
Driver	Overview
Top	Next

The	CYUSB3.SYS	driver	is	licensed	for	distribution	ONLY	with	Cypress	USB
products	and	products	that	employ	Cypress	USB	chips.
	
CyUSB3.sys	is	a	kernel	mode	USB	function	driver,it	is	capable	of
communicating	with	any	USB	2.0	and	USB3.0	compliant	devices.	The	driver	is
general-purpose,	understanding	primitive	USB	commands,	but	not
implementing	higher-level,	USB	device-class	specific	commands.	For	this
reason,	the	driver	is	not	capable,	for	instance,	of	interfacing	a	USB	mass	storage
class	device	to	the	Windows	file	system.	Please	note	that	this	release	does	not
	include	the	USB3.0	bulk	streaming	interface.
	
The	driver	would	be	ideal	for	communicating	with	a	vendor-specific	device
from	a	custom	USB	application	or	to	send	low-level	USB	requests	to	any	USB
device	for	experimental	or	diagnostic	applications.
	
In	order	to	use	the	driver	to	communicate	with	a	device,	Windows	must	match
the	device	to	the	driver.
	
The	class	library,	CyAPI.lib	and	Cyusb.dll,	provides	a	high-level	programming
interface	to	the	driver.	This	help	file	documents	the	low-level,	more
cumbersome	and	explicit	programming	interface.
	
The	driver	supports	following	operating	systems	and	platform.

1.	Windows	XP	32	bit
2.	Windows	Vista	32/64bit
3.	Windows	7	and	32/64	bit
4.	Windows	8	Beta	32/64	bit

	
Cypress	signed	CyUSB3.sys	driver	for	following	Cypress	VID/PID	pairs.

1.	VID_04B4&PID_00F0
2.	VID_04B4&PID_00F1
3.	VID_04B4&PID_00F3
4.	VID_04B4&PID_4720

	
Please	note,	the	driver	is	signed	for	above	mentioned	pairs	of	Cypress	VID/PID.
If	you	modify	CyUSB3.inf	to	add	your	own	VID/PID,	the	driver	will	become

unsigned.	However,	Windows	OS	will	allow	to	install	the	unsigned	driver	with
warning	messages	on	32-bit	and	64-bit	platform.	You	can	go	for	WHQL	driver
certification	with	your	own	VID/PID	once	your	product	is	ready.

	
Features
	
	
▪ Windows	Driver	Foundation	(WDF)	compliant	
▪ Compatible	with	any	USB	2.0	compliant	device
▪ Compatible	with	Cypress	USB	3.0	compliant	device
▪ Supports	basic	USB3.0	features.
▪ Supports	Windows	Plug	and	play	and	power	management	
▪ Supports	USB	Remote	Wake-up	
▪ Supports	Control,	Bulk,	Interrupt	and	Isochronous	transfers
▪ Supports	multiple	USB	devices	connected	at	once	
▪ Supports	customizable	driver	GUID	without	re-building	the	driver	
▪ Supports	high	bandwidth	data	transfers	passing	multiple	packets	per	micro-
frame

	
	
	
	
	
	
	

Modifying	CyUSB3.INF
Top	Previous	Next

The	CYUSB3.INF	file	can	be	modified	to	accomplish	several	different
objectives.	These	are:
	
1.	Add	a	device's	identifiers	to	the	driver
2.	Replace	Cypress	strings	that	are	displayed	during	driver	installation
3.	Implement	a	custom	GUID	for	the	driver
	
NOTE:	x86	refers	to	the	32bit	OS	and	amd64	refers	to	64	bit	OS.
	
	
Add	a	device's	identifiers	to	the	driver
	
The	following	steps	describe	the	process	of	adding	a	device's	vendor	ID	and
product	ID	to	the	CYSUB3.INF	file.
	
1.	Locate	the	following	sections	[Device],[Device.NT],[Device.Ntx86]	and
[Device.Ntamd64]		and	remove	the	semicolon	of		each	item	under	the	each
section
		;%VID_XXXX&PID_XXXX.DeviceDesc%=CyUSB3,
USB\VID_XXXX&PID_XXXX
	
2.	Change	the	VID_XXXX	to	contain	the	hexadecimal	value	of	the	VendorID
for	the	device	and		
		change	the	PID_XXXX	to	contain	the	hexadecimal	value	of	the	ProductID
for	the	device
	
			For	example,	a	device	with	vendorID	0x04B4	and	productID	0xDE01	would
have	a	new	entry	in	the	above	listed	sections	like
			following
			%VID_04B4&PID_DE01.DeviceDesc%=CyUSB3,
USB\VID_04B4&PID_DE01
	
3.	Change	[String]	section	for	Device	Description	according	to	the	Vendor	ID
and	Product	ID.	
				VID_XXXX&PID_XXXX.DeviceDesc="Cypress	USB3.0	Generic
Driver"	

	
4.	Change	the	VID_XXXX	to	contain	the	hexadecimal	value	of	the	VendorID
for	the	device
	
	Change	the	PID_XXXX	to	contain	the	hexadecimal	value	of	the	ProductID
for	the	device	
	
		For	example,	a	device	with	vendorID	0x04B4	and	productID	0xDE01	would
have	a	new	entry	in	the	[Strings]	section	like	the
		following
		VID_04B4&PID_DE01.DeviceDesc="Cypress	FX3	Bulk	sample"
	
	
	
Replace	Cypress	strings
	
If	you	plan	to	do	more	than	just	add	your	device's	VID/PID	to	the	CYUSB3.INF
file,	it	is	strongly	recommended	that	you	create	your	own	.INF	file	and	a	copy	of
CYUSB3.SYS	that	you	have	re-named.	The	remaining	instructions	assume	that
you	have	created	your	own	.INF	file	to	match	your	newly	named	copy	of
CYUSB3.SYS.
	
The	driver	can	be	customized	to	report	a	company	other	than	Cypress	as	its
manufacturer	and	provider.
	
1.	Locate	the	[Strings]	section	at	the	bottom	of	the	CYUSB3.INF	file.
	
2.	Change	the	quoted	CYUSB3_Provider	string.
	
3.	Change	the	quoted	CYUSB3_DisplayName	string.
	
4.	Change	the	quoted	CYUSB3_Company	string.
	
5.	Change	the	quoted	CYUSB3_Description	string.	
	
	
Implement	a	custom	GUID
	
Applications	software	usually	accesses	the	driver	using	the	driver's	Global

Unique	IDentifier	(GUID).	Each	driver	in	the	Windows	system	should	have	a
unique	GUID.	By	employing	distinct	GUIDs,	multiple	instances	of
CYUSB3.SYS	from	different	hardware	vendors	can	exist	on	a	given	system
without	colliding.
	
1.	To	change	the	driver's	GUID,
	
2.	Use	the	GUIDGEN.EXE	utility	(distributed	with	Microsoft	Visual	Studio)	to
get	a	new	GUID.
	
3.	Locate	the	[Strings]	section	in	the	CyUSB3.inf	file
	
4.	Locate	the	line
			CYUSB3.GUID="{AE18AA60-7F6A-11d4-97DD-00010229B959}"
			and	replace	the	quoted	GUID	string	with	the	new	one	you	created.	(Retain	the
curly	braces.)
	
Execute	a	script	at	start-up
The	CYUSB3.SYS	driver	can	be	used	to	perform	transfers	to	the	default	control
endpoint	(endpoint	address	0)	when	the	device	is	started.
To	configure	the	driver	to	perform	a	control	transfer	at	startup
1.	Use	the	CyControl.exe	application	to	create	a	script	file	containing	the
control	transfer	commands.
2.	Save	the	script	as	a	file	named	MyDevice.SPT
3.	Place	that	script	file	in	the	same	directory	as	the	the	driver's	.INF	file
A	common	use	of	this	feature	is	to	have	the	driver	play	a	script	which
downloads	a	firmware	image	to	the	USB	device,	thereby	modifying	its
"personality"	and	usually	causing	it	to	re-enumerate	on	the	bus.	If	this	re-
enumeration	occurs	with	the	same	VID/PID	as	the	original	"personality",	the
script	will	be	executed	again	and	again	in	an	un-ending	loop.
To	avoid	this	endless	loop	scenario,	the	second	personality	should	enumerate
with	a	different	VID/PID	than	the	one	which	caused	the	script	to	play.
The	.inf	file	can	be	modified	to	play	a	script	when	one	VID/PID	is	enumerated
and	to	simply	load	the	driver	when	a	different	VID/PID	is	detected.
How	to	disable	the	CyScript	feature
To	disable	this	feature	the	user	needs	to	delete	the	key		'DriverEXECSCRIPT'

from	the	registry.
The	following	steps	should	be	followed	to	delete	the	key.
	
1.	Execute	the	'regedit.exe'	application.
2.	Search	for	the	'DriverEXECSCRIPT'.
3.	Delete	the		key	'DriverEXECSCRIPT'.
4.	Close	'regedit.exe'.
	
The	following	is	an	excerpt	from	a	.inf	file	that	plays	a	script	called
MyDevice.spt	when	VID/PID	of	04B4/00F3	is	enumerated.	If	VID/PID
0547/00F0	enumerates,	the	script	is	not	played.
	
NOTE:		For	FX3	devices,	the	MyDevice.spt	script	will	play	only	when	the
connected	device	supports	FX3	boot	commands.
	
