
CodeGen	Release	Notes
	
V5.2.7	-	In	Development

CodeGen	Release	Notes

• There	were	no	CodeGen	changes	in	this	release.

• This	version	of	CodeGen	was	built	with	Synergy/DE	10.3.3d	and
requires	a	minimum	Synergy	version	of	10.1.1	to	operate.

Symphony	Framework	Components

• There	were	no	Symphony	Orchestrator	changes	in	this	release.

• There	were	no	Symphony	Framework	CodeGen	Extensions	changes	in
this	release.

V5.2.6	-	29th	January	2018

CodeGen	Release	Notes

• We	added	a	new	structure	expression	token	<IF
STRUCTURE_MAPPED>	that	allows	you	to	generate	conditional	code
for	mapped	structures.

• We	corrected	an	issue	that	was	causing	the	field	loop	expression	tokens
<IF	DATE_YYYYMMDD>	and	<IF_DATE_YYMMDD>	to	fail	to
evaluate	as	true	for	nullable	date	fields.

• This	version	of	CodeGen	was	built	with	Synergy/DE	10.3.3d	and
requires	a	minimum	Synergy	version	of	10.1.1	to	operate.

Symphony	Framework	Components

• There	were	no	Symphony	Orchestrator	changes	in	this	release.

• There	were	no	Symphony	Framework	CodeGen	Extensions	changes	in
this	release.

V5.2.5	-	16th	January	2018

CodeGen	Release	Notes

• We	added	four	new	structure	expression	tokens	<IF
STRUCTURE_ASCII>,	<IF	STRUCTURE_ISAM>,	<IF
STRUCTURE_RELATIVE>	and	<IF
STRUCTURE_USER_DEFINED>.	These	expression	tokens	can	make
it	significantly	easier	to	create	template	files	that	can	create	appropriate
output	based	on	the	type	of	data	file	that	is	associated	with	the	structure
being	processed.

• This	version	of	CodeGen	was	built	with	Synergy/DE	10.3.3d	and
requires	a	minimum	Synergy	version	of	10.1.1	to	operate.

Symphony	Framework	Components

• There	were	no	Symphony	Orchestrator	changes	in	this	release.

• There	were	no	Symphony	Framework	CodeGen	Extensions	changes	in
this	release.

V5.2.4	-	12th	January	2018

CodeGen	Release	Notes

• We	fixed	a	problem	that	was	occurring	when	the
<FIELD_MAXVALUE>	replacement	token	was	used	in	conjunction
with	decimal	or	integer	fields	that	use	a	UI	Toolkit	Window-script	based
selection	window,	and	in	conjunction	with	the	-ws	command	line	option.
The	token	would	previously	insert	an	incorrect	value	that	was	equal	to
the	enumerated	base	value	minus	the	enumerated	step	value,	but	without

regard	to	the	number	of	selections	present	in	the	window.	This	behavior
has	been	corrected.

• We	Fixed	a	problem	that	was	preventing	UI	Toolkit	window	script	files
from	being	parsed	correctly.

• This	version	of	CodeGen	was	built	with	Synergy/DE	10.3.3d	and
requires	a	minimum	Synergy	version	of	10.1.1	to	operate.

Symphony	Framework	Components

• There	were	no	Symphony	Orchestrator	changes	in	this	release.

• There	were	no	Symphony	Framework	CodeGen	Extensions	changes	in
this	release.

V5.2.3	-	1st	December	2017

CodeGen	Release	Notes

• We	added	a	new	experimental	utility	to	the	distribution.	The	Code
Converter	utility	can	be	used	to	automate	bulk	searches	within	and	edits
to	an	applications	code.	This	utility	is	in	a	usable	form	but	is	still	a	work
in	progress	and	is	likely	to	undergo	substantial	changes	as	it	evolves.

• We	added	two	new	utility	routines	(IsDate.dbl	and	IsTime.dbl)	that	are
referenced	by	some	of	the	supplied	sample	template	files.

• We	corrected	a	regression	that	was	introduced	in	the	previous	release
which	caused	the	field	loop	expansion
token<FIELD_SQL_ALTNAME>	not	to	default	to	using	the	actual	field
name	if	no	alternate	name	was	present.

• We	performed	an	extensive	code	review	and	cleanup,	updating	the	code
in	several	areas	to	take	advantage	of	new	features	available	in	the
Synergy	compiler,	and	also	improving	efficiency.

• We	fixed	an	issue	in	the	CreateFile	utility	that	would	result	in	an
unhanded	exception	in	the	event	that	invalid	key	information	was	passed
to	XCALL	ISAMC.

• We	fixed	an	issue	that	was	causing	the	CreateFile	utility	-r	(replace	file)
option	to	fail,	an	existing	file	would	not	be	replaced	even	if	the	-r	option
was	specified.

• We	made	some	minor	code	changes	to	allow	CodeGen	to	be	built	in	a
.NET	Core	environment	and	we	hope	to	be	able	to	leverage	.NET	Core
to	once	again	support	the	use	of	CodeGen	on	non-Windows	systems
(starting	with	Linux)	in	the	near	future.

• This	version	of	CodeGen	was	built	with	Synergy/DE	10.3.3d	and
requires	a	minimum	Synergy	version	of	10.1.1	to	operate.

Symphony	Framework	Components

• We	no	longer	ship	the	Symphony	Framework	sample	templates	with
CodeGen.	You	can	obtain	the	latest	Symphony	Framework	templates
from	the	Symphony	Framework	web	site.

• There	were	no	Symphony	Orchestrator	changes	in	this	release.

• There	were	no	Symphony	Framework	CodeGen	Extensions	changes	in
this	release.

V5.2.2	-	25th	October	2017

CodeGen	Release	Notes

• We	added	a	new	field	loop	expansion	token
<FIELD_FORMATSTRING>	which	can	be	used	to	access	a	fields
format	string	value.

• We	added	a	new	command-line	option	-utpp	which	instructs	CodeGen
to	treat	user-defined	tokens	as	preprocessor	tokens.	This	means	that

http://www.symphonyframework.net

user-defined	tokens	are	expanded	much	earlier	during	the	initial
tokenization	phase,	which	in	turn	means	that	other	expansion	tokens
may	be	embedded	within	the	values	of	user-defined	tokens.

• We	removed	the	RpsBrowser	utility	from	the	distribution;	it	was	an
experimental	project	that	didn't	really	takeoff.

• This	version	of	CodeGen	was	built	with	Synergy/DE	10.3.3d	and
requires	a	minimum	Synergy	runtime	version	of	10.1.1.

Symphony	Framework	Components

• There	were	no	Symphony	Orchestrator	changes	in	this	release.

• There	were	no	Symphony	Framework	template	file	changes	in	this
release.

• There	were	no	Symphony	Framework	CodeGen	Extensions	changes	in
this	release.

V5.2.1	-	24th	August	2017

CodeGen	Release	Notes

• We	added	several	a	new	generic	expression	token	<IF
COUNTER_n_op_value>	that	allow	you	to	write	conditional	template
code	based	on	testing	the	current	value	of	the	two	internal	template
counters	against	a	simple	numeric	expression.	For	example	you	can	test
whether	counter	1	has	reached	a	value	of	5	with	the	expression	token
<IF	COUNTER_1_GE_5>.

• We	added	several	new	loop	utility	expression	tokens	that	allow	you	to
write	conditional	template	code	based	on	the	total	number	of	items	that
will	be	processed	by	a	loop,	how	many	items	have	already	been
processed,	and	how	many	remain,	either	including	or	excluding	the
current	item.	The	new	expressions	are	<IF
PROCESSED_EXCLUSIVE_op_n>,	<IF

PROCESSED_INCLUSIVE_op_n>,	<IF
REMAINING_EXCLUSIVE_op_n>,	<IF
REMAINING_INCLUSIVE_op_n>	and	<IF	TOTAL_ITEMS_op_n>.
An	example	of	using	these	new	tokens	is:

<FIELD_LOOP>				<IF	TOTAL_ITEMS_LE_100>
								Code	for	small	loops
				<ELSE>
								Code	for	larger	loops
				</IF	TOTAL_ITEMS_LE_100>
</FIELD_LOOP>

• We	added	several	new	loop	utility	expansion	tokens	that	allow	you	to
determine	the	total	number	of	items	that	will	be	processed	by	a	loop,
how	many	items	have	already	been	processed,	and	how	many	remain,
either	including	or	excluding	the	current	item.	The	new	expressions	are
<PROCESSED_EXCLUSIVE>,	<PROCESSED_INCLUSIVE>,
<REMAINING_EXCLUSIVE>,
<REMAINING_EXCLUSIVE_MAX_n>,
<REMAINING_INCLUSIVE>,
<REMAINING_INCLUSIVE_MAX_n>	and	<TOTAL_ITEMS>.

• We	added	a	new	file	header	token
<REQUIRES_CODEGEN_VERSION>	that	allows	you	to	specify	that	a
minimum	version	of	CodeGen	is	required	in	order	to	successfully
process	a	template.

• We	made	a	minor	correction	to	the	documentation	of	the	-f	l	command
line	option.	The	documentation	previously	stated	that	this	option	caused
fields	marked	as	"Excluded	by	Language"	to	be	EXCLUDED	from	field
loop	processing,	but	actually	such	fields	are	excluded	by	default.	The	-f
l	command	line	option	actually	suppresses	this	behavior,	causing	such
fields	to	be	INCLUDED	in	field	loop	processing.

• This	version	of	CodeGen	was	built	with	Synergy/DE	10.3.3c	and
requires	a	minimum	Synergy	runtime	version	of	10.1.1.

Symphony	Framework	Components

• There	were	no	Symphony	Orchestrator	changes	in	this	release.

• There	were	no	Symphony	Framework	template	file	changes	in	this
release.

• There	were	no	Symphony	Framework	CodeGen	Extensions	changes	in
this	release.

V5.2.0	-	30th	June	2017

CodeGen	Release	Notes

• We	added	two	file	loop	expansion	tokens
<FLOOP_ODBC_NAME>	and	<FLOOP_RPS_NAME>.

• This	version	of	CodeGen	was	built	with	Synergy/DE	10.3.3c	and
requires	a	minimum	Synergy	runtime	version	of	10.1.1.		

Symphony	Framework	Components

• There	were	no	Symphony	Orchestrator	changes	in	this	release.

• There	were	no	Symphony	Framework	template	file	changes	in	this
release.

• There	were	no	Symphony	Framework	CodeGen	Extensions	changes	in
this	release.

V5.1.9	-	12th	May	2017

CodeGen	Release	Notes

• We	made	a	slight	change	to	the	way	that	the	multiple
structures	command	line	option	(-ms)	is	processed,	allowing	it	to	be
used	when	only	one	repository	structure	is	specified.	This	allows	for
templates	that	use	the	<STRUCTURE_LOOP>	construct	to	be	used

when	only	one	structure	is	being	processed.

• We	fixed	an	issue	that	was	causing	the	<FIELD_SPEC>	token	to
produce	incorrect	values	for	auto-sequence	and	auto-timestamp	fields.
Previously	the	value	8	would	be	inserted,	now	the	correct	value	i8	is
inserted.

• We	added	two	new	structure	expansion	tokens
<FILE_ODBC_NAME>	and	<FILE_RPS_NAME>	that	expand	to	the
repository	ODBC	table	name	and	repository	file	definition	name	of	the
first	file	definition	that	is	assigned	to	the	structure	currently	being
processed.

• This	version	of	CodeGen	was	built	with	Synergy/DE	10.3.3c	and
requires	a	minimum	Synergy	runtime	version	of	10.1.1.

Symphony	Framework	Components

• There	were	no	Symphony	Orchestrator	changes	in	this	release.

• There	were	no	Symphony	Framework	template	file	changes	in	this
release.

• There	were	no	Symphony	Framework	CodeGen	Extensions	changes	in
this	release.

V5.1.8	-	23rd	March	2017

CodeGen	Release	Notes

• We	added	a	new	generic	expansion	token	<DATABASE>	that	can	be
used	to	insert	the	name	of	the	relational	database	currently	being
targeted.

• We	added	three	new	generic	expression	tokens	<IF
DATABASE_MYSQL>,	<IF	DATABASE_POSTGRESQL>	and	<IF
DATABASE_SQLSERVER>	that	can	be	useful	when	developing

database	agnostic	template	files.

• We	enhanced	the	<REQUIRES_OPTION>	file	header	token	by	adding
a	new	option	TF	which	allows	a	template	designer	to	specify	that	the
template-defined	folders	feature	must	be	enabled.

• This	version	of	CodeGen	was	built	with	Synergy/DE	10.3.3b	and
requires	a	minimum	Synergy	runtime	version	of	10.1.1.

Symphony	Framework	Components

• There	were	no	Symphony	Orchestrator	changes	in	this	release.

• There	were	no	Symphony	Framework	template	file	changes	in	this
release.

• There	were	no	Symphony	Framework	CodeGen	Extensions	changes	in
this	release.

V5.1.7	-	7th	February	2017

CodeGen	Release	Notes

• We	added	experimental	support	for	generating	code	for	MySQL	and
PostgreSQL	databases	by	adding	a	new	-database	command	line	option.
This	option	allows	you	to	specify	a	target	database	type	and	affects	the
SQL-compatible	data	types	that	are	generated	by	the	field	loop
expansion	token	<FIELD_SQLTYPE>.	If	this	option	is	not	used	then
the	default	database	continues	to	be	Microsoft	SQL	Server,	but	this
default	may	be	changed	via	the	new	environment	variable
CODEGEN_DATABASE_TYPE.	Before	considering	this	support	final
we	would	appreciate	any	feedback	from	developers	working	with
MySQL	or	PostgreSQL	about	whether	we	have	chosen	appropriate	data
type	mappings.	A	list	of	these	data	type	mappings	can	be	found	here.

• We	changed	the	SQL	Server	data	type	mappings	for	D6	(YYMMDD)
dates	from	DECIMAL(6)	to	DATE.

https://www.mysql.com
https://www.postgresql.org

• We	changed	the	SQL	Server	data	type	mappings	for	D6	(YYYYPP)	and
D4	(YYPP)	period	numbers	from	CHAR(6)	and	CHAR(4)	to
DECIMAL(6)	and	DECIMAL(4)	respectively.

• We	changed	the	SQL	Server	data	type	mappings	for	nullable	time
(HHMMSS	and	HHMM)	from	DECIMAL(6)	and	DECIMAL(4)	to
TIME(0).

• This	version	of	CodeGen	was	built	with	Synergy/DE	10.3.3b	and
requires	a	minimum	Synergy	runtime	version	of	10.1.1.

Symphony	Framework	Components

• Symphony	Orchestrator	was	upgraded	to	use	Symphony	Framework
V3.2.11.

• There	were	no	Symphony	Framework	template	file	changes	in	this
release.

• There	were	no	Symphony	Framework	CodeGen	Extensions	changes	in
this	release.

V5.1.6	-	7th	November	2016

CodeGen	Release	Notes

• We	modified	the	way	that	key	loops	are	processed	so	that	if	a	repository
structure	has	a	mixture	of	access	keys	and	foreign	keys	defined,	the
foreign	keys	are	ignored	when	processing	key	loops.

• We	added	a	new	key	loop	expression	<IF	FIRST_SEG_NOCASE>.

• We	added	new	field	loop	expressions	<IF	AUTO_SEQUENCE>,	<IF
AUTO_TIMESTAMP>,	<IF	AUTO_TIMESTAMP_CREATED>	and
<IF	AUTO_TIMESTAMP_UPDATED>	which	can	be	used	to
determine	if	fields	are	defined	as	auto	sequence	or	auto	time-stamp
fields.

• We	added	new	key	loop	expressions	<IF
AUTO_TIMESTAMP_CREATED>	and	<IF
AUTO_TIMESTAMP_UPDATED>.

• We	added	new	key	segment	loop	expressions	<IF
SEG_AUTO_TIMESTAMP_CREATED>	and	<IF
SEG_AUTO_TIMESTAMP_UPDATED>.

• We	changed	the	behavior	of	the	field	loop	expansion	token
<FIELD_TYPE_NAME>,	which	will	now	report	the	new	values	AUTO
SEQUENCE	or	AUTO	TIMESTAMP	when	auto	sequence	or	auto	time-
stamp	fields	are	encountered.	Previously	the	token	would	have	returned
a	generic	value	of	INTEGER	for	both.

• This	version	of	CodeGen	was	built	with	Synergy/DE	10.3.3a	and
requires	a	minimum	Synergy	runtime	version	of	10.1.1.

Symphony	Framework	Components

• There	were	no	Symphony	Orchestrator	changes	in	this	release.

• There	were	no	Symphony	Framework	template	file	changes	in	this
release.

• There	were	no	Symphony	Framework	CodeGen	Extensions	changes	in
this	release.

V5.1.5	-	6th	September	2016

CodeGen	Release	Notes

• We	added	a	new	structure	expression	<IF
STRUCTURE_HAS_UNIQUE_PK>.

• We	fixed	a	problem	that	was	preventing	loop	utility	expressions	from
operating	correctly.

• We	fixed	a	problem	that	was	causing	the	<IF	LAST>	field	loop	utility
expression	to	operate	incorrectly	in	primary	key	blocks.

Symphony	Framework	Components

• There	were	no	Symphony	Orchestrator	changes	in	this	release.

• There	were	no	Symphony	Framework	template	file	changes	in	this
release.

• There	were	no	Symphony	Framework	CodeGen	Extensions	changes	in
this	release.

V5.1.4	-	29th	July	2016

CodeGen	Release	Notes

• We	changed	the	SQL	data	mappings	for	time	(HHMMSS	and	HHMM)
fields	from	DECIMAL(n)	to	TIME(0).	This	will	result	in	a	change	of
output	from	the	<FIELD_SQLTYPE>	token.	If	this	causes	you	any
issues	you	can	revert	to	the	previously	produced	values	by	using	custom
data	type	mapping.

• The	CodeGen	installation	was	altered	so	that	the	changes	to	PATH
occur	immediately	after	the	installation	completes.	This	means	that	it	is
no	longer	necessary	to	reboot	after	installing	CodeGen	on	a	system	for
the	first	time.

Symphony	Framework	Components

• There	were	no	Symphony	Orchestrator	changes	in	this	release.

• There	were	no	Symphony	Framework	template	file	changes	in	this
release.

• There	were	no	Symphony	Framework	CodeGen	Extensions	changes	in
this	release.

V5.1.3	-	30th	June	2016

CodeGen	Release	Notes

• Added	a	new	loop	utility	expansion	tokens	<BSLASH>	and
<FSLASH>.

• Added	a	new	field	loop	expression	<IF	LENGTH_OVER_8>.

• This	version	of	CodeGen	is	built	with	Synergy/DE	10.3.3	and	targets	a
minimum	Synergy	runtime	version	of	10.1.1.

Symphony	Framework	Components

• There	were	no	Symphony	Orchestrator	changes	in	this	release.

• There	were	no	Symphony	Framework	template	file	changes	in	this
release.

• There	were	no	Symphony	Framework	CodeGen	Extensions	changes	in
this	release.

V5.1.2	-	28th	January	2016

CodeGen	Release	Notes

• We	fixed	a	bug	that	was	causing	the	<SELECTION_VALUE>	selection
loop	expansion	token	to	produce	incorrect	results	for	enumerated
decimal	and	integer	fields.	The	values	being	produced	were	previously
off	by	1,	with	values	for	fields	with	positive	enumerated	step	values
being	one	too	high,	and	values	for	fields	with	negative	enumerated	step
values	being	one	too	low.

• We	changed	the	CodeGen	installation	so	that	it	adds	the	CodeGen	folder

to	the	END	of	PATH	instead	of	the	beginning.

Symphony	Framework	Components

• There	were	no	Symphony	Orchestrator	changes	in	this	release.

• There	were	no	Symphony	Framework	template	file	changes	in	this
release.

• We	fixed	a	bug	that	was	causing	the
<SYMPHONY_SELECTION_VALUE>	selection	loop	expansion	token
to	produce	incorrect	results	for	enumerated	decimal	and	integer	fields.
The	values	being	produced	were	previously	off	by	1,	with	values	for
fields	with	positive	enumerated	step	values	being	one	too	high,	and
values	for	fields	with	negative	enumerated	step	values	being	one	too
low.

V5.1.1	-	9th	December	2015

CodeGen	Release	Notes

• We	have	moved	the	CodeGen	source	code	repository	from	CodePlex	to
GitHub;	the	only	functional	CodeGen	changes	in	this	release	are	related
to	that	move	(check	for	update	mechanism,	download	URL,	etc.).

If	you	don't	already	have	one	we	encourage	you	to	Create	a	GitHub
Account	and	to	Watch	CodeGen.	If	you	wish	to	receive	notifications
about	new	CodeGen	releases	you	can	also	subscribe	tho	the	CodeGen
Releases	Atom	feed.

We	have	not	changed	the	licensing	terms,	CodeGen	is	still	distributed
under	the	terms	of	the	New	BSD	license	(BSD).	For	the	time	being	we
plan	to	leave	the	CodePlex	environment	intact,	but	no	new	changes	will
be	checked	in	there	and	no	new	releases	will	be	published	there.

Here	are	a	few	useful	GitHub	URLs	related	to	our	new	home:

Main	project

http://www.codeplex.com/
https://github.com/
https://github.com/join
https://github.com/Synergex/CodeGen/subscription
https://github.com/Synergex/CodeGen/releases.atom
https://github.com/Synergex/CodeGen/wiki/License

home	page https://github.com/Synergex/CodeGen

Wiki
(information)https://github.com/Synergex/CodeGen/wiki

Download
latest	version https://github.com/Synergex/CodeGen/releases/latest

Issue
tracking https://github.com/Synergex/CodeGen/issues

Releases
Atom	feed https://github.com/Synergex/CodeGen/releases.atom

• We	have	made	an	internal	change	that	has	consolidated	the	functionality
of	the	CodeGenEngineShared	and	CodeGenParser	assemblies	into	the
existing	CodeGenEngine	assembly	and	we	modified	the	installation	to
remove	the	two	redundant	assemblies.

• We	have	upgraded	the	version	of	the	WiX	Toolset	that	we	are	using	to
create	the	CodeGen	installation	to	V3.1.0.2213.

Symphony	Framework	Components

• There	were	no	Symphony	Orchestrator	changes	in	this	release.

• The	Symphony_FileIO	template	was	altered	to	use
<TAGLOOP_FIELD_SQLNAME>	instead	of
<TAGLOOP_FIELD_NAME>.	This	change	only	affects	structures	with
tags.

• There	were	no	Symphony	Framework	CodeGen	Extensions	changes	in
this	release.

V5.1.0	-	4th	December	2015

CodeGen	Release	Notes

• We	added	support	for	the	conditional	processing	of	template	code	based
on	identifiers	defined	on	the	command	line.

https://github.com/Synergex/CodeGen
https://github.com/Synergex/CodeGen/wiki
https://github.com/Synergex/CodeGen/releases/latest
https://github.com/Synergex/CodeGen/issues
https://github.com/Synergex/CodeGen/releases.atom
http://wixtoolset.org/

Symphony	Framework	Components

• There	were	no	Symphony	Orchestrator	changes	in	this	release.

• There	were	no	Symphony	Framework	template	file	changes	in	this
release.

• There	were	no	Symphony	Framework	CodeGen	Extensions	changes	in
this	release.

V5.0.7	-	20th	November	2015

CodeGen	Release	Notes

• We	added	support	for	the	conditional	processing	of	template	code	based
on	identifiers	defined	on	the	command	line.

• We	added	a	new	structure	expression	<IF
STRUCTURE_HAS_UNIQUE_KEY>.

• We	added	a	new	key	loop	variation	called	<UNIQUE_KEY>.

• We	fixed	a	bug	that	was	causing	a	crash	during	key	segment	loop
processing	if	a	key	segment	was	defined	using	an	overlay	field.	An
appropriate	error	is	now	generated.

• We	changed	the	minimum	required	version	of	the	.NET	Framework
from	4.5	to	4.5.2.

Symphony	Framework	Components

• There	were	no	Symphony	Orchestrator	changes	in	this	release.

• There	were	no	Symphony	Framework	template	file	changes	in	this
release.

• There	were	no	Symphony	Framework	CodeGen	Extensions	changes	in
this	release.

V5.0.6	-	9th	September	2015

CodeGen	Release	Notes

• We	fixed	an	error	that	was	interfering	with	the	processing	of	case
variations	of	the	field	loop	expansion	token	<FIELD_ODBCNAME>.

• We	added	two	new	field	loop	expansion	tokens	that	insert	SQL	and
.NET	compatible	variants	of	a	fields	alternate	name.	The	tokens
are	<FIELD_SQL_ALTNAME>	and	<FIELD_NET_ALTNAME>	and
both	are	also	available	for	use	in	key	segment	loops.

• We	added	five	new	field	loop	expressions	<IF	ARRAY_FIRST>,	<IF
ARRAY1_FIRST>,	<IF	ARRAY2_FIRST>,	<IF
ARRAY3_FIRST>	and	<IF	ARRAY4_FIRST>.	These	expressions	can
be	used	to	determine	if	a	field	that	was	the	very	first	element	of	an	array
is	being	processed.

Symphony	Framework	Components

• There	were	no	Symphony	Orchestrator	changes	in	this	release.

• There	were	no	Symphony	Framework	template	file	changes	in	this
release.

• There	were	no	Symphony	Framework	CodeGen	Extensions	changes	in
this	release.

V5.0.5	-	28th	August	2015

CodeGen	Release	Notes

• We	upgraded	the	development	environment	to	use	Visual	Studio	2015.

• We	added	a	new	field	loop	expansion	token
<FIELD_SELECTION_COUNT>.

• We	extended	the	functionality	of	the	recently	added	-
checkversion	command	line	option	so	that	you	can	now	configure
CodeGen	to	periodically	check	for	updates	and	inform	you	when	an
update	is	available.

• We	have	modified	CodeGen	so	that	it	sets	the	Windows	exit	code	to	1	if
an	error	occurs	during	processing.	This	means	that	the	standard	IF
ERRORLEVEL	mechanism	can	be	used	to	detect	code	generation
problems	when	operating	in	batch	files.

• We	changed	the	way	that	field	names	are	generated	for	fields	from
multi-dimensioned	arrays.	In	previous	versions	the	name	of	a	field	from
a	multi-dimensioned	array	might	be	presented	as	FIELD1_1_1,	but	this
could	result	in	a	problem	when	using	expansion	tokens	such	as
<FieldNetName>,	or	any	other	pascal-case	or	camel-case	variant	of
tokens	referring	to	the	name	of	the	field.	Such	tokens	suppress	the
underscore	characters	and	result	in	names	like	Field1111.	This	meant
that	duplicate	names	could	be	generated	for	fields	within	the	same	array.
Consider	an	array	field	defines	as	MY_FIELD,	[12,12,1]A1;	the
<FieldNetName>	for	MY_FIELD[1,11,2]	would	be	MyField1112;
exactly	the	same	as	for	field	MY_FIELD[11,1,2].	To	address	this	we
have	changed	the	naming	convention	for	elements	in	multi-dimensioned
arrays	such	that	leading	zeros	are	now	included,	up	to	the	required
length	based	on	the	highest	element	number.	For	example	the	names
produced	for	the	earlier	example	will	now	be	MyField01112	and
MyField11012.	If	you	use	expansion	tokens	that	refer	to	the	non-DBL
names	of	fields	in	multi-dimensioned	arrays	in	such	a	way	that	those
names	become	part	of	an	external	API	then	this	change	will	break	your
existing	code.	Note	that	this	change	only	applies	to	multi-dimensioned
arrays;	the	behavior	of	fields	in	single-dimensioned	arrays	has	not
changed.

• We	fixed	a	problem	with	the	processing	of	the	tag	loop	expansion	token

<TAGLOOP_TAG_VALUE>.	Previously	for	an	alpha	field	with	a
comparison	value	the	comparison	value	would	have	been	inserted
without	trailing	space	(e.g.	"A"),	now	trailing	spaces	will	be	inserted	if
necessary	(e.g.	"A					").	Previously	for	an	alpha	field	with	an	empty
comparison	value	a	null	string	(e.g.	"")	would	have	been	inserted,	now
an	empty	string	with	the	appropriate	number	of	spaces	(e.g.	"							")	is
inserted.	The	number	of	spaces	is	determined	by	the	length	of	the	alpha
field,	up	to	a	maximum	of	15	characters	which	is	the	maximum	possible
length	for	a	tag	comparison	value.

• We	fixed	an	error	that	was	preventing	the	tag	loop	expression
tokens	<IF	SINGLE_TAG>	and	<IF	MULTIPLE_TAGS>	from
operating	correctly.	Previously	<IF	SINGLE_TAG>	would	only	be	true
if	no	tags	were	present	and	<IF	MULTIPLE_TAGS>	would	be	true	only
if	a	single	tag	was	present.

• We	added	two	new	structure	expressions	<IF
STRUCTURE_SINGLE_TAG>	and	<IF
STRUCTURE_MULTIPLE_TAGS>.

Symphony	Framework	Components

• We	corrected	the	column	headings	in	the	Orchestrator	commands	list.

• There	were	no	Symphony	Framework	template	file	changes	in	this
release.

• There	were	no	Symphony	Framework	CodeGen	Extensions	changes	in
this	release.

V5.0.4	-	30th	June	2015

CodeGen	Release	Notes

• IMPORTANT:	We	changed	some	of	the	implementation	details	for
period	date	fields	(YYPP	and	YYYYPP).	Previously,	because	there	is
no	direct	equivalent	for	fields	of	these	types	in	environments	like	.NET,

Java	and	SQL,	these	fields	were	treated	as	type	String	by	various	field
loop	tokens.	We	have	changed	this	so	that	they	are	now	treated	as	type
int.	This	change	affects	the	following	field	loop	tokens:
<FIELD_CSTYPE>,	<FIELD_CSDEFAULT>,	<FIELD_OCTYPE>,
<FIELD_OCDEFAULT>,	<FIELD_SNTYPE>,
<FIELD_SNDEFAULT>,	<FIELD_VBTYPE>	and
<FIELD_VBDEFAULT>.	This	could	potentially	change	the	behavior	of
your	templates	and	the	resulting	code,	but	we	decided	to	make	the
change	because	fields	of	this	type	are	fairly	rare.

• We	added	a	new	-rps	command	line	option	which	allows	the	repository
main	and	text	files	to	be	used	to	be	specified	on	the	command	line,
overriding	other	mechanisms	for	repository	selection	such	as	RPSDAT,
RPSMFIL	and	RPSTFIL	environment	variables.

• We	added	a	new	-attach	command	line	option	which	is	intended	for	use
by	CodeGen	developers.	When	specified	this	option	causes	CodeGen	to
wait	for	a	key	press	at	the	very	beginning	of	processing,	making	it
possible	to	attach	an	external	debugger	to	the	process	before	processing
begins.

• We	added	a	new	-time	command	line	option	that	causes	CodeGen	to
report	the	total	elapsed	time	taken	to	process	the	command.

• We	fixed	an	issue	in	the	repository	API	which	was	causing	period	dates
(D4	YYPP	and	D6	YYYYPP)	to	be	incorrectly	reported	as	type
JULIAN	instead	of	DATE.	This	in	turn	was	causing	the	field	loop
expressions	<IF	DATE_YYPP>,	<IF	DATE_YYYYPP>	and	<IF
DATE_NOT_PERIOD>	to	fail.

• We	removed	an	artificial	limitation	that	was	limiting	the	number	of
structures	that	could	be	processed	concurrently	(via	the	-ms	command
option)	to	five.

• We	corrected	a	situation	where	recent	versions	of	CodeGen	could
potentially	exit	and	report	a	fail	status	without	having	displayed	a
corresponding	error	message.

• We	fixed	issues	with	the	<FIELD_PRECISION>	and

<FIELD_PRECISION2>	field	loop	tokens	which	were	both	inserting
incorrect	values.	We	also	added	a	new	field	loop	token
<FIELD_PRECISION0>.

• We	fixed	an	issue	that	was	preventing	the	field	loop	expansion	token
<FIELD_SELECTIONS>	from	operating	correctly.

• We	fixed	an	issue	that	was	preventing	code	generation	without	a
repository	structure	from	working.

• Fixed	an	issue	that	was	preventing	the	field	loop	expressions	<IF
PKSEGMENT>	and	<IF	NOTPKSEGMENT>	from	operating	correctly
when	used	with	structures	that	have	no	keys	defined.
	

• We	added	back	several	sample	subroutines,	functions	and	include	files
to	the	distribution.	These	files	were	previously	distributed		but	were
accidentally	excluded	when	we	moved	to	the	new	WiX	based	installer.
Some	are	still	referenced	by	several	old	sample	templates	(mainly	the
UI	Toolkit	related	templates).	The	files	can	be	found	in	the	main
templates	folder	and	we	also	once	again	set	the	CODEGEN_INC
environment	variable	to	point	to	the	location	of	various	include	files	that
are	referenced	by	some	of	the	sample	code.

Symphony	Framework	Components

• IMPORTANT:	When	upgrading	to	this	version	of	CodeGen	it	it
important	that	you	update	your	Symphony	Framework	version	(via
NuGet)	to	V3.1.10

• In	Orchestrator	we	added	the	ability	to	create	a	new	command	based	on
an	existing	command.	The	new	option	is	available	by	right-clicking	an
existing	command	in	the	command	grid,	and	from	there	you	can	select
the	required	repository	structure	and	the	new	commands	will	be	created.
The	command	grid	also	now	allows	for	the	selection	of	multiple
commands.

• Orchestrator	now	supports	being	launched	via	a	registered	file
association,	and	we	have	updated	the	installation	to	create	a	file

association	for	orchestrator	project	files	(.symproj).	This	means	that	you
can	now	launch	orchestrator	by	double-clicking	on	a	project	file,	or	by
right-clicking	a	project	file	and	selecting	"Open	with	Symphony
Orchestrator".

• Orchestrator	also	now	supports	Windows	"Jump	Lists".	This	means	that
if	you	pin	the	Orchestrator	icon	to	the	Task	Bar,	you	can	use	right-click
to	display	and	select	from	a	list	of	recently	opened	projects.

• There	were	no	changes	to	the	Symphony	Framework	template	files	in
this	release.

• There	were	no	changes	to	the	Symphony	Framework	CodeGen
Extensions	in	this	release.

V5.0.3	-	16th	April	2015

CodeGen	Release	Notes

• We	added	a	new	command	line	option	-checkversion	that	allows	you	to
check	whether	a	you	are	running	the	latest	released	version	of	CodeGen.
Your	current	and	the	latest	versions	will	be	displayed,	together	with	a
message	confirming	the	status	of	your	installation.	This	option	requires
Internet	connectivity.

• We	updated	the	installer	so	that	the	CodeGen	documentation	is	now	an
optional	component.	If	the	documentation	is	not	installed	locally	then
the	codegen	-docs	command	line	option	will	launch	the	Web-based
documentation.

• We	changed	the	location	where	we	install	the	sample	templates,	which
you	will	now	find	in	a	folder	below	the	public	documents	folder
(C:\Users\Public\Documents\CodeGenTemplates).

• The	installation	now	records	the	CodeGen	version	number	in	the
registry.	This	makes	it	easier	for	third-party	tools	that	may	depend	on
CodeGen	to	determine	the	installed	version.

• Several	additional	Symphony	Framework	components	are	now	being
distributed	as	part	of	the	CodeGen	installation.	See	below	for	more
details.

Symphony	Framework	Components

• IMPORTANT:	If	you	use	CodeGen	in	conjunction	with	Symphony
Framework	then	it	is	important	that	you	should	upgrade	to	Symphony
Framework	V3.1.9.0	BEFORE	installing	this	version	of	CodeGen.

• The	Symphony	Framework	CodeGen	Extensions	are	now	being
distributed	as	part	of	the	CodeGen	installation	and	have	been	removed
from	V3.1.9.0	of	the	Symphony	Framework	installation.

• The	Symphony	Framework	template	files	are	now	being	distributed
with	the	CodeGen	installation	and	have	been	removed	from	V3.1.9.0	of
the	Symphony	Framework	installation.

• The	folder	containing	the	Symphony	template	files	has	changed	from
C:\Program	Files	(x86)\Synergex\SymphonyFramework\Template	to
C:\Users\Public\Documents\SymphonyTemplates,	but	the	environment
variable	SYMPHONYTPL	continues	to	point	to	the	location	of	the
Symphony	templates	and	should	be	the	primary	mechanism	used	to
locate	them	from	the	command	prompt	or	batch	files.

• No	Symphony	Framework	templates	were	added,	deleted	or	changed	in
this	release.

• We	added	a	border	to	the	Symphony	Orchestrator	main	window	so	that
the	application	can	be	resized	for	easier	use.

	

V5.0.2	-	16th	March	2105

CodeGen	Release	Notes

http://symphonyframework.codeplex.com

• We	corrected	several	documentation	issues	where	it	was	stated	that
several	command	line	options	(-s,	-t,	-a,	-ut	and	others)	were	limited	to	a
maximum	of	ten	values	following	the	option.	This	limitation	in	previous
versions	of	CodeGen	was	removed	in	V5.0.0.

• We	fixed	a	bug	in	the	Template	Browser	utility	that	was	causing	it	to
fail	to	start	if	Symphony	Framework	was	not	installed.

• We	added	a	new	file	header	token	called
<CODEGEN_FOLDER>	which	allows	template	files	to	specify	the
name	of	a	sub-folder	(below	the	main	output	folder)	where	output	files
should	be	created.	You	must	use	the	-tf	command	line	option	to	enable
this	feature.	By	default,	if	a	template	file	specifies	that	the	output	file	be
placed	in	a	sub-folder,	and	a	namespace	is	used	within	the	template,
then	the	folder	name	is	also	appended	to	the	namespace	being	used.	The
appending	of	the	folder	name	to	the	namespace	can	be	overridden	by	the
new	-nf	command	line	option.

Symphony	Framework	Components	Release	Notes

• The	Symphony	Framework	Orchestrator	utility	in	now	being	distributed
as	part	of	the	CodeGen	installation	has	been	removed	from	V3.0.5.0	of
the	Symphony	Framework	installation.

• We	changed	the	Orchestrator	version	number	to	match	the	version	of
CodeGen	that	it	now	ships	with.

• We	mad	a	change	to	OrchestratorViewModel	to	prevent	the	project
folder	incorrectly	being	added	to	program	folders.

• We	changed	the	CommandDetails.xam	view	to	correct	the	display	of	the
token	list	cells.

V5.0.1	-	31st	January	2015

• Fixed	a	bug	that	was	causing	incorrect	data	to	be	output	(compared	to
previous	versions)	by	the	<FIELD_NAME>	token	when	the	-

prefix	option	was	used	in	conjunction	with	a	repository	structure	that
contained	group	fields.	The	bug	was	introduced	in	V5.0.0.

• The	current	CodeGen	version	number	is	now	recorded	in	each	assembly
via	the	Assembly	File	Version	attribute.

V5.0.0	-	10th	January	2015

Introduction

This	release	represents	a	total	re-write	of	the	CodeGen	code	base,	embracing
best	practice	object-oriented	development	techniques,	and	utilizing	all	of	the
latest	and	greatest	features	of	Synergy	.NET.	Starting	with	this	release
CodeGen	will	only	be	available	for	use	on	the	Windows	platform.	This	new
release	has	been	extensively	tested	and,	despite	extensive	internal	changes,
has	demonstrated	a	very	high	level	of	compatibility	with	previous	versions.
But	if	you	do	discover	an	issue	then	please	provide	feedback	via	the	CodePlex
Issue	Tracking	system.

Installing	This	Version

• If	you	have	an	earlier	version	of	CodeGen	installed	then	the	installer	for
this	version	will	perform	an	upgrade	in	the	usual	way.

• If	you	previously	installed	a	V5	beta	release	then	you	must	manually
remove	that	version	before	installing	this	version.

Symphony	Framework	Users

In	order	to	use	this	version	of	CodeGen	you	must	be	using	Symphony
Framework	V3.0.2.0	or	higher.

Changes	That	May	Break	Your	Code

• If	you	have	implemented	custom	extensions	to	CodeGen	then	please	be
aware	that	the	mechanism	for	implementing	extensions	has	changed.
You	will	need	to	implement	a	new	version	of	your	extensions	in	order	to

https://codegen.codeplex.com/workitem/list/basic
http://symphonyframework.codeplex.com/releases/view/153793

have	them	work	with	CodeGen	V5.	If	you	need	assistance	with
migrating	your	extensions	to	the	new	environment	please	contact	the
CodeGen	development	team	via	the	General	Discussions	page	on
CodePlex.

• When	using	the	in-process	CodeGen	API	and	specifying	the	names	of
user-defined	tokens	it	was	previously	necessary	to	include	the	<	and	>
characters	in	the	name	of	the	user	defined	token.	V5	does	not	require	the
<	and	>	characters	to	be	specified,	and	in	fact	will	fail	to	recognize	the
user	defined	tokens	if	you	do	specify	them.

• In	earlier	versions	of	CodeGen	the	sample	templates	were	installed	to
the	folder	\ProgramData\Synergex\CodeGEn\Templates.	Starting	from
this	version	the	sample	templates	are	now	installed	to	the	folder
\Program	Files	(x86)\Synergex\CodeGen\Templates.

• We	discovered	that	the	<FIELD_ELEMENT>	field	loop	token	was	not
implemented	correctly.	For	non-array	fields	it	was	intended	to	not	insert
any	data	into	the	output	stream,	but	in	fact	would	insert	a	digit	1.	Also,
when	processing	the	first	element	of	a	single-dimension	array	field	the
token	would	insert	0	instead	of	1.	Both	of	these	have	been	corrected,
which	could	change	the	behavior	of	your	template	files.

• We	discovered	that	the	<FIELD_ELEMENT0>	field	loop	token	was	not
implemented	correctly.	For	non-array	fields	it	was	intended	insert	a	digit
0,	but	in	fact	would	insert	a	digit	1.	Also,	when	processing	the	first
element	of	a	single-dimension	array	field	the	token	would	insert
0	instead	of	1.	Both	of	these	have	been	corrected,	which	could	change
the	behavior	of	your	template	files.

Other	Changes	and	New	Features

This	release	was	primarily	about	re-developing	the	internals	of	CodeGen	in
order	to	take	advantage	of	latest	technologies,	but	also	to	make	CodeGen
more	extensible	for	future	releases.	But	we	also	managed	to	squeeze	in	a	few
new	features	along	the	way:

• Added	new	generic	expansion	tokens	<HOST_DNS_NAME>,
<HOST_IP_ADDRESS>,	<RANDOM_10>,	<RANDOM_100>,

https://codegen.codeplex.com/discussions/topics/5389/general-discussions

<RANDOM_1000>	and	<RANDOM_INT>.

• Added	support	for	generic	expression	tokens,	and	added	the	first
generic	expressions	<IF	DEBUG_LOGGING>,	<IF	FIELD_PREFIX>,
<IF	FIELD_SUBSET>	<IF	MULTIPLE_STRUCTURES>,	<IF
NAMESPACE>	and	<IF	VERBOSE_LOGGING>.

• The	existing	counter	tokens	and	expressions	have	been	re-documented
as	generic	tokens	and	generic	expressions.

• Added	support	for	structure	expression	tokens,	and	added	the	first
structure	expression	tokens	<IF	STRUCTURE_FILES>,	<IF
STRUCTURE_KEYS>,	<IF	STRUCTURE_LDESC>,	<IF
STRUCTURE_RELATIONS>,	<IF	STRUCTURE_TAGS>	and
<STRUCTURE_UTEXT>.

• Added	new	mechanisms	for	supporting	relation	loop	expressions,
structure	loop	expressions,	not	in	loop	expansion	tokens	and	not	in	loop
expression	tokens,	although	none	exist	as	yet.

• Implemented	<IF	FIRST>,	<IF	LAST>,	<IF	MORE>	and	<IF
NOMORE>	as	loop	utility	expressions,	and	removed	them	from	the
specific	individual	loops	that	they	were	previously	supported	in.

• The	file	spec	provided	within	a
<PROVIDE_FILE>file.ext</PROVIDE_FILE>	construct	can	now
include	a	logical	name	to	specify	the	location	of	the	file.

• Completed	the	set	of	file	header	tokens	that	allow	you	to	specify	that	a
particular	custom	expansion	token	is	required	by	adding
<REQUIRES_CUSTOM_LOOPUTIL_TOKEN>,
<REQUIRES_CUSTOM_NOTINLOOP_TOKEN>,
<REQUIRES_CUSTOM_STRUCTLOOP_TOKEN>	and
<REQUIRES_CUSTOM_TAG_TOKEN>.

• Added	a	new	set	of	file	header	tokens	that	can	be	used	to	specify	that	a
particular	custom	expression	token	is	required.	For	example
<REQUIRES_CUSTOM_FIELD_EXPRESSION>.

• The	<REQUIRES_OPTION>SUBSET</REQUIRES_OPTION>	can
now	be	satisfied	by	either	the	-subset	or	-fields	command	line	options.

• When	processing	multiple	structures	but	NOT	using	a	structure	loop,	we

currently	support	up	to	five	concurrent	structures.	By	default	the	context
is	set	to	the	first	structure	specified,	and	you	can	switch	context	to	a
different	structure	using	the	<STRUCTURE#1>	through
<STRUCTURE#5>	tokens.	Currently	when	using	the	-ms	command
line	option,	you	must	specify	between	2	and	5	structures.

• The	command	line	-subset	option	(process	a	subset	of	fields)	can	now
be	used	in	conjunction	with	the	-ms	option	(multiple	structures).

• The	command	line	-fields	option	was	changed	to	support	fields	from
multiple	structures,	when	processing	multiple	structures	(-ms	option).
When	processing	multiple	structures	you	can	specify	-fields
STR1.FIELD1	STR1.FIELD2	STR2.FIELD1	etc.	If	processing	multiple
structures	and	you	don't	specify	STR.FIELD	in	-fields	then	the	first
structure	is	used	as	a	default.

• Added	a	new	-mw		command	line	option.	By	default,	if	the	same	task
generates	the	same	output	file	then	it	is	not	written	to	disk	multiple
times.	This	option	causes	each	instance	of	the	file	to	be	written	to	disk.
If	you	use	the	in-process	interface	to	CodeGen	then	the	equivalent	is	to
set	the	new	CodeGenTask.MultiWriteFiles	property.

• Added	a	new	-dt	command	line	option	which	creates	log	files	which
detail	the	results	of	the	tokenization	of	template	files,	and	tree	output,
both	before	and	after	pre-expansion.	The	files	are	created	in	the	output
folder	and	are	named	<template>.tokens.log.

• Added	a	new	-c	command	line	option	which	causes	processing	to
continue	even	after	errors	have	been	reported.	If	multiple	templates,
files	or	tasks	are	being	processed	then	this	option	allows	code
generation	to	continue	even	though	one	template/structure	combination
has	generated	an	error.		If	you	use	the	n-process	interface	to	CodeGen
then	the	equivalent	is	to	set	the	new
CodeGenTaskSet.ContinueAfterError	property.

• We	have	changed	the	way	that	CodeGen	installations	are	created.	We	no
longer	use	InstallShield	Limited	Edition,	but	instead	are	now	using
WiX	(Windows	Installer	XML),	and	we're	also	using	WiX
Toolset	which	provides	Visual	Studio	integration.

• The	CodeGen	installation	is	now	digitally	signed	by	Synergex

http://en.wikipedia.org/wiki/WiX
http://wix.codeplex.com

International	Corporation.	This	means	that	you	should	no	longer	see
Windows	SmartScreen	warnings	when	executing	an	installation	that	has
been	downloaded	from	the	Internet.

V4.4.4.1	-	11th	September	2014

IMPORTANT:	This	is	likely	to	be	the	final	CodeGen	release	that	supports
building	with	Traditional	Synergy;	future	versions	will	only	be	supported
under	Synergy	.NET.	This	means	that	future	releases	will	only	be	available	on
Windows.	The	binary	releases	and	source	code	for	this	version	will	continue
to	be	available	from	CodePlex	so	it	will	be	possible	to	continue	to	use	this
version	on	platforms	like	Linux	and	OpenVMS,	but	future	enhancements	will
only	be	available	on	Windows.	Remember	that	if	you	are	developing	on	a
platform	other	than	Windows,	you	can	generate	code	on	Windows	and	then
move	that	code	to	the	other	platform.

This	release	contains	bug	fixes	for	a	small	number	of	issues	that	were
discovered	after	the	V4.4.4	release.	Most	of	these	issues	only	affected	the	"in-
process"	interface	to	CodeGen	that	is	used	by	the	unreleased	"Symphony
Orchestrator"	utility,	but	one	of	the	issues	also	affected	the	processing	of	user-
defined	tokens	passed	in	via	the	-ut	command	line	option,	hence	this
additional	release.

V4.4.4	-	19th	August	2014

On	OpenVMS	we	updated	the	processing	of	the	-i	and	-o	command	line
options	so	that	a	Windows	or	Unix	style	period	(.)	can	be	used	to	represent
"current	directory",	in	addition	to	the	OpenVMS	style	[]	notation.

We	changed	the	implementation	of	the	-u	(user-defined	token	file)	command-
line	option.	Previously	all	user-defined	token	files	were	required	to	be	in	the
same	folder	as	the	template	being	processed,	and	were	required	to	have	a	.tkn
file	extension.	Now	user-defined	token	files	can	be	located	anywhere	and	have
any	file	extension.	This	change	means	that	when	using	the	-u	command	line
option,	you	must	now	specify	a	full	or	relative	path	and	file	name	to	the	token
file	to	use.	Synergy	logical	names	can	be	used	to	specify	the	path.

We	fixed	a	bug	that	was	preventing	the	various	loop	counter	expressions	from
working	correctly.	The	bug	was	introduced	in	the	4.4.3	release.

We	added	<IF	FIRST>	as	a	new	expression	in	key	loops,	enum	loops,	enum
member	loops,	file	loops	and	button	loops.

We	renamed	two	tag	loop	expressions	for	consistency	with	other	loop
structures.	<IF	FIRST_TAG>	becomes	<IF	FIRST>	and	<IF	LAST_TAG>
becomes	<IF	LAST>.

We	added	the	ability	to	define	a	subset	of	fields	to	be	processed	by	specifying
a	list	of	field	names	on	the	command	line	using	the	new	-fields	option,	or	via
the	SubsetFields	property	of	CodeGenTask.	This	enables	field	subset
processing	without	having	to	modify	the	underlying	repository.	As	with	the	-
subset	option,	this	feature	can	only	be	used	when	processing	a	single
repository	structure,	and	can't	be	used	at	the	same	time	as	the	-subset	option.

We	fixed	a	problem	where	when	using	developer	debug	mode	(-debug)
CodeGen	would	fail	to	create	the	developer	debug	mode	log	log	file	if	the	-
r	(replace	output	files)	option	was	not	being	used.

V4.4.3	-	18th	August	2014

Significantly	enhanced	the	CreateFile	utility	by	adding	support	for	the
following	Synergy	V10	(ISAM	rev	6)	features:

• Auto-sequence	keys.

• Auto-time-stamp	keys.

• Portable	integer	specifications.

• Stored	GRFA	option.

• Track	changes	option.

CreateFile	now	ignores	any	foreign	key	definitions,	and	will	also	now	attempt
to	validate	that	if	key	definitions	include	optional	"explicit	key	of	reference"
values,	those	values	match	the	order	in	which	the	keys	are	defined	(CreateFile
always	creates	keys	based	on	the	order	of	key	definitions	in	the	repository

structure,	because	repository	does	not	have	any	other	reliable	mechanism	for
determining	the	order	of	keys	in	a	file).

Significantly	enhanced	the	MapPrep	utility.	Specifically:

• The	default	name	of	new	mapped	structures	was	changed	from
<structure>_NEW	to	<structure>_MAPPED.

• The	name	of	a	new	mapped	structure	can	now	be	specified,	overriding
the	default	name.	This	can	be	done	either	via	a	command-line	option	-n,
or	by	responding	to	prompts	by	using	one	of	the	command	line	options	-
ps	or	-p.	Previously	you	would	have	to	edit	the	generated	schema	file	in
order	to	rename	the	structure	from	its	default	new	name.

• You	can	now	tell	MapPrep	whether	you	want	to	be	prompted	for	new
structure	names	(-ps),	field	names	(-pf)	or	both	(-p).

• By	default	MapPrep	no	longer	propagates	key	definitions	into	the
schema	for	the	new	mapped	structure	because	they	are	generally	not
required.	However	there	is	a	new	command-line	option	-k	which	causes
key	information	to	be	retained	as	previously.

• If	retaining	key	information	while	at	the	same	time	renaming	fields,
MapPrep	now	renames	any	key	segments	that	relate	to	fields	that	have
been	renamed.

• When	renaming	structures	and	fields	MapPrep	now	validates	that	the
names	that	you	provide	are	valid	identifiers,	and	when	renaming	fields
MapPrep	now	tracks	the	names	that	have	been	used	so	far	and	prevents
duplicate	field	names	from	being	entered	later.

• MapPrep	now	defaults	to	adding	structure	and	field	mappings	in	the
structure	and	fields	long	descriptions	instead	of	in	the	user	defined	text
field,	and	we	have	added	a	new	command-line	option	-u	which	causes
the	user	defined	text	field	to	be	used	as	previously.

• Added	the	ability	to	load	new	mapped	structures	directly	back	into	the
repository;	this	is	achieved	by	using	the	new	-l	command-line	option.

Altered	the	<IF	DATE>	key	segment	loop	expression	to	evaluate	to	true	for
both	nullable	and	non-nullable	dates.

Added	two	new	sample	templates	that	demonstrate	how	to	use	SQL	Server
BULK	INSERT	to	load	data	into	tables	very	quickly.	These	new	templates
are:

• DatabaseRoutinesBulkLoad.tpl

• DatabaseRoutinesBulkLoadMapped.tpl.

Added	Repository	API	support	for	the	ISAM	Rev	6	(Synergy	10.1)	stored
GRFA	and	change	tracking	file	options.

Added	support	for	ISAM	file	page	sizes	of	16384	and	32768	in	the	following
tokens:

• <FILE_PAGESIZE>

• <FLOOP_PAGESIZE>

Added	the	following	new	structure	tokens:

• <FILE_CHANGE_TRACKING>

• <FILE_STORED_GRFA>

Added	the	following	new	file	loop	tokens:

• <FLOOP_CHANGE_TRACKING>

• <FLOOP_STORED_GRFA>

Added	new	file	loop	expressions

• <IF	CHANGE_TRACKING>

• <IF	NOCHANGE_TRACKING>

• <IF	PAGESIZE16384>

• <IF	PAGESIZE32768>

• <IF	STORED_GRFA>

• <IF	NOSTORED_GRFA>

Added	the	following	new	key	segment	loop	expressions	to	bring	key	segment

expressions	back	into	line	with	field	loop	expressions.

• <IF	DATE_NULLABLE>

• <IF	DATE_NOT_NULLABLE>

• <IF	SEG_ALPHA>

• <IF	SEG_ASCENDING>

• <IF	SEG_AUTO_SEQUENCE>

• <IF	SEG_AUTO_TIMESTAMP>

• <IF	SEG_DECIMAL>

• <IF	SEG_DESCENDING>

• <IF	SEG_NOCASE>

• <IF	SEG_SIGNED>

• <IF	SEG_TYPE_EXTERNAL>

• <IF	SEG_TYPE_FIELD>

• <IF	SEG_TYPE_LITERAL>

• <IF	SEG_TYPE_RECNUM>

• <IF	SEG_UNSIGNED>

• <IF	TIMEOUT>

Changed	the	<FIELD_VBTYPE>	data	type	mappings	for	nullable	time	fields
from	DateTime,	to	Nullable(Of	DateTime).

Added	a	new	mechanism	to	allow	developers	to	customize	the	default	data
type	mappings	used	with	various	field	loop	tokens.	This	feature	is	enabled	via
a	new	command	line	option	-cdm.

Added	a	new	Template	Browser	utility	that	allows	you	to	browse	CodeGen
template	files.	The	utility	displays	the	sample	templates	that	are	shipped	with
CodeGen,	and	if	Symphony	Framework	is	installed	then	it	will	display	the
Symphony	templates	also.	You	can	also	use	the	Tools	>	Options	dialog	to
define	the	folder	where	your	own	user-defined	templates	are	stored	and	if	you

do	so	then	the	utility	will	display	your	own	templates	too.

V4.4.2	-	27th	May	2014

We	changed	the	code	that	generates	SQL	compatible	names	for	fields	to
replace	any	dollar	sign	($)	characters	with	an	underscore	character	(_).

We	fixed	a	data	mappings	bug	which	was	causing	un-coerced	TM4	(HHMM)
time	fields	to	be	incorrectly	be	typed	as	nullable.

V4.4.1	-	29th	April	2014

IMPORTANT	NOTE:	We	no	longer	provide	binaries	for	Synergy/DE	V9.
For	the	time	being	we	will	continue	to	make	best	efforts	to	ensure	that	the
code	base	remains	compatible	with	Synergy/DE	V9	systems	so	that	you	can
build	your	own	CodeGen	distributions,	but	at	some	point	that	will	become
more	challenging	because	we	want	to	be	able	to	take	advantage	of	the
significant	new	features	available	in	Synergy/DE	V10.	If	you	have	not	already
done	so	we	strongly	encourage	you	to	update	your	development	environments
to	use	Synergy/DE	V10.	Of	course	of	that	it	not	possible	right	now	you	will	be
able	to	continue	to	use	CodeGen	4.3.5.

Added	a	new	API	called	MethodCatalogAPI	which	exposes	information	about
the	interfaces,	methods,	parameters	and	return	types	defined	in	a	Synergy
Method	Catalog.	In	the	future	this	API	will	be	used	to	allow	code	to	be
generated	based	on	the	data	from	a	method	catalog,	in	conjunction	with
repository	based	information.

Updated	the	OpenVMS	linker	options	file	(CODEGEN.OPT)	and	removed
the	SHS$SHARE	logical	name	prefix	from	the	references	to	DBLTLIB	and
SYNRTL.	This	change	will	ensure	that	CodeGen	is	linked	against	the	correct
Synergy	runtime	libraries	on	OpenVMS	systems	that	have	primary	and
alternate	installs	of	Synergy/DE.	If	you	do	have	primary	and	alternate	installs
then	you	must	define	system	wide	logical	names	for	DBLTLIB	(translating	to
SYS$SHARE:DBLTLIB.OLB)	and	SYNRTL	(translating	to
SYS$SHARE:SYNRTL.EXE).	These	logical	names	should	be	defined	in	your

system	startup	command	procedure
(SYS$MANAGER:SYSTARTUP_VMS.COM)	immediately	after	you	call	the
Synergy/DE	startup	command	procedure
(SYS$MANAGER:SYNERGY_STARTUP.COM).

Made	some	improvements	to	the	build	and	clean	scripts	for	CodeGen	under
Traditional	Synergy	on	Windows.

Made	some	improvements	to	the	BUILD.COM	and
CREATE_INSTALL.COM	command	procedures	for	CodeGen	on	OpenVMS.
Also	added	a	new	command	procedure	named	CLEAN.COM	to	clean	files
left	behind	by	BUILD.COM	and	CREATE_INSTALL.COM.

Added	new	field	loop	expressions	<IF	DATE_NULLABLE>	and	<IF
DATE_NOT_NULLABLE>	which	allows	you	to	detect	date	fields	that	are
coerced	to	nullable	dates.

Changed	the	<IF	DATE>	and	<IF	DATEORTIME>	field	loop	expressions	to
evaluate	to	true	for	dates	and	nullable	dates.

Changed	the	<IF	DECIMAL>	field	loop	expression	to	evaluate	to	false	for
nullable	date	fields.

Changed	the	<IF	NOTDATE>,	<IF	NOTDATEORTIME>	and	<IF
NOTDECIMAL>	field	loop	expressions	to	evaluate	to	true	for	nullable	date
fields.

Updated	field	loop	tokens	<FIELD_CSTYPE>,	<FIELD_VBTYPE>	and
<FIELD_SNTYPE>	to	return	appropriate	values	for	nullable	date	and	time
fields.

Added	a	new	key	segment	loop	token	<SEGMENT_SNTYPE>	to	insert	the
Synergy	.NET	data	type	for	a	key	segment.

Fixed	a	bug	in	CodeGenLauncher	where	any	command	line	parameter	value
over	80	characters	was	causing	an	invalid	subscript	exception.

Updated	the	and	improved	the	CodeGenLauncher	mechanism	which	can	be
used	to	initiate	code	in-process	generation,	rather	than	code	generation
initiated	by	command-line	instructions.

We	have	started	to	create	some	short	training	videos	for	CodeGen,	and	will	be
creating	more	as	time	permits.	Videos	are	currently	available	for	the	following
subjects:

• Introduction	to	CodeGen

• Using	AUTHOR	and	COMPANY	Tokens

• Introduction	to	Field	Loops

• Using	Field	Loop	Subsets

• Using	Template	Include	Files

• Configuring	Template	Dependencies

You	can	find	the	CodeGen	Training	Videos	on	YouYube.

V4.3.5	-	2nd	February	2014

Improved	error	processing	in	CodeGenEngine.CheckStructure().	Also	in	the
same	routine	we	worked	around	a	String.Contains()	bug	in	Traditional
Synergy	10.1.1b	that	was	preventing	CodeGen	from	working	correctly	on	non
.NET	platforms.

General	improvements	the	DatabaseTable	sample	templates,	mainly	focused
around	removing	the	use	of	optional	parameters	and	using	overload	methods
instead.	These	changes	should	allow	relational	database	code	generated	from
these	templates	to	work	in	Synergy	.NET	in	addition	to	traditional	Synergy.
Also	made	some	minor	changes	to	the	same	templates	that		result	in	code	that
builds	cleaner	on	OpenVMS	systems.

Added	some	support	for	auto	sequence	and	auto	time	stamp	key	segments
(ISAM	Rev	6).	Updated	the	possible	values	returned	by	the
<SEGMENT_TYPE>	segment	loop	token,	and	added	two	new	key	loop
expressions	<IF	AUTO_SEQUENCE>	and	<IF	AUTO_TIMESTAMP>.

Added	two	new	field	loop	expressions	<IF	GROUP_EXPAND>	and	<IF
GROUP_NO_EXPAND>	which	allows	you	to	determine	whether	or	not
implicit	groups	are	being	expanded	to	individual	fields	(i.e.	whether	or	not	the

https://www.youtube.com/playlist?list=PLq0aGk6nTIVvbmOwjlCu6bZeY6esBCjI-

-g	i	command	line	option	is	being	used).

Added	two	new	field	loop	tokens	that	expose	the	Synergy	.NET	field	data
type	and	default	value.	The	new	tokens	are	<FIELD_SNTYPE>	and
<FIELD_SNDEFAULT>.

Added	a	new	field	loop	token	<FIELD_NETNAME>.	This	token	behaves
identically	to	the	<FIELD_SQLNAME>	token,	it	has	been	included	simply	to
allow	template	developers	to	produce	more	understandable	templates,	not
having	to	refer	to	"SQL"	when	the	template	doesn't	produce	anything	that
involves	the	use	of	SQL.

Resolved	an	issue	with	user	defined	token	processing	whereby	if	a	user
defined	token	was	used	multiple	times	in	the	same	template	file	source	line,
only	the	first	instance	would	be	replaced.	Now	all	instances	will	be	replaced.

When	using	the	-e	command	line	option	to	echo	the	command	line	being	used
(useful	when	CodeGen	is	used	from	a	Windows	batch	file	with	echo	turned
off)	we	will	no	longer	display	a	blank	line	before	the	command	line.

V4.3.4	-	19th	December	2013

Corrected	a	problem	where	overlay	field	exclusions	and	certain	other
command-line	driven	field	filtering	mechanisms	were	not	being	honored	for
group	fields.

Fixed	a	bug	in	the	processing	of	the	field	tokens	<FIELD_MINVALUE>	and
<FIELD_MAXVALUE>	for	implied	decimal	fields	with	no	digits	to	the	left
of	the	decimal	place	(e.g.	D2.2).

V4.3.3	-	13th	November	2013	(Synergy	.NET	only)

Added	three	new	generic	tokens	that	allow	you	to	generate	GUIDs	and	use
them	in	your	generated	code.	The	new	tokens	are	<GUID1>,	<GUID2>	and
<GUID3>.	Each	time	you	run	CodeGen	it	will	generate	new	values	for	the
three	GUID	values	exposed	by	these	tokens.	These	GUID	values	will	only	be
consistent	during	a	single	invocation	of	CodeGen.	The	next	time	you	invoke

CodeGen	new	values	will	be	generated.	If	you	need	to	use	the	same	GUID
value	in	multiple	templates	then	you	must	process	those	templates	all	at	the
same	time	during	a	single	invocation	of	CodeGen.	These	new	tokens	are	only
available	when	using	the	Synergy	.NET	version	of	CodeGen.

