Project
link	in	the	main	pane,	or	select	File	>	New	Project...	
The	Create	a	new	CodeXL	Project	dialog	box	is
displayed	as	shown	in	the	previous	screenshot.

2.						Select	the	General	tree	node	on	the	left	pane.
3.						Select	“Application	Type”	as	“Windows	Store	App”.
	Please	note	that	Store	Apps	are	only	available	on
Windows	8.x	or	later	versions.

4.						In	the	Executable	Path	box,	click	Browse.	The	Select
Windows	Store	app	dialog	will	be	displayed.	Select	the
Store	App	to	be	profiled.	Select	OK.

	

1.						Configure	other	settings	as	described	in	the	previous
section	item	4,	5.

2.						Click	OK.

A	new	CodeXL	project	for	Windows	Store	App	is	created
and	displayed	in	the	Session	Explorer	window.

	
	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Set	the	global	options	for	CPU	Profiling

Set	the	global	options	for	CPU	Profiling

Specify	the	global	CPU	profile	settings	by	modifying	the
CodeXL	Options	dialog	box.	The	following	steps	explain	how
to	do	this.
1.						Select	the	profile	mode	by	selecting	Profile	>	Profile
Mode	-	CPU:	Time-based	Sampling	or	by	clicking	the
Profile	icon	

2.						Select	Tools	>	Options...	menu	item.
The	CodeXL	Options	dialog	box	is	displayed.

3.						Select	the	General	tab,	as	shown	in	the	following
screenshot.

	
4.						Select	Alert	when	a	source	file	is	missing	check	box	if
you	want	CodeXL	to	pop	up	an	alert	message	dialog	box	if
source	files	are	missing.

5.						Select	the	CPU	Profile	tab,	as	shown	in	the	screenshot
in	the	below	sub-section	‘Setting	Symbol	Server	Path’.

	
	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Set	the	global	options	for	CPU	Profiling	>	Setting	Symbol	Server	Path

Setting	Symbol	Server	Path

1.						If	any	additional	debug	symbol	paths	are	to	be	specified
to	find	the	required	.pdb	files,	select	the	Additional	debug
symbol	paths	check	box,	browse,	and	select	the	folder	in
which	PDB	files	are	kept.

2.						Select	Symbol	Server	Directories	to	enable	the	support
of	Microsoft	symbol	server	technology.	Set	the	download
directory	and	select	Microsoft	symbol	server	link.
Additional	symbol	server	paths	can	be	added	to	this	list.
(See	the	help	file	for	a	detailed	description	of	the	available
options.)

	

3.						Select	the	block	size	for	disassembly	fetch	while
navigating	through	disassembly	code.	The	default	size	of
1024	is	usually	sufficient.

	
	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Set	the	General	Profile	Session	Options

Set	the	General	Profile	Session	Options

1.						Click	the	Profile	>	Profile	Settings	menu	item.
2.						Click	the	Profile	tree	node	in	the	left	pane.
3.						Select	one	of	the	CPU	profile	types	in	the	profile	type
combo	box.	The	corresponding	description	will	appear.

4.						Select	the	profile	scope:
·									Single	Application	Profile:	when	this	option	is
selected,	CodeXL	will	launch	the	profiled	application
(classic.exe	in	this	case),	and	will	collect	profile	data	only
from	this	process.

·									System-Wide	Profile:	when	this	option	is	selected,
CodeXL	will	not	launch	the	profiled	application,	and	will
collect	profile	data	from	all	the	currently	running
processes.

·									System-Wide	Profile	with	focus	on	application:
when	this	option	is	selected,	CodeXL	will	launch	the
profiled	application	(classic.exe).	It	will	collect	profiled
events	data	both	from	classic.exe	and	other	running
processes	on	the	machine.	For	classic.exe,	CodeXL	will
also	collect	call	stack	information.
	

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Set	the	CPU	Profile	Session	Options

Set	the	CPU	Profile	Session	Options

The	CPU	Profile	view	is	used	to	control	the	profile	data
collection	options.	The	selected	settings	persist	and	apply	to
future	profile	data	collection	sessions	that	are	started	within	a
project;	they	persist	until	the	profile	settings	are	modified.
1.						Click	the	Profile	>	Profile	Settings	menu	item.
2.						Click	the	Profile	tree	node	in	the	left	pane.	The	CPU
Profile	settings	page	is	displayed	(see	the	following
screenshot).

3.						Select	Collect	call	stack	details	to	enable	the	collection
of	call	stack	data	to	analyze	caller-called	relationships	and
call	frequency.
Note:	The	collection	of	call	stack	is	not	supported	for	Java
or	CLR	based	applications.	For	those	applications,	this
checkbox	would	be	unchecked	and	disabled.
·									Set	the	value	for	Collect	for	code	executed	in	drop
box,	to	apply	call	stacks	collection	only	to	code	sampled
in	User	space,	Kernel	space	or	both	(User	space	and
Kernel	space).

·									Set	the	value	for	Collect	Call	Stack	every	spin	box,	to
specify	how	often	a	CSS	sample	is	taken.	If	the	selected
value	is	N	for	example,	then	a	CSS	sample	is	taken	every
N	regular	samples.	By	default	it	is	set	to	1.

·									Set	the	value	for	Call	Stack	Collection	Depth.	Use
Maximal	for	high	accuracy,	and	Minimal	for	lower
performance	overhead.
Note:	This	option	is	set	separately	for	Time-Based
Sampling	and	other	CPU	Profiling	session	types.

·									Check	the	Reproduce	missing	call	stack	info	check
box,	to	perform	additional	analysis	to	overcome	frame-

pointer	omission	(FPO)	in	32-bit	apps	and	lack	of	unwind
info	in	64-bit.	The	profiler	will	store	additional	data
during	the	profile	session	and	require	more	time	during
post-session	processing.
Note:	This	option	is	set	separately	for	Time-Based
Sampling	and	other	CPU	Profiling	session	types.

4.						In	the	Data	Collection	Schedule	section:
·									Select	Throughout	entire	duration	if	you	want	the
data	to	be	collected	throughout	the	entire	execution	of
the	profile	session.

·									Select	Start	profile	with	data	collection	paused	if
you	want	to	start	the	application	and	then	decide	when
data	collection	should	be	started.

·									Select	Scheduled:	if	you	want	to	set	the	data	collection
start	after	and	end	after	values.	Once	this	option	is
checked,	set	the	values	for	the	start	/	end	timing	of	the
data	collection.

5.						Select	/	Unselect	cores	in	the	cores	tree	under	Profile
Hardware	Scope,	when	you	want	to	limit	the	execution	of
the	program	to	the	selected	cores	in	a	multicore	system.	

	
	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Analysis	with	Time-based	Profiling	(TBP)

Analysis	with	Time-based	Profiling	(TBP)

Time-based	profiling	(TBP)	identifies	the	hot	spots	in	a
program	that	are	consuming	the	most	time.	Hot	spots	are	good
candidates	for	further	investigation	and	optimization.
Collecting	TBP	profile	Data
Changing	the	TBP	profile	collection	options
Analyzing	the	TBP	profile	data

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Analysis	with	Time-based	Profiling	(TBP)	>	Collecting	TBP	profile	Data

Collecting	TBP	profile	Data

To	collect	the	TBP	data,	do	the	following.
1.						Create	a	new	CodeXL	Project.
2.						In	the	toolbar,	select	Time-based	profile	in	the	profile
configuration	list,	as	shown	in	the	following	screenshot.

	

	
3.						Set	the	profile	session	options	as	explained	in	Set	the
CPU	Profile	Session	settings.

4.						Click	the	Start	 	button	in	the	toolbar	or	select
Profile	>	Start	Profiling,	as	shown	below.

CodeXL	begins	data	collection	and	launches	the	specified
application	program.	The	start	icon	is	disabled	until	profiling	is
in	progress.	The	console	window	is	open,	and	the	launched
application	is	running	in	the	console	window.	The	status	bar
shows	the	profile	duration	while	profiling	is	running;	this	is	the
percentage	completion	of	data	translation	during	data
translation	phase.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Analysis	with	Time-based	Profiling	(TBP)	>	Changing	the	TBP	profile	collection
options

Changing	the	TBP	profile	collection	options

CodeXL	lets	you	modify	the	default	profile	collection	settings.
To	do	this:
1.						Set	the	profile	session	options	as	explained	in	Set	the
CPU	Profile	Session	settings.

2.						By	default,	the	sampling	interval	for	TBP	is	1	millisecond.
To	modify	the	sampling	interval,	click	Profile	>	Profile
Settings	and	click	on	the	CPU	Profile	>	Custom	node	in
the	left	pane	tree	in	the	Edit	CodeXL	Project	Settings
dialog	box.	The	Custom	CPU	Profile	Monitored	Events
page	will	be	displayed.

3.						Click	the	Interval	field	and	set	the	required	sampling
interval.

4.						Click	the	OK	button	to	save	the	modified	profile	settings.
	

	

	
	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Analysis	with	Time-based	Profiling	(TBP)	>	Analyzing	the	TBP	profile	data

Analyzing	the	TBP	profile	data

This	page	explains	how	to	analyze	and	navigate	to	the	various
profile	views	provided	by	the	CodeXL	CPU	Profiler.	It	consists
of	the	following	modules.
Overview	page
Modules	view
Functions	view
Call	Graph	view
Source	Code	view

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Analysis	with	Time-based	Profiling	(TBP)	>	Analyzing	the	TBP	profile	data	>
Overview	page

Overview	page

When	data	collection	is	complete,	CodeXL	processes	the	data
and	displays	the	results.
Initially	the	Profile	Overview	is	displayed	with	the	following
profile	data.

·									5	Hottest	Functions	table
·									5	Hottest	Modules	table
·									Execution	section
·									Profile	Details	section

From	the	overview	page	you	can	navigate	to	various	pages	to
analyze	the	profile	data.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Analysis	with	Time-based	Profiling	(TBP)	>	Analyzing	the	TBP	profile	data	>
Modules	view

Modules	view

1.						To	navigate	to	Modules	view,	do	one	of	the	following:
·									In	CodeXL	Explorer	pane,	double-click	on	Modules
node	in	the	profile	session	tree	entry	created	for	this
profile	run.	
The	Modules	view	is	displayed.

