
	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Core	documentation

What's	 New	 in
Bazaar	 2.2?	 what's	 new	 in
this	release

User	Guide
how	to	use	the	command	line	client

Tutorials
brief	introductions

Quick	Reference
for	your	wall

Release	Notes
a	detailed	log	of	changes

Upgrade	Guide
moving	to	Bazaar	2.x

User	Reference
all	the	gory	details

System	Admin	Guide
security,	backups,	etc.

Related	links

Desktop	Guide
how	to	use	our	GUI	applications

FAQ
frequently	asked	questions

Glossary
help	with	terminology

Developer	Docs
improving	and	extending	bzr

Migration	Docs
for	refugees	of	other	tools

Plugins	Guide
help	on	popular	plugins

These	documents	are	also	available	in	Spanish,	Japanese,
and	Russian.

	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://doc.bazaar.canonical.com/explorer/en/guide/
https://answers.launchpad.net/bzr/+faqs
http://bazaar.canonical.com/BzrGlossary/
http://doc.bazaar.canonical.com/migration/en/
http://doc.bazaar.canonical.com/plugins/en/
http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

What’s	New	in	Bazaar	2.2?
This	 document	 outlines	 the	 major	 improvements	 in	 Bazaar	 2.2	 vs
Bazaar	2.1.	As	well	as	summarizing	improvements	made	to	the	core
product,	it	highlights	enhancements	within	the	broader	Bazaar	world
of	potential	interest	to	those	upgrading.

Warning: 	Bazaar	2.2.0	is	currently	in	development.	While	less
stable	than	Bazaar	2.1.x,	we	aim	to	keep	quality	at	a	high	level:

Monthly	beta	releases	should	be	suitable	for	early	adopters	of
new	features.
Nightly	builds	are	suitable	for	users	interested	in	assisting	with
testing.

If	it	doubt,	please	use	the	latest	2.1	release	instead.

Improved	conflict	handling
Tree-shape	conflicts	can	be	resolved	by	providing	--take-this	and	-
-take-other	to	the	bzr	resolve	command.	Just	marking	the	conflict
as	resolved	is	still	accessible	via	the	--done	default	action.

Improved	Launchpad	integration
Merges	can	be	proposed	on	Launchpad	with	 the	new	 lp-propose-
merge	command.

Notable	plugin	enhancements
The	grep	plugin	...

Better	documentation
Numerous	 improvements	 have	 been	 made	 to	 the	 developer
documentation.

Enhanced	GUI	clients
(Details	coming	soon.)

Further	information
For	 more	 detailed	 information	 on	 the	 changes	 made,	 be	 sure	 to
check	the	Bazaar	Release	Notes	for:

the	interim	bzr	milestones
the	plugins	you	use.

For	a	summary	of	changes	made	in	earlier	releases,	see:

What’s	New	in	Bazaar	2.1?

Enjoy,	The	Bazaar	Development	Team

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

https://launchpad.net/bzr/2.2
http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Introducing	Bazaar

What	is	Bazaar?
Bazaar	is	a	tool	for	helping	people	collaborate.	It	tracks	the	changes
that	you	and	other	people	make	to	a	group	of	files	-	such	as	software
source	code	-	to	give	you	snapshots	of	each	stage	of	their	evolution.
Using	that	information,	Bazaar	can	effortlessly	merge	your	work	with
other	people’s.

Tools	like	Bazaar	are	called	version	control	systems	(VCS)	and	have
long	been	popular	with	software	developers.	Bazaar’s	ease	of	use,
flexibility	 and	 simple	 setup	 make	 it	 ideal	 not	 only	 for	 software
developers	but	also	for	other	groups	who	work	together	on	files	and
documents,	such	as	technical	writers,	web	designers	and	translators.

This	 guide	 takes	 you	 through	 installing	 Bazaar	 and	 how	 to	 use	 it,
whether	on	your	own	or	with	a	team	of	other	people.	If	you’re	already
familiar	with	distributed	version	control	and	want	 to	dive	straight	 in,
you	 may	 wish	 to	 skim	 this	 section	 and	 jump	 straight	 to	 Learning
more.

A	brief	history	of	version	control	systems
Version	control	tools	have	been	evolving	for	several	decades	now.	In
simple	terms,	there	have	been	4	generations	of	tools:

1.	 file	versioning	tools,	e.g.	SCCS,	RCS
2.	 tree	versioning	tools	-	central	style,	e.g.	CVS
3.	 tree	 versioning	 tools	 -	 central	 style,	 take	 two,	 e.g.

Subversion
4.	 tree	versioning	tools	-	distributed	style,	e.g.	Bazaar.

The	 design	 and	 implementation	 of	 Bazaar	 builds	 on	 the	 lessons
learned	 from	 all	 the	 previous	 generations	 of	 tools.	 In	 particular,
Bazaar	cleanly	supports	both	the	central	and	the	distributed	version
control	 models	 so	 you	 can	 change	 models	 as	 it	 makes	 sense,
without	needing	to	change	tools.

Central	vs	distributed	VCS
Many	 traditional	VCS	 tools	 require	a	 central	 server	which	provides
the	 change	 history	 or	 repository	 for	 a	 tree	 of	 files.	 To	work	 on	 the
files,	users	need	to	connect	to	the	server	and	checkout	the	files.	This
gives	them	a	directory	or	working	tree	 in	which	a	person	can	make
changes.	To	record	or	commit	these	changes,	the	user	needs	access
to	the	central	server	and	they	need	to	ensure	they	have	merged	their
work	 with	 the	 latest	 version	 stored	 before	 trying	 to	 commit.	 This
approach	is	known	as	the	centralized	model.

The	centralized	model	has	proven	useful	over	 time	but	 it	 can	have
some	 notable	 drawbacks.	 Firstly,	 a	 centralized	 VCS	 requires	 that
one	 is	 able	 to	 connect	 to	 the	 server	 whenever	 one	 wants	 to	 do
version	control	work.	Secondly,	the	centralized	model	tightly	links	the
act	 of	 snapshotting	 changes	 with	 the	 act	 of	 publishing	 those
changes.	 This	 can	 be	 good	 in	 some	 circumstances	 but	 it	 has	 a
negative	influence	on	quality	in	others.

Distributed	VCS	tools	let	users	and	teams	have	multiple	repositories
rather	than	just	a	single	central	one.	In	Bazaar’s	case,	the	history	is
normally	 kept	 in	 the	 same	place	 as	 the	 code	 that	 is	 being	 version
controlled.	This	allows	the	user	to	commit	their	changes	whenever	it
makes	 sense,	 even	 when	 offline.	 Network	 access	 is	 only	 required
when	 publishing	 changes	 or	 when	 accessing	 changes	 in	 another
location.

In	fact,	using	distributed	VCS	tools	wisely	can	have	advantages	well
beyond	the	obvious	one	of	disconnected	operations	for	developers.
Other	advantages	include:

easier	for	developers	to	create	experimental	branches
easier	ad-hoc	collaboration	with	peers
less	 time	 required	 on	 mechanical	 tasks	 -	 more	 time	 for

creativity
increased	release	management	flexibility	through	the	use	of
“feature-wide”	commits
trunk	 quality	 and	 stability	 can	 be	 kept	 higher,	 making
everyone’s	job	less	stressful
in	open	source	communities:

easier	 for	non-core	developers	 to	create	and	maintain
changes
easier	 for	 core	 developers	 to	 work	 with	 non-core
developers	and	move	them	into	the	core

in	 companies,	 easier	 to	 work	 with	 distributed	 and
outsourced	teams.

For	a	detailed	 look	at	 the	advantages	of	distributed	VCS	tools	over
centralized	VCS	tools,	see	http://bazaar-vcs.org/BzrWhy.

http://bazaar-vcs.org/BzrWhy

Key	features	of	Bazaar
While	 Bazaar	 is	 not	 the	 only	 distributed	 VCS	 tool	 around,	 it	 does
have	 some	 notable	 features	 that	 make	 it	 an	 excellent	 choice	 for
many	 teams	 and	 communities.	 A	 summary	 of	 these	 and
comparisons	with	other	VCS	tools	can	be	found	on	the	Bazaar	Wiki,
http://bazaar-vcs.org.

Of	the	many	features,	one	in	particular	is	worth	highlighting:	Bazaar
is	completely	free	software	written	in	Python.	As	a	result,	it	is	easy	to
contribute	 improvements.	 If	 you	 wish	 to	 get	 involved,	 please	 see
http://bazaar-vcs.org/BzrSupport.

http://bazaar-vcs.org
http://bazaar-vcs.org/BzrSupport

Learning	more
This	 manual	 provides	 an	 easy	 to	 read	 introduction	 to	 Bazaar	 and
how	 to	 use	 it	 effectively.	 It	 is	 recommended	 that	 all	 users	 read	 at
least	the	rest	of	this	chapter	as	it:

explains	the	core	concepts	users	need	to	know
introduces	 some	 popular	 ways	 of	 using	 Bazaar	 to
collaborate.

Chapters	2-6	provide	a	closer	look	at	how	to	use	Bazaar	to	complete
various	tasks.	It	is	recommended	that	most	users	read	these	in	first-
to-last	 order	 shortly	 after	 starting	 to	 use	 Bazaar.	 Chapter	 7	 and
beyond	provide	additional	information	that	helps	you	make	the	most
of	 Bazaar	 once	 the	 core	 functionality	 is	 understood.	 This	 material
can	be	read	when	required	and	in	any	order.

If	you	are	already	 familiar	with	other	version	control	 tools,	you	may
wish	to	get	started	quickly	by	reading	the	following	documents:

Bazaar	in	five	minutes	-	a	mini-tutorial
Bazaar	 Quick	 Start	 Card	 -	 a	 one	 page	 summary	 of
commonly	used	commands.

In	addition,	 the	online	help	and	Bazaar	User	Reference	provide	all
the	details	on	the	commands	and	options	available.

We	 hope	 you	 find	 this	manual	 useful.	 If	 you	 have	 suggestions	 on
how	 it	 or	 the	 rest	 of	 Bazaar’s	 documentation	 can	 be	 improved,
please	contact	us	on	the	mailing	list,	bazaar@lists.canonical.com.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

mailto:bazaar%40lists.canonical.com
http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Core	concepts

A	simple	user	model
To	use	Bazaar	you	need	to	understand	four	core	concepts:

Revision	-	a	snapshot	of	the	files	you’re	working	with.
Working	tree	 -	 the	directory	containing	your	version-controlled
files	and	sub-directories.
Branch	-	an	ordered	set	of	revisions	that	describe	the	history	of
a	set	of	files.
Repository	-	a	store	of	revisions.

Let’s	look	at	each	in	more	detail.

Revision
A	revision	is	a	snapshot	of	the	state	of	a	tree	of	files	and	directories,
including	 their	 content	 and	 shape.	 A	 revision	 also	 has	 some
metadata	associated	with	it,	including:

Who	committed	it
When	it	was	committed
A	commit	message
Parent	revisions	from	which	it	was	derived

Revisions	are	immutable	and	can	be	globally,	uniquely	identified	by	a
revision-id.	An	example	revision-id	is:

pqm@pqm.ubuntu.com-20071129184101-u9506rihe4zbzyyz

Revision-ids	are	generated	at	commit	time	or,	for	imports	from	other
systems,	at	 the	 time	of	 import.	While	 revision-ids	are	necessary	 for
internal	 use	 and	 external	 tool	 integration,	 branch-specific	 revision
numbers	are	the	preferred	interface	for	humans.

Revision	 numbers	 are	 dotted	 decimal	 identifiers	 like	 1,	 42	 and
2977.1.59	that	trace	a	path	through	the	revision	number	graph	for	a
branch.	 Revision	 numbers	 are	 generally	 shorter	 than	 revision-ids
and,	within	a	single	branch,	can	be	compared	with	each	other	to	get
a	sense	of	their	relationship.	For	example,	revision	10	is	the	mainline
(see	below)	revision	immediately	after	revision	9.	Revision	numbers
are	 generated	 on	 the	 fly	 when	 commands	 are	 executing,	 because
they	depend	on	which	revision	is	the	tip	(i.e.	most	recent	revision)	in
the	branch.

See	Specifying	revisions	 in	 the	appendices	 for	a	 closer	 look	at	 the
numerous	 ways	 that	 revisions	 and	 ranges	 of	 revisions	 can	 be
specified	 in	 Bazaar,	 and	 Understanding	 Revision	 Numbers	 for	 a

more	detailed	description	of	revision	numbering.

Working	Tree
A	working	tree	is	a	version-controlled	directory	holding	files	the	user
can	edit.	A	working	tree	is	associated	with	a	branch.

Many	commands	use	 the	working	 tree	as	 their	context,	e.g.	 commit
makes	a	new	revision	using	the	current	content	of	files	in	the	working
tree.

