
next	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Bazaar	Developer	Document
Catalog

Introduction
Contributing	to	Bazaar

Working	on	Bazaar
Bazaar	Release	Cycles
Profiling
Tracking	Bugs	in	Bazaar
Bazaar	Developer	Guide
Bazaar	Testing	Guide

Contributing	to	Bazaar	Documentation	(wiki)

http://wiki.bazaar.canonical.com/ContributingToTheDocs

Releasing	and	Packaging
Releasing	Bazaar
Managing	the	Bazaar	PPA
Bazaar	Windows	EC2	Server

Developing	using	bzrlib
Bazaar	Architectural	Overview
Integrating	with	Bazaar

Writing	plugins	for	Bazaar	(web	link)
bzrlib	API	reference	(web	link)

http://doc.bazaar.canonical.com/plugins/en/plugin-development.html
http://starship.python.net/crew/mwh/bzrlibapi/

Other	documents
Bazaar	Design	Principles
Plans
Specifications
Implementation	notes
Miscellaneous	notes

next	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Contributing	to	Bazaar

Talk	to	us
If	you	want	 to	 fix	or	 improve	something	 in	Bazaar,	we	want	 to	help
you.	You	can	ask	at	any	time	for	help,	on	the	list,	on	irc,	or	through	a
merge	proposal	on	Launchpad.

In	 particular,	 the	 rostered	 Patch	Pilot	 is	 an	 experienced	 developer
who	will	help	you	get	your	changes	in,	through	code	review,	advice,
debugging,	writing	tests,	or	whatever	it	takes.

Bazaar	mailing	list
IRC	in	channel	#bzr	on	irc.ubuntu.com

http://wiki.bazaar.canonical.com/PatchPilot
http://lists.ubuntu.com/mailman/listinfo/bazaar

Starting
Before	starting	on	a	change	it’s	a	good	idea	to	either	file	a	bug,	find	a
relevant	existing	bug,	or	send	a	proposal	to	the	list.	If	there	is	a	bug
you	should	set	it	to	“In	Progress”	and	if	you	wish	assign	it	to	yourself.

You	might	like	to	start	with	a	bug	tagged	easy.

https://bugs.edge.launchpad.net/bzr/+bugs?field.tag=easy

Making	a	branch
First,	get	a	local	copy	of	Bazaar:

$	cd	$HOME

$	bzr	init-repo	bzr

$	cd	bzr

$	bzr	branch	lp:bzr	bzr.dev

Now	make	 your	 own	 branch;	 we	 recommend	 you	 include	 the	 bug
number	and	also	a	brief	description:

$	bzr	branch	bzr.dev	123456-status-speed

and	go	ahead	and	commit	in	there.	Normally	you	should	fix	only	one
bug	or	 closely-related	cluster	of	bugs	per	branch,	 to	make	 reviews
and	merges	flow	more	smoothly.

For	bugs	that	exist	in	older	supported	branches	of	bzr	like	2.0	or	2.1,
you	might	want	to	fix	the	bug	there	so	it	can	go	into	a	bugfix	release,
ie

$	bzr	branch	lp:bzr/2.1	bzr.2.1

$	bzr	branch	bzr.2.1	123458-2.1-status

You	probably	want	this	configuration	in	~/.bazaar/locations.conf:

[/home/USER/bzr]

push_location	=	lp:~LAUNCHPAD_USER/bzr/

push_location:policy	=	appendpath

public_branch	=	http://bazaar.launchpad.net/~LAUNCHPAD_USER/bzr/

public_branch:policy	=	appendpath

with	your	local	and	Launchpad	usernames	inserted.

Writing	tests
We	 value	 test	 coverage	 and	 generally	 all	 changes	 should	 have	 or
update	a	test.	There	is	a	powerful	test	framework	but	it	can	be	hard
to	 find	 the	 right	 place	 to	 put	 your	 test.	 Don’t	 hesitate	 to	 ask,	 or	 to
propose	a	merge	that	does	not	yet	have	tests.

Normally	 for	 command-line	 code	 you	 should	 look	 in
bzrlib.tests.blackbox	 and	 for	 library	 code	 in	 bzrlib.tests.	 For
functions	 on	 an	 interface	 for	 which	 there	 are	 multiple
implementations,	like	Transport,	look	in	bzrlib.tests.per_transport.

It’s	a	good	idea	to	search	the	tests	for	something	related	to	the	thing
you’re	changing	and	you	may	find	a	test	you	can	modify	or	adapt.

To	run	the	tests:

$./bzr	selftest

Normally	 the	 tests	 will	 skip	 if	 some	 library	 dependencies	 are	 not
present.	On	Ubuntu,	 you	 can	 install	 them	with	 this	 command	 (you
must	have	some	repositories	enabled	in	Software	Sources):

$	sudo	apt-get	build-dep	bzr

To	build	the	binary	extensions:

$	make

For	more	information:	Testing	Guide.

Proposing	a	merge
Then	propose	a	merge	into	bzr;	for	bzr	2.2	and	later	you	can	use	the
bzr	 propose-merge	 command.	 In	 the	 comment	 for	 your	 merge
proposal	 please	 explain	 what	 you’re	 trying	 to	 do	 and	 why.	 For
example:

As	discussed	on	the	mailing	list,	this	patch	adds	a	What’s	New
document	summarising	the	changes	since	2.0.

If	 you	 make	 additional	 changes	 to	 your	 branch	 you	 don’t	 need	 to
resubmit;	they’ll	automatically	show	up	in	the	merge	proposal.

Launchpad	Code	Review	Help.

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

https://code.launchpad.net/~ian-clatworthy/bzr/whats-new-in-2.1/+merge/19677
http://help.launchpad.net/Code/Review
http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Bazaar	Release	Cycles
status: Current	policy,	as	of	2009-08.
blueprint: <https://blueprints.launchpad.net/bzr/+spec/6m-cycle>

Our	users	want	easy	access	 to	bug	 fixes	without	other	changes	 to
the	 core	 product.	 They	 also	want	 a	 Just	Works	 experience	 across
the	full	Bazaar	ecosystem.	To	deliver	the	first	and	enable	the	second,
we’re	adopting	some	standard	process	patterns:	a	6	monthly	release
cycle	 and	 a	 stable	 branch.	 These	 changes	 will	 also	 have	 other
benefits,	including	better	availability	of	bug	fixes	in	OS	distributions,
more	freedom	to	remove	old	code,	and	less	work	for	in	packaging.

See	also:

Bazaar	Developer	Document	Catalog
Releasing	Bazaar	–	the	process	for	actually	making	a	release	or
release	candidate.

https://blueprints.launchpad.net/bzr/+spec/6m-cycle

The	Process
Bazaar	 will	make	 a	major	 release	 every	 six	months,	 which	will	 be
supported	at	least	until	the	time	of	the	next	major	release.	During	this
support	period,	we’ll	make	 incremental	 releases	which	fix	bugs,	but
which	 do	 not	 change	network	 or	 disk	 formats	 or	 command	 syntax,
and	which	do	not	require	updates	to	plugins.

We	will	also	 run	a	development	series,	which	will	become	 the	next
major	release.	We’ll	make	a	beta	release	from	this	every	four	weeks.
The	beta	releases	will	be	as	stable	as	our	current	monthly	releases
and	completely	suitable	for	everyday	use	by	users	who	can	tolerate
changes	from	month	to	month.

Having	the	stable	series	isn’t	a	reason	to	cut	back	on	QA	or	to	make
the	trunk	or	development	releases	unstable,	which	would	only	make
our	job	harder.	We	keep	our	trunk	in	an	always-releasable	state,	and
that	should	continue:	any	beta	release	could	potentially	be	supported
in	the	long	term,	but	we	identify	particular	releases	that	actually	will
be	supported.

The	 trunk	 will	 never	 be	 frozen:	 changes	 that	 pass	 review,	 other
quality	 checks	 and	 that	 are	 agreed	 amongst	 the	 developers	 can
always	be	landed	into	trunk.	The	only	restrictions	will	be	on	branches
specifically	targeted	at	a	release.

Schedule

2.0.0	---	2.0.1	--	2.0.2	--	...

	\

		+--2.1.0beta1	--	2.1.0beta2	--	...	--	2.1.0rc1	--	2.1.0	--	2.1.1	--	...

																																																					\

																																																						\

																																																							+--	3.0.0beta1	...

Starting	from	the	date	of	a	major	release:

At	four-week	intervals	we	make	a	new	beta	release.	There	will	be	no
separate	 release	 candidate,	 but	 if	 a	 serious	 problem	 is	 discovered
we	may	do	the	next	beta	ahead	of	schedule	or	make	a	point	release.
There	will	be	about	five	or	six	releases	in	that	series.

In	parallel	with	this,	bugs	targeted	to	the	previous	major	release	are
merged	 into	 its	 branch.	 We	 will	 make	 bugfix	 releases	 from	 that
branch	 as	 appropriate	 to	 the	 accumulation	 of	 changes,	 perhaps
monthly,	 perhaps	 more	 often	 if	 there	 are	 serious	 bugs,	 perhaps
much	less	often	if	no	new	changes	have	landed.

We	will	 then	make	a	 release	 candidate	 for	 the	next	major	 release,
and	at	this	point	create	a	release	branch	for	it.	We	will	iterate	release
candidates	at	approximately	weekly	intervals	until	there	are	no	bugs
blocking	the	final	major	release.

Compared	 to	 the	 current	 process	 this	 has	approximately	 the	 same
amount	of	release-related	work,	because	the	extra	releases	from	the
stable	branch	are	 “paid	 for”	 by	not	doing	RCs	 for	 the	development
series.

We	 will	 synchronize	 our	 major	 releases	 with	 Ubuntu,	 so	 that	 they
come	 out	 in	 sufficient	 time	 for	 some	 testing	 and	 margin	 of	 error
before	Ubuntu’s	upstream	freeze.

Regularity

We	value	regular	releases.	We	prefer	to	slip	a	feature	or	fix	to	a	later
release	rather	than	to	make	a	release	late.	We	will	normally	only	slip
a	release	to	fix	a	critical	bug.

Numbering

The	 number	 for	 a	 six-month	 cycle	 is	 chosen	 at	 the	 start,	 with	 an
increment	 to	 either	 the	 first	 field	 (3.0.0)	 or	 second	 field	 (3.1.0)
depending	on	what	we	expect	to	be	the	user	 impact	of	the	release.
We	 expect	 releases	 that	 culminate	 in	 a	 new	 disk	 format	 or	 that
require	 changes	 in	 how	 people	 use	 the	 tool	 will	 get	 a	 new	 major
number.	We	 can	 change	 (forward	 only)	 if	 it	 turns	 out	 that	 we	 land
larger	changes	than	were	expected.

We	will	 always	use	 the	3-digit	 form	 (major.minor.micro)	 even	when
referring	to	the	initial	major	release.	This	should	help	clarify	where	a
patch	is	intended	to	land.	(eg,	“I	propose	this	for	2.0.0”	is	clear,	while
“I	 propose	 this	 for	 2.0”	 could	 mean	 you	 want	 to	 make	 the	 2.0.0
release,	 or	 that	 you	 just	 want	 to	 land	 on	 the	 2.0.x	 stable	 release
series.)

Terminology

Major	releases	(2.0.0	or	2.1.0)
The	big	ones,	every	six	months,	 intended	to	ship	 in	distributions
and	to	be	used	by	stability-oriented	users.

Release	candidate	(2.0.0rc1)
A	 preview	 of	 a	 major	 release,	 made	 one	 or	 a	 few	 weeks
beforehand	 at	 the	 time	 the	 release	 branch	 is	 created.	 There
should	be	 few	 if	any	changes	 from	 the	 rc	 to	 the	stable	 release.
We	 should	 avoid	 the	 confusing	 phrasing	 “release	 candidate
2.0.0rc1	is	released”;	instead	use	“available.”

Bugfix	releases	(2.0.1)
Based	 on	 the	 previous	 major	 release	 or	 bugfix;	 contains	 only
bugfixes	and	perhaps	documentation	or	translation	corrections.

Stable	series
A	major	release	and	its	descendant	bugfix	releases.

Stable	release
Either	a	major	release	or	a	bugfix	release.

Beta	release	(3.0.0beta1)
Made	 from	 trunk	 every	 month,	 except	 for	 the	 month	 there’s	 a
major	release.	Stable	and	suitable	for	users	who	want	the	 latest
code	and	can	live	with	some	changes	from	month	to	month.

Development	series
The	development	releases	leading	up	to	a	stable	release.

Bug	Work

Bug	 fixes	 should	 normally	 be	 done	 first	 against	 the	 stable	 branch,
reviewed	against	that	branch,	and	then	merged	forward	to	trunk.

It	may	not	always	be	easy	to	do	this,	if	fixing	the	bug	requires	large
changes	 or	 the	 affected	 code	 is	 different	 in	 the	 stable	 and
development	branches.	If	the	tradeoff	does	not	seem	worthwhile	the
bug	can	be	fixed	only	in	the	development	branch,	at	least	in	the	first
instance.	If	users	later	want	the	fix	backported	we	can	discuss	it.

Developers	can	merge	the	release	branch	into	trunk	as	often	as	they
like,	 only	 asking	 for	 review	 if	 they’re	making	 nontrivial	 changes	 or
feel	review	is	needed.

Feature	and	Performance	Work

Features	can	be	landed	to	the	development	branch	at	any	time,	and
they’ll	be	released	for	testing	within	a	month.

Performance	bugs,	although	 important,	will	generally	not	be	 landed
in	 a	 stable	 series.	 Fixing	 performance	 bugs	 well	 often	 requires
nontrivial	code	changes	or	new	formats.	These	are	not	suitable	for	a
stable	series.

Performance	bugs	that	can	be	fixed	with	a	small	safe	patch	can	be
considered	for	the	stable	series.

Plugins

Plugins	that	want	to	cooperate	with	this	should	make	a	series	and	a
branch	that	matches	each	bzr	stable	series,	and	follow	similar	rules
in	 making	 releases	 from	 their	 stable	 branch.	 We’d	 expect	 that
plugins	will	make	a	release	between	the	last	development	release	of
a	series	and	the	major	release	candidate.

Within	 a	 stable	 series,	 anything	 that	 breaks	 any	 known	 plugin	 is
considered	an	API	break	and	will	 be	avoided.	Before	making	each
bugfix	release,	we’ll	test	that	code	against	important	plugins.

Within	a	development	series,	the	focus	is	on	helping	plugin	authors
keep	up	to	date	by	giving	clear	error	messages	when	an	interface	is
removed.	We	will	no	longer	focus	on	letting	old	plugin	code	work	with
new	versions	of	bzrlib,	which	is	an	elusive	target	in	Python.

This	 may	 mean	 that	 in	 cases	 where	 today	 a	 plugin	 would	 keep
running	but	give	warnings,	it	will	now	fail	altogether	with	an	error.

In	return	we	expect	more	freedom	to	change	and	cleanup	bzrlib	code
without	needing	to	keep	old	code	around,	or	write	extra	compatibility
shims,	 or	 have	 review	 turnarounds	 related	 to	 compatibility.	 Some
changes,	such	as	removing	module-global	variables,	that	are	hard	to
do	now,	will	be	possible	to	do	safely.

Discussion	 of	 plugins	 here	 includes	 programs	 that	 import	 and	 use
bzrlib	but	that	aren’t	technically	plugins.	The	same	approach,	though
the	 technical	 considerations	 are	 different,	 should	 apply	 to	 other
extensions	 such	 as	 programs	 that	 use	 bzr	 through	 the	 shell
interface.

Data	and	Network	Formats

Any	 development	 release	 should	 be	 able	 to	 interoperate	 with	 the

previous	 stable	 release,	 and	 any	 stable	 release	 should	 be	 able	 to
interoperate	with	the	previous	stable	release.	This	is	a	minimum	and
normally	 releases	 will	 be	 able	 to	 interoperate	 with	 all	 previous
releases	as	at	present.

Each	major	 release	will	have	one	recommended	data	 format	which
will	be	the	default.	The	name	of	the	format	will	indicate	which	release
series	(not	specific	release)	it	comes	from:	‘2a’	is	the	first	supported
format	for	the	2.0.x	series,	‘2b’	the	second,	etc.	We	don’t	mention	the
particular	 release	 that	 introduced	 it	 so	 as	 to	 avoid	 problems
predicting	precisely	when	it	will	land.

During	a	development	series	we	may	have	a	series	of	experimental
formats.	We	will	not	leave	people	stranded	if	they	test	these	formats,
but	 we	 also	 won’t	 guarantee	 to	 keep	 supporting	 them	 in	 a	 future
release.	If	something	inserted	in	one	development	release	turns	out
to	be	bad	it	can	just	be	removed	in	the	next.

Hosting	Services

The	 guarantees	 made	 above	 about	 format	 and	 network
interoperation	 mean	 that	 hosting	 services	 such	 as	 Launchpad,
Savannah,	 FedoraHosted,	 and	 Sourceforge	 could	 choose	 to	 run
either	the	stable	or	beta	versions.	They	might	find	it	useful	to	run	the
beta	version	on	their	own	beta	server.

Simultaneous	Installation

Some	 people	 may	 want	 to	 simultaneously	 install	 and	 use	 both	 a
stable	release	and	development	release.

This	can	be	handled	in	various	ways	either	at	 the	OS	packaging	or
the	 Python	 level.	 We	 don’t	 propose	 to	 directly	 address	 it	 in	 the
upstream	source.	(For	example,	we	will	not	change	the	bzrlib	library
name	from	one	release	to	the	next.)

The	 issue	 already	 exists	 with	 people	 who	 may	 want	 to	 use	 for
example	 the	previous	bzr	 release	and	 the	 trunk.	There	 is	a	 related
issue	that	plugins	may	be	compatible	with	only	some	of	the	Bazaar
versions	 people	 want	 to	 use	 at	 the	 same	 time,	 and	 again	 that	 is
something	that	can	be	handled	separately.

OS	Distributions

OS	distributors	will	be	 recommended	 to	ship	 the	bzr	stable	 release
that	 fits	 their	 schedule,	 the	betas	 leading	up	 to	 that	 release	during
their	own	beta	period,	and	 the	bugfix	 releases	 following	on	 from	 it.
They	might	also	choose	to	offer	the	beta	releases	as	an	alternative
package.

Packaging

At	 present	 we	 have	 three	 upstream-maintained	 PPAs	 containing
Ubuntu	 packages	 of	 Bazaar:	 ~bzr-nightly-ppa,	 ~bzr-beta-ppa	 (rcs
and	 releases)	 and	 ~bzr	 (ie	 stable).	We	will	 keep	 these	 PPAs,	 and
reorient	 beta	 to	 contain	 the	monthly	 beta	 releases,	 and	 the	 stable
PPA	 to	 contain	 stable	 releases,	 their	 release	 candidates,	 and
bugfixes	to	those	releases.

Some	platforms	with	relatively	less	active	packagers	may	choose	to
ship	 only	 the	 stable	 releases.	 This	 is	 probably	 better	 than	 having
them	only	intermittently	or	slowly	ship	the	monthly	releases.

Binary	 installers	 should	 use	 a	 version	 number	 like	 ‘2.0.0-1’	 or
‘2.0.0beta1-1’	so	that	the	last	component	just	reflects	the	packaging
version,	and	can	be	 incremented	 if	a	new	 installer	 is	made	with	no
upstream	source	changes.

Code	Freeze	vs	Announcement

We	 will	 separate	 the	 code	 freeze	 for	 a	 particular	 release	 from	 its
actual	announcement,	allowing	a	window	of	approximately	one	week
for	 plugins	 to	 be	 released	 and	 binary	 installers	 to	 be	 built.	On	 the
date	 the	 announcement	 is	 published,	 people	 will	 be	 able	 to	 easily
install	it.

Weekly	Metronome	Mail

Every	week	the	release	manager	should	send	a	mail	 to	 the	Bazaar
list	covering	these	points	(as	appropriate):

Early	communication	about	changing	dependencies	or	defaults
Reminder	 re	 lifecycle	 and	 where	 we’re	 up	 to	 right	 now,	 in
particular	the	dates	for	the	next	release	and/or	candidate.
Summary	of	recent	successes	and	pending	work.
Reminder	re	release	objectives
Reminder	 re	 things	needing	attention,	e.g.	bug	 triage,	 reviews,
testing	of	certain	things,	etc.

Questions
Do	users	actually	want	this?

Apparently	yes,	because	it’s	often	requested	and	often	raised	as
a	problem.

Would	this	confuse	users?
It	shouldn’t,	because	it’s	a	fairly	standard	scheme.

Won’t	it	take	more	time	to	fix	bugs	in	multiple	places?
It	 shouldn’t,	 because	 we’ll	 only	 do	 this	 when	 the	 stable	 bugfix
seems	 economical.	When	 we	 fix	 bugs	 today	 in	 both	 trunk	 and
release	branches	it	normally	does	not	take	much	more	time.

What	about	bzr	in	Ubuntu	LTS,	with	a	five-year	support	life?
Most	bugs	are	either	fixed	within	six	months,	or	not	fixed	at	all,	or
not	very	important,	or	fixed	as	part	of	a	large	rework	of	the	code
that	would	 be	 too	 large	 to	 backport.	However,	 if	 there	are	 fixes
that	are	especially	desired	 in	an	old	 release	and	 feasible	 to	do,
we	can	do	them	without	making	a	general	commitment.

Will	anyone	test	the	beta	releases?
Probably	yes,	our	most	active	users	will	 run	 them,	but	 if	people
would	really	rather	not	test	them,	forcing	them	is	not	helpful.

Isn’t	this	a	step	backwards	to	a	slower,	less-agile	process?
No,	our	trunk	stays	releasable,	and	we	ship	every	month.	We’re
just	cutting	out	 things	 that	hold	us	back	 (continuous	 rather	 than
episodic	API	 stability;	RCs	every	month)	 and	giving	users	what
they	demand.

How	about	calling	the	monthly	releases	“milestone”	or	“next”	not
“beta”?

Those	 words	 are	 less	 scary	 but	 they	 also	 have	 less	 clear
meanings.

Expected	Benefits
If	 this	plan	works,	we’ll	expect	 to	see	the	following	changes.	 If	 they
don’t	occur,	we’ll	think	again:

We	 see	 a	 distribution	 curve	 of	 users	 and	 bug	 reports	 across
nightly,	 monthly	 and	 stable	 releases,	 indicating	 that	 each	 has
value.
API	 changes	 are	 easier	 or	 safer	 to	make	 during	 beta	 periods,
without	being	held	back	by	fears	of	compatibility	or
The	 stable	 releases	 are	 actually	 stable	 and	 don’t	 introduce
regressions	or	break	plugins.
Many	 bugs	 are	 fixed	 in	 stable	 branches,	 without	 developers
feeling	this	is	a	waste	of	time.
Distributions	ship	the	stable	releases	in	their	stable	releases	and
the	bugfix	releases	in	their	bugfix	releases.
Plugin	 authors	 follow	 this	 policy,	 making	 their	 own	 bugfix
releases.
Users	like	it.

After	doing	 this	 for	 the	2.0	cycle	 (September	2009	 through	 to	early
2010),	it	seems	to	be	going	well.

Reviewing	for	the	Stable	Branch
These	are	guidelines	and	can	be	interpreted	case-by-case.

All	 changes	 to	 the	stable	branch	should	 fix	a	bug,	even	 if	 you
would	 not	 normally	 file	 a	 bug	 for	 the	 change.	 The	 bug
description	 should	 if	 at	 all	 possible	 explain	 how	 to	 manually
verify	 the	 bug	 in	 a	way	 that	will	 fail	 before	 and	 pass	 after	 the
change.	(These	are	requirements	for	the	SRU	process.)
The	change	should	be	reasonably	small	and	conservative.
Remember	 that	 the	patch	will	be	read	during	the	SRU	process
and	so	keeping	the	patch	small	 is	useful	even	beyond	keeping
the	logical	changes	small.	Avoid	doing	mechanical	bulk	changes
on	the	stable	branch.
Use	particular	care	for	things	that	may	behave	differently	across
platforms,	 encodings	 or	 locales.	 It’s	 harder	 to	 thoroughly	 test
these	things	before	a	release.
Generally	 speaking,	 just	 cleaning	 things	 up	 is	 not	 a	 sufficient
reason	to	make	changes	to	the	stable	branch.	It	has	to	actually
fix	a	bug.
Changes	to	the	stable	branch	should	include	tests	as	usual.
Don’t	 change	 or	 remove	 existing	 APIs	 that	 might	 be	 used	 by
plugins,	even	if	 they	are	underscore-prefixed.	Adding	APIs	 that
are	also	being	added	to	the	trunk	branch	may	make	sense.
Keeping	consistency	with	trunk	is	useful,	but	less	important	than
keeping	the	stable	branch	stable.
(more	items	welcome)

References
1.	 List	thread	“[rfc]	six-month	stable	release	cycles“,	July	2009.

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

https://lists.ubuntu.com/archives/bazaar/2009q3/060882.html
http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Profiling

Using	profilers
Bazaar	has	some	built-in	support	 for	collecting	and	saving	profiling
information.	 In	 the	simpliest	case,	 the	 --lsprof	option	can	be	used
as	shown	below:

bzr	--lsprof	...

This	 will	 dump	 the	 profiling	 information	 to	 stdout	 before	 exiting.
Alternatively,	 the	 --lsprof-file	 option	 can	 be	 used	 to	 specify	 a
filename	 to	save	 the	profiling	data	 into	 to.	By	default,	profiling	data
saved	to	a	file	is	a	pickled	Python	object	making	it	possible	to	reload
the	data	and	do	with	it	what	you	will.	For	convenience	though:

if	the	filename	ends	in	.txt,	it	will	be	dumped	in	a	text	format.
if	 the	 filename	 either	 starts	 with	 callgrind.out	 or	 ends	 with
.callgrind,	 it	 will	 be	 converted	 to	 a	 format	 loadable	 by	 the
KCacheGrind	visualization	tool.

Note	 that	KCacheGrind’s	Open	Dialog	has	a	default	 filter	 than	only
shows	 files	 starting	 with	 callgrind.out	 so	 the	 longer	 filename	 is
usually	preferable.	Here	is	an	example	of	how	to	use	the	--lsprof-
file	 option	 in	 combination	with	KCacheGrind	 to	 visualize	what	 the
status	command	is	doing:

bzr	--lsprof-file	callgrind.out.st001	status

kcachegrind	callgrind.out.st001	&

Note: 	bzr	also	has	a	--profile	option	that	uses	the	hotshot
profiler	instead	of	the	lsprof	profiler.	The	hotshot	profiler	can	be
useful	though	the	lsprof	one	is	generally	recommended.	See
http://docs.python.org/lib/node795.html.

http://docs.python.org/lib/node795.html

Note	that	to	use	--lsprof	you	must	 install	 the	 lsprof	module,	which
you	can	get	with:

svn	co	http://codespeak.net/svn/user/arigo/hack/misc/lsprof

Profiling	locks
Bazaar	can	log	when	locks	are	taken	or	released,	which	can	help	in
identifying	unnecessary	 lock	 traffic.	This	 is	 activated	 by	 the	 -Dlock
global	option.

This	 writes	 messages	 into	 ~/.bzr.log.	 At	 present	 this	 only	 logs
actions	relating	to	the	on-disk	lockdir.	It	doesn’t	describe	actions	on
in-memory	lock	counters,	or	OS	locks	(which	are	used	for	dirstate.)

Profiling	HPSS	Requests
When	 trying	 to	 improve	 network	 performance,	 it	 is	 often	 useful	 to
know	what	requests	are	being	made,	and	how	long	they	are	taking.
The	 -Dhpss	global	option	will	enable	 logging	smart	server	requests,
including	the	time	spent	in	each	request.

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Tracking	Bugs	in	Bazaar
This	document	describes	the	bug-tracking	processes	for	developing
Bazaar	itself.	Bugs	in	Bazaar	are	recorded	in	Launchpad.

See	also:

Bazaar	Developer	Documents.
The	Bazaar	Development	Cycle.
The	Bazaar	User	Guide	–	for	information	on	integrating	Bazaar
with	other	bug	trackers.

Links
bzr	bugs	home	page.
Critical	bugs.
Open	bugs	by	importance.
Open	bugs	most	recently	changed	first.
Most	commonly	duplicated	bugs.

https://bugs.edge.launchpad.net/bzr
https://bugs.edge.launchpad.net/bzr/+bugs?search=Search&field.importance=Critical&field.status=New&field.status=Incomplete&field.status=Confirmed&field.status=Triaged&field.status=In+Progress&field.status=Fix+Committed
https://bugs.edge.launchpad.net/bzr/+bugs
https://bugs.edge.launchpad.net/bzr/+bugs?field.searchtext=&orderby=-date_last_updated&search=Search&field.status%3Alist=NEW&field.status%3Alist=INCOMPLETE_WITH_RESPONSE&field.status%3Alist=INCOMPLETE_WITHOUT_RESPONSE&field.status%3Alist=CONFIRMED&field.status%3Alist=TRIAGED&field.status%3Alist=INPROGRESS&field.status%3Alist=FIXCOMMITTED&field.assignee=&field.bug_reporter=&field.omit_dupes=on&field.has_patch=&field.has_no_package=
http://tinyurl.com/bzr-bugs-by-dupes

Generalities
Anyone	 involved	with	Bazaar	 is	welcome	to	contribute	 to	managing
our	 bug	 reports.	 Edit	 boldly:	 try	 to	 help	 users	 out,	 assess
importance	 or	 improve	 the	 bug	 description	 or	 status.	Other	 people
will	see	the	bugs:	it’s	better	to	have	20	of	them	processed	and	later
change	the	status	of	a	couple	than	to	leave	them	lie.

When	you	file	a	bug	as	a	Bazaar	developer	or	active	user,	if	you	feel
confident	in	doing	so,	make	an	assessment	of	status	and	importance
at	 the	 time	 you	 file	 it,	 rather	 than	 leaving	 it	 for	 someone	 else.	 It’s
more	 efficient	 to	 change	 the	 importance	 if	 someone	 else	 feel’s	 it’s
higher	or	lower,	than	to	have	someone	else	edit	all	bugs.

It’s	 more	 useful	 to	 actually	 ship	 bug	 fixes	 than	 to	 garden	 the	 bug
database.	 It’s	more	useful	 to	 take	one	bug	 through	 to	a	shipped	 fix
than	to	partially	 investigate	 ten	bugs.	You	don’t	get	credit	 for	a	bug
until	the	fix	is	shipped	in	a	release.	Users	like	getting	a	response	to
their	report,	but	they	generally	care	more	about	getting	bugs	fixed.

The	aim	of	 investigating	bugs	before	starting	concentrated	work	on
them	is	therefore	only	to:

determine	if	they	are	critical	or	high	priority	(and	should	displace
existing	work)
garden	 sufficiently	 to	 keep	 the	 database	 usable:	 meaningful
summaries,	and	duplicates	removed

It’s	 OK	 to	 fix	 some	 bugs	 that	 just	 annoy	 you,	 even	 if	 they’re	 not
rationally	high.

You	can	use	--fixes	lp:12345678	when	committing	to	associate	the
commit	with	a	particular	bug.

If	 there	are	multiple	bugs	with	related	fixes,	putting	“[master]”	 in	the
title	of	one	of	them	helps	find	it

It’s	 often	 fastest	 to	 find	 bugs	 just	 using	 the	 regular	Google	 search
engine,	rather	than	Launchpad’s	search.

Martin	Pitt	says:

One	of	the	things	you	should	not	do	often	is	to	start	asking
questions/for	more	debug	info	and	then	forget	about	the	bug.	It’s
just
a	waste	of	the	reporter’s	and	your	time,	and	will	create
frustration
on	the	reporter	side.

Priorities
The	suggested	priorities	for	bug	work	are:

1.	 Fix	critical	bugs.
2.	 Get	existing	fixes	through	review	and	landed.
3.	 Fix	bugs	that	are	already	in	progress.
4.	 Look	at	bugs	already	assigned	to	you,	and	either	start	them,	or

change	your	mind	and	unassign	them.
5.	 Take	new	bugs	from	the	top	of	the	stack.
6.	 Triage	new	bugs.

It’s	not	strict	and	of	course	there	is	personal	discretion	but	our	work
should	be	biased	to	the	top	of	this	hierarchy.

Clear	Bugs
Bugs	 should	 have	 clear	 edges,	 so	 that	 you	 can	 make	 a	 clear
statement	about	whether	a	bug	is	fixed	or	not.	(Sometimes	reality	is
complicated,	but	aim	for	each	bug	to	be	clear.)

Bugs	 on	 documentation,	 performance,	 or	 UI	 are	 fine	 as	 long	 as
they’re	clear	bugs.

Examples	of	good	bugs:

“ValueError	 in	 frob_foo	 when	 committing	 changed	 symlink”	 -
although	there	may	be	many	possible	things	that	could	cause	a
ValueError	 there,	 you	 should	 at	 least	 know	when	 you’ve	 fixed
the	problem	described	in	this	bug.
“Unclear	 message	 about	 incompatible	 repositories”	 -	 even
though	the	user	may	not	agree	the	new	message	is	sufficiently
clear,	at	least	you	know	when	you’ve	tried	to	fix	it.

Examples	of	bad	bugs:

“Commit	 is	 too	 slow”	 -	 how	 fast	 is	 fast	 enough	 to	 close	 it?
“Commit	reads	the	working	tree	twice”	is	clearer.

Bug	Status
New

The	 bug	 has	 just	 been	 filed	 and	 hasn’t	 been	 examined	 by	 a
developer	yet.

Incomplete
The	 bug	 requires	 more	 information	 from	 the	 reporter	 to	 make
progress.

Only	 set	 this	 state	 if	 it’s	 impossible	 or	 uneconomical	 to	 make
progress	on	the	bug	without	that	information.	The	bug	will	expire
if	it	remains	in	this	state	for	two	months.

Confirmed
The	bug	report	has	been	seen	by	a	developer	and	we	agree	it’s	a
bug.	You	don’t	have	 to	reproduce	 the	bug	 to	mark	 it	Confirmed.
(Generally	 it’s	 not	 a	 good	 idea	 for	 a	 developer	 to	 spend	 time
reproducing	the	bug	until	they’re	going	to	work	on	it.)

Triaged
We	 don’t	 use	 this	 status.	 If	 it	 is	 set,	 it	 means	 the	 same	 as
Confirmed.

In	Progress
Someone	has	started	working	on	 this.	We	can	deliver	 the	value
of	the	work	already	done	by	finishing	and	shipping	the	fix.

The	bug	keeps	this	state	from	the	time	someone	does	non-trivial
analysis,	 until	 the	 fix	 is	 merged	 to	 a	 release	 or	 trunk	 branch
(when	it	is	Fix	Released),	or	until	they	give	up	on	it	(back	to	New
or	Confirmed)	or	decide	it	is	Invalid	or	Incomplete.

Won’t	Fix
The	behaviour	complained	about	is	intentional	and	we	won’t	fix	it.
Needless	 to	 say,	 be	 thoughtful	 before	 using	 this	 status,	 and

consider	 if	 the	user	 experience	 can	be	 improved	 in	 some	other
way.

Invalid
The	reporter	was	confused,	and	this	is	not	actually	a	bug.	Again,
be	sensitive	in	explaining	this	to	the	user.

Fix	Committed
Don’t	use	this.	If	set	on	old	bug,	 it	probably	means	In	Progress,
with	the	fix	waiting	for	review.	See	Launchpad	bug	163694.

Fix	Released
The	fix	 for	 this	bug	is	now	in	the	bzr	branch	that	 this	task	 is	 for.
The	branch	for	the	default	task	on	a	bug	is	bzr.dev.

We	use	this	value	even	though	the	fix	may	not	have	been	been
included	 in	 a	 release	 yet	 because	 all	 the	 developer	 activity
around	it	is	complete	and	we	want	to	both	avoid	bug	spam	when
releases	happen,	and	keep	 the	 list	of	bugs	 that	developers	see
when	 they	 look	at	 the	bug	 tracker	 trimmed	 to	 those	 that	 require
action.

When	setting	a	bug	task	to	fix	released,	the	bug	target	milestone
should	 be	 set	 to	 the	 release	 the	 fix	 will	 be	 included	 in	 (or	 was
included	 in,	 if	 you	 are	 updating	 an	 old	 bug).	 Don’t	 spend	 too
much	 time	 updating	 this	 if	 you	 don’t	 immediately	 know:	 its	 not
critical	that	it	be	set.

https://bugs.launchpad.net/malone/+bug/163694

Bug	Importance
Critical

This	 is	a	serious	bug	that	could	cause	data	 loss,	stop	bzr	being
usable	 in	 an	 important	 case,	 or	 represents	 a	 regression	 in
something	previously	working.	We	should	fix	critical	bugs	before
doing	other	work,	or	seriously	consider	whether	the	bug	is	really
critical	or	whether	the	other	change	is	more	urgent.

High
This	 is	 a	 bug	 that	 can	 seriously	 interfere	 with	 people’s	 use	 of
Bazaar.	We	 should	 seriously	 consider	 fixing	 these	 bugs	 before
working	on	new	features.

Medium
A	 regular	 bug.	We’d	 like	 to	 fix	 them,	 but	 there	 may	 be	 a	 long
delay.

Low
Something	 suboptimal	 that	 may	 affect	 an	 unimportant	 case	 or
have	a	fairly	easy	workaround.

Wishlist
These	will	basically	never	get	done.

Bugs	 rated	 Medium	 or	 lower	 are	 unlikely	 to	 get	 fixed	 unless	 they
either	pique	 the	 interest	of	a	developer	or	are	escalated	due	eg	 to
many	users	being	affected.

Not	every	existing	bug	is	correctly	rated	according	to	this	scale,	and
we	don’t	always	follow	this	process,	but	we’d	like	to	do	it	more.	But
remember,	fixing	bugs	is	more	helpful	than	gardening	them.

Assignment
Assigning	 a	 bug	 to	 yourself,	 or	 someone	 else,	 indicates	 a	 real
intention	to	work	on	that	bug	soon.

Targetting	Bugs
It’s	 possible	 to	 target	 a	 bug	 to	 a	 milestone,	 eg
<https://bugs.edge.launchpad.net/bzr/+milestone/1.16>.	We	use	this
to	help	 the	 release	manager	 know	what	must	 be	merged	 to	make
the	release.

Therefore,	we	don’t	 target	bugs	 that	we’d	 like	 to	have	 fixed	or	 that
could	be	fixed	in	a	particular	release,	we	only	target	bugs	that	must
be	fixed	and	that	will	cause	us	to	slip	the	release	if	they’re	not	fixed.
At	any	time,	very	few	if	any	of	the	bugs	targeted	to	a	release	should
be	 still	 open.	 By	 definition,	 these	 bugs	 should	 normally	 be	 Critical
priority.

https://bugs.edge.launchpad.net/bzr/+milestone/1.16

Backports
Sometimes	 we’ll	 want	 to	 make	 a	 special	 point-release	 update	 (eg
1.15.1)	off	an	already-released	branch	including	a	fix	for	a	particular
bug.	To	 represent	 this,	 create	a	new	bug	 task	 (ie	 link	 in	 the	status
table	 on	 the	 bug	 page)	 by	 clicking	 the	 poorly-named	 “Target	 to
Release”	link.	Target	it	to	the	appropriate	series	(ie	1.15).	If	the	bug
should	also	prevent	any	point	releases	of	that	series	then	you	should
also	 target	 the	 new	 task	 to	 the	 appropriate	 milestone	 within	 that
release.	(See	Targeting	Bugs	above)

This	bug	task	then	has	a	separate	status	and	importance	to	indicate
the	separate	work	to	get	it	into	that	release.

https://bugs.launchpad.net/bugs/132733

The	News	File
Most	bugs	that	are	fixed	should	be	mentioned	in	a	NEWS	file	entry,
including	the	bug	number.	(Exceptions	might	be	bugs	that	are	not	at
all	user	visible.)

Tags
Here	 are	 some	 bug	 tags	 we	 use.	 In	 Malone	 tags	 are	 currently	 of
limited	use,	so	don’t	feel	obliged	to	tag	bugs	unless	you’re	finding	it
useful.

authentication
authenticating	to	servers

backport
candidate	for	backporting	to	an	update	of	the	previous	release

dirstate
WorkingTree4

easy
should	be	possible	to	finish	in	an	hour	or	two

hpss
bugs	 about	 the	High-Performance	Smart	 Server,	 i.e.	 bzr+ssh://,
etc.

hpssvfs
bugs	for	causes	of	VFS	methods	of	the	smart	server

launchpad
bugs	 about	 interactions	 with	 launchpad	 (typically	 this	 means
bzrlib.plugins.launchpad).

locale
problems	using	locales	other	than	English

memory
problems	where	we	use	too	much	memory	for	some	reason

newformat
fixing	this	would	need	a	new	disk	format

performance

bugs	about	performance	problems.

test
needs	changes	to	the	test	framework

transport
virtual	filesystem	for	http,	sftp,	etc

trivial
should	 be	 very	 easy	 to	 fix	 (10-20	 minutes)	 and	 easily	 landed:
typically	just	spelling	errors	and	the	like

ui
bugs	 relating	 to	 the	 bzr	 user	 interface,	 e.g.	 confusing	 error
messages.

win32
bugs	 that	 mainly	 affects	 Windows.	 Also	 there	 is	 cygwin	 and
win98	tags	for	marking	specific	bugs.

You	 can	 see	 the	 full	 list	 of	 tags	 in	 use	 at
<https://bugs.edge.launchpad.net/bzr/+bugs>.	 As	 of	 September
2008	the	list	is	on	the	right.

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

https://bugs.edge.launchpad.net/bzr/+bugs
http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Bazaar	Developer	Guide
This	document	describes	the	Bazaar	internals	and	the	development
process.	 It’s	meant	 for	people	 interested	 in	developing	Bazaar,	and
some	parts	will	also	be	useful	to	people	developing	Bazaar	plugins.

If	 you	 have	 any	 questions	 or	 something	 seems	 to	 be	 incorrect,
unclear	 or	 missing,	 please	 talk	 to	 us	 in
irc://irc.freenode.net/#bzr,	or	write	 to	 the	Bazaar	mailing	 list.	To
propose	 a	 correction	 or	 addition	 to	 this	 document,	 send	 a	 merge
request	or	new	text	to	the	mailing	list.

The	 latest	 developer	 documentation	 can	 be	 found	 online	 at
http://doc.bazaar-vcs.org/developers/.

http://doc.bazaar-vcs.org/developers/

Getting	Started

Exploring	the	Bazaar	Platform

Before	making	changes,	it’s	a	good	idea	to	explore	the	work	already
done	 by	 others.	 Perhaps	 the	 new	 feature	 or	 improvement	 you’re
looking	for	is	available	in	another	plug-in	already?	If	you	find	a	bug,
perhaps	someone	else	has	already	fixed	it?

To	answer	these	questions	and	more,	take	a	moment	to	explore	the
overall	Bazaar	Platform.	Here	are	some	links	to	browse:

The	Plugins	page	on	the	Wiki	-	http://bazaar-vcs.org/BzrPlugins
The	 Bazaar	 product	 family	 on	 Launchpad	 -
https://launchpad.net/bazaar
Bug	 Tracker	 for	 the	 core	 product	 -
https://bugs.launchpad.net/bzr/
Blueprint	 Tracker	 for	 the	 core	 product	 -
https://blueprints.launchpad.net/bzr/

If	 nothing	 else,	 perhaps	 you’ll	 find	 inspiration	 in	 how	 other
developers	have	solved	their	challenges.

Finding	Something	To	Do

Ad-hoc	performance	work	can	also	be	done.	One	useful	 tool	 is	 the
‘evil’	debug	flag.	For	instance	running	bzr	-Devil	commit	-m	"test"
will	 log	 a	 backtrace	 to	 the	 bzr	 log	 file	 for	 every	method	 call	 which
triggers	 a	 slow	or	 non-scalable	 part	 of	 the	bzr	 library.	So	 checking
that	a	given	command	with	-Devil	has	no	backtraces	logged	to	the
log	 file	 is	 a	 good	way	 to	 find	 problem	 function	 calls	 that	might	 be
nested	deep	in	the	code	base.

http://bazaar-vcs.org/BzrPlugins
https://launchpad.net/bazaar
https://bugs.launchpad.net/bzr/
https://blueprints.launchpad.net/bzr/

Planning	and	Discussing	Changes

There	is	a	very	active	community	around	Bazaar.	Mostly	we	meet	on
IRC	 (#bzr	 on	 irc.freenode.net)	 and	 on	 the	 mailing	 list.	 To	 join	 the
Bazaar	community,	see	http://bazaar-vcs.org/BzrSupport.

If	 you	 are	 planning	 to	 make	 a	 change,	 it’s	 a	 very	 good	 idea	 to
mention	 it	on	 the	 IRC	channel	and/or	on	 the	mailing	 list.	There	are
many	 advantages	 to	 involving	 the	 community	 before	 you	 spend
much	time	on	a	change.	These	include:

you	get	to	build	on	the	wisdom	of	others,	saving	time
if	others	can	direct	you	to	similar	code,	it	minimises	the	work	to
be	done
it	assists	everyone	in	coordinating	direction,	priorities	and	effort.

In	summary,	maximising	the	input	from	others	typically	minimises	the
total	effort	 required	to	get	your	changes	merged.	The	community	 is
friendly,	helpful	and	always	keen	to	welcome	newcomers.

Bazaar	Development	in	a	Nutshell

One	of	the	fun	things	about	working	on	a	version	control	system	like
Bazaar	 is	 that	 the	 users	 have	 a	 high	 level	 of	 proficiency	 in
contributing	 back	 into	 the	 tool.	 Consider	 the	 following	 very	 brief
introduction	 to	 contributing	 back	 to	 Bazaar.	 More	 detailed
instructions	are	in	the	following	sections.

Making	the	change

First,	get	a	local	copy	of	the	development	mainline	(See	Why	make	a
local	copy	of	bzr.dev?.)

$	bzr	init-repo	~/bzr

$	cd	~/bzr

http://bazaar-vcs.org/BzrSupport

$	bzr	branch	http://bazaar-vcs.org/bzr/bzr.dev/	bzr.dev

Now	make	your	own	branch:

$	bzr	branch	bzr.dev	123456-my-bugfix

This	will	give	you	a	branch	called	 “123456-my-bugfix”	 that	you	can
work	on	and	commit	in.	Here,	you	can	study	the	code,	make	a	fix	or
a	new	feature.	Feel	free	to	commit	early	and	often	(after	all,	it’s	your
branch!).

Documentation	improvements	are	an	easy	place	to	get	started	giving
back	 to	 the	 Bazaar	 project.	 The	 documentation	 is	 in	 the	 doc/
subdirectory	of	the	Bazaar	source	tree.

When	 you	 are	 done,	 make	 sure	 that	 you	 commit	 your	 last	 set	 of
changes	 as	 well!	 Once	 you	 are	 happy	 with	 your	 changes,	 ask	 for
them	to	be	merged,	as	described	below.

Making	a	Merge	Proposal

The	 Bazaar	 developers	 use	 Launchpad	 to	 further	 enable	 a	 truly
distributed	style	of	development.	Anyone	can	propose	a	branch	 for
merging	 into	 the	 Bazaar	 trunk.	 To	 start	 this	 process,	 you	 need	 to
push	 your	 branch	 to	 Launchpad.	 To	 do	 this,	 you	 will	 need	 a
Launchpad	 account	 and	 user	 name,	 e.g.	 your_lp_username.	 You
can	push	your	branch	to	Launchpad	directly	from	Bazaar:

$	bzr	push	lp:~your_lp_username/bzr/meaningful_name_here

After	you	have	pushed	your	branch,	you	will	need	 to	propose	 it	 for
merging	 to	 the	 Bazaar	 trunk.	 Go	 to
<https://launchpad.net/your_lp_username/bzr/meaningful_name_here>
and	 choose	 “Propose	 for	 merging	 into	 another	 branch”.	 Select
“~bzr/bzr/trunk”	 to	hand	your	changes	off	 to	 the	Bazaar	developers
for	review	and	merging.

https://launchpad.net/your_lp_username/bzr/meaningful_name_here

Using	 a	 meaningful	 name	 for	 your	 branch	 will	 help	 you	 and	 the
reviewer(s)	 better	 track	 the	 submission.	 Use	 a	 very	 succint
description	 of	 your	 submission	 and	 prefix	 it	 with	 bug	 number	 if
needed	 (lp:~mbp/bzr/484558-merge-directory	 for	 example).
Alternatively,	 you	 can	 suffix	 with	 the	 bug	 number
(lp:~jameinel/bzr/export-file-511987).

Why	make	a	local	copy	of	bzr.dev?

Making	a	local	mirror	of	bzr.dev	is	not	strictly	necessary,	but	it	means

You	can	use	that	copy	of	bzr.dev	as	your	main	bzr	executable,
and	keep	it	up-to-date	using	bzr	pull.

Certain	operations	are	faster,	and	can	be	done	when	offline.	For
example:

bzr	bundle

bzr	diff	-r	ancestor:...

bzr	merge

When	it’s	time	to	create	your	next	branch,	it’s	more	convenient.
When	 you	 have	 further	 contributions	 to	 make,	 you	 should	 do
them	in	their	own	branch:

$	cd	~/bzr

$	bzr	branch	bzr.dev	additional_fixes

$	cd	additional_fixes	#	hack,	hack,	hack

Understanding	the	Development	Process

The	development	team	follows	many	practices	including:

a	 public	 roadmap	 and	 planning	 process	 in	 which	 anyone	 can
participate
time	 based	 milestones	 everyone	 can	 work	 towards	 and	 plan

around
extensive	code	review	and	feedback	to	contributors
complete	and	rigorous	test	coverage	on	any	code	contributed
automated	 validation	 that	 all	 tests	 still	 pass	 before	 code	 is
merged	into	the	main	code	branch.

The	key	tools	we	use	to	enable	these	practices	are:

Launchpad	-	https://launchpad.net/
Bazaar	-	http://bazaar-vcs.org/
Bundle	Buggy	-	http://bundlebuggy.aaronbentley.com/
Patch	Queue	Manager	-	https://launchpad.net/pqm/

For	further	information,	see	http://bazaar-vcs.org/BzrDevelopment.

Preparing	a	Sandbox	for	Making	Changes	to
Bazaar

Bazaar	 supports	 many	 ways	 of	 organising	 your	 work.	 See
http://bazaar-vcs.org/SharedRepositoryLayouts	for	a	summary	of	the
popular	alternatives.

Of	course,	the	best	choice	for	you	will	depend	on	numerous	factors:
the	 number	 of	 changes	 you	may	 be	making,	 the	 complexity	 of	 the
changes,	etc.	As	a	starting	suggestion	though:

create	a	local	copy	of	the	main	development	branch	(bzr.dev)	by
using	this	command:

bzr	branch	http://bazaar-vcs.org/bzr/bzr.dev/	bzr.dev

keep	your	copy	of	bzr.dev	pristine	(by	not	developing	 in	 it)	and
keep	it	up	to	date	(by	using	bzr	pull)

create	a	new	branch	off	your	 local	bzr.dev	copy	for	each	 issue
(bug	or	feature)	you	are	working	on.

https://launchpad.net/
http://bazaar-vcs.org/
http://bundlebuggy.aaronbentley.com/
https://launchpad.net/pqm/
http://bazaar-vcs.org/BzrDevelopment
http://bazaar-vcs.org/SharedRepositoryLayouts

This	 approach	 makes	 it	 easy	 to	 go	 back	 and	 make	 any	 required
changes	after	a	code	review.	Resubmitting	the	change	is	then	simple
with	no	risk	of	accidentally	including	edits	related	to	other	issues	you
may	be	working	on.	After	the	changes	for	an	issue	are	accepted	and
merged,	 the	 associated	 branch	 can	 be	 deleted	 or	 archived	 as	 you
wish.

Navigating	the	Code	Base

Some	of	the	key	files	in	this	directory	are:

bzr
The	command	you	run	to	start	Bazaar	itself.	This	script	 is	pretty
short	and	just	does	some	checks	then	jumps	into	bzrlib.

README
This	file	covers	a	brief	introduction	to	Bazaar	and	lists	some	of	its
key	features.

NEWS
Summary	 of	 changes	 in	 each	 Bazaar	 release	 that	 can	 affect
users	or	plugin	developers.

setup.py
Installs	 Bazaar	 system-wide	 or	 to	 your	 home	 directory.	 To
perform	development	work	on	Bazaar	it	is	not	required	to	run	this
file	 -	 you	 can	 simply	 run	 the	 bzr	 command	 from	 the	 top	 level
directory	 of	 your	 development	 copy.	 Note:	 That	 if	 you	 run
setup.py	 this	 will	 create	 a	 ‘build’	 directory	 in	 your	 development
branch.	There’s	nothing	wrong	with	this	but	don’t	be	confused	by
it.	The	build	process	puts	a	copy	of	the	main	code	base	into	this
build	directory,	along	with	some	other	files.	You	don’t	need	to	go
in	here	for	anything	discussed	in	this	guide.

bzrlib
Possibly	the	most	exciting	folder	of	all,	bzrlib	holds	the	main	code
base.	This	is	where	you	will	go	to	edit	python	files	and	contribute

to	Bazaar.

doc
Holds	documentation	on	a	whole	range	of	things	on	Bazaar	from
the	origination	of	ideas	within	the	project	to	information	on	Bazaar
features	 and	 use	 cases.	 Within	 this	 directory	 there	 is	 a
subdirectory	 for	each	 translation	 into	a	human	 language.	All	 the
documentation	is	in	the	ReStructuredText	markup	language.

doc/developers
Documentation	 specifically	 targeted	 at	 Bazaar	 and	 plugin
developers.	(Including	this	document.)

Automatically-generated	 API	 reference	 information	 is	 available	 at
<http://starship.python.net/crew/mwh/bzrlibapi/>.

See	also	the	Bazaar	Architectural	Overview.

http://starship.python.net/crew/mwh/bzrlibapi/
http://doc.bazaar-vcs.org/developers/overview.html

The	Code	Review	Process
All	 code	 changes	 coming	 in	 to	 Bazaar	 are	 reviewed	 by	 someone
else.	 Normally	 changes	 by	 core	 contributors	 are	 reviewed	 by	 one
other	core	developer,	and	changes	 from	other	people	are	 reviewed
by	 two	 core	 developers.	 Use	 intelligent	 discretion	 if	 the	 patch	 is
trivial.

Good	 reviews	 do	 take	 time.	 They	 also	 regularly	 require	 a	 solid
understanding	 of	 the	 overall	 code	 base.	 In	 practice,	 this	 means	 a
small	 number	 of	 people	 often	 have	 a	 large	 review	 burden	 -	 with
knowledge	comes	 responsibility.	No	one	 likes	 their	merge	 requests
sitting	 in	 a	 queue	 going	 nowhere,	 so	 reviewing	 sooner	 rather	 than
later	is	strongly	encouraged.

Review	cover	letters

Please	put	a	“cover	letter”	on	your	merge	request	explaining:

the	reason	why	you’re	making	this	change
how	this	change	achieves	this	purpose
anything	else	you	may	have	fixed	in	passing
anything	significant	 that	 you	 thought	of	doing,	 such	as	a	more
extensive	 fix	 or	 a	 different	 approach,	 but	 didn’t	 or	 couldn’t	 do
now

A	good	cover	letter	makes	reviewers’	lives	easier	because	they	can
decide	 from	 the	 letter	 whether	 they	 agree	 with	 the	 purpose	 and
approach,	and	then	assess	whether	the	patch	actually	does	what	the
cover	 letter	says.	Explaining	any	“drive-by	fixes”	or	roads	not	 taken
may	also	avoid	queries	from	the	reviewer.	All	 in	all	 this	should	give
faster	 and	better	 reviews.	Sometimes	writing	 the	 cover	 letter	 helps
the	submitter	realize	something	else	they	need	to	do.	The	size	of	the

cover	letter	should	be	proportional	to	the	size	and	complexity	of	the
patch.

Reviewing	proposed	changes

Anyone	is	welcome	to	review	code,	and	reply	to	the	thread	with	their
opinion	or	comments.

The	 simplest	way	 to	 review	a	 proposed	 change	 is	 to	 just	 read	 the
patch	on	 the	 list	or	 in	Bundle	Buggy.	For	more	complex	changes	 it
may	be	useful	to	make	a	new	working	tree	or	branch	from	trunk,	and
merge	the	proposed	change	into	 it,	so	you	can	experiment	with	the
code	or	look	at	a	wider	context.

There	are	three	main	requirements	for	code	to	get	in:

Doesn’t	 reduce	 test	 coverage:	 if	 it	 adds	 new	 methods	 or
commands,	there	should	be	tests	for	them.	There	is	a	good	test
framework	 and	 plenty	 of	 examples	 to	 crib	 from,	 but	 if	 you	 are
having	 trouble	 working	 out	 how	 to	 test	 something	 feel	 free	 to
post	a	draft	patch	and	ask	for	help.
Doesn’t	 reduce	 design	 clarity,	 such	 as	 by	 entangling	 objects
we’re	 trying	 to	 separate.	 This	 is	 mostly	 something	 the	 more
experienced	reviewers	need	to	help	check.
Improves	bugs,	features,	speed,	or	code	simplicity.

Code	that	goes	in	should	not	degrade	any	of	these	aspects.	Patches
are	 welcome	 that	 only	 cleanup	 the	 code	 without	 changing	 the
external	behaviour.	The	core	developers	take	care	to	keep	the	code
quality	 high	 and	 understandable	 while	 recognising	 that	 perfect	 is
sometimes	the	enemy	of	good.

It	 is	 easy	 for	 reviews	 to	 make	 people	 notice	 other	 things	 which
should	be	 fixed	but	 those	 things	should	not	hold	up	 the	original	 fix
being	 accepted.	 New	 things	 can	 easily	 be	 recorded	 in	 the	 Bug

Tracker	instead.

It’s	normally	much	easier	to	review	several	smaller	patches	than	one
large	 one.	You	might	 want	 to	 use	 bzr-loom	 to	maintain	 threads	 of
related	work,	or	submit	a	preparatory	patch	that	will	make	your	“real”
change	easier.

Checklist	for	reviewers

Do	you	understand	what	the	code’s	doing	and	why?
Will	 it	perform	reasonably	for	 large	inputs,	both	in	memory	size
and	 run	 time?	 Are	 there	 some	 scenarios	 where	 performance
should	be	measured?
Is	 it	 tested,	and	are	 the	 tests	at	 the	 right	 level?	Are	 there	both
blackbox	(command-line	level)	and	API-oriented	tests?
If	 this	 change	 will	 be	 visible	 to	 end	 users	 or	 API	 users,	 is	 it
appropriately	documented	in	NEWS?
Does	it	meet	the	coding	standards	below?
If	it	changes	the	user-visible	behaviour,	does	it	update	the	help
strings	and	user	documentation?
If	 it	 adds	 a	 new	 major	 concept	 or	 standard	 practice,	 does	 it
update	the	developer	documentation?
(your	ideas	here...)

Reviews	on	Launchpad

From	 May	 2009	 on,	 we	 prefer	 people	 to	 propose	 code	 reviews
through	Launchpad.

<https://launchpad.net/+tour/code-review>
<https://help.launchpad.net/Code/Review>

Anyone	 can	 propose	 or	 comment	 on	 a	 merge	 proposal	 just	 by
creating	a	Launchpad	account.

https://launchpad.net/+tour/code-review
https://help.launchpad.net/Code/Review

There	 are	 two	ways	 to	 create	 a	 new	merge	 proposal:	 through	 the
web	interface	or	by	email.

Proposing	a	merge	through	the	web

To	 create	 the	 proposal	 through	 the	 web,	 first	 push	 your	 branch	 to
Launchpad.	 For	 example,	 a	 branch	 dealing	 with	 documentation
belonging	to	the	Launchpad	User	mbp	could	be	pushed	as

bzr	push	lp:~mbp/bzr/doc

Then	 go	 to	 the	 branch’s	 web	 page,	 which	 in	 this	 case	 would	 be
<https://code.launchpad.net/~mbp/bzr/doc>.	 You	 can	 simplify	 this
step	by	just	running

bzr	lp-open

You	can	 then	click	 “Propose	 for	merging	 into	another	branch”,	 and
enter	your	cover	letter	(see	above)	into	the	web	form.	Typically	you’ll
want	 to	 merge	 into	 ~bzr/bzr/trunk	 which	 will	 be	 the	 default;	 you
might	also	want	to	nominate	merging	into	a	release	branch	for	a	bug
fix.	 There	 is	 the	 option	 to	 specify	 a	 specific	 reviewer	 or	 type	 of
review,	and	you	shouldn’t	normally	change	those.

Submitting	 the	 form	 takes	 you	 to	 the	 new	 page	 about	 the	 merge
proposal	containing	the	diff	of	the	changes,	comments	by	interested
people,	and	controls	to	comment	or	vote	on	the	change.

Proposing	a	merge	by	mail

To	 propose	 a	 merge	 by	 mail,	 send	 a	 bundle	 to
merge@code.launchpad.net.

You	can	generate	a	merge	request	like	this:

https://code.launchpad.net/~mbp/bzr/doc

bzr	send	-o	bug-1234.diff

bzr	send	can	also	send	mail	directly	if	you	prefer;	see	the	help.

Reviewing	changes

From	 <https://code.launchpad.net/bzr/+activereviews>	 you	 can	 see
all	 currently	 active	 reviews,	 and	 choose	 one	 to	 comment	 on.	 This
page	 also	 shows	 proposals	 that	 are	 now	 approved	 and	 should	 be
merged	by	someone	with	PQM	access.

Reviews	through	Bundle	Buggy

The	Bundle	Buggy	 tool	used	up	 to	May	2009	 is	still	 available	as	a
review	mechanism.

Sending	patches	for	review

If	 you’d	 like	 to	 propose	 a	 change,	 please	 post	 to	 the
bazaar@lists.canonical.com	 list	 with	 a	 bundle,	 patch,	 or	 link	 to	 a
branch.	Put	[PATCH]	or	[MERGE]	 in	the	subject	so	Bundle	Buggy	can
pick	 it	 out,	 and	 explain	 the	 change	 in	 the	 email	 message	 text.
Remember	 to	 update	 the	 NEWS	 file	 as	 part	 of	 your	 change	 if	 it
makes	 any	 changes	 visible	 to	 users	 or	 plugin	 developers.	 Please
include	a	diff	against	mainline	if	you’re	giving	a	link	to	a	branch.

You	can	generate	a	merge	request	like	this:

bzr	send	-o	bug-1234.patch

A	.patch	extension	is	recommended	instead	of	.bundle	as	many	mail
clients	will	send	the	latter	as	a	binary	file.

bzr	send	can	also	send	mail	directly	if	you	prefer;	see	the	help.

https://code.launchpad.net/bzr/+activereviews
mailto:bazaar%40lists.canonical.com

Please	do	NOT	 put	 [PATCH]	or	 [MERGE]	 in	 the	 subject	 line	 if	 you
don’t	want	 it	 to	be	merged.	 If	you	want	comments	 from	developers
rather	than	to	be	merged,	you	can	put	[RFC]	in	the	subject	line.

If	 this	 change	addresses	a	 bug,	 please	put	 the	 bug	number	 in	 the
subject	 line	 too,	 in	 the	 form	 [#1]	 so	 that	 Bundle	 Buggy	 can
recognize	it.

If	 the	 change	 is	 intended	 for	 a	 particular	 release	mark	 that	 in	 the
subject	 too,	 e.g.	 [1.6].	 Anyone	 can	 “vote”	 on	 the	 mailing	 list	 by
expressing	an	opinion.	Core	developers	can	also	vote	using	Bundle
Buggy.	Here	are	the	voting	codes	and	their	explanations.

approve: Reviewer	wants	this	submission	merged.

tweak: Reviewer	wants	this	submission	merged	with	small
changes.	(No	re-review	required.)

abstain: Reviewer	does	not	intend	to	vote	on	this	patch.
resubmit: Please	make	changes	and	resubmit	for	review.
reject: Reviewer	doesn’t	want	this	kind	of	change	merged.

comment: Not	really	a	vote.	Reviewer	just	wants	to	comment,	fornow.

If	 a	 change	 gets	 two	 approvals	 from	 core	 reviewers,	 and	 no
rejections,	 then	 it’s	OK	to	come	 in.	Any	of	 the	core	developers	can
bring	 it	 into	 the	 bzr.dev	 trunk	 and	 backport	 it	 to	 maintenance
branches	 if	 required.	The	Release	Manager	will	merge	 the	change
into	 the	 branch	 for	 a	 pending	 release,	 if	 any.	 As	 a	 guideline,	 core
developers	usually	merge	their	own	changes	and	volunteer	to	merge
other	 contributions	 if	 they	were	 the	 second	 reviewer	 to	 agree	 to	 a
change.

To	track	the	progress	of	proposed	changes,	use	Bundle	Buggy.	See
http://bundlebuggy.aaronbentley.com/help	 for	 a	 link	 to	 all	 the
outstanding	 merge	 requests	 together	 with	 an	 explanation	 of	 the
columns.	 Bundle	 Buggy	will	 also	mail	 you	 a	 link	 to	 track	 just	 your

http://bundlebuggy.aaronbentley.com/help

change.

Coding	Style	Guidelines

hasattr	and	getattr

hasattr	 should	 not	 be	 used	 because	 it	 swallows	 exceptions
including	KeyboardInterrupt.	Instead,	say	something	like

if	getattr(thing,	'name',	None)	is	None

Code	layout

Please	write	PEP-8	compliant	code.

One	 often-missed	 requirement	 is	 that	 the	 first	 line	 of	 docstrings
should	be	a	self-contained	one-sentence	summary.

We	use	4	space	indents	for	blocks,	and	never	use	tab	characters.	(In
vim,	set	expandtab.)

Trailing	white	space	should	be	avoided,	but	 is	allowed.	You	should
however	not	make	lots	of	unrelated	white	space	changes.

Unix	style	newlines	(LF)	are	used.

Each	file	must	have	a	newline	at	the	end	of	it.

Lines	should	be	no	more	than	79	characters	if	at	all	possible.	Lines
that	 continue	 a	 long	 statement	 may	 be	 indented	 in	 either	 of	 two
ways:

within	the	parenthesis	or	other	character	that	opens	the	block,	e.g.:

my_long_method(arg1,

															arg2,

															arg3)

http://www.python.org/peps/pep-0008.html

or	indented	by	four	spaces:

my_long_method(arg1,

				arg2,

				arg3)

The	first	is	considered	clearer	by	some	people;	however	it	can	be	a
bit	harder	to	maintain	(e.g.	when	the	method	name	changes),	and	it
does	 not	work	well	 if	 the	 relevant	 parenthesis	 is	 already	 far	 to	 the
right.	Avoid	this:

self.legbone.kneebone.shinbone.toebone.shake_it(one,

																																																two,

																																																three)

but	rather

self.legbone.kneebone.shinbone.toebone.shake_it(one,

				two,

				three)

or

self.legbone.kneebone.shinbone.toebone.shake_it(

				one,	two,	three)

For	 long	 lists,	we	 like	 to	 add	 a	 trailing	 comma	and	 put	 the	 closing
character	on	the	following	line.	This	makes	it	easier	to	add	new	items
in	future:

from	bzrlib.goo	import	(

				jam,

				jelly,

				marmalade,

)

There	 should	 be	 spaces	 between	 function	 parameters,	 but	 not

between	the	keyword	name	and	the	value:

call(1,	3,	cheese=quark)

In	emacs:

;(defface	my-invalid-face

;		'((t	(:background	"Red"	:underline	t)))

;		"Face	used	to	highlight	invalid	constructs	or	other	uglyties"

;)

(defun	my-python-mode-hook	()

	;;	setup	preferred	indentation	style.

	(setq	fill-column	79)

	(setq	indent-tabs-mode	nil)	;	no	tabs,	never,	I	will	not	repeat

;		(font-lock-add-keywords	'python-mode

;																									'(("^\\s	*\t"	.	'my-invalid-face)	;	Leading	tabs

;																												("[\t]+$"	.	'my-invalid-face)		;	Trailing	spaces

;																												("^[\t]+$"	.	'my-invalid-face));	Spaces	only

;)

)

(add-hook	'python-mode-hook	'my-python-mode-hook)

The	 lines	beginning	with	 ‘;’	are	comments.	They	can	be	activated	 if
one	 want	 to	 have	 a	 strong	 notice	 of	 some	 tab/space	 usage
violations.

Module	Imports

Imports	should	be	done	at	the	top-level	of	the	file,	unless	there
is	a	strong	reason	to	have	them	lazily	loaded	when	a	particular
function	 runs.	 Import	 statements	 have	 a	 cost,	 so	 try	 to	 make
sure	they	don’t	run	inside	hot	functions.
Module	 names	 should	 always	 be	 given	 fully-qualified,	 i.e.
bzrlib.hashcache	not	just	hashcache.

Naming

Functions,	methods	or	members	that	are	relatively	private	are	given
a	 leading	 underscore	 prefix.	 Names	 without	 a	 leading	 underscore
are	public	not	 just	across	modules	but	 to	programmers	using	bzrlib
as	an	API.

We	prefer	class	names	to	be	concatenated	capital	words	(TestCase)
and	variables,	methods	and	functions	to	be	lowercase	words	joined
by	underscores	(revision_id,	get_revision).

For	 the	 purposes	 of	 naming	 some	 names	 are	 treated	 as	 single
compound	words:	“filename”,	“revno”.

Consider	naming	classes	as	nouns	and	functions/methods	as	verbs.

Try	 to	 avoid	 using	 abbreviations	 in	 names,	 because	 there	 can	 be
inconsistency	if	other	people	use	the	full	name.

Standard	Names

revision_id	not	rev_id	or	revid

Functions	 that	 transform	 one	 thing	 to	 another	 should	 be	 named
x_to_y	(not	x2y	as	occurs	in	some	old	code.)

Destructors

Python	 destructors	 (__del__)	 work	 differently	 to	 those	 of	 other
languages.	In	particular,	bear	in	mind	that	destructors	may	be	called
immediately	when	 the	 object	 apparently	 becomes	unreferenced,	 or
at	 some	 later	 time,	 or	 possibly	 never	 at	 all.	 Therefore	 we	 have
restrictions	on	what	can	be	done	inside	them.

0.	 If	you	think	you	need	to	use	a	__del__	method	ask	another
developer	 for	 alternatives.	 If	 you	 do	 need	 to	 use	 one,
explain	why	in	a	comment.

1.	 Never	 rely	 on	 a	 __del__	method	 running.	 If	 there	 is	 code
that	must	run,	do	it	from	a	finally	block	instead.

2.	 Never	 import	 from	 inside	 a	 __del__	 method,	 or	 you	 may
crash	the	interpreter!!

3.	 In	some	places	we	raise	a	warning	from	the	destructor	if	the
object	 has	 not	 been	 cleaned	 up	 or	 closed.	 This	 is
considered	OK:	 the	warning	may	not	catch	every	case	but
it’s	still	useful	sometimes.

Cleanup	methods

Often	 when	 something	 has	 failed	 later	 code,	 including	 cleanups
invoked	from	 finally	blocks,	will	 fail	 too.	These	secondary	 failures
are	 generally	 uninteresting	 compared	 to	 the	 original	 exception.	 So
use	the	only_raises	decorator	(from	bzrlib.decorators)	for	methods
that	are	typically	called	in	finally	blocks,	such	as	unlock	methods.
For	example,	@only_raises(LockNotHeld,	LockBroken).	All	errors	that
are	unlikely	to	be	a	knock-on	failure	from	a	previous	failure	should	be
allowed.

Factories

In	 some	 places	 we	 have	 variables	 which	 point	 to	 callables	 that
construct	new	instances.	That	 is	 to	say,	 they	can	be	used	a	 lot	 like
class	objects,	but	they	shouldn’t	be	named	like	classes:

>	I	think	that	things	named	FooBar	should	create	instances	of	FooBar	when

>	called.	Its	plain	confusing	for	them	to	do	otherwise.	When	we	have

>	something	that	is	going	to	be	used	as	a	class	-	that	is,	checked	for	via

>	isinstance	or	other	such	idioms,	them	I	would	call	it	foo_class,	so	that

>	it	is	clear	that	a	callable	is	not	sufficient.	If	it	is	only	used	as	a

>	factory,	then	yes,	foo_factory	is	what	I	would	use.

Registries

Several	 places	 in	 Bazaar	 use	 (or	 will	 use)	 a	 registry,	 which	 is	 a
mapping	 from	names	 to	 objects	 or	 classes.	 The	 registry	 allows	 for
loading	 in	 registered	 code	 only	 when	 it’s	 needed,	 and	 keeping
associated	information	such	as	a	help	string	or	description.

InterObject	and	multiple	dispatch

The	 InterObject	 provides	 for	 two-way	 multiple	 dispatch:	 matching
up	for	example	a	source	and	destination	repository	 to	 find	 the	right
way	to	transfer	data	between	them.

There	is	a	subclass	InterObject	classes	for	each	type	of	object	that
is	dispatched	this	way,	e.g.	 InterRepository.	Calling	 .get()	on	 this
class	will	return	an	InterObject	instance	providing	the	best	match	for
those	parameters,	and	this	instance	then	has	methods	for	operations
between	the	objects.

inter	=	InterRepository.get(source_repo,	target_repo)

inter.fetch(revision_id)

InterRepository	also	acts	as	a	registry-like	object	for	its	subclasses,
and	they	can	be	added	through	.register_optimizer.	The	right	one
to	 run	 is	 selected	 by	 asking	 each	 class,	 in	 reverse	 order	 of
registration,	whether	it	.is_compatible	with	the	relevant	objects.

Lazy	Imports

To	make	startup	time	faster,	we	use	the	bzrlib.lazy_import	module
to	delay	importing	modules	until	they	are	actually	used.	lazy_import
uses	the	same	syntax	as	regular	python	imports.	So	to	import	a	few
modules	in	a	lazy	fashion	do:

from	bzrlib.lazy_import	import	lazy_import

lazy_import(globals(),	"""

import	os

http://en.wikipedia.org/wiki/Multiple_dispatch

import	subprocess

import	sys

import	time

from	bzrlib	import	(

			errors,

			transport,

			revision	as	_mod_revision,

)

import	bzrlib.transport

import	bzrlib.xml5

""")

At	this	point,	all	of	 these	exist	as	a	ImportReplacer	object,	 ready	to
be	 imported	 once	 a	member	 is	 accessed.	 Also,	 when	 importing	 a
module	 into	 the	 local	 namespace,	 which	 is	 likely	 to	 clash	 with
variable	names,	it	is	recommended	to	prefix	it	as	_mod_<module>.	This
makes	 it	 clearer	 that	 the	 variable	 is	 a	 module,	 and	 these	 object
should	 be	 hidden	 anyway,	 since	 they	 shouldn’t	 be	 imported	 into
other	namespaces.

While	it	is	possible	for	lazy_import()	to	import	members	of	a	module
when	 using	 the	 from	 module	 import	 member	 syntax,	 it	 is
recommended	 to	 only	 use	 that	 syntax	 to	 load	 sub	 modules	 from
module	import	submodule.	This	is	because	variables	and	classes	can
frequently	be	used	without	needing	a	sub-member	for	example:

lazy_import(globals(),	"""

from	module	import	MyClass

""")

def	test(x):

				return	isinstance(x,	MyClass)

This	will	incorrectly	fail,	because	MyClass	is	a	ImportReplacer	object,
rather	than	the	real	class.

It	 also	 is	 incorrect	 to	 assign	 ImportReplacer	 objects	 to	 other
variables.	Because	the	replacer	only	knows	about	the	original	name,

it	is	unable	to	replace	other	variables.	The	ImportReplacer	class	will
raise	an	IllegalUseOfScopeReplacer	exception	if	it	can	figure	out	that
this	happened.	But	it	requires	accessing	a	member	more	than	once
from	the	new	variable,	so	some	bugs	are	not	detected	right	away.

The	Null	revision

The	 null	 revision	 is	 the	 ancestor	 of	 all	 revisions.	 Its	 revno	 is	 0,	 its
revision-id	is	null:,	and	its	tree	is	the	empty	tree.	When	referring	to
the	 null	 revision,	 please	 use	 bzrlib.revision.NULL_REVISION.	 Old
code	sometimes	uses	 None	 for	 the	null	 revision,	but	 this	practice	 is
being	phased	out.

Object	string	representations

Python	 prints	 objects	 using	 their	 __repr__	 method	 when	 they	 are
written	 to	 logs,	 exception	 tracebacks,	 or	 the	 debugger.	 We	 want
objects	 to	 have	 useful	 representations	 to	 help	 in	 determining	what
went	wrong.

If	you	add	a	new	class	you	should	generally	add	a	__repr__	method
unless	there	is	an	adequate	method	in	a	parent	class.	There	should
be	a	test	for	the	repr.

Representations	should	typically	look	like	Python	constructor	syntax,
but	 they	 don’t	 need	 to	 include	 every	 value	 in	 the	 object	 and	 they
don’t	 need	 to	 be	 able	 to	 actually	 execute.	 They’re	 to	 be	 read	 by
humans,	not	machines.	Don’t	hardcode	the	classname	in	the	format,
so	 that	 we	 get	 the	 correct	 value	 if	 the	 method	 is	 inherited	 by	 a
subclass.	If	you’re	printing	attributes	of	 the	object,	 including	strings,
you	should	normally	use	%r	syntax	(to	call	their	repr	in	turn).

Try	to	avoid	the	representation	becoming	more	than	one	or	two	lines
long.	 (But	 balance	 this	 against	 including	 useful	 information,	 and

simplicity	of	implementation.)

Because	repr	methods	are	often	called	when	something	has	already
gone	wrong,	they	should	be	written	somewhat	more	defensively	than
most	code.	The	object	may	be	half-initialized	or	in	some	other	way	in
an	 illegal	state.	The	 repr	method	shouldn’t	 raise	an	exception,	or	 it
may	hide	the	(probably	more	useful)	underlying	exception.

Example:

def	__repr__(self):

				return	'%s(%r)'	%	(self.__class__.__name__,

																							self._transport)

Exception	handling

A	bare	except	statement	will	catch	all	exceptions,	including	ones	that
really	 should	 terminate	 the	 program	 such	 as	 MemoryError	 and
KeyboardInterrupt.	They	should	rarely	be	used	unless	the	exception
is	 later	 re-raised.	 Even	 then,	 think	 about	 whether	 catching	 just
Exception	 (which	 excludes	 system	 errors	 in	 Python2.5	 and	 later)
would	be	better.

Test	coverage

All	 code	 should	 be	 exercised	 by	 the	 test	 suite.	 See	 the	 Bazaar
Testing	Guide	for	detailed	information	about	writing	tests.

http://doc.bazaar-vcs.org/developers/testing.html

Core	Topics

Evolving	Interfaces

We	don’t	change	APIs	in	stable	branches:	any	supported	symbol	in	a
stable	release	of	bzr	must	not	be	altered	in	any	way	that	would	result
in	 breaking	 existing	 code	 that	 uses	 it.	 That	 means	 that	 method
names,	parameter	ordering,	parameter	names,	variable	and	attribute
names	 etc	 must	 not	 be	 changed	 without	 leaving	 a	 ‘deprecated
forwarder’	behind.	This	even	applies	to	modules	and	classes.

