
Macro.

				This	capability	of	the	CRHM	program	allows	users	to	create	simple	modules
suitable	for	testing	algorithms	and	for	diagnosing	CRHM	model	output.

Local	Variables.

				Local	variables	are	defined	using	the	the	keyword	"var".		For	example	"var	i",
"var	i		var	j"	or	"var	i,	j".		

CRHM	variables.

				CRHM	variables	as	those	defined	in	the	"declreadobs",	"declgetvar",
"declparam",	"declvar"	and	"declobs"	declarations.			Note	that	the	latter	three
types	are	defined	in	the	current	macro	module	and	the	first	two	types	are	derived
from	other	CRHM	modules	in	the	model.	The	macro	commands	are	enclosed	in
a	for	loop	which	is	executed	NHRU	times.		A	local	variable	"hh"	is	defined	so
that	values	for	every	iteration	may	be	saved	in	the	CRHM	macro	module
variable	output.		Note	that	local	variables	are	not	accessible	outside	the	macro
module	except	by	saving	their	values	into	CRHM	variables.

Arithmetical	Operators.

1.	 +,	-							addition/subtraction

2.	 *.	/								multiplication/division

3.	 ^											exponentiation

4.	 %										modulus

5.	 (...)								brackets	enclosing	an	arithmetical	expression.

6.	 [n]									array	element	index.	Order	for	2-D	is	[hh][ll],	i.e.	hru	first.
Elements	are	referenced		1,	2,	3,	4	...	Cannot	be	an	expression.	Use	var	i;	i	=
J+k;	array[i],	not	array[j+k].

Logical	Operators.

1.	 ||											OR.

2.	 &&						AND.

3.	 !=									Not	equal.

4.	 ==								Equal.

5.	 <=								Less	Than	or	Equal.

6.	 <										Less	Than.

7.	 >=								Greater	Than	or	Equal.

8.	 >										Greater	Than.

9.	 !											Logical	Not.	(Faulty)

Control	Statements.

if	(condition)	...	else	...	endif

multiple	statements	or	none	are	permitted	in	the	TRUE	and	FALSE	fields.

The	"if"	statement	must	always	be	followed	by	a	closing	"endif"	statement.

"else"	is	optional	if	there	are	no	FALSE	statements	to	execute.

Multiple	"if"	statements	are	permitted.

"if"	statements	can	appear	within	other	"if"	statements.

Lowercase	must	be	used	for	"if',	"else"	and	"endif".

"else"	"if"	must	always	be	entered	as	two	separate	words.

Example	:-		if	...	else	if	...endif	endif.

while(condition)	...	endwhile.

while	condition	is	true	the	code	in	the	body	of	the	while	is	executed.

for(initialization;	condition;	increment)	...	endfor.

no	field	may	be	left	empty.

initialization	sets	initial	value	of	optional	loop	counter.

condition	when	FALSE	terminates	the	loop.

condition	can	be	a	compound	logical	statement,	e.g.	"for	(X	=	0;	lastX	-	X	>
0.01	&&	max	<	1000;	max	=	max	+1)".

initialization	and	increment	fields	can	have	multiple	statements	separated
by	commas,	e.g.	"for	(i	=	0,	j	=	0;	i	<	10;	i	=	i+1,	j	=	j+2)".

	

Subroutine	Library.

1.	 sin	deg,	where	deg(°)

2.	 cos	deg,	where	deg	(°)

3.	 exp

4.	 log

5.	 log10

6.	 min

7.	 max

8.	 estar	t

9.	 patmos	Ht,	in	kPa,	where	Ht	(m)	is	the	height.

10.	 rhoa	t,	ea,	Pa,	in	(kg/m^3),	where	t	(°C),	ea	(kPa)	and	Pa	(kPa)	is	the
atmospheric	pressure.

11.	 spec_humid	ea,	Pa,	in	(kg/kg)	where	ea	(kPa)	and	Pa	(kPa)	is	the
atmospheric	pressure.

