© rnasnas | AokymeHTauus | CogepxaHue (2.2bl) » cnepnywounii

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/ru/

[NaBHbIN KaTanor JOKYMEHTOB
Bazaar

MocnegHsss Bepcust 3TUX [AOKYMEHTOB AOCTyna CO CTpaHuupbl
[IOKyMeHTauun Ha caite Bazaar, <http://doc.bazaar-vcs.org/ru/>.

http://doc.bazaar-vcs.org/ru/

OcHOoBHaa AOKyMeHTauus

1 PykoBoAcCTBO nosb3oBatenia Bazaar
KapTouka 6bICTporo crapra

Bazaar 3a nATb MUHYT

Yue6HuK Bazaar

1 WVcnonb3oBaHne Bazaar ¢ Launchpad
1 Pab6oTta B LeHTpa/IM30BaHHOM CTU/1e

-]
CcCbl/IKM B CceTu

e PykoBOACTBO MO mMurpauMm — [OJ19 KOMaHfA MnepeHOoCAWmX
NCTOPUIO C APYTMX CUCTEM KOHTPOIA BEPCUI
e CrnoBapb TEPMUNHOB (@Hr/1.), CM. TaKe pPyCCKYH0 BEPCULD

e YacTo 3agaBaeMble BONPOCHI (aHr.)

© rnasras | AokymeHTauus | CogepxaHue (2.2bl) » cnepnyroumii

http://doc.bazaar-vcs.org/migration/en/
http://bazaar-vcs.org/BzrGlossary
http://groups.google.com/group/ru_bzr/web/%D0%B3%D0%BB%D0%BE%D1%81%D1%81%D0%B0%D1%80%D0%B8%D0%B9
https://answers.launchpad.net/bzr
http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/ru/
http://sphinx.pocoo.org/

. FnasHas | OokymeHTaums | CogepxaHue (2.2b1) » npeaplaywmnii | cnegyowimi

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/ru/

YuebHUK Bazaar

Tekywiasa Bepcua gng bzr-0.91, 2007-08

BBeneHue

Ecnn Bbl yXe 3HakoMbl C pacnpegeneHHbIM1U cucteMmamy KOHTPONS
Bepcuin, To MoxeTte cpasy nepentn K “Mpeacrasnsiemcs Bazaar”.
Ecnn, ¢ Apyro CTOPOHbI, Bbl 3HAKOMbl C CUCTEMaMW KOHTPOSS
BEPCUI, HO He 3HAKOMbl C pacrnpefesieHHbIMKU cuctemamu, Torga
CTOUT HauyaTb C “Yem oTnAMyaloTCca pacnpenesieHHble CUCTEMbI”.
NHaye, BO3bMUTE KOhe WNM 4Yail, pacnosnioxuTecb noyaobHee U
NPOAO/IXUM YTEHME.

Ha3HaueHne KOHTPO/1S BEPCUN

ECTb LWAHCbI, YTO Bbl yXe paboTasiv C KakKMMWU-IM60 TEKCTOBLIMM
OAaHHbIMW — WUCXOAHWKamu nporpamm, Web-cavitamn, unu
KOH(UIypauuoHHbIMM haitnamm C KOTOpPbIMW ~ MMEKT A€eno
afMVUHUCTpaTopbl cuctem Unix B /etc. Takke eCTb XOPOLUME LUAHCHI,
4YTo Bbl Jenanv OWWbKKW, KOTOpble BbI3bIBA/IM MOTOM [/1y60KOe
coxasieHve. BO3MOXHO Bbl yAa/IMIN KOHQUIYpaLUMOHHbIA dhalin ans
Ballero MO4YTOBOrO CepBepa, WM NOBPeauIi UCXOAHbIA Kof
NO6UMOro npoekTa. He BaXHO YTO KOHKPETHO C/lyYn1oCb, HO Bbl
NPOCTO yAanuAM BadkHYO MHOpPMaLMIO KOTOPYH Bbl GE3HAAEXHO
XoTenu 6bl BepHYTb. ECnn Takoe Korga nMbo c/yyanochb ¢ Bamu, TO
Bbl BO3MOXXHO rOTOBbI A/151 Bazaar.

Cucrtemsl KOHTPO/IA BGpCI/II7I, Takme Kak Bazaar garoT BO3MOXHOCTb
OoTC/iexnmBarb NSMeEHEHUA A1 KaTasiora, KOTOprVI OHN N3MEHAKT B
HeuyTo 60/siee C/I0KHOe, YTO Ha3blBaeTCA BeTKa. BeTka He TOosibKo
COXpPaHAET TO KaK KaTasiolr BbIiA4OUT B I,CI,&HHbII\/'I MOMEHT, HO TaKXe
KaK OH Bbllndgen B pas/indHble MOMEHTbLI B MPOLUJTIOM. 3arem, Korga
Bbl cAenaete 4YT1o-TO, 4TO Obl Bbl HE XOTENU Aenarb, Bbl CMOXeETe
BOCCTaHOBUTb KaTaJ/10O B TOM BUAE KaK OH Bbil/144€e/1 B KaKom-To
MOMEHT B MNpPOLU/10M.

CucTemMbl KOHTPONA Bepcuii [aloT Nosb3oBaTesiiM BO3MOXHOCTb
COXpPaHATb U3MEHEHUS Ha BeTke “doukcupysa peBusuio”. CosgaHHas
peBn3nA hakTUYeCcKn ABISETCA CBOAKON U3MEHEHWIA, KOTOpble Obln
cAienlaHbl C Noc/neAHero MoOMeHTa Korga AepeBo 6b110 COXPaHeHO.

OTN peBuU3MNM UMEKT TakKkKe U [pyroe HasHayeHue. Hanpumep,
MOXHO KOMMEHTMpOBaTb PEBU3MMK, 3anucas, UYTO 3HAYUT [OaHHbLIN
Habop W3MEHEHUIA, 4Yepe3 HeobA3aTeslbHY 3annCb B XXypHane.
PeanbHble 3anucu B XXypHasie MOryT ObiTb MOXOXK Ha “McnpasneH
Web-wabnoH ana 3akpbitug tabnuubl” n “JobaBneHa noagepxka
SFTP. VcnpasneH #595”

Mbl XpaHuMM 3TOT XypHasl, uTo Obl MO3Xe, B C/lyYae Kakux-mobo
npo6nem ¢ SFTP, MoXHO 6bIN10 onpeaennTb Korga Morsa npon3onTu
npo6nema.

Uem oT/iMyatoTcs pacnpeaesneHHble cucTemMbl

MHOrMe CuUCTEMbl KOHTPO/ISi BEPCU XPaHAT [AaHHble Ha cepBepax.
Ecnun KTO-TO Xo4eT paboTarb C KOAOM, KOTOPbIA XPaHUTCS B CUCTEME
TOorga emy HY>XHO YCTaHOBUTbL COeflMHEeHMe C CepBepoM U “co3patb
pabouyo Konuk” koga. Npu 3TOM co3gaetcs Kataslor B KOTOPOM
MOXHO MEHATb oainbl U 3aTeM IUKCUPOBATb U3MEHEHUS. KnneHT
CUCTEMbI 3aTeM COeAVHAETCA C CEePBEPOM CUCTEMbI N COXpaHAEeT
N3MeHeHnA. STOT MEeTO/, U3BECTEH KakK LieHTpasiIM3oBaHHas Moaesb.

LleHTpasin3oBaHHass Mofeslb MOXET MMETb HEeKOTOpble HedOoCTaTKu.
LleHTpasin3oBaHHass cuctema TpebdyeT Hanmunsg CcoefuHEeHUA C
cepBepoMm ANnA obblX AEACTBUIA MO KOHTPOO BEPCUA. DTO MOXET
ObITb NPOGNEMATUYHBIM eC/IX CepPBEP HAXOAUTCA Ha APYron mMaluvHe
B VHTEpPHETE, a K/ANEHT - HeT. Un, XyXe, KINEHT B UHTepHeTe, a
cepBep - HeT.

PacnpegeneHHble CUCTEMbl KOHTPOMS BEpCUii 06XoasaT 3Ty
Npob6/sieMy CcoOXpaHssi BETKM Ha TOW e MallMHe Ha KOTOpOoi
HaxoAMTCca KNueHT. B cnyyae ¢ Bazaar, BeTka HaxoAUTCca B TOM e
caMOM MeCTe, YTO U KOf, XPaHALLMACS Nof KOHTPOSIEM BEPCUIA. DTO
NMO3BOJIAET MOSIb30BaTeN0 COXPaHATb (huKkcupoBaTb) M3MEHEHUS
Korga OH 3axoyeT — fJaxe 6e3 CeTeBOro NOAK/IHOYEHUS.
[Monb3oBaresnito Hy)XXeH AOCTYN K MHTEPHETY TO/IbKO KOrga OH XOo4yeT
NOMYyYNTb AOCTYN K Ybeil-nnbo BETKE B ApYyrom MecTe.

O6lwee TpeboBaHue, 4YTO MHOIME /OAM XOTAT OTC/IEeXUBaTb
M3MEHeHNA [ANA Katanora, TakMe Kak W3MeHeHus annos u
N3MeHeHnsa B nogkatanorax. OTcnexunsBarb 3T0 “pykammn” y>xacHbIi
npouecc, KOTopblii CO BPEMEHEM CTAaHOBUTCA TPOMO3OKMM. [JO Tex

nop rnoka Bbl HE rlorlpo6yeTe CUCTEMY KOHTPOA BGpCI/II7I, TaKyro Kak
Bazaar. Takne MHCTPYMEHTbI aBTOMaTU3NPYOT NPOLLECC COXPaHEeHUs
OaHHbIX, CO34aBasd peBU3NN gepeBa Katasiora Korga rnosib3oBaresib
3anpawmBaeT caenarb 3T10.

CucTeMbl KOHTPO/S BEPCWUil, TakMe Kak Bazaar, Moryt pgenartb
HaMHOro 6o/blle 4YemM MPOCTO XpPaHWTb W3MEHEHUSI U OTMEHATb
ownboyHble AeicTBus. Hanpumep, ¢ nomollbo Bazaar
pa3paboTuMkym MOTyT B35iTb WU3MEHEHMSI KOfga Ha OAHOI BeTKe U
06beANHNTbL UX CO CBA3AHHON BETKOW — AaXe ec/in 3TM U3MEHEHMS
XpaHATCS Ha BETKE KOTOPYK COo34an KTO-TO ApPYroi. 3To nosBonsieT
paspaboTuMkam CcoTpyaHu4YaTb 6e3 HeobXoAMMOCTU OTKpPbIBaTb
A0CTYN Ha 3anncb K PENO3UTOPMUIO.

Bazaar noMHUT “npegkoB” peBu3nn: npeabiaywime pesusnn Ha
KOTOPbIX OCHOBaHa Tekyllaa peBusnsa. OgHa peBusna MOXET UMETb
60/1blLUEe OA4HOro MPSIMOro NOTOMKA, KaXKAbIA U3 KOTOPbIX CO CBOUMU
N3MEHEeHNAMKU, 4YTO nNpeaCcTaBNAeT AUBEPreHuuio B 3BOJHOLUMK
AepeBa. Co3gaHne BeTOK B Bazaar no3BonseTr HeCcKosIbKUM /H0AAM
COTpyAHMYaTb B 3BOMKOLUUKM NpoekTa, 6e3 HeobxoamMmocTn pabotarb
XecTko no waram. Co3gaHne BETOK MOXET ObITb MOME3HbIM Aaxe
ANA 04HOro paspabdoTymka.

[1lpeactaBnsemcsa Bazaar

Bazaar ycTaHaB/MBaeT e€AMHCTBEHHY0 HOBYK KomaHay, bzr. Bce
BO3MOXHOCTU NPeAOCTaB/IAOTCA yYepe3 NoA-KomMaHibl 3TOW
KOMaHAbl. Bbl MOXETEe NPOCMOTPETL KPATKYH CnpaBKy KOMaH/0Mh bzr

help. HekoTopble uaen rpynnupyroTcsa No TemMam, MCHOﬂbByMTe bzr
help topics AJ14 CNACKa AOCTYMHbIX TEM.

OpaHa n3 (PYHKUWIA CUCTEMbI KOHTPONSA BEPCUIA — OTCNEeXMBaTb KTO
cAaenan usMeHeHus. B pacnpefeneHHblx cuctemax pANns 3Toro
Tpebyetrca wnaeHTUPUUMPOBATL KaxAoro asTopa YHWKa/IbHO B
rnob6asibHOM nnaHe. BONbLWMHCTBO /OAEN YXe WMEKT TakoWn
nageHTndukartop: email agpec. Bazaar goctatoyHo ymeH, 4To Obl
aBTOMarMyeckn cosgaBaTb email agpec n3 Tekywero UMeHu U
agpeca xocrta. Ecnu Bam He HpaBUTCA MNPEANONIOXKeHMe KoTopoe
Aenaet Bazaar Bbl CMOXeTe BblOpaTb U3 TPEX OMLUNiA;

1. YctaHoBuTbL email agpec yepes bzr whoami. OTO Hambonee
MPOCTON NyTb.

YTto Obl YCTAHOBUTb TakoW r106asbHbIA naeHTUgUKaTop,
ncnonb3ymnre:

% bzr whoami "Bawe Uvma <email@example.com>"

Ecnn Bbl XOTUTE MWCMNOMb30BaTb pasHble agpeca Ans
pasHblX BETOK, TO 3algute B KaTtaslol C BETKOW U
Ncnonb3ymnre:

% bzr whoami --branch "Bawe Mmsa <email@example.com>"

2. YctaHOBUTL email agpec B ~/.bazaar/bazaar.conf [1],
[06aBuB crieayloline CTPOYKU. 3amMeTbTe, UYTO [DEFAULT]
3aBMCUT OT perncrpa CMMBOJIOB:

[DEFAULT]
email=Bawe WmaA <email@isp.com>

Kak 1 Bbille Bbl MOXETe nepeonpeaenntb 3TM YCTaHOBKMU
ans Ka)K,EI,0|7I BETKN CO34aB CeKunio A/5id BETKN B
~/ .bazaar/locations.conf 1 406aBUB CriefyloLLMe CTPOYKN:

[/nyTb/K/BeTKe]
email=Bawe WNmA <email@isp.com>

3. lMepeonpegenvts ABa npeablgyLLMx crnocoba, yctaHOBUB
Ball MosHbIi email agpec B rnobanbHYyl0 NepeMeHHYH
cpenbl $BZR_EMAIL, WM $EMAIL ($BZR_EMAIL MMeeT

60NbLUMIA NPUOPUTET).

(1, 2) Ans Windows nonb3oBarenibckme thaiisibl KOHUrypauymm
MOTYT ObITb HalieHbl B Katasiore ¢ aHHbIMU NPUIOXKEHWNIA.
TakMm 06pa3oM BMECTO ~/.bazaar/branch.conf KOHJoUrypauus

[1] MOXeT ObITb HaliAeHa B: C:\Documents and Settings\
<nonb3oBaTenb>\Application Data\Bazaar\2.0\branch.conf. Tam
e MOryT ObITb HaAEeHbl locations.conf, ignore U KaTanor
plugins.

Co3paem BETKY

cTopus No-ymMoNYaHui0 XpaHUTCs Ha BeTke B Katasore .bzr. B
6yayLMX Bepcusix Bazaar 6yayT cpeacTsa A/is XpaHeHUst UICTOpUK B
0TAE/IbHOM PENO3UTOPUM, KOTOPbIN TakKe CMOXET ObiTh YAaNEHHbIM.

Mbl co3gaemM HOBYH BETKY BbINOMHUB bzr init B YXXe CO34aHHOM
KaTtasiore.

% mkdir tutorial
% cd tutorial

% ls -a

S

% pwd
/home/mbp/work/bzr.test/tutorial
%

% bzr init

% ls -aF

./ ../ .bzr/
%

Kak m B CVS 3mecb Tpu knacca painioB: HeEU3BECTHblE,
UrHopupyemble M nog KoHTponem Bepcuit. KomaHga add crtasut
aiin noA KOHTPOSb BEPCUA, T.e. UIMEHEHWA B Hem 06yayT
3anuncbiBaTbCA CUCTEMON:

% echo 'hello world' > hello.txt
% bzr status
unknown:
hello. txt
% bzr add hello.txt
added hello.txt
% bzr status
added:
hello. txt

Ecnn Bbl fo6aBnAn He TOT a1 NPOCTO cAenanTe bzr remove, YTO
Obl caenatb €ro onsiTb HeM3BeCTHbIM. Paboyas konusa paina He

Oy4eT yaasnieHa B 9TOM C/iydyae, XOTA OHa MOXeT ObiTb yaasieHa B
Apyrnx cnyyasx [2].

(1, 2) bzr remove yAasiUT pabouyto KOMUIKO €C/IN OHa Haxo4uTCs
2] Nnof KOHTPOSIEM BEPCUIA, HO HE UMEET N3MEHEHUI C NOCeaHeN
3adoMKCMpoBaHHOW Bepcun. Bbl MOXeTe 0CTaBUTL (haiifl ykasas
Onuuto --keep ANS bzr remove, WX YOa/INTb C ONLUKUEN --force.

PasmelleHne BeToK

Bca ucTopus XpaHUTCA Ha BETKe, KOTopasd SABMAETCA BCEro Jiviib
KatasloroM Ha [AucKe cogepxawmm dainsl ynpasneHus. [lo-
YMO/1YaHWIO 30eCb HET OTAE/IbHOr0 Peno3nTopus, Uan 6asbl faHHbIX
Kak B svn, unam svk. Mo xenaHuio Bbl MOXETE CO34aTb Peno3nTopuii
(cM. KOMaHAy bzr init-repo). OTO MOXHO cAenaTtb B C/llydyae O4YeHb

6ONbLUNX BETOK, WUAN OONbLUONO KO/MMYecTBa BETOK ONna NnpoeKkTa
cpegHero pasmepa.

Mbl 06bIYHO OGpaLlaeMcsl K BETKaM Ha HalleM KOMMbloTepe MpocTo
nepegaB WMsi KaTasiora cofepxawero BeTky. bzr Takke
noAAepXuBaeT AOCTYN K BeTkaM yepe3 http u sftp, Hanpumep:

% bzr log http://bazaar-vcs.org/bzr/bzr.dev/
% bzr log sftp://bazaar-vcs.org/bzr/bzr.dev/

YcTtaHOBMB AN bzr nnarnMHbl MOXHO Takxe ocywlecCTB/iIATb OOCTYyN K
Be€TKaM C NCnoJsib3oBaHNEM Isync.

CmoTpuTe cekumio My6numkaums BETKU 4YTO Obl MONYyuUTb 60/bLUe
MHOPMALMK O TOM Kak MOMECTUTb CBOK BETKY B HY)XHOE MECTO.

[TPOCMOTP N3MEHEHUN

Kak TONMbKO Bbl 3aKOHUMAM CBOWO paboTy, Bbl 3axoTuUTe
3apukcMpoBaTtb €e B WCTOPMU PEBU3NIA. Xopollas npakTuka
(bMKcrMpoBaTb M3MEHEHWst AOCTATOYHO YacTo: Korga 3apaboTana
HOBasi PYHKLIMOHAIbHOCTb, MCNPaB/ieHa ownbKa, Uamn ynyyllieH Kog,
WM JOKyMeHTauusi. [lpu 3TOM CTOUT MPOBEPUTb, UTO Kof
KOMMUANPYETCSH 1 MPOXOAUT BCE TeCTbl nepes oukcaumen, 4to 6bl
OblTb YBEPEHHbIM, UYTO Kaxkaasl PeBM3Ns B XOPOLUEM COCTOSIHUM,
Takke MOXHO NPOCMOTPETL CBON U3MEHEHMS, A/151 YBEPEHHOCTU, UTO
Bbl (QUKCUPYETE WMEHHO TO, 4YTO XOTeNUM W MNOMAYUYNTb LUAHC
NPOBEPUTL CBOIO PabOTy Nepes TeM Kak 3anucaTb ee NocCTOSIHHO.

[Be komaHabl bzr ocobeHHO nosiesHbl 34eck: status n diff.

bzr status

KomaHaa status nokasblBaeT KakMe M3MEHEeHUsi Oblnn caenaHbl B
paboyem KaTasiore C MOMeHTa nociegHen peBn3nm:

% bzr status
modified:
foo

bzr status CKpblBAeT “HEMHTepecHble” (hainibl KoTopble, MO0 He
MEHAMNCL, NMMBO0 UTHOPUPYHOTCA. Takke KomaHAe status moryTt 6bITb
nepefaHbl HeobsA3aTesibHble MMeHa (hainioB, WX KatasioroB A/
NPOBEPKM.

bzr diff

KomaHpga diff nokasbiBaeT W3MEHeHMs B TekcTe oaiiioB B
cTaHgaptHom dopmate diff. BbiBO4 3TOW KOMaHAbl MOXET OblTb
nepegaH gpyrmum komaHgam, Takmm kak “patch™, “diffstat™, “filterdiff”

n “colordiff;

% bzr diff

=== added file 'hello.txt'

--- hello. txt 1970-01-01 00:00:00 +00060
+++ hello.txt 2005-10-18 14:23:29 +00060

@@ -GIO +1/1 @@
+hello world

C onuuen -r OgepeBo (haisioB cCpaBHMBAETCS C PaHHEN peBu3unei,
NN NOKa3bIBAOTCA N3MEHEHNS MeXAY ABYMS PEBU3NSIMU:

% bzr diff -r 1000.. # W3MEeHeHUa HadmHas c rilieee
% bzr diff -r 1000..1100 # n3MmeHeHuMa ¢ 1000 go 1100

onuua --diff-options roBOPUT bzr 3anyCTUTb BHELLHIOW NporpaMmmy
diff, nepegas el onumn. Hanpumep:

% bzr diff --diff-options --side-by-side foo

HekoTopble MpoeKkTbl nNpeanoynTaroT MokasblBaTtb npeduKcbl B
Hayane TekcTa W3MeHeHuin ana crtapbiX (old) n HOBbIX (new)
dainnoB. Onuma --prefix MOXET OblTb WCMNO/b30BaHa A/
YCTaHOBKM Takoro npedwmkca. MNawc K aTomy KomaHga bzr diff -pi
BbIBOAUT npedomkcbl B dpopme KoTopas noaxoAuT Afd KoMaHgbl
patch -p1.

durkcaunsg nsmeHeHnm

Korga coctosHne paboyero gepesa noaxoauT AN COXPaHeHUs OHO
MOXeT OblTb 3apUKCMpPOBAHO Ha BeTKe, 4YTO CO34acT HOBYH
PEBU3NI0 COAEPKAaLLYH0 CHAMOK COCTOSAHUA AepeBa.

bzr commit

KomaHoe commit MOXHO nepegaTtb coo6LleHMEe oOnucbiBaroLee
n3mMeHeHnst B peBumsnn. OHa TakKxe 3anucbiBaeT unaeHTudukarop
nonb3oBaTens, Tekyllee BpeMSA M BPEMEHHYH 30HY, MKC CNUCOK
M3MEHEHHbIX hannoB K1 ux cogepxmmoro. CoobLeHne
onucbiBaroLee N3MEHEHUST onpeaenseTca Yyepes onuu -m, UIKN - -

message. MOXHO TaKke BBOAUTb COO6LLI,eHI/IFI cocrtoAawme un3

HECKOJIbKMX CTPOK; B 60MbLUNMHCTBE 060/104EK Bbl MOXETE caenarb
3TO OCTaBUMB OTKPbITYHO KaBbl4Ky B KOHLIE CTPOKN.

% bzr commit -m "po6aBneH nepsbin dpann"

Takxe MOXHO MCNOMb30BaTb OMNUMIO -F, AN1S NOAYYEHUST COOBLLEHMS
13 cpalina. HekoTopble Noan AenatoT 3aMeTKM U3MEHEHWI BO BPeEMS
paboTbl Haf HMMMK, a 3aTeM NPOCMAaTPMBAlOT U3MEHEHMUS, YTO Obl
OblTb YBEPEHHbIMW, YTO OHW CAeNann To, YTo XoTenu caenatb. (JToT
thaitn MoXeT ObiTb Takke MNoMe3eH Koraa Bbl BO3BpalllaeTechb K
cBOeli paboTe nocne nepepbisa.)

Coo6LLeHMe 13 TEKCTOBOro peaakropa

Ecnn Bbl He wucnonb3yete onuum -m U -F TOrga bzr OTKpoOeT

TEKCTOBbIi pefakTop [ANns BBoga coobuleHusi. Kakoii pepaktop
3anyckaTb MOXET OblTb HACTPOEHO Yepe3 MNepeMeHHble cpeapl
$VISUAL, WM $EDITOR, KOTOpble MOIyT OblTb NepeonpeneneHsbl

onuuen editor B haiine ~/.bazaar/bazaar.conf; ONUnUst $BZR_EDITOR

nepeonpegenser BCe OMUCaHHble Bblle HacTpPoWkn. Ecnu Bbl
BbIXOAMTE M3 pefakTopa 6e3 Kakux-mmbo namMeHeHun, To dpmkcayms
OyneT npepsaHa.

daiin KOTOpbIA OTKpbIBAETCS B pefaktope COAepXuT
FOPU30OHTA/IbHYIO NIMHMI0. YacTb goaiina HUXe 3TOW IMHUN BK/IoYEeHa
TONbKO [AO/19 WMHpopMaumMm M He OyaeTr 4vacTblo coobLeHus 06
N3MEHEHUSIX. HMXe NMHUN noKasblBaeTCsA CNUCOK halifioB KOTopble
Obl/IM U3MEHEHbI. [NA co3gaHus cooblleHns BaM Hafo Hanucarb
CBOE COoO06uleHMe BbilWe JIMHUK, COXPaHUTb €ro M BbIATU U3
pefakropa.

Ecnn Bbl XOTUTE YBUAETb W3MEHEHWUS cogepXumoro daiinos
KOTOpble GyayT 3adMKCUPOBaHbI, NPV PeaaKkTMPoBaHUM COOBLLEHNSA
BaM HYXXHO YKasaTb ONMUMI0 --show-diff AN1S KOMaHAbl commit. ITa

onuus go6aBuUT M3MEHEHWS B palisl KOTOPbIii OyAeT OTKPbIT B
penakTope HXe NMMHUKN 1 cnucka M3MEHEHHbIX aiinoB. DTO 3HAUUT,
YTO Bbl MOXETe uuTaTb W3MEHEHUsT nNpu peaakTUpoBaHMM
COOOLUEHUS1, HO OHM He OyayT BK/OYEHbI B COOOLLEHME KOrAa Bbl
3aKOHUNTE pefakTMpoBaTb. EcCnM Bbl XOTWUTE, 4YTO Obl YacTy
M3MEHEHUIA BbINN BKNOYEHBI B COOGLLIEHNE Bbl MOXETE CKOMNUPOBATh
1 BCTaBWUTb UX BbILLE OrPAHNYNTENBHOW JIMHUN.

Bbi6bopouHaa pukcaums

Ecnv Bbl NepenaanTe CnMcoK MMeH dhaiinos, an KaTasioroB nocne

KOMaH/4bl commit, TO 6y,D|yT 3a(bI/IKCI/IpOBaHbI TOJIbKO N3SMEHEHNA ON1A
HepeAaHHbD(06beKTOB.HaﬂpMMepI

% bzr commit -m "wncnpaBneHua AOoKyMeHTauun" commit.py

Mo ymonyaHmio bzr Bcerga chukcmpyet Bce U3MeHeHus A8 Aepesa,
Aake ecnv 3anyuweH u3 nogkarasnora. Yto 6bl 3admkcmpoBaTb
TO/TIbKO U3MEHEHNSA OT TEKYLLIErO Katasiora v HmKe, UCNOoNb3ynTe:

% bzr commit

YpnaneHue He 3atUKCUPOBaHHbIX
N3MEHEHUN

Ecnv Bbl caenann Kakne-nmbo U3MEHEHUS U He XOTUTE OCTaBNSATb
NX, UCMOMb3yliTe KomaHay revert, UTo Obl BEPHYTCA K COCTOSIHUMIO
npeablaywen pesnsnn. Xopollas naes, UCnosb3oBaTb cHavyana bzr

diff A9 npocMoTpa n3mMeHeHun. Mo yMO/TYaHMIO KOMaHAa revert

OTMeHAEeT Nn3MeHeHnd Ha BCeEM JepeBe, HO €eC/in e nepenaHbl
NMMEHa (*)&VIIIOB, NN Katas10roB 10 6y,c|,yT 3aTPOHYTbI TO/IbKO OHW. bzr

revert TakXe ounLLlaeT CrMnNCOK pEBMBMVI OXngarLnx 06'be,D|I/IHEHI/IF|.

IrHopupoBaHne goansios

MHoOrne aepesbsi C UCXOAHbLIM KOAOM coAepXat halifibl KOTopble He
HY)XHO XpaHWUTb MOJ KOHTPO/JIEM BEPCWUIl, HanpuMep pe3epBHble
haiinibl TEKCTOBOro pefaktopa, 06bekTHble dhai/ibl U cobpaHHble
nporpamMmmbl. Bbl MOXeTe NMpocTo He A0b6aBNATb MX, HO OHW Bcerga
OyayT OOHapyXmBaTbCA KakK Heu3BecCTHble. Bbl Takke MoxeTe
ckasaTb bzr mrHopuposatb uX Ao6aBmB MX B (painl .bzrignore B

KOpHe pabouero Aepesa.

DTOT (paitn coaepXnT CnMCOK LWabnoHoB (paisioB, Mo ogHOMY B
KaoKaom cTpouke. O6bIYHOE COAEPXKMMOE MOXET ObITb TaKUM:

*.0
*

*.tmp
*.py[co]

Ecnun wabnoH CoaepXunT crell, TO OH ByAeT conocTaBneH C NOMHbIM
NyTEM HauMHas OT KOpHA paboyero [JepeBa; MWHaye OH
COMOCTaBNSIETCA TO/IbKO C MMEHeM dpalina. Takum obpasom npumep
Bbllle WrHOpMPYeT (paiinbl C pacwmpeHnem .o BO BCEX
noakatasiorax, HO MPUMeEpP HWXE WUrHOPUPYET TONbKO config.h B

KOpHe pabouero gepesa n HTML doaiinbl B katasiore doc/:

./config.h
doc/*.html

Ana nonydyeHus cnucka (oaiiioB KOTOpPblE WUITHOPUPYKTCS U
COOTBETCTBYIOLIMX MM LWAGMNOHOB UCMOMb3yiiTe KOMaHay bzr

ignored:

% bzr ignored
config.h ./config.h
configure.in~ e

HeT npobnem ecnu wabnoH A/19 UTHOPUPOBAHUA MNOAXOAUT AN
haiina nog KOHTPOSIEM Bepcuid, unn Bbl fo6aBuan ¢ain KoTopbIi
nrHopupyetcs. LWabnoHbl He MMeKT HMKakoro adpdpekta Ha doansibl
No4 KOHTPOJSIEM BEPCUIA, OHW TOSIbKO ONpenensatT MnoKasbliBatoTCs
HensBecTHble haiibl, NN NPOCTO UTHOPUPYHOTCA.

®alin .bzrignore 06bIYHO AO/MKEH ObITb NOA KOHTPOMEM BEPCWUIA, UTO
6bl HOBbIE KOMWW BETKN BUAENN Takne Xe LabMoHbI:

% bzr add .bzrignore
% bzr commit -m "Jo6aBneHbl wabsioHb A9 UrHOpMpoBaHuA"

NnobasibHble WaboHbl 4151 UTHOPUPOBaHUS

OO6bIYHO eCTb (palinibl KOTOpble HY)XHO WrHOPMPOBATb M OHU He
cneuundmyHbl ANs oTAeNbHbIX NPOEKTOB, a ckopee crneungnyHbl Ans
nonb3oBatens. Hanpumep, BpeMeHHble aiiNbl TEKCTOBOIO
pefakTopa, UM nepcoHasibHble BpeMeHHble dhaiinibl. BMecTo Toro,
4To 6bl O06ABNATL UX AN UTHOPUPOBAHMA B KaXXA0M NpoekTe, bzr
noaaepXxusaeTt rNo6asbHbI chaiin WIHOPUPOBAHUS
~/.bazaar/ignore [1]. OH MMeET Takoli Xe CUHTaKCuC, 4To 1 chaiin

UTHOPUPOBaHUA O14 KabKA0ro npoekTa.

[TpoCcMOTpP nctopum

bzr log

KoMaHaa bzr log MOKa3biBAaeT CAMCOK MNpedblaylnx pPeBusuii.
KomaHaa bzr log --forward [eflaeT TOXe camoe, HO B

XPOHO/IOrMYECKOM MOopsifike, NokasbiBasi 60/1ee No3AHMe PeBu3nun B
KOHLIE.

Kak 1 bzr diff, bzr log NOAAEPXMBAET ONUUIO -r:

% bzr log -r 1000.. # PeBu3nsa 1000 u Bce nocne Hee

% bzr log -r ..1000 # Bce A0 M BKwyaa rl000

% bzr log -r 1000..1100 # n3meHeHusa c¢ 1000 go 1100

% bzr log -r 1000 # N3MeHeHUA TONbKO Ans pesusun 100

J —

CTaTuCTUKa BEeTKU

KomaHga bzr info MOKa3biBaeT CYMMapPHYl WHGOPMALMIO O
paboyeM [epeBe M UCTOPUN Ha BETKE.

KaTtasiorn nof, KOHTPOSIEM BEPCU

bzr MOXeT KOHTponuMpoBaTb hainbl M KaTasiorn, OTC/eXunBas
neperMeHoBaHUs 1 ynpoulas ux nocneayrollee o6beanHeHne:

% mkdir src
% echo 'int main() {}' > src/simple.c
% bzr add src
added src
added src/simple.c
% bzr status
added:
src/
src/simple.c

Ypanenve annos

Bbl MOXeTe yaanuTb haiin, nnn kKatasor U3 nog KoOHTPoONs Bepcuit
MPOCTO yaanmB ux n3 paboyero karasora. 3To HEMHOIO OT/INYaeTCcA
oT CVS, KoTopas TpebyeT UTo Obl Bbl TAKXe CAeNnasn cvs remove.

bzr remove yAanseT goaiin n3 nof KOHTPONS BEPCUiA, HO MOXET U He

yoanaTb pab6oudyo konuo aina [2]. 3To yaobHO Korga Bbl
A06aBUIM He TOT paitsl, UNn pewwnsnv, 4to hain Ha caMoM aesie He
[0/DKEH ObITb NOA4, KOHTPOMEM BEPCUIA.

