
Purpose	of	CRHM

An	integrated	assessment	of	land	use	impacts	on	water	balance	and	streamflow
is	necessary	in	order	to	make	sound	recommendations	for	improved	land
management	practices.	To	achieve	this,	results	from	recent	process-based
hydrology	research	have	been	integrated	into	a	Cold	Regions	Hydrological
Model	(CRHM).	The	model	provides	the	user	with	advanced	techniques	for	the
calculation	of	water	balance	and	streamflow.

Many	of	the	ideas	for	the	CRHM	model	came	from	the	Modular	Modeling
System	(MMS)	developed	by	George	H.	Leavelsey,	U.S.	Geological	Survey
(USGS).



Overview

Hydrological	modelling	has	been	complicated	by	the	increasing	complexity	of
environmental	and	water-resource	based	problems	and	the	broad	range	of
scientific	disciplines	that	must	be	incorporated	into	a	system	in	order	to
adequately	deal	with	the	issues.	Choosing	a	simulation	from	a	wide	selection	of
models	to	address	the	study	objectives,	data	constraints	and	spatial	and	temporal
scales	of	application	is	often	very	difficult.

CRHM	uses	modular	modelling	tools	to	develop,	support	and	apply	dynamic
model	routines.	The	integrated	system	of	software	provides	the	framework	to
develop	and	evaluate	physically-based	algorithms	and	effectively	integrate
selected	algorithms	into	an	operational	model.	Existing	algorithms	can	be
modified	or	new	algorithms	can	be	developed	and	added	as	modules	to	the
module	library.	Modules	from	the	library	are	coupled	to	create	a	physically-
based	model	suitable	for	the	specific	application.

CRHM	is	a	new	strategy	developed	to	incorporate	specific	and	often	neglected
aspects	of	hydrology:

1.	 flows	of	snow,	ground	and	soil	water	and	energy	between	adjacent	land
units,

2.	 water	movement	in	snow	and	frozen	soils,
3.	 snow	and	rain	interception	in	forest	canopies,
4.	 effect	of	slope	and	aspect	on	"vertical	exchange	processes",
5.	 coupled	mass	and	energy	balance	controls	on	process	rates,	and
6.	 coupling	between	soil	moisture,	groundwater	and	base	flow.

The	model	is	sensitive	to	land	use	and	climate	so	that	is	can	be	used	for
assessments	of	impacts	of	changes	to	these	conditions	on	the	hydrological	state
of	a	watershed	as	indexed	by	soil	water,	streamflow,	etc.	The	model
development	is	a	multiple	year	project	with	increasing	utility	as	components	are
added	to	the	model.	A	modular	object-oriented	structure	will	make	the	model
relatively	easy	to	update	and	improve	as	new	research	results	become	available.
Ultimately	CRHM	will	provide	a	scientific	tool,	or	methodology	that	provides
the	hydrologist	with	well-defined	techniques	for	calculating	the	water	balance
and	generation	of	streamflow	runoff	in	cold	climate	regions.



	

Components	of	CRHM.

CRHM	has	the	following	components:

1.	 Observations	–	time-series	meteorological	data	at	varying	intervals,
2.	 Parameters	–	Spatial	data	(e.g.	basin	area,	elevation,	and	cover	type)	are

generated	using	a	GIS	interface	tool	to	assist	the	user	in	basin	delineation,
characterization	and	parameterization	of	HRU.	HRU	are	subdivisions	of	the
basin	characterized	by	the	operator	from	an	understanding	of	the
hydrological	processes,	terrain	and	land	use.

3.	 Modules	–	Algorithms	implementing	the	hydrological/physical	processes.
The	model	data	structure	is	specified	by	the	declarations	in	the	modules	but
is	implemented	globally	by	the	CRHM	platform.

4.	 Variables	and	States	are	created	by	the	declarations	in	the	modules.

	

CRHM	Model	Platform.

The	CRHM	Model	Platform	performs	the	following	services:

	

Basic	functions.

1.	 Configures	the	model	to	the	number	of	HRU	and	HRU	layers.
2.	 Builds	the	selected	modules	into	a	working	model	after	checking	the

structure	and	data	flow	of	the	model.
3.	 Links	the	Observation	files	to	the	model.
4.	 Links	the	parameter	data	to	the	model.
5.	 Permits	initial	state	files	to	be	set	up	as	input	to	the	model	or	as	output	to

receive	the	final	state	of	the	model.
6.	 Sets	the	duration	of	the	model	run.
7.	 Selects	the	desired	state/variable	values	to	be	displayed	and	available	for

output.
8.	 Executes	the	model.
9.	 Provides	interaction	with	the	graphical	display.



	

Housekeeping	functions.

Save	and	Load	project	files	to	allow	the	model	(project)	to	be	saved	as	an
entirety	which	can	be	later	loaded	and	run.
Help	for	operating	the	CRHM	platform	and	help	describing	the	functionality

of	the	module,	variables	and	states.
Exporting	the	model	output	to	files	for	use	by	other	applications	(e.g.

Microsoft	Excel).
Exporting	the	model	output	for	later	input	to	compare	with	other	CRHM

model	runs	with	different	parameter	values.
Statistical	and	graphical	tools	to	analyze	input	data	and	the	model

performance.
Model	module	flow	diagrams	to	demonstrate	data	flow	within	the	model.

Driving	observations	or	input	parameters	are	superimposed	on	the	flow	diagram
to	help	the	user	to	visualize	their	entry	into	the	model.
Model	output	may	be	superimposed	upon	HRU	outlines	to	aid	spatial

visualization	of	the	model	results.
Observations	may	be	displayed	as	a	diagnostic	tool	to	detect	data	problems.

This	is	enhanced	by	the	capability	to	plot	the	time	series	data	as	daily	mean,
daily	maximum,	daily	minimum,	daily	sum	and	cumulative	sum.	Other	functions
are	also	available.
Observation	data	may	also	be	manipulated	using	filters.	These	filters	take

various	forms.	Examples	are	scaling,	unit	changing,	time	interval	changing	and
replacing	missing	or	faulty	data	with	adjacent	or	interpolated	data.
User	can	synthesize	input	observation	data	using	functions	to	generate

sine/ramp/pulse/log	etc.	waveforms	as	a	function	of	time.	These	simple	driving
inputs	are	indispensable	for	diagnostic	testing	as	actual	meteorological	data	can
be	too	complex	to	initially	comprehend	and	test	algorithms.
Parameters	may	be	displayed,	edited	and	saved	or	loaded	from	files.	Two

options	are	available.	The	first	is	from	text	files	and	the	second	is	from	database
files.
CRHM	is	compatible	with	ESRI 	shapefile	software.	ARCGIS 	data	can	be

imported	as	a	shapefile	to	set	parameter	values	and	HRU	and	basin	perimeter
coordinates.

	



Expandable	Aspects.

1.	 Users	can	create	their	own	modules	with	basic	knowledge	of	C++.	These
modules	are	linked	to	make	an	executable	dynamic	linked	library	(DLL)
which	is	loaded	into	CRHM.	The	user	written	modules	are	handled
identically	to	the	original	modules.

2.	 Users	can	create	help	files	describing	the	capabilities	of	their	custom
modules	and	CRHM	will	automatically	integrate	the	help	file	into	the
CRHM	help	menu.

3.	 Users	can	replace	existing	CRHM	modules	with	custom	versions	of	a
module	to	test	enhancements,	simplifications	or	to	add	diagnostic	variables.



CRHM	Terminology

				The	purpose	of	this	section	is	to	provide	the	user	with	a	glossary	of	terms	and
definitions	used	in	the	CRHM	user's	guide.

Observations.

				The	meteorological	or	climate	time	series	data	required	for	model	input	(e.g.
air	temperature,	wind	speed).	Observation	files	must	follow	the	ASCII	space	or
tab	delimited	format	with	an	'.obs'	extension.	Access	to	these	files	is	via	the
CRHM	Observations	pull	down	menu.

Parameters

.	

				The	basin/HRU	spatial	data	required	as	model	input	(e.g.	area,	elevation,
cover	type).	The	basin/HRU	spatial	data	can	be	manually	inserted	into	the	model
or	imported	as	a	text	file	with	a	'.par'	extension	or	a	database	file	with	a	'.dbx'
extension.	Access	to	parameters	is	by	the	CRHM	parameters	pull	down	menu.		
Parameters	are	also	known	as	coefficients.

Hydrological	Response	Unit	(HRU).	

				HRUs	are	subdivisions	of	the	basin	characterized	by	the	operator	from	an
understanding	of	the	hydrological	processes	and	land	use.

Build.

				This	feature	is	on	the	CRHM	pull	down	menu	and	allows	the	user	to	select
modules	and	to	create	a	model.

Construct.

				A	CRHM	pull	down	menu	option	located	within	the	Build	feature	that	allows
the	user	to	determine	more	information	about	individual	modules	and	to
add/delete	modules	to/from	the	current	model.



Run.	

				This	feature	is	on	the	CRHM	pull	down	menu	and	allows	the	user	to	execute
the	model.

State.

				This	feature	on	the	pull	down	menu	allows	the	user	to	save	the	final	state	of	a
model	run.	This	state	can	then	be	used	as	the	initial	state	of	the	model	for	a
subsequent	run	starting	from	that	time	on.		This	feature	can	save	the	user	a	lot	of
time.		For	example	the	model	could	be	run	once	over	winter	to	determine	snow
accumulation	and	the	final	model	state	saved	in	the	spring.		The	model	could
then	be	run	many	times	from	this	time	on	with	a	range	of	melt	parameters	to
check	out	different	melt	scenarios.

Project.

				A	feature	from	the	menu	that	allows	the	user	to	save	a	model	to	a	project	file.
The	save	includes	modules,	observation	files,	parameters,	displayed	variables
etc.		This	project	file	can	be	loaded	and	run	at	a	later	time.

Module.

				Each	module	represents	a	physically-based	algorithm	(e.g.	Evaporation,	Melt
etc.)	or	a	modeling	procedure	(e.g.	basin,	obsBad)	and	are	added	to	a	model
using	the	Build	feature	in	the	CRHM	pull	down	menu.

Macro.

				The	macro	feature	allows	the	user	to	create	simple	modules	as	text	commands
in	the	macro	screen	within	CRHM	instead	of	having	to	code	the	module	off	line
in	C++.		Macros	are	intended	for	testing	algorithms	and	diagnosing	model
output.			There	is	a	speed	penalty	and	limited	capability.

Check.	

				A	Selection	within	the	Construct	option	that	verifies	that	all	the	supporting
modules	required	by	the	modules	selected	for	the	current	model	are	available



and	attempts	to	load	these	modules	or	makes	suggestions	if	there	is	a	choice	of
modules.

Chart.

				Refers	to	the	graph	displayed	in	the	Graphical	Output	window	(TeeChart®)	
when	observing	data	or	outputing	model	results.

Spreadsheet.

				A	term	referring	to	the	table	containing	data.	Example	are	the	Build	and
Parameters	screens	in	the	CRHM	pull	down	menu.



Model	Concepts.

				A	CRHM	model	is	constructed	out	of	Modules	-	the	basic	building	blocks
implementing	the	model	algorithms.		The	modules	depend	upon	the	transmission
of	information	between	themselves	and	the	outside	world.		The	information	must
be	processed	in	an	orderly	manner	-	so	the	order	or	sequence	of	the	modules	in
the	execution	chain	is	important.		The	model	information	breaks	down	into	three
groups.

Parameters	-	physical	parameters	like	elevation,	area,
vegetative/agricultural	use	etc.	which	are	used	in	the	module	algorithms.	
Assumed	to	be	constants.		Also	used	as	initial	values	for	variables.
Observation	-	meteorology	information	providing	the	driving	force	of	the
model.	Source	is	data	files.		Could	also	be	generated	data.
Variables	-	state	variables	and	value	variables	which	store	the	states	of	the
modules	and	provide	the	interchange	of	values	between	the	modules.

Organisation.

				Sequence	or	Order	of	modules.

This	is	determined	from	the	variable	flow	through	the	model.			When	a	specific
module	requires	an	input	variable	from	another	module	it	follows	that	the
module	generating	the	required	variable	must	appear	earlier	in	the	chain	of
execution	of	modules.		Within	the	CRHM	platform	there	is	logic	that	will
automatically	order	the	modules	of	a	model	according	to	their	variable	hierarchy.

Parameters	must	be	defined	in	every	module	they	are	used	in.		The	CRHM
platform	has	the	capability	of	grouping	parameters	with	the	same	name	and	with
identical	values	for	each	HRU	together	and	calling	them	basin	parameters.		
Changing	the	value	of	a	basin	parameter	changes	the	value	for	every	module
sharing	the	parameter.

Observation	data	is	assumed	to	be	available	to	all	modules	from	the	beginning	of
a	time	period	till	its	end.		The	module	order	is	independent	of	the	observations.

				Problems	with	the	simple	concept.



When	models	are	only	run	over	a	short	time	period	of	time,		parameters	can	be
assumed	to	be	constant.		However,	most	parameters	gradually	change	with	time
and	can	change	dramatically	with	the	season.		They	in	fact	become	variables.

Observations	are	the	driving	force	of	the	model.	However,	they	are	not	constant
over	the	area	being	modelled	as	the	observations	have	to	be	interpolated	to
determine	actual	values	for	the	individual	HRUs	of	the	model.		The	observations
may	also	have	to	be	corrected	for	the	elevation	of	the	HRU.

Solution.

The	operation	of	parameters	and	observations	were	extended	to	handle	the
shortcomings	outlined	above.

				Parameters.

Since	operational	parameters	vary	with	time	and	season,		it	was	decided	to	make
them	input	variables	with	the	proviso	that	if	they	could	not	be	satisfied	by
another	module	output	they	would	link	to	a	constant	parameter	of	the	same	name
defined	within	the	current	module.		This	has	many	advantages.		Modules	can
inititially	be	tested	using	constant	parameters	when	the	variable	name	is
unsatisfied.	Later	they	can	be		inserted	into	a	functional	model	and	the	parameter
variable	satisfied	by	an	earlier	module	output	of	the	same	name	as	the	parameter.

				Observations.

Another	category	of	Observation	was	created.		This	combines	the	properties	of
an	observation	with	a	variable.		A	module	can	create	an	observation	which	can
satisfy	the	observation	input	requirement	of	a	later	module.		However,	if	a	file
observation	of	the	same	name	is	available,		it	will	override	the	module	generated
observation.		A	distinguishing	feature	of	a	module	generated	observation	is	that
it	determines	the	order	of	the	modules	in	the	model	as	if	it	was	a	normal
variable.

	

Observation	dimensions.



Some	ambiquity	arises	with	respect	to	observation	dimensions	which	is	made
more	difficult	by	the	fact	that	observations	generated	by	modules	are	normally
dimensioned	NHRU.

File	observations	are	normally	dimensioned	NOBS.		In	practice	most	often	there
is	only	a	single	observation	(not	a	value	for	each	HRU).		However,	the	module
call	to	declreadobs	returns	at	runtime	the	actual	number	of	observations
available	and	the	programming	logic	can	be	designed	to	handle	fewer	values.		In
the	case	of	macro	modules	the	observation	access	is	limited	to	the	maximum
number	of	legal	values.

File	observations	are	normally	dimensioned	as	NOBS.		The	value	of	NOBS	is
not	normally	of	much	use	as	it	returns	the	value	for	the	observation	with	the
maximum	number	of	observations.



Module	Interconnection.

				Module	varies	between	very	simple	and	complex	depending	upon	the	amount
of	control	the	user	builds	into	the	module.		Modules	have	three	types	of	inputs
and	two	types	of	outputs.

Observations.

				Observations	are	traditionally	measurements.		Since	the	number	and	variety	of
field	observations	vary	immensely,		provision	was	built	into	the	CRHM	Platform
to	make	them	optional.		An	example	of	the	use	of	this	feature	is	precipitation.		It
can	be	daily	or	interval.		To	handle	this	transparently	the	obs	module	asks	for
both	but	makes	them	optional.		Then	when	the	model	runs	it	accepts	whatever	is
available	and	scales	the	values	accordingly.

				Observations	may	be	available	for	every	HRU	or	may	only	be	collected	at	one
point.		CRHM	modules	can	handle	this.		In	modules	the	programmer	has	full
control	and	in	macro	modules	the	last	value	of	available	observation	data	is
duplicated	for	subsequent	HRUs.

				The	concept	of	declared	(module	generated)	observations	was	introduced.	
This	allows	the	user	to	generate	from	the	field	(measured)	observations	declared
(calculated)	observations	for	every	HRU.		An	example	of	this	is	the	macro
Slope_Qsi.			This	macro	generates	incoming	short	wave	radiation	on	a	sloping
HRU	from	one	measurement	of	incoming	short	wave	radiation	on	the	level	to
adjust	for	cloud	cover	using	theoretically	calculated	clear	sky	short	wave
radiation.

Variable	Inputs.

				Variables	are	the	quantities	exchanged	between	modules.		They	are	never
optional	as	it	assumed	that	modules	always	require	these	inputs.	The	fact	that
variable	inputs	are	mandatory	allows	the	CRHM	Platform	to	automatically
construct	a	model	from	individual	modules.

Parameters.



				Parameters	are	the	constant	spatial	and	physical	coefficients	required	by	the
modules.	They	can	with	the	same	name	exist	independantly	for	every	module	in
the	model	using	them.		However,	if	the	values	for	a	particular	parameter	are
identical	for	two	or	more	modules	when	the	project	is	saved	they	will	become
basin	parameters	the	next	time	the	project	is	loaded.

				It	became	evident	that	on	occasions,		parameters	are	not	constant	but	need	to
vary	over	the	course	of	a	model	run.		An	example	being	vegetation	height.		One
method	of	handling	this	is	to	change	the	vegetation	height	from	being	a
parameter	to	a	variable	input.		This	has	the	disadvantage	of	always	requiring	that
the	variable	input	height	must	always	be	satisfied	by	the	output	of	another
module.		An	alternative	method	is	to	leave	height	as	a	parameter	and	allow
modules	to	change	the	parameters	during	the	model	run.		This	can	easily	be	done
using	a	macro	module	which	can	read	the	vegetation	height	from	an	observation
file	or	calculate	the	crop	height	from	an	algorithm	and	change	the	parameter
every	interval.

AKA	Screen.

				Despite	all	the	flexibility	built	into	Observations	and	Variables	all	model
requirements	could	not	be	met.	Some	examples	follow.

1.	 Different	Time	Units.	-	Various	melt	models	were	implemented.		Some
calculate	melt	every	interval	and	others	over	a	day.		It	was	very	difficult	to
handle	the	output	of	the	different	melt	modules	without	customising	the
modules	that	received	their	output.	The	AKA	screen	allows	the	normal
connections	between	modules	to	be	broken	and	custom	modules	to	be
inserted	to	convert	outputs	to	match	the	requirements	of	the	next	module.
This	could	be	mean	a	change	in	units	or	interval,	day	to	interval	or	vice
versa.

2.	 Modules	requiring	enhanced	observations.
3.	 User	Name	Preferences.	-	Simple	observation	names	may	be	renamed.	E.g.

"t"	can	be	renamed	"T"	etc.

	

CRHM	Criteria	for	linking	modules	to	create	a	model.

				The	order	that	modules	appear	in	the	flow	diagram	is	the	order	that	they	are



executed.		If	a	module	output	is	used	in	an	interval	before	the	module	is	executed
the	variable	value	used	will	be	the	model	initial	value	in	the	case	of	the	first
interval	or	the	previous	interval	value	there	after.		State	variables	are	handled	as
a	special	case.		Their	values	are	continuous	and	there	last	interval	value	is	often
used	to	calculate	their	new	value	for	the	current	interval.	Examples	are	albedo
and	SWE.

1.	 Modules	are	arranged	by	variable	input	requirements.
2.	 State	variables	are	ignored	in	the	arrangement	of	the	modules.		This	may	be

overridden	using	the	setpeer	command	if	neccessary.
3.	 Modules	are	arranged	by	declared	observation	requirements.
4.	 Parameters	never	influence	the	arrangement	of	modules.
5.	 The	setpeer	command	delays	the	loading	of	a	module	until	the	declared

variable	input	is	available	(i.e.	calculated	for	current	interval).



System	Requirements

An	IBM®-compatible	machine	with	a	Pentium	or	AMD	processor.
CD-ROM	or	USB	drive.
A	hard	disk	with	at	least	50	megabytes	of	available	disc	space.
Microsoft	Windows	98,	ME,	XP,	NT	or	later.
A	graphics	display	compatible	with	Microsoft	Windows.
At	least	32	megabytes	of	available	RAM.



Introduction.

The	CRHM	program	is	installed	from	a	downloaded	installation	file
"CRHM_Distribution.zip".	The	program	will	run	on	Microsoft	operating
systems.	However,	on	Apple	operating	systems	a	Windows	emulator	is	required.	

Complete	the	following	steps	to	be	able	to	run	CRHM	on	your	Windows
computer.

Installing	CRHM.

1.	 Run	'Setup.exe'	on	the	CRHM	installation	file.
2.	 Correct	Name	and	Company	if	the	default	on	your	system	is	incorrect.
3.	 Select	the	installation	directory.	The	default	is	'c:\Program	Files\CRHM'.		

Another	choice	might	be	'C:\CRHM'.
4.	 Select	the	program	folder	name.	Default	is	good.
5.	 Application	can	be	launched	immediately.
6.	 Exit

	Note.

				When	CRHM	is	installed	in	the	directory	'c:\Program	Files\CRHM'	most
installations	will	not	allow	the	user	to	write	to	the	sample	files	(i.e.	edit	them)	as
the	permission	is	READ	only.	It	is	suggested	that	these	sample	directories	be
copied	to	a	location	where	the	user	has	full	READ/WRITE	privileges.

Module	Distribution	Files.

CRHM.chm	-	HTML	help	file	for	all	models.
Newodules.chm	-	HTML	help	file	for	modules.
Macro.chm	-	HTML	help	file	for	macro	programming.
CRHM.exe	-	Self	standing	non	extendable	model.
Newmodules.cpp	-	Module	C++	code.	Provided	for	reference	only.
NewModules.h	-	Module	C++	header	file.

The	first	three	help	files	are	also	supplied	as	PDF	files.



Command	line	interpreter.

				Normally	CRHM	is	used	as	a	window	program.		However,		in	order	that	it	can
execute	from	a	project	file	or	display	an	observation	file	it	must	have	a	command
line	interpreter	(cil).

The	cil	is	able	to	handle	project,	observation	and	parameter	files.		An	example	is
"CRHM_new.exe	Project.prj	MyObs1.obs	MyObs2.obs	Myparam1.par
Myparam2.par".	No	special	error	handling	is	implemented	and	any	errors	will
cause	the	loading	to	stop	and	the	program	display	the	error.	Use	double	quotes	to
wrap	multiple	words	as	one	parameter	(such	as	long	file	names	containing
spaces),	e.g.	"C:\Program	Files\CRHM\Examples\MacroExample1.prj"

1.	 *.prj	-	only	the	first	project	file	is	recognized.		Any	other	is	ignored.
2.	 *.obs	-	multiple	observation	files	can	be	loaded.		No	error	handling	is	done.

		Faulty	file	format	or	duplicate	variable	definitions	will	stop	the	loading.
3.	 *.par	-	multiple	parameter	files	can	be	loaded.		The	project	file	using	all	the

parameters	must	be	loaded	first.		If	parameters	are	doubly	defined	this	is	not
recognised	as	an	error.		However,	unknown	parameters	will	cause	an	error
stopping	loading.		An	error	will	occur	if	there	are	too	few	parameter	values
defined	for	a	parameter,	i.e.	number	of	values	not	equal	to	the	number	of
HRUs	in	the	model	or	group.

Automation.

				For	optimisation	it	is	convenient	to	run	a	model	and	generate	output	and
change	the	value	of	the	parameter	and	repeat.		After	multiple	runs	the	output
files	are	processed	with	the	parameter	changes	to	determine	sensitivity	etc.
CRHM	has	this	capability.