12.	 PI

13.	 DAY	-	current	day

14.	 MONTH	-	current	month

15.	 YEAR	-	current	year

16.	 JULIAN	-	Julian	day	of	the	year.

17.	 FREQ	-	number	of	time	intervals	in	a	day.

18.	 STEP	-	current	interval	starting	at	1.

19.	 GROUP	-	Current	group	index.	1	to	maximum	number	of	groups.

20.	 STRUCT	-	Current	struct	index.	1	to	maximum	number	of	structs.

21.	 FIRSTINT	-	True	for	the	first	interval	of	the	day.	When	STEP	%	FREQ
equals	1.

22.	 LASTINT	-	True	for	the	last	interval	of	the	day.	When	STEP	%	FREQ
equals	0.

23.	 NO_DISPLAY	-	If	variable	is	set	to	this	value	it	will	not	display.			When
exported	creates	a	sparse	file.

24.	 RAND	-	random	numbers	between	0.0	and	1.0.

25.	 ReadAheadObs	-	write	to	this	function	to	read	observations	before	and	after
the	current	interval.		Writing	-2	will	cause	all	observations	referenced	by	a
"declreadobs"	declaration	in	this	module,	to	refer	to	the	interval	two	periods
earlier,	+2	to	the	period	two	intervals	later	and	0	will	return	module	read
observations	to	the	current	interval.		Reading	from	ReadAheadObs	returns
the	status,	1	-	error	(outside	available	observation	range).		HRU_OBS	is	not
used	to	access	the	observation.	Observations	are	read	in	sequence	as	stored
in	the	file.

26.	 WriteAheadObs	-	use	this	function	to	write	the	values	of	the	current	interval
observations	to	permanent	storage.	Useage	is	to	read	from	the	desired

interval	using	ReadAheadObs	function.	Then	changing	the	value	of	the
desired	observation	and	then	writing	the	new	values	to	observation	storage
using	the	function	WriteAheadObs	with	the	same	interval	offset..

Macro	Declarations.

N.B	spaces	may	be	included	in	text	fields	if	the	entire	field	is	enclosed	in	double
quotes.

To	create	a	parameter	in	the	module,

				declparam,	param,	NHRU,	0.2,	0.0,	1.0,	"my	description",	"(my	units)"[,Int].

				Parameter	macro	variables	are	by	default	floating	point.		If	is	necessary	to	use
an	existing	CRHM	integer	parameter	this	can	be	done	by	adding	"Int"	to	the	end
of	the	normall	call;

				declparam,	inhibit_evap,	NHRU,	[0],	0,	1,	"inhibit	evapatation,	1	->	inhibit",	"
()",	"Int".

				To	manage	2-D	parameters	the	dimension	NDEFN	is	implemented.

				declparam,	Distrib,	NDEFN,	[1.0],	0.0,	100.0,	"Test	2D	parametert",	"()"

						The	order	of	element	access	to	Distrib	[HRU][LAY].

To	change	the	value	of	a	CRHM	parameter	declared	in	another	module,

				declputparam,	module_name,	variable_name,	(units).

To	use	a	CRHM	observation	within	the	module,

				declreadobs,	t,	NOBS,	description,	(units).		N.B.	access	is	limited	to	the
available	observations.		Last	available	observation	is	used	to	satisfy	any
remaining	requests.

To	use	a	CRHM	observation	function	within	the	module,

				declobsfunc,	t,	tfunc,	FUNC.		N.B.	access	is	limited	to	primitive	observations.
FUNC	from	"AVG,	MIN,	MAX,	DTOT,	POS,	TOT,	FIRST,	LAST,	MJ_W	and

W_MJ".		

To	create	a	new	CRHM	variable	for	the	module,

				declvar,	OutVar,	NHRU,	description,	(units)	[,Int].

				decldiag,	OutVar,	NHRU,	description,	(units)[,Int].

				decllocal,	OutVar,	NHRU,	description,	(units)[,Int].

				To	manage	2-D	parameters	the	dimension	NDEFN	is	implemented.

				declvar,	Test_NDEFN,	NDEFN,	"Test	2D	variable",	().

						The	order	of	element	access	to	Test_NDEFN	[HRU][LAY].

To	create	a	new	state	CRHM	variable	for	the	module,

				declstatvar,	OutVar,	NHRU,	description,	(units).

To	create	a	new	CRHM	local	variable	for	the	module.	N.B.	this	a	variable	local
to	this	module.		Not	to	be	confused	with	a	parser	local	variable.

				decllocal,	OutVar,	NHRU,	description,	(units).

To	use	a	CRHM	variable	from	another	module,

				declgetvar,	module_name,	variable_name,	(units).

To	use	a	CRHM	variable	declared	in	another	module	and	alter	its	value,

				declputvar,	module_name,	variable_name,	(units).

To	use	a	CRHM	parameter	from	another	module,

				declgetparam,	module_name,	variable_name,	(units).

To	use	a	CRHM	parameter	declared	in	another	module	and	alter	its	value,

				declputparam,	module_name,	variable_name,	(units).

To	create	a	CRHM	observation	from	existing	observations,	parameters	and
variables,

				declobs,	t2,	NHRU,	description,	(units).		N.B.	if	observation	is	already	defined
by	an	observation	file	-	does	nothing.