% rm -r src
% bzr remove -v hello.txt
? hello. txt
% bzr status
removed:
hello. txt
src/
src/simple.c
unknown:
hello. txt

Ecnn Bbl BApYr yoannnm He TOT q3a|7|n, TO Bbl MOXETE NCINOJIb30BaTb
bzr revert YTO OGbl BOCCTAHOBUTbL €ErO.

BeTBneHue

YacTo BMECTO TOro 4Yto 6bl HAYMHATb CBOI COBCTBEHHbIN NPOEKT, Bbl
XOTUTE NPensIoKNUTb NU3MEHEHMS ANA yXe roToBOro npoekra. Yto 6ol
cAenartb 3TO BaM HY)>XHO NOTy4MTb KOMUIO TOTOBOW BETKWU. Tak Kak aTa
KONns MOXET OblTb MNOTEHUMasIbHON HOBOI BETKOW 3Ta KomaHaa
Ha3biBaeTca branch:

% bzr branch http://bazaar-vcs.org/bzr/bzr.dev
% cd bzr.dev

JTa KoMaHAa KonupyeT MOJIHYK UCTOPUI0 BETKU U MOC/e 3TOro Bbl
MOXeTe fenatb BCe onepauuMm C Heill /I0KaslbHO: npocmaTpuBaTtb
XypHan, co3gaBatb U 06beAUHATL Apyrue BETKU. 3[0eCb Takke ecTb
onuusi Oas MNOMyYeHUs TOMbKO 4acTu WUCTOpUM ecnnm 3TOo
Heobxoanmo.

Konuto Apyroit BETKM MOXHO Takke MoslyunTb NpPoCTO CKONMPOBaB ee
KaTasior, pa3BepHyB apXxmB, U CKOMMPOBAB YAa/leHHO Yepe3 Takyto
YTUIUTY Kak rsync.

CnepoBaHue 3a U3MEHEHUSIMM OCHOBHOTO
npoekTa

Bbl MOXeTe O0OHOBNATbL CBOK BETKY W3 pPOAUTENLCKON uvepes
Nosly4yeHne ee N3MEeHEeHWIA:

% bzr pull

[Mocne aToro NoKasibHbIA Katasor 6yaeT Konven poanTesibCKoro. 3To
BK/IHOYAET M "MCTOPUIO PEBU3NIA" - CMINCOK M3MEHEHWNI CAeMaHHbIX Ha
pOANTENBLCKOWN BETKE, @ HE 0ObEANHEHHbIX C APYINX BETOK.

OTa KoMaHga paboTaeT TO/IbKO ec/nn NnokasibHas BeTKa, IMb6o 6onee
cTapasi Konns poanTeNnbCKOn BETKN 6e3 HOBbIX domKcaunin, Nnmbo Bce
nocnegHne dmkcauum yxe Obian 06befuHeHbl C POoAUTENbCKOWN
BETKO.

O06beiHEHNE CO CBSA3aHHbIX BETOK

Ecnn gBe BeTkM pasownucb (06e MMEeKT YHUKaslbHble N3MEHEHUS)
TOorga bzr merge - 9TO NoAaxoAsdwas KomaHaa O/ MCNOoJib30BaHuA.

O6beanHeHe aBTOMATMYECKM BbIYUC/IUT MU3MEHEHUS KOTopble
CYLLIECTBYIOT Ha 06beAnHAEMON BETKE M OTCYTCTBYIOT B JIOKa/IbHOM
BETKE U NONbITAETCA 00bEANHNTDL NX C NTOKaSIbHOW BETKOWA.

% bzr merge URL

B cnydae KoHuIMKTa Npu 06beanHEHUN 6yayT co3faHbl Tpy dhaina
C OQHVMMW UMEHEM, HO pasHbIMK paclumpeHmsMmn. daini ¢ oMM
N3MEeHeHNUsIMN ByaeT ¢ paclumpeHnem “.BASE”, hain ¢ nokanbHbIMK
n3mMeHeHnsiMn 6yaet ¢ pacwumpeHuem “.THIS” un ann c
N3MEHEHUSIMXN U3 00beANHAEMOW BETKM OyAeT C pacluMpeHuem
“*OTHER”. Wcnonb3ysa Takyw nporpammy kak kdiff3 Bbl Tenepb
CMOXeTe [A0CTaTO4YHO /ierko 06befuHUTb UX B OoAWH chann. [Ons
domkcaunmnm N3MeHeHNn BaM HyXHO nepenmmeHoBaTb 06beANHEHHbIN
danin (“THIS”") B dhain Cc oOpuUrnHasIbHbIM UMeHeM. W and
3aBepLlleHNa UcnpaBneHnUs KOHJUIMKTa HY)XXHO MCMNoJib30BaTb
KomaHay resolve, kotopas yganut cpannel “OTHER” n “.BASE”.
KomaHga commit 6yaeTt BblgaBaTb OLLIMOKY MOKa CyLLEeCTBYET OAWH
n3 (painnos ¢ pacwmpeHmem .BASE, .THIS, nnin .OTHER.

% kdiff3 file.BASE file.OTHER file.THIS
% mv file.THIS file
% bzr resolve file

[TODO: onucarb Mapkepbl KOHG/IMKTOB BHYTPY (haiifos]

[Ty6nukauma BeTKU

Ana nybnvkaumn BeTkn bzr Bam He Hy)XeH creuuain3npoBaHHbIi
cepBep, HY>XeH NpocTo 06bIYHbIN Web-cepsep. MpocTo nepeHecute
haitnbl Ha Baw cepBep, BKAw4Yas Katanor .bzr. MOXHO
onybnukoBatb BeTKy (MM M3MEHEHUS Ha BETKe) OOHUM W©3
criefyoLwmnx Tpex cnocobos:

e Jlyuylumii cnocob - ncronb3oBathb AJ1st 3TOro cam bzr.

% bzr push sftp://servername.com/path/to/directory

(Katanior HasHavyeHns f[o/mkHa OblTb CO34aH 3apaHee, ecnu
TO/IbKO He yKa3aHa onuusa --create-prefix)

e [lpyroi cnocob - nnaarvH rspush KOTOPbIA BKAOYEH B BzrTools n

ncnonb3yeTr rsync ana nyénukaumm WM3MeHeHU B UCTOPUM
peEBU3NIA N paboyeM aepeBse.

e Bbl Takke MOXeTe cKonupoBaTb paiinbl pykamu, nepecnas
apxmB, WM MUCNOMb3ysa rsync, AW Apyroli MeTof NepPechIsKu.
O6bIYHO 3TO MeHee 6e30MacHO YeM MCMNOMb30BaTb KOMaHAy
push, HO MOXET ObITb BbICTPEE 1 NPOLLE B KAKUX-TO CUTYyaLMSIX.

[lepemelleHne N3MeHEHNI MexXay
nepeBbAMU

DT0 cnyyaetrcsas M C NydWMMM U3 Hac: B KakoOW-TO MOMEHT Bbl
[lenaete N3MeHeHusi He B TOM gepeBe halinioB. BO3MOXHO NOTOMY,
4YTO Bbl C/flydyaiHO Hadann pabotaTb He B TOM KaTasiore, M6o
N3MEHEHUI OKa3a/iuCb 60/blUe YEM Bbl OXMAAIN U Bbl PeLUnIv
co3aarb A9 HUX HOBYHO BETKY.

Ana nepemeweHns M3MEeHeHMW Uu3 OAHOro AepeBa B Apyroe
NCnosnb3ynTe

% cd NEWDIR
% bzr merge --uncommitted OLDDIR

JTa KOMaHAa nepeHeceT Bce He 3addMKCUpOBaHHbIE U3MEHEHUs C
BeTkn OLDDIR Ha BeTky NEWDIR. KomaHza He 6yaetr nepeHocuUTb
3aoMKCMpoBaHHblE M3MEHEHUSA, faxe ec/nm OHW Morn 6bl ObITb
o6beanHeHbl ¢ NEWDIR 006bl4HbIM 00beguHeHneM. V3meHeHus
Takke ocTtawTca U B OLDDIR, HO Bbl MOXeTe WUCNosb30BaTb bzr
revert OLDDIR O/19 WX yAasIeHUs, Kak-TO TO/IbKO ybeamuTecb, 4YTO C

NEWDIR Bce HopmMasibHO.

NEWDIR He o6s3atenibHO Ao/mkeH 6biTb konueir OLDDIR, HO OHK
AO/MKHBbI ObITb CBA3@HHbIMW BETKAMU. UeM 60/blle OHM OT/INYatloTCA,
TeM 60/1bLUe LWaHC BO3HUKHOBEHUNA KOHJD/TUKTOB.

. FnasHas | OokymeHTaums | CogepxaHue (2.2b1) » npeaplaywmii | cnegyoLwimi

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/ru/
http://sphinx.pocoo.org/

. FnasHas | OokymeHTaums | CogepxaHue (2.2b1) » npeaplaywmnii | cnegyowimi

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/ru/

1 WVicnonb3oBaHue Bazaar c
Launchpad

CopepxaHue

e 1 lcnonb3oBaHne Bazaar ¢ Launchpad
o 1.1 MoTtuBauus

o

o

1.1.1 CoobuecTBa OT/IMYAKTCA OT KOMaH[,

1.1.2 [MoTpebHOCTb B COBMECTHbIX Ccpejax
pa3paboTku
1.1.3 Momowb coobuwectBam B pabote cC

3aBUCKMbIMM OT HUX COObLLLeCTBaMM

1.1.4 Launchpad: bonblie pa3paboTky, MeHblue
TPEeHUN

1.1.5 Bazaar: KIMEHT CUCTEMbI KOHTPO/SA BEPCUI
ana Launchpad

[MoncK 1 NPOCMOTP BETOK € nomMoLbo Launchpad
1.2.1 Tlowuck AOCTYMHbIX BETOK

1.2.2 Peructpauma BETOK

1.2.3 [lpocmMoTp BETOK

[ocTtyn kK kogy B Launchpad ¢ nomoLubto Bazaar
1.3.1 TlonyyeHne kofda [A NPOEKTa C OTKPbITbIM
NCXOAHbLIM KOLOM

1.3.2 Tly6nvkaums Balnx N3MeHeHUn

1.3.3 JInyHble BETKMU

Css3blBaHne BeTok B Launchpad

1.4.1 TlpmBa3Ka BETKN K COOOLLEHMIO 06 OoLInGKe
1.4.2 W3meHeHne coCToAHNA BeTKM B Launchpad Bo
Bpems doukcaunn B Bazaar

1.4.3 CBA3b BETKM C N/IaHOM

YnpasrneHve pennsamu ¢ noMmoLlblo Launchpad
1.5.1 WHTerpaumnsa n3ameHeHui

1.5.2 TlpepnoxeHve no 06beANHEHNIO BETOK
1.5.3 OTcnexuBaHne ob63opa Koga
1.5.4 ApxuBbl NMM4YHbIX NaketoB (PPAS)
m 1.5.5 [lepeBogbl
o 1.6 WNtorun

1.1 MoTtuBauus

1.1.1 CoobuecTtBa OT/IM4alTCA OT KOMaH/

KonnyectBo 4enoBek B KOMaHAe, Heo6GXo4uMMOW [A1s cOo3[aHus
NepBoil BEPCUN Kakoro-nmbo nporpamMHOro obecrnevyeHusi, MOXeT
pasnuyatbcsa B pasbl - OT OAHOr0 YesioBeka A0 HEeCKO/IbKUX Thbicad. B
3aBNCUMOCTU OT TpeboBaHWil, CNOXHOCTb 3aad, Kak TEXHUYECKMX,
TaK W ynpaB/ieHYeCKNX, MOXeT BbITb MPOCTO orpoMHa. Kak onucaHo
B PykoBoactBe nonb3oBatena Bazaar, BbIOOp “npaBusibHbIX”
npoueccoB W UCMNoMb30BaHMe Taknx WHCTPYMEHTOB KakK Bazaar,
MOXET CyLecTBEHHO MOoMOo4Yb B MNOAAEPXKKE COOTBETCTBYHLLUX
pabounx LUMKI0B.

Ho ycnex nporpamMMHOro oéecnedyeHuns TpebyeT 60nbLUe YeM NPoCcTo
XOpOWyl KoMaHAy - 34ecb TpebyeTcs 3400poBOE M akTUBHOE
coobwecmso. OO6bLIYHO 3Ta rpynna HamMHOro 60siblle KOMaHAbl,
MOCKOMIbKY BK/IIOYAET BCEX 3aMHTEpPecoBaHHbIX B [AAHHOM
nporpaMmMHOM ob6ecrnevyeHnmn: KomaHay pa3paboTku, nonb3oBaTtesien,
NapTHEPOB MO MOArOTOBKE KaApoB, MapTHEPOB MO MOAAEPXKe,
CTOPOHHMX pa3pabOoTyYnKOB 1 Tak gasiee.

Xopolune coo6LlecTBa XOPOWO M3BECTHbl B MUPE OTKPbITOTO
ncxogHoro koga. Ho WX NONE3HOCTb HAMHOIO Bbille 3TOro:
60/bLUNHCTBO ycneLuHbIX NOCTaBLLMKOB KOMMEPYECKOro
NporpammMHOro o6ecneyeHnst AOCTaTOYHO ONbITHbI B CO3A4aHWM U
ynpae/fieHun coobllecTBamu, KOTOpble pacTyT BOKPYr UX
chnarmaHcKkmnx NpoayKToB.

Kak n xopowine kKomaHAbl, xopoLuue COO6LLI,€CTBa HE MOAB/AKTCA
npocTto TaK. [lpaBu/ibHaaA NOMUTUKA U pyKoBoOAALLME NPUHUMNGI
NMMEKT OCHOBOMNOJMarawwee 3HadyeHne npun passnutnn npaBuibHOIo
noBefeHNs U 340POBOI0 OTHOLWIEHUA MexXay ydacTHukamu. [Ansa

6onee NOAPOOGHOrO MOHMMaHWUS 3TOW TeMbl MOXHO 06paTuTCsa K
ocHoBononaratwuwen kHure Kapna dorena (Karl Fogel): Co3gaHue
nporpaMmMHOro obecneyeHus ¢ OTKpbITbIM kogom (Producing Open
Source Software).

1.1.2 T[1oTpebHOCTb B COBMECTHbIX cpefax
pa3paboTku

Pa3BuTbIi HAGOP MHCTPYMEHTOB TaKXe BaXKeH A1 OTCNEXMBaHUA U
ynpaBneHns unHgopmMaumein n pabounmum npoueccamm B
coobllectBe. Takme WHCTPYMEHTbl Ha3blBAlOTCA COBMECTHbIMU
cpegamn paspaboTtkm (Collaborative Development Environments
(CDEs)). O6bl4HO 3TK MHCTpPYMeHTbl paboTalT Ha 6asze Web'a u
ynpaBnsawT TakMMM BewamMy Kak aHOHCbl, 3ajadn Un OoLno6Ku,
BOMPOCbl N OTBETbl, PECYPCbl AN CKauyMBaHUs, [AOKYMEHTbl U
MCXOAOHbIA KoA. BOT HECKobKO MNPMMEPOB COBMECTHbIX Ccpep,
paspaboTtku: Launchpad, SourceForge, java.net 1 SAP Community
Network.

1.1.3 [Momoulb coobuiectBam B paboTe C
3aBUCUMbIMUK OT HUX coobLlecTBaMu

MHorue ycnelliHble NpoAyKTbl UMEHT 60/1bLLIOE YMC/I0 3aBUCSLLNX OT
HUX MPOEKTOB. ApyrMmun crioBamu, ¢ YCNexoMm MnpoekTa MnosiB/sieTcs
HOBasl 3ajaya: o6LLUeHne C APYrMMK COOOGLLIECTBAMWU U NOHMMaHue
TOrO Kak BallM W3MEHEHUSI CKaXyTCsl Ha HuUX. IOTo Haubonee
OYEBMAHO AN TAKMX NPOEKTOB Kak:

* A3bIKOB MporpamMmmMupoBaHusd, Hanpumep, Python, PHP, Ruby,
Java, Perl n gp.

e KOMNUNATOPOB, Hanpumep, gcc, JIDK n ap.

e Oubnnorek, Hanpumep, zlib, openssl n ap.

e Kapkacos, Hanpumep, Zope, Ruby on Rails, Spring v ap.

http://www.producingoss.com/
https://launchpad.net
http://sourceforge.net
http://java.net
https://www.sdn.sap.com/irj/sdn

B paBHOW CTENEHU 3TO OTHOCUTCHA WM K NONYASAPHbIM NPUTOXEHNAM
ANA KOTOPbIX MOryT co3faBaTbCsa AOMOMHEeHUA, Hanpumep, Firefox,
Thunderbird, OpenOffice.org, Drupal, Wordpress, Joomla n ap.

30ecb Heobxoanmbl NHCTPYMEHTBI, KOTOpble nomoratoT
coobuwecteaMm paboTaTb BMeCTe Haf OTC/IeXUBaHMEM U
ynpas/fieHneM 3agadamum 1 UcrpasfieHUsIMU MeXay cOoobLLecTBaMMu.
Takme MHCTPYMEHTbI MOMOratoT IoAsiM No 06e CTOPOHbI:

* 0/1b30BaTeNN MOryT COOOLWMTL O NPOo6IeMax CBOMMU CloBamu,
Hanpumep, NoCcTpoeHne n3obpaxeHna Tuna X He paboTaeTr B
NpUAoXeHUn Y Nog onepawlyoHHOM cuctemoi Z.

e pa3paboTyumKky MOryT Jlyylle OLEeHUTb peakuuio Ha caenaHHoe
N3MEHEeHWe WM WCnpasfeHve, Hanpumep, cAenaetr v
ncnpasfieHve 31Ol ownbkn B rpadhmyeckoir 6MBNMOTEKM
cyacTimBee nosib3oBaTenieil aTuxX 5-m NPUNOXKEHUA NoL 3TUMU
10-10 onepaunoHHbIMU CUCTEMAaMMU.

[ocpefHUKN UrPaloT BadkHYHO POJSib COEOUHSISI MOYKU W CO3/[aBas
KOMMYHUKaLMIO MeXay BepXHel W HMKHel Toukamu nuHun. Bo
MHOTUX C/lyyasix, OHW MOIYT TaK Xe WcnpaBuTb Npo6nemy [ans
KOHEYHOro no/sb3oBaTens, BbINyCTUB 3anjatky W nepeaas
pPeKoOMeHyemMoe MCrpaBfieHne OCHOBHON KOMaHzae paspaboTyuKoB.
OTCNexuBaHne BCEro 3Toro B TeYEHUN NPOAO/IKUTENLHOIO BPEMEH!
- 3a/1a4a He 13 Nerkux.

1.1.4 Launchpad: bosnblue pa3paboTkn, MeHbLLEe
TPEHNN

Kpome cnoHcopctBa paspabotkm Ubuntu u Bazaar, Canonical Tak
Xe npepgoctaensgetr Launchpad, https:/launchpad.net, kak
6ecnnaTHbIi cepBUC 415 COOBLLECTB C OTKPbITbIM MCXOAHbIM KOLOM.
Launchpad ABnseTca OfHOM W3 caMbIX WHTEPECHbIX cpef
COBMECTHOW pa3paboTku Mo cnepyowmm npuinHam:

http://www.ubuntu.com
http://bazaar-vcs.org
https://launchpad.net

e OH cCcO34aeT CBSA3b MeXAy MHOMMMU OTCMIEeXUBAEMbIMM
CYLLHOCTAIMW, Hanpumep, BETKM MCXOAHOro Koga MOryT OblTb
CBSi3aHbl C MCNpaBfeHneM OLn60oK

e KpOME YNpaBNEHUS HaKOM/EHHbIMW 3HAHUSAMKM, TakKxe
NpefocTaBnseTcsa nnaHMpoBaHMe W nogaepxkka Oyayulero
pa3paboTkym uyepe3 TakMe BO3MOXHOCTM KakK OTC/exXuBaHue
HanpaBneHNsa pa3BUTUA, KOHTPOSIbHbIE TOYKMN 1 NaHbl pa3BUTUSA

e NPefocTaB/SATCA WMHCTPYMEHTbl ANA nepesoga W COOPKM
MakeToB, YTO CHWXaeT 6apbep AN NepeBoAvYMKOB M TECTEPOB
noxenasLlMX NPUCOEAUHUTLCA K Ballemy coobuecTBy C
MOMOLLbHO

o CNYXUT CBA3YHOLMM 3BEHOM Mexnay pasNNYHbIMK
coobllecTBaMmu [O/11 COBMECTHOW pabOoTbl Hafj CBA3aHHbIMM
3afla4aMn 1 HanpasBEeHNAMN Pa3BUTUSI.

NHbimMu cnoBamu, Launchpad 6bin paspaboTaH 4To6bl MOMOYb POCTY
Ballero coob6LlecTBa MU CHU3UTb TPEHUs nNpu paboTe Kak BHymMpu
coobLlecTBa, Tak U Mexoy coobulectsamu. B KoHeEYHOM cueTe, 3TO
O3Ha4aeT, YTo TPATUTCA MEHbLUE BPEMEHM Ha PYTWHHbIE 3a4a4vn ”
60/1blLEe HA UHTEpPECHbIE pa3paboTKu.

1.1.5 Bazaar: K/IMeHT CUCTEMbI KOHTPOJ1S BEpPCUI
nna Launchpad

3T0 pYKOBOACTBO paccMatpuBaeT Kak Bazaar u Launchpad moryTt
ObiTb WCMO/Ib30BaHbl BMECTE W [OMNOMHATbL Apyr Apyra. BaxHo
MOMHWTbL O TOM, YTO:

1. Bazaar MOXHO ncnosnb3oBaTb 6e3 Launchpad
2. Launchpad moxHo ucnonb3osartb 6e3 Bazaar.

N Bce Xe, MO 3aMmbiC/ly, MX CymMma 60/blle YeM Kaxablii ©3
MHCTPYMEHTOB MO OTAE/IbHOCTMW.

1.2 T1oncK n NPOCMOTP BETOK C MOMOLLbLIO
Launchpad

1.2.1 TlowncK AOCTYMNHbIX BETOK

XOoTS MCnosib3oBaHme pacnpenenéHHo CUCTeMbl KOHTPOSIA BepCUi
AaEéT MHOro NpenMyLLecTB, B TO e BPeMS Mcye3aeT BCe3HatoLLniA
LLleHTpasIbHbIN cepBep, KOTOPbIA 3HAeT 060 BceX AOCTYMNHbIX BETKaX.
[leiicTBUTENbHO, B pacnpefenéHHoin cpefe WHTepecylowue BeTKM
MOryT OyKBasZIbHO CylLlecTBOBaTb B COTHAX MeCT BO BCeMy
NHTepHeTy (W BHYTpU NHTpaHeTa).

Launchpad 3anonHsieT aToT npo6en, NnpeaocTaBnas peecTp BETOK.

1.2.2 Peructpaunsa BeTokK

Betkn Moryt ObiTb 3arpyxeHol Ha Launchpad wnuM npocTto
3aperncTpmpoBaHbl Kak [AOCTyMHble U3 BHELWHUX WCTOYHUKOB.
BeTkam Tak e MOXHO Ha3HayaTb cTaTyCbl, Takne Kak Hosas, B
paspabomke, Flomosasi nnin OMMeHeHHas.

3ameTka: BHellHVe BeTKM MOryT Aaxke pacnonararbCA B CTapbIX
cucTemMax KOHTposia Bepcuid, Taknx kak CVS u Subversion. Kog u3
aTUX cucteMm OydeT Nepuoauvyecknm cKaHupoBatbCsa U
npeobpa3oBbiBaTLCA B BeTkM Bazaar. KoHeuHO ke, /i
MaKCMMasIbHOM TOYHOCTW, npeanoyTuTesibHee 4YTOObl BHELUHUE
BETKM O6bIIM B hopmarte Bazaar.

1.2.3 TlpocmMOTp BETOK

Ona BETOK MOXHO npocMaTpuBarb WX CHWUCOK, (*)I/II'IprOBaTb n
copTupoBartb no MHOXeCTBY anI/I6yTOB, BK/1HO4asd N8,

Peructpartopa, AeTtopa, CocTosiHue, Bo3pacT 1 Bpems nocnefHel
thrkcaummn. Takke paboTaeT NPOCMOTP BETOK, UTO /IEFKO MO3BO/SET
YyBUZETb CnefytoLlee:;

e OTKyda MOXHO CKadaTb BETKY
e KaK 3a/INTb N3SMEHEHUA

e HefaBHME MKcaUMM W U3MEHEHUS, cAefaHHble KaxbIM
pa3paboTymMKom

e VICXO/IHbI KOA OTAe/bHbIX (halifioB ANs YKa3zaHHOW PeBuU3nun.

1.3 JdocTtyn K Koay B Launchpad c
NnomMoLLbLI0 Bazaar

1.3.1 TllonyyeHune Koda asia NpPoeKTa C OTKPbITbIM
NCXOAHbLIM KOAOM

Launchpad oTcnexuBaeT TbICAYM MPOEKTOB C OTKPbITbIM UCXOLHbIM
KOAOM M BHE 3aBMCMMOCTM OT TOro XpaHuTCcA 3TOT Kop B Bazaar,
CVS wunu Subversion nonb3oBarenu Bazaar fierko MoryT nosyyntb
9TOT KOA Tak:

bzr branch lp:uma-npoekTa

roe uMmsi-npoekma - 3To WAeHTMdmKaTop npoekTa Ha Launchpad.
BOT HEKOTOPbLIE NMPUMEPDI:

bzr branch lp:inkscape
bzr branch lp:amarok

bzr branch lp:python

bzr branch lp:rails

bzr branch lp:java-gnome

Mocne 3Toro Bbl MOXeTe NpocMaTpuBaTh KOf, 10KaSIbHO C MOMOLLbHO
BalLEro J/IO6GMMOro pefakTopa WAM cpefbl pa3paboTkn u npu
XeNaHUN U3MEHSITb €ro.

Ecnv ana npoekta 3aperucTpyMpoBaHO HECKOMbKO — BbIMyCKOB
(Hanpumep, BbiNycK pa3paboTkM B BbINycK NOAAepXKW), Torga
CBEXWIA Kof ANna 3afaHHOro BbiMycKa MOXHO MOMYYNUTb MCMO/b3ys
KOMaHzy:

bzr branch lp:uma-npoekTa/BbiNyCK

1.3.2 Tly6nukaumns sawinx N3aMeHeHuin

NcnpaBuB 3Ty HaZoea/IMBYKO OLWNGKY UAn 06aBMB HOBYIO KPYTYHO
BO3MOXHOCTb, O KOTOPOA Bbl [ABHO Me4yTasiv, MPULLIO BpeMs
yAVBUTL BalnxX Apy3eil U caenatb MUp fydule, caenas Ball Kof
AOCTYNHbIM ANA Apyrnx. Kak yxxe o6bsacHAM0Ch paHblue, Launchpad
aTo 6ecnnaTHasa cnyxb6a Ans pa3MmeLleHns BeTok Bazaar n nostomy
Bbl MOXeTe Oonyo6/MKoBaTb CBOK BETKY Ha HEM, Tak 4ToObl gpyrue
CMOI/IX NOYUNTb AOCTYN K BalleMy Kogy. Hanpvmep, npegnonoxum
YTO Bbl Y)X€ YYaCTHMK COOTBETCTBYIOLEN KOMaHAbl, aBTOPU3YNTECH
Ha Launchpad Takum o6pasom:

bzr launchpad-login nonb3oBaTenb

roe rnosb3osamesib - 3T0 Ball MAEHTUMKATOP MNo/b3oBaTens
Launchpad. Mocne 3Toro Bbl MOXeTe 3a/UTb BallM U3MEHEHUS Ha
BETKY KOMaH/lbl BOT Tak:

bzr push lp:~umsa-KomMaHAbl/UMSA-NpoeKTa/UMs-BETKM

Tenepb Apyrue MoryT ckayaTb Balll KO, TakuM 06pa3oM:

bzr branch lp:~unmsa-kKomaHgbl/UMA-NpoeKkTa/uMs-BeTKN

1.3.3 JIn4dHble BETKU

[axe ecnun Bbl He YneH Kakoin-nnmbéo komaHAbl Launchpad MoOXHO
MCNonb3oBaTb ANA nyo6nukauum Bawmx U3MeHeHuid. B aTom cnyvae
MPOCTO CO34ailTe JINYHYIO BETKY:

bzr push lp:~nonb3oBaTenb/uMs-npoekTa/uMs-BeTKHU

Apyrne 3atem MOryT ckadyaTb Ball Ko Takum o6pa30M:

bzr branch lp:~nonb3oBaTenb/uMs-npoekTa/NMsa-BeTKN

3ameTka: gaxe B criyyae nyb6nvkaumm nMUHol BETKM BYeT BEX/UBO
YBEIOMUTb OCHOBHbIX Pa3paboTUMKOB O Balleli BETKE, YTOObl OHU
CMOI/IN B35iTb BallM U3MEHEHWS!, ECNIN OHU MOAXOAST U ANS APYTrnx
nosib3oBaTesieil U COOTBETCTBYIOT CTaHAapTaM KayecTBa npoekTa.

1.4 CsBA3blBaHMe BeTOK B Launchpad

1.4.1 TlpuBA3Ka BETKN K COOOLLEHNIO 06 OLLINOKe

Mocne perucTpauuy BETKU Bbl MOXETe CBsi3aTb €€ C OLUMOGKOIA,
YTo6Gbl 3aMHTEpPEecoBaHHble B €€ UCMpaB/IeHU ogn MOr/u
OTC/IEXMBATb M3MEHEHNS U cKauyaTb UCMpaB/ieHne, Koraa OHO CTaHeT
AOOCTYMHO.

UTOObI caenarb 3TO BbINOJIHNTE CrieayroLine waru.

1. MepeignTe K CTpaHULEe C HY>KHOWN OLLIMGKOM.

2. Bblbepute Add branch (Jo6aBuTb BeTKy) B pa3gene Actions

(dencTteus).

Bbibepute BETKY.

4. Tlpwn xenaHnn Bbl MOXETe U3MEHUTb COCTOsHWe (State) cBA3w.
Mo ymonuaHuo coctosiHue 6yaet Fix In Progress (PaboTta Haf
ncnpasneHneM), HO Bbl MOXETe YCTaHOBUTb ApYyroe COCTOsIHUE,
Hanpumep Fix Available (VcnpasneHne AOOCTYMNHO), €CNu BETKA
yXX€ COLEPXUT NCnpaBneHune.

w

Mpy XenaHuM Bbl TakKkKe MOXeTe [06aBUTb MNPOU3BOJIbHLIN
KOMMEHTapWin 0 CBA3U MEXAY OLLUNOKON 1N BETKOMN.

1.4.2 l13MeHeHue coCcTosAHMA BeTKM B Launchpad
BO BpeMs (pukcaunu B Bazaar

Bazaar v Launchpad cnocobHbl paboTaTtb BMeCTe, 4TOObI
YMEHbLUNTb Balln 3a60Tbl MO yrNpaBneHno cocTossHneM BeTkn. Korga
Bbl BbINOMHAETE (pUKCauuio C MNOMOLb0 Bazaar, ucnonbayiTe
napametp —fixes:

bzr commit --fixes 1p:1234 -m "...

roe 1234 — 370 MAeHTUdUKaTop OWnbKN. ST AaHHblE U3MEHAT
State (cocTosiHMe OTHOLWUEHWA BETKM K ownbke) Ha Fix Available
(UcnpaBneHne pocTtynHo). Ecnv ogHa eguHCTBEHHasA dovkcauus
MCcnpaBnseT HeCcKONIbKO OWNOOoK, TO napameTp —fixes MoxeT ObITb
yKa3aH HecKo/1bKo pas.

Camoe WHTepecHoe 3[eCb 3ak/lwyaeTcd B TOM, 4YTO BaM He
06A3aresibHO UMeTb AocTyn K Launchpad B MOMeHT dpukcauumn. Mpu
NCNOJIb30BaAHNN --fixes WOEHTUMKATOP OLUNOKM COXPaHAETCA B

BUAE crneunasibHbIX MeTadaHHbIX, KoTopble Launchpad yBuanT npu
oyepedHon nyb6nvkauun BalmMx W3MEHEHWA wauM Korga Bawa
ny6nmMyHas BeTka bygeT NnpockaHMpoBaHa B oYepenHoi pas.

3ameTka: Launchpad He 6yaet 3akpbiBaTb CO06OLieHME 06 OLIMOKe
TO/IbKO MOTOMY, YTO CYLLECTBYET BETKA C UcrnpassieHnem. Ansa 3Toro
€CTb HEeCKO/IbKO MpuynH. Bo-nepBbiX, 0ObIYHO WCNpaBneHus U3
Balleil BETKM [A0/MKHbl OblTb OObEAWHEHbI C [N1AaBHOW BETKOW
pa3paboTkn, MHavye 60/bLUMHCTBO KOMaHg He 6yaeT cuntarb OLWMOKY
ncnpaBneHHoW. BO-BTOpPbIX, MHOrME KOMaHAbl NpUAEPXUBAKOTCA
OTAENbHOro npouecca A5 NoATBEPXAEHMS NCNPaBNEHN OWNOOK, B
Ao6GaBneHne K yTBepXaeHnio paspaboTunka 06 aTom.

