
CD
Canvas	Draw,	A	2D	Graphics	Library

Version	5.0

CD	(Canvas	Draw)	is	a	platform-independent	graphics	library.	It	is
implemented	in	several	platforms	using	native	graphics	libraries:
Microsoft	Windows	(GDI)	and	X-Windows	(XLIB).

The	library	contains	functions	to	support	both	vector	and	image
applications,	and	the	visualization	surface	can	be	either	a	window	or	a
more	abstract	surface,	such	as	Image,	Clipboard,	Metafile,	PS,	and	so
on.

This	work	was	developed	at	Tecgraf/PUC-Rio	by	means	of	the
partnership	with	PETROBRAS/CENPES.

Project	Management:

Antonio	Escaño	Scuri

Tecgraf	-	Computer	Graphics	Technology	Group,	PUC-Rio,	Brazil	
http://www.tecgraf.puc-rio.br/cd

http://www.tecgraf.puc-rio.br/cd

Overview

CD	is	a	platform-independent	graphics	library.	It	is	implemented	in
several	platforms	using	native	graphics	libraries:	Microsoft	Windows	(GDI
and	GDI+)	and	X-Windows	(XLIB).

The	library	contains	functions	to	support	both	vector	and	image
applications,	and	the	visualization	surface	can	be	either	a	canvas	or	a
more	abstract	surface,	such	as	Clipboard,	Metafile,	PS,	and	so	on.

To	make	the	Application	Programmers	Interface	(API)	simple,	all	data	are
standard	C	types	(int,	double	or	char).	Thus	the	application	program	does
not	have	to	maintain	parallel	data	structures	to	deal	with	the	graphic
library.

Furthermore,	the	list	of	parameters	of	the	CD	primitive	functions	contains
only	the	geometrical	descriptions	of	the	objects	(line,	circle,	text,	etc.).
Where	these	objects	should	appear	and	what	is	the	their	color,	thickness,
etc.	are	defined	as	current	state	variables	stored	in	the	visualization
surfaces.	That	is,	the	library	is	visualization-surface	oriented,	meaning
that	all	attributes	are	stored	in	each	visualization	surface.

CD	is	free	software,	can	be	used	for	public	and	commercial	applications.

Availability

The	library	is	available	for	several	compilers:

GCC	and	CC,	in	the	UNIX	environment
Visual	C++,	Borland	C++,	Watcom	C++	and	GCC	(Cygwin	and
MingW),	in	the	Windows	environment

The	library	is	available	for	several	operating	systems:

UNIX	(SunOS,	IRIX,	AIX,	FreeBSD	and	Linux)

Microsoft	Windows	NT/2K/XP

Support

The	official	support	mechanism	is	by	e-mail,	using	cd@tecgraf.puc-
rio.br.	Before	sending	your	message:

Check	if	the	reported	behavior	is	not	described	in	the	user
guide.
Check	if	the	reported	behavior	is	not	described	in	the	specific
driver	characteristics.
Check	the	History	to	see	if	your	version	is	updated.
Check	the	To	Do	list	to	see	if	your	problem	has	already	been
reported.

After	all	of	the	above	have	been	checked,	report	the	problem,	including	in
your	message:	function,	element,	driver,	platform,	and	compiler.

We	host	CD	support	features	at	LuaForge.	It	provides	us	Lists,	News,
CVS	and	Files.	The	CD	page	at	LuaForge	is	available	at:
http://luaforge.net/projects/cdlib/.

The	discussion	list	is	available	at:
http://lists.luaforge.net/mailman/listinfo/cdlib-users.
Source	code,	pre-compiled	binaries	and	samples	can	be	downloaded	at:
http://luaforge.net/frs/?group_id=88.
The	CVS	can	be	browsed	at:	http://luaforge.net/scm/?group_id=88.

If	you	want	us	to	develop	a	specific	feature	for	the	library,	Tecgraf	is
available	for	partnerships	and	cooperation.	Please	contact
tcg@tecgraf.puc-rio.br.

Lua	documentation	and	resources	can	be	found	at	http://www.lua.org/.

Credits

mailto:cd@tecgraf.puc-rio.br?subject=[CD]
mailto:cd@tecgraf.puc-rio.br?subject=[CD]
http://luaforge.net/
http://luaforge.net/projects/cdlib/
http://lists.luaforge.net/mailman/listinfo/cdlib-users
http://luaforge.net/frs/?group_id=88
http://luaforge.net/scm/?group_id=88
http://www.lua.org/

This	work	was	developed	at	Tecgraf	by	means	of	the	partnership	with
PETROBRAS/CENPES.

We	thank	the	people	at	the	SEPROC	department	at	CENPES	and	the
library	creators	Marcelo	Gattass,	Luiz	Henrique	de	Figueiredo,	Luiz
Fernando	Martha	and	Carlos	Henrique	Levy.

Thanks	to	the	people	that	worked	in	the	library:	
-	Antonio	Scuri	(all	since	version	3.0)
-	Marcelo	Cohen	(Simulation)
-	Carlos	Cassino	(X-Windows	Platform	Driver,	Postscript	Driver	and	WD
functions),
-	Renato	Borges	(X-Windows	Platform	Driver	and	WD	functions),
-	Marcelo	Gattass	(Microsoft	Windows	Platform	Drivers),	
-	Carlos	Augusto	Mendes	(DOS	Platform	Drivers),
-	Diego	Fernandes	Nehab	(DOS	Platform	Drivers,	Lua	binding),
-	Danilo	Tuler	(Lua	5	binding),
-	Vinicius	da	Silva	Almendra	(DGN	Driver),
-	Milton	Jonathan	(DXF	Driver),
-	Pedro	Miller	(DirectX	Driver),
-	Erick	de	Moura	Ferreira	(RGB	Client	Image	Driver	and	Simulation),
-	Carolina	Alfaro	(revision	and	translation	of	the	user	guide	in	Portuguese
and	English),
-	Camilo	Freire	(CGM	Driver),
-	André	Derraik	(Macintosh	Platform	Beta	Drivers),
-	Alexandre	Ferreira	(Direct	X	Beta	Driver)

We	also	thank	the	developers	of	the	FreeType,	libJPEG	and	Mesa
libraries,	for	making	the	source	code	available,	which	helped	us	improve
our	implementation	of	the	Simulation	driver	and	of	the	X-Windows	driver.
Thanks	to	Alan	Richardson	for	the	XVertex	rotines.	Thanks	to	Jason
Perkins	for	the	Premake	tool.

The	CD	distribution	includes	the	FreeType	library,	this	is	a	third	party
library	not	developed	at	Tecgraf.	But	its	license	is	also	free	and	have	the

http://www.freetype.org/
http://www.ijg.org/
http://www.ssec.wisc.edu/~brianp/Mesa.html
http://premake.sourceforge.net/

same	freedom	as	the	Tecgraf	Library	License.	You	can	read	the	Free
Type	license	and	copyright	in	the	file	freetype.txt.	FreeType	is	copyright
David	Turner,	Robert	Wilhelm,	and	Werner	Lemberg.	The	current
FreeType	version	included	is	2.2.1.

Mesa	X-Windows	utilities	source	code	copyright	Brian	Paul.	libJPEG
quantization	source	code	copyright	Thomas	G.	Lane.	XVertex	rotines
source	code	copyright	Alan	Richardson.	

Documentation

This	library	is	available	at	http://www.tecgraf.puc-rio.br/cd.	

The	full	documentation	can	be	downloaded	from	the	Download	Files.	The
documentation	is	also	available	in	Adobe	Acrobat	and	Windows	HTML
Help	formats.

The	HTML	navigation	uses	the	WebBook	tool,	available	at
http://www.tecgraf.puc-rio.br/webbook.

http://www.tecgraf.puc-rio.br/cd
http://www.tecgraf.puc-rio.br/webbook

Tecgraf	Library	License

All	the	products	under	this	license	are	free	software:	they	can	be	used	for
both	academic	and	commercial	purposes	at	absolutely	no	cost.	There	are
no	royalties	or	GNU-like	"copyleft"	restrictions.	They	are	licensed	under
the	terms	of	the	MIT	license	reproduced	below,	and	so	are	compatible
with	GPL	and	also	qualifies	as	Open	Source	software.	They	are	not	in	the
public	domain,	Tecgraf	and	Petrobras	keep	their	copyright.	The	legal
details	are	below.

The	spirit	of	this	license	is	that	you	are	free	to	use	the	libraries	for	any
purpose	at	no	cost	without	having	to	ask	us.	The	only	requirement	is	that
if	you	do	use	them,	then	you	should	give	us	credit	by	including	the
copyright	notice	below	somewhere	in	your	product	or	its	documentation.
A	nice,	but	optional,	way	to	give	us	further	credit	is	to	include	a	Tecgraf
logo	in	a	web	page	for	your	product.

The	libraries	are	designed	and	implemented	by	a	team	at	Tecgraf/PUC-
Rio	in	Brazil.	The	implementation	is	not	derived	from	licensed	software.
The	library	was	developed	by	request	of	Petrobras.	Petrobras	permits
Tecgraf	to	distribute	the	library	under	the	conditions	here	presented.

The	Tecgraf	products	under	this	license	are:	IUP,	CD	and	IM.

Copyright	©	1994-2007	Tecgraf	/	PUC-Rio	and	PETROBRAS	S/A.

Permission	is	hereby	granted,	free	of	charge,	to	any	person	obtaining	a
copy	of	this	software	and	associated	documentation	files	(the
"Software"),	to	deal	in	the	Software	without	restriction,	including	without
limitation	the	rights	to	use,	copy,	modify,	merge,	publish,	distribute,
sublicense,	and/or	sell	copies	of	the	Software,	and	to	permit	persons	to
whom	the	Software	is	furnished	to	do	so,	subject	to	the	following
conditions:

http://www.opensource.org/licenses/mit-license.html
http://www.gnu.org/licenses/gpl.html
http://www.opensource.org/docs/definition.html
http://www.tecgraf.puc-rio.br/iup
http://www.tecgraf.puc-rio.br/cd
http://www.tecgraf.puc-rio.br/im
http://www.tecgraf.puc-rio.br
http://www.puc-rio.br
http://www.petrobras.com.br

The	above	copyright	notice	and	this	permission	notice	shall	be	included
in	all	copies	or	substantial	portions	of	the	Software.

THE	SOFTWARE	IS	PROVIDED	"AS	IS",	WITHOUT	WARRANTY	OF
ANY	KIND,	EXPRESS	OR	IMPLIED,	INCLUDING	BUT	NOT	LIMITED
TO	THE	WARRANTIES	OF	MERCHANTABILITY,	FITNESS	FOR	A
PARTICULAR	PURPOSE	AND	NONINFRINGEMENT.	IN	NO	EVENT
SHALL	THE	AUTHORS	OR	COPYRIGHT	HOLDERS	BE	LIABLE	FOR
ANY	CLAIM,	DAMAGES	OR	OTHER	LIABILITY,	WHETHER	IN	AN
ACTION	OF	CONTRACT,	TORT	OR	OTHERWISE,	ARISING	FROM,
OUT	OF	OR	IN	CONNECTION	WITH	THE	SOFTWARE	OR	THE	USE
OR	OTHER	DEALINGS	IN	THE	SOFTWARE.

Download
The	main	download	site	is	the	LuaForge	site	available	at:

http://luaforge.net/project/showfiles.php?group_id=88

Before	downloading	any	precompiled	binaries,	you	should	read	before
the	Tecgraf	Library	Download	Tips.

Some	other	files	are	available	directly	at	the	CD	download	folder:

http://www.tecgraf.puc-rio.br/cd/download/

http://luaforge.net/project/showfiles.php?group_id=88
http://www.tecgraf.puc-rio.br/cd/download/

History	of	Changes
Version	5.0	(26/Nov/2007)

New:	attributes	"OPAQUE",	"PATTERN"	and	"PDF"	in	the
CD_PDF	driver.
New:	XRender	base	driver.
Changed:	PDF	Lite	library	updated	to	version	"7.0.2".
Changed:	FreeType	library	updated	to	version	"2.3.5".
Changed:	now	using	"(char*)CD_QUERY"	as	the	parameter	in
cdCanvasNativeFont,	it	returns	the	current	selected	font	in	the
common	format	definition.
Changed:	avoid	setting	X-Windows	color	background	when
calling	cdCanvasClear	for	NativeWindow	driver.	Now	all	X-
Windows	drivers	will	use	only	XFillRectangle.
Changed:	in	Lua	canvases	are	now	garbage	collected.
Changed:	metatable	names	in	Lua	are	now	the	same	as	the	C
struct	names.
Fixed:	function	cdlua_checkcanvas	that	affects	the	creation	of
the	cd.DBUFFER	canvas.	Thanks	to	Martin	Saerbeck.
Fixed:	vertical	text	alignment	in	PDF	and	PS	drivers.
Fixed:	ascent	and	descent	font	dimensions	in	PDF	driver.
Fixed:	check	for	mark	size	and	font	size	when	given	size	is	0.

Version	5.0	RC2	(09/Apr/2007)

New:	function	cdCanvasInvertYAxis	that	will	invert	the	given	y
coordinate	even	if	the	canvas	is	not	internally	inverted.
Changed:	PDF	Lite	library	updated	to	version	"7.0.0p3".
Changed:	FreeType	library	updated	to	version	"2.2.1".
Changed:	In	the	new	API	cdCanvasFont	you	can	specify	partial
parameters	using	NULL,	-1	and	0	for	typeface,	style	and	size.
When	these	parameters	are	specified	the	current	font	parameter
is	used.	For	example,	cdCanvasFont(NULL,	-1,	10)	will	only

change	the	font	size.

Version	5.0	RC1	(08/Mar/2007)

New:	attribute	HATCHBOXSIZE	in	CD_PDF	driver,	to	control
the	hatch	spacing.
New:	attribute	ADDFONTMAP	in	simulation	base	driver	to
accept	a	map	between	a	font	name	and	a	font	file	name.
New:	Pango	Font	Description	string	is	now	accepted	in
NativeFont	and	replace	the	previous	CD	format	is	most	drivers.
INCOMPATIBILITY	-	If	style	is	not	used,	most	drivers	had	a
format	compatible	with	the	new	format.	But	please	check	your
NativeFont	usage.	The	IUP	format	is	still	supported.
New:	API	using	canvas	as	a	parameter.	Old	API	still	exists.
Library	is	backward	compatible	with	previous	versions,	but	the
documentation	shows	only	the	new	names.	The	new	functions
add	a	"Canvas"	to	the	function	prefix,	for	ex:	the	cdLine
equivalent	is	cdCanvasLine.	For	these	functions	cdActivate	is
not	required.	But	cdCanvasActivate	exists	for	special	cases
where	the	canvas	must	be	updated	if	an	external	factor	was
changed,	like	a	window	resize.	To	facilitate	the	migration	to	the
new	API	use	the	definition	CD_NO_OLD_INTERFACE	to
exclude	the	old	API	definitions	and	check	if	you	are	using	only
the	new	functions.
New:	support	for	primitives	using	"double"	floating	point
precision	and	not	related	to	WC	functions.
New:	"cd_canvas.hpp"	header	file	which	defines	a	C++	class
cdCanvasC	that	wraps	the	cdCanvas	structure	API.
New:	ROTATE	attribute	in	CD_PDF	driver.
New:	binding	Lua	of	the	CD_PDF	driver.
New:	support	for	alpha	channel	in	CD_IMAGERGB	driver.	Also
support	for	alpha	in	color	coding	in	the	CD_IMAGERGB	driver
primitives.
New:	attribute	ANTIALIAS	in	the	CD_IMAGERGB	driver.	Text	is
always	antialiased	as	before.
New:	implemented	Chord	primitive	in	simulation	base	driver.
New:	implemented	CD_WINDING	fill	mode	in	the	simulation

base	driver.
New:	implemented	complex	clipping	regions	in	CD_IMAGERGB
driver.	Fixed	polygon	clipping	and	other	clipping	errors	in	the
CD_IMAGERGB	driver.
New:	driver	CD_DBUFFERRGB	that	uses	the	CD_IMAGERGB
driver	for	double	buffer,	and	can	be	a	double	buffer	for	any	other
driver	(CD_DBUFFER	works	only	for	Window	based	drivers).
New:	CD_PICTURE	driver	to	store	primitives	and	attributes	in
memory	that	can	be	played	and	resized	in	any	other	driver.
New:	functions	to	set	color	foreground	and	background	without
query	support	(cdCanvasSetForeground	and
cdCanvasSetBackground).	CD_QUERY	conflicts	with	color
RGBA=(255,255,255,255)	(full	transparent	white).
New:	support	for	generic	canvas	transformations	using
Transform,	TransformTranslate,	TransformRotate	and
TransformScale	functions.
New:	attribute	"GDI+"	for	all	GDI+	based	drivers	that	returns	"1".
So	it	can	be	detected	if	the	driver	uses	the	GDI+	base	driver.
Changed:	INCOMPATIBILITY	-	removed	clipping	simulation
from	the	simulation	base	driver.	It	is	not	possible	anymore	to
simulate	clipping,	only	primitives	can	be	simulated.
Changed:	canvas	internal	pointer	allocation	so	it	can	be
checked	for	valid	canvas	in	all	external	API	function	calls.
Changed:	NativeFont("-d")	to	set	also	the	foreground	color	from
the	color	in	the	dialog,	and	initialize	the	font	in	the	dialog	with
the	current	selected	font.
Changed:	In	the	new	API	cdCanvasFont	changed	the	typeface
parameter	type	from	a	small	set	of	integer	values	to	a	more
flexible	string.
Changed:	all	accented	characters	are	now	available	in	the
default	vector	text	font.
Changed:	all	functions	in	the	API	now	use	"const"	when
applicable.
Changed:	server	image	defintion	from	"void*"	to	"cdImage*".
This	will	affect	C++	applications	that	must	update	their	code.
Changed:	removed	cdGetClipPoly	and	wdGetClipPoly
functions.

Changed:	UpdateYAxis	now	also	returns	the	changed	value.
Changed:	INCOMPATIBILITY	-	cdCallback	definition	used	in
RegisterCallback,	called	from	Play.	Replaced	the	"cdContext*"
by	a	"cdCanvas*".	If	you	do	not	use	the	pointer	it	can	be	simply
ignored.
Changed:	WC	functions	now	are	only	client	functions	of	the	CD
API.
Changed:	removed	old	support	for	Windows	9x.
Changed:	removed	the	cdInitGdiPlusIUP	function	and	the
"cdiupgdiplus"	library.	They	are	not	necessary	anymore.
Althougth	the	CD_IUP	driver	still	works	with	GDI+	support.
Changed:	improved	speed	and	precision	of	the	bezier	polygon
of	the	simulation	base	driver.
Changed:	renamed	distribution	folder	name	from	"cd/data"	to
"cd/etc".
Changed:	CD	Lua	for	Lua	3	library	name	changed	to	include	"3"
as	a	suffix.
Fixed:	conversion	from	ANSI	to	ASCII	in	vector	text	fonts.
Fixed:	Sector	primitive	in	simulation	base	driver.
Fixed:	deactivation	of	internal	canvas	in	Double	Buffer	driver
over	a	Native	Windows	driver	for	Win32.
Fixed:	EPS	compatibility	in	PostScript	driver.
Fixed:	the	default	values	in	cdCreateCanvas	for	CD_DGN,
CD_DXF	and	CD_CGM.
Fixed:	Play	for	CD_EMF	when	data	contains	poly-polygons	or
poly-polylines.
Fixed:	LineWidth	in	WC	when	updating	the	size	in	pixels.
Fixed:	TextSize	and	FontDim	in	driver	DXF.
Fixed:	Font	in	the	X-Windows	base	driver,	size	parameter	was
incorrectly	passed	to	the	X-Windows.	WARNING:	the	result	font
will	have	a	size	different	than	previous	CD	versions	in	X-
Windows.
Fixed:	Flush	in	CD_DBUFFER	driver,	it	was	affected	by	the
write	mode	state	of	the	buffered	canvas.
Fixed:	WC	tranformation	update	when	the	Window	is	invalid.
Thanks	to	Marian	Trifon.
Fixed:	polygon	filling	in	simulation	base	driver.

Fixed:	invalid	resample	in	PutImageRect*	in	GDI+	base	driver
cause	a	band	with	a	mix	of	the	background	color	appear	on	right
and	bottom	when	image	is	zoomed	in	(larger	than	original	size).

Version	4.4	(12/Dec/2005)

New:	CDLua	for	Lua	5.	The	CDLua	for	Lua	3	is	now	also	totally
compatible	with	the	"cd."	name	space	used	in	the	CDLUA	for
Lua	5.	So	the	documentation	now	reflects	only	the	new
nomenclature	although	the	old	CDLua	3	names	are	still	valid.
New:	attribute	"WINDOWRGN"	for	the	Native	Windows	and	IUP
drivers	to	set	the	shape	of	a	window	to	the	current	complex
clipping	region.
New:	cdlua_close	function	to	release	the	memory	allocated	by
the	cdlua_open.
New:	"ROTATE"	attribute	for	PS	driver,	GDI+	base	driver	and
GDI	base	driver.
New:	CD_FILLSPLINE	and	CD_SPLINE	parameters	for	cdBegin
in	GDI+	base	driver.
New:	support	for	complex	regions	for	clipping	using:	cdBox,
cdSector,	Polygons	and	cdText.	New:	parameter	CD_REGION	for
cdBegin	to	create	the	region,	new	parameter	CD_CLIPREGION
for	cdClip	to	select	the	region	for	clipping.	New:	funtions	to
control	regions:	cdPointInRegion,	cdOffsetRegion,	cdRegionBox
and		cdRegionCombineMode.	Valid	only	for	the	Windows	GDI,
GDI+	and	X-Windows	base	drivers	and	their	derived	drives.
New:	mode	for	cdBegin,	CD_BEZIER.
New:	filled	primitive	cdChord.
New:	polygon	fill	rule	control	using	cdFillMode	with
CD_EVENODD	(the	default)	and	CD_WINDING	parameters.
New:	line	cap	and	line	join	styles	using	cdLineCap	and
cdLineJoin.
New:	typeface	CD_NATIVE	to	indicate	that	a	native	font	has
been	selected.
New:	custom	line	style	using	cdLineStyleDashes	and
cdLineStyle(CD_CUSTOM).	This	replaces	the	attribute
"USERLINESTYLE".

(All	New:,	when	not	specified	the	divers,	are	valid	for	all	the
drivers,	except	DXF,	DGN	e	CGM.)
New:	text	utility	function	cdTextBounds	that	returns	the	oriented
bounding	rectangle.
New:	"IMAGEFORMAT"	and	"IMAGEALPHA"	attributes	for	the
Windows	base	driver.
New:	In	GDI+,	the	CD_CLIPBOARD	driver	supports	EMF	and
BMP	formats.
New:	function	cdReleaseState	to	release	the	memory	allocated
by	a	state.	The	cdRestoreState	does	not	release	the	memory
anymore	so	it	can	be	used	several	times	for	the	same	state.
Fixed:	Invalid	cdKillImage	in	X-Windows	when	active	canvas	is
not	the	canvas	where	the	image	was	created.
Fixed:	Text	clipping	for	CD_IMAGERGB	driver.
Fixed:	fixed	size	in	milimeter	of	cdGetScreenSize	in	Win32.
Fixed:	fixed	size	of	the	EMF	picture.
Fixed:	fixed	the	parse	of	filenames	with	spaces	for	all	file	based
drivers.	The	filename	must	be	inside	double	quotes	(")	if	it	has
spaces.
Fixed:	cdSetAttribute	in	Lua	now	can	set	nil	values.
Fixed:	fixed	cdSector	when	interior	style	is	CD_HOLLOW,	to
include	two	lines	connecting	to	the	center	point.
Fixed:	In	GDI+,	the	NATIVEWINDOW	driver	ignored	other	data
pointer	configurations	in	cdCreateCanvas.
Fixed:	In	GDI+,	cdStipple	was	not	updated	when	the	foreground
or	background	colors	where	changed.
Fixed:	In	GDI+,	cdSector	and	cdArc	have	incorrect	angles.
Fixed:	"simple.c"	and	"simple.zip"	were	outdated.	Now	new
makefiles	were	added.
Fixed:	in	Windows	base	driver	small	incompatibility	in
cdNativeFont	with	the	IUP	FONT	attribute.
Changed:	Optimization	flags	now	are	ON	when	building	the
library	in	all	platforms.
Changed:	Upgraded	Freetype	to	version	2.1.10.	The	CD	library
file	size	increased	because	of	this.	But	we	gain	a	better	text
rendering	for	images.
Changed:	Better	organization	of	the	documentation.

Changed:	In	Windows	the	NATIVEWINDOW	driver	now	accepts
a	NULL	pointer	to	draw	in	the	entire	screen.
Changed:	Optimized	cdPutImageRGBARect	in	Windows	base
driver.
Changed:	Now	by	default	CD	will	not	print	X-Windows
messages.	To	enable	you	must	set	the	CD_XERROR
environment	variable.
Changed:	The	default	fill	rule	for	polygons	in	CD_PS	is	now	the
Even-Odd	rule.	Matching	the	other	drivers.
Changed:	Line	Styles	in	GDI+	was	corrected	again	to	match
GDI	line	styles	when	line	width	is	not	1.
Changed:	The	native	WC	support	in	GDI+	was	removed
because	of	alignment	and	size	problems,	simulation	will	be
used.
Changed:	the	EMF	drivers	now	ignore	the	resolution	parameter.
For	EMFs,	the	resolution	is	always	the	screen	resolution.
Changed:	the	value	of	following	attributes	were	changed	to
strings	"IMAGEMASK",	"IMAGEPOINTS",	"ROTATE",
"GRADIENTCOLOR",	"IMAGETRANSP"	and	
"IMAGEFORMAT".
Changed:	in	GDI+	base	driver,	the	cdBegin	modes
CD_IMAGEWARP	and	CD_GRADIENT	were	moved	to	attributes
"IMAGEPOINTS"	and	"LINEGRADIENT".	Mode
CD_PATHGRADIENT	was	renamed	to	CD_FILLGRADIENT,	and
"PATHGRADIENT"	attribute	was	renamed	to
"GRADIENTCOLOR".	Their	definition	was	also	changed.
Changed:	cdImageEx	was	renamed	to	cdBitmap,	and	now
supports	only	client	images.	This	will	cause	a	conflict	with	a
macro	definition	in	"im_image.h"	header	of	the	IM	toolkit.	Include
this	header	before	"cd.h"	and	inbetween	set	"#undef
cdPutBitmap".	The	IM	macro	will	be	changed	in	the	next	IM
version.
Changed:	cdText	is	not	dependent	on	the	cdBackOpacity
anymore.	Text	now	is	always	transparent.	If	you	need	a	box
under	the	text	use	cdTextBox	to	calculate	the	dimensions	for
cdBox.

Version	4.3.3	(25/Aug/2004)

New:	"USERLINESTYLE"	attribute	for	the	base	GDI	and	X11
drivers.
New:	"GC"	attribute	for	the	base	X11	driver.
Changed:	in	the	Native	Window	driver	for	the	Windows	system,
the	creation	using	a	HDC	can	have	an	addicional	parameter	for
the	canvas	size.
Changed:	in	cdTextSize	for	the	GDI+	base	driver	we	now
compensates	the	height	in	-10%	to	match	the	GDI	height.
Changed:	The	GDI+	printer	driver	now	returns	the	HDC
attribute.
Fixed:	fixed	a	bug	in	cdNativeFont	for	the	GDI+	base	driver.
Fixed:	again	fixed	a	rounding	error	in	cdPutImage*	for	big
zooms.

Version	4.3.2	(14/Apr/2004)

Fixed:	in	the	Win32	and	X-Win	drivers	the	cdPutImageRGB	and
cdPutImageMap	functions	when	zooming	bigger	then	the
canvas	where	incorrectly	positioning	the	image	by	some	pixels
because	of	round	errors.

Version	4.3.1	(07/Nov/2003)

Fixed:	in	the	Win32	driver	the	clipping	of	cdPutImage*	functions
when	zooming	was	wrong.	In	the	DoubleBuffer	driver	the	main
canvas	cdOrigin	can	be	used	to	move	the	image	in	the	swap
operation	(cdFlush).	In	the	GDI+	DoubleBuffer	driver	there	was
an	error	in	the	cdFlush	when	some	primitive	used	world
coordinates	directly	in	the	main	canvas.

Version	4.3	(06/Mar/2003)

New:	the	function	cdlua_getcanvas	retreives	the	pointer	of	a

canvas	created	in	Lua.
New:	in	Win32	the	function	cdUseContextPlus	change	the
behavior	of	the	Windows	drivers	NativeWindow,	IUP,	Image,
Printer,	EMF	and	Double	Buffer	to	make	them	use	the	GDI+	for
drawing.	GDI+	does	not	have	support	for	XOR	Write	Mode,	but
it	has	other	resources	like:	transparency,	anti-aliasing,	gradient
filling,	bezier	lines	and	filled	cardinal	splines.	WC	functions	are
directly	implemented	in	the	base	driver.	Two	new	functions	were
created	to	support	transparency	in	the	CD	color	coding:
cdEncodeAlpha	and	cdDecodeAlpha.Check	the	documentation
for	more	information.
Changed:	the	Lua	binding	is	now	distributed	in	the	same
package.	There	is	only	one	version	number.
Fixed:	the	PS	header	had	same	flaws,	the	character	":"	was
missing	in	some	DCS	attributes.
Fixed:	screen	resolution	was	wrong	in	the	Win32	driver,	this
afects	the	size	of	the	canvas	in	milimeters.
Fixed:	in	the	Win32	driver	the	creation	of	a	polygon	for	clipping
does	not	activate	the	clipping.
Fixed:	in	the	Win32	driver	the	function	cdNativeFont	using	"-d"
parameter	need	some	ajusts.	Also	the	returned	string	does	not
contains	all	the	used	parameters.
Fixed:	in	the	Win32	driver	the	function	cdPutImageRectRGBA
had	a	positioning	error.

Version	4.2	(20/July/2001)

Changed:	in	driver	Win32,	cdNativeFont	accepts	parameter	"-d"
on	the	font	name	to	show	the	font-selection	dialog.
Changed:	the	whole	code	can	now	be	compiled	as	C++.
Changed:	functions	wdPattern	and	wdStipple	were	changed	to
make	pattern	deformation	more	uniform.
Fixed:	in	the	Clipboard	driver	on	Win32,	when	parameter	"-b"
was	used	the	image	was	not	correctly	copied.
Fixed:	in	certain	moments,	color	vectors	were	being	allocated
with	size	4	and	should	be	"sizeof(long)".	This	was	done	to
improve	the	compatibility	with	64-bit	systems.

Fixed:	cdPutImageRectRGB	in	driver	ImageRGB	had	a	memory-
invasion	error	in	some	cases	when	the	image	was	placed	in	a
negative	coordinate.

Version	4.1.10	(04/May/2000)

Changed:	the	driver	Native	Windows	in	Win32	now	also	accepts
an	already	created	HDC	handle	as	a	parameter.
Changed:	in	the	cdPutImageMap*	functions,	in	case	the	color
vector	is	null,	a	vector	with	256	gray	shades	in	assumed.
Fixed:	cdRegisterAttribute	was	not	verifying	whether	the
attribute	had	already	been	registered.
Fixed:	function	cdArc	in	the	simulation	driver	(includes
ImageRGB)	was	returning	without	drawing	anything	in	an
incorrect	test.
Fixed:	function	cdTextBox	was	returning	incorrect	values	when
the	text	had	an	orientation	different	from	the	default	one	in	some
alignment	instances.
Fixed:	in	function	cdRGB2Map	there	was	a	memory	invasion.
Fixed:	the	vector	text	simulation	was	not	freeing	the	memory
used	for	fonts	loaded	from	files.
Fixed:	in	the	Doubled	Buffer	driver	in	X-Windows	there	was	an
invalid	memory	liberation.
Fixed:	in	the	Lua	binding,	in	several	functions	receiving	or
returning	tables,	the	first	index	was	being	considered	as	0,	but	in
Lua	they	must	be	1.	This	correction	includes
cdVectorTextTransform,	cdGetVectorTextBounds,
wdGetVectorTextBounds,	cdGetClipPoly	and	wdGetClipPoly.
Fixed:	when	the	PS	driver	generated	EPS,	it	did	not	correctly
add	the	description	of	the	bounding	box	(a	line	break	was
missing).
Fixed:	the	vector	text	drawing	functions	did	not	take	into	account
the	fact	that	the	default	font	and	the	GKS	fonts	were	in	ASCII
standard.	Now	a	conversion	from	ANSI	to	ASCII	is	made	before
these	fonts	are	used	for	drawing.
Fixed:	in	the	X-Win	driver,	an	error	in	the	X-Vertex	library
caused	the	texts	in	90/270	degrees	to	be	drawn	incorrectly.

Fixed:	in	the	X-Win	driver,	the	cdPutImageMap	functions	were
generating	a	memory	invasion	when	the	X	was	in	16	bits.
Fixed:	in	the	Win32	driver,	very	large	non-filled	polygons	were
not	being	drawn	in	Windows	9x.	To	correct	that,	they	were
divided	into	smaller	polygons.

Version	4.1	(24/Nov/99)

New:	new	basic	Windows	driver	attributes	that	allow	controling
the	internal	simulation	of	pattern/stipple,	XOR	text,	and	filled
polygon	("SIMXORTEXT",	"SIMPATTERN8X8",
"PENFILLPOLY").	New:	attribute	for	returning	the	HDC	of	the
Windows	canvas.
New:	the	PS	driver	accepts	landscape	orientation	as	a
parameter.	New:	"POLYHOLE"	attribute	allows	controling	the
number	of	holes	in	a	closed	polygon.	New:	"-1"	parameter	forces
a	level	1	Postscript.	New:	"-g"	parameter	adds	comments	to	the
PS	file	in	order	to	better	explain	what	is	done.	New:	"CMD"
attribute	saves	a	string	to	the	file.
New:	new	environment	variable,	CD_QUIET,	does	not	display	in
stdout	the	library's	version	information.
New:	two	new	exclusive	functions	for	the	Native	Window	driver:
cdGetScreenColorPlanes	and	cdGetScreenSize.
New:	new	CD_DBUFFER	driver	implements	a	double	buffer
using	a	server	image.
New:	new	attributes	in	the	ImageRGB	driver:	"REDIMAGE",
"GREENIMAGE"	and	"BLUEIMAGE".
New:	new	functions	wdGetVectorTextBounds	and
cdGetVectorTextBounds	to	obtain	the	bounding	box	of	the	vector
text.
New:	new	wdGetFont	function.	It	is	equivalent	to	cdGetFont,	but
the	returned	size	is	in	millimeters.
Fixed:	the	management	of	WD	functions	was	incomplete	for
functions	cdPixel,	cdVertex	and	cdPutImage*.	This	resulted	in	a
wrong	or	out	of	the	canvas	positioning.	It	only	affects	drivers	PS
and	METAFILE.
Fixed:	function	cdActivate	in	Lua	was	not	returning	the	correct

values.
Fixed:	when	the	image	was	partially	out	of	the	window,	above	or
below,	functions	cdPutImageMap	and	RGB	were	drawing	a
wrong	portion	of	the	image.
Fixed:	in	the	CGM	driver,	after	opening	the	file	of	the	cdPlay
function,	the	check	to	see	if	the	opening	had	been	successful
was	not	being	done.
Fixed:	when	the	active	canvas	was	already	NULL,	the	activation
of	a	NULL	canvas	was	generating	a	memory	invasion.
Fixed:	in	the	creation	of	EPS,	the	PS	driver	was	adding	a	wrong
call	to	setpagedevice.	The	cdPutImageMap	function	was
modifying	the	wrong	PS	parameter	in	the	file.	The	margin
clipping	was	not	saved	when	the	drawing's	clipping	area	was
changed.	The	clipping	area,	when	drawing	in	WD,	was	being
incorrectly	modified.
Fixed:	in	the	IMAGERGB	driver,	functions	cdRedImage,
cdBlueImage	and	cdGreenImage	were	returning	invalid	pointers.
Fixed:	when	initializing	text	simulation	functions,	the	opened	font
file	was	not	being	closed.	This	affected	all	CD	drivers,	but	was
only	apparent	in	the	application	that	opened	and	closed	many
drivers.
Fixed:	the	approximate	computation	of	the	text	size	was	not
accepting	sizes	in	pixels.
Fixed:	the	creation	of	the	IMAGERGB	driver	in	Lua	was
incorrect	when	the	resolution	parameter	(which	is	optional)	was
not	specified.
Fixed:	functions	cdGetClipPoly	and	wdGetClipPoly	in	Lua	were
causing	memory	invasion.
Changed:	in	the	PS	driver,	when	the	Map	image	is	actually	a
grayscale,	function	cdPutImageMap	uses	an	8	bit	image,	thus
saving	memory.	Level	2	Postscript	functions	rectfill,	rectstroke
and	rectclip	are	now	used.	The	comments	in	DCS	were	updated
to	DCS	version	3	and	were	increased	to	improve	the
document's	portability.
Changed:	in	driver	X-Windows,	the	text	drawing	attribute	was
implemented	with	any	orientation.
Changed:	function	cdVersion	in	Lua	now	behaves	just	like	in	C.

A	global	Lua	variable,	CDLUA_VERSION,	was	created
containing	the	version	of	the	Lua	binding	library	-	for	example:
"CDLua	1.3.0".
Changed:	function	cdVectorTextTransform	now	returns	the
previsous	transformation	matrix.