·									In	Overview	page,	right-click	on	5	Hottest	Modules
table	entry,	and	select	Display	in	Modules	View.	
The	Modules	view	is	displayed.

2.						Click	on	the	Display:	All	Data,	All	Modules	link	to	set
the	Display	Settings.	
The	Display	Settings	dialog	box	is	displayed	to	let	you	set
the	various	display	settings.

3.						Click	OK	button	to	save	the	Display	filter	settings.
©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Analysis	with	Time-based	Profiling	(TBP)	>	Analyzing	the	TBP	profile	data	>
Functions	view

Functions	view

1.						To	navigate	to	the	Functions	view,	do	one	of	the
following.
·									In	CodeXL	Explorer	pane,	double-click	on	the
Functions	node	in	the	profile	session	tree	entry	created
for	this	profile	run.	The	Functions	view	is	displayed	with
function	entries	from	all	the	profiled	processes	and	the
load	modules.

·									In	Overview	page,	right-click	on	the	5	Hottest
Modules	table	entry,	and	select	Display	in	Functions
View.	
The	Functions	view	is	displayed	with	function	entries
from	the	selected	load	module.

·									In	Overview	page,	right-click	on	the	5	Hottest
Functions	table	entry,	and	select	Display	in	Functions
View.	
The	Functions	view	is	displayed	with	function	entries
from	all	the	profiled	processes	and	the	load	modules.

·									In	Modules	view,	select	a	Process	from	the	Processes
table,	and	select	Display	in	Functions	View.	
This	displays	the	functions	from	the	selected	process	and
all	its	load	modules.

·									In	Modules	view,	select	a	Module	from	the	Modules
filtered	by	selected	processes	table,	and	select
Display	in	Functions	View.	
This	displays	the	functions	from	the	selected	load
module.

2.						Click	on	Display:	All	Data,	All	Modules	link	to	set	the
display	settings.	

The	Display	Settings	dialog	box	is	displayed	to	let	you	set
the	various	display	settings.

3.						Click	OK	button	to	save	the	Display	filter	settings.
4.						Click	on	modules	shown,	modules	hidden	link	to	set
the	module	filter	settings	to	be	used	in	the	Functions	view.
The	CodeXL	Modules	Filter	dialog	box	is	displayed	to	let
you	set	the	module	filter	settings.

	

5.						Click	the	OK	button	to	save	the	Modules	filter	settings.
©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Analysis	with	Time-based	Profiling	(TBP)	>	Analyzing	the	TBP	profile	data	>
Call	Graph	view

Call	Graph	view

1.						To	navigate	to	Call	Graph	view,	do	any	of	the	following:
·									In	CodeXL	Explorer	pane,	double-click	on	Call	Graph
node	in	the	profile	session	tree	entry	created	for	this
profile	run.	
The	Call	Graph	view	is	displayed	with	Callstack	samples
collected	for	the	profiled	application.

·									In	Overview	page,	right-click	on	the	5	Hottest
Functions	table	entry,	and	select	Display	in	Call
Graph	View.	
The	Functions	view	is	displayed	with	Callstack	samples
collected	for	the	profiled	application.

·									In	Functions	view,	select	a	function	from	the
Functions	table,	and	select	Display	in	Call	Graph
View	
This	displays	the	Call	Graph	constructed	from	the
callstack	samples	collected	from	the	profiled	application.

2.						Click	on	the	Display:	All	Modules	link	to	enable
Display	system	modules.	
This	displays	the	callstack	samples	collected	from	the
system	modules.

3.						Click	the	OK	button	to	save	the	Display	filter	settings.
4.						Click	on	the	Process	combo	box	to	select	the	process	for
which	you	want	to	view	the	Call	Graph.

	
	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Analysis	with	Time-based	Profiling	(TBP)	>	Analyzing	the	TBP	profile	data	>
Source	Code	view

Source	Code	view

1.						To	navigate	to	Call	Graph	view,	do	any	of	the	following:
·									In	the	Overview	page,	right-click	on	the	5	Hottest
Functions	table	entry,	and	select	Open	Source	Code.	
This	displays	the	Source	Code	view	for	the	selected
function.

·									In	the	Functions	view,	select	a	function	from	the
Functions	table,	right-click	and	select	Open	Source
Code	from	the	context	menu.	
This	displays	the	Source	Code	view	for	the	selected
function.

·									In	Call	Graph	view,	select	a	function	from	the
Functions	table,	right-click	and	select	Open	Source
Code	from	the	context	menu.	
This	displays	the	Source	Code	view	for	the	selected
function.

2.						To	view	the	sources	for	the	some	other	function,	click	on
the	Function	combo-box,	and	select	the	function	for
which	you	want	to	view	the	source	code.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Analysis	with	Event-based	Profiling	(EBP)

Analysis	with	Event-based	Profiling	(EBP)

Event-based	profiling	(EBP)	uses	the	hardware	performance
event	counters	to	measure	the	number	of	specific	kinds	of
events	that	occur	during	execution.	Examples	of	events	include
processor	clock	cycles,	retired	instructions,	data	cache
accesses,	and	data	cache	misses.	The	specific	events	to	be
measured	are	determined	by	the	profile	configuration	that	is
used	to	set	up	data	collection.	This	section	comprises	the
following	modules.
Collecting	EBP	profile	data
Changing	the	EBP	profile	collection	options
Analyzing	the	EBP	profile	data

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Analysis	with	Event-based	Profiling	(EBP)	>	Collecting	EBP	profile	data

Collecting	EBP	profile	data

To	collect	the	EBP	data:
1.						Create	a	new	CodeXL	Project
2.						In	the	toolbar,	select	CPU:	Assess	Performance	from
the	profile	configuration	list.	
This	is	a	predefined	Event-based	profile	configuration
provided	by	CodeXL.

3.						Set	the	profile	session	options	as	explained	in	Set	the
CPU	Profile	Session	settings.

4.						Click	the	Start	 	icon	in	the	toolbar,	or	select	Profile	>
Start	Profiling,	as	shown	below.

CodeXL	begins	data	collection	and	launches	the	specified
application	program.	The	start	icon	has	been	clicked	and	is
disabled	while	profiling	is	in	progress.	The	console	window	is
open,	and	the	launched	application	is	running	in	the	console
window.	The	status	bar	displays	the	profile	duration	while
profiling	is	running;	this	is	a	percentage	of	completion	of	data
translation	during	data	translation	phase.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Analysis	with	Event-based	Profiling	(EBP)	>	Changing	the	EBP	profile
collection	options

Changing	the	EBP	profile	collection	options

CodeXL	lets	you	modify	the	default	profile	collection	settings.
To	do	this:
1.						Set	the	profile	session	options	as	explained	in	Set	the
CPU	Profile	Session	settings.

2.						By	default,	the	sampling	interval	for	TBP	is	1	millisecond.
To	modify	the	sampling	interval,	click	Profile	>	Profile
Settings	and	click	the	CPU	Profile	>	Custom	node	in
the	left	pane	tree	in	the	Edit	CodeXL	Project	Settings
dialog	box.	The	Custom	CPU	Profile	Monitored	Events
page	will	be	displayed.

3.						Click	the	Interval	field	and	set	the	required	sampling
interval.

4.						Click	the	OK	button	to	save	the	modified	profile	settings.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Analysis	with	Event-based	Profiling	(EBP)	>	Analyzing	the	EBP	profile	data

Analyzing	the	EBP	profile	data

This	page	explains	how	to	analyze	and	navigate	to	the	various
profile	views	provided	by	the	CodeXL	CPU	Profiler.	Its	modules
are:
Overview	page
Modules	view
Functions	view
Call	Graph	view
Source	Code	view

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Analysis	with	Event-based	Profiling	(EBP)	>	Analyzing	the	EBP	profile	data	>
Overview	page

Overview	page

When	data	collection	is	complete,	CodeXL	processes	the	data
and	displays	the	results.
Initially,	the	Profile	Overview	is	displayed	with	the	following
profile	data:

·									5	Hottest	Functions	table
·									5	Hottest	Modules	table
·									Execution	section
·									Profile	Details	section

From	the	overview	page,	you	can	naviagte	to	various	pages	to
analyze	the	profile	data.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Analysis	with	Event-based	Profiling	(EBP)	>	Analyzing	the	EBP	profile	data	>
Modules	view

Modules	view

1.						To	navigate	to	the	Modules	view,	do	one	of	the	following.
·									In	CodeXL	Explorer	pane,	double-click	on	the	Modules
node	in	the	profile	session	tree	entry	created	for	this
profile	run.	
The	Modules	view	is	displayed.

·									In	Overview	page,	right-click	on	the	5	Hottest
Modules	table	entry,	and	select	Display	in	Modules
View.	
The	Modules	view	is	displayed.

2.						Click	on	the	Display:	All	Data,	All	Modules	link	to	set
the	Display	Settings.	
The	Display	Settings	dialog	box	is	displayed	to	let	you	set
the	various	display	settings.

3.						Click	OK	button	to	save	the	Display	filter	settings.
©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Analysis	with	Event-based	Profiling	(EBP)	>	Analyzing	the	EBP	profile	data	>
Functions	view

Functions	view

1.						To	navigate	to	Functions	view,	do	one	of	the	following:
·									In	CodeXL	Explorer	pane,	double-click	on	Functions
node	in	the	profile	session	tree	entry	created	for	this
profile	run.	
The	Functions	view	is	displayed	with	function	entries
from	all	the	profiled	processes	and	the	load	modules.

·									In	the	Overview	page,	right-click	on	the	5	Hottest
Modules	table	entry,	and	select	Display	in	Functions
View.	
The	Functions	view	is	displayed	with	function	entries
from	the	selected	load	module.

·									In	the	Overview	page,	right-click	on	the	5	Hottest
Functions	table	entry,	and	select	Display	in	Functions
View.	
The	Functions	view	is	displayed	with	function	entries
from	all	the	profiled	processes	and	the	load	modules.

·									In	the	Modules	view,	select	a	Process	from	the
Processes	table,	and	select	Display	in	Functions	View.
This	displays	the	functions	from	the	selected	process	and
all	its	load	modules.