Kak nosicHsaeTca panee, (QyHKUMA OTCNexXuBaHUs 06befuHEeHWU
BeTOKk Ha Launchpad B HacTosllee Bpems HaxoguTca B cTaguu
pa3pabotkn. Kak Tonbko 3ta dyHKUuma Oyaetr rotoBa 6onee
NOAXOAALWMM MNOBEAEHMEM CTaHeT aBToOMaruyeckoe W3MeHeHue
cocToAHMA owmnbkn Ha Fix Committed (McnpaBneHue
3adomMKcrpoBaHo).

1.4.3 CBsA3b BETKU C NJ1aHOM

[Mocne pernctpaymn BETKN Bbl MOXETE CBA3aTb €€ C NsiaHoMm, 4TOObI
nwgn, 3anHTepecoBaHHble B 3TOM [JlaHE MOIJ/IN OTC/ieXNBaTb U
TectnpoBatb HOBblE BOSMOXHOCTHW MO0 Mepe pa3pa60TK|/|.

UTobbI 3TO caenarb, BbIMO/IHUTE ceagyrwme warn.

1. Mepengute K HY>XKHOMY naHy (Blueprint).

2. Bblbepute Link branch (CeasaTb BeTKy) B pasgene Actions
(dencTteus).

3. BbibepuTte BETKY.

[Mpn XenaHnnM Bbl TakKke MOXeTe p,06aBI/ITb I'IpOI/I3BO.I'IbeII7I
KOMMeHTapI/II7I 00 OTHOLLUEHUN BETKM K naaxy.

1.5 YnpasneHue penmiamu ¢ NOMOLLbH
Launchpad

1.5.1 WHTerpauus n3ameHeHunm

Korga paspaboTka Ha BeTKe 3aKoHYeHa W OHa onyG6/MKOBaHa,
cooblLiecTBa 06bIYHO MPOXOAST 4Yepe3 CTPOruii npouecc, npexae
YEM W3MEHEeHus1 GyAyT WHTErpupoBaHbl B OCHOBHOW MNPOAYKT U
npefocTaBneHbl KOHEYHbIM MNo/b30BaTeNnsiM. BoT HekoTopble U3
BO3MOMHbIX LLIArOB:

e MPOCMOTP U3MEHEHWUIA APYTMMMN YY4aCTHUKAMW NPOEKTa

e MPUHATME PpELIeHUsi, B Kakoli penu3 6GyayT BK/OYEHbI
M3MEHEHMS, HanpyUMep, B ceayoLwWwnii penns ¢ ucnpasBneHnsimu,
WAn B cneaytollee KpynHoe 06HOBNEHME, UK B 06a

e MPOroH (PYHKLIMOHANbHbIX TECTOB [/191 BbIIBNEHUS OLUNGOK

e M3MepeHune NPoun3BOANTENLHOCTM

e BK/IlOUEHNE B NpeaBapuTe/ibHble BEpPCUU A8 TeCTUPOBaHMS
KOHEYHbIMW NoMb30BaTeNsIMM

e 06HOBNEHWE JOKYMEHTALMK, HanpuMep, 3aMeTOK O BbiNycke

e MepeBoj, Nonb30BaTeNbCKOro MHTepdieica N AOKYMEHTaLUMN Ha
pasHble S3bIKN.

J10T pasgen pgaetr 0630p Bo3MoxHocTel Launchpad, kotopble
MomoraroT MnoslyyYnTb BbICOKOE KavyeCTBO KoAa B KOHEYHOM MPOAYKTeE.
Xopolas uHterpaums ¢ Bazaar ssBnsieTca 0CHOBOWN A18 TOrO, YTOObI
3TO MPOLUSIO rNajKo.

MNpuMeuyaHne: B TeX c/ydasix, Korga ykasaHo, HeKoTopble W3
cneaywolmx BO3MOXHOCTE BCE eWweé Haxogatcs B CTaauu
pa3paboTkn. Ecnmn ofHa UM HECKOSIbKO Takux BO3MOXHOCTel Bam
MHTEPECHbI, PACCMOTPUTE BO3MOXHOCTb BCTYM/IEHUS B KOMaHmay
6eTta-TecTupoBaHus Launchpad no cnegywoulein CCbifkKe:

https://help.launchpad.net/JoiningLaunchpadBetaTesters. B 3TOoM
c/lyyae, Bbl CMOXETe [MoAyunTb npeasapuTenbHbIid OOCTYN K
BO3MOXHOCTSAAM WM CMOXeTe pfaTb OT3blB pas3paboTyunkamu [o
LLIMPOKOTO BHEAPEHUA.

1.5.2 TpepnoxeHne no o6bLeANHEHUIO BETOK

Mocne nepexoga kK BeTke B Launchpad, ogHO ©3 [OCTYMHbIX
AencTBuin - Propose for merging (Mpeanoxuts 06beAnHEHNE). DTO
[eiCcTBME NO3BOMSET BaM yKa3aTb, C KaKO BETKOW 3TOT KOA MOr Obl
ObITb 00 bEeANHEH.

OTcnexuBaHMe 3HaHMA O TOM, Kakme BETKM npepgsaraercs
00beMHNTL B IMaBHYH0, NOMOraeT MeHemkepam BbIMyCKOB AepXaTb
Ha BMAY TO, YTO €LUEé AO/MKHO ObITb 3aBepLUEHO, MO0 MOXET ObITb
3aBepLleHo, 00 Aartbl Bbinycka. Vicnonb3ya 3ty uHdopmaunio, OHU
MOryT ybeauTbCHd, YTO BETKM OObeAuHEeHbl Moc/ie 3aBepLUeHns nx
HeobxoAuMbIX 0630pOB. B npocToM cryyae, MeHemXep Bblnycka
MOXeT 00beIHNTL BETKN BPYYHYK. B 60n1ee CNoXHbIX cuTyaumsx,
obbeanHeHne MOXeT ObITb caenaHo poboTom (Takum, kak PQM)
aBTOMaTUYeCKN, Koraa BeTKM nepengyt B npaBu/ibHOE COCTOsIHME
(Hanpumep, Review completed (O630p 3aBepLUEH)).

1.5.3 OrTcnexnBaHue o63opa Koaa

HekoTopble doyHKuuM B Launchpad Bce eule B ctagum paspaboTtku,
HanpumMep OTCNAEeXUBaHWE COCTOSIHUWA, OBGCYXAEHWUA U pe3ynbLTaToB
o630pa koga. Oxngaetca, 4To 3TN PYHKUUKM ByayT MHTErpUpPOBaHbI C
npens1oXeHNaMmM No 06beaMHEHNIO BETOK 1 NPOCMOTPOM BETOK.

1.5.4 ApxuBbl INYHbIX NakeToB (PPAS)

PPAs nomoraloT pa3paboTuvMkam WU KoMaHgam paspaboTku BblAaTb
onpefeneHHblii BbIMYCK Ha PyKM MONb30BaTENSAIM [/l PAHHEro

https://help.launchpad.net/JoiningLaunchpadBetaTesters
https://launchpad.net/pqm

TEeCTUPOBaHMA W Mosiy4eHusa oT3biBOB. Adpyrumn cnosamu, PPA
NMo3BO/ISET pa3paboTyunky co3gaTb COOOLLECTBO — TeCTepos,
3aMHTEPEeCOBaHHbIX B UX M3MeHeHUAX. TecTupytollee coobLecTBO
MOXET YCTaHOBWUTb MaKeTbl, 3anyckaTb WX B TeuyeHue TeCcTOBOro
nepuoja, a 3atemM akkypaTtHo yaa/IUuTb UX N3 CUCTEMBbI.

[danbHenwyw vHopmauMlo MOXHO HaWtTm No agpecy
https://help.launchpad.net/PPAQuickStart

1.5.5 TllepeBogbl

Mopaynb nepesogoB B Launchpad caenaH ana Toro 4tobbl nto6on
XenatoLwunin Mor nerko nNpucoeanHUTLCA K NepeBoay NPUIOKEeHWn Ha
N3BECTHblE eMy A3blKW. MMepeBoAYMKM 3almuleHbl OT NOAPOBHOCTEN
HN3KOro YPOBHS.

Launchpad otcnexmBaeT nepesofbl A8 KaxAoW OCHOBHOW Bepcumn
NpoekTa Mo OTAENbHOCTM, 4YTO MO3BOMISIET NepeBoAYMKam
NpoAo/mkaTb COBEpPLUEHCTBOBATL MNepeBof BaluMxX CTabunbHbIX
penn3oB, Noka Agpyrne MoryT Hadatb paboTy Haj HOBbIMU BEPCUSIMU,
KOTOpble Bce elé HaxogAaTca B paspabotke. CKOpOCTb nepesoja
yBe/MunBaeTcs u3-3a COBMECTHOIO WCNOMb30BaHUA pPecypcoB
Mexay npoekTamu. ABTOMaTUYeckue MoAckasku, U3 6mbnmotekn B
750 TbiCAY NepeBeAEeHHbIX CTPOK, a Takke coobLlecTso M3 19 Thicay
3aperncTpupoBaHHbIX NEPEBOAUNKOB MOXET pafuKasilbHO COKpaTUTb
Bpemsi, Heobxoanumoe A/151 nokamsauum Bawero npoekta Ha MHorme
A3bIKN.

https://help.launchpad.net/PPAQuickStart

1.6 UT1orn

CoobLecTBa K KOTOpPbIM Mbl NpUcoeguHaemMcsi, byab TO B peasibHOM
XW3HW, WAN OHMalH, roBOPST MHOroe o0 Hac. O6parHasi CTopoHa
3TOro 3aK/N4vaeTcsl B MHCTPYMEHTax KOTopble Bbl BblOMpaeTe O/
coobuecTtBa - B YacTHOCTU, CDE N MHCTPYMEHT KOHTPONSA BEPCUI.
DTO0 MOXEeT MMeTb 00/blloe 3HavYeHne ANs Tex KTOo noxenaer
NPUCOEANHNTLCA, N HACKO/IbKO /IEFKO OHM CMOTYT MNOMOYb.

Camn no cebe, Launchpad n Bazaar sBns0TCA O4YeHb MOSE3HBIMU
NHCTPYMeHTaMn. BmecTe OHN MOryT:

* MOMOYb BalleMy COOOLLECTBY OTC/IEXMBaTb OCHOBHbIE PECYPChI,
Takme Kak UCXoAHbIA Koa U 3HaHUS;

* MOMOYb EMY pacTu, CHU3UB BCTYNUTENbHbI 6apbep;

e NIOMOYb €My BO B3auMOAEWCTBMM C 3aBUCUMbIMU
coobulecTBamu.

B yacTtHocTK, Launchpad siBnisieTcst cepBUCOM XpaHeHUst CBOOOAHOrO
Koga AN Bawux BeTOK Bazaar. BeTkn MOXHO npocmatpuBatb
OH/1aliH, X MOXHO CBSAi3aTb C OWMOKamu 1 nnaHamun. A nx ctatyc no
OTHOLLUEHNIO K OWMOKe MOXET aBTOMATUYECKM YNpaBNSATbCA
ynomMmvMHaHnem o6 owwmnbke nNpu coxpaHeHun B Bazaar. JasnbHeiwas
NMHTErpauus HaxoauTca B CTaaun pasBUTUS C Lebl0 ONTMMU3aumm
npouecca OT 6o/s1bwol udeu po pabomaruwezo0 koda B pykKax
KOHEeYHbIX rosib3osamesedl.

Ecnn y Bac ecTb OT3biBbl WAM MOXeMaHnA O TOM, Kak Jsydylle
MHTerpuposatb Bazaar n Launchpad, noxanyicrta cesisbiBailTecb C
HaMW yepes CNUCOK paccbliikn bazaar@lists.canonical.com.

Xota Launchpad paspabotaH kak ©6ecnnaTHblii cepBuc ANA
NOAOEPXKA TMPOEKTOB C OTKPbITbIMWA ~ UCXOAHbIMK TEKCTamM,
Canonical moxeT caenatb ero AOCTYMNHbIM W ANA pas3padboTynKoB

mailto:bazaar%40lists.canonical.com

KOMMEPYECKOro nNporpamMmmMHoOro obecrneyeHnss, B 3aBUCMMOCTU OT UX
TpeboBaHuiA. Mbl C YyAOBO/ILCTBMEM BbIC/lyLLAaeM Balle MHEHUE,
ecnun Bbl cuyuTaete, 4to Launchpad 6bi1 Obl NoneseH AOJs
ynpas/ieHns BallMM cO00LECTBOM, Oyb OHO OTKPbLITOE WU/IN HET.

. FnasHas | OokymeHTaums | CogepxaHue (2.2b1) » npeaplaywmii | cnegyowimi

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/ru/
http://sphinx.pocoo.org/

. FnasHas | OokymeHTaums | CogepxaHue (2.2b1) » npeablayLwunia

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/ru/

1 Paborta B LeHTpa/In30BaHHOM
cTune

1.1 O630p

OTOT [OKYMEHT onucbiBaeT OAMH W3 BO3MOXHbIX MOAXOAOB K
NCMo/b30BaHNIO Bazaar. A NMEHHO, NCrnosib3oBaHune
pacnpefenieHHol CUCTEMbl KOHTpons Bepcui Bazaar, B
LeHTpanm3oBaHHOM cTune. Bazaar paspabortaHa, 4TO Obl ObITb
MOKON W gonyckaTb pas/inyHble noaxodbl K pabote, HaumMHas OT
MO/IHOCTbIO AelUeHTpasIM30BaHHOro, [0 npakTUyeckun
LeHTpasIM30BaHHOro. Noaxoa onMcaHHbIi 34ecb MO3BOMSET HOBbIM
nonb3oBartesnidM nNpowle BHUKHYTbL B 60nee npoaBuHYTOE
ncrnonb3oBaHne Bazaar W CcMmewuBaTb LEHTpPa/In30BaHHble W
AeueHTpann3oBaHHbIe onepauun,

B obwem cnydyae, [AdaHHbli OOKYMEHT WHTepeceH Ans
nosb3oBaTesiein nepexoisalmx ¢ LEHTPaSIM30BaHHbIX CUCTEM, TakuXx
Kak CVS, wunm Subversion. B Takux cuctemax 00blYHO €ecCTb
€QUHCTBEHHbI LEeHTpasibHbIA CEPBEP Ha KOTOPOM XPaHUTCH KOA
npoekTa W Yy4yaCTHUKM KOMaHAbl pabotatlT Hag 3TUM KOAOM,
CMHXPOHU3NPYsT CBOK paboTy. Takoil pexum Tak e noaxoanT OJis
pa3paboTumka-oANHOYKN, paboTatolero Ha HeCKOIbKMX pPas/IMyHbIX
MaLllnHax.

CopepxaHue

e 1 PaboTa B LeHTpa/In30BaHHOM CTU/E

o 1.1 0O630p

o 1.2 HayasibHble yCTaHOBKU
m 1.2.1 HacTtpoiika e-mail nonb3osarens
m 1.2.2 HacTtpoiika nokasbHOro peno3nTopus
m 1.2.3 HacTtpoiika yganeHHoro penosntopus

o 1.3 Muwurpauna paboyero npoekta B Bazaar
= 1.3.1 Paspabotumk 1: Co3gaHune nepsoi pesm3nm
m 1.3.2 Paspabotumk N: MNMonyyeHne paboyert Konum

http://bazaar-vcs.org
http://bazaar-vcs.org
http://bazaar-vcs.org
http://bazaar-vcs.org

o 14

npoekTa

Pa3paboTka Ha oTAesbHbIX BETKax

1.4.1 CosgaHve n pabota Ha HOBOW BETKe
1.4.2 O6begnHeHne N3MeHeHu obpaTHo
1.4.3 PekomeHgauun no co3faHuio BETOK
Cnoccapwuii

1.5.1 Pasgensemblii peno3ntopuii

1.2 HayvasibHble yCTaHOBKMU

B camom Hauvane, ana 6onee yaobHoil pabotbl ¢ Bazaar,
XenateflbHO OCyWeCTBUTb [OCTaTO4YHO MNpPoCTble warn no
HacTpolike.

1.2.1 HacTtpownka e-mail nosib3oBaTtens

CTpoka uaeHTudMumMpyowas nonb3oBaTesil COXpaHseTcs npu
KXo domkcaumm. XoTs OHa He 06si3aTeflbHO [1I0/MKHA ObITb
aKKypaTHOW WM YHUKaNbHO OHa 6yaeT Wcnonb3oBaThbCs B
COOBLLEHNSIX XXYpPHana 1 aHHOTaUMsIX, TakKuM 06pa3omM ydlle YTo 6bl
OHa Gblsla MOX0Xa Ha UTO-TO peasibHoe.

% bzr whoami "WBaH NynkuH <ivan@pupkin.ru>"

1.2.2 HacTtpounka nokasibHOro peno3nTopus

B ob6buwem cnyyae BeTkM Bazaar KonuvpyloT MOJSIHYKO WUCTOPUIO
N3MEeHeHNn BMecTe ¢ COb6Oi, 4YTO, KCTaTu, MO3BOMSAET paboTarb B
MO/THOCTbIO [AeueHTpasin3oBaHHOM cTune. Kak ontumusauusa ans
CBSA3aHHbIX BETOK BO3MOXHO OO0BLEAMHATb WX XpaHuauwa Takum
o6pa3om, 4YTo OTnagaer HeobxoAUMMOCTb B KOMMPOBAHWWU TMOSHOW
NCTOPUM U3MEHEHWIA NMPU CO3[aHMM HOBOI BETKMN.

Nyuiumnii cnoco6 caenatk 310 - co3AaTth Pasaensiemblii peno3uTopuii.
B obulem cnyyae, BETKM OyayT pasfensitb XPaHUNuULLE ec/ii OHU
HaxoAsATCsl B noakartasiore 3Toro peno3utopus. [asaite co3aaamm
PaszensieMblii peno3uTopuii B Hallem JoMallHeM KaTtasiore v Takum
06pa3om BCe BETKM KOTOpPble Mbl ByaemM co3gaBaTb Mo HUM OyayT
pasnenaTb XpaHWIuLLEe UCTOPUN.

% bzr init-repo --trees ~

http://bazaar-vcs.org
http://bazaar-vcs.org

1.2.3 HacTtpouka ygasieHHOro peno3nTopus

Bo MHOrMx criyyasx Hy)>XHO co3faBaTb MECTO r4e AaHHble XpaHATCA
oTAeNbHO OT pabouyero kartanora. TakoW nogxopn Heobxoaum A1
LeHTpanun3oBaHHbIXx cuctem (CVS/SVN). OO6bIMHO 3TKM KaTasiorm
HaxXo4ATCA Ha pas3/IM4YHbIX MallumMHax, XoTa U He Bcerga. Ha camom
fene 3TO AOCTaTOMHO XOPOLWMW noaxond, OCOOGEHHO B pabouen
cpefe. Tak Kak 34eCb CyLeCcTBYeT LeHTpasibHas Touka, rae MoryT
OblTb COXpaHeHbl BCE [AaHHble W faXe eCNu 4YTO-TO C/Iy4ynTcs C
MallnMHOM pas3paboTumka 3adukcupoBaHHas pabota He O6yaer
nortepsHa.

[laBaiiTe co3zgaguMm pasgensieMoe MecTo [71s Hallero npoekTa Ha
yAasieHHOl MallMHe W Ha30BeM ero centralhost. Mbl CHOBa
ncnonb3lyem Pasgensemblii penosutopuii AN onTUMMU3aLmu
MCMNONb30BAHNUS [IMCKOB.

% bzr init-repo --no-trees sftp://centralhost/srv/bzr/

MOXHO paccmarpuBaTb 3TOT LWAar Kak [MOXOXWi Ha YCTaHOBKY
CVSROOT, wmm penosutopua Subversion. Onuusa --no-trees
yKasblBaeT Bazaar He co3gaBaTb pabouynii KaTanor B peno3nTopun.
Ham 370 noaxoauT, T.K. HUKTO He ByAeT HanpsAMyt YTO-TO U3MEHATb
Ha BeTKax B LLleHTpa/IbHOM PENO3UTOPUMN.

1.3 Mwurpaumna paboyero npoekrta B
Bazaar

Tenepb, Korga y Hac eCTb Peno3nuTopuii gasante co3gagnm MpPoekT
noA KOHTPO/IEM Bepcuid. B 60/bLUMHCTBE CyyaeB Yy Bac YXe ecTb
KaKoN-TO Kof, C KOTOPbIM Bbl paboTtaete u AN XpPaHEeHUs KOTOPOro
Bbl XOTeNu Obl McCnonb3oBaTb Bazaar. Ecnn ko n3HavyanbHO Yyxe
Obln MOA KOHTPO/EM Bepcui CyllecTByeT MHOro cnocobos
KOHBEPTMpPOBaTb MPOEKT B Bazaar 6e3 notepu NCTOPUN U3MEHEHUIA.
Ho 3TK cnocobbl HAXOAATCA BHE TEM paccMaTpuBaemMbiX B AaHHOM
AokymeHTe. CmoTpute OTCNexuBaHne W3MEHEHWA Ha OCHOBHOW
BETKE [ANA HEeKOTopbIX cnocoboB (cekums “KoHBepTupoBaHue W
coxpaHeHwune nctopumn’).

1.3.1 Paspab6otuuk 1: Co3gaHue nepBov peBn3nmn

CHayana HaM HY)XHO co034aTb BEeTKY B HaweMm Yyaa/leHHOM
penosutopun, Tam rAe Mbl XOTenn Obl XpaHUTb Hall MPOEKT.
[lonycTuMm, 4TO y Hac yxe ecTb NPOeKT “sigil”’, KOTOPbIA Mbl XOTeNu
Obl XpaHUTb NOA, KOHTPOSIEM BEPCUA.

% bzr init sftp://centralhost/srv/bzr/sigil

3TO0 MOXHO paccmaTpuBath Kak BeTky “HEAD” B TepMmuHax CVS, nnu
kak “trunk” B TepmuHax Subversion. Ha3oBemM 3TO BeTKOM
pa3paboTku dev.

A npegnounTtald pabotatb B nogkatasiore MOero AoMallHero
katasiora, 4to 6bl ns3beraTb KOMIN3UIA CO BCeEMU Apyrumu charnamm
KOTOpble B Hel HaxogAaTcsA. Takke Ham NoHagobuTca katanor asis
NpoeKkTa rae Mbl CMOXEM XpaHUTb pas/inyHble BETKM MpoekTa Hapg,
KOTOpbIMU paboTaem.

http://bazaar-vcs.org
http://bazaar-vcs.org
http://bazaar-vcs.org/TrackingUpstream

% cd ~

% mkdir work

% cd work

% mkdir sigil

% cd sigil

% bzr checkout sftp://centralhost/srv/bzr/sigil dev
% cd dev

% cp -ar ~/sigil/*

% bzr add

% bzr commit -m "MNepBblii umnopT Sigil"

Bbille Mbl co3ganin NycTy BETKY /sigil Ha centralhost M 3aTem

3arpysvan 3Ty nycTyl BETKY Ha Hawy paboudyto MalluuvHy 4TO Obl
[06aBUTb haii/ibl M3 Hawero CcTraporo npoekta. ECTb MHOro
CNnoco60B HaCTpPOUTb CBOW pabounini KaTtanol, HO LwWarn Bbllwe
ynpowaT Aa/ibHelwy paboTy ¢ BeTkamu Ana paboTtbl Hag
omn6KamMmn, UM HoBbIMN OYHKUMSMI. V1 ogHa 13 Hanbonee CubHbIX
CTOpPOH Bazaar - 3T0 UMEHHO OT/InYHast paboTa C BETKaMW.

Ha atom 3Ttane, T.K. Mbl co3gann pabouyto konuio (checkout)
yOasieHHOW BeTKW, Bce pukcaumm KoTopble OyayT caenaHbl B
~/work/sigil/dev/ GyaQyT aBTOMATUYECKN COXPaHEHbl U JTIOKa/IbHO U

Ha centralhost.

1.3.2 Pa3pa6otunk N: lNonyvyeHne paboyen konmm
npoekTa

Tak kak nepsblii pa3paboTyunk npogenan Bco paboTy No cos3gaHuto
NpoOeKTa BCEe OCTa/lbHble pa3pabOTyYMKM MOTYT MPOCTO MNOMYYUTb
paboyylo KOMu BETKWU. XOTS OHU BCe ele AO/MKHbl cnefoBaTb
pasgenam HacTtpoiika e-mail nonb3oBatend u HacTpoiika
NIOKaJTbHOro Peno3nTopus.

Monyunm pabouyto KOnuio TeKYLLENO AepeBa pa3paboTKu:

% cd ~/work/sigil
% bzr checkout sftp://centralhost/srv/bzr/sigil dev

http://bazaar-vcs.org

Tenepsb, korga ABa 4yesioBeka uMer pabouyro Konuto
sftp://centralhost/srv/bzr/sigil OyAyT cuTyauum korga ogHa w3

Konuii ByaeT He CMHXPOHM3MpOBaHa C Tekyllel Bepcueii. Bo Bpems
dukcaymm Bazaar npovHdOpMUpPYeT Nonb3oBatens 06 3TOM U He
AonycTut domkcaumn. ns nonyyeHnsa nocneaHnx N3MeHeHUn HYXXHO
MCNOMb30BaTb bzr update. OTa KOMaHAa MOXET noTpeboBaTtb
paspeleHnss KOHQNNKTOB ecnn Obln M3MEHEHbI OAHU U Te Xe
haiinbl.

http://bazaar-vcs.org

1.4 Pa3paboTka Ha OTAesfibHbIX BETKax

[lo aTOro MomeHTa Bce paboTann n OUKCUPOBaIN M3MEHEHUS] Ha
OfIHY M Ty Xe BETKY. DTO 3HAUUT, YTO KaXAbli [O/MKEH NEPUOANYECKN
O6HOB/MATb CBOK BETKY WU WMETb A€N0 C WU3MEHEHUsIMU ApPYrux
pa3paboTumkoB. Tak e ecnu ofMH pa3paboTunk PUKCUpyeT YTO-TO,
4TO NPMBOAUT K OLLUMGKAM, TO NOC/Ie CMHXPOHU3aUUK 3Ta npobnema
KOCHETCS1 KaxkAoro.

OO6bIYHO Nyylle BECTU pa3paboTKy Ha pas/IMYHbIX BETKaxX M 3aTem,
Kak TO/IbKO M3MEHEHUs1 A0CTaTO4HO CTabusbHbl, MHTErpUpoBaTb UX
06paTHO Ha OCHOBHYIO BETKY. DTO OAHO M3 HaMOO/bLUNX U3MEHEHWI
No cpaBHeHMto ¢ paboToit B CVS/SVN. O6e 3Tu CUCTEMbI NO3BONSOT
paboTartb C OTAENbHbIMM BETKAMW, HO MUX a/ITOPUTMbl 06bEANHEHUS
AOCTaTto4yHO cliabbl M NO3TOMY C HUMM C/IOXKHO [epxaTb BCe
CMHXPOHU3MpPOBaHO. Bazaar oTcnexmBaer 41O yXe OblNo
06bEANHEHO M MOXET Aaxe NpuknagbiBaTb U3MEHEHUS K hainam
KOTOopble Obl/IN NepeMMEHOBaHbI.

1.4.1 Co3gaHue n pabota Ha HOBOW BETKE

Mbl Gbl XOT€NWN, YTO Obl HALLUM U3MEHEHUS BbINN AOCTYMHbI APYTUM
NaXe ec/iM OHW MNoKa ellle He 3aKOoHYeHbl. TakMM 06pa3om Mbl
CO3/alIMM HOBYH My6MMYHYI0 BETKY Ha centralhost U Oyaem

OoTC/iexmBarb €€ J1IOKaJ/1IbHO.

% cd ~/work/sigil

% bzr branch sftp://centralhost/srv/bzr/sigil \
sftp://centralhost/srv/bzr/sigil/doodle-fixes

% bzr checkout sftp://centralhost/srv/bzr/sigil/doodle-fixes do

% cd doodle-fixes

{ S— >

Tenepb y Hac ecTb MECTO rae Mbl MOXEM UCNPaBiATb BCe OLLINOKW

http://bazaar-vcs.org

Ans doodle. I Mbl He 6y,qu npepbiBatb HAKOIO KTO pa60TaeT Ha/

ApyrMMM 4vactamm koga. Tak Kak y Hac ecTb paboyas Konus
(checkout) Bce dwkcaumm KoTOpble Mbl OenaemMm Ha
~/work/sigil/doodle-fixes/ TaK e MOABATCA W Ha centralhost. [1]

Takke BO3MOXHO, YTO Obl ABa pa3paboTymka COBMECTHO paboTasin
Hag, OAHOWN M3 3TUX BETOK, TaK e Kak OHN COBMECTHO paboTaloT Hap,
BETKOW dev. [2]

MOXeT NnokasaTbCsl CTpaHHbIM UMETb BETKY B noAkaTtasiore

1] npyroii BETKU. Ho 3To HopMasibHO, MOXHO AiyMaTb 06 3TOM Kak O
nepapxmnyeckom NpoCcTPaHCTBE MMEH rae B/IOXEeHHas BeTKa
SIBMISIETCSA NPOU3BO/AHOI OT BHELLUHE BETKMU.

(1,2

Korga mMcnonb3yetcsa MHOXECTBO He3aBMCUMbIX BETOK KaxKAblid
pa3 Habupatb nonHblii URL 3aHMMaeT MHOro BpemMeHWu. Mol
paccmaTpuBaemM pasfinyHble MeTodbl, 4TO O6bl 060NTU 3TO,
Hanpumep MnCeBAOHUMbI ANA BETOK M T.N. Ho noka nnarvH
bzrtools npegoctaBnsdetr kKomaHAay bzr cbranch. 9Ta KOMaHga Ha

[2] ocHOBe 6a30BOi BeTKM CO3AAeT HOBYI My6ANUYHYIO BETKY U
paboyyto KOMUK 3TOM BETKM BCEro OAHOW KOoMaHAoW.
KoHdourypupoBaHue cbranch He BXOAWUT B pamMKu OMMCaHuUS
39TOr0 [OKYMeHTa, HO (MHa/lbHass KoOmMaHga BbIrNA4nuT
cnepyowmm obpasom:

% bzr cbranch dev my-feature-branch

1.4.2 O6beanHeHne n3MeHeHn obpaTHo

Korpa pelleHo 4To HeKOTOopble M3MEHEHUA U3 doodle-fixes FOTOBbI

nnsa 06beAMHEHUSS Ha OCHOBHYI BETKY HYXHO MpOCTO caenarb
cnepyolee:

% cd ~/work/sigil/dev

http://bazaar-vcs.org/BzrTools

% bzr merge ../doodle-fixes

Tenepb N3MEHEHUA OOCTYMHblI Ha BETKE dev, HO OHW MOKa eLlle He

ObINK Sa(bI/IKCI/IDOBaHbI. B 3TOT MOMEHT HYXHO NPOCMOTPETL
chHaanue N3IMEHEHUA N NPOBEPUTb, YTO KOA KOMMU/TMPYETCA U
npoxoaAat Bce TecTbl. KoOMaHAbl bzr status U bzr diff XxopoLune

MHCTPYMEHTbI A1 3TOro. TaK e HYXHO paspellnTb BO3MOXHble
KOH(DNUKTbI. Bazaar He pgonycTut dimkcauum noka He 6yayT
paspelleHbl BCe KOHQMKTbI. B 3TOM cnyyae Bbl CryyaiiHO He
3adouKcmpyeTe Mapkepbl KOHGIMKTa. KoMaHda bzr status MOKaXeT

KOHJUMIMKTbI U USMEHEHUSA, U MOXHO UCMNOMb30BaTh bzr conflicts
4yto Obl YBUAETb TONMILKO KOHMAMKTbI. MCnonb3yinTe bzr resolve
file/name, WIN bzr resolve --all KaK TO/IbKO KOH(PANKTbI Oblnn

paspelleHsbl. [3] Ecnv cywecTBYOT KOHMMNKTLI KOTOPbIE 0COGEHHO
C/TIOXHO pPa3pewnTb MOXHO WCMONb30BaTb KOMaHAy bzr remerge.

JT1a KOMaHga Mno3BO/IMT WUCMOJIb30BaTb Apyrne aJ/iropntMbl
O6‘be,ﬂ||/|HeH|/|F| N TakKkKe NOo3BOJ/IUT YyBUAETb CTPOKU OPUTMHA/IbHOIO
Koaa (--show-base).

HekoTopble cucTeMbl MO3BONAIOT pa3peLlarb KOHM/IUKTbI Kak
4yacTb npouecca 06beAnHeHNA. Mbl 0GHaAPYXW/N, YTO 0ObIYHO

(3] NpoLLe paspeLlarb KOHNUKTLI Korga MOXHO NpocMarprBaThb
NosIHOE AepeBOo, a He TO/IbKO OTAesbHble thalibl. ITO faet
HaMHOro 60/iblle KOHTEKCTa M Takke MO3BOJIAET 3anyckarb
TeCTbl Korga npobnema 6yaer pelleHa.

1.4.3 PekomeHgauuy No co3gaHMo BETOK

O[IMH 13 YacTo MCMOMNb3yEMbIX CNOCO60B PaboThl C HA6OPOM BETOK -
3T0 [AaTb KaxkAoMy pa3paboTuMKy CBOK COOGCTBEHHYI BETKY WU
co6CTBEHHOE MECTO A/1s1 paboTbl HA LEHTpasibHOM cepBepe. 3TO
MOXHO c/lenatb Tak:

% bzr branch sftp://centralhost/srv/bzr/sigil \
sftp://centralhost/srv/bzr/sigil/user-a

http://bazaar-vcs.org

% bzr branch sftp://centralhost/srv/bzr/sigil \
sftp://centralhost/srv/bzr/sigil/user-b

3T0 AaeT KaxaoMmy pa3paboTurky COGCTBEHHYO BETKY A1 paboThl.
N OHM CMOTYT NIETKO CO3AaTb HOBbIE BETKM C MOMOLLbIO [2]

% bzr branch sftp://centralhost/srv/bzr/sigil/user-a \
sftp://centralhost/srv/bzr/sigil/user-a/feature

% cd ~/work/sigil

% bzr checkout sftp://centralhost/srv/bzr/sigil/user-a/feature

K E— 2]

1.5 [noccapwuin

1.5.1 PasgensieMmblivi peno3utopui

Bazaar noggepxuBaeT KoHuenuuio “Pasgensemblii peno3ntopuin’.
JTa KOHUenuma noxoxa Ha TpaguuMoHHble KOHUenuun
pPENO3NTOPUEB B [APYIrMX CUCTEMAxX KOHTPONA BEPCUM, TakMX Kak
CVS, wmm Subversion. Hanpumep, B Subversion y Bac ecTb
yOA/IEeHHbI PENO3UTOPUIA, Tae XPaHUTCA BCA UCTOPUA N JIOKaSIbHO
NCTOPUS HE XPaHUTCS, a XpPaHUTCSA TOMbKO paboyasa konus chaiinos.
KoHeuHO “Pa3nensiemblii”” B AAHHOM KOHTEKCTE 3HauuT, 4YTO OH
pasgeneH mexay BeTkamn. OH Moxem OblTb pasfeneH mexay
NIOABMW, HO OTAE/bHbIE BETKM Takke MOryT ObiTb pasfesnieHbl Mexay
noabmn.