Branch
In	the	simplest	case,	a	branch	is	an	ordered	series	of	revisions.	The
last	revision	is	known	as	the	tip.

Branches	may	 split	 apart	 and	 be	merged	 back	 together,	 forming	 a
graph	 of	 revisions.	 Technically,	 the	 graph	 shows	 directed
relationships	(between	parent	and	child	 revisions)	and	 there	are	no
loops,	so	you	may	hear	some	people	refer	to	it	as	a	directed	acyclic
graph	or	DAG.

If	 this	 name	 sounds	 scary,	 don’t	 worry.	 The	 important	 things	 to
remember	are:

The	 primary	 line	 of	 development	 within	 the	 DAG	 is	 called	 the
mainline,	trunk,	or	simply	the	left	hand	side	(LHS).
A	branch	might	have	other	 lines	of	development	and	 if	 it	does,
these	other	lines	of	development	begin	at	some	point	and	end	at
another	point.

Repository
A	repository	is	simply	a	store	of	revisions.	In	the	simplest	case,	each
branch	 has	 its	 own	 repository.	 In	 other	 cases,	 it	 makes	 sense	 for
branches	to	share	a	repository	in	order	to	optimize	disk	usage.

Putting	the	concepts	together
Once	 you	 have	 grasped	 the	 concepts	 above,	 the	 various	 ways	 of
using	 Bazaar	 should	 become	 easier	 to	 understand.	 The	 simplest
way	 of	 using	 Bazaar	 is	 to	 use	 a	 standalone	 tree,	 which	 has	 a
working	 tree,	 branch,	 and	 repository	 all	 in	 a	 single	 location.	 Other
common	scenarios	include:

Shared	repositories	-	working	tree	and	branch	are	colocated,	but
the	repository	is	in	a	higher	level	directory.
Stacked	branches	-	branch	stores	just	its	unique	revisions,	using
its	parent’s	repository	for	common	revisions.
Lightweight	checkouts	-	branch	is	stored	in	a	different	location	to
the	working	tree.

The	best	way	to	use	Bazaar,	however,	depends	on	your	needs.	Let’s
take	a	look	at	some	common	workflows	next.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Workflows

Bazaar	is	just	a	tool
Bazaar	 supports	 many	 different	 ways	 of	 working	 together.	 This
means	that	you	can	start	with	one	workflow	and	adapt	it	over	time	as
circumstances	 change.	 There	 is	 no	 “one	 true	 way”	 that	 always
makes	sense	and	 there	never	will	be.	This	section	provides	a	brief
overview	of	some	popular	workflows	supported	by	Bazaar.

Keep	 in	mind	 that	 these	workflow	 are	 just	 some	 examples	 of	 how
Bazaar	 can	 be	 used.	 You	 may	 want	 to	 use	 a	 workflow	 not	 listed
here,	perhaps	building	on	the	ideas	below.

Solo
Whether	 developing	 software,	 editing	 documents	 or	 changing
configuration	files,	having	an	easy-to-use	VCS	tool	can	help.	A	single
user	 can	use	 this	workflow	effectively	 for	managing	projects	where
they	are	the	only	contributor.

Advantages	 of	 this	 workflow	 over	 not	 using	 version	 control	 at	 all
include:

backup	of	old	versions
rollback	to	an	earlier	state
tracking	of	history.

The	 key	 features	 of	 Bazaar	 appropriate	 for	 this	 workflow	 are	 low
administration	(no	server	setup)	and	ease	of	use.

Partner
Sometimes	 two	 people	 need	 to	 work	 together	 sharing	 changes	 as
they	go.	This	commonly	starts	off	as	a	Solo	workflow	(see	above)	or
a	 team-oriented	 workflow	 (see	 below).	 At	 some	 point,	 the	 second
person	 takes	 a	 branch	 (copy	 including	 history)	 of	 what	 the	 first
person	 has	 done.	 They	 can	 then	 work	 in	 parallel	 exchanging
changes	by	merging	when	appropriate.

Advantages	over	Solo	are:

easier	sharing	of	changes
each	 line	of	each	 text	 file	 can	be	attributed	 to	a	particular
change	including	who	changed	it,	when	and	why.

When	 implementing	 this	 workflow,	 Bazaar’s	 advantages	 over	 CVS
and	Subversion	include:

no	server	to	setup

intelligent	 merging	 means	 merging	 multiple	 times	 isn’t
painful.

Centralized
Also	known	as	lock-step,	this	is	essentially	the	same	as	the	workflow
encouraged/enforced	by	CVS	and	Subversion.	All	 developers	work
on	the	same	branch	(or	branches).	They	run	bzr	update	to	get	their
checkout	up-to-date,	then	bzr	commit	to	publish	their	changes	to	the
central	location.

Subversion	 and	 CVS	 are	 good	 choices	 for	 implementing	 this
workflow	because	 they	make	 it	easy.	Bazaar	directly	supports	 it	as
well	 while	 providing	 some	 important	 advantages	 over	 CVS	 and
Subversion:

better	branching	and	merging
better	renaming	support.

Centralized	with	local	commits
This	 is	 essentially	 the	 same	as	 the	Centralized	model,	 except	 that
when	developers	are	making	a	series	of	changes,	they	do	commit	--
local	 or	 unbind	 their	 checkout.	 When	 it	 is	 complete,	 they	 commit
their	work	to	the	shared	mainline.

Advantages	over	Centralized:

Can	work	offline,	e.g.	when	disconnected	during	travel
Less	 chance	 for	 a	 bad	 commit	 to	 interfere	 with	 everyone
else’s	work

Subversion	 and	 CVS	 do	 not	 support	 this	 model.	 Other	 distributed
VCS	tools	can	support	it	but	do	so	less	directly	than	Bazaar	does.

Decentralized	with	shared	mainline
In	 this	workflow,	each	developer	has	their	own	branch	or	branches,
plus	 commit	 rights	 to	 the	main	 branch.	 They	 do	 their	work	 in	 their
personal	branch,	then	merge	it	into	the	mainline	when	it	is	ready.

Advantage	over	Centralized	with	local	commits:

Easier	 organization	 of	 work	 -	 separate	 changes	 can	 be
developed	in	their	own	branches
Developers	 can	 merge	 one	 another’s	 personal	 branches
when	working	on	something	together.

Subversion	 and	 CVS	 do	 not	 support	 this	 model.	 Other	 distributed
VCS	 tools	 support	 it.	 Many	 features	 of	 Bazaar	 are	 good	 for	 this
workflow	 including	 ease	 of	 use,	 shared	 repositories,	 integrated
merging	and	rich	metadata	(including	directory	rename	tracking).

Decentralized	with	human	gatekeeper
In	 this	workflow,	each	developer	has	their	own	branch	or	branches,
plus	 read-only	 access	 to	 the	 main	 branch.	 One	 developer	 (the
gatekeeper)	 has	 commit	 rights	 to	 the	 main	 branch.	 When	 a
developer	 wants	 their	 work	 merged,	 they	 ask	 the	 gatekeeper	 to
merge	 it.	 The	gatekeeper	 does	 code	 review,	 and	merges	 the	work
into	the	main	branch	if	it	meets	the	necessary	standards.

Advantage	over	Decentralized	with	shared	mainline:

Code	is	always	reviewed	before	it	enters	the	mainline
Tighter	control	over	when	changes	get	incorporated	into	the
mainline.

A	 companion	 tool	 of	 Bazaar’s	 called	 Bundle	 Buggy	 can	 be	 very
useful	 for	 tracking	what	changes	are	up	for	review,	 their	status	and
reviewer	comments.

Decentralized	with	automatic	gatekeeper
In	 this	workflow,	each	developer	has	their	own	branch	or	branches,
plus	 read-only	 access	 to	 the	mainline.	 A	 software	 gatekeeper	 has
commit	 rights	 to	 the	 main	 branch.	 When	 a	 developer	 wants	 their
work	merged,	they	request	another	person	to	review	it.	Once	it	has
passed	 review,	 either	 the	 original	 author	 or	 the	 reviewer	 asks	 the
gatekeeper	 software	 to	merge	 it,	 depending	 on	 team	 policies.	 The
gatekeeper	 software	 does	 a	 merge,	 a	 compile,	 and	 runs	 the	 test
suite.	If	and	only	if	the	code	passes,	it	is	merged	into	the	mainline.

Note:	 As	 an	 alternative,	 the	 review	 step	 can	 be	 skipped	 and	 the
author	can	submit	the	change	to	the	automatic	gatekeeper	without	it.
(This	 is	 particularly	 appropriate	when	 using	 practices	 such	 as	 Pair
Programming	that	effectively	promote	just-in-time	reviews	instead	of
reviewing	code	as	a	separate	step.)

Advantages	over	Decentralized	with	human	gatekeeper:

Code	is	always	tested	before	it	enters	the	mainline	(so	the
integrity	of	the	mainline	is	higher)
Scales	better	as	teams	grow.

A	companion	 tool	of	Bazaar’s	called	Patch	Queue	Manager	 (PQM)
can	provide	the	automated	gatekeeper	capability.

Implementing	a	workflow
For	 an	 in-depth	 look	 at	 how	 to	 implement	 each	 of	 the	 workflows
above,	 see	 chapters	 3	 to	 6	 in	 this	manual.	 First	 though,	 chapter	 2
explains	some	important	pre-requisites	including	installation,	general
usage	instructions	and	configuration	tips.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Installing	Bazaar

Linux
Bazaar	packages	are	available	 for	most	popular	Linux	distributions
including	 Ubuntu/Debian,	 Red	 Hat	 and	 Gentoo.	 See	 http://bazaar-
vcs.org/Download	for	the	latest	instructions.

http://bazaar-vcs.org/Download

Windows
For	Windows	 users,	 an	 installer	 is	 available	 that	 includes	 the	 core
Bazaar	 package	 together	 with	 necessary	 pre-requisites	 and	 some
useful	 plug-ins.	 See	 http://bazaar-vcs.org/Download	 for	 the	 latest
instructions.

Note:	 If	you	are	 running	Cygwin	on	Windows,	a	Bazaar	 for	Cygwin
package	 is	available	and	ought	 to	be	used	 instead	of	 the	Windows
version.

http://bazaar-vcs.org/Download

Other	operating	systems
Beyond	 Linux	 and	Windows,	 Bazaar	 packages	 are	 available	 for	 a
large	range	of	other	operating	systems	include	Mac	OS	X,	FreeBSD
and	 Solaris.	 See	 http://bazaar-vcs.org/Download	 for	 the	 latest
instructions.

http://bazaar-vcs.org/Download

Installing	from	scratch
If	you	wish	to	install	Bazaar	from	scratch	rather	than	using	a	pre-built
package,	the	steps	are:

1.	 If	it	is	not	installed	already,	install	Python	2.4	or	later.
2.	 Download	 the	 bazaar-xxx.tar.gz	 file	 (where	 xxx	 is	 the

version	 number)	 from	 http://bazaar-vcs.org/Download	 or
from	Launchpad	(https://launchpad.net/~bzr/).

3.	 Unpack	the	archive	using	tar,	WinZip	or	equivalent.
4.	 Put	the	created	directory	on	your	PATH.

To	test	the	installation,	try	running	the	bzr	command	like	this:

bzr	version

This	 will	 display	 the	 version	 of	 Bazaar	 you	 have	 installed.	 If	 this
doesn’t	work,	please	contact	us	via	email	or	IRC	so	we	can	help	you
get	things	working.

Installing	into	site-wide	locations

Instead	of	adding	the	directory	to	your	PATH,	you	can	install	bzr	into
the	system	locations	using:

python	setup.py	install

If	 you	 do	 not	 have	 a	 compiler,	 or	 do	 not	 have	 the	 python
development	 tools	 installed,	 bzr	 supplies	 a	 (slower)	 pure-python
implementation	 of	 all	 extensions.	 You	 can	 install	 without	 compiling
extensions	with:

python	setup.py	install	build_ext	--allow-python-fallback

http://bazaar-vcs.org/Download
https://launchpad.net/~bzr/

Running	the	development	version
You	 may	 wish	 to	 always	 be	 using	 the	 very	 latest	 development
version	of	Bazaar.	Note	that	this	is	not	recommended	for	the	majority
of	users	as	there	is	an	increased	risk	of	bugs.	On	the	other	hand,	the
development	version	is	remarkably	solid	(thanks	to	the	processes	we
follow)	and	running	it	makes	it	easier	for	you	to	send	us	changes	for
bugs	 and	 improvements.	 It	 also	 helps	 us	 by	 having	 more	 people
testing	the	latest	software.

Here	are	the	steps	to	follow:

1.	 Install	Bazaar	using	one	of	the	methods	given	above.

2.	 Get	a	copy	of	the	development	version	like	this:

bzr	branch	lp:bzr

3.	 Put	the	created	directory	on	your	PATH.

Advanced	users	may	also	wish	to	build	the	optional	C	extensions	for
greater	speed.	This	can	be	done	using	make	and	requires	pyrex	and
a	 C	 compiler.	 Please	 contact	 us	 on	 email	 or	 IRC	 if	 you	 need
assistance	with	this.