Version	4.0.1	(05/Mar/99)

Fixed:	in	the	Windows	driver,	the	polygon	simulation	with	pattern
was	corrected	to	polygons	with	repeated	points.
Fixed:	in	the	Windows	driver,	function	cdNativeFont	was
corrected	for	IUP	fonts.	It	was	affecting	the	Matrix's
visualization.
Fixed:	function	cdNativeFont	was	wrongly	testing	its	input
parameter	and	always	returning.
Fixed:	in	the	drivers	IUP	and	Native	Window,	the
cdGetCanvasSize	function	was	corrected.	When	the	window	size
was	changed,	the	values	in	millimeters	were	not	updated	to
cdActivate.
Fixed:	in	the	CGM	driver,	function	cdPlay	was	generating
problems	in	reading	and	displaying	cell	arrays.	When	the
cdCreateCanvas	function	used	the	default	values	for	dimensions
and	resolution,	it	generated	files	with	errors.
Changed:	in	the	X-Windows	driver,	function	cdPixel	was
optimized.	It	now	compares	the	color	to	the	foreground	color
and	reuses	the	value.

Version	4.0	(18/Feb/99)

Summary:	(necessary	due	to	the	great	number	of	changes).
-	Update	of	the	Lua	binding.
-	Several	changes	in	the	internal	structure	(most	bringing
benefits	only	to	the	driver	developer).
-	Countless	corrections.	
-	Small	changes	in	the	functions	cdHatch,	cdScrollImage,	cdFont
and	cdPlay.	

-	Optimization	of	functions		wdVectorFont	and	cdMark.	
-	New:	functions:	
			cdCreateCanvasf,	cdGetContext,	cdContextCaps,	cdSaveState,
cdRestoreState,			cdSetAttribute,	cdGetAttribute
	cdOrigin,	cdRect,	wdRect,	cdGetFont,	cdGetStipple,
cdGetPattern,	cdTextBox
	cdPutImageRectRGB,	cdPutImageRectRGBA,
cdPutImageRectMap,	
	cdCreateImageEx,	cdKillImageEx,	cdPutImageEx,
cdGetImageEx.	
-	New:	WD	functions:	wdHardcopy,	wdPattern,	wdStipple,
wdPixel,	wdPutImageRect,	wdPutImageRectRGB,
wdPutImageRectRGBA	and	wdPutImageRectMap.	
-	New:	vector	text	functions:	cdVectorFont,
cdVectorTextDirection,	cdVectorTextTransform,	cdVectorTextSize,
cdGetVectorTextSize,	cdVectorCharSize,	cdVectorText	and
cdMultiLineVectorText.
-	wdActivate	is	no	longer	necessary.	
-	Driver	IMAGERGB	complete.
-	Driver	SIMULATE	no	longer	exists;	now	function	cdSimulate
must	be	used.	
-	New:	driver	DIRECTDRAW.	
-	Policy	change	of	cdPalette	in	the	X-Windows	driver
-	IUP	driver	is	now	in	a	separate	library.

IMPORTANT	NOTE:	This	version	is	not	totally	compatible	to	the	previous
one.	The	applications	using	the	driver	IUP	must	be	relinked,	as	this	driver
is	now	in	a	separate	library,	"cdiup".	The	Lua	applications	must	also	be
modified	to	include	a	call	to	function	cdluaiup_open	after	cdlua_open,	and
must	be	linked	with	the	"cdluaiup"	library.	The	SIMULATE	driver	no
longer	exists,	therefore	the	applications	that	used	it	must	be	modified	to
use	the	new	function,	cdSimulate,	without	the	need	for	creating	a	new
driver.

Changed:	the	internal	structure	of	the	library	was	changed	once
again.	One	of	the	purposes	is	to	make	the	drivers	become
independent	from	the	function	table.	With	this	change,	adding	a

new	function	to	the	function	table	does	not	imply	editing	the	old
drivers.	We	also	allowed	the	drivers	not	to	implement	functions
that	do	not	make	sense	in	their	context.	Another	modification
simplifying	the	work	in	the	drivers	was	to	bring	the	attribute
query	mechanism	to	the	library's	control	part,	freeing	the	drivers
from	this	obligation.	Taking	the	chance,	we	determined	that	a
change	in	an	attribute	to	a	value	equal	to	the	current	one	will	not
be	effective,	thus	saving	calls	to	the	driver.	Now,	the	value	of	an
attribute	is	changed	even	if	the	driver	function	is	not
implemented,	as	the	driver	can	query	this	attribute	later	on.	The
management	of	default	values	of	the	attributes	is	also	done	by
the	library's	control	part.	All	these	changes	prepare	the	library	to
a	new	philosophy:	before,	if	a	driver	did	not	contain	a	certain
feature,	it	simply	did	nothing.	The	new	philosophy	will	be:	if	a
driver	does	not	contain	a	certain	feature,	then	the	simulation	of
this	feature	will	be	activated.
Changed:	when	a	canvas	which	is	already	active	is	activated
again,	an	internal	driver	function	is	now	called,	notifying	an
update	instead	of	an	activation.
Changed:	the	use	of	the	CD	canvas	with	a	IUP	canvas	is	better
described	in	the	manual,	showing	the	various	ways	of	treating
the	canvas	creation	prooblem.
Changed:	all	functions	in	the	control	module	now	have	ASSERT
directives.	Thus,	using	the	library	with	depuration	information,
one	can	better	detect	simple	errors.
Changed:	in	order	to	use	the	IUP	driver,	it	must	be	linked	with
the	"cdiup"	library,	apart	from	the	"cd"	library	(cdiup.lib	in
Windows,	cdiuplib.a	in	UNIX).
Changed:	the	IMAGERGB	driver	is	now	implemented	using	the
simulation	functions.
Changed:	the	cdMark	function	is	back	to	the	function	table,	so
that	the	drivers	in	which	the	primitive	can	be	implemented	can
profit	from	it.
Changed:	in	order	to	assure	that	the	use	of	server	images	is
done	only	between	canvases	of	the	same	driver,	or	of	the	same
basic	driver,	an	internal	structure	was	defined	for	the	server
image	containing	the	functions	of	the	driver	from	which	the

image	was	created.	Thus,	if	the	cdKillImage	function	is	called
with	an	active	canvas	of	a	different	kind	from	that	in	which	the
image	was	created,	the	KillImage	function	of	the	correct	driver
will	be	called.
Changed:	in	the	X-Windows	driver,	the	XV	code	was	used	to
optimize	functions	cdPutImageRectRGB	and
cdPutImageRectMap.
Changed:	the	Lua	binding	was	updated.	Now	the	user	guide
contains	Lua	function	together	with	C	functions.
Changed:	in	the	X-Windows	driver,	cdPalette's	policy	was
changed	to	fulfill	the	requirements	of	some	applications,	which
wanted	to	force	a	palette.	Please	see	the	function's
documentation	in	the	driver.
Changed:	the	CGM	driver	used	to	always	store	the
cdForeground	attribute	before	drawing	a	primitive;	now	it	stores
the	attribute	only	when	it	is	changed.	The	cdBackOpacity
function	was	not	implemented.	The	cdFlush	function	was	not
preserving	the	canvas	attributes.	Now	when	the	canvas	size	is
not	specified	in	the	cdCreateCanvas	function,	the	VDC	Extension
saved	to	the	file	is	the	figure's	bounding	rectangle.	The	patterns
and/or	stipples	selected	were	being	stored	in	a	way	so	that	only
the	first	one	was	valid.
Changed:	the	documentation	of	the	old	DOS	driver	was
removed	from	the	user	guide.
Changed:	the	default	resolution	for	drivers	DGN,	DXF,
METAFILE,	CGM	and	ImageRGB	is	no	longer	1	but	3.8	points
per	mm	(96	DPI).
Changed:	in	the	cdInteriorStyle	function,	if	stipple	or	pattern	are
not	defined,	the	state	of	the	attribute	is	not	modified.	There	is	no
longer	a	default	32x32	pattern	or	stipple.
Changed:	in	functions	cdFontDim	and	cdTextSize,	if	the	driver
does	not	support	this	kind	of	query,	the	values	are	estimated.
Changed:	function	cdHatch	now	returns	the	previous	value.
Changed:	function	cdScrollImage	is	now	called	cdScrollArea,
better	reflecting	its	functionality,	since	it	does	not	require	any
explicitly	defined	image	to	be	performed.	The	old	function	is
maintained	to	assure	compatibility	with	old	applications.

Changed:	the	cdPlay	function	now	accepts	all	window
parameters	null.	In	this	case,	the	primitives	in	the	file	are
interpreted	without	scaling.
Changed:	cdFontnow	accepts	font	sizes	in	pixels	when	negative
values	are	used	as	a	parameter.
Changed:	the	WD	functions	were	included	in	the	library's
function	table,	so	that	the	drivers	can	use	floating	point	precision
when	storing	primitives.	Presently,	only	the	drivers	PS	and
METAFILE	have	this	resource	directly	implemented.	With	this
change,	the	wdActivate	function	became	obsolete	and	is	no
longer	necessary.	For	purposes	of	compatibility	with	other
applications,	it	was	maintained	only	as	a	call	to	function
cdActivate.
Changed:	drivers	EMF	and	WMF	now	accept	the	resolution	as	a
parameter.
New:	internal	modification	of	the	Windows	driver	to	allow	the
creation	of	the	DirectDraw	driver.
New:	DirectDraw	driver	to	accelerate	video	access	to	high-
performance	applications.
New:	function	cdInteriorStyle	now	accepts	style	CD_HOLLOW.
When	this	style	is	defined,	the	cdBox	and	cdSector	functions
behave	like	their	equivalents	cdRect	and	cdArc,	and	the
polygons	with	the	CD_FILL	style	behave	like
CD_CLOSED_LINES.
New:	new	functions:
-	cdCreateCanvasf	accepts	parameters	equivalent	to	sprintf,
helping	in	the	creation	of	some	canvases.
-	cdOrigin	allows	translating	the	origin	-	for	instance,	to	the
center	of	the	canvas.
-	cdGetContext	returns	the	context	of	a	given	canvas;	it	can	be
compared	with	predefined	contexts,	such	as	"CD_PS".
-	cdSaveState	and	cdRestoreState	allow	saving	and	restoring	the
state	of	attributes	of	the	active	canvas.
-	cdSetAttribute	and	cdGetAttribute	allow	passing	customized
attributes	to	the	driver,	which	are	ignored	if	the	driver	does	not
have	the	attribute	defined.
-	cdContextCaps	returns	a	combination	of	several	flags	informing

the	available	resources	of	the	canvas	in	that	context.
-	Driver	SIMULATE	no	longer	exists.	Now	function	cdSimulate
must	be	used.	The	simulation	can	be	activated	and	deactivated
at	any	moment.
-	cdRect	and	wdRect	allow	drawing	a	box	with	no	filling.
-	cdGetFont	returns	the	values	of	the	font	modified	by	function
cdFont	and	ignores	those	modified	by	cdNativeFont.
-	cdTextBox	returns	the	horizontal	bounding	rectangle	of	the	text
box,	even	if	it	is	bended.
-	cdGetStipple	and	cdGetPattern	return	current	stipple	and
pattern.	With	these	functions	and	with	function	cdGetFont,	one
can	now	totally	change	and	restore	the	attributes	of	a	given
canvas.
-	wdPattern	and	wdStipple	allow	specifying	the	style	in	world
coordinates.	The	size	of	the	image	is	modified	to	the	specified
size	in	millimeters.
-	functions		cdPutImageRectRGB,	cdPutImageRectRGBA	and
cdPutImageRectMap	allow	specifying	a	rectangle	in	the	image	to
be	used	for	the	drawing	instead	of	the	whole	image.
-	wdPixel,	wdPutImageRect,	wdPutImageRectRGB,
wdPutImageRectRGBA	and	wdPutImageRectMap	are	equivalent
to	cdPixel,	cdPutImageRect,	cdPutImageRectRGB,
cdPutImageRectRGBA	and	cdPutImageRectMap,	respectively,
but	the	target	coordinates	are	specified	in	world	coordinates.
-	New:	vector	text	functions:	cdVectorFont,
cdVectorTextDirection,	cdVectorTextTransform,	cdVectorTextSize,
cdGetVectorTextSize,	cdVectorCharSize,	cdVectorText,
cdMultiLineVectorText.	The	vector	text	can	now	be	used	without
the	need	of	world	coordinates.	Functions	wdVectorFont	and
wdVectorTextTransform	have	become	obsolete,	though	they	still
exist	for	compatibility	reasons.
-	wdHarcopy	helps	drawing	WD	primitives	in	devices,	adjusting
Window	and	Viewport.
-	Auxiliary	functions	were	created	to	manipulate	all	sorts	of
images	in	a	single	way,	being	either	client,	RGB,	RGBA,	MAP,
or	server	images:	cdCreateImageEx,	cdKillImageEx,
cdPutImageEx,	cdGetImageEx,	etc.

Fixed:	the	documentation	of	function	cdFont	was	confusing,
causing	errors	in	the	conversion	from	pixels	to	points.
Fixed:	function	wdFont	was	making	a	wrong	conversion	of	the
font	size	parameter	from	millimeters	to	points.
Fixed:	functions		wdVectorText	and	wdMultiLineVectorText	were
generating	an	extra	polygon	when	the	text	contained	blank
spaces	in	certain	positions.
Fixed:	the	PS	driver	was	not	prepared	for	marked	texts.
Function	cdFlush	did	not	preserve	current	attributes.	The	interior
style	was	affecting	line	drawing.	The	text	alignment	now	takes
into	account	an	estimation	for	the	baseline.	Function
cdTextOrientation	was	implemented.	The	world	coordinate
functions	were	implemented	directly	in	the	driver.	Hatch	and
stipple	interior	styles	were	implemented,	but	they	are	still	only
opaque.
Fixed:	in	the	X-Windows	driver,	function	cdGetColorPlanes	was
returning	8	bpp	even	if	the	canvas	was	24	bbp	when	the	default
visualization	was	different	from	the	canvas'	visualization	in	that
X	server.	Text	position	on	the	screen	was	above	the	one
entered.	Function	cdFont	was	looping	in	certain	conditions.
Function	cdEnd	in	the	X-Windows	driver	in	the	AIX	system	was
generating	an	error	and	aborting	the	program	if	only	one	point	of
the	polygon	was	specified.	Dashed	lines	were	always	opaque,
ignoring	the	cdBackOpacity	attribute.
Fixed:	in	the	Clipboard	driver	for	X-Windows,	a	parameter	was
missing	which	prevented	it	from	working	properly.	Before	the
update,	it	used	that	of	the	IUP/Native	Window	active	canvas.
Fixed:	in	the	Windows	driver,	the	text	position	on	the	screen	was
above	the	position	provided.	Filled	polygons	had	a	one	pixel
error	to	the	right	and	below	due	to	the	small	NULL	used.	Fillings
with	hatch,	pattern	and	stipple	still	contain	errors.	The	internal
simulation	of	polygons	filled	with	pattern	and	stipple	was	also
corrected;	they	had	one	additional	pixel	to	the	right	and	below.
Text	alignment	treatment	was	improved.
Fixed:	driver	WMF	now	has	text	alignment.
Fixed:	in	the	PRINTER	(Windows)	driver,	function	cdFlush	was
not	preserving	current	attributes.

Fixed:	in	the	CGM	driver,	the	text	align	interpretation	was
corrected.	The	cdMark	function	is	implemented	directly	in	the
driver.	Function	cdBackOpacity	was	implemented.	Mark
interpretation	was	also	corrected.
OPTIMIZATION:	function	wdVectorFont	only	loads	the	new	font
if	it	is	different	from	the	current	one.
OPTIMIZATION:	function	cdMark	now	modifies	fill	and	line
attributes	only	if	they	are	different	from	the	one	needed	to	draw
the	mark.

Version	3.6	(05/May/98)

Fixed:	/	Win32:	every	time	the	clipping	region	changed	the	old
region	was	not	deleted.
New:	new	function	cdRGB2Map,	which	converts	an	RGB	image
into	a	256	indexed-colors	image.	It	is	the	same	algorithm	used
in	the	IM	library	-	in	fact,	it	is	the	same	code.
Changed:	the	cdMark	function	now	uses	the	cdPixel	function
when	drawing	a	mark	of	1	pixel	size.
Changed:	/	Win32:	the	cdPixel	function	now	uses	the	SetPixelV
function	when	not	under	Win32s.	This	function	is	faster	than	the
SetPixel	function	because	it	does	not	return	the	old	value.
Changed:	/	Win32:	the	polygon	used	for	clipping	is	now
optimized	to	not	include	3	points	that	are	in	the	same	horizontal
or	vertical	line.
Fixed:	/	WD:	the	wdVectorText	function	was	not	drawing
correctly	when	extended	characters	(>128)	were	used.
Fixed:	/	X:	the	cdPalette	function	and	the	color	management	for
canvases	with	only	256	colors	were	wrong.	Each	canvas	had	its
own	management,	now	all	canvases	in	the	same	aplication	use
the	same	management.
Fixed:	/	X:	several	resource	and	memory	leaks	were	corrected.
Fixed:	/	IMAGERGB:	functions	cdRedImage,	cdGreenImage	and
cdBlueImage	were	not	returning	the	correct	pointer.
Fixed:	/	SunOS:	drivers	IMAGERGB,	SIMULATE	and
NATIVEWINDOW	use		the	"%p"	format	string,	but	in	the	SunOS
they	use	"%d"	because	of	an	internal	bug	of	the	run	time	library

of	this	OS.
Changed:	/	IUP:	driver	IUP	sets	the	cdCanvas	function	as	an
attribute	of	the	IupCanvas	passed	as	a	parameter	using	the
name	"_CD_CANVAS".
MANUAL:	the	manual	appearance	was	changed	to	match	the
new	Tecgraf	standard.

Version	3.5	(07/Jan/98)

New:	the	cdTextDirection	function	allows	raster	text	to	be	drawn
in	any	direction.	Up	to	now	it	is	implemented	only	in	the	basic
Win32	driver.
Fixed:	/	X	/	NativeWindow:	the	canvas	was	not	created	if	the
screen	was	0.
Fixed:	/	Win32	/	NativeWindow:	now	the	driver	considers	the
existence	of	non	owner-draw	device	contexts.
Fixed:	/	Win32:	function	cdClipArea	was	not	including	xmax	and
xmin	in	the	clipping	area.
Changed:	the	cdCallback	typedef	was	defined,	being	useful	for
type	casting	when	calling	the	cdRegisterCallback	function.
Fixed:	/	Win32:	a	compatibility	problem	with	the	cdNativeFont
string	and	the	WINFONT	IUP	attribute	was	corrected.
Changed:	/	Win32:	the	cdPutImageRGB	and	cdPutImageMap
functions	use	a	cache	memory	for	best	performance.
Fixed:	text	size	estimation	for	the	CGM	and	PS	drivers	now
uses	Courier	New:	as	the	"System"	font.	As	it	was,	it	was
causing	a	memory	invasion.

Version	3.4	(12/Nov/97)

Changed:	/	X:	memory	use	of	the	cdPutImageRGB,
cdPutImageRGBA	and	cdPutImageMap	functions	was
optimized,	as	well	as	the	performance	of	the	cdPutImageMap
function.
Changed:	/	X	and	Win32:	when	the	canvas	has	bpp	<=	8,
function	cdPutImageRGB	converts	the	image	into	Map	before

displaying	it.
Changed:	/	X	and	Win32:	if	a	font's	parameters	are	the	same	as
the	current	parameters,	the	cdFont	function	does	nothing.
DOC	/	PS:	the	"-d"	parameter	for	the	EPS	option	was	not
documented.
Fixed:	/	PS:	parameters	"-w"	and	"-h"	were	incorrectly
interpreted.
Fixed:	/	X:	the	internal	function	names	were	generating	an	error
in	the	VMS	plataform.
Fixed:	/	X:	the	cdKillCanvas	function	was	freeing	some	pointers
of	the	active	canvas.
Changed:	/	Win32:	the	cdVertex	function	now	ignores	duplicate
points.
Changed:	/	Win32:	the	cdNativeFont	function	also	accepts	the
font	string	of	the	WINFONT	IUP	attribute.
Fixed:	/	DXF:	corrections	in	color	conversion	and	in	the	cdArc
function	for	small	radius	were	made,	and	an	unnecessary
identation	was	removed.

Version	3.3	(19/Sep/97)

Changed:	/	X:	the	cdFont	function	now	has	a	better	heuristic	to
find	a	closer	font	if	the	requested	font	does	not	match	an
available	one.
Changed:	/	X:	the	cdPattern	and	cdStipple	functions	now	use	a
bitmap	cache	to	store	the	pixmap	and	do	not	recreate	it	if	the
size	is	not	changed.
Fixed:	/	X	and	Win32:	the	cdPutImageRect	function	was	placing
the	bitmap	in	a	wrong	position.
Fixed:	/	Win32:	the	cdCreateImage	function	did	not	return	NULL
when	the	creating	failed.
Changed:	/	Win32:	the	cdPutImageRGB,	cdPutImageRGBA	and
cdPutImageMap	functions	were	largely	optimized	when	the
picture	displayed	is	larger	than	the	screen.
Changed:	/	WMF:	using	the	cdPlay	function	we	discovered	that
the	size	of	the	picture	was	incorrect	in	the	header	file,	so	we	first
had	to	calculate	the	bounding	box	and	then	interpret	the	picture.

Changed:	/	PS	and	CGM:	now	the	cdFontDim	and	cdTextSize
functions	return	approximate	dimensions,	instead	of	nothing.
Fixed:	/	PS:	the	default	font	was	not	being	set	when	the	canvas
was	created.
Fixed:	/	PS:	text	alignment	was	incorrect	in	the	vertical	direction.
Fixed:	/	SIM:	the	clipping	algorithm	of	the	cdPixel	function	of	the
Simulation	driver	was	corrected.
Fixed:	/	CD:	now	you	can	activate	a	NULL	canvas.	When	you
get	the	active	canvas	and	restore	it,	if	it	was	NULL	the
cdActivate	function	was	accessing	an	invalid	pointer.
MANUAL:	several	changes	were	made	on	the	online	manual
structure,	and	were	added	to	the	CDLua	page.

Version	3.2

A	problem	in	the	cdFlush	function	in	the	Postscript	driver	was
corrected.	It	was	not	setting	the	scale.
Functions	wdFontDim	and	wdTextSize	now	check	if	the	return
pointers	are	not	NULL.
An	internal	function	in	the	DGN	driver	was	drawing	an	ellipse
with	two	times	the	axis	size.
The	cdFont	function	was	corrected	to	store	the	font	names	in	the
CGM	driver.

Version	3.1

Several	minor	bugs	in	the	Win32	Printer	driver	and	in	the
Postscript	driver	were	corrected.	The	EPS	mode	of	the	PS
driver	now	generates	a	"showpage"	PS	function	so	it	can	be
printed.
The	Clipboard	driver	was	implemented	in	Motif.	The	cdPlay
function	was	implemented	in	the	Motif	and	Win32	Clipboard
drivers.
The	cdRegisterCallback	function	was	added	to	allow	the
customization	of	the	cdPlay	function's	behavior.
The	wdVectorTextTransform	function	allows	a	2D	transformation

applied	to	any	vector	text.
Now	the	Simulation	driver	has	several	levels	of	simulation,	and
the	simulation	was	improved	with	pattern	and	clipping
simulation.

Version	3.0

The	library's	architecture	underwent	several	changes.	The
function	tables	are	no	longer	public,	only	the	drivers	know	its
structure.	This	means	that	we	have	eliminated	the	need	to
recompile	applications	that	use	the	dynamic	library	when	we
change	something	in	the	function	table.	There	are	some	other
benefits,	like	the	fact	that	the	Windows	DLL	can	now	be
implemented	and	that	it	is	more	simple	to	explain	the	library	to
new	users,	so	they	will	not	be	confused	by	the	cdprivat.h	header.
Corrections	to	the	text	alignment	of	the	wdVectortext	function
were	made.
Memory	allocation	of	the	cdPattern	and	cdStipple	functions	in
the	basic	Windows	driver	was	corrected.
Memory	release	of	the	cdKillCanvas	function	in	the	basic
Windows	driver	was	corrected.
The	cdPattern	function	was	implemented	in	the	Postscript	driver,
and	the	cdPutImageRGB	and	cdPutImageMap	functions	now
write	color	images.
The	cdPattern	function	was	corrected	in	the	basic	X-Windows
driver	for	use	with	clipping.
The	compiler	directive	#include<malloc.h>	was	changed	to
#include<stdlib.h>	in	several	modules	for	better	compatibility	with
other	compilers.
The	cdPlay	function	now	accepts	the	viewport	rectangle	where
the	drawing	will	be	rendered.
Several	navigation	changes	were	made	to	the	user	guide	pages.
A	new	CD_SIMULATE	driver	was	created.	Use	it	to	replace
some	primitives	and	to	handle	attributes	of	another	driver.	It	can
be	used	with	any	other	driver.	Basically,	it	substitutes	the	interior
style	of	dependent	primitives:	box,	sector	and	filled	polygons.	It
also	substitutes	the	clipping	methods	of	these	primitives.

The	Windows	DLL	version	of	the	library	was	created.

Version	2.2.1

Interrnal	macros	that	affect	wdArc	and	wdSector	were	corrected.
The	CGM	driver	now	supports	some	client	image	functions.
Hatch	styles	in	the	Image	RGB	driver	were	corrected.

Version	2.2.0

New:	Functions:

cdVersion	-	returns	the	current	library	version.
cdNativeFont	-	sets	a	native	font.
cdPutImageRect	-	same	as	cdPutImage	but	you	may	specify	a	part	of	the
image.
cdPutImageRGBA	-	cdPutImageRGB	with	transparency.
wdFont	-	cdFont	for	the	WD	client,	the	size	parameter	is	in	millimeters.

New:	Drivers:

NativeWindow	-	now	the	library	can	work	with	other	Interface	libraries.
DGN	-	MicroStation	Design	File.
EMF	-	Windows	Enhanced	Metafile.
CD	Metafile	-	our	own	metafile.
Client	Image	RGB	-	now	you	can	write	in	an	RGB	image.

DGN,	CGM	and	DXF	file-based	drivers	now	have	a	default	size
in	pixels	(INT_MAX	=	2.147.483.647)	and	are	optional.	In	fact
the	size	is	irrelevant	in	these	file	formats.	The	cdCreateCanvas
data	string	may	contain	the	size	in	millimeters	and	the	resolution
in	pixels	per	millimeters.	Both	are	real	values.	The	default
resolution	is	1.
The	cdPlay	function	now	works	on	the	CGM	and	on	the	CD
Metafile	drivers.
The	interior	style	attributes	were	implemented	in	the	CGM

driver.
On	the	Clipboard	driver:	limitations	are	considered	if	creating	a
WMF	under	Win32s.
Now	the	Printer	Driver	shows	the	Printer's	Dialog	Box	(Win32	&
Mac)	if	the	parameter	"-d"	is	specified.
On	the	PS	driver:	all	the	dimensions	in	the	Data	parameter
string	are	now	in	millimeters.
On	the	WMF	driver:	several	functions	were	disabled	because	of
WMF	limitations.	Picture	size	was	corrected.
On	the	basic	X-Windows	driver:	cdLineWidth(1)	uses	width	0	for
better	performance.	Stipple	was	being	incorrectly	interpreted.
cdGetImageRGB	was	swapping	red	and	blue	channels	on	true
color	canvas.
The	clipping	region	now	can	be	a	polygon	on	some
systems/drivers	(Win32,	Mac,	X-Win	and	PS).	Use
cdClip(CD_CLIPPOLYGON)	to	use	the	polygon	defined	by	a
cdBegin(CD_CLIP),	cdVertex(...),	cdEnd()	sequence.
The	functions	wdMM2Pixel	and	wdPixel2MM	became
cdMM2Pixel	and	cdPixel2MM,	respectively.
Minor	bugs	in	the	wdFontDim,	wdLineWidth	and	wdMarkSize
functions	were	corrected.
wdVectorCharSize	now	returns	the	previous	value.

Up	to	Version	2.1

The	cdActiveCanvas,	cdPlay	and	the	wdVectorFont	functions
were	added,	and	the	cdKillCanvas	function	was	corrected	when
destroying	the	current	canvas.
The	cdMark	function	no	longer	depends	on	line	style,	line	width
and	interior	style	attributes,	and	it	is	the	same	for	all	drivers
because	it	is	implemented	only	with	CD	functions.
The	wdLineWidth	and	wdMarkSize	functions	now	use
millimeters.
The	functions	cdEncodeColor	and	cdDecodeColor	now	can	be
called	without	an	active	canvas.	The	DXF	driver	was	added.
WD	can	now	access	files	with	vector	font	definitions.
Minor	bugs	in	the	wdTextSize	function	were	corrected.

To	Do
CD

A	new	SVG	driver.
libEMF	in	UNIX.

MAC

Build	a	native	Mac	OS	X	driver	using	Quartz	2D.
Macintosh	Picture	(PICT)	file.

X-WIN

XRender	Extension	?
Xp:	X	Printer	Extension	driver
XShm:	Double	Buffering	and	MIT-Shared	Memory	extensions
for	server	images	?
XIE:	X	Imaging	Extensions	?
Shape	Extension	and	XShapeCombineMask	to	implement
"WINDOWRGN"	attribute	(non	rectangular	windows	from
regions)

Simulation

Implement	line	styles,	line	cap	and	line	join	for	line	with	>	1.
Improve	Sector	rasterization.

PS

Allow	functions	cdPutImageMap...	to	be	implemented	using
indexed	color	space.
Check	the	possibility	of	cdHatch	and	cdStipple,	which	are	always

opaque,	having	transparency,	using	shading	from	PS	Version	3
or	mask	images.	Same	for	cdPutImageRGBA.

Not	likely	to	be	updated	anymore,
although	they	are	still	supported.
DXF

Implement	Arch	and	Sector	functions	as	DXF	primitives,	and	not
as	polygons.	Update	all	other	primitives	according	to	the	new
DXF	manual,	as	there	are	several	limitations	in	the	current
implementation.

CGM

Make	cdPlay	treat	the	possibility	of	xmax	and	ymax	being	0.
Check	the	possibility	of	implementing	function
cdTextOrientation.
Implement	World	Coordinate	functions	directly	in	the	driver.
Correct	the	cdPlay	function,	which	is	generating	several	extra
lines.
Correct	the	cdPlay	function,	which	should	not	preserve	the
aspect	ratio.
Allow	cdPutImageRGBA	to	be	partially	implemented	using
transparent	cell	color.

DGN

Improve	the	driver	using	the	DGNlib	third	party	library.
Implement	the	interior	style	attributes:	hatch,	stipple	and	pattern.
They	depend	on	the	new	DGN	specification,	which	we	do	not
have	yet.
Check	the	possibility	of	implementing	functions
cdTextOrientation	and	cdRect.
Correct	function	cdKillCanvas,	which	generates	"assertion

failed"	when	the	library	is	used	with	debug	information	and	the
Seed	file	is	not	included.

Comparing	CD	with	Other
Graphics	Libraries

There	are	other	graphics	libraries,	with	some	portability	among
operational	systems,	available	on	the	Internet.	Among	them	we	can
highlight:

GKS	-	Very	complete	2D	and	3D	graphics	library,	but	with
limited	image	resources.	It	is	an	ISO	standard,	and	it
implementations	are	usually	commercial.	Tecgraf	has	an
implementation	of	GKS	which	is	no	longer	used,	being	replaced
by	CD.	http://www.bsi.org.uk/sc24/.

Mesa	-	3D	graphics	library	with	support	to	the	OpenGL
standard.	Implemented	in	C.	Aimed	only	at	display,	with	attribute
functions	for	illumination	and	shading	features.
http://www.mesa3d.org/.
OpenGL	-	3D	graphics	library	with	some	2D	support.	Aimed
only	at	display.	A	window	CD	canvas	can	coexist	with	an
OpenGL	canvas	at	the	same	time.	Note:	When	Double	Buffer	is
used,	do	not	forget	to	swap	buffer	before	redrawing	with	the	CD
library.	http://www.opengl.org.

GGI	-	2D	graphics	library	aimed	only	at	display.	http://www.ggi-
project.org/.
GD	-	Library	only	for	drawing	on	images,	saves	PNG	files.
Implemented	in	C.	http://www.boutell.com/gd/.
GDK	-	Used	by	the	GTK	user	interface	toolkit.	Implemented	in
C.	Aimed	only	at	display,	and	contains	several	functions	for
managing	windows,	keyboard	and	mouse.	http://www.gtk.org/.
CAIRO	-	A	vector	graphics	library	designed	to	provide	high-
quality	display	and	print	output.	Very	interesting,	lots	of
functions,	usually	render	in	bitmaps	on	native	systems.	Display
hardware	acceleration	is	used	almost	only	to	display	the

http://www.bsi.org.uk/sc24/
http://www.mesa3d.org/
http://www.opengl.org
http://www.ggi-project.org/
http://www.boutell.com/gd/
http://www.gtk.org/

bitmaps.	Although	it	can	reach	high	quality	rendering.
http://cairographics.org/.
AGG	-	The	AGG	Project	(Anti-Grain	Geometry).	High	Fidelity	2D
Graphics	A	High	Quality	Rendering	Engine	for	C++.	Renders	to
a	bitmap	then	transfer	it	to	the	native	system,	just	like	Cairo.
GNU	GPL	license.		http://www.antigrain.com/

Most	of	them	are	aimed	only	at	one	type	of	driver,	usually	display	or
images,	and	sometimes	user	interface	routines	were	also	included.
Others	add	3D	drawing	routines,	as	well	as	scene	illumination	routines.
All	this	unnecessarily	increases	their	complexity	and	does	not	make	them
more	complete	as	2D	graphic	libraries.

There	are	also	several	Graphics	User	Interface	libraries	that	contain
drawing	functions,	like	Qt	and	wxWidgets.

As	to	performance,	CD	is	as	good	as	any	other,	in	some	cases	having	a
better	performance.	Thus,	the	CD	library	offers	unique	features	and
quality	as	a	portable	2D	graphic	library.

http://cairographics.org/
http://www.antigrain.com/

Guide
Getting	Started

The	CD	library	is	a	basic	graphic	library	(GL).	In	a	GL	paradigm	you	use
primitives,	which	have	attributes,	to	draw	on	a	canvas.	All	the	library
functions	reflect	this	paradigm.

The	canvas	is	the	basic	element.	It	can	have	several	forms:	a	paper,	a
video	monitor,	a	graphic	file	format,	etc.	The	virtual	drawing	surface
where	the	canvas	exists	is	represented	by	a	driver.	Only	the	driver
knows	how	to	draw	on	its	surface.	The	user	does	not	use	the	driver
directly,	but	only	the	canvas.

To	make	the	library	simple	we	use	the	concept	of	an	active	canvas,	over
which	all	the	primitives	are	drawn.	This	also	allows	the	use	of	an
expansion	mechanism	using	function	tables.	Unfortunately	if	a	function	is
called	without	an	active	canvas	a	memory	invasion	will	occur.	On	the
other	hand,	the	mechanism	allows	the	library	to	be	expanded	with	new
drivers	without	limits.

The	attributes	are	also	separated	from	the	primitives.	They	reside	in	the
canvas	in	a	state	mechanism.	If	you	change	the	attribute's	state	in	the
canvas	all	the	primitives	drawn	after	that	canvas	and	that	depend	on	the
attribute	will	be	drawn	in	a	different	way.

The	set	of	primitives	is	very	small	but	complete	enough	to	compose	a
GL.	Some	primitives	are	system	dependent	for	performance	reasons.
Some	drivers	(window	and	device	based)	use	system	functions	to
optimally	implement	the	primitives.	Sometimes	this	implies	in	a	in	small
different	behavior	of	some	functions.	Also	some	primitives	do	not	make
sense	in	some	drivers,	like	server	images	in	file-based	drivers.

The	set	of	available	functions	is	such	that	it	can	be	implemented	in	most
drivers.	Some	drivers	have	sophisticated	resources,	which	cannot	be
implemented	in	other	drivers	but	can	be	made	available	using	a	generic
attribute	mecanism.

Building	Applications

All	the	CD	functions	are	declared	in	the	cd.h	header	file;	World
Coordinate	functions	are	declared	in	the	wd.h	header	file;	and	each	driver
has	a	correspondent	header	file	that	must	be	included	to	create	a
canvas.	It	is	important	to	include	each	driver	header	after	the	inclusion	of
the	cd.h	header	file.

To	link	the	application	you	must	add	the	cd.lib/libcd.a/libcd.so	library	to
the	linker	options.	If	you	use	an	IUP	Canvas	then	you	must	also	link	with
the	cdiup.lib/libcdiup.a/libcdiup.so	library.

In	UNIX,	CD	uses	the	Xlib	(X11)	libraries.	To	link	an	application	in	UNIX,
add	also	the	"-lX11"	option	in	the	linker	call.

The	download	files	list	includes	the	Tecgraf/PUC-Rio	Library	Download
Tips	document,	with	a	description	of	all	the	available	binaries.

Building	the	Library

The	easiest	way	to	build	the	library	is	to	install	the	Tecmake	tool	into	your
system.	It	is	easy	and	helps	a	lot.	The	Tecmake	configuration	files
(*.mak)	available	at	the	"src"	folder	are	very	easy	to	understand	also.

