
CD
Canvas	Draw,	A	2D	Graphic	Library

Version	4.3

(cd tecgraf.puc-rio.br)

CD	(Canvas	Draw)	is	a	platform-independent	graphic	library.	It	is
implemented	in	several	platforms	using	native	graphic	libraries:	Microsoft
Windows	(GDI),	Macintosh	(QuickDraw),	and	X-Windows	(XLIB).

The	library	contains	functions	to	support	both	vector	and	image
applications,	and	the	visualization	surface	can	be	either	a	canvas	or	a	more
abstract	surface,	such	as	Clipboard,	Metafile,	PS,	and	so	on.

This	work	was	developed	at	Tecgraf/PUC-Rio	by	means	of	the	partnership
with	PETROBRAS/CENPES.

The	CD	Team:

Antonio	Escaño	Scuri

Tecgraf	-	Computer	Graphics	Technology	Group,	PUC-Rio,	Brazil	
http://www.tecgraf.puc-rio.br/cd

http://www.tecgraf.puc-rio.br/cd

Overview

CD	is	a	platform-independent	graphic	library.	It	is	implemented	in	several
platforms	using	native	graphic	libraries:	Microsoft	Windows	(GDI),
Macintosh	(QuickDraw),	and	X-Windows	(XLIB).

The	library	contains	functions	to	support	both	vector	and	image
applications,	and	the	visualization	surface	can	be	either	a	canvas	or	a	more
abstract	surface,	such	as	Clipboard,	Metafile,	PS,	and	so	on.

To	make	the	Application	Programmers	Interface	(API)	simple,	all	data	are
standard	C	types	(int,	double	or	char).	Thus	the	application	program	does
not	have	to	maintain	parallel	data	structures	to	deal	with	the	graphic	library.

Furthermore,	the	list	of	parameters	of	the	CD	primitive	functions	contains
only	the	geometrical	descriptions	of	the	objects	(line,	circle,	text,	etc.).
Where	these	objects	should	appear	and	what	is	the	their	color,	thickness,
etc.	are	defined	as	current	state	variables	stored	in	the	visualization
surfaces.	That	is,	the	library	is	visualization-surface	oriented,	meaning	that
all	attributes	are	stored	in	each	visualization	surface.

To	control	where	the	primitives	are	going	to	be	drawn	there	we	use	the
active	canvas	(visualization	surface)	concept.	This	means	that	you	have	to
activate	a	given	surface	if	you	want	to	draw	on	it.	As	was	pointed	out,	this
approach	simplifies	the	drawing	for	many	primitives,	so	you	do	not	have	to
pass	the	canvas	as	a	parameter	in	each	primitive.	On	the	other	hand,	if	there
is	no	active	canvas,	a	call	to	a	primitive	will	create	a	memory	invasion.

CD	is	free	software,	can	be	used	for	public	and	commercial	applications.

Availability

The	library	is	available	for	several	compilers:

GCC	and	CC,	in	the	UNIX	environment
Visual	C++,	Borland	C++,	Watcom	C++	and	GCC	(Cygwin	and
MingW),	in	the	Windows	environment

The	library	is	available	for	several	operating	systems:

UNIX	(SunOS,	IRIX,	AIX	and	Linux)
Microsoft	Windows	NT/2K/XP

Support

The	official	support	mechanism	is	by	e-mail,	at	cd	AT	tecgraf.puc-rio.br
(replace	"	AT	"	by	"@").	Before	sending	your	message:

Check	if	the	reported	behavior	is	not	described	in	the	user	guide.
Check	if	the	reported	behavior	is	not	described	in	the	specific	driver
characteristics.
Check	the	History	to	see	if	your	version	is	updated.
Check	the	To	Do	list	to	see	if	your	problem	has	already	been	reported.

After	all	of	the	above	have	been	checked,	report	the	problem,	including	in
your	message:	function,	element,	driver,	platform,	and	compiler.

Announcements	of	new	versions	are	done	by	the	read	only	list	cd-l	AT
tecgraf.puc-rio.br	(replace	"	AT	"	by	@).	Send	a	request	to	the	support	e-
mail	to	be	added	or	removed	from	the	list.

Credits

This	work	was	developed	at	Tecgraf	by	means	of	the	partnership	with
PETROBRAS/CENPES.

We	thank	the	people	at	the	SEPROC	department	at	CENPES	and	the	library
creators	Marcelo	Gattass,	Luiz	Henrique	de	Figueiredo,	Luiz	Fernando
Martha	and	Carlos	Henrique	Levy.

Thanks	to	the	people	that	worked	in	the	library:	
-	Carlos	Cassino	(X-Windows	Platform	Driver,	Postscript	Driver	and	WD
functions),
-	Renato	Borges	(X-Windows	Platform	Driver	and	WD	functions),
-	Marcelo	Gattass	(Microsoft	Windows	Platform	Drivers),	
-	Carlos	Augusto	Mendes	(DOS	Platform	Drivers),
-	Diego	Fernandes	Nehab	(DOS	Platform	Drivers,	Lua	binding),

-	Vinicius	da	Silva	Almendra	(DGN	Driver),
-	Milton	Jonathan	(DXF	Driver),
-	Pedro	Miller	(DirectX	Driver),
-	Erick	de	Moura	Ferreira	(RGB	Client	Image	Driver	and	Simulation,
-	Carolina	Alfaro	(revision	and	translation	of	the	user	guide	in	Portuguese
and	English),
-	Camilo	Freire	(CGM	Driver),
-	André	Derraik	(Macintosh	Platform	Beta	Drivers),
-	Alexandre	Ferreira	(Direct	X	Beta	Driver)

We	also	thank	the	developers	of	the	FreeType	e	Mesa	libraries	and	of	the
XV	program,	for	making	the	source	code	available,	which	helped	us
improve	our	implementation	of	the	Simulation	driver	and	of	the	X-
Windows	driver.

Documentation

This	toolkit	is	available	at	http://www.tecgraf.puc-rio.br/cd.	

The	full	documentation	can	be	downloaded	from	the	Download	by
choosing	the	"Documentation	Files"	option.

The	documentation	is	also	available	in	Adobe	Acrobat	(cd.pdf	~400Kb)	and
Windows	HTML	Help	(cd.chm	~200Kb)	formats.

The	HTML	navigation	uses	the	WebBook	tool,	available	at
http://www.tecgraf.puc-rio.br/webbook.

http://www.physiol.med.tu-muenchen.de/~robert/freetype.html
http://www.ssec.wisc.edu/~brianp/Mesa.html
http://www.trilon.com/xv/
http://www.tecgraf.puc-rio.br/cd
http://www.tecgraf.puc-rio.br/webbook

Tecgraf	Library	License

This	product	is	free	software:	it	can	be	used	for	both	academic	and	commercial
purposes	at	absolutely	no	cost.	There	are	no	royalties	or	GNU-like	"copyleft"
restrictions.	It	is	licensed	under	the	terms	of	the	MIT	license	reproduced	below,
and	so	is	compatible	with	GPL	and	also	qualifies	as	Open	Source	software.	It	is
not	in	the	public	domain,	Tecgraf	and	Petrobras	keep	its	copyright.	The	legal
details	are	below.

The	spirit	of	this	license	is	that	you	are	free	to	use	the	library	for	any	purpose	at
no	cost	without	having	to	ask	us.	The	only	requirement	is	that	if	you	do	use	it,
then	you	should	give	us	credit	by	including	the	copyright	notice	below
somewhere	in	your	product	or	its	documentation.	A	nice,	but	optional,	way	to
give	us	further	credit	is	to	include	a	Tecgraf	logo	in	a	web	page	for	your	product.

The	library	is	designed	and	implemented	by	a	team	at	Tecgraf/PUC-Rio	in
Brazil.	The	implementation	is	not	derived	from	licensed	software.	The	library
was	developed	by	request	of	Petrobras.	Petrobras	permits	Tecgraf	to	distribute
the	library	under	the	coditions	here	presented.

Copyright	©	1994-2004	Tecgraf	/	PUC-Rio	and	PETROBRAS	S/A.

Permission	is	hereby	granted,	free	of	charge,	to	any	person	obtaining	a	copy	of
this	software	and	associated	documentation	files	(the	"Software"),	to	deal	in	the
Software	without	restriction,	including	without	limitation	the	rights	to	use,	copy,
modify,	merge,	publish,	distribute,	sublicense,	and/or	sell	copies	of	the	Software,
and	to	permit	persons	to	whom	the	Software	is	furnished	to	do	so,	subject	to	the
following	conditions:

The	above	copyright	notice	and	this	permission	notice	shall	be	included	in	all
copies	or	substantial	portions	of	the	Software.

THE	SOFTWARE	IS	PROVIDED	"AS	IS",	WITHOUT	WARRANTY	OF	ANY
KIND,	EXPRESS	OR	IMPLIED,	INCLUDING	BUT	NOT	LIMITED	TO	THE
WARRANTIES	OF	MERCHANTABILITY,	FITNESS	FOR	A	PARTICULAR
PURPOSE	AND	NONINFRINGEMENT.	IN	NO	EVENT	SHALL	THE

http://www.opensource.org/licenses/mit-license.html
http://www.gnu.org/licenses/gpl.html
http://www.opensource.org/docs/definition.html
http://www.tecgraf.puc-rio.br
http://www.puc-rio.br
http://www.petrobras.com.br

AUTHORS	OR	COPYRIGHT	HOLDERS	BE	LIABLE	FOR	ANY	CLAIM,
DAMAGES	OR	OTHER	LIABILITY,	WHETHER	IN	AN	ACTION	OF
CONTRACT,	TORT	OR	OTHERWISE,	ARISING	FROM,	OUT	OF	OR	IN
CONNECTION	WITH	THE	SOFTWARE	OR	THE	USE	OR	OTHER
DEALINGS	IN	THE	SOFTWARE.

History	of	Changes

Version	4.3.3	(25/Aug/2004)

IMPROVEMENT:	in	the	Native	Window	driver	for	the	Windows	system
the	criation	using	a	HDC	can	have	an	addicional	parameter	for	the	canvas
size.
IMPROVEMENT:	in	cdTextSize	for	the	GDI+	base	driver	we	now
compensates	the	height	in	-10%	to	match	the	GDI	height.
IMPROVEMENT:	The	GDI+	printer	driver	now	returns	the	HDC	attribute.
IMPROVEMENT:	new	"USERLINESTYLE"	attribute	for	the	base	GDI
and	X11	drivers.
IMPROVEMENT:	new	"GC"	attribute	for	the	base	X11	driver.
CORRECTION:	fixed	a	bug	in	cdNativeFont	for	the	GDI+	base	driver.
CORRECTION:	again	fixed	a	rounding	error	in	cdPutImage*	for	big
zooms.

Version	4.3.2	(14/Apr/2004)

CORRECTION:	in	the	Win32	and	X-Win	drivers	the	cdPutImageRGB
and	cdPutImageMap	functions	when	zooming	bigger	then	the	canvas
where	incorrectly	positioning	the	image	by	some	pixels	because	of	round
errors.

Version	4.3.1	(07/Nov/2003)

CORRECTION:	in	the	Win32	driver	the	clipping	of	cdPutImage*
functions	when	zooming	was	wrong.	In	the	DoubleBuffer	driver	the	main
canvas	cdOrigin	can	be	used	to	move	the	image	in	the	swap	operation
(cdFlush).	In	the	GDI+	DoubleBuffer	driver	there	was	an	error	in	the
cdFlush	when	some	primitive	used	world	coordinates	directly	in	the	main
canvas.

Version	4.3	(06/Mar/2003)

IMPROVEMENT:	the	Lua	binding	is	now	distributed	in	the	same	package.
There	is	only	one	version	number.

NEW:	the	function	cdlua_getcanvas	retreives	the	pointer	of	a	canvas
created	in	Lua.
CORRECTION:	the	PS	header	had	same	flaws,	the	character	":"	was
missing	in	some	DCS	attributes.
CORRECTION:	screen	resolution	was	wrong	in	the	Win32	driver,	this
afects	the	size	of	the	canvas	in	milimeters.
CORRECTION:	in	the	Win32	driver	the	creation	of	a	polygon	for	clipping
does	not	activate	the	clipping.
CORRECTION:	in	the	Win32	driver	the	function	cdNativeFont	using	"-d"
parameter	need	some	ajusts.	Also	the	returned	string	does	not	contains	all
the	used	parameters.
CORRECTION:	in	the	Win32	driver	the	function	cdPutImageRectRGBA
had	a	positioning	error.
NEW:	in	Win32	the	function	cdUseContextPlus	change	the	behavior	of	the
Windows	drivers	NativeWindow,	IUP,	Image,	Printer,	EMF	and	Double
Buffer	to	make	them	use	the	GDI+	for	drawing.	GDI+	does	not	have
support	for	XOR	Write	Mode,	but	it	has	other	resources	like:	transparency,
anti-aliasing,	gradient	filling,	bezier	lines	and	filled	cardinal	splines.	WC
functions	are	directly	implemented	in	the	base	driver.	Two	new	functions
were	created	to	support	transparency	in	the	CD	color	coding:
cdEncodeAlpha	and	cdDecodeAlpha.Check	the	documentation	for	more
information.

Version	4.2	(20/July/2001)

IMPROVEMENT:	in	driver	Win32,	cdNativeFont	accepts	parameter	"-d"
on	the	font	name	to	show	the	font-selection	dialog.
CORRECTION:	in	the	Clipboard	driver	on	Win32,	when	parameter	"-b"
was	used	the	image	was	not	correctly	copied.
IMPROVEMENT:	the	whole	code	can	now	be	compiled	as	C++.
CORRECTION:	in	certain	moments,	color	vectors	were	being	allocated
with	size	4	and	should	be	"sizeof(long)".	This	was	done	to	improve	the
compatibility	with	64-bit	systems.
CORRECTION:	cdPutImageRectRGB	in	driver	ImageRGB	had	a
memory-invasion	error	in	some	cases	when	the	image	was	placed	in	a
negative	coordinate.
IMPROVEMENT:	functions	wdPattern	and	wdStipple	were	changed	to
make	pattern	deformation	more	uniform.

Version	4.1.10	(04/May/2000)

CORRECTION:	cdRegisterAttribute	was	not	verifying	whether	the
attribute	had	already	been	registered.
CORRECTION:	function	cdArc	in	the	simulation	driver	(includes
ImageRGB)	was	returning	without	drawing	anything	in	an	incorrect	test.
CORRECTION:	function	cdTextBox	was	returning	incorrect	values	when
the	text	had	an	orientation	different	from	the	default	one	in	some	alignment
instances.
IMPROVEMENT:	the	driver	Native	Windows	in	Win32	now	also	accepts
an	already	created	HDC	handle	as	a	parameter.
CORRECTION:	in	function	cdRGB2Map	there	was	a	memory	invasion.
CORRECTION:	the	vector	text	simulation	was	not	freeing	the	memory
used	for	fonts	loaded	from	files.
CORRECTION:	in	the	Doubled	Buffer	driver	in	X-Windows	there	was	an
invalid	memory	liberation.
CORRECTION:	in	the	Lua	binding,	in	several	functions	receiving	or
returning	tables,	the	first	index	was	being	considered	as	0,	but	in	Lua	they
must	be	1.	This	correction	includes	cdVectorTextTransform,
cdGetVectorTextBounds,	wdGetVectorTextBounds,	cdGetClipPoly	and
wdGetClipPoly.
IMPROVEMENT:	in	the	cdPutImageMap*	functions,	in	case	the	color
vector	is	null,	a	vector	with	256	gray	shades	in	assumed.
CORRECTION:	when	the	PS	driver	generated	EPS,	it	did	not	correctly	add
the	description	of	the	bounding	box	(a	line	break	was	missing).
CORRECTION:	the	vector	text	drawing	functions	did	not	take	into	account
the	fact	that	the	default	font	and	the	GKS	fonts	were	in	ASCII	standard.
Now	a	conversion	from	ANSI	to	ASCII	is	made	before	these	fonts	are	used
for	drawing.
CORRECTION:	in	the	X-Win	driver,	an	error	in	the	X-Vertex	library
caused	the	texts	in	90/270	degrees	to	be	drawn	incorrectly.
CORRECTION:	in	the	X-Win	driver,	the	cdPutImageMap	functions	were
generating	a	memory	invasion	when	the	X	was	in	16	bits.
CORRECTION:	in	the	Win32	driver,	very	large	non-filled	polygons	were
not	being	drawn	in	Windows	9x.	To	correct	that,	they	were	divided	into
smaller	polygons.

Version	4.1	(24/Nov/99)

CORRECTION:	the	management	of	WD	functions	was	incomplete	for
functions	cdPixel,	cdVertex	and	cdPutImage*.	This	resulted	in	a	wrong	or
out	of	the	canvas	positioning.	It	only	affects	drivers	PS	and	METAFILE.
CORRECTION:	function	cdActivate	in	Lua	was	not	returning	the	correct
values.
CORRECTION:	when	the	image	was	partially	out	of	the	window,	above	or
below,	functions	cdPutImageMap	and	RGB	were	drawing	a	wrong	portion
of	the	image.
CORRECTION:	in	the	CGM	driver,	after	opening	the	file	of	the	cdPlay
function,	the	check	to	see	if	the	opening	had	been	successful	was	not	being
done.
CORRECTION:	when	the	active	canvas	was	already	NULL,	the	activation
of	a	NULL	canvas	was	generating	a	memory	invasion.
CORRECTION:	in	the	creation	of	EPS,	the	PS	driver	was	adding	a	wrong
call	to	setpagedevice.	The	cdPutImageMap	function	was	modifying	the
wrong	PS	parameter	in	the	file.	The	margin	clipping	was	not	saved	when
the	drawing's	clipping	area	was	changed.	The	clipping	area,	when	drawing
in	WD,	was	being	incorrectly	modified.
CORRECTION:	in	the	IMAGERGB	driver,	functions	cdRedImage,
cdBlueImage	and	cdGreenImage	were	returning	invalid	pointers.
CORRECTION:	when	initializing	text	simulation	functions,	the	opened
font	file	was	not	being	closed.	This	affected	all	CD	drivers,	but	was	only
apparent	in	the	application	that	opened	and	closed	many	drivers.
CORRECTION:	the	approximate	computation	of	the	text	size	was	not
accepting	sizes	in	pixels.
CORRECTION:	the	creation	of	the	IMAGERGB	driver	in	Lua	was
incorrect	when	the	resolution	parameter	(which	is	optional)	was	not
specified.
CORRECTION:	functions	cdGetClipPoly	and	wdGetClipPoly	in	Lua
were	causing	memory	invasion.
IMPROVEMENT:	in	the	PS	driver,	when	the	Map	image	is	actually	a
grayscale,	function	cdPutImageMap	uses	an	8	bit	image,	thus	saving
memory.	Level	2	Postscript	functions	rectfill,	rectstroke	and	rectclip	are
now	used.	The	comments	in	DCS	were	updated	to	DCS	version	3	and	were
increased	to	improve	the	document's	portability.
IMPROVEMENT:	in	driver	X-Windows,	the	text	drawing	attribute	was
implemented	with	any	orientation.
NEW:	new	basic	Windows	driver	attributes	that	allow	controling	the
internal	simulation	of	pattern/stipple,	XOR	text,	and	filled	polygon

("SIMXORTEXT",	"SIMPATTERN8X8",	"SIMPENFILLPOLY").	New
attribute	for	returning	the	HDC	of	the	Windows	canvas.
NEW:	the	PS	driver	accepts	landscape	orientation	as	a	parameter.	New
"POLYHOLE"	attribute	allows	controling	the	number	of	holes	in	a	closed
polygon.	New	"-1"	parameter	forces	a	level	1	Postscript.	New	"-g"
parameter	adds	comments	to	the	PS	file	in	order	to	better	explain	what	is
done.	New	"CMD"	attribute	saves	a	string	to	the	file.
NEW:	new	environment	variable,	CD_QUIET,	does	not	display	in	stdout
the	library's	version	information.
NEW:	two	new	exclusive	functions	for	the	Native	Window	driver:
cdGetScreenColorPlanes	and	cdGetScreenSize.
NEW:	new	CD_DBUFFER	driver	implements	a	double	buffer	using	a
server	image.
NEW:	new	attributes	in	the	ImageRGB	driver:	"REDIMAGE",
"GREENIMAGE"	and	"BLUEIMAGE".
NEW:	new	functions	wdGetVectorTextBounds	and
cdGetVectorTextBounds	to	obtain	the	bounding	box	of	the	vector	text.
NEW:	new	wdGetFont	function.	It	is	equivalent	to	cdGetFont,	but	the
returned	size	is	in	millimeters.
CHANGE:	function	cdVersion	in	Lua	now	behaves	just	like	in	C.	A	global
Lua	variable,	CDLUA_VERSION,	was	created	containing	the	version	of
the	Lua	binding	library	-	for	example:	"CDLua	1.3.0".
CHANGE:	function	cdVectorTextTransform	now	returns	the	previsous
transformation	matrix.
TIP:	when	the	creation	of	a	printer	canvas	returns	NULL,	this	means	the
user	has	cancelled	the	print	dialogue.
TIP:	in	case	the	foreground	and	the	background	colors	are	modified,	the
hatched	and	monochromatic	fillings	must	be	changed	again	in	order	to	be
updated.
TIP:	the	Native	Window	driver	works	regularly	in	a	window	of	the	OpenGL
library.
TIP:	in	the	Guide	topic	of	this	user	guide,	a	comparison	between	the	CD
library	and	other	graphics	libraries	available	for	free	in	the	Web	was
included.

Version	4.0.1	(05/Mar/99)

CORRECTION:	in	the	Windows	driver,	the	polygon	simulation	with
pattern	was	corrected	to	polygons	with	repeated	points.

CORRECTION:	in	the	Windows	driver,	function	cdNativeFont	was
corrected	for	IUP	fonts.	It	was	affecting	the	Matrix's	visualization.
CORRECTION:	function	cdNativeFont	was	wrongly	testing	its	input
parameter	and	always	returning.
CORRECTION:	in	the	drivers	IUP	and	Native	Window,	the
cdGetCanvasSize	function	was	corrected.	When	the	window	size	was
changed,	the	values	in	millimeters	were	not	updated	to	cdActivate.
CORRECTION:	in	the	CGM	driver,	function	cdPlay	was	generating
problems	in	reading	and	displaying	cell	arrays.	When	the	cdCreateCanvas
function	used	the	default	values	for	dimensions	and	resolution,	it	generated
files	with	errors.
IMPROVEMENT:	in	the	X-Windows	driver,	function	cdPixel	was
optimized.	It	now	compares	the	color	to	the	foreground	color	and	reuses	the
value.

Version	4.0	(18/Feb/99)

Summary:	(necessary	due	to	the	great	number	of	changes).
-	Update	of	the	Lua	binding.
-	Several	changes	in	the	internal	structure	(most	bringing	benefits	only	to
the	driver	developer).
-	Countless	corrections.	
-	Small	changes	in	the	functions	cdHatch,	cdScrollImage,	cdFont	and
cdPlay.	
-	Optimization	of	functions		wdVectorFont	and	cdMark.	
-	New	functions:	
			cdCreateCanvasf,	cdGetContext,	cdContextCaps,	cdSaveState,
cdRestoreState,			cdSetAttribute,	cdGetAttribute
	cdOrigin,	cdRect,	wdRect,	cdGetFont,	cdGetStipple,	cdGetPattern,
cdTextBox
	cdPutImageRectRGB,	cdPutImageRectRGBA,	cdPutImageRectMap,	
	cdCreateImageEx,	cdKillImageEx,	cdPutImageEx,	cdGetImageEx.	
-	New	WD	functions:	wdHardcopy,	wdPattern,	wdStipple,	wdPixel,
wdPutImageRect,	wdPutImageRectRGB,	wdPutImageRectRGBA	and
wdPutImageRectMap.	
-	New	vector	text	functions:	cdVectorFont,	cdVectorTextDirection,
cdVectorTextTransform,	cdVectorTextSize,	cdGetVectorTextSize,
cdVectorCharSize,	cdVectorText	and	cdMultiLineVectorText.
-	wdActivate	is	no	longer	necessary.	

-	Driver	IMAGERGB	complete.
-	Driver	SIMULATE	no	longer	exists;	now	function	cdSimulate	must	be
used.	
-	New	driver	DIRECTDRAW.	
-	Policy	change	of	cdPalette	in	the	X-Windows	driver
-	IUP	driver	is	now	in	a	separate	library.

IMPORTANT	NOTE:	This	version	is	not	totally	compatible	to	the	previous	one.
The	applications	using	the	driver	IUP	must	be	relinked,	as	this	driver	is	now	in	a
separate	library,	"cdiup".	The	Lua	applications	must	also	be	modified	to	include
a	call	to	function	cdluaiup_open	after	cdlua_open,	and	must	be	linked	with	the
"cdluaiup"	library.	The	SIMULATE	driver	no	longer	exists,	therefore	the
applications	that	used	it	must	be	modified	to	use	the	new	function,	cdSimulate,
without	the	need	for	creating	a	new	driver.

IMPROVEMENT:	the	internal	structure	of	the	library	was	changed	once
again.	One	of	the	purposes	is	to	make	the	drivers	become	independent	from
the	function	table.	With	this	change,	adding	a	new	function	to	the	function
table	does	not	imply	editing	the	old	drivers.	We	also	allowed	the	drivers	not
to	implement	functions	that	do	not	make	sense	in	their	context.	Another
modification	simplifying	the	work	in	the	drivers	was	to	bring	the	attribute
query	mechanism	to	the	library's	control	part,	freeing	the	drivers	from	this
obligation.	Taking	the	chance,	we	determined	that	a	change	in	an	attribute
to	a	value	equal	to	the	current	one	will	not	be	effective,	thus	saving	calls	to
the	driver.	Now,	the	value	of	an	attribute	is	changed	even	if	the	driver
function	is	not	implemented,	as	the	driver	can	query	this	attribute	later	on.
The	management	of	default	values	of	the	attributes	is	also	done	by	the
library's	control	part.	All	these	changes	prepare	the	library	to	a	new
philosophy:	before,	if	a	driver	did	not	contain	a	certain	feature,	it	simply	did
nothing.	The	new	philosophy	will	be:	if	a	driver	does	not	contain	a	certain
feature,	then	the	simulation	of	this	feature	will	be	activated.
IMPROVEMENT:	when	a	canvas	which	is	already	active	is	activated
again,	an	internal	driver	function	is	now	called,	notifying	an	update	instead
of	an	activation.
IMPROVEMENT:	the	use	of	the	CD	canvas	with	a	IUP	canvas	is	better
described	in	the	manual,	showing	the	various	ways	of	treating	the	canvas
creation	prooblem.
IMPROVEMENT:	all	functions	in	the	control	module	now	have	ASSERT
directives.	Thus,	using	the	library	with	depuration	information,	one	can

better	detect	simple	errors.
IMPROVEMENT:	in	order	to	use	the	IUP	driver,	it	must	be	linked	with	the
"cdiup"	library,	apart	from	the	"cd"	library	(cdiup.lib	in	Windows,
cdiuplib.a	in	UNIX).
IMPROVEMENT:	the	IMAGERGB	driver	is	now	implemented	using	the
simulation	functions.
IMPROVEMENT:	the	cdMark	function	is	back	to	the	function	table,	so
that	the	drivers	in	which	the	primitive	can	be	implemented	can	profit	from
it.
IMPROVEMENT:	in	order	to	assure	that	the	use	of	server	images	is	done
only	between	canvases	of	the	same	driver,	or	of	the	same	basic	driver,	an
internal	structure	was	defined	for	the	server	image	containing	the	functions
of	the	driver	from	which	the	image	was	created.	Thus,	if	the	cdKillImage
function	is	called	with	an	active	canvas	of	a	different	kind	from	that	in
which	the	image	was	created,	the	KillImage	function	of	the	correct	driver
will	be	called.
IMPROVEMENT:	in	the	X-Windows	driver,	the	XV	code	was	used	to
optimize	functions	cdPutImageRectRGB	and	cdPutImageRectMap.
IMPROVEMENT:	the	Lua	binding	was	updated.	Now	the	user	guide
contains	Lua	function	together	with	C	functions.
CHANGE:	in	the	X-Windows	driver,	cdPalette's	policy	was	changed	to
fulfill	the	requirements	of	some	applications,	which	wanted	to	force	a
palette.	Please	see	the	function's	documentation	in	the	driver.
IMPROVEMENT:	the	CGM	driver	used	to	always	store	the	cdForeground
attribute	before	drawing	a	primitive;	now	it	stores	the	attribute	only	when	it
is	changed.	The	cdBackOpacity	function	was	not	implemented.	The
cdFlush	function	was	not	preserving	the	canvas	attributes.	Now	when	the
canvas	size	is	not	specified	in	the	cdCreateCanvas	function,	the	VDC
Extension	saved	to	the	file	is	the	figure's	bounding	rectangle.	The	patterns
and/or	stipples	selected	were	being	stored	in	a	way	so	that	only	the	first	one
was	valid.
CHANGE:	the	documentation	of	the	old	DOS	driver	was	removed	from	the
user	guide.
CHANGE:	the	default	resolution	for	drivers	DGN,	DXF,	METAFILE,
CGM	and	ImageRGB	is	no	longer	1	but	3.8	points	per	mm	(96	DPI).
CHANGE:	in	the	cdInteriorStyle	function,	if	stipple	or	pattern	are	not
defined,	the	state	of	the	attribute	is	not	modified.	There	is	no	longer	a
default	32x32	pattern	or	stipple.
CHANGE:	in	functions	cdFontDim	and	cdTextSize,	if	the	driver	does	not

support	this	kind	of	query,	the	values	are	estimated.
CHANGE:	function	cdHatch	now	returns	the	previous	value.
CHANGE:	function	cdScrollImage	is	now	called	cdScrollArea,	better
reflecting	its	functionality,	since	it	does	not	require	any	explicitly	defined
image	to	be	performed.	The	old	function	is	maintained	to	assure
compatibility	with	old	applications.
CHANGE:	the	cdPlay	function	now	accepts	all	window	parameters	null.	In
this	case,	the	primitives	in	the	file	are	interpreted	without	scaling.
CHANGE:	cdFontnow	accepts	font	sizes	in	pixels	when	negative	values
are	used	as	a	parameter.
CHANGE:	the	WD	functions	were	included	in	the	library's	function	table,
so	that	the	drivers	can	use	floating	point	precision	when	storing	primitives.
Presently,	only	the	drivers	PS	and	METAFILE	have	this	resource	directly
implemented.	With	this	change,	the	wdActivate	function	became	obsolete
and	is	no	longer	necessary.	For	purposes	of	compatibility	with	other
applications,	it	was	maintained	only	as	a	call	to	function	cdActivate.
CHANGE:	drivers	EMF	and	WMF	now	accept	the	resolution	as	a
parameter.
NEW:	internal	modification	of	the	Windows	driver	to	allow	the	creation	of
the	DirectDraw	driver.
NEW:	DirectDraw	driver	to	accelerate	video	access	to	high-performance
applications.
NEW:	function	cdInteriorStyle	now	accepts	style	CD_HOLLOW.	When
this	style	is	defined,	the	cdBox	and	cdSector	functions	behave	like	their
equivalents	cdRect	and	cdArc,	and	the	polygons	with	the	CD_FILL	style
behave	like	CD_CLOSED_LINES.
NEW:	new	functions:
-	cdCreateCanvasf	accepts	parameters	equivalent	to	sprintf,	helping	in	the
creation	of	some	canvases.
-	cdOrigin	allows	translating	the	origin	-	for	instance,	to	the	center	of	the
canvas.
-	cdGetContext	returns	the	context	of	a	given	canvas;	it	can	be	compared
with	predefined	contexts,	such	as	"CD_PS".
-	cdSaveState	and	cdRestoreState	allow	saving	and	restoring	the	state	of
attributes	of	the	active	canvas.
-	cdSetAttribute	and	cdGetAttribute	allow	passing	customized	attributes
to	the	driver,	which	are	ignored	if	the	driver	does	not	have	the	attribute
defined.
-	cdContextCaps	returns	a	combination	of	several	flags	informing	the

available	resources	of	the	canvas	in	that	context.
-	Driver	SIMULATE	no	longer	exists.	Now	function	cdSimulate	must	be
used.	The	simulation	can	be	activated	and	deactivated	at	any	moment.
-	cdRect	and	wdRect	allow	drawing	a	box	with	no	filling.
-	cdGetFont	returns	the	values	of	the	font	modified	by	function	cdFont	and
ignores	those	modified	by	cdNativeFont.
-	cdTextBox	returns	the	horizontal	bounding	rectangle	of	the	text	box,	even
if	it	is	bended.
-	cdGetStipple	and	cdGetPattern	return	current	stipple	and	pattern.	With
these	functions	and	with	function	cdGetFont,	one	can	now	totally	change
and	restore	the	attributes	of	a	given	canvas.
-	wdPattern	and	wdStipple	allow	specifying	the	style	in	world
coordinates.	The	size	of	the	image	is	modified	to	the	specified	size	in
millimeters.
-	functions		cdPutImageRectRGB,	cdPutImageRectRGBA	and
cdPutImageRectMap	allow	specifying	a	rectangle	in	the	image	to	be	used
for	the	drawing	instead	of	the	whole	image.
-	wdPixel,	wdPutImageRect,	wdPutImageRectRGB,
wdPutImageRectRGBA	and	wdPutImageRectMap	are	equivalent	to
cdPixel,	cdPutImageRect,	cdPutImageRectRGB,
cdPutImageRectRGBA	and	cdPutImageRectMap,	respectively,	but	the
target	coordinates	are	specified	in	world	coordinates.
-	New	vector	text	functions:	cdVectorFont,	cdVectorTextDirection,
cdVectorTextTransform,	cdVectorTextSize,	cdGetVectorTextSize,
cdVectorCharSize,	cdVectorText,	cdMultiLineVectorText.	The	vector
text	can	now	be	used	without	the	need	of	world	coordinates.	Functions
wdVectorFont	and	wdVectorTextTransform	have	become	obsolete,
though	they	still	exist	for	compatibility	reasons.
-	wdHarcopy	helps	drawing	WD	primitives	in	devices,	adjusting	Window
and	Viewport.
-	Auxiliary	functions	were	created	to	manipulate	all	sorts	of	images	in	a
single	way,	being	either	client,	RGB,	RGBA,	MAP,	or	server	images:
cdCreateImageEx,	cdKillImageEx,	cdPutImageEx,	cdGetImageEx,	etc.