1.	 Create	a	project	file	for	the	desired	modules.
2.	 Save	the	project	file	with	these	options	set:	AutoRun,	AutoExit	and	either

Log/Last	or	Log/All.
3.	 From	the	saved	project	or	parameter	file	create	a	series	of	batch	parameter

files	to	insert	in	the	command	line	to	vary	the	desired	parameter.
4.	 Change	the	basin	RUN_ID	parameter	every	CRHM	execution	to	identify

the	model	output	file,		file	name	is	CRHM_output	with	RUN_ID	appended.
5.	 CHRM	just	before	closing	sets	the	registry	entry,		



HKEY_CURRENT_USER/CRHM_output/basin	RUN_ID	to	the	integer
value	of	RUN_ID.	By	checking	this	registry	entry	a	calling	program	can
check	the	progress	of	CRHM	in	processing	command	line	requests.

6.	 In	Microsoft	Excel,	code	from	
http://www.cpearson.com/excel/ShellAndWait.htmt	can	be	used	to	ensure
that	the	last	process	is	blocked	until	the	Excel	RefreshAll	picks	up	all	the
new	values.

	

http://www.cpearson.com/excel/ShellAndWait.htmt


Introduction.

				The	CRHM	model	has	the	following	help	files	which	are	accessible	from	the
Help	menu	within	CRHM	or	can	be	run	as	separate	applications.

				1)	CRHM.chm	-	describing	the	operation	of	the	CRHM	platform.						2)
New_Module.chm		-	describing	the	hydrological	modules	included	with	CRHM.
				3)	Macro	-	describing	advanced	features	in	CRHM	available	to	write	simple
modules	and	debugging.

				PDF	conversions	of	these	files		are	also	distributed.

Run	CRHM	using	one	of	the	following	methods.

1.	 				Select	"Start/All	Programs/CRHM	Programs".
2.	 				Double	click	on	the	CRHM	shortcut	on	the	desktop.
3.	 				Double	click	on	a	project	or	observation	file	indicated	by	a	*.prj	or	*.obs

extension	respectively.
4.	 				Select	a	project	or	observation	file	indicated	by	a	*.prj	or	*.obs	extension

respectively	and	right	click	"SendTo"	and	then	the	version	of	CRHM
required.

Sample	Project	and	Observation	files.

				These	directories	are	installed	in	the	same	directory	as	CRHM.exe	by	the
installation	software.

				1)			CRHM_project_examples	-	provides	comprehensive	example	projects	for
diverse	climatic	regions	in	Canada.
				2)			Examples	-	simple	examples	including	some	macro	module	examples.
				3)			Examples2	-	Macro	examples.

NOTE:	Always	click	on	the	left	side	of	the	mouse	when	asked	to	select	an	option
or	feature	in	CRHM	unless	otherwise	instructed.		Then	a	right	click	will	display
any	choices	of	action	available.



Main	Window.

				The	Cold	Regions	Hydrological	Model	Platform	program	is	run	from	this
window.		Options	not	available	in	the	program	version	being	used	are	greyed
out.



Project.

The	Project	menu		provides	selections	that	apply	to	the	project.		It	allows	a
complete	model	to	be	saved	in	a	file	(*.prj).	A	previously	saved	model	may	be
loaded	and	run.	Every	detail	of	the	model	is	saved,	including	model	modules,
observation	files,	Dll	files,	parameters,	states,	times	and	variables	and
observations	displayed.

The	usual	file	options	are	available;	Open,	Save,	Save	As,	Close	and	Exit.

Report.

					This	choice	generates	a	report	giving	all	the	particulars	of	the	the	current
model.		It	may	be	written	to	a	file	or	be	printed.	There	are	also	other	selections
for	program		maintenance.	The	normal	choices	are:	.

				Hierarchy

				This	option	is	used	to	check	that	the	modules	are	used	in	the	correct	order	in
the	project	and	that	variables	are	never	used	until	the	latest	value	for	the	current
time	step	is	calculated..

				Extract	Group

				This	option	allows	a	single	group	of	a	complex	model	to	be	extracted	and	run
as	a	simple	project	for	debugging	purposes	or	inclusion	in	another	project.

				Extras

					NaN_check	-	used	to	check	variable	data	for	out	of	range	values.	Resets	to
OFF	after	the	next	model	run.

					LogVarLoad	-	normally	the	output	variables	in	the	Variables	Selected	listbox
are	loaded	from	the	project	file.	When	this	option	is	selected	the	ouput	is	filled
from	every	occurrence	in	the	current	project	of	the	variables	listed	in	the	file:
'LogVarLoad.lvl'.	This	file	contains	only	one	line.	This	line	uses	spaces
or	commas	as	the	delimiter	between	the	desired	variables.



					For	example	if	the	first	line	of	the	file	is	"soil_moist,	soil_rechr	SWE",		for	a
simple	project	the	Variables	Selected	listbox	would	be	filled	with	-	soil_moist(1)
...	soilmoist(nHRU)	+	soil_rechr(1)	...	soilrechr(nHRU)	+	SWE(1)	...
SWE(nHRU).
					For	a	group	project	the	Variables	Selected	listbox	would	be	filled	with	-
soil_moist@A(1)	...	soilmoist@A(nHRU)	+	soil_rechr@A(1)	...
soilrechr@A(nHRU)	+	SWE@A(1)	...	SWE@A(nHRU),	where	nhru	is	the
number	of	HRUs	in	group	A.
																						+		soil_moist@B(1)	...	soilmoist@B(nHRU)	+	soil_rechr@B(1)	...
soilrechr@B(nHRU)		+	SWE@B(1)	...	SWE@B(nHRU).	where	nhru	is	the
number	of	HRUs	in	group	B.
																						+		repeated	for	all	other	groups	in	the	project.

				Log	Time	Format

				The	default	time	format	is	the	Microsoft	decimal	number	of	days	from	the
year	1900.	This	can	be	changed	to	MM/DD/YYYY	or	YYYY-MM-DD	from	the
default	MS	format.

				File,	Execution	thru	RenameGroup

				These	choices	are	only	used	for	program	diagnostics

							

AutoRun.

				This	choice	determines	if	a	model	is	automatically	run	when	a	project	is
loaded.

AutoExit

				This	choices	causes	CRHM	to	exit	after	completing	the	project	run.	Used	for
batch	runs.

Log.



				When	a	model	is	run	Log	provides	three	options	for	saving	the	model	ouput
and	mass	balance	to	a	file,		"CRHM_output[_nn].txt/.log"	file	suitable	for
importing	into	another	application.

1.	 Last	-	The	values	of	the	selected	variables	are	saved	for	the	last	time
step	of	the	model	run	to	the	log	file	with	the	extension	'txt'.

2.	 All	-	The	values	of	the	selected	variables	are	saved	every	time	step	of
the	model	run	to	the	log	file	with	the	extension	'txt'.

3.	 Debug_Screen	-	Writes	the	debug	screen	to	a	file	with	extension	'.log'.
4.	 Summary	-	Writes	the	variables	requested	by	the	user	to	be

summarized	are	written	to	a	file	with	the	extension	'.sum".

				The	output	file	name	is	"CRHM_output"	except	when	the	basin	RUN_ID
parameter	is	greater	than	zero,	then	the	ID	value	is	appended	using	an
underscore,	e.g.	"CRHM_output_123"	for	an	ID	value	of	123.			The	file	is
always	saved	in	the	project	directory.		

				The	format	of	the	data	text	file	is	as	follows.		The	first	line	of	the	file	consists
of	the	text	"time"	followed	by	the	selected	variable	names.		The	next	line
consists	of	the	text	"units"	followed	by	the	variable	units.	In	the	case	of	the
'Summary'	screen	the	user	will	have	to	modify	the	units	listed	according	to	the
fuction	used	and	the	timebase	to	generate	the	output.	The	subsequent	lines	have
the	model	time	in	the	first	column	followed	by	the	variable	values	for	the	time
step.		This	format	is	easily	imported	into	Excel	and	other	applications.	An
alternative	method	of	saving	the	model	output	is	to	use	the	Export	menu	which
supplies	more	flexibility	but	cannot	be	automated.

				The	debug	screen	is	copied	as	displayed	to	the	file.

SaveChartTemplate.

				Using	the	TChart	editor	the	graphical	screen	appearance	can	be	changed.	This
option	allows	the	chart	theme	to	be	saved	to	the	project	file.

Plot	refresh	rate.

				Updating	the	graphics	screen	significantly	slows	down	CRHM.	This	option
allows	the	update	rate	to	be	set.	Not	refreshing	the	graphics	screen	until	the



model	run	is	finished	is	fastest.	

Freq_Default.

				When	a	CRHM	project	without	an	observation	is	executed	this	option	sets	the
timestep.	An	example	is	a	project	only	using	the	module	"global".							



Observations.

Observation	files	are	selected	using	the	Observations	feature	from	the	CRHM
pull	down	menu.	Multiple	files	may	be	selected	but	the	first	file	specified
determines	the	maximum	modeling	period	and	the	time	step	used	by	the	model.
Later	files	will	be	skipped	over	to	the	start	time	of	the	first	file	and	may	end
earlier	than	the	first	file.	Later	files	need	not	have	the	same	frequency	as	the	first
file.	The	data	in	the	later	files	may	also	be	discontinuous	(sparse).		When	the
model	is	saved	as	a	project	all	the	observation	file	names	are	saved	with	the
model	in	the	project	file.

NOTE:	At	any	point	during	the	operation	of	the	model,	the	user	can	check	the
lower	left	hand	corner	box	of	the	CRHM	window	to	automatically	view	the
status	of	the	program.	This	box	will	also	identify	and	describe	the	feature	on	the
CRHM	window	that	the	cursor	is	pointing	to.

Selecting	Observations	from	the	main	menu	gives	the	following	choices,

Open.

				Opens	an	Observation	File.		When	an	observation	file	is	opened	all	the
observation	data	names	defined	in	the	file	are	displayed	in	the	Observation
listbox.		When	any	of	the	names	are	selected,		the	description	of	the	data	if	given
in	the	data	file	is	displayed	in	the	status	box	followed	by	the	file	name.			When
an	observation	file	is	opened,		its	name	is	added	to	the	observation	menu	list.	
The	file	may	be	closed	by	selecting	the	file	name	on	the	menu	list.

CloseAll.

				Closes	all	open	observation	files.

Displaying	Observations.

			If		an	observation	is	selected	and	right	clicked	a	menu	pops	up	allowing	the
observation	to	be	added	to	the	Selected	listbox.	Observations	listed	in	the
Selected	listbox	are	immediately	displayed	on	the	chart.

CRHM.chm::/introduction_terminology.htm#Observations


Formats	for	displaying	Data.

Observation	-	interval	data.

VP_saturated	-	Saturated	vapour	pressure	for	temperature

W_to_MJ	-	the	data	is	converted	from	Watts	to	Mega	Joules	per	time	interval.

MJ_W	-	the	data	is	converted	from	mega	Joules	per	time	interval	to	Watts.

Average	-	daily	average	value.

Minimum	-	daily	minimum	value.

Maximum	-	daily	maximum	value.

Daily	Sum	-	sum	of	daily	interval	values.

Positive	-	sum	of	daily	interval	values	that	are	greater	than	zero.

Total	-	total	of	interval	values	over	run	period

First	-	displays	data	once	at	the	beginning	of	the	day.

Last	-	displays	data	once	at	the	end	of	the	day.

Peak	-	peak	value	over	period.

Count	-	number	of	intervals	when	the	value	is	non	zero.

Count0	-	number	of	intervals	when	the	value	is	zero.

Delta	-	change	in	the	variable	over	the	period.	For	the	first	period,	the	first	value
is	used	as	the	datum.	Thereafter,	the	last	value	of	the	last	period	is	used.



Build	menu.

				The	Build	feature	of	the	CRHM	pull	down	menu	allows	the	user	to	choose
pre-defined	models,		build	their	own	model	from	the	available	modules	and	to
delete	all	modules	from	the	current	model.

pre-defineded	models.

				The	pre-defineded	models	are	created	by	the	creator	of	modules	to
demonstrate	the	module	application.		Current	examples	are	Evap	and	PBSM.		To
change	the	number	of	HRUs	or	layers	from	their	current	values,		the	user	must
use	Clear	Modules	if	an	existing	model	is	loaded	and	then	change	the	number	of
HRUs	or	layers.

Clear	Modules.

				This	menu	option	removes	all	currently	selected	modules.		It	should	be	used
before	defining	a	new	model.		Unless	Clear	Modules	is	executed	it	is	not
possible	to	change	the	number	of	HRUs	or	layers	from	their	current	values.

Construct.

				The	Construct	screen	allows	the	user	to	add	or	delete	modules	from	the
current	model	and	to	retrieve	more	information	about	a	module	interface.		
Models	can	be	checked	and	built.

	

Defining	Models.

				On	the	lower	right	hand	corner	of	the	Construct	window	there	are	two
UpDown	controls	called	MAXLAY	and	MAXHRU.	These	allow	the	user	to	set
the	number	of	HRUs	or	layers	to	be	used	in	the	model.		These	should	be	set
before	any	modules	are	added.		To	change	the	dimensions	for	an	existing	model
it	must	be	rebuilt	from	scratch	after	changing	the	dimensions.		A	parameter	file
from	the	original	model	will	reload	all	the	parameters	correctly	if	the	number	of
dimensions	is	the	same	or	reduced.			However,	if	the	number	of	dimensions	is



increased	the	extra	dimension	of	parameters	will	be	set	to	the	values	of	the	last
HRU	defined.		Any	new	modules	added	will	have	the	module	default	parameter
values.

				The	Construct	window	displays	on	the	left	hand	side	a	list	of	all	the	available
modules.	When	a	module	is	selected	a	spreadsheet	on	the	right	hand	side	of	the
screen	displays	the	module	interface.		This	description	includes	required	inputs,
parameters,	observations	and	variables	and	also	the	output	variables	generated
by	the	module.

				By	right	clicking	on	a	module	in	the	Modules	Available	box	the	module	will
be	added	or	deleted	from	the	model.	When	assembling	a	model	the	last	module
should	be	selected	and	then	the	Check	option	selected.	CRHM	will	then
determine	the	supporting	modules	required	and	add	them	to	the	model	by
moving	them	to	the	Selected	listbox.		When	a	module	has	wildcard	inputs	the
program	can	only	make	suggestions	to	which	modules	will	satisfy	the	input
requirements.		The	user	can	then	add	the	desired	module	from	the	list	of
suggestions.

				Selecting	the	Build	option	box	exits	the	screen	making	the	new	model	the
current	model.		If	changes	are	made	to	an	existing	model	the	user	will	be	asked
if	they	wish	to	save	their	existing	parameters	to	a	*.par	or	*.dbx	file	for
reloading	by	the	user	after	the	the	modified	model	is	built.		N.B.	It	is	preferable
to	use	*.par	files	as	*.dbx	files	are	limited	to	10	character	parameter	names.

				The	Cancel	option	box	exits	the	screen	without	making	any	changes	to	the
model.

	

Creating	a	Model	from	scratch.

				Run	CRHM	and	do	not	load	any	project	or	modules.

1.	 Set	#	of	HRUs	to	the	desired	value.
2.	 Load	module	basin	if	it	is	desired	to	give	HRUs	text	names.
3.	 Load	other	modules.
4.	 Build	model	-	no	need	to	save	parameters.
5.	 Set	parameters	to	desired	values.



6.	 Save	model	to	a	project	file.

Having	observation	files	open	does	not	affect	the	build	procedures	but	the	file
names	will	be	saved	with	the	project.



Parameters	or	Coefficients.

				The	Parameters	feature	from	the	CRHM	pull	down	menu	allows	the	user	to
incorporate	the	physical	and	spatial	data	requirements	of	the	modules	.	The
basin/HRU	spatial	data	can	be	manually	inserted	into	the	model	or	imported	as	a
file	with	a	(.par)	or	(.dbf)	extension.	When	the	model	is	saved	as	a	project	all	the
parameters	are	saved	with	the	model	in	the	project	file.

				The	Parameters	window	displays	on	the	left	hand	side	a	list	of	all	available
modules.	When	a	module	is	selected	from	the	Modules	box,	the	spreadsheet
displays	the	number	of	HRUs,	parameter	type	and	parameter	value.	The
Maximum	and	Minimum	value	of	each	parameter	is	also	displayed.	It	is	in	this
spreadsheet	that	the	parameter	value	can	be	highlighted	and	altered.	When	the
parameter	value	is	selected,	the	extended	description	of	each	parameter	is	given
along	with	its	units.	This	is	visible	on	the	Parameters	window	on	the	lower	left
hand	corner	to	the	right	of	Help	and	Units.

				Basin	Parameters	are	parameters	that	are	shared	between	modules	using
identical	values.		The	program	when	originally	loading	modules	into	the	model
determines	which	parameters	are	shared	and	have	the	same	values	for	all	HRUs
and	converts	them	into	basin	parameters.		To	make	parameters	local	to	a	module
go	to	the	parameter	window	and	select	the	module,	then	click	on	'basin'	opposite
the	parameter	it	is	desired	to	make	local.		If	these	local	parameters	are	ever	set
equal	to	the	basin	parameter	of	the	same	name,	they	will	resort	back	to	the	basin
parameter	but	only	after	the	model	is	saved	and	the	project	is	reloaded.	Basin
parameters	are	displayed	at	the	bottom	of	the	spreadsheet	flagged	as	'basin'.	
Basin	parameters	are	edited	by	clicking	on	the	module	'basin'.		Changes	apply	to
all	modules	using	the	basin	parameters.

Once	established,	the	parameters	for	the	model	can	be	saved	with	the	File	pull
down	menu.	The	File	pull	down	Open	option	allows	parameter	(.par)	files	and
(*.dbf)	files	to	be	imported.

Handling	Parameters	when	Adding/Removing	Modules.

				Every	time	a	model	is	'Built'	the	parameters	in	all	modules	revert	back	to	the
default	values	programmed	into	the	individual	modules.		To	overcome	this
CRHM	queries	the	user	if	they	want	to	save	the	current	parameters	into	a



parameter	file	(.par).		After	the	model	is	'Built'	immediately	re-load	using	the
Parameter	screen	the	original	parameters	saved	in	the	*.par	file.		The	original
model	parameters	will		be	loaded	if	the	number	of	dimension	remains	the	same
or	is	reduced.			However,	if	the	number	of	dimensions	is	increased	the	extra
dimension	of	parameters	will	be	set	to	the	values	of	the	last	HRU	defined	in	the
parameter	file.		Any	new	modules	added	will	have	the	module	default	parameter
values

Parameter	Setting	Precedence.

				When	a	project	is	loaded	the	parameter	values	are	assigned	values	using	the
following	sequence.

1.	 Module	parameters	are	given	the	default	parameter	values	defined	in	the
original	module	code.

2.	 The	'basin'	parameters	values	defined	in	the	project	file	are	given	to	all
parameters	of	that	name	(e.g.	"hru_area").		Applies	to	every	module	or
group	using	the	specified	parameter.

3.	 Parameters	specified	by	module	and	group	are	set	to	the	values	given	in	the
project	file.

Converting	Module	parameters	to	Basin	parameters.

				CRHM	was	written	to	allow	individual	module	parameter	values	to	be
different	from	the	global,	i.e.	basin	values	for	test	purposes.		To	return	a	module
parameters	to	global	parameters,	e.g.	'evap	-	Ht'	to	'basin	-	HT',	all	the	heights
must	be	made	identical	and	the	project	saved	and	then	the	model	reloaded	from
the	project	file.

Creating	a	Model	from	a	DataBase	File	(.dbf).

				A	new	model	can	be	created	using	parameters	created	by	a	GIS.	The
ArcView®	database	file	(*.dbf)	contains	the	parameters	(fields)	for	all	the	HRUs
(records)	in	the	model.		The	database	file	is	loaded	from	the	Parameter	screen
using	the	file	menu	before	any	modules	are	loaded.		The	#	of	HRUs	is
automatically	set	to	the	number	of	records	in	the	database	file	and	a	basin
module	is	created.		The	user	can	then	proceed	to	the	Build	screen	and	select	the
desired	modules	for	the	model.		When	the	new	model	is	being	built,	CRHM	asks



if	the	current	parameters	should	be	saved.	Reply	YES	and	supply	a	file	name
(.par).			After	the	model	is	built	return	to	the	Parameter	screen	and	load	the
parameters	from	the	temporary	file	(.par)	that	you	saved	them	in.

Incompatible	Parameter	Names.

				CRHM	parameter	names	use	upper	and	lower	characters	and	it	appears	that
the	ArcView®	database	file	(*.dbf)	must	be	uppercase	only.		To	manage	this
problem	every	parameter	name	when	raised	to	all	uppercase	must	be	unique.	
For	example,	hru_GSL	and	hru_gsl	are	not	unique	and	represent	the	same
parameter.		The	actual	parameter	name	appearing	in	the	model	is	that	declared	in
the	first	module	loaded	in	which	the	parameter	is	used.		The	following	names	in
the	first	column	are	the	ArcView®	database	file	(*.dbf)	names	and	the	second
column	gives	the	CRHM	model	names	as	determined	from	the	CRHM	module
'basin'.

BASIN_AREA				basin_area

HRU_AREA				hru_area

HRU_ELEV				hru_elev

HRU_LAT				hru_lat

HRU_ASL				hru_GSL

HRU_ASL				hru_ASL

	



State.

				The	State	feature	from	the	CRHM	pull	down	menu	allows	the	final	state	of	a
model	run	to	be	saved.	This	final	state	can	then	be	used	as	the	initial	state	of	a
sequential	model	run.

				A	good	example	of	the	value	of	this	feature	is	if	snowmelt	is	being	examined
using	different	parameters.	Instead	of	always	having	to	run	the	model	from	the
previous	fall	every	time	the	model	is	executed,	save	the	final	State	of	the	fall	to
March	run.	Then	the	model	need	only	be	Run	from	April	to	the	end	of	melt
using	the	final	State	of	the	earlier	Run	as	the	initial	State	for	the	April	Run.

Notes.

				When	an	intial	state	file	is	used	the	state	values	are	loaded	into	the	CHRM
model	variables	after	the	Module::init	routines	have	been	executed	but	before
the	Module::run	rountines	are	executed	for	the	first	time	in	the	model	run.		This
ensures	that	variables	set	by	decisions	made	at	earlier	times	are	maintained	and
are	not	dependent	upon	the	Module::init	routines	handling	past	events	correctly.

				The	State	of	the	model	is	assumed	to	be	described	fully	by	the	model	state
variables.

			Saving	the	final	state	of	a	model	run	to	a	file	happens	only	once,	i.e.	after	the
final	state	is	saved	to	the	specified	file,		the	file	name	must	be	re-entered	before
it	will	be	written	to	again.		When	the	file	to	save	the	final	state	is	specified,	it	is
not	displayed	anywhere.	On	the	other	hand	the	initial	state	file	name	is
remembered	and	displayed	in	the	State	pull-down	menu	and	used	every	model
run	until	cancelled	by	clicking	on	the	file	name.



Select	Output	Variables.

This	is	done	by	left	clicking	on	the	desired	output	in	the	Variables	ListBox	and
then	right	clicking	and	choosing	from	the	drop	down	menu	from		Add/
HRUsAdd/	LaysAdd/	HRUsAddLaysAdd	.	The	selection	will	appear	in	the
Selected	box,	located	immediately	to	the	right	of	the	Variables	ListBox.	The
number	in	brackets	is	the	HRU/LAY	selected.	If	the	requires	the	same	output	for
a	different	HRU	use	the	up/down	arrows	on	the	HRU	box	located	immediately
below	the	Variables	box.	If	the	HRUsADD	or	LAYsADD	selection	is	made	then
the	HRUs	or	LAYs	are	added	from	the	selected	HRU/LAY	to	the	maximum
possible	value.

	The	variables	ListBox	has	several	ways	of	listing	variables.	The	default	one	is
Variables	by	Module.	By	clicking	on	the	title	the	display	may	be	cycled
through		Variables	by	Module/	Diagnostic	Variables/	Private	Variables/	All
Varables.



Modifying	selected	variables.