B Bazaar TepMuH “PasgensieMblii peno3nTtopuin” - 3To MeCTOo rae
HECKO/IbKO BETOK MOTYT pasoesisimb UX UCTOPUI0 PEBU3NIA. UTO Obl
nogAepXxuBaTtb AeUeHTPaIM30BaHHYHO CXeMy paboTbl Kaxaas BeTka
MOXET XPaHUTb CBOK COOBCTBEHHYO NCTOPUIO PeBU3NIA. HO YacTo aTo
He 30PEKTUBHO, T.K. 3aBUCMMbI€ BETKM pas3fensaoT UCTOPUIO U OHU
MOTYT TaK e pas3feniatb U XpaHunue UCTOPUN.

. FnasHas | OokymeHTaums | CogepxaHue (2.2b1) » npeablayLwunia

http://bazaar-vcs.org
http://bazaar-vcs.org
http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/ru/
http://sphinx.pocoo.org/

. FnasHas | OokymeHTaums | CogepxaHue (2.2b1) » npeaplaywmnii | cnegyowimi

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/ru/

1 PykoBoACTBO NoJib30BaTens
Bazaar

CopepxaHue

e 1 PykoBoacTBO nosib3oBatenia Bazaar

1.1 BepgeHue

1.2 HauuHaem paboTatb

1.3 JINYHbIN KOHTPOJIb BEPCUIA

1.4 [enumcsa c gpyrumm

1.5 CoTpygHn4ecTBO B KOMaHfAe, LleHTpasiM30BaHHbIM

o

(o}

o

o

o

CTWU/b

o 1.6 CoTpygHUYecTBO B KoMaHAe, pacnpefesieHHbIN
CTWU/b

o 1.7 PasnnyHble TeMbl

o 1.8 KpaTkoe onucaHne HeKOTOopbIX MonyAasapHbIX
nsarnvHoB

o

1.9 WHTerpupyem Bazaar B Hally cpeny
1.10 [MpunoxeHus

o

1.1 BsepeHue

1.1.1 TllpencTtaBnsaem Bazaar

1.1.1.1 Yrto Takoe Bazaar?

Bazaar - 3TO MHCTPYMEHT MoOMoratmwuin ngam coTpygHumyarb. OH
OTCNeXnBaeT M3MEHEHUHA, KOTopble Bbl M Apyrve nwogv AenarkT C
rpynnoin pannos, (TakMx Kak UCXOAHbIKA KoA nporpamMmbl) AN TOro
4yTO Obl AaTb BaM CHMMOK Ka[oro atana ux aBoswouun. Micnonbsys
3Ty uHdopmauuio, Bazaar moxeTt 6e3 npobsiem 06beAUHUTL Bally
paboTy ¢ paboToi Apyrux nogein.

Takne MHCTPYMEHTbI Kak Bazaar HasbIiBalOTCS cucTeMamMu KOHTPOSA
Bepcuin (Version Control System (VCS)) 1 yxe ponroe Bpems
nonynsipHbl cpean paspadoTymkoB MO. JIerkocTb WUCMO/b30BaHUSA,
MOKOCTb M NPOCTOTa HACTPOWKM Bazaar genatot ero ngeasnbHbIM He
TONMbKO A1 paspaboTunkoB MO, HO Tak Xe n ana gpyrux rpynmn,
paboTalolmMx COBMECTHO C dpaisiamm 1M OOKYMEHTaMM, TakuMx Kak
TexHuyeckne nucatenun, Web-gumsaiHepbl 1 NepPeBOAUMKMN.

3TO PYKOBOACTBO OMNUCLIBAET YCTAHOBKY M UCMO/Sb30BaHMe Bazaar
BHE 3aBMCMMOCTM OT TOr0 paboTaeT Bbl OAWH, WM B KOMaHae C
ApYrumMn nioabMu. ECnu Bbl yxe 3HaeTe, UTo Takoe pacnpeaeneHHas
cucTeMa KOHTPOMS BEPCUI U XOTUTE MNepeirTv NPsiMO K ONMCaHWuio
PaboTbl Bbl MOXETe 6ersio NPOCMOTPETb 3Ty CEKUMIO U MNepenTu
npsiMo K MpogomkaemM n3yyeHue.

1.1.1.2 Kpartkas NCTopusa CUCTEM KOHTPO/IA BEPCUIA

VIHCTpPYMEHTblI A1 KOHTpPOSiA BGpCI/IVI Ha ,CI,&HHbIVI MOMEHT
pa3BMBaldTCA yXe B TedeHne HECKOJ/IbKUX ,EI,GCFlTI/II'IGTI/IVI. [pocTbiMu
C/ioBaMN MOXXHO onucatb 4 NOKOMIeHNSA TakuX UHCTPYMEHTOB:

1. WHCTPYMEHTbI KOHTPO/IS Bepcuii paitnio, Hanpumep CSSC,

RCS

2. WHCTPYMEHTbI KOHTpOnS nepesa chaiinos -
LIeHTPaNIM30BaHHbIA CTUNb, Hanpuvep CVS

3. VHCTPYMEHTbI KOHTpOnS nepesa chaiinos -
LIeHTPaNIM30BaHHbIA CTUNb, 3Tan 2, Hanpumep Subversion

4. VIHCTPYMEHTbI KOHTpONS nepesa chaiinos -

pacnpeaeneHHblii CTunb, Hanpuvep Bazaar.

OnzainH n peannsauua Bazaar yuuTbiBaeT ypoOKM MOJIyYEHHbIE Ha
KaKAOM M3 3TUX 3TanoB pas3BUTUS MOAOOHLIX WMHCTPYMEHTOB. B
4yacTHOCTU, Bazaar akkypaTHO NoagepXmnBaeT U LeHTPa/IN30BaHHYHo
N pacnpeneneHHyo Moaesniv KOHTPO/Isi BEPCUIA U TakmmM 06pa3oM Bbl
MOXeTe MeHATb Mogesnb paboTtbl (Korga 3Tt0 MMeeT cMmbici) 6e3
Heo6XoA4MMOCTM CMEHbI MHCTPYMEHTA.

1.1.1.3 LUeHTpasinaoBaHHasa Mmoaenb NpoTuB
pacnpenenieHHomn

MHOrme TpaauUNOHHbIE MHCTPYMEHTbI KOHTPO/IS Bepcuin TpebytoT
HaNMunA LEHTPaNIbHOTO CcepBepa, KOTOPbIA XPaHUT UCTOPUIO
n3meHeHun (unu pernodumopull) pns pgepeBa aiinoB. YTo Obl
pabotaTtb C pannamum nonb3oBaTesto HeobxoAMMO YCTaHOBUTb
coefiMHeHNEe C CepBepoM U MOJMy4nuTb pabodyro sepcuro haiinos.
Takum o06pa3omM nosnb3oBaTesb MNonyyaet paboyee Oepeso B
KOTOPOM OH MOXeT paboTtaTtb. [NA coxpaHeHus, unn cpukcayuu
N3MEHEHWI MO/b30BaTeN HYXEH A0CTYN K LEeHTPas/IbHOMY cepBepy
N OH Oo/mKeH ybeamTbCs, 4TO nepen pukcaumeinn oH o6beaAnHUN
CBOKO paboTy C nocnegHeil Bepcuell COXpaHEHHOW Ha cepBepe.
Takol noaxon, M3BECTEH Kak LieHTpaIm3oBaHHas MOAEb.

LieHTpasnm3oBaHHaaA MoAaenb [MpoBepeHa A0CTaTO4YHO I,CI,OI'IFOI\/JI
I'IpaKTI/IKOI7I, HO OHa MMeeT U HEKOTOpPble 3HaYNTE/IbHbIE HEOQOCTATKN.
Bo-nepBbIX, UeHTpasin3oBaHHadaA CuUctemMa Tpe6yeT Ha/1M4unA
coegnHeHnd ¢ cepBepom Mpu BbINMO/THEHNN 6O0/MbLUNHCTBA onepau,vu7|

MO KOHTPO/M Bepcuiti. Bo-BTOpbIX, LEHTpanM3oBaHHast MoAE/b
)XECTKO CBA3bIBAET MOMEHT (pUKCALUN U3MEHEHUA C MOMEHTOM MX
ny6Gnukayuun. B Kakux-To cUTyaumsx 3T0 MOXET ObITb HOPMasIbHO,
HO MOXET CKa3blBaTbCsl HEFATUBHO B APYTUX.

PacnpeaeneHHble CUCTEMbl KOHTPOMSl Bepcuii MO3BOMISIHOT
OTAeNbHbIM NOMb30BaTeNIM U KOMaHAaM VMMETb HEeCKOJIbKO
Peno3nTopueB, BMECTO OJIHOMO LeHTpasibHOro. B cnydyae ¢ Bazaar
NCTOPUSI 06bIYHO XPAHWUTCS B TOM e MECTe, YTO U KO KOTOpblii
HaxXoAUTCA Noj, KOHTPOMeM Bepcuii. OTO NO3BOJSET NO/b30BATE/HO
thmKcrpoBaTh CBOM M3MEHEHMS B M0G0 MOMEHT Koraa 3T0 HYXHO,
naxe Npu OTCYTCTBUWN CETEBOro coeAnHeHusl. CeTeBoe CoefiIMHeHNe
TpebyeTca TOMbKO ANs Ny6nnkauum U3MeHeHuid, Uan Koraa HyXeH
AOCTYN K U3MEHEHNAM B ApyroM MecTe.

Ha camom pgene pans pa3paboTuMKOB MCMO/Ib30BaHUE
pacnpeaeneHHbIX CUCTEM KOHTPO/IS BEPCUIA MOXET MMETb Apyrue
NpenMyLLecTBa, KpPOMEe O4YeBUAHbIX, CBA3@HHbIX C pPaboToii npu
OTCYTCTBUM CETEBOT0 COeAMHeHusl. [pyrve npeumyllectsa
BK/10YALOT:

e Oonee nerkoe co3gaHue paspaboTynkamm
3KCNePUMEHTasIbHbIX BETOK
e 6onee fierkoe COTPYAHNYECTBO C ApYrMMn paspaboTyunkam
e MeHblUe BpeEMEHN TpebyeTcs ANA MexaHU4eckux 3agadv u
6onblUe A8 TBOpYecTBa
e yBe/IMYEHME T[UOKOCTU B YyNpaBfeHUM penmnsamm 4vyepes
Mcnosib3oBaHne ukcaumin BKIYarLwmx Habop n3MeHeHuin
NS KOHKPETHOW (PYHKLUMOHa/IbHOCTH
e KayeCTBO M CTabW/IbHOCTb OCHOBHOM BETKM MOXET OblTb
BblLLe, YTO Aenaet paboTy npoLle A1 Kaxaoro
e 115 COOBLLECTB C OTKPbITbIM UCXOAHbIM KOAOM:
o Gonee nerkoe cosgaHne 1 noaaepxka N3MeHeHnin ans
CTOPOHHUX pa3paboTynKoB
o ynpoLleHune B3anmopencTBns OCHOBHbIX

pPa3paboTUMKOB CO CTOPOHHUMU paspadboTUMKamMu U
60n1ee npocTas Murpaums CTOPOHHUX Pa3paboTUNKOB B
OCHOBHblE
e /15 KOMMNAHWI - ynpolleHne paboTbl C pacnpeneneHHbIMU
1 BHELLHMMW KOMaHAaMMm.

ans bonee AeTaslbHOrO B3rnaga Ha npenmyLiecTea
pacnpefeneHHbiX CUCTEM KOHTPO/SS BEPCUIA MO CPaBHEHWUD C
LeHTpan3oBaHHbIMN cMoTpuTe http://bazaar-ves.org/BzrWhy.

1.1.1.4 KnwueBble ocobeHHOoCTN Bazaar

XoTa Bazaar He eAIMHCTBEHHAaA pacnpeneneHHan cuctema KoHTposis
BEpPCUIA, OHA UMEEeT HEKOTopble 3HaYMMble NMpenMyLLecTsa, KoTopble
AenalT ee npekpacHbiM BbIOOPOM ANA MHOMMX KOMaHg W
coobulects. OnuncaHne 3aTMX 0CO6EHHOCTEN U CpaBHEHNE C APYrMu
cCMCTEMaMKN KOHTPO/IS BEPCUIA MOXET ObITb HaingeHo Ha Wiki Bazaar
- http://bazaar-vcs.org.

N3 6onbluMHCTBA OCOGEHHOCTENW, opgHa Tpebyer 0coboro
ynoMmnHaHus: Bazaar - 3T0 NosHOCTLIO cBOGoAHOe O HanucaHHoe
Ha s3blke Python. 3To ynpouwaeTr cOTpyAHWYEeCTBO A1 BHECEHUS
ynydweHuin. Ecnn Bbl XOTUTE MNOMOYb, OOpaTUTe BHMMaHME Ha
http://bazaar-vcs.org/BzrSupport.

1.1.1.5 Tllpogomkaem nsyyeHme

3T0 pyKOBOACTBO NpeAcTaBnsieT U3 cebsa nerkoe AN UTeHus
BBeAeHWe B Bazaar u onucaHve ero WCNosb30BaHus. Bcewm
Mo/Ib30BaTe/ISIM PEKOMEH/IYETCSl MPOUYECTb XOTsi Obl OKOHUYAHUE 3TOl
[M1aBbl, TAK KakK:

¢ OHa ONncbiBaeT OCHOBHbIE KOHUEmNUMN, KOTOPblEe HYXHO
3HaATb NoJib30BaTe/iIAM
® OHa onncbiBaeT HEKOTOpbLIE nonyndpHblie nyTn

http://bazaar-vcs.org/BzrWhy
http://bazaar-vcs.org
http://bazaar-vcs.org/BzrSupport

ncnonb3oBaHUA Bazaar ona coTpyaHudecTsa.

naBbl 2-6 60siee AeTasibHO ONUCbIBalOT UCMNOb30BaHMe Bazaar ans
BbIMO/THEHUS Pa3/IMyHbIX 3adadv. BboMbWWHCTBY MNOMb30oBaTeNen
pekoMeHayeTcsa NpoyecTb UX OAHY 3a APYroi cpasy nocre Havana
ncnonb3oBaHna Bazaar. [naBa 7 v pganblle cogepxar
AOMNOSHUTENbHYKD MHJ)oOpMaLMio, KOTopas MOMOXET NOoJyunTb
MakCMMyM OT Bazaar nocnie Toro Kak NoHATHbl OCHOBHblEe (OYHKLNW.
DTOT mMarepunasl MOXET OblTb MNpoYUTaH Korga noTpedyetcd U B
N060oM nopsake.

ECnv Bbl yXe XOpOLLO 3HaKOMbl C APYrMMU CUCTEMaMW KOHTPO/IS
BEPCUli, Bbl BO3MOXHO 3aXOTUTE BHUKHYTb CKOpee 4epe3 4TeHue
cneayrLmx A0KYMEHTOB:

e Bazaar 3a nsiTb MUHYT - HE6O/bLLIOE BBEAEHNE
e Bazaar. Kaptouka ObICTpOro ctapta - Haumbosee 4acTo
MCMosib3yeMble KOMaHAbl HA OAHOl CTPaHuLLE.

Mnoc K aToMy cnpaBka Ha cante u CrnpaBka no Bazaar
npefocTaBNAT BCe AeTas/n NO AOCTYMNMHbIM KOMaH4am 1 Onuuam.

Mbl Hagieemcs, YToO BaM NMOHPaBUTCA 3TO PYKOBOACTBO. Ecnn y Bac
eCTb NnoXenaHunsa no ynydweHnio AoKyMeHTauun Bazaar Bbl MOXeTe
Hanucarb B CNUCOK pacchi/ikn bazaar@lists.canonical.com.

1.1.2 OCHOBHbIE KOHUEeNUnn

1.1.2.1 TllpocTaa mogens ons nonb3oBaTens

[ns ucnonb3oBaHus Bazaar HY)XHO MOHMMAaTb YETbIPE OCHOBHbIE
KOHLIENUUN:

e PeBusns - CHUMOK painfioB C KOTOPbIMU Bbl paboTaeTe.
e PaGouee gepeBO - KaTasior cogepxawimii taiiibl U KaTanoru

mailto:bazaar%40lists.canonical.com

Mo/ KOHTPOMIEM BEpPCUi

e BeTka - ynopsagoYeHHbli HaGoOp pPeBU3WIA, ONUCHIBAOLLNIA
nctoputo Habopa haiinos.

e Penosutopuii - xpaHUnuLle peBu3sunii.

[aBaiite paccCMOTPUM KaxKayto KOHUeNumMo 6onee getasbHo.
1.1.2.2 PeBu3us

PeBn3nst - 3T0 CHUMOK COCTOSIHUSI AepeBa paiifioB M KaTasioroB
BKNOUAOWMIA nx copepxumoe u dopmy. C peBusneli Tak Xe
CBsi3aHbl HEKOTOPbIE MeTa-AaHHble, HaNnpuUMep:

¢ KT0 3adhmkcunpoBas peBu3nto

o Korga peBusus 6blna 3apukcrmposaHa

e KoMMeHTapuii K pesnsnmu

e PoauTtenbckune pesu3nn OT KOTOPbIX Oblna yHacnegoBaHa
[aHHasA peBn3ng

PeBn3nM He M3MEHAKTCA M MOTYyT ObiTb NM06a&/IbHO U YHUKA/IbHO
naeHTUuumMpoBaHbl UdeHmugukamopom pesusuu. lpumep
noeHTudomkaropa:

pgm@pgm.ubuntu.com-20071129184101-u9506rihe4zbzyyz

NaeHTudukaTopbl peBM3niA CO30alTCS BO BpeMS domkcaunn, unm, B
C/lyyae uMmnopta u3 Apyrux CUCTEM, B MOMEHT uMMopTa. XoTs
noeHTMdMKaTopbl PeBU3UA HEoOXOoAMMbl ANA BHYTPEHHEro
MCNOMb30BAHNA W MHTErpaumMm C BHELIHUMU WHCTPYMEHTaMu,
crneundunyHble Ana BETOK HoMepa pesusuli npeanoduTutTenbHbl Ans
nogen.

Homepa peBu3uii - 310 pasfesieHHble TouykaMn [eCATUYHble
noeHtTudomkaTopbl, Takue kak 1, 42 u 2977.1.59, koTopble
OoTCNexuBalT NyTb 4yepe3 rpag HOMEPOB pPeBU3NA Ha BETKe.

Homepa peBu3nii 06bIYHO KOpode YeM NAeHTUMKATOPbl PEBU3NIA U,
B npegenax of4HOW BETKM, MOTyT CpaBHMBaTbLCS APYr C APYrom Ans
NO/lyYEeHUS KapTUHbI X OTHOLIEeHWn. Hanpumep, peBn3ns 10 - 3To
OCHOBHas peBun3uns (CM. HUXe) cneayrowas HenocpencTBEHHO nocre
peBnsnn 9. Homepa peBu3nii co3garoTcsa HasleTy, NPy BbIMNOIHEHUN
KaKAOW KOMaHApbl, T.K. OHW 3aBUCAT OT PEeBU3UM ABASIOLLENCA
BEPXYLUKOW (T.e. caMoil NocneaHen pesnsneil) Ha BeTKe.

CmoTtpute OnpegeneHve peBu3nii B NPUIOXeEHUAX Ana 6onee
[AeTaNlbHOro OonucaHus OrPOMHOr0 KonmM4yecTBa METOLO0B 3afaHus
peBu3nii U nx pauanasoHoB B Bazaar n TlMoHMMaHMe HOMepOB
peBu3unii Ansa 6onee AeTasibHOIO ONUcaHnsa Hymepauumn pesusuil.

1.1.2.3 Pabo4ee nepeBo

Paboyee pepeBo - 3TO Kamaso2 100 KOHMposieMm Bepcul
cofepxaLymi dhaisibl KOTopble MOXET pefakTmpoBarb
nonb3oBarenb. Paboyee AepeBo CBA3aHO C BemMKOU.

MHore KomaHAbl WCMONb3ylT paboyee [AepeBO Kak KOHTEKCT,
HanpumMep commit CO34AET HOBYH) PEBM3NIO UCMOMNb3YysS TeKyllee

cofiepXXumoe (paisioB B pabouem gepese.
1.1.2.4 BeTKa

B npocTeliwem cnyyae, BeTKa - 3T0 yriopsiooHeHHast cepusi pesusud.
Camasi nocnefHsisi peBn3unst U3BeCTHA Kak Bepxywka.

BeTkn MoryTt 6bITb pasgeneHbl 1 06beouHeHbl 06paTHO, hopMupys
e2pagh peBu3nin. TEXHUYECKU, rpadd NokKasbiBaeT NPAMbIE OTHOLLEHNS
(Mexay poauTeNIbCKOM W A0YEPHUMWU PEBU3USIMU) U HE WUMEET
netesb, W W3BECTEH KakK Harpas/ieHHbIlU ayukiudeckul 2pacgh
(directed acyclic graph (DAG)).

Ho He cTouT 60ATbCA 3TOro HasBaHUA. OCHOBHbIE BeLn KOTOopble

HY>XHO NOMHUTb:

e OCHOBHasa JIMHUA pa3pa60TK|/| BHYTPU rpaqaa Ha3blBaeTCA
OCHOBHasl /iuHusi, Wnn NpocCToO siesasl CMOopPOoHa.

e BeTka MOXET UMETb Apyrve NMHUn pa3pa60TK|/| N B 3TOM CJ/ly4ae
OHN HAYNHaAKTCA B OAHOVI TOUkKe U 3aKaH4YnBarkdTCA B I,CI,p)/FOI‘/"I

1.1.2.5 Penosutopuii

Penosutopuii - 3T0 NPOCTO XpaHusuwe pesusuli. B npocTeinwem
cnydae, Kaxaas BeTka MMeeT CBOW COOCTBEHHbIA peno3uTopuin. B
APYrUX criydasax WMeeT CMbIC/N pas3feniaTb PenosuTtopuii Mexay
BETKaMU 4715 oNTUMM3aumm AMCKOBOro NPOCTPaHCTBa.

1.1.2.6 CknagbiBasi KOHLUeNUMn BMecTe

Kak TO/IbKO Bbl MOHSANM ONWCaHHbIE Bblle KoHuenuuu, pasinyHble
nyTn NCIMoJ/1ib30BaHUA Bazaar CTaHyT 6onee NOHATHbLIMW.
ﬂpOCTGI7ILIJI/II7I cnoco6 ucrnonb3oBaHNA Bazaar - 3TO MCNO/Mb30BaThb
camMocmosime/ibHoe aepeso, cosMeLllarouiee pa6oqee AepeBo,
BETKY U peno3|/|Top|/||7| B O4AHOM MecTe. [pyrne 4yacto ncnosibyembie
cueHapunn BK/TKOYaloT:

e PazgensieMmble penosuTopun - pa6oqee Aepeso N BETKa
HaxogATCAaA BMeCTe, HO perlo3|/|Top|/||7| HaxoauTcd B Katasiore
BbiLlE.

e CTEeK BETOK - BETKa XPaHWUT TOJ/IbKO YHWKasibHble [ON151 Hee
PEBU3NN N UCMNONb3YET POAUTE/BLCKUIA PENO3UTOPUIA ANA 06LLNX
PEBU3NIA.

e JlerkoBecHble pabouyne Konuu - BeTKka XpaHUTcsa B APYyroMm Mecrte
MO CpaBHEHMIO C pabounm AepeBoM.

Nyywmii nyTe ANS UCNONb30BaHUS Bazaar KOHEYHO 3aBUCUT OT
BalLMX NOTpebHocTel. [asaiiTe ganblle PacCMOTPUM HEKOTOpble
4acTo ynoTpeb6/sieMble CrocoObl UCNO/Ib30BaHNS.

1.1.3 Workflows

1.1.3.1 Bazaar is just a tool

Bazaar supports many different ways of working together. This
means that you can start with one workflow and adapt it over time as
circumstances change. There is no “one true way” that always
makes sense and there never will be. This section provides a brief
overview of some popular workflows supported by Bazaar.

Keep in mind that these workflow are just some examples of how
Bazaar can be used. You may want to use a workflow not listed
here, perhaps building on the ideas below.

1.1.3.2 Solo

Whether developing software, editing documents or changing
configuration files, having an easy-to-use VCS tool can help. A single
user can use this workflow effectively for managing projects where
they are the only contributor.

@ create project :
record changes

” ang -

€) browse history

@ package release

Advantages of this workflow over not using version control at all
include:

e backup of old versions
e rollback to an earlier state
e tracking of history.

The key features of Bazaar appropriate for this workflow are low
administration (no server setup) and ease of use.

1.1.3.3 Partner

Sometimes two people need to work together sharing changes as
they go. This commonly starts off as a Solo workflow (see above) or
a team-oriented workflow (see below). At some point, the second
person takes a branch (copy including history) of what the first
person has done. They can then work in parallel exchanging
changes by merging when appropriate.

@ start project # bzr branch
-~ e record o @record
changes changes
h = h
merge changes B merge changes
O om peer === Oom peer

Advantages over Solo are:

¢ easier sharing of changes
e each line of each text file can be attributed to a particular
change including who changed it, when and why.

When implementing this workflow, Bazaar’s advantages over CVS
and Subversion include:

* NO server to setup
e intelligent merging means merging multiple times isn’t

painful.
1.1.3.4 Centralized

Also known as lock-step, this is essentially the same as the workflow
encouraged/enforced by CVS and Subversion. All developers work
on the same branch (or branches). They run bzr update to get their

checkout up-to-date, then bzr commit to publish their changes to the
central location.

® bzr update

@ bzr checkout . 8

<FF—

© bzr commit

Server

Subversion and CVS are good choices for implementing this
workflow because they make it easy. Bazaar directly supports it as
well while providing some important advantages over CVS and
Subversion:

¢ better branching and merging
e better renaming support.

1.1.3.5 Centralized with local commits

This is essentially the same as the Centralized model, except that
when developers are making a series of changes, they do commit --

local or unbind their checkout. When it is complete, they commit
their work to the shared mainline.

@ bzr commit --local

@ bzr checkout - g
= - .
Server ® bzr commit

@ bzrunbind
bzr commit
bzr bind

Advantages over Centralized:

e Can work offline, e.g. when disconnected during travel
e Less chance for a bad commit to interfere with everyone
else’s work

Subversion and CVS do not support this model. Other distributed
VCS tools can support it but do so less directly than Bazaar does.

1.1.3.6 Decentralized with shared mainline

In this workflow, each developer has their own branch or branches,
plus commit rights to the main branch. They do their work in their
personal branch, then merge it into the mainline when it is ready.

@ bzr pull

@ - ~ bzr merge
@ bzr branch . g

<FF—

Server

© bzr com |T|i1L.E

Advantage over Centralized with local commits:

e Easier organization of work - separate changes can be
developed in their own branches

e Developers can merge one another’s personal branches
when working on something together.

Subversion and CVS do not support this model. Other distributed
VCS tools support it. Many features of Bazaar are good for this
workflow including ease of use, shared repositories, integrated
merging and rich metadata (including directory rename tracking).

1.1.3.7 Decentralized with human gatekeeper

In this workflow, each developer has their own branch or branches,
plus read-only access to the main branch. One developer (the
gatekeeper) has commit rights to the main branch. When a
developer wants their work merged, they ask the gatekeeper to
merge it. The gatekeeper does code review, and merges the work
into the main branch if it meets the necessary standards.

local branches

szr branch
-~
. #® make changes
-~

Server\ / 3
& request merge
€ accept or reject

Advantage over Decentralized with shared mainline:

e Code is always reviewed before it enters the mainline
e Tighter control over when changes get incorporated into the
mainline.

A companion tool of Bazaar’'s called Bundle Buggy can be very
useful for tracking what changes are up for review, their status and
reviewer comments.

1.1.3.8 Decentralized with automatic gatekeeper

In this workflow, each developer has their own branch or branches,
plus read-only access to the mainline. A software gatekeeper has
commit rights to the main branch. When a developer wants their
work merged, they request another person to review it. Once it has
passed review, either the original author or the reviewer asks the
gatekeeper software to merge it, depending on team policies. The
gatekeeper software does a merge, a compile, and runs the test
suite. If and only if the code passes, it is merged into the mainline.

Note: As an alternative, the review step can be skipped and the
author can submit the change to the automatic gatekeeper without it.
(This is particularly appropriate when using practices such as Pair
Programming that effectively promote just-in-time reviews instead of
reviewing code as a separate step.)

local branches
i}bzr branch make
S @cl'waﬁges
' (3]

request
review

Server e - a

(PQM) @ request merge

@ accept or reject

Advantages over Decentralized with human gatekeeper:

e Code is always tested before it enters the mainline (so the
integrity of the mainline is higher)
e Scales better as teams grow.

A companion tool of Bazaar’s called Patch Queue Manager (PQM)
can provide the automated gatekeeper capability.

1.1.3.9 Implementing a workflow

For an in-depth look at how to implement each of the workflows
above, see chapters 3 to 6 in this manual. First though, chapter 2
explains some important pre-requisites including installation, general

usage instructions and configuration tips.

1.2 HadnHaem paboTaTtb

1.2.1 Installing Bazaar

1.2.1.1 Linux

Bazaar packages are available for most popular Linux distributions
including Ubuntu/Debian, Red Hat and Gentoo. See http://bazaar-
vcs.org/Download for the latest instructions.

1.2.1.2 Windows

For Windows users, an installer is available that includes the core
Bazaar package together with necessary pre-requisites and some
useful plug-ins. See http://bazaar-vcs.org/Download for the latest
instructions.

Note: If you are running Cygwin on Windows, a Bazaar for Cygwin
package is available and ought to be used instead of the Windows
version.

1.2.1.3 Other operating systems

Beyond Linux and Windows, Bazaar packages are available for a
large range of other operating systems include Mac OS X, FreeBSD
and Solaris. See http://bazaar-vcs.org/Download for the latest
instructions.

1.2.1.4 Installing from scratch

If you wish to install Bazaar from scratch rather than using a pre-built
package, the steps are:

http://bazaar-vcs.org/Download
http://bazaar-vcs.org/Download
http://bazaar-vcs.org/Download

1. Ifitis not installed already, install Python 2.4 or later.

2. Download the bazaar-xxx.tar.gz file (where xxx is the
version number) from http://bazaar-vcs.org/Download or
from Launchpad (https://launchpad.net/~bzr/).

3. Unpack the archive using tar, WinZip or equivalent.

4. Put the created directory on your PATH.

To test the installation, try running the bzr command like this:

bzr version

This will display the version of Bazaar you have installed. If this
doesn’t work, please contact us via email or IRC so we can help you
get things working.

1.2.1.4.1 Installing into site-wide locations

Instead of adding the directory to your PATH, you can install bzr into
the system locations using:

python setup.py install

If you do not have a compiler, or do not have the python
development tools installed, bzr supplies a (slower) pure-python
implementation of all extensions. You can install without compiling
extensions with:

python setup.py install build_ext --allow-python-fallback

1.2.1.5 Running the development version

You may wish to always be using the very latest development
version of Bazaar. Note that this is not recommended for the majority
of users as there is an increased risk of bugs. On the other hand, the
development version is remarkably solid (thanks to the processes we

http://bazaar-vcs.org/Download
https://launchpad.net/~bzr/

follow) and running it makes it easier for you to send us changes for
bugs and improvements. It also helps us by having more people
testing the latest software.

Here are the steps to follow:
1. Install Bazaar using one of the methods given above.
2. Get a copy of the development version like this:
bzr branch lp:bzr
3. Put the created directory on your PATH.

Advanced users may also wish to build the optional C extensions for
greater speed. This can be done using make and requires pyrex and
a C compiler. Please contact us on email or IRC if you need
assistance with this.

1.2.1.6 Running multiple versions

It's easy to have multiple versions of Bazaar installed and to switch
between them. To do this, simply provide the full pathname to the
bzr command you wish to run. The relevant libraries will be
automatically detected and used. Of course, if you do not provide a
pathname, then the bzr used will be the one found on your system
path as normal.

Note that this capability is particularly useful if you wish to run (or
test) both the latest released version and the development version
say.

1.2.2 Entering commands

1.2.2.1 User interfaces

There are numerous user interfaces available for Bazaar. The core
package provides a command line tool called bzr and graphical user
interfaces (GUIs) are available as plug-ins.

1.2.2.2 Using bzr

The syntax is:

bzr [global-options] command [options and arguments]

Global options affect how Bazaar operates and can appear either
before or after command. Command specific options must appear after

the command but may be given either before, during or after any
command-specific arguments.

1.2.2.3 Common options

Some options are legal for all commands as shown below.

Short form Long form Description

-h —help get help
-V —verbose be more verbose
-q —quiet be more quiet

Quiet mode implies that only errors and warnings are displayed. This
can be useful in scripts.

Note: Most commands typically only support one level of verbosity
though that may change in the future. To ask for a higher level of
verbosity, simply specify the -v option multiple times.

1.2.3 Getting help

Bazaar comes with a built-in on-line help system, accessed through:

bzr help

You can ask for help on a command, or on non-command topics. To
see a list of available help of each kind, use either:

bzr help commands
bzr help topics

For help on a particular command, use either of these forms:

bzr help status
bzr status --help

If you wish to search the help or read it as a larger document, the
information is also available in the Bazaar User Reference.