CORRECTION:	the	documentation	of	function	cdFont	was	confusing,
causing	errors	in	the	conversion	from	pixels	to	points.
CORRECTION:	function	wdFont	was	making	a	wrong	conversion	of	the
font	size	parameter	from	millimeters	to	points.
CORRECTION:	functions		wdVectorText	and	wdMultiLineVectorText

were	generating	an	extra	polygon	when	the	text	contained	blank	spaces	in
certain	positions.
CORRECTION:	the	PS	driver	was	not	prepared	for	marked	texts.	Function
cdFlush	did	not	preserve	current	attributes.	The	interior	style	was	affecting
line	drawing.	The	text	alignment	now	takes	into	account	an	estimation	for
the	baseline.	Function	cdTextOrientation	was	implemented.	The	world
coordinate	functions	were	implemented	directly	in	the	driver.	Hatch	and
stipple	interior	styles	were	implemented,	but	they	are	still	only	opaque.
CORRECTION:	in	the	X-Windows	driver,	function	cdGetColorPlanes
was	returning	8	bpp	even	if	the	canvas	was	24	bbp	when	the	default
visualization	was	different	from	the	canvas'	visualization	in	that	X	server.
Text	position	on	the	screen	was	above	the	one	entered.	Function	cdFont
was	looping	in	certain	conditions.	Function	cdEnd	in	the	X-Windows
driver	in	the	AIX	system	was	generating	an	error	and	aborting	the	program
if	only	one	point	of	the	polygon	was	specified.	Dashed	lines	were	always
opaque,	ignoring	the	cdBackOpacity	attribute.
CORRECTION:	in	the	Clipboard	driver	for	X-Windows,	a	parameter	was
missing	which	prevented	it	from	working	properly.	Before	the	update,	it
used	that	of	the	IUP/Native	Window	active	canvas.
CORRECTION:	in	the	Windows	driver,	the	text	position	on	the	screen	was
above	the	position	provided.	Filled	polygons	had	a	one	pixel	error	to	the
right	and	below	due	to	the	small	NULL	used.	Fillings	with	hatch,	pattern
and	stipple	still	contain	errors.	The	internal	simulation	of	polygons	filled
with	pattern	and	stipple	was	also	corrected;	they	had	one	additional	pixel	to
the	right	and	below.	Text	alignment	treatment	was	improved.
CORRECTION:	driver	WMF	now	has	text	alignment.
CORRECTION:	in	the	PRINTER	(Windows)	driver,	function	cdFlush	was
not	preserving	current	attributes.
CORRECTION:	in	the	CGM	driver,	the	text	align	interpretation	was
corrected.	The	cdMark	function	is	implemented	directly	in	the	driver.
Function	cdBackOpacity	was	implemented.	Mark	interpretation	was	also
corrected.
OPTIMIZATION:	function	wdVectorFont	only	loads	the	new	font	if	it	is
different	from	the	current	one.
OPTIMIZATION:	function	cdMark	now	modifies	fill	and	line	attributes
only	if	they	are	different	from	the	one	needed	to	draw	the	mark.

Version	3.6	(05/May/98)

CORRECTION	/	Win32:	every	time	the	clipping	region	changed	the	old
region	was	not	deleted.
NEW:	new	function	cdRGB2Map,	which	converts	an	RGB	image	into	a
256	indexed-colors	image.	It	is	the	same	algorithm	used	in	the	IM	library	-
in	fact,	it	is	the	same	code.
IMPROVEMENT:	the	cdMark	function	now	uses	the	cdPixel	function
when	drawing	a	mark	of	1	pixel	size.
IMPROVEMENT	/	Win32:	the	cdPixel	function	now	uses	the	SetPixelV
function	when	not	under	Win32s.	This	function	is	faster	than	the	SetPixel
function	because	it	does	not	return	the	old	value.
IMPROVEMENT	/	Win32:	the	polygon	used	for	clipping	is	now	optimized
to	not	include	3	points	that	are	in	the	same	horizontal	or	vertical	line.
CORRECTION	/	WD:	the	wdVectorText	function	was	not	drawing
correctly	when	extended	characters	(>128)	were	used.
CORRECTION	/	X:	the	cdPalette	function	and	the	color	management	for
canvases	with	only	256	colors	were	wrong.	Each	canvas	had	its	own
management,	now	all	canvases	in	the	same	aplication	use	the	same
management.
CORRECTION	/	X:	several	resource	and	memory	leaks	were	corrected.
CORRECTION	/	IMAGERGB:	functions	cdRedImage,	cdGreenImage
and	cdBlueImage	were	not	returning	the	correct	pointer.
CORRECTION	/	SunOS:	drivers	IMAGERGB,	SIMULATE	and
NATIVEWINDOW	use		the	"%p"	format	string,	but	in	the	SunOS	they	use
"%d"	because	of	an	internal	bug	of	the	run	time	library	of	this	OS.
IMPROVEMENT	/	IUP:	driver	IUP	sets	the	cdCanvas	function	as	an
attribute	of	the	IupCanvas	passed	as	a	parameter	using	the	name
"_CD_CANVAS".
MANUAL:	the	manual	appearance	was	changed	to	match	the	new	Tecgraf
standard.

Version	3.5	(07/Jan/98)

NEW:	the	cdTextDirection	function	allows	raster	text	to	be	drawn	in	any
direction.	Up	to	now	it	is	implemented	only	in	the	basic	Win32	driver.
CORRECTION	/	X	/	NativeWindow:	the	canvas	was	not	created	if	the
screen	was	0.
CORRECTION	/	Win32	/	NativeWindow:	now	the	driver	considers	the
existence	of	non	owner-draw	device	contexts.
CORRECTION	/	Win32:	function	cdClipArea	was	not	including	xmax	and

xmin	in	the	clipping	area.
IMPROVEMENT:	the	cdCallback	typedef	was	defined,	being	useful	for
type	casting	when	calling	the	cdRegisterCallback	function.
CORRECTION	/	Win32:	a	compatibility	problem	with	the	cdNativeFont
string	and	the	WINFONT	IUP	attribute	was	corrected.
IMPROVEMENT	/	Win32:	the	cdPutImageRGB	and	cdPutImageMap
functions	use	a	cache	memory	for	best	performance.
CORRECTION:	text	size	estimation	for	the	CGM	and	PS	drivers	now	uses
Courier	New	as	the	"System"	font.	As	it	was,	it	was	causing	a	memory
invasion.

Version	3.4	(12/Nov/97)

IMPROVEMENT	/	X:	memory	use	of	the	cdPutImageRGB,
cdPutImageRGBA	and	cdPutImageMap	functions	was	optimized,	as	well
as	the	performance	of	the	cdPutImageMap	function.
IMPROVEMENT	/	X	and	Win32:	when	the	canvas	has	bpp	<=	8,	function
cdPutImageRGB	converts	the	image	into	Map	before	displaying	it.
IMPROVEMENT	/	X	and	Win32:	if	a	font's	parameters	are	the	same	as	the
current	parameters,	the	cdFont	function	does	nothing.
DOC	/	PS:	the	"-d"	parameter	for	the	EPS	option	was	not	documented.
CORRECTION	/	PS:	parameters	"-w"	and	"-h"	were	incorrectly	interpreted.
CORRECTION	/	X:	the	internal	function	names	were	generating	an	error	in
the	VMS	plataform.
CORRECTION	/	X:	the	cdKillCanvas	function	was	freeing	some	pointers
of	the	active	canvas.
IMPROVEMENT	/	Win32:	the	cdVertex	function	now	ignores	duplicate
points.
IMPROVEMENT	/	Win32:	the	cdNativeFont	function	also	accepts	the
font	string	of	the	WINFONT	IUP	attribute.
CORRECTION	/	DXF:	corrections	in	color	conversion	and	in	the	cdArc
function	for	small	radius	were	made,	and	an	unnecessary	identation	was
removed.

Version	3.3	(19/Sep/97)

IMPROVEMENT	/	X:	the	cdFont	function	now	has	a	better	heuristic	to
find	a	closer	font	if	the	requested	font	does	not	match	an	available	one.

IMPROVEMENT	/	X:	the	cdPattern	and	cdStipple	functions	now	use	a
bitmap	cache	to	store	the	pixmap	and	do	not	recreate	it	if	the	size	is	not
changed.
CORRECTION	/	X	and	Win32:	the	cdPutImageRect	function	was	placing
the	bitmap	in	a	wrong	position.
CORRECTION	/	Win32:	the	cdCreateImage	function	did	not	return
NULL	when	the	creating	failed.
IMPROVEMENT	/	Win32:	the	cdPutImageRGB,	cdPutImageRGBA	and
cdPutImageMap	functions	were	largely	optimized	when	the	picture
displayed	is	larger	than	the	screen.
IMPROVEMENT	/	WMF:	using	the	cdPlay	function	we	discovered	that
the	size	of	the	picture	was	incorrect	in	the	header	file,	so	we	first	had	to
calculate	the	bounding	box	and	then	interpret	the	picture.
IMPROVEMENT	/	PS	and	CGM:	now	the	cdFontDim	and	cdTextSize
functions	return	approximate	dimensions,	instead	of	nothing.
CORRECTION	/	PS:	the	default	font	was	not	being	set	when	the	canvas
was	created.
CORRECTION	/	PS:	text	alignment	was	incorrect	in	the	vertical	direction.
CORRECTION	/	SIM:	the	clipping	algorithm	of	the	cdPixel	function	of	the
Simulation	driver	was	corrected.
CORRECTION	/	CD:	now	you	can	activate	a	NULL	canvas.	When	you	get
the	active	canvas	and	restore	it,	if	it	was	NULL	the	cdActivate	function
was	accessing	an	invalid	pointer.
MANUAL:	several	changes	were	made	on	the	online	manual	structure,	and
were	added	to	the	CDLua	page.

Version	3.2

A	problem	in	the	cdFlush	function	in	the	Postscript	driver	was	corrected.	It
was	not	setting	the	scale.
Functions	wdFontDim	and	wdTextSize	now	check	if	the	return	pointers
are	not	NULL.
An	internal	function	in	the	DGN	driver	was	drawing	an	ellipse	with	two
times	the	axis	size.
The	cdFont	function	was	corrected	to	store	the	font	names	in	the	CGM
driver.

Version	3.1

Several	minor	bugs	in	the	Win32	Printer	driver	and	in	the	Postscript	driver
were	corrected.	The	EPS	mode	of	the	PS	driver	now	generates	a
"showpage"	PS	function	so	it	can	be	printed.
The	Clipboard	driver	was	implemented	in	Motif.	The	cdPlay	function	was
implemented	in	the	Motif	and	Win32	Clipboard	drivers.
The	cdRegisterCallback	function	was	added	to	allow	the	customization	of
the	cdPlay	function's	behavior.
The	wdVectorTextTransform	function	allows	a	2D	transformation	applied
to	any	vector	text.
Now	the	Simulation	driver	has	several	levels	of	simulation,	and	the
simulation	was	improved	with	pattern	and	clipping	simulation.

Version	3.0

The	library's	architecture	underwent	several	changes.	The	function	tables
are	no	longer	public,	only	the	drivers	know	its	structure.	This	means	that	we
have	eliminated	the	need	to	recompile	applications	that	use	the	dynamic
library	when	we	change	something	in	the	function	table.	There	are	some
other	benefits,	like	the	fact	that	the	Windows	DLL	can	now	be	implemented
and	that	it	is	more	simple	to	explain	the	library	to	new	users,	so	they	will
not	be	confused	by	the	cdprivat.h	header.
Corrections	to	the	text	alignment	of	the	wdVectortext	function	were	made.
Memory	allocation	of	the	cdPattern	and	cdStipple	functions	in	the	basic
Windows	driver	was	corrected.
Memory	release	of	the	cdKillCanvas	function	in	the	basic	Windows	driver
was	corrected.
The	cdPattern	function	was	implemented	in	the	Postscript	driver,	and	the
cdPutImageRGB	and	cdPutImageMap	functions	now	write	color	images.
The	cdPattern	function	was	corrected	in	the	basic	X-Windows	driver	for
use	with	clipping.
The	compiler	directive	#include<malloc.h>	was	changed	to
#include<stdlib.h>	in	several	modules	for	better	compatibility	with	other
compilers.
The	cdPlay	function	now	accepts	the	viewport	rectangle	where	the	drawing
will	be	rendered.
Several	navigation	changes	were	made	to	the	user	guide	pages.
A	new	CD_SIMULATE	driver	was	created.	Use	it	to	replace	some
primitives	and	to	handle	attributes	of	another	driver.	It	can	be	used	with	any
other	driver.	Basically,	it	substitutes	the	interior	style	of	dependent

primitives:	box,	sector	and	filled	polygons.	It	also	substitutes	the	clipping
methods	of	these	primitives.
The	Windows	DLL	version	of	the	library	was	created.

Version	2.2.1

Interrnal	macros	that	affect	wdArc	and	wdSector	were	corrected.
The	CGM	driver	now	supports	some	client	image	functions.
Hatch	styles	in	the	Image	RGB	driver	were	corrected.

Version	2.2.0

New	Functions:

cdVersion	-	returns	the	current	library	version.
cdNativeFont	-	sets	a	native	font.
cdPutImageRect	-	same	as	cdPutImage	but	you	may	specify	a	part	of
the	image.
cdPutImageRGBA	-	cdPutImageRGB	with	transparency.
wdFont	-	cdFont	for	the	WD	client,	the	size	parameter	is	in
millimeters.

New	Drivers:

NativeWindow	-	now	the	library	can	work	with	other	Interface
libraries.
DGN	-	MicroStation	Design	File.
EMF	-	Windows	Enhanced	Metafile.
CD	Metafile	-	our	own	metafile.
Client	Image	RGB	-	now	you	can	write	in	an	RGB	image.

DGN,	CGM	and	DXF	file-based	drivers	now	have	a	default	size	in	pixels
(INT_MAX	=	2.147.483.647)	and	are	optional.	In	fact	the	size	is	irrelevant
in	these	file	formats.	The	cdCreateCanvas	data	string	may	contain	the	size
in	millimeters	and	the	resolution	in	pixels	per	millimeters.	Both	are	real
values.	The	default	resolution	is	1.
The	cdPlay	function	now	works	on	the	CGM	and	on	the	CD	Metafile
drivers.
The	interior	style	attributes	were	implemented	in	the	CGM	driver.

On	the	Clipboard	driver:	limitations	are	considered	if	creating	a	WMF
under	Win32s.
Now	the	Printer	Driver	shows	the	Printer's	Dialog	Box	(Win32	&	Mac)	if
the	parameter	"-d"	is	specified.
On	the	PS	driver:	all	the	dimensions	in	the	Data	parameter	string	are	now	in
millimeters.
On	the	WMF	driver:	several	functions	were	disabled	because	of	WMF
limitations.	Picture	size	was	corrected.
On	the	basic	X-Windows	driver:	cdLineWidth(1)	uses	width	0	for	better
performance.	Stipple	was	being	incorrectly	interpreted.	cdGetImageRGB
was	swapping	red	and	blue	channels	on	true	color	canvas.
The	clipping	region	now	can	be	a	polygon	on	some	systems/drivers
(Win32,	Mac,	X-Win	and	PS).	Use	cdClip(CD_CLIPPOLYGON)	to	use
the	polygon	defined	by	a	cdBegin(CD_CLIP),	cdVertex(...),	cdEnd()
sequence.
The	functions	wdMM2Pixel	and	wdPixel2MM	became	cdMM2Pixel	and
cdPixel2MM,	respectively.
Minor	bugs	in	the	wdFontDim,	wdLineWidth	and	wdMarkSize	functions
were	corrected.
wdVectorCharSize	now	returns	the	previous	value.

Up	to	Version	2.1

The	cdActiveCanvas,	cdPlay	and	the	wdVectorFont	functions	were
added,	and	the	cdKillCanvas	function	was	corrected	when	destroying	the
current	canvas.
The	cdMark	function	no	longer	depends	on	line	style,	line	width	and
interior	style	attributes,	and	it	is	the	same	for	all	drivers	because	it	is
implemented	only	with	CD	functions.
The	wdLineWidth	and	wdMarkSize	functions	now	use	millimeters.
The	functions	cdEncodeColor	and	cdDecodeColor	now	can	be	called
without	an	active	canvas.	The	DXF	driver	was	added.
WD	can	now	access	files	with	vector	font	definitions.
Minor	bugs	in	the	wdTextSize	function	were	corrected.

To	Do's

CD

Create	Bezier	curves	by	means	of	a	new	parameter	for	the	cdBegin
function.
Create	new	attributes:	LineCap,	LineJoin,	PolyFillMode.
Create	new	primitive:	Chord.
Use	the	library	GD	to	replace	the	code	of	the	IMAGERGB	driver	?

New	Drivers

Driver	based	on	Macintosh	Picture	(PICT)	file.
GKS	Metafile	driver.	Thus,	old	GKS-based	applications,	such	as	TeCDraw,
would	be	able	to	import	CD	images.

Simulation

Enhance	mark	and	text	clipping.
Implement	a	polygon	clipping	for	text.
Implement	line	styles	for	lines	with	thickness	over	1.
Correct	error	in	the	Sector	simulation.	The	error	occurs	when	the	drawing
of	the	round	part	of	the	sector	begins,	because	the	algorithm	skips	a
horizontal	line.

ImageRGB

Correct	error:	the	polygon	clipping	is	not	performed	for	Image	functions,
both	for	server	and	for	client	images.
Correct	error:	text	clipping	must	be	made	by	each	character's	PutImage,	and
not	as	in	the	text	clipping	simulation.

DXF

Implement	World	Coordinate	functions	directly	in	the	driver.
Implement	Arch	and	Sector	functions	as	DXF	primitives,	and	not	as

polygons.	Update	all	other	primitives	according	to	the	new	DXF	manual,	as
there	are	several	limitations	in	the	current	implementation.

CGM

Make	cdPlay	treat	the	possibility	of	xmax	and	ymax	being	0.
Check	the	possibility	of	implementing	function	cdTextOrientation.
Implement	World	Coordinate	functions	directly	in	the	driver.
Correct	the	cdPlay	function,	which	is	generating	several	extra	lines.
Correct	the	cdPlay	function,	which	should	not	preserve	the	aspect	ratio.
Allow	cdPutImageRGBA	to	be	partially	implemented	using	transparent
cell	color.

DGN

Implement	the	interior	style	attributes:	hatch,	stipple	and	pattern.	They
depend	on	the	new	DGN	specification,	which	we	do	not	have	yet.
Check	the	possibility	of	implementing	functions	cdTextOrientation	and
cdRect.
Implement	World	Coordinate	functions	directly	in	the	driver.
Correct	function	cdKillCanvas,	which	generates	"assertion	failed"	when
the	library	is	used	with	debug	information	and	the	Seed	file	is	not	included.

PS

Allow	functions	cdPutImageMap...	to	be	implemented	using	indexed	color
space.
Check	the	possibility	of	cdHatch	and	cdStipple,	which	are	always	opaque,
having	transparency,	using	shading	from	Version	3	or	mask	images.Same
for	cdPutImageRGBA.

MAC

!!!	Update	the	driver	to	Version	4.0.
Create	a	dynamic	library	(Dynamic	Link	Library).
Remove	IUP	driver	dependency.
Solve	the	memory	problem	related	to	patterns.

X-WIN

Analyze	the	possibility	of	using	Double	Buffering	and	MIT-Shared
Memory	extensions	for	server	images.

Guide

Implementation	Notes

The	CD	library	is	a	basic	graphic	library	(GL).	In	a	GL	paradigm	you	use
primitives,	which	have	attributes,	to	draw	on	a	canvas.	All	the	library
functions	reflect	this	paradigm.

The	canvas	is	the	basic	element.	It	can	have	several	forms:	a	paper,	a	video
monitor,	a	graphic	file	format,	etc.	The	virtual	drawing	surface	where	the
canvas	exists	is	represented	by	a	driver.	Only	the	driver	knows	how	to
draw	on	its	surface.	The	user	does	not	use	the	driver	directly,	but	only	the
canvas.

To	make	the	library	simple	we	use	the	concept	of	an	active	canvas,	over
which	all	the	primitives	are	drawn.	This	also	allows	the	use	of	an	expansion
mechanism	using	function	tables.	Unfortunately,	this	very	dangerous,
because	if	a	function	is	called	without	an	active	canvas	a	memory	invasion
will	occur.	On	the	other	hand,	the	mechanism	allows	the	library	to	be
expanded	with	new	drivers	without	limits.

The	attributes	are	also	separated	from	the	primitives.	They	reside	in	the
canvas	in	a	state	mechanism.	If	you	change	the	attribute's	state	in	the	canvas
all	the	primitives	drawn	in	that	canvas	that	depend	on	the	attribute	will	be
drawn	in	a	different	way.

The	set	of	primitives	is	very	small	but	complete	enough	to	compose	a	GL.
Some	primitives	are	system	dependent	for	performance	reasons.	Some
drivers	(window	and	device	based)	use	system	functions	to	optimally
implement	the	primitives.	Sometimes	this	implies	in	a	misbehavior	of	some
functions.	Also	some	primitives	do	not	make	sense	in	some	drivers,	like
server	images	in	file-based	drivers.

The	set	of	available	functions	is	such	that	it	can	be	implemented	in	most
drivers.	Some	drivers	have	sophisticated	resources,	which	cannot	be
implemented	in	other	drivers	but	can	be	made	available	for	them	by	means
of	the	target	driver's	header	file.	The	name	of	the	function	must	include	the
driver's	prefix,	for	example:	cdDXFSetLayer.	If	there	is	no	active	canvas	in

the	target	driver,	the	function	will	only	be	returned,	without	doing	anything.
We	are	currently	studying	a	mechanism	to	allow	more	flexible	extensions	to
the	library.

Header	Files

All	the	CD	functions	are	declared	in	the	cd.h	header	file;	World	Coordinate
functions	are	declared	in	the	wd.h	header	file;	and	each	driver	has	a
correspondent	header	file	that	must	be	included	to	create	a	canvas.	It	is
important	to	include	each	driver	header	after	the	inclusion	of	the	cd.h
header	file.

Compiling	and	Linking

The	library	does	not	impose	any	specific	compiler	directive.	Therefore,
using	it	with	the	default	compiler	options	would	be	enough	to	make	things
work.	The	library	always	has	a	static	linking	module,	but	on	some	platforms
a	dynamic	linking	library	is	also	available.

To	compile	the	library	it	is	necessary	to	define	the	symbol	"__CD__".
Internaly	we	use	the	definitions:	"WIN32"	and	"SunOS",	that	must	be
defined	in	the	respective	systems.

Dinamic	Library

In	UNIX,	dinamic	libraries	are	automatically	used	by	the	linker.	To	force	a
static	link,	we	suggest	the	inclusion	of	the	".a"	files	from	the	library	directly
into	the	file	list	for	linking	in	the	metafile.

In	Windows,	all	libraries	must	also	be	used	as	DLL	in	order	to	avoid	linking
problems.	The	most	important	parameter	in	this	case,	Multithreaded	DLL	or
Debug	Multithreaded	DLL,	is	at	Visual	C++	5	in
Project/Settings/C++/Code	Generation/Use	Run	Time	Library.	This	will
also	make	your	program	depend	on	the	MSVCRT.DLL	file,	generally
available	at	Windows	95/98/NT4	installation	program.

In	both	cases,	the	program	will	only	run	if	the	library	files	are	also	present
somewhere	in	the	PATH,	so	bear	this	in	mind	when	you	distribute	your
application.

Environment	Variables

CDDIR	-	This	environment	variable	is	used	by	some	drivers	to	locate
useful	data	files,	such	as	font	definition	files.	It	contains	the	directory	path
without	the	final	slash.
CD_QUIET	-	In	UNIX,	if	this	variable	is	defined,	it	does	not	show	the
library's	version	data	on	sdtout.

Implementing	a	Driver

The	best	way	to	implement	a	new	driver	is	based	on	an	existing	one.	For
this	reason,	we	provide	the	code	of	the	simplest	driver	in	the	library,
CD_METAFILE.	This	code	is	well	commented	on,	in	order	to	make	this
process	easy	and	to	elliminate	some	doubts.	See	CDXX.H	and	CDXX.C.

Also	see	topic	"Internal	Architecture"	in	this	user	guide.

Intercepting	Primitives

To	fill	data	structures	of	library	primitives	during	a	cdPlay	call	you	must
implement	a	driver	and	activate	it	before	calling	cdPlay.	Inside	your	driver
primitives	you	can	fill	your	data	structure	with	the	information	interpreted
by	the	cdPlay	function.

Error	Handling

For	user	feedback	purposes	you	may	test	the	pointer	returned	by
cdCreateCanvas	only	when	activating	the	drivers	that	have	file	access	like
PS,	CGM,	etc.	For	other	errors,	tests	are	necessary	only	for	debugging
purposes.	Never	activate	a	null	canvas	or	call	a	CD	library	function	without
an	active	canvas	(except	for	cdCreateCanvas,	cdKillCanvas,	cdActivate,
cdActiveCanvas,	cdEncodeColor	and	cdDecodeColor).

For	a	better	parameter	check,	the	library	is	also	available	with	debug
information,	since	all	functions	have	ASSERT	directives.

Global	Names

The	library	has	some	structures	and	enumerations	that	may	conflict	with	the
application's	code.	
Structures	and	typedefs:	cdContex	and	cdCanvas.
See	the	cd.h	header	file	for	enumerations.

IUP	Compatibility

The	IupCanvas	element	of	the	IUP	interface	toolkit	can	be	used	as	a
visualization	surface	for	a	CD	canvas.	There	are	two	moments	in	which	one
must	be	careful	when	an	application	is	using	both	libraries:	when	creating
the	CD	canvas,	and	when	changing	the	size	of	the	IUP	canvas.

Creating	the	CD	Canvas

The	creation	of	the	CD	canvas	must	be	made	always	after	the
IupCanvas	element	has	been	mapped	in	the	system's	native	control.
This	happens	when	the	application	calls	function	IupShow	or	when	the
function	IupMap	is	explicitally	called.

Since	a	call	to	IupShow	generates	a	call	to	the	ACTION	callback	of
the	IUP	canvas,	we	have	a	peculiar	situation.	The	CD	canvas	cannot	be
created	before	IupShow,	but	if	it	is	created	after	it	one	cannot	draw	on
the	first	time	the	redrawing	callback	of	the	IUP	canvas	is	called.

We	can	address	this	problem	in	several	ways:

We	can	force	the	mapping	prior	to	IupShow	by	calling	the
IupMap	function	before	creating	the	CD	canvas.
We	can	create	the	CD	canvas	after	IupShow,	but	associating	the
canvas'	redrawing	callback	also	after	IupShow	and	forcing	a	call
to	this	function.
We	can	create	the	CD	canvas	during	the	redrawing	callback	or
during	the	size	change	callback,	which	is	also	called	during	a
IupShow.
We	can	create	the	canvas	during	the	MAP_CB	callback,	which	is
called	after	the	IupCanvas	element	has	been	mapped	in	the
native	control.

Any	of	the	above	solutions	works	perfectly.	The	most	elegant	solution

http://www.tecgraf.puc-rio.br/iup/

seems	to	be	the	one	that	uses	the	MAP_CB	callback.

Creating	the	CD	canvas	also	requires	some	parameters	to	be	passed	to
the	Native	Window	driver.	These	parameters	are	obtained	from	the
IUP	canvas	by	means	of	the	CONID	attribute.	Therefore,	the	canvas
creation	is:

myCdCanvas	=	cdCreateCanvas(CD_NATIVEWINDOW,
IupGetAttribute(myIupCanvas,	"CONID"));
IupSetAttribute(myIupCanvas,	"_CD_CANVAS",	myCdCanvas);

The	CD_IUP	driver	can	still	be	used,	but	it	must	be	linked	with	the
cdiup	library.

Resizing	the	IUP	Canvas

If	the	application	always	activates	the	canvas	before	drawing,	even	if	it
is	already	active,	then	it	is	not	necessary	to	worry	about	this	situation.
If	this	is	not	so,	then	the	CD	canvas	mut	be	activated	in	the	IUP	canvas
resize	callback.

Comparing	CD	with	Other	Graphic	Toolkits

There	are	other	graphic	toolkits,	with	some	portability	among	operational
systems,	available	on	the	Internet.	Among	them	we	can	highlight:

VOGL	-	A	Very	Ordinary	GL-Like	Library.	It	is	very	similar	to	the
CD	library,	but	it	has	no	longer	been	updated	since	1995.	It	has	several
drivers,	2D	and	3D	routines,	and	illumination.
http://www.cs.kuleuven.ac.be/~philippe/vogl/.
SRGP	-	Based	on	Foley's	book,	the	code	has	not	been	found.	It	is
aimed	only	at	display.	http://www.micg.et.fh-
stralsund.de/~pohlers/srgp.html.
GGI	-	2D	graphic	library	aimed	only	at	display.	http://www.ggi-
project.org/.
GKS	-	Very	complete	2D	and	3D	graphic	library,	but	with	limited
image	resources.	It	is	an	ISO	standard,	and	it	implementations	are
usually	commercial.	Tecgraf	has	an	implementation	of	GKS	which	is
no	longer	used,	being	replaced	by	CD.	http://www.bsi.org.uk/sc24/.

http://www.cs.kuleuven.ac.be/~philippe/vogl/
http://www.micg.et.fh-stralsund.de/~pohlers/srgp.html
http://www.ggi-project.org/
http://www.bsi.org.uk/sc24/

Mesa	-	3D	graphic	library	with	support	to	the	OpenGL	standard.
Implemented	in	C.	Aimed	only	at	display,	with	attribute	functions	for
illumination	and	shading	features.	http://www.mesa3d.org/.
OpenGL	-	3D	graphic	library	with	some	2D	support.	Aimed	only	at
display.	A	window	CD	canvas	can	coexist	with	an	OpenGL	canvas	at
the	same	time.	Note:	When	Double	Buffer	is	used,	do	not	forget	to
swap	buffer	before	redrawing	with	the	CD	library.
http://www.opengl.org.
GD	-	Library	only	for	drawing	on	images,	saves	PNG	files.
Implemented	in	C.	http://www.boutell.com/gd/.
GDK	-	Used	by	the	GTK	user	interface	toolkit.	Implemented	in	C.
Aimed	only	at	display,	and	contains	several	functions	for	managing
windows,	keyboard	and	mouse.	http://www.gtk.org/.
There	are	several	other	user	interface	libraries	containing	drawing
functions.	Most	of	them	are	implemented	in	C++	and	are	aimed	only	at
display.

We	can	see	that	the	concept	of	abstract	drawing	surfaces	was	little	used	in
these	libraries.	Therefore	they	are	aimed	only	at	display,	and	user	interface
routines	were	also	included.	Others	add	3D	drawing	routines,	as	well	as
scene	illumination	routines.	All	this	unnecessarily	increases	their
complexity	and	does	not	make	them	more	complete	as	2D	graphic	libraries.

As	to	performance,	CD	is	as	good	as	any	other,	in	some	cases	having	a
better	performance.

Thus,	the	CD	library	offers	unique	features	and	quality	as	a	portable	2D
graphic	library.

http://www.mesa3d.org/
http://www.opengl.org
http://www.boutell.com/gd/
http://www.gtk.org/

Internal	Architecture

Modularity

Apart	from	the	several	drivers,	the	CD	library	is	composed	of	a	few
modules,	the	public	header	files	cd.h	and	wd.h,	those	which	implement	the
functions	independently	from	drivers,	cd.c	and	wd.c,	and	the	header	file
cdprivat.h,	apart	from	some	other	modules	which	implement	non-exported
specific	functions.	Such	modules	are	totally	independent	from	the
implemented	drivers,	as	well	as	every	driver	independs	from	one	another,
unless	there	is	an	intentional	dependency.

Linking

Since	the	drivers	independ	from	one	another,	we	could	create	a	library	for
each	of	them.	For	the	drivers	provided	with	CD	it	was	easy	to	include	them
in	their	own	library,	thus	simplifying	the	application's	linking	process.	Note:
Internally,	the	drivers	are	called	"context".

In	order	to	establish	this	dependency,	when	creating	a	canvas	in	a	given
driver	the	user	must	specify	the	driver	to	be	used.	This	specification	is	done
by	means	of	a	macro	which	is	actually	a	function	with	no	parameter,	which
passes	the	function	table	from	that	driver	to	the	canvas	creation	function.
For	instance:

CD_PS	=>	cdContext*	cdContextPS();

cdCreateCanvas(CD_PS,	"teste.ps");	=>	novo_canvas->cdLine	=	context->

Since	each	primitive	is	called	without	the	canvas	as	a	parameter,	an	active
canvas	is	assumed.	That	is,	after	the	canvas	is	created	it	must	be	activated	in
order	to	be	used.	Therefore,	we	have	to	internally	maintain	an	object
containing	the	active	canvas.

