
Home

CLOCK_XMC4

Apps

Here	is	a	list	of	all	modules:

License	Terms	and	Copyright	Information
Abbreviations	and	Definitions
Overview
Architecture	Description
APP	Configuration	Parameters
Enumerations
Data	structures
Methods
Usage
Release	History

Home

CLOCK_XMC4

License	Terms	and	Copyright	Information

License	Terms	and	Copyright	Information

Copyright	(c)	2015,	Infineon	Technologies	AG	All	rights	reserved.	

Redistribution	and	use	in	source	and	binary	forms,	with	or	without
modification,	are	permitted	provided	that	the	following	conditions	are
met:	

Redistributions	of	source	code	must	retain	the	above	copyright	notice,
this	list	of	conditions	and	the	following	disclaimer.	Redistributions	in
binary	form	must	reproduce	the	above	copyright	notice,	this	list	of
conditions	and	the	following	disclaimer	in	the	documentation	and/or
other	materials	provided	with	the	distribution.	Neither	the	name	of	the
copyright	holders	nor	the	names	of	its	contributors	may	be	used	to
endorse	or	promote	products	derived	from	this	software	without	specific
prior	written	permission.	

THIS	SOFTWARE	IS	PROVIDED	BY	THE	COPYRIGHT	HOLDERS
AND	CONTRIBUTORS	"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED
WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED
WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A
PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL
THE	COPYRIGHT	HOLDER	OR	CONTRIBUTORS	BE	LIABLE	FOR
ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR
CONSEQUENTIAL	DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,
PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS
OF	USE,	DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)
HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,
WHETHER	IN	CONTRACT,	STRICT	LIABILITY,	OR	TORT

(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY
OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED	OF	THE
POSSIBILITY	OF	SUCH	DAMAGE.

To	improve	the	quality	of	the	software,	users	are	encouraged	to	share
modifications,	enhancements	or	bug	fixes	with	Infineon	Technologies
AG	(dave@infineon.com).

mailto:dave@infineon.com

Home

CLOCK_XMC4

Abbreviations	and	Definitions

Abbreviations	and	Definitions

Abbreviations:
DAVE™ Digital	Application	Virtual	Engineer
APP DAVE™	Application
API Application	Programming	Interface
GUI Graphical	User	Interface
MCU Microcontroller	Unit
SW Software
HW Hardware
LLD Low	Level	Driver
IO Input	Output
PLL Phase	Locked	Loop
WDT Watch	Dog	Timer
CCU Capture	Compare	Unit
USB Universal	Serial	Bus
CPU Central	Processing	Unit
ETH Ethernet
EBU External	Bus	Unit
SCU System	Control	Unit
RTC Real	Time	Clock
OFI Fast	Internal	Clock,
OHP High	Precision	Crystal	Oscillator
LHP Low	Precision	Crystal	Oscillator

ULP Ultra	Low	Power	Oscillator
OSI Internal	Slow	Oscillator
STDBY Standby
SDMMC Secure	Digital	/	Multi	Media	Card	(Interface)
DMA Direct	Memory	Access
PB Peripheral	Bridge
GPIO General	Purpose	Input	Output
PERI Peripheral
NMI Non	Maskable	Interrupt
VCO Voltage	Controlled	Oscillator
UART Universal	Asynchronous	Receiver	Transmitter
PWM Pulse	Width	Modulation
SPI Serial	Peripheral	Interface
CAN Controller	Area	Network
MHz Megahertz
kHz Kilohertz

Definitions:
Singleton Only	single	instance	of	the	APP	is	permitted
Sharable Resource	sharing	with	other	APPs	is	permitted
initProvider Provides	the	initialization	routine
Physical
connectivity

Hardware	inter/intra	peripheral	(constant)	signal
connection

Conditional
connectivity

Constrained	hardware	inter/intra	peripheral
signal	connection

Aggregation Indicates	consumption	of	low	level	(dependent)
DAVE	APPs

Home

CLOCK_XMC4

Overview

Overview

The	CLOCK_XMC4	APP	provides	the	following	functionalities:

1.	 Setting	the	sources	of	various	clocks	in	xmc4	devices.
2.	 Calibration	selection	for	internal	fast	oscillator	settings.
3.	 Configuration	of	Main	/	System	PLL	settings.
4.	 Conditional	configuration	of	external	clock	output	settings,	to

monitor	a	various	clocks:	System	Clock,	Main	PLL	clock,	USB	PLL
clock,	Standby	clock	(only	for	xmc42/41	devices).

5.	 Setting	the	entire	clock	setup	using	SystemCoreClockSetup().
6.	 Runtime	clock	changes	are	supported.

Note:

1.	 By	default,	the	SystemInit()	calls	weak	API
SystemCoreClockSetup()	which	exits	in	system_XMC4x.c	file.
When	the	CLOCK_XMC4	APP	used	in	the	project,	then
SystemInit()	calls	the	SystemCoreClockSetup()	which	exists	in
clock_xmc4_conf.c	file.