·									In	the	Modules	view,	select	a	Module	from	the
Modules	filtered	by	selected	processes	table,	and
select	Display	in	Functions	View.	
This	displays	the	functions	from	the	selected	load
module.

2.						Click	on	the	Display:	All	Data,	All	Modules	link	to	set
the	display	settings.	
The	Display	Settings	dialog	box	is	displayed	to	let	you	set

the	various	display	settings.
3.						Click	OK	button	to	save	the	Display	filter	settings.
4.						Click	on	the	modules	shown,	modules	hidden	link	to
set	the	module	filter	settings	to	be	used	in	the	Functions
view.	
The	CodeXL	Modules	Filter	dialog	box	is	displayed	to	let
you	set	the	module	filter	settings.

5.						Click	OK	button	to	save	the	Modules	filter	settings.
©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Analysis	with	Event-based	Profiling	(EBP)	>	Analyzing	the	EBP	profile	data	>
Call	Graph	view

Call	Graph	view

1.						To	navigate	to	Call	Graph	view,	do	one	of	the	following:
·									In	the	CodeXL	Explorer	pane,	double-click	on	Call
Graph	node	in	the	profile	session	tree	entry	created	for
this	profile	run.	
The	Call	Graph	view	is	displayed	with	Callstack	samples
collected	for	the	profiled	application.

·									In	the	Overview	page,	right-click	on	the	5	Hottest
Functions	table	entry,	and	select	Display	in	Call
Graph	View.	The	Functions	view	is	displayed	with
Callstack	samples	collected	for	the	profiled	application.

·									In	Functions	view,	select	a	function	from	the
Functions	table,	and	select	Display	in	Call	Graph
View	
This	displays	the	Call	Graph	constructed	from	the
callstack	samples	collected	from	the	profiled	application.

2.						Click	on	the	Display:	All	Modules	link	to	enable
Display	system	modules.	
This	displays	the	callstack	samples	collected	from	the
system	modules.

3.						Click	the	OK	button	to	save	the	Display	filter	settings.
4.						Click	on	the	Process	combo	box	to	select	the	process	for
which	you	want	to	view	the	Call	Graph.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Analysis	with	Event-based	Profiling	(EBP)	>	Analyzing	the	EBP	profile	data	>
Source	Code	view

Source	Code	view

1.						To	navigate	to	Call	Graph	view,	do	one	of	the	following:
·									In	the	Overview	page,	right-click	on	the	5	Hottest
Functions	table	entry,	and	select	Open	Source	Code.	
This	displays	the	Source	Code	view	for	the	selected
function.

·									In	the	Functions	view,	select	a	function	from	the
Functions	table,	right-click	and	select	Open	Source
Code	from	the	context	menu.	
This	displays	the	Source	Code	view	for	the	selected
function.

·									In	the	Call	Graph	view,	select	a	function	from	the
Functions	table,	right-click	and	select	Open	Source
Code	from	the	context	menu.	
This	displays	the	Source	Code	view	for	the	selected
function.

2.						To	view	the	sources	for	the	some	other	function,	click	on
the	Function	combo-box,	and	select	the	function	for
which	you	want	to	view	the	source	code.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Analysis	with	Instruction	Based	Sampling	(IBS)

Analysis	with	Instruction	Based	Sampling	(IBS)

Instruction	Based	Sampling	(IBS)	uses	the	hardware
feature	called	IBS,	to	collect	the	IBS	Fetch	and	IBS	Op	data.
Collecting	IBS	profile	data
Changing	the	IBS	profile	collection	options
Analyzing	the	IBS	profile	data

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Analysis	with	Instruction	Based	Sampling	(IBS)	>	Collecting	IBS	profile	data

Collecting	IBS	profile	data

To	collect	the	IBS	data:
1.						Create	a	new	CodeXL	Project.
2.						In	the	toolbar,	select	CPU:	Instruction-based
Sampling	from	the	profile	configuration	list,	as	shown	in
the	following	screenshot.	
This	is	a	predefined	IBS	profile	configuration	provided	by
CodeXL.

	

3.						Set	the	profile	session	options	as	explained	in	Set	the
CPU	Profile	Session	settings.

4.						Click	the	Start	 	icon	in	the	toolbar,	or	select	Profile	>
Start	Profiling,	as	shown	below.

	
CodeXL	begins	data	collection	and	launches	the	specified
application	program.	The	start	icon	is	disabled	until	profiling	is
in	progress.	The	console	window	is	open,	and	the	launched
application	is	running	in	the	console	window.	The	status	bar
displays	the	profile	duration	while	profiling	is	running;	this	is
the	percentage	completion	of	data	translation	during	data
translation	phase.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Analysis	with	Instruction	Based	Sampling	(IBS)	>	Changing	the	IBS	profile
collection	options

Changing	the	IBS	profile	collection	options

	
CodeXL	lets	you	modify	the	default	profile	collection	settings.
To	do	this:
1.						Set	the	profile	session	options	as	explained	in	Set	the
CPU	Profile	Session	Options.

2.						By	default,	the	sampling	interval	for	TBP	is	1	millisecond.
To	modify	the	sampling	interval,	click	Profile	>	Profile
Settings	and	click	on	the	CPU	Profile	>	Custom	node	in
the	left	pane	tree.	in	the	Edit	CodeXL	Project	Settings
dialog	box.	The	Custom	CPU	Profile	Monitored	Events
page	will	be	displayed.

3.						Click	the	Interval	field	and	set	the	required	sampling
interval.

4.						Click	the	OK	button	to	save	the	modified	profile	settings.
	

	

	
	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Analysis	with	Instruction	Based	Sampling	(IBS)	>	Analyzing	the	IBS	profile
data

Analyzing	the	IBS	profile	data

This	page	explains	how	to	analyze	and	navigate	to	the	various
profile	views	provided	by	the	CodeXL	CPU	Profiler.	It	is
comprised	of	the	following	modules.
Overview	page
Modules	view
Functions	view
Call	Graph	view
Source	Code	view

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Analysis	with	Instruction	Based	Sampling	(IBS)	>	Analyzing	the	IBS	profile
data	>	Overview	page

Overview	page

When	data	collection	is	complete,	CodeXL	processes	the	data
and	displays	the	results.
Initially,	the	Profile	Overview	displays	the	following	profile
data.

·									5	Hottest	Functions	table
·									5	Hottest	Modules	table
·									Execution	section
·									Profile	Details	section

From	the	overview	page	you	can	navigate	to	various	pages	to
analyze	the	profile	data.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Analysis	with	Instruction	Based	Sampling	(IBS)	>	Analyzing	the	IBS	profile
data	>	Modules	view

Modules	view

1.						To	navigate	to	Modules	view,	do	one	of	the	following.
·									In	the	CodeXL	Explorer	pane,	double-click	on	the
Modules	node	in	the	profile	session	tree	entry	created
for	this	profile	run.	
The	Modules	view	is	displayed.

·									In	the	Overview	page,	right-click	on	the	5	Hottest
Modules	table	entry,	and	select	Display	in	Modules
View.	
The	Modules	view	is	displayed.

2.						Click	on	the	Display:	All	Data,	All	Modules	link	to	set
the	Display	Settings.	
The	Display	Settings	dialog	box	is	displayed	to	let	you	set
the	various	display	settings.

3.						Click	the	OK	button	to	save	the	Display	filter	settings.
©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Analysis	with	Instruction	Based	Sampling	(IBS)	>	Analyzing	the	IBS	profile
data	>	Functions	view

Functions	view

1.						To	navigate	to	Functions	view,	do	one	of	the	following.
·									In	CodeXL	Explorer	pane,	double-click	on	Functions
node	in	the	profile	session	tree	entry	created	for	this
profile	run.	
The	Functions	view	is	displayed	with	function	entries
from	all	the	profiled	processes	and	the	load	modules.

·									In	the	Overview	page,	right-click	on	the	5	Hottest
Modules	table	entry,	and	select	Display	in	Functions
View.	
The	Functions	view	is	displayed	with	function	entries
from	the	selected	load	module.

·									In	the	Overview	page,	right-click	on	the	5	Hottest
Functions	table	entry,	and	select	Display	in	Functions
View.	
The	Functions	view	is	displayed	with	function	entries
from	all	the	profiled	processes	and	the	load	modules.

·									In	the	Modules	view,	select	a	Process	from	the
Processes	table,	and	select	Display	in	Functions	View.	
This	displays	the	functions	from	the	selected	process	and
all	its	load	modules.

·									In	the	Modules	view,	select	a	Module	from	the	Modules
filtered	by	selected	processes	table,	and	select	Display
in	Functions	View.	
This	displays	the	functions	from	the	selected	load	module.

2.						Click	on	the	Display:	All	Data,	All	Modules	link	to	set
the	display	settings.	
The	Display	Settings	dialog	box	is	displayed	to	let	you	set
the	various	display	settings.

3.						Click	the	OK	button	to	save	the	Display	filter	settings.
4.						Click	on	the	modules	shown,	modules	hidden	link	to
set	the	module	filter	settings	to	be	used	in	the	Functions
view.	
The	CodeXL	Modules	Filter	dialog	box	is	displayed	to	let
you	set	the	module	filter	settings.

5.						Click	the	OK	button	to	save	the	Modules	filter	settings.
©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Analysis	with	Instruction	Based	Sampling	(IBS)	>	Analyzing	the	IBS	profile
data	>	Call	Graph	view

Call	Graph	view

1.						To	navigate	to	Call	Graph	view,	do	one	of	the	following.
·									In	the	CodeXL	Explorer	pane,	double-click	on	the	Call
Graph	node	in	the	profile	session	tree	entry	created	for
this	profile	run.	
The	Call	Graph	view	is	displayed	with	Callstack	samples
collected	for	the	profiled	application.

·									In	the	Overview	page,	right-click	on	the	5	Hottest
Functions	table	entry,	and	select	Display	in	Call
Graph	View.	
The	Functions	view	is	displayed	with	Callstack	samples
collected	for	the	profiled	application.

·									In	the	Functions	view,	select	a	function	from	the
Functions	table,	and	select	Display	in	Call	Graph
View	
This	displays	the	Call	Graph	constructed	from	the
callstack	samples	collected	from	the	profiled	application.

2.						Click	on	the	Display:	All	Modules	link	to	enable	the
Display	system	modules.	
This	displays	the	callstack	samples	collected	from	the
system	modules.

