
Using	External	Code	in	LabVIEW
You	can	use	LabVIEW	to	call	code	written	in	other	languages	in	the
following	ways:

Using	platform-specific	protocols.
Using	the	Call	Library	Function	Node	to	call	the	following	types	of
shared	libraries:

Dynamic	Link	Libraries	(DLL)	on	Windows
Frameworks	on	Mac	OS
Shared	Libraries	on	Linux

Creating	a	Code	Interface	Node	(CIN)	to	call	code	written
specifically	to	link	to	VIs.	LabVIEW	must	be	installed	on	the
computer	you	use	to	create	a	CIN.

Note		To	convert	an	instrument	driver	written	in
LabWindows™/CVI™,	download	the	LabVIEW	Interface	Generator
for	LabWindows/CVI	Instrument	Drivers	from	ni.com/idnet	to
complete	the	conversion	of	the	front	panel	file.

Refer	to	cvilvsb.h	in	the	labview\cintools	directory	for	information	about
creating	a	LabVIEW	CIN	in	LabWindows/CVI.

Note		There	are	platform-specific	considerations	when	calling
external	code	in	LabVIEW.

(Windows)	To	view	related	topics,	click	the	Locate	button,	shown	at
left,	in	the	toolbar	at	the	top	of	this	window.	The	LabVIEW	Help
highlights	this	topic	in	the	Contents	tab	so	you	can	navigate	the
related	topics.

javascript:WWW(WWW_IDNET)
lvdevconcepts.chm::/checklist.html


Configuring	the	Call	Library	Function	Node
Use	the	Call	Library	Function	Node	to	directly	call	a	32-bit	Windows	DLL,
a	Mac	OS	Framework,	or	a	Linux	Shared	Library	function.	With	this	node,
you	can	create	an	interface	in	LabVIEW	to	call	existing	libraries	or	new
libraries	specifically	written	for	use	with	LabVIEW.	National	Instruments
recommends	using	the	Call	Library	Function	Node	to	create	an	interface
to	external	code.

Note		Be	aware	when	using	the	Call	Library	Function	Node	or
writing	code	that	is	called	by	the	Call	Library	Function	Node	that
LabVIEW	reserves	Windows	messages	WM_USER	through
WM_USER+99	for	internal	use	only.

Right-click	the	Call	Library	Function	Node	and	select	Configure	from	the
shortcut	menu	to	display	the	Call	Library	Function	dialog	box.	Use	the
Call	Library	Function	dialog	box	to	specify	the	library,	function,
parameters,	return	value	for	the	node,	calling	conventions,	and	function
callbacks	on	Windows.	When	you	click	the	OK	button	in	the	Call	Library
Function	dialog	box,	LabVIEW	updates	the	Call	Library	Function	Node
according	to	your	settings,	displaying	the	correct	number	of	terminals	and
setting	the	terminals	to	the	correct	data	types.

Note		If	you	want	to	run	applications	or	shared	libraries	created
with	different	versions	of	LabVIEW	on	the	same	computer,	the
computer	must	have	a	version	of	the	LabVIEW	Run-Time	Engine
that	is	compatible	with	each	version	of	LabVIEW	used	to	create
the	applications	or	shared	libraries.

glang.chm::/Call_Library_Function.html
lvdialog.chm::/Call_Lib_Function_DB.html
lvhowto.chm::/Using_the_LV_Run_Time_Eng.html


Configuring	for	Multiple	Thread	Operation
In	a	multithreaded	operating	system,	you	can	make	multiple	calls	to	a
DLL	or	shared	library	simultaneously.	You	can	select	the	thread	to
execute	the	library	call	from	the	Thread	section	on	the	Function	tab	of
the	Call	Library	Function	dialog	box.	The	thread	options	are	Run	in	UI
thread	and	Run	in	any	thread.	If	you	select	Run	in	UI	thread,	the	Call
Library	Function	Node	switches	from	the	thread	the	VI	is	currently
executing	in	to	the	user	interface	thread.	If	you	select	Run	in	any	thread,
the	Call	Library	Function	Node	continues	in	the	currently	executing
thread.	By	default,	all	Call	Library	Function	Nodes	run	in	the	user
interface	thread.
Before	you	configure	a	Call	Library	Function	Node	to	run	in	any	thread,
make	sure	that	multiple	threads	can	call	the	function	simultaneously.	In	a
shared	library,	code	can	be	considered	thread-safe	when:

It	does	not	store	any	global	data,	such	as	global	variables,	files
on	disk,	and	so	on.
It	does	not	access	any	hardware.	In	other	words,	the	code	does
not	contain	register-level	programming.
It	does	not	make	any	calls	to	any	functions,	shared	libraries,	or
drivers	that	are	not	thread	safe.
It	uses	semaphores	or	mutexes	to	protect	access	to	global
resources.
It	is	called	by	only	one	non-reentrant	VI.

Note		All	calls	to	LabVIEW-built	shared	libraries	should	specify
Run	in	any	thread.	If	you	configure	the	Call	Library	Function	Node
using	LabVIEW-built	shared	libraries	and	specify	Run	in	UI
thread,	LabVIEW	might	hang	and	require	you	to	restart.

lvconcepts.chm::/Multitask_Multithread_Multip.html


Setting	the	Calling	Convention
Calling	conventions	define	the	way	to	pass	information	from	a	piece	of
code	to	a	function.	Use	the	Calling	convention	control	on	the	Function
tab	of	the	Call	Library	Function	dialog	box	to	select	the	calling
convention	for	the	function.	The	default	calling	convention	is	C.	The	C
calling	convention	allows	variable-length	parameter	lists	and	passes
parameters	onto	the	stack	in	reverse	order.	This	can	incur	a	slight	speed
decrease.
(Windows)	You	also	can	use	the	standard	Windows	calling	convention,
stdcall.	When	you	use	stdcall,	parameters	are	passed	by	a	function	onto
the	stack	in	the	same	order	as	they	appear	in	the	function	declaration.
The	number	of	parameters	passed	to	the	function	is	fixed.
Refer	to	the	documentation	for	the	DLL	you	want	to	call	for	the
appropriate	calling	conventions.

Caution		Using	the	incorrect	calling	convention	can	cause	an
irregular	shutdown	of	LabVIEW.



Configuring	Parameters
This	section	discusses	the	return	value	and	how	to	add	parameters	to	the
Call	Library	Function	Node.
To	configure	parameters	for	the	Call	Library	Function	Node,	navigate	to
the	Parameters	tab	of	the	Call	Library	Function	dialog	box.	Initially,	the
Call	Library	Function	Node	has	no	parameters	and	has	a	return	type	of
Void.
As	you	configure	parameters,	the	Function	Prototype	text	box	displays
the	C	prototype	for	the	function	you	are	building.	This	text	box	is	a	read-
only	display.

Note		If	a	type	library	is	found,	the	parameters	are	updated	to
match	the	parameters	found	in	the	type	library	for	the	selected
function.	The	order	of	the	parameters	must	match	the	prototype	of
the	function	found	in	the	library.

The	return	type	for	the	Call	Library	Function	Node	returns	to	the	right
terminal	of	the	top	terminal.	If	the	return	type	is	Void,	the	top	terminal	is
unused.	Each	additional	pair	of	terminals	corresponds	to	a	parameter	in
the	Parameters	list	of	the	Call	Library	Function	Node.	To	pass	a	value	to
the	Call	Library	Function	Node,	wire	to	the	left	terminal	of	a	terminal	pair.
To	read	the	value	of	a	parameter	after	the	Call	Library	Function	Node
call,	wire	from	the	right	terminal	of	a	terminal	pair.	The	following
illustration	shows	a	Call	Library	Function	Node	that	has	a	return	type	of
Void,	a	string	parameter,	and	a	numeric	parameter.

Configuring	Return	Type
For	return	type,	you	can	set	Type	to	Void,	Numeric,	or	String.	Void	is
only	available	for	return	type	and	is	not	available	for	other	parameters.
Use	Void	for	the	return	type	if	your	function	does	not	return	any	values.
Even	if	the	function	you	call	returns	a	value,	you	can	use	Void	for	the
return	type.	When	the	function	returns	a	value	and	you	select	Void	as	the
return	type,	the	value	returned	by	the	function	is	ignored.