When	there	is	a	call	to	a	function,	the	active	canvas	function	is	called,
which	is	actually	the	driver	function	from	where	that	canvas	was	created.
For	example:

cdLine	=>	canvas_ativo->cdLine	=>	context->cdLine

Structures

The	control	part	has	only	3	structures.	Two	of	them	are	private	structures
which	correspond	to	the	cd.h	public	structures:	cdPrivateContext	and
cdPrivateCanvas.	The	other	one	is	only	intern,	used	for	the	WD	functions:
wdCanvas.	The	cdPrivateContext	structure	is	used	only	by	the	drivers;
cdPrivateCanvas	contains	the	function	table	and	the	values	of	all	attributes
which	can	be	queried.

The	drivers	need	not	implement	all	functions	from	the	function	table,
because	those	which	are	not	implemented	for	not	making	sense	in	that
driver	will	not	run	without	generating	an	error	for	the		user.

Each	driver	has	a	private	internal	canvas	structure.	Apart	from	this
structure,	they	have	to	define	the	cdContext	structure	to	be	returned	by
function	cdContextXX()	(where	XX	varies	according	to	the	driver,	as
described	previously).	Thus	the	drivers	must	also	define	a	cdPrivateContext
structure	to	be	included	into	this	driver's	cdContext	structure.

The	table	below	illustrates	this	mechanism:
	

typedef	struct	_cdContext

{

		void	*ctx;			=============>

}	cdContext;

typedef	struct	_cdPrivateContext

{

		void*	(*CreateCanvas)(cdCanvas*	canvas,	void	*data);

		int		(*Play)(int	xmin,	int	xmax,	int	ymin,	int	ymax,	void	*data);

		int		(*RegisterCallback)(int	cb,	cdCallback	func);

}	cdPrivateContext;

typedef	struct	_cdCanvas

{

		void	*cnv;			=============>

}	cdCanvas;

typedef	struct	_cdPrivateCanvas

{

		...

		void	(*Line)(int	x1,	int	y1,	int	x2,	int	y2);

		void	(*Rect)(int	xmin,	int	xmax,	int	ymin,	int	ymax);

		void	(*Box)(int	xmin,	int	xmax,	int	ymin,	int	ymax);

		...

		...

		int	mark_type,	mark_size;

		int	line_style,	line_width;

		int	interior_style,	hatch_style;

		...

		void*	wd_canvas;							=============>		

		void*	context_canvas;		=============>		

		void*	context;									=============>		

}	cdPrivateCanvas;

	

To	simplify	driver	administration,	the	context	structure's	linking	is	done	as
follows:

/*	In	the	header	file	*/

#define	CD_METAFILE	cdContextMetafile()

cdContext*	cdContextMetafile(void)

/*	In	the	implementation	file	*/

static	cdPrivateContext	private_context_metafile	=

{

		cdMFcreatecanvas,

		cdMFplay,

		cdMFregistercallback

};

static	cdContext	context_metafile	=

{

		&private_context_metafile

};

cdContext*	cdContextMetafile(void)

{

		return	&context_metafile;

}

In	CDLua,	in	order	to	create	a	new	driver,	one	must	use	the	internal
function	cdluaAddContext.	All	predefined	drivers	are	also	included	this
way.	A	static	structure	cdContextLUA	is	created	containing	all	necessary
information,	and	the	driver	initialization	function,	as	in	cdluaiup_open,	calls
function	cdluaAddContext	and	registers	values,	if	necessary.	See,	for
instance,	CDLUAMF.C,	which	illustrates	this	process.

Attributes

The	query	mechanism	of	an	attribute	is	done	still	in	the	control	part	and
does	not	reach	the	driver.	That	is,	the	drivers	do	not	need	to	focus	on	the
query	mechanism	and	can	use	cdPrivateCanvas	relative	to	the	active	canvas
at	any	moment.	Due	to	this	fact,	the	attributes	which	are	modified	several
times	for	the	same	value	are	not	updated	in	the	drivers,	thus	saving
processing.	Similarly,	if	an	attribute	modification	in	a	driver	was	not
successful,	its	value	is	not	updated.	Nevertheless,	the	fact	that	a	driver	does
not	implement	the	attribute's	modification	function	does	not	mean	that	it
rejects	that	attribute	-	the	driver	just	does	not	need	to	do	anything	with	this
attribute	on	that	moment	and	will	query	it	later,	before	drawing	the
primitive.

The	creation	of	customized	attributes	for	each	driver	is	made	generically,
using	string-like	attributes.	A	structure	with	the	attribute's	name	and	its	set
and	get	functions	must	be	declared,	as	in	the	example	below:

static	void	set_fill_attrib(char*	data)

{

		CurrentCanvas->fill_attrib[0]	=	data[0];

}

static	char*	get_fill_attrib(void)

{

		return	CurrentCanvas->fill_attrib;

}

static	cdAttribute	fill_attrib	=

{

		"SIMPENFILLPOLY",

		set_fill_attrib,

		get_fill_attrib

};	

At	createcanvas	in	the	driver:

new_canvas->fill_attrib[0]	=	'1';

new_canvas->fill_attrib[1]	=	0;

cdRegisterAttribute(private_canvas,	&fill_attrib);

,	for	instance,	must	exist,	thus	initializing	the	attribute	and	registering	it	in
the	canvas'	attribute	list.

Nomenclature

All	directly	or	indirectly	public	functions,	variables	or	numberings	have	the
prefix	"CD"	("cd"	for	functions	and	variables,	and	"CD_"	for	numberings).
For	drivers,	one	must	add,	after	the	prefix,	a	one-	or	two-letter	identification
relative	to	the	driver	(ex.:	"cdps"	for	the	Postscript	driver).	The	same	rule
applies	for	the	modules;	modules	from	different	platforms	have	more	letters
added	to	the	prefix	indicating	the	platform	(ex.:	"cdwiup",	IUP	driver	in
Winndows).	This	helps	solving	conflicts	for	RCS,	the	version	control
program.

There	are	no	global	variables	in	the	control	part,	but	some	drivers,	due	to
historical	reasons,	may	contain	some	global	variables,	which	attempt	to
follow	this	same	nomenclature	and	should	not	cause	any	problem.

History

The	first	version	of	the	library	used	macros	to	replace	function	names	by
pointers	in	a	function	pointer	structure,	that	is,	a	function	table	which	was
indirectly	visible	to	the	user.	This	caused	several	problems,	especially	when
using	the	dynamic	library	and	due	to	the	fact	that	it	was	not	by	any	means
possible	to	control	the	case	of	a	non-active	canvas.	Indirectly,	the	users	also
depended	on	the	header	file	cdprivat.h.

We	have	then	decided	to	hide	the	function	table,	creating	an	intermediate
level	between	the	public	functions	and	the	function	table.	However,	the
drivers	still	knew	the	table's	structure,	therefore	a	change	in	the	table	meant
the	need	to	modify	all	drivers.

Thus,	once	again,	the	library's	structure	was	modified	so	that	the	drivers
would	become	independent	from	the	function	table.	With	this	change	we
were	able	to	create	a	method	for	replacing	any	primitive	in	a	given	driver
by	the	simulation	driver's	primitive,	as	well	as	to	allow	the	user	to	change
any	driver	primitive	to	a	specified	primitive.

Together	with	these	new	changes,	we	approached	a	problem	related	to	the
WD	functions,	which	were	necessarily	clients	of	the	current	drivers.	This
generated	some	precision	losses	and	unnecessary	conversions.	Including	the
WD	functions	in	the	function	table	and	using	the	already	implemented	WD

functions	as	default	functions	for	the	drivers	with	no	WD	functions,	we
corrected	this	problem,	because	wherever	it	is	possible	to	implement	these
functions	the	primitives	are	more	precisely	executed,	and	can	be	called
from	the	cdPlay	function	when	interpreting	a	metafile.

	

Sample	Codes

Simple	Draw

This	is	an	example	of	a	simple	drawing	program	using	a	IUP	canvas:

cdCanvas*	Canvas	=	cdCreateCanvas(CD_NATIVEWINDOW,

IupGetAttribute(IupCanvas,"CONID"));	

cdActivate(Canvas);	

cdLineStyle(CD_DASHED);	

cdLine(0,	0,	100,	100);	

cdKillCanvas(Canvas);

If	you	want	to	use	World	Coordinates:

cdCanvas*	Canvas	=	cdCreateCanvas(CD_NATIVEWINDOW,

IupGetAttribute(IupCanvas,"CONID"));	

wdActivate(Canvas);	

wdViewport(0,	100,	0,	100);	

wdWindow(-1.5,	1.5,	-3000,	3000);	

cdLineStyle(CD_DASHED);	

wdLine(-0.5,	-500,	1.0,	1000);	

cdKillCanvas(Canvas);

Off	Screen	Drawing	(Double	Buffering)

To	draw	in	the	background	and	later	on	transfer	the	drawing	to	the	screen,
use:

cdCanvas*	Canvas	=	cdCreateCanvas(CD_NATIVEWINDOW,

IupGetAttribute(IupCanvas,"CONID"));	

cdActivate(Canvas);	

void*	Image	=	cdCreateImage(100,	100);	

cdCanvas*	ImageCanvas	=	cdCreateCanvas(CD_IMAGE,	Image);	

cdActivate(ImageCanvas);	

cdLineStyle(CD_DASHED);	

cdLine(10,	10,	50,	50);	

cdActivate(Canvas);	

cdPutImage(Image,	0,	0);	

cdKillImage(Image);	

cdKillCanvas(ImageCanvas);	

cdKillCanvas(Canvas);

For	a	more	easier	use	of	double	buffering	see	the	driver	CD_DBUFFER.

To	draw	in	a	RGB	image,	use:

unsigned	char*	red	=	malloc(width	*	height);

unsigned	char*	gree	=	malloc(width	*	height);

unsigned	char*	blue	=	malloc(width	*	height);

cdCanvas*	canvas	=	cdCreateCanvasf(CD_IMAGERGB,	"%dx%d	%p	%p	%p",	width,	height,	red,	green,	blue);

cdActivate(canvas);

....

cdLineStyle(CD_DASHED);	

cdLine(10,	10,	50,	50);	

...

cdKillCanvas(canvas);	

...

free(red);

free(green);

free(blue);

Complete	Example

We	have	created	an	application	called	Simple	Draw	that	illustrates	the	use
of	all	functions	in	the	CD	library	(including	WD).	You	can	see	the	source
code	in	the	simple.c	file,	or	take	the	file	simple.zip	for	a	complete	set	of
files	including	makefiles	for	all	platforms.	Extract	the	files	creating
subfolders,	using	parameter	"-d".

Example	for	Tests

The	CDTEST	example	is	actually	one	of	the	applications	used	to	test
virtually	all	functions	of	the	CD	library.	Its	interface	uses	the	IUP	library,
and	it	can	run	in	several	platforms.	You	can	take	either	the	.EXE	files	or	the
source	code.	Extract	the	files	creating	subfolders,	using	parameter	"-d".
Warning:	This	application	is	not	didactic.

Lua	3.2	Binding

Overview

CDLua	was	developed	to	make	all	functionalities	of	the	CD	library
available	to	Lua	programmers.	It	was	written	in	C,	with	the	aid	of	the
toLua	utility	(a	tool	to	automatically	generate	C/C++	bindings	for	Lua).

To	use	the	CDLua	bindings,	your	executable	must	be	linked	with	the
CDLua	library,	and	you	must	call	the	initialization	function	cdlua_open()
declared	in	the	header	file	cdlua.h,	as	seen	in	the	example	below:

#include	<iup.h>

#include	<lua.h>

#include	<lualib.h>

#include	<iuplua.h>

#include	<cdlua.h>

void	main(void)

{

		IupOpen();

		iolib_open();

		strlib_open();

		mathlib_open();

		cdlua_open();

		iuplua_open();

		lua_dofile("myprog.lua");

		IupMainLoop();

		IupClose();

}

The	cdlua_open()	function	registers	all	CD	functions	and	constants	your
Lua	program	will	need.	The	use	of	the	CDLua	functions	in	Lua	is	generally
identical	to	their	equivalents	in	C.	Nevertheless,	there	are	several
exceptions	due	to	differences	between	the	two	languages.

As	with	CD,	it	is	important	to	make	sure	there	is	a	currently	active	canvas
before	calling	any	CDLua	function.	Otherwise,	the	Lua	program	will	be
aborted	with	an	error	message.	Canvases	are	created	and	activated	as	in	C:

cdlua_canvas	=	cdCreateCanvas(CD_IUP,	iuplua_canvas)

if	cdlua_canvas	==	nil	then

		--	deal	with	error

		...

else

		cdActivate(cdlua_canvas)

end

Notice	that,	as	opposed	to	C,	in	which	the	flags	are	combined	with	the
bitwise	operator	OR,	in	Lua	the	flags	are	added	arithmetically.

In	order	to	print	the	version	of	the	CD	library,	use	the	global	variable
CDLUA_VERSION,	which	contains	a	description	as	in	LUA_VERSION,
for	instance:	"CDLua	4.3".	The	number	is	the	same	returned	by	the
cdVersion()	function.

Data	Types

Lua	native	data	types	were	not	enough	for	the	CDLua	bind,	because	CD
deals	with	a	series	of	data	types	other	than	strings	and	numbers.	Therefore,
to	provide	the	eficiency	required,	usertags	were	used	to	implement	such
data	types.	They	are:

color_tag:	type	used	by	functions	cdEncodeColor,	cdDecodeColor,
cdPixel,	cdForeground	and	cdBackground.
imageex_tag:	type	used	by	functions	cdCreateImageEx,
cdKillImageEx,	cdGetImageEx,	cdPutImage	and	cdPutImageEx.
image_tag:	type	used	by	functions	cdCreateImage,	cdKillImage,
cdGetImage,	cdPutImage	and	cdPutImage.
imagergb_tag:	type	used	by	functions	cdCreateImageRGB,
cdKillImageRGB,	cdGetImageRGB	and	cdPutImageRGB.
imagergba_tag:	type	used	by	functions	cdCreateImageRGBA,
cdKillImageRGBA	and	cdPutImageRGBA.
imagemap_tag:	type	used	by	functions	cdCreateImageMap,
cdKillImageMap	and	cdPutImageMap.
palette_tag:	type	used	by	functions	cdCreatePalette,	cdKillPalette,
cdPalette	and	cdPutImageMap.
pattern_tag:	type	used	by	functions	cdCreatePattern,	cdKillPattern
and	cdPattern.
stipple_tag:	type	used	by	functions	cdCreateStipple,	cdKillStipple	and
cdStipple.

channel_tag:	type	used	by	channel	image	access	methods.	Internal	use
only.
canvas_tag:	type	used	by	cdCreateCanvas,	cdActivate,	cdKillCanvas,
cdGetContext	and	cdContextCaps.
state_tag:	type	used	bycdSaveState	and	cdRestoreState.

All	the	usertags	are	available	to	the	C	programmer	in	Lua	global	variables
such	as	CDLUA_COLOR_TAG,	CDLUA_IMAGEEX_TAG,	and	so	on.
The	respective	structures	are	defined	in	the	cdluapvt.h	header.

Note	that	the	structure	cdContext	is	stored	as	a	number,	and	did	not	need	a
usertag.

Beacause	of	some	applications	that	interchange	the	use	of	CD	canvases	in
Lua	and	C,	we	build	a	simple	C	function	to	retreive	the	pointer	of	a	CD
canvas	created	in	Lua:	cdCanvas*	cdlua_getcanvas(void).	It	is	declared	in
the	cdlua.h	header.	The	canvas	to	be	retreived	must	be	in	the	Lua	stack
before	calling	this	function.	Usually	you	will	do	a
lua_pushobject(lua_getglobal("mycanvas"))	call	before	it.
	

New	Functions

New	functions	(without	equivalents	in	C)	were	implemented	to	create	and
to	destroy	objects	of	the	new	data	types.	Functions	were	developed	to	create
and	remove	images,	pattern,	stipple	and	palette.

In	case	of	error	(for	example,	lack	of	memory),	the	creation	functions	return
nil.	The	user	must	verify	its	return	value.	See	the	example	below:

pattern	=	cdCreatePattern(16,	16)

if	pattern	==	nil	then

		...

end

All	new	types	can	have	their	values	checked	or	changed	directly	as	if	they
were	Lua	tables:

pattern[y*16	+	x]	=	cdEncodeColor(r,	g,	b)

...

color	=	pattern[y*16	+	x]

r,	g,	b	=	cdDecodeColor(color)

...

cdPattern(pattern)

Notice	that	the	type	of	value	returned	or	received	by	pattern[i]	and	palette[i]
is	color_tag,	the	same	type	used	with	functions	cdEncodeColor,
cdDecodeColor,	cdPixel,	cdForeground	and	cdBackground.

Types	imagergb	and	imagergba	are	more	complex.	They	work	as	channel
tables.	Each	channel	works	as	a	value	table	which	should	be	consulted	or
modified	in	the	following	way:

imagergb	=	cdCreateImageRGB(100,	200)
...
imagergb.r[y*100	+	x]	=	red
...
green	=	imagergb.g[y*100	+	x]

Notice	also	that	it	is	always	important	to	define	the	index	in	the	channels,
because,	for	instance,	the	type	of	imagergb.r	(without	index),	channel_tag,	is
internal	to	the	implementation	of	CDLua	and	it	is	useless	for	the	end	user.
The	order	of	the	tables	is	important,	so	that	imagergb[n].r	has	no	meaning
to	CDLua	and	the	expression	will	cause	a	fatal	error.	Finally,	the	user	could
expect	the	value	of	imagergb[n]	to	be	of	type	color_tag.	Unfortunately,	this
is	not	the	case,	and	such	expression	will	cause	the	same	fatal	error.

Known	channel	names	are:	r,	g,	b,	a,	i,	c	(the	two	last	ones	are	used	only
with	imageex).

Modified	Functions

Some	functions	were	modified	to	receive	parameters	of	the	types
imagergb_tag,	imagergba_tag,	imagemap_tag,	palette_tag,	stipple_tag	and
pattern_tag.	These	objects	already	have	their	dimensions	stored	internally
and,	therefore,	the	user	does	not	need	to	pass	them	as	parameters.

The	functions	which	receive	values	by	referencing	to	C	were	also	modified
in	Lua.	Generally,	the	values	of	parameters	that	would	have	their	values
modified	are	now	returned	by	the	function	in	the	same	order.

The	functions	still	have	the	same	functionality,	but	they	are	now	used
differently:

w,	h	=	cdGetCanvasSize()

red,	green,	blue	=	cdDecodeColor(CD_DARK_MAGENTA)

x,	y	=	cdCanvas2Raster(x,	y)

Error	Checking

Rigorous	parameter	checking	is	performed	by	CDLua	functions	before
passing	the	parameters	to	CD.	When	an	error	is	considered	fatal,	the	library
interrupts	the	Lua	program	and	shows	an	explanatory	error	message.	Errors
in	the	number	and	types	of	parameters,	and	inconsistency	in	the	values	of
parameters	are	considered	as	fatal	errors.	In	general,	fatal	errors	are	those
that	require	a	change	in	the	Lua	code	and	would	cause	an	equivalent	C
program	to	crash.

All	fatal	errors	result	in	a	call	to	lua_error	with	a	message	with	format
"function:	message",	where	function	is	the	name	of	the	function	that
detected	the	fatal	error	and	message	is	a	message	that	identifies	the	error.
Some	of	the	most	important	errors	are	seen	in	the	examples	below:

"cdlua:	there	is	no	active	canvas!"

"cdActivate:	attempt	to	activate	a	killed	canvas!"

"cdCreateCanvas:	unknown	driver!"

"cdKillStipple:	attempt	to	kill	a	killed	stipple!"	

"cdCreateCanvas	CD_IUP:	data	should	be	an	iuplua	canvas	object!"

"cdCreateCanvas	CD_IMAGE:	data	is	a	NIL	image!"

"cdCreateCanvas	CD_PRINTER:	data	should	be	of	type	string!"

"cdPlay:	CD_SIZECB:	invalid	return	value!"

"cdCreateCanvas	CD_SIMULATE:	too	many	parameters!"

"cdRegisterCallback:	unknown	callback!"

"cdPlay:	driver	does	not	implement	the	play	function	or	unknown	driver!"

"cdKillCanvas:	attempt	to	kill	a	NIL	canvas!"

"cdEncodeColor:	color	components	values	should	be	in	range	[0,	255]!"

"cdCreateStipple:	stipple	dimensions	should	be	positive	integers!"

The	fallbacks	used	to	modify	and	to	check	the	values	of	types
imagergb_tag,	imagergba_tag,	imagemap_tag,	palette_tag,	pattern_tag	and
stipple_tag	also	perform	error	checking	and	can	detect	fatal	errors.	The
methods	check	for	vector	bounds,	and	for	parameter	types	and	values.	The
messages	have	the	format	"type	'fallback':	message",	as	seen	below:

"pattern_tag	"settable":	index	should	be	a	number!"

"imagemap_tag	"gettable":	index	out	of	bounds!"

"stipple_tag	"settable":	value	should	belong	to	{0,	1}!"

"pattern_tag	"settable":	value	should	be	of	type	color_tag!

Integration	with	IMLua

CDLua	is	fully	integrated	with	IMLua.	Yet,	both	libraries	are	completely
independent.	Whenever	both	libraries	are	initialized	(the	order	is	not
important),	each	library	can	detect	the	presence	of	the	other	and	enable	the
interaction.	Being	independent,	each	library	provides	its	own	set	of
functions	to	create,	access,	modify	and	destroy	the	new	data	types.	Actually,
they	share	the	same	tag	values	for	the	data	types	common	to	CD	and	IM,	so
that	objects	created	by	CDLua	are	indistinguishable	from	objects	created	by
IMLua.	The	example	below	shows	a	perfectly	valid	CDLua/IMLua	code:

...

w,	h	=	imImageInfo(filename)

image	=	cdCreateImageRGB(w,	h)

imLoadRGB(filename,	image)

cdPutImageRGB(image,	x,	y,	w,	h)	

imKillImageRGB(image)

Functions

Control

Functions	to	create	and	destroy	the	canvas,	and	other	canvas	control
functions.

Coordinate	System	and	Clipping

Control	clipping	area,	canvas	size	and	unit	convertion	(mm	x	pixel).

Primitives

The	main	drawing	functions.

Attributes

Change	and	query	primitives	attributes.

Colors

Color	handling	functions.	Include	functions	to	encode	and	decode	colors	to
CD	format,	and	functions	to	set	and	query	color	attributes.

Client	Images

Manipulate	RGB	(24	bpp)	or	MAP	(256	indexed	colors)	images	that	do	not
depend	on	the	canvas.

Server	Images

Manipulate	images	that	depend	on	the	canvas/driver	(server)	resolution	and
depth.

World	Coordinates

Use	the	metaphor	Window-Viewport	to	define	a	World	Coordinate	System.

Vector	Text

Texts	are	rendered	using	polylines	only.	Used	in	the	World	Coordinate
System.

System

char*	cdVersion(void);	[in	C]
cdVersion()	->	(version:	string)	[in	Lua]

Returns	the	current	version	number	of	the	library.	The	string	with	the
version	number	has	a	format	"major.minor.build".	For	instance,	the	string
"2.1.3"	has	number	2	as	the	main	(major)	version	number,	1	as	the
secondary	(minor)	version	number,	and	3	as	the	build	number.	The	major
version	number	represents	a	change	in	the	structure	or	behavior	of
functions;	the	minor	version	number	represents	one	or	more	new	drivers
and	functions	added	to	the	library;	and	the	build	version	number	represents
one	or	more	corrected	bugs.

Control

cdCanvas	*cdCreateCanvas(cdContext*	ctx,	void	*data);	[in	C]
cdCreateCanvas(ctx:	number,	data:	string	or	userdata)	->	(canvas:
canvas_tag)	[in	Lua]

Creates	a	CD	canvas	for	a	virtual	visualization	surface	(VVS).	A	VVS	may
be	the	canvas	of	a	user-interface	window,	the	page	of	a	document	sent	to	a
printer,	an	offscreen	image,	the	clipboard,	a	metafile,	and	so	on.	To	create
the	canvas,	it	is	necessary	to	specify	the	driver	in	which	each	canvas	is
implemented.

The	driver	is	set	by	the	driver	variable	with	additional	information
provided	in	the	data	parameter.	Even	though	it	is	possible	to	create	more
than	one	canvas	with	the	same	driver/data	pair,	this	is	not	recommended,
and	its	behavior	is	not	specified.	Each	canvas	maintains	its	own	features.

In	case	of	failure,	a		NULL	value	is	returned.	The	following	predefined
drivers	are	available:

Window-Base	Drivers

CD_IUP	=	IUP	Canvas	(cdiup.h).
CD_NATIVEWINDOW	=	Native	Window	(cdnative.h).

Device-Based	Drivers

CD_CLIPBOARD	=	Clipboard	(cdclipbd.h).
CD_PRINTER	=	Printer	(cdprint.h).

Memory-Based	Drivers	

CD_IMAGE	=	Offscreen	Drawing	(cdimage.h).
CD_IMAGERGB	=	Client-Image	Drawing	(cdimrgb.h).

File-Based	Drivers	

CD_CGM	=	Computer	Graphics	Metafile	ISO	(cdcgm.h).
CD_DGN	=	MicroStation	Design	File	(cddgn.h).
CD_DXF	=	AutoCad	Drawing	Interchange	File	(cddxf.h).
CD_EMF	=	Microsoft	Windows	Enhanced	Metafile	(cdemf.h).	Works
only	in	MS	Windows	systems.
CD_METAFILE	=	Metafile	Canvas	Draw	(cdmf.h).
CD_PS	=	PostScript	File	(cdps.h).
CD_WMF	=	Microsoft	Windows	Metafile	(cdwmf.h).

cdCanvas*	cdCreateCanvasf(cdContext	*context,	char*	format,	...);	[in	C]
[There	is	no	equivalent	in	Lua]

Same	as	cdCreateCanvas,	used	in	the	case	that	the	parameter	data	is	a
string	composed	by	several	parameters.	This	function	can	be	used	with
parameters	equivalent	to	the	printf	function	from	the	default	C	library.

void	cdKillCanvas(cdCanvas	*canvas);	[in	C]
cdKillCanvas(canvas:	canvas_tag)	[in	Lua]

Destroys	a	previously	created	canvas.

int	cdActivate(cdCanvas	*canvas);	[in	C]
cdActivate(canvas:	canvas_tag)	->	(status:	number)	[in	Lua]

javascript:parent.manLoadCont('drv','../drv/iup')
javascript:parent.manLoadCont('drv','../drv/native')
javascript:parent.manLoadCont('drv','../drv/clipbd')
javascript:parent.manLoadCont('drv','../drv/printer')
javascript:parent.manLoadCont('drv','../drv/image')
javascript:parent.manLoadCont('drv','../drv/irgb')
javascript:parent.manLoadCont('drv','../drv/cgm')
javascript:parent.manLoadCont('drv','../drv/dgn')
javascript:parent.manLoadCont('drv','../drv/dxf')
javascript:parent.manLoadCont('drv','../drv/emf')
javascript:parent.manLoadCont('drv','../drv/mf')
javascript:parent.manLoadCont('drv','../drv/ps')
javascript:parent.manLoadCont('drv','../drv/wmf')

Activates	a	canvas	for	drawing.	There	is	no	explicit		cdDeactivate.	When	a
new	canvas	is	activated,	the	current	one	is	deactivated	(there	can	be	only
one	active	canvas	at	a	given	moment).	The	function	returns	a	status,
CD_OK	or	CD_ERROR,	indicating	whether	the	target	canvas	was
successfully	created	or	not.	A	NULL	canvas	can	be	activated,	but	any
function	call	will	cause	an	invalid	memory	access.

cdCanvas*	cdActiveCanvas(void);	[in	C]
cdActiveCanvas()	->	(canvas:	canvas_tag)	[in	Lua]

Returns	the	active	canvas.	Returns	NULL	if	there	is	no	active	canvas.

cdContext*	cdGetContext(cdCanvas	*canvas);	[in	C]
cdGetContext(canvas:	canvas_tag)	->	(ctx:	number)	[in	Lua]

Returns	the	context	of	a	given	canvas,	which	can	be	compared	with	the
predefined	contexts,	such	as	"CD_PS".

int	cdContextCaps(cdContext*	ctx);	[in	C]
cdContextCaps(ctx:	number)	->	(caps:	number)	[in	Lua]

Returns	the	resources	available	for	that	context.	To	verify	if	a	given
resource	is	available,	perform	a	binary	AND	(&)	with	the	following	values
(in	Lua,	the	values	must	be	summed):

CD_CAP_FLUSH
CD_CAP_CLEAR	
CD_CAP_PLAY	
CD_CAP_YAXIS	-	The	Y	axis	has	the	same	orientation	as	the	CD
axis.
CD_CAP_CLIPAREA	
CD_CAP_CLIPPOLY	-	Usually	is	not	implemented.
CD_CAP_MARK	-	Marks	are	implemented	directly	in	the	driver	(they
are	usually	simulated).
CD_CAP_RECT	-	Rectangles	are	implemented	directly	in	the	driver
(they	are	usually	simulated).
CD_CAP_VECTORTEXT	-	Vector	text	is	implemented	directly	in	the
driver	(it	is	usually	simulated).

CD_CAP_IMAGERGB	
CD_CAP_IMAGERGBA	-	If	this	is	not	implemented,	but
cdGetImageRGB	is,	then	it	is	simulated	using	cdGetImageRGB	and
cdPutImageRGB.
CD_CAP_IMAGEMAP	
CD_CAP_GETIMAGERGB	
CD_CAP_IMAGESRV	-	Usually	is	only	implemented	in	contexts	of
window	graphics	systems	(Native	Window	and	IUP).
CD_CAP_BACKGROUND	
CD_CAP_BACKOPACITY	
CD_CAP_WRITEMODE	
CD_CAP_LINESTYLE	
CD_CAP_LINEWITH	
CD_CAP_WD	-	Functions	of	world	coordinates	are	implemented
directly	in	the	driver	(they	are	usually	simulated).
CD_CAP_HATCH	
CD_CAP_STIPPLE	
CD_CAP_PATTERN	
CD_CAP_FONT	
CD_CAP_FONTDIM	-	If	not	defined,	the	function	is	implemented
using	an	internal	heuristics	of	the	library.
CD_CAP_TEXTSIZE	-	If	not	defined,	the	function	is	implemented
using	an	internal	heuristics	of	the	library.
CD_CAP_TEXTORIENTATION	-	Usually	is	not	implemented.
CD_CAP_PALETTE	-	Usually	is	only	implemented	in	contexts	of
window	graphics	systems	(Native	Window	and	IUP).

void	cdFlush(void);	[in	C]
cdFlush()	[in	Lua]

Has	a	different	meaning	for	each	driver.	It	is	useful	to	send	information	to
buffered	devices	and	to	move	to	a	new	page	or	layer.	In	all	cases,	the
current	canvas	attributes	are	preserved.

void	cdClear(void);	[in	C]
cdClear()	[in	Lua]

Cleans	the	active	canvas	using	the	current	background	color.	This	action	is

interpreted	very	differently	by	each	driver.	Many	drivers	simply	draw	a
rectangle	with	the	current	background	color.	It	is	NOT	necessary	to	call
cdClear	when	the	canvas	has	just	been	created,	as	at	this	moment	it	is
already	clean.	Most	file-based	drivers	do	not	implement	this	function.

int	cdSimulate(int	mode);	[in	C]
cdSimulate(mode:	number)	->	(old_mode:	number)	[in	Lua]

Activates	the	simulation	of	one	or	more	primitives	and	clipping	for	the
active	canvas.	It	is	ignored	for	the	canvas	in	the	ImageRGB	context,	for	in
this	case	everything	is	already	simulated.	It	also	has	no	effect	for	primitives
that	are	usually	simulated.	It	returns	the	previous	simulation,	but	does	not
include	primitives	that	are	usually	simulated.	The	simulation	can	be
activated	at	any	moment.	For	instance,	if	a	line	simulation	is	required	only
for	a	situation,	the	simulation	can	be	activated	for	the	line	to	be	drawn,	and
then	deactivated.

ATTENTION:	Using	the	clipping	simulation	causes	some	primitives	to	be
internally	simulated,	such	as		Polygons,	Arcs	and	Sectors.	Be	careful	when
activating	the	clipping	simulation.

See	in	the	Simulation	sub-driver	the	information	on	how	each	simulation	is
performed.

To	activate	a	given	simulation,	perform	a	binary	AND	(&)	with	the
following	values	(in	Lua,	the	values	must	be	summed):

CD_SIM_NONE	-	Deactivates	all	kinds	of	simulation.
CD_SIM_CLIPAREA
CD_SIM_CLIPPOLY	
CD_SIM_TEXT	
CD_SIM_MARK	
CD_SIM_LINE	
CD_SIM_RECT	
CD_SIM_ARC	
CD_SIM_POLYLINE	
CD_SIM_BOX	
CD_SIM_SECTOR	
CD_SIM_POLYGON	

CD_SIM_WD
CD_SIM_VECTORTEXT
CD_SIM_ALL	-	Activates	all	simulation	options.	
CD_SIM_LINES	-	Combination	of	CD_SIM_LINE,	CD_SIM_RECT,
CD_SIM_ARC	and	CD_SIM_POLYLINE.
CD_SIM_FILLS	-	Combination	of	CD_SIM_BOX,	CD_SIM_SECTOR
and	CD_SIM_POLYGON.
CD_SIM_CLIP	-	Combination	of	CD_SIM_CLIPAREA	and
CD_SIM_CLIPPOLY.

cdState*	cdSaveState(void);	[in	C]
cdSaveState()	->	(state:	state_tag)	[in	Lua]

Saves	a	state	of	attributes	in	the	active	canvas,	returning	it.	The	memory
allocated	for	this	will	only	be	liberated	with	a	call	to	cdRestoreState.	It
does	not	save	callbacks,	polygon	creation	states	(begin/vertex/vertex/...)	and
the	palette.

void	cdRestoreState(cdState*	state);	[in	C]
cdRestoreState(state:	state_tag)	[in	Lua]

Returns	the	attribute	state	of	the	active	canvas.	The	memory	allocated	by
the	cdSaveState	function	is	liberated	and	the	pointer	is	no	longer	valid.	It
can	be	used	between	canvases	of	different	contexts.

void	cdSetAttribute(char*	name,	char*	data);	[in	C]
cdSetAttribute(name,	data:	string)	[in	Lua]

Modifies	a	customized	attribute	directly	in	the	driver	of	the	active	canvas.	If
the	driver	does	not	have	this	attribute,	the	call	is	ignored.

void	cdSetfAttribute(char*	name,	char*	format,	...);	[in	C]
[There	is	no	equivalent	in	Lua]

Same	as	cdSetAttribute,	used	for	the	case	in	which	the	parameter	data	is	a
string	composed	by	several	parameters.	It	can	be		used	with	parameters
equivalent	to	those	of	the	printf	function	from	the	default	C	library.

char*	cdGetAttribute(char*	name);	[in	C]
cdSetAttribute(name:	string)	->	(data:	string)	[in	Lua]

Returns	a	customized	attribute	from	the	driver	of	the	active	canvas.	If	the
driver	does	not	have	this	attribute,	it	returns	NULL.