1.2.4 Configuring Bazaar

1.2.4.1 Telling Bazaar about yourself

One function of a version control system is to keep track of who
changed what. In a decentralized system, that requires an identifier
for each author that is globally unique. Most people already have
one of these: an email address. Bazaar is smart enough to
automatically generate an email address by looking up your
username and hostname. If you don'’t like the guess that Bazaar
makes, then use the whoami command to set the identifier you want:

% bzr whoami "Your Name <email@example.com>"
If whoami is used without an argument, the current value is displayed.

1.2.4.2 Configuration files

Configuration files are located in $HOME/.bazaar on Linux/Unix and

C:\Documents and Settings\<username>\Application
Data\Bazaar\2.0 on Windows. There are three primary configuration
files in this location:

* bazaar.conf describes default configuration options,
e locations.conf describes configuration information for specific

branch locations,
e authentication.conf describes credential information for remote

servers.

Each branch can also contain a configuration file that sets values
specific to that branch. This file is found at .bzr/branch/branch.conf

within the branch. This file is visible to all users of a branch. If you
wish to override one of the values for a branch with a setting that is
specific to you, then you can do so in locations.conf.

Here is sample content of bazaar.conf after setting an email address
using the whoami command:

[DEFAULT]
email = Your Name <email@example.com>

For further details on the syntax and configuration settings
supported, see Configuration Settings in the Bazaar User Reference.

1.2.4.3 Rule-based preferences

Some commands and plugins provide custom processing on files
matching certain patterns. Per-user rule-based preferences are
defined in BZR_HOME/rules.

For further information on how rules are searched and the detailed
syntax of the relevant files, see Rules in the Bazaar User Reference.

1.2.5 Using aliases

1.2.5.1 What are aliases?

Aliases are an easy way to create shortcuts for commonly-typed
commands, or to set defaults for commands.

1.2.5.2 Defining aliases

Command aliases can be defined in the [ALIASES] section of your
bazaar.conf file. Aliases start with the alias name, then an equal
sign, then a command fragment. Here’'s an example ALIASES
section:

[ALIASES]

recentlog=log -r-3..-1
1l1=log --line -r-10..-1
commit=commit --strict
diff=diff --diff-options -p

Here are the explanations of the examples above:

e The first alias makes a new recentlog command that

shows the logs for the last three revisions
e The 11 alias shows the last 10 log entries in line format.

e the commit alias sets the default for commit to refuse to

commit if new files in the tree are not recognized.
e the diff alias adds the coveted -p option to diff

1.2.5.3 Using the aliases

The aliases defined above would be used like so:

% bzr recentlog
% bzr 11

% bzr commit

% bzr diff

1.2.5.4 Rules for aliases

e You can override a portion of the options given in an alias
by specifying the new part on the command-line. For
example, if you run lastlog -r-5.., you will only get five
line-based log entries instead of 10. Note that all boolean
options have an implicit inverse, so you can override the
commit alias with commit --no-strict.

e Aliases can override the standard behaviour of existing
commands by giving an alias name that is the same as the
original command. For example, default commit is changed
with commit=commit --strict.

¢ Aliases cannot refer to other aliases. In other words making
a lastlog alias and referring to it with a 11 alias will not
work. This includes aliases that override standard
commands.

e Giving the --no-aliases option to the bzr command will tell
it to ignore aliases for that run. For example, running bzr --
no-aliases commit will perform a standard commit instead,
not do a commit --strict.

1.2.6 Using plugins

1.2.6.1 What is a plugin?

A plugin is an external component for Bazaar that is typically made
by third parties. A plugin is capable of augmenting Bazaar by adding
new functionality. A plugin can also change current Bazaar behavior
by replacing current functionality. Sample applications of plugins are:

e overriding commands
e adding new commands
e providing additional network transports

e customizing log output.

The sky is the limit for the customization that can be done through
plugins. In fact, plugins often work as a way for developers to test
new features for Bazaar prior to inclusion in the official codebase.
Plugins are helpful at feature retirement time as well, e.g. deprecated
file formats may one day be removed from the Bazaar core and be
made available as a plugin instead.

Plugins are good for users, good for external developers and good
for Bazaar itself.

1.2.6.2 Where to find plugins

We keep our list of plugins on the http://bazaar-vcs.org/BzrPlugins
page.

1.2.6.3 How to install a plugin

Installing a plugin is very easy! If not already created, create a
plugins directory under your Bazaar configuration directory,
~/.bazaar/ on Linux and c:\Documents and Settings\
<username>\Application Data\Bazaar\2.0\ on Windows. Within this

directory (referred to as $BZR_HOME below), each plugin is placed
in its own subdirectory.

Plugins work particularly well with Bazaar branches. For example, to
install the bzrtools plugins for your main user account on Linux, one
can perform the following:

bzr branch http://panoramicfeedback.com/opensource/bzr/bzrtools
~/ .bazaar/plugins/bzrtools

J S—

When installing plugins, the directories that you install them in must
be valid python identifiers. This means that they can only contain

http://bazaar-vcs.org/BzrPlugins

certain characters, notably they cannot contain hyphens (-). Rather
than installing bzr-gtk to $BZR_HOME/plugins/bzr-gtk, install it to
$BZR_HOME/plugins/gtk.

1.2.6.4 Alternative plugin locations

If you have the necessary permissions, plugins can also be installed
on a system-wide basis. One can additionally override the personal
plugins location by setting the environment variable BZR_PLUGIN_PATH

(see User Reference for a detailed explanation).
1.2.6.5 Listing the installed plugins

To do this, use the plugins command like this:

bzr plugins

The name, location and version of each plugin installed will be
displayed.

New commands added by plugins can be seen by running bzr help
commands. The commands provided by a plugin are shown followed
by the name of the plugin in brackets.

1.2.6.6 Popular plugins

Here is a sample of some of the more popular plugins.

Category Name Description

GUI QBzr Qt-based GUI tools

GUI bzr-gtk GTK-based GUI tools

GUI bzr-eclipse Eclipse integration

General bzrtools mr:scl? enhancements including
she

General difftools external diff tool helper

General extmerge external merge tool helper
Integration bzr-svn use Subversion as a repository
Migration CVsps migrate CVS patch-sets

If you wish to write your own plugins, it is not difficult to do. See
Writing a plugin in the appendices to get started.

1.2.7 TlyTtb Bazaar

1.2.7.1 Tnyb6okoe noHnmaHne Bazaar

XoTs Bazaar BO MHOIOM MOXOX Ha Zpyrme WHCTPYMEHTbI KOHTPO/IS
BEPCUIA, €CTb HEKOTOpble BaXHble pas/nuus, KOTopble He Bceraa
O4YEeBMAHbI Ha MEepBbIN B3rNAA. ITOT pasfesn MbITAeTCs 0ObACHUTH
HEKOTOpble BeLlW, KOTOPbIA Monb3oBaTe/lb AO/HKEH 3HaTb YTOObI
pasbupatbeca B Bazaar, T.e. [/ly60KO ero noHMmarb.

3ameTbTe: 4yTo6bl MCNOMb30BaTb Bazaar coBcem Heobsi3aTesIbHO
MOSIHOCTbLIO MOHMMATb 3TOT pasfen. Bbl MOXeTe NPOCMOTPEThb 3TOT
pasfen cevyac u BepHYTbLCS K HEMY MO3Xe.

1.2.7.2 TloHMMaHne HOMePOB PEBU3NIA

All revisions in the mainline of a branch have a simple increasing
integer. (First commit gets 1, 10th commit gets 10, etc.) This makes
them fairly natural to use when you want to say “grab the 10th
revision from my branch”, or “fixed in revision 3050".

For revisions which have been merged into a branch, a dotted
notation is used (e.g., 3112.1.5). Dotted revision numbers have three
numbers [2]. The first number indicates what mainline revision
change is derived from. The second number is the branch counter.
There can be many branches derived from the same revision, so
they all get a uniqgue number. The third number is the number of
revisions since the branch started. For example, 3112.1.5 is the first

branch from revision 3112, the fifth revision on that branch.

Versions prior to bzr 1.2 used a slightly different algorithm.
[2] Some nested branches would get extra numbers (such as
1.1.1.1.1) rather than the simpler 3-number system.

1.2.7.3 Hierarchical history is good

Imagine a project with multiple developers contributing changes
where many changes consist of a series of commits. To give a
concrete example, consider the case where:

e The tip of the project’s trunk is revision 100.
e Mary makes 3 changes to deliver feature X.
¢ Bill makes 4 changes to deliver feature Y.

If the developers are working in parallel and using a traditional
centralized VCS approach, the project history will most likely be
linear with Mary’s changes and Bill's changes interleaved. It might
look like this:

107: Add documentation for Y
106: Fix bug found in testing Y
105: Fix bug found in testing X
104: Add code for Y

103: Add documentation for X
102: Add code and tests for X
101: Add tests for Y

100:

Many teams use this approach because their tools make branching
and merging difficult. As a consequence, developers update from
and commit to the trunk frequently, minimizing integration pain by
spreading it over every commit. If you wish, you can use Bazaar
exactly like this. Bazaar does offer other ways though that you ought
to consider.

An alternative approach encouraged by distributed VCS tools is to

create feature branches and to integrate those when they are ready.
In this case, Mary’s feature branch would look like this:

103: Fix bug found in testing X
102: Add documentation for X
101: Add code and tests for X
100:

And Bill's would look like this:

104: Add documentation for Y
103: Fix bug found in testing Y
102: Add code for Y

101: Add tests for Y

100:

If the features were independent and you wanted to keep linear
history, the changes could be pushed back into the trunk in batches.
(Technically, there are several ways of doing that but that's beyond
the scope of this discussion.) The resulting history might look like
this:

107: Fix bug found in testing X
106: Add documentation for X
105: Add code and tests for X
104: Add documentation for Y
103: Fix bug found in testing Y
102: Add code for Y

101: Add tests for Y

100:

While this takes a bit more effort to achieve, it has some advantages
over having revisions randomly intermixed. Better still though,
branches can be merged together forming a non-linear history. The
result might look like this:

102: Merge feature X
100.2.3: Fix bug found in testing X
100.2.2: Add documentation for X
100.2.1: Add code and tests for X

101: Merge feature Y
100.1.4: Add documentation for Y
100.1.3: Fix bug found in testing Y
100.1.2: Add code for Y
100.1.1: Add tests for Y

100:

Or more likely this:

102: Merge feature X
100.2.3: Fix bug
100.2.2: Add documentation
100.2.1: Add code and tests

101: Merge feature Y
100.1.4: Add documentation
100.1.3: Fix bug found in testing
100.1.2: Add code
100.1.1: Add tests

100:

This is considered good for many reasons:

e It makes it easier to understand the history of a project.
Related changes are clustered together and clearly
partitioned.

e You can easily collapse history to see just the commits on
the mainline of a branch. When viewing the trunk history
like this, you only see high level commits (instead of a large
number of commits uninteresting at this level).

e If required, it makes backing out a feature much easier.

e Continuous integration tools can be used to ensure that all
tests still pass before committing a merge to the mainline.
(In many cases, it isn’t appropriate to trigger CI tools after
every single commit as some tests will fail during
development. In fact, adding the tests first - TDD style - will
guarantee it!)

In summary, the important points are:

Organize your work using branches.

Integrate changes using merge.

Ordered revision numbers and hierarchy make history easier to
follow.

1.2.7.4 Each branch has its own view of history

As explained above, Bazaar makes the distinction between:

e mainline revisions, i.e. ones you committed in your branch,

and

e merged revisions, i.e. ones added as ancestors by
committing a merge.

Each branch effectively has its own view of history, i.e. different
branches can give the same revision a different “local” revision
number. Mainline revisions always get allocated single number
revision numbers while merged revisions always get allocated dotted
revision numbers.

To extend the example above, here’s what the revision history of
Mary’s branch would look like had she decided to merge the project
trunk into her branch after completing her changes:

104: Merge

103:
102:
101:

100.
100.
100.
100.
100.

Fix
Add
Add

100:

1

mainline
: Merge feature Y

: Fix bug found in testing
: Add code

2.1
1.4: Add documentation
1.3
1.2

.1: Add tests

bug found in testing X
documentation for X
code and tests for X

Once again, it's easy for Mary to look at just her top level of history

to see the steps she has taken to develop this change. In this
context, merging the trunk (and resolving any conflicts caused by
doing that) is just one step as far as the history of this branch is
concerned.

It's important to remember that Bazaar is not changing history here,
nor is it changing the global revision identifiers. You can always use
the latter if you really want to. In fact, you can use the branch
specific revision numbers when communicating as long as you
provide the branch URL as context. (In many Bazaar projects,
developers imply the central trunk branch if they exchange a revision
number without a branch URL.)

Merges do not change revision numbers in a branch, though they do
allocate local revision numbers to newly merged revisions. The only
time Bazaar will change revision numbers in a branch is when you
explicitly ask it to mirror another branch.

Note: Revisions are numbered in a stable way: if two branches have
the same revision in their mainline, all revisions in the ancestry of
that revision will have the same revision numbers. For example, if
Alice and Bob’s branches agree on revision 10, they will agree on all
revisions before that.

1.2.7.5 Pe3wome

OO6blYHO, €cnM Bbl CNEeAoBasIM pPaHee MOJlyYeHHbIM COBETaM -
opraHu3oBaTh Bally paboTy B BETKaX M UCMONb30BaTb 06beANHEHNE
ONA COTPYAHMYECTBA - Bbl OBHapyXuTe 4TO uvalle Bcero Bazaar
nenaeT TO YTO Bbl OXMAAETE.

B cnepgywwux rnaesax, Mbl MPOBEPUM paSI'II/I'-IHbIVI Crnocoo.l
NCMo/1ib30BaHUA Bazaar, Ha4ynHas C camoro MPOCTOro.
ncnonb3oBaHne Bazaar Anga NYHbLIX MPOEKTOB.

1.3 JIM4YHbIN KOHTPO/Ib BEPCUM

1.3.1 Going solo

1.3.1.1 A personal productivity tool

Some tools are designed to make individuals productive (e.qg.
editors) while other tools (e.g. back-end services) are focused on
making teams or whole companies more productive. Version control
tools have traditionally been in the latter camp.

One of the cool things about Bazaar is that it is so easy to setup that
version control can now be treated as a personal productivity tool. If
you wish to record changes to files for the purposes of checkpointing
good known states or tracking history, it is now easy to do so. This
chapter explains how.

1.3.1.2 The solo workflow

If you are creating your own masterpiece, whether that be a software
project or a set of related documents, the typical workflow looks like
this:

@ create project
record changes
” ang -
€) browse history
@ package release

Even if you will always be working as part of a team, the tasks
covered in this chapter will be the basis of what you’ll be doing so it's
a good place to start.

1.3.2 Starting a project

1.3.2.1 Putting an existing project under version control

If you already have a tree of source code (or directory of documents)
you wish to put under version control, here are the commands to
use:

cd my-stuff

bzr init

bzr add

bzr commit -m "Initial import"

bzr init creates a .bzr directory in the top level directory (my-stuff
in the example above). Note that:

e Bazaar has everything it needs in that directory - you do
not need to setup a database, web server or special
service to use it

e Bazaar is polite enough to only create one .bzr in the

directory given, not one in every subdirectory thereof.

bzr add then finds all the files and directories it thinks ought to be
version controlled and registers them internally. bzr commit then

records a snapshot of the content of these and records that
information, together with a commit message.

More information on init, add and commit will be provided later. For
now, the important thing to remember is the recipe above.

1.3.2.2 Starting a new project

If you are starting a project from scratch, you can also use the recipe
above, after creating an empty directory first of course. For efficiency
reasons that will be explored more in later chapters though, it is a
good idea to create a repository for the project at the top level and to
nest a main branch within it like this:

bzr init-repo my.repo

cd my.repo

bzr init my.main

cd my.main

hack, hack, hack

bzr add

bzr commit -m "Initial import"

Some users prefer a name like trunk or dev to main. Choose
whichever name makes the most sense to you.

Note that the init-repo and init commands both take a path as an
argument and will create that path if it doesn’t already exist.

1.3.3 Controlling file registration

1.3.3.1 What does Bazaar track?

As explained earlier, bzr add finds and registers all the things in and

under the current directory that Bazaar thinks ought to be version
controlled. These things may be:

o files
e directories
e symbolic links.

Bazaar has default rules for deciding which files are interesting and
which ones are not. You can tune those rules as explained in
Ignoring files below.

Unlike many other VCS tools, Bazaar tracks directories as first class
items. As a consequence, empty directories are correctly supported -
you don’t need to create a dummy file inside a directory just to
ensure it gets tracked and included in project exports.

For symbolic links, the value of the symbolic link is tracked, not the
content of the thing the symbolic link is pointing to.

Note: Support for tracking projects-within-projects (“nested trees”) is
currently under development. Please contact the Bazaar developers
if you are interested in helping develop or test this functionality.

1.3.3.2 Selective registration

In some cases, you may want or need to explicitty nominate the
things to register rather than leave it up to Bazaar to find things. To
do this, simply provide paths as arguments to the add command like

this:

bzr add fileX dirY/
Adding a directory implicitly adds all interesting things underneath it.

1.3.3.3 Ignoring files

Many source trees contain some files that do not need to be
versioned, such as editor backups, object or bytecode files, and built
programs. You can simply not add them, but then they’ll always crop
up as unknown files. You can also tell Bazaar to ignore these files by
adding them to a file called .bzrignore at the top of the tree.

This file contains a list of file wildcards (or “globs”), one per line.
Typical contents are like this:

*.0
*

*. tmp
*.py[co]

If a glob contains a slash, it is matched against the whole path from
the top of the tree; otherwise it is matched against only the filename.
So the previous example ignores files with extension .o in all

subdirectories, but this example ignores only config.h at the top

level and HTML files in doc/:

./config.h
doc/*.html

To get a list of which files are ignored and what pattern they
matched, use bzr ignored:

% bzr ignored
config.h ./config.h
configure.in~ e

Note that ignore patterns are only matched against non-versioned
files, and control whether they are treated as “unknown” or “ignored”.
If a file is explicitly added, it remains versioned regardless of whether
it matches an ignore pattern.

The .bzrignore file should normally be versioned, so that new
copies of the branch see the same patterns:

% bzr add .bzrignore
% bzr commit -m "Add ignore patterns"

The command bzr ignore PATTERN can be used to easily add
PATTERN to the .bzrignore file (creating it if necessary and

registering it to be tracked by Bazaar). Removing and modifying
patterns are done by directly editing the .bzrignore file.

1.3.3.4 Global ignores

There are some ignored files which are not project specific, but more
user specific. Things like editor temporary files, or personal
temporary files. Rather than add these ignores to every project, bzr
supports a global ignore file in ~/.bazaar/ignore [3]. It has the same

syntax as the per-project ignore file.

On Windows, the users configuration files can be found in the
application data directory. So instead of ~/.bazaar/branch.conf

[3] the configuration file can be found as: c:\bocuments and
Settings\<username>\Application

Data\Bazaar\2.0\branch.conf. The same is true for
locations.conf, ignore, and the plugins directory.

1.3.4 Reviewing changes

1.3.4.1 Looking before you leap

Once you have completed some work, it's a good idea to review your
changes prior to permanently recording it. This way, you can make
sure you’ll be committing what you intend to.

Two bzr commands are particularly useful here: status and diff.
1.3.4.2 bzr status

The status command tells you what changes have been made to the
working directory since the last revision:

% bzr status
modified:
foo

bzr status hides “boring” files that are either unchanged or ignored.

The status command can optionally be given the name of some files
or directories to check.

1.3.4.3 Dbzr diff

The diff command shows the full text of changes to all files as a
standard unified diff. This can be piped through many programs such
as “patch”, “diffstat™, “filterdiff” and “colordiff":

% bzr diff

=== added file 'hello.txt'

--- hello. txt 1970-01-01 00:00:00 +00060
+++ hello.txt 2005-10-18 14:23:29 +00060

@@ -GIO +1/1 @@
+hello world

With the -r option, the tree is compared to an earlier revision, or the
differences between two versions are shown:

% bzr diff -r 1000.. # everything since r1000
% bzr diff -r 1000..1100 # changes from 1000 to 1100

To see the changes introduced by a single revision, you can use the
-c option to diff.

% bzr diff -c 1000 # changes from r1000
identical to -r999..1000

The --diff-options option causes bzr to run the external diff
program, passing options. For example:

% bzr diff --diff-options --side-by-side foo

Some projects prefer patches to show a prefix at the start of the path
for old and new files. The --prefix option can be used to provide

such a prefix. As a shortcut, bzr diff -p1 produces a form that
works with the command patch -p1.

1.3.5 Recording changes

1.3.5.1 bzr commit

When the working tree state is satisfactory, it can be committed to
the branch, creating a new revision holding a snapshot of that state.

The commit command takes a message describing the changes in
the revision. It also records your userid, the current time and
timezone, and the inventory and contents of the tree. The commit
message is specified by the -m or --message option. You can enter a
multi-line commit message; in most shells you can enter this just by
leaving the quotes open at the end of the line.

% bzr commit -m "added my first file"

You can also use the -F option to take the message from a file.

Some people like to make notes for a commit message while they
work, then review the diff to make sure they did what they said they
did. (This file can also be useful when you pick up your work after a
break.)

1.3.5.2 Message from an editor

If you use neither the -m nor the -F option then bzr will open an
editor for you to enter a message. The editor to run is controlled by
your $VISUAL Or $EDITOR environment variable, which can be
overridden by the editor setting in ~/.bazaar/bazaar.conf;
$8zR_EDITOR Will override either of the above mentioned editor

options. If you quit the editor without making any changes, the
commit will be cancelled.

The file that is opened in the editor contains a horizontal line. The
part of the file below this line is included for information only, and will
not form part of the commit message. Below the separator is shown
the list of files that are changed in the commit. You should write your
message above the line, and then save the file and exit.

If you would like to see the diff that will be committed as you edit the
message you can use the --show-diff option to commit. This will

include the diff in the editor when it is opened, below the separator

and the information about the files that will be committed. This
means that you can read it as you write the message, but the diff
itself wont be seen in the commit message when you have finished.
If you would like parts to be included in the message you can copy
and paste them above the separator.

1.3.5.3 Selective commit

If you give file or directory names on the commit command line then
only the changes to those files will be committed. For example:

% bzr commit -m "documentation fix" commit.py

By default bzr always commits all changes to the tree, even if run
from a subdirectory. To commit from only the current directory down,
use:

% bzr commit .

1.3.5.4 Giving credit for a change

If you didn’t actually write the changes that you are about to commit,
for instance if you are applying a patch from someone else, you can
use the --author commit option to give them credit for the change:

% bzr commit --author "Jane Rey <jrey@example.com>"

The person that you specify there will be recorded as the “author” of
the revision, and you will be recorded as the “committer” of the
revision.

If more than one person works on the changes for a revision, for
instance if you are pair-programming, then you can record this by
specifying --author multiple times:

% bzr commit --author "Jane Rey <jrey@example.com>" \
--author "John Doe <jdoe@example.com>"

1.3.6 Browsing history

1.3.6.1 bzrlog

The bzr 1log command shows a list of previous revisions.

As with bzr diff, bzr log supports the -r argument:

% bzr log -r 1000.. # Revision 1000 and everything aft
% bzr log -r ..1000 # Everything up to and including r
% bzr log -r 1000..1100 # changes from 1000 to 1100

% bzr log -r 1000 # The changes in only revision 100
A — ol

1.3.6.2 Viewing merged revisions

As distributed VCS tools like Bazaar make merging much easier
than it is in central VCS tools, the history of a branch may often
contain lines of development splitting off the mainline and merging
back in at a later time. Technically, the relationship between the
numerous revision nodes is known as a Directed Acyclic Graph or
DAG for short.

In many cases, you typically want to see the mainline first and drill
down from there. The default behaviour of log is therefore to show
the mainline and indicate which revisions have nested merged
revisions. To explore the merged revisions for revision X, use the
following command:

bzr log -n0® -rX

To see all revisions and all their merged revisions:

bzr log -no

Note that the -n option is used to indicate the number of levels to
display where 0 means all. If that is too noisy, you can easily adjust
the number to only view down so far. For example, if your project is
structured with a top level gatekeeper merging changes from team
gatekeepers, bzr log shows what the top level gatekeeper did while

bzr log -n2 shows what the team gatekeepers did. In the vast
majority of cases though, -no is fine.

1.3.6.3 Tuning the output

The 1og command has several options that are useful for tuning the
output. These include:

e --forward presents the log in chronological order, i.e. the

most recent revisions are displayed last.
e the --limit option controls the maximum number of

revisions displayed.

See the online help for the log command or the User Reference for
more information on tuning the output.

1.3.6.4 Viewing the history for a file

It is often useful to filter the history so that it only applies to a given
file. To do this, provide the filename to the 1og command like this:

bzr log foo.py

1.3.6.5 Viewing an old version of a file

To get the contents of a file at a given version, use the cat command
like this:

bzr cat -r X file

where X is the revision identifier and file is the filename. This wiill

send output to the standard output stream so you'll typically want to
pipe the output through a viewing tool (like 1ess or more) or redirect it

like this:

bzr cat -r -2 foo.py | less
bzr cat -r 1 foo.py > /tmp/foo-1st-version.py

1.3.6.6 Graphical history viewers

History browsing is one area where GUI tools really make life easier.
Bazaar has numerous plug-ins that provide this capability including
QBzr and bzr-gtk. See Using plugins for details on how to install
these if they are not already installed.

To use the graphical viewer from QBzr:

bzr glog

To use the graphical viewer from bzr-gtk:

bzr viz

viz is actually a built-in alias for visualize so use the longer
command name if you prefer.

1.3.7 Releasing a project

1.3.7.1 Packaging a release

The export command is used to package a release, i.e. to take a

copy of the files and directories in a branch and package them into a
fresh directory or archive. For example, this command will package

the last committed version into a tar.gz archive file:

bzr export ../releases/my-stuff-1.5.tar.gz

The export command uses the suffix of the archive file to work out
the type of archive to create as shown below.

Supported formats Autodetected by extension

dir (none)

tar dar

tbz2 tar.bz2, .thz2
tgz tar.gz, .tgz
zip .Zip

If you wish to package a revision other than the last one, use the -r

option. If you wish to tune the root directory inside the archive, use
the --root option. See the online help or User Reference for further

details on the options supported by export.

1.3.7.2 Tagging a release

Rather than remembering which version was used to package a
release, it's useful to define a symbolic name for a version using the
tag command like this:

bzr tag version-1-5

That tag can be used later whenever a revision identifier is required,
e.g..

bzr diff -r tag:version-1-5

To see the list of tags defined in a branch, use the tags command.

1.3.8 Undoing mistakes

1.3.8.1 Mistakes happen

Bazaar has been designed to make it easy to recover from mistakes
as explained below.

1.3.8.2 Dropping the revision history for a project

If you accidentally put the wrong tree under version control, simply
delete the .bzr directory.

1.3.8.3 Deregistering a file or directory

If you accidentally register a file using add that you don’'t want
version controlled, you can use the remove command to tell Bazaar
to forget about it.

remove has been designed to Do the Safe Thing in that it will not
delete a modified file. For example:

bzr add foo.html
(oops - didn't mean that)
bzr remove foo.html

This will complain about the file being modified or unknown. If you
want to keep the file, use the --keep option. Alternatively, if you want

to delete the file, use the --force option. For example:

bzr add foo.html

(oops - didn't mean that)

bzr remove --keep foo.html

(foo.html left on disk, but deregistered)

On the other hand, the unchanged Topo file is deregistered and
removed from disk without complaint in this example:

bzr add TODO

bzr commit -m "added TODO"

(hack, hack, hack - but don't change TODO)
bzr remove TODO

(TODO file deleted)

Note: If you delete a file using your file manager, IDE or via an
operating system command, the commit command will implicitly treat

it as removed.
1.3.8.4 Undoing changes since the last commit

One of the reasons for using a version control tool is that it lets you
easily checkpoint good tree states while working. If you decide that
the changes you have made since the last commit ought to be thrown

away, the command to use is revert like this:

bzr revert

As a precaution, it is good practice to use bzr status and bzr diff
first to check that everything being thrown away really ought to be.

1.3.8.5 Undoing changes to a file since the last commit

If you want to undo changes to a particular file since the last commit
but keep all the other changes in the tree, pass the filename as an
argument to revert like this:

bzr revert foo.py

1.3.8.6 Undoing the last commit

If you make a commit and really didn’t mean to, use the uncommit
command to undo it like this:

bzr uncommit

Unlike revert, uncommit leaves the content of your working tree

exactly as it is. That's really handy if you make a commit and
accidently provide the wrong error message. For example:

bzr commit -m "Fix bug #11"
(damn - wrong bug number)
bzr uncommit

bzr commit -m "Fix bug #1"

Another common reason for undoing a commit is because you forgot
to add one or more files. Some users like to alias commit t0 commit -

-strict so that commits fail if unknown files are found in the tree.

Note: While the merge command is not introduced until the next
chapter, it is worth noting now that uncommit restores any pending
merges. (Running bzr status after uncommit will show these.) merge

can also be used to effectively undo just a selected commit earlier in
history. For more information on merge, see Merging changes in the

next chapter and the Bazaar User Reference.
1.3.8.7 Undoing multiple commits

You can use the -r option to undo several commits like this:

bzr uncommit -r -3

If your reason for doing this is that you really want to back out
several changes, then be sure to remember that uncommit does not

change your working tree: you'll probably need to run the revert

command as well to complete the task. In many cases though, it's
arguably better to leave your history alone and add a new revision
reflecting the content of the last good state.

1.3.8.8 Reverting to the state of an earlier version

If you make an unwanted change but it doesn’'t make sense to
uncommit it (because that code has been released to users say),
you can use revert to take your working tree back to the desired

state. For example:

% bzr commit "Fix bug #5"

Committed revision 20.

(release the code)

(hmm - bad fix)

bzr revert -r 19

bzr commit -m "Backout fix for bug #5"

This will change your entire tree back to the state as of revision 19,
which is probably only what you want if you haven't made any new
commits since then. If you have, the revert would wipe them out as

well. In that case, you probably want to use Reverse cherrypicking
instead to back out the bad fix.

Note: As an alternative to using an absolute revision number (like
19), you can specify one relative to the tip (-1) using a negative
number like this:

bzr revert -r -2

1.3.8.9 Correcting a tag

If you have defined a tag prematurely, use the --force option of the
tag command to redefine it. For example:

bzr tag 2.0-beta-1

(oops, we're not yet ready for that)
(make more commits to include more fixes)
bzr tag 2.0-beta-1 --force

1.3.8.10 Clearing a tag

If you have defined a tag and no longer want it defined, use the --

delete option of the tag command to remove it. For example:

bzr tag 2.0-beta-4
(oops, we're not releasing a 4th beta)
bzr tag 2.0-beta-4 --delete

1.4 Jenumcsa c gpyrmmm

1.4.1 Working with another

1.4.1.1 Peer-to-peer rocks

In many cases, two minds can be better than one. You may be the
one who started a project and someone wishes to help, or perhaps
it's you who wants to help another. Perhaps you are both members
of a larger team that have been assigned a task together as pair
programmers. Either way, two people need to agree on a process, a
set of guidelines and a toolset in order to work together effectively.

Imagine if you were not allowed to call someone on the phone
directly and the only way to talk to them was by registering a
conference call first? Companies and communities that only share
code via a central VCS repository are living with a similar straitjacket
to that every day. There are times when central control makes a lot
of sense and times when peer-to-peer rocks. Either way, Bazaar is
designed to help.

1.4.1.2 The partner workflow

While it's certainly not the only way to do it, the partner workflow
below is a good starting point for a pair of people who wish to
collaborate using Bazaar.

@ start project ® bzr branch

8= .

record record
. . 3]
changes changes
h = h
merge changes B merge changes
E’fn::m peer ==V E’frr::m peer

Over and above the tasks covered in the previous chapter, this
chapter introduces two essential collaboration activities:

e getting a copy of a branch
e merging changes between branches.

Even when it's just you working on a code base, it can be very useful
to keep multiple branches around (for different releases say) and to
merge changes between them as appropriate. Your “partner’” may
indeed be yourself.

1.4.2 Branching a project

1.4.2.1 Branch URLs

Before someone else can get a copy of your work, you need to
agree on a transfer technology. You may decide to make the top
level directory of your branch a network share, an approach familiar
to Windows users. Linux and OS X users might prefer access to be

via SFTP, a secure protocol built-in to most SSH servers. Bazaar is
very flexible in this regard with support for lots of protocols some of
which are given below.

Prefix Description

file:// Access using the standard filesystem (default)

sftp:// Access using SFTP (most SSH servers provide
SFTP).

bzr:// Fast access using the Bazaar smart server.

ftp:// Access using passive FTP.

http:// Read-only access to branches exported by a web
server.

As indicated above, branches are identified using URLs with the
prefix indicating the transfer technology. If no prefix is given, normal
filenames are assumed. For a complete list of supported protocols,
see the urlspec online help topic or the URL Identifiers section of the

Bazaar User Reference.
1.4.2.2 HanomunHaHue o pasgensemMbix Ppeno3mtopuax

Before getting a copy of a branch, have a quick think about where to
put it on your filesystem. For maximum storage efficiency down the
track, it is recommended that branches be created somewhere under
a directory that has been set up as a shared repository. (See Feature
branches in n Organizing your workspace for a commonly used
layout.) For example:

bzr init-repo my-repo
cd my-repo

You are now ready to grab a branch from someone else and hack
away.

1.4.2.3 The branch command

ftp://
http://

To get a branch based on an existing branch, use the branch
command. The syntax is:

bzr branch URL [directory]

If a directory is not given, one is created based on the last part of the
URL. Here are some examples showing a drive qualified path (M:/)
and an sftp URL respectively:

bzr branch M:/cool-trunk
bzr branch sftp://bill@mary-laptop/cool-repo/cool-trunk

This example shows explicitly giving the directory name to use for
the new branch:

bzr branch /home/mary/cool-repo/cool-trunk cool

1.4.2.4 Time and space considerations

Depending on the size of the branch being transferred and the speed
and latency of the network between your computer and the source
branch, this initial transfer might take some time. Subsequent
updates should be much faster as only the changes are transferred
then.