Sample	CYUSB3.INF	file	using	the	CyScript	feature	with	VID-0x04B4	and
PID-0x00F3	and	0x00F0
	
	
	 ;	Installation	INF	for	the	Cypress	Generic	USB	Driver	for	OS	unknown
;	Processor	support	for	x86	based	platforms.
;
;	(c)	Copyright	2012	Cypress	Semiconductor	Corporation
;
	
[Version]
Signature="$WINDOWS	NT$"
Class=USB
ClassGUID={36FC9E60-C465-11CF-8056-444553540000}
provider=%CYUSB3_Provider%
CatalogFile=CYUSB3.cat
DriverVer=01/23/2012,1.0.0.01
	
[SourceDisksNames]
1=%CYUSB3_Install%,,,
	
[SourceDisksFiles]
CYUSB3.sys	=	1
	
[DestinationDirs]
CYUSB3.Files.Ext	=	10,System32\Drivers
MyDevice.Files.Ext	=	10,System32\MyDevice
	

[ControlFlags]
ExcludeFromSelect	=	*
	
[Manufacturer]
%CYUSB3_Provider%=Device,NT,NTx86,NTamd64
	
;for	all	platforms
[Device.NT]
%VID_04B4&PID_00F3.DeviceDesc%=MyDevice,	USB\VID_04B4&PID_00F3
%VID_04B4&PID_00F0.DeviceDesc%=CYUSB3,	USB\VID_04B4&PID_00F0
	
;for	x86	platforms
[Device.NTx86]
%VID_04B4&PID_00F3.DeviceDesc%=MyDevice,	USB\VID_04B4&PID_00F3
%VID_04B4&PID_00F0.DeviceDesc%=CYUSB3,	USB\VID_04B4&PID_00F0
	
	
;for	x64	platforms
[Device.NTamd64]
%VID_04B4&PID_00F3.DeviceDesc%=MyDevice,	USB\VID_04B4&PID_00F3
%VID_04B4&PID_00F0.DeviceDesc%=CYUSB3,	USB\VID_04B4&PID_00F0
	
[MyDevice]
CopyFiles=CYUSB3.Files.Ext,MyDevice.Files.Ext
AddReg=CYUSB3.AddReg
	
[MyDevice.HW]
AddReg=MyDevice.AddReg.Guid
	
[MyDevice.Services]
Addservice	=	CYUSB3,2,CYUSB3.AddService
	
[MyDevice.NT]
CopyFiles=CYUSB3.Files.Ext,	MyDevice.Files.Ext
AddReg=CYUSB3.AddReg
	
[MyDevice.NT.HW]
AddReg=MyDevice.AddReg.Guid
	
[MyDevice.NT.Services]
Addservice	=	CYUSB3,2,CYUSB3.AddService
	
[MyDevice.NTx86]
CopyFiles=CYUSB3.Files.Ext,	MyDevice.Files.Ext
AddReg=CYUSB3.AddReg
	
[MyDevice.NTx86.HW]
AddReg=MyDevice.AddReg.Guid

	
[MyDevice.NTx86.Services]
Addservice	=	CYUSB3,2,CYUSB3.AddService
	
[MyDevice.NTamd64]
CopyFiles=CYUSB3.Files.Ext,	MyDevice.Files.Ext
AddReg=CYUSB3.AddReg
	
[MyDevice.NTamd64.HW]
AddReg=MyDevice.AddReg.Guid
	
[MyDevice.NTamd64.Services]
Addservice	=	CYUSB3,2,CYUSB3.AddService
	
[MyDevice.AddReg.Guid]
HKR,,DriverGUID,,%CYUSB3.GUID%
HKR,,DriverEXECSCRIPT,,%MyDevice.EXECSCRIPT%
	
[MyDevice.Files.Ext]
MyDevice.spt
	
[CYUSB3.NT]
CopyFiles=CYUSB3.Files.Ext
AddReg=CYUSB3.AddReg
	
[CYUSB3.NT.HW]
AddReg=CYUSB3.AddReg.Guid
	
[CYUSB3.NT.Services]
Addservice	=	CYUSB3,2,CYUSB3.AddService
	
	
[CYUSB3.NTx86]
CopyFiles=CYUSB3.Files.Ext
AddReg=CYUSB3.AddReg
	
[CYUSB3.NTx86.HW]
AddReg=CYUSB3.AddReg.Guid
	
[CYUSB3.NTx86.Services]
Addservice	=	CYUSB3,2,CYUSB3.AddService
	
[CYUSB3.NTamd64]
CopyFiles=CYUSB3.Files.Ext
AddReg=CYUSB3.AddReg
	
[CYUSB3.NTamd64.HW]

AddReg=CYUSB3.AddReg.Guid
	
[CYUSB3.NTamd64.Services]
Addservice	=	CYUSB3,2,CYUSB3.AddService
	
	
[CYUSB3.AddReg]
;	Deprecating	-	do	not	use	in	new	apps	to	identify	a	CYUSB3	driver
HKR,,DevLoader,,*ntkern
HKR,,NTMPDriver,,CYUSB3.sys
;	You	may	optionally	include	a	check	for	DriverBase	in	your	application	to	check	for	a	CYUSB3	driver
HKR,,DriverBase,,CYUSB3.sys
HKR,"Parameters","MaximumTransferSize",0x10001,4096
HKR,"Parameters","DebugLevel",0x10001,2
HKR,,FriendlyName,,%CYUSB3_Description%
	
[CYUSB3.AddService]
DisplayName				=	%CYUSB3_Description%
ServiceType				=	1																		;	SERVICE_KERNEL_DRIVER
StartType						=	3																		;	SERVICE_DEMAND_START
ErrorControl			=	1																		;	SERVICE_ERROR_NORMAL
ServiceBinary		=	%10%\System32\Drivers\CYUSB3.sys
AddReg									=	CYUSB3.AddReg
LoadOrderGroup	=	Base
	
[CYUSB3.Files.Ext]
CYUSB3.sys
	
[CYUSB3.AddReg.Guid]
HKR,,DriverGUID,,%CYUSB3.GUID%
	
;--------------	WDF	Coinstaller	installation
[SourceDisksFiles]
WdfCoInstaller01009.dll=1	;	make	sure	the	number	matches	with	SourceDisksNames
	
[DestinationDirs]
CoInstaller_CopyFiles	=	11
	
[CYUSB3.NTamd64.CoInstallers]
AddReg=CoInstaller_AddReg
CopyFiles=CoInstaller_CopyFiles
	
[CYUSB3.NTx86.CoInstallers]
AddReg=CoInstaller_AddReg
CopyFiles=CoInstaller_CopyFiles
	
[CoInstaller_CopyFiles]
WdfCoInstaller01009.dll

	
[CoInstaller_AddReg]
HKR,,CoInstallers32,0x00010000,	"WdfCoInstaller01009.dll,WdfCoInstaller"
	
[CYUSB3.NTamd64.Wdf]
KmdfService	=	CYUSB3,	CYUSB3_wdfsect
	
[CYUSB3.NTx86.Wdf]
KmdfService	=	CYUSB3,	CYUSB3_wdfsect
	
[CYUSB3_wdfsect]
KmdfLibraryVersion	=	1.9
	
	
[Strings]
CYUSB3_Provider				=	"Cypress"
CYUSB3_Company					=	"Cypress	Semiconductor	Corporation"
CYUSB3_Description	=	"Cypress	Generic	USB3.0	Driver"
CYUSB3_DisplayName	=	"Cypress	USB3.0	Generic"
CYUSB3_Install					=	"Cypress	CYUSB3.0	Driver	Installation	Disk"
VID_04B4&PID_00F3.DeviceDesc="Cypress	USB	BootLoader"
VID_04B4&PID_00F0.DeviceDesc="Cypress	BULK	LOOP"
CYUSB3.GUID="{AE18AA60-7F6A-11d4-97DD-00010229B959}"
CYUSB3_Unused						=	"."
MyDevice.EXECSCRIPT="\systemroot\system32\MyDevice\MyDevice.spt"
	 	
	
	
	
	

Matching	Devices	to	the	Driver
Top	Previous	Next

Usually	matching	of	a	USB	device	to	the	CYUSB3.SYS	driver	will	need	to	be
manually	configured.
	
Following	are	the	steps	user	has	to	follow	to	install	driver	on	Windows	OS.
	
Step	A	:	Add	the	device's	VendorID	and	ProductID	to	the	CYUSB3.INF	file.
Step	B	:	Force	Windows	to	use	the	CYUSB3.SYS	driver	with	the	device.
	
	
Though	similar,	these	steps	are	slightly	different	for	WinXP	and	Windows	Vista
and	7
	
	 	
	 	

Windows	XP
Top	Previous	Next

Usually,	matching	of	a	USB	device	to	the	CYUSB3.SYS	driver	will	need	to	be
manually	configured.
	
Please	follow	below	steps	to	update	the	INF	file	and	driver	installation	on
Windows	XP.
	
Note:	Please	skip	step	B	to	install	driver	on	32-bit	OS.
	
Step	A	:	Please	follow	the	below	steps	to	add	the	device's	VendorID	and
ProductID	to	the	CYUSB3.INF	file.	

	
1.After	installation	of	the	Cypress	Suite	USB	installer,	the	driver	file	is
located	in	a	Driver	subdirectory	of	the	install	directory.	(Default	is
C:\Program	Files\Cypress\FX3	Host	Software\Driver\bin.).