Running	multiple	versions
It’s	easy	to	have	multiple	versions	of	Bazaar	installed	and	to	switch
between	 them.	 To	 do	 this,	 simply	 provide	 the	 full	 pathname	 to	 the
bzr	 command	 you	 wish	 to	 run.	 The	 relevant	 libraries	 will	 be
automatically	detected	and	used.	Of	course,	if	you	do	not	provide	a
pathname,	then	the	bzr	used	will	be	 the	one	found	on	your	system
path	as	normal.

Note	 that	 this	 capability	 is	 particularly	 useful	 if	 you	wish	 to	 run	 (or
test)	 both	 the	 latest	 released	 version	and	 the	development	 version
say.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Entering	commands

User	interfaces
There	are	numerous	user	 interfaces	available	 for	Bazaar.	The	core
package	provides	a	command	line	tool	called	bzr	and	graphical	user
interfaces	(GUIs)	are	available	as	plug-ins.

Using	bzr
The	syntax	is:

bzr	[global-options]	command	[options	and	arguments]

Global	 options	 affect	 how	 Bazaar	 operates	 and	 can	 appear	 either
before	or	after	command.	Command	specific	options	must	appear	after
the	 command	 but	 may	 be	 given	 either	 before,	 during	 or	 after	 any
command-specific	arguments.

Common	options
Some	options	are	legal	for	all	commands	as	shown	below.

Short	form Long	form Description
-h –help get	help
-v –verbose be	more	verbose
-q –quiet be	more	quiet

Quiet	mode	implies	that	only	errors	and	warnings	are	displayed.	This
can	be	useful	in	scripts.

Note:	Most	 commands	 typically	 only	 support	 one	 level	 of	 verbosity
though	 that	may	 change	 in	 the	 future.	 To	 ask	 for	 a	 higher	 level	 of
verbosity,	simply	specify	the	-v	option	multiple	times.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Getting	help
Bazaar	comes	with	a	built-in	on-line	help	system,	accessed	through:

bzr	help

You	can	ask	for	help	on	a	command,	or	on	non-command	topics.	To
see	a	list	of	available	help	of	each	kind,	use	either:

bzr	help	commands

bzr	help	topics

For	help	on	a	particular	command,	use	either	of	these	forms:

bzr	help	status

bzr	status	--help

If	 you	wish	 to	search	 the	help	or	 read	 it	as	a	 larger	document,	 the
information	is	also	available	in	the	Bazaar	User	Reference.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Configuring	Bazaar

Telling	Bazaar	about	yourself
One	 function	 of	 a	 version	 control	 system	 is	 to	 keep	 track	 of	 who
changed	what.	In	a	decentralized	system,	that	requires	an	identifier
for	 each	 author	 that	 is	 globally	 unique.	 Most	 people	 already	 have
one	 of	 these:	 an	 email	 address.	 Bazaar	 is	 smart	 enough	 to
automatically	 generate	 an	 email	 address	 by	 looking	 up	 your
username	 and	 hostname.	 If	 you	 don’t	 like	 the	 guess	 that	 Bazaar
makes,	then	use	the	whoami	command	to	set	the	identifier	you	want:

%	bzr	whoami	"Your	Name	<email@example.com>"

If	whoami	is	used	without	an	argument,	the	current	value	is	displayed.

Configuration	files
Configuration	 files	 are	 located	 in	 $HOME/.bazaar	 on	 Linux/Unix	 and
C:\Documents	 and	 Settings\<username>\Application

Data\Bazaar\2.0	on	Windows.	There	are	three	primary	configuration
files	in	this	location:

bazaar.conf	describes	default	configuration	options,
locations.conf	 describes	 configuration	 information	 for	 specific
branch	locations,
authentication.conf	describes	credential	information	for	remote
servers.

Each	 branch	 can	 also	 contain	 a	 configuration	 file	 that	 sets	 values
specific	to	that	branch.	This	file	is	found	at	.bzr/branch/branch.conf
within	the	branch.	This	file	is	visible	to	all	users	of	a	branch.	If	you
wish	to	override	one	of	the	values	for	a	branch	with	a	setting	that	is
specific	to	you,	then	you	can	do	so	in	locations.conf.

Here	is	sample	content	of	bazaar.conf	after	setting	an	email	address
using	the	whoami	command:

[DEFAULT]

email	=	Your	Name	<email@example.com>

For	 further	 details	 on	 the	 syntax	 and	 configuration	 settings
supported,	see	Configuration	Settings	in	the	Bazaar	User	Reference.

Rule-based	preferences
Some	 commands	 and	 plugins	 provide	 custom	 processing	 on	 files
matching	 certain	 patterns.	 Per-user	 rule-based	 preferences	 are
defined	in	BZR_HOME/rules.

For	 further	 information	on	how	rules	are	searched	and	 the	detailed
syntax	of	the	relevant	files,	see	Rules	in	the	Bazaar	User	Reference.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Using	aliases

What	are	aliases?
Aliases	 are	 an	 easy	 way	 to	 create	 shortcuts	 for	 commonly-typed
commands,	or	to	set	defaults	for	commands.

Defining	aliases
Command	aliases	 can	be	defined	 in	 the	 [ALIASES]	 section	 of	 your
bazaar.conf	 file.	 Aliases	 start	 with	 the	 alias	 name,	 then	 an	 equal
sign,	 then	 a	 command	 fragment.	 Here’s	 an	 example	 ALIASES
section:

[ALIASES]

recentlog=log	-r-3..-1

ll=log	--line	-r-10..-1

commit=commit	--strict

diff=diff	--diff-options	-p

Here	are	the	explanations	of	the	examples	above:

The	 first	 alias	 makes	 a	 new	 recentlog	 command	 that
shows	the	logs	for	the	last	three	revisions
The	ll	alias	shows	the	last	10	log	entries	in	line	format.
the	 commit	 alias	 sets	 the	 default	 for	 commit	 to	 refuse	 to
commit	if	new	files	in	the	tree	are	not	recognized.
the	diff	alias	adds	the	coveted	-p	option	to	diff

Using	the	aliases
The	aliases	defined	above	would	be	used	like	so:

%	bzr	recentlog

%	bzr	ll

%	bzr	commit

%	bzr	diff

Rules	for	aliases
You	can	override	a	portion	of	 the	options	given	 in	an	alias
by	 specifying	 the	 new	 part	 on	 the	 command-line.	 For
example,	 if	 you	 run	 lastlog	 -r-5..,	 you	will	 only	 get	 five
line-based	 log	entries	 instead	of	 10.	Note	 that	all	 boolean
options	 have	 an	 implicit	 inverse,	 so	 you	 can	 override	 the
commit	alias	with	commit	--no-strict.
Aliases	 can	 override	 the	 standard	 behaviour	 of	 existing
commands	by	giving	an	alias	name	that	is	the	same	as	the
original	command.	For	example,	default	commit	is	changed
with	commit=commit	--strict.
Aliases	cannot	refer	to	other	aliases.	In	other	words	making
a	 lastlog	 alias	 and	 referring	 to	 it	 with	 a	 ll	 alias	 will	 not
work.	 This	 includes	 aliases	 that	 override	 standard
commands.
Giving	the	--no-aliases	option	to	the	bzr	command	will	tell
it	to	ignore	aliases	for	that	run.	For	example,	running	bzr	--
no-aliases	commit	will	perform	a	standard	commit	 instead,
not	do	a	commit	--strict.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Using	plugins

What	is	a	plugin?
A	plugin	 is	an	external	component	 for	Bazaar	that	 is	 typically	made
by	third	parties.	A	plugin	is	capable	of	augmenting	Bazaar	by	adding
new	functionality.	A	plugin	can	also	change	current	Bazaar	behavior
by	replacing	current	functionality.	Sample	applications	of	plugins	are:

overriding	commands
adding	new	commands
providing	additional	network	transports
customizing	log	output.

The	sky	 is	 the	 limit	 for	 the	customization	 that	can	be	done	 through
plugins.	 In	 fact,	 plugins	often	work	as	a	way	 for	developers	 to	 test
new	 features	 for	 Bazaar	 prior	 to	 inclusion	 in	 the	 official	 codebase.
Plugins	are	helpful	at	feature	retirement	time	as	well,	e.g.	deprecated
file	formats	may	one	day	be	removed	from	the	Bazaar	core	and	be
made	available	as	a	plugin	instead.

Plugins	are	good	 for	users,	good	 for	external	developers	and	good
for	Bazaar	itself.

Where	to	find	plugins
We	 keep	 our	 list	 of	 plugins	 on	 the	 http://bazaar-vcs.org/BzrPlugins
page.

http://bazaar-vcs.org/BzrPlugins

How	to	install	a	plugin
Installing	 a	 plugin	 is	 very	 easy!	 If	 not	 already	 created,	 create	 a
plugins	 directory	 under	 your	 Bazaar	 configuration	 directory,
~/.bazaar/	 on	 Linux	 and	 C:\Documents	 and	 Settings\

<username>\Application	 Data\Bazaar\2.0\	 on	Windows.	Within	 this
directory	(referred	to	as	$BZR_HOME	below),	each	plugin	is	placed
in	its	own	subdirectory.

Plugins	work	particularly	well	with	Bazaar	branches.	For	example,	to
install	the	bzrtools	plugins	for	your	main	user	account	on	Linux,	one
can	perform	the	following:

bzr	branch	http://panoramicfeedback.com/opensource/bzr/bzrtools

~/.bazaar/plugins/bzrtools

When	installing	plugins,	the	directories	that	you	install	them	in	must
be	 valid	 python	 identifiers.	 This	 means	 that	 they	 can	 only	 contain
certain	characters,	notably	they	cannot	contain	hyphens	(-).	Rather
than	 installing	 bzr-gtk	 to	 $BZR_HOME/plugins/bzr-gtk,	 install	 it	 to
$BZR_HOME/plugins/gtk.

Alternative	plugin	locations
If	you	have	the	necessary	permissions,	plugins	can	also	be	installed
on	a	system-wide	basis.	One	can	additionally	override	the	personal
plugins	location	by	setting	the	environment	variable	BZR_PLUGIN_PATH
(see	User	Reference	for	a	detailed	explanation).

Listing	the	installed	plugins
To	do	this,	use	the	plugins	command	like	this:

bzr	plugins

The	 name,	 location	 and	 version	 of	 each	 plugin	 installed	 will	 be
displayed.

New	commands	added	by	plugins	can	be	seen	by	running	bzr	help
commands.	The	commands	provided	by	a	plugin	are	shown	 followed
by	the	name	of	the	plugin	in	brackets.

Popular	plugins
Here	is	a	sample	of	some	of	the	more	popular	plugins.

Category Name Description
GUI QBzr Qt-based	GUI	tools
GUI bzr-gtk GTK-based	GUI	tools
GUI bzr-eclipse Eclipse	integration

General bzrtools misc.	enhancements	including
shelf

General difftools external	diff	tool	helper
General extmerge external	merge	tool	helper
Integration bzr-svn use	Subversion	as	a	repository
Migration cvsps migrate	CVS	patch-sets

If	 you	 wish	 to	 write	 your	 own	 plugins,	 it	 is	 not	 difficult	 to	 do.	 See
Writing	a	plugin	in	the	appendices	to	get	started.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Bazaar	Zen

Grokking	Bazaar
While	Bazaar	 is	similar	 to	other	VCS	tools	 in	many	ways,	there	are
some	 important	differences	 that	are	not	necessarily	obvious	at	 first
glance.	 This	 section	 attempts	 to	 explain	 some	 of	 the	 things	 users
need	to	know	in	order	to	“grok”	Bazaar,	i.e.	to	deeply	understand	it.

Note:	It	isn’t	necessary	to	fully	understand	this	section	to	use	Bazaar.
You	may	wish	to	skim	this	section	now	and	come	back	to	it	at	a	later
time.

Understanding	revision	numbers
All	 revisions	 in	 the	mainline	 of	 a	 branch	 have	 a	 simple	 increasing
integer.	(First	commit	gets	1,	10th	commit	gets	10,	etc.)	This	makes
them	 fairly	 natural	 to	 use	 when	 you	 want	 to	 say	 “grab	 the	 10th
revision	from	my	branch”,	or	“fixed	in	revision	3050”.