V4.3.2	-	30th	October	2013

Removed	old	tag	tokens	from	several	example	templates.

Fixed	a	bug	which	was	causing	the	default	author	and	company	names	not	to
be	picked	up	from	the	registry	under	.NET.

Added	several	additional	tag	loop	expressions:	<IF	FIRST_TAG>,	<IF
LAST_TAG>,	<IF	MULTIPLE_TAGS>	and	<IF	SINGLE_TAG>.

Upgraded	to	Synergy/DE	10.1.1b,	Visual	Studio	2013	and	InstallShield
Limited	Edition	2013.

V4.3.1	-	7th	August	2013

Added	support	for	tag	loops.	Additional	information	is	available	in	Tag	Loop
Tokens	and	Tag	Loop	Expressions.	As	part	of	this	enhancement	several
structure	tokens	that	previously	provided	information	relating	to	tags	have
been	removed.	The	structure	tokens	that	were	removed	are
<TAG_EXPRESSION>,	<TAG_EXPRESSION_PATH>,
<TAG_FIELD_NAME>,	<TAG_FIELD_PATH>,	<TAG_FIELD_DEFINE>,
<TAG_VALUE>,	<TAG_VALUE_DEFINE>,	<TAG_END_DEFINE>	and
<MAPPED_TAG_FIELD>.	These	tokens	were	all	limited	in	capabilities
because	they	could	only	be	used	with	structures	that	has	a	single	tag
expression.	You	should	be	able	to	achieve	the	same	results	of	all	of	the
removed	tokens	using	the	new	tag	loops	feature.

Added	a	new	-lf	command	line	option	that	causes	CodeGen	to	list	the	names
of	the	files	that	were	generated.	This	option	is	only	effective	when	not	using
verbose	or	debug	logging	(-v	or	-d)	because	file	names	are	already	listed	when
using	those	modes.

Fixed	a	problem	which	prevented	include	file	processing	<FILE:name.exe>
from	working	in	some	cases.

V4.2.11	-	18th	July	2013

Added	several	new	alternate	forms	of	the	<FIELD_SELWND>	token	to
provide	template	developers	better	control	over	the	case	of	field	selection
window	names.	Also	added	a	new	token	<FIELD_SELWND_ORIGINAL>	to
preserve	the	case	of	selection	window	names	in	the	same	way	that
<FIELD_SELWND>	used	to.

Enhanced	UI	Toolkit	window	script	selection	window	processing	(-ws)	so	that
selection	window	names	are	no	longer	case	sensitive	(they	aren't	in	UI
Toolkit).	Also	the	-ws	option	will	now	work	with	selection	windows	that	only
have	a	name	but	no	other	attributes	specified	on	the	.select	line.

Added	a	new	feature	which	enables	some	degree	of	preprocessing	of	field
prompts	when	a	structure	is	processed	by	CodeGen.	This	feature	is	enabled	by
setting	the	CODEGEN_STRIP_FROM_PROMPT	environment	variable	prior
to	code	generation.

Updated	the	InstallShield	LE	project	to	not	scan	shipped	assemblies	for
dependencies	at	build	time.	There	appears	to	be	a	problem	with	InstallShield
2012	Spring	LE	which	causes	it	to	incorrectly	detect	a	dependency	on	Visual
C++	V11.0	for	ARM	processors.	This	could	cause	installations	for	previous
versions	of	CodeGen	built	for	Synergy/DE	V10	to	incorrectly	install	the	ARM
version	of	the	C++	V11	runtime	if	C++	V11	was	not	already	installed	on	the
system.	This	could	cause	a	problem	if	CodeGen	for	Synergy	V10	was
incorrectly	installed	on	a	Synergy/DE	V9	system	and	then	Synergy/DE	was
upgraded	to	V10.	The	Synergy/DE	installation	would	see	that	a	version	of
C++	V11	was	already	present	(but	it	was	the	ARM	version),	but	most
Synergy/DE	components	would	fail	to	execute	after	installation	because	of	the
incorrect	C++	runtime.	If	you	encounter	this	problem	then	the	correct	solution
is	to	first	delete	MSVCP110.DLL	and	MSVCR110.DLL	from	your
Windows\System32	folder	(or	your	Windows\SysWOW64	folder	if	you	are	on
a	64-bit	system)	and	then	use	the	Programs	and	Features	utility	in	Windows
Control	Panel	to	perform	a	“Repair”	operation	on	the	32-bit	Synergy/DE
installation.

V4.2.10	-	4th	June	2013

Added	support	for	user	token	expressions	which	allow	you	to	test	the	presence
or	absence	of	a	user-defined	token.	User	token	expressions	are	supported	in	all
loop	structures.

Added	a	debug	mode	logging	message	to	confirm	when	a	different	key	is
being	used	as	a	result	of	using	the	-opk	command	line	option.

Fixed	an	issue	in	<FIELD_PROMPT>	which	would	cause	field	prompts
longer	than	30	characters	to	be	truncated	to	30	characters.

Updated	several	sample	templates.

V4.2.9	-	7th	February	2013

Altered	the	behavior	of	the	<FILE:name.ext>	and
<FILEIFEXIST:file.ext>	template	file	include	tokens.	Previously	to	include	an
external	file	into	a	template	file	during	code	generation	the	file	to	be	included
was	required	to	be	in	the	same	directory	as	the	template	file	being	processed.
Now	the	default	behavior	is	that	the	file	must	be	in	the	current	directory,	but
the	location	of	the	file	can	be	overridden	by	using	a	logical	name	within	the
token.	For	example	if	you	use	the	token	<FILE:header.def>	then	CodeGen
will	expect	to	find	the	file	in	the	current	directory,	but	if	you	use	the	token
<FILE:INC:header.def>	then	CodeGen	will	open	the	file	from	whatever
directory	is	specified	by	the	environment	variable	INC.	This	change	was	made
as	a	result	of	a	special	request	from	our	friends	over	in	the	Symphony
Framework	development	team	(symphonyframework.codeplex.com).

V4.2.8	-	6th	February	2013

Added	support	for	a	"second	segment	restriction"	in	key	loops	which	can	be
used	to	indicate	that	only	the	second	segment	of	a	key	should	be	processed
within	a	key	loop.	This	can	be	particularly	useful	when	processing	structures

http://symphonyframework.codeplex.com

that	have	a	structure	tag	value	as	the	first	key	segment	and	the	main	useful
segment	of	the	key	is	often	then	the	second	segment.

Added	a	new	structure	token	<TAG_VALUE>	which	inserts	the	value
associated	with	a	structures	tag	expression.	If	the	structure	does	not	have	a	tag
expression	then	the	token	inserts	nothing.

Added	a	new	structure	token	<MAPPED_TAG_FIELD>	which	allows	you	to
access	the	name	of	the	first	tag	field	in	a	mapped	structure.

Added	a	new	mechanism	to	allow	developers	to	override	the	key	that	is	used
within	a	primary	key	block.	By	default	the	primary	key	is	used	within	a
primary	key	block,	but	the	new	-opk	<keyNum>	option	allows	you	to	chose	to
use	a	different	key.	This	can	be	useful	in	rare	situations	where	a	master	/detail
relationship	between	two	structures	is	based	on	a	relationship	from	the
primary	key	in	the	master	file	to	an	alternate	key	in	the	detail	file.

V4.2.7	-	17th	December	2012

Added	new	field	loop	tokens	<FIELD_DIMENSION1_INDEX>,
<FIELD_DIMENSION2_INDEX>,	<FIELD_DIMENSION3_INDEX>	and
<FIELD_DIMENSION4_INDEX>.	Also	added	new	field	loop	expressions
<IF	ARRAY1>,	<IF	ARRAY2>,	<IF	ARRAY3>	and	<IF	ARRAY4>.	These
tokens	and	expressions	are	useful	when	working	with	multi-dimensioned
arrays.

One	of	the	most	significant	changes	in	this	release	is	the	introduction	of
automated	unit	testing	within	the	CodeGen	development	environment.	We	are
now	taking	advantage	of	Visual	Studio's	built	in	unit	testing	framework	and
and	are	gradually	writing	tests	for	many	different	areas	of	CodeGen.	At	the
time	of	writing	we	have	implemented	almost	650	individual	tests,	and	in	the
process	of	doing	so	we	have	already	identified	(and	fixed)	several	bugs.
Having	this	automated	testing	capability	in	place	will	help	us	to	perform	much
more	extensive	regression	testing	on	a	regular	basis.	And	for	future	new
features,	developing	tests	for	new	features	before	those	new	features	are
developed	will	help	to	ensure	that	we	get	those	new	features	right	first	time.
Embracing	unit	testing	will	help	to	ensure	a	consistently	high	level	of	quality
and	reliability	for	future	releases.

Enhanced	the	CodeGen.RepositoryAPI.Repository	class	by	adding	a	new
property	named	Enumerations	which	exposes	the	enumerations	that	are
declared	within	a	repository	database.

Addressed	an	issue	which	was	causing	array	and	group	fields,	when	expanded
by	CodeGen,	to	be	listed	in	the	wrong	sequence	in	some	cases.	Also	addressed
similar	issues	with	various	field	loop	expressions.

Corrected	the	output	of	the	<FIELD_MINVALUE>	and
<FIELD_MAXVALUE>	tokens	so	that	the	values	inserted	for	integer	fields
are	not	preceded	with	a	bunch	of	leading	spaces.

Fixed	a	problems	with	the	<FIELD_ELEMENT>	and
<FIELD_ELEMENT0>	field	loop	tokens,	which	were	both	inserting	incorrect
values	for	non-array	fields.

Removed	three	redundant	field	loop	tokens	<FIELD_ARRAYDIMP>,
<FIELD_ARRAYDIMP0>	and	<FIELD_ARRAYDIMR>.	Following	changes
in	the	way	that	arrays	are	processed	by	CodeGen	earlier	this	year	these	tokens
were	no	longer	useful.

Fixed	a	bug	with	the	replacement	of	the	generic	token	<DAY>.

Fixed	a	bug	with	the	replacement	of	the	field	loop	token
<FIELD_ARRIVEM>.

Fixed	bugs	with	the	processing	of	the
<REQUIRES_CUSTOM_RELATION_TOKEN>	and
<REQUIRES_CUSTOM_SELECTION_TOKEN>	token.

Fixed	a	bug	with	the	<ENUM_NUMBER>	token	which	is	documented	to
return	a	one-based	number	but	was	previously	returning	a	zero-based	number.

Fixed	a	bug	in	the	processing	of	the	<ENUM_MEMBER_COUNT>	token.

V4.2.6	-	21st	November	2012

IMPORTANT:	If	you	are	using	CodeGen	in	conjunction	with	Symphony

http://symphonyframework.codeplex.com

Framework	then	it	is	important	that	you	do	not	upgrade	to	this	version	of
CodeGen	until	you	also	upgrade	to	Symphony	Framework	V2.1.0.0.

The	CodeGen	installation	on	Windows	now	supports	upgrading	from	a
previously	installed	version.	We	use	Windows	Installers	"major	upgrade"
mechanism,	which	essentially	performs	an	automatic	uninstall	of	a	previous
version	before	installing	the	new	version.	The	earliest	version	that	can	be
upgraded	in	this	way	is	V4.1.0	which	was	released	on	6th	June	2012.	If	you
are	running	a	version	older	than	4.1.0	then	you	will	need	to	manually	remove
that	version	one	final	time	before	installing	this	version.	You	can	determine
the	version	of	CodeGen	that	you	have	installed	via	the	command	codegen	-
version.

Added	support	for	custom	expressions	in	all	loop	structures	where	expressions
can	be	used.

Added	two	sets	of	counters	that	developers	can	use	in	template	files.

Added	several	counter	expressions.	Currently,	despite	the	fact	that	counters
can	be	used	anywhere	in	a	template,	counter	expressions	can	only	be	used
within	one	of	the	existing	loop	structures.	We	are	investigating	the	possibility
of	supporting	the	use	of	counter	expressions,	as	well	as	some	other
expressions,	outside	of	a	loop	structure.

Changed	the	API	for	adding	custom	tokens	for	consistency	with	the	new
custom	expressions	support.

Fixed	a	problem	where	unnecessary	blank	lines	were	being	written	to	output
files.	Now	if	a	template	line	contains	a	template	comment	(;//)	which	does	not
start	in	column	1	and	is	the	only	thing	in	the	line,	or	if	a	template	line	contains
a	token	but	after	token	replacement	the	line	is	blank,	blank	lines	will	no	longer
be	output.

Fixed	a	problem	in	Repository	API	which	was	preventing	structures
containing	nested	explicit	groups	from	loading.	Also	added	more	developer
debug	mode	logging	code	in	the	CodeGenLauncher	and	CheckStructure
routines.

Fixed	a	problem	which	occurred	if	the	entire	content	of	a	template	file	was
delimited	by	a	level	1	loop	(for	example	a	field	loop)	then	the	final	line	of

output	code	could	be	duplicated	in	some	rare	cases.	Also	fixed	an	issue	where
in	some	cases	an	output	file	could	include	an	incorrect	additional	blank	line	at
the	end	of	the	file.

Changed	the	location	where	the	sample	templates	are	installed	on	Windows
systems.	On	Windows	systems	sample	templates	are	now	installed	in	the
folder	<system_drive>:\ProgramData\Synergex\CodeGen\Templates.

Improved	the	code	in	several	of	the	example	templates.	Various	internal
enhancements	and	code	cleanup	also	took	place	for	this	release.

V4.2.5	-	10th	November	2012

Added	the	ability	to	use	an	alternate	form	of	closing	tags	for	all	expressions.
For	example,	if	using	an	<IF	ALPHA>	expression	you	can	now	optionally	use
the	</IF	ALPHA>	closing	tag	instead	of	the	generic	</IF>	closing	tag.	The
behavior	is	the	same	in	either	case,	but	using	the	more	explicit	form	can
improve	readability	in	complex	template	files.

Fixed	a	problem	with	expressions	in	nested	loops	(e.g.	key	segment	loops)
where	in	some	cases	an	expression	token	from	a	nested	loop	would	be	written
to	the	output	file.

Added	a	custom	mechanism	to	allow	BusinessCraft	to	extend	CodeGen	by
processing	their	"ProForma"	files.

V4.2.4	-	8th	November	2012

Added	new	<FIELD_ROW>,	<FIELD_COL>,	<PROMPT_ROW>	and
<PROMPT_COL>	field	loop	tokens.

Added	case	variations	for	the	<FIELD_ARRIVEM>,	<FIELD_CHANGEM>,
<FIELD_DRILLM>,	<FIELD_HYPERM>	and	<FIELD_LEAVEM>	tokens.

V4.2.3	-	5th	November	2012

Added	a	new	generic	token	<OPTIONAL_USERTOKEN>	which	can	be	used
to	indicate	that	a	template	requires	a	specific	user	defined	token,	but	which
also	provides	a	default	value	for	that	user	token	if	a	value	has	not	been
provided	by	any	of	the	other	mechanisms	for	providing	values	for	user	defined
tokens.

V4.2.2	-	3rd	November	2012

Added	support	for	optional	else	clauses	in	all	multi-line	expressions.	We	do
not	currently	support	else	clauses	in	in-line	expressions,	but	will	investigate
the	possibility	of	adding	that	feature	in	the	future.

Added	a	new	mechanism	to	support	custom	field	loop	expressions	based	on
testing	the	presence	or	absence	of	text	in	an	input	fields	user	text	or	long
description.	For	example,	if	you	place	the	text	IGNORE_THIS_FIELD	in	a
fields	user	text	or	long	description,	you	can	test	the	presence	of	that	string
using	the	field	loop	tokens	<IF	CUSTOM_IGNORE_THIS_FIELD>	and	<IF
CUSTOM_NOT_IGNORE_THIS_FIELD>.	Custom	field	loop	expressions
should	always	be	typed	in	upper	case	in	template	files.	The	custom	expression
text	placed	in	a	fields	user	text	or	long	description	is	not	case	sensitive.

Added	a	large	number	of	new	key	segment	loop	expressions	to	make	the
expressions	available	in	key	segment	loops	consistent	with	the	expressions
available	in	field	loops.

Added	a	new	internal	mechanism	for	initiating	code	generation	via	the
CodeGenerator,	CodeGenTask	and	CodeGenTaskSet	classes.	In	the	future
these	changes	will	be	used	to	launch	code	generation	from	new	desktop
applications,	including	code	generation	wizards	within	Visual	Studio	projects.

Added	a	new	desktop	application	named	CodeGen	Task	Manager.	This
application	allows	you	to	define	task	sets	which	contain	one	or	more	code
generation	tasks,	and	then	replay	those	task	sets	to	regenerate	the	resulting
code.	This	application	is	currently	experimental,	not	all	planned	functionality
has	been	implemented,	and	it	is	not	yet	fully	functional.

Enhanced	the	error	reporting	to	include	the	exception	details	for	when
CodeGen	fails	to	load	a	custom	tokens	assembly.	Also	various	improvements

to	error	logging	in	other	areas.

Changed	the	way	that	the	setup	program	for	Windows	binary	releases	are
created.	We	used	to	use	InstallShield	Express	2012,	which	is	a	purchased
product.	We	have	now	switched	to	using	InstallShield	Limited	Edition	For
Visual	Studio,	which	is	a	free	option	for	Visual	Studio	2010	and	2012
developers	and	still	provides	the	basic	functionality	that	we	need.

Tested	CodeGen	with	Synergy/DE	10.	For	the	time	being	we	will	be
distributing	two	versions	of	the	CodeGen	Windows	installation,	one	built	with
Synergy/DE	9.5.3b	and	one	built	with	the	latest	Synergy/DE	10	beta	version.
We	will	stop	distributing	the	9.5.3b	installation	when	Synergy/DE	10	is
released,	but	previous	builds	will	continue	to	be	available	for	download	from
the	CodePlex	site.

V4.1.10	-	20th	September	2012

Added	a	new	field	loop	token	<FIELD_SELWND>	to	insert	the	name	of	the
selection	window	that	is	associated	with	a	field,	and	two	new	field	loop
expressions	<IF	SELWND>	and	<IF	NOSELWND>	to	allow	you	to	test
whether	the	field	has	an	associated	selection	window	name.

Added	a	new	field	loop	token	<FIELD_ENUMWIDTH>	which	defines	the
pixel	width	associated	with	an	enumerated	fields	longest	enumerated	value.

Added	two	missing	imports	that	were	preventing	CodeGenEngine	from
building	on	OpenVMS.

Improved	the	SQL	SELECT	logic	in	a	couple	of	the	sample	templates.

V4.1.9	-	7th	September	2012

Added	a	new	field	loop	token	<FIELD_NOECHO_CHAR>	which	is	replaced
by	the	character	that	should	be	used	to	represent	each	character	typed	into	a
field,	in	place	of	the	actual	character	(think	password	fields).	If	the	current
field	being	processed	is	a	"no	echo"	field	then	the	token	will	be	replaced	by
the	no	echo	character	specified	in	the	repository	field	definition,	or	by	an

asterisk	(*)	if	no	character	is	specified.	If	the	field	is	not	a	"no	echo"	field	then
the	token	will	be	replaced	by	a	null	string.

Added	a	new	utility	program	called	RpsBrowser.	This	utility	allows	you	to
quickly	browse	the	information	available	in	your	Synergy	Repository.	The
utility	only	has	basic	functionality	at	this	point	and	will	be	enhanced	over
time.

Added	a	new	feature	called		key	loop	first	segment	restrictions	which	allow
you	to	process	only	the	first	segment	of	a	multi-segment	key.	For	more
information	refer	to	the	documentation	for	the	<FIRST_SEGMENT>	token.

Added	a	new	Field	Loop	Expression	<IF	NOTDATETODAY>	which	can	be
used	to	detect	date	fields	which	do	not	default	to	the	current	date.

Improved	the	output	of	<FIELD_MINVALUE>	and
<FIELD_MAXVALUE>	so	that	a	decimal	point	and	trailing	digits	are	not
output	for	non	implied	decimal	fields.

V4.1.8	-	14th	August	2012

Added	a	new	field	loop	token	<FIELD_PREFIX>	which	will	be	replaced	with
the	field	prefix	value	specified	via	the	-prefix	command	line	option,	or	with	a
null	string	if	the	-prefix	option	was	not	used.

Added	a	new	field	loop	token	<FIELD_BREAK_MODE>	and	three	new	field
loop	expressions	<IF	BREAK_CHANGE>,	<IF	BREAK_ALWAYS>	and	<IF
BREAK_RETURN>.	Note	that	the	existing	<IF	BREAK>	and	<IF
NOBREAK>	expressions	can	also	be	used	when	processing	break	fields.

V4.1.7	-	31st	July	2012

Added	the	ability	to	populate	field	selection	lists	based	on	items	defined	in	UI
Toolkit	selection	windows	defined	in	window	script	files.	For	more
information	refer	to	Selection	Windows.

V4.1.6	-	30th	July	2012

Added	various	new	field	loop	expressions	including	<IF	NOCHECKBOX>,
<IF	DATE_YMD>,	<IF	DATE_NOT_YMD>,	<IF	DATE_YYMMDD>,	<IF
DATE_YYJJJ>,	<IF	DATE_YYYYJJJ>,	<IF	DATE_JULIAN>,	<IF
DATE_NOT_JULIAN>,	<IF	DATE_YYPP>,	<IF	DATE_YYYYPP>,	<IF
DATE_PERIOD>,	<IF	DATE_NOT_PERIOD>,	<IF	TIME_HHMM>	and
<IF	TIME_HHMMSS>.

V4.1.5	-	26th	July	2012

Added	the	ability	to	load	custom	token	extensions	which	are	located	in
directories	other	than	the	main	CodeGen	directory.	This	can	be	done	by	setting
the	environment	variable	(or	logical	name)	CODEGEN_EXTDIR	to	the
directory	containing	the	custom	token	assembly,	ELB	or	shared	image.	If
CODEGEN_EXTDIR	is	not	found	then	CodeGen	will	continue	to	search	for
custom	token	extensions	in	the	main	CodeGen	directory.

Added	a	new	generic	token	<REQUIRES_USERTOKEN>	which	can	be	used
in	the	header	portion	of	a	template	file	to	indicate	to	CodeGen	that	the
template	relies	on	a	particular	user-defined	token.	If	the	user-defined	token	has
not	been	specified	when	attempting	to	generate	code	from	the	template	then
an	error	message	will	be	displayed	and	the	template	will	not	be	processed.

Added	new	tokens	<REQUIRES_CUSTOM_TOKEN>,
<REQUIRES_CUSTOM_FIELD_TOKEN>,
<REQUIRES_CUSTOM_SELECTION_TOKEN>,
<REQUIRES_CUSTOM_KEY_TOKEN>,
<REQUIRES_CUSTOM_SEGMENT_TOKEN>,	<REQUIRES_CUSTOM_RELATION_TOKEN>
<REQUIRES_CUSTOM_ENUM_TOKEN>,
<REQUIRES_CUSTOM_ENUM_MEMBER_TOKEN>,
<REQUIRES_CUSTOM_FILE_TOKEN>	and
<REQUIRES_CUSTOM_BUTTON_TOKEN>.	These	tokens	allow	you	to
indicate	in	the	header	section	of	a	template	file	that	specific	custom	tokens	are
required	in	order	to	successfully	generate	code	from	the	template.	If	CodeGen
determines	that	a	required	custom	token	has	not	been	provided	then	an	error
message	will	be	displayed	and	the	template	will	not	be	processed.

Added	two	new	options	to	the	existing	<REQUIRES_OPTION>	token	to
allow	template	developers	to	specify	in	a	template	file	that	the	-prefix	or	-
subset	option	is	required	in	order	to	process	the	template.	Also	enhanced	error
logging	to	report	the	name	of	the	template	being	processed	when	a	missing
required	command	line	option	is	encountered.

V4.1.4	-	20th	July	2012

Fixed	a	bug	in	the	<SELECTION_VALUE>	token	that	was	causing	it	to
produce	values	one	lower	than	required	for	numeric	selection	lists.

Fixed	a	couple	of	documentation	typos.

V4.1.3	-	18th	July	2012

Modified	the	-w	command	line	option	to	add	the	ability,	when	processing
based	on	UI	Toolkit	input	window	definitions	in	a	script	file,	to	select	the
input	window	to	be	processed	by	name	as	well	as	by	index	number.

Added	a	new	-wn	command	line	option	which	prevents	script	file	input
window	field	attributes	from	being	used	to	override	repository	field	attributes.
This	allows	you	to	generate	code	based	on	only	the	fields	listed	in	an	input
window,	but	using	only	the	repository	field	definitions.

V4.1.2	-	17th	July	2012

Fixed	a	bug	in	the	IsNumeric	sample	functions	where	they	would	previously
report	valid	negative	decimal	and	implied	decimal	numbers	as	non-numeric.

Fixed	a	problem	where	command	parameters	were	not	being	correctly	passed
to	shell	scripts	on	Unix.

Fixed	a	bug	in	%WinDir	and	improved	the	build	script	on	UNIX.

Improved	%WinDir	on	UNIX	so	that	it	doesn't	display	"File	not	found"

messages.

Fixed	a	UI	Toolkit	Window	Script	file	parsing	bug.

Worked	around	a	Synergy	.NET	bug	with	alpha	-=	"VALUE"

V4.1.1	-	19th	June	2012

Fixed	a	bug	in	the	DataMappings.xml	file	for	SQL	data	mappings	of	implied
decimal	fields.	Also	renamed	the	file	to	DataMappingsExample.xml	so	that
CodeGen	doesn't	load	the	file	by	default	but	continues	to	use	hard-coded
defaults.	To	customize	data	type	mappings	the	file	should	be	coped	back	to
DataMappings.xml	and	then	customized.

Enhanced	error	checking	to	detect	and	report	missing	end	of	loop	tokens	for
multi-line	loops.

Enhanced	error	checking	to	better	detect	if	someone	mis-types	a	closing	token
for	an	in-line	loop.

Added	the	InstallShield	Express	2012	project	that	is	used	to	build	the	binary
distributions	for	CodeGen.	This	content	is	intended	for	use	by	the	project
coordinator	only,	but	could	also	serve	as	a	reference	for	anyone	else	wishing
to	build	binary	distributions	of	CodeGen	using	InstallShield	Express	2012.

Microsoft	has	announced	that	they	are	removing	support	for	the	WIX-based
"Installation	and	Deployment"	projects	in	Visual	Studio	2012,	so	in	the	future
developers	will	need	to	select	and	use	a	third-party	tool	(e.g.	InstallShield)	to
build	product	installations.	I	don't	want	CodeGen	users	to	get	used	to	using
something	that	I	know	is	going	to	be	removed	in	the	near	future,	so	I	have
decided	to	stop	distributing	the	CodeGenSetup	and	InstallerCustomActions
projects.	I	will	be	reverting	to	using	InstallSheild	Express	2012	to	build	the
CodeGen	binary	installations.	If	developers	wish	to	build	binary	installations
of	their	own	they	will	need	to	select	a	suitable	third-party	installation	product
and	configure	their	own	installations.

Added	a	Synergy/DE	Workbench	workspace	and	projects	to	make	building	for
Traditional	Synergy	on	Windows	easier	for	developers	who	have	Workbench

installed.

Added	a	new	example	template	named	syn_multi_data_class.tpl	which	is	an
example	of	using	structure	loops,	and	also	added	an	example	to	the
documentation.

V4.1.0	-	6th	June	2012

We	added	the	ability	to	process	multiple	repository	structures	at	the	same	time
in	a	single	template	file.	This	feature	is	implemented	via	a	new	command	line
option	-ms	which	instructs	CodeGen	to	make	all	of	the	structures	specified
after	the	-s	command	line	option	available	to	the	template(s)	being	processed.
The	default	context	when	starting	to	process	each	template	is	the	first
structure,	but	context	can	be	switched	to	a	different	structure	by	using	a
<STRUCTURE#n>	token,	where	n	is	the	1-based	index	of	the	structure	to
switch	to.

We	fixed	a	bug	in	the	processing	of	the	structure	token
<TAG_EXPRESSION>	and	added	three	new	tokens	named
<TAG_EXPRESSION_PATH>,	<TAG_FIELD_NAME>	and
<TAG_FIELD_PATH>.

We	added	some	brief	documentation	for	the	CreateFile,	MapPrep	and
RpsInfo	utilities.

We	added	a	new	-file	command	line	option	which	allows	code	generation	to
be	initiated	based	on	a	repository	file	definition	as	a	starting	point.	When
using	-file	all	of	the	structures	that	are	assigned	to	that	file	are	available	to	be
used	in	the	template,	in	the	same	way	that	you	would	when	using	the	new
multiple	structure	(-ms)	support.

We	added	support	for	a	new	<STRUCTURE_LOOP>	capability	which	allows
iteration	through	any	number	of	structures	without	prior	knowledge	of	the
number	of	structures	to	be	processed.	Structure	loops	can	be	used	with	both
multi-structure	(-ms	option)	and	file-based	(-file	option)	operations.

V4.0.9	-	4th	June	2012

Added	the	CreateFile	utility	which	allows	you	to	create	an	ISAM	file	based	on
Repository	structure,	key	and	file	definition	information.

Added	a	new	mechanism	which	allows	developers	to	extend	CodeGen	by
providing	custom	token	processing	without	the	need	to	edit	the	core	CodeGen
source	files.	For	more	information	refer	to	Adding	Custom	Tokens.

Added	a	new	<FILE_LOOP>	construct	which	allows	you	to	generate	code	for
multiple	files	that	are	assigned	to	a	single	structure.	There	are	several	new	file
loop	tokens	and	file	loop	expression	tokens,	and	also	support	for	creating
custom	file	loop	tokens.

Added	the	ability	to	customize	the	data	type	mappings	for	other	languages	that
are	produced	by	the	<FIELD_SQLTYPE>,	<FIELD_CSTYPE>,
<FIELD_VBTYPE>	and	<FIELD_OCTYPE>	tokens.	You	can	now	define
custom	mappings	in	an	XML	file	named	DataMappings.xml	which	must	be
placed	in	the	main	CodeGen	folder	(alongside	the	executables	and	libraries).
If	the	XML	file	is	not	found	then	CodeGen	will	continue	to	use	its	default
hard-coded	data	type	mappings,	but	if	the	file	is	found	then	CodeGen	will	use
the	mappings	defined	in	the	file.	For	more	information	refer	to	Customizing
Data	Type	Mappings.

V4.0.8	-	24th	May	2012

Fixed	an	error	with	the	doc	comments	for	the	constructor	in	the	DatabaseTable
template.

Added	the	ability	to	specify	the	special	@MAP,	@MAPF,	@UNMAPF,
@AUTOINCREMENT,	@NOCODEGEN,	@CODEGEN_DISPLAY_FIELD,
@NOAUDIT	and	@SUB	codes	in	a	fields	long	description	in	addition	to	the
fields	user	text	string.

V4.0.7	-	12th	May	2012

CodeGen	is	now	published	as	an	open	source	project	on	CodePlex.	You	can
download	a	pre-compiled	Synergy	.NET	binary	release	of	CodeGen,	or	you
can	download	the	source	code	and	build	it	yourself.	The	source	code
download	includes	scripts	that	can	build	CodeGen	using	Traditional	Synergy
on	Windows,	Unix,	Linux	and	OpenVMS	systems.

This	release	includes	changes	to	the	SQL	Connection	API	example	templates.
The	old	SQL_*	templates	have	been	retired,	and	replaced	with	two	sets	of
new	templates.	The	templates	named	DatabaseRoutines*.tpl	can	be	used	to
generate	SQL	Connection	API	code	based	on	subroutines	and	functions
(similar	to	the	old	SQL_*	templates),	and	the	new	DatabaseTable*	templates
generate	database	interaction	classes,	which	are	easier	to	use	in	"consuming"
code.

V4.0.6	-	4th	May	2012

IMPORTANT:	The	default	version	of	CodeGen	that	is	executed	by	the
"codegen"	command	is	now	built	with	Synergy	.NET.	For	the	time	being	the
DBR	version	of	CodeGen	is	still	being	provided,	and	can	be	accessed	via	the
command	"codegendbr".	Please	note	that	if	you	have	batch	files	which	use
"call	codegen"	commands,	you	will	need	to	either	remove	the	"call"
command,	or	change	your	commands	to	continue	to	use	the	DBR	version	for
the	time	being	by	changing	your	batch	files	to	"call	codegendbr".

Other	changes	in	this	version	include:

Added	a	new	key	segment	loop	token	<SEGMENT_DESC>.

The	MapPrep	utility	has	been	enhanced	so	that	it	now	adjusts	the	names	of
key	segment	fields	in	line	with	changes	to	the	underlying	field	names.

This	version	of	CodeGen	is	now	built	with	Synergy/DE	9.5.3b

V4.0.5	-	12th	April	2012

The	CodeGen	installation	now	includes	a	version	of	CodeGen	built	with
Synergy	.NET.	In	the	near	future	only	the	Synergy	.NET	version	will	be

http://codegen.codeplex.com

distributed,	but	for	now	it	is	being	distributed	for	testing	purposes	so	that
others	can	help	to	validate	that	it	is	operating	correctly.	The	Synergy	.NET
version	is	currently	named	CodeGenNet.exe	and	should	operate	identically	to
the	Traditional	Synergy	version	of	CodeGen.	To	test	with	the	Synergy	.NET
version	simply	use	the	CodeGenNet	command	instead	of	the	CodeGen
command.	Command	line	options	are	identical,	but	please	not	that	if	you
currently	use	CodeGen	from	batch	files	with	a	"call	codegen"	syntax,	the	call
statement	is	not	required	when	using	CodeGenNet.

Added	support	for	processing	structures	which	contain	multi-dimensional
array	fields,	including	multi-dimensional	group	field	arrays.

Added	a	new	field	loop	token	<FIELD_REGEX>	which	will	produce	a
regular	expression	that	can	be	used	to	constrain	and	validate	user	input	to	a
field	based	on	the	repository	definition	of	the	field.

Added	support	for	processing	a	named	subset	of	fields	in	a	structure	via	the	-
subset	command	line	option.	Field	subsets	are	defined	in	the	repository	by
adding	syntax	like	@SUB=name;	to	one	or	more	fields	user	text	string.

Added	a	new	field	loop	token	<FIELD_INPUT_LENGTH>	which	can	be
used	to	set	the	maximum	number	of	characters	that	can	be	entered	into	a	UI
control	associated	with	the	field.

Added	<IF	AUDIT>	and	<IF	NOAUDIT>	field	loop	expressions.	[Note	the
these	tokens	have	since	been	removed	because	the	same	functionality	can	now
be	achieved	via	custom	field	loop	expressions.]

V4.0.4	-	28th	February	2012

Added	a	large	number	of	new	field	loop	expressions.

Added	a	new	field	loop	tokens	<FIELD_ARRAYDIMP0>	and
<FIELD_ELEMENT0>.

Improved	error	messages	when	there	is	a	problem	creating	an	output	file.

CodeGen	now	supports	nested	groups	within	a	structure,	and	also	single-

dimension	group	arrays.

Added	a	new	-g	i	command	line	option	which	causes	implicit	groups	to	be
processed	as	a	single	field,	instead	of	being	expanded	out	to	multiple
individual	fields.	When	using	this	option	the	field	type	of	the	group	field
becomes	a	class,	and	you	must	independently	generate	that	class.

It	is	now	possible	to	generate	code	based	on	a	"pseudo	structure"	which	is
made	up	from	the	fields	in	an	explicit	group	(i.e.	a	group	with	fields	locally
defined	in	a	structure).	This	is	only	supported	for	explicit	groups	which	are
direct	members	of	the	structure,	not	groups	nested	within	other	groups.	To
generate	code	based	on	an	explicit	group,	specify	the	structure	name	with	-s	as
<structure>.<groupField>.

V4.0.3	-	19th	February	2012

Added	a	new	-cw	command	line	option	to	override	the	default	pixel	width	of	a
character.

Added	a	new	-ch	command	line	option	to	override	the	default	pixel	height	of	a
row.

Updated	the	help	file	to	reflect	these	changes,	and	also	added	this	release
notes	page.

V4.0.2	-	14th	February	2012

Re-worked	group	field	support	such	that	overlays	within	groups	are	processed
the	same	way	that	non-group	overlay	fields	are	processed.	Note	that	nested
groups	are	still	unsupported.

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

Introduction	to	CodeGen
	
CodeGen	is	a	tool	that	software	developers	who	are	working	in	a	Synergy
development	environment	(Synergy/DE)	can	use	to	generate	source	code.
That	code	is	often	Synergy	Language	code,	but	could	also	be	source	code	for
some	other	programming	language.	CodeGen	is	not	restricted	to	producing
code	for	any	particular	development	environment	or	programming	language.

Of	course	you	can’t	just	use	CodeGen	to	generate	any	piece	of	source	code
that	you	can	imagine.	Before	code	can	be	generated	a	developer	must	declare
the	rules	that	define	how	a	given	piece	of	source	code	should	be	created.
These	rules	are	defined	in	template	files.	CodeGen	interprets	the	code	and
instructions	that	a	developer	has	defined	in	a	template	file	in	order	to	produce
useful	output.

Defining	rules	in	a	template	file	is	only	part	of	the	story	though.	To	be	really
useful	CodeGen	also	needs	to	have	another	source	of	information	that	defines
a	context	for	what	is	to	be	generated.

Most	software	applications	revolve	around	the	collection,	presentation,
manipulation	and	storage	of	data.	Tat	data	is	ultimately	stored	in	some	type	of
persistent	storage	such	as	in	a	a	collection	of	data	files,	or	in	the	tables	of	a
relational	database.	When	developers	work	on	a	particular	piece	of	source
code	what	they	are	often	doing	is	combining	the	knowledge	that	they	have
about	an	application's	data	(meta-data)	with	rules	(or	"business	logic")	in
order	to	create	source	code	that	addresses	a	particular	requirement.	CodeGen
does	the	same	thing.

When	developers	work	in	Synergy/DE	they	have	access	to	an	excellent	source
of	meta-data	that	is	called	the	Synergy/DE	Repository.	A	Synergy	repository
holds	extensive	information	about	the	data	structures	used	by	a	software
application,	and	the	attributes	of	those	data	structures.	A	repository	can	also
contain	information	about	the	relationships	between	the	various	data
structures,	and	even	about	underlying	data	storage	mechanisms.	A
Synergy/DE	repository	is	a	very	rich	source	of	meta-data,	and	is	the	primary
source	of	meta-data	used	by	CodeGen.

For	developers	who	use	the	Synergy/DE	UI	Toolkit	to	present	their
application's	user	interface	there	may	also	be	a	second	source	of	meta-data

called	Window	Script	files.	In	some	situations	CodeGen	can	also	make	use	of
the	meta-data	contained	within	these	files	also.

It’s	all	about	meta-data!	In	a	nutshell,	CodeGen	takes	information	about	a	data
structure	and	combines	that	information	with	rules	that	have	been	defined	in	a
template	file	in	order	to	create	some	useful	output	text.

Basic	Principles

Each	time	a	developer	uses	CodeGen	to	generate	code,	they	typically	provide
two	primary	pieces	of	information:

1. A	source	of	meta-data,	usually	the	name	of	a	repository	structure.
2. The	name	of	one	or	more	template	files	which	define	the	rules	for	what

is	to	be	created.	

Each	time	CodeGen	generates	an	output	file	it	usually	does	three	primary
things:

1. Read	information	from	a	meta-data	source,	usually	a	repository
structure.

2. Read	rules	from	a	template	file.
3. Merge	the	rules	with	the	meta-data	to	create	an	output	file.

	

Video

Here's	the	Introduction	to	CodeGen	video.	Make	sure	you	select	a	high-
definition	version	of	the	video,	by	default	YouTube	tends	to	play	the	lowest
resolution	which	can	look	pretty	awful!

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

https://www.youtube.com/watch?v=s2ODUfSS5OU&index=2&list=PLq0aGk6nTIVvbmOwjlCu6bZeY6esBCjI-

License	Agreement
	
CodeGen	is	distributed	under	the	terms	of	the	"New	BSD	License	(BSD)".	By
downloading	CodeGen,	in	any	form,	or	using	CodeGen,	you	accept	the	terms
of	that	license,	which	are	as	follows:

Copyright	(c)	2012,	Synergex	International,	Inc.All	rights	reserved.

Redistribution	and	use	in	source	and	binary	forms,	with	or	without
modification,	are	permitted	provided	that	the	following	conditions	are	met:

• Redistributions	of	source	code	must	retain	the	above	copyright	notice,
this	list	of	conditions	and	the	following	disclaimer.

• Redistributions	in	binary	form	must	reproduce	the	above	copyright
notice,	this	list	of	conditions	and	the	following	disclaimer	in	the
documentation	and/or	other	materials	provided	with	the	distribution.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	COPYRIGHT	HOLDERS	AND
CONTRIBUTORS	"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED
WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED
WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A
PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL
THE	COPYRIGHT	HOLDER	OR	CONTRIBUTORS	BE	LIABLE	FOR
ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR
CONSEQUENTIAL	DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,
PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF
USE,	DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)	HOWEVER
CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN
CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING
NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF	THE
USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY
OF	SUCH	DAMAGE.

	
	

Copyright	©	2012		Synergex	International,	Inc.

Template	Files
	
Template	files	are	text	files	which	define	some	piece	of	generic	source	code.
They	contain	a	combination	of	actual	source	code	and	special	tokens	that	have
special	meaning	to	CodeGen.	Template	files	have	a	.tpl	file	extension.	When
CodeGen	processes	a	template	file,	any	tokens	that	are	encountered	in	the
template	cause	it	to	take	some	specific	action.	Most	tokens	cause	a	piece	of
information	obtained	from	the	meta-data	source	to	be	written	to	the	output
file.	Some	special	tokens	cause	CodeGen	to	perform	other	actions.

A	simple	template	called	HelloWorld.tpl	might	contain:

;;;;	Description:	A	Synergy	function	that	returns	"Hello	World"
;;
;;	Author:						<AUTHOR>
;;
;;	Created:					<DATE>	at	<TIME>
;;
function	HelloWorld,	a
				endparams
proc
				freturn	"Hello	World"
endfunction

This	template	is	so	simple	that	it	does	not	require	an	external	source	of	meta-
data,	as	no	tokens	relating	to	any	specific	data	structure	are	being	used.	The
template	contains	three	tokens,	<AUTHOR>,	<DATE>	and	<TIME>.	You	can
probably	guess	what	these	tokens	do:

1. The	<AUTHOR>	token	will	be	replaced	by	the	name	of	the	person
using	CodeGen.

2. The	<DATE>	token	will	be	replaced	by	the	current	date,	in
MM/DD/YYYY	format.

3. The	<TIME>	token	will	be	replaced	by	the	current	time,	in	HH:MM
format.

If	this	template	were	processed	by	CodeGen	an	output	file	would	be	created
and	would	contain	containing	something	like:

;;
;;	Description:	A	Synergy	function	that	returns	"Hello	World"
;;
;;	Author:						Jodah	Veloper
;;
;;	Created:					03/11/2010	at	11:23
;;
function	HelloWorld,	a
				endparams
proc
				freturn	"Hello	World"
endfunction

Default	Output	File	Names

The	name	of	the	output	file	created	by	CodeGen	would	be	helloworld.dbl.
This	is	because	CodeGen	has	default	rules	for	the	naming	of	output	files.	If	no
repository	structure	is	being	used	then	the	default	output	file	name	is	the	base
name	of	the	template	being	used,	with	a	file	extension	of	.dbl,	in	lowercase:

<template>.dbl

If	a	repository	structure	is	being	used	then	the	default	output	file	name	is	the
name	of	the	repository	structure,	followed	by	an	underscore,	followed	by	the
base	name	of	the	template,	with	a	file	extension	of	.dbl,	all	in	lowercase:

<structure>_<template>.dbl

Customizing	Output	File	Names

Template	developers	can	override	these	default	naming	rules	by	adding	a
special	<CODEGEN_FILENAME>	token	to	the	template	file	which	defines
rules	for	naming	the	output	file	to	be	created.	For	example	the	template	file
could	be	updated	like	this:

<CODEGEN_FILENAME>HelloWorldFunction.dbl</CODEGEN_FILENAME>
;;
;;	Description:	A	Synergy	function	that	returns	"Hello	World"
;;
;;	Author:						<AUTHOR>

;;
;;	Created:					<DATE>	at	<TIME>
;;
function	HelloWorld,	a
				endparams

proc

				freturn	"Hello	World"

endfunction

If	the	template	was	then	reprocessed	the	name	of	the	output	file	would	be
changed	to	HelloWorldFunction.dbl.

The	content	of	the	output	file	would	be	exactly	the	same	as	in	the	earlier
example,	because	the	<CODEGEN_FILENAME>	token	is	a	special
instruction	to	CodeGen	and	does	not	cause	anything	to	be	sent	to	the	output
file.

Template	File	Comments

Template	files	can	contain	special	comments	which	can	be	used	to	document
the	template	file,	but	which	are	also	not	sent	to	the	output	file.		A	template	file
comment	is	any	text	which	follows	the	special	sequence	of	characters	;//.		For
example,	the	template	file	could	be	updated	like	this:

<CODEGEN_FILENAME>HelloWorldFunction.dbl</CODEGEN_FILENAME>
;//--
;//	Template	author:	Jodah	Veloper
;//	Revision:								1.0
;//	Date:												03/11/2010
;//--
;;
;;	Description:	A	Synergy	function	that	returns	"Hello	World"
;;
;;	Author:						<AUTHOR>
;;
;;	Created:					<DATE>	at	<TIME>

;;
function	HelloWorld,	a
				endparams

proc

				freturn	"Hello	World"

endfunction

Using	Repository	Meta-Data

Template	files	which	do	not	require	a	source	of	meta-data	are	rare,	because	it
is	difficult	to	generate	anything	useful	without	a	source	of	meta-data!	Most
templates	are	written	to	create	output	based	on	a	source	of	meta-data,	which	is
usually	a	repository	structure.

Most	of	the	useful	meta-data	is	found	in	repository	structure	and	field
definitions,	but	some	tokens	require	you	to	define	keys,	tags,	relations	and
files	in	the	repository	also.	For	more	information,	refer	to	Repository	Setup.

For	a	simple	example	of	how	a	repository	structure	can	be	used	as	a	source	of
meta-data,	consider	the	following	hypothetical	structure	definition

STRUCTURE	DEPARTMENT
				DEPT_ID											,A10			;Department	ID	(primary	key)
				DEPT_NAME									,A30			;Department	name
				DEPT_MANAGER						,D4				;Managers	employee	ID
ENDSTRUCTURE

If	a	programmer	wanted	to	create	a	template	for	a	Synergy	external	subroutine
which	would	accept	the	value	of	the	primary	key	for	a	record	and	then	read
and	returned	the	record,	they	could	write	a	template	like	this:

<CODEGEN_FILENAME>Get<StructureName>.dbl</CODEGEN_FILENAME>
;//<CATEGORY>Synergy	Subroutines</CATEGORY>
;//<DESCRIPTION>Creates	a	subroutine	that	returns	a	record	from	a
file</DESCRIPTION>
;//--
;//	Template	author:	Jodah	Veloper

;//	Revision:								1.0
;//	Date:												03/11/2010
;//--
;;
;;	Description:	Returns	a	<STRUCTURE_NAME>	record
;;
;;	Author:						<AUTHOR>
;;
;;	Created:					<DATE>	at	<TIME>
;;

.include	“<STRUCTURE_NAME>”	repository,
structure=”str<StructureName>”,	end

subroutine	Get<StructureName>

				<PRIMARY_KEY>
				<SEGMENT_LOOP>
				required	in		a<SegmentName>,	<segment_spec>
				</SEGMENT_LOOP>
				</PRIMARY_KEY>

				required	out	a<StructureName>,	str<StructureName>

				endparams

				stack	record
								ch<StructureName>										,int
				endrecord

proc

				<PRIMARY_KEY>
				<SEGMENT_LOOP>
				a<StructureName>.<segment_name>	=	a<SegmentName>
				</SEGMENT_LOOP>
				</PRIMARY_KEY>

				try
				begin

								open(ch<StructureName>=syn_freechn(),i:i,”<FILE_NAME>”)
							
read(ch<StructureName>,a<StructureName>,keyval(ch<StructureName>,a<StructureName>,0))
				end
				catch	(ex)
				begin
								clear	a<StructureName>
				end
				finally
				begin
								if	(chopen(ch<StructureName>))
																				close	ch<StructureName>
				end
				endtry

				xreturn

endsubroutine

Having	created	the	template,	the	developer	could	then	process	the	template	in
conjunction	with	the	repository	structure	DEPARTMENT,	and	CodeGen
would	create	an	output	file	like	the	one	below.	Notice	that	the	template	file
includes	a	<CODEGEN_FILENAME>	rule,	so	in	this	case	the	name	of	the
output	file	would	be	GetDepartment.dbl.	The	file	would	contain:

;;
;;	Description:	Returns	a	DEPARTMENT	record
;;
;;	Author:						Jodah	Veloper
;;
;;	Created:					11/28/2014	at	12:00
;;

.include	"DEPARTMENT"	repository,	structure="strDepartment",	end

subroutine	GetDepartment

				required	in		aDeptId,	a10

				required	out	aDepartment,	strDepartment

				endparams

				stack	record
								chDepartment										,int
				endrecord

proc

				aDepartment.dept_id	=	aDeptId

				try
				begin
								open(chDepartment=syn_freechn(),i:i,”DAT:department.ism”)
								read(chDepartment,aDepartment,keyval(chDepartment,aDepartment,0))
				end
				catch	(ex)
				begin
								clear	aDepartment
				end
				finally
				begin
								if	(chopen(chDepartment))
												close	chDepartment
				end
				endtry

				xreturn

endsubroutine

Notice	how	all	of	the	tokens	that	were	present	in	the	original	template	have
been	replaced	by	meaningful	pieces	of	information	from	the	meta-data	source,
resulting	in	a	useful	piece	of	source	code.	We	could	just	as	easily	use	the	same
template	to	create	a	routine	to	read	an	employee	record,	or	a	location	record,
or	a	customer	record.	The	idea	is	to	define	the	rules	in	a	template	once,	then
use	that	template	to	generate	many	routines.

Sample	Templates

CodeGen	ships	with	a	collection	of	sample	template	files.	that	are	intended	to
provide	you	with	examples	of	some	of	the	types	of	output	files	that	you	can
create	with	CodeGen,	but	you	may	be	able	to	use	some	of	the	templates
unaltered.

Having	installed	CodeGen	you	will	find	the	sample	templates	in	the	Public
Documents	folder	(C:\Users\Public\Documents\CodeGenTemplates).

You	can	also	use	the	Template	Browser	utility	to	view	the	sample	templates.

The	sample	templates	may	also	be	viewed	directly	on	the	GitHub	web	site	at
https://github.com/Synergex/CodeGen/tree/master/SampleTemplates.

	
	

Copyright	©	2012		Synergex	International,	Inc.

https://github.com/Synergex/CodeGen/tree/master/SampleTemplates

Expansion	Tokens
	
Expansion	tokens	are	special	symbols	that	can	be	used	within	a	template	file,
either	to	cause	CodeGen	to	take	some	special	action,	or	to	refer	to	some
information	from	a	meta-data	source.		Most	expansion	tokens	cause	CodeGen
to	output	some	piece	of	information	to	the	output	stream	for	the	current
template.		In	some	cases	the	information	that	is	output	is	fairly	generic,	for
example	the	current	date	or	time,	but	in	many	cases	the	information	is	derived
from	an	external	source	such	as	a	repository	structure.	CodeGen	recognizes
and	processes	several	different	categories	of	expansion	tokens.		Some	of	these
tokens	can	be	used	at	any	time,	whilst	others	can	only	be	used	within	a	certain
context	in	a	template	file.

Expansion	tokens	consist	of	a	single	tag	(a	special	keyword	delimited	by	less-
than	(<)	and	greater-than	(>)	characters)	and	most	cause	some	value	to	be
written	to	the	output	stream	for	the	current	template.		An	example	of	an
expansion	token	of	this	type	is	the	<DATE>	token	that	was	discussed	earlier.

When	CodeGen	processes	a	template	file	in	order	to	create	an	output	file	it	is
constantly	searching	for	known	expansion	tokens,	and	when	a	token	is
encountered	some	action	is	taken	based	on	the	name	and	nature	of	the	token.

Generic
Tokens Generic	tokens	are	tokens	which	can	be	used	in	any	template	file.

Structure
Tokens

Structure	tokens	are	tokens	which	are	replaced	with	some	piece	of
information	obtained	from,	or	some	piece	of	code	derived	from	a
Repository	structure.	Structure	tokens	can	only	be	used	when
processing	a	template	in	conjunction	with	a	Repository	structure.
Processing	a	template	file	which	uses	one	or	more	structure	tokens
without	referencing	a	Repository	structure	will	cause	an	error
during	code	generation.

Field	Loop
Tokens

Field	loop	tokens	are	tokens	which	are	replaced	with	some	piece
of	information	obtained	from,	or	some	piece	of	code	derived	from
a	Repository	field	definition.	Field	loop	tokens	are	only	valid
inside	a	field	loop.	This	again	implies	that	a	Repository	structure	is
required	in	order	to	process	a	template	containing	field	loop
tokens.	Processing	a	template	file	which	uses	one	or	more	field

loop	tokens	without	referencing	a	Repository	structure	will	cause
an	error	during	code	generation.

Field	Loop
Expression
Tokens

Field	loop	expression	tokens	are	tokens	which	allow	you	to	control
whether	a	certain	piece	of	code	is	emitted	to	the	output	file	or	not,
based	on	the	evaluation	of	some	expression	based	on	the	attributes
of	field.		For	example,	you	could	use	a	conditional	expression	to
only	emit	a	piece	of	code	if	a	field	is	marked	as	a	required	field,	or
if	the	data	type	of	a	field	is	decimal.

Key	Loop
Tokens

Key	loop	tokens	are	tokens	which	are	replaced	with	some	piece	of
information	obtained	from,	or	some	piece	of	code	derived	from	a
Repository	key	definition.	Key	loop	tokens	are	only	valid	inside	a
key	loop.

Key
Segment
Loop
Tokens

Key	segment	loop	tokens	are	tokens	which	are	replaced	with	some
piece	of	information	obtained	from,	or	some	piece	of	code	derived
from	a	Repository	key	segment	definition.	Key	segment	loop
tokens	are	only	valid	inside	a	key	segment	loop.

Relation
Loop
Tokens

Relation	loop	tokens	are	tokens	which	are	replaced	with	some
piece	of	information	obtained	from,	or	some	piece	of	code	derived
from	a	Repository	relation	definition.	Relation	loop	tokens	are
only	valid	inside	a	relation	loop.

Window
Tokens

Window	tokens	are	tokens	which	are	replaced	with	some	piece	of
information	about	a	window	definition.

Button
Loop
Tokens

Button	loop	tokens	are	tokens	which	are	replaced	with	some	piece
of	information	relating	to	a	button	definition.		Button	loop	tokens
are	only	valid	within	a	button	loop.

User-
Defined
Tokens

User	defined	tokens	are	non-standard	tokens	that	can	be	defined
by	you	in	order	to	have	CodeGen	generate	code	other	than	what	it
natively	supports.	There	are	several	ways	of	defining	user	defined
tokens.	User	defined	tokens	do	not	inherently	require	the	use	of	a
Repository	structure	during	code	generation,	unless	the	code
generated	by	the	user	defined	tokens	includes	other	structure	or
field	loop	tokens.

Loop
Utility
Tokens

Loop	utility	tokens	insert	information	based	on	the	processing
status	of	the	current	template	file	loop	construct,	and	can	be	used
in	any	of	the	loop	constructs.

Expansion	Token	Variations

All	expansion	tokens	are	valid	in	upper	case	(as	shown	in	this	documentation)
and	many	are	valid	only	in	upper	case.	Generally,	when	the	name	of	an
expansion	token	appears	in	uppercase,	then	the	associated	replacement	text
that	is	written	to	the	output	stream	will	also	be	in	upper	case.	But	there	are
some	exceptions	to	this	rule,	typically	when	the	token	refers	to	a	piece	of
meta-data	which	resolves	to	a	piece	of	“free	text”	such	as	descriptions	that
were	entered	as	free	text.

Some	tokens	are	documented	to	have	"alternate	forms".		For	example,	the
<STRUCTURE_NAME>	token,	which	normally	outputs	the	name	of	the
repository	structure	in	all	uppercase	characters,	has	five	alternate	forms,	as
follows:

Token
Type Token Description Example

Upper-
case <STRUCTURE_NAME>

This	token
causes	the	name
of	the	current
structure	to	be
sent	to	the	output
file,	in	all
uppercase,	and
with	underscores
preserved.

CUSTOMER_CONTACT

Lower-
case <structure_name>

This	token
causes	the	name
of	the	current
structure	to	be
sent	to	the	output
file,	in	all

customer_contact

lowercase,	and
with	underscores
preserved.

Mixed-
case <Structure_Name>

This	token
causes	the	name
of	the	current
structure	to	be
sent	to	the	output
file,	in
lowercase,	but
with	the	first
letter	of	each
word	upper-
cased,	and	with
underscores
preserved.

Customer_Contact

"xf"-
case <Structure_name>

This	token
causes	the	name
of	the	current
structure	to	be
sent	to	the	output
file,	in
lowercase,	but
with	the	first
letter	of	the	first
word	upper-
cased,	and	with
underscores
preserved.	This
format	is
compatible	with
the	way	in	which
GENCS	and
GENJAVA
expose	Synergy
data	to
xfNetLink

Customer_contact

clients.

Pascal-
case <StructureName>

This	token
causes	the	name
of	the	current
structure	to	be
sent	to	the	output
file	in	“pascal-
case”.	The	string
is	lower-cased
and	then	any
character
following
anything	except
0-9,	A-Z	and	a-z
is	upper-cased.
Then	anything
other	than	0-9,
A-Z	and	a-z	is
removed,	and
finally	the	first
character	is
upper-cased.

CustomerContact

Camel-
case <structureName>

This	token
causes	the	name
of	the	current
structure	to	be
sent	to	the	output
file	in	“camel-
case”.	The	string
is	lower-cased
and	then	any
character
following
anything	except
0-9,	A-Z	and	a-z
is	upper-cased.
Finally	anything

customerContact

other	than	0-9,
A-Z	and	a-z	is
removed.

If	an	expansion	token	is	not	documented	to	have	alternate	forms	then	that
token	is	ONLY	valid	when	typed	in	upper	case.	CodeGen	will	not	act	upon
tokens	that	it	does	not	recognize.	Any	token	that	CodeGen	does	not	explicitly
recognize	will	simply	be	ignored,	and	written	to	the	output	stream.	If	you	see
tokens	in	your	output	file,	check	your	spelling	and	case	sensitivity.	The	only
exception	to	this	rule	is	if	you	are	using	“user	defined	tokens”	which	are
documented	later.

	

	

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

Expression	Tokens
	
Expressions	are	special	tokens	that	can	be	used	within	template	files	in	order
to	include	or	exclude	a	piece	of	code	based	on	some	condition.	There	are
several	different	types	of	expressions	that	can	be	used	in	different	places
within	a	template	file.	For	example,	there	are	expressions	that	can	be	used	in	a
field	loop	which	allow	you	to	include	or	exclude	sections	of	code	based	on	the
attributes	of	the	field	that	is	currently	being	processed.

There	are	two	types	of	expressions:

Multi-line	expressions	cause	one	or	more	lines	of	output	code	to	be	included
or	excluded,	based	on	the	evaluation	of	the	expression,	and	occur	when	the
opening	and	closing	conditional	tags	appear	on	separate	lines	in	a	template
file,	and	delimit	one	or	more	entire	lines	of	template	code,	like	this:

<IF	expression>code
</IF[expression]>

In-line	expressions	cause	part	of	an	output	line	to	be	included	or	excluded
based	on	the	evaluation	of	the	expression,	and	occur	when	the	opening	and
closing	conditional	tags	appear	on	the	same	line	in	a	template	file,	and	delimit
part	of	a	line	of	template	code,	like	this:

[code]	<IF	expression>	code	</IF[expression]>	[code]

Alternate	Expression	Closing	Tags

In	complex	template	files	you	may	prefer	to	use	an	alternate	format	of	the
closing	</IF>	tag	which	includes	the	name	of	the	condition.	For	example,	if
you	are	using	an	<IF	INTEGER>	expression	you	can	chose	to	specify	the
closing	tag	as	</IF	INTEGER>.	Doing	so	can	help	to	make	template	files
more	readable.

Expression	Else	Clauses

Else	clauses	are	supported	in	multi-line	expressions,	like	this:

<IF	expression>
code

<ELSE>
code
</IF[expression]>

And	in	in-line	expressions,	like	this:

[code]	<IF	expression>	code	<ELSE>	code	</IF[expression]>	[code]

Nesting	Expressions

Multi-line	expressions	may	be	nested	within	one	another.	For	example:

<IF	expression1>
[code]
<IF	expression2>
code
</IF[expression2]>
[code]
</IF[expression1]>

In-line	expressions	may	be	nested	within	multi-line	expressions.

<IF	expression1>
[code]
[code]	<IF	expression2>code</IF[expression2]>	[code]
[code]
</IF[expression1]>

Multiple	in-line	expressions	may	be	used	within	the	same	line:

[code]	<IF	expression1>code</IF[expression1]>	[code]	<IF
expression2>code</IF[expression2]>	[code]

In-line	expressions	may	be	embedded	within	one	another:

[code]	<IF	expression1>[code]<IF	expression2>code</IF[
expression2]></IF[expression1]>	[code]

	

	

	

Copyright	©	2012		Synergex	International,	Inc.

Conditional	Processing
	
Conditional	processing	blocks	provide	the	ability	to	include	or	exclude	parts
of	a	template	file	based	on	the	presence	or	absence	of	identifiers	that	can	be
defined	using	the	-define	command	line	option.	Unlike	expression	tokens	the
evaluation	of	conditional	processing	expressions	a	does	not	change	based	on
the	current	context	within	a	template	file,	rather	it	remains	consistent
throughout	the	entire	code	generation	job.
	
Conditional	processing	is	based	on	identifiers	that	can	be	defined	on	the
command	line.	For	example:
	

codegen	-s	CUSTOMER	-t	FILEIO_CLASS	-define
ATTACH_IO_HOOKS	-r

	
And	is	used	to	include	or	exclude	parts	of	the	code	in	a	template	file	by
evaluating	the	presence	or	absence	of	the	identifier	via	special	<IF
DEFINED_identifier>	and	<IF	NOT_DEFINED_identifier>	tokens.	For
example:
	

(IO_OPEN_UPD),
begin
										open(a_channel=0,u:i,"<FILE_NAME>")	[ERR=openError]
										<IF	DEFINED_ATTACH_IO_HOOKS>
										new	<StructureName>Hooks(a_channel)
										</IF>
end

	
There	are	two	types	of	conditional	processing	block:
	
Multi-line	conditional	processing	blocks	cause	one	or	more	lines	of	code	to	be
included	or	excluded	based	on	the	presence	or	absence	of	the	defined
identifier	and	occur	when	the	opening	and	closing	conditional	tags	appear	on
separate	lines	in	a	template	file.	They	delimit	one	or	more	entire	lines	of
template	code,	like	this:

<IF	[NOT_]DEFINED_identifier>code
</IF>

In-line	conditional	processing	blocks	cause	part	of	a	line	to	be	included	or
excluded	and	occur	when	the	opening	and	closing	conditional	tags	appear	on
the	same	line	in	a	template	file.	They	delimit	part	of	a	line	of	template	code,
like	this:

[code]	<IF	[NOT_]DEFINED_identifier>	code	</IF>	[code]

Conditional	Processing	Block	Else	Clauses

Else	clauses	are	supported	in	multi-line	conditional	processing	blocks,	like
this:

<IF	[NOT_]DEFINED_identifier>
code
<ELSE>
code
</IF>

And	in	in-line	conditional	processing	blocks,	like	this:

[code]	<IF	[NOT_]DEFINED_identifier>	code	<ELSE>	code
</IF>	[code]

Nesting	Conditional	Processing	Blocks

Multi-line	conditional	processing	blocks	may	be	nested	within	one	another.
For	example:

<IF	DEFINED_identifier1>
[code]
<IF	DEFINED_identifier2>
code
</IF>
[code]
</IF>

In-line	conditional	processing	blocks	may	be	nested	within	multi-line
conditional	processing	blocks.