If	 you	 wish	 to	 change	 the	 behaviour	 of	 a	 supported	 API	 in	 an
incompatible	 way,	 you	 need	 to	 change	 its	 name	 as	 well.	 For
instance,	if	I	add	an	optional	keyword	parameter	to	branch.commit	-
that’s	 fine.	 On	 the	 other	 hand,	 if	 I	 add	 a	 keyword	 parameter	 to
branch.commit	 which	 is	 a	 required	 transaction	 object,	 I	 should
rename	the	API	-	i.e.	to	‘branch.commit_transaction’.

(Actually,	that	may	break	code	that	provides	a	new
implementation	of	commit	and	doesn’t	expect	to	receive	the
parameter.)

When	 renaming	 such	 supported	 API’s,	 be	 sure	 to	 leave	 a
deprecated_method	(or	_function	or	...)	behind	which	forwards	to	the
new	 API.	 See	 the	 bzrlib.symbol_versioning	 module	 for	 decorators
that	take	care	of	the	details	for	you	-	such	as	updating	the	docstring,
and	issuing	a	warning	when	the	old	API	is	used.

For	unsupported	API’s,	 it	does	not	hurt	 to	 follow	 this	discipline,	but
it’s	 not	 required.	Minimally	 though,	 please	 try	 to	 rename	 things	 so
that	 callers	 will	 at	 least	 get	 an	 AttributeError	 rather	 than	 weird
results.

Deprecation	decorators

bzrlib.symbol_versioning	provides	decorators	that	can	be	attached
to	 methods,	 functions,	 and	 other	 interfaces	 to	 indicate	 that	 they
should	no	longer	be	used.	For	example:

@deprecated_method(deprecated_in((0,	1,	4)))

def	foo(self):

					return	self._new_foo()

To	 deprecate	 a	 static	 method	 you	 must	 call	 deprecated_function
(not	method),	after	the	staticmethod	call:

@staticmethod

@deprecated_function(deprecated_in((0,	1,	4)))

def	create_repository(base,	shared=False,	format=None):

When	 you	 deprecate	 an	 API,	 you	 should	 not	 just	 delete	 its	 tests,
because	 then	 we	 might	 introduce	 bugs	 in	 them.	 If	 the	 API	 is	 still
present	 at	 all,	 it	 should	 still	 work.	 The	 basic	 approach	 is	 to	 use
TestCase.applyDeprecated	 which	 in	 one	 step	 checks	 that	 the	 API
gives	 the	expected	deprecation	message,	and	also	 returns	 the	 real
result	from	the	method,	so	that	tests	can	keep	running.

Deprecation	warnings	will	be	suppressed	 for	 final	 releases,	but	not
for	development	versions	or	release	candidates,	or	when	running	bzr
selftest.	 This	 gives	 developers	 information	 about	 whether	 their
code	 is	 using	 deprecated	 functions,	 but	 avoids	 confusing	 users
about	things	they	can’t	fix.

Getting	Input

Processing	Command	Lines

bzrlib	 has	 a	 standard	 framework	 for	 parsing	 command	 lines	 and
calling	processing	routines	associated	with	various	commands.	See
builtins.py	for	numerous	examples.

Standard	Parameter	Types

There	 are	 some	 common	 requirements	 in	 the	 library:	 some
parameters	need	to	be	unicode	safe,	some	need	byte	strings,	and	so
on.	 At	 the	 moment	 we	 have	 only	 codified	 one	 specific	 pattern:
Parameters	 that	 need	 to	 be	 unicode	 should	 be	 checked	 via
bzrlib.osutils.safe_unicode.	This	will	coerce	the	input	into	unicode
in	 a	 consistent	 fashion,	 allowing	 trivial	 strings	 to	 be	 used	 for
programmer	 convenience,	 but	 not	 performing	 unpredictably	 in	 the
presence	of	different	locales.

Writing	Output

(The	strategy	described	here	 is	what	we	want	 to	get	 to,	but	 it’s	not
consistently	followed	in	the	code	at	the	moment.)

bzrlib	 is	 intended	 to	 be	 a	 generically	 reusable	 library.	 It	 shouldn’t
write	messages	to	stdout	or	stderr,	because	some	programs	that	use
it	might	want	to	display	that	information	through	a	GUI	or	some	other
mechanism.

We	can	distinguish	two	types	of	output	from	the	library:

1.	 Structured	 data	 representing	 the	 progress	 or	 result	 of	 an
operation.	For	example,	for	a	commit	command	this	will	be
a	list	of	the	modified	files	and	the	finally	committed	revision
number	and	id.

These	should	be	exposed	either	through	the	return	code	or
by	calls	to	a	callback	parameter.

A	 special	 case	 of	 this	 is	 progress	 indicators	 for	 long-lived
operations,	 where	 the	 caller	 should	 pass	 a	 ProgressBar
object.

2.	 Unstructured	log/debug	messages,	mostly	for	the	benefit	of
the	 developers	 or	 users	 trying	 to	 debug	 problems.	 This
should	 always	 be	 sent	 through	 bzrlib.trace	 and	 Python
logging,	so	that	it	can	be	redirected	by	the	client.

The	distinction	between	the	two	 is	a	bit	subjective,	but	 in	general	 if
there	 is	any	chance	 that	a	 library	would	want	 to	see	something	as
structured	data,	we	should	make	it	so.

The	 policy	 about	 how	 output	 is	 presented	 in	 the	 text-mode	 client
should	be	only	in	the	command-line	tool.

Progress	and	Activity	Indications

bzrlib	 has	 a	 way	 for	 code	 to	 display	 to	 the	 user	 that	 stuff	 is
happening	during	a	 long	operation.	There	are	 two	particular	 types:
activity	 which	 means	 that	 IO	 is	 happening	 on	 a	 Transport,	 and
progress	which	means	that	higher-level	application	work	is	occurring.
Both	are	drawn	together	by	the	ui_factory.

Transport	objects	are	responsible	for	calling	report_transport_activity
when	they	do	IO.

Progress	 uses	 a	 model/view	 pattern:	 application	 code	 acts	 on	 a
ProgressTask	 object,	 which	 notifies	 the	 UI	 when	 it	 needs	 to	 be
displayed.	Progress	 tasks	 form	 a	 stack.	 To	 create	 a	 new	 progress
task	 on	 top	 of	 the	 stack,	 call
bzrlib.ui.ui_factory.nested_progress_bar(),	 then	 call	update()	 on	 the
returned	ProgressTask.	It	can	be	updated	with	just	a	text	description,
with	 a	 numeric	 count,	 or	 with	 a	 numeric	 count	 and	 expected	 total
count.	If	an	expected	total	count	 is	provided	the	view	can	show	the
progress	moving	along	towards	the	expected	total.

The	 user	 should	 call	 finish	 on	 the	 ProgressTask	 when	 the	 logical
operation	has	finished,	so	it	can	be	removed	from	the	stack.

Progress	 tasks	 have	 a	 complex	 relationship	 with	 generators:	 it’s	 a
very	good	place	to	use	them,	but	because	python2.4	does	not	allow
finally	blocks	 in	generators	 it’s	hard	 to	clean	 them	up	properly.	 In
this	case	 it’s	probably	better	 to	have	the	code	calling	 the	generator
allocate	 a	 progress	 task	 for	 its	 use	 and	 then	 call	 finalize	when	 it’s
done,	which	will	close	 it	 if	 it	was	not	already	closed.	The	generator
should	 also	 finish	 the	 progress	 task	when	 it	 exits,	 because	 it	may
otherwise	be	a	long	time	until	the	finally	block	runs.

https://wiki.ubuntu.com/UnitsPolicy	 provides	 a	 good	 explanation
about	 which	 unit	 should	 be	 used	 when.	 Roughly	 speaking,	 IEC
standard	applies	 for	base-2	units	and	SI	standard	applies	 for	base-
10	 units::	 *	 for	 network	 bandwidth	 an	 disk	 sizes,	 use	 base-10
(Mbits/s,	kB/s,	GB),	*	for	RAM	sizes,	use	base-2	(GiB,	TiB).

Displaying	help

Bazaar	has	online	help	for	various	topics	through	bzr	help	COMMAND
or	 equivalently	 bzr	 command	 -h.	 We	 also	 have	 help	 on	 command
options,	and	on	other	help	topics.	(See	help_topics.py.)

As	 for	 python	 docstrings,	 the	 first	 paragraph	 should	 be	 a	 single-
sentence	synopsis	of	the	command.

The	 help	 for	 options	 should	 be	 one	 or	 more	 proper	 sentences,
starting	with	a	capital	letter	and	finishing	with	a	full	stop	(period).

All	 help	 messages	 and	 documentation	 should	 have	 two	 spaces
between	sentences.

Handling	Errors	and	Exceptions

Commands	 should	 return	 non-zero	 when	 they	 encounter
circumstances	 that	 the	 user	 should	 really	 pay	 attention	 to	 -	 which

https://wiki.ubuntu.com/UnitsPolicy

includes	trivial	shell	pipelines.

Recommended	values	are:

0.	 OK.
1.	 Conflicts	 in	merge-like	operations,	or	 changes	are	present

in	diff-like	operations.
2.	 Unrepresentable	 diff	 changes	 (i.e.	 binary	 files	 that	 we

cannot	show	a	diff	of).
3.	 An	error	or	exception	has	occurred.
4.	 An	internal	error	occurred	(one	that	shows	a	traceback.)

Errors	are	handled	through	Python	exceptions.	Exceptions	should	be
defined	 inside	bzrlib.errors,	so	 that	we	can	see	 the	whole	 tree	at	a
glance.

We	 broadly	 classify	 errors	 as	 either	 being	 either	 internal	 or	 not,
depending	on	whether	 internal_error	 is	 set	 or	 not.	 If	we	 think	 it’s
our	 fault,	we	show	a	backtrace,	an	 invitation	 to	report	 the	bug,	and
possibly	 other	 details.	 This	 is	 the	 default	 for	 errors	 that	 aren’t
specifically	 recognized	as	being	caused	by	a	user	error.	Otherwise
we	show	a	briefer	message,	unless	-Derror	was	given.

Many	errors	originate	as	“environmental	errors”	which	are	raised	by
Python	or	builtin	 libraries	–	 for	example	 IOError.	These	are	 treated
as	being	our	 fault,	 unless	 they’re	 caught	 in	a	particular	 tight	 scope
where	we	know	that	 they	 indicate	a	user	errors.	For	example	 if	 the
repository	 format	 is	 not	 found,	 the	 user	 probably	 gave	 the	 wrong
path	or	URL.	But	if	one	of	the	files	inside	the	repository	is	not	found,
then	 it’s	 our	 fault	 –	 either	 there’s	 a	 bug	 in	 bzr,	 or	 something
complicated	 has	 gone	 wrong	 in	 the	 environment	 that	 means	 one
internal	file	was	deleted.

Many	 errors	 are	 defined	 in	 bzrlib/errors.py	 but	 it’s	 OK	 for	 new
errors	to	be	added	near	the	place	where	they	are	used.

Exceptions	 are	 formatted	 for	 the	 user	 by	 conversion	 to	 a	 string
(eventually	 calling	 their	 __str__	 method.)	 As	 a	 convenience	 the
._fmt	member	can	be	used	as	a	template	which	will	be	mapped	to
the	error’s	instance	dict.

New	exception	classes	should	be	defined	when	callers	might	want	to
catch	 that	 exception	 specifically,	 or	 when	 it	 needs	 a	 substantially
different	format	string.

1.	 If	 it	 is	 something	 that	 a	 caller	 can	 recover	 from,	 a	 custom
exception	is	reasonable.

2.	 If	 it	 is	 a	 data	 consistency	 issue,	 using	 a	 builtin	 like
ValueError/TypeError	is	reasonable.

3.	 If	 it	 is	 a	 programmer	 error	 (using	 an	 api	 incorrectly)
AssertionError	is	reasonable.

4.	 Otherwise,	use	BzrError	or	InternalBzrError.

Exception	 strings	 should	 start	 with	 a	 capital	 letter	 and	 should	 not
have	a	final	fullstop.	If	long,	they	may	contain	newlines	to	break	the
text.

Assertions

Do	 not	 use	 the	 Python	 assert	 statement,	 either	 in	 tests	 or
elsewhere.	 A	 source	 test	 checks	 that	 it	 is	 not	 used.	 It	 is	 ok	 to
explicitly	raise	AssertionError.

Rationale:

It	makes	 the	 behaviour	 vary	 depending	 on	whether	 bzr	 is
run	with	-O	or	not,	 therefore	giving	a	chance	 for	bugs	 that
occur	 in	 one	 case	 or	 the	 other,	 several	 of	 which	 have
already	occurred:	 assertions	with	 side	 effects,	 code	which
can’t	continue	unless	the	assertion	passes,	cases	where	we
should	 give	 the	 user	 a	 proper	 message	 rather	 than	 an

assertion	failure.
It’s	not	that	much	shorter	than	an	explicit	if/raise.
It	tends	to	lead	to	fuzzy	thinking	about	whether	the	check	is
actually	needed	or	not,	and	whether	it’s	an	internal	error	or
not
It	tends	to	cause	look-before-you-leap	patterns.
It’s	unsafe	if	 the	check	is	needed	to	protect	the	integrity	of
the	user’s	data.
It	tends	to	give	poor	messages	since	the	developer	can	get
by	with	no	explanatory	text	at	all.
We	can’t	 rely	on	people	always	 running	with	 -O	 in	normal
use,	so	we	can’t	use	it	for	tests	that	are	actually	expensive.
Expensive	checks	that	help	developers	are	better	turned	on
from	the	test	suite	or	a	-D	flag.
If	 used	 instead	 of	 self.assert*()	 in	 tests	 it	 makes	 them
falsely	pass	with	-O.

Documenting	Changes

When	you	change	bzrlib,	please	update	the	relevant	documentation
for	 the	 change	 you	 made:	 Changes	 to	 commands	 should	 update
their	help,	and	possibly	end	user	tutorials;	changes	to	the	core	library
should	be	reflected	in	API	documentation.

NEWS	File

If	you	make	a	user-visible	change,	please	add	a	note	to	the	NEWS
file.	 The	 description	 should	 be	 written	 to	make	 sense	 to	 someone
who’s	 just	a	user	of	bzr,	not	a	developer:	new	 functions	or	classes
shouldn’t	be	mentioned,	but	new	commands,	changes	 in	behaviour
or	fixed	nontrivial	bugs	should	be	listed.	See	the	existing	entries	for
an	idea	of	what	should	be	done.

Within	each	 release,	 entries	 in	 the	news	 file	 should	have	 the	most

user-visible	changes	first.	So	the	order	should	be	approximately:

changes	to	existing	behaviour	-	the	highest	priority	because
the	user’s	existing	knowledge	is	incorrect
new	features	-	should	be	brought	to	their	attention
bug	fixes	-	may	be	of	interest	if	the	bug	was	affecting	them,
and	should	include	the	bug	number	if	any
major	 documentation	 changes,	 including	 fixed
documentation	bugs
changes	to	internal	interfaces

People	who	made	significant	contributions	to	each	change	are	listed
in	 parenthesis.	 This	 can	 include	 reporting	 bugs	 (particularly	 with
good	details	or	reproduction	recipes),	submitting	patches,	etc.

To	 help	 with	 merging,	 NEWS	 entries	 should	 be	 sorted
lexicographically	within	each	section.

Commands

The	docstring	of	a	command	 is	used	by	 bzr	help	 to	generate	help
output	 for	 the	 command.	 The	 list	 ‘takes_options’	 attribute	 on	 a
command	 is	 used	 by	 bzr	 help	 to	 document	 the	 options	 for	 the
command	 -	 the	 command	 docstring	 does	 not	 need	 to	 document
them.	Finally,	the	‘_see_also’	attribute	on	a	command	can	be	used	to
reference	other	related	help	topics.

API	Documentation

Functions,	 methods,	 classes	 and	 modules	 should	 have	 docstrings
describing	how	they	are	used.

The	first	line	of	the	docstring	should	be	a	self-contained	sentence.

For	 the	 special	 case	 of	 Command	 classes,	 this	 acts	 as	 the	 user-

visible	documentation	shown	by	the	help	command.

The	 docstrings	 should	 be	 formatted	 as	 reStructuredText	 (like	 this
document),	suitable	for	processing	using	the	epydoc	tool	into	HTML
documentation.

General	Guidelines

Copyright

The	 copyright	 policy	 for	 bzr	 was	 recently	made	 clear	 in	 this	 email
(edited	for	grammatical	correctness):

The	attached	patch	cleans	up	the	copyright	and	license	statements	in

the	bzr	source.	It	also	adds	tests	to	help	us	remember	to	add	them

with	the	correct	text.

We	had	the	problem	that	lots	of	our	files	were	"Copyright	Canonical

Development	Ltd"	which	is	not	a	real	company,	and	some	other	variations

on	this	theme.	Also,	some	files	were	missing	the	GPL	statements.

I	want	to	be	clear	about	the	intent	of	this	patch,	since	copyright	can

be	a	little	controversial.

1)	The	big	motivation	for	this	is	not	to	shut	out	the	community,	but

just	to	clean	up	all	of	the	invalid	copyright	statements.

2)	It	has	been	the	general	policy	for	bzr	that	we	want	a	single

copyright	holder	for	all	of	the	core	code.	This	is	following	the	model

set	by	the	FSF,	which	makes	it	easier	to	update	the	code	to	a	new

license	in	case	problems	are	encountered.	(For	example,	if	we	want	to

upgrade	the	project	universally	to	GPL	v3	it	is	much	simpler	if	there	is

a	single	copyright	holder).	It	also	makes	it	clearer	if	copyright	is

ever	debated,	there	is	a	single	holder,	which	makes	it	easier	to	defend

in	court,	etc.	(I	think	the	FSF	position	is	that	if	you	assign	them

copyright,	they	can	defend	it	in	court	rather	than	you	needing	to,	and

I'm	sure	Canonical	would	do	the	same).

As	such,	Canonical	has	requested	copyright	assignments	from	all	of	the

major	contributers.

3)	If	someone	wants	to	add	code	and	not	attribute	it	to	Canonical,	there

is	a	specific	list	of	files	that	are	excluded	from	this	check.	And	the

http://docutils.sourceforge.net/rst.html
http://epydoc.sourceforge.net/

test	failure	indicates	where	that	is,	and	how	to	update	it.

4)	If	anyone	feels	that	I	changed	a	copyright	statement	incorrectly,	just

let	me	know,	and	I'll	be	happy	to	correct	it.	Whenever	you	have	large

mechanical	changes	like	this,	it	is	possible	to	make	some	mistakes.

Just	to	reiterate,	this	is	a	community	project,	and	it	is	meant	to	stay

that	way.	Core	bzr	code	is	copyright	Canonical	for	legal	reasons,	and

the	tests	are	just	there	to	help	us	maintain	that.

Miscellaneous	Topics

Debugging

Bazaar	has	a	few	facilities	to	help	debug	problems	by	going	into	pdb,
the	Python	debugger.

If	 the	 BZR_PDB	 environment	 variable	 is	 set	 then	bzr	will	 go	 into	pdb
post-mortem	mode	when	an	unhandled	exception	occurs.

If	you	send	a	SIGQUIT	or	SIGBREAK	signal	 to	bzr	 then	 it	will	drop
into	 the	 debugger	 immediately.	 SIGQUIT	 can	 be	 generated	 by
pressing	Ctrl-\	on	Unix.	SIGBREAK	is	generated	with	Ctrl-Pause	on
Windows	 (some	 laptops	have	 this	as	Fn-Pause).	You	can	continue
execution	by	 typing	 c.	This	can	be	disabled	 if	necessary	by	setting
the	environment	variable	BZR_SIGQUIT_PDB=0.

Debug	Flags

Bazaar	accepts	some	global	options	starting	with	-D	such	as	-Dhpss.
These	 set	 a	 value	 in	bzrlib.debug.debug_flags,	 and	 typically	 cause
more	 information	 to	 be	 written	 to	 the	 trace	 file.	 Most	mutter	 calls
should	be	guarded	by	a	check	of	 those	flags	so	that	we	don’t	write
out	too	much	information	if	it’s	not	needed.

Debug	 flags	 may	 have	 effects	 other	 than	 just	 emitting	 trace
messages.

Run	bzr	help	global-options	to	see	them	all.

These	 flags	 may	 also	 be	 set	 as	 a	 comma-separated	 list	 in	 the
debug_flags	option	in	e.g.	~/.bazaar/bazaar.conf.	(Note	that	it	must
be	 in	 this	 global	 file,	 not	 in	 the	 branch	 or	 location	 configuration,

http://docs.python.org/lib/debugger-commands.html

because	it’s	currently	only	loaded	at	startup	time.)	For	 instance	you
may	 want	 to	 always	 record	 hpss	 traces	 and	 to	 see	 full	 error
tracebacks:

debug_flags	=	hpss,	error

Jargon

revno
Integer	 identifier	 for	 a	 revision	 on	 the	 main	 line	 of	 a	 branch.
Revision	0	is	always	the	null	revision;	others	are	1-based	indexes
into	the	branch’s	revision	history.

Unicode	and	Encoding	Support

This	 section	 discusses	 various	 techniques	 that	 Bazaar	 uses	 to
handle	characters	that	are	outside	the	ASCII	set.

Command.outf

When	 a	 Command	 object	 is	 created,	 it	 is	 given	 a	 member	 variable
accessible	by	self.outf.	This	 is	a	file-like	object,	which	is	bound	to
sys.stdout,	and	should	be	used	 to	write	 information	 to	 the	screen,
rather	 than	 directly	 writing	 to	 sys.stdout	 or	 calling	 print.	 This	 file
has	 the	 ability	 to	 translate	 Unicode	 objects	 into	 the	 correct
representation,	 based	 on	 the	 console	 encoding.	 Also,	 the	 class
attribute	encoding_type	will	effect	how	unprintable	characters	will	be
handled.	This	parameter	can	take	one	of	3	values:

replace
Unprintable	 characters	 will	 be	 represented	 with	 a	 suitable
replacement	marker	 (typically	 ‘?’),	 and	no	exception	will	 be
raised.	This	is	for	any	command	which	generates	text	for	the
user	 to	 review,	 rather	 than	 for	 automated	 processing.	 For

example:	bzr	log	should	not	fail	if	one	of	the	entries	has	text
that	cannot	be	displayed.

strict
Attempting	 to	 print	 an	 unprintable	 character	 will	 cause	 a
UnicodeError.	This	 is	 for	commands	that	are	 intended	more
as	 scripting	 support,	 rather	 than	 plain	 user	 review.	 For
example:	bzr	ls	 is	designed	to	be	used	with	shell	scripting.
One	use	would	be	bzr	ls	--null	--unknowns	|	xargs	-0	rm.
If	 bzr	 printed	a	 filename	with	 a	 ‘?’,	 the	wrong	 file	 could	 be
deleted.	 (At	 the	 very	 least,	 the	 correct	 file	 would	 not	 be
deleted).	 An	 error	 is	 used	 to	 indicate	 that	 the	 requested
action	could	not	be	performed.

exact
Do	not	attempt	to	automatically	convert	Unicode	strings.	This
is	 used	 for	 commands	 that	 must	 handle	 conversion
themselves.	 For	 example:	 bzr	 diff	 needs	 to	 translate
Unicode	paths,	but	should	not	change	 the	exact	 text	of	 the
contents	of	the	files.

bzrlib.urlutils.unescape_for_display

Because	Transports	work	 in	URLs	 (as	defined	earlier),	 printing	 the
raw	URL	to	the	user	is	usually	less	than	optimal.	Characters	outside
the	 standard	 set	 are	 printed	 as	 escapes,	 rather	 than	 the	 real
character,	 and	 local	 paths	 would	 be	 printed	 as	 file://	 urls.	 The
function	 unescape_for_display	 attempts	 to	 unescape	 a	 URL,	 such
that	anything	that	cannot	be	printed	in	the	current	encoding	stays	an
escaped	URL,	but	valid	characters	are	generated	where	possible.

Portability	Tips

The	 bzrlib.osutils	 module	 has	 many	 useful	 helper	 functions,
including	 some	more	 portable	 variants	 of	 functions	 in	 the	 standard

library.

In	particular,	don’t	use	 shutil.rmtree	unless	 it’s	acceptable	 for	 it	 to
fail	 on	Windows	 if	 some	 files	 are	 readonly	 or	 still	 open	 elsewhere.
Use	bzrlib.osutils.rmtree	instead.

C	Extension	Modules

We	 write	 some	 extensions	 in	 C	 using	 pyrex.	 We	 design	 these	 to
work	in	three	scenarios:

User	with	no	C	compiler
User	with	C	compiler
Developers

The	recommended	way	to	install	bzr	is	to	have	a	C	compiler	so	that
the	extensions	can	be	built,	but	if	no	C	compiler	is	present,	the	pure
python	versions	we	supply	will	work,	though	more	slowly.

For	developers	we	recommend	that	pyrex	be	installed,	so	that	the	C
extensions	can	be	changed	if	needed.

For	the	C	extensions,	the	extension	module	should	always	match	the
original	 python	one	 in	 all	 respects	 (modulo	 speed).	This	 should	be
maintained	over	time.

To	 create	 an	 extension,	 add	 rules	 to	 setup.py	 for	 building	 it	 with
pyrex,	and	with	distutils.	Now	start	with	an	empty	.pyx	file.	At	the	top
add	“include	‘yourmodule.py’”.	This	will	import	the	contents	of	foo.py
into	 this	 file	at	 build	 time	 -	 remember	 that	 only	one	module	will	 be
loaded	 at	 runtime.	 Now	 you	 can	 subclass	 classes,	 or	 replace
functions,	and	only	your	changes	need	to	be	present	in	the	.pyx	file.

Note	 that	 pyrex	 does	 not	 support	 all	 2.4	 programming	 idioms,	 so
some	syntax	changes	may	be	required.	I.e.

‘from	foo	import	(bar,	gam)’	needs	to	change	to	not	use	the
brackets.
‘import	 foo.bar	 as	 bar’	 needs	 to	 be	 ‘import	 foo.bar;	 bar	 =
foo.bar’

If	 the	 changes	 are	 too	 dramatic,	 consider	 maintaining	 the	 python
code	 twice	 -	 once	 in	 the	 .pyx,	 and	 once	 in	 the	 .py,	 and	 no	 longer
including	the	.py	file.

Making	Installers	for	OS	Windows

To	 build	 a	 win32	 installer,	 see	 the	 instructions	 on	 the	 wiki	 page:
http://bazaar-vcs.org/BzrWin32Installer

http://bazaar-vcs.org/BzrWin32Installer

Core	Developer	Tasks

Overview

What	is	a	Core	Developer?

While	 everyone	 in	 the	 Bazaar	 community	 is	 welcome	 and
encouraged	 to	 propose	 and	 submit	 changes,	 a	 smaller	 team	 is
reponsible	for	pulling	those	changes	together	into	a	cohesive	whole.
In	 addition	 to	 the	 general	 developer	 stuff	 covered	 above,	 “core”
developers	have	responsibility	for:

reviewing	changes
reviewing	blueprints
planning	releases
managing	releases	(see	Releasing	Bazaar)

Note: 	Removing	barriers	to	community	participation	is	a	key
reason	for	adopting	distributed	VCS	technology.	While	DVCS
removes	many	technical	barriers,	a	small	number	of	social	barriers
are	often	necessary	instead.	By	documenting	how	the	above
things	are	done,	we	hope	to	encourage	more	people	to	participate
in	these	activities,	keeping	the	differences	between	core	and	non-
core	contributors	to	a	minimum.

Communicating	and	Coordinating

While	 it	has	many	advantages,	one	of	 the	challenges	of	distributed
development	is	keeping	everyone	else	aware	of	what	you’re	working
on.	There	are	numerous	ways	to	do	this:

1.	 Assign	bugs	to	yourself	in	Launchpad
2.	 Mention	it	on	the	mailing	list

http://doc.bazaar-vcs.org/developers/releasing.html

3.	 Mention	it	on	IRC

As	well	as	the	email	notifcations	that	occur	when	merge	requests	are
sent	 and	 reviewed,	 you	 can	 keep	 others	 informed	 of	where	 you’re
spending	your	energy	by	emailing	the	bazaar-commits	list	implicitly.
To	do	this,	install	and	configure	the	Email	plugin.	One	way	to	do	this
is	add	 these	configuration	settings	 to	 your	 central	 configuration	 file
(e.g.	~/.bazaar/bazaar.conf	on	Linux):

[DEFAULT]

email	=	Joe	Smith	<joe.smith@internode.on.net>

smtp_server	=	mail.internode.on.net:25

Then	add	these	lines	for	the	relevant	branches	in	locations.conf:

post_commit_to	=	bazaar-commits@lists.canonical.com

post_commit_mailer	=	smtplib

While	attending	a	sprint,	RobertCollins’	Dbus	plugin	is	useful	for	the
same	 reason.	 See	 the	 documentation	 within	 the	 plugin	 for
information	on	how	to	set	it	up	and	configure	it.

Submitting	Changes

An	Overview	of	PQM

Of	 the	many	workflows	 supported	 by	 Bazaar,	 the	 one	 adopted	 for
Bazaar	development	itself	is	known	as	“Decentralized	with	automatic
gatekeeper”.	To	repeat	the	explanation	of	this	given	on	http://bazaar-
vcs.org/Workflows:

In	this	workflow,	each	developer	has	their	own	branch	or
branches,	plus	read-only	access	to	the	mainline.	A	software
gatekeeper	(e.g.	PQM)	has	commit	rights	to	the	main	branch.
When	a	developer	wants	their	work	merged,	they	request	the
gatekeeper	to	merge	it.	The	gatekeeper	does	a	merge,	a

http://bazaar-vcs.org/Workflows

compile,	and	runs	the	test	suite.	If	the	code	passes,	it	is	merged
into	the	mainline.

In	a	nutshell,	here’s	the	overall	submission	process:

1.	 get	your	work	ready	(including	review	except	for	trivial	changes)
2.	 push	to	a	public	location
3.	 ask	PQM	to	merge	from	that	location

Note: 	At	present,	PQM	always	takes	the	changes	to	merge	from
a	branch	at	a	URL	that	can	be	read	by	it.	For	Bazaar,	that	means	a
public,	typically	http,	URL.

As	 a	 result,	 the	 following	 things	 are	 needed	 to	 use	 PQM	 for
submissions:

1.	 A	publicly	available	web	server
2.	 Your	OpenPGP	key	registered	with	PQM	(contact	RobertCollins

for	this)
3.	 The	 PQM	 plugin	 installed	 and	 configured	 (not	 strictly	 required

but	highly	recommended).

Selecting	a	Public	Branch	Location

If	you	don’t	have	your	own	web	server	running,	branches	can	always
be	pushed	to	Launchpad.	Here’s	the	process	for	doing	that:

Depending	 on	 your	 location	 throughout	 the	 world	 and	 the	 size	 of
your	repository	though,	it	is	often	quicker	to	use	an	alternative	public
location	 to	Launchpad,	particularly	 if	you	can	set	up	your	own	repo
and	 push	 into	 that.	 By	 using	 an	 existing	 repo,	 push	 only	 needs	 to
send	 the	 changes,	 instead	 of	 the	 complete	 repository	 every	 time.
Note	 that	 it	 is	 easy	 to	 register	 branches	 in	 other	 locations	 with
Launchpad	so	no	benefits	are	lost	by	going	this	way.

Note: 	For	Canonical	staff,	http://people.ubuntu.com/~<user>/	is
one	suggestion	for	public	http	branches.	Contact	your	manager	for
information	on	accessing	this	system	if	required.

It	 should	also	be	noted	 that	 best	 practice	 in	 this	 area	 is	 subject	 to
change	as	things	evolve.	For	example,	once	the	Bazaar	smart	server
on	 Launchpad	 supports	 server-side	 branching,	 the	 performance
situation	will	be	very	different	to	what	it	is	now	(Jun	2007).

Configuring	the	PQM	Plug-In

While	not	strictly	 required,	 the	PQM	plugin	automates	a	 few	 things
and	reduces	the	chance	of	error.	Before	looking	at	the	plugin,	it	helps
to	 understand	 a	 little	 more	 how	 PQM	 operates.	 Basically,	 PQM
requires	 an	 email	 indicating	 what	 you	 want	 it	 to	 do.	 The	 email
typically	looks	like	this:

star-merge	source-branch	target-branch

For	example:

star-merge	http://bzr.arbash-meinel.com/branches/bzr/jam-integration	http://bazaar-vcs.org/bzr/bzr.dev

Note	that	the	command	needs	to	be	on	one	line.	The	subject	of	the
email	will	be	used	for	the	commit	message.	The	email	also	needs	to
be	gpg	signed	with	a	key	that	PQM	accepts.

The	advantages	of	using	the	PQM	plugin	are:

1.	 You	can	use	the	config	policies	to	make	it	easy	to	set	up	public
branches,	so	you	don’t	have	to	ever	type	the	full	paths	you	want
to	merge	from	or	into.

2.	 It	checks	to	make	sure	 the	public	branch	 last	 revision	matches
the	local	last	revision	so	you	are	submitting	what	you	think	you

http://people.ubuntu.com

are.
3.	 It	 uses	 the	 same	 public_branch	 and	 smtp	 sending	 settings	 as

bzr-email,	so	if	you	have	one	set	up,	you	have	the	other	mostly
set	up.

4.	 Thunderbird	 refuses	 to	 not	 wrap	 lines,	 and	 request	 lines	 are
usually	pretty	long	(you	have	2	long	URLs	in	there).

Here	are	sample	configuration	settings	for	the	PQM	plugin.	Here	are
the	lines	in	bazaar.conf:

[DEFAULT]

email	=	Joe	Smith	<joe.smith@internode.on.net>

smtp_server=mail.internode.on.net:25

And	here	are	the	lines	in	locations.conf	(or	branch.conf	for	dirstate-
tags	branches):

[/home/joe/bzr/my-integration]

push_location	=	sftp://joe-smith@bazaar.launchpad.net/%7Ejoe-smith/bzr/my-integration/

push_location:policy	=	norecurse

public_branch	=	http://bazaar.launchpad.net/~joe-smith/bzr/my-integration/

public_branch:policy	=	appendpath

pqm_email	=	Bazaar	PQM	<pqm@bazaar-vcs.org>

pqm_branch	=	http://bazaar-vcs.org/bzr/bzr.dev

Note	 that	 the	 push	 settings	 will	 be	 added	 by	 the	 first	 push	 on	 a
branch.	 Indeed	 the	preferred	way	 to	generate	 the	 lines	above	 is	 to
use	push	with	an	argument,	then	copy-and-paste	the	other	lines	into
the	relevant	file.

Submitting	a	Change

Here	is	one	possible	recipe	once	the	above	environment	is	set	up:

1.	 pull	bzr.dev	=>	my-integration
2.	 merge	patch	=>	my-integration

3.	 fix	up	any	final	merge	conflicts	(NEWS	being	the	big	killer	here).
4.	 commit
5.	 push
6.	 pqm-submit

Note: 	The	push	step	is	not	required	if	my-integration	is	a
checkout	of	a	public	branch.

Because	of	defaults,	 you	can	 type	a	single	message	 into	commit
and	pqm-commit	will	reuse	that.

Tracking	Change	Acceptance

The	 web	 interface	 to	 PQM	 is	 https://pqm.bazaar-vcs.org/.	 After
submitting	 a	 change,	 you	 can	 visit	 this	 URL	 to	 confirm	 it	 was
received	and	placed	in	PQM’s	queue.

When	PQM	completes	processing	a	change,	an	email	is	sent	to	you
with	the	results.

Reviewing	Blueprints

Blueprint	Tracking	Using	Launchpad

New	 features	 typically	 require	 a	 fair	 amount	 of	 discussion,	 design
and	debate.	For	Bazaar,	 that	 information	 is	often	captured	 in	a	so-
called	“blueprint”	on	our	Wiki.	Overall	tracking	of	blueprints	and	their
status	 is	 done	 using	 Launchpad’s	 relevant	 tracker,
https://blueprints.launchpad.net/bzr/.	 Once	 a	 blueprint	 for	 ready	 for
review,	please	announce	it	on	the	mailing	list.

Alternatively,	send	an	email	beginning	with	 [RFC]	with	 the	proposal
to	the	list.	In	some	cases,	you	may	wish	to	attach	proposed	code	or
a	proposed	developer	document	if	that	best	communicates	the	idea.

https://pqm.bazaar-vcs.org/
https://blueprints.launchpad.net/bzr/

Debate	can	then	proceed	using	the	normal	merge	review	processes.

Recording	Blueprint	Review	Feedback

Unlike	 its	 Bug	 Tracker,	 Launchpad’s	 Blueprint	 Tracker	 doesn’t
currently	 (Jun	 2007)	 support	 a	 chronological	 list	 of	 comment
responses.	 Review	 feedback	 can	 either	 be	 recorded	 on	 the	 Wiki
hosting	the	blueprints	or	by	using	Launchpad’s	whiteboard	feature.

Planning	Releases

Using	Releases	and	Milestones	in	Launchpad

TODO	...	(Exact	policies	still	under	discussion)

Bug	Triage

Keeping	 on	 top	 of	 bugs	 reported	 is	 an	 important	 part	 of	 ongoing
release	 planning.	 Everyone	 in	 the	 community	 is	 welcome	 and
encouraged	 to	 raise	 bugs,	 confirm	 bugs	 raised	 by	 others,	 and
nominate	 a	 priority.	 Practically	 though,	 a	 good	 percentage	 of	 bug
triage	is	often	done	by	the	core	developers,	partially	because	of	their
depth	of	product	knowledge.

With	respect	 to	bug	triage,	core	developers	are	encouraged	to	play
an	active	role	with	particular	attention	to	the	following	tasks:

keeping	the	number	of	unconfirmed	bugs	low
ensuring	the	priorities	are	generally	right	(everything	as	critical	-
or	medium	-	is	meaningless)
looking	 out	 for	 regressions	 and	 turning	 those	 around	 sooner
rather	than	later.

Note: 	As	well	as	prioritizing	bugs	and	nominating	them	against	a
target	milestone,	Launchpad	lets	core	developers	offer	to	mentor

others	in	fixing	them.

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Bazaar	Testing	Guide

The	Importance	of	Testing
Reliability	is	a	critical	success	factor	for	any	Version	Control	System.
We	want	Bazaar	to	be	highly	reliable	across	multiple	platforms	while
evolving	over	time	to	meet	the	needs	of	its	community.

In	a	nutshell,	this	is	what	we	expect	and	encourage:

New	 functionality	 should	 have	 test	 cases.	 Preferably	write	 the
test	before	writing	the	code.

In	general,	you	can	test	at	either	the	command-line	level	or	the
internal	API	level.	See	Writing	tests	below	for	more	detail.

Try	 to	 practice	 Test-Driven	 Development:	 before	 fixing	 a	 bug,
write	a	test	case	so	that	it	does	not	regress.	Similarly	for	adding
a	new	feature:	write	a	 test	case	 for	a	small	version	of	 the	new
feature	before	starting	on	the	code	itself.	Check	the	test	fails	on
the	old	code,	then	add	the	feature	or	fix	and	check	it	passes.

By	doing	 these	 things,	 the	Bazaar	 team	gets	 increased	confidence
that	changes	do	what	they	claim	to	do,	whether	provided	by	the	core
team	 or	 by	 community	 members.	 Equally	 importantly,	 we	 can	 be
surer	that	changes	down	the	track	do	not	break	new	features	or	bug
fixes	that	you	are	contributing	today.

As	of	September	2009,	Bazaar	ships	with	a	test	suite	containing	over
23,000	tests	and	growing.	We	are	proud	of	it	and	want	to	remain	so.
As	 community	 members,	 we	 all	 benefit	 from	 it.	 Would	 you	 trust
version	control	on	your	project	 to	a	product	without	a	 test	suite	 like
Bazaar	has?

Running	the	Test	Suite
As	of	Bazaar	2.1,	you	must	have	the	testtools	library	installed	to	run
the	bzr	test	suite.

To	test	all	of	Bazaar,	just	run:

bzr	selftest

With	--verbose	bzr	will	print	the	name	of	every	test	as	it	is	run.

This	 should	 always	 pass,	 whether	 run	 from	 a	 source	 tree	 or	 an
installed	 copy	 of	 Bazaar.	 Please	 investigate	 and/or	 report	 any
failures.

Running	particular	tests

Currently,	 bzr	 selftest	 is	 used	 to	 invoke	 tests.	 You	 can	 provide	 a
pattern	 argument	 to	 run	 a	 subset.	 For	 example,	 to	 run	 just	 the
blackbox	tests,	run:

./bzr	selftest	-v	blackbox

To	 skip	 a	 particular	 test	 (or	 set	 of	 tests),	 use	 the	 –exclude	 option
(shorthand	-x)	like	so:

./bzr	selftest	-v	-x	blackbox

To	ensure	that	all	 tests	are	being	run	and	succeeding,	you	can	use
the	–strict	option	which	will	 fail	 if	 there	are	any	missing	 features	or
known	failures,	like	so:

./bzr	selftest	--strict

https://launchpad.net/testtools/

To	list	tests	without	running	them,	use	the	–list-only	option	like	so:

./bzr	selftest	--list-only

This	option	can	be	combined	with	other	selftest	options	(like	-x)	and
filter	patterns	to	understand	their	effect.

Once	you	understand	how	to	create	a	list	of	tests,	you	can	use	the	–
load-list	option	to	run	only	a	restricted	set	of	tests	that	you	kept	in	a
file,	one	test	id	by	line.	Keep	in	mind	that	this	will	never	be	sufficient
to	validate	your	modifications,	you	still	need	to	run	the	full	test	suite
for	 that,	 but	 using	 it	 can	help	 in	 some	cases	 (like	 running	only	 the
failed	tests	for	some	time):

./bzr	selftest	--	load-list	my_failing_tests

This	 option	 can	 also	 be	 combined	 with	 other	 selftest	 options,
including	 patterns.	 It	 has	 some	 drawbacks	 though,	 the	 list	 can
become	 out	 of	 date	 pretty	 quick	 when	 doing	 Test	 Driven
Development.

To	address	this	concern,	there	is	another	way	to	run	a	restricted	set
of	tests:	the	–starting-with	option	will	run	only	the	tests	whose	name
starts	 with	 the	 specified	 string.	 It	 will	 also	 avoid	 loading	 the	 other
tests	and	as	a	consequence	starts	running	your	tests	quicker:

./bzr	selftest	--starting-with	bzrlib.blackbox

This	 option	 can	 be	 combined	 with	 all	 the	 other	 selftest	 options
including	 –load-list.	 The	 later	 is	 rarely	 used	 but	 allows	 to	 run	 a
subset	of	a	list	of	failing	tests	for	example.

Disabling	plugins

To	 test	 only	 the	 bzr	 core,	 ignoring	 any	 plugins	 you	 may	 have

installed,	use:

./bzr	--no-plugins	selftest

Disabling	crash	reporting

By	 default	 Bazaar	 uses	 apport	 to	 report	 program	 crashes.	 In
developing	 Bazaar	 it’s	 normal	 and	 expected	 to	 have	 it	 crash	 from
time	to	time,	at	least	because	a	test	failed	if	for	no	other	reason.

Therefore	you	should	probably	add	debug_flags	=	no_apport	to	your
bazaar.conf	file	(in	~/.bazaar/	on	Unix),	so	 that	 failures	 just	print	a
traceback	rather	than	writing	a	crash	file.

Test	suite	debug	flags

Similar	to	the	global	-Dfoo	debug	options,	bzr	selftest	accepts	-E=foo
debug	flags.	These	flags	are:

allow_debug:

do	not	clear	 the	global	debug	flags	when	running	a
test.	This	can	provide	useful	 logging	 to	help	debug
test	 failures	 when	 used	 with	 e.g.	 bzr	 -Dhpss

selftest	-E=allow_debug

Note	that	this	will	probably	cause	some	tests	to	fail,
because	 they	 don’t	 expect	 to	 run	 with	 any	 debug
flags	on.

Using	subunit

Bazaar	 can	 optionally	 produce	 output	 in	 the	 machine-readable
subunit	format,	so	that	test	output	can	be	post-processed	by	various
tools.	To	generate	a	subunit	test	stream:

$./bzr	selftest	--subunit

https://launchpad.net/apport/
https://launchpad.net/subunit/

Processing	 such	 a	 stream	 can	 be	 done	 using	 a	 variety	 of	 tools
including:

The	 builtin	 subunit2pyunit,	 subunit-filter,	 subunit-ls,
subunit2junitxml	from	the	subunit	project.
tribunal,	a	GUI	for	showing	test	results.
testrepository,	a	tool	for	gathering	and	managing	test	runs.

Using	testrepository

Bazaar	 ships	with	 a	 config	 file	 for	 testrepository.	 This	 can	 be	 very
useful	 for	 keeping	 track	of	 failing	 tests	and	doing	general	workflow
support.	To	run	tests	using	testrepository:

$	testr	run

To	run	only	failing	tests:

$	testr	run	--failing

To	run	only	some	tests,	without	plugins:

$	test	run	test_selftest	--	--no-plugins

See	the	testrepository	documentation	for	more	details.

https://launchpad.net/tribunal/
https://launchpad.net/testrepository
https://launchpad.net/testrepository

Writing	Tests
Normally	 you	 should	 add	 or	 update	 a	 test	 for	 all	 bug	 fixes	 or	 new
features	in	Bazaar.

Where	should	I	put	a	new	test?

Bzrlib’s	 tests	are	organised	by	 the	 type	of	 test.	Most	of	 the	 tests	 in
bzr’s	test	suite	belong	to	one	of	these	categories:

Unit	tests
Blackbox	(UI)	tests
Per-implementation	tests
Doctests

A	 quick	 description	 of	 these	 test	 types	 and	 where	 they	 belong	 in
bzrlib’s	 source	 follows.	 Not	 all	 tests	 fall	 neatly	 into	 one	 of	 these
categories;	in	those	cases	use	your	judgement.

Unit	tests

Unit	tests	make	up	the	bulk	of	our	test	suite.	These	are	tests	that	are
focused	on	exercising	a	single,	specific	unit	of	the	code	as	directly	as
possible.	Each	unit	test	is	generally	fairly	short	and	runs	very	quickly.

They	 are	 found	 in	 bzrlib/tests/test_*.py.	 So	 in	 general	 tests
should	 be	 placed	 in	 a	 file	 named	 test_FOO.py	 where	 FOO	 is	 the
logical	thing	under	test.

For	 example,	 tests	 for	 merge3	 in	 bzrlib	 belong	 in
bzrlib/tests/test_merge3.py.	 See	 bzrlib/tests/test_sampler.py	 for	 a
template	test	script.

Blackbox	(UI)	tests

Tests	can	be	written	 for	 the	UI	or	 for	 individual	areas	of	 the	 library.
Choose	whichever	 is	 appropriate:	 if	 adding	 a	 new	 command,	 or	 a
new	command	option,	then	you	should	be	writing	a	UI	test.	If	you	are
both	adding	UI	functionality	and	library	functionality,	you	will	want	to
write	tests	for	both	the	UI	and	the	core	behaviours.	We	call	UI	tests
‘blackbox’	tests	and	they	belong	in	bzrlib/tests/blackbox/*.py.

When	 writing	 blackbox	 tests	 please	 honour	 the	 following
conventions:

1.	 Place	 the	 tests	 for	 the	 command	 ‘name’	 in
bzrlib/tests/blackbox/test_name.py.	 This	 makes	 it	 easy	 for
developers	to	locate	the	test	script	for	a	faulty	command.

2.	 Use	 the	 ‘self.run_bzr(“name”)’	 utility	 function	 to	 invoke	 the
command	 rather	 than	 running	 bzr	 in	 a	 subprocess	 or
invoking	the	cmd_object.run()	method	directly.	This	 is	a	 lot
faster	 than	subprocesses	and	generates	 the	same	 logging
output	 as	 running	 it	 in	 a	 subprocess	 (which	 invoking	 the
method	directly	does	not).

3.	 Only	test	the	one	command	in	a	single	test	script.	Use	the
bzrlib	library	when	setting	up	tests	and	when	evaluating	the
side-effects	of	the	command.	We	do	this	so	that	the	library
api	has	continual	pressure	on	 it	 to	be	as	 functional	as	 the
command	line	in	a	simple	manner,	and	to	isolate	knock-on
effects	throughout	the	blackbox	test	suite	when	a	command
changes	 its	name	or	signature.	 Ideally	only	 the	 tests	 for	a
given	 command	 are	 affected	 when	 a	 given	 command	 is
changed.

4.	 If	you	have	a	test	which	does	actually	require	running	bzr	in
a	subprocess	you	can	use	 run_bzr_subprocess.	By	default
the	spawned	process	will	not	 load	plugins	unless	--allow-
plugins	is	supplied.

Per-implementation	tests

Per-implementation	 tests	 are	 tests	 that	 are	 defined	 once	 and	 then
run	 against	multiple	 implementations	 of	 an	 interface.	 For	 example,
per_transport.py	 defines	 tests	 that	 all	 Transport	 implementations
(local	 filesystem,	 HTTP,	 and	 so	 on)	must	 pass.	 They	 are	 found	 in
bzrlib/tests/per_*/*.py,	and	bzrlib/tests/per_*.py.

These	are	really	a	sub-category	of	unit	tests,	but	an	important	one.

Along	the	same	lines	are	tests	for	extension	modules.	We	generally
have	 both	 a	 pure-python	 and	 a	 compiled	 implementation	 for	 each
module.	 As	 such,	 we	 want	 to	 run	 the	 same	 tests	 against	 both
implementations.	 These	 can	 generally	 be	 found	 in
bzrlib/tests/*__*.py	since	extension	modules	are	usually	prefixed
with	 an	 underscore.	 Since	 there	 are	 only	 two	 implementations,	we
have	 a	 helper	 function	 bzrlib.tests.permute_for_extension,	which
can	simplify	the	load_tests	implementation.

Doctests

We	make	selective	use	of	doctests.	 In	general	 they	should	provide
examples	 within	 the	 API	 documentation	 which	 can	 incidentally	 be
tested.	We	don’t	 try	 to	 test	every	 important	 case	using	doctests	—
regular	Python	tests	are	generally	a	better	solution.	That	is,	we	just
use	doctests	 to	make	our	documentation	 testable,	 rather	 than	as	a
way	to	make	tests.

Most	of	these	are	in	bzrlib/doc/api.	More	additions	are	welcome.

Shell-like	tests

bzrlib/tests/script.py	allows	users	 to	write	 tests	 in	a	syntax	very
close	 to	 a	 shell	 session,	 using	 a	 restricted	 and	 limited	 set	 of
commands	that	should	be	enough	to	mimic	most	of	the	behaviours.

http://docs.python.org/lib/module-doctest.html

A	script	is	a	set	of	commands,	each	command	is	composed	of:

one	mandatory	command	line,
one	optional	set	of	input	lines	to	feed	the	command,
one	optional	set	of	output	expected	lines,
one	optional	set	of	error	expected	lines.

Input,	output	and	error	lines	can	be	specified	in	any	order.

Except	 for	 the	 expected	 output,	 all	 lines	 start	 with	 a	 special	 string
(based	on	their	origin	when	used	under	a	Unix	shell):

‘$	‘	for	the	command,
‘<’	for	input,
nothing	for	output,
‘2>’	for	errors,

Comments	can	be	added	anywhere,	they	start	with	‘#’	and	end	with
the	line.

The	execution	stops	as	soon	as	an	expected	output	or	an	expected
error	is	not	matched.

When	 no	 output	 is	 specified,	 any	 ouput	 from	 the	 command	 is
accepted	and	execution	continue.

If	an	error	occurs	and	no	expected	error	 is	specified,	 the	execution
stops.

An	error	 is	defined	by	a	 returned	status	different	 from	zero,	not	by
the	presence	of	text	on	the	error	stream.

The	matching	is	done	on	a	full	string	comparison	basis	unless	‘...’	is
used,	in	which	case	expected	output/errors	can	be	less	precise.

Examples:

The	following	will	succeeds	only	if	‘bzr	add’	outputs	‘adding	file’:

$	bzr	add	file

>adding	file

If	you	want	the	command	to	succeed	for	any	output,	just	use:

$	bzr	add	file

The	following	will	stop	with	an	error:

$	bzr	not-a-command

If	you	want	it	to	succeed,	use:

$	bzr	not-a-command

2>	bzr:	ERROR:	unknown	command	"not-a-command"

You	can	use	ellipsis	(...)	to	replace	any	piece	of	text	you	don’t	want
to	be	matched	exactly:

$	bzr	branch	not-a-branch

2>bzr:	ERROR:	Not	a	branch...not-a-branch/".

This	can	be	used	to	ignore	entire	lines	too:

$	cat

<first	line

<second	line

<third	line

#	And	here	we	explain	that	surprising	fourth	line

<fourth	line

<last	line

>first	line

>...

>last	line

You	can	check	the	content	of	a	file	with	cat:

$	cat	<file

>expected	content

You	can	also	check	the	existence	of	a	file	with	cat,	the	following	will
fail	if	the	file	doesn’t	exist:

$	cat	file

The	actual	use	of	ScriptRunner	within	a	TestCase	 looks	something
like	this:

def	test_unshelve_keep(self):

								#	some	setup	here

								sr	=	ScriptRunner()

								sr.run_script(self,	'''

$	bzr	add	file

$	bzr	shelve	--all	-m	Foo

$	bzr	shelve	--list

1:	Foo

$	bzr	unshelve	--keep

$	bzr	shelve	--list

1:	Foo

$	cat	file

contents	of	file

''')

Import	tariff	tests

bzrlib.tests.test_import_tariff	has	some	tests	that	measure	how	many
Python	modules	are	loaded	to	run	some	representative	commands.

We	want	to	avoid	loading	code	unnecessarily,	for	reasons	including:

Python	modules	 are	 interpreted	when	 they’re	 loaded,	 either	 to
define	 classes	 or	 modules	 or	 perhaps	 to	 initialize	 some
structures.
With	a	cold	cache	we	may	 incur	blocking	real	disk	 IO	for	each
module.
Some	modules	depend	on	many	others.

Some	optional	modules	such	as	 testtools	are	meant	 to	be	soft
dependencies	 and	 only	 needed	 for	 particular	 cases.	 If	 they’re
loaded	in	other	cases	then	bzr	may	break	for	people	who	don’t
have	those	modules.

test_import_tarrif	allows	us	to	check	that	removal	of	imports	doesn’t
regress.

This	 is	 done	 by	 running	 the	 command	 in	 a	 subprocess	 with	 --
profile-imports.	Starting	a	whole	Python	 interpreter	 is	pretty	 slow,
so	we	don’t	want	exhaustive	 testing	here,	but	 just	enough	 to	guard
against	distinct	fixed	problems.

Assertions	 about	 precisely	 what	 is	 loaded	 tend	 to	 be	 brittle	 so	we
instead	make	assertions	that	particular	things	aren’t	loaded.

Unless	selftest	 is	 run	with	 --no-plugins,	modules	will	 be	 loaded	 in
the	usual	way	and	checks	made	on	what	 they	cause	 to	be	 loaded.
This	is	probably	worth	checking	into,	because	many	bzr	users	have
at	 least	 some	 plugins	 installed	 (and	 they’re	 included	 in	 binary
installers).

In	theory,	plugins	might	have	a	good	reason	to	load	almost	anything:
someone	might	 write	 a	 plugin	 that	 opens	 a	 network	 connection	 or
pops	up	a	gui	window	every	time	you	run	‘bzr	status’.	However,	 it’s
more	 likely	 that	 the	 code	 to	 do	 these	 things	 is	 just	 being	 loaded
accidentally.	 We	 might	 eventually	 need	 to	 have	 a	 way	 to	 make
exceptions	for	particular	plugins.

Some	things	to	check:

non-GUI	commands	shouldn’t	load	GUI	libraries
operations	on	bzr	 native	 formats	 sholudn’t	 load	 foreign	branch
libraries
network	code	shouldn’t	be	loaded	for	purely	local	operations

particularly	 expensive	 Python	 built-in	 modules	 shouldn’t	 be
loaded	unless	there	is	a	good	reason

Testing	locking	behaviour

You	 may	 want	 to	 write	 tests	 that	 particular	 objects	 are	 or	 aren’t
locked	during	particular	operations:	see	for	example	bug	498409.

The	TestCase	 base	 class	 registers	 hooks	 that	 record	 lock	 actions
into	._lock_actions	in	this	format:

[

		('acquired',	LockResult(file:///tmp/testbzr-J2pcy2.tmp/.bzr/branch-lockc4au55ppz8wdym11z1aq)),

		('released',	LockResult(file:///tmp/testbzr-J2pcy2.tmp/.bzr/branch-lockc4au55ppz8wdym11z1aq)),

		('acquired',	LockResult(file:///tmp/testbzr-J2pcy2.tmp/.bzr/repository/lockyxb3rn4sw1oyx1jzkt45)),

		('released',	LockResult(file:///tmp/testbzr-J2pcy2.tmp/.bzr/repository/lockyxb3rn4sw1oyx1jzkt45)),

		('acquired',	LockResult(file:///tmp/testbzr-J2pcy2.tmp/.bzr/branch/lockh8c6t28rcjdkgxtndbje)),

		('released',	LockResult(file:///tmp/testbzr-J2pcy2.tmp/.bzr/branch/lockh8c6t28rcjdkgxtndbje)),

		...

Alternatively	 you	 can	 register	 your	 own	 hooks	 to	 make	 custom
assertions:	see	TestCase._check_locks	for	an	example.

Skipping	tests

In	our	enhancements	 to	unittest	we	allow	 for	some	addition	 results
beyond	just	success	or	failure.

If	a	test	can’t	be	run,	it	can	say	that	it’s	skipped	by	raising	a	special
exception.	 This	 is	 typically	 used	 in	 parameterized	 tests	 —	 for
example	if	a	transport	doesn’t	support	setting	permissions,	we’ll	skip
the	tests	that	relating	to	that.

try:

				return	self.branch_format.initialize(repo.bzrdir)

except	errors.UninitializableFormat:

				raise	tests.TestSkipped('Uninitializable	branch	format')

https://launchpad.net/bugs/498409

Raising	TestSkipped	is	a	good	idea	when	you	want	to	make	it	clear
that	 the	 test	was	not	 run,	 rather	 than	 just	 returning	which	makes	 it
look	as	if	it	was	run	and	passed.

Several	different	cases	are	distinguished:

TestSkipped
Generic	skip;	the	only	type	that	was	present	up	to	bzr	0.18.

TestNotApplicable
The	 test	doesn’t	apply	 to	 the	parameters	with	which	 it	was	 run.
This	 is	 typically	 used	 when	 the	 test	 is	 being	 applied	 to	 all
implementations	 of	 an	 interface,	 but	 some	 aspects	 of	 the
interface	 are	 optional	 and	 not	 present	 in	 particular	 concrete
implementations.	 (Some	 tests	 that	 should	 raise	 this	 currently
either	 silently	 return	 or	 raise	 TestSkipped.)	 Another	 option	 is	 to
use	more	precise	parameterization	to	avoid	generating	the	test	at
all.

UnavailableFeature
The	test	can’t	be	run	because	a	dependency	(typically	a	Python
library)	 is	 not	 available	 in	 the	 test	 environment.	 These	 are	 in
general	 things	 that	 the	 person	 running	 the	 test	 could	 fix	 by
installing	the	library.	It’s	OK	if	some	of	these	occur	when	an	end
user	 runs	 the	 tests	 or	 if	 we’re	 specifically	 testing	 in	 a	 limited
environment,	but	a	full	test	should	never	see	them.

See	Test	feature	dependencies	below.

KnownFailure
The	 test	 exists	 but	 is	 known	 to	 fail,	 for	 example	 this	 might	 be
appropriate	 to	raise	 if	you’ve	committed	a	 test	 for	a	bug	but	not
the	fix	for	it,	or	if	something	works	on	Unix	but	not	on	Windows.

Raising	this	allows	you	to	distinguish	these	failures	from	the	ones
that	 are	 not	 expected	 to	 fail.	 If	 the	 test	 would	 fail	 because	 of
something	we	don’t	expect	or	 intend	 to	 fix,	KnownFailure	 is	not

appropriate,	and	TestNotApplicable	might	be	better.

KnownFailure	 should	 be	 used	 with	 care	 as	 we	 don’t	 want	 a
proliferation	of	quietly	broken	tests.

We	plan	to	support	three	modes	for	running	the	test	suite	to	control
the	interpretation	of	these	results.	Strict	mode	is	for	use	in	situations
like	merges	 to	 the	mainline	 and	 releases	where	we	want	 to	make
sure	that	everything	that	can	be	tested	has	been	tested.	Lax	mode	is
for	use	by	developers	who	want	to	temporarily	tolerate	some	known
failures.	The	default	behaviour	 is	obtained	by	 bzr	selftest	with	no
options,	 and	 also	 (if	 possible)	 by	 running	 under	 another	 unittest
harness.

result strict default lax
TestSkipped pass pass pass
TestNotApplicable pass pass pass
UnavailableFeature fail pass pass
KnownFailure fail pass pass

Test	feature	dependencies

Writing	tests	that	require	a	feature

Rather	than	manually	checking	the	environment	 in	each	test,	a	test
class	can	declare	its	dependence	on	some	test	features.	The	feature
objects	are	checked	only	once	for	each	run	of	the	whole	test	suite.

(For	 historical	 reasons,	 as	 of	 May	 2007	 many	 cases	 that	 should
depend	on	features	currently	raise	TestSkipped.)

For	example:

class	TestStrace(TestCaseWithTransport):

				_test_needs_features	=	[StraceFeature]

This	means	all	 tests	 in	 this	class	need	 the	 feature.	 If	 the	 feature	 is
not	available	the	test	will	be	skipped	using	UnavailableFeature.

Individual	 tests	can	also	require	a	feature	using	the	requireFeature
method:

self.requireFeature(StraceFeature)

The	old	naming	style	for	features	is	CamelCase,	but	because	they’re
actually	 instances	 not	 classses	 they’re	 now	 given	 instance-style
names	like	apport.

Features	 already	 defined	 in	 bzrlib.tests	 and
bzrlib.tests.features	include:

apport
paramiko
SymlinkFeature
HardlinkFeature
OsFifoFeature
UnicodeFilenameFeature
FTPServerFeature
CaseInsensitiveFilesystemFeature.
chown_feature:	The	test	can	rely	on	OS	being	POSIX	and
python	supporting	os.chown.
posix_permissions_feature:	 The	 test	 can	 use	 POSIX-style
user/group/other	permission	bits.

Defining	a	new	feature	that	tests	can	require

New	 features	 for	 use	with	 _test_needs_features	or	 requireFeature
are	defined	by	subclassing	bzrlib.tests.Feature	and	overriding	the
_probe	and	feature_name	methods.	For	example:

class	_SymlinkFeature(Feature):

				def	_probe(self):

								return	osutils.has_symlinks()

				def	feature_name(self):

								return	'symlinks'

SymlinkFeature	=	_SymlinkFeature()

A	 helper	 for	 handling	 running	 tests	 based	 on	 whether	 a	 python
module	 is	 available.	 This	 can	 handle	 3rd-party	 dependencies	 (is
paramiko	available?)	as	well	as	stdlib	(termios)	or	extension	modules
(bzrlib._groupcompress_pyx).	 You	 create	 a	 new	 feature	 instance
with:

#	in	bzrlib/tests/features.py

apport	=	tests.ModuleAvailableFeature('apport')

#	then	in	bzrlib/tests/test_apport.py

class	TestApportReporting(TestCaseInTempDir):

				_test_needs_features	=	[features.apport]

Testing	exceptions	and	errors

It’s	important	to	test	handling	of	errors	and	exceptions.	Because	this
code	is	often	not	hit	in	ad-hoc	testing	it	can	often	have	hidden	bugs	–
it’s	 particularly	 common	 to	 get	 NameError	 because	 the	 exception
code	references	a	variable	that	has	since	been	renamed.

In	general	we	want	to	test	errors	at	two	levels:

1.	 A	 test	 in	 test_errors.py	 checking	 that	 when	 the	 exception
object	 is	 constructed	 with	 known	 parameters	 it	 produces	 an
expected	string	form.	This	guards	against	mistakes	in	writing	the
format	 string,	 or	 in	 the	 str	 representations	 of	 its	 parameters.
There	should	be	one	for	each	exception	class.

2.	 Tests	that	when	an	api	is	called	in	a	particular	situation,	it	raises
an	 error	 of	 the	 expected	 class.	 You	 should	 typically	 use
assertRaises,	 which	 in	 the	 Bazaar	 test	 suite	 returns	 the
exception	object	to	allow	you	to	examine	its	parameters.

In	some	cases	blackbox	tests	will	also	want	to	check	error	reporting.
But	 it	 can	 be	 difficult	 to	 provoke	 every	 error	 through	 the
commandline	 interface,	so	 those	 tests	are	only	done	as	needed	—
eg	 in	 response	 to	 a	 particular	 bug	 or	 if	 the	 error	 is	 reported	 in	 an
unusual	 way(?)	 Blackbox	 tests	 should	 mostly	 be	 testing	 how	 the
command-line	 interface	works,	so	should	only	 test	errors	 if	 there	 is
something	particular	to	the	cli	in	how	they’re	displayed	or	handled.

Testing	warnings

The	 Python	 warnings	 module	 is	 used	 to	 indicate	 a	 non-fatal	 code
problem.	 Code	 that’s	 expected	 to	 raise	 a	 warning	 can	 be	 tested
through	callCatchWarnings.

The	test	suite	can	be	run	with	-Werror	to	check	no	unexpected	errors
occur.

However,	 warnings	 should	 be	 used	 with	 discretion.	 It’s	 not	 an
appropriate	way	to	give	messages	to	the	user,	because	the	warning
is	 normally	 shown	 only	 once	 per	 source	 line	 that	 causes	 the
problem.	You	should	also	think	about	whether	the	warning	is	serious
enought	that	it	should	be	visible	to	users	who	may	not	be	able	to	fix
it.

Interface	implementation	testing	and	test	scenarios

There	are	several	cases	 in	Bazaar	of	multiple	 implementations	of	a
common	 conceptual	 interface.	 (“Conceptual”	 because	 it’s	 not
necessary	for	all	the	implementations	to	share	a	base	class,	though

they	 often	 do.)	 Examples	 include	 transports	 and	 the	 working	 tree,
branch	and	repository	classes.

In	 these	 cases	 we	 want	 to	 make	 sure	 that	 every	 implementation
correctly	 fulfils	 the	 interface	 requirements.	 For	 example,	 every
Transport	should	support	the	has()	and	get()	and	clone()	methods.
We	 have	 a	 sub-suite	 of	 tests	 in	 test_transport_implementations.
(Most	per-implementation	 tests	are	 in	submodules	of	 bzrlib.tests,
but	not	the	transport	tests	at	the	moment.)

These	 tests	 are	 repeated	 for	 each	 registered	 Transport,	 by
generating	 a	 new	 TestCase	 instance	 for	 the	 cross	 product	 of	 test
methods	 and	 transport	 implementations.	 As	 each	 test	 runs,	 it	 has
transport_class	and	transport_server	set	to	the	class	it	should	test.
Most	 tests	 don’t	 access	 these	 directly,	 but	 rather	 use
self.get_transport	 which	 returns	 a	 transport	 of	 the	 appropriate
type.

The	goal	is	to	run	per-implementation	only	the	tests	that	relate	to	that
particular	 interface.	 Sometimes	 we	 discover	 a	 bug	 elsewhere	 that
happens	with	only	one	particular	transport.	Once	it’s	isolated,	we	can
consider	 whether	 a	 test	 should	 be	 added	 for	 that	 particular
implementation,	or	for	all	implementations	of	the	interface.

The	multiplication	 of	 tests	 for	 different	 implementations	 is	 normally
accomplished	 by	 overriding	 the	 load_tests	 function	 used	 to	 load
tests	 from	a	module.	This	 function	 typically	 loads	all	 the	 tests,	 then
applies	 a	 TestProviderAdapter	 to	 them,	 which	 generates	 a	 longer
suite	containing	all	the	test	variations.

See	also	Per-implementation	tests	(above).

Test	scenarios

Some	 utilities	 are	 provided	 for	 generating	 variations	 of	 tests.	 This

can	be	used	for	per-implementation	tests,	or	other	cases	where	the
same	test	code	needs	to	run	several	times	on	different	scenarios.

The	 general	 approach	 is	 to	 define	 a	 class	 that	 provides	 test
methods,	which	depend	on	attributes	of	the	test	object	being	pre-set
with	 the	 values	 to	which	 the	 test	 should	be	applied.	The	 test	 suite
should	then	also	provide	a	list	of	scenarios	in	which	to	run	the	tests.

Typically	multiply_tests_from_modules	should	be	called	from	the	test
module’s	load_tests	function.

Test	support

We	have	a	rich	collection	of	tools	to	support	writing	tests.	Please	use
them	 in	 preference	 to	 ad-hoc	 solutions	 as	 they	 provide	 portability
and	performance	benefits.

TestCase	and	its	subclasses

The	 bzrlib.tests	 module	 defines	 many	 TestCase	 classes	 to	 help
you	write	your	tests.

TestCase
A	 base	 TestCase	 that	 extends	 the	 Python	 standard	 library’s
TestCase	 in	several	ways.	 It	adds	more	assertion	methods	(e.g.
assertContainsRe),	 addCleanup,	 and	 other	 features	 (see	 its	 API
docs	for	details).	It	also	has	a	setUp	 that	makes	sure	that	global
state	 like	 registered	hooks	and	 loggers	won’t	 interfere	with	your
test.	All	tests	should	use	this	base	class	(whether	directly	or	via	a
subclass).

TestCaseWithMemoryTransport
Extends	 TestCase	 and	 adds	 methods	 like	 get_transport,
make_branch	 and	 make_branch_builder.	 The	 files	 created	 are
stored	 in	a	MemoryTransport	 that	 is	discarded	at	 the	end	of	 the

test.	This	class	 is	good	for	 tests	 that	need	to	make	branches	or
use	 transports,	 but	 that	 don’t	 require	 storing	 things	 on	 disk.	 All
tests	that	create	bzrdirs	should	use	this	base	class	(either	directly
or	 via	 a	 subclass)	 as	 it	 ensures	 that	 the	 test	won’t	 accidentally
operate	on	real	branches	in	your	filesystem.

TestCaseInTempDir
Extends	TestCaseWithMemoryTransport.	For	 tests	 that	 really	do
need	files	to	be	stored	on	disk,	e.g.	because	a	subprocess	uses	a
file,	 or	 for	 testing	 functionality	 that	 accesses	 the	 filesystem
directly	rather	than	via	the	Transport	layer	(such	as	dirstate).

TestCaseWithTransport
Extends	 TestCaseInTempDir.	 Provides	 get_url	 and
get_readonly_url	facilities.	Subclasses	can	control	the	transports
used	by	setting	vfs_transport_factory,	transport_server	and/or
transport_readonly_server.

See	the	API	docs	for	more	details.

BranchBuilder

When	writing	 a	 test	 for	 a	 feature,	 it	 is	 often	 necessary	 to	 set	 up	a
branch	with	a	certain	history.	The	BranchBuilder	interface	allows	the
creation	 of	 test	 branches	 in	 a	 quick	 and	 easy	 manner.	 Here’s	 a
sample	session:

builder	=	self.make_branch_builder('relpath')

builder.build_commit()

builder.build_commit()

builder.build_commit()

branch	=	builder.get_branch()

make_branch_builder	is	a	method	of	TestCaseWithMemoryTransport.

Note	that	many	current	tests	create	test	branches	by	inheriting	from
TestCaseWithTransport	 and	 using	 the	 make_branch_and_tree	 helper

to	give	them	a	WorkingTree	that	they	can	commit	to.	However,	using
the	 newer	 make_branch_builder	 helper	 is	 preferred,	 because	 it	 can
build	 the	 changes	 in	 memory,	 rather	 than	 on	 disk.	 Tests	 that	 are
explictly	testing	how	we	work	with	disk	objects	should,	of	course,	use
a	real	WorkingTree.

Please	see	bzrlib.branchbuilder	for	more	details.

If	you’re	going	 to	examine	 the	commit	 timestamps	e.g.	 in	a	 test	 for
log	 output,	 you	 should	 set	 the	 timestamp	 on	 the	 tree,	 rather	 than
using	fuzzy	matches	in	the	test.

TreeBuilder

The	 TreeBuilder	 interface	allows	 the	 construction	of	 arbitrary	 trees
with	a	declarative	interface.	A	sample	session	might	look	like:

tree	=	self.make_branch_and_tree('path')

builder	=	TreeBuilder()

builder.start_tree(tree)

builder.build(['foo',	"bar/",	"bar/file"])

tree.commit('commit	the	tree')

builder.finish_tree()

Usually	a	 test	will	 create	a	 tree	using	 make_branch_and_memory_tree
(a	method	of	TestCaseWithMemoryTransport)	or	make_branch_and_tree
(a	method	of	TestCaseWithTransport).

Please	see	bzrlib.treebuilder	for	more	details.

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Releasing	Bazaar
This	document	describes	the	processes	for	making	and	announcing
a	 Bazaar	 release,	 and	managing	 the	 release	 process.	 This	 is	 just
one	 phase	 of	 the	 overall	 development	 cycle,	 but	 it’s	 the	 most
complex	part.	This	document	gives	a	checklist	you	can	 follow	 from
start	to	end	in	one	go.

If	 you’re	 helping	 the	 Release	 Manager	 (RM)	 for	 one	 reason	 or
another,	 you	 may	 notice	 that	 he	 didn’t	 follow	 that	 document
scrupulously.	He	may	have	good	reasons	to	do	that	but	he	may	also
have	missed	some	parts.

Follow	 the	 document	 yourself	 and	 don’t	 hesitate	 to	 create	 the
missing	milestones	for	example	(we	tend	to	forget	these	ones	a	lot).

Contents

Releasing	Bazaar
Preconditions
Starting	a	cycle
Starting	the	release	phase
Making	the	source	tarball
Publishing	the	source	tarball
Announcing	the	source	freeze
Publishing	the	release
Announcing	the	release
Merging	the	released	code	back	to	trunk
Releases	until	the	final	one
See	also

http://doc.bazaar-vcs.org/developers/cycle.html

Preconditions
1.	 Download	 the	 pqm	 plugin	 and	 install	 it	 into	 your

~/.bazaar/plugins:

bzr	branch	lp:bzr-pqm	~/.bazaar/plugins/pqm

Starting	a	cycle
To	start	a	new	release	cycle:

1.	 Create	a	new	series	at	<https://launchpad.net/bzr/+addseries>.
There	is	one	series	for	every	x.y	release.

2.	 Go	to	the	series	web	page	at	<https://launchpad.net/bzr/x.y>

3.	 Create	 a	 new	 release	 at
<https://launchpad.net/bzr/x.y/+addrelease>	 and	 add
information	about	 this	 release.	We	will	not	use	 it	yet,	but	 it	will
be	available	for	targeting	or	nominating	bugs.

4.	 We	create	a	new	pqm-controlled	branch	for	this	release	series,
by	asking	a	Canonical	sysadmin.	This	branch	means	 that	 from
the	 first	 release	 beta	 or	 candidate	 onwards,	 general
development	 continues	 on	 the	 trunk,	 and	 only	 specifically-
targeted	fixes	go	into	the	release	branch.

5.	 Add	 milestones	 at
<https://edge.launchpad.net/bzr/x.y/+addmilestone>	 to	 that
series	 for	 the	 beta	 release,	 release	 candidate	 and	 the	 final
release,	and	their	expected	dates.

6.	 Update	 the	 version	 number	 in	 the	 bzr	 script,	 and	 the
bzrlib/__init__.py	 file.	 Make	 sure	 there	 is	 always	 a
corresponding	milestone	when	you	change	that	version	number.

7.	 Add	 a	 new	 section	 at	 the	 top	 of	 NEWS	 about	 the	 new	 release,
including	 its	 version	 number	 and	 the	 headings	 from	 NEWS-
template.txt.

8.	 Send	mail	to	the	list	with	the	key	dates,	who	will	be	the	release

https://launchpad.net/bzr/+addseries
https://launchpad.net/bzr/x.y
https://launchpad.net/bzr/x.y/+addrelease
https://edge.launchpad.net/bzr/x.y/+addmilestone

manager,	and	the	main	themes	or	targeted	bugs.	Ask	people	to
nominate	 objectives,	 or	 point	 out	 any	 high-risk	 things	 that	 are
best	 done	 early,	 or	 that	 interact	 with	 other	 changes.	 This	 is
called	 the	 metronome	 mail	 and	 is	 described	 in	 Development
cycles.

9.	 Make	a	local	branch	for	preparing	this	release.	(Only	for	the	first
release	 in	 a	 series,	 otherwise	 you	 should	 already	 have	 a
branch.)

bzr	branch	trunk	prepare-1.14

10.	 Configure	 pqm-submit	 for	 this	 branch,	 with	 a	 section	 like	 this
(where	x.y	is	the	version	to	release).	~/.bazaar/locations.conf:

				[/home/mbp/bzr/prepare-x.y]

				pqm_email	=	Canonical	PQM	<pqm@bazaar-vcs.org>

				submit_branch	=	http://bazaar.launchpad.net/~bzr-pqm/bzr/x.y

				parent_branch	=	http://bazaar.launchpad.net/~bzr-pqm/bzr/x.y

				public_branch	=	http://bazaar.example.com/prepare-x.y

				submit_to	=	bazaar@lists.canonical.com

				smtp_server	=	mail.example.com:25

Please	see	<http://doc.bazaar-vcs.org/developers/HACKING.html#an-overview-of-pqm>

for	more	details	on	PQM

11.	 In	 the	 release	 branch,	 update	 version_info	 in
./bzrlib/__init__.py.	Make	 sure	 the	 corresponding	milestone
exists.	 Double	 check	 that	 ./bzr	 _script_version	 matches
version_info.	Check	the	output	of	bzr	--version.

For	beta	releases	use:

version_info	=	(2,	1,	0,	'beta',	1)

For	release	candidates	use:

version_info	=	(2,	0,	1,	'candidate',	1)

Starting	the	release	phase
1.	 Create	 a	 new	 milestone	 at

<https://launchpad.net/bzr/x.y/+addmilestone>	 for	 the	 beta
release	or	release	candidate	if	you	haven’t	already.

2.	 Add	the	date	and	release	number	to	./NEWS

Depending	on	whether	you’re	doing	a	beta	or	a	bugfix	release,
you’ll	 have	 to	 create	 a	 NEWS	 section	 for	 your	 release	 in	 the
right	place.	Most	of	the	time,	the	new	section	is	at	the	top	of	the
file	(look	what	have	been	done	for	the	various	2.0x	and	2.1.0bx
releases).	The	rule	is	to	keep	the	sections	sorted	by	date.	You’ll
need	to	be	cautious	when	merging	back	to	trunk	to	respect	that.