For	 revisions	 which	 have	 been	 merged	 into	 a	 branch,	 a	 dotted
notation	is	used	(e.g.,	3112.1.5).	Dotted	revision	numbers	have	three
numbers	 [1].	 The	 first	 number	 indicates	 what	 mainline	 revision
change	 is	derived	 from.	The	second	number	 is	 the	branch	counter.
There	 can	 be	 many	 branches	 derived	 from	 the	 same	 revision,	 so
they	 all	 get	 a	 unique	 number.	 The	 third	 number	 is	 the	 number	 of
revisions	since	the	branch	started.	For	example,	3112.1.5	is	the	first
branch	from	revision	3112,	the	fifth	revision	on	that	branch.

[1]
Versions	prior	to	bzr	1.2	used	a	slightly	different	algorithm.
Some	nested	branches	would	get	extra	numbers	(such	as
1.1.1.1.1)	rather	than	the	simpler	3-number	system.

Hierarchical	history	is	good
Imagine	 a	 project	 with	 multiple	 developers	 contributing	 changes
where	 many	 changes	 consist	 of	 a	 series	 of	 commits.	 To	 give	 a
concrete	example,	consider	the	case	where:

The	tip	of	the	project’s	trunk	is	revision	100.
Mary	makes	3	changes	to	deliver	feature	X.
Bill	makes	4	changes	to	deliver	feature	Y.

If	 the	 developers	 are	 working	 in	 parallel	 and	 using	 a	 traditional
centralized	 VCS	 approach,	 the	 project	 history	 will	 most	 likely	 be
linear	with	Mary’s	 changes	 and	Bill’s	 changes	 interleaved.	 It	might
look	like	this:

107:	Add	documentation	for	Y

106:	Fix	bug	found	in	testing	Y

105:	Fix	bug	found	in	testing	X

104:	Add	code	for	Y

103:	Add	documentation	for	X

102:	Add	code	and	tests	for	X

101:	Add	tests	for	Y

100:	...

Many	teams	use	this	approach	because	their	tools	make	branching
and	 merging	 difficult.	 As	 a	 consequence,	 developers	 update	 from
and	 commit	 to	 the	 trunk	 frequently,	 minimizing	 integration	 pain	 by
spreading	 it	 over	 every	 commit.	 If	 you	 wish,	 you	 can	 use	 Bazaar
exactly	like	this.	Bazaar	does	offer	other	ways	though	that	you	ought
to	consider.

An	alternative	 approach	encouraged	by	 distributed	VCS	 tools	 is	 to
create	feature	branches	and	to	integrate	those	when	they	are	ready.
In	this	case,	Mary’s	feature	branch	would	look	like	this:

103:	Fix	bug	found	in	testing	X

102:	Add	documentation	for	X

101:	Add	code	and	tests	for	X

100:	...

And	Bill’s	would	look	like	this:

104:	Add	documentation	for	Y

103:	Fix	bug	found	in	testing	Y

102:	Add	code	for	Y

101:	Add	tests	for	Y

100:	...

If	 the	 features	 were	 independent	 and	 you	 wanted	 to	 keep	 linear
history,	the	changes	could	be	pushed	back	into	the	trunk	in	batches.
(Technically,	 there	are	several	ways	of	doing	 that	but	 that’s	beyond
the	 scope	 of	 this	 discussion.)	 The	 resulting	 history	might	 look	 like
this:

107:	Fix	bug	found	in	testing	X

106:	Add	documentation	for	X

105:	Add	code	and	tests	for	X

104:	Add	documentation	for	Y

103:	Fix	bug	found	in	testing	Y

102:	Add	code	for	Y

101:	Add	tests	for	Y

100:	...

While	this	takes	a	bit	more	effort	to	achieve,	it	has	some	advantages
over	 having	 revisions	 randomly	 intermixed.	 Better	 still	 though,
branches	can	be	merged	together	 forming	a	non-linear	history.	The
result	might	look	like	this:

102:	Merge	feature	X

					100.2.3:	Fix	bug	found	in	testing	X

					100.2.2:	Add	documentation	for	X

					100.2.1:	Add	code	and	tests	for	X

101:	Merge	feature	Y

					100.1.4:	Add	documentation	for	Y

					100.1.3:	Fix	bug	found	in	testing	Y

					100.1.2:	Add	code	for	Y

					100.1.1:	Add	tests	for	Y

100:	...

Or	more	likely	this:

102:	Merge	feature	X

					100.2.3:	Fix	bug

					100.2.2:	Add	documentation

					100.2.1:	Add	code	and	tests

101:	Merge	feature	Y

					100.1.4:	Add	documentation

					100.1.3:	Fix	bug	found	in	testing

					100.1.2:	Add	code

					100.1.1:	Add	tests

100:	...

This	is	considered	good	for	many	reasons:

It	 makes	 it	 easier	 to	 understand	 the	 history	 of	 a	 project.
Related	 changes	 are	 clustered	 together	 and	 clearly
partitioned.
You	can	easily	collapse	history	 to	see	 just	 the	commits	on
the	mainline	 of	 a	 branch.	When	 viewing	 the	 trunk	 history
like	this,	you	only	see	high	level	commits	(instead	of	a	large
number	of	commits	uninteresting	at	this	level).
If	required,	it	makes	backing	out	a	feature	much	easier.
Continuous	integration	tools	can	be	used	to	ensure	that	all
tests	still	pass	before	committing	a	merge	 to	 the	mainline.
(In	many	cases,	 it	 isn’t	appropriate	 to	 trigger	CI	 tools	after
every	 single	 commit	 as	 some	 tests	 will	 fail	 during
development.	In	fact,	adding	the	tests	first	-	TDD	style	-	will
guarantee	it!)

In	summary,	the	important	points	are:

Organize	your	work	using	branches.

Integrate	changes	using	merge.

Ordered	revision	numbers	and	hierarchy	make	history	easier	to
follow.

Each	branch	has	its	own	view	of	history
As	explained	above,	Bazaar	makes	the	distinction	between:

mainline	revisions,	i.e.	ones	you	committed	in	your	branch,
and
merged	 revisions,	 i.e.	 ones	 added	 as	 ancestors	 by
committing	a	merge.

Each	 branch	 effectively	 has	 its	 own	 view	 of	 history,	 i.e.	 different
branches	 can	 give	 the	 same	 revision	 a	 different	 “local”	 revision
number.	 Mainline	 revisions	 always	 get	 allocated	 single	 number
revision	numbers	while	merged	revisions	always	get	allocated	dotted
revision	numbers.

To	 extend	 the	 example	 above,	 here’s	 what	 the	 revision	 history	 of
Mary’s	branch	would	look	like	had	she	decided	to	merge	the	project
trunk	into	her	branch	after	completing	her	changes:

104:	Merge	mainline

					100.2.1:	Merge	feature	Y

					100.1.4:	Add	documentation

					100.1.3:	Fix	bug	found	in	testing

					100.1.2:	Add	code

					100.1.1:	Add	tests

103:	Fix	bug	found	in	testing	X

102:	Add	documentation	for	X

101:	Add	code	and	tests	for	X

100:	...

Once	again,	it’s	easy	for	Mary	to	look	at	just	her	top	level	of	history
to	 see	 the	 steps	 she	 has	 taken	 to	 develop	 this	 change.	 In	 this
context,	 merging	 the	 trunk	 (and	 resolving	 any	 conflicts	 caused	 by
doing	 that)	 is	 just	 one	 step	 as	 far	 as	 the	 history	 of	 this	 branch	 is
concerned.

It’s	important	to	remember	that	Bazaar	is	not	changing	history	here,
nor	is	it	changing	the	global	revision	identifiers.	You	can	always	use
the	 latter	 if	 you	 really	 want	 to.	 In	 fact,	 you	 can	 use	 the	 branch
specific	 revision	 numbers	 when	 communicating	 as	 long	 as	 you
provide	 the	 branch	 URL	 as	 context.	 (In	 many	 Bazaar	 projects,
developers	imply	the	central	trunk	branch	if	they	exchange	a	revision
number	without	a	branch	URL.)

Merges	do	not	change	revision	numbers	in	a	branch,	though	they	do
allocate	local	revision	numbers	to	newly	merged	revisions.	The	only
time	Bazaar	will	change	 revision	numbers	 in	a	branch	 is	when	you
explicitly	ask	it	to	mirror	another	branch.

Note:	Revisions	are	numbered	in	a	stable	way:	if	two	branches	have
the	 same	 revision	 in	 their	mainline,	 all	 revisions	 in	 the	 ancestry	 of
that	 revision	will	 have	 the	 same	 revision	 numbers.	 For	 example,	 if
Alice	and	Bob’s	branches	agree	on	revision	10,	they	will	agree	on	all
revisions	before	that.

Summary
In	general,	if	you	follow	the	advice	given	earlier	-	organise	your	work
in	 branches	 and	 use	 merge	 to	 collaborate	 -	 you’ll	 find	 Bazaar
generally	does	what	you	expect.

In	 coming	 chapters,	 we	 examine	 various	 ways	 of	 using	 Bazaar
beginning	with	the	simplest:	using	Bazaar	for	personal	projects.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Going	solo

A	personal	productivity	tool
Some	 tools	 are	 designed	 to	 make	 individuals	 productive	 (e.g.
editors)	 while	 other	 tools	 (e.g.	 back-end	 services)	 are	 focused	 on
making	teams	or	whole	companies	more	productive.	Version	control
tools	have	traditionally	been	in	the	latter	camp.

One	of	the	cool	things	about	Bazaar	is	that	it	is	so	easy	to	setup	that
version	control	can	now	be	treated	as	a	personal	productivity	tool.	If
you	wish	to	record	changes	to	files	for	the	purposes	of	checkpointing
good	known	states	or	 tracking	history,	 it	 is	now	easy	to	do	so.	This
chapter	explains	how.

The	solo	workflow
If	you	are	creating	your	own	masterpiece,	whether	that	be	a	software
project	or	a	set	of	related	documents,	the	typical	workflow	looks	like
this:

Even	 if	 you	 will	 always	 be	 working	 as	 part	 of	 a	 team,	 the	 tasks
covered	in	this	chapter	will	be	the	basis	of	what	you’ll	be	doing	so	it’s
a	good	place	to	start.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Starting	a	project

Putting	an	existing	project	under	version
control
If	you	already	have	a	tree	of	source	code	(or	directory	of	documents)
you	 wish	 to	 put	 under	 version	 control,	 here	 are	 the	 commands	 to
use:

cd	my-stuff

bzr	init

bzr	add

bzr	commit	-m	"Initial	import"

bzr	init	creates	a	.bzr	directory	in	the	top	level	directory	(my-stuff
in	the	example	above).	Note	that:

Bazaar	 has	 everything	 it	 needs	 in	 that	 directory	 -	 you	 do
not	 need	 to	 setup	 a	 database,	 web	 server	 or	 special
service	to	use	it
Bazaar	 is	 polite	 enough	 to	 only	 create	 one	 .bzr	 in	 the
directory	given,	not	one	in	every	subdirectory	thereof.

bzr	add	 then	 finds	all	 the	 files	and	directories	 it	 thinks	ought	 to	be
version	 controlled	 and	 registers	 them	 internally.	 bzr	 commit	 then
records	 a	 snapshot	 of	 the	 content	 of	 these	 and	 records	 that
information,	together	with	a	commit	message.

More	information	on	init,	add	and	commit	will	be	provided	later.	For
now,	the	important	thing	to	remember	is	the	recipe	above.

Starting	a	new	project
If	you	are	starting	a	project	from	scratch,	you	can	also	use	the	recipe
above,	after	creating	an	empty	directory	first	of	course.	For	efficiency
reasons	 that	will	 be	explored	more	 in	 later	 chapters	 though,	 it	 is	 a
good	idea	to	create	a	repository	for	the	project	at	the	top	level	and	to
nest	a	main	branch	within	it	like	this:

bzr	init-repo	my.repo

cd	my.repo

bzr	init	my.main

cd	my.main

hack,	hack,	hack

bzr	add

bzr	commit	-m	"Initial	import"

Some	 users	 prefer	 a	 name	 like	 trunk	 or	 dev	 to	 main.	 Choose
whichever	name	makes	the	most	sense	to	you.

Note	that	the	init-repo	and	init	commands	both	take	a	path	as	an
argument	and	will	create	that	path	if	it	doesn’t	already	exist.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Controlling	file	registration

What	does	Bazaar	track?
As	explained	earlier,	bzr	add	finds	and	registers	all	the	things	in	and
under	 the	 current	 directory	 that	 Bazaar	 thinks	 ought	 to	 be	 version
controlled.	These	things	may	be:

files
directories
symbolic	links.

Bazaar	has	default	rules	for	deciding	which	files	are	interesting	and
which	 ones	 are	 not.	 You	 can	 tune	 those	 rules	 as	 explained	 in
Ignoring	files	below.

Unlike	many	other	VCS	tools,	Bazaar	tracks	directories	as	first	class
items.	As	a	consequence,	empty	directories	are	correctly	supported	-
you	 don’t	 need	 to	 create	 a	 dummy	 file	 inside	 a	 directory	 just	 to
ensure	it	gets	tracked	and	included	in	project	exports.