First	select	a	variable	from	the	selected	variables	ListBox.	Then	right	click	and
choose	from	the	following	choices	Delete/	Negate/	Abs/	AddObsFunct.	The
first	three	choices	are	straightforward.	The	last	one	applies	the	previously
selected	observation	function	to	the	selected	variable	and	displays	the	compound
name	in	the	Observation	selected	ListBox.	The	trace	will	not	appear	until	values
for	the	variable	are	available.



Run

CRHM	is	executed	by	selecting	Run	from	the	CRHM	pull-down	menu.	Run	will
not	execute	the	model	unless	at	least	one	model	output	has	been	selected	from
the	Variables	box	on	the	upper	left	hand	side	of	the	CRHM	window.

You	can	now	watch	the	Graphical	Output	window	as	CRHM	executes	the
model	and	updates	the	output.	The	status	display	box	on	the	lower	left	hand
corner	of	the	CRHM	window	will	show	you	the	progress	of	CRHM	outputting
the	data.

The	model	run	may	be	interrupted	by	right	clicking	on	the	plot	area.		A	menu
will	appear	allowing	the	user	to	select	an	action	from,

1)	continue,

2)	terminate	the	run	immediately,

3)	daily	update,

4)	bi-weekly	update,

5)	weekly	update,

6)	monthl	updatey,

7)	yearly	update	and

8)	update	at	end	of	run.

When	'update	at	end	of	run'	is	selected	the	user	must	wait	until	the	run	is	finished
to	regain	control.	The	date	is	not	updated.

The	project	execution	time	is	consderably	reduced	by	limiting	the	chart	update
frequency.



Modifying	Graphical	Display.

The	data	displayed	on	the	chart	is	controlled	by	the	contents	of	the	Variable	and
Observation	Selected	ListBoxes.	The	observation	traces	will	appear	immediately
after	their	selection.	The	variable	and	variable	function	traces	will	be	drawn	as
soon	as	their	data	is	available.



Flip-Tics.

This	a	convenient	way	of	changing	the	traces	displayed	on	the	chart.	Left
clicking	on	the	Flip-Tics	button	will	compliment	the	variable	traces	and	right
clicking	will	compliment	the	observation	traces.	Where	compliment	means
turning	the	traces	which	were	ON	to	OFF	and	those	that	were	OFF	to	ON.	Using
the	flip-Tics	button	while	the	Ctrl	key	is	depressed	will	toggle	all	the	variable	or
observation	traces	between	ON	and	OFF.	Flip-Tics	actions	apply	to	all	traces
even	if	they	do	not	show	in	the	legend.



Number	of	Traces	Exceed	the	Legend	Size.

There	is	no	ScrollBar	on	the	legend	so	traces	not	displayed	in	the	legend	cannot
be	individually	turned	ON	and	OFF.	However,	there	is	a	comprehensive		editing
feature	in	the	TChart	editor.	This	feature	may	be	entered	by	clicking	on	the
ICON	displaying	a	pencil/square/rule	in	the	top	left	hand	corner	of	the	chart.



Export.

				The	Export	feature	from	the	CRHM	pull	down	menu	allows	you	to	examine
your	output	as	a	list	in	a	window	and	to	write	it	to	a	file	in	a	variety	of	formats.
The	Excel	choice	can	be	easily	imported	to	Microsoft	Excel.	The	Observation	(
YY/MM/DD	hh:mm)	and	Excel		formats	allow	the	file	to	be	used	as	input	to
CRHM.	The	other	options	display	in	various	formats	of		MM/DD/YY	hh:mm
and	Julian	day.

				When	previewing,	only	500	lines	are	displayed	at	a	time.		To	preview	the	next
500	lines	click	the	preview	button	again.

Methods	of	Displaying	Data.

Description extension frequency
Observations none interval
Watts	to	MJ/int _WtoMJ interval
MJ/int	to	Watts _MJtoW interval
Average _Avg daily
Minimum _Min daily
Maximum _Max daily
Daily	sum _Sum daily
Positive _Pos daily
Total _Tot daily
Total/Freq _Tot/Freq daily
First _First daily
Last _Last daily

Notes.

The	fundamental	output	time	step	is	given	in	the	table	above.
The	extension	indicates	the	method	used	to	output	the	data.	The	basic
observation	has	no	extension.
The	first	method	used	determines	the	interval	used	in	the	output.



If	the	first	output	is	interval	then	any	following	daily	values	are	repeated
every	interval	of	the	day.
If	the	first	output	is	daily	then	any	following	interval	values	output	only	the
first	interval	value	of	the	day.
When	the	output	is	displayed	on	the	screen	the	heading	gives	the	number	of
lines	of	data	that	is	available	to	display.

			



Analysis

The	Analysis	feature	from	the	CRHM	pull	down	menu	allows	the	user	to
perform	statistical	analysis	on	the	output	data.	There	are	several	Analysis	options
that	will	not	be	examined	in	this	exercise	but	will	be	covered	in	detail	in	Chapter
7.	Upon	selecting	Analysis	for	the	CRHM	pull	down	menu	you	will	see	evap(1)
and	evap(2)	in	the	upper	left	box	of	the	Analysis	Form	window.

DO:	select

1.	 Analysis
2.	 Right	toggle	arrow	in	lower	centre	of	Analysis	Form	window	until	Order	5

is	displayed
3.	 Left	click	evap(1)

You	should	see	the	largest	box	in	the	centre	of	the	Analysis	Form	window	scroll
through	the	evap(1)	output	data.	CRHM	will	create	a	polynomial	at	the	top	of
the	same	window	and	create	a	graph	in	the	box	to	the	right	showing	the	data	in
red	complete	with	regression	curve	displayed	in	green.

You	will	see	several	more	options	on	the	Analysis	Form	window	that	will	be
discussed	further	in	Chapter	7.

DO:	select

1.	 File
2.	 Exit



Log

					The	Log	feature	from	the	CRHM	pull	down	menu	displays	the	log	screen
consisting	of	two	scrolling	windows.	The	top	window	displays	information
about	the	model	build.	Entries	consist	of	ERRORS	and	WARNINGS.	Any	errors
are	fatal	and	the	model	run	will	terminate.		Before	proceeding	any	further	the
user	will	have	to	rectify	the	problems.	An	example	of	an	ERROR	is	when	a
required	observation	is	missing	from	the	observation	file(s).	An	example	of	a
warning	is	when	the	model	informs	the	user	that	the	model		is	using	ppt	(the
daily	precipitation	divided	by	the	number	of	intervals/day)	and	not	the	actual
interval	precipitation	p		.

				The	lower	window	is	used	to	display	information	from	the	module.		Its	use	is
determined	by	the	module	designer.	Possible	applications	might	be	to	inform	the
user	if	a	variable	has	a	value	outside	its	normal	range	or	the	model	is	proceeding
without	meeting	desired	criteria.	Another	use	is	for	debug	output	during	module
development.



AKA	Screen.

				The	AKA	function	was	used	in	the	development	of	CRHM	to
provide	features	before	they	could	be	implemented	properly.	It	is
not	supported	and	should	never	be	used.

				The	AKA	menu		provides	an	overview	to	all	the	inputs	and	outputs	of	a
CRHM	model.		It	has	two	major	views,

1.	 Variables	-	shows	all	module	output	and	input	variables.
2.	 Observations	-	displays	all	observations	pertaining	to	the	model.	

Observations	are	denoted	as	simple	or	declared	(terminated	with	a	'#'
SYMBOL).		The	former	are	from	original	meteorological	data	and	the	latter
are	module	generated	observations,	usually	derived	from	the	former,	i.e.
from	meteorological	data.

				The	main	purpose	of	this	screen	is	to	control	the	flow	of	observations	within	a
model.		An	important	secondary	use	is	to	allow	the	user	to	rename	simple
observations.

Screen	Components.

				The	centre	of	the	screen	is	a	spreadsheet.		The	two	columns	on	the	right	hand
side	lists	the	outputs	and	their	sources.	These	are	available	for	inputs	to	other
modules.	The	source	can	be	a	module	or	'observation'	if	a	simple	observation.
Along	the	top	of	the	spreadsheet	the	modules	and	their	inputs	are	listed	and
underneath	the	input	is	listed	again	opposite	its	source.

Radio	buttons.

				By	selecting	one	of	the	two	mutually	exclusive	buttons,		the	user	can	choose
the	Variables	or	Observations	display.

Script.

				This	text	pad	displays	the	script	instructions	to	CRHM	that	control	the	model.	
It	is	largely	intended	to	be	used	as	an	informational	screen.		The	file	menu



allows	the	script	to	be	saved	and	restored	to	alter	another	model	without	having
to	re-type	the	instructions.		The	scripts	for	the	Variable/Observations	are	handled
separately	and	are	compiled	into	the	current	model	using	the	'save	to	model'
button.

ListBox.

				Lists	all	the	modules		in	the	current	model.

File	menu.

It	allows	the	script		to	be	saved	in	a	file	(*.aka).	A	previously	saved	script	may
be	loaded	and	applied	to	the	current	screen.

The	usual	file	options	are	available;	Open,	Save,	Save	As	and	Exit.

'Save	to	Model'

				Saves	the	changes	to	the	current	screen	script	to	the	model.

'Void	Changes'

				Will	remove	any	current	changes	up	to	the	last	'Save	to	Model'	for	this	screen.	
To	remove	all	changes	use	'Escape'.		However	this	will	remove	all	changes	in	all
screens	since	the	AKA	screen	was	loaded.

'Remove	Unused'

				Removes	all	unused	observations	or	variables.

'Escape'

				Exits	AKA	screen	restoring	all	the	model	scripts	to	what	they	were	before	the
AKA	screen	was	executed.	

				N.B.	The	normal	way	of	exiting	the	AKA	screen	is	via	'Exit'	in	the	top	right
hand	corner	or	in	the	file	menu.		This	will	save	any	changes	made.



Editing	Screens.

				Rename.

Allows	simple	observations	to	be	renamed	to	what	is	available	in	the	open
observation	file(s).		It	does	not	check	availability	till	run	time.		Display	cell
"u",	will	change	to	e.g.	"[	u	->	UUU	]"	if	the	observation	"u"	has	been
renamed	"UUU".	The	observation	"UUU"	must	exist	when	the	model	is
run.

				Connect	and	Re-connect.

This	operation	allows	the	user	to	change	module	inputs.		This	feature	is
executed	by	first	selecting	the	cell	beside	the	desired	new	name	(column	2,
it	will	be	empty	if	not	a	renamed	simple	observation).		Next,	right	click	on
the	module	input	to	be	changed.		The	cell	will	now	contain	the	new	name.	
Left	clicking	returns	to	the	original	value.		Display	cell	"QdroDext"	will
change	to	"[QdroDext	->	QdroFlatD]"	if	the	input	"QdroDext"	is	redirected
to	"QdroFlatD".		When	the	model	is	run	the	normal	input	"QdroDext"	will
use	the	"QdroFlatD"	values.		An	observation	example	is	"Qsi"	becoming	"[
Qsi	->	QsiA#	]".		Instead	of	the	simple	observation	"Qsi"	being	used	the
calculated	"QsiA#"	from	the	module	"Annandale"	will	be	used.		In	the
examples	"-->	QsiA#"	and	"-->	QdroFlatD"	will	appear	opposite	the	source
of	the	variables	to	indicate	to	the	user	it	is	being	used.

			



FlowDiagram.

				The	FlowDiagram	feature	of	the	CRHM	pull	down	menu	generates	a	flow
diagram	for	the	current	model.	The	primary	function	of	the	display	is	to	show
the	progression	of	variables	through	the	model	modules.		An	additional	feature
of	the	flow	diagram	is	the	display	of	either	module	input	Observations	or	module
input	Parameters	to	illustrate	the	driving	inputs	of	the	module	or	the	coefficients
controlling	the	module.

Module	generated	Observations.

				File	Observations	names	are	always	shown	on	the	left	hand	side	of	the	screen.	
Module	observations	outputs	are	displayed	on	the	right	hand	side	of	the	module
generating	them	followed	by	a	#	symbol,	e.g.	Qli#.		Note	that	file	observations
take	precedence	over	module	generated	observations.

Puts.

				The	flow	diagram	is	very	useful	to	reveal	the	effect	of	Puts.			Normally	the
value	of	a	variable	is	only	set/changed	by	the	module	that	declares	it.		However,	
sometimes	other	modules	have	to	update	the	variable	value	during	the	timestep.	
Understanding	the	sequence	of	events	during	the	timestep	is	important.			Put
inputs	are	flagged	by	the	letter	'P'	beside	the	input.

File	menu.

				This	menu	allows	the	flow	diagram	to	be	saved	to	a	file	using	Save	and
SaveAs	options.		The	print	selection	prints	the	flow	diagram.		The	Printer	Setup
configures	the	printer.		The	Portrait/Landscape	selection	would	be	the	most
frequently	used.

Copy	menu.

				This	saves	the	flow	diagram	to	the	clipboard.		There	are	two	choices	Bitmap
and	Metafile.		User	should	test	each	format	with	their	import	application.	Results
are	dependent	on	applications	used.



Selection	menu.

				This	is	a	toggle	control	which	switches	the	secondary	input	from	Observations
to	Parameters.		The	variable	flow	pattern	is	always	displayed.

Notes.

				The	flow	diagram	is	scaled	to	fit	one	printer	page.



Functions	and	Summary.

The	CRHM	program		has	an	extensive	capability	for	examining	functions	of
model	input	observations	and	output	variables.	

Timebases.

Select	the	operating	time	period	for	the	function.	Note	that	"Interval"	is	not
applicable	to	functions.

1)	Interval	-	CRHM	execution	time	step	determined	by	the	first	observation	file
loaded.	Varies	from	15	minutes	to	24	hours.

2)	Daily	-	the	value	is	calculated	for	the	day.

3)	Monthly	-	the	value	is	calculated	for	the	month.

4)	Calendar	Year	-	the	value	is	calculated	for	the	calendar	year.

5)	Water	Year	-	the	output	is	calculated	over	the	water	year	defined	by	the
month.

6)	All	-	the	value	is	calculated	for	the	entire	run	length.

The	timebase		is	set	by	the	user	using	the	"SELECTION	BOX	and	DISPLAY"
situated	above	the	"Start	Date"	label	on	the	main	screen	by	LEFT	clicking	on	the
box.	

If		Water	Year	is	choosen	the	starting	month	of	the	year	is	selected	by	RIGHT
clicking	on	the	box	to	cycle	through	the	months	of	the	year.	

The	functions	available	are;

1)	Average	-	mean	value	of	the	interval	values	over	the	timebase	period.

2)	Minimum	-	minimum	value	of	the	interval	values	over	the	timebase
period.

3)	Maximum	-	maximum	value	of	the	interval	values	over	the	timebase



period.	

4)	Total	-	sum	of	the	interval	values	over	the	specified	timebase	period.

5)	Positive	-	sum	of	positive	interval	values	over	the	timebase	period.

6)	First	-	first	interval	value	of	the	timebase	period.

7)	Last	-	last	interval	value	of	the	timebase	period.

8)	Count	-	the	time	(days)	that	the	interval	values	are	greater	than	zero	over
the	specified	timebase	period.

9)	Count0	-	the	time	(days)	that	the	interval	values	are	equal	to	zero	over
the	specified	timebase	period.

10)	Delta	-	change	over	the	timebase	period.	Calculated	as	(Last	interval	of
the	current	timebase	period	-	Last	interval	of	the	preceding	timebase
period).	For	the	very	first	time	period	of	a	run,	the	First	value	of	the	first
time	period	is	used	instead	of	the	Last	interval	of	the	preceding	timebase
period	as	this	value	may	not	always	be	available.

Use	"Close"	to	return	to	the	main	screen	when	finished.	

Miscellaneous	Interval	Functions;

				These	interval	functions	are	always	available	and	are	independent	of	the
selected	timebase	period.

1)	Observation	-	interval	values	as	read	from	the	observation	file.

2)	VP_saturated	-	interval	saturated	vapour	pressure	calculated	from	the
interval	temperature	value.

3)	Watts	to	MJ/Int	-	unit	conversion	Watts	to	MJ/interval.

4)		MJ/Int	to	Watts	-	unit	conversion	MJ/interval.	to	Watts.

Use	"Close"	to	return	to	the	main	screen	when	finished.	

Application	to	Observations.



1)	To	display	an	observation,	select	an	observation	and	RIGHT	CLICK	on
it	to	bring	up	the	Add/AddArray/Function	menu	and	select	Add.	The
observation	will	be	displayed	on	the	graphic	screen	using	the	function
displayed	under	the	Observation	listbox.	By	default	this	is	"Observation"
initially.

2)	To	change	the	function	type,	select	any	observation	and	RIGHT	CLICK
on	it	to	bring	up	the	Add/AddArray/Function	menu	and	select	"Function".
Select	the	desired	function	from	the	pop-up	menu.	Alternatively,	CLICK	on
the	current	function	selected	to	sequentially	step	through	the	functions.

3)		If	an	observation	has	multiple	dimensions	they	may	all	be	displayed	at
once	by	selecting	AddArray.	N.B.	if	OBS	or	LAY	display	is	greater	than	1,
only	the	values	from	that	array	element	to	the	last	available	will	be
displayed.

Application	to	Variables	Selected	ListBox.

				The	functions	may	also	be	applied	to	the	CRHM	model	output	Variables.	The
process	is	similar	to	that	outlined	above.	

1)	To	display	a	Variable,	select	a	variable	and	RIGHT	CLICK	on	it	to	bring
up	the	Delete/Negate/Abs/AddObsFunct	menu	and	select	AddObsFunct.
If	the	project	has	already	been	run,	the	selected	function	of	the	Variable	will
be	displayed	immediately	otherwise	it	will	only	be	displayed	after	the
project	is	run.	Every	time	the	model	is	run	the	variable	functions	will	be
refreshed.

2)	Changing	the	function	type	is	the	same	as	for	observations,	Select	any
observation	and	RIGHT	CLICK	on	it	to	bring	up	the
Add/AddArray/Function	menu	and	select	Function.	Select	the	desired
function	from	the	pop-up	menu.

Display	Mode.

The	output	displayed	on	the	chart	is	set	as	follows,



				a)	"Display	off"	is	used	when	the	user	is	sending	the	output	to	the
"Summary"	file	at	the	end	of	the	run	and	does	not	wish	the	function	values
to	be	displayed	on	the	screen	during	the	run.	This	reduces	reduces
execution	time	and	screen	clutter.	The	tracees	can	be	enabled	at	the	end	of
the	model	run.	The	values	will	be	written	to	the	"Summary"	file	if	selected
(parameter	"basin	RUN_ID"	>	zero).

				b)	"Display	Final	Value"	is	used	to	display	the	end	value	of	a	timebase
period	over	the	entire	timebase	period.	The	values	will	be	written	to
the	"Summary"	file	if	selected	(parameter	"basin	RUN_ID"	>	zero).

				c)	"Display	"Trend	Value"	is	used	to	display	the	function	values	over	a
timebase	period	as	they	are	processed.The	values	will	be	written	to
the	"Summary"	file	if	selected	(parameter	"basin	RUN_ID"	>	zero).

Use	"Close"	to	return	to	the	main	screen	when	finished.	

Writing	Summary	to	a	file.

				Functions	derived	from	variables	and	observations	are	written	to	the	summary
file.	However,	basic	variables	and	basic	observations	can	be	written	to	a	file
using	the	export	capability.

				The	name	of	the	summary	file	by	default	is	"CRHM_summary.sum".
However,	if	the	project	uses	the	module	"basin"	and	the	parameter	"RUN_ID"	is
greater	than	zero,	its	value	will	be	appended	to	the	file	name,	e.g.
"CRHM_summary_1.sum".

				The	summary	file	is	only	written	at	the	end	of	running	a	project.	However,	the
graphics	screen	is	updated	immediately	when	a	function	variable	is	added	if	the
input	data	used	is	already	available.

Different	Displays	of	Daily	Totals.

				When	displaying	daily	values	they	can	be	displayed	on	the	actual	day	and
some	times	with	a	24	hour	delay.	This	is	normal	as	observation	like	t,	RH,	u,	and
Qsi	are	applied	on	that	day.	However,	when	CRHM	is	using	daily	simulations
the	variables	such	as	runoff,	soil	moisture	and	melt	are	used		as	input	to	the	next
process	on	the	following	day.



Help

Microsoft	HTML	Help	is	used	in	the	program.	The	help	Topics	are	stored	in
html	files	with	the	extension	(.htm).		The	HTML	Help	Project	Editor	is	used	to
compile	a	*.CHM	help	file.		The	help	system	may	be	extended	by	the	end	user
using	compatible	programs.	The	help	information	is	accessible	by;

selecting	a	Help	topic	from	the	CRHM	Help	menu.		Then	using	the	table	of
contents	to	navigate	through	the	various	topics.
using	Context	help	by	holding	the	cursor	over	a	program	window
component	and	pressing	F1.

About

Gives	the	version	of	the	program.



Observations

CRHM	requires	as	input	the	climate	or	meteorological	data	(which	the	model
refers	to	as	observations)	for	the	watershed	being	modeled.	A	program	module
(e.g.	obs)			reads	the	climate	or	meteorological	data	from	the	data	file	into	the
model.	The	model	is	capable	of	making	use	of	data	from	one	or	more	stations.	If
more	than	one	source	of	climate	or	meteorological	data	is	available	for	an	area
(watershed)	the	model	is	capable	of	using	a	specified	station	set	of		observations
(t,	rh,	u,	p,	ppt,	Qsi)	for	each	HRU.

The	usual	modeling	time	step	is	a	half	hour	or	one	hour.	Daily	data	starts	at
00:15,		00:30	or	01:00	and	finishes	at	24:00	or	00:00	of	the	next	day.	Gaps	in	the
data	must	be	filled	with	synthesized	data.

Observation	data	is	read	from	ASCII,	space	or	tab	delimited	files.	An	example
file	is	shown	in	Example	1.	Other	data	formats	can	be	converted	by	the	user
using	Excel	and/or	a	text	editor.	Data	sets	do	not	have	to	be	merged	into	one	file
as	the	model	will	access	data	from	multiple	observation	files.		The	file	extension
must	be	.obs.

Example	1.

Observation	data	for	Bad	Lake,	Saskatchewan	January	01	1973	to	December	31	1973

t	1	(°C)	2	meter

rh	1	(%)

u	1	(m/s)	10	meter

SunAct	1	(h)	sunshine	hours

ppt	1	(mm/d)	precipitation	mm

form_data	1	()

Qsi	1	(W/m^2)

Qso	1	(W/m^2)

Qn	1	(W/m^2)

############################################

1973	1	1	0	0	0	-15.10	82.00	5.30	0.00	0.00	0.00	0.00	0.00	-0.11



1973	1	1	1	0	0	-15.50	81.50	3.10	0.00	0.00	0.00	0.00	0.00	-0.09

1973	1	1	2	0	0	-15.60	81.30	1.40	0.00	0.00	0.00	0.00	0.00	-0.09

1973	1	1	3	0	0	-15.50	81.30	3.10	0.00	0.00	0.00	0.00	0.00	-0.08

1973	1	1	4	0	0	-15.30	81.30	1.40	0.00	0.00	0.00	4.50	0.24	0.00	0.00	-0.07

Line	1	is	a	file	description,	usually	defining	where	the	data	is	from	and	any	other
pertinent	information.	Starting	with	line	2,	the	observations	are	listed	in	separate
lines.	Each	entry	consists	of	a	variable	name,	followed	by	the	dimension	of	the
observation.	If	the	observation	is	an	array	or	profile	the	number	will	be	greater
than	one.	Next	the	units	of	the	observation	is	given	enclosed	in	parentheses,	
Other	information	about	the	observation,	such	as	instrument	height,	can	also	be
entered	as	a	comment	at	the	end	of	the	line.	This	comment	and	will	appear	in	the
CRHM	observation	help	box.	If	the	units	are	not	enclosed	in	parentheses	they
become	part	of	the	comment.

The	line	containing	the	string	of	pound	signs	####	(minimum	of	4	required)
defines	the	end	of	the	header		and	the	beginning	of	the	the	data	observations.	The
data	is	space	or	tab	delimited	and	starts	with	year,	month,	day,	hour,	minute	and
then	the	observations	data	is	listed	in	the	same	order	as	specified	in	the	header.
The	field	delimiter	is	one	or	more	spaces	or	a	tab.