3.						Click	the	OK	button	to	save	the	Display	filter	settings.
4.						Click	on	the	Process	combo	box	to	select	the	process	for
which	you	want	to	view	the	Call	Graph.

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Analysis	with	Instruction	Based	Sampling	(IBS)	>	Analyzing	the	IBS	profile
data	>	Source	Code	view

Source	Code	view

1.						To	navigate	to	Call	Graph	view,	do	one	of	the	following.
·									In	the	Overview	page,	right-click	on	the	5	Hottest
Functions	table	entry,	and	select	Open	Source	Code.	
This	displays	the	Source	Code	view	for	the	selected
function.

·									In	the	Functions	view,	select	a	function	from	the
Functions	table,	right-click	and	select	Open	Source
Code	from	the	context	menu.	
This	displays	the	Source	Code	view	for	the	selected
function.

·									In	the	Call	Graph	view,	select	a	function	from	the
Functions	table,	right-click	and	select	Open	Source
Code	from	the	context	menu.	
This	displays	the	Source	Code	view	for	the	selected
function.

2.						To	view	the	sources	for	the	some	other	function,	click	on
the	Function	combo-box,	and	select	the	function	for
which	you	want	to	view	the	source	code.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Analysis	with	Cache	Line	Utilization	(CLU)

Analysis	with	Cache	Line	Utilization	(CLU)

Cache	Line	Utilization	(CLU)	uses	the	Load	and	Store
Instruction-Based	Sampling	(IBS)	records	to	provide	a	measure
of	how	efficiently	an	application	utilizes	the	L1	data	cache.
Collecting	CLU	profile	data
Changing	the	CLU	profile	collection	options
Analyzing	the	CLU	profile	data

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Analysis	with	Cache	Line	Utilization	(CLU)	>	Collecting	CLU	profile	data

Collecting	CLU	profile	data

To	collect	the	CLU	data,	perform	the	following	steps:
1.						First	Create	a	new	CodeXL	Project
2.						In	the	toolbar,	select	CPU:	Cache	Line	Utilization	from
the	profile	configuration	list,	as	shown	in	the	following
figure.	This	is	a	predefined	Cache	Line	Utilization	profile
configuration	provided	by	CodeXL.

3.						Set	the	profile	session	options	as	explained	in	Set	the	CPU
Profile	Session	settings

4.						Click	the	Start	 	icon	in	the	toolbar	or	select	Profile	>

Start	Profiling	as	shown	below.
	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Analysis	with	Cache	Line	Utilization	(CLU)	>	Changing	the	CLU	profile
collection	options

Changing	the	CLU	profile	collection	options

	

CodeXL	lets	you	modify	the	default	profile	collection	settings.
To	do	this:
1.						Set	the	profile	session	options	as	explained	in	Set	the
CPU	Profile	Session	settings.

2.						By	default,	the	sampling	interval	for	TBP	is	1	millisecond.
To	modify	the	sampling	interval,	click	Profile	>	Profile
Settings	and	click	on	the	CPU	Profile	>	Custom	node	in
the	left	pane	tree.	in	the	Edit	CodeXL	Project	Settings
dialog	box.	The	Custom	CPU	Profile	Monitored	Events
page	will	be	displayed.

3.						Click	the	Interval	field	and	set	the	required	sampling
interval.

4.						Click	the	OK	button	to	save	the	modified	profile	settings.
	

	

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Analysis	with	Cache	Line	Utilization	(CLU)	>	Analyzing	the	CLU	profile	data

Analyzing	the	CLU	profile	data

This	page	explains	how	to	analyze	and	navigate	to	the	various
profile	views	provided	by	the	CodeXL	CPU	Profiler.
Overview	page	Overview	page
Modules	view	Modules	view
Functions	view	Functions	view
Source	Code	view	Source	Code	view

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Analysis	with	Cache	Line	Utilization	(CLU)	>	Analyzing	the	CLU	profile	data	>
Overview	page

Overview	page

When	data	collection	is	complete,	CodeXL	processes	the	raw
profile	data	and	displays	the	results.
Initially	the	Profile	Overview	is	displayed.	It	displays	the
following	profile	data:
·			5	Hottest	Functions	table
·			5	Hottest	Modules	table
·			5	Hottest	Processes	table
·			Execution	section
·			Profile	Details	section

From	the	overview	page	the	user	can	navigate	to	various	pages
to	analyze	the	profile	data.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Analysis	with	Cache	Line	Utilization	(CLU)	>	Analyzing	the	CLU	profile	data	>
Modules	view

Modules	view

1.						To	navigate	to	Modules	view,	do	any	of	the	following:
o				In	CodeXL	Explorer	pane,	double	click	on	Modules	node	in
the	profile	session	tree	entry	created	for	this	profile	run.
The	Modules	view	is	displayed.

o				In	Overview	page,	right	click	on	5	Hottest	Modules	table
entry	and	select	Display	in	Modules	View.	The	Modules
view	is	displayed.

2.						Click	on	Display:	All	Data,	All	Modules	link	to	set	the
Display	Settings.	The	Display	Settings	dialog	box	is
displayed	to	enable	the	users	to	set	the	various	display
settings.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Analysis	with	Cache	Line	Utilization	(CLU)	>	Analyzing	the	CLU	profile	data	>
Functions	view

Functions	view

1.						To	navigate	to	Functions	view,	do	any	of	the	following:
In	CodeXL	Explorer	pane,	double	click	on	Functions	node
in	the	profile	session	tree	entry	created	for	this	profile	run.
The	Functions	view	is	displayed	with	function	entries	from
all	the	profiled	processes	and	the	load	modules.
In	Overview	page,	right	click	on	5	Hottest	Modules	table
entry	and	select	Display	in	Functions	View.	The
Functions	view	is	displayed	with	function	entries	from	the
selected	load	module.
In	Overview	page,	right	click	on	5	Hottest	Functions
table	entry	and	select	Display	in	Functions	View.	The
Functions	view	is	displayed	with	function	entries	from	all
the	profiled	processes	and	the	load	modules.
In	Modules	view,	select	a	Process	from	the	Processes
table,	and	select	Display	in	Functions	View.	This	displays
the	functions	from	the	selected	process	and	all	its	load
modules.
In	Modules	view,	select	a	Module	from	the	Modules
filtered	by	selected	processes	table,	and	select	Display
in	Functions	View.	This	displays	the	functions	from	the
selected	load	module.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Analysis	with	Cache	Line	Utilization	(CLU)	>	Analyzing	the	CLU	profile	data	>
Source	Code	view

Source	Code	view

1.						To	navigate	to	Source	view,	do	any	of	the	following:
o				In	Overview	page,	right	click	on	5	Hottest	Functions
table	entry	and	select	Open	Source	Code.	This	displays
the	Source	Code	view	for	the	selected	function.

o				In	Functions	view,	select	a	function	from	the	Functions
table,	right	click	and	select	Open	Source	Code	from	the
context	menu.	This	displays	the	Source	Code	view	for	the
selected	function.

2.						To	view	the	sources	for	the	some	other	function,	click	on
the	Function	combo	box	and	select	the	function	for	which
you	want	to	view	the	source	code.

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Settings	for	C++	Inline	Functions	>	Microsoft	Visual	Studio

Microsoft	Visual	Studio

Prior	to	Visual	Studio	2013	Update	3,	inline	function
information	was	not	preserved	in	the	PDB	file.	For	CodeXL,	to
extract	inline	information	from	PDB	file,	the	target	application
must	be	compiled	with	Visual	Studio	2013	Update	3	or	later.
Use	the	below	Visual	Studio	Configuration	Properties	if	you
want	to	enable	inline	function	details	in	CodeXL	CPU	Profiler.

·									Set	Configuration	Properties	>	C/C++	>	General	>
Debug	Information	Format	to	/Zi.	Without	this	flag,	PDB
file	with	debug	info	will	not	be	generated.

·									Add	/Zo	to	Configuration	Properties	>	C/C++	>
Command	Line	>	Additional	Options.	Without	this	flag,
additional	debug	info	related	to	inline	functions	will	not	be
generated.	/Zo	only	recognized	by	VS2013	update	3	or	later.
The	/Zo	option	is	enabled	by	default	in	Visual	Studio	2015
when	you	specify	debugging	information	with	/Zi	or	/Z7,
hence	this	step	is	optional	for	VS2015.

·									Enable	Optimization	by	setting	any	one	of:	/O1,	/O2,	/Ox
(Configuration	Properties	>	C/C++	>	Optimization	>
Optimization).	Setting	it	to	/Od	will	stop	all	optimizations
including	function	inline.

·									Enable	Function	inlining	by	setting	one	of:	/Ob1,	/Ob2
(Configuration	Properties	>	C/C++	>	Optimization	>
Inline	Function	Expansion).	Setting	it	to	/Ob0	will	stop
function	inline.

·									On	Visual	Studio	2015,	enable	“Whole	Program
Optimization”	(Configuration	Properties	>	C/C++	>
Optimization	>	Whole	Program	Optimization).	This
setting	is	not	required	for	VS2013.

·									Disable	data	elimination	by	setting	/OPT:NOREF
(Configuration	Properties	>	Linker	>	Optimization	>
References).	Setting	it	to	/OPT:REF	eliminates	unreferenced
data/function	during	linking	time.	In	Release	build,	by
default	REF	is	enabled,	due	to	which	inline	function	info	gets
removed	from	PDB	file.

·									Disable	COMDAT	folding	by	setting	/OPT:NOICF
(Configuration	Properties	>	Linker	>	Optimization	>
Enable	COMDAT	Folding).	Setting	it	to	/OPT:ICF	combines
identical	functions.	In	Release	build,	by	default	ICF	is
enabled,	due	to	which	identical	inline	functions	info	gets
removed	from	PDB	file.

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Settings	for	C++	Inline	Functions	>	GCC/G++	Compiler

GCC/G++	Compiler

·									Enable	debug	info	using	“-g”	or	“-gdwarf-version”.	Without
this	option,	target	application	binary	will	not	include	any
debugging	information.

·									Enable	optimization	using	any	one	of:	-O,	-O1,	-O2,	or	-O3.
Without	this	option,	compiler	will	disable	any	function
inlining.