For	symbolic	 links,	the	value	of	the	symbolic	 link	is	tracked,	not	the
content	of	the	thing	the	symbolic	link	is	pointing	to.

Note:	Support	for	tracking	projects-within-projects	(“nested	trees”)	is
currently	under	development.	Please	contact	the	Bazaar	developers
if	you	are	interested	in	helping	develop	or	test	this	functionality.

Selective	registration
In	 some	 cases,	 you	 may	 want	 or	 need	 to	 explicitly	 nominate	 the
things	to	register	rather	than	leave	it	up	to	Bazaar	to	find	things.	To
do	this,	simply	provide	paths	as	arguments	to	the	add	command	like
this:

bzr	add	fileX	dirY/

Adding	a	directory	implicitly	adds	all	interesting	things	underneath	it.

Ignoring	files
Many	 source	 trees	 contain	 some	 files	 that	 do	 not	 need	 to	 be
versioned,	such	as	editor	backups,	object	or	bytecode	files,	and	built
programs.	You	can	simply	not	add	them,	but	then	they’ll	always	crop
up	as	unknown	files.	You	can	also	tell	Bazaar	to	ignore	these	files	by
adding	them	to	a	file	called	.bzrignore	at	the	top	of	the	tree.

This	 file	 contains	 a	 list	 of	 file	 wildcards	 (or	 “globs”),	 one	 per	 line.
Typical	contents	are	like	this:

*.o

*~

*.tmp

*.py[co]

If	a	glob	contains	a	slash,	it	is	matched	against	the	whole	path	from
the	top	of	the	tree;	otherwise	it	is	matched	against	only	the	filename.
So	 the	 previous	 example	 ignores	 files	 with	 extension	 .o	 in	 all
subdirectories,	 but	 this	 example	 ignores	 only	 config.h	 at	 the	 top
level	and	HTML	files	in	doc/:

./config.h

doc/*.html

To	 get	 a	 list	 of	 which	 files	 are	 ignored	 and	 what	 pattern	 they
matched,	use	bzr	ignored:

%	bzr	ignored

config.h																	./config.h

configure.in~												*~

Note	 that	 ignore	 patterns	 are	 only	 matched	 against	 non-versioned
files,	and	control	whether	they	are	treated	as	“unknown”	or	“ignored”.
If	a	file	is	explicitly	added,	it	remains	versioned	regardless	of	whether

it	matches	an	ignore	pattern.

The	 .bzrignore	 file	 should	 normally	 be	 versioned,	 so	 that	 new
copies	of	the	branch	see	the	same	patterns:

%	bzr	add	.bzrignore

%	bzr	commit	-m	"Add	ignore	patterns"

The	 command	 bzr	 ignore	 PATTERN	 can	 be	 used	 to	 easily	 add
PATTERN	 to	 the	 .bzrignore	 file	 (creating	 it	 if	 necessary	 and
registering	 it	 to	 be	 tracked	 by	 Bazaar).	 Removing	 and	 modifying
patterns	are	done	by	directly	editing	the	.bzrignore	file.

Global	ignores
There	are	some	ignored	files	which	are	not	project	specific,	but	more
user	 specific.	 Things	 like	 editor	 temporary	 files,	 or	 personal
temporary	files.	Rather	than	add	these	ignores	to	every	project,	bzr
supports	a	global	ignore	file	in	~/.bazaar/ignore	[1].	It	has	the	same
syntax	as	the	per-project	ignore	file.

[1]

On	Windows,	the	users	configuration	files	can	be	found	in	the
application	data	directory.	So	instead	of	~/.bazaar/branch.conf
the	configuration	file	can	be	found	as:	C:\Documents	and
Settings\<username>\Application

Data\Bazaar\2.0\branch.conf.	The	same	is	true	for
locations.conf,	ignore,	and	the	plugins	directory.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Reviewing	changes

Looking	before	you	leap
Once	you	have	completed	some	work,	it’s	a	good	idea	to	review	your
changes	prior	 to	permanently	 recording	 it.	This	way,	you	can	make
sure	you’ll	be	committing	what	you	intend	to.

Two	bzr	commands	are	particularly	useful	here:	status	and	diff.

bzr	status
The	status	command	tells	you	what	changes	have	been	made	to	the
working	directory	since	the	last	revision:

%	bzr	status

modified:

			foo

bzr	status	hides	“boring”	files	that	are	either	unchanged	or	ignored.
The	status	command	can	optionally	be	given	the	name	of	some	files
or	directories	to	check.

bzr	diff
The	diff	 command	 shows	 the	 full	 text	 of	 changes	 to	 all	 files	 as	 a
standard	unified	diff.	This	can	be	piped	through	many	programs	such
as	‘’patch’‘,	‘’diffstat’‘,	‘’filterdiff’’	and	‘’colordiff’‘:

%	bzr	diff

===	added	file	'hello.txt'

---	hello.txt			1970-01-01	00:00:00	+0000

+++	hello.txt			2005-10-18	14:23:29	+0000

@@	-0,0	+1,1	@@

+hello	world

With	the	-r	option,	the	tree	is	compared	to	an	earlier	revision,	or	the
differences	between	two	versions	are	shown:

%	bzr	diff	-r	1000..										#	everything	since	r1000

%	bzr	diff	-r	1000..1100						#	changes	from	1000	to	1100

To	see	the	changes	introduced	by	a	single	revision,	you	can	use	the
-c	option	to	diff.

%	bzr	diff	-c	1000												#	changes	from	r1000

																														#	identical	to	-r999..1000

The	 --diff-options	 option	 causes	 bzr	 to	 run	 the	 external	 diff
program,	passing	options.	For	example:

%	bzr	diff	--diff-options	--side-by-side	foo

Some	projects	prefer	patches	to	show	a	prefix	at	the	start	of	the	path
for	 old	 and	new	 files.	 The	 --prefix	 option	 can	 be	 used	 to	 provide
such	 a	 prefix.	 As	 a	 shortcut,	 bzr	 diff	 -p1	 produces	 a	 form	 that
works	with	the	command	patch	-p1.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Recording	changes

bzr	commit
When	the	working	tree	state	 is	satisfactory,	 it	can	be	committed	 to
the	branch,	creating	a	new	revision	holding	a	snapshot	of	that	state.

The	commit	command	takes	a	message	describing	the	changes	in
the	 revision.	 It	 also	 records	 your	 userid,	 the	 current	 time	 and
timezone,	 and	 the	 inventory	 and	 contents	 of	 the	 tree.	 The	 commit
message	is	specified	by	the	-m	or	--message	option.	You	can	enter	a
multi-line	commit	message;	in	most	shells	you	can	enter	this	just	by
leaving	the	quotes	open	at	the	end	of	the	line.

%	bzr	commit	-m	"added	my	first	file"

You	 can	 also	 use	 the	 -F	 option	 to	 take	 the	 message	 from	 a	 file.
Some	people	 like	 to	make	notes	 for	a	 commit	message	while	 they
work,	then	review	the	diff	to	make	sure	they	did	what	they	said	they
did.	(This	file	can	also	be	useful	when	you	pick	up	your	work	after	a
break.)

Message	from	an	editor
If	 you	 use	 neither	 the	 -m	 nor	 the	 -F	 option	 then	 bzr	 will	 open	 an
editor	for	you	to	enter	a	message.	The	editor	to	run	is	controlled	by
your	 $VISUAL	 or	 $EDITOR	 environment	 variable,	 which	 can	 be
overridden	 by	 the	 editor	 setting	 in	 ~/.bazaar/bazaar.conf;
$BZR_EDITOR	 will	 override	 either	 of	 the	 above	 mentioned	 editor
options.	 If	 you	 quit	 the	 editor	 without	 making	 any	 changes,	 the
commit	will	be	cancelled.

The	 file	 that	 is	opened	 in	 the	editor	 contains	a	horizontal	 line.	The
part	of	the	file	below	this	line	is	included	for	information	only,	and	will
not	form	part	of	the	commit	message.	Below	the	separator	is	shown
the	list	of	files	that	are	changed	in	the	commit.	You	should	write	your
message	above	the	line,	and	then	save	the	file	and	exit.

If	you	would	like	to	see	the	diff	that	will	be	committed	as	you	edit	the
message	 you	 can	 use	 the	 --show-diff	 option	 to	 commit.	 This	 will
include	the	diff	 in	 the	editor	when	 it	 is	opened,	below	the	separator
and	 the	 information	 about	 the	 files	 that	 will	 be	 committed.	 This
means	 that	 you	 can	 read	 it	 as	 you	write	 the	message,	 but	 the	 diff
itself	wont	be	seen	in	the	commit	message	when	you	have	finished.
If	you	would	like	parts	to	be	included	in	the	message	you	can	copy
and	paste	them	above	the	separator.

Selective	commit
If	you	give	file	or	directory	names	on	the	commit	command	line	then
only	the	changes	to	those	files	will	be	committed.	For	example:

%	bzr	commit	-m	"documentation	fix"	commit.py

By	default	 bzr	 always	 commits	 all	 changes	 to	 the	 tree,	 even	 if	 run
from	a	subdirectory.	To	commit	from	only	the	current	directory	down,
use:

%	bzr	commit	.

Giving	credit	for	a	change
If	you	didn’t	actually	write	the	changes	that	you	are	about	to	commit,
for	instance	if	you	are	applying	a	patch	from	someone	else,	you	can
use	the	--author	commit	option	to	give	them	credit	for	the	change:

%	bzr	commit	--author	"Jane	Rey	<jrey@example.com>"

The	person	that	you	specify	there	will	be	recorded	as	the	“author”	of
the	 revision,	 and	 you	 will	 be	 recorded	 as	 the	 “committer”	 of	 the
revision.

If	 more	 than	 one	 person	 works	 on	 the	 changes	 for	 a	 revision,	 for
instance	 if	 you	 are	 pair-programming,	 then	 you	 can	 record	 this	 by
specifying	--author	multiple	times:

%	bzr	commit	--author	"Jane	Rey	<jrey@example.com>"	\

				--author	"John	Doe	<jdoe@example.com>"

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Browsing	history

bzr	log
The	bzr	log	command	shows	a	list	of	previous	revisions.

As	with	bzr	diff,	bzr	log	supports	the	-r	argument:

%	bzr	log	-r	1000..										#	Revision	1000	and	everything	after	it

%	bzr	log	-r	..1000										#	Everything	up	to	and	including	r1000

%	bzr	log	-r	1000..1100						#	changes	from	1000	to	1100

%	bzr	log	-r	1000												#	The	changes	in	only	revision	1000

Viewing	merged	revisions
As	 distributed	 VCS	 tools	 like	 Bazaar	 make	 merging	 much	 easier
than	 it	 is	 in	 central	 VCS	 tools,	 the	 history	 of	 a	 branch	 may	 often
contain	 lines	 of	 development	 splitting	 off	 the	mainline	 and	merging
back	 in	 at	 a	 later	 time.	 Technically,	 the	 relationship	 between	 the
numerous	 revision	nodes	 is	 known	as	a	Directed	Acyclic	Graph	or
DAG	for	short.

In	many	cases,	you	 typically	want	 to	see	 the	mainline	 first	and	drill
down	 from	 there.	The	default	behaviour	of	 log	 is	 therefore	 to	show
the	 mainline	 and	 indicate	 which	 revisions	 have	 nested	 merged
revisions.	 To	 explore	 the	 merged	 revisions	 for	 revision	 X,	 use	 the
following	command:

bzr	log	-n0	-rX

To	see	all	revisions	and	all	their	merged	revisions:

bzr	log	-n0

Note	 that	 the	 -n	 option	 is	 used	 to	 indicate	 the	 number	 of	 levels	 to
display	where	0	means	all.	If	that	is	too	noisy,	you	can	easily	adjust
the	number	to	only	view	down	so	far.	For	example,	if	your	project	is
structured	with	a	 top	 level	gatekeeper	merging	changes	 from	 team
gatekeepers,	bzr	log	shows	what	the	top	level	gatekeeper	did	while
bzr	 log	 -n2	 shows	 what	 the	 team	 gatekeepers	 did.	 In	 the	 vast
majority	of	cases	though,	-n0	is	fine.

Tuning	the	output
The	log	command	has	several	options	that	are	useful	for	tuning	the
output.	These	include:

--forward	 presents	 the	 log	 in	 chronological	 order,	 i.e.	 the
most	recent	revisions	are	displayed	last.
the	 --limit	 option	 controls	 the	 maximum	 number	 of
revisions	displayed.

See	the	online	help	for	the	log	command	or	the	User	Reference	for
more	information	on	tuning	the	output.