				An	alternative	to	"year,	month,	day,	hour,	minute"	is	decimal	time	and	date
used	by	Microsoft	in	Excel	and	other	applications.		It	is	much	easier	to	generate
observation	files	using	this	format.			For	example,	"1998	5	1	10"	would	be
replaced	by	"35936.875".		The	two	time	formats	cannot	be	mixed	within	an
observation	file.

				It	is	very	important	to	have	no	"hanging"	tabs	at	the	end	of	lines	or	extra
record	terminators	or	tabs	at	the	end	of	observation	files.

Notes.

				CRHM	checks	the	units	of	the	observation	with	what	is	required	by	the	model
module	and	if	different	reports	it	to	the	"log"	screen.



HRU/Observation	indexing.

				The	simplest	CRHM	model	has	one	set	of	observations.	That	is	one	value	of
each	of	the	following	observations;	t,	rh,	u,	and	p	(or	ppt)	for	every	timestep	of
the	model	run	This	is	very	limiting	when	the	area	being	modelled	is	large	and
diverse	in	elevation	and	exposure.	CRHM	is	capable	of	indexing	each	HRU	to	a
different	observation	element	using	the	parameter	HRU_OBS.	This	allows	every
HRU	to	use	a	different	set	of	observations.	To	further	expand	the	flexibility,	the
observations	are	divided	into	the	five	groups	described	below.

				The	simplest	would	be	if	the	HRU	and	the	observation	were	aligned	in
sequence.

HRU 1 2 3 4,
...

Observation 1 2 3 4

				The	following	illustrates	a	random	arrangement.

HRU 1 2 3 4,
...

Observation 1 7 5 2

				If	the	indexing	table	requests	a	value	that	does	not	exist,	the	highest	value
defined	is	used.	In	the	above,	if	there	are	only	4	elements	in	the	temperature
dataset,	the	HRUs	requesting	the	5th	and	7th	array	would	be	truncated	to	4.	The
highest	possible	element	index.

Five	HRU/Observation	arrays.

				The	observations	are	grouped	into	five	categories	according	to	how	the	field
data	is	collected	or	the	probable	database	source.

1.	 t,	rh,	ea.
2.	 u.
3.	 p	and	ppt.
4.	 Q	or	other	radiation	components.



5.	 miscellaneous	category	to	be	used	as	required.

HRU 1 2 3 4,
...

Observations
t,	rh,	ea.[1] 1 7 5 2

Observation
u.	[2] 1 2 2 1

Observation
p,	ppt.	[3] 1 1 1 1

Observation
Q.	[4] 2 2 1 1

Observation
misc.	[5] 1 1 1 1

				It	should	be	noted	that	for	this	system	to	be	most	useful,	the	observations	for
the	five	categories	should	be	in	five	separate	files.	This	is	optional	as	long	as	the
observations	are	addressed	accordingly.



Observation	File	Preparation.

				Data	observation	files	are	sequential	ASCII	text	files	with	a	time	field	as	the
first	field	on	every	line	followed	by	the	observation	data	fields.		There	is	a	line
(record)		in	the	file	for	every	data	interval.		CRHM	files	are	similar	with	the
addition	of	a	data	header	which	defines	the	observation	names,		the	order	in
which	the	observations	occur	on	every	line	and	finally	giving	help	information
describing	the	file	and	the	observations.

Observation	file	layout.

Header.

1.	 The	first	line	of	the	file	can	be	used	to	describe	the	file.		It	must	be	present
and	cannot	be	more	than	one	line.

2.	 Data	definition.		Each	line	consists	of	a	variable	name,	dimension	of	the
variable,	variable	units	in	the	CRHM	format	and	lastly	an	optional
comment.		The	delimiter	is	one	or	more	spaces.

3.	 Filter	definitions.		These	always	have	a	'$'	in	column	one	and	must	follow
all	data	definitions.

4.	 "#####"	-	flag	indicating	the	end	of	the	header.		Only	4	'#'	symbols	are
required.		The	remainder	of	the	line	is	ignored.

				No	extra	lines	are	allowed,	including	null	lines.		All	lines	must	start	in	column
one.

				Comment	lines	are	allowed	in	the	header	after	the	first	line.	Use	"//"	or	"$$"	in
column	1	and	2.		Comment	lines	are	only	allowed	in	the	header	portion	of	the
file.

Data.

The	data	must	always	begin	one	interval	into	the	day	and	end	at	midnight	of
the	last	day.
The	time	format	can	either	be	"yyyy	mm	dd	hh	mm"	or	MS	decimal	time
with	at	least	5	decimal	places,	e.g.	"27181.04167".
The	delimiter	can	be	space	or	tab.		The	tab	is	preferable	for	data	inspection



since	the	columns	can	be	made	to	line	up.
No	comments	or	null	lines	are	permitted.
Any	missing	data	must	be	filled	with	a	numeric	flag,	e.g.	"9999"	which	can
be	massaged	using	a	filter.

UNIX	files.

				UNIX	observation	files	cause	CRHM	to	fault.		These	files	should	be	copied
and	pasted	into	a	new	text	file	created	by	TextPad	or	other	PC	text	editor.

Assembling	Data.

				Excel®	is	a	convenient	program	for	assembling	the	field	data	files	into	one
file	covering	the	desired	period.		It	has	the	capability	of	importing	and	merging
data	files	and	cutting	and	pasting	individual	columns	simplifying	data	editing.	
The	observations	should	be	assembled	in	columns.		The	first	column	should	be
time.	Beginning	from	the	first	interval	of	the	first	day	and	should	end	at
midnight	of	the	last	day	of	the	period.

				The	time	field	can	be	created	using	=DATEVALUE("02/17/03")	+
TIMEVALUE("0:30")	to	assign	a	time	to	a	cell.		If	two	cells	are	defined	in
succession	then	the	FILL/TREND	function	can	be	used	to	fill	a	'blocked'	column
with	successive	times	for	the	desired	period.		The	month/day/year	order	entering
dates	is	determined	by	the	regional	settings	of	the	PC.		A	#VALUE!	error	or	an
unexpected	date	will	occur	when	the	incorrect	order	is	used.

				It	is	recommended	that	at	this	stage	all	cells	outside	the	required	area	of	the
spreadsheet	be	deleted	otherwise	they	will	also	be	exported	from	the	spreadsheet
together	with	the	desired	data	causing	needless	problems.

				The	time	and	date	column	must	be	formatted	to	display	as	decimal	time.	
Select	the	date	and	time	column	which	normally	would	be	column	A.			Select
Format	cells...	and	then	select	Number.		Set	the	number	of	decimal	places	to	5.	
The	spreadsheet	should	display	the	date	and	time	as	a	fractional	number	in	the
37,000	range.

Exporting	data	from	Excel.

				After	the	data	is	assembled,	save	the	file	as	an	Excel	file	for	future	use.		Select



File/SaveAs..	then	select	the	desired	folder.			Click	in	the	Save	As	Type:	box	and
select	Text(Tab	delimited).			Enter	the	desired	file	name	and	select	Save.		At	this
point	it	is	best	to	close	the	file	after	saving	the	text	file	as	the	Excel	prompts	can
be	misleading.

Handling	time	in	Excel.

				Quite	often	the	format	of	time	downloaded	from	data	loggers	is	ugly	and
difficult	to	put	into	the	proper	format.		Often	it	is	easier	to	generate	the	time
column	from	scratch	using	an	Excel	functions.	The	method	described	above	is
best.			Another	method	is	as	follows.

1.	 Insert	the	date	function	in	a	cell,	i.e.	date(year,	month,	day).	Say	in	cell
$K$4.

2.	 Insert	in	the	first	row	and	the	first	column	of	the	datalogger	data		"$K$4	+
1.0/F"	where	$K$4	is	the	location	of	the	cell	holding	the	date	function	and
F	is	the	daily	frequency	of	the	data.		Say	this	is	cell	K5

3.	 Repeat	for	the	remainder	of	the	column	"$K5	+	1.0/F"	in	cell	K6,	"$K6	+
1.0/F"	in	cell	K7,	etc.

4.	 Format	the	column	as	"Number"	with	5	"Decimal	places".
5.	 This	column	should	be	exported	as	the	first	column	in	the	CRHM

observation	file.

Creating	CRHM	obs	file.

				The	text	editor,		TextPad	is	recommended	for	this	step.			NotePad	is	limited	as
it	is	unable	to	display	formatting	characters	like	tabs.			TextPad	is	able	to	do
column	cuts	and	pastes.

				Open	the	*.txt	file	saved	by	Excel.		Turn	on	visible	formatting	by	clicking	the
¶	icon.		Check	that	there	are	no	extra	fields	at	the	end	of	lines	or	at	the	end	of	the
file.		If	the	columns	are	ragged	increase	the	tab	size	in	the
Configure/Preferences.../Tab/Tab	size	menu.

				At	the	beginning	of	the	file	insert	a	comment	line	giving	a	the	file	description.	
Next	insert	a	line	for	each	data	field	consisting	of	the	name	to	be	used	by	CRHM
followed	by	the	number	of	data	items	in	the	field.		This	is	usually	one.			The
remainder	of	the	line	can	be	used	as	a	descriptive	comment.		An	example	line	is
"t	1	air	temperature	at	1m.".		Field	names	cannot	have	embedded	spaces.		One	or



more	spaces	separates	the	fields.		The	comment	can	have	embedded	spaces.

				Every	column	of	data	after	the	time	field	has	to	be	accounted	for	by	the	data
definitions	in	the	header	section.		The	end	of	the	header	is	marked	by	a	line
containing	four	or	more	pound	signs,	e.g.	"#####".

				If	observation	filters	are	used	they	are	inserted	between	the	last	data	definition
and	the	line	containing	the	pound	signs.		Observation	filters	are	modifiers	which
allow	the	input	observation	values	to	be	modified	before	being	used	by	CRHM.	
Examples	are	changing	units	either	using	a	dedicated	function	("$Tc	FtoC(Tf)")
or	using	one	or	more	arithmetical	filters	("$a	add(var,	c)",	"$a	sub(var,	c)",	"$a
mul(var,	c)"	and	"$a	add(div,	c)").			Other	uses	are	changing	the	reference	height
of	measurements	("$u2	refwind(u,	Z2,	Zm,	Ht)"),	replacing	error	flagged	data
with	good	values	("$d	missing(var,	c1,	c2)",		"$d	missinginter(var,	c1,	c2)"	and
"$d	missing0(var,	c1,	c2)")	and	for	distributing	daily	precipitation	over	every
interval	of	the	day	("$p	smear(p,	0,	0)"	or	"$var	expand(var,	c_freq)").

It	is	best	to	test	the	observation	files	separately	in	CRHM	before	loading	them
into	a	project.		A	common	problem	is	missing	intervals,		i.e.	if	a	buffer	overflow
has	occurred	with	a	data	logger	a	block	of	data	will	be	missing.		This	will	be
indicated	by	CRHM	detecting	a	sparse	file.

	

Time	Simulation	(Can	only	be	used	in	a	separate	*.obs	file
containing	no	real	data).

				Sometimes	it	is	convenient	to	generate	synthetic	data	instead	of	field
obervations.		A	special	filter	makes	this	possible.

$Sim(StartTime,	EndTime,	Interval)		where

StartTime	as	mm/dd/yy	or	mm/dd/yyyy

EndTime	as	mm/dd/yy	or	mm/dd/yyyy

Interval	in	hours.	Minimum	0.5

When	this	filter	is	put	in	an	observation	file,		no	interval	data	is	ever	read	but
time	periods	from	'StartTime'	to	'EndTime,	are	generated	at	the	interval



specified.		The	time	simulation	filter	requires	the	addition	0f	filters	which
generate	actual	data	values	e.g.	"const(C)".

Wave	Synthesis	(Can	only	be	used	in	a	separate	*.obs	file	with
$Sim(...	)	and	not	in	a	regular	observation	file).

$Fract	sine(period	phase	start	end)

$Fract	square(period	phase	start	end)

$Fract	ramp(period	phase	start	end)

$Value	exp(start	end	B)										Value	=	eB(t	-	t0)

$Value	log(start	end	B)												Value	=	ln(B*(t	-	t0))

$Value	pow(start	end	B)									Value	=	(t	-	t0)B

$Value	poly(start	end	a0	a1	a2	a3	a4)						where	X	=	(t	-	t0),	Value	=	a0	+	a1*X	+
a2*X2	+	a3*X3	+	a4*X4

$Fract	pulse(start	end),	where

period	is	in	days.	For	less	than	one	day	the	time	format	can	be	used,	e.g.	12
hours	can	be	'0.5'	or	'12:00:00'.

phase	is	in	days.	For	less	than	one	day	the	time	format	can	be	used,	e.g.	12
hours	can	be	'0.5'	or	'12:00:00'.

start	is	start	date	(mm/dd/yy)	or	(mm/dd/yy_hh:mm:00)

end	is	end	date	(mm/dd/yy	or	(mm/dd/yy_hh:mm:00))

Fract	will	be	a	timeseries	varying	between	-1.0	and	1.0	determined	by	the
function.

Value	is	the	timeseries	calculated	by	the	function.

Example	of	Wave	Synthesis.



Simulation	test	(06/10/02)

$$	comment	line	-	Test	pulse	generation

$Sim(01/01/01,	01/05/2001,	1)	simulation	time	period

$Fract	pulse(01/02/01,	01/03/01)	one	day	pulse

$P	pulse(01/01/01_1:0:0,	01/01/01_12:0:0)

$Sine	sine(12:0:0,	0,	01/01/01,	01/02/01)

$Ramp	ramp(1,	0,	01/01/01,	01/02/01)

$Square	square(1,	0,	01/01/01,	01/02/01)

$$	comment	line	-	delayed	functions

$P1	pulse(01/03/01,	01/04/01)

$S1	sine(1,	0,	01/03/01,	01/04/01)

$R1	ramp(1,	0,	01/03/01,	01/04/01)

$Q1	square(1,	0,	01/03/01,	01/04/01)

############################################

Using	TextPad	to	create	observation	files	without	using	Excel.

				Since	TextPad	is	able	to	cut	and	paste	columns	the	only	problem	is	adding	the
time	field	for	CRHM	into	the	file.		Fortunately,	the	time	field	can	be	generated
by	using		the	filter	"$Sim(01/01/01,	01/05/2001,	1)"	and	merging	the	time
field	column	into	the	data	file.



4.1.2	Parameters

The	model	requires	a	parameter	file	(.par)	to	specify	the	spatial	parameters	for
each	HRU	and	the	basin.	For	complex	watersheds	the	easiest	way	to	generate	the
.par	file	is	with	a	GIS	interface.	A	digital	elevation	model	(DEM)	and	layers	of
ancillary	data	(soils,	vegetation,	etc.)	are	used	to	create	a	file	like	the	one	shown
in	Example	2.	However,	at	the	current	stage	of	the	model’s	development	the
actual	spatial	representation	of	the	HRUs	was	considered	of	lesser
importantance,	therefore	the	number	of	HRUs	has	been	intentionally	limited.	As
well,	the	GIS	interface	is	not	fully	operational	and	spatial	parameters	are
presently	input	into	the	model	manually.

Parameters	are	required	for	the	basin	and	the	individual	HRUs.	It	may	be	that
GIS	layers	are	available	for	some	parameters	or	there	may	only	be	a	single	value
available	for	the	entire	basin.	This	should	be	clearly	defined	and	discussed
between	the	user	and	modeller.

Sample	Parameter	file	-	Example	2.

Description	-	to	be	added

######

basin	basin_area	5

basin	basin_name	'CRHM	Basin	Model'

basin	hru_area	1	1	1	1	1

basin	hru_ASL	0	0	0	0	0

basin	hru_elev	637	637	637	637	637

basin	hru_GSL	0	0	0	0	0

basin	hru_lat	51.32	51.32	51.32	51.32	51.32

basin	hru_names	'HRU'	'HRU2'	'HRU3'	'HRU4'	'HRU5'



crack	fallstat	50	50	50	50	50

crack	Major	5	5	5	5	5

ebsm	delay_melt	0	0	0	0	0

ebsm	nfactor	0	0	0	0	0

ebsm	tfactor	2	2	2	2	2

evap	evap_type	0	0	0	0	0

evap	Ht	0.1	0.2	0.3	0.4	1

evap	Zref	1.5	1.5	1.5	1.5	1.5

evap	Zwind	10	10	10	10	10

global	Time_Offset	0	0	0	0	0

netall	hru_alb	0.17	0.17	0.17	0.17	0.17

net_rn	F_Qg	0.2	0.2	0.2	0.2	0.2

net_rn	F_Qs	0	0	0	0	0

obs	catchadjust	0	0	0	0	0

obs	tmax_allrain	0	0	0	0	0

obs	tmax_allsnow	0	0	0	0	0

pbsm	distrib	1	1	1	1	1

pbsm	fetch	1000	1000	1000	1000	1000

pbsm	Ht	0.1	0.2	0.3	0.4	1

route	Kstorage	0	0	0	0	0

route	Lag	0	0	0	0	0



route	order	1	2	3	4	5

route	whereto	0	0	0	0	0

smbal	cov_type	3	3	3	3	3

smbal	soil2gw_max	0	0	0	0	0

smbal	soil_moist_init	187	187	187	187	187

smbal	soil_moist_max	375	375	375	375	375

smbal	soil_rechr_init	30	30	30	30	30

smbal	soil_rechr_max	60	60	60	60	60

smbal	soil_type	2	2	2	2	2

######

Sample	data	preparation	table.

Table	1	shows	a	list	of	climate	observations	and	spatial	parameter	requirements.
The	data	provider	should	provide	as	much	of	this	information	as	possible	and
submit	a	completed	copy	of	the	table	to	the	user.	If	the	data	is	available	in	units
other	than	those	stipulated	in	Table	1,	the	model	can	do	the	necessary
conversions.

Table	1

DATA Units Measurement	ht. Time
Step

Time
Period

Data
Type/Source

Comments

Observations
temperature degrees
relative	humidity percent
wind	speed m/s
wind	direction degrees
actual	sunshine hours
incoming	radiation	flux W/m2
reflected	radiation	flux W/m2



net	radiation	flux W/m2
depth	of	precipitation mm
precipitation	form unknown/snow/rain
albedo
discharge	rate m3/s
soil	heat	flux W/m2

Parameters	Basin/HRU
area hectares
slope degrees
aspect degrees
vegetation	cover	type plus	area
soil	type plus	area
elevation meters
latitude degrees
vegetation	cover	height meters
vegetation	cover	density percent summer/winter
interception	storage
capacity

mm

leaf	area	index m2/m2
fetch	distance Meters`
soil	properties texture/storage/conductivity/rooting	



Observation	Filter

				Observation	filters	allow	the	observation	data	to	be	preprocessed	before	being
used	in	the	model.		Filters	are	declared	in	the	observation	heading	after	the
declaration	of	variables.		Examples	of	their	use	follows:

relative	humidity	is	often	the	meteorological	observation,	whereas	vapour
pressure	is	the	common	input	to	model	modules.		One	solution	is	to	make
the	individual	modules	handle	the	change	of	variable	but	this	makes	the
modules	more	complex	and	slower.		The	conversion	has	also	to	be	done	in
every	module	requiring	vapour	pressure.	A	more	efficient	solution	is	to
make	the	data	conversion	once	when	the	data	is	initially	read	into	the	model
directly	from	the	input	data	file.
If		wind	measurements	are	made	at	10	metres	and	the	model	modules
require	a	wind	referenced	at	2	metres.		One	solution	is	again	to	make	the
modules	handle	the	conversion	of	measurement	height	but	this	necessitates
defining	the	relevant	translation	parameters	in	every	module.

Filters

				The	filters	are	included	after	the	data	variables	in	the	file	are	defined	but
before	the	line	of	'#'	symbols	separating	the	data	header	from	the	actual
observation	data.		Filter	lines	begin	with	a	'$'	followed	by	the	variable	name	for
the	generated	data,	i.e.	$ea.

				The	data	filtering	filters;	"missing",	"missinginter",	"missingrepl"	and
"missingFlagAfter"	are	best	used	separately	and	the	results	saved	and	used	as	a
new	observation	file.	This	limitation	arises	because	all	the	data	must	be	read	to
determine	the	last	"good	value"	and	other	filters	may	used	data	values	before
missing	values	are	corrected.

				The	filter	name	follows	with	the	required	parameters	enclosed	in	brackets.	
The	parameter	list	consists	of	variables	included	in	the	observation	file	or
variables	generated	by	earlier	filters	and	the	numerical	constants	used	by	the
filter.		An	example	of	a	filter	to	modify	wind	reference	height	is:

$u2	refwind(u,	10,	2,	1)	"this	is	a		comment",	where	parameters	for	refwind	are
refwind(u,	Zm,	Z2,	Ht)



				where:

u2	=	u1*log((Z2	-	d)/Z)/log((Zm	-	d)/Z)

u2	(m/s)	is	the	name	of	the	new	variable,

Zm	(m)	-	the	actual	measurement	height	=	10,

Z2	(m)	-	desired	reference	height	=	2,

Ht	(m)	the	vegetation	height	=	1,	and	it	assumed	that

d	=	2/3*Ht	and

Z	=	0.123*Ht.

	

			Both		spaces	or	commas	can	be	used	to	delimit	parameters.		Any	input	after	the
closing	bracket	is	a	comment	and	will	appear	in	the	program	variable	help	box.

Similarly	the	filter	for	vapour	pressure	is:

$ea	ea(t,	rh)	where	t	is	the	temperature	observation	name	and	rh	(%)	is	the
relative	humidity	observation	name.

where:

ea	=	sat	_ea(t)*rh/100.0,

t	is	the	temperature	measurement	and

rh	(%)	is	the	relative	humidity.

Defined	filters

$$	comment	line.

$u2	refwind(u,	Z2,	Zm,	Ht)	u	=	wind	at	reference	height	Zm,		u2	=	desired	wind
at	reference	height	Z2	and	Ht	=	vegetation	height.



$ea	ea(t,	rh)		ea	=	desired	vapour	pressure	(kPa)	for	t	=	temperature	and	rh	(%)	=
the	relative	humidity.

$rh	rh(t,	ea)		rh	=	desired	relative	humidity	(%)	for	t	=	temperature	and	ea	(kPa)
=	the	vapour	pressure.

$RHi	RH_WtoI(t,	rh)	RHi	=	RH	w.r.t.	ice	of	moist	air	at	ambient	temperature	t,
rh	=	RH	w.r.t.	water.

$Tc	FtoC(Tf)	Tc	=	conversion	of	Tf(°F)	to	Tc(°C).

$Tc	KtoC(Tk)	Tc	=	conversion	of	Tk(°K)	to	Tc(°C).

$Tk	CtoK(Tk)	Tk	=	conversion	of	Tc(°C)	to	Tk(°K).

$d	missingC(var,	c1,	c2,	c3),	where	var	is	the	data	being	checked.	Values	less
than	or	equal	c1	or	greater	than	or	equal	c2	are	replaced	with	c3.

$d	missing0(var,	c1,	c2),	where	var	is	the	data	being	checked.	Values	less	than
or	equal	c1	or	greater	than	or	equal	c2	are	replaced	with	0.0.

$d	missing(var,	c1,	c2),	where	var	is	the	data	being	checked.	Values	less	than	or
equal	c1	or	greater	than	or	equal	c2	are	replaced	with	the	most	recent	'good'
value.		If	first	line	of	data	is	not	'good'	data,		warning	is	issued.		Data
replacement	does	not	begin	until	after	an	interval	with	'good'	data.

$d	missinginter(var,	c1,	c2),	where	var	is	the	data	being	checked.	Values	less
than	or	equal	c1	or	greater	than	or	equal	c2	are	replaced	with	a	linearly
interpolated	value	calculated	from	the			'good'	values	before	and	after	the	missing
values.		If	first	line	of	data	is	not	'good'	data,		warning	is	issued.		Data
replacement	does	not	begin	until	the	first	'good'	data	after	the	'bad'	data.		Missing
data	at	the	end	of	the	file	is	left	unchanged.