Keep in mind that Bazaar is transferring the complete history of the
branch, not just the latest snapshot. As a consequence, you can be
off the network (or disconnected from the network share) after
branch completes but you’ll still be able to 1og and diff the history of

the branch as much as you want. Furthermore, these operations are
quick as the history is stored locally.

Note that Bazaar uses smart compression technology to minimize
the amount of disk space required to store version history. In many
cases, the complete history of a project will take up less disk space

than the working copy of the latest version.

As explained in later chapters, Bazaar also has support for
lightweight checkouts of a branch, i.e. working trees with no local
storage of history. Of course, disconnected usage is not available
then but that's a tradeoff you can decide to make if local disk space
is really tight for you. Support for limited lookback into history -
history horizons - is currently under development as well.

1.4.2.5 Viewing branch information

If you wish to see information about a branch including where it
came from, use the info command. For example:

bzr info cool

If no branch is given, information on the current branch is displayed.
1.4.3 Merging changes

1.4.3.1 Parallel development

Once someone has their own branch of a project, they can make
and commit changes in parallel to any development proceeding on
the original branch. Pretty soon though, these independent lines of
development will need to be combined again. This process is known
as merging.

1.4.3.2 The merge command

To incorporate changes from another branch, use the merge
command. Its syntax is:

bzr merge [URL]

If no URL is given, a default is used, initially the branch this branch
originated from. For example, if Bill made a branch from Mary’'s
work, he can merge her subsequent changes by simply typing this:

bzr merge

On the other hand, Mary might want to merge into her branch the
work Bill has done in his. In this case, she needs to explicitly give the
URL the first time, e.g.:

bzr merge sftp://mary@bill-laptop/cool-repo/cool-trunk

This sets the default merge branch if one is not already set. To
change the default after it is set, use the --remember option.

1.4.3.3 How does merging work?

A variety of algorithms exist for merging changes. Bazaar’s default
algorithm is a variation of 3-way merging which works as follows.
Given an ancestor A and two branches B and C, the following table
provides the rules used.

A B C Result Comment

X X X X unchanged
X X Yy Yy line from C
X Yy X Yy line from B
X'y z ? conflict

Note that some merges can only be completed with the assistance of
a human. Details on how to resolve these are given in Resolving
conflicts.

1.4.3.4 Recording a merge

After any conflicts are resolved, the merge needs to be committed.

For example:

bzr commit -m "Merged Mary's changes"

Even if there are no conflicts, an explicit commit is still required.
Unlike some other tools, this is considered a feature in Bazaar. A
clean merge is not necessarily a good merge so making the commit
a separate explicit step allows you to run your test suite first to verify
all is good. If problems are found, you should correct them before
committing the merge or throw the merge away using revert.

1.4.3.5 Merge tracking

One of the most important features of Bazaar is distributed, high
guality merge tracking. In other words, Bazaar remembers what has
been merged already and uses that information to intelligently
choose the best ancestor for a merge, minimizing the number and
size of conflicts.

If you are a refugee from many other VCS tools, it can be really hard
to “unlearn” the please-let-me-avoid-merging-at-any-cost habit.
Bazaar lets you safely merge as often as you like with other people.
By working in a peer-to-peer manner when it makes sense to do so,
you also avoid using a central branch as an “integration swamp”,
keeping its quality higher. When the change you’re collaborating on
Is truly ready for wider sharing, that’s the time to merge and commit
it to a central branch, not before.

Merging that Just Works truly can change how developers work
together.

1.4.4 Resolving conflicts

1.4.4.1 Workflow

Unlike some other tools that force you to resolve each conflict during
the merge process, Bazaar merges as much as it can and then
reports the conflicts. This can make conflict resolution easier
because the contents of the whole post-merge tree are available to
help you decide how things ought to be resolved. You may also wish
to selectively run tests as you go to confirm each resolution or group
or resolutions is good.

1.4.4.2 Listing conflicts

As well as being reported by the merge command, the list of

outstanding conflicts may be displayed at any time by using the
conflicts command. It is also included as part of the output from the

status command.

1.4.4.3 Resolving a conflict

When a conflict is encountered, the merge command puts embedded

markers in each file showing the areas it couldn’t resolve. It also
creates 3 files for each file with a conflict:

e f00.BASE
e f00.THIS
e f00.OTHER

where foo is the name of the conflicted file. In many cases, you can

resolve conflicts by simply manually editing each file in question,
fixing the relevant areas and removing the conflict markers as you

go.

After fixing all the files in conflict, and removing the markers, ask
Bazaar to mark them as resolved using the resolve command like

this:

bzr resolve

Alternatively, after fixing each file, you can mark it as resolved like
this:

bzr resolve foo

Among other things, the resolve command cleans up the BASE,
THIS and OTHER files from your working tree.

1.4.4.4 Using the remerge command

In some cases, you may wish to try a different merge algorithm on a
given file. To do this, use the remerge command nominating the file

like this:

bzr remerge --weave foo

where foo is the file and weave is one of the available merge

algorithms. This algorithm is particularly useful when a so-called
criss-cross merge is detected, e.g. when two branches merge the

same thing then merge each other. See the online help for criss-
cross and remerge for further details.

1.4.4.5 Using external tools to resolve conflicts

If you have a GUI tool you like using to resolve conflicts, be sure to
install the extmerge plugin. Once installed, it can be used like this:

bzr extmerge foo

where foo is the conflicted file. Rather than provide a list of files to
resolve, you can give the --all option to implicitly specify all
conflicted files.

The extmerge command uses the tool specified by the

external_merge Setting in your bazaar.conf file. If not set, it will look
for some popular merge tools such as kdiff3 or opendiff, the latter
being a command line interface to the FileMerge utility in OS X,

1.4.5 Annotating changes

1.4.5.1 Seeing the origin of content

When two or more people are working on files, it can be highly useful
at times to see who created or last changed certain content. To do
this, using the annotate command like this:

bzr annotate readme.txt

If you are a pessimist or an optimist, you might prefer to use one of
built-in aliases for annotate: blame oOr praise. Either way, this

displays each line of the file together with information such as:

e who changed it last
e when it was last changed
e the commit message.

1.45.2 GUI tools

The various GUI plugins for Bazaar provide graphical tools for
viewing annotation information. For example, the bzr-gtk plugin
provides a GUI tool for this that can be launched using the gannotate

command:

bzr gannotate readme.txt

The GUI tools typically provide a much richer display of interesting
information (e.g. all the changes in each commit) so you may prefer
them over the text-based command.

1.5 CoTpygHMyecTBo B KOMaHAae,
LIeHTPa/IM30BaHHbIN CTUJb

1.5.1 Centralized development

1.5.1.1 Motivation

Rather than working in parallel and occasionally merging, it can be
useful at times to work in lockstep, i.e. for multiple people to be
continuously committing changes to a central location, merging their
work with the latest content before every commit.

This workflow is very familiar to users of central VCS tools like
Subversion and CVS. It is also applicable to a single developer who
works on multiple machines, e.g. someone who normally works on a
desktop computer but travels with a laptop, or someone who uses
their (Internet connected) home computer to complete office work
out of hours.

If centralized development works well for your team already, that’s
great. Many teams begin using Bazaar this way and experiment with
alternative workflows later.

1.5.1.2 Centralized workflow

The diagram below provides an overview of the centralized workflow.

® bzr update

@ bzr checkout . 8

<FF—

Server © bzr commit

Even if your team is planning to use a more distributed workflow,
many of the tasks covered in this chapter may be useful to you,
particularly how to publish branches.

1.5.2 Publishing a branch

1.5.2.1 Setting up a central repository

While the centralized workflow can be used by socially nominating
any branch on any computer as the central one, in practice most
teams have a dedicated server for hosting central branches.

Just as it's best practice to use a shared repository locally, it's
advisable to put central branches in a shared repository. Note that
central shared branches typically only want to store history, not
working copies of files, so their enclosing repository is usually
creating using the no-trees option, e.qg.:

bzr init-repo --no-trees sftp://centralhost/srv/bzr/PROJECT

You can think of this step as similar to setting up a new cvsroot or
Subversion repository. However, Bazaar gives you more flexibility in
how branches may be organised in your repository. See Advanced
shared repository layouts in the appendices for guidelines and
examples.

1.5.2.2 Starting a central branch

There are two ways of populating a central branch with some initial
content:

1. Making a local branch and pushing it to a central location
2. Making an empty central branch then committing content to
it.

Here is an example of the first way:

bzr init-repo PROJECT (prepare local repository)
bzr init PROJECT/trunk
cd PROJECT/trunk
(copy development files)
cp -ar ~/PROJECT . (copy files in using 0S-specific tools)
bzr add (populate repository; start version cont
bzr commit -m "Initial import"
(publish to central repository)
bzr push sftp://centralhost/srv/bzr/PROJECT/trunk

{ i

Here is an example of the second way:

bzr init-repo PROJECT (prepare local repository)
cd PROJECT
bzr init sftp://centralhost/srv/bzr/PROJECT/trunk
bzr checkout sftp://centralhost/srv/bzr/PROJECT/trunk
cd trunk
cp -ar ~/PROJECT . (copy files in using 0S-specific tools)
bzr add (populate repository; start version cont
bzr commit -m "Initial import"
(publish to central repository)

(| E—

Note that committing inside a working tree created using the
checkout command implicitly commits the content to the central

location as well as locally. Had we used the branch command
instead of checkout above, the content would have only been
committed locally.

Working trees that are tightly bound to a central location like this are
called checkouts. The rest of this chapter explains their numerous
features in more detail.

1.5.3 Using checkouts

1.5.3.1 Turning a branch into a checkout

If you have a local branch and wish to make it a checkout, use the
bind command like this:

bzr bind sftp://centralhost/srv/bzr/PROJECT/trunk

This is necessary, for example, after creating a central branch using
push as illustrated in the previous section.

After this, commits will be applied to the bound branch before being
applied locally.

1.5.3.2 Turning a checkout into a branch

If you have a checkout and wish to make it a normal branch, use the
unbind command like this:

bzr unbind
After this, commits will only be applied locally.

1.5.3.3 Getting a checkout

When working in a team using a central branch, one person needs to
provide some initial content as shown in the previous section. After
that, each person should use the checkout command to create their
local checkout, i.e. the sandbox in which they will make their
changes.

Unlike Subversion and CVS, in Bazaar the checkout command
creates a local full copy of history in addition to creating a working
tree holding the latest content. This means that operations such as
diff and log are fast and can still be used when disconnected from
the central location.

1.5.3.4 Co3gaHue fierkoBecHom paboyen Konmm

While Bazaar does its best to efficiently store version history, there
are occasions when the history is simply not wanted. For example, if
your team is managing the content of a web site using Bazaar with a
central repository, then your release process might be as simple as
updating a checkout of the content on the public web server. In this
case, you probably don't want the history downloaded to that
location as doing so:

e wastes disk space holding history that isn’t needed there
e exposes a Bazaar branch that you may want kept private.

To get a history-less checkout in Bazaar, use the --lightweight
option like this:

bzr checkout --lightweight sftp://centralhost/srv/bzr/PROJECT/t
J S L

Of course, many of the benefits of a normal checkout are lost by
doing this but that's a tradeoff you can make if and when it makes
sense.

The --lightweight option only applies to checkouts, not to all
branches.

Note: If your code base is really large and disk space on your
computer is limited, lightweight checkouts may be the right choice for
you. Be sure to consider all your options though including shared
repositories, stacked branches, and reusing a checkouit.

1.5.3.5 Updating to the latest content

One of the important aspects of working in lockstep with others is
keeping your checkout up to date with the latest changes made to
the central branch. Just as you would in Subversion or CVS, you do
this in Bazaar by using the update command like this:

bzr update

This gets any new revisions available in the bound branch and
merges your local changes, if any.

1.5.3.6 Handling commit failures

Note that your checkout must be up to date with the bound branch
before running commit. Bazaar is actually stricter about this than

Subversion or CVS - you need to be up to date with the full tree, not
just for the files you’'ve changed. Bazaar will ask you to run update if

it detects that a revision has been added to the central location since
you last updated.

If the network connection to the bound branch is lost, the commit will
fail. Some alternative ways of working around that are outlined next.

1.5.4 Working offline on a central branch

1.5.4.1 The centralized with local commits workflow

If you lose your network connection because you are travelling, the
central server goes down, or you simply want to snapshot changes
locally without publishing them centrally just yet, this workflow is for
you.

@ bzr commit --local

@ bzrcheckout B g
= -
Server ® bzr commit

bhzr unhbind
bzr commit
bzr bind

1.5.4.2 Committing locally

If you're working in a checkout and need/wish to commit locally only,
add the --1local option to the commit command like this:

bzr commit --local

1.5.4.3 Being disconnected for long time periods

If you will be or want to be disconnected from the bound branch for a
while, then remembering to add --local to every commit command

can be annoying. An alternative is to use the unbind command to

make the checkout temporarily into a normal branch followed by the
bind command at some later point in time when you want to keep in

lockstep again.

Note that the bind command remembers where you were bound to

last time this branch was a checkout so it isn’t necessary to enter the
URL of the remote branch when you use bind after an earlier unbind.

1.5.4.4 Merging a series of local commits

When you make commits locally independent of ongoing
development on a central branch, then Bazaar treats these as two
lines of development next time you update. In this case, update does

the following:

e it brings the latest revisions from the bound branch down
and makes that the mainline of development within your
checkout

e it moves your local changes since you last updated into a
logical parallel branch

e it merges these together so that your local changes are
reported as a pending merge by status.

As always, you will need to run commit after this to send your work to
the central branch.

1.5.5 Reusing a checkout

1.5.5.1 Motivation

At times, it can be useful to have a single checkout as your sandbox
for working on multiple branches. Some possible reasons for this
include:

¢ saving disk space when the working tree is large
e developing in a fixed location.

In many cases, working tree disk usage swamps the size of the .bzr

directory. If you want to work on multiple branches but can’t afford
the overhead of a full working tree for each, reusing a checkout
across multiples branches is the way to go.

On other occasions, the location of your sandbox might be
configured into numerous development and testing tools. Once
again, reusing a checkout across multiple branches can help.

1.5.5.2 Changing where a branch is bound to

To change where a checkout is bound to, follow these steps:

1. Make sure that any local changes have been committed
centrally so that no work is lost.
2. Use the bind command giving the URL of the new remote

branch you wish to work on.
3. Make your checkout a copy of the desired branch by using
the update command followed by the revert command.

Note that simply binding to a new branch and running update merges

in your local changes, both committed and uncommitted. You need
to decide whether to keep them or not by running either revert or

commit.

An alternative to the bind+update recipe is using the switch

command. This is basically the same as removing the existing
branch and running checkout again on the new location, except that

any uncommitted changes in your tree are merged in.

Note: As switch can potentially throw away committed changes in
order to make a checkout an accurate cache of a different bound

branch, it will fail by design if there are changes which have been
committed locally but are not yet committed to the most recently
bound branch. To truly abandon these changes, use the --force

option.
1.5.5.3 Switching a lightweight checkout

With a lightweight checkout, there are no local commits and switch

effectively changes which branch the working tree is associated with.
One possible setup is to use a lightweight checkout in combination
with a local tree-less repository. This lets you switch what you are
working on with ease. For example:

bzr init-repo --no-trees PROJECT

cd PROJECT

bzr branch sftp://centralhost/srv/bzr/PROJECT/trunk
bzr checkout --lightweight trunk my-sandbox

cd my-sandbox

(hack away)

Note that trunk in this example will have a .bzr directory within it but

there will be no working tree there as the branch was created in a
tree-less repository. You can grab or create as many branches as
you need there and switch between them as required. For example:

(assuming in my-sandbox)

bzr branch sftp://centralhost/srv/bzr/PROJECT/PROJECT-1.0 ../PR
bzr switch ../PROJECT-1.0

(fix bug in 1.0)

bzr commit -m "blah, blah blah"

bzr switch ../trunk

(go back to working on the trunk)

{ S >

Note: The branches may be local only or they may be bound to
remote ones (by creating them with checkout or by using bind after

creating them with branch).

1.6 CoTpyaHMYecTBO B KOMaHAae,
pacnpeaesnieHHbIn CTUMb

1.6.1 Distributed development

1.6.1.1 Motivation

Distributed VCS tools offer new ways of working together, ways that
better reflect the modern world we live in and ways that enable
higher quality outcomes.

1.6.1.2 The decentralized with shared mainline workflow

In this workflow, each developer has their own branch or branches,
plus a checkout of the main branch. They do their work in their
personal branch, then merge it into the mainline when it is ready.

@ bzr pull

w - ~ bzr merge
@ bzr branch . s

==
<FF— -
Server

© bzr commit
local branches

Other distributed workflows are explored later in this chapter.
1.6.2 Organizing branches

1.6.2.1 Mirror branches

A primary difference when using distributed workflows to develop is
that your main local branch is not the place to make changes.
Instead, it is kept as a pristine copy of the central branch, i.e. it's a
mirror branch.

To create a mirror branch, set-up a shared repository (if you haven’t
already) and then use the branch (or checkout) command to create

the mirror. For example:

bzr init-repo PROJECT
cd PROJECT
bzr branch sftp://centralhost/srv/bzr/PROJECT/trunk

1.6.2.2 Task branches

Each new feature or fix is developed in its own branch. These
branches are referred to as feature branches or task branches - the
terms are used interchangeably.

To create a task branch, use the branch command against your
mirror branch. For example:

bzr branch trunk fix-123
cd fix-123
(hack, hack, hack)

There are numerous advantages to this approach:

1. You can work on multiple changes in parallel
2. There is reduced coupling between changes

3. Multiple people can work in a peer-to-peer mode on a
branch until it is ready to go.

In particular, some changes take longer to cook than others so you
can ask for reviews, apply feedback, ask for another review, etc. By
completing work to sufficient quality in separate branches before
merging into a central branch, the quality and stability of the central
branch are maintained at higher level than they otherwise would be.

1.6.2.3 Refreshing a mirror branch

Use the pull command to do this:

cd trunk
bzr pull

1.6.2.4 Merging the latest trunk into a feature branch

Use the merge command to do this:

cd fix-123

bzr merge

(resolve any conflicts)

bzr commit -m "merged trunk"

1.6.2.5 Merging a feature into the trunk

The policies for different distributed workflows vary here. The simple
case where all developers have commit rights to the main trunk are
shown below.

If your mirror is a checkout:

cd trunk

bzr update

bzr merge ../fix-123
(resolve any conflicts)

bzr commit -m "Fixed bug #123"

If your mirror is a branch:

cd trunk

bzr pull

bzr merge ../fix-123

(resolve any conflicts)

bzr commit -m "Fixed bug #123"
bzr push

1.6.2.6 Backing up task branches

One of the side effects of centralized workflows is that changes get
frequently committed to a central location which is backed up as part
of normal IT operations. When developing on task branches, it is a
good idea to publish your work to a central location (but not
necessarily a shared location) that will be backed up. You may even
wish to bind local task branches to remote ones established on a
backup server just for this purpose.

1.6.3 Using gatekeepers

1.6.3.1 The decentralized with human gatekeeper workflow

In this workflow, one developer (the gatekeeper) has commit rights to
the main branch while other developers have read-only access. All
developers make their changes in task branches.

local branches

szr branch
- g
. #® make changes
e

Server\ / a
& request merge
€ accept or reject

When a developer wants their work merged, they ask the gatekeeper
to review their change and merge it if acceptable. If a change fails
review, further development proceeds in the relevant task branch
until it is good to go.

Note that a key aspect of this approach is the inversion of control
that is implied: developers no longer decide when to “commit/push”
changes into the central branch: the code base evolves by
gatekeepers “merging/pulling” changes in a controlled manner. It's
perfectly acceptable, indeed common, to have multiple central
branches with different gatekeepers, e.g. one branch for the current
production release and another for the next release. In this case, a
task branch holding a bug fix will most likely be advertised to both
gatekeepers.

One of the great things about this workflow is that it is hugely
scalable. Large projects can be broken into teams and each team
can have a local master branch managed by a gatekeeper.
Someone can be appointed as the primary gatekeeper to merge
changes from the team master branches into the primary master

branch when team leaders request it.

1.6.3.2 The decentralized with automatic gatekeeper
workflow

To obtain even higher quality, all developers can be required to
submit changes to an automated gatekeeper that only merges and

commits a change if it passes a regression test suite. One such
gatekeeper is a software tool called PQM.

local branches
i]bzr branch make

. 8 changes

. request
©

review
Server - 3
(PQM) @ request merge

@ accept or reject

For further information on PQM, see https://launchpad.net/pgm.
1.6.4 Sending changes
1.6.4.1 Motivation

In many distributed development scenarios, it isn't always feasible

for developers to share task branches by advertising their URLs. For
example, a developer working on a laptop might take it home

https://launchpad.net/pqm

overnight so his/her task branches could well be inaccessible when a
gatekeeper in another timezone wants to review or merge it.

Bazaar provides a neat feature to assist here: merge directives.
1.6.4.2 Understanding merge directives

You can think of a merge directive as a “mini branch” - just the new
growth on a branch since it was created. It's a software patch
showing what's new but with added intelligence: metadata like
interim commits, renames and digital signatures.

Another useful metaphor is a packet cake: a merge directive has a
recipe together with the ingredients you need bundled inside it. To
stretch the metaphor, the ingredients are all the metadata on the
changes made to the branch; the recipe is instructions on how those
changes ought to be merged, i.e. information for the merge command

to use in selecting common ancestors.

Regardless of how you think of them, merge directives are neat.
They are easy to create, suitable for mailing around as attachments
and can be processed much like branches can on the receiving end.

1.6.4.3 Creating a merge directive

To create and optionally send a merge directive, use the send
command.

By default, send will email the merge directive to the “submission
address” for the branch, which is typically the lead developer or the
development mailing list. send without options will create a merge
directive, fire up your email tool and attach it, ready for you to add
the explanatory text bit. (See the online help for send and
Configuration Settings in the User Reference for further details on
how to configure this.)

Most projects like people to add some explanation to the mail along
with the patch, explaining the reason for the patch, and why it is
done the way it is. This gives a reviewer some context before going
into the line-by-line diff.

Alternatively, if the --output (or -o) option is given, send will write the

merge directive to a file, so you can mail it yourself, examine it, or
save it for later use. If an output file of - is given, the directive is

written to stdout. For example:

cd X-fix-123
bzr send -o ../fix-123.patch

1.6.4.4 Applying a merge directive

Merge directives can be applied in much the same way as branches:
by using the merge and pull commands.

They can also be useful when communicating with upstream projects
that don’'t use Bazaar. In particular, the preview of the overall change
in a merge directive looks like a vanilla software patch, so they can
be applied using patch -pe for example.

1.7 Pa3nnyHble Tembl

1.7.1 The journey ahead

We hope that earlier chapters have given you a solid understanding
of how Bazaar can assist you in being productive on your own and
working effectively with others. If you are learning Bazaar for the first
time, it might be good to try the procedures covered already for a
while, coming back to this manual once you have mastered them.

Remaining chapters covers various topics to guide you in further
optimizing how you use Bazaar. Unless stated otherwise, the topics
in this and remaining chapters are independent of each other and
can therefore be read in whichever order you wish.

1.7.2 Pseudo merging

1.7.2.1 Cherrypicking

At times, it can be useful to selectively merge some of the changes
in a branch, but not all of them. This is commonly referred to as
cherrypicking. Here are some examples of where cherrypicking is
useful:

¢ selectively taking fixes from the main development branch into a
release branch

¢ selectively taking improvements out of an experimental branch
into a feature branch.

To merge only the changes made by revision X in branch foo, the
command is:

bzr merge -c X foo

To merge only the changes up to revision X in branch foo, the
command is:

bzr merge -r X foo

To merge only the changes since revision X in branch foo, the
command is:

bzr merge -r X.. foo

To merge only the changes from revision X to revision Y in branch
foo, the command is:

bzr merge -r X..Y foo

Like a normal merge, you must explicitly commit a cherrypick. You
may wish to see the changes made using bzr diff, and run your

test suite if any, before doing this.

Unlike a normal merge, Bazaar does not currently track cherrypicks.
In particular, the changes look like a normal commit and the
(internal) revision history of the changes from the other branch is
lost. In many cases where they are useful (see above), this is not a
major problem because there are good reasons why a full merge
should never be done at a later time. In other cases, additional
conflicts will need to be resolved when the changes are merged
again.

1.7.2.2 Merging without parents

A related technique to cherrypicking, in that it makes changes
without reference to the revisions that they came from is to perform a
merge, but forget about the parent revisions before committing. This
has the effect of making all of the changes that would have been in
the merge happen in a single commit. After the merge and before

the corresponding commit, you can do:

bzr revert --forget-merges

to keep the changes in the working tree, but remove the record of
the revisions where the changes originated. The next commit would
then record all of those changes without any record of the merged
revisions.

This is desired by some users to make their history “cleaner”, but
you should be careful that the loss of history does not outweigh the
value of cleanliness, particularly given Bazaar’'s capabilities for
progressively disclosing merged revisions. In particular, because this
will include the changes from the source branch, but without
attribution to that branch, it can lead to additional conflicts on later
merges that involve the same source and target branches.

1.7.2.3 Reverse cherrypicking

Cherrypicking can be used to reverse a set of changes made by
giving an upper bound in the revision range which is below the lower
bound. For example, to back-out changes made in revision 10, the
command is:

bzr merge -r 10..9

If you want to take most changes, but not all, from somewhere else,
you may wish to do a normal merge followed by a few reverse
cherrypicks.

1.7.2.4 Merging uncommitted changes

If you have several branches and you accidentally start making
changes in the wrong one, here are the steps to take to correct this.
Assuming you began working in branch foo when you meant to work

in branch bar:

Change into branch bar.

Run bzr merge --uncommitted foo

Check the changes came across (bzr diff)
Change into branch foo

Run bzr revert.

a M wbd e

1.7.2.5 Rebasing

Another option to normal merging is rebasing, i.e. making it look like
the current branch originated from a different point than it did.
Rebasing is supported in Bazaar by the rebase command provided

by the rebase plugin.

The rebase command takes the location of another branch on which

the branch in the current working directory will be rebased. If a
branch is not specified then the parent branch is used, and this is
usually the desired result.

The first step identifies the revisions that are in the current branch
that are not in the parent branch. The current branch is then set to
be at the same revision as the target branch, and each revision is
replayed on top of the branch. At the end of the process it will appear
as though your current branch was branched off the current last
revision of the target.

Each revision that is replayed may cause conflicts in the tree. If this
happens the command will stop and allow you to fix them up.
Resolve the commits as you would for a merge, and then run bzr

resolve to marked them as resolved. Once you have resolved all the
conflicts, you should run bzr rebase-continue to continue the rebase

operation. If conflicts are encountered and you decide not to
continue, you can run bzr rebase-abort. You can also use rebase-

todo to show the list of commits still to be replayed.

Note: Some users coming from central VCS tools with poor merge
tracking like rebasing because it's similar to how they are use to
working in older tools, or because “perfectly clean” history seems
important. Before rebasing in Bazaar, think about whether a normal
merge is a better choice. In particular, rebasing a private branch
before sharing it is OK but rebasing after sharing a branch with
someone else is strongly discouraged.

1.7.3 Shelving Changes

Sometimes you will want to temporarily remove changes from your
working tree and restore them later, For instance to commit a small
bug-fix you found while working on something. Bazaar allows you to
put changes on a shelf to achieve this. When you want to restore

the changes later you can use unshelve to apply them to your
working tree again.

For example, consider a working tree with one or more changes
made ...

$ bzr diff

=== modified file 'description.txt'
--- description.txt

+++ description.txt

@@ -2,7 +2,7 @@

These plugins

-by Michael Ellerman
+written by Michael Ellerman
provide a very

fine-grained 'undo'
facility
@@ -11,6 +11,6 @@

This allows you to

undo some of

your changes,

-commit, and get
+perform a commit, and get
back to where you

were before.

The shelve command interactively asks which changes you want to
retain in the working tree:

$ bzr shelve
--- description.txt
+++ description.txt

@@ '2/7 +2/7 @@

These plugins

-by Michael Ellerman
+written by Michael Ellerman
provide a very

fine-grained 'undo'
facility

Shelve? [yNfrqg?]: y
--- description.txt
+++ description. txt
@@ -11,6 +11,6 @@
This allows you to
undo some of
your changes,
-commit, and get
+perform a commit, and get
back to where you
were before.

Shelve? [yNfrg?]: n
Shelve 2 change(s)? [yNfrg?]', 'y'
Selected changes:
M description.txt
Changes shelved with id "1".

If there are lots of changes in the working tree, you can provide the
shelve command with a list of files and you will only be asked about
changes in those files. After shelving changes, it's a good idea to
use diff to confirm the tree has just the changes you expect:

$ bzr diff

=== modified file 'description.txt'
--- description.txt

+++ description. txt

@@ '2/7 +2/7 @@

These plugins

-by Michael Ellerman
+written by Michael Ellerman
provide a very

fine-grained 'undo'
facility

Great - you're ready to commit:

$ bzr commit -m "improve first sentence"

At some later time, you can bring the shelved changes back into the
working tree using unshelve:

$ bzr unshelve
Unshelving changes with id "1".
M description.txt
All changes applied successfully.

If you want to, you can put multiple items on the shelf. Normally each
time you run unshelve the most recently shelved changes will be
reinstated. However, you can also unshelve changes in a different
order by explicitly specifying which changes to unshelve.

Bazaar merges the changes in to your working tree, so they will
apply even if you have edited the files since you shelved them,
though they may conflict, in which case you will have to resolve the
conflicts in the same way you do after a conflicted merge.

1.7.4 Filtered views

1.7.4.1 Introducing filtered views

Views provide a mask over the tree so that users can focus on a
subset of a tree when doing their work. There are several cases
where this masking can be helpful. For example, technical writers
and testers on many large projects may prefer to deal with just the
directories/files in the project of interest to them.

Developers may also wish to break a large set of changes into
multiple commits by using views. While shelve and unshelve let

developers put some changes aside for a later commit, views let
developers specify what to include in (instead of exclude from) the
next commit.

After creating a view, commands that support a list of files - status,
diff, commit, etc - effectively have that list of files implicitly given each
time. An explicit list of files can still be given to these commands but
the nominated files must be within the current view. In contrast, tree-
centric commands - pull, merge, update, etc. - continue to operate
on the whole tree but only report changes relevant to the current
view. In both cases, Bazaar notifies the user each time it uses a view
implicitly so that it is clear that the operation or output is being
masked accordingly.

Note: Filtered views are only supported in format 2a, the default in
Bazaar 2.0, or later.

1.7.4.2 Creating a view

This is done by specifying the files and directories using the view
command like this:

bzr view filel file2 dir1 ...

The output is:

Using 'my' view: filel, file2, dir1l

1.7.4.3 Listing the current view

To see the current view, use the view command without arguments:

bzr view

If no view is current, a message will be output saying No current
view.. Otherwise the name and content of the current view will be
displayed like this:

'my' view is: a, b, c
1.7.4.4 Switching between views

In most cases, a view has a short life-span: it is created to make a
selected change and is deleted once that change is committed. At
other times, you may wish to create one or more named views and
switch between them.

To define a named view and switch to it:

bzr view --name view-name filel dirl ...

For example:

bzr view --name doc NEWS doc/
Using doc view: NEWS, doc/

To list a named view:

bzr view --name view-name

To switch to a named view:

bzr view --switch view-name

To list all views defined:

bzr view --all

1.7.4.5 Temporarily disabling a view

To disable the current view without deleting it, you can switch to the
pseudo view called off. This can be useful when you need to see

the whole tree for an operation or two (e.g. merge) but want to switch
back to your view after that.

To disable the current view without deleting it:

bzr view --switch off

After doing the operations you need to, you can switch back to the
view you were using by name. For example, if the previous view
used the default name:

bzr view --switch my
1.7.4.6 Deleting views

To delete the current view:

bzr view --delete

To delete a named view:

bzr view --name view-name --delete

To delete all views:

bzr view --delete --all

1.7.4.7 Things to be aware of

Defining a view does not delete the other files in the working tree - it
merely provides a “lens” over the working tree.

Views are stored as working tree metadata. They are not propagated
by branch commands like pull, push and update.

Views are defined in terms of file paths. If you move a file in a view
to a location outside of the view, the view will no longer track that
path. For example, if a view is defined as doc/ and doc/NEwS gets

moved to News, the views stays defined as doc/ and does not get
changed to doc/ NEws. Likewise, deleting a file in a view does not
remove the file from that view.

The commands that use the current view are:

e status
o diff

e commit
e add

e remove
e revert
e mv

o |s.

Commands that operate on the full tree but only report changes
inside the current view are:

o pull
e update
* merge.

Many commands currently ignore the current view. Over time, some
of these commands may be added to the lists above as the need

arises. By design, some commands will most likely always ignore the
current view because showing the whole picture is the better thing to
do. Commands in this group include:

e log
¢ info.

1.7.5 licnonb3oBaHMe CTeKa BeToK

1.7.5.1 410 Takoe BeTKa B CTeke?