3.	 To	check	that	all	bugs	mentioned	in	./NEWS	are	actually	marked
as	closed	in	Launchpad,	you	can	run	tools/check-newsbugs.py:

./tools/check-newsbugs.py	NEWS

(But	note	there	can	be	some	false	positives,	and	this	script	may
be	 flaky	 <https://bugs.edge.launchpad.net/bzr/+bug/354985>.
Don’t	let	this	slow	you	down	too	much.)

4.	 Summarize	 into	 one	 or	 two	 paragraphs	 what’s	 new	 in	 this
release.

5.	 Commit	these	changes	to	the	release	branch,	using	a	command
like:

bzr	commit	-m	"Release	1.14."

The	diff	before	you	commit	will	be	something	like:

https://launchpad.net/bzr/x.y/+addmilestone
https://bugs.edge.launchpad.net/bzr/+bug/354985

===	modified	file	'NEWS'

---	NEWS								2008-09-17	23:09:18	+0000

+++	NEWS								2008-09-23	16:14:54	+0000

@@	-4,6	+4,23	@@

	..	contents::

+bzr	1.7	2008-09-23

+------------------

+

+This	release	includes	many	bug	fixes	and	a	few	performance	and	feature

+improvements.		``bzr	rm``	will	now	scan	for	missing	files	and	remove	them,

+like	how	``bzr	add``	scans	for	unknown	files	and	adds	them.	A	bit	more

+polish	has	been	applied	to	the	stacking	code.	The	b-tree	indexing	code	has

+been	brought	in,	with	an	eye	on	using	it	in	a	future	repository	format.

+There	are	only	minor	installer	changes	since	bzr-1.7rc2.

+

	bzr	1.7rc2	2008-09-17

===	modified	file	'bzrlib/__init__.py'

---	bzrlib/__init__.py		2008-09-16	21:39:28	+0000

+++	bzrlib/__init__.py		2008-09-23	16:14:54	+0000

@@	-41,7	+41,7	@@

	#	Python	version	2.0	is	(2,	0,	0,	'final',	0)."		Additionally	we	use	a

	#	releaselevel	of	'dev'	for	unreleased	under-development	code.

-version_info	=	(1,	7,	0,	'candidate',	2)

+version_info	=	(1,	7,	0,	'final',	0)

	#	API	compatibility	version:	bzrlib	is	currently	API	compatible	with	1.7.

6.	 Tag	the	new	release:

bzr	tag	bzr-1.14

7.	 Push	 those	 changes	 to	 a	 bzr	 reposistory	 that	 is	 public	 and
accessible	 on	 the	 Internet.	 PQM	 will	 pull	 from	 this	 repository
when	 it	 attempts	 to	 merge	 your	 changes.	 Then	 submit	 those
changes	to	PQM	for	merge	into	the	appropriate	release	branch:

bzr	push

bzr	pqm-submit	-m	"(mbp)	prepare	1.14"

8.	 When	PQM	succeeds,	pull	down	the	master	release	branch.

Making	the	source	tarball
1.	 Change	into	the	source	directory	and	run

make	dist

2.	 Now	we’ll	try	expanding	this	tarball	and	running	the	test	suite	to
check	for	packaging	problems:

make	check-dist-tarball

You	may	encounter	failures	while	running	the	test	suite	caused
by	 your	 locally	 installed	 plugins.	 Use	 your	 own	 judgment	 to
decide	 if	 you	 can	 release	 with	 these	 failures.	When	 in	 doubt,
disable	 the	 faulty	 plugins	 one	 by	 one	 until	 you	 get	 no	 more
failures.

Publishing	the	source	tarball
1.	 Go	to	the	relevant	milestone	page	in	Launchpad.
2.	 Within	 that	 release,	 upload	 the	 source	 tarball	 and	 the	 GPG

signature.	Or,	if	you	prefer,	use	the	tools/packaging/lp-upload-
release	script	to	do	this.

Announcing	the	source	freeze
1.	 Post	to	the	bazaar	 list,	saying	that	the	source	has	been	frozen.

This	 is	 the	 cue	 for	 platform	maintainers	 and	 plugin	 authors	 to
update	 their	 code.	 This	 is	 done	 before	 the	 general	 public
announcement	of	the	release.

Publishing	the	release
There	 is	normally	a	delay	of	 a	 few	days	after	 the	 source	 freeze	 to
allow	 for	 binaries	 to	 be	built	 on	 various	platforms.	Once	 they	 have
been	built,	we	have	a	releasable	product.	The	next	step	is	to	make	it
generally	available	to	the	world.

go	to	the	release

1.	 Within	that	release,	upload	the	source	tarball	and	zipfile	and	the
GPG	signature.	Or,	 if	 you	 prefer,	 use	 the	 tools/packaging/lp-
upload-release	script	to	do	this.

2.	 Link	 from	http://bazaar-vcs.org/SourceDownloads	 to	 the	 tarball
and	signature.

3.	 Announce	 on	 the	 Bazaar	website.	 This	 page	 is	 edited	 via	 the
lp:bzr-website	 branch.	 (Changes	 pushed	 to	 this	 branch	 are
refreshed	by	a	cron	job	on	escudero.)

4.	 Announce	on	the	Bazaar	wiki.
5.	 Check	 that	 the	 documentation	 for	 this	 release	 is	 available	 in

<http://doc.bazaar-vcs.org>.	 It	 should	 be	 automatically	 build
when	the	branch	is	created,	by	a	cron	script	update-bzr-docs	on
escudero.	 As	 of	 today	 (2009-08-27)	 igc	manually	 updates	 the
pretty	version	of	it.

http://bazaar-vcs.org/SourceDownloads
http://bazaar-vcs.org/
http://bazaar-vcs.org/Welcome
http://doc.bazaar-vcs.org

Announcing	the	release
Now	that	the	release	is	publicly	available,	tell	people	about	it.

1.	 Make	an	announcement	mail.

For	 release	 candidates	 or	 beta	 releases,	 this	 is	 sent	 to	 the
bazaar	list	only	to	inform	plugin	authors	and	package	or	installer
managers.

Once	 the	 installers	 are	 available,	 the	mail	 can	 be	 sent	 to	 the
bazaar-announce	list	too.

For	 final	 releases,	 it	 should	 also	 be	 cc’d	 to	 info-gnu@gnu.org,
python-announce-list@python.org,	bug-directory@gnu.org.

In	 all	 cases,	 it	 is	 good	 to	 set	 Reply-To:

bazaar@lists.canonical.com,	 so	 that	 people	 who	 reply	 to	 the
announcement	don’t	spam	other	lists.

The	announce	mail	will	look	something	like	this:

Subject:	bzr	x.yy	released!

<<Summary	paragraph	from	news>>

The	Bazaar	team	is	happy	to	announce	availability	of	a	new

release	of	the	bzr	adaptive	version	control	system.

Bazaar	is	part	of	the	GNU	system	<http://gnu.org/>.

Thanks	to	everyone	who	contributed	patches,	suggestions,	and

feedback.

Bazaar	is	now	available	for	download	from

http://bazaar-vcs.org/Download	as	a	source	tarball;	packages

for	various	systems	will	be	available	soon.

<<NEWS	section	from	this	release	back	to	the	last	major	release>>

Feel	free	to	tweak	this	to	your	taste.

2.	 Make	 an	 announcement	 through
<https://launchpad.net/bzr/+announce>

3.	 Update	 the	IRC	channel	 topic.	Use	the	 /topic	command	to	do
this,	 ensuring	 the	 new	 topic	 text	 keeps	 the	 project	 name,	web
site	link,	etc.

4.	 Announce	on	http://freshmeat.net/projects/bzr/

This	should	be	done	for	beta	releases,	release	candidates	and
final	releases.	If	you	do	not	have	a	Freshmeat	account	yet,	ask
one	of	the	existing	admins.

5.	 Update	 http://en.wikipedia.org/wiki/Bazaar_(software)	 –	 this
should	 be	 done	 for	 final	 releases	 but	 not	 for	 beta	 releases	 or
Release	Candidates.

6.	 Update	 the	 python	 package	 index:
<http://pypi.python.org/pypi/bzr>	-	best	done	by	running

python	setup.py	register

Remember	to	check	the	results	afterwards.

To	be	able	to	register	the	release	you	must	create	an	account	on
<http://pypi.python.org/pypi>	 and	 have	 one	 of	 the	 existing
owners	of	the	project	add	you	to	the	group.

https://launchpad.net/bzr/+announce
http://freshmeat.net/projects/bzr/
http://en.wikipedia.org/wiki/Bazaar_(software)
http://pypi.python.org/pypi/bzr
http://pypi.python.org/pypi

Merging	the	released	code	back	to	trunk
Merge	the	release	branch	back	into	the	trunk.	Check	that	changes	in
NEWS	were	merged	into	the	right	sections.	 If	 it’s	not	already	done,
advance	the	version	number	in	bzr	and	bzrlib/__init__.py.	Submit
this	back	into	pqm	for	bzr.dev.

As	soon	as	you	change	the	version	number	in	trunk,	make	sure	you
have	created	the	corresponding	milestone	to	ensure	the	continuity	in
bug	 targeting	 or	 nominating.	 Depending	 on	 the	 change,	 you	 may
even	have	to	create	a	new	series	(if	your	change	the	major	or	minor
release	number),	 in	 that	case	go	 to	Starting	a	cycle	 and	 follow	 the
instructions	from	there.

You	 should	 also	 merge	 (not	 pull)	 the	 release	 branch	 into
lp:~bzr/bzr/current,	 so	 that	 branch	 contains	 the	 current	 released
code	at	any	time.

Releases	until	the	final	one
Congratulations	-	you	have	made	your	first	release.	Have	a	beer	or
fruit	juice	-	it’s	on	the	house!	If	it	was	a	beta,	or	candidate,	you’re	not
finished	yet.	Another	beta	or	candidate	or	hopefully	a	final	release	is
still	to	come.

The	process	 is	 the	same	as	 for	 the	 first	 release.	Goto	Starting	 the
release	 phase	 and	 follow	 the	 instructions	 again.	 Some	 details
change	between	beta,	candidate	and	final	releases,	but	they	should
be	 documented.	 If	 the	 instructions	 aren’t	 clear	 enough,	 please	 fix
them.

See	also
Packaging	 into	 the	 bzr	 PPA	 to	 make	 and	 publish	 Ubuntu
packages.
Bazaar	Developer	Document	Catalog
Development	cycles:	things	that	happen	during	the	cycle	before
the	actual	release.

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Managing	the	Bazaar	PPA
See	also:	Bazaar	Developer	Document	Catalog.

Background
We	build	Ubuntu	 .deb	packages	for	Bazaar	as	an	 important	part	of
the	release	process.	These	packages	are	hosted	 in	a	 few	Personal
Package	Archives	(PPA)	on	Launchpad.

As	of	June	2008,	there	are	three	PPAs:

<https://launchpad.net/~bzr/+archive>
Final	released	versions.

<https://launchpad.net/~bzr-beta-ppa/+archive>
Releases	and	release	candidates.

<https://launchpad.net/~bzr-nightly-ppa/+archive>
Automatic	nightly	builds	from	trunk.

We	 build	 packages	 for	 every	 supported	 Ubuntu	 release
<https://wiki.ubuntu.com/Releases>.	 Packages	 need	 no	 longer	 be
updated	 when	 the	 release	 passes	 end-of-life	 because	 all	 users
should	 have	 upgraded	 by	 then.	 (As	 of	 May	 2008,	 Edgy	 Eft	 is	 no
longer	supported.)

We	 build	 a	 distinct	 package	 for	 each	 distrorelease.	 As	 of	 bzr	 1.5,
Dapper	 uses	 python-support	 and	 later	 distributions	 use	 python-
central.	 If	you	upload	a	 release-specific	version,	you	should	add	a
suffix	to	the	package	version,	e.g.	bzr.1.3-1~bazaar1~dapper1.

Every	package	 is	 first	uploaded	 into	 the	beta	ppa.	For	 final	 release
versions	it	is	also	copied	to	the	main	PPA.

The	packaging	information	is	kept	in	branches	of	bzr	on	Launchpad,
named	 like	 <https://code.launchpad.net/~bzr/bzr/packaging-hardy>.
or	 <lp:~bzr/bzr/packaging-hardy>.	 These	 branches	 are	 intended	 to
be	used	with	the	bzr-builddeb	plugin.

https://help.launchpad.net/PPAQuickStart
https://launchpad.net/~bzr/+archive
https://launchpad.net/~bzr-beta-ppa/+archive
https://launchpad.net/~bzr-nightly-ppa/+archive
https://wiki.ubuntu.com/Releases
https://code.launchpad.net/~bzr/bzr/packaging-hardy

Preconditions
You	must	have	a	Launchpad	account	and	be	a	member	of	 the
teams	that	own	these	PPAs	(~bzr,	~bzr-beta-ppa).

You	 must	 have	 a	 GPG	 key	 registered	 to	 your	 Launchpad
account.

Configure	 dput	 to	 upload	 to	 our	 PPA	with	 this	 section	 in	 your
~/.dput.cf:

[bzr-beta-ppa]

fqdn	=	ppa.launchpad.net

method	=	ftp

incoming	=	~bzr-beta-ppa/ubuntu

login	=	anonymous

allow_unsigned_uploads	=	0

[bzr-ppa]

fqdn	=	ppa.launchpad.net

method	=	ftp

incoming	=	~bzr/ubuntu

login	=	anonymous

allow_unsigned_uploads	=	0

You	may	also	want	 to	add	 these	 lines	 to	prevent	 inadvertently
attempting	 to	 upload	 into	 Ubuntu	 or	 Debian,	 which	 will	 give	 a
somewhat	unclear	error:

[DEFAULT]

default_host_main	=	notspecified

Configure	 bzr-builddeb	 to	 sign	 the	package,	which	 is	 required
for	Launchpad	to	build	it.	Put	this	in	~/.bazaar/builddeb.conf

[BUILDDEB]

builder	=	dpkg-buildpackage	-rfakeroot

source-builder=	dpkg-buildpackage	-rfakeroot	-S	-sa

You	need	a	Ubuntu	(or	probably	Debian)	machine,	and

sudo	apt-get	install	build-essential	devscripts	dput	quilt	patch	libcrypt-ssleay-perl	debhelper	cdbs	python-docutils

Please	 update	 this	 document	 if	 you	 encounter	 unmet
dependencies	or	find	a	shorter	way	to	express	them.

You	 will	 also	 want	 to	 have	 the	 bzr-builddeb	 plugin	 installed,
which	depends	on	bzrtools.

http://launchpad.net/bzr-builddeb
http://launchpad.net/bzrtools

Packaging	Bazaar

Short	form

For	people	who	have	already	set	up	everything	 they	need,	building
the	release	packages	is	as	simple	as:

cd	~/dev/bzr/releases/packaging

export	VERSION="1.17~rc1-1~bazaar1"

export	PACKAGE="bzr"

export	UBUNTU_RELEASES="dapper	hardy	intrepid	jaunty	karmic"

~/dev/bzr/bzr.dev/tools/packaging/update-packaging-branches.sh

~/dev/bzr/bzr.dev/tools/packaging/update-changelogs.sh

~/dev/bzr/bzr.dev/tools/packaging/update-control.sh	1.16	1.17	1.18

~/dev/bzr/bzr.dev/tools/packaging/build-packages.sh

dput	bzr-beta-ppa	${PACKAGE}_$VERSION*.changes

Rinse	 and	 repeat	 for	 all	 the	 plugins	 by	 changing	 VERSION	 and
PACKAGE.

Long	Form

1.	 You	 will	 end	 up	 checking	 out	 a	 separate	 directory	 for	 each
supported	 release.	 Such	 as
~/dev/bzr/releases/packaging/hardy.	 In	 each	 of	 these
branches,	you	will	produce	the	package	for	the	release.

The	scripts	will	also	create	the	branches	and	produce	packages
for	bzrtools	and	bzr-svn.

2.	 Decide	on	the	final	version	number.	It	should	be	of	this	form:

bzr-1.17~rc1-1~bazaar1~hardy1

Note:	 There	 are	 three	 hyphen-separated	 parts:	 the	 package

name,	the	upstream	version,	and	the	packaging	version.

Caution:	 Upstream	 betas	 or	 release	 candidates	must	 insert	 a
tilde	 to	make	 them	sort	 before	 the	 final	 release,	 like	 this:	 bzr-
1.17~rc1-1~bazaar1~hardy1.

Final	 releases	will	 use	 a	 release	 string	 of	 the	 form:	 bzr-1.17-
1~bazaar1~hardy1

Set	this	base	of	this	up	as	a	usable	environment	variable:

export	VERSION="1.17~rc1-1~bazaar1"

3.	 Export	the	distroreleases	that	you	will	be	packaging	for:

export	UBUNTU_RELEASES="dapper	hardy	intrepid	jaunty	karmic"

4.	 Export	the	program	you	are	packaging:

export	PACKAGE="bzr"

5.	 Checkout	(or	update)	the	packaging	branch	for	each	supported
release:

bzr	co	lp:~bzr/bzr/packaging-hardy

There	is	a	script	available	to	help:

tools/packaging/update-packaging-branches.sh

6.	 The	bzr-builddeb	step	will	download	the	original	tarball	if	you	do
not	already	have	it,	putting	it	into	a	tarballs	directory.

7.	 For	Bazaar	plugins,	change	the	debian/control	file	to	express	a
dependency	on	the	correct	version	of	bzr.

For	bzrtools	this	is	typically:

Build-Depends-Indep:	bzr	(>=	1.17~),	rsync

Depends:	${python:Depends},	bzr	(>=	1.17~),	bzr	(<<	1.18~),	patch

There	 is	 a	 helper	 script	 which	 will	 update	 the	 control	 file	 and
commit	it	for	all	of	your	$UBUNTU_RELEASES.	It	is	available	as:

tools/packaging/update-control.sh

You	 must	 supply	 the	 versions	 as	 arguments	 as	 follows
OLD_VERSION	CURRENT_VERSION	NEXT_VERSION,	 such
as:

tools/packaging/update-control.sh	1.16	1.17	1.18

8.	 Make	a	new	debian/changelog	entry	for	the	new	release,	either
by	using	dch	or	just	editing	the	file:

dch	-v	'1.17~rc1-1~bazaar1~hardy1'	-D	hardy

dch	 will	 default	 to	 the	 distro	 you’re	 working	 in	 and	 this	 isn’t
checked	 against	 the	 version	 number	 (which	 is	 just	 our
convention),	so	make	sure	to	specify	it.

Make	sure	you	have	the	correct	email	address	for	yourself	(you
may	 need	 export	 DEBEMAIL=`bzr	 whoami`	 if	 it	 isn’t	 already
set),	version	number,	and	distribution.	It	should	 look	something
like	this:

bzr	(1.17~rc1-1~bazaar1~hardy1)	hardy;	urgency=low

	*	New	upstream	release.

--	John	Sample	<sample@example.com>		Mon,	31	Mar	2008	12:36:27	+1100

If	 you	 need	 to	 upload	 the	 package	 again	 to	 fix	 a	 problem,
normally	 you	 should	 increment	 the	 last	 number	 in	 the	 version
number,	 following	 the	 distro	 name.	Make	 sure	 not	 to	 omit	 the
initial	 -1,	and	make	sure	 that	 the	distro	name	 in	 the	version	 is
consistent	with	the	target	name	outside	the	parenthesis.

You	will	also	want	to	commit	these	changes	into	the	packaging
branch.

There	is	a	helper	script	which	will	build	all	the	packages	for	all	of
your	$UBUNTU_RELEASES.	It	is	available	as:

tools/packaging/update-changelogs.sh

9.	 Build	the	source	packages:

cd	packaging-$DISTRO;	bzr	builddeb	-S

This	will	create	a	.changes	file.	If	you	didn’t	configure	builddeb	to
automatically	sign	them,	you	can	use

debsign	-m$UID	*.changes

where	$UID	is	the	gpg	key	you	want	to	use	to	sign	the	changes.

There	 is	 a	 helper	 script	 which	will	 build	 the	 package	 for	 all	 of
your	$UBUNTU_RELEASES.	It	is	available	as:

tools/packaging/build-packages.sh

10.	 Upload	into	the	beta	PPA	for	each	release:

dput	bzr-beta-ppa	bzr*1.17-1*.changes

11.	 For	final	release	versions,	also	copy	it	into	the	~bzr	PPA:

dput	bzr-ppa	../bzr_1.17-1\~bazaar1\~hardy1_source.changes

Alternatively,	 you	 can	 use	 Launchpad’s	 “copy”	 feature	 to	 copy
the	packages	between	repositories.

12.	 You	 should	 soon	 get	 an	 “upload	 accepted”	 mail	 from
Launchpad,	 which	 means	 that	 your	 package	 is	 waiting	 to	 be
built.	 You	 can	 then	 track	 its	 progress	 in
<https://launchpad.net/~bzr-beta-ppa/+archive>	 and
<https://launchpad.net/~bzr-beta-ppa/+archive/+builds>.

Packaging	bzr-svn

bzr-svn	 uses	 a	 packaging	 branch	 that	 contains	 both	 the	 source
(including	any	changes	against	upstream)	and	the	debian/	directory.

To	build	bzr-svn:

1.	 Get	a	checkout	of	lp:~bzr/bzr-svn/hardy-ppa/

2.	 Merge	 from	 http://bzr.debian.org/pkg-bazaar/bzr-

svn/unstable/

This	should	bring	 in	both	upstream	and	packaging	changes	for
the	new	release,	and	it’s	updated	as	part	of	the	bzr-svn	release
process.

It’s	quite	possible	you	will	need	to	resolve	some	conflicts.

3.	 Run	dch	-v	0.4.15-1~bazaar1-hardy1	-D	hardy	or	similar

4.	 Run	bzr	builddeb	--source

bzr-builddeb	 will	 automatically	 check	 out	 the	 appropriate	 tag
from	the	main	branch	of	bzr-svn,	build,	and	package	it.

https://launchpad.net/~bzr-beta-ppa/+archive
https://launchpad.net/~bzr-beta-ppa/+archive/+builds

5.	 dput	 bzr-beta-ppa	 ../bzr-svn_0.4.15-

1~bazaar1~hardy1_source.changes

Monitoring	the	contents	of	PPAs
If	you	add	all	the	bzr	PPAs	to	your	sources.list	then	you	can	see	a
summary	of	current	package	versions	with:

apt-cache	madison	bzr

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Bazaar	Windows	EC2	Server
We	 have	 an	 Amazon	 EC2	 virtual	 machine	 called	 Desolation	 for
building	Windows	packages	and	general	 testing	on	Windows.	As	of
2009-02-19,	this	is	just	experimental	and	this	is	a	draft	specification,
but	we	aim	to	use	it	for	the	production	Windows	installer	build	of	1.13
in	March.

See	also:

Bazaar	Developer	Documentation	Catalog.

http://en.wikipedia.org/wiki/Desolation_Island

Goals
The	 instance	 is	 only	 running	 (and	 incurring	 charges)	when	 it’s
needed	for	testing	or	packaging.
It	 can	 be	 started	 or	 stopped	 by	 anyone	 on	 the	 team	 using	 a
straightforward	script.
Multiple	people	can	get	into	the	same	instance	at	the	same	time,
e.g.	if	one	person	needs	to	pass	work	on	to	some	one	else.
We	keep	snapshot	of	the	OS	and	tool	chain	so	that	we	can	roll
back	if	we	need	to.
bzr	branches	and	similar	information	are	kept	on	stable	storage
that	survives	rollbacks	of	the	OS	state,	and	that	can	be	backed
up.

Later	on	we	may	try	automated	Windows	testing	in	a	similar	setup.

Approach
The	 working	 disk	 and	 the	 AMI	 images	 are	 stored	 in	 one	 person’s
account	for	billing	purposes.

Ideally	 we	 want	 to	 give	 other	 people	 access	 to	 run	 this	 machine
without	 giving	 full	 access	 to	 the	 account.	 I’m	 not	 sure	 if	 that’s
feasible.	 If	 it’s	 not,	 we	 might	 need	 to	 allow	 people	 to	 launch	 the
image	 within	 their	 own	 account;	 this	 may	 be	 problematic	 if	 the
shared	volume	is	already	in	use	by	someone	else.

I	 don’t	 think	 it’s	 possible	 to	 have	 an	 EBS	 that’s	 shared	 across
accounts,	and	 they	can’t	be	attached	 to	multiple	 running	 instances.
So	for	now	it’s	probably	best	to	just	ignore	the	concept	and	store	the
working	data	on	the	 instance’s	 local	storage,	and	to	copy	things	up
e.g.	to	Launchpad	as	required.

On	 this	machine,	 C:	 should	 be	 used	 only	 for	 the	Windows	 system
files,	 D:	 for	 installed	 programs	 and	 working	 directories,	 and	 other
drive	letters	can	be	used	later	for	mounting	EBS	storage	if	desired.

Through	ec2-modify-image-attribute	we	can	allow	nominated	users
to	access	an	existing	image.	We	need	to	have	their	AWS	opaque	ID.

Through	 ec2-bundle-image	 we	 can	 make	 a	 new	 snapshot	 at	 any
point,	which	will	be	stored	into	the	current	user’s	S3	account.

We’ll	(probably)	have	one	shared	account	for	running	builds	which	is
also	an	administrator	for	ease	of	installing	software.

You	do	need	to	have	an	RSA	keypair	to	get	the	initial	password	for	a
Windows	machine,	even	though	you	can’t	use	it	to	log	in	later.	ec2-
get-password	 takes	 the	 full	 path	 to	 the	 private	 key	 to	 obtain	 the
password	 from	 Amazon,	 and	 ec2-add-keypair	 creates	 a	 named

keypair	 at	Amazon	and	 returns	 the	private	path.	One	keypair	 is	 all
that	is	needed.	This	is	distinct	from	the	account	identifier	-	likely	due
to	the	different	toolchains	in	use	(the	keypairs	are	used	for	unix	ssh
keys,	and	I	(Robert)	suspect	a	rather	unix	friendly	core	at	Amazon).
Once	a	custom	image	is	made	with	a	saved	password,	you	can	skip
using	ec2-get-password	(which	is	only	needed	for	Windows	anyway).

It	would	be	nice	if	rdesktop	could	use	private	key	authentication	but
apparently	not.

Should	check	how	the	Launchpad	ec2test	scripts	work.

Procedures

Preparation

Be	 in	 the	 bzr	 core	 team.	 If	 you	 are	 interested	 in	 helping	 with
Windows	packaging,	testing	or	development	just	ask.

Install	 the	 Amazon	 EC2	 API	 tools	 (needs-packaging	 bug
330930)

Create	an	Amazon	Web	Services	account,	 sign	up	 for	S3	and
EC2,	and	do	the	various	steps	to	create	authentication	devices.

Create	 a	 private	 key	 and	 certificate	 for	 yourself.	 Check	 these
environment	variables	are	set	and	exported,	e.g.	by	setting	them
in	the	file	~/.aws.	Make	sure	the	files	are	private.:

export	EC2_PRIVATE_KEY=~/.ec2/pk-XXXXXX.pem

export	EC2_CERT=~/.ec2/cert-XXXXXX.pem

export	EC2_HOME=~/build/ec2-api-tools-1.3-30349

export	AWS_SECRET_ACCESS_KEY=XXXXXXXXX

export	AWS_ACCESS_KEY_ID=XXXXXXXXXXX

export	EC2_KEYPAIR_NAME=XXXXXXXXX

export	PATH=$PATH:$EC2_HOME/bin

export	JAVA_HOME=/usr/lib/jvm/java-6-openjdk

ssh-add	~/.ec2/id_rsa

You	can	now	‘.	~/.aws’	to	get	the	ec2	commands	available.

(Unix	images	only)	run	ec2-add-keypair	SOMENAME,	e.g.	‘bzr’.
Put	the	result	(minus	the	first	line)	somewhere	like	~/.ec2/id_rsa
and	chmod	go-rw.

A	 useful	 Unix	 image	 is	 ami-bdfe19d4,	 Eric	 Hammonds	 64-bit
Ubuntu	image.

http://developer.amazonwebservices.com/connect/entry.jspa?externalID=368&categoryID=88
https://bugs.edge.launchpad.net/ubuntu/+bug/330930
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=1762&categoryID=101

Install	the	rdesktop	client,	to	actually	access	the	machine.

Possibly	read	some	of	the	EC2	documentation	for	background.

Create	a	security	group	for	your	that	allows	rdesktop	access	and
icmp	with:

ec2-add-group	desolation-group	-d	'bzr	win32	build	machine'

ec2-authorize	desolation-group	-p	3389	-s	1.2.3.4/32

ec2-authorize	desolation-group	-t	-1:-1	-P	icmp

Add	your	public	IP	there.	You	can	repeat	that	command	to	allow
others	in.

To	start	up	an	instance

1.	 Get	the	right	AMI	image	ID	from	another	developer.

1.	 Start	the	instance:

ec2-run-instances	$image_id	-g	desolation-group

This	 will	 print	 out	 some	 information	 including	 the	 image	 id,
something	like	i-31a74258.

1.	 Actually	starting	 the	machine	will	 take	a	 few	minutes.	Once	 it’s
in	the	running	state,	get	the	machine’s	public	IP	with

ec2-describe-instances

1.	 and	then	connect

rdesktop	-g	1200x850	-u	Administrator	$machine_ip

Don’t	forget	to	shut	it	down	when	you’re	done,	and	check	with	ec2-
describe-instances	that	it	did	terminate.

http://aws.amazon.com/

To	save	a	system	snapshot	as	an	image

1.	 Bundle	the	current	state.	Doing	this	will	reboot	the	machine.	You
need	to	choose	a	unique	s3	bucket	name,	typically	based	on	a
domain	 or	 email	 address,	 which	 can	 contain	 any	 number	 of
images.	You	also	need	a	name	unique	within	the	bucket	for	this
image,	 like	 desolation-vs2008-20090219.	 And	 finally	 it	 needs
your	AWS	S3	access	key	and	secret	key,	which	should	be	set	in
~/.aws:

ec2-bundle-instance	-b	ec2.sourcefrog.net	\

				-p	desolation-vs2008-2009021	\

				-o	"$AWS_ACCESS_KEY_ID"	\

				-w	"$AWS_SECRET_ACCESS_KEY"

1.	 This	will	take	several	minutes:	You	can	check	progress	with

ec2-describe-bundle-tasks

1.	 Register	the	files	as	an	image,	e.g.:

		ec2-register	ec2.sourcefrog.net/desolation-vs2008-2009021

This	will	give	you	an	AMI	id	for	the	image.

1.	 Give	access	to	other	team	members	identified	by	their	Amazon
account	id:

ec2-modify-image-attributes	$ami_id	-l	-a	123412341234

Management	console	(useful!)

https://console.aws.amazon.com/ec2/home

https://console.aws.amazon.com/ec2/home

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Bazaar	Architectural	Overview
This	 document	 describes	 the	 key	 classes	 and	 concepts	 within
Bazaar.	It	 is	 intended	to	be	useful	 to	people	working	on	the	Bazaar
codebase,	or	to	people	writing	plugins.

If	 you	 have	 any	 questions,	 or	 if	 something	 seems	 to	 be	 incorrect,
unclear	 or	 missing,	 please	 talk	 to	 us	 in
irc://irc.freenode.net/#bzr,	or	write	 to	 the	Bazaar	mailing	 list.	To
propose	 a	 correction	 or	 addition	 to	 this	 document,	 send	 a	 merge
request	or	new	text	to	the	mailing	list.

The	 current	 version	 of	 this	 document	 is	 available	 in	 the	 file
doc/developers/overview.txt	in	the	source	tree,	and	available	online
within	 the	 developer	 documentation,	 <http://doc.bazaar-
vcs.org/developers/>.

http://doc.bazaar-vcs.org/developers/

Essential	Domain	Classes
The	core	domain	objects	within	the	bazaar	model	are:

Transport
Branch
Repository
WorkingTree

Transports	 are	 explained	 below.	 See	 http://bazaar-vcs.org/Classes/
for	an	introduction	to	the	other	key	classes.

http://bazaar-vcs.org/Classes/

Transport
The	 Transport	 layer	 handles	 access	 to	 local	 or	 remote	 directories.
Each	 Transport	 object	 acts	 as	 a	 logical	 connection	 to	 a	 particular
directory,	and	 it	allows	various	operations	on	files	within	 it.	You	can
clone	a	transport	to	get	a	new	Transport	connected	to	a	subdirectory
or	parent	directory.

Transports	are	not	 used	 for	 access	 to	 the	working	 tree.	At	present
working	 trees	 are	 always	 local	 and	 they	 are	 accessed	 through	 the
regular	Python	file	I/O	mechanisms.

Filenames	vs	URLs

Transports	 work	 in	 terms	 of	 URLs.	 Take	 note	 that	 URLs	 are	 by
definition	 only	 ASCII	 -	 the	 decision	 of	 how	 to	 encode	 a	 Unicode
string	 into	 a	 URL	must	 be	 taken	 at	 a	 higher	 level,	 typically	 in	 the
Store.	 (Note	 that	 Stores	 also	 escape	 filenames	 which	 cannot	 be
safely	stored	on	all	filesystems,	but	this	is	a	different	level.)

The	main	reason	for	this	is	that	it’s	not	possible	to	safely	roundtrip	a
URL	 into	 Unicode	 and	 then	 back	 into	 the	 same	 URL.	 The	 URL
standard	gives	a	way	to	represent	non-ASCII	bytes	in	ASCII	(as	%-
escapes),	 but	 doesn’t	 say	 how	 those	 bytes	 represent	 non-ASCII
characters.	 (They’re	not	guaranteed	 to	be	UTF-8	–	 that	 is	common
but	doesn’t	happen	everywhere.)

For	example,	if	the	user	enters	the	URL	http://example/%e0,	 there’s
no	way	to	tell	whether	 that	character	represents	“latin	small	 letter	a
with	 grave”	 in	 iso-8859-1,	 or	 “latin	 small	 letter	 r	 with	 acute”	 in	 iso-
8859-2,	 or	 malformed	 UTF-8.	 So	 we	 can’t	 convert	 the	 URL	 to
Unicode	reliably.

Equally	 problematic	 is	 if	 we’re	 given	 a	 URL-like	 string	 containing
(unescaped)	 non-ASCII	 characters	 (such	 as	 the	 accented	 a).	 We
can’t	 be	 sure	 how	 to	 convert	 that	 to	 a	 valid	 (i.e.	 ASCII-only)	URL,
because	we	don’t	know	what	encoding	the	server	expects	for	those
characters.	 (Although	 it	 is	 not	 totally	 reliable,	 we	might	 still	 accept
these	and	assume	that	they	should	be	put	into	UTF-8.)

A	 similar	 edge	 case	 is	 that	 the	 URL	 http://foo/sweet%2Fsour

contains	one	directory	component	whose	name	is	“sweet/sour”.	The
escaped	slash	is	not	a	directory	separator,	but	if	we	try	to	convert	the
URL	to	a	regular	Unicode	path,	this	information	will	be	lost.

This	 implies	 that	 Transports	 must	 natively	 deal	 with	 URLs.	 For
simplicity	 they	 only	 deal	 with	 URLs;	 conversion	 of	 other	 strings	 to
URLs	is	done	elsewhere.	Information	that	Transports	return,	such	as
from	list_dir,	is	also	in	the	form	of	URL	components.

Repository
Repositories	 store	 committed	 history:	 file	 texts,	 revisions,
inventories,	and	graph	relationships	between	them.

Stacked	Repositories

A	 repository	 can	 be	 configured	 to	 refer	 to	 a	 list	 of	 “fallback”
repositories.	 If	 a	 particular	 revision	 is	 not	 present	 in	 the	 original
repository,	it	refers	the	query	to	the	fallbacks.

Compression	 deltas	 don’t	 span	 physical	 repository	 boundaries.	 So
the	first	commit	to	a	new,	empty	repository	with	fallback	repositories
will	store	a	full	text	of	the	inventory,	and	of	every	new	file	text.

At	runtime,	repository	stacking	is	actually	configured	by	the	branch,
not	 the	 repository.	 So	 doing	 a_bzrdir.open_repository()	 gets	 you
just	 the	 single	 physical	 repository,	 while
a_bzrdir.open_branch().repository	 gets	 one	 configured	 with	 a
stacking.	 Therefore,	 to	 permanently	 change	 the	 fallback	 repository
stored	on	disk,	you	must	use	Branch.set_stacked_on_url.

Changing	 away	 from	 an	 existing	 stacked-on	 URL	 will	 copy	 across
any	necessary	history	so	that	the	repository	remains	usable.

A	 repository	opened	 from	an	HPSS	server	 is	never	stacked	on	 the
server	 side,	 because	 this	 could	 cause	 complexity	 or	 security
problems	with	the	server	acting	as	a	proxy	for	the	client.	Instead,	the
branch	on	the	server	exposes	the	stacked-on	URL	and	the	client	can
open	that.

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Integrating	with	Bazaar
This	page	should	hopefully	become	a	quick	guide	to	integrating	other
(Python-based)	software	with	Bazaar.

Manipulating	the	Working	Tree
Most	 objects	 in	 Bazaar	 are	 in	 files,	 named	 after	 the	 class	 they
contain.	 To	 manipulate	 the	 Working	 Tree	 we	 need	 a	 valid
WorkingTree	object,	which	is	loaded	from	the	workingtree.py	file,	eg:

from	bzrlib	import	workingtree

wt	=	workingtree.WorkingTree.open('/home/jebw/bzrtest')

This	 gives	 us	 a	 WorkingTree	 object,	 which	 has	 various	 methods
spread	over	itself,	and	its	parent	classes	MutableTree	and	Tree	-	its
worth	 having	 a	 look	 through	 these	 three	 files	 (workingtree.py,
mutabletree.py	and	tree.py)	to	see	which	methods	are	available.

Compare	trees
There	 are	 two	 methods	 for	 comparing	 trees:	 changes_from	 and
iter_changes.	 iter_changes	 is	 more	 regular	 and	 precise,	 but	 it	 is
somewhat	harder	to	work	with.	See	the	API	documentation	for	more
details.

changes_from	creates	a	Delta	object	showing	changes:

from	bzrlib	import	delta

changes	=	wt.changes_from(wt.basis_tree())

This	gives	us	a	Delta	object,	which	has	several	lists	of	files	for	each
type	 of	 change,	 eg	 changes.added	 is	 a	 list	 of	 added	 files,
changes.removed	 is	 list	of	 removed	 files,	changes.modified	 is	a	 list
of	modified	 files.	The	contents	of	 the	 lists	aren’t	 just	 filenames,	but
include	other	information	as	well.	To	grab	just	the	filename	we	want
the	first	value,	eg:

print("list	of	newly	added	files")

for	filename	in	changes.added:

		print("%s	has	been	added"	%	filename[0])

The	exception	to	this	is	changes.renamed,	where	the	list	returned	for
each	renamed	files	contains	both	 the	old	and	new	names	–	one	or
both	may	interest	you,	depending	on	what	you’re	doing.

For	example:

print("list	of	renamed	files")

for	filename	in	changes.renamed:

		print("%s	has	been	renamed	to	%s"	%	(filename[0],	filename[1]))

Adding	Files
If	 you	want	 to	 add	 files	 the	 same	way	 bzr	add	 does,	 you	 can	 use
MutableTree.smart_add.	 By	 default,	 this	 is	 recursive.	 Paths	 can
either	be	absolute	or	relative	to	the	workingtree:

wt.smart_add(['dir1/filea.txt',	'fileb.txt',

														'/home/jebw/bzrtesttree/filec.txt'])

For	 more	 precise	 control	 over	 which	 files	 to	 add,	 use
MutableTree.add:

wt.add(['dir1/filea.txt',	'fileb.txt',	'/home/jebw/bzrtesttree/filec.txt'

Removing	Files
You	 can	 remove	 multiple	 files	 at	 once.	 The	 file	 paths	 need	 to	 be
relative	to	the	workingtree:

wt.remove(['filea.txt',	'fileb.txt',	'dir1'])

By	default,	the	files	are	not	deleted,	just	removed	from	the	inventory.
To	delete	them	from	the	filesystem	as	well:

wt.remove(['filea.txt',	'fileb.txt',	'dir1'],	keep_files=False)

Renaming	a	File
You	 can	 rename	 one	 file	 to	 a	 different	 name	 using
WorkingTree.rename_one.	You	just	provide	the	old	and	new	names,
eg:

wt.rename_one('oldfile.txt','newfile.txt')

Moving	Files
You	 can	move	multiple	 files	 from	 one	 directory	 into	 another	 using
WorkingTree.move:

wt.move(['olddir/file.txt'],	'newdir')

More	 complicated	 renames/moves	 can	 be	 done	 with
transform.TreeTransform,	 which	 is	 outside	 the	 scope	 of	 this
document.

Committing	Changes
To	commit	_all_	the	changes	to	our	working	tree	we	can	just	call	the
WorkingTree’s	commit	method,	giving	it	a	commit	message,	eg:

wt.commit('this	is	my	commit	message')

To	commit	only	certain	 files,	we	need	 to	provide	a	 list	of	 filenames
which	we	want	committing,	eg:

wt.commit(message='this	is	my	commit	message',	specific_files=['fileA.txt'

										'dir2/fileB.txt',	'fileD.txt'])

Generating	a	Log	for	a	File
Generating	a	log	is,	in	itself,	simple.	Grab	a	branch	(see	below)	and
pass	it	to	show_log	together	with	a	log	formatter,	eg:

from	bzrlib	import	log

from	bzrlib	import	branch

b	=	branch.Branch.open('/path/to/bazaar/branch')

lf	=	log.LongLogFormatter(to_file=sys.stdout)

log.show_log(b,	lf)

Three	 log	 formatters	 are	 included	 with	 bzrlib:	 LongLogFormatter,
ShortLogFormatter	and	LineLogFormatter.	These	provide	long,	short
and	single-line	log	output	formats.	It’s	also	possible	to	write	your	own
in	very	little	code.

Annotating	a	File
To	annotate	a	file,	we	want	to	walk	every	line	of	a	file,	retrieving	the
revision	which	last	modified/created	that	line	and	then	retrieving	the
information	for	that	revision.

First	we	get	an	annotation	iterator	for	the	file	we	are	interested	in:

tree,	relpath	=	workingtree.WorkingTree.open_containing('/path/to/file.txt'

fileid	=	tree.path2id(relpath)

annotation	=	list(tree.annotate_iter(fileid))

To	 avoid	 repeatedly	 retrieving	 the	 same	 revisions	 we	 grab	 all
revisions	associated	with	the	file	at	once	and	build	up	a	map	of	id	to
revision	 information.	 We	 also	 build	 an	 map	 of	 revision	 numbers,
again	indexed	by	the	revision	id:

revision_ids	=	set(revision_id	for	revision_id,	text	in	annotation

revisions	=	tree.branch.repository.get_revisions(revision_ids)

revision_map	=	dict(izip(revision_ids,	revisions))

revno_map	=	tree.branch.get_revision_id_to_revno_map()

Finally,	 we	 use	 our	 annotation	 iterator	 to	walk	 the	 lines	 of	 the	 file,
displaying	the	information	from	our	revision	maps	as	we	go:

for	revision_id,	text	in	annotation	:

				rev	=	revision_map[revision_id]

				revno	=	revno_map[revision_id]

				revno_string	=	'.'.join(str(i)	for	i	in	revno)

				print	"%s,	%s:	%s"	%	(revno_string,	rev.committer,	text)

Working	with	branches
To	work	with	a	branch	you	need	a	branch	object,	created	from	your
branch:

from	bzrlib	import	branch

b	=	branch.Branch.open('/home/jebw/bzrtest')

Branching	from	an	existing	branch
To	branch	you	create	a	branch	object	 representing	 the	branch	you
are	branching	from,	and	supply	a	path/url	to	the	new	branch	location.
The	following	code	clones	the	bzr.dev	branch	(the	latest	copy	of	the
Bazaar	source	code)	-	be	warned	it	has	to	download	60meg	so	takes
a	while	to	run	with	no	feedback:

from	bzrlib	import	branch

b	=	branch.Branch.open('http://bazaar.launchpad.net/~bzr-pqm/bzr/bzr.dev'

nb	=	b.bzrdir.sprout('/tmp/newBzrBranch').open_branch()

This	 provides	 no	 feedback,	 since	 Bazaar	 automatically	 uses	 the
‘silent’	UI.

Pushing	and	pulling	branches
To	 push	 a	 branch	 you	 need	 to	 open	 the	 source	 and	 destination
branches,	then	just	call	push	with	the	other	branch	as	a	parameter:

from	bzrlib	import	branch

b1	=	branch.Branch.open('file:///home/user/mybranch')

b2	=	branch.Branch.open('http://bazaar.launchpad.net/~bzr-pqm/bzr/bzr.dev'

b1.push(b2)

Pulling	is	much	the	same:

b1.pull(b2)

If	 you	 have	 a	 working	 tree,	 as	 well	 as	 a	 branch,	 you	 should	 use
WorkingTree.pull,	not	Branch.pull.

This	won’t	handle	conflicts	automatically	though,	so	any	conflicts	will
be	left	in	the	working	tree	for	the	user	to	resolve.

Checkout	from	an	existing	branch
This	performs	a	Lightweight	checkout	from	an	existing	Branch:

from	bzrlib	import	bzrdir

accelerator_tree,	source	=	bzrdir.BzrDir.open_tree_or_branch('http:URL'

source.create_checkout('/tmp/newBzrCheckout',	None,	True,	accelerator_tree

To	make	a	heavyweight	checkout,	change	the	last	line	to:

source.create_checkout('/tmp/newBzrCheckout',	None,	False,	accelerator_tree

History	Operations

Finding	the	last	revision	number	or	id

To	get	the	last	revision	number	and	id	of	a	branch	use:

revision_number,	revision_id	=	branch.last_revision_info()

If	all	you	care	about	is	the	revision_id	there	is	also	the	method:

revision_id	=	branch.last_revision()

Getting	the	list	of	revision	ids	that	make	up	a
branch

IMPORTANT:	This	should	be	avoided	wherever	possible,	as	it	scales
with	the	length	of	history:

revisions	=	branch.revision_history()

now	revisions[0]	is	the	revision	id	of	the	first	commit,	and	revs[-1]	is
the	revision	id	of	the	most	recent.	Note	that	if	all	you	want	is	the	last
revision	 then	 you	 should	 use	 branch.last_revision()	 as	 described
above,	as	it	is	vastly	more	efficient.

Getting	a	Revision	object	from	a	revision	id

The	 Revision	 object	 has	 attributes	 like	 “message”	 to	 get	 the
information	about	the	revision:

repo	=	branch.repository

revision	=	repo.get_revision(rev_id)

Accessing	the	files	from	a	revision

To	 get	 the	 file	 contents	 and	 tree	 shape	 for	 a	 specific	 revision	 you
need	 a	 RevisionTree.	 These	 are	 supplied	 by	 the	 repository	 for	 a
specific	revision	id:

revtree	=	repo.revision_tree(rev_id)

RevisionTrees,	 like	 all	 trees,	 can	 be	 compared	 as	 described	 in
“Comparing	Trees”	above.

The	most	common	way	to	list	files	in	a	tree	is	Tree.iter_entries().
The	 simplest	 way	 to	 get	 file	 content	 is	 Tree.get_file().	 The	 best
way	 to	 retrieve	 file	 content	 for	 large	 numbers	 of	 files
Tree.iter_files_bytes()`

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Bazaar	Design	Principles
We	 have	 learned	 or	 adopted	 a	 few	 general	 principles	 for	 code	 in
Bazaar.	 Generally	 we	 will	 try	 to	 follow	 them	 in	 future,	 either	 for
consistency	or	because	they’ve	been	proven	to	work	well,	or	both.

We	may	 need	 to	 depart	 from	 these	 principles	 in	 particular	 special
cases,	or	modify	 them	as	we	 learn	more,	or	we	might	be	diverging
for	 them	 for	 no	 very	 good	 reason	 but	 just	 because	 of	 bugs.	 If	 in
doubt,	ask.

See	also:	Bazaar	Developer	Document	Catalog.

Testing
Untested	code	is	broken	code.

So	 if	 a	 function	 is	 removed	 from	 the	 normal	 flow	 of	 execution
(perhaps	because	a	new	default	format	was	introduced)	we	have	to
make	sure	we	can	still	execute	and	test	the	old	code	–	or	remove	it
altogether.

Data	formats
Fixing	 code	 once	 it’s	 released	 is	 easy;	 fixing	 a	 problematic	 data
format	once	people	have	started	using	it	is	more	difficult.	We	should
document	 and	 review	 formats	 separately	 from	 the	 code	 that
implements	them.

Data	 formats	 should	 have	 clear	 format	 markers	 that	 allow	 us	 to
support	new	formats	 in	 future.	 It	should	be	easy	 to	 read	 the	 format
without	reading	the	whole	object.

The	format	marker	should	be	a	string	understandable	by	a	user	that
names	the	format	and	gives	the	bzr	release	that	introduced	it.	If	 the
bzr	program	doesn’t	understand	that	format,	it	can	at	least	show	that
format	marker	to	the	user.

Once	we	mark	a	format	as	supported,	we’ll	continue	supporting	it	for
several	future	releases,	and	support	upgrading	from	it	forever.

Once	we’ve	released	a	format,	we	normally	don’t	change	it.	Adding
new	optional	elements	can	cause	problems	when	older	clients	don’t
understand	those	changes,	or	don’t	propagate	them	properly.

We	clearly	distinguish	internal	files	from	user	files.	Files	inside	.bzr/
are	 only	 written	 to	 by	 bzr	 and	 we	 discourage	 users	 from	 editing
them.	 Within	 bzr,	 code	 addressing	 the	 abstract	 interface	 of	 the
Branch,	BzrDir,	etc	shouldn’t	know	where	or	how	the	internal	files	are
stored.	 If	 anything	 else	 is	 written	 in	 there,	 it	 won’t	 be	 propagated
when	 pushing	 or	 pulling,	 and	won’t	 be	 converted	when	 upgrading.
(This	is	not	quite	true	though;	there	is	a	branch.conf.)

User	 files	 within	 the	 tree,	 by	 contrast,	 we	 always	 store	 and	 return
verbatim.	It’s	OK	for	Bazaar	to	read	and	act	on	these	files	(as	we	do
with	.bzrignore),	and	to	update	them	(as	bzr	ignore	does),	but	they

remain	clearly	user	files	and	can	be	directly	edited.

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Plans
Performance	roadmap	—	The	roadmap	for	fixing	performance	in
bzr	over	the	next	few	releases.
Co-located	branches	—	Planned(?)	support	 for	storing	multiple
branches	in	one	file-system	directory.
Bazaar	 Windows	 Shell	 Extension	 Options	 —	 Implmentation
strategy	for	Bazaar	Windows	Shell	Extensions,	aka	TortoiseBzr.
CHK	Optimized	index

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»	Plans	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

1			Bazaar	Performance	Roadmap
Contents

1			Bazaar	Performance	Roadmap
1.1			About	the	performance	roadmap

1.1.1			What	should	be	in	the	roadmap?
1.1.2			What	should	the	final	system	look	like,	how	is
it	different	to	what	we	have	today?
1.1.3			What	use	cases	should	be	covered?
1.1.4	 	 	 How	 is	 development	 on	 the	 roadmap
coordinated?
1.1.5			Planned	changes	to	the	bzr	core

1.1.5.1			Library	changes
1.1.5.2			Interoperable	disk	changes
1.1.5.3	 	 	 Possibly	 non-interoperable	 disk
changes
1.1.5.4			Non-interoperable	disk	changes

1.1.6			Integration	of	performance	changes
1.2			Analysis	of	use	cases

1.2.1			Analysing	a	specific	use	case
1.2.2			Performing	the	analysis
1.2.3			What	factors	should	be	considered?

1.3			Use	cases
1.3.1			Initial	push	/	pull

1.3.1.1			Optimal	case
1.3.1.2			Disk	case
1.3.1.3			Smart	Network	Case

1.3.1.3.1			Phase	1
1.3.1.3.2			Phase	2

1.3.1.4			Dumb	Network	Case
1.3.1.5			Wants

1.3.2			Incremental	push/pull

1.3.2.1			Functional	Requirements
1.3.2.2	 	 	 Factors	 which	 should	 add	 work	 for
push/pull
1.3.2.3			Push/pull	overview

1.3.2.3.1			New	data	identification
1.3.2.3.1.1	 	 	 Set	 synchronisation
approaches
1.3.2.3.1.2	 	 	 DAG	 synchronisation
approaches
1.3.2.3.1.3			File	level	scaling
1.3.2.3.1.4			API	scaling

1.3.2.3.2			Data	reading
1.3.2.3.2.1			File	level	scaling
1.3.2.3.2.2			API	scaling

1.3.2.3.3			Data	Verification	and	writing
1.3.2.3.3.1			Overview	summary
1.3.2.3.3.2			File	level	scaling
1.3.2.3.3.3			API	scaling

1.3.2.4			Notes	from	London
1.3.3			Add

1.3.3.1			Least	work	we	can	hope	to	perform
1.3.3.2			Per	file	algorithm

1.3.4			Commit	Performance	Notes
1.3.4.1			Changes	to	commit
1.3.4.2			Commit:	The	Minimum	Work	Required
1.3.4.3			Commit	vs	Status
1.3.4.4	 	 	 Avoiding	 Work:	 Smarter	 Change
Detection
1.3.4.5			Avoiding	Work:	Better	Layering
1.3.4.6			Avoiding	work:	avoiding	reading	parent
data
1.3.4.7			Code	structure
1.3.4.8			Complications	of	commit
1.3.4.9			Interface	stack

1.3.4.10			Branch->Tree	interface
1.3.4.11			Information	from	the	tree	to	repository
1.3.4.12	 	 	 Information	 from	the	repository	 to	 the
tree
1.3.4.13			Selective	commit
1.3.4.14			Common	commit	code
1.3.4.15			Order	of	traversal
1.3.4.16			Open	question:	per-file	graphs

1.3.5			diff	Performance	Analysis
1.3.5.1			Minimal	Work

1.3.5.1.1			Reuse	of	historical	comparisons
1.3.5.1.2		 	Historical	Tree	Against	Historical
Tree
1.3.5.1.3			Basis	Against	Historical	Tree
1.3.5.1.4			Basis	Against	Basis
1.3.5.1.5			Working	Tree	Against	Basis
1.3.5.1.6	 	 	Working	 Tree	 Against	 Historical
Tree
1.3.5.1.7	 	 	 Working	 Tree	 Against	 Working
Tree

1.3.5.2			API	Changes
1.3.5.3			Storage	considerations

1.3.6			Garbage	Collection
1.3.6.1			Least	work	we	can	hope	to	perform

1.3.7			Revert
1.3.7.1			Least	work	we	can	hope	to	perform

1.3.8			The	status	command
1.3.8.1			UI	Overview
1.3.8.2			Ideal	work	for	working	tree	to	historical
status
1.3.8.3			Locality	of	reference
1.3.8.4			Scaling	observations

1.3.9			Annotate
1.3.10			Scaling	analysys	of	Merge

1.3.10.1			Needs
1.3.10.2			Notes

1.3.11			Bundle	Creation
1.3.11.1			Needs

1.3.12			Uncommit	Performance	Notes
1.3.12.1			Specification	of	uncommit

1.3.13			Missing
1.4			Subsystem	designs

1.4.1			Directory	fingerprints
1.4.1.1			Introduction
1.4.1.2			Use-case	oriented	APIs

1.4.1.2.1			commit
1.4.1.2.2			log

1.4.1.3			Open	questions
1.4.1.4			Conclusions
1.4.1.5			Design	changes
1.4.1.6			API	changes

1.1			About	the	performance	roadmap

1.1.1			What	should	be	in	the	roadmap?

A	good	roadmap	provides	a	place	for	contributors	to	look	for	tasks,	it
provides	 users	 with	 a	 sense	 of	 when	 we	 will	 fix	 things	 that	 are
affecting	them,	and	it	also	allows	us	all	to	agree	about	where	we	are
headed.	So	the	roadmap	should	contain	enough	things	to	let	all	this
happen.

I	think	that	it	needs	to	contain	the	analysis	work	which	is	required,	a
list	of	the	use	cases	to	be	optimised,	the	disk	changes	required,	and
the	broad	sense	of	the	api	changes	required.	It	also	needs	to	list	the
inter-dependencies	between	these	things:	we	should	aim	for	a	large
surface	area	of	‘ready	to	be	worked	on’	items,	that	makes	it	easy	to
improve	performance	without	 having	 to	work	 in	 lockstep	with	other
developers.

Clearly	the	analysis	step	is	an	immediate	bottleneck	-	we	cannot	tell
if	an	optimisation	for	use	case	A	is	a	pessimism	for	use	case	B	until
we	 have	 analysed	 both	 A	 and	 B.	 I	 propose	 that	 we	 complete	 the
analysis	 of	 say	 a	 dozen	 core	 use	 cases	 end	 to	 end	 during	 the
upcoming	 sprint	 in	 London.	 We	 should	 then	 be	 able	 to	 fork()	 for
much	 of	 the	 detailed	 design	 work	 and	 regroup	 with	 disk	 and	 api
changes	shortly	thereafter.

I	 suspect	 that	 clarity	 of	 layering	 will	 make	 a	 big	 difference	 to
developer	parallelism,	so	another	proposal	I	have	is	for	us	to	look	at
the	APIs	for	Branch	and	Repository	in	London	in	the	light	of	what	we
have	learnt	over	the	last	years.

1.1.2			What	should	the	final	system	look	like,	how
is	it	different	to	what	we	have	today?

One	of	the	things	I	like	the	most	about	bzr	is	its	rich	library	API,	and
I’ve	 heard	 this	 from	 numerous	 other	 folk.	 So	 anything	 that	 will
remove	that	should	be	considered	a	last	resort.

Similarly	our	relatively	excellent	cross	platform	support	 is	critical	 for
projects	that	are	themselves	cross	platform,	and	thats	a	considerable
number	these	days.

And	 of	 course,	 our	 focus	 on	 doing	 the	 right	 thing	 is	 what
differentiates	 us	 from	 some	 of	 the	 other	 VCS’s,	 so	 we	 should	 be
focusing	on	doing	the	right	thing	quickly	:).

What	we	have	today	though	has	grown	organically	in	response	to	us
identifying	 bottlenecks	 over	 several	 iterations	 of	 back	 end	 storage,
branch	 metadata	 and	 the	 local	 tree	 representation.	 I	 think	 we	 are
largely	past	that	and	able	to	describe	the	ideal	characteristics	of	the
major	 actors	 in	 the	 system	 -	 primarily	 Tree,	 Branch,	 Repository	 -
based	on	what	we	have	learnt.

1.1.3			What	use	cases	should	be	covered?

My	 list	 of	 use	 cases	 is	 probably	 not	 complete	 -	 its	 just	 the	 ones	 I
happen	 to	 see	 a	 lot	 :).	 I	 think	 each	 should	 be	 analysed
comprehensively	so	we	dont	need	to	say	‘push	over	the	network’	-	its
implied	 in	the	scaling	analysis	that	both	semantic	and	file	operation
latency	will	be	considered.

These	use	cases	are	ordered	by	roughly	the	ease	of	benchmarking,
and	the	frequency	of	use.	This	ordering	 is	so	that	when	people	are
comparing	bzr	 they	are	going	 to	get	use	cases	we	have	optimised;
and	so	 that	as	we	speed	 things	up	our	existing	users	will	have	 the
things	they	do	the	most	optimised.

status	tree
status	subtree

commit
commit	to	a	bound	branch
incremental	push/pull
log
log	path
add
initial	push	or	pull	[both	to	a	new	repo	and	an	existing	repo
with	different	data	in	it]
diff	tree
diff	subtree
revert	tree
revert	subtree
merge	from	a	branch
merge	from	a	bundle
annotate
create	a	bundle	against	a	branch
uncommit
missing
update
cbranch

1.1.4			How	is	development	on	the	roadmap
coordinated?

I	 think	we	should	hold	 regular	get-togethers	 (on	 IRC)	 to	coordinate
on	our	progress,	because	this	is	a	big	task	and	its	a	lot	easier	to	start
helping	 out	 some	 area	 which	 is	 having	 trouble	 if	 we	 have	 kept	 in
contact	 about	 each	 areas	 progress.	 This	 might	 be	 weekly	 or
fortnightly	or	some	such.

we	need	a	shared	space	to	record	the	results	of	the	analysis	and	the
roadmap	as	we	go	forward.	Given	that	we’ll	need	to	update	these	as
new	features	are	considered,	I	propose	that	we	use	doc/design	as	a
working	 space,	 and	 as	 we	 analyse	 use	 cases	 we	 include	 them	 in

there	-	including	the	normal	review	process	for	each	patch.	We	also
need	 documentation	 about	 doing	 performance	 tuning	 -	 not	 the
minutiae,	 though	 that	 is	needed,	but	about	how	 to	effective	choose
things	to	optimise	which	will	give	the	best	return	on	time	spent	-	that
is	what	 the	 roadmap	should	help	with,	 but	 this	 looks	 to	 be	a	 large
project	and	an	overview	will	be	of	great	assistance	I	think.	We	want
to	help	everyone	 that	wishes	 to	contribute	 to	performance	 to	do	so
effectively.

Finally,	its	important	to	note	that	coding	is	not	the	only	contribution	-
testing,	 giving	 feedback	 on	 current	 performance,	 helping	 with	 the
analysis	are	all	extremely	important	tasks	too	and	we	probably	want
to	 have	 clear	markers	 of	where	 that	 should	 be	 done	 to	 encourage
such	contributions.

1.1.5			Planned	changes	to	the	bzr	core

Delivering	the	best	possible	performance	requires	changing	the	bzr
core	design	 from	 that	present	 in	0.16.	Some	of	 these	changes	are
incremental	and	can	be	done	with	no	impact	on	disk	format.	Many	of
them	however	do	require	changes	to	the	disk	format,	and	these	can
be	 broken	 into	 two	 sets	 of	 changes,	 those	 which	 are	 sufficiently
close	to	the	model	bzr	uses	today	to	interoperate	with	the	0.16	disk
formats,	and	those	that	are	not	able	to	interoperate	with	the	0.16	disk
formats	 -	 specifically	 some	 planned	 changes	 may	 result	 in	 data
which	 cannot	 be	 exported	 to	 bzr	 0.16’s	 disk	 formats	 and	 then
imported	back	 to	 the	new	 format	without	 losing	 critical	 information.
If/when	this	takes	place	it	will	be	essentially	a	migration	for	users	to
switch	from	their	bzr	0.16	repository	to	a	bzr	that	supports	them.	We
plan	 to	 batch	 all	 such	 changes	 into	 one	 large	 ‘experimental’
repository	 format,	which	will	 be	 complete	 stable	and	usable	before
we	migrate	it	to	become	a	supported	format.	Getting	new	versions	of
bzr	 in	widespread	use	at	 that	 time	will	be	very	 important,	otherwise
the	user	base	may	be	split	 in	 two	 -	 users	 that	 have	upgraded	and

users	that	have	not.

The	following	changes	are	grouped	according	to	 their	compatability
impact:	 library	 only,	 disk	 format	 but	 interoperable,	 disk	 format
interoperability	unknown,	and	disk	format,	not	interoperable.

1.1.5.1			Library	changes

These	 changes	will	 change	 bzrlib’s	 API	 but	 will	 not	 affect	 the	 disk
format	and	thus	do	not	pose	a	significant	migration	issue.

For	our	20	core	use	cases,	we	plan	to	add	targeted	API’s	to
bzrlib	that	are	repository-representation	agnostic.	These	will
instead	 reflect	 the	 shape	 of	 data	 access	most	 optimal	 for
that	case.
Deprecate	 ‘versioned	 files’	as	a	 library	concept.	 Instead	of
asking	 for	 information	 about	 a	 file-over-time	 as	 a	 special
case,	we	will	move	 to	 an	API	 that	 assumes	 less	 coupling
between	 the	historical	 information	and	 the	ability	 to	obtain
texts/deltas	 etc.	 Specifically,	 we	 need	 to	 remove	 all	 API’s
that	 act	 in	 terms	 of	 on	 disk	 representation	 except	 those
within	a	given	repository	implementation.
Create	 a	 validator	 for	 revisions	 that	 is	 more	 amenable	 to
use	 by	 other	 parts	 of	 the	 code	 base	 than	 just	 the	 gpg
signing	 facility.	 This	 can	 be	 done	 today	 without	 changing
disk,	possibly	with	a	performance	hit	until	 the	disk	 formats
match	 the	validatory	 logic.	 It	will	be	hard	 to	 tell	 if	we	have
the	 right	 routine	 for	 that	 until	 all	 the	 disk	 changes	 are
complete,	 so	 while	 this	 is	 a	 library	 only	 change,	 its	 likely
one	that	will	be	delayed	to	near	the	end	of	the	process.
Add	an	explicit	API	for	managing	cached	annotations.	While
annotations	are	considered	a	cache	 this	 is	not	exposed	 in
such	a	way	that	cache	operations	like	‘drop	the	cache’	can
be	 performed.	 On	 current	 disk	 formats	 the	 cache	 is
mandatory,	but	an	API	to	manage	would	allow	refreshing	of

the	 cache	 (e.g.	 after	 ghosts	 are	 filled	 in	 during	 baz
conversions).
Use	 the	 _iter_changes	 API	 to	 perform	 merges.	 This	 is	 a
small	change	that	may	remove	the	need	to	use	inventories
in	 merge,	 making	 a	 dramatic	 difference	 to	 merge
performance	once	the	tree	shape	comparison	optimisations
are	implemented.
Create	 a	 network-efficient	 revision	 graph	 API.	 This	 is	 the
logic	 at	 the	 start	 of	 push	 and	 pull	 operations,	 which
currently	 scales	 O(graph	 size).	 Fixing	 the	 scaling	 can	 be
done,	but	there	are	tradeoffs	to	latency	and	performance	to
consider,	making	it	a	little	tricky	to	get	right.
Working	 tree	 disk	 operation	 ordering.	We	 plan	 to	 change
the	 order	 in	which	 some	 operations	 are	 done	 (specifically
TreeTransform	 ones)	 to	 improve	 performance.	 There	 is
already	 a	 66%	 performance	 boost	 in	 that	 area	 going
through	review.
Stop	 requiring	 full	 memory	 copies	 of	 files.	 Currently	 bzr
requires	that	it	can	hold	3	copies	of	any	file	its	versioning	in
memory.	 Solving	 this	 is	 tricky,	 particularly	 without
performance	regressions	on	small	files,	but	without	solving
it	versioning	of	 .iso	and	other	 large	objects	will	continue	to
be	extremely	painful.
Add	 an	 API	 for	 per-file	 graph	 access	 that	 alllows
incremental	 access	 and	 is	 suitable	 for	 on-demand
generation	if	desired.
Repository	stacking	API.	Allowing	multiple	databases	to	be
stacked	 to	 give	 a	 single	 ‘repository’	 will	 allow
implementation	 of	 some	 long	 desired	 features	 like	 history
horizons,	and	bundle	usage	where	the	bundle	is	not	added
to	the	local	repository	just	to	examine	its	contents.
Revision	 data	 manipulation	 API.	 We	 need	 a	 single
streaming	 API	 for	 adding	 data	 to	 or	 getting	 it	 from	 a
repository.	This	will	need	to	allow	hints	such	as	‘optimise	for

size’,	 or	 ‘optimise	 for	 fast-addition’	 to	 meet	 the	 various
users	planned,	but	it	is	a	core	part	of	the	library	today,	and
its	 not	 sufficiently	 clean	 to	 let	 us	 simplify/remove	 a	 lot	 of
related	code	today.

1.1.5.2			Interoperable	disk	changes

New	 container	 format	 to	 allow	 single-file	 description	 of
multiple	 named	 objects.	 This	 will	 provide	 the	 basis	 for
transmission	of	revisions	over	the	network,	the	new	bundle
format,	and	possibly	a	new	repository	format	as	well.	[Core
implemented]
Separate	 the	 annotation	 cache	 from	 the	 storage	 of	 actual
file	texts	and	make	the	annotation	style,	and	when	to	do	it,
configurable.	This	will	reduce	data	sent	over	the	wire	when
repositories	have	had	‘needs-annotations’	turned	off,	which
very	large	trees	may	choose	to	do	-	generating	just-in-time
annotations	may	 be	 desirable	 for	 those	 trees	 (even	when
performing	annotation	based	merges).
Repository	 disk	 operation	 ordering.	 The	 order	 that	 tasks
access	data	within	the	repository	and	the	layout	of	the	data
should	 be	 harmonised.	 This	 will	 require	 disk	 format
changes	 but	 does	 not	 inherently	 alter	 the	 model,	 so	 its
straight	 forward	 to	 export	 from	a	 repository	 that	 has	 been
optimised	in	this	way	to	a	0.16	based	repository.
Inventory	 representation.	 An	 inventory	 is	 a	 logical
description	 of	 the	 shape	 of	 a	 version	 controlled	 tree.
Currently	 we	 operate	 on	 the	 whole	 inventory	 as	 a	 tree
broken	down	per	directory,	but	we	store	it	as	a	flat	file.	This
scale	 very	 poorly	 as	 even	 a	 minor	 change	 between
inventories	 requires	us	 to	scan	 the	entire	 file,	and	 in	 large
trees	 this	 is	many	megabytes	of	 data	 to	 consider.	We	are
investigating	the	exact	form,	but	the	intent	is	to	change	the
serialisation	 of	 inventories	 so	 that	 comparing	 two

inventories	can	be	done	 in	some	smaller	 time	 -	e.g.	O(log
N)	scaling.	Whatever	form	this	takes,	a	repository	that	can
export	it	directly	will	be	able	to	perform	operations	between
two	 historical	 trees	much	more	 efficiently	 than	 the	 current
repositories.
Delta	 storage	 optimisation.	 We	 plan	 to	 change	 the	 delta
storage	 logic	 to	 use	 a	 binary	 delta	 like	 xdelta	 rather	 than
using	 line	 based	 deltas	 from	 python.	 These	 binary	 deltas
could	 be	 done	 along	 ancestry	 ordering,	 or	 other	 arbitrary
patterns	 chosen	 for	 their	 intended	 use.	 Line	 based	 deltas
will	still	be	created	for	cached	annotations.	This	is	still	under
some	 discussion.	 http://bazaar-
vcs.org/PerformanceRoadmap/Xdelta
Greatest	 distance	 from	 origin	 cache.	 This	 is	 a	 possible
change	to	introduce,	but	it	may	be	unnecessary	-	listed	here
for	completeness	till	it	has	been	established	as	[un]needed.

1.1.5.3			Possibly	non-interoperable	disk	changes

Removing	of	derivable	data	 from	 the	core	of	bzr.	Much	of
the	data	 that	bzr	stores	 is	derivable	 from	the	users	source
files.	 For	 instance	 the	 annotations	 that	 record	 who
introduced	a	 line.	Given	 the	 full	history	 for	a	repository	we
can	 recreate	 that	 at	 any	 time.	 We	 want	 to	 remove	 the
dependence	of	the	core	of	bzr	on	any	data	that	is	derivable,
because	doing	this	will	give	us	the	freedom	to:

Improve	the	derivation	algorithm	over	time.
Deal	 with	 bugs	 in	 the	 derivation	 algorithms	 without
having	‘corrupt	repositories’	or	such	things.

However,	some	of	 the	data	 that	 is	 technically	derived,	 like
the	per-file	merge	graph,	 is	both	considered	core,	and	can
be	generated	differently	when	certain	circumstances	arive,
by	bzr	0.16.	Any	change	to	the	‘core’	status	of	that	data	will

http://bazaar-vcs.org/PerformanceRoadmap/Xdelta

discard	data	that	cannot	be	recreated	and	thus	lead	to	the
inability	 to	export	 from	a	 format	where	 that	 is	derived	data
to	 bzr	 0.16’s	 formats	 without	 errors	 occuring	 in	 those
circumstances.	 Some	 of	 the	 data	 that	may	 be	 considered
for	this	includes:

Per	file	merge	graphs
Annotations

1.1.5.4			Non-interoperable	disk	changes

Drop	 the	per-file	merge	graph	 ‘cache’	currently	held	 in	 the
FILE-ID.kndx	 files.	 A	 specific	 case	 of	 removing	 derivable
data,	 this	may	 allow	 smaller	 inventory	metadata	 and	 also
make	it	easier	to	allow	two	different	trees	(in	terms	of	 last-
change	made,	e.g.	if	one	is	a	working	tree)	to	be	compared
using	a	hash-tree	style	approach.
Use	 hash	 based	 names	 for	 some	 objects	 in	 the	 bzr
database.	Because	it	would	force	total-knowledge-of-history
on	the	graph	revision	objects	will	not	be	namable	via	hash’s
and	 neither	will	 revisio	 signatures.	Other	 than	 that	 though
we	 can	 in	 principle	 use	 hash’s	 e.g.	 SHA1	 for	 everything
else.	 There	 are	 many	 unanswered	 questions	 about	 hash
based	naming	related	to	locality	of	reference	impacts,	which
need	to	be	answered	before	this	becomes	a	definite	item.

1.1.6			Integration	of	performance	changes

To	deliver	a	version	of	bzr	with	all	our	planned	changes	will	 require
significant	 integration	 work.	 Minimally	 each	 change	 needs	 to
integrate	with	some	aspect	of	the	bzr	version	it’s	merged	into,	but	in
reality	many	of	these	changes	while	conceptually	independent	will	in
fact	 have	 to	 integrate	 with	 the	 other	 changes	 we	 have	 planned
before	can	have	a	completed	system.

Additionally	changes	that	alter	disk	formats	are	inherently	more	tricky
to	 integrate	because	we	will	often	need	to	alter	apis	throughout	 the
code	 base	 to	 expose	 the	 increased	 or	 reduced	 model	 of	 the
preferred	disk	format.

You	can	generate	a	graph	 performance.png	 in	 the	source	 tree	 from
Graphviz	 “dot”	 file	 performance.dot.	 This	 graphs	 out	 the
dependencies	to	let	us	make	accurate	assessments	of	the	changes
needed	 in	 terms	of	code	and	API,	hopefully	minimising	 the	number
of	different	integration	steps	we	have	to	take,	while	giving	us	a	broad
surface	area	 for	development.	 It’s	based	on	a	summary	 in	 the	next
section	of	this	document	of	the	planned	changes	with	their	expected
collaborators	 and	 dependencies.	 Where	 a	 command	 is	 listed,	 the
expectation	 is	 that	all	 uses	of	 that	 command	 -	 local,	 remote,	dumb
transport	and	smart	transport	are	being	addressed	together.

The	following	provides	a	summary	of	the	planned	changes	and	their
expected	collaborators	within	the	code	base,	along	with	an	estimate
of	whether	they	are	likely	to	require	changes	to	their	collaborators	to
be	considered	‘finished’.

Use	 case	 target	 APIs:	 Each	 of	 these	 is	 likely	 to	 alter	 the
Tree	interface.	Some	few	of	them	focus	on	Branch	and	will
alter	 Branch	 and	 Repository	 accordingly.	 As	 they	 are
targeted	APIs	we	can	deep	changes	all	 the	way	down	 the
stack	to	the	underlying	representation	to	make	it	all	fit	well.
Presenting	a	top	level	API	for	many	things	will	be	possible
now	as	 long	as	 the	exposed	data	 is	audited	 for	 things	we
plan	 to	make	 optional,	 or	 remove:	 Such	 things	 cannot	 be
present	in	the	final	API.	Writing	these	APIs	now	will	provide
strong	 feedback	 to	 the	 design	 process	 for	 those	 things
which	are	considered	optional	or	removable,	so	these	APIs
should	be	implemented	before	removing	or	making	optional
existing	data.
Deprecating	 versioned	 files	 as	 a	 supported	 API:	 This

collaborates	 with	 the	 Repository	 API	 but	 can	 probably	 be
done	 by	 adding	 a	 replacement	 API	 for	 places	 where	 the
versioned-file	 api	 is	 used.	 We	 may	 well	 want	 to	 keep	 a
concept	of	‘a	file	over	time’	or	‘inventories	over	time’,	so	the
existing	repository	model	of	exposing	versioned	file	objects
may	be	ok;	what	we	need	 to	ensure	we	do	 is	 remove	 the
places	 in	 the	 code	 base	 where	 you	 create	 or	 remove	 or
otherwise	 describe	 manipulation	 of	 the	 storage	 by	 knit
rather	 than	 talking	 at	 the	 level	 of	 file	 ids	 and	 revision	 ids.
The	 current	 versioned-file	 API	 would	 be	 a	 burden	 for
implementors	 of	 a	 blob	 based	 repository	 format,	 so	 the
removal	 of	 callers,	 and	 deprecation	 of	 those	 parts	 of	 the
API	should	be	done	before	creating	a	blob	based	repository
format.
Creating	 a	 revision	 validator:	 Revision	 validators	 may
depend	on	storage	layer	changes	to	inventories	so	while	we
can	 create	 a	 revision	 validator	 API,	 we	 cannot	 create	 the
final	 one	 until	 we	 have	 the	 inventory	 structural	 changes
completed.
Annotation	caching	API:	This	API	 is	a	prerequisite	 for	new
repository	 formats.	 If	 written	 after	 they	 are	 introduced	 we
may	find	that	the	repository	is	lacking	in	functionality,	so	the
API	should	be	implemented	first.
_iter_changes	based	merging:	If	the	current	_iter_changes_
API	 is	 insufficient,	 we	 should	 know	 about	 that	 before
designing	 the	 disk	 format	 for	 generating	 fast
_iter_changes_	output.
Network-efficient	 revision	 graph	 API:	 This	 influences	what
questions	we	will	want	to	ask	a	local	repository	very	quickly;
as	 such	 it’s	 a	 driver	 for	 the	 new	 repository	 format	 and
should	 be	 in	 place	 first	 if	 possible.	 Its	 probably	 not
sufficiently	different	to	 local	operations	to	make	this	a	hard
ordering	though.
Working	tree	disk	ordering:	Knowing	the	expected	order	for

disk	operations	may	influence	the	needed	use	case	specific
APIs,	so	having	a	solid	understanding	of	what	 is	optimal	 -
and	why	-	and	whether	it	is	pessimal	on	non	linux	platforms
is	rather	important.
Be	able	 to	 version	 files	greater	 than	memory	 in	 size:	This
cannot	be	achieved	until	all	parts	of	 the	 library	which	deal
with	user	files	are	able	to	provide	access	to	files	larger	than
memory.	Many	strategies	can	be	considered	for	this	-	such
as	temporary	files	on	disk,	memory	mapping	etc.	We	should
have	 enough	 of	 a	 design	 laid	 out	 that	 developers	 of
repository	and	tree	logic	are	able	to	start	exposing	apis,	and
considering	 requirements	 related	 to	 them,	 to	 let	 this
happen.
Per-file	graph	access	API:	This	should	be	 implemented	on
top	of	or	as	part	of	the	newer	API	for	accessing	data	about
a	file	over	time.	It	can	be	a	separate	step	easily;	but	as	it’s
in	 the	 same	 area	 of	 the	 library	 should	 not	 be	 done	 in
parallel.
Repository	 stacking	 API:	 The	 key	 dependency/change
required	 for	 this	 is	 that	 repositories	 must	 individually	 be
happy	with	having	partial	data	-	e.g.	many	ghosts.	However
the	way	the	API	needs	to	be	used	should	be	driven	from	the
command	layer	in,	because	its	unclear	at	the	moment	what
will	work	best.
Revision	 stream	 API:	 This	 API	 will	 become	 clear	 as	 we
streamline	 commands.	 On	 the	 data	 insertion	 side	 commit
will	 want	 to	 generate	 new	 data.	 The	 commands	 pull,
bundle,	merge,	push,	possibly	uncommit	will	want	 to	 copy
existing	data	in	a	streaming	fashion.
New	container	format:	 Its	hard	to	tell	what	the	right	way	to
structure	 the	 layering	 is.	 Probably	 having	 smooth	 layering
down	 to	 the	 point	 that	 code	 wants	 to	 operate	 on	 the
containers	directly	will	make	this	more	clear.	As	bundles	will
become	a	 read-only	branch	&	 repository,	 the	smart	 server

wants	 streaming-containers,	 and	 we	 are	 planning	 a	 pack
based	repository,	it	appears	that	we	will	have	three	different
direct	 container	 users.	 However,	 the	 bundle	 user	 may	 in
fact	be	fake	-	because	it	really	is	a	repository.
Separation	of	annotation	cache:	Making	the	disk	changes	to
achieve	 this	 depends	 on	 the	 new	 API	 being	 created.
Bundles	probably	want	to	be	annotation-free,	so	they	are	a
form	of	implementation	of	this	and	will	need	the	on-demand
annotation	facility.
Repository	 operation	 disk	 ordering:	 Dramatically	 changing
the	 ordering	 of	 disk	 operations	 requires	 a	 new	 repository
format.	We	 have	most	 of	 the	 analysis	 done	 to	 be	 able	 to
specify	 the	 desired	 ordering,	 so	 it	 should	 be	 possible	 to
write	such	a	 format	now	based	on	 the	container	 logic,	but
without	 any	 of	 the	 inventory	 representation	 or	 delta
representation	 changes.	 This	 would	 for	 instance	 involve
pack	combining	ordering	the	existing	diffs	in	reverse	order.
Inventory	 representation:	 This	 has	 a	 dependency	 on	what
data	 is	 dropped	 from	 the	 core	 and	 what	 is	 kept.	 Without
those	 changes	 being	 known	 we	 can	 implement	 a	 new
representation,	 but	 it	 won’t	 be	 a	 final	 one.	 One	 of	 the
services	 the	 new	 inventory	 representation	 is	 expected	 to
deliver	 is	 one	 of	 validators	 for	 subtrees	 –	 a	 means	 of
comparing	 just	 subtrees	 of	 two	 inventories	 without
comparing	all	the	data	within	that	subtree.
Delta	storage	optimisation:	This	has	a	strict	dependency	on
a	new	 repository	 format.	Optimisation	 takes	many	 forms	 -
we	 probably	 cannot	 complete	 the	 desired	 optimisations
under	 knits	 though	 we	 could	 use	 xdelta	 within	 a	 knit-
variation.
Greatest	distance	from	origin	cache:	The	potential	users	of
this	 exist	 today,	 it	 is	 likely	 able	 to	 be	 implemented
immediately,	but	we	are	not	sure	that	 its	needed	anymore,
so	it	is	being	shelved.