<IF	DEFINED_identifier1>

[code]
[code]	<IF	DEFINED_identifier2>	code	</IF>	[code]
[code]
</IF>

Multiple	in-line	conditional	processing	blocks	may	be	used	within	the	same
line:

[code]	<IF	DEFINED_identifier1>	code	</IF>	[code]	<IF
DEFINED_identifier2>	code	</IF>	[code]

In-line	conditional	processing	blocks	may	be	nested	within	one	another:

[code]	<IF	DEFINED_identifier1>	[code]	<IF
DEFINED_identifier2>	code	</IF></IF>	[code]

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

Installing	&	Configuring	CodeGen
	
Requirements

CodeGen	is	a	Synergy	.NET	application	and	is	always	built	with	the	latest
version	of	Synergy	that	is	available	at	the	time	that	a	CodeGen	release	takes
place.	To	install	CodeGen	your	system	must	have:

• Microsoft	.NET	Framework	4.5	(or	higher)	installed.

• Synergy/DE	runtime	components	(both	32-bit	and	64-bit	if	installing	on
a	64-bit	system).

• Access	to	a	Synergy	runtime	license	(e.g.	RUN10).

Downloading	CodeGen

CodeGen	can	be	downloaded	from	CodePlex	as	either	a	pre-built	Windows
Installer	package,	or	as	a	source	code	package	that	you	must	build	yourself.
You	can	access	these	downloads	here:

• Windows	Installer	Package

• Source	code	package	

Installing	CodeGen

If	you	downloaded	the	Windows	Installer	package	then	simply	execute	the
installer	and	respond	to	the	various	prompts.	We	recommend	accepting	the
default	responses	to	most	questions,	which	will	perform	a	full	product
installation.	We	also	recommend	entering	your	actual	name	and	company
name	when	prompted,	because	the	responses	to	these	questions	are	used	to
provide	values	for	the	<AUTHOR>	and	<COMPANY>	tokens,	and	so	could
appear	in	source	code	that	you	may	generate.

System	Environment	PATH

For	the	best	experience	the	main	CodeGen	installation	folder	should	be
included	in	the	system	PATH..	By	default	the	CodeGen	installer	takes	care	of

http://codegen.codeplex.com/releases
http://codegen.codeplex.com/SourceControl/list/changesets

this.

Setting	Environment	Variables

There	are	several	environment	variables	that	you	can	set	in	order	to	configure
an	appropriate	environment	for	CodeGen.	These	environment	variables	are
discussed	below.

You	can	set	these	environment	variables	in	one	of	the	following	ways:

1) In	your	actual	system	environment.

2) In	your	current	process	environment.

3) In	the	[codegen]	section	of	your	synergy.ini	or	synuser.ini	file.
	

Environment	Variable Comments

CODEGEN_TPLDIR

Determines	the	default	location	of
template	files.	If	you	don't	set	this
environment	variable	then	CodeGen
will	default	to	the	"Templates"	folder
below	the	main	folder	that	you
installed	CodeGen	into.	This	folder
contains	sample	templates	that	ship
with	CodeGen.

You	can	override
CODEGEN_TPLDIR	by	using	-i
command	line	option.

CODEGEN_OUTDIR

Determines	the	default	location	where
output	files	generated	by	CodeGen	will
be	created.	If	CODEGEN_OUTDIR	is
not	set	then	CodeGen	will	default	to
creating	output	files	in	the	current
directory.

You	can	override

CODEGEN_OUTDIR	by	using	the	-o
command	line	option.

CODEGEN_AUTHOR

Determines	the	value	inserted	into
generated	code	when	the
<AUTHOR>	token	is	processed.	When
you	install	CodeGen	you	are	prompted
to	enter	your	name	and	this	value	is
stored	in	the	Windows	Registry	and
used	to	provide	a	default	value	for
CODEGEN_AUTHOR.	You	can
override	this	behavior	by	explicitly
setting	CODEGEN_AUTHOR.

If	CodeGen	is	unable	to	determine	the
name	of	an	author	then	the	name
"CodeGen"	is	used.

CODEGEN_COMPANY

Determines	the	value	inserted	into
generated	code	when	the
<COMPANY>	token	is	processed.
When	you	install	CodeGen	you	are
prompted	to	enter	your	company	name
and	this	value	is	stored	in	the	Windows
Registry	and	used	to	provide	a	default
value	for	CODEGEN_COMPANY.
You	can	override	this	behavior	by
explicitly	setting
CODEGEN_COMPANY.

If	CodeGen	is	unable	to	determine	the
name	of	an	author	then	the	name
"Synergex"	is	used.

CODEGEN_EXTDIR

If	you	have	created	custom	extensions
for	CodeGen	then	this	environment
variable	allows	you	to	specify	the
folder	where	CodeGen	will	search	for
custom	extensions	assemblies.

SYNDEFNS

The	SYNDEFNS	environment	variable
can	be	used	in	your	Synergy
development	environment	to	determine
the	default	namespace	that	items	are
added	to	when	performing	strong
prototyping.	CodeGen	will	also	use	the
SYNDEFNS	environment	variable	to
determine	the	default	value	to	be	used
when	the	<NAMESPACE>	token	is
processed.

You	can	override	this	default	behavior
by	using	the	-n	command	line	option.

CODEGEN_STRIP_FROM_PROMPT

Developers	sometimes	encode
information	into	repository	field
prompts	and	then	pre-process	the
prompts	at	runtime	before	they	are
displayed	within	a	UI	Toolkit
application.	One	common	example	is
when	developers	want	to	display	field
numbers	in	UI	Toolkit	input	windows.
In	this	case,	prompts	in	the	repository
might	be	configured	as	"xx	Customer
name",	and	the	developer	could	then
execute	code	to	replace	the
xx	characters	with	field	numbers	based
on	the	fields	position	within	an	input
window	or	set.	This	can	be	a	problem
when	using	the	field	definitions	in
other	environments,	so	CodeGen	has
the	ability	to	strip	a	known	pattern	of
characters	from	any	field	prompt	where
that	pattern	is	found.	For	example,	if
some	or	all	field	prompts	are	prefixed
with	the	characters	xx<space>	then
you	can	tell	CodeGen	to	remove	these
characters	by	setting	the	following
environment	variable	before	code

generation:

set
CODEGEN_STRIP_FROM_PROMPT
=	"xx	"

NOTE:	you	must	delimit	the	text	to	be
stripped	with	two	double	quote
characters,	otherwise	CodeGen	will	not
make	any	changes	to	field	prompts.

CODEGEN_DATABASE_TYPE
	

Specifies	the	type	of	relational
database	that	code	is	being	generated
for,	by	customizing	the	values	inserted
by	the	field	loop	expansion	token
<FIELD_SQLTYPE>.	Supported
values	are	SQLServer,	MySQL	and
PostgreSQL.	Also	refer	to	the
command	line	option	-database,	which
if	used	will	override	any	value	set	by
CODEGEN_DATABASE_TYPE.
Without	either	of	these	options	being
used	the	default	database	type	is
SQLServer.
	

Rebooting	After	Installation

The	CodeGen	installation	modifies	the	system	wide	PATH	environment
variable,	and	some	versions	of	Windows	require	a	reboot	for	this	new	setting
to	take	effect.	We	recommend	that	you	reboot	your	PC	after	installing
CodeGen	for	the	first	time.

Updating	CodeGen

Recent	versions	of	the	CodeGen	installation	support	upgrading	to	a	later
version,	so	in	most	cases	an	older	version	of	CodeGen	will	be	automatically
removed	when	you	attempt	to	install	a	newer	version.	It	should	not	be
necessary	to	reboot	your	system	after	an	upgrade.

Uninstalling	CodeGen

CodeGen	can	be	removed	from	your	system	via	an	Uninstall	shortcut	which	is
added	to	the	Windows	Start	Menu,	or	via	the	"Programs	and	Features"
application	in	the	Windows	Control	Panel.

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

Command	Line	Reference
	
To	generate	code	with	CodeGen	a	developer	goes	to	the	operating	system
command	prompt	in	an	appropriately	configured	environment	and	issues
codegen	commands.

As	a	minimum	the	developer	must	use	the	-t	option	to	specify	the	name	of	at
least	one	template	file	to	be	used,	and	in	almost	all	situations	the	-s	option	is
also	used	to	specify	one	or	more	repository	structures	to	be	processed.

There	are	several	other	command	line	options	documented	below.	Some	of	the
main	ones	are	the	-r	option	which	causes	any	existing	output	files	to	be
replaced,	and	the	-v	option	which	produces	various	information	messages	to
be	displayed	as	CodeGen	generates	code.

For	example,	a	developer	might	use	a	command	like	this:

C:>	codegen	-t	data_class	-s	customer	-r	-v

This	command	would	cause	CodeGen	to	create	an	output	file	based	on	the
code	defined	in	the	template	file	named	data_class.tpl	and	using	information
from	the	repository	structure	named	CUSTOMER.	If	the	output	file	already
exists	then	it	will	be	overwritten,	and	verbose	messages	will	be	displayed.

		codegen	<options>

Commonly	Used	Command	Line	Options

These	options	are	used	almost	every	time	CodeGen	is	used:

				-s	structure[.group]	[...]	|	*

Structure(s)	to	process.	You	must	specify	the	name	of	at	least	one
structure	and	may	optionally	specify	multiple	structure	names
separated	by	spaces.	Alternatively	you	can	specify	the	*	wild-card
to	indicate	that	all	structures	are	to	be	processed.	It	is	also
possible	to	generate	a	"pseudo	structure"	based	on	the	fields
within	an	implicit	group	within	a	structure.

In-process	API	equivalent:	CodeGenTask.Structures	property

(List<String>).

				-t	[*]template	[...]

Template(s)	to	process.	You	must	specify	at	least	one	template
name,	and	may	optionally	specify	multiple	template	names
separated	by	spaces.	Alternatively	you	can	use	the	wild-card
character	*	to	specify	that	multiple	templates	should	be	processed
(e.g.	database*)	or	use	the	*	wild-card	alone	to	indicate	that	all
templates	should	be	processed.

In-process	API	equivalent:	CodeGenTask.Templates	property
(List<String>).

				-r

Replace	existing	files.		By	default	existing	files	are	not	replaced.

In-process	API	equivalent:	CodeGenTask.ReplaceFiles	property
(Boolean)	

Other	Command	Line	Options

These	options	can	be	used	to	modify	how	CodeGen	works:

				-a	alias	[...]]

Structure	aliases.	A	structure	alias	is	an	alternate	name	to	be	used
to	represent	a	structure.	If	-a	is	used	then	you	must	specify	at	least
one	alias	name,	and	may	optionally	specify	multiple	alias	names
separated	by	spaces,	up	to	but	not	exceeding	the	number	of
structure	names	that	have	been	specified	via	the	-s	option.

In-process	API	equivalent:	CodeGenTask.Aliases	property
(List<String>).

				-ba|d|n

Override	default	button	loop	processing	rules.

-ba				Always	use	the	default	buttons	defined	in

DefaultButtons.xml.
-bd				Never	use	the	default	buttons	defined	in
DefaultButtons.xml.
-bn				Never	load	any	buttons	(DefaultButtons.xml	or	window
script).

In-process	API	equivalents:

-ba				CodeGenTask.AlwaysLoadDefaultButtons	property
(Boolean)
-bd				CodeGenTask.NeverLoadDefaultButtons	property
(Boolean)
-bn				CodeGenTask.NeverLoadAnyButtons	property	(Boolean)

				-c

Continue	processing	after	errors.	If	multiple	templates,	files	or
tasks	are	being	processed	then	this	option	allows	code	generation
to	continue	even	though	one	template/structure	combination	has
generated	an	error.

In-process	API	equivalent:	CodeGenTaskSet.ContinueAfterError
property	(Boolean)

				-cdm	<filespec>

Specifies	that	custom	data	mappings	are	loaded	from	an	XML
file.	Refer	to	Customizing	Data	Type	Mappings	in	the	docs	for
more	info.

In-process	API	equivalent:	CodeGenTaskSet.DataMappingsFile
property	(String)

				-ch	<pixels>

Overrides	the	default	number	of	pixels	per	row	to	be	used	when
calculating	pixel	coordinates	using	tokens	like
<FIELD_PIXEL_ROW>.

In-process	API	equivalent:	CodeGenTask.CharacterHeight

property	(int)

				-checkversion	[interval]

Checks	whether	there	is	a	later	version	of	CodeGen	available	for
download.	This	option	requires	Internet	connectivity.	If	you	do
not	specify	an	interval	value	then	CodeGen	will	perform	an
immediate	check	for	available	updates	and	will	report	the	result.
If	you	specify	an	interval	of	1	or	more	(days)	then	CodeGen	will
automatically	check	for	available	updates	after	that	many	days	has
expired	since	the	previous	update	check;	the	update	check	will
take	place	the	next	time	you	use	CodeGen	and	you	will	see
messages	as	the	update	check	takes	place.	To	cancel	a	previously
scheduled	automatic	update	checks	specify	an	interval	of	0.

				-cw	<pixels>

Overrides	the	default	number	of	pixels	per	character	to	be	used
when	calculating	pixel	coordinates	using	tokens	like
<FIELD_PIXEL_WIDTH>.

In-process	API	equivalent:	CodeGenTask.CharacterWidth
property	(int)

				-d

Debug	mode.	Displays	additional	information	during	processing;
more	than	verbose	mode.

In-process	API	equivalent:	CodeGenTaskSet.LoggingLevel
property	(use	LoggingLevel.Debug)

				-database	SQLServer	|	MySQL	|	PostgreSQL

Database	type.	Specifies	the	relational	database	that	code	is	being
generated	for	by	altering	the	SQL	data	types	emitted	by	the
<FIELD_SQLTYPE>	token.	The	default	database	type	is
SQLServer,	unless	altered	by	the
CODEGEN_DATABASE_TYPE	environment	variable.

In-process	API	equivalent:	CodeGenTaskSet.DatabaseType
property

										-define	<identifier>	[<identifier>...]

Defines	one	or	more	identifiers,	the	presence	of	which	can	be
tested	in	template	files	to	implement	conditional	processing.

In-process	API	equivalent:	CodeGenTaskSet.Defines	property
(List<string>)

				-docs

Displays	the	CodeGen	documentation,	either	the	Windows	help
file	if	the	documentation	is	installed	locally,	or	the	on-line
documentation	if	not.	Bear	in	mind	that	the	on-line	documentation
will	always	be	for	the	latest	version	of	CodeGen,	which	may	be
later	than	the	version	that	you	are	currently	running.

In-process	API	equivalent:	None

				-dt

Debug	tree.	Creates	log	files	containing	the	internal	results	of	the
code	tokenization	and	parsing	phases.

In-process	API	equivalent:	
CodeGenTaskSet.LogTokenizerResults	property	(Boolean)

				-e

Echo	the	command	line	used	to	start	CodeGen.		This	can	be
useful	when	starting	CodeGen	from	a	batch	file	in	which	echo	has
been	disabled	but	where	you	want	to	see	a	representation	of	the
commands	that	are	being	executed.

In-process	API	equivalent:		CodeGenTaskSet.EchoCommands
property	(Boolean)

				-f	[o|l|t|r|w]

Override	default	field	loop	processing	rules.

										-f	o			Include	overlay	fields.
										-f	l			DO	NOT	exclude	fields	which	are	"Excluded	by	Language".
										-f	t			Exclude	fields	which	are	"Excluded	by	Toolkit".
										-f	r			Exclude	fields	which	are	"Excluded	by	ReportWriter".
										-f	w			Exclude	fields	which	are	"Excluded	by	Web".

In-process	API	equivalents:

										-f	o			CodeGenTask.IncludeOverlayFields	property	(Boolean)
										-f	l			CodeGenTask.IgnoreExcludeLanguage	property	(Boolean)
										-f	t			CodeGenTask.HonorExcludeToolkit	property	(Boolean)
										-f	r			CodeGenTask.HonorExcludeReportWriter	property	(Boolean)
										-f	w			CodeGenTask.HonorExcludeWeb	property	(Boolean)

				-fields	[str.]field	[[str.]field]	...

Creates	a	field	subset	based	on	the	list	of	fields	listed	on	the
command	line.	When	processing	multiple	structures	concurrently
(via	the	-ms	or	-file	options)	field	names	may	be	prefixed	with	the
appropriate	structure	names.

In-process	API	equivalent:	CodeGenTask.SubsetFields	property
(List<Tuple<String,	String>>)

				-file	filename

Repository	file	name	to	process.	This	option	causes	all	structures
that	are	assigned	to	the	file	definition	to	be	available	for	use	when
processing	templates.	The	end	result	is	similar	to	specifying
multiple	structures	with	-s	and	using	the	-ms	option.

In-process	API	equivalent:	CodeGenTask.RepositoryFile	property
(String).

				-fo	file	[...]

File	Overrides.	Allows	you	to	specify	which	repository	file
definition	is	used	for	each	structure	being	processing.	This	option

is	useful	if	the	structure	that	you	are	using	is	assigned	to	multiple
files	because	by	default	CodeGen	will	use	the	first	assigned	file.
When	the	-fo	option	is	used	you	must	specify	at	least	one
repository	file	definition	name,	and	have	the	option	of	specifying
file	overrides	for	multiple	structures,	up	to	but	not	exceeding	the
number	of	structures	specified	via	the	-s	option.

In-process	API	equivalent:	CodeGenTask.FileOverrides	property
(List<String>).

				-g	f|r|i

Override	default	group	field	name	prefix	rules

										-g	f			Don't	prefix	group	fields	with	group	name.
										-g	i			Don't	expand	implicit	groups	to	individual	fields.
										-g	r			Don't	use	repository	group	field	prefix.

In-process	API	equivalents:

										-g	f			CodeGenTask.GroupFieldNoGroupPrefix	property	(Boolean)
										-g	i			CodeGenTask.GroupNoExpand	property	(Boolean)
										-g	r			CodeGenTask.GroupFieldNoRpsPrefix	property	(Boolean)

				-h	|	-?

Display	command-line	help	information.

In-process	API	equivalent:	None

				-i	inpdir

Input	file	directory	containing	templates.	Defaults	to	the	current
directory,	or	the	directory	specified	with	the
CODEGEN_TPLDIR	environment	variable.	You	can	specify	a
full	or	relative	path,	or	a	logical	name	followed	by	a	colon	(e.g.
TPL:).

In-process	API	equivalent:	CodeGenTaskSet.TemplateFolder
property	(String)	or	CodeGenTask.TemplateFolder	property
(String)

				-lf

List	Files.	Lists	the	names	of	any	files	generated	when	not
running	in	verbose	or	debug	logging	modes.

In-process	API	equivalent:		CodeGenTaskSet.ListGeneratedFiles
property	(Boolean)

				-ms

Multiple	Structures.	Specifies	that	the	structures	that	follow	the	-s
command	line	option	should	all	be	available	to	templates	being
processed,	at	the	same	time.

In-process	API	equivalent:	CodeGenTask.MultipleStructures
property	(Boolean).

				-mw

Multi-write	a	file	if	the	same	file	is	generated	more	than	once.

In-process	API	equivalent:	CodeGenTask.MultiWriteFiles
property	(Boolean)

				-n	namespace

The	namespace	to	use	when	replacing	the
<NAMESPACE>	token.	Codegen	will	determine	the	default
namespace	using	the	environment	variable	SYNDEFNS,	and	this
can	be	overridden	with	the	-n	option.

In-process	API	equivalent:	CodeGenTask.Namespace	property
(String)

				-nf

Don't	append	sub-folder	to	namespace.	If	a	template	file	uses	the
<CODEGEN_FOLDER>	token	to	specify	that	files	created	from
the	template	should	be	created	in	a	sub-folder	below	the	main
output	folder,	then	by	default,	if	a	namespace	is	also	being	used,

the	name	of	the	sub-folder	is	appended	to	the	namespace.	This
option	overrides	that	behavior.

In-process	API	equivalent:
CodeGenTask.DontAppendFolderToNamespace	property
(Boolean)

				-o	outdir

Output	directory.	Defaults	to	the	current	directory,	or	the	directory
specified	with	the	CODEGEN_OUTDIR	environment	variable.
You	can	use	a	full	or	relative	path,	or	a	logical	followed	by	a
colon	(e.g.	SRC:).

In-process	API	equivalent:	CodeGenTaskSet.OutputFolder
property	(String)	or	CodeGenTask.OutputFolder	property	(String)

				-opk	<keyNumber>

Overrides	the	key	that	is	used	when	a	primary	key	block
(<PRIMARY_KEY>)	is	used.	By	default	the	first	key	defined	by
the	structure	is	used.

In-process	API	equivalent:	CodeGenTask.PrimaryKeyNumber
property	(int)

				-prefix	<name>

When	using	the	<FIELD_NAME>	token,	prefix	field	names	with
<name>.	Useful	with	repository	.include	with	the	optional	prefix=
qualifier.

In-process	API	equivalent:	CodeGenTask.FieldPrefix	property
(String)

				-rps	<mainfile>	<textfile>

Allows	the	repository	main	and	text	files	to	be	used	to	be
specified	on	the	command	line,	overriding	other	mechanisms	for
repository	selection	such	as	RPSDAT,	RPSMFIL	and	RPSTFIL
environment	variables.

In-process	API	equivalent:	CodeGenTask.RepositoryMainFile
and	CodeGenTask.RepositoryTextFile	properties	(String)

				-subset	name

Subset	of	fields	to	use.	Specify	subsets	in	field	user	text	strings
with	@SUB=name;	syntax.	This	option	is	only	valid	when
processing	a	single	repository	structure.

In-process	API	equivalent:	CodeGenTask.Subset	property
(String).

				-tf

Allow	template	defined	folders.	From	CodeGen	V5.0.2	it	has
been	possible	for	template	files	to	define	the	name	of	a	sub	folder
(below	the	main	output	folder)	where	files	generated	from	the
template	should	be	created.	This	is	done	by	using	the	file	header
token	<CODEGEN_FOLDER>.	This	option	enables	this
functionality.

In-process	API	equivalent:	CodeGenTask.AllowTemplateFolder
property	(Boolean)

				-u	usertokenfile

User	defined	token	file.	Specify	a	full	or	relative	file	spec	of	the
file	that	contains	user	defined	token	definitions.	The	file	spec	can
include	Synergy	logical	names.

In-process	API	equivalent:	CodeGenTask.UserTokenFile	property
(String)

				-ut	name=value	[...]

User	defined	tokens	specified	via	the	command	line.	You	must
specify	at	least	one	name=value,	and	may	optionally	specify
multiple	name=value	pairs	separated	by	spaces.	If	spaces	exist	in
the	name	or	value	then	you	should	enclose	the	entire	name=value
pair	in	quotation	marks.

In-process	API	equivalent:	CodeGenTask.UserTokens	property
(List<UserToken>)

				-utpp

Treat	user-defined	tokens	as	preprocessor	tokens,	expanding	them
out	to	their	constituent	parts	during	the	initial	tokenization	phase.
This	enables	other	tokens	to	be	embedded	in	the	values	of	user-
defined	tokens.

				-v

Verbose	mode.	Displays	additional	information	during	processing;
not	as	much	as	debug	(-d)	mode.

In-process	API	equivalent:	CodeGenTaskSet.LoggingLevel
property	(use	LoggingLevel.Verbose)

				-version

Display	the	version	of	CodeGen	that	you	are	running.

				-w	<wscfile>[#n]

Process	input	from	a	UI	Toolkit	Window	script	file.	By	default	the
fields	and	buttons	collection	will	be	based	on	the	first	input
window	found	in	the	script	file,	but	this	can	be	overridden	using
the	#n	qualifier,	which	specifies	either	a	1-based	input	window
number	or	the	name	of	the	input	window	to	process.

In-process	API	equivalent:	CodeGenTask.WindowScript	property
(String)

				-wn

When	processing	input	from	a	UI	Toolkit	Window	script	file	this
option	prevents	script	file	input	window	field	attributes	from
being	used	to	override	repository	field	attributes.	This	allows	you
to	generate	code	based	on	only	the	fields	listed	in	an	input
window,	but	using	only	the	repository	field	definitions.

In-process	API	equivalent:
CodeGenTask.IgnoreScriptFieldAttributes	property	(Boolean)

				-ws	<wscfile>

Window	script	selection	list	processing.	When	this	option	is	used
CodeGen	will	examine	any	fields	which	have	selection	windows
specified	and	will	attempt	to	populate	the	field	selections	property
based	on	the	selection	items	defined	in	the	named	selection
window.

In-process	API	equivalent:	CodeGenTask.SelectionWindowScript
property	(String)					

Advanced	Debugging	Options

These	options	are	intended	for	use	by	CodeGen	developers	and	are	not
particularly	useful	when	using	CodeGen	to	generate	code.

				-attach

Intended	for	use	by	CodeGen	developers,	this	option	causes
CodeGen	to	wait	for	a	key	press	at	the	very	beginning	of
processing.	This	makes	it	possible	to	attach	an	external	debugger
to	the	process	before	processing	begins.

In-process	API	equivalent:		None

				-debug

Developer	debug	mode	(displays	extensive	debugging
information).

In-process	API	equivalent:		CodeGenTaskSet.LoggingLevel
property	(use	LoggingLevel.DeveloperDebug)

				-pause

Causes	CodeGen	to	wait	for	a	key	press	at	the	very	end	of
processing.	This	makes	it	possible	to	perform	final	tasks	before	a

debugging	environment	terminates.

In-process	API	equivalent:		None

										-time

Displays	the	elapsed	time	taken	to	process	the	command.

In-process	API	equivalent:		None

	
	

Copyright	©	2012		Synergex	International,	Inc.

Repository	Setup
	
CodeGen	is	almost	always	used	with	a	repository	structure	providing	the	meta
data	that	is	to	be	used	for	the	generation	of	the	source	file,	and	many	of	the
tokens	require	the	use	of	a	repository	structure.

The	basic	requirement	is	that	you	have	a	structure	definition,	and	that
structure	definition	includes	one	or	more	field	definitions.	Some	tokens	also
require	that	keys	are	defined,	and	some	require	file	definitions	with	structure
assignments.

If	you	don't	already	have	a	repository	then	you	can	load	most	of	the
information	that	you	will	need	by	reading	existing	record	layout	files	into
repository	structures.

Repository	Structure	Restrictions

In	order	to	be	used	successfully	with	CodeGen,	Repository	structures	must
meet	the	following	requirements.

• Enumeration,	binary	and	structure	fields	are	not	currently	supported	by
CodeGen.

• Overlay	fields	are	allowed,	but	will	generally	be	ignored	by	CodeGen.

• All	keys	must	be	correctly	defined	to	exactly	match	the	appropriate
ISAM	file.

• Only	a	single	tag	is	allowed	and	that	tag	must	be	a	FIELD.EQ.VALUE
type.

• The	use	of	some	tokens	requires	that	the	structure	being	processed	is
assigned	to	a	file	definition,	and	some	require	that	keys	are	defined.

• Keys	must	be	defined	in	the	correct	sequence.	CodeGen	determines	key
numbers	by	the	order	in	which	keys	are	defined	in	the	repository
structure.	Define	access	keys	in	the	correct	sequence,	and	define	foreign
keys	after	all	access	key	definitions.

• If	you	intend	to	generate	source	code	for	languages	other	than	Synergy,
then	you	should	avoid	giving	fields	names	which	may	be	reserved

words	in	the	language	concerned.

• If	you	wish	to	prevent	a	structure	from	being	processed	by	CodeGen
then	you	can	add	the	text	@NOCODEGEN	to	the	structures	user	text
field	or	long	description.

• To	specify	that	a	field	in	a	structure	is	the	structures	“display	field”	you
can	add	the	text	@CODEGEN_DISPLAY_FIELD	to	the	fields’	user	text
string	or	long	description.	For	more	information	refer	to	the
<DISPLAY_FIELD>	token.

Array	Fields

CodeGen	supports	array	fields,	but	these	arrays	are	“flattened”	into	multiple
non-array	fields.	In	other	words	each	array	field	encountered	is	replaced	by
multiple	fields	with	the	same	data	type	and	size	as	the	array	field.

When	an	array	is	expanded	to	multiple	individual	fields,	the	name	of	each
field	is	amended	to	include	the	array	element	definition.	For	example,	the	field
MYFIELD,	[2]A10	will	be	expanded	to	two	separate	fields	named
MYFIELD[1]	and	MYFIELD[2].

Group	Fields

CodeGen	supports	groups,	including	group	arrays.	When	processed	by
CodeGen,	groups	are	“flattened”.	In	other	words	the	fields	in	the	group
become	fields	in	the	main	structure,	and	the	group	field	is	removed.

By	default,	group	member	field	names	are	prefixed	with	the	name	of	the
parent	group	field	followed	by	a	period,	but	this	behavior	can	be	overridden
with	the	–g	f	command	line	option.		For	example,	if	a	group	called	ADDRESS
contains	a	field	called	STREET,	the	name	of	the	field	used	by	CodeGen	will
be:

ADDRESS.STREET

But	if	you	were	to	use	the	–g	f	command	line	option	then	the	name	of	the	field
would	be:

STREET

Obviously,	in	this	scenario	you	would	need	to	make	sure	that	the	name	did	not
clash	with	any	other	identifiers	in	the	same	structure.

If	the	repository	group	definition	includes	a	“member	prefix”	then	this	prefix
is	added	to	the	name	of	each	field	in	the	group,	but	this	behavior	can	be
overridden	with	the	–g	r	command	line	option.

For	example,	if	a	group	called	ADDRESS	contains	a	field	called	STREET,
and	the	group	field	defines	a	member	prefix	of	HOME_,	the	name	of	the	field
used	by	CodeGen	will	be:

ADDRESS.HOME_STREET

With	the	–g	f	command	line	option	the	name	would	be:

HOME_STREET

With	the	–g	r	command	line	option	the	name	would	be:

ADDRESS.STREET

And	with	the	–g	f	r	command	line	options	the	name	would	be:

STREET

If	a	group	member	field	is	declared	as	an	array	then	it	will	be	treated	as
discussed	earlier	under	Array	Fields.

Loading	Include	Files

Before	you	load	the	fields	from	an	include	file	into	a	repository	structure	it	is
often	best	to	make	a	copy	of	the	include	file,	and	then	perform	some	simple
"cleanup"	within	the	file	before	loading	it	into	the	repository	structure:

• The	repository	can	load	the	fields	from	a	single	record	(or	common)	in
an	include	file	into	a	repository	structure,	so	if	the	include	file	has
multiple	records	defined	then	first	identify	which	record	you	wish	to
load.

• Repository	will	use	any	comment	which	follows	a	field	definition	as	the
description	for	the	field,	so	clean	up	the	comments.	If	your	field

comments	include	things	like	position	information	then	you	may	want	to
remove	them.	Note	that	if	the	positions	are	delimited	with	specific
identifiable	characters	(for	example	if	they	are	within	parentheses)	then
you	can	specify	these	characters	when	you	load	the	fields	into
repository,	so	in	this	case	you	don't	need	to	manually	edit	them	out.

• Repository	will	load	any	overlays	that	are	defined	within	the	record	to
be	loaded,	but	if	you	have	overlays	that	you	want	to	preserve	that	are
defined	as	separate	overlay	records	(using	record	,X)	then	you	might
want	to	consider	moving	those	overlay	fields	into	the	actual	record
definition.

• Remember	that	generally	CodeGen	will	ignore	overlay	fields	however,
so	review	any	overlays	and	make	sure	that	the	fields	that	you	are	most
likely	to	want	to	use	in	generated	code	are	the	"real"	fields,	and	those
less	likely	to	be	useful	are	the	overlays.	An	example	would	be	if	you
have	date	fields	where	the	real	fields	are	individual	year,	month	and	day,
and	there	is	a	full	date	overlay.	When	generating	code	it	is	most	likely
that	you	will	want	to	access	the	full	date	and	not	the	individual	fields,	so
switching	the	fields	and	overlays	around	would	probably	be	best.

• If	you	have	full	overlay	records	(one	record	followed	by	one	or	more
record,	X's)	then	you	will	probably	want	to	load	each	of	the	overlays
into	a	separate	repository	structure.

Once	you	have	cleaned	up	the	include	file	you	are	ready	to	load	the	file	into	a
new	repository	structure.	The	procedure	is	as	follows:

• Start	repository	and	Select	Modify	>	Structures.

• Click	the	Add	button	(or	press	the	Insert	key)	to	add	a	new	structure.

• Provide	a	name	for	the	structure.	It	is	usually	best	to	use	the	original
record	name	as	the	structure	name.

• Set	the	file	type.	Most	structures	should	be	set	to	"DBL	ISAM".

• Provide	a	meaningful	description	of	the	structure,	such	as	"Customer
Master	Record".

• If	the	structure	is	to	be	associated	with	a	file	which	has	multiple	record
layouts	within	the	data	file,	set	the	tag	to	tell	repository	and	other	tools

how	to	detect	this	particular	record	layout	within	the	file.	If	this	is	not
the	case	then	select	None.

• Click	the	OK	button	to	create	the	new	structure.

• Click	the	Attributes	button	(ore	press	F3)

• From	the	menu,	select	Attributes	>	Fields.

• From	the	menu,	select	Field	Functions	>	Load	Fields	(or	press	F9).

• Enter	the	name	of	the	include	file	(or	use	the	file	browser	to	locate	it).

• If	the	include	file	has	multiple	records,	enter	the	number	of	the	record	to
be	read.

• If	you	want	to	strip	information	(for	example	position	between
parentheses)	from	the	field	descriptions	then	enter	the	characters	that
delimit	the	information	to	be	removed.

• Click	the	OK	button	to	load	the	fields	into	the	structure.

• Press	the	F4	key	to	exit	from	the	fields	list.

• Press	the	F4	key	again	to	exit	from	the	structure,	and	save	the	changes.

• Keep	pressing	F4	to	exit	from	the	repository	program.

	
	

Copyright	©	2012		Synergex	International,	Inc.

Structure	Aliasing
	
Structure	aliasing	is	a	mechanism	which	allows	you	to	apply	an	alternate
name	(or	alias)	to	a	repository	structure.	Aliasing	provides	a	mechanism	to	be
able	to	generate	code	with	more	meaningful	names,	regardless	of	legacy
names	which	may	be	present	in	your	repository	or	data	definitions.	For
example,	your	customer	master	file	record	layout	might	be	defined	by	a
repository	structure	named	CUSMAS,	but	you	may	wish	to	refer	to	the
structure	by	an	alias	of	CUSTOMER	when	generating	code.

When	you	specify	an	alias	for	a	structure	that	alias	will	be	used	whenever	the
name	of	the	repository	structure	would	normally	be	used.	For	example	the
<STRUCTURE_NAME>	token	will	be	replaced	by	the	name	of	the	alias	that
you	have	provided	instead	of	the	name	of	the	actual	structure	being	used.

Specifying	Structure	Aliases

Structure	aliases	are	specified	via	the	-a	command-line	option.	You	can
specify	up	to	ten	aliases	after	the	-a	option,	based	on	the	number	of	structures
that	you	have	specified	after	the	-s	command	line	option.

For	example,	if	you	are	processing	a	single	repository	structure	your
command	line	might	look	something	like	this:

codegen	-s	CUSMAS	-a	CUSTOMER	-t	DataClass	-r

If	you	were	processing	multiple	structures,	and	wanted	to	apply	an	alias	to
each,	you	might	use	a	command	like	this:

codegen	-s	CUSMAS	ORDMAS	ORDLIN	-a	CUSTOMER
ORDER_MASTER	ORDER_LINE	-t	DataClass	-r

Accessing	the	Underlying	Structure

Swapping	out	the	structure	name	for	a	specified	alias	is	exactly	what	you	want
in	most	cases,	but	there	is	one	important	exception.	If	you	are	trying	to	access
the	actual	underlying	repository	structure,	then	using	the	alias	name	isn't	going
to	work.	For	example	if	you	have	aliased	your	CUSMAS	structure	as
CUSTOMER	then	the	following	template	code:

.include	"<STRUCTURE_NAME>"	repository,
structure="str<StructureName>"

Would	produce	the	following	output	file	code:

.include	"CUSTOMER"	repository,	structure="strCustomer"

Clearly	the	problem	is	that	there	is	no	CUSTOMER	structure	in	the	repository,
it's	just	an	alias	for	CUSMAS,	so	the	resulting	code	won't	compile.

The	solution	to	this	problem	is	provided	by	the
<STRUCTURE_NOALIAS>	token	which	is	always	replaced	by	the	name	of
the	underlying	repository	structure,	even	if	a	structure	alias	has	been	specified.
When	writing	templates	you	should	ALWAYS	use	this	token	when	you	are
trying	to	access	an	actual	repository	structure.	For	example:

.include	"<STRUCTURE_NOALIAS>"	repository,
structure="str<StructureName>"

Would	produce	something	output	file	code	like	this:

.include	"CUSMAS"	repository,	structure="strCustomer"

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

Structure	Mapping
	
There	are	occasions	when	it	is	useful	to	be	able	to	process	more	than	one
repository	structure	at	the	same	time,	or	at	least	to	have	the	ability	to	make
references	to	a	second	structure,	or	fields	in	the	second	structure.

For	example,	consider	the	situation	where	you	are	creating	routines	which	you
will	use	to	access	data	in	a	relational	database	table.	One	of	the	routines	that
you	create	might	be	responsible	for	creating	a	relational	database	table	based
on	the	attributes	of	a	repository	structure	(fields	become	columns,	etc.).	You
may	find	that	the	repository	structure	does	not	quite	meet	the	requirements	of
what	you	are	trying	to	achieve.	For	example,	you	may	want	to	assign	different
names	to	the	columns	it	the	database	table,	omit	some	fields	from	the	table,	or
perhaps	change	some	data	types.	You	can’t	change	the	current	repository
structure	to	meet	your	new	requirements,	because	that	would	impact	your
other	applications,	and	obviously	the	current	structure	needs	to	match	the
layout	of	the	actual	data	file.

To	assist	in	addressing	issues	like	these,	CodeGen	allows	you	to	create	a	new
repository	structure	and	then	“map”	the	new	structure	to	an	existing	structure.	
You	can	also	map	fields	in	the	new	structure	to	fields	in	the	original	structure.

To	map	a	new	structure	to	an	existing	structure	you	add	a	special	code	into	the
new	structures	long	description	or	user	text	field,	like	this:

@MAP=original_structure;

To	map	fields	in	your	new	structure	to	fields	in	an	existing	structure,	add
@MAP={otherfield};	to	the	new	fields	long	description	or	user	text	string,
like	this:

@MAP=original_field;

Note	that	in	both	cases	it	is	important	that	the	word	MAP	appears	in
uppercase,	and	there	should	be	no	spaces	between	the	leading	@	character	and
the	trailing	;	(semi-colon)	character.

Creating	Mapped	Structures

To	assist	you	in	creating	mapped	structures	in	the	repository,	CodeGen

includes	a	utility	program	called	MapPrep.	This	utility	can	significantly
reduce	the	amount	of	effort	required	to	create	mapped	structures,	especially
when	the	structure	has	a	large	number	of	fields.

Mapped	Field	Conversions

When	performing	field	mapping,	you	may	optionally	specify	functions	to	be
called	when	data	is	mapped	into	the	field	in	the	new	target	structure,	or
unmapped	back	into	the	field	in	the	original	structure.	This	can	be	useful	if
you	need	to	perform	transformations	on	the	data	as	mapping	occurs.	For
example,	you	may	wish	to	convert	the	data	in	a	description	field	between
uppercase	in	the	original	field,	and	mixed	case	in	the	new	field,	or	convert
between	a	decimal	field	in	the	original	structure	and	an	implied	decimal	in	the
new	structure.

To	specify	a	mapping	conversion	function	for	a	mapped	field	you	add	another
special	code	in	the	fields’	user	text	string	or	long	description,	like	this:

@MAPF=mapping_function;

To	specify	a	mapping	un-conversion	function	for	a	mapped	field	you	add
another	special	code	in	the	fields’	user	text	string	or	long	description,	like	this:

@UNMAPF=unmapping_function;

Writing	Conversion	Functions

Mapping	and	unmapping	functions	must	be	declared	as	external	functions,
with	a	return	value	data	type	which	matches	the	target	field.		They	must	accept
a	single	parameter	which	is	used	to	pass	in	the	original	value	to	be	mapped	or
unmapped.		For	example:

function	DivideBy100,	d.										required	in	originalValue,	d
										endparams
proc
										freturn	(originalValue	/	100.0)
endfunction

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

Field	Subsets
	
Field	subsets	is	a	mechanism	which	allows	you	to	define	one	or	more	subsets
of	fields	within	a	repository	structure,	and	then	generate	code	based	on	a
subset	of	the	structure	which	contains	only	the	fields	that	have	been	declared
as	a	member	of	that	subset.

To	declare	that	a	field	is	a	member	of	a	subset,	add	text	like	the	example
below	to	the	fields	user	text	string:

@SUB=name;

Where	"name"	is	the	name	of	the	subset	that	you	wish	to	define.	For	example,
if	you	wish	to	create	a	subset	called	"COMBO"	in	a	structure,	and	have	that
subset	contain	two	fields,	then	you	would	add	this	text	to	the	user	text	string
for	both	of	those	fields:

@SUB=COMBO;

Once	you	have	a	subset	defined,	you	can	cause	CodeGen	to	include	only	the
fields	in	that	subset	by	using	the	-subset	command	line	option.	For	example:

codegen	-t	DataClass	-s	CUSTOMER	-subset	COMBO

Field	Subsets	From	Multiple	Structures

If	you	want	to	be	able	to	process	a	subset	of	fields	from	multiple	structures
then	you	can	combine	the	-ms	command	line	option	with	the	-subset
command	line	option.

Command	Line	Subsets

Another	way	to	define	a	subset	of	fields	to	be	processed	is	to	use	the	-fields
command-line	option.	With	this	option	you	can	name	the	fields	that	you	want
to	be	part	of	the	subset	directly	on	the	command	line,	without	the	need	to
modify	the	repository.	For	example:

codegen	-t	DataClass	-s	CUSTOMER	-fields	FIELD1	FIELD2	FIELD3

Command	Line	Subsets	With	Multiple	Structures

It	is	also	possible	to	specify	a	subset	of	fields	when	processing	multiple
structures.	For	example,	you	could	use	a	command	like	this:

codegen	-t	DataClass	-s	STR1	STR2	-ms	-fields	STR1.FIELD1
STR1.FIELD2	STR2.FIELD1	STR2.FIELD2

Video

Here's	the	Using	Field	Loop	Subsets	video.	Make	sure	you	select	a	high-
definition	version	of	the	video,	by	default	YouTube	tends	to	play	the	lowest
resolution	which	can	look	pretty	awful!

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

https://www.youtube.com/watch?v=XnTZvTpcpAg&list=PLq0aGk6nTIVvbmOwjlCu6bZeY6esBCjI-&index=6

Selection	Windows
	
If	a	particular	field	in	a	repository	structure	has	selection	items	associated	with
it,	those	selection	items	can	be	specified	in	one	of	two	ways.

1. The	items	can	be	defined	in	a	selection	"List"	directly	within	the
repository	field	(or	template)	definition.

2. The	items	can	be	defined	in	a	UI	Toolkit	selection	"Window",	which	is
defined	externally	in	a	window	script	file	and	referenced	by	name	in	the
repository	field	(or	template)	definition.

When	using	the	first	of	these	two	mechanisms	the	selection	list	data	is
available	to	CodeGen	and	can	be	used	to	generate	code	using	a	selection
loop	within	a	field	loop.

However,	when	a	repository	field	refers	to	an	external	selection	window,	the
information	about	the	fields	selections	is	not	automatically	available	to
CodeGen.	But	you	can	make	the	information	available	by	naming	the	window
script	file	containing	the	referenced	selection	windows	via	the	-ws	command
line	option.

When	using	the	-ws	option	bear	in	mind	that	it	may	be	the	case	that	several
fields	in	the	repository	structure	may	reference	different	selection	windows,
and	those	selection	windows	may	be	defined	in	different	window	script	files.
This	problem	can	be	compounded	if	multiple	repository	structures	are	being
processed	at	the	same	time.

The	-ws	option	only	allows	you	to	name	a	single	window	script	file,	so	if	you
find	that	you	concurrently	need	to	access	selection	windows	that	are	defined
in	multiple	window	script	files	then	we	suggest	that	you	temporarily
concatenate	all	of	your	window	script	files	into	a	single	file	and	then	name
that	file	with	the	-ws	option.

IMPORTANT:	If	you	do	concatenate	multiple	window	scripts	into	a	single
file,	remember	that	it	may	then	be	possible	to	have	duplicate	selection
windows	present	in	that	file!	In	this	situation	CodeGen	will	use	the	first
selection	window	that	it	encounters.	It	is	strongly	recommended	not	to	have
multiple	selection	windows	with	the	same	name!

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

Introduction	to	File	Header	Tokens
	
File	header	tokens	are	a	special	class	of	token	that	provides	high	level
processing	information	to	the	code	generator.	None	of	the	file	header	tokens
cause	any	output	to	be	written	directly	to	the	output	stream	of	the	current
template.	All	file	header	tokens	consist	of	a	pair	of	matching	opening	and
closing	tags	that	surround	some	significant	value.	Any	file	header	tokens	that
you	use	in	a	template	file	must	appear	together	at	the	very	top	of	the	template
file.

The	file	header	tokens	are:

File	Header	Token Description

<CODEGEN_FILENAME>

Allows	you	to
define	the
name	of	the
output	file
within	a
template	file.

<CODEGEN_FOLDER>
	

Allows	you	to
specify	a	sub-
folder	(below
the	main
output	folder)
in	which	the
output	file
should	be
created.

<OPTIONAL_USERTOKEN>

Allows	you	to
specify	that	a
template
requires	a
specific	user
defined	token,
but	allows
you	to
provides	a

default	value
for	that	user
token	if	a
value	has	not
been	provided
by	any	other
mechanism.

<PROCESS_TEMPLATE>

Allows	you	to
specify	that
an	additional
template	is	to
be	processed
immediately
after	the
current
template.

<PROVIDE_FILE>

Allows	you	to
specify	that
an	additional
file	is	also
provided	to
the	output
directory	as
part	of	the
processing	of
the	current
template.

<REQUIRES_CODEGEN_VERSION>
	 	

Allows	you	to
specify	that	a
particular
custom	button
loop
expression	is

<REQUIRES_CUSTOM_BUTTON_EXPRESSION> required	in
order	to	be
able	to
successfully
generate	code
from	the
template.

<REQUIRES_CUSTOM_BUTTON_TOKEN>

Allows	you	to
specify	that	a
particular
custom	button
loop	token	is
required	in
order	to	be
able	to
successfully
generate	code
from	the
template.

<REQUIRES_CUSTOM_ENUM_EXPRESSION>

Allows	you	to
specify	that	a
particular
custom
enumeration
expression	is
required	in
order	to	be
able	to
successfully
generate	code
from	the
template.

Allows	you	to
specify	that	a
particular

<REQUIRES_CUSTOM_ENUM_TOKEN>

custom
enumeration
loop	token	is
required	in
order	to	be
able	to
successfully
generate	code
from	the
template.

<REQUIRES_CUSTOM_ENUM_MEMBER_EXPRESSION>

Allows	you	to
specify	that	a
particular
custom
enumeration
member	loop
expression	is
required	in
order	to	be
able	to
successfully
generate	code
from	the
template.

<REQUIRES_CUSTOM_ENUM_MEMBER_TOKEN>

Allows	you	to
specify	that	a
particular
custom
enumeration
member	loop
token	is
required	in
order	to	be
able	to
successfully
generate	code

from	the
template.

<REQUIRES_CUSTOM_FIELD_EXPRESSION>

Allows	you	to
specify	that	a
particular
custom	field
loop
expression	is
required	in
order	to	be
able	to
successfully
generate	code
from	the
template.

<REQUIRES_CUSTOM_FIELD_TOKEN>

Allows	you	to
specify	that	a
particular
custom	field
loop	token	is
required	in
order	to	be
able	to
successfully
generate	code
from	the
template.

<REQUIRES_CUSTOM_FILE_EXPRESSION>

Allows	you	to
specify	that	a
particular
custom	file
loop
expression	is
required	in
order	to	be
able	to

successfully
generate	code
from	the
template.

<REQUIRES_CUSTOM_FILE_TOKEN>

Allows	you	to
specify	that	a
particular
custom	file
loop	token	is
required	in
order	to	be
able	to
successfully
generate	code
from	the
template.

<REQUIRES_CUSTOM_KEY_EXPRESSION>

Allows	you	to
specify	that	a
particular
custom	key
loop
expression	is
required	in
order	to	be
able	to
successfully
generate	code
from	the
template.

<REQUIRES_CUSTOM_KEY_TOKEN>

Allows	you	to
specify	that	a
particular
custom	key
loop	token	is
required	in

order	to	be
able	to
successfully
generate	code
from	the
template.

<REQUIRES_CUSTOM_LOOPUTIL_EXPRESSION>

Allows	you	to
specify	that	a
particular
custom	loop
utility
expression	is
required	in
order	to	be
able	to
successfully
generate	code
from	the
template.

<REQUIRES_CUSTOM_LOOPUTIL_TOKEN>

Allows	you	to
specify	that	a
particular
custom	loop
utility	token	is
required	in
order	to	be
able	to
successfully
generate	code
from	the
template.

Allows	you	to
specify	that	a
particular
custom	"not
in	loop"

<REQUIRES_CUSTOM_NOTINLOOP_EXPRESSION>
expression	is
required	in
order	to	be
able	to
successfully
generate	code
from	the
template.

<REQUIRES_CUSTOM_NOTINLOOP_TOKEN>

Allows	you	to
specify	that	a
particular
custom	"not
in	loop"	token
is	required	in
order	to	be
able	to
successfully
generate	code
from	the
template.

<REQUIRES_CUSTOM_RELATION_EXPRESSION>

Allows	you	to
specify	that	a
particular
custom
relation	loop
expression	is
required	in
order	to	be
able	to
successfully
generate	code
from	the
template.

Allows	you	to
specify	that	a
particular

<REQUIRES_CUSTOM_RELATION_TOKEN>

custom
relation	loop
token	is
required	in
order	to	be
able	to
successfully
generate	code
from	the
template.

<REQUIRES_CUSTOM_SEGMENT_EXPRESSION>

Allows	you	to
specify	that	a
particular
custom	key
segment	loop
expression	is
required	in
order	to	be
able	to
successfully
generate	code
from	the
template.

<REQUIRES_CUSTOM_SEGMENT_TOKEN>

Allows	you	to
specify	that	a
particular
custom	key
segment	loop
token	is
required	in
order	to	be
able	to
successfully
generate	code
from	the
template.

<REQUIRES_CUSTOM_SELECTION_EXPRESSION>

Allows	you	to
specify	that	a
particular
custom	field
selection	loop
expression	is
required	in
order	to	be
able	to
successfully
generate	code
from	the
template.

<REQUIRES_CUSTOM_SELECTION_TOKEN>

Allows	you	to
specify	that	a
particular
custom	field
selection	loop
token	is
required	in
order	to	be
able	to
successfully
generate	code
from	the
template.

<REQUIRES_CUSTOM_STRUCTLOOP_EXPRESSION>

Allows	you	to
specify	that	a
particular
custom
structure	loop
expression	is
required	in
order	to	be
able	to
successfully
generate	code

from	the
template.

<REQUIRES_CUSTOM_STRUCTLOOP_TOKEN>

Allows	you	to
specify	that	a
particular
custom
structure
token	is
required	in
order	to	be
able	to
successfully
generate	code
from	the
template.

<REQUIRES_CUSTOM_TAG_EXPRESSION>

Allows	you	to
specify	that	a
particular
custom	tag
loop
expression	is
required	in
order	to	be
able	to
successfully
generate	code
from	the
template.

<REQUIRES_CUSTOM_TAG_TOKEN>

Allows	you	to
specify	that	a
particular
custom	tag
loop	token	is
required	in
order	to	be

able	to
successfully
generate	code
from	the
template.

<REQUIRES_CUSTOM_EXPRESSION>

Allows	you	to
specify	that	a
particular
custom
generic	or
structure
expression	is
required	in
order	to	be
able	to
successfully
generate	code
from	the
template.

<REQUIRES_CUSTOM_TOKEN>

Allows	you	to
specify	that	a
particular
custom
generic	or
structure
token	is
required	in
order	to	be
able	to
successfully
generate	code
from	the
template.

Allows	you	to
specify	that	a
particular

<REQUIRES_OPTION>

command	line
option	is
required	in
order	to	be
able	to
successfully
generate	code
from	the
template.

<REQUIRES_USERTOKEN>

Allows	you	to
specify	that	a
particular
user-defined
token	is
required	in
order	to	be
able	to
successfully
generate	code
from	the
template.

	
	

Copyright	©	2012		Synergex	International,	Inc.

CODEGEN_FILENAME
	
This	file	header	token	allows	you	to	define	the	name	of	the	output	file	from
within	a	template	file.	The	name	of	the	output	file	should	appear	between	the
tokens	opening	and	closing	tags.	The	opening	and	closing	tags	must	be	on	the
same	line.

File	header	tokens	must	be	grouped	together	at	the	top	of	the	template	file.

Usage

<CODEGEN_FILENAME>SomeFile.txt</CODEGEN_FILENAME>

The	file	name	that	you	specify	may	contain	generic	expansion	tokens	or
structure	expansion	tokens,	which	will	be	expanded	as	normal.	For	example:

<CODEGEN_FILENAME>Get<StructureName>.dbl</CODEGEN_FILENAME>

Alternate	forms

None

See	also

• Other	file	header	tokens

Video

Here's	the	Controlling	Output	File	Names	video.	Make	sure	you	select	a	high-
definition	version	of	the	video,	by	default	YouTube	tends	to	play	the	lowest
resolution	which	can	look	pretty	awful!

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

https://www.youtube.com/watch?v=XH13irSzSKU&list=PLq0aGk6nTIVvbmOwjlCu6bZeY6esBCjI-&index=4

CODEGEN_FOLDER
	
This	file	header	token	allows	you	to	specify	that	any	output	files	created	from
the	template	should	be	placed	into	a	named	sub-folder	below	the	main	output
folder.	The	name	of	the	sub-folder	should	appear	between	the	tokens	opening
and	closing	tags.	The	opening	and	closing	tags	must	be	on	the	same	line.
File	header	tokens	must	be	grouped	together	at	the	top	of	the	template	file.

To	enable	the	use	of	this	token	you	must	use	the	-tf	command	line	option.

By	default,	if	a	namespace	is	being	used,	then	the	folder	name	will	also
appended	to	the	namespace,	but	that	behavior	can	be	overridden	by	using	the	-
nf	command	line	option.

Usage

<CODEGEN_FOLDER>ViewModel</CODEGEN_FOLDER>

Alternate	forms

None

See	also

• Other	file	header	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

OPTIONAL_USERTOKEN
	
This	file	header	token	allows	you	to	provide	a	default	value	for	an	optional
user	defined	token.	If	the	user-defined	token	has	been	specified	via	other
mechanisms	then	that	value	will	be	used	when	generating	code	from	the
template,	but	if	not	then	the	default	value	specified	in	this	token	will	be	used.

File	header	tokens	must	be	grouped	together	at	the	top	of	the	template	file.

Usage

<OPTIONAL_USERTOKEN>MYTOKEN=MyValue</OPTIONAL_USERTOKEN>

Alternate	forms

None

See	also

• <REQUIRES_USERTOKEN>

• User	defined	expansion	tokens

• Other	file	header	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

PROCESS_TEMPLATE
	
This	file	header	token	allows	you	to	specify	that	an	additional	template	is	to
be	processed	after	the	processing	of	the	current	template	completes.	The	name
of	the	additional	template	to	process	is	specified	between	the	opening	and
closing	tags	to	the	token.

File	header	tokens	must	be	grouped	together	at	the	top	of	the	template	file.

Usage

<PROCESS_TEMPLATE>other_template.tpl</PROCESS_TEMPLATE>

Alternate	forms

None

See	also

• <PROVIDE_FILE>

• Other	file	header	tokens

Video

Here's	the	Configuring	Template	Dependencies	video.	Make	sure	you	select	a
high-definition	version	of	the	video,	by	default	YouTube	tends	to	play	the
lowest	resolution	which	can	look	pretty	awful!

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

https://www.youtube.com/watch?v=bGQrD_bWZGc&list=PLq0aGk6nTIVvbmOwjlCu6bZeY6esBCjI-&index=8

PROVIDE_FILE
	
This	file	header	token	allows	you	to	specify	that	an	additional	file	is	also
provided	to	the	output	directory	as	part	of	the	processing	of	the	current
template.	The	name	of	the	file	to	be	provided	can	include	a	logical	name,
otherwise	CodeGen	will	expect	to	find	the	file	in	the	same	directory	as	your
template	files.	If	the	file	already	exists	in	the	output	directory	then	it	will	not
be	replaced,	even	if	the	-r	command	line	option	is	specified.

File	header	tokens	must	be	grouped	together	at	the	top	of	the	template	file.

Usage

<PROVIDE_FILE>somefile.def</PROVIDE_FILE>

<PROVIDE_FILE>INC:somefile.def</PROVIDE_FILE>

Alternate	forms

None

See	also

• <PROCESS_TEMPLATE>

• Other	file	header	tokens

	

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

REQUIRES_CODEGEN_VERSION
	
This	file	header	token	allows	you	to	specify	that	a	minimum	version	of
CodeGen	is	required	in	order	to	successfully	process	the	template.	If	the
version	of	CodeGen	being	used	does	not	satisfy	this	requirement	then
processing	will	terminate	and	an	error	message	will	be	displayed.
	
NOTE:	This	token	was	introduced	in	CodeGen	5.2.1	and	earlier	versions	will
not	process	this	token	correctly.	If	a	template	containing	this	token	is
processed	by	an	earlier	version	of	CodeGen	then	it	will	not	be	recognized	as	a
valid	token	and	the	token	will	simply	be	propagated	into	the	output	stream.
This	will	almost	certainly	cause	the	generated	code	to	fail,	and	the	presence	of
the	token	in	your	output	file	will	be	an	indication	of	the	problem.
	
File	header	tokens	must	be	grouped	together	at	the	top	of	the	template	file.

Usage

<REQUIRES_CODEGEN_VERSION>5.2.1</REQUIRES_CODEGEN_VERSION>

Alternate	forms

None

See	also

• Other	file	header	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

REQUIRES_CUSTOM_BUTTON_EXPRESSION
	
This	file	header	token	allows	you	to	specify	that	a	particular	custom	button
loop	expression	is	required	in	order	to	be	able	to	successfully	generate	code
from	the	template.	If	the	specified	custom	expression	has	not	been	provided
when	attempting	to	generate	code	from	the	template	then	CodeGen	will
display	an	error	and	will	stop	processing	the	template.

File	header	tokens	must	be	grouped	together	at	the	top	of	the	template	file.

Usage

<REQUIRES_CUSTOM_BUTTON_EXPRESSION>MYEXPRESSION</REQUIRES_CUSTOM_BUTTON_EXPRESSION>

Alternate	forms

None

See	also

• Custom	Expression	Tokens

• Other	file	header	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

REQUIRES_CUSTOM_BUTTON_TOKEN
	
This	file	header	token	allows	you	to	specify	that	a	particular	custom	button
loop	token	is	required	in	order	to	be	able	to	successfully	generate	code	from
the	template.	If	the	specified	custom	token	has	not	been	provided	when
attempting	to	generate	code	from	the	template	then	CodeGen	will	display	an
error	and	will	stop	processing	the	template.

File	header	tokens	must	be	grouped	together	at	the	top	of	the	template	file.

Usage

<REQUIRES_CUSTOM_BUTTON_TOKEN>MYTOKEN</REQUIRES_CUSTOM_BUTTON_TOKEN>

Alternate	forms

None

See	also

• Custom	Expansion	Tokens

• Other	file	header	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

REQUIRES_CUSTOM_ENUM_EXPRESSION
	
This	file	header	token	allows	you	to	specify	that	a	particular	custom
enumeration	loop	expression	is	required	in	order	to	be	able	to	successfully
generate	code	from	the	template.	If	the	specified	custom	expression	has	not
been	provided	when	attempting	to	generate	code	from	the	template	then
CodeGen	will	display	an	error	and	will	stop	processing	the	template.

File	header	tokens	must	be	grouped	together	at	the	top	of	the	template	file.

Usage

<REQUIRES_CUSTOM_ENUM_EXPRESSION>MYEXPRESSION</REQUIRES_CUSTOM_ENUM_EXPRESSION>

Alternate	forms

None

See	also

• Custom	Expression	Tokens

• Other	file	header	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

REQUIRES_CUSTOM_ENUM_TOKEN
	
This	file	header	token	allows	you	to	specify	that	a	particular	custom	enum
loop	token	is	required	in	order	to	be	able	to	successfully	generate	code	from
the	template.	If	the	specified	custom	token	has	not	been	provided	when
attempting	to	generate	code	from	the	template	then	CodeGen	will	display	an
error	and	will	stop	processing	the	template.

File	header	tokens	must	be	grouped	together	at	the	top	of	the	template	file.

Usage

<REQUIRES_CUSTOM_ENUM_TOKEN>MYTOKEN</REQUIRES_CUSTOM_ENUM_TOKEN>

Alternate	forms

None

See	also

• Custom	Expansion	Tokens

• Other	file	header	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

REQUIRES_CUSTOM_ENUM_MEMBER_EXPRESSION
	
This	file	header	token	allows	you	to	specify	that	a	particular	custom
enumeration	member	loop	expression	is	required	in	order	to	be	able	to
successfully	generate	code	from	the	template.	If	the	specified	custom
expression	has	not	been	provided	when	attempting	to	generate	code	from	the
template	then	CodeGen	will	display	an	error	and	will	stop	processing	the
template.

File	header	tokens	must	be	grouped	together	at	the	top	of	the	template	file.

Usage

<REQUIRES_CUSTOM_ENUM_MEMBER_EXPRESSION>MYEXPRESSION</REQUIRES_CUSTOM_ENUM_MEMBER_EXPRESSION>

Alternate	forms

None

See	also

• Custom	Expression	Tokens

• Other	file	header	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

REQUIRES_CUSTOM_ENUM_MEMBER_TOKEN
	
This	file	header	token	allows	you	to	specify	that	a	particular	custom	enum
member	loop	token	is	required	in	order	to	be	able	to	successfully	generate
code	from	the	template.	If	the	specified	custom	token	has	not	been	provided
when	attempting	to	generate	code	from	the	template	then	CodeGen	will
display	an	error	and	will	stop	processing	the	template.

File	header	tokens	must	be	grouped	together	at	the	top	of	the	template	file.

Usage

<REQUIRES_CUSTOM_ENUM_MEMBER_TOKEN>MYTOKEN</REQUIRES_CUSTOM_ENUM_MEMBER_TOKEN>

Alternate	forms

None

See	also

• Custom	Expansion	Tokens

• Other	file	header	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

REQUIRES_CUSTOM_FIELD_EXPRESSION
	
This	file	header	token	allows	you	to	specify	that	a	particular	custom	field	loop
expression	is	required	in	order	to	be	able	to	successfully	generate	code	from
the	template.	If	the	specified	custom	expression	has	not	been	provided	when
attempting	to	generate	code	from	the	template	then	CodeGen	will	display	an
error	and	will	stop	processing	the	template.

File	header	tokens	must	be	grouped	together	at	the	top	of	the	template	file.

Usage

<REQUIRES_CUSTOM_FIELD_EXPRESSION>MYEXPRESSION</REQUIRES_CUSTOM_FIELD_EXPRESSION>

Alternate	forms

None

See	also

• Custom	Expression	Tokens

• Other	file	header	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

REQUIRES_CUSTOM_FIELD_TOKEN
	
This	file	header	token	allows	you	to	specify	that	a	particular	custom	field	loop
token	is	required	in	order	to	be	able	to	successfully	generate	code	from	the
template.	If	the	specified	custom	token	has	not	been	provided	when
attempting	to	generate	code	from	the	template	then	CodeGen	will	display	an
error	and	will	stop	processing	the	template.

File	header	tokens	must	be	grouped	together	at	the	top	of	the	template	file.