Figure	1	:	Hardware	and	Software	connectivity	of	CLOCK_XMC4	APP

Figure	1,	shows	how	the	APP	is	structured	in	DAVE™.	The
CLOCK_XMC4	APP	uses	SCU	module	to	generate	a	various	clocks
such	as:	System	clock,	peripheral	clock	backup	clock,	Standby	clock
etc.	And	it	also	uses	GPIO	module	to	monitor	an	external	clock	output.

Figure	2	:	Clock	selection	&	generation	unit

Figure	2,	shows	how	the	various	clocks	are	derived	from	the	source.

Note:

1.	 For	XMC42/1	devices,	the	maximum	PLL	clock	and	system	clock
frequency	are	limited	to	80MHz.

2.	 The	clock	generated	for	the	various	unit	of	device	may	differ	based
on	other	XMC4x	derivatives.

3.	 Additionally	the	APP	is	checking	for	appropriate	clock	ratio
combinations	between	fCCU,	fCPU	and	fPERIPH.	The	valid	values
of	clock	divide	registers	for	fCCU,	fCPU	and	fPERIPH	clocks	are
mentioned	below

Figure	3	:	Valid	clock	ratio	combinations	between	fCCU,	fCPU	and
fPERIPH

Supported	Devices	

The	APP	supports	below	devices:

1.	 XMC4800	Series
2.	 XMC4700	Series
3.	 XMC4500	Series
4.	 XMC4400	Series
5.	 XMC4300	Series
6.	 XMC4200	/	XMC4100	Series

References	

1.	 XMC4800	Reference	Manual
2.	 XMC4700	Reference	Manual
3.	 XMC4500	Reference	Manual
4.	 XMC4400	Reference	Manual
5.	 XMC4300	Reference	Manual
6.	 XMC4200	Reference	Manual
7.	 XMC4100	Reference	Manual

Limitations	
None

Home

CLOCK_XMC4

Architecture	Description

Architecture	Description

Figure	1	:	Architecture	of	CLOCK_XMC4	APP

The	above	figure	1	represents	the	internal	software	architecture	of	the
CLOCK_XMC4	APP.	A	CLOCK_XMC4	APP	instance	exists	in	a

DAVE™	project	with	fixed	attributes	as	shown.	The	APP	configures
SCU	clock	module,	and	conditionally	GPIO	module	to	monitor	a	various
clocks.	This	in	addition	requires	the	consumption	of	the
CPU_CTRL_XMC4	APP	for	handling	the	NMI	trap	based	on	trap	event
selection	in	event	settings	page	of	CLOCK_XMC4	APP	GUI.

CLOCK_XMC4	is	used	by	use-case	APPs	like:	UART,	PWM,	SPI,	CAN
(top	level)	APPs.

Signals:

The	following	table	presents	the	signals	provided	by	the	APP	for
connection.	It	also	gives	the	flexibility	to	configure	and	extend	the
connectivity	to	other	APPs.

Table	1:	APP	I0	signals

Signal	Name Input/Output Availability Description

clk_ccu_output Output Always

Clock	input	to
CCU4,	CCU8
and	POSIF
modules

clk_perbridge_output Output Always Clock	input	to
DSD	module

Figure	2	explains	the	preferred	way	of	clock	initialization	sequence,	and
is	being	used	in	SCU	low-level	driver.

Figure	2	:	Clock	Initialization	Sequence

Home

CLOCK_XMC4

APP	Configuration	Parameters

App	Configuration	Parameters

Figure	1:	Clock	Control	Settings

Figure	2:	Clock	Generation	Settings

Figure	3:	Standby	Clock	Generation	Settings

Figure	4:	Clock	Selection	Settings

Figure	5:	Event	Settings

Home

CLOCK_XMC4

Enumerations

enum		
CLOCK_XMC4_STATUS	{
CLOCK_XMC4_STATUS_SUCCESS	=	0U,
CLOCK_XMC4_STATUS_FAILURE	=	1U	}

Enumeration	Type	Documentation

enum	CLOCK_XMC4_STATUS

Enumerator:

CLOCK_XMC4_STATUS_SUCCESS	 APP	initialization	issuccess

CLOCK_XMC4_STATUS_FAILURE	 APP	initialization	is
failure

Definition	at	line	101	of	file	CLOCK_XMC4.h.

Home
Data	Structures

CLOCK_XMC4

Data	structures

Data	Structures

struct		 CLOCK_XMC4

	 Configuration	structure	for
CLOCK_XMC4	APP.	More...

typedef	struct	CLOCK_XMC4	 CLOCK_XMC4_t

	 Configuration	structure	for
CLOCK_XMC4	APP.	