$d	missingrepl(var,	c1,	c2,	var2),	where	var	is	the	data	being	checked.	Values
less	than	or	equal	c1	or	greater	than	or	equal	c2	are	replaced	with	the	value	from
var2.

$d	missingFlag(var,	c1,	c2),	where	var	is	the	data	being	checked.	Output	is	0.0
except	when	the	value	is	less	than	or	equal	c1	or	greater	than	or	equal	c2,	when
the	output	is	1.0.		Value	is	checked	before	any	replacement	filters	are	executed.



$d	missingFlagAfter(var,	c1,	c2),	where	var	is	the	data	being	checked.	Output	is
0.0	except	when	the	value	is	less	than	or	equal	c1	or	greater	than	or	equal	c2,
when	the	output	is	1.0.		Value	is	checked	after	any	replacement	filters	are
executed.

$p	smear(p,	Time1,	Time2)	p	=	daily	precipitation	as	first	value	of	day,	Time1	=
start	time	or	<=	0	to	indicate	only	negative	values	of	precipitation	have	to	be
processed.		Time2	is	stop	time	or	<=	0	for	end	of	file.

$a	abs(var)	a	=	absolute	value	of	variable

$a	add(var,	c)	a	=	variable	var	plus	constant	c.

$s	sub(var,	c)	s	=	variable	var	minus	constant	c.

$m	mul(var,	c)	m	=	variable	var	multiplied	by	constant	c.

$d	div(var,	c)	d	=	variable	var	divided	by	constant	c.

$pow	powV(var,	A,		B)	pow	=	A*varB	.

$exp	expV(var,	A,	B)	exp	=	A*eB*var	.

$log	logV(var	A	B)	log	=	A*ln(var*B).

$C	const(c)	C	=	constant	c.

$a	addV(var,	var1)	a	=	variable	var	plus	variable	var1.

$s	subV(var,	var1)	s	=	variable	var	minus	variable	var1.

$m	mulV(var,	var1)	m	=	variable	var	multiplied	by	variable	var1.

$d	divV(var,	var1)	d	=	variable	var	divided	by	variable	var1.

$R	random(seed)	series	of	random	numbers	initialised	by	seed	of	last	call.
Random	number	generator	is	shared	between	all	calls.

$TimeShift(Ts),	where	Ts	is	the	time	shift	in	days.		Negative	values	move	the	file
time	backwards.		The	fractional	portion	should	an	integral	number	of	time



intervals,	i.e.	n*1/24,	n*1/48	etc..

Using	ForceInterval	to	Change	Observation	File	Interval.

				This	filter	changes	the	time	step	interval	of	an	entire	observation	file.	
Depending	upon	the	initial	interval	the	interval	length	can	increase	or	decrease.
Calling,

$ForceInterval(48)

				will	create	30	minute	interval	data.	Calling,

$ForceInterval(6)

				will	create	4	hourly	interval	data.

The	range	of	the	frequency	parameter	is	1	to	288.		Special	consideration	has	to
be	given	to	"rate"	inputs	with	units	of	mm/int,	MJ/int	etc.,	where	the	daily	sum
has	to	be	kept	constant	despite	the	change	in	time	interval.		The	inputs	have	to	be
flagged	with	a	negative	column	count.	N.B.	observations	like	daily	precipitation
(ppt),			mm/d	are	not	affected	and	are	always	positive.

sample	header

p	-1	(mm/int)	N.B.	negative	sign.		If	it	had	been	daily	precipitation	it	would	be
be	"ppt	1	(mm/d)".

Qsi	1	(W/m^2)

QnD	1	(MJ)

rh	1	()

SWE	1	(mm)

t	1	(°C)

u	1	(m/s)

$ForceInterval(24)	change	interval	to	hourly	from	what	ever	it	was	originally.



########

Time	Simulation	(Can	only	be	used	in	a	separate	*.obs	file
containing	no	real	data).

				Sometimes	it	would	be	convenient	to	generate	synthetic	data	instead	using
field	observations.		A	special	filter	makes	this	possible.

$Sim(StartTime,	EndTime,	Interval)		where

StartTime	as	mm/dd/yy	or	mm/dd/yyyy

EndTime	as	mm/dd/yy	or	mm/dd/yyyy

Interval	in	hours.	Minimum	0.5

When	this	filter	is	put	in	an	observation	file,		no	interval	data	is	ever	read	but
time	periods	from	'StartTime'	to	'EndTime	-	1	Interval'	are	generated	at	the
interval	specified.		The	time	simulation	filter	does	not	generate	time	fields	unless
additional	filters	are	used	to	define	the	data	to	be	generated,	e.g.	'const(C)'	etc..

Wave	Synthesis	(Can	only	be	used	in	a	separate	*.obs	file	with
$Sim(...	)	and	not	in	a	regular	observation	file).

$Fract	sine(period	phase	start	end)

$Fract	sin(period	phase	start	end)

$Fract	cos(period	phase	start	end)

$Fract	square(period	phase	start	end)

$Fract	ramp(period	phase	start	end)

$Fract	pulse(start	end),	where

period	is	in	days.	For	less	than	one	day	the	time	format	can	be	used,	e.g.	12
hours	can	be	'0.5'	or	'12:00:00'.

phase	is	in	days.	For	less	than	one	day	the	time	format	can	be	used,	e.g.	12



hours	can	be	'0.5'	or	'12:00:00'.

start	is	start	date	(mm/dd/yy)	or	(mm/dd/yy_hh:mm:00)

end	is	end	date	(mm/dd/yy	or	(mm/dd/yy_hh:mm:00))

Fract	will	vary	between	-1.0	and	1.0	depending	on	the	function.

Value	is	the	value	calculated	by	the	function.

	

$Value	exp(start	end	A	B)										Value	=	A*eB(t	-	t0)

$Value	log(start	end	A	B)												Value	=	A*ln(B*(t	-	t0))

$Value	pow(start	end	A	B)									Value	=	A*(t	-	t0)B

$Value	poly(start	end	a0	a1	a2	a3	a4)						where	X	=	(t	-	t0),	Value	=	a0	+	a1*X	+
a2*X2	+	a3*X3	+	a4*X4

Example	of	Wave	Synthesis.

Simulation	test	(06/10/02)

$$	comment	line	-	Test	pulse	generation

$Sim(01/01/01,	01/05/2001,	1)	simulation	time	period

$Fract	pulse(01/02/01,	01/03/01)	one	day	pulse

$P	pulse(01/01/01_1:0:0,	01/01/01_12:0:0)

$S	sin(12:0:0,	0,	01/01/01,	01/02/01)	//	legacy	sine	is	also

acceptable

$S	cos(12:0:0,	0,	01/01/01,	01/02/01)

$R	ramp(1,	0,	01/01/01,	01/02/01)

$Q	square(1,	0,	01/01/01,	01/02/01)



$$	coment	line	-	delayed	functions

$P1	pulse(01/03/01,	01/04/01)

$S1	sine(1,	0,	01/03/01,	01/04/01)

$R1	ramp(1,	0,	01/03/01,	01/04/01)

$Q1	square(1,	0,	01/03/01,	01/04/01)

############################################



Observation	File	Types.

1.	 First	file	-	the	first	observation	file	loaded	in	the	project.		It	determines	the
model	operating	time	step	interval	and	also	the	maximum	model	run	time
period.

2.	 Interval	file	-	any	subsequent	continuous	observation	file	with	a	time
interval	less	or	equal	to	one	day.

3.	 Short	interval	time	-	any	subsequent	interval	time	which	begins	earlier	or
ends	later	than	the	first	interval	file.

First	files	,	interval	files	and	short	interval	files	cannot	have	any	missing	data
and	must	be	contiguous.		First	files	and	interval	files	are	the	easiest	to	use	for
modeling	as	the	data	set	is	complete	and	no	status	checking	is	required	to	handle
missing	data.		Note	that	in	the	preparation	of	these	files	the	editor	may	have	used
interpolation	or	some	other	method	to	generate	missing	values	to	make	them
complete	over	the	desired	time	period.

4.	 Sparse	file	-	an	observation	file	with	an	interval	data	of	greater	than	daily	or
non	continuous	data.

Sparse	files	of	any	time	step	when	accessed	by	a	model	module	require	status
checking	and	programming	to	handle	the	periods	when	no	data	is	available.		The
following	example	demonstrates	how	to	handle	intervals	with	missing	data.	
Note	that	the	special	values	for	double	xLimit	and	for	long	lLimit	declared	in
common.h,		are	used	to	indicate	undefined	values	and	these	values	are	not
plotted	by	CRHM.

	

class	ClassSparse	:	public	ClassModule	{

public:

ClassSparse(string	Name	=	"Sparse",	String	Version	=	"undefined")	:
ClassModule(Name,	Version){};

long	nhru;

//	declared	variables



float	*Ourt;	//	°C

float	*Ourtshort;	//	°C

float	*Ourt2;	//	°C

float	*Ourt2mean;//	°C

float	*OurD1;	//

float	*OurD1s;	//

float	*OurD2;	//

float	*OurS1;	//

float	*OurS2;	//

//	declared	parameters

//	declared	observations

const	float	*t;

const	float	*tshort;

const	float	*t2;

const	float	*S1;

const	float	*S2;

const	float	*D1;

const	float	*D1s;

const	float	*D2;

//	declared	observation	function.

const	float	*t2mean;



//	Handles

ClassVar	*tHand;

ClassVar	*tshortHand;

ClassVar	*t2Hand;

ClassVar	*D1Hand;

ClassVar	*D1sHand;

ClassVar	*D2Hand;

ClassVar	*S1Hand;

ClassVar	*S2Hand;

//	Routines

void	decl(void);

void	init(void);

void	run(void);

};

void	ClassSparse::decl(void)	{

declvar("Ourt",	NHRU,	"t",	"()",	&Ourt);

declvar("Ourtshort",	NHRU,	"tshort",	"()",	&Ourtshort);

declvar("Ourt2",	NHRU,	"t2",	"()",	&Ourt2);

declvar("Ourt2mean",	NHRU,	"t2mean",	"()",	&Ourt2mean);

declvar("OurD1",	NHRU,	"D1",	"()",	&OurD1);

declvar("OurD1s",	NHRU,	"D1s",	"()",	&OurD1s);



declvar("OurD2",	NHRU,	"D2",	"()",	&OurD2);

declvar("OurS1",	NHRU,	"S1",	"()",	&OurS1);

declvar("OurS2",	NHRU,	"S2",	"()",	&OurS2);

	

tHand	=	declreadobs("t",	NOBS,	"t",	"()",	&t);

tshortHand	=	declreadobs("tshort",	NOBS,	"tshort",	"()",	&tshort);

t2Hand	=	declreadobs("t2",	NOBS,	"t2",	"()",	&t2);

D1Hand	=	declreadobs("D1",	NOBS,	"?",	"(?)",	&D1);

D1sHand	=	declreadobs("D1s",	NOBS,	"?",	"(?)",	&D1s);

D2Hand	=	declreadobs("D2",	NOBS,	"?",	"(?)",	&D2);

S1Hand	=	declreadobs("S1",	NOBS,	"?",	"(?)",	&S1);

S2Hand	=	declreadobs("S2",	NOBS,	"?",	"(?)",	&S2);

	

declobsfunc("t2",	"t2mean",	&t2mean,	AVG);

}

void	ClassSparse::init(void)	{

nhru	=	getdim(NHRU);

}

void	ClassSparse::run(void)	{

for(int	hh	=	0;	hh	<	nhru;	++hh)	{

Ourt[hh]	=	t[0];



	

if(tshortHand->FileData->GoodInterval)

				Ourtshort[hh]	=	tshort[0];

else

				Ourtshort[hh]	=	xLimit;

	

if(t2Hand->FileData->GoodInterval)

				Ourt2[hh]	=	t2[0];

else

				Ourt2[hh]	=	xLimit;

	

	

Ourt2mean[hh]	=	t2mean[0];

	

if(D1Hand->FileData->GoodInterval)

				OurD1[hh]	=	D1[0];

else

				OurD1[hh]	=	xLimit;

	

if(D1sHand->FileData->GoodInterval)

				OurD1s[hh]	=	D1s[0];



else

				OurD1s[hh]	=	xLimit;

	

if(D2Hand->FileData->GoodInterval)

				OurD2[hh]	=	D2[0];

else

				OurD2[hh]	=	xLimit;

	

if(S1Hand->FileData->GoodInterval)

				OurS1[hh]	=	S1[0];

else

				OurS1[hh]	=	xLimit;

	

if(S2Hand->FileData->GoodInterval)

				OurS2[hh]	=	S2[0];

else

				OurS2[hh]	=	xLimit;

}

}

Sample	program	report.

CURRENT	TIME:	5/6/03	10:30



CRHM	Version:	NON-DLL	5.04

PROJECT	FILE	NAME:

TestFiles.prj	dated	4/29/03	15:06

DIMENSIONS:

nhru	1

nlay	1

nobs	1

OBSERVATIONS:

C:\CRHM\TestFirstFile.obs	(	4/11/98	01:00	-	6/1/98	00:00	Interval	=	01:00
)

C:\CRHM\TestDaily.obs	(	4/12/98	00:00	-	6/1/98	00:00	Interval	=	daily	)

C:\CRHM\TestDaily2.obs	(	4/13/98	00:00	-	6/1/98	00:00	Interval	=	sparse
data	file	)

C:\CRHM\TestSparse.obs	(	4/28/98	12:00	-	5/30/98	12:00	Interval	=	sparse
data	file	)

C:\CRHM\TestDailyShort.obs	(	4/15/98	00:00	-	4/30/98	00:00	Interval	=
daily	)

C:\CRHM\TestFirst2.obs	(	4/11/98	02:00	-	6/1/98	00:00	Interval	=	02:00	)

C:\CRHM\TestFirstFileShort.obs	(	4/12/98	17:00	-	4/29/98	07:00	Interval	=
01:00	)

MODULES:

Sparse	CRHM	basic	05/02/03

DATES:



1998	4	11

1998	6	1

PARAMETERS:

INITIAL	STATE:

Description	of	observation	files	to	run	sample	program.

TestFirstfile.obs	-	hourly	time	step	supplying	t.
TestFirst2.obs	-	every	second	temperature	from	TestFirstfile.obs.
TestFirstFileShort.obs	-	middle	time	period	of		TestFirstfile.obs	with
temperature	variable	called	tshort.
TestDaily.obs	-	daily	observations	D1.
TestDailyShort.obs	-	same	as	TestDaily.obs
TestDaily2.obs	-	every	second	daily	observations	from	TestDaily.obs	and
called	D2
TestSparse.obs	-sparse	observations	S1	and	S2.

	



Observation	Step	Values.

				The	biggest	problem	in	CRHM	has	been	the	mix	of	DAILY	alogorithms	and
INTERVAL	alogorithms	in	the	same	model.	DAILY	alogorithms	are	normally
processed	at	the	end	of	every	day	since	only	then	are	daily	means	or	totals	of
climate	or	meteorological	data	available.	INTERVAL	alogorithms	can	be
handled	every	interval.

STEP	Value.

				In	CRHM	there	is	a	variable	called	STEP	which	is	incremented	every	interval.
The	value	for	the	first	interval	of	a	model	run	is	1.		This	is	always	the	first
interval	of	the	first	day	of	the	model	run,	e.g.	00:30AM	or	1:00AM.		If	Step	is
divided	by	the	number	of	measurements	taken	per	day	(FREQ),	i.e.	24	or	48,		the
remainder	will	be	1	for	the	first	interval	of	the	day	or	0	for	the	last	interval	of	the
day.	This	relationship	is	used	in	CRHM	modules	to	determine	when	to	calculate
DAILY	alogorithms.

Example1.

				if(STEP%FREQ	==	0)

								{calculate	an	expression	for	the	last	interval	of	the	day}	or

	

Example2.

				if(STEP%FREQ	==	1)

								QsiD	=	Qsi

				else

								QsiD	=	Qsid	+	Qsi

The	latter	code	will	calculate	the	total	incoming	short-wave	radiation	for	the	day.
		If	it	is	combined	in	a	module	with	the	former	code,		the	DAILY	alogorithm	will



access	the	daily	total	incoming	short-wave	radiation.



Regular	Expression.

				The	text	editor	TextPad 	has	this	very	useful	feature.		It	provides	a	handy
method	for	cleaning	up	observation	files.		The	following	examples	show	how	to
handle	spaces	and	tabs.

In	all	examples	the	regular	expression	option	show	be	selected	in	the	replace
dialogue	box.		Replacements	can	apply	to	the	entire	file	or	selected	text.

Remove	leading	line	spaces.

Find	what:	^[space\t]+									Replace	with:	nothing		

where	space	is	the	space	character	and	nothing	means	literally	nothing.

Remove	extra	spaces	and	tabs	at	end	of	line.

Find	what:	[space\t]+$									Replace	with:	nothing		

Replace	spaces	with	tabs	in	the	observation	file	data.

Select	all	of	the	observation	file	after	the	pound	symbols.

Find	what:	[space\t]+													Replace	with:	\t

Add	extra	dummy	column	to	simplify	copying/pasting.

Select	all	of	the	observation	file	after	the	pound	symbols.

Find	what:	$													Replace	with:	\t	or	\t9999	to	make	it	more	visible.



Creating	Observation	Files	using	TextPad.

Climatic	data	for	driving	CRHM	comes	from	many	sources	and	in	many
different	formats.			However,	it	is	usually	possible	to	put	the	data	into	columns
and	then	the	following	procedure	using	CRHM	and	TextPad	can	be	used	to
generate	a	CRHM	observation	file.

Steps.

1.	 Create	dates	-	Use	the	project	file	"Make_Dates.prj".		The	first	part	of	this
project	is	listed	below.

Description	-	Make_Dates.prj	to	create	obs	file

######	Version:	CRHM	3.04	Creation:	05/14/09	14:09

Dimensions:

######

nhru	1

nlay	1

nobs	1

######

Macros:

######

######

Observations:

######

######



Dates:

######

1979	1	1	1

1985	10	5

######

Modules:
...	etc.

Under	field	"Dates:	"

				Edit	the	start	date	and	end	date	to	the	required	range.	The	format	is	YYYY
MM	DD	and	for	the	start	date	there	is	the	additional	field	FREQ,		where	FREQ
is	the	number	of	intervals	in	the	day,	e.g.	Daily	-	1,	Hourly	-	24,	etc.

Run	this	project	in	CHRM.	Then	export	RUN_ID	as	either	an
"Observation"	or	"Excel"	file.		The	former	is	more	convenient	as	the	dates
are	in	a	readable	format.

Observation	format.

run_ID(1)	1

######

1979	1	1	0	0	1

1979	1	2	0	0	1

1979	1	3	0	0	1

Excel	format.

run_ID(1)	1



######

29856	1

29857	1

29858	1

Adding	Data	Header	and	Columns.

				Data	can	be	prepared	using	Excel	and	exported	as	a	text	tab	deliminated	file	or
in	TextPad.		TextPad	is	a	text	editor	with	the	additional	feature	that	its	"Block
Select	Mode"	allows	for	column	editing.		For	column	editing,		tabs	instead	of
spaces	makes	it	possible	to	align	the	columns.

				Fortunately,	TextPad	has	the	"Regular	expression"	feature	option	when
searching	and	replacing	which	allows	the	user	to	do	"intelligent"	find/replaces.	
If	a	file	has	used	spaces	between	columns	they	can	be	changed	to	tabs	by
enabling	"Regular	expression"	and	applying:-	"Find	what:	[space\t]+						Replace
with:	\t".		Now	it	is	only	necessary	to	change	the	tab	size	in	order	to
accommodate	wider	columns.

				It	is	best	to	handle	the	data	columns	first	and	add	the	header	portion	of	the	file
last.	When	pasting	data	into	the	Dates.obs	file	transfer	columns	containing	dates
and	times	and	use	them	to	compare	with		with	the	CRHM	dates	to	detect	any
errors,	missing	data,	incorrect	intervals	etc.	After	thorough	checking,	delete
these	extra	columns.		There	should	be	no	extra	spaces	or	tabs	at	the	end	of	lines
or	at	the	end	of	the	file.

				The	file	dates.prj	has	a	variable	run_ID(1).		Its	header	and	data	column	should
be	deleted.

				The	header	should	be	added	with	TextPad	with	the	"Block	Select	Mode"
deselected.		The	"####"	symbols	separate	the	header	and	data	portions	of	the
file.

				The	first	line	must	be	present	and	is	not	used	by	CHRM.		It	can	be	used	by	the
user	to	comment	the	file.

				Every	column	of	data	requires	a	line	specifying	the	name	to	appear	in	CRHM,



#	of	columns	(normally	1),	units	enclosed	in	brackets,		followed	by	an	optional
comment.		One	or	more	spaces	separates	the	fields.

				After	these	lines	filters	may	be	added.

Testing.

				The	file	is	tested	by	loading	into	CRHM.		CRHM	will	find	most	errors	and
suggest	solutions.		Depending	upon	the	error,	it	may	be	necessary	to	close
CRHM	before	testing	the	corrections.

Notes.

1.	 Use	only	full	days.	A	day	starts	ONE	interval	after	midnight	and	ends	at
midnight.	E.g.	"1979	1	1	1	30"	to		"1979	1	2		0	0"	(or		"1979	1			1	24	0")
where	format	is	"YYYY	MM	DD	hh	mm".

2.	 Dates	must	be	sequential	with	NO	gaps.
3.	 Missing	data	fields	must	have	a	place	holder,	e.g.	-9999	etc.
4.	 	



Macro.

				This	capability	of	the	CRHM	program	allows	users	to	create	simple	modules
suitable	for	testing	algorithms	and	for	diagnosing	CRHM	model	output.

Local	Variables.

				Local	variables	are	defined	using	the	the	keyword	"var".		For	example	"var	i",
"var	i		var	j"	or	"var	i,	j".		

CRHM	variables.

				CRHM	variables	as	those	defined	in	the	"declreadobs",	"declgetvar",
"declparam",	"declvar"	and	"declobs"	declarations.			Note	that	the	latter	three
types	are	defined	in	the	current	macro	module	and	the	first	two	types	are	derived
from	other	CRHM	modules	in	the	model.	The	macro	commands	are	enclosed	in
a	for	loop	which	is	executed	NHRU	times.		A	local	variable	"hh"	is	defined	so
that	values	for	every	iteration	may	be	saved	in	the	CRHM	macro	module
variable	output.		Note	that	local	variables	are	not	accessible	outside	the	macro
module	except	by	saving	their	values	into	CRHM	variables.

Arithmetical	Operators.

1.	 +,	-							addition/subtraction

2.	 *.	/								multiplication/division

3.	 ^											exponentiation

4.	 %										modulus

5.	 (...)								brackets	enclosing	an	arithmetical	expression.

6.	 [n]									array	element	index.	Order	for	2-D	is	[hh][ll],	i.e.	hru	first.
Elements	are	referenced		1,	2,	3,	4	...	Cannot	be	an	expression.	Use	var	i;	i	=
J+k;	array[i],	not	array[j+k].

Logical	Operators.



1.	 ||											OR.

2.	 &&						AND.

3.	 !=									Not	equal.

4.	 ==								Equal.

5.	 <=								Less	Than	or	Equal.

6.	 <										Less	Than.

7.	 >=								Greater	Than	or	Equal.

8.	 >										Greater	Than.

9.	 !											Logical	Not.	(Faulty)

Control	Statements.

if	(condition)	...	else	...	endif

multiple	statements	or	none	are	permitted	in	the	TRUE	and	FALSE	fields.

The	"if"	statement	must	always	be	followed	by	a	closing	"endif"	statement.

"else"	is	optional	if	there	are	no	FALSE	statements	to	execute.

Multiple	"if"	statements	are	permitted.

"if"	statements	can	appear	within	other	"if"	statements.

Lowercase	must	be	used	for	"if',	"else"	and	"endif".

"else"	"if"	must	always	be	entered	as	two	separate	words.