Usage

<REQUIRES_CUSTOM_FIELD_TOKEN>MYTOKEN</REQUIRES_CUSTOM_FIELD_TOKEN>

Alternate	forms

None

See	also

• Custom	Expansion	Tokens

• Other	file	header	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

REQUIRES_CUSTOM_FILE_EXPRESSION
	
This	file	header	token	allows	you	to	specify	that	a	particular	custom	file	loop
expression	is	required	in	order	to	be	able	to	successfully	generate	code	from
the	template.	If	the	specified	custom	expression	has	not	been	provided	when
attempting	to	generate	code	from	the	template	then	CodeGen	will	display	an
error	and	will	stop	processing	the	template.

File	header	tokens	must	be	grouped	together	at	the	top	of	the	template	file.

Usage

<REQUIRES_CUSTOM_FILE_EXPRESSION>MYEXPRESSION</REQUIRES_CUSTOM_FILE_EXPRESSION>

Alternate	forms

None

See	also

• Custom	Expression	Tokens

• Other	file	header	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

REQUIRES_CUSTOM_FILE_TOKEN
	
This	file	header	token	allows	you	to	specify	that	a	particular	custom	file	loop
token	is	required	in	order	to	be	able	to	successfully	generate	code	from	the
template.	If	the	specified	custom	token	has	not	been	provided	when
attempting	to	generate	code	from	the	template	then	CodeGen	will	display	an
error	and	will	stop	processing	the	template.

File	header	tokens	must	be	grouped	together	at	the	top	of	the	template	file.

Usage

<REQUIRES_CUSTOM_FILE_TOKEN>MYTOKEN</REQUIRES_CUSTOM_FILE_TOKEN>

Alternate	forms

None

See	also

• Custom	Expansion	Tokens

• Other	file	header	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

REQUIRES_CUSTOM_KEY_EXPRESSION
	
This	file	header	token	allows	you	to	specify	that	a	particular	custom	key	loop
expression	is	required	in	order	to	be	able	to	successfully	generate	code	from
the	template.	If	the	specified	custom	expression	has	not	been	provided	when
attempting	to	generate	code	from	the	template	then	CodeGen	will	display	an
error	and	will	stop	processing	the	template.

File	header	tokens	must	be	grouped	together	at	the	top	of	the	template	file.

Usage

<REQUIRES_CUSTOM_KEY_EXPRESSION>MYEXPRESSION</REQUIRES_CUSTOM_KEY_EXPRESSION>

Alternate	forms

None

See	also

• Custom	Expression	Tokens

• Other	file	header	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

REQUIRES_CUSTOM_KEY_TOKEN
	
This	file	header	token	allows	you	to	specify	that	a	particular	custom	key	loop
token	is	required	in	order	to	be	able	to	successfully	generate	code	from	the
template.	If	the	specified	custom	token	has	not	been	provided	when
attempting	to	generate	code	from	the	template	then	CodeGen	will	display	an
error	and	will	stop	processing	the	template.

File	header	tokens	must	be	grouped	together	at	the	top	of	the	template	file.

Usage

<REQUIRES_CUSTOM_KEY_TOKEN>MYTOKEN</REQUIRES_CUSTOM_KEY_TOKEN>

Alternate	forms

None

See	also

• Custom	Expansion	Tokens

• Other	file	header	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

REQUIRES_CUSTOM_LOOPUTIL_EXPRESSION
	
This	file	header	token	allows	you	to	specify	that	a	particular	custom	loop
utility	expression	is	required	in	order	to	be	able	to	successfully	generate	code
from	the	template.	If	the	specified	custom	expression	has	not	been	provided
when	attempting	to	generate	code	from	the	template	then	CodeGen	will
display	an	error	and	will	stop	processing	the	template.

File	header	tokens	must	be	grouped	together	at	the	top	of	the	template	file.

Usage

<REQUIRES_CUSTOM_LOOPUTIL_EXPRESSION>MYEXPRESSION</REQUIRES_CUSTOM_LOOPUTIL_EXPRESSION>

Alternate	forms

None

See	also

• Custom	Expression	Tokens

• Other	file	header	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

REQUIRES_CUSTOM_LOOPUTIL_TOKEN
	
This	file	header	token	allows	you	to	specify	that	a	particular	custom	loop
utility	token	is	required	in	order	to	be	able	to	successfully	generate	code	from
the	template.	If	the	specified	custom	token	has	not	been	provided	when
attempting	to	generate	code	from	the	template	then	CodeGen	will	display	an
error	and	will	stop	processing	the	template.

File	header	tokens	must	be	grouped	together	at	the	top	of	the	template	file.

Usage

<REQUIRES_CUSTOM_LOOPUTIL_TOKEN>MYTOKEN</REQUIRES_CUSTOM_LOOPUTIL_TOKEN>

Alternate	forms

None

See	also

• Custom	Expansion	Tokens

• Other	file	header	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

REQUIRES_CUSTOM_NOTINLOOP_EXPRESSION
	
This	file	header	token	allows	you	to	specify	that	a	particular	custom	"not	in
loop"	expression	is	required	in	order	to	be	able	to	successfully	generate	code
from	the	template.	If	the	specified	custom	expression	has	not	been	provided
when	attempting	to	generate	code	from	the	template	then	CodeGen	will
display	an	error	and	will	stop	processing	the	template.

File	header	tokens	must	be	grouped	together	at	the	top	of	the	template	file.

Usage

<REQUIRES_CUSTOM_NOTINLOOP_EXPRESSION>MYEXPRESSION</REQUIRES_CUSTOM_NOTINLOOP_EXPRESSION>

Alternate	forms

None

See	also

• Custom	Expression	Tokens

• Other	file	header	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

REQUIRES_CUSTOM_NOTINLOOP_TOKEN
	
This	file	header	token	allows	you	to	specify	that	a	particular	custom	"not	in
loop"	token	is	required	in	order	to	be	able	to	successfully	generate	code	from
the	template.	If	the	specified	custom	token	has	not	been	provided	when
attempting	to	generate	code	from	the	template	then	CodeGen	will	display	an
error	and	will	stop	processing	the	template.

File	header	tokens	must	be	grouped	together	at	the	top	of	the	template	file.

Usage

<REQUIRES_CUSTOM_NOTINLOOP_TOKEN>MYTOKEN</REQUIRES_CUSTOM_NOTINLOOP_TOKEN>

Alternate	forms

None

See	also

• Custom	Expansion	Tokens

• Other	file	header	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

REQUIRES_CUSTOM_RELATION_EXPRESSION
	
This	file	header	token	allows	you	to	specify	that	a	particular	custom	relation
loop	expression	is	required	in	order	to	be	able	to	successfully	generate	code
from	the	template.	If	the	specified	custom	expression	has	not	been	provided
when	attempting	to	generate	code	from	the	template	then	CodeGen	will
display	an	error	and	will	stop	processing	the	template.

File	header	tokens	must	be	grouped	together	at	the	top	of	the	template	file.

Usage

<REQUIRES_CUSTOM_RELATION_EXPRESSION>MYEXPRESSION</REQUIRES_CUSTOM_RELATION_EXPRESSION>

Alternate	forms

None

See	also

• Custom	Expression	Tokens

• Other	file	header	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

REQUIRES_CUSTOM_RELATION_TOKEN
	
This	file	header	token	allows	you	to	specify	that	a	particular	custom	relation
loop	token	is	required	in	order	to	be	able	to	successfully	generate	code	from
the	template.	If	the	specified	custom	token	has	not	been	provided	when
attempting	to	generate	code	from	the	template	then	CodeGen	will	display	an
error	and	will	stop	processing	the	template.

File	header	tokens	must	be	grouped	together	at	the	top	of	the	template	file.

Usage

<REQUIRES_CUSTOM_RELATION_TOKEN>MYTOKEN</REQUIRES_CUSTOM_RELATION_TOKEN>

Alternate	forms

None

See	also

• Custom	Expansion	Tokens

• Other	file	header	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

REQUIRES_CUSTOM_SEGMENT_EXPRESSION
	
This	file	header	token	allows	you	to	specify	that	a	particular	custom	key
segment	loop	expression	is	required	in	order	to	be	able	to	successfully
generate	code	from	the	template.	If	the	specified	custom	expression	has	not
been	provided	when	attempting	to	generate	code	from	the	template	then
CodeGen	will	display	an	error	and	will	stop	processing	the	template.

File	header	tokens	must	be	grouped	together	at	the	top	of	the	template	file.

Usage

<REQUIRES_CUSTOM_SEGMENT_EXPRESSION>MYEXPRESSION</REQUIRES_CUSTOM_SEGMENT_EXPRESSION>

Alternate	forms

None

See	also

• Custom	Expression	Tokens

• Other	file	header	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

REQUIRES_CUSTOM_SEGMENT_TOKEN
	
This	file	header	token	allows	you	to	specify	that	a	particular	custom	key
segment	loop	token	is	required	in	order	to	be	able	to	successfully	generate
code	from	the	template.	If	the	specified	custom	token	has	not	been	provided
when	attempting	to	generate	code	from	the	template	then	CodeGen	will
display	an	error	and	will	stop	processing	the	template.

File	header	tokens	must	be	grouped	together	at	the	top	of	the	template	file.

Usage

<REQUIRES_CUSTOM_SEGMENT_TOKEN>MYTOKEN</REQUIRES_CUSTOM_SEGMENT_TOKEN>

Alternate	forms

None

See	also

• Custom	Expansion	Tokens

• Other	file	header	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

REQUIRES_CUSTOM_SELECTION_EXPRESSION
	
This	file	header	token	allows	you	to	specify	that	a	particular	custom	field
selection	loop	expression	is	required	in	order	to	be	able	to	successfully
generate	code	from	the	template.	If	the	specified	custom	expression	has	not
been	provided	when	attempting	to	generate	code	from	the	template	then
CodeGen	will	display	an	error	and	will	stop	processing	the	template.

File	header	tokens	must	be	grouped	together	at	the	top	of	the	template	file.

Usage

<REQUIRES_CUSTOM_SELECTION_EXPRESSION>MYEXPRESSION</REQUIRES_CUSTOM_SELECTION_EXPRESSION>

Alternate	forms

None

See	also

• Custom	Expression	Tokens

• Other	file	header	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

REQUIRES_CUSTOM_SELECTION_TOKEN
	
This	file	header	token	allows	you	to	specify	that	a	particular	custom	field
selection	loop	loop	token	is	required	in	order	to	be	able	to	successfully
generate	code	from	the	template.	If	the	specified	custom	token	has	not	been
provided	when	attempting	to	generate	code	from	the	template	then	CodeGen
will	display	an	error	and	will	stop	processing	the	template.

File	header	tokens	must	be	grouped	together	at	the	top	of	the	template	file.

Usage

<REQUIRES_CUSTOM_SELECTION_TOKEN>MYTOKEN</REQUIRES_CUSTOM_SELECTION_TOKEN>

Alternate	forms

None

See	also

• Custom	Expansion	Tokens

• Other	file	header	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

REQUIRES_CUSTOM_STRUCTLOOP_EXPRESSION
	
This	file	header	token	allows	you	to	specify	that	a	particular	custom	structure
loop	expression	is	required	in	order	to	be	able	to	successfully	generate	code
from	the	template.	If	the	specified	custom	expression	has	not	been	provided
when	attempting	to	generate	code	from	the	template	then	CodeGen	will
display	an	error	and	will	stop	processing	the	template.

File	header	tokens	must	be	grouped	together	at	the	top	of	the	template	file.

Usage

<REQUIRES_CUSTOM_STRUCTLOOP_EXPRESSION>MYEXPRESSION</REQUIRES_CUSTOM_STRUCTLOOP_EXPRESSION>

Alternate	forms

None

See	also

• Custom	Expression	Tokens

• Other	file	header	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

REQUIRES_CUSTOM_STRUCTLOOP_TOKEN
	
This	file	header	token	allows	you	to	specify	that	a	particular	custom	structure
loop	token	is	required	in	order	to	be	able	to	successfully	generate	code	from
the	template.	If	the	specified	custom	token	has	not	been	provided	when
attempting	to	generate	code	from	the	template	then	CodeGen	will	display	an
error	and	will	stop	processing	the	template.

File	header	tokens	must	be	grouped	together	at	the	top	of	the	template	file.

Usage

<REQUIRES_CUSTOM_STRUCTLOOP_TOKEN>MYTOKEN</REQUIRES_CUSTOM_STRUCTLOOP_TOKEN>

Alternate	forms

None

See	also

• Custom	Expansion	Tokens

• Other	file	header	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

REQUIRES_CUSTOM_TAG_EXPRESSION
	
This	file	header	token	allows	you	to	specify	that	a	particular	custom	tag	loop
expression	is	required	in	order	to	be	able	to	successfully	generate	code	from
the	template.	If	the	specified	custom	expression	has	not	been	provided	when
attempting	to	generate	code	from	the	template	then	CodeGen	will	display	an
error	and	will	stop	processing	the	template.

File	header	tokens	must	be	grouped	together	at	the	top	of	the	template	file.

Usage

<REQUIRES_CUSTOM_TAG_EXPRESSION>MYEXPRESSION</REQUIRES_CUSTOM_TAG_EXPRESSION>

Alternate	forms

None

See	also

• Custom	Expression	Tokens

• Other	file	header	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

REQUIRES_CUSTOM_TAG_TOKEN
	
This	file	header	token	allows	you	to	specify	that	a	particular	custom	tag	loop
token	is	required	in	order	to	be	able	to	successfully	generate	code	from	the
template.	If	the	specified	custom	token	has	not	been	provided	when
attempting	to	generate	code	from	the	template	then	CodeGen	will	display	an
error	and	will	stop	processing	the	template.

File	header	tokens	must	be	grouped	together	at	the	top	of	the	template	file.

Usage

<REQUIRES_CUSTOM_TAG_TOKEN>MYTOKEN</REQUIRES_CUSTOM_TAG_TOKEN>

Alternate	forms

None

See	also

• Custom	Expansion	Tokens

• Other	file	header	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

REQUIRES_CUSTOM_EXPRESSION
	
This	file	header	token	allows	you	to	specify	that	a	particular	custom	generic	or
structure	expression	is	required	in	order	to	be	able	to	successfully	generate
code	from	the	template.	If	the	specified	custom	expression	has	not	been
provided	when	attempting	to	generate	code	from	the	template	then	CodeGen
will	display	an	error	and	will	stop	processing	the	template.

File	header	tokens	must	be	grouped	together	at	the	top	of	the	template	file.

Usage

<REQUIRES_CUSTOM_EXPRESSION>MYEXPRESSION</REQUIRES_CUSTOM_EXPRESSION>

Alternate	forms

None

See	also

• Custom	Expression	Tokens

• Other	file	header	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

REQUIRES_CUSTOM_TOKEN
	
This	file	header	token	allows	you	to	specify	that	a	particular	custom	generic	or
structure	expansion	token	is	required	in	order	to	be	able	to	successfully
generate	code	from	the	template.	If	the	specified	custom	token	has	not	been
provided	when	attempting	to	generate	code	from	the	template	then	CodeGen
will	display	an	error	and	will	stop	processing	the	template.

File	header	tokens	must	be	grouped	together	at	the	top	of	the	template	file.

Usage

<REQUIRES_CUSTOM_TOKEN>MYTOKEN</REQUIRES_CUSTOM_TOKEN>

Alternate	forms

None

See	also

• Custom	Expansion	Tokens

• Other	file	header	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

REQUIRES_OPTION
	
This	file	header	token	allows	you	to	specify	that	a	particular	command	line
option	is	required	in	order	to	be	able	to	successfully	generate	code	from	the
template.

File	header	tokens	must	be	grouped	together	at	the	top	of	the	template	file.

Usage

<REQUIRES_OPTION>code</REQUIRES_OPTION>

Supported	Options

	Code 	Command
Line	Option 	Description

	FL 	-f	l 	Include	fields	which	are	"Excluded	by	Language"
in	field	loop	processing.

	FO 	-f	o 	Include	overlay	fields	in	field	loop	processing.

	FR 	-f	r 	Exclude	fields	which	are	"Excluded	by
ReportWriter"	from	field	loop	processing.

	FT 	-f	t 	Exclude	fields	which	are	"Excluded	by	Tookit"
from	field	loop	processing.

	FW 	-f	w 	Exclude	fields	which	are	"Excluded	by	Web"	from
field	loop	processing.

	PREFIX 	-prefix
<value> 	Prefix	field	names	with	<value>.

	SUBSET 	-subset<name> 	Only	process	fields	belonging	to	the	named	subset.

TF
	 -tf Allow	template-defined	folders.

If	the	required	command	line	option	was	not	used	when	attempting	to	generate
code	from	the	template	then	CodeGen	will	display	an	error	and	will	stop
processing	the	template.

Alternate	forms

None

See	also

• Command	Line	Reference

• Other	file	header	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

REQUIRES_USERTOKEN
	
This	file	header	token	allows	you	to	specify	that	a	particular	user-defined
token	is	required	in	order	to	be	able	to	successfully	generate	code	from	the
template.	If	the	required	user-defined	token	has	not	been	specified	when
attempting	to	generate	code	from	the	template	then	CodeGen	will	display	an
error	and	will	stop	processing	the	template.

File	header	tokens	must	be	grouped	together	at	the	top	of	the	template	file.

Usage

<REQUIRES_USERTOKEN>MYTOKEN</REQUIRES_USERTOKEN>

Alternate	forms

None

See	also

• <OPTIONAL_USERTOKEN>

• User	defined	expansion	tokens

• Other	file	header	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

Generic	Expansion	Tokens
	
Generic	expansion	tokens	are	tokens	which	insert	generic	(non	structure
specific)	information	or	take	some	generic	action,	and	can	be	used	at
anywhere	in	a	template	file.

Generic	Token Description

<AUTHOR>
Inserts	your	name,	which	you	specify	via
the	environment	variable
CODEGEN_AUTHOR.

<CODEGEN_VERSION> Inserts	a	CodeGen	version	identifier.

<COMPANY>
Inserts	your	company	name,	which	you
specify	via	the	environment	variable
CODEGEN_COMPANY.

<COUNTER_1_DECREMENT>Decrements	the	value	of	counter	1	by	one.

<COUNTER_1_INCREMENT> Increments	the	value	of	counter	1	by	one.

<COUNTER_1_RESET> Resets	the	value	of	counter	1	to	zero.

<COUNTER_1_VALUE> Inserts	the	current	value	of	counter	1	into
the	code	stream.

<COUNTER_2_DECREMENT>Decrements	the	value	of	counter	2	by	one.

<COUNTER_2_INCREMENT> Increments	the	value	of	counter	2	by	one.

<COUNTER_2_RESET> Resets	the	value	of	counter	2	to	zero.

<COUNTER_2_VALUE> Inserts	the	current	value	of	counter	2	into
the	code	stream.

<DATABASE>
	

Inserts	the	name	of	the	current	relational
database	being	targeted.	For	more
information	refer	to	the	command	line

option	-database.

<DATE> Inserts	the	current	date	in	MM/DD/YYYY
format.

<DATE1> Inserts	the	current	date	in	DD/MM/YYYY
format.

<DAY> Inserts	the	current	numeric	day	of	the	month
in	DD	format

<ENV:variable>

Inserts	the	value	of	an	environment	variable
into	the	output	stream.	If	the	environment
variable	does	not	exist	then	an	error	is
generated.

<ENVIFEXIST:variable>

Inserts	the	value	of	an	environment	variable
into	the	output	stream.	If	the	environment
variable	does	not	exist	then	the	token	will
be	ignored	and	no	error	will	be	generated.

<FILE:name.ext>

Inserts	the	contents	of	a	file	into	the	output
stream.	The	file	specification	can	include	an
environment	variable.	If	the	file	does	not
exist	then	an	error	is	generated.

<FILEIFEXIST:name.ext>

Inserts	the	contents	of	a	file	into	the	output
stream.	The	file	specification	can	include	an
environment	variable.	If	the	file	does	not
exist	then	the	token	is	ignored	and	no	error
is	generated.

<GUID1>,	<GUID2>,	<GUID3> Inserts	one	of	three	GUID	values	that	areunique	to	the	current	CodeGen	task.

<HOST_DNS_NAME> Inserts	the	DNS	name	of	the	computer	that
you	are	running	CodeGen	on.

<HOST_IP_ADDRESS> Inserts	the	IP	address	name	of	the	computer
that	you	are	running	CodeGen	on.

<MONTH>
Inserts	the	current	numeric	month	number
in	MM	format.

<MONTHNAME> Inserts	the	alphanumeric	name	of	the
current	month.

<MONTHSHORTNAME> Inserts	the	abbreviated	alphanumeric	name
of	the	current	month.

<NAMESPACE>

Inserts	the	default	namespace	which	can	be
specified	either	via	the	environment
variable	SYNDEFNS,	or	via	the	-n
command	line	option.

<TEMPLATE>
Inserts	the	base	name	of	the	template	file.
The	base	name	of	the	template	is	the	name
of	the	template	file	with	no	file	extension.

<RANDOM_10>
This	token	inserts	a	random	number	in	the
range	of	1	to	10.
	

<RANDOM_100>
This	token	inserts	a	random	number	in	the
range	of	1	to	100.
	

<RANDOM_1000>
This	token	inserts	a	random	number	in	the
range	of	1	to	1000.
	

<RANDOM_INT>
This	token	inserts	a	random	number	in	the
range	of	1	to	2147483647.
	

<TIME> Inserts	the	current	time	in	24	hour	HH:MM
format.

<WEEKDAY> Inserts	the	name	of	the	current	weekday.

<YEAR> Inserts	the	current	year	in	YYYY	format.

	
	

Copyright	©	2012		Synergex	International,	Inc.

AUTHOR
	
This	token	inserts	your	name,	which	you	specify	via	the	environment	variable
CODEGEN_AUTHOR.

When	you	install	CodeGen	you	are	prompted	to	enter	your	name	during	the
installation	process	and	the	value	that	you	enter	is	saved	in	the	Windows
Registry.		If	CodeGen	finds	that	the	environment	variable
CODEGEN_AUTHOR	is	not	set	then	it	will	attempt	to	read	this	value	from
the	registry	and	will	set	the	CODEGEN_AUTHOR	environment	variable
automatically.

If	no	author	name	can	be	determined	the	string	CodeGen	is	inserted.

Usage

<AUTHOR>

Alternate	forms

None

See	also

• Other	generic	tokens

Video

Here's	the	Using	AUTHOR	and	COMPANY	Tokens	video.	Make	sure	you
select	a	high-definition	version	of	the	video,	by	default	YouTube	tends	to	play
the	lowest	resolution	which	can	look	pretty	awful!

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

https://www.youtube.com/watch?v=-qBOIB_iMkI&list=PLq0aGk6nTIVvbmOwjlCu6bZeY6esBCjI-&index=3

CODEGEN_VERSION
	
This	token	inserts	a	CodeGen	version	identifier.	For	example	CodeGen
V5.0.0

Usage

<CODEGEN_VERSION>

Alternate	forms

None

See	also

• Other	generic	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

COMPANY
	
This	token	is	inserts	your	company	name,	which	you	specify	via	the
environment	variable	CODEGEN_COMPANY.	For	example	Synergex
Professional	Services	Group

When	you	install	CodeGen	on	a	Windows	system	you	are	prompted	to	enter
your	company	during	the	installation	process	and	the	value	that	you	enter	is
saved	in	the	Windows	Registry.		If	CodeGen	finds	that	the	environment
variable	CODEGEN_COMPANY	is	not	set	then	it	will	attempt	to	read	this
value	from	the	registry	and	will	set	the	CODEGEN_COMPANY	environment
variable	automatically.

If	no	company	name	can	be	determined	the	string	Synergex	is	inserted.

Usage

<COMPANY>

Alternate	forms

None

See	also

• Other	generic	tokens

Video

Here's	the	Using	AUTHOR	and	COMPANY	Tokens	video.	Make	sure	you
select	a	high-definition	version	of	the	video,	by	default	YouTube	tends	to	play
the	lowest	resolution	which	can	look	pretty	awful!

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

https://www.youtube.com/watch?v=-qBOIB_iMkI&list=PLq0aGk6nTIVvbmOwjlCu6bZeY6esBCjI-&index=3

COUNTER_1_DECREMENT
	
CodeGen	provides	two	built	in	counters	that	developers	can	use	when
designing	template	files.	For	each	code	generation	task	both	counters	start	off
with	a	value	of	zero.	Tokens	in	the	template	file	can	cause	the	value	of	each
counter	to	be	incremented,	decremented	or	reset	to	zero.	Another	token	can	be
used	to	insert	the	current	value	of	a	counter	into	the	text	output	stream.

This	token	decrements	the	value	of	counter	1	by	1.	If	the	token	appears	inside
of	an	expression	that	currently	evaluates	to	false	then	the	value	will	not	be
decremented.

This	token	does	not	cause	any	text	to	be	written	to	the	output	stream.

Usage

<COUNTER_1_DECREMENT>

Alternate	forms

None

See	also

• Other	generic	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

COUNTER_1_INCREMENT
	
CodeGen	provides	two	built	in	counters	that	developers	can	use	when
designing	template	files.	For	each	code	generation	task	both	counters	start	off
with	a	value	of	zero.	Tokens	in	the	template	file	can	cause	the	value	of	each
counter	to	be	incremented,	decremented	or	reset	to	zero.	Another	token	can	be
used	to	insert	the	current	value	of	a	counter	into	the	text	output	stream.

This	token	increments	the	value	of	counter	1	by	1.	If	the	token	appears	inside
of	an	expression	that	currently	evaluates	to	false	then	the	value	will	not	be
incremented.

This	token	does	not	cause	any	text	to	be	written	to	the	output	stream.

Usage

<COUNTER_1_INCREMENT>

Alternate	forms

None

See	also

• Other	generic	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

COUNTER_1_RESET
	
CodeGen	provides	two	built	in	counters	that	developers	can	use	when
designing	template	files.	For	each	code	generation	task	both	counters	start	off
with	a	value	of	zero.	Tokens	in	the	template	file	can	cause	the	value	of	each
counter	to	be	incremented,	decremented	or	reset	to	zero.	Another	token	can	be
used	to	insert	the	current	value	of	a	counter	into	the	text	output	stream.

This	token	resets	the	value	of	counter	1	to	0.	If	the	token	appears	inside	of	an
expression	that	currently	evaluates	to	false	then	the	value	will	not	be	reset.

This	token	does	not	cause	any	text	to	be	written	to	the	output	stream.

Usage

<COUNTER_1_RESET>

Alternate	forms

None

See	also

• Other	generic	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

COUNTER_1_VALUE
	
CodeGen	provides	two	built	in	counters	that	developers	can	use	when
designing	template	files.	For	each	code	generation	task	both	counters	start	off
with	a	value	of	zero.	Tokens	in	the	template	file	can	cause	the	value	of	each
counter	to	be	incremented,	decremented	or	reset	to	zero.	Another	token	can	be
used	to	insert	the	current	value	of	a	counter	into	the	text	output	stream.

This	token	inserts	the	current	value	of	counter	1	into	the	output	stream.	If	the
token	appears	inside	of	an	expression	that	currently	evaluates	to	false	then	the
value	will	not	be	inserted.

Usage

<COUNTER_1_VALUE>

Alternate	forms

None

See	also

• Other	generic	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

COUNTER_2_DECREMENT
	
CodeGen	provides	two	built	in	counters	that	developers	can	use	when
designing	template	files.	For	each	code	generation	task	both	counters	start	off
with	a	value	of	zero.	Tokens	in	the	template	file	can	cause	the	value	of	each
counter	to	be	incremented,	decremented	or	reset	to	zero.	Another	token	can	be
used	to	insert	the	current	value	of	a	counter	into	the	text	output	stream.

This	token	decrements	the	value	of	counter	2	by	1.	If	the	token	appears	inside
of	an	expression	that	currently	evaluates	to	false	then	the	value	will	not	be
decremented.

This	token	does	not	cause	any	text	to	be	written	to	the	output	stream.

Usage

<COUNTER_2_DECREMENT>

Alternate	forms

None

See	also

• Other	generic	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

COUNTER_2_INCREMENT
	
CodeGen	provides	two	built	in	counters	that	developers	can	use	when
designing	template	files.	For	each	code	generation	task	both	counters	start	off
with	a	value	of	zero.	Tokens	in	the	template	file	can	cause	the	value	of	each
counter	to	be	incremented,	decremented	or	reset	to	zero.	Another	token	can	be
used	to	insert	the	current	value	of	a	counter	into	the	text	output	stream.

This	token	increments	the	value	of	counter	2	by	1.	If	the	token	appears	inside
of	an	expression	that	currently	evaluates	to	false	then	the	value	will	not	be
incremented.

This	token	does	not	cause	any	text	to	be	written	to	the	output	stream.

Usage

<COUNTER_2_INCREMENT>

Alternate	forms

None

See	also

• Other	generic	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

COUNTER_2_RESET
	
CodeGen	provides	two	built	in	counters	that	developers	can	use	when
designing	template	files.	For	each	code	generation	task	both	counters	start	off
with	a	value	of	zero.	Tokens	in	the	template	file	can	cause	the	value	of	each
counter	to	be	incremented,	decremented	or	reset	to	zero.	Another	token	can	be
used	to	insert	the	current	value	of	a	counter	into	the	text	output	stream.

This	token	resets	the	value	of	counter	2	to	0.	If	the	token	appears	inside	of	an
expression	that	currently	evaluates	to	false	then	the	value	will	not	be	reset.

This	token	does	not	cause	any	text	to	be	written	to	the	output	stream.

Usage

<COUNTER_2_RESET>

Alternate	forms

None

See	also

• Other	generic	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

COUNTER_2_VALUE
	
CodeGen	provides	two	built	in	counters	that	developers	can	use	when
designing	template	files.	For	each	code	generation	task	both	counters	start	off
with	a	value	of	zero.	Tokens	in	the	template	file	can	cause	the	value	of	each
counter	to	be	incremented,	decremented	or	reset	to	zero.	Another	token	can	be
used	to	insert	the	current	value	of	a	counter	into	the	text	output	stream.

This	token	inserts	the	current	value	of	counter	2	into	the	output	stream.	If	the
token	appears	inside	of	an	expression	that	currently	evaluates	to	false	then	the
value	will	not	be	inserted.

Usage

<COUNTER_2_VALUE>

Alternate	forms

None

See	also

• Other	generic	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

DATABASE
	
Inserts	the	name	of	the	current	relational	database	being	targeted.
	
Usage

<DATABASE>

Alternate	forms

None

Possible	Values

• MySQL

• PostgreSQL

• SQLServer

See	also

• Command	line	option	-database

• Environment	variable	CODEGEN_DATABASE_TYPE

	
	

Copyright	©	2012		Synergex	International,	Inc.

DATE
	
This	token	inserts	the	current	date	in	MM/DD/YYYY	format.	For	example
10/23/2008

Usage

<DATE>

Alternate	forms

None

See	also

• Other	generic	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

DATE1
	
This	token	inserts	the	current	date	in	DD/MM/YYYY	format.	For	example
23/10/2008

Usage

<DATE1>

Alternate	forms

None

See	also

• Other	generic	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

DAY
	
This	token	inserts	the	current	numeric	day	of	the	month	in	DD	format.	For
example	23

Usage

<DAY>

Alternate	forms

None

See	also

• Other	generic	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

ENV
	
Inserts	the	value	of	an	environment	variable	into	the	output	stream.	If	the
environment	variable	does	not	exist	then	an	error	is	generated.

Note	that	the	translation	value	of	the	environment	variable	may	generic	and
structure	expansion	tokens.

Usage

<ENV:variable>

Alternate	forms

None

See	also

• Other	generic	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

ENVIFEXIST
	
Inserts	the	value	of	an	environment	variable	into	the	output	stream.	If	the
environment	variable	does	not	exist	then	the	token	will	be	ignored	and	no
error	will	be	generated.

Note	that	the	translation	value	of	the	environment	variable	may	generic	and
structure	expansion	tokens.

Usage

<ENVIFEXIST:variable>

Alternate	forms

None

See	also

• Other	generic	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FILE
	
This	token	reads	the	content	of	a	text	file	and	inserts	the	resulting	data	into	the
output	stream.	The	file	can	either	be	located	in	the	current	directory,	or	you
can	include	a	logical	name	specification	to	specify	the	location	of	the	file.	If
the	file	is	not	found	then	an	error	is	generated.

The	file	may	contain	any	number	of	lines	of	text,	and	may	also	contain
generic	or	structure	expansion	tokens,	which	will	be	expanded	in	the	usual
way.	If	the	token	exists	on	the	same	line	as	and	subsequent	to	other	text,	then
the	first	record	from	the	file	will	follow	that	text	in	the	resulting	output	file.
Any	subsequent	records	from	the	file	will	appear	on	new	lines	in	the	output
file.

Usage

<FILE:name.ext>

<FILE:LOCATION:name.ext>

Alternate	forms

None

See	also

• Other	generic	tokens

Video

Here's	the	Using	Template	Include	Files	video.	Make	sure	you	select	a	high-
definition	version	of	the	video,	by	default	YouTube	tends	to	play	the	lowest
resolution	which	can	look	pretty	awful!

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

https://www.youtube.com/watch?v=dI_jx6qSoPs&index=7&list=PLq0aGk6nTIVvbmOwjlCu6bZeY6esBCjI-

FILEIFEXIST
	
This	token	reads	the	content	of	a	text	file	and	inserts	the	resulting	data	into	the
output	stream.	The	file	can	either	be	located	in	the	current	directory,	or	you
can	include	a	logical	name	specification	to	specify	the	location	of	the	file.	If
the	file	is	not	found	then	the	token	is	ignored	and	no	error	is	generated.

The	file	may	contain	any	number	of	lines	of	text,	and	may	also	contain
generic	or	structure	expansion	tokens,	which	will	be	expanded	in	the	usual
way.	If	the	token	exists	on	the	same	line	as	and	subsequent	to	other	text,	then
the	first	record	from	the	file	will	follow	that	text	in	the	resulting	output	file.
Any	subsequent	records	from	the	file	will	appear	on	new	lines	in	the	output
file.

Usage

<FILEIFEXIST:name.ext>

<FILEIFEXIST:LOCATION:name.ext>

Alternate	forms

None

See	also

• Other	generic	tokens

Video

Here's	the	Using	Template	Include	Files	video.	Make	sure	you	select	a	high-
definition	version	of	the	video,	by	default	YouTube	tends	to	play	the	lowest
resolution	which	can	look	pretty	awful!

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

https://www.youtube.com/watch?v=dI_jx6qSoPs&index=7&list=PLq0aGk6nTIVvbmOwjlCu6bZeY6esBCjI-

GUID1,	GUID2,	GUID3
	
CodeGen	supports	inserting	one	of	up	to	three	GUID	values	(e.g.	{8d881f51-
8d3e-4ee7-9e20-17ee24452da9})	into	the	output	stream.

Each	time	you	run	CodeGen	it	will	generate	new	values	for	the	three	GUID
values	exposed	by	these	tokens.	These	GUID	values	will	only	be	consistent
during	a	single	invocation	of	CodeGen.	The	next	time	you	invoke	CodeGen
new	values	will	be	generated.

If	you	need	to	use	the	same	GUID	value	in	multiple	templates	then	you	must
process	those	templates	all	at	the	same	time	during	a	single	invocation	of
CodeGen,	or	alternatively	you	could	generate	your	own	GUID	values	and
inject	them	via	a	user-defined	token.

Usage

<GUID1>

<GUID2>

<GUID3>

Alternate	forms

None

See	also

• Other	generic	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

HOST_DNS_NAME
	
Inserts	the	DNS	name	of	the	computer	that	you	are	running	CodeGen	on.	If
there	is	a	problem	determining	the	DNS	name	then	"LOCALHOST"	is	used.

Usage

<HOST_DNS_NAME>

Alternate	forms

• <host_dns_name>

See	also

• Other	generic	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

HOST_IP_ADDRESS
	
Inserts	the	IP	address	name	of	the	computer	that	you	are	running	CodeGen	on.
If	the	system	has	multiple	IP	addresses	then	the	first	IP	address	reported	by
Windows	is	used.	If	there	is	a	problem	determining	the	IP	address	then	the
"localhost"	address	of	"127.0.0.1"	is	used.

Usage

<HOST_IP_ADDRESS>

Alternate	forms

None

See	also

• Other	generic	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

MONTH
	
This	token	inserts	the	current	numeric	month	(MM).		For	example:	10

Usage

<MONTH>

Alternate	forms

None

See	also

• Other	generic	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

MONTHNAME
	
This	token	inserts	the	alphanumeric	name	of	the	current	month.	For	example:
October

Usage

<MONTHNAME>

Alternate	forms

None

See	also

• Other	generic	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

MONTHSHORTNAME
	
This	token	inserts	the	abbreviated	alphanumeric	name	of	the	current	month.
For	example:	Oct

Usage

<MONTHSHORTNAME>

Alternate	forms

None

See	also

• Other	generic	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

NAMESPACE
	
This	token	inserts	the	default	namespace,	which	can	be	specified	either	via	the
environment	variable	SYNDEFNS,	or	via	the	-n	command	line	option.	For
example:	SynPSG.CodeGen

If	a	namespace	token	is	encountered	and	no	default	namespace	can	be
determined	then	CodeGen	will	report	an	error.

Usage

<NAMESPACE>

Alternate	forms

None

See	also

• Other	generic	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

TEMPLATE
	
This	token	inserts	the	base	name	of	the	template	file.	The	base	name	of	the
template	is	the	name	of	the	template	file	with	no	file	extension.	For	example,
if	processing	a	template	called	get_record.tpl:	GET_RECORD

Usage

<TEMPLATE>

Alternate	forms

• <template>

See	also

• Other	generic	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

RANDOM_10
	
This	token	inserts	a	random	number	in	the	range	of	1	to	10.

Usage

<RANDOM_10>

Alternate	forms

None

See	also

• Other	generic	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

RANDOM_100
	
This	token	inserts	a	random	number	in	the	range	of	1	to	100.

Usage

<RANDOM_100>

Alternate	forms

None

See	also

• Other	generic	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

RANDOM_1000
	
This	token	inserts	a	random	number	in	the	range	of	1	to	1000.

Usage

<RANDOM_100>

Alternate	forms

None

See	also

• Other	generic	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

RANDOM_INT
	
This	token	inserts	a	random	number	in	the	range	of	1	to	2147483647.

Usage

<RANDOM_INT>

Alternate	forms

None

See	also

• Other	generic	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

TIME
	
<TIME>
This	token	inserts	the	current	time	in	24	hour	HH:MM	format.		For	example:
16:06

Usage

	

Alternate	forms

None

See	also

• Other	generic	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

WEEKDAY
	
This	token	inserts	the	name	of	the	current	weekday.		For	example:	Thursday

Usage

<WEEKDAY>

Alternate	forms

None

See	also

• Other	generic	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

YEAR
	
This	token	inserts	the	current	year	in	YYYY	format.	For	example	2010

Usage

<YEAR>

Alternate	forms

None

See	also

• Other	generic	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

Generic	Expression	Tokens
	
Generic	expressions	are	expressions	that	are	valid	for	use	anywhere	in	a
template	file.	CodeGen	supports	generic	expressions	via	the	<IF
expression>	and	</IF	[expression]>	tags.

Expression Description

<IF	COUNTER_n> The	current	value	of	counter	n	is	non-zero.
The	value	of	n	must	be	1	or	2.

<IF	COUNTER_n_op_val>

Evaluates	the	current	value	of	counter	n	based
on	the	specified	operator	and	value.	The	value
of	n	must	be	1	or	2,	corresponding	to	one	of
CodeGen's	two	template	based	counters,	and
the	comparison	value	val	must	be	an	integer
literal.	Possible	values	for	op	are:

		EQ				Equal	to
		NE				Not	equal	to
		LT				Less	than
		GT				Greater	than
		LE				Less	than	or	equal	to
		GE				Greater	than	or	equal	to
		DB				Divisible	by
	
An	example	of	using	this	expression	is:
	
		<IF	COUNTER_1_LE_10>
					template	code	for	the	first	10	items
		<ELSE>
					template	code	for	subsequent	items
		</IF>	

<IF	DATABASE_MYSQL>
	

The	database	being	targeted	is	MySQL.	Refer
to	command	line	option	-database.

<IF
DATABASE_POSTGRESQL>
	

The	database	being	targeted	is	PostgreSQL.
Refer	to	command	line	option	-database.

<IF
DATABASE_SQLSERVER>
	

The	database	being	targeted	is	SQL	Server.
Refer	to	command	line	option	-database.

<IF	DEBUG_LOGGING> CodeGen	is	being	run	with	debug	logging
enabled	(-d	command	line	option).

<IF	FIELD_PREFIX> A	field	prefix	string	has	been	specified	(-
prefix	command	line	option)

<IF	FIELD_SUBSET>
CodeGen	is	processing	a	subset	of	fields	(-
subset	command	line	option	or	-fields
command	line	option).

<IF
MULTIPLE_STRUCTURES>

Multiple	structures	are	being	processed	at	the
same	time	(-ms	command	line	option).

<IF	NAMESPACE> A	namespace	has	been	specified	(-n	command
line	option).

<IF	NOT_COUNTER_1> The	current	value	of	counter	1	is	zero.

<IF	NOT_COUNTER_2> The	current	value	of	counter	2	is	zero.

<IF	VERBOSE_LOGGING> CodeGen	is	being	run	with	verbose	logging
enabled	(-v	command	line	option).

	
	

Copyright	©	2012		Synergex	International,	Inc.

Structure	Expansion	Tokens
	
Structure	expansion	tokens	are	used	to	insert	information	about	the	current
Repository	structure	into	the	output	stream,	and	can	be	used	anywhere	in	a
template	file.

Structure	Token Description

<DATA_FIELDS_LIST> Inserts	a	comma-separated	list	of	a	structures
data	fields	(i.e.	non	primary	key)	fields.

<DISPLAY_FIELD> Inserts	the	name	of	the	structures	display	field,
if	defined.

<FILE_ADDRESSING> Inserts	the	addressing	size	of	the	structures
first	assigned	data	file.

<FILE_COMPRESSION>
Inserts	a	string	indicating	whether	the
structures	first	assigned	file	has	data
compression	enabled.

<FILE_DENSITY> Inserts	the	default	key	density	of	the	structures
first	assigned	file.

<FILE_DESC> Inserts	the	description	of	the	first	data	file
assigned	to	the	structure.

<FILE_NAME> Inserts	the	name	of	the	first	data	file	assigned
to	the	structure.

<FILE_NAME_NOEXT>
Inserts	the	name	of	the	first	data	file	assigned
to	the	structure,	with	the	file	extension
removed.

<FILE_PAGESIZE> Inserts	the	page	size	of	the	structures	first
assigned	file.

<FILE_RECTYPE> Inserts	a	string	indicating	the	record	type	of
the	first	data	file	assigned	to	the	structure.

<FILE_RPS_NAME>
	

Inserts	the	repository	name	of	the	first	file
definition	that	is	assigned	to	the	structure
being	processed.

<FILE_STATIC_RFA>
Inserts	a	string	indicating	whether	the
structures	first	assigned	file	has	static	RFA’s
enabled.

<FILE_TYPE> Inserts	a	string	indicating	the	type	of	the	first
data	file	assigned	to	the	structure.

<FILE_UTEXT> Inserts	the	user	text	string	of	the	first	data	file
assigned	to	the	structure.

<MAPPED_FILE> Inserts	the	file	specification	of	the	first	file
assigned	to	the	mapped	structure.

<MAPPED_STRUCTURE> Inserts	the	name	of	the	mapped	structure.

<PRIMARY_KEY_FIELD>

Inserts	the	name	of	the	first	segment	of	the
structures	primary	key.	This	token	only	works
with	structures	with	single	segment	primary
keys.

<STRUCTURE_#n>
Switches	context	to	a	different	structure.	Only
valid	when	processing	multiple	structures	with
the	-ms	option.

<STRUCTURE_CHILDREN>Inserts	the	number	of	the	structures	first	levelchild	members	(fields	and	groups).

<STRUCTURE_DESC> Inserts	the	structure	description.

<STRUCTURE_FIELDS>

Inserts	the	total	number	of	fields	in	the
structure.	If	the	structure	includes	any	array
fields	then	the	individual	array	field	elements
are	counted	towards	the	number	of	fields	in
the	structure.

Inserts	the	total	number	of	keys	defined	in	the

<STRUCTURE_KEYS> structure.

<STRUCTURE_LDESC> Inserts	the	structures	long	description.

<STRUCTURE_NAME>
Inserts	the	name	of	the	Repository	structure
that	is	currently	being	processed,	or	the
structures	alias	name	if	specified.

<STRUCTURE_NOALIAS>

Inserts	the	name	of	the	Repository	structure
that	is	currently	being	processed.	This	token	is
always	replaced	by	the	actual	name	of	the
repository	structure,	even	if	an	alias	name	has
been	specified.

<STRUCTURE_SIZE> Inserts	the	structure	size	in	bytes.

<STRUCTURE_UTEXT> Inserts	the	structure	user	text	string.

	
	

Copyright	©	2012		Synergex	International,	Inc.

DATA_FIELDS_LIST
	
This	token	inserts	a	comma-separated	list	of	a	structures	data	fields	(i.e.	non
primary	key)	fields.	This	is	mainly	useful	for	defining	sets	in	UI	Toolkit	input
windows,	as	any	field	marked	“Excluded	by	Toolkit”	will	NOT	be	included	in
the	list	of	fields.		Array	fields	are	listed	separately	with	real	a	real	array	index.

Usage

<DATA_FIELDS_LIST>

Example	Output

FIELD1,FIELD2,FIELD3[1],FIELD3[2],FIELD4

Alternate	forms

None

See	also

• Other	structure	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

DISPLAY_FIELD
	
This	token	inserts	the	name	of	the	structures	display	field,	if	defined.	A
structures	display	field	is	defined	by	adding	the	text
@CODEGEN_DISPLAY_FIELD	to	the	fields	user	defined	text	string	or
long	description.

CodeGen	will	display	an	error	if	it	encounters	this	token	and	the	structure
being	processed	does	not	have	a	display	field	defined.

Usage

<DISPLAY_FIELD>

Example	Output

DEPARTMENT_NAME

Alternate	forms

None

See	also

• Other	structure	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_PREFIX
	
This	token	inserts	the	current	field	prefix	that	was	specified	via	the	-prefix
command	line	option.	If	the	-prefix	command	line	option	was	not	used	then
this	the	token	does	not	write	anything	to	the	output	file.

Usage

<FIELD_PREFIX>

Alternate	forms

None

See	also

• Other	structure	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FILE_ADDRESSING
	
This	token	inserts	the	addressing	size	of	the	structures	first	assigned	data	file.

CodeGen	will	display	an	error	if	it	encounters	this	token	and	the	structure
being	processed	has	not	been	assigned	to	a	repository	file	definition.

Usage

<FILE_ADDRESSING>

Possible	values

• 32

• 40

Alternate	forms

None

See	also

• Other	structure	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FILE_CHANGE_TRACKING
	
This	token	inserts	a	string	indicating	whether	the	structures	first	assigned	file
has	change	tracking	enabled.

CodeGen	will	display	an	error	if	it	encounters	this	token	and	the	structure
being	processed	has	not	been	assigned	to	a	repository	file	definition.

This	option	is	supported	by	Synergy/DE	V10.1	and	higher.

Usage

<FILE_CHANGE_TRACKING>

Possible	values

• YES

• NO

Alternate	forms

• <file_change_tracking>

See	also

• Other	structure	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FILE_COMPRESSION
	
This	token	inserts	a	string	indicating	whether	the	structures	first	assigned	file
has	data	compression	enabled.

CodeGen	will	display	an	error	if	it	encounters	this	token	and	the	structure
being	processed	has	not	been	assigned	to	a	repository	file	definition.

Usage

<FILE_COMPRESSION>

Possible	values

• YES

• NO

Alternate	forms

• <file_compression>

See	also

• Other	structure	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FILE_DENSITY
	
This	token	inserts	the	default	key	density	of	the	structures	first	assigned	file.

CodeGen	will	display	an	error	if	it	encounters	this	token	and	the	structure
being	processed	has	not	been	assigned	to	a	repository	file	definition.

Usage

<FILE_DENSITY>

Possible	values

• 50

• 100

Alternate	forms

None

See	also

• Other	structure	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FILE_DESC
	
This	token	inserts	the	description	of	the	first	data	file	assigned	to	the	structure.
For	example:

CodeGen	will	display	an	error	if	it	encounters	this	token	and	the	structure
being	processed	has	not	been	assigned	to	a	repository	file	definition.

Usage

<FILE_DESC>

Example	Output

Customer	Master	File

Alternate	forms

None

See	also

• Other	structure	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FILE_NAME
	
This	token	inserts	the	name	of	the	first	data	file	assigned	to	the	current
structure.

CodeGen	will	display	an	error	if	it	encounters	this	token	and	the	structure
being	processed	has	not	been	assigned	to	a	repository	file	definition.

Usage

<FILE_NAME>

Example	Output

DAT:customer.ism

Alternate	forms

None

See	also

• Other	structure	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

FILE_NAME_NOEXT
	
This	token	inserts	the	name	of	the	first	data	file	assigned	to	the	current
structure,	with	the	file	extension	removed.	This	token	can	be	useful	when
constructing	file	specifications	where	the	file	extension	is	based	on	a	variable
company	code	or	other	data.

CodeGen	will	display	an	error	if	it	encounters	this	token	and	the	structure
being	processed	has	not	been	assigned	to	a	repository	file	definition.

Usage

<FILE_NAME_NOEXT>

Example	Output

DAT:customer

Alternate	forms

None

See	also

• Other	structure	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FILE_ODBC_NAME
	
This	token	inserts	the	ODBC	table	name	of	the	first	repository	file	definition
that	is	assigned	to	the	structure	currently	being	processed.	If	no	ODBC	table
name	is	specified	then	the	name	of	the	first	assigned	structure	is	used.
	
Usage

<FILE_ODBC_NAME>

Example	Output

CUSTOMER

Alternate	forms

• <file_odbc_name>

• <File_Odbc_Name>

• <File_odbc_name>

• <FileOdbcName>

• <fileOdbcName>

See	also

• Other	structure	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

FILE_PAGESIZE
	
This	token	inserts	the	page	size	of	the	current	structures	first	assigned	file.

CodeGen	will	display	an	error	if	it	encounters	this	token	and	the	structure
being	processed	has	not	been	assigned	to	a	repository	file	definition.

Usage

<FILE_PAGESIZE>

Possible	values

• 512

• 1024

• 2048

• 4096

• 8192

• 16384

• 32768

Note:	Page	sizes	16384	and	32768	were	introduced	with	ISAM	Rev	6	in
Synergy/DE	10.1

Alternate	forms

None

See	also

• Other	structure	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FILE_RPS_NAME
	
This	token	inserts	the	name	of	the	first	repository	file	definition	that	is
assigned	to	the	structure	currently	being	processed.
	
Usage

<FILE_RPS_NAME>

Example	Output

CUSTOMER

Alternate	forms

• <file_rps_name>

• <File_Rps_Name>

• <File_rps_name>

• <FileRpsName>

• <fileRpsName>

See	also

• Other	structure	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

FILE_RECTYPE
	
This	token	inserts	a	string	indicating	the	record	type	of	the	first	data	file
assigned	to	the	structure.

CodeGen	will	display	an	error	if	it	encounters	this	token	and	the	structure
being	processed	has	not	been	assigned	to	a	repository	file	definition.

Usage

<FILE_RECTYPE>

Possible	values

• FIXED

• VARIABLE

• MULTIPLE

Alternate	forms

• <file_rectype>

See	also

• Other	structure	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FILE_STATIC_RFA
	
This	token	inserts	a	string	indicating	whether	the	structures	first	assigned	file
has	static	RFA’s	enabled.

CodeGen	will	display	an	error	if	it	encounters	this	token	and	the	structure
being	processed	has	not	been	assigned	to	a	repository	file	definition.

Usage

<FILE_STATIC_RFA>

Possible	values

• YES

• NO

Alternate	forms

• <file_static_rfa>

See	also

• Other	structure	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FILE_STORED_GRFA
	
This	token	inserts	a	string	indicating	whether	the	structures	first	assigned	file
has	stored	GRFA’s	enabled.

CodeGen	will	display	an	error	if	it	encounters	this	token	and	the	structure
being	processed	has	not	been	assigned	to	a	repository	file	definition.

Supported	in	Synergy/DE	V10.1	and	higher.

Usage

<FILE_STORED_GRFA>

Possible	values

• YES

• NO

Alternate	forms

• <file_stored_grfa>

See	also

• Other	structure	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FILE_TYPE
	
This	token	inserts	a	string	indicating	the	type	of	the	first	data	file	assigned	to
the	structure.

CodeGen	will	display	an	error	if	it	encounters	this	token	and	the	structure
being	processed	has	not	been	assigned	to	a	repository	file	definition.

Usage

<FILE_TYPE>

Possible	values

• ASCII

• DBL	ISAM

• RELATIVE

• USER	DEFINED

Alternate	forms

None

See	also

• Other	structure	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FILE_UTEXT
	
This	token	inserts	the	user	text	string	of	the	first	data	file	assigned	to	the
structure.

CodeGen	will	display	an	error	if	it	encounters	this	token	and	the	structure
being	processed	has	not	been	assigned	to	a	repository	file	definition.

Usage

<FILE_UTEXT>

Alternate	forms

None

See	also

• Other	structure	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

MAPPED_FILE
	
This	token	inserts	the	file	specification	of	the	first	file	assigned	to	the	mapped
structure.

To	use	this	token	you	must	be	processing	a	structure	which	has	been	mapped
to	a	second	structure,	and	the	second	structure	must	have	been	assigned	to	a
repository	file	definition.		CodeGen	will	display	an	error	if	it	encounters	this
token	and	these	requirements	have	not	been	satisfied.

For	information	on	structure	and	field	mapping,	refer	to	Preparing	Your
Repository.

Usage

<MAPPED_FILE>

Example	Output

DAT:department.ism

Alternate	forms

None

See	also

• Other	structure	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

MAPPED_STRUCTURE
	
This	token	inserts	the	name	of	the	mapped	structure.	To	use	this	token	you
must	be	processing	a	structure	which	has	been	mapped	to	a	second	structure.
CodeGen	will	display	an	error	if	it	encounters	this	token	and	you	are	not
processing	a	structure	with	a	structure	mapping.

For	information	on	structure	and	field	mapping,	refer	to	Preparing	Your
Repository.

Usage

<MAPPED_STRUCTURE>

Example	Output

DEPARTMENT

Alternate	forms

• <mapped_structure>

See	also

• Other	structure	tokens

	

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

MAPPED_TAG_FIELD
	
This	token	inserts	the	name	of	the	name	of	the	first	tag	field	in	the	mapped
structure.

To	use	this	token	you	must	be	processing	a	structure	which	has	been	mapped
to	a	second	structure,	and	that	structure	must	have	a	tag.	CodeGen	will	display
an	error	if	it	encounters	this	token	and	you	are	not	processing	a	structure	with
a	structure	mapping.

For	information	on	structure	and	field	mapping,	refer	to	Preparing	Your
Repository.

Usage

<MAPPED_TAG_FIELD>

Example	Output

DEPARTMENT_ID

Alternate	forms

• <mapped_tag_field>

See	also

• Other	structure	tokens

	

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

PRIMARY_KEY_FIELD
	
This	token	inserts	the	name	of	the	first	segment	of	the	structures	primary	key.

WARNING:	This	token	does	not	support	structures	with	segmented	primary
keys.		You	can	achieve	more	flexible	results	by	using	a	key	segment	loop
within	a	primary	key	block.		This	technique	is	discussed	later	in	this	chapter.	
This	token	is	present	for	compatibility	with	older	template	files	only,	and	will
be	removed	in	a	future	version.

Usage

<PRIMARY_KEY_FIELD>

Example	Output

CUSTOMER_ID

Alternate	forms

• <primary_key_field>

• <Primary_key_field>

• <Primary_Key_Field>

• <PrimaryKeyField>

• <primaryKeyField>

See	also

• Other	structure	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

STRUCTURE#n
	
This	special	token	switches	context	to	a	different	structure,	and	can	only	be
used	when	processing	multiple	structures	concurrently.	The	n	character
represents	the	one-based	index	number	of	the	structure	to	switch	to,	and	must
be	a	number	between	1	and	the	number	of	structures	being	processed.

CodeGen	can	process	multiple	structures	concurrently	in	one	of	two	ways:

• Multiple	structures	can	be	specified	on	the	command	line,	after	the	-s
command	line	option,	and	the	-ms	command	line	option	can	be	used	to
specify	that	all	of	the	structures	are	to	be	processed	together.

• The	-file	command	line	option	can	be	used	to	use	a	repository	file
definition	as	the	starting	point	for	code	generation,	and	that	file
definition	can	have	multiple	structures	assigned.

This	token	does	not	cause	any	data	to	be	written	to	the	output	stream.

For	an	example	of	processing	multiple	structures	in	a	single	template	file,
refer	to	the	example	template	named	xf_net_get_master_detail.tpl.

Usage

• <STRUCTURE#n>

Alternate	forms

None

See	also

• Other	structure	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

STRUCTURE_CHILDREN
	
This	token	inserts	the	number	of	the	structures	first	level	child	members
(fields	and	groups).

Usage

<STRUCTURE_CHILDREN>

Example	Output

15

Alternate	forms

None

See	also

• Other	structure	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

STRUCTURE_DESC
	
This	token	inserts	the	current	structures	description.

Usage

<STRUCTURE_DESC>

Example	Output

Customer	Master	Record

Alternate	forms

None

See	also

• Other	structure	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

STRUCTURE_FIELDS
	
This	token	inserts	the	total	number	of	fields	in	the	structure.	If	the	structure
includes	any	array	fields	then	the	individual	array	field	elements	are	counted
towards	the	number	of	fields	in	the	structure.

Usage

<STRUCTURE_FIELDS>

Example	Output

25

Alternate	forms

None

See	also

• Other	structure	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

STRUCTURE_KEYS
	
This	token	inserts	the	total	number	of	keys	defined	in	the	structure.

Usage

<STRUCTURE_KEYS>

Example	Output

3

Alternate	forms

None

See	also

• Other	structure	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

STRUCTURE_LDESC
	
This	token	inserts	the	structures	long	description.

Usage

<STRUCTURE_LDESC>

Alternate	forms

None

See	also

• Other	structure	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

STRUCTURE_NAME
	
This	token	inserts	the	name	of	the	structure	that	is	currently	being	processed.
If	the	-a	command	line	option	is	being	used	then	this	token	inserts	the
structures	alias	as	specified	on	the	command	line.	If	you	are	using	structure
aliases	and	want	to	insert	the	name	of	the	actual	structure	(not	the	alias)	then
use	the	<STRUCTURE_NOALIAS>	token.	

Usage

<STRUCTURE_NAME>

Example	Output

CUSTOMER

Alternate	forms

• <structure_name>

• <Structure_Name>

• <Structure_name>

• <StructureName>

• <structureName>

See	also

• Other	structure	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

STRUCTURE_NOALIAS
	
This	token	inserts	the	name	of	the	Repository	structure	that	is	currently	being
processed.	This	token	is	always	replaced	by	the	actual	name	of	the	repository
structure,	even	if	the	-a	command	line	option	is	being	used.

Usage

<STRUCTURE_NOALIAS>

Example	Output

CUSTOMER

Alternate	forms

• <structure_noalias>

• <Structure_Noalias>

• <Structure_noalias>

• <StructureNoAlias>

• <structureNoAlias>

See	also

• Other	structure	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

STRUCTURE_SIZE
	
This	token	inserts	the	size	of	the	current	structure	expressed	in	bytes.

Usage

<STRUCTURE_SIZE>

Example	Output

495

Alternate	forms

None

See	also

• Other	structure	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

STRUCTURE_UTEXT
	
This	token	inserts	the	current	structures	user	text	string.

Usage

<STRUCTURE_UTEXT>

Alternate	forms

None

See	also

• Other	structure	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

Structure	Expression	Tokens
	
Structure	expressions	are	expressions	that	are	valid	for	use	anywhere	in	a
template	file,	but	only	when	a	repository	structure	is	being	processed.
CodeGen	supports	structure	expressions	via	the	<IF	expression>	and	</IF
[expression]>	tags.

Expression Description

<IF	STRUCTURE_ASCII>	
The	structure	being	processed	is
associated	with	an	ASCII	sequential
file.

<IF	STRUCTURE_FILES>
The	structure	currently	being
processed	is	assigned	to	one	or	more
file	definitions.

<IF
STRUCTURE_HAS_UNIQUE_KEY>
	

The	structure	currently	being
processed	has	at	least	one	unique	key.
You	can	access	the	first	unique	key	by
using	a	<UNIQUE_KEY>	block.

<IF
STRUCTURE_HAS_UNIQUE_PK>
	

The	structure	currently	being
processed	has	a	unique	primary	key.

<IF	STRUCTURE_ISAM>
	

The	structure	being	processed	is
associated	with	an	ISAM	file.

<IF	STRUCTURE_KEYS>
The	structure	currently	being
processed	has	one	or	more	keys
defined.

<IF	STRUCTURE_LDESC>
The	structure	currently	being
processed	has	text	in	its	long
description	field.

<IF	STRUCTURE_MAPPED>
	

The	structure	being	processed	is
mapped	to	another	structure.

<IF	STRUCTURE_RELATIONS>
The	structure	currently	being
processed	has	one	or	more	relations
defined.

<IF	STRUCTURE_RELATIVE>
	

The	structure	being	processed	is
associated	with	a	RELATIVE	file.

<IF	STRUCTURE_TAGS>
The	structure	currently	being
processed	has	one	or	more	tags
defined.

<IF
STRUCTURE_MULTIPLE_TAGS>

The	structure	currently	being
processed	has	more	than	one	tag
defined.
	

<IF	STRUCTURE_SINGLE_TAG>
The	structure	currently	being
processed	has	exactly	one	tag	defined.
	

<IF
STRUCTURE_USER_DEFINED>
	

The	structure	being	processed	is
associated	with	a	user	defined	file.

<IF	STRUCTURE_UTEXT>
The	structure	currently	being
processed	has	text	in	its	user	defined
text	field.

	
	

Copyright	©	2012		Synergex	International,	Inc.

Introduction	to	Field	Loops
	
A	field	loop	is	a	template	file	construct	which	allows	you	to	iterate	through	the
collection	of	fields	that	CodeGen	has	information	about.	These	field
definitions	can	come	from	one	of	two	places:

• If	you	are	generating	code	based	on	information	obtained	form	a
repository	structure,	the	field	collection	is	based	on	the	fields	which	are
defined	in	that	repository	structure.

• If	you	are	generating	code	based	on	the	definition	of	a	UI	Toolkit	input
window	(defined	in	a	window	script	file),	the	field	collection	is
determined	by	the	fields	defined	in	that	input	window.	Of	course	these
fields	may	in	turn	refer	to	a	repository	structure.

• Field	loops	can	only	be	used	when	generating	code	in	one	of	these	two
ways.

Field	loops	are	delimited	by	a	matching	pair	of	<FIELD_LOOP>	and
</FIELD_LOOP>	tags,	which	surround	the	template	code	to	be	inserted	for
each	field.	The	code	between	the	opening	and	closing	tags	of	a	field	loop	is
repeated	for	each	field	in	the	structure	being	processed.	This	code	may	contain
other	generic	and	structure	tokens,	and	may	also	contain	special	field	loop
tokens,	which	are	discussed	later.	Loop	utility	tokens	can	also	be	used	in	field
loops.

Field	loop	tokens	can	only	be	used	inside	a	field	loop,	and	with	the	exception
of	structure	loops,	a	field	loop	can’t	be	declared	within	any	other	loop
construct.

CodeGen	processes	array	fields	as	multiple	individual	fields.	Normally
CodeGen	does	not	process	overlay	fields,	or	fields	marked	“Excluded	by
Language”.

There	are	two	types	of	field	loops,	called	multi-line	field	loops,	and	in-line
field	loops.

Multi-Line	Field	Loops

Multi-line	field	loops	occur	when	the	opening	and	closing	field	loop	tags
appear	on	separate	lines	in	a	template	file,	and	delimit	one	or	more	entire	lines

of	template	code,	like	this:

[code]

<FIELD_LOOP>code
</FIELD_LOOP>

[code]

Multi-line	field	loops	generate	one	or	more	lines	of	output	code	for	each	field
that	is	processed.

In-Line	Field	Loops

In-line	field	loops	exist	when	the	opening	and	closing	field	loop	tags	appear
on	the	same	line	in	a	template	file,	and	delimit	part	of	a	line	of	template	code,
like	this:

[code]	<FIELD_LOOP>	code	</FIELD_LOOP>	[code]

In-line	field	loops	generate	code	into	the	current	output	line.