	
2.Open	the	file	CYUSB3.INF	with	a	text	editor	(notepad.exe,	for
instance)

	
3.Locate	the	following	sections	[Device],[Device.NT],[Device.Ntx86]
and	[Device.Ntamd64]		and	remove	the	semicolon	of		each	item	under
the	each	section

			;%VID_XXXX&PID_XXXX.DeviceDesc%=CyUsb3,
USB\VID_XXXX&PID_XXXX.
	
4.Change	the	VID_XXXX	to	contain	the	hexadecimal	value	of	the
VendorID	for	the	device	and	

				change	the	PID_XXXX	to	contain	the	hexadecimal	value	of	the
ProductID	for	the	device.
	
			For	example,	a	device	with	vendorID	0x04B4	and	productID	0xDE01
would	have	a	new	entry	in	the	above	listed	sections	like	following:	
			%VID_04B4&PID_DE01.DeviceDesc%=CyUSB3,
USB\VID_04B4&PID_DE01
	
5.Change	[String]	section	for	Device	Description	according	to	the	Vendor
ID	and	Product	ID.			

				VID_XXXX&PID_XXXX.DeviceDesc="Cypress	USB3.0	Generic
Driver"
	
6.Change	the	VID_XXXX	to	contain	the	hexadecimal	value	of	the
VendorID	for	the	device	and	

				change	the	PID_XXXX	to	contain	the	hexadecimal	value	of	the
ProductID	for	the	device.
	
				For	example,	a	device	with	vendorID	0x04B4	and	productID	0xDE01
would	have	a	new	entry	in	the	[Strings]	section	like	the	following:	
				VID_04B4&PID_DE01.DeviceDesc="Cypress	FX3	Bulk	loopback"
	
7.Save	the	file.	
	

Step	B	:	Please	follow	the	below	steps	to		force	WindowsXP	to	use	the
cyusb3.sys	driver	with	the	device.
		

1.Connect	the	device	to	the	PC
	
2.If	Windows	prompts	for	a	driver	or	indicates	that	it	needs	a	driver,
direct	the	PC	to	use	the	CYUSB3.SYS	driver	by	steering	it	to	the
CYUSB3.INF	file	in	the	[InstallDir]\Driver	directory.

	
3. If	Windows	does	not	prompt	for	a	driver,	it	has	already	matched	the
device	to	a	driver	itself.	In	this	case,	you	will	need	to	see	if	the
CYUSB3.SYS	driver	was	selected	and,	if	not,	manually	instruct
Windows	to	use	that	driver.

	
4.Right-click	My	Computer	and	select	the	Manage	menu	item.
	
5. In	the	Computer	Management	window,	select	Device	Manager
	
6. In	the	right	window	pane,	click	the	+	icon	next	to	Universal	Serial	Bus
controllers

	
7.Locate	your	device	in	the	list	and	double	click	on	it
	
8.Select	the	Driver	tab	in	the	Properties	dialog	that	comes	up

	
9.Click	on	the	Driver	Details	button.
	
10.If	the	displayed	driver	file	is	CYUSB3.SYS,	Windows	has	already

matched	the	device	to	this	driver	and	you	should	click	OK	and	Cancel
.	If	not,	proceed	with	the	remaining	steps.

	
11.Click	OK
	
12.Click	Update	Driver
	
13.Select	Install	from	a	list	or	specific	location	(Advanced)
	
14.Click	Next
	
15.Select	Don't	search.	I	will	choose	the	driver	to	install.
	
16.Click	Next
	
17.Click	Have	Disk
	
18.Click	Browse
	
19.Navigate	to	the	directory	containing	CYUSB3.SYS	(wxp(Windows

XP)	and	select	x86(32-bit	OS)	or	x64(64-bit	OS))	based	on	the
platform	you	want	to	install	driver	on.

	
20.CYUSB3.INF	should	be	automatically	placed	in	the	File	name	field
	
21.Click	Open
	
22.Click	OK
	
23.Click	Next	
	
24.It	will	popup	message	saying	Unsigned	driver,	Please	select	'Install

driver	software	anyway'	and	click	ok.

	
25.Click	Finish
	
26.Click	Close
	
27.Don't	re-boot	your	system	if	Windows	suggests	that	you	must.	You

may	need	to	unplug	and	re-plug	your	device,	however.
	

Windows	Vista	,Win7	and	Win8	Beta
Top	Previous	Next

Usually,	matching	of	a	USB	device	to	the	CYUSB3.SYS	driver	will	need	to	be
manually	configured.
	
Please	follow	below	steps	to	update	the	INF	file	and	driver	installation	on
Windows	Vista,	Windows	7	and	Windows	8	Beta.
	
Note:	Please	skip	step	B	to	install	driver	on	32-bit	OS.	To	install	driver	on
Windows	8	Beta	,	please	use	the	\bin\Win7\	directory.
	
Step	A	:	Please	follow	the	below	steps	to	add	the	device's	VendorID	and
ProductID	to	the	CYUSB3.INF	file.		
	

1.After	installation	of	the	Cypress	Suite	USB	installer,	the	driver	file	is
located	in	a	Driver	subdirectory	of	the	install	directory.	(Default	is
C:\Cypress\Cypress	USBSuite\driver\bin\)

	
2.Open	the	file	CYUSB3.INF	with	a	text	editor	(notepad.exe,	for
instance)

	
3.Locate	the	following	sections	[Device],[Device.NT],[Device.Ntx86]
and	[Device.Ntamd64]		and	remove	the	semicolon	of		each	item	under
the	each	section	

				;%VID_XXXX&PID_XXXX.DeviceDesc%=CyUsb3,
USB\VID_XXXX&PID_XXXX
	
4.Change	the	VID_XXXX	to	contain	the	hexadecimal	value	of	the
VendorID	for	the	device	and	

				change	the	PID_XXXX	to	contain	the	hexadecimal	value	of	the
ProductID	for	the	device
	
				For	example,	a	device	with	vendorID	0x04B4	and	productID	0xDE01
would	have	a	new	entry	in	the	above	listed	sections	like	following:	
				%VID_04B4&PID_DE01.DeviceDesc%=CyUSB3,
USB\VID_04B4&PID_DE01
	
5.Change	[String]	section	for	Device	Description	according	to	the	Vendor

ID	and	Product	ID.			
				VID_XXXX&PID_XXXX.DeviceDesc="Cypress	USB3.0	Generic
Driver)"
	
6.Change	the	VID_XXXX	to	contain	the	hexadecimal	value	of	the
VendorID	for	the	device	and

				change	the	PID_XXXX	to	contain	the	hexadecimal	value	of	the
ProductID	for	the	device
	
				For	example,	a	device	with	vendorID	0x04B4	and	productID	0xDE01
would	have	a	new	entry	in	the	[Strings]	section	like	the	following:	
				VID_04B4&PID_DE01.DeviceDesc="Cypress	FX3	Bulk	sample"
	
7.Save	the	file.

	
Step	B	:	Force	Windows	Vista/Windows	7	to	use	the	cyusb3.sys	driver	with	the
device.
	

1.Connect	the	device	to	the	PC
	
2.If	Windows	prompts	for	a	driver	or	indicates	that	it	needs	a	driver,	direct
the	PC	to	use	the	CYUSB3.SYS	driver	by	steering	it	to	the
CYUSB3.INF	file	in	the	[InstallDir]\driver	directory.

	
3. If	Windows	does	not	prompt	for	a	driver,	it	has	already	matched	the
device	to	a	driver	itself.	In	this	case,	you	will	need	to	see	if	the
CYUSB3.SYS	driver	was	selected	and,	if	not,	manually	instruct
Windows	to	use	that	driver.

	
4.Right-click	My	Computer	and	select	the	Manage	menu	item.
	
5. In	the	Computer	Management	window,	select	Device	Manager
	
6. In	the	right	window	pane,	click	the	+	icon	next	to	Universal	Serial	Bus
controllers

	
7.Locate	your	device	in	the	list	and	double	click	on	it
	

8.Select	the	Driver	tab	in	the	Properties	dialog	that	comes	up
	
9.Click	on	the	Driver	Details	button.
	
10.If	the	displayed	driver	file	is	CYUSB3.SYS,	Windows	has	already

matched	the	device	to	this	driver	and	you	should	click	OK	and	Cancel	.
If	not,	proceed	with	the	remaining	steps.

	
11.Click	OK
	
12.Click	Update	Driver
	
13.Select	Browse	my	computer	for	driver	software
	
14.Click	Next
	
15.Select	Let	me	pick	from	a	list	of	device	drivers	on	my	computer
	
16.Click	Next
	
17.Select	Select	your	device's	type	from	list	below	and	Select	show	all

device
	
18.Click	Next
	
19.Click	Have	Disk
	
20.Click	Browse
	
21.Navigate	to	the	directory	containing	CYUSB3.SYS	(Directory	Name

for	various	Operating	System	and	platform:		wlh(windows	Vista)	and
win7(windows	7	and	Windows	8	Beta)	and	select	x86(32-bit	OS)	or
x64(64-bit	OS))	based	on	the	platform	you	want	to	install	driver	on.

	
22.CYUSB3.INF	should	be	automatically	placed	in	the	File	name	field
	
23.Click	Open

	
24.Click	OK
	
25.Click	Next
	
26.It	will	popup	message	saying	Unsigned	driver,	Please	select	'Install

driver	software	anyway'	and	click	ok.
	
27.Click	Finish
	
28.Click	Close
	
29.Don't	re-boot	your	system	if	Windows	suggests	that	you	must.	You	may

need	to	unplug	and	re-plug	your	device,	however.
	