To	force	modules	into	a	desired	loading	order,

				setpeer,	PeerVar,	PeerRank,		where	PeerVar	is	a	CRHM	variable	that	the
current	module	must	be	loaded	after	and	the	PeerRank	is	the	offset	at	this	level.

				This	command	is	required	when	a	module	has	no	input	variables	to	allow
CRHM	to	determine	the	position	of	the	module	in	the	model	order.			A	typical
case	is	a	module	whose	inputs	consist	of	observations.	Automatically	it	will	be
loaded	early	in	the	model	even	if	it	uses	declared	observations	from	other
modules	because	all	types	of	observations	have	the	same	priority.

				To	force	the	module	to	load	after	a	declared	observation	has	been	calculated
set	PeerVar	to	'ObsName#'.	The	#	symbol	differentiates	between	a	variable
named	'ObsName'	and	a	declared	observation	named	'ObsName'.

				The	PeerVar	can	be	a	variable	that	is	accessed	using	a	declputvar	by	the
module.	However,	the	module	will	be	ranked	to	the	module	originally	declaring
the	variable.	Examples	of	these	variables	are	"SWE",	Sd,	soil_moist,	soil_rechr,
hru_actet	and	hru_cum_actet.

Macro	Structure.

1.	 The	first	line	of	a	Macro	is	its	name.		This	is	the	name	that	it	is	identified	by
in	the	model.		Macro	and	Module	names	must	be	unique.	Text	after	the
module	name	is	handled	as	the	module	description.

2.	 Next	follows	the	declaration	section.		Each	declaration	is	on	a	new	line.

3.	 The	"command"	line	ends	the	declaration	section	and	begins	the	code	to	be
executed.

4.	 The	execution	code	is	free	format	and	may	be	indented	and	commented.

5.	 The	end	of	the	macro	definition	is	indicated	by	the	"end"	statement	on	a

new	line.

Comments.

				Code	may	be	documented	line	using	"//".	Any	text	after	the	"//"	is	ignored	and
handled	as	a	comment.

				To	use	spaces	in	declaration	descriptive(text)	fields	enclose	the	desired	text	in
double	quotes,	e.g.	declparam,	param,	NHRU,	0.2,	0.0,	1.0,	"my	description",	"
(my	units)"

Array	references	are	in	the	range	of	1	to	the	maximum	number	of
HRUs.	

				Element[0]	is	illegal.		When	using	a	standard	observation	variable	the	element
access	is	[1],	e.g.	T[1],	u[1]	etc.		If	the	array	element	is	not	specified	it	will
default	to	[1].	Not	recommended.

				When	accessing	observations,	the	element	is	limited	to	the	maximum	defined
element	for	the	observation.

Macro	Edit	Screen.

				This	screen	is	a	simple	text	editor.		At	present	no	"smarts"	are	built	in.		The
screen	has	the	capability	to	cut	and	paste	to	and	from	itself	and	to	and	from	other
applications.		Macro	modules	can	be	saved	from	the	screen	using	the	File	menu.	
The	default	file	extension	is	"*mcr".		These	macro	files	are	never	used	by
CRHM	and	are	for	the	use	of	the	user	only.			The	two	buttons	allow	the	user	to
save	the	screen	changes	to	CRHM	or	cancel	current	changes	and	return	to	the
last	saved	CRHM	screen	in	the	model.

				To	create	a	new	line	use	CTRL	+	Enter.

				When	loading	a	macro	file	(*mcr),		it	will	by	default	insert	the	text	into	the
edit	screen	at	the	position	of	the	cursor.	However,	if	the	edit	screen	has	a
selection,	it	will	be	replaced	by	the	contents	of	the	file.

				When	saving	a	macro,	the	entire	edit	screen	is	saved	to	the	file	unless	there	is
a	selection	and	in	that	case	only	the	selected	text	will	be	saved.

Saving	Macros.

				Macros	are	automatically	saved	to	the	CRHM	project	file	when	the	model	is
saved	as	a	project	in	the	main	screen	file	menu.		A	macro	may	also	be	saved	as	a
file	in	the	Macro	Edit	Screen	for	import	into	another	project.		The	file	extension
used	is	".mcr".		Since	CRHM	loads	executable	Macros	from	the	project	file,		to
utilise	code	in	a	"*.mcr"	file	the	file	must	be	loaded	into	CRHM	using	the	Macro
Edit	Screen	and	then	the	project	saved.		Exit	from	CRHM	and	then	re-run
CRHM	and	load	the	project	file.

Flow	Screen.