Note		The	function	you	are	calling	can	return	a	C	string	pointer.	If
you	want	to	deallocate	the	pointer,	you	must	do	so	explicitly	as

lvexcodeconcepts.chm::/Array_and_String_Options.html#String_Data


LabVIEW	does	not	automatically	deallocate	the	C	string	pointer	for
you.

Tip		If	the	function	you	are	calling	returns	a	data	type	not	listed,
choose	a	return	data	type	the	same	data	size	as	the	one	returned
by	the	function.	For	example,	if	the	function	returns	a	char	data
type,	use	an	8-bit	unsigned	integer.	A	call	to	a	function	in	a	DLL
cannot	return	a	pointer	because	there	are	no	pointer	types	in
LabVIEW.	However,	you	can	specify	the	return	type	as	an	integer
that	is	the	same	size	as	the	pointer.	LabVIEW	then	treats	the
address	as	a	simple	integer,	and	you	can	pass	it	to	future	DLL
calls.

Adding	and	Deleting	Parameters
To	add	parameters	to	the	Call	Library	Function	Node,	navigate	to	the
Parameters	tab	of	the	Call	Library	Function	dialog	box.	Click	the	Add	a
parameter	button.	To	remove	a	parameter,	click	the	Delete	the	selected
parameter	button.	To	change	the	order	of	the	parameters,	use	the	Move
the	selected	parameter	up	one	and	Move	the	selected	parameter
down	one	buttons	to	the	right	of	the	parameter	list.
Editing	Parameters
Select	the	parameter	from	the	Parameters	list	to	edit	the	data	type	or
parameter	name.	You	can	edit	the	parameter	name	to	something	more
descriptive,	which	makes	it	easier	to	distinguish	between	parameters.
The	parameter	name	does	not	affect	the	call,	but	it	is	propagated	to
output	wires.	Also,	you	can	edit	all	fields	in	the	Current	parameter
section	for	the	selected	parameter.
Selecting	the	Parameter	Type
Use	the	Type	pull-down	menu	to	indicate	the	data	type	of	each
parameter.	You	can	select	from	the	following	parameter	types:

Numeric
Array
String
Waveform
Digital	Waveform
Digital	Data
ActiveX



Adapt	to	Type
Instance	Data	Pointer

After	you	select	an	item	from	the	Type	pull-down	menu,	you	see	more
items	you	can	use	to	indicate	details	about	the	parameter	and	about	how
to	pass	the	data	to	the	library	function.	The	Call	Library	Function	Node
has	a	number	of	different	items	for	parameter	types	because	of	the
variety	of	data	types	required	by	different	libraries.	Refer	to	the
documentation	for	the	library	you	call	to	determine	which	parameter	types
to	use.
The	following	sections	discuss	the	different	parameter	types	available
from	the	Type	pull-down	menu.
(Windows)	Refer	to	the	labview\examples\dll\data	passing\Call	Native
Code.llb	for	an	example	of	using	data	types	in	shared	libraries.
	Open	example			 	Browse	related	examples
Numeric
For	numeric	data	types,	you	must	indicate	the	exact	numeric	type	by
using	the	Data	Type	pull-down	menu.	You	can	choose	from	the	following
data	types:

8-,	16-,	32-,	64-bit,	and	pointer-sized	signed	and	unsigned
integers
4-byte,	single-precision	numbers
8-byte,	double-precision	numbers

If	you	use	pointer-sized	integers,	the	Call	Library	Function	Node	adapts
to	the	specific	operating	system	it	is	being	executed	on	and	passes	data
of	the	appropriate	size	to	and	from	the	library	function.	LabVIEW
represents	the	data	in	64	bits	and,	on	32-bit	platforms,	translates	the
numeric	data	types	to	32-bit	integer	types.

Note			You	can	pass	extended-precision	numbers	and	complex
numbers	by	selecting	Adapt	to	Type	from	the	Type	pull-down
menu.	However,	standard	libraries	generally	do	not	use	extended-
precision	numbers	and	complex	numbers.