Removing	derivable	data:	Its	very	hard	to	do	this	while	the
derived	 data	 is	 exposed	 in	 API’s	 but	 not	 used	 by
commands.	 Implemented	 the	 targeted	 API’s	 for	 our	 core
use	 cases	 should	 allow	 use	 to	 remove	 accidental	 use	 of
derived	 data,	 making	 only	 explicit	 uses	 of	 it	 visible,	 and
isolating	 the	 impact	 of	 removing	 it	 :	 allowing	 us	 to
experiment	sensibly.	This	covers	both	dropping	the	per-file
merge	graph	and	the	hash-based-names	proposals.

1.2			Analysis	of	use	cases

1.2.1			Analysing	a	specific	use	case

The	analysis	of	a	use	case	needs	to	provide	as	outputs:
The	functional	requirements	that	the	use	case	has	to	satisfy.
The	 file	 level	 operations	 and	 access	 patterns	 that	 will	 give
the	best	performance.
A	 low	 friction	 API	 which	 will	 allow	 the	 use	 case	 to	 be
implemented.
The	 release	 of	 bzr	 (and	 thus	 the	 supported	 features)	 for
which	 the	 analysis	 was	 performed.	 The	 feature	 set	 of	 bzr
defines	the	access	patterns	and	data	required	to	implement
any	 use	 case.	 So	 when	 we	 add	 features,	 their	 design
changes	 the	 requirements	 for	 the	 parts	 of	 the	 system	 they
alter,	so	we	need	to	re-analyse	use	cases	when	bzr’s	feature
set	 changes.	 If	 future	 plans	 are	 considered	 in	 the	 analysis
with	 the	 intention	 of	 avoiding	 rework,	 these	 should	 also	 be
mentioned.

1.2.2			Performing	the	analysis

The	 analysis	 needs	 to	 be	 able	 to	 define	 the	 characteristics	 of	 the
involved	disk	storage	and	APIs.	That	means	we	need	to	examine	the
data	required	for	the	operation,	 in	what	order	 it	 is	required,	on	both
the	read	and	write	sides,	and	how	that	needs	to	be	presented	to	be
consistent	with	our	layering.

As	a	quick	example:	‘annotation	of	a	file	requires	the	file	id	looked	up
from	the	tree,	the	basis	revision	id	from	the	tree,	and	then	the	text	of
that	fileid-revisionid	pair	along	with	the	creating	revision	id	allocated
to	 each	 line,	 and	 the	 dotted	 revision	 number	 of	 each	 of	 those
revision	 ids.’	All	 three	of	our	key	domain	objects	are	 involved	here,

but	we	haven’t	defined	any	characteristics	of	the	api	or	disk	facilities
yet.	 We	 could	 then	 do	 that	 by	 saying	 something	 like	 ‘the	 file-id
lookup	 should	 degrade	 gracefully	 as	 trees	 become	 huge.	 The	 tree
basis	 id	 should	 be	 constant	 time.	 Retrieval	 of	 the	 annotated	 text
should	be	roughly	constant	for	any	text	of	the	same	size	regardless
of	the	number	of	revisions	contributing	to	its	content.	Mapping	of	the
revision	 ids	to	dotted	revnos	could	be	done	as	the	text	 is	retrieved,
but	 its	 completely	 fine	 to	 post-process	 the	annotated	 text	 to	 obtain
dotted-revnos.’

1.2.3			What	factors	should	be	considered?

Obviously,	those	that	will	make	for	an	extremely	fast	system	:).	There
are	many	possible	factors,	but	 the	ones	I	 think	are	most	 interesting
to	design	with	are:

baseline	overhead:

The	time	to	get	bzr	ready	to	begin	the	use	case.

scaling:	how	does	performance	change	when	any	of	 the	 follow
aspects	of	the	system	are	ratcheted	massively	up	or	down:

number	 of	 files/dirs/symlinks/subtrees	 in	 a	 tree	 (both
working	and	revision	trees)
size	of	any	particular	file
number	of	elements	within	a	single	directory
length	of	symlinks
number	of	changes	to	any	file	over	time	(subordinately
also	the	number	of	merges	of	the	file)
number	 of	 commits	 in	 the	 ancestry	 of	 a	 branch
(subordinately	also	the	number	of	merges)
number	of	revisions	in	a	repository
number	of	fileids	in	a	repository
number	of	ghosts	in	a	given	graph	(revision	or	per-file)

number	of	branches	in	a	repository
number	 of	 concurrent	 readers	 for	 a
tree/branch/repository
number	 of	 concurrent	 writers	 for	 objects	 that	 support
that.
latency	 to	 perform	 file	 operations	 (e.g.	 slow	 disks,
network	 file	 systems,	 our	 VFS	 layer	 and
FTP/SFTP/etc)
bandwidth	to	the	disk	storage
latency	to	perform	semantic	operations	(hpss	specific)
bandwidth	when	performing	semantic	operations.

locality	of	reference:	If	an	operation	requires	data	that	is	located
within	 a	 small	 region	 at	 any	 point,	 we	 often	 get	 better
performance	than	with	an	implementation	of	the	same	operation
that	requires	the	same	amount	of	data	but	with	a	 lower	 locality
of	reference.	Its	fairly	tricky	to	add	locality	of	reference	after	the
fact,	so	I	think	its	worth	considering	up	front.

Using	 these	 factors,	 to	 the	 annotate	 example	 we	 can	 add	 that	 its
reasonable	to	do	two	‘semantic’	round	trips	to	the	 local	 tree,	one	to
the	 branch	 object,	 and	 two	 to	 the	 repository.	 In	 file-operation	 level
measurements,	 in	an	 ideal	world	 there	would	be	no	more	 than	one
round	 trip	 for	 each	 semantic	 operation.	What	 there	must	 not	 be	 is
one	round	trip	per	revision	involved	in	the	revisionid->dotted	number
mapping,	nor	per	each	revision	id	attributed	to	a	line	in	the	text.

Not	all	 the	 items	mentioned	above	are	created	equal.	The	analysis
should	 include	 the	 parameters	 considered	 and	 the	 common	 case
values	 for	 each	 -	 the	 optimisation	 should	 be	 around	 the	 common
cases	not	around	the	exceptions.

For	 instance,	we	have	a	smart	server	now;	 file	 level	operations	are
relatively	 low	latency	and	we	should	use	that	as	the	common	case.
At	 this	 point	 we	 intend	 to	 preserve	 the	 performance	 of	 the	 dumb

protocol	networking,	but	focus	on	improving	network	performance	via
the	 smart	 server	 and	 thus	 escape	 the	 file-level	 operation	 latency
considerations.

Many	performance	problems	only	become	visible	when	changing	the
scaling	knobs	upwards	to	large	trees.	On	small	trees	its	our	baseline
performance	that	drives	incremental	improvements;	on	large	trees	its
the	 amount	 of	 processing	 per	 item	 that	 drives	 performance.	 A
significant	 goal	 therefore	 is	 to	 keep	 the	 amount	 of	 data	 to	 be
processed	under	control.	Ideally	we	can	scale	in	a	sublinear	fashion
for	 all	 operations,	 but	 we	 MUST	 NOT	 scale	 even	 linearly	 for
operations	 that	 invoke	 a	 latency	multiplier.	 For	 example,	 reading	 a
file	on	disk	requires	finding	the	inode	for	the	file,	then	the	block	with
the	data	and	returning	the	contents.	Due	to	directory	grouping	logic
we	pay	a	massive	price	to	read	files	if	we	do	not	group	the	reads	of
files	within	the	same	directory.

1.3			Use	cases

1.3.1			Initial	push	/	pull

1.3.1.1			Optimal	case

(a	motivating	 example	 of	 ultimate	 performance)	Assume	 there	 is	 a
file	with	 exactly	 the	 right	 data	 in	 compressed	 form.	This	may	 be	 a
tarred	branch,	a	bundle,	or	a	blob	format.	Performance	 in	 this	case
scales	with	the	size	of	the	file.

1.3.1.2			Disk	case

Assume	current	 repo	 format.	Attempt	 to	 achieve	 parity	with	 cp	 -r.
Read	each	file	only	1	time.

read	knit	graph	for	revisions
write	filtered	copy	of	revision	knit	O(d+a)
write	filtered	copy	of	knit	index	O(d)
Open	knit	index	for	inventory
Write	a	filtered	copy	of	inventory	knit	and	simultaneously	not	all
referenced	file-ids	O(b+d)
Write	filtered	copy	of	inventory	knit	index	O(d)
For	each	referenced	file-id:

Open	knit	index	for	each	file	knit	O(e)
If	acceptable	threshold	of	irrelevant	data	hard-link	O(f)
Otherwise	write	filtered	copy	of	text	knit	and	simultaneously
write	the	fulltext	to	tree	transform	O(h)

Write	format	markers	O(1)

a: size	of	aggregate	revision	metadata
b: size	of	inventory	changes	for	all	revisions
c: size	of	text	changes	for	all	files	and	all	revisions	(e	*	g)

d: number	of	relevant	revisions
e: number	of	relevant	versioned	files
f: size	of	the	particular	versioned	file	knit	index
g: size	of	the	filtered	versioned	file	knit
h: size	of	the	versioned	file	fulltext
i: size	of	the	largest	file	fulltext

1.3.1.3			Smart	Network	Case

1.3.1.3.1			Phase	1

Push:	ask	 if	 there	 is	a	repository,	and	 if	not,	what	 formats	are	okay
Pull:	Nothing

1.3.1.3.2			Phase	2

Push:	 send	 initial	 push	 command,	 streaming	 data	 in	 acceptable
format,	 following	 disk	 case	 strategy	 Pull:	 receive	 initial	 pull
command,	specifying	format

Pull	 client	 complexity:	 O(a),	 memory	 cost	 O(1)	 Push	 client
complexity:	procesing	and	memory	cost	same	as	disk	case

1.3.1.4			Dumb	Network	Case

Pull:	same	as	disk	case,	but	request	all	file	knit	indices	at	once	and
request	al	 file	knits	at	once.	Push:	same	as	disk	case,	but	write	all
files	at	once.

1.3.1.5			Wants

Read	partial	graph
Read	multiple	segments	of	multiple	files	on	http	and	sftp
Write	multiple	files	over	SFTP

1.3.2			Incremental	push/pull

This	 use	 case	 covers	 pulling	 in	 or	 pushing	 out	 some	 number	 of
revisions	 which	 is	 typically	 a	 small	 fraction	 of	 the	 number	 already
present	 in	 the	 target	 repository.	Pushing	and	pulling	are	defined	as
branch	level	operations	for	ease	of	interaction	with	VCS	systems	that
have	 no	 repository	 abstraction	 (such	 as	 bzr-svn	 or	GNU	Arch)	 but
within	 bzrlib’s	 core	 they	 are	 currently	 the	 responsibility	 of	 the
Repository	object.

1.3.2.1			Functional	Requirements

A	push	or	pull	operation	must:
Copy	all	the	data	to	reconstruct	the	selected	revisions	in	the
target	branch.	This	is	the	goal	of	push	and	pull	after	all.
Reject	 corrupt	 data.	 As	 bzr	 has	 no	 innate	 mechanism	 for
discarding	 corrupted	 data,	 corrupted	 data	 should	 not	 be
incorporated	accidentally.

1.3.2.2			Factors	which	should	add	work	for	push/pull

Baseline	overhead:	The	time	to	connect	to	both	branches.
Actual	 new	 data	 in	 the	 revisions	 being	 pulled	 (drives	 the
amount	 of	 data	 to	 move	 around,	 includes	 the	 commit
messages	etc)
Number	of	revisions	in	the	two	repositories	(scaling	affects
the	determination	of	what	revisions	to	move	around).

1.3.2.3			Push/pull	overview

1.	 New	data	is	identified	in	the	source	repository.
2.	 That	data	is	read	from	the	source	repository.
3.	 The	same	data	is	verified	and	written	to	the	target	repository	in

such	a	manner	 that	 its	not	 visible	 to	 readers	until	 its	 ready	 for

use.

1.3.2.3.1			New	data	identification

We	have	a	single	top	level	data	object:	revisions.	Everything	else	is
subordinate	 to	 revisions,	 so	determining	 the	 revisions	 to	propagate
should	 be	 all	 thats	 needed.	 This	 depends	 on	 revisions	with	 partial
data	 -	 such	 as	 those	 with	 no	 signature	 -	 being	 flagged	 in	 some
efficient	manner.

We	could	do	 this	 in	 two	manners:	determine	 revisions	 to	 sync	and
signatures	to	sync	in	two	passes,	or	change	the	‘value’	of	a	revision
implicitly	when	 the	signature	 is	different.	E.g.	by	using	merkle	hash
trees	with	 the	signature	data	a	separate	component	 the	signatures
will	naturally	be	identified	to	sync.

We	want	 to	only	exchange	data	proportional	 to	 the	number	of	new
revisions	and	signatures	in	the	system	though.	One	way	to	achieve
this	 for	revisions	 is	 to	walk	the	graph	out	 from	the	desired	tips	until
the	surface	area	intersection	is	found.	For	signatures	a	set	difference
seems	to	be	needed	as	there	is	no	DAG	of	signatures:	the	presence
of	one	has	no	implications	on	the	presence	of	another,	so	a	full	pass
over	 the	 set	 of	 signatures	 would	 be	 required	 to	 confirm	 no	 new
signatures	are	needed	(let	alone	replaced	signatures).

IFF	we	 can	determine	 ‘new	 revisions’	 and	 ‘new	 signatures’	without
full	graph	access	then	we	can	scale	acceptable	for	push	and	pull.

Ghosts	are	revisions	which	are	not	present	in	a	particular	repository.
Filling	ghosts	refers	to	removing	ghosts	in	the	target	repository	when
the	ghost	 is	 present	 in	 the	 source	 repository.	Filling	ghosts	 can	be
either	an	explicit	or	implicit	action.	The	common	case	is	no	ghosts.

1.3.2.3.1.1			Set	synchronisation	approaches

A	set	synchronisation	approach	is	one	which	synchronises	two	sets

without	 regard	 for	 innate	 structure.	 This	 can	 be	 very	 efficient	 but
requires	 adding	 a	 new	 node	 to	 be	 processed	 with	 every	 commit.
Caching	 of	 the	 results	 of	 the	 various	 set	 based	 syncs	 I’ve	 seen	 is
possible	but	because	the	data	structures	look	different	depending	on
the	 tip	 revision	 being	 synced	 up	 to	 the	 cache	 needs	 to	 be	 very
complex.	I	recommend	not	using	such	an	approach	for	the	common
case	 pull	 because	 of	 the	 failure	 to	 scale.	 We	 can	 use	 such	 an
approach	 for	 synchronisation	 of	 new	 signatures	 and	 ghosts,	which
should	be	an	explicit	option	in	both	cases.

1.3.2.3.1.2			DAG	synchronisation	approaches

A	DAG	based	approach	to	synchronistion	is	one	that	uses	the	DAG
structure	 to	 determine	 the	 difference	 in	 present	 nodes.	 It	 can	 as	 a
result	 operate	 from	 the	 tip	 of	 the	 DAG	 backwards.	 A	 dag	 based
approach	should	allow	incremental	access	to	data	and	not	require	a
full-graph	scan	for	incremental	operations.

1.3.2.3.1.3			File	level	scaling

We	 should	 read	 roughly	 as	much	 of	 the	 revision	 level	 graph	 as	 is
needed	 from	 each	 repository	 to	 determine	 the	 node	 difference.	 If
requested	 we	 should	 perform	 a	 detailed	 scan	 to	 pick	 up	 ghost
revisions	 and	 revisions	 which	 have	 had	 signatures	 added.	 This
should	 not	 be	 the	 default	 as	 it	 requires	 full	 history	 access	 in	 both
cases.

Expected	file	IO	and	access	pattern:

Common	case:	repo	with	many	branches	of	one	project,	to
the	same.

1.	 Source	and	Target	branch	tips	read.
2.	 Find	 the	 tip	 of	 each	 branch	 in	 their	 repo	 (will	 require

reading	some	of	the	revision	graph	but	is	typically	near

the	end	of	the	graph).
3.	 Read	 and	 parse	 increasing	 amounts	 of	 the	 revision

graph	until	one	is	found	to	be	a	subset	of	the	other,	or	a
complete	list	of	revisions	to	be	transmitted	is	created.

Uncommon	cases:

1.	 Repositories	with	many	projects	or	branches	which	are
very	old	may	 require	 reading	a	 lot	 of	 unrelated	graph
data.

1.	 Initial	push/pull	scenarios	should	not	require	reading	an
entire	graph.

1.3.2.3.1.4			API	scaling

1.	 Get	branch	tips.
2.	 Determine	one	sided	graph	difference.	To	avoid	obtaining	a

full	 graph	 over	 the	 wire	 this	 needs	 to	 be	 done	 without
reference	 to	 the	 full	 graph,	 and	 with	 some	 logarthmic
scaling	 algorithm.	 There	 are	 several	 already	 available	 for
this.

With	ghost	and	new-signature	detection:

File	 IO	 access	 pattern	 will	 read	 the	 entire	 graph	 on	 the
‘target’	side	-	 if	no	ghosts	are	present	then	stop,	otherwise
seek	the	new	revisions	on	the	source	side	with	the	regular
algorithm	 and	 also	 explicitly	 search	 for	 the	 ghost	 points
from	 the	 target;	plus	a	set	difference	search	 is	needed	on
signatures.
Semantic	 level	 can	 probably	 be	 tuned,	 but	 as	 its	 also
complex	I	suggest	deferring	analysis	 for	optimal	behaviour
of	this	use	case.

1.3.2.3.2			Data	reading

When	transferring	information	about	a	revision	the	graph	of	data	for
the	 revision	 is	 walked:	 revision	 ->	 inventory,	 revision	 ->	 matching
signature,	inventory	->	file	ids:revision	pairs.

1.3.2.3.2.1			File	level	scaling

As	 we’re	 reading	 already	 committed	 data,	 as	 long	 as	 nothing	 is
mutating	data	on	disk	reading	should	be	race	free.	We	will:

read	each	revision	object
read	the	matching	inventory	delta
attempt	to	read	a	signature	object
parse	the	inventory	delta
read	the	fileid:revisionid	compressed	chunk	for	each	line	in
the	inventory	delta

Theres	no	point	validating	that	the	data	read	is	valid,	as	transmission
through	to	 the	client	writing	 the	data	might	 invalidate	 it;	we	need	to
validate	before	we	write.

1.3.2.3.2.2			API	scaling

Given	 that	we	have	established	 the	 revisions	needed,	a	single	API
call	should	suffice	to	obtain	all	data;	the	API	should	present	the	data
in	 such	an	order	 that	 it	 can	be	 validated	as	 it	 arrives	and	 thus	not
require	 large	scale	buffering	on	disk.	Specifically	each	 item	of	data
should	 be	 validatable	 (e.g.	 for	 some	 file	 data	 we	 want	 the
fileid:revisionid:validationhash	+	content).

1.3.2.3.3			Data	Verification	and	writing

New	data	written	to	a	repository	should	be	completed	intact	when	it
is	made	visible.	This	suggests	 that	either	all	 the	data	 for	a	 revision
must	 be	made	atomically	 visible	 (e.g.	 by	 renaming	a	 single	 file)	 or
the	leaf	nodes	of	the	reference	graph	must	become	visible	first.

Data	 is	 referred	 to	 via	 the	 following	 graph:	 revision	 ->	 revision
revision	 ->	 signature	 revision	 ->	 inventory	 inventory	 ->
fileid:revisionid	fileid:revisionid	->	fileid:revisionid

Data	 is	 verifiable	 via	 a	 different	 ordering:	 signature	 ->	 revision	 ->
inventory	->	fileid:revisionid	texts.

We	dont	gpg	verify	each	revision	today;	this	analysis	only	speaks	to
hash	verification	of	contents.

To	validate	a	revision	we	need	to	validate	the	data	it	refers	to.	But	to
validate	 the	 contents	 of	 a	 revision	 we	 need	 the	 new	 texts	 in	 the
inventory	 for	 the	 revision	 -	 to	 check	 a	 fileid:revisionid	 we	 need	 to
know	the	expected	sha1	of	 the	 full	 text	and	 thus	also	need	 to	 read
the	delta	chain	to	construct	the	text	as	we	accept	it	to	determine	if	its
valid.	 Providing	 separate	 validators	 for	 the	 chosen	 representation
would	address	this.	e.g:	For	an	inventory	entry	FILEID:REVISIONID
we	 store	 the	 validator	 of	 the	 full	 text	 :SHA1:.	 If	we	also	 stored	 the
validator	of	the	chosen	disk	representation	(:DELTASHA1:)	we	could
validate	the	transmitted	representation	without	expanding	the	delta	in
the	common	case.	If	that	failed	we	could	expand	the	delta	chain	and
try	 against	 the	 full	 text	 validator,	 and	 finally	 fail.	 As	 different	 delta
generators	might	generate	different	deltas,	:DELTASHA1:	should	not
become	 part	 of	 the	 revision	 validator,	 only	 the	 inventory	 disk
encoding.	 In	 a	 related	 manner	 a	 transmission	 format	 that	 allowed
cheap	 validation	 of	 content	 without	 applying	 locally	 stored	 deltas
would	be	advantageous	because	no	local	reads	would	be	incurred	to
validate	new	content.	For	instance,	always	sending	a	full	text	for	any
file,	possibly	with	a	delta-chain	when	transmitting	multiple	revisionids
of	the	file,	would	allow	this.	(git	pack-files	have	this	property).

1.3.2.3.3.1			Overview	summary

A	 single-file	 local	 format	 would	 allow	 safe	 atomic	 addition	 of	 data
while	 allowing	optimisal	 transmission	order	 of	 data.	Failing	 this	 the

validation	of	data	should	be	tuned	to	not	require	reading	 local	 texts
during	data	addition	even	in	the	presence	of	delta	chains.	We	should
have	 transmission-validators	 separate	 from	 content	 validators	 that
allow	validation	of	the	delta-transmitted	form	of	objects.

1.3.2.3.3.2			File	level	scaling

Every	new	file	text	requires	transmission	and	local	serialisation.
Every	 commit	 requires	 transmission	 and	 storage	of	 a	 revision,
signature	and	inventory.

Thus	 4000	 commits	 to	 a	 50000	 path	 tree	 of	 10	 files	 on	 averages
requires	 (with	 knits)	 between	 26	 writes	 (2*(3+10))	 and	 80006	 (2*
(4000*10	 +	 3))	 writes.	 In	 all	 cases	 there	 are	 4000	 *	 13	 distinct
objects	to	record.

Grouping	 data	 by	 fileid,	 content	 and	 metadata,	 gives	 the	 figures
above.	Data	grouping:

File	per	full	identifier	(fileid:revisionid:meta|content):	104000
Delta-chain	per	object:	object	 id	count	*	constant	overhead	per
object	id	(26	->	80006)
Collation/pack	file:	1

Performance	for	these	depends	heavily	on	implementation:
Using	full	ids	we	could	name	by	validator	or	by	id,	giving	best
performance	 that	 depends	 on	 either	 receiving	 data	 in
validator	order	or	in	id	order.
using	delta-chain	per	object	we	get	least	seek	overhead	and
syscall	overhead	if	we	recieve	in	topological	order	within	the
object	id,	and	object	ids	in	lexical	order.
Using	 a	 collation/pack	 file	 we	 can	 stream	 it	 into	 place	 and
validate	as	we	go,	giving	near	ideal	performance.

1.3.2.3.3.3			API	scaling

The	api	 for	writing	new	data	recieved	over	 the	network	will	need	to
be	geared	 to	 the	 transmission	and	 local	 storage	method.	What	we
need	is	for	the	transmission	method	to	reasonably	closely	match	the
desired	write	ordering	locally.	This	suggests	that	once	we	decide	on
the	best	local	storage	means	we	should	design	the	api.

take	N	commits	from	A	to	B,	if	B	is	local	then	merge	changes	into	the
tree.	copy	ebough	data	 to	 recreate	snapshots	avoid	ending	up	wth
corrupt/bad	data

1.3.2.4			Notes	from	London

1.	 setup

look	 at	 graph	 of	 revisions	 for	 ~N	 comits	 to	 deretmine
eligibility	for	if	preserve	mainline	is	on,	check	LH	only

identify	objects	to	send	that	are	not	on	the	client	repo
revision	-	may	be	proportional	to	the	graph
inventory	-	proportional	to	work
texts	-	proportional	to	work
signatures	-	???

1.	 data	transmission

send	data	proportional	to	the	new	information
validate	the	data:

1.	 validate	 the	 sha1	 of	 the	 full	 text	 of	 each
transmitted	text.

2.	 validate	 the	 sha1:name	 mapping	 in	 each	 newly
referenced	inventory	item.

3.	 validate	 the	 sha1	 of	 the	 XML	 of	 each	 inventory
against	 the	 revision.	 this	 is	proportional	 to	 tree
size	and	must	be	fixed

1.	 write	the	data	to	the	local	repo.	The	API	should	output	the
file	 texts	 needed	 by	 the	 merge	 as	 by	 product	 of	 the
transmission

2.	 tree	application

Combine	the	output	 from	the	transmission	step	with	additional	 ‘new
work	data’	 for	anything	already	in	the	local	repository	that	 is	new	in
this	tree.	should	write	new	files	and	stat	existing	files	proportional	to
the	count	of	the	new	work	and	the	size	of	the	full	texts.

1.3.3			Add

Add	is	used	to	recursively	version	some	paths	supplied	by	the	user.
Paths	 that	 match	 ignore	 rules	 are	 not	 versioned,	 and	 paths	 that
become	versioned	are	versioned	 in	 the	nearest	containing	bzr	 tree.
Currently	 we	 only	 do	 this	 within	 a	 single	 tree,	 but	 perhaps	 with
nested	trees	this	should	change.

1.3.3.1			Least	work	we	can	hope	to	perform

Read	 a	 subset	 of	 the	 full	 versioned	 paths	 data	 for	 the	 tree
matching	the	scope	of	the	paths	the	user	supplied.
Seek	 once	 to	 each	 directory	 within	 the	 scope	 and	 readdir	 its
contents.
Probe	 if	 each	directory	 is	a	 child	 tree	 to	avoid	adding	data	 for
paths	within	a	child	tree.
Calculate	 the	 ignored	status	 for	paths	not	previously	 known	 to
be	ignored
Write	 data	 proportional	 to	 the	 newly	 versioned	 file	 count	 to
record	their	versioning.
Assign	a	 fileid	 for	each	path	(so	 that	merge	–uncommitted	can
work	immediately)

Optionally:

Print	the	ignore	rule	for	each	ignored	path	in	the	scope.
Print	the	path	of	each	added	file.
Print	the	total	count	of	ignored	files	within	the	scopes.
Record	the	result	of	calculating	ignored	status	for	 ignored	files.
(proportional	to	the	number	we	actually	calculate).

1.3.3.2			Per	file	algorithm

1.	 If	 the	 path	 is	 versioned,	 and	 it	 is	 a	 directory,	 push	 onto	 the
recurse	stack.

2.	 If	 the	path	 is	supplied	by	 the	user	or	 is	not	 ignored,	version	 it,
and	 if	 a	 directory,	 push	 onto	 the	 recurse	 stack.	Versioning	 the
path	may	require	versioning	the	paths	parents.

3.	 Output	 or	 otherwise	 record	 the	 ignored	 rule	 as	 per	 the	 user
interface	selected.

1.3.4			Commit	Performance	Notes

1.3.4.1			Changes	to	commit
1.3.4.2			Commit:	The	Minimum	Work	Required
1.3.4.3			Commit	vs	Status
1.3.4.4			Avoiding	Work:	Smarter	Change	Detection
1.3.4.5			Avoiding	Work:	Better	Layering
1.3.4.6			Avoiding	work:	avoiding	reading	parent	data
1.3.4.7			Code	structure
1.3.4.8			Complications	of	commit
1.3.4.9			Interface	stack
1.3.4.10			Branch->Tree	interface
1.3.4.11			Information	from	the	tree	to	repository
1.3.4.12			Information	from	the	repository	to	the	tree
1.3.4.13			Selective	commit
1.3.4.14			Common	commit	code
1.3.4.15			Order	of	traversal
1.3.4.16			Open	question:	per-file	graphs

1.3.4.1			Changes	to	commit

We	want	to	improve	the	commit	code	in	two	phases.

Phase	 one	 is	 to	 have	 a	 better	 separation	 from	 the	 format-specific
logic,	the	user	interface,	and	the	general	process	of	committing.

Phase	two	is	to	have	better	interfaces	by	which	a	good	workingtree
format	can	efficiently	pass	data	 to	a	good	storage	format.	 If	we	get
phase	one	right,	it	will	be	relatively	easy	and	non-disruptive	to	bring
this	in.

1.3.4.2			Commit:	The	Minimum	Work	Required

Here	is	a	description	of	the	minimum	work	that	commit	must	do.	We
want	to	make	sure	that	our	design	doesn’t	cost	too	much	more	than
this	 minimum.	 I	 am	 trying	 to	 do	 this	 without	 making	 too	 many
assumptions	about	the	underlying	storage,	but	am	assuming	that	the
ui	and	basic	architecture	(wt,	branch,	repo)	stays	about	the	same.

The	basic	purpose	of	commit	is	to:

1.	 create	 and	 store	 a	 new	 revision	 based	 on	 the	 contents	 of	 the
working	tree

2.	 make	this	the	new	basis	revision	for	the	working	tree

We	can	do	a	selected	commit	of	only	some	files	or	subtrees.

The	 best	 performance	we	 could	 hope	 for	 is:	 -	 stat	 each	 versioned
selected	working	file	once	-	read	from	the	workingtree	and	write	into
the	repository	any	new	file	texts	-	in	general,	do	work	proportional	to
the	 size	 of	 the	 shape	 (eg	 inventory)	 of	 the	 old	 and	 new	 selected
trees,	and	to	the	total	size	of	the	modified	files

In	more	detail:

1.0	-	Store	new	file	texts:	if	a	versioned	file	contains	a	new	text	there
is	no	avoiding	storing	it.	To	determine	which	ones	have	changed	we
must	go	over	the	workingtree	and	at	least	stat	each	file.	If	the	file	is
modified	 since	 it	 was	 last	 hashed,	 it	 must	 be	 read	 in.	 Ideally	 we
would	read	it	only	once,	and	either	notice	that	it	has	not	changed,	or
store	it	at	that	point.

On	the	other	hand	we	want	new	code	to	be	able	to	handle	files	that
are	larger	than	will	fit	in	memory.	We	may	then	need	to	read	each	file
up	 to	 two	 times:	 once	 to	 determine	 if	 there	 is	 a	 new	 text	 and
calculate	its	hash,	and	again	to	store	it.

1.1	 -	 Store	 a	 tree-shape	 description	 (ie	 inventory	 or	 similar.)	 This
describes	 the	 non-file	 objects,	 and	 provides	 a	 reference	 from	 the
Revision	to	the	texts	within	it.

1.2	-	Generate	and	store	a	new	revision	object.

1.3	 -	Do	delta-compression	on	 the	stored	objects.	 (git	notably	does
not	 do	 this	 at	 commit	 time,	 deferring	 this	 entirely	 until	 later.)	 This
requires	 finding	 the	 appropriate	 basis	 for	 each	modified	 file:	 in	 the
current	scheme	we	get	the	file	id,	last-revision	from	the	dirstate,	look
into	 the	knit	 for	 that	 text,	extract	 that	 text	 in	 total,	generate	a	delta,
then	 store	 that	 into	 the	 knit.	 Most	 delta	 operations	 are	 O(n**2)	 to
O(n**3)	in	the	size	of	the	modified	files.

1.4	-	Cache	annotation	 information	 for	 the	changes:	at	 the	moment
this	is	done	as	part	of	the	delta	storage.	There	are	some	flaws	in	that
approach,	such	as	that	it	is	not	updated	when	ghosts	are	filled,	and
the	annotation	can’t	be	re-run	with	new	diff	parameters.

2.1	-	Make	the	new	revision	the	basis	for	the	tree,	and	clear	the	list
of	 parents.	 Strictly	 this	 is	 all	 that’s	 logically	 necessary,	 unless	 the
working	tree	format	requires	more	work.

The	dirstate	 format	does	 require	more	work,	because	 it	caches	 the
parent	tree	data	for	each	file	within	the	working	tree	data.	In	practice
this	 means	 that	 every	 commit	 rewrites	 the	 entire	 dirstate	 file	 -	 we
could	 try	 to	 avoid	 rewriting	 the	 whole	 file	 but	 this	 may	 be	 difficult
because	 variable-length	 data	 (the	 last-changed	 revision	 id)	 is
inserted	into	many	rows.

The	current	dirstate	design	then	seems	to	mean	that	any	commit	of	a
single	 file	 imposes	 a	 cost	 proportional	 to	 the	 size	 of	 the	 current
workingtree.	 Maybe	 there	 are	 other	 benefits	 that	 outweigh	 this.
Alternatively	if	it	was	fast	enough	for	operations	to	always	look	at	the
original	storage	of	the	parent	trees	we	could	do	without	the	cache.

2.2	 -	 Record	 the	 observed	 file	 hashes	 into	 the	workingtree	 control
files.	For	the	files	that	we	just	committed,	we	have	the	information	to
store	a	 valid	hash	 cache	entry:	we	know	 their	 stat	 information	and
the	 sha1	 of	 the	 file	 contents.	 This	 is	 not	 strictly	 necessary	 to	 the
speed	of	commit,	but	it	will	be	useful	later	in	avoiding	reading	those
files,	and	the	only	cost	of	doing	it	now	is	writing	it	out.

In	fact	there	are	some	user	interface	niceties	that	complicate	this:

3	 -	 Before	 starting	 the	 commit	 proper,	 we	 prompt	 for	 a	 commit
message	and	 in	 that	 commit	message	editor	we	show	a	 list	 of	 the
files	that	will	be	committed:	basically	the	output	of	bzr	status.	This	is
basically	the	same	as	the	list	of	changes	we	detect	while	storing	the
commit,	but	because	 the	user	will	sometimes	change	 the	 tree	after
opening	the	commit	editor	and	expect	the	final	state	to	be	committed
I	think	we	do	have	to	look	for	changes	twice.	Since	it	takes	the	user
a	while	to	enter	a	message	this	is	not	a	big	problem	as	long	as	both
the	status	summary	and	the	commit	are	individually	fast.

4	-	As	the	commit	proceeds	(or	after?)	we	show	another	status-like
summary.	Just	printing	the	names	of	modified	files	as	they’re	stored
would	be	easy.	Recording	deleted	and	renamed	files	or	directories	is

more	work:	this	can	only	be	done	by	reference	to	the	primary	parent
tree	and	 requires	 it	 be	 read	 in.	Worse,	 reporting	 renames	 requires
searching	by	 id	across	the	entire	parent	 tree.	Possibly	 full	 reporting
should	be	a	default-off	verbose	option	because	it	does	require	more
work	beyond	the	commit	itself.

5	 -	 Bazaar	 currently	 allows	 for	 missing	 files	 to	 be	 automatically
marked	 as	 removed	 at	 the	 time	 of	 commit.	 Leaving	 aside	 the	 ui
consequences,	 this	 means	 that	 we	 have	 to	 update	 the	 working
inventory	to	mark	these	files	as	removed.	Since	as	discussed	above
we	 always	 have	 to	 rewrite	 the	 dirstate	 on	 commit	 this	 is	 not
substantial,	though	we	should	make	sure	we	do	this	in	one	pass,	not
two.	I	have	previously	proposed	to	make	this	behaviour	a	non-default
option.

We	may	need	 to	 run	 hooks	 or	 generate	 signatures	 during	 commit,
but	they	don’t	seem	to	have	substantial	performance	consequences.

If	one	wanted	to	optimize	solely	for	the	speed	of	commit	I	think	hash-
addressed	 file-per-text	 storage	 like	 in	 git	 (or	 bzr	 0.1)	 is	 very	 good.
Remarkably,	 it	does	not	need	to	read	the	inventory	for	the	previous
revision.	For	each	versioned	file,	we	just	need	to	get	its	hash,	either
by	 reading	 the	 file	 or	 validating	 its	 stat	 data.	 If	 that	 hash	 is	 not
already	 in	 the	 repository,	 the	 file	 is	 just	copied	 in	and	compressed.
As	directories	are	 traversed,	 they’re	 turned	 into	 texts	and	stored	as
well,	and	 then	 finally	 the	 revision	 is	 too.	This	does	depend	on	 later
doing	some	delta	compression	of	these	texts.

Variations	on	this	are	possible.	Rather	 than	writing	a	single	 file	 into
the	repository	for	each	text,	we	could	fold	them	into	a	single	collation
or	 pack	 file.	 That	 would	 create	 a	 smaller	 number	 of	 files	 in	 the
repository,	 but	 looking	 up	 a	 single	 text	 would	 require	 looking	 into
their	indexes	rather	than	just	asking	the	filesystem.

Rather	 than	 using	 hashes	 we	 can	 use	 file-id/rev-id	 pairs	 as	 at

present,	which	has	several	consequences	pro	and	con.

1.3.4.3			Commit	vs	Status

At	 first	glance,	commit	simply	stores	 the	changes	status	 reports.	 In
fact,	 this	 isn’t	 technically	 correct:	 commit	 considers	 some	 files
modified	that	status	does	not.	The	notes	below	were	put	together	by
John	Arbash	Meinel	and	Aaron	Bentley	 in	May	2007	 to	explain	 the
finer	details	of	commit	to	Ian	Clatworthy.	They	are	recorded	here	as
they	are	likely	to	be	useful	to	others	new	to	Bazaar	...

1.	 Unknown	 files	 have	 a	 different	 effect.	 With	 –no-strict	 (the
default)	they	have	no	effect	and	can	be	completely	ignored.	With
–strict	 they	 should	 cause	 the	 commit	 to	 abort	 (so	 you	 don’t
forget	to	add	the	two	new	test	files	that	you	just	created).

2.	 Multiple	parents.	‘status’	always	compares	2	trees,	typically	the
last-committed	 tree	 and	 the	 current	 working	 tree.	 ‘commit’	 will
compare	more	trees	if	there	has	been	a	merge.

a.	 The	“last	modified”	property	for	files.	A	file	may	be	marked
as	 changed	 since	 the	 last	 commit,	 but	 that	 change	 may
have	come	in	from	the	merge,	and	the	change	could	have
happened	 several	 commits	 back.	 There	 are	 several	 edge
cases	to	be	handled	here,	like	if	both	branches	modified	the
same	file,	or	if	just	one	branch	modified	it.

b.	 The	 trickier	 case	 is	 when	 a	 file	 appears	 unmodified	 since
last	commit,	but	 it	was	modified	versus	one	of	 the	merged
branches.	 I	believe	there	are	a	 few	ways	this	can	happen,
like	 if	 a	merged	 branch	 changes	 a	 file	 and	 then	 reverts	 it
back	(you	still	update	the	‘last	modified’	field).	In	general,	if
both	 sides	 disagree	 on	 the	 ‘last-modified’	 flag,	 then	 you
need	to	generate	a	new	entry	pointing	‘last-modified’	at	this
revision	 (because	 you	 are	 resolving	 the	 differences
between	the	2	parents).

3.	 Automatic	deletion	of	 ‘missing’	 files.	This	 is	a	point	 that	we
go	back	and	forth	on.	I	 think	the	basic	 idea	is	that	 ‘bzr	commit’
by	default	should	abort	if	it	finds	a	‘missing’	file	(in	case	that	file
was	 renamed	 rather	 than	 deleted),	 but	 ‘bzr	 commit	 –auto’	 can
add	unknown	files	and	remove	missing	files	automatically.

4.	 sha1	 for	newly	added	 files.	 status	doesn’t	 really	need	 this:	 it
should	 only	 care	 that	 the	 file	 is	 not	 present	 in	 base,	 but	 is
present	now.	In	some	ways	commit	doesn’t	care	either,	since	it
needs	to	read	and	sha	the	file	itself	anyway.

5.	 Nested	 trees.	 status	 doesn’t	 recurse	 into	 nested	 trees,	 but
commit	 does.	 This	 is	 just	 because	 not	 all	 of	 the	 nested-trees
work	has	been	merged	yet.

A	tree-reference	is	considered	modified	if	the	subtree	has	been
committed	 since	 the	 last	 containing-tree	 commit.	 But	 commit
needs	to	recurse	into	every	subtree,	to	ensure	that	a	commit	is
done	 if	 the	 subtree	 has	 changed	 since	 its	 last	 commit.
_iter_changes	only	reports	on	tree-references	that	are	modified,
so	it	can’t	be	used	for	doing	subtree	commits.

1.3.4.4			Avoiding	Work:	Smarter	Change	Detection

Commit	currently	walks	through	every	file	building	an	inventory.	Here
is	Aaron’s	brain	dump	on	a	better	way	...

_iter_changes	 won’t	 tell	 us	 about	 tree	 references	 that	 haven’t
changed,	even	 if	 those	subtrees	have	changed.	(Unless	we	ask	for
unchanged	files,	which	we	don’t	want	to	do,	of	course.)

There	 is	 an	 iter_references	 method,	 but	 using	 it	 looks	 just	 as
expensive	as	calling	kind().

I	did	some	work	on	updating	commit	to	use	iter_changes,	but	found
for	 multi-parent	 trees,	 I	 had	 to	 fall	 back	 to	 the	 slow	 inventory

comparison	approach.

Really,	 I	 think	 we	 need	 a	 call	 akin	 to	 iter_changes	 that	 handles
multiple	 parents,	 and	 knows	 to	 emit	 entries	 when
InventoryEntry.revision	is	all	that’s	changed.

1.3.4.5			Avoiding	Work:	Better	Layering

For	 each	 file,	 commit	 is	 currently	 doing	more	 work	 than	 it	 should.
Here	is	John’s	take	on	a	better	way	...

Note	that	“_iter_changes”	does	have	to	touch	every	path	on	disk,	but
it	just	can	do	it	in	a	more	efficient	manner.	(It	doesn’t	have	to	create
an	InventoryEntry	for	all	the	ones	that	haven’t	changed).

I	 agree	 with	 Aaron	 that	 we	 need	 something	 a	 little	 different	 than
_iter_changes.	Both	because	of	handling	multiple	parents,	as	well	as
we	 don’t	 want	 it	 to	 actually	 read	 the	 files	 if	 we	 have	 a	 stat-cache
miss.

Specifically,	the	commit	code	has	to	read	the	files	because	it	is	going
to	add	the	text	to	the	repository,	and	we	want	it	to	compute	the	sha1
at	that	time,	so	we	are	guaranteed	to	have	the	valid	sha	(rather	than
just	 whatever	 the	 last	 cached	 one	 was).	 So	 we	 want	 the	 code	 to
return	 ‘None’	 if	 it	 doesn’t	 have	 an	 up-to-date	 sha1,	 rather	 than
reading	the	file	and	computing	it,	just	before	it	returns	it	to	the	parent.

The	commit	code	(0.16)	should	really	be	restructured.	It’s	layering	is
pretty	wrong.

Specifically,	calling	“kind()”	requires	a	stat	of	the	file.	But	we	have	to
do	a	stat	to	get	the	size/whether	the	record	is	up-to-date,	etc.	So	we
really	 need	 to	 have	 a	 “create_an_up_to_date_inventory()”	 function.
But	because	we	are	accessing	every	object	on	disk,	we	want	to	be
working	 in	 tuples	 rather	 than	 Inventory	 objects.	 And	 because
DirState	already	has	the	parent	records	next	 to	 the	current	working

inventory,	 it	 can	 do	 all	 the	 work	 to	 do	 really	 fast	 comparison	 and
throw-away	of	unimportant	records.

The	way	I	made	“bzr	status”	fast	is	by	moving	the	‘ignore	this	record’
ability	as	deep	into	the	stack	as	I	could	get.	Status	has	the	property
that	you	don’t	 care	about	most	of	 the	 records,	 just	 like	commit.	So
the	 sooner	 you	 can	 stop	 evaluating	 the	 99%	 that	 you	 don’t	 care
about,	the	less	work	you	do.

1.3.4.6			Avoiding	work:	avoiding	reading	parent	data

We	would	like	to	avoid	the	work	of	reading	any	data	about	the	parent
revisions.	We	should	at	 least	 try	 to	avoid	reading	anything	from	the
repository;	we	can	also	consider	whether	 it	 is	possible	or	useful	 to
hold	less	parent	information	in	the	working	tree.

When	 a	 commit	 of	 selected	 files	 is	 requested,	 the	 committed
snapshot	is	a	composite	of	some	directories	from	the	parent	revision
and	some	from	the	working	tree.	In	this	case	it	is	logically	necessary
to	have	the	parent	inventory	information.

If	 file	 last-change	 information	or	per-file	graph	 information	 is	stored
then	it	must	be	available	from	the	parent	trees.

If	 the	 Branch’s	 storage	method	 does	 delta	 compression	 at	 commit
time	it	may	need	to	retrieve	file	or	inventory	texts	from	the	repository.

It	 is	 desirable	 to	 avoid	 roundtrips	 to	 the	Repository	 during	 commit,
particularly	 because	 it	 may	 be	 remote.	 If	 the	 WorkingTree	 can
determine	by	itself	that	a	text	was	in	the	parent	and	therefore	should
be	in	the	Repository	that	avoids	one	roundtrip	per	file.

There	 is	a	possibility	here	 that	 the	parent	 revision	 is	not	 stored,	or
not	 correctly	 stored,	 in	 the	 repository	 the	 tree	 is	 being	 committed
into,	 and	 so	 the	 committed	 tree	 would	 not	 be	 reconstructable.	We
could	check	 that	 the	parent	 revision	 is	present	 in	 the	 inventory	and

rely	 on	 the	 invariant	 that	 if	 a	 revision	 is	 present,	 everything	 to
reconstruct	it	will	be	present	too.

1.3.4.7			Code	structure

Caller	starts	a	commit

>>>	Branch.commit(from_tree,	options)

This	 creates	 a	 CommitBuilder	 object	 matched	 to	 the	 Branch,
Repository	and	Tree.	It	can	vary	depending	on	model	differences	or
by	 knowledge	 of	 what	 is	 efficient	 with	 the	 Repository	 and	 Tree.
Model	 differences	 might	 include	 whether	 no-text-change	 merges
need	to	be	reported,	and	whether	the

The	basic	CommitBuilder.commit	structure	can	be

1.	 Ask	the	branch	if	it	is	ready	to	commit	(up	to	date	with	master	if
any.)

2.	 Ask	the	tree	if	it	is	ready	to	commit	to	the	branch	(up	to	date	with
branch?),	no	conflicts,	etc

3.	 Commit	changed	files;	prototype	implementation:
a.	 Ask	 the	 working	 tree	 for	 all	 committable	 files;	 for	 each	 it

should	return	the	per-file	parents,	stat	information,	kind,	etc.
b.	 Ask	 the	repository	 to	store	 the	new	file	 text;	 the	repository

should	return	the	stored	sha1	and	new	revision	id.
4.	 Commit	changed	inventory
5.	 Commit	revision	object

1.3.4.8			Complications	of	commit

Bazaar	 (as	 of	 0.17)	 does	 not	 support	 selective-file	 commit	 of	 a
merge;	this	could	be	done	if	we	decide	how	it	should	be	recorded	-	is
this	to	be	stored	as	an	overall	merge	revision;	as	a	preliminary	non-
merge	 revisions;	or	will	 the	per-file	graph	diverge	 from	 the	 revision

graph.

There	are	several	checks	that	may	cause	the	commit	to	be	refused,
which	may	be	activated	or	deactivated	by	options.

presence	of	conflicts	in	the	tree
presence	of	unknown	files
the	working	tree	basis	is	up	to	date	with	the	branch	tip
the	local	branch	is	up	to	date	with	the	master	branch,	if	there	is
one	and	–local	is	not	specified
an	empty	commit	message	is	given,
a	hook	flags	an	error
a	“pointless”	commit,	with	no	inventory	changes

Most	of	these	require	walking	the	tree	and	can	be	easily	done	while
recording	 the	 tree	 shape.	 This	 does	 require	 that	 it	 be	 possible	 to
abort	the	commit	after	the	tree	changes	have	been	recorded.	It	could
be	ok	to	either	leave	the	unreachable	partly-committed	records	in	the
repository,	or	to	roll	back.

Other	complications:

when	 automatically	 adding	 new	 files	 or	 deleting	 missing	 files
during	 commit,	 they	must	 be	 noted	 during	 commit	 and	written
into	the	working	tree	at	some	point
refuse	“pointless”	commits	with	no	file	changes	-	should	be	easy
by	 just	 refusing	 to	 do	 the	 final	 step	 of	 storing	 a	 new	 overall
inventory	and	revision	object
heuristic	detection	of	 renames	between	add	and	delete	 (out	of
scope	for	this	change)
pushing	changes	to	a	master	branch	if	any
running	hooks,	pre	and	post	commit
prompting	for	a	commit	message	if	necessary,	including	a	list	of
the	changes	that	have	already	been	observed
if	 there	are	tree	references	and	recursing	into	them	is	enabled,

then	do	so

Commit	needs	to	protect	against	duplicated	file	ids

Updates	 that	 need	 to	 be	 made	 in	 the	 working	 tree,	 either	 on
conclusion	of	commit	or	during	the	scan,	include

Changes	 made	 to	 the	 tree	 shape,	 including	 automatic	 adds,
renames	or	deletes
For	 trees	 (eg	 dirstate)	 that	 cache	 parent	 inventories,	 the	 old
parent	information	must	be	removed	and	the	new	one	inserted
The	tree	hashcache	information	should	be	updated	to	reflect	the
stat	 value	 at	 which	 the	 file	 was	 the	 same	 as	 the	 committed
version,	 and	 the	 content	 hash	 it	 was	 observed	 to	 have.	 This
needs	to	be	done	carefully	to	prevent	inconsistencies	if	the	file	is
modified	 during	 or	 shortly	 after	 the	 commit.	 Perhaps	 it	 would
work	 to	 read	 the	 mtime	 of	 the	 file	 before	 we	 read	 its	 text	 to
commit.

1.3.4.9			Interface	stack

The	 commit	 api	 is	 invoked	 by	 the	 command	 interface,	 and	 copies
information	from	the	tree	into	the	branch	and	its	repository,	possibly
updating	the	WorkingTree	afterwards.

The	command	interface	passes:

a	commit	message	(from	an	option,	if	any),
or	 an	 indication	 that	 it	 should	 be	 read	 interactively	 from	 the	ui
object;
a	list	of	files	to	commit
an	option	for	a	dry-run	commit
verbose	option,	or	callback	to	indicate
timestamp,	timezone,	committer,	chosen	revision	id
config	(for	what?)

option	for	local-only	commit	on	a	bound	branch
option	 for	 strict	 commits	 (fail	 if	 there	 are	 unknown	 or	 missing
files)
option	to	allow	“pointless”	commits	(with	no	tree	changes)

(This	 is	rather	a	 lot	of	options	to	pass	 individually	and	 just	 for	code
tidyness	maybe	some	of	them	should	be	combine	into	objects.)

>>>	Branch.commit(from_tree,	message,	files_to_commit,	...)

There	 will	 be	 different	 implementations	 of	 this	 for	 different	 Branch
classes,	whether	 for	 foreign	 branches	or	Bazaar	 repositories	 using
different	storage	methods.

Most	 of	 the	 commit	 should	 occur	 during	 a	 single	 lockstep	 iteration
across	the	workingtree	and	parent	trees.	The	WorkingTree	interface
needs	 to	 provide	 methods	 that	 give	 commit	 all	 it	 needs.	 Some	 of
these	methods	 (such	 as	 answering	 the	 file’s	 last	 change	 revision)
may	 be	 deprecated	 in	 newer	 working	 trees	 and	 there	 we	 have	 a
choice	of	either	calculating	the	value	from	the	data	that	is	present,	or
refusing	to	support	commit	to	newer	repositories.

For	a	dirstate	tree	the	iteration	of	changes	from	the	parent	can	easily
be	done	within	its	own	iter_changes.

Dirstate	inventories	may	be	most	easily	updated	in	a	single	operation
at	 the	 end;	 however	 it	 may	 be	 best	 to	 accumulate	 data	 as	 we
proceed	through	the	tree	rather	than	revisiting	it	at	the	end.

Showing	 a	 progress	 bar	 for	 commit	 may	 not	 be	 necessary	 if	 we
report	files	as	they	are	committed.	Alternatively	we	could	transiently
show	 a	 progress	 bar	 for	 each	 directory	 that’s	 scanned,	 even	 if	 no
changes	are	observed.

This	needs	to	collect	a	list	of	added/changed/removed	files,	each	of
which	 must	 have	 its	 text	 stored	 (if	 any)	 and	 containing	 directory

updated.	 This	 can	 be	 done	 by	 calling	 Tree._iter_changes	 on	 the
source	tree,	asking	for	changes

In	 the	0.17	model	 the	commit	operation	needs	 to	 know	 the	per-file
parents	and	per-file	last-changed	revision.

(In	 this	 and	 other	 operations	we	must	 avoid	 having	multiple	 layers
walk	over	the	tree	separately.	For	example,	it	is	no	good	to	have	the
Command	 layer	 walk	 the	 tree	 to	 generate	 a	 list	 of	 all	 file	 ids	 to
commit,	because	the	tree	will	also	be	walked	later.	The	layers	that	do
need	to	operate	per-file	should	probably	be	bound	together	in	a	per-
dirblock	iterator,	rather	than	each	iterating	independently.)

1.3.4.10			Branch->Tree	interface

The	 Branch	 commit	 code	 needs	 to	 ask	 the	 Tree	 what	 should	 be
committed,	in	terms	of	changes	from	the	parent	revisions.	If	the	Tree
holds	 all	 the	 necessary	 parent	 tree	 information	 itself	 it	 can	 do	 it
single	 handed;	 otherwise	 it	 may	 need	 to	 ask	 the	 Repository	 for
parent	information.

This	 should	 be	 a	 streaming	 interface,	 probably	 like	 iter_changes
returning	information	per	directory	block.

The	 interface	 should	 not	 return	 a	 block	 for	 directories	 that	 are
recursively	unchanged.

The	 tree’s	 idea	 of	 what	 is	 possibly	 changed	 may	 be	 more
conservative	 than	 that	 of	 the	 branch.	 For	 example	 the	 tree	 may
report	on	merges	of	 files	where	 the	 text	 is	 identical	 to	 the	parents:
this	 must	 be	 recorded	 for	 Bazaar	 branches	 that	 record	 per-file
ancestry	 but	 is	 not	 necessary	 for	 all	 branches.	 If	 the	 tree	 is
responsible	 for	determining	when	directories	have	been	 recursively
modified	then	it	will	report	on	all	the	parents	of	such	files.	There	are
several	implementation	options:

1.	Return	all	 files	and	directories	 the	branch	might	want	 to	commit,
even	if	the	branch	ends	up	taking	no	action	on	them.

2.	When	starting	 the	 iteration,	 the	branch	can	 specify	what	 type	of
change	is	considered	interesting.

Since	 these	 types	 of	 changes	 are	 probably	 (??)	 rare	 compared	 to
files	that	are	either	completely	unmodified	or	substantially	modified,
the	first	may	be	the	best	and	simplest	option.

The	 branch	 needs	 to	 build	 an	 inventory	 to	 commit,	 which	 must
include	unchanged	 files	within	 changed	directories.	 This	 should	 be
returned	 from	 the	 working	 tree	 too.	 Repositories	 that	 store	 per-
directory	 inventories	 will	 want	 to	 build	 and	 store	 these	 from	 the
lowest	directories	up.	For	0.17	format	repositories	with	an	all-in-one
inventory	 it	 may	 be	 easiest	 to	 accumulate	 inventory	 entries	 in
arbitrary	order	into	an	in-memory	Inventory	and	then	serialize	it.

It	 ought	 to	 be	 possible	 to	 commit	 any	 Tree	 into	 a	 Branch,	 without
requiring	a	WorkingTree;	the	commit	code	should	cope	if	the	tree	is
not	interested	in	updating	hashcache	information	or	does	not	have	a
last_revision.

1.3.4.11			Information	from	the	tree	to	repository

The	main	things	the	tree	needs	to	tell	the	Branch	about	are:

A	 file	 is	modified	 from	 its	 parent	 revision	 (in	 text,	 permissions,
other),	and	so	its	text	may	need	to	be	stored.

Files	should	also	be	reported	if	they	have	more	than	one	unique
parent	revision,	for	repositories	that	store	per-file	graphs	or	last-
change	revisions.	Perhaps	this	behaviour	should	be	optional.

XXX:	are	renames/deletions	reported	here	too?

The	 complete	 contents	 of	 a	 modified	 directory,	 so	 that	 its
inventory	 text	may	be	stored.	This	should	be	done	after	all	 the
contained	files	and	directories	have	been	reported.	 If	 there	are
unmodified	files,	or	unselected	files	carried	through	from

XXX:	 Actually	 perhaps	 not	 grouped	 by	 directory,	 but	 rather
grouped	appropriately	 for	 the	shape	of	 inventory	storage	 in	 the
repository.

In	a	zoomed-in	checkout	 the	workingtree	may	not	have	all	 the
shape	data	for	the	entire	tree.

A	 file	 is	missing	–	could	 cause	either	automatic	 removal	or	an
aborted	commit.

Any	unknown	files	–	can	cause	automatic	addition,	abortion	of	a
strict	commit,	or	just	reporting.

1.3.4.12			Information	from	the	repository	to	the	tree

After	 the	commit	 the	 tree	needs	 to	be	updated	 to	 the	new	revision.
Some	 information	which	was	accumulated	 during	 the	 commit	must
be	 made	 available	 to	 the	 workingtree.	 It’s	 probably	 reasonable	 to
hold	it	all	 in	memory	and	allow	the	workingtree	to	get	it	 in	whatever
order	it	wants.

A	list	of	modified	entries,	and	for	each	one:

The	stat	values	observed	when	the	file	was	first	read.
The	hash	of	the	committed	file	text.
The	file’s	last-change	revision,	if	appropriate.

This	should	include	any	entries	automatically	added	or	removed.

This	 might	 be	 construed	 as	 an	 enhanced	 version	 of
set_parent_trees.	 We	 can	 avoid	 a	 stat	 on	 each	 file	 by	 using	 the

value	that	was	observed	when	it	was	first	read.

1.3.4.13			Selective	commit

For	 a	 partial	 commit	 the	 directory	 contents	may	 need	 to	 contain	 a
mix	 of	 entries	 from	 the	 working	 tree	 and	 parent	 trees.	 This	 code
probably	 shouldn’t	 live	 in	 a	 specific	 tree	 implementation;	 maybe
there	should	be	a	general	filter	that	selects	paths	from	one	tree	into
another?

However,	 the	 tree	walking	code	does	probably	need	 to	know	about
selected	paths	to	avoid	examining	unselected	files	or	directories.

We	never	refuse	selective	file	commits	(except	of	merges).

1.3.4.14			Common	commit	code

What	 is	 common	 to	 all	 commit	 implementations,	 regardless	 of
workingtree	or	repository	format?

Prompting	for	a	commit	message?
Strictness/conflict	checks?
Auto	add/remove?

How	should	this	be	separated?

1.3.4.15			Order	of	traversal

For	current	and	contemplated	Bazaar	storage	formats,	we	can	only
finally	commit	a	directory	after	its	contained	files	and	directories	have
been	committed.

The	 dirstate	 workingtree	 format	 naturally	 iterates	 by	 directory	 in
order	 by	 path,	 yielding	 directories	 before	 their	 contents.	 This	 may
also	be	the	most	efficient	order	in	which	to	stat	and	read	the	files.

One	 option	 would	 be	 to	 construe	 the	 interface	 as	 a	 visitor	 which
reports	 when	 files	 are	 detected	 to	 be	 changed,	 and	 also	 when
directories	are	finished.

1.3.4.16			Open	question:	per-file	graphs

XXX:	 If	 we	want	 to	 retain	 explicitly	 stored	 per-file	 graphs,	 it	 would
seem	 that	we	do	 need	 to	 record	 per-file	 parents.	We	 have	 not	 yet
finally	 settled	 that	 we	 do	want	 to	 remove	 them	 or	 treat	 them	 as	 a
cache.	 This	 api	 stack	 is	 still	 ok	 whether	 we	 do	 or	 not,	 but	 the
internals	of	it	may	change.

1.3.5			diff	Performance	Analysis

1.3.5.1			Minimal	Work
1.3.5.1.1			Reuse	of	historical	comparisons
1.3.5.1.2			Historical	Tree	Against	Historical	Tree
1.3.5.1.3			Basis	Against	Historical	Tree
1.3.5.1.4			Basis	Against	Basis
1.3.5.1.5			Working	Tree	Against	Basis
1.3.5.1.6			Working	Tree	Against	Historical	Tree
1.3.5.1.7			Working	Tree	Against	Working	Tree

1.3.5.2			API	Changes
1.3.5.3			Storage	considerations

1.3.5.1			Minimal	Work

1.3.5.1.1			Reuse	of	historical	comparisons

A	significant	part	of	the	work	done	by	diff	is	sequence	matching.	This
scales	 O(n^2)	 with	 the	 number	 of	 lines	 in	 the	 file.	 Therefore,	 it	 is
worthwile	to	avoid	content	comparisons	as	much	as	possible.

Our	current	knit	format	contains	content	comparisons,	and	this	data
can	be	converted	into	lists	of	matching	blocks.	Other	 future	 formats
such	as	mpdiff	may	also	support	such	conversion.	So	it	is	possible	to
reuse	past	comparisons.

It	 is	 also	 possible	 to	 combine	 sequential	 comparisons.	 So	 given	 a
comparison	of	“foo”	to	“bar”,	and	“bar”	to	“baz”,	it	is	possible	to	derive
a	comparison	of	“foo”	to	“baz”.

Reuse	 of	 historical	 comparisons	 will	 scale	 with	 the	 number	 of
uncommon	build-parents	 between	 the	 two	 historical	 revisions.	 This
will	typically	be	proportional	to	the	amount	of	change	that	the	file	has
undergone.	 Therefore,	 in	 the	 common	 case,	 reuse	 of	 historical
comparisons	will	scale	with	the	amount	of	change.

The	 downside	 of	 such	 reuse	 is	 that	 it	 ties	 the	 comparison	 to	 the
historical	data.	But	given	the	performance	improvement,	it	seems	to
be	worth	consideration.	Fresh	comparisons	can	be	performed	if	 the
user	requests	them.

It	 may	 also	 be	 possible	 to	 accelerate	 comparisons	 by	 including
annotation	data,	thus	increasing	the	number	of	unique	lines.

1.3.5.1.2			Historical	Tree	Against	Historical	Tree

This	 operation	 should	 be	 strictly	 proportional	 to	 the	 amount	 of
change,	 because	 a	 comparison	 has	 already	 been	 done	 at	 commit
time.	Achieving	that	performance	requires	the	committed	data	to	be
properly	 structured,	 so	 that	 the	 comparison	 can	 be	 extracted	 and
combined	 with	 other	 comparisons.	 This	 comparision	 extraction
should	be	possible	at	the	inventory	and	file-content	levels.

Minimum	work:

1.	 Extract	and	combine	inventory	comparisons
2.	 Extract	and	combine	text	comparisions	for	modified	texts

1.3.5.1.3			Basis	Against	Historical	Tree

This	is	another	case	of	Historical	Tree	Against	Historical	Tree.

1.3.5.1.4			Basis	Against	Basis

This	is	another	case	of	Historical	Tree	Against	Historical	Tree.

1.3.5.1.5			Working	Tree	Against	Basis

This	must	scale	with	the	number	of	versioned	files,	unless	the	user
indicates	that	only	certain	files	should	be	compared.

Performance	 can	 be	 further	 improved	 by	 caching	 comparisons	 to
avoid	 repeating	 them.	 Caching	 could	 potentially	 be	 performed	 by
diff	and	perhaps	by	merge.	Merge	is	aware	of	 the	relationship	of	a
text	 merge’s	 result	 to	 the	 THIS	 value,	 and	 the	 THIS	 value	 is
generally	 the	basis	value.	So	 the	comparison	 is	 latent,	but	present.
The	only	issue	is	extracting	it.

The	 cache	 could	 be	 indexed	 by	 sha1sum	 pairs.	 It	 could	 also	 be
indexed	by	file-id,	to	facilitate	removal	of	stale	data.

Minimum	work:

1.	 Scan	working	tree	for	modified	files
2.	 Retrieve	cached	comparisons
3.	 Perform	comparisons	on	files	with	no	cached	comparisons
4.	 Cache	comparisons	for	files	with	no	cached	comparisons

1.3.5.1.6			Working	Tree	Against	Historical	Tree

This	can	be	structured	as	a	comparison	of	working	tree	against	basis
tree,	 followed	 by	 basis	 tree	 against	 historical	 tree.	 Therefore,	 it
combines	the	performance	characteristics	of	 “Working	Tree	Against

Basis”	with	“Basis	Against	Historical	Tree”.

1.3.5.1.7			Working	Tree	Against	Working	Tree

This	can	be	structured	as	 two	comparisons	against	basis,	and	one
comparison	 of	 basis	 against	 basis.	 Its	 performance	 is	 therefore
similar	to	Working	Tree	Against	Historical	Tree.

1.3.5.2			API	Changes

Desired	API:

Tree.get_comparision(file_id,	tree)

This	probably	entails:

WorkingTree.store_comparison(file_id,	 revision_id,	 sha1,
comparison)
WorkingTree.get_comparison(file_id,	revision_id,	sha1)
Repository.get_comparision(file_id,	revision_id,	revision_id)
merge_comparisions(comparison,	comparision)

1.3.5.3			Storage	considerations

It	must	be	cheap	(e.g.	scale	with	number	of	 intermediate	revisions)
to	 perform	 comparison	 of	 two	 historical	 texts.	 It	 must	 be	 cheap	 to
perform	comparison	of	the	inventories	of	two	historical	trees.

1.3.6			Garbage	Collection

Garbage	collection	 is	used	to	remove	data	from	a	repository	that	 is
no	longer	referenced.

Generally	 this	 involves	 locking	 the	 repository	 and	 scanning	 all	 its
branches	then	generating	a	new	repository	with	less	data.

1.3.6.1			Least	work	we	can	hope	to	perform

Read	all	branches	to	get	initial	references	-	tips	+	tags.
Read	through	the	revision	graph	to	find	unreferenced	revisions.
A	cheap	HEADS	list	might	help	here	by	allowing	comparison	of
the	initial	references	to	the	HEADS	-	any	unreferenced	head	is
garbage.
Walk	 out	 via	 inventory	 deltas	 to	 get	 the	 full	 set	 of	 texts	 and
signatures	to	preserve.
Copy	to	a	new	repository
Bait	and	switch	back	to	the	original
Remove	the	old	repository.

A	possibility	to	reduce	this	would	be	to	have	a	set	of	grouped	‘known
garbage	free’	data	-	‘ancient	history’	which	can	be	preserved	in	total
should	its	HEADS	be	fully	referenced	-	and	where	the	HEADS	list	is
deliberate	cheap	(e.g.	at	the	top	of	some	index).

possibly	-	null	data	in	place	without	saving	size.

1.3.7			Revert

Change	 users	 selected	 paths	 to	 be	 the	 same	 as	 those	 in	 a	 given
revision	making	 backups	 of	 any	 paths	 that	 bzr	 did	 not	 set	 the	 last
contents	itself.

1.3.7.1			Least	work	we	can	hope	to	perform

We	should	be	able	to	do	work	proportional	 to	the	scope	the	user	 is
reverting	and	the	amount	of	changes	between	the	working	tree	and
the	revision	being	reverted	to.

This	depends	on	being	able	to	compare	unchanged	subtrees	without
recursing	so	that	the	mapping	of	paths	to	revert	to	ids	to	revert	can
be	 done	 efficiently.	 Specifically	 we	 should	 be	 able	 to	 avoid	 getting

the	 transitive	 closure	 of	 directory	 contents	 when	 mapping	 back	 to
paths	from	ids	at	the	start	of	revert.

One	 way	 this	 might	 work	 is	 to:	 for	 the	 selected	 scopes,	 for	 each
element	in	the	wt:

1.	get	hash	tree	data	for	that	scope.	1.	get	‘new	enough’	hash
data	for	the	siblings	of	the	scope:	it	can	be	out	of	date	as	long
as	its	not	older	than	the	last	move	or	rename	out	of	that	siblings
scope.	1.	Use	the	hash	tree	data	to	tune	the	work	done	in
finding	matching	paths/ids	which	are	different	in	the	two	trees.

For	each	thing	that	needs	to	change	-	group	by	target	directory?

1.	Extract	new	content.	1.	Backup	old	content	or	replace-in-
place	(except	windows	where	we	move	and	replace).

1.3.8			The	status	command

The	status	command	is	used	to	provide	a	pithy	listing	of	the	changes
between	 two	 trees.	 Its	 common	 case	 is	 between	 the	 working	 tree
and	 the	 basis	 tree,	 but	 it	 can	 be	 used	 between	 any	 two	 arbitrary
trees.

1.3.8.1			UI	Overview
1.3.8.2			Ideal	work	for	working	tree	to	historical	status
1.3.8.3			Locality	of	reference
1.3.8.4			Scaling	observations

1.3.8.1			UI	Overview

Status	 shows	 several	 things	 in	 parallel	 (for	 the	 paths	 the	 user
supplied	 mapped	 across	 the	 from	 and	 to	 tree,	 and	 any	 pending
merges	in	the	to	tree).

1.	 Single	 line	summary	of	all	new	revisions	-	 the	pending	merges
and	their	parents	recursively.

2.	 Changes	to	the	tree	shape	-	adds/deletes/renames.
3.	 Changes	 to	 versioned	 content	 -	 kind	 changes	 and	 content

changes.
4.	 Unknown	files	in	the	to	tree.
5.	 Files	with	conflicts	in	the	to	tree.

1.3.8.2			Ideal	work	for	working	tree	to	historical	status

We	need	to	do	the	following	things	at	a	minimum:

1.	 Determine	new	revisions	-	the	pending	merges	and	history.

1.	 Retrieve	 the	 first	 line	 of	 the	 commit	 message	 for	 the	 new
revisions.

1.	 Determine	the	tree	differences	between	the	two	trees	using	the
users	paths	 to	 limit	 the	scope,	and	resolving	paths	 in	 the	trees
for	any	pending	merges.	We	arguably	don’t	care	about	tracking
metadata	for	this	-	only	the	value	of	the	tree	the	user	commited.

1.	 The	 entire	 contents	 of	 directories	 which	 are	 versioned	 when
showing	unknowns.

1.	 Whether	a	given	unversioned	path	is	unknown	or	ignored.

1.	 The	list	conflicted	paths	in	the	tree	(which	match	the	users	path
selection?)

Expanding	on	the	tree	difference	case	we	will	need	to:

1.	 Stat	every	path	in	working	trees	which	is	 included	by	the	users
path	selection	to	ascertain	kind	and	execute	bit.

1.	 For	 paths	 which	 have	 the	 same	 kind	 in	 both	 trees	 and	 have

content,	 read	 that	 content	 or	 otherwise	 determine	whether	 the
content	 has	 changed.	 Using	 our	 hash	 cache	 from	 the	 dirstate
allows	us	 to	avoid	 reading	 the	 file	 in	 the	common	case.	There
are	alternative	ways	to	achieve	this	-	we	could	record	a	pointer
to	a	revision	which	contained	this	fileid	with	the	current	content
rather	 than	 storing	 the	 content’s	 hash;	 but	 this	 seems	 to	 be	 a
pointless	 double-indirection	 unless	we	 save	enough	 storage	 in
the	working	 tree.	A	variation	of	 this	 is	 to	not	 record	an	explicit
pointer	but	instead	define	an	implicit	pointer	as	being	to	the	left-
hand-parent	tree.

1.3.8.3			Locality	of	reference

We	 should	 stat	 files	 in	 the	 same	 directory	 without	 reading	 or
statting	 files	 in	 other	 directories.	 That	 is	 we	 should	 do	 all	 the
statting	we	 intend	 to	 do	within	 a	 given	 directory	without	 doing
any	other	IO,	to	minimise	pressure	on	the	drive	heads	to	seek.
We	 should	 read	 files	 in	 the	 same	 directory	 without	 reading	 or
writing	 files	 in	 other	 directories	 -	 and	 note	 this	 is	 separate	 to
statting	(file	data	is	usually	physically	disjoint	to	metadata).

1.3.8.4			Scaling	observations

The	stat	operation	clearly	 involves	every	versioned	path	 in	 the
common	case.
Expanding	 out	 the	 users	 path	 selection	 in	 a	 naive	 manner
involves	reading	the	entire	tree	shape	information	for	both	trees
and	 for	 all	 pending-merge	 trees.	 (Dirstate	makes	 this	 tolerably
cheap	for	now,	but	we’re	still	scaling	extra-linearly.)
The	 amount	 of	 effort	 required	 to	 generate	 tree	 differences
between	the	working	tree	and	the	basis	tree	is	interesting:	with	a
tree-like	structure	and	some	generatable	name	 for	child	nodes
we	 use	 the	 working	 tree	 data	 to	 eliminate	 accessing	 or
considering	subtrees	regardless	of	historival	age.	However,	if	we

have	 had	 to	 access	 the	 historical	 tree	 shape	 to	 perform	 path
selection	 this	 rather	 reduces	 the	win	we	can	obtain	here.	 If	we
can	cause	path	expansion	to	not	require	historical	shape	access
(perhaps	by	performing	the	expansion	after	calculating	the	tree
difference	 for	 the	 top	 level	 of	 the	 selected	 path)	 then	 we	 can
gain	 a	 larger	 win.	 This	 strongly	 suggests	 that	 path	 expansion
and	tree	difference	generation	should	be	linked	in	terms	of	API.

1.3.9			Annotate

Broadly	tries	to	ascribe	parts	of	the	tree	state	to	individual	commits.

There	appear	to	be	three	basic	ways	of	generating	annotations:

If	the	annotation	works	by	asking	the	storage	layer	for	successive	full
texts	 then	 the	 scaling	 of	 this	will	 be	 proportional	 to	 the	 time	 to	 diff
throughout	the	history	of	thing	being	annotated.

If	 the	 annotation	works	 by	 asking	 the	 storage	 layer	 for	 successive
deltas	within	the	history	of	the	thing	being	annotated	we	believe	we
can	make	 it	 scale	 broadly	 proportional	 to	 the	 depth	 of	 the	 tree	 of
revisions	of	the	annotated	object.

If	 the	annotation	works	by	combining	cached	annotations	such	 that
creating	a	 full	 text	 recreates	annotations	for	 it	 then	 it	will	scale	with
the	cost	of	obtaining	that	text.

Generally	we	want	our	current	annotations	but	it	would	be	nice	to	be
able	 to	 do	whitespace	 annotations	 and	 potentially	 other	 diff	 based
annotations.

Some	things	to	think	about:

Perhaps	multiparent	deltas	would	allow	us	to	not	store	 the
cached	 annotations	 in	 each	 delta	 without	 losing
performance	or	accuracy.