Viewing	the	history	for	a	file
It	is	often	useful	to	filter	the	history	so	that	it	only	applies	to	a	given
file.	To	do	this,	provide	the	filename	to	the	log	command	like	this:

bzr	log	foo.py

Viewing	an	old	version	of	a	file
To	get	the	contents	of	a	file	at	a	given	version,	use	the	cat	command
like	this:

bzr	cat	-r	X	file

where	 X	 is	 the	 revision	 identifier	and	 file	 is	 the	 filename.	This	will
send	output	to	the	standard	output	stream	so	you’ll	typically	want	to
pipe	the	output	through	a	viewing	tool	(like	less	or	more)	or	redirect	it
like	this:

bzr	cat	-r	-2	foo.py	|	less

bzr	cat	-r	1	foo.py	>	/tmp/foo-1st-version.py

Graphical	history	viewers
History	browsing	is	one	area	where	GUI	tools	really	make	life	easier.
Bazaar	has	numerous	plug-ins	 that	provide	 this	capability	 including
QBzr	 and	 bzr-gtk.	 See	 Using	 plugins	 for	 details	 on	 how	 to	 install
these	if	they	are	not	already	installed.

To	use	the	graphical	viewer	from	QBzr:

bzr	qlog

To	use	the	graphical	viewer	from	bzr-gtk:

bzr	viz

viz	 is	 actually	 a	 built-in	 alias	 for	 visualize	 so	 use	 the	 longer
command	name	if	you	prefer.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Releasing	a	project

Packaging	a	release
The	 export	 command	 is	 used	 to	 package	 a	 release,	 i.e.	 to	 take	 a
copy	of	the	files	and	directories	in	a	branch	and	package	them	into	a
fresh	directory	or	archive.	For	example,	 this	command	will	package
the	last	committed	version	into	a	tar.gz	archive	file:

bzr	export	../releases/my-stuff-1.5.tar.gz

The	 export	command	uses	the	suffix	of	 the	archive	file	 to	work	out
the	type	of	archive	to	create	as	shown	below.

Supported	formats Autodetected	by	extension
dir (none)
tar .tar
tbz2 .tar.bz2,	.tbz2
tgz .tar.gz,	.tgz
zip .zip

If	you	wish	to	package	a	revision	other	than	the	last	one,	use	the	-r
option.	 If	you	wish	to	tune	the	root	directory	 inside	the	archive,	use
the	--root	option.	See	the	online	help	or	User	Reference	for	further
details	on	the	options	supported	by	export.

Tagging	a	release
Rather	 than	 remembering	 which	 version	 was	 used	 to	 package	 a
release,	it’s	useful	to	define	a	symbolic	name	for	a	version	using	the
tag	command	like	this:

bzr	tag	version-1-5

That	tag	can	be	used	later	whenever	a	revision	identifier	is	required,
e.g.:

bzr	diff	-r	tag:version-1-5

To	see	the	list	of	tags	defined	in	a	branch,	use	the	tags	command.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Undoing	mistakes

Mistakes	happen
Bazaar	has	been	designed	to	make	it	easy	to	recover	from	mistakes
as	explained	below.

Dropping	the	revision	history	for	a	project
If	 you	accidentally	put	 the	wrong	 tree	under	version	control,	 simply
delete	the	.bzr	directory.

Deregistering	a	file	or	directory
If	 you	 accidentally	 register	 a	 file	 using	 add	 that	 you	 don’t	 want
version	controlled,	you	can	use	the	 remove	command	to	 tell	Bazaar
to	forget	about	it.

remove	 has	 been	 designed	 to	Do	 the	 Safe	 Thing	 in	 that	 it	 will	 not
delete	a	modified	file.	For	example:

bzr	add	foo.html

(oops	-	didn't	mean	that)

bzr	remove	foo.html

This	will	 complain	about	 the	 file	being	modified	or	unknown.	 If	 you
want	to	keep	the	file,	use	the	--keep	option.	Alternatively,	if	you	want
to	delete	the	file,	use	the	--force	option.	For	example:

bzr	add	foo.html

(oops	-	didn't	mean	that)

bzr	remove	--keep	foo.html

(foo.html	left	on	disk,	but	deregistered)

On	 the	 other	 hand,	 the	 unchanged	 TODO	 file	 is	 deregistered	 and
removed	from	disk	without	complaint	in	this	example:

bzr	add	TODO

bzr	commit	-m	"added	TODO"

(hack,	hack,	hack	-	but	don't	change	TODO)

bzr	remove	TODO

(TODO	file	deleted)

Note:	 If	 you	 delete	 a	 file	 using	 your	 file	 manager,	 IDE	 or	 via	 an
operating	system	command,	the	commit	command	will	implicitly	treat
it	as	removed.

Undoing	changes	since	the	last	commit
One	of	the	reasons	for	using	a	version	control	tool	is	that	it	lets	you
easily	checkpoint	good	tree	states	while	working.	 If	you	decide	that
the	changes	you	have	made	since	the	last	commit	ought	to	be	thrown
away,	the	command	to	use	is	revert	like	this:

bzr	revert

As	a	precaution,	it	is	good	practice	to	use	bzr	status	and	bzr	diff
first	to	check	that	everything	being	thrown	away	really	ought	to	be.

Undoing	changes	to	a	file	since	the	last
commit
If	you	want	to	undo	changes	to	a	particular	file	since	the	last	commit
but	keep	all	 the	other	changes	 in	 the	tree,	pass	the	filename	as	an
argument	to	revert	like	this:

bzr	revert	foo.py

Undoing	the	last	commit
If	 you	make	a	 commit	 and	 really	 didn’t	mean	 to,	 use	 the	 uncommit
command	to	undo	it	like	this:

bzr	uncommit

Unlike	 revert,	 uncommit	 leaves	 the	 content	 of	 your	 working	 tree
exactly	 as	 it	 is.	 That’s	 really	 handy	 if	 you	 make	 a	 commit	 and
accidently	provide	the	wrong	error	message.	For	example:

bzr	commit	-m	"Fix	bug	#11"

(damn	-	wrong	bug	number)

bzr	uncommit

bzr	commit	-m	"Fix	bug	#1"

Another	common	reason	for	undoing	a	commit	is	because	you	forgot
to	add	one	or	more	files.	Some	users	like	to	alias	commit	to	commit	-
-strict	so	that	commits	fail	if	unknown	files	are	found	in	the	tree.

Note:	 While	 the	 merge	 command	 is	 not	 introduced	 until	 the	 next
chapter,	 it	 is	worth	 noting	 now	 that	 uncommit	 restores	 any	 pending
merges.	(Running	bzr	status	after	uncommit	will	show	these.)	merge
can	also	be	used	to	effectively	undo	just	a	selected	commit	earlier	in
history.	For	more	information	on	merge,	see	Merging	changes	 in	 the
next	chapter	and	the	Bazaar	User	Reference.

Undoing	multiple	commits
You	can	use	the	-r	option	to	undo	several	commits	like	this:

bzr	uncommit	-r	-3

If	 your	 reason	 for	 doing	 this	 is	 that	 you	 really	 want	 to	 back	 out
several	changes,	then	be	sure	to	remember	that	uncommit	does	not
change	 your	 working	 tree:	 you’ll	 probably	 need	 to	 run	 the	 revert
command	as	well	 to	 complete	 the	 task.	 In	many	cases	 though,	 it’s
arguably	better	 to	 leave	your	history	alone	and	add	a	new	 revision
reflecting	the	content	of	the	last	good	state.

Reverting	to	the	state	of	an	earlier	version
If	 you	 make	 an	 unwanted	 change	 but	 it	 doesn’t	 make	 sense	 to
uncommit	 it	 (because	 that	 code	 has	 been	 released	 to	 users	 say),
you	 can	 use	 revert	 to	 take	 your	working	 tree	 back	 to	 the	 desired
state.	For	example:

%	bzr	commit	"Fix	bug	#5"

Committed	revision	20.

(release	the	code)

(hmm	-	bad	fix)

bzr	revert	-r	19

bzr	commit	-m	"Backout	fix	for	bug	#5"

This	will	change	your	entire	tree	back	to	the	state	as	of	revision	19,
which	is	probably	only	what	you	want	 if	you	haven’t	made	any	new
commits	since	then.	If	you	have,	the	revert	would	wipe	them	out	as
well.	 In	 that	case,	you	probably	want	 to	use	Reverse	cherrypicking
instead	to	back	out	the	bad	fix.

Note:	 As	 an	 alternative	 to	 using	 an	 absolute	 revision	 number	 (like
19),	 you	 can	 specify	 one	 relative	 to	 the	 tip	 (-1)	 using	 a	 negative
number	like	this:

bzr	revert	-r	-2

Correcting	a	tag
If	you	have	defined	a	tag	prematurely,	use	the	--force	option	of	the
tag	command	to	redefine	it.	For	example:

bzr	tag	2.0-beta-1

(oops,	we're	not	yet	ready	for	that)

(make	more	commits	to	include	more	fixes)

bzr	tag	2.0-beta-1	--force

Clearing	a	tag
If	you	have	defined	a	tag	and	no	longer	want	 it	defined,	use	the	--
delete	option	of	the	tag	command	to	remove	it.	For	example:

bzr	tag	2.0-beta-4

(oops,	we're	not	releasing	a	4th	beta)

bzr	tag	2.0-beta-4	--delete

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Working	with	another

Peer-to-peer	rocks
In	many	cases,	 two	minds	can	be	better	 than	one.	You	may	be	the
one	who	started	a	project	and	someone	wishes	to	help,	or	perhaps
it’s	you	who	wants	to	help	another.	Perhaps	you	are	both	members
of	 a	 larger	 team	 that	 have	 been	 assigned	 a	 task	 together	 as	 pair
programmers.	Either	way,	two	people	need	to	agree	on	a	process,	a
set	of	guidelines	and	a	toolset	in	order	to	work	together	effectively.

Imagine	 if	 you	 were	 not	 allowed	 to	 call	 someone	 on	 the	 phone
directly	 and	 the	 only	 way	 to	 talk	 to	 them	 was	 by	 registering	 a
conference	 call	 first?	Companies	 and	 communities	 that	 only	 share
code	via	a	central	VCS	repository	are	living	with	a	similar	straitjacket
to	that	every	day.	There	are	times	when	central	control	makes	a	lot
of	sense	and	 times	when	peer-to-peer	 rocks.	Either	way,	Bazaar	 is
designed	to	help.

The	partner	workflow
While	 it’s	 certainly	 not	 the	 only	 way	 to	 do	 it,	 the	 partner	 workflow
below	 is	 a	 good	 starting	 point	 for	 a	 pair	 of	 people	 who	 wish	 to
collaborate	using	Bazaar.

Over	 and	 above	 the	 tasks	 covered	 in	 the	 previous	 chapter,	 this
chapter	introduces	two	essential	collaboration	activities:

getting	a	copy	of	a	branch
merging	changes	between	branches.

Even	when	it’s	just	you	working	on	a	code	base,	it	can	be	very	useful
to	keep	multiple	branches	around	(for	different	releases	say)	and	to
merge	 changes	 between	 them	 as	 appropriate.	 Your	 “partner”	 may
indeed	be	yourself.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Branching	a	project

Branch	URLs
Before	 someone	 else	 can	 get	 a	 copy	 of	 your	 work,	 you	 need	 to
agree	 on	 a	 transfer	 technology.	 You	 may	 decide	 to	 make	 the	 top
level	directory	of	your	branch	a	network	share,	an	approach	familiar
to	Windows	users.	Linux	and	OS	X	users	might	prefer	access	to	be
via	SFTP,	a	secure	protocol	built-in	to	most	SSH	servers.	Bazaar	is
very	flexible	in	this	regard	with	support	for	lots	of	protocols	some	of
which	are	given	below.

Prefix Description
file:// Access	using	the	standard	filesystem	(default)

sftp:// Access	using	SFTP	(most	SSH	servers	provide
SFTP).

bzr:// Fast	access	using	the	Bazaar	smart	server.
ftp:// Access	using	passive	FTP.

http:// Read-only	access	to	branches	exported	by	a	web
server.

As	 indicated	 above,	 branches	 are	 identified	 using	 URLs	 with	 the
prefix	indicating	the	transfer	technology.	If	no	prefix	is	given,	normal
filenames	are	assumed.	For	a	complete	 list	of	supported	protocols,
see	the	urlspec	online	help	topic	or	the	URL	Identifiers	section	of	the
Bazaar	User	Reference.

URLs	 are	 normally	 resolved	 relative	 to	 the	 root	 directory	 of	 the
server,	 so	 ftp://example.com/repo/foo	 means	 the	 /repo/foo

directory	 of	 that	 host.	 (We	 say	 ‘normally’	 because	 some	 server
software	like	Apache	can	be	configured	to	remap	URLs	arbitrarily,	in
which	case	you’ll	need	to	look	at	the	server	configuration	to	find	out
which	URL	corresponds	to	which	directory.)