Use	the	Pass	pull-down	menu	to	indicate	whether	you	want	to	pass	the
value	or	a	pointer	to	the	value.
Array

javascript:openLLB('examples%5C%5Cdll%5C%5Cdata%20passing%5C%5CCall%20Native%20Code.llb');
javascript:findExamples(3769);


Use	the	Data	Type	pull-down	menu	to	indicate	the	data	type	of	the	array.
You	can	choose	from	the	same	data	types	available	for	numeric
parameters.
Specify	the	dimensions	of	the	array	in	Dimensions.
Use	the	Array	Format	pull-down	menu	to	make	one	of	the	following
choices:

Array	Data	Pointer—passes	a	pointer	to	the	array	data,	allowing
the	called	library	to	access	the	array	data	as	the	specified	data
type	of	the	array	data.
Array	Handle—passes	a	pointer	to	a	pointer	that	points	to	a	four-
byte	value	for	each	dimension,	followed	by	the	data.
Array	Handle	Pointer—passes	a	pointer	to	an	array	handle.

Use	the	Minimum	size	control	to	have	LabVIEW	check	at	run-time	that
the	memory	LabVIEW	allocated	for	an	array	data	pointer	is	at	least	the
Minimum	size.	To	indicate	the	Minimum	size	of	a	1D	array,	you	can
enter	a	numeric	value,	or,	if	you	configure	an	integer	parameter	in	the
Parameters	list,	you	can	select	the	parameter	from	the	pull-down	menu.
This	option	is	available	only	for	array	data	pointers.

Note		If	you	pass	in	an	array	that	is	smaller	than	the	Minimum
size,	LabVIEW	enlarges	the	size	of	the	array	to	the	minimum.
However,	if	you	pass	in	an	array	that	is	bigger	than	the	minimum,
the	array	retains	the	larger	size.

Caution		Do	not	attempt	to	resize	an	array	with	system	functions,
such	as	realloc.	Doing	so	might	crash	your	system.	Instead,	use
one	of	the	Code	Interface	Node	(CIN)	manager	functions,	such	as
NumericArrayResize	.

String
Use	the	String	Format	pull-down	menu	to	indicate	the	string	format.	You
can	choose	from	the	following	string	formats:

C	String	Pointer—a	string	followed	by	a	null	character.
Pascal	String	Pointer—a	string	preceded	by	a	length	byte.
String	Handle—a	pointer	to	a	pointer	to	four	bytes	for	length
information,	followed	by	string	data.
String	Handle	Pointer—a	pointer	to	an	array	of	string	handles.

lvexcode.chm::/memory_manager_functions.html
lvexcode.chm::/numericarrayresize.html


Select	a	string	format	that	the	library	function	expects.	Most	standard
libraries	expect	either	a	C	string	or	a	Pascal	string.	If	the	library	function
you	are	calling	is	written	for	LabVIEW,	you	might	want	to	use	the	String
Handle	format.	When	configuring	a	Pascal	string	pointer,	you	must	wire	a
value	to	the	string	input	on	the	block	diagram.	That	value	must	be
initialized	with	enough	characters	to	hold	any	new	string	that	may	be
written	to	that	Pascal	string.	When	configuring	a	C	string	pointer,	you
have	two	options:

Wire	a	value	to	the	string	input	that	is	initialized	with	enough
characters	to	hold	any	new	string	that	may	be	written	to	that
string.
Specify	the	string	size	in	the	Minimum	size	pull-down	menu	on
the	Parameters	tab	of	the	Call	Library	Function	dialog	box.

Use	the	Minimum	size	control	to	have	LabVIEW	check	at	run-time	that
the	memory	LabVIEW	allocated	for	a	C	string	pointer	is	at	least	the
Minimum	size.	To	indicate	the	Minimum	size	of	a	string,	you	can	enter	a
numeric	value,	or,	if	you	configure	an	integer	parameter	in	the
Parameters	list,	you	can	select	the	parameter	from	the	pull-down	menu.
This	option	is	available	only	for	C	string	pointers.

Note		If	you	pass	in	a	string	that	is	smaller	than	the	Minimum
size,	LabVIEW	enlarges	the	size	of	the	string	to	the	minimum.
However,	if	you	pass	in	a	string	that	is	bigger	than	the	minimum,
the	string	retains	the	larger	size.