	

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Settings	for	C++	Inline	Functions	>	Session	Views

Session	Views

Following	screenshots	for	Overview,	Call	Graph	view	and
Source	Code	view	shows	the	inline	functions	for	a	sample
target	application.

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Settings	for	C++	Inline	Functions	>	Session	Views	>	Overview	page

Overview	page

Inline	function	“multiply_matrices(void)”	is	shown	in	the	5
Hottest	Functions	table.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Settings	for	C++	Inline	Functions	>	Session	Views	>	Call	Graph	View

Call	Graph	View

Inline	function	“multiply_matrices(void)”	is	shown	in	the
Functions	table	and	Paths	table.

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Settings	for	C++	Inline	Functions	>	Session	Views	>	Source	Code	View

Source	Code	View

Samples	are	attributed	to	corresponding	source	lines	for	Inline
function	“multiply_matrices(void)”.

	

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Settings	for	CPU	Profiler	to	run	on	Virtual	Machine

Settings	for	CPU	Profiler	to	run	on	Virtual	Machine

CPU	Profiler	supports	profiling	on	guest	OS	running	on
VMware	workstation.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	Settings	for	CPU	Profiler	to	run	on	Virtual	Machine	>	VMware	Workstation

VMware	Workstation

CPU	Profiler	supports	TBP	and	EBP	on	guest	OS	running	on
VMware	Workstation	11.0	or	later.	Recent	AMD	Carrizo
processor	is	not	yet	supported	by	VMware	Workstation	11.1.x.

To	run	TBP	within	guest	OS,	no	additional	configuration	needed
in	host	OS	or	guest	OS.

To	run	EBP	within	guest	OS,	please	ensure	the	following
settings	are	done:

‒				Enable	Virtualization	or	SVM	(AMD-V)	in	BIOS	settings
before	booting	the	host	OS.

‒				Enable	AMD-V	in	guest	OS	VM	settings.	Edit	virtual
machine	settings	>	Hardware	>	Processors>
Virtualization	engine	>	Enable	“Virtualize	AMD-V/RVI”

‒				Enable	vPMC	in	guest	OS	VM	settings.	Edit	virtual
machine	settings	>	Hardware	>	Processors>
Virtualization	engine	>	Enable	“Virtualize	CPU
performance	counters”

Known	Issues	on	Windows	7	Host	OS:
‒				When	CPU	Profiler	EBP	is	running	on	Windows	7	host	OS
and	a	Linux	guest	OS	is	launched,	crash	is	observed	on
Windows	7	due	to	VMware	driver.

‒				If	EBP	is	performed	on	Windows	7	host	OS	and	EBP	is
performed	on	Linux	guest	OS	simultaneously,	then	crash	is
observed	on	Windows	7	due	to	VMware	driver.

These	scenarios	work	fine	when	host	OS	is	Windows	8,	8.1	and
10.

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	How	to	use	CPU	Profiler	Control	APIs

How	to	use	CPU	Profiler	Control	APIs

CPU	Profile	control	APIs	provide	the	option	to	restrict	the
profiling	to	a	specific	part	of	the	code.	Follow	the	below	steps
to	call,	compile	and	invoke	these	APIs	from	your	target
program.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	How	to	use	CPU	Profiler	Control	APIs	>	Required	File	Paths

Required	File	Paths

All	the	paths	mentioned	below	are	with	respect	to	CodeXL
installation	directory	(CODEXL-INSTALL-DIR).

API	Documentation:
<CODEXL-INSTALL-
DIR>\SDK\AMDTActivityLogger\doc\AMDTActivityLogger.pdf								
(on	Windows	platforms)
OR
<CODEXL-INSTALL-
DIR>/SDK/AMDTActivityLogger/doc/AMDTActivityLogger.pdf								
(on	Linux	platforms)

Header	File:
<CODEXL-INSTALL-
DIR>\SDK\AMDTActivityLogger\include\AMDTActivityLogger.h					
(on	Windows	platforms)
OR
<CODEXL-INSTALL-
DIR>/SDK/AMDTActivityLogger/include/AMDTActivityLogger.h					
(on	Linux	platforms)

LIB	Files	(on	Windows	platforms):
<CODEXL-INSTALL-
DIR>\SDK\AMDTActivityLogger\lib\x64\AMDTActivityLogger-
x64.lib
<CODEXL-INSTALL-
DIR>\SDK\AMDTActivityLogger\lib\x86\AMDTActivityLogger.lib

DLL	Files	(on	Windows	platforms):
<CODEXL-INSTALL-
DIR>\SDK\AMDTActivityLogger\bin\x64\AMDTActivityLogger-

x64.dll
<CODEXL-INSTALL-
DIR>\SDK\AMDTActivityLogger\bin\x86\AMDTActivityLogger.dll

Shared	Library	(.so)	Files	(on	Linux	platforms):
<CODEXL-INSTALL-
DIR>/SDK/AMDTActivityLogger/bin/x86_64/libAMDTActivityLogger.so
<CODEXL-INSTALL-
DIR>/SDK/AMDTActivityLogger/bin/x86/libAMDTActivityLogger.so

	

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	How	to	use	CPU	Profiler	Control	APIs	>	Calling	the	APIs

Calling	the	APIs

Include	the	header	file	AMDTActivityLogger.h,	and	call	the
resume	and	pause	APIs	within	the	code.	The	code	encapsulated
within	resume-pause	API	pair	will	be	profiled	by	CPU	Profiler.

These	APIs	can	be	called	multiple	times	to	profile	different
parts	of	the	code.
These	APIs	can	be	spread	across	multiple	functions,	i.e.	resume
called	from	one	function	and	stop	called	from	another	function.
These	APIs	can	be	spread	across	threads,	i.e.	resume	called
from	one	thread	and	stop	called	from	another	thread	of	the
same	target	application.

In	the	below	example,	the	CPU	Profiler	is	restricted	to	the
execution	of	multiply_matrices()	function.
#include	<AMDTActivityLogger.h>
	
int	main(int	argc,	char*	argv[])
{
				//	Initialize	the	matrices
				printf("Initializing	matrices\n");
				initialize_matrices();
	
				//	Multiply	the	matrices
				printf("Multiplying	matrices\n");
	
				//	Resume	the	CPU	profiler
				//	amdtResumeProfiling(AMDT_CPU_PROFILING);
				amdtResumeProfilingEx();
	
				multiply_matrices();
	
				//	Stop	the	CPU	Profiler
				//	amdtStopProfiling(AMDT_CPU_PROFILING);
				amdtStopProfilingEx();
	
				return	0;
}

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	How	to	use	CPU	Profiler	Control	APIs	>	Compiling	the	target	application

Compiling	the	target	application

To	compile	the	application	on	Microsoft	Visual	Studio,	update
the	configuration	properties	to	include	the	path	of	header	file,
DLL	file,	LIB	file	of	AMDTActivityLogger.

To	compile	a	C++	application	on	Linux	using	G++,	use	the
following	command:
$	g++	-std=c++0x	<source-file.cpp>	-L<CODEXL-INSTALL-
DIR>/SDK/AMDTActivityLogger/bin/x86_64/	-L<CODEXL-INSTALL-DIR>	-I<CODEXL-INSTALL-
DIR>/SDK/AMDTActivityLogger/include	-lAMDTBaseTools	-lAMDTOSWrappers	-
lAMDTActivityLogger	-lrt	–ldl

You	may	choose	to	use	2011	C++	standard	or	newer	C++
standard	while	compiling	C++	target	application	with	profile
control	APIs.

To	compile	a	C	application	on	Linux	using	GCC,	use	the
following	command:
$	gcc	<source-file.c>	-L<CODEXL-INSTALL-DIR>/SDK/AMDTActivityLogger/bin/x86_64/	-
L<CODEXL-INSTALL-DIR>	-I<CODEXL-INSTALL-DIR>/SDK/AMDTActivityLogger/include	-
lAMDTBaseTools	-lAMDTOSWrappers	-lAMDTActivityLogger	-lrt

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	CPU	Profiler	Tutorial	>	How	to	use	CPU	Profiler	Control	APIs	>	Profiling	with	Control	APIs

Profiling	with	Control	APIs

After	the	compiling	the	target	application,	create	a	project	in
CodeXL,	set	the	general	profile	session	options,	set	the	CPU
profile	session	options.	While	setting	the	CPU	profile	session
options,	in	step	4,	in	the	Data	Collection	Schedule	section,
select	Start	profile	with	data	collection	paused.
Once	all	the	settings	done,	start	the	CPU	profiling.	The	CPU
Profiler	will	be	in	pause	state	and	target	application	execution
begins.	When	the	resume	API	gets	called	from	target
application,	CPU	Profile	starts	profiling	till	stop	API	gets	called
from	target	application.	As	soon	as	stop	API	is	called	in	target
application,	CPU	Profiler	stops	profiling	and	waits	for	next
control	API	call.

To	profile	from	CLI,	option	‘-s	0’	should	be	used	to	start	the
profiler	in	pause	state.

Sample	command	on	Windows	platforms:
>	CodeXLCpuProfiler.exe	collect	-m	tbp	-s	0	-o	c:\Temp\cpuprof-tbp	<target-application.exe>

Sample	command	on	Linux	platforms:
$	CodeXLCpuProfiler	collect	-m	tbp	-s	0	-o	/tmp/cpuprof-tbp	<target-application>

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	GPU	Profiler	Tutorial

GPU	Profiler	Tutorial

The	CodeXL	GPU	Profiler	is	a	performance	analysis	tool	that
gathers	data	from	the	OpenCL	run-time	and	AMD	Radeon™
GPUs	during	the	execution	of	an	OpenCL	application.

Use	this	information	to	discover	bottlenecks	in	an	application
and	to	find	ways	to	optimize	the	application's	performance	for
AMD	platforms.	There	are	two	modes	of	operation	supported
by	the	Profiler.

Collecting	OpenCL	Application	Trace

Collecting	OpenCL	GPU	Kernel	Performance	Counters

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	GPU	Profiler	Tutorial	>	Collecting	OpenCL	Application	Trace

Collecting	OpenCL	Application	Trace

Run	an	Application	Trace	GPU	Profile	session

1.	 Open	or	create	a	CodeXL	project.

2.	 Select	the	Application	Timeline	Trace	profile	mode

	

3.	 Click	the		(Start		Profiling)	toolbar	button	to	start
profiling.

4.	 Stop	the	profiled	application.

When	the	profiled	application’s	execution	is	over,	CodeXL
displays	the	session.