				Since	macro	modules	used	for	debugging	may	not	be	required	to	satisfy	inputs
to	the	current	CRHM	model,		CRHM	will	detect	them	as	unused.		To	keep	the
macro	modules,	always	select	"NO"	in	the	"Remove	module"	dialogue	box.	
Macro	declared	observations	are	labelled	with	a	trailing	"#".		For	example	the
Macro	declared	observation	"MyObs"	will	be	displayed	as	"MyObs#".		This
notation	differentiates	declared	Macro	Observations	from	declared	Macro
Variables.

Declared	Observation	Linking	Priority.

				When	a	model	is	run	and	an	Observation	is	available	from	a	file	(field
observation)	and	also	from	a	Macro,		CRHM	by	default	will	use	the	observation
from	the	file.

				When	a	Macro	defines	an	observation	that	should	have	a	higher	priority	than
the	file	observation,		its	name	should	have	a	trailing	"#'	sign,	e.g.	"MyObs#"
which	will	display	in	the	flow	screen	as	"MyObs#".			When	this	convention	is
used,		"hard	code"	Modules	have	to	contain	extra	code	to	handle	the	special
name.

Macro	Example.

				The	following	macro	definitions	demonstrate	the	following	features.

1.	 Macros	are	named	by	the	user.

2.	 Multiple	macros	may	be	defined	at	once.

3.	 Standard	CRHM	parameters	allow	macro	physical	outputs	to	be	easily	set
and	modified	like	normal	CRHM	modules.

4.	 Any	Observations	from	the	CRHM	model		may	be	accessed.

5.	 Any	CRHM	module/macro	output	variable		may	be	accessed.

6.	 CRHM	variable	outputs	may	be	generated	to	be	used	by	other	macro	or
standard		CRHM	modules.

7.	 Local	variable	values	are	preserved	from	time	interval	to	time	interval.

8.	 Writer	should	provide	a	description	and	units	for	the	variables	and
parameters	used	to	permit	CRHM	to	supply	help	information	to	the	user.

MyMacro1		optional	module	description

declparam,	param,	NHRU,	0.2,	0.0,	1.0,	"my	description",	(my_units)

declreadobs,	t,	NOBS,	description,	(units)

declvar,	OutVar,	NHRU,	description,	(units)

declvar,	XOutVar,	NHRU,	description,	(units)

declgetvar,	obs,	hru_t,	"(°C)"

command	//	code	to	be	executed

OutVar[1]=param[1]*t[1]	OutVar[2]=param[2]*t[1]	OutVar[3]=param[3]*t[1]	//
array	element	access	by	numeric	value	(range	1	-	#	HRUs)

var	i	i=i+1	XOutVar=	sin(i)	var	j	j=i+180	XOutVar[2]	=	sin(j)	XOutVar[3]	=
cos(PI/36*i)

end	//	end	of	code	and	end	of	module	definition

MyMacro2	//	beginning	of	next	module	definition

declparam,	param2,	NHRU,	0.2,	0.0,	1.0,	description,	(units)

declreadobs,	t,	NOBS,	description,	(units)

declvar,	Z,	NHRU,	description,	(units)

declvar,	Y,	NHRU,	description,	(units)

declgetvar,	Macro1,	OutVar,	(units)

command

Z[hh]=param2[hh]*t[1]

Y[hh]	=	param2[hh]*OutVar[hh]

end

Evaporation	Example.

Evaporation	//	module	name

declparam,	A,	NHRU,	0.023,	0.0,	1.0,	"description",	(mm/day)	//	declarations

declparam,	B,	NHRU,17.8,	0.0,	100.0,	"description",	(°C)

declparam,	Zref,	NHRU,1.5,	0.001,	100.0,	Zref,	(m)

declparam,	Zwind,	NHRU,10,	0.001,	100.0,	Zwinf,	(m)

declparam,	Z0,	NHRU,0.001,	0.001,	100.0,	Zo,	(m)

declvar,	EvapAlg,	NHRU,	"evaporation_algorithm",	(MJ/(m2/day))

declvar,cum,	NHRU,	"cum_evaporation_algorithm",	(mm)

declvar,Ra,	NHRU,Ra,	(s/m)

declgetvar,	obs,	hru_tmean,	"(°C)"	//	mean	air	temperature

declgetvar,	obs,	hru_tmin,	"(°C)"	//	minimum	air	temperature

declgetvar,	obs,	hru_tmax,	"(°C)"	//	maximum	air	temperature

declgetvar,	obs,	u,	"(m/s)"	//	wind	velocity

command	//	module	code

var	U	U=max(u[0],	0.2)	//	assume	minimum	wind	velocity	to	prevent	divide	by
zero	errors

Ra[hh]	=	log(Zref[hh]/Z0[hh])*	log(Zwind[hh]/Z0[hh])/0.4^2*U

EvapAlg[hh]	=-A[hh]*(hru_tmean[1]	-	B[hh])*Ra[hh]*(hru_tmax[1]	-
hru_tmin[1])^0.5*1/(245*2.501)

cum[hh]	=	cum[hh]	+	EvapAlg[hh]

end	//	end	of	module

Macro	Implementation	of	C++	module.