Tecmake	is	a	command	line	multi	compiler	build	tool	available	at
http://www.tecgraf.puc-rio.br/tecmake.	Tecmake	is	used	by	all	the	Tecgraf
libraries	and	many	applications.

In	CD's	main	source	directory	there	is	a	file	named	make_uname
(make_uname.bat	in	Windows)	that	build	the	libraries	using	Tecmake.	To

http://www.tecgraf.puc-rio.br/tecmake

build	the	CD	libraries	for	Windows	using	Visual	C	7.0	for	example,	just
execute	make_uname.bat	vc7	in	the	source	folder.

But	we	also	provide	a	stand	alone	makefile	for	Linux	systems	and	a
Visual	Studio	workspace	with	the	respective	projects.	The	stand	alone
makefile	is	created	using	Premake	and	a	configuration	file	in	lua	called
"premake.lua".

The	library	does	not	impose	any	specific	compiler	directive.	Therefore,
using	it	with	the	default	compiler	options	would	be	enough	to	make	things
work.	The	library	always	has	a	static	linking	module,	but	on	some
platforms	a	dynamic	linking	library	is	also	available.	To	compile	the	library
it	is	necessary	to	define	the	symbol	"__CD__".	Internaly	we	use	the
definitions:	"WIN32"	and	"SunOS",	that	must	be	defined	in	the	respective
systems.

Environment	Variables

CDDIR	-	This	environment	variable	is	used	by	some	drivers	to	locate
useful	data	files,	such	as	font	definition	files.	It	contains	the	directory	path
without	the	final	slash.
CD_QUIET	-	In	UNIX,	if	this	variable	is	defined,	it	does	not	show	the
library's	version	info	on	sdtout.
CD_XERROR	-	In	UNIX,	if	this	variable	is	defined,	it	will	show	the	X-
Windows	error	messages	on	sdterr.

Implementing	a	Driver

The	best	way	to	implement	a	new	driver	is	based	on	an	existing	one.	For
this	reason,	we	provide	a	code	of	the	simplest	driver	possible,	see
CDXX.H	and	CDXX.C.	But	first	you	should	read	the	Internal	Architecture.

Intercepting	Primitives

http://premake.sourceforge.net/

To	fill	data	structures	of	library	primitives	during	a	cdPlay	call	you	must
implement	a	driver	and	activate	it	before	calling	cdPlay.	Inside	your	driver
primitives	you	can	fill	your	data	structure	with	the	information	interpreted
by	the	cdPlay	function.

IUP	Compatibility

The	IupCanvas	element	of	the	IUP	interface	toolkit	can	be	used	as	a
visualization	surface	for	a	CD	canvas.	There	are	two	moments	in	which
one	must	be	careful	when	an	application	is	using	both	libraries:	when
creating	the	CD	canvas,	and	when	changing	the	size	of	the	IUP	canvas.

Creating	the	CD	Canvas

The	creation	of	the	CD	canvas	must	be	made	always	after	the
IupCanvas	element	has	been	mapped	in	the	system's	native	control.
This	happens	when	the	application	calls	function	IupShow	or	when	the
function	IupMap	is	explicitally	called.

Since	a	call	to	IupShow	generates	a	call	to	the	ACTION	callback	of	the
IUP	canvas,	we	have	a	peculiar	situation.	The	CD	canvas	cannot	be
created	before	IupShow,	but	if	it	is	created	after	it	one	cannot	draw	on	the
first	time	the	redrawing	callback	of	the	IUP	canvas	is	called.

We	can	address	this	problem	in	several	ways:

We	can	force	the	mapping	prior	to	IupShow	by	calling	the	IupMap
function	before	creating	the	CD	canvas.
We	can	create	the	CD	canvas	after	IupShow,	but	associating	the
canvas'	redrawing	callback	also	after	IupShow	and	forcing	a	call
to	this	function.
We	can	create	the	CD	canvas	during	the	redrawing	callback	or
during	the	size	change	callback,	which	is	also	called	during	a
IupShow.
We	can	create	the	canvas	during	the	MAP_CB	callback,	which
is	called	after	the	IupCanvas	element	has	been	mapped	in	the

http://www.tecgraf.puc-rio.br/iup/

native	control.

Any	of	the	above	solutions	works	perfectly.	The	most	elegant	solution
seems	to	be	the	one	that	uses	the	MAP_CB	callback.

Creating	the	CD	canvas	also	requires	some	parameters	to	be	passed	to
the	Native	Window	driver.	These	parameters	are	obtained	from	the	IUP
canvas	by	means	of	the	CONID	attribute.	Therefore,	the	canvas	creation
is:

myCdCanvas	=	cdCreateCanvas(CD_NATIVEWINDOW,	IupGetAttribute(myIupCanvas,	
						"CONID"));

						IupSetAttribute(myIupCanvas,	"_CD_CANVAS",	myCdCanvas);

The	CD_IUP	driver	can	still	be	used,	but	it	must	be	linked	with	the	cdiup
library.

Resizing	the	IUP	Canvas

If	the	application	always	activates	the	canvas	before	drawing,	even	if	it	is
already	active,	then	it	is	not	necessary	to	worry	about	this	situation.	If	this
is	not	so,	then	the	CD	canvas	mut	be	activated	in	the	IUP	canvas	resize
callback.

Internal	Architecture
Modularity

Apart	from	the	several	drivers,	the	CD	library	is	composed	of	a	few
modules,	the	public	header	files	cd.h	and	wd.h,	those	which	implement
the	functions	independently	from	drivers,	cd*.c	and	wd.c,	and	the	header
file	cd_private.h,	apart	from	some	other	modules	which	implement	non-
exported	specific	functions.	Such	modules	are	totally	independent	from
the	implemented	drivers,	as	well	as	every	driver	independs	from	one
another,	unless	there	is	an	intentional	dependency.

Linking

Since	the	drivers	independ	from	one	another,	we	could	create	a	library	for
each	of	them.	For	the	drivers	provided	with	CD	it	was	easy	to	include
them	in	their	own	library,	thus	simplifying	the	application's	linking	process.
Note:	Internally,	the	drivers	are	called	"context".

In	order	to	establish	this	dependency,	when	creating	a	canvas	in	a	given
driver	the	user	must	specify	the	driver	to	be	used.	This	specification	is
done	by	means	of	a	macro	which	is	actually	a	function	with	no	parameter,
which	passes	the	function	table	from	that	driver	to	the	canvas	creation
function.	For	instance:

CD_PS	(is	in	fact)	cdContextPS()

cdCreateCanvas(CD_PS,	"teste.ps");	(will	do)	canvas->Line	=	context->

If	the	context	function	is	not	invoqued	then	that	driver	does	not	need	to
be	linked	with	the	application.	This	is	usefull	if	the	application	uses	a
custom	build	of	the	CD	library	and	usefull	for	additional	drivers	not
included	in	the	main	library,	like	IUP	and	PDF,	that	have	external

dependencies.

Structures

The	core	implementation	defines	the	structures	declared	in	the	cd.h
header.	But	declares	an	undefined	structure	called	cdCtxCanvas.	This
structure	is	defined	in	each	driver	according	to	their	needs.	But	the	first
member	of	this	structure	must	be	a	pointer	to	the	cdCanvas	structure.

The	drivers	need	not	to	implement	all	functions	from	the	function	table,
only	a	few	are	required.

Here	is	the	definition	of	the	cdContext	and	cdCanvas	structures:	

struct	_cdContext

{

		unsigned	long	caps;

		/*	can	NOT	be	NULL	*/

		void	(*CreateCanvas)(cdCanvas*	canvas,	void	*data);

		void	(*InitTable)(cdCanvas*	canvas);

		/*	can	be	NULL	*/

		int	(*Play)(cdCanvas*	canvas,	int	xmin,	int	xmax,	int	ymin,	int	ymax,	void	*data);	

		int	(*RegisterCallback)(int	cb,	cdCallback	func);

};

struct	_cdCanvas

{

		...

		void	(*Line)(cdCtxCanvas*	ctxcanvas,	int	x1,	int	y1,	int	x2,	int	y2);

		void	(*Rect)(cdCtxCanvas*	ctxcanvas,	int	xmin,	int	xmax,	int	ymin,	int	ymax);

		void	(*Box)(cdCtxCanvas*	ctxcanvas,	int	xmin,	int	xmax,	int	ymin,	int	ymax);

		...

		...

		int	mark_type,	mark_size;

		int	line_style,	line_width;

		int	interior_style,	hatch_style;

		...

		cdVectorFont*	vector_font;

		cdSimulation*	simulation;

		cdCtxCanvas*	ctxcanvas;					//	context	dependent	defintion

		cdContext*	context;

};

Internally	each	driver	defines	its	cdCtxCanvas	strcuture:

struct	_cdCtxCanvas	

{

		cdCanvas*	canvas;

		char*	filename;	

		int	last_line_style;

		int	last_fill_mode;

		FILE*	file;

};

Then	it	must	implement	the	cdcreatecanvas	and	cdinittable	functions:

/*	In	the	driver	implementation	file	*/

static	void	cdcreatecanvas(cdCanvas	*canvas,	void	*data)

{

		cdCtxCanvas*	ctxcanvas	=	(cdCtxCanvas	*)malloc(sizeof(cdCtxCanvas));

		//	parse	data	parameters

		...

		ctxcanvas->canvas	=	canvas;

		canvas->ctxcanvas	=	ctxcanvas;

		/*	update	canvas	context	*/

		canvas->w	=	(int)(w_mm	*	res);

		canvas->h	=	(int)(h_mm	*	res);

		canvas->w_mm	=	w_mm;

		canvas->h_mm	=	h_mm;

		canvas->bpp	=	24;

		canvas->xres	=	res;

		canvas->yres	=	res;

}

static	void	cdinittable(cdCanvas*	canvas)

{

		canvas->Flush	=	cdflush;

		canvas->Clear	=	cdclear;

		canvas->Pixel	=	cdpixel;

		canvas->Line	=	cdline;

		canvas->Poly	=	cdpoly;

		...

	}

static	cdContext	cdMetafileContext	=

{

		CD_CAP_ALL	&	~(CD_CAP_GETIMAGERGB|CD_CAP_IMAGESRV|CD_CAP_REGION|CD_CAP_FONTDIM|CD_CAP_TEXTSIZE),

		cdcreatecanvas,

		cdinittable,

		cdplay,

		cdregistercallback,

};

cdContext*	cdContextMetafile(void)

{

		return	&cdMetafileContext;

}

To	simplify	driver	administration,	the	context	structure's	linking	is	done	as
follows:

/*	In	the	header	file	*/

#define	CD_METAFILE	cdContextMetafile()

cdContext*	cdContextMetafile(void)

Attributes

The	query	mechanism	of	an	attribute	is	done	in	the	core	and	does	not
depends	on	the	driver.	Due	to	this	fact,	the	attributes	which	are	modified
several	times	for	the	same	value	are	not	updated	in	the	drivers,	thus
saving	processing.	Similarly,	if	an	attribute	modification	in	a	driver	was
not	successful,	its	value	is	not	updated.	Nevertheless,	the	fact	that	a
driver	does	not	implement	the	attribute's	modification	function	does	not
mean	that	it	rejects	that	attribute	-	the	driver	just	does	not	need	to	do
anything	with	this	attribute	on	that	moment	and	will	query	it	later,	before
drawing	the	primitive.

The	creation	of	customized	attributes	for	each	driver	is	made	generically,
using	string-like	attributes.	A	structure	with	the	attribute's	name	and	its
set	and	get	functions	must	be	declared,	as	in	the	example	below:

static	void	set_fill_attrib(cdCtxCanvas*	ctxcanvas,	char*	data)

{

		ctxcanvas->fill_attrib[0]	=	data[0];

}

static	char*	get_fill_attrib(cdCtxCanvas*	ctxcanvas)

{

		return	ctxcanvas->fill_attrib;

}

static	cdAttribute	fill_attrib	=

{

		"SIMPENFILLPOLY",

		set_fill_attrib,

		get_fill_attrib

};	

At	createcanvas	in	the	driver:

ctxcanvas->fill_attrib[0]	=	'1';

ctxcanvas->fill_attrib[1]	=	0;

cdRegisterAttribute(canvas,	&fill_attrib);

,	for	instance,	must	exist,	thus	initializing	the	attribute	and	registering	it	in
the	canvas'	attribute	list.

Samples
Simple	Draw

This	is	an	example	of	a	simple	drawing	program	using	a	IUP	canvas:

cdCanvas*	canvas	=	cdCreateCanvas(CD_NATIVEWINDOW,	IupGetAttribute(IupCanvas,"CONID"));	

cdCanvasLineStyle(canvas,	CD_DASHED);

cdCanvasLine(canvas,	0,	0,	100,	100);

cdCanvasKillCanvas(canvas);

If	you	want	to	use	World	Coordinates:

cdCanvas*	canvas	=	cdCreateCanvas(CD_NATIVEWINDOW,	IupGetAttribute(IupCanvas,"CONID"));	

wdCanvasViewport(canvas,	0,	100,	0,	100);	

wdCanvasWindow(canvas,	-1.5,	1.5,	-3000,	3000);	

cdCanvasLineStyle(canvas,	CD_DASHED);	

wdCanvasLine(canvas,	-0.5,	-500,	1.0,	1000);	

cdKillCanvas(canvas);	

Off	Screen	Drawing	(Double	Buffering)

To	draw	in	the	background	and	later	on	transfer	the	drawing	to	the
screen,	use:

cdCanvas*	canvas	=	cdCreateCanvas(CD_NATIVEWINDOW,	IupGetAttribute(IupCanvas,"CONID"));	

cdCanvas*	db_canvas	=	cdCreateCanvas(CD_DBUFFER,	canvas);	cdCanvasActivate(db_canvas);	//	update	canvas	size,	window	could	be	resized

cdCanvasLineStyle(db_canvas,	CD_DASHED);	

cdCanvasLine(db_canvas,	10,	10,	50,	50);	

cdCanvasFlush(db_canvas);		//	swap	to	the	window	canvas	

cdKillCanvas(db_canvas);	

cdKillCanvas(canvas);	

To	draw	in	a	RGB	image,	use:

cdCanvas*	canvas	=	cdCreateCanvasf(CD_IMAGERGB,	"%dx%d",	width,	height);

cdCanvasLineStyle(canvas,	CD_DASHED);	

cdCanvasLine(canvas,	10,	10,	50,	50);	

unsigned	char*	red	=	cdCanvasGetAttribute(canvas,	"REDIMAGE");

//	do	something	with	the	raw	image	data

cdKillCanvas(canvas);	

Lua	Samples

To	draw	in	a	RGB	image	in	CDLua	for	Lua	5:

imagergb	=	cd.CreateImageRGB(200,200)

canvas	=	cd.CreateCanvas(cd.IMAGERGB,	imagergb)

canvas:Font("Times",	cd.BOLD,	12)

canvas:Text(10,	10,	"Test")

canvas:KillCanvas()

Check	the	file	samples_cdlua5.zip	for	several	samples	in	Lua	and
samples	in	C	to	test	them.	You	will	need	the	CD,	IUP	and	Lua	libraries	to
compile	and	link	the	applications.

Screen	Capture	in	Windows

Using	a	NULL	parameter	to	the	NATIVEWINDOW	driver	you	can	get
access	to	the	entire	screen:

cdCanvas	*canvas	=	cdCreateCanvas(CD_NATIVEWINDOW,	NULL);

cdCanvasGetSize(canvas,	&width,	&height,	NULL,	NULL);

//	allocate	red,	green	and	blue	pointers

cdCanvasGetImageRGB(canvas,	red,	green,	blue,	0,	0,	width,	height);

cdKillCanvas(canvas);

Complete	Example

We	have	created	an	application	called	Simple	Draw	that	illustrates	the
use	of	all	functions	in	the	CD	library	(including	WD).	You	can	see	the
source	code	in	the	simple.c	file,	or	take	the	file	simple.zip	for	a	complete
set	of	files	including	makefiles	for	all	platforms.	Extract	the	files	creating

subfolders,	using	parameter	"-d".

Example	for	Tests

The	CDTEST	example	is	actually	one	of	the	applications	used	to	test
virtually	all	functions	of	the	CD	library.	Its	interface	uses	the	IUP	library,
and	it	can	run	in	several	platforms.	You	can	take	either	the	.EXE	files	or
the	source	code.	Extract	the	files	creating	subfolders,	using	parameter	"-
d".	Warning:	This	application	is	not	didactic.

Lua	Binding
Overview

CDLua	was	developed	to	make	all	functionalities	of	the	CD	library
available	to	Lua	programmers.	To	use	the	CDLua	bindings,	your
executable	must	be	linked	with	the	CDLua	library,	and	you	must	call	the
initialization	function	cdlua_open	declared	in	the	header	file	cdlua.h,	as
seen	in	the	example	below:

in	Lua5

#include	<lua.h>

#include	<lualib.h>

#include	<lauxlib.h>

#include	<cdlua.h>

void	main(void)

{

		lua_State	*L	=	lua_open();

		luaopen_string(L);

		luaopen_math(L);

		luaopen_io(L);		

		cdlua_open(L);

		lua_dofile("myprog.lua");

		

		cdlua_close(L);

		lua_close(L);

}

The	cdlua_open()	function	registers	all	CD	functions	and	constants	your
Lua	program	will	need.	The	use	of	the	CDLua	functions	in	Lua	is

generally	identical	to	their	equivalents	in	C.	Nevertheless,	there	are
several	exceptions	due	to	differences	between	the	two	languages.	Notice
that,	as	opposed	to	C,	in	which	the	flags	are	combined	with	the	bitwise
operator	OR,	in	Lua	the	flags	are	added	arithmetically.

The	CDLua	dynamic	libraries	are	also	compatible	with	the	Lua	5	"loadlib"
function.	Here	is	an	example	on	how	to	dynamically	load	CD	in	Lua	5.1:

local	cdlua_open	=	package.loadlib("cdlua51.dll",	"cdlua_open")

cdlua_open()

Lua	5.1	"require"	can	be	used	for	all	the	CDLua	libraries,	but	the	full
library	name	should	be	used.	For	example:	require"cdlua51",
require"cdluapdf51",	and	so	on.	Additionally	the	LUA_CPATH	in	UNIX
must	add	the	prefix	"lib"	to	the	search	path,	for	example:

LUA_CPATH	=	./\?.so\;./lib\?.so\;$LIBPATH_ARCH/\?.so\;$LIBPATH_ARCH/lib\?.so

You	can	also	use	require"cdlua"	and	so	on,	but	the	LUA_CPATH	must
contains	the	"51"	pattern.	For	example:

LUA_CPATH	=	./\?.so\;./lib\?51.so\;$LIBPATH_ARCH/\?.so\;$LIBPATH_ARCH/lib\?51.so

The	simplest	form	require"cd"	and	so	on,	can	not	be	used	because	there
are	CD	dynamic	libraries	with	names	that	will	conflict	with	the	names
used	by	require	during	search.

Function	Names	and	Definitions

In	Lua,	because	of	the	name	space	"cd"	all	the	functions	and	definitions
have	their	names	prefix	changed.	The	general	rule	is	quite	simple:

cdXxx		->	cd.Xxx

wdXxx		->	cd.wXxx

CD_XXX	->	cd.XXX

Modifications	to	the	API

New	functions	(without	equivalents	in	C)	were	implemented	to	create	and
destroy	objects	that	do	not	exist	in	C.	For	instance	functions	were
developed	to	create	and	destroy	images,	pattern,	stipple	and	palette.		All
the	metatables	have	the	"tostring"	method	implemented	to	help	debuging.

Some	functions	were	modified	to	receive	those	objects	as	parameters.

Also	the	functions	which	receive	values	by	reference	in	C	were	modified.
Generally,	the	values	of	parameters	that	would	have	their	values	modified
are	now	returned	by	the	function	in	the	same	order.

Garbage	Collection

All	the	objects	are	garbage	collected	by	the	Lua	garbage	collector.

Exchanging	Values	between	C	and	Lua

Because	of	some	applications	that	interchange	the	use	of	CD	canvases
in	Lua	and	C,	we	build	a	few	C	functions	that	are	available	in	"cdlua.h":

cdCanvas*	cdlua_checkcanvas(lua_State*	L,	int	pos);

void	cdlua_pushcanvas(lua_State*	L,	cdCanvas*	canvas);

Integration	with	ImLua

In	ImLua	there	is	an	additional	library	providing	simple	functions	to	map
the	imImage	structure	to	the	cdBitmap	structure.	And	some	facilities	to
draw	an	image	in	a	CD	canvas.	See	the	IM	documentation.

Color	values	and	palettes	can	be	created	and	used	transparently	in	both
libraries.	Palettes	and	color	values	are	100%	compatible	between	CD
and	IM.

http://www.tecgraf.puc-rio.br/im

Canvas
The	canvas	represents	the	drawing	surface.	It	could	be	anything:	a	file,	a
client	area	inside	a	window	in	a	Window	System,	a	paper	used	by	a
printer,	etc.	Each	canvas	has	its	own	attributes.

Initialization

You	must	call	cdCreateCanvas	to	create	a	canvas,	and	cdKillCanvas
when	you	do	not	need	the	canvas	anymore.	It	is	not	necessary	to
activate	a	canvas	using	cdCanvasActivate,	but	some	drivers	may
require	that	call.

To	know	if	a	feature	is	supported	by	a	driver,	use	function
cdContextCaps	or	see	the	driver's	documentation.

Control

Some	canvases	are	buffered	and	need	to	be	flushed;	for	that,	use	the
cdCanvasFlush	function.	In	some	drivers,	this	function	can	also	be	used
to	change	to	another	page,	as	in	drivers	CD_PRINTER		and	CD_PS.

You	can	clear	the	drawing	surface	with	the	cdCanvasClear	function,	but
in	some	drivers	the	function	may	just	draw	a	rectangle	using	the
background	color.

Coordinate	System

You	may	retrieve	the	original	canvas	size	using	the	cdCanvasGetSize
function.	The	canvas'	origin	is	at	the	bottom	left	corner	of	the	canvas,	but
an	origin	change	can	be	simulated	with	function	cdCanvasOrigin.
Usually	user	interface	libraries	have	their	origin	at	the	upper	right	corner,

oriented	top	down.	In	this	case,	the	function	cdCanvasUpdateYAxis
converts	the	Y	coordinate	from	this	orientation	to	CD's	orientation	and
vice-versa.

Other

Some	canvas	contents	can	be	interpreted;	the	cdCanvasPlay	function
interprets	the	contents	of	a	canvas	and	calls	library	functions	for	the
contents	to	be	displayed	in	the	active	canvas.

World	Coordinates

Allows	the	use	of	a	World	Coordinate	System.	In	this	system	you	can
attribute	coordinates	to	any	unit	you	want.	After	you	define	a	window
(rectangular	region)	in	your	world,	each	given	coordinate	is	then	mapped
to	canvas	coordinates	to	draw	the	primitives.	You	can	define	a	viewport	in
your	canvas	to	change	the	coordinate	mapping	from	world	to	canvas.
The	image	below	shows	the	relation	between	Window	and	Viewport.

Window	x	Viewport	

If	you	want	to	map	coordinates	from	one	system	to	another,	use	the
wdWorld2Canvas	e	wdCanvas2World	functions.

The	quality	of	the	picture	depends	on	the	conversion	from	World	to
Canvas,	so	if	the	canvas	has	a	small	size	the	picture	quality	will	be	poor.
To	increase	picture	quality	create	a	canvas	with	a	larger	size,	if	possible.

All	World	Coordinate	drawing	in	all	drivers	are	simulated	using	other	CD
primitives.

void	wdCanvasWindow(cdCanvas*	canvas,	double	xmin,	double	xmax,	double	ymin,	double	ymax);	[in	C]

				

canvas:wWindow(xmin,	xmax,	ymin,	ymax:	number)	[in	Lua]

Configures	a	window	in	the	world	coordinate	system	to	be	used	to

convert	world	coordinates	(with	values	in	real	numbers)	into	canvas
coordinates	(with	values	in	integers).	The	default	window	is	the	size	in
millimeters	of	the	whole	canvas.

void	wdCanvasGetWindow(cdCanvas*	canvas,	double	*xmin,	double	*xmax,	double	*ymin,	double	*ymax);	[in	C]

canvas:wGetWindow()	->	(xmin,	xmax,	ymin,	ymax:	number)	[in	Lua]

Queries	the	current	window	in	the	world	coordinate	system	being	used	to
convert	world	coordinates	into	canvas	coordinates	(and	the	other	way
round).	It	is	not	necessary	to	provide	all	return	pointers,	you	can	provide
only	the	desired	values.

void	wdCanvasViewport(cdCanvas*	canvas,	int	xmin,	int	xmax,	int	ymin,	int	ymax);	[in	C]

canvas:wViewport(xmin,	xmax,	ymin,	ymax:	number)	[in	Lua]

Configures	a	viewport	in	the	canvas	coordinate	system	to	be	used	to
convert	world	coordinates	(with	values	in	real	numbers)	into	canvas
coordinates	(with	values	in	integers).	The	default	viewport	is	the	whole
canvas	(0,w-1,0,h-1).	If	the	canvas	size	is	changed,	the	viewport	will	not
be	automatically	updated.

void	wdCanvasGetViewport(cdCanvas*	canvas,	int	*xmin,	int	*xmax,	int	*ymin,	int	*ymax);	[in	C]

canvas:wGetViewport()	->	(xmin,	xmax,	ymin,	ymax:	number)	[in	Lua]

Queries	the	current	viewport	in	the	world	coordinate	system	being	used
to	convert	world	coordinates	into	canvas	coordinates	(and	the	other	way
round).	It	is	not	necessary	to	provide	all	return	pointers,	you	can	provide
only	the	desired	values	and	NULL	for	the	others.

void	wdCanvasWorld2Canvas(cdCanvas*	canvas,	double	xw,	double	yw,	int	*xv,	int	*yv);	[in	C]

canvas:wWorld2Canvas(xw,	yw:	number)	->	(xv,	yv:	number)	[in	Lua]

Converts	world	coordinates	into	canvas	coordinates.	It	is	not	necessary
to	provide	all	return	pointers,	you	can	provide	only	the	desired	values	and
NULL	for	the	others.

void	wdCanvasCanvas2World(cdCanvas*	canvas,	int	xv,	int	yv,	double	*xw,	double	*yw);	[in	C]

canvas:wCanvas2World(xv,	yv:	number)	->	(xw,	yw:	number)	[in	Lua]

Converts	canvas	coordinates	into	world	coordinates.	It	is	not	necessary
to	provide	all	return	pointers,	you	can	provide	only	the	desired	values	and
NULL	for	the	others.

Extra

void	wdCanvasHardcopy(cdCanvas	*canvas,	cdContext*	ctx,	void	*data,	void(*draw_func)(cdCanvas	*canvas_copy));	[in	C]

canvas:wCanvasHardcopy(ctx:	number,	data:	string	or	userdata,	draw_func:	function)	[in	Lua]

Creates	a	new	canvas,	prepares	Window	and	Viewport	according	to	the
provided	canvas,	maintaining	the	aspect	ratio	and	making	the	drawing
occupy	the	largest	possible	area	of	the	new	canvas,	calls	the	drawing
function	(which	must	use	routines	in	WC)	and,	finally,	removes	the	new
canvas.

It	is	usually	used	for	"hard	copies"	of	drawings	(print	equivalent	copy).
The	most	common	used	contexts	are	Printer,	PS	and	PDF.

Clipping

The	clipping	area	is	an	area	that	limits	the	available	drawing	area	inside
the	canvas.	Any	primitive	is	drawn	only	inside	the	clipping	area.	It	affects
all	primitives.

You	can	set	the	clipping	area	by	using	the	function	cdClipArea,	and
retrieve	it	using	cdGetClipArea.	The	clipping	area	is	a	rectangle	by
default,	but	it	can	has	other	shapes.	In	some	drivers	a	polygon	area	can
be	defined,	and	in	display	based	drivers	a	complex	region	can	be
defined.	The	complex	region	can	be	a	combination	of	boxes,	polygons,
sectors,	chords	and	texts.

The	cdClip	function	activates	and	deactivaes	the	clipping.

int	cdCanvasClip(cdCanvas*	canvas,	int	mode);	[in	C]

canvas:Clip(mode:	number)	->	(old_mode:	number)	[in	Lua]

Activates	or	deactivates	clipping.	Returns	the	previous	status.	Values:
CD_CLIPAREA,	CD_CLIPPOLYGON,	CD_CLIPREGION	or
CD_CLIPOFF.	The	value	CD_QUERY	simply	returns	the	current	status.
Default	value:	CD_CLIPOFF.

The	value	CD_CLIPAREA	activates	a	rectangular	area	as	the	clipping
region.

The	value	CD_CLIPPOLYGON	activates	a	polygon	as	a	clipping	region,
but	works	only	in	some	drivers	(please	refer	to	the	notes	of	each	driver).
The	clipping	polygon	must	be	defined	before	activating	the	polygon
clipping;	if	it	is	not	defined,	the	current	clipping	state	remains	unchanged.
See	the	documentation	of	cdBegin/cdVertex/cdEnd	to	create	a	polygon.

The	value	CD_CLIPREGION	activates	a	complex	clipping	region.	See
the	documentation	of	Regions.

void	cdCanvasClipArea(cdCanvas*	canvas,	int	xmin,	int	xmax,	int	ymin,	int	ymax);	[in	C]

void	cdfCanvasClipArea(cdCanvas*	canvas,	double	xmin,	double	xmax,	double	ymin,	double	ymax);	[in	C]

void	wdCanvasClipArea(cdCanvas*	canvas,	double	xmin,	double	xmax,	double	ymin,	double	ymax);	(WC)	[in	C]

canvas:ClipArea(xmin,	xmax,	ymin,	ymax:	number)	[in	Lua]

canvas:wClipArea(xmin,	xmax,	ymin,	ymax:	number)	(WC)	[in	Lua]

Defines	a	rectangle	for	clipping.	Only	the	points	in	the	interval	xmin<=	x
<=	xmax	and	ymin	<=	y	<=	ymax	will	be	printed.	Default	region:	(0,	w-1,
0,	h-1).

int	cdCanvasGetClipArea(cdCanvas*	canvas,	int	*xmin,	int	*xmax,	int	*ymin,	int	*ymax);	[in	C]

int	cdfCanvasGetClipArea(cdCanvas*	canvas,	double	*xmin,	double	*xmax,	double	*ymin,	double	*ymax);	[in	C]

int	wdCanvasGetClipArea(cdCanvas*	canvas,	double	*xmin,	double	*xmax,	double	*ymin,	double	*ymax);	(WC)	[in	C]

canvas:GetClipArea()	->	(xmin,	xmax,	ymin,	ymax,	status:	number)	[in	Lua]

canvas:wGetClipArea()	->	(xmin,	xmax,	ymin,	ymax,	status:	number)	(WC)	[in	Lua]

Returns	the	rectangle	and	the	clipping	status.	It	is	not	necessary	to
provide	all	return	pointers,	you	can	provide	only	the	desired	values	and
NULL	for	the	others.

Polygons

A	polygon	for	clipping	can	be	created	using
cdBegin(CD_CLIP)/cdVertex(x,y)/.../cdEnd().

See	the	documentation	of	cdBegin/cdVertex/cdEnd.

Complex	Clipping	Regions

A	complex	region	can	composed	of	boxes,	sectors,	chords,	polygons	and
texts.	It	is	implemented	only	in	the	Windows	GDI,	GDI+	and	X-Windows
base	drivers.

Complex	clipping	regions	can	be	created	using
cdBegin(CD_REGION)/(filled	primtives)/.../cdEnd().	For	more	about
cdBegin	and	cdEnd	see	Polygons.

Between	a	cdBegin(CD_REGION)	and	a	cdEnd(),	all	calls	to	cdBox,
cdSector,	cdChord,	cdBegin(CD_FILL)/cdVertex(x,y)/.../cdEnd()	and
cdText	will	be	composed	in	a	region	for	clipping.	This	is	the	only
exception	when	you	can	call	a	cdBegin	after	another	cdBegin.

When	you	call	cdBegin(CD_REGION)	a	new	empty	region	will	be	created.
So	for	the	first	operation	you	should	use	CD_UNION	or	CD_NOTINTERSECT
combine	modes.	When	you	finished	to	compose	the	region	call	cdEnd().

To	make	the	region	active	you	must	call	cdClip(CD_CLIPREGION).	For	other
clipping	regions	see	Clipping.

Complex	clipping	regions	are	not	saved	by	cdSaveState.

int	cdCanvasRegionCombineMode(cdCanvas*	canvas,	int	mode);	[in	C]

canvas:RegionCombineMode(mode:	number)	->	(old_mode:	number)	[in	Lua]

Changes	the	way	regions	are	combined	when	created.	Returns	the
previous	status.	Values:	CD_UNION,	CD_INTERSECT,	CD_DIFFERENCE	or
CD_NOTINTERSECT.	The	value	CD_QUERY	simply	returns	the	current	status.
Default	value:	CD_UNION.

Combine	Modes

int	cdCanvasIsPointInRegion(cdCanvas*	canvas,	int	x,	int	y);	[in	C]

canvas:IsPointInRegion(x,	y:	number)	->	(status:	number)	[in	Lua]

Returns	a	non	zero	value	if	the	point	is	contained	inside	the	current
region.

void	cdCanvasOffsetRegion(cdCanvas*	canvas,	int	dx,	int	dy);	[in	C]

void	wdCanvasOffsetRegion(cdCanvas*	canvas,	double	dx,	double	dy);	(WC)	[in	C]

canvas:OffsetRegion(dx,	dy:	number)	[in	Lua]

canvas:wOffsetRegion(dx,	dy:	number)	(WC)	[in	Lua]

Moves	the	current	region	by	the	given	offset.	In	X-Windows,	if	the	region
moves	to	outside	the	canvas	border,	the	part	moved	outside	will	be	lost,
the	region	will	need	to	be	reconstruted.

void	cdCanvasGetRegionBox(cdCanvas*	canvas,	int	*xmin,	int	*xmax,	int	*ymin,	int	*ymax);	[in	C]

void	wdCanvasGetRegionBox(cdCanvas*	canvas,	double	*xmin,	double	*xmax,	double	*ymin,	double	*ymax);	(WC)	[in	C]

canvas:GetRegionBox()	->	(xmin,	xmax,	ymin,	ymax,	status:	number)	[in	Lua]

canvas:wGetRegionBox()	->	(xmin,	xmax,	ymin,	ymax,	status:	number)	(WC)	[in	Lua]

Returns	the	rectangle	of	the	bounding	box	of	the	current	region.	It	is	not
necessary	to	provide	all	return	pointers,	you	can	provide	only	the	desired
values	and	NULL	for	the	others.

Marks

A	mark	is	a	punctual	representation.	It	can	have	different	sizes	and	types.
All	types	are	affected	only	by	mark	attributes	and	by	the	foreground	color.

All	marks	in	all	drivers	are	simulated	using	other	CD	primitives,	except
cdPixel.

void	cdCanvasPixel(cdCanvas*	canvas,	int	x,	int	y,	long	int	color);	[in	C]

void	wdCanvasPixel(cdCanvas*	canvas,	double	x,	double	y,	long	int	color);	(WC)	[in	C]

canvas:Pixel(x,	y:	number,	color:	lightuserdata)	[in	Lua]

canvas:wPixel(x,	y:	number,	color:	lightuserdata)	(WC)	[in	Lua]

Configures	the	pixel	(x,y)	with	the	color	defined	by	color.	It	is	the
smallest	element	of	the	canvas.	It	depends	only	on	global	attributes	of
the	canvas.

void	cdCanvasMark(cdCanvas*	canvas,	int	x,	int	y);	[in	C]

void	wdCanvasMark(cdCanvas*	canvas,	double	x,	double	y);	(WC)	[in	C]

canvas:Mark(x,	y:	number)	[in	Lua]

canvas:wMark(x,	y:	number)	(WC)	[in	Lua]

Draws	a	mark	in	(x,y)	using	the	current	foreground	color.	It	is	not	possible
to	use	this	function	between	a	call	to	functions	cdBegin	and	cdEnd	if	the
type	of	mark	is	set	to	CD_DIAMOND.	If	the	active	driver	does	not	include
this	primitive,	it	will	be	simulated	using	other	primitives	from	the	library,
such	as	cdLine.

If	you	will	call	function	cdMark	or	wdMark	several	times	in	a	sequence,
then	it	is	recommended	that	the	application	changes	the	filling	and	line

attributes	to	those	used	by	the	cdMark	function:

cdInteriorStyle(CD_SOLID);

cdLineStyle(CD_CONTINUOUS);

cdLineWidth(1);

This	will	greatly	increase	this	function's	performance.	Also	in	this	case,	if
the	mark	is	very	small,	we	suggest	using	the	cdPixel	function	so	that	the
application	itself	draws	the	mark.	In	many	cases,	this	also	increases	this
function's	performance.

Attributes

int	cdCanvasMarkType(cdCanvas*	canvas,	int	type);	[in	C]

canvas:MarkType(type:	number)	->	(old_type:	number)	[in	Lua]

Configures	the	current	mark	type	for:	CD_PLUS,	CD_STAR,
CD_CIRCLE,	CD_X,	CD_BOX,	CD_DIAMOND,
CD_HOLLOW_CIRCLE,	CD_HOLLOW_BOX	or
CD_HOLLOW_DIAMOND.	Returns	the	previous	value.	Default	value:
CD_STAR.	Value	CD_QUERY	simply	returns	the	current	value.