	

	

Timeline	View

	

	

The	Timeline	View	provides	a	visual	representation	of	the
execution	of	the	application.	Along	the	top	of	the	timeline	is	the
time	grid,	showing	the	total	elapsed	time	(in	milliseconds)	of
the	application	when	fully	zoomed	out.	Timing	begins	when	the
first	OpenCL	call	is	made	by	the	application;	it	ends	when	the
final	OpenCL	call	is	made.	Directly	below	the	time	grid,	each
host	(OS)	thread	that	made	at	least	one	OpenCL	call	is	listed.
For	each	host	thread,	the	OpenCL	API	calls	are	plotted	along
the	time	grid,	showing	the	start	time	and	duration	of	each	call.
Below	the	host	threads,	the	OpenCL	tree	shows	all	contexts
and	queues	created	by	the	application,	along	with	data	transfer
operations	and	kernel	execution	operations	for	each	queue.	We
can	navigate	in	the	Timeline	View	by	zooming,	panning,
collapsing/expanding	or	selecting	a	region	of	interest.	From	the
Timeline	View,	we	can	also	navigate	to	the	corresponding	API
call	in	the	API	Trace	View	and	vice	versa.	The	Timeline	View
can	be	useful	for	debugging	your	OpenCL	application.	Some
examples	are:

·									You	easily	can	confirm	that	the	high-level	structure	of
your	application	is	correct.	By	examining	the	timeline,	you
can	verify	that	the	number	of	queues	and	contexts	created
match	your	expectations	for	the	application.

·									You	also	can	confirm	that	synchronization	has	been
performed	properly	in	the	application.	For	example,	if
kernel	A	execution	is	dependent	on	a	buffer	operation	and
outputs	from	kernel	B	execution,	then	kernel	A	execution
appears	after	the	completion	of	the	buffer	execution	and
kernel	B	execution	in	the	time	grid.	It	can	be	hard	to	find
this	type	of	synchronization	error	using	traditional
debugging	techniques.

·									You	also	can	confirm	that	the	application	has	been	using
the	hardware	efficiently:	the	timeline	should	show	that
non-dependent	kernel	executions	and	data	transfer
operations	occur	simultaneously.

Summary	Pages	View

The	Summary	Pages	View	shows	various	statistics	for	your
OpenCL	application.	It	can	provide	you	with	a	general	idea	of
the	location	of	the	application's	bottlenecks.	It	also	provides
useful	information,	such	as	the	number	of	buffers	and	images

created	on	each	context,	the	most	expensive	kernel	call,	etc.
The	Summary	Pages	View	provides	access	to	the	following
individual	pages:

·									API	Summary	page	―	Shows	statistics	for	all	OpenCL	API
calls	made	in	the	application	for	API	hotspot	identification.

·									Context	Summary	page	―	Shows	the	statistics	for	all	the
kernel	dispatch	and	data	transfer	operations	for	each
context.	It	also	shows	the	number	of	buffers	and	images
created	for	each	context.

·									Kernel	Summary	page	―	Shows	statistics	for	all	the
kernels	that	are	created	in	the	application.

·									Top	10	Data	Transfer	Summary	page	―	Shows	a	sorted
list	of	the	ten	most	time-consuming	individual	data
transfer	operations.

·									Top	10	Kernel	Summary	page	―	Shows	a	sorted	list	of	the
ten	most	time-consuming	individual	kernel	execution
operations.	From	these	summary	pages,	it	is	possible	to
determine	whether	the	application	is	bound	by	kernel
execution	or	data	transfer	(Context	Summary	page).	If	the
application	is	bound	by	kernel	execution,	you	can
determine	which	device	is	the	bottleneck.	From	the	Kernel
Summary	page,	we	can	find	the	name	of	the	kernel	with
the	highest	total	execution	time.	Or,	from	the	Top	10
Kernel	Summary	page,	we	can	find	the	individual	kernel
instance	with	the	highest	execution	time.	If	the	kernel
execution	on	a	GPU	device	is	the	bottleneck,	the	GPU
performance	counters	then	can	be	used	to	investigate	the
bottleneck	inside	the	kernel.	See	Collecting	OpenCL	GPU
Kernel	Performance	Counters	for	more	details.	If	the
application	is	bound	by	the	data	transfers,	it	is	possible	to
determine	the	most	time-consuming	data	transfer	type
(read,	write,	copy	or	map)	in	the	application	from	the
Context	Summary	page.	You	can	investigate	whether	it	is
possible	to	minimize	this	type	of	data	transfer	by
modifying	the	algorithm.	With	help	from	the	Timeline
View,	you	can	investigate	whether	data	transfers	have

been	executed	in	the	most	efficient	way	(that	is:
concurrently	with	a	kernel	execution).

API	Trace	View

	

	

The	API	Trace	View	lists	all	the	OpenCL	API	calls	made	by	the
application.	Each	host	thread	that	makes	at	least	one	OpenCL
call	is	listed	in	a	separate	tab.	Each	tab	contains	a	list	of	all	the
API	calls	made	by	that	particular	thread.	For	each	call,	the	list
displays	the	index	of	the	call	(representing	execution	order),
the	name	of	the	API	function,	a	semi-colon	delimited	list	of
parameters	passed	to	the	function	and	the	value	returned	by
the	function.	When	displaying	parameters,	the	Profiler	tries	to
dereference	pointers	and	decode	enumeration	values	to	give	as
much	information	as	possible	about	the	data	being	passed	in	or
returned	from	the	function.	Double-clicking	an	item	in	the	API
Trace	View	displays	and	zooms	into	that	API	call	in	the	Host
Thread	row	in	the	Timeline	View.

This	view	lets	you	analyze	and	debug	the	input	parameters	and

output	results	for	each	API	call.	For	example,	you	easily	can
check	that	all	the	API	calls	return	CL_SUCCESS,	or	that	all	the
buffers	are	created	with	the	correct	flags.	This	view	also	lets
you	identify	redundant	API	calls.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	GPU	Profiler	Tutorial	>	Collecting	OpenCL	GPU	Kernel	Performance	Counters

Collecting	OpenCL	GPU	Kernel	Performance	Counters

Run	a	Performance	Counters	GPU	Profile	session

1.						Open	or	create	a	CodeXL	project.
2.						Select	the	GPU:	Performance	Counters	profile	mode.

3.						Click	the 	(Start		Profiling)	toolbar	button	to	start
profiling.

4.						Stop	the	profiled	application	when	the	part	of	the
application	that	is	under	investigation	has	completed	its

execution.

When	the	profiled	application’s	execution	is	done,	CodeXL
displays	the	session.

The	GPU	kernel	performance	counters	can	help	find	possible
bottlenecks	in	the	kernel	execution.	You	can	find	the	list	of
performance	counters	supported	by	AMD	Radeon™	GPUs	in
the	tool	documentation.	Once	we	have	used	the	trace	data	to
discover	which	kernel	most	requires	optimization,	we	can
collect	the	GPU	performance	counters	to	drill	down	into	the

kernel	execution	on	a	GPU	device.	Using	the	performance
counters,	you	can:

·									Find	the	number	of	resources	(general-purpose	registers,
local	memory	size,	and	flow-control	stack	size)	allocated
for	the	kernel.	These	resources	affect	the	possible	number
of	in-flight	wavefronts	in	the	GPU.	A	higher	number	better
hides	data	latency.

·									Determine	the	number	of	ALU,	global,	and	local	memory
instructions	executed	by	the	GPU.

·									Determine	the	number	of	bytes	fetched	from,	and	written
to,	the	global	memory.

·									Determine	the	use	of	the	SIMD	engines	and	memory	units
in	the	system.

·									View	the	efficiency	of	the	shader	compiler	in	packing	ALU
instructions	into	the	VLIW	instructions	used	by	AMD
GPUs.

·									View	any	local	memory	(Local	Data	Share	-	LDS)	bank
conflicts.	The	Session	View	(see	the	screenshot	above)
shows	the	performance	counters	for	a	profile	session.	The
output	data	is	recorded	in	a	comma-separated	variable
(.csv)	format.	You	can	also	click	on	the	kernel	name	entry
in	the	"Method"	column	to	view	the	OpenCL	kernel	source,
AMD	Intermediate	Language	(IL),	GPU	ISA,	or	CPU
assembly	code	for	that	kernel.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	Static	Analyzer	Tutorial	>	Switching	to	Analyze	mode

Switching	to	Analyze	mode

Option	1-	Analyze	mode	button:

Click	on	the	Analyze	Mode	button	in	the	CodeXL	Mode	toolbar:

	

	

Option	2-	Main	menu:

Open	the	Analyze	menu	from	menu	bar	and	select	the	‘Switch
to	Analyze	Mode’	command:

After	you	switch	to	Analyze	mode,	you	can	also	create	a	new
project,	open	a	previously	saved	project,	or	load	the	Teapot	or

Matrix	Multiply	samples.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	Static	Analyzer	Tutorial	>	Creating	a	new	project	for	Analysis

Creating	a	new	project	for	Analysis

Click	on	the	“File->Create	Project”,	or	use	the	Ctrl+N	shortcut.
The	following	CodeXL	Project	Settings	dialog	will	appear:

Rename	the	project,	and	click	on	the	OK.