1.3.10			Scaling	analysys	of	Merge

1.	 Fetch	revisions	O(a)
2.	 Common	Ancestor	[O(b)]	O(h)
3.	 Calculate	tree	merge	O(c)	[+	O(b)	+	O(d)]	+	O(i)

text	merge	O(e	*	e	*	f)	+	O(b)

4.	 Find	filesystem	conflicts	O(c)
5.	 Resolve	filesystem	conflicts	O(g)
6.	 Apply	changes	O(c)	+	O(log(d))
7.	 Set	pending	merges	O(1)
8.	 Print	conflicts	O(g)
9.	 Print	changes	O(c)

a: revisions	missing	from	repo:
b: nodes	in	the	revision	graph:
c: files	that	differ	between	base	and	other:
d: number	of	files	in	the	tree
e: number	of	lines	in	the	text
f: number	of	files	requiring	text	merge
g: number	of	conflicts	(g	<=	c)
h: humber	of	uncommon	ancestors
i: number	of	revisions	between	base	and	other

1.3.10.1			Needs

Access	 to	 revision	 graph	 proportional	 to	 number	 of	 revisions
read
Access	 to	 changed	 file	 metadata	 proportional	 to	 number	 of
changes	and	number	of	intervening	revisions.
O(1)	access	to	fulltexts

1.3.10.2			Notes

Multiparent	deltas	may	offer	some	nice	properties	for	performance	of
annotation	based	merging.

1.3.11			Bundle	Creation

1.	 Find	common	ancestor	[O(a)]	O(b)
2.	 Emit	bundle	[O(a)]	O(b)	O(h)

Per	revision

1.	 emit	metadata	O(1)
2.	 emit	changes	for	files

1.	 find	changed	files	[O(c)]	O(f)
2.	 emit	file	metadata	O(d)
3.	 emit	diff	[O(e	*	e)	*	O(f)	+	O(h)]	O(i)
4.	 base64	encode	O(g)

3.	 emit	overal	diff	(or	maybe	do	interdiff)	O(e	*	e)	*	O(f)

a: nodes	in	revision	graph
b: number	of	descendants	of	common	ancestor
c: number	of	files	in	the	tree
d: length	of	metadata
e: number	of	lines
f: number	of	modified	files
g: length	of	diff
h: nodes	in	knit	graph	of	modified	files
i: length	of	stored	diff

1.3.11.1			Needs

Improved	common	ancestor	algorithm
Access	 to	 partial	 revision	 graph	 proportional	 to	 relevant
revisions
Access	 to	changed	 files	proportional	 to	number	of	change	 files

and	intervening	revisions
Use	knit	deltas	without	recomputing
Access	to	knit	deltas	in	O(1)	time
Access	to	snapshots	in	O(1)	amortized	time
All	snapshots	must	have	knit	deltas

1.3.12			Uncommit	Performance	Notes

1.3.12.1			Specification	of	uncommit

uncommit	removes	revisions	from	the	head	of	a	branch.	(By	default,
only	the	very	 latest	revision	is	removed,	but	optionally	more	can	be
taken.)	Uncommit	does	not	affect	 the	repository	(garbage	collection
is	a	separate	step	and	not	done	by	default).	The	working	tree	is	not
logically	 modified	 (revert	 is	 a	 different	 operation),	 except	 as
described	below	about	merges.

Uncommit	 can	 be	 performed	 on	 either	 a	 branch	 or	 a	working	 tree
(and	implicitly	its	branch.)

If	the	uncommitted	revisions	includes	one	or	more	merges,	after	the
uncommit	 those	 revisions	 are	 in	 the	 working	 tree’s	 list	 of	 pending
merges,	because	their	tree	changes	are	still	present	in	the	tree.

For	a	bound	branch,	uncommit	fails	unless	the	local	branch	is	up	to
date.

1.3.13			Missing

Missing	 is	 used	 to	 find	 out	 the	 differences	 between	 the	 current
branch	and	another	branch.

The	 performance	 analysis	 itself	 brings	 no	 further	 points	 than	 the
incremental-push-pull	one.

More	importantly,	the	UI	have	been	considered	not	optimal:	missing
finds	and	displays	the	differences	between	two	branches,	presenting
the	revisions	that	are	not	common	to	both	branches	as	two	sets:

the	revisions	that	are	present	only	in	the	current	branch,
the	revisions	that	are	present	only	in	the	other	branch.

A	 quick	 and	 dirty	 survey	 indicates	 that	 most	 of	 the	 users	 are
interested	in	only	one	set	of	revisions	at	a	time.

From	 a	 performance	 point	 of	 view,	 it	 may	 be	 more	 appropriate	 to
calculate	only	the	set	the	user	is	asking	for.

It	 has	 been	proposed	 that	 the	missing	 command	be	 deprecated	 in
favor	of	a	–dry-run	option	for	the	push,	pull,	merge	commands.

In	 the	 mean	 time,	 the	 missing	 command	 stays	 interesting	 as	 it
provides	 an	 easy	 way	 to	 test,	 measure	 and	 optimize	 graph
differences	processing.

1.4			Subsystem	designs

1.4.1			Directory	fingerprints

1.4.1.1			Introduction
1.4.1.2			Use-case	oriented	APIs

1.4.1.2.1			commit
1.4.1.2.2			log

1.4.1.3			Open	questions
1.4.1.4			Conclusions
1.4.1.5			Design	changes
1.4.1.6			API	changes

1.4.1.1			Introduction

The	 basic	 idea	 is	 that	 for	 a	 directory	 in	 a	 tree	 (committed	 or
otherwise),	we	will	have	a	single	scalar	value.	If	these	values	are	the
same,	 the	 contents	 of	 the	 subtree	 under	 that	 directory	 are
necessarily	the	same.

This	 is	 intended	 to	help	with	 these	use	cases,	by	allowing	 them	 to
quickly	skip	over	directories	with	no	relevant	changes,	and	to	detect
when	a	directory	has	changed:

diff/status	(both	local	trees	and	historical	trees)
merge
log	-v
log	on	a	directory
commit

1.4.1.2			Use-case	oriented	APIs

Most	 of	 this	 will	 be	 hidden	 behind	 the	 Tree	 interface.	 This	 should
cover	 log	-v,	 diff,	 status,	 merge	 (and	 implicit	merge	during	push,
pull,	update):

tree.iter_changes(other_tree)

tree.get_file_lines(file_id)			#	and	get_file,	get_file_text

1.4.1.2.1			commit

Commit	 is	similar	to	iter_changes,	but	different	because	it	needs	to
compare	 to	 all	 the	 trees.	 Commit	 currently	 needs	 to	 compare	 the
working	 tree	 to	all	 the	parent	 trees,	which	 is	needed	 to	update	 the
last_modified	 field	 and	 would	 be	 unnecessary	 if	 we	 removed	 that
field	(for	both	files	and	directories)	and	did	not	store	per-file	graphs.
This	would	potentially	speed	up	commit	after	merge.

Verbose	commit	also	displays	 the	merged	 files,	which	does	 require
looking	 at	 all	 parents	 of	 files	 that	 aren’t	 identical	 to	 the	 left-hand
parent.

1.4.1.2.2			log

Log	is	interested	in	two	operations:	finding	the	revisions	that	touched
anything	 inside	 a	 directory,	 and	 getting	 the	 differences	 between
consecutive	revisions	(possibly	filtered	to	a	directory):

find_touching_revisions(branch,	file_id)	#	should	be	on	Branch?

Log	shows	the	revisions	that	merged	a	change.	At	the	moment	that
is	not	included	in	the	per-file	graph,	and	it	would	also	not	be	visible	if
the	directories	were	hashed.

1.4.1.3			Open	questions

Is	this	a	good	idea	at	all?

If	changing	a	file	changes	all	its	parent	directories	up	to	the	root
it	will	cause	more	churn	on	commit.	(We	currently	update	the	all-
in-one	inventory,	but	only	have	to	update	one	line	of	it.)

Every	 time	 a	 child	 changes,	 we’ll	 get	 a	 new	 node	 in	 the	 per-
directory	graph.	This	 is	generally	useful:	 it	allows	bzr	 log	 to	do
the	default	mode	easily,	which	is	to	show	all	changes	under	that
directory.	 The	 less	 common	 operation,	 log	 --no-recursive	 is
still	 possible	 by	 looking	 only	 at	 when	 the	 directory	 itself	 was
renamed,	added	or	 removed.	 (That	 is	what	 the	directory	graph
describes	in	bzr	0.18	and	it	is	rarely	useful.)

Should	these	be	hashes	or	revision	ids	or	something	else?

Pros	of	using	hashes:	hashes	are	easy	to	generate	by	a	foreign
branch	 plugin	 (e.g.	 bzr-svn).	 They	 don’t	 need	 to	 get	 recursive
last-changed	 from	 the	 foreign	branch,	 or	 to	walk	 back	 through
history.	 They	 just	 need	 the	 relevant	 directory	 state,	 which	 any
system	we	support	can	answer.

Hashes	converge:	 if	you	modify	and	then	modify	back,	you	get
the	same	hash.	This	is	a	pro	because	you	can	detect	that	there
were	 ultimately	 no	 significant	 changes.	 And	 also	 a	 con:	 you
cannot	 use	 these	 hashes	 to	 form	 a	 graph	 because	 they	 get
cycles.

Are	 the	 values	 unique	 across	 the	 whole	 tree,	 or	 only	 when
comparing	different	versions	of	the	same	object?

If	 we	 use	 last-changed	 revisions,	 then	 they	 will	 be	 very	 not
unique	across	the	whole	tree.	To	look	up	the	contents,	you	must
pass	a	composite	key	like	(file_id,	last_changed).

If	we	use	hashes	 they	will	be	same	only	when	the	 two	contain
the	same	contents.	Since	we	say	 that	 file	 ids	must	 be	unique,
this	 means	 they	 will	 match	 if	 and	 only	 if	 they	 are	 empty.	 We

might	relax	that	in	future	when	we	introduce	path	tokens.

Is	it	reasonable	to	assume	hashes	won’t	collide?

The	 odds	 of	 SHA-1	 hashes	 colliding	 “accidentally”	 are
vanishingly	small.

It	 is	 possible	 that	 a	 preimage	 attack	 against	 SHA-1	 may	 be
discovered	 in	 the	 future.	 Since	 we’re	 not	 proposing	 in	 this
document	 to	 make	 revision-ids	 be	 SHA-1,	 if	 SHA-1	 was
obsoleted	 then	 we	 could	 rewrite	 the	 contents	 of	 revisions	 but
would	 not	 need	 to	 rename	 revisions.	So	 the	 impact	 of	 such	 a
migration	 should	 just	 be	 a	 format	 upgrade,	 and	 a
recommendation	(but	not	requirement)	to	re-sign	revisions.

If	 we	 use	 hashes,	 should	 it	 be	 the	 hash	 of	 the	 representation
stored	for	a	directory?

In	 other	 words,	 should	 we	 pun	 the	 representation	 of	 the
directory	with	the	form	used	for	validation.

If	there’s	some	data	stored	that’s	not	in	the	hash	it’s	problematic.
The	 hash	 in	 no	 longer	 (effectively)	 uniquely	 identifies	 the
representation.

It	is	desirable	that	we	have	a	hash	that	covers	all	data,	to	guard
against	bugs,	 transmission	errors,	or	users	 trying	to	hand-hack
files.	Since	we	need	one	hash	of	everything	in	the	tree,	perhaps
we	should	also	use	it	for	the	fingerprint.

Testaments	explicitly	separate	the	form	used	for	hashing/signing
from	 the	 form	 used	 for	 storage.	 This	 allows	 us	 to	 change	 the
storage	 form	 without	 breaking	 existing	 GPG	 signatures.	 The
downside	 is	 that	 we	 need	 to	 do	 work	 O(tree)	 to	 make	 a
testament,	 and	 this	 slows	 down	 signing,	 verifying	 and
generating	bundles.	It	also	means	that	there	is	some	stored	data

http://tools.ietf.org/html/rfc4270

which	 is	 not	 protected	 by	 the	 signature:	 this	 data	 is	 less
important,	 but	 corruption	 of	 it	 would	 still	 cause	 problems.	 We
have	 encountered	 some	 specific	 problems	 with	 disagreement
between	 inventories	 as	 to	 the	 last-change	 of	 files,	 which	 is
currently	 unsigned.	 These	 problems	 can	 be	 introduced	 by
ghosts.

If	we	hash	the	representation,	there	is	still	a	way	to	support	old
signatures,	 assuming	 that	 we	 never	 discard	 irreplaceable
information.	The	signature	should	say	what	 format	 it	applies	 to
(similar	 to	 testaments),	and	we	could	 transform	 in	memory	 the
tree	back	to	that	format.

Is	hashing	substantially	slower	than	other	possible	approaches?

We	already	hash	all	the	plain	files.	Except	in	unusual	cases,	the
directory	metadata	will	 be	 substantially	 smaller:	 perhaps	200:1
as	a	rule	of	thumb.

When	 building	 a	 bzr	 tree,	 we	 spend	 on	 the	 order	 of	 100ms
hashing	 all	 the	 source	 lines	 to	 validate	 them	 (about	 13MB	 of
source).

Can	 you	 calculate	 one	 from	 a	 directory	 in	 the	 working	 tree?
Without	a	basis?

This	seems	possible	with	either	hashes	or	revision	ids.

Using	last_changed	means	that	calculating	the	fingerprint	from	a
working	 tree	 necessarily	 requires	 reading	 the	 inventory	 for	 the
basis	revision,	so	that	we	know	when	unchanged	files	were	last
changed.	 With	 hashes	 we	 could	 calculate	 them	 using	 the
working	 tree	 information	alone.	 It’s	 true	 that	we	will	 often	 then
compare	 that	 information	 to	 the	basis	 tree	 (e.g.	 for	 simple	 bzr
diff),	 but	we	may	only	 have	 to	 compare	at	 the	 top	 level,	 and
sometimes	 we’re	 comparing	 to	 a	 different	 tree.	 This	 also

touches	 on	 whether	 we	 should	 store	 last_modified	 for	 files,
rather	than	directories.

For	 revision	 ids	 we	 need	 to	 assign	 a	 value	 to	 use	 for
uncommitted	 changes,	 but	 see	 below	 about	 the	 problems	 of
this.

In	some	ways	it	would	be	elegant	to	say	(hypothetical):

wt.get_root().get_last_modified()	==	branch.get_last_revision

to	 know	 that	 nothing	was	 changed;	 but	 this	may	 not	 be	much
better	than

wt.get_root().get_hash()	==

		branch.get_basis().get_root().get_hash()

Can	 you	 use	 this	 to	 compare	 (directories	 from)	 two	 working
trees?

If	you	can	generate	it	from	a	working	tree,	you	should	be	able	to
use	it	to	compare	them.

This	 does	 rule	 out	 for	 example	 using	 last_modified=None	 or
='current:'	to	mean	“changed	in	the	working	tree.”	Even	if	this
is	not	supported	 there	seems	some	 risk	 that	we	would	get	 the
same	fingerprint	for	trees	that	are	actually	different.

We	 could	 assign	 a	 hypothetical	 revision	 id	 to	 the	 tree	 for
uncommitted	files.	 In	 that	case	 there	 is	some	risk	 that	 the	not-
yet-committed	id	would	become	visible	or	committed.

Can	we	use	an	“approximate	basis”?

When	 using	 radix	 trees,	 you	 may	 need	 context	 beyond	 the
specific	directory	being	compared.

Can	 you	 get	 the	 fingerprint	 of	 parents	 directories	 with	 only
selected	file	ids	taken	from	the	working	tree?

With	 hashes,	 we’d	 want	 to	 carry	 through	 the	 unselected	 files
and	directories	from	the	values	they	had	in	the	parent	revision.

Are	 unbalanced	 trees	 a	 significant	 problem?	 Trees	 can	 be
unbalanced	by	having	many	directories	(deep	or	wide),	or	many
files	per	directory.

For	small	trees	like	bzr,	744	of	874	are	in	the	bzrlib	subtree.	In
general,	 larger	 trees	 are	 more	 balanced,	 because	 humans,
editors	and	other	tools	have	trouble	managing	very	unbalanced
trees.	But	there	are	exceptions:	Aaron	has	one	tree	with	20,000
generated	but	versioned	entries	in	one	directory.

Should	 we	 use	 a	 radix	 tree	 approach	 where	 fingerprints	 are
calculated	 on	 a	 synthetic	 tree	 that	 is	 by	 definition	 balanced,
even	when	the	actual	tree	is	unbalanced?

What	 are	 the	 specific	 advantages	 of	 using	 recursive-last-
modified	rather	than	hashes?

It	may	be	a	smaller	step	change.

It’s	a	bidirectional	link:	given	a	directory	text	identifier	(file_id,
last_changed)	you	can	look	up	the	revision	that	last	changed	it.

From	the	preceding,	even	without	the	per-file	graph	you	can	skip
through	 the	history	of	 this	 file:	go	 to	 the	 last-changed	 revision,
look	at	all	its	parents	and	repeat.

Is	 it	 a	 smaller	 change	 to	 use	 recursive-last-modified	 on
directories?

Probably	yes:

1.	 We	can	 just	put	 it	 into	 the	current	 inventory	 format	without
changing	anything	else.

By	contrast	 to	use	a	hash	we’d	have	 to	either	split	up	 the
inventory	 as	 stored,	 or	 change	 the	 sort	 order	 for	 the
inventory,	or	synthesize	per-directory	inventories	in	memory
for	hashing.

However,	 xml	 is	 somewhat	 redundant	 and	 slow	 to
parse/generate;	 and	 reading	 the	 whole	 thing	 before
comparing	some	sections	is	only	a	partial	win.	It	may	be	a
smaller	 change	 but	we’d	 be	 preserving	 things	we	want	 to
change.

1.	 At	present	we	rarely	hash	storage	representations,	only	file
texts.	 This	 is	 not	 a	 large	 technical	 change,	 but	 it	 is	 a
conceptual	change.	This	has	some	consequences	 for	how
we	can	upgrade	it	in	future:	all	the	changed	directories	need
to	be	rewritten	up	to	the	revision	level.

1.	 If	we	address	directories	by	hash	we	need	hash-addressed
storage.

1.	 If	we	address	directories	by	hash	then	for	consistency	we’d
probably	 (not	 necessarily)	 want	 to	 address	 file	 texts	 by
hash.

1.	 The	per-file	graph	can’t	be	 indexed	by	hash	because	 they
can	converge,	so	we	need	to	either	rework	or	dispose	of	the
per-file	graph.

Any	possibilities	for	avoiding	hashes	recurring?

1.	 Hash	along	with	an	 identification	of	 the	parents	 (as	 in	hg).
Then	you	can’t	convert	a	tree	without	all	its	basis	trees,	and
there	is	still	convergence	when	the	same	merge	is	done	by
two	people,	and	you	can’t	create	it	directly	from	the	working
tree.

1.	 Include	last-modified	revision	id	in	the	hash.

1.	 Index	by	(revision,	hash)	or	vice	versa.
1.	 Store	 a	 per-file	 graph	 and	allow	 it	 to	 have	 repeated	 keys.

The	 graph	 would	 tell	 you	 about	 all	 the	 parent	 texts	 ever
seen;	you	would	need	to	use	revision	graph	 information	to
resolve	ambiguities.

What	 are	 the	 specific	 disadvantages	 of	 using	 recursive-last-
modified	rather	than	hashes?

To	 calculate	 the	 last-changed	 revision,	 given	 the	 last-changed
information	 of	 the	 contained	 files,	 you	 need	 to	 look	 at	 the
revision	graph.	They’re	not	enough	because	you	need	to	know
the	 relations	 between	 the	mentioned	 revisions.	 In	 a	merge	 it’s
possible	the	correct	directory	last-modified	will	not	be	the	same
as	that	of	any	of	the	files	within	it.	This	can	also	happen	when	a
file	is	removed	(deleted	or	renamed)	from	a	directory.

Should	we	split	up	storage	of	the	inventories?

This	is	not	quite	the	same	but	connected.

How	does	this	relate	to	per-file/per-directory	hashes?

If	 the	 version	 of	 a	 file	 or	 directory	 is	 identified	 by	 a	 hash,	 we
can’t	use	that	to	point	into	a	per-file	graph.	We	can	have	a	graph
indexed	 by	 (file_id,	 hash,	 revision_id).	 The	 last-modified
could	be	stored	as	part	of	this	graph.

The	 graph	 would	 no	 longer	 be	 core	 data;	 it	 could	 be	 always
present	 but	might	 be	 rebuilt.	 Treating	 it	 as	 non-core	 data	may
make	some	changes	like	shallow	branches	easier?

How	do	you	ask	a	tree	for	a	given	text?

Right	now	we	say

revision_tree.get_file_lines(file_id)

so	 the	 choice	 of	 storage	 is	 hidden	 behind	 the	 revision	 tree:	 it
could	 be	 accessed	 by	 (file_id,	 last_changed)	 or	 by	 hash	 or
otherwise.

At	 the	 moment	 the	 Repository	 exports	 a	 friend	 api	 to
RevisionTree,	currently	usually	talking	in	VersionedFiles.

We	 probably	 wouldn’t	 want	 Repository	 to	 expose	 a
get_text_for_sha1()	 interface	 because	 that	 would	 be	 very
difficult	to	support	on	old	repositories	or	on	foreign	branches.

1.4.1.4			Conclusions

1.4.1.5			Design	changes

1.4.1.6			API	changes

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»	Plans	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»	Plans	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

co-located	branches
At	the	moment,	each	Bazaar	branch	has	a	separate	directory	in	the
file	system.	While	this	works	well,	and	makes	it	very	easy	to	discover
branches	there	are	several	situations	where	it	might	be	useful	to	also
support	multiple	branches	under	the	same	file	system	directory.

There	 is	an	experimental	 implementation	 for	Bazaar	available	as	a
plugin	at	http://people.samba.org/bzr/jelmer/bzr-local-branches/trunk.
This	was	 the	original	proof-of-concept	and	doesn’t	 yet	use	 the	API
documented	here.

http://people.samba.org/bzr/jelmer/bzr-local-branches/trunk

Rationale
Allowing	multiple	branches	to	live	under	the	same	directory	in	the	file
system	 means	 that	 it	 is	 possible	 to	 very	 easily	 share	 the	 same
working	tree	and	repository	between	those	branches,	without	having
a	lot	of	fs	infrastructure.

Git	 and	 Mercurial	 (can)	 store	 multiple	 branches	 under	 a	 single
directory	in	the	file	system	-	per	repository,	so	to	speak.	In	order	for
this	to	be	accessible	in	Bazaar,	Bazaar	needs	to	have	the	right	APIs
and	UI	for	accessing	these	branches.

Use	Cases
Carla	has	a	 large	C-based	project	with	a	 large	 tree	and	a	 lot	 of	 .o
files	 that	 get	 generated	 as	 part	 of	 her	 build	 process.	 She	 doesn’t
want	 to	create	a	new	working	 tree	 for	each	new	branch	but	simply
uses	“bzr	switch”	to	switch	between	the	different	colocated	branches
that	all	use	the	same	working	tree.

Brad	has	a	single	project	with	a	lot	of	related	branches.	He	works	on
them	and	occasionally	pushes	all	of	those	branches	to	a	remote	host
using	a	single	push	command.

Joe	 follows	 one	 of	 his	 co-workers	 local	 branches	 in	 Mercurial	 by
pulling	into	Bazaar.

Implementation

UI	Changes

Bazaar	URLs	need	to	have	some	way	to	specify	a	colocated	branch
other	than	the	current	HEAD.	Several	options	have	been	discussed,
each	 with	 its	 own	 advantages	 and	 disadvantages:	 This	 was
discussed	 on	 the	 mailing	 list,	 most	 notably	 the	 use	 of	 a
“;branch=NAME”	suffix	as	well	as	a	special	separation	character	(+,
=,	etc),	but	no	final	conclusion	was	reached.

https://lists.ubuntu.com/archives/bazaar/2008q4/050105.html

Code	Changes

BzrDir	 should	 support	 a	 BzrDir.supports_colocated_branches()	 call
as	 well	 as	 BzrDir.colocated_branches	 property	 that	 contains	 a
colocated	 branch	 container,	 that	 can	 be	 used	 to	 add	 /	 remove
colocated	branches	as	well	as	change	the	currently	active	colocated
branch.

class	ColocatedBranchContainer(object):

			def	get_active_branch_name(self):

										"""Returns	the	name	of	the	currently	active	branch.

										This	can	be	None	if	no	branch	is	currently	active.

										"""

			def	get_active_branch(self):

										"""Returns	the	currently	active	branches'	Branch	object."""

			def	get_branch(self,	name):

										"""Returns	the	Branch	object	for	the	specified	branch."""

			def	available_branches(self):

										"""Returns	a	set	with	the	names	of	the	available	branches."""

https://lists.ubuntu.com/archives/bazaar/2008q4/050105.html

			def	set_active_branch(self,	name):

										"""Set	the	currently	active	branch."""

			def	destroy_branch(self,	name):

									"""Destroy	the	specified	branch.

								This	will	remove	the	branch	from	disk."""

If	 the	 particular	 BzrDir	 implementation	 doesn’t	 support	 colocated
branches,	 it	 can	 just	 return	a	dummy	container	 that	 just	contains	a
HEAD	branch.

Looms	can	of	course	return	a	container	with	all	their	threads.

BzrDir.find_branches()	 should	 take	 into	 account	 the	 colocated
branches	when	iterating	over	its	branches.

Schema	Changes
No	 format	 changes	 are	 necessary	 at	 first;	 at	 least,	 even	 if	 Bazaar
provides	the	right	infrastructure	it	doesn’t	have	to	support	this	feature
in	its	own	file	formats.

Eventually,	Bazaar	could	easily	support	 colocated	branches	by	 just
creating	a	new	branch	transport	for	each	colocated	branch	and	have
a	 “regular”	 branch	 live	 there.	 This	 would	 require	 something	 like
BzrDirMeta2	though.

Unresolved	Issues
What	about	colocated	looms	?
What	 character	 to	 use	 to	 name	 colocated	 branches	 in
URLs?

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»	Plans	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»	Plans	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Bazaar	Windows	Shell	Extension
Options

Introduction
Background	Information

The	facts	about	shell	extensions
Analysis	of	TortoiseSVN	code
Analysis	of	existing	TortoiseBzr	code

Detailed	Implementation	Strategy
External	Command	Processor
Performance	considerations
RPC	options
Vista	versus	XP
Reuse	of	TSVNCache?
Reuse	 of	 this	 code	 by	Mercurial	 or	 other	 Python	 based
VCS	systems?

Implementation	plan
Alternative	Implementation	Strategies

Implement	Completely	in	Python

Introduction
This	 document	 details	 the	 implementation	 strategy	 chosen	 for	 the
Bazaar	Windows	Shell	Extensions,	otherwise	known	as	TortoiseBzr,
or	 TBZR.	 As	 justification	 for	 the	 strategy,	 it	 also	 describes	 the
general	architecture	of	Windows	Shell	Extensions,	then	looks	at	the
C++	 implemented	 TortoiseSvn	 and	 the	 Python	 implemented
TortoiseBzr,	 and	 discusses	 alternative	 implementation	 strategies,
and	the	reasons	they	were	not	chosen.

The	following	points	summarize	the	strategy:

Main	shell	extension	code	will	be	 implemented	 in	C++,	and	be
as	 thin	 as	 possible.	 It	 will	 not	 directly	 do	 any	 VCS	 work,	 but
instead	 will	 perform	 all	 operations	 via	 either	 external
applications	or	an	RPC	server.
Most	VCS	operations	will	be	performed	by	external	applications.
For	example,	committing	changes	or	viewing	history	will	spawn
a	child	process	that	provides	its	own	UI.
For	operations	where	spawning	a	child	process	is	not	practical,
an	external	RPC	server	will	be	 implemented	 in	Python	and	will
directly	use	 the	VCS	 library.	 In	 the	short	 term,	 there	will	be	no
attempt	 to	 create	 a	 general	 purpose	 RPC	 mechanism,	 but
instead	will	be	focused	on	keeping	the	C++	RPC	client	as	thin,
fast	and	dumb	as	possible.

Background	Information

The	facts	about	shell	extensions

Well	-	the	facts	as	I	understand	them	:)

Shell	Extensions	are	COM	objects.	They	are	 implemented	as	DLLs
which	are	loaded	by	the	Windows	shell.	There	is	no	facility	for	shell
extensions	to	exist	in	a	separate	process	-	DLLs	are	the	only	option,
and	 they	are	 loaded	 into	other	processes	which	 take	advantage	of
the	 Windows	 shell	 (although	 obviously	 this	 DLL	 is	 free	 to	 do
whatever	it	likes).

For	 the	 sake	 of	 this	 discussion,	 there	 are	 2	 categories	 of	 shell
extensions:

Ones	that	create	a	new	“namespace”.	The	file-system	itself	is	an
example	of	 such	a	namespace,	 as	 is	 the	 “Recycle	Bin”.	 For	 a
user-created	example,	picture	a	new	tree	under	“My	Computer”
which	allows	you	to	browse	a	remote	server	-	 it	creates	a	new,
stand-alone	 tree	 that	 doesn’t	 really	 interact	 with	 the	 existing
namespaces.
Ones	 that	 enhance	 existing	 namespaces,	 including	 the
filesystem.	An	example	would	be	an	extension	which	uses	Icon
Overlays	 to	modify	 how	 existing	 files	 on	 disk	 are	 displayed	 or
add	items	to	their	context	menu,	for	example.

The	 latter	 category	 is	 the	 kind	 of	 shell	 extension	 relevant	 for
TortoiseBzr,	and	it	has	an	important	implication	-	it	will	be	pulled	into
any	process	which	uses	the	shell	to	display	a	list	of	files.	While	this	is
somewhat	 obvious	 for	 Windows	 Explorer	 (which	 many	 people
consider	 the	 shell),	 every	 other	 process	 that	 shows	 a
FileOpen/FileSave	 dialog	 will	 have	 these	 shell	 extensions	 loaded

into	 its	process	space.	This	may	surprise	many	people	-	 the	simple
fact	of	allowing	the	user	to	select	a	filename	will	result	in	an	unknown
number	 of	 DLLs	 being	 loaded	 into	 your	 process.	 For	 a	 concrete
example,	when	notepad.exe	first	starts	with	an	empty	file	 it	 is	using
around	3.5MB	of	RAM.	As	 soon	 as	 the	FileOpen	dialog	 is	 loaded,
TortoiseSvn	 loads	 well	 over	 20	 additional	 DLLs,	 including	 the
MSVC8	 runtime,	 into	 the	 Notepad	 process	 causing	 its	 memory
usage	 (as	 reported	 by	 task	 manager)	 to	 more	 than	 double	 -	 all
without	 doing	 anything	 tortoise	 specific	 at	 all.	 (In	 fairness,	 this
illustration	 is	 contrived	 -	 the	 code	 from	 these	 DLLs	 are	 already	 in
memory	 and	 there	 is	 no	 reason	 to	 suggest	 TSVN	 adds	 any	 other
unreasonable	burden	-	but	the	general	point	remains	valid.)

This	 has	 wide-ranging	 implications.	 It	 means	 that	 such	 shell
extensions	should	be	developed	using	a	tool	which	can	never	cause
conflict	 with	 arbitrary	 processes.	 For	 this	 very	 reason,	 MS
recommend	against	using	.NET	to	write	shell	extensions[1],	as	there
is	 a	 significant	 risk	 of	 being	 loaded	 into	 a	 process	 that	 uses	 a
different	 version	 of	 the	 .NET	 runtime,	 and	 this	will	 kill	 the	 process.
Similarly,	Python	implemented	shell	extension	may	well	conflict	badly
with	 other	 Python	 implemented	 applications	 (and	 will	 certainly	 kill
them	 in	 some	 situations).	 A	 similar	 issue	 exists	 with	 GUI	 toolkits
used	-	using	(say)	PyGTK	directly	in	the	shell	extension	would	need
to	be	avoided	(which	it	currently	is	best	I	can	tell).	It	should	also	be
obvious	 that	 the	 shell	 extension	 will	 be	 in	 many	 processes
simultaneously,	 meaning	 use	 of	 a	 simple	 log-file	 (for	 example)	 is
problematic.

In	 practice,	 there	 is	 only	 1	 truly	 safe	 option	 -	 a	 low-level	 language
(such	 as	 C/C++)	 which	 makes	 use	 of	 only	 the	 win32	 API,	 and	 a
static	 version	 of	 the	 C	 runtime	 library	 if	 necessary.	 Obviously,	 this
sucks	from	our	POV.	:)

[1]:
http://blogs.msdn.com/oldnewthing/archive/2006/12/18/1317290.aspx

http://blogs.msdn.com/oldnewthing/archive/2006/12/18/1317290.aspx

Analysis	of	TortoiseSVN	code

TortoiseSVN	is	implemented	in	C++.	It	relies	on	an	external	process
to	perform	most	UI	(such	as	diff,	log,	commit	etc.)	commands,	but	it
appears	 to	 directly	 embed	 the	SVN	C	 libraries	 for	 the	 purposes	 of
obtaining	status	for	icon	overlays,	context	menu,	drag&drop,	etc.

The	 use	 of	 an	 external	 process	 to	 perform	 commands	 is	 fairly
simplistic	in	terms	of	parent	and	modal	windows.	For	example,	when
selecting	“Commit”,	a	new	process	starts	and	usually	ends	up	as	the
foreground	window,	 but	 it	may	occasionally	 be	 lost	 underneath	 the
window	 which	 created	 it,	 and	 the	 user	 may	 accidently	 start	 many
processes	 when	 they	 only	 need	 1.	 Best	 I	 can	 tell,	 this	 isn’t
necessarily	a	limitation	of	the	approach,	just	the	implementation.

Advantages	of	using	 the	external	process	 is	 that	 it	keeps	all	 the	UI
code	 outside	 Windows	 explorer	 -	 only	 the	 minimum	 needed	 to
perform	operations	directly	needed	by	the	shell	are	part	of	the	“shell
extension”	 and	 the	 rest	 of	 TortoiseSvn	 is	 “just”	 a	 fairly	 large	 GUI
application	implementing	many	commands.	The	command-line	to	the
app	 has	 even	 been	 documented	 for	 people	who	wish	 to	 automate
tasks	 using	 that	 GUI.	 This	 GUI	 is	 also	 implemented	 in	 C++	 using
Windows	resource	files.

TortoiseSvn	 has	 an	 option	 (enabled	 by	 default)	 which	 enabled	 a
cache	 using	 a	 separate	 process,	 aptly	 named	 TSVNCache.exe.	 It
uses	a	named	pipe	to	accept	connections	from	other	processes	for
various	operations.	When	enabled,	TSVN	fetches	most	(all?)	status
information	 from	 this	 process,	 but	 it	 also	 has	 the	 option	 to	 talk
directly	 to	 the	 VCS,	 along	 with	 options	 to	 disable	 functionality	 in
various	cases.

There	doesn’t	 seem	 to	 be	a	 good	 story	 for	 logging	or	 debugging	 -
which	is	what	you	expect	from	C++	based	apps.	:(Most	of	the	heavy
lifting	 is	 done	 by	 the	 external	 application,	 which	 might	 offer	 better

facilities.

Analysis	of	existing	TortoiseBzr	code

The	 existing	 code	 is	 actually	 quite	 cool	 given	 its	 history	 (SoC
student,	 etc),	 so	 this	 should	 not	 be	 taken	 as	 criticism	 of	 the
implementer	nor	of	the	implementation.	Indeed,	many	criticisms	are
also	true	of	the	TortoiseSvn	implementation	-	see	above.	However,	I
have	attempted	to	list	the	bad	things	rather	than	the	good	things	so	a
clear	future	strategy	can	be	agreed,	with	all	limitations	understood.

The	 existing	 TortoiseBzr	 code	 has	 been	 ported	 into	 Python	 from
other	tortoise	 implementations	(probably	svn).	This	means	it	 is	very
nice	 to	 implement	and	develop,	but	suffers	 the	problems	described
above	-	it	is	likely	to	conflict	with	other	Python	based	processes,	and
it	 means	 the	 entire	 CPython	 runtime	 and	 libraries	 are	 pulled	 into
many	arbitrary	processes.

The	existing	TortoiseBzr	code	pulls	 in	the	bzrlib	library	to	determine
the	path	of	 the	bzr	 library,	and	also	to	determine	the	status	of	 files,
but	 uses	 an	 external	 process	 for	 most	 GUI	 commands	 -	 ie,	 very
similar	 to	 TortoiseSvn	 as	 described	 above	 -	 and	 as	 such,	 all
comments	above	apply	equally	here	-	but	note	that	the	bzr	library	is
pulled	into	the	shell,	and	therefore	every	application	using	the	shell.
The	GUI	 in	 the	external	application	 is	written	 in	PyGTK,	which	may
not	 offer	 the	 best	 Windows	 “look	 and	 feel”,	 but	 that	 discussion	 is
beyond	the	scope	of	this	document.

It	has	a	better	story	for	logging	and	debugging	for	the	developer	-	but
not	 for	diagnosing	 issues	 in	 the	 field	 -	although	again,	much	of	 the
heavy	lifting	remains	done	by	the	external	application.

It	 uses	 a	 rudimentary	 in-memory	 cache	 for	 the	 status	 of	 files	 and
directories,	 the	 implementation	 of	 which	 isn’t	 really	 suitable	 (ie,	 no
theoretical	upper	bound	on	cache	size),	and	also	means	that	there	is

no	 sharing	 of	 cached	 information	 between	 processes,	 which	 is
unfortunate	 (eg,	 imagine	 a	 user	 using	 Windows	 explorer,	 then
switching	back	to	their	editor)	and	also	error	prone	(it’s	possible	the
editor	 will	 check	 the	 file	 in,	 meaning	 Windows	 explorer	 will	 be
showing	stale	data).	This	may	be	possible	to	address	via	file-system
notifications,	 but	 a	 shared	 cache	 would	 be	 preferred	 (although
clearly	more	difficult	to	implement).

One	 tortoise	 port	 recently	 announced	 a	 technique	 for	 all	 tortoise
ports	 to	 share	 the	 same	 icon	 overlays	 to	 help	 work	 around	 a
limitation	 in	Windows	on	the	total	number	of	overlays	(it’s	 limited	to
15,	 due	 to	 the	 number	 of	 bits	 reserved	 in	 a	 32bit	 int	 for	 overlays).
TBZR	 needs	 to	 take	 advantage	 of	 that	 (but	 to	 be	 fair,	 this	 overlay
sharing	 technique	 was	 probably	 done	 after	 the	 TBZR
implementation).

The	current	code	appears	to	recursively	walk	a	tree	to	check	if	any
file	 in	 the	 tree	 has	 changed,	 so	 it	 can	 reflect	 this	 in	 the	 parent
directory	 status.	 This	 is	 almost	 certainly	 an	 evil	 thing	 to	 do	 (Shell
Extensions	are	optimized	so	that	a	folder	doesn’t	even	need	to	look
in	 its	 direct	 children	 for	 another	 folder,	 let	 alone	 recurse	 for	 any
reason	at	all.	It	may	be	a	network	mounted	drive	that	doesn’t	perform
at	all.)

Although	somewhat	dependent	on	bzr	 itself,	we	need	a	strategy	for
binary	releases	(ie,	 it	assumes	python.exe,	etc)	and	integration	into
an	existing	“blessed”	installer.

Trivially,	 the	 code	 is	 not	 PEP8	 compliant	 and	 was	 written	 by
someone	fairly	inexperienced	with	the	language.

Detailed	Implementation	Strategy
We	 will	 create	 a	 hybrid	 Python	 and	 C++	 implementation.	 In	 this
model,	 we	 would	 still	 use	 something	 like	 TSVNCache.exe	 (this
external	 process	 doesn’t	 have	 the	 same	 restrictions	 as	 the	 shell
extension	itself)	but	go	one	step	further	-	use	this	remote	process	for
all	 interactions	 with	 bzr,	 including	 status	 and	 other	 “must	 be	 fast”
operations.	 This	 would	 allow	 the	 shell	 extension	 itself	 to	 be
implemented	in	C++,	but	still	 take	advantage	of	Python	for	much	of
the	logic.

A	 pragmatic	 implementation	 strategy	 will	 be	 used	 to	 work	 towards
the	 above	 infrastructure	 -	 we	 will	 keep	 the	 shell	 extension
implemented	 in	Python	 -	but	without	using	bzrlib.	This	allows	us	 to
focus	 on	 this	 shared-cache/remote-process	 infrastructure	 without
immediately	re-implementing	a	shell	extension	in	C++.	Longer	term,
once	the	infrastructure	is	in	place	and	as	optimized	as	possible,	we
can	 move	 to	 C++	 code	 in	 the	 shell	 calling	 our	 remote	 Python
process.	This	port	 should	 try	and	share	as	much	code	as	possible
from	TortoiseSvn,	including	overlay	handlers.

External	Command	Processor

The	external	command	application	(ie,	 the	app	invoked	by	the	shell
extension	 to	 perform	 commands)	 can	 remain	 as-is,	 and	 remain	 a
“shell”	 for	 other	 external	 commands.	 The	 implementation	 of	 this
application	is	not	particularly	relevant	to	the	shell	extension,	just	the
interface	to	the	application	(ie,	its	command-line)	is.	In	the	short	term
this	will	 remain	 PyGTK	 and	will	 only	 change	 if	 there	 is	 compelling
reason	 -	 cross-platform	 GUI	 tools	 are	 a	 better	 for	 bazaar	 than
Windows	 specific	 ones,	 although	 native	 look-and-feel	 is	 important.
Either	way,	this	can	change	independently	from	the	shell	extension.

Performance	considerations

As	 discussed	 above,	 the	 model	 used	 by	 Tortoise	 is	 that	 most
“interesting”	 things	are	done	by	external	applications.	Most	Tortoise
implementations	 show	 read-only	 columns	 in	 the	 “detail”	 view,	 and
shows	a	few	read	only	properties	in	the	“Properties”	dialog	-	but	most
of	 these	 properties	 are	 “state”	 related	 (eg,	 revision	 number),	 or
editing	of	others	 is	done	by	 launching	an	external	application.	This
means	that	the	shell	extension	itself	really	has	2	basic	requirements
WRT	RPC:	1)	 get	 the	 local	 state	 of	 a	 file	 and	2)	 get	 some	named
state-related	 “properties”	 for	 a	 file.	 Everything	 else	 can	 be	 built	 on
that.

There	are	2	aspects	of	 the	shell	 integration	which	are	performance
critical	-	the	“icon	overlays”	and	“column	providers”.

The	 short-story	 with	 Icon	 Overlays	 is	 that	 we	 need	 to	 register	 12
global	 “overlay	 providers”	 -	 one	 for	 each	 state	 we	 show.	 Each
provider	is	called	for	every	icon	ever	shown	in	Windows	explorer	or
in	 any	 application’s	 FileOpen	 dialog.	 While	 most	 versions	 of
Windows	update	 icons	 in	 the	background,	we	 still	 need	 to	 perform
well.	On	the	positive	side,	this	just	needs	the	simple	“local	state”	of	a
file	-	information	that	can	probably	be	carried	in	a	single	byte.	On	the
negative	side,	 it	 is	 the	shell	which	makes	a	synchronous	call	 to	us
with	a	single	 filename	as	an	arg,	which	makes	 it	difficult	 to	 “batch”
multiple	status	requests	into	a	single	RPC	call.

The	story	with	columns	is	messier	-	these	have	changed	significantly
for	Vista	and	the	new	system	may	not	work	with	the	VCS	model	(see
below).	However,	if	we	implement	this,	it	will	be	fairly	critical	to	have
high-performance	 name/value	 pairs	 implemented,	 as	 described
above.

Note	that	the	nature	of	the	shell	implementation	means	we	will	have
a	 large	 number	 of	 “unrelated”	 handlers,	 each	 called	 somewhat

independently	by	the	shell,	often	for	information	about	the	same	file
(eg,	imagine	each	of	our	overlay	providers	all	called	in	turn	with	the
same	filename,	followed	by	our	column	providers	called	in	turn	with
the	same	filename.	However,	that	isn’t	exactly	what	happens!).	This
means	we	will	 need	a	 kind	of	 cache,	 geared	 towards	 reducing	 the
number	of	status	or	property	requests	we	make	to	the	RPC	server.

We	 will	 also	 allow	 all	 of	 the	 above	 to	 be	 disabled	 via	 user
preferences.	Thus,	Icon	Overlays	could	be	disabled	if	it	did	cause	a
problem	for	some	people,	for	example.

RPC	options

Due	to	the	high	number	of	calls	for	icon	overlays,	the	RPC	overhead
must	 be	 kept	 as	 low	 as	 possible.	 Due	 to	 the	 client	 side	 being
implemented	 in	 C++,	 reducing	 complexity	 is	 also	 a	 goal.	 Our
requirements	are	quite	simple	and	no	existing	RPC	options	exist	we
can	leverage.	It	does	not	seen	prudent	to	build	an	XMLRPC	solution
for	 tbzr	 -	 which	 is	 not	 to	 preclude	 the	 use	 of	 such	 a	 server	 in	 the
future,	but	 tbzr	need	not	become	the	“pilot”	project	 for	an	XMLRPC
server	given	these	constraints.

I	 propose	 that	 a	 custom	 RPC	 mechanism,	 built	 initially	 using
windows-specific	 named-pipes,	 be	used.	A	binary	 format,	 designed
with	 an	 eye	 towards	 implementation	 speed	and	C++	 simplicity,	will
be	used.	If	we	succeed	here,	we	can	build	on	that	infrastructure,	and
even	replace	it	should	other	more	general	frameworks	materialize.

FWIW,	with	a	Python	process	at	each	end,	my	P4	2.4G	machine	can
achieve	 around	 25000	 “calls”	 per-second	 across	 an	 open	 named
pipe.	C++	at	one	end	should	increase	this	a	little,	but	obviously	any
real	work	done	by	the	Python	side	of	the	process	will	be	the	bottle-
neck.	However,	this	throughput	would	appear	sufficient	to	implement
a	prototype.

Vista	versus	XP

Let’s	try	and	avoid	an	OS	advocacy	debate	:)	But	it	is	probably	true
that	TBZR	will,	over	 its	 life,	be	used	by	more	Vista	computers	 than
XP	 ones.	 In	 short,	 Vista	 has	 changed	 a	 number	 of	 shell	 related
interfaces,	 and	 while	 TSVN	 is	 slowly	 catching	 up
(http://tortoisesvn.net/vistaproblems)	they	are	a	pain.

XP	 has	 IColumnProvider	 (as	 implemented	 by	 Tortoise),	 but	 Vista
changes	this	model.	The	new	model	is	based	around	“file	types”	(eg,
.jpg	 files)	 and	 it	 appears	 each	 file	 type	 can	 only	 have	 1	 provider!
TSVN	also	seems	 to	 think	 the	Vista	model	 isn’t	going	 to	work	 (see
previous	link).	It’s	not	clear	how	much	effort	we	should	expend	on	a
column	 system	 that	 has	 already	 been	 abandoned	 by	MS.	 I	 would
argue	we	spend	effort	on	other	parts	of	the	system	(ie,	the	external
GUI	apps	 themselves,	etc)	and	see	 if	a	path	 forward	does	emerge
for	Vista.	We	can	re-evaluate	this	based	on	user	feedback	and	more
information	about	features	of	the	Vista	property	system.

Reuse	of	TSVNCache?

The	RPC	mechanism	and	 the	 tasks	 performed	 by	 the	RPC	 server
(rpc,	file	system	crawling	and	watching,	device	notifications,	caching)
are	very	similar	to	those	already	implemented	for	TSVN	and	analysis
of	that	code	shows	that	 it	 is	not	particularly	tied	to	any	VCS	model.
As	a	result,	consideration	should	be	given	to	making	the	best	use	of
this	existing	debugged	and	optimized	technology.

Discussions	 with	 the	 TSVN	 developers	 have	 indicated	 that	 they
would	 prefer	 us	 to	 fork	 their	 code	 rather	 than	 introduce	 complexity
and	 instability	 into	 their	 code	 by	 attempting	 to	 share	 it.	 See	 the
follow-ups	 to	 http://thread.gmane.org/gmane.comp.version-
control.subversion.tortoisesvn.devel/32635/focus=32651	for	details.

http://tortoisesvn.net/vistaproblems
http://thread.gmane.org/gmane.comp.version-control.subversion.tortoisesvn.devel/32635/focus=32651

For	background,	the	TSVNCache	process	is	fairly	sophisticated	-	but
mainly	 in	 areas	 not	 related	 to	 source	 control.	 It	 has	 had	 various
performance	 tweaks	and	 is	 smart	 in	 terms	of	minimizing	 its	 use	of
resources	when	possible.	The	‘cloc’	utility	counts	~5000	lines	of	C++
code	 and	 weighs	 in	 just	 under	 200KB	 on	 disk	 (not	 including
headers),	so	this	is	not	a	trivial	application.	However,	the	code	that	is
of	 most	 interest	 (the	 crawlers,	 watchers	 and	 cache)	 are	 roughly
~2500	 lines	of	C++.	Most	of	 the	source	 files	only	depend	 lightly	on
SVN	specifics,	 so	 it	would	 not	 be	 a	 huge	 job	 to	make	 the	 existing
code	 talk	 to	 Bazaar.	 The	 code	 is	 thread-safe,	 but	 not	 particularly
thread-friendly	 (ie,	 fairly	 coarse-grained	 locks	 are	 taken	 in	 most
cases).

In	practice,	this	give	us	2	options	-	“fork”	or	“port”:

Fork	the	existing	C++	code,	replacing	the	existing	source-control
code	 with	 code	 that	 talks	 to	 Bazaar.	 This	 would	 involve
introducing	a	Python	layer,	but	only	at	the	layers	where	we	need
to	talk	to	bzrlib.	The	bulk	of	the	code	would	remain	in	C++.

This	would	have	the	following	benefits:

May	 offer	 significant	 performance	 advantages	 in	 some
cases	(eg,	a	cache-hit	would	never	enter	Python	at	all.)
Quickest	time	to	a	prototype	working	-	the	existing	working
code	can	be	used	quicker.

And	the	following	drawbacks:

More	 complex	 to	 develop.	 People	 wishing	 to	 hack	 on	 it
must	be	on	Windows,	know	C++	and	own	the	most	recent
MSVC8.
More	 complex	 to	 build	 and	 package:	 people	 making
binaries	 must	 be	 on	 Windows	 and	 have	 the	 most	 recent
MSVC8.
Is	 tied	 to	Windows	 -	 it	 would	 be	 impractical	 for	 this	 to	 be

cross-platform,	even	 just	 for	 test	 purposes	 (although	parts
of	it	obviously	could).

Port	the	existing	C++	code	to	Python.	We	would	do	this	almost
“line-for-line”,	and	attempt	 to	keep	many	optimizations	 in	place
(or	at	 least	document	what	 the	optimizations	were	 for	ones	we
consider	 dubious).	 For	 the	 windows	 versions,	 pywin32	 and
ctypes	would	be	leaned	on	-	there	would	be	no	C++	at	all.

This	would	have	the	following	benefits:

Only	need	Python	and	Python	skills	to	hack	on	it.
No	C++	compiler	needed	means	easier	to	cut	releases
Python	 makes	 it	 easier	 to	 understand	 and	 maintain	 -	 it
should	appear	much	less	complex	than	the	C++	version.

And	the	following	drawbacks:

Will	be	slower	 in	some	cases	-	eg,	a	cache-hit	will	 involve
executing	Python	code.
Will	take	longer	to	get	a	minimal	system	working.	In	practice
this	 probably	 means	 the	 initial	 versions	 will	 not	 be	 as
sophisticated.

Given	 the	above,	 there	are	 two	 issues	which	prevent	Python	being
the	clear	winner:	 (1)	will	 it	 perform	OK?	 (2)	How	much	 longer	 to	a
prototype?

My	 gut	 feeling	 on	 (1)	 is	 that	 it	 will	 perform	 fine,	 given	 a	 suitable
Python	 implementation.	 For	 example,	 Python	 code	 that	 simply
looked	up	a	dictionary	would	be	 fast	enough	 -	so	 it	all	depends	on
how	 fast	we	 can	make	our	 cache.	Re	 (2),	 it	 should	 be	 possible	 to
have	 a	 “stub”	 process	 (did	 almost	 nothing	 in	 terms	 of	 caching	 or
crawling,	but	could	be	connected	 to	by	 the	shell)	 in	a	8	hours,	and
some	crawling	and	caching	in	40.	Note	that	this	is	separate	from	the
work	 included	 for	 the	 shell	 extension	 itself	 (the	 implementation	 of
which	is	largely	independent	of	the	TBZRCache	implementation).	So

given	the	lack	of	a	deadline	for	any	particular	feature	and	the	better
long-term	fit	of	using	Python,	the	conclusion	is	that	we	should	“port”
TSVN	for	bazaar.

Reuse	of	this	code	by	Mercurial	or	other	Python
based	VCS	systems?

Incidentally,	 the	 hope	 is	 that	 this	 work	 can	 be	 picked	 up	 by	 the
Mercurial	project	 (or	anyone	else	who	thinks	 it	 is	of	use).	However,
we	will	limit	ourselves	to	attempting	to	find	a	clean	abstraction	for	the
parts	that	talk	to	the	VCS	(as	good	design	would	dictate	regardless)
and	 then	 try	 and	 assist	 other	 projects	 in	 providing	 patches	 which
work	for	both	of	us.	In	other	words,	supporting	multiple	VCS	systems
is	not	an	explicit	goal	at	this	stage,	but	we	would	hope	it	is	possible
in	the	future.

Implementation	plan
The	following	is	a	high-level	set	of	milestones	for	the	implementation:

Design	 the	RPC	mechanism	used	 for	 icon	overlays	 (ie,	 binary
format	used	for	communication).
Create	Python	prototype	of	the	C++	“shim”:	modify	the	existing
TBZR	 Python	 code	 so	 that	 all	 references	 to	 “bzrlib”	 are
removed.	Implement	the	client	side	of	the	RPC	mechanism	and
implement	icon	overlays	using	this	RPC	mechanism.
Create	initial	 implementation	of	RPC	server	in	Python.	This	will
use	 bzrlib,	 but	 will	 also	maintain	 a	 local	 cache	 to	 achieve	 the
required	 performance.	 File	 crawling	 and	 watching	 will	 not	 be
implemented	 at	 this	 stage,	 but	 caching	 will	 (although	 cache
persistence	might	be	skipped).
Analyze	 performance	 of	 prototype.	 Verify	 that	 technique	 is
feasible	 and	 will	 offer	 reasonable	 performance	 and	 user
experience.
Implement	 file	watching,	 crawling	 etc	 by	 “porting”	 TSVNCache
code	to	Python,	as	described	above.
Implement	C++	shim:	replace	the	Python	prototype	with	a	light-
weight	 C++	 version.	 We	 will	 fork	 the	 current	 TSVN	 sources,
including	 its	 new	 support	 for	 sharing	 icon	 overlays	 (although
advice	on	how	to	setup	this	fork	is	needed!)
Implement	property	pages	and	context	menus	 in	C++.	Expand
RPC	server	as	necessary.
Create	binary	for	alpha	releases,	then	go	round-and-round	until
its	baked.

Alternative	Implementation	Strategies
Only	 one	 credible	 alternative	 strategy	was	 identified,	 as	 discussed
below.	No	 languages	other	 than	Python	and	C++	were	considered;
Python	 as	 the	 bzr	 library	 and	 existing	 extensions	 are	 written	 in
Python	 and	 otherwise	 only	 C++	 for	 reasons	 outlined	 in	 the
background	on	shell	extensions	above.

Implement	Completely	in	Python

This	would	keep	the	basic	structure	of	the	existing	TBZR	code,	with
the	shell	extension	continuing	to	pull	in	Python	and	all	libraries	used
by	Bzr	into	various	processes.

Although	 implementation	simplicity	 is	a	key	benefit	 to	 this	option,	 it
was	not	chosen	 for	various	 reasons,	e.g.	 the	use	of	Python	means
that	there	is	a	larger	chance	of	conflicting	with	existing	applications,
or	 even	 existing	 Python	 implemented	 shell	 extensions.	 It	 will	 also
increase	 the	memory	usage	of	all	applications	which	use	 the	shell.
While	this	may	create	problems	for	a	small	number	of	users,	it	may
create	a	wider	perception	of	instability	or	resource	hogging.

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»	Plans	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»	Plans	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

CHK	Optimized	index
Our	current	btree	style	index	is	nice	as	a	general	index,	but	it	is	not
optimal	 for	 Content-Hash-Key	 based	 content.	 With	 CHK,	 the	 keys
themselves	are	hashes,	which	means	they	are	randomly	distributed
(similar	 keys	 do	 not	 refer	 to	 similar	 content),	 and	 they	 do	 not
compress	 well.	 However,	 we	 can	 create	 an	 index	 which	 takes
advantage	 of	 these	 abilites,	 rather	 than	 suffering	 from	 them.	 Even
further,	 there	 are	 specific	 advantages	 provided	 by	 groupcompress,
because	of	how	individual	items	are	clustered	together.

Btree	 indexes	 also	 rely	 on	 zlib	 compression,	 in	 order	 to	 get	 their
compact	 size,	 and	 further	 has	 to	 try	 hard	 to	 fit	 things	 into	 a
compressed	4k	page.	When	 the	key	 is	a	sha1	hash,	we	would	not
expect	to	get	better	than	20bytes	per	key,	which	is	the	same	size	as
the	binary	representation	of	the	hash.	This	means	we	could	write	an
index	format	that	gets	approximately	the	same	on-disk	size,	without
having	 the	 overhead	 of	 zlib.decompress.	 Some	 thought	 would	 still
need	 to	 be	 put	 into	 how	 to	 efficiently	 access	 these	 records	 from
remote.

Required	information
For	a	given	groupcompress	record,	we	need	to	know	the	offset	and
length	of	 the	compressed	group	 in	 the	 .pack	 file,	and	 the	start	and
end	 of	 the	 content	 inside	 the	 uncompressed	 group.	 The	 absolute
minimum	is	slightly	 less,	but	this	 is	a	good	starting	point.	The	other
thing	to	consider,	is	that	for	1M	revisions	and	1M	files,	we’ll	probably
have	 10-20M	 CHK	 pages,	 so	 we	 want	 to	 make	 sure	 we	 have	 an
index	that	can	scale	up	efficiently.

1.	 A	compressed	sha	hash	is	20-bytes
2.	 Pack	 files	 can	 be	 >	 4GB,	 we	 could	 use	 an	 8-byte	 (64-bit)

pointer,	or	we	could	store	a	5-byte	pointer	 for	a	cap	at	1TB.	8-
bytes	still	 seems	 like	overkill,	 even	 if	 it	 is	 the	natural	next	size
up.

3.	 An	 individual	group	would	never	be	 longer	 than	2^32,	but	 they
will	often	be	bigger	than	2^16.	3	bytes	for	length	(16MB)	would
be	the	minimum	safe	length,	and	may	not	be	safe	if	we	expand
groups	 for	 large	 content	 (like	 ISOs).	 So	 probably	 4-bytes	 for
group	length	is	necessary.

4.	 A	given	start	offset	has	to	fit	in	the	group,	so	another	4-bytes.
5.	 Uncompressed	length	of	record	is	based	on	original	size,	so	4-

bytes	is	expected	as	well.
6.	 That	 leaves	us	with	20+8+4+4+4	=	40	bytes	per	record.	At	 the

moment,	 btree	 compression	 gives	 us	 closer	 to	 38.5	 bytes	 per
record.	We	 don’t	 have	 perfect	 compression,	 but	we	 also	 don’t
have	>4GB	pack	files	(and	if	we	did,	the	first	4GB	are	all	under
then	2^32	barrier	:).

If	 we	 wanted	 to	 go	 back	 to	 the	 ‘’minimal’’	 amount	 of	 data	 that	 we
would	need	to	store.

1.	 8	 bytes	 of	 a	 sha	 hash	 are	 generally	 going	 to	 be	 more	 than
enough	to	fully	determine	the	entry	(see	Partial	hash).	We	could

support	 some	 amount	 of	 collision	 in	 an	 index	 record,	 in
exchange	 for	 resolving	 it	 inside	 the	 content.	At	 least	 in	 theory,
we	don’t	have	 to	 record	 the	whole	20-bytes	 for	 the	sha1	hash.
(8-bytes	gives	us	less	than	1	in	1000	chance	of	a	single	collision
for	10M	nodes	in	an	index)

2.	 We	 could	 record	 the	 start	 and	 length	 of	 each	 group	 in	 a
separate	 location,	 and	 then	 have	 each	 record	 reference	 the
group	by	an	 ‘offset’.	 This	 is	 because	we	expect	 to	have	many
records	 in	 the	 same	 group	 (something	 like	 10k	 or	 so,	 though
we’ve	 fit	 >64k	 under	 some	 circumstances).	 At	 a	minimum,	we
have	 one	 record	 per	 group	 so	 we	 have	 to	 store	 at	 least	 one
reference	 anyway.	 So	 the	maximum	 overhead	 is	 just	 the	 size
and	 cost	 of	 the	 dereference	 (and	 normally	will	 be	much	much
better	than	that.)

3.	 If	a	group	reference	is	an	8-byte	start,	and	a	4-byte	length,	and
we	have	10M	keys,	but	get	at	 least	1k	records	per	group,	then
we	would	have	10k	groups.	So	we	would	need	120kB	to	record
all	the	group	offsets,	and	then	each	individual	record	would	only
need	a	 2-byte	 group	number,	 rather	 than	 a	 12-byte	 reference.
We	could	be	safe	with	a	4-byte	group	number,	but	if	each	group
is	 ~1MB,	 64k	 groups	 is	 64GB.	 We	 can	 start	 with	 2-byte,	 but
leave	room	in	the	header	 info	to	 indicate	 if	we	have	more	than
64k	group	entries.	Also,	current	grouping	creates	groups	of	4MB
each,	which	would	make	 it	 256GB,	 to	 create	 64k	 groups.	And
our	 current	 chk	 pages	 compress	 down	 to	 less	 than	 100	 bytes
each	 (average	 is	 closer	 to	 40	 bytes),	which	 for	 256GB	 of	 raw
data,	would	amount	to	2.7	billion	CHK	records.	(This	will	change
if	we	start	to	use	CHK	for	text	records,	as	they	do	not	compress
down	as	small.)	Using	100	bytes	per	10M	chk	records,	we	have
1GB	of	compressed	chk	data,	split	into	4MB	groups	or	250	total
groups.	 Still	 <<	 64k	 groups.	 Conversions	 could	 create	 1	 chk
record	at	a	 time,	creating	a	group	 for	each,	but	 they	would	be
foolish	to	not	commit	a	write	group	after	10k	revisions	(assuming

6	CHK	pages	each).

4.	 We	 want	 to	 know	 the	 start-and-length	 of	 a	 record	 in	 the
decompressed	stream.	This	could	actually	be	moved	into	a	mini-
index	 inside	 the	 group	 itself.	 Initial	 testing	 showed	 that	 storing
an	 expanded	 “key	 =>	 start,offset”	 consumed	 a	 considerable
amount	of	compressed	space.	(about	30%	of	final	size	was	just
these	 internal	 indices.)	 However,	 we	 could	 move	 to	 a	 pure
“record	 1	 is	 at	 location	 10-20”,	 and	 then	 our	 external	 index
would	just	have	a	single	‘group	entry	number’.

There	are	other	internal	forces	that	would	give	a	natural	cap	of
64k	 entries	 per	 group.	 So	without	much	 loss	 of	 generality,	 we
could	 probably	 get	 away	 with	 a	 2-byte	 ‘group	 entry’	 number.
(which	then	generates	an	8-byte	offset	+	endpoint	as	a	header
in	the	group	itself.)

5.	 So	for	1M	keys,	an	ideal	chk+group	index	would	be:

a.	 6-byte	hash	prefix
b.	 2-byte	group	number
c.	 2-byte	entry	in	group	number
d.	 a	separate	lookup	of	12-byte	group	number	to	offset	+

length
e.	 a	variable	width	mini-index	that	splits	X	bits	of	the	key.

(to	maintain	small	keys,	low	chance	of	collision,	this	is
not	redundant	with	the	value	stored	in	(a))	This	should
then	 dereference	 into	 a	 location	 in	 the	 index.	 This
should	probably	be	a	4-byte	reference.	It	is	unlikely,	but
possible,	 to	 have	 an	 index	 >16MB.	 With	 an	 10-byte
entry,	 it	 only	 takes	 1.6M	 chk	 nodes	 to	 do	 so.	 At	 the
smallest	 end,	 this	 will	 probably	 be	 a	 256-way	 (8-bits)
fan	out,	at	the	high	end	it	could	go	up	to	64k-way	(16-
bits)	or	maybe	even	1M-way	(20-bits).	(64k-way	should
handle	up	to	5-16M	nodes	and	still	allow	a	cheap	<4k

read	to	find	the	final	entry.)

So	the	max	size	for	the	optimal	groupcompress+chk	index	with	10M
entries	would	be:

10	*	10M	(entries)	+	64k	*	12	(group)	+	64k	*	4	(mini	index)	=	101	MiB

So	 101MiB	 which	 breaks	 down	 as	 100MiB	 for	 the	 actual	 entries,
0.75MiB	for	the	group	records,	and	0.25MiB	for	the	mini	index.

1.	 Looking	up	a	key	would	involve:

a.	 Read	XX	bytes	to	get	the	header,	and	various	config	for	the
index.	Such	as	 length	of	 the	group	 records,	 length	of	mini
index,	etc.

b.	 Find	 the	offset	 in	 the	mini	 index	 for	 the	 first	YY	bits	of	 the
key.	Read	 the	4	byte	pointer	stored	at	 that	 location	(which
may	 already	 be	 in	 the	 first	 content	 if	 we	 pre-read	 a
minimum	size.)

c.	 Jump	 to	 the	 location	 indicated,	 and	 read	 enough	 bytes	 to
find	 the	 correct	 12-byte	 record.	 The	 mini-index	 only
indicates	the	start	of	records	that	start	with	the	given	prefix.
A	 64k-way	 index	 resolves	 10MB	 records	 down	 to	 160
possibilities.	 So	 at	 12	 bytes	 each,	 to	 read	 all	 would	 cost
1920	bytes	to	be	read.

d.	 Determine	the	offset	for	the	group	entry,	which	is	the	known
start	of	groups	location	+	12B*offset	number.	Read	its	12-
byte	record.

e.	 Switch	 to	 the	 .pack	 file,	 and	 read	 the	 group	 header	 to
determine	where	 in	 the	stream	 the	given	 record	exists.	At
this	point,	 you	have	enough	 information	 to	 read	 the	entire

group	block.	For	 local	ops,	you	could	only	 read	enough	 to
get	the	header,	and	then	only	read	enough	to	decompress
just	the	content	you	want	to	get	at.

Using	 an	 offset,	 you	 also	 don’t	 need	 to	 decode	 the	 entire
group	header.	If	we	assume	that	things	are	stored	in	fixed-
size	 records,	 you	 can	 jump	 to	 exactly	 the	 entry	 that	 you
care	 about,	 and	 read	 its	 8-byte	 (start,length	 in
uncompressed)	 info.	 If	 we	 wanted	 more	 redundancy	 we
could	 store	 the	 20-byte	 hash,	 but	 the	 content	 can	 verify
itself.

f.	 If	 the	size	of	 these	mini	headers	becomes	critical	 (8	bytes
per	record	is	8%	overhead	for	100	byte	records),	we	could
also	 compress	 this	 mini	 header.	 Changing	 the	 number	 of
bytes	 per	 entry	 is	 unlikely	 to	 be	 efficient,	 because	 groups
standardize	 on	 4MiB	wide,	 which	 is	 >>64KiB	 for	 a	 2-byte
offset,	3-bytes	would	be	enough	as	long	as	we	never	store
an	ISO	as	a	single	entry	in	the	content.	Variable	width	also
isn’t	a	big	win,	since	base-128	hits	4-bytes	at	just	2MiB.

For	minimum	size	without	compression,	we	could	only	store
the	4-byte	length	of	each	node.	Then	to	compute	the	offset,
you	 have	 to	 sum	 all	 previous	 nodes.	 We	 require	 <64k
nodes	in	a	group,	so	it	 is	up	to	256KiB	for	this	header,	but
we	would	 lose	 partial	 reads.	 This	 should	 still	 be	 cheap	 in
compiled	 code	 (needs	 tests,	 as	 you	 can’t	 do	 partial	 info),
and	would	also	have	 the	advantage	 that	 fixed	width	would
be	 highly	 compressible	 itself.	 (Most	 nodes	 are	 going	 to
have	a	length	that	fits	1-2	bytes.)

An	alternative	form	would	be	to	use	the	base-128	encoding.
(If	the	MSB	is	set,	then	the	next	byte	needs	to	be	added	to
the	current	value	shifted	by	7*n	bits.)	This	encodes	4GiB	in
5	bytes,	but	stores	127B	in	1	byte,	and	2MiB	in	3	bytes.	 If

we	only	 stored	64k	entries	 in	a	4	MiB	group,	 the	average
size	can	only	be	64B,	which	fits	 in	a	single	byte	length,	so
64KiB	for	this	header,	or	only	1.5%	overhead.	We	also	don’t
have	to	compute	the	offset	of	all	nodes,	just	the	ones	before
the	one	we	want,	which	is	the	similar	to	what	we	have	to	do
to	get	the	actual	content	out.

Partial	Hash
The	size	of	the	index	is	dominated	by	the	individual	entries	(the	1M
records).	Saving	1	byte	there	saves	1MB	overall,	which	is	the	same
as	the	group	entries	and	mini	index	combined.	If	we	can	change	the
index	 so	 that	 it	 can	 handle	 collisions	 gracefully	 (have	 multiple
records	for	a	given	collision),	then	we	can	shrink	the	number	of	bytes
we	need	overall.	Also,	if	we	aren’t	going	to	put	the	full	20-bytes	into
the	 index,	 then	 some	 form	 of	 graceful	 handling	 of	 collisions	 is
recommended	anyway.

The	 current	 structure	 does	 this	 just	 fine,	 in	 that	 the	 mini-index
dereferences	you	to	a	“list”	of	records	that	start	with	that	prefix.	It	is
assumed	 that	 those	 would	 be	 sorted,	 but	 we	 could	 easily	 have
multiple	 records.	 To	 resolve	 the	 exact	 record,	 you	 can	 read	 both
records,	 and	 compute	 the	 sha1	 to	 decide	 between	 them.	 This	 has
performance	implications,	as	you	are	now	decoding	2x	the	records	to
get	at	one.

The	chance	of	 n	 texts	colliding	with	a	hash	space	of	 H	 is	generally
given	as:

1	-	e	^(-n^2	/	2	H)

Or	if	you	use	H	=	2^h,	where	h	is	the	number	of	bits:

1	-	e	^(-n^2	/	2^(h+1))

For	 1M	 keys	 and	 4-bytes	 (32-bit),	 the	 chance	 of	 collision	 is	 for	 all
intents	 and	 purposes	 100%.	 Rewriting	 the	 equation	 to	 give	 the
number	of	bits	(h)	needed	versus	the	number	of	entries	(n)	and	the
desired	collision	rate	(epsilon):

h	=	log_2(-n^2	/	ln(1-epsilon))	-	1

The	denominator	ln(1-epsilon)	==	-epsilon`	for	small	values	(even
@0.1	 ==	 -0.105,	 and	 we	 are	 assuming	 we	 want	 a	 much	 lower
chance	of	collision	than	10%).	So	we	have:

h	=	log_2(n^2/epsilon)	-	1	=	2	log_2(n)	-	log_2(epsilon)	-	1

Given	that	epsilon	will	often	be	very	small	and	n	very	large,	it	can	be
more	convenient	to	transform	it	into	epsilon	=	10^-E	and	n	=	10^N,
which	gives	us:

h	=	2	*	log_2(10^N)	-	2	log_2(10^-E)	-	1

h	=	log_2(10)	(2N	+	E)	-	1

h	~	3.3	(2N	+	E)	-	1

Or	if	we	use	number	of	bytes	h	=	8H:

H	~	0.4	(2N	+	E)

This	 actually	 has	 some	 nice	 understanding	 to	 be	 had.	 For	 every
order	of	magnitude	we	want	to	 increase	the	number	of	keys	(at	 the
same	 chance	 of	 collision),	 we	 need	 ~1	 byte	 (0.8),	 for	 every	 two
orders	 of	magnitude	we	want	 to	 reduce	 the	 chance	of	 collision	we
need	the	same	extra	bytes.	So	with	8	bytes,	you	can	have	20	orders
of	magnitude	to	work	with,	10^10	keys,	with	guaranteed	collision,	or
10	keys	with	10^-20	chance	of	collision.

Putting	this	in	a	different	form,	we	could	make	epsilon	==	1/n.	This
gives	us	an	interesting	simplified	form:

h	=	log_2(n^3)	-	1	=	3	log_2(n)	-	1

writing	n	as	10^N,	and	H=8h:

h	=	3	N	log_2(10)	-	1	=~	10	N	-	1

H	~	1.25	N

So	to	have	a	one	in	a	million	chance	of	collision	using	1	million	keys,
you	need	~59	bits,	or	slightly	more	than	7	bytes.	For	10	million	keys
and	a	one	in	10	million	chance	of	any	of	them	colliding,	you	can	use
9	 (8.6)	 bytes.	With	 10	bytes,	we	have	a	 one	 in	 a	 100M	chance	of
getting	 a	 collision	 in	 100M	 keys	 (substituting	 back,	 the	 original
equation	 says	 the	 chance	 of	 collision	 is	 4e-9	 for	 100M	 keys	when
using	10	bytes.)

Given	that	the	only	cost	for	a	collision	is	reading	a	second	page	and
ensuring	 the	 sha	 hash	 actually	 matches	 we	 could	 actually	 use	 a
fairly	“high”	collision	rate.	A	chance	of	1	in	1000	that	you	will	collide
in	an	index	with	1M	keys	is	certainly	acceptible.	(note	that	 isn’t	1	 in
1000	of	those	keys	will	be	a	collision,	but	1	in	1000	that	you	will	have
a	single	collision).	Using	a	collision	chance	of	10^-3,	and	number	of
keys	10^6,	means	we	need	(12+3)*0.4	=	6	bytes.	For	10M	keys,	you
need	(14+3)*0.4	=	6.8	aka	7.	We	get	that	extra	byte	from	the	mini-
index.	 In	an	 index	with	a	 lot	of	keys,	you	want	a	bigger	 fan-out	up
front	 anyway,	 which	 gives	 you	more	 bytes	 consumed	 and	 extends
your	effective	key	width.

Also	taking	one	more	look	at	H	~	0.4	(2N	+	E),	you	can	rearrange
and	consider	that	for	every	order	of	magnitude	more	keys	you	insert,
your	chance	for	collision	goes	up	by	2	orders	of	magnitude.	But	for
100M	keys,	8	bytes	gives	you	a	1	in	10,000	chance	of	collision,	and
that	 is	 gotten	at	 a	16-bit	 fan-out	 (64k-way),	 but	 for	 100M	keys,	we
would	likely	want	at	least	20-bit	fan	out.

You	 can	 also	 see	 this	 from	 the	 original	 equation	 with	 a	 bit	 of
rearranging:

epsilon	=	1	-	e^(-n^2	/	2^(h+1))

epsilon	=	1	-	e^(-(2^N)^2	/	(2^(h+1)))	=	1	-	e^(-(2^(2N))(2^-(h+1)))

								=	1	-	e^(-(2^(2N	-	h	-	1)))

Such	that	you	want	2N	-	h	 to	be	a	very	negative	 integer,	such	that

2^-X	is	thus	very	close	to	zero,	and	1-e^0	=	0.	But	you	can	see	that
if	 you	 want	 to	 double	 the	 number	 of	 source	 texts,	 you	 need	 to
quadruple	the	number	of	bits.

Scaling	Sizes

Scaling	up

We	have	said	we	want	to	be	able	to	scale	to	a	tree	with	1M	files	and
1M	 commits.	 With	 a	 255-way	 fan	 out	 for	 chk	 pages,	 you	 need	 2
internal	 nodes,	 and	 a	 leaf	 node	 with	 16	 items.	 (You	 maintain	 2
internal	nodes	up	until	16.5M	nodes,	when	you	get	another	 internal
node,	 and	 your	 leaf	 nodes	 shrink	 down	 to	 1	 again.)	 If	 we	 assume
every	commit	averages	10	changes	 (large,	but	possible,	especially
with	 large	 merges),	 then	 you	 get	 1	 root	 +	 10*(1	 internal	 +	 1	 leaf
node)	per	commit	or	21	nodes	per	commit.	At	1M	revisions,	 that	 is
21M	chk	nodes.	So	to	support	the	1Mx1M	project,	we	really	need	to
consider	having	up	to	100M	chk	nodes.

Even	 if	 you	went	 up	 to	 16M	 tree	nodes,	 that	 only	 bumps	us	 up	 to
31M	chk	nodes.	Though	 it	also	scales	by	number	of	changes,	so	 if
you	had	a	huge	churn,	and	had	100	changes	per	commit	and	a	16M
node	tree,	you	would	have	301M	chk	nodes.	Note	that	8	bytes	(64-
bits)	in	the	prefix	still	only	gives	us	a	0.27%	chance	of	collision	(1	in
370).	Or	if	you	had	370	projects	of	that	size,	with	all	different	content,
one	of	them	would	have	a	collision	in	the	index.

We	also	should	consider	that	you	have	the	(parent_id,basename)	=>
file_id	 map	 that	 takes	 up	 its	 own	 set	 of	 chk	 pages,	 but	 testing
seems	to	indicate	that	it	is	only	about	1/10th	that	of	the	id_to_entry
map.	 (rename,add,delete	 are	 much	 less	 common	 then	 content
changes.)

As	a	point	of	reference,	one	of	the	largest	projects	today	OOo,	has
only	 170k	 revisions,	 and	 something	 less	 than	 100k	 files	 (and
probably	 4-5	 changes	 per	 commit,	 but	 their	 history	 has	 very	 few
merges,	 being	 a	 conversion	 from	 CVS).	 At	 100k	 files,	 they	 are

probably	 just	 starting	 to	hit	2-internal	nodes,	 so	 they	would	end	up
with	10	pages	per	commit	(as	a	fair-but-high	estimate),	and	at	170k
revs,	that	would	be	1.7M	chk	nodes.

Scaling	down

While	it	is	nice	to	scale	to	a	16M	files	tree	with	1M	files	(100M	total
changes),	 it	 is	also	 important	 to	scale	efficiently	 to	more	 real	world
scenarios.	Most	projects	will	fall	into	the	255-64k	file	range,	which	is
where	 you	 have	 one	 internal	 node	 and	 255	 leaf	 nodes	 (1-2	 chk
nodes	 per	 commit).	 And	 a	 modest	 number	 of	 changes	 (10	 is
generally	 a	 high	 figure).	 At	 50k	 revisions,	 that	 would	 give	 you
50*2*10=500k	 chk	 nodes.	 (Note	 that	 all	 of	 python	 has	 303k	 chk
nodes,	 all	 of	 launchpad	 has	 350k,	 mysql-5.1	 in	 gc255	 rather	 than
gc255big	had	650k	chk	nodes,	[depth=3].)