Home

CLOCK_XMC4

Methods

DAVE_APP_VERSION_t	 CLOCK_XMC4_GetAppVersion	(void)
	 Get	CLOCK_XMC4	APP	version.	

CLOCK_XMC4_STATUS_t	 CLOCK_XMC4_Init	(CLOCK_XMC4_t*handle)
	 Initializes	a	CLOCK_XMC4	APP	instance.	

uint32_t	 OSCHP_GetFrequency	(void)

	

This	is	a	non-weak	function,	which
retrieves	high	precision	external	oscillator
frequency.
Note:	This	function	is	used	by
xmc4_scu	LLD	for	internal	operations.
Therefore	the	user	do	not	required	to
call	this	API	explicitly.	

void	 CLOCK_XMC4_StepSystemPllFrequency
(uint32_t	kdiv)

	 API	for	ramping	down	the	system	PLL
clock	frequency.	

Methods

Function	Documentation

DAVE_APP_VERSION_t	CLOCK_XMC4_GetAppVersion (void)

Get	CLOCK_XMC4	APP	version.

Returns:
DAVE_APP_VERSION_t	APP	version	information	(major,	minor
and	patch	number)

Description:
The	function	can	be	used	to	check	application	software
compatibility	with	a	specific	version	of	the	APP.

Example	Usage:

	#include	<DAVE.h>

	int	main(void)	{

			DAVE_STATUS_t	init_status;

			DAVE_APP_VERSION_t	version;

			//	Initialize	CLOCK_XMC4	APP:

			//	SystemCoreClockSetup()	is	called	from	Syste

mInit().

			init_status	=	DAVE_Init();

			version	=	CLOCK_XMC4_GetAppVersion();

			if	(version.major	!=	1U)	{

					//	Probably,	not	the	right	version.

			}

			//	More	code	here

			while(1)	{

			}

			return	(0);

	}

Definition	at	line	83	of	file	CLOCK_XMC4.c.

CLOCK_XMC4_STATUS_t	CLOCK_XMC4_Init (CLOCK_XMC4_t	*	 handle

Initializes	a	CLOCK_XMC4	APP	instance.

Parameters:
handle address	of	CLOCK_XMC4	APP	handler

Returns:
CLOCK_XMC4_STATUS_SUCCESS	:	if	initialization	is
successful
CLOCK_XMC4_STATUS_FAILURE	:	if	initialization	is	failed

Description:
CLOCK_XMC4_Init	API	is	called	during	initialization	of	DAVE
APPS.	This	API	Initializes	NMI	TRAP	Configuration.

Example	Usage:

	#include	<DAVE.h>

	int	main(void)

	{

			DAVE_STATUS_t	status;

			status	=	DAVE_Init();		//		CLOCK_XMC4_Init	API

	is	called	during	initialization	of	DAVE	APPS

			if(DAVE_STATUS_SUCCESS	==	status)

			{

				//	user	code

					while(1)

					{

					}

			}

			return	(1);

	}

Definition	at	line	96	of	file	CLOCK_XMC4.c.

References	CLOCK_XMC4_STATUS_SUCCESS,	and
CLOCK_XMC4::init_status.

void	CLOCK_XMC4_StepSystemPllFrequency (uint32_t	 kdiv)

API	for	ramping	down	the	system	PLL	clock	frequency.

Parameters:
kdiv PLL	output	divider	K2DIV.	Range:	1	to	128.	Represents

(K2DIV+1).

Returns:
none

Description:
The	function	can	be	used	for	ramping	down	the	system	PLL
clock	frequency.

Example	Usage:

	#include	<DAVE.h>

	int	main(void)

	{

			DAVE_STATUS_t	init_status;

			uint32_t	kdiv	=	10U;		//	(K2DIV+1)	value	for	s

caling	down	the	system	PLL	clock	frequency

			//	Initialize	CLOCK_XMC4	APP:

			//	SystemCoreClockSetup()	is	called	from	Syste

mInit().

			init_status	=	DAVE_Init();

		if(DAVE_STATUS_SUCCESS	==	init_status)

		{

				//	More	code	here

				//	User	decided	to	reduce	the	system	power	co

nsumption	by	scaling	down	the	system	PLL	clock	fr

equency

				CLOCK_XMC4_StepSystemPllFrequency(kdiv);	//	f

PLL	frequency	is	scaling	down	by	K2DIV	factor.

				//	More	code	here

				while(1)	{

				}

		}

		return	(1);

	}

Definition	at	line	116	of	file	CLOCK_XMC4.c.

uint32_t	OSCHP_GetFrequency (void)

This	is	a	non-weak	function,	which	retrieves	high	precision	external
oscillator	frequency.
Note:	This	function	is	used	by	xmc4_scu	LLD	for	internal

operations.	Therefore	the	user	do	not	required	to	call	this	API
explicitly.