				To	relate	to	a	practical	example	we	will	design	a	macro	to	simulate	the	module
ClassExample	described	earlier	which	converts	interval	net	radiation	in	MJ/(m2-
Int)	calculated	by	an	earlier	module	to	mm/(m2-Int)	of	water,	i.e.	kg/(m2-Int)	of
water.	The	air	temperature	from	an	observation	is	required	to	carry	out	the
conversion.	Two	other	outputs	are	calculated	as	a	fraction	of	the	module	output.
These	fractions	are	specified	by	the	parameters	F_Qg	and	F_Qs.

				Example	//	name	of	micro	module

				declreadtobs(t,	OBS,	Temperature,	(°C))

				declgetvar(netall,	net,	"(MJ/m^2*int)")

				declparam(F_Qg,	NHRU,	3*0.2,	0.0,	1.0,	Qg=F_Qg*Rn,	())

				declparam(F_Qs,	NHRU,	[0.0],	0.0,	1.0,	Qs=F_Qg*Rn,	())

				declvar(Rn,	NHRU,	net,	(mm/Int))

				declvar(Qg,	NHRU,	ground_flux,	(mm/Int))

				declvar(Qs,	NHRU,	storage_flux,	(mm/Int))

//	The	algorithm	code	to	be	executed	every	time	interval	and	for	every	NHRU	is
written	into	the	command	area.	The	program	code	follows:

				command	//	code	is	executed	for	number	of	HRUs	with	hh	varying	between	1
and	#	HRUs.

								Rn[hh]	=	net[hh]/(2.501-0.002361*t[1])

								Qg[hh]	=	Rn[hh]*F_Qg[hh]

								Qs[hh]	=	Rn[hh]*F_Qs[hh]

				end

Since	the	command	code	applies	to	every	HRU,	it	is	executed	inside	a		for		
loop.		The	output	variable	Rn,	is	calculated	from	the	observation	temperature
and	an	output	variable	net	calculated	in	another	module.	Outputs	Qg	and	Qs
from	this	module	are	the	product	of	the	output	Rn	and	the	parameters	F_Qg	and
F_Qs.

Example	of	"for"	and	2-D	arrays.

Test_declvar

declvar,	Test_NDEFN,	NDEFN,	"Test	2D	variable",	()

declvar,	Test_NDEFN2,	NDEFN,	"Test	2D	variable",	()

declparam,	Test_par_NDEFN,	NDEFN,	[1.0],	0.0,	100.0,	"Test	2D	parametert",
"()"

command

var	Fred	[NHRU][7]

var	ll

ll	=	1

for(ll	=	1;	ll	<=	NHRU;	ll	=	ll	+1)

			Fred[hh]	[ll]	=	Test_par_NDEFN[hh][ll]*5

			Test_NDEFN[hh][ll]	=	Test_par_NDEFN[hh][ll]

			Test_NDEFN2[hh][ll]	=	Fred[hh][ll]

endfor

end

Example	of	accessing	variables	and	parameters	from	another	module,	in	this
case	pbsm_M.

Test_getvar

declvar,	Test_NDEFN,	NDEFN,	"Test	2D	variable",	()

declvar,	Test_NDEFN_P,	NDEFN,	"Test	2D	variable",	()

declgetvar,	pbsm_M,	Results,	()

declparam,	distrib,	NDEFN,	1.0,	0.0,	100.0,	"Test	2D	parametert",	"()"

command

var	ll

for(ll	=	1;	ll	<=	NHRU;	ll	=	ll	+1)

		Test_NDEFN[hh][ll]	=	Results[hh][ll]

		Test_NDEFN_P[hh][ll]	=	distrib[hh][ll]

endfor

end

As	always	when	sharing	a	parameter	between	modules,	all	values	of	the
parameter	should	be	made	the	same	in	every	module,	then	the	project	saved	and

reloaded	when	the	shared	parameter	should	appear	only	in	the	"basin"	module.

Known	problems.

				If	a	major	change	is	made	to	a	macro,	i.e.	insertion	or	deletion	of	a
declaration,		the	user	should	exit	from	the	macro	entry	screen	and	immediately
save	the	project	and	then	exit	from	CRHM.		When	CRHM	is	restarted	it	will
execute	properly.		At	present	CRHM	is	not	handling	some	aspects	of
allocation/deallocation	of	variables	correctly.

	

Groups	and	Sructures.

Group.			A	collection	of	modules	executed	in	sequence	for	all
HRUs.