Mark	Types	

int	cdCanvasMarkSize(cdCanvas*	canvas,	int	size);	[in	C]

double	wdCanvasMarkSize(cdCanvas*	canvas,	double	size);	(WC)	[in	C]

canvas:MarkSize(size:	number)	->	(old_size:	number)	[in	Lua]

canvas:wMarkSize(size:	number)	->	(old_size:	number)	(WC)	[in	Lua]

Configures	the	mark	size	in	pixels.	Returns	the	previous	value.	Default
value:	10.	Value	CD_QUERY	simply	returns	the	current	value.	Valid	width
interval:	>=	1.

In	WC,	it	configures	the	current	line	width	in	millimeters.	

Lines

Line	are	segments	that	connects	2	or	more	points.	The	Line	function
includes	the	2	given	points	and	draws	the	line	using	the	foreground	color.
Line	thickness	is	controlled	by	the	LineWidth	function.	By	using	function
LineStyle	you	can	draw	dashed	lines	with	some	variations.	Lines	with	a
style	other	than	continuous	are	affected	by	the	back	opacity	attribute	and
by	the	background	color.

void	cdCanvasLine(cdCanvas*	canvas,	int	x1,	int	y1,	int	x2,	int	y2);	[in	C]

void	cdfCanvasLine(cdCanvas*	canvas,	double	x1,	double	y1,	double	x2,	double	y2);	[in	C]

void	wdCanvasLine(cdCanvas*	canvas,	double	x1,	double	y1,	double	x2,	double	y2);	(WC)	[in	C]

canvas:Line(x1,	y1,	x2,	y2:	number)	[in	Lua]

canvas:fLine(x1,	y1,	x2,	y2:	number)	[in	Lua]

canvas:wLine(x1,	y1,	x2,	y2:	number)	(WC)	[in	Lua]

Draws	a	line	from	(x1,y1)	to	(x2,y2)	using	the	current	foreground	color
and	line	width	and	style.	Both	points	are	included	in	the	line.

Polygons	and	Bezier	Lines

Open	polygons	can	be	created	using
cdBegin(CD_OPEN_LINES)/cdVertex(x,y)/.../cdEnd().

Closed	polygons	use	the	same	number	of	vertices	but	the	last	point	is
automatically	connected	to	the	first	point.	Closed	polygons	can	be
created	using	cdBegin(CD_CLOSED_LINES)/cdVertex(x,y)/.../cdEnd().

Bezier	lines	can	be	created	using
cdBegin(CD_BEZIER)/cdVertex(x,y)/.../cdEnd().	At	least	4	vertices
must	be	defined.	The	two	vertices	of	the	middle	are	the	control	vertices.	A

sequence	of	bezier	lines	can	be	defined	using	more	3	vertices,	two
control	points	and	an	end	point,	the	last	point	of	the	previous	bezier	will
be	used	as	the	start	point.

See	the	documentation	of	cdBegin/cdVertex/cdEnd.

void	cdCanvasRect(cdCanvas*	canvas,	int	xmin,	int	xmax,	int	ymin,	int	ymax);	[in	C]

void	cdfCanvasRect(cdCanvas*	canvas,	double	xmin,	double	xmax,	double	ymin,	double	ymax);	[in	C]

void	wdCanvasRect(cdCanvas*	canvas,	double	xmin,	double	xmax,	double	ymin,	double	ymax);	(WC)	[in	C]

canvas:Rect(xmin,	xmax,	ymin,	ymax:	number)	[in	Lua]

canvas:fRect(xmin,	xmax,	ymin,	ymax:	number)	[in	Lua]

canvas:wRect(xmin,	xmax,	ymin,	ymax:	number)	(WC)	[in	Lua]

Draws	a	rectangle	with	no	filling.	All	points	in	the	limits	of	interval
x_min<=x<=x_max,	y_min<=y<=y_max	will	be	painted.	It	is	affected	by
line	attributes	and	the	foreground	color.	If	the	active	driver	does	not
include	this	primitive,	it	will	be	simulated	using	the	cdLine	primitive.

void	cdCanvasArc(cdCanvas*	canvas,	int	xc,	int	yc,	int	w,	int	h,	double	angle1,	double	angle2);	[in	C]

void	cdfCanvasArc(cdCanvas*	canvas,	double	xc,	double	yc,	double	w,	double	h,	double	angle1,	double	angle2);	[in	C]

void	wdCanvasArc(cdCanvas*	canvas,	double	xc,	double	yc,	double	w,	double	h,	double	angle1,	double	angle2);	(WC)	[in	C]

canvas:Arc(xc,	yc,	w,	h,	angle1,	angle2:	number)	[in	Lua]

canvas:fArc(xc,	yc,	w,	h,	angle1,	angle2:	number)	[in	Lua]

canvas:wArc(xc,	yc,	w,	h,	angle1,	angle2:	number)	(WC)	[in	Lua]

Draws	the	arc	of	an	ellipse	aligned	with	the	axis,	using	the	current
foreground	color	and	line	width	and	style.	It	is	drawn	counter-clockwise.
The	coordinate	(xc,yc)	defines	the	center	of	the	ellipse.	Dimensions	w
and	h	define	the	elliptic	axes	X	and	Y,	respectively.

Angles	angle1	and	angle2,	in	degrees	define	the	arc's	beginning	and
end,	but	they	are	not	the	angle	relative	to	the	center,	except	when	w==h

and	the	ellipse	is	reduced	to	a	circle.	The	arc	starts	at	the	point	(xc+
(w/2)*cos(angle1),yc+(h/2)*sin(angle1))	and	ends	at	(xc+
(w/2)*cos(angle2),yc+(h/2)*sin(angle2)).	A	complete	ellipse	can	be
drawn	using	0	and	360	as	the	angles.

The	angles	are	specified	so	if	the	size	of	the	ellipse	(w	x	h)	is	changed,
its	shape	is	preserved.	So	the	angles	relative	to	the	center	are	dependent
from	the	ellipse	size.	The	actual	angle	can	be	obtained	using	rangle	=
atan2((h/2)*sin(angle),(w/2)*cos(angle)).

The	angles	are	given	in	degrees.	To	specify	the	angle	in	radians,	you	can
use	the	definition	CD_RAD2DEG	to	multiply	the	value	in	radians	before
passing	the	angle	to	CD.

Arc	Parameters

	

Attributes

int	cdCanvasLineStyle(cdCanvas*	canvas,	int	style);	[in	C]

canvas:LineStyle(style:	number)	->	(old_style:	number

Configures	the	current	line	style	for:	CD_CONTINUOUS,	CD_DASHED,
CD_DOTTED,	CD_DASH_DOT,	CD_DASH_DOT_DOT,	or	CD_CUSTOM.
Returns	the	previous	value.	Default	value:	CD_CONTINUOUS.	Value
CD_QUERY	simply	returns	the	current	value.	When	CD_CUSTOM	is
used	the	cdLineStyleDahes	function	must	be	called	before	to	initialize

the	custom	dashes.	The	spaces	are	drawn	with	the	background	color,
except	when	back	opacity	is	transparent	then	the	background	is	left
unchanged.	See	BackOpacity.

Line	Styles

void	cdCanvasLineStyleDashes(cdCanvas*	canvas,	const	int*	dashes,	int	count);	[in	C]

canvas:LineStyleDashes(dashes:	table,	count:	number)	->	(old_style:	number)	[in	Lua]

Defines	the	custom	line	style	dashes.	The	first	value	is	the	lenght	of	the
first	dash,	the	second	value	is	the	leght	of	the	first	space,	and	so	on.	For
example:	"10	2	5	2"	means	dash	size	10,	space	size	2,	dash	size	5,
space	size	2,	and	repeats	the	pattern.

int	cdCanvasLineWidth(cdCanvas*	canvas,	int	width);	[in	C]

double	wdCanvasLineWidth(double	width_mm);	(WC)	[in	C]

canvas:LineWidth(width:	number)	->	(old_width:	number)	[in	Lua]

canvas:wLineWidth(width_mm:	number)	->	(old_width_mm:	number)	(WC)	[in	Lua]

Configures	the	width	of	the	current	line	(in	pixels).	Returns	the	previous
value.	Default	value:	1.	Value	CD_QUERY	simply	returns	the	current
value.	Valid	width	interval:	>=	1.

In	WC,	it	configures	the	current	line	width	in	millimeters.	

int	cdCanvasLineJoin(cdCanvas*	canvas,	int	style);	[in	C]

canvas:LineJoin(style:	number)	->	(old_style:	number)	[in	Lua]

Configures	the	current	line	style	for:	CD_MITER,	CD_BEVEL	or
CD_ROUND.	Returns	the	previous	value.	Default	value:	CD_MITER.	Value
CD_QUERY	simply	returns	the	current	value.

Line	Joins

int	cdCanvasLineCap(cdCanvas*	canvas,	int	style);	[in	C]

canvas:LineCap(style:	number)	->	(old_style:	number)	[in	Lua]

Configures	the	current	line	style	for:	CD_CAPFLAT,	CD_CAPSQUARE
or	CD_CAPROUND.	Returns	the	previous	value.	Default	value:
CD_CAPFLAT.	Value	CD_QUERY	simply	returns	the	current	value.

Line	Caps

Open,	Closed	and	Filled	Polygons,
Bezier	Lines	and
Regions	Creation

The	functions	cdBegin,	cdVertex	and	cdEnd	are	use	for	many
situations.	cdBegin	is	called	once,	cdVertex	can	be	called	many	times,
and	cdEnd	is	called	once	to	actually	do	something.	If	you	call	cdBegin
again	before	cdEnd	the	process	is	restarted,	except	for
cdBegin(CD_REGION)	that	can	contains	one	or	more	polygons	inside.

void	cdCanvasBegin(cdCanvas*	canvas,	int	mode);	[in	C]

canvas:Begin(mode:	number)	[in	Lua]

Starts	defining	a	polygon	to	be	drawn	(or	filled)	according	to	the	mode:	
CD_CLOSED_LINES,	CD_OPEN_LINES,	CD_FILL,	CD_CLIP,
CD_REGION	or	CD_BEZIER.	Do	not	create	embedded	polygons,	that	is,
do	not	call	function	cdBegin	twice	without	a	call	to	cdEnd	in	between.

CD_OPEN_LINES:	connects	all	the	points	at	cdEnd.	Depends
on	line	width	and	line	style	attributes.
CD_CLOSED_LINES:	connects	all	the	points	at	cdEnd	and
connects	the	last	point	to	the	first.		Depends	on	line	width	and
line	style	attributes.
CD_FILL:	connects	the	last	point	to	the	first	and	fills	the
resulting	polygon	according	to	the	current	interior	style.	When
the	interior	style	CD_HOLLOW	is	defined	the	it	behaves	as	if
the	mode	were	CD_CLOSED_LINES.
CD_CLIP:	instead	of	creating	a	polygon	to	be	drawn,	creates	a
polygon	to	define	a	polygonal	clipping	region.
CD_BEZIER:	defines	the	points	of	a	bezier	curve.	There	must
be	at	least	4	points:	start,	control,	control	and	end.	To	specify	a
sequence	of	curves	use	3	more	points	for	each	curve:	control,

control,	end,	control,	control,	end,	...	The	end	point	is	used	as
start	point	for	the	next	curve.
CD_REGION:	starts	the	creation	of	a	complex	region	for
clipping.	All	calls	to	cdBox,	cdSector,	cdChord,	Filled
Polygons	and	cdText	will	be	composed	in	a	region	for	clipping.
See	Regions	documentation.

Open,	Closed	and	Filled	Polygons

Bezier	Lines

void	cdCanvasVertex(cdCanvas*	canvas,	int	x,	int	y);	[in	C]

void	cdfCanvasVertex(cdCanvas*	canvas,	double	x,	double	y);	[in	C]

void	wdCanvasVertex(cdCanvas*	canvas,	double	x,	double	y);	(WC)	[in	C]

canvas:Vertex(x,	y:	number)	[in	Lua]

canvas:wVertex(x,	y:	number)	(WC)	[in	Lua]

Adds	a	vertex	to	the	polygon	definition.

void	cdCanvasEnd(cdCanvas*	canvas);	[in	C]

canvas:End()	[in	Lua]

Ends	the	polygon's	definition	and	draws	it.

Filled	Areas

It	is	an	area	filled	with	the	foreground	color,	but	it	depends	on	the	current
interior	style.	The	SOLID	style	depends	only	on	the	foreground	color.	The
HATCH	and	STIPPLE	style	depend	on	the	foreground	color,	background
color	and	on	the	back	opacity	attribute.	The	hatch	lines	drawn	with	this
style	do	not	depend	on	the	other	line	attributes.	The	PATTERN	style
depends	only	on	global	canvas	attributes.

The	filled	area	includes	the	line	at	the	edge	of	the	area.	So	if	you	draw	a
filled	rectangle,	sector	or	polygon	on	top	of	a	non	filled	one	using	the
same	coordinates,	no	style	and	1	pixel	width,	the	non	filled	primitive
should	be	obscured	by	the	filled	primitive.	But	depending	on	the	driver
implementation	some	pixels	at	the	edges	may	be	not	included.
IMPORTANT:	In	the	Postscript	and	PDF	drivers	the	line	at	the	edge	is	not
included	at	all.

If	either	the	background	or	the	foreground	color	are	modified,	the	hatched
and	monochromatic	fillings	must	be	modified	again	in	order	to	be
updated.

Note	that	when	a	Filling	Attribute	is	modified,	the	active	filling	style	is	now
that	of	the	modified	attribute	(hatch,	stipple	or	pattern).	Notice	that	this	is
not	true	for	the	clipping	area.	When	the	clipping	area	is	modified,	the
clipping	is	only	affected	if	it	is	active.

Filled	Polygons

Filled	polygons	can	be	created	using
cdBegin(CD_FILL)/cdVertex(x,y)/.../cdEnd().

See	the	documentation	of	cdBegin/cdVertex/cdEnd.

void	cdCanvasBox(cdCanvas*	canvas,	int	xmin,	int	xmax,	int	ymin,	int	ymax);	[in	C]

void	cdfCanvasBox(cdCanvas*	canvas,	double	xmin,	double	xmax,	double	ymin,	double	ymax);	[in	C]

void	wdCanvasBox(cdCanvas*	canvas,	double	xmin,	double	xmax,	double	ymin,	double	ymax);	(WC)	[in	C]

canvas:Box(xmin,	xmax,	ymin,	ymax:	number)	[in	Lua]

canvas:fBox(xmin,	xmax,	ymin,	ymax:	number)	[in	Lua]

canvas:wBox(xmin,	xmax,	ymin,	ymax:	number)	(WC)	[in	Lua]

Fills	a	rectangle	according	to	the	current	interior	style.	All	points	in	the
interval	x_min<=x<=x_max,	y_min<=y<=y_max	will	be	painted.	When
the	interior	style	CD_HOLLOW	is	defined,	the	function	behaves	like	its
equivalent	cdRect.

void	cdCanvasSector(cdCanvas*	canvas,	int	xc,	int	yc,	int	w,	int	h,	double	angle1,	double	angle2);	[in	C]

void	cdfCanvasSector(cdCanvas*	canvas,	double	xc,	double	yc,	double	w,	double	h,	double	angle1,	double	angle2);	[in	C]

void	wdCanvasSector(cdCanvas*	canvas,	double	xc,	double	yc,	double	w,	double	h,	double	angle1,	double	angle2);	(WC)	[in	C]

canvas:Sector(xc,	yc,	w,	h,	angle1,	angle2:	number)	[in	Lua]

canvas:fSector(xc,	yc,	w,	h,	angle1,	angle2:	number)	[in	Lua]

canvas:wSector(xc,	yc,	w,	h,	angle1,	angle2:	number)	(WC)	[in	Lua]

Fills	the	arc	of	an	ellipse	aligned	with	the	axis,	according	to	the	current
interior	style,	in	the	shape	of	a	pie.	It	is	drawn	counter-clockwise.	The
coordinate	(xc,yc)	defines	the	center	of	the	ellipse.	Dimensions	w	and	h
define	the	elliptic	axes	X	and	Y,	respectively.

Angles	angle1	and	angle2,	in	degrees,	define	the	arc's	beginning	and
end,	but	they	are	not	the	angle	relative	to	the	center,	except	when	w==h
and	the	ellipse	is	reduced	to	a	circle.	The	arc	starts	at	the	point	(xc+
(w/2)*cos(angle1),yc+(h/2)*sin(angle1))	and	ends	at	(xc+
(w/2)*cos(angle2),yc+(h/2)*sin(angle2)).	A	complete	ellipse	can	be
drawn	using	0	and	360	as	the	angles.

The	angles	are	specified	so	if	the	size	of	the	ellipse	(w	x	h)	is	changed,

its	shape	is	preserved.	So	the	angles	relative	to	the	center	are	dependent
from	the	ellipse	size.	The	actual	angle	can	be	obtained	using	rangle	=
atan2((h/2)*sin(angle),(w/2)*cos(angle)).

The	angles	are	given	in	degrees.	To	specify	the	angle	in	radians,	you	can
use	the	definition	CD_RAD2DEG	to	multiply	the	value	in	radians	before
passing	the	angle	to	CD.

When	the	interior	style	CD_HOLLOW	is	defined,	the	function	behaves
like	its	equivalent	cdArc,	plus	two	lines	connecting	to	the	center.

Sector	Parameters	

void	cdCanvasChord(cdCanvas*	canvas,	int	xc,	int	yc,	int	w,	int	h,	double	angle1,	double	angle2);	[in	C]

void	cdfCanvasChord(cdCanvas*	canvas,	double	xc,	double	yc,	double	w,	double	h,	double	angle1,	double	angle2);	[in	C]

void	wdCanvasChord(cdCanvas*	canvas,	double	xc,	double	yc,	double	w,	double	h,	double	angle1,	double	angle2);	(WC)	[in	C]

canvas:Chord(xc,	yc,	w,	h,	angle1,	angle2:	number)	[in	Lua]

canvas:fChord(xc,	yc,	w,	h,	angle1,	angle2:	number)	[in	Lua]

canvas:wChord(xc,	yc,	w,	h,	angle1,	angle2:	number)	(WC)	[in	Lua]

Fills	the	arc	of	an	ellipse	aligned	with	the	axis,	according	to	the	current
interior	style,	the	start	and	end	points	of	the	arc	are	connected.	The
parameters	are	the	same	as	the	cdSector.

When	the	interior	style	CD_HOLLOW	is	defined,	the	function	behaves
like	its	equivalent	cdArc,	plus	a	line	connecting	the	arc	start	and	end
points.

Chord	Parameters

Attributes

int	cdCanvasBackOpacity(cdCanvas*	canvas,	int	opacity);	[in	C]

canvas:BackOpacity(opacity:	number)	->	(old_opacity:	number)	[in	Lua]

Configures	the	background	opacity	to	filling	primitives	based	on	the
foreground	and	background	colors.	Values:	CD_TRANSPARENT	or
CD_OPAQUE.	If	it	is	opaque	the	primitive	will	erase	whatever	is	in
background	with	the	background	color.	If	it	is	transparent,	only	the
foreground	color	is	painted.	It	returns	the	previous	value.	Default	value:
CD_TRANSPARENT.	Value	CD_QUERY	simply	returns	the	current
value.	In	some	drivers	is	always	opaque.

Back	Opacity	Attribute

int	cdCanvasFillMode(cdCanvas*	canvas,	int	mode);	[in	C]

canvas:FillMode(mode:	number)	->	(old_mode:	number)	[in	Lua]

Selects	a	predefined	polygon	fill	rule	(CD_EVENODD	or	CD_WINDING).
Returns	the	previous	value.	Default	value:	CD_EVENODD.	Value
CD_QUERY	simply	returns	the	current	value.

Fill	Modes

int	cdCanvasInteriorStyle(cdCanvas*	canvas,	int	style);	[in	C]

canvas:InteriorStyle(style:	number)	->	(old_style:	number)	[in	Lua]

Configures	the	current	style	for	the	area	filling	primitives:	CD_SOLID,
CD_HOLLOW,	CD_HATCH,	CD_STIPPLE	or	CD_PATTERN.	Note	that
CD_HATCH	and	CD_STIPPLE	are	affected	by	the	backopacity.	It	returns
the	previous	value.	Default	value:	CD_SOLID.	Value	CD_QUERY	simply
returns	the	current	value.

If	a	stipple	or	a	pattern	were	not	defined,	when	they	are	selected	the
state	of	the	attribute	is	not	changed.

When	the	style	CD_HOLLOW	is	defined,	functions	cdBox	and	cdSector
behave	as	their	equivalent	cdRect	and	cdArc+Lines,	and	the	polygons
with	style	CD_FILL	behave	like	CD_CLOSED_LINES.

int	cdCanvasHatch(cdCanvas*	canvas,	int	style);	[in	C]

canvas:Hatch(style:	number)	->	(old_style:	number)	[in	Lua]

Selects	a	predefined	hatch	style	(CD_HORIZONTAL,	CD_VERTICAL,
CD_FDIAGONAL,	CD_BDIAGONAL,	CD_CROSS	or	CD_DIAGCROSS)

and	sets	the	interior	style	to	CD_HATCH.	The	lines	are	drawn	with	the
foreground	color,	and	the	background	is	drawn	with	the	background	color
if	back	opacity	is	opaque.	Returns	the	previous	value.	Default	value:
CD_HORIZONTAL.	Value	CD_QUERY	simply	returns	the	current	value.
The	foreground	and	background	colors	must	be	set	before	setting	the
style.	In	some	drivers	is	always	opaque.

Hatch	Styles

void	cdCanvasStipple(cdCanvas*	canvas,	int	w,	int	h,	const	unsigned	char	*fgbg)	[in	C]

canvas:Stipple(stipple:	cdStipple)	[in	Lua]

Defines	a	wxh	matrix	of	zeros	(0)	and	ones	(1).	The	zeros	are	mapped	to
the	background	color	or	are	transparent,	according	to	the	background
opacity	attribute.	The	ones	are	mapped	to	the	foreground	color.	The
function	sets	the	interior	style	to	CD_STIPPLE.	To	avoid	having	to	deal
with	matrices	in	C,	the	element	(i,j)	of	fgbg	is	stored	as	fgbg[j*w+i].	The
origin	is	the	left	bottom	corner	of	the	image.	It	does	not	need	to	be	stored
by	the	application,	as	it	is	internally	replicated	by	the	library.		In	some

drivers	is	always	opaque.	The	foreground	and	background	colors	must
be	set	before	setting	the	style.

void	wdCanvasStipple(cdCanvas*	canvas,	int	w,	int	h,	const	unsigned	char	*fgbg,	double	w_mm,	double	h_mm);	[in	C]

canvas:wStipple(stipple:	cdStipple,	w_mm,	h_mm:	number)	[in	Lua]

Allows	specifying	the	stipple	in	world	coordinates.	Another	stipple	will	be
created	with	the	size	in	pixels	corresponding	to	the	specified	size	in
millimeters.	The	use	of	this	function	may	produce	very	large	or	very	small
stipples.

unsigned	char*	cdCanvasGetStipple(cdCanvas*	canvas,	int*	w,	int*	h);	[in	C]

canvas:GetStipple()	-	>	(stipple:	cdStipple)	[in	Lua]

Returns	the	current	stipple	and	its	dimensions.	Returns	NULL	if	no	stipple
was	defined.

void	cdCanvasPattern(cdCanvas*	canvas,	int	w,	int	h,	const	long	int	*color);	[in	C]

canvas:Pattern(pattern:	cdPattern)	[in	Lua]

Defines	a	new	wxh	color	matrix	and	sets	the	interior	style	to
CD_PATTERN.	To	avoid	having	to	deal	with	matrices	in	C,	the	color
element	(i,j)	is	stored	as	color[j*w+i].	The	origin	is	the	left	bottom	corner
of	the	image.	It	does	not	need	to	be	stored	by	the	application,	as	it	is
internally	replicated	by	the	library.

void	wdCanvasPattern(cdCanvas*	canvas,	int	w,	int	h,	const	long	int	*color,	double	w_mm,	double	h_mm);	[in	C]

canvas:wPattern(pattern:	cdPattern,	w_mm,	h_mm:	number)	[in	Lua]

Allows	specifying	the	pattern	in	world	coordinates.	Another	pattern	will	be
created	with	the	size	in	pixels	corresponding	to	the	specified	size	in
millimeters.	The	use	of	this	function	may	produce	very	large	or	very	small
patterns.

long	int*	cdCanvasGetPattern(cdCanvas*	canvas,	int*	w,	int*	h);	[in	C]

canvas:GetPattern()	-	>	(pattern:	cdPattern)	[in	Lua]

Returns	the	current	pattern	and	its	dimensions.	Returns	NULL	if	no
pattern	was	defined.

Extras	in	Lua

cd.CreatePattern(width,	height:	number)	->	(pattern:	cdPattern)

Creates	a	pattern	in	Lua.

cd.KillPattern(pattern:	cdPattern)

Destroys	the	created	pattern	and	liberates	allocated	memory.	If	this
function	is	not	called	in	Lua,	the	garbage	collector	will	call	it.

cd.CreateStipple(width,	height:	number)	->	(stipple:	cdStipple)

Creates	a	stipple	in	Lua.

cd.KillStipple(stipple:	cdStipple)

Destroys	the	created	stipple	and	liberates	allocated	memory.	If	this
function	is	not	called	in	Lua,	the	garbage	collector	will	call	it.

Data	Access

Data	access	in	Lua	is	done	directly	using	the	operator	"[y*width	+	x]".

All	new	types	can	have	their	values	checked	or	changed	directly	as	if
they	were	Lua	tables:

pattern[y*16	+	x]	=	cd.EncodeColor(r,	g,	b)

...

color	=	pattern[y*16	+	x]

r,	g,	b	=	cd.DecodeColor(color)

...

cd.Pattern(pattern)

Notice	that	the	type	of	value	returned	or	received	by	pattern[i]	is	a
lightuserdata,	the	same	type	used	with	functions	cdEncodeColor,
cdDecodeColor,	cdPixel,	cdForeground	and	cdBackground.	The
value	returned	or	received	by	stipple[i]	is	a	number.

Text

A	raster	text	using	a	font	with	styles.	The	position	the	text	is	drawn
depends	on	the	text	alignment	attribute.

The	library	has	at	least	4	standard	typefaces:	"System"	(which	depends
on	the	driver	and	platform),	"Courier"	(mono	spaced	with	serif),	"Times"
(proportional	with	serif)	and	"Helvetica"	(proportional	without	serif).	Each
typeface	can	have	some	styles:	Plain,	Bold,	Italic	and	a	combination	of
Bold	and	Italic.	As	an	alternative	to	the	standard	typefaces,	you	can	use
other	typefaces	or	native	driver	typefaces	with	the	function	NativeFont,
but	they	may	work	in	a	reduced	set	of	drivers.

You	may	retrieve	the	dimensions	of	the	selected	font	with	function
GetFontDim.	Also	you	may	retrieve	the	bounding	box	of	a	specific	text
before	drawing	by	using	the	GetTextSize	and	GetTextBox	functions.

The	text	is	drawn	using	a	reference	point;	you	can	change	the	alignment
relative	to	this	point	using	the	TextAligment	function.

void	cdCanvasText(cdCanvas*	canvas,	int	x,	int	y,	const	char*	text);	[in	C]

void	cdfCanvasText(cdCanvas*	canvas,	double	x,	double	y,	const	char*	text);	[in	C]

void	wdCanvasText(cdCanvas*	canvas,	double	x,	double	y,	const	char*	text);	(WC)	[in	C]

canvas:Text(x,	y:	number,	text:	string)	[in	Lua]

canvas:fText(x,	y:	number,	text:	string)	[in	Lua]

canvas:wText(x,	y:	number,	text:	string)	(WC)	[in	Lua]

Inserts	a	text	in	(x,y)	according	to	the	current	font	and	text	alignment.	It
expects	an	ANSI	string	with	no	line	breaks.

Attributes

void	cdCanvasFont(cdCanvas*	canvas,	const	char*	typeface,	int	style,	int	size);	[in	C]

void	wdCanvasFont(cdCanvas*	canvas,	const	char*	typeface,	int	style,	double	size);	(WD)	[in	C]

canvas:Font(typeface,	style,	size:	number)	[in	Lua]

canvas:wFont(typeface,	style,	size:	number)	(WD)	[in	Lua]

Selects	a	text	font.	The	font	type	can	be	one	of	the	standard	type	faces	or
other	driver	dependent	type	face.	The	style	can	be	a	combination	of:
CD_PLAIN,	CD_BOLD,	CD_ITALIC,	CD_UNDERLINE	or
CD_STRIKEOUT.	Only	the	Windows	and	PDF	drivers	support	underline
and	strikeout.	The	size	is	provided	in	points	(1/72	inch)	or	in	pixels	(using
negative	values).

Default	values:	"System",	CD_PLAIN,	12.

You	can	specify	partial	parameters	using	NULL,	-1	and	0	for	typeface,
style	and	size.	When	these	parameters	are	specified	the	current	font
parameter	is	used.	For	example:	CanvasFont(NULL,	-1,	10)	will	only
change	the	font	size.

To	convert	between	pixels	and	points	use	the	function	cdPixel2MM	to
convert	from	pixels	to	millimeters	and	use	the	formula	"(value	in	points)
=	CD_MM2PT	*	(value	in	millimeters)".

In	WC,	the	size	is	specified	in	millimeters,	but	is	internally	converted	to
points.

Fonts	can	heavily	benefit	from	the	ANTIALIAS	attribute	where	available
in	the	driver.

Font	Styles

Type	Faces	

void	cdCanvasGetFont(cdCanvas*	canvas,	char*	typeface,	int	*style,	int	*size);	[in	C]

void	wdCanvasGetFont(cdCanvas*	canvas,	char*	typeface,	int	*style,	double	*size);	(WC)	[in	C]

canvas:GetFont()	->	(typeface:	string,	style,	size:	number)	[in	Lua]

canvas:wGetFont()	->	(typeface:	string,	style,	size:	number)	(WC)	[in	Lua]

Returns	the	values	of	the	current	font.	It	is	not	necessary	to	provide	all
return	pointers;	you	can	provide	only	the	desired	values.

In	WC,	the	size	is	returned	in	millimeters.

char*	cdCanvasNativeFont(cdCanvas*	canvas,	const	char*	nativefont);	[in	C]

canvas:NativeFont(font:	string)	->	(old_font:	string)	[in	Lua]

Selects	a	font	based	on	a	string	description.	The	description	can	depend
on	the	driver	and	the	platform,	but	a	common	definition	is	available	for	all
drivers.	It	does	not	need	to	be	stored	by	the	application,	as	it	is	internally
replicated	by	the	library.	The	string	is	case	sensitive.	It	returns	the
previous	string.

The	string	is	parsed	and	the	font	typeface,	style	and	size	are	set
according	to	the	parsed	values,	as	if	cdCanvasFont	was	called.	The
native	font	string	is	cleared	when	a	font	is	set	using	cdCanvasFont.

The	common	format	definition	is	similar	to	the	the	Pango	library	Font
Description,	used	by	GTK+2.	It	is	defined	as	having	3	parts:	<font

http://www.pango.org/

family>,		.	For	ex:	"Times,	Bold	18",	or
"Arial,Helvetica,	Italic	Underline	-24".	The	supported	styles	include:	Bold,
Italic,	Underline	and	Strikeout.	Underline,	Strikeout,	and	negative	pixel
values	are	not	supported	by	the	standard	Pango	Font	Description.	The
Pango	format	include	many	other	definitions	not	supported	by	the	CD
format,	they	are	just	ignored.

The	IUP	"FONT"	attribute	internal	formats	are	also	accepted	in	all	drivers
and	platforms.

Using	"NULL"	as	a	parameter,	it	only	returns	the	previous	string	and	does
not	change	the	font.	The	value	returned	is	the	last	attributed	value,	which
may	not	correspond	exactly	to	the	font	selected	by	the	driver.

Using	"(char*)CD_QUERY"	as	a	parameter,	it	returns	the	current
selected	font	in	the	common	format	definition.

int	cdCanvasTextAlignment(cdCanvas*	canvas,	int	alignment);	[in	C]

canvas:TextAlignment(alignment:	number)	->	(old_alignment:	number)	[in	Lua]

Defines	the	vertical	and	horizontal	alignment	of	a	text	as:	CD_NORTH,
CD_SOUTH,	CD_EAST,	CD_WEST,	CD_NORTH_EAST,	CD_NORTH_WEST,	CD_SOUTH_EAST,
CD_SOUTH_WEST,	CD_CENTER,	CD_BASE_LEFT,	CD_BASE_CENTER,	or
CD_BASE_RIGHT.	Returns	the	previous	value.	Default	value:	CD_BASE_LEFT.
Value	CD_QUERY	simply	returns	the	current	value.

Text	Alignment

double	cdCanvasTextOrientation(cdCanvas*	canvas,	double	angle);	[in	C]

canvas:TextOrientation(angle:	number)	->	(old_angle:	number)	[in	Lua]

Defines	the	text	orientation,	which	is	an	angle	provided	in	degrees
relative	to	the	horizontal	line	according	to	which	the	text	is	drawn.
Returns	the	previous	value.	Value	CD_QUERY	simply	returns	the	current
value.	The	default	value	is	0.

Properties

void	cdCanvasGetFontDim(cdCanvas*	canvas,	int	*max_width,	int	*height,	int	*ascent,	int	*descent);	[in	C]

void	wdCanvasGetFontDim(cdCanvas*	canvas,	double	*max_width,	double	*height,	double	*ascent,	double	*descent);	(WC)	[in	C]

canvas:GetFontDim()	->	(max_width,	height,	ascent,	descent:	number)	[in	Lua]

canvas:wGetFontDim()	->	(max_width,	height,	ascent,	descent:	number)	(WC)	[in	Lua]

Returns	the	maximum	width	of	a	character,	the	line's	height,	the	ascent
and	descent	of	the	characters	of	the	currently	selected	font.	The	line's
height	is	the	sum	of	the	ascent	and	descent	of	a	given	additional	space	(if
this	is	the	case).	All	values	are	given	in	pixels	and	are	positive.	It	is	not
necessary	to	provide	all	return	pointers,	you	can	provide	only	the	desired
values	and	NULL	for	the	others.

Font	Dimension	Attributes

void	cdCanvasGetTextSize(cdCanvas*	canvas,	const	char*	text,	int	*width,	int	*height);	[in	C]

void	wdCanvasGetTextSize(cdCanvas*	canvas,	const	char*	text,	double	*width,	double	*height);	(WC)	[in	C]

canvas:GetTextSize(text:	string)	->	(width,	heigth:	number)	[in	Lua]

canvas:wGetTextSize(text:	string)	->	(width,	heigth:	number)	(WC)	[in	Lua]

Returns	the	width	and	height	of	a	text's	minimum	box	with	the	currently
selected	font.	If	the	driver	does	not	support	this	kind	of	query,	the	values
will	be	given	0	(zero).	It	is	not	necessary	to	provide	all	return	pointers,
you	can	provide	only	the	desired	values	and	NULL	for	the	others.

void	cdCanvasGetTextBox(cdCanvas*	canvas,	int	x,	int	y,	const	char*	text,	int	*xmin,	int	*xmax,	int	*ymin,	int	*ymax);	[in	C]

void	wdCanvasGetTextBox(cdCanvas*	canvas,	double	x,	double	y,	const	char*	text,	double	*xmin,	double	*xmax,	double	*ymin,	double	*ymax);	(WC)	[in	C]

canvas:GetTextBox(x,	y:	number,	text:	string)	->	(xmin,	xmax,	ymin,	ymax:	number)	[in	Lua]

canvas:wGetTextBox(x,	y:	number,	text:	string)	->	(xmin,	xmax,	ymin,	ymax:	number)	(WC)	[in	Lua]

Returns	the	horizontal	bounding	rectangle	of	a	text	box,	even	if	the	text
has	an	orientation.	It	is	not	necessary	to	provide	all	return	pointers,	you
can	provide	only	the	desired	values	and	NULL	for	the	others.

void	cdCanvasGetTextBounds(cdCanvas*	canvas,	int	x,	int	y,	const	char	*text,	int	*rect);	[in	C]

void	wdCanvasGetTextBounds(cdCanvas*	canvas,	double	x,	double	y,	const	char*	text,	double	*rect);	(WC)	[in	C]

canvas:GetTextBounds(x,	y:	number,	text:	string)	->	(rect0,	rect1,	rect2,	rect3,	rect4,	rect5,	rect6,	rect7:	number)	[in	Lua]

canvas:wGetTextBounds(x,	y:	number,	text:	string)	->	(rect0,	rect1,	rect2,	rect3,	rect4,	rect5,	rect6,	rect7:	number)	(WC)	[in	Lua]

Returns	the	oriented	bounding	rectangle	of	a	text	box.	The	rectangle
corners	are	returned	in	counter-clock	wise	order	starting	with	the	bottom
left	corner,	(x,y)	arranged	(x0,y0,x1,y1,x2,y2,x3,y3).

Vector	Text

It	is	a	text	that	uses	a	font	created	only	with	line	segments.	It	is	very
useful	to	be	scaled	and	very	fast.	You	must	set	the	text	size	before
drawing	any	text.	The	functions	ignore	the	new	line	character	"\n";	only
the	wdMultiLineVectorText	function	will	consider	this	character.	The
default	direction	is	horizontal	from	left	to	right.