After	the	new	project	has	been	created,	the	CodeXL	Analyzer
Explorer	Tree	should	appear	in	the	left	pane:

	

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	Static	Analyzer	Tutorial	>	Working	with	the	new	CodeXL	Analyzer	Explorer	Tree

Working	with	the	new	CodeXL	Analyzer	Explorer	Tree

If	you	are	familiar	with	the	former	versions	of	the	Analyzer,	you
probably	noticed	that	the	tree	has	a	different	structure	than
the	one	used	in	previous	versions.	Let’s	examine	the	structure
of	the	new	CodeXL	Analyzer	Explorer:
2.							Programs	and	Folders:	before	describing	how	to	technically	create
Programs	and	Folders,	let’s	first	discuss	what	those	objects	are,	and	why	they
can	be	useful.
c.							Programs	(OpenGL,	Vulkan):
As	of	version	2.0,	CodeXL	can	compile	and	link	together
multiple	source	files	for	OpenGL	and	Vulkan.	This	is
especially	important	when	different	shaders	have
mutual	impact	on	one	another’s	ISA	and	performance
statistics.	To	provide	that	type	of	support,	CodeXL
Analyzer	introduced	the	concept	of	a	Program.	There
are	two	types	of	Programs	in	CodeXL	2.0:
-										Rendering	Programs
-										Compute	Programs

A	Rendering	Program	represents	a	graphics	pipeline,
and	can	have	a	single	shader	attached	to	each	of	its
stages:
-										Vertex
-										Tessellation	Control
-										Tessellation	Evaluation
-										Geometry
-										Fragment

A	Compute	Program	represents	a	compute	pipeline,	and
can	have	a	single	compute	shader	attached	to	its	single
stage.
When	you	build	a	program	that	has	multiple	shaders	attached	to	it,	all
shaders	are	being	compiled	and	linked	together.	This	way,	you	get	more
accurate	ISA	and	performance	statistics	than	those	generated	using

previous	versions	of	CodeXL.
d.						Folders	(OpenCL,	DirectX):
Folders	are	logical	containers	of	source	files.	When	you	build	a	folder	that
has	multiple	source	files	attached	to	it,	the	source	files	are	simply	being
built	one	after	the	other.	Unlike	programs,	there	is	no	kind	of
interdependency	between	the	source	files	in	a	given	folder:	when	a	folder	is
being	built,	each	source	file	is	being	compiled	independently.	Folders	can	be
used	to	organize	the	project,	by	serving	as	a	logical	separator.	They	can	also
be	used	to	ease	the	process	of	comparing	build	results,	since	now	the	build
results	are	being	maintained	per-folder:	you	can	create	two	different
Folders,	each	containing	the	same	source	files,	but	have	a	different
configuration	(for	example,	create	two	DirectX	Folders,	each	with	a	different
shader	model).	After	building	the	two	Folders,	you	can	toggle	between	the
performance	statistics	of	the	two	Folders	to	see	the	differences.
	
You	may	ask	yourself	why	CodeXL	does	not	support	the	concept	of	DirectX
Programs,	just	like	it	does	for	OpenGL	and	Vulkan.	This	is	a	good	point.
Supporting	DirectX	Programs	is	at	a	high	priority	in	the	Analyzer’s	roadmap,
and	we	will	do	our	best	to	add	that	feature	in	the	upcoming	versions	of	the
product.
Creating	a	new	Program	or	Folder
To	create	a	new	Program	or	a	Folder,	double-click	on	the	“Create	new
program/folder”	item	in	CodeXL	Analyzer	Explorer	Tree:

	

	

					Then,	the	following	dialog	would	pop-up:

Select	the	Program/Folder	type	of	choice,	and	click	OK.

Then,	the	empty	Program/Folder	would	appear	in	the
Explorer	Tree.	For	Example,	if	you	choose	an	OpenGL
Rendering	Program,	you	will	see	an	empty	OpenGL
Rendering	Program	created:

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	Static	Analyzer	Tutorial	>	Working	with	Programs

Working	with	Programs

After	creating	a	new	program,	you	will	see	that	it	contains	an
empty	placeholder	for	every	pipeline	stage.	Right-click	on	any
stage	to	add	an	existing	shader	or	create	a	new	one:

	

Note:	You	can	also	double-click	on	a	stage	to	create	a	new
shader	and	automatically	attach	it	to	that	Program’s	stage.

As	you	can	see	in	the	above	screenshot,	we	attached
SimpleVertexShader.vs	as	the	vertex	shader	to	our	OpenGL
Rendering	Program,	and	it	was	also	automatically	added	to	the
Source	Files	pool.	We	can	now	drag	SimpleVertexShader.vs
from	the	Source	Files	pool	and	drop	it	on	the	stage	node	of	any
Program	that	we	may	add	to	the	project,	to	reuse

SimpleVertexShader.vs	(there	is	no	dependency	in	the	build
process	between	different	Programs).

To	build	the	program,	right-click	on	it	and	select	the	Build
option,	or	use	the	F7	shortcut:

	

You	can	also	select	the	Program	and	manually	click	on	the
Build	button	in	the	Analyzer	toolbar:

	

	

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	Static	Analyzer	Tutorial	>	Working	with	Folders

Working	with	Folders

After	creating	a	new	OpenCL	or	DirectX	Folder,	an	empty
Folder	would	be	listed	in	the	Explorer	Tree:

	

To	create	a	new	source	file,	and	automatically	add	it	to	the
Folder,	double-click	on	the	“Create	new	source	file	item…”	item
of	the	folder:

	

To	add	an	existing	source	file,	and	automatically	add	it	to	the
Folder,	double-click	on	the	“Add	existing	source	file	item…”
item	of	the	folder:

	

To	configure	the	build	properties	of	a	source	file	under	a
specific	Folder,	click	on	that	source	file	and	use	the	Analyzer
toolbar’s	Type	and	Entry	point	drop-down	lists.	The	first	sets
the	type	of	the	shader	and	the	latter	specifies	the	specific
target	shader	(among	the	shaders	in	the	source	file).	This
configuration	is	Folder-specific.	That	is,	the	same	source	file
can	be	set	with	different	properties	under	different	Folders.
CodeXL	will	remember	those	configurations	for	you.

To	configure	the	build	properties	of	the	Folder,	click	on	the
Folder	and	adjust	the	enabled	items	in	the	Analyzer	toolbar.	For
CodeXL	2.0,	this	is	only	relevant	to	the	DX	Shader	Model
property	of	DX	Folders:

Once	set,	the	DX	Shader	Model	value	will	hold	for	all	the
shaders	in	the	selected	Folder.	For	example,	if	you	choose	5_0
as	the	DX	Shader	Model,	any	D3D	vertex	shader	in	that	Folder
will	be	compiled	using	shader	model	vs_5_0.

To	build	the	whole	Folder,	right-click	on	it	and	select	the	Build
item:

Unlike	the	case	with	Programs,	Folders	are	more	flexible	as
they	allow	you	to	build	selected	source	files,	without	being
required	to	build	the	whole	Folder.	To	build	selected	source
files,	click	on	the	selected	source	files	under	the	program,
while	holding	the	Ctrl	key.	Then,	right-click	on	one	of	the
selected	files	and	select	the	build	option:

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	Static	Analyzer	Tutorial	>	Selecting	target	devices

Selecting	target	devices

CodeXL	Analyzer	can	target	a	variety	of	devices,	independent
of	the	device	that	is	physically	installed	on	your	system.	To
select	the	target	devices,	for	which	the	build	would	be
performed,	first	click	on	the	Select	Devices	button	in	the
Analyzer	toolbar:

	

	

Then,	the	CodeXL	Options	dialog	would	pop-pup	with	its
Analyze	tab	activated.	The	devices	are	grouped	by	generations.
You	can	use	the	check	boxes	to	select	and	remove	devices:

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	Static	Analyzer	Tutorial	>	Build	Options-	Defining	OpenCL	and	DirectX	build	options

Build	Options-	Defining	OpenCL	and	DirectX	build
options

In	the	Static	Analyze	toolbar,	you	can	define	specific	OpenCL	or
HLSL	build	options:

The	Build	Options	box	is	a	place	to	set	compiler	build	flags
such	as	–x	clc++	or	–o3.	Any	compiler	build	flag	can	be	placed	in
this	box.

You	can	set	the	build	options	by	typing	the	options	directly	in
the	designated	text	box	or	by	using	the	OpenCL/HLSL	Build
Options	dialog.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
	>	Build	Options-	Defining	OpenCL	and	DirectX	build	options

Build	Options-	Defining	OpenCL	and	DirectX	build

In	the	Static	Analyze	toolbar,	you	can	define	specific	OpenCL	or

The	Build	Options	box	is	a	place	to	set	compiler	build	flags
.	Any	compiler	build	flag	can	be	placed	in

You	can	set	the	build	options	by	typing	the	options	directly	in
the	designated	text	box	or	by	using	the	OpenCL/HLSL	Build

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	Static	Analyzer	Tutorial	>	The	Statistics	and	Analysis	Data

The	Statistics	and	Analysis	Data

Kernels	Statistic	view

The	kernel	statistics	tab	gives	detailed	statistics	for	the
selected	kernel	for	each	target	device.	
To	open	the	statistics	tab,	expand	the	desired	kernel	in	the
project	tree,	and	double-click	the	Statistics	node:

Statistics	page	for	devices	GCN	devices:

This	view	is	focused	on	giving	the	programmer	the	wave
constraints	based	on	the	SGPRs,	VGPRs	and	LDS	size.

	

Shaders	Statistic	view

The	shader	statistics	tab	gives	detailed	statistics	for	the

selected	shader	for	each	target	device.	
To	open	the	statistics	tab,	expand	the	desired	shader	in	the
project	tree,	and	double-click	the	Statistics	node:
Note:	the	statistics	will	be	available	only	for	V6	generation	and
later.

Shaders	Statistics	page:

This	view	is	focused	on	giving	the	programmer	the	wave
constraints	based	on	the	SGPRs	and	VGPRs.

	

	
©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	Static	Analyzer	Tutorial	>	Viewing	compilation	output:	IL	and	ISA

Viewing	compilation	output:	IL	and	ISA

The	performance	statistics	tab	will	be	opened	automatically
when	the	build	process	is	over.	To	view	the	compilation	output,
double	click	the	node	of	the	desired	ASIC	in	the	explorer	tree,
under	the	Program/Folder	and	configuration	(32-bit	or	64-bit):

	

This	action	will	open	a	tab	containing	the	source	code,	the
AMD	IL	and	the	ISA:

	

Opening	several	build	results	of	different	devices	for	the	same
kernel/shader	 will	 open	 different	 IL/ISA	 tabs	 in	 the	 same
“Source	Code/IL/ISA”	view	as	can	be	seen	in	the	above	image.

The	context	menu	enables	showing/hiding	different	parts	of	the
view,	 enables	 showing/hiding	 line	 numbers,	 	 and	 enables
different	edit	actions	depending	on	the	selection	of	where	the
context	 menu	 was	 opened	 and	 whether	 the	 view	 section	 is
editable	or	not.