Example	:-		if	...	else	if	...endif	endif.

while(condition)	...	endwhile.

while	condition	is	true	the	code	in	the	body	of	the	while	is	executed.



for(initialization;	condition;	increment)	...	endfor.

no	field	may	be	left	empty.

initialization	sets	initial	value	of	optional	loop	counter.

condition	when	FALSE	terminates	the	loop.

condition	can	be	a	compound	logical	statement,	e.g.	"for	(X	=	0;	lastX	-	X	>
0.01	&&	max	<	1000;	max	=	max	+1)".

initialization	and	increment	fields	can	have	multiple	statements	separated
by	commas,	e.g.	"for	(i	=	0,	j	=	0;	i	<	10;	i	=	i+1,	j	=	j+2)".

	

Subroutine	Library.

1.	 sin	deg,	where	deg(°)

2.	 cos	deg,	where	deg	(°)

3.	 exp

4.	 log

5.	 log10

6.	 min

7.	 max

8.	 estar	t

9.	 patmos	Ht,	in	kPa,	where	Ht	(m)	is	the	height.

10.	 rhoa	t,	ea,	Pa,	in	(kg/m^3),	where	t	(°C),	ea	(kPa)	and	Pa	(kPa)	is	the
atmospheric	pressure.

11.	 spec_humid	ea,	Pa,	in	(kg/kg)	where	ea	(kPa)	and	Pa	(kPa)	is	the
atmospheric	pressure.



12.	 PI

13.	 DAY	-	current	day

14.	 MONTH	-	current	month

15.	 YEAR	-	current	year

16.	 JULIAN	-	Julian	day	of	the	year.

17.	 FREQ	-	number	of	time	intervals	in	a	day.

18.	 STEP	-	current	interval	starting	at	1.

19.	 GROUP	-	Current	group	index.	1	to	maximum	number	of	groups.

20.	 STRUCT	-	Current	struct	index.	1	to	maximum	number	of	structs.

21.	 FIRSTINT	-	True	for	the	first	interval	of	the	day.	When	STEP	%	FREQ
equals	1.

22.	 LASTINT	-	True	for	the	last	interval	of	the	day.	When	STEP	%	FREQ
equals	0.

23.	 NO_DISPLAY	-	If	variable	is	set	to	this	value	it	will	not	display.			When
exported	creates	a	sparse	file.

24.	 RAND	-	random	numbers	between	0.0	and	1.0.

25.	 ReadAheadObs	-	write	to	this	function	to	read	observations	before	and	after
the	current	interval.		Writing	-2	will	cause	all	observations	referenced	by	a
"declreadobs"	declaration	in	this	module,	to	refer	to	the	interval	two	periods
earlier,	+2	to	the	period	two	intervals	later	and	0	will	return	module	read
observations	to	the	current	interval.		Reading	from	ReadAheadObs	returns
the	status,	1	-	error	(outside	available	observation	range).		HRU_OBS	is	not
used	to	access	the	observation.	Observations	are	read	in	sequence	as	stored
in	the	file.

26.	 WriteAheadObs	-	use	this	function	to	write	the	values	of	the	current	interval
observations	to	permanent	storage.	Useage	is	to	read	from	the	desired



interval	using	ReadAheadObs	function.	Then	changing	the	value	of	the
desired	observation	and	then	writing	the	new	values	to	observation	storage
using	the	function	WriteAheadObs	with	the	same	interval	offset..

Macro	Declarations.

N.B	spaces	may	be	included	in	text	fields	if	the	entire	field	is	enclosed	in	double
quotes.

To	create	a	parameter	in	the	module,

				declparam,	param,	NHRU,	0.2,	0.0,	1.0,	"my	description",	"(my	units)"[,Int].

				Parameter	macro	variables	are	by	default	floating	point.		If	is	necessary	to	use
an	existing	CRHM	integer	parameter	this	can	be	done	by	adding	"Int"	to	the	end
of	the	normall	call;

				declparam,	inhibit_evap,	NHRU,	[0],	0,	1,	"inhibit	evapatation,	1	->	inhibit",	"
()",	"Int".

				To	manage	2-D	parameters	the	dimension	NDEFN	is	implemented.

				declparam,	Distrib,	NDEFN,	[1.0],	0.0,	100.0,	"Test	2D	parametert",	"()"

						The	order	of	element	access	to	Distrib	[HRU][LAY].

To	change	the	value	of	a	CRHM	parameter	declared	in	another	module,

				declputparam,	module_name,	variable_name,	(units).

To	use	a	CRHM	observation	within	the	module,

				declreadobs,	t,	NOBS,	description,	(units).		N.B.	access	is	limited	to	the
available	observations.		Last	available	observation	is	used	to	satisfy	any
remaining	requests.

To	use	a	CRHM	observation	function	within	the	module,

				declobsfunc,	t,	tfunc,	FUNC.		N.B.	access	is	limited	to	primitive	observations.
FUNC	from	"AVG,	MIN,	MAX,	DTOT,	POS,	TOT,	FIRST,	LAST,	MJ_W	and



W_MJ".		

To	create	a	new	CRHM	variable	for	the	module,

				declvar,	OutVar,	NHRU,	description,	(units)	[,Int].

				decldiag,	OutVar,	NHRU,	description,	(units)[,Int].

				decllocal,	OutVar,	NHRU,	description,	(units)[,Int].

				To	manage	2-D	parameters	the	dimension	NDEFN	is	implemented.

				declvar,	Test_NDEFN,	NDEFN,	"Test	2D	variable",	().

						The	order	of	element	access	to	Test_NDEFN	[HRU][LAY].

To	create	a	new	state	CRHM	variable	for	the	module,

				declstatvar,	OutVar,	NHRU,	description,	(units).

To	create	a	new	CRHM	local	variable	for	the	module.	N.B.	this	a	variable	local
to	this	module.		Not	to	be	confused	with	a	parser	local	variable.

				decllocal,	OutVar,	NHRU,	description,	(units).

To	use	a	CRHM	variable	from	another	module,

				declgetvar,	module_name,	variable_name,	(units).

To	use	a	CRHM	variable	declared	in	another	module	and	alter	its	value,

				declputvar,	module_name,	variable_name,	(units).

To	use	a	CRHM	parameter	declared	in	another	module	and	alter	its	value,

				declputparam,	module_name,	variable_name,	(units).

To	create	a	CRHM	observation	from	existing	observations,	parameters	and
variables,

				declobs,	t2,	NHRU,	description,	(units).		N.B.	if	observation	is	already	defined



by	an	observation	file	-	does	nothing.

To	force	modules	into	a	desired	loading	order,

				setpeer,	PeerVar,	PeerRank,		where	PeerVar	is	a	CRHM	variable	that	the
current	module	must	be	loaded	after	and	the	PeerRank	is	the	offset	at	this	level.

				This	command	is	required	when	a	module	has	no	input	variables	to	allow
CRHM	to	determine	the	position	of	the	module	in	the	model	order.			A	typical
case	is	a	module	whose	inputs	consist	of	observations.	Automatically	it	will	be
loaded	early	in	the	model	even	if	it	uses	declared	observations	from	other
modules	because	all	types	of	observations	have	the	same	priority.

				To	force	the	module	to	load	after	a	declared	observation	has	been	calculated
set	PeerVar	to	'ObsName#'.	The	#	symbol	differentiates	between	a	variable
named	'ObsName'	and	a	declared	observation	named	'ObsName'.

				The	PeerVar	cannot	be	a	variable	that	is	accessed	using	a	declputvar	as	these
variables	have	no	rank	value.	Examples	of	these	variables	are	"SWE",	Sd,
soil_moist,	soil_rechr,	hru_actet	and	hru_cum_actet.

Macro	Structure.

1.	 The	first	line	of	a	Macro	is	its	name.		This	is	the	name	that	it	is	identified	by
in	the	model.		Macro	and	Module	names	must	be	unique.	Text	after	the
module	name	is	handled	as	the	module	description.

2.	 Next	follows	the	declaration	section.		Each	declaration	is	on	a	new	line.

3.	 The	"command"	line	ends	the	declaration	section	and	begins	the	code	to	be
executed.

4.	 The	execution	code	is	free	format	and	may	be	indented	and	commented.

5.	 The	end	of	the	macro	definition	is	indicated	by	the	"end"	statement	on	a
new	line.

Comments.

				Code	may	be	documented	line	using	"//".	Any	text	after	the	"//"	is	ignored	and



handled	as	a	comment.

				To	use	spaces	in	declaration	descriptive(text)	fields	enclose	the	desired	text	in
double	quotes,	e.g.	declparam,	param,	NHRU,	0.2,	0.0,	1.0,	"my	description",	"
(my	units)"

Array	references	are	in	the	range	of	1	to	the	maximum	number	of
HRUs.	

				Element[0]	is	illegal.		When	using	a	standard	observation	variable	the	element
access	is	[1],	e.g.	T[1],	u[1]	etc.		If	the	array	element	is	not	specified	it	will
default	to	[1].	Not	recommended.

				When	accessing	observations,	the	element	is	limited	to	the	maximum	defined
element	for	the	observation.

Macro	Edit	Screen.

				This	screen	is	a	simple	text	editor.		At	present	no	"smarts"	are	built	in.		The
screen	has	the	capability	to	cut	and	paste	to	and	from	itself	and	to	and	from	other
applications.		Macro	modules	can	be	saved	from	the	screen	using	the	File	menu.	
The	default	file	extension	is	"*mcr".		These	macro	files	are	never	used	by
CRHM	and	are	for	the	use	of	the	user	only.			The	two	buttons	allow	the	user	to
save	the	screen	changes	to	CRHM	or	cancel	current	changes	and	return	to	the
last	saved	CRHM	screen	in	the	model.

				To	create	a	new	line	use	CTRL	+	Enter.

				When	loading	a	macro	file	(*mcr),		it	will	by	default	insert	the	text	into	the
edit	screen	at	the	position	of	the	cursor.	However,	if	the	edit	screen	has	a
selection,	it	will	be	replaced	by	the	contents	of	the	file.

				When	saving	a	macro,	the	entire	edit	screen	is	saved	to	the	file	unless	there	is
a	selection	and	in	that	case	only	the	selected	text	will	be	saved.

Saving	Macros.

				Macros	are	automatically	saved	to	the	CRHM	project	file	when	the	model	is
saved	as	a	project	in	the	main	screen	file	menu.		A	macro	may	also	be	saved	as	a



file	in	the	Macro	Edit	Screen	for	import	into	another	project.		The	file	extension
used	is	".mcr".		Since	CRHM	loads	executable	Macros	from	the	project	file,		to
utilise	code	in	a	"*.mcr"	file	the	file	must	be	loaded	into	CRHM	using	the	Macro
Edit	Screen	and	then	the	project	saved.		Exit	from	CRHM	and	then	re-run
CRHM	and	load	the	project	file.

Flow	Screen.

				Since	macro	modules	used	for	debugging	may	not	be	required	to	satisfy	inputs
to	the	current	CRHM	model,		CRHM	will	detect	them	as	unused.		To	keep	the
macro	modules,	always	select	"NO"	in	the	"Remove	module"	dialogue	box.	
Macro	declared	observations	are	labelled	with	a	trailing	"#".		For	example	the
Macro	declared	observation	"MyObs"	will	be	displayed	as	"MyObs#".		This
notation	differentiates	declared	Macro	Observations	from	declared	Macro
Variables.

Declared	Observation	Linking	Priority.

				When	a	model	is	run	and	an	Observation	is	available	from	a	file	(field
observation)	and	also	from	a	Macro,		CRHM	by	default	will	use	the	observation
from	the	file.

				When	a	Macro	defines	an	observation	that	should	have	a	higher	priority	than
the	file	observation,		its	name	should	have	a	trailing	"#'	sign,	e.g.	"MyObs#"
which	will	display	in	the	flow	screen	as	"MyObs#".			When	this	convention	is
used,		"hard	code"	Modules	have	to	contain	extra	code	to	handle	the	special
name.

Macro	Example.

				The	following	macro	definitions	demonstrate	the	following	features.

1.	 Macros	are	named	by	the	user.

2.	 Multiple	macros	may	be	defined	at	once.

3.	 Standard	CRHM	parameters	allow	macro	physical	outputs	to	be	easily	set
and	modified	like	normal	CRHM	modules.



4.	 Any	Observations	from	the	CRHM	model		may	be	accessed.

5.	 Any	CRHM	module/macro	output	variable		may	be	accessed.

6.	 CRHM	variable	outputs	may	be	generated	to	be	used	by	other	macro	or
standard		CRHM	modules.

7.	 Local	variable	values	are	preserved	from	time	interval	to	time	interval.

8.	 Writer	should	provide	a	description	and	units	for	the	variables	and
parameters	used	to	permit	CRHM	to	supply	help	information	to	the	user.

MyMacro1		optional	module	description

declparam,	param,	NHRU,	0.2,	0.0,	1.0,	"my	description",	(my_units)

declreadobs,	t,	NOBS,	description,	(units)

declvar,	OutVar,	NHRU,	description,	(units)

declvar,	XOutVar,	NHRU,	description,	(units)

declgetvar,	obs,	hru_t,	"(°C)"

command	//	code	to	be	executed

OutVar[1]=param[1]*t[1]	OutVar[2]=param[2]*t[1]	OutVar[3]=param[3]*t[1]	//
array	element	access	by	numeric	value	(range	1	-	#	HRUs)

var	i	i=i+1	XOutVar=	sin(i)	var	j	j=i+180	XOutVar[2]	=	sin(j)	XOutVar[3]	=
cos(PI/36*i)

end	//	end	of	code	and	end	of	module	definition

MyMacro2	//	beginning	of	next	module	definition

declparam,	param2,	NHRU,	0.2,	0.0,	1.0,	description,	(units)

declreadobs,	t,	NOBS,	description,	(units)

declvar,	Z,	NHRU,	description,	(units)



declvar,	Y,	NHRU,	description,	(units)

declgetvar,	Macro1,	OutVar,	(units)

command

Z[hh]=param2[hh]*t[1]

Y[hh]	=	param2[hh]*OutVar[hh]

end

Evaporation	Example.

Evaporation	//	module	name

declparam,	A,	NHRU,	0.023,	0.0,	1.0,	"description",	(mm/day)	//	declarations

declparam,	B,	NHRU,17.8,	0.0,	100.0,	"description",	(°C)

declparam,	Zref,	NHRU,1.5,	0.001,	100.0,	Zref,	(m)

declparam,	Zwind,	NHRU,10,	0.001,	100.0,	Zwinf,	(m)

declparam,	Z0,	NHRU,0.001,	0.001,	100.0,	Zo,	(m)

declvar,	EvapAlg,	NHRU,	"evaporation_algorithm",	(MJ/(m2/day))

declvar,cum,	NHRU,	"cum_evaporation_algorithm",	(mm)

declvar,Ra,	NHRU,Ra,	(s/m)

declgetvar,	obs,	hru_tmean,	"(°C)"	//	mean	air	temperature

declgetvar,	obs,	hru_tmin,	"(°C)"	//	minimum	air	temperature

declgetvar,	obs,	hru_tmax,	"(°C)"	//	maximum	air	temperature

declgetvar,	obs,	u,	"(m/s)"	//	wind	velocity

command	//	module	code



var	U	U=max(u[0],	0.2)	//	assume	minimum	wind	velocity	to	prevent	divide	by
zero	errors

Ra[hh]	=	log(Zref[hh]/Z0[hh])*	log(Zwind[hh]/Z0[hh])/0.4^2*U

EvapAlg[hh]	=-A[hh]*(	hru_tmean[1]	-	B[hh])*Ra[hh]*(	hru_tmax[1]	-
hru_tmin[1])^0.5*1/(245*2.501)

cum[hh]	=	cum[hh]	+	EvapAlg[hh]

end	//	end	of	module

Macro	Implementation	of	C++	module.

				To	relate	to	a	practical	example	we	will	design	a	macro	to	simulate	the	module
ClassExample	described	earlier	which	converts	interval	net	radiation	in	MJ/(m2-
Int)	calculated	by	an	earlier	module	to	mm/(m2-Int)	of	water,	i.e.	kg/(m2-Int)	of
water.	The	air	temperature	from	an	observation	is	required	to	carry	out	the
conversion.	Two	other	outputs	are	calculated	as	a	fraction	of	the	module	output.
These	fractions	are	specified	by	the	parameters	F_Qg	and	F_Qs.

				Example	//	name	of	micro	module

				declreadtobs(t,	OBS,	Temperature,	(°C))

				declgetvar(netall,	net,	"(MJ/m^2*int)")

				declparam(F_Qg,	NHRU,	3*0.2,	0.0,	1.0,	Qg=F_Qg*Rn,	())

				declparam(F_Qs,	NHRU,	[0.0],	0.0,	1.0,	Qs=F_Qg*Rn,	())

				declvar(Rn,	NHRU,	net,	(mm/Int))

				declvar(Qg,	NHRU,	ground_flux,	(mm/Int))

				declvar(Qs,	NHRU,	storage_flux,	(mm/Int))

//	The	algorithm	code	to	be	executed	every	time	interval	and	for	every	NHRU	is
written	into	the	command	area.	The	program	code	follows:



				command	//	code	is	executed	for	number	of	HRUs	with	hh	varying	between	1
and	#	HRUs.

								Rn[hh]	=	net[hh]/(2.501-0.002361*t[1])

								Qg[hh]	=	Rn[hh]*F_Qg[hh]

								Qs[hh]	=	Rn[hh]*F_Qs[hh]

				end

Since	the	command	code	applies	to	every	HRU,	it	is	executed	inside	a		for		
loop.		The	output	variable	Rn,	is	calculated	from	the	observation	temperature
and	an	output	variable	net	calculated	in	another	module.	Outputs	Qg	and	Qs
from	this	module	are	the	product	of	the	output	Rn	and	the	parameters	F_Qg	and
F_Qs.

Example	of	"for"	and	2-D	arrays.

Test_declvar

declvar,	Test_NDEFN,	NDEFN,	"Test	2D	variable",	()

declvar,	Test_NDEFN2,	NDEFN,	"Test	2D	variable",	()

declparam,	Test_par_NDEFN,	NDEFN,	[1.0],	0.0,	100.0,	"Test	2D	parametert",
"()"

command

var	Fred	[NHRU][7]

var	ll

ll	=	1

for(ll	=	1;	ll	<=	NHRU;	ll	=	ll	+1)

			Fred[hh]	[ll]	=	Test_par_NDEFN[hh][ll]*5



			Test_NDEFN[hh][ll]	=	Test_par_NDEFN[hh][ll]

			Test_NDEFN2[hh][ll]	=	Fred[hh][ll]

endfor

end

Example	of	accessing	variables	and	parameters	from	another	module,	in	this
case	pbsm_M.

Test_getvar

declvar,	Test_NDEFN,	NDEFN,	"Test	2D	variable",	()

declvar,	Test_NDEFN_P,	NDEFN,	"Test	2D	variable",	()

declgetvar,	pbsm_M,	Results,	()

declparam,	distrib,	NDEFN,	1.0,	0.0,	100.0,	"Test	2D	parametert",	"()"

command

var	ll

for(ll	=	1;	ll	<=	NHRU;	ll	=	ll	+1)

		Test_NDEFN[hh][ll]	=	Results[hh][ll]

		Test_NDEFN_P[hh][ll]	=	distrib[hh][ll]

endfor

end

As	always	when	sharing	a	parameter	between	modules,	all	values	of	the
parameter	should	be	made	the	same	in	every	module,	then	the	project	saved	and
reloaded	when	the	shared	parameter	should	appear	only	in	the	"basin"	module.

Known	problems.



				If	a	major	change	is	made	to	a	macro,	i.e.	insertion	or	deletion	of	a
declaration,		the	user	should	exit	from	the	macro	entry	screen	and	immediately
save	the	project	and	then	exit	from	CRHM.		When	CRHM	is	restarted	it	will
execute	properly.		At	present	CRHM	is	not	handling	some	aspects	of
allocation/deallocation	of	variables	correctly.

	



Groups	and	Sructures.

Group.			A	collection	of	modules	executed	in	sequence	for	all
HRUs.

			After	using	CRHM	for	a	while,	it	was	found	to	be	inconvenient	to	always
handle	the	individual	modules.		To	overcome	this	groups	were	introduced.		A
group	module,		is	a	collection	of	modules	which	can	be	used	in	place	of
specifying	the	individual	modules.		When	the	group	is	defined	the	modules	must
be	specified	in	the	correct	execution	order.		Use	of	groups	and	a	relevant	naming
convention	allow	models	to	be	easier	implemented	and	understood.		Unecessary
detail	can	be	hidden	from	the	flow	diagrams	and	documentation.	The	larger
building	blocks	simplify	the	implementation	of	larger	models.

				Since	different	groups	can	have	the	same	variable	outputs	in	a	model	it	is
necessary	to	enhance	the	output	variable	names	so	that	they	do	not	conflict	with
one	another.	Variable	names	can	already	be	long	to	be	meaningful,	a	short	suffix
seemed	to	be	the	best	way	to	differentiate	the	repeated	names	and	the	root	name
still	to	be	recognizable.		Suffix	@A,	@B,	@C...	are	used	where	@A	is	used	for
outputs	of	the	first	group,	@B	is	used	for	the	next	group	etc.

				Group	application:

1.	 If		groups	are	defined	with	the	same	modules,		it	is	possible	to	execute
the	models	in	parallel	using	different	parameters	or	driving
observations.

2.	 If	groups	are	defined	as	different	models,		it	is	possible	to	execute	the
models	in	parallel	using	identical	parameters	and	driving	observations
to	check	different	responses.

Structure.		A	parallel	collection	of	modules.		Only	a	selected	one	of
them	is	executed	for	any	HRU	in	a	time	step.

				Again	after	using	CRHM	it	was	found	that	it	was	not	always	desired	to
execute	the	same	module	for	every	HRU.		A	structure	handles	this	situation.		
The	selection	of	the	module	for	every	HRU	can	be	programmed	statically,	e.g.
example	1.	below	or	dynamically	by	using	a	preceding	module	to	select	the



module	to	be	used	for	the	current	time	step,	e.g.	example	2.	below.

				Since	structures	can	have	the	same	variable	outputs	in	a	model	it	is	necessary
to	enhance	the	output	variable	names	so	that	they	do	not	conflict	with	one
another.	Variable	names	can	already	be	long	to	be	meaningful,	a	short	suffix
seemed	to	be	the	best	way	to	differentiate	the	repeated	names	and	the	root	name
still	to	be	recognizable.		Suffix	@a,	@b,	@c...	are	used	where	@a	is	used	for
outputs	of	the	first	structure,	@b	is	used	for	the	next	structure	etc.		Groups	use
an	upper	case	suffix	while	structures	use	a	lower	case	suffix.

				Structure	application:

1.	 Comparison	of	algorithms;		it	is	possible	to	specify	a	different	module,
say	from	evap,	evapD,	ShuttleWaite	and	ShuttleWaiteD	for	every	HRU
and	track	the	different	responses.		Some	of	the	modules,	say	evap,	
may	be	used	more	than	once	with	parameters	selecting	Granger,
Priestley-Taylor	and	Penman-Monteith	giving	more	combinations.

2.	 Sometimes	HRUs	require	diverse	modules	to	be	representative	of	the
unit.		An	example	would	be	forested	and	open	farmland.		By	using	the
structure	capability	a	general	model	can	be	customised	to	handle
individual	HRUs	differently.

3.	 Sometimes	HRUs	change	their	characteristics	due	to	excess	water	or
lack	of	it.			Using	a	structure,		the	module	selection	can	be	dynamically
changed.		If	an	HRU	can	experience	dry	spells,	moderate	rainfall	and
very	wet	conditions	with	flooding	then	it	might	be	desireable	to	treat	it
using	a	grasslands	module,	wetlands	module	or	a	slough	module
respectively.		The	decision	about	which	module	to	use	would	be	made
by	a	preceding	module	based	upon	the	availability	of	moisture.

AKA	Interaction	with	Groups.

				In	the	normal	useage	of	AKA	in	non-group	models,		the	variables	and
observations	are	addressed	uniquely	by		specifying	the	varable	or	observation
and	the	module.		However,	with	groups,		variables	and	observations	all	are
referenced	by	the	group	name.		This	lack	of	resolution	means	that	the	source	and
destination	of	variables	and	observations	cannot	be	defined	precisely.		For
example,	if	the	user	attempts	to	change	say	Qsi	to	the	declared	observation	Qsi#,
all	occurrences	of	Qsi	would	be	changed	even	the	input	to	the	module	generating
Qsi#,	causing	a	loop.			To	prevent	this	from	happening,		if	an	attempt	is	made	to



change	an	input	of	a	module	to	the	same	name	as	one	of	its	outputs,	it	will	be
ignored.