Vector	Text	Parameters	

All	vector	text	drawing	in	all	drivers	are	simulated	using	other	CD
primitives.

void	cdCanvasVectorText(cdCanvas*	canvas,	int	x,	int	y,	const	char*	text);	[in	C]

void	wdCanvasVectorText(cdCanvas*	canvas,	double	x,	double	y,	const	char*	text);	(WC)	[in	C]

				

canvas:VectorText(x,	y:	number,	text:	string)	[in	Lua]

canvas:wVectorText(x,	y:	number,	text:	string)	(WC)	[in	Lua]

Draws	a	vector	text	in	position	(x,y),	respecting	the	alignment	defined	by
cdTextAlignment.	It	ignores	the	configuration	cdBackOpacity,	being
always	transparent.	It	also	ignores	strings	with	multiple	lines.	It	is
ESSENTIAL	to	call	cdVectorTextSize	or	cdVectorCharSize	before
using	cdVectorText	or	cdMultiLineVetorText.

void	cdCanvasMultiLineVectorText(cdCanvas*	canvas,	int	x,	int	y,	const	char*	text);	[in	C]

void	wdCanvasMultiLineVectorText(cdCanvas*	canvas,	double	x,	double	y,	const	char*	text);	(WC)	[in	C]

canvas:MultiLineVectorText(x,	y:	number,	text:	string)	[in	Lua]

canvas:wMultiLineVectorText(x,	y:	number,	text:	string)	(WC)	[in	Lua]

Draws	a	vector	text	with	several	lines	in	position	(x,y),	respecting	the
alignment	defined	by	cdTextAlignment.	It	ignores	the	configuration
cdBackOpacity,	being	always	transparent.	Lines	are	broken	by
characters	"\n".	Each	line	respects	the	scale	defined	in
cdVectorTextSize	or	cdVectorCharSize.	This	function's	purpose	is	to
make	function	cdVectorText	more	efficient,	not	being	concerned	with
multiple	lines.

Attributes

void	cdCanvasVectorTextDirection(cdCanvas*	canvas,	int	x1,	int	y1,	int	x2,	int	y2);	[in	C]

void	wdCanvasVectorTextDirection(cdCanvas*	canvas,	double	x1,	double	y1,	double	x2,	double	y2);	(WC)	[in	C]

canvas:VectorTextDirection(x1,	y1,	x2,	y2:	number)	[in	Lua]

canvas:wVectorTextDirection(x1,	y1,	x2,	y2:	number)	(WC)	[in	Lua]

Defines	the	text	direction	by	means	of	two	points,	(x1,y1)	and	(x2,y2).
The	default	direction	is	horizontal	from	left	to	right.

double*	cdCanvasVectorTextTransform(cdCanvas*	canvas,	const	double*	matrix);	[in	C]

canvas:VectorTextTransform(matrix:	table)	->	(old_matrix:	table)	[in	Lua]	

Defines	a	transformation	matrix	with	6	elements.	If	the	matrix	is	NULL,	no
transformation	is	set.	The	default	direction	is	no	transformation.	The
origin	is	the	left	bottom	corner	of	matrix.	It	returns	the	previous	matrix,
and	the	returned	vector	is	only	valid	until	the	following	call	to	the	function.

The	matrix	contains	scale,	rotation	and	translation	elements.	It	is	applied
after	computing	the	position	and	orientation	normal	to	the	vector	text.	We
can	describe	the	elements	as	follows:

|x'|			|	scl_x*cos(ang)							-sin(ang)		trans_x	|			|x|																					|	3			4			5|	

|y'|	=	|							sin(ang)		scl_y*cos(ang)		trans_y	|	*	|y|						with	indices			|	0			1			2|

																																																					|1|

void	cdCanvasVectorTextSize(cdCanvas*	canvas,	int	w,	int	h,	const	char	*	text);	[in	C]

void	wdCanvasVectorTextSize(cdCanvas*	canvas,	double	size_x,	double	size_y,	const	char*	text);	(WC)	[in	C]

canvas:VectorTextSize(w,	h:	number,	text:	string)	[in	Lua]

canvas:wVectorTextSize(w,	h:	number,	text:	string)	(WC)	[in	Lua]

Modifies	the	scale	of	the	vector	text	so	that	it	corresponds	to	the	string	of
the	bounding	box	defined	by	w	and	h.	It	ignores	strings	with	multiple	lines.

double	cdCanvasVectorCharSize(cdCanvas*	canvas,	int	size);	[in	C]

double	wdCanvasVectorCharSize(double	size);	(WC)	[in	C]

canvas:VectorCharSize(size:	number)	->	(old_size:	number)	[in	Lua]

canvas:wVectorCharSize(size:	number)	->	(old_size:	number)	(WC)	[in	Lua]

Sets	the	height	of	the	characters	and	adjusts	the	width	according	to	it.
Returns	the	previous	value.	CD_QUERY	returns	the	current	value.

char*	cdCanvasVectorFont(cdCanvas*	canvas,	const	char	*filename);	[in	C]

canvas:VectorFont(filename:	string)	->	(fontname:	string)	[in	Lua]

Replaces	the	current	vector	font	with	a	font	stored	in	a	file	with	a	given
name.	Returns	the	name	of	the	font	loaded	or	NULL,	if	it	fails.	If	filename
is	NULL,	it	activates	the	default	font	"Simplex	II"	(There	is	no	file
associated	to	this	font,	it	is	an	embedded	font).	The	library	will	attempt	to
load	a	font	from	the	current	directory,	if	it	fails	then	it	will	try	the	directory
defined	by	the	environment	variable	"CDDIR",	if	it	fails,	it	will	attempt	to
load	it	using	the	filename	as	a	string	containing	the	font	as	if	the	file	was

loaded	into	that	string,	if	it	fails	again	the	font	is	reset	to	the	default	font
and	returns	NULL.	The	file	format	is	compatible	with	the	GKS	file	format
(text	mode).

Properties

void	cdCanvasGetVectorTextSize(cdCanvas*	canvas,	const	char*	text,	int	*w,	int	*h);	[in	C]

void	wdCanvasGetVectorTextSize(cdCanvas*	canvas,	const	char*	text,	double	*x,	double	*y);	(WC)	[in	C]

canvas:GetVectorTextSize(text:	string)	->	(w,	h:	number)	[in	Lua]

canvas:wGetVectorTextSize(text:	string)	->	(w,	h:	number)	(WC)	[in	Lua]

Queries	the	string's	bounding	box.	Ignores	strings	with	multiple	lines.	It	is
not	necessary	to	provide	all	return	pointers,	you	can	provide	only	the
desired	values	and	NULL	for	the	others.

void	cdCanvasGetVectorTextBounds(cdCanvas*	canvas,	char*	text,	int	px,	int	py,	int	*rect);	[in	C]

void	wdCanvasGetVectorTextBounds(cdCanvas*	canvas,	char*	text,	double	x,	double	y,	double	*rect);	(WC)	[in	C]

canvas:GetVectorTextBounds(text:	string,	px,py:	number)	->	(rect:	table)	[in	Lua]

canvas:wGetVectorTextBounds(text:	string,	px,py:	number)	->	(rect:	table)	(WC)	[in	Lua]	

Returns	the	bounding	rectangle	of	the	text	specified	in	the	current	vector
font,	alignment	and	direction.	Eight	values	are	returned,	corresponding	to
pairs	(x,y)	of	the	rectangle's	vertices	ordered	conter-clockwise,	starting
by	the	bottom	left	corner.

Character	Codes

The	old	GKS	format	contains	ASCII	codes	so	a	convertion	from	ANSI	to
ASCII	is	done	when	possible,	unmapped	characters	are	left	unchanged,
but	some	rearrage	was	necessary	to	acomodate	the	convertion.

The	default	vector	font	was	changed	from	the	original	Simplex	II	to
contain	all	ANSI	accented	characters.	So	some	ASCII	characters	were
replaced.

Bellow	is	the	character	code	table	of	the	default	font.

Default	Font

The	original	Simplex	II	font	is	available	in	the	file	"cd/etc/vectorfont00.txt".
Bellow	is	the	character	code	table	of	the	original	font	(the	table	displays
the	characters	after	the	convertion	from	ANSI	to	ASCII):

Original	Simplex	II

Client	Images

There	are	2	kinds	of	client	images:	RGB	and	Indexed	RGB	(or	MAP).	The
RGB	image	is	composed	by	3	buffers:	red,	green	and	blue	(more	colors,
more	memory).	The	MAP	image	is	composed	by	1	buffer	of	indices	for	a
table	and	one	table	of	encoded	RGB	values	(less	colors,	less	memory).

The	image	buffer	is	described	by	its	width	and	height	in	pixels.	The
starting	point	of	the	buffer	is	the	origin	of	the	image,	which	is	located	at	its
bottom	left	corner.	To	retrieve	a	pixel	in	the	image,	use	the	formula
pixel(x,y)=buffer[y*width	+	x].

The	Put	functions	may	do	zoom	in	or	out;	zero	order	interpolation	is	used
to	scale	the	image.	It	is	not	possible	to	specify	a	part	of	the	image	to	be
drawn.

void	cdCanvasGetImageRGB(cdCanvas*	canvas,	unsigned	char	*r,	

																			unsigned	char	*g,	

																			unsigned	char	*b,	

																			int	x,	int	y,	int	w,	int	h);	[in	C]

canvas:GetImageRGB(bitmap:	cdBitmap;	x,	y:	number)	[in	Lua]

Returns	the	red,	green	and	blue	components	of	each	pixel	in	a	server
image.	The	RGB	components	are	provided	in	three	matrices	stored	as
byte	arrays.	The	(i,j)	component	of	these	matrices	is	at	the	address
(j*w+i).	As	occurs	with	all	primitives	from	the	Canvas	Draw	library,	the
pixel	(0,0)	is	at	the	bottom	left	corner,	and	the	pixel	(w-1,h-1)	is	that	the
upper	right	corner	of	the	image	rectangle.

void	cdCanvasPutImageRectRGB(cdCanvas*	canvas,	int	iw,	int	ih,	

																							const	unsigned	char	*r,	

																							const	unsigned	char	*g,	

																							const	unsigned	char	*b,	

																							int	x,	int	y,	int	w,	int	h,	

																							int	xmin,	int	xmax,	int	ymin,	int	ymax);	[in	C]

void	wdCanvasPutImageRectRGB(cdCanvas*	canvas,	int	iw,	int	ih,	

																							const	unsigned	char	*r,	

																							const	unsigned	char	*g,	

																							const	unsigned	char	*b,	

																							double	x,	double	y,	double	w,	double	h,	

																							int	xmin,	int	xmax,	int	ymin,	int	ymax);	(WC)	[in	C]

canvas:PutImageRectRGB(bitmap:	cdBitmap;	x,	y,	w,	h,	xmin,	xmax,	ymin,	ymax:	number)	[in	Lua]

canvas:wPutImageRectRGB(bitmap:	cdBitmap;	x,	y,	w,	h,	xmin,	xmax,	ymin,	ymax:	number)	(WC)	[in	Lua]

Puts,	in	a	specified	area	of	the	canvas,	an	image	with	its	red,	green	and
blue	components	defined	in	the	three	matrices	stored	in	byte	arrays.	The
(i,j)	component	of	these	matrices	is	at	the	address	(j*iw+i).	The	pixel
(0,0)	is	at	the	bottom	left	corner,	and	the	pixel	(iw-1,ih-1)	is	that	the
upper	right	corner	of	the	image	rectangle.

Parameters	w	and	h	refer	to	the	target	rectangle	of	the	canvas,	so	that	it
is	possible	to	reduce	or	expand	the	image	drawn.	If	w	and	h	are	0,	the
size	of	the	image	is	assumed	(iw	and	ih).

It	also	allows	specifying	a	rectangle	inside	the	image	to	be	drawn,	if
xmin,	xmax,	ymin	and	ymax	are	0	then	the	whole	image	is	assumed.

If	the	driver	has	bpp	<=8	or	only	256	colors	or	less,	then	the	image	is
converted	to	256	optimal	colors	using	the	function	cdRGB2Map	and	is
drawn	using	cdPutImageRectMap.

void	cdCanvasPutImageRectRGBA(cdCanvas*	canvas,	int	iw,	int	ih,	

																								const	unsigned	char	*r,	

																								const	unsigned	char	*g,	

																								const	unsigned	char	*b,	

																								const	unsigned	char	*a,	

																								int	x,	int	y,	int	w,	int	h,	

																								int	xmin,	int	xmax,	int	ymin,	int	ymax);	[in	C]

void	wdCanvasPutImageRectRGBA(cdCanvas*	canvas,	int	iw,	int	ih,	

																								const	unsigned	char	*r,	

																								const	unsigned	char	*g,	

																								const	unsigned	char	*b,	

																								const	unsigned	char	*a,	

																								double	x,	double	y,	double	w,	double	h,	

																								int	xmin,	int	xmax,	int	ymin,	int	ymax);	(WC)	[in	C]

canvas:PutImageRectRGBA(bitmap:	cdBitmap;	x,	y,	w,	h,	xmin,	xmax,	ymin,	ymax:	number)	[in	Lua]

canvas:wPutImageRectRGBA(bitmap:	cdBitmap;	x,	y,	w,	h,	xmin,	xmax,	ymin,	ymax:	number)	(WC)	[in	Lua]

The	same	as	function		cdPutImageRectRGB,	except	for	the	fact	that	it	is
possible	to	specify	an	alpha	channel.	The	resulting	color	is	the	image
color	weighted	by	the	alpha	value,	using	the	formula	result=(source	*
alpha	+	destiny	*	(255	-	alpha))/255.	This	means	that,	if	alpha	is	0,	the
resulting	color	is	the	target	color	(completely	transparent),	and,	if	alpha	is
255,	the	resulting	color	is	the	original	image	color	(completely	opaque).

If	this	function	is	not	defined	for	a	given	driver	or	if	alpha	is	NULL,	then
the	function	cdPutImageRectRGB	is	used,	as	long	as	it	is	defined.

void	cdCanvasPutImageRectMap(cdCanvas*	canvas,	int	iw,	int	ih,	

																							const	unsigned	char	*index,	

																							const	long	int	*colors,	

																							int	x,	int	y,	int	w,	int	h,	

																							int	xmin,	int	xmax,	int	ymin,	int	ymax);	[in	C]

void	wdCanvasPutImageRectMap(cdCanvas*	canvas,	int	iw,	int	ih,	

																							const	unsigned	char	*index,	

																							const	long	int	*colors,	

																							double	x,	double	y,	double	w,	double	h,	

																							int	xmin,	int	xmax,	int	ymin,	int	ymax);	(WC)	[in	C]

canvas:PutImageRectMap(bitmap:	cdBitmap;	palette:	cdPalette;	x,	y,	w,	h,	xmin,	xmax,	ymin,	ymax:	number)	[in	Lua]

canvas:wPutImageRectMap(bitmap:	cdBitmap;	palette:	cdPalette;	x,	y,	w,	h,	xmin,	xmax,	ymin,	ymax:	number)	(WC)	[in	Lua]

The	same	as	function		cdPutImageRectRGB,	except	for	the	fact	that	the
colors	are	provided	by	means	of	an	index	matrix	(map).	The	color
corresponding	to	a	given	index	is	given	in		colors[index].	The	map	is
also	a	matrix	stored	as	a	byte	vector.	If	the	color	vector	is	null,	then	a
vector	with	256	gray	tones	is	assumed.

void	cdRGB2Map(int	iw,	int	ih,	

															const	unsigned	char	*r,	

															const	unsigned	char	*g,	

															const	unsigned	char	*b,	

															unsigned	char	*index,	

															int	pal_size,	long	*color);	[in	C]

cd.RGB2Map(image_rgb:	cdBitmap,	image_map:	cdBitmap,	palette:	cdPalette)	[in	Lua]

Converts	an	RGB	image	into	an	image	with	256	indexed	colors.	The
resulting	image	must	have	the	same	size	(width	x	length)	as	the	RGB
image.	It	is	necessary	to	allocate	memory	for	the	arrays	map	and	colors.
This	is	the	same	algorithm	used	in	the	IM	library	-	in	fact,	the	same	code.

Extras

The	following	functions	are	used	only	for	encapsulating	the	several	types
of	client	images	from	the	library	in	a	single	structure,	simplifying	their
treatment.	

For	such,	a	public	structure	was	created,	called	cdBitmap,	which	will
store	the	image.	From	this	structure,	the	following	fields	are	officially

defined:

cdBitmap:

		int	w						/*	image	width	*/

		int	h						/*	image	heigth	*/

		int	type			/*	image	type:	CD_RGBA,	CD_RGB	or	CD_MAP	*/

cdBitmap*	cdCreateBitmap(int	w,	int	h,	int	type);	[in	C]

cd.CreateBitmap(w,	h,	type:	number)	->	(bitmap:	cdBitmap)	[in	Lua]

Creates	an	image	with	width	w,	and	height	h	and	of	type	type.	The	type
can	be	CD_RGBA,	CD_RGB	or	CD_MAP.	However,	CD_MAP	only
means	that	the	image	will	have	256	colors	if	type	is	greater	than	0.	It	is
assumed	that	the	image	will	be	MAP	with	the	same	number	of	colors	in
the	palette	as	type.	Internally,	the	color	palette	is	always	allocated	with
256	entries,	which	may	or	may	not	be	totally	fulfilled.	In	this	case,	the
value	of	type	can	be	changed	as	wished.

cdBitmap*	cdInitBitmap(int	w,	int	h,	int	type,	...);	[in	C]

[There	is	no	equivalent	in	Lua]

Similar	to	cdCreateBitmap,	but	it	accepts	the	data	area	already
allocated	by	the	user.	The	parameters	vary	according	to	the	image	type.

CD_RGBA	-	(unsigned	char*	red,	unsigned	char*	green,	unsigned	char*	blue,	unsigned	char*	alpha)

CD_RGB	-	(unsigned	char*	red,	unsigned	char*	green,	unsigned	char*	blue)

CD_MAP	-	(unsigned	char*	index,	lont	int*	colors)

void	cdKillBitmap(cdBitmap*	image);	[in	C]

cd.KillBitmap(bitmap:	cdBitmap)	[in	Lua]

Liberates	the	memory	allocated	for	the	image.	If	this	function	is	not	called
in	Lua,	the	garbage	collector	will	call	it.

unsigned	char*	cdBitmapGetData(cdBitmap*	image,	int	dataptr);	[in	C]

cd.BitmapGetData(bitmap:	cdBitmap;	dataptr:	number)	->	(data:	cdImageChannel)	[in	Lua]

Returns	a	pointer	to	the	image's	data	area	according	to	dataptr.	The
following	values	are	defined	for	dataptr:

CD_IRED	-	red	component	of	an	RGB	image.	cdImageChannel	in	Lua.

CD_IGREEN	-	green	component	of	an	RGB	image.	cdImageChannel	in	Lua.

CD_IBLUE	-	blue	component	of	an	RGB	image.	cdImageChannel	in	Lua.

CD_IALPHA	-	alpha	component	of	an	RGBA	image.	cdImageChannel	in	Lua.

CD_INDEX	-	indices	of	a	MAP	image.	cdImageChannel	in	Lua.

CD_COLORS	-	color	table	of	a	MAP	image.	In	this	case,	a	type	conversion	must	be	made	to	

In	Lua,	channels	are	also	available	as	tables,	see	Data	Access.	

void	cdBitmapSetRect(cdBitmap*	image,	int	xmin,	int	xmax,	int	ymin,	int	ymax);	[in	C]

cd.BitmapSetRect(bitmap:	cdBitmap;	xmin,	xmax,	ymin,	ymax:	number)	[in	Lua]

Allows	specifying	a	region	of	interest	inside	the	image	to	be	used	by	the
function	cdPutBitmap.	If	no	region	was	defined,	the	whole	image	is
used,	that	is,	(0,	w-1,	0,	h-1).

void	cdCanvasPutBitmap(cdCanvas*	canvas,	cdBitmap*	image,	int	x,	int	y,	int	w,	int	h);	[in	C]

void	wdCanvasPutBitmap(cdCanvas*	canvas,	cdBitmap*	image,	double	x,	double	y,	double	w,	double	h);	(WC)	[in	C]

canvas:PutBitmap(image:	cdBitmap;	x,	y,	w,	h:	number)	[in	Lua]

canvas:wPutBitmap(bitmap:	cdBitmap;	x,	y,	w,	h:	number)	(WC)	[in	Lua]

Draws	the		image	in	the	position	(x,y),	changing	the	scale.	It
encapsulates	cdPutImageRectRGB,	cdPutImageRectRGBA	and

cdPutImageRectMap.	The	region	of	the	image	drawn	depends	on	the
rectangle	defined	by	cdBitmapSetRect.	If	no	rectangle	was	defined,
then	the	whole	image	is	used.

The	parameters	w	and	h	allow	scaling	the	image,	increasing	or
decreasing	its	dimensions	when	drawn.	If		w	and/or	h	are	0,	then	no
scale	change	is	assumed.

void	cdCanvasGetBitmap(cdCanvas*	canvas,	cdBitmap*	image,	int	x,	int	y);	[in	C]

canvas:GetBitmap(bitmap:	cdBitmap;	x,	y:	number)	[in	Lua]

Encapsulates	cdGetImageRGB.	Nothing	happens	if	the	image	is	MAP.

void	cdBitmapRGB2Map(cdBitmap*	image_rgb,	cdBitmap*	image_map);	[in	C]

cd.BitmapRGB2Map(bitmap_rgb:	cdBitmap,	bitmap_map:	cdBitmap)	[in	Lua]

Encapsulates	cdRGB2Map.	The	images	must	be	of	types	RGB(A)	and
MAP,	respectively.

Extras	in	Lua	(Deprecated)

cd.CreateImageRGB(width,	height:	number)	->	(imagergb:	cdImageRGB)

Creates	an	RGB	image	in	Lua.	Deprecated	use	cd.CreateBitmap.

cd.KillImageRGB(imagergb:	cdImageRGB)

Destroys	the	created	RGB	image	and	liberates	allocated	memory.	If	this
function	is	not	called	in	Lua,	the	garbage	collector	will	call	it.	Deprecated
use	cd.KillBitmap.

cd.CreateImageRGBA(width,	height:	number)	->	(imagergba:	cdImageRGBA)

Creates	an	RGBA	image	in	Lua.	Deprecated	use	cd.CreateBitmap.

cd.KillImageRGBA(imagergba:	cdImageRGBA)

Destroys	the	created	RGBA	image	and	liberates	allocated	memory.	If	this
function	is	not	called	in	Lua,	the	garbage	collector	will	call	it.	Deprecated
use	cd.KillBitmap.

cd.CreateImageMap(width,	height:	number)	->	(imagemap:	cdImageMap)

Creates	a	Map	image	in	Lua.	Deprecated	use	cd.CreateBitmap.

cd.KillImageMap(imagemap:	cdImageMap)

Destroys	the	created	Map	image	and	liberates	allocated	memory.	If	this
function	is	not	called	in	Lua,	the	garbage	collector	will	call	it.	Deprecated
use	cd.KillBitmap.

Data	Access

Data	access	in	Lua	is	done	directly	using	the	operator	"[y*width	+	x]"	in
image	channels.	Each	channel	works	as	a	value	table	which	should	be
consulted	or	modified	in	the	following	way:

image	=	cd.CreateBitmap(100,	200)

...

image.r[y*100	+	x]	=	255

image.g[y*100	+	x]	=	128

image.b[y*100	+	x]	=	0

...

green	=	image.g[y*100	+	x]	--	it	will	return	128

The	order	of	the	tables	is	important,	so	that	image[n].r	has	no	meaning	to
CDLua	and	the	expression	will	cause	an	error.	Finally,	the	user	could
expect	the	value	of	image[n]	to	be	of	type	lightuserdata.	Unfortunately,
this	is	not	the	case,	and	such	expression	will	cause	the	same	error.

In	the	old	cdImageMap	images,	the	channel	must	be	not	specified:
imagemap[y*100+x].

Known	channel	names	are:

r	-	red	channel	of	RGB	or	RGBA	images.

g	-	gree	channel	of	RGB	or	RGBA	images.

b	-	blue	channel	of	RGB	or	RGBA	images.

a	-	alpha	channel	of	RGBA	images.

m	-	indices	channel	of	MAP	images	(valid	only	for	cdBitmap	objects).

p	-	colors	table	of	MAP	images	(valid	only	for	cdBitmap	objects).	It	is	a	cdPalette	object.

Server	Images

It	is	a	high	performance	image	compatible	with	a	specific	canvas.	It	is
faster	than	user	image	functions,	but	less	flexible.	It	is	commonly	used	for
off-screen	drawing	in	Window	Systems.

You	can	make	gets	and	puts	on	several	canvases	but	they	must	be
created	using	the	same	driver.	It	is	possible	to	specify	a	part	of	the	image
to	be	drawn,	but	it	is	not	possible	to	zoom.

It	is	called	"server"	images	because	the	data	is	stored	in	a	system	private
format,	that	the	application	(or	the	client)	does	not	have	access.

To	create	a	server	image	there	must	be	an	active	canvas	of	a	driver	with
server	image	support.

cdImage*	cdCanvasCreateImage(cdCanvas*	canvas,	int	w,	int	h);	[in	C]

canvas:CreateImage(w,	h:	number)	->	(image:	cdImage)	[in	Lua]

Creates	a	compatible	image	with	size	=	w	x	h	pixels.	A	compatible	image
has	the	same	color	representation	(number	of	bits	per	pixel)	of	the	active
canvas.	Once	the	server	image	is	created	it	is	independent	of	the	active
canvas.	The	server	image	can	only	be	used	with	an	other	canvas	of	the
same	type	as	the	canvas	that	was	active	when	the	image	was	created.
The	default	background	is	the	same	as	the	canvas,	CD_WHITE.

void	cdKillImage(cdImage*	image);	[in	C]

canvas:KillImage(image:	cdImage)	[in	Lua]

Liberates	memory	allocated	for	the	image.	If	this	function	is	not	called	in

Lua,	the	garbage	collector	will	call	it.

void	cdCanvasGetImage(cdCanvas*	canvas,	cdImage*	image,	int	x,	int	y);	[in	C]

canvas:GetImage(image:	cdImage;	x,	y:	number)	[in	Lua]

Copies	a	rectangular	region	from	the	current	rectangular	context	to	the
memory	(image).	(x,y)	is	the	coordinate	of	the	bottom	left	corner	of	the
rectangular	region.	The	width	and	length	of	the	rectangular	region	are
defined	in	the	image	structure	(when	the	image	is	created).

void	cdCanvasPutImageRect(cdCanvas*	canvas,	cdImage*	image,	int	x,	int	y,	int	xmin,	int	xmax,	int	ymin,	int	ymax);	[in	C]

void	wdCanvasPutImageRect(cdCanvas*	canvas,	cdImage*	image,	double	x,	double	y,	int	xmin,	int	xmax,	int	ymin,	int	ymax);	(WC)	[in	C]

canvas:PutImageRect(image:	cdImage;	x,	y,	xmin,	xmax,	ymin,	ymax:	number)	[in	Lua]

canvas:wPutImageRect(image:	cdImage;	x,	y,	xmin,	xmax,	ymin,	ymax:	number)	(WC)	[in	Lua]

Copies	an	image	in	a	rectangular	region	of	the	canvas	with	the	bottom
left	corner	in	(x,y).	Allows	specifying	a	rectangle	inside	the	image	to	be
drawn,	if	xmin,	xmax,	ymin	and	ymax	are	0,	then	the	whole	image	is
assumed.

void	cdCanvasScrollArea(cdCanvas*	canvas,	int	xmin,	int	xmax,	int	ymin,	int	ymax,	int	dx,	int	dy);	[in	C]

canvas:ScrollArea(xmin,	xmax,	ymin,	ymax,	dx,	dy:	number)	[in	Lua]

Copies	the	rectangle	defined	by	the	coordinates	(xmin,ymin)	and
(xmax,ymax)	to	the	rectangle	defined	by	(xmin+dx,ymin+dy)	and
(xmax+dx,ymax+dy).	It	has	the	same	effect	as	cdGetImage	followed	by
cdPutImage,	but	it	should	be	faster	and	does	not	require	the	explicit
creation	of	an	image	to	be	executed.	Note	that	the	region	belonging	to
the	first	rectangle,	but	not	to	the	second,	remains	unchanged	(the

function	does	not	clean	this	region).

Drivers
Driver	is	the	implementation	of	functions	of	a	canvas	for	a	specific	canvas
type.	In	other	words	it	represents	the	context	in	which	the	canvas	is
situated.	For	example,	a	Window	System	that	has	windows	on	which	you
can	draw.

It	can	be	portable,	platform	independent,	or	it	can	has	a	different
implementation	in	each	platform.	In	this	case	its	functions	may	have
different	behaviors,	but	the	library	is	implemented	in	such	a	way	that
these	differences	are	minimized.

CD_IUP	-	IUP	Driver	(cdiup.h)

This	driver	provides	access	to	an	interface	element	of	a	IUP	canvas.	IUP
is	a	portable	user-interface	library	used	to	create	portable	user-interface
applications.

Use

The	canvas	is	created	by	means	of	a	call	to	the	function
cdCreateCanvas(CD_IUP,	Data),	after	which	other	CD	functions	can	be
called	as	usual.	This	function	creates	a	CD	canvas	based	on	the	existing
IUP	canvas.	The	parameter	Data	is	a	pointer	to	a	handle	of	the	IUP
canvas	(Ihandle*).	For	use	with	CDLUA,	a	canvas	created	with	IUPLUA
must	necessarily	be	passed	as	parameter.

Any	amount	of	such	canvases	may	exist	simultaneously,	but	they	should
not	use	the	same	IUP	canvas.	It	is	important	to	note	that	a	call	to	function
cdKillCanvas	is	required	to	close	the	file	properly.

The	CD	canvas	is	automatically	stored	in	the	IUP	canvas	as	the
"_CD_CANVAS"	attribute.

To	use	this	driver,	it	must	be	linked	with	the	"cdiup"	library	(cdiup.lib	in
Windows,	cdiuplib.a	in	UNIX).

In	Lua,	it	is	necessary	to	call	function	cdluaiup_open()	after	a	call	to
function	cdlua_open(),	apart	from	linkediting	with	the	"cdluaiup"	library.

To	use	this	driver	in	Windows	using	GDI+	is	necessary	to	call
cdUseContextPlus(1)	before	creating	the	canvas.

Behavior	of	Functions

This	driver	is	greatly	platform-dependent,	but	little	dependent	on	the	IUP
library.	For	further	detail,	see	the	Behavior	of	Functions	in	each
platform:	Microsoft	Windows	(GDI),	Windows	Using	GDI+,	X-Windows
(XLIB).	However,	it	should	be	noted	that	some	functions	behave
differently	from	the	basic	functions	of	each	platform.

Control	

cdCanvasActivate:	updates	the	canvas	size;	the	IUP	canvas
might	have	been	resized.

Exclusive	Attributes

"WINDOWRGN":	set	the	shape	of	a	window	to	the	current
complex	clipping	region	(set	only).	If	data	is	NULL	the	region	is
reset.

CD_NATIVEWINDOW	-	Native	Window	Driver
(cdnative.h)

This	driver	provides	access	to	an	existing	Native	Window,	a	basic
element	of	the	user-interface	system.	It	also	provides	access	to	other
native	handles	like	HDC	handles	in	Windows.

Use

The	canvas	is	created	by	means	of	a	call	to	the	function
cdCreateCanvas(CD_NATIVEWINDOW,	Data),	after	which	other	functions
in	the	CD	library	can	be	called	as	usual.	This	function	creates	a	CD
canvas	based	on	an	existing	system	canvas.	The	parameter	Data	is	a
pointer	to	a	handle	of	the	canvas.	It	is	system-dependent,	having	a
different	meaning	in	each	platform:

Microsoft	Windows:	can	be	the	handle	of	the	Windows	window
(HWND),	or	the	handle	of	a	previously	created	Device	Context	(HDC),	or
can	be	a	string	in	the	format	"hdc	width	height"	or,	in	C,	"%p	%d	%d".	To
get	the	entire	screen	use	a	NULL	data.
X-Windows:	It	is	a	string	in	the	format	"display	window"	or,	in	C,	"%p	%lu"
(uses	the	default	screen).

The	given	parameters	must	exists	until	cdKillCanvas	is	called.	The	HDC
is	released	only	if	created	inside	cdCreateCanvas	from	an	HWND	or	when
data	is	NULL.

Any	amount	of	such	canvases	may	exist	simultaneously,	but	they	should
not	use	the	same	window,	except	if	you	are	using	a	GDI	canvas	and	a
GDI+	canvas	at	the	same	time	for	the	same	window.

In	CDLUA,	the	creation	parameter	must	be	a	string	in	X-Windows	and	a
userdata	in	Microsoft	Windows.

To	use	this	driver	in	Windows	using	GDI+	is	necessary	to	call
cdUseContextPlus(1)	before	creating	the	canvas.

Exclusive	Functions

void	cdGetScreenSize(int	*width,	int	*height,	double	*width_mm,
double	*height_mm);	[in	C]
cd.GetScreenSize()	->	(width,	heigth,	mm_width,	mm_height:
number)	[in	Lua]

Equivalent	to	function	cdCanvasGetSize,	but	returns	the	values	relative	to
the	main	screen	of	the	window	system.	It	is	not	necessary	to	have	an
active	canvas	to	call	this	function.

int	cdGetScreenColorPlanes(void);	[in	C]
cd.GetScreenColorPlanes()	->	(bpp:	number)	[in	Lua]

Equivalent	to	function	cdCanvasGetColorPlanes,	but	returns	the	value
relative	to	the	main	screen	of	the	window	system.	It	is	not	necessary	to
have	an	active	canvas	to	call	this	function.

Behavior	of	Functions

This	driver	is	greatly	platform-dependent.	For	further	detail,	see	the
Behavior	of	Functions	in	each	platform:	Microsoft	Windows	(GDI),
Windows	Using	GDI+,	X-Windows	(XLIB).	However,	it	should	be	noted
that	some	functions	behave	differently	from	the	basic	functions	of	each
platform.

Control

cdCanvasActivate:	updates	the	canvas	size;	the	window	might
have	been	resized.	If	the	canvas	was	created	using	a	HDC,	the
size	will	not	be	updated.	

IMPORTANT:	For	the	standard	Win32	base	driver	(not	GDI+)	if
your	Windows	does	not	have	one	of	the	styles	CS_OWNDC	or
CS_CLASSDC,	then	a	temporary	HDC	will	be	created	everytime
a	cdCanvasActivate	is	called.	To	release	this	HDC	call
cdCanvasDeactivate	after	drawing.	The	IupCanvas	control	of
the	IUP	library	always	have	the	CS_CLASSDC	style,	so	this
should	be	ignored	for	IUP	applications.

Exclusive	Attributes

"WINDOWRGN":	set	the	shape	of	a	window	to	the	current
complex	clipping	region	(set	only).	If	data	is	NULL	the	region	is
reset.

CD_CLIPBOARD	-	Clipboard	Driver	(cdclipbd.h)

This	driver	allows	the	access	to	a	Clipboard	area.	It	is	greatly	dependent
on	the	system.	In	Win32,	it	creates	an	Enhanced	Metafile,	a	Bitmap	or	a
CD	Metafile;	in	X-Windows	it	creates	only	a	CD	Metafile.

Use

The	canvas	is	created	by	means	of	a	call	to	function
cdCreateCanvas(CD_CLIPBOARD,	Data),	after	which	other	functions	in
the	CD	library	can	be	called	as	usual.	The	Data	parameter	string	is
platform-dependent	and	varies	according	to	the	metafile	created.	See
each	metafile's	documentation,	but	remember	to	exclude	parameter
"filename".

In	the	Windows	environment,	if	the	string	"-b"	is	present,	it	means	that	a
Bitmap	must	be	created	instead	of	a	metafile,	and,	if	the	string	"-m"	is
specified,	a	CD	Metafile	will	be	created.	For	a	Bitmap	the	remaining
string	must	contains	the	bitmap	size	and	optionally	its	resolution:	"-b
widthxheight	[resolution]"	or	in	C	"%dx%d	%g",	the	resolution	default	is	the
screen	resolution.

In	the	X-Windows	environment,	the	Display	("%p")	where	the	data	will	be
stored	must	be	passed	as	a	parameter	before	the	CD	Metafile
parameters.	This	environment's	driver	is	used	only	for	applications	that
use	CD	to	communicate	with	each	other,	because	only	CD	Metafiles	are
created.

Any	amount	of	such	canvases	may	exist	simultaneously.	It	is	important	to
note	that	a	call	to	function	cdKillCanvas	is	required	to	properly	copy	the
data	to	the	Clipboard.

You	can	interpret	the	data	from	the	Clipboard	using	function	cdPlay.	In

the	X-Windows	environment,	the	parameter	"data"	for	the	cdPlay	function
is	the	pointer	to	the	Display	where	the	metafile	will	be	obtained.	The
cdRegisterCallback	must	be	called	for	the	driver	that	will	interpret	the
file,	except	for	bitmaps	that	the	CD_CLIPBOARD	driver	must	be	used.

To	use	this	driver	in	Windows	using	GDI+	is	necessary	to	call
cdUseContextPlus(1)	before	creating	the	canvas.

Behavior	of	Functions

This	driver	is	greatly	platform-dependent.	For	further	detail,	see	the
Behavior	of	Functions	in	each	platform:	Microsoft	Windows	(GDI),	X-
Windows	(XLIB).	However,	it	should	be	noted	that	some	functions
behave	differently	from	the	basic	functions	of	each	platform.