	

	
©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	CodeXL	User	Guide
Help	>	Tutorials	>	Static	Analyzer	Tutorial	>	Build	Options-	Defining	compilation	options

Build	Options-	Defining	compilation	options

In	the	Static	Analyze	toolbar,	there	is	a	space	where	you	can
define	specific	kernel/shader	build	options:

	

Build	Options	Dialog

This	dialog	will	help	you	choose	the	correct	kernel/shader	build
options	for	you	and	hopefully	will	prevent	making	spelling
mistakes	while	typing	the	options	manually.

To	open	the	dialog,	press	The	 	Button.	The	dialog	will	be
opened.	
For	OpenCL	build	options	-	you	can	browse	between	the
”General	&	Optimization”	tab	and	the	”Other”	tab	to	view	all
the	available	options.	
For	DirectX	build	options	–	choose	the	“HLSL	Build	Options”
tab.

Once	you	choose	an	option,	the	option	text	is	displayed	in	the
text	box	marked	”..	Build	Command	Line”	that	appears	below.	
This	string	will	also	appear	in	the	menu	bar	after	you	click	the
OK	button.

Typing	the	option	in	the	text	box	will	also	mark	it	in	the
appropriate	area	in	the	dialog,	or	select	it	in	the	appropriate

drop	box.

	

DISCLAIMER
The	information	contained	herein	is	for	informational	purposes
only,	and	is	subject	to	change	without	notice.	While	every
precaution	has	been	taken	in	the	preparation	of	this	document,
it	may	contain	technical	inaccuracies,	omissions	and
typographical	errors,	and	AMD	is	under	no	obligation	to	update
or	otherwise	correct	this	information.	Advanced	Micro	Devices,
Inc.	makes	no	representations	or	warranties	with	respect	to	the
accuracy	or	completeness	of	the	contents	of	this	document,	and
assumes	no	liability	of	any	kind,	including	the	implied
warranties	of	non-infringement,	merchantability	or	fitness	for
particular	purposes,	with	respect	to	the	operation	or	use	of
AMD	hardware,	software	or	other	products	described	herein.
No	license,	including	implied	or	arising	by	estoppel,	to	any
intellectual	property	rights	is	granted	by	this	document.	Terms
and	limitations	applicable	to	the	purchase	or	use	of	AMD’s
products	are	as	set	forth	in	a	signed	agreement	between	the
parties	or	in	AMD's	Standard	Terms	and	Conditions	of	Sale.
AMD,	the	AMD	Arrow	logo,	AMD	Radeon,	AMD	FirePro,
gDEBugger,	and	combinations	thereof	are	trademarks	of
Advanced	Micro	Devices,	Inc.	Windows	and	DirectX	are
registered	trademarks	of	Microsoft	Corporation.	PCIe	and	PCI
Express	are	registered	trademarks	of	PCI-SIG	Corporation.
OpenCL	is	a	trademark	of	Apple	Inc.	Linux	is	a	registered
trademark	of	Linus	Torvalds.	Other	product	names	used	in	this
publication	are	for	identification	purposes	only	and	may	be
trademarks	of	their	respective	companies.
©	2016	Advanced	Micro	Devices,	Inc.	All	rights	reserved.

	

	[A1]Please	review	this	cross-reference	once	and	let	me	know	whether	it	is	correct.

[US]	This	should	point	to	the	glossary	page	title	of	the	same	name.

©	2015	Advanced	Micro	Devices.	All	rights	reserved.

	Introduction
	Getting Started
	System Requirements
	Installation Instructions
	Using CodeXL From a Remote Station
	Known Issues
	Support

	Using CodeXL
	General GUI Controls
	CodeXL Welcome Page
	Getting Started Dialog
	Project Settings
	Execution Toolbar
	Properties View
	CodeXL Explorer
	Global Settings
	System Information Dialog
	CodeXL Search Toolbar

	Frame Analysis
	Creating a New Project
	Starting Your Application
	Capturing Frames
	Viewing Capture Data
	The Frame Timeline View
	View and analyze data in API Summary tables
	View data in the Summary Top 20 Table
	View data in CPU API Tables
	View data in GPU API Tables
	Navigating the Frame Timeline View

	GPU Debugger
	GPU Debugging Toolbars
	Images and Buffers Toolbar
	Current Work Item toolbar

	GPU Debugging Views
	API Function Calls History View
	Memory view
	OpenCL Multi-Watch Views
	Visual Studio Native Debugging Views
	Statistics View
	Function Type Statistics view
	Function Call Statistics View
	Deprecated Function Statistics view
	API Function Calls History View
	Vertex Batch Statistics view

	Object Views
	Object Image view
	Object Data view

	GPU Debugging Dialogs
	Add / Remove CodeXL Breakpoints Dialog
	GPU Debugging Project settings
	GPU Debugging Global Settings

	GPU Debugging API Support
	GPU Kernel Debugging Support

	CPU Profiler
	CPU Profile Key Concepts
	CPU Profile Configurations
	Time-Based Profiling
	Assess Performance
	Instruction-Based Sampling
	Investigate Branching
	Investigate Data Access
	Investigate Instruction Access
	Investigate L2 Cache Access
	Cache Line Utilization
	Custom Profile

	CPU Profile Session
	Execute a CPU Profile Session
	Attach to Process
	CPU Profile Global Settings
	CPU Profile Project Options

	CPU Profile Data Analysis
	CPU Profile Session Explorer
	Profile Session Overview Page
	Profile Session Modules View
	Profile Session Functions View
	Profile Session Call Graph View
	Profile Session Source or Disassembly View
	Profile Session Display Settings
	Importing Profile Data
	Saving Profile Data

	CPU Profile Command Line Interface
	Profile Configuration File Format
	TBP Collection Configuration
	EBP Collection Configuration
	IBS Collection Configuration
	CLU Collection Configuration
	Miscellaneous tags

	CPU Profile C/C++ Inline Functions
	CPU Profile PLT Relocations
	CPU Profile Control APIs
	CPU Profile IMIX report generation

	GPU Profiler
	Using the GPU Profiler
	Application Timeline Trace Session
	GPU Profiler Performance Counters Session
	Application Timeline Trace Summary Pages
	GPU Profiler Code Viewer
	GPU Profiler Kernel Occupancy Viewer
	GPU Profiler Kernel Occupancy
	GPU Profiling Project Settings
	Application Timeline Trace page
	GPU Profile: Performance Counters page

	Description of Output Files
	Description of Configuration Files
	Using the Command Line Interface
	AMDTActivityLogger Library

	Static Analyzer
	Switching to Analyze mode
	Creating a new project for Analysis
	Working with the new CodeXL Analyzer Explorer Tree
	Working with Programs
	Working with Folders
	Selecting target devices
	Build Options- Defining OpenCL and DirectX build options
	Output Tab
	Kernel Statistics Tab
	Shader Statistics Tab
	Viewing compilation output: IL and ISA
	Navigating through ISA code with the Enhanced ISA View
	Export binaries
	Remove items from Project
	Static Analyze Toolbar � for OpenCL source files
	Static Analyze Toolbar � for DirectX shaders
	CodeXLAnalyzer Command Line Interface
	Using CodeXLAnalyzer Command Line Interface to compile OpenCL Kernels
	Using CodeXLAnalyzer Command Line Interface to compile DirectX shaders
	Using CodeXLAnalyzer Command Line Interface to compile OpenGL and Vulkan programs
	Generating and Interpreting CodeXLAnalyzer CLI�s Live Register Analysis Report

	Power Profiler
	Installing the Power Profiler Linux Driver
	Wider Linux power profiling support (DKMS)
	Power Profiler�s Performance Counters
	Power Profiler Command Line Interface
	Power Profiler Project Settings
	Power Profiler Counters Selection Dialog
	Power Profiler Session Tree
	Power Profiler Timeline View
	Power Profiler Summary View
	Power Profiler Session Control
	Remote Power Profiling
	AMDTPowerProfileAPI Library
	Limitations

	Remote GPU Profiling, Power Profiling and GPU Debugging
	Running CodeXL Remote Agent
	The Agent�s Configuration File
	Performing Remote GPU Profiling
	Performing Remote Power Profiling
	Performing Remote GPU Debugging

	Bundled Sample Applications
	Teapot
	Building the Teapot sample application

	Matrix Multiply
	Building the Matrix Multiply sample application

	D3D12Multithreading
	Building the D3D12Multithreading sample application

	Tutorials
	GPU Debugger Tutorial
	Host Debugging
	API-Level Debugging
	Kernel Debugging
	Keyboard Shortcuts

	CPU Profiler Tutorial
	Preparing an Application for CPU Profiling
	Create a CodeXL Project for CPU Profiling
	Creating CPU Profiling Project for Windows Store (Metro) Apps

	Set the global options for CPU Profiling
	Setting Symbol Server Path

	Set the General Profile Session Options
	Set the CPU Profile Session Options
	Analysis with Time-based Profiling (TBP)
	Collecting TBP profile Data
	Changing the TBP profile collection options
	Analyzing the TBP profile data
	Overview page
	Modules view
	Functions view
	Call Graph view
	Source Code view

	Analysis with Event-based Profiling (EBP)
	Collecting EBP profile data
	Changing the EBP profile collection options
	Analyzing the EBP profile data
	Overview page
	Modules view
	Functions view
	Call Graph view
	Source Code view

	Analysis with Instruction Based Sampling (IBS)
	Collecting IBS profile data
	Changing the IBS profile collection options
	Analyzing the IBS profile data
	Overview page
	Modules view
	Functions view
	Call Graph view
	Source Code view

	Analysis with Cache Line Utilization (CLU)
	Collecting CLU profile data
	Changing the CLU profile collection options
	Analyzing the CLU profile data
	Overview page
	Modules view
	Functions view
	Source Code view

	Settings for CPU Profiler to run on Virtual Machine
	VMware Workstation

	How to use CPU Profiler Control APIs
	Required File Paths
	Calling the APIs
	Compiling the target application
	Profiling with Control APIs

	GPU Profiler Tutorial
	Collecting OpenCL Application Trace
	Collecting OpenCL GPU Kernel Performance Counters