Returns:
uint32_t	Range:	4	to	25	in	External	Crystal	Mode,	4	to	40	in
External	External	Direct	Input	Mode.

Description:
This	function	to	retrieves	the	external	high	precision	oscillator
frequency	value,	derived	from	either	"External	Crystal	Mode"	or
"External	Direct	Input	Mode"	

Definition	at	line	109	of	file	CLOCK_XMC4.c.

Home

CLOCK_XMC4

Usage

Usage

Below	shows	typical	usages	of	CLOCK_XMC4	APP.	
Use	case	1:
This	example	monitors	the	system	clock	frequency	via	EXTCLK	pin.

Instantiate	the	required	APPs
Drag	an	instance	of	CLOCK_XMC4.	Update	the	fields	in	the	GUI	of	this
APP	with	the	following	configuration.

Configure	the	APP
CLOCK_XMC4:

1.	 Configure	System	clock	divider	as	4
2.	 Select	external	clock	output	and	System	Clock	as	external	clock

output	source

Manual	pin	allocation

1.	 Select	a	pin	to	monitor	System	clock	frequency	
Note:	The	pin	number	is	specific	to	the	development	board	chosen
to	run	this	example.	The	pin	shown	in	the	image	above	may	not	be
available	on	every	XMC	boot	kit.	Ensure	that	a	proper	pin	is
selected	according	to	the	board.

Generate	code
Files	are	generated	here:	`<project_name>/Dave/Generated/'
(`project_name'	is	the	name	chosen	by	the	user	during	project
creation).	APP	instance	definitions	and	APIs	are	generated	only	after
code	generation.
Note:	Code	must	be	explicitly	generated	for	every	change	in	the	GUI
configuration.
Important:	Any	manual	modification	to	APP	specific	files	will	be
overwritten	by	a	subsequent	code	generation	operation.

Build	and	Run	the	Project

Observation
The	configured	system	clock	frequency	(72MHz	for	XMC48/47/43
devices,	30MHz	for	XMC45/44	devices,	20MHz	for	XMC42	devices)
must	observes	in	the	oscilloscope	at	pin	P1.15.

Use	case	2:
This	example	enables	user	to	monitor	OSC_HP	frequency	(fOSC)
whether	it	is	usable	for	the	VCO	as	a	part	of	the	PLL	or	not.	And	also
allow	user	to	take	appropriate	action	when	NMI	TRAP	occurs.

Instantiate	the	required	APPs
Drag	an	instance	of	CLOCK_XMC4	APP	and	CPU_CTRL_XMC4	APP.
Update	the	fields	in	the	GUI	of	this	APP	with	the	following	configuration.

Configure	the	APP
CLOCK_XMC4:

1.	 Enable	OSC_HP	oscillator	watchdog	trap
2.	 Enable	USB	VCO	lock	trap
3.	 Enable	System	VCO	lock	trap
4.	 Enable	OSC_ULP	oscillator	watchdog	trap

Note:	User	must	define	the	NMI	TRAP	handler	as	void
NMI_Handler(void)	for	handling	trap.

Generate	code

Files	are	generated	here:	`<project_name>/Dave/Generated/'
(`project_name'	is	the	name	chosen	by	the	user	during	project
creation).	APP	instance	definitions	and	APIs	are	generated	only	after
code	generation.
Note:	Code	must	be	explicitly	generated	for	every	change	in	the	GUI
configuration.
Important:	Any	manual	modification	to	APP	specific	files	will	be
overwritten	by	a	subsequent	code	generation	operation.

Sample	Application	(main.c)

	#include	<DAVE.h>				//Declarations	from	DAVE	Cod

e	Generation	(includes	SFR	declaration)

	volatile	uint32_t	TRAP_OSC_WDG_FLAG=0;

	volatile	uint32_t	TRAP_VCO_LOCK_FLAG=0;

	volatile	uint32_t	TRAP_USB_VCO_FLAG=0;

	volatile	uint32_t	TRAP_ULP_WDG_FLAG=0;

	void	NMI_Handler(void)

	{

		uint32_t	TRAP_FLAG=0;

		TRAP_FLAG	=	XMC_SCU_TRAP_GetStatus();

		if((TRAP_FLAG	&	XMC_SCU_TRAP_OSC_WDG)	>>	SCU_TRA

P_TRAPSTAT_SOSCWDGT_Pos)

		{

						TRAP_OSC_WDG_FLAG++;

						XMC_SCU_TRAP_ClearStatus(XMC_SCU_TRAP_OSC_WD

G);

					//	Add	application	code	here	for	handling	OSC

_HP	oscillator	watchdog	trap

		}

		if((TRAP_FLAG	&	XMC_SCU_TRAP_VCO_LOCK)	>>	SCU_TR

AP_TRAPSTAT_SVCOLCKT_Pos)