			After	using	CRHM	for	a	while,	it	was	found	to	be	inconvenient	to	always
handle	the	individual	modules.		To	overcome	this	groups	were	introduced.		A
group	module,		is	a	collection	of	modules	which	can	be	used	in	place	of
specifying	the	individual	modules.		When	the	group	is	defined	the	modules	must
be	specified	in	the	correct	execution	order.		Use	of	groups	and	a	relevant	naming
convention	allow	models	to	be	easier	implemented	and	understood.		Unecessary
detail	can	be	hidden	from	the	flow	diagrams	and	documentation.	The	larger
building	blocks	simplify	the	implementation	of	larger	models.

				Since	different	groups	can	have	the	same	variable	outputs	in	a	model	it	is
necessary	to	enhance	the	output	variable	names	so	that	they	do	not	conflict	with
one	another.	Variable	names	can	already	be	long	to	be	meaningful,	a	short	suffix
seemed	to	be	the	best	way	to	differentiate	the	repeated	names	and	the	root	name
still	to	be	recognizable.		Suffix	@A,	@B,	@C...	are	used	where	@A	is	used	for
outputs	of	the	first	group,	@B	is	used	for	the	next	group	etc.

				Group	application:

1.	 If		groups	are	defined	with	the	same	modules,		it	is	possible	to	execute
the	models	in	parallel	using	different	parameters	or	driving
observations.

2.	 If	groups	are	defined	as	different	models,		it	is	possible	to	execute	the
models	in	parallel	using	identical	parameters	and	driving	observations
to	check	different	responses.

Structure.		A	parallel	collection	of	modules.		Only	a	selected	one	of
them	is	executed	for	any	HRU	in	a	time	step.

				Again	after	using	CRHM	it	was	found	that	it	was	not	always	desired	to
execute	the	same	module	for	every	HRU.		A	structure	handles	this	situation.		
The	selection	of	the	module	for	every	HRU	can	be	programmed	statically,	e.g.
example	1.	below	or	dynamically	by	using	a	preceding	module	to	select	the

module	to	be	used	for	the	current	time	step,	e.g.	example	2.	below.

				Since	structures	can	have	the	same	variable	outputs	in	a	model	it	is	necessary
to	enhance	the	output	variable	names	so	that	they	do	not	conflict	with	one
another.	Variable	names	can	already	be	long	to	be	meaningful,	a	short	suffix
seemed	to	be	the	best	way	to	differentiate	the	repeated	names	and	the	root	name
still	to	be	recognizable.		Suffix	@a,	@b,	@c...	are	used	where	@a	is	used	for
outputs	of	the	first	structure,	@b	is	used	for	the	next	structure	etc.		Groups	use
an	upper	case	suffix	while	structures	use	a	lower	case	suffix.

				Structure	application:

1.	 Comparison	of	algorithms;		it	is	possible	to	specify	a	different	module,
say	from	evap,	evapD,	ShuttleWaite	and	ShuttleWaiteD	for	every	HRU
and	track	the	different	responses.		Some	of	the	modules,	say	evap,	
may	be	used	more	than	once	with	parameters	selecting	Granger,
Priestley-Taylor	and	Penman-Monteith	giving	more	combinations.

2.	 Sometimes	HRUs	require	diverse	modules	to	be	representative	of	the
unit.		An	example	would	be	forested	and	open	farmland.		By	using	the
structure	capability	a	general	model	can	be	customised	to	handle
individual	HRUs	differently.

3.	 Sometimes	HRUs	change	their	characteristics	due	to	excess	water	or
lack	of	it.			Using	a	structure,		the	module	selection	can	be	dynamically
changed.		If	an	HRU	can	experience	dry	spells,	moderate	rainfall	and
very	wet	conditions	with	flooding	then	it	might	be	desireable	to	treat	it
using	a	grasslands	module,	wetlands	module	or	a	slough	module
respectively.		The	decision	about	which	module	to	use	would	be	made
by	a	preceding	module	based	upon	the	availability	of	moisture.

AKA	Interaction	with	Groups.

				In	the	normal	useage	of	AKA	in	non-group	models,		the	variables	and
observations	are	addressed	uniquely	by		specifying	the	varable	or	observation
and	the	module.		However,	with	groups,		variables	and	observations	all	are
referenced	by	the	group	name.		This	lack	of	resolution	means	that	the	source	and
destination	of	variables	and	observations	cannot	be	defined	precisely.		For
example,	if	the	user	attempts	to	change	say	Qsi	to	the	declared	observation	Qsi#,
all	occurrences	of	Qsi	would	be	changed	even	the	input	to	the	module	generating
Qsi#,	causing	a	loop.			To	prevent	this	from	happening,		if	an	attempt	is	made	to

change	an	input	of	a	module	to	the	same	name	as	one	of	its	outputs,	it	will	be
ignored.