Field	Loop	Example	1	(Multi-Line)

The	following	template	file	code:

sql	=	"CREATE	TABLE	<STRUCTURE_NAME>	("
<FIELD_LOOP>
&	+	"<FIELD_SQLNAME>	<FIELD_SQLTYPE><IF	REQUIRED>	NOT
NULL</IF><,>"
</FIELD_LOOP>
&	+	")"
	
could	produce	output	like	this:

sql	=	"CREATE	TABLE	PROJECT	("
&	+	"SYNERGYGRFA	VARCHAR(22),"
&	+	"PROJECT_ID	DECIMAL(8)	NOT	NULL,"
&	+	"CUSTOMER_ID	VARCHAR(10)	NOT	NULL,"
&	+	"CONTRACT_ID	VARCHAR(10)	NOT	NULL,"

&	+	"CONTRACT_PROJECT_ID	DECIMAL(3)	NOT	NULL,"
&	+	"DESCRIPTION	VARCHAR(60)	NOT	NULL,"
&	+	"START_DATE	DATETIME	NOT	NULL,"
&	+	"END_DATE	DATETIME,"
&	+	"CURRENT_STATUS	DECIMAL(2)	NOT	NULL,"
&	+	"STATUS_DATE	DATETIME	NOT	NULL,"
&	+	"LEAD_CONSULTANT	VARCHAR(15)	NOT	NULL,"
&	+	"COORDINATOR	VARCHAR(15)	NOT	NULL,"
&	+	"APPROVED_BY_FIRST	DECIMAL(3)	NOT	NULL,"
&	+	"APPROVED_BY_LAST	DECIMAL(3)	NOT	NULL,"
&	+	"APPROVED_DATE	DATETIME	NOT	NULL,"
&	+	"APPROVAL_LOCATION	DECIMAL(2)	NOT	NULL,"
&	+	"WORK_LOCATION_ID	DECIMAL(2),"
&	+	"CREATED_BY	VARCHAR(15)	NOT	NULL,"
&	+	"CREATED_DATE	DATETIME	NOT	NULL,"
&	+	"MODIFIED_BY	VARCHAR(15),"
&	+	"MODIFIED_DATE	DATETIME,"
&	+	"TEXT	VARCHAR(700),"
&	+	"REPLICATION_KEY	VARCHAR(20)"
&	+	")"
	
Field	Loop	Example	2	(Multi-Line	and	In-Line)

The	following	template	file	code:

sql	=	"INSERT	INTO	<STRUCTURE_NAME>	("
<FIELD_LOOP>
&	+	"<FIELD_SQLNAME><,>"
</FIELD_LOOP>
&	+	")	VALUES(<FIELD_LOOP>:<FIELD#LOGICAL><,>
</FIELD_LOOP>)"
Could	produce	output	like	this:

sql	=	"INSERT	INTO	PROJECT	("
&	+	"SYNERGYGRFA,"
&	+	"PROJECT_ID,"
&	+	"CUSTOMER_ID,"
&	+	"CONTRACT_ID,"
&	+	"CONTRACT_PROJECT_ID,"

&	+	"DESCRIPTION,"
&	+	"START_DATE,"
&	+	"END_DATE,"
&	+	"CURRENT_STATUS,"
&	+	"STATUS_DATE,"
&	+	"LEAD_CONSULTANT,"
&	+	"COORDINATOR,"
&	+	"APPROVED_BY_FIRST,"
&	+	"APPROVED_BY_LAST,"
&	+	"APPROVED_DATE,"
&	+	"APPROVAL_LOCATION,"
&	+	"WORK_LOCATION_ID,"
&	+	"CREATED_BY,"
&	+	"CREATED_DATE,"
&	+	"MODIFIED_BY,"
&	+	"MODIFIED_DATE,"
&	+	"TEXT,"
&	+	"REPLICATION_KEY"
&	+	")
VALUES(:1,:2,:3,:4,:5,:6,:7,:8,:9,:10,:11,:12,:13,:14,:15,:16,:17,:18,:19,:20,:21,:22,:23
	
Field	Loop	Example	3

The	following	template	code:

#region	Private	fields	(storage	for	properties)
<FIELD_LOOP>
private	<FIELD_CSTYPE>	p_<Field_Sqlname>;
</FIELD_LOOP>
#endregion
Could	produce	code	like	this:

#region	Private	fields	(storage	for	properties)
private	string	p_Synergygrfa;
private	int	p_Project_Id;
private	string	p_Customer_Id;
private	string	p_Contract_Id;
private	int	p_Contract_Project_Id;
private	string	p_Description;

private	DateTime	p_Start_Date;
private	DateTime	p_End_Date;
private	int	p_Current_Status;
private	DateTime	p_Status_Date;
private	string	p_Lead_Consultant;
private	string	p_Coordinator;
private	int	p_Approved_By_First;
private	int	p_Approved_By_Last;
private	DateTime	p_Approved_Date;
private	int	p_Approval_Location;
private	int	p_Work_Location_Id;
private	string	p_Created_By;
private	DateTime	p_Created_Date;
private	string	p_Modified_By;
private	DateTime	p_Modified_Date;
private	string	p_Text;
private	string	p_Replication_Key;
#endregion
	
Video

Here's	the	Introduction	to	Field	Loops	video.	Make	sure	you	select	a	high-
definition	version	of	the	video,	by	default	YouTube	tends	to	play	the	lowest
resolution	which	can	look	pretty	awful!

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

https://www.youtube.com/watch?v=2urNYutdxcs&list=PLq0aGk6nTIVvbmOwjlCu6bZeY6esBCjI-&index=5

Field	Loop	Expansion	Tokens
	
Field	loop	expansion	tokens	are	used	to	insert	information	about	the	current
field	being	processed	within	the	context	of	a	field	loop	into	the	output	stream.
Field	loop	tokens	can	only	be	used	inside	a	field	loop.

Field	Loop	Token Description

<FIELD#>

Inserts	the	1-based	index	of	the	current
field	in	the	record,	without	considering
array	elements	or	group	fields	as
individual	fields.

<FIELD#_ZERO>

Inserts	the	0-based	index	of	the	current
field	in	the	record,	without	considering
array	elements	or	group	fields	as
individual	fields.

<FIELD#LOGICAL>

Inserts	the	1-based	index	of	the	current
field	in	the	record.	Array	elements	and
group	fields	are	considered	as	individual
fields.	For	example	a	structure	with	three
fields,	one	of	which	is	an	array	of	8
elements,	is	treated	as	having	10	fields.

<FIELD#LOGICAL_ZERO>

Inserts	the	0-based	index	of	the	current
field	in	the	record.	Array	elements	and
group	fields	are	considered	as	individual
fields.	For	example	a	structure	with	three
fields,	one	of	which	is	an	array	of	8
elements,	is	treated	as	having	10	fields.

<FIELD_ALTNAME>

Inserts	the	alternate	name	of	the	field.
Array	fields	are	represented	in	Synergy
format,	for	example	ALTNAME[1].	If	no
alternate	name	is	available	then	the	real
name	is	used.

Inserts	the	name	of	the	fields	arrive

<FIELD_ARRIVEM> method	if	present,	or	by	nothing	if	not.

<FIELD_BASENAME>
Inserts	the	base	name	of	the	field.	Array
field	dimensions	are	not	included	in	the
base	name.

<FIELD_BREAK_MODE>
Inserts	a	value	indicating	whether	the	field
is	a	break	field,	and	if	so	what	type	of
break	field.

<FIELD_CHANGEM> Inserts	the	name	of	the	fields	change
method	if	present,	or	by	nothing	if	not.

<FIELD_COL>

Inserts	the	screen	column	for	placement	of
the	field	on	the	screen	in	a	cell-based
environment.	If	the	field	has	a	column
position	specified	then	this	is	used,
otherwise	the	default	of	column	15	is
used.

<FIELD_CSCONVERT>

Inserts	a	string	indicating	the	appropriate
C#	string	to	numeric	conversion	method
to	use	to	attempt	to	parse	a	string	into	a
numeric	value.

<FIELD_CSDEFAULT> Inserts	a	C#	default	value	based	on	the
fields	data	type.

<FIELD_CSTYPE> Inserts	a	string	indicating	the	C#
equivalent	data	type	of	the	field.

<FIELD_DEFAULT> Inserts	the	fields	default	value,	if	present.

<FIELD_DESC> Inserts	the	description	of	the	field.

When	CodeGen	encounters	array	fields	it
"flattens"	those	arrays	out	into	multiple
fields	each	of	which	is	of	the	same	type
and	size.	When	processing	a	field	which

<FIELD_DIMENSION1_INDEX>was	formally	part	of	an	array,	this	token
can	be	used	to	insert	the	original
dimension	two	index	of	the	field.	For	non-
array	fields	this	token	inserts	a	single	zero
(0).

<FIELD_DIMENSION2_INDEX>

When	CodeGen	encounters	array	fields	it
"flattens"	those	arrays	out	into	multiple
fields	each	of	which	is	of	the	same	type
and	size.	When	processing	a	field	which
was	formally	part	of	an	array,	this	token
can	be	used	to	insert	the	original
dimension	three	index	of	the	field.	For
non-array	fields	this	token	inserts	a	single
zero	(0).

<FIELD_DIMENSION3_INDEX>

When	CodeGen	encounters	array	fields	it
"flattens"	those	arrays	out	into	multiple
fields	each	of	which	is	of	the	same	type
and	size.	When	processing	a	field	which
was	formally	part	of	an	array,	this	token
can	be	used	to	insert	the	original
dimension	four	index	of	the	field.	For
non-array	fields	this	token	inserts	a	single
zero	(0).

<FIELD_DIMENSION4_INDEX>

When	CodeGen	encounters	array	fields	it
"flattens"	those	arrays	out	into	multiple
fields	each	of	which	is	of	the	same	type
and	size.	When	processing	a	field	which
was	formally	part	of	an	array,	this	token
can	be	used	to	insert	the	original
dimension	one	index	of	the	field.	For	non-
array	fields	this	token	inserts	a	single	zero
(0).

<FIELD_DRILLM>
Inserts	the	name	of	the	fields	drill	method
if	present,	or	by	nothing	if	not.

<FIELD_DRILL_PIXEL_COL> Inserts	the	pixel	column	for	placement	of
a	fields	drill	button	on	a	form.

<FIELD_ELEMENT>

For	array	fields	this	token	inserts	the	one-
based	element	number	of	the	field
currently	being	processed	by	the	field
loop.	For	multi-dimension	arrays	the
token	inserts	a	comma-separated	list	of
current	index	numbers.	For	non-array
fields	the	token	does	not	cause	anything	to
be	written	to	the	output	stream.

<FIELD_ELEMENT0>

For	array	fields	this	token	inserts	the	one-
based	element	number	of	the	field
currently	being	processed	by	the	field
loop.	For	multi-dimension	arrays	the
token	inserts	a	comma-separated	list	of
current	index	numbers.	For	non-array
fields	the	token	inserts	0.

<FIELD_ENUMLENGTH> Inserts	the	maximum	length	of	the	fields’
enumerated	values.

<FIELD_ENUMWIDTH> Inserts	the	pixel	width	for	the	maximum
length	of	the	fields’	enumerated	values.

<FIELD_FORMATNAME>
Inserts	the	name	of	the	fields	Repository
format,	or	nothing	if	no	format	is
specified.

<FIELD_FORMATSTRING>

Inserts	the	format	string	value	of	the	fields
Repository	format,	or	nothing	if	no	format
is	specified.
	

<FIELD_HEADING>

Inserts	the	fields	report	heading.	If	no
heading	exists	then	the	field	prompt	is
used.	If	no	prompt	exists	then	the	fields
SQL	name	is	used.	Array	fields	will	have
the	element	number	appended	(e.g.	Phone

#1).

<FIELD_HELPID> Inserts	the	fields	help	identifier	if	present.

<FIELD_HYPERM> Inserts	the	name	of	the	fields	hyper-link
method	if	present,	or	by	nothing	if	not.

<FIELD_INFOLINE> Inserts	the	fields’	information	line	text	if
present.

<FIELD_INPUT_LENGTH>
Inserts	the	maximum	number	of
characters	that	can	be	typed	into	a	UI
input	field	representing	the	current	field.

<FIELD_LDESC> Inserts	the	fields’	long	description.

<FIELD_LEAVEM> Inserts	the	name	of	the	fields	leave
method	if	present,	or	by	nothing	if	not.

<FIELD_MAXVALUE>

Inserts	the	maximum	value	which	should
be	associated	with	a	numeric	field.	The
token	should	only	be	used	for	numeric
fields,	so	you	should	only	use	it	within	an
<IF	NUMERIC>	field	loop	expression.

<FIELD_MINVALUE>

Inserts	the	minimum	value	which	should
be	associated	with	a	numeric	field.	The
token	should	only	be	used	for	numeric
fields,	so	you	should	only	use	it	within	an
<IF	NUMERIC>	field	loop	expression.

<FIELD_NAME>

Inserts	the	name	of	the	field.	Array	fields
are	represented	in	Synergy	real	array
format,		and	group	fields	are	represented
by	a	full	path.

Inserts	a	.NET	compatible	name	for	the
current	field.	Array	fields	are	expanded	to
multiple	individual	fields,	with	the	name

<FIELD_NETNAME> being	suffixed	with	the	array	element
number,	for	example	'FIELDNAME1',
'FIELDNAME2'	etc.

<FIELD_NET_ALTNAME>
Inserts	a	.NET	compatible	version	of	the
alternate	name	for	the	current	field.
	

<FIELD_NOECHO_CHAR>

Inserts	the	character	that	should	be	used	to
represent	each	character	typed	into	a	field,
in	place	of	the	actual	character	(think
password	fields).

<FIELD_OCDEFAULT> Inserts	an	Objective-C	default	value	based
on	the	fields	data	type.

<FIELD_OCTYPE> Inserts	a	string	indicating	the	Objective-C
equivalent	data	type	of	the	field.

<FIELD_ODBCNAME>

Inserts	an	ODBC-compatible	name	for	the
current	field.	Array	fields	are	expanded	to
multiple	individual	fields,	with	the	name
being	suffixed	with	an	underscore	and	the
array	element	number,	for	example
'FIELDNAME_1',	'FIELDNAME_2'	etc.

<FIELD_ORIGINAL_NAME>

Inserts	the	original	name	of	the	field	as
defined	in	the	repository.	A	fields	original
name	never	changes,	and	does	not	include
any	array	dimensions	or	paths	resulting
from	the	expansion	of	array	or	group
fields.

<FIELD_PATH>
Inserts	the	path	of	the	field.	Array	fields
are	represented	in	Synergy	format,	for
example	structure.fieldname[1].	

Inserts	the	path	of	the	field.	Array	fields
are	represented	in	Synergy	format,	for

<FIELD_PATH_CONV> example	structure.fieldname[1].	If	the
fields	user	text	or	long	description
contains	an	@UNMAPF=function;
expression	then	the	conversion	function
will	also	be	applied.

<FIELD_PIXEL_COL>

Inserts	the	pixel	column	for	placement	of
the	field	within	a	UI	form.	If	the	field	has
a	column	position	specified	then	this	is
used,	otherwise	the	default	of	column	15
is	used.

<FIELD_PIXEL_ROW>

Inserts	the	pixel	row	for	placement	of	the
field	within	a	UI	form.	If	the	field	has	a
row	position	defined	then	this	is	used,
otherwise	the	logical	field	number	(which
includes	array	elements)	is	used	to
calculate	the	default	row.

<FIELD_PIXEL_WIDTH> Inserts	the	pixel	width	for	default	sizing	of
the	field	when	represented	as	a	TextBox.

<FIELD_POSITION> Inserts	the	one-based	byte	position	of	the
field	in	the	record.

<FIELD_POSITION_ZERO> Inserts	the	zero-based	byte	position	of	the
field	in	the	record.

<FIELD_PRECISION>

Inserts	the	precision	of	an	implied-
decimal	field	or	an	empty	string.	Only	the
precision	is	inserted,	with	no	leading
period.

<FIELD_PRECISION2>
Inserts	the	precision	of	an	implied-
decimal	field	including	a	leading	period,
or	an	empty	string.

<FIELD_PROMPT> Inserts	the	fields	prompt.

<FIELD_RANGE_MAX> Inserts	the	numeric	fields’	maximum
value.

<FIELD_RANGE_MIN> Inserts	the	numeric	fields’	minimum
value.

<FIELD_REGEX>

Inserts	a	regular	expression	that	can	be
used	to	constrain	and	validate	user	input
to	a	field	based	on	the	repository
definition	of	the	field.	The	regular
expression	inserted	depends	on	the	type	of
field.

<FIELD_ROW>

Inserts	the	screen	row	for	placement	of	the
field	on	the	screen	in	a	cell	based
environment.	If	the	field	has	a	row
position	defined	then	this	is	used,
otherwise	the	logical	field	number	(which
includes	array	elements)	is	used	to
calculate	the	default	row.

<FIELD_SELECTION_COUNT>	 Inserts	the	number	of	selection	list	valuesthat	are	associated	with	the	field.

<FIELD_SELECTIONS> Inserts	a	comma	separated	list	of	the
fields’	selection	list	values.

<FIELD_SELECTIONS1>
Inserts	a	quoted	string	containing	a	pipe
(|)	delimited	list	of	the	fields	selection	list
values.

<FIELD_SELLENGTH> Inserts	the	maximum	length	of	the	fields’
selection	list	values.

<FIELD_SELWND>

Inserts	the	name	of	the	selection	window
associated	with	the	current	field.	If	the
field	does	not	have	a	selection	window
then	the	token	inserts	nothing.

<FIELD_SIZE> Inserts	the	size	of	the	field	in	bytes.

<FIELD_SNDEFAULT> Inserts	a	Synergy	.NET	default	value
based	on	the	fields	data	type.

<FIELD_SNTYPE> Inserts	a	string	indicating	the	Synergy
NET	data	type	of	the	field.

<FIELD_SPEC> Inserts	a	Synergy	data	type	definition	for
the	field.

<FIELD_SQLNAME>

Inserts	a	SQL-compatible	name	for	the
current	field.	Array	fields	are	expanded	to
multiple	individual	fields,	with	the	name
being	suffixed	with	the	array	element
number,	for	example	'FIELDNAME1',
'FIELDNAME2'	etc.

<FIELD_SQL_ALTNAME>
Inserts	a	SQL-compatible	version	of	the
alternate	name	for	the	current	field.
	

<FIELD_SQLTYPE> Inserts	a	SQL	compatible	data	definition
of	the	field.

<FIELD_TEMPLATE>

Inserts	the	name	of	the	Repository
template	from	which	the	field	inherited	its
attributes	or	by	a	null	string	if	no	template
is	referenced.

<FIELD_TKSCRIPT> Inserts	a	UI	Toolkit	.field	script	file
command	for	the	field.

<FIELD_TYPE> Inserts	a	character	indicating	the	synergy
data	type	of	field.

<FIELD_TYPE_NAME> Inserts	a	string	indicating	the	Synergy	data
type	of	field.

<FIELD_UTEXT> Inserts	the	fields’	user-defined	text	string.

<FIELD_VBDEFAULT> Inserts	a	VB.NET	default	value	based	on

the	fields	data	type.

<FIELD_VBTYPE> Inserts	a	string	indicating	the	VB.NET
data	type	of	the	field.

<MAPPED_FIELD>

Inserts	the	name	of	the	mapped	field	in	the
mapped	structure.	To	use	this	token	you
must	use	@MAP=structure;	in	the
structures	user	text	field	or	long
description	and	@MAP=field;	in	each
fields	user	text	field	or	long	description.

<MAPPED_PATH>

Inserts	the	name	of	the	mapped	path	in	the
mapped	structure.	To	use	this	token	you
must	use	@MAP=structure;	in	the
structures	user	text	field	or	long
description	and	@MAP=field;	in	each
fields	user	text	field	or	long	description.	

<MAPPED_PATH_CONV>

Inserts	the	name	of	the	mapped	path	in	the
mapped	structure	.	To	use	this	token	you
must	use	@MAP=structure;	in	the
structures	user	text	field	or	long
description	and	@MAP=field;	in	each
fields	user	text	field.	If	there	is	also	an
@MAPF=function;	in	the	user	text	or	long
description	then	that	conversion	function
will	also	be	applied.

<PROMPT_COL>

Inserts	the	screen	column	for	placement	of
the	prompt	on	the	screen	in	a	character
based	environment.	If	the	prompt	has	a
column	position	specified	then	this	is
used,	otherwise	the	default	of	column	1	is
used.

<PROMPT_PIXEL_COL>

Inserts	the	pixel	column	for	placement	of
the	prompt	on	a	windows	form.	If	the
prompt	has	a	column	position	specified

then	this	is	used,	otherwise	the	default	of
column	1	is	used.

<PROMPT_PIXEL_ROW>

Inserts	the	pixel	row	for	placement	of	the
prompt	on	a	windows	form.	If	the	prompt
has	a	row	position	defined	then	this	is
used,	otherwise	the	logical	field	number
(which	includes	array	elements)	is	used	to
calculate	the	default	row.

<PROMPT_PIXEL_WIDTH> Inserts	the	pixel	width	for	default	sizing	of
the	prompt	when	represented	as	a	label.

<PROMPT_ROW>

Inserts	the	screen	row	for	placement	of	the
prompt	on	the	screen	in	a	character	based
environment.	If	the	prompt	has	a	row
position	defined	then	this	is	used,
otherwise	the	logical	field	number	(which
includes	array	elements)	is	used	to
calculate	the	default	row.

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD#
	
Inserts	the	1-based	index	of	the	current	field	in	the	record,	without	considering
array	elements	or	group	fields	as	individual	fields.

Usage

<FIELD#>

Alternate	forms

None

See	also

• <FIELD#_ZERO>

• <FIELD#LOGICAL>

• <FIELD#LOGICAL_ZERO>

• Other	field	loop	expansion	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD#_ZERO
	
Inserts	the	0-based	index	of	the	current	field	in	the	record,	without	considering
array	elements	or	group	fields	as	individual	fields.

Usage

<FIELD#_ZERO>

Alternate	forms

None

See	also

• <FIELD#>

• <FIELD#LOGICAL>

• <FIELD#LOGICAL_ZERO>

• Other	field	loop	expansion	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD#LOGICAL
	
Inserts	the	1-based	index	of	the	current	field	in	the	record.	Array	elements	and
group	fields	are	considered	as	individual	fields.	For	example	a	structure	with
three	fields,	one	of	which	is	an	array	of	8	elements,	is	treated	as	having	10
fields.

Usage

<FIELD#LOGICAL>

Alternate	forms

None

See	also

• <FIELD#>

• <FIELD#_ZERO>

• <FIELD#LOGICAL_ZERO>

• Other	field	loop	expansion	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD#LOGICAL_ZERO
	
Inserts	the	0-based	index	of	the	current	field	in	the	record.	Array	elements	and
group	fields	are	considered	as	individual	fields.	For	example	a	structure	with
three	fields,	one	of	which	is	an	array	of	8	elements,	is	treated	as	having	10
fields.

Usage

<FIELD#LOGICAL_ZERO>

Alternate	forms

None

See	also

• <FIELD#>

• <FIELD#_ZERO>

• <FIELD#LOGICAL>

• Other	field	loop	expansion	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_ALTNAME
	
Inserts	the	alternate	name	of	the	field.	Array	fields	are	represented	in	Synergy
format,	for	example	ALTNAME[1].	If	no	alternate	name	is	available	then	the
real	name	is	used.

Usage

<FIELD_ALTNAME>

Alternate	forms

• <field_altname>

• <Field_altname>

• <Field_Altname>

• <FieldAltname>

• <fieldAltname>

See	also

• <FIELD_BASENAME>

• <FIELD_NAME>

• <FIELD_NETNAME>

• <FIELD_NET_ALTNAME>

• <FIELD_ODBCNAME>

• <FIELD_ORIGINAL_NAME>

• <FIELD_SQL_ALTNAME>

• <FIELD_SQLNAME>

• Other	field	loop	expansion	tokens

	
	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_ARRIVEM
	
Inserts	the	name	of	the	fields	arrive	method	if	present,	or	by	nothing	if	not.

Usage

<FIELD_ARRIVEM>

Alternate	forms

• <field_arrivem>

• <Field_Arrivem>

• <Field_arrivem>

• <FieldArrivem>

• <fieldArrivem>

See	also

• <FIELD_CHANGEM>

• <FIELD_DRILLM>

• <FIELD_HYPERM>

• <FIELD_LEAVEM>

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_BASENAME
	
Inserts	the	base	name	of	the	field.	Array	field	dimensions	are	not	included	in
the	base	name.

Usage

<FIELD_BASENAME>

Alternate	forms

• <field_basename>

• <Field_Basename>

• <Field_basename>

• <FieldBaseName>

• <fieldBaseName>

See	also

• <FIELD_ALTNAME>

• <FIELD_NAME>

• <FIELD_NETNAME>

• <FIELD_NET_ALTNAME>

• <FIELD_ODBCNAME>

• <FIELD_ORIGINAL_NAME>

• <FIELD_SQL_ALTNAME>

• <FIELD_SQLNAME>

• Other	field	loop	expansion	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_BREAK_MODE
	
Inserts	a	value	indicating	whether	the	field	is	a	break	field,	and	if	so	what	type
of	break	field.

Usage

<FIELD_BREAK_MODE>

Possible	Values

• None

• Change

• Always

• Return

Alternate	forms

none

See	also

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_CHANGEM
	
This	token	inserts	the	name	of	the	fields	change	method	if	present,	or	by
nothing	if	not.

Usage

<FIELD_CHANGEM>

Alternate	forms

• <field_changem>

• <Field_Changem>

• <Field_changem>

• <FieldChangem>

• <fieldChangem>

See	also

• <FIELD_ARRIVEM>

• <FIELD_DRILLM>

• <FIELD_HYPERM>

• <FIELD_LEAVEM>

• Other	field	loop	expansion	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_COL
	
Inserts	the	screen	column	for	placement	of	the	field	on	the	screen	in	a	cell-
based	environment.	If	the	field	has	a	column	position	specified	then	this	is
used,	otherwise	the	default	of	column	15	is	used.

Usage

<FIELD_COL>

Alternate	forms

None

See	also

• <FIELD_DRILL_PIXEL_COL>

• <FIELD_PIXEL_COL>

• <FIELD_PIXEL_ROW>

• <FIELD_PIXEL_WIDTH>

• <FIELD_ROW>

• <PROMPT_COL>

• <PROMPT_PIXEL_COL>

• <PROMPT_PIXEL_ROW>

• <PROMPT_PIXEL_WIDTH>

• <PROMPT_ROW>

• Other	field	loop	expansion	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_CSCONVERT
	
Inserts	a	string	indicating	the	appropriate	C#	string	to	numeric	conversion
method	to	use	to	attempt	to	parse	a	string	into	a	numeric	value.

For	non-numeric	fields	the	token	is	replaced	by	nothing.

Usage

<FIELD_CSCONVERT>

Possible	values

• bool.TryParse

• byte.TryParse

• decimal.TryParse

• double.TryParse

• int.TryParse

• float.TryParse

• long.TryParse

• sbyte.TryParse

• short.TryParse

• uint.TryParse

• ulong.TryParse

• ushort.TryParse

Alternate	forms

None

Example	of	use

if	(!<FIELD_CSCONVERT>

(recordInString.Substring(<FIELD_POSITION_ZERO>,<FIELD_SIZE>),out
p_<Field_Sqlname>))

										p_<Field_Sqlname>	=	0;

See	also

• <FIELD_CSDEFAULT>

• <FIELD_CSTYPE>

• Other	field	loop	expansion	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_CSDEFAULT
	
Inserts	a	C#	default	value	based	on	the	fields	data	type.

Usage

<FIELD_CSDEFAULT>

Possible	values

• ""

• 0

• false

• new	DateTime()

• null

Alternate	forms

None

See	also

• <FIELD_CSCONVERT>

• <FILED_CSTYPE>

• Other	field	loop	expansion	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_CSTYPE
	
Inserts	a	string	indicating	the	C#	equivalent	data	type	of	the	field.

Usage

<FIELD_CSTYPE>

Possible	values

• bool

• byte

• double

• float

• int

• long

• decimal

• DateTime

• Nullable<DateTime>

• sbyte

• short

• string

• uint

• ulong

• ushort

Alternate	forms

None

See	also

• <FIELD_CSCONVERT>

• <FIELD_CSDEFAULT>

• Other	field	loop	expansion	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_DEFAULT
	
Inserts	the	fields	default	value,	if	present.

Usage

<FIELD_DEFAULT>

Alternate	forms

None

See	also

• Other	field	loop	expansion	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_DESC
	
Inserts	the	description	of	the	field.

Usage

<FIELD_DESC>

Alternate	forms

None

See	also

• <FIELD_INFOLINE>

• <FIELD_LDESC>

• Other	field	loop	expansion	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_DIMENSION1_INDEX
	
When	CodeGen	encounters	array	fields	it	"flattens"	those	arrays	out	into
multiple	fields	each	of	which	is	of	the	same	type	and	size.	When	processing	a
field	which	was	formally	part	of	an	array,	this	token	can	be	used	to	insert	the
original	dimension	one	index	of	the	field.	For	non-array	fields	this	token
inserts	a	single	zero	(0).

Usage

<FIELD_DIMENSION1_INDEX>

Alternate	forms

None

See	also

• <FIELD_DIMENSION2_INDEX>

• <FIELD_DIMENSION3_INDEX>

• <FIELD_DIMENSION4_INDEX>

• <FIELD_ELEMENT>

• <FIELD_ELEMENT0>

• Other	field	loop	expansion	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_DIMENSION2_INDEX
	
When	CodeGen	encounters	array	fields	it	"flattens"	those	arrays	out	into
multiple	fields	each	of	which	is	of	the	same	type	and	size.	When	processing	a
field	which	was	formally	part	of	an	array	with	at	least	two	dimensions,	this
token	can	be	used	to	insert	the	original	dimension	two	index	of	the	field.	For
non-array	fields	or	for	array	fields	with	only	one	dimension	this	token	inserts
a	single	zero	(0).

Usage

<FIELD_DIMENSION2_INDEX>

Alternate	forms

None

See	also

• <FIELD_DIMENSION1_INDEX>

• <FIELD_DIMENSION3_INDEX>

• <FIELD_DIMENSION4_INDEX>

• <FIELD_ELEMENT>

• <FIELD_ELEMENT0>

• Other	field	loop	expansion	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_DIMENSION3_INDEX
	
When	CodeGen	encounters	array	fields	it	"flattens"	those	arrays	out	into
multiple	fields	each	of	which	is	of	the	same	type	and	size.	When	processing	a
field	which	was	formally	part	of	an	array	with	at	least	three	dimensions,	this
token	can	be	used	to	insert	the	original	dimension	three	index	of	the	field.	For
non-array	fields	or	for	array	fields	with	less	than	three	dimensions	this	token
inserts	a	single	zero	(0).

Usage

<FIELD_DIMENSION3_INDEX>

Alternate	forms

None

See	also

• <FIELD_DIMENSION1_INDEX>

• <FIELD_DIMENSION2_INDEX>

• <FIELD_DIMENSION4_INDEX>

• <FIELD_ELEMENT>

• <FIELD_ELEMENT0>

• Other	field	loop	expansion	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_DIMENSION4_INDEX
	
When	CodeGen	encounters	array	fields	it	"flattens"	those	arrays	out	into
multiple	fields	each	of	which	is	of	the	same	type	and	size.	When	processing	a
field	which	was	formally	part	of	an	array	with	four	dimensions,	this	token	can
be	used	to	insert	the	original	dimension	four	index	of	the	field.	For	non-array
fields	or	for	array	fields	with	less	than	four	dimensions	this	token	inserts	a
single	zero	(0).

Usage

<FIELD_DIMENSION4_INDEX>

Alternate	forms

None

See	also

• <FIELD_DIMENSION1_INDEX>

• <FIELD_DIMENSION2_INDEX>

• <FIELD_DIMENSION3_INDEX>

• <FIELD_ELEMENT>

• <FIELD_ELEMENT0>

• Other	field	loop	expansion	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_DRILLM
	
This	token	inserts	the	name	of	the	fields	drill	method	if	present,	or	by	nothing
if	not.

Usage

<FIELD_DRILLM>

Alternate	forms

• <field_drillm>

• <Field_Drillm>

• <Field_drillm>

• <FieldDrillm>

• <fieldDrillm>

See	also

• <FIELD_ARRIVEM>

• <FIELD_CHANGEM>

• <FIELD_HYPERM>

• <FIELD_LEAVEM>

• Other	field	loop	expansion	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_DRILL_PIXEL_COL
	
Inserts	the	pixel	column	for	placement	of	a	fields	drill	button	on	a	form.

Usage

<FIELD_DRILL_PIXEL_COL>

Example	Output

275

Alternate	forms

None

See	also

• <FIELD_COL>

• <FIELD_PIXEL_COL>

• <FIELD_PIXEL_ROW>

• <FIELD_ROW>

• <PROMPT_COL>

• <PROMPT_PIXEL_COL>

• <PROMPT_PIXEL_ROW>

• <PROMPT_PIXEL_WIDTH>

• <PROMPT_ROW>

• Other	field	loop	expansion	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_ELEMENT
	
For	array	fields	this	token	inserts	the	one-based	element	number	of	the	field
currently	being	processed	by	the	field	loop.	For	multi-dimension	arrays	the
token	inserts	a	comma-separated	list	of	current	index	numbers.	For	non-array
fields	the	token	does	not	cause	anything	to	be	written	to	the	output	stream.

Usage

<FIELD_ELEMENT>

Example	Output

For	a	non-array	field:																														<no	output>

For	a	single-dimensional	array:											1

For	a	two-dimensional	array:																				1,2

For	a	three-dimensional	array:										1,2,3

For	a	four-dimensional	array:											1,2,3,4

Alternate	forms

None

See	also

• <FIELD_DIMENSION1_INDEX>

• <FIELD_DIMENSION2_INDEX>

• <FIELD_DIMENSION3_INDEX>

• <FIELD_DIMENSION4_INDEX>

• <FIELD_ELEMENT0>

• Other	field	loop	expansion	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_ELEMENT0
	
For	array	fields	this	token	inserts	the	one-based	element	number	of	the	field
currently	being	processed	by	the	field	loop.	For	multi-dimension	arrays	the
token	inserts	a	comma-separated	list	of	current	index	numbers.	For	non-array
fields	the	token	inserts	0.

Usage

<FIELD_ELEMENT0>

Example	Output

For	a	non-array	field:																														0

For	a	single-dimensional	array:											1

For	a	two-dimensional	array:																				1,2

For	a	three-dimensional	array:										1,2,3

For	a	four-dimensional	array:											1,2,3,4

Alternate	forms

None

See	also

• <FIELD_DIMENSION1_INDEX>

• <FIELD_DIMENSION2_INDEX>

• <FIELD_DIMENSION3_INDEX>

• <FIELD_DIMENSION4_INDEX>

• <FIELD_ELEMENT>

• Other	field	loop	expansion	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_ENUMLENGTH
	
Inserts	the	maximum	length	of	the	fields’	enumerated	values.

Usage

<FIELD_ENUMLENGTH>

Example	Output

12

Alternate	forms

None

See	also

• <FIELD_ENUMWIDTH>

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_ENUMWIDTH
	
Inserts	the	pixel	width	for	the	maximum	length	of	the	fields’	enumerated
values.

Calculated	as	the	maximum	length	of	the	fields	enumerated	values	multiplied
by	12	pixels	per	character.	This	default	character	width	can	be	overridden
using	the	-cw	command	line	option.

Usage

<FIELD_ENUMWIDTH>

Example	Output

144

Alternate	forms

None

See	also

• <FIELD_ENUMLENGTH>

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_FORMATNAME
	
Inserts	the	name	of	the	fields	Repository	format,	or	nothing	if	no	format	is
specified.

Usage

<FIELD_FORMATNAME>

Alternate	forms

None

See	also

• <FIELD_FORMATSTRING>

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_FORMATSTRING
	
Inserts	the	format	string	value	of	the	fields	Repository	format,	or	nothing	if	no
format	is	specified.
	
Usage

<FIELD_FORMATSTRING>

Alternate	forms

None

See	also

• <FIELD_FORMATNAME>

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_HEADING
	
Inserts	the	fields	report	heading.	If	no	heading	exists	then	the	field	prompt	is
used.	If	no	prompt	exists	then	the	fields	SQL	name	is	used.	Array	fields	will
have	the	element	number	appended	(e.g.	Phone	#1).

Usage

<FIELD_HEADING>

Alternate	forms

None

See	also

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_HELPID
	
Inserts	the	fields	help	identifier	if	present.

Usage

<FIELD_HELPID>

Alternate	forms

None

See	also

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_HYPERM
	
This	token	inserts	the	name	of	the	fields’	hyper-link	method	if	present,	or	by
nothing	if	not.

Usage

<FIELD_HYPERM>

Alternate	forms

• <field_hyperm>

• <Field_Hyperm>

• <Field_hyperm>

• <FieldHyperm>

• <fieldHyperm>

See	also

• <FIELD_ARRIVEM>

• <FIELD_CHANGEM>

• <FIELD_DRILLM>

• <FIELD_LEAVEM>

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_INFOLINE
	
Inserts	the	fields’	information	line	text	if	present.

Usage

<FIELD_INFOLINE>

Alternate	forms

None

See	also

• <FIELD_DESC>

• <FIELD_LDESC>

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_INPUT_LENGTH
	
Inserts	the	maximum	number	of	characters	that	can	be	typed	into	a	UI	input
field	representing	the	current	field.

• For	alpha	fields	the	input	length	is	the	same	as	the	field	size.

• For	decimal	fields	the	input	length	will	be	one	byte	longer	than	the	field
size	if	the	field	allows	negative	values.

• For	implied	decimal	fields	the	input	length	will	be	one	byte	longer	than
the	field	size	to	allow	for	the	entry	of	a	decimal	point,	and	two	bytes
longer	that	the	field	size	if	the	field	allows	negative	values.

• For	integer	fields	the	input	length	is	based	on	the	maximum	number	of
bytes	that	are	required	in	order	to	be	able	to	enter	the	maximum	value
supported	by	the	integer	field,	but	bear	in	mind	that	this	may	allow	your
user	to	enter	a	value	larger	than	that	supported	by	the	underlying	field.
For	example,	an	I1	field	which	allows	negative	values	is	capable	of
storing	values	in	the	range	of	-128	to	127,	so	the	input	length	for	the
field	is	4,	but	when	used	to	constrain	the	length	of	a	UI	field	this	would
allows	the	user	to	enter	a	value	in	the	range	-999	to	9999.

Usage

<FIELD_INPUT_LENGTH>

Alternate	forms

None

See	also

• <FIELD_SIZE>

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_LDESC
	
Inserts	the	fields’	long	description.

Usage

<FIELD_LDESC>

Alternate	forms

None

See	also

• <FIELD_DESC>

• <FIELD_INFOLINE>

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_LEAVEM
	
This	token	inserts	the	name	of	the	fields	leave	method	if	present,	or	by
nothing	if	not.

Usage

<FIELD_LEAVEM>

Alternate	forms

• <field_leavem>

• <Field_Leavem>

• <Field_leavem>

• <FieldLeavem>

• <fieldLeavem>

See	also

• <FIELD_ARRIVEM>

• <FIELD_CHANGEM>

• <FIELD_DRILLM>

• <FIELD_HYPERM>

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_MAXVALUE
	
Inserts	the	maximum	value	which	should	be	associated	with	a	numeric	field.
The	token	should	only	be	used	for	numeric	fields,	so	you	should	only	use	it
within	an	<IF	NUMERIC>	field	loop	expression.

Usage

<FIELD_MAXVALUE>

Alternate	forms

None

See	also

• <FIELD_MINVALUE>

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_MINVALUE
	
This	token	inserts	the	minimum	value	which	should	be	associated	with	a
numeric	field.	The	token	should	only	be	used	for	numeric	fields,	so	you
should	only	use	it	within	an	<IF	NUMERIC>	field	loop	expression.

Usage

<FIELD_MINVALUE>

Alternate	forms

None

See	also

• <FIELD_MAXVALUE>

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_NAME
	
Inserts	the	name	of	the	field.	Array	fields	are	represented	in	Synergy	real	array
format,		and	group	fields	are	represented	by	a	full	path.

Usage

<FIELD_NAME>

Example	Output

• ACCOUNT_NUMBER

• PHONE[3]

• ADDRESS.CITY

• CONTACT[2].NAME

Alternate	forms

• <field_name>

• <Field_Name>

• <Field_name>

• <FieldName>

• <fieldName>

See	also

• <FIELD_ALTNAME>

• <FIELD_BASENAME>

• <FIELD_NETNAME>

• <FIELD_NET_ALTNAME>

• <FIELD_ODBCNAME>

• <FIELD_ORIGINAL_NAME>

• <FIELD_SQL_ALTNAME>

• <FIELD_SQLNAME>

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_NETNAME
	
Inserts	a	.NET	compatible	name	for	the	current	field.	Array	fields	are
expanded	to	multiple	individual	fields,	with	the	name	being	suffixed	with	the
array	element	number,	for	example	'FIELDNAME1',	'FIELDNAME2'	etc.

The	token	behaves	identically	to	the	<FIELD_SQLNAME>	token.

Usage

<FIELD_NETNAME>

Example	Output

• ACCOUNT_NUMBER

• PHONE3

• ADDRESS_CITY

• CONTACT2_NAME

Alternate	forms

• <field_netname>

• <Field_Netname>

• <Field_netname>

• <FieldNetname>

• <fieldNetname>

In	addition,	for	compatibility	with	previous	earlier	versions,	the	following
alternate	forms	are	also	supported	but	ideally	should	not	be	used:

• <FieldNetName>

• <fieldNetName>

	

See	also

• <FIELD_ALTNAME>

• <FIELD_BASENAME>

• <FIELD_NAME>

• <FIELD_NET_ALTNAME>

• <FIELD_ODBCNAME>

• <FIELD_ORIGINAL_NAME>

• <FIELD_SQL_ALTNAME>

• <FIELD_SQLNAME>

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_NET_ALTNAME
	
Inserts	a	.NET	compatible	version	of	the	alternate	name	for	the	current	field.
Array	fields	are	expanded	to	multiple	individual	fields,	with	the	name	being
suffixed	with	the	array	element	number,	for	example	'FIELDNAME1',
'FIELDNAME2'	etc.
The	token	behaves	identically	to	the	<FIELD_SQL_ALTNAME>	token.

Usage

<FIELD_NET_ALTNAME>

Alternate	forms

• <field_net_altname>

• <Field_Net_Altname>

• <Field_net_altname>

• <FieldNetAltname>

• <fieldNetAltname>

See	also

• <FIELD_ALTNAME>

• <FIELD_BASENAME>

• <FIELD_NAME>

• <FIELD_NETNAME>

• <FIELD_ODBCNAME>

• <FIELD_ORIGINAL_NAME>

• <FIELD_SQL_ALTNAME>

• <FIELD_SQLNAME>

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_NOECHO_CHAR
	
Inserts	the	character	that	should	be	used	to	represent	each	character	typed	into
a	field,	in	place	of	the	actual	character	(think	password	fields).

If	the	current	field	being	processed	is	a	"no	echo"	field	then	the	token	will	be
replaced	by	the	no	echo	character	specified	in	the	repository	field	definition,
or	by	an	asterisk	(*)	if	no	character	is	specified.	If	the	field	is	not	a	"no	echo"
field	then	the	token	will	be	replaced	by	a	null	string.

Usage

<FIELD_NOECHO_CHAR>

Alternate	forms

None

See	also

• <IF	ECHO>

• <IF	NOECHO>

• Other	field	loop	expansion	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_OCDEFAULT
	
Inserts	an	Objective-C	default	value	based	on	the	fields	data	type.

Usage

<FIELD_OCDEFAULT>

Possible	values

• @""

• 0

• 0.0

• NO

• [NSDate	new]

Alternate	forms

None

See	also

• <FIELD_OCTYPE>

• Other	field	loop	expansion	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_OCTYPE
	
Inserts	a	string	indicating	the	Objective-C	equivalent	data	type	of	the	field.

Usage

<FIELD_OCTYPE>

Possible	values

• BOOL

• double

• float

• int

• long	int

• NSDate

• NSString

• short	int

• unsigned	int

• unsigned	long	int

• unsigned	short	int

Alternate	forms

None

See	also

• <FIELD_OCDEFAULT>

• Other	field	loop	expansion	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_ODBCNAME
	
Inserts	an	ODBC-compatible	name	for	the	current	field.	Array	fields	are
expanded	to	multiple	individual	fields,	with	the	name	being	suffixed	with	an
underscore	and	the	array	element	number,	for	example	'FIELDNAME_1',
'FIELDNAME_2'	etc.	Note	however	that	using	the	alternate	pascal-case
(<FieldOdbcname>)	or	camel-case	(<fieldOdbcname>)	tokens	will	cause	the
underscore	characters	to	be	suppressed.

Usage

<FIELD_ODBCNAME>

Alternate	forms

• <field_odbcname>

• <Field_Odbcname>

• <Field_odbcname>

• <FieldOdbcname>

• <fieldOdbcname>

In	addition,	for	compatibility	with	previous	earlier	versions,	the	following
alternate	forms	are	also	supported	but	ideally	should	not	be	used:

• <FieldOdbcName>

• <fieldOdbcName>

	

See	also

• <FIELD_ALTNAME>

• <FIELD_BASENAME>

• <FIELD_NAME>

• <FIELD_NETNAME>

• <FIELD_NET_ALTNAME>

• <FIELD_ORIGINAL_NAME>

• <FIELD_SQL_ALTNAME>

• <FIELD_SQLNAME>

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_ORIGINAL_NAME
	
Inserts	the	original	name	of	the	field	as	defined	in	the	repository.	A	fields
original	name	never	changes,	and	does	not	include	any	array	dimensions	or
paths	resulting	from	the	expansion	of	array	or	group	fields.

Usage

<FIELD_ORIGINAL_NAME>

Alternate	forms

• <field_original_name>

• <Field_Original_Name>

• <Field_original_name>

• <FieldOriginalName>

• <fieldOriginalName>

See	also

• <FIELD_ALTNAME>

• <FIELD_BASENAME>

• <FIELD_NAME>

• <FIELD_NETNAME>

• <FIELD_NET_ALTNAME>

• <FIELD_ODBCNAME>

• <FIELD_SQL_ALTNAME>

• <FIELD_SQLNAME>

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_PATH
	
Inserts	the	path	of	the	field.	Array	fields	are	represented	in	Synergy	format,
for	example	structure.fieldname[1].	

Usage

<FIELD_PATH>

Alternate	forms

• <field_path>

• <Field_path>

• <Field_Path>

• <FieldPath>

• <fieldPath>	

See	also

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_PATH_CONV
	
Inserts	the	path	of	the	field.	Array	fields	are	represented	in	Synergy	format,
for	example	structure.fieldname[1].	If	the	fields	user	text	or	long	description
contains	an	@UNMAPF=function;	expression	then	the	conversion	function
will	also	be	applied.

Usage

<FIELD_PATH_CONV>

Alternate	forms

• <field_path_conv>

See	also

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_PIXEL_COL
	
Inserts	the	pixel	column	for	placement	of	the	field	within	a	UI	form.	If	the
field	has	a	column	position	specified	then	this	is	used,	otherwise	the	default	of
column	15	is	used.

A	default	width	of	12	pixels	per	character	is	used,	and	this	can	be	overridden
using	the	-cw	command	line	option.

Usage

<FIELD_PIXEL_COL>

Alternate	forms

None

See	also

• <FIELD_COL>

• <FIELD_DRILL_PIXEL_COL>

• <FIELD_PIXEL_ROW>

• <FIELD_PIXEL_WIDTH>

• <FIELD_ROW>

• <PROMPT_COL>

• <PROMPT_PIXEL_COL>

• <PROMPT_PIXEL_ROW>

• <PROMPT_PIXEL_WIDTH>

• <PROMPT_ROW>

• Other	field	loop	expansion	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_PIXEL_ROW
	
Inserts	the	pixel	row	for	placement	of	the	field	within	a	UI	form.	If	the	field
has	a	row	position	defined	then	this	is	used,	otherwise	the	logical	field	number
(which	includes	array	elements)	is	used	to	calculate	the	default	row.

A	default	height	of	25	pixels	per	row	is	used,	and	this	can	be	overridden	using
the	-ch	command	line	option.

Usage

<FIELD_PIXEL_ROW>

Alternate	forms

None

See	also

• <FIELD_COL>

• <FIELD_DRILL_PIXEL_COL>

• <FIELD_PIXEL_COL>

• <FIELD_PIXEL_WIDTH>

• <FIELD_ROW>

• <PROMPT_COL>

• <PROMPT_PIXEL_COL>

• <PROMPT_PIXEL_ROW>

• <PROMPT_PIXEL_WIDTH>

• <PROMPT_ROW>

• Other	field	loop	expansion	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_PIXEL_WIDTH
	
Inserts	the	pixel	width	for	default	sizing	of	the	field	when	represented	as	a
TextBox.

Calculated	as	the	size	of	the	field	in	characters	multiplied	by	12	pixels	per
character.	This	default	character	width	can	be	overridden	using	the	-cw
command	line	option.

Usage

<FIELD_PIXEL_WIDTH>

Alternate	forms

None

See	also

• <FIELD_COL>

• <FIELD_DRILL_PIXEL_COL>

• <FIELD_PIXEL_COL>

• <FIELD_PIXEL_ROW>

• <FIELD_ROW>

• <PROMPT_COL>

• <PROMPT_PIXEL_COL>

• <PROMPT_PIXEL_ROW>

• <PROMPT_PIXEL_WIDTH>

• <PROMPT_ROW>

• Other	field	loop	expansion	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_POSITION
	
Inserts	the	one-based	byte	position	of	the	field	in	the	record.

Usage

<FIELD_POSITION>

Alternate	forms

None

See	also

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_POSITION_ZERO
	
Inserts	the	zero-based	byte	position	of	the	field	in	the	record.

Usage

<FIELD_POSITION_ZERO>

Alternate	forms

None

See	also

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_PRECISION
	
Inserts	the	precision	of	an	implied-decimal	field	or	an	empty	string.	Only	the
precision	is	inserted,	with	no	leading	period.

Usage

<FIELD_PRECISION>

Alternate	forms

None

See	also

• <FIELD_PRECISION0>

• <FIELD_PRECISION2>

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_PRECISION0
	
Inserts	the	precision	of	an	implied-decimal	field	or	0	for	non	implied	decimal
fields.
	
Usage

<FIELD_PRECISION0>

Alternate	forms

None

See	also

• <FIELD_PRECISION>

• <FIELD_PRECISION2>

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_PRECISION2
	
Inserts	the	precision	of	an	implied-decimal	field	including	a	leading	period,	or
an	empty	string.

Usage

<FIELD_PRECISION2>

Alternate	forms

None

See	also

• <FIELD_PRECISION>

• <FIELD_PRECISION0>

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_PROMPT
	
Inserts	the	fields	prompt.

Usage

<FIELD_PROMPT>

Alternate	forms

None

See	also

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_RANGE_MAX
	
Inserts	the	numeric	fields’	maximum	value.

Usage

<FIELD_RANGE_MAX>

Alternate	forms

None

See	also

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_RANGE_MIN
	
This	token	inserts	the	numeric	fields’	minimum	value.

Usage

<FIELD_RANGE_MIN>

Alternate	forms

None

See	also

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_REGEX
	
Inserts	a	regular	expression	that	can	be	used	to	constrain	and	validate	user
input	to	a	field	based	on	the	repository	definition	of	the	field.	The	regular
expression	inserted	depends	on	the	type	of	field.

Usage

<FIELD_REGEX>

Examples

Nature
of	field

	

Regular
ExpressionDescription

A4

	
	^.{0,4}$ Allows	between	0	and	4	characters.

A4,
required
field

	

	^.{1,4}$ Allows	between	1	and	4	characters.

D4,	no
negatives

	

	^[+]?[0]*
[0-9]{0,4}$

Allows	an	optional	+	sign,	followed	by	any	number	of
leading	zeros,	followed	by	up	to	four	numeric	digits.

	

D4,
allows
negatives

	

	^[+-]?[0]*
[0-9]{0,4}$

Allows	an	optional	+	or	-	sign,	followed	by	any	number
of	leading	zeros,	followed	by	up	to	four	numeric	digits.

	

D4.2,	no 	^[+]?[0]*
Allows	an	optional	+	sign,	followed	by	any	number	of
leading	zeros,	followed	by	up	to	two	numeric	digits,

negatives

	

[0-9]{0,2}
(\.[0-9]
{0,2}[0]*)?
$

followed	by	an	optional	decimal	point.	If	a	decimal
point	is	found	then	up	to	two	numeric	digits	may	follow,
followed	by	any	number	of	trailing	zeros.

	

D4.2,
allows
negatives

	

	^[+-]?[0]*
[0-9]{0,2}
(\.[0-9]
{0,2}[0]*)?
$

Allows	an	optional	+	or	-	sign,	followed	by	any	number
of	leading	zeros,	followed	by	up	to	two	numeric	digits,
followed	by	an	optional	decimal	point.	If	a	decimal
point	is	found	then	up	to	two	numeric	digits	may	follow,
followed	by	any	number	of	trailing	zeros.

	

I4,	no
negatives

	

	^[+]?[0]*
[0-9]
{0,10}$

Allows	an	optional	+	sign,	followed	by	any	number	of
leading	zeros,	followed	by	up	to	ten	numeric	digits.

	

I4,
allows
negatives

	

	^[+-]?[0]*
[0-9]
{0,10}$

Allows	an	optional	+	or	-	sign,	followed	by	any	number
of	leading	zeros,	followed	by	up	to	ten	numeric	digits.

	

In	the	table	above,	the	numbers	shown	in	red	are	based	on	the	size	of	the	field
being	processed	at	the	time.

Restrictions

Integer	Fields

The	regular	expression	for	integer	fields	will	constrain	the	number	of
characters	entered,	and	restrict	those	characters	to	being	numeric	characters,
but	it	will	NOT	restrict	the	user	to	only	entering	valid	numeric	values.	For
example,	an	i1	field	can	store	up	to	127,	the	regular	expression	will	constrain
the	entry	to	3	numeric	characters	but	it	will	still	be	possible	to	enter	an	out	of
range	value	(e.g.	256).

Required	Fields

Currently	CodeGen	only	takes	a	fields	"required"	status	into	account	for	alpha
fields.	If	an	alpha	field	is	required	then	the	regular	expression	produced	will
require	at	least	one	character	be	present.

Alternate	forms

None

See	also

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_ROW
	
Inserts	the	screen	row	for	placement	of	the	field	on	the	screen	in	a	cell	based
environment.	If	the	field	has	a	row	position	defined	then	this	is	used,
otherwise	the	logical	field	number	(which	includes	array	elements)	is	used	to
calculate	the	default	row.

Usage

<FIELD_ROW>

Alternate	forms

None

See	also

• <FIELD_COL>

• <FIELD_DRILL_PIXEL_COL>

• <FIELD_PIXEL_COL>

• <FIELD_PIXEL_ROW>

• <FIELD_PIXEL_WIDTH>

• <PROMPT_COL>

• <PROMPT_PIXEL_COL>

• <PROMPT_PIXEL_ROW>

• <PROMPT_PIXEL_WIDTH>

• <PROMPT_ROW>

• Other	field	loop	expansion	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_SELECTION_COUNT
	
Inserts	the	number	of	selection	list	values	that	are	associated	with	the	field,	for
example:	
4

A	value	of	0	will	be	inserted	for	fields	that	do	not	have	associated	selection
lists.

Usage

<FIELD_SELECTION_COUNT>

Alternate	forms

None

See	also

• <FIELD_SELECTIONS>

• <FIELD_SELECTIONS1>

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_SELECTIONS
	
Inserts	a	comma	separated	list	of	the	fields’	selection	list	values,	for	example:

"Red","Green","Blue"

Usage

<FIELD_SELECTIONS>

Alternate	forms

None

See	also

• <FIELD_SELECTION_COUNT>

• <FIELD_SELECTIONS1>

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_SELECTIONS1
	
Inserts	a	quoted	string	containing	a	pipe	(|)	delimited	list	of	the	fields	selection
list	values,	for	example:

"Red|Green|Blue"

Usage

<FIELD_SELECTIONS1>

Alternate	forms

None

See	also

• <FIELD_SELECTION_COUNT>

• <FIELD_SELECTIONS>

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_SELLENGTH
	
Inserts	the	maximum	length	of	the	fields’	selection	list	values.

Usage

<FIELD_SELLENGTH>

Alternate	forms

None

See	also

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_SELWND
	
Inserts	the	name	of	the	selection	window	associated	with	the	current	field.	If
the	field	does	not	have	a	selection	window	then	the	token	inserts	nothing.

Bear	in	mind	that	if	the	-ws	command	line	option	is	being	used	then	CodeGen
may	have	removed	the	selection	window	name	from	the	field	definition	and
replaced	it	with	a	selection	list,	based	on	the	selection	windows	entries.	In	that
case	you	can	use	a	<SELECTION_LOOP>	to	process	the	selections.

Usage

<FIELD_SELWND>

Alternate	forms

• <field_selwnd>

• <Field_Selwnd>

• <Field_selwnd>

• <FieldSelWnd>

• <FieldSelWnd>

• <FIELD_SELWND_ORIGINAL>

Note	that	in	repository	the	name	of	a	fields	selection	window	can	be	entered	in
a	mixed	case	format.	The	<FIELD_SELWND_ORIGINAL>	token	allows	you
to	use	the	name	of	the	selection	window	exactly	as	it	appears	in	the	repository.

See	also

• <IF	SELWND>

• <IF	NOSELWND>

• Other	field	loop	expansion	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_SIZE
	
Inserts	the	size	of	the	field	in	bytes.

Usage

<FIELD_SIZE>

Alternate	forms

None

See	also

• <FIELD_INPUT_LENGTH>

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_SNDEFAULT
	
Inserts	a	Synergy	.NET	default	value	based	on	the	fields	data	type.

Usage

<FIELD_SNDEFAULT>

Possible	values

• ""

• 0

• false

• new	DateTime()

• ^null

Alternate	forms

None

See	also

• <FIELD_SNTYPE>

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_SNTYPE
	
Inserts	a	string	indicating	the	Synergy	NET	data	type	of	the	field.

Usage

<FIELD_SNTYPE>

Possible	values

• boolean

• byte

• DateTime

• decimal

• double

• float

• int

• long

• @Nullable<DateTime>

• short

• String

• ystem.SByte

• System.UInt16

• System.UInt32

• System.UInt64

Alternate	forms

None

See	also

• <FIELD_SNDEFAULT>

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_SPEC
	
Inserts	a	Synergy	data	type	definition	for	the	field.	For	example:

A15

D12.4

BOOLEAN

Use	with	Implicit	Groups

An	implicit	group	is	a	group	in	the	repository	structure	being	processed	whose
fields	are	defined	by	another	repository	structure.

By	default	CodeGen	will	expand	group	fields	to	multiple	individual	fields
based	on	the	fields	within	the	group	that	was	encountered.	As	an	alternative,	if
the	-g	i	command	line	option	is	used	(don't	expand	implicit	groups	to
individual	fields),	and	an	implicit	group	is	encountered,	then	the	implicit
group	is	assumed	to	be	represented	as	a	class,	and	the	field	specification	will
be	inserted	as	a	class	type.	For	example,	for	an	implicit	group	based	on	the
repository	structure	CUSTOMER,	the	field	specification	will	be:

@CUSTOMER

Usage

<FIELD_SPEC>

Alternate	forms

• <field_spec>

• <Field_Spec>

• <Field_spec>

• <FieldSpec>

• <fieldSpec>

See	also

• <FIELD_CSTYPE>

• <FIELD_OCTYPE>

• <FIELD_SQLTYPE>

• <FIELD_TYPE>

• <FIELD_TYPE_NAME>

• <FIELD_VBTYPE>

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_SQLNAME
	
Inserts	a	SQL-compatible	name	for	the	current	field.	Array	fields	are
expanded	to	multiple	individual	fields,	with	the	name	being	suffixed	with	the
array	element	number,	for	example	'FIELDNAME1',	'FIELDNAME2'	etc.

The	token	behaves	identically	to	the	<FIELD_NETNAME>	token.

Usage

<FIELD_SQLNAME>

Alternate	forms

• <field_sqlname>

• <Field_Sqlname>

• <Field_sqlname>

• <FieldSqlname>

• <fieldSqlname>

In	addition,	for	compatibility	with	previous	earlier	versions,	the	following
alternate	forms	are	also	supported	but	ideally	should	not	be	used:

• <FieldSqlName>

• <fieldSqlName>

	

See	also

• <FIELD_ALTNAME>

• <FIELD_BASENAME>

• <FIELD_NAME>

• <FIELD_NETNAME>

• <FIELD_NET_ALTNAME>

• <FIELD_ODBCNAME>

• <FIELD_ORIGINAL_NAME>

• <FIELD_SQL_ALTNAME>

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_SQL_ALTNAME
	
Inserts	a	SQL-compatible	version	of	the	alternate	name	for	the	current	field.
Array	fields	are	expanded	to	multiple	individual	fields,	with	the	name	being
suffixed	with	the	array	element	number,	for	example	'FIELDNAME1',
'FIELDNAME2'	etc.
The	token	behaves	identically	to	the	<FIELD_NET_NETNAME>	token.

Usage

<FIELD_SQL_ALTNAME>

Alternate	forms

• <field_sql_altname>

• <Field_Sql_Altname>

• <Field_sql_altname>

• <FieldSqlAltname>

• <fieldSqlAltname>

See	also

• <FIELD_ALTNAME>

• <FIELD_BASENAME>

• <FIELD_NAME>

• <FIELD_NETNAME>

• <FIELD_NET_ALTNAME>

• <FIELD_ODBCNAME>

• <FIELD_ORIGINAL_NAME>

• <FIELD_SQLNAME>

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_SQLTYPE
	
Inserts	a	SQL	compatible	data	definition	of	the	field.	By	default	the	data	types
for	Microsoft	SQL	Server	are	used	but	you	can	select	one	of	the	other
supported	databases	either	by	using	the	-database	command	line	option,	or	by
setting	the	CODEGEN_DATABASE_TYPE	environment	variable.

Usage

<FIELD_SQLTYPE>

Alternate	forms

None

Resulting	Values

Synergy	Data	Type SQL	Server
Type MySQL	Type PostgreSQL

Type

Alpha VARCHAR(n) VARCHAR(n) VARCHAR(n)

Alpha	(Binary) CHAR(n) VARBINARY(n)CHAR(n)

Auto	sequence
	 BIGINT BIGINT BIGINT

Auto	time
	 BIGINT BIGINT BIGINT

Binary
	 CHAR(n) VARBINARY(n)CHAR(n)

Boolean
	 BIT BOOLEAN BOOLEAN

Date	(YYYYMMDD)
	 DATE DATE DATE

Date	(YYMMDD)
	 DATE DATE DATE

Date	(YYYYJJJ)
	 DECIMAL(7) DECIMAL(7) NUMERIC(7)

Date	(YYJJJ)
	

DECIMAL(5) DECIMAL(5) NUMERIC(5)

Date	(YYYYPP)
	 DECIMAL(6) DECIMAL(6) NUMERIC(6)

Date	(YYPP)
	 DECIMAL(4) DECIMAL(4) NUMERIC(4)

Decimal DECIMAL(n) DECIMAL(n) NUMERIC(n)

Enum
	 INT INT INT

Implied	Decimal DECIMAL(n,p)DECIMAL(n,p) NUMERIC(n,p)

Integer	(i1)
	 SMALLINT TINYINT SMALLINT

Integer	(i2) SMALLINT SMALLINT SMALLINT

Integer	(i4) INT INT INT

Integer	(i8) BIGINT BIGINT BIGINT

Structure	field
	 VARCHAR(n) VARCHAR(n) VARCHAR(n)

Time	(HHMMSS) TIME(0) TIME(0) TIME(0)

Time	(HHMM) TIME(0) TIME(0) TIME(0)

User	Defined	Alpha CHAR(n) CHAR(n) CHAR(n)

User	Defined	Numeric CHAR(n) CHAR(n) CHAR(n)

User	Defined	Time-stamp
(see	below) DATETIME2 TIMESTAMP TIMESTAMP

User	Defined	Date	(all
others) CHAR(n) CHAR(n) CHAR(n)

User-Defined	Time-stamp	Fields

User-defined	time-stamp	fields	can	be	implemented	in	the	same	way	as
supported	by	xfODBC:

• Define	the	field	as	a	user-defined	date	type,	length	20

• Set	the	fields	"user	string"	to
^CLASS^=YYYYMMDDHHMISSUUUUUU

• Use	the	<IF	USERTIMESTAMP>	and	<IF	NOTUSERTIMESTAMP>
expressions	to	detect	the	fields	in	field	loops.