So	for	these	trees,	scaling	to	1M	nodes	is	more	than	sufficient,	and
allows	 us	 to	 use	 a	 6-byte	 prefix	 per	 record.	 At	 a	minimum,	 group
records	could	use	a	4-byte	start	and	3-byte	length,	but	honestly,	they
are	a	tiny	fraction	of	the	overall	index	size,	and	it	isn’t	really	worth	the
implementation	cost	of	being	flexible	here.	We	can	keep	a	field	in	the
header	for	the	group	record	layout	(8,	4)	and	for	now	just	assert	that
this	size	is	fixed.

Other	discussion

group	encoding

In	the	above	scheme	we	store	the	group	locations	as	an	8-byte	start,
and	4-byte	 length.	We	could	theoretically	 just	store	a	4-byte	 length,
and	 then	 you	 have	 to	 read	 all	 of	 the	 groups	 and	 add	 them	 up	 to
determine	the	actual	start	position.	The	trade	off	is	a	direct	jump-to-
location	 versus	 storing	 3x	 the	 data.	 Given	 when	 you	 have	 64k
groups	you	will	need	only	 .75MiB	 to	store	 it,	 versus	 the	120MB	 for
the	 actual	 entries,	 this	 seems	 to	 be	 no	 real	 overhead.	 Especially
when	you	consider	that	10M	chk	nodes	should	fit	in	only	250	groups,
so	total	data	is	actually	only	3KiB.	Then	again,	if	it	was	only	1KiB	it	is
obvious	that	you	would	read	the	whole	thing	in	one	pass.	But	again,
see	 the	 pathological	 “conversion	 creating	 1	 group	 per	 chk	 page”
issue.

Also,	 we	 might	 want	 to	 support	 more	 than	 64k	 groups	 in	 a	 given
index	when	we	get	to	the	point	of	storing	file	content	in	a	CHK	index.
A	lot	of	the	analysis	about	the	number	of	groups	is	based	on	the	100
byte	compression	of	CHK	nodes,	which	would	not	be	 true	with	 file-
content.	We	 should	 compress	 well,	 I	 don’t	 expect	 us	 to	 compress
that	well.	Launchpad	shows	that	the	average	size	of	a	content	record
is	about	500-600	bytes	(after	you	filter	out	the	~140k	that	are	NULL
content	 records).	At	 that	size,	you	expect	 to	get	approx	7k	 records
per	group,	down	 from	40k.	Going	 further,	 though,	you	also	want	 to
split	 groups	 earlier,	 since	 you	 end	 up	 with	 better	 compression.	 so
with	 100,000	 unique	 file	 texts,	 you	 end	 up	with	 ~100	 groups.	With
1M	 revisions	 @	 10	 changes	 each,	 you	 have	 10M	 file	 texts,	 and
would	end	up	at	10,485	groups.	That	seems	like	more	64k	groups	is
still	more	 than	enough	head	room.	You	need	 to	 fit	only	100	entries
per	 group,	 to	 get	 down	 to	 where	 you	 are	 getting	 into	 trouble	 (and
have	10M	file	texts.)	Something	to	keep	an	eye	on,	but	unlikely	to	be

something	that	is	strictly	a	problem.

Still	reasonable	to	have	a	record	in	the	header	indicating	that	 index
entries	use	a	2-byte	group	entry	pointer,	and	allow	it	to	scale	to	3	(we
may	 also	 find	 a	 win	 scaling	 it	 down	 to	 1	 in	 the	 common	 cases	 of
<250	groups).	Note	that	if	you	have	the	full	4MB	groups,	it	takes	256
GB	of	 compressed	 content	 to	 fill	 64k	 records.	 And	 our	 groups	 are
currently	scaled	 that	we	 require	at	 least	1-2MB	before	 they	can	be
considered	‘full’.

variable	length	index	entries

The	 above	 had	 us	 store	 8-bytes	 of	 sha	 hash,	 2	 bytes	 of	 group
number,	 and	 2	 bytes	 for	 record-in-group.	 However,	 since	 we	 have
the	 variable-pointer	 mini-index,	 we	 could	 consider	 having	 those
values	be	‘variable	length’.	So	when	you	read	the	bytes	between	the
previous-and-next	 record,	 you	 have	 a	 parser	 that	 can	 handle
variable	 width.	 The	 main	 problem	 is	 that	 to	 encode	 start/stop	 of
record	 takes	 some	 bytes,	 and	 at	 12-bytes	 for	 a	 record,	 you	 don’t
have	 a	 lot	 of	 space	 to	 waste	 for	 a	 “end-of-entry”	 indicator.	 The
easiest	would	be	 to	store	 things	 in	base-128	 (high	bit	 indicates	 the
next	byte	also	should	be	included).

storing	uncompressed	offset	+	length

To	 get	 the	 smallest	 index	 possible,	 we	 store	 only	 a	 2-byte	 ‘record
indicator’	 inside	the	index,	and	then	assume	that	it	can	be	decoded
once	we’ve	 read	 the	 actual	 group.	 This	 is	 certainly	 possible,	 but	 it
represents	 yet	 another	 layer	 of	 indirection	 before	 you	 can	 actually
get	content.	 If	we	went	with	variable-length	 index	entries,	we	could
probably	get	most	of	 the	benefit	with	a	 variable-width	 start-of-entry
value.	 The	 length-of-content	 is	 already	 being	 stored	 as	 a	 base128
integer	 starting	 at	 the	 second	 byte	 of	 the	 uncompressed	 data	 (the
first	being	the	record	type,	fulltext/delta).	It	complicates	some	of	our

other	 processing,	 since	 we	 would	 then	 only	 know	 how	 much	 to
decompress	to	get	the	start	of	the	record.

Another	intriguing	possibility	would	be	to	store	the	end	of	the	record
in	 the	 index,	and	 then	 in	 the	data	stream	store	 the	 length	and	 type
information	at	the	end	of	the	record,	rather	than	at	the	beginning	(or
possibly	at	both	ends).	Storing	it	at	the	end	is	a	bit	unintuitive	when
you	 think	 about	 reading	 in	 the	 data	 as	 a	 stream,	 and	 figuring	 out
information	 (you	 have	 to	 read	 to	 the	 end,	 then	 seek	 back)	 But	 a
given	 GC	 block	 does	 store	 the	 length-of-uncompressed-content,
which	means	we	can	trivially	decompress,	jump	to	the	end,	and	then
walk-backwards	for	everything	else.

Given	that	every	byte	in	an	index	entry	costs	10MiB	in	a	10M	index,
it	is	worth	considering.	At	4MiB	for	a	block,	base	128	takes	4	bytes	to
encode	 the	 last	 50%	 of	 records	 (those	 beyond	 2MiB),	 3	 bytes	 for
everything	 from	 16KiB	 =>	 2MiB.	 So	 the	 expected	 size	 is	 for	 all
intents	and	purposes,	3.5	bytes.	(Just	due	to	an	unfortunate	effect	of
where	the	boundary	is	that	you	need	more	bytes.)	If	we	capped	the
data	at	2MB,	 the	expected	drops	to	 just	under	3	bytes.	Note	 that	a
flat	3bytes	could	decode	up	 to	16MiB,	which	would	be	much	better
for	our	purpose,	but	wouldn’t	 let	 us	write	groups	 that	had	a	 record
after	16MiB,	which	doesn’t	work	 for	 the	 ISO	case.	Though	 it	works
absolutely	fine	for	the	CHK	inventory	cases	(what	we	have	today).

null	content

At	 the	moment,	we	 have	 a	 lot	 of	 records	 in	 our	 per-file	 graph	 that
refers	to	empty	content.	We	get	one	for	every	symlink	and	directory,
for	 every	 time	 that	 they	 change.	 This	 isn’t	 specifically	 relevant	 for
CHK	 pages,	 but	 for	 efficiency	 we	 could	 certainly	 consider	 setting
“group	=	0	entry	=	0”	to	mean	that	this	is	actually	a	no-content	entry.
It	means	 the	group	block	 itself	doesn’t	have	 to	hold	a	 record	 for	 it,
etc.	Alternatively	we	could	use	“group=FFFF	entry	=	FFFF”	to	mean
the	same	thing.

VF.keys()

At	the	moment,	some	apis	expect	that	you	can	list	the	references	by
reading	all	of	the	index.	We	would	like	to	get	away	from	this	anyway,
as	it	doesn’t	scale	particularly	well.	However,	with	this	format,	we	no
longer	 store	 the	 exact	 value	 for	 the	 content.	 The	 content	 is	 self
describing,	 and	 we	 would	 be	 storing	 enough	 to	 uniquely	 decide
which	node	to	read.	Though	that	is	actually	contained	in	just	4-bytes
(2-byte	group,	2-byte	group	entry).

We	 use	 VF.keys()	 during	 ‘pack’	 and	 ‘autopack’	 to	 avoid	 asking	 for
content	we	don’t	have,	and	to	put	a	counter	on	the	progress	bar.	For
the	 latter,	 we	 can	 just	 use	 index.key_count()	 for	 the	 former,	 we
could	just	properly	handle	AbsentContentFactory.

More	than	64k	groups

Doing	 a	 streaming	 conversion	 all	 at	 once	 is	 still	 something	 to
consider.	 As	 it	 would	 default	 to	 creating	 all	 chk	 pages	 in	 separate
groups	(300-400k	easily).	However,	just	making	the	number	of	group
block	entries	 variable,	 and	allowing	 the	pointer	 in	 each	entry	 to	be
variable	should	suffice.	At	3	bytes	for	the	group	pointer,	we	can	refer
to	16.7M	groups.	It	does	add	complexity,	but	it	is	likely	necessary	to
allow	for	arbitrary	cases.

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»	Plans	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Specifications
Revision	 Properties	 —	 An	 application	 can	 set	 arbitrary	 per-
revision	key/value	pairs	to	store	app-specific	data.
API	versioning	—	bzrlib	API	versioning.
Apport	error	reporting	—	Capture	data	to	report	bugs.
Authentication	ring	—	Configuring	authentication.
Bundles	—	All	about	bzr	bundles.
Container	 format	—	Notes	on	a	container	 format	 for	streaming
and	storing	Bazaar	data.
Groupcompress	—	Notes	on	the	compression	technology	used
in	CHK	repositories.
Indices	—	The	index	facilities	available	within	bzrlib.
Inventories	—	Tree	shape	abstraction.
LCA	merge	—	A	nice	new	merge	algorithm.
Network	protocol	—	Custom	network	protocol.
Plugin	APIs	—	APIs	plugins	should	use.
Repositories	—	What	repositories	do	and	are	used	for.
Repository	stream	—	Notes	on	 streaming	data	 for	 repositories
(a	layer	above	the	container	format).
Bazaar	 and	 case-insensitive	 file	 systems	 —	 How	 Bazaar
operates	 on	 case-insensitive	 file	 systems	 such	 as	 commonly
found	on	Windows,	USB	sticks,	etc.
Development	repository	formats	—	How	to	work	with	repository
formats	 that	 are	 still	 under	 development.	 Contains	 instructions
for	 those	 implementing	 new	 formats,	 of	 course,	 but	 also	 for
(bleeding-edge)	end	users	of	those	formats.
Knit	pack	 repositories	—	KnitPack	 repositories	 (new	 in	Bazaar
0.92).

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

Specifications	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Revision	Properties
Bazaar	 repositories	 support	 setting	 of	 a	 key/value	 pairs	 for	 each
revision.	 Applications	 can	 use	 these	 properties	 to	 store	 additional
information	about	the	revision.

Usage
In	general,	revision	properties	are	set	by	passing	keyword	argument
revprops	to	method	MutableTree.commit.	For	example:

properties	=	{}

properties['my-property']	=	'test'

tree.commit(message,	revprops=properties)

Properties	can	be	retrieved	via	the	attribute	properties	of	instances
of	the	class	Revision:

if	'my-property'	in	revision.properties:

				my_property	=	revision.properties['my-property']

				...

Well-known	properties
At	 the	 moment,	 three	 standardized	 revision	 properties	 are
recognized	and	used	by	bzrlib:

authors	 -	 Authors	 of	 the	 change.	 This	 value	 is	 a	 “n”
separated	 set	 of	 values	 in	 the	 same	 format	 as	 the
committer-id.	This	property	can	be	set	by	passing	a	 list	 to
the	 keyword	 argument	 authors	 of	 the	 function
MutableTree.commit.
author	 -	 Single	 author	 of	 the	 change.	 This	 property	 is
deprecated	in	favour	of	authors.	It	should	no	longer	be	set
by	any	code,	but	will	still	be	read.	It	is	ignored	if	authors	is
set	in	the	same	revision.
branch-nick	 -	 Nickname	 of	 the	 branch.	 It’s	 either	 the
directory	name	or	manually	 set	by	 bzr	nick.	 The	 value	 is
set	automatically	in	MutableTree.commit.
bugs	 -	 A	 list	 of	 bug	 URLs	 and	 their	 statuses.	 The	 list	 is
separated	by	the	new-line	character	(n)	and	each	entry	is	in
format	 ‘<URL>	<status>’.	Currently,	bzrlib	uses	only	status
‘fixed’.	See	Bug	Trackers	 for	more	details	about	using	 this
feature.

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

Specifications	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

Specifications	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

API	Versioning

Status
Date: 2007-06-26

bzrlib	has	a	rich	API	which	is	used	both	internally,	and	externally	by
plugins	and	scripts.	To	allow	the	API	to	change,	specifically	to	allow
support	 for	 features	 and	methods	 to	 be	 removed,	 without	 causing
hard	 to	 diagnose	 bugs	 in	 the	 clients	 of	 the	 API,	 bzrlib	 provides
explicit	 API	 compatibility	 data,	 and	 a	 compact	 API	 to	 allow	 scripts
and	plugins	to	ascertain	if	 the	bzrlib	they	are	using	is	compatible	to
the	API	they	were	written	against.

Contents

API	Versioning
Status
Motivation
Terminology
API	versions
Managing	API	versions
Exported	API’s
Use	Cases

Requiring	bzrlib	0.18	in	a	plugin
Exporting	an	API	from	a	plugin

Motivation
To	allow	plugins	to	apply	their	own	policy	for	compatibility	with	bzrlib,
without	 requiring	 a	 new	 release	 on	 every	 library	 release.	 Plugins
should	also	be	able	to	use	the	API	to	export	their	own	compatibility
information	for	code	reuse	between	plugins.

Terminology
An	API	 is	 a	 collection	 of	 python	 objects/modules/packages	 which
can	 be	 used	 by	 plugins	 and	 scripts.	 The	 bzrlib	API	 covers	 all	 of
bzrlib,	 but	we	 can	be	more	precise	 -	 e.g.	 the	 WorkingTree	 API.	 An
API	version	is	a	tuple	(major,	minor,	point).

API	versions
For	 simplicity	 we	 treat	 API’s	 as	 being	 compatible	 with	 a	 range	 of
versions:	 the	 current	 release	 of	 the	 API,	 and	 some	 oldest	 version
which	 is	also	compatible.	While	we	could	say	 that	 there	 is	a	set	of
older	versions	with	which	the	current	version	is	compatible,	a	range
is	 easier	 to	 express,	 and	 easier	 for	 a	 human	 to	 look	 at	 and
understand,	 and	 finally	 easier	 to	 manage.	 The	 oldest	 version	 with
which	 the	 API	 for	 a	 python	 object	 is	 compatible	 is	 obtained	 by
looking	 up	 the	 api_minimum_version	 attribute	 on	 the	 python	 object
handed	 to	 require_api,	 and	 failing	 that	 the	 bzrlib
api_minimum_version	 is	 returned.	 The	 current	 version	 of	 the	 API	 is
obtained	by	looking	for	an	api_current_version	attribute,	and	if	that
is	not	found,	an	version_info	attribute	(of	which	the	first	3	elements
are	used).	If	no	current	version	can	be	found,	the	bzrlib	version_info
attribute	 is	 used	 to	 generate	 a	 current	 API	 version.	 This	 lookup
sequence	 allows	 users	 with	 simple	 setups	 (and	 no	 python	 style
version_info	tuple)	to	still	export	an	API	version,	and	for	new	API’s
to	 be	managed	more	 granularly	 later	 on	with	 a	 smooth	 transition	 -
everything	starts	off	in	lockstep	with	bzrlib’s	master	version.

API	 versions	 are	 compared	 lexically	 to	 answer	 the	 question	 ‘is	 the
requested	 version	 X	 <=	 the	 current	 version,	 and	 >=	 the	 minimum
version’.

Managing	API	versions
The	 minimum	 API	 versions	 should	 be	 adjusted	 to	 the	 oldest	 API
version	 with	 which	 client	 code	 of	 the	 API	 will	 successfully	 run.	 It
should	 not	 be	 changed	 simply	 because	 of	 adding	 things	 in	 a
compatible	manner,	or	deprecating	 features,	but	 rather	when	errors
will	occur	if	client	code	is	not	updated.	Versions	for	API’s	from	bzrlib
are	given	the	version	numbers	that	bzrlib	has	had	for	consistency.
Plugins	 should	 also	 take	 this	 approach	 and	 use	 the	 version
numbering	scheme	the	plugin	used.

Exported	API’s
Currently	 we	 export	 a	 single	 API	 -	 the	 bzrlib	 API	 -	 and	 no	 finer
grained	APIs.	 The	API	 versioning	 support	 was	 introduced	 in	 bzrlib
0.18.	 For	 plugins	 or	 tools	 that	 want	 to	 dynamically	 check	 for	 the
presence	 of	 the	 API	 versioning	 API,	 you	 should	 compare
bzrlib.version_info[0:3]	with	(0,	18,	0).

API Covers

bzrlib All	of
bzrlib

Use	Cases
Some	examples	of	using	the	API.

Requiring	bzrlib	0.18	in	a	plugin

In	the	plugins	__init__.py:

import	bzrlib

from	bzrlib.api	import	require_api

from	bzrlib.errors	import	IncompatibleAPI

try:

		require_api(bzrlib,	(0,	18,	0))

except	IncompatibleAPI:

		raise	ImportError("A	bzrlib	compatible	with	0.18	is	required.")

Exporting	an	API	from	a	plugin

In	the	plugin	foo	exporting	the	API	(in	__init__.py):

version_info	=	(0,	0,	1,	'beta',	1)

api_version	=	(0,	0,	1)

In	a	plugin	depending	on	that	plugin	(in	__init__.py):

import	bzrlib.plugins.foo

from	bzrlib.api	import	require_api

from	bzrlib.errors	import	IncompatibleAPI

try:

		require_api(bzrlib.plugins.foo,	(0,	0,	1))

except	IncompatibleAPI:

		raise	ImportError("A	bzrlib	compatible	with	0.0.1	is	required.")

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Specifications	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

Specifications	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Bazaar	Apport	Integration
Bazaar	 can	 use	 Apport	 <http://launchpad.net/apport/>	 to	 capture
data	about	unexpected	errors	(probably,	bugs	in	Bazaar)	and	report
them	to	the	developers.

This	is	only	active	for	errors	that	are	believed	to	be	internal	errors	(ie
bugs)	not	user	or	environmental	errors.	(See	the	Developer	Guide.)

http://launchpad.net/apport/

Consequences	for	users
They	shouldn’t	normally	need	to	see	or	copy&paste	a	traceback.
They	will	be	able	to	inspect	the	files	before	sending	them	to	be
sure	there’s	no	sensitive	data	included.
As	at	present,	they’ll	need	a	Launchpad	account	to	report	bugs
in	the	normal	way.

Implementation	notes
The	use	of	apport	by	Bazaar	 is	 independent	of	 the	configuration	 in
the	OS.	For	example	in	Ubuntu,	apport	is	normally	inactive	in	release
builds,	and	normally	excludes	software	not	installed	from	a	package.
We’ll	bypass	both	of	them.

Putting	in	this	handler	may	mean	that	an	OS-wide	exception	handler
never	sees	 the	error,	but	 that	was	 true	with	our	existing	exception-
printer.

The	 user	 should	 have	 the	 option	 to:	 forget	 about	 the	 crash	 (and
ignore	the	bug	report),	see	the	contents	of	 the	report,	 file	a	bug,	or
save	 the	 report	 to	 file	 later.	At	 the	moment	we	 just	 show	 them	 the
filename	and	let	them	take	it	from	there.

The	process	is

1.	 An	exception	reaches	the	top-level	handler.
2.	 We	log	it	in	apport-format	to	a	file	in	~/.bazaar/crash.
3.	 We	tell	 the	user	where	that	 file	 is,	and	invite	them	to	file	a	bug

report.

This	won’t	be	active	for	bugs	that	cause	the	whole	Python	interpreter
to	crash.	This	can	be	handled	at	the	OS	level.	The	nice	thing	is	that	if
apport	is	active	system-wide,	it	will	catch	either	exceptions	in	our	in-
process	apport	handler,	or	errors	that	crash	the	intrepreter.

Future	ideas
Capture	apport	data	even	 for	 things	not	believed	 to	be	 internal
errors,	because	sometimes	they	are	in	fact	bugs.	Then	the	user
can	 attach	 the	 apport	 report	 later	 if	 they	 decide	 to	 file	 a	 bug.
There	may	be	quite	a	lot	of	them	so	we	might	need	to	limit	the
number	that	are	stored,	or	do	this	when	a	debug	flag	is	set.	At
the	moment	they	go	into	.bzr.log	and	that’s	probably	ok	to	start
with.

Raising	an	error	from	the	breakin	debugger	should	cause	this	to
fire.

Developers	 looking	 at	 a	 crash	 on	 their	 own	 machine	 will
probably	 in	 the	 first	 instance	 just	 want	 to	 see	 the	 traceback.
Apport	 files	 may	 be	more	 longwinded	 than	 our	 current	 output
and	might	make	the	traceback	scroll	off	the	screen.

Automatically	trace	messages	(ie	from	.bzr.log)	in	the	report.	We
could	 just	 include	 the	 whole	 file,	 but	 it	 may	 be	 long,	 and
including	the	whole	thing	has	a	greater	risk	of	including	sensitive
data.

Ask	the	user	what	they	want	to	do	with	the	report:	automatically
file	 it,	 look	at	 it,	see	 just	 the	 traceback,	 just	be	 told	where	 it	 is.
This	could	be	done	through	the	UIFactory	so	that	it	can	be	done
through	a	graphical	dialog.

However,	 if	 we’ve	 already	 had	 an	 unhandled	 error	 in	 this
process	 there	 may	 be	 problems	 in	 Bazaar	 that	 prevent	 us
presenting	a	clean	message...

Possibly	 these	 bugs	 are	 better	 reported	 in	 the	 next	 time	 bzr
runs.

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

Specifications	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

Specifications	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Authentication	ring
When	 accessing	 a	 remote	 branch	 (specified	 as	 an	 URL),	 it	 may
occur	that	the	server	requests	an	authentication.

This	authentication	can	be	provided	in	different	ways:

1.	Embedding	the	user	and	password	in	the	URL:

bzr	branch	<scheme>://<user>:<password>@host:port/path

scheme:	Any	transport	protocol	requiring	authentication.
user:	The	login	used	to	authenticate.
password:	The	associated	password.
host:	The	address	of	the	server.
port:	The	port	the	server	is	listening	to.
path:	The	path	on	the	server.

2.	Embedding	the	user	in	the	URL	and	let	bzr	find	the	right	password
or	prompt	for	one:

bzr	branch	<scheme>://<user>@host/path

3.	Embedding	nothing	in	the	URL	and	let	bzr	find	user	and	password
or	prompt	for	user	and/or	password:

bzr	branch	<scheme>://host/path

This	specification	proposes	a	mechanism	that	will	allow	users	to	just
use	 bzr	 branch	 <scheme>://host/path	 or	 bzr	 branch

<scheme>://<user>@host/path	 and	 leaves	 bzr	 find	 the	 user	 and
password	in	its	configuration	files.

When	no	user	is	specified	for	FTP,	SFTP	or	SSH,	the	actual	behavior	of

bzr	is	to	default	to	getpass.get_user().

Any	 implementation	 of	 this	 specification	 should	 respect	 that
behaviour.

This	 specification	 also	 proposes	 a	 way	 to	 describe	 credentials	 so
that	 several	 remote	 branches	 can	 use	 the	 same	 definition.	 This	 is
particularily	important	for	users	handling	a	lot	of	passwords	and	who
need	to	update	them	on	a	regular	basis.

Rationale
Embedding	 user	 and	passwords	 in	 the	 command	 line	 is	 a	 security
hazard	(see	bug	#34685).

Storing	 passwords	 in	 ~/.bazaar/bazaar.conf	 or
~/.bazaar/locations.conf	is	also	a	security	risk.

Typing	user	and	passwords	is	error-prone	and	boring.

Yet,	 a	 safe	 way	 to	 store	 passwords,	 while	 allowing	 bzr	 to	 retrieve
them,	when	needed,	could	improve	the	bzr	user	experience.

This	specification	describes	a	way	to	provide	user	and	passwords	to
bzr	while	storing	them	in	a	relatively	safe	way.

Note	 that	 ssh	 servers	 can	 be	 configured	 to	 use	 keys	 instead	 of
(user,	 password)	 and,	 when	 used	 with	 appropriate	 agents,	 provide
the	 same	 kind	 of	 comfort	 this	 specification	 aims	 to	 provide	 for	 all
other	schemes.	Since	ssh	agents	provide	a	safer	way	to	secure	the
passwords,	this	specification	is	restricted	to	providing	user	but	does
not	provide	password	when	used	for	ssh.

https://launchpad.net/products/bzr/+bug/34685

Authentication	definitions
There	are	two	kinds	of	authentication	used	by	the	various	schemes
supported	by	bzr:

1.	 user	and	password

FTP	 and	 SFTP	 needs	 a	 (user,	 password)	 to	 authenticate	 against	 a
host	(SFTP	can	use	ssh	keys	too,	but	we	don’t	talk	about	that	in	this
specification	as	ssh	agents	provide	a	better	solution).

2.	 user,	realm	and	password

HTTP	 and	 HTTPS	 needs	 a	 (user,	 realm,	 password)	 to	 authenticate
against	 a	 host.	 But,	 by	 using	 .htaccess	 files,	 for	 example,	 it	 is
possible	to	define	several	(user,	realm,	password)	for	a	given	host.
So	what	is	really	needed	is	(user,	password,	 host,	 path).	The	 realm
can	be	 ignored	 [1]	as	 long	as	 it	 is	 still	 presented	 to	 the	user	when
prompting	for	the	password	(unless	someone	found	a	way	to	declare
two	different	realms	for	the	same	path).

HTTP	proxy	can	be	handled	as	HTTP	(or	HTTPS)	by	explicitly	specifying
the	appropriate	port.

[1]

The	true	purpose	of	realms	is	to	allow	the	same	credentials	to
be	reused	for	disjoint	hierarchies.	Ignoring	them	in	this
specification	aims	to	simplify	the	user	experience	while	still
allowing	to	share	the	same	credentials	for	a	whole	hierarchy.

To	take	all	schemes	into	account,	the	password	will	be	deduced	from
a	 set	 of	 authentication	 definitions	 (scheme,	 host,	 port,	 path,	 user,
password).

scheme:	 can	 be	 empty	 (meaning	 the	 rest	 of	 the	 definition

can	be	used	for	any	scheme),	SFTP	and	bzr+ssh	should	not
be	used	here,	ssh	should	be	used	instead	since	this	 is	the
real	scheme	regarding	authentication,
host:	can	be	empty	(to	act	as	a	default	for	any	host),
port	 can	be	empty	 (useful	when	an	host	provides	several
servers	 for	 the	 same	 scheme),	 only	 numerical	 values	 are
allowed,	 this	should	be	used	only	when	 the	server	uses	a
port	different	than	the	scheme	standard	port,
path:	can	be	empty	(FTP	or	SFTP	will	never	use	it),
user:	 can	 be	 empty	 (bzr	 will	 defaults	 to	 python’s
getpass.get_user()	for	FTP,	SFTP	and	ssh),
password:	 can	be	empty	 (for	 security	 reasons,	a	user	may
use	 the	definitions	without	storing	 the	passwords	but	want
to	 be	 prompted	 ;	 or	 the	 password	 will	 be	 provided	 by	 an
external	 plugin	 via	 the	 password_encoding	 mechanism
decribed	below).	Must	be	left	empty	for	ssh.
password_encoding:	can	be	empty	(default	is	plaintext).

Also	note	that	an	optional	verify_certificates=no	field	will	allow	the
connection	to	HTTPS	hosts	that	provides	a	self	certified	certificate	(the
default	should	be	to	refuse	the	connection	and	inform	the	user).	(Not
implemented	yet)

Multiple	 definitions	 can	 be	 provided	 and,	 for	 a	 given	URL,	 bzr	 will
select	a	(user	[,	password])	based	on	the	following	rules	:

1.	 the	first	match	wins,
2.	 empty	fields	match	everything,
3.	 scheme	 matches	 even	 if	 decorators	 are	 used	 in	 the

requested	URL,
4.	 host	matches	exactly	or	act	as	a	domain	 if	 it	starts	with	 ‘.’

(project.bzr.sf.net	 will	 match	 .bzr.sf.net	 but
projectbzr.sf.net	will	not	match	bzr.sf.net).

5.	 port	 matches	 if	 included	 in	 the	 requested	 URL	 (exact
matches	only)

6.	 path	matches	if	included	in	the	requested	URL	(and	by	rule
#2	above,	empty	paths	will	match	any	provided	path).

An	optional	 password_encoding	 field	may	specify	how	 the	password
is	encoded	but	has	no	impact	on	the	definition	selection.

Possible	values	are	plaintext	(no	encoding	at	all)	and	base64.	When
the	field	is	absent,	plaintext	is	assumed.	Additional	encodings	may
be	added	in	future	versions.

Encoding	 passwords	 in	 base64,	 while	 weak,	 provides	 protection
against	accidental	 reading	 (if	an	administrator	have	 to	 look	 into	 the
file,	he	will	not	see	the	passwords	in	clear).(Not	implemented	yet).

This	specification	intends	to	ease	the	authentication	providing,	not	to
secure	it	in	the	best	possible	way.

Plugins	 can	 provide	 additional	 password	 encodings.	 The	 provided
netrc_credential_store	 plugin	 can	 be	 used	 as	 an	 example
implementation.

Future	 versions	 of	 this	 specification	 may	 provide	 additional
encodings	[2].

[2]

Additional	password	encoding	methods	may	be	defined	that	will
rely	on	external	means	to	store	the	password	which,	in	these
cases,	will	not	appear	anymore	in	the	definition.	It	is	assumed
that	additional	password	encodings	will	provide	a	storage
outside	of	the	file	described	here.	The	netrc	encoding,	for
example,	provides	passwords	by	retrieving	them	from	the
.netrc	file.

File	format
Even	 if	 ~/.bazaar/bazaar.conf	 and	 ~/.bazaar/locations.conf

seems	 to	 provide	most	 of	 the	 needed	 infrastructure,	we	 choose	 to
use	 a	 dedicated	 file	 for	 the	 authentication	 info
~/.bazaar/authentication.conf	for	the	following	reasons:

allow	 the	 user	 to	 protect	 the	 content	 of	 one	 file	 only,
relaxing	security	constraints	on	the	others,
while	 locations.conf	 is	 organized	 around	 local	 branches,
authentication.conf	 is	organized	around	remote	branches
or	 more	 generally	 servers.	 The	 same	 authentification
definition	can	even	be	used	for	several	schemes	for	servers
providing	those	schemes.

~/.bazaar/authentication.conf	 will	 use	 the	 same	 file	 format	 as
~/.bazaar/bazaar.conf.

Each	section	describes	an	authentication	definition.

The	 section	 name	 is	 an	 arbitrary	 string,	 only	 the	 DEFAULT	 value	 is
reserved	and	should	appear	as	the	last	section.

Each	section	should	define:

user:	the	login	to	be	used,

Each	section	could	define:

host:	the	remote	server,
port:	the	port	the	server	is	listening,
verify_certificates:	 to	 control	 certificate	 verification
(useful	for	self	certified	hosts).	This	applies	to	HTTPS	only.

Accepted	values	are	yes	and	no,	default	to	yes.
path:	the	branch	location,
password:	the	password,
password_encoding:	 the	 method	 used	 to	 encode	 the
password	if	any,

The	default	content	of	the	file	will	be:

[DEFAULT]

This	section	could	define:

user:	 default	user	 to	be	used	 (if	 not	defined	 the	usual	bzr
way	applies,	see	below).
password_encoding:	default	password	encoding.

Use	Cases
The	use	cases	described	below	use	the	file	format	defined	above.

all	FTP	connections	to	the	foo.net	domain	are	done	with	the
same	(user,	password):

#	Identity	on	foo.net

[foo.net]

scheme=ftp

host=foo.net

user=joe

password=secret-pass

will	provide	(‘joe’,	‘secret-pass’)	for:

bzr	branch	ftp://foo.net/bzr/branch

bzr	pull	ftp://bzr.foo.net/bzr/product/branch/trunk

all	 connections	 are	 done	 with	 the	 same	 user	 (the	 remote
one	for	which	the	default	bzr	one	is	not	appropriate)	and	the
password	is	always	prompted	with	some	exceptions:

#	Pet	projects	on	hobby.net

[hobby]

host=r.hobby.net

user=jim

password=obvious1234

#	Home	server

[home]

scheme=https

host=home.net

user=joe

password='c2VjcmV0LXBhc3M='

password_encoding=base64

verify_certificates=no	#	Still	searching	a	free	certificate	provider

[DEFAULT]

#	Our	local	user	is	barbaz,	on	all	remote	sites	we're	known	as	foobar

user=foobar

an	HTTP	server	and	a	proxy:

#	development	branches	on	dev	server

[dev]

scheme=https

host=dev.company.com

path=/dev

user=user1

password=pass1

#	toy	branches

[localhost]

scheme=http

host=dev.company.com

path=/

user=user2

password=pass2

#	proxy

[proxy]

scheme=http

host=proxy.company.com

port=3128

user=proxyuser1

password=proxypass1

source	 hosting	 provider	 declaring	 sub-domains	 for	 each
project:

[sfnet	domain]

#	we	use	sftp,	but	ssh	is	the	scheme	used	for	authentication

scheme=ssh

#	The	leading	'.'	ensures	that	'sf.net'	alone	doesn't	match

host=.sf.net

user=georges

password=ben...son

UI	Changes
Depending	on	the	info	provided	in	the	URL,	bzr	will	interact	with	the
user	in	different	ways:

1.	 user	and	password	given	in	the	URL.

Nothing	to	do.

2.	 user	given	in	the	URL.

Get	a	password	from	~/.bazaar/authentication.conf	or	prompt
for	one	if	none	is	found.

3.	 No	user	given	in	the	URL	(and	no	password).

Get	a	user	from	~/.bazaar/authentication.conf	or	prompt	for
one	if	none	is	found.	Continue	as	2.	(Not	implemented	yet)

Note:	A	user	will	be	queried	only	if	the	server	requires	it	for	HTTP	or
HTTPS,	other	protocols	always	require	a	user.

In	any	case,	 if	 the	server	 refuses	 the	authentication,	bzr	 reports	 to
the	user	and	terminates.

Implementation	constraints
bzr	should	be	able	to	prompt	for	a	user	for	a	given	(scheme,	host
[,	 realm]).	 Note	 that	 realm	 is	 available	 only	 after	 a	 first
connection	attempt	to	the	server.
No	assumptions	should	be	made	about	the	clients	of	this	service
(i.e.	Transport	 is	the	primary	target	but	plugins	must	be	able	to
use	 it	 as	 well,	 the	 definitions	 used:	 (scheme,	 host,	 [port,]

path)	 are	 general	 enough	 to	 described	 credentials	 for	 svn
servers	or	LaunchPad	xmlrpc	calls).
Policies	 regarding	default	 users	may	be	 taken	 into	account	 by
the	 implementations,	 there	 is	no	good	way	 to	 represent	 that	 in
this	 specification	 and	 stays	 flexible	 enough	 to	 accommodate
various	 needs	 (default	 user	 policies	 may	 differ	 for	 different
schemes	and	that	may	be	easier	 to	handle	 in	 the	code	than	 in
the	authentication	file	itself).
If	no	user	can	be	found	by	the	mechanism	described	above,	bzr
should	 still	 default	 to	 getpass.get_user()	 and	 may	 attempt	 a
second	matching	to	obtain	a	password.
As	 this	 specification	 proposes	 a	 matching	 between	 some
credentials	definitions	and	real	urls,	the	implementation	provides
an	 optional	 UI	 feedback	 about	 which	 credential	 definition	 is
used.	Using	 -Dauth	will	output	some	traces	 in	 the	 .bzr.log	 file
metionning	 the	 sections	 used.	 This	 allows	 the	 user	 to	 validate
his	definitions.

Questions	and	Answers
What	if	a	.authinfo	file	exists	?

It	will	be	ignored,
Automatic	 (one-time)	 conversions	may	be	proposed	 if
sufficient	demand	exists,

What	if	a	.netrc	file	exists	?

It	 is	 honored	 if	 the	 definition	 specifies
password_encoding=netrc.

What	mode	should	the	authentication	file	use	?

600	 read/write	 for	 owner	 only	 by	 default,	 if	 another
mode	 (more	 permissive)	 is	 used,	 a	 warning	 will	 be
issued	 to	 inform	 the	 users	 of	 the	 potential	 risks.(Not
implemented	yet)

What	about	using	 seahorse	on	Ubuntu	or	 KeyChain	Access
on	Mac	OS	X	?

plugins	 can	 be	 written	 and	 registered	 to	 handle	 the
associated	password_encoding.

Could	it	be	possible	to	encode	the	whole	authentication	file
with	a	ssh	key	?

yes	and	if	 the	user	configure	a	ssh-agent	 it	will	not	be
queried	 for	 pass-phrase	 every	 time	we	want	 to	 query
the	file	for	a	password.	But	that	seems	a	bit	extreme	for
a	first	version.(Not	implemented	yet	and	may	be	never)

Why	can’t	bzr	update	the	authentication	file	when	it	queried
the	user	for	a	password	?

a	future	version	may	address	that	but:

1.	The	user	may	want	 to	decide	which	passwords	are
stored	in	the	file	and	which	aren’t.

2.	 The	 user	 should	 decide	 if	 the	 passwords	 are
encoded	 (and	 how)	 or	 not	 (but	 we	 may	 default	 to
base64).

3.	 The	 right	 definition	 may	 be	 hard	 to	 get	 right,	 but
reducing	it	to	(scheme,	host,	[port,]	user,	password)
may	be	a	good	start.	 I.e.	no	path	so	 that	all	paths	on
the	host	will	match.	The	user	will	have	to	modify	 it	 for
more	complex	configurations	anyway.

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

Specifications	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

Specifications	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Bundles

Status
Date: 2007-06-19

This	 document	 describes	 the	 current	 and	 future	 design	 of	 the	 bzr
bundle	facility.

Contents

Bundles
Status
Motivation
Desired	features
Historical	Design
June	2007	Design
Future	Plans

Physical	encoding
Code	reuse

Motivation
Bundles	are	 intended	 to	be	a	compact	binary	 representation	of	 the
changes	 done	 within	 a	 branch	 for	 transmission	 between	 users.
Bundles	should	be	able	to	be	used	easily	and	seamlessly	-	we	want
to	avoid	having	a	parallel	set	of	commands	to	get	data	from	within	a
bundle.

A	 related	 concept	 is	merge	directives	 which	 are	 used	 to	 transmit
bzr	 merge	 and	 merge-like	 operations	 from	 one	 user	 to	 another	 in
such	a	way	that	 the	recipient	can	be	sure	they	get	 the	correct	data
the	initiator	desired.

Desired	features
A	bundle	should	be	able	to	substitute	for	the	entire	branch	in	any
bzr	command	that	operates	on	branches	in	a	read	only	fashion.
Bundles	 should	be	as	 small	 as	 possible	without	 losing	data	 to
keep	them	feasible	for	including	in	emails.

Historical	Design
Not	 formally	 documented,	 the	 current	 released	 implementation	 can
be	 found	 in	 bzrlib.bundle.serializer.	 One	 key	 element	 is	 that	 this
design	 included	 parts	 of	 the	 branch	 data	 as	 human	 readable	 diffs;
which	were	then	subject	to	corruption	by	transports	such	as	email.

June	2007	Design
Bundle	Format	4	spec

Future	Plans
Bundles	will	be	 implemented	as	a	 ‘Shallow	Branch’	with	the	branch
and	 repository	 data	 combined	 into	 a	 single	 file.	 This	 removes	 the
need	 to	 special	 case	 bundle	 handling	 for	 all	 command	which	 read
from	branches.

Physical	encoding

Bundles	will	be	encoded	using	the	bzr	pack	format.	Within	the	pack
the	 branch	 metadata	 will	 be	 serialised	 as	 a	 BzrMetaDir1	 branch
entry.	The	Repository	data	added	by	 the	 revisions	contained	 in	 the
bundle	will	be	encoded	using	multi	parent	diffs	as	they	are	the	most
pithy	 diffs	we	 are	 able	 to	 create	 today	 in	 the	 presence	 of	merges.
XXX	More	details	needed?

Code	reuse

Ideally	we	can	reuse	our	BzrMetaDir	based	branch	 formats	directly
within	a	Bundle	by	layering	a	Transport	interface	on	top	of	the	pack	-
or	just	copying	the	data	out	into	a	readonly	memory	transport	when
we	read	the	pack.	This	suggests	we	will	have	a	pack	specific	Control
instance,	 replacing	 the	 usual	 ‘BzrDir’	 instance,	 but	 use	 the	Branch
class	as-is.

For	 the	 Repository	 access,	 we	 will	 create	 a	 composite	 Repository
using	 the	 planned	 Repository	 Stacking	 API,	 and	 a	 minimal
Repository	 implementation	 that	can	work	with	 the	multi	parent	diffs
within	the	bundle.

We	will	need	access	 to	a	branch	 that	has	 the	basis	 revision	of	 the
bundle	 to	 be	 able	 to	 construct	 revisions	 from	 within	 it	 -	 this	 is	 a
requirement	for	Shallow	Branches	too,	so	hopefully	we	can	define	a

single	mechanism	at	the	Branch	level	to	gain	access	to	that.

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

Specifications	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

Specifications	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Container	format

Status
Date: 2007-06-07

This	 document	 describes	 the	 proposed	 container	 format	 for
streaming	and	storing	collections	of	data	 in	Bazaar.	 Initially	 this	will
be	used	for	streaming	revision	data	 for	 incremental	push/pull	 in	 the
smart	server	for	0.18,	but	the	intention	is	that	this	will	be	the	basis	for
much	more	than	just	that	use	case.

In	particular,	 this	document	currently	 focuses	almost	exclusively	on
the	streaming	case,	and	not	 the	on-disk	storage	case.	 It	also	does
not	 discuss	 the	 APIs	 used	 to	 manipulate	 containers	 and	 their
records.

Contents

Container	format
Status
Motivation
Terminology
Use	Cases

Streaming	data	between	a	smart	server	and	client
Incremental	push	or	pull

Persistent	storage	on	disk
Usable	before	deep	model	changes	to	Bazaar
Examples	of	possible	record	content

Characteristics
No	length-prefixing	of	entire	container
Structured	as	a	self-contained	series	of	records
Addressing	records
Reasonably	cheap	for	small	records

Specification

Record	types
End	Marker
Bytes

Names

Motivation
To	 create	 a	 low-level	 file	 format	 which	 is	 suitable	 for	 solving	 the
smart	 server	 latency	 problem	 and	 whose	 layout	 and	 requirements
are	 extendable	 in	 future	 versions	 of	 Bazaar,	 and	 with	 no
requirements	that	the	smart	server	does	not	have	today.

Terminology
A	container	 is	 a	 streamable	 file	 that	 contains	a	 series	of	 records.
Records	may	have	names,	and	consist	of	bytes.

Use	Cases
Here’s	 a	 brief	 description	 of	 use	 cases	 this	 format	 is	 intended	 to
support.

Streaming	data	between	a	smart	server	and	client

It	would	be	nice	if	we	could	combine	multiple	containers	into	a	single
stream	by	something	no	more	expensive	than	concatenation	(e.g.	by
omitting	end/start	marker	pairs).

This	doesn’t	 imply	 that	 such	a	combination	necessarily	produces	a
valid	 container	 (e.g.	 care	must	 be	 taken	 to	 ensure	 that	 names	are
still	unique	in	the	combined	container),	or	even	a	useful	container.	It
is	 simply	 that	 the	 cost	 of	 assembling	a	 new	combined	 container	 is
practically	as	cheap	as	simple	concatenation.

Incremental	push	or	pull

Consider	 the	 use	 case	 of	 incremental	 push/pull,	 which	 is	 currently
(0.16)	 very	 slow	 on	 high-latency	 links	 due	 to	 the	 large	 number	 of
round	trips.	What	we’d	like	is	something	like	the	following.

A	client	will	make	a	request	meaning	“give	me	the	knit	contents	 for
these	 revision	 IDs”	 (how	 the	client	determines	which	 revision	 IDs	 it
needs	is	unimportant	here).	In	response,	the	server	streams	a	single
container	of:

one	 record	 per	 file-id:revision-id	 knit	 gzip	 contents	 and
graph	data,
one	 record	per	 inventory:revision-id	knit	gzip	contents	and
graph	data,
one	record	per	revision	knit	gzip	contents,
one	record	per	revision	signature,

end	marker	record.

in	that	order.

Persistent	storage	on	disk

We	 want	 a	 storage	 format	 that	 allows	 lock-free	 writes,	 which
suggests	a	 format	 that	uses	 rename	 into	place,	 and	do	 not	modify
after	writing.

Usable	before	deep	model	changes	to	Bazaar

We	want	a	format	we	can	use	and	refine	sooner	rather	than	later.	So
it	should	be	usable	before	the	anticipated	model	changes	for	Bazaar
“1.0”	land,	while	not	conflicting	with	those	changes	either.

Specifically,	we’d	like	to	have	this	format	in	Bazaar	0.18.

Examples	of	possible	record	content

full	texts	of	file	versions
deltas	of	full	texts
revisions
inventories
inventory	as	tree	items	e.g.	the	inventory	data	for	20	files
revision	signatures
per-file	graph	data
annotation	cache

Characteristics
Some	 key	 aspects	 of	 the	 described	 format	 are	 discussed	 in	 this
section.

No	length-prefixing	of	entire	container

The	overall	container	is	not	length-prefixed.	Instead	there	 is	an	end
marker	 so	 that	 readers	 can	 determine	 when	 they	 have	 read	 the
entire	container.	This	also	does	not	conflict	with	the	goal	of	allowing
single-pass	writing.

Structured	as	a	self-contained	series	of	records

The	 container	 contains	 a	 series	 of	 records.	 Each	 record	 is	 self-
delimiting.	Record	markers	are	lightweight.	The	overhead	in	terms	of
bytes	 and	 processing	 for	 records	 in	 this	 container	 vs.	 the	 raw
contents	of	those	records	is	minimal.

Addressing	records

There	 is	 a	 requirement	 that	 each	 object	 can	 be	 given	 an	 arbitrary
name.	 Some	 version	 control	 systems	 address	 all	 content	 by	 the
SHA-1	 digest	 of	 that	 content,	 but	 this	 scheme	 is	 unsatisfactory	 for
Bazaar’s	 revision	 objects.	We	 can	 still	 allow	 addressing	 by	 SHA-1
digest	for	those	content	types	where	it	makes	sense.

Some	proposed	object	names:

to	 name	 a	 revision:	 “revision:revision-id“.	 e.g.,
revision:pqm@pqm.ubuntu.com-20070531210833-
8ptk86ocu822hjd5.
to	 name	 an	 inventory	 delta:	 “inventory.delta:revision-id“.

e.g.,	 inventory.delta:pqm@pqm.ubuntu.com-
20070531210833-8ptk86ocu822hjd5.

It	 seems	 likely	 that	 we	 may	 want	 to	 have	 multiple	 names	 for	 an
object.	This	format	allows	that	(by	allowing	multiple	name	headers	in
a	Bytes	record).

Although	 records	 are	 in	 principle	 addressable	 by	 name,	 this
specification	alone	doesn’t	provide	for	efficient	access	to	a	particular
record	 given	 its	 name.	 It	 is	 intended	 that	 separate	 indexes	will	 be
maintained	to	provide	this.

It	is	acceptable	to	have	records	with	no	explicit	name,	if	the	expected
use	of	them	does	not	require	them.	For	example:

a	record’s	content	could	be	self-describing	in	the	context	of
a	particular	container,	or
a	record	could	be	accessed	via	an	index	based	on	SHA-1,
or
when	streaming,	the	first	record	could	be	treated	specially.

Reasonably	cheap	for	small	records

The	 overhead	 for	 storing	 fairly	 short	 records	 (tens	 of	 bytes,	 rather
than	thousands	or	millions)	 is	minimal.	The	minimum	overhead	 is	3
bytes	 plus	 the	 length	 of	 the	 decimal	 representation	 of	 the	 length
value	(for	a	record	with	no	name).

Specification
This	 describes	 just	 a	 basic	 layer	 for	 storing	 a	 simple	 series	 of
“records”.	This	layer	has	no	intrinsic	understanding	of	the	contents	of
those	records.

The	format	is:

a	container	 lead-in,	 “Bazaar	 pack	 format	 1	 (introduced
in	0.18)\n“,
followed	by	one	or	more	records.

A	record	is:

a	1	byte	kind	marker.
0	or	more	bytes	of	record	content,	depending	on	the	record
type.

Record	types

End	Marker

An	End	Marker	record:

has	a	kind	marker	of	“E“,
no	content	bytes.

End	Marker	records	signal	the	end	of	a	container.

Bytes

A	Bytes	record:

has	a	kind	marker	of	“B“,

followed	 by	 a	mandatory	content	 length	 [1]:	 “number\n“,
where	number	is	in	decimal,	e.g:

1234

followed	by	zero	or	more	optional	names:	“name\n“,	e.g.:

revision:pqm@pqm.ubuntu.com-20070531210833-8ptk86ocu822hjd5

followed	by	an	end	of	headers	byte:	“\n“,

followed	by	 some	bytes,	 exactly	 as	many	as	 specified	 by
the	length	prefix	header.

So	a	Bytes	record	is	a	series	of	lines	encoding	the	length	and	names
(if	any)	followed	by	a	body.

For	 example,	 this	 is	 a	 possible	 Bytes	 record	 (including	 the	 kind
marker):

B26

example-name1

example-name2

abcdefghijklmnopqrstuvwxyz

Names

Names	 should	 be	 UTF-8	 encoded	 strings,	 with	 no	 whitespace.
Names	should	be	unique	within	a	single	container,	but	no	guarantee
of	uniqueness	outside	of	the	container	is	made	by	this	layer.	Names
need	to	be	at	least	one	character	long.

[1]

This	requires	that	the	writer	of	a	record	knows	the	full	length	of
the	record	up	front,	which	typically	means	it	will	need	to	buffer
an	entire	record	in	memory.	For	the	first	version	of	this	format

this	is	considered	to	be	acceptable.

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

Specifications	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|

This	document	contains	notes	about	the	design	for	groupcompress,
replacement	VersionedFiles	store	for	use	in	pack	based	repositories.
The	goal	is	to	provide	fast,	history	bounded	text	extraction.

	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

Specifications	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Overview
The	 goal:	 Much	 tighter	 compression,	 maintained	 automatically.
Considerations	to	weigh:	The	minimum	IO	to	reconstruct	a	text	with
no	other	repository	involved;	The	number	of	index	lookups	to	plan	a
reconstruction.	 The	minimum	 IO	 to	 reconstruct	 a	 text	 with	 another
repositories	assistance	 (affects	network	 IO	 for	 fetch,	which	 impacts
incremental	pulls	and	shallow	branch	operations).

Current	approach
Each	delta	is	individually	compressed	against	another	text,	and	then
entropy	compressed.	We	index	the	pointers	between	these	deltas.

Solo	 reconstruction:	Plan	 a	 readv	 via	 the	 index,	 read	 the	 deltas	 in
forward	 IO,	 apply	 each	 delta.	 Total	 IO:	 sum(deltas)	 +
deltacount*index	 overhead.	 Fetch/stacked	 reconstruction:	 Plan	 a
readv	 via	 the	 index,	 using	 local	 basis	 texts	 where	 possible.	 Then
readv	 locally	 and	 remote	 and	 apply	 deltas.	 Total	 IO	 as	 for	 solo
reconstruction.

Things	to	keep
Reasonable	 sizes	 ‘amount	 read’	 from	 remote	 machines	 to
reconstruct	 an	arbitrary	 text:	Reading	5MB	 for	 a	 100K	plain	 text	 is
not	 a	 good	 trade	 off.	 Reading	 (say)	 500K	 is	 probably	 acceptable.
Reading	 ~100K	 is	 ideal.	 However,	 its	 likely	 that	 some	 texts	 (e.g
NEWS	versions)	 can	be	stored	 for	nearly-no	space	at	all	 if	we	are
willing	to	have	unbounded	IO.	Profiling	to	set	a	good	heuristic	will	be
important.	 Also	 allowing	 users	 to	 choose	 to	 optimise	 for	 a	 server
environment	 may	 make	 sense:	 paying	 more	 local	 IO	 for	 less
compact	storage	may	be	useful.

Things	to	remove
Index	 scatter	 gather	 IO.	 Doing	 hundreds	 or	 thousands	 of	 index
lookups	is	very	expensive,	and	doing	that	per	file	just	adds	insult	to
injury.

Partioned	compression	amongst	files.

Scatter	 gather	 IO	 when	 reconstructing	 texts:	 linear	 forward	 IO	 is
better.

Thoughts
Merges	 combine	 texts	 from	 multiple	 versions	 to	 create	 a	 new
version.	Deltas	add	new	text	to	existing	files	and	remove	some	text
from	the	same.	Getting	high	compression	means	reading	some	base
and	 then	 a	 chain	 of	 deltas	 (could	 be	 a	 tree)	 to	 gain	 access	 to	 the
thing	 that	 the	 final	 delta	was	made	 against,	 and	 that	 delta.	Rather
than	composing	all	these	deltas,	we	can	just	just	perform	the	final	diff
against	 the	 base	 text	 and	 the	 serialised	 invidual	 deltas.	 If	 the	 diff
algorithm	 can	 reuse	 out	 of	 order	 lines	 from	 previous	 texts	 (e.g.
storing	AB	 ->	BA	 as	 pointers	 rather	 than	 delete	 and	 add,	 then	 the
presence	 of	 any	 previously	 stored	 line	 in	 a	 single	 chain	 can	 be
reused.	One	such	diff	algorithm	is	xdelta,	another	reasonable	one	to
consider	 is	 plain	 old	 zlib	 or	 lzma.	 We	 could	 also	 use	 bzip2.	 One
advantage	 of	 using	 a	 generic	 compression	 engine	 is	 less	 python
code.	One	advantage	of	preprocessing	 line	based	deltas	 is	 that	we
reduce	 the	window	size	 for	 the	 text	 repeated	within	 lines,	 and	 that
will	 help	 compression	 by	 a	 simple	 entropy	 compressor	 as	 a	 post
processor.	lzma	appears	fantastic	at	compression	-	420MB	of	NEWS
files	down	to	200KB.	so	window	size	appears	to	be	a	key	determiner
for	efficiency.

Delta	strategy
Very	big	objects	-	no	delta.	 I	plan	to	kick	this	 in	at	5MB	initially,	but
once	the	codebase	is	up	and	running,	we	can	tweak	this	to

Very	small	objects	-	no	delta?	If	they	are	combined	with	a	larger	zlib
object	why	not?	(Answer:	because	zlib’s	window	is	really	small)

Other	objects	-	group	by	fileid	(gives	related	texts	a	chance,	though
using	a	 file	name	would	be	better	 long	 term	as	e.g.	COPYING	and
COPYING	 from	different	 projects	 could	 combine).	Then	by	 reverse
topological	 graph(as	 this	places	more	 recent	 texts	at	 the	 front	 of	 a
chain).	 Alternatively,	 group	 by	 size,	 though	 that	 should	 not	 matter
with	 a	 large	 enough	 window.	 Finally,	 delta	 the	 texts	 against	 the
current	 output	 of	 the	 compressor.	 This	 is	 essentially	 a	 somewhat
typed	form	of	sliding	window	dictionary	compression.	An	alternative
implementation	would	be	to	just	use	zlib,	or	lzma,	or	bzip2	directory.

Unfortunately,	just	using	entropy	compression	forces	a	lot	of	data	to
be	output	by	 the	decompressor	 -	e.g.	420MB	 in	 the	NEWS	sample
corpus.	When	we	only	want	 a	 single	 55K	 text	 thats	 inefficient.	 (An
initial	test	took	several	seconds	with	lzma.)

The	 fastest	 to	 implement	 approach	 is	 probably	 just	 ‘diff	 output	 to
date	 and	 add	 to	 entropy	 compressor’.	 This	 should	 produce
reasonable	results.	As	delta	chain	length	is	not	a	concern	(only	one
delta	to	apply	ever),	we	can	simply	cap	the	chain	when	the	total	read
size	 becomes	 unreasonable.	 Given	 older	 texts	 are	 smaller	 we
probably	want	some	weighted	factor	of	plaintext	size.

In	 this	 approach,	 a	 single	 entropy	 compressed	 region	 is	 read	as	a
unit,	giving	the	lower	bound	for	IO	(and	how	much	to	read	is	an	open
question	-	what	byte	offset	of	compressed	data	is	sufficient	to	ensue
that	 the	 delta-stream	 contents	 we	 need	 are	 reconstructable.

Flushing,	while	possible,	degrades	compression(and	adds	overhead
-	we’d	be	paying	4	bytes	per	record	guaranteed).	Again	-	tests	will	be
needed.

A	nice	possibility	is	to	output	mpdiff	compatible	records,	which	might
enable	 some	 code	 reuse.	 This	 is	 more	 work	 than	 just	 diff
(current_out,	new_text),	so	can	wait	for	the	concept	to	be	proven.

Implementation	Strategy
Bring	 up	 a	VersionedFiles	 object	 that	 implements	 this,	 then	 stuff	 it
into	a	repository	format.	zlib	as	a	starting	compressor,	though	bzip2
will	probably	do	a	good	job.

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

Specifications	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

Specifications	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Indices

Status
Date: 2007-07-14

This	document	describes	the	indexing	facilities	within	bzrlib.

Contents

Indices
Status
Motivation
Terminology
Overview
General	Index	API

Services
Build	index
Retrieve	entries	from	the	index
Merging	of	indices

Index	implementations
GraphIndex

Motivation
To	provide	a	clean	concept	of	 index	that	can	be	reused	by	different
components	within	 the	 codebase	 rather	 than	 being	 rewritten	 every
time	by	different	components.

Terminology
An	 index	 is	 a	 dictionary	mapping	 opaque	 keys	 to	 opaque	 values.
Different	 index	 types	 may	 allow	 some	 of	 the	 value	 data	 to	 be
interpreted	by	the	index.	For	example	the	GraphIndex	index	stores	a
graph	between	keys	as	part	of	the	index.

Overview
bzr	is	moving	to	a	write-once	model	for	repository	storage	in	order	to
achieve	lock-free	repositories	eventually.	In	order	to	support	this,	we
are	making	our	new	index	classes	immutable.	That	is,	one	creates	a
new	 index	 in	 a	 single	 operation,	 and	 after	 that	 it	 is	 read	 only.	 To
combine	 two	 indices	a	 Combined*	 index	may	be	used,	 or	 an	 index
merge	 may	 be	 performed	 by	 reading	 the	 entire	 value	 of	 two	 (or
more)	indices	and	writing	them	into	a	new	index.

General	Index	API
We	may	end	up	with	multiple	different	Index	types	(e.g.	GraphIndex,
Index,	 WhackyIndex).	 Even	 though	 these	 may	 require	 different
method	 signatures	 to	 operate	 would	 strive	 to	 keep	 the	 signatures
and	return	values	as	similar	as	possible.	e.g.:

GraphIndexBuilder	-	add_node(key,	value,	references)

IndexBuilder	-	add_node(key,	value)

WhackyIndexBuilder	-	add_node(key,	value,	whackiness)

as	opposed	to	something	quite	different	like:

node	=	IncrementalBuilder.get_node()

node.key	=	'foo'

node.value	=	'bar'

Services

An	 initial	 implementation	of	 indexing	 can	probably	 get	 away	with	 a
small	number	of	primitives.	Assuming	we	have	write	once	index	files:

Build	index

This	 should	 be	 done	 by	 creating	 an	 IndexBuilder	 and	 then	 calling
insert(key,	 value)	 many	 times.	 (Indices	 that	 support	 sorting,
topological	sorting	etc,	will	want	specialised	insert	methods).

When	 the	 keys	 have	 all	 been	 added,	 a	 finish	 method	 should	 be
called,	which	will	return	a	file	stream	to	read	the	index	data	from.

Retrieve	entries	from	the	index

This	 should	 allow	 random	 access	 to	 the	 index	 using	 readv,	 so	we

probably	 want	 to	 open	 the	 index	 on	 a	 Transport,	 then	 use
iter_entries(keys),	 which	 can	 return	 an	 iterator	 that	 yields	 (key,
value)	pairs	in	whatever	order	makes	sense	for	the	index.

Merging	of	indices

Merging	 of	 N	 indices	 requires	 a	 concordance	 of	 the	 keys	 of	 the
index.	So	we	should	offer	a	iter_all_entries	call	that	has	the	same
return	type	as	the	iter_entries	call.

Index	implementations

GraphIndex

GraphIndex	 supports	 graph	 based	 lookups.	 While	 currently
unoptimised	for	reading,	 the	 index	 is	quite	space	efficient	at	storing
the	revision	graph	index	for	bzr.	The	GraphIndexBuilder	may	be	used
to	create	one	of	these	indices	by	calling	add_node	until	all	nodes	are
added,	then	finish	to	obtain	a	file	stream	containing	the	index	data.
Multiple	indices	may	be	queried	using	the	CombinedGraphIndex	class.

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

Specifications	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

Specifications	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Inventories
Contents

Inventories
Overview
In	memory	inventories
Serialization

dirstate
xml

Serialization	scaling	and	future	designs
Current	situation
Long	term	work
Layering
Design	 elements	 to	 achieve	 the	 goals	 in	 a	 future
inventory	implementation

Hash	bucket	based	inventories
Overview
Goal	satisfaction
Issues
Canonical	form
Apply
Delta

Radix	tree	based	inventories
Overview
Goal	satisfaction
Issues
Canonical	form
Apply
Delta

Hash	Trie	details
Insertion

Inventory	deltas

Delta	consistency
Avoiding	inconsistent	deltas

Overview
Inventories	 provide	 an	 abstraction	 for	 talking	 about	 the	 shape	 of	 a
tree.	Generally	only	 tree	object	 implementors	 should	be	concerned
about	 entire	 inventory	 objects	 and	 their	 implementation.	 Other
common	 exceptions	 are	 full-tree	 operations	 such	 as	 ‘checkout’,
‘export’	and	‘import’.

In	memory	inventories
In	memory	 inventories	 are	 often	 used	 in	 diff	 and	 status	 operations
between	 trees.	We	are	working	 to	 reduce	 the	number	of	 times	 this
occurs	with	‘full	tree’	inventory	objects,	and	instead	use	more	custom
tailored	data	structures	that	allow	operations	on	only	a	small	amount
of	data	regardless	of	the	size	of	the	tree.

Serialization
There	are	several	variants	of	serialised	tree	shape	in	use	by	bzr.	To
date	these	have	been	mostly	xml	based,	though	plugins	have	offered
non-xml	versions.

dirstate

The	dirstate	file	in	a	working	tree	includes	many	different	tree	shapes
-	one	for	the	working	tree	and	one	for	each	parent	tree,	 interleaved
to	allow	efficient	diff	and	status	operations.

xml

All	 the	 xml	 serialized	 forms	 write	 to	 and	 read	 from	 a	 single	 byte
string,	 whose	 hash	 is	 then	 the	 inventory	 validator	 for	 the	 commit
object.

Serialization	scaling	and	future	designs
Overall	 efficiency	 and	 scaling	 is	 constrained	 by	 the	 bottom	 level
structure	that	an	inventory	is	stored	as.	We	have	a	number	of	goals
we	want	to	achieve:

1.	 Allow	commit	to	write	less	than	the	full	tree’s	data	in	to	the
repository	in	the	general	case.

2.	 Allow	 the	 data	 that	 is	 written	 to	 be	 calculated	 without
examining	every	versioned	path	in	the	tree.

3.	 Generate	 the	 exact	 same	 representation	 for	 a	 given
inventory	regardless	of	the	amount	of	history	available.

4.	 Allow	 in	memory	 deltas	 to	 be	 generated	 directly	 from	 the
serialised	 form	 without	 upcasting	 to	 a	 full	 in-memory
representation	or	examining	every	path	 in	 the	 tree.	 Ideally
the	 work	 performed	 will	 be	 proportional	 to	 the	 amount	 of
changes	between	the	trees	being	compared.

5.	 Allow	fetch	to	determine	the	file	texts	that	need	to	be	pulled
to	ensure	that	 the	entire	 tree	can	be	reconstructed	without
having	to	probe	every	path	in	the	tree.

6.	 Allow	bzr	to	map	paths	to	file	ids	without	reading	the	entire
serialised	 form.	 This	 is	 something	 that	 is	 used	 by
commands	such	as	merge	PATH	and	diff	-r	X	PATH.

7.	 Let	 bzr	 map	 file	 ids	 to	 paths	 without	 reading	 the	 entire
serialised	 form.	 This	 is	 used	 by	 commands	 that	 are
presenting	 output	 to	 the	 user	 such	 as	 loggerhead,	 bzr-
search,	log	FILENAME.

8.	 We	want	a	strong	validator	for	inventories	which	is	cheap	to
generate.	 Specifically	 we	 should	 be	 able	 to	 create	 the
generator	for	a	new	commit	without	processing	all	the	data
of	the	basis	commit.

9.	 Testaments	generation	is	currently	size(tree),	we	would	like
to	 create	 a	 new	 testament	 standard	 which	 requires	 less

work	 so	 that	 signed	 commits	 are	 not	 significantly	 slower
than	regular	commits.

We	 have	 current	 performance	 and	memory	 bugs	 in	 log	 -v,	merge,
commit,	diff	-r,	loggerhead	and	status	-r	which	can	be	addressed	by
an	inventory	system	meeting	these	goals.

Current	situation

The	xml	based	implementation	we	use	today	layers	the	inventory	as
a	bytestring	which	is	stored	under	a	single	key;	the	bytestring	is	then
compressed	as	a	delta	against	 the	bytestring	of	 its	 left	hand	parent
by	the	knit	code.

Gap	analysis:

1.	 Succeeds
2.	 Fails	-	generating	a	new	xml	representation	needs	full	tree

data.
3.	 Succeeds	 -	 the	 inventory	 layer	 accesses	 the	 bytestring,

which	is	deterministic
4.	 Fails	-	we	have	to	reconstruct	both	inventories	as	trees	and

then	delta	the	resulting	in	memory	objects.
5.	 Partial	 success	 -	 the	 revision	 field	 in	 the	 inventory	can	be

scanned	for	in	both	text-delta	and	full-bytestring	form;	other
revision	values	than	those	revisions	which	are	being	pulled
are	by	definition	absent.

6.	 Partially	succeeds	-	with	appropriate	logic	a	path<->id	map
can	 be	 generated	 just-in-time,	 but	 it	 is	 complex	 and	 still
requires	reconstructing	the	entire	byte-string.

7.	 As	for	6.
8.	 Fails	-	we	have	to	hash	the	entire	tree	in	serialised	form	to

generate	validators.
9.	 Fails.

Long	term	work

Some	 things	 are	 likely	 harder	 to	 fix	 incrementally	 than	 others.	 In
particular,	goal	3	(constant	canonical	form)	is	arguably	only	achieved
if	we	remove	all	derived	data	such	as	the	last-modified	revision	from
the	 inventory	 itself.	 That	 said,	 the	 last-modified	 appears	 to	 be	 in	 a
higher	level	than	raw	serialization.	So	in	the	medium	term	we	will	not
alter	 the	 contents	 of	 inventories,	 only	 the	 way	 that	 the	 current
contents	are	mapped	to	and	from	disk.

Layering

We	desire	clear	and	clean	layers.	Each	layer	should	be	as	simple	as
we	 can	 make	 it	 to	 aid	 in	 debugging	 and	 performance	 tuning.	 So
where	we	can	choose	to	either	write	a	complex	layer	and	something
simple	on	top	of	it,	or	two	layers	with	neither	being	as	complex	-	then
we	 should	 consider	 the	 latter	 choice	 better	 in	 the	 absence	 of
compelling	reasons	not	to.

Some	key	 layers	we	have	 today	and	can	 look	at	using	or	 tweaking
are:

Tree	objects	-	the	abstract	interface	bzrlib	code	works	in
VersionedFiles	 -	 the	 optionally	 delta	 compressing	 key-
>bytes	storage	interface.
Inventory	-	the	abstract	interface	that	many	tree	operations
are	written	in.

These	 layers	 are	 probably	 sufficient	 with	minor	 tweaking.	We	may
want	 to	 add	 additional	 modules/implementations	 of	 one	 or	 more
layers,	but	that	doesn’t	really	require	new	layers	to	be	exposed.

Design	elements	to	achieve	the	goals	in	a	future
inventory	implementation

Split	 up	 the	 logical	 document	 into	 smaller	 serialised
fragements.	For	instance	hash	buckets	or	nodes	in	a	tree	of
some	sort.	By	serialising	 in	smaller	units,	we	can	 increase
the	number	of	smaller	units	rather	than	their	size	as	the	tree
grows;	as	 long	as	 two	similar	 trees	have	similar	serialised
forms,	the	amount	of	different	content	should	be	quite	high.
Use	fragment	identifiers	that	are	independent	of	revision	id,
so	 that	serialisation	of	 two	 related	 trees	generates	overlap
in	the	keyspace	for	fragments	without	requiring	explicit	delta
logic.	 Content	 Hash	 Keys	 (e.g.
(‘sha1:ABCDEF0123456789...’,)	are	useful	here	because	of
the	ability	to	assign	them	without	reference	to	history.)
Store	 the	 fragments	 in	 our	 existing	 VersionedFiles	 store.
Adding	 an	 index	 for	 them.	 Have	 the	 serialised	 form	 be
uncompressed	utf8,	so	that	delta	logic	in	the	VersionedFiles
layer	 can	be	used.	We	may	need	 to	provide	some	sort	 of
hinting	 mechanism	 to	 get	 good	 compression	 -	 but	 the
trivially	available	zlib	compression	of	knits-with-no-deltas	is
probably	a	good	start.
Item_keys_introduced_by	 is	 innately	 a	 history-using
function;	 we	 can	 reproduce	 the	 text-key	 finding	 logic	 by
doing	a	 tree	diff	between	any	 tree	and	an	older	 tree	-	 that
will	 limit	 the	 amount	 of	 data	 we	 need	 to	 process	 to
something	 proportional	 to	 the	 difference	 and	 the	 size	 of
each	fragment.	When	checking	many	versions	we	can	track
which	 fragments	we	have	examined	and	only	 look	at	new
unique	ones	as	each	version	is	examined	in	turn.
Working	 tree	 to	 arbitrary	 history	 revision
deltas/comparisons	 can	be	 scaled	up	by	doing	a	 two-step
(fixed	at	two!)	delta	combining	-	delta(tree,	basis)	and	then
combine	 that	with	delta(basis,	arbitrary_revision)	using	 the
repositories	ability	to	get	a	delta	cheaply.
The	 key	 primitives	 we	 need	 seem	 to	 be:	 *
canonical_form(inventory)	 ->	 fragments	 *	 delta(inventory,

inventory)	 ->	 inventory_delta	 *	 apply(inventory_delta,
canonical_form)	->	fragments
Having	very	many	small	fragments	is	likely	to	cause	a	high
latency	multiplier	unless	we	are	careful.
Possible	designs	 to	 investigate	 -	a	hash	bucket	approach,
radix	 trees,	 B+	 trees,	 directory	 trees	 (with	 splits	 inside	 a
directory?).

Hash	bucket	based	inventories

Overview

We	store	two	maps	-	fileid:inventory_entry	and	path:fileid,	in	a	stable
hash	trie,	stored	in	densly	packed	fragments.	We	pack	keys	into	the
map	densely	up	the	tree,	with	a	single	canonical	form	for	any	given
tree.	 This	 is	 more	 stable	 than	 simple	 fixed	 size	 buckets,	 which
prevents	corner	cases	where	 the	 tree	size	varies	 right	on	a	bucket
size	border.	(Note	that	such	cases	are	not	a	fatal	flaw	-	the	two	forms
would	both	be	present	 in	 the	 repository,	so	only	a	small	amount	of
data	would	 be	written	 at	 each	 transition	 -	 but	 a	 full	 tree	 reprocess
would	be	needed	at	 each	 tree	operation	across	 the	boundary,	 and
thats	undesirable.)

Goal	satisfaction

1.	 Success
2.	 Success
3.	 Success
4.	 Success,	 though	each	change	will	need	 its	parents	 looked

up	 as	well	 so	 it	 will	 be	 proportional	 to	 the	 changes	 +	 the
directories	above	the	changed	path.

5.	 Success	 -	 looking	 at	 the	 difference	against	 all	 parents	we
can	determine	new	keys	without	reference	to	the	repository
content	will	be	inserted	into.

6.	 This	 probably	 needs	 a	 path->id	 map,	 allowing	 a	 2-step
lookup.

7.	 If	 we	 allocate	 buckets	 by	 hashing	 the	 id,	 then	 this	 is
succeed,	though,	as	per	4	it	will	need	recursive	lookups.

8.	 Success
9.	 Fail	 -	 data	beyond	 that	 currently	 included	 in	 testaments	 is

included	in	the	strong	validator.

Issues

1.	Tuning	the	fragment	size	needs	doing.	1.	Testing.	1.	Writing
code.	1.	Separate	root	node,	or	inline	into	revision?	1.	Cannot
do	‘ls’	efficiently	in	the	current	design.	1.	Cannot	detect	invalid
deltas	easily.	1.	What	about	LCA	merge	of	inventories?

Canonical	form

There	 are	 three	 fragment	 types	 for	 the	 canonical	 form.	 Each
fragment	 is	 addressed	 using	 a	 Content	 Hash	 Key	 (CHK)	 -	 for
instance	“sha1:12345678901234567890”.

root_node:	 (Perhaps	 this	should	be	 inlined	 into	 the	revision	object).
HASH_INVENTORY_SIGNATURE	path_map:	CHK	to	root	of	path	to
id	map	content_map:	CHK	to	root	of	id	to	entry	map

map_node:	 INTERNAL_NODE	or	LEAF_NODE	 INTERNAL_NODE:
INTERNAL_NODE_SIGNATURE	hash_prefix:	PREFIX	prefix_width:
INT	PREFIX	CHK	TYPE	SIZE	PREFIX	CHK	TYPE	SIZE	...

(Where	TYPE	is	I	for	internal	or	L	for	leaf).

leaf_node:	 LEAF_NODE_SIGNATURE	 hash_prefix:	 PREFIX
HASHx00KEYx00	VALUE

For	path	maps,	VALUE	is::
fileid

For	content	maps,	VALUE::
fileid	basename	kind	last-changed	kind-specific-details

The	path	and	content	maps	are	populated	simply	by	serialising	every
inventory	 entry	 and	 inserting	 them	 into	 both	 the	 path	map	and	 the

content	 map.	 The	 maps	 start	 with	 just	 a	 single	 leaf	 node	 with	 an
empty	prefix.

Apply

Given	 an	 inventory	 delta	 -	 a	 list	 of	 (old_path,	 new_path,
InventoryEntry)	 items,	with	a	None	 in	new_path	 indicating	a	delete
operation,	and	 recursive	deletes	not	being	permitted	 -	all	entries	 to
be	 deleted	 must	 be	 explicitly	 listed,	 we	 can	 transform	 a	 current
inventory	directly.	We	can’t	trivially	detect	an	invalid	delta	though.

To	perform	an	application,	naively	we	can	just	update	both	maps.	For
the	 path	map	we	would	 remove	 all	 entries	where	 the	 paths	 in	 the
delta	do	not	match,	then	insert	those	with	a	new_path	again.	For	the
content	map	we	would	 just	 remove	all	 the	 fileids	 in	 the	delta,	 then
insert	those	with	a	new_path	that	is	not	None.

Delta

To	generate	a	delta	between	two	inventories,	we	first	generate	a	list
of	 altered	 fileids,	 and	 then	 recursively	 look	 up	 their	 parents	 to
generate	their	old	and	new	file	paths.

To	 generate	 the	 list	 of	 altered	 file	 ids,	 we	 do	 an	 entry	 by	 entry
comparison	 of	 the	 full	 contents	 of	 every	 leaf	 node	 that	 the	 two
inventories	do	not	have	 in	common.	To	do	 this,	we	start	at	 the	root
node,	and	follow	every	CHK	pointer	that	is	only	in	one	tree.	We	can
then	 bring	 in	 all	 the	 values	 from	 the	 leaf	 nodes	 and	 do	 a	 set
difference	to	get	the	altered	ones,	which	we	would	then	parse.

Radix	tree	based	inventories

Overview

We	 store	 two	 maps	 -	 fileid:path	 and	 path:inventory_entry.	 The
fileid:path	map	 is	 a	 hash	 trie	 (as	 file	 ids	 have	 no	 useful	 locality	 of
reference).	The	path:inventory_entry	map	is	stored	as	a	regular	trie.
As	 for	 hash	 tries	 we	 define	 a	 single	 canonical	 representation	 for
regular	tries	similar	to	that	defined	above	for	hash	tries.

Goal	satisfaction

1.	 Success
2.	 Success
3.	 Success
4.	 Success
5.	 Success	 -	 looking	 at	 the	 difference	against	 all	 parents	we

can	determine	new	keys	without	reference	to	the	repository
content	will	be	inserted	into.

6.	 Success
7.	 Success
8.	 Success
9.	 Fail	 -	 data	beyond	 that	 currently	 included	 in	 testaments	 is

included	in	the	strong	validator.

Issues

1.	Tuning	the	fragment	size	needs	doing.	1.	Testing.	1.	Writing
code.	1.	Separate	root	node,	or	inline	into	revision?	1.	What
about	LCA	merge	of	inventories?

Canonical	form

There	are	five	fragment	types	for	the	canonical	form:

The	root	node,	hash	trie	internal	and	leaf	nodes	as	previous.

Then	we	have	two	more,	the	internal	and	leaf	node	for	the	radix	tree.

radix_node:	INTERNAL_NODE	or	LEAF_NODE

INTERNAL_NODE:	 INTERNAL_NODE_SIGNATURE	 prefix:
PREFIX	suffix	CHK	TYPE	SIZE	suffix	CHK	TYPE	SIZE	...

(Where	TYPE	is	I	for	internal	or	L	for	leaf).

LEAF_NODE:	 LEAF_NODE_SIGNATURE	 prefix:	 PREFIX
suffixx00VALUE

For	 the	 content	 map	 we	 use	 the	 same	 value	 as	 for	 hashtrie
inventories.