				Declared	observations,	e.g.	Qsi#	do	not	have	future	data	available	to	be	able	to
generate	any	daily	function,	i.e.	mean,	max	etc.		CRHM	detects	these	calls	and
leaves	the	observation	as	a	simple	observation,	i.e.	Qsi.		In	most	situations	this	is
the	most	desireable	selection	anyway.

Macro	declgroup.

			The	Macro	Group	feature	allows	a	number	of	modules	to	be	grouped	under
one	name	and	treated	as	one	module.

				The	first	line	of	the	macro	is	the	module	or	group	name.		In	this	case
MyGroupA,	MyGroupB	and	MyGroupC.

				The	following	lines	up	to	the	command	token,	list	the	modules	making	up	the
group.		They	must	be	arranged	in	the	correct	execution	order.

				The	tokens	command	and	end	complete	the	definition	of	the	group.There
should	not	be	any	lines	between		command	and	end.

				Multiple	macro	groups	and	macros	can	be	defined	together.

MyGroupA

declgroup		//	defaults	to		number	of	HRUs	defined	in	the	model.

				obs

				calcsun

command

end

MyGroupB

declgroup	5		//	five		HRUs.

				intcp

				pbsm

				albedo

				netall

				ebsm

				evap

command

end

MyGroupC

declgroup	0		//	defaults	to		number	of	HRUs	defined	in	the	model.

				crack

				smbal

				route

command

end

Module	Naming	Convention.

				Group	variable	names	cannot	use	the	original	variable	name	otherwise	their
would	be	a	naming	conflict.		To	avoid	this	problem,	the	first	macro	group
defined	has	the	suffix	"@A"	the	next	"@B",	"@C"	etc.Because	of	this	the	search
order	defined	in	the	a	following	section	has	been	adopted.

Group	parameters.

				The	group	will	have	all	the	parameters	of	every	module	in	the	group.			If	a
parameter	is	used	by	more	than	one	module	in	the	group	these	modules	all	share
the	same	parameter	values.

Module	Linking	Order.

				Modules	can	use	"*"		or	explicitly	specify	the	source	module	name,			e.g.
*.hru_t	and	Obs.hru_t	for	the	linking	to	work	correctly.	Obs.hru_t	can	only	link
to	the	module"Obs"	and	no	other	module	or	group.

				The	module	linking	search	order	is	as	follows.

1.	 Specific	module,	e.g.	Obs.hru_t.		Will	only	match	Obs.hru_t.
2.	 Wild	root	module	or	group,	e.g.	*.hru_t	and	*.hru_t@A.	*.hru_t	would

match	any	module	with	an	output	hru_t.	*.hru_t@A	will	only	match	the
hru_t	output	of	the	first	group	defined	i.e.	with	suffix	@A

3.	 Wild	group	module	stripped	of	its	group	suffix.		*.hru_t@A	is	reduced	to
*.hru_t	before	searching.	*.hru_t@A	will	match	any	module	with	an	output
hru_t.

4.	 Wild	group	module	stripped	of	its	group	suffix	and	a	search	is	made	of	any
groups	after	their	group	suffix	has	been	removed.	*.hru_t@A	is	reduced	to
*.hru_t	before	searching	all	groups	for	*.hru_t,	i.e.	after	their	suffix	has
been	removed.

CreateGroup	in	the	Macro	edit	menu.

				This	command	allows	an	existing	project	to	be	convertede	to	a	group.			The
new	group	has	the	name	of	the	original	project	with	"_A"	appended.			If	the
project	is	added	multiple	times	the	other	groups	will	have	"_B",	"_C",	etc.
appended.

				Multiple	different	projects	may	be	added	in	any	order.		In	every	case	the	suffix
"_A",	"_B"	etc.	will	be	added.

				The	final	model	is	build	in	the	usual	way	by	going	to	the	menu
"Build/Construct"	and	selecting	the	groups	and	building	as	normal.		The	number
of	HRUs	in	each	group	is	determined	from	the	project	that	the	group	was	created
from	originally.	At	this	time	all	parameters	are	CRHM	default	values.

				After	the	model	is	built	the	original	project	parameter	values	may	be	moved
into	the	new	model	by	proceeding	to	the	Parameter	menu	and	loading	the
parameter	file	-	"CreateGroup.par".		Care	should	be	taken	to	use	the	current
directory	as	the	same	file	name	is	always	used.		If	this	step	is	not	taken
parameter	values	will	default	to	the	module	parameter	default	values.