Reinstalling	the	Driver
Top	Previous	Next

While	reinstalling	the	driver	with	another	.inf	file	which	contains	the	same	VID-
PID	combination,	it's	safe	to	remove	all	oemXX.inf		and	oemXX.pnf	files	from
the	directory	"C:\WINDOWS\inf\"	which	have	same	VID-PID	combination.
	
Note:
		Installing	the	driver	using	.inf	file,	Windows	creates	corresponding	oemXX.inf
and	oemXX.pnf	backup	files	in	the	directory	"C:\WINDOWS\inf\".	There	is	a
chance	for	mistaking	the	backup	.inf	file	instead	of	the	new	.inf	file	that
customer	really	wants	to	install.

The	IOCTL	Interface
Top	Previous	Next

Applications	software	communicates	with	the	CYUSB3.SYS	driver	primarily
through	the	DeviceIoControl()	function.	(See	the	Windows	SDK
documentation	for	details	about	DeviceIoControl.)
	
Calls	to	DeviceIoControl	require	an	IO	Control	(aka	IOCTL)	code	parameter.
The	IOCTL	codes	define	the	programming	interface	that	a	driver	supports	and
are	particular	to	any	given	driver.	The	control	code	specified	in	a
DeviceIoControl()	call	determines	the	values	that	must	be	specified	for	the
other	DeviceIoControl	parameters.
	
This	help	file	provides	the	IOCTL	'dictionary'	for	the	CYUSB3.SYS	driver.
	
Example
	
DWORD	dwBytes	=	0;
UCHAR	EndptAddress	=	0x82;
	
DeviceIoControl(hDevice,	IOCTL_ADAPT_RESET_PIPE,
														&EndptAddress,	sizeof	(EndptAddress),
														NULL,	0,
														&dwBytes,	NULL);
	

Getting	a	Handle	to	the	Driver
Top	Previous	Next

In	order	to	use	the	IOCTL	codes	supported	by	the	driver,	you	will	need	to	obtain
a	Windows	handle	to	the	driver.
	
A	very	simple	way	to	accomplish	this	is	to	utilize	the	CyAPI	class	library.	After
creating	a	CCyUSBDevice	object,	a	handle	to	the	driver	will	have	been	setup
automatically.	Closing	or	deleting	the	CCyUSBDevice	object	frees	the	handle.
	
Example	1:
	
CCyUSBDevice	*USBDevice	=	new	CCyUSBDevice();
HANDLE	hDevice	=	USBDevice->DeviceHandle();
.
.
.
.
delete	USBDevice;
	
	
	
The	more	typical	(and	complex)	way	to	obtain	a	handle	is	to	make	a	sequence
of	SetupDi	calls,	passing	the	driver	GUID	declared	in	CyAPI.h.	The	default
driver	guid	is	defined	as:
	
//	{AE18AA60-7F6A-11d4-97DD-00010229B959}
static	GUID	CYUSBDRV_GUID	=	{0xae18aa60,	0x7f6a,	0x11d4,	0x97,	0xdd,	0x0,	0x1,	0x2,	0x29,	0xb9,
0x59};
	
The	CyAPI	library	uses	the	following	code	to	obtain	a	handle,	using	the	GUID.
	
	
	
Example	2:
	
	
SP_DEVINFO_DATA	devInfoData;
SP_DEVICE_INTERFACE_DATA		devInterfaceData;
PSP_INTERFACE_DEVICE_DETAIL_DATA	functionClassDeviceData;
	
ULONG	requiredLength	=	0;
int	deviceNumber	=	0;	//	Can	be	other	values	if	more	than	1	device	connected	to	driver
	
HDEVINFO	hwDeviceInfo	=	SetupDiGetClassDevs	((LPGUID)	&CYUSBDRV_GUID,

																																												NULL,
																																												NULL,
																																												DIGCF_PRESENT|DIGCF_INTERFACEDEVICE);
	
if	(hwDeviceInfo	!=	INVALID_HANDLE_VALUE)	{
	
devInterfaceData.cbSize	=	sizeof(devInterfaceData);
	
if	(SetupDiEnumDeviceInterfaces	(hwDeviceInfo,	0,	(LPGUID)	&CYUSBDRV_GUID,
																																	deviceNumber,	&devInterfaceData))	{
	
	SetupDiGetInterfaceDeviceDetail	(hwDeviceInfo,	&devInterfaceData,	NULL,	0,
																																			&requiredLength,	NULL);
	
	ULONG	predictedLength	=	requiredLength;
	
	functionClassDeviceData	=	(PSP_INTERFACE_DEVICE_DETAIL_DATA)	malloc	(predictedLength);
	functionClassDeviceData->cbSize	=	sizeof	(SP_INTERFACE_DEVICE_DETAIL_DATA);
	
	devInfoData.cbSize	=	sizeof(devInfoData);
	
if	(SetupDiGetInterfaceDeviceDetail	(hwDeviceInfo,
																																						&devInterfaceData,
																																						functionClassDeviceData,
																																						predictedLength,
																																						&requiredLength,
																																						&devInfoData))	{
	
			hDevice	=	CreateFile	(functionClassDeviceData->DevicePath,
																							GENERIC_WRITE	|	GENERIC_READ,
																							FILE_SHARE_WRITE	|	FILE_SHARE_READ,
																							NULL,
																							OPEN_EXISTING,
																							FILE_FLAG_OVERLAPPED,
																							NULL);
	
			free(functionClassDeviceData);
			SetupDiDestroyDeviceInfoList(hwDeviceInfo);
	}
	
	
	
	
	
	

IOCTL_ADAPT_ABORT_PIPE
Top	Previous	Next

Description
	
This	command	is	used	to	cancel	pending	IO	requests	on	an	endpoint.
	
A	pointer	to	a	variable	containing	the	endpoint	address	is	passed	as	the
lpInBuffer	parameter	to	the	DeviceIoControl()	function.	A	null	pointer	is
passed	as	the	lpOutBuffer	parameter.
	
	
Example
	
DWORD	dwBytes	=	0;
UCHAR	Address	=	0x82;
	
DeviceIoControl(hDevice,	IOCTL_ADAPT_ABORT_PIPE,
												&Address,	sizeof	(UCHAR),
												NULL,	0,
												&dwBytes,	NULL);
	

IOCTL_ADAPT_CYCLE_PORT
Top	Previous	Next

Description
	
This	command	power-cycles	the	USB	port	to	which	a	specified	device	is
attached.,	Power-cycling	a	port	causes	the	device	to	be	surprise-removed	and	re-
enumerated.
	
NULL	pointers	are	passed	to	DeviceIoControl	in	the	pInBuffer	and	pOutBuffer
parameters.
	
	
Example
	
DWORD	dwBytes	=	0;
	
DeviceIoControl(hDevice,	IOCTL_ADAPT_CYCLE_PORT,
												NULL,	0,
												NULL,	0,
												&dwBytes,	NULL);
	

IOCTL_ADAPT_GET_ADDRESS
Top	Previous	Next

Description
	
This	command	retrieves	the	USB	address	of	the	device	from	the	Windows	host
controller	driver.
	
A	pointer	to	a	1-byte	variable	is	passed	as	both	the	lpInBuffer	and	lpOutBuffer
parameters	to	the	DeviceIoControl()	function.
	
The	size	of	the	variable	(1)	is	passed	in	the	nInBufferSize	and	nOutBufferSize
parameters.
	
	
Example
	
DWORD	dwBytes	=	0;
UCHAR	DevAddr;
	
DeviceIoControl(hDevice,	IOCTL_ADAPT_GET_ADDRESS,
												&DevAddr,	sizeof	(UCHAR),
												&DevAddr,	sizeof	(UCHAR),
												&dwBytes,	NULL);
	

IOCTL_ADAPT_GET_ALT_INTERFACE_SETTING
Top	Previous	Next

Description
	
This	command	retrieves	the	alternate	interface	setting	for	a	particular	interface
of	the	attached	device.
	
A	pointer	to	a	byte	indicating	the	interface	number	is	passed	as	the	lpInBuffer
parameter	to	the	DeviceIoControl()	function.
	
A	pointer	to	a	byte	into	which	the	alternate	interface	setting	will	be	reported	is
passed	as	the	lpOutBuffer	parameter	to	the	DeviceIoControl()	function.
	
The	length	of	the	variables	(1)	is	passed	in	the	nInBufferSize	and
nOutBufferSize	parameters.
	
	
Example
	
DWORD	dwBytes	=	0;
UCHAR	intfc	=	0;
UCHAR	alt;
	
DeviceIoControl(hDevice,	IOCTL_ADAPT_GET_ALT_INTERFACE_SETTING,
											&intfc,	sizeof	(alt),
											&alt,	sizeof	(alt),
											&dwBytes,	NULL);
	

IOCTL_ADAPT_GET_CURRENT_FRAME
Top	Previous	Next

Description
	
This	command	returns	the	current	frame	number	from	the	host	controller	driver.
	
A	pointer	to	a	4-byte	variable	is	passed	as	both	the	lpInBuffer	and	lpOutBuffer
parameters	to	the	DeviceIoControl()	function.
	
The	size	of	the	variable	(4)	is	passed	in	the	nInBufferSize	and	nOutBufferSize
parameters.
	