				Declared	observations,	e.g.	Qsi#	do	not	have	future	data	available	to	be	able	to
generate	any	daily	function,	i.e.	mean,	max	etc.		CRHM	detects	these	calls	and
leaves	the	observation	as	a	simple	observation,	i.e.	Qsi.		In	most	situations	this	is
the	most	desireable	selection	anyway.



Macro	declgroup.

			The	Macro	Group	feature	allows	a	number	of	modules	to	be	grouped	under
one	name	and	treated	as	one	module.

				The	first	line	of	the	macro	is	the	module	or	group	name.		In	this	case
MyGroupA,	MyGroupB	and	MyGroupC.

				The	following	lines	up	to	the	command	token,	list	the	modules	making	up	the
group.		They	must	be	arranged	in	the	correct	execution	order.

				The	tokens	command	and	end	complete	the	definition	of	the	group.There
should	not	be	any	lines	between		command	and	end.

				Multiple	macro	groups	and	macros	can	be	defined	together.

MyGroupA

declgroup		//	defaults	to		number	of	HRUs	defined	in	the	model.

				obs

				calcsun

command

end

MyGroupB

declgroup	5		//	five		HRUs.

				intcp

				pbsm

				albedo

				netall



				ebsm

				evap

command

end

MyGroupC

declgroup	0		//	defaults	to		number	of	HRUs	defined	in	the	model.

				crack

				smbal

				route

command

end

Module	Naming	Convention.

				Group	variable	names	cannot	use	the	original	variable	name	otherwise	their
would	be	a	naming	conflict.		To	avoid	this	problem,	the	first	macro	group
defined	has	the	suffix	"@A"	the	next	"@B",	"@C"	etc.Because	of	this	the	search
order	defined	in	the	a	following	section	has	been	adopted.

Group	parameters.

				The	group	will	have	all	the	parameters	of	every	module	in	the	group.			If	a
parameter	is	used	by	more	than	one	module	in	the	group	these	modules	all	share
the	same	parameter	values.

Module	Linking	Order.

				Modules	can	use	"*"		or	explicitly	specify	the	source	module	name,			e.g.
*.hru_t	and	Obs.hru_t	for	the	linking	to	work	correctly.	Obs.hru_t	can	only	link
to	the	module"Obs"	and	no	other	module	or	group.



				The	module	linking	search	order	is	as	follows.

1.	 Specific	module,	e.g.	Obs.hru_t.		Will	only	match	Obs.hru_t.
2.	 Wild	root	module	or	group,	e.g.	*.hru_t	and	*.hru_t@A.	*.hru_t	would

match	any	module	with	an	output	hru_t.	*.hru_t@A	will	only	match	the
hru_t	output	of	the	first	group	defined	i.e.	with	suffix	@A

3.	 Wild	group	module	stripped	of	its	group	suffix.		*.hru_t@A	is	reduced	to
*.hru_t	before	searching.	*.hru_t@A	will	match	any	module	with	an	output
hru_t.

4.	 Wild	group	module	stripped	of	its	group	suffix	and	a	search	is	made	of	any
groups	after	their	group	suffix	has	been	removed.	*.hru_t@A	is	reduced	to
*.hru_t	before	searching	all	groups	for	*.hru_t,	i.e.	after	their	suffix	has
been	removed.

CreateGroup	in	the	Macro	edit	menu.

				This	command	allows	an	existing	project	to	be	convertede	to	a	group.			The
new	group	has	the	name	of	the	original	project	with	"_A"	appended.			If	the
project	is	added	multiple	times	the	other	groups	will	have	"_B",	"_C",	etc.
appended.

				Multiple	different	projects	may	be	added	in	any	order.		In	every	case	the	suffix
"_A",	"_B"	etc.	will	be	added.

				The	final	model	is	build	in	the	usual	way	by	going	to	the	menu
"Build/Construct"	and	selecting	the	groups	and	building	as	normal.		The	number
of	HRUs	in	each	group	is	determined	from	the	project	that	the	group	was	created
from	originally.	At	this	time	all	parameters	are	CRHM	default	values.

				After	the	model	is	built	the	original	project	parameter	values	may	be	moved
into	the	new	model	by	proceeding	to	the	Parameter	menu	and	loading	the
parameter	file	-	"CreateGroup.par".		Care	should	be	taken	to	use	the	current
directory	as	the	same	file	name	is	always	used.		If	this	step	is	not	taken
parameter	values	will	default	to	the	module	parameter	default	values.

				During	the	preceding	steps	the	number	of	HRUs	should	not	be	changed	as	the
number	of	HRUs	in	the	original	project	and	the	generated	groups	must	be
identical	or	they	will	not	updated	to	the	values	in	"CreateGroup.par".



				The	new	project	should	be	saved	at	this	time	and	re-loaded	before	any	further
editing	is	carried	out.

				The	number	of	HRUs	in	any	group	can	be	changed	by	inserting/changing	the
value	on	the	"declgroup"	instruction	in	the	Macro	defining	the	group.			Note	that
if	the	value	is	missing	or	equal	to	0,		the	number	of	HRUs	in	the	group	will	be
the	global	value.

				When	the	number	of	HRUs	is	reduced	the	parameters	are	truncated.			If	the
number	of	HRUs	is	increased	the	last	value	is	duplicated	as	often	as	necessary.	
An	exception	is	a	serial	parameter,	"1,	2,	3!"	for	example,	then	the	series	is
expanded.

				It	is	important	the	names	of	the	groups	are	not	changed	or	the	link	between	the
original	parameter	values	saved	in	the	file	"CreateGroup.par"	and	the	groups	will
be	broken	causing	the	error	"Unknown	Parameter	in	parameter	file"	will	occur
for	every	parameter.

	

	



Macro	declstruct.

			The	Macro	Structure	feature	allows	for	a	module	to	be	chosen	from	a	group	of
modules	at	execution	time.		An	example	of	its	useage	is	an	area	which	is	a
wetland	in	wet	years	and	a	grassland	during	dry	periods.		The	module	used	to
represent	the	area	can	be	chosen	from	the	structure	selection	by	another	module
setting		the	"HRU_struct"	parameter	for	the	structure	module.

				The	first	line	of	the	macro	is	the	module	or	structure	name.		In	this	case
MyStructA,	MyStructB	and	MyStructC.

				The	following	lines	up	to	the	command	token,	list	the	modules	making	up	the
structure.		They	can	be	arranged	in	any	order	and	are	addressed	as	1,	2,	etc.	to	n.

				The	tokens	command	and	end	complete	the	definition	of	the	group.There
should	not	be	any	lines	between		command	and	end.

				Multiple	macro	groups/structures	and	macros	can	be	defined	together.

MyStructaA

declstruct

				MyMacro1		//	executed	when	"MyStructaA	HRU_struct"	=	1

				MyMacro2

command

end

MyStructaB

declstruct

				evap

				evap_Resist



command

end

MyStructaC

declstruct

				route

				netroute

command

end

Module	Naming	Convention.

				Group	variable	names	cannot	use	the	original	variable	name	otherwise	their
would	be	a	naming	conflict.		To	avoid	this	problem,	the	first	macro	structure
defined	has	the	suffix	"@a"	the	next	"@b",	"@c"	etc.	Because	of	this	the	search
order	defined	in	a	following	section	has	been	adopted.		N.B.	uppercase
designates	a	group	and	lowercase	designates	a	structure.

Structure	parameters.

				Since	a	structure	can	contain	a	diverse	collection	of	modules	having	different
parameters	the	structure	will	have	all	of	these	parameters.		However,	for	any
HRU	only	the	parameters	used	by	the	module	selected	need	to	be	defined.	Any
others	can	be	left	at	their	default	values	for	that	HRU.

Module	Linking	Order.

				Modules	can	use	"*"		or	explicitly	specify	the	source	module	name,			e.g.
*.hru_t	and	Obs.hru_t	for	the	linking	to	work	correctly.	Obs.hru_t	can	only	link
to	the	module"Obs"	and	no	other	module	or	group.

				The	module	linking	search	order	is	as	follows.



1.	 Specific	module,	e.g.	Obs.hru_t.		Will	only	match	Obs.hru_t.
2.	 Wild	root	module	or	group,	e.g.	*.hru_t	and	*.hru_t@A.	*.hru_t	would

match	any	module	with	an	output	hru_t.	*.hru_t@a	will	only	match	the
hru_t	output	of	the	first	group	defined	i.e.	with	suffix	@a

3.	 Wild	group	module	stripped	of	its	group	suffix.		*.hru_t@a	is	reduced	to
*.hru_t	before	searching.	*.hru_t@a	will	match	any	module	with	an	output
hru_t.

4.	 Wild	group	module	stripped	of	its	group	suffix	and	a	search	is	made	of	any
groups	after	their	group	suffix	has	been	removed.	*.hru_t@a	is	reduced	to
*.hru_t	before	searching	all	groups	for	*.hru_t,	i.e.	after	their	suffix	has
been	removed.

	



ClassClark	-	Lag	and	Route	Technique.

				This	class	is	used	to	delay	a	CRHM	HRU	variable	in	a	user	module	using	a
time	shift	and	a	storage	term.			Clark's	Method	is	used	and	is	implemented	using
the	following	code.

	

ClassClark	*OurDelays;

OurDelays	=	new	ClassClark(const	float*	inVar,	float*	outVar,	const

float*	kstorage,	const	float*	lag);

where:

				inVar[HRU]	is	the	input	variable	to	be	processed,

				outVar[HRU]	is	the	destination	for	the	delayed	output	variable,

				kstorage[HRU]	is	the	desired	storage	constant	(days)	and

				lag[HRU]	is	the	desired	time	shift	(hours).		The	resolution	is	equal	to	the
observation	interval.

	

To	generated	the	delay	after	every	module	HRU	so	that	it	can	be	used	for	a
downstream	HRU	in	the	same	module	use:

				OurDelays->DoClark(hru);//	note	hru	in	the	range	(0	to	HRUmax-

1).

If	delayed	and	lagged	output	is	not	used	in	the	same	module	then	all	HRUs	can
be	processed	at	once	using:

				OurDelays->DoClark();

The	class	is	destroyed	using,

				delete	OurDelays;



To	determine	the	quantity	still	in	storage	before	destroying	the	storage	object
use:

				float	residual	=	OurDelays->Left(hru);	//	note	hru	in	the	range

(0	to	HRUmax-1).

	

Sample	Application	of	ClassClark.

class	Classdelay	:	public	ClassModule	{

public:

				Classdelay(string	Name	=	"Qdelay",	String	Version	=

"undefined")	:	ClassModule(Name,	Version){};

				long	nhru;

//	declared	variables

				float	*Tdelay;	//	°C

				ClassClark	*OurDelays;

//	declared	parameters

				const	float	*Kstorage;

				const	float	*Lag;

//	declared	observations

				const	float	*t;

//	procedures

				void	decl(void);

				void	init(void);

				void	run(void);

				void	finish(bool	good);



};

void	Classdelay::decl(void)	{

				declvar("Tdelay",	NHRU,	"delayed	temperature",	"(°C)",

&Tdelay);

				declparam("Kstorage",	NHRU,	"[0]",	"0",	"20",	"Air	Temperature

Storage",	"()",	&Kstorage);

				declparam("Lag",	NHRU,	"[1]",	"0",	"96",	"lag	delay",	"(hour)",

&Lag);

				declreadobs("t",	NOBS,	"air	temperature",	"(°C)",	&t);

}

void	Classdelay::init(void)	{

				nhru	=	getdim(NHRU);

				for(int	hh	=	0;	hh	<	nhru;	hh+)	Tdelay[hh]	=	0.0;	//	initial

value

				OurDelays	=	new	ClassClark(t,	Tdelay,	Kstorage,	Lag);

}

void	Classdelay::run(void)	{

				OurDelays->DoClark();

}

void	Classdelay::finish(bool	good)	{

				delete	OurDelays;

}

	



Constants	defined

These	are	universal	constants	defined	in	CRHM	model.

#define

Stefan-Boltzmann	constant	-	#define	SB	4.899e-09	//		MJ/m2-d
von	Karman's	constant	-	#define	kappa	0.41



delta(t)

Calculates	the	Slope	of	the	Saturation		Vapour	Pressure	vs	Temperature	Curve.

Units

kPa/°C.

Inputs

t	(°C)	-	air	temperature.
function	estar(t)	-	saturated		vapour	pressure.

Returns

if	(t	>=	0.0)

return(2504.0*exp(17.27	*	t/(t+237.3))	/	sqr(t+237.3))

else

return(3549.0*exp(	21.88	*	t/(t+265.5))	/	sqr(t+265.5))



DepthofSnow(SWE)

Calculates	the	Depth	of	Snow	from	Snow	Water	Equivalent	(SWE).

Units

(m)

Inputs

SWE	(mm)	-	Snow	Water	Equivalent.

Returns

if	(SWE	>	2.05)

				if(SWE	<=	145.45)	//	SWE	145.45	mm	equivalent	to	60	cm

								Snow_Depth	=	(SWE	-2.05)/2.39

else

				Snow_Depth	=	(SWE	+128.06)/4.5608

else

				Snow_Depth	=	0

return	(Snow_Depth/100.0)



estar(t)

Calculates	the	Saturation	Vapour	Pressure.

Units

kPa

Inputs

t	(°C)	-	air	temperature.

Returns

if	(t	>=	0.0)

return	(0.611	*	exp(17.27*t	/	(t	+	237.3)))

else

return	(0.611	*	exp(21.88*t	/	(t	+	265.5)))



f(t,	u,	Pa,	Ht,	Zwind,	Zref)

Calculates	the	interval	Drying	Power	for	modules	evap	and	evap2.

Units

(mm/kPa/Interval)

Inputs

t	(°C)	-	air	temperature.
Pa	(kP)	-	atmospheric	pressure.
u	(m/s)	-	wind	speed.
Ht	(m)	-	crop	height.
Zwind	(m)	-	wind	measurement	height.
Zref	(m)	-	temperature/humidity	measurement	height.

Returns

return(	(0.622	*	kappa*kappa	*	rhoa(t,	Pa)	*	u	*	Interval*3600*24)	/	(Pa	*
x1	*	x2))

where

d0	=	0.67*Ht	and	Z0	=	0.14*Ht

x1	=	log(	(Zwind-d0)/(Z0))

x2	=	log(	(Zref-0.67*Ht)/(Z0))

rhoa(t,	Pa)	=	Density	of	air	at	(t,	Pa).

kappa	=	0.4	von	Karman	constant.

Interval	=	fraction	of	day.

Reference



	



Farouki_a(n)

Calculates	the	value	'a'	from	the	expression	3a²	-	2a²	=	n,	where	n	is	the
fractional	porosity.

Units

()

Inputs

fractional	porosity	().

Returns

return	'a'

Reference

Farouki	T.	Omar,		Cold	Regions	Science	and	Technology,	5	(1981)	67-75.	The
thermal	properties	of	soils	in	cold	regions

Code

float	Farouki_a(float	fract_por)	{

float	a;

float	nnew	=	0.0;

while(fabs(fract_por	-	nnew)	>	0.001)	{

a	+=	(fract_por	-	nnew)*0.25;

nnew	=	3*a*a	-	2*a*a*a;

}

return	a;



}



fdaily(u,	Ht)

Calculates	the	daily	Drying	Power	for	module	evap.

Units

(mm/kPa/day)

Inputs

u	(m/s)	-	wind	speed.
Ht	(m)	-	crop	height.

Returns

return	(	a	+	b*u)

where

Z0	=	Ht*100.0/7.6	(cm)

a	=	8.19	+	0.22*Z0

b	=	1.16	+	0.08*Z0

Reference

	



gamma(Pa,	t)

Calculates	the	Psychrometric	constant.

Units

kPa/°C

Inputs

t	(°C)	-	air	temperature.
Pa	(kP)	-	atmospheric	pressure.

returns

0.063

	

Notes

alternative	is	(0.00163*Pa/lambda(t))	which	is	commented	out.



SVDens(t)

Calculates	the	Saturation	Vapour	Density	of	air.

Units

kg/m^3

Inputs

t	(°C)	-	air	temperature.

Returns

return	(1.324*exp(22.452*t/(t+273.15))/(t+273.15))

Alternatives

SVDens	=	E*	*M/(R*(T	+	273.15))		where

								M=18.01	molecular	weight	of	water	(kg/kmole)

								R=8313	universal	gas	constant	(J/(kmole	k))



SWEfromDepth(Snow_Depth)

Calculates	the	Snow	Water	Equivalent	(SWE)	from	the	Depth	of	Snow.

Units

(mm)

Inputs

Snow_Depth	(m)	-	Snow	Water	Equivalent.

Returns

if	(Snow_Depth	>	0.6)

				SWE	=	4.5608*Snow_Depth*100.0-128.06

else	if	(Snow_Depth	>	0.0205)

				SWE	=	2.39*Snow_Depth*100.0+2.05

else

				SWE=0

return	(SWE)



SWE_prob	(SWEpeak,	Melt,	CV)

Calculates	the	probability	of	the	snow	water	equivalent	exceeding	Melt,		for	a
snowpack	having	an	average	areal	snow	water	equivalence	of	SWEpeak	at	the
beginning	of	melt.

Units

()

Inputs

SWEpeak	(m)	-	average	areal	SWE	at	the	beginning	of	melt.
Melt	(mm)	-	amount	of	SWEpeak	melted	this	interval.
CV	()	-	coefficient	of	variation	of	SWE.

Return	P

if(Melt<=	1.0)	return	1.0;	//	handle	log(0)	error

float	K	=	(Melt-SWEpeak)/(CV*SWEpeak)

float	Sy	=	sqrt(log(CV*CV+1.0))

float	Ky	=	(log(K*sqrt(exp(Sy*Sy)-1.0)+1.0)	+	Sy*Sy/2.0)/Sy

float	t	=	1	/(1+little_p	*	Ky)

float	P	=	(exp(-Ky*Ky/2)/sqrt(2*M_PI))	*	(a1*t	+	a2*t*t	+	a3*t*t*t)

if(P	>	1.0	||	P	<	0.001)	P	=	1.0	//	handle	discontinuity

where:

K	=	frequency	factor

Sy	=	standard	deviation	of	the	transformed	variable.



Ky	=	the	frequency	factor	for	the	transformed	data	having	an
exceedence	probability	equal	to	K.

t,	a1,	a2,	a3	coefficients	for	the	interval-halving	method	using		the
approximation	by	Abramowitz	and	Stegun,	1965.

Notes

The	Abramowitz	and	Stegun	interval	halving	approximation	is	not
continuous	and	emits	extraneous	values	when	the	ratio	of	SWE	to
SWEpeak	is	low.	It	can	generate	values	greater	than	one	and	less	than	0.0	in
this	range.		If	either	condition	occurs	the	probability	is	made	equal	to	1.0.	
The	five	term	approximation	is	only	marginally	better	than	the	three	term
approximation	used	here.

Coefficient	of	Variation	sample	values.

Fallow 0.3 0.58
Stubble 0.33 0.33
Pasture 0.41 0.57
Brush 0.42 0.52
Yards 0.5 0.5



Purpose.

				Normally	CRHM	is	run	interactively	by	the	user.		However,	if	a	comparison
of	different	model	runs	with	different	parameters	is	required,	it	can	be	very
tedious.		Example	Excel	spreadsheets	with	a	Visual	Basic	macro	are	described
here	and	are	distributed	with	CRHM.		This	demonstration	allows	the	user	to	list
in	an	Excel	workbook	the	parameters	for	each	run	and	the	macro	will	execute
CRHM	for	each	set	of	parameters	and	record	in	the	workbook	the	final	values	of
variables	requested	by	the	user.		These	variables	are	the	same	as	being	displayed
by	CRHM	as	specified	in	the	project	file.	The	process	seems	involved	but	if
taken	in	steps	it	is	straightforward.	The	current	implementation	only	records	the
values	of	the	selected	variables	at	the	end	of	the	model	run.		If	an	intermediate
value	is	required	(e.g.	peak	evaporation),		the	user	can	write	a	CRHM	macro
which	saves	the	desired	variable	value	till	the	end	of	the	run.

Preparation	of	input	files.

				Required	files	are,

1.	 CRHM_XLS.xls	-	This	Excel	workbook	specifies	the	names	of	the	process
files	to	be	used	and	controls	the	execution	of	the	macro	to	execute	CRHM.

2.	 Location	of	CRHM	-	where	CRHM	is	installed,	e.g.	C:\Program
Files\CRHM\CRHM.exe.

3.	 CRHM	parameter	file	-	a	text	parameter	file	saved	from	the	CRHM	project,
e.g.	Parameters.par.

4.	 List	of	parameter	changes	-	an	Excel	file	listing	the	parameters	for	each	run,
e.g.	Changes.xls.

5.	 CRHM	project	file	-	project		file	to	be	run,	e.g.	pbsm.prj.
6.	 List	of	Observation	files	-	an	Excel	file	listing	the	observation	files	to	be

used,	e.g.	Changes_Obs.xls.		This	file	is	not	used	if	the	observation	file	is	in
the	project	file.

	

				Three	example	files	are	distributed	with	CRHM	in	the	directory	"\Program
Files\CRHM\CRHM_XLS".

								CRHM_XLS.xls	using	the	files;	pbsm.prj,			parameters.par	and



Changes.xls.		This	the	simplest	example	and	uses	a	basic	project	(no	groups).	
The	parameters	need	only	to	be	specified	by	name	only.

								CRHM_XLS_G.xls	using	the	files;	pbsmG.prj,			parametersG.par	and
ChangesG.xls.	Since	this	project	uses	groups	the	parameters	must	be	specified
by	the	group	name	+	the	parameter	name,	e.g.	"pbsm_GrpA	Ht".

								CRHM_XLS_Obs.xls	using	the	files;	PBSM_NO_obs.prj,	parameters.par,
Changes.xls	and	Changes_Obs.xls.		The	project	file	does	not	specify	any
observation	files	since	these	are	determined	by	file	list	in	Changes_Obs.xls.	
N.B.	that	the	Excel	file	defining	the	parameters	is	always	used	as	its	length
determines	the	number	of	times	CRHM	is	run.

Necessary	CRHM	options.

				The	following	settings	are	required	to	be	set	so	that	the	process	can	be
automated.

1.	 AutoRun.
2.	 AutoExit.
3.	 Log/Last.

	



Albert,	M.R.	and	G.	Krajeski,	1998:	A	fast,	physically-based	point
snow	melt	model	for	use	in	distributed	applications",	Hydrological
Processes,	12(11),	1809-1824.

Brunt,	D.,	1932.	Notes	on	the	radiation	in	the	atmosphere.	Quarterly
Journal	of	the	Royal	Meteorological	Society,	58,	389-420.

Brutsaert,	W.,	1982.	Evaporation	into	the	Atmosphere.	D.	Reidel
Publishing	Co.,	London,	UK.	299	p.

Carey,	S.K.,	and	W.L.	Quinton,	2004.	Evaluating	summer	runoff
generation	using	hydrometric,	stable	isotope	and	hydrochemical
methods	in	a	discontinuous	permafrost	alpine	catchment.	Hydrological
Processes,	In	press.

Cionco,	 R.M.	 1978.	 Analysis	 of	 canopy	 index	 values	 for	 various
canopy	densities.	Boundary	Layer	Meteorology.	15,	81-93.

Clark,	C.O.,	1945.	Storage	and	the	unit	hydrograph.	Proceedings	of	the
American	Society	of	Civil	Engineering,	69,	1419-1447.

Elliott,	J.A.,	B.M.	Toth,	R.J.	Granger	and	J.W.	Pomeroy,	1998.	Soil
moisture	storage	in	mature	and	replanted	sub-humid	boreal	forest
stands.	Canadian	Journal	of	Soil	Science,	78,	17-27.