Metafile	Interpretation

int	cdPlay(cdContext*	ctx,	int	xmin,	int	xmax,	int	ymin,	int	ymax,	void
*data);	[in	C]
cdPlay(ctx,	xmin,	xmax,	ymin,	ymax:	number,	data:	string)	->	(status:
number)	[in	Lua]

Interprets	the	graphical	contents	(primitives	and	attributes)	in	a	given	driver
and	calls	equivalent	functions	of	the	CD	library	using	the	active	canvas.
The	primitives	are	generated	inside	the	region	defined	by	the	given
coordinates.	If	xmin,	xmax,	ymin	and	ymax	are	0,	the	primitives	will	be
generated	with	their	coordinates	having	the	original	values	in	the	file.	Only
some	drivers	implement	this	function.

Drivers	available:

CD_CLIPBOARD	=	Clipboard,	data	is	ignored.	Works	only	in	the	Motif,
MS	Windows	and	Macintosh	systems.
CD_WMF	=	Windows	Metafile,	data	is	a	char*	for	the	string	''filename''.
Works	only	in	the	MS	Windows	system.
CD_EMF	=	Windows	Enhanced	Metafile,	data	is	a	char*	for	the	string
''filename''.	Works	only	in	the	MS	Windows	system.
CD_CGM	=	Computer	Graphics	Metafile	ISO,	data	is	a	char*	for	the
string	''filename''.
CD_METAFILE	=	Metafile	Canvas	Draw,	data	is	a	char*	for	the	string
''filename''.

int	cdRegisterCallback(cdContext	*ctx,	int	cb,	int(*func)(cdContext	*driver,
...));	[in	C]
cdRegisterCallback(ctx,	cb:	number,	func:	function)	->	(status:	number)	[in
Lua]

javascript:parent.manLoadCont('drv','../drv/clipbd')
javascript:parent.manLoadCont('drv','../drv/wmf')
javascript:parent.manLoadCont('drv','../drv/emf')
javascript:parent.manLoadCont('drv','../drv/cgm')
javascript:parent.manLoadCont('drv','../drv/mf')

Used	to	customize	the	behavior	of	the		cdPlay	function.	If	you	register	a
known	callback	function,	it	will	be	called	during	the	processing	loop	of
cdPlay.	There	is	a	default	callback	common	to	all	implementations	of
cdPlay,	CD_SIZECB.	Its	definition	is	"int	cdResizeCB(cdContext
*driver,	int	width,	int	height,	double	mm_width,	double

mm_height)",	and	it	returns	the	size	of	the	image	in	the	file	before	any
function	in	the	CD	library	is	called,	so	that	you	can	call	the		cdPlay	function
without	an	active	canvas	and	create	the	canvas	inside	the	callback.	It	works
as	a		cdGetCanvasSize	function.	If	the	callback	returns	1,	the	cdPlay
function	is	aborted.	The	callback	identifiers	of	a	given	driver	must	be	in	the
public	inclusion	file	relative	to	that	driver,	with	prefix	"CD_XX_CB_",
where	XX	identifies	that	driver.

Coordinate	Systems

void	cdGetCanvasSize(int	*width,	int	*height,	double	*width_mm,	double
*height_mm);	[in	C]
cdGetCanvasSize()	->	(width,	heigth,	mm_width,	mm_height:	number)	[in
Lua]

Returns	the	canvas	size	in	pixels	and	in	millimeters.	Just	as	in	all	functions
of	the	CD	library,	it	is	possible	to	ignore	a	return	parameter	by	setting	its
pointer	to	NULL,	that	is,	by	calling	cdGetCanvasSize(&w,	&h,	NULL,	NULL)
to	obtain	only	the	values	in	pixels.

void	cdUpdateYAxis(int	*y);	[in	C]
cdUpdateYAxis(yc:	number)	->	(yr:	number)	[in	Lua]

In	some	graph	systems,	the	origin	is	at	the	upper	left	corner	of	the	canvas,
with	the	direction	of	the	Y	axis	pointing	down.	In	this	case,	the	function
converts	the	coordinate	system	of	the	CD	library	into	the	internal	system	of
the	active	canvas'	driver,	and	the	other	way	round.	If	this	is	not	the	case,
nothing	happens.

void	cdMM2Pixel(double	mm_dx,	double	mm_dy,	int	*dx,	int	*dy);	[in	C]
cdMM2Pixel(mm_dx,	mm_dy:	number)	->	(dx,	dy:	number)	[in	Lua]

Converts	sizes	in	millimeters	into	pixels	(canvas	coordinates).	Parameters
with	NULL	pointer	are	ignored.

void	cdPixel2MM(int	dx,	int	dy,	double	*mm_dx,	double	*mm_dy);	[in	C]
cdPixel2MM(dx,	dy:	number)	->	(mm_dx,	mm_dy:	number)	[in	Lua]

Converts	sizes	in	pixels	(canvas	coordinates)	into	millimeters.	Parameters
with	NULL	pointer	are	ignored.	Use	this	function	to	obtain	the	horizontal
and	vertical	resolution	of	the	canvas	by	passing	1	as	parameter	in	dx	and
dy.	The	resolution	value	is	obtained	using	the	formula	res=1.0/mm.

void	cdOrigin(int	x,	int	y);	[in	C]

cdOrigin(x,	y:	number)	[in	Lua]

Allows	translating	the	origin	-	for	instance,	to	the	center	of	the	canvas.	The
function	profits	from	the	architecture	of	the	library	to	simulate	a	translation
of	the	origin,	which	in	fact	is	never	actually	passed	to	the	active	canvas	in
the	respective	driver.	Default	values:	(0,	0)

Clipping

int	cdClip(int	mode);	[in	C]
cdClip(mode:	number)	->	(old_mode:	number)	[in	Lua]

Activates	or	deactivates	clipping.	Returns	the	previous	status.	Values:
CD_CLIPAREA,	CD_CLIPPOLYGON	or	CD_CLIPOFF.	The	value	CD_QUERY
simply	returns	the	current	status.	Default	value:	CD_CLIPOFF.	The	value
CD_CLIPAREA	means	the	same	as	the	old	CD_CLIPON.	The	value
CD_CLIPPOLYGON	activates	a	polygon	as	a	clipping	region,	but	works	only	in
some	drivers	(please	refer	to	the	notes	of	each	driver).	The	clipping	polygon
must	be	defined	before	activating	the	polygon	clipping;	if	it	is	not	defined,
the	current	clipping	state	remains	unchanged.	(Currently,	only	the	drivers
derived	from	the	basic	Windows	driver	-	except	for	WMF	-,	the	ones
derived	from	the	basic	X-Windows	driver,	the	PS	and	the	METAFILE
drivers	support	this	function).

void	cdClipArea(int	xmin,	int	xmax,	int	ymin,	int	ymax);	[in	C]
void	wdClipArea(double	xmin,	double	xmax,	double	ymin,	double	ymax);
(WC)	[in	C]
cdClipArea(xmin,	xmax,	ymin,	ymax:	number)	[in	Lua]
wdClipArea(xmin,	xmax,	ymin,	ymax:	number)	(WC)	[in	Lua]

Defines	a	rectangle	for	clipping.	Only	the	points	in	the	interval:	x_min<=	x
<=	x_max,	y_min	<=	y	<=	y_max	will	be	printed.	Default	region:	(0,	w-1,
0,	h-1).

int	cdGetClipArea(int	*xmin,	int	*xmax,	int	*ymin,	int	*ymax);	[in	C]
int	wdGetClipArea(double	*xmin,	double	*xmax,	double	*ymin,	double

*ymax);	(WC)	[in	C]
cdGetClipArea()	->	(xmin,	xmax,	ymin,	ymax,	status:	number)	[in	Lua]
wdGetClipArea()	->	(xmin,	xmax,	ymin,	ymax,	status:	number)	(WC)	[in
Lua]

Returns	the	rectangle	and	the	clipping	status.	It	is	not	necessary	to	provide
all	return	pointers,	you	can	provide	only	the	desired	values.

int*	cdGetClipPoly(int	*n);	[in	C]
double	*	wdGetClipPoly(int	*n);	(WC)	[in	C]
cdGetClipPoly()	->	(n:	number,	points:	table)	[in	Lua]
wdGetClipPoly()	->	(n:	number,	points:	table)	(WC)	[in	Lua]

Returns	the	number	of	points	in	the	clipping	polygon	and	the	polygon	itself
as	a	sequence	of	points,	each	with	its	respective	x	and	y	coordinates	(E.g.:
x1,y1,x2,y2,x3,y3,...).

Primitives

void	cdPixel(int	x,	int	y,	long	int	color);	[in	C]
void	wdPixel(double	x,	double	y,	long	int	color);	(WC)	[in	C]
cdPixel(x,	y:	number,	color:	color_tag)	[in	Lua]
wdPixel(x,	y:	number,	color:	color_tag)	(WC)	[in	Lua]

Configures	the	pixel	(x,y)	with	the	color	defined	by	color.

void	cdMark(int	x,	int	y);	[in	C]
void	wdMark(double	x,	double	y);	(WC)	[in	C]
cdMark(x,	y:	number)	[in	Lua]
wdMark(x,	y:	number)	(WC)	[in	Lua]

Draws	a	mark	in	(x,y)	using	the	current	foreground	color.	It	is	not
possible	to	use	this	function	between	a	call	to	functions	cdBegin	and
cdEnd	if	the	type	of	mark	is	set	to	CD_DIAMOND.	If	the	active	driver	does	not
include	this	primitive,	it	will	be	simulated	using	other	primitives	from	the
library,	such	as	cdLine.

If	you	will	call	function	cdMark	or	wdMark	several	times	in	a	sequence,
then	it	is	recommended	that	the	application	changes	the	filling	and	line
attributes	to	those	used	by	the	cdMark	function:

cdInteriorStyle(CD_SOLID);

cdLineStyle(CD_CONTINUOUS);

cdLineWidth(1);

This	will	greatly	increase	this	function's	performance.	Also	in	this	case,	if
the	mark	is	very	small,	we	suggest	using	the	cdPixel	function	so	that	the
application	itself	draws	the	mark.	In	many	cases,	this	also	increases	this
function's	performance.

void	cdLine(int	x1,	int	y1,	int	x2,	int	y2);	[in	C]
void	wdLine(double	x1,	double	y1,	double	x2,	double	y2);	(WC)	[in	C]
cdLine(x1,	y1,	x2,	y2:	number)	[in	Lua]
wdLine(x1,	y1,	x2,	y2:	number)	(WC)	[in	Lua]

Draws	a	line	from	(x1,y1)	to	(x2,y2)	using	the	current	foreground	color
and	line	width	and	style.	Both	points	are	included	in	the	line.

void	cdBegin(int	mode);	[in	C]
cdBegin(mode:	number)	[in	Lua]

Starts	defining	a	polygon	to	be	drawn	(or	filled)	according	to	the	mode:	
CD_CLOSED_LINES,	CD_OPEN_LINES,	CD_FILL	or	CD_CLIP.	Do	not	create
embedded	polygons,	that	is,	do	not	call	function	cdBegin	twice	without	a
call	to	cdEnd	in	between.
The	CD_CLOSED_LINES	mode	connects	the	last	point	to	the	first.	
Mode	CD_FILL	connects	the	last	point	to	the	first	and	fills	the	resulting
polygon	according	to	the	current	interior	style.	The	other	two	styles	depend
on	line	width	and	style	attributes.
Instead	of	creating	a	polygon	to	be	drawn,	CD_CLIP	creates	a	polygon	to
define	a	non-rectangular	clipping	region.	This	works	only	in	some	systems
that	include	this	feature.
When	the	interior	style	CD_HOLLOW	is	defined	and	the	mode	is	CD_FILL,	then
the	function	behaves	as	if	the	mode	were	CD_CLOSED_LINES.

void	cdVertex(int	x,	int	y);	[in	C]
void	wdVertex(double	x,	double	y);	(WC)	[in	C]
cdVertex(x,	y:	number)	[in	Lua]
wdVertex(x,	y:	number)	(WC)	[in	Lua]

Adds	a	vertex	to	the	polygon	definition.

void	cdEnd(void);	[in	C]
cdEnd()	[in	Lua]

Ends	the	polygon's	definition	and	draws	(or	fills)	it.

void	cdRect(int	xmin,	int	xmax,	int	ymin,	int	ymax);	[in	C]
void	wdRect(double	xmin,	double	xmax,	double	ymin,	double	ymax);	(WC)
[in	C]
cdRect(xmin,	xmax,	ymin,	ymax:	number)	[in	Lua]
wdRect(xmin,	xmax,	ymin,	ymax:	number)	(WC)	[in	Lua]

Draws	a	rectangle	with	no	filling.	All	points	in	the	limits	of	interval
x_min<=x<=x_max,	y_min<=y<=y_max	will	be	painted.	It	is	affected	by
line	attributes	and	the	foreground	color.	If	the	active	driver	does	not	include
this	primitive,	it	will	be	simulated	using	the	cdLine	primitive.

void	cdBox(int	xmin,	int	xmax,	int	ymin,	int	ymax);	[in	C]
void	wdBox(double	xmin,	double	xmax,	double	ymin,	double	ymax);	(WC)
[in	C]
cdBox(xmin,	xmax,	ymin,	ymax:	number)	[in	Lua]
wdBox(xmin,	xmax,	ymin,	ymax:	number)	(WC)	[in	Lua]

Fills	a	rectangle	according	to	the	current	interior	style.	All	points	in	the
interval	x_min<=x<=x_max,	y_min<=y<=y_max	will	be	painted.	When
the	interior	style	CD_HOLLOW	is	defined,	the	function	behaves	like	its
equivalent	cdRect.

void	cdArc(int	xc,	int	yc,	int	w,	int	h,	double	angle1,	double	angle2);	[in	C]
void	wdArc(double	xc,	double	yc,	double	w,	double	h,	double	angle1,	double
angle2);	(WC)	[in	C]
cdArc(xc,	yc,	w,	h,	angle1,	angle2:	number)	[in	Lua]
wdArc(xc,	yc,	w,	h,	angle1,	angle2:	number)	(WC)	[in	Lua]

Draws	the	arc	of	an	ellipse	aligned	with	the	axis,	using	the	current
foreground	color	and	line	width	and	style.	The	coordinate	(xc,yc)	defines
the	center	of	the	ellipse.	Dimensions	w	and	h	define	the	elliptic	axes	X	and
Y,	respectively.	Angles	angle1	and	angle2,	in	degrees	define	the	arc's
beginning	and	end.	The	arc	starts	at	the	point	(xc+(w/2)*cos(angle1),yc+
(h/2)*sin(angle1))	and	ends	at	(xc+(w/2)*cos(angle2),yc+
(h/2)*sin(angle2)).	A	complete	ellipse	can	be	drawn	using	0	and	360	as
the	angles.	To	specify	the	angle	in	radians,	you	can	use	the	definition
CD_RAD2DEG	to	multiply	the	value	in	radians	before	passing	the	angle	to
CD.

void	cdSector(int	xc,	int	yc,	int	w,	int	h,	double	angle1,	double	angle2);	[in
C]
void	wdSector(double	xc,	double	yc,	double	w,	double	h,	double	angle1,
double	angle2);	(WC)	[in	C]
cdSector(xc,	yc,	w,	h,	angle1,	angle2:	number)	[in	Lua]

wdSector(xc,	yc,	w,	h,	angle1,	angle2:	number)	(WC)	[in	Lua]

Fills	the	arc	of	an	ellipse	aligned	with	the	axis,	according	to	the	current
interior	style.	The	coordinate	(xc,yc)	defines	the	center	of	the	ellipse.
Dimensions	w	and	h	define	the	elliptic	axes	X	and	Y,	respectively.	Angles
angle1	and	angle2,	in	degrees,	define	the	arc's	beginning	and	end.	The	arc
starts	at	the	point	(xc+(w/2)*cos(angle1),yc+(h/2)*sin(angle1))	and
ends	at	(xc+(w/2)*cos(angle2),yc+(h/2)*sin(angle2)).	The	angles	are
given	in	degrees.	A	complete	ellipse	can	be	drawn	using	0	and	360	as	the
angles.	To	specify	the	angle	in	radians,	you	can	use	the	definition
CD_RAD2DEG	to	multiply	the	value	in	radians	before	passing	the	angle	to
CD.	When	the	interior	style	CD_HOLLOW	is	defined,	the	function	behaves
like	its	equivalent	cdArc.

void	cdText(int	x,	int	y,	char	*text);	[in	C]
void	wdText(double	x,	double	y,	char	*s);	(WC)	[in	C]
cdText(x,	y:	number,	text:	string)	[in	Lua]
wdText(x,	y:	number,	text:	string)	(WC)	[in	Lua]

Inserts	a	text	in	(x,y)	according	to	the	current	background	opacity,	font	and
text	alignment.	Ignores	characters	"\n"	to	create	multiple	lines.	In	all	cases,
the	text's	drawing	functions	wait	for	a	string	in	ANSI	standard	(Windows,
MAC	and	UNIX).	Strings	with	ASCII	codes	over	128	will	appear	with	the
wrong	characters.

Vector	Text

void	cdVectorText(int	x,	int	y,	const	char	*text);	[in	C]
void	wdVectorText(double	x,	double	y,	char	*	s);	(WC)	[in	C]
cdVectorText(x,	y:	number,	text:	string)	[in	Lua]
wdVectorText(x,	y:	number,	text:	string)	(WC)	[in	Lua]

Draws	a	vector	text	in	position	(x,y),	respecting	the	alignment	defined	by
cdTextAlignment.	It	ignores	the	configuration	cdBackOpacity,	being
always	transparent.	It	also	ignores	strings	with	multiple	lines.	It	is
ESSENTIAL	to	call	cdVectorTextSize	or	cdVectorCharSize	before	using
cdVectorText	or	cdMultiLineVetorText.

void	cdMultiLineVectorText(int	x,	int	y,	const	char	*text);	[in	C]
void	wdMultiLineVectorText(double	x,	double	y,	char	*	s);	(WC)	[in	C]
cdMultiLineVectorText(x,	y:	number,	text:	string)	[in	Lua]
wdMultiLineVectorText(x,	y:	number,	text:	string)	(WC)	[in	Lua]

Draws	a	vector	text	with	several	lines	in	position	(x,y),	respecting	the
alignment	defined	by	cdTextAlignment.	It	ignores	the	configuration
cdBackOpacity,	being	always	transparent.	Lines	are	broken	by	characters
"\n".	Each	line	respects	the	scale	defined	in	cdVectorTextSize	or
cdVectorCharSize.	This	function's	purpose	is	to	make	function
cdVectorText	more	efficient,	not	being	concerned	with	multiple	lines.

Client	Images

void	cdGetImageRGB(unsigned	char	*r,	unsigned	char	*g,	unsigned	char
*b,	int	x,	int	y,	int	w,	int	h);	[in	C]
cdGetImageRGB(imagergb:	imagergb_tag;	x,	y:	number)	[in	Lua]

Returns	the	red,	green	and	blue	components	of	each	pixel	in	a	server	image.
The	RGB	components	are	provided	in	three	matrices	stored	as	byte	arrays.
The	(i,j)	component	of	these	matrices	is	at	the	address	(j*w+i).	As
occurs	with	all	primitives	from	the	Canvas	Draw	library,	the	pixel	(0,0)	is
at	the	bottom	left	corner,	and	the	pixel	(w-1,h-1)	is	that	the	upper	right
corner	of	the	image	rectangle.

void	cdPutImageRectRGB(int	iw,	int	ih,	unsigned	char	*r,	unsigned	char	*g,
unsigned	char	*b,	int	x,	int	y,	int	w,	int	h,	int	xmin,	int	xmax,	int	ymin,	int
ymax);	[in	C]
void	wdPutImageRectRGB(int	iw,	int	ih,	unsigned	char	*r,	unsigned	char
*g,	unsigned	char	*b,	double	x,	double	y,	double	w,	double	h,	int	xmin,	int
xmax,	int	ymin,	int	ymax);	(WC)	[in	C]
cdPutImageRectRGB(imagergb:	imagergb_tag;	x,	y,	w,	h,	xmin,	xmax,
ymin,	ymax:	number)	[in	Lua]
wdPutImageRectRGB(imagergb:	imagergb_tag;	x,	y,	w,	h,	xmin,	xmax,
ymin,	ymax:	number)	(WC)	[in	Lua]

Puts,	in	a	specified	area	of	the	canvas,	an	image	with	its	red,	green	and	blue
components	defined	in	the	three	matrices	stored	in	byte	arrays.	The	(i,j)
component	of	these	matrices	is	at	the	address	(j*iw+i).	As	occurs	with	all
primitives	from	the	Canvas	Draw	library,	the	pixel	(0,0)	is	at	the	bottom
left	corner,	and	the	pixel	(iw-1,ih-1)	is	that	the	upper	right	corner	of	the
image	rectangle.	Parameters	w	and	h	refer	to	the	target	rectangle	of	the
canvas,	so	that	it	is	possible	to	reduce	or	expand	the	image	drawn.	It	allows
specifying	a	rectangle	in	the	image	to	be	drawn.	If	xmin,	xmax,	ymin	and
ymax	are	0,	then	the	whole	image	is	assumed.	If	w	and	h	are	0,	the	size	of
the	image	is	assumed	(iw	and	ih).	If	the	driver	has	bpp	<=8	or	only	256
colors	or	less,	then	the	image	is	converted	to	256	optimal	colors	using	the
function	cdRGB2Map	and	is	drawn	using	cdPutImageRectMap.

void	cdPutImageRectRGBA(int	iw,	int	ih,	unsigned	char	*r,	unsigned	char
*g,	unsigned	char	*b,	unsigned	char	*a,	int	x,	int	y,	int	w,	int	h,	int	xmin,	int
xmax,	int	ymin,	int	ymax);	[in	C]
void	wdPutImageRectRGBA(int	iw,	int	ih,	unsigned	char	*r,	unsigned	char
*g,	unsigned	char	*b,	unsigned	char	*a,	double	x,	double	y,	double	w,	double
h,	int	xmin,	int	xmax,	int	ymin,	int	ymax);	(WC)	[in	C]
cdPutImageRectRGBA(imagergba:	imagergba_tag;	x,	y,	w,	h,	xmin,	xmax,
ymin,	ymax:	number)	[in	Lua]
wdPutImageRectRGBA(imagergba:	imagergba_tag;	x,	y,	w,	h,	xmin,	xmax,
ymin,	ymax:	number)	(WC)	[in	Lua]

The	same	as	function		cdPutImageRectRGB,	except	for	the	fact	that	it	is
possible	to	specify	an	alpha	channel.	The	resulting	color	is	the	image	color
weighted	by	the	alpha	value,	using	the	formula	result=(source	*	alpha
+	destine	*	(255	-	alpha))	/	255.	This	means	that,	if	alpha	is	0,	the
resulting	color	is	the	target	color	(completely	transparent),	and,	if	alpha	is
255,	the	resulting	color	is	the	original	image	color	(completely	opaque).

If	this	function	is	not	defined	for	a	given	driver	or	if	alpha	is	NULL,	then
the	function	cdPutImageRGB	is	used,	as	long	as	it	is	defined.

void	cdPutImageRectMap(int	iw,	int	ih,	unsigned	char	*index,	long	int
*colors,	int	x,	int	y,	int	w,	int	h,	int	xmin,	int	xmax,	int	ymin,	int	ymax);	[in
C]
void	wdPutImageRectMap(int	iw,	int	ih,	unsigned	char	*index,	long	int
*colors,	double	x,	double	y,	double	w,	double	h,	int	xmin,	int	xmax,	int	ymin,
int	ymax);	(WC)	[in	C]
cdPutImageRectMap(imagemap:	imagemap_tag;	palette:	palette_tag;	x,	y,
w,	h,	xmin,	xmax,	ymin,	ymax:	number)	[in	Lua]
wdPutImageRectMap(imagemap:	imagemap_tag;	palette:	palette_tag;	x,	y,
w,	h,	xmin,	xmax,	ymin,	ymax:	number)	(WC)	[in	Lua]

The	same	as	function		cdPutImageRectRGB,	except	for	the	fact	that	the
colors	are	provided	by	means	of	an	index	matrix	(map).	The	color
corresponding	to	a	given	index	is	given	in		colors[index].	The	map	is	also	a
matrix	stored	as	a	byte	vector.	If	the	color	vector	is	null,	then	a	vector	with
256	gray	tones	is	assumed.

void	cdRGB2Map(int	width,	int	height,	unsigned	char	*red,	unsigned	char
*green,	unsigned	char	*blue,	unsigned	char	*map,	int	pal_size,	long	*color);
[in	C]
cdRGB2Map(imagergb:	imagergb_tag,	imagemap:	imagemap_tag)	[in	Lua]

Converts	an	RGB	image	into	an	image	with	256	indexed	colors.	The
resulting	image	must	have	the	same	size	(width	x	length)	as	the	RGB
image.	It	is	necessary	to	allocate	memory	for	the	arrays	map	and	colors.
This	is	the	same	algorithm	used	in	the	IM	library	-	in	fact,	the	same	code.

Server	Images

void*	cdCreateImage(int	w,	int	h);	[in	C]
cdCreateImage(w,	h:	number)	->	(image:	image_tag)	[in	Lua]

Creates	a	compatible	image	in	the	server's	memory	with		wxh	pixels.	A
compatible	image	has	the	same	color	representation	(number	of	bits	per
pixel)	as	the	server's	canvas.	The	server	image	can	only	be	used	with	an
active	canvas	of	the	same	type	as	the	canvas	that	was	active	when	the	image
was	created.	The	default	background	is	the	same	as	the	canvas,	CD_WHITE.
Server	image	functions	are	usually	more	efficient	than	those	of	client
images.

void	cdKillImage(void	*image);	[in	C]
cdKillImage(image:	image_tag)	[in	Lua]

Liberates	memory	allocated	for	the	image.	It	is	not	necessary	to	have	an
active	canvas	to	call	this	function.

void	cdGetImage(void	*image,	int	x,	int	y);	[in	C]
cdGetImage(image:	image_tag;	x,	y:	number)	[in	Lua]

Copies	a	rectangular	region	from	the	current	rectangular	context	to	the
memory	(image).	(x,y)	is	the	coordinate	of	the	bottom	left	corner	of	the
rectangular	region.	The	width	and	length	of	the	rectangular	region	are
defined	in	the	image	structure	(when	the	image	is	created).

void	cdPutImageRect(void	*image,	int	x,	int	y,	int	xmin,	int	xmax,	int	ymin,
int	ymax);	[in	C]
void	wdPutImageRect(void*	image,	double	x,	double	y,	int	xmin,	int	xmax,
int	ymin,	int	ymax);	(WC)	[in	C]
cdPutImageRect(image:	image_tag;	x,	y,	xmin,	xmax,	ymin,	ymax:	number)
[in	Lua]
wdPutImageRect(image:	image_tag;	x,	y,	xmin,	xmax,	ymin,	ymax:	number)
(WC)	[in	Lua]

Copies	an	image	in	a	rectangular	region	of	the	canvas	with	the	bottom	left
corner	in	(x,y).	Allows	specifying	a	rectangle	in	the	image	to	be	drawn.	If
xmin,	xmax,	ymin	and	ymax	are	0,	then	the	whole	image	is	assumed.

void	cdScrollArea(int	xmin,	int	xmax,	int	ymin,	int	ymax,	int	dx,	int	dy);	[in
C]
cdScrollArea(xmin,	xmax,	ymin,	ymax,	dx,	dy:	number)	[in	Lua]

Copies	the	rectangle	defined	by	the	coordinates	(xmin,ymin)	and
(xmax,ymax)	to	the	rectangle	defined	by	(xmin+dx,ymin+dy)	and
(xmax+dx,ymax+dy).	It	has	the	same	effect	as	cdGetImage	followed	by
cdPutImage,	but	it	should	be	faster	and	does	not	require	the	explicit
creation	of	an	image	to	be	executed.	Note	that	the	region	belonging	to	the
first	rectangle,	but	not	to	the	second,	remains	unchanged	(the	function	does
not	clean	this	region).

Auxiliary	Image	Functions

The	following	functions	are	used	only	for	encapsulating	the	several	types	of
images	from	the	library	in	a	single	structure,	simplifying	their	treatment.	

For	such,	a	public	structure	was	created,	called	cdImageEx,	which	will
store	the	image.	From	this	structure,	the	following	fields	are	officially
defined:

cdImageEx

		int	w;						/*	image	width	*/

		int	h;						/*	image	heigth	*/

		int	type;			/*	image	type:	CD_SERVER,	CD_RGBA,	CD_RGB	or	CD_MAP(256)	*/

cdImageEx*	cdCreateImageEx(int	w,	int	h,	int	type);	[in	C]
cdCreateImageEx(w,	h,	type:	number)	->	(image:	imageex_tag)	[in	Lua]

Creates	an	image	with	width	w,	and	height	h	and	of	type	type.	The	type	can
be	CD_SERVER,	CD_RGBA,	CD_RGB	or	CD_MAP.	However,
CD_MAP	only	means	that	the	image	will	have	256	colors	if	type	is	greater
than	0.	It	is	assumed	that	the	image	will	be	MAP	with	the	same	number	of
colors	in	the	palette	as	type.	Internally,	the	color	palette	is	always	allocated
with	256	entries,	which	may	or	may	not	be	totally	fulfilled.	In	this	case,	the
value	of	type	can	be	changed	as	wished.	It	also	encapsulates
cdCreateImage.

cdImageEx*	cdCreateImageDataEx(int	w,	int	h,	int	type,	...);	[in	C]
[There	is	no	equivalent	in	Lua]

Similar	to	cdCreateImageEx,	but	it	accepts	the	data	area	already	allocated
by	the	user.	The	parameters	vary	according	to	the	image	type.

CD_SERVER	-	(void*	image)
CD_RGBA	-	(unsigned	char*	red,	unsigned	char*	green,	unsigned	char*	blue,	unsigned	char*	alpha)
CD_RGB	-	(unsigned	char*	red,	unsigned	char*	green,	unsigned	char*	blue)
CD_MAP	-	(unsigned	char*	index,	lont	int*	colors)

void	cdKillImageEx(cdImageEx*	image);	[in	C]
cdKillImageEx(image:	imageex_tag)	[in	Lua]

Liberates	the	memory	allocated	for	the	image.	It	is	not	necessary	to	have	an
active	canvas	to	call	this	function.	It	also	encapsulates	cdKillImage.

unsigned	char*	cdImageDataEx(cdImageEx*	image,	int	dataptr);	[in	C]
cdImageDataEx(image:	imageex_tag;	dataptr:	number)	[in	Lua]

Returns	a	pointer	to	the	image's	data	area	according	to	dataptr.	The
following	values	are	defined	for	dataptr:

CD_IRED	-	red	component	of	an	RGB	image.

CD_IGREEN	-	green	component	of	an	RGB	image.

CD_IBLUE	-	blue	component	of	an	RGB	image.

CD_IALPHA	-	alpha	component	of	an	RGBA	image.

CD_INDEX	-	indices	of	a	MAP	image.

CD_COLORS	-	color	table	of	a	MAP	image.	In	this	case,	a	type	conversion	must	be	made	to	

CD_ISERVER	-	server	image.

void	cdImageRectEx(cdImageEx*	image,	int	xmin,	int	xmax,	int	ymin,	int
ymax);	[in	C]
cdImageRectEx(image:	imageex_tag;	xmin,	xmax,	ymin,	ymax:	number)	[in
Lua]

Allows	specifying	a	region	of	interest	to	be	used	by	the	function
cdPutImageEx.	If	no	region	was	defined,	the	whole	image	is	used,	that	is,
(0,	w-1,	0,	h-1).

void	cdPutImageEx(cdImageEx*	image,	int	x,	int	y,	int	w,	int	h);	[in	C]
void	wdPutImageEx(cdImageEx*	image,	double	x,	double	y,	double	w,
double	h);	(WC)	[in	C]
cdPutImageEx(image:	imageex_tag;	x,	y,	w,	h:	number)	[in	Lua]
wdPutImageEx(image:	imageex_tag;	x,	y,	w,	h:	number)	(WC)	[in	Lua]

Draws	the		image	in	the	position	(x,y),	changing	the	scale.	It	encapsulates
cdPutImageRect,	cdPutImageRectRGB,	cdPutImageRectRGBA	and
cdPutImageRectMap.	For	server	images,	w	and	h	are	ignored.	The	region
of	the	image	drawn	depends	on	the	rectangle	defined	by	cdImageRectEx.
If	no	rectangle	was	defined,	then	the	whole	image	is	used.