Example
	
DWORD	dwBytes	=	0;
ULONG	CurrentFrame;
DeviceIoControl(hDevice,	IOCTL_ADAPT_GET_CURRENT_FRAME,
																												DeviceIoControl(hDevice,	IOCTL_ADAPT_GET_CURRENT_FRAME,
															&CurrentFrame,	sizeof	(ULONG),
															&CurrentFrame,	sizeof	(ULONG),
															&dwBytes,	NULL);	

IOCTL_ADAPT_GET_DEVICE_NAME
Top	Previous	Next

Description
	
This	command	retrieves	the	Product	string	descriptor	value	for	the	attached
device.
	
A	pointer	to	a	character	buffer	is	passed	as	both	the	lpInBuffer	and	lpOutBuffer
parameters	to	the	DeviceIoControl()	function.
	
The	length	of	the	buffer	is	passed	in	the	nInBufferSize	and	nOutBufferSize
parameters.
	
	
Example
	
DWORD	dwBytes	=	0;
ULONG	len	=	256;
UCHAR	*buf	=	new	UCHAR[len];
	
DeviceIoControl(hDevice,	IOCTL_ADAPT_GET_DEVICE_NAME,
												buf,	len,
												buf,	len,
												&dwBytes,	NULL);
	
delete[]	buf;
	

IOCTL_ADAPT_GET_DEVICE_POWER_STATE
Top	Previous	Next

Description
	
This	IOCTL	is	no	longer	supported.	It	is	available	to	keep	backward
compatibility	with	older	interface	library	and	application.	
	
Microsoft	WDF	driver	framework	manages	device	power	state	internally.

IOCTL_ADAPT_GET_DEVICE_SPEED
Top	Previous	Next

Description
	
This	command	attempts	to	report	the	current	operating	speed	of	the	USB
device.		It	uses	the	IsDeviceHighSpeed	routine,	but	this	routine	is	only
supported	in	Version	1	of	the	USBD	interface.	Windows	2K	SP4,	Windows	XP
and	later	all	support	Version	1	of	the	USBD	interface.	If	the
IsDeviceHighSpeed	routine	is	not	available,	DEVICE_SPEED_UNKNOWN
is	returned.	The	possible	return	value	of	this	IOCTL	is	defined	in	the	cyioctl.h
header	file.
	
A	pointer	to	a	4-byte	variable	is	passed	as	both	the	lpInBuffer	and	lpOutBuffer
parameters	to	the	DeviceIoControl()	function.
	
The	size	of	the	variable	(4)	is	passed	in	the	nInBufferSize	and	nOutBufferSize
parameters.
	
Defines	(cyioctl.h)
	
#define	DEVICE_SPEED_UNKNOWN							0x00000000
#define	DEVICE_SPEED_LOW_FULL						0x00000001
#define	DEVICE_SPEED_HIGH										0x00000002
#define	DEVICE_SPEED_SUPER									0x00000004						
	
Example
		
DWORD	dwBytes	=	0;
ULONG	DevSpeed;
DeviceIoControl(hDevice,	IOCTL_ADAPT_GET_DEVICE_SPEED,
										&DevSpeed,	sizeof	(ULONG),
										&DevSpeed,	sizeof	(ULONG),
										&dwBytes,	NULL);
	

IOCTL_ADAPT_GET_DRIVER_VERSION
Top	Previous	Next

Description
	
This	command	retrieves	the	version	of	the	driver.
	
A	pointer	to	a	4-byte	variable	is	passed	as	both	the	lpInBuffer	and	lpOutBuffer
parameters	to	the	DeviceIoControl()	function.
	
The	size	of	the	variable	(4)	is	passed	in	the	nInBufferSize	and	nOutBufferSize
parameters.
	
	
Example
	
DWORD	dwBytes	=	0;
ULONG	ver;
	
DeviceIoControl(hDevice,	IOCTL_ADAPT_GET_DRIVER_VERSION,
												&ver,	sizeof	(ver),
												&ver,	sizeof	(ver),
												&dwBytes,	NULL);
	

IOCTL_ADAPT_GET_FRIENDLY_NAME
Top	Previous	Next

Description
	
This	command	retrieves	the	string	associated	with	the	device	in	the	[Strings]
section	of	the	CyUSB3.inf	file.
	
A	pointer	to	an	array	of	unsigned	characters	is	passed	as	both	the	lpInBuffer	and
lpOutBuffer	parameters	to	the	DeviceIoControl()	function.
	
The	size	of	the	array	is	passed	in	the	nInBufferSize	and	nOutBufferSize
parameters.
	
	
Example
	
DWORD	dwBytes	=	0;
PUCHAR	FriendlyName	=	new	UCHAR[256];
	
DeviceIoControl(hDevice,	IOCTL_ADAPT_GET_FRIENDLY_NAME,
												FriendlyName,	256,
												FriendlyName,	256,
												&dwBytes,	NULL);
	
delete[]	FriendlyName;
	

IOCTL_ADAPT_GET_NUMBER_ENDPOINTS
Top	Previous	Next

Description
	
This	command	retrieves	the	number	of	endpoints	enumerated	by	the	current
interface	/	alternate	interface	setting.
	
A	null	pointer	is	passed	as	the	lpInBuffer	parameter	to	the	DeviceIoControl()
function.	Zero	is	passed	as	the	nInBufferSize	parameter.
	
The	address	of	an	unsigned	character	is	passed	as	the	lpOutBuffer	parameter	to
the	DeviceIoControl()	function.	The	size	of	the	variable	(1)	is	passed	in	the
nOutBufferSize	parameter.
	
	
Example
	
DWORD	dwBytes	=	0;
UCHAR	endPts;
	
DeviceIoControl(hDevice,	IOCTL_ADAPT_GET_NUMBER_ENDPOINTS,
												NULL,	0,
												&endPts,	sizeof	(endPts),
												&dwBytes,	NULL);
	

IOCTL_ADAPT_GET_TRANSFER_SIZE
Top	Previous	Next

Description
	
This	IOCTL	is	no	longer	supported.	It	is	available	to	keep	backward
compatibility	with	older	interface	library	and	application.
	
For	more	information	on	USB	transfer	size	please	refer	link	from	Microsoft
:	http://msdn.microsoft.com/en-us/library/ff538112.aspx
	
Following	are	the	maximum	transfer	size	limits	set	into	the	CyUSB3.sys	driver
for	various	transfers.
	
1.	Bulk	and	Interrupt	Transfer
				4MBytes
2.	Full	Speed	Isochronous	Transfer
				256	Frames
3.	High	Speed	and	Super	Speed	Isochronous	Transfer
				1024	Frames

http://msdn.microsoft.com/en-us/library/ff538112.aspx

IOCTL_ADAPT_GET_USBDI_VERSION
Top	Previous	Next

Description
	
This	command	retrieves	the	version	of	the	USB	Host	Controller	Driver	in	BCD
format.
	
A	pointer	to	a	4-byte	variable	is	passed	as	both	the	lpInBuffer	and	lpOutBuffer
parameters	to	the	DeviceIoControl()	function.
	
The	size	of	the	variable	(4)	is	passed	in	the	nInBufferSize	and	nOutBufferSize
parameters.
	
	
Example
	
DWORD	dwBytes	=	0;
ULONG	ver;
	
DeviceIoControl(hDevice,	IOCTL_ADAPT_GET_USBDI_VERSION,
												&ver,	sizeof	(ver),
												&ver,	sizeof	(ver),
												&dwBytes,	NULL);
	

IOCTL_ADAPT_RESET_PARENT_PORT
Top	Previous	Next

Description
	
This	command	resets	the	upstream	port	of	the	device	it	manages.	After	a
successful	reset,	the	bus	driver	reselects	the	configuration	and	any	alternative
interface	settings	that	the	device	had	before	the	reset	occurred.	All	pipe	handles,
configuration	handles	and	interface	handles	remain	valid.
	
A	null	pointer	is	passed	as	both	the	lpInBuffer	and	lpOutBuffer	parameters	to
the	DeviceIoControl()	function.
	
	
Example
	
DWORD	dwBytes;
	
DeviceIoControl(hDevice,	IOCTL_ADAPT_RESET_PARENT_PORT,
														NULL,	0,
														NULL,	0,
														&dwBytes,	NULL);

IOCTL_ADAPT_RESET_PIPE
Top	Previous	Next

Description
	
This	command	resets	an	endpoint	of	the	device,	clearing	any	error	or	stall
conditions	on	that	endpoint.	Pending	data	transfers	are	not	cancelled	by	this
command.
	
The	address	of	a	single	byte	is	passed	as	the	lpInBuffer	parameter	to	the
DeviceIoControl()	function.
	
A	null	pointer	is	passed	as	the	lpOutBuffer	parameter.
	
	
Example
	
DWORD	dwBytes;
UCHAR	Address	=	0x82;
	
DeviceIoControl(hDevice,	IOCTL_ADAPT_RESET_PIPE,
												&Address,	sizeof	(Address)
												NULL,	0,
												&dwBytes,	NULL);

IOCTL_ADAPT_SELECT_INTERFACE
Top	Previous	Next

Description
	
This	command	sets	the	alternate	interface	setting	for	the	primary	interface	of	the
attached	device.
	
A	pointer	to	a	byte	indicating	the	alternate	interface	setting	is	passed	as	both	the
lpInBuffer	and	lpOutBuffer	parameters	to	the	DeviceIoControl()	function.
	
The	length	of	the	variable	(1)	is	passed	in	the	nInBufferSize	and
nOutBufferSize	parameters.
	