• Use	the	SQL	CONVERT	function	to	convert	a
YYYYMMDDHHMISSUUUUUU	string	into	a	DATETIME2	value	as
required	by	SQL	Server.	Note	that	DATETIME2	fields	are	only
supported	from	SQL	Server	2008.	An	example	of	using	CONVERT	is
shown	below:

										a20field	=	%datetime

										a26field	=	%string(^d(a20field),"XXXX-XX-XX
XX:XX:XX.XXXXXX")

Then	when	building	your	SQL	statement	you	would	do	something	like	this

										sql	=	sql	+	"CONVERT(DATETIME2,"	+	a26field	+	",21)"

See	also

• <FIELD_CSTYPE>

• <FIELD_SPEC>

• <FIELD_TYPE>

• <FIELD_TYPENAME>

• <FIELD_VBTYPE>

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_TEMPLATE
	
Inserts	the	name	of	the	Repository	template	from	which	the	field	inherited	its
attributes	or	by	a	null	string	if	no	template	is	referenced.

Usage

<FIELD_TEMPLATE>

Alternate	forms

None

See	also

• Other	field	loop	expansion	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_TKSCRIPT
	
Inserts	a	UI	Toolkit	.field	script	file	command	for	the	field.

Usage

<FIELD_TKSCRIPT>

Alternate	forms

None

See	also

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_TYPE
	
Inserts	a	character	indicating	the	synergy	data	type	of	field.

Usage

<FIELD_TYPE>

Possible	values

• A

• D

• I

Use	with	Implicit	Groups

An	implicit	group	is	a	group	in	the	repository	structure	being	processed	whose
fields	are	defined	by	another	repository	structure.

By	default	CodeGen	will	expand	group	fields	to	multiple	individual	fields
based	on	the	fields	within	the	group	that	was	encountered.	As	an	alternative,	if
the	-g	i	command	line	option	is	used	(don't	expand	implicit	groups	to
individual	fields),	and	an	implicit	group	is	encountered,	then	the	implicit
group	is	assumed	to	be	represented	as	a	class,	and	the	field	type	will	be
inserted	as	a	class	type.	For	example,	for	an	implicit	group	based	on	the
repository	structure	CUSTOMER,	the	field	specification	will	be:

@CUSTOMER

Alternate	forms

• <field_type>

• <Field_Type>

• <Field_type>

• <FieldType>

• <fieldType>

See	also

• <FIELD_CSTYPE>

• <FIELD_OCTYPE>

• <FIELD_SPEC>

• <FIELD_SQLTYPE>

• <FIELD_TYPE_NAME>

• <FIELD_VBTYPE>

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_TYPE_NAME
	
Inserts	a	string	indicating	the	Synergy	data	type	of	field.

Usage

<FIELD_TYPE_NAME>

Possible	values

• ALPHA

• AUTO	SEQUENCE

• AUTO	TIME

• BINARY

• DATE

• DECIMAL

• IMPLIED

• INTEGER

• JULIAN

• TIME

• USER	ALPHA

• USER	DATE

• USER	NUMERIC

Alternate	forms

None

See	also

• <FIELD_CSTYPE>

• <FIELD_SPEC>

• <FIELD_SQLTYPE>

• <FIELD_TYPE>

• <FIELD_VBTYPE>

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_UTEXT
	
Inserts	the	fields’	user-defined	text	string.

Usage

<FIELD_UTEXT>

Alternate	forms

None

See	also

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_VBDEFAULT
	
Inserts	a	VB.NET	default	value	based	on	the	fields	data	type.

Usage

<FIELD_VBDEFAULT>

Possible	values

• ""

• 0

• False

• New	DateTime()

• Nothing

Alternate	forms

None

See	also

• <FIELD_CSCONVERT>

• <FIELD_VBTYPE>

• Other	field	loop	expansion	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

FIELD_VBTYPE
	
Inserts	a	string	indicating	the	VB.NET	data	type	of	the	field.

Usage

<FIELD_VBTYPE>

Possible	values

• Boolean

• Byte

• DateTime

• Decimal

• Integer

• Long

• Nullable(Of	DateTime)

• Short

• String

• System.Double

• System.SByte

• System.Single

• System.UInt16

• System.UInt32

• System.UInt64

Alternate	forms

None

See	also

• <FIELD_CSTYPE>

• <FIELD_OCTYPE>

• <FIELD_SPEC>

• <FIELD_SQLTYPE>

• <FIELD_TYPE>

• <FIELD_TYPE_NAME>

• Other	field	loop	expansion	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

MAPPED_FIELD
	
Inserts	the	name	of	the	mapped	field	in	the	mapped	structure.	To	use	this
token	you	must	use	@MAP=structure;	in	the	structures	user	text	field	or	long
description	and	@MAP=field;	in	each	fields	user	text	field	or	long
description.

Usage

<MAPPED_FIELD>

Alternate	forms

• <mapped_field>

• <Mapped_Field>

• <Mapped_field>

• <MappedField>

• <mappedField>

See	also

• <MAPPED_PATH>

• <MAPPED_PATH_CONV>

• Other	field	loop	expansion	tokens

• Structure	Mapping

	
	

Copyright	©	2012		Synergex	International,	Inc.

MAPPED_PATH
	
Inserts	the	name	of	the	mapped	path	in	the	mapped	structure.	To	use	this	token
you	must	use	@MAP=structure;	in	the	structures	user	text	field	or	long
description	and	@MAP=field;	in	each	fields	user	text	field	or	long
description.	

Usage

<MAPPED_PATH>

Alternate	forms

• <mapped_path>

See	also

• <MAPPED_FIELD>

• <MAPPED_PATH_CONV>

• Other	field	loop	expansion	tokens

• Structure	Mapping

	
	

Copyright	©	2012		Synergex	International,	Inc.

MAPPED_PATH_CONV
	
Inserts	the	name	of	the	mapped	path	in	the	mapped	structure	.	To	use	this
token	you	must	use	@MAP=structure;	in	the	structures	user	text	field	or	long
description	and	@MAP=field;	in	each	fields	user	text	field.	If	there	is	also	an
@MAPF=function;	in	the	user	text	or	long	description	then	that	conversion
function	will	also	be	applied.

Usage

<MAPPED_PATH_CONV>

Alternate	forms

• <mapped_path_conv>

See	also

• <MAPPED_FIELD>

• <MAPPED_PATH>

• Other	field	loop	expansion	tokens

• Structure	Mapping

	
	

Copyright	©	2012		Synergex	International,	Inc.

PROMPT_COL
	
Inserts	the	screen	column	for	placement	of	the	prompt	on	the	screen	in	a
character	based	environment.	If	the	prompt	has	a	column	position	specified
then	this	is	used,	otherwise	the	default	of	column	1	is	used.

Usage

<PROMPT_COL>

Alternate	forms

None

See	also

• <FIELD_COL>

• <FIELD_DRILL_PIXEL_COL>

• <FIELD_PIXEL_COL>

• <FIELD_PIXEL_ROW>

• <FIELD_PIXEL_WIDTH>

• <FIELD_ROW>

• <PROMPT_PIXEL_COL>

• <PROMPT_PIXEL_ROW>

• <PROMPT_PIXEL_WIDTH>

• <PROMPT_ROW>

• Other	field	loop	expansion	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

PROMPT_PIXEL_COL
	
Inserts	the	pixel	column	for	placement	of	the	prompt	on	a	windows	form.	If
the	prompt	has	a	column	position	specified	then	this	is	used,	otherwise	the
default	of	column	1	is	used.

A	default	width	of	12	pixels	per	character	is	used,	and	can	be	overridden	using
the	-cw	command	line	option.

Usage

<PROMPT_PIXEL_COL>

Alternate	forms

None

See	also

• <FIELD_COL>

• <FIELD_DRILL_PIXEL_COL>

• <FIELD_PIXEL_COL>

• <FIELD_PIXEL_ROW>

• <FIELD_PIXEL_WIDTH>

• <FIELD_ROW>

• <PROMPT_COL>

• <PROMPT_PIXEL_ROW>

• <PROMPT_PIXEL_WIDTH>

• <PROMPT_ROW>

• Other	field	loop	expansion	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

PROMPT_PIXEL_ROW
	
Inserts	the	pixel	row	for	placement	of	the	prompt	on	a	windows	form.	If	the
prompt	has	a	row	position	defined	then	this	is	used,	otherwise	the	logical	field
number	(which	includes	array	elements)	is	used	to	calculate	the	default	row.

A	default	height	of	25	pixels	per	row	is	used,	and	can	be	overridden	using	the
-ch	command	line	option.

Usage

<PROMPT_PIXEL_ROW>

Alternate	forms

None

See	also

• <FIELD_COL>

• <FIELD_DRILL_PIXEL_COL>

• <FIELD_PIXEL_COL>

• <FIELD_PIXEL_ROW>

• <FIELD_PIXEL_WIDTH>

• <FIELD_ROW>

• <PROMPT_COL>

• <PROMPT_PIXEL_COL>

• <PROMPT_PIXEL_WIDTH>

• <PROMPT_ROW>

• Other	field	loop	expansion	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

PROMPT_PIXEL_WIDTH
	
Inserts	the	pixel	width	for	default	sizing	of	the	prompt	when	represented	as	a
label.

Calculated	as	the	size	of	the	prompt	in	characters	multiplied	by	12	pixels	per
character.	This	default	character	width	can	be	overridden	using	the	-cw
command	line	option.

Usage

<PROMPT_PIXEL_WIDTH>

Alternate	forms

None

See	also

• <FIELD_COL>

• <FIELD_DRILL_PIXEL_COL>

• <FIELD_PIXEL_COL>

• <FIELD_PIXEL_ROW>

• <FIELD_PIXEL_WIDTH>

• <FIELD_ROW>

• <PROMPT_COL>

• <PROMPT_PIXEL_COL>

• <PROMPT_PIXEL_ROW>

• <PROMPT_ROW>

• Other	field	loop	expansion	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

PROMPT_ROW
	
Inserts	the	screen	row	for	placement	of	the	prompt	on	the	screen	in	a	character
based	environment.	If	the	prompt	has	a	row	position	defined	then	this	is	used,
otherwise	the	logical	field	number	(which	includes	array	elements)	is	used	to
calculate	the	default	row.

Usage

<PROMPT_ROW>

Alternate	forms

None

See	also

• <FIELD_COL>

• <FIELD_DRILL_PIXEL_COL>

• <FIELD_PIXEL_COL>

• <FIELD_PIXEL_ROW>

• <FIELD_PIXEL_WIDTH>

• <FIELD_ROW>

• <PROMPT_COL>

• <PROMPT_PIXEL_COL>

• <PROMPT_PIXEL_ROW>

• <PROMPT_PIXEL_WIDTH>

• Other	field	loop	expansion	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

Field	Loop	Expression	Tokens
	
Field	loop	expressions	are	expressions	that	can	only	be	used	within	the
context	of	a	field	loop.	CodeGen	supports	field	loop	expressions	via	the	<IF
expression>	and	</IF	[expression]>	tags.	Note	that	loop	utility
expressions	can	also	be	used	within	field	loops.

Expression Description

<IF	ALPHA> Data	type	is	Alpha.

<IF	ALLOW_LIST> The	field	has	allow	list	values.

<IF	ALTERNATE_NAME>

The	field	has	an	alternate	name	specified.
The	<FIELD_ALTNAME>	token	will
always	return	a	value	because	if	no
alternate	name	is	specified	in	the
repository	then	it	defaults	to	the	fields
real	name.	This	token	allows	you	to
detect	whether	the	alternate	name	is
different	from	the	real	name.										

<IF	ARRAY> The	field	used	to	be	part	of	an	array	with
1,	2,	3	or	4	dimensions.

<IF	ARRAY_FIRST>
The	field	used	to	be	the	very	first
element	of	an	array.
	

<IF	ARRAY1> The	field	used	to	be	part	of	an	array	with
1	dimension.

<IF	ARRAY1_FIRST>
The	field	used	to	be	the	very	first
element	of	an	array	with	1	dimension.
	

<IF	ARRAY2> The	field	used	to	be	part	of	an	array	with
2	dimensions.

<IF	ARRAY2_FIRST>
The	field	used	to	be	the	very	first
element	of	an	array	with	2	dimensions.

	

<IF	ARRAY3> The	field	used	to	be	part	of	an	array	with
3	dimensions.

<IF	ARRAY3_FIRST>
The	field	used	to	be	the	very	first
element	of	an	array	with	3	dimensions.
	

<IF	ARRAY4> The	field	used	to	be	part	of	an	array	with
4	dimensions.

<IF	ARRAY4_FIRST>
The	field	used	to	be	the	very	first
element	of	an	array	with	4	dimensions.
	

<IF	ARRIVE> The	field	has	an	arrive	method	specified.

<IF	AUTO_SEQUENCE>	 The	field	is	an	auto-sequence	field.	The
underlying	storage	is	an	I8.

<IF	AUTO_TIMESTAMP>
	

The	field	is	an	auto-time-stamp	field.
This	expression	will	evaluate	to	true	if
the	repository	field	is	defined	as	type
AutoTime	(AT).	The	underlying	storage
is	an	I8.

<IF
AUTO_TIMESTAMP_CREATED>
	

The	field	is	an	auto-time-stamp	field
AND	is	associated	with	a	key	segment
that	is	defined	as	type	AutoTime	Created
(C)	.	The	underlying	storage	is	an	I8.

<IF
AUTO_TIMESTAMP_UPDATED>
	

The	field	is	an	auto-time-stamp	field
AND	is	associated	with	a	key	segment
that	is	defined	as	type	AutoTime	Created
(C)	.	The	underlying	storage	is	an	I8.

<IF	BINARY> The	field	is	a	binary	field.	Binary	fields
are	also	alpha	fields.

<IF	BOLD> The	field	should	be	displayed	in	bold.

<IF	BOOLEAN>

The	fields	data	type	is	boolean.	This	only
applies	to	fields	whose	actual	Synergy
data	type	is	boolean,	not	to	numeric

fields	with	a	coerced	type	of	boolean.

<IF	BZERO> The	numeric	field	should	be	displayed
blank	if	the	field	value	is	zero.

<IF	BREAK>
The	field	is	a	break	field.	This	expression
matches	any	type	of	break	condition
(change,	always	or	return).

<IF	BREAK_ALWAYS>
The	field	is	a	break	field.	The	break	field
logic	always	executes	whenever	the	field
is	processed.

<IF	BREAK_CHANGE>
The	field	is	a	break	field.	The	break	field
logic	only	executes	when	the	value	of	the
field	changes.

<IF	BREAK_RETURN>
The	field	is	a	break	field.	The	break	field
logic	only	executes	when	the	user	presses
RETURN	on	the	field.

<IF	CHANGE> The	field	has	a	change	method	specified.

<IF	CHECKBOX> The	field	should	be	displayed	as	a	check-
box.

<IF	COERCEBOOLEAN> The	field	data	type	is	coerced	to	boolean.

<IF	COMBOBOX> The	field	should	be	displayed	as	a
combo-box.

<IF	DATE> The	field	is	a	date	or	nullable	date	.

<IF	DATEORTIME> The	field	is	a	date,	nullable	date,	or	time.

<IF	DATETODAY> The	date	field	should	default	to	the
current	date.

The	field	is	a	date	field	of	type	YYJJJ	or

<IF	DATE_JULIAN> YYYYJJJ.

<IF	DATE_NOT_JULIAN>
The	field	is	a	date	field	but	is	NOT	a
Julian	date.	It	could	be	a	reverse	date	or	a
period	date.

<IF	DATE_NOT_NULLABLE> The	field	is	a	date,	but	not	a	nullable
date.

<IF	DATE_NOT_PERIOD>
The	field	is	a	date	field	but	is	NOT	a
period	date.	It	could	be	a	reverse	date	or
a	Julian	date.

<IF	DATE_NOT_YMD> The	field	is	a	date	field	but	is	NOT	a
YYMMDD	or	YYYYMMDD	date.

<IF	DATE_NOT_YYYYMMDD> The	field	is	a	date	field	but	is	NOT	a
YYYYMMDD	date.

<IF	DATE_NULLABLE> The	field	is	a	NULLABLE	date.

<IF	DATE_PERIOD> The	field	is	a	date	field	of	type	YYPP	or
YYYYPP.

<IF	DATE_YMD> The	field	is	a	date	field	of	type
YYMMDD	or	YYYYMMDD.

<IF	DATE_YYMMDD> The	field	is	a	date	field	of	type
YYMMDD.

<IF	DATE_YYYYMMDD> The	field	is	a	date	field	of	type
YYYYMMDD.

<IF	DATE_YYJJJ> The	field	is	a	date	field	of	type	YYJJJ.

<IF	DATE_YYYYJJJ> The	field	is	a	date	field	of	type
YYYYJJJ.

<IF	DATE_YYPP> The	field	is	a	date	field	of	type	YYPP.

<IF	DATE_YYYYPP> The	field	is	a	date	field	of	type	YYYYPP.

<IF	DECIMAL>

The	field	data	type	is	decimal.	Note	that
date,	nullable	date	and	time	fields	are
NOT	treated	as	decimal	fields	with	this
conditional	test.

<IF	DEFAULT> The	field	has	a	default	value	specified.

<IF	DESCRIPTION> The	field	has	a	description	specified.

<IF	DISABLED> The	field	is	defined	as	being	initially
disabled.

<IF	DISPLAY> The	field	has	a	display	method	specified.

<IF	DISPLAY_LENGTH> The	field	has	a	display	length	specified.

<IF	DRILL> The	field	has	a	drill	method	specified.

<IF	ECHO> The	field	should	echo	characters	as	they
are	typed.

<IF	EDITFORMAT> The	field	has	an	edit	format	method
specified.

<IF	ENABLED> The	field	is	defined	as	being	initially
enabled.

<IF	ENUM>
The	field	is	an	ENUM	field.	This	is	a	real
language	enumeration,	not	a	UI	Toolkit
enumerated	field.

<IF	ENUMERATED>
The	field	has	a	UI	Toolkit	enumeration
specified.	This	is	not	the	same	as	being	a
real	language	ENUM	field.

<IF	FIELD_POSITION> The	field	has	a	UI	field	position
specified.

<IF	FORMAT> The	field	has	a	display	format	specified.

<IF	GROUP_EXPAND>
Implicit	groups	are	being	expanded	to
individual	fields	(i.e.	the	-g	i	command
line	option	is	not	being	used).

<IF	GROUP_NO_EXPAND>
Implicit	groups	are	not	being	expanded
to	individual	fields	(i.e.	the	-g	i	command
line	option	is	being	used).

<IF	HEADING> The	field	has	a	report	heading	specified.

<IF	HELPID> The	field	has	a	help	identifier	specified.

<IF	HYPERLINK> The	field	has	a	hyperlink	method
specified.

<IF	I1> The	field	is	an	I1.

<IF	I2> The	field	is	an	I2.

<IF	I4> The	field	is	an	I4.

<IF	I8> The	field	is	an	I8.

<IF	I124> The	field	is	an	I1,	I2	or	I4.

<IF	INFOLINE> The	field	has	information	line	text
specified.

<IF	INPUT_CENTER> Input	should	be	performed	center
justified.

<IF	INPUT_LEFT> Input	should	be	performed	left	justified.

<IF	INPUT_RIGHT> Input	should	be	performed	right	justified.

<IF	INTEGER> The	field	data	type	is	defined	as	integer.

<IF	LANGUAGE> The	field	is	available	to	the	language.

<IF	LEAVE> The	field	has	a	leave	method	specified.

<IF	LENGTH_OVER_8>
	

The	length	of	the	field	is	over	8
characters.	This	expression	is	primarily
useful	when	dealing	with	numeric	fields
because	decimal	fields	with	a	length	of
up	to	8	digits	are	mapped	to	an	int,
whereas	fields	9	characters	or	longer	are
mapped	to	a	long.

<IF	LONGDESC> The	field	has	a	long	description
specified.

<IF	MAPPED> The	field	has	a	CodeGen	field	mapping
specified.

<IF	MAPPEDSTR> The	fields’	parent	structure	has	a
CodeGen	structure	mapping	specified.

<IF	NEGATIVE_ALLOWED>
The	field	allows	negative	values.	Use	of
this	expression	is	only	appropriate	for
numeric	fields.

<IF	NEGATIVE_ORZERO>

The	field	allows	negative	values	or	a
value	of	zero.	Positive	values	are	not
allowed.	Use	of	this	expression	is	only
appropriate	for	numeric	fields.

<IF	NEGATIVE_REQUIRED>
The	field	requires	a	negative	value.	Use
of	this	expression	is	only	appropriate	for
numeric	fields.

<IF	NOALLOW_LIST> The	field	does	not	have	allow	list	values
specified.

<IF	NOALTERNATE_NAME>

The	field	does	not	have	an	alternate	name
specified.	The	<FIELD_ALTNAME>
token	will	always	return	a	value	because
if	no	alternate	name	is	specified	in	the

repository	then	it	defaults	to	the	fields
real	name.	This	token	allows	you	to
detect	whether	the	alternate	name	is	the
same	as	the	real	name.

<IF	NOARRIVE> The	field	does	not	have	an	arrive	method.

<IF	NOBREAK> The	field	id	not	a	break	field.

<IF	NOCHANGE> The	field	does	not	have	a	change	method.

<IF	NOCHECKBOX> The	field	should	not	be	displayed	as	a
check-box.

<IF	NOCOERCEBOOLEAN> The	field	data	type	is	not	coerced	to
boolean.

<IF	NODEFAULT> The	field	does	not	have	a	default	value.

<IF	NODESCRIPTION> The	field	does	not	have	a	description.

<IF	NODISPLAY> The	field	does	not	have	a	display
method.

<IF	NODISPLAY_LENGTH> The	field	does	not	have	a	display	length.

<IF	NODRILL> The	field	does	not	have	a	drill	method.

<IF	NOECHO> The	field	should	not	echo	characters	as
they	are	typed.

<IF	NOEDITFORMAT> The	field	does	not	have	an	edit	format
method.

<IF	NOFORMAT> The	field	does	not	have	a	format	string.

<IF	NOHELPID> The	field	does	not	have	a	help	ID.

<IF	NOHYPERLINK> The	field	does	not	have	a	hyperlink
method.

<IF	NOINFOLINE> The	field	does	not	have	information	line
text.

<IF	NOLANGUAGE> The	field	is	marked	as	“Excluded	by
Language”.

<IF	NOLEAVE> The	field	does	not	have	a	leave	method.

<IF	NOLONGDESC> The	field	does	not	have	a	long
description	specified.

<IF	NONEGATIVE>
The	field	does	not	allow	negative	values.
This	expression	should	only	be	used	with
numeric	fields.

<IF	NOPAINTCHAR> The	field	does	not	have	a	custom	paint
character.

<IF	NOPRECISION>
The	field	does	not	have	a	decimal
precision	specified	(i.e.	it	is	not	an
implied	decimal	field).

<IF	NOPROMPT> The	field	does	not	have	a	prompt.

<IF	NORANGE>

The	field	does	not	have	a	numeric	range
specified.	This	expression	should	only	be
used	for	numeric	fields.

<IF	NOREPORT> The	field	is	marked	as	“Excluded	by
ReportWriter”.

<IF	NOSELECTIONS> The	field	does	not	have	selection	list
values.

<IF	NOSELWND> The	field	does	not	have	a	selection
window	name	specified.

<IF	NOTALPHA> The	field	data	type	is	not	defines	as

Alpha.

<IF	NOTARRAY> The	field	was	not	part	of	an	array.

<IF	NOTBINARY> The	field	is	not	a	binary	field.	Binary
fields	are	also	alpha	fields.

<IF	NOTBOOLEAN> The	field	is	not	a	boolean	field.

<IF	NOTBZERO> The	numeric	field	should	not	be
displayed	as	blank	if	the	value	is	zero.

<IF	NOTDATE> The	field	is	not	a	date	or	nullable	date.

<IF	NOTDATEORTIME> The	field	is	not	a	date,	nullable	date	or
time.

<IF	NOTDATETODAY> The	date	field	should	not	default	to	the
current	date.

<IF	NOTDECIMAL>

The	field	data	type	is	not	defined	as
decimal.	Note	that	date,	nullable	date	and
time	fields	do	not	count	as	decimal	with
this	conditional	test.

<IF	NOTENUM> The	field	is	not	a	language	ENUM	field.

<IF	NOTENUMERATED> The	field	is	not	a	UI	Toolkit	enumerated
field.

<IF	NOTIMEOUT> The	field	does	not	have	an	input	timeout
specified.

<IF	NOTINTEGER> The	field	data	type	is	not	defined	as
integer.

<IF	NOTNUMERIC> The	field	data	type	is	not	a	numeric	type.

<IF	NOTOVERLAY> The	field	is	not	an	overlay	field	or
overlay	group.

<IF	NOTPKSEGMENT> The	field	is	not	a	segment	in	the	primary
key.

<IF	NOTRADIOBUTTONS> The	field	should	not	be	viewed	as	a
collection	of	radio-buttons.

<IF	NOTSTRUCTFIELD> The	field	is	not	a	struct	field.

<IF	NOTOOLKIT> The	field	is	marked	as	“Excluded	by
Toolkit”.

<IF	NOTUPPERCASE>
The	field	should	not	be	converted	to
uppercase.	Only	appropriate	for	alpha
fields.

<IF	NOTUSER> The	field	is	not	a	user-defined	field	type.

<IF	NOUSERTEXT> The	field	does	not	have	user	text
specified.

<IF	NOVIEW_LENGTH> The	field	does	not	have	a	view	length
specified.

<IF	NOTTIME> The	field	is	not	marked	as	a	time	field.

<IF	NOTUSERTIMESTAMP>
The	field	is	not	a	user-defined	time-
stamp	field.	(See	<FIELD_SQLTYPE>
for	more	information).

<IF	NOWEB> The	field	is	marked	as	“Excluded	by
Web”.

<IF	NUMERIC> The	field	data	type	is	defines	as	a
numeric	type.

<IF	OCNATIVE> The	fields	Objective-C	data	type	is	a
native	type	(e.g.	int	or	BOOL).

<IF	OCOBJECT> The	fields	Objective-C	data	type	is	an
object	type	(e.g.	NSString	or	NSDate).

<IF	OPTIONAL> The	field	is	marked	as	optional	(i.e.	not
required).

<IF	OVERLAY> The	field	is	an	overlay	field	or	overlay
group.

<IF	PAINTCHAR> The	field	has	a	custom	paint	character
specified.

<IF	PKSEGMENT> The	field	is	a	segment	in	the	primary	key.

<IF	PRECISION>
The	decimal	field	has	a	precision
specified	(i.e.	it	is	an	implied	decimal
field).

<IF	PROMPT> The	field	has	a	prompt	specified.

<IF	PROMPT_POSITION> The	field	has	a	UI	prompt	position
specified.

<IF	RADIOBUTTONS> The	field	should	be	viewed	as	a
collection	of	radio-buttons.

<IF	RANGE>
The	field	has	a	numeric	range
(minimum/maximum	values)	specified.

<IF	READONLY> The	field	state	is	specified	as	initially
read-only.

<IF	READWRITE> The	field	state	is	specified	as	initially
writable.

<IF	REPORT> The	field	is	available	to	ReportWriter.

<IF	REPORT_CENTER> The	field	should	be	printed	center
justified	on	reports.

<IF	REPORT_LEFT> The	field	should	be	printed	left	justified
on	reports.

<IF	REPORT_RIGHT> The	field	should	be	printed	right	justified
on	reports.

<IF	REQUIRED> The	field	is	marked	as	required	(i.e.	must
contain	a	valid	value).

<IF	REVERSE> The	field	should	be	displayed	in	reverse
video.

<IF	SELECTIONS> The	field	has	one	or	more	selection	list
values.

<IF	SELWND> The	field	has	a	selection	window	name
specified.

<IF	STRUCTFIELD> The	field	is	a	struct	field.

<IF	TEXTBOX> The	field	should	be	displayed	as	a	text-
box.

<IF	TIME> The	field	is	a	time	field	of	type	HHMM
or	HHMMSS.

<IF	TIME_HHMM> The	field	is	a	time	field	of	type	HHMM.

<IF	TIME_HHMMSS> The	field	is	a	time	field	of	type
HHMMSS.

<IF	TIMEOUT> The	field	has	an	input	timeout	specified.

<IF	TIMENOW> The	time	field	should	default	to	the
current	time.

<IF	TOOLKIT> The	field	is	available	to	UI	Toolkit.

The	field	content	should	be	displayed

<IF	UNDERLINE> underlined.

<IF	UPPERCASE> The	field	value	should	always	be
converted	to	uppercase.

<IF	USER> The	field	is	a	user	defines	field	type.

<IF	USERTEXT> The	field	has	user	text	specified.

<IF	VIEW_LENGTH> The	field	has	a	view	length	specified.

<IF	USERTIMESTAMP>
The	field	is	a	user-defined	time-stamp
field.	(See	<FIELD_SQLTYPE>	for
more	information).

<IF	WEB> The	field	is	available	to	the	web
products.

	
	

Copyright	©	2012		Synergex	International,	Inc.

Introduction	to	Field	Selection	Loops
	
A	field	selection	loop	is	a	template	file	construct	which	allows	you	to	iterate
through	the	collection	of	selection	values	that	are	associated	with	a	repository
field	definition.		In	order	to	use	a	field	selection	loop	you	must	be	processing	a
repository	structure,	either	directly	via	the	–s	command	line	option,	or	because
the	structure	is	referenced	by	the	UI	Toolkit	input	window	that	you	are
processing	via	the	–w	command	line	option.

Field	selection	loops	are	delimited	by	a	matching	pair	of
<SELECTION_LOOP>	and	</SELECTION_LOOP>	tags,	which	surround
the	template	code	to	be	inserted	for	each	selection	list.

There	are	two	types	of	field	selection	loop.

Multi-line	Field	Selection	Loops

Multi-line	field	selection	loops	occur	when	the	opening	and	closing	loop	tags
appear	on	separate	lines	in	a	template	file,	and	delimit	one	or	more	entire	lines
of	template	code,	like	this:

[code]

<SELECTION_LOOP>code
</SELECTION_LOOP>

[code]

Multi-line	field	selection	loops	generate	one	or	more	lines	of	output	code	for
each	key	that	is	processed.

In-line	Field	Selection	Loops

In-line	field	selection	loops	exist	when	the	opening	and	closing	loop	tags
appear	on	the	same	line	in	a	template	file,	and	delimit	part	of	a	line	of
template	code,	like	this:

[code]	<SELECTION_LOOP>	code	</SELECTION_LOOP>	[code]

In-line	field	selection	loops	generate	code	into	the	current	output	line	only.

The	code	between	the	opening	and	closing	tags	of	the	loop	is	repeated	for
each	field	selection	list	entry	in	the	field	being	processed.

The	code	within	a	field	selection	loop	can	contain	generic	tokens,	structure
tokens	and	special	field	selection	loop	tokens,	which	are	discussed	later.	Most
field	loop	tokens	can	also	be	used	inside	a	field	selection	loop.

Field	selection	loop	tokens	can	only	be	used	inside	a	field	selection	loop,	and
a	field	selection	loop	can	only	be	declared	within	the	context	of	a	field	loop.

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

SELECTION_COUNT
	
This	token	inserts	the	number	of	selections	associated	with	the	field.

Usage

<SELECTION_COUNT>

Alternate	forms

None

See	Also

None

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

SELECTION_NUMBER
	
This	token	inserts	the	one-based	index	of	the	current	selection	within	the
selections	collection.

Usage

<SELECTION_NUMBER>

Alternate	forms

None

See	Also

None

	
	

Copyright	©	2012		Synergex	International,	Inc.

SELECTION_TEXT
	
This	token	inserts	the	text	associated	with	the	current	selection.

Usage

<SELECTION_TEXT>

Alternate	forms

None

See	Also

None

	
	

Copyright	©	2012		Synergex	International,	Inc.

SELECTION_VALUE
	
This	token	inserts	the	value	associated	with	the	current	selection.

For	numeric	fields	the	numeric	value	is	calculated	according	to	the	fields
enumeration	properties	(base	value	and	step	value).		If	the	field	does	not	have
enumeration	properties	specified	then	the	default	base	value	is	1	and	the
default	step	value	is	1.

For	alpha	fields	the	value	text	is	deduced	from	the	left	portion	of	the	display
text,	based	on	the	size	of	the	field.		For	example,	if	an	A2	field	has	a	selection
item	of	"Credit	Card",	the	selection	value	is	"Cr".

Usage

<SELECTION_VALUE>

Alternate	forms

None

See	Also

None

	
	

Copyright	©	2012		Synergex	International,	Inc.

Field	Selection	Loop	Expression	Tokens
	
CodeGen	includes	support	for	field	selection	loop	expression	tokens,	but	none
have	been	implemented	yet.	Loop	utility	expressions	can	also	be	used	within
field	selection	loops.
	
	
	

Copyright	©	2012		Synergex	International,	Inc.

Introduction	to	Key	Loops
	
A	key	loop	is	a	template	file	construct	which	allows	you	to	iterate	through	the
collection	of	keys	that	CodeGen	has	information	about.		In	order	to	use	a	key
loop	you	must	be	processing	a	repository	structure,	either	directly	via	the	–s
command	line	option,	or	because	the	structure	is	referenced	by	the	UI	Toolkit
input	window	that	you	are	processing	via	the	–w	command	line	option.

Note:	The	Synergy/DE	Repository	does	not	have	an	adequate	mechanism	to
ensure	that	repository	key	definitions	match	the	actual	key	definitions	of	the
ISAM	files	being	represented.	Because	of	this,	CodeGen	considers	the
primary	key	to	be	the	first	key	defined	in	the	repository,	and	assumes	that	the
alternate	keys	will	immediately	follow	the	primary	key	definition,	and	be	in
the	correct	sequence,	as	defined	in	the	ISAM	file.		Any	foreign	keys	should	be
defined	after	all	of	the	access	key	definitions.

Key	loops	are	delimited	by	a	matching	pair	of	<KEY_LOOP>	and
</KEY_LOOP>	tags,	which	surround	the	template	code	to	be	inserted	for
each	key.

There	are	two	types	of	key	loops,	multi-line	key	loops	and	in-line	key	loops.

Multi-Line	Key	Loops

Multi-line	key	loops	occur	when	the	opening	and	closing	key	loop	tags	appear
on	separate	lines	in	a	template	file,	and	delimit	one	or	more	entire	lines	of
template	code,	like	this:

[code]

<KEY_LOOP>code
</KEY_LOOP>

[code]

Multi-line	key	loops	generate	one	or	more	lines	of	output	code	for	each	key
that	is	processed.

In-Line	Key	Loops

In-line	key	loops	exist	when	the	opening	and	closing	key	loop	tags	appear	on
the	same	line	in	a	template	file,	and	delimit	part	of	a	line	of	template	code,
like	this:

[code]	<KEY_LOOP>	code	</KEY_LOOP>	[code]

In-line	key	loops	generate	code	into	the	current	output	line	only.

The	code	between	the	opening	and	closing	tags	of	a	key	loop	is	repeated	for
each	key	in	the	structure	being	processed.

This	code	within	a	key	loop	can	contain	other	generic	and	structure	tokens,
and	can	also	contain	special	key	loop	tokens,	which	are	discussed	later.

Key	loop	tokens	can	only	be	used	inside	a	key	loop,	and	a	key	loop	can’t	be
declared	within	any	other	loop	construct.

There	are	two	additional	variations	on	a	key	loop.		These	variations	are	called
alternate	key	loops,	and	primary	key	blocks.

Alternate	Key	Loops

An	alternate	key	loop	is	similar	to	a	key	loop;	except	that	only	alternate	keys
are	processed	(i.e.	the	primary	key	is	skipped).		As	with	key	loops,	CodeGen
supports	both	multi-line	and	in-line	alternate	key	loops.

A	multi-line	alternate	key	loop	looks	like	this:

[code]

<ALTERNATE_KEY_LOOP>
code
</ALTERNATE_KEY_LOOP>

[code]

And	an	in-line	alternate	key	loop	looks	like	this:

[code]	<ALTERNATE_KEY_LOOP>	code
</ALTERNATE_KEY_LOOP>	[code]

Multi-line	alternate	key	loops	generate	one	or	more	lines	of	output	code	for
each	key	that	is	processed,	whereas	in-line	alternate	key	loops	generate	code
into	the	current	output	line	only.

Primary	Key	Blocks

A	primary	key	block	is	similar	to	a	key	loop;	except	that	only	the	primary	key
is	processed	(i.e.	all	alternate	keys	are	skipped).	As	with	key	loops,	CodeGen
supports	both	multi-line	and	in-line	primary	key	blocks.

A	multi-line	primary	key	block	looks	like	this:

[code]

<PRIMARY_KEY>
code
</PRIMARY_KEY>

[code]

And	an	in-line	primary	key	block	looks	like	this:

[code]	<PRIMARY_KEY>	code	</PRIMARY_KEY>	[code]

Multi-line	primary	key	blocks	generate	one	or	more	lines	of	output	code	as	the
primary	key	is	processed,	whereas	in-line	primary	key	blocks	generate	code
into	the	current	output	line	only.

Unique	Key	Blocks

A	unique	key	block	is	similar	to	a	key	loop;	except	that	only	the	first	unique
key	(i.e.	the	first	key	that	does	not	allow	duplicate	key	values)	is	processed.
This	will	usually	be	the	primary	key,	but	could	be	some	alternate	key	in	the
rare	case	that	the	primary	key	allows	duplicates.	As	with	key	loops,	CodeGen
supports	both	multi-line	and	in-line	unique	key	blocks.

A	multi-line	unique	key	block	looks	like	this:

[code]

<UNIQUE_KEY>

code
</UNIQUE_KEY>

[code]

And	an	in-line	unique	key	block	looks	like	this:

[code]	<UNIQUE_KEY>	code	</UNIQUE_KEY>	[code]

Multi-line	unique	key	blocks	generate	one	or	more	lines	of	output	code	as	the
first	unique	key	is	processed,	whereas	in-line	unique	key	blocks	generate	code
into	the	current	output	line	only.

If	you	attempt	to	use	a	unique	key	block	in	conjunction	with	a	repository
structure	that	does	not	have	any	unique	keys	then	an	error	will	be	generated.
You	can	avoid	this	by	isolating	the	unique	key	block	using	an	<IF
STRUCTURE_HAS_UNIQUE_KEY>	expression.

Key	Loop	Example

Template	code	like	this:

<KEY_LOOP>

KEY	<KEY_NUMBER>
										START																														<SEGMENT_LOOP>
<SEGMENT_POSITION><:></SEGMENT_LOOP>
										LENGTH																														<SEGMENT_LOOP>
<SEGMENT_LENGTH><:></SEGMENT_LOOP>
										TYPE																																								<SEGMENT_LOOP><segment_type>
<:></SEGMENT_LOOP>
										ORDER																														<SEGMENT_LOOP><segment_sequence>
<:></SEGMENT_LOOP>|
										NAME																																								"<KEY_NAME>"
										DUPLICATES																				<IF	DUPLICATES>yes</IF><IF
NODUPLICATES>no</IF>
										<IF	DUPLICATES>
										DUPLICATE_ORDER										<IF	DUPLICATESATFRONT>lifo</IF>
<IF	DUPLICATESATEND>fifo</IF>
										</IF>

										MODIFIABLE																				<IF	CHANGES>yes</IF><IF
NOCHANGES>no</IF>
										<IF	NULLKEY>
										NULL																																								<key_nulltype>
										<IF	NULLVALUE>
										VALUE_NULL																				<KEY_NULLVALUE>
										</IF>
										</IF>
										DENSITY																														<KEY_DENSITY>

</KEY_LOOP>

Would	process	each	of	a	structures	defined	access	keys,	and	generate	output
code	like	this:

KEY	0

										START																														23
										LENGTH																														8
										TYPE																																								alpha
										ORDER																														ascending
										NAME																																								"PROJECT_KEY0"
										DUPLICATES																				no
										MODIFIABLE																				no
										DENSITY																														50

KEY	1

										START																														31:41:51
										LENGTH																														10:10:3
										TYPE																																								alpha:alpha:alpha
										ORDER																														ascending:ascending:ascending
										NAME																																								"PROJECT_KEY1"
										DUPLICATES																				no
										MODIFIABLE																				no
										DENSITY																														50

KEY	2

										START																														114

										LENGTH																														8
										TYPE																																								alpha
										ORDER																														ascending
										NAME																																								"PROJECT_KEY2"
										DUPLICATES																				yes
										DUPLICATE_ORDER										fifo
										MODIFIABLE																				yes
										DENSITY																														50

	

KEY	3

										START																														140:130
										LENGTH																														15:2
										TYPE																																								alpha:alpha
										ORDER																														ascending:ascending
										NAME																																								"PROJECT_KEY3"
										DUPLICATES																				yes
										DUPLICATE_ORDER										fifo
										MODIFIABLE																				yes
										DENSITY																														50

	

KEY	4

										START																														934
										LENGTH																														20
										TYPE																																								alpha
										ORDER																														ascending
										NAME																																								"REPLICATION_KEY"
										DUPLICATES																				no
										MODIFIABLE																				yes
										DENSITY																														50

Alternate	Key	Loop	Example

Template	file	code	like	this:

<ALTERNATE_KEY_LOOP>

;;---
;;Create	index	<KEY_NUMBER>	(<KEY_DESCRIPTION>)
;;

if	(ok)
begin
				sql	=	"CREATE	<KEY_UNIQUE>	INDEX
IX_<STRUCTURE_NAME>_<KEY_NAME>	"
				&					"ON	<STRUCTURE_NAME>(<SEGMENT_LOOP>
<SEGMENT_NAME>	<SEGMENT_ORDER><,></SEGMENT_LOOP>)"

				call	open_cursor

				if	(ok)
				begin
								call	execute_cursor
								call	close_cursor
				end
end

</ALTERNATE_KEY_LOOP>

Would	process	each	of	a	structures	defined	access	keys,	except	for	the	primary
key,	and	generate	output	code	like	this:

;;---
;;Create	index	1	(Projects	by	customer)
;;

if	(ok)
begin
								sql	=	"CREATE	UNIQUE	INDEX	IX_PROJECT_PROJECT_KEY1	"
								&					"ON	PROJECT(CUSTOMER_ID	ASC,CONTRACT_ID
ASC,CONTRACT_PROJECT_ID	ASC)"

								call	open_cursor

								if	(ok)

								begin
												call	execute_cursor
												call	close_cursor
								end
end

	

;;---
;;Create	index	2	(Projects	by	start	date)
;;

if	(ok)
begin
								sql	=	"CREATE	INDEX	IX_PROJECT_PROJECT_KEY2	"
								&					"ON	PROJECT(START_DATE	ASC)"							

								call	open_cursor

								if	(ok)
								begin
												call	execute_cursor
												call	close_cursor
								end
end

;;---
;;Create	index	3	(Projects	by	consultant	and	status)
;;

if	(ok)
begin
								sql	=	"CREATE	INDEX	IX_PROJECT_PROJECT_KEY3	"
								&					"ON	PROJECT(LEAD_CONSULTANT
ASC,CURRENT_STATUS	ASC)"							

								call	open_cursor

								if	(ok)
								begin

												call	execute_cursor
												call	close_cursor
								end
end

;;---
;;Create	index	4	(SQL	Timestamp	Key)
;;

if	(ok)
begin
								sql	=	"CREATE	UNIQUE	INDEX	IX_PROJECT_REPLICATION_KEY
"
								&					"ON	PROJECT(REPLICATION_KEY	ASC)"						

								call	open_cursor

								if	(ok)
								begin
												call	execute_cursor
												call	close_cursor
								end
end

Primary	Key	Block	Example

Template	file	code	like	this:

<PRIMARY_KEY>
<SEGMENT_LOOP>
{xfParameter(name="<SegmentName>")}
required	in		a<SegmentName>,	<segment_spec>
</SEGMENT_LOOP>
</PRIMARY_KEY>

{xfParameter(name="
<StructureName>",collectionType="structure",structure="
<STRUCTURE_NAME>",dataTable="true")}
required	out	a<StructureName>s,	@ArrayList

When	processed	for	a	structure	with	only	a	single	segment	in	it's	primary	key,
would	produce	output	like	this

{xfParameter(name="ProjectId")}
required	in		aProjectId,	d8

{xfParameter(name="Project",collectionType="structure",structure="PROJECT",dataTable="true")}
required	out	aProjects,	@ArrayList

When	processed	for	a	structure	with	multiple	segments	in	its	primary	key,
would	produce	output	like	this:

{xfParameter(name="TaskId")}
required	in		aTaskId,	d3

{xfParameter(name="AttachmentId")}
required	in		aAttachmentId,	d3

{xfParameter(name="ProjectAttachment",collectionType="structure",structure="PROJECT_ATTACHMENT",dataTable="true")}
required	out	aProjectAttachments,	@ArrayList

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

KEY_CHANGES
	
This	token	inserts	text	indicating	whether	the	key	allows	changes	to	existing
key	entries.

Usage

<KEY_CHANGES>

Possible	values

• CHANGES

• NOCHANGES

Alternate	forms

None

See	Also

None

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

KEY_DENSITY
	
This	token	inserts	the	key	packing	density	for	the	current	key.

Usage

<KEY_DENSITY>

Possible	values

• A	number	in	the	range	50	to	100.

Alternate	forms

None

See	Also

None

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

KEY_DESCRIPTION
	
This	token	inserts	the	description	of	the	key.	Be	aware	that	key	descriptions
are	optional	in	Repository,	so	this	token	may	expand	to	nothing!

Usage

<KEY_DESCRIPTION>

Alternate	forms

None

See	Also

None

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

KEY_DUPLICATES
	
This	token	inserts	text	indicating	whether	the	key	allows	duplicate	values.

Usage

<KEY_DUPLICATES>

Possible	values

• DUPLICATES

• UNIQUE

Alternate	forms

None

See	Also

None

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

KEY_DUPLICATES_AT
	
This	token	inserts	text	indicating	where	duplicate	values	are	inserted.

Usage

<KEY_DUPLICATES_AT>

Possible	values

• FRONT

• END

Alternate	forms

None

See	Also

None

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

KEY_LENGTH
	
This	token	inserts	the	length	of	the	key.	The	length	of	the	key	is	the	sum	of	the
length	of	all	key	segments.

Usage

<KEY_LENGTH>

Alternate	forms

None

See	Also

None

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

KEY_NAME
	
This	token	inserts	the	name	of	the	key.	Note	that	this	is	the	name	of	the	key	in
the	repository,	and	may	or	may	not	correspond	to	the	name	of	the	key	in	the
underlying	ISAM	file,	if	a	key	name	exists.

Usage

<KEY_NAME>

Alternate	forms

• <KeyName>

See	Also

None

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

KEY_NULLTYPE
	
This	token	inserts	the	keys	null	key	type.		The	token	should	only	be	used
within	a	<IF	NULLKEY>	expression.

Usage

<KEY_NULLTYPE>

Possible	values

• NONE

• REPLICATE

• NOREPLICATE

• SHORT

Alternate	forms

• <key_nulltype>

See	Also

None

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

KEY_NULLVALUE
	
This	token	inserts	the	keys	null	key	value.		The	token	should	only	be	used
within	an	<IF	NULLKEY>	expression.

Usage

<KEY_NULLVALUE>

Alternate	forms

None

See	Also

None

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

KEY_NUMBER
	
This	token	inserts	the	number	of	the	key,	primary	key	is	key	0,	first	alternate
key	is	key	1,	and	so	on.

Usage

<KEY_NUMBER>

Possible	values

• A	number	in	the	range	0	to	1023.

Alternate	forms

None

See	Also

None

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

KEY_ORDER
	
This	token	inserts	the	ordering	sequence	of	the	key,	ascending	or	descending.

Usage

<KEY_ORDER>

Possible	values

• ASC

• DESC

Alternate	forms

None

See	Also

None

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

KEY_SEGMENTS
	
This	token	inserts	the	number	of	key	segments	defined.

Usage

<KEY_SEGMENTS>

Possible	values

• A	number	in	the	range	1	to	8.

Alternate	forms

None

See	Also

None

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

KEY_UNIQUE
	
If	the	key	does	not	allow	duplicates	then	this	token	inserts	the	text	UNIQUE,
otherwise	the	token	is	simply	removed.

Usage

<KEY_UNIQUE>

Alternate	forms

None

See	Also

None

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

Key	Loop	Expression	Tokens
	
Key	loop	expressions	are	expressions	that	can	only	be	used	within	the	context
of	a	key	loop.	CodeGen	supports	key	loop	expressions	via	the	<IF
expression>	and	</IF	[expression]>	tags.	Note	that	loop	utility
expressions	can	also	be	used	within	key	loops.

Expression Description

<IF	ASCENDING> The	key	is	ordered	in	ascending
sequence.

<IF	AUTO_SEQUENCE> The	first	segment	of	the	key	is	an	auto-
sequence	segment	(ISAM	Rev	6).

<IF	AUTO_TIMESTAMP>

The	first	segment	of	the	key	is	an	auto-
time-stamp	key,	of	one	of	the	two	types
shown	below.	ISAM	Rev	6	(Synergy/DE
10.1.1	or	higher).

<IF
AUTO_TIMESTAMP_CREATED>
	

The	first	segment	of	the	key	is	an	auto-
time-stamp	key	with	values	that	are	set
only	when	records	are	first	created.
ISAM	Rev	6	(Synergy/DE	10.1.1	or
higher).

<IF
AUTO_TIMESTAMP_UPDATED>
	

The	first	segment	of	the	key	is	an	auto-
time-stamp	key	with	values	that	are	set
whenever	records	are	updated.	ISAM
Rev	6	(Synergy/DE	10.1.1	or	higher).

<IF	CHANGES> The	key	value	may	be	changed.

<IF	DESCENDING> The	key	is	ordered	in	descending
sequence.

<IF	DUPLICATES> The	key	allows	records	with	duplicate
key	values.

<IF	DUPLICATESATEND>
Duplicate	key	values	are	inserted	after
any	existing	records	with	the	same	key

value.

<IF	DUPLICATESATFRONT>
Duplicate	key	values	are	inserted	before
any	existing	records	with	the	same	key
value.

<IF	FIRST_SEG_NOCASE>	 The	first	segment	of	the	key	is	a	non-case
sensitive	alpha	field.

<IF	MULTIPLE_SEGMENTS> The	key	has	more	than	one	segment.

<IF	NOCHANGES> The	key	value	may	not	be	changed.

<IF	NODUPLICATES> The	key	does	not	allow	multiple	records
with	the	same	key	value.

<IF	NULLKEY>
The	key	is	a	null	key.		See
<KEY_NULLTYPE>	and
<KEY_NULLVALUE>.

<IF	NULLVALUE>
The	key	has	a	null	key	value	specified.	
See	<KEY_NULLTYPE>	and
<KEY_NULLVALUE>.

<IF	SINGLE_SEGMENT> The	key	only	has	one	segment.

	

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

Introduction	to	Key	Segment	Loops
	
A	key	segment	loop	is	a	template	file	construct	which	allows	you	to	iterate
through	the	collection	of	key	segments	for	a	particular	key	that	CodeGen	has
information	about.		In	order	to	use	a	key	segment	loop	you	must	be	processing
a	repository	structure,	either	directly	via	the	–s	command	line	option,	or
because	the	structure	is	referenced	by	the	UI	Toolkit	input	window	that	you
are	processing	via	the	–w	command	line	option,	and	must	be	inside	a	key
loop.

Key	segment	loops	are	delimited	by	a	matching	pair	of
<SEGMENT_LOOP>	and	</SEGMENT_LOOP>	tags,	which	surround	the
template	code	to	be	inserted	for	each	key	segment.

There	are	two	types	of	key	segment	loop,	multi-line	key	segment	loops	and	in-
line	key	segment	loops.

Multi-Line	Key	Segment	Loops

Multi-line	key	segment	loops	occur	when	the	opening	and	closing	key
segment	loop	tags	appear	on	separate	lines	in	a	template	file,	and	delimit	one
or	more	entire	lines	of	template	code,	like	this:

<KEY_LOOP>[code]
<SEGMENT_LOOP>
code
</SEGMENT_LOOP>
[code]
</KEY_LOOP>

Multi-line	key	segment	loops	generate	one	or	more	lines	of	output	code	for
each	key	segment	that	is	processed.

In-Line	Key	Segment	Loops

In-line	key	segment	loops	exist	when	the	opening	and	closing	key	segment
loop	tags	appear	on	the	same	line	in	a	template	file,	and	delimit	part	of	a	line
of	template	code,	like	this:

<KEY_LOOP>
[code]
[code]	<SEGMENT_LOOP>	code	</SEGMENT_LOOP>	[code]
[code]
</KEY_LOOP>

In-line	key	loops	generate	code	into	the	current	output	line	only.

Note:	Key	segment	loops	can	also	be	used	within	alternate	key	loops	and
primary	key	blocks.	Also,	in	the	last	example,	the	outer	key	loop	could	also	be
an	in-line	key	loop.

The	code	between	the	opening	and	closing	tags	of	a	key	segment	loop	is
repeated	for	each	key	segment	in	the	key	being	processed.

This	code	within	a	key	segment	loop	can	contain	generic	tokens,	structure
tokens,	and	special	key	segment	loop	tokens,	which	are	discussed	later.	Most
key	loop	tokens	can	also	be	used	inside	a	key	segment	loop.

Key	segment	loop	tokens	can	only	be	used	inside	a	key	segment	loop,	and	a
key	segment	loop	can	only	be	declared	within	one	of	the	supported	key	loop
constructs.

Key	Segment	Filter	Loops

A	key	segment	filter	loop	is	similar	to	a	key	segment	loop;	except	that	the
final	key	segment	is	not	processed.		As	with	key	segment	loops,	CodeGen
supports	both	multi-line	and	in-line	key	segment	filter	loops.

A	multi-line	key	segment	filter	loop	looks	like	this:

<KEY_LOOP>
[code]
<SEGMENT_LOOP_FILTER>
code
</SEGMENT_LOOP_FILTER>
[code]
</KEY_LOOP>

And	an	in-line	key	segment	filter	loop	looks	like	this:

<KEY_LOOP>
[code]
[code]	<SEGMENT_LOOP_FILTER>	code
</SEGMENT_LOOP_FILTER>	[code]
[code]
</KEY_LOOP>

Note:	Key	segment	filter	loops	can	also	be	used	within	alternate	key	loops	and
primary	key	blocks.	Also,	in	the	last	example,	the	outer	key	loop	could	also	be
an	in-line	key	loop.

If	you	use	a	segment	filter	loop	with	a	key	which	only	has	one	segment,	then
no	code	will	be	inserted	into	the	output	file.

First	Segment	Restrictions

A	first	segment	restriction	behaves	in	a	similar	way	to	a	key	segment	loop;
except	that	only	the	first	key	segment	is	processed.		As	with	key	segment
loops,	CodeGen	supports	both	multi-line	and	in-line	first	segment	restrictions.

A	multi-line	first	segment	restriction	looks	like	this:

<KEY_LOOP>
[code]
<FIRST_SEGMENT>
code
</FIRST_SEGMENT>
[code]
</KEY_LOOP>

And	an	in-line	first	segment	restriction	looks	like	this:

<KEY_LOOP>
[code]
[code]	<FIRST_SEGMENT>	code	</FIRST_SEGMENT>	[code]
[code]
</KEY_LOOP>

Note:	first	segment	restrictions	can	also	be	used	within	alternate	key	loops	and
primary	key	blocks.	Also,	in	the	last	example,	the	outer	key	loop	could	also	be

an	in-line	key	loop.

Second	Segment	Restrictions

Similar	to	a	first	segment	restriction,	as	second	segment	restriction	can	be
used	to	indicate	that	only	the	second	segment	of	a	key	should	be	processed
within	a	key	loop.	This	can	be	particularly	useful	when	processing	structures
that	have	a	structure	tag	value	as	the	first	key	segment	and	the	main	useful
segment	of	the	key	is	often	then	the	second	segment.

A	multi-line	second	segment	restriction	looks	like	this:

<KEY_LOOP>
[code]
<SECOND_SEGMENT>
code
</SECOND_SEGMENT>
[code]
</KEY_LOOP>

And	an	in-line	first	segment	restriction	looks	like	this:

<KEY_LOOP>
[code]
[code]	<SECOND_SEGMENT>	code	</SECOND_SEGMENT>	[code]
[code]
</KEY_LOOP>

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

SEGMENT_CSTYPE
	
This	token	inserts	C#	data	type	of	the	field	associated	with	the	current	key
segment.

Usage

<SEGMENT_CSTYPE>

Possible	values

• bool

• byte

• double

• float

• int

• long

• decimal

• DateTime

• Nullable<System.DateTime>

• sbyte

• short

• string

• uint

• ulong

• ushort

Alternate	forms

None

See	Also

• <SEGMENT_SNTYPE>

• <SEGMENT_SPEC>

• <SEGMENT_TYPE>

• <SEGMENT_VBTYPE>

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

SEGMENT_DESC
	
This	token	inserts	the	description	of	the	field	associated	with	the	current	key
segment	(if	segment	kind	is	field).	

Usage

<SEGMENT_DESC>

Alternate	forms

None

See	Also

None

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

SEGMENT_IDXTYPE
	
This	token	inserts	the	index	type	of	the	key	segment.

Usage

<SEGMENT_IDXTYPE>

Possible	values

• ALPHA

• NOCASE

• DECIMAL

• INTEGER

• UNSIGNED

Alternate	forms

• <segment_idxtype>

See	Also

None

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

SEGMENT_KIND
	
This	token	inserts	a	numeric	code	for	the	kind	of	the	current	key	segment.

Usage

<SEGMENT_KIND>

Possible	values

• 1										Field	(see	<SEGMENT_NAME>	and
<SEGMENT_MAPPEDNAME>)

• 2										Literal	value	(see	<SEGMENT_LITVAL>)

• 3										External	value	(see	<SEGMENT_STRUCTURE>)

• 4										Record	number

Alternate	forms

None

See	Also

None

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

SEGMENT_LENGTH
	
This	token	inserts	the	length	of	the	key	segment.

Usage

<SEGMENT_LENGTH>

Alternate	forms

None

See	Also

None

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

SEGMENT_LITVAL
	
This	token	inserts	the	literal	value	of	the	key	segment	(if	segment	kind	is
"literal").

Usage

<SEGMENT_LITVAL>

Alternate	forms

None

See	Also

None

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

SEGMENT_MAPPEDNAME
	
This	token	inserts	the	name	of	the	mapped	field	corresponding	to	the	current
key	segment	(if	segment	kind	is	field).	

Usage

<SEGMENT_MAPPEDNAME>

Alternate	forms

• <segment_mappedname>

• <Segment_Mappedname>

• <Segment_mappedname>

• <SegmentMappedname>

• <segmentMappedname>

See	Also

• <SEGMENT_NAME>

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

SEGMENT_NAME
	
This	token	inserts	the	name	of	the	field	associated	with	the	current	key
segment	(if	segment	kind	is	field).	

Usage

<SEGMENT_NAME>

Alternate	forms

• <segment_name>

• <Segment_Name>

• <Segment_name>

• <SegmentName>

• <segmentName>

See	Also

• <SEGMENT_MAPPEDNAME>

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

SEGMENT_NUMBER
	
This	token	inserts	the	one-based	key	segment	number.

Usage

<SEGMENT_NUMBER>

Possible	values

• A	number	in	the	range	1	to	8.

Alternate	forms

None

See	Also

None

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

SEGMENT_ORDER
	
This	token	inserts	the	ordering	sequence	of	the	current	key	segment,
ascending	or	descending.

Usage

<SEGMENT_ORDER>

Possible	values

• ASC

• DESC

Alternate	forms

• <segment_order>

See	Also

• <SEGMENT_SEQUENCE>

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

SEGMENT_POSITION
	
This	token	inserts	the	one-based	position	of	the	key	segment	in	the	record.

Usage

<SEGMENT_POSITION>

Alternate	forms

None

See	Also

None

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

SEGMENT_SEQUENCE
	
This	token	inserts	the	ordering	sequence	of	the	current	key	segment,
ascending	or	descending.

Usage

<SEGMENT_SEQUENCE>

Possible	values

• ASCENDING

• DESCENDING

Alternate	forms

• <segment_sequence>

See	Also

• <SEGMENT_ORDER>

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

SEGMENT_SNTYPE
	
This	token	inserts	Synergy.NET	data	type	of	the	field	associated	with	the
current	key	segment.

Usage

<SEGMENT_SNTYPE>

Possible	values

• byte

• DateTime

• decimal

• double

• float

• int

• long

• @Nullable<DateTime>

• short

• String

• ystem.SByte

• System.UInt16

• System.UInt32

• System.UInt64

Alternate	forms

None

See	Also

• <SEGMENT_CSTYPE>

• <SEGMENT_SPEC>

• <SEGMENT_TYPE>

• <SEGMENT_VBTYPE>

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

SEGMENT_STRUCTURE
	
This	token	inserts	the	name	of	the	structure	containing	the	key	segment	(if	the
segment	kind	is	"external").

Usage

<SEGMENT_STRUCTURE>

Alternate	forms

None

See	Also

None

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

SEGMENT_SPEC
	
This	token	inserts	Synergy	data	type	and	size	of	the	field	associated	with	the
current	key	segment.	For	example:

Usage

<SEGMENT_SPEC>

Examples	of	Output

• A15

• D6

• I4

• D12.2

Alternate	forms

• <segment_spec>

See	Also

• <SEGMENT_CSTYPE>

• <SEGMENT_SNTYPE>

• <SEGMENT_TYPE>

• <SEGMENT_VBTYPE>

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

SEGMENT_TYPE
	
This	token	inserts	a	word	which	represents	the	index	type	of	the	current	key
segment.

Usage

<SEGMENT_TYPE>

Possible	values

• ALPHA																																			Alpha	(default)

• INTEGER																																						Integer

• DECIMAL																																						Decimal

• UNSIGNED																																						Unsigned	integer

• NOCASE																																						Non	case-sensitive	alpha

• AUTO_SEQUENCE																	Automatic	sequence			(ISAM	Rev	6	or
higher)

• AUTO_TIMESTAMP_CREATED											Automatic	time-stamp,	create
time	(ISAM	Rev	6	or	higher)

• AUTO_TIMESTAMP_UPDATED											Automatic	time-stamp,	update
time	(ISAM	Rev	6	or	higher)
	

NOTE:	The	names	refer	to	the	KEY	SEGMENT	TYPE	not	the	associated
FIELD	DATA	TYPE!

Alternate	forms

• <segment_type>

See	Also

• <SEGMENT_CSTYPE>

• <SEGMENT_SNTYPE>

• <SEGMENT_SPEC>

• <SEGMENT_VBTYPE>

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

SEGMENT_VBTYPE
	
This	token	inserts	VB	data	type	of	the	field	associated	with	the	current	key
segment.

Usage

<SEGMENT_VBTYPE>

Possible	values

• Boolean

• Byte

• DateTime

• Decimal

• Integer

• Long

• Nullable(Of	System.DateTime)

• Short

• String

• System.Double

• System.SByte

• System.Single

• System.UInt16

• System.UInt32

• System.UInt64

Alternate	forms

None

See	Also

• <SEGMENT_CSTYPE>

• <SEGMENT_SNTYPE>

• <SEGMENT_SPEC>

• <SEGMENT_TYPE>

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

Key	Segment	Loop	Expression	Tokens
	
Key	segment	loop	expressions	are	expressions	that	can	only	be	used	within
the	context	of	a	key	segment	loop.	CodeGen	supports	key	segment	loop
expressions	via	the	<IF	expression>	and	</IF	[expression]>	tags.	Note	that
loop	utility	expressions	can	also	be	used	within	key	segment	loops.

Expression Description

<IF	SEG_ALPHA> The	key	segment	is	a	case-sensitive
alpha	value.

<IF	SEG_ASCENDING> The	key	segments	data	is	organized
in	ascending	sequence.