		{

						TRAP_VCO_LOCK_FLAG++;

						XMC_SCU_TRAP_ClearStatus(XMC_SCU_TRAP_VCO_LO

CK);

					//	Add	application	code	here	for	handling	sys

tem	VCO	lock	trap

		}

		if((TRAP_FLAG	&	XMC_SCU_TRAP_USB_VCO_LOCK)	>>	SC

U_TRAP_TRAPSTAT_UVCOLCKT_Pos)

		{

						TRAP_USB_VCO_FLAG++;

						XMC_SCU_TRAP_ClearStatus(XMC_SCU_TRAP_USB_VC

O_LOCK);

					//	Add	application	code	here	for	handling	USB

	VCO	lock	trap

		}

		if((TRAP_FLAG	&	XMC_SCU_TRAP_ULP_WDG)	>>	SCU_TRA

P_TRAPSTAT_ULPWDGT_Pos)

		{

						TRAP_ULP_WDG_FLAG++;

						XMC_SCU_TRAP_ClearStatus(XMC_SCU_TRAP_ULP_WD

G);

					//	Add	application	code	here	for	handling	OSC

_ULP	oscillator	watchdog	trap

		}

	}

	//

	//	@brief	main()	-	Application	entry	point

	//

	//	Details	of	function

	//	This	routine	is	the	application	entry	point.	I

t	is	invoked	by	the	device	startup	code.	It	is	res

ponsible	for

	//	invoking	the	App	initialization	dispatcher	rou

tine	-	DAVE_Init()	and	hosting	the	place-holder	fo

r	user	application

	//	code.

	//

	int	main(void)

	{

		DAVE_STATUS_t	status;

		status	=	DAVE_Init();		//	CLOCK_XMC4_Init()	is	c

alled	from	within	DAVE_Init().

		if(status	==	DAVE_STATUS_FAILURE)

		{

			//	Placeholder	for	error	handler	code.	The	whil

e	loop	below	can	be	replaced	with	an	user	error	ha

ndler

			XMC_DEBUG(("DAVE	Apps	initialization	failed	wit

h	status	%d\n",	status));

			while(1U)

			{

			}

		}

		//	Placeholder	for	user	application	code.	The	wh

ile	loop	below	can	be	replaced	with	user	applicati

on	code.

		while(1U)

		{

		}

		return	(1);

	}

Build	and	Run	the	Project
Note:	User	must	add	application	code	for	ensuring	the	safety
operation.

Observation
TRAP_OSC_WDG_FLAG,	TRAP_VCO_LOCK_FLAG,
TRAP_USB_VCO_FLAG	and	TRAP_ULP_WDG_FLAG	flags	can	be
monitored	for	ensuring	the	safety	operation.

Home

CLOCK_XMC4

Release	History

Release	History

Home
Data	Structures Data	Structure	Index Data	Fields

CLOCK_XMC4

Data	Structures

Here	are	the	data	structures	with	brief	descriptions:
CLOCK_XMC4 Configuration	structure	for	CLOCK_XMC4	APP

Home
Data	Structures Data	Structure	Index Data	Fields

Data	Fields

CLOCK_XMC4

CLOCK_XMC4	Struct
Reference
Data	structures

Detailed	Description

Configuration	structure	for	CLOCK_XMC4	APP.

Definition	at	line	121	of	file	CLOCK_XMC4.h.

#include	<CLOCK_XMC4.h>

Data	Fields

bool	 init_status

Field	Documentation

bool	CLOCK_XMC4::init_status

APP	is	initialized	or	not.

Definition	at	line	123	of	file	CLOCK_XMC4.h.

Referenced	by	CLOCK_XMC4_Init().

The	documentation	for	this	struct	was	generated	from	the	following	file:

CLOCK_XMC4.h

Home
Data	Structures Data	Structure	Index Data	Fields

CLOCK_XMC4

Data	Structure	Index

C

		C		

CLOCK_XMC4			

C

Home
Data	Structures Data	Structure	Index Data	Fields

All Variables

CLOCK_XMC4

Here	is	a	list	of	all	documented	struct	and	union	fields	with	links	to	the
struct/union	documentation	for	each	field:

init_status	:	CLOCK_XMC4

Home
Data	Structures Data	Structure	Index Data	Fields

All Variables

CLOCK_XMC4

	

init_status	:	CLOCK_XMC4

Home
File	List Globals

CLOCK_XMC4

File	List

Here	is	a	list	of	all	documented	files	with	brief	descriptions:
CLOCK_XMC4.c	[code]
CLOCK_XMC4.h	[code]

Home
File	List Globals

Functions

CLOCK_XMC4

CLOCK_XMC4.c	File
Reference

Detailed	Description

Date:
2016-07-08

NOTE:	This	file	is	generated	by	DAVE.	Any	manual	modification	done
to	this	file	will	be	lost	when	the	code	is	regenerated.