Caution		Do	not	attempt	to	resize	an	array	with	system	functions,
such	as	realloc.	Doing	so	might	crash	your	system.	Instead,	use
one	of	the	Code	Interface	Node	(CIN)	manager	functions,	such	as
NumericArrayResize	.

Waveform
When	you	call	a	shared	library	that	includes	a	waveform	data	type,	you
do	not	have	to	specify	a	numeric	value	from	the	Data	Type	pull-down
menu;	the	default	is	8-byte	Double.	However,	you	must	specify
Dimensions.	If	the	parameter	is	a	single	waveform,	specify	Dimensions
as	0.	If	the	parameter	is	an	array	of	waveforms,	specify	Dimensions	as
1.	LabVIEW	does	not	support	an	array	of	waveforms	greater	than	one-
dimensional.

lvexcode.chm::/memory_manager_functions.html
lvexcode.chm::/numericarrayresize.html


Note		Pointer-sized	signed	and	unsigned	integers	are	not	available
in	the	Data	Type	pull-down	menu	for	waveforms.

Digital	Waveform
Specify	Dimensions	as	0	if	the	parameter	is	a	single	digital	waveform.
Specify	Dimensions	as	1	if	the	parameter	is	an	array	of	digital
waveforms.	LabVIEW	does	not	support	an	array	of	digital	waveforms
greater	than	one-dimensional.
Digital	Data
Specify	Dimensions	as	1	if	the	Parameter	is	an	array	of	digital	data.
Otherwise,	specifyDimensions	as	0.	LabVIEW	does	not	support	an	array
of	digital	data	greater	than	one-dimensional.

Note		You	can	pass	waveforms,	digital	waveforms,	and	digital	data
through	shared	libraries,	but	you	cannot	access	the	data	inside	the
shared	libraries.

ActiveX
Select	one	of	the	following	items	from	the	Data	Type	pull-down	menu:

ActiveX	Variant	Pointer—passes	a	pointer	to	ActiveX	data.
IDispatch*	Pointer—passes	a	pointer	to	the	IDispatch	interface
of	an	ActiveX	Automation	server.
IUnknown*	Pointer—passes	a	pointer	to	the	IUnknown	interface
of	an	ActiveX	Automation	server.

Adapt	to	Type
Use	Adapt	to	Type	to	pass	arbitrary	LabVIEW	data	types	to	DLLs	in	the
same	way	they	are	passed	to	a	CIN.	The	arbitrary	LabVIEW	data	types
are	passed	to	DLLs	in	the	following	ways:

Scalars	are	passed	by	reference.	A	pointer	to	the	scalar	is
passed	to	the	library.
Arrays	and	strings	are	passed	according	to	the	Data	Format
setting.	You	can	choose	from	the	following	Data	Format	settings:

Handles	by	Value	passes	the	handle	to	the	library.	The
handle	is	not	NULL.
Pointers	to	Handles	passes	a	pointer	to	the	handle	to
the	library.	If	the	handle	is	NULL,	treat	the	handle	as	an

lvconcepts.chm::/Using_ActiveX_with_LabVIEW.html


empty	string	or	array.	To	set	a	value	when	the	handle	is
NULL,	you	must	allocate	a	new	handle.
Array	Data	Pointer	passes	a	pointer	to	the	first	element
of	the	array,	allowing	the	called	library	to	access	the	array
data	as	the	data	type	of	the	array	data.

Clusters	are	passed	by	reference.
Scalar	elements	in	arrays	or	clusters	are	in	line.	For	example,	a
cluster	containing	a	numeric	is	passed	as	a	pointer	to	a	structure
containing	a	numeric.
Clusters	within	arrays	are	in	line.
Strings	and	arrays	within	clusters	are	referenced	by	a	handle.