Node	splitting	and	joining	in	the	radix	tree	are	managed	in	the	same
fashion	as	as	for	the	internal	nodes	of	the	hashtries.

Apply

Apply	is	implemented	as	for	hashtries	-	we	just	remove	and	reinsert
the	fileid:paths	map	entries,	and	likewise	for	the	path:entry	map.	We
can	 however	 cheaply	 detect	 invalid	 deltas	 where	 a	 delete	 fails	 to
include	its	children.

Delta

Delta	generation	is	very	similar	to	that	with	hash	tries,	except	we	get
the	path	of	nodes	as	part	of	the	lookup	process.

Hash	Trie	details
The	canonical	form	for	a	hash	trie	is	a	tree	of	internal	nodes	leading
down	 to	 leaf	 nodes,	 with	 no	 node	 exceeding	 some	 threshold	 size,
and	 every	 node	 containing	 as	much	 content	 as	 it	 can,	 but	 no	 leaf
node	containing	less	than	its	lower	size	threshold.	(In	the	event	that
an	 imbalance	 in	 the	hash	 function	causes	a	 tree	where	an	 internal
node	 is	needed,	but	any	prefix	generates	a	child	with	 less	 than	the
lower	 threshold,	 the	 smallest	 prefix	 should	 be	 taken).	 An	 internal
node	holds	some	number	of	key	prefixes,	all	with	the	same	bit-width.
A	 leaf	 node	 holds	 the	 actual	 values.	 As	 trees	 do	 not	 spring	 fully-
formed,	 the	 canonical	 form	 is	 defined	 iteratively	 -	 by	 taking	 every
item	 in	 a	 tree	 and	 inserting	 it	 into	 a	 new	 tree	 in	 order	 you	 can
determine	 what	 canonical	 form	 would	 look	 like.	 As	 that	 is	 an
expensive	operation,	it	should	only	be	done	rarely.

Updates	 to	a	 tree	 that	 is	 in	canonical	 form	can	be	done	preserving
canonical	form	if	we	can	prove	that	our	rules	for	insertion	are	order-
independent,	and	that	our	rules	for	deletion	generate	the	same	tree
as	if	we	never	inserted	those	nodes.

Our	 hash	 tries	 are	 balanced	 vertically	 but	 not	 horizontally.	 That	 is,
one	 leg	 of	 a	 tree	 can	 be	 arbitrarily	 deeper	 than	 adjacent	 legs.	We
require	 that	 each	 node	 along	 a	 path	 within	 the	 tree	 be	 densely
packed,	 with	 the	 densest	 nodes	 near	 the	 top	 of	 the	 tree,	 and	 the
least	dense	at	 the	bottom.	Except	where	the	tree	cannot	support	 it,
no	 node	 is	 smaller	 than	 a	 minimum_size,	 and	 none	 larger	 than
maximum_size.	 The	minimum	 size	 constraint	 is	 only	 applied	when
there	are	enough	entries	under	a	prefix	 to	meet	 that	minimum.	The
maximum	size	constraint	is	always	applied	except	when	a	node	with
a	 single	 entry	 is	 larger	 than	 the	 maximum	 size.	 Loosely,	 the
maximum	size	constraint	wins	over	the	minimum	size	constraint,	and
if	the	minimum	size	contraint	is	to	be	ignored,	a	deeper	prefix	can	be

chosen	 to	 pack	 the	 containing	 node	more	 densely,	 as	 long	 as	 no
additional	minimum	sizes	checks	on	child	nodes	are	violated.

Insertion

1.	 Hash	 the	 entry,	 and	 insert	 the	 entry	 in	 the	 leaf	 node	 with	 a
matching	 prefix,	 creating	 that	 node	 and	 linking	 it	 from	 the
internal	node	containing	that	prefix	if	there	is	no	appropriate	leaf
node.

2.	 Starting	at	the	highest	node	altered,	for	all	altered	nodes,	check
if	it	has	transitioned	across	either	size	boundary	-	0	<	min_size	<
max_size.	If	it	has	not,	proceed	to	update	the	CHK	pointers.

3.	 If	it	increased	above	min_size,	check	the	node	above	to	see	if	it
can	 be	 more	 densely	 packed.	 To	 be	 below	 the	 min_size	 the
node’s	parent	must	have	hit	 the	max	size	constraint	and	been
forced	 to	 split	 even	 though	 this	 child	 did	 not	 have	 enough
content	to	support	a	min_size	node	-	so	the	prefix	chosen	in	the
parent	may	be	shorter	than	desirable	and	we	may	now	be	able
to	 more	 densely	 pack	 the	 parent	 by	 splitting	 the	 child	 nodes
more.	So	if	the	parent	node	can	support	a	deeper	prefix	without
hitting	max_size,	and	the	count	of	under	min_size	nodes	cannot
be	reduced,	the	parent	should	be	given	a	deeper	prefix.

4.	 If	 it	 increased	above	max_size,	shrink	 the	prefix	width	used	 to
split	out	new	nodes	until	the	node	is	below	max_size	(unless	the
prefix	width	is	already	1	-	the	minimum).	To	shrink	the	prefix	of
an	internal	node,	create	new	internal	nodes	for	each	new	prefix,
and	 populate	 them	 with	 the	 content	 of	 the	 nodes	 which	 were
formerly	linked.	(This	will	normally	bubble	down	due	to	keeping
densely	 packed	 nodes).	 To	 shrink	 the	 prefix	 of	 a	 leaf	 node,
create	 an	 internal	 node	 with	 the	 same	 prefix,	 then	 choose	 a
width	for	the	internal	node	such	that	the	contents	of	the	leaf	all
fit	 into	 new	 leaves	 obeying	 the	 min_size	 and	 max_size	 rules.
The	 largest	 prefix	 possible	 should	 be	 chosen,	 to	 obey	 the
higher-nodes-are-denser	rule.	That	rule	also	gives	room	in	 leaf

nodes	for	growth	without	affecting	the	parent	node	packing.
5.	 Update	 the	 CHK	 pointers	 -	 serialise	 every	 altered	 node	 to

generate	a	CHK,	and	update	the	CHK	placeholder	in	the	nodes
parent;	then	reserialise	the	parent.	CHK	pointer	propagation	can
be	done	lazily	when	many	updates	are	expected.

Multiple	versions	of	nodes	for	 the	same	PREFIX	and	 internal	prefix
width	should	compress	well	for	the	same	tree.

Inventory	deltas
An	 inventory	 is	 a	 serialization	of	 the	 in-memory	 inventory	 delta.	 To
serialize	an	inventory	delta,	one	takes	an	existing	inventory	delta	and
the	 revision_id	 of	 the	 revision	 it	 was	 created	 it	 against	 and	 the
revision	id	of	the	inventory	which	should	result	by	applying	the	delta
to	 the	parent.	We	 then	serialize	every	 item	 in	 the	delta	 in	a	simple
format:

‘format:	 bzr	 inventory	 delta	 v1	 (1.14)’	 NL	 ‘parent:’	 SP
BASIS_INVENTORY	 NL	 ‘version:’	 SP	 NULL_OR_REVISION	 NL
‘versioned_root:’	 SP	 BOOL	 NL	 ‘tree_references:’	 SP	 BOOL	 NL
DELTA_LINES

DELTA_LINES	 ::=	 (DELTA_LINE	 NL)*	 DELTA_LINE	 ::=	 OLDPATH
NULL	 NEWPATH	 NULL	 file-id	 NULL	 PARENT_ID	 NULL
LAST_MODIFIED	NULL	CONTENT	SP	::=	‘	‘	BOOL	::=	‘true’	|	‘false’
NULL	 ::=	 x00	OLDPATH	 ::=	NONE	 |	 PATH	NEWPATH	 ::=	NONE	 |
PATH	NONE	 ::=	 ‘None’	PATH	 ::=	path	PARENT_ID	 ::=	FILE_ID	 |	 ‘’
CONTENT	 ::=	 DELETED_CONTENT	 |	 FILE_CONTENT	 |
DIR_CONTENT	 |	 TREE_CONTENT	 |	 LINK_CONTENT
DELETED_CONTENT	 ::=	 ‘deleted’	 FILE_CONTENT	 ::=	 ‘file’	 NULL
text_size	 NULL	 EXEC	 NULL	 text_sha1	 DIR_CONTENT	 ::=	 ‘dir’
TREE_CONTENT	 ::=	 ‘tree’	NULL	 tree-revision	LINK_CONTENT	 ::=
‘link’	 NULL	 link-target	 BASIS_INVENTORY	 ::=
NULL_OR_REVISION	 LAST_MODIFIED	 ::=	 NULL_OR_REVISION
NULL_OR_REVISION	::=	‘null:’	|	REVISION	REVISION	::=	revision-
id-in-utf8-no-whitespace	EXEC	::=	‘’	|	‘Y’

DELTA_LINES	is	lexicographically	sorted.

Some	 explanation	 is	 in	 order.	When	NEWPATH	 is	 ‘None’	 a	 delete
has	 been	 recorded,	 and	 because	 this	 inventory	 delta	 is	 not
attempting	 to	 be	 a	 reversible	 delta,	 the	 only	 other	 valid	 fields	 are

OLDPATH	 and	 ‘file-id’.	 PARENT_ID	 is	 ‘’	 when	 a	 delete	 has	 been
recorded	or	when	recording	a	new	root	entry.

Delta	consistency
Inventory	 deltas	 and	 more	 broadly	 changes	 between	 trees	 are	 a
significant	part	of	bzr’s	core	operations:	they	are	key	components	in
status,	diff,	commit,	and	merge	(although	merge	uses	tree	transform,
deltas	 contain	 the	 changes	 that	 are	 applied	 to	 the	 transform).	Our
ability	 to	 perform	 a	 given	 operation	 depends	 on	 us	 creating
consistent	 deltas	 between	 trees.	 Inconsistent	 deltas	 lead	 to	 errors
and	bugs,	or	even	just	unexpected	conflicts.

An	 inventory	 delta	 is	 a	 transform	 to	 change	 an	 inventory	 A	 into
another	inventory	B	(in	patch	terms	its	a	perfect	patch).	Sometimes,
for	instance	in	a	regular	commit,	inventory	B	is	known	at	the	time	we
create	 the	 delta.	Other	 times,	 B	 is	 not	 known	 because	 the	 user	 is
requesting	 that	 some	 parts	 of	 the	 second	 inventory	 they	 have	 are
masked	 out	 from	 consideration.	 When	 this	 happens	 we	 create	 a
delta	 that	 when	 applied	 to	 A	 creates	 a	 B	we	 haven’t	 seen	 in	 total
before.	 In	 this	 situation	we	need	 to	 ensure	 that	B	will	 be	 internally
consistent.	Deltas	are	unidirectional,	a	delta(A,	B)	creates	B	from	A,
but	cannot	be	used	to	create	A	from	B.

Deltas	 are	 expressed	 as	 a	 list	 of	 (oldpath,	 newpath,	 fileid,	 entry)
tuples.	 The	 fileid,	 entry	 elements	 are	 normative;	 the	 old	 and	 new
paths	are	strong	hints	but	not	currently	guaranteed	 to	be	accurate.
(This	 is	a	 shame	and	something	we	should	 tighten	up).	Deltas	are
required	 to	 list	 all	 removals	 explicitly	 -	 removing	 the	 parent	 of	 an
entry	doesn’t	remove	the	entry.

Applying	a	delta	to	an	inventory	consists	of:
removing	all	fileids	for	which	entry	is	None
adding	or	replacing	all	other	fileids
detecting	consistency	errors

An	interesting	aspect	of	delta	inconsistencies	is	when	we	notice

them:
Silent	errors	which	our	application	logic	misses
Visible	errors	we	catch	during	application,	so	bad	data	 isn’t
stored	in	the	system.

The	minimum	safe	level	for	our	application	logic	would	be	to	catch	all
errors	 during	 application.	 Making	 generation	 never	 generate
inconsistent	deltas	 is	a	seperate	but	necessary	condition	 for	 robust
code.

An	inconsistent	delta	is	one	which:
after	 application	 to	 an	 inventory	 the	 inventory	 is	 an
impossible	state.
has	 the	 same	 fileid,	 or	 oldpath(not-None),	 or	 newpath(not-
None)	multiple	times.
has	a	fileid	field	different	to	the	entry.fileid	in	the	same	item	in
the	delta.
has	an	entry	 that	 is	 in	an	 impossible	 state	 (e.g.	a	directory
with	a	text	size)

Forms	of	inventory	inconsistency	deltas	can	carry/cause:
An	entry	newly	introduced	to	a	path	without	also	removing	or
relocating	any	existing	entry	at	that	path.	(Duplicate	paths)
An	entry	whose	parent	 id	 isn’t	present	 in	 the	 tree.	 (Missing
parent).
Having	 oldpath	 or	 newpath	 not	 be	 actual	 original	 path	 or
resulting	path.	(Wrong	path)
An	 entry	 whose	 parent	 is	 not	 a	 directory.	 (Under	 non-
directory).
An	entry	that	is	internally	inconsistent.
An	entry	that	is	already	present	in	the	tree	(Duplicate	id)

Known	causes	of	inconsistency:
A	‘new’	entry	which	the	inventory	already	has	-	when	this	is	a
directory	 even	 arbitrary	 file	 ids	 under	 the	 ‘new’	 entry	 are
more	likely	to	collide	on	paths.

Removing	 a	 directory	 without	 recursively	 removing	 its
children	-	causes	Missing	parent.
Recording	a	change	to	an	entry	without	including	all	changed
entries	found	following	its	parents	up	to	and	includin	the	root
-	 can	 cause	 duplicate	 paths,	 missing	 parents,	 wrong	 path,
under	non-directory.

Avoiding	inconsistent	deltas

The	simplest	thing	is	to	never	create	partial	deltas,	as	it	is	trivial	to	be
consistent	 when	 all	 data	 is	 examined	 every	 time.	 However	 users
sometimes	 want	 to	 specify	 a	 subset	 of	 the	 changes	 in	 their	 tree
when	they	do	an	operation	which	needs	to	create	a	delta	-	such	as
commit.

We	have	a	 choice	about	handling	user	 requests	 that	 can	generate
inconsistent	deltas.	We	can	alter	or	 interpret	 the	 request	 in	 such	a
way	that	the	delta	will	be	consistent,	but	perhaps	larger	than	the	user
had	 intended.	Or	we	 can	 identify	 problematic	 situations	 and	 abort,
specifying	 to	 the	 user	why	we	 have	 aborted	 and	 likely	 things	 they
can	do	to	make	their	request	generate	a	consistent	delta.

Currently	we	attempt	to	expand/interpret	the	request	so	that	the	user
is	 not	 required	 to	 understand	 all	 the	 internal	 constraints	 of	 the
system:	 if	 they	 request	 ‘foo/bar’	 we	 automatically	 include	 foo.	 This
works	but	can	surprise	 the	user	sometimes	when	 things	 they	didn’t
explicitly	request	are	committed.

Different	trees	can	use	different	algorithms	to	expand	the	request	as
long	 as	 they	 produce	 consistent	 deltas.	 As	 part	 of	 getting	 a
consistent	UI	we	 require	 that	 all	 trees	expand	 the	paths	 requested
downwards.	Beyond	that	as	long	as	the	delta	is	consistent	it	is	up	to
the	tree.

Given	two	trees,	source	and	target,	and	a	set	of	selected	file	 ids	to

check	for	changes	and	if	changed	in	a	delta	between	them,	we	have
to	 expand	 that	 set	 by	 the	 following	 rules,	 to	 get	 consistent	 deltas.
The	 test	 for	 consistency	 is	 that	 if	 the	 resulting	 delta	 is	 applied	 to
source,	 to	 create	 a	 third	 tree	 ‘output’,	 and	 the	 paths	 in	 the	 delta
match	the	paths	in	source	and	output,	only	one	file	id	is	at	each	path
in	 output,	 and	 no	 file	 ids	 are	 missing	 parents,	 then	 the	 delta	 is
consistent.

Firstly,	 the	 parent	 ids	 to	 the	 root	 for	 all	 of	 the	 file	 ids	 that	 have
actually	changed	must	be	considered.	Unless	they	are	all	examined
the	paths	in	the	delta	may	be	wrong.

Secondly,	when	an	item	included	in	the	delta	has	a	new	path	which
is	the	same	as	a	path	in	source,	the	fileid	of	that	path	in	source	must
be	 included.	Failing	 to	do	 this	 leads	 to	multiple	 ids	 tryin	 to	share	a
path	in	output.

Thirdly,	 when	 an	 item	 changes	 its	 kind	 from	 ‘directory’	 to	 anything
else	 in	 the	delta,	all	of	 the	direct	children	of	 the	directory	 in	source
must	be	included.

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

Specifications	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

Specifications	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

LCA	Merge
by	Aaron	Bentley

Essential	characteristics
In	 the	general	case	(no	criss-cross),	 it	 is	a	three-way	merge.	When
there	is	a	criss-cross	at	the	tree	level,	but	not	for	the	particular	file,	it
is	 still	 a	 three-way	merge.	When	 there’s	 a	 file-level	 criss-cross,	 it’s
superior	to	a	three-way	merge.

Algorithm
First,	we	compare	the	files	we	are	trying	to	merge,	and	find	the	lines
that	differ.	Next,	we	try	to	determine	why	they	differ;	this	is	essential
to	 the	 merge	 operation,	 because	 it	 affects	 how	 we	 resolve	 the
differences.	In	this	merger,	there	are	three	possible	outcomes:

1.	 The	line	was	added	in	this	version:	“new-this”
2.	 The	line	was	deleted	in	the	other	version:	“killed-other”
3.	 The	 line	 was	 preserved	 as	 part	 of	 merge	 resolution	 in	 this

version,	but	deleted	in	the	other	version:	“conflicted-this”

Option	 3	 is	 new,	 but	 I	 believe	 it	 is	 essential.	When	 each	 side	 has
made	a	conflicting	merge	 resolution,	we	should	 let	 the	user	decide
how	 to	 combine	 the	 two	 resolutions,	 i.e.	we	 should	 emit	 a	 conflict.
We	cannot	silently	drop	the	line,	or	silently	keep	the	line,	which	can
happen	 if	 we	 choose	 options	 1	 or	 2.	 If	 we	 choose	 options	 1	 or	 2,
there’s	 also	 a	 possibility	 that	 a	 conflict	 will	 be	 produced,	 but	 no
guarantee.	 We	 need	 a	 guarantee,	 which	 is	 why	 we	 need	 a	 new
possible	outcome.

To	 decide	 whether	 a	 line	 is	 “new-this”,	 “killed-other”	 or	 “conflicted-
this”,	we	compare	this	version	against	the	versions	from	each	“least
common	 ancestor”	 (LCA),	 in	 graph	 terminology.	 For	 each	 LCA
version,	if	the	line	is	not	present	in	the	LCA	version,	we	add	it	to	the
“new”	set.	If	 the	 line	 is	present	 in	 the	LCA	version,	we	add	 it	 to	 the
“killed”	set.

When	we	 are	 done	 going	 through	 each	 LCA	 version,	 each	 unique
line	will	be	in	at	least	one	of	the	sets.	If	it	is	only	in	the	“new”	set,	it’s
handled	as	“new-this”.	 If	 it	 is	only	 in	 the	 “killed”	set,	 it’s	handled	as
“killed-other”.	If	it	is	in	both	sets,	it’s	handled	as	“conflicted-this”.

The	logic	here	is	a	bit	tricky:	first,	we	know	that	the	line	is	present	in

some,	 but	 not	 all,	 LCAs.	 We	 can	 assume	 that	 all	 LCAs	 were
produced	by	merges	of	the	same	sets	of	revisions.	That	means	that
in	 those	LCAs,	 there	were	 different	merge	 resolutions.	Since	THIS
and	 OTHER	 disagree	 about	 whether	 the	 line	 is	 present,	 those
differences	have	propagated	 into	THIS	and	OTHER.	Therefore,	we
should	declare	that	 the	 lines	are	 in	conflict,	and	 let	 the	user	handle
the	issue.

LCA	merge	and	Three-way	merge
Now,	 in	 the	 common	 case,	 there’s	 a	 single	 LCA,	 and	 LCA	merge
behaves	 as	 a	 three-way	 merge.	 Since	 there’s	 only	 one	 LCA,	 we
cannot	 get	 the	 “conflicted-this”	 outcome,	 only	 “new-this”	 or	 “killed-
other.	Let’s	look	at	the	typical	description	of	three-way	merges:

THIS BASE OTHER OUT
A A A A
A B A A
A B B A
A A B B
A B C *conflict*

Now,	 let’s	assume	that	BASE	is	a	common	ancestor,	as	 is	 typically
the	case.	In	fact,	for	best-case	merges,	BASE	is	the	sole	LCA.

We	always	pick	the	version	that	represents	a	change	from	BASE,	if
there	is	one.	For	the	AAAA	line,	there	is	no	change,	so	the	output	is
rightfully	BASE/THIS/OTHER.	For	ABAA,	the	THIS	and	OTHER	are
changes	 from	BASE,	 and	 they	 are	 the	 same	 change	 so	 they	 both
win.	(This	case	is	sometimes	called	convergence.)	For	ABBA,	THIS
is	 a	 change	 from	 BASE,	 so	 THIS	 wins.	 For	 AABB,	 OTHER	 is	 a
change	from	BASE,	so	OTHER	wins.	For	ABC*,	THIS	and	OTHER
are	both	changes	 to	BASE,	but	 they	are	different	changes,	so	 they
can’t	both	win	cleanly.	Instead,	we	have	a	conflict.

Now	in	three-way	merging,	we	typically	talk	about	regions	of	text.	In
weave/knit/newness/lca	 merge,	 we	 also	 have	 regions.	 Each
contiguous	 group	 of	 “unchanged”	 lines	 is	 a	 region,	 and	 the	 areas
between	them	are	also	regions.

Let’s	 assign	 a	 to	 THIS	 and	 b	 to	 OTHER.	 “unchanged”	 regions
represent	 the	 AAAA	 or	 ABAA	 cases;	 it	 doesn’t	 matter	 which,

because	the	outcome	is	the	same	regardless.	Regions	which	consist
of	only	“new-a”	or	“killed-a”	represent	the	ABBA	case.	Regions	which
consist	 of	 only	 “new-b”	 or	 “killed-b”	 represent	 the	 AABB	 case.
Regions	which	have	(new-a	or	killed-a)	AND	(new-b	or	killed-b)	are
the	 ABC*	 case–	 both	 sides	 have	 made	 changes,	 and	 they	 are
different	changes,	so	a	conflict	must	be	emitted.

This	 is	what	 I	mean	when	 I	say	 that	 it	 is	a	 three-way	merge	 in	 the
common	 case;	 if	 there	 is	 only	 one	 LCA,	 then	 it	 is	 merely	 an
alternative	 implementation	 of	 three-way.	 (One	 that	 happens	 to
automatically	do	--reprocess,	ftw).

Exception	to	three-way	behavior
There	 is	 a	 special	 case	 of	 three-way	 merge	 which	 LCA	 merge
handles	 differently	 from	 our	 default	 “merge3”	 algorithm:	 BASE	 has
content	X,	THIS	deletes	the	content,	and	OTHER	changes	X	to	Y.	In
this	case,	LCA	merge	emits	Y	 in	 its	output	and	does	not	 indicate	a
conflict.	merge3	would	 output	Y,	 but	would	 also	 indicate	 a	 conflict.
(This	 is	 also	 the	 behavior	 in	 the	 inverse	 case	 where	 OTHER	 has
nothing	and	THIS	has	Y.)

This	 behavior	 is	 due	 the	way	 LCA	determines	 basic	 conflicts;	 they
can	only	be	emitted	when	THIS	and	OTHER	each	have	unique	lines
between	common	 lines.	 If	 THIS	does	not	 have	unique	 lines	 in	 this
position,	conflicts	will	not	be	emitted,	even	 if	 its	 (lack	of)	content	 is
unique.

This	behavior	difference	is	shared	with	“weave”	merge.	I	hope	that	a
future	revision	of	LCA	merge	will	handle	this	case	as	merge3	would.

Why	a	new	name
1.	 It	was	time.	Although	knit	/	annotate	merge	and	newness	merge

have	tried	to	emulate	the	behavior	of	the	original	weave	merge
algorithm,	--merge-type=weave	hasn’t	been	based	on	weaves	for
a	long	time.

2.	 Behavior	differences.	This	algorithm	should	behave	like	a	three-
way	merge	in	the	common	case,	while	its	predecessors	did	not.
It	 also	 has	 explicit	 support	 for	 handling	 conflicting	 merge
resolutions,	 so	 it	 should	 behave	 better	 in	 criss-cross	 merge
scenarios.

Performance
Unlike	 the	 current	 “weave”	merge	 implementation,	 lca	merge	 does
not	 perform	 any	 whole-history	 operations.	 LCA	 selection	 should
scale	with	the	number	of	uncommon	revisions.	Text	comparison	time
should	scale	mO(n2),	where	m	is	the	number	of	LCAs,	and	n	is	the
number	of	lines	in	the	file.	The	current	weave	merge	compares	each
uncommon	 ancestor,	 potentially	 several	 times,	 so	 it	 is	 >=	 kO(n2),
where	k	is	the	number	of	uncommon	ancestors.	So	“lca”	should	beat
“weave”	both	in	history	analysis	time	and	in	text	comparison	time.

Possible	flaws
1.	 Inaccurate	 LCA	 selection.	 Our	 current	 LCA	 algorithm	 uses

Graph.heads(),	which	is	known	to	be	flawed.	It	may	occasionally
give	bad	results.	This	risk	is	mitigated	by	the	fact	that	the	per-file
graphs	 tend	 to	 be	 simpler	 than	 the	 revision	 graph.	 And	 since
we’re	already	using	this	LCA	algorithm,	this	is	not	an	additional
risk.	 I	 hope	 that	 John	Meinel	will	 soon	have	a	 fixed	 version	of
Graph.heads	for	us.

2.	 False	matches.	Weaves	have	a	concept	of	line	identity,	but	knits
and	later	formats	do	not.	So	a	line	may	appear	to	be	common	to
two	files,	when	in	fact	it	was	introduced	separately	into	each	for
entirely	 different	 reasons.	 This	 risk	 is	 the	 same	 for	 three-way
merging.	 It	 is	mitigated	by	using	Patience	sequence	matching,
which	a	longest-common-subsequence	match.

Acknowledgements
I	 think	 this	 could	 be	 a	 great	 merge	 algorithm,	 and	 a	 candidate	 to
make	our	default,	but	this	work	would	not	have	been	possible	without
the	work	of	others,	especially:

Martin	Pool’s	weave	merge	and	knit/annotate	merge	algorithms.
Bram	Cohen’s	discussions	of	merge	algorithms
Andrew	Tridgell’s	dissection	of	BitKeeper	merge
Nathaniel	 Smith’s	 analysis	 of	 why	 criss-cross	 histories
necessarily	produce	poor	three-way	merges.

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

Specifications	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

Specifications	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Network	Protocol
Date: 2009-01-07

Contents

Network	Protocol
Overview
Layering

Medium
Protocol
Request/Response	processing
Server-side
Client-side

Protocol	description
Version	one
Version	two
Version	two	with	streamed	bodies
Version	three

Headers
Conventional	requests	and	responses
Early	error	returns
Full-duplex	operation

APIs
Paths
Requests
Recognised	errors

Overview
The	 smart	 protocol	 provides	 a	 way	 to	 send	 a	 requests	 and
corresponding	 responses	 to	 communicate	 with	 a	 remote	 bzr
process.

Layering

Medium

At	 the	 bottom	 level	 there	 is	 either	 a	 socket,	 pipes,	 or	 an	 HTTP
request/response.	We	call	this	layer	the	medium.	It	is	responsible	for
carrying	bytes	between	a	client	and	server.	For	sockets,	we	have	the
idea	 that	you	have	multiple	 requests	and	get	a	 read	error	because
the	other	side	did	shutdown.	For	pipes	we	have	read	pipe	which	will
have	 a	 zero	 read	 which	 marks	 end-of-file.	 For	 HTTP	 server
environment	 there	 is	 no	 end-of-stream	 because	 each	 request
coming	into	the	server	is	independent.

So	 we	 need	 a	 wrapper	 around	 pipes	 and	 sockets	 to	 separate	 out
requests	from	substrate	and	this	will	give	us	a	single	model	which	is
consistent	for	HTTP,	sockets	and	pipes.

Protocol

On	 top	 of	 the	 medium	 is	 the	 protocol.	 This	 is	 the	 layer	 that
deserialises	 bytes	 into	 the	 structured	 data	 that	 requests	 and
responses	consist	of.

Request/Response	processing

On	 top	 of	 the	 protocol	 is	 the	 logic	 for	 processing	 requests	 (on	 the
server)	or	responses	(on	the	client).

Server-side

Sketch:

MEDIUM		(factory	for	protocol,	reads	bytes	&	pushes	to	protocol,

									uses	protocol	to	detect	end-of-request,	sends	written

									bytes	to	client)	e.g.	socket,	pipe,	HTTP	request	handler.

	^

	|	bytes.

	v

PROTOCOL(serialization,	deserialization)		accepts	bytes	for	one

									request,	decodes	according	to	internal	state,	pushes

									structured	data	to	handler.		accepts	structured	data	from

									handler	and	encodes	and	writes	to	the	medium.		factory	for

									handler.

	^

	|	structured	data

	v

HANDLER		(domain	logic)	accepts	structured	data,	operates	state

									machine	until	the	request	can	be	satisfied,

									sends	structured	data	to	the	protocol.

Request	handlers	are	registered	in	the	bzrlib.smart.request	module.

Client-side

Sketch:

CLIENT			domain	logic,	accepts	domain	requests,	generated	structured

									data,	reads	structured	data	from	responses	and	turns	into

									domain	data.		Sends	structured	data	to	the	protocol.

									Operates	state	machines	until	the	request	can	be	delivered

									(e.g.	reading	from	a	bundle	generated	in	bzrlib	to	deliver	a

									complete	request).

									This	is	RemoteBzrDir,	RemoteRepository,	etc.

	^

	|	structured	data

	v

PROTOCOL		(serialization,	deserialization)		accepts	structured	data	for	one

									request,	encodes	and	writes	to	the	medium.		Reads	bytes	from	the

									medium,	decodes	and	allows	the	client	to	read	structured	data.

	^

	|	bytes.

	v

MEDIUM			accepts	bytes	from	the	protocol	&	delivers	to	the	remote	server.

									Allows	the	protocol	to	read	bytes	e.g.	socket,	pipe,	HTTP	request.

The	domain	logic	is	in	bzrlib.remote:	RemoteBzrDir,	RemoteBranch,
and	so	on.

There	is	also	an	plain	file-level	transport	that	calls	remote	methods	to
manipulate	files	on	the	server	in	bzrlib.transport.remote.

Protocol	description

Version	one

Version	one	of	the	protocol	was	introduced	in	Bazaar	0.11.

The	protocol	(for	both	requests	and	responses)	is	described	by:

REQUEST	:=	MESSAGE_V1

RESPONSE	:=	MESSAGE_V1

MESSAGE_V1	:=	ARGS	[BODY]

ARGS	:=	ARG	[MORE_ARGS]	NEWLINE

MORE_ARGS	:=	SEP	ARG	[MORE_ARGS]

SEP	:=	0x01

BODY	:=	LENGTH	NEWLINE	BODY_BYTES	TRAILER

LENGTH	:=	decimal	integer

TRAILER	:=	"done"	NEWLINE

That	is,	a	tuple	of	arguments	separated	by	Ctrl-A	and	terminated	with
a	 newline,	 followed	 by	 length	 prefixed	 body	with	 a	 constant	 trailer.
Note	that	although	arguments	are	not	8-bit	safe	(they	cannot	include
0x01	 or	 0x0a	 bytes	 without	 breaking	 the	 protocol	 encoding),	 the
body	is.

Version	two

Version	two	was	introduced	in	Bazaar	0.16.

The	request	protocol	is:

REQUEST_V2	:=	"bzr	request	2"	NEWLINE	MESSAGE_V2

The	response	protocol	is:

RESPONSE_V2	:=	"bzr	response	2"	NEWLINE	RESPONSE_STATUS	NEWLINE	MESSAGE_V2

RESPONSE_STATUS	:=	"success"	|	"failed"

Future	versions	should	follow	this	structure,	like	version	two	does:

FUTURE_MESSAGE	:=	VERSION_STRING	NEWLINE	REST_OF_MESSAGE

This	 is	 so	 that	 clients	 and	 servers	 can	 read	 bytes	 up	 to	 the	 first
newline	byte	to	determine	what	version	a	message	is.

For	 compatibility	 will	 all	 versions	 (past	 and	 future)	 of	 bzr	 clients,
servers	that	receive	a	request	in	an	unknown	protocol	version	should
respond	 with	 a	 single-line	 error	 terminated	 with	 0x0a	 (NEWLINE),
rather	than	structured	response	prefixed	with	a	version	string.

Version	two	of	the	message	protocol	is:

MESSAGE_V2	:=	ARGS	[BODY_V2]

BODY_V2	:=	BODY	|	STREAMED_BODY

That	 is,	 a	 version	 one	 length-prefixed	 body,	 or	 a	 version	 two
streamed	body.

Version	two	with	streamed	bodies

An	 extension	 to	 version	 two	 allows	 streamed	 bodies.	 A	 streamed
body	looks	a	lot	like	HTTP’s	chunked	encoding:

STREAMED_BODY	:=	"chunked"	NEWLINE	CHUNKS	TERMINATOR

CHUNKS	:=	CHUNK	[CHUNKS]

CHUNK	:=	HEX_LENGTH	CHUNK_CONTENT

HEX_LENGTH	:=	HEX_DIGITS	NEWLINE

CHUNK_CONTENT	:=	bytes

TERMINATOR	:=	SUCCESS_TERMINATOR	|	ERROR_TERMINATOR

SUCCESS_TERMINATOR	:=	'END'	NEWLINE

ERROR_TERMINATOR	:=	'ERR'	NEWLINE	CHUNKS	SUCCESS_TERMINATOR

That	 is,	 the	body	consists	of	a	series	of	chunks.	Each	chunk	starts
with	 a	 length	 prefix	 in	 hexadecimal	 digits,	 followed	 by	 an	 ASCII
newline	 byte.	 The	 end	 of	 the	 body	 is	 signaled	 by	 ‘END\\n‘,	 or	 by
‘ERR\\n‘	followed	by	error	args,	one	per	chunk.	Note	that	these	args
are	8-bit	safe,	unlike	request	args.

A	 streamed	 body	 starts	 with	 the	 string	 “chunked”	 so	 that	 legacy
clients	and	servers	will	not	mistake	 the	 first	chunk	as	 the	start	of	a
version	one	body.

The	 type	 of	 body	 (length-prefixed	 or	 chunked)	 in	 a	 response	 is
always	 the	 same	 for	 a	 given	 request	 method.	 Only	 new	 request
methods	introduced	in	Bazaar	0.91	and	later	use	streamed	bodies.

Version	three

Note: 	For	some	discussion	of	the	requirements	that	led	to	this
new	protocol	version,	see	bug	#83935.

Version	 three	 has	 bencoding	 of	 most	 protocol	 structures,	 to	 make
parsing	simpler.	For	extra	parsing	convenience,	these	structures	are
length	prefixed:

LENGTH_PREFIX	:=	32-bit	unsigned	integer	in	network	byte	order

Unlike	earlier	versions,	clients	and	servers	are	no	longer	required	to
know	which	request	verbs	and	responses	will	have	bodies	attached.
Because	of	length-prefixing	and	other	changes,	it	is	always	possible
to	know	when	a	complete	request	or	response	has	been	read,	even
if	the	server	implements	no	verbs.

The	underlying	message	format	is:

MESSAGE	:=	MAGIC	NEWLINE	HEADERS	CONTENTS	END_MESSAGE

MAGIC	:=	"bzr	message	3	(bzr	1.6)"

HEADERS	:=	LENGTH_PREFIX	bencoded_dict

https://bugs.launchpad.net/bzr/+bug/83935

END_MESSAGE	:=	"e"

BODY	:=	MESSAGE_PART+

MESSAGE_PART	:=	ONE_BYTE	|	STRUCTURE	|	BYTES

ONE_BYTE	:=	"o"	byte

STRUCTURE	:=	"s"	LENGTH_PREFIX	bencoded_structure

BYTES	:=	"b"	LENGTH_PREFIX	bytes

(Where	+	indicates	one	or	more.)

This	 format	 allows	 an	 arbitrary	 sequence	 of	 message	 parts	 to	 be
encoded	in	a	single	message.	The	contents	of	a	MESSAGE	have	a
higher-level	 message,	 but	 knowing	 just	 this	 amount	 of	 data	 it’s
possible	 to	 deserialize	 and	 consume	 a	 message,	 so	 that
implementations	can	respond	to	messages	sent	by	later	versions.

Headers

Each	request	and	response	will	have	“headers”,	a	dictionary	of	key-
value	pairs.	The	keys	must	be	strings,	not	any	other	type	of	value.

Currently,	 the	 only	 defined	 header	 is	 “Software	 version”.	 Both	 the
client	 and	 the	 server	 should	 include	 a	 “Software	 version”	 header,
with	 a	 value	 of	 a	 free-form	 string	 such	 as	 “bzrlib	 1.5”,	 to	 aid
debugging	 and	 logging.	 Clients	 and	 servers	 should	 not	 vary
behaviour	based	on	this	string.

Conventional	requests	and	responses

By	 convention,	 most	 requests	 and	 responses	 have	 a	 simple
“arguments	 plus	 optional	 body”	 structure,	 as	 in	 earlier	 protocol
versions.	This	section	describes	how	such	messages	are	encoded.
All	requests	and	responses	defined	by	earlier	protocol	versions	must
be	encoded	in	this	way.

Conventional	requests	will	send	a	CONTENTS	of

CONV_REQ	:=	ARGS	SINGLE_OR_STREAMED_BODY?

SINGLE_OR_STREAMED_BODY	:=	BYTES

						|	BYTES+	TRAILER

ARGS	:=	STRUCTURE(argument_tuple)

TRAILER	:=	SUCCESS_STATUS	|	ERROR

SUCCESS_STATUS	:=	ONE_BYTE("S")

ERROR	:=	ONE_BYTE("E")	STRUCTURE(argument_tuple)

Conventional	responses	will	send	CONTENTS	of

CONV_RESP	:=	RESP_STATUS	ARGS	SINGLE_OR_STREAMED_BODY?

RESP_STATUS	:=	ONE_BYTE("S")	|	ONE_BYTE("E")

If	 the	 RESP_STATUS	 is	 success	 (“S”),	 the	 arguments	 are	 the
method-dependent	result.

For	errors	(where	the	Status	byte	of	a	response	or	a	streamed	body
is	 “E”),	 the	 situation	 is	 analagous	 to	 requests.	 The	 first	 item	 in	 the
encoded	 sequence	must	 be	 a	 string	 of	 the	 error	 name.	 The	 other
arguments	 supply	 details	 about	 the	 error,	 and	 their	 number	 and
types	 will	 depend	 on	 the	 type	 of	 error	 (as	 identified	 by	 the	 error
name).

Note	 that	 the	 streamed	body	 from	 version	 two	 is	 now	 just	multiple
BYTES	parts.

The	end	of	 the	 request	 or	 response	 is	 indicated	by	 the	 lower-level
END_MESSAGE.	If	there’s	only	one	BYTES	element	in	the	body,	the
TRAILER	may	or	may	not	be	present,	depending	on	whether	it	was
sent	 as	 a	 single	 chunk	 or	 as	 a	 stream	 that	 happens	 to	 have	 one
element.

(Discussion)	The	success	marker	at	the	end	of	a	streamed	body
seems	redundant;	it	doesn’t	have	space	for	any	arguments,	and
the	 end	 of	 the	 body	 is	 marked	 anyhow	 by	 the	 end	 of	 the
message.	Recipients	shouldn’t	take	any	action	on	it,	though	they
should	map	an	error	into	raising	an	error	locally.

1.10	clients	don’t	assert	that	they	get	a	status	byte	at	the	end	of
the	 message.	 They	 will	 complain	 (in
ConventionalResponseHandler.byte_part_received)	if	they	get	an
initial	 success	 and	 then	 another	 byte	 part	 with	 no	 intervening
bytes.	 If	we	 stop	 sending	 the	 final	 success	message	and	 only
flag	 errors	 they’ll	 only	 get	 one	 if	 the	 error	 is	 detected	 after
streaming	starts	but	before	any	bytes	are	actually	sent.	Possibly
we	 should	 wait	 until	 at	 least	 the	 first	 chunk	 is	 ready	 before
declaring	success.

For	new	methods,	 these	sequences	are	 just	a	convention	and	may
be	 varied	 if	 appropriate	 for	 a	 particular	 request	 or	 response.
However,	 each	 request	 should	 at	 least	 start	 with	 a	 STRUCTURE
encoding	the	arguments	tuple.	The	first	element	of	that	tuple	must	be
a	string	that	names	the	request	method.	(Note	that	arguments	in	this
protocol	version	are	bencoded.	As	a	result,	unlike	previous	protocol
versions,	arguments	in	this	version	are	8-bit	clean.)

(Discussion)	We’re	discussing	having	the	byte	segments	be	not
just	 a	 method	 for	 sending	 a	 stream	 across	 the	 network,	 but
actually	having	 them	be	preserved	 in	 the	 rpc	 from	end	 to	end.
This	may	be	useful	when	there’s	an	iterator	on	one	side	feeding
in	 to	 an	 iterator	 on	 the	 other,	 if	 it	 avoids	 doing	 chunking	 and
byte-counting	at	 two	 levels,	and	 if	 those	 iterators	are	a	natural
place	 to	 get	 good	 granularity.	 Also,	 for	 cases	 like
insert_record_stream	 the	 server	 can’t	 do	 much	 with	 the	 data
until	it	gets	a	whole	chunk,	and	so	it’ll	be	natural	and	efficient	for
it	to	be	called	with	one	chunk	at	a	time.

On	 the	other	hand,	 there	may	be	 times	when	we’ve	got	 some
bytes	 from	 the	 network	 but	 not	 a	 full	 chunk,	 and	 it	 might	 be
worthwhile	to	pass	it	up.	If	we	promise	to	preserve	chunks,	then
to	do	this	we’d	need	two	separate	streaming	interfaces:	“we	got
a	chunk”	and	“we	got	some	bytes	but	not	yet	a	full	chunk”.	For

insert_record_stream	 the	 second	 might	 not	 be	 useful,	 but	 it
might	be	good	when	writing	to	a	file	where	any	number	of	bytes
can	be	processed.

If	we	promise	to	preserve	chunks,	it’ll	tend	to	make	some	RPCs
work	only	 in	 chunks,	 and	others	 just	 on	whole	blocks,	 and	we
can’t	so	easily	migrate	RPCs	from	one	to	the	other	transparently
to	older	implementations.

The	 data	 inside	 those	 chunks	 will	 be	 serialized	 anyhow,	 and
possibly	 the	 data	 inside	 them	 will	 already	 be	 able	 to	 be
serialized	 apart	 without	 understanding	 the	 chunks.	 Also,	 we
might	want	to	use	these	formats	e.g.	for	pack	files	or	in	bundles,
and	so	they	don’t	particularly	need	lower-level	chunking.	So	the
current	 (unmerged,	 unstable)	 record	 stream	 serialization	 turns
each	record	into	a	bencoded	tuple	and	it’d	be	feasible	to	parse
one	tuple	at	a	time	from	a	byte	stream	that	contains	a	sequence
of	them.

So	we’ve	decided	that	the	chunks	won’t	be	semantic,	and	code
should	not	count	on	them	being	preserved	from	client	to	server.

Early	error	returns

(Discussion)	It	would	be	nice	if	the	server	could	notify	the	client
of	 errors	 even	 before	 a	 streaming	 request	 has	 finished.	 This
could	cover	situtaions	such	as	the	server	not	understanding	the
request,	 it	 being	 unable	 to	 open	 the	 requested	 location,	 or	 it
finding	 that	 some	 of	 the	 revisions	 being	 sent	 are	 not	 actually
needed.

Especially	 in	 the	 last	 case,	 we’d	 like	 to	 be	 able	 to	 gracefully
notice	 the	condition	while	 the	client	 is	writing,	and	 then	have	 it
adapt	its	behaviour.	In	any	case,	we	don’t	want	to	have	drop	and
restart	the	network	stream.

It	should	be	possible	for	the	client	to	finish	its	current	chunk	and
then	its	message,	possibly	with	an	error	to	cancel	what’s	already
been	sent.

This	relies	on	the	client	being	able	to	read	back	from	the	server
while	 it’s	writing.	This	 is	 technically	difficult	 for	http	but	 feasible
over	a	socket	or	ssh.

We’d	need	a	clean	way	to	pass	this	back	to	the	request	method,
even	 though	 it’s	 presumably	 in	 the	 middle	 of	 doing	 its	 body
iterator.	 Possibly	 the	 body	 iterator	 could	 be	 manually	 given	 a
reference	to	the	request	object,	and	it	can	poll	it	to	see	if	there’s
a	response.

Perhaps	we	need	 to	distinguish	error	 conditions,	which	 should
turn	into	a	client-side	error	regardless	of	the	request	code,	from
early	success,	which	should	be	handled	only	if	the	request	code
specifically	wants	to	do	it.

Full-duplex	operation

Code	not	geared	to	do	pipelined	requests,	and	this	might	require
doing	asynchrony	within	bzrlib.	We	might	want	to	either	go	fully
pipelined	 and	 asynchronous,	 but	 there	 might	 be	 a	 profitable
middle	ground.

The	particular	case	where	duplex	communication	would	be	good
is	in	working	towards	the	common	points	in	the	graphs	between
the	client	and	server:	we	want	to	send	speculatively,	but	detect
as	soon	as	they’ve	matched	up.

So	we	could	for	 instance	have	a	synchronous	core,	but	rely	on
the	OS	network	buffering	to	allow	us	to	work	on	batches	of	say
64kB.	 We	 can	 also	 pipeline	 requests	 and	 responses,	 without
allowing	 for	 them	 happening	 out	 of	 order,	 or	 mixed	 requests

happening	at	the	same	time.

Wonder	 how	 our	 network	 performance	 would	 have	 turned	 out
now	 if	 we’d	 done	 full-duplex	 from	 the	 start,	 and	 ignored	 hpss
over	http.	We	have	pretty	good	(readonly)	http	support	just	over
dumb	http,	and	that	may	be	better	for	many	users.

APIs
On	the	client,	the	bzrlib	code	is	“in	charge”:	when	it	makes	a	request,
or	 asks	 from	 data	 from	 the	 network,	 that	 causes	 network	 IO.	 The
server	 is	event	driven:	 the	network	code	 tells	 the	 response	handler
when	data	has	been	received,	and	it	takes	back	a	Response	object
from	the	request	handler	that	is	then	polled	for	body	stream	data.

Paths
Paths	 are	 passed	 across	 the	 network.	 The	 client	 needs	 to	 see	 a
namespace	 that	 includes	 any	 repository	 that	 might	 need	 to	 be
referenced,	 and	 the	 client	 needs	 to	 know	 about	 a	 root	 directory
beyond	which	it	cannot	ascend.

Servers	run	over	ssh	will	typically	want	to	be	able	to	access	any	path
the	user	can	access.	Public	servers	on	the	other	hand	(which	might
be	over	http,	ssh	or	tcp)	will	typically	want	to	restrict	access	to	only	a
particular	 directory	 and	 its	 children,	 so	 will	 want	 to	 do	 a	 software
virtual	 root	 at	 that	 level.	 In	 other	 words	 they’ll	 want	 to	 rewrite
incoming	paths	to	be	under	that	level	(and	prevent	escaping	using	../
tricks).	 The	 default	 implementation	 in	 bzrlib	 does	 this	 using	 the
bzrlib.transport.chroot	module.

URLs	 that	 include	~	are	passed	across	 to	 the	server	verbatim	and
the	 server	 can	 expand	 them.	 The	 default	 implementation	 in	 bzrlib
does	 this	 using	 bzrlib.transport.pathfilter	 and	 os.path.expanduser,
taking	care	to	respect	the	virtual	root.

Paths	 in	 request	 arguments	 are	 UTF-8	 encoded,	 except	 for	 the
legacy	 VFS	 requests	 which	 expect	 escaped	 (bzrlib.urlutils.escape)
paths.

Requests
The	first	argument	of	a	request	specifies	the	request	method.

The	available	request	methods	are	registered	in	bzrlib.smart.request.

XXX:	 ideally	 the	 request	 methods	 should	 be	 documented	 here.
Contributions	welcome!

Recognised	errors
The	first	argument	of	an	error	response	specifies	the	error	type.

One	possible	error	name	is	UnknownMethod,	which	means	the	server
does	not	recognise	the	verb	used	by	the	client’s	request.	This	error
was	introduced	in	version	three.

XXX:	 ideally	 the	 error	 types	 should	 be	 documented	 here.
Contributions	welcome!

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

Specifications	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

Specifications	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Plugin	API
Date: 2009-01-23

Contents

Plugin	API
Introduction

See	also
Structure	of	a	plugin
Plugin	metadata	before	installation

Metadata	protocol
Control	Formats
Example

Plugin	metadata	after	installation
Help	and	documentation
API	version
Plugin	version
Detecting	whether	code’s	being	loaded	as	a	plugin

Plugin	performance
Plugin	registrations
Publishing	your	plugin

Introduction
bzrlib	has	a	very	flexible	internal	structure	allowing	plugins	for	many
operations.	 Plugins	 can	 add	 commands,	 new	 storage	 formats,	 diff
and	merge	features	and	more.	This	document	provides	an	overview
of	the	API	and	conventions	for	plugin	authors.

If	you’re	writing	a	plugin	and	have	questions	not	addressed	by	 this
document,	please	ask	us.

See	also

Bazaar	Developer	Documentation	Catalog.
Bazaar	Plugins	Guide	for	more	suggestions	about	particular
APIs.

http://doc.bazaar.canonical.com/plugins/en/plugin-development.html

Structure	of	a	plugin
Plugins	 are	 Python	 modules	 under	 bzrlib.plugins.	 They	 can	 be
installed	 either	 into	 the	 PYTHONPATH	 in	 that	 location,	 or	 in
~/.bazaar/plugins.

Plugins	should	have	a	setup.py.

As	for	other	Python	modules,	the	name	of	the	directory	must	match
the	expected	name	of	the	plugin.

Plugin	metadata	before	installation
Plugins	 can	 export	 a	 summary	 of	 what	 they	 provide,	 and	 what
versions	of	 bzrlib	 they	are	 compatible	with.	 This	 allows	 tools	 to	 be
written	 to	 work	 with	 plugins,	 such	 as	 to	 generate	 a	 directory	 of
plugins,	or	install	them	via	a	symlink/checkout	to	~/.bazaar/plugins.

This	 interface	 allows	 bzr	 to	 interrogate	 a	 plugin	 without	 actually
loading	 it.	 This	 is	 useful	 because	 loading	 a	 plugin	 may	 have	 side
effects	 such	 as	 registering	 or	 overriding	 commands,	 or	 the	 plugin
may	raise	an	error,	if	for	example	a	prerequisite	is	not	present.

Metadata	protocol

A	plugin	 that	 supports	 the	bzr	plugin	metadata	protocol	will	 do	 two
things.	 Firstly,	 the	 setup.py	 for	 the	 plugin	 will	 guard	 the	 call	 to
setup():

if	__name__	==	'main':

				setup(...)

Secondly,	 the	 setup	module	will	 have	one	or	more	of	 the	 following
variables	 present	 at	module	 scope.	 Any	 variables	 that	 are	missing
will	 be	 given	 the	 defaults	 from	 the	 table.	 An	 example	 of	 every
variable	is	provided	after	the	full	list.

Variable Default Definition

bzr_plugin_name None

The	name	the	plugin	package
should	be	given	on	disk.	The
plugin	is	then	available	to	python	at
bzrlib.plugins.NAME
A	list	of	the	commands	that	the
plugin	provides.	Commands	that
already	exist	in	bzr	and	are

bzr_commands [] decorated	by	the	plugin	do	not
need	to	be	listed	(but	it	is	not
harmful	if	you	do	list	them).

bzr_plugin_version None A	version_info	5-tuple	with	the
plugins	version.

bzr_minimum_version None

A	version_info	3-tuple	for
comparison	with	the	bzrlib
minimum	and	current	version,	for
determining	likely	compatibility.

bzr_maximum_version None

A	version_info	3-tuple	like
bzr_minimum_version	but
checking	the	upper	limits
supported.

bzr_control_formats {}
A	dictionary	of	descriptions	of
version	control	directories.	See
Control	Formats	below.

bzr_checkout_formats {}

A	dictionary	of	tree_format_string	-
>	human	description	strings,	for
tree	formats	that	drop	into	the
.bzr/checkout	metadir	system.

bzr_branch_formats {} As	bzr_checkout_formats	but	for
branches.

bzr_repository_formats {} As	bzr_checkout_formats	but	for
repositories.

bzr_transports [] URL	prefixes	for	which	this	plugin
will	register	transports.

Control	Formats

Because	 disk	 format	 detection	 for	 formats	 that	 bzr	 does	 not
understand	at	all	can	be	useful,	we	allow	a	declarative	description	of
the	 shape	 of	 a	 control	 directory.	 Each	 description	 has	 a	 name	 for
showing	to	users,	and	a	dictonary	of	relative	paths,	and	the	content
needed	 at	 each	 path.	 Paths	 that	 end	 in	 ‘/’	 are	 required	 to	 be
directories	 and	 the	 value	 for	 that	 key	 is	 ignored.	 Other	 paths	 are

required	to	be	regular	files,	and	the	value	for	that	key	is	either	None,
in	which	case	the	file	is	statted	but	the	content	is	ignored,	or	a	literal
string	which	is	compared	against	for	the	content	of	the	file.	Thus:

#	(look	for	a	.hg	directory)

bzr_control_formats	=	{"Mercurial":{'.hg/':	None}}

#	(look	for	a	file	called	.svn/format	with	contents	4\n).

bzr_control_formats	=	{"Subversion":{'.svn/format':	'4\n'}}

Example

An	example	setup.py	follows:

#!/usr/bin/env	python2.4

from	distutils.core	import	setup

bzr_plugin_name	=	'demo'

bzr_commands	=	[

				'new-command',

]

bzr_branch_formats	=	{

				"Branch	label	on	disk\n":"demo	branch",

				}

bzr_control_formats	=	{"Subversion":{'.svn/format':	'4\n'}}

bzr_transports	=	["hg+ssh://"]

bzr_plugin_version	=	(1,	3,	0,	'dev',	0)

bzr_minimum_version	=	(1,	0,	0)

if	__name__	==	'main':

				setup(name="Demo",

										version="1.3.0dev0",

										description="Demo	plugin	for	plugin	metadata.",

										author="Canonical	Ltd",

										author_email="bazaar@lists.canonical.com",

										license	=	"GNU	GPL	v2",

										url="https://launchpad.net/bzr-demo",

										packages=['bzrlib.plugins.demo',

																				'bzrlib.plugins.demo.tests',

],

										package_dir={'bzrlib.plugins.demo':	'.'})

Plugin	metadata	after	installation
After	 a	 plugin	 has	 been	 installed,	 metadata	 can	 be	 more	 easily
obtained	 by	 looking	 inside	 the	module	 object	 –	 in	 other	words,	 for
variables	defined	in	the	plugin’s	__init__.py.

Help	and	documentation

The	module	docstring	is	used	as	the	plugin	description	shown	by	bzr
plugins.	As	with	all	Python	docstrings,	the	first	line	should	be	a	short
complete	 sentence	 summarizing	 the	 plugin.	 The	 full	 docstring	 is
shown	by	bzr	help	PLUGIN_NAME.

Remember	 that	 to	 be	 effective,	 the	module	 docstring	must	 be	 the
first	statement	in	the	file.	It	may	come	after	comments	but	it	must	be
before	any	import	statements.

API	version

Plugins	 can	 and	 should	 declare	 that	 they	 depend	 on	 a	 particular
version	of	bzrlib	like	so:

from	bzrlib.api	import	require_api

require_api(bzrlib,	(1,	11,	0))

Please	 see	 API	 versioning	 for	 more	 details	 on	 the	 API	 metadata
protocol	used	by	bzrlib.

Plugin	version

The	plugin	should	expose	a	version	tuple	to	describe	its	own	version.
Some	plugins	use	a	version	number	that	corresponds	to	the	version

of	bzr	they’re	released	against,	but	you	can	use	whatever	you	want.
For	example:

version_info	=	(1,	10,	0)

Detecting	whether	code’s	being	loaded	as	a	plugin

You	may	have	a	Python	module	that	can	be	used	as	a	bzr	plugin	and
also	 in	other	places.	To	detect	whether	 the	module	 is	being	 loaded
by	bzr,	use	something	like	this:

if	__name__	==	'bzrlib.plugins.loggerhead':

				#	register	with	bzrlib...

Plugin	performance
Plugins	should	avoid	doing	work	or	 loading	code	from	the	plugin	or
external	 libraries,	 if	 they’re	 just	 installed	 but	 not	 actually	 active,
because	 this	 slows	 down	 every	 invocation	 of	 bzr.	 The	 bzrlib	 APIs
generally	 allow	 the	 plugin	 to	 ‘lazily’	 register	methods	 to	 invoke	 if	 a
particular	disk	format	or	seen	or	a	particular	command	is	run.

Plugin	registrations
The	 plugin	 __init__.py	 runs	 when	 the	 plugin	 is	 loaded	 during	 bzr
startup.	Generally	 the	 plugin	 won’t	 want	 to	 actually	 do	 anything	 at
this	time	other	than	register	or	override	functions	to	be	called	later.

The	plugin	can	import	bzrlib	and	call	any	function.	Some	interesting
APIs	are	described	in	Bazaar	Plugins	Guide.

http://doc.bazaar.canonical.com/plugins/en/plugin-development.html

Publishing	your	plugin
When	your	plugin	is	basically	working	you	might	like	to	share	it	with
other	people.	Here	are	some	steps	to	consider:

make	 a	 project	 on	 Launchpad.net	 like
<https://launchpad.net/bzr-fastimport>	 and	 publish	 the
branches	or	tarballs	there
include	 the	 plugin	 in
<http://wiki.bazaar.canonical.com/BzrPlugins>
post	 about	 it	 to	 the	 bazaar-announce	 list	 at
lists.canonical.com

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

Specifications	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

https://launchpad.net/bzr-fastimport
http://wiki.bazaar.canonical.com/BzrPlugins
http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

Specifications	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Repositories

Status
Date: 2007-07-08

This	document	describes	the	services	repositories	offer	and	need	to
offer	within	bzrlib.

Contents

Repositories
Status
Motivation
Terminology
Command	Requirements
Data	access	patterns

Patterns	used
Facilities	to	scale	well

Indices
Index	size
Index	ordering
Changing	our	current	indexes

Replace	.kndx
Data
Moving	to	pack	based	repositories

Naming	of	files
Discovery	of	files
Housing	files
Combining	indices	on	demand
Merging	data	on	push
Choosing	compression/delta	support

Caching	and	writeing	of	data
Locks
Write	Groups

Motivation
To	 provide	 clarity	 to	 API	 and	 performance	 tradeoff	 decisions	 by
centralising	the	requirements	placed	upon	repositories.

Terminology
A	repository	is	a	store	of	historical	data	for	bzr.

Command	Requirements
Command Needed	services
Add None
Annotate Annotated	file	texts,	revision	details

Branch Fetch,	Revision	parents,	Inventory	contents,	All	file
texts

Bundle Maximally	compact	diffs	(file	and	inventory),
Revision	graph	difference,	Revision	texts.

Commit Insert	new	texts,	insert	new	inventory	via	delta,
insert	revision,	insert	signature

Fetching

Revision	graph	difference,	ghost	identification,
stream	data	introduced	by	a	set	of	revisions	in
some	cheap	form,	insert	data	from	a	stream,
validate	data	during	insertion.

Garbage
Collection Exclusive	lock	the	repository	preventing	readers.

Revert
Delta	from	working	tree	to	historical	tree,	and	then
arbitrary	file	access	to	obtain	the	texts	of	differing
files.

Uncommit Revision	graph	access.

Status Revision	graph	access,	revision	text	access,	file
fingerprint	information,	inventory	differencing.

Diff As	status	but	also	file	text	access.

Merge
As	diff	but	needs	up	to	twice	as	many	file	texts	-
base	and	other	for	each	changed	file.	Also	an	initial
fetch	is	needed.

Log

Revision	graph	(entire	at	the	moment)	access,
sometimes	status	between	adjacent	revisions.	Log
of	a	file	needs	per-file-graph.	Dominator	caching	or
similar	tools	may	be	needed	to	prevent	entire	graph
access.

Missing Revision	graph	access,	and	revision	texts	to	show
output.

Update As	for	merge,	but	twice.

Data	access	patterns
Ideally	we	can	make	our	data	access	for	commands	such	as	branch
to	 dovetail	 well	 with	 the	 native	 storage	 in	 the	 repository,	 in	 the
common	 case.	 Doing	 this	 may	 require	 choosing	 the	 behaviour	 of
some	 commands	 to	 allow	 us	 to	 have	 a	 smaller	 range	 of	 access
patterns	 which	we	 can	 optimise	more	 heavily.	 Alternatively	 if	 each
command	 is	 very	 predicable	 in	 its	 data	 access	 pattern	we	may	 be
able	to	hint	to	the	low	level	layers	which	pattern	is	needed	on	a	per
command	basis	to	get	efficient	behaviour.

Command Data	access	pattern
Annotate-
cached

Find	text	name	in	an	inventory,	Recreate	one	text,
recreate	annotation	regions

Annotate-on
demand

Find	file	id	from	name,	then	breadth-first	pre-order
traversal	of	versions-of-the-file	until	the
annotation	is	complete.

Branch
Fetch,	possibly	taking	a	copy	of	any	file	present	in
a	nominated	revision	when	it	is	validated	during
fetch.

Bundle
Revision-graph	as	for	fetch;	then	inventories	for
selected	revision_ids	to	determine	file	texts,	then
mp-parent	deltas	for	all	determined	file	texts.

Commit

Something	like	basis-inventories	read	to
determine	per-file	graphs,	insertion	of	new	texts
(which	may	be	delta	compressed),	generation	of
annotation	regions	if	the	repository	is	configured
to	do	so,	finalisation	of	the	inventory	pointing	at	all
the	new	texts	and	finally	a	revision	and	possibly
signature.

Fetching

Revision-graph	searching	to	find	the	graph
difference.	Scan	the	inventory	data	introduced
during	the	selected	revisions,	and	grab	the	on
disk	data	for	the	found	file	texts,	annotation	region
data,	per-file-graph	data,	piling	all	this	into	a

stream.

Garbage
Collection

Basically	a	mass	fetch	of	all	the	revisions	which
branches	point	at,	then	a	bait	and	switch	with	the
old	repository	thus	removing	unreferenced	data.

Revert

Revision	graph	access	for	the	revision	being
reverted	to,	inventory	extraction	of	that	revision,
dirblock-order	file	text	extract	for	files	that	were
different.

Uncommit

Revision	graph	access	to	synthesise	pending-
merges	linear	access	down	left-hand-side,	with
is_ancestor	checks	between	all	the	found	non-
left-hand-side	parents.

Status

Lookup	the	revisions	added	by	pending	merges
and	their	commit	messages.	Then	an	inventory
difference	between	the	trees	involved,	which	may
include	a	working	tree.	If	there	is	a	working	tree
involved	then	the	file	fingerprint	for	cache-misses
on	files	will	be	needed.	Note	that	dirstate	caches
most	of	this	making	repository	performance
largely	irrelevant:	but	if	it	was	fast	enough	dirstate
might	be	able	to	be	simpler/

Diff
As	status	but	also	file	text	access	for	every	file
that	is	different	-	either	one	text	(working	tree	diff)
or	a	diff	of	two	(revision	to	revision	diff).

Merge

As	diff	but	needs	up	to	twice	as	many	file	texts	-
base	and	other	for	each	changed	file.	Also	an
initial	fetch	is	needed.	Note	that	the	access
pattern	is	probably	id-based	at	the	moment,	but
that	may	be	‘fixed’	with	the	iter_changes	based
merge.	Also	note	that	while	the	texts	from
OTHER	are	the	ones	accessed,	this	is	equivalent
to	the	newest	form	of	each	text	changed	from
BASE	to	OTHER.	And	as	the	repository	looks	at
when	data	is	introduced,	this	should	be	the
pattern	we	focus	on	for	merge.

Log
Revision	graph	(entire	at	the	moment)	access,	log
of	a	file	wants	a	per-file-graph.	Log	-v	will	want
newest-first	inventory	deltas	between	revisions.

Missing Revision	graph	access,	breadth-first	pre-order.
Update As	for	merge,	but	twice.

Patterns	used

Note	that	these	are	able	to	be	changed	by	changing	what	we	store.
For	 instance	 if	 the	 repository	satisfies	mpdiff	 requests,	 then	bundle
can	be	defined	in	terms	of	mpdiff	lookups	rather	than	file	text	lookups
appropriate	 to	 create	 mpdiffs.	 If	 the	 repository	 satisfies	 full	 text
requests	only,	 then	you	need	the	topological	access	to	build	up	the
desired	mpdiffs.

Pattern Commands
Single	file	text annotate,	diff
Files	present	in	one	revision branch
Newest	form	of	files	altered	by	revisions merge,	update?
Topological	access	to	file
versions/deltas annotate-uncached

Stream	all	data	required	to	recreate	revs branch	(lightweight)
Stream	file	texts	in	topological	order bundle
Write	full	versions	of	files,	inv,	rev,	sig commit
Write	deltas	of	files,	inv	for	one	tree commit
Stream	all	data	introduced	by	revs fetch
Regenerate/combine	deltas	of	many
trees fetch,	pack

Reconstruct	all	texts	and	validate	trees check,	fetch

Revision	graph	walk
fetch,	pack,	uncommit,
annotate-uncached,
merge,	log,	missing

Top	down	access	multiple	invs
concurrently

status,	diff,	merge?,
update?

Concurrent	access	to	N	file	texts diff,	merge
Iteration	of	inventory	deltas log	-v,	fetch?

Facilities	to	scale	well

Indices

We	want	<	linear	access	to	all	data	in	the	repository.	This	suggests
everything	is	indexed	to	some	degree.

Often	we	know	the	kind	of	data	we	are	accessing;	which	allows	us	to
partition	our	 indices	if	 that	will	help	(e.g.	by	reducing	the	total	 index
size	for	queries	that	only	care	about	the	revision	graph).

Indices	 that	 support	 our	 data	 access	 patterns	 will	 usually	 display
increased	locality	of	reference,	reducing	the	impact	of	a	large	indices
without	needing	careful	page	size	management	or	other	tricks.

We	need	repository	wide	indices.	For	the	current	repositories	this	is
achieved	 by	 dividing	 the	 keyspace	 (revisions,	 signatures,
inventories,	per-fileid)	and	 then	having	an	append	only	 index	within
each	 keyspace.	 For	 pack	 based	 repositories	 we	 will	 want	 some
means	to	query	the	index	of	each	component	pack,	presumably	as	a
single	logical	index.

It	would	be	nice	if	indexing	was	made	cleanly	separate	from	storage.
So	 that	 suggests	 indices	 don’t	 know	 the	 meaning	 of	 the	 lookup;
indices	which	offer	particular	ordering,	or	graph	walking	facilities	will
clearly	need	 that	 information,	but	perhaps	 they	don’t	need	 to	know
the	semantics	?

Index	size

Smaller	 indexes	 are	 good.	 We	 could	 go	 with	 one	 big	 index,	 or	 a
different	 index	 for	different	operation	styles.	As	multiple	 indices	will
occupy	 more	 space	 in	 total	 we	 should	 consider	 carefully	 about
adding	indices.

Index	ordering

Looking	at	the	data	access	patterns	some	operations	such	as	graph
walking	can	clearly	be	made	more	efficient	by	offering	direct	iteration
rather	 than	 repeated	 reentry	 into	 the	 index	 -	so	having	 indices	 that
support	iteration	in	such	a	style	would	be	useful	eventually.

Changing	our	current	indexes

We	 can	 consider	 introducing	 cleaner	 indices	 in	 advance	 of	 a	 full
pack	based	repository.

There	are	many	possibilities	for	this,	but	I’ve	chosen	one	that	seems
ok	to	me	for	illustration.

A	key	element	 is	 to	consider	when	 indices	are	updated.	 I	 think	 that
the	update	style	proposed	for	pack	based	repositories	-	write	once,
then	 when	 we	 group	 data	 again	 rewrite	 a	 new	 single	 index	 -	 is
sufficent.

Replace	.kndx

We	could	discard	the	per-knit	.kndx	by	writing	a	new	index	at	the	end
of	every	bzr	transaction	indexing	the	new	data	introduced	by	the	bzr
operation.	 e.g.	 at	 the	 end	 of	 fetch.	 This	 can	 be	 based	 on	 the	 new
GraphIndex	index	type.

Encoding	a	knit	entry	into	a	GraphIndex	can	be	done	as	follows:

Change	 the	 key	 to	 include	 a	 prefix	 of	 the	 knit	 name,	 to	 allow
filtering	out	of	data	from	different	knits.
Encode	the	parents	 from	the	knit	as	 the	zeroth	node	reference
list.
If	 the	knit	hunk	was	delta	compressed	encode	 the	node	 it	was
delta	 compressed	 against	 as	 the	 1st	 node	 reference	 list

(otherwise	 the	1st	node	 reference	 list	will	be	empty	 to	 indicate
no	compression	parents).
For	the	value	encode	similarly	to	the	current	knit	format	the	byte
offset	for	the	data	record	in	the	knit,	the	byte	length	for	the	data
record	in	the	knit	and	the	no-end-of-line	flag.

Its	important	to	note	that	knit	repositories	cannot	be	regenerated	by
scanning	.knits,	so	a	mapped	index	is	still	irreplaceable	and	must	be
transmitted	on	push/pull.

A	 potential	 improvement	 exists	 by	 specialising	 this	 further	 to	 not
record	data	that	 is	not	needed	-	e.g.	an	index	of	revisions	does	not
need	 to	 support	 a	 pointer	 to	 a	 parent	 compressed	 text	 as
revisions.knit	 is	 not	 delta-compressed	ever.	 Likewise	 signatures	 do
not	need	the	parent	pointers	at	all	as	there	is	no	‘signature	graph’.

Data

Moving	to	pack	based	repositories

We	have	a	number	of	challenges	to	solve.

Naming	of	files

As	long	as	the	file	name	is	unique	it	does	not	really	matter.	It	might
be	interesting	to	have	it	be	deterministic	based	on	content,	but	there
are	no	specific	problems	we	have	solved	by	doing	that,	and	doing	so
would	 require	 hashing	 the	 full	 file.	 OTOH	 hashing	 the	 full	 file	 is	 a
cheap	 way	 to	 detect	 bit-errors	 in	 transfer	 (such	 as	 windows
corruption).	Non-reused	file	names	are	required	for	data	integrity,	as
clients	having	read	an	index	will	readv	at	arbitrary	times	later.

Discovery	of	files

With	non-listable	transports	how	should	the	collection	of	pack/index

files	be	 found	?	 Initially	 record	a	 list	of	all	 the	pack/index	 files	 from
write	 actions.	 (Require	 writable	 transports	 to	 be	 listable).	 We	 can
then	use	a	heuristic	to	statically	combine	pack/index	files	later.

Housing	files

Combining	indices	on	demand

Merging	data	on	push

A	trivial	implementation	would	be	to	make	a	pack	which	has	just	the
data	needed	for	the	push,	then	send	that.	More	sophisticated	things
would	be	streaming	single-pass	creation,	and	also	using	 this	as	an
opportunity	to	increase	the	packedness	of	the	local	repo.

Choosing	compression/delta	support

Caching	and	writeing	of	data
Repositories	try	to	provide	a	consistent	view	of	the	data	within	them
within	a	‘lock	context’.

Locks

Locks	come	in	two	flavours	-	read	locks	and	write	locks.	Read	locks
allow	data	to	be	read	from	the	repository.	Write	locks	allow	data	to	be
read	 and	 signal	 that	 you	 intend	 to	 write	 data	 at	 some	 point.	 The
actual	writing	of	data	must	take	place	within	a	Write	Group.

Write	 locks	provide	a	cache	of	 repository	data	during	 the	period	of
the	 write	 lock,	 and	 allow	 write_groups	 to	 be	 acquired.	 For	 some
repositories	 the	 presence	 of	 a	 write	 lock	 is	 exclusive	 to	 a	 single
client,	 for	 others	which	are	 lock	 free	or	 use	 server	 side	 locks	 (e.g.
svn),	the	write	lock	simply	provides	the	cache	context.

Write	Groups

Write	 groups	 are	 the	 only	 allowed	means	 for	 inserting	 data	 into	 a
repository.	These	are	created	by	start_write_group,	and	concluded
by	 either	 commit_write_group	 or	 abort_write_group.	 A	 write	 lock
must	be	held	on	 the	 repository	 for	 the	entire	duration.	At	most	one
write	group	can	be	active	on	a	repository	at	a	time.

Write	groups	signal	to	the	repository	the	window	during	which	data	is
actively	 being	 inserted.	 Several	 write	 groups	 could	 be	 committed
during	a	single	lock.

There	is	no	guarantee	that	data	inserted	during	a	write	group	will	be
invisible	 in	 the	 repository	 if	 the	 write	 group	 is	 not	 committed.
Specifically	 repositories	 without	 atomic	 insertion	 facilities	 will	 be

writing	data	as	 it	 is	 inserted	within	the	write	group,	and	may	not	be
able	 to	 revert	 that	 data	 -	 e.g.	 in	 the	 event	 of	 a	 dropped	 SFTP
connection	in	a	knit	repository,	inserted	file	data	will	be	visible	in	the
repository.	 Some	 repositories	 have	 an	 atomic	 insertion	 facility,	 and
for	those	all-or-nothing	will	apply.

The	precise	meaning	of	a	write	group	is	format	specific.	For	instance
a	 knit	 based	 repository	 treats	 the	 write	 group	methods	 as	 dummy
calls,	 simply	 meeting	 the	 api	 that	 clients	 will	 use.	 A	 pack	 based
repository	 will	 open	 a	 new	 pack	 container	 at	 the	 start	 of	 a	 write
group,	and	rename	it	into	place	at	commit	time.

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

Specifications	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

Specifications	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Repository	Streams

Status
Date: 2008-04-11

This	 document	 describes	 the	 proposed	 programming	 interface	 for
streaming	 data	 from	 and	 into	 repositories.	 This	 programming
interface	 should	 allow	 a	 single	 interface	 for	 pulling	 data	 from	 and
inserting	data	into	a	Bazaar	repository.

Contents

Repository	Streams
Status
Motivation
Use	Cases

Fetch	operations
Smart	server	operations

Bundles
Data	conversion

Characteristics
Single	round	trip
Forward-only	reads

Serialisation
Weaves
Bundles

Specification
Requesting	a	stream
Structure	of	a	stream
Consuming	a	stream

factory	metadata

Motivation
To	 eliminate	 the	 current	 requirement	 that	 extracting	 data	 from	 a
repository	requires	either	using	a	slow	format,	or	knowing	the	format
of	both	the	source	repository	and	the	target	repository.

Use	Cases
Here’s	a	brief	description	of	use	cases	 this	 interface	 is	 intended	 to
support.

Fetch	operations

We	 fetch	 data	 between	 repositories	 as	 part	 of	 push/pull/branch
operations.	 Fetching	 data	 is	 currently	 an	 very	 interactive	 process
with	lots	of	requests.	For	performance	having	the	data	be	supplied	in
a	 stream	will	 improve	 push	 and	 pull	 to	 remote	 servers.	 For	 purely
local	 operations	 the	 streaming	 logic	 should	 help	 reduce	 memory
pressure.	In	fetch	operations	we	always	know	the	formats	of	both	the
source	and	target.

Smart	server	operations

With	 the	smart	server	we	support	one	streaming	 format,	but	 this	 is
only	usable	when	both	the	client	and	server	have	the	same	model	of
data,	 and	 requires	 non-optimal	 IO	 ordering	 for	 pack	 to	 pack
operations.	Ideally	we	can	both	provide	optimal	IO	ordering	the	pack
to	pack	case,	and	correct	ordering	for	pack	to	knits.

Bundles

Bundles	also	create	a	stream	of	data	for	revisions	from	a	repository.
Unlike	 fetch	operations	we	do	not	 know	 the	 format	of	 the	 target	at
the	time	the	stream	is	created.	 It	would	be	good	to	be	able	 to	 treat
bundles	as	frozen	branches	and	repositories,	so	a	serialised	stream
should	be	suitable	for	this.

Data	conversion

At	 this	point	we	are	not	 trying	 to	 integrate	data	conversion	 into	 this
interface,	though	it	is	likely	possible.

Characteristics
Some	 key	 aspects	 of	 the	 described	 interface	 are	 discussed	 in	 this
section.

Single	round	trip

All	users	of	this	should	be	able	to	create	an	appropriate	stream	from
a	single	round	trip.

Forward-only	reads

There	 should	 be	no	need	 to	 seek	 in	 a	 stream	when	 inserting	 data
from	 it	 into	 a	 repository.	 This	 places	 an	 ordering	 constraint	 on
streams	which	some	repositories	do	not	need.

Serialisation
At	 this	 point	 serialisation	 of	 a	 repository	 stream	 has	 not	 been
specified.	 Some	 considerations	 to	 bear	 in	 mind	 about	 serialisation
are	worth	noting	however.

Weaves

While	 there	 shouldn’t	 be	 too	 many	 users	 of	 weave	 repositories
anymore,	 avoiding	 pathological	 behaviour	 when	 a	 weave	 is	 being
read	is	a	good	idea.	Having	the	weave	itself	embedded	in	the	stream
is	 very	 straight	 forward	 and	 does	 not	 need	 expensive	 on	 the	 fly
extraction	and	re-diffing	to	take	place.

Bundles

Being	able	to	perform	random	reads	from	a	repository	stream	which
is	 a	 bundle	 would	 allow	 stacking	 a	 bundle	 and	 a	 real	 repository
together.	This	will	need	the	pack	container	format	to	be	used	in	such
a	way	that	we	can	avoid	reading	more	data	than	needed	within	the
pack	container’s	readv	interface.

Specification
This	 describes	 the	 interface	 for	 requesting	 a	 stream,	 and	 the
programming	 interface	 a	 stream	 must	 provide.	 Streams	 that	 have
been	serialised	should	expose	the	same	interface.