Definition	in	file	CLOCK_XMC4.c.

#include	"clock_xmc4.h"

Functions

DAVE_APP_VERSION_t	 CLOCK_XMC4_GetAppVersion	(void)
	 Get	CLOCK_XMC4	APP	version.	

CLOCK_XMC4_STATUS_t	 CLOCK_XMC4_Init	(CLOCK_XMC4_t*handle)
	 Initializes	a	CLOCK_XMC4	APP	instance.	

uint32_t	 OSCHP_GetFrequency	(void)

	

This	is	a	non-weak	function,	which
retrieves	high	precision	external	oscillator
frequency.
Note:	This	function	is	used	by
xmc4_scu	LLD	for	internal	operations.
Therefore	the	user	do	not	required	to
call	this	API	explicitly.	

void	 CLOCK_XMC4_StepSystemPllFrequency
(uint32_t	kdiv)

	 API	for	ramping	down	the	system	PLL
clock	frequency.	

Function	Documentation

CLOCK_XMC4_STATUS_t	CLOCK_XMC4_Init (CLOCK_XMC4_t	*	 handle

Initializes	a	CLOCK_XMC4	APP	instance.

Parameters:
handle address	of	CLOCK_XMC4	APP	handler

Returns:
CLOCK_XMC4_STATUS_SUCCESS	:	if	initialization	is
successful
CLOCK_XMC4_STATUS_FAILURE	:	if	initialization	is	failed

Description:
CLOCK_XMC4_Init	API	is	called	during	initialization	of	DAVE
APPS.	This	API	Initializes	NMI	TRAP	Configuration.

Example	Usage:

	#include	<DAVE.h>

	int	main(void)

	{

			DAVE_STATUS_t	status;

			status	=	DAVE_Init();		//		CLOCK_XMC4_Init	API

	is	called	during	initialization	of	DAVE	APPS

			if(DAVE_STATUS_SUCCESS	==	status)

			{

				//	user	code

					while(1)

					{

					}

			}

			return	(1);

	}

Definition	at	line	96	of	file	CLOCK_XMC4.c.

References	CLOCK_XMC4_STATUS_SUCCESS,	and
CLOCK_XMC4::init_status.

void	CLOCK_XMC4_StepSystemPllFrequency (uint32_t	 kdiv)

API	for	ramping	down	the	system	PLL	clock	frequency.

Parameters:
kdiv PLL	output	divider	K2DIV.	Range:	1	to	128.	Represents

(K2DIV+1).

Returns:
none

Description:
The	function	can	be	used	for	ramping	down	the	system	PLL
clock	frequency.

Example	Usage:

	#include	<DAVE.h>

	int	main(void)

	{

			DAVE_STATUS_t	init_status;

			uint32_t	kdiv	=	10U;		//	(K2DIV+1)	value	for	s

caling	down	the	system	PLL	clock	frequency

			//	Initialize	CLOCK_XMC4	APP:

			//	SystemCoreClockSetup()	is	called	from	Syste

mInit().

			init_status	=	DAVE_Init();

		if(DAVE_STATUS_SUCCESS	==	init_status)

		{

				//	More	code	here

				//	User	decided	to	reduce	the	system	power	co

nsumption	by	scaling	down	the	system	PLL	clock	fr

equency

				CLOCK_XMC4_StepSystemPllFrequency(kdiv);	//	f

PLL	frequency	is	scaling	down	by	K2DIV	factor.

				//	More	code	here

				while(1)	{

				}

		}

		return	(1);

	}

Definition	at	line	116	of	file	CLOCK_XMC4.c.

uint32_t	OSCHP_GetFrequency (void)

This	is	a	non-weak	function,	which	retrieves	high	precision	external
oscillator	frequency.
Note:	This	function	is	used	by	xmc4_scu	LLD	for	internal
operations.	Therefore	the	user	do	not	required	to	call	this	API
explicitly.

Returns:
uint32_t	Range:	4	to	25	in	External	Crystal	Mode,	4	to	40	in

External	External	Direct	Input	Mode.

Description:
This	function	to	retrieves	the	external	high	precision	oscillator
frequency	value,	derived	from	either	"External	Crystal	Mode"	or
"External	Direct	Input	Mode"	

Definition	at	line	109	of	file	CLOCK_XMC4.c.

Go	to	the	source	code	of	this	file.

Home
File	List Globals

Data	Structures

CLOCK_XMC4

CLOCK_XMC4.h	File
Reference

Detailed	Description

Date:
2016-07-08

NOTE:	This	file	is	generated	by	DAVE.	Any	manual	modification	done
to	this	file	will	be	lost	when	the	code	is	regenerated.

Definition	in	file	CLOCK_XMC4.h.