The	parameters	w	and	h	allow	distorting	the	image,	increasing	or
decreasing	its	dimensions	when	drawn.	If		w	and/or	h	are	0,	then	no	scale
change	is	assumed.	These	parameters	are	ignored	for	server	images.

void	cdGetImageEx(cdImageEx*	image,	int	x,	int	y);	[in	C]
cdGetImageEx(image:	imageex_tag;	x,	y:	number)	[in	Lua]

Encapsulates	cdGetImageRGB	and	cdGetImage.	Nothing	happens	if	the
image	is	MAP.

void	cdRGB2MapEx(cdImageEx*	image_rgb,	cdImageEx*	image_map);	[in
C]

cdRGB2MapEx(image_rgb:	imageex_tag,	image_map:	imageex_tag)	[in
Lua]

Encapsulates	cdRGB2Map.	The	images	must	be	of	types	RGB(A)	and
MAP,	respectively.

General	Attributes

long	int	cdForeground(long	int	color);	[in	C]
cdForeground(color:	color_tag)	->	(old_color:	color_tag)	[in	Lua]

Configures	a	new	current	foreground	color	and	returns	the	previous	one.
This	color	is	used	in	all	primitives	(lines,	areas,	marks	and	text).	Default
value:	CD_BLACK.	Value	CD_QUERY	simply	returns	the	current	value.

long	int	cdBackground(long	int	color);	[in	C]
cdBackground(color:	color_tag)	->	(old_color:	color_tag)	[in	Lua]

Configures	the	new	current	background	color	and	returns	the	previous	one.
However,	it	does	not	automatically	change	the	background	of	a	canvas.	For
such,	it	is	necessary	to	call	the	cdClear	function.	The	background	color
only	makes	sense	for	cdClear	and	for	primitives	affected	by	the	background
opacity	attribute.	Default	value:	CD_WHITE.	Value	CD_QUERY	simply	returns
the	current	value.

int	cdBackOpacity(int	opacity);	[in	C]
cdBackOpacity(opacity:	number)	->	(old_opacity:	number)	[in	Lua]

Configures	the	background	opacity	to	filling	primitives	based	on	the
foreground	and	background	colors.	Values:	CD_TRANSPARENT	or	CD_OPAQUE.
If	it	is	opaque,	the	text	primitive,	for	instance,	will	erase	whatever	is	in	the
bounding	box	with	the	background	color.	If	it	is	transparent,	only	the
foreground	color	is	painted.	The	same	occurs	for	the	interior	styles	of	hatch
and	stipple,	and	for	lines	with	a	style	different	from	CD_CONTINUOUS.	It
returns	the	previous	value.	Default	value:	CD_TRANSPARENT.	Value	CD_QUERY
simply	returns	the	current	value.

int	cdWriteMode(int	mode);	[in	C]
cdWriteMode(mode:	number)	->	(old_mode:	number)	[in	Lua]

Defines	the	writing	type	for	all	drawing	primitives.	Values:	CD_REPLACE,
CD_XOR	or	CD_NOT_XOR.	Returns	the	previous	value.	Default	value:

CD_REPLACE.	Value	CD_QUERY	simply	returns	the	current	value.

Line	Attributes

int	cdLineStyle(int	style);	[in	C]
cdLineStyle(style:	number)	->	(old_style:	number)	[in	Lua]

Configures	the	current	line	style	for:	CD_CONTINUOUS,	CD_DASHED,
CD_DOTTED,	CD_DASH_DOT	or	CD_DASH_DOT_DOT.	Returns	the	previous	value.
Default	value:	CD_CONTINUOUS.	Value	CD_QUERY	simply	returns	the	current
value.

int	cdLineWidth(int	width);	[in	C]
double	cdLineWidth(double	width);	(WC)	[in	C]
cdLineWidth(width:	number)	->	(old_width:	number)	[in	Lua]
wdLineWidth(width:	number)	->	(old_width:	number)	(WC)	[in	Lua]

Configures	the	width	of	the	current	line	(in	pixels).	Returns	the	previous
value.	Default	value:	1.	Value	CD_QUERY	simply	returns	the	current	value.
Valid	width	interval:	>=	1.

In	WC,	it	configures	the	current	line	width	in	millimeters.	

Mark	Attributes

int	cdMarkType(int	type);	[in	C]
cdMarkType(type:	number)	->	(old_type:	number)	[in	Lua]

Configures	the	current	mark	type	for:	CD_PLUS,	CD_STAR,	CD_CIRCLE,	CD_X,
CD_BOX,	CD_DIAMOND,	CD_HOLLOW_CIRCLE,	CD_HOLLOW_BOX	or
CD_HOLLOW_DIAMOND.	Returns	the	previous	value.	Default	value:	CD_STAR.
Value	CD_QUERY	simply	returns	the	current	value.

int	cdMarkSize(int	size);	[in	C]
double	cdMarkSize(double	size);	(WC)	[in	C]

cdMarkSize(size:	number)	->	(old_size:	number)	[in	Lua]
wdMarkSize(size:	number)	->	(old_size:	number)	(WC)	[in	Lua]

Configures	the	mark	size	in	pixels.	Returns	the	previous	value.	Default
value:	10.	Value	CD_QUERY	simply	returns	the	current	value.	Valid	width
interval:	>=	1.

In	WC,	it	configures	the	current	line	width	in	millimeters.	

Filling	Attributes

int	cdInteriorStyle(int	style);	[in	C]
cdInteriorStyle(style:	number)	->	(old_style:	number)	[in	Lua]

Configures	the	current	style	for	the	area	filling	primitives:	CD_SOLID,
CD_HOLLOW,	CD_HATCH,	CD_STIPPLE	or	CD_PATTERN.	Note	that	CD_HATCH	and
CD_STIPPLE	are	affected	by	the	opacity	of	the	current	background.	It	returns
the	previous	value.	Default	value:	CD_SOLID.	Value	CD_QUERY	simply
returns	the	current	value.	If	stipple	or	pattern	are	not	defined,	the	state	of
the	attribute	is	not	changed.	When	the	style	CD_HOLLOW	is	defined,	functions
cdBox	and	cdSector	behave	as	their	equivalent	cdRect	and	cdArc,	and	the
polygons	with	style	CD_FILL	behave	like	CD_CLOSED_LINES.

int	cdHatch(int	style);	[in	C]
cdHatch(style:	number)	->	(old_style:	number)	[in	Lua]

Selects	a	predefined	hatch	style	(CD_HORIZONTAL,	CD_VERTICAL,
CD_FDIAGONAL,	CD_BDIAGONAL,	CD_CROSS	or	CD_DIAGCROSS)	and	sets	the
interior	style	to	CD_HATCH.	Returns	the	previous	value.	Default	value:
CD_HORIZONTAL.	Value	CD_QUERY	simply	returns	the	current	value.

void	cdStipple(int	w,	int	h,	unsigned	char	*fgbg)	[in	C]
cdStipple(stipple:	stipple_tag)	[in	Lua]

Defines	a	wxh	matrix	of	zeros	and	ones.	The	zeros	are	mapped	to	the
background	color	or	are	transparent,	according	to	the	background	opacity

attribute.	The	ones	are	mapped	to	the	foreground	color.	The	function	sets
the	interior	style	to	CD_STIPPLE.	To	avoid	having	to	deal	with	matrices	in	C,
the	element	(i,j)	of	fgbg	is	stored	as	fgbg[j*w+i].	The	origin	is	the	left
bottom	corner	of	the	image.	It	cannot	be	queried.	It	does	not	need	to	be
stored	by	the	application,	as	it	is	internally	replicated	by	the	library.

In	WC,	a	stipple	can	be	specified	with	the	desired	size	in	world	coordinates.
See	function	wdStipple.

unsigned	char	*	cdGetStipple(int*	w,	int*	h);	[in	C]
cdGetStipple()	-	>	(stipple:	stipple_tag)	[in	Lua]

Returns	the	current	stipple	and	its	dimensions.	Returns	NULL	if	no	stipple
was	defined.

void	cdPattern(int	w,	int	h,	long	int	*color);	[in	C]
cdPattern(pattern:	pattern_tag)	[in	Lua]

Defines	a	new	wxh	color	matrix	and	sets	the	interior	style	to	CD_PATTERN.
To	avoid	having	to	deal	with	matrices	in	C,	the	color	element	(i,j)	is
stored	as	color[j*w+i].	The	origin	is	the	left	bottom	corner	of	the	image.	It
cannot	be	queried.	It	does	not	need	to	be	stored	by	the	application,	as	it	is
internally	replicated	by	the	library.

In	WC,	a	pattern	can	be	specified	with	the	desired	size	in	world
coordinates.	See	function	wdPattern.

long	int	*	cdGetPattern(int*	w,	int*	h);	[in	C]
cdGetPattern()	-	>	(pattern:	pattern_tag)	[in	Lua]

Returns	the	current	pattern	and	its	dimensions.	Returns	NULL	if	no	pattern
was	defined.

Text	Attributes

void	cdFont(int	typeface,	int	style,	int	size);	[in	C]
void	wdFont(int	typeface,	int	style,	double	size);	(WD)	[in	C]

cdFont(typeface,	style,	size:	number)	[in	Lua]
wdFont(typeface,	style,	size:	number)	(WD)	[in	Lua]

Selects	a	text	font.	The	font	type	can	be:	CD_SYSTEM,	CD_COURIER,
CD_TIMES_ROMAN	or	CD_HELVETICA.	The	style	can	be:	CD_PLAIN,	CD_BOLD,
CD_ITALIC	or	CD_BOLD_ITALIC.	The	size	is	provided	in	points	(1/72	inch),
and,	to	make	the	selection	easier,	CD	provides	three	constants:	CD_SMALL=8,
CD_STANDARD=12	and	CD_LARGE=18.	Points	were	used	here	because	it	is	a
common	unit	to	define	font	sizes.	Default	value:	CD_SYSTEM,	CD_PLAIN,
CD_STANDARD.	If	you	wish	to	specify	a	value	in	pixels,	simply	pass	the	size
value	in	pixels	providing	a	negative	value.	This	way,	the	application	will
know	that	such	value	is	in	pixels	instead	of	points.	If	you	wish	to	specify
the	size	in	pixels	but	want	the	function	to	keep	the	value	in	points,	use
function	cdPixel2MM	to	convert	pixels	into	millimeters,	then	use	the
formula	"(value	in	points)	=	2.84	*	(value	in	millimeters)"	to
convert	from	millimeters	into	points.	Instead	of	2.84,	you	can	use	the
definition	CD_MM2PT.

In	WC,	the	size	is	specified	in	millimeters,	but	is	internally	passed	in	points.

void	cdGetFont(int	*typeface,	int	*style,	int	*size);	[in	C]
void	wdGetFont(int	*typeface,	int	*style,	double	*size);	(WC)	[in	C]
cdGetFont()	->	(typeface,	style,	size:	number)	[in	Lua]
wdGetFont()	->	(typeface,	style,	size:	number)	(WC)	[in	Lua]

Returns	the	values	of	the	font	modified	by	function	cdFont,	ignoring	the
values	modified	by	function	cdNativeFont.	It	is	not	necessary	to	provide
all	return	pointers;	you	can	provide	only	the	desired	values.

In	WC,	the	size	is	returned	in	millimeters.

char*	cdNativeFont(char*	font);	[in	C]
cdNativeFont(font:	string)	->	(old_font:	string)	[in	Lua]

Selects	a	native	text	font.	The	font	description	depends	on	the	driver	and	the
platform.	It	does	not	need	to	be	stored	by	the	application,	as	it	is	internally
replicated	by	the	library.	It	returns	the	previous	string.	Passing	NULL	as	a
parameter,	it	returns	only	the	previous	string	and	does	not	change	the	font.

The	value	returned	is	the	last	attributed	value,	which	may	not	correspond
exactly	to	the	font	selected	by	the	driver.

int	cdTextAlignment(int	alignment);	[in	C]
cdTextAlignment(alignment:	number)	->	(old_alignment:	number)	[in	Lua]

Defines	the	vertical	and	horizontal	alignment	of	a	text	as:	CD_NORTH,
CD_SOUTH,	CD_EAST,	CD_WEST,	CD_NORTH_EAST,	CD_NORTH_WEST,
CD_SOUTH_EAST,	CD_SOUTH_WEST,	CD_CENTER,	CD_BASE_LEFT,
CD_BASE_CENTER,	or	CD_BASE_RIGHT.	Returns	the	previous	value.	Default
value:	CD_BASE_LEFT.	Value	CD_QUERY	simply	returns	the	current	value.

double	cdTextOrientation(double	angle);	[in	C]
cdTextOrientation(angle:	number)	->	(old_angle:	number)	[in	Lua]

Defines	the	text	orientation,	which	is	an	angle	provided	in	degrees	relative
to	the	horizontal	line	according	to	which	the	text	is	drawn.	Returns	the
previous	value.	Value	CD_QUERY	simply	returns	the	current	value.	The
default	value	is	0.	(Notice	that	most	drivers	DO	NOT	implement	this
attribute.	Currently,	only	the	drivers	derived	from	the	basic	Windows	driver
(except	for	WMF),	the	PS	and	the	DXF	drivers	support	it.)

Vector	Text	Attributes

void	cdVectorTextDirection(int	x1,	int	y1,	int	x2,	int	y2);	[in	C]
void	wdVectorTextDirection(double	x1,	double	y1,	double	x2,	double	y2);
(WC)	[in	C]
cdVectorTextDirection(x1,	y1,	x2,	y2:	number)	[in	Lua]
wdVectorTextDirection(x1,	y1,	x2,	y2:	number)	(WC)	[in	Lua]

Defines	the	text	direction	by	means	of	two	points,	(x1,y1)	and	(x2,y2).
The	default	direction	is	horizontal	from	left	to	right.

double*	cdVectorTextTransform(double*	matrix);	[in	C]
cdVectorTextTransform(matrix:	table)	->	(old_matrix:	table)	[in	Lua]	

Defines	a	transformation	matrix	with	6	elements.	If	the	matrix	is	NULL,	no
transformation	is	set.	The	default	direction	is	no	transformation.	The	origin
is	the	left	bottom	corner	of	matrix.	It	returns	the	previous	matrix,	and	the
returned	vector	is	only	valid	until	the	following	call	to	the	function.

The	matrix	contains	rotation	and	translation	elements.	It	is	applied	after
computing	the	position	and	orientation	normal	to	the	vector	text.	We	can
describe	the	elements	as	follows:

|x'|			|	cos(ang)		-sin(ang)		trans_x	|			|x|																	|	3			4			5|	

|y'|	=	|	sin(ang)			cos(ang)		trans_y	|	*	|y|		with	indices			|	0			1			2|

void	cdVectorTextSize(int	w,	int	h,	char	*text);	[in	C]
void	wdVectorTextSize(double	size_x,	double	size_y,	char	*s);	(WC)	[in	C]
cdVectorTextSize(w,	h:	number,	text:	string)	[in	Lua]
wdVectorTextSize(w,	h:	number,	text:	string)	(WC)	[in	Lua]

Modifies	the	scale	of	the	vector	text	so	that	it	corresponds	to	the	string	of
the	bounding	box	defined	by	w	and	h.	It	ignores	strings	with	multiple	lines.

void	cdGetVectorTextSize(char	*text,	int	*w,	int	*h);	[in	C]
void	wdGetVectorTextSize(char	*	s,	double	*x,	double	*y);	(WC)	[in	C]
cdGetVectorTextSize(text:	string)	->	(w,	h:	number)	[in	Lua]
wdGetVectorTextSize(text:	string)	->	(w,	h:	number)	(WC)	[in	Lua]

Queries	the	string's	bounding	box.	Ignores	strings	with	multiple	lines.	It	is
not	necessary	to	provide	all	return	pointers,	you	can	provide	only	the
desired	values.

double	cdVectorCharSize(int	size);	[in	C]
double	wdVectorCharSize(double	size);	(WC)	[in	C]
cdVectorCharSize(size:	number)	->	(old_size:	number)	[in	Lua]
wdVectorCharSize(size:	number)	->	(old_size:	number)	(WC)	[in	Lua]

Sets	the	height	of	the	characters	and	adjusts	the	width	according	to	it.
Returns	the	previous	value.	CD_QUERY	returns	the	current	value.

char*	cdVectorFont(char	*filename);	[in	C]

cdVectorFont(filename:	string)	->	(font_name:	string)	[in	Lua]

Replaces	the	current	vector	font	with	a	font	stored	in	a	file	with	a	given
name.	Returns	the	name	of	the	font	loaded	or	NULL,	if	it	fails.	If	filename
is	NULL,	it	activates	the	default	font	"Simplex	II".	There	is	no	file
associated	to	this	font,	it	is	an	embedded	font.	The	library	will	attempt	to
load	a	font	from	the	directory	defined	by	the	environment	variable	"CDDIR",
apart	from	the	filename	parameter.	If	it	fails,	it	will	attempt	to	load	it	using
only	the	filename	parameter.	The	file	format	is	compatible	with	the	GKS
file	format	(text	mode).

Properties

int	cdGetColorPlanes(void);	[in	C]
cdGetColorPlanes()	->	(bpp:	number)	[in	Lua]

Returns	a	given	number,	for	instance	p,	which	defines	the	number	of	colors
supported	by	the	current	device	as	2^p,	representing	the	number	of	bits	by
pixel.

void	cdFontDim(int	*max_width,	int	*line_height,	int	*ascent,	int	*descent);
[in	C]
void	wdFontDim(double	*max_width,	double	*height,	double	*ascent,
double	*descent);	(WC)	[in	C]
cdFontDim()	->	(max_width,	max_height,	ascent,	descent:	number)	[in	Lua]
wdFontDim()	->	(max_width,	max_height,	ascent,	descent:	number)	(WC)
[in	Lua]

Returns	the	maximum	width	of	a	character,	the	line's	height	and	the	ascent
and	descent	of	the	characters	of	the	currently	selected	font.	The	line's	height
is	the	sum	of	the	ascents	and	descents	of	a	given	additional	space	(if	this	is
the	case).	All	values	are	given	in	pixels.	If	the	driver	does	not	support	this
kind	of	query,	the	values	will	be	given	0	(zero).	It	is	not	necessary	to
provide	all	return	pointers,	you	can	provide	only	the	desired	values.

void	cdTextSize(char	*text,	int	*width,	int	*height);	[in	C]

void	wdTextSize(char	*s,	double	*width,	double	*height);	(WC)	[in	C]
cdTextSize(text:	string)	->	(width,	heigth:	number)	[in	Lua]
wdTextSize(text:	string)	->	(width,	heigth:	number)	(WC)	[in	Lua]

Returns	the	width	and	height	of	a	text's	bounding	box	with	the	currently
selected	font.	If	the	driver	does	not	support	this	kind	of	query,	the	values
will	be	given	0	(zero).	It	is	not	necessary	to	provide	all	return	pointers,	you
can	provide	only	the	desired	values.

void	cdTextBox(int	x,	int	y,	char	*text,	int	*xmin,	int	*xmax,	int	*ymin,	int
*ymax);	[in	C]
void	wdTextBox(double	x,	double	y,	char	*s,	double	*xmin,	double	*xmax,
double	*ymin,	double	*ymax);	(WC)	[in	C]
cdTextBox(x,	y:	number,	text:	string)	->	(xmin,	xmax,	ymin,	ymax:	number)
[in	Lua]
wdTextBox(x,	y:	number,	text:	string)	->	(xmin,	xmax,	ymin,	ymax:	number)
(WC)	[in	Lua]

Returns	the	smallest	bounding	horizontal	rectangle	of	a	text	box,	even	if	it
is	inclined.	All	return	pointers	are	required.

void	cdGetVectorTextBounds(char	*s,	int	px,	int	py,	int	*rect);	[in	C]
void	wdGetVectorTextBounds(char	*s,	double	x,	double	y,	double	*rect);
(WC)	[in	C]
cdGetVectorTextBounds(s:	string,	px,py:	number)	->	(rect:	table)	[in	Lua]
wdGetVectorTextBounds(s:	string,	px,py:	number)	->	(rect:	table)	(WC)	[in
Lua]

Returns	the	bounding	rectangle	of	the	text	specified	in	the	current	vector
font,	alignment	and	direction.	Eight	values	are	returned,	corresponding	to
pairs	(x,y)	of	the	rectangle's	vertices	ordered	conter-clockwise,	starting	by
the	bottom	left	corner.

Color	Coding

long	int	cdEncodeColor(unsigned	char	red,	unsigned	char	green,	unsigned

char	blue)
cdEncodeColor(r,	g,	b:	number)	->	(old_color:	color_tag)

Returns	a	codified	triple	(r,g,b)	in	a	long	integer	such	as	0x00RRGGBB,	where
RR	are	the	red	components,	GG	are	the	green	ones	and	BB	are	the	blue	ones.
The	code	is	used	in	the	CD	library	to	define	colors.	There	are	some
predefined	colors:	CD_RED,	CD_GREEN,	CD_BLUE,	CD_DARK_RED,
CD_DARK_GREEN,	CD_DARK_BLUE,	CD_YELLOW,	CD_MAGENTA,	CD_CYAN,

CD_DARK_YELLOW,	CD_DARK_MAGENTA,	CD_DARK_CYAN,	CD_WHITE,

CD_BLACK,	CD_DARK_GRAY,	CD_GRAY.	It	can	be	used	without	an	active
canvas.

void	cdDecodeColor(long	int	color,	unsigned	char	*red,	unsigned	char
*green,	unsigned	char	*blue)
cdDecodeColor(color:	color_tag)	->	(r,	g,	b:	number)

Returns	the	red,	green	and	blue	components	of	a	color	in	the	CD	library.
Can	be	used	without	an	active	canvas.

long	int	cdEncodeAlpha(long	int	color,	unsigned	char	alpha)
cdEncodeAlpha(color:	color_tag,	alpha:	number)	->	(color:	color_tag)

Returns	the	given	color	coded	with	the	alpha	information.	ATENTION:	In
the	moment	this	is	usefull	only	in	Win32	with	GDI+	active.	Se	in	Windows
Using	GDI+	Base	Driver.	The	internal	representation	of	the	component	is
inverted,	because	the	default	value	must	be	0	and	opaque	for	compatibility.

unsigned	char	cdDecodeAlpha(long	int	color)
cdDecodeAlpha(color:	color_tag)	->	(a:	number)

Returns	the	alpha	component	of	a	color	in	the	CD	library.	Can	be	used
without	an	active	canvas.

unsigned	char	cdRed(long	int	color);	[in	C]
cdRed(color:	color_tag)	->	(r:	number)	[in	Lua]

Macro	that	returns	the	red	component	of	a	color	in	the	CD	library.	Can	be
used	without	an	active	canvas.

javascript:parent.manLoadCont('drv','../drv/gdiplus')

unsigned	char	cdGreen(long	int	color);	[in	C]
cdGreen(color:	color_tag)	->	(g:	number)	[in	Lua]

Macro	that	returns	the	green	component	of	a	color	in	the	CD	library.	Can	be
used	without	an	active	canvas.

unsigned	char	cdBlue(long	int	color);	[in	C]
cdBlue(color:	color_tag)	->	(b:	number)	[in	Lua]

Macro	that	returns	the	blue	component	of	a	color	in	the	CD	library.	Can	be
used	without	an	active	canvas.

void	cdPalette(int	n,	long	int	*color,	int	mode);	[in	C]
cdPalette(palette:	palette_tag;	mode:	number)	[in	Lua]

In	systems	limited	to	256	palette	colors,	this	function	aims	at	adding		n
colors	to	the	system's	palette.	In	such	systems,	the	colors	demanded	forward
or	backward	which	are	not	in	the	palette	are	approximated	to	the	closest
available	color.	The	type	can	be	CD_FORCE	or	CD_POLITE.	CD_FORCE	ignores
the	system	colors	and	interface	elements,	since	the	menus	and	dialogues
may	be	in	illegible	colors,	but	there	will	be	more	colors	available.
CD_POLITE	is	the	recommended	type.	It	must	always	be	used	before
drawing.	It	cannot	be	queried.

Extras	in	Lua

cdCreateImageRGB(width,	height:	number)	->	(imagergb:	imagergb_tag)

Creates	an	RGB	image	in	Lua.

cdKillImageRGB(imagergb:	imagergb_tag)

Destroys	the	created	RGB	image	and	liberates	allocated	memory.

cdCreateImageRGBA(width,	height:	number)	->	(imagergba:
imagergba_tag)

Creates	an	RGBA	image	in	Lua.

cdKillImageRGBA(imagergba:	imagergba_tag)

Destroys	the	created	RGBA	image	and	liberates	allocated	memory.

cdCreateImageMap(width,	height:	number)	->	(imagemap:	imagemap_tag)

Creates	a	Map	image	in	Lua.

cdKillImageMap(imagemap:	imagemap_tag)

Destroys	the	created	Map	image	and	liberates	allocated	memory.

cdCreatePalette(size:	number)	->	(palette:	palette_tag)

Creates	a	palette	in	Lua.

cdKillPalette(palette:	palette_tag)

Destroys	the	created	palette	and	liberates	allocated	memory.

cdCreatePattern(width,	height:	number)	->	(pattern:	pattern_tag)

Creates	a	pattern	in	Lua.

cdKillPattern(pattern:	pattern_tag)

Destroys	the	created	pattern	and	liberates	allocated	memory.

cdCreateStipple(width,	height:	number)	->	(stipple:	stipple_tag)

Creates	a	stipple	in	Lua.

cdKillStipple(stipple:	stipple_tag)

Destroys	the	created	stipple	and	liberates	allocated	memory.

World	Coordinates	-	WC

void	wdWindow(double	xmin,	double	xmax,	double	ymin,	double	ymax);	[in
C]
wdWindow(xmin,	xmax,	ymin,	ymax:	number)	[in	Lua]

Configures	a	window	in	the	world	coordinate	system	to	be	used	to	convert
world	coordinates	(with	values	in	real	numbers)	into	canvas	coordinates
(with	values	in	integers).	The	default	window	is	an	approximation	in
millimeters	of	the	whole	canvas.

void	wdGetWindow(double	*xmin,	double	*xmax,	double	*ymin,	double
*ymax);	[in	C]
wdGetWindow()	->	(xmin,	xmax,	ymin,	ymax:	number)	[in	Lua]

Queries	the	current	window	in	the	world	coordinate	system	being	used	to
convert	world	coordinates	into	canvas	coordinates	(and	the	other	way
round).	It	is	not	necessary	to	provide	all	return	pointers,	you	can	provide
only	the	desired	values.

void	wdViewport(int	xmin,	int	xmax,	int	ymin,	int	ymax);	[in	C]
wdViewport(xmin,	xmax,	ymin,	ymax:	number)	[in	Lua]

Configures	a	viewport	in	the	canvas	coordinate	system	to	be	used	to	convert
world	coordinates	(with	values	in	real	numbers)	into	canvas	coordinates
(with	values	in	integers).	The	default	viewport	is	the	whole	canvas.	If	the
canvas	size	is	changed,	the	viewport	will	not	be	automatically	updated.

void	wdGetViewport(int	*xmin,	int	*xmax,	int	*ymin,	int	*ymax);	[in	C]
wdGetViewport()	->	(xmin,	xmax,	ymin,	ymax:	number)	[in	Lua]

Queries	the	current	viewport	in	the	world	coordinate	system	being	used	to
convert	world	coordinates	into	canvas	coordinates	(and	the	other	way
round).	It	is	not	necessary	to	provide	all	return	pointers,	you	can	provide
only	the	desired	values.

void	wdWorld2Canvas(double	xw,	double	yw,	int	*xv,	int	*yv);	[in	C]
wdWorld2Canvas(xw,	yw:	number)	->	(xv,	yv:	number)	[in	Lua]

Converts	world	coordinates	into	canvas	coordinates.	It	is	not	necessary	to
provide	all	return	pointers,	you	can	provide	only	the	desired	values.

void	wdCanvas2World(int	xv,	int	yv,	double	*xw,	double	*yw);	[in	C]
wdCanvas2World(xv,	yv:	number)	->	(xw,	yw:	number)	[in	Lua]

Converts	canvas	coordinates	into	world	coordinates.	It	is	not	necessary	to
provide	all	return	pointers,	you	can	provide	only	the	desired	values.

WC	Attributes

void	wdStipple(int	w,	int	h,	unsigned	char	*fgbg,	double	w_mm,	double
h_mm);	[in	C]
wdStipple(stipple:	stipple_tag,	w_mm,	h_mm:	number)	[in	Lua]

Allows	specifying	the	stipple	in	world	coordinates.	Another	stipple	will	be
created	with	the	size	in	pixels	corresponding	to	the	specified	size	in
millimeters.	The	use	of	this	function	may	produce	very	large	or	very	small
stipples.

void	wdPattern(int	w,	int	h,	long	int	*color,	double	w_mm,	double	h_mm);
[in	C]
wdPattern(pattern:	pattern_tag,	w_mm,	h_mm:	number)	[in	Lua]

Allows	specifying	the	pattern	in	world	coordinates.	Another	pattern	will	be
created	with	the	size	in	pixels	corresponding	to	the	specified	size	in
millimeters.	The	use	of	this	function	may	produce	very	large	or	very	small
patterns.

Auxiliary	WC	Functions

void	wdHardcopy(cdContext*	ctx,	void	*data,	cdCanvas	*cnv,

void(*draw_func)(void));	[in	C]
wdHardcopy(ctx:	number,	data:	string	or	userdata,	cnv:	canvas_tag,
draw_func:	function)	[in	Lua]

Creates	a	new	canvas,	activates	it,	prepares	Window	and	Viewport
according	to	the	provided	canvas,	maintaining	the	aspect	ratio	and	making
the	drawing	occupy	the	largest	possible	area	of	the	new	canvas,	calls	the
drawing	function	(which	must	use	routines	in	WC)	and,	finally,	removes	the
new	canvas.

Elements

Driver

It	is	simply	a	function	table	that	is	redirected	for	each	driver.	It	represents
the	context	in	which	the	canvas	is	situated;	for	example,	a	Window	System
that	has	windows	on	which	you	can	draw.	Some	drivers	are	portable	and
their	functions	behave	the	same	way	in	all	platforms.	Some	drivers	are
platform	dependent,	and	their	functions	may	have	different	behaviors,	but
the	library	is	implemented	in	such	a	way	that	these	differences	are
minimized.

Canvas

The	canvas	represents	the	drawing	surface.	It	could	be	anything:	a	file,	a
client	area	inside	a	window	in	a	Window	System,	a	paper	used	by	a	printer,
etc.	Each	canvas	has	its	own	attributes.

You	must	call	cdCreateCanvas	to	create	a	canvas,	and	cdKillCanvas	when
you	do	not	need	the	canvas	anymore.	If	you	call	a	function	without	an
active	canvas	(a	call	to	cdActivate	is	necessary),	a	memory	invasion	will
occur.	The	cdActiveCanvas	function	returns	the	currently	active	canvas.
You	can	use	this	function	to	retreive	the	active	canvas	before	activating
your	own,	so	you	can	restore	it	after	drawing	on	your	canvas.

Some	canvases	are	buffered	and	need	to	be	flushed;	for	that,	use	the
cdFlush	function.	In	some	drivers,	this	function	can	also	be	used	to	change
to	another	page,	as	in	drivers	CD_PRINTER	and	CD_PS.

You	can	clear	the	drawing	surface	with	the	cdClear	function,	but	in	some
drivers	the	function	may	just	draw	a	rectangle	using	the	background	color.

Some	canvas	contents	can	be	interpreted;	the	cdPlay	function	interprets	the
contents	of	a	canvas	and	calls	library	functions	for	the	contents	to	be
displayed	in	the	active	canvas.

You	may	retrieve	the	original	canvas	size	using	the	cdGetCanvasSize
function.	The	canvas'	origin	is	at	the	bottom	left	corner	of	the	canvas,	but	an

origin	change	can	be	simulated	with	function	cdOrigin.	Some	drivers	have
their	native	origin	at	the	upper	right	corner.	In	this	case,	function
cdUpdateYAxis	converts	the	Y	coordinate	from	this	orientation	to	CD's
orientation	and	vice-versa.	If	necessary,	the	origin	change	and	the	axis
inversion	are	made	at	the	control	part	of	the	CD	library;	the	browsers
receive	the	coordinates	already	converted	to	their	respective	coordinate
systems.

Associated	functions:	cdGetContext,	cdCreateCanvas,	cdKillCanvas,
cdActivate,	cdActiveCanvas,	cdFlush,	cdClear,	cdPlay,	cdSetFunction,
cdGetCanvasSize,	cdUpdateYAxis,	cdOrigin,	cdContextCaps.

Clipping	Area

It	is	a	rectangular	area	that	limits	the	drawing	area.	Any	primitive	called	is
drawn	only	inside	the	rectangle.	It	works	like	a	window	where	you	can	only
view	what	is	inside	of	it.	It	affects	all	primitives.	You	can	set	the	clipping
area	by	using	the	function	cdClipArea,	and	retrieve	it	using
cdGetClipArea.	The	cdClip	function	activates	and	deactivaes	the	clipping
functionality	but	does	not	change	the	clipping	area.	In	some	drivers	the
clipping	area	can	be	a	polygon.
Associated	functions:	cdClipArea,	cdGetClipArea,	cdGetClipPoly,
cdClip,	cdBegin.

Attributes

There	are	5	types	of	attributes:	General	Attributes,	Line	Attributes,
Mark	Attributes,	Filling	Attributes	and	Text	Attributes.