To	address	a	path	relative	to	your	home	directory	on	the	server,	use
a	 tilde	 like	 so:	 sftp://example.com/~/public_html	 should	 map	 to

public_html	within	your	home	directory.

A	reminder	about	shared	repositories
Before	getting	a	copy	of	a	branch,	have	a	quick	think	about	where	to
put	 it	on	your	filesystem.	For	maximum	storage	efficiency	down	the
track,	it	is	recommended	that	branches	be	created	somewhere	under
a	directory	that	has	been	set	up	as	a	shared	repository.	(See	Feature
branches	 in	 Organizing	 your	 workspace	 for	 a	 commonly	 used
layout.)	For	example:

bzr	init-repo	my-repo

cd	my-repo

You	are	now	 ready	 to	grab	a	branch	 from	someone	else	and	hack
away.

The	branch	command
To	 get	 a	 branch	 based	 on	 an	 existing	 branch,	 use	 the	 branch
command.	The	syntax	is:

bzr	branch	URL	[directory]

If	a	directory	is	not	given,	one	is	created	based	on	the	last	part	of	the
URL.	Here	are	some	examples	showing	a	drive	qualified	path	(M:/)
and	an	sftp	URL	respectively:

bzr	branch	M:/cool-trunk

bzr	branch	sftp://bill@mary-laptop/cool-repo/cool-trunk

This	 example	 shows	 explicitly	 giving	 the	 directory	 name	 to	 use	 for
the	new	branch:

bzr	branch	/home/mary/cool-repo/cool-trunk	cool

Time	and	space	considerations
Depending	on	the	size	of	the	branch	being	transferred	and	the	speed
and	 latency	of	 the	network	between	your	computer	and	 the	source
branch,	 this	 initial	 transfer	 might	 take	 some	 time.	 Subsequent
updates	should	be	much	faster	as	only	the	changes	are	transferred
then.

Keep	in	mind	that	Bazaar	is	transferring	the	complete	history	of	the
branch,	not	just	the	latest	snapshot.	As	a	consequence,	you	can	be
off	 the	 network	 (or	 disconnected	 from	 the	 network	 share)	 after
branch	completes	but	you’ll	still	be	able	to	log	and	diff	the	history	of
the	branch	as	much	as	you	want.	Furthermore,	these	operations	are
quick	as	the	history	is	stored	locally.

Note	 that	 Bazaar	 uses	 smart	 compression	 technology	 to	 minimize
the	amount	of	disk	space	required	to	store	version	history.	 In	many
cases,	the	complete	history	of	a	project	will	take	up	less	disk	space
than	the	working	copy	of	the	latest	version.

As	 explained	 in	 later	 chapters,	 Bazaar	 also	 has	 support	 for
lightweight	 checkouts	 of	 a	 branch,	 i.e.	 working	 trees	 with	 no	 local
storage	 of	 history.	 Of	 course,	 disconnected	 usage	 is	 not	 available
then	but	that’s	a	tradeoff	you	can	decide	to	make	if	local	disk	space
is	 really	 tight	 for	 you.	 Support	 for	 limited	 lookback	 into	 history	 -
history	horizons	-	is	currently	under	development	as	well.

Viewing	branch	information
If	 you	 wish	 to	 see	 information	 about	 a	 branch	 including	 where	 it
came	from,	use	the	info	command.	For	example:

bzr	info	cool

If	no	branch	is	given,	information	on	the	current	branch	is	displayed.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Merging	changes

Parallel	development
Once	 someone	 has	 their	 own	 branch	 of	 a	 project,	 they	 can	make
and	commit	changes	 in	parallel	 to	any	development	proceeding	on
the	original	branch.	Pretty	soon	 though,	 these	 independent	 lines	of
development	will	need	to	be	combined	again.	This	process	is	known
as	merging.

The	merge	command
To	 incorporate	 changes	 from	 another	 branch,	 use	 the	 merge

command.	Its	syntax	is:

bzr	merge	[URL]

If	no	URL	is	given,	a	default	 is	used,	initially	the	branch	this	branch
originated	 from.	 For	 example,	 if	 Bill	 made	 a	 branch	 from	 Mary’s
work,	he	can	merge	her	subsequent	changes	by	simply	typing	this:

bzr	merge

On	 the	other	 hand,	Mary	might	want	 to	merge	 into	 her	 branch	 the
work	Bill	has	done	in	his.	In	this	case,	she	needs	to	explicitly	give	the
URL	the	first	time,	e.g.:

bzr	merge	sftp://mary@bill-laptop/cool-repo/cool-trunk

This	 sets	 the	 default	 merge	 branch	 if	 one	 is	 not	 already	 set.	 To
change	the	default	after	it	is	set,	use	the	--remember	option.

How	does	merging	work?
A	variety	of	 algorithms	exist	 for	merging	changes.	Bazaar’s	default
algorithm	 is	 a	 variation	 of	 3-way	merging	 which	 works	 as	 follows.
Given	an	ancestor	A	and	two	branches	B	and	C,	the	following	table
provides	the	rules	used.

A B C Result Comment
x x x x unchanged
x x y y line	from	C
x y x y line	from	B
x y z ? conflict

Note	that	some	merges	can	only	be	completed	with	the	assistance	of
a	 human.	 Details	 on	 how	 to	 resolve	 these	 are	 given	 in	 Resolving
conflicts.

Recording	a	merge
After	any	conflicts	are	 resolved,	 the	merge	needs	 to	be	committed.
For	example:

bzr	commit	-m	"Merged	Mary's	changes"

Even	 if	 there	 are	 no	 conflicts,	 an	 explicit	 commit	 is	 still	 required.
Unlike	 some	 other	 tools,	 this	 is	 considered	 a	 feature	 in	 Bazaar.	 A
clean	merge	is	not	necessarily	a	good	merge	so	making	the	commit
a	separate	explicit	step	allows	you	to	run	your	test	suite	first	to	verify
all	 is	 good.	 If	 problems	 are	 found,	 you	 should	 correct	 them	before
committing	the	merge	or	throw	the	merge	away	using	revert.

Merge	tracking
One	 of	 the	 most	 important	 features	 of	 Bazaar	 is	 distributed,	 high
quality	merge	tracking.	In	other	words,	Bazaar	remembers	what	has
been	 merged	 already	 and	 uses	 that	 information	 to	 intelligently
choose	 the	best	 ancestor	 for	 a	merge,	minimizing	 the	number	 and
size	of	conflicts.

If	you	are	a	refugee	from	many	other	VCS	tools,	it	can	be	really	hard
to	 “unlearn”	 the	 please-let-me-avoid-merging-at-any-cost	 habit.
Bazaar	lets	you	safely	merge	as	often	as	you	like	with	other	people.
By	working	in	a	peer-to-peer	manner	when	it	makes	sense	to	do	so,
you	 also	 avoid	 using	 a	 central	 branch	 as	 an	 “integration	 swamp”,
keeping	its	quality	higher.	When	the	change	you’re	collaborating	on
is	truly	ready	for	wider	sharing,	that’s	the	time	to	merge	and	commit
it	to	a	central	branch,	not	before.

Merging	 that	 Just	 Works	 truly	 can	 change	 how	 developers	 work
together.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Resolving	conflicts

Workflow
Unlike	some	other	tools	that	force	you	to	resolve	each	conflict	during
the	 merge	 process,	 Bazaar	 merges	 as	 much	 as	 it	 can	 and	 then
reports	 the	 conflicts.	 This	 can	 make	 conflict	 resolution	 easier
because	the	contents	of	 the	whole	post-merge	tree	are	available	to
help	you	decide	how	things	ought	to	be	resolved.	You	may	also	wish
to	selectively	run	tests	as	you	go	to	confirm	each	resolution	or	group
or	resolutions	is	good.

Listing	conflicts
As	 well	 as	 being	 reported	 by	 the	 merge	 command,	 the	 list	 of
outstanding	 conflicts	 may	 be	 displayed	 at	 any	 time	 by	 using	 the
conflicts	command.	It	is	also	included	as	part	of	the	output	from	the
status	command.

Resolving	a	conflict
When	a	conflict	is	encountered,	the	merge	command	puts	embedded
markers	 in	 each	 file	 showing	 the	 areas	 it	 couldn’t	 resolve.	 It	 also
creates	3	files	for	each	file	with	a	conflict:

foo.BASE
foo.THIS
foo.OTHER

where	foo	is	the	name	of	the	conflicted	file.	In	many	cases,	you	can
resolve	 conflicts	 by	 simply	 manually	 editing	 each	 file	 in	 question,
fixing	 the	 relevant	 areas	and	 removing	 the	 conflict	markers	 as	 you
go.

After	 fixing	 all	 the	 files	 in	 conflict,	 and	 removing	 the	 markers,	 ask
Bazaar	 to	mark	 them	as	 resolved	using	 the	 resolve	 command	 like
this:

bzr	resolve

Alternatively,	after	 fixing	each	 file,	 you	can	mark	 it	 as	 resolved	 like
this:

bzr	resolve	foo

Among	 other	 things,	 the	 resolve	 command	 cleans	 up	 the	 BASE,
THIS	and	OTHER	files	from	your	working	tree.

Using	the	remerge	command
In	some	cases,	you	may	wish	to	try	a	different	merge	algorithm	on	a
given	file.	To	do	this,	use	the	 remerge	command	nominating	the	file
like	this:

bzr	remerge	--weave	foo

where	 foo	 is	 the	 file	 and	 weave	 is	 one	 of	 the	 available	 merge
algorithms.	 This	 algorithm	 is	 particularly	 useful	 when	 a	 so-called
criss-cross	merge	 is	detected,	e.g.	when	 two	branches	merge	 the
same	 thing	 then	merge	each	other.	See	 the	online	help	 for	 criss-
cross	and	remerge	for	further	details.

Using	external	tools	to	resolve	conflicts
If	you	have	a	GUI	tool	you	like	using	to	resolve	conflicts,	be	sure	to
install	the	extmerge	plugin.	Once	installed,	it	can	be	used	like	this:

bzr	extmerge	foo

where	 foo	 is	 the	conflicted	file.	Rather	 than	provide	a	 list	of	 files	 to
resolve,	 you	 can	 give	 the	 --all	 option	 to	 implicitly	 specify	 all
conflicted	files.

The	 extmerge	 command	 uses	 the	 tool	 specified	 by	 the
external_merge	setting	in	your	bazaar.conf	file.	If	not	set,	it	will	look
for	some	popular	merge	tools	such	as	kdiff3	or	opendiff,	the	latter
being	a	command	line	interface	to	the	FileMerge	utility	in	OS	X.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Annotating	changes

Seeing	the	origin	of	content
When	two	or	more	people	are	working	on	files,	it	can	be	highly	useful
at	 times	 to	see	who	created	or	 last	changed	certain	content.	To	do
this,	using	the	annotate	command	like	this:

bzr	annotate	readme.txt

If	you	are	a	pessimist	or	an	optimist,	you	might	prefer	to	use	one	of
built-in	 aliases	 for	 annotate:	 blame	 or	 praise.	 Either	 way,	 this
displays	each	line	of	the	file	together	with	information	such	as:

who	changed	it	last
when	it	was	last	changed
the	commit	message.

GUI	tools
The	 various	 GUI	 plugins	 for	 Bazaar	 provide	 graphical	 tools	 for
viewing	 annotation	 information.	 For	 example,	 the	 bzr-gtk	 plugin
provides	a	GUI	tool	for	this	that	can	be	launched	using	the	gannotate
command:

bzr	gannotate	readme.txt

The	GUI	 tools	 typically	provide	a	much	 richer	display	of	 interesting
information	(e.g.	all	the	changes	in	each	commit)	so	you	may	prefer
them	over	the	text-based	command.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Centralized	development

Motivation
Rather	 than	working	 in	parallel	and	occasionally	merging,	 it	can	be
useful	 at	 times	 to	 work	 in	 lockstep,	 i.e.	 for	 multiple	 people	 to	 be
continuously	committing	changes	to	a	central	location,	merging	their
work	with	the	latest	content	before	every	commit.

This	 workflow	 is	 very	 familiar	 to	 users	 of	 central	 VCS	 tools	 like
Subversion	and	CVS.	It	is	also	applicable	to	a	single	developer	who
works	on	multiple	machines,	e.g.	someone	who	normally	works	on	a
desktop	 computer	 but	 travels	with	 a	 laptop,	 or	 someone	who	uses
their	 (Internet	 connected)	 home	 computer	 to	 complete	 office	 work
out	of	hours.

If	 centralized	 development	works	well	 for	 your	 team	already,	 that’s
great.	Many	teams	begin	using	Bazaar	this	way	and	experiment	with
alternative	workflows	later.

Centralized	workflow
The	diagram	below	provides	an	overview	of	the	centralized	workflow.