				During	the	preceding	steps	the	number	of	HRUs	should	not	be	changed	as	the
number	of	HRUs	in	the	original	project	and	the	generated	groups	must	be
identical	or	they	will	not	updated	to	the	values	in	"CreateGroup.par".

				The	new	project	should	be	saved	at	this	time	and	re-loaded	before	any	further
editing	is	carried	out.

				The	number	of	HRUs	in	any	group	can	be	changed	by	inserting/changing	the
value	on	the	"declgroup"	instruction	in	the	Macro	defining	the	group.			Note	that
if	the	value	is	missing	or	equal	to	0,		the	number	of	HRUs	in	the	group	will	be
the	global	value.

				When	the	number	of	HRUs	is	reduced	the	parameters	are	truncated.			If	the
number	of	HRUs	is	increased	the	last	value	is	duplicated	as	often	as	necessary.	
An	exception	is	a	serial	parameter,	"1,	2,	3!"	for	example,	then	the	series	is
expanded.

				It	is	important	the	names	of	the	groups	are	not	changed	or	the	link	between	the
original	parameter	values	saved	in	the	file	"CreateGroup.par"	and	the	groups	will
be	broken	causing	the	error	"Unknown	Parameter	in	parameter	file"	will	occur
for	every	parameter.

	

	

Macro	declstruct.

			The	Macro	Structure	feature	allows	for	a	module	to	be	chosen	from	a	group	of
modules	at	execution	time.		An	example	of	its	useage	is	an	area	which	is	a
wetland	in	wet	years	and	a	grassland	during	dry	periods.		The	module	used	to
represent	the	area	can	be	chosen	from	the	structure	selection	by	another	module
setting		the	"HRU_struct"	parameter	for	the	structure	module.

				The	first	line	of	the	macro	is	the	module	or	structure	name.		In	this	case
MyStructA,	MyStructB	and	MyStructC.

				The	following	lines	up	to	the	command	token,	list	the	modules	making	up	the
structure.		They	can	be	arranged	in	any	order	and	are	addressed	as	1,	2,	etc.	to	n.

				The	tokens	command	and	end	complete	the	definition	of	the	group.There
should	not	be	any	lines	between		command	and	end.

				Multiple	macro	groups/structures	and	macros	can	be	defined	together.

MyStructaA

declstruct

				MyMacro1		//	executed	when	"MyStructaA	HRU_struct"	=	1

				MyMacro2

command

end

MyStructaB

declstruct

				evap

				evap_Resist

command

end

MyStructaC

declstruct

				route

				netroute

command

end

Module	Naming	Convention.

				Group	variable	names	cannot	use	the	original	variable	name	otherwise	their
would	be	a	naming	conflict.		To	avoid	this	problem,	the	first	macro	structure
defined	has	the	suffix	"@a"	the	next	"@b",	"@c"	etc.	Because	of	this	the	search
order	defined	in	a	following	section	has	been	adopted.		N.B.	uppercase
designates	a	group	and	lowercase	designates	a	structure.

Structure	parameters.

				Since	a	structure	can	contain	a	diverse	collection	of	modules	having	different
parameters	the	structure	will	have	all	of	these	parameters.		However,	for	any
HRU	only	the	parameters	used	by	the	module	selected	need	to	be	defined.	Any
others	can	be	left	at	their	default	values	for	that	HRU.

Module	Linking	Order.

				Modules	can	use	"*"		or	explicitly	specify	the	source	module	name,			e.g.
*.hru_t	and	Obs.hru_t	for	the	linking	to	work	correctly.	Obs.hru_t	can	only	link
to	the	module"Obs"	and	no	other	module	or	group.

				The	module	linking	search	order	is	as	follows.

1.	 Specific	module,	e.g.	Obs.hru_t.		Will	only	match	Obs.hru_t.
2.	 Wild	root	module	or	group,	e.g.	*.hru_t	and	*.hru_t@A.	*.hru_t	would

match	any	module	with	an	output	hru_t.	*.hru_t@a	will	only	match	the
hru_t	output	of	the	first	group	defined	i.e.	with	suffix	@a

3.	 Wild	group	module	stripped	of	its	group	suffix.		*.hru_t@a	is	reduced	to
*.hru_t	before	searching.	*.hru_t@a	will	match	any	module	with	an	output
hru_t.

4.	 Wild	group	module	stripped	of	its	group	suffix	and	a	search	is	made	of	any
groups	after	their	group	suffix	has	been	removed.	*.hru_t@a	is	reduced	to
*.hru_t	before	searching	all	groups	for	*.hru_t,	i.e.	after	their	suffix	has
been	removed.

	

	Macro
	Groups and Structures
	macro_group
	macro_struct