#include	<xmc_scu.h>	#include	<xmc_gpio.h>
#include	<DAVE_Common.h>

#include	"clock_xmc4_conf.h"

#include	"clock_xmc4_extern.h"

Data	Structures

struct		 CLOCK_XMC4
	 Configuration	structure	for	CLOCK_XMC4	APP.	More...

Typedefs

typedef	struct	CLOCK_XMC4	 CLOCK_XMC4_t

	 Configuration	structure	for
CLOCK_XMC4	APP.	

Functions

DAVE_APP_VERSION_t	 CLOCK_XMC4_GetAppVersion	(void)
	 Get	CLOCK_XMC4	APP	version.	

CLOCK_XMC4_STATUS_t	 CLOCK_XMC4_Init	(CLOCK_XMC4_t*handle)
	 Initializes	a	CLOCK_XMC4	APP	instance.	

uint32_t	 OSCHP_GetFrequency	(void)

	

This	is	a	non-weak	function,	which
retrieves	high	precision	external	oscillator
frequency.
Note:	This	function	is	used	by
xmc4_scu	LLD	for	internal	operations.
Therefore	the	user	do	not	required	to
call	this	API	explicitly.	

void	 CLOCK_XMC4_StepSystemPllFrequency
(uint32_t	kdiv)

	 API	for	ramping	down	the	system	PLL
clock	frequency.	

enum		
CLOCK_XMC4_STATUS	{
CLOCK_XMC4_STATUS_SUCCESS	=	0U,
CLOCK_XMC4_STATUS_FAILURE	=	1U	}

Go	to	the	source	code	of	this	file.

Home
File	List Globals

All Functions Typedefs Enumerations Enumerator

CLOCK_XMC4

Here	is	a	list	of	all	documented	functions,	variables,	defines,	enums,
and	typedefs	with	links	to	the	documentation:

CLOCK_XMC4_GetAppVersion()	:	CLOCK_XMC4.c	,
CLOCK_XMC4.h
CLOCK_XMC4_Init()	:	CLOCK_XMC4.h	,	CLOCK_XMC4.c
CLOCK_XMC4_STATUS	:	CLOCK_XMC4.h
CLOCK_XMC4_STATUS_FAILURE	:	CLOCK_XMC4.h
CLOCK_XMC4_STATUS_SUCCESS	:	CLOCK_XMC4.h
CLOCK_XMC4_StepSystemPllFrequency()	:	CLOCK_XMC4.c	,
CLOCK_XMC4.h
CLOCK_XMC4_t	:	CLOCK_XMC4.h
OSCHP_GetFrequency()	:	CLOCK_XMC4.c	,	CLOCK_XMC4.h

Home
File	List Globals

All Functions Typedefs Enumerations Enumerator

CLOCK_XMC4

	

CLOCK_XMC4_GetAppVersion()	:	CLOCK_XMC4.c	,
CLOCK_XMC4.h
CLOCK_XMC4_Init()	:	CLOCK_XMC4.h	,	CLOCK_XMC4.c
CLOCK_XMC4_StepSystemPllFrequency()	:	CLOCK_XMC4.h	,
CLOCK_XMC4.c
OSCHP_GetFrequency()	:	CLOCK_XMC4.c	,	CLOCK_XMC4.h

Home
File	List Globals

All Functions Typedefs Enumerations Enumerator

CLOCK_XMC4

	

CLOCK_XMC4_t	:	CLOCK_XMC4.h

Home
File	List Globals

All Functions Typedefs Enumerations Enumerator

CLOCK_XMC4

	

CLOCK_XMC4_STATUS	:	CLOCK_XMC4.h

Home
File	List Globals

All Functions Typedefs Enumerations Enumerator

CLOCK_XMC4

	

CLOCK_XMC4_STATUS_FAILURE	:	CLOCK_XMC4.h
CLOCK_XMC4_STATUS_SUCCESS	:	CLOCK_XMC4.h

Home
File	List Globals

CLOCK_XMC4

CLOCK_XMC4.h

Go	to	the	documentation	of	this	file.
00001	

00059	#ifndef	CLOCK_XMC4_H

00060	#define	CLOCK_XMC4_H

00061	

00062	/***

**

00063		*	HEADER	FILES																													

																																																		

																							

00064		***

**

*************************/

00065	#include	<xmc_scu.h>

00066	#include	<xmc_gpio.h>

00067	#include	<DAVE_Common.h>

00068	#include	"clock_xmc4_conf.h"

00069	

00070		/**

**

00071		*	MACROS																																			

																																																		

																							

00072		***

**

*************************/

00073	#if	(!((XMC_LIB_MAJOR_VERSION	==	2U)	&&	\

00074												(XMC_LIB_MINOR_VERSION	>=	0U)	&&	\

00075								(XMC_LIB_PATCH_VERSION	>=	0U)))