Erickson,	D.E.L.,	Lin,	W.,	and	Steppuhn,	H.W.,	1978.	Indices	for
estimating	Prairie	runoff	from	snowmelt.	Paper	presented	to	the	7th
Symposium	on	Applied	Prairie	Hydrology.	Water	Studies	Institute,
Saskatoon,	Sask.Essery,	R.L.H.	and	J.W.	Pomeroy.	2004.	Vegetation
and	topographic	control	of	wind-blown	snow	distributions	in
distributed	and	aggregated	simulations.	Journal	of	Hydrometeorology,
in	press.

Essery,	R.,	L.	Li	and	J.W.	Pomeroy.	1999.	Blowing	snow	fluxes	over
complex	terrain.	Hydrological	Processes,	13,	2423-2438.

Farouchi,	O.	T.	1981	The	thermal	properties	of	soils	in	cold	regions.
Cold	Regions	Sci.	Technol.	5,	61-65.



Garnier,	B.J.	and	A.	Ohmura,	1970.	The	evaluation	of	surface
variations	in	solar	radiation	income.	Solar	Energy,	13,	21-34.

																				Goodison,	B.	E.,	1978.	Accuracy	of	Canadian	Snow	Gauge
Measurements.	J.	Appl.	Meteorol.	Vol.	17:1542-1548.

																				Goodison	et	al.,	1998

Granger,	R.J.	and	D.H.	Male,	1978.	Melting	of	a	Prairie	snowpack.
Journal	of	Applied	Meteorology,	17(2),	1833-1842.

Granger,	R.J.,	D.M.	Gray	and	G.E.	Dyck,	1984.	Snowmelt	infiltration
to	frozen	prairie	soils.	Can.	J.	Earth	Sci.,	21(6):669-677.

Granger,	R.J.	and	D.M.	Gray,	1989.	Evaporation	from	natural	non-
saturated	surfaces.	Journal	of	Hydrology,	111:21-29.

Granger,	R.J.	and	D.M.	Gray,	1990.	A	net	radiation	model	for
calculating	daily	snowmelt	in	open	environments.	Nordic	Hydrology,
21,	217-234.

Granger,	R.J.	and	J.W.	Pomeroy,	1997.	Sustainability	of	the	western
Canadian	boreal	forest	under	changing	hydrological	conditions	-	2-
summer	energy	and	water	use.	In,	(eds.	D.	Rosjberg,	N.	Boutayeb,	A.
Gustard,	Z.	Kundzewicz	and	P	Rasmussen)	Sustainability	of	Water
Resources	under	Increasing	Uncertainty.	IAHS	Publ	No.	240.	IAHS
Press,	Wallingford,	UK.	243-250.

Granger,	R.J.,	Gray,	D.M.	and	G.E.	Dyck.	1984.	Snowmelt	infiltration
to	frozen	Prairie	soils.	Canadian	Journal	of	Earth	Sciences,	21(6),
669-677.

Granger,	R.J.,	Pomeroy,	J.W.	and	J.	Parviainen.	2002.	Boundary	layer
integration	approach	to	advection	of	sensible	heat	to	a	patchy	snow
cover.	Hydrological	Processes,	16,	3559-3569.

Gray,	D.M.	1970.	Handbook	on	the	Principles	of	Hydrology.	Water
Information
Center,	Inc.,	Port	Washington,	NY



Gray,	 D.M.,	 Landine,	 P.G.,	 and	 Granger,	 R.J.	 1984,	 Simulating
infiltration	 into	 frozen	 Prairie	 soils	 in	 streamflow	models.	 Canadian
Journal	of	Earth	Sciences.	22,	pp.	464-472.

Gray,	 D.M.,	 P.G.	 Landine	 and	 R.J.	 Granger,	 1985.	 Simulating
infiltration	into	frozen	prairie	soils	in	streamflow	models.	Can.	J.	Earth
Sci.,	22:464-474.

Gray,	D.M.	and	R.J.	Granger,	1986.	In	situ	measurements	of	moisture
and	salt	movement	in	freezing	soils.	Canadian	Journal	of	Earth
Sciences,	23(5):696	704.

Gray,	 D.M.,	 R.J.	 Granger	 and	 P.G.	 Landine,	 1986.	 Modelling
snowmelt	infiltration	and	runoff	in	a	prairie	environment.	Proceedings
of	the	Symposium:	Cold	Regions	Hydrology,	Fairbanks,	Alaska,	July,
1986.	Publ:	American	Water	Resources	Association.	p427-438.

Gray,	D.M.	and	P.G.	Landine,	1986.	Albedo	model	for	shallow	Prairie
snowcovers.	Canadian	Journal	of	Earth	Sciences,	24(9),	1760-1768.

Gray,	 D.M.	 and	 P.	 G.	 Landine,	 1987.	 An	 energy-budget	 snowmelt
model	 for	 the	 Canadian	 Prairies.	 Can.	 J.	 Earth	 Sci.,	 Vol.	 25,	 No.
8:1292-1303.

Gray,	D.M.	and	P.G.	Landine,	1988.	An	energy-budget	snowmelt
model	for	the	Canadian	Prairies.	Canadian	Journal	of	Earth	Sciences,
25(9),	1292-1303.

Gray,	D.M.	and	others,	1979.	Snow	accumulation	and	distribution.	In,
Proceedings,	Modelling	Snowcover	Runoff	(eds.	S.C.	Colbeck	and	M
Ray).	US	Army	Cold	Regions	Research	and	Engineering	Laboratory,
Hanover,	NH.	3-33.

Gray,	D.M.,	Landine,	P.G.	and	R.J.	Granger.	1984.	An	infiltration
model	for	frozen	Prairie	soils.	Canadian	Society	of	Agricultural
Engineers,	1984	Annual	Meeting.	Paper	84-313.

Gray,	D.M.,	Landine,	P.G.	and	R.J.	Granger,	1985.	Simulating
infiltration	into	frozen	Prairie	soils	in	streamflow	models.	Canadian
Journal	of	Earth	Sciences,	22(3),	464-472.



Gray,	D.M.,	P.G.	Landine	and	G.A.	McKay,	1985.	Forecasting
streamflow	runoff	from	snowmelt	in	a	Prairie	environment.	Canadian
Society	for	Civil	Engineering	Annual	Conference,	Saskatoon.	213-231.

Gray,	D.M.,	Granger,	R.J.	and	P.G.	Landine,	1986.	Modelling
snowmelt	infiltration	and	runoff	in	a	Prairie	environment.	In,	Cold
Regions	Hydrology	Symposium.	American	Water	Resources
Association.	Fairbanks,	Alaska.	427-438

Gray,	D.M.,	Toth,	B.,	Pomeroy,	J.W.,	Zhao,	L.	and	R.J.	Granger.	2001.
Estimating	areal	snowmelt	infiltration	into	frozen	soils.	Hydrological
Processes.	15.	3095-3111.

Hedstrom,	N.R.	and	J.W.	Pomeroy,	1998.	Measurements	and
modelling	of	snow	interception	in	the	boreal	forest.	Hydrological
Processes,	12,	1611-1625.

Kuchment,	L.S.,	V.N.	Demidov	and	Y.G.	Motovilov.	1983.	River
Runoff	Formation	(Physically	Based	Models).	Nauka,	Moscow	(in
Russian).

Kuchment,	L.S.,	A.N.	Gelfan,	and	V.N.	Demidov,	2000.	A	distributed
model	of	runoff	generation	in	the	permafrost	regions.	Journal	of
Hydrology.	240,	1-22.

Kustas,	W.	P.,	Rango,	A.,	and	Uijlenhoet,	R.	1994.	A	simple	energy
budget	algorithm	for	the	snowmelt	runoff	model.	Water	Resources
Research,	30(5):1515-1527.

Leavesley,	G.H.,	Lichty,	R.W.,	Troutman,	B.M.	and	L.G.	Saindon,
1983.	Precipitation-runoff	modelling	system:	user’s	manual.	US
Geological	Survey	Water	Resources	Investigations	Report	83-4238.
207	p.

Leavesley,	G.H.,	Restrepo,	P.J.,	Markstrom,	S.L.,	Dixon,	M.,	and
Stannard,	L.G.,	1996,	The	Modular	Modeling	System	(MMS):	User’s
Manual,	Open-File	Report	96-151,	U.S.	Geological	Survey.

Motovilov,	Y.G.	1978.	Mathematical	model	of	water	infiltration	into
frozen	soils.	Soviet	Hydrology,	17(2),	62-66.



Motovilov,	Y.G.	1979.	Simulation	of	meltwater	losses	through
infiltration	into	soil.	Soviet	Hydrology,	18(3),	217-221.

Ogden,	F.L.	and	B.	Saghafian,	1997.	Green	and	Ampt	infiltration	with
redistribution.	Journal	of	Irrigation	and	Drainage	Engineering,
123(5),	386-393.

Parviainen,	J.	and	J.W.	Pomeroy,	2000.	Multiple-scale	modelling	of
forest	snow	sublimation:	initial	findings.	Hydrological	Processes,	14.
2669-2681.

Pomeroy,	J.W.,	1989.	A	process-based	model	of	snow	drifting.	Annals
of	Glaciology,	13.	237-240.

Pomeroy,	J.W.	and	R.A.	Schmidt.	1993.	The	Use	of	Fractal	Geometry
in	Modelling	Intercepted	Snow	Accumulation	and	Sublimation.
Proceedings	of	the	Eastern	Snow	Conference.	50,	1-10.

Pomeroy,	J.W.	and	D.M.	Gray.	1995.	Snow	Accumulation,	Relocation
and	Management.	National	Hydrology	Research	Institute	Science
Report	No.	7.	Environment	Canada:	Saskatoon.	144	pp.

Pomeroy,	J.W.	and	Goodison,	B.E.,	1997.	Winter	and	Snow,	In,	(eds
W.G.	Bailey,	T.R.	Oke	and	W.R.	Rouse)	The	Surface	Climates	of
Canada,	Montreal:	McGill-Queen's	Univ	Press.	68-100.

Pomeroy,	J.W.	and	R.J.	Granger,	1997.	Sustainability	of	the	western
Canadian	boreal	forest	under	changing	hydrological	conditions	-	I-
snow	accumulation	and	ablation.	In	(eds.	D.	Rosjberg,	N.	Boutayeb,	A.
Gustard,	Z.	Kundzewicz	and	P	Rasmussen)	Sustainability	of	Water
Resources	under	Increasing	Uncertainty.	IAHS	Publ	No.	240.	IAHS
Press,	Wallingford,	UK.	237-242.

Pomeroy,	J.W.	and	R.	Essery.	1999.	Turbulent	fluxes	during	blowing
snow:	field	tests	of	model	sublimation	predictions.	Hydrological
Processes,	13,	2963-2975.

Pomeroy,	J.W.	and	R.J.	Granger,	1999.	Wolf	Creek	Research	Basin:
Hydrology,	Ecology,	Environment.	National	Water	Research	Institute.
Environment	Canada:	Saskatoon.	160	pp.



Pomeroy,	J.W.	and	L.	Li.	2000.	Prairie	and	Arctic	areal	snow	cover
mass	balance	using	a	blowing	snow	model.	Journal	of	Geophysical
Research,	Vol.	105,	No.	D21.	26619-26634.

Pomeroy,	J.W.,	D.M.	Gray	and	P.G.	Landine.	1993.	The	Prairie
Blowing	Snow	Model:	Characteristics,	Validation,	Operation.	Journal
of	Hydrology,	144,	165-192.

Pomeroy,	J.W.,	P.	Marsh	and	D.M.	Gray,	1997.	Application	of	a
distributed	blowing	snow	model	to	the	Arctic.	Hydrological	Processes
11,	1451-1464.

Pomeroy,	J.W.,	R.J.	Granger,	A.	Pietroniro,	J.E.	Elliott,	B.	Toth	and	N.
Hedstrom,	1997.	Hydrological	Pathways	in	the	Prince	Albert	Model
Forest:	Final	Report.	NHRI	Contribution	Series	No.	CS-97007.	153	p.
plus	append.

Pomeroy,	J.W.,	J.	Parviainen,	N.	Hedstrom	and	D.M.	Gray.	1998.
Coupled	modelling	of	forest	snow	interception	and	sublimation.
Hydrological	Processes,	12,	2317-2337.

Pomeroy,	J.W.,	N.	Hedstrom	and	J.	Parviainen.	1999.	The	snow	mass
balance	of	Wolf	Creek.	In,	(eds.	J.	Pomeroy	and	R.	Granger)	Wolf
Creek	Research	Basin:	Hydrology,	Ecology,	Environment.	National
Water	Research	Institute.	Minister	of	Environment:	Saskatoon.	15-30.

Pomeroy,	J.W.,	B.	Toth,	R.J.	Granger,	N.R.	Hedstrom,	R.L.H	Essery,
2003.	Variation	in	surface	energetics	during	snowmelt	in	complex
terrain.	Journal	of	Hydrometeorology,	4(4),	702-716.

Popov,	E.G.	1973.	Snowmelt	runoff	forecasts	–	theoretical	problems.
The	Role	of	Snow	and	Ice	in	Hydrology.	UNESCO-WMO-IAHS.	Vol.
2.	829-839.

Quinton,	W.	L.	and	Marsh	P.,	1999.	A	conceptual	framework	for	runoff
generation	in	a	permafrost	environment..	Hydrological	Processes,
Volume	13,	2563-2581.

Quinton,	W.L.,	and	S.K.	Carey,	2004.	Snowmelt	runoff	from	sub-
alpine	tundra	hillslopes:	Major	processes	and	methods	of	simulation.



Hydrology	and	Earth	System	Sciences,	In	press.

Quinton,	W.L.	and	D.M.	Gray,	2001.	Toward	modelling	seasonal	thaw
and	subsurface	runoff	in	arctic	tundra	environments.	Soil	Vegetation,
Atmosphere	Transfer	(SVAT)	Schemes	and	Large	Scale	Hydrological
Models.	(eds.	Dolman,	A.J..,	Hall,	A.J.	Kavvas,	M.L.,	Oki,	T.	and	J.W.
Pomeroy)	IAHS	Publication	No.	270.	IAHS	Press,	Wallingford	UK.
333-341.

Quinton,	W.L.,	D.M.	Gray	and	P.	Marsh,	2000.	Subsurface	Drainage
from	Hummock-	Covered	Hillslopes	in	the	Arctic-Tundra.	Journal	of
Hydrology,	237,	113-125.

Quinton,	W.L.	and	P.	Marsh,	1999.	A	Conceptual	Framework	for
Runoff	Generation	in	a	Permafrost	Environment.	Hydrological
Processes,	13,	2563-2581.

Rutter,	A.J.,	K.A.	Kershaw,	P.C.	Robins,	and	A.J.	Morton,	1972.	A
predictive	model	of	rainfall	interception	in	forests,	I.	Deriviation	of	the
model	from	observations	in	a	plantation	of	Corsican	Pine.	Agricultural
Meteorology,	9:	367-384.

Rutter,	A.J.,	A.J.	Morton,	and	P.C.	Robins,	1975.	A	predictive	model
of	rainfall	interception	in	forests,	II.	Generalization	of	the	model	and
comparison	with	observations	in	some	coniferous	and	hardwood
stands.	Journal	of	Applied	Ecology,	12:	367-380.

Rutter,	A.J.	and	A.J.	Morton,	1977.	A	predictive	model	of	ra	rainfall
interception	in	forests,	III.	Sensitivity	of	the	model	to	stand	parameters
and	meteorological	variables.	Journal	of	Applied	Ecology,	14:	567-
588.

Satterlund,	D.R.,	1979.	An	improved	equation	for	estimating	longwave
radiation	from	the	atmosphere.	Water	Resources	Research,	15,	1643-
1650.

Schmidt	R.A.,	Troendle	C.A.,	and	Meiman	J.R.	1998,	Sublimation	of
snowpacks	in	subalpine	conifer	forests.	Can.	J.	For.	Res.	28,	501-513.

Shook,	K.,	1995.	Simulation	of	Ablation	of	Prairie	Snowcovers.	Ph.D



Thesis,	University	of	Saskatchewan,	189	pp.

Shook,	K.,	D.M.	Gray	and	J.W.	Pomeroy.	1993.	Geometry	of	patchy
snowcovers	Proceedings	of	the	Eastern	Snow	Conference,	50.	89-98.

Shook,	K.,	J.W.	Pomeroy,	D.M.	Gray.	1993.	Temporal	variation	in
snow-covered	area	during	melt	in	Prairie	and	Alpine	environments.
Nordic	Hydrology,	24,	183-198.

Sicart,	J.E.,	Pomeroy,	J.W.,	Essery,	R.L.H.,	Hardy,	J.E.,	Link	T.	and	D.
Marks	2004.	A	sensitivity	study	of	daytime	net	radiation	during
snowmelt	to	forest	canopy	and	atmospheric	conditions.	Journal	of
Hydrometeorology,	in	press.

Van	Wijk	W.	R.,	(1963)	Physics	of	Plant	Environment.	North-Holland
Publishing	Company	-	Amsterdam,	pp.166

Zhao	and	Gray,	1999.	Estimating	snowmelt	infiltration	into	frozen
soils.	Hydrological	Processes,	13(12-13),	1827-1842.

	



Errors.

Mathematical	errors.

DOMAIN				Argument	was	not	in	domain	of	function,	such	as	log(-1).

SING				Argument	would	result	in	a	singularity,	such	as	pow(0,	-2).

OVERFLOW				Argument	would	produce	a	function	result	greater	than	DBL_MAX	(or
LDBL_MAX),	such	as	exp(1000).

UNDERFLOW					Argument	would	produce	a	function	result	less	than	DBL_MIN	(or	LDBL_MIN),
such	as	exp(-1000).

TLOSS				Argument	would	produce	function	result	with	total	loss	of	significant	digits,	such	as
sin(10e70).

Macro	parsing	errors.

Mathematical	errors	occur	in	macros	as	well	as	in	any	module	execution.
However,	another	source	of	errors	in	in	parsing	the	user	code.		When
parsing	errors	occur	CHRM	displays	the	block	of	characters	that	it	cannot
breakdown	into	meaningful	phrases.			Common	problems	are:

1.	 No	matching	parentheses.
2.	 Every	'if'	or	'while'	must	have	a	closing	'endif'	or	'endwhile'.
3.	 Variables	are	accessed	in	the	range	'1,	2	...'	to	'NHRU'	or	"NOBS".
4.	 In	the	case	of	observations	CRHM	will	limit	the	upper	range	to	the

number	of	observations	defined.
5.	 The	correct	type	of	bracket	must	always	be	used.	'[]'	to	define	element

access	and	'()'	to	block	conditional	statements.
6.	 Strings	containing	spaces	must	be	enclosed	in	double	quotes,	e.g.

"Text	with	spaces".
7.	 Case	is	important.

The	error	could	also	be	in	the	earlier	code	which,	though	interpreting
correctly	is	missing	the	support	for	the	later	code	found	to	be	in	error.

Macro	not	giving	the	expected	results.



Check	the	following.

1.	 Variables	must	define	there	element	access,	e.g.	'[hh]'	or	'[1]'	will	be
assumed.

2.	 Units	must	be	enclosed	in	parentheses	to	be	recognized,	e.g.	"(s)".
3.	 Units	must	always	be	defined	with	only	one	term	in	the	numerator,	e.g.

"(m/s)".
4.	 There	are	implied	enclosing	brackets	after	the	'/',	e.g."(MJ/m^2*d)"	is

equivalent	to	"(MJ/(m^2*d))".



CRHM	help.

				CRHM	help	consists	of	a	series	of	HTML	topic	files	which	can	be	printed	by
subtopic	from	within	CRHM	from	the	help	menu.		

				The	help	is	also	available	as	PDF	files	in	the	CRHM	installation	directory.



Filter	writing

Filters	are	derived	from	the	class	called	'Classfilter'.	Writing	a	filter	is	quite
straightforward	but	does	require	some	care	to	link	properly	to	the	parameter
variables	and	constants.		The	code	for	the	Classea	will	be	used	for	illustration
and	its	calling	procedure	and	code	follows.		The	capability	to	write	filters	is	not
presently	available	to	CRHM	user.

Call

$ea	ea(t,	rh)		ea	=desired	vapour	pressure	fot	t	=	temperature	and	rh	(%)	=
the	relative	humidity.

C++	Header

class	Classea	:	Classfilter	{

				public:

				Classea(ClassData	*MyObs,	String	ToVar,	String	args,	String	argtypes	=
"VV");

				virtual	void	doFunc(long	Line);

}

Header	discussion

				The	class	constructor	always	has	the	same	number	of	arquments.			The	first
'MyObs'	is	the	class	describing	the	input	data	file.		Next	is	the	class	describing
the	variable	generated	by	the	filter.		The	string	'args'	holds	the	parameter	string
when	the	filter	class	is	constructed	and	finally,		a	constant	string	describing	the
required	parameters	for	the	filter.		In	this	case	two	variables	consisting	of	't'	and
'rh'.

C++	Code

Classea::Classea(ClassData	*MyObs,	String	ToVar,	String	args,	String	argtypes)



				:	Classfilter(MyObs,	ToVar,	args,	argtypes)	{

}

Constructor	discussion

				The	only	changes	ever	made	to	this	section	of	the	code	is	to	the	user	selected
class	name.

void	Classea::doFunc(long	Obs,	long	Line){

				Data[Vs-1][Obs][Line]	=	estar(Data[0][Obs][Line])*	Data[1][Obs]
[Line]/100.0;

}

Function	discussion

				This	part	performs	the	filters	work.		The	array	'Data'	stores	all	the	data	read
from	the	data	input	file	plus	any	new	variables	generated	by	filters.			The	second
index,	'Obs'	indexes	multiple	observations	for	the	interval.	The	third	index,	
'Line'	is	incremented	every	interval,	i.e.	for	every	data	line	read	from	the	data
file.		The	first	index	references	the	input	filter	parameter	variables.		Variables
and	constants	are	counted	separately	from	zero	beginning	with	the	first
parameter.	For	example	for	a	filter	class	whose	'argtypes'	is	assigned	'VVCVC'
the	parameters	would	be	accessed	as	myFilter(V0,	V1,	C0,	V2,	C1).	A	constant
is	accessed	using	Constants[0]	etc.		The	filter	output	variable	is	always	accessed
using	Data[Vs][Obs][Line].		It	follows	that	this	function	implements:

$ea	ea(t,	rh)	.

Wind	height	reference	change

$u2	refwind(u,	2,	10,	1)	this	is	a		comment,	where	parameters	are	refwind(u,
Z2,	Zm,	Ht)

Code



class	Classrefwind	:	Classfilter	{

				public:

				float	Const;	//	result	log((Z2	-	d)/Z)/log((Zm	-	d)/Z)

				Classrefwind(ClassData	*MyObs,	String	ToVar,	String	args,	String	argtypes	=
"VCCC");

				virtual	void	doFunc(long	Line);

};

Classrefwind::Classrefwind(ClassData	*MyObs,	String	ToVar,	String	args,
String	argtypes)

				:	Classfilter(MyObs,	ToVar,	args,	argtypes)	{

				if(!Error)	{

								float	d	=	Constants[2]*2.0/3.0;	//	zero	plane

								float	Z	=	Constants[2]*0.123;	//	roughness

								Const	=	log((Constants[1]	-	d)/Z)/log((Constants[0]	-	d)/Z);

				}

}

void	Classrefwind::doFunc(long	Obs,	long	Line){

				Data[Vs][Obs][Line]	=	Data[0][Obs][Line]*	Const;

}

Comment

				This	example	follows	the	pattern	of	the	first	example	but	has	some	extra
features.		Since	the	term		log((Z2	-	d)/Z)/log((Zm	-	d)/Z)	is	a	constant	and	not
dependent	on	the	input	data	it	needs	only	to	be	calculated	once.		It	is	calculated



only	once	in	the	class	constructor.		The	calculation	of	the	constant	is	only	made
if	the	error	checking		boolean	variable	'Error'	is	not	true.		This	would	be	set	if	the
end	user	had	not	assigned	the	filter	parameters	correctly	and	avoids	divide	by
zero	errors.

	


	functions
	constants
	delta
	DepthofSnow
	estar
	f
	Farouki
	fdaily
	gamma
	SVDens
	SWEfromDepth
	SWE_prob
	Clark Route