Note		When	one	or	more	of	the	parameters	of	the	function	you
want	to	call	in	a	DLL	are	of	types	that	do	not	exist	in	LabVIEW,
ensure	that	each	parameter	is	passed	to	the	function	in	a	way	that
allows	the	DLL	to	correctly	interpret	the	data.	Create	a	skeleton	.c
file	from	the	current	configuration	of	the	Call	Library	Function
Node.	By	viewing	the	.c	file,	you	can	determine	whether	LabVIEW
will	pass	the	data	in	a	manner	compatible	with	the	DLL	function.
You	then	can	make	any	necessary	adjustments.

Instance	Data	Pointer
Use	Instance	Data	Pointer	to	access	data	allocated	for	each	instance	of
the	Call	Library	Function	Node.	The	Instance	Data	Pointer	references	a
pointer	sized	allocation	that	you	may	use	at	your	own	discretion.	This
allocation	is	also	passed	to	each	of	the	callback	functions	on	the
Callbacks	tab.

lvhowto.chm::/Completing_c_File.html


Configuring	Callbacks
Use	callbacks	to	specify	functions	to	call	at	predefined	times.The
functions	allow	you	to	initialize,	update,	and/or	cleanup	data	for	the	DLL
or	shared	library	based	on	the	particular	instance	of	the	Call	Library
Function	Node	you	are	configuring.	Each	call	passes	in	the	Instance
Data	Pointer	for	the	Call	Library	Function	Node	the	function	is	configured
for.	Use	the	Reserve	callback	to	specify	the	function	to	call	at	reserve
time	and	initialize	receiving	information	for	the	instance.	Use	the
Unreserve	callback	to	call	a	function	at	unreserve	time	to	save	or	analyze
information	and	carry	out	clean-up	operations.	Use	the	Abort	callback	to
specify	a	function	to	call	if	you	abort	a	VI	while	a	call	to	a	DLL	is	in
progress.



Calling	Functions	That	Expect	Other	Data	Types
You	might	encounter	a	function	that	expects	data	in	a	form	that	the	Call
Library	Function	Node	cannot	pass.	Specifically,	the	Call	Library	Function
Node	does	not	support	structures	or	arrays	containing	a	pointer	to	other
data	or	structures	containing	flat	arrays	that	can	be	variably	sized.	You
can	call	a	function	that	expects	an	unsupported	data	type	in	the	following
ways:

If	the	data	contains	no	pointers,	you	might	be	able	to	use	the
Flatten	To	String	function	to	create	a	string	containing	the	binary
image	of	the	data	required	and	pass	this	string	as	a	C	string
pointer.	You	will	probably	want	to	use	the	byte	order	input	to
Flatten	To	String	to	specify	that	the	data	be	flattened	in	native
byte	order.
Write	a	library	function	that	accepts	the	data	in	the	form	used	by
LabVIEW	and	builds	the	data	structure	expected	by	the	other
library.	This	function	then	can	call	the	other	library	and	retrieve
any	returned	values	before	returning.	Your	function	will	probably
accept	the	data	from	the	block	diagram	as	Adapt	to	Type,	so	that
any	block	diagram	data	type	can	be	passed.

glang.chm::/Flatten_To_String.html


Configuring	Error	Checking
Use	error	checking	to	ensure	no	errors	occur	if	you	call	a	DLL	or	shared
library	with	the	Call	Library	Function	Node.
The	Maximum	and	Default	controls	on	the	Error	Checking	tab	of	the
Call	Library	Function	dialog	box	allow	LabVIEW	to	recover	from
unhandled	exceptions	that	occur	in	the	configuration	of	the	Call	Library
Function	Node	or	during	a	call	to	a	shared	library	or	DLL.	The	Disabled
control	on	the	Error	Checking	tab	disables	error	checking	but	improves
the	execution	speed	of	the	Call	Library	Function	Node.

lvdialog.chm::/Call_Lib_Function_DB.html


CINs
The	LabVIEW	Code	Interface	Node	(CIN)	is	a	block	diagram	node	that
links	C/C++	source	code	to	LabVIEW.	Use	the	CIN	as	an	alternative	to
using	the	Call	Library	Function	Node	for	calling	source	code	written	in	C.