CD_PRINTER	-	Printer	Driver	(cdprint.h)

This	driver	provides	access	to	a	System	Default	Printer.

Currently,	it	works	only	in	Microsoft	Windows	platforms,	but	it	is	possible
to	use	it	in	other	platforms	without	the	risk	of	compilation	error.	If	you
attempt	to	create	a	canvas	in	another	platform,	the	function
cdCreateCanvas	will	return	NULL.

Use

The	canvas	is	created	by	calling	function	cdCreateCanvas(CD_PRINTER,
Data),	after	which	other	CD	functions	can	be	called	as	usual.	The	Data
string	has	the	following	format:

"name	[-d]"				or	in	C	style	"%s	-d"

name	is	an	optional	document	name	that	will	appear	in	the	printer	queue.
Optionally,	-d	displays	the	System	Printer	dialogue	box	before	starting	to
print,	allowing	you	to	configure	the	printer's	parameters.	When	using	this
parameter	and	the	return	canvas	is	NULL,	one	must	assume	that	the
print	was	canceled	by	the	user.

Any	amount	of	such	canvases	may	exist	simultaneously.	It	is	important	to
note	that	a	call	to	function	cdKillCanvas	is	required	to	properly	send	the
data	to	the	printer.

Pages	-	Use	Flush	to	change	to	a	new	page.	You	can	draw	first	on	page
1,	then	on	page	2	and	so	forth.

To	use	this	driver	in	Windows	using	GDI+	is	necessary	to	call
cdUseContextPlus(1)	before	creating	the	canvas.

Behavior	of	Functions

This	driver	is	greatly	platform-dependent.	For	further	detail,	see	the
Behavior	of	Functions	in	each	platform:	Microsoft	Windows	(GDI),
Windows	Using	GDI+,	X-Windows	(XLIB).	However,	it	should	be	noted
that	some	functions	behave	differently	from	the	basic	functions	of	each
platform.

A	printer	created	in	Win32s	has	the	same	limitations	as	the	WMF	driver.
In	Windows	95	or	NT,	it	has	the	same	limitations	as	the	EMF	driver.

Control

Flush:	changes	to	a	new	page,	preserving	the	previous	one.	In
the	Win32	base	driver,	after	the	first	page,	function	cdText	draws
the	text	below	its	correct	position	-	we	do	not	know	why	this
happens.

Attributes

Hatch:	opaque	in	Win32	base	driver	(GDI).

CD_PICTURE	-	CD	Picture	(cdpicture.h)

This	driver	allows	the	creation	of	a	CD	Picture.	It	store	primitives	and
attributes	in	memory	that	can	be	played	and	resized	in	any	other	driver.	It
does	not	includes	clipping	and	WriteMode.

Use

The	file	is	created	by	calling	function	cdCreateCanvas(CD_PICTURE,
Data).	The	Data	parameter	is	a	string	that	can	contain	the	resolution	in	the
following	format:

"[resolution]"	or	in	C	use	"%lg"

Resolution	is	the	number	of	pixels	per	millimeter;	its	default	value	is	"3.78
pixels/mm"	(96	DPI).

The	canvas	size	is	automatically	calculated	to	be	the	bounding	box	of	all
the	primitives	inside	the	picture.

Any	amount	of	such	canvases	may	exist	simultaneously.	It	is	important	to
note	that	a	call	to	function	cdKillCanvas	is	required	to	release	the	picture
memory.

Behavior	of	Functions

Coordinate	System	and	Clipping

Play:	implemented.
UpdateYAxis:	does	nothing.
Clipping:	not	supported.
Transformation	Matrix:	not	supported.
cdGetCanvasSize:	returns	the	size	of	the	bounding	box	that

includes	all	primitives	inside	the	picture.

Attributes

WriteMode:	does	nothing.
FontDim:	uses	a	size	estimator,	returning	approximate	values.
TextSize:	uses	a	size	estimator,	returning	approximate	values.

Colors

GetColorPlanes:	always	returns	24.

Primitives

Floating	point	primitives	are	supported.

Client	Images

GetImageRGB:	does	nothing.

Server	Images

All	functions	do	nothing.

CD_IMAGERGB	-	RGB	Client	Image	Driver
(cdirgb.h)

This	driver	allows	access	to	a	Client	Image,	an	imaged	based	in	RGB
colors	with	24	or	32	bits	per	pixel	(8	per	channel).	It	is	used	to	implement
high-quality	offscreen	drawings,	but	is	slower	than	the	Server	Image
version.	In	fact,	it	is	a	rasterizer,	that	is,	it	converts	vector	primitives	into	a
raster	representation.	All	primitives	are	implemented	by	the	library	and
are	not	system-dependent	(the	primitives	of	the	Server	Image	version	are
system-dependent).

Use

The	canvas	is	created	by	means	of	a	call	to	the	function
cdCreateCanvas(CD_IMAGERGB,	Data),	after	which	other	functions	in	the
CD	library	can	be	called	as	usual.	The	function	creates	an	RGB	image,
and	then	a	CD	canvas.	The	Data	parameter	string	has	the	following
format:

"widthxheight	[r	g	b]	-r[resolution]"						in	C	"%dx%d	%p	%p	%p	-r%g"

or

"widthxheight	[r	g	b	a]	-r[resolution]	-a"				in	C	"%dx%d	%p	%p	%p	%p	-r%g	-a"

It	must	include	the	canvas'	dimensions.	Width	and	height	are	provided	in
pixels	(note	the	lowercase	"x"	between	them).	As	an	option,	you	can
specify	the	buffers	to	be	used	by	the	driver,	so	that	you	can	draw	over	an
existing	image.	The	resolution	can	be	defined	with	parameter	-r;	its
default	value	is	"3.78	pixels/mm"	(96	DPI).	

When	the	parameter	-a	is	specified	an	alpha	channel	will	be	added	to	the
canvas	underlying	image.	All	primitives	will	be	composed	using	an	over
operator	if	the	foreground	or	background	colors	have	alpha	components.
This	channel	is	initialized	with	transparent	(0).	The	other	channels	are

initialized	with	white	(255,	255,	255).	After	drawing	in	the	RGBA	image
the	resulting	alpha	channel	can	be	used	to	compose	the	image	in	another
canvas.

All	channels	are	initialized	only	when	allocated	internally	by	the	driver.
They	are	not	initialized	when	allocated	by	the	application.

Any	amount	of	such	canvases	may	exist	simultaneously.	It	is	important	to
note	that	a	call	to	function	cdKillCanvas	is	required	to	release	internal
allocated	memory.

In	Lua,	the	canvas	can	be	created	in	two	ways:	with	an	already	defined
image	or	without	it.	With	an	image,	an	RGB	image	must	be	passed	as
parameter,	created	by	functions	cd.CreateImageRGB,
cd.CreateImageRGBA	or	cd.CreateBitmap	in	Lua.	The	resolution	must
be	passed	in	an	extra	parameter	after	the	image.

Exclusive	Functions

cd.ImageRGB(canvas:	cdCanvas)	->	(imagergb:	cdImageRGB	or
cdImageRGBA)	[in	Lua]
cd.ImageRGBBitmap(canvas:	cdCanvas)	->	(bitmap:	cdBitmap)
[in	Lua]

Returns	the	canvas'	internal	image.

Behavior	of	Functions

All	primitives	are	from	the	Simulation	driver,	see	the	Simulation	driver's
documentation	for	further	information.

Control

Flush:	does	nothing.
Play:	does	nothing,	returns	CD_ERROR.

Coordinate	System	and	Clipping

UpdateYAxis:	does	nothing.	The	axis	orientation	is	the	same	as
the	CD	library's.

Colors

GetColorPlanes:	returns	24	if	no	alpha,	returns	32	if	exists	an
alpha	channel.
Palette:	does	nothing.
Foreground	&	Background:	accepts	the	transparency	information
encoded	in	the	color.

Exclusive	Attributes

"REDIMAGE",	"GREENIMAGE",	"BLUEIMAGE",
"ALPHAIMAGE":	return	the	respective	pointers	of	the	canvas
image	(read-only).	Not	accessible	in	Lua.

"ANTIALIAS":	controls	the	use	of	anti-aliasing	for	line
primitives.	Assumes	values	"1"	(active)	and	"0"	(inactive).
Default	value:	"1".	Notice	that	text	is	always	antialiased.

"ROTATE":		allows	the	usage	of	1	angle	and	1	coordinate	(x,	y),
that	define	a	global	rotation	transformation	centered	in	the
specified	coordinate.	Use	1	real	and	2	integer	values	inside	a
string	("%g	%d	%d"	=	angle	x	y).	In	this	driver	will	change	the
current	transformation	matrix,	if	removed	will	reset	the	current
transformation	matrix.

CD_IMAGE	-	Server	Image	Driver	(cdimage.h)

This	driver	provides	access	to	a	Server	Image,	a	memory-based	high-
performance	image	that	corresponds	to	the	attributes	of	the	system's
devices.	It	is	used	for	offscreen	drawings.

Use

The	canvas	is	created	by	means	of	a	call	to	function
cdCreateCanvas(CD_IMAGE,	Data),	after	which	other	functions	in	the	CD
library	can	be	called	as	usual.	The	function	creates	a	CD	canvas	based
on	an	existing	Server	Image.	The	Data	parameter	must	be	a	pointer	to	an
image	created	with	function		cdCreateImage.

Any	amount	of	such	canvases	may	exist	simultaneously.	It	is	important	to
note	that	a	call	to	function	cdKillCanvas	is	required	to	properly	end	the
driver.	You	can	call	function	cdKillImage	only	after	calling	cdKillCanvas.

For	use	with	CDLUA,	the	Server	Image	passed	as	parameter	must	have
been	created	with	function	cd.CreateImage	in	Lua.

To	use	this	driver	in	Windows	using	GDI+	is	necessary	to	call
cdUseContextPlus(1)	before	creating	the	canvas.

Behavior	of	Functions

This	driver	is	greatly	platform-dependent.	For	further	detail,	see	the
Behavior	of	Functions	in	each	platform:	Microsoft	Windows	(GDI),
Windows	Using	GDI+,	X-Windows	(XLIB).	However,	it	should	be	noted
that	some	functions	behave	differently	from	the	basic	functions	of	each
platform.

CD_DBUFFERRGB	-	Double	Buffer	Driver	using
a	RGB	image	(cdirgb.h)

Implements	the	concept	of	offscreen	drawing.	It	is	based	on	a	Image
RGB	(the	back	buffer)	and	any	other	canvas	(the	front	buffer).

Use

The	canvas	is	created	by	means	of	a	call	to	function
cdCreateCanvas(CD_DBUFFERRGB,	Data),	after	which	other	functions	in
the	CD	library	can	be	called	as	usual.	This	function	creates	a	CD	canvas
to	use	with	any	existing	canvas.	The	parameter	Data	is	a	pointer	to	the
already	created	canvas.

Any	amount	of	such	canvases	may	exist	simultaneously.	It	is	important	to
note	that	a	call	to	function	cdKillCanvas	is	required	to	properly	end	the
driver.	Call	function	cdKillCanvas	for	this	driver	before	calling
cdKillCanvas	for	the	client	canvas	driver.

The	drawing	functions	will	work	normally	as	if	they	were	drawn	on	the
image	RGB	driver.	When	function	cdCanvasFlush	is	executed,	the	image
is	drawn	in	the	canvas	passed	as	parameter	in	the	canvas	creation.

When	the	window's	size	changes,	the	RGB	image	is	automatically
recreated	using	the	same	size	as	the	canvas.	This	is	done	in	the	function
cdCanvasActivate.

Behavior	of	Functions

This	driver	depends	on	the	RGB	Client	Image	Driver.

Control

Flush:	draws	the	contents	of	the	image	into	the	window.	It	is
affected	by	Origin	and	Clipping,	but	not	by	WriteMode.

	

CD_DBUFFER	-	Double	Buffer	Driver	using	a
server	image	(cddbuf.h)

Implements	the	concept	of	offscreen	drawing.	It	is	based	on	a	Server
Image	(the	back	buffer)	and	a	Window	canvas	(the	front	buffer).

Use

The	canvas	is	created	by	means	of	a	call	to	function
cdCreateCanvas(CD_DBUFFER,	Data),	after	which	other	functions	in	the
CD	library	can	be	called	as	usual.	This	function	creates	a	CD	canvas	to
use	with	an	existing	window	canvas	(Native	Windows	or	IUP).	The
parameter	Data	is	a	pointer	to	the	already	created	canvas.

Any	amount	of	such	canvases	may	exist	simultaneously.	It	is	important	to
note	that	a	call	to	function	cdKillCanvas	is	required	to	properly	end	the
driver.	Call	function	cdKillCanvas	for	this	driver	before	calling
cdKillCanvas	for	the	window	driver.

The	drawing	functions	will	work	normally	as	if	they	were	drawn	on	the
server	image	driver.	When	function	cdCanvasFlush	is	executed,	the
image	is	drawn	in	the	window	canvas	passed	as	parameter	in	the	canvas
creation.

When	the	window's	size	changes,	the	server	image	is	automatically
recreated	using	the	same	size	as	the	canvas.	This	is	done	in	the	function
cdCanvasActivate.

We	suggest	you	to	implement	rubber	bands	using	XOR	directly	on	the
front	buffer.

To	use	this	driver	in	Windows	using	GDI+	is	necessary	to	call
cdUseContextPlus(1)	before	creating	the	canvas.

Behavior	of	Functions

This	driver	is	greatly	platform-dependent.	For	further	detail,	see	the
Behavior	of	Functions	in	each	platform:	Microsoft	Windows	(GDI),
Windows	Using	GDI+,	X-Windows	(XLIB).	However,	it	should	be	noted
that	some	functions	behave	differently	from	the	basic	functions	of	each
platform.

Control

Flush:	draws	the	contents	of	the	image	into	the	window.	It	is
affected	by	Origin	and	Clipping,	but	not	by	WriteMode.

	

CD_PDF	-	PDF	Driver	(cdpdf.h)

This	drivers	allows	generating	a	PDF	file.	This	format	developed	for
representing	documents	in	a	manner	that	is	independent	of	the	original
application	software,	hardware,	and	operating	system	used	to	create
those	documents.	The	format's	copyrights	are	property	of	Adobe
Systems.

This	driver	is	very	similar	to	the	PS	driver	but	it	uses	the	PDFlib	library	to
generate	the	PDF	(http://www.pdflib.com/).	There	are	two	PDFlib	licenses
available,	one	commercial	and	one	free	with	a	flexible	license,	see
PDFlib	Lite	License.	The	CD_PDF	driver	works	with	both	versions.

By	default	the	pre-compiled	library	in	the	distribution	uses	the	PDF	Lite
version	code.	The	configuration	of	the	PDF	Lite	code	included	does	not
supports	image	file	formats.	The	current	PDF	Lite	version	is	7.0.0p3.

PDFlib	Copyright	(c)	1997-2006	Thomas	Merz	and	PDFlib	GmbH.	All
rights	reserved.	Applications	that	use	this	driver	are	subject	to	the	PDFlib
GmbH	License	Agreement.

Use

The	file	is	created	and	opened	by	calling	function
cdCreateCanvas(CD_PDF,	Data),	in	which	Data	contains	the	filename	and
canvas	dimensions.	This	function	opens	the	file	and	writes	its	header.
Then,	other	functions	in	the	CD	library	can	be	called	as	usual.	The	Data
parameter	string	has	the	following	format:

"filename	-p[paper]	-w[width]	-h[height]	-s[resolution]	[-o]"

or	in	C

"%s	-p%d	-w%g	-h%g	-s%d	-o"

The	filename	must	be	inside	double	quotes	(")	if	it	has	spaces.	Any

http://www.adobe.com
http://www.pdflib.com/
http://www.pdflib.org/purchase/license-lite.html

amount	of	such	canvases	may	exist	simultaneously.	It	is	important	to
note	that	a	call	to	function	cdKillCanvas	is	required	to	close	the	file
properly.

To	use	this	driver,	it	must	be	linked	with	the	"cdpdflib"	library
(cdpdflib.lib	in	Windows,	cdpdfliblib.a	in	UNIX).	For	the	Visual	C++
platforms	there	are	available	the	"cdpdf"	library	which	dependens	on
(and	do	not	include)	the	standard	pdflib	library.

Paper	Size	-	The	default	paper	size	is	A4.	It	is	possible	to	change	it	by
using	one	of	the	predefined	sizes	-	CD_A0,	CD_A1,	CD_A2,	CD_A3,	CD_A4,
CD_A5,	CD_LETTER	and	CD_LEGAL	-	with	parameter	"-p".	It	is	also	possible	to
define	a	paper	in	a	particular	size	by	using	parameters	"-w"	e	"-h".	Values
are	provided	in	millimeters.

Default	Paper	Sizes
	 Width	(mm) Length	(mm)
A0 841 1187
A1 594 841
A2 420 594
A3 297 420
A4 210 297
A5 148 210
Letter 216 279
Legal 216 356

Resolution	-	Resolution	is	used	to	convert	values	from	millimeters	to
pixels	(the	same	as	points,	but	the	number	of	points	is	per	inch	-	DPI).
Use	parameter	"-s"	to	configure	the	resolution.	The	default	value	is	300
DPI.

Orientation	-	The	page	can	be	oriented	as	portrait	or	landscape.	The
default	value	is	portrait,	but	when	the	parameter	"-o"	is	used,	the

horizontal	and	vertical	values	are	switched.

In	Lua,	it	is	necessary	to	call	function	cdluapdf_open()	after	a	call	to
function	cdlua_open(),	apart	from	linkediting	with	the	"cdluapdf"	library.

Behavior	of	Functions

Control

Play:	does	nothing,	returns	CD_ERROR.
Flush:	changes	to	a	new	page,	preserving	the	previous	one.
Clear:	does	nothing.

Coordinate	System	&	Clipping

UpdateYAxis:	does	nothing.
Complex	Regions:	not	supported.

Attributes

Background	does	nothing,	returns	CD_WHITE.
BackOpacity:	does	nothing,	returns	CD_TRANSPARENT.
WriteMode:	does	nothing,	returns	CD_REPLACE.
Hatch:	is	always	opaque.
Stipple:	is	always	opaque.
Font:	the	old	"System"	font	is	mapped	to	the	"Courier"	font.	For
the	PDF	core	fonts	styles	are	added	to	the	font	name,	for	other
fonts	styles	are	simulated	by	PDFlib.	Underline	and	Strikeout
are	supported.	Following	is	the	core	fonts:

Courier,	Courier-Bold,	Courier-Oblique,	Courier-BoldOblique,

Helvetica,	Helvetica-Bold,	Helvetica-Oblique,	Helvetica-BoldOblique,

Times-Roman,	Times-Bold,	Times-Italic,	Times-BoldItalic,

Symbol,	

ZapfDingbats

Colors

GetColorPlanes:	returns	24.
Palette:	does	nothing.

Client	Images

GetImageRGB:	does	nothing.
PutImageMap:	stores	an	RGB	image.

Primitives

Pixel:	does	not	exist	in	PDF,	is	simulated	using	a	circle	with
radius=1.
Floating	point	primitives	are	supported.
Filled	primitves	do	not	include	the	line	at	the	edges	of	the	filled
area.

Server	Images

All	functions	do	nothing.

Exclusive	Attributes

"POLYHOLE":	defines	the	index	of	the	vertex	where	there	is	a
hole	in	a	closed	polygon.	It	will	affect	the	next	cdEnd.	Can	be
called	several	times	between	cdBegin	and	cdEnd	to	define
holes.	The	value	passed	must	be	a	string	containing	an	integer
("%d").	If	the	value	of	the	attribute	passed	is	NULL,	all	holes	will
no	longer	be	considered.	When	consulted	returns	the	current
number	of	holes	("%d").	It	can	have	a	maximum	of	500	holes.
Default:	NULL.

"HATCHBOXSIZE":	defines	the	size	of	smallest	hatch	box
pattern.	This	affects	the	spacing	between	the	hatch	lines.	The

value	passed	must	be	a	string	containing	an	integer	("%d").	If
the	value	of	the	attribute	passed	is	NULL,	the	value	is	rest	to	the
default.	When	consulted	returns	the	current	value	("%d").
Default:	"8".

"ROTATE":		allows	the	usage	of	1	angle	and	1	coordinate	(x,	y),
that	define	a	global	rotation	transformation	centered	in	the
specified	coordinate.	Use	1	real	and	2	integer	values	inside	a
string	("%g	%d	%d"	=	angle	x	y).

"OPAQUE":		allows	the	usage	of	a	global	opacity	value.	The
value	passed	must	be	a	string	containing	an	integer	("%d")
[0=full	transparent,	255=full	opaque].	Use	NULL	to	reset	to	the
previous	state.

"PATTERN":		creates	a	pattern	with	regular	primitives	(except
images).	The	value	passed	must	be	a	string	containing	two
integeres	with	the	pattern	size	("%dx%d")	[widthxheight].	Just
call	regular	primitives.	Use	NULL	to	end	the	pattern	creation	and
set	the	interior	style.

"PDF":	Returns	the	"PDF*"	handle	of	the	PDFLib.

CD_PS	-	PostScript	Driver	(cdps.h)

This	drivers	allows	generating	a	PostScript	file.	This	format	was	created
to	be	a	high-quality	graphics	language	for	printers	and	is	currently
supported	by	several	printers.	If	your	printer	supports	PostScript,	you	can
send	the	file	generated	by	the	driver	directly	to	the	printer	port.	Usually,
the	filename	has	an	extension	.PS	or	.EPS.	The	driver	generates	level-2
PostScript,	therefore	some	PostScript	viewers	might	present	errors.	The
format's	copyrights	are	property	of	Adobe	Systems.

Use

The	file	is	created	and	opened	by	calling	function
cdCreateCanvas(CD_PS,	Data),	in	which	Data	contains	the	filename	and
canvas	dimensions.	This	function	opens	the	file	and	writes	its	header.
Then,	other	functions	in	the	CD	library	can	be	called	as	usual.	The	Data
parameter	string	has	the	following	format:

"filename	-p[paper]	-w[width]	-h[height]	-l[left]	-r[right]	-b[bottom]	-t[top]	-s[resolution]	[-e]

or	in	C

"%s	-p%d	-w%g	-h%g	-l%g	-r%g	-b%g	-t%g	-s%d	-e	-o	-1	-g	-d%g"

The	filename	must	be	inside	double	quotes	(")	if	it	has	spaces.	Any
amount	of	such	canvases	may	exist	simultaneously.	It	is	important	to
note	that	a	call	to	function	cdKillCanvas	is	required	to	close	the	file
properly.

Paper	Size	-	The	default	paper	size	is	A4.	It	is	possible	to	change	it	by
using	one	of	the	predefined	sizes	-	CD_A0,	CD_A1,	CD_A2,	CD_A3,	CD_A4,
CD_A5,	CD_LETTER	and	CD_LEGAL	-	with	parameter	"-p".	It	is	also	possible	to
define	a	paper	in	a	particular	size	by	using	parameters	"-w"	e	"-h".	Values
are	provided	in	millimeters.

Default	Paper	Sizes

http://www.adobe.com

Default	Paper	Sizes
	 Width	(mm) Length	(mm)
A0 841 1187
A1 594 841
A2 420 594
A3 297 420
A4 210 297
A5 148 210
Letter 216 279
Legal 216 356

Margins	-	The	margins	are	controlled	by	parameters	"-l"	"-r"	"-t"	and	"-b"
(left,	right,	top,	bottom).	Values	are	provided	in	millimeters.	Default
margins	are	25.4	mm	to	all	parameters.	You	can	draw	only	inside	the
margins.

Resolution	-	Resolution	is	used	to	convert	values	from	millimeters	to
pixels	(the	same	as	points,	but	the	number	of	points	is	per	inch	-	DPI).
Use	parameter	"-s"	to	configure	the	resolution.	The	default	value	is	300
DPI.

Orientation	-	The	page	can	be	oriented	as	portrait	or	landscape.	The
default	value	is	portrait,	but	when	the	parameter	"-o"	is	used,	the
horizontal	and	vertical	values	are	switched.

EPS	-	The	PostScript	file	can	be	in	an	Encapsulated	PostScript	format.
For	such,	simply	specify	the	parameter	"-e".	It	is	useful	for	other
applications	to	import	the	PostScript	file.	You	can	define	the	margins	of
the	bounding	box	by	means	of	parameter	"-d",	in	millimeters.

Debug	-	Parameter	"-g"	adds	a	series	of	comments	to	the	PS	file,	making
the	beginning	and	end	of	a	command	from	the	CD	library	explicit.	It	is
useful	only	for	those	who	understand	PostScript	and	wish	to	identify	a
problem.	It	considerably	increases	the	file	size.

Level	1	-	Parameter	"-1"	forces	the	driver	to	generate	a	level-1
PostScript.	In	this	case,	pattern,	stipple	and	hatch	are	not	supported.

Pages	-	Use	function	cdFlush	to	change	to	a	new	page.	The	previous
page	will	not	be	changed.

Behavior	of	Functions

Control

Play:	does	nothing,	returns	CD_ERROR.
Flush:	changes	to	a	new	page,	preserving	the	previous	one.
Does	nothing	in	EPS	mode.
Clear:	does	nothing.

Coordinate	System	&	Clipping

GetCanvasSize:	returns	the	page's	size	within	the	margins
(drawing	area).
UpdateYAxis:	does	nothing.
Complex	Regions:	not	supported.

Attributes

Background	does	nothing,	returns	CD_WHITE.
BackOpacity:	does	nothing,	returns	CD_TRANSPARENT.
WriteMode:	does	nothing,	returns	CD_REPLACE.
FontDim:	is	simulated.
TextSize:	is	simulated.
Hatch:	is	always	opaque	(to	be	implemented).
Stipple:	is	always	opaque	(to	be	implemented).
TextAlignment:	Baseline	is	the	same	as	South.
Font:	old	name	"System"	is	mapped	to	"Courier".	Styles	are
added	to	the	Postscript	font	name.

Colors

GetColorPlanes:	returns	24.
Palette:	does	nothing.

Client	Images

GetImageRGB:	does	nothing.
PutImageMap:	stores	an	RGB	image	in	the	file	(to	be
implemented).
PutImageRGBA:	alpha	is	ignored	(to	be	implemented).

Primitives

Pixel:	does	not	exist	in	PS,	is	simulated	using	a	circle	with
radius=1.
Floating	point	primitives	are	supported.
Filled	primitves	do	not	include	the	line	at	the	edges	of	the	filled
area.

Server	Images

All	functions	do	nothing.

Exclusive	Attributes

"POLYHOLE":	defines	the	index	of	the	vertex	where	there	is	a
hole	in	a	closed	polygon.	It	will	affect	the	next	cdEnd.	Can	be
called	several	times	between	cdBegin	and	cdEnd	to	define
holes.	The	value	passed	must	be	a	string	containing	an	integer
("%d").	If	the	value	of	the	attribute	passed	is	NULL,	all	holes	will
no	longer	be	considered.	When	consulted	returns	the	current
number	of	holes	("%d").	It	can	have	a	maximum	of	500	holes.

"CMD":	saves	a	string	directly	to	the	file.	Allows	adding

PostScript	commands	to	the	file	generated	by	the	CD	library.
(set	only)

"ROTATE":		allows	the	usage	of	1	angle	and	1	coordinate	(x,	y),
that	define	a	global	rotation	transformation	centered	in	the
specified	coordinate.	Use	1	real	and	2	integer	values	inside	a
string	("%g	%d	%d"	=	angle	x	y).

CD_METAFILE	-	CD	Metafile	Driver	(cdmf.h)

This	driver	allows	the	generation	of	a	CD	Metafile,	a	very	simple	format
that	includes	calls	to	functions	of	the	CD	library	and	provides	persistence
to	its	primitives.

Use

The	file	is	created	by	calling	function	cdCreateCanvas(CD_METAFILE,
Data).	The	Data	parameter	is	a	string	that	must	contain	the	filename	and
the	canvas	dimensions,	in	the	following	format:

"filename	[widthxheight	resolution]"	or	in	C	use	"%s	%gx%g	%g"

Only	the	parameter	filename	is	required.	The	filename	must	be	inside
double	quotes	(")	if	it	has	spaces.	Width	and	height	are	provided	in
millimeters	(note	the	lowercase	"x"	between	them),	and	their	default
value	in	pixels	is	INT_MAX	for	both	dimensions.	Resolution	is	the	number
of	pixels	per	millimeter;	its	default	value	is	"3.78	pixels/mm"	(96	DPI).
Width,	height	and	resolution	are	real	values.

Any	amount	of	such	canvases	may	exist	simultaneously.	It	is	important	to
note	that	a	call	to	function	cdKillCanvas	is	required	to	close	the	file
properly.

Images	-	Be	careful	when	saving	images	in	the	file,	because	it	uses	a
text	format	to	store	all	numbers	and	texts	of	primitives,	including	images,
which	significantly	increases	its	size.

Extension	-	Although	this	is	not	required,	we	recommend	the	extension
used	for	the	file	to	be	".MF".

Behavior	of	Functions

Coordinate	System	and	Clipping

Play:	implemented.
UpdateYAxis:	does	nothing.
Complex	Regions:	not	supported.
Clear:	removes	all	primitives	from	the	picture.

Attributes

FontDim:	uses	a	size	estimator,	returning	approximate	values.
TextSize:	uses	a	size	estimator,	returning	approximate	values.

Colors

GetColorPlanes:	always	returns	24.

Primitives

Floating	point	primitives	are	supported.

Client	Images

GetImageRGB:	does	nothing.

Server	Images

All	functions	do	nothing.

CD_CGM	-	Computer	Graphics	Metafile	Driver
(cdcgm.h)

This	driver	allows	generating	a	Computer	Graphics	Metafile,	which	is	an
ANSI	standard	for	the	persistent	storage	of	graphics	primitives.	The	file
usually	has	an	extension	.CGM.

Use

The	file	file	is	created	by	means	of	a	call	to	the	function
cdCreateCanvas(CD_CGM,	Data),	which	opens	the	file	and	writes	its
header.	Then,	other	functions	in	the	CD	library	can	be	called	as	usual.
The	Data	parameter	string	has	the	following	format:

"filename	[widthxheight]	[resolution]	[-t]	-p[precision]"	or	in	C	style	"

Only	the	parameter	filename	is	required.	The	filename	must	be	inside
double	quotes	(")	if	it	has	spaces.	Width	and	height	are	provided	in
millimeters	(note	the	lowercase	"x"	between	them),	and	their	default
value	in	pixels	is	INT_MAX	for	both	dimensions.	When	the	canvas'	size
is	not	specified,	the	VDC	Extension	saved	to	the	file	is	the	image's
bounding	rectangle.	The	resolution	is	the	number	of	pixels	per	millimeter;
its	default	value	is	"3.78	pixels/mm"	(96	DPI).	Width,	height	and	resolution
are	real	values.	Width,	height	and	resolution	are	used	only	by
cdGetCanvasSize	and	in	pixel-millimeter	conversion.	Parameter	-t
modifies	the	codification.	Parameter	-p	specifies	the	precision	of	integers,
which	can	be	16	(default)	or	32.

Any	amount	of	such	canvases	may	exist	simultaneously.	It	is	important	to
note	that	a	call	to	function	cdKillCanvas	is	required	to	close	the	file
properly.

Coding	-	The	CGM	format	supports	binary	and	text	coding.	If	you	are	not

sure	what	to	do,	use	binary	coding,	which	is	the	default.	Should	you
prefer	text	coding,	add	a	"-t"	string	to	the	Data	parameter.

Precision	of	Coordinates	-	The	primitives	can	use	coordinates	in	real
numbers.	However,	for	compatibility	reasons,	we	use	coordinates	in
integers.

Behavior	of	Functions

Control	

Clear:	does	nothing.
Flush:	creates	a	new	image,	preserving	the	previous	one.	The
CGM	format	supports	multiple	images	in	a	file.
Play:	works	with	files	created	with	text	or	binary	coding.	There
are	several	callbacks	for	this	driver.	If	one	of	the	callbacks
returns	a	value	different	from	zero,	cdPlay's	processing	is
interrupted.	The	driver	implements	the	callback	CD_SIZECB
and	other	callbacks	associated	to	CGM:
CD_COUNTERCB	-	int(*cdcgmcountercb)(cdContext	*driver,
double	percent)	-	Executed	for	each	header	of	CGM
commands;	returns	the	percentage	(0-100%)	of	headers	read.
CD_SCLMDECB	-	int(*cdcgmsclmdecb)(cdContext	*driver,
short	scl_mde,	short	*drw_mode,	double	*factor)	-	Executed
for	the	command	CGM	SCALE	MODE.	Returns	the	current
CGM	scale	mode	and	allows	the	callback	to	modify	the	scale
mode	used	by	the	cdPlay	function	(ABSTRACT=0,	METRIC=1).
Should	you	choose	the	METRIC	or	ABSTRACT	scale	mode	but
the	original	scale	mode	is	METRIC,	you	must	provide	the
conversion	factor	in	mm	per	pixel.
CD_VDCEXTCB	-	int(*cdcgmvdcextcb)(cdContext	*driver,
short	type,	void	*xmn,	void	*ymn,	void	*xmx,	void	*ymx)	-
Executed	for	the	CGM	command	CGM	VDC	EXTENT,	returns
the	VDC	SPACE.	
CD_BEGPICTCB	-	int(*cdcgmbegpictcb)(cdContext	*driver,
char	*pict)	-	Executed	for	the	command	BEGIN	PICTURE,

returns	the	string	that	describes	the	image.
CD_BEGPICTBCB	-	int(*cdcgmbegpictbcb)(cdContext
*driver)	-	Executed	for	the	command	BEGIN	PICTURE	BODY.
CD_CGMBEGMTFCB	-	int	(*cdcgmbegmtfcb)(cdContext
*driver,	int	*xmin,	int	*ymin,	int	*xmax,	int	*ymax)	-
Executed	for	the	command	BEGIN	METAFILE,	provides	the
drawing	limits	of	the	image	in	the	file.

Coordinate	System	and	Clipping

UpdateYAxis:	does	nothing.	The	axis	orientation	is	the	same	as
the	CD	library.
Complex	Regions:	not	supported.
Transformation	Matrix:	not	supported.

Primitives

Begin:	if	parameter	CD_CLIP	or	CD_BEZIER	are	specified,	does
nothing.
Pixel:	does	not	exist	in	CGM,	is	simulated	using	a	mark	with	size
1.
Chord:	does	nothing.
Floating	point	primitives	are	supported.

Attributes

WriteMode:	does	nothing,	returns	CD_REPLACE.
FontDim:	is	simulated.
FillMode:	does	nothing.
LineCap:	does	nothing.
LineJoin:	does	nothing.
TextSize:	is	simulated.
TextOrientation:	does	nothing.
Font:	see	the	table	bellow	for	the	generated	font	names.	No
other	fonts	are	supported.

Font	Mapping

Font	Mapping

CD	Fonts
Generated	Font	Names

CD_PLAIN CD_BOLD CD_ITALIC
"System" "SYSTEM" "SYSTEM_BOLD" "SYSTEM_ITALIC"
"Courier" "COURIER" "COURIER_BOLD" "COURIER_ITALIC"
"Times" "TIMES_ROMAN" "TIMES_ROMAN_BOLD" "TIMES_ROMAN_ITALIC"
"Helvetica" "HELVETICA" "HELVETICA_BOLD" "HELVETICA_ITALIC"

Colors

GetColorPlanes:	returns	24.
Palette:	does	nothing.

Client	Images	

GetImageRGB:	does	nothing.
PutImageRGBA:	alpha	is	ignored.

Server	Images

All	functions	do	nothing.

CD_DGN	-	MicroStation	Design	File	Driver
(cddgn.h)

This	driver	allows	generating	a	MicroStation	design	file.	The	file	name
usually	has	an	extension	.DGN.	The	driver	supports	only	MicroStation
version	4.0	or	later.	The	format's	copyrights	are	property	of	Bentley
Systems.

Use

The	file	is	created	and	opened	by	calling	function
cdCreateCanvas(CD_DGN,	Data),	in	which	Data	contains	the	filename	and
canvas	dimensions.	This	function	opens	the	file	and	writes	its	header.
Then,	other	functions	in	the	CD	library	can	be	called	as	usual.	The	Data
parameter	string	has	the	following	format:

"filename	[widthxheight]	[resolution]	[-f]	[-sseedfile]"			or	in	C	

Only	the	parameter	filename	is	required.	The	filename	must	be	inside
double	quotes	(")	if	it	has	spaces.	Width	and	height	are	provided	in
millimeters	(note	the	lowercase	"x"	between	them),	and	their	default
value	in	pixels	is	INT_MAX	for	both	dimensions.	Resolution	is	the	number
of	pixels	per	millimeter;	its	default	value	is	"3.78	pixels/mm"	(96	DPI).
Width,	height	and	resolution	are	real	values.	Parameter	-f	modifies	the
polygon	filling's	behavior.	Just	as	in	MicroStation,	you	can	specify	a	seed
file	using	parameter	-s.	Width,	height	and	resolution	are	used	only	by
cdCanvasGetSize	and	in	pixel-millimeter	conversion.	

Any	amount	of	such	canvases	may	exist	simultaneously.	It	is	important	to
note	that	a	call	to	function	cdKillCanvas	is	required	to	close	the	file
properly.