<IF	SEG_AUTO_SEQUENCE>
The	key	segment	is	an	auto-
sequence	value.	ISAM	Rev	6
(Synergy/DE	10.1.1	or	higher).

<IF	SEG_AUTO_TIMESTAMP>

The	key	segment	is	an	auto-time-
stamp	segment,	of	one	of	the	two
types	shown	below.	ISAM	Rev	6
(Synergy/DE	10.1.1	or	higher).

<IF
SEG_AUTO_TIMESTAMP_CREATED>
	

The	key	segment	is	an	auto-time-
stamp	segment	with	values	that	are
set	only	when	records	are	first
created.	ISAM	Rev	6	(Synergy/DE
10.1.1	or	higher).

<IF
SEG_AUTO_TIMESTAMP_UPDATED>
	

The	key	segment	is	an	auto-time-
stamp	segment	with	values	that	are
set	whenever	records	are	updated.
ISAM	Rev	6	(Synergy/DE	10.1.1
or	higher).

<IF	SEG_DECIMAL> The	key	segment	is	a	decimal
value.

<IF	SEG_DESCENDING> The	key	segments	data	is	organized
in	descending	sequence.

<IF	SEG_NOCASE> The	key	segment	is	a	non	case-
sensitive	alpha	value.

<IF	SEG_SIGNED> The	key	segment	is	a	signed
integer	value.

<IF	SEG_TYPE_EXTERNAL> The	key	segment	is	associated	with
an	external	value.

<IF	SEG_TYPE_FIELD> The	key	segment	is	associated	with
a	field	in	the	record.

<IF	SEG_TYPE_LITERAL> The	key	segment	is	a	literal	value.

<IF	SEG_TYPE_RECNUM> The	key	segment	is	a	record
number.

<IF	SEG_UNSIGNED> The	key	segment	is	an	unsigned
integer	value.

Key	Segment	Loop	Expressions	Reference	:	Associated	Field
Expressions

Expression Description

<IF	ALPHA> Data	type	is	Alpha.

<IF	ALLOW_LIST> The	field	has	allow	list	values.

<IF	ALTERNATE_NAME>

The	field	has	an	alternate	name	specified.	The
<FIELD_ALTNAME>	token	will	always
return	a	value	because	if	no	alternate	name	is
specified	in	the	repository	then	it	defaults	to
the	fields	real	name.	This	token	allows	you	to
detect	whether	the	alternate	name	is	different
from	the	real	name.

<IF	ARRAY> The	field	was	part	of	an	an	array.

<IF	ARRAY_FIRST>
The	field	was	the	very	first	element	of	an
array.
	

<IF	ARRIVE> The	field	has	an	arrive	method	specified.

<IF	BINARY> The	field	is	a	binary	field.	Binary	fields	are
also	alpha	fields.

<IF	BOLD> The	field	should	be	displayed	in	bold.

<IF	BOOLEAN>

The	fields	data	type	is	boolean.	This	only
applies	to	fields	whose	actual	Synergy	data
type	is	boolean,	not	to	numeric	fields	with	a
coerced	type	of	boolean.

<IF	BZERO> The	numeric	field	should	be	displayed	blank
if	the	field	value	is	zero.

<IF	BREAK>
The	field	is	a	break	field.	This	expression
matches	any	type	of	break	condition	(change,
always	or	return).

<IF	BREAK_ALWAYS>
The	field	is	a	break	field.	The	break	field
logic	always	executes	whenever	the	field	is
processed.

<IF	BREAK_CHANGE>
The	field	is	a	break	field.	The	break	field
logic	only	executes	when	the	value	of	the
field	changes.

<IF	BREAK_RETURN>
The	field	is	a	break	field.	The	break	field
logic	only	executes	when	the	user	presses
RETURN	on	the	field.

<IF	CHANGE> The	field	has	a	change	method	specified.

<IF	CHECKBOX> The	field	should	be	displayed	as	a	check-box.

<IF	COERCEBOOLEAN> The	field	data	type	is	coerced	to	boolean.

<IF	COMBOBOX> The	field	should	be	displayed	as	a	combo-
box.

<IF	DATE>

The	field	is	a	date	or	nullable	field.	Note	that
for	compatibility	with	xfNetLink	clients,
which	treat	julian	dates	(YYPP	or	YYYYPP)
as	strings,	this	expression	does	NOT	consider
such	fields	to	be	dates.

<IF	DATEORTIME> The	field	is	a	date	field	or	a	time	field.

<IF	DATETODAY> The	date	field	should	default	to	the	current
date.

<DATE_JULIAN> The	field	is	a	date	field	of	type	YYJJJ	or
YYYYJJJ.

<DATE_NOT_JULIAN>
The	field	is	a	date	field	but	is	NOT	a	Julian
date.	It	could	be	a	reverse	date	or	a	period
date.

<DATE_NOT_NULLABLE> The	field	is	a	date,	but	not	a	nullable	date.

<DATE_NOT_PERIOD>
The	field	is	a	date	field	but	is	NOT	a	period
date.	It	could	be	a	reverse	date	or	a	Julian
date.

<DATE_NOT_YMD> The	field	is	a	date	field	but	is	NOT	a
YYMMDD	or	YYYYMMDD	date.

<DATE_NOT_YYYYMMDD>The	field	is	a	date	field	but	is	NOT	aYYYYMMDD	date.

<DATE_NULLABLE> The	field	is	a	NULLABLE	date.

<DATE_PERIOD> The	field	is	a	date	field	of	type	YYPP	or
YYYYPP.

The	field	is	a	date	field	of	type	YYMMDD	or

<DATE_YMD> YYYYMMDD.

<DATE_YYMMDD> The	field	is	a	date	field	of	type	YYMMDD.

<DATE_YYYYMMDD> The	field	is	a	date	field	of	type
YYYYMMDD.

<DATE_YYJJJ> The	field	is	a	date	field	of	type	YYJJJ.

<DATE_YYYYJJJ> The	field	is	a	date	field	of	type	YYYYJJJ.

<DATE_YYPP> The	field	is	a	date	field	of	type	YYPP.

<DATE_YYYYPP> The	field	is	a	date	field	of	type	YYYYPP.

<IF	DECIMAL>
The	field	data	type	is	decimal.	Note	that	date
and	time	fields	are	NOT	treated	as	decimal
fields	with	this	conditional	test.

<IF	DEFAULT> The	field	has	a	default	value	specified.

<IF	DESCRIPTION> The	field	has	a	description	specified.

<IF	DISABLED> The	field	is	defined	as	being	initially
disabled.

<IF	DISPLAY> The	field	has	a	display	method	specified.

<IF	DISPLAY_LENGTH> The	field	has	a	display	length	specified.

<IF	DRILL> The	field	has	a	drill	method	specified.

<IF	ECHO> The	field	should	echo	characters	as	they	are
typed.

<IF	EDITFORMAT> The	field	has	an	edit	format	method	specified.

<IF	ENABLED> The	field	is	defined	as	being	initially	enabled.

<IF	FORMAT> The	field	has	a	display	format	specified.

<IF	ENUM>
The	field	is	an	ENUM	field.	This	is	a	real
language	enumeration,	not	a	UI	Toolkit
enumerated	field.

<IF	ENUMERATED>
The	field	has	a	UI	Toolkit	enumeration
specified.	This	is	not	the	same	as	being	a	real
language	ENUM	field.

<IF	FIELD_POSITION> The	field	has	a	UI	field	position	specified.

<IF	HEADING> The	field	has	a	report	heading	specified.

<IF	HELPID> The	field	has	a	help	identifier	specified.

<IF	HYPERLINK> The	field	has	a	hyperlink	method	specified.

<IF	I1> The	field	is	an	I1.

<IF	I2> The	field	is	an	I2.

<IF	I4> The	field	is	an	I4.

<IF	I8> The	field	is	an	I8.

<IF	I124> The	field	is	an	I1,	I2	or	I4.

<IF	INCREMENT> The	field	is	an	auto-increment	field.

<IF	INFOLINE> The	field	has	information	line	text	specified.

<IF	INPUT_CENTER> Input	should	be	performed	center	justified.

<IF	INPUT_LEFT> Input	should	be	performed	left	justified.

<IF	INPUT_RIGHT> Input	should	be	performed	right	justified.

<IF	INTEGER> The	field	data	type	is	defined	as	integer.

<IF	LANGUAGE> The	field	is	available	to	the	language.

<IF	LEAVE> The	field	has	a	leave	method	specified.

<IF	LONGDESC> The	field	has	a	long	description	specified.

<IF	MAPPED> The	field	has	a	CodeGen	field	mapping
specified.

<IF	NEGATIVE_ALLOWED>
The	field	allows	negative	values.	Use	of	this
expression	is	only	appropriate	for	numeric
fields.

<IF	NEGATIVE_ORZERO>

The	field	allows	negative	values	or	a	value	of
zero.	Positive	values	are	not	allowed.	Use	of
this	expression	is	only	appropriate	for
numeric	fields.

<IF	NEGATIVE_REQUIRED>
The	field	requires	a	negative	value.	Use	of
this	expression	is	only	appropriate	for
numeric	fields.

<IF	NOALLOW_LIST> The	field	does	not	have	allow	list	values
specified.

<IF	NOALTERNATE_NAME>

The	field	does	not	have	an	alternate	name
specified.	The	<FIELD_ALTNAME>	token
will	always	return	a	value	because	if	no
alternate	name	is	specified	in	the	repository
then	it	defaults	to	the	fields	real	name.	This
token	allows	you	to	detect	whether	the
alternate	name	is	the	same	as	the	real	name.

<IF	NOARRIVE> The	field	does	not	have	an	arrive	method.

<IF	NOBREAK> The	field	id	not	a	break	field.

<IF	NOCHANGE> The	field	does	not	have	a	change	method.

<IF	NOCHECKBOX> The	field	should	not	be	displayed	as	a	check-
box.

<IF	NOCOERCEBOOLEAN> The	field	data	type	is	not	coerced	to	boolean.

<IF	NODEFAULT> The	field	does	not	have	a	default	value.

<IF	NODESCRIPTION> The	field	does	not	have	a	description.

<IF	NODISPLAY> The	field	does	not	have	a	display	method.

<IF	NODISPLAY_LENGTH> The	field	does	not	have	a	display	length.

<IF	NODRILL> The	field	does	not	have	a	drill	method.

<IF	NOECHO> The	field	should	not	echo	characters	as	they
are	typed.

<IF	NOEDITFORMAT> The	field	does	not	have	an	edit	format
method.

<IF	NOFORMAT> The	field	does	not	have	a	format	string.

<IF	NOHELPID> The	field	does	not	have	a	help	ID.

<IF	NOHYPERLINK> The	field	does	not	have	a	hyperlink	method.

<IF	NOINCREMENT> The	field	is	not	an	auto	increment	field.

<IF	NOINFOLINE> The	field	does	not	have	information	line	text.

<IF	NOLANGUAGE> The	field	is	marked	as	“Excluded	by
Language”.

<IF	NOLEAVE> The	field	does	not	have	a	leave	method.

<IF	NOLONGDESC> The	field	does	not	have	a	long	description
specified.

The	field	does	not	allow	negative	values.	This

<IF	NONEGATIVE> expression	should	only	be	used	with	numeric
fields.

<IF	NOPAINTCHAR> The	field	does	not	have	a	custom	paint
character.

<IF	NOPRECISION>
The	field	does	not	have	a	decimal	precision
specified	(i.e.	it	is	not	an	implied	decimal
field).

<IF	NOPROMPT> The	field	does	not	have	a	prompt.

<IF	NORANGE>
The	field	does	not	have	a	numeric	range
specified.	This	expression	should	only	be
used	for	numeric	fields.

<IF	NOREPORT> The	field	is	marked	as	“Excluded	by
ReportWriter”.

<IF	NOSELECTIONS> The	field	does	not	have	selection	list	values.

<IF	NOSELWND> The	field	does	not	have	a	selection	window
name	specified.

<IF	NOTALPHA> The	field	data	type	is	not	defines	as	Alpha.

<IF	NOTBINARY> The	field	is	not	a	binary	field.	Binary	fields
are	also	alpha	fields.

<IF	NOTBOOLEAN> The	field	is	not	a	boolean	field.

<IF	NOTBZERO> The	numeric	field	should	not	be	displayed	as
blank	if	the	value	is	zero.

<IF	NOTDATE> The	field	is	not	defined	as	a	date	field.

<IF	NODATEORTIME> The	field	is	not	a	date	field	and	not	a	time
field.

The	date	field	should	not	default	to	the

<IF	NOTDATETODAY> current	date.

<IF	NOTDECIMAL>
The	field	data	type	is	not	defined	as	decimal.
Note	that	date	and	time	fields	do	not	count	as
decimal	with	this	conditional	test.

<IF	NOTENUM> The	field	is	not	a	language	ENUM	field.

<IF	NOTENUMERATED> The	field	is	not	a	UI	Toolkit	enumerated	field.

<IF	NOTIMEOUT> The	field	is	not	a	UI	Toolkit	enumerated	field.

<IF	NOTINTEGER> The	field	data	type	is	not	defined	as	integer.

<IF	NOTNUMERIC> The	field	data	type	is	not	a	numeric	type.

<IF	NOTOVERLAY> The	field	is	not	an	overlay	field	or	overlay
group.

<IF	NOTRADIOBUTTONS> The	field	should	not	be	viewed	as	a	collection
of	radio-buttons.

<IF	NOTSTRUCTFIELD> The	field	is	not	a	struct	field.

<IF	NOTTIME> The	field	is	not	marked	as	a	time	field.

<IF	NOTOOLKIT> The	field	is	marked	as	“Excluded	by	Toolkit”.

<IF	NOTUPPERCASE> The	field	should	not	be	converted	to
uppercase.	Only	appropriate	for	alpha	fields.

<IF	NOTUSER> The	field	is	not	a	user-defined	field	type.

<IF	NOUSERTEXT> The	field	does	not	have	user	text	specified.

<IF	NOTUSERTIMESTAMP>
The	field	is	not	a	user-defined	time-stamp
field.	(See	<FIELD_SQLTYPE>	for	more
information).

<IF	NOVIEW_LENGTH> The	field	does	not	have	a	view	length
specified.

<IF	NOWEB> The	field	is	marked	as	“Excluded	by	Web”.

<IF	NUMERIC> The	field	data	type	is	defines	as	a	numeric
type.

<IF	OCNATIVE> The	fields	Objective-C	data	type	is	a	native
type	(e.g.	int	or	BOOL).

<IF	OCOBJECT> The	fields	Objective-C	data	type	is	an	object
type	(e.g.	NSString	or	NSDate).

<IF	OPTIONAL> The	field	is	marked	as	optional	(i.e.	not
required).

<IF	OVERLAY> The	field	is	an	overlay	field	or	overlay	group.

<IF	PAINCHAR> The	field	has	a	custom	paint	character
specified.

<IF	PRECISION> The	decimal	field	has	a	precision	specified
(i.e.	it	is	an	implied	decimal	field).

<IF	PROMPT> The	field	has	a	prompt	specified.

<IF	PROMPT_POSITION> The	field	has	a	UI	prompt	position	specified.

<IF	RADIOBUTTONS> The	field	should	be	viewed	as	a	collection	of
radio-buttons.

<IF	RANGE>
The	field	has	a	numeric	range
(minimum/maximum	values)	specified.

<IF	READONLY> The	field	state	is	specified	as	initially	read-
only.

<IF	READWRITE> The	field	state	is	specified	as	initially

writable.

<IF	REPORT> The	field	is	available	to	ReportWriter.

<IF	REPORT_CENTER> The	field	should	be	printed	center	justified	on
reports.

<IF	REPORT_LEFT> The	field	should	be	printed	left	justified	on
reports.

<IF	REPORT_RIGHT> The	field	should	be	printed	right	justified	on
reports.

<IF	REQUIRED> The	field	is	marked	as	required	(i.e.	must
contain	a	valid	value).

<IF	REVERSE> The	field	should	be	displayed	in	reverse
video.

<IF	SELECTIONS> The	field	has	one	or	more	selection	list
values.

<IF	SELWND> The	field	has	a	selection	window	name
specified.

<IF	STRUCTFIELD> The	field	is	a	struct	field.

<IF	TEXTBOX> The	field	should	be	displayed	as	a	text-box.

<IF	TIME> The	decimal	fields’	type	is	specified	as	a	time
field.

<IF	TIME_HHMM> The	field	is	a	time	field	of	type	HHMM.

<IF	TIME_HHMMSS> The	field	is	a	time	field	of	type	HHMMSS.

<IF	TIMEOUT> The	field	has	an	input	timeout	specified.

<IF	TIMENOW> The	time	field	should	default	to	the	current
time.

<IF	TOOLKIT> The	field	is	available	to	UI	Toolkit.

<IF	UNDERLINE> The	field	content	should	be	displayed
underlined.

<IF	UPPERCASE> The	field	value	should	always	be	converted	to
uppercase.

<IF	USER> The	field	is	a	user	defines	field	type.

<IF	USERTEXT> The	field	has	user	text	specified.

<IF	USERTIMESTAMP>
The	field	is	a	user-defined	time-stamp	field.
(See	<FIELD_SQLTYPE>	for	more
information).

<IF	VIEW_LENGTH> The	field	has	a	view	length	specified.

<IF	WEB> The	field	is	available	to	the	web	products.

	
	

Copyright	©	2012		Synergex	International,	Inc.

Introduction	to	Relation	Loops
	
A	relation	loop	is	a	template	file	construct	which	allows	you	to	iterate	through
the	collection	of	relations	that	CodeGen	has	information	about.		In	order	to
use	a	relation	loop	you	must	be	processing	a	repository	structure,	either
directly	via	the	–s	command	line	option,	or	because	the	structure	is	referenced
by	the	UI	Toolkit	input	window	that	you	are	processing	via	the	–w	command
line	option.

Relation	loops	are	delimited	by	a	matching	pair	of	<RELATION_LOOP>	and
</RELATION_LOOP>	tags,	which	surround	the	template	code	to	be	inserted
for	each	relation.

The	code	between	the	opening	and	closing	tags	of	a	relation	loop	is	repeated
for	each	relation	in	the	structure	being	processed.	This	code	within	a	relation
loop	can	contain	other	generic	and	structure	tokens,	and	can	also	contain
special	relation	loop	tokens,	which	are	discussed	later.	Relation	loop	tokens
can	only	be	used	inside	a	relation	loop,	and	a	relation	loop	can’t	be	declared
within	any	other	loop	construct.

There	are	two	types	of	relation	loop,	multi-line	relation	loops	and	in-line
relation	loops.

Multi-Line	Relation	Loops

Multi-line	relation	loops	occur	when	the	opening	and	closing	relation	loop
tags	appear	on	separate	lines	in	a	template	file,	and	delimit	one	or	more	entire
lines	of	template	code,	like	this:

[code]

<RELATION_LOOP>code
</RELATION_LOOP>

[code]

Multi-line	relation	loops	generate	one	or	more	lines	of	output	code	for	each
relation	that	is	processed.

In-Line	Relation	Loops

In-line	relation	loops	exist	when	the	opening	and	closing	relation	loop	tags
appear	on	the	same	line	in	a	template	file,	and	delimit	part	of	a	line	of
template	code,	like	this:

[code]	<RELATION_LOOP>	code	</RELATION_LOOP>	[code]

In-line	relation	loops	generate	code	into	the	current	output	line	only.

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

RELATION_NUMBER
	
This	token	inserts	the	one-based	index	of	the	current	relation

Usage

<RELATION_NUMBER>

Alternate	forms

None

See	Also

None

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

RELATION_NAME
	
This	token	inserts	the	name	of	the	current	relation.

Usage

<RELATION_NAME>

Alternate	forms

None

See	Also

None

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

RELATION_FROMKEY
	
This	token	inserts	the	name	of	the	key	in	the	current	structure	from	which	the
relation	originates.

Usage

<RELATION_FROMKEY>

Alternate	forms

None

See	Also

None

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

RELATION_TOSTRUCTURE
	
This	token	inserts	the	name	of	the	structure	targeted	by	this	relation.

Usage

<RELATION_TOSTRUCTURE>

Alternate	forms

None

See	Also

None

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

RELATION_TOKEY
	
This	token	inserts	the	name	of	the	key	in	the	structure	targeted	by	this	relation.

Usage

<RELATION_TOKEY>

Alternate	forms

None

See	Also

None

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

Relation	Loop	Expression	Tokens
	
CodeGen	includes	support	for	relation	loop	expression	tokens,	but	none	have
been	implemented	yet.	Loop	utility	expressions	can	also	be	used	within
relation	loops.

	
	

Copyright	©	2012		Synergex	International,	Inc.

Introduction	to	Enumeration	Loops
	
An	enumeration	loop	is	a	template	file	construct	which	allows	you	to	iterate
through	the	collection	of	enumerations	that	CodeGen	has	information	about.	
In	order	to	use	an	enumeration	loop	your	repository	must	include	at	least	one
enumeration	definition.

Enumeration	loops	are	delimited	by	a	matching	pair	of	<ENUM_LOOP>	and
</ENUM_LOOP>	tags,	which	surround	the	template	code	to	be	inserted	for
each	enumeration.

Note:	The	ability	to	define	enumerations	in	the	repository	was	first	introduced
in	Synergy/DE	V9.3.

There	are	three	types	of	enumeration	loop,	multi-line	enumeration	loops,	in-
line	enumeration	loops,	and	structure	enumeration	loops.

Multi-line	Enumeration	Loops

Multi-line	enumeration	loops	occur	when	the	opening	and	closing	key	loop
tags	appear	on	separate	lines	in	a	template	file,	and	delimit	one	or	more	entire
lines	of	template	code,	like	this:

[code]

<ENUM_LOOP>code
</ENUM_LOOP>

[code]

Multi-line	enumeration	loops	generate	one	or	more	lines	of	output	code	for
each	enumeration	that	is	processed.

In-Line	Enumeration	Loops

In-line	enumeration	loops	exist	when	the	opening	and	closing	enumeration
loop	tags	appear	on	the	same	line	in	a	template	file,	and	delimit	part	of	a	line
of	template	code,	like	this:

[code]	<ENUM_LOOP>	code	</ENUM_LOOP>	[code]

In-line	enumeration	loops	generate	code	into	the	current	output	line	only.

The	code	between	the	opening	and	closing	tags	of	an	enumeration	loop	is
repeated	for	each	enumeration	in	the	repository.

The	code	within	an	enumeration	loop	can	contain	generic	tokens,	and	can	also
contain	special	enumeration	loop	tokens,	which	are	discussed	later.

Enumeration	loop	tokens	can	only	be	used	inside	an	enumeration	loop,	and	an
enumeration	loop	can’t	be	declared	within	any	other	loop	construct.

Structure	Enumeration	Loops

A	structure	enumeration	loop	is	similar	to	an	enumeration	loop,	except	that
only	enumerations	that	are	referenced	by	fields	in	the	repository	structure	that
is	being	processed	are	included.		As	with	enumeration	loops,	CodeGen
supports	both	multi-line	and	in-line	structure	enumeration	loops.

A	multi-line	structure	enumeration	loop	looks	like	this:

[code]

<ENUM_LOOP_STRUCTURE>
code
</ENUM_LOOP_STRUCTURE>

[code]

And	an	in-line	structure	enumeration	loop	looks	like	this:

[code]	<ENUM_LOOP_STRUCTURE>	code
</ENUM_LOOP_STRUCTURE>	[code]

Multi-line	structure	enumeration	loops	generate	one	or	more	lines	of	output
code	for	each	enumeration	that	is	processed,	whereas	in-line	structure
enumeration	loops	generate	code	into	the	current	output	line	only.

	

	

	

Copyright	©	2012		Synergex	International,	Inc.

ENUM_COUNT
	
This	token	inserts	the	total	number	of	repository	enumerations	being
processed.		For	regular	enumeration	loops	this	will	be	the	number	of
enumerations	defined	in	the	repository.		For	structure	enumeration	loops	this
will	be	the	number	of	enumerations	referenced	by	the	repository	structure
being	processed.

Usage

<ENUM_COUNT>

Alternate	forms

None

See	Also

• <ENUM_NUMBER>

	
	

Copyright	©	2012		Synergex	International,	Inc.

ENUM_DESCRIPTION
	
This	token	inserts	the	short	description	of	the	enumeration.

You	can	test	whether	an	enumeration	has	a	description	using	the	enumeration
loop	<IF	DESCRIPTION>	expression.

Usage

<ENUM_DESCRIPTION>

Alternate	forms

None

See	Also

None

	
	

Copyright	©	2012		Synergex	International,	Inc.

ENUM_LONG_DESCRIPTION
	
This	token	inserts	the	long	description	of	the	enumeration.

You	can	test	whether	an	enumeration	has	a	long	description	using	the
enumeration	loop	<IF	LONG_DESCRIPTION>	expression.

Usage

<ENUM_LONG_DESCRIPTION>

Alternate	forms

None

See	Also

None

	
	

Copyright	©	2012		Synergex	International,	Inc.

ENUM_MEMBER_COUNT
	
This	token	inserts	the	number	of	members	that	comprise	to	the	enumeration.

Usage

<ENUM_MEMBER_COUNT>

Alternate	forms

None

See	Also

None

	
	

Copyright	©	2012		Synergex	International,	Inc.

ENUM_NAME
	
This	token	inserts	the	name	of	the	enumeration.

Usage

<ENUM_NAME>

Alternate	forms

• <enum_name>

• <Enum_Name>

• <Enum_name>

• <EnumName>

• <enumName>

See	Also

None

	
	

Copyright	©	2012		Synergex	International,	Inc.

ENUM_NUMBER
	
This	token	inserts	the	one-based	index	within	the	collection	of	enumerations
being	processed,	of	the	enumeration	that	is	currently	being	processed.

Usage

<ENUM_NUMBER>

Alternate	forms

None

See	Also

• <ENUM_COUNT>

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

Enumeration	Loop	Expression	Tokens
	
Enumeration	loop	expressions	are	expressions	that	can	only	be	used	within	the
context	of	an	enumeration	loop.	CodeGen	supports	enumeration	loop
expressions	via	the	<IF	expression>	and	</IF	[expression]>	tags.	Note	that
loop	utility	expressions	can	also	be	used	within	enumeration	loops.

Expression Description

<IF	DESCRIPTION> The	enumeration	has	descriptive	text	specified.

<IF
LONG_DESCRIPTION>

The	enumeration	has	a	long	description
specified.

	

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

Introduction	to	Enumeration	Member	Loops
	
An	enumeration	member	loop	is	a	template	file	construct	which	allows	you	to
iterate	through	the	collection	of	members	for	a	particular	enumeration	that
CodeGen	has	information	about.		In	order	to	use	an	enumeration	member	loop
your	repository	must	include	the	definition	of	at	least	one	enumeration.

Enumeration	member	loops	are	delimited	by	a	matching	pair	of
<ENUM_MEMBER_LOOP>	and	</ENUM_MEMBER_LOOP>	tags,	which
surround	the	template	code	to	be	inserted	for	each	enumeration	member.

The	code	between	the	opening	and	closing	tags	of	an	enumeration	member
loop	is	repeated	for	each	enumeration	member	in	the	enumeration	being
processed.	This	code	within	an	enumeration	member	loop	can	contain	generic
tokens,	and	can	also	contain	special	enumeration	member	loop	tokens,	which
are	discussed	later.	Enumeration	member	loop	tokens	can	only	be	used	inside
an	enumeration	member	loop,	and	an	enumeration	member	loop	can	only	be
declared	within	one	of	the	supported	enumeration	loop	constructs.

There	are	two	types	of	enumeration	member	loop,	multi-line	enumeration
member	loops,	and	on-line	enumeration	member	loops.

Multi-Line	Enumeration	Member	Loops

Multi-line	enumeration	member	loops	occur	when	the	opening	and	closing
enumeration	member	loop	tags	appear	on	separate	lines	in	a	template	file,	and
delimit	one	or	more	entire	lines	of	template	code,	like	this:

<ENUM_LOOP>[code]
<ENUM_MEMBER_LOOP>
code
</ENUM_MEMBER_LOOP>
[code]
</ENUM_LOOP>

Multi-line	enumeration	member	loops	generate	one	or	more	lines	of	output
code	for	each	enumeration	member	that	is	processed.

In-Line	Enumeration	Member	Loops

In-line	enumeration	member	loops	exist	when	the	opening	and	closing
enumeration	member	loop	tags	appear	on	the	same	line	in	a	template	file,	and
delimit	part	of	a	line	of	template	code,	like	this:

<ENUM_LOOP>
[code]
[code]	<ENUM_MEMBER_LOOP>	code
</ENUM_MEMBER_LOOP>	[code]
[code]
</ENUM_LOOP>

In-line	enumeration	member	loops	generate	code	into	the	current	output	line
only.

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

ENUM_MEMBER_NAME
	
This	token	inserts	the	name	of	the	enumeration	member.

Usage

<ENUM_MEMBER_NAME>

Alternate	forms

• <enum_member_name>

• <Enum_Member_Name>

• <Enum_member_name>

• <EnumMemberName>

• <enumMemberName>

See	Also

None

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

ENUM_MEMBER_EXPLICIT_VALUE
	
This	token	inserts	the	numeric	value	of	the	enumeration	member	that	is
explicitly	specified	in	the	repository.		Note	that	some	enumeration	members
may	not	have	an	explicit	value	specified.	In	Synergy,	enumeration	members
that	do	not	have	an	explicit	specified	value	will	default	to	the	value	of	the
previous	member	incremented	by	one,	except	for	the	first	member	whose
value	defaults	to	zero.	If	a	member	does	not	have	an	explicitly	specified	value
then	this	token	inserts	nothing.

The	token	is	primarily	used	when	defining	enumerations	in	Synergy	language.

Usage

<ENUM_MEMBER_EXPLICIT_VALUE>

Alternate	forms

None

See	Also

• <ENUM_MEMBER_IMPLICIT_VALUE>

	
	

Copyright	©	2012		Synergex	International,	Inc.

ENUM_MEMBER_IMPLICIT_VALUE
	
This	token	inserts	the	numeric	value	of	the	enumeration	member	that	is	either
explicitly	specified	in	the	repository,	or	is	implicitly	derived	by	following	the
same	rules	observed	by	the	Synergy	compiler.	This	token	will	always	cause	a
value	to	be	inserted,	even	if	the	enumeration	member	being	processed	does
not	have	an	explicitly	defined	value.

This	token	is	primarily	used	when	defining	enumerations	in	languages	other
than	Synergy	language.

Usage

<ENUM_MEMBER_IMPLICIT_VALUE>

Alternate	forms

None

See	Also

• <ENUM_MEMBER_EXPLICIT_VALUE>

	
	

Copyright	©	2012		Synergex	International,	Inc.

Enumeration	Member	Loop	Expression	Tokens
	
Enumeration	member	loop	expressions	are	expressions	that	can	only	be	used
within	the	context	of	an	enumeration	member	loop.	CodeGen	supports
enumeration	member	loop	expressions	via	the	<IF	expression>	and	</IF
[expression]>	tags.	Note	that	loop	utility	expressions	can	also	be	used	within
enumeration	member	loops.

Expression Description

<IF
EXPLICIT_VALUE>

The	enumeration	member	has	a	value	explicitly
defined.

<IF
NOEXPLICIT_VALUE>

The	enumeration	member	does	not	have	a	value
explicitly	defined,	default	rules	should	be	used	to
imply	the	members	value.

	

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

Introduction	to	Button	Loops
	
A	button	loop	is	a	template	file	construct	which	allows	you	to	iterate	through
the	collection	of	buttons	that	CodeGen	has	information	about.

The	definition	of	the	buttons	processed	in	a	button	loop	can	come	from	one	of
two	places.		If	you	are	processing	based	on	a	UI	Toolkit	input	window
definition	then	by	default	the	collection	of	buttons	is	determined	by	the
buttons	found	in	that	input	window	definition.		Otherwise	the	button
collection	is	defined	by	a	configuration	file	called	DefaultButtons.xml,	which
you	will	find	in	the	folder	that	you	installed	CodeGen	into.

Note:	Even	if	you	are	processing	based	on	a	UI	Toolkit	input	window
definition,	you	can	chose	to	ignore	the	definition	of	buttons	found	in	the
window	and	use	the	definitions	from	DefaultButtons.xml	via	the	–b	command
line	option.

Button	loops	are	delimited	by	a	matching	pair	of	<BUTTON_LOOP>	and
</BUTTON_LOOP>	tags,	which	surround	the	template	code	to	be	inserted
for	each	button.		The	code	between	the	opening	and	closing	tags	of	a	button
loop	is	repeated	for	each	button	in	the	button	collection,	and	can	other	generic
and	structure	tokens	(if	a	structure	is	being	used)	and	can	also	contain	special
button	loop	tokens,	which	are	discussed	later.

Button	loop	tokens	can	only	be	used	inside	a	button	loop,	and	a	button	loop
can’t	be	declared	within	any	other	loop	construct.

There	are	two	types	of	button	loop,	multi-line	button	loops	and	in-line	button
loops.

Multi-Line	Button	Loops

Multi-line	button	loops	occur	when	the	opening	and	closing	button	loop	tags
appear	on	separate	lines	in	a	template	file,	and	delimit	one	or	more	entire	lines
of	template	code,	like	this:

[code]<BUTTON_LOOP>
code
</BUTTON_LOOP>

[code]

Multi-line	button	loops	generate	one	or	more	lines	of	output	code	for	each
button	that	is	processed.

In-Line	Button	Loops

In-line	button	loops	exist	when	the	opening	and	closing	button	loop	tags
appear	on	the	same	line	in	a	template	file,	and	delimit	part	of	a	line	of
template	code,	like	this:

[code]	<BUTTON_LOOP>	code	</BUTTON_LOOP>	[code]

In-line	button	loops	generate	code	into	the	current	output	line	only.

Default	Buttons

The	default	buttons	are	defined	in	DefaultButtons.xml,	as	follows:

<?xml	version='1.0'?>
<CodeGenDefaultButtons>
										<Button	name="Ok"	caption="OK"	image=""	method=""	elb=""
quickselect="O"	/>
										<Button	name="Cancel"	caption="Cancel"	image=""	method=""	elb=""
quickselect="C"	/>
										<Button	name="Help"	caption="Help"	image=""	method=""
elb=""quickselect="H"	/>
</CodeGenDefaultButtons>

Special	Button	Processing

When	generating	application	source	code,	and	in	particular	forms,	it	is	often
useful	to	be	able	to	identify	a	button	as	either	an	"OK"	button	(which
generally	saves	the	data	and	closes	the	form)	or	a	"Cancel"	button	(which
closes	the	form	without	saving	the	data).	Unfortunately	there	is	no	way	to
easily	identify	this	from	information	in	a	UI	Toolkit	input	window	script.

CodeGen	considers	a	button	to	be	an	"OK"	button	if	the	term	"OK"	appears	in
either	the	name	or	caption	of	the	button.

CodeGen	considers	a	button	to	be	a	"Cancel"	button	if	the	word	"Cancel"
appears	in	the	buttons	name	or	caption,	or	if	the	word	"abandon"	appears	in
the	buttons	name	(UI	Toolkit	programmers	often	name	the	cancel	button
O_ABANDON).

The	status	a	button	as	either	an	OK	or	Cancel	button	can	be	tested	with	the
button	loop	expressions	<IF	OKBUTTON>	and	<IF	CANCELBUTTON>.

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

BUTTON_CAPTION
	
This	token	inserts	the	buttons	caption.

In	UI	Toolkit	a	button	can	have	a	caption,	or	an	image,	but	not	both.	The	<IF
CAPTION>	and	<IF	IMAGE>	expressions	will	allow	you	to	provide	the
appropriate	code.

Usage

<BUTTON_CAPTION>

Alternate	forms

None

See	also

None

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

BUTTON_COLPX
	
This	token	inserts	the	calculated	column	position	for	the	button	in	pixels.	The
column	position	is	calculated	by	adding	the	sizes	of	all	preceding	buttons,
with	15	pixels	of	space	allowed	before	each	button.

Usage

<BUTTON_COLPX>

Alternate	forms

None

See	also

None

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

BUTTON_ELB
	
This	token	inserts	the	name	of	the	ELB	containing	the	buttons	method.

Refer	to	the	discussion	relating	to	<BUTTON_METHOD>.	Methods	are	very
rare,	and	specifying	an	external	ELB	is	even	rarer.	You	can	use	the	expression
<IF	ELB>	to	determine	if	a	button	method	ELB	is	specified.

<Usage>

<BUTTON_ELB>

Alternate	forms

None

See	also

None

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

BUTTON_IMAGE
	
This	token	inserts	the	name	of	the	buttons	image	file.

In	UI	Toolkit	a	button	can	have	a	caption,	or	an	image,	but	not	both.	The	<IF
CAPTION>	and	<IF	IMAGE>	expressions	will	allow	you	to	provide	the
appropriate	code.

Usage

<BUTTON_IMAGE>

Alternate	forms

None

See	also

None

	
	

Copyright	©	2012		Synergex	International,	Inc.

BUTTON_METHOD
	
This	token	inserts	the	name	of	the	buttons	method.

In	UI	Toolkit	a	button	method	may	be	specified	as	the	event	handler	to	be
executed	when	the	button	is	clicked.	This	is	rare	however,	most	applications
relying	on	the	fact	that	if	a	button	method	is	not	specified	then	the	name	of	the
button	is	signaled	as	a	menu	entry.

Most	buttons	will	not	have	a	method	specified.	You	can	use	the	<IF
METHOD>	expression	to	determine	if	a	method	is	specified.

Usage

<BUTTON_METHOD>

Alternate	forms

None

See	also

None

	
	

Copyright	©	2012		Synergex	International,	Inc.

BUTTON_NAME
	
This	token	inserts	the	Name	of	the	button.	All	buttons	will	have	a	name
defined.

Usage

<BUTTON_NAME>

Alternate	forms

None

See	also

None

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

BUTTON_NUMBER
	
This	token	inserts	the	one-based	index	number	of	the	button	in	the	windows
Buttons	collection.

Usage

<BUTTON_NUMBER>

Alternate	forms

None

See	also

None

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

BUTTON_QUICKSELECT
	
This	token	inserts	the	buttons	explicitly	specified	quick-select	character.

Usage

<BUTTON_QUICKSELECT>

Alternate	forms

None

See	also

None

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

BUTTON_ROWPX
	
This	token	inserts	the	calculated	row	position	for	the	button	in	pixels.	The
calculation	takes	into	account	the	pixel	height	of	the	window,	as	well	as	the
additional	space	which	will	have	been	allowed	in	the	window	height	when	the
window	size	was	calculated.	If	code	generation	is	based	on	an	existing	UI
Toolkit	window	then	the	height	of	the	source	window	is	used	to	calculate	the
value,	otherwise	the	number	of	fields	in	the	structure	is	used.

Usage

<BUTTON_ROWPX>

Alternate	forms

None

See	also

None

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

BUTTON_WIDTHPX
	
This	token	inserts	the	width	of	the	button	in	pixels.	The	width	is	calculated	by
multiplying	the	number	of	characters	in	the	buttons	caption	by	12	pixels	per
character,	and	this	value	can	be	overridden	using	the	-cw	option.	If	the
calculated	button	width	is	less	than	75	pixels	then	75	pixels	is	used.

Usage

<BUTTON_WIDTHPX>

Alternate	forms

None

See	also

None

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

Button	Loop	Expression	Tokens
	
Button	loop	expressions	are	expressions	that	can	only	be	used	within	the
context	of	a	button	loop.	CodeGen	supports	button	loop	expressions	via	the
<IF	expression>	and	</IF	[expression]>	tags.	Note	that	loop	utility
expressions	can	also	be	used	within	button	loops.

Expression Description

<IF
CANCELBUTTON> The	button	is	a	Cancel	button.

<IF	CAPTION> The	button	has	a	caption	specified.

<IF	ELB> The	event	handler	method	is	specified	to	be	in	an
external	ELB.

<IF
GENERICBUTTON>

The	button	is	a	generic	button	(i.e.	it	is	not	an	OK	or
Cancel	button).

<IF	IMAGE> The	button	has	an	image	file	specified.

<IF	METHOD> The	image	has	an	event	handler	method	specified.

<IF	OKBUTTON> The	button	is	an	OK	button.

<IF
QUICKSELECT> The	button	has	a	quick-select	character	specified.

	

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

Introduction	to	File	Loops
	
A	file	loop	is	a	template	file	construct	which	allows	you	to	iterate	through	the
collection	of	files	that	are	assigned	to	the	structure	which	is	currently	being
processed.

File	loops	are	delimited	by	a	matching	pair	of	<FILE_LOOP>	and
</FILE_LOOP>	tags,	which	surround	the	template	code	to	be	inserted	for
each	file.	The	code	between	the	opening	and	closing	tags	of	a	file	loop	is
repeated	for	each	file	assigned	to	the	structure	being	processed.	This	code	may
contain	other	generic	and	structure	tokens,	and	may	also	contain	special	file
loop	tokens,	which	are	discussed	later.	Loop	utility	tokens	can	also	be	used	in
file	loops.	File	loop	tokens	can	only	be	used	inside	a	file	loop,	and	a	file	loop
can’t	be	declared	within	any	other	loop	construct.

There	are	two	types	of	file	loops,	called	multi-line	file	loops,	and	in-line	file
loops.

Multi-Line	File	Loops

Multi-line	file	loops	occur	when	the	opening	and	closing	file	loop	tags	appear
on	separate	lines	in	a	template	file,	and	delimit	one	or	more	entire	lines	of
template	code,	like	this:

[code]

<FILE_LOOP>code
</FILE_LOOP>

[code]

Multi-line	file	loops	generate	one	or	more	lines	of	output	code	for	each	file
that	is	processed.

In-Line	File	Loops

In-line	file	loops	exist	when	the	opening	and	closing	file	loop	tags	appear	on
the	same	line	in	a	template	file,	and	delimit	part	of	a	line	of	template	code,
like	this:

[code]	<FILE_LOOP>	code	</FILE_LOOP>	[code]

In-line	file	loops	generate	code	into	the	current	output	line.

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

FLOOP_ADDRESSING
	
This	token	inserts	the	addressing	size	of	the	current	data	file.

Usage

<FLOOP_ADDRESSING>

Possible	values

• 32

• 40

Alternate	forms

None

See	also

None

	
	

Copyright	©	2012		Synergex	International,	Inc.

FLOOP_CHANGE_TRACKING
	
This	token	inserts	a	string	indicating	whether	the	structures	first	assigned	file
has	change	tracking	enabled.

CodeGen	will	display	an	error	if	it	encounters	this	token	and	the	structure
being	processed	has	not	been	assigned	to	a	repository	file	definition.

NOTE:	Supported	in	Synergy/DE	V10.1	and	higher.

Usage

<FLOOP_CHANGE_TRACKING>

Possible	values

• YES

• NO

Alternate	forms

• <floop_change_tracking>

See	also

Other	structure	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FLOOP_COMPRESSION
	
This	token	inserts	a	string	indicating	whether	the	current	file	has	data
compression	enabled.

Usage

<FLOOP_COMPRESSION>

Possible	values

• YES

• NO

Alternate	forms

• <floop_compression>

See	also

None

	
	

Copyright	©	2012		Synergex	International,	Inc.

FLOOP_DESC
	
This	token	inserts	the	description	of	the	current	file.

Usage

<FLOOP_DESC>

Alternate	forms

None

See	also

None

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

FLOOP_DENSITY
	
This	token	inserts	the	default	key	density	of	the	current	file.

Usage

<FLOOP_DENSITY>

Possible	values

• 50

• 100

Alternate	forms

None

See	also

None

	
	

Copyright	©	2012		Synergex	International,	Inc.

FLOOP_NAME
	
This	token	inserts	the	file	name	of	the	current	file	definition.

Usage

<FLOOP_NAME>

Alternate	forms

None

See	also

• <FLOOP_NAME_NOEXT>

	

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

FLOOP_NAME_NOEXT
	
This	token	inserts	the	file	name	of	the	current	file	definition,	with	the	file
extension	removed.

This	token	can	be	useful	when	constructing	file	specifications	where	the	file
extension	is	based	on	a	variable	company	code	or	other	data.

Usage

<FLOOP_NAME_NOEXT>

Alternate	forms

None

See	also

• <FLOOP_NAME>

	
	

Copyright	©	2012		Synergex	International,	Inc.

FLOOP_ODBC_NAME
	
This	token	inserts	the	ODBC	table	name	of	the	file	definition	that	is	currently
being	processed.	If	no	ODBC	table	name	is	specified	then	the	name	of	the
first	assigned	structure	is	used.
	
Usage

<FLOOP_ODBC_NAME>

Example	Output

CUSTOMER

Alternate	forms

• <floop_odbc_name>

• <Floop_Odbc_Name>

• <Floop_odbc_name>

• <FloopOdbcName>

• <floopOdbcName>

See	also

• 	

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

FLOOP_PAGESIZE
	
This	token	inserts	the	page	size	of	the	current	file.

Usage

<FLOOP_PAGESIZE>

Possible	values

• 512

• 1024

• 2048

• 4096

• 8192

• 16384

• 32768

NOTE:	Page	sizes	16384	and	32768	were	introduced	with	ISAM	Rev	6	in
Synergy/DE	10.1

Alternate	forms

None

See	also

None

	
	

Copyright	©	2012		Synergex	International,	Inc.

FLOOP_RECTYPE
	
This	token	inserts	a	string	indicating	the	record	type	of	the	current	file.

Usage

<FLOOP_RECTYPE>

Possible	values

• FIXED

• VARIABLE

• MULTIPLE

Alternate	forms

• <floop_rectype>

See	also

None

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

FLOOP_RPS_NAME
	
This	token	inserts	the	name	of	the	repository	file	definition	that	is	currently
being	processed.
	
Usage

<FLOOP_RPS_NAME>

Example	Output

CUSTOMER

Alternate	forms

• <floop_rps_name>

• <Floop_Rps_Name>

• <Floop_rps_name>

• <FloopRpsName>

• <floopRpsName>

See	also

• 	

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

FLOOP_STATIC_RFA
	
This	token	inserts	a	string	indicating	whether	the	current	file	has	static	RFA’s
enabled.

Usage

<FLOOP_STATIC_RFA>

Possible	values

• YES

• NO

Alternate	forms

• <floop_static_rfa>

See	also

None

	
	

Copyright	©	2012		Synergex	International,	Inc.

FLOOP_STORED_GRFA
	
This	token	inserts	a	string	indicating	whether	the	structures	first	assigned	file
has	stored	GRFA’s	enabled.

CodeGen	will	display	an	error	if	it	encounters	this	token	and	the	structure
being	processed	has	not	been	assigned	to	a	repository	file	definition.

NOTE:	Supported	with	Synergy/DE	V10.1	and	higher.

Usage

<FLOOP_STORED_GRFA>

Possible	values

• YES

• NO

Alternate	forms

• <floop_stored_grfa>

See	also

Other	structure	tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

FLOOP_TYPE
	
This	token	inserts	a	string	indicating	the	file	type	of	the	current	file.

Usage

<FLOOP_TYPE>

Possible	values

• ASCII

• DBL	ISAM

• RELATIVE

• USER	DEFINED

Alternate	forms

None

See	also

None

	
	

Copyright	©	2012		Synergex	International,	Inc.

FLOOP_UTEXT
	
This	token	inserts	the	user	text	string	of	the	current	file.

Usage

<FLOOP_UTEXT>

Alternate	forms

None

See	also

None

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

File	Loop	Expression	Tokens
	
File	loop	expressions	are	expressions	that	can	only	be	used	within	the	context
of	a	file	loop.	CodeGen	supports	file	loop	expressions	via	the	<IF
expression>	and	</IF	[expression]>	tags.	Note	that	loop	utility
expressions	can	also	be	used	within	file	loops.

Expression Description

<IF	ASCII> The	file	is	an	ASCII	file.

<IF	CHANGE_TRACKING> The	file	has	change	tracking	enabled.
(Synergy	10.1	and	higher).

<IF	DESCRIPTION> The	file	has	a	file	description	specified.

<IF	ISAM> The	file	is	an	ISAM	file.

<IF	NOCHANGE_TRACKING> The	file	does	not	have	change	tracking
enabled.	(Synergy	10.1	and	higher).

<IF	NODESCRIPTION> The	file	does	not	have	a	file	description
specified.

<IF
NORECORDCOMPRESSION>

The	file	does	not	have	record	compression
enabled.

<IF	NOSTORED_GRFA> The	file	does	not	have	stored	GRFA
enabled.	(Synergy	10.1	and	higher).

<IF	NOTASCII> The	file	is	not	an	ASCII	file.

<IF	NOTISAM> The	file	is	not	an	ISAM	file.

<IF	NOTRECORDTYPEFIXED> The	file	does	not	contain	fixed	length
records.

<IF
NOTRECORDTYPEVARIABLE>

The	file	does	not	contain	variable	length
records.

<IF
NOTRECORDTYPEMULTIPLE>

The	file	does	not	contain	multiple	fixed
length	records.

<IF	NOTRELATIVE> The	file	is	not	a	RELATIVE	file.

<IF	NOTSTATICRFA> The	file	does	not	use	static	RFAs.

<IF	NOTTERABYTE> The	file	is	not	a	terabyte	file.

<IF	NOTUSERDEFINED> The	file	is	not	a	user-defined	file	type.

<IF	NOUSERTEXT> The	file	does	not	have	user	defined	text
specified.

<IF	PAGESIZE512> The	page	size	of	the	file	is	512	bytes.

<IF	PAGESIZE1024> The	page	size	of	the	file	is	1024	bytes.

<IF	PAGESIZE2048> The	page	size	of	the	file	is	2048	bytes.

<IF	PAGESIZE4096> The	page	size	of	the	file	is	4096	bytes.

<IF	PAGESIZE8192> The	page	size	of	the	file	is	8192	bytes.

<IF	PAGESIZE16384> The	page	size	of	the	file	is	16384	bytes.

<IF	PAGESIZE32768> The	page	size	of	the	file	is	32768	bytes.

<IF	RECORDCOMPRESSION> The	file	has	record	compression	enabled.

<IF	RECORDTYPEFIXED> The	file	contains	fixed	length	records.

<IF	RECORDTYPEVARIABLE> The	file	contains	variable	length	records.

<IF	RECORDTYPEMULTIPLE> The	file	contains	multiple	fixed	length
records.

<IF	RELATIVE> The	file	is	a	RELATIVE	file.

<IF	STATICRFA> The	file	uses	static	RFAs.

<IF	STORED_GRFA> The	file	has	stored	GRFA	enabled.
(Synergy	10.1	and	higher).

<IF	TERABYTE> The	file	is	a	terabyte	file.

<IF	USERDEFINED> The	file	is	a	user-defined	file	type.

<IF	USERTEXT> The	file	has	user	defined	text	specified.

	
	

Copyright	©	2012		Synergex	International,	Inc.

Introduction	to	Tag	Loops
	
A	tag	loop	is	a	template	file	construct	which	allows	you	to	iterate	through	the
collection	of	a	tags	that	CodeGen	has	information	about.	In	order	to	use	tag
loops	you	must	be	generating	code	based	on	a	repository	structure	that	has	at
least	one	field	tag	defined.	Tag	loops	are	delimited	by	a	matching	pair	of
<TAG_LOOP>	and	</TAG_LOOP>	tags,	which	surround	the	template	code
to	be	inserted	for	each	tag.	The	code	between	the	opening	and	closing	tags	is
repeated	for	each	tag	in	the	structure.	This	code	may	contain	other	generic	and
structure	tokens,	and	may	also	contain	special	tag	loop	tokens,	which	are
discussed	later.	Loop	utility	tokens	can	also	be	used	in	tag	loops.	Tag	loop
tokens	can	only	be	used	inside	a	tag	loop,	and	a	tag	loop	can’t	be	declared
within	any	other	loop	construct.

There	are	two	types	of	tag	loops,	called	multi-line	tag	loops,	and	in-line	tag
loops.

Multi-Line	Tag	Loops

Multi-line	tag	loops	occur	when	the	opening	and	closing	tag	loop	tags	appear
on	separate	lines	in	a	template	file,	and	delimit	one	or	more	entire	lines	of
template	code,	like	this:

[code]<TAG_LOOP>
code
</TAG_LOOP>
[code]

Multi-line	tag	loops	generate	one	or	more	lines	of	output	code	for	each	tag
that	is	processed.

In-Line	Tag	Loops

In-line	tag	loops	exist	when	the	opening	and	closing	tag	loop	tags	appear	on
the	same	line	in	a	template	file,	and	delimit	part	of	a	line	of	template	code,
like	this:

[code]	<TAG_LOOP>	code	</TAG_LOOP>	[code]

In-line	tag	loops	generate	code	into	the	current	output	line.

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

TAGLOOP_CONNECTOR_C
	
For	multi-expression	tags,	this	token	inserts	the	C-style	operator	that	is	used	to
connect	the	current	tag	expression	with	the	previous	tag	expression.	The	token
is	replaced	by	a	blank	string	for	the	first	tag	expression.

Usage

<TAGLOOP_CONNECTOR_C>

Possible	values

• &&

• ||

Alternate	forms

None

See	also

• Introduction	to	tag	loops

• <TAGLOOP_CONNECTOR_DBL>

• Counter	tokens

• Loop	utility	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

TAGLOOP_CONNECTOR_DBL
	
For	multi-expression	tags,	this	token	inserts	the	DBL-style	operator	that	is
used	to	connect	the	current	tag	expression	with	the	previous	tag	expression.
The	token	is	replaced	by	a	blank	string	for	the	first	tag	expression.

Usage

<TAGLOOP_CONNECTOR_DBL>

Possible	values

• .AND.

• .OR.

Alternate	forms

• <tagloop_connector_dbl>

See	also

• Introduction	to	tag	loops

• <TAGLOOP_CONNECTOR_C>

• Counter	tokens

• Loop	utility	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

TAGLOOP_FIELD_ALTNAME
	
This	token	inserts	the	tag	fields	alternate	name.	Refer	to
<FIELD_ALTNAME>	for	additional	information.

Usage

<TAGLOOP_FIELD_ALTNAME>

Alternate	forms

• <tagloop_field_altname>

• <Tagloop_Field_Altname>

• <Tagloop_field_altname>

• <TagloopFieldAltname>

• <tagloopFieldAltname>

See	also

• Introduction	to	tag	loops

• <TAGLOOP_FIELD_BASENAME>

• <TAGLOOP_FIELD_NAME>

• <TAGLOOP_FIELD_ODBCNAME>

• <TAGLOOP_FIELD_ORIGINALNAME>

• <TAGLOOP_FIELD_SQLNAME>

• Counter	tokens

• Loop	utility	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

TAGLOOP_FIELD_BASENAME
	
This	token	inserts	the	tag	fields	base	name.	Refer	to
<FIELD_BASENAME>	for	additional	information.

Usage

<TAGLOOP_FIELD_BASENAME>

Alternate	forms

• <tagloop_field_basename>

• <Tagloop_Field_Basename>

• <Tagloop_field_basename>

• <TagloopFieldBasename>

• <tagloopFieldBasename>

See	also

• Introduction	to	tag	loops

• <TAGLOOP_FIELD_ALTNAME>

• <TAGLOOP_FIELD_NAME>

• <TAGLOOP_FIELD_ODBCNAME>

• <TAGLOOP_FIELD_ORIGINALNAME>

• <TAGLOOP_FIELD_SQLNAME>

• Counter	tokens

• Loop	utility	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

TAGLOOP_FIELD_NAME
	
This	token	inserts	the	tag	fields	name.

Usage

<TAGLOOP_FIELD_NAME>

Alternate	forms

• <tagloop_field_name>

• <Tagloop_Field_Name>

• <Tagloop_field_name>

• <TagloopFieldName>

• <tagloopFieldName>

See	also

• Introduction	to	tag	loops

• <TAGLOOP_FIELD_ALTNAME>

• <TAGLOOP_FIELD_BASENAME>

• <TAGLOOP_FIELD_ODBCNAME>

• <TAGLOOP_FIELD_ORIGINALNAME>

• <TAGLOOP_FIELD_SQLNAME>

• Counter	tokens

• Loop	utility	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

TAGLOOP_FIELD_ODBCNAME
	
This	token	inserts	the	tag	fields	ODBC	compatible	name.	Refer	to
<FIELD_ODBCNAME>	for	additional	information.

Usage

<TAGLOOP_FIELD_ODBCNAME>

Alternate	forms

• <tagloop_field_odbcname>

• <Tagloop_Field_Odbcname>

• <Tagloop_field_odbcname>

• <TagloopFieldOdbcname>

• <tagloopFieldOdbcname>

See	also

• Introduction	to	tag	loops

• <TAGLOOP_FIELD_ALTNAME>

• <TAGLOOP_FIELD_BASENAME>

• <TAGLOOP_FIELD_NAME>

• <TAGLOOP_FIELD_ORIGINALNAME>

• <TAGLOOP_FIELD_SQLNAME>

• Counter	tokens

• Loop	utility	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

TAGLOOP_FIELD_ORIGINALNAME
	
This	token	inserts	the	tag	fields	original	name.	Refer	to
<FIELD_ORIGINAL_NAME>	for	additional	information.

Usage

<TAGLOOP_FIELD_ORIGINALNAME>

Alternate	forms

• <tagloop_field_originalname>

• <Tagloop_Field_Originalname>

• <Tagloop_field_originalname>

• <TagloopFieldOriginalname>

• <tagloopFieldOriginalname>

See	also

• Introduction	to	tag	loops

• <TAGLOOP_FIELD_ALTNAME>

• <TAGLOOP_FIELD_BASENAME>

• <TAGLOOP_FIELD_NAME>

• <TAGLOOP_FIELD_ODBCNAME>

• <TAGLOOP_FIELD_SQLNAME>

• Counter	tokens

• Loop	utility	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

TAGLOOP_FIELD_SQLNAME
	
This	token	inserts	the	tag	fields	SQL	compatible	name.	Refer	to
<FIELD_SQLNAME>	for	additional	information.

Usage

<TAGLOOP_FIELD_SQLNAME>

Alternate	forms

• <tagloop_field_sqlname>

• <Tagloop_Field_Sqlname>

• <Tagloop_field_sqlname>

• <TagloopFieldSqlname>

• <tagloopFieldSqlname>

See	also

• Introduction	to	tag	loops

• <TAGLOOP_FIELD_ALTNAME>

• <TAGLOOP_FIELD_BASENAME>

• <TAGLOOP_FIELD_NAME>

• <TAGLOOP_FIELD_ODBCNAME>

• <TAGLOOP_FIELD_ORIGINALNAME>

• Counter	tokens

• Loop	utility	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

TAGLOOP_OPERATOR_DBL
	
This	token	inserts	the	appropriate	DBL	operator	to	evaluate	the	tag	field
against	the	tag	value.

Usage

<TAGLOOP_OPERATOR_DBL>

Possible	values

• .EQ.

• .GE.

• .GT.

• .LE.

• .LT.

• .NE.

Alternate	forms

• <tagloop_operator_dbl>

See	also

• Introduction	to	tag	loops

• <TAGLOOP_OPERATOR_C>

• Counter	tokens

• Loop	utility	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

TAGLOOP_OPERATOR_C
	
This	token	inserts	the	appropriate	C	operator	to	evaluate	the	tag	field	against
the	tag	value.

Usage

<TAGLOOP_OPERATOR_C>

Possible	values

• ==

• >=

• >

• <=

• <

• !=

Alternate	forms

None

See	also

• Introduction	to	tag	loops

• <TAGLOOP_OPERATOR_DBL>

• Counter	tokens

• Loop	utility	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

TAGLOOP_SEQUENCE
	
This	token	inserts	the	sequence	number	of	the	current	tag	within	the	collection
of	tags.

Usage

<TAGLOOP_SEQUENCE>

Alternate	forms

None

See	also

• Introduction	to	tag	loops

• Counter	tokens

• Loop	utility	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

TAGLOOP_TAG_NAME
	
This	token	inserts	the	name	of	the	current	tag.

Usage

<TAGLOOP_TAG_NAME>

Alternate	forms

None

See	also

• Introduction	to	tag	loops

• Counter	tokens

• Loop	utility	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

TAGLOOP_TAG_VALUE
	
This	token	inserts	the	comparison	value	of	the	current	tag.

Usage

<TAGLOOP_TAG_VALUE>

Alternate	forms

None

See	also

• Introduction	to	tag	loops

• Counter	tokens

• Loop	utility	tokens

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

Tag	Loop	Expression	Tokens
	
Tag	loop	expressions	are	expressions	that	can	only	be	used	within	the	context
of	a	tag	loop.	CodeGen	supports	tag	loop	expressions	via	the	<IF
expression>	and	</IF	[expression]>	tags.	Note	that	loop	utility
expressions	can	also	be	used	within	tag	loops.

Expression Description

<IF	COMPARISON_EQ> The	tag	includes	an	equal	to	comparison.

<IF	COMPARISON_GE> The	tag	includes	a	greater	than	or	equal	to
comparison.

<IF	COMPARISON_GT> The	tag	includes	a	greater	than	comparison.

<IF	COMPARISON_LE> The	tag	includes	a	less	than	or	equal	to
comparison.

<IF	COMPARISON_LT> The	tag	includes	a	less	than	comparison.

<IF	COMPARISON_NE> The	tag	includes	a	not	equal	to	comparison.

<IF
COMPARISON_NOT_EQ>

The	tag	does	not	include	an	equal	to
comparison.

<IF
COMPARISON_NOT_GE>

The	tag	does	not	include	a	greater	than	or
equal	to	comparison.

<IF
COMPARISON_NOT_GT>

The	tag	does	not	include	a	greater	than
comparison.

<IF
COMPARISON_NOT_LE>

The	tag	does	not	include	a	less	than	or	equal	to
comparison.

<IF
COMPARISON_NOT_LT>

The	tag	does	not	include	a	less	than
comparison.

<IF The	tag	does	not	include	a	not	equal	to

COMPARISON_NOT_NE> comparison.

<IF	CONNECTOR_NONE> The	tag	is	not	linked	to	a	previous	tag	because
it	is	the	first	or	only	tag.

<IF	CONNECTOR_AND> The	tag	is	linked	to	a	previous	tag	with	an
AND	operator.

<IF	CONNECTOR_OR> The	tag	is	linked	to	a	previous	tag	with	an	OR
operator.

<IF
CONNECTOR_NOT_NONE>

The	tag	is	linked	to	a	previous	tag	with	an
AND	or	an	OR	operator.

<IF
CONNECTOR_NOT_AND>

The	tag	is	not	linked	to	a	previous	tag	with	an
AND	operator.

<IF
CONNECTOR_NOT_OR>

The	tag	is	not	linked	to	a	previous	tag	with	an
OR	operator.

<IF	MULTIPLE_TAGS> The	structure	being	processed	has	multiple
tags.

<IF	SINGLE_TAG> The	structure	being	processed	has	a	single	tag.

	
	

Copyright	©	2012		Synergex	International,	Inc.

Introduction	to	Structure	Loops
	
A	structure	loop	is	a	template	file	construct	which	allows	you	to	iterate
through	the	collection	of	structures	that	CodeGen	has	information	about.	In
order	to	use	structure	loops	you	must	be	generating	code	based	on	multiple
repository	structures	at	the	same	time.

CodeGen	can	process	multiple	structures	in	one	of	two	ways:

• Multiple	structures	can	be	specified	on	the	command	line,	after	the	-s
command	line	option,	and	the	-ms	command	line	option	can	be	used	to
specify	that	all	of	the	structures	are	to	be	processed	together.

• The	-file	command	line	option	can	be	used	to	use	a	repository	file
definition	as	the	starting	point	for	code	generation,	and	that	file
definition	can	have	multiple	structures	assigned.

Structure	loops	are	delimited	by	a	matching	pair	of
<STRUCTURE_LOOP>	and	</STRUCTURE_LOOP>	tags,	which
surround	the	template	code	to	be	inserted	for	each	structure.	The	code
between	the	opening	and	closing	tags	is	repeated	for	each	structure	being
processed.	This	code	may	contain	any	other	tokens.

If	a	structure	loop	is	encountered	in	a	template	when	only	a	single	structure	is
being	processed	then	an	error	will	be	generated	and	CodeGen	will	stop
processing.

Structure	loops	can	contain	code	that	is	to	be	repeated	for	each	structure	being
processed,	and	can	also	contain	any	other	tokens	that	are	valid	when
processing	a	single	structure.	CodeGen	simply	repeats	the	code	between	the
opening	and	closing	structure	loop	tokens	the	appropriate	number	of	times
based	on	the	number	of	structures	being	processed,	switching	structure
context	as	it	goes.