00076	#error	"CLOCK_XMC4	requires	XMC	Peripheral	L

ibrary	v2.0.0	or	higher"

00077	#endif

00078	

00091		/**

**

00092		*	ENUMS

00093		***

**

*************************/

00098	/*

00099		*	@brief	enumeration	for	CLOCK_XMC4	APP

00100		*/

00101	typedef	enum	CLOCK_XMC4_STATUS

00102	{

00103			CLOCK_XMC4_STATUS_SUCCESS	=	0U,								

00104			CLOCK_XMC4_STATUS_FAILURE	=	1U									

00105	}	CLOCK_XMC4_STATUS_t;

00106	

00111	/***

**

00112	*	DATA	STRUCTURES

00113	**

**

************************/

00121	typedef	struct	CLOCK_XMC4

00122	{

00123			bool	init_status;		

00124	}	CLOCK_XMC4_t;

00129	#ifdef	__cplusplus

00130	extern	"C"	{

00131	#endif

00132	/***

**

00133		*	API	Prototypes

00134		***

**

*************************/

00173	DAVE_APP_VERSION_t	CLOCK_XMC4_GetAppVersion(

void);

00174	

00209	CLOCK_XMC4_STATUS_t	CLOCK_XMC4_Init(CLOCK_XM

C4_t	*handle);

00210	

00211	#ifdef	CLOCK_XMC4_OSCHP_ENABLED

00212	

00224	uint32_t	OSCHP_GetFrequency(void);

00225	#endif

00226	

00265	void	CLOCK_XMC4_StepSystemPllFrequency(uint3

2_t	kdiv);

00269	#ifdef	__cplusplus

00270	}

00271	#endif			

00272	

00273	/*	Include	APP	extern	declaration	file	*/

00274	#include"clock_xmc4_extern.h"

00275	

00276	#endif	/*	End	of	CLOCK_XMC4_H	*/

Home
File	List Globals

CLOCK_XMC4

CLOCK_XMC4.c

Go	to	the	documentation	of	this	file.
00001	

00062	/***

**

00063		*	HEADER	FILES																													

																																																		

																							

00064		***

**

*************************/

00065	#include	"clock_xmc4.h"

00066	

00067	/***

**

00068		*	MACROS

00069		***

**

*************************/

00070	

00071	/***

**

00072		*	LOCAL	DATA

00073		***

**

*************************/

00074	

00075	/***

**

00076		*	LOCAL	ROUTINES

00077		***

**

*************************/

00078	

00079	/***

**

00080	*	API	IMPLEMENTATION

00081	**

**

*************************/

00082	/*		API	to	retrieve	version	of	the	APP	*/

00083	DAVE_APP_VERSION_t	CLOCK_XMC4_GetAppVersion(

void)

00084	{

00085			DAVE_APP_VERSION_t	version;

00086			version.major	=	(uint8_t)CLOCK_XMC4_MAJOR_

VERSION;

00087			version.minor	=	(uint8_t)CLOCK_XMC4_MINOR_

VERSION;

00088			version.patch	=	(uint8_t)CLOCK_XMC4_PATCH_

VERSION;

00089	

00090			return	(version);

00091	}

00092	

00093	/*

00094		*	API	to	initialize	the	CLOCK_XMC4	APP	TRAP

	events

00095		*/

00096	CLOCK_XMC4_STATUS_t	CLOCK_XMC4_Init(CLOCK_XM

C4_t	*handle)

00097	{

00098			CLOCK_XMC4_STATUS_t	status	=	CLOCK_XMC4_ST

ATUS_SUCCESS;

00099	

00100			XMC_ASSERT("CLOCK_XMC4	APP	handle	function

	pointer	uninitialized",	(handle	!=	NULL));

00101	

00102			handle->init_status	=	true;

00103	

00104			return	(status);

00105	}

00106	

00107	#ifdef	CLOCK_XMC4_OSCHP_ENABLED

00108	/*		API	to	retrieve	high	precision	external	

oscillator	frequency	*/

00109	uint32_t	OSCHP_GetFrequency(void)

00110	{

00111			return	(CLOCK_XMC4_OSCHP_FREQUENCY);

00112	}

00113	#endif

00114	

00115	/*		API	for	ramping	down	the	system	PLL	cloc

k	frequency	*/

00116	void	CLOCK_XMC4_StepSystemPllFrequency(uint3

2_t	kdiv)

00117	{

00118			XMC_ASSERT("Incorrect	kdiv	value",	((kdiv	

>=	1)	&&	(kdiv	>=	128)));

00119			XMC_SCU_CLOCK_StepSystemPllFrequency(kdiv)

;

00120	}

	Apps
	License Terms and Copyright Information
	Abbreviations and Definitions
	Overview
	Architecture Description
	APP Configuration Parameters
	Enumerations
	Data structures
	Methods
	Usage
	Release History