Images	and	Colors	-	The	DGN	format	does	not	support	server	images

http://www.bentley.com

and	works	with	an	indexed-color	format.	Color	quality	is	limited	to	256
colors,	and	the	format	uses	a	uniform	palette	to	convert	RGB	colors	into
palette	indices.	If	you	configure	a	palette,	the	color	conversion	process
will	become	slower.

Filling	-	Up	to	version	5.0,	MicroStation	presents	some	limitations	for
polygon	filling.	You	can	disable	filling	by	means	of	string	"-f"	in	the	Data
parameter.	Filled	polygons	can	only	have	around	10,000	vertices;	if	the
value	is	larger,	the	polygon	style	changes	to	closed	lines.

Seed	-	In	the	seed	file,	several	DGN	parameters	can	be	defined	to	be
used	in	the	drawing.	The	library	offers	a	default	seed	file,	called
"SEED2D.DGN".	The	file's	location	depends	on	the	environment	variable
CDDIR.

Behavior	of	Functions

Control

Clear:	does	nothing.
Play:	does	nothing,	returns	CD_ERROR.

Coordinate	System	and	Clipping

Clip:	does	nothing	(no	clipping	function	is	supported),	returns
CD_CLIPOFF.
UpdateYAxis:	does	nothing.	The	axis	orientation	is	the	same	as
the	CD	library.
Transformation	Matrix:	not	supported.

Primitives

Begin:	if	parameter	CD_CLIP	or	CD_BEZIER	are	specified,	does
nothing.

cdChord:	does	nothing.

Attributes

BackOpacity:	does	nothing,	returns	CD_OPAQUE.
WriteMode:	does	nothing,	returns	CD_REPLACE.
InteriorStyle:	does	nothing.
FillMode:	does	nothing.
LineCap:	does	nothing.
LineJoin:	does	nothing.
Hatch:	does	nothing.
Stipple:	does	nothing.
Pattern:	does	nothing.
TextSize:	returns	a	bounding	box	which	is	usually	larger	than	the
text	(the	computation	is	based	on	the	widest	character).
TextAlignment:	uses	cdTextSize,	therefore	is	not	precise.
Font:	See	the	font	mapping	table	for	the	equivalence	used	to
map	CD	fonts	into	MicroStation	fonts.	Styles	are	not	supported.

Font	Mapping
CD	Fonts MicroStation	Font	Index

CD_SYSTEM 0
CD_COURIER 1
CD_TIMES_ROMAN 2
CD_HELVETICA 3

Colors

GetColorPlanes:	returns	8	(MicroStation	uses	a	palette	with	256
values).
Background:	always	returns	CD_WHITE.

Client	Images

GetImageRGB:	does	nothing.
PutImageRGB:	considering	that	the	format	supports	only	256
colors,	image	quality	is	quite	poor.
PutImageRGBA:	alpha	is	ignored.
PutImageMap:	considering	that	the	format	supports	only	256
colors,	image	quality	is	quite	poor.

Server	Images

All	functions	do	nothing.

CD_DXF	-	AutoCAD	Image	Exchange	File	Driver
(cddxf.h)

This	driver	allows	generating	an	AutoCAD	image	exchange	file.	The	file
name	usually	has	an	extension	.DXF.	This	driver	supports	only	AutoCAD
version	10.0	or	later.	The	format's	copyrights	are	property	of	Autodesk.

Use

The	file	is	created	and	opened	by	calling	function
cdCreateCanvas(CD_DXF,	Data),	in	which	Data	contains	the	file	name	and
canvas	dimensions.	This	function	opens	the	file	and	writes	its	header.
Then,	other	functions	in	the	CD	library	can	be	called	as	usual.	The	Data
parameter	string	has	the	following	format:

"filename	[widthxheight]	[resolution]"				or	in	C	"%s	%gx%g	%g"

Only	the	parameter	filename	is	required.	The	filename	must	be	inside
double	quotes	(")	if	it	has	spaces.	Width	and	height	are	provided	in
millimeters	(note	the	lowercase	"x"	between	them),	and	their	default
value	in	pixels	is	INT_MAX	for	both	dimensions.	Resolution	is	the	number
of	pixels	per	millimeter;	its	default	value	is	"3.78	pixels/mm"	(96	DPI).
Width,	height	and	resolution	are	given	in	real	values	and	are	used	only	by
cdCanvasGetSize	and	in	pixel-millimeter	conversion.	

Any	amount	of	such	canvases	may	exist	simultaneously.	It	is	important	to
note	that	a	call	to	function	cdKillCanvas	is	required	to	close	the	DXF	file
properly.

Images	-	The	DXF	format	does	not	support	client	or	server	images	and
works	with	an	indexed-color	format	(color	quality	is	limited	to	256	fixed
colors).

http://www.autodesk.com

Precision	of	Coordinates	-	The	primitives	use	coordinates	in	real
numbers.

Layers	-	The	format	can	work	with	several	layers.	It	is	necessary	to	draw
the	primitives	of	layer	'0'	first,	then	layer	'1'	and	so	on.	Use	functions
Flush	to	change	the	current	layer.

Behavior	of	Functions

Control

Flush:	changes	the	current	layer	(the	initial	layer	is	'0',	followed
by	'1'	and	so	on).
Clear:	does	nothing.
Play:	does	nothing,	returns	CD_ERROR.

Coordinate	System	and	Clipping

Clip:	does	nothing	(no	clipping	function	is	supported),	returns
CD_CLIPOFF.
UpdateYAxis:	does	nothing.	Axis	orientation	is	the	same	as	in
the	CD	library.
Transformation	Matrix:	not	supported.

Primitives

Box:	draws	only	the	box's	borders	(no	filling	function	is
supported).	Behaves	like	Rect.
Sector:	draws	a	"hollow"	sector,	that	is,	only	its	borders.
Begin:	CD_FILL	is	mapped	to	CD_CLOSED_LINES.	if	parameter
CD_CLIP	or	CD_BEZIER	are	specified,	does	nothing.
Chord:	does	nothing.
Floating	point	primitives	are	supported.

Attributes

BackOpacity:	does	nothing,	returns	CD_TRANSPARENT.
WriteMode:	does	nothing,	returns	CD_REPLACE.
InteriorStyle:	does	nothing	(filling	is	not	supported),	returns	0.
Hatch:	does	nothing.
FillMode:	does	nothing.
LineCap:	does	nothing.
LineJoin:	does	nothing.
Stipple:	does	nothing.
Pattern:	does	nothing.
TextSize:	returns	a	bounding	box	usually	larger	than	the	text	(the
computation	is	based	on	the	widest	character).
TextOrientation:	does	nothing.
Font:	italic	styles	correspond	to	the	basic	styles	with	an
inclination	of	15o.	See	the	font	mapping	table	for	the
equivalence	used	to	map	fonts	of	the	CD	library	into	AutoCAD	
fonts.	No	other	fonts	are	supported.

Font	Mapping
CD	Fonts AutoCAD	Fonts

System STANDARD	(sem	arquivo)
Courier ROMAN	(romanc.shx)
Courier	+	CD_BOLD ROMAN_BOLD	(romant.shx)
Times ROMANTIC	(rom_____.pfb)
Times	+	CD_BOLD ROMANTIC_BOLD	(romb_____.pfb)
Helvetica SANSSERIF	(sas_____.pfb)
Helvetica	+	CD_BOLD SANSSERIF_BOLD	(sasb____.pfb)

Colors

Foreground:	indexes	long	int	*color		in	the	fixed	palette
(AutoCAD	uses	a	256-color	palette	-		for	further	detail,	see
AutoCAD's	Reference	Manual).
Background:	does	nothing,	returns	CD_WHITE.

GetColorPlanes:	returns	8.
Palette:	does	nothing	(the	palette	is	fixed).

Client	Images

All	functions	do	nothing.

Server	Images

All	functions	do	nothing.

	

CD_EMF	-	Enhanced	Metafile	Driver	(cdemf.h)

This	driver	allows	generating	a	Microsoft	Windows	Enhanced	Metafile,
the	format	used	by	32-bit	Windows	systems	to	store	graphics	primitives.
Usually,	the	filename	has	an	extension	"*.emf".

The	driver	works	only	in	the	Microsoft	Windows	platform,	but	you	can	use
it	in	other	platforms	without	the	risk	of	compilation	error.	If	you	attempt	to
create	a	canvas	in	another	platform,	function	cdCreateCanvas	will	return
NULL.

Use

The	canvas	is	created	by	means	of	a	call	to	function
cdCreateCanvas(CD_EMF,	Data),	after	which	other	CD	functions	can	be
called	as	usual.	Parameter	Data	has	the	following	format:

"filename	widthxheight"					or	in	C	"%s	%dx%d"

It	must	include	the	filename	and	the	canvas'	dimensions.	The	filename
must	be	inside	double	quotes	(")	if	it	has	spaces.	Width	and	height	are
provided	in	pixels	(note	the	lowercase	"x"	between	them).	Resolution	(the
number	of	pixels	per	millimeter)	is	always	the	screen	resolution.

Any	amount	of	such	canvases	may	exist	simultaneously.	Function
cdCreateCanvas	opens	the	file,	and	a	call	to	function	cdKillCanvas	is
required	to	close	the	file	properly.

To	use	this	driver	in	Windows	using	GDI+	is	necessary	to	call
cdUseContextPlus(1)	before	creating	the	canvas.	If	you	intend	to	use
cdCanvasPlay	to	interpret	the	EMF,	then	do	not	use	GDI+	to	generate
the	metafile.	GDI+	extensively	use	internal	transformations	that	will	affect
the	cdCanvasPlay	interpretation.	Also	some	interior	style	will	not	be

correctly	interpreted.

Behavior	of	Functions

This	driver	is	greatly	platform-dependent.	For	further	detail,	see	the
Behavior	of	Functions	of	the	Microsoft	Windows	(GDI)	or	Windows
Using	GDI+	platform	base	drivers.	It	has	been	noticed	that	EMF,	when
saved	in	the	Windows	95	environment,	is	not	totally	compatible	with	EMF
saved	in	the	Windows	NT	environment.

Control	Functions

Play:	different	from	the	basic	driver,	is	implemented.	Not
implemented	using	GDI+.
Clear:	different	from	the	basic	driver,	does	nothing.

Client	Images	

GetImageRGB:	does	nothing.
PutImageRGBA:	the	alpha	component	is	ignored.	Using	GDI+
works	normally.

Server	Images

All	functions	do	nothing.

CD_WMF	-	Windows	Metafile	Driver	(cdwmf.h)

This	driver	allows	creating	a	Microsoft	Windows	Metafile,	the	format	used
by	16-bit	Windows	systems	to	store	graphics	primitives.	Usually,	the
filename	has	an	extension	"*.wmf".

The	driver	works	only	in	the	Microsoft	Windows	platform,	but	you	can	use
it	in	other	platforms	without	the	risk	of	compilation	error.	If	you	attempt	to
create	a	canvas	in	another	platform,	function	cdCreateCanvas	will	return
NULL.

It	is	recomended	to	use	EMF	instead	of	WMF	whenever	is	possible.

Use

The	canvas	is	created	by	means	of	a	call	to	the	function
cdCreateCanvas(CD_WMF,	Data),	after	which	other	functions	in	the	CD
library	can	be	called	as	usual.	The	Data	parameter	string	has	the
following	format:

"filename	widthxheight	[resolution]"					or	in	C	"%s	

				%dx%d	%g"

The	file's	name	and	dimensions	are	required.	Width	and	height	are
provided	in	pixels	(note	the	lowercase	"x"	between	them).	Resolution	is
the	number	of	pixels	per	millimeter;	its	default	value	is	the	screen
resolution.

Any	amount	of	such	canvases	may	exist	simultaneously.	Function
cdCreateCanvas	creates	a	memory-based	metafile,	and	a	call	to	function
cdKillCanvas	is	required	to	close	the	file	properly.

In	fact	the	driver	uses	a	slightly	different	format,	called	Aldus	Placeable
Metafile	(APM).	It	attaches	a	small	header	to	the	beginning	of	the	file,

allowing	other	applications	to	import	better	the	metafile	contents.

This	driver	is	NOT	available	for	the	GDI+	base	driver.

Behavior	of	Functions

This	driver	is	greatly	platform-dependent.	For	further	detail,	see	the
Behavior	of	Functions	of	the	Microsoft	Windows	(GDI)	platform.
However,	it	should	be	noted	that	some	functions	behave	differently	from
the	basic	functions	of	each	platform.

Control	

Play:	different	from	the	basic	driver,	is	implemented.
Clear:	different	from	the	basic	driver,	does	nothing.

Coordinate	System	and	Clipping

Clip:	does	nothing,	returns	CD_CLIPOFF.

Attributes

Stipple:	is	always	opaque	and	smaller	than	8x8	pixels.
Pattern:	does	nothing.
LineWidth:	is	always	1.
TextAlignment:	CD_CENTER/CD_WEST/CD_EAST	is	saved	as
CD_BASE_CENTER/CD_BASE_LEFT/CD_BASE_RIGHT,	but	the
position	error	is	compensated.
TextOrientation:	does	nothing

Client	Images	

GetImageRGB:	does	nothing.
PutImageRGBA:	the	alpha	component	is	ignored.

Server	Images

All	functions	do	nothing.

Simulation	Base	Driver

The	Simulation	driver	was	created	to	simulate	functions	that	were	not
supported	by	some	CD	drivers.	It	works	jointly	with	the	other	driver
(known	as	"client"),	using	its	pixel,	line	and	text	functions	to	simulate
arcs,	sectors,	polygons,	boxes,	and	fillings	with	styles.

Important:	All	simulation	primitives	are	based	in	the	client's	Pixel,	Image
and/or	Line	functions.

Use

The	Simulation	driver	is	used	in	several	parts	of	the	CD	library.

In	many	drivers,	the	behavior	of	a	given	primitive	may	not	be	the
expected.	Usually	this	is	documented	in	the	manual.	If	you	wish	to
activate	the	simulation	of	a	primitive,	simply	call	function	cdSimulate	with
the	code	of	the	primitive	to	be	simulated.

Behavior	of	Functions

Clipping

Clipping	is	not	implemented	in	the	simulation	base	driver.	The
primary	driver	must	implement	its	own	clipping.

Attributes

LineCap:	only	CD_CAPFLAT	is	supported.
LineJoin:	only	CD_MITER	is	supported.
Font:	Selects	a	True	Type	font	file	for	the	FreeType	library	to
render	the	text.	Notice	that	TTF	fonts	have	different	files	for
different	font	styles,	like	bold	and	italic.	Font	files	can	be	in	the

http://www.freetype.org/

current	directory,	in	the	directory	pointed	by	the	CDDIR
environment	variable,	in	Windows	in	the	system	defined	Font
directory,	or	using	the	full	path	of	the	file.	
Old	name	"System"	is	mapped	to	"Courier".	For	the	know	font
names	"Courier"	(cour),	"Times"	(times)	and	"Helvetica"	(arial),
the	styles	are	added	to	the	font	file	name	as	a	suffix:	"bd",	"i"
and	"bi"	are	used	for	bold,	italic	and	bold-italic.	For	other	fonts,	it
will	first	check	for	a	font	map	added	using	the	attribute
ADDFONTMAP,	if	failed	it	will	try	to	load	the	type_face	name
without	any	change,	if	fail	it	will	add	the	style	suffix	to	the
type_face	and	try	to	load	again.	The	".ttf"	file	extension	is	always
automatically	added	to	the	end	of	the	file	name.
The	FreeType	library	was	configured	to	support	only	TrueType
fonts,	but	it	can	be	configured	to	support	Type	1	fonts	also.	You
may	remove	the	FreeType	code	from	the	CD	library	and	use	any
other	FreeType	distribution.

Primitives

Pixel:	always	uses	the	client's	pixel	function.	When	clipping
simulation	is	active,	it	executes	area	and	polygon	clipping.
Line:	draws	lines	pixel	per	pixel.
Rect:	simulated	using	the	client's	Line.
Arc:	simulated	using	the	client's	Line.
Sector:	simulated	using	the	client's	Poly.
Chord:	simulated	using	the	client's	Poly
Box:	simulated	using	the	client's	Poly.
Begin,	Vertex	and	End:	simulate	using	the	Line	or	Pixel
functions,	depending	on	the	interior	style.
Text:	text	simulation	is	made	using	TrueType	font	files	in	a
transparent	way	for	the	user.	Oriented	text	is	not	supported.

Exclusive	Attributes

"ADDFONTMAP":	Add	a	font	map	between	a	type	face	name
and	a	file	name.	It	has	the	format	"Type	Face=filename",	For	ex:

"Arial	Narrow	Bold=ARIALNB".

Microsoft	Windows	Base	Driver

This	driver	represents	a	base	driver	for	all	system-dependent	drivers
implemented	in	the	Microsoft	Windows	system.	The	implementation	uses
Win32	API	graphics	functions,	the	GDI.	The	driver	works	better	in
Windows	NT,	but	it	may	also	work	in	Windows	9x/Me.

Behavior	of	Functions

Control	

Flush:	does	nothing.
Play:	does	nothing,	returns	CD_ERROR.

Coordinate	System	and	Clipping

UpdateYAxis:	the	orientation	of	axis	Y	is	the	opposite	to	its
orientation	in	the	CD	library.

Primitives

Text:	when	Write	Mode	is	XOR	or	NOT_XOR,	the	XOR	effect	is
simulated	using	bitmaps.
Line:	needs	to	draw	an	extra	pixel	in	the	final	position.

Attributes

WriteMode:	for	the	client	and	server	image	functions,	the	mode
NOT_XOR	works	as	XOR.
Stipple:	is	always	opaque.	If	not	in	Windows	NT	and	if	width	or
height	are	greater	than	8,	the	stipple	is	simulated	using	non-
regular	Windows	clipping	regions	and	bitmaps.	The	simulation	is
made	when	filled	boxes,	sectors	and	polygons	are	drawn.

Pattern:	If	not	in	Windows	NT	and	if	width	or	height	are	greater
than	8,	the	pattern	is	simulated	using	non-regular	Windows
clipping	regions	and	bitmaps.	The	simulation	is	made	when	filled
boxes,	sectors	and	polygons	are	drawn.
TextAlignment:	the	vertical	alignment	of	CD_CENTER,
CD_EAST,	CD_WEST	is	manually	calculated.
LineWidth:	If	not	in	Windows	NT	line	width	is	always	1.	If	line
width	is	1,	then	a	cosmetic	pen	is	used	for	fast	drawing.
LineStyle:	If	line	width	is	1,	the	style	is	a	little	different	from	when
line	width	is	not	1,	because	a	cosmetic	pen	is	used	for	width=1.
NativeFont:	also	accepts	"-d"		to	show	the	font-selection	dialog
box.
Font:	"Courier"	is	mapped	to	"Courier	New",	"Helvetica"	is
mapped	to	"Arial",	and	"Times"	is	mapped	to	"Times	New
Roman".	Underline	and	Strikeout	are	supported.	The	System
font	does	not	have	orientation.

Client	Images

PutImageRGBA:	Try	to	use	the	new	GDI	function	AlphaBlend,	if
not	available	captures	an	image	from	the	canvas	to	blend	it
manually.

Colors

Palette:	is	useful	only	if	the	device	has	256	colors.	If	it	has	less
than	256	colors,	ignore	this	function,	for	it	will	not	make	much
difference.	If	two	different	canvases	have	their	palettes	modified,
the	last	one	to	be	modified	will	have	the	best	quality;	the	other
one	will	not	have	good	quality	and	the	colors	might	have	a
completely	different	appearance.

Exclusive	Attributes

"HDC":	returns	the	HDC	of	the	Win32	canvas.	It	can	only	be
retrieved	(get	only).	In	Lua	is	returned	as	a	user	data.

"PENFILLPOLY":	controls	the	polygon	filling	outline.	Assumes
values	"1"	(active)	and	"0"	(inactive).	Default	value:	"1".	When	a
filled	polygon	is	drawn,	a	line	in	the	same	color	is	used	to	draw
the	border	which	is	not	included	in	the	filling.	Deactivating	this
attribute	solves	the	problem	of	polygons	with	holes,	in	which
there	is	a	line	connecting	the	external	polygon	to	the	internal
polygon.

"IMAGEFORMAT":	defines	the	number	of	bits	per	pixel	used	to
create	server	images.	It	uses	1	integer	that	can	have	the	values:
"32"	or	"24"	(%d).	Use	NULL	to	remove	the	attribute.	It	is	used
only	in	the	cdCreateImage.	When	not	defined,	the	server	images
use	the	same	format	of	the	canvas.

"IMAGEALPHA":		allows	the	usage	of	an	alpha	channel	for
server	images	if	IMAGEFORMAT=32.	The	attribute	format	is	a
pointer	to	the	transparency	values	in	a	sequence	of	chars	in	the
same	format	of	alpha	for	client	images.	The	attribute	is	used
only	in	the	cdCreateImage	and	for	every	cdPutImageRect,	the
pointer	must	exists	while	the	image	exists.	The	alpha	values	are
transfered	to	the	image	only	in	cdPutImageRect,	so	they	can	be
freely	changed	any	time.	It	will	use	the	AlphaBlend	GDI	function.
The	data	is	not	duplicated,	only	the	pointer	is	stored.	The	size	of
the	data	must	be	the	same	size	of	the	image.	Use	NULL	to
remove	the	attribute.	Not	accessible	in	Lua.

"IMAGEMASK":		defines	a	binary	transparency	mask	for	server
images.	The	format	is	the	same	of	a	stipple,	can	contain	only	0s
and	1s.	Use	2	integers,	width	and	height,	and	a	char	pointer	to
the	mask	values	inside	a	string	("%d	%d	%p").	Use	NULL	to
remove	the	attribute.	It	can	not	be	retrieved	(set	only).	Not
accessible	in	Lua.	It	will	use	the	MaskBlt	GDI	function.

"IMAGEPOINTS":		define	3	coordinates	of	a	paralelogram	that
will	be	used	to	warp	server	images.	Use	6	integer	values	inside
a	string	("%d	%d	%d	%d	%d	%d"	=	x1	y1	x2	y2	x3	y3).	Use
NULL	to	remove	the	attribute.	The	respective	specified	points
are	the	upper-left	corner,	the	upper-right	corner	and	the	lower

left	corner.	The	drawing	is	also	affected	by	the	"IMAGEMASK"
attribute.	It	will	use	the	PlgBlt	GDI	function.

"ROTATE":		allows	the	usage	of	1	angle	and	1	coordinate	(x,	y),
that	define	a	global	rotation	transformation	centered	in	the
specified	coordinate.	Use	1	real	and	2	integer	values	inside	a
string	("%g	%d	%d"	=	angle	x	y).

Microsoft	Windows	Base	Driver	Using	GDI+

This	driver	represents	a	base	driver	for	all	system-dependent	drivers
implemented	in	the	Microsoft	Windows	system,	but	uses	a	new	API
called	GDI+.	The	drivers	Clipboard,	Native	Window,	IUP,	Image,
Printer,	EMF	and	Double	Buffer	were	implemented.	The	driver	WMF,
and	the	function	cdPlay	of	the	Clipboard	and	EMF	drivers	were	not
implemented	using	GDI+.

The	main	motivation	for	the	use	of	GDI+	was	transparency	for	all	the
primitives.	Beyond	that	we	got	other	features	like	anti-aliasing,	gradient
filling,	bezier	lines	and	filled	cardinal	splines.

This	driver	still	does	not	completely	replace	the	GDI	Windows	base
driver,	because	GDI+	does	not	have	support	for	XOR.	Also	the
applications	need	to	adapt	the	rendering	of	text	that	is	slightly	different
from	GDI.	It	is	know	that	GDI+	can	be	slower	than	GDI	in	some	cases
and	faster	in	other	cases,	Microsoft	does	not	make	this	clear.

So	we	let	the	programmer	to	choose	what	to	use.	We	created	the
function	cdUseContextPlus	that	allows	to	activate	or	to	deactivate	the	use
of	GDI+	for	the	available	Windows	based	drivers.	This	function	affects
only	the	cdCreateCanvas	function	call,	once	created	the	canvas	will	be
always	a	GDI+	canvas.	In	fact	the	function	affects	primary	the	definitions
CD_NATIVEWINDOW,	CD_IMAGE,	CD_PRINTER,	CD_EMF,
CD_DBUFFER	and	CD_CLIPBOARD,	because	they	are	function	calls
and	not	static	defines.

Using	GDI+	it	is	allowed	to	create	more	that	one	canvas	at	the	same	time
for	the	same	Window.	And	they	can	co-exist	with	a	standard	GDI	canvas.

To	enable	the	use	of	GDI+	based	drivers	you	must	call	the	initialization
function	cdInitContextPlus()	once	and	link	to	the	libraries	"cdgdiplus.lib"
and	"gdiplus.lib".	Also	the	file	"gdiplus.dll"	must	be	available	in	your

system.	These	files	already	came	with	Visual	C++	7	and	Windows	XP.
For	other	compilers	or	systems	you	will	need	to	copy	the	".lib"	file	for	you
libraries	area,	and	you	will	need	to	copy	the	DLL	for	the	Windows\System
(Win98/Me)	or	Windows\System32	(Win2000/NT4-SP6)	folder.	The
gdiplus	files	can	be	obtained	from	Microsoft	or	from	here.

In	CDLUA	it	is	not	necessary	any	additional	initialization.

Behavior	of	Functions

Control

Play:	does	nothing,	returns	CD_ERROR.

Coordinate	System	and	Clipping

UpdateYAxis:	the	orientation	of	axis	Y	is	the	opposite	to	its
orientation	in	the	CD	library.	Except	when	using	transformations.

Primitives

Pixel:	uses	GDI.	Excepting	when	the	canvas	is	an	image	so	it	is
done	using	GDI+.
Sector:	it	also	draws	an	arc	in	the	same	position	to	complete	the
size	of	the	sector.
Text:	opaque	text	is	simulated	using	a	rectangle	in	the	back.
Begin:	Beyond	the	standard	modes	it	accepts	the	additional
modes:	CD_FILLSPLINE	and	CD_FILLGRADIENT.	The	C	definitions	of
these	modes	are	available	in	the	cdgdiplus.h	header.

CD_SPLINE	defines	the	points	of	a	curve	constructed	by	a	cardinal
spline.	Uses	the	current	line	style.
CD_FILLSPLINE	defines	the	points	of	a	filled	curve	constructed	by
a	cardinal	spline.	Uses	the	current	interior	style.
CD_FILLGRADIENT	defines	the	points	of	a	filled	polygon.	It	is	filled

http://www.microsoft.com/downloads/details.aspx?familyid=6a63ab9c-df12-4d41-933c-be590feaa05a&displaylang=en

with	a	gradient	from	colors	in	each	vertex	to	a	color	in	its	center.
The	colors	are	defined	by	the	"GRADIENTCOLOR"	attribute,	that
must	be	set	before	each	cdVertex	call	and	before	cdEnd	for	the
center	color.	This	will	not	affect	the	current	interior	style.

Attributes

BackOpacity:	only	changes	the	transparency	of	the	background
color	to	0	(transparent)	or	255	(opaque).
Hatch:	diagonal	styles	are	drawn	with	anti-aliasing.
WriteMode:	does	nothing.	There	is	no	support	for	XOR	or
NOT_XOR.
Pattern:	each	pixel	can	contain	transparency	information.
LineStyle:	uses	a	custom	GDI+	style	when	line	width	is	1.	In
World	Coordinates	the	line	style	has	its	scaled	changed.
FontDim:	the	maximum	width	is	estimated	from	the	character
"W".
TextAlignment:	is	simulated.	Although	GDI+	has	text	alignment,
the	results	do	not	match	the	CD	text	alignment.
NativeFont:	also	accepts	"-d"		to	show	the	font-selection	dialog
box.
Font:	"System"	is	mapped	to	"MS	Sans	Serif",	"Courier"	is
mapped	to	"Courier	New",	"Helvetica"	is	mapped	to	"Arial",	and
"Times"	is	mapped	to	"Times	New	Roman".	Underline	and
Strikeout	are	supported.

Colors

Palette:	works	only	when	the	canvas	is	a	server	image.
Foreground	&	Background:	accepts	the	transparency	information
encoded	in	the	color.

Client	Images

GetImageRGB:	uses	GDI.	Excepting	when	the	canvas	is	an
image	so	it	is	done	using	GDI+.

Server	Images

GetImage:	uses	GDI.	Excepting	when	the	canvas	is	an	image
so	it	is	done	using	GDI+.
ScrollArea:	uses	GDI.	Excepting	when	the	canvas	is	an	image
so	it	is	done	using	GDI+.

Exclusive	Attributes

"GDI+":	returns	"1".	So	the	application	can	detect	if	the	driver
uses	the	GDI+	base	driver.	Other	drivers	that	do	not	implement
this	attribute	will	return	NULL.

"HDC":	returns	the	HDC	of	the	Win32	canvas.	It	can	only	be
retrieved	(get	only).	In	Lua	is	returned	as	a	user	data.	It	is	not
NULL	only	in	some	Native	Windows	canvas	and	in	the	printer
canvas.

"ANTIALIAS":	controls	the	use	of	anti-aliasing	for	the	text,
image	zoom	and	line	drawing	primitives.	Assumes	values	"1"
(active)	and	"0"	(inactive).	Default	value:	"1".

"GRADIENTCOLOR":	necessary	for	the	creation	of	the	gradient
fill	defined	by	a	polygon	(see	details	in	the	function	cdBegin
above).	Defines	the	color	of	each	vertex	and	the	center	(%d	%d
%d"	=	r	g	b).	It	can	not	be	retrieved	(set	only).

"IMAGETRANSP":	defines	an	interval	of	colors	to	be
considered	transparent	in	client	and	server	images	(except	for
RGBA	images).	It	uses	two	colors	to	define	the	interval	("%d	%d
%d	%d	%d	%d"	=	r1	g1	b1	r2	g3	b3).	Use	NULL	to	remove	the
attribute.

"IMAGEFORMAT":	defines	the	number	of	bits	per	pixel	used	to
create	server	images.	It	uses	1	integer	that	can	have	the	values:
"32"	or	"24"	(%d).	Use	NULL	to	remove	the	attribute.	It	is	used
only	in	the	cdCreateImage.	When	not	defined,	the	server	images

use	the	same	format	of	the	canvas.

"IMAGEALPHA":		allows	the	usage	of	an	alpha	channel	for
server	images	if	IMAGEFORMAT=32.	The	attribute	format	is	a
pointer	to	the	transparency	values	in	a	sequence	of	chars	in	the
same	format	of	alpha	for	client	images.	The	attribute	is	used	in
the	cdCreateImage	and	for	every	cdPutImageRect,	the	pointer
must	exists	while	the	image	exists.	The	alpha	values	are
transfered	to	the	image	only	in	cdPutImageRect,	so	they	can	be
freely	changed	any	time.	The	data	is	not	duplicated,	only	the
pointer	is	stored.	The	size	of	the	data	must	be	the	same	size	of
the	image.	Use	NULL	to	remove	the	attribute.	Not	accessible	in
Lua.

"IMAGEPOINTS":		define	3	coordinates	of	a	paralelogram	that
will	be	used	to	warp	server	and	client	images	in	the	subsequent
calls	of	PutImage	functions.	Use	6	integer	values	inside	a	string
("%d	%d	%d	%d	%d	%d"	=	x1	y1	x2	y2	x3	y3).	Use	NULL	to
remove	the	attribute.	The	destination	rectangle	of	the	PutImage
functions	will	be	ignored.	The	respective	specified	points	are	the
upper-left	corner,	the	upper-right	corner	and	the	lower	left
corner.	In	GDI+	this	attribute	is	more	complete	than	in	GDI,
because	affects	also	client	images.

"ROTATE":		allows	the	usage	of	1	angle	and	1	coordinate	(x,	y),
that	define	a	global	rotation	transformation	centered	in	the
specified	coordinate.	Use	1	real	and	2	integer	values	inside	a
string	("%g	%d	%d"	=	angle	x	y).

"LINEGRADIENT":	defines	a	filled	interior	style	that	uses	a
line	gradient	between	two	colors.	It	uses	2	points	("%d	%d	%d
%d"	=	x1	y1	x2	y2),	one	for	the	starting	point	using	(using	the
foreground	color),	and	another	one	for	the	end	point	(using	the
background	color).

"LINECAP":	defines	addicional	line	cap	styles.	It	can	have	the
following	values:	"Triangle",	"NoAnchor",	"SquareAnchor",
"RoundAnchor",	"DiamondAnchor",	or	"ArrowAnchor".	It	can	not

be	retrieved	(set	only).

X-Windows	Base	Driver

This	driver	represents	a	basic	driver	for	all	system-dependent	drivers
implemented	in	the	X-Windows	system.	The	implementation	uses	the
XLIB	API	functions.	It	was	developed	using	X11R4,	but	works	in	more
recent	versions,	such	as	X11R6.

Note:	The	coordinates	internally	implemented	by	the	video	driver	use	16-
bit	integers.	Therefore,	if	a	coordinate	with	less	than	-32k	or	more	than
32k	is	defined,	it	will	be	interpreted	incorrectly.

Behavior	of	Functions

Control	

Play:	does	nothing,	returns	CD_ERROR.

Coordinate	System	and	Clipping

UpdateYAxis:	the	orientation	of	axis	Y	is	the	opposite	to	its
orientation	in	the	CD	library.

Primitives

Text:	text	orientation	is	simulated	using	XVertex	rotines.	Generic
transformation	matrix	affects	only	the	position	of	the	text.
Begin:	Filled		polygons	have	an	error	of	one	pixel	to	the	right	and
below.	CD_BEZIER	is	simulated	with	lines.
Box:	in	Linux	with	ATI	board,	is	being	drawn	with	one	extra	pixel
to	the	right	and	below.

Attributes

LineWidth:	if	width	is	1,	the	driver	will	use	0	for	a	better
performance.
LineStyle:	thick	lines	have	style	only	in	the	line's	direction.	For
example,	you	will	see	small	rectangles	in	a	thick	dotted	line.
NativeFont:	also	accepts	the	X-Windows	font	string	format.	You
can	use	program	xfontsel	to	select	a	font	and	obtain	the	string.
For	ex:	"-*-times-bold-r-*-*-24-*-*-*-*-*-*-*"	(equivalent	of
Font("Times",	CD_BOLD,	-24).
Font:	the	old	name	"System"	is	mapped	to	"fixed".

Colors

Palette:	When	the	number	of	bits	per	pixel	is	smaller	than	or
equal	to	8,	the	driver	will	use	the	system	palette	to	solve	colors
passed	as	parameters	to	the	canvas.	The	driver	allocates	colors
as	they	are	requested	-	if	a	color	cannot	be	allocated,	the
closest	color	is	used	in	the	palette.	For	such,	the	driver	sees	all
available	colors,	in	the	current	application	and	others.	If	one	of
the	applications	is	terminated,	a	color	in	the	palette	may	become
invalid	and	will	only	be	updated	by	the	driver	when	it	is
requested	again.	For	this	reason,	a	call	to	cdForeground	or
cdBackground	or	cdPalette	is	recommended	before	drawing.
When	CD_FORCE	is	used,	the	driver	forces	color	allocation	in
the	X	server.	This	may	imply	changing	colors	in	other
applications	when	a	cursor	moves	in	and	out	of	the	canvas.
However,	if	the	number	of	requested	colors	is	smaller	than	the
maximum	number	of	possible	colors	in	the	palette,	then	the	first
colors	in	the	default	system	palette	will	be	preserved,	minimizing
this	problem.
When	CD_POLITE	is	used,	all	colors	allocated	by	the	driver	are
liberated,	and	the	requested	colors	are	allocated.	This	is	useful
for	the	application	to	prioritize	the	colors	that	will	be	allocated,
causing	other	colors	to	be	mapped	to	their	closest	colors.
Note	that	canvases	in	the	same	application	interfere	with	one
another,	but	when	a	canvas	is	terminated	it	liberates	all
allocated	colors.

Client	Images

GetImageRGB:	can	be	very	slow	due	to	the	heavy	conversions
performed	to	translate	data	in	system	format	into	RGB	vectors.

Exclusive	Attributes

"GC":		returns	the	X11	graphics	context	(get	only).	In	Lua	is
returned	as	a	user	data.

"ROTATE":		allows	the	usage	of	1	angle	and	1	coordinate	(x,	y),
that	define	a	global	rotation	transformation	centered	in	the
specified	coordinate.	Use	1	real	and	2	integer	values	inside	a
string	("%g	%d	%d"	=	angle	x	y).	In	this	driver	will	change	the
current	transformation	matrix,	if	removed	will	reset	the	current
transformation	matrix.

XRender	Base	Driver

This	driver	represents	a	basic	driver	for	all	system-dependent	drivers
implemented	in	the	X-Windows	system	using	the	XRender	extension.
The	implementation	uses	the	XRender	and	Xft	API	functions.

The	main	motivation	for	the	use	of	XRender	was	transparency	for	all	the
primitives.	Beyond	that	we	got	other	features	like	anti-aliasing,	gradient
filling	and	transformations.

This	driver	still	does	not	completely	replace	the	X-Windows	base	driver,
because	XRender	does	not	have	support	for	XOR	and	for	line	styles.

So	we	let	the	programmer	to	choose	what	to	use.	We	created	the
function	cdUseContextPlus	that	allows	to	activate	or	to	deactivate	the	use
of	X-Render	for	the	available	X-Windows	based	drivers.	This	function
affects	only	the	cdCreateCanvas	function	call,	once	created	the	canvas
will	be	always	a	XRender	canvas.	In	fact	the	function	affects	primary	the
definitions	CD_NATIVEWINDOW,	CD_IMAGE	and	CD_DBUFFER,
because	they	are	function	calls	and	not	static	defines.