	
Example
	
DWORD	dwBytes	=	0;
UCHAR	alt	=	2;
	
DeviceIoControl	(hDevice,	IOCTL_ADAPT_SELECT_INTERFACE,
												&alt,	sizeof	(alt),
												&alt,	sizeof	(alt),
												&dwBytes,	NULL);
	

IOCTL_ADAPT_SEND_EP0_CONTROL_TRANSFER
Top	Previous	Next

IOCTL_ADAPT_SEND_EP0_CONTROL_TRANSFER Previous
Top	Next

	
Description
	
This	command	sends	a	control	request	to	the	default	Control	endpoint,	endpoint
zero.
	
DeviceIoControl()	is	passed	a	pointer	to	a	two-part	structure	as	both	the
lpInBuffer	and	lpOutBuffer	parameters.	This	two-part	structure	contains	a
SINGLE_TRANSFER	structure	followed	by	a	data	buffer.
	
The	SINGLE_TRANSFER	structure	contains	all	the	parameters	for	the	control
request.
	
The	buffer	contains	the	transfer	data.
	
NOTE	:	Please	note	that	this	IOCTL	return	device	configuration	inclusive	of
both	interface	for	USB3.0	composite	device.	This	is	the	limitation	due	to	the
USBDI	bus	interface.	The	USBDI	doesn't	support	USB3.0	specific	device
configuration.
	
Example
	
union		{
struct			{
UCHAR	Recipient:5;
UCHAR		Type:2;
UCHAR	Direction:1;
}	bmRequest;
	
UCHAR	bmReq;
};
	
bmRequest.Recipient	=	0;	//		Device
bmRequest.Type						=	2;	//		Vendor
bmRequest.Direction	=	1;	//	IN	command	(from		Device	to	Host)
	
int	iXmitBufSize	=	sizeof(SINGLE_TRANSFER)	+	bufLen;	//		The	size	of	the	two-part	structure
UCHAR	*pXmitBuf	=	new	UCHAR[iXmitBufSize];											//		Allocate	the	memory

ZeroMemory(pXmitBuf,	iXmitBufSize);
	
PSINGLE_TRANSFER	pTransfer	=	(PSINGLE_TRANSFER)pXmitBuf;	//		The	SINGLE_TRANSFER
comes	first
pTransfer->SetupPacket.bmRequest	=	bmReq;
pTransfer->SetupPacket.bRequest	=	ReqCode;
pTransfer->SetupPacket.wValue	=	Value;
pTransfer->SetupPacket.wIndex	=	Index;
pTransfer->SetupPacket.wLength	=	bufLen;
pTransfer->SetupPacket.ulTimeOut	=	TimeOut	/	1000;
pTransfer->Reserved	=	0;
pTransfer->ucEndpointAddress	=	0x00;					//		Control	pipe
pTransfer->IsoPacketLength	=	0;
pTransfer->BufferOffset	=	sizeof	(SINGLE_TRANSFER);
pTransfer->BufferLength	=	bufLen;
DWORD	dwReturnBytes;
	
DeviceIoControl	(hDevice,	IOCTL_ADAPT_SEND_EP0_CONTROL_TRANSFER,
												pXmitBuf,		iXmitBufSize,
												pXmitBuf,		iXmitBufSize,
												&dwReturnBytes,		NULL);
	
//	Copy	data	into		buf
UCHAR	*ptr	=	pXmitBuf	+	sizeof	(SINGLE_TRANSFER);
memcpy(buf,	ptr,	dwReturnBytes);
	
	

IOCTL_ADAPT_SEND_NON_EP0_TRANSFER
Top	Previous	Next

Description
	
	
This	IOCTL	command	is	used	to	request	Bulk,	Interrupt	or	Isochronous	data
transfers	across	corresponding	USB	device	endpoints.
	
Regardless	of	whether	the	endpoint	is	an	IN	or	an	OUT	endpoint,	a	pointer	to	a
single	data	structure	is	passed	to	DeviceIoControl()	as	both	the	lpInBuffer	and
lpOutBuffer	parameters.	The	driver	expects	that	the	pointer	references	a
SINGLE_TRANSFER	structure,	followed	by	a	data	buffer.	In	the	case	of	OUT
endpoints,	the	buffer	is	expected	to	contain	the	data	bytes	to	be	transmitted.	In
the	case	of	an	IN	endpoint,	the	buffer	is	expected	to	be	the	writeable	memory
for	received	data	bytes.
	
	Special	ISOC	Constraints
	
The	endpoint	maximum	transfer	size	and	buffer	length	parameter	must	both	be	a
multiple	of	the	endpoint's	MaxPacketSize.
	
For	ISOC	transfers	on	a	device	operating	at	High	speed	or	Super	Speed,	the
following	constraints	apply	to	this	command:
1)	The	buffer	length	parameter	(bufLen	in	the	below	examples)	must	also	be	a
multiple	of	the	endpoint's	MaxPacketSize	*	8.	Please	also	note	that	last	packet
is	allow	to	send	with	partial	size(less	than	Max	packet)	for	both	super	and	high
speed	Isochronous	transfer.
2)	For	Super	speed	Isochronous	endpoint	only	,	if	device	define	the	MaxBurst
in	the	super	speed	endpoint	companion	descriptor	then	Maxburst	should	be	used
to	calculate	the	packet	size=(MaxpacketSize	*	(MaxBurst+1).	This	packet
length	data	will	be	sent	over	one	micro	frame	interval.
	
Example
	
	
PUCHAR	CCyBulkEndPoint::BeginDataXfer(PCHAR	buf,	LONG	bufLen,	OVERLAPPED	*ov)
{
if	(hDevice	==	INVALID_HANDLE_VALUE)	return	NULL;

int	iXmitBufSize	=	sizeof	(SINGLE_TRANSFER)	+	bufLen;
PUCHAR	pXmitBuf	=	new	UCHAR[iXmitBufSize];
ZeroMemory(pXmitBuf,	iXmitBufSize);
	
PSINGLE_TRANSFER	pTransfer	=	(PSINGLE_TRANSFER)pXmitBuf;
pTransfer->Reserved	=	0;
pTransfer->ucEndpointAddress	=	Address;
pTransfer->IsoPacketLength	=	0;
pTransfer->BufferOffset	=	sizeof	(SINGLE_TRANSFER);
pTransfer->BufferLength	=	bufLen;
//	Copy	buf		into	pXmitBuf
UCHAR	*ptr	=	(PUCHAR)	pTransfer	+	pTransfer->BufferOffset;
memcpy(ptr,	buf,	bufLen);
DWORD	dwReturnBytes;
DeviceIoControl(hDevice,	IOCTL_ADAPT_SEND_NON_EP0_TRANSFER,
															pXmitBuf,	iXmitBufSize,
															pXmitBuf,	iXmitBufSize,
															&dwReturnBytes,	ov);
return		pXmitBuf;
}
	
	
	 	

IOCTL_ADAPT_SEND_NON_EP0_DIRECT
Top	Previous	Next

Description
	
This	IOCTL	is	used	to	request	Bulk,	Interrupt	or	Isochronous	data	transfers
across	corresponding	USB	device	endpoints.
	
The	DeviceIoControl	call	requires	two	buffer	parameters.	For	this	command,
the	first	buffer	must	contain	a	properly	initialized	SINGLE_TRANSFER
structure.
	
The	SINGLE_TRANSFER	fields	of	BufferOffset	and	BufferLength	should	be
set	to	0	for	this	command.
	
The	second	buffer	is	for	the	actual	transfer	data.	For	an	OUT	endpoint,	this	will
contain	the	data	headed	to	the	USB	device.	For	an	IN	endpoint,	this	buffer	will
hold	the	data	that	is	received	from	the	device.
	
Special	ISOC	Constraints
	
The	endpoint	maximum	transfer	size	and	buffer	length	parameter	must	both	be	a
multiple	of	the	endpoint's	MaxPacketSize.
	
For	ISOC	transfers	on	a	device	operating	at	High	speed	or	Super	Speed,	the
following	constraints	apply	to	this	command:
	
1)	The	buffer	length	parameter	(bufLen	in	the	below	examples)	must	also	be	a
multiple	of	the	endpoint's	MaxPacketSize	*	8.	Please	also	note	that	last	packet
is	allow	to	send	with	partial	size(less	than	Max	packet)	for	both	super	and	high
speed	Isochronous	transfer.
2)	For	Super	speed	Isochronous	endpoint	only	,	if	device	define	the	MaxBurst
in	the	super	speed	endpoint	companion	descriptor	then	Maxburst	should	be	used
to	calculate	the	packet	size=(MaxpacketSize	*	(MaxBurst+1)).	This	packet
length	data	will	be	sent	over	one	micro	frame	interval.
	
	
The	SINGLE_TRANSFER	structure	must	be	followed	by	additional	space
sufficient	to	hold	the	PACKET_INFO	structures	for	the	transfer	(see	examples

#2	and	#3,	below).
	