BeTka B cTeke - 3TO BeTKa KOTopasi 3HaeT KakK HailTu peBu3uun B
[Apyroin BeTke. BeTka B CTeKe XpPaHWUT TOSIbKO YHUKa/IbHblE PEBU3UMN,
KOTOpble Mpu 3TOM ObICTpee co3faBaTb M OHU 6osee 3PJPEKTUBHbI
No 3aHMMaeMoMy MecTy. 10 3aTMM MokasaTensM CTeK BETOK MOXO0X
Ha pasgensemble peno3nTopun. KOHEeYHO CTeK BETOK UWMeeT
AOMNOTHUTE bHbIE NPenMyLLecTBa:

e HoBas BeTKa MOXET OblTb B abCOMTHO ApYyromM MecTe no
CpaBHEHMIO C BETKOW Ha KOTOPOM OHA OCHOBaHa Kak CTEK.

e YpaaneHne BETKM B CTeKe Ha caMoM fJene yganser peBunsuun (a
He oCcTaBNsAeT UX B pas3fefiiemMomMm peno3vtopun).

e CTek BETOK 60s1ee 6e3onaceH Yem pasgensdemMbie peno3nTopum,
T.K. PEno3NTOpuUii Ha KOTOPOM OCHOBAH CTEK MOXET WMETb
AOCTYN TOMbKO [A/19 4UTEeHUA A1 pa3paboTyMkoB KOTOpble
JOMKCUPYIOT N3MEHEHMS HA BETKE B CTEKE.

TN npenmyuiectBa gesialoT CTEK BETOK NAaea/IbHbIM Bbl60pOM ans
pas3/indHbliX CcueHapuesB, BK/IKOYasd 3KCNepuMeHTa/lbHblE BETKU WU
caiTbl C XOCTUHIOM Koda.

1.7.5.2 Co3pgaHne BETKM B CTEKe

UTo 6bl cO34aTb BETKY B CTEKE HYXXHO UCMO/1b30BaTh ONUMIO stacked
1151 KOMaHApbl branch. Hanpumep:

bzr branch --stacked source-url my-dir

30ecb Mbl co30aAMM my-dir Kak BETKY B CTeKe 6e3 NoKaslbHbIX
peBu3nii. Ecnn onpefeneHo oTkpbiTad BeTKa CBA3aHHasA C source-
url OyaeT ucnonb3oBaHa Kak OcHosa cmeka. VIHaye source-url
OyaeT ocHoBOU cmekKa.

1.7.5.3 Co3gaHune paboyero katasiora B CTeke

Mogaepxka NpsIMOro co3faHusi paboyero Katasora B CTEKE CKOpO
oxupgaetcs. Moka ans saToro TpebyeTtcs ABa wwara:

1. COB,U,aTb BETKY B CTEKE, KaK ONMNCaHOo BblLLE.
2. KoHBepTupoBaTb BeTKy B pabouuii Katanor WUCnosnb3ys nmbo
KOMaHpgy reconfigure, MO0 KOMaHAy bind.

1.7.5.4 Tlybnukauma BeTKM B CTEKe

MHorne nameHeHns B 60/1bLLUMHCTBE NPOEKTOB CO34alTCs Ha OCHOBE
FOTOBbIX BETOK, TakUX KaK OCHOBHasi /IUHUS pas3pabomku, Wnu
mekyuwjasi cmabusibHasi. Co3aHne HOBOW BETKN B CTEKE OCHOBAHHOW
Ha Takux BETKax /1erko caenarb ¢ UCMosib30BaHNEM KOMaHAbl push:

bzr push --stacked-on reference-url my-url

3Ta KoMaHAa co3JacT HOBYH BeTKY my-url, KoTopas 6yget
OCHOBaHa Ha reference-url U COAEpPXaTb TOMbKO PEBM3UU U3
TeKyLLeli BETKU, KOTOPbIX ELUEe HET Ha BETKEe reference-url.

Ecnn nokanbHaa BeTka Oblna co3faHa Kak BeTKa B CTeKe TO Mbl
MOXXeM MUCMNo/sib30BaTb ONUMIO --stacked ANA KOMaHAbl push U TOraa
BeTKa Ha KOTopoih OyneT OCHOBaH CTeK OyaeT 3ajaHa HesiBHO.
Hanpumep:

bzr branch --stacked source-url my-dir
cd my-dir

(MeHAeM, MeHsieM, MeHsieM)

bzr commit -m "wucnpaBneHue ownbkn"

bzr push --stacked

1.7.5.5 OrpaHnyeHnsa BETOK B CTEKE

BaxkHas Bellb KOTOPYH Hago 3anoMHUTb B OTHOLUEHMM BETOK B
CTeke - BEeTKa Ha KOTOpPOW OCHOBaH CTEK A0/DKHa OblTb AOCTyMHa
NpakTU4eckn Ansa Bcex onepaunin. KoHe4YHo 3To He npobnema ecnu
06e BETKM NoKaslbHble, NN HaXOAATCS Ha OAHOM CepBepe.

1.7.6 Running a smart server

Bazaar does not require a specialised server because it operates
over HTTP, FTP or SFTP. There is an optional smart server that can
be invoked over SSH, from inetd, or in a dedicated mode.

1.7.6.1 Dumb servers

We describe HTTP, FTP, SFTP and HTTP-WebDAV as “dumb”
servers because they do not offer any assistance to Bazaar. If you
make a Bazaar repository available over any of these protocols,
Bazaar will allow you to read it remotely. Just enter the URL to the
branch in the Bazaar command you are running.:

bzr log http://bazaar-vcs.org/bzr/bzr.dev

Bazaar supports writing over FTP, SFTP and (via a plugin) over
HTTP-WebDAV.

1.7.6.2 High-performance smart server

The high-performance smart server (hpss) performs certain
operations much faster than dumb servers are capable of. In future

releases, the range of operations that are improved by using the
smart server will increase as we continue to tune performance.

To maintain the highest security possible, the current smart server
provides read-only access by default. To enable read-write access,
run it with --allow-writes. When using the SSH access method, bzr

automatically runs with the --allow-writes option.

The alternative ways of configuring a smart server are explained
below.

1.7.6.2.1 SSH

Using Bazaar over SSH requires no special configuration on the
server; so long as Bazaar is installed on the server you can use
bzr+ssh URLS, e.g.:

bzr log bzr+ssh://host/path/to/branch

If bzr is not installed system-wide on the server you may need to
explicitly tell the local bzr where to find the remote bzr:

BZR_REMOTE_PATH=~/bin/bzr bzr log bzr+ssh://host/path/to/branch
J S—

The BzR_REMOTE_PATH environment variable adjusts how bzr will be

invoked on the remote system. By default, just bzr will be invoked,
which requires the bzr executable to be on the default search path.
You can also set this permanently per-location in locations.conf.

Like SFTP, paths starting with ~ are relative to your home directory,
e.g. bzr+ssh://example.com/~/code/proj. Additionally, paths starting
with ~user will be relative to that user’s home directory.

1.7.6.2.2 inetd

This example shows how to run bzr with a dedicated user bzruser for
a shared repository in /srv/bzr/repo which has a branch at

/srv/bzr/repo/branchname.

Running a Bazaar server from inetd requires an inetd.conf entry:

4155 stream tcp nowait bzruser /usr/bin/bzr /usr/bin/bzr s

J S— o

When running client commands, the URL you supply is a bzr:// URL
relative to the --directory option given in inetd.conf:

bzr log bzr://host/branchname

If possible, paths starting with ~ and ~user will be expanded as for
bzr+ssh. Home directories outside the --directory specified to bzr
serve Will not be accessible.

1.7.6.2.3 Dedicated

This mode has the same path and URL behaviour as the inetd
mode. To run as a specific user, you should use su or login as that

user.

This example runs bzr on its official port number of 4155 and listens
on all interfaces. This allows connections from anywhere in the world
that can reach your machine on port 4155.

server:

bzr serve --directory=/srv/bzr/repo

client:

bzr log bzr://host/branchname

This example runs bzr serve on localhost port 1234.

server:

bzr serve --port=localhost:1234 --directory=/srv/bzr/repo

client:

bzr log bzr://localhost:1234/branchname

1.7.7 Using hooks

1.7.7.1 What is a hook?

One way to customize Bazaar’s behaviour is with hooks. Hooks
allow you to perform actions before or after certain Bazaar
operations. The operations include commit, push, pull, and uncommit.
For a complete list of hooks and their parameters, see Hooks in the
User Reference.

Most hooks are run on the client, but a few are run on the server.
(Also see the push-and-update plugin that handles one special case
of server-side operations.)

1.7.7.2 Using hooks

To use a hook, you should write a plugin. Instead of creating a new
command, this plugin will define and install the hook. Here's an
example:

from bzrlib import branch

def post_push_hook(push_result):
print "The new revno is " % push_result.new_revno

http://doc.bazaar.canonical.com/plugins/en/push-and-update-plugin.html
http://doc.bazaar.canonical.com/plugins/en/plugin-development.html

branch.Branch.hooks.install_named_hook('post_push', post_push_h
"My post_push hook')

{]

To use this example, create a file named push_hook.py, and stick it in
plugins subdirectory of your configuration directory. (If you have
never installed any plugins, you may need to create the plugins
directory).

That's it! The next time you push, it should show “The new revno

is...”. Of course, hooks can be much more elaborate than this,

because you have the full power of Python at your disposal. Now
that you know how to use hooks, what you do with them is up to you.

The plugin code does two things. First, it defines a function that will
be run after push completes. (It could instead use an instance

method or a callable object.) All push hooks take a single argument,
the push_result.

Second, the plugin installs the hook. The first argument 'post_push'

identifies where to install the hook. The second argument is the hook
itself. The third argument is a name 'My post_push hook', which can

be used in progress messages and error messages.
1.7.7.3 Debugging hooks

To get a list of installed hooks, use the hidden hooks command:

bzr hooks

1.7.8 Exporting version information

1.7.8.1 Getting the last revision number

If you only need the last revision number in your build scripts, you

can use the revno command to get that value like this:

$ bzr revno
3104

1.7.8.2 Getting more version information

The version-info command can be used to output more information
about the latest version like this:

$ bzr version-info

revision-id: pgm@pgm.ubuntu.com-20071211175118-s94sizduj201hrs5
date: 2007-12-11 17:51:18 +0000

build-date: 2007-12-13 13:14:51 +1000

revno: 3104

branch-nick: bzr.dev

(| —

You can easily filter that output using operating system tools or
scripts. For example (on Linux/Unix):

$ bzr version-info | grep Adate
date: 2007-12-11 17:51:18 +0000

The --a1l option will actually dump version information about every

revision if you need that information for more advanced post-
processing.

1.7.8.3 Python projects

If using a Makefile to build your project, you can generate the version
information file as simply as:

library/_version.py:
bzr version-info --format python > library/_version.py

This generates a file which contains 3 dictionaries:

e version_info: A dictionary containing the basic information
about the current state.

e revisions: A dictionary listing all of the revisions in the
history of the tree, along with the commit times and commit
message. This defaults to being empty unless --all or --

include-history is supplied. This is useful if you want to

track what bug fixes, etc, might be included in the released
version. But for many projects it is more information than
needed.

e file_revisions: A dictionary listing the last-modified revision
for all files in the project. This can be used similarly to how
$1d$ keywords are used in CVS-controlled files. The last

modified date can be determined by looking in the
revisions map. This is also empty by default, and enabled

only by --all or --include-file-revisions.

1.7.8.4 Getting version info in other formats

Bazaar supports a template-based method for getting version
information in arbitrary formats. The --custom option to version-info

can be used by providing a --template argument that contains

variables that will be expanded based on the status of the working
tree. For example, to generate a C header file with a formatted string
containing the current revision number:

bzr version-info --custom \
--template="#define VERSION_INFO \"Project 1.2.3 (r{revno}
> version_info.h

i — 2

where the {revno} will be replaced by the revision number of the

working tree. (If the example above doesn’'t work on your OS, try
entering the command all on one line.) For more information on the
variables that can be used in templates, see Version Info in the
Bazaar User Reference.

Predefined formats for dumping version information in specific
languages are currently in development. Please contact us on the
mailing list about your requirements in this area.

1.7.8.5 Check clean

Most information about the contents of the project can be cheaply
determined by just reading the revision entry. However, it can be
useful to know if the working tree was completely up-to-date when it
was packaged, or if there was a local modification. By supplying
either --all or --check-clean, bzr will inspect the working tree, and
set the clean flag in version_info, as well as set entries in

file_revisions as modified where appropriate.

1.8 Kpartkoe onncaHne HeEKOTOPbIX
NonynsaApHbIX NaarmHoB

1.8.1 BzrTools

1.8.1.1 Overview

BzrTools is a collection of useful enhancements to Bazaar. For
installation instructions, see the BzrTools home page: http://bazaar-
vcs.org/BzrTools. Here is a sample of the frequently used commands
it provides.

1.8.1.2 shell

bzr shell starts up a command interpreter than understands Bazaar
commands natively. This has several advantages:

e There’s no need to type bzr at the front of every command.

¢ |ntelligent auto-completion is provided.
e Commands run slightly faster as there’s no need to load
Bazaar’s libraries each time.

1.8.1.3 cdiff

bzr cdiff provides a colored version of bzr diff output. On
GNU/Linux, UNIX and OS X, this is often used like this:

bzr cdiff | less -R

1.8.2 bzr-svn

1.8.2.1 Overview

http://bazaar-vcs.org/BzrTools

bzr-svn lets developers use Bazaar as their VCS client on projects
still using a central Subversion repository. Access to Subversion
repositories is largely transparent, i.e. you can use most bzr
commands directly on Subversion repositories exactly the same as if
you were using bzr on native Bazaar branches.

Many bzr-svn users create a local mirror of the central Subversion
trunk, work in local feature branches, and submit their overall change
back to Subversion when it is ready to go. This lets them gain many
of the advantages of distributed VCS tools without interrupting
existing team-wide processes and tool integration hooks currently
built on top of Subversion. Indeed, this is a common interim step for
teams looking to adopt Bazaar but who are unable to do so yet for
timing or non-technical reasons.

For installation instructions, see the bzr-svn home page:
http://bazaar-vcs.org/BzrForeignBranches/Subversion.

1.8.2.2 A simple example

Here’s a simple example of how you can use bzr-svn to hack on a
GNOME project like beagle. Firstly, setup a local shared repository
for storing your branches in and checkout the trunk:

bzr init-repo beagle-repo
cd beagle-repo
bzr checkout svn+ssh://svn.gnome.org/svn/beagle/trunk beagle-tr

(| S

Next, create a feature branch and hack away:

bzr branch beagle-trunk beagle-featurel
cd beagle-featurel

(hack, hack, hack)

bzr commit -m "blah blah blah"

(hack, hack, hack)

bzr commit -m "blah blah blah"

http://bazaar-vcs.org/BzrForeignBranches/Subversion

When the feature is cooked, refresh your trunk mirror and merge
your change:

cd ../beagle-trunk

bzr update

bzr merge ../beagle-featurel

bzr commit -m "Complete comment for SVN commit"

As your trunk mirror is a checkout, committing to it implicitly commits
to the real Subversion trunk. That's it!

1.8.2.3 Using a central repository mirror

For large projects, it often makes sense to tweak the recipe given
above. In particular, the initial checkout can get quite slow so you
may wish to import the Subversion repository into a Bazaar one once
and for all for your project, and then branch from that native Bazaar
repository instead. bzr-svn provides the svn-import command for

doing this repository-to-repository conversion. Here’s an example of
how to use it:

bzr svn-import svn+ssh://svn.gnome.org/svn/beagle

Here’s the recipe from above updated to use a central Bazaar mirror:

bzr init-repo beagle-repo

cd beagle-repo

bzr branch bzr+ssh://bzr.gnome.org/beagle.bzr/trunk beagle-trun
bzr branch beagle-trunk beagle-featurel

cd beagle-featurel

(hack, hack, hack)

bzr commit -m "blah blah blah"

(hack, hack, hack)

bzr commit -m "blah blah blah"

cd ../beagle-trunk

bzr pull

bzr merge ../beagle-featurel

bzr commit -m "Complete comment for SVN commit"
bzr push

J 1

J b

In this case, committing to the trunk only commits the merge locally.
To commit back to the master Subversion trunk, an additional
command (bzr push) is required.

Note: You'll need to give pull and push the relevant URLs the first

time you use those commands in the trunk branch. After that, bzr
remembers them.

The final piece of the puzzle in this setup is to put scripts in place to
keep the central Bazaar mirror synchronized with the Subversion
one. This can be done by adding a cron job, using a Subversion
hook, or whatever makes sense in your environment.

1.8.2.4 Limitations of bzr-svn

Bazaar and Subversion are different tools with different capabilities
so there will always be some limited interoperability issues. Here are
some examples current as of bzr-svn 0.5.4:

e Bazaar doesn’t support versioned properties
e Bazaar doesn’t support tracking of file copies.

See the bzr-svn web page, http://bazaar-
vcs.org/BzrForeignBranches/Subversion, for the current list of
constraints.

http://bazaar-vcs.org/BzrForeignBranches/Subversion

1.9 WHTerpmpyem Bazaar B Hally cpeay

1.9.1 Web browsing

1.9.1.1 Overview

There are a range of options available for providing a web view of a
Bazaar repository, the main one being Loggerhead. The homepage
of Loggerhead can be found at https://launchpad.net/loggerhead.

A list of alternative web viewers including download links can be
found on http://bazaar-vcs.org/Weblnterface.

Note: If your project is hosted or mirrored on Launchpad,
Loggerhead code browsing is provided as part of the service.

1.9.2 Bug trackers

Bazaar has a facility that allows you to associate a commit with a
bug in the project’s bug tracker. Other tools (or hooks) can then use
this information to generate hyperlinks between the commit and the
bug, or to automatically mark the bug closed in the branches that
contain the commit.

1.9.2.1 Associating commits and bugs

When you make a commit, you can associate it with a bug by using
the --fixes option of commit. For example:

$ bzr commit --fixes 1p:12345 -m "Properly close the connection

(| S—

This records metadata in Bazaar linking the commit with bug 12345
in Launchpad. If you use a different bug tracker, it can be given its

https://launchpad.net/loggerhead
http://bazaar-vcs.org/WebInterface

own tracker code (instead of 1p) and used instead. For details on

how to configure this for Bugzilla, Trac, Roundup and other
bug/issue trackers, refer to Bug Tracker Settings in the Bazaar User
Reference.

1.9.2.2 Metadata recording vs bug tracker updating

Recording metadata about bugs fixed at commit time is only one of
the features needed for complete bug tracker integration. As Bazaar
is a distributed VCS, users may be offline while committing so
accessing the bug tracker itself at that time may not be possible.
Instead, it is recommended that a hook be installed to update the
bug tracker when changes are pushed to a central location
appropriate for your project’'s workflow.

Note: This second processing stage is part of the integration
provided by Launchpad when it scans external or hosted branches.

1.9.2.3 Making corrections

This method of associating revisions and bugs does have some
limitations. The first is that the association can only be made at
commit time. This means that if you forget to make the association
when you commit, or the bug is reported after you fix it, you
generally cannot go back and add the link later.

Related to this is the fact that the association is immutable. If a bug
is marked as fixed by one commit but that revision does not fully
solve the bug, or there is a later regression, you cannot go back and
remove the link.

Of course, bzr uncommit can always be used to undo the last commit
in order to make it again with the correct options. This is commonly
done to correct a bad commit message and it equally applies to
correcting metadata recorded (via --fixes for example) on the last

commit.

Note: uncommit IS best done before incorrect revisions become
public.

]
1.10 TlpunoxeHus

1.10.1 OnpegeneHne pesnusni

1.10.1.1 Revision identifiers and ranges

Bazaar has a very expressive way to specify a revision or a range of
revisions. To specify a range of revisions, the upper and lower
bounds are separated by the .. symbol. For example:

$ bzr log -r 1..4

You can omit one bound like:

$ bzr log -r 1..
$ bzr log -r ..4

Some commands take only one revision, not a range. For example:

$ bzr cat -r 42 foo.c

In other cases, a range is required but you want the length of the
range to be one. For commands where this is relevant, the -c option

is used like this:

$ bzr diff -c 42

1.10.1.2 Available revision identifiers

The revision, or the bounds of the range, can be given using different
format specifications as shown below.

argument type description
number revision number

revno:number positive revision number

last:number negative revision number
revid:guid globally unique revision id
before:rev leftmost parent of “rev”
date:value first entry after a given date
tag:value revision matching a given tag
ancestor:path last merged revision from a branch
branch:path latest revision on another branch
submit:path common ancestor with submit
branch

A brief introduction to some of these formats is given below. For
complete details, see Revision Identifiers in the Bazaar User
Reference.

1.10.1.2.1 Numbers

Positive numbers denote revision numbers in the current branch.
Revision numbers are labelled as “revno” in the output of bzr log. To

display the log for the first ten revisions:

$ bzr log -r ..10

Negative numbers count from the latest revision, -1 is the last
committed revision.

To display the log for the last ten revisions:

$ bzr log -r -10..

1.10.1.2.2 revid

revid allows specifying a an internal revision ID, as shown by bzr
log and some other commands.

For example:

$ bzr log -r revid:Matthieu.Moy@imag.fr-20051026185030-93c7cad6
J E— 0

1.10.1.2.3 before

before
“rev” specifies the leftmost parent of “rev”, that is the revision
that appears before “rev” in the revision history, or the revision
that was current when “rev” was committed.

“rev” can be any revision specifier and may be chained.
For example:

$ bzr log -r before:before:4

revno: 2

1.10.1.2.4 date

date
“value” matches the first history entry after a given date, either at
midnight or at a specified time.

Legal values are:

e yesterday

e today

e tomorrow

¢ AYYYY-MM-DD format date.

e AYYYY-MM-DD,HH:MM:SS format date/time, seconds are
optional (note the comma)

The proper way of saying “give me all the log entries for today” is:

$ bzr log -r date:yesterday..date:today

1.10.1.2.5 Ancestor

ancestor:path

specifies the common ancestor between the current branch and a
different branch. This is the same ancestor that would be used for
merging purposes.

path may be the URL of a remote branch, or the file path to a local
branch.

For example, to see what changes were made on a branch since it
was forked off . ./parent:

$ bzr diff -r ancestor:../parent

1.10.1.2.6 Branch

branch
path specifies the latest revision in another branch.

path may be the URL of a remote branch, or the file path to a local
branch.

For example, to get the differences between this and another
branch:

$ bzr diff -r branch:http://example.com/bzr/foo.dev

1.10.2 Organizing your workspace

1.10.2.1 Common workspace layouts

The best way for a Bazaar user to organize their workspace for a

project depends on numerous factors including:

e user role: project owner vs core developer vs casual contributor

o workflows: particularly the workflow the project
encourages/mandates for making contributions

e size: large projects have different resource requirements to
small ones.

There are at least 4 common ways of organizing one’s workspace:

lightweight checkout
standalone tree
feature branches
switchable sandbox.

A brief description of each layout follows.
1.10.2.2 Lightweight checkout

In this layout, the working tree is local and the branch is remote. This
is the standard layout used by CVS and Subversion: it's simple and
well understood.

To set up:

bzr checkout --lightweight URL project
cd project

To work:

(make changes)
bzr commit
(make changes)
bzr commit

Note that each commit implicitly publishes the change to everyone
else working from that branch. However, you need to be up to date

with changes in the remote branch for the commit to succeed. To
grab the latest code and merge it with your changes, if any:

bzr update

1.10.2.3 Standalone tree

In this layout, the working tree & branch are in the one place. Unless
a shared repository exists in a higher level directory, the repository is
located in that same place as well. This is the default layout in
Bazaar and it's great for small to moderately sized projects.

To set up:

bzr branch URL project
cd project

To work:

(make changes)
bzr commit
(make changes)
bzr commit

To publish changes to a central location:

bzr push [URL]

The URL for push is only required the first time.

If the central location has, in the meantime, received changes from
other users, then you’ll need to merge those changes into your local
branch before you try to push again:

bzr merge
(resolve conflicts)
bzr commit

As an alternative, a checkout can be used. Like a branch, a checkout
has a full copy of the history stored locally but the local branch is
bound to the remote location so that commits are published to both
locations at once.

Note: A checkout is actually smarter than a local commit followed by
a push. In particular, a checkout wil commit to the remote location
first and only commit locally if the remote commit succeeds.

1.10.2.4 Feature branches

In this layout, there are multiple branches/trees, typically sharing a
repository. One branch is kept as a mirror of “trunk” and each unit-of-
work (i.e. bug-fix or enhancement) gets its own “feature branch”.
This layout is ideal for most projects, particularly moderately sized
ones.

To set up:

bzr init-repo project
cd project
bzr branch URL trunk

To start a feature branch:

bzr branch trunk featureX
cd featureX

To work:

(make changes)
bzr commit
(make changes)
bzr commit

To publish changes to a mailing list for review & approval:

bzr send

To publish changes to a public branch (that can then be registered
as a Launchpad merge request, say):

bzr push [URL]

As a variation, the trunk can be created as a checkout. If you have
commit privileges on trunk, that lets you merge into trunk and the
commit of the merge will implicitly publish your change. Alternatively,
if the trunk URL is read-only (e.g. a http address), that prevents
accidental submission this way - ideal if the project workflow uses an
automated gatekeeper like PQM, say.

1.10.2.5 Local sandbox

This layout is very similar to the feature branches layout except that
the feature branches share a single working tree rather than having
one each. This is similar to git's default layout and it's useful for
projects with really large trees (> 10000 files say) or for projects with
lots of build artifacts (like .o or .class files).

To set up:

bzr init-repo --no-trees project

cd project

bzr branch URL trunk

bzr checkout --lightweight trunk sandbox
cd sandbox

While you could start making changes in sandbox now, committing
while the sandbox is pointing to the trunk would mean that trunk is
no longer a mirror of the upstream URL (well unless the trunk is a
checkout). Therefore, you usually want to immediately create a
feature branch and switch your sandbox to it like this:

bzr branch ../trunk ../featureX
bzr switch ../featureX

The processes for making changes and submitting them are
otherwise pretty much the same as those used for feature branches.

1.10.2.6 Advanced layouts

If you wish, you can put together your own layout based on how you
like things organized. See Advanced shared repository layouts for
examples and inspiration.

1.10.3 Advanced shared repository layouts

Bazaar is designed to give you flexibility in how you layout branches
inside a shared repository. This flexibility allows users to tailor
Bazaar to their workflow, but it also leads to questions about what is
a “good” layout. We present some alternatives and give some
discussion about the benefits of each.

One key point which should be mentioned is that any good layout
should somehow highlight what branch a “general” user should grab.
In SVN this is deemed the “trunk/” branch, and in most of the

layouts this naming convention is preserved. Some would call this
“mainline” or “dev“, and people from CVS often refer to this as

“HEAD".

1.10.3.1 “SVN-Style” (trunk/, branches/)

Most people coming from SVN will be familiar with their “standard”
project layout. Which is to layout the repository as:

repository/ # Overall repository
+- trunk/ # The mainline of development
+- branches/ # A container directory

| +- foo/ # Branch for developing feature foo

+- tags # Container directory
+- release-X # A branch specific to mark a given release v

J R— >

With Bazaar, that is a perfectly reasonable layout. It has the benefit
of being familiar to people coming from SVN, and making it clear
where the development focus is.

When you have multiple projects in the same repository, the SVN
layout is a little unclear what to do.

1.10.3.1.1 project/trunk

The preferred method for SVN seems to be to give each project a
top level directory for a layout like:

repository/ # Overall repository
+- projectl/ # A container directory
| +- trunk/ # The mainline of development of project
| +- branches/ # A container directory
| +- foo/ # Branch for developing feature foo of p
I
|
+- project2/ # Container for project2
+- trunk/ # Mainline for project2
+- branches/ # Container for project2 branches
a E— o]

This also works with Bazaar. However, with Bazaar repositories are
cheap to create (a simple bzr init-repo away), and their primary

benefit is when the branches share a common ancestry.

So the preferred way for Bazaar would be:

projectl/ # A repository for projectl
+- trunk/ # The mainline of development of projectil
+- branches/ # A container directory

+- foo/ # Branch for developing feature foo of proje

project2/ # A repository for project2
+- trunk/ # Mainline for project2
+- branches/ # Container for project2 branches

J E—

1.10.3.1.2 trunk/project

There are also a few projects who use this layout in SVN:

repository/ # Overall repository
+- trunk/ # A container directory
| +- projectil # Mainline for project 1
| +- project2 # Mainline for project 2
I
I
+- branches/ # Container
+- projectl1/ # Container (?)
| +- foo # Branch 'foo' of projectil
+- project2/
+- bar # Branch 'bar' of project2
A slight variant is:
repository/ # Overall repository
+- trunk/ # A container directory
| +- projectil # Mainline for project 1
| +- project2 # Mainline for project 2
I
I
+- branches/ # Container
+- projectl-foo/ # Branch 'foo' of projectl
+- project2-bar/ # Branch 'bar' of project2

| believe the reason for this in SVN, is so that someone can checkout
all of “trunk/” and get the all the mainlines for all projects.

This layout can be used for Bazaar, but it is not generally
recommended.

1. bzr branch/checkout/get iS a single branch at a time. So

you don't get the benefit of getting all mainlines with a
single command. [1]
2. It is less obvious of whether repository/trunk/foo IS the

trunk of project foo or it is just the foo directory in the
trunk branch. Some of this confusion is due to SVN,

because it uses the same “namespace” for files in a project
that it uses for branches of a project. In Bazaar, there is a
clear distinction of what files make up a project, versus the
location of the Branch. (After all, there is only one .bzr/

directory per branch, versus many .svn/ directories in the
checkout).

Note: NestedTreeSupport can provide a way to create “meta-

1] projects” which aggregate multiple projects regardless of the
repository layout. Letting you bzr checkout one project, and
have it grab all the necessary sub-projects.

1.10.3.2 Nested Style (project/branch/sub-branch/)

Another style with Bazaar, which is not generally possible in SVN is
to have branches nested within each-other. This is possible because
Bazaar supports (and recommends) creating repositories with no
working trees (--no-trees). With a --no-trees repository, because

the working files are not intermixed with your branch locations, you
are free to put a branch in whatever namespace you want.

One possibility is:

project/ # The overall repository, *and* the projec
+ joe/ # Developer Joe's primary branch of develo
| +- featurel/ # Developer Joe's featurel development bra
| +- broken/ # A staging branch for Joe to develop feat
| +- feature2/ # Joe's feature2 development branch
| C
+ barry/ # Barry's development branch
|

+

releases/

http://bazaar-vcs.org/NestedTrees

+- 1.0/
+- 1.1.1/

{ S— >

The idea with this layout is that you are creating a hierarchical layout
for branches. Where changes generally flow upwards in the
namespace. It also gives people a little corner of the namespace to
work on their stuff. One nice feature of this layout, is it makes
branching “cheaper” because it gives you a place to put all the mini
branches without cluttering up the global branches/ hamespace.

The other power of this is that you don’'t have to repeat yourself
when specifying more detail in the branch name.

For example compare:

bzr branch http://host/repository/project/branches/joe-feature-
J B 0

Versus:

bzr branch http://host/project/joe/foo/bugfix-10

Also, if you list the repository/project/branches/ directory you
might see something like:

barry-feature-bar/
barry-bugfix-10/
barry-bugfix-12/
joe-bugfix-10/
joe-bugfix-13/
joe-frizban/

Versus having these broken out by developer. If the number of
branches are small, branches/ has the nice advantage of being able

to see all branches in a single view. If the number of branches is
large, branches/ has the distinct disadvantage of seeing all the

branches in a single view (it becomes difficult to find the branch you

are interested in, when there are 100 branches to look through).

Nested branching seems to scale better to larger number of
branches. However, each individual branch is less discoverable. (eg.
“Is Joe working on bugfix 10 in his feature foo branch, or his feature
bar branch?”)

One other small advantage is that you can do something like:

bzr branch http://host/project/release/1/1/1
or

bzr branch http://host/project/release/1/1/2

To indicate release 1.1.1 and 1.1.2. This again depends on how
many releases you have and whether the gain of splitting things up
outweighs the ability to see more at a glance.

1.10.3.3 Sorted by Status (dev/, merged/, experimental/)

One other way to break up branches is to sort them by their current
status. So you would end up with a layout something like:

project/ # Overall layout

+- trunk/ # The development focus branch

+- dev/ # Container directory for in-progress wo
| +- joe-featurel # Joe's current feature-1 branch

| +- barry-bugfix10 # Barry's work for bugfix 10
| C
+- merged/ Container indicating these branches ha
| +- bugfix-12 Bugfix which has already been merged.

+- abandonded/ Branches which are considered 'dead-en

{ S— >

H* H H*

This has a couple benefits and drawbacks. It lets you see what
branches are actively being developed on, which is usually only a
small number, versus the total number of branches ever created. Old
branches are not lost (versus deleting them), but they are “filed
away”, such that the more likely you are to want a branch the easier

it is to find. (Conversely, older branches are likely to be harder to
find).

The biggest disadvantage with this layout, is that branches move
around. Which means that if someone is following the
project/dev/new-feature branch, when it gets merged into trunk/
suddenly bzr pull doesn’t mirror the branch for them anymore
because the branch is now at project/merged/new-feature. There
are a couple ways around this. One is to use HTTP redirects to point
people requesting the old branch to the new branch. bzr >= 0.15 will
let users know that http://old/path redirects to http://new/path.

However, this doesn’t help if people are accessing a branch through
methods other than HTTP (SFTP, local filesystem, etc).

It would also be possible to use a symlink for temporary redirecting
(as long as the symlink is within the repository it should cause little
trouble). However eventually you want to remove the symlink, or you
don’t get the clutter reduction benefit. Another possibility instead of a
symlink is to use a BranchReference. It is currently difficult to create
these through the bzr command line, but if people find them useful

that could be changed. This is actually how Launchpad allows you to
bzr checkout https://launchpad.net/bzr. Effectively a
BranchReference is a symlink, but it allows you to reference any other
URL. If it is extended to support relative references, it would even
work over http, sftp, and local paths.

1.10.3.4 Sorted by date/release/etc (2006-06/, 2006-07/, 6.8/,
0.9)

Another method of allowing some scalability while also allowing the
browsing of “current” branches. Basically, this works on the
assumption that actively developed branches will be “new” branches,
and older branches are either merged or abandoned.

https://launchpad.net

Basically the date layout looks something like:

project/ Overall project repository
+- trunk/ General mainline
+- 2006-06/ containing directory for branches cre

| +- featurel/
| +- feature2/
+- 2005-05/

+- feature3/

Branch of "project" for "featurel"
Branch of "project" for "feature2"
Containing directory for branches cre

H oH H HHFH

i S— o

This answers the question “Where should | put my new branch?”
very quickly. If a feature is developed for a long time, it is even
reasonable to copy a branch into the newest date, and continue
working on it there. Finding an active branch generally means going
to the newest date, and going backwards from there. (A small
disadvantage is that most directory listings sort oldest to the top,
which may mean more scrolling). If you don’t copy old branches to
newer locations, it also has the disadvantage that searching for a
branch may take a while.