The	library's	color	system	is	RGB.	In	order	to	simplify	some	functions,	a
compact	representation	was	created	for	the	3	values.	To	make	a	conversion
from	this	representation	to	the	3	separate	values	and	vice-versa,	use
functions	cdDecodeColor	and	cdEncodeColor.	The	way	a	color	is	drawn	on
the	canvas	is	affected	by	the	drawing	style,	which	can	be	made	replacing
the	one	on	the	canvas	by	the	new	color,	or	by	applying	Bolean	operations	of
what	is	already	on	the	canvas	with	the	new	color.	For	such,	function
cdWriteMode	has	to	be	used.	Note:	operation	XOR	is	very	useful,	because,
using	white	as	the	foreground	color	and	drawing	the	same	image	twice,	you
can	go	back	to	the	original	color,	before	the	drawing.	This	is	used	for

javascript:parent.manLoadCont('func','func/control','cdGetContext')
javascript:parent.manLoadCont('func','func/control','cdCreateCanvas')
javascript:parent.manLoadCont('func','func/control','cdKillCanvas')
javascript:parent.manLoadCont('func','func/control','cdActivate')
javascript:parent.manLoadCont('func','func/control','cdActiveCanvas')
javascript:parent.manLoadCont('func','func/control','cdFlush')
javascript:parent.manLoadCont('func','func/control','cdClear')
javascript:parent.manLoadCont('func','func/control','cdPlay')
javascript:parent.manLoadCont('func','func/control','cdSetFunction')
javascript:parent.manLoadCont('func','func/coordinates','cdGetCanvasSize')
javascript:parent.manLoadCont('func','func/coordinates','cdUpdateYAxis')
javascript:parent.manLoadCont('func','func/coordinates','cdOrigin')
javascript:parent.manLoadCont('func','func/control','cdContextCaps')
javascript:parent.manLoadCont('func','func/coordinates','cdClipArea')
javascript:parent.manLoadCont('func','func/coordinates','cdGetClipArea')
javascript:parent.manLoadCont('func','func/coordinates','cdGetClipPoly')
javascript:parent.manLoadCont('func','func/coordinates','cdClip')
javascript:parent.manLoadCont('func','func/primitives','cdBegin')

returning	mouse	interaction	in	area	selections	of	a	canvas	in	a	window,	for
example.

When	the	canvas	used	does	not	support	more	than	8	bpp	of	color	resolution,
you	can	use	function	cdPalette	to	give	the	driver	an	idea	of	which	colors	to
prioritize.	cdPalette's	behavior	is	driver	dependent.

Associated	functions:	cdForeground,	cdBackground,	cdWriteMode,
cdBackOpacity,	cdPalette,	cdGetColorPlanes,	cdDecodeColor	and
cdEncodeColor.

Filling	Attributes	affect	box,	sector	and	filled	polygon	primitives.	The
fillings	can	have	only	one	color,	using	the	foreground	color,	they	can	be
hatched	with	several	styles,	and	can	be	made	with	a	color	or
monochromatic	pattern	using	either	the	foreground	or	the	background	color.
The	hatched	and	monochromatic	fillings	are	affected	by	the	back	opacity	-
if	it	is	transparent,	then	the	background	is	not	drawn	with	the	background
color.	If	either	the	background	or	the	foreground	color	are	modified,	the
hatched	and	monochromatic	fillings	must	be	modified	again	in	order	to	be
updated.

Note	that	when	a	Filling	Attribute	is	modified,	the	active	filling	style	is	now
that	of	the	modified	attribute	(hatch,	stipple	or	pattern).	However,	this	is	not
true	for	the	clipping	area.	When	the	clipping	area	is	modified,	the	clipping
is	only	affected	if	it	is	active.

Associated	functions:	cdInteriorStyle,	cdHatch,	cdStipple,
cdPattern,	cdGetStipple,	cdGetPattern.	

Line	Attributes	affect	line	primitives	and	all	primitives	that	are	formed	by
lines,	including	rectangle,	arc,	and	non-filled	open	and	closed	polygon
primitives.	Lines	have	width	and	style	(continuous,	dashed,	dotted,	etc.),
and	are	only	affected	by	the	foreground	color.	Lines	with	a	style	other	than
continuous	are	affected	by	the	back	opacity	attribute	and	by	the	background
color.

Associated	functions:	cdLineWidth,	cdLineStyle.

Mark	and	Text	Attributes	affect	only	mark	and	text	primitives,
respectively.	The	cdFont	and	cdNativeFont	functions	modify	the	same	text's

javascript:parent.manLoadCont('func','func/attributes','cdForeground')
javascript:parent.manLoadCont('func','func/attributes','cdBackground')
javascript:parent.manLoadCont('func','func/attributes','cdWriteMode')
javascript:parent.manLoadCont('func','func/attributes','cdBackOpacity')
javascript:parent.manLoadCont('func','func/attributes','cdPalette')
javascript:parent.manLoadCont('func','func/attributes','cdGetColorPlanes')
javascript:parent.manLoadCont('func','func/attributes','cdDecodeColor')
javascript:parent.manLoadCont('func','func/attributes','cdEncodeColor')
javascript:parent.manLoadCont('func','func/attributes','cdInteriorStyle')
javascript:parent.manLoadCont('func','func/attributes','cdHatch')
javascript:parent.manLoadCont('func','func/attributes','cdStipple')
javascript:parent.manLoadCont('func','func/attributes','cdPattern')
javascript:parent.manLoadCont('func','func/attributes','cdGetStipple')
javascript:parent.manLoadCont('func','func/attributes','cdGetPattern')
javascript:parent.manLoadCont('func','func/attributes','cdLineWidth')
javascript:parent.manLoadCont('func','func/attributes','cdLineStyle')

font	attribute	in	a	different	way.

Associated	functions:	cdMarkType,	cdMarkSize,	cdFont,
cdGetFont,	cdTextAligment,	cdNativeFont.	

Attribute	values	not	supported	by	the	driver	are	modified,	but	are	ignored
by	the	driver.	To	know	if	an	attribute	is	supported	by	the	driver,	use
function	cdContextCaps	or	see	the	driver's	guide.

Pixel

The	smallest	element	of	the	canvas.	It	depends	only	on	global	attributes	of
the	canvas.

Associated	function:	cdPixel.

Mark

A	mark	is	a	punctual	representation.	It	can	have	different	sizes	and	types.
All	types	are	affected	only	by	mark	attributes	and	by	the	foreground	color.

Associated	functions:	cdMark,	cdMarkType,	cdMarkSize.

Mark	Types

Line

It	is	a	line	segment	that	connects	2	points.	The	cdLine	function	includes	the
2	given	points	and	draws	the	line	using	the	foreground	color.	Line	thickness
is	controlled	by	the	cdLineWidth	function.	By	using	function	cdLineStyle

javascript:parent.manLoadCont('func','func/attributes','cdMarkType')
javascript:parent.manLoadCont('func','func/attributes','cdMarkSize')
javascript:parent.manLoadCont('func','func/attributes','cdFont')
javascript:parent.manLoadCont('func','func/attributes','cdGetFont')
javascript:parent.manLoadCont('func','func/attributes','cdTextAlignment')
javascript:parent.manLoadCont('func','func/attributes','cdNativeFont')
javascript:parent.manLoadCont('func','func/images','cdPixel')
javascript:parent.manLoadCont('func','func/primitives','cdMark')
javascript:parent.manLoadCont('func','func/attributes','cdMarkType')
javascript:parent.manLoadCont('func','func/attributes','cdMarkSize')

you	can	draw	dashed	lines	with	some	variations.	Lines	with	a	style	other
than	continuous	are	affected	by	the	back	opacity	attribute	and	by	the
background	color.

Associated	functions:	cdLine,	cdLineWidth,	cdLineStyle.

Line	Styles

Polygon

A	polygon	is	composed	by	several	connected	line	segments.	Each
connection	is	described	by	a	vertex.	Therefore,	to	create	a	polygon	you
have	to	add	vertices	to	a	library's	internal	structure	by	using	cdBegin,
cdVertex	and	cdEnd.	The	polygon	can	be	opened	(does	not	connect	the	first
vertex	to	the	last	vertex),	closed	(connects	the	first	vertex	to	the	last	vertex),
or	filled	(same	as	closed	but	filled	with	the	current	interior	style).

Associated	functions:	cdBegin,	cdVertex,	cdEnd.

Polygon	Attributes Back	Opacity	Attribute

Rectangle

It	is	a	non-filled	rectangle.	It	is	affected	by	line	attributes	and	by	the
foreground	color.

Associated	function:	cdRect.

Box

javascript:parent.manLoadCont('func','func/primitives','cdLine')
javascript:parent.manLoadCont('func','func/attributes','cdLineWidth')
javascript:parent.manLoadCont('func','func/attributes','cdLineStyle')
javascript:parent.manLoadCont('func','func/primitives','cdBegin')
javascript:parent.manLoadCont('func','func/primitives','cdVertex')
javascript:parent.manLoadCont('func','func/primitives','cdEnd')
javascript:parent.manLoadCont('func','func/primitives','cdRect')

It	is	a	rectangle	filled	with	the	foreground	color,	but	it	depends	on	the
current	interior	style.	The	SOLID	style	depends	only	on	the	foreground
color.	The	HATCH	style	depends	on	the	foreground	color	and	on	the	back
opacity	attribute.	The	lines	drawn	with	this	style	do	not	depend	on	the	line
attributes.	The	STIPPLE	style	depends	on	the	foreground	color,	the
background	color	and	the	back	opacity	attribute.	The	PATTERN	style
depends	only	on	global	canvas	attributes.

Associated	function:	cdBox.

Hatch	Styles

Arc

It	is	an	elliptical	arc	drawn	counter-clockwise.	It	is	affected	by	line
attributes	and	by	the	foreground	color.
Associated	function:	cdArc.

Arc	Parameters

javascript:parent.manLoadCont('func','func/primitives','cdBox')
javascript:parent.manLoadCont('func','func/primitives','cdArc')

Sector

It	is	very	similar	to	an	arc	but	filled	with	the	foreground	color.	It	also
depends	on	the	interior	style.

Associated	function:	cdSector.

Sector	Parameters

Text

A	text	with	style.	It	can	have	an	opaque	or	transparent	background	color.
When	it	is	opaque,	the	text	is	drawn	within	a	background	color	rectangle;
when	it	is	transparent	only	the	text's	characters	are	drawn.	The	position	the
text	is	drawn	depends	on	the	text	alignment	attribute.	The	library	has	only	4
typefaces:	System	(which	depends	on	the	driver	and	platform),	Courier
(mono	spaced	with	serif),	Times	Roman	(proportional	with	serif)	and
Helvetica	(proportional	without	serif).	Each	typeface	can	have	some	styles:
Plain,	Bold,	Italic	and	a	combination	of	Bold	and	Italic.	You	may	retrieve
the	dimensions	of	the	selected	font	with	function	cdFontDim.	Also	you	may
retrieve	the	bounding	box	of	a	specific	text	before	drawing	by	using	the
cdTextSize	function.	The	text	is	drawn	using	a	reference	point;	you	can

javascript:parent.manLoadCont('func','func/primitives','cdSector')

change	the	alignment	relative	to	this	point	using	the	cdTextAligment
function.	As	an	alternative	to	the	typefaces	available	in	CD,	you	can	use
native	driver	typefaces	with	function	cdNativeFont.	In	all	cases,	drawing
functions	expect	an	ANSI	string	(Windows,	MAC	and	UNIX).	A	string
with	ASCII	codes	over	128	will	display	wrong	characters.

Associated	functions:	cdText,	cdFont,	cdGetFont,	cdFontDim,
cdTextSize,	cdTextAligment,	cdNativeFont.

Type	Faces Font	Styles

Text	Alignment

Font	Dimension	Attributes

javascript:parent.manLoadCont('func','func/primitives','cdText')
javascript:parent.manLoadCont('func','func/attributes','cdFont')
javascript:parent.manLoadCont('func','func/attributes','cdGetFont')
javascript:parent.manLoadCont('func','func/attributes','cdFontDim')
javascript:parent.manLoadCont('func','func/attributes','cdTextSize')
javascript:parent.manLoadCont('func','func/attributes','cdTextAlignment')
javascript:parent.manLoadCont('func','func/attributes','cdNativeFont')

Client	Image

There	are	2	kinds	of	client	images:	RGB	and	Indexed	RGB.	The	RGB
image	is	composed	by	3	buffers:	red,	green	and	blue	(more	colors,	more
memory).	Indexed	RGB	(also	called	palette-based	image)	is	composed	by	1
buffer	of	indices	for	a	table	and	one	table	of	encoded	RGB	values	(less
colors,	less	memory).	The	buffer	is	described	by	its	width	and	height	in
pixels.	The	starting	point	of	the	buffer	is	the	origin	of	the	image,	which	is
located	at	its	bottom	left	corner.	To	retreive	a	pixel	in	the	image,	use	the
formula	pixel(x,y)=buffer[y*width	+	x].	The	Put	functions	may	do	zoom	in
or	out;	linear	interpolation	is	used	to	scale	the	image.	It	is	not	possible	to
specify	a	part	of	the	image	to	be	drawn.

Associated	functions:	cdGetImageRGB,	cdPutImageRGB,
cdPutImageMap.

Server	Image

It	is	a	high	performance	image	in	a	library's	internal	format.	It	is
driver/platform	dependent,	but	it	is	faster	than	client	image	functions,	and	it
is	used	for	off-screen	drawing,	double	buffering,	etc.	You	can	make	gets
and	puts	on	several	canvases	but	they	must	be	created	using	the	same
driver.	It	is	possible	to	specify	a	part	of	the	image	to	be	drawn,	but	it	is	not
possible	to	zoom.

Associated	functions:	cdCreateImage,	cdGetImage,	cdPutImage,
cdKillImage,	cdScrollImage.

Vector	Text

It	is	text	that	uses	a	font	created	only	with	line	segments.	It	is	very	useful	to
be	scaled.	You	must	set	the	text	size	before	drawing	any	text.	The	functions
ignore	the	new	line	character	"\n";	only	the	wdMultiLineVectorText
function	will	consider	this	character.	The	default	direction	is	horizontal
from	left	to	right.

Vector	Text	Parameters

javascript:parent.manLoadCont('func','func/images','cdGetImageRGB')
javascript:parent.manLoadCont('func','func/images','cdPutImageRGB')
javascript:parent.manLoadCont('func','func/images','cdPutImageMap')
javascript:parent.manLoadCont('func','func/images','cdCreateImage')
javascript:parent.manLoadCont('func','func/images','cdGetImage')
javascript:parent.manLoadCont('func','func/images','cdPutImage')
javascript:parent.manLoadCont('func','func/images','cdKillImage')
javascript:parent.manLoadCont('func','func/images','cdScrollImage')

Associated	functions:	cdVectorText,	cdMultiLineVectorText,
cdVectorTextDirection,	cdVectorTextSize,	cdGetVectorTextSize,
cdVectorCharSize,	cdVectorFont,	cdVectorTextTransform.

World	Coordinates

Allows	the	use	of	a	World	Coordinate	System.	In	this	system	you	can
attribute	coordinates	to	any	unit	you	want.	After	you	define	a	window
(rectangular	region)	in	your	world,	each	given	coordinate	is	than	mapped	to
canvas	coordinates	to	draw	the	primitives.	You	can	define	a	viewport	in
your	canvas	to	change	the	coordinate	mapping	from	world	to	canvas.	The
image	below	shows	the	relation	between	Window	and	Viewport.

Window	x	Viewport

If	you	want	to	map	coordinates	from	one	system	to	another,	use	the
wdWorld2Canvas	e	wdCanvas2World	functions.	To	use	any	of	the	World
Coodinate	functions	you	must	activate	the	canvas	by	using	the	wdActivate
function.

Associated	functions:	wdWindow,	wdViewport,	wdWorld2Canvas,
wdCanvas2World,	wdG	World	Coordinates.

The	quality	of	the	picture	depends	on	the	conversion	from	WC	to	CD,	so	if
the	canvas	has	a	small	size	the	picture	quality	will	be	poor.	To	increase
picture	quality	create	a	canvas	with	a	larger	size,	if	possible.

javascript:parent.manLoadCont('func','func/primitives','cdVectorText')
javascript:parent.manLoadCont('func','func/primitives','cdMultiLineVectorText')
javascript:parent.manLoadCont('func','func/attributes','wdVectorTextDirection')
javascript:parent.manLoadCont('func','func/attributes','cdVectorTextSize')
javascript:parent.manLoadCont('func','func/attributes','cdGetVectorTextSize')
javascript:parent.manLoadCont('func','func/attributes','cdVectorCharSize')
javascript:parent.manLoadCont('func','func/attributes','cdVectorFont')
javascript:parent.manLoadCont('func','func/attributes','cdVectorTextTransform')
javascript:parent.manLoadCont('func','func/wd','wdWindow')
javascript:parent.manLoadCont('func','func/wd','wdViewport')
javascript:parent.manLoadCont('func','func/wd','wdWorld2Canvas')
javascript:parent.manLoadCont('func','func/wd','wdCanvas2World')
javascript:parent.manLoadCont('func','func/wd','wdGetWindow')

Drivers

Window	System

User	Interface	Systems	canvas.

Devices

System	Devices,	such	as	Clipboard	and	Printer.

Memory

A	memory	area	used	for	drawing	in	an	offscreen	canvas.

File

File-based	canvas.

Platform

Window	and	Device	System,	usually	uses	a	common	operational-system
dependant	driver.

IUP	Driver	(cdiup.h)

This	driver	provides	access	to	an	interface	element	of	a	IUP	canvas.	IUP	is
a	portable	user-interface	library	used	to	create	portable	user-interface
applications.

Use

The	canvas	is	created	by	means	of	a	call	to	the	function
cdCreateCanvas(CD_IUP,	Data),	after	which	other	CD	functions	can	be
called	as	usual.	This	function	creates	a	CD	canvas	based	on	the	existing	IUP
canvas.	The	parameter	Data	is	a	pointer	to	a	handle	of	the	IUP	canvas
(Ihandle*).	For	use	with	CDLUA,	a	canvas	created	with	IUPLUA	must
necessarily	be	passed	as	parameter.

Any	amount	of	such	canvases	may	exist	simultaneously,	but	they	should	not
use	the	same	IUP	canvas.	It	is	important	to	note	that	a	call	to	function
cdKillCanvas	is	required	to	close	the	file	properly.

The	CD	canvas	is	automatically	stored	in	the	IUP	canvas	as	the
"_CD_CANVAS"	attribute.

This	driver	can	totally	be	replaced	by	the	Native	Window	driver	using	IUP's
attribute.	The	canvas'	creation	changes	to:

myCdCanvas	=	cdCreateCanvas(CD_NATIVEWINDOW,	IupGetAttribute(myIupCanvas,	"CONID"));

IupSetAttribute(myIupCanvas,	"_CD_CANVAS",	myCdCanvas);

To	use	this	driver,	it	must	be	linked	with	the	"cdiup"	library	(cdiup.lib	in
Windows,	cdiuplib.a	in	UNIX).

In	Lua,	it	is	necessary	to	call	function	cdluaiup_open()		after	a	call	to
function	cdlua_open(),	apart	from	linkediting	with	the	"cdluaiup"	library.

To	use	this	driver	in	Windows	using	GDI+	is	necessary	to	call	the
cdInitGdiPlusIUP()	function.	And	to	link	with	the	"cdiupgdiplus"	library.

javascript:parent.manLoadCont('func','../func/control','cdCreateCanvas')
javascript:parent.manLoadCont('func','../func/control','cdKillCanvas')

Behavior	of	Functions

This	driver	is	greatly	platform-dependent,	but	little	dependent	on	the	IUP
library.	For	further	detail,	see	the	Behavior	of	Functions	in	each	platform:
Macintosh	(QuickDraw),	Microsoft	Windows	(GDI),	Windows	Using
GDI+,	X-Windows	(XLIB).	However,	it	should	be	noted	that	some
functions	behave	differently	from	the	basic	functions	of	each	platform.

Control	

cdActivate:	updates	the	canvas	size;	the	IUP	canvas	might	have	been
resized.

javascript:parent.manLoadCont('func','../func/control','cdActivate')

Native	Window	Driver	(cdnative.h)

This	driver	provides	access	to	an	existing	Native	Window,	a	basic	element
of	the	user-interface	system.

Use

The	canvas	is	created	by	means	of	a	call	to	the	function
cdCreateCanvas(CD_NATIVEWINDOW,	Data),	after	which	other
functions	in	the	CD	library	can	be	called	as	usual.	This	function	creates	a
CD	canvas	based	on	an	existing	system	canvas.	The	parameter	Data	is	a
pointer	to	a	handle	of	the	canvas.	It	is	system-dependent,	having	a	different
meaning	in	each	platform:

Microsoft	Windows:	can	be	the	handle	of	the	Windows	window
(HWND)	or	the	handle	of	a	previously	created	Device	Context	(HDC),
or	can	be	a	string	in	the	format	"hdc	width	height"	or,	in	C,	"%p	%d
%d".
X-Windows:	"display	window"	or,	in	C,	"%p	%lu"	(uses	the	default
screen).

The	string	has	the	same	format	as	the	IUP	attribute	CONID,	so	it	is	possible
to	create	a	canvas	using	this	driver,	but	based	on	a	IUP	canvas.	Therefore,	it
is	no	longer	necessary	to	use	the	IUP	driver.	For	instance:

cdCreateCanvas(CD_NATIVEWINDOW,
IupGetAttribute(myIupCanvas,	"CONID")).
IupSetAttribute(myIupCanvas,	"_CD_CANVAS",	myCdCanvas);

Any	amount	of	such	canvases	may	exist	simultaneously,	but	they	should	not
use	the	same	window.	It	is	important	to	note	that	a	call	to	function
cdKillCanvas	is	required	to	close	the	file	properly.

In	CDLUA,	the	creation	parameter	must	be	a	string	in	X-Windows	and	a
userdata	in	Microsoft	Windows.

javascript:parent.manLoadCont('func','../func/control','cdCreateCanvas')
javascript:parent.manLoadCont('func','../func/control','cdKillCanvas')

Exclusive	Functions

void	cdGetScreenSize(int	*width,	int	*height,	double	*width_mm,	double
*height_mm);	[in	C]
cdGetScreenSize()	->	(width,	heigth,	mm_width,	mm_height:	number)	[in
Lua]

Equivalent	to	function	cdGetCanvasSize,	but	returns	the	values	relative	to
the	main	screen	of	the	window	system.

int	cdGetScreenColorPlanes(void);	[in	C]
cdGetScreenColorPlanes()	->	(bpp:	number)	[in	Lua]

Equivalent	to	function	cdGetColorPlanes,	but	returns	the	value	relative	to
the	main	screen	of	the	window	system.

Behavior	of	Functions

This	driver	is	greatly	platform-dependent.	For	further	detail,	see	the
Behavior	of	Functions	in	each	platform:	Macintosh	(QuickDraw),
Microsoft	Windows	(GDI),	Windows	Using	GDI+,	X-Windows	(XLIB).
However,	it	should	be	noted	that	some	functions	behave	differently	from
the	basic	functions	of	each	platform.

Control

cdActivate:	updates	the	canvas	size;	it	might	have	been	resized.

javascript:parent.manLoadCont('func','../func/coordinates','cdGetCanvasSize')
javascript:parent.manLoadCont('func','../func/attributes','cdGetColorPlanes')
javascript:parent.manLoadCont('func','../func/control','cdActivate')

Clipboard	Driver	(cdclipbd.h)

This	driver	allows	the	access	to	a	Clipboard	area.	It	is	greatly	dependent	on
the	system.	In	Win32s,	it	creates	a	Windows	Metafile;	in	Windows	95	or
Windows	NT,	it	creates	an	Enhanced	Metafile;	in	Macintosh	it	creates	a
PICT;	in	X-Windows	it	creates	a	CD	Metafile.

Use

The	canvas	is	created	by	means	of	a	call	to	function
cdCreateCanvas(CD_CLIPBOARD,	Data),	after	which	other	functions	in
the	CD	library	can	be	called	as	usual.	The	Data	parameter	string	is
platform-dependent	and	varies	according	to	the	metafile	created.	See	each
metafile's	documentation,	but	remember	to	exclude	parameter	"filename"

In	the	Windows	environment,	if	the	string	"-b"	is	present,	it	means	that	a
bitmap	must	be	created	instead	of	a	metafile,	and,	if	the	string	"-m"	is
specified,	a	CD	Metafile	will	be	created.	Note:	for	reasons	unknown	to	us,
in	Word	for	Windows	7.0	(Office	95),	images	pasted	from	the	Clipboard
lose	their	aspect	ratio	and	look	squared.

In	the	X-Windows	environment,	the	Display	("%p")	where	the	data	will	be
stored	must	be	passed	as	a	parameter	before	the	CD	Metafile	parameters.
This	environment's	driver	is	used	only	for	applications	that	use	CD	to
communicate	with	each	other,	because	a	CD	Metafile	is	created.

Any	amount	of	such	canvases	may	exist	simultaneously.	It	is	important	to
note	that	a	call	to	function	cdKillCanvas	is	required	to	properly	copy	the
data	to	the	Clipboard.

You	can	interpret	the	data	from	the	Clipboard	using	function	cdPlay.	In	the
X-Windows	environment,	the	parameter	"data"	for	the	cdPlay	function	is
the	pointer	to	the	Display	where	the	metafile	will	be	obtained.

Behavior	of	Functions

javascript:parent.manLoadCont('func','../func/control','cdCreateCanvas')
javascript:parent.manLoadCont('func','../func/control','cdKillCanvas')

This	driver	is	greatly	platform-dependent.	For	further	detail,	see	the
Behavior	of	Functions	in	each	platform:	Macintosh	(QuickDraw),
Microsoft	Windows	(GDI),	X-Windows	(XLIB).	However,	it	should	be
noted	that	some	functions	behave	differently	from	the	basic	functions	of
each	platform.

A	metafile	created	in	Win32s	has	the	same	limitations	as	the	WMF	driver.
In	Windows	95	or	NT,	it	has	the	same	limitations	as	the	EMF	driver.

Printer	Driver	(cdprint.h)

This	driver	provides	access	to	a	System	Default	Printer.	Currently,	it	works
only	in	platforms	Microsoft	Windows	and	Macintosh,	but	it	is	possible	to
use	it	in	other	platforms	without	the	risk	of	compilation	error.	If	you	attempt
to	create	a	canvas	in	another	platform,	the	function	cdCreateCanvas	will
return	NULL.

Use

The	canvas	is	created	by	calling	function	cdCreateCanvas(CD_PRINTER,
Data),	after	which	other	CD	functions	can	be	called	as	usual.	The	Data
string	has	the	following	format:

''name	[-d]''	or	in	C	style	"%s	-d"

Name	is	an	optional	document	name	that	will	appear	in	the	printer	queue.
Optionally,	-d	displays	the	System	Printer	dialogue	box	before	starting	to
print,	allowing	you	to	configure	the	printer's	parameters.	When	using	this
parameter	and	the	return	canvas	is	NULL,	one	must	assume	that	the	print
was	canceled	by	the	user.

Any	amount	of	such	canvases	may	exist	simultaneously.	It	is	important	to
note	that	a	call	to	function	cdKillCanvas	is	required	to	properly	send	the
data	to	the	printer.

Pages	-	Use	cdFlush	to	change	to	a	new	page.	You	can	draw	first	on	page
1,	then	on	page	2	and	so	forth.

Behavior	of	Functions

This	driver	is	greatly	platform-dependent.	For	further	detail,	see	the
Behavior	of	Functions	in	each	platform:	Macintosh	(QuickDraw),
Microsoft	Windows	(GDI),	Windows	Using	GDI+,	X-Windows	(XLIB).
However,	it	should	be	noted	that	some	functions	behave	differently	from

javascript:parent.manLoadCont('func','../func/control','cdCreateCanvas')
javascript:parent.manLoadCont('func','../func/control','cdCreateCanvas')
javascript:parent.manLoadCont('func','../func/control','cdKillCanvas')
javascript:parent.manLoadCont('func','../func/control','cdFlush')

the	basic	functions	of	each	platform.

A	printer	created	in	Win32s	has	the	same	limitations	as	the	WMF	driver.	In
Windows	95	or	NT,	it	has	the	same	limitations	as	the	EMF	driver.

Control

cdFlush:	changes	to	a	new	page,	preserving	the	previous	one.	In	the	Win32
base	driver,	after	the	first	page,	function	cdText	draws	the	text	below	its
correct	position	-	we	do	not	know	why	this	happens.

javascript:parent.manLoadCont('func','../func/control','cdFlush')

RGB	Client	Image	Driver	(cdirgb.h)

This	driver	allows	access	to	a	Client	Image,	an	imaged	based	in	RGB	colors
with	24	bits	per	pixel	(8	per	channel).	It	is	used	to	implement	high-quality
offscreen	drawings,	but	is	slower	than	the	Server	Image	version.	In	fact,	it
is	a	rasterizer,	that	is,	it	converts	vector	primitives	into	a	raster
representation.	All	primitives	are	implemented	by	the	library	and	are	not
system-dependent	(the	primitives	of	the	Server	Image	version	are	system-
dependent).

Use

A	CGM	file	is	created	by	means	of	a	call	to	the	function
cdCreateCanvas(CD_IMAGERGB,	Data),	after	which	other	functions	in
the	CD	library	can	be	called	as	usual.	The	function	creates	an	RGB	image,
and	then	a	CD	canvas.	The	Data	parameter	string	has	the	following	format:

"widthxheight	[r	g	b]	-r[resolution]"	ou	em	C	"%dx%d	%p	%p	%p	-
r%g"

It	must	include	the	canvas'	dimensions.	Width	and	height	are	provided	in
pixels	(note	the	lowercase	"x"	between	them).	As	an	option,	you	can
specify	the	buffers	to	be	used	by	the	driver,	so	that	you	can	draw	over	an
existing	image.	The	resolution	can	be	defined	with	parameter	-r;	its	default
value	is	"3.8".	

Any	amount	of	such	canvases	may	exist	simultaneously.	It	is	important	to
note	that	a	call	to	function	cdKillCanvas	is	required	to	close	the	file
properly.

In	CDLUA,	the	canvas	can	be	created	in	two	ways:	with	an	already	defined
image	or	without	it.	With	an	image,	an	RGB	image	must	be	passed	as
parameter,	created	by	functions	cdCreateImageRGB	or
cdCreateImageEx	in	Lua.	The	resolution	must	be	passed	as	in	the	string
above,	in	an	extra	parameter	after	the	image.	Without	an	image,	the
parameter	passed	must	be	a	string	in	the	format	above,	excluding	the	r,	g
and	b	pointers.

javascript:parent.manLoadCont('func','../func/control','cdCreateCanvas')
javascript:parent.manLoadCont('func','../func/control','cdKillCanvas')

Exclusive	Functions	in	this	Driver

unsigned	char	*	cdRedImage(cdCanvas*	canvas);	[in	C]

Returns	the	red	image	buffer.	The	buffer's	format	is	compatible	with	the
Client	Image	specification	in	the	CD	library.

unsigned	char	*	cdGreenImage(cdCanvas*	canvas);	[in	C]

Returns	the	green	image	buffer.	The	buffer's	format	is	compatible	with	the
Client	Image	specification	in	the	CD	library.

unsigned	char	*	cdBlueImage(cdCanvas*	canvas);	[in	C]

Returns	the	blue	image	buffer.	The	buffer's	format	is	compatible	with	the
Client	Image	specification	in	the	CD	library.

cdImageRGB(canvas:	canvas_tag)	->	(image:	imagergb_tag)	[in	Lua]

Returns	the	canvas'	internal	RGB	image.

All	primitives	are	from	the	Simulation	driver;	see	this	driver's
documentation	for	further	information.

Behavior	of	Functions

Control

cdFlush:	does	nothing.
cdPlay:	does	nothing,	returns	CD_ERROR.

Coordinate	System	and	Clipping

cdUpdateYAxis:	does	nothing.	The	axis	orientation	is	the	same	as	the	CD

javascript:parent.manLoadCont('func','../func/control','cdFlush')
javascript:parent.manLoadCont('func','../func/control','cdPlay')
javascript:parent.manLoadCont('func','../func/coordinates','cdUpdateYAxis')

library's.
Polygon	clipping	is	not	performed	for	Server	and		Client	Images.

Colors

cdGetColorPlanes:	returns	24.
cdPalette:	does	nothing.

Exclusive	Attributes

"REDIMAGE",	"GREENIMAGE",	"BLUEIMAGE":	return	the
respective	pointers	of	the	canvas	RGB	image.	Replace	the	old	functions
cdRedImage,	cdGreenImage,	cdBlueImage.

javascript:parent.manLoadCont('func','../func/attributes','cdGetColorPlanes')
javascript:parent.manLoadCont('func','../func/images','cdPalette')

Server	Image	Driver	(cdimage.h)

This	driver	provides	access	to	a	Server	Image,	a	memory-based	high-
performance	image	that	corresponds	to	the	attributes	of	the	system's
devices.	It	is	used	for	offscreen	drawings.

Use

The	canvas	is	created	by	means	of	a	call	to	function
cdCreateCanvas(CD_IMAGE,	Data),	after	which	other	functions	in	the
CD	library	can	be	called	as	usual.	The	function	creates	a	CD	canvas	based
on	an	existing	Server	Image.	The	Data	parameter	is	a	pointer	to	an	image
created	with	function		cdCreateImage	(cdImage*).

Any	amount	of	such	canvases	may	exist	simultaneously.	It	is	important	to
note	that	a	call	to	function	cdKillCanvas	is	required	to	properly	end	the
driver.	You	can	call	function	cdKillImage	only	after	calling	cdKillCanvas.

For	use	with	CDLUA,	the	Server	Image	passed	as	parameter	must	have
been	created	with	function	cdCreateImage	or	cdCreateImageEx	in	Lua.