	
Example	#1	(Bulk	and	Interrupt	endpoints)
	
	
PUCHAR	CCyUSBEndPoint::BeginDirectXfer(PUCHAR	buf,	LONG	bufLen,	OVERLAPPED	*ov)
{
	
if	(hDevice	==	INVALID_HANDLE_VALUE)	return	NULL;
int	iXmitBufSize	=	sizeof	(SINGLE_TRANSFER);
PUCHAR	pXmitBuf	=	new	UCHAR[iXmitBufSize];
ZeroMemory	(pXmitBuf,	iXmitBufSize);
	
PSINGLE_TRANSFER	pTransfer	=	(PSINGLE_TRANSFER)	pXmitBuf;
pTransfer->ucEndpointAddress	=	Address;
pTransfer->IsoPacketLength	=	0;
pTransfer->BufferOffset	=	0;
pTransfer->BufferLength	=	0;
DWORD	dwReturnBytes;
DeviceIoControl	(hDevice,
					IOCTL_ADAPT_SEND_NON_EP0_DIRECT,
					pXmitBuf,	iXmitBufSize,
					buf,	bufLen,
					&dwReturnBytes,	ov);
	
//	Note	that	this	method	leaves	pXmitBuf	allocated.		It	will	get	deleted	in
//	FinishDataXfer.
LastError	=	GetLastError();
return	pXmitBuf;
}
	
Example	#2	(ISOC	endpoints)
	
PUCHAR	CCyIsocEndPoint::BeginDirectXfer(PUCHAR	buf,	LONG	bufLen,	OVERLAPPED	*ov)
{
if	(hDevice	==	INVALID_HANDLE_VALUE)	return	NULL;
int	pkts	=	bufLen	/	MaxPktSize;	//	Number	of	packets	implied	by	bufLen	&	pktSize
if	(bufLen	%	MaxPktSize)	pkts++;
if	(pkts	==	0)	return	NULL;
int	iXmitBufSize	=	sizeof	(SINGLE_TRANSFER)	+	(pkts	*	sizeof(ISO_PACKET_INFO));
UCHAR	*pXmitBuf	=	new	UCHAR[iXmitBufSize];
ZeroMemory	(pXmitBuf,	iXmitBufSize);
PSINGLE_TRANSFER	pTransfer	=	(PSINGLE_TRANSFER)	pXmitBuf;
pTransfer->ucEndpointAddress	=	Address;
pTransfer->IsoPacketOffset	=	sizeof	(SINGLE_TRANSFER);
pTransfer->IsoPacketLength	=	pkts	*	sizeof(ISO_PACKET_INFO);
pTransfer->BufferOffset	=	0;
pTransfer->BufferLength	=	0;

DWORD	dwReturnBytes	=	0;
DeviceIoControl	(hDevice,
					IOCTL_ADAPT_SEND_NON_EP0_DIRECT,
					pXmitBuf,	iXmitBufSize,
					buf,	bufLen,
					&dwReturnBytes,	ov);
//	Note	that	this	method	leaves	pXmitBuf	allocated.		It	will	get	deleted	in
//	FinishDataXfer.
LastError	=	GetLastError();
return	pXmitBuf;
}
	
Example	#3	(ISOC	endpoints)
	
	
PUCHAR	CCyIsocEndPoint::BeginDirectXfer(PUCHAR	buf,	LONG	bufLen,	OVERLAPPED	*ov)
{
if	(hDevice	==	INVALID_HANDLE_VALUE)	return	NULL;
int	pkts	=	bufLen	/	MaxPktSize;	//	Number	of	packets	implied	by	bufLen	&	pktSize
if	(bufLen	%	MaxPktSize)	pkts++;
if	(pkts	==	0)	return	NULL;
int	iXmitBufSize	=	sizeof	(SINGLE_TRANSFER)	+	(pkts	*	sizeof(ISO_PACKET_INFO));
UCHAR	*pXmitBuf	=	new	UCHAR[iXmitBufSize];
ZeroMemory	(pXmitBuf,	iXmitBufSize);
PSINGLE_TRANSFER	pTransfer	=	(PSINGLE_TRANSFER)	pXmitBuf;
pTransfer->ucEndpointAddress	=	Address;
pTransfer->IsoPacketOffset	=	sizeof	(SINGLE_TRANSFER);
pTransfer->IsoPacketLength	=	pkts	*	sizeof(ISO_PACKET_INFO);
pTransfer->IsoParams.isoId	=	USB_ISO_ID;
pTransfer->IsoParams.isoCmd	=	USB_ISO_CMD_ASAP;
pTransfer->IsoParams.ulParam1	=	0;
DWORD	dwReturnBytes	=	0;
DeviceIoControl	(hDevice,
											IOCTL_ADAPT_SEND_NON_EP0_DIRECT,
											pXmitBuf,	iXmitBufSize,
											buf,	bufLen,
											&dwReturnBytes,	ov);
	
//	Note	that	this	method	leaves	pXmitBuf	allocated.		It	will	get	deleted	in
//	FinishDataXfer.
LastError	=	GetLastError();
return	pXmitBuf;
}

IOCTL_ADAPT_SET_DEVICE_POWER_STATE
Top	Previous	Next

Description
	
This	IOCTL	is	no	longer	supported.	It	is	available	to	keep	backward
compatibility	with	older	interface	library	and	application.	
	
Microsoft	WDF	driver	framework	manage	device	power	state	internally.
	
	

IOCTL_ADAPT_SET_TRANSFER_SIZE
Top	Previous	Next

Description
	
This	IOCTL	is	no	longer	supported.	It	is	available	to	keep	backward
compatibility	with	older	interface	library	and	application.
	
For	more	information	on	USB	transfer	size	please	refer	link	from	Microsoft
:	http://msdn.microsoft.com/en-us/library/ff538112.aspx
	
Following	is	the	maximum	transfer	size	limit	set	into	the	CyUSB3.sys	driver	for
various	transfers.
	
1.	Bulk	and	Interrupt	Transfer
				4MBytes
2.	Full	Speed	Isochronous	Transfer
				256	Frames
3.	High	Speed	and	Super	Speed	Isochronous	Transfer
				1024	Frames

http://msdn.microsoft.com/en-us/library/ff538112.aspx

CYIOCTL.H
Top	Previous	Next

Header
cyioctl.h
	
	
Description
	
A	pointer	to	a	SINGLE_TRANSFER	structure	is	passed	to	the	driver	for	the
IOCTL_ADAPT_SEND_NON_EP0_TRANSFER	and
IOCTL_ADAPT_SEND_EP0_CONTROL_TRANSFER	commands.
	
The	structure	is	defined	as:
	
typedef	struct		_SINGLE_TRANSFER	{
union	{
		SETUP_PACKET				SetupPacket;
		ISO_ADV_PARAMS				IsoParams;
};
UCHAR	Reserved;
UCHAR	ucEndpointAddress;
ULONG	NtStatus;
ULONG	UsbdStatus;
ULONG	IsoPacketOffset;
ULONG	IsoPacketLength;
ULONG	BufferOffset;
ULONG	BufferLength;
}	SINGLE_TRANSFER,	*PSINGLE_TRANSFER;
	
	
Members
	
	
SetupPacket
									Contains	required	parameters	for	Control	Endpoint	transfers,
IsoParams
			Contains	optional	parameters	for	Isochronous	Endpoint	transfers.
reserved
			Reserved.	Should	be	set	to	0.
ucEndpointAddress
			Specified	the	address	of	the	device	endpoint	in	which	the	transfer	will	occur.
NtStatus

			NTSTATUS	values	that	are	returned	by	the	driver.
UsbdStatus
			USB_STATUS_XXX	codes	returned	from	the	host	controller	driver.
IsoPacketOffset
			Specifies	the	byte	offset	from	the	beginning	of	the	structure	to	an	IsoPacket
list.
IsoPacketLength
			The	length,	in	bytes,	of	the	IsoPacket	list	specified	at	offset	IsoPacketOffset.
BufferOffset
			Specifies	the	byte	offset	from	the	beginning	of	the	structure	to	a	transfer
buffer.
BufferLength
			The	length,	in	bytes,	of	the	transfer	buffer	at	offset	BufferOffset.
	

ISO_ADV_PARAMS
Top	Previous	Next

Header
cyioctl.h
	
	
Description
	
ISO_ADV_PARAMS	is	part	of	the	a	SINGLE_TRANSFER	structure.	It
contains	advanced	parameters	for	Isochronous	endpoint	transfers	when	sending
the	IOCTL_ADAPT_SEND_NON_EP0_TRANSFER	and
IOCTL_ADAPT_SEND_NON_EP0_DIRECT	commands.
	
The	structure	is	defined	as:
typedef	struct		_ISO_ADV_PARAMS{

USHORT	isoId;
USHORT	isoCmd;
ULONG	ulParam1;
ULONG	ulParam2;

																																										}	ISO_ADV_PARAMS,	*PISO_ADV_PARAMS;	
	
Defines
	
#define	USB_ISO_ID																					0x4945
#define	USB_ISO_CMD_ASAP															0x8000
#define	USB_ISO_CMD_CURRENT_FRAME						0x8001
#define	USB_ISO_CMD_SET_FRAME										0x8002
	
	
Members
	
	
isoId
	ISO_ADV_PARAMS	structure	identifier	must	be	set	to	USB_ISO_ID.
isoCmd
	Specifies	one	of	the	following	types	of	Isoch	transfers:
	

USB_ISO_CMD_ASAP
If	no	transfers	have	been	submitted	to	the	pipe	since	the	pipe	was	opened
or	last	reset,	the	transfer	to	begin	on	the	next	frame.	Otherwise,	the

transfer	will	begin	on	the	first	frame	following	all	currently	queued
requests	for	the	pipe.
	
USB_ISO_CMD_CURRENT_FRAME
Causes	the	transfer	to	begin	on	the	current	frame	number	obtained	from
the	host	controller	driver,	plus	an	optional	offset	specified	in	the	ulParam1
field.
	
USB_ISO_CMD_SET_FRAME
Causes	the	transfer	to	begin	on	the	frame	number	specified	in	the
ulParam1	field.
	

ulParam1	
If	isoCMD	is	set	to	USB_ISO_CMD_ASAP,	when	the	request	is	returned
by	the	driver	this	field	will	contain	the	frame	number	that	the	transfer
began	on.
	