There	are	two	types	of	structure	loops,	called	multi-line	structure	loops,	and
in-line	structure	loops.

Multi-Line	Structure	Loops

Multi-line	structure	loops	occur	when	the	opening	and	closing	structure	loop

tags	appear	on	separate	lines	in	a	template	file,	and	delimit	one	or	more	entire
lines	of	template	code,	like	this:

[code]<STRUCTURE_LOOP>
code
</STRUCTURE_LOOP>
[code]

Multi-line	structure	loops	generate	one	or	more	lines	of	output	code	for	each
structure	that	is	processed.

In-Line	Structure	Loops

In-line	structure	loops	exist	when	the	opening	and	closing	structure	loop	tags
appear	on	the	same	line	in	a	template	file,	and	delimit	part	of	a	line	of
template	code,	like	this:

[code]	<STRUCTURE_LOOP>	code	</STRUCTURE_LOOP>	[code]

In-line	structure	loops	generate	code	into	the	current	output	line.

See	also

<STRUCTURE#n>

	
	

Copyright	©	2012		Synergex	International,	Inc.

Structure	Loop	Expression	Tokens
	
CodeGen	supports	structure	loop	expression	tokens,	but	none	have	been
defined	yet.	Loop	utility	expressions	can	also	be	used	within	structure	loops.

	
	

Copyright	©	2012		Synergex	International,	Inc.

Loop	Utility	Expansion	Tokens
	
Loop	utility	expansion	tokens	are	tokens	that	are	available	for	use	inside	any
loop	construct,	and	insert	information	based	on	the	processing	status	of	the
current	loop.

The	loop	utility	tokens	are:

Token Description

<,>
Inserts	a	comma	UNLESS	the	final
loop	iteration	is	being	processed,	in
which	case	inserts	nothing.

<+>

Inserts	a	plus	sign	UNLESS	the
final	loop	iteration	is	being
processed,	in	which	case	inserts
nothing.

<:>
Inserts	a	colon	UNLESS	the	final
loop	iteration	is	being	processed,	in
which	case	inserts	nothing.

<&&>

Inserts	a	logical	AND	operator
(&&)	UNLESS	the	final	loop
iteration	is	being	processed,	in
which	case	inserts	nothing.

<.AND.>

Inserts	a	Synergy	logical	AND
operator	(.AND.)	UNLESS	the	final
loop	iteration	is	being	processed,	in
which	case	inserts	nothing.

<AND>

This	token	inserts	the	word	AND
UNLESS	the	final	loop	iteration	is
being	processed,	in	which	case
inserts	nothing.

Inserts	a	logical	OR	operator	(||)

<||> UNLESS	the	final	loop	iteration	is
being	processed,	in	which	case
inserts	nothing.

<.OR.>

Inserts	a	Synergy	logical	OR
operator	(.OR.)	UNLESS	the	final
loop	iteration	is	being	processed,	in
which	case	inserts	nothing.

<OR>

Inserts	the	word	OR,	UNLESS	the
final	loop	iteration	is	being
processed,	in	which	case	inserts
nothing.

<BSLASH>	

Inserts	a	backward	slash	character
(\)	UNLESS	the	final	loop	iteration
is	being	processed,	in	which	case
inserts	nothing.

<FSLASH>
	

Inserts	a	forward	slash	character	(/)
UNLESS	the	final	loop	iteration	is
being	processed,	in	which	case
inserts	nothing.

<PROCESSED_EXCLUSIVE>
	

Inserts	the	number	of	items	already
processed	by	the	current	loop
EXCLUDING	the	current	item.	For
example,	if	a	loop	with	10	items	is
being	processed,	and	the	8th	item	is
currently	being	processed,	the	value
7	will	be	inserted.	This	is	because	7
items	have	already	been	processed
before	the	current	item.
	

<PROCESSED_INCLUSIVE>

Inserts	the	number	of	items	already
processed	by	the	current	loop
INCLUDING	the	current	item.	For
example,	if	a	loop	with	10	items	is
being	processed,	and	the	8th	item	is
currently	being	processed,	the	value
8	will	be	inserted.	This	is	because

the	loop	is	currently	processing	the
8th	item.
	

<REMAINING_EXCLUSIVE>

Inserts	the	number	of	remaining
items	to	be	processed	by	the	current
loop	EXCLUDING	the	current
item.	For	example,	if	a	loop	with	10
items	is	being	processed,	and	the
8th	item	is	currently	being
processed,	the	value	2	will	be
inserted.	This	is	because	there	are	2
items	still	to	be	processed	after	the
current	item.
	

<REMAINING_EXCLUSIVE_MAX_n>
	

Similar	to
<REMAINING_EXCLUSIVE>
except	that	if	the	number	of	items
remaining	is	greater	than	n	(a
positive	integer	value)	then	the
value	of	n	will	be	inserted.
	

<REMAINING_INCLUSIVE>

Inserts	the	number	of	remaining
items	to	be	processed	by	the	current
loop	INCLUDING	the	current	item.
For	example,	if	a	loop	with	10	items
is	being	processed,	and	the	8th	item
is	currently	being	processed,	the
value	3	will	be	inserted.	This	is
because	there	are	3	items	still	to	be
processed,	including	the	current
field.
	

<REMAINING_INCLUSIVE_MAX_n>
	

Similar	to
<REMAINING_INCLUSIVE>
except	that	if	the	number	of	items
remaining	is	greater	than	n	(a
positive	integer	value)	then	the
value	of	n	will	be	inserted.

	

<TOTAL_ITEMS>
	

Inserts	the	total	number	of	items
that	will	be	processed	by	the	current
loop.
	

	
	

Copyright	©	2012		Synergex	International,	Inc.

Loop	Utility	Expression	Tokens
	
Loop	utility	expression	tokens	are	expressions	that	are	available	for	use	inside
any	loop	construct,	and	allow	you	to	test	things	relating	to	the	status	of	the
current	loop.

The	loop	utility	expressions	are:

Expression Description

<IF	FIRST> The	first	iteration	of	the	loop	is	currently
being	processed.

<IF	LAST> The	last	iteration	of	the	loop	is	currently
being	processed.

<IF	MORE> There	are	more	loop	iterations	to	be
processed.

<IF	NOMORE> There	are	no	more	loop	iterations	to	be
processed	(same	as	<IF	LAST>).

<IF
PROCESSED_EXCLUSIVE_op_n>
	

Evaluates	the	number	of	items	already
processed	by	a	loop	(EXCLUDING	the
item	currently	being	processed)	using	a
comparison	operator	and	numeric	literal
value	represented	here	by	n.	Possible
values	for	op	are:
	
		EQ				Equal	to
		NE				Not	equal	to
		LT				Less	than
		GT				Greater	than
		LE				Less	than	or	equal	to
		GE				Greater	than	or	equal	to
		DB				Divisible	by
	
An	example	of	using	this	expression	is:
	

		<IF
PROCESSED_EXCLUSIVE_EQ_10>
					template	code
		</IF>
	

<IF
PROCESSED_INCLUSIVE_op_n>
	

Evaluates	the	number	of	items	already
processed	by	a	loop	(INCLUDING	the
item	currently	being	processed)	using	a
comparison	operator	and	numeric	literal
value.	For	more	information	on	how	to
use	this	expression	refer	to	<IF
PROCESSED_EXCLUSIVE_op_n>.
	

<IF
REMAINING_EXCLUSIVE_op_n>
	

Evaluates	the	number	of	items	still	to	be
processed	by	a	loop	(EXCLUDING	the
item	currently	being	processed)	using	a
comparison	operator	and	numeric	literal
value.	For	more	information	on	how	to
use	this	expression	refer	to	<IF
PROCESSED_EXCLUSIVE_op_n>.
	

<IF
REMAINING_INCLUSIVE_op_n>
	

Evaluates	the	number	of	items	still	to	be
processed	by	a	loop	(INCLUDING	the
item	currently	being	processed)	using	a
comparison	operator	and	numeric	literal
value.	For	more	information	on	how	to
use	this	expression	refer	to	<IF
PROCESSED_EXCLUSIVE_op_n>.
	

<IF	TOTAL_ITEMS_op_n>
	

Evaluates	the	total	number	of	items	that
will	be	processed	by	a	loop
(INCLUDING	the	item	currently	being
processed)	using	a	comparison	operator
and	numeric	literal	value.	For	more
information	on	how	to	use	this
expression	refer	to	<IF
PROCESSED_EXCLUSIVE_op_n>.
	

	
	

Copyright	©	2012		Synergex	International,	Inc.

Not	In	Loop	Expansion	Tokens
	
CodeGen	includes	support	for	"not	in	loop"	expansion	tokens,	but	none	have
been	implemented	yet.
	
	

Copyright	©	2012		Synergex	International,	Inc.

Not	In	Loop	Expression	Tokens
	
CodeGen	includes	support	for	"not	in	loop"	expression	tokens,	but	none	have
been	implemented	yet.
	
	

Copyright	©	2012		Synergex	International,	Inc.

Introduction	to	Window	Tokens
	
Window	expansion	tokens	can	only	be	used	when	processing	an	input	window
in	a	UI	Toolkit	window	script	file.

The	Window	tokens	are:

<WINDOW_HEIGHT><WINDOW_HEIGHTPX>
<WINDOW_NAME>
<WINDOW_WIDTH>
<WINDOW_WIDTHPX>

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

WINDOW_HEIGHT
	
This	token	inserts	the	height	of	the	input	window	in	rows.

Usage

<WINDOW_HEIGHT>

Alternate	forms

None

See	also

None

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

WINDOW_HEIGHTPX
	
This	token	inserts	the	height	of	the	input	window	in	pixels.	If	code	generation
is	based	on	an	existing	UI	Toolkit	window	then	the	height	of	the	source
window	is	used	to	calculate	the	value,	otherwise	the	number	of	fields	in	the
structure	is	used.

Calculations	are	based	on	a	default	of	25	pixels	per	row,	and	this	can	be
overridden	using	the	-ch	command	line	option.

Usage

<WINDOW_HEIGHTPX>

Alternate	forms

None

See	also

None

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

WINDOW_NAME
	
If	code	generation	is	being	performed	based	on	the	definition	of	a	UI	Toolkit
input	window	in	a	window	script	file	then	this	token	inserts	the	name	of	the
input	window.	Otherwise	the	token	inserts	the	name	of	the	repository	structure
being	processed.

Usage

<WINDOW_NAME>

Alternate	forms

• <window_name>

• <Window_name>

• <Window_Name>

• <WindowName>

• <windowName>

See	also

None

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

WINDOW_WIDTH
	
This	token	inserts	the	width	of	the	input	window	in	screen	columns.

Usage

<WINDOW_WIDTH>

Alternate	forms

None

See	also

None

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

WINDOW_WIDTHPX
	
This	token	inserts	the	width	of	the	input	window	in	pixels.	A	default	character
width	of	12	pixels	per	column	is	used,	and	this	can	be	overridden	using	the	-
cw	command	line	option.

Usage

<WINDOW_WIDTHPX>

Alternate	forms

None

See	also

None

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

User-Defined	Expansion	Tokens
	
A	user-defined	token	is	a	token	where	the	programmer	can	determine	both	the
name	of	a	token	which	can	be	used	in	template	files,	as	well	as	the	value	to	be
inserted	when	the	token	is	encountered.

CodeGen	supports	three	mechanisms	which	allow	you	to	implement	user-
defined	tokens,	via:

• Environment	variables

• Include	files

• Command	line	tokens

• Under	defined	token	files

If	your	template	depends	on	the	developer	providing	a	value	for	a	particular
user-defined	token,	you	can	tell	CodeGen	about	that	dependency.	For	more
information	refer	to	declaring	user-defined	token	dependencies.

Environment	Variables

As	discussed	under	generic	tokens,	you	can	use	the	<ENV:variable>	token	in
a	template	file,	and	CodeGen	will	insert	the	value	obtained	from	the
environment	variable	into	the	output	file.

Include	Files

As	discussed	under	generic	tokens,	you	can	use	the	<FILE:name.ext>	token	in
a	template	file,	and	CodeGen	will	read	data	from	an	external	file	and	insert
that	data	into	the	output	file.

Command	Line	Tokens

A	quick	way	to	declare	used-defined	tokens	is	to	specify	their	name	and	value
on	the	command	line	when	you	execute	CodeGen,	using	the	-ut	command	line
option,	for	example:

codegen	–s	<structure>	-t	<template>	-ut	MODEL_NS=MyApp.Model	
You	can	specify	multiple	user-defined	tokens	on	the	command	line,	space

separated	after	the	-ut	option,	for	example:

codegen	–s	<structure>	-t	<template>	-ut	MODEL_NS=MyApp.Model
VIEW_NS=MyApp.View
	
If	your	user-defined	token	value	(the	part	after	the	equal	character)	contains
double	quotes	then	Windows	will	strip	the	quotes	before	the	value	is	passed	to
CodeGen.	In	that	case	you	must	escape	the	double	quote	characters	with	a
back-slash	character,	like	this:
	
-ut	MYMESSAGE=\"Hello	World\"
	
BY	default,	the	replacement	value	user-defined	tokens	that	are	defined	on	the
command	line	may	not	contain	other	tokens.	If	you	wish	to	enable	that
functionality	then	you	must	tell	CodeGen	to	treat	user-defined	tokens	as
preprocessor	tokens	via	the	-utpp	command	line	option.

	
User-Defined	Token	Files

If	you	need	to	define	several	user-defined	tokens	then	it	is	sometimes
convenient	to	define	them	in	a	user-defined	token	file,	and	then	tell	CodeGen
to	read	the	tokens	from	the	file	before	it	processes	a	template	by	using	the	-u
command	line	option.

An	example	of	a	user-defined	token	file	is:

;
;	User	defined	tokens	for	Synergex	Inc.
;
<SUPPORT_PHONE>(800)	366-3472</SUPPORT_PHONE>
<SUPPORT_EMAIL>support@synergex.com</SUPPORT_EMAIL>
<WEBSITE>http://www.synergex.com</WEBSITE>
To	tell	CodeGen	to	read	user-defined	tokens	from	a	file	you	would	use	the	-u
command	line	option.	For	example:

codegen	–s	<structure>	-t	<template>	-u	MYTOKENS:<usertokenfile>
You	could	then	refer	to	your	user	defined	tokens	in	your	template	files.	For
example:

display(tt,”Please	call	support	at	<SUPPORT_PHONE>”)
display(tt,”	or	send	an	email	to	<SUPPORT_EMAIL>.”)
	
Declaring	User-Defined	Token	Dependencies

If	CodeGen	encounters	something	in	a	template	file	which	is	formatted	like	a
token	(i.e.	delimited	by	<	and	>	characters)	but	is	not	recognized	as	a	token,
then	CodeGen	will	ignore	it,	and	that	text	will	remain	in	the	output	file	that	is
created.	This	is	necessary	in	order	for	CodeGen	to	be	able	to	generate	code	for
languages	or	dialects	such	as	HTML,	XML	and	XAML.

However,	when	it	comes	to	user-defined	tokens	this	can	be	a	problem,	because
if	a	template	contains	something	that	the	template	developer	intended	to	be	a
user-defined	token	which	gets	replaced,	but	someone	who	is	subsequently
generating	code	from	the	template	neglects	to	specify	the	source	of	the	user-
defined	tokens,	the	tokens	will	remain	in	the	generated	file	and	no	error	will
be	reported.

To	address	this	situation	template	developers	can	use	the
<REQUIRES_USERTOKEN>	token	to	declare	that	their	template	requires	a
particular	user-defined	token	to	be	declared,	either	in	a	token	file	(-u)	or	on	the
command	line	(-ut).

If	a	templates	declares	that	a	user-defined	token	is	required,	but	that	user-
defined	token	has	not	been	declared	when	generating	code,	CodeGen	will
display	an	error	and	will	stop	processing	the	template.

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

User-Defined	Expression	Tokens
	
CodeGen	supports	user-defined	expression	tokens	in	all	loops,	via	the	<IF
USERTOKEN_tokenname>	and
<IF	NOT_USERTOKEN_tokenname>	tags.	User	token	expressions	allow
you	to	conditionally	process	template	code	based	on	the	presence	or	absence
of	a	particular	user	defined	token.

Multi-Line	User	Defined	Token	Expressions

Multi-line	user	token	expressions	occur	when	the	opening	and	closing
conditional	tags	appear	on	separate	lines	in	a	template	file,	and	delimit	one	or
more	entire	lines	of	template	code,	like	this:

<****_LOOP>

[code]

<IF	expression>conditional	code
[<ELSE>
conditional	code]
</IF[expression]>

[code]

</****_LOOP>

Multi-line	user	token	expressions	cause	one	or	more	lines	of	output	code	to	be
included	or	excluded,	based	on	the	evaluation	of	the	expression.

In-Line	User	Defined	Token	Expressions

In-line	user	token	expressions	occur	when	the	opening	and	closing	conditional
tags	appear	on	the	same	line	in	a	template	file,	and	delimit	part	of	a	line	of
template	code,	like	this:

<****_LOOP>

[code]
[code]	<IF	expression>	conditional	code	</IF[expression]>	[code]	

[code]

</****_LOOP>

In-line	user	token	expressions	cause	part	of	an	output	line	to	be	included	or
excluded	based	on	the	evaluation	of	the	expression.

Note:	Multi-line	expressions	may	be	nested	within	one	another,	and	in-line
expressions	may	be	nested	within	multi-line	expressions.	However,	in-line
expressions	may	not	be	nested	inside	one	another.

Example

If	generating	code	with	a	command	similar	to:

codegen	-s	CUSTOMER	-t	FileIo	-ut	MYTOKEN=value
The	template	file	code	could	include	code	based	on	the	presence	of	the
MYTOKEN	user	defined	token	like	this:

<IF	USERTOKEN_MYTOKEN>
This	code	will	be	included	if	the	user	token	is	specified
</IF>
Or

<IF	NOT_USERTOKEN_MYTOKEN>
This	code	will	be	included	if	the	user	token	is	specified
</IF>
	

	
	

Copyright	©	2012		Synergex	International,	Inc.

Custom	Field	Loop	Expressions
	
CodeGen	supports	custom	conditional	expressions	in	field	loops,	via	the	<IF
CUSTOM_expression>	template_code	</IF>	and	<IF
NOT_CUSTOM_expression>	template_code	</IF>	tags.	Custom	field	loop
expressions	test	the	presence	or	absence	of	some	piece	of	text	in	a	fields	user
text	or	long	description.

There	are	two	types	of	custom	field	loop	expressions.

Multi-Line	Custom	Field	Loop	Expressions

Multi-line	custom	field	loop	expressions	occur	when	the	opening	and	closing
conditional	tags	appear	on	separate	lines	in	a	template	file,	and	delimit	one	or
more	entire	lines	of	template	code,	like	this:

<FIELD_LOOP>[code]
<IF	CUSTOM_expression>
conditional	code
[<ELSE>
conditional	code]
</IF[CUSTOM_expression]>
[code]
</FIELD_LOOP>

Multi-line	custom	field	loop	expressions	cause	one	or	more	lines	of	output
code	to	be	included	or	excluded,	based	on	the	evaluation	of	the	expression.

In-Line	Custom	Field	Loop	Expressions

In-line	custom	field	loop	expressions	occur	when	the	opening	and	closing
conditional	tags	appear	on	the	same	line	in	a	template	file,	and	delimit	part	of
a	line	of	template	code,	like	this:

<FIELD_LOOP>
[code]
[code]	<IF	CUSTOM_expression>	conditional	code	</IF[
CUSTOM_expression]>	[code]	
[code]

</FIELD_LOOP>

In-line	custom	field	loop	expressions	cause	part	of	an	output	line	to	be
included	or	excluded	based	on	the	evaluation	of	the	expression.

Nested	Expressions

Multi-line	expressions	may	be	nested	within	one	another,	and	in-line
expressions	may	be	nested	within	multi-line	expressions.	However,	in-line
expressions	may	not	be	nested	inside	one	another.

Custom	Field	Loop	Expression	Example

An	example	of	using	a	custom	field	loop	expression	might	be	if	you	wanted	to
arbitrarily	exclude	certain	fields	in	a	structure	from	being	processed	within	a
field	loop.	You	could	decide	to	add	the	text	IGNORE_ME	to	the	fields	user
text,	or	to	the	fields	long	description.	You	could	then	test	the	presence,	or
absence	of	this	string	with	custom	expression	tags,	like	this:

<FIELD_LOOP>

<IF	CUSTOM_IGNORE_ME>
code	for	fields	WITH	the	custom	text
</IF>

<IF	CUSTOM_NOT_IGNORE_ME>
code	for	fields	WITHOUT	the	custom	text
</IF>

</FIELD_LOOP>

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

Customizing	Data	Type	Mappings
	
CodeGen	includes	several	field	loop	tokens	that	emit,	based	on	the	Synergy
data	type	of	a	field,	an	appropriate	data	type	for	use	in	various	other
languages.	These	tokens	are		<FIELD_CSTYPE>,	<FIELD_OCTYPE>,
<FIELD_SNTYPE>,	<FIELD_SQLTYPE>	and	<FIELD_VBTYPE>.

The	data	type	mappings	used	by	these	tokens	are	hard	coded	to	suitable
default	values	within	CodeGen.	These	default	values	generally	follow	the
same	rules	that	xfNetLink	has	always	used	when	converting	traditional
Synergy	types	into	.NET	and	Java	types,	and	should	work	well	in	most
scenarios.	However	if	the	defaults	don't	work	in	a	particular	scenario	then	it	is
possible	to	customize	the	values	by	specifying	the	data	type	mappings	that
you	wish	to	use	in	an	XML	file.

The	XML	file	must	be	defined	in	a	specific	way,	and	an	example	file	called
DataMappingsExample.xml	is	provided	when	you	install	or	build	CodeGen.

Within	the	XML	file	there	are	several	main	sections	that	correspond	to	the
various	languages	that	CodeGen	supports:

Language Field	Loop	Token XML	File	Section

C# <FIELD_CSTYPE> CSharp

Objective	C <FIELD_OCTYPE> ObjectiveC

Synergy	.NET<FIELD_SNTYPE> SynergyDotNet

SQL <FIELD_SQLTYPE>SQL

Visual	Basic <FIELD_VBTYPE> VisualBasic

Within	each	of	these	main	sections	there	are	data	type	mappings	for	each	of
the	field	types	that	CodeGen	supports.	For	example,	the	default	mappings	for
C#	look	like	this:

<CSharp>				<Alpha>string</Alpha>
				<AlphaBinary>string</AlphaBinary>

				<UserAlpha>string</UserAlpha>
				<UserNumeric>string</UserNumeric>
				<UserDate>string</UserDate>
				<UserTimeStamp>string</UserTimeStamp>
				<DateYYYYMMDD>DateTime</DateYYYYMMDD>
				<DateYYMMDD>DateTime</DateYYMMDD>
				<DateYYYYJJJ>DateTime</DateYYYYJJJ>
				<DateYYJJJ>DateTime</DateYYJJJ>
				<DateYYYYPP>string</DateYYYYPP>
				<DateYYPP>string</DateYYPP>
				<NullableDateYYYYMMDD>DateTime?</NullableDateYYYYMMDD>
				<NullableDateYYMMDD>DateTime?</NullableDateYYMMDD>
				<NullableDateYYYYJJJ>DateTime?</NullableDateYYYYJJJ>
				<NullableDateYYJJJ>DateTime?</NullableDateYYJJJ>
				<TimeHHMMSS>DateTime</TimeHHMMSS>
				<TimeHHMM>DateTime</TimeHHMM>
				<NullableTimeHHMMSS>DateTime?</NullableTimeHHMMSS>
				<NullableTimeHHMM>DateTime?</NullableTimeHHMM>
				<ImpliedDecimal>decimal</ImpliedDecimal>
				<SmallDecimal>int</SmallDecimal>
				<LargeDecimal>long</LargeDecimal>
				<Integer1>int</Integer1>
				<Integer2>int</Integer2>
				<Integer4>int</Integer4>
				<Integer8>long</Integer8>
				<Boolean>bool</Boolean>
				<Enum>int</Enum>
				<Binary>char(l)</Binary>
				<StructField>String</StructField>
				<AutoSequence>long</AutoSequence>
				<AutoTime>long</AutoTime>
		</CSharp>

In	some	data	mappings	you	may	need	to	specify	the	length	of	a	variable	(e.g.
the	Alpha	data	type	for	SQL),	or	length	and	precision	(e.g.	the
ImpliedDecimal	data	type	for	SQL).	To	support	this	requirement	CodeGen
will	search	for	and	replace	the	following	specific	patterns	of	characters	within
data	mapping	values	defined	in	your	XML	file:

Pattern	of
Characters

Replaced	With

(l) The	length	if	the	field	in	parentheses.	E.g.	(10)

(l.p) The	length	and	precision	of	the	field,	separated	by	a	period,
in	parentheses.	E.g.	(10.2)

(l,p) The	length	and	precision	of	the	field,	separated	by	a	comma,
in	parentheses.	E.g.	(10,2)

You	only	need	to	specify	the	parts	of	the	XML	file	that	correspond	to	the
specific	data	mappings	that	you	wish	to	change.	For	example,	if	all	you	want
to	do	is	make	the	<FIELD_CSTYPE>	token	insert	the	TimeSpan	data	type	for
D8	and	D6	date	fields	(YYYYMMDD	and	YYMMDD)	then	you	would
configure	your	data	mappings	file	like	this:

<?xml	version='1.0'?>
<DataMappings>
		<CSharp>
				<TimeHHMMSS>TimeSpan</TimeHHMMSS>
				<TimeHHMM>TimeSpan</TimeHHMM>
		</CSharp>
</DataMappings>

Once	you	have	configured	your	custom	data	mappings	file	you	tell	CodeGen
to	use	it	by	using	the	-cdm	command	line	option,	or	if	you	are	using	the
CodeGenerator	API	via	the	CodeGenTaskSet.DataMappingsFile	property.

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

Custom	Expansion	Tokens
	
CodeGen	supports	several	different	mechanisms	for	developers	to	process
custom	expansion	tokens,	including:

• User	defined	tokens	specified	via	the	command	line.

• User	defined	tokens	specified	via	a	user	defined	token	file.

• Token	replacement	based	on	environment	variables.

In	addition	it	is	possible	to	write	plug-in	modules	to	provide	for	the
replacement	of	custom	expansion	tokens.	The	plug-in	mechanism	is
implemented	in	a	way	that	does	not	require	developers	to	edit	the	core
CodeGen	source	files.	This	is	important	because	it	means	that	it	will	not
impede	the	ability	to	download	future	updates	from	CodePlex.

Writing	Custom	Expansion	Tokens

Custom	expansion	tokens	are	implemented	as	classes	in	a	class	library
assembly.	To	implement	custom	tokens	a	developer	creates	a	class	library
assembly	containing	one	or	more	extension	classes,	and	simply	drops	the
library	into	the	main	CodeGen	folder	alongside	the	other	CodeGen
assemblies.

If	you	prefer	to	have	your	custom	token	extensions	loaded	from	a	different
location	then	you	can	set	the	environment	variable	CODEGEN_EXTDIR	to
the	location	of	the	custom	token	extensions	assembly.

When	CodeGen	loads	it	will	check	for	any	custom	token	assemblies,	and	if	it
finds	any	it	will	dynamically	load	them.	In	order	to	achieve	this	a	naming
convention	is	used.	The	name	of	any	custom	extensions	assembly	must	begin
with	the	word	"custom".	For	example	you	might	chose	to	create	an	assembly
named	CustomTokens.dll.

Each	class	that	implements	a	custom	expansion	token	must	implement	the
interface	CodeGen.Engine.IExpansionToken	which	can	be	accessed	by	adding
a	reference	to	the	CodeGenEngine.dll	assembly.

Source	Code	Example

The	CodeGen	source	code	package	includes	a	sample	project	called
CustomExtensionsExample	which	contains	examples	of	implementing	all	of
the	various	types	of	custom	expansion	tokens.	This	project	is	configured	not
to	build	when	you	build	the	main	solution	because	it	is	intended	to	only	be	an
example.	Developers	are	encouraged	to	develop	their	custom	token	processors
in	a	separate	solution.

The	code	below	shows	an	example	of	a	custom	field	loop	expansion	token:

import	Systemimport	System.Collections.Generic
import	CodeGen.Engine
import	CodeGen.RepositoryAPI

namespace	CustomExtensionsExample

		;;To	implement	a	custom	expansion	token	you	must	provide	a	class	that
		;;implements	the	CodeGen.Engine.IExpansionToken	interface.	The	class
		;;MUST	have	a	default	constructor.	By	default	classes	have	an
		;;implicit	default	constructor,	but	if	you	need	to	explicitly	define
		;;a	constructor,	make	sure	you	don't	define	any	parameters.
		;;
		;;This	token	can	be	used	in	field	loops,	like	this:
		;;
		;;																				<FIELD_LOOP>
		;;																				My	custom	token	produced	this	output:
<CUSTOM_FIELD_LOOP_TOKEN>
		;;																				</FIELD_LOOP>
		;;

		public	class	CustomFieldLoopToken	implements	IExpansionToken

				public	property	TokenName,	String
						method	get
						proc
								mreturn	"CUSTOM_FIELD_LOOP_TOKEN"
						endmethod
				endproperty

				public	property	Description,	String
						method	get

						proc
								mreturn	"An	example	of	a	custom	field	loop	token."
						endmethod
				endproperty

				public	property	Validity,	TokenValidity
						method	get
						proc
								mreturn	TokenValidity.FieldLoop
						endmethod
				endproperty

				public	property	TokenCase,	TokenCaseMode
						method	get
						proc
								mreturn	TokenCaseMode.UppercaseOnly
						endmethod
				endproperty																				

				public	method	Expand,	String
						tkn,	@Token
						template,	@FileNode	
						loops,	@IEnumerable<LoopNode>
						endparams
				proc

						lambda	doExpand(str,	field)
						begin
								;TODO:	Add	any	code	you	need	here,	and	return	the	string
								;that	is	to	be	used	to	replace	the	token.
								mreturn	"This	is	the	output	from	CUSTOM_FIELD_LOOP_TOKEN"
						end

						mreturn	TokenExpander.ExpandFieldLoopToken(tkn,	template,	loops,
doExpand)

				endmethod																				

		endclass

endnamespace

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

Custom	Expression	Tokens
	
CodeGen	supports	the	ability	for	developers	to	define	custom	expression
tokens	by	writing	plug-in	modules	to	provide	for	the	logic	associated	with
those	expressions.	This	plug-in	mechanism	is	implemented	in	a	way	that	does
not	require	developers	to	edit	the	core	CodeGen	source	files.	This	is	important
because	it	means	that	it	will	not	impede	the	ability	to	download	future	updates
from	CodePlex.

Writing	Custom	Expression	Tokens

Custom	expression	tokens	are	implemented	as	classes	in	a	class	library
assembly.	To	implement	custom	expression	tokens	a	developer	creates	a	class
library	assembly	containing	one	or	more	extension	classes,	and	simply	drops
the	library	into	the	main	CodeGen	folder	alongside	the	other	CodeGen
assemblies.

If	you	prefer	to	have	your	custom	extensions	loaded	from	a	different	location
then	you	can	set	the	environment	variable	CODEGEN_EXTDIR	to	the
location	of	the	custom	token	extensions	assembly.

When	CodeGen	loads	it	will	check	for	any	custom	token	assemblies,	and	if	it
finds	any	it	will	dynamically	load	them.	In	order	to	achieve	this	a	naming
convention	is	used.	The	name	of	any	custom	extensions	assembly	must	begin
with	the	word	"custom".	For	example	you	might	chose	to	create	an	assembly
named	CustomTokens.dll.

Each	class	that	implements	a	custom	expression	token	must	implement	the
interface	CodeGen.Engine.IExpressionToken	which	can	be	accessed	by
adding	a	reference	to	the	CodeGenEngine.dll	assembly.

Source	Code	Example

The	CodeGen	source	code	package	includes	a	sample	project	called
CustomExtensionsExample	which	contains	examples	of	implementing	all	of
the	various	types	of	custom	expression	tokens.	This	project	is	configured	not
to	build	when	you	build	the	main	solution,	because	it	is	intended	to	only	be	an
example.	Developers	are	encouraged	to	develop	their	custom	expression
processors	in	a	separate	solution.

The	code	below	shows	an	example	of	a	custom	field	loop	expression	token:

import	Systemimport	System.Collections.Generic
import	CodeGen.Engine
import	CodeGen.RepositoryAPI

namespace	CustomExtensionsExample

		;;To	implement	a	custom	expression	you	must	build	a	class	that	implements
the
		;;CodeGen.Engine.IExpressionToken	interface.	The	class	MUST	have	a
default	constructor.
		;;By	default	classes	have	an	implicit	default	constructor,	but	if	you	need	to
		;;explicitly	define	a	constructor,	make	sure	you	don't	define	any	parameters.
		;;
		;;You	can	use	this	expression	in	field	loops,	like	this:
		;;
		;;		<FIELD_LOOP>
		;;		If	you	see	YES	then	the	expression	evaluated	to	true:	<IF
CUSTOM_FIELD_LOOP_EXPRESSION>YES</IF>
		;;		</FIELD_LOOP>
		;;

		public	class	CustomFieldLoopExpression	implements	IExpressionToken

				public	property	TokenName,	String
						method	get
						proc
								mreturn	"CUSTOM_FIELD_LOOP_EXPRESSION"
						endmethod
				endproperty

				public	property	Description,	String
						method	get
						proc
								mreturn	"An	example	of	a	custom	field	loop	expression."
						endmethod
				endproperty

				public	property	Validity,	TokenValidity
						method	get
						proc
								mreturn	TokenValidity.FieldLoop
						endmethod
				endproperty

				public	method	Evaluate,	Boolean
						tkn,	@Token
						template,	@FileNode	
						loops,	@IEnumerable<LoopNode>
						endparams
				proc

						lambda	doEvaluate(str,	field,	index)
						begin
								;TODO:	Add	code	here	to	determine	the	result	of	the	expression,	and
return	true	or	false
								mreturn	true
						end

						mreturn	ExpressionEvaluator.EvaluateFieldLoopExpression(tkn,
template,	loops,	doEvaluate)

				endmethod

		endclass

endnamespace

	
	

Copyright	©	2012		Synergex	International,	Inc.

Using	the	CodeGen	API
	
As	an	alternative	to	using	the	CodeGen	command-line	interface,	you	might
prefer	to	integrate	CodeGen	more	tightly	into	your	development	environment
by	writing	custom	tools	or	utilities	to	generate	code.

To	make	this	possible	CodeGen	now	provides	a	.NET	API	that	you	can	code
directly	against	in	order	to	drive	the	functionality	of	CodeGen.

The	main	classes	in	the	CodeGen	API	are:

• CodeGen.Engine.CodeGenTaskSet

• CodeGen.Engine.CodeGenTask

• CodeGen.Engine.CodeGenerator

CodeGen	API	Example

This	is	a	very	simple	example	of	using	the	CodeGen	API.	This	code	segment
is	essentially	the	same	as	using	the	command	line:

codegen	-s	CUSTOMER	-t	DataClass	-r	-v

Here's	the	sample	code:

;;Create	a	new	task	setdata	taskset,	@CodeGenTaskSet,	new
CodeGenTaskSet()
taskset.LoggingLevel	=	LoggingLevel.Verbose

;;Create	a	task	and	define	what	it	shold	do
data	task,	@CodeGenTask,	new	CodeGenTask()
task.Structures.Add("CUSTOMER")
task.Templates.Add("DataClass")
task.ReplaceFiles	=	true

;;Add	the	task	to	the	task	set
taskset.Tasks.Add(task)

;;Create	a	code	generator	and	tell	it	about	the	task	set
data	generator,	@CodeGenerator,	new	CodeGenerator(taskset)

;;Generate	the	code
generator.GenerateCode()

;;Did	it	work?
if	(taskset.Complete)	then
										;;Good	to	go
else
										;;Something	failed!

You	won't	see	anything	happening	when	you	execute	this	code	because	the
CodeGen	API	doesn't	implement	any	UI.	But	if	you	wanted	to	see	the
messages	that	are	generated	as	the	task	set	it	processed	you	could	register	an
event	handler	method	against	either	taskset.Messages.CollectionChanged	or
task.Messages.CollectionChanged	and	monitor	/	report	on	the	messages	as
they	are	generated.	For	example	if	you	were	in	a	console	application	you
could	log	messages	to	standard	out	like	this:

lambda	messageFromTaskSet(sender,	e)
begin
										if	(e.Action==NotifyCollectionChangedAction.Add)
										begin
																				data	message,	String
																				foreach	message	in	e.NewItems
																														if	(message!=^null)
																																								Console.WriteLine(message)

										end
end																				

;;Listen	for	messages	from	the	taskset	as	it	processes
taskset.Messages.CollectionChanged	+=	messageFromTaskSet

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

CodeGenTaskSet	Class
	
Represents	the	data	for	and	results	of	a	code	generation	session	comprising	of
one	or	more	CodeGen	tasks.	A	CodeGenTaskSet	object	is	processed	by	the
CodeGenerator	class	in	order	to	generate	code.

For	an	example	of	generating	code	with	the	CodeGen	API	look	here.

Syntax

Class	Name:											public	class	CodeGenTaskSet

Namespace:										CodeGen.Engine

Assembly:										CodeGenEngineShared.dll	(later	will	move	into
CodeGenEngine.dll)

Constructors

Name Description
CodeGenTaskSet Initializes	a	new	instance	of	the	CodeGenTaskSet	class.

Methods

Name Description

LoadFromFile(String,CodeGenTaskSet)
De-serializes	a	previously	saved
XML	file	back	to	a	CodeGenTaskSet
object.

SaveToFile(String) Serializes	the	current	objects	data	to
an	XML	file.

Required	Properties	Set	by	Calling	Application	Before
Processing

Name Type Description
Tasks @ObservableCollection<CodeGenTask> 	

Optional	Properties	Set	by	Calling	Application	Before

Processing

Name Type Description

ContinueAfterError Boolean

Continue	processing	after	errors.	If
multiple	templates,	files	or	tasks	are	being
processed	then	this	option	allows	code
generation	to	continue	even	though	one
template/structure	combination	has
generated	an	error.	Setting	this	property	is
the	equivalent	of	using	the	-c	command
line	option.

DataMappingsFile String

Specifies	that	custom	data	mappings	are
loaded	from	an	XML	file.	Refer	to
Customizing	Data	Type	Mappings	in	the
docs	for	more	info.	Setting	this	property
is	the	equivalent	of	using	the	-
cdm	command	line	option.

Description String

A	description	of	the	task	set.	Not	used	by
CodeGen,	but	it	may	be	useful	for
consuming	code	to	display	task	set
descriptions	in	their	UI.

EchoCommands Boolean

Display	the	command	line	used	to	start
CodeGen.	Setting	this	property	is	the
equivalent	of	using	the	-e	command	line
option.

ListGeneratedFiles Boolean

List	Files.	Lists	the	names	of	any	files
generated	when	not	running	in	verbose	or
debug	logging	modes.	Setting	this
property	is	the	equivalent	of	using	the	-
lf	command	line	option.

LoggingLevel LoggingLevel
Logging	level.		Setting	this	property	is	the
equivalent	of	using	using	one	of	the	-v,	-
d,	or	-debug	command	line	option.

LogTokenizerResultsBoolean

Causes	CodeGenerator	to	create	log	files
containing	the	internal	results	of	the	code
tokenization	and	parsing	phases.	Setting
this	property	is	the	equivalent	of	using	the
-dt	command	line	option.

OutputFolder String

Output	directory.	Defaults	to	the	current
directory,	or	the	directory	specified	with
the	CODEGEN_OUTDIR	environment
variable.	You	can	use	a	full	or	relative
path,	or	a	logical	followed	by	a	colon
(e.g.	SRC:).	Setting	this	property	is	the
equivalent	of	using	the	-o		command	line
option.	A	value	set	here	provides	a	default
value	to	each	task	in	the	task	set.

RepositoryMainFile String

Repository	main	file	to	use	for	this	task
set.	Providing	a	value	here	provides	a
default	value	for	each	task	in	the	task	set.
Setting	this	property	is	the	equivalent	of
setting	the	RPSMFIL	environment
variable.

RepositoryTextFile String

Repository	text	file	to	use	for	this	task	set.
Providing	a	value	here	provides	a	default
value	for	each	task	in	the	task	set.	Setting
this	property	is	the	equivalent	of	setting
the	RPSTFIL	environment	variable.

TemplateFolder String

Input	file	directory	containing	templates.
Defaults	to	the	current	directory,	or	the
directory	specified	with	the
CODEGEN_TPLDIR	environment
variable.	You	can	specify	a	full	or	relative
path,	or	a	logical	name	followed	by	a
colon	(e.g.	TPL:).	Setting	this	property	is
the	equivalent	of	using	the	-i	command
line	option.	Setting	a	value	here	provides
a	default	value	for	all	tasks	in	the	task	set.

Properties	Set	by	CodeGenerator	During	Processing

Name Type Description

Complete Boolean

Indicates	that	all	tasks
within	the	task	set
completed	without	errors
or	warnings.

LastErrorMessageString
The	last	error	message
that	was	reported	for	all
tasks	in	the	task	set.

Messages @ObservableCollection<String>
All	messages	that	were
reported	while	processing
the	task	set.

Events	Raised	During	Processing

Name Description

StartingTaskSet Raised	by	CodeGenerator	just	before	it	starts	processing	the
task	set.

TaskSetCompleteRaised	by	CodeGenerator	just	after	it	finishes	processingthe	task	set.

	

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

CodeGenTask	Class
	
Represents	a	single	code	generation	task	within	a	task	set.

For	an	example	of	generating	code	with	the	CodeGen	API	look	here.

Syntax

Class	Name:											public	class	CodeGenTask

Namespace:										CodeGen.Engine

Assembly:										CodeGenEngineShared.dll	(later	will	move	into
CodeGenEngine.dll)

Constructors

Name Description
CodeGenTask Initializes	a	new	instance	of	the	CodeGenTask	class.
CodeGenTask(String,
String)

Initializes	a	new	instance	of	the	CodeGenTask	class	for
a	specified	template	and	structure.

Required	Properties	Set	by	Calling	Application	Before
Processing

Name Type Description

StructuresList<String>The		names	of	one	or	more	repository	structures	to	beprocessed.

TemplatesList<String>
The	names	of	one	or	more	template	files	to	be
processed.	Specify	only	the	base	file	name,	not
including	the	location	or	file	extension.

Optional	Properties	Set	by	Calling	Application	Before
Processing

Name Type Description
The	alias	names	for	one	or
more	structures.	The	number

Aliases List<String>

of	aliases	specified	must	be
less	than	or	equal	to	the
number	of	structures	specified
via	the	Structures	property.
Setting	this	property	is	the
equivalent	of	using	the	-
a	command	line	option.

AlwaysLoadDefaultButtonsBoolean

Always	load	default	button
definitions	from
DefaultButtons.xml	even	if
processing	a	UI	Toolkit	input
window	definition	which	may
provide	button	definitions.
Setting	this	property	is	the
equivalent	of	using	the	-
ba	command	line	option.

CharacterHeight int

The	height	of	a	character	in
pixels.	This	property	can	be
used	to	override	the	default
character	height	which	is	25
pixels.	Setting	this	property	is
the	equivalent	of	using	the	-
ch	command	line	option.

CharacterWidth int

The	width	of	a	character	in
pixels.	This	property	can	be
used	to	override	the	default
character	width	which	is	12
pixels.	Setting	this	property	is
the	equivalent	of	using	the	-
cw	command	line	option.

Description String

A	description	of	the	task.	Not
used	by	CodeGen,	but	it	may
be	useful	for	consuming	code
to	display	task	descriptions	in
their	UI.

FieldPrefix String

Field	prefix.	Setting	this
property	is	the	equivalent	of
using	the	-prefix	command

line	option.

FileOverrides List<String>

File	Overrides.	Allows	you	to
specify	which	repository	file
definition	is	used	for	each
structure	being	processing.
This	option	is	useful	if	the
structure	that	you	are	using	is
assigned	to	multiple	files
because	by	default	CodeGen
will	use	the	first	assigned	file.
The	number	of	file	overrides
provided	must	be	less	than	or
equal	to	the	number	of
structures	specified	via	the
Structures	property.	Setting
this	property	is	the	equivalent
of	using	the	-fo	command	line
option.

GroupFieldNoGroupPrefix Boolean

Don't	prefix	group	fields	with
group	name.	Setting	this
property	is	the	equivalent	of
using	the	-g	f	command	line
option.

GroupFieldNoRpsPrefix Boolean

Don't	use	repository	group
field	prefix.	Setting	this
property	is	the	equivalent	of
using	the	-g	r	command	line
option.

GroupNoExpand Boolean

Don't	expand	implicit	groups
to	individual	fields.	Setting
this	property	is	the	equivalent
of	using	the	-g	i	command
line	option.

HonorExcludeReportWriter Boolean

Exclude	fields	which	are
"Excluded	by	ReportWriter".
Setting	this	property	is	the
equivalent	of	using	the	-f
r	command	line	option.

HonorExcludeToolkit Boolean

Exclude	fields	which	are
"Excluded	by	Toolkit".
Setting	this	property	is	the
equivalent	of	using	the	-f
t	command	line	option.

HonorExcludeWeb Boolean

Exclude	fields	which	are
"Excluded	by	Web".	Setting
this	property	is	the	equivalent
of	using	the	-f	w	command
line	option.

IgnoreExcludeLanguage Boolean

Exclude	fields	which	are
"Excluded	by	Web".	Setting
this	property	is	the	equivalent
of	using	the	-f	l	command	line
option.

IgnoreScriptFieldAttributes Boolean

When	processing	input	from	a
UI	Toolkit	Window	script	file
this	option	prevents	script	file
input	window	field	attributes
from	being	used	to	override
repository	field	attributes.
This	allows	you	to	generate
code	based	on	only	the	fields
listed	in	an	input	window,	but
using	only	the	repository	field
definitions.	Setting	this
property	is	the	equivalent	of
using	the	-wn	command	line
option.

IncludeOverlayFields Boolean

Include	overlay	fields.	Setting
this	property	is	the	equivalent
of	using	the	-f	o	command
line	option.

MultipleStructures Boolean

Multiple	Structures.	Specifies
that	the	structures	that	follow
the	-s	command	line	option
should	all	be	available	to
templates	being	processed,	at

the	same	time.	Setting	this
property	is	the	equivalent	of
using	the	-ms	command	line
option.

MultiWriteFiles Boolean

Multi-write	file	if	same	file
generated	more	than	once.
Setting	this	property	is	the
equivalent	of	using	the	-
mw	command	line	option.

Namespace String

Namespace	to	use	when
replacing	the
<NAMESPACE>	token.
Codegen	will	determine	the
default	namespace	using	the
environment	variable
SYNDEFNS.	Setting	this
property	is	the	equivalent	of
using	the	-n	command	line
option.

NeverLoadAnyButtons Boolean

Never	load	any	buttons	(from
DefaultButtons.xml	or	from	a
window	script).	Setting	this
property	is	the	equivalent	of
using	the	-bn	command	line
option.

NeverLoadDefaultButtons Boolean

Never	use	the	default	buttons
defined	in
DefaultButtons.xml.	Setting
this	property	is	the	equivalent
of	using	the	-bd	command
line	option.

OutputFolder String

Output	directory.	Defaults	to
the	current	directory,	or	the
directory	specified	with	the
CODEGEN_OUTDIR
environment	variable.	You
can	use	a	full	or	relative	path,
or	a	logical	followed	by	a

colon	(e.g.	SRC:).	Setting	this
property	is	the	equivalent	of
using	the	-o		command	line
option.

PrimaryKeyNumber int

Overrides	the	key	that	is	used
within	primary	key	blocks.
Setting	this	property	is	the
equivalent	of	using	the	-
opk	command	line	option.

ReplaceFiles Boolean

Replace	existing	files.		By
default	existing	files	are	not
replaced.	Setting	this	property
is	the	equivalent	of	using	the	-
r	command	line	option.

RepositoryFile String

Repository	file	name	to
process.	This	option	causes	all
structures	that	are	assigned	to
the	file	definition	to	be
available	for	use	when
processing	templates.	The
result	is	the	same	as
specifying	multiple	structures
via	the	Structures	property
and	setting	the
MultipleStructures	property	to
true.	Setting	this	property	is
the	equivalent	of	using	the	-
file	command	line	option.

RepositoryMainFile String

Repository	main	file	to	use	for
this	task.	The	repository	files
can	also	be	set	on	the
CodeGenTaskSet	to	specify
the	same	repository	for	all
tasks.	Setting	this	property	is
the	equivalent	of	setting	the
RPSMFIL	environment
variable.
Repository	text	file	to	use	for

RepositoryTextFile String

this	task.	The	repository	files
can	also	be	set	on	the
CodeGenTaskSet	to	specify
the	same	repository	for	all
tasks.	Setting	this	property	is
the	equivalent	of	setting	the
RPSTFIL	environment
variable.

SelectionWindowScript String

Window	script	selection	list
processing.	When	this	option
is	used	CodeGen	will	examine
any	fields	which	have
selection	windows	specified
and	will	attempt	to	populate
the	field	selections	property
based	on	the	selection	items
defined	in	the	named	selection
window.	Setting	this	property
is	the	equivalent	of	using	the	-
ws	command	line	option.

Subset String

Subset	of	fields	to	use.
Specify	subsets	in	field	user
text	strings	with
@SUB=name;	syntax.	Setting
this	property	is	the	equivalent
of	using	the	-subset	command
line	option.

SubsetFields List<Tuple<String,
String>>

Create	a	subset	from	the	list
of	supplied	fields.	Setting	this
property	is	the	equivalent	of
using	the	-fields	command
line	option.
Input	file	directory	containing
templates.	Defaults	to	the
current	directory,	or	the
directory	specified	with	the
CODEGEN_TPLDIR
environment	variable.	You

TemplateFolder String can	specify	a	full	or	relative
path,	or	a	logical	name
followed	by	a	colon	(e.g.
TPL:).	Setting	this	property	is
the	equivalent	of	using	the	-
i	command	line	option.

UserTokenFile String

User	defined	token	file.
Specify	a	full	or	relative	file
spec	of	the	file	that	contains
user	defined	token	definitions.
The	file	spec	can	include
Synergy	logical	names.
Setting	this	property	is	the
equivalent	of	using	the	-
u	command	line	option.

UserTokens List<UserToken>

User	defined	tokens.	Setting
this	property	is	the	equivalent
of	using	the	-ut	command	line
option.

WindowScript String

Process	input	from	a	UI
Toolkit	Window	script	file.	By
default	the	fields	and	buttons
collection	will	be	based	on	the
first	input	window	found	in
the	script	file,	but	this	can	be
overridden	using	the	#n
qualifier,	which	specifies
either	a	1-based	input	window
number	or	the	name	of	the
input	window	to	process.
Setting	this	property	is	the
equivalent	of	using	the	-
w	command	line	option.

Properties	Set	by	CodeGenerator	During	Processing

Name Type Description

Complete Boolean Indicates	whether	the	task
completed	without	any
errors	and	warnings.

Errors int Number	of	errors	reported
while	processing	the	task.

FilesFailed int
Number	of	files	that	failed
to	generate	while	processing
the	task.

FilesGenerated ObservableCollection<String>
Names	of	files	that	were
generated	while	processing
the	task.

FilesProvided ObservableCollection<String>
Names	of	additional	files
that	were	provided	while
processing	the	task.

LastErrorMessageString
The	last	error	message	that
was	reported	while
processing	the	task.

Messages ObservableCollection<String>
All	messages	that	were
reported	while	processing
the	task.

Warnings int
Number	of	warnings
reported	while	processing
the	task.

Events	Raised	During	Processing

Name Description

StartingTask Raised	by	CodeGenerator	just	before	it	starts	processing	the
task.

TaskCompleteRaised	by	CodeGenerator	just	after	it	finishes	processing	thetask.

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

CodeGenerator	Class
	
The	CodeGenerator	class	is	used	to	initiate	code	generation	for	a
CodeGenTaskSet	object.	An	application	can	cause	code	to	be	generated	by
creating	an	instance	of	this	class,	passing	in	a	CodeGenTaskSet	object,	and
then	calling	the	GenerateCode	method.

For	an	example	of	generating	code	with	the	CodeGen	API	look	here.

Syntax

Class	Name:											public	sealed	class	CodeGenerator

Namespace:										CodeGen.Engine

Assembly:										CodeGenEngine.dll

Constructors

Name Description

CodeGenerator(CodeGenTaskSet)
Initializes	a	new	instance	of	the
CodeGenerator	class	to	process	a
CodeGenTaskSet.

Methods

Name Description

GenerateCode Initiates	code	generation	for	the	CodeGenTaskSet
provided.

LoadExtensions

Loads	custom	extensions.	This	method	is	only
exposed	so	that	it	may	be	used	by	unit	tests	in	the
CodeGen	development	environment,	and	should
not	be	used	by	other	applications.

LoadProformaExtensions

Loads	BusinessCraft	Proforma	extensions.	This
method	is	only	exposed	so	that	it	may	be	used	by
unit	tests	in	the	CodeGen	development
environment,	and	should	not	be	used	by	other
applications.

LoadSymphonyExtensionsLoads	Symphony	Framweork	extensions

	

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

UserToken	Class
	
Represents	a	user-defined	token.

For	an	example	of	generating	code	with	the	CodeGen	API	look	here.

Syntax

Class	Name:											public	class	UserToken

Namespace:										CodeGen.Engine

Assembly:										CodeGenEngineShared.dll	(later	will	move	into
CodeGenEngine.dll)

Constructors

Name Description

UserToken Initializes	a	new	instance	of	the	UserToken	class.

UserToken(String,
String)

Initializes	a	new	instance	of	the	UserToken	class	for	a
specified	token	name	/	token	value	pair.

Properties

NameType Description

Name StringThe		name	the	user	defined	token.

Value StringThe	replacement	value	of	the	user	defined	token.

Example	of	Use

data	favoriteColorToken,	@UserToken,	new
UserToken("FAVORITE_COLOR","Blue")

data	task,	@CodeGenTask,	new	CodeGenTask()

task.UserTokens.Add(favoriteColorToken)

	
	

Copyright	©	2012		Synergex	International,	Inc.

LoggingLevel	Enumeration
	
Defines	available	logging	levels.

For	an	example	of	generating	code	with	the	CodeGen	API	look	here.

Syntax

Class	Name:											public	enum	LoggingLevel

Namespace:										CodeGen.Engine

Assembly:										CodeGenEngineShared.dll	(later	will	move	into
CodeGenEngine.dll)

Definition

										public	enum	LoggingLevel
																				Normal,
																				Verbose,
																				Debug,
																				DeveloperDebug
										endenum

	
	

Copyright	©	2012		Synergex	International,	Inc.

CreateFile	Utility
	
The	CreateFile	utility	allows	you	to	create	ISAM	files	based	on	repository	file
or	structure	definitions.

The	command	line	options	for	the	CreateFile	utility	are	as	follows:

		CreateFile	-f	<fname>	|	-s	<sname>	[-out	filespec]	[-r]	[-h]

				-f	<fname>														The	name	of	the	repository	file	definition	to	use.

				-s	<sname>
										The	name	of	the	repository	structure	definition	to	use.

				-out	<filespec>
										The	name	of	the	file	to	create,	overriding	the	file	spec	found	in	the
repository	file	definition.

				-r				Replace	existing	files.	The	default	is	not	to	replace	existing	files.

				-?				Display	this	usage	information.

When	creating	a	file	based	on	a	repository	file	definition,	the	key
specifications	will	be	determined	by	the	keys	defined	in	the	first	structure	that
is	assigned	to	the	file.

When	creating	a	file	based	on	a	repository	file	structure,	the	file	specifications
will	be	determined	by	the	first	file	that	the	structure	is	assigned	to.

CreateFile	assumes	that	the	repository	key	definitions	are	defined	in	the	same
sequence	as	the	keys	that	they	refer	to.	It	is	assumed	that	the	first	defined	key
is	the	primary	key,	the	second	key	(if	any)	is	the	first	alternate	key,	and	so	on.

CreateFile	currently	only	supports	creating	ISAM	files.	Relative	and
sequential	files	will	not	be	created.																																			

Examples	of	Use

C:\>	createfile	-f	CUSTFIL

DAT:customer.ism	->	File	created.

	

C:\>	createfile	-s	CUSTOMER

DAT:customer.ism	->	File	created.

	

C:\>	createfile	-f	CUSTFIL	-f	DAT:customer_save.ism

DAT:customer_save.ism	->	File	created.

	

	
	

Copyright	©	2012		Synergex	International,	Inc.

MapPrep	Utility
	
The	MapPrep	utility	helps	you	to	prepare	a	new	repository	structure	for	use
with	CodeGen's	structure	mapping	capabilities.	The	you	specify	the	name	of
an	existing	structure	and	the	utility	exports	a	repository	schema	for	that
structure,	then	post-processes	the	schema	appending	_MAPPED	to	the	name
of	the	structure,	and	adding	all	of	the	required	structure	to	structure	and	field
to	field	mapping	relationships.	The	schema	for	the	new	mapped	structure	can
then	be	loaded	into	the	repository.

The	-p	command	line	option	causes	MapPrep	to	prompt	you	to	enter	new
names	for	the	structure	and	all	fields.	You	can	type	ENTER	to	accept	a	default
new	structure	name,	or	to	keep	the	existing	name	for	any	field.	This	can	save	a
lot	of	time	as	one	of	the	primary	reasons	for	using	structure	mapping	is	to
allow	you	to	generate	code	with	more	meaningful	field	names	when	the	actual
field	names	in	the	original	structure	are	cryptic	or	un-descriptive.

For	additional	information	refer	to	Structure	Mapping.

Command	Line	Options

MapPrep	-s	structure	[...]	|	*	[-n	newstr]	[-p[s|f]]	[-u]	[-k]	[-v]	[-h]

		-s	structure	[...]	|	*								Structure(s)	to	process,	*	to	process	all

		-n	newstr
								Name	of	new	mapped	structure	(only	when	processing	a	single	structure)

		-p				Prompt	for	alternate	structure	and	field	names

		-ps			Prompt	for	alternate	structure	name	only

		-pf			Prompt	for	alternate	field	names	only

		-u				Add	mapping	data	to	the	user	defined	text	field	instead	of	the	long
description	field.

		-l				Load	new	schemas	directly	into	repository

		-ls			Leave	schema	file	after	repository	load

		-k				Retain	key	definitions	in	mapped	structure

		-v				Verbose	messages.

		-h				Display	this	help	/	usage	information

Examples	of	Use

MapPrep	-s	CUSMAS
The	command	above	will	export	a	repository	schema	for	the	existing	structure
CUSMAS,	and	will	then	create	a	new	schema	file	called
CUSMAS_MAPPED.SCH	that	describes	a	new	structure	called
CUSMAS_MAPPED	which	contains	the	fields	from	the	original	CUSMAS
structure,	except	any	fields	that	were	marked	"excluded	by	language".	The
new	schema	file	will	contain	special	mapping	codes	from	the	new	structure	to
the	original	structure,	and	from	the	remaining	fields	to	the	corresponding
fields	in	the	original	structure.	These	data	mapping	codes	will	be	added	to	a
new	blank	line	in	the	structure	and	fields	long	descriptions.

MapPrep	-s	CUSMAS	-p
The	command	above	will	behave	similar	to	the	command	described	above,
except	that	you	will	be	prompted	to	enter	new	names	for	the	mapped	structure
and	its	fields.	The	name	of	the	schema	file	that	is	created	will	also	be	based	on
the	structure	name	that	you	enter.

MapPrep	-s	CUSMAS	-n	CUSTOMER	-pf
The	command	above	will	behave	similar	to	the	command	described	above,
except	that	the	name	for	the	new	structure	(and	schema	file)	have	been
provided	on	the	command	line.	You	will	still	be	prompted	to	enter	new	names
for	all	of	the	new	structures	fields.

	
	

Copyright	©	2012		Synergex	International,	Inc.

RpsBrowser	Utility
	
The	RpsBrowser	utility	allows	you	to	quickly	browse	the	information	stored
in	your	Synergy	Repository.
	
This	utility	is	currently	a	work	in	progress,	and	this	documentation	will	be
enhanced	when	the	utility	is	more	complete.
	
	

Copyright	©	2012		Synergex	International,	Inc.

RpsInfo	Utility
	
The	RpsInfo	utility	allows	you	to	quickly	display	information	from	your
repository.

The	command	line	options	for	the	RpsInfo	utility	are	as	follows:

RpsInfo	[options]												Displays	information	from	repository

		Options:

		-s	[structure	[,...]]						Display	structure	details

				-v																							Display	verbose	information

						-f																					Include	field	details

						-k																					Include	key	details

								-ks																		Include	key	segment	details

						-r																					Include	relation	details

						-m																					Include	format	details

						-t																					Include	tag	details

	

		-f	[file	[,...]]											Display	file	information

			-k																								Include	key	information

					-ks																					Include	key	segment	information

	
	

Copyright	©	2012		Synergex	International,	Inc.

Template	Browser	Utility
	
The	Template	Browser	utility	allows	you	to	browse	(and	in	some	cases	edit)
CodeGen	template	files.

You	can	start	the	utility	from	a	Start	Menu	shortcut,	and	you	will	see	three
tabs	containing	different	types	of	templates.

• CodeGen	Sample	Templates	(if	installed)

• Symphony	Framework	Sample	Templates	(if	installed)

• Your	own	templates.

A	menu	option	allows	you	to	specify	the	location	of	your	own	template	files.

	
	

Copyright	©	2012		Synergex	International,	Inc.

Introduction	to	Symphony	Orchestrator
	
Symphony	Orchestrator
	
Symphony	Orchestrator	is	a	graphical	Windows	application	that	can	be	used
to	specify	and	execute	code	generation	tasks.
	

	
Documentation	for	Symphony	Orchestrator	will	be	added	here	as	soon	as	time
permits.
	

	

Copyright	©	2012		Synergex	International,	Inc.

Introduction	to	Symphony	CodeGen	Extensions
	
Symphony	CodeGen	Extensions
	
Symphony	CodeGen	extensions	are	a	collection	of	custom	CodeGen	custom
extensions	that	have	been	developed	by	the	Symphony	Framework
development	team	specifically	for	use	when	generating	code	that	utilizes
Symphony	Framework.
	
• Custom	Generic	Expansion	Tokens
• Custom	Field	Loop	Tokens
• Custom	Field	Selection	Loop	Tokens

	
	

Copyright	©	2012		Synergex	International,	Inc.

Symphony	Generic	Expansion	Tokens
	
Symphony	Framework	-	Generic	Expansion	Tokens
	
<SMPHONY_CLEARCONTENTLIST>
	
	
<SYMPHONY_CONVERTER_XML_NS>
	
	
<SYMPHONY_CONVERTER_RESOURCES>
	
	
<SYMPHONY_LOOPSTART>
	
	
	
	
	

Copyright	©	2012		Synergex	International,	Inc.

Symphony	Field	Loop	Expansion	Tokens
	
Symphony	Framework	-	Field	Loop	Expansion
Tokens
	
<SYMPHONY_ALPHA_SIZE>
	
	
<SYMPHONY_CONTENTLISTFROMFIELD>
	
	
<SYMPHONY_CONTENTLISTFROMWINDOW>
	
	
<SYMPHONY_CONVERTER>
	
	
<SYMPHONY_CONVERTER_PARAMETER>
	
	
<SYMPHONY_DECIMAL_FORMAT>
	
	
<SYMPHONY_DECIMAL_PLACES>
	
	
<SYMPHONY_DEFAULT_VISIBILITY>
	
	
<SYMPHONY_FIELD_PIXEL_WIDTH>
	
	
<SYMPHONY_ITEMSSOURCE_PATH>
	
	

<SYMPHONY_LOOPINCREMENT>
	
	
<SYMPHONY_LOOPVALUE>
	
	
<SYMPHONY_SELWND_LENGTH>
	
	
<SYMPHONY_SEARCHBOX_COMMAND>
	
	
<SYMPHONY_UPDATE_TRIGGER>
	
	
	
	

Copyright	©	2012		Synergex	International,	Inc.

Symphony	Field	Selection	Loop	Expansion	Tokens
	
Symphony	Framework	-	Field	Selection	Loop
Expansion	Tokens
	
<SYMPHONY_SELECTION_DESCRIPTION>
	
	
<SYMPHONY_SELECTION_VALUE>
	
	
	
	

Copyright	©	2012		Synergex	International,	Inc.