Another variant is by release target:

project/ # Overall repository

+- trunk/ # Mainline development branch

+- releases/ # Container for release branches

| +- 0.8/ # The branch for release 0.8

| +- 0.9/ # The branch for release 0.9

+- 0.8/ # Container for branches targeting release 0.

| +- featurel/ # Branch for "featurel" which is intended to

| +- feature2/ # Branch for "feature2" which is targeted for
+- 0.9/

+- feature3/ # Branch for "feature3", targeted for release

{ S— >

Some possible variants include having the o.9 directory imply that it
Is branched from 0.9 rather than for 0.9, or having the o.8/release
as the official release 0.8 branch.

The general idea is that by targeting a release, you can look at what
branches are waiting to be merged. It doesn’'t necessarily give you a
good idea of what the state of the branch (is it in development or
finished awaiting review). It also has a history-hiding effect, and
otherwise has the same benefits and deficits as a date-based
sorting.

1.10.3.5 Simple developer naming (project/joe/foo,
project/barry/bar)

Another possibly layout is to give each developer a directory, and
then have a single sub-directory for branches. Something like:

project/ # Overall repository

+- trunk/ # Mainline branch

+- joe/ # A container for Joe's branches
| +- foo/ # Joe's "foo" branch of "project"
+- barry/

+- bar/ # Barry's "bar" branch of "project"

The idea is that no branch is “nested” underneath another one, just
that each developer has his/her branches grouped together.

A variant which is used by Launchpad is:

repository/

+- joe/ # Joe's branches

| +- projectl/ # Container for Joe's branches of "project
| | +- foo/ # Joe's "foo" branch of "projecti"

| +- project2/ # Container for Joe's '"project2" branches
| +- bar/ # Joe's "bar" branch of "project2"

I

|

+- barry/

| +- projectl/ # Container for Barry's branches of '"proje
| +- bug-10/ # Barry's "bug-10" branch of "projecti"

| Ce

+- group/

+- projectl/
+- trunk/ # The main development focus for "projectl

4 .]]

https://launchpad.net

{ —

This lets you easily browse what each developer is working on.
Focus branches are kept in a “group” directory, which lets you see
what branches the “group” is working on.

This keeps different people’s work separated from each-other, but
also makes it hard to find “all branches for project X”. Launchpad
compensates for this by providing a nice web interface with a
database back end, which allows a “view” to be put on top of this
layout. This is closer to the model of people’s home pages, where
each person has a “~/public_html” directory where they can publish

their own web-pages. In general, though, when you are creating a
shared repository for centralization of a project, you don’t want to
split it up by person and then project. Usually you would want to split
it up by project and then by person.

1.10.3.6 Summary

In the end, no single naming scheme will work for everyone. It
depends a lot on the number of developers, how often you create a
new branch, what sort of lifecycles your branches go through. Some
guestions to ask yourself:

1. Do you create a few long-lived branches, or do you create

lots of “mini” feature branches (Along with this is: Would

you like to create lots of mini feature branches, but can't

because they are a pain in your current VCS?)

Are you a single developer, or a large team?

3. If a team, do you plan on generally having everyone
working on the same branch at the same time? Or will you
have a “stable” branch that people are expected to track.

N

1.10.4 Configuring emalil

https://launchpad.net

1.10.4.1 Why set up an email address with Bazaar?

Bazaar stores the specified email address in revisions when they're
created so that people can tell who committed which revisions. The
email addresses are not verified, therefore they could be bogus, so
you have to trust the people involved in your project. Additionally, the
email address in a revision gives others a way to contact the author
of a revision for credit and/or blame.)

1.10.4.2 How to set up your email address

Bazaar will try to guess an email address based on your username
and the hostname if none is set. This will probably not be what you
want, so three ways exist to tell Bazaar what email to use:

You can set your email in one of several configuration files. Like
other configuration values, you can set it in bazaar.conf as a general

setting. If you want to override the value for a particular branch, or
set of branches, you can use locations.conf.

.bzr/branch/branch.conf will also work, but will cause all commits to

that branch to use the same email address, even if someone else
does them.

The order of precedence is

1. If the BZR_EMAIL environment variable is set.

2. If an email is set for your current branch in the
locations.conf file.

3. If an email is set four your current branch in the
.bzr/branch/branch.conf file.

4. If an email is set in the bazaar.conf default configuration
file.

5. If the EMAIL environment variable is set.

6. Bazaar will try to guess based on your username and the

hostname.

To check on what Bazaar thinks your current email is, use the whoami
(“who am i?”) command:

% bzr whoami
Joe Cool <joe@example.com>

1.10.4.3 Setting email via the ‘whoami’ command

You can use the whoami command to set your email globally:

% bzr whoami "Joe Cool <joe@example.com>"

or only for the current branch:

% bzr whoami --branch "Joe Cool <joe@example.com>"

These modify your global bazaar.conf or branch branch.conf file,
respectively.

1.10.4.4 Setting email via default configuration file

To use the default ini file, create or edit the bazaar.conf file (in
~/.bazaar/ on Linux and in %APPDATA%\bazaar\2.0\ in Windows) and

set an email address as shown below. Please note that the word
DEFAULT is case sensitive, and must be in upper-case.

[DEFAULT]
email=Your Name <name@isp.com>

For more information on the ini file format, see Configuration
Settings in the Bazaar User Reference.

1.10.4.5 Setting email on a per-branch basis

The second approach is to set email on a branch by branch basis by
using the locations.conf configuration file like this:

[/some/branch/location]
email=Your Name <name@other-isp.com>

This will set your email address in the branch at
/some/branch/location, overriding the default specified in the

bazaar.conf above.

1.10.4.6 Setting email via environment variable

The final method Bazaar will use is checking for the Bzr_emAIL and
EMAIL environment variables. Generally, you would use this method

to override the email in a script context. If you would like to set a
general default, then please see the ini methods above.

1.10.4.7 Concerns about spam

Some people want to avoid sharing their email address so as not to
get spam. Bazaar will never disclose your email address, unless you
publish a branch or changeset in a public location. It's recommended
that you do use a real address, so that people can contact you about
your work, but it's not required. You can use an address which is
obfuscated, which bounces, or which goes through an anti-spam
service such as spamgourmet.com.

1.10.5 Serving Bazaar with Apache

This document describes one way to set up a Bazaar HTTP smart
server, using Apache 2.0 and FastCGI or mod_python or mod_wsgi.

For more information on the smart server, and other ways to
configure it see the main smart server documentation.

1.10.5.1 Example

You have a webserver already publishing
/srv/iexample.com/www/code as http.//fexample.com/code/... with
plain HTTP. It contains bzr branches and directories like
/srv/iexample.com/www/code/branch-one and
/srv/iexample.com/www/code/my-repo/branch-two. You want to
provide read-only smart server access to these directories in addition
to the existing HTTP access.

1.10.5.2 Configuring Apache 2.0

1.10.5.2.1 FastCGl

First, configure mod_fastcgi, e.g. by adding lines like these to your
httpd.conf:

LoadModule fastcgi module /usr/lib/apache2/modules/mod_fastcgi.
FastCgiIpcDir /var/lib/apache2/fastcgi

J =

In our example, we’re already serving /srv/example.com/www/code
at http://example.com/code, so our existing Apache configuration
would look like:

Alias /code /srv/example.com/www/code
<Directory /srv/example.com/www/code>
Options Indexes
...
</Directory>

We need to change it to handle all requests for URLs ending in
.bzr/smart. It will look like:

Alias /code /srv/example.com/www/code
<Directory /srv/example.com/www/code>
Options Indexes FollowSymLinks

RewriteEngine On

RewriteBase /code

RewriteRule A(.*/|)\.bzr/smart$ /srv/example.com/scripts/bz
</Directory>

bzr-smart.fcgi isn't under the DocumentRoot, so Alias it into
namespace so it can be executed.
Alias /srv/example.com/scripts/bzr-smart.fcgi /srv/example.com/
<Directory /srv/example.com/scripts>

Options ExecCGI

<Files bzr-smart.fcgi>

SetHandler fastcgi-script

</Files>

</Directory>

i E— 2]

This instructs Apache to hand requests for any URL ending with
/.bzr/smart inside /code to a Bazaar smart server via FastCGl.

Refer to the mod_rewrite and mod_fastcgi documentation for further
information.

1.10.5.2.2 mod_python

First, configure mod_python, e.g. by adding lines like these to your
httpd.conf:

LoadModule python_module /usr/lib/apache2/modules/mod_python.so
J —

Define the rewrite rules with mod_rewrite the same way as for
FastCGl, except change:

RewriteRule A(.*/|)\.bzr/smart$ /srv/example.com/scripts/bzr-sm

{ R— >

to:

RewriteRule A(.*/|)\.bzr/smart$ /srv/example.com/scripts/bzr-sm

J S 2]

http://httpd.apache.org/docs/2.0/mod/mod_rewrite.html
http://www.fastcgi.com/mod_fastcgi/docs/mod_fastcgi.html

Like with mod_fastcgi, we also define how our script is to be
handled:

Alias /srv/example.com/scripts/bzr-smart.py /srv/example.com/sc
<Directory /srv/example.com/scripts>
<Files bzr-smart.py>
PythonPath "sys.path+['/srv/example.com/scripts']"
AddHandler python-program .py
PythonHandler bzr-smart::handler
</Files>
</Directory>

J S— >

This instructs Apache to hand requests for any URL ending with
/.bzr/smart inside /code to a Bazaar smart server via mod_python.

NOTE: If you don’t have bzrlib in your PATH, you will be need to
change the following line:

PythonPath "sys.path+['/srv/example.com/scripts']"

To:

PythonPath "['/path/to/bzr']+sys.path+['/srv/example.com/script
A L

Refer to the mod_python documentation for further information,
1.10.5.2.3 mod_wsgi

First, configure mod_wsgi, e.g. enabling the mod with a2enmod
wsgi. We need to change it to handle all requests for URLs ending in
.bzr/smart. It will look like:

WSGIScriptAliasMatch A/code/.*/\.bzr/smart$ /srv/example.com/sc

#The three next lines allow regular GETs to work too
RewriteEngine On

RewriteCond %{REQUEST_URI} !A/code/.*/\.bzr/smart$

RewriteRule A/code/(.*/\.bzr/.*)$ /srv/example.com/www/code/$1

http://www.modpython.org/

<Directory /srv/example.com/www/code>
WSGIApplicationGroup %{GLOBAL}
</Directory>

J S— >

This instructs Apache to hand requests for any URL ending with
/.bzr/smart inside /code to a Bazaar smart server via WSGI, and any
other URL inside /code to be served directly by Apache.

Refer to the mod_wsgi documentation for further information.

1.10.5.3 Configuring Bazaar

1.10.5.3.1 FastCGl

We've configured Apache to run the smart server at
/srv/iexample.com/scripts/bzr-smart.fcgi. This is just a simple script
we need to write to configure a smart server, and glue it to the
FastCGI gateway. Here’s what it looks like:

import fcgi
from bzrlib.transport.http import wsgi

smart_server_app = wsgi.make_app(
root="'/srv/example.com/www/code',
prefix="'/code/"',
path_var='REQUEST_URI',
readonly=True,
load_plugins=True,
enable_logging=True)

fcgi.WSGIServer(smart_server_app).run()

The fcgi module can be found at http://svn.saddi.com/py-
lib/trunk/fcgi.py. It is part of flup.

1.10.5.3.2 mod_python

http://code.google.com/p/modwsgi/
http://svn.saddi.com/py-lib/trunk/fcgi.py
http://www.saddi.com/software/flup/

We've configured Apache to run the smart server at
/srv/iexample.com/scripts/bzr-smart.py. This is just a simple script we
need to write to configure a smart server, and glue it to the
mod_python gateway. Here’s what it looks like:

import modpywsgi
from bzrlib.transport.http import wsgi

smart_server_app = wsgi.make_app(
root="'/srv/example.com/www/code',
prefix="'/code/"',
path_var='REQUEST_URI',
readonly=True,
load_plugins=True,
enable_logging=True)

def handler(request):
"""Handle a single request."""
wsgi_server = modpywsgi.WSGIServer(smart_server_app)
return wsgi_server.run(request)

The modpywsgi module can be found at
http://ice.usqg.edu.au/svn/ice/trunk/apps/ice-server/modpywsgi.py. It
was part of pocoo. You sould make sure you place modpywsgi.py in
the same directory as bzr-smart.py (ie. /srv/example.com/scripts/).

1.10.5.3.3 mod_wsgi

We've configured Apache to run the smart server at
/srv/example.com/scripts/bzr.wsgi. This is just a simple script we
need to write to configure a smart server, and glue it to the WSGI
gateway. Here’s what it looks like:

from bzrlib.transport.http import wsgi

def application(environ, start_response):
app = wsgi.make_app(
root="/srv/example.com/www/code/",
prefix="/code",
readonly=True,

http://ice.usq.edu.au/svn/ice/trunk/apps/ice-server/modpywsgi.py
http://dev.pocoo.org/projects/pocoo/

enable_logging=False)
return app(environ, start_response)

1.10.5.4 Clients

Now you can use bzr+http:// URLSs or just http:// URLS, e.qg.:

bzr log bzr+http://example.com/code/my-branch

Plain HTTP access should continue to work:

bzr log http://example.com/code/my-branch

1.10.5.5 Advanced configuration

Because the Bazaar HTTP smart server is a WSGI application, it can
be used with any 3rd-party WSGI middleware or server that
conforms the WSGI standard. The only requirements are:

e to construct a SmartWSGIApp, you need to specify a root
transport that it will serve.

e each request's environ dict must have a ‘bzrlib.relpath’
variable set.

The make app helper used in the example constructs a
SmartWSGIApp with a transport based on the root path given to it,
and calculates the ‘bzrlib.relpath” for each request based on the
prefix and path_var arguments. In the example above, it will take the
‘REQUEST_URI’ (which is set by Apache), strip the ‘/code/ prefix
and the ‘/.bzr/smart’ suffix, and set that as the ‘bzrlib.relpath’, so that
a request for ‘/code/foo/bar/.bzr/smart’ will result in a ‘bzrlib.relpath’
of ‘foo/bzr’.

It's possible to configure a smart server for a non-local transport, or
that does arbitrary path translations, etc, by constructing a
SmartWSGIApp directly. Refer to the docstrings of

bzrlib.transport.http.wsgi and the WSGI standard for further
information.

1.10.5.5.1 Pushing over the http smart server

It is possible to allow pushing data over the http smart server. The
easiest way to do this, is to just supply readonly=False to the

wsgi.make_app() call. But be careful, because the smart protocol

does not contain any Authentication. So if you enable write support,
you will want to restrict access to .bzr/smart URLS to restrict who

can actually write data on your system, e.g. in apache it looks like:

<Location /code>
AuthType Basic
AuthName "example"
AuthUserFile /srv/example.com/conf/auth.passwd
<LimitExcept GET>
Require valid-user
</LimitExcept>
</Location>

At this time, it is not possible to allow some people to have read-only
access and others to have read-write access to the same urls.
Because at the HTTP layer (which is doing the Authenticating),
everything is just a POST request. However, it would certainly be
possible to have HTTPS require authentication and use a writable
server, and plain HTTP allow read-only access.

If bzr gives an error like this when accessing your HTTPS site:

bzr: ERROR: Connection error: curl connection error (server cer
CAfile:/etc/ssl/certs/ca-certificates.crt CRLfile: none)

i — o

You can workaround it by using https+urllib rather than http in
your URL, or by uninstalling pycurl. See bug 82086 for more details.

http://www.python.org/dev/peps/pep-0333/
https://bugs.launchpad.net/bzr/+bug/82086

1.10.6 Writing a plugin
1.10.6.1 Introduction

Plugins are very similar to bzr core functionality. They can import
anything in bzrlib. A plugin may simply override standard
functionality, but most plugins supply new commands.

1.10.6.2 Creating a new command

To create a command, make a new object that derives from
bzrlib.commands.Command, and name it cmd_foo, where foo is the

name of your command. If you create a command whose name
contains an underscore, it will appear in the Ul with the underscore
turned into a hyphen. For example, cmd_baz_import will appear as
baz-import. For examples of how to write commands, please see
builtins.py.

Once you've created a command you must register the command
with bzrlib.commands.register_command(cmd_foo). YOou must register

the command when your file is imported, otherwise bzr will not see it.
1.10.6.3 Specifying a plugin version number

Simply define version_info to be a tuple defining the current version
number of your plugin. eg. version_info = (0, 9, 0) version_info
= (0, 9, 0, 'dev', 0)

1.10.6.4 Plugin searching rules

Bzr will scan ~/.bazaar/plugins and bzrlib/plugins for plugins by
default. You can override this with BzR_PLUGIN_PATH (see User
Reference for details).

Plugins may be either modules or packages. If your plugin is a single
file, you can structure it as a module. If it has multiple files, or if you
want to distribute it as a bzr branch, you should structure it as a
package, i.e. a directory with an __init__.py file.

1.10.6.5 More information

Please feel free to contribute your plugin to BzrTools, if you think it
would be useful to other people.

See the Bazaar Developer Guide for details on Bazaar’s
development guidelines and policies.

. FnasHas | OokymeHTaums | CogepxaHue (2.2b1) » npeaplaywmnii | cnegyowimi

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/ru/
http://sphinx.pocoo.org/

. FnasHas | OokymeHTaums | CogepxaHue (2.2b1) » npeaplaywmnii | cnegyowimi

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/ru/

KapTouka 6bICTporo crapra

e PDF
e PNG
e SVG

. FnasHas | OokymeHTaums | CopepxaHue (2.2b1) » npeaplaywmnii | cnegyoLwimi

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/ru/
http://sphinx.pocoo.org/

. FnasHas | OokymeHTaums | CogepxaHue (2.2b1) » npeaplaywmnii | cnegyowimi

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/ru/

Bazaar 3a nATb MUHYT

CopepxaHue

e Bazaar 3a nATb MUHYT

o

(¢]

o

BeepeHue

YcTtaHoBKa

[pepcTaBbTECH

HaunHaem KOHTpomMpoBaTtb Bepcuun haininos
BHOCKMM n3meHeHus B thalinbl

MpocmarpmBaeM XypHas U3MEHEHNI

[y6nnkyem BeTKy yepe3 SFTP

My6nukaums BeTkn Ha Launchpad

Co3gaemM COGCTBEHHYIO KOMUIO APYroin BETKU
O6HOB/SIEM BETKY N3MEHEHUSIMU U3 OCHOBHOW BETKU
O6beanHseM CBOU M3MEHEHUS C POANTENbCKON BETKOM
Y3Hatb 60/bLIe

BBeneHue

Bazaar — 3T0 pacnpeaeneHHasi cuctema KoHTpOsIsi BepCuii, KoTopas
YNpOLLLAET COBMECTHY0 paboTy Haj NPorpaMMHbIMU NPOEKTaMMU.

B TeueHun cneaywowmx MATU MUHYT, Bbl Yy3HAeTe Kak HadaTb
KOHTPOMIMPOBAaTbL BepcuM BallnX painnoB, Kak BHOCUTb M3MEHEHUS,
npoBepsiTb Bally paboTy, nyb6nukoBaTb €€ U OTNpaBnsaTb ANs
06beAVHEHNS C TNABHOW BETKOW NpoeKTa.

Ecnn Bbl npegnoyntaete 6osee nogpobHoe BBeaeHWe, obparntechb
K pasgeny Y3Hatb 6osbLue.

YcTaHOBKa

OTO PyKOBOACTBO He OMUCbIBAeT Kak yCTaHOBUTb Bazaar, notomy
YTO OObIYHO 3TO O4YeHb Jierko. WHCTPYKLMM MO YCTaHOBKE Bbl
Haugete TyT:

* GNUILinux: ckopee Bcero Bazaar yXe npucyTCTBYeT B BalleMm
anctpnoytnee GNU/Linux.

e Windows: VHCTpPYKLMK MO ycTaHoBKe ana Windows.

e Mac OS X: MHCTpyKuMn no yctaHoBke ana Mac OS X.

Ana apyrux naatopM UM ANs YCTAHOBKM M3 UCXO[HbIX KOAOB,
obpatuTech K CTpaHuLam 3arpyska 1 YcTaHoBKa.

http://bazaar-vcs.org/WindowsDownloads
http://bazaar-vcs.org/MacOSXBundle
http://bazaar-vcs.org/Download
http://bazaar-vcs.org/InstallationFaq

[lpencrtaBbTECH

[Mpexae yem HayaTb paboTtartb, 6b1710 6bl HEN/I0X0 CO0bOLWNTL Bazaar
KTO Bbl TakoW. B aTom cnyyae Bawa pabota O6yger KOppPekTHO
naeHTMdmumpoBaHa B UICTOPUM PEBU3UI.

cnonb3ya Balle MM U agpec 3/1eKTPOHHON NOYTbl, BMECTO AaHHbIX
Bacu lNynkuHa, HabepuTe:

$ bzr whoami "Vasya Pupkin <vasya.pupkin@mail.ru>"

B 3TOT MOMeHT Bazaar co3gacT wivM ucrnpasuT paitsi HaCTPOEK,
BK/1H0YMB B HErO Ballle UMS U afipec 31EKTPOHHON NOYThI.

Tenepb, NpoBepLTE NPaBU/IBHO JIN COXPaHEeHbI Balln UMSA N agpec:

$ bzr whoami
Vasya Pupkin <vasya.pupkin@mail.ru>

HauynHaem KOHTPONMPOBaTb BEPCUM
dannos

[aBante co3gagMm Kataslol U HeCKoNbko doaiinoB Ans
NCMosb30BaHNA ¢ Bazaar:

$ mkdir myproject

$ cd myproject

$ mkdir subdirectory

$ touch testl.txt test2.txt test3.txt subdirectory/test4.txt

3ameuaHne pana nonb3oBateneit Windows: ucnonbayinte
Windows Explorer pnsa co3gaHusa BaluxX KatasloroB, 3aTeMm
HaXKMMamTe npaByl0 KHOMKY MbIWM B 3TUX KaTasorax v BblbupanTe
HoBblii ¢aiin, YTOObI CO34aTb Baln haiinsl.

Tenepb pagum Bazaar BO3MOXHOCTb WHULMaIM3NpOBaTb CBOU
OaHHblE B KaTaJsiore Ballero npoekra.

$ bzr init

Ecnn BCE BbLIMMAANUT Tak, Kak OyATO HUYErO HE Cy4YM/ioCb — He
BO/HYNTecb. Bazaar co3fas BETKY, B KOTOPO OH OydeT XpaHuTb
paboune aisibl 1 UICTOPUIO UX N3MEHEHWIA.

Cnepylowmii war — ckasaTb Bazaar kakue aiifibl Bbl XOTUTE
KOHTponupoBaTtb. KomaHaa bzr add PEKYpPCUBHO [06aBUT Bce

dhaiinbl B NpoeKT:

$ bzr add

added subdirectory

added testil.txt

added test2.txt

added test3.txt

added subdirectory/test4.txt

http://bazaar-vcs.org/Branch

[anee, HYXHO COXpPaHWTb TEKyLLEee COCTOsHMe Bawmnx daninos
3adukcMpoBaB UX B Baweil BeTke. [lobaBbTe COO06LLEHME
06bsACHSAOLLEee 3a4eM Bbl caenanun qukcaymio:

$ bzr commit -m "WUmnopTupyem dannb"

T.k. Bazaar aT0 pacnpegeneHHas cuctema KOHTPO/S BEPCUiA, 34eCb
HET Heo6XOAMMOCTU COEAMHATBLCA C LUEHTpaslbHbIM CEpPBEPOM ANs
BbINO/IHEHUS douKkcaunn. Bmecto atoro, Bazaar coxpaHsieT Bally
BETKy M Bce €€ dimkcauunm BHYTPM KaTasiora C KOTOPbIM Bbl
paboTaeTe; obpaTuTe BHMMaHME Ha nogkaranor .bzr.

BHOCKMM M3MeHeHUs1 B doaiisbl

[aBanite nN3MeHMM Kakon-nnéo chann un 3adukcmpyem 310
N3MEHEHNE B Ballell BETKE.

OTpenakTupyiTe testl.txt B CBOEM /IIOOMMOM pPeaaKkTope U 3aTem
MOCMOTPUTE Ha CAeMaHHble NU3MEHEHUS:

$ bzr diff

=== modified file 'testil.txt'

--- testl.txt 2007-10-08 17:56:14 +00060
+++ testl.txt 2007-10-08 17:46:22 +0000
@@ '910 +1/1 @@

+test test test

3adhmkempyiiTe Bawy paboTy B BeTke Bazaar:

$ bzr commit -m "Job6aBneHa nepsas cTpoka TekcTta"
Committed revision 2.

[IpocMaTpmBaem XypHasl U3MeHEHW

Bbl MOXeTe YBMAETb MCTOPMIO BallEel BETKM NMPOCMOTPEB €& XypHa:

revno: 2
committer: Vasya Pupkin <vasya.pupkin@mail.ru>
branch nick: myproject
timestamp: Mon 2007-10-08 17:56:14 +0000
message:

Job6aBneHa nepBas CTpOKa TeKCTa
revno: 1
committer: Vasya Pupkin <vasya.pupkin@mail.ru>
branch nick: myproject
timestamp: Mon 2006-10-08 17:46:22 +0000
message:

AmMnopTupyem odaiins

[Ty6nnkyem BeTky yepes SFTP

ECcTb Heckonibko cnocoboB onyo6nmkoBaTb Bally BeTKy. Ecam y Bac
yXe ectb SFTP cepBep WM BaM HEC/IOKHO €ro HacTpOuTb, Bbl
MOXeTe ony6/IMKoBaTb CBOKO BETKY Yepes Hero.

B npotnBHOM cnyvae, nepexogute K cnegyrowemy pasgeny, ytoobl
onyo6nukoBaTtb BeTKy Ha Launchpad — 6ecnnatHOM XOCTuHre Ans
Bazaar.

Flpe,qnonommm, UTO Bbl XOTUTE OI'Iy6]'II/IKOBaTb CBOKO BETKY Ha
www . example.com/myproject:

$ bzr push --create-prefix sftp://your.name@example.com/~/publi
2 revision(s) pushed.

i S o

Bazaar cosgact katanior myproject Ha YyAasiIeHHOM cepBepe WU
NMOMECTUT B HETO Ballly BETKY.

Tenepb OGO XenawLmii CMOXET c03[aTb CBOK COGCTBEHHYHO
KOMWIO BalLe BETKW, BbINOJTHMB:

$ bzr branch http://www.example.com/myproject

3ameuaHue: u4ToObl Mcnonb3oBatb SFTP, MOXeT noHagobutbecs
YCTaHOBUTb paramiko W pyCrypto. 3a nogpoOHOCTAMU obpallanTech

K http://bazaar-vcs.org/InstallationFag.

https://launchpad.net/
http://bazaar-vcs.org/InstallationFaq

[Ty6nukauus Betkm Ha Launchpad

Launchpad 310 Habop WHCTPYMEHTOB ANnA pas3paboTku wn
pasMelLeHnss NPOeKToB CBOOOAHOro MpPorpaMMHOro obecrnevyeHus.
Bbl MOXeTe UCnosb30oBaThb ero ans nyoavkauum cBoen BETKN.

Ecnu y Bac HeT yyeTHoM 3anucu Launchpad, cnegyite pykoBoacTBy
MO MOJIYYEHNIO YYETHOW 3anucu n 3apernctpupyinte SSH kw4 B
CBOEW HOBOW YY4ETHOI 3anucu.

3amMeHuMB vasya.pupkin Ha Bawe MMA nosib3oBaTensa Launchpad,
BbINOSTHUTE:

$ bzr push bzr+ssh://vasya.pupkin@bazaar.launchpad.net/~vasya.p

J SR o]

3ameuaHue: +junk O3Ha4yaeT 4YTO BETKA He CBA3aHa C KakMm-1mbo
NpoekTom Ha Launchpad.

Tenepb N060I XenawLnii CMOXET €03aTb CBOK COGCTBEHHYIO
KOMWIO BaLLIEi BETKM, BbINOHUB:

$ bzr branch http://bazaar.launchpad.net/~vasya.pupkin/+junk/my
A — ol

Bbl Takke cMoXeTe BUAETb MHGIOpMaLMIO MO Ballel BETKe, BK/IOUas
XypHan N3MEHEHWN, no agpecy
https://code.launchpad.net/people/+me/+junk/myproject

https://help.launchpad.net/CreatingYourLaunchpadAccount
https://launchpad.net/people/+me/+editsshkeys
https://code.launchpad.net/people/+me/+junk/myproject

Co3fgaem COOCTBEHHYO KOMUIO APYrow
BETKM

UTo6bl pabotaTtb C YbUM-IMOO KOOOM, Bbl MOXeETe co034aTb
COOCTBEHHYIO KOMUIO Yy)XXOi BETKU. [aBaiTe BO3bMEM peaslbHblii
npumep — GTK nHTepdgeiic ana Bazaar:

$ bzr branch http://bazaar.launchpad.net/~bzr/bzr-gtk/trunk bzr
Branched 292 revision(s).

i — o

Bazaar 3arpy3ut Bce haiifibl M NOMHbIA XypHan W3MEHEHUA U3
OCHOBHOW BeTkM npoekTa bzr-gtk n cosgact konuio ¢ nmeHem bzr-
gtk.vasya.

Tenepb y Bac ecTb COOCTBEHHaAsA KOMUSA BETKM U Bbl MOXeTe
domkcupoBaTb U3MEHEHUA U C CETEBbLIM MOAK/IIOYEHNEM 1N 6E3 Hero.
Bbl MOXeTe nogenntbCA CBOEW BETKOW B Noboe Bpems,
onybnukosaB BeTKy. W ecnm kKomaHga paspabortyumkoB bzr-gtk
3ax04yeT ucnosib3oBaTb Balwly paboty, Bazaar nerko nossBosiut UM
00beAHNTL Ballly BETKY 06paTHO B X OCHOBHYIO BETKY.

OG6GHOB/IAEM BETKY U3MEHEHUAMN U3
OCHOBHOW BEeTKU

Moka Bbl PUKCMpyeTe M3MEHEHWs B Balleill BeTKe, Apyrne nwogu,
CKOpee BCero, TaK Xe npoJo/mkawT dmkcupoBaTb Kog B
POANTE/IbCKON BETKE.

UToObl ObITb YBEPEHHbIM 4YTO Balla BETKA COAEPXMUT nocrenHue
N3MEHEHUsI, BaM c/lefyeT O0O0bEAUHUTb POAUTENBLCKYHD BETKY C
BaLlen NMNYHOMN:

$ bzr merge
Merging from saved parent location: http://bazaar.launchpad.net
All changes applied successfully.

J S o]

[MpoBepbTE UTO N3MEHMUSOCH!

$ bzr diff

Ecnun nameHeHuss Bac ycTpavBatoT, Bbl MOXeTe 3adhMkcnpoBaTb UX B
CcBoeil BeTke:

$ bzr commit -m "W3mMeHeHMA M3 OCHOBHOWN BEeTKU"
Committed revision 295.

O6beanHAEM CBON N3MEHEHUS C
POANTENLCKOWN BETKOW

Mocne TOro kak Bbl NopaboTanun B cBoei BeTke bzr-gtk, Bbl MoXeTe
3ax0TeTb OTNPaBUTb BalUM M3MEHEHUA A1 BK/IOYEHUS B MPOEKT.
MpocTerwnini cnocob 3akn4vaeTcsa B UCMNOMb30BaHUN AUPEKTUBbI
o6beanHeHuUS.

[vpekTMBa 06bLEAMHEHUSS — 3TO MalLMHOUYUTAEMbIi 3anpoc Ha
OCYLLECTB/IEHNE KOHKPETHOrO 06beAnHeHUsl. OObIYHO OH COAEPXUT
0630p W3MEHEeHWlA, KOTopble MAaHupyeTcss O06beAMHUTb. Takke
OMPEKTUBA 0ObEANHEHUS COAEPXUT NNO0 HEOBXOAMMblE PEBU3UM,
NGO YKa3bIBAET Ha BETKY [[1€ OHW MOTYT ObITb MOMYYEHSI.

3aMeHMB mycode. patch, cO34aliTe CBOK AMPEKTUBY 06bEeANHEHNS:

$ bzr send -o mycode.patch
Using saved parent location: http://bazaar.launchpad.net/~bzr/b

J S o]

Tenepb Bbl MOXeTe OTNPaBUTb OUPEKTUBY OObeAWHEHUA Mo
9N1eKTPOHHON no4Te B npoekT bzr-gtk. Ecnn paspabotunkn bzr-gtk
3aX0TAT, TO CMOryT WUCMNO/b30BaTh 3Ty AUPEKTUBY LOJ/1 BKHOYEHUS
BaLleil paboTbl B OCHOBHYH BETKY.

]
Y3HaTtb 60/bLle

Bonbwe wuHdopmaumm o0 Bazaar Bbl Hangete B PykoBoAcTBe
nosnb3oBartens Bazaar.

UTo6bI Y3HaTb 60/bLIE 0 Bazaar 13 KOMaHA0M CTPOKU:

$ bzr help

UToObI y3HaTb OCHOBHble KOMaHAbl Bazaar:

$ bzr help commands

YT06bI Y3HaTL O TEMe uan KomaHge “foo”

$ bzr help foo

. FnasHas | OokymeHTaums | CogepxaHue (2.2b1) » npeaplaywmnii | cnegyowimi

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/ru/
http://sphinx.pocoo.org/

	Содержание (2.2b1)
	1 Руководство пользователя Bazaar
	Карточка быстрого старта
	Bazaar за пять минут
	Учебник Bazaar
	1 Использование Bazaar с Launchpad
	1 Работа в централизованном стиле