Requesting	a	stream

To	request	a	stream,	three	parameters	are	needed:

A	revision	search	to	select	the	revisions	to	include.
A	 data	 ordering	 flag.	 There	 are	 two	 values	 for	 this	 -
‘unordered’	and	‘topological’.	‘unordered’	streams	are	useful
when	 inserting	 into	 repositories	 that	 have	 the	 ability	 to
perform	 atomic	 insertions.	 ‘topological’	 streams	 are	 useful
when	 converting	 data,	 or	 when	 inserting	 into	 repositories
that	 cannot	 perform	 atomic	 insertions	 (such	 as	 knit	 or
weave	based	repositories).
A	complete_inventory	flag.	When	provided	this	flag	signals
the	 stream	 generator	 to	 include	 all	 the	 data	 needed	 to
construct	 the	 inventory	 of	 each	 revision	 included	 in	 the
stream,	 rather	 than	 just	 deltas.	 This	 is	 useful	 when
converting	data	 from	a	repository	with	a	different	 inventory
serialisation,	 as	 pure	 deltas	 would	 not	 be	 able	 to	 be
reconstructed.

Structure	of	a	stream

A	stream	 is	an	object.	 It	can	be	consistency	checked	via	 the	 check
method	 (which	 consumes	 the	 stream).	 The	 iter_contents	method
can	be	used	 to	 iterate	 the	contents	of	 the	stream.	The	contents	of
the	stream	are	a	series	of	top	level	records,	each	of	which	contains
one	or	more	bytestrings	(potentially	as	a	delta	against	another	 item

in	the	repository)	and	some	optional	metadata.

Consuming	a	stream

To	 consume	 a	 stream,	 obtain	 an	 iterator	 from	 the	 streams
iter_contents	method.	This	 iterator	will	 yield	 the	 top	 level	 records.
Each	 record	has	 two	attributes.	One	 is	 key_prefix	which	 is	a	 tuple
key	prefix	for	the	names	of	each	of	the	bytestrings	in	the	record.	The
other	 attribute	 is	 entries,	 an	 iterator	 of	 the	 individual	 items	 in	 the
record.	 Each	 item	 that	 the	 iterator	 yields	 is	 a	 factory	 which	 has
metadata	 about	 the	 entry	 and	 the	 ability	 to	 return	 the	 compressed
bytes.	 This	 factory	 can	 be	 decorated	 to	 allow	 obtaining	 different
representations	 (for	 example	 from	 a	 compressed	 knit	 fulltext	 to	 a
plain	fulltext).

In	pseudocode:

stream	=	repository.get_repository_stream(search,	UNORDERED,	False

for	record	in	stream.iter_contents():

				for	factory	in	record.entries:

								compression	=	factory.storage_kind

								print	"Object	%s,	compression	type	%s,	%d	bytes	long."	%	(

												record.key_prefix	+	factory.key,

												compression,	len(factory.get_bytes_as(compression)))

This	structure	should	allow	stream	adapters	to	be	written	which	can
coerce	all	records	to	the	type	of	compression	that	a	particular	client
needs.	 For	 instance,	 inserting	 into	 weaves	 requires	 fulltexts,	 so	 a
stream	 would	 be	 adapted	 for	 weaves	 by	 an	 adapter	 that	 takes	 a
stream,	 and	 the	 target	 weave,	 and	 then	 uses	 the	 target	 weave	 to
reconstruct	 full	 texts	(which	 is	all	 that	 the	weave	inserter	would	ask
for).	In	a	similar	approach,	a	stream	could	internally	delta	compress
many	 fulltexts	and	be	able	 to	answer	both	 fulltext	and	compressed
record	requests	without	extra	IO.

factory	metadata

Valid	attributes	on	the	factory	are:
sha1:	 Optional	 ascii	 representation	 of	 the	 sha1	 of	 the
bytestring	(after	delta	reconstruction).
storage_kind:	Required	kind	of	storage	compression	that	has
been	used	on	the	bytestring.	One	of	mpdiff,	knit-annotated-
ft,	knit-annotated-delta,	knit-ft,	knit-delta,	fulltext.
parents:	 Required	 graph	 parents	 to	 associate	 with	 this
bytestring.
compressor_data:	 Required	 opaque	 data	 relevant	 to	 the
storage_kind.	(This	is	set	to	None	when	the	compressor	has
no	special	state	needed)
key:	 The	 key	 for	 this	 bytestring.	 Like	 each	 parent	 this	 is	 a
tuple	that	should	have	the	key_prefix	prepended	to	it	to	give
the	unified	repository	key	name.

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

Specifications	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

Specifications	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Case	Insensitive	File	Systems
Bazaar	must	be	portable	across	operating-systems	and	file-systems.
While	 the	 primary	 file-system	 for	 an	 operating-system	 might	 have
some	 particular	 characteristics,	 it’s	 not	 necessary	 that	 all	 file-
systems	for	that	operating-system	will	have	the	same	characteristics.

For	 example,	 the	 FAT32	 file-system	 is	 most	 commonly	 found	 on
Windows	 operating	 systems,	 and	 has	 the	 characteristics	 usually
associated	 with	 a	 Windows	 file-system.	 However,	 USB	 devices
means	FAT32	file-systems	are	often	used	with	Linux,	so	the	current
operating	 system	 doesn’t	 necessarily	 reflect	 the	 capabilities	 of	 the
file-system.

Bazaar	supports	3	kinds	of	file-systems,	each	to	different	degrees.

Case-sensitive	 file-systems:	 This	 is	 the	 file-system	 generally
used	 on	 Linux	 -	 2	 files	 can	 differ	 only	 by	 case,	 and	 the	 exact
case	must	be	used	when	opening	a	file.
Case-insensitive,	case-preserving	(cicp)	file-systems:	This	is	the
file-system	generally	used	on	Windows;	FAT32	is	an	example	of
such	a	file-system.	Although	existing	files	can	be	opened	using
any	case,	the	exact	case	used	to	create	the	file	is	preserved	and
available	for	programs	to	query.	Two	files	that	differ	only	by	case
is	not	allowed.
Case-insensitive:	 This	 is	 the	 file-system	 used	 by	 very	 old
Windows	versions	and	 is	 rarely	encountered	 “in	 the	wild”.	Two
files	that	differ	only	by	case	is	not	allowed	and	the	case	used	to
create	a	file	is	not	preserved.

As	can	be	 implied	by	 the	above	descriptions,	only	 the	 first	 two	are
considered	relevant	to	a	modern	Bazaar.

For	 more	 details,	 including	 use	 cases,	 please	 see	 http://bazaar-

http://bazaar-vcs.org/CasePreservingWorkingTreeUseCases

vcs.org/CasePreservingWorkingTreeUseCases

Handling	these	file-systems
The	 fundamental	 problem	 handling	 these	 file-systems	 is	 that	 the
user	may	 specify	 a	 file	 name	 or	 inventory	 item	 with	 an	 “incorrect”
case	-	where	“incorrect”	simply	means	different	than	what	is	stored	-
from	the	user’s	point-of-view,	the	filename	is	still	correct,	as	it	can	be
used	to	open,	edit	delete	etc	the	item.

The	approach	Bazaar	 takes	 is	 to	 “fixup”	each	of	 the	command-line
arguments	 which	 refer	 to	 a	 filename	 or	 an	 inventory	 item	 -	 where
“fixup”	means	 to	adjust	 the	case	specified	by	 the	user	so	 it	exactly
matches	an	existing	item.

There	are	two	places	this	match	can	be	performed	against	-	the	file-
system	and	the	Bazaar	inventory.	When	looking	at	a	case-insensitive
file-system,	it	is	impossible	to	have	2	names	that	differ	only	by	case,
so	there	is	no	ambiguity.	The	inventory	doesn’t	have	the	same	rules,
but	 it	 is	 expected	 that	 projects	 which	 wish	 to	 work	 with	 Windows
would,	by	convention,	avoid	filenames	that	differ	only	by	case.

The	rules	for	such	fixups	turn	out	to	be	quite	simple:

If	an	argument	refers	to	an	existing	inventory	item,	we	fixup	the
argument	 using	 the	 inventory.	 This	 is,	 basically,	 all	 commands
that	take	a	filename	or	directory	argument	other	than	‘add’	and
in	some	cases	‘mv’
If	an	argument	refers	to	an	existing	filename	for	the	creation	of
an	inventory	item	(eg,	add),	then	the	case	of	the	existing	file	on
the	 disk	 will	 be	 used.	 However,	 Bazaar	 must	 still	 check	 the
inventory	to	prevent	accidentally	creating	2	inventory	items	that
differ	only	by	case.
If	an	argument	 results	 in	 the	creation	of	a	new	 filename	(eg,	a
move	destination),	 the	argument	will	be	used	as	specified.	Bzr
will	 create	 a	 file	 and	 inventory	 item	 that	 exactly	 matches	 the

case	specified	(although	as	above,	care	must	be	taken	to	avoid
creating	two	inventory	items	that	differ	only	by	case.)

Implementation	of	support	for	these	file-
systems
From	 the	 description	 above,	 it	 can	 be	 seen	 the	 implementation	 is
fairly	 simple	 and	 need	 not	 intrude	 on	 the	 internals	 of	 Bazaar	 too
much;	most	of	 the	 time	 it	 is	 simply	converting	a	string	specified	by
the	user	 to	 the	“canonical”	 form	as	stored	 in	either	 the	 inventory	or
filesystem.	These	boil	down	to	the	following	new	API	functions:

osutils.canonical_relpath()	 -	 like	 osutils.relpath()	 but	 adjust	 the
case	of	the	result	to	match	any	existing	items.
Tree.get_canonical_inventory_path	 -	 somewhat	 like
Tree.get_symlink_target(),	Tree.get_file_by_path()	etc;	returns	a
name	with	the	case	adjusted	to	match	existing	inventory	items.
osutils.canonical_relpaths()	 and
Tree.get_canonical_inventory_paths()	 -	 like	 the	 ‘singular’
versions	above,	but	accept	and	return	sequences	and	therefore
offer	more	optimization	opportunities	when	working	with	multiple
names.

The	only	complication	 is	 the	 requirement	 that	Bazaar	not	allow	 the
creation	of	 items	 that	 differ	 only	by	 case	on	 such	 file-systems.	For
this	 requirement,	 case-insensitive	 and	 cicp	 file-systems	 can	 be
treated	the	same.	The	‘case_sensitive’	attribute	on	a	MutableTree	is
used	to	control	this	behaviour.

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

Specifications	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

Specifications	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Development	repository	formats
Contents

Development	repository	formats
Using	development	repository	formats

Motivation
Format	names
Support	for	upgrade	and	migration
Before	converting	to	a	development	format
Creating	a	new	development	format	branch
Creating	a	new	development	format	repository
Upgrading	 an	 existing	 branch	 or	 repository	 to
development
Starting	a	new	development	format	branch	from	one
in	an	older	format
Develoment	formats	for	bzr-svn	users
Reporting	problems

Technical	notes
When	to	create	a	new	development	format
How	to	create	a	new	development	format

Format	Details
development
development-rich-root
development-subtree
Development6RichRoot[Subtree]

Using	development	repository	formats

Motivation

We	 believe	 that	 we	 can	 continue	 to	 gain	 substantial	 performance
benefits	by	altering	the	repository	storage	in	bzr.	The	more	feedback
we	 can	 get	 on	 the	 changes	 during	 the	 development	 process	 the
better.

To	make	it	possible	to	get	more	feedback	we	are	going	to	expose	the
current	development	 formats	 to	 the	users	of	our	development	 trunk
‘bzr.dev’.	 The	 technical	 details	 of	 the	 individual	 formats	 are	 at	 the
end	of	this	document.

Format	names

The	current	development	 format	will	 be	called	 ‘development’.	Each
time	the	development	format	changes,	the	prior	development	format
will	be	renamed	to	e.g.	‘development0’,	‘development1’	etc.

When	a	release	of	bzr	is	done,	all	the	older	numbered	development
formats	will	be	removed	from	‘bzr.dev’,	so	we	will	not	be	carrying	the
code	for	them	around	indefinately.

Support	for	upgrade	and	migration

The	preservation	and	renaming	policy	makes	 it	quite	safe	 for	users
to	test	out	development	formats	(though	we	cannot	guarantee	bugs
of	course	-	it	is	development	code):

users	of	a	given	development	 format	can	always	get	back
onto	 regular	 formats	by	switching	 to	 the	next	bzr	 released
version	which	is	guaranteed	to	be	able	to	upgrade	from	that

development	format.
users	that	routinely	use	bzr.dev	should	upgrade	to	the	most
recent	 development	 version	 available	 before	 pulling	 in
bzr.dev	 changes	around	 release	 time,	 as	 that	 is	when	old
format	cleanups	will	occur.

We	 cannot	 guarantee	 backwards	 compatability	 though,	 because
some	 of	 the	 planned	work	may	 be	 ‘upgrade	 only’.	 Please	 see	 bzr
help	 formats	 for	 the	 text	 of	 the	 ‘development’	 format	 which	 will
indicate	 its	 compatability	 with	 other	 formats	 if	 you	 need	 to
interoperate	with	users	or	services	that	do	not	have	bzr.dev.

Before	converting	to	a	development	format

Run	a	 bzr	check	with	 the	version	of	bzr	 that	you	will	be	using.	 bzr
check	gets	updated	as	we	find	new	things	that	are	inconsistent	with
existing	 repositories.	While	only	a	small	number	of	 repositories	are
likely	to	have	any	given	error,	it	is	best	to	check	just	in	case.

If	bzr	check	reports	a	problem,	run	this	command:

bzr	reconcile

Note	 that	 reconcile	 can	 take	 many	 hours,	 particularly	 if	 you	 are
reconciling	 one	 of	 the	 ‘knit’	 or	 ‘dirstate’	 format	 repositories.	 If	 you
have	 such	 a	 repository,	 consider	 upgrading	 it	 to	 ‘pack-0.92’	 first,
which	will	perform	reconcile	significantly	faster.

Creating	a	new	development	format	branch

If	 you’re	 starting	 a	 project	 from	 scratch,	 it’s	 easy	 to	 make	 it	 a
development	one.	Here’s	how:

cd	my-stuff

bzr	init	--development

bzr	add

bzr	commit	-m	"initial	import"

In	other	words,	use	the	normal	sequence	of	commands	but	add	the	-
-development	option	to	the	init	command.

Creating	a	new	development	format	repository

If	 you’re	 starting	 a	 project	 from	 scratch	 and	 wish	 to	 use	 a	 shared
repository	 for	 branches,	 you	 can	make	 it	 a	 development	 repository
like	this:

cd	my-repo

bzr	init-repo	--development	.

cd	my-stuff

bzr	init

bzr	add

bzr	commit	-m	"initial	import"

In	other	words,	use	the	normal	sequence	of	commands	but	add	the	-
-development	option	to	the	init-repo	command.

Upgrading	an	existing	branch	or	repository	to
development

If	 you	 have	 an	 existing	 branch	 and	 wish	 to	 migrate	 it	 to	 a
development	format,	use	the	upgrade	command	like	this:

bzr	upgrade	--development	path-to-my-branch

If	you	are	using	a	shared	repository,	run:

bzr	upgrade	--development	ROOT_OF_REPOSITORY

to	 upgrade	 the	 history	 database.	 Note	 that	 this	 will	 not	 alter	 the
branch	format	of	each	branch,	so	you	will	need	to	also	upgrade	each

branch	individually	if	you	are	upgrading	from	an	old	(e.g.	<	0.17)	bzr.
More	modern	bzr’s	will	already	have	the	branch	format	at	our	latest
branch	format	which	adds	support	for	tags.

Starting	a	new	development	format	branch	from
one	in	an	older	format

This	can	be	done	in	one	of	several	ways:

1.	 Create	a	new	branch	and	pull	into	it
2.	 Create	a	standalone	branch	and	upgrade	its	format
3.	 Create	a	knitpack	shared	repository	and	branch	into	it

Here	are	the	commands	for	using	the	pull	approach:

bzr	init	--development	my-new-branch

cd	my-new-branch

bzr	pull	my-source-branch

Here	are	the	commands	for	using	the	upgrade	approach:

bzr	branch	my-source-branch	my-new-branch

cd	my-new-branch

bzr	upgrade	--development	.

Here	are	the	commands	for	the	shared	repository	approach:

cd	my-repo

bzr	init-repo	--development	.

bzr	branch	my-source-branch	my-new-branch

cd	my-new-branch

As	a	 reminder,	 any	of	 the	above	approaches	 can	 fail	 if	 the	 source
branch	has	inconsistent	data	within	it	and	hasn’t	been	reconciled	yet.
Please	be	sure	to	check	that	before	reporting	problems.

Develoment	formats	for	bzr-svn	users

If	you	are	using	bzr-svn	or	are	testing	the	prototype	subtree	support,
you	can	still	use	and	assist	in	testing	the	development	formats.	The
commands	to	use	are	identical	to	the	ones	given	above	except	that
the	name	of	the	format	to	use	is	development-subtree.

WARNING:	Note	 that	bzr	only	supports	one-way	conversion	 to	 the
subtree	 format	 development-subtree.	 Once	 you	 are	 using
development-subtree	 you	 cannot	 pull	 or	merge	 back	 into	 a	 regular
format	such	as	pack-0.92,	development	etc.

The	 development-subtree	 format	 is	 required	 for	 the	 bzr-svn	 plug-in
but	 should	 otherwise	 not	 be	 used	 until	 the	 subtree	 feature	 is
complete	within	bzr.

Reporting	problems

If	you	need	any	help	or	encounter	any	problems,	please	contact	the
developers	 via	 the	 usual	 ways,	 i.e.	 chat	 to	 us	 on	 IRC	 or	 send	 a
message	to	our	mailing	list.	See	http://bazaar-vcs.org/BzrSupport	for
contact	details.

http://bazaar-vcs.org/BzrSupport

Technical	notes

When	to	create	a	new	development	format

Whenever	 a	 code	 change	 will	 result	 in	 incorrect	 behaviour	 with
existing	 development	 repositories.	 Changes	 in
push/pull/init/commit/merge	 have	 all	 been	 known	 to	 do	 this	 in	 the
past.

How	to	create	a	new	development	format

1.	 Register	 two	 new	 formats	 with	 the	 next	 available	 sequence
number.	e.g.	development1	and	development1-subtree.	(You	can
see	 the	 current	 development	 format	 for	 an	 example.	 These
should:

Use	your	new	development	repository/branch/tree	classes
Have	really	bare	bones	help	-	something	like	‘changes	X	to
be	Y	see	...developers/development-repo.html’
Be	hidden	and	experimental.

2.	 Change	 the	 repository	 class	 (or	 branch	 or	 tree)	 in	 the
development	 and	 development-subtree	 formats	 to	 point	 to	 the
new	class	you	are	creating.

3.	 Add	a	new	development	format	(and	tests!).	Repository	formats
are	 in	 bzrlib.repofmt.	 You	 probably	 want	 to	 reproduce	 the
current	development	format	from	bzrlib.repofmt.pack_repo	with
just	new	disk	format	strings,	_get_matching_bzrdir	and	help.

4.	 Register	your	development	format	with	the	various	registries.	At
the	moment	you	need	to	update:

1.	 bzrlib/bzrdir.py	to	register	the	WT/Branch/Repository

collection.
2.	 bzrlib/workingtree.py,	 bzrlib/branch.py,

bzrlib/repository.py,	each	one	maintains	a	direct	 list
of	their	respective	formats.

3.	 For	 repositories,	 you	 also	 need	 to	 update	 the
InterKnit1and2	class.	This	is	responsible	for	converting
between	rich-root	and	non-rich-root	repositories.

4.	 For	 repositories	 based	 on	 KnitPackRepository,	 you
need	to	update	bzrlib/tests/test_pack_repository.py
to	add	the	class	to	the	tested	permutations.

5.	 Alter	any	other	things	that	do	class	based	tests.	The	easiest	way
to	 find	 these	 is	 a	 grep	 for	Development	 in	 bzrlib	 -	 and	 please
refactor	as	you	find	these	to	reduce	the	relevance	this	step	has,
as	it	should	not	need	to	exist.

6.	 Now	subclass/create	from	scratch/whatever	the	live	object	code
you	need	to	change	to	introduce	your	new	format.	Keep	in	mind
that	eventually	it	will	become	the	default	format,	so	please	don’t
keep	subclassing	the	last	releases	code,	rather	consider	making
the	last	releases	code	a	subclass	of	your	new	code	(if	there	is	a
lot	 in	 common)	 so	 that	 we	 can	 eventually	 remove	 that	 format
once	it	becomes	ancient	(or	relegate	it	to	a	plugin).

7.	 Once	 you	 have	 made	 the	 changes	 that	 required	 a	 new	 disk
format,	 you	 should	 submit	 the	 resulting	 branch	 to	 be	merged.
Other	changes	-	to	take	advantage	of	whatever	new	feature	you
have	 added	 -	 should	 be	 sent	 in	 separately,	 because	 the	 disk
level	 changes	 are	 a	 contention	 point	 between	 multiple
developers.

Format	Details

development

Not	currently	available,	as	our	development	formats	are	all	rich	root
or	subtrees	now.

development-rich-root

Currently	an	alias	for	Development6Subtree

development-subtree

Currently	an	alias	for	Development6Subtree

Development6RichRoot[Subtree]

These	 formats	 use	 the	 new	 groupcompress	 delta	 compress	 and	 a
CHK(Content	Hash	Key)	based	inventory	store	which	is	much	faster
at	 incremental	 operations	 than	 the	 prior	 XML	 based	 store.	 Note
Converting	 from	 a	 non-rich-root	 to	 a	 rich-root	 format	 is	 a	 one-way
upgrade,	and	you	cannot	merge	back	afterwards:	using	 this	 format
for	 everyday	 use	 is	 likely	 to	 cause	 all	 developers	 of	 a	 project	 to
upgrade	 to	 a	 rich-root	 format	 themselves.	 This	 is	 fine,	 as	 bzr	 is
moving	to	make	rich-root	formats	the	default	and	to	get	all	users	to
upgrade,	but	we	have	not	 finalised	 the	migration	process,	and	until
we	do	do	not	 recomment	 that	 casual	users	upgrade.	Users	of	bzr-
svn	 are	 already	 using	 rich-root	 formats	 and	 can	 test	 with	 this	with
impunity.

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Specifications	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

Specifications	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

KnitPack	repository	format
Contents

KnitPack	repository	format
Using	KnitPack	repositories

Motivation
Preparation
Creating	a	new	knitpack	branch
Creating	a	new	knitpack	repository
Upgrading	 an	 existing	 branch	 or	 repository	 to
knitpack	format
Starting	a	new	knitpack	branch	from	one	in	an	older
format
Testing	packs	for	bzr-svn	users
Reporting	problems

Technical	notes

Using	KnitPack	repositories

Motivation

KnitPack	is	a	new	repository	format	for	Bazaar,	which	is	expected	to
be	faster	both	locally	and	over	the	network,	is	usually	more	compact,
and	will	work	with	more	FTP	servers.

Our	 benchmarking	 results	 to	 date	 have	 been	 very	 promising.	 We
fully	 expect	 to	 make	 a	 pack-based	 format	 the	 default	 in	 the	 near
future.	We	would	 therefore	 like	 as	many	 people	 as	 possible	 using
KnitPack	repositories,	benchmarking	the	results	and	telling	us	where
improvements	are	still	needed.

Preparation

A	 small	 percentage	 of	 existing	 repositories	 may	 have	 some
inconsistent	 data	 within	 them.	 It’s	 is	 a	 good	 idea	 to	 check	 the
integrity	 of	 your	 repositories	 before	 migrating	 them	 to	 knitpack
format.	To	do	this,	run:

bzr	check

If	that	reports	a	problem,	run	this	command:

bzr	reconcile

Note	that	this	can	take	many	hours	for	repositories	with	deep	history
so	be	sure	to	set	aside	some	time	for	this	if	it	is	required.

Creating	a	new	knitpack	branch

If	 you’re	 starting	 a	 project	 from	 scratch,	 it’s	 easy	 to	 make	 it	 a

knitpack	one.	Here’s	how:

cd	my-stuff

bzr	init	--pack-0.92

bzr	add

bzr	commit	-m	"initial	import"

In	other	words,	use	the	normal	sequence	of	commands	but	add	the	-
-pack-0.92	option	to	the	init	command.

Note:	In	bzr	0.92,	this	format	was	called	knitpack-experimental.

Creating	a	new	knitpack	repository

If	 you’re	 starting	 a	 project	 from	 scratch	 and	 wish	 to	 use	 a	 shared
repository	 for	branches,	you	can	make	 it	a	 knitpack	 repository	 like
this:

cd	my-repo

bzr	init-repo	--pack-0.92	.

cd	my-stuff

bzr	init

bzr	add

bzr	commit	-m	"initial	import"

In	other	words,	use	the	normal	sequence	of	commands	but	add	the	-
-pack-0.92	option	to	the	init-repo	command.

Upgrading	an	existing	branch	or	repository	to
knitpack	format

If	you	have	an	existing	branch	and	wish	 to	migrate	 it	 to	a	 knitpack
format,	use	the	upgrade	command	like	this:

bzr	upgrade	--pack-0.92	path-to-my-branch

If	you	are	using	a	shared	repository,	run:

bzr	upgrade	--pack-0.92	ROOT_OF_REPOSITORY

to	 upgrade	 the	 history	 database.	 Note	 that	 this	 will	 not	 alter	 the
branch	format	of	each	branch,	so	you	will	need	to	also	upgrade	each
branch	individually	if	you	are	upgrading	from	an	old	(e.g.	<	0.17)	bzr.
More	modern	bzr’s	will	already	have	the	branch	format	at	our	latest
branch	format	which	adds	support	for	tags.

Starting	a	new	knitpack	branch	from	one	in	an	older
format

This	can	be	done	in	one	of	several	ways:

1.	 Create	a	new	branch	and	pull	into	it
2.	 Create	a	standalone	branch	and	upgrade	its	format
3.	 Create	a	knitpack	shared	repository	and	branch	into	it

Here	are	the	commands	for	using	the	pull	approach:

bzr	init	--pack-0.92	my-new-branch

cd	my-new-branch

bzr	pull	my-source-branch

Here	are	the	commands	for	using	the	upgrade	approach:

bzr	branch	my-source-branch	my-new-branch

cd	my-new-branch

bzr	upgrade	--pack-0.92	.

Here	are	the	commands	for	the	shared	repository	approach:

cd	my-repo

bzr	init-repo	--pack-0.92	.

bzr	branch	my-source-branch	my-new-branch

cd	my-new-branch

As	a	 reminder,	 any	of	 the	above	approaches	 can	 fail	 if	 the	 source
branch	has	inconsistent	data	within	it	and	hasn’t	been	reconciled	yet.
Please	be	sure	to	check	that	before	reporting	problems.

Testing	packs	for	bzr-svn	users

If	you	are	using	bzr-svn	or	are	testing	the	prototype	subtree	support,
you	can	still	use	and	assist	 in	 testing	KnitPacks.	The	commands	to
use	are	 identical	 to	 the	ones	given	above	except	 that	 the	name	of
the	format	to	use	is	knitpack-subtree-experimental.

WARNING:	 Note	 that	 the	 subtree	 formats,	 dirstate-subtree	 and
knitpack-subtree-experimental,	are	not	production	strength	yet	and
may	cause	unexpected	problems.	They	are	required	for	the	bzr-svn
plug-in	but	should	otherwise	only	be	used	by	people	happy	to	live	on
the	bleeding	edge.	 If	you	are	using	bzr-svn,	you’re	on	 the	bleeding
edge	anyway.	:-)

Reporting	problems

If	you	need	any	help	or	encounter	any	problems,	please	contact	the
developers	 via	 the	 usual	 ways,	 i.e.	 chat	 to	 us	 on	 IRC	 or	 send	 a
message	to	our	mailing	list.	See	http://bazaar-vcs.org/BzrSupport	for
contact	details.

http://bazaar-vcs.org/BzrSupport

Technical	notes
Bazaar	0.92	adds	a	new	format	 (experimental	at	 first)	 implemented
in	bzrlib.repofmt.pack_repo.py.

This	 format	 provides	 a	 knit-like	 interface	which	 is	 quite	 compatible
with	 knit	 format	 repositories:	 you	 can	 get	 a	 VersionedFile	 for	 a
particular	 file-id,	 or	 for	 revisions,	 or	 for	 the	 inventory,	 even	 though
these	do	not	correspond	to	single	files	on	disk.

The	on-disk	format	is	that	the	repository	directory	contains	these	files
and	subdirectories:

packs/ completed	readonly	packs
indices/ indices	for	completed	packs

upload/ temporary	files	for	packs	currently	being
written

obsolete_packs/ packs	that	have	been	repacked	and	are	no
longer	normally	needed

pack-names index	of	all	live	packs
lock/ lockdir

Note	that	for	consistency	we	always	write	“indices”	not	“indexes”.

This	is	implemented	on	top	of	pack	files,	which	are	written	once	from
start	 to	 end,	 then	 left	 alone.	 A	 pack	 consists	 of	 a	 body	 file,	 plus
several	 index	 files.	There	 are	 four	 index	 files	 for	 each	pack,	which
have	 the	same	basename	and	an	extension	 indicating	 the	purpose
of	the	index:

extn Purpose Key References

.tix File	texts file_id,	revision_id

per-file	parents,
compression	basis	per-
file	parents

.six revision_id,

Signatures
.rix Revisions revision_id, revision	parents

.iix Inventory revision_id,
revision	parents,
compression	base

Indices	 are	 accessed	 through	 the	 bzrlib.index.GraphIndex	 class.
Indices	are	 stored	as	 sorted	 files	on	disk.	Each	 line	 is	 one	 record,
and	contains:

key	fields
a	value	string	-	for	all	these	indices,	this	is	an	ascii	decimal
pair	 of	 “offset	 length”	 giving	 the	position	of	 the	 referenced
data	within	the	pack	body	file
a	list	of	zero	or	more	reference	lists

The	 reference	 lists	 let	 a	 graph	 be	 stored	 within	 the	 index.	 Each
reference	 list	 entry	 points	 to	 another	 entry	 in	 the	 same	 index.	 The
references	are	represented	as	a	byte	offset	for	the	target	within	the
index	file.

When	a	compression	base	is	given,	it	indicates	that	the	body	of	the
text	or	inventory	is	a	forward	delta	from	the	referenced	revision.	The
compression	base	list	must	have	length	0	or	1.

Like	 packs,	 indexes	 are	 written	 only	 once	 and	 then	 unmodified.	 A
GraphIndex	 builder	 is	 a	 mutable	 in-memory	 graph	 that	 can	 be
sorted,	 cross-referenced	 and	 written	 out	 when	 the	 write	 group
completes.

There	can	also	be	index	entries	with	a	value	of	‘a’	for	absent.	These
records	 exist	 just	 to	 be	 pointed	 to	 in	 a	 graph.	 This	 is	 used,	 for
example,	to	give	the	revision-parent	pointer	when	the	parent	revision
is	in	a	previous	pack.

The	data	content	for	each	record	is	a	knit	data	chunk.	The	knits	are
always	 unannotated	 -	 the	 annotations	 must	 be	 generated	 when

needed.	 (We’d	 like	 to	 cache/memoize	 the	 annotations.)	 The	 data
hunks	can	be	moved	between	packs	without	needing	to	recompress
them.

It	is	not	possible	to	regenerate	an	index	from	the	body	file,	because	it
contains	information	stored	in	the	knit	index	that’s	not	in	the	body.	(In
particular,	 the	per-file	 graph	 is	 only	 stored	 in	 the	 index.)	We	would
like	to	change	this	in	a	future	format.

The	lock	is	a	regular	LockDir	lock.	The	lock	is	only	held	for	a	much
reduced	scope,	while	updating	the	pack-names	file.	The	bulk	of	 the
insertion	 can	 be	 done	 without	 the	 repository	 locked.	 This	 is	 an
implementation	 detail;	 the	 repository	 user	 should	 still	 call
repository.lock_write	at	the	regular	time	but	be	aware	this	does	not
correspond	to	a	physical	mutex.

Read	locks	control	caching	but	do	not	affect	writers.

The	newly-added	repository	write	group	concept	is	very	important	to
KnitPack	 repositories.	 When	 start_write_group	 is	 called,	 a	 new
temporary	pack	is	created	and	all	modifications	to	the	repository	will
go	 into	 it	 until	 either	 commit_write_group	 or	 abort_write_group	 is
called,	 at	 which	 time	 it	 is	 either	 finished	 and	 moved	 into	 place	 or
discarded	respectively.	Write	groups	cannot	be	nested,	only	one	can
be	underway	at	a	time	on	a	Repository	instance	and	they	must	occur
within	a	write	lock.

Normally	 the	 data	 for	 each	 revision	 will	 be	 entirely	 within	 a	 single
pack	but	this	is	not	required.

When	a	pack	is	finished,	it	gets	a	final	name	based	on	the	md5	of	all
the	data	written	into	the	pack	body	file.

The	pack-names	 file	gives	the	 list	of	all	 finished	non-obsolete	packs.
(This	 should	 always	 be	 the	 same	 as	 the	 list	 of	 files	 in	 the	 packs/

directory,	 but	 the	 file	 is	 needed	 for	 readonly	 http	 clients	 that	 can’t
easily	 list	 directories,	 and	 it	 includes	 other	 information.)	 The
constraint	 on	 the	 pack-names	 list	 is	 that	 every	 file	 mentioned	must
exist	in	the	packs/	directory.

In	 rare	 cases,	 when	 a	 writer	 is	 interrupted,	 about-to-be-removed
packs	may	still	be	present	in	the	directory	but	removed	from	the	list.

As	well	as	 the	 list	of	names,	 the	pack-names	 file	also	contains	 the
size,	 in	bytes,	of	each	of	 the	four	 indices.	This	 is	used	to	bootstrap
bisection	search	within	the	indices.

In	 normal	 use,	 one	 pack	 will	 be	 created	 for	 each	 commit	 to	 a
repository.	This	would	build	up	to	an	 inefficient	number	of	 files	over
time,	 so	 a	 repack	 operation	 is	 available	 to	 recombine	 them,	 by
producing	larger	files	containing	data	on	multiple	revisions.	This	can
be	 done	 manually	 by	 running	 bzr	 pack,	 and	 it	 also	 may	 happen
automatically	when	a	write	group	is	committed.

The	 repacking	 strategy	 used	 at	 the	 moment	 tries	 to	 balance	 not
doing	too	much	work	during	commit	with	not	having	too	many	small
files	 left	 in	 the	 repository.	 The	 algorithm	 is	 roughly	 this:	 the	 total
number	 of	 revisions	 in	 the	 repository	 is	 expressed	 as	 a	 decimal
number,	 e.g.	 “532”.	 Then	 we’ll	 repack	 until	 we	 have	 five	 packs
containing	 a	 hundred	 revisions	 each,	 three	 packs	 containing	 ten
revisions	each,	and	two	packs	with	single	revisions.	This	means	that
each	 revision	 will	 normally	 initially	 be	 created	 in	 a	 single-revision
pack,	then	moved	to	a	ten-revision	pack,	then	to	a	100-pack,	and	so
on.

As	 with	 other	 repositories,	 in	 normal	 use	 data	 is	 only	 inserted.
However,	in	some	circumstances	we	may	want	to	garbage-collect	or
prune	existing	data,	or	reconcile	indexes.

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

Specifications	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Implementation	notes
BTree	 Index	 Prefetch	 —	 How	 bzr	 decides	 to	 pre-read	 extra
nodes	in	the	btree	index.
Computing	last_modified	values	for	inventory	entries
Content	filtering
LCA	Tree	Merging	—	Merging	 tree-shape	when	 there	 is	 not	 a
single	unique	ancestor	(criss-cross	merge).

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

Implementation	notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

BTree	Index	Prefetch
This	 document	 outlines	 how	we	 decide	 to	 pre-read	 extra	 nodes	 in
the	btree	index.

Rationale
Because	of	the	latency	involved	in	making	a	request,	it	is	often	better
to	make	fewer	large	requests,	rather	than	more	small	requests,	even
if	some	of	the	extra	data	will	be	wasted.

Example

Using	 my	 connection	 as	 an	 example,	 I	 have	 a	 max	 bandwidth	 of
160kB/s,	 and	 a	 latency	 of	 between	 100-400ms	 to	 London,	 I’ll	 use
200ms	 for	 this	 example.	 With	 this	 connection,	 in	 200ms	 you	 can
download	 32kB.	 So	 if	 you	make	 10	 requests	 for	 4kB	 of	 data,	 you
spend	 10*.2s	 =	 2s	 sending	 the	 requests,	 and	 4*10/160	 =	 .25s
actually	downloading	 the	data.	 If,	 instead,	you	made	3	 requests	 for
32kB	 of	 data	 each,	 you	 would	 take	 3*.2s	 =	 .6s	 for	 requests,	 and
32*3/160	=	 .6s	 for	downloading	 the	data.	So	you	save	2.25	-	1.2	=
1.05s	even	 though	you	downloaded	32*3-4*10	=	56kB	of	data	 that
you	probably	don’t	need.	On	the	other	hand,	 if	you	made	1	request
for	480kB,	 you	would	 take	 .2s	 for	 the	 request,	 and	480/160=3s	 for
the	data.	So	you	end	up	taking	3.2s,	because	of	the	wasted	440kB.

BTree	Structure
This	 is	meant	 to	give	a	basic	 feeling	 for	how	the	btree	 index	 is	 laid
out	 on	 disk,	 not	 give	 a	 rigorous	 discussion.	 For	 that	 look
elsewhere[ref?].

The	 basic	 structure	 is	 that	 we	 have	 pages	 of	 4kB.	 Each	 page	 is
either	a	leaf,	which	holds	the	final	information	we	are	interested	in,	or
is	 an	 internal	 node,	which	 contains	 a	 list	 of	 references	 to	 the	 next
layer	of	nodes.	The	layers	are	structured	such	that	all	nodes	for	the
top	layer	come	first,	then	the	nodes	for	the	next	layer,	linearly	in	the
file.

Example	1	layer

In	the	simplest	example,	all	the	data	fits	into	a	single	page,	the	root
node.	This	means	the	root	node	is	a	leaf	node.

Example	2	layer

As	 soon	 as	 the	 data	 cannot	 fit	 in	 a	 single	 node,	we	 create	 a	 new
internal	 node,	make	 that	 the	 root,	 and	 start	 to	 create	multiple	 leaf
nodes.	The	 root	 node	 then	contains	 the	 keys	which	divide	 the	 leaf
pages.	(So	if	 leaf	node	1	ends	with	‘foo’	and	leaf	node	2	starts	with
‘foz’,	the	root	node	would	hold	the	key	‘foz’	at	position	0).

Example	3	layer

It	is	possible	for	enough	leaf	nodes	to	be	created,	that	we	cannot	fit
all	 there	 references	 in	 a	 single	 node.	 In	 this	 case,	 we	 again	 split,
creating	another	 layer,	and	setting	 that	as	 the	 root.	This	 layer	 then
references	 the	 intermediate	 layer,	 which	 references	 the	 final	 leaf
nodes.

In	all	cases,	the	root	node	is	a	single	page	wide.	The	next	layer	can
have	2-N	nodes.

Current	Info

Empirically,	we’ve	 found	 that	 the	number	of	 references	 that	can	be
stored	on	a	page	varies	from	about	60	to	about	180,	depending	on
how	 much	 we	 compress,	 and	 how	 similar	 the	 keys	 are.	 Internal
nodes	 also	 achieve	 approximately	 the	 same	 compression,	 though
they	seem	 to	be	closer	 to	80-100	and	not	as	variable.	For	most	of
this	discussion,	we	will	assume	each	page	holds	100	entries,	as	that
makes	the	math	nice	and	clean.

So	the	idea	is	that	if	you	have	<100	keys,	they	will	probably	all	fit	on
the	root	page.	If	you	have	100	-	10,000	keys,	we	will	have	a	2-layer
structure,	 if	 you	 have	 10,000	 -	 1,000,000	 keys,	 you	will	 have	 a	 3-
layer	structure.	10^6-10^8	will	be	4-layer,	etc.

Data	and	Request
It	is	important	to	be	aware	of	what	sort	of	data	requests	will	be	made
on	these	indexes,	so	that	we	know	how	to	optimize	them.	This	is	still
a	work	in	progress,	but	generally	we	are	searching	through	ancestry.
The	 final	 information	 (in	 the	 leaf	 nodes)	 is	 stored	 in	 sorted	 order.
Revision	 ids	 are	 generally	 of	 the	 form	 “prefix:committer@email-
timestamp-randomtail”.	This	means	that	revisions	made	by	the	same
person	around	 the	same	 time	will	be	clustered,	but	 revisions	made
by	different	people	at	 the	same	time	will	not	be	clustered.	For	 files,
the	 keys	 are	 (file-id,	 revision-id)	 tuples.	 And	 file-ids	 are
generally	 basename-timestamp-random-count	 (depending	 on	 the
converter).	 This	 means	 that	 all	 revisions	 for	 a	 given	 file-id	 will	 be
grouped	 together,	and	 that	 files	with	similar	names	will	be	grouped
together.	However,	files	committed	in	the	same	revisions	will	not	be
grouped	together	in	the	index.[1]_

[1]
One	interesting	possibility	would	be	to	change	file-ids	from	being
‘basename-...’,	to	being	‘containing-dirname-filename-...’,	which
would	group	files	in	the	similarly	named	directories	together.

In	general,	we	always	 start	with	a	 request	 for	 the	 root	 node	of	 the
index,	as	 it	 tells	us	 the	 final	structure	of	 the	 rest	of	 the	 index.	How
many	 total	 pages,	 what	 pages	 are	 internal	 nodes	 and	 what	 layer,
which	ones	are	leaves.	Before	this	point,	we	do	know	the	size	of	the
index,	because	that	is	stored	in	the	pack-names	file.

Thoughts	on	expansion
This	 is	 just	 a	 bullet	 list	 of	 things	 to	 consider	 when	 expanding	 a
request.

We	generally	assume	locality	of	reference.	So	if	we	are	currently
reading	page	10,	we	are	more	 likely	 to	read	page	9	or	11	than
we	are	page	20.

However,	locality	of	reference	only	really	holds	within	a	layer.	If
we	are	reading	the	last	node	in	a	layer,	we	are	unlikely	to	read
the	first	node	of	the	next	layer.	In	fact,	we	are	most	likely	to	read
the	last	node	of	the	next	layer.

More	directly,	we	are	probably	equally	 likely	 to	 read	any	of	 the
nodes	in	the	next	layer,	which	could	be	referred	to	by	this	layer.
So	 if	 we	 have	 a	 structure	 of	 1	 root	 node,	 100	 intermediate
nodes,	and	10,000	leaf	nodes.	They	will	have	offsets:	0,	1-101,
102-10,102.

If	we	read	the	root	node,	we	are	likely	to	want	any	of	the	1-101
nodes	(because	we	don’t	know	where	the	key	points).	If	we	are
reading	node	90,	then	we	are	likely	to	want	a	node	somewhere
around	9,100-9,200.

When	expanding	a	request,	we	are	considering	that	we	probably
want	 to	read	on	the	order	of	10	pages	extra.	(64kB	/	4kB	=	16
pages.)	 It	 is	 unlikely	 that	 we	 want	 to	 expand	 the	 requests	 by
100.

At	the	moment,	we	assume	that	we	don’t	have	an	idea	of	where
in	 the	next	 layer	 the	keys	might	 fall.	We	could	use	a	predictive
algorithm	assuming	homogenous	distribution.	When	reading	the
root	node,	we	could	assume	an	even	distribution	 from	 ‘a-z’,	so

that	a	key	starting	with	‘a’	would	tend	to	fall	in	the	first	few	pages
of	 the	 next	 layer,	while	 a	 key	 starting	with	 ‘z’	would	 fall	 at	 the
end	of	the	next	layer.	However,	this	is	quite	likely	to	fail	in	many
ways.	Specific	examples:

Converters	 tend	 to	 use	 an	 identical	 prefix.	 So	 all
revisions	 will	 start	 with	 ‘xxx:’,	 leading	 us	 to	 think	 that
the	 keys	 fall	 in	 the	 last	 half,	 when	 in	 reality	 they	 fall
evenly	distributed.
When	 looking	 in	 text	 indexes.	 In	 the	 short	 term,
changes	 tend	 to	 be	 clustered	 around	 a	 small	 set	 of
files.	 Short	 term	 changes	 are	 unlikely	 to	 cross	 many
pages,	but	it	 is	unclear	what	happens	in	the	mid-term.
Obviously	in	the	long	term,	changes	have	happened	to
all	files.

A	 possibility,	would	 be	 to	 use	 this	 after	 reading	 the	 root	 node.
And	then	using	an	algorithm	that	compares	the	keys	before	and
after	 this	 record,	 to	 find	 what	 a	 distribution	 would	 be,	 and
estimate	the	next	pages.

This	is	a	lot	of	work	for	a	potentially	small	benefit,	though.

When	 checking	 for	 N	 keys,	 we	 do	 sequential	 lookups	 in	 each
layer.	So	we	look	at	layer	1	for	all	N	keys,	then	in	layer	2	for	all
N	keys,	etc.	So	our	requests	will	be	clustered	by	layer.

For	 projects	 with	 large	 history,	 we	 are	 probably	more	 likely	 to
end	up	with	a	bi-modal	distribution	of	pack	files.	Where	we	have
1	pack	 file	with	a	 large	 index,	and	 then	several	pack	 files	with
small	 indexes,	several	with	 tiny	 indexes,	but	no	pack	 files	with
medium	 sized	 indexes.	 This	 is	 because	 a	 command	 like	 bzr
pack	will	combine	everything	into	a	single	large	file.	Commands
like	 bzr	 commit	 will	 create	 an	 index	with	 a	 single	 new	 record,
though	 these	 will	 be	 packaged	 together	 by	 autopack.

Commands	like	bzr	push	and	bzr	pull	will	create	indexes	with
more	records,	but	these	are	unlikely	to	be	a	significant	portion	of
the	history.	Consider	bzr	has	20,000	revisions,	a	single	push/pull
is	likely	to	only	be	100-200	revisions,	or	1%	of	the	history.

Note	 that	 there	 will	 always	 be	 cases	 where	 things	 are	 evenly
distributed,	but	we	probably	shouldn’t	optimize	for	that	case.

64kB	is	16	pages.	16	pages	is	approximately	1,600	keys.

We	are	considering	an	index	with	1	million	keys	to	be	very	large.
10M	is	probably	possible,	and	maybe	100M,	but	something	like
1	billion	keys	is	unlikely.	So	a	3-layer	index	is	fairly	common	(it
exists	already	in	bzr),	but	a	4-layer	is	going	to	be	quite	rare,	and
we	will	probably	never	see	a	5-layer.

There	 are	 times	 when	 the	 second	 layer	 is	 going	 to	 be
incompletely	 filled	 out.	 Consider	 an	 index	 with	 101	 keys.	 We
found	 that	we	 couldn’t	 fit	 everything	 into	 a	 single	 page,	 so	we
expanded	 the	 btree	 into	 a	 root	 page	 and	 a	 leaf	 page,	 and
started	 a	 new	 leaf	 page.	 However,	 the	 root	 node	 only	 has	 a
single	entry.	There	are	3	pages,	but	only	one	of	 them	 is	 “full”.
This	happens	again	when	we	get	near	the	10,000	node	barrier.
We	found	we	couldn’t	fit	the	index	in	a	single	page,	so	we	split	it
into	 a	 higher	 layer,	 and	 1	more	 sub-layer.	 So	 we	 have	 1	 root
node,	2	layer-2	nodes,	and	N	leaf	nodes	(layer	3).	If	we	read	the
first	3	nodes,	we	will	have	read	all	internal	nodes.

It	is	certainly	possible	to	detect	this	for	the	first-split	case	(when
things	no-longer	fit	into	just	the	root	node),	as	there	will	only	be
a	few	nodes	total.	Is	it	possible	to	detect	this	from	only	the	‘size’
information	for	the	second-split	case	(when	the	index	no	longer
fits	 in	 a	 single	 page,	 but	 still	 fits	 in	 only	 a	 small	 handful	 of
pages)?

This	only	really	works	for	the	root	+	layer	2.	For	layers	3+	they
will	always	be	too	big	 to	read	all	at	once.	However,	until	we’ve
read	the	root,	we	don’t	know	the	layout,	so	all	we	have	to	go	on
is	 the	 size	 of	 the	 index,	 though	 that	 also	 gives	 us	 the	 explicit
total	number	of	pages.	So	it	doesn’t	help	to	read	the	root	page
and	then	decide.	However,	on	the	flip	side,	if	we	read	before	the
split,	 then	 we	 don’t	 gain	 much,	 as	 we	 are	 reading	 pages	 we
aren’t	likely	to	be	interested	in.

For	example:

We	have	100	keys,	which	fits	onto	100	pages,	with	a	single
root	node.	At	1,100	keys,	it	would	be	101	leaf	pages,	which
would	 then	cause	us	 to	need	2	 index	pages,	 triggering	an
extra	layer.	However,	this	is	very	sensitive	to	the	number	of
keys	we	 fit	 per-page,	which	depends	on	 the	compression.
Although,	we	 could	 consider	 2,000	 keys.	Which	would	 be
200	leaf	nodes,	and	2	intermediate	nodes,	and	a	single	root
node.	 It	 is	 unlikely	 that	 we	 would	 ever	 be	 able	 to	 fit	 200
references	into	a	single	root	node.

So	if	we	pretend	that	we	split	at	1	page,	100	pages,	and	10,000
pages.	We	might	be	able	 to	say,	at	1-5	pages,	 read	all	pages,
for	5-100	pages,	read	only	the	root.	At	100	-	500	pages,	read	1-
5	 pages,	 for	 500-10,000	 read	 only	 the	 root.	 At	 10,000-50,000
read	1-5	pages	again,	but	above	50,000	read	only	the	root.	We
could	 bias	 this	 a	 bit	 smaller,	 say	 at	 powers	 of	 80,	 instead	 of
powers	of	100,	etc.	The	basic	 idea	 is	 that	 if	we	are	close	 to	a
layer	split,	go	ahead	and	read	a	small	number	of	extra	pages.

The	 previous	 discussion	 applies	 whenever	 we	 have	 an	 upper
layer	that	is	not	completely	full.	So	the	pages	referenced	by	the
last	node	from	the	upper	layer	will	often	not	have	a	full	100-way
fan	out.	Probably	not	worthwhile	very	often,	though.

Sometimes	we	will	 be	making	 a	 very	 small	 request	 for	 a	 very
small	 number	 of	 keys,	 we	 don’t	 really	 want	 to	 bloat	 tiny
requests.	Hopefully	we	can	find	a	decent	heuristic	to	determine
when	 we	 will	 be	 wanting	 extra	 nodes	 later,	 versus	 when	 we
expect	to	find	all	we	want	right	now.

Algorithm
This	is	the	basic	outline	of	the	algorithm.

1.	 If	we	don’t	know	the	size	of	the	index,	don’t	expand	as	we	don’t
know	 what	 is	 available.	 (This	 only	 really	 applies	 to	 the	 pack-
names	file,	which	is	unlikely	to	ever	become	larger	than	1	page
anyway.)

2.	 If	 a	 request	 is	 already	 wide	 enough	 to	 be	 greater	 than	 the
number	of	 recommended	pages,	don’t	bother	 trying	to	expand.
This	 only	 really	 happens	 with	 LocalTransport	 which
recommends	a	single	page.

3.	 Determine	what	 pages	 have	 already	 been	 read	 (if	 any).	 If	 the
pages	left	to	read	can	fit	 in	a	single	request,	just	request	them.
This	 tends	to	happen	on	medium	sized	 indexes	(ones	with	 low
hundreds	of	revisions),	and	near	the	end	when	we’ve	read	most
of	the	whole	index	already.

4.	 If	we	haven’t	read	the	root	node	yet,	and	we	can’t	fit	the	whole
index	 into	 a	 single	 request,	 only	 read	 the	 root	 node.	We	don’t
know	where	the	layer	boundaries	are	anyway.

5.	 If	 we	 haven’t	 read	 “tree	 depth”	 pages	 yet,	 and	 are	 only
requesting	 a	 single	 new	 page	 don’t	 expand.	 This	 is	 meant	 to
handle	the	‘lookup	1	item	in	the	index’	case.	In	a	large	pack	file,
you’ll	 read	only	a	single	page	at	each	 layer	and	 then	be	done.
When	spidering	out	in	a	search,	this	will	cause	us	to	take	a	little
bit	 longer	 to	 start	 expanding,	 but	 once	 we’ve	 started	 we’ll	 be
expanding	 at	 full	 velocity.	 This	 could	 be	 improved	 by	 having
indexes	 inform	 each	 other	 that	 they	 have	 already	 entered	 the
‘search’	 phase,	 or	 by	 having	 a	 hint	 from	above	 to	 indicate	 the
same.

However,	remember	the	‘bi-modal’	distribution.	Most	indexes	will
either	be	very	small,	or	very	large.	So	either	we’ll	read	the	whole
thing	quickly,	or	we’ll	end	up	spending	a	lot	of	time	in	the	index.
Which	 makes	 a	 small	 number	 of	 extra	 round	 trips	 to	 large
indexes	a	small	overhead.	For	2-layer	nodes,	this	only	‘wastes’
one	round	trip.

6.	 Now	we	are	 ready	 to	expand	 the	 requests.	Expand	by	 looking
for	 more	 pages	 next	 to	 the	 ones	 requested	 that	 fit	 within	 the
current	layer.	If	you	run	into	a	cached	page,	or	a	layer	boundary,
search	 further	 only	 in	 the	 opposite	 direction.	 This	 gives	 us
proper	 locality	 of	 reference,	 and	 also	 helps	 because	 when	 a
search	 goes	 in	 a	 single	 direction,	 we	will	 continue	 to	 prefetch
pages	in	that	direction.

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

Implementation	notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

Implementation	notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Computing	last_modified	values

Introduction
Bazaar	 (through	 at	 least	 0.19)	 computes	 a	 last_modified	 attribute
for	 all	 inventory	 entries	 and	 stores	 it	 at	 commit	 time.	 This	 is	 the
revision_id	 that	 last	 changed	or	merged	 the	 file.	 It	 is	 used	 in	 knit
and	weave	repositories	to	look	up	the	file	text,	and	to	index	into	the
file	graph.	It’s	also	used	to	determine	which	revisions	of	the	file	text
to	pull	during	fetch.

This	data	is	not	natively	stored	by	most	other	systems	so	we	need	to
synthesize	it	during	conversion.

This	 is	 a	 case	 of	 non-core	 data	 that	 we	 might	 wish	 to	 treat	 as
cached,	rather	than	always	stored.

Definition
Take	 the	 set	 of	 all	 “heads”:	 all	 the	 versions	of	 these	 files	 in	parent
trees.

Reduce	 the	 heads	 by	 eliminating	 any	 whose	 last_modified	 is	 an
ancestor	of	the	last_modified	of	any	other	head.

If	there	is	still	more	than	one	head,	a	new	last_modified	is	assigned.
This	points	to	the	merge	point	in	the	file	graph.

If	 the	 file	 text	 and	 properties	 are	 the	 same	 as	 the	 sole	 remaining
head,	 its	 last_modified	 is	 inherited.	 Property	 changes	 include
executable	bit,	filename,	and	containing	directory.

Otherwise,	a	new	last_modified	is	used.

(This	 is	meant	 to	 be	 the	 simplest	 statement,	 but	 it	may	not	 be	 the
most	efficient	algorithm;	anything	that	gives	equivalent	results	can	be
used.)

Generation	in	commit
Commit	 and	 converters	 both	 need	 this	 when	 writing	 into	 Bazaar
native	formats.

This	is	an	O(tree)	operation	because	it	needs	to	check	for	files	with
multiple	heads.	It	could	be	reduced	to	O(changed_or_merged_files)
if	that	was	faster	to	determine.	So	it	needs	to	be	fast.

For	the	single-parent	commit	case,	we	just	need	to	determine	which
files	have	changed	compared	to	the	parent.	If	the	file	was	changed,	it
gets	the	revision	id	of	the	new	revision;	otherwise	it	inherits	the	value
from	the	parent	tree.

In	the	multi-parent	commit	case	(commit	of	a	merge),	it	can	take	the
value	from	any	of	the	parent	trees,	or	of	the	new	revision.

Commit	 in	a	dirstate	 tree	 should	be	able	 to	do	 this	more	easily	 by
looking	 at	 a	 row	 of	 the	 dirstate	 to	 get	 the	 per-file	 parents.	 It	 still
needs	 to	 look	 at	 the	 revision	 or	 file	 graph	 information	 to	 work	 out
whether	 heads	 can	 be	 eliminated	 as	 previously	 merged.	 At	 the
moment	 find_previous_heads	 works	 on	 inventories,	 so	 needs	 to
spend	 considerable	 effort	 building	whole	 inventories,	 including	 files
that	 are	 not	 modified	 or	 merged.	 (Called	 from
record_entry_contents.)	 It	 might	 be	 better	 to	 have	 the	 commit
builder	 pass	 in	 the	 per-entry	 parents	 so	 that	 dirstate	 can	 generate
just	 those	 that	 are	 necessary.	 (See	 also	 the	 spec	 for
iter_changes_multiple_parents.)

If	merge	used	a	per-file	graph	then	it	would	know	when	one	version
fully	 supersedes	 another,	 and	 it	 could	 emit	 only	 a	 single	 parent.
Merge	could	 in	 fact	do	 this	even	when	not	using	per-file	graphs.	 In
the	current	dirstate	format	we	need	to	store	the	full	data	for	all	trees
because	 they	 can	be	extracted	 from	 the	dirstate,	 but	 it	 could	mark

some	parents	as	already	merged.

Alternatively,	we	could	change	 the	dirstate	 to	 include	only	 the	base
and	current	trees,	and	cache	the	merged-in	parents	elsewhere.

(Offtopic	 other	 dirstate	 changes:	 we	 could	 also	 omit	 the	 working-
copy	hash,	and	just	have	a	stat-fingerprint	of	when	it	was	last	known
equal	to	the	basis	revision.	That	reduces	the	amount	of	data	stored
and	 possibly	 makes	 it	 simpler	 to	 update,	 and	 shouldn’t	 penalize
common	cases.)

Generation	during	conversion
Accessing	a	foreign	branch	requires	synthesizing	this	information.	If
last_modified	is	removed	from	a	future	bzr	version,	we	will	also	need
to	synthesize	it	to	pull	back	to	earlier	formats.

Because	last_modified	is	not	natively	stored	in	the	foreign	branches,
we	want	to	take	advantage	of	any	conversion	we’ve	already	done,	so
that	 we	 don’t	 need	 to	 recursively	 generate	 them	 on	 every	 access.
We’d	prefer	 to	 find	a	 revision	 that’s	 already	 converted	 to	 a	Bazaar
inventory	within	 another	 related	 repository,	 such	 as	 the	 target	 of	 a
conversion.

Avoiding	last_modified
last_modified	 is	potentially	expensive	to	determine	and	we	may	not
want	 to	 store	 it	 in	 inventories	 in	 future.	Therefore	we	should	use	 it
only	when	necessary:

When	writing	out	an	inventory	format	that	includes	it.
In	 Bazaar	 formats	 that	 use	 it	 as	 a	 key	 for	 the	 file	 text	 or	 file
ancestry.	 This	 should	 be	 hidden	 behind	 the
Repository/RevisionTree	interface.
When	 a	 user	 operation	 specifically	 requires	 the	 last_modified
(e.g.	hypothetical	annotate	directory).

We	already	do	this	in	most	cases.

Compared	to	annotate

Use	cases

Cases	to	test
1.	 Single	parent,	unmodified	file
2.	 Single	parent,	modified	file
3.	 Two	 parents,	 one	 descended	 from	 the	 other,	 modified	 in	 one

parent	only
4.	 Two	 parents,	 one	 descended	 from	 the	 other,	 modified	 in	 one

parent	only,	but	also	modified	locally.
5.	 Two	 parents,	 not	 descended	 from	 each	 other,	modified	 in	 one

parent	only.
6.	 Two	 parents,	 not	 descended	 from	 each	 other,	modified	 in	 one

parent	only,	but	also	modified	locally.
7.	 Two	parents,	modified	in	both	to	different	values.
8.	 Two	parents,	modified	in	both	to	the	same	value.
9.	 Two	parents,	modified	in	both,	and	reverted	in	both	back	to	the

original	text.
10.	 Three	parents,	modified	in	only	one
11.	 Three	parents,	modified	in	only	one,	also	modified	locally.
12.	 Three	parents,	modified	in	2
13.	 Three	parents,	modified	in	2,	and	locally.
14.	 Three	 parents,	 modified	 in	 2,	 but	 one	 is	 a	 descendant	 of	 the

other.

Performance	considerations
Often	 we’ll	 want	 the	 last_modified	 information	 for	 multiple	 files,
perhaps	everything	in	a	directory	or	in	a	whole	tree.	It	may	be	more
efficient	for	the	api	to	accommodate	this.	Often	the	last_modified	will
be	 similar	 for	multiple	 files,	 and	 if	we	process	 them	all	 at	 once	we
can	avoid	some	repeated	work	in	calculating	their	heads.

Open	questions
How	does	caching	find_heads	interact	with	cherry-picks?

Possible	structure

For	a	single	file,	if	I	am	different	from	all	parents,	‘new’.	(Do	not	need
to	evaluate	last	modified).

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

Implementation	notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

Implementation	notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Content	Filtering
Content	 filtering	 is	 the	 feature	by	which	Bazaar	 can	do	 line-ending
conversion	or	keyword	expansion	so	that	the	files	that	appear	in	the
working	 tree	 are	 not	 precisely	 the	 same	 as	 the	 files	 stored	 in	 the
repository.

This	document	describes	the	implementation;	see	the	user	guide	for
how	to	use	it.

We	 distinguish	 between	 the	 canonical	 form	 which	 is	 stored	 in	 the
repository	 and	 the	 convenient	 form	 which	 is	 stored	 in	 the	 working
tree.	 The	 convenient	 form	 will	 for	 example	 use	 OS-local	 newline
conventions	or	have	keywords	expanded,	and	the	canonical	form	will
not.	We	 use	 these	 names	 rather	 than	 eg	 “filtered”	 and	 “unfiltered”
because	 filters	are	applied	when	both	 reading	and	writing	so	 those
names	might	cause	confusion.

Content	filtering	is	only	active	on	working	trees	that	support	it,	which
is	format	2a	and	later.

Content	filtering	is	configured	by	rules	that	match	file	patterns.

Filters
Filters	 come	 in	 pairs:	 a	 read	 filter	 (reading	 convenient->canonical)
and	a	write	filter.	There	is	no	requirement	that	they	be	symmetric	or
that	 they	 be	 deterministic	 from	 the	 input,	 though	 in	 general	 both
these	properties	will	be	true.	Filters	are	allowed	to	change	the	size	of
the	content,	and	things	like	line-ending	conversion	commonly	will.

Filters	are	fed	a	sequence	of	byte	chunks	(so	that	they	don’t	have	to
hold	 the	 whole	 file	 in	 memory).	 There	 is	 no	 guarantee	 that	 the
chunks	will	 be	aligned	with	 line	endings.	Write	 filters	are	passed	a
context	object	through	which	they	can	obtain	some	information	about
eg	which	file	they’re	working	on.	(See	bzrlib.filters	docstring.)

These	 are	 at	 the	 moment	 strictly	 content	 filters:	 they	 can’t	 make
changes	 to	 the	 tree	 like	 changing	 the	 execute	 bit,	 file	 types,	 or
adding/removing	entries.

Conventions
bzrlib	 interfaces	 that	 aren’t	 explicitly	 specified	 to	 deal	 with	 the
convenient	 form	 should	 return	 the	 canonical	 form.	 Whenever	 we
have	the	SHA1	hash	of	a	file,	it’s	the	hash	of	the	canonical	form.

Dirstate	interactions
The	dirstate	file	should	store,	in	the	column	for	the	working	copy,	the
cached	 hash	 and	 size	 of	 the	 canonical	 form,	 and	 the	 packed	 stat
fingerprint	 for	which	that	cache	is	valid.	This	 implies	 that	 the	stored
size	 will	 in	 general	 be	 different	 to	 the	 size	 in	 the	 packed	 stat.
(However,	 it	 may	 not	 always	 do	 this	 correctly	 -	 see
<https://bugs.edge.launchpad.net/bzr/+bug/418439>.)

The	dirstate	is	given	a	SHA1Provider	instance	by	its	tree.	This	class
can	 calculate	 the	 (canonical)	 hash	and	 size	given	a	 filename.	This
provides	a	hook	by	which	the	working	tree	can	make	sure	that	when
the	dirstate	needs	to	get	 the	hash	of	 the	file,	 it	 takes	the	filters	 into
account.

https://bugs.edge.launchpad.net/bzr/+bug/418439

User	interface
Most	commands	that	deal	with	the	text	of	files	present	the	canonical
form.	Some	have	options	to	choose.

Performance	considerations
Content	 filters	 can	 have	 serious	 performance	 implications.	 For
example,	getting	the	size	of	(the	canonical	form	of)	a	file	is	easy	and
fast	 when	 there	 are	 no	 content	 filters:	 we	 simply	 stat	 it.	 However,
when	 there	 are	 filters	 that	 might	 change	 the	 size	 of	 the	 file,
determining	the	length	of	the	canonical	form	requires	reading	in	and
filtering	the	whole	file.

Formats	 from	1.14	onwards	support	content	 filtering,	so	having	fast
paths	 for	 the	 case	 where	 content	 filtering	 is	 not	 possible	 is	 not
generally	 worthwhile.	 In	 fact,	 they’re	 probably	 harmful	 by	 causing
extra	edges	in	test	coverage	and	performance.

We	need	to	have	things	be	fast	even	when	filters	are	in	use	and	then
possibly	do	a	bit	less	work	when	there	are	no	filters	configured.

Future	ideas	and	open	issues
We	 might	 benefit	 from	 having	 filters	 declare	 some	 of	 their
properties	statically,	for	example	that	they’re	deterministic	or	can
round-trip	 or	 won’t	 change	 the	 length	 of	 the	 file.	 However,
common	cases	like	crlf	conversion	are	not	guaranteed	to	round-
trip	 and	 may	 change	 the	 length,	 so	 perhaps	 adding	 separate
cases	 will	 just	 complicate	 the	 code	 and	 tests.	 So	 overall	 this
does	not	seem	worthwhile.

In	 a	 future	 workingtree	 format,	 it	 might	 be	 better	 not	 to
separately	store	the	working-copy	hash	and	size,	but	rather	just
a	stat	fingerprint	at	which	point	 it	was	known	to	have	the	same
canonical	form	as	the	basis	tree.

It	may	be	worthwhile	to	have	a	virtual	Tree-like	object	that	does
filtering,	 so	 there’s	 a	 clean	 separation	 of	 filtering	 from	 the	 on-
disk	 state	 and	 the	meaning	 of	 any	 object	 is	 clear.	 This	 would
have	 some	 risk	 of	 bugs	 where	 either	 code	 holds	 the	 wrong
object,	or	their	state	becomes	inconsistent.

This	would	be	useful	 in	allowing	you	 to	get	a	 filtered	view	of	a
historical	 tree,	 eg	 to	 export	 it	 or	 diff	 it.	 At	 the	 moment	 export
needs	to	have	its	own	code	to	do	the	filtering.

The	convenient-form	tree	would	talk	to	disk,	and	the	convenient-
form	tree	would	sit	on	top	of	that	and	be	used	by	most	other	bzr
code.

If	we	do	this,	we’d	need	to	handle	the	fact	that	the	on-disk	tree,
which	 generally	 deals	 with	 all	 of	 the	 IO	 and	 generally	 works
entirely	 in	 convenient	 form,	 would	 also	 need	 to	 be	 told	 the
canonical	 hash	 to	 store	 in	 the	 dirstate.	 This	 can	 perhaps	 be
handled	by	the	SHA1Provider	or	a	similar	hook.

Content	filtering	at	the	moment	is	a	bit	specific	to	on-disk	trees:
for	instance	SHA1Provider	goes	directly	to	disk,	but	it	seems	like
this	is	not	necessary.

See	also
http://bazaar-vcs.org/LineEndings
http://bazaar-vcs.org/LineEndings/Roadmap
Developer	Documentation
bzrlib.filters

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

Implementation	notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar-vcs.org/LineEndings
http://bazaar-vcs.org/LineEndings/Roadmap
http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

Implementation	notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

LCA	Tree	Merging
There	are	2	ways	that	you	get	LCA	merge	resolution	in	bzr.	First,	 if
you	use	bzr	merge	--lca,	the	content	of	files	will	be	resolved	using	a
Least	 Common	 Ancestors	 algorithm.	 That	 is	 described	 in	 <lca-
merge.html>	not	here.

This	document	describes	how	we	handle	merging	tree-shape	when
there	 is	 not	 a	 single	 unique	 ancestor	 (criss-cross	 merge).	 With	 a
single	LCA,	we	use	simple	3-way-merge	logic.

When	there	are	multiple	possible	LCAs,	we	use	a	different	algorithm
for	handling	tree-shape	merging.	Described	here.

As	a	simple	example,	here	is	a	revision	graph	which	we	will	refer	to
often:

.				BASE

.		/						\

.	LCA1			LCA2

.	|			\	/			|

.	|				X				|

.	|			/	\			|

.	THIS		OTHER

In	 this	 graph,	 THIS	 and	 OTHER	 both	 have	 LCA1	 and	 LCA2	 in	 their
ancestry	but	neither	is	an	ancestor	of	the	other,	so	we	have	2	least
common	ancestors.	The	unique	common	ancestor	is	BASE.	(It	should
be	noted	that	in	this	text	we	will	talk	directly	about	LCA1	and	LCA2,	but
the	algorithms	are	designed	to	cope	with	more	than	2	LCAs.)

Scalars

Definition

I’m	defining	scalar	values	as	ones	 that	cannot	be	 ‘merged’	on	 their
own.	 For	 example,	 the	 name	 of	 a	 file	 is	 “scalar”.	 If	 one	 person
changes	 “foo.txt”	 to	 “foo.c”	 and	 someone	 else	 changes	 “foo.txt”	 to
“bar.txt”	we	don’t	merge	the	changes	to	be	“bar.c”,	we	simply	conflict
and	expect	the	user	to	sort	it	out.

We	use	a	slightly	different	algorithm	for	scalars.

Resolution	Algorithm

(This	can	be	seen	as	bzrlib.merge.Merge3Merger._lca_multi_way`

1.	 If	THIS	and	OTHER	have	the	same	value,	use	it.	There	is	no	need
to	 inspect	 any	 other	 values	 in	 this	 case.	 Either	 nothing	 was
changed	(all	 interesting	nodes	would	have	 the	same	value),	or
we	have	 “accidental	 convergence”	 (both	sides	made	 the	same
change.).

2.	 Find	the	values	from	LCA1	and	LCA2	which	are	not	the	same	as
BASE.	 The	 idea	 here	 is	 to	 provide	 a	 rudimentary	 “heads”
comparison.	Often,	the	whole	tree	graph	will	have	a	criss-cross,
but	the	per-file	(per-scalar)	graph	would	be	linear,	and	the	value
in	 one	 LCA	 strictly	 dominates	 the	 other.	 It	 is	 possible	 to
construct	 a	 scenario	 where	 one	 side	 dominates	 the	 other,	 but
the	 dominated	 value	 is	 not	 BASE,	 but	 a	 second	 intermediate
value.	Most	scalars	are	rarely	changed,	so	this	is	unlikely	to	be
an	 issue.	 The	 trade-off	 is	 having	 to	 generate	 and	 inspect	 the
per-scalar	graph.

If	there	are	no	LCA	values	that	are	different	from	BASE,	we	use	a
simple	3-way	merge	with	BASE	as	the	base	value.

3.	 Find	the	unique	set	of	LCA	values	that	do	not	 include	the	 BASE
value.	 If	 there	 is	 only	 one	 unique	 LCA	 value,	 we	 again	 use
three-way	merge	logic	using	that	unique	value	as	the	base.

4.	 At	this	point,	we	have	determined	that	we	have	at	least	2	unique
values	 in	 our	 LCAs	 which	 means	 that	 THIS	 and	 OTHER	 would
both	have	to	resolve	the	conflict.	If	they	resolved	it	in	the	same
way,	we	would	have	caught	 that	 in	step	1.	So	 they	either	both
picked	a	different	LCA	value,	or	one	(or	both)	chose	a	new	value
to	use.

If	OTHER	and	THIS	both	picked	a	different	LCA	value,	we	conflict.

If	OTHER	and	THIS	both	have	values	that	are	not	LCA	values,	we
also	 conflict.	 (Same	 as	 3-way,	 both	 sides	 modified	 a	 value	 in
different	ways.)

5.	 (optional)	The	only	tricky	part	 is	 this:	 if	OTHER	has	a	LCA	value,
but	THIS	does	not,	then	we	go	with	THIS,	and	conversely	if	THIS
has	an	LCA	value,	but	 OTHER	does	not,	 then	we	go	with	 OTHER.
The	idea	is	that	THIS	and	OTHER	may	have	resolved	things	in	the
same	 way,	 and	 then	 later	 changed	 the	 value	 to	 something
newer.	 (They	 could	 have	 also	 resolved	 it	 differently,	 and	 then
one	side	updated	again.)

InventoryEntry.revision

The	last-modified	revision	for	an	entry	gets	treated	differently.	This	is
because	 how	 it	 is	 generated	 allows	 us	 to	 infer	 more	 information.
Specifically,	 any	 time	 there	 is	 a	 change	 to	 an	 entry	 (rename,	 or
content	change)	the	last	modified	revision	is	updated.	Further,	 if	we

are	merging,	and	both	sides	updated	the	entry,	 then	we	update	the
last-modified	revision	at	the	merge	point.

For	a	picture	example:

.			A

.		/	\

.	B			C

.		\	/

.			D

For	a	single	entry,	the	last	modified	revision	in	D	is:

1.	 A	if	neither	B	or	C	modified	it
2.	 B	if	B	modified	and	C	did	not
3.	 C	if	C	modified	and	B	did	not
4.	 D	if	B	and	C	modified	it

This	means	that	if	the	last	modified	revision	is	the	same,	there	have
been	 no	 changes	 in	 the	 intermediate	 time.	 If	 OTHER	 also	 has	 the
same	last	modified	revision	as	any	LCA,	then	we	know	that	all	other
LCAs’	 last-modified	 revisions	 are	 in	 the	 ancestry	 of	 that	 value.
(Otherwise,	when	 OTHER	 would	 need	 to	 create	 a	 new	 last	modified
revision	as	part	of	the	merge.)

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

Implementation	notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Miscellaneous	notes
dirstate	—	An	observation	re.	the	dirstate	file
“bzr	update”	performance	analysis	—	“bzr	update”	performance
analysis

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

Miscellaneous	notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Dirstate
Don’t	 really	need	 the	hashes	of	 the	current	versions	 -	 just	knowing
whether	 they’ve	changed	or	not	will	generally	be	enough	-	and	 just
the	mtime	and	ctime	of	a	point	in	time	may	be	enough?

nextprevious	|	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»

Miscellaneous	notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

previous	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»	Miscellaneous

notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

“bzr	update”	performance	analysis
There	are	5	different	slightly	different	situations	in	which	bzr	update
can	be	used:

local	only	(no-op)
lightweight	checkout
heavy	checkout
heavy	checkout	w/	local	changes
bzr	update	could	work	on	“bound	branch”	w/no	wt

No	new	revisions
Should	be	O(1)	 to	determine	Tree	base	 is	up	to	date	wt.last-rev	==
wt.b.last-rev

No	local	changes,	only	new
revisions
1.	 Need	to	move	wt.last_rev	(O(1))
2.	 apply	 delta	 from	 base	 to	 new	 rev	 (O(changes))	 applying

changes	to	files	is	approx	(O(lines-in-files	^	2))
3.	 update	 meta-info	 (executable	 bits,	 etc)	 about	 modified	 files

(O(changes))

2/3	could	be	concurrent	(but	that	may	not	necessarily	be	faster)

potential	issue	w/	serialized	is	having	50k	files	in	limbo/

the	 limbo/	 directory	 could	 be	 avoided	 in	 some	 cases,	 for	 example
when	adding	new	files	in	new	directories.

modifying	 in	place:	 reduces	 fragmentation	of	 fs,	not	atomic	w/	 local
modification,	potential	of	data	loss	w/o	should	be	safe

“local	mod”	is	diff	between	disk	and	last	commit,	not	merge	base

Detecting	 name	 conflicts	 should	 be	 O(siblings).	 Alternatively,
conflicts	with	existing	files	can	be	detected	using	stat()	and	conflicts
with	new	files	can	be	detected	by	examining	the	pending	transform.
This	changes	complexity	to	O(changes).

out	of	date	heavyweight	checkout,
out	of	date	w/master
1.	 open	working	tree,	check	latest	revision
2.	 open	working	tree	branch,	check	latest	revision
3.	 mismatch	 =>	 update	 wt	 =>	 wt.b.lastrev	 apply	 delta	 to	 tree

O(changed	file	size)	—-	conflicts	stop	on	conflicts	stop	always	-
>	inform	user	they	need	to	repeat	(why	not?,	GFD)

4.	 pull	new	revs	M	=>	L	O(newrevs)
5.	 apply	 delta	 to	 wt	 local	 committed	 changes	 become	 a	 pending

merge	 local	 uncommitted	 stay	 uncommitted	 local	 pending
merges	are	retained	(should	be	gc’d)

offtopic:	should	bzr	update	 report	where	 the	source	 is	?	should	bzr
update	 handle	 both	 cases	 (local	 tree	 out-of-date	 w/local	 branch,
checkout	out-of-date	w/master)	?

if	updating	would	diverge,	give	opportuniuty	to	branch/unbind	instead
local	ahead,	“push	to	master”

ideas:	 1)	 can	 this	be	done	as	a	 single	 logical	 step?	2)	 can	 this	be
done	 w/o	 modifying	 working	 tree	 until	 end?	 possible	 performance
improvements	 3)	 if	 the	 pulling	 revision	 step	 could	 deliver	 full	 texts,
that	may	help	for	the	merge	(same	thing	as	“bzr	pull”)

previous	Home	|		Documentation	|		Developer	Document	Catalog	(2.2b1)	»	Miscellaneous

notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

	Developer Document Catalog (2.2b1)
	Contributing to Bazaar
	Bazaar Release Cycles
	Profiling
	Tracking Bugs in Bazaar
	Bazaar Developer Guide
	Bazaar Testing Guide
	Releasing Bazaar
	Managing the Bazaar PPA
	Bazaar Windows EC2 Server
	Bazaar Architectural Overview
	Integrating with Bazaar
	Bazaar Design Principles
	Plans
	1 Bazaar Performance Roadmap
	co-located branches
	Bazaar Windows Shell Extension Options
	CHK Optimized index

	Specifications
	Revision Properties
	API Versioning
	Bazaar Apport Integration
	Authentication ring
	Bundles
	Container format
	Overview
	Indices
	Inventories
	LCA Merge
	Network Protocol
	Plugin API
	Repositories
	Repository Streams
	Case Insensitive File Systems
	Development repository formats
	KnitPack repository format

	Implementation notes
	BTree Index Prefetch
	Computing last_modified values
	Content Filtering
	LCA Tree Merging

	Miscellaneous notes
	Dirstate
	"bzr update" performance analysis