Using	XRender	it	is	allowed	to	create	more	that	one	canvas	at	the	same
time	for	the	same	Window.	And	they	can	co-exist	with	a	standard	X-
Windows	canvas.

To	enable	the	use	of	XRender	based	drivers	you	must	call	the
initialization	function	cdInitContextPlus()	once	and	link	to	the	libraries
"cdxrender",	"Xrender"	and	"Xft".	Also	the	libraries	"Xrender"	and	"Xft"
must	be	installed	in	your	system.	The	XRender	extension	must	be
available	in	the	X-Windows	server	for	the	driver	to	work.

Currently,	pre-compiled	binaries	are	available	only	for	Linux*,
SunOS510x86,	and	FreeBSD54.

In	CDLUA	it	is	not	necessary	any	additional	initialization.

Behavior	of	Functions

Control	

Play:	does	nothing,	returns	CD_ERROR.

Coordinate	System	and	Clipping

UpdateYAxis:	the	orientation	of	axis	Y	is	the	opposite	to	its
orientation	in	the	CD	library.	Except	when	using	transformations.

Primitives

Line:	simulated	using	the	client's	Poly.
Text:	Generic	transformation	matrix	affects	only	the	position	of
the	text.	Complex	clipping	regions	can	not	contain	text	regions.
Begin:	CD_BEZIER	is	simulated	with	lines.
Rect:	simulated	using	the	client's	Line.
Arc:	simulated	using	the	client's	Line.
Sector:	simulated	using	the	client's	Poly.
Chord:	simulated	using	the	client's	Poly
Box:	simulated	using	the	client's	Poly.

Attributes

LineWidth:	the	driver	will	use	a	polygon	that	fits	to	the	line
extents,	even	when	linewidth==1.
LineStyle:	NOT	supported.
Pattern:	each	pixel	can	contain	transparency	information.
NativeFont:	also	accepts	the	X-Windows	font	string	format.	You
can	use	program	xfontsel	to	select	a	font	and	obtain	the	string.
For	ex:	"-*-times-bold-r-*-*-24-*-*-*-*-*-*-*"	(equivalent	of
Font("Times",	CD_BOLD,	-24).

Font:	font	support	is	implemented	using	the	Xft	library.	Internally
the	Xft	library	uses	the	Freetype	library.

Colors

Use	the	X-Windows	base	driver	support	for	colors.

Client	and	Server	Images

All	functions	use	the	X-Windows	base	driver	functions.

Exclusive	Attributes

"GC":		returns	the	X11	graphics	context	(get	only).	In	Lua	is
returned	as	a	user	data.

"ROTATE":		allows	the	usage	of	1	angle	and	1	coordinate	(x,	y),
that	define	a	global	rotation	transformation	centered	in	the
specified	coordinate.	Use	1	real	and	2	integer	values	inside	a
string	("%g	%d	%d"	=	angle	x	y).	In	this	driver	will	change	the
current	transformation	matrix,	if	removed	will	reset	the	current
transformation	matrix.

"ANTIALIAS":	controls	the	use	of	anti-aliasing	for	the	text,
image	zoom	and	line	drawing	primitives.	Assumes	values	"1"
(active)	and	"0"	(inactive).	Default	value:	"1".

"LINEGRADIENT":	defines	a	filled	interior	style	that	uses	a
line	gradient	between	two	colors.	It	uses	2	points	("%d	%d	%d
%d"	=	x1	y1	x2	y2),	one	for	the	starting	point	using	(using	the
foreground	color),	and	another	one	for	the	end	point	(using	the
background	color).	(available	only	if	Xrender	version	>=	0.10)

"XRENDERVERSION":	returns	a	string	with	the	XRender
version	number.	It	is	empty	if	the	XRender	extension	is	not
available	in	the	X-Windows	server.

Canvas	Initialization

cdCanvas	*cdCreateCanvas(cdContext*	ctx,	void	*data)

cd.CreateCanvas(ctx:	number,	data:	string	or	userdata)	->	(canvas:	cdCanvas)	[in	Lua]

Creates	a	CD	canvas	for	a	virtual	visualization	surface	(VVS).	A	VVS
may	be	the	canvas	of	a	user-interface	window,	the	page	of	a	document
sent	to	a	printer,	an	offscreen	image,	the	clipboard,	a	metafile,	and	so	on.
To	create	the	canvas,	it	is	necessary	to	specify	the	driver	in	which	each
canvas	is	implemented.

The	driver	is	set	by	the	driver	variable	with	additional	information
provided	in	the	data	parameter.	Even	though	it	is	possible	to	create	more
than	one	canvas	with	the	same	driver/data	pair,	this	is	not
recommended,	and	its	behavior	is	not	specified.	Each	canvas	maintains
its	own	features.

In	case	of	failure,	a		NULL	value	is	returned.	The	following	predefined
drivers	are	available:

Window-Base	Drivers

CD_IUP	=	IUP	Canvas	(cdiup.h).
CD_NATIVEWINDOW	=	Native	Window	(cdnative.h).

Device-Based	Drivers

CD_CLIPBOARD	=	Clipboard	(cdclipbd.h).
CD_PRINTER	=	Printer	(cdprint.h).

Image-Based	Drivers	

CD_IMAGE	=	Server-Image	Drawing	(cdimage.h).
CD_IMAGERGB	=	Client-Image	Drawing	(cdirgb.h).

CD_DBUFFER	=	Offscreen	Drawing	(cddbuf.h).

File-Based	Drivers	

CD_CGM	=	Computer	Graphics	Metafile	ISO	(cdcgm.h).
CD_DGN	=	MicroStation	Design	File	(cddgn.h).
CD_DXF	=	AutoCad	Drawing	Interchange	File	(cddxf.h).
CD_EMF	=	Microsoft	Windows	Enhanced	Metafile	(cdemf.h).
Works	only	in	MS	Windows	systems.
CD_METAFILE	=	Metafile	Canvas	Draw	(cdmf.h).
CD_PS	=	PostScript	File	(cdps.h).
CD_WMF	=	Microsoft	Windows	Metafile	(cdwmf.h).

cdCanvas*	cdCreateCanvasf(cdContext	*ctx,	const	char*	format,	...)

[There	is	no	equivalent	in	Lua]

Same	as	cdCreateCanvas,	used	in	the	case	that	the	parameter	data	is	a
string	composed	by	several	parameters.	This	function	can	be	used	with
parameters	equivalent	to	the	printf	function	from	the	default	C	library.

void	cdKillCanvas(cdCanvas	*canvas);	[in	C]

cd.KillCanvas(canvas:	cdCanvas)	[in	Lua]

Destroys	a	previously	created	canvas.	If	this	function	is	not	called	in	Lua,
the	garbage	collector	will	call	it.

int	cdCanvasActivate(cdCanvas	*canvas);	[in	C]

canvas:Activate(canvas:	cdCanvas)	->	(status:	number)	[in	Lua]

Activates	a	canvas	for	drawing.	This	is	used	only	for	a	few	drivers.	Native
Window	and	IUP	drivers	will	update	the	canvas	size	if	the	window	size

has	changed.	Double	Buffer	driver	will	recreate	the	image	buffer	if	the
window	canvas	size	has	changed.	In	these	cases	the	function	MUST	be
called,	for	other	drivers	is	useless.	Returns	CD_ERROR	or	CD_OK.

void	cdCanvasDeactivate(cdCanvas*	canvas);	[in	C]

canvas:Deactivate(canvas:	cdCanvas)	[in	Lua]

Called	when	the	application	has	finished	drawing	in	the	canvas.	It	is
optional,	but	if	used	for	the	Native	Window	driver	in	Windows	when	the
handle	can	not	be	retained,	the	drawing	can	only	be	done	again	after	a
cdCanvasActivate.	On	some	drivers	will	simply	call	Flush.

int	cdUseContextPlus(int	use);	[in	C]

cd.UseContextPlus(use:	number)	->	(old_use:	number)	[in	Lua]

Activates	or	deactivates	the	use	of	an	external	context	for	the	next	calls
of	the	cdCreateCanvas	function.

void	cdInitContextPlus(void);	[in	C]

Initializes	the	context	driver	to	use	another	context	replacing	the	standard
drivers.

cdContext*	cdCanvasGetContext(cdCanvas	*canvas);	[in	C]

canvas:GetContext(canvas:	cdCanvas)	->	(ctx:	number)	[in	Lua]

Returns	the	context	of	a	given	canvas,	which	can	be	compared	with	the
predefined	contexts,	such	as	"CD_PS".

int	cdContextCaps(cdContext*	ctx);	[in	C]

cd.ContextCaps(ctx:	number)	->	(caps:	number)	[in	Lua]

Returns	the	resources	available	for	that	context.	To	verify	if	a	given
resource	is	available,	perform	a	binary	AND	('&.html	with	the	following
values:

CD_CAP_FLUSH
CD_CAP_CLEAR	
CD_CAP_PLAY	
CD_CAP_YAXIS	-	The	Y	axis	has	the	same	orientation	as	the	CD	axis.
CD_CAP_CLIPAREA	
CD_CAP_CLIPPOLY	-	Usually	is	not	implemented.
CD_CAP_MARK	-	Marks	are	implemented	directly	in	the	driver	(they	are
usually	simulated).
CD_CAP_RECT	-	Rectangles	are	implemented	directly	in	the	driver	(they
are	usually	simulated).
CD_CAP_VECTORTEXT	-	Vector	text	is	implemented	directly	in	the
driver	(it	is	usually	simulated).
CD_CAP_IMAGERGB	
CD_CAP_IMAGERGBA	-	If	this	is	not	implemented,	but	cdGetImageRGB
is,	then	it	is	simulated	using	cdGetImageRGB	and	cdPutImageRGB.
CD_CAP_IMAGEMAP	
CD_CAP_GETIMAGERGB	
CD_CAP_IMAGESRV	-	Usually	is	only	implemented	in	contexts	of
window	graphics	systems	(Native	Window	and	IUP).
CD_CAP_BACKGROUND	
CD_CAP_BACKOPACITY	
CD_CAP_WRITEMODE	
CD_CAP_LINESTYLE	
CD_CAP_LINEWITH	
CD_CAP_WD	-	Functions	of	world	coordinates	are	implemented	directly
in	the	driver	(they	are	usually	simulated).

CD_CAP_HATCH	
CD_CAP_STIPPLE	
CD_CAP_PATTERN	
CD_CAP_FONT	
CD_CAP_FONTDIM	-	If	not	defined,	the	function	is	implemented	using
an	internal	heuristics	of	the	library.
CD_CAP_TEXTSIZE	-	If	not	defined,	the	function	is	implemented	using
an	internal	heuristics	of	the	library.
CD_CAP_TEXTORIENTATION	-	Usually	is	not	implemented.
CD_CAP_PALETTE	-	Usually	is	only	implemented	in	contexts	of	window
graphics	systems	(Native	Window	and	IUP).

int	cdCanvasSimulate(cdCanvas*	canvas,	int	mode);	[in	C]

canvas:Simulate(mode:	number)	->	(old_mode:	number)	[in	Lua]

Activates	the	simulation	of	one	or	more	primitives.	It	is	ignored	for	the
canvas	in	the	ImageRGB	context,	because	in	this	case	everything	is
already	simulated.	It	also	has	no	effect	for	primitives	that	are	usually
simulated.	It	returns	the	previous	simulation,	but	does	not	include
primitives	that	are	usually	simulated.	The	simulation	can	be	activated	at
any	moment.	For	instance,	if	a	line	simulation	is	required	only	for	a
situation,	the	simulation	can	be	activated	for	the	line	to	be	drawn,	and
then	deactivated.

If	simulation	is	activated	the	driver	transformation	matrix	is	disabled.

See	in	the	Simulation	sub-driver	the	information	on	how	each	simulation
is	performed.

To	activate	a	given	simulation,	perform	a	binary	OR	('|.html	using	one	or
more	of	the	following	values	(in	Lua,	the	values	must	be	added	'+.html:

CD_SIM_NONE	-	Deactivates	all	kinds	of	simulation.
CD_SIM_LINE	

CD_SIM_RECT	
CD_SIM_BOX	
CD_SIM_ARC	
CD_SIM_SECTOR	
CD_SIM_CHORD	
CD_SIM_POLYLINE	
CD_SIM_POLYGON	
CD_SIM_TEXT	
CD_SIM_ALL	-	Activates	all	simulation	options.	
CD_SIM_LINES	-	Combination	of	CD_SIM_LINE,	CD_SIM_RECT,
CD_SIM_ARC	and	CD_SIM_POLYLINE.
CD_SIM_FILLS	-	Combination	of	CD_SIM_BOX,	CD_SIM_SECTOR,
CD_SIM_CHORD	and	CD_SIM_POLYGON.

Extras

int	cdlua_open(lua_State*	L);	[for	Lua	5]

Initializes	the	CDLua	binding.	In	Lua	5	the	binding	is	lua	state	safe,	this
means	that	several	states	can	be	initialized	any	time.

int	cdlua_close(lua_State*	L);	[for	Lua	5]

Releases	the	memory	allocated	by	the	CDLua	binding.

cdCanvas*	cdlua_checkcanvas(lua_State*	L,	int	pos);	[for	Lua	5]

Returns	the	canvas	in	the	Lua	stack	at	position	pos.	The	function	will	call
lua_error	if	there	is	not	a	valid	canvas	in	the	stack	at	the	given	position.

void	cdlua_pushcanvas(lua_State*	L,	cdCanvas*	canvas);

Pushes	the	given	canvas	into	the	stack.

Coordinate	System

void	cdCanvasGetSize(cdCanvas*	canvas,	int	*width,	int	*height,	double	*width_mm,	double	*height_mm);	[in	C]

canvas:GetCanvasSize()	->	(width,	heigth,	mm_width,	mm_height:	number)	[in	Lua]

Returns	the	canvas	size	in	pixels	and	in	millimeters.	You	can	provide	only
the	desired	values	and	NULL	for	the	others.

int	cdCanvasUpdateYAxis(cdCanvas*	canvas,	int	*y);	[in	C]

double	cdfCanvasUpdateYAxis(cdCanvas*	canvas,	double	*y);	[in	C]

int	cdCanvasInvertYAxis(cdCanvas*	canvas,	int	y);	[in	C]

double	cdfCanvasInvertYAxis(cdCanvas*	canvas,	double	y);	[in	C]

canvas:UpdateYAxis(yc:	number)	->	(yr:	number)	[in	Lua]

canvas:InvertYAxis(yc:	number)	->	(yr:	number)	[in	Lua]

In	some	graph	systems,	the	origin	is	at	the	upper	left	corner	of	the
canvas,	with	the	direction	of	the	Y	axis	pointing	down.	In	this	case,	the
function	converts	the	coordinate	system	of	the	CD	library	into	the	internal
system	of	the	active	canvas'	driver,	and	the	other	way	round.	If	this	is	not
the	case,	nothing	happens.	This	is	just	"y	=	height-1	-	y".	It	returns	the
changed	value.	The	"Invert"	will	always	invert	the	given	value,	the
"Update"	function	will	invert	only	if	the	canvas	has	the	Y	axis	inverted.

void	cdCanvasMM2Pixel(cdCanvas*	canvas,	double	mm_dx,	double	mm_dy,	int	*dx,	int	*dy);	[in	C]

void	cdfCanvasMM2Pixel(cdCanvas*	canvas,	double	mm_dx,	double	mm_dy,	double	*dx,	double	*dy);	[in	C]

canvas:MM2Pixel(mm_dx,	mm_dy:	number)	->	(dx,	dy:	number)	[in	Lua]

canvas:fMM2Pixel(mm_dx,	mm_dy:	number)	->	(dx,	dy:	number)	[in	Lua]

Converts	sizes	in	millimeters	into	pixels	(canvas	coordinates).	You	can

provide	only	the	desired	values	and	NULL	for	the	others.

void	cdCanvasPixel2MM(cdCanvas*	canvas,	int	dx,	int	dy,	double	*mm_dx,	double	*mm_dy);	[in	C]

void	cdfCanvasPixel2MM(cdCanvas*	canvas,	double	dx,	double	dy,	double	*mm_dx,	double	*mm_dy);	[in	C]

canvas:Pixel2MM(dx,	dy:	number)	->	(mm_dx,	mm_dy:	number)	[in	Lua]

canvas:fPixel2MM(dx,	dy:	number)	->	(mm_dx,	mm_dy:	number)	[in	Lua]

Converts	sizes	in	pixels	(canvas	coordinates)	into	millimeters.	You	can
provide	only	the	desired	values	and	NULL	for	the	others.	Use	this
function	to	obtain	the	horizontal	and	vertical	resolution	of	the	canvas	by
passing	1	as	parameter	in	dx	and	dy.	The	resolution	value	is	obtained
using	the	formula	res=1.0/mm.

void	cdCanvasOrigin(cdCanvas*	canvas,	int	x,	int	y);	[in	C]

void	cdfCanvasOrigin(cdCanvas*	canvas,	double	x,	double	y);	[in	C]

canvas:Origin(x,	y:	number)	[in	Lua]

canvas:fOrigin(x,	y:	number)	[in	Lua]

Allows	translating	the	origin	-	for	instance,	to	the	center	of	the	canvas.
The	function	profits	from	the	architecture	of	the	library	to	simulate	a
translation	of	the	origin,	which	in	fact	is	never	actually	passed	to	the
canvas	in	the	respective	driver.	Default	values:	(0,	0)

void	cdCanvasGetOrigin(cdCanvas*	canvas,	int	*x,	int	*y);	[in	C]

void	cdfCanvasGetOrigin(cdCanvas*	canvas,	double	*x,	double	*y);	[in	C]

canvas:GetOrigin()	->	(x,	y:	number)	[in	Lua]

canvas:fGetOrigin()	->	(x,	y:	number)	[in	Lua]

Returns	the	origin.

Transformation	Matrix

void	cdCanvasTransform(cdCanvas*	canvas,	const	double*	matrix);	[in	C]

canvas:Transform(matrix:	table)	[in	Lua]

Defines	a	transformation	matrix	with	6	elements.	If	the	matrix	is	NULL,
the	transformation	is	reset	to	the	identity.	Default	value:	NULL.

The	matrix	contains	scale,	rotation	and	translation	elements	as	follows:

|x'|			|sx*cos(angle)				-sin(angle)		dx|			|x|																					|0			2			4|	

|y'|	=	|			sin(angle)		sy*cos(angle)		dy|	*	|y|						with	indices			|1			3			5|

																																												|1|

But	notice	that	the	indices	are	different	of	the
cdCanvasVectorTextTransform.

Functions	that	retrieve	images	from	the	canvas	are	not	affected	by	the
transformation	matrix,	such	as	GetImage,	GetImageRGB	and
ScrollArea.

Transformation	matrix	is	independent	of	the	World	Coordinate	and
Origin	functions.	And	those	are	affected	if	a	transformation	is	set,	just
like	other	regular	primitives.

double*	cdCanvasGetTransform(cdCanvas*	canvas);	[in	C]

canvas:GetTransformation()	->	(matrix:	table)	[in	Lua]

Returns	the	transformation	matrix.	If	the	identity	is	set,	returns	NULL.

void	cdCanvasTransforMultiply(cdCanvas*	canvas,	const	double*	matrix);	[in	C]

canvas:TransformMultiply(matrix:	table)	[in	Lua]

Left	multiply	the	current	transformation	by	the	given	transformation.

void	cdCanvasTransformTranslate(cdCanvas*	canvas,	double	dx,	double	dy);	[in	C]

canvas:TransformTranslate(dx,	dy:	number)	[in	Lua]

Applies	a	translation	to	the	current	transformation.

void	cdCanvasTransformScale(cdCanvas*	canvas,	double	sx,	double	sy);	[in	C]

canvas:TransformScale(sx,	sy:	number)	[in	Lua]

Applies	a	scale	to	the	current	transformation.

void	cdCanvasTransformRotate(cdCanvas*	canvas,	double	angle);	[in	C]

canvas:TransformRotate(angle:	number)	[in	Lua]

Applies	a	rotation	to	the	current	transformation.	Angle	is	in	degrees,
oriented	counter-clockwise	from	the	horizontal	axis.

void	cdCanvasTransformPoint(cdCanvas*	canvas,	int	x,	int	y,	int	*tx,	int	*ty);	[in	C]

void	cdfCanvasTransformPoint(cdCanvas*	canvas,	double	x,	double	y,	double	*tx,	double	*ty);	[in	C]

canvas:TransformPoint(x,	y:	number)	->	(tx,	ty:	number)	[in	Lua]

canvas:fTransformPoint(x,	y:	number)	->	(tx,	ty:	number)	[in	Lua]

Applies	a	transformation	to	a	given	point.

Color	Coding

The	library's	color	system	is	RGB.	In	order	to	simplify	some	functions,	a
compact	representation	was	created	for	the	3	values.	To	make	a
conversion	from	this	representation	to	the	3	separate	values	and	vice-
versa,	use	functions	cdDecodeColor	and	cdEncodeColor.

When	the	canvas	used	does	not	support	more	than	8	bpp	of	color
resolution,	you	can	use	function	Palette	to	give	the	driver	an	idea	of
which	colors	to	prioritize.	Palette's	behavior	is	driver	dependent.

There	are	some	predefined	colors:

CD_RED										=	(255,		0,		0)

CD_DARK_RED					=	(128,		0,		0)

CD_GREEN								=	(0		,255,		0)

CD_DARK_GREEN			=	(0,128,		0)

CD_BLUE									=	(0,		0,255)

CD_DARK_BLUE				=	(0,		0,128)

CD_YELLOW							=	(255,255,		0)

CD_DARK_YELLOW		=	(128,128,		0)

CD_MAGENTA						=	(255,		0,255)

CD_DARK_MAGENTA	=	(128,		0,128)

CD_CYAN									=	(0,255,255)

CD_DARK_CYAN				=	(0,128,128)

CD_WHITE								=	(255,255,255)

CD_BLACK								=	(0,		0	,	0)

CD_DARK_GRAY				=	(128,128,128)

CD_GRAY									=	(192,192,192)

long	int	cdEncodeColor(unsigned	char	red,	unsigned	char	green,	unsigned	char	blue)	[in	C]

cd.EncodeColor(r,	g,	b:	number)	->	(old_color:	lightuserdata)	[in	Lua]

Returns	a	codified	triple	(r,g,b)	in	a	long	integer	such	as	0x00RRGGBB,
where	RR	are	the	red	components,	GG	are	the	green	ones	and	BB	are	the

blue	ones.	The	code	is	used	in	the	CD	library	to	define	colors.	It	can	be
used	without	an	active	canvas.

void	cdDecodeColor(long	int	color,	unsigned	char	*red,	unsigned	char	*green,	unsigned	char	*blue)	[in	C]

cd.DecodeColor(color:	lightuserdata)	->	(r,	g,	b:	number)	[in	Lua]

Returns	the	red,	green	and	blue	components	of	a	color	in	the	CD	library.
Can	be	used	without	an	active	canvas.

long	int	cdEncodeAlpha(long	int	color,	unsigned	char	alpha)	[in	C]

cd.EncodeAlpha(color:	lightuserdata,	alpha:	number)	->	(color:	lightuserdata)	[in	Lua]

Returns	the	given	color	coded	with	the	alpha	information.	ATENTION:	At
the	moment	only	the	Win32	with	GDI+	and	the	IMAGERGB	drivers
support	alpha	components	in	color	coding.	Se	in	Windows	Using	GDI+
Base	Driver	and	IMAGERGB	driver.	The	internal	representation	of	the
component	is	inverted,	because	the	default	value	must	be	0	and	opaque
for	backward	compatibility,	so	you	should	use	the	cdDecodeAlpha
function	ot	the	cdAlpha	macro	to	retrieve	the	alpha	component.

unsigned	char	cdDecodeAlpha(long	int	color)	[in	C]

cd.DecodeAlpha(color:	lightuserdata)	->	(a:	number)	[in	Lua]

Returns	the	alpha	component	of	a	color	in	the	CD	library.	Can	be	used
without	an	active	canvas.	0	is	transparent,	255	is	opaque.

unsigned	char	cdAlpha(long	int	color);	[in	C]

cd.Alpha(color:	lightuserdata)	->	(r:	number)	[in	Lua]

Macro	that	returns	the	alpha	component	of	a	color	in	the	CD	library.	Can
be	used	without	an	active	canvas.

unsigned	char	cdRed(long	int	color);	[in	C]

cd.Red(color:	lightuserdata)	->	(r:	number)	[in	Lua]

Macro	that	returns	the	red	component	of	a	color	in	the	CD	library.	Can	be
used	without	an	active	canvas.

unsigned	char	cdGreen(long	int	color);	[in	C]

cd.Green(color:	lightuserdata)	->	(g:	number)	[in	Lua]

Macro	that	returns	the	green	component	of	a	color	in	the	CD	library.	Can
be	used	without	an	active	canvas.

unsigned	char	cdBlue(long	int	color);	[in	C]

cd.Blue(color:	lightuserdata)	->	(b:	number)	[in	Lua]

Macro	that	returns	the	blue	component	of	a	color	in	the	CD	library.	Can
be	used	without	an	active	canvas.

int	cdCanvasGetColorPlanes(cdCanvas*	canvas);	[in	C]

canvas:GetColorPlanes()	->	(bpp:	number)	[in	Lua]

Returns	a	given	number,	for	instance	p,	which	defines	the	number	of
colors	supported	by	the	current	device	as	2p,	representing	the	number	of
bits	by	pixel.

void	cdCanvasPalette(cdCanvas*	canvas,	int	n,	const	long	int	*color,	int	mode);	[in	C]

canvas:Palette(palette:	cdPalette;	mode:	number)	[in	Lua]

In	systems	limited	to	256	palette	colors,	this	function	aims	at	adding		n
colors	to	the	system's	palette.	In	such	systems,	the	colors	demanded
forward	or	backward	which	are	not	in	the	palette	are	approximated	to	the
closest	available	color.	The	type	can	be	CD_FORCE	or	CD_POLITE.	CD_FORCE
ignores	the	system	colors	and	interface	elements,	since	the	menus	and
dialogues	may	be	in	illegible	colors,	but	there	will	be	more	colors
available.	CD_POLITE	is	the	recommended	type.	It	must	always	be	used
before	drawing.	It	cannot	be	queried.

Palette

cd.CreatePalette(size:	number)	->	(palette:	cdPalette)	[in	Lua	Only]

Creates	a	palette.

cd.KillPalette(palette:	cdPalette)	[in	Lua	Only]

Destroys	the	created	palette	and	liberates	allocated	memory.	If	this
function	is	not	called	in	Lua,	the	garbage	collector	will	call	it.

Palette	Data	Access

Data	access	in	Lua	is	done	directly	using	the	array	access	operators.	The
colors	can	have	their	values	checked	or	changed	directly	as	if	they	were
Lua	tables:

palette[index]	=	cd.EncodeColor(r,	g,	b)

count	=	#palette

...

color	=	palette[index]

r,	g,	b	=	cd.DecodeColor(color)

Notice	that	the	type	of	value	returned	or	received	by	palette[index]	is	a
lightuserdata,	the	same	type	used	with	functions	cdEncodeColor,
cdDecodeColor,	cdPixel,	cdForeground	and	cdBackground.

Canvas	Control

void	cdCanvasClear(cdCanvas*	canvas);	[in	C]

canvas:Clear()	[in	Lua]

Cleans	the	active	canvas	using	the	current	background	color.	This	action
is	interpreted	very	differently	by	each	driver.	Many	drivers	simply	draw	a
rectangle	with	the	current	background	color.	It	is	NOT	necessary	to	call
cdClear	when	the	canvas	has	just	been	created,	as	at	this	moment	it	is
already	clean.	Most	file-based	drivers	do	not	implement	this	function.

void	cdCanvasFlush(cdCanvas*	canvas);	[in	C]

				

canvas:Flush()	[in	Lua]

Has	a	different	meaning	for	each	driver.	It	is	useful	to	send	information	to
buffered	devices	and	to	move	to	a	new	page	or	layer.	In	all	cases,	the
current	canvas	attributes	are	preserved.

cdState*	cdCanvasSaveState(cdCanvas*	canvas);	[in	C]

				

canvas:SaveState()	->	(state:	cdState)	[in	Lua]

Saves	the	state	of	attributes	of	the	active	canvas.	It	does	not	save	cdPlay
callbacks,	polygon	creation	states	(begin/vertex/vertex/...),	the	palette,
complex	clipping	regions	and	driver	internal	attributes.

void	cdCanvasRestoreState(cdCanvas*	canvas,	cdState*	state);	[in	C]

				

canvas:RestoreState(state:	cdState)	[in	Lua]

Restores	the	attribute	state	of	the	active	canvas.	It	can	be	used	between
canvases	of	different	contexts.	It	can	be	used	several	times	for	the	same
state.

void	cdReleaseState(cdState*	state);	[in	C]

cd.ReleaseState(state:	cdState)	[in	Lua]

Releases	the	memory	allocated	by	the	cdSaveState	function.	If	this
function	is	not	called	in	Lua,	the	garbage	collector	will	call	it.

void	cdCanvasSetAttribute(cdCanvas*	canvas,	const	char*	name,	char*	data);	[in	C]

				

canvas:SetAttribute(name,	data:	string)	[in	Lua]

Modifies	a	custom	attribute	directly	in	the	driver	of	the	active	canvas.	If
the	driver	does	not	have	this	attribute,	the	call	is	ignored.

void	cdCanvasSetfAttribute(cdCanvas*	canvas,	const	char*	name,	const	char*	format,	...);	[in	C]

				

[There	is	no	equivalent	in	Lua]

Same	as	cdSetAttribute,	used	for	the	case	in	which	the	parameter	data
is	a	string	composed	by	several	parameters.	It	can	be		used	with
parameters	equivalent	to	those	of	the	printf	function	from	the	standard	C
library.

char*	cdCanvasGetAttribute(cdCanvas*	canvas,	const	char*	name);	[in	C]

				

canvas:SetAttribute(name:	string)	->	(data:	string)	[in	Lua]

Returns	a	custom	attribute	from	the	driver	of	the	active	canvas.	If	the
driver	does	not	have	this	attribute,	it	returns	NULL.

System

char*	cdVersion(void);	[in	C]

cd.Version()	->	(version:	string)	[in	Lua]

Returns	the	current	version	number	of	the	library.	The	string	with	the
version	number	has	a	format	"major.minor.build".	For	instance,	the	string
"2.1.3"	has	number	2	as	the	main	(major)	version	number,	1	as	the
secondary	(minor)	version	number,	and	3	as	the	build	number.	The	major
version	number	represents	a	change	in	the	structure	or	behavior	of
functions;	the	minor	version	number	represents	one	or	more	new	drivers
and	functions	added	to	the	library;	and	the	build	version	number
represents	one	or	more	corrected	bugs.

char*	cdVersionDate(void);	[in	C]

cd.VersionDate()	->	(versiondate:	string)	[in	Lua]

Returns	the	release	date	of	the	current	version	of	the	library.

int	cdVersionNumber(void);	[in	C]

cd.VersionNumber()	->	(version:	number)	[in	Lua]

Returns	the	current	version	number	of	the	library.

[in	C]

CD_NAME											"CD	-	Canvas	Draw"

CD_DESCRIPTION				"A	2D	Graphics	Library"

CD_COPYRIGHT						"Copyright	(C)	1994-2007	Tecgraf/PUC-Rio	and	PETROBRAS	S/A"

CD_VERSION								"5.0.0"

CD_VERSION_DATE			"2007/04/09"

CD_VERSION_NUMBER	500000

[in	Lua]

cd._NAME

cd._DESCRIPTION

cd._COPYRIGHT

cd._VERSION

cd._VERSION_DATE

cd._VERSION_NUMBER

Usefull	definitions.	They	have	the	same	value	returned	by	cdVersion*
functions.

Metafile	Interpretation

int	cdCanvasPlay(cdCanvas*	canvas,	cdContext*	ctx,	int	xmin,	int	xmax,	int	ymin,	int	ymax,	void	*data);	[in	C]

canvas:Play(ctx,	xmin,	xmax,	ymin,	ymax:	number,	data:	string)	->	(status:	number)	[in	Lua]

Interprets	the	graphical	contents	(primitives	and	attributes)	in	a	given
driver	and	calls	equivalent	functions	of	the	CD	library	using	the	given
canvas.	The	primitives	are	drawn	inside	the	region	defined	by	the	given
limits.	If	limits	are	0	(xmin,	xmax,	ymin	and	ymax)	the	primitives	will	be
drawn	with	their	coordinates	having	the	original	values	in	the	file.

Only	some	drivers	implement	this	function:

CD_CLIPBOARD	=	Clipboard,	data	is	ignored.
CD_WMF	=	Windows	Metafile,	data	is	a	char*	for	the	string
''filename''.	Works	only	in	the	MS	Windows	system.
CD_EMF	=	Windows	Enhanced	Metafile,	data	is	a	char*	for	the
string	''filename''.	Works	only	in	the	MS	Windows	system.
CD_CGM	=	Computer	Graphics	Metafile	ISO,	data	is	a	char*	for
the	string	''filename''.
CD_METAFILE	=	CD	Metafile,	data	is	a	char*	for	the	string
''filename''.
CD_PICTURE	=	CD	Picture,	data	is	a	cdCanvas*	of	the	Picture
canvas.

int	cdContextRegisterCallback(cdContext	*ctx,	int	cb,	int(*func)(cdCanvas*	canvas,	...));	[in	C]

cd.ContextRegisterCallback(ctx,	cb:	number,	func:	function)	->	(status:	number)	[in	Lua]

Used	to	customize	the	behavior	of	the		Play	function.	If	you	register	a
known	callback	function,	it	will	be	called	during	the	processing	loop	of
cdPlay.

The	callback	should	return	CD_CONTINUE,	if	it	returns	CD_ABORT,	the
cdPlay	function	is	aborted.	The	callback	identifiers	of	a	given	driver	must
be	in	the	header	file	relative	to	that	driver,	with	prefix	"CD_XXYYYCB",
where	XX	identifies	that	driver	and	YYY	identifies	the	callback	name.

There	is	a	default	callback	common	to	all	implementations	of	cdPlay,
CD_SIZECB.	Its	definition	is:

int	cdResizeCB(cdCanvas*	canvas,	int	width,	int	height,	double	mm_width,	double	mm_height)

It	returns	the	size	of	the	image	in	the	file	before	any	function	in	the	CD
library	is	called,	so	that	you	can	call	the		cdPlay	function	without	an	active
canvas	and	create	the	canvas	inside	the	callback.	It	works	as	a	
cdCanvasGetSize	function.

General	Attributes

long	int	cdCanvasForeground(cdCanvas*	canvas,	long	int	color);	[in	C]

void	cdCanvasSetForeground(cdCanvas*	canvas,	long	int	color);	[in	C]

canvas:Foreground(color:	lightuserdata)	->	(old_color:	lightuserdata)	[in	Lua]

canvas:SetForeground(color:	lightuserdata)	[in	Lua]

Configures	a	new	current	foreground	color	and	returns	the	previous	one.
This	color	is	used	in	all	primitives	(lines,	areas,	marks	and	text).	Default
value:	CD_BLACK.	Value	CD_QUERY	simply	returns	the	current	value.

Notice	that	CD_QUERY	conflicts	with	color	RGBA=(255,255,255,255)
(full	transparent	white).	Use	SetForeground	to	avoid	the	conflict.	See
also	Color	Coding.

long	int	cdCanvasBackground(cdCanvas*	canvas,	long	int	color);	[in	C]

void	cdCanvasSetBackground(cdCanvas*	canvas,	long	int	color);	[in	C]

canvas:Background(color:	lightuserdata)	->	(old_color:	lightuserdata)	[in	Lua]

canvas:SetBackground(color:	lightuserdata)	[in	Lua]

Configures	the	new	current	background	color	and	returns	the	previous
one.	However,	it	does	not	automatically	change	the	background	of	a
canvas.	For	such,	it	is	necessary	to	call	the	Clear	function.	The
background	color	only	makes	sense	for	Clear	and	for	primitives	affected
by	the	background	opacity	attribute.	Default	value:	CD_WHITE.	Value
CD_QUERY	simply	returns	the	current	value.

Notice	that	CD_QUERY	conflicts	with	color	RGBA=(255,255,255,255)
(full	transparent	white).	Use	SetBackground	to	avoid	the	conflict.	See
also	Color	Coding.

int	cdCanvasWriteMode(cdCanvas*	canvas,	int	mode);	[in	C]

canvas:WriteMode(mode:	number)	->	(old_mode:	number)	[in	Lua]

Defines	the	writing	type	for	all	drawing	primitives.	Values:	CD_REPLACE,
CD_XOR	or	CD_NOT_XOR.	Returns	the	previous	value.	Default	value:
CD_REPLACE.	Value	CD_QUERY	simply	returns	the	current	value.

Note:	operation	XOR	is	very	useful,	because,	using	white	as	the
foreground	color	and	drawing	the	same	image	twice,	you	can	go	back	to
the	original	color,	before	the	drawing.	This	is	commonly	used	for	mouse
selection	feedback.

	CD - Canvas Draw
	Product
	Copyright
	Download
	CVS
	History
	To Do
	Comparing

	Guide
	Internal Architecture
	Samples
	Lua Binding

	Canvas
	World Coordinates
	Clipping
	Regions

	Drivers