Note		It	is	technically	possible	to	write	CINs	in	a	language	other
than	C	or	C++	if	the	CIN	entry	points,	such	as	CINRun,	CINLoad,
and	so	on,	are	declared	as	extern	"C".	However,	National
Instruments	recommends	using	a	shared	library	rather	than	a	CIN
if	you	want	to	use	a	language	other	than	C	or	C++.	LabVIEW	does
not	support	the	creation	of	external	subroutines.	If	you	want	to
share	code	among	multiple	CINs,	use	DLLs.

(Windows)	To	view	related	topics,	click	the	Locate	button,	shown	at
left,	in	the	toolbar	at	the	top	of	this	window.	The	LabVIEW	Help
highlights	this	topic	in	the	Contents	tab	so	you	can	navigate	the
related	topics.

glang.chm::/Code_Interface_Node.html
lvexcodeconcepts.chm::/Configuring_the_CLF_Node.html


Programming	Issues	for	CINs
This	book	describes	the	data	structures	LabVIEW	uses	when	passing
data	to	a	CIN	and	describes	the	function	libraries,	or	managers,	that	you
can	use	in	external	code	modules.	The	function	libraries	include	the
memory	manager,	the	file	manager,	and	the	support	manager.

(Windows)	To	view	related	topics,	click	the	Locate	button,	shown	at
left,	in	the	toolbar	at	the	top	of	this	window.	The	LabVIEW	Help
highlights	this	topic	in	the	Contents	tab	so	you	can	navigate	the
related	topics.

lvexcode.chm::/Code_Interface_Node_Functions.html
lvexcode.chm::/memory_manager_functions.html
lvexcode.chm::/file_manager_functions.html
lvexcode.chm::/support_manager_functions.html


Calling	Shared	Libraries
You	can	call	shared	libraries	from	LabVIEW.	If	you	have	existing
applications	written	in	other	languages,	such	as	C,	Visual	Basic,	and
Visual	C++,	you	can	use	the	Call	Library	Function	Node	for	incorporating
code	directly	into	a	LabVIEW	block	diagram.	The	Call	Library	Function
Node	is	also	useful	for	applications	that	use	mathematical	analysis
routines	or	custom-designed	data	acquisition	hardware.
(Windows)	A	shared	library	is	called	a	DLL.
(Mac	OS)	A	shared	library	is	called	a	Framework.
(Linux)	A	shared	library	is	called	a	Shared	Library	function.
You	can	use	any	language	to	write	shared	libraries	as	long	as	the	shared
libraries	can	be	called	using	one	of	the	calling	conventions	LabVIEW
supports,	either	stdcall	or	C.	Examples	and	troubleshooting	information
help	you	build	and	use	shared	libraries	and	successfully	configure	the
Call	Library	Function	Node	in	LabVIEW.	The	general	methods	described
here	for	DLLs	also	apply	to	other	types	of	shared	libraries.
LabVIEW	loads	shared	libraries	in	a	unique	application	instance.
Opening	a	shared	library	in	a	unique	application	instance	prevents
naming	conflicts	with	VIs	in	the	shared	library,	and	VIs	outside	of	the
shared	library.
Refer	to	the	labview\examples\dll	directory	for	examples	of	using	shared
libraries.
(Windows)	You	also	can	use	functions	that	belong	to	the	MathScript
libraries	class	to	call	shared	libraries	from	the	LabVIEW	MathScript
Window	or	the	MathScript	Node.	Refer	to	the	MathScript	Shared
Libraries.lvproj	in	the	labview\examples\MathScript\MathScript	Shared
Libraries	directory	for	examples	of	calling	shared	libraries	from
MathScript.
	Browse	related	examples

(Windows)	To	view	related	topics,	click	the	Locate	button,	shown	at
left,	in	the	toolbar	at	the	top	of	this	window.	The	LabVIEW
Helphighlights	this	topic	in	the	Contents	tab	so	you	can	navigate	the
related	topics.

glang.chm::/Call_Library_Function.html
lvconcepts.chm::/Application_Instances.html
lvtextmath.chm::/MSfunc_libraries.html
lvdialog.chm::/LV_MathScript_Window.html
gmath.chm::/MathScript_Node.html
javascript:findExamples(3769);

	Call Library Function Node
	Code Interface Node
	Numeric
	C string pointer
	extended-precision numbers and complex numbers
	a shared library