Behavior	of	Functions

This	driver	is	greatly	platform-dependent.	For	further	detail,	see	the
Behavior	of	Functions	in	each	platform:	Macintosh	(QuickDraw),
Microsoft	Windows	(GDI),	Windows	Using	GDI+,	X-Windows	(XLIB).
However,	it	should	be	noted	that	some	functions	behave	differently	from
the	basic	functions	of	each	platform.

javascript:parent.manLoadCont('func','../func/control','cdCreateCanvas')
javascript:parent.manLoadCont('func','../func/images','cdCreateImage')
javascript:parent.manLoadCont('func','../func/control','cdKillCanvas')
javascript:parent.manLoadCont('func','../func/control','cdKillCanvas')

Double	Buffer	Driver	(cddbuf.h)

Implements	the	concept	of	offscreen	drawing.

Use

The	canvas	is	created	by	means	of	a	call	to	function
cdCreateCanvas(CD_DBUFFER,	Data),	after	which	other	functions	in	the
CD	library	can	be	called	as	usual.	This	function	creates	a	CD	canvas	based
on	an	existing	window	canvas	(Native	Windows	or	IUP).	The	parameter
Data	is	a	pointer	to	the	already	created	canvas.

Any	amount	of	such	canvases	may	exist	simultaneously.	It	is	important	to
note	that	a	call	to	function	cdKillCanvas	is	required	to	properly	end	the
driver.	Call	function	cdKillCanvas	in	this	driver	before	calling
cdKillCanvas	in	the	window	driver.

The	drawing	functions	will	function	normally,	as	if	they	were	drawing	in
the	server	image	driver.	When	function	cdFlush	is	executed,	the	image	is
drawn	in	the	window	canvas	passed	as	parameter	in	the	canvas	creation.

When	the	window's	size	changes,	the	server	image	is	automatically
recreated	in	the	same	size	as	the	canvas.	This	is	guaranteed	by	function
cdActivate.

Behavior	of	Functions

This	driver	is	greatly	platform-dependent.	For	further	detail,	see	the
Behavior	of	Functions	in	each	platform:	Macintosh	(QuickDraw),
Microsoft	Windows	(GDI),	Windows	Using	GDI+,	X-Windows	(XLIB).
However,	it	should	be	noted	that	some	functions	behave	differently	from
the	basic	functions	of	each	platform.

javascript:parent.manLoadCont('func','../func/control','cdCreateCanvas')
javascript:parent.manLoadCont('func','../func/control','cdKillCanvas')
javascript:parent.manLoadCont('func','../func/control','cdKillCanvas')
javascript:parent.manLoadCont('func','../func/control','cdFlush')
javascript:parent.manLoadCont('func','../func/control','cdActivate')

Computer	Graphics	Metafile	-	CGM	-	Driver	(cdcgm.h)

This	driver	allows	generating	a	Computer	Graphics	Metafile,	which	is	an
ANSI	standard	for	the	persistent	storage	of	graphics	primitives.	The	file
usually	has	an	extension	.CGM.

Use

A	CGM	file	is	created	by	means	of	a	call	to	the	function
cdCreateCanvas(CD_CGM,	Data),	which	opens	the	file	and	writes	its
header.	Then,	other	functions	in	the	CD	library	can	be	called	as	usual.	The
Data	parameter	string	has	the	following	format:

"filename	[widthxheight]	[resolution]	[-t]	-p[precision]"	or	in	C	style
"%s	%gx%g	%g	%s"

Only	the	parameter	filename	is	required.	Width	and	height	are	provided	in
millimeters	(note	the	lowercase	"x"	between	them).	When	the	canvas'	size
is	not	specified,	the	VDC	Extension	saved	to	the	file	is	the	image's
bounding	rectangle.	The	resolution	is	the	number	of	pixels	per	millimeter;
its	default	value	is	"3.8".	Width,	height	and	resolution	are	real	values.
Parameter	-t	modifies	the	codification.	Width,	height	and	resolution	are
used	only	by	cdGetCanvasSize	and	in	pixel-millimeter	conversion.
Parameter	-p	specifies	the	precision	of	integers,	which	can	be	16	(default)
or	32.

Any	amount	of	such	canvases	may	exist	simultaneously.	It	is	important	to
note	that	a	call	to	function	cdKillCanvas	is	required	to	close	the	file
properly.

Coding	-	The	CGM	format	supports	binary	and	text	coding.	If	you	are	not
sure	what	to	do,	use	binary	coding,	which	is	the	default.	Should	you	prefer
text	coding,	add	a	"-t"	string	to	the	Data	parameter.

Precision	of	Coordinates	-	The	primitives	can	use	coordinates	in	real
numbers.	However,	for	compatibility	reasons,	we	use	coordinates	in
integers.

javascript:parent.manLoadCont('func','../func/control','cdCreateCanvas')
javascript:parent.manLoadCont('func','../func/control','cdKillCanvas')

Behavior	of	Functions

Control	

cdClear:	does	nothing.
cdFlush:	creates	a	new	image,	preserving	the	previous	one.	The	CGM
format	supports	multiple	images	in	a	file.
cdPlay:	works	with	files	created	with	text	or	binary	coding.	There	are
several	callbacks	for	this	driver.	If	one	of	the	callbacks	returns	a	value
different	from	zero,	cdPlay's	processing	is	interrupted.	The	driver
implements	the	callback	CD_SIZECB	and	other	callbacks	associated	to
CGM:
CD_COUNTERCB	-	int(*cdcgmcountercb)(cdContext	*driver,
double	percent)	-	Executed	for	each	header	of	CGM	commands;	returns
the	percentage	(0-100%)	of	headers	read.
CD_SCLMDECB	-	int(*cdcgmsclmdecb)(cdContext	*driver,	short

scl_mde,	short	*drw_mode,	double	*factor)	-	Executed	for	the
command	CGM	SCALE	MODE.	Returns	the	current	CGM	scale	mode	and
allows	the	callback	to	modify	the	scale	mode	used	by	the	cdPlay	function
(ABSTRACT=0,	METRIC=1).	Should	you	choose	the	METRIC	or
ABSTRACT	scale	mode	but	the	original	scale	mode	is	METRIC,	you	must
provide	the	conversion	factor	in	mm	per	pixel.
CD_VDCEXTCB	-	int(*cdcgmvdcextcb)(cdContext	*driver,	short

type,	void	*xmn,	void	*ymn,	void	*xmx,	void	*ymx)	-	Executed	for
the	CGM	command	CGM	VDC	EXTENT,	returns	the	VDC	SPACE.	
CD_BEGPICTCB	-	int(*cdcgmbegpictcb)(cdContext	*driver,	char

*pict)	-	Executed	for	the	command	BEGIN	PICTURE,	returns	the	string
that	describes	the	image.
CD_BEGPICTBCB	-	int(*cdcgmbegpictbcb)(cdContext	*driver)	-
Executed	for	the	command	BEGIN	PICTURE	BODY.
CD_CGMBEGMTFCB	-	int	(*cdcgmbegmtfcb)(cdContext	*driver,	int
*xmin,	int	*ymin,	int	*xmax,	int	*ymax)	-	Executed	for	the	command
BEGIN	METAFILE,	provides	the	drawing	limits	of	the	image	in	the	file.

Coordinate	System	and	Clipping

cdUpdateYAxis:	does	nothing.	The	axis	orientation	is	the	same	as	the	CD

javascript:parent.manLoadCont('func','../func/control','cdClear')
javascript:parent.manLoadCont('func','../func/control','cdFlush')
javascript:parent.manLoadCont('func','../func/control','cdPlay')
javascript:parent.manLoadCont('func','../func/coordinates','cdUpdateYAxis')

library.

Primitives

cdBegin:	if	the	parameter	CD_CLIP	is	specified,	does	nothing.
cdMark:	CD_DIAMOND,	CD_HOLLOW_DIAMOND	and	CD_HOLLOW_BOX	are
equivalent	to	CD_BOX,	and	CD_HOLLOW_CIRCLE	is	equivalent	to	CD_CIRCLE.
cdPixel:	does	not	exist	in	CGM,	is	simulated	using	a	mark	with	size	1.

Attributes

cdWriteMode:	does	nothing,	returns	CD_REPLACE.
cdFontDim:	is	simulated.
cdNativeFont:	does	nothing.
cdTextSize:	is	simulated.
cdTextOrientation:	does	nothing.

Colors

cdGetColorPlanes:	returns	24.
cdPalette:	does	nothing.

Client	Images	

cdGetImageRGB:	does	nothing.
cdPutImageRGBA:	alpha	is	ignored.

Server	Images

All	functions	do	nothing.

javascript:parent.manLoadCont('func','../func/primitives','cdBegin')
javascript:parent.manLoadCont('func','../func/primitives','cdMark')
javascript:parent.manLoadCont('func','../func/primitives','cdPixel')
javascript:parent.manLoadCont('func','../func/attributes','cdWriteMode')
javascript:parent.manLoadCont('func','../func/attributes','cdFontDim')
javascript:parent.manLoadCont('func','../func/attributes','cdNativeFont')
javascript:parent.manLoadCont('func','../func/attributes','cdTextSize')
javascript:parent.manLoadCont('func','../func/attributes','cdTextOrientation')
javascript:parent.manLoadCont('func','../func/attributes','cdGetColorPlanes')
javascript:parent.manLoadCont('func','../func/images','cdPalette')
javascript:parent.manLoadCont('func','../func/images','cdGetImageRGB')
javascript:parent.manLoadCont('func','../func/images','cdPutImageRGBA')

MicroStation	Design	File	Driver	(cddgn.h)

This	driver	allows	generating	a	MicroStation	design	file.	The	file	name
usually	has	an	extension	.DGN.	The	driver	supports	only	MicroStation
version	4.0	or	later.	The	format's	copyrights	are	property	of	Bentley
Systems.

Use

The	file	is	created	and	opened	by	calling	function
cdCreateCanvas(CD_DGN,	Data),	in	which	Data	contains	the	filename
and	canvas	dimensions.	This	function	opens	the	file	and	writes	its	header.
Then,	other	functions	in	the	CD	library	can	be	called	as	usual.	The	Data
parameter	string	has	the	following	format:

"filename	[widthxheight]	[resolution]	[-f]	[-sseedfile]"	or	in	C	"%s
%gx%g	%g	%s"

Only	the	parameter	filename	is	required.	Width	and	height	are	provided	in
millimeters	(note	the	lowercase	"x"	between	them),	and	their	default	value
in	pixels	is	INT_MAX	for	both	dimensions.	Resolution	is	the	number	of
pixels	per	millimeter;	its	default	value	is	"3.8".	Width,	height	and	resolution
are	real	values.	Parameter	-f	modifies	the	polygon	filling's	behavior.	Just	as
in	MicroStation,	you	can	specify	a	seed	file	using	parameter	-s.	Width,
height	and	resolution	are	used	only	by	cdGetCanvasSize	and	in	pixel-
millimeter	conversion.	

Any	amount	of	such	canvases	may	exist	simultaneously.	It	is	important	to
note	that	a	call	to	function	cdKillCanvas	is	required	to	close	the	file
properly.

Images	and	Colors	-	The	DGN	format	does	not	support	server	images	and
works	with	an	indexed-color	format.	Color	quality	is	limited	to	256	colors,
and	the	format	uses	a	uniform	palette	to	convert	RGB	colors	into	palette
indices.	If	you	configure	a	palette,	the	color	conversion	process	will
become	slower.

http://www.bentley.com
javascript:parent.manLoadCont('func','../func/control','cdCreateCanvas')
javascript:parent.manLoadCont('func','../func/coordinates','cdGetCanvasSize')
javascript:parent.manLoadCont('func','../func/control','cdKillCanvas')

Filling	-	Up	to	version	5.0,	MicroStation	presents	some	limitations	for
polygon	filling.	You	can	disable	filling	by	means	of	string	"-f"	in	the	Data
parameter.	Filled	polygons	can	only	have	around	10,000	vertices;	if	the
value	is	larger,	the	polygon	style	changes	to	closed	lines.

Seed	-	In	the	seed	file,	several	DGN	parameters	can	be	defined	to	be	used
in	the	drawing.	The	library	offers	a	default	seed	file,	called	SEED2D.DGN.
The	file's	location	depends	on	the	environment	variable	CDDIR.

Behavior	of	Functions

Control

cdClear:	does	nothing.
cdPlay:	does	nothing,	returns	CD_ERROR.

Coordinate	System	and	Clipping

cdClip:	does	nothing	(no	clipping	function	is	supported),	returns
CD_CLIPOFF.
cdClipArea:	does	nothing.
cdGetClipArea:	does	nothing,	returns	CD_CLIPOFF.
cdUpdateYAxis:	does	nothing.	The	axis	orientation	is	the	same	as	the	CD
library.

Primitives

cdBegin:	if	parameter	CD_CLIP	is	specified,	does	nothing.
cdMark:	is	simulated.

Attributes

cdBackOpacity:	does	nothing,	returns	CD_OPAQUE.
cdWriteMode:	does	nothing,	returns	CD_REPLACE.
cdInteriorStyle:	does	nothing.
cdHatch:	does	nothing	(to	be	implemented).

javascript:parent.manLoadCont('func','../func/control','cdClear')
javascript:parent.manLoadCont('func','../func/control','cdPlay')
javascript:parent.manLoadCont('func','../func/coordinates','cdClip')
javascript:parent.manLoadCont('func','../func/coordinates','cdClipArea')
javascript:parent.manLoadCont('func','../func/coordinates','cdGetClipArea')
javascript:parent.manLoadCont('func','../func/coordinates','cdUpdateYAxis')
javascript:parent.manLoadCont('func','../func/primitives','cdBegin')
javascript:parent.manLoadCont('func','../func/primitives','cdMark')
javascript:parent.manLoadCont('func','../func/attributes','cdBackOpacity')
javascript:parent.manLoadCont('func','../func/attributes','cdWriteMode')
javascript:parent.manLoadCont('func','../func/attributes','cdInteriorStyle')
javascript:parent.manLoadCont('func','../func/attributes','cdHatch')

cdStipple:	does	nothing	(to	be	implemented).
cdPattern:	does	nothing	(to	be	implemented).
cdTextSize:	returns	a	bounding	box	which	is	usually	larger	than	the	text
(the	computation	is	based	on	the	widest	character).
cdTextAlignment:	uses	cdTextSize,	therefore	is	not	precise.
cdNativeFont:	selects	the	font	number	defined	in	MicroStation	("%d"	in	C
style).
cdFont:	See	the	font	mapping	table	for	the	equivalence	used	to	map	CD
fonts	into	MicroStation	fonts:

Font	Mapping
CD	Fonts MicroStation	Fonts

CD_SYSTEM	/	CD_HELVETICA #0	-	Standard
CD_COURIER #43	-	Low_res_filled
CD_TIMES_ROMAN #2	-	Fancy

Colors

cdGetColorPlanes:	returns	8	(MicroStation	uses	a	palette	with	256	values).
cdBackground:	always	returns	CD_WHITE.

Client	Images

cdGetImageRGB:	does	nothing.
cdPutImageRGB:	considering	that	the	format	supports	only	256	colors,
image	quality	is	quite	poor.
cdPutImageRGBA:	alpha	is	ignored.
cdPutImageMap:	considering	that	the	format	supports	only	256	colors,
image	quality	is	quite	poor.

Server	Images

All	functions	do	nothing.

javascript:parent.manLoadCont('func','../func/attributes','cdStipple')
javascript:parent.manLoadCont('func','../func/attributes','cdPattern')
javascript:parent.manLoadCont('func','../func/attributes','cdTextSize')
javascript:parent.manLoadCont('func','../func/attributes','cdTextAlignment')
javascript:parent.manLoadCont('func','../func/attributes','cdNativeFont')
javascript:parent.manLoadCont('func','../func/attributes','cdFont')
javascript:parent.manLoadCont('func','../func/attributes','cdGetColorPlanes')
javascript:parent.manLoadCont('func','../func/attributes','cdBackground')
javascript:parent.manLoadCont('func','../func/images','cdGetImageRGB')
javascript:parent.manLoadCont('func','../func/images','cdPutImageRGB')
javascript:parent.manLoadCont('func','../func/images','cdPutImageRGBA')
javascript:parent.manLoadCont('func','../func/images','cdPutImageMap')

AutoCAD	Image	Exchange	File	Driver	(cddxf.h)

This	driver	allows	generating	an	AutoCAD	image	exchange	file.	The	file
name	usually	has	an	extension	.DXF.	This	driver	supports	only	AutoCAD
version	10.0	or	later.	The	format's	copyrights	are	property	of	Autodesk.

Use

The	file	is	created	and	opened	by	calling	function
cdCreateCanvas(CD_DXF,	Data),	in	which	Data	contains	the	file	name
and	canvas	dimensions.	This	function	opens	the	file	and	writes	its	header.
Then,	other	functions	in	the	CD	library	can	be	called	as	usual.	The	Data
parameter	string	has	the	following	format:

"filename	[widthxheight]	[resolution]"	or	in	C	"%s	%gx%g	%g"

Only	the	parameter	filename	is	required.	Width	and	height	are	provided	in
millimeters	(note	the	lowercase	"x"	between	them),	and	their	default	value
in	pixels	is	INT_MAX	for	both	dimensions.	Resolution	is	the	number	of
pixels	per	millimeter;	its	default	value	is	"3.8".	Width,	height	and	resolution
are	given	in	real	values	and	can	be	used	only	by	cdGetCanvasSize	and	in
pixel-millimeter	conversion.	

Any	amount	of	such	canvases	may	exist	simultaneously.	It	is	important	to
note	that	a	call	to	function	cdKillCanvas	is	required	to	close	the	DXF	file
properly.

Images	-	The	DXF	format	does	not	support	client	or	server	images	and
works	with	an	indexed-color	format	(color	quality	is	limited	to	256	fixed
colors).

Precision	of	Coordinates	-	The	primitives	use	coordinates	in	real	numbers.

Layers	-	The	format	can	work	with	several	layers.	It	is	necessary	to	draw
the	primitives	of	layer	'0'	first,	then	layer	'1'	and	so	on.	Use	functions
cdFlush	to	change	the	current	layer.

http://www.autodesk.com
javascript:parent.manLoadCont('func','../func/control','cdCreateCanvas')
javascript:parent.manLoadCont('func','../func/coordinates','cdGetCanvasSize')
javascript:parent.manLoadCont('func','../func/control','cdKillCanvas')
javascript:parent.manLoadCont('func','../func/control','cdFlush')

Behavior	of	Functions

Control

cdFlush:	changes	the	current	layer	(the	initial	layer	is	'0',	followed	by	'1'
and	so	on).
cdClear:	does	nothing.
cdPlay:	does	nothing,	returns	CD_ERROR.

Coordinate	System	and	Clipping

cdClip:	does	nothing	(no	clipping	function	is	supported),	returns
CD_CLIPOFF.
cdClipArea:	does	nothing.
cdGetClipArea:	does	nothing,	returns	CD_CLIPOFF.
cdUpdateYAxis:	does	nothing.	Axis	orientation	is	the	same	as	in	the	CD
library.

Primitives

cdBox:	draws	only	the	box's	borders	(no	filling	function	is	supported).
Behaves	like	cdRect.
cdSector:	draws	a	"hollow"	sector,	that	is,	only	its	borders.
cdMark:	besides	employing	simulation,	filled	marks	are	drawn	in	the	same
way	as	their	corresponding	empty	marks,	that	is,	only	the	borders.
cdBegin:	CD_FILL	is	mapped	to	CD_CLOSED_LINES.	If	parameter	CD_CLIP	is
specified,	does	nothing.

Attributes

cdBackOpacity:	does	nothing,	returns	CD_TRANSPARENT.
cdWriteMode:	does	nothing,	returns	CD_REPLACE.
cdMarkType:	since	no	filling	function	is	supported,	configuring	mark	type
to	solid	type	is	the	same	as	configuring	it	to	its	corresponding	empty	type
(that	is,	CD_BOX	corresponds	to	CD_HOLLOW_BOX,	and	so	on).
cdInteriorStyle:	does	nothing	(filling	is	not	supported),	returns	0.
cdHatch:	does	nothing.

javascript:parent.manLoadCont('func','../func/control','cdFlush')
javascript:parent.manLoadCont('func','../func/control','cdClear')
javascript:parent.manLoadCont('func','../func/control','cdPlay')
javascript:parent.manLoadCont('func','../func/coordinates','cdClip')
javascript:parent.manLoadCont('func','../func/coordinates','cdClipArea')
javascript:parent.manLoadCont('func','../func/coordinates','cdGetClipArea')
javascript:parent.manLoadCont('func','../func/coordinates','cdUpdateYAxis')
javascript:parent.manLoadCont('func','../func/primitives','cdBox')
javascript:parent.manLoadCont('func','../func/primitives','cdSector')
javascript:parent.manLoadCont('func','../func/primitives','cdMark')
javascript:parent.manLoadCont('func','../func/primitives','cdBegin')
javascript:parent.manLoadCont('func','../func/attributes','cdBackOpacity')
javascript:parent.manLoadCont('func','../func/attributes','cdWriteMode')
javascript:parent.manLoadCont('func','../func/attributes','cdMarkType')
javascript:parent.manLoadCont('func','../func/attributes','cdInteriorStyle')
javascript:parent.manLoadCont('func','../func/attributes','cdHatch')

cdStipple:	does	nothing.
cdPattern:	does	nothing.
cdTextSize:	returns	a	bounding	box	usually	larger	than	the	text	(the
computation	is	based	on	the	widest	character).
cdNativeFont:	does	nothing.
cdTextOrientation:	does	nothing.
cdFont:	italic	styles	correspond	to	the	basic	styles	with	an	inclination	of
15o.	See	the	font	mapping	table	for	the	equivalence	used	to	map	fonts	of	the
CD	library	into	AutoCAD		fonts.

Font	Mapping
CD	Fonts AutoCAD	Fonts

CD_SYSTEM STANDARD	(sem	arquivo)
CD_COURIER	/	CD_PLAIN ROMAN	(romanc.shx)
CD_COURIER	/	CD_PLAIN ROMAN_BOLD	(romant.shx)
CD_TIMES_ROMAN	/	CD_PLAIN ROMANTIC	(rom_____.pfb)
CD_TIMES_ROMAN	/	CD_BOLD ROMANTIC_BOLD	(romb_____.pfb)
CD_HELVETICA	/	CD_PLAIN SANSSERIF	(sas_____.pfb)
CD_HELVETICA	/	CD_BOLD SANSSERIF_BOLD	(sasb____.pfb)

Colors

cdForeground:	indexes	long	int	*color		in	the	fixed	palette	(AutoCAD	uses
a	256-color	palette	-		for	further	detail,	see	AutoCAD's	Reference	Manual).
cdBackground:	does	nothing,	returns	CD_WHITE.
cdGetColorPlanes:	returns	8.
cdPalette:	does	nothing	(the	palette	is	fixed).

Client	Images

All	functions	do	nothing.

Server	Images

All	functions	do	nothing.

javascript:parent.manLoadCont('func','../func/attributes','cdStipple')
javascript:parent.manLoadCont('func','../func/attributes','cdPattern')
javascript:parent.manLoadCont('func','../func/attributes','cdTextSize')
javascript:parent.manLoadCont('func','../func/attributes','cdNativeFont')
javascript:parent.manLoadCont('func','../func/attributes','cdTextOrientation')
javascript:parent.manLoadCont('func','../func/attributes','cdFont')
javascript:parent.manLoadCont('func','../func/images','cdForeground')
javascript:parent.manLoadCont('func','../func/images','cdBackground')
javascript:parent.manLoadCont('func','../func/attributes','cdGetColorPlanes')
javascript:parent.manLoadCont('func','../func/images','cdPalette')

	

Enhanced	Metafile	Driver	(cdemf.h)

This	driver	allows	generating	a	Microsoft	Windows	Enhanced	Metafile,	the
format	used	by	32-bit	Windows	systems	to	store	graphics	primitives.
Usually,	the	filename	has	an	extension	.EMF.	The	driver	works	only	in	the
Microsoft	Windows	platform,	but	you	can	use	it	in	other	platforms	without
the	risk	of	compilation	error.	If	you	attempt	to	create	a	canvas	in	another
platform,	function	cdCreateCanvas	will	return	NULL.

Use

The	canvas	is	created	by	means	of	a	call	to	function
cdCreateCanvas(CD_EMF,	Data),	after	which	other	CD	functions	can	be
called	as	usual.	Parameter	Data	has	the	following	format:

"filename	widthxheight	[resolution]"	or	in	C	"%s	%dx%d	%g"

It	must	include	the	filename	and	the	canvas'	dimensions.	Width	and	height
are	provided	in	pixels	(note	the	lowercase	"x"	between	them).	Resolution	is
the	number	of	pixels	per	millimeter;	its	default	value	is	the	screen's
resolution.

Any	amount	of	such	canvases	may	exist	simultaneously.	Function
cdCreateCanvas	opens	the	file,	and	a	call	to	function	cdKillCanvas	is
required	to	close	the	file	properly.

Behavior	of	Functions

This	driver	is	greatly	platform-dependent.	For	further	detail,	see	the
Behavior	of	Functions	of	the	Microsoft	Windows	(GDI)	or	Windows
Using	GDI+	platform	base	drivers.	It	has	been	noticed	that	EMF,	when
saved	in	the	Windows	95	environment,	is	not	totally	compatible	with	EMF
saved	in	the	Windows	NT	environment.

Control	Functions

javascript:parent.manLoadCont('func','../func/control','cdCreateCanvas')
javascript:parent.manLoadCont('func','../func/control','cdKillCanvas')

cdPlay:	different	from	the	basic	driver,	is	implemented.	Not	implemented
using	GDI+.
cdClear:	different	from	the	basic	driver,	does	nothing.

Client	Images	

cdGetImageRGB:	does	nothing.
cdPutImageRGBA:	the	alpha	component	is	ignored.	Using	GDI+	works
normally.

Server	Images

All	functions	do	nothing.

javascript:parent.manLoadCont('func','../func/control','cdPlay')
javascript:parent.manLoadCont('func','../func/control','cdClear')
javascript:parent.manLoadCont('func','../func/images','cdGetImageRGB')
javascript:parent.manLoadCont('func','../func/images','cdPutImageRGBA')

CD	Metafile	Driver	(cdmf.h)

This	driver	allows	the	generation	of	a	CD	Metafile,	a	very	simple	format
that	includes	calls	to	functions	of	the	CD	library	and	provides	persistence	to
its	primitives.

Use

The	file	is	created	by	calling	function	cdCreateCanvas(CD_METAFILE,
Data).	The	Data	parameter	is	a	string	that	must	contain	the	filename	and	the
canvas	dimensions,	in	the	following	format:

''filename	[widthxheight	resolution]''	or	in	C	use	"%s	%gx%g	%g"

Only	the	parameter	filename	is	required.	Width	and	height	are	provided	in
millimeters	(note	the	lowercase	"x"	between	them),	and	their	default	value
in	pixels	is	INT_MAX	for	both	dimensions.	Resolution	is	the	number	of
pixels	per	millimeter;	its	default	value	is	"3.8".	Width,	height	and	resolution
are	real	values.

Any	amount	of	such	canvases	may	exist	simultaneously.	It	is	important	to
note	that	a	call	to	function	cdKillCanvas	is	required	to	close	the	file
properly.

Images	-	Be	careful	when	saving	images	in	the	file,	because	it	uses	a	text
format	to	store	all	numbers	and	texts	of	primitives,	including	images,	which
significantly	increases	its	size.

Extension	-	Although	this	is	not	required,	we	recommend	the	extension
used	for	the	file	to	be	".MF".

Behavior	of	Functions

Coordinate	System	and	Clipping

javascript:parent.manLoadCont('func','../func/control','cdCreateCanvas')
javascript:parent.manLoadCont('func','../func/control','cdKillCanvas')

cdGetCanvasSize:	returns	the	size	used	in	the	call	to	function
cdCreateCanvas.
cdUpdateYAxis:	does	nothing.

Attributes

cdFontDim:	uses	a	size	estimator,	returning	approximate	values.
cdTextSize:	uses	a	size	estimator,	returning	approximate	values.

Colors

cdGetColorPlanes:	always	returns	24.

Client	Images

cdGetImageRGB:	does	nothing.

Server	Images

All	functions	do	nothing.

WC

Implemented	directly	in	the	driver.

javascript:parent.manLoadCont('func','../func/coordinates','cdGetCanvasSize')
javascript:parent.manLoadCont('func','../func/coordinates','cdUpdateYAxis')
javascript:parent.manLoadCont('func','../func/attributes','cdFontDim')
javascript:parent.manLoadCont('func','../func/attributes','cdTextSize')
javascript:parent.manLoadCont('func','../func/attributes','cdGetColorPlanes')
javascript:parent.manLoadCont('func','../func/images','cdGetImageRGB')

PostScript	Driver	(cdps.h)

This	drivers	allows	generating	a	PostScript	file.	This	format	was	created	to
be	a	high-quality	graphics	language	for	printers	and	is	currently	supported
by	several	printers.	If	your	printer	supports	PostScript,	you	can	send	the	file
generated	by	the	driver	directly	to	the	printer	port.	Usually,	the	filename	has
an	extension	.PS	or	.EPS.	The	driver	generates	level-2	PostScript,	therefore
some	PostScript	viewers	might	present	errors.	The	format's	copyrights	are
property	of	Adobe	Systems.

Use

The	file	is	created	and	opened	by	calling	function
cdCreateCanvas(CD_PS,	Data),	in	which	Data	contains	the	filename	and
canvas	dimensions.	This	function	opens	the	file	and	writes	its	header.	Then,
other	functions	in	the	CD	library	can	be	called	as	usual.	The	Data	parameter
string	has	the	following	format:

"filename	-p[paper]	-w[width]	-h[height]	-l[left]	-r[right]	-b[bottom]	-
t[top]	-s[resolution]	[-e]	[-g]	[-o]	[-1]	d[margin]"	or	in	C
"%s	-p%d	-w%g	-h%g	-l%g	-r%g	-b%g	-t%g	-s%d	-e	-o	-1	-g	-
d%g"

Any	amount	of	such	canvases	may	exist	simultaneously.	It	is	important	to
note	that	a	call	to	function	cdKillCanvas	is	required	to	close	the	file
properly.

Paper	Size	-	The	default	paper	size	is	A4.	It	is	possible	to	change	it	by
using	one	of	the	predefined	sizes	-	CD_A0,	CD_A1,	CD_A2,	CD_A3,	CD_A4,
CD_A5,	CD_LETTER	and	CD_LEGAL	-	with	parameter	"-p".	It	is	also	possible	to
define	a	paper	in	a	particular	size	by	using	parameters	"-w"	e	"-h".	Values
are	provided	in	millimeters.

Default	Paper	Sizes
	 Width	(mm) Length	(mm)
A0 841 1187

http://www.adobe.com
javascript:parent.manLoadCont('func','../func/control','cdCreateCanvas')
javascript:parent.manLoadCont('func','../func/control','cdKillCanvas')

A1 594 841
A2 420 594
A3 297 420
A4 210 297
A5 148 210
Letter 216 279
Legal 216 356

Margins	-	The	margins	are	controlled	by	parameters	"-l"	"-r"	"-t"	and	"-b"
(left,	right,	top,	bottom).	Values	are	provided	in	millimeters.	Default
margins	are	25.4	mm	to	all	parameters.	You	can	draw	only	inside	the
margins.

Resolution	-	Resolution	is	used	to	convert	values	from	millimeters	to	pixels
(the	same	as	points,	but	the	number	of	points	is	per	inch	-	DPI).	Use
parameter	"-s"	to	configure	the	resolution.	The	default	value	is	300	DPI.

Orientation	-	The	page	can	be	oriented	as	portrait	or	landscape.	The
default	value	is	portrait,	but	when	the	parameter	"-o"	is	used,	the	horizontal
and	vertical	values	are	switched.

EPS	-	The	PostScript	file	can	be	in	an	Encapsulated	PostScript	format.
For	such,	simply	specify	the	parameter	"-e".	It	is	useful	for	other
applications	to	import	the	PostScript	file.	You	can	define	the	margins	of	the
bounding	box	by	means	of	parameter	"-d",	in	millimeters.

Debug	-	Parameter	"-g"	adds	a	series	of	comments	to	the	PS	file,	making
the	beginning	and	end	of	a	command	from	the	CD	library	explicit.	It	is
useful	only	for	those	who	understand	PostScript	and	wish	to	identify	a
problem.	It	considerably	increases	the	file	size.

Level	1	-	Parameter	"-1"	forces	the	driver	to	generate	a	level-1	PostScript.
In	this	case,	pattern,	stipple	and	hatch	are	not	supported.

Pages	-	Use	function	cdFlush	to	change	to	a	new	page.	The	previous	page
will	not	be	changed.

Behavior	of	Functions

Control

cdPlay:	does	nothing,	returns	CD_ERROR.
cdFlush:	changes	to	a	new	page,	preserving	the	previous	one.	Does	nothing
in	EPS	mode.
cdClear:	does	nothing.

Coordinate	System	

cdGetCanvasSize:	returns	the	page's	size	within	the	margins	(drawing
area).
cdUpdateYAxis:	does	nothing.

Attributes

cdBackground	does	nothing,	returns	CD_WHITE.
cdBackOpacity:	does	nothing,	returns	CD_TRANSPARENT.
cdWriteMode:	does	nothing,	returns	CD_REPLACE.
cdFontDim:	is	simulated.
cdNativeFont:	selects	a	PostScript	font,	given	its	name	and	size	("fontname
size"	or,	in	C	style,	"%s	%d").
cdTextSize:	is	simulated.
cdHatch:	is	always	opaque	(to	be	implemented).
cdStipple:	is	always	opaque	(to	be	implemented).
cdTextAlignment:	Baseline	is	the	same	as	South.

Colors

cdGetColorPlanes:	returns	24.
cdPalette:	does	nothing.