If	isoCMD	is	set	to	USB_ISO_CMD_CURRENT_FRAME,	this	field
contains	the	offset	from	the	current	frame	number	that	this	transfer	will
begin	on.
	
If	isoCMD	is	set	to	USB_ISO_CMD_SET_FRAME,	this	field	contains
the	frame	number	that	this	transfer	will	begin	on.	
	

ulParam2	
Reserved.	Must	be	set	to	0.

	

SETUP_PACKET
Top	Previous	Next

Header
cyioctl.h
	
	
Description
	
A	SETUP_PACKET	is	part	of	the	a	SINGLE_TRANSFER	structure.	It	contains
important	parameters	for	Control	Endpoint	transfers	when	sending	the
IOCTL_ADAPT_SEND_EP0_TRANSFER	command.
	
The	structure	is	defined	as:
	
	
typedef	struct		_SETUP_PACKET	{
union		{
BM_REQ_TYPE		bmReqType;
UCHAR	bmRequest;
};
UCHAR	bRequest;
union		{
WORD_SPLIT		wVal;
USHORT	wValue;
};
union		{
WORD_SPLIT		wIndx;
USHORT	wIndex;
};
union		{
WORD_SPLIT		wLen;
USHORT	wLength;
};
ULONG	ulTimeOut;
}	SETUP_PACKET,	*PSETUP_PACKET;
	
	
	
	
	

SET_TRANSFER_SIZE_INFO
Top	Previous	Next

Header
cyioctl.h
	
	
Description
	
A	pointer	to	a	SET_TRANSFER_SIZE_INFO	structure	is	passed	to	the	driver
for	the	IOCTL_ADAPT_GET_TRANSFER_SIZE	and
IOCTL_ADAPT_SET_TRANSFER_SIZE	commands.
	
	
The	structure	is	defined	as:	
typedef	struct		_SET_TRANSFER_SIZE_INFO	{
UCHAR	EndpointAddress;
ULONG		TransferSize;
}	SET_TRANSFER_SIZE_INFO,	*PSET_TRANSFER_SIZE_INFO;
	
	
	
	
	

Features	Not	Supported																																																		
																																																																																											
									Top	Previous	Next
The	Following	features	are	not	supported	by	CyUSB3.sys	driver	due	to	the	lack
of	interface	URBs	to	the	Bus	driver.
	
1.	SET	ADDRESS		Feature
	
		The	SET	ADDRESS	Request	cannot	be	implemented	through	control
endpoint.
	
2.	SYNC	FRAME
	
		The	SYNC	FRAME	Request	cannot	be	implemented	through	Control
Endpoint.
	
3.	USB3.0	Bulk	streaming.
	
4.	Following	IOCTLs	are	not	supported.
	
		To	get	more	detail	on	each	IOCTL	please	refer	below	link.
	
Get	Device	PowerState
Set	Device	PowerState
Set	Transfer	size
Get	Transfer	size
	
	

EZ-USB.sys	to	CyUSB3.sys	Migration	Guide														
																																																									Top	Previous
This	chapter	provides	comparison	between		ezusb.sys	and	cyusb3.sys	driver	IOCTL	interface.	If	you
are	using	the	ezusb.sys	and	wants	migrate	to	cyusb3.sys	to	take	advantage	of	advance	feature
supported	by	cyusb3.sys,	please	refer	below	table.	This	table	shows	one-o-one	mapping	of	two
drivers	IOCTL	interface.
	
IOCTL	Mapping	table

	
ezusb.sys	IOCTL
interface

CyUSB3.sys	IOCTL
interface

Description

IOCTL_Ezusb_RESETPIPE IOCTL_ADAPT_RESET_PIPE

Direct	equivalent

IOCTL_Ezusb_ABORTPIPE IOCTL_ADAPT_ABORT_PIPE
IOCTL_Ezusb_SETINTERFACE IOCTL_ADAPT_SELECT_INTER

FACE

IOCTL_EZUSB_GET_DRIVER_
VERSION

IOCTL_ADAPT_GET_DRIVER_
VERSION

IOCTL_EZUSB_GET_CURREN
T_FRAME_NUMBER

IOCTL_ADAPT_GET_CURRENT
_FRAME

IOCTL_Ezusb_RESET IOCTL_ADAPT_RESET_PAREN
T_PORT

IOCTL_EZUSB_BULK_READ 	
	
	

IOCTL_ADAPT_SEND_NON_EP0
_TRANSFER	/
IOCTL_ADAPT_SEND_NON_EP0_DIRECT

Indirect	equivalent.

CyUSB3.sys	has	two	IOCTLs	to
implement	non-control	transfer
rather	than	the	ezusb.sys	method
of	having	one	IOCTL	per	transfer
type	and	direction.	So	all	non-
control	transfer	based	IOCTL	of
ezusb.sys	map	to	two	IOCTLs	of
CyUSB3.sys

IOCTL_EZUSB_BULK_WRITE
IOCTL_EZUSB_ISO_READ
IOCTL_EZUSB_ISO_WRITE

IOCTL_Ezusb_GET_DEVICE_D
ESCRIPTOR

IOCTL_ADAPT_SEND_EP0_CO
NTROL_TRANSFER

Indirect	equivalent.
CyUSB3.sys	has	single	IOCTL	to
implement	control	transfer	rather
than	the	ezusb.sys	method	of

IOCTL_Ezusb_GET_CONFIGU
RATION_DESCRIPTOR

having	one	IOCTL	per	type	and
one	IOCTL	per	standard	request.
All	control	transfer	based	IOCTL
of	ezusb.sys	map	to	single	IOCTL
of	CyUSB3.sysIOCTL_Ezusb_VENDOR_REQU

EST
IOCTL_Ezusb_GET_STRING_D
ESCRIPTOR
IOCTL_Ezusb_ANCHOR_DOW
NLOAD
IOCTL_EZUSB_ANCHOR_DO
WNLOAD
IOCTL_EZUSB_VENDOR_OR_
CLASS_REQUEST
IOCTL_EZUSB_SET_FEATURE
IOCTL_Ezusb_GET_PIPE_INFO IOCTL_ADAPT_SEND_EP0_CON

TROL_TRANSFER,
IOCTL_ADAPT_GET_ALT_INTER
FACE_SETTING

Indirect	equivalent.

Parse	the	interface	descriptor	of	the
device	to	populate	the	output	buffer
with	data	of	the
PUSB_INTERFACE_INFORMATI
ONstructure	that	will	be	returned
by	ezusb.sys

IOCTL_EZUSB_START_ISO_S
TREAM

IOCTL_ADAPT_SEND_NON_EP0
_TRANSFER	/
IOCTL_ADAPT_SEND_NON_EP0_DIRECT

No	direct	equivalent

ezusb.sys	implements	streaming	on
isochronous	endpoint	at	the	driver
level.	While	CyUSB3.sys	provide
single	IOCTL	to	send/received
Isochronous	packets.

IOCTL_EZUSB_STOP_ISO_ST
REAM
IOCTL_EZUSB_READ_ISO_BU
FFER
IOCTL_EZUSB_GET_LAST_ER
ROR

N/A Windows	Win32	API
GetLastError()	API	provides	the
error	code	for	last	transfer.

	
Get	driver	handle	in	application	using	CyUSB3.sys
	
Modify	CyUSB3.INF	file

	
CyUSB3.sys	IOCTLs	definition	is	provided	in	the	cyioctl.h	header	file.

	Driver Overview
	Modifying CyUSB3.INF
	Matching Devices to the Driver
	Windows XP
	Windows Vista ,Win7 and Win8 Beta

	Reinstalling the Driver
	The IOCTL Interface
	Getting a Handle to the Driver
	IOCTL_ADAPT_ABORT_PIPE
	IOCTL_ADAPT_CYCLE_PORT
	IOCTL_ADAPT_GET_ADDRESS
	IOCTL_ADAPT_GET_ALT_INTERFACE_SETTING
	IOCTL_ADAPT_GET_CURRENT_FRAME
	IOCTL_ADAPT_GET_DEVICE_NAME
	IOCTL_ADAPT_GET_DEVICE_POWER_STATE
	IOCTL_ADAPT_GET_DEVICE_SPEED
	IOCTL_ADAPT_GET_DRIVER_VERSION
	IOCTL_ADAPT_GET_FRIENDLY_NAME
	IOCTL_ADAPT_GET_NUMBER_ENDPOINTS
	IOCTL_ADAPT_GET_TRANSFER_SIZE
	IOCTL_ADAPT_GET_USBDI_VERSION
	IOCTL_ADAPT_RESET_PARENT_PORT
	IOCTL_ADAPT_RESET_PIPE
	IOCTL_ADAPT_SELECT_INTERFACE
	IOCTL_ADAPT_SEND_EP0_CONTROL_TRANSFER
	IOCTL_ADAPT_SEND_NON_EP0_TRANSFER
	IOCTL_ADAPT_SEND_NON_EP0_DIRECT
	IOCTL_ADAPT_SET_DEVICE_POWER_STATE
	IOCTL_ADAPT_SET_TRANSFER_SIZE

	CYIOCTL.H
	ISO_ADV_PARAMS
	SINGLE_TRANSFER
	SETUP_PACKET
	SET_TRANSFER_SIZE_INFO

	Features Not Supported
	EZ-USB.sys to CyUSB3.sys Migration Guide