Client	Images

cdGetImageRGB:	does	nothing.
cdPutImageMap:	stores	an	RGB	image	in	the	file	(to	be	implemented).

javascript:parent.manLoadCont('func','../func/control','cdPlay')
javascript:parent.manLoadCont('func','../func/control','cdFlush')
javascript:parent.manLoadCont('func','../func/control','cdClear')
javascript:parent.manLoadCont('func','../func/coordinates','cdGetCanvasSize')
javascript:parent.manLoadCont('func','../func/coordinates','cdUpdateYAxis')
javascript:parent.manLoadCont('func','../func/attributes','cdBackground')
javascript:parent.manLoadCont('func','../func/attributes','cdBackOpacity')
javascript:parent.manLoadCont('func','../func/attributes','cdWriteMode')
javascript:parent.manLoadCont('func','../func/attributes','cdFontDim')
javascript:parent.manLoadCont('func','../func/attributes','cdNativeFont')
javascript:parent.manLoadCont('func','../func/attributes','cdTextSize')
javascript:parent.manLoadCont('func','../func/attributes','cdHatch')
javascript:parent.manLoadCont('func','../func/attributes','cdStipple')
javascript:parent.manLoadCont('func','../func/attributes','cdTextAlignment')
javascript:parent.manLoadCont('func','../func/attributes','cdGetColorPlanes')
javascript:parent.manLoadCont('func','../func/images','cdPalette')
javascript:parent.manLoadCont('func','../func/images','cdGetImageRGB')
javascript:parent.manLoadCont('func','../func/images','cdPutImageMap')

cdPutImageRGBA:	alpha	is	ignored	(to	be	implemented).

Primitives

cdMark:	is	simulated.
cdPixel:	does	not	exist	in	PS,	is	simulated	using	a	circle	with	ray	1.

Server	Images

All	functions	do	nothing.

WC

Implemented	directly	in	the	driver.

Exclusive	Attributes

"POLYHOLE":	informs	the	driver	the	position	of	a	hole	in	the	closed
polygon	to	be	drawn	next.	Can	be	called	several	times	to	define	several
holes.	The	value	passed	must	be	a	string	containing	an	integer.	If	the	value
of	the	attribute	passed	is	NULL,	all	holes	will	no	longer	be	considered.	
"CMD":	saves	a	string	directly	to	the	file.	Allows	adding	PostScript
commands	to	the	file	generated	by	the	CD	library.

javascript:parent.manLoadCont('func','../func/images','cdPutImageRGBA')
javascript:parent.manLoadCont('func','../func/primitives','cdMark')
javascript:parent.manLoadCont('func','../func/primitives','cdPixel')

Windows	Metafile	Driver	(cdwmf.h)

This	driver	allows	creating	a	Microsoft	Windows	Metafile,	the	format	used
by	16-bit	Windows	systems	to	store	graphics	primitives.	Usually,	the
filename	has	an	extension	.WMF.	The	driver	works	only	in	the	Microsoft
Windows	platform,	but	you	can	use	it	in	other	platforms	without	the	risk	of
compilation	error.	If	you	attempt	to	create	a	canvas	in	another	platform,
function	cdCreateCanvas	will	return	NULL.

Use

The	canvas	is	created	by	means	of	a	call	to	the	function
cdCreateCanvas(CD_WMF,	Data),	after	which	other	functions	in	the	CD
library	can	be	called	as	usual.	The	Data	parameter	string	has	the	following
format:

"filename	widthxheight	[resolution]"	or	in	C	"%s	%dx%d	%g"

The	file's	name	and	dimensions	are	required.	Width	and	height	are	provided
in	pixels	(note	the	lowercase	"x"	between	them).	Resolution	is	the	number
of	pixels	per	millimeter;	its	default	value	is	the	screen	resolution.

Any	amount	of	such	canvases	may	exist	simultaneously.	Function
cdCreateCanvas	creates	a	memory-based	metafile,	and	a	call	to	function
cdKillCanvas	is	required	to	close	the	file	properly.

In	fact	the	driver	uses	a	slightly	different	format,	called	Aldus	Placeable
Metafile	(APM).	It	attaches	a	small	header	to	the	beginning	of	the	file,
allowing	other	applications	to	import	better	the	metafile	contents.

Behavior	of	Functions

This	driver	is	greatly	platform-dependent.	For	further	detail,	see	the
Behavior	of	Functions	of	the	Microsoft	Windows	(GDI)	platform.
However,	it	should	be	noted	that	some	functions	behave	differently	from

javascript:parent.manLoadCont('func','../func/control','cdCreateCanvas')
javascript:parent.manLoadCont('func','../func/control','cdKillCanvas')

the	basic	functions	of	each	platform.

Control	

cdPlay:	different	from	the	basic	driver,	is	implemented.
cdClear:	different	from	the	basic	driver,	does	nothing.

Coordinate	System	and	Clipping

cdClip:	does	nothing,	returns	CD_CLIPOFF.
cdClipArea:	does	nothing
cdGetClipArea:	does	nothing,	returns	CD_CLIPOFF.

Attributes

cdStipple:	is	always	opaque	and	smaller	than	8x8	pixels.
cdPattern:	does	nothing.
cdLineWidth:	is	always	1.
cdTextAlignment:	CD_CENTER/CD_WEST/CD_EAST	is	saved	as
CD_BASE_CENTER/CD_BASE_LEFT/CD_BASE_RIGHT,	but	the
position	error	is	compensated.
cdTextOrientation:	does	nothing

Client	Images	

cdGetImageRGB:	does	nothing.
cdPutImageRGBA:	the	alpha	component	is	ignored.

Server	Images

All	functions	do	nothing.

javascript:parent.manLoadCont('func','../func/control','cdPlay')
javascript:parent.manLoadCont('func','../func/control','cdClear')
javascript:parent.manLoadCont('func','../func/coordinates','cdClip')
javascript:parent.manLoadCont('func','../func/coordinates','cdClipArea')
javascript:parent.manLoadCont('func','../func/coordinates','cdGetClipArea')
javascript:parent.manLoadCont('func','../func/attributes','cdStipple')
javascript:parent.manLoadCont('func','../func/attributes','cdPattern')
javascript:parent.manLoadCont('func','../func/attributes','cdLineWidth')
javascript:parent.manLoadCont('func','../func/attributes','cdTextAlignment')
javascript:parent.manLoadCont('func','../func/attributes','cdTextOrientation')
javascript:parent.manLoadCont('func','../func/images','cdGetImageRGB')
javascript:parent.manLoadCont('func','../func/images','cdPutImageRGBA')

Microsoft	Windows	Base	Driver

This	driver	represents	a	base	driver	for	all	system-dependent	drivers
implemented	in	the	Microsoft	Windows	system.	The	implementation	uses
Win32	API	functions,	but	is	totally	compatible	with	Win32s,	which	means
that	the	library	will	work	in	Windows	NT	3.5	or	later,	Windows	95	and
Windows	3.1	or	later,	as	well	as	Win32s	version	1.3	or	later.	If	you	do	not
have	the	latest	Win32s,	download	the	file	WIN32S.ZIP	(2.41Kb).

Note:	In	Windows	95	and	Windows	3.xx,	the	coordinates	internally
implemented	by	the	video	driver	use	16-bit	integers.	Therefore,	if	a
coordinate	with	less	than	-32k	or	more	than	32k	is	defined,	it	will	be
interpreted	incorrectly.

Behavior	of	Functions

Control	

cdFlush:	does	nothing.
cdPlay:	does	nothing,	returns	CD_ERROR.

Coordinate	System	and	Clipping

cdUpdateYAxis:	the	orientation	of	axis	Y	is	the	opposite	to	its	orientation
in	the	CD	library.

Primitives

cdMark:	is	simulated.
cdText:	when	Write	Mode	is	XOR	or	NOT_XOR,	the	XOR	effect	is	simulated
using	bitmaps.
cdBegin:	if	the	parameter	CD_CLIP	is	specified,	the	polygon	created	will	be
used	as	a	clipping	polygon.
cdLine:	needs	to	draw	an	extra	pixel	in	the	final	position.

javascript:parent.manLoadCont('func','../func/control','cdFlush')
javascript:parent.manLoadCont('func','../func/control','cdPlay')
javascript:parent.manLoadCont('func','../func/coordinates','cdUpdateYAxis')
javascript:parent.manLoadCont('func','../func/primitives','cdMark')
javascript:parent.manLoadCont('func','../func/primitives','cdText')
javascript:parent.manLoadCont('func','../func/primitives','cdBegin')
javascript:parent.manLoadCont('func','../func/primitives','cdLine')

Attributes

cdWriteMode:	for	the	client	and	server	image	functions,	the	mode	NOT_XOR
works	as	XOR.
cdStipple:	is	always	opaque.	If	not	in	Windows	NT	and	if	width	or	height
are	greater	than	8,	the	stipple	is	simulated	using	non-regular	Windows
clipping	regions	and	bitmaps.	The	simulation	is	made	when	filled	boxes,
sectors	and	polygons	are	drawn.
cdPattern:	If	not	in	Windows	NT	and	if	width	or	height	are	greater	than	8,
the	pattern	is	simulated	using	non-regular	Windows	clipping	regions	and
bitmaps.	The	simulation	is	made	when	filled	boxes,	sectors	and	polygons
are	drawn.
cdTextAlignment:	the	vertical	alignment	of	CD_CENTER,	CD_EAST,
CD_WEST	is	manually	calculated.
cdLineWidth:	in	Windows	95	and	Win32s,	line	width	is	always	1.
cdNativeFont:	the	font	string	describer	has	the	following	format:
"fontname,	size	[style]	[-k]	[-u]",	where	fontname	is	the	name	of
the	font	in	Windows	(notice	the	comma	after	the	font	name),	size	is	given	in
points,	style	is	the	same	as	cdFont,	-u	means	underline	and	-k	means
strikethrough,	or	"-d"	to	show	the	font-selection	dialogue	box.	However,
this	function	also	accepts	the	font	string	used	by	the	WINFONT	attribute	of
the	IUP	library.
cdFont:	see	the	font	mapping	table	for	the	equivalence	used	to	map	CD
fonts	into	Windows	fonts:

Font	Mapping
CD	Fonts Windows	Fonts

CD_SYSTEM System
CD_COURIER Courier	New
CD_TIMES_ROMAN Times	New	Roman
CD_HELVETICA Arial

Client	Images

cdPutImageRGBA:	captures	an	image	from	the	canvas	to	blend	it	with	the
given	image	using	the	transparency	information.

javascript:parent.manLoadCont('func','../func/attributes','cdWriteMode')
javascript:parent.manLoadCont('func','../func/attributes','cdStipple')
javascript:parent.manLoadCont('func','../func/attributes','cdPattern')
javascript:parent.manLoadCont('func','../func/attributes','cdLineWidth')
javascript:parent.manLoadCont('func','../func/attributes','cdLineWidth')
javascript:parent.manLoadCont('func','../func/attributes','cdNativeFont')
javascript:parent.manLoadCont('func','../func/attributes','cdFont')
javascript:parent.manLoadCont('func','../func/images','cdPutImageRGBA')

Colors

cdPalette:	is	useful	only	if	the	device	has	256	colors.	If	it	has	less	than	256
colors,	ignore	this	function,	for	it	will	not	make	much	difference.	If	two
different	canvases	have	their	palettes	modified,	the	last	one	to	be	modified
will	have	the	best	quality;	the	other	one	will	not	have	good	quality	and	the
colors	might	have	a	completely	different	appearance.

Exclusive	Attributes

"SIMXORTEXT":	controls	the	internal	XOR	simulation	for	text.	Assumes
values	"1"	(active)	and	"0"	(inactive).	Default	value:	"1".

"SIMPATTERN8X8":	controls	the	internal	pattern	and	stipple	simulation.
Assumes	values	"1"	(active)	and	"0"	(inactive).	Default	value:	"1".

"SIMPENFILLPOLY":	controls	the	internal	polygon	filling	simulation.
Assumes	values	"1"	(active)	and	"0"	(inactive).	Default	value:	"1".	When	a
filled	polygon	is	drawn,	a	line	in	the	same	color	is	used	to	draw	the	border
which	is	not	included	in	the	filling.	Deactivating	this	attribute	solves	the
problem	of	polygons	with	holes,	in	which	there	is	a	line	connecting	the
external	polygon	to	the	internal	polygon.

"HDC":	returns	the	HDC	of	the	Win32	canvas.	Read-only	attribute,	cannot
be	changed.

"IMAGEMASK":		allows	the	usage	of	an	image	as	a	transparency	mask.
The	format	is	the	some	of	a	stipple.	It	should	be	an	array	of	longs,	where
the	first	is	the	width,	the	second	is	the	height,	then	the	mask	values.	Works
only	for	server	imagens.	Use	NULL	to	remove	the	attribute.	It	can	not	be
retreived.

"IMAGEPOINTS":		allows	the	usage	of	3	coordinates	(x,	y)	in	an	array	of
longs,	that	define	3	vertex	of	paralelogram	that	will	be	used	to	warp	the
image	in	the	susequent	calls	of	cdPutImageRect.	Works	only	for	server
imagens.	The	Y	values	must	already	being	converted	by	the
cdUpdateYAxis	function.	Use	NULL	to	remove	the	attribute.	It	can	not	be
retreived.

javascript:parent.manLoadCont('func','../func/images','cdPalette')
javascript:parent.manLoadCont('func','../func/images','cdPutImageRect')
javascript:parent.manLoadCont('func','../func/coordinates','cdUpdateYAxis')

"USERLINESTYLE":		allows	the	usage	of	n	values	in	an	array	of	chars,
that	define	the	line	style	sequence.	The	first	value	is	the	number	of	values.
Use	NULL	to	remove	the	attribute.

Microsoft	Windows	Base	Driver	Using	GDI+

This	driver	represents	a	base	driver	for	all	system-dependent	drivers
implemented	in	the	Microsoft	Windows	system,	but	uses	a	new	API	called
GDI+.	Only	the	drivers	Native	Window,	IUP,	Image,	Printer,	EMF	and
Double	Buffer	were	implemented.	The	drivers	WMF	and	Clipboard,	and
the	function	cdPlay	of	the	EMF	driver	were	not	implemented	using	GDI+.

The	main	motivation	for	the	use	of	GDI+	was	transparency	for	all	the
primitives.	Beyond	that	we	got	other	features	like	anti-aliasing,	gradient
filling,	bezier	lines,	filled	cardinal	splines	and	world	coordinate	directly
implemented	by	the	driver.

This	driver	still	does	not	completely	replace	the	GDI	Windows	base	driver,
because	GDI+	still	does	not	have	support	for	XOR.	And	the	applications
need	to	adapt	because	the	rendering	of	text	is	slightly	different	from	GDI.
Also	is	know	that	GDI+	can	be	slower	that	GDI	in	some	cases	and	faster	in
other	cases,	Microsoft	does	not	make	this	clear.

So	we	let	the	programmer	to	choose	what	to	use.	We	created	the	function
cdUseContextPlus	that	allows	activate	or	deactivate	the	use	of	GDI+	for
the	available	drivers.	This	function	affects	only	the	cdCreateCanvas
function	call,	once	created	the	canvas	will	be	always	a	GDI+	canvas.	In	fact
the	function	affects	primary	the	definitions	CD_IUP,
CD_NATIVEWINDOW,	etc,	because	they	are	function	calls	and	not	static
defines.

Using	GDI+	it	is	allowed	to	create	more	that	one	canvas	at	the	same	time
for	the	same	Window.	And	they	can	co-exist	with	a	standard	GDI	canvas.

To	use	the	GDI+	based	drivers	you	must	call	the	function	cdInitGdiPlus()
once	and	link	to	the	libraries	"cdgdiplus.lib"	and	"gdiplus.lib".	Also	the
file	"gdiplus.dll"	must	be	available	in	your	system.	These	files	already
came	with	Visual	C++	7	and	Windows	XP.	For	other	compiler	you	will
need	to	copy	the	".lib"	file	for	you	libraries	area,	and	you	will	need	to	copy
the	DLL	for	the	Windows\System	(Win98/Me)	or	Windows\System32
(Win2000/NT4-SP6)	folder.

In	CDLUA	it	is	not	necessary	any	additional	initialization.

The	GDI+	has	other	features	not	explored	by	the	drivers	because	of	the	CD
limitations.	But	some	of	the	features	can	be	available	through	attributes,	for
example:	other	hatch	styles,	custom	line	styles,	coordinates	transformations,
line	start/join/end	styles,	text	alignment	in	rectangles.

Exclusive	Functions

int	cdUseContextPlus(int	use);	[in	C]
cdUseContextPlus(use:	number)	->	(old_use:	number)	[in	Lua]

Activates	or	deactivates	the	use	of	an	external	context	for	the	next	calls	of
the	cdCreateCanvas	function.	This	function	is	declared	in	the
"cdgdiplus.h"	header,	because	now	it	is	useful	only	for	GDI+.	But	it	is
implemented	in	the	standard	library.

void	cdInitGdiPlus(void);	[in	C]

Initializes	the	GDI+	driver	to	be	used	as	an	external	context	replacing	the
traditional	GDI	drivers.	This	function	is	declared	in	the	"cdgdiplus.h"
header.

Behavior	of	Functions

Control

cdPlay:	does	nothing,	returns	CD_ERROR.

Coordinate	System	and	Clipping

cdUpdateYAxis:	the	orientation	of	axis	Y	is	the	opposite	to	its	orientation
in	the	CD	library.

Primitives

javascript:parent.manLoadCont('func','../func/control','cdCreateCanvas')
javascript:parent.manLoadCont('func','../func/control','cdPlay')
javascript:parent.manLoadCont('func','../func/coordinates','cdUpdateYAxis')

cdPixel:	uses	GDI.	Excepting	when	the	canvas	is	an	image	so	it	is	done
using	GDI+.
cdMark:	is	simulated.
cdSector:	it	also	draws	an	arc	in	the	same	position	to	complete	the	size	of
the	sector.
cdText:	opaque	text	is	simulated	using	a	rectangle	in	the	back.
cdBegin:	if	the	parameter	CD_CLIP	is	specified,	the	polygon	created	will	be
used	as	a	clipping	polygon.	Beyond	the	standard	modes	it	accepts	the
additional	modes::	CD_BEZIER,	CD_FILLSPLINE,	CD_IMAGEWARP,
CD_GRADIENT	e	CD_PATHGRADIENT.	The	C	definitions	of	these	modes	are
available	in	the	cdgdiplus.h	header.
CD_BEZIER	defines	the	points	of	a	bezier	curve.	There	must	be	4	points	at
least:	start,	control,	control	and	end.	To	specify	a	sequence	of	curves	use	3
more	points	for	each	curve:	control,	control,	end,	control,	control,	end,	...
The	end	point	is	used	as	start	point	for	the	next	curve.
CD_FILLSPLINE	defines	the	points	of	a	filled	curve	constructed	by	a	cardinal
spline.
CD_IMAGEWARP	defines	3	points	of	a	parallelogram	to	warp	the	image.	It
affects	all	the	cdPutImage*	functions.	The	destination	rectangle	is	ignored.
Its	use	is	only	activated	by	the	"IMAGEWARP"	attribute.	The	specified
points	are:	the	upper-left	corner,	the	upper	right	corner	and	the	lower	left
corner.
CD_GRADIENT	defines	a	filled	interior	style	that	uses	a	gradient	between	two
colors.	It	uses	2	points	only,	one	for	the	starting	point	using	the	foreground
color,	and	another	one	for	the	end	point	using	the	background	color.
CD_PATHGRADIENT	defines	a	filled	interior	style	that	uses	a	gradient	defined
by	a	polygon	and	its	center.	The	first	point	defines	the	center.	The	colors	of
the	center	and	of	the	surrounding	colors	are	defined	by	the
"PATHGRADIENT"	attribute,	that	must	be	set	before	the	cdEnd	function.

Attributes

cdBackOpacity:	only	changes	the	transparency	of	the	background	color	to
0	(transparent)	or	255	(opaque).
cdHatch:	diagonal	styles	are	drawn	with	anti-aliasing.
cdWriteMode:	does	nothing.	There	is	no	support	for	XOR	or	NOT_XOR.
cdPattern:	each	pixel	can	contain	transparency	information.
cdLineStyle:	uses	a	custom	GDI+	style	with	the	proportion	of	3/3/9	for

javascript:parent.manLoadCont('func','../func/primitives','cdPixel')
javascript:parent.manLoadCont('func','../func/primitives','cdMark')
javascript:parent.manLoadCont('func', '../func/primitives','cdSector')
javascript:parent.manLoadCont('func', '../func/primitives','cdText')
javascript:parent.manLoadCont('func','../func/primitives','cdBegin')
javascript:parent.manLoadCont('func','../func/attributes','cdBackOpacity')
javascript:parent.manLoadCont('func','../func/attributes','cdHatch')
javascript:parent.manLoadCont('func','../func/attributes','cdWriteMode')
javascript:parent.manLoadCont('func','../func/attributes','cdPattern')
javascript:parent.manLoadCont('func','../func/attributes','cdLineStyle')

blank/dot/dash.
cdFontDim:	the	maximum	width	is	estimated	from	the	character	"W".
cdNativeFont:	the	font	string	describer	has	the	following	format:
"fontname,	size	[style]	[-k]	[-u]",	where	fontname	is	the	name	of
the	font	in	Windows	(notice	the	comma	after	the	font	name),	size	is	given	in
points,	style	is	the	same	as	cdFont,	-u	means	underline	and	-k	means
strikethrough,	or	"-d"	to	show	the	font-selection	dialogue	box.	However,
this	function	also	accepts	the	font	string	used	by	the	WINFONT	attribute	of
the	IUP	library.
cdTextAlignment:	is	simulated.	Although	GDI+	has	text	alignment,	the
results	for	the	CD	were	poor.
cdFont:	see	the	font	mapping	table	for	the	equivalence	used	to	map	CD
fonts	into	Windows	fonts	(note	that	in	GDI+	there	is	no	direct	mapping	for
the	system	font):

Font	Mapping
CD	Fonts Windows	Fonts

CD_SYSTEM GenericSansSerif	(usually	MS	Sans	Serif)
CD_COURIER Courier	New
CD_TIMES_ROMAN Times	New	Roman
CD_HELVETICA Arial

Colors

cdPalette:	works	only	when	the	canvas	is	a	server	image.
cdForeground	e	cdBackground:	accepts	the	transparency	information
encoded	in	the	color.

Client	Images

cdGetImageRGB:	uses	GDI.	Excepting	when	the	canvas	is	an	image	so	it
is	done	using	GDI+.

Server	Images

cdGetImage:	uses	GDI.	Excepting	when	the	canvas	is	an	image	so	it	is

javascript:parent.manLoadCont('func','../func/attributes','cdFontDim')
javascript:parent.manLoadCont('func','../func/attributes','cdNativeFont')
javascript:parent.manLoadCont('func','../func/primitives','cdTextAlignment')
javascript:parent.manLoadCont('func','../func/attributes','cdFont')
javascript:parent.manLoadCont('func','../func/images','cdPalette')
javascript:parent.manLoadCont('func','../func/images','cdForeground')
javascript:parent.manLoadCont('func','../func/attributes','cdBackground')
javascript:parent.manLoadCont('func','../func/images','cdGetImageRGB')
javascript:parent.manLoadCont('func', '../func/images','cdGetImage')

done	using	GDI+.
cdScrollArea:	uses	GDI.	Excepting	when	the	canvas	is	an	image	so	it	is
done	using	GDI+.

WC

Implemented	directly	in	the	driver.

Exclusive	Attributes

"ANTIALIAS":	controls	the	use	of	anti-aliasing	by	the	text,	image	zoom
and	line	drawing	primitives.	Assumes	values	"1"	(active)	and	"0"	(inactive).
Default	value:	"1".

"IMAGEWARP":	controls	the	use	of	the	warping	points	for	images.
Assumes	values	"1"	(active)	and	"0"	(inactive).	Default	value:	"1".	The
points	must	be	initialized	by	cdBegin,	cdVertex	e	cdEnd.	See	comment
above.

"PATHGRADIENT":	necessary	for	the	creation	of	the	gradient	fill	defined
by	a	polygon	(see	details	in	the	function	cdBegin	above).	The	first	color
defines	the	color	at	the	center.	The	number	of	following	colors	must	be	the
same	of	the	polygon	vertices.	It	uses	an	array	of	longs,	the	first	element	is
the	total	number	of	colors	in	the	array.	Use	NULL	to	remove	the	attribute.	It
can	not	be	retrieved.

"IMAGETRANSP":	defines	an	interval	of	colors	to	be	considered
transparent.	It	uses	2	longs	for	the	two	colors.	Use	NULL	to	remove	the
attribute.	It	can	not	be	retrieved.

"IMAGEFORMAT":	defines	the	number	of	bits	per	pixel	used	by	server
images.	It	uses	1	long	that	can	have	the	values:	32	or	24.	Use	NULL	to
remove	the	attribute.	It	can	not	be	retrieved.

javascript:parent.manLoadCont('func', '../func/images','cdScrollArea')

Basic	X-Windows	Driver

This	driver	represents	a	basic	driver	for	all	system-dependent	drivers
implemented	in	the	X-Windows	system.	The	implementation	uses	the	XLIB
API	functions.	It	was	developed	using	X11R4,	but	works	in	more	recent
versions,	such	as	X11R6.

Note:	The	coordinates	internally	implemented	by	the	video	driver	use	16-bit
integers.	Therefore,	if	a	coordinate	with	less	than	-32k	or	more	than	32k	is
defined,	it	will	be	interpreted	incorrectly.

Behavior	of	Functions

Control	

cdPlay:	does	nothing,	returns	CD_ERROR.

Coordinate	System	and	Clipping

cdUpdateYAxis:	the	orientation	of	axis	Y	is	the	opposite	to	its	orientation
in	the	CD	library.

Primitives

cdBegin:	if	the	parameter	CD_CLIP	is	specified,	the	polygon	created	will	be
used	as	a	clipping	polygon.	Filled		polygons	have	an	error	of	one	pixel	to
the	right	and	below.
cdMark:	is	simulated.
cdBox:	in	Linux	with	ATI	board,	is	being	drawn	with	one	extra	pixel	to	the
right	and	below.

Attributes

cdLineWidth:	if	width	is	1,	the	driver	will	use	0	for	a	better	performance.
cdLineStyle:	thick	lines	have	style	only	in	the	line's	direction.	For	example,

javascript:parent.manLoadCont('func','../func/control','cdPlay')
javascript:parent.manLoadCont('func','../func/coordinates','cdUpdateYAxis')
javascript:parent.manLoadCont('func','../func/primitives','cdBegin')
javascript:parent.manLoadCont('func','../func/primitives','cdMark')
javascript:parent.manLoadCont('func','../func/primitives','cdMark')
javascript:parent.manLoadCont('func','../func/attributes','cdLineWidth')
javascript:parent.manLoadCont('func','../func/attributes','cdLineStyle')

you	will	see	small	rectangles	in	a	thick	dotted	line.
cdNativeFont:	uses	an	X-Windows	font	string	format.	You	can	use
program	xfontsel	to	select	a	font	and	obtain	the	string.
cdFont:	see	the	font	mapping	table	for	the	equivalence	used	to	map	CD
fonts	into	X-Windows	fonts:

Font	Mapping
CD	Fonts X-Windows	Fonts

CD_SYSTEM Fixed
CD_COURIER Courier
CD_TIMES_ROMAN Times
CD_HELVETICA Helvetica

Colors

cdPalette:	When	the	number	of	bits	per	pixel	is	smaller	than	or	equal	to	8,
the	driver	will	use	the	system	palette	to	solve	colors	passed	as	parameters	to
the	canvas.	The	driver	allocates	colors	as	they	are	requested	-	if	a	color
cannot	be	allocated,	the	closest	color	is	used	in	the	palette.	For	such,	the
driver	sees	all	available	colors,	in	the	current	application	and	others.	If	one
of	the	applications	is	terminated,	a	color	in	the	palette	may	become	invalid
and	will	only	be	updated	by	the	driver	when	it	is	requested	again.	For	this
reason,	a	call	to	cdForeground	or	cdBackground	or	cdPalette	is
recommended	before	drawing.
When	CD_FORCE	is	used,	the	driver	forces	color	allocation	in	the	X
server.	This	may	imply	changing	colors	in	other	applications	when	a	cursor
moves	in	and	out	of	the	canvas.	However,	if	the	number	of	requested	colors
is	smaller	than	the	maximum	number	of	possible	colors	in	the	palette,	then
the	first	colors	in	the	default	system	palette	will	be	preserved,	minimizing
this	problem.
When	CD_POLITE	is	used,	all	colors	allocated	by	the	driver	are	liberated,
and	the	requested	colors	are	allocated.	This	is	useful	for	the	application	to
prioritize	the	colors	that	will	be	allocated,	causing	other	colors	to	be
mapped	to	their	closest	colors.
Note	that	canvases	in	the	same	application	interfere	with	one	another,	but
when	a	canvas	is	terminated	it	liberates	all	allocated	colors.

javascript:parent.manLoadCont('func','../func/attributes','cdNativeFont')
javascript:parent.manLoadCont('func','../func/attributes','cdFont')
javascript:parent.manLoadCont('func','../func/images','cdPalette')

Client	Images

cdGetImageRGB:	can	be	very	slow	due	to	the	heavy	conversions
performed	to	translate	data	in	system	format	into	RGB	vectors.

Exclusive	Attributes

"USERLINESTYLE":		allows	the	usage	of	n	values	in	an	array	of	chars,
that	define	the	line	style	sequence.	The	first	value	is	the	number	of	values.
Use	NULL	to	remove	the	attribute.

"GC":		returns	the	X11	graphics	context.

javascript:parent.manLoadCont('func','../func/images','cdGetImageRGB')

Simulation	Driver

The	Simulation	driver	was	created	to	simulate	functions	that	were	not
supported	by	some	CD	drivers.	It	works	jointly	with	the	other	driver
(known	as	"client"),	using	its	pixel,	line	and	text	functions	to	simulate	arcs,
sectors,	polygons,	boxes,	clipping	and	fillings	with	styles.

Important:	All	simulation	primitives	are	based	in	the	client's	Pixel,	Image
and/or	Line	functions.

Use

The	Simulation	driver	is	used	in	several	parts	of	the	CD	library.	For
example,	most	drivers	do	not	contain	the	mark	primitive	-	in	this	case,	the
mark's	simulation	is	automatically	used.

In	many	drivers,	the	behavior	of	a	given	primitive	may	not	be	the	expected.
Usually	this	is	documented	in	the	manual.	Should	you	wish	to	activate	the
simulation	of	a	primitive,	simply	call	function	cdSimulate	with	the	code	of
the	primitive	to	be	simulated.

Behavior	of	Functions

Primitives

cdPixel:	always	uses	the	client's	pixel	function.	When	clipping	simulation
is	active,	it	executes	area	and	polygon	clipping.
cdLine:	draws	lines	pixel	per	pixel.	The	line	clipping	simulation,	when
possible,	divides	the	line	in	several	portions	and	draws	each	portion	with
the	line	function,	which	can	be	either	simulated	or	not.
cdRect:	the	simulation	is	made	by	means	of	the	line	function.
cdMark:	the	simulation	is	made	by	means	of	the	line	function	or	the
polygon	function.
cdArc:	simulates	using	the	client's	cdPixel.	If	clipping	simulation	is	active,
then	the	primitive	will	necessarily	be	simulated.

javascript:parent.manLoadCont('func', '../func/control','cdSimulate')
javascript:parent.manLoadCont('func', '../func/primitives','cdPixel')
javascript:parent.manLoadCont('func', '../func/primitives','cdLine')
javascript:parent.manLoadCont('func', '../func/primitives','cdRect')
javascript:parent.manLoadCont('func', '../func/primitives','cdMark')
javascript:parent.manLoadCont('func', '../func/primitives','cdArc')

cdSector:	simulates	using	the	line	function	or	cdPixel,	depending	on	the
interior	style.	If	clipping	simulation	is	active,	then	the	primitive	will
necessarily	be	simulated.
cdBox:	simulates	using	the	line	function	or	cdPixel,	depending	on	the
interior	style.	If	clipping	simulation	is	active	and	it	is	polygon	clipping,	then
the	primitive	will	necessarily	be	simulated.
cdBegin,	cdVertex	and	cdEnd:	simulate	using	the	line	function	or	cdPixel,
depending	on	the	interior	style.	If	clipping	simulation	is	active,	then	the
primitive	will	necessarily	be	simulated.	Open	and	Closed	are	simulated	by
calling	the	line	function.
cdText:	text	simulation	is	made	using	TrueType	font	files	in	a	transparent
way	for	the	user.	Such	files	are	in	the	directory	pointed	by	the	CDDIR
environment	variable.	Other	font	files	may	be	loaded	by	specifying	the
filenames,	if	they	are	in	CDDIR,	or	the	complete	paths	using	function
cdNativeFont,	passing	a	string	with	the	font's	name	and	size	separated	by	a
comma.	Inclined	text	is	still	not	supported.	Normal,	Bold	and/or	Italic	styles
are	defined	in	different	font	files.	Clipping	simulation	is	made	by
eliminating	characters	which	are	partially	or	completely	out	of	the	drawing
region.

javascript:parent.manLoadCont('func', '../func/primitives','cdSector')
javascript:parent.manLoadCont('func', '../func/primitives','cdBox')
javascript:parent.manLoadCont('func', '../func/primitives','cdBegin')
javascript:parent.manLoadCont('func', '../func/primitives','cdVertex')
javascript:parent.manLoadCont('func', '../func/primitives','cdEnd')
javascript:parent.manLoadCont('func', '../func/primitives','cdText')

	CD - Canvas Draw
	Product
	Copyright
	Download
	History
	To Do

	Guide
	Internal Architecture
	Samples
	Lua Binding

	Functions
	Control
	Coordinate Systems
	Primitives
	Images
	Attributes
	Extras in Lua
	 World Coordinates - WC

	Elements
	Clipping Area
	Client Image
	Server Image
	Vector Text
	World Coordinate

	Drivers