Even	 if	 your	 team	 is	 planning	 to	 use	 a	more	 distributed	 workflow,
many	 of	 the	 tasks	 covered	 in	 this	 chapter	 may	 be	 useful	 to	 you,
particularly	how	to	publish	branches.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Publishing	a	branch

Setting	up	a	central	repository
While	 the	 centralized	workflow	can	be	used	by	 socially	 nominating
any	 branch	 on	 any	 computer	 as	 the	 central	 one,	 in	 practice	 most
teams	have	a	dedicated	server	for	hosting	central	branches.

Just	 as	 it’s	 best	 practice	 to	 use	 a	 shared	 repository	 locally,	 it’s
advisable	 to	 put	 central	 branches	 in	 a	 shared	 repository.	Note	 that
central	 shared	 branches	 typically	 only	 want	 to	 store	 history,	 not
working	 copies	 of	 files,	 so	 their	 enclosing	 repository	 is	 usually
creating	using	the	no-trees	option,	e.g.:

bzr	init-repo	--no-trees	sftp://centralhost/srv/bzr/PROJECT

You	can	 think	of	 this	step	as	similar	 to	setting	up	a	new	cvsroot	or
Subversion	repository.	However,	Bazaar	gives	you	more	flexibility	in
how	branches	may	be	organised	 in	your	 repository.	See	Advanced
shared	 repository	 layouts	 in	 the	 appendices	 for	 guidelines	 and
examples.

Starting	a	central	branch
There	are	two	ways	of	populating	a	central	branch	with	some	initial
content:

1.	 Making	a	local	branch	and	pushing	it	to	a	central	location
2.	 Making	an	empty	central	branch	then	committing	content	to

it.

Here	is	an	example	of	the	first	way:

bzr	init-repo	PROJECT		(prepare	local	repository)

bzr	init	PROJECT/trunk

cd	PROJECT/trunk

																							(copy	development	files)

cp	-ar	~/PROJECT	.					(copy	files	in	using	OS-specific	tools)

bzr	add																(populate	repository;	start	version	control)

bzr	commit	-m	"Initial	import"

																							(publish	to	central	repository)

bzr	push	sftp://centralhost/srv/bzr/PROJECT/trunk

Here	is	an	example	of	the	second	way:

bzr	init-repo	PROJECT		(prepare	local	repository)

cd	PROJECT

bzr	init	sftp://centralhost/srv/bzr/PROJECT/trunk

bzr	checkout	sftp://centralhost/srv/bzr/PROJECT/trunk

cd	trunk

cp	-ar	~/PROJECT	.					(copy	files	in	using	OS-specific	tools)

bzr	add																(populate	repository;	start	version	control)

bzr	commit	-m	"Initial	import"

																							(publish	to	central	repository)

Note	 that	 committing	 inside	 a	 working	 tree	 created	 using	 the
checkout	 command	 implicitly	 commits	 the	 content	 to	 the	 central
location	 as	 well	 as	 locally.	 Had	 we	 used	 the	 branch	 command
instead	 of	 checkout	 above,	 the	 content	 would	 have	 only	 been

committed	locally.

Working	trees	that	are	tightly	bound	to	a	central	location	like	this	are
called	checkouts.	 The	 rest	 of	 this	 chapter	 explains	 their	 numerous
features	in	more	detail.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Using	checkouts

Turning	a	branch	into	a	checkout
If	you	have	a	 local	branch	and	wish	to	make	it	a	checkout,	use	the
bind	command	like	this:

bzr	bind	sftp://centralhost/srv/bzr/PROJECT/trunk

This	is	necessary,	for	example,	after	creating	a	central	branch	using
push	as	illustrated	in	the	previous	section.

After	this,	commits	will	be	applied	to	the	bound	branch	before	being
applied	locally.

Turning	a	checkout	into	a	branch
If	you	have	a	checkout	and	wish	to	make	it	a	normal	branch,	use	the
unbind	command	like	this:

bzr	unbind

After	this,	commits	will	only	be	applied	locally.

Getting	a	checkout
When	working	in	a	team	using	a	central	branch,	one	person	needs	to
provide	some	initial	content	as	shown	 in	 the	previous	section.	After
that,	each	person	should	use	the	checkout	command	to	create	their
local	 checkout,	 i.e.	 the	 sandbox	 in	 which	 they	 will	 make	 their
changes.

Unlike	 Subversion	 and	 CVS,	 in	 Bazaar	 the	 checkout	 command
creates	a	 local	 full	 copy	of	history	 in	addition	 to	creating	a	working
tree	holding	 the	 latest	content.	This	means	 that	operations	such	as
diff	and	log	are	fast	and	can	still	be	used	when	disconnected	from
the	central	location.

Getting	a	lightweight	checkout
While	Bazaar	does	 its	best	 to	efficiently	store	version	history,	 there
are	occasions	when	the	history	is	simply	not	wanted.	For	example,	if
your	team	is	managing	the	content	of	a	web	site	using	Bazaar	with	a
central	repository,	then	your	release	process	might	be	as	simple	as
updating	a	checkout	of	the	content	on	the	public	web	server.	In	this
case,	 you	 probably	 don’t	 want	 the	 history	 downloaded	 to	 that
location	as	doing	so:

wastes	disk	space	holding	history	that	isn’t	needed	there
exposes	a	Bazaar	branch	that	you	may	want	kept	private.

To	 get	 a	 history-less	 checkout	 in	 Bazaar,	 use	 the	 --lightweight
option	like	this:

bzr	checkout	--lightweight	sftp://centralhost/srv/bzr/PROJECT/trunk

Of	 course,	 many	 of	 the	 benefits	 of	 a	 normal	 checkout	 are	 lost	 by
doing	 this	but	 that’s	a	 tradeoff	you	can	make	 if	and	when	 it	makes
sense.

The	 --lightweight	 option	 only	 applies	 to	 checkouts,	 not	 to	 all
branches.

Note:	 If	 your	 code	 base	 is	 really	 large	 and	 disk	 space	 on	 your
computer	is	limited,	lightweight	checkouts	may	be	the	right	choice	for
you.	 Be	 sure	 to	 consider	 all	 your	 options	 though	 including	 shared
repositories,	stacked	branches,	and	reusing	a	checkout.

Updating	to	the	latest	content
One	 of	 the	 important	 aspects	 of	working	 in	 lockstep	with	 others	 is
keeping	your	 checkout	up	 to	date	with	 the	 latest	 changes	made	 to
the	central	branch.	Just	as	you	would	in	Subversion	or	CVS,	you	do
this	in	Bazaar	by	using	the	update	command	like	this:

bzr	update

This	 gets	 any	 new	 revisions	 available	 in	 the	 bound	 branch	 and
merges	your	local	changes,	if	any.

Handling	commit	failures
Note	that	your	checkout	must	be	up	 to	date	with	 the	bound	branch
before	 running	 commit.	 Bazaar	 is	 actually	 stricter	 about	 this	 than
Subversion	or	CVS	-	you	need	to	be	up	to	date	with	the	full	tree,	not
just	for	the	files	you’ve	changed.	Bazaar	will	ask	you	to	run	update	if
it	detects	that	a	revision	has	been	added	to	the	central	location	since
you	last	updated.

If	the	network	connection	to	the	bound	branch	is	lost,	the	commit	will
fail.	Some	alternative	ways	of	working	around	that	are	outlined	next.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Working	offline	on	a	central	branch

The	centralized	with	local	commits	workflow
If	you	 lose	your	network	connection	because	you	are	travelling,	 the
central	server	goes	down,	or	you	simply	want	 to	snapshot	changes
locally	without	publishing	them	centrally	 just	yet,	this	workflow	is	for
you.

Committing	locally
If	you’re	working	in	a	checkout	and	need/wish	to	commit	locally	only,
add	the	--local	option	to	the	commit	command	like	this:

bzr	commit	--local

Being	disconnected	for	long	time	periods
If	you	will	be	or	want	to	be	disconnected	from	the	bound	branch	for	a
while,	 then	remembering	 to	add	 --local	 to	every	 commit	command
can	 be	 annoying.	 An	 alternative	 is	 to	 use	 the	 unbind	 command	 to
make	the	checkout	temporarily	into	a	normal	branch	followed	by	the
bind	command	at	some	later	point	in	time	when	you	want	to	keep	in
lockstep	again.

Note	that	the	bind	command	remembers	where	you	were	bound	to
last	time	this	branch	was	a	checkout	so	it	isn’t	necessary	to	enter	the
URL	of	the	remote	branch	when	you	use	bind	after	an	earlier	unbind.

Merging	a	series	of	local	commits
When	 you	 make	 commits	 locally	 independent	 of	 ongoing
development	on	a	central	branch,	 then	Bazaar	 treats	 these	as	 two
lines	of	development	next	time	you	update.	In	this	case,	update	does
the	following:

it	 brings	 the	 latest	 revisions	 from	 the	 bound	 branch	 down
and	 makes	 that	 the	 mainline	 of	 development	 within	 your
checkout
it	moves	your	 local	changes	since	you	 last	updated	 into	a
logical	parallel	branch
it	 merges	 these	 together	 so	 that	 your	 local	 changes	 are
reported	as	a	pending	merge	by	status.

As	always,	you	will	need	to	run	commit	after	this	to	send	your	work	to
the	central	branch.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Reusing	a	checkout

Motivation
At	times,	it	can	be	useful	to	have	a	single	checkout	as	your	sandbox
for	 working	 on	 multiple	 branches.	 Some	 possible	 reasons	 for	 this
include:

saving	disk	space	when	the	working	tree	is	large
developing	in	a	fixed	location.

In	many	cases,	working	tree	disk	usage	swamps	the	size	of	the	.bzr
directory.	 If	 you	want	 to	work	on	multiple	branches	but	 can’t	 afford
the	 overhead	 of	 a	 full	 working	 tree	 for	 each,	 reusing	 a	 checkout
across	multiples	branches	is	the	way	to	go.

On	 other	 occasions,	 the	 location	 of	 your	 sandbox	 might	 be
configured	 into	 numerous	 development	 and	 testing	 tools.	 Once
again,	reusing	a	checkout	across	multiple	branches	can	help.

Changing	where	a	branch	is	bound	to
To	change	where	a	checkout	is	bound	to,	follow	these	steps:

1.	 Make	 sure	 that	 any	 local	 changes	 have	 been	 committed
centrally	so	that	no	work	is	lost.

2.	 Use	the	 bind	command	giving	the	URL	of	 the	new	remote
branch	you	wish	to	work	on.

3.	 Make	your	checkout	a	copy	of	the	desired	branch	by	using
the	update	command	followed	by	the	revert	command.

Note	that	simply	binding	to	a	new	branch	and	running	update	merges
in	your	 local	changes,	both	committed	and	uncommitted.	You	need
to	decide	whether	 to	 keep	 them	or	not	by	 running	either	 revert	or
commit.

An	 alternative	 to	 the	 bind+update	 recipe	 is	 using	 the	 switch

command.	 This	 is	 basically	 the	 same	 as	 removing	 the	 existing
branch	and	running	checkout	again	on	the	new	location,	except	that
any	uncommitted	changes	in	your	tree	are	merged	in.

Note:	As	 switch	 can	 potentially	 throw	 away	 committed	 changes	 in
order	 to	make	 a	 checkout	 an	 accurate	 cache	 of	 a	 different	 bound
branch,	 it	will	 fail	 by	 design	 if	 there	 are	 changes	which	have	been
committed	 locally	 but	 are	 not	 yet	 committed	 to	 the	 most	 recently
bound	 branch.	 To	 truly	 abandon	 these	 changes,	 use	 the	 --force
option.

Switching	a	lightweight	checkout
With	a	lightweight	checkout,	 there	are	no	local	commits	and	switch
effectively	changes	which	branch	the	working	tree	is	associated	with.
One	possible	setup	 is	 to	use	a	 lightweight	checkout	 in	combination
with	 a	 local	 tree-less	 repository.	 This	 lets	 you	 switch	what	 you	 are
working	on	with	ease.	For	example:

bzr	init-repo	--no-trees	PROJECT

cd	PROJECT

bzr	branch	sftp://centralhost/srv/bzr/PROJECT/trunk

bzr	checkout	--lightweight	trunk	my-sandbox

cd	my-sandbox

(hack	away)

Note	that	trunk	in	this	example	will	have	a	.bzr	directory	within	it	but
there	will	be	no	working	 tree	 there	as	 the	branch	was	created	 in	a
tree-less	 repository.	 You	 can	 grab	 or	 create	 as	many	 branches	 as
you	need	there	and	switch	between	them	as	required.	For	example:

(assuming	in	my-sandbox)

bzr	branch	sftp://centralhost/srv/bzr/PROJECT/PROJECT-1.0	../PROJECT-1.0

bzr	switch	../PROJECT-1.0

(fix	bug	in	1.0)

bzr	commit	-m	"blah,	blah	blah"

bzr	switch	../trunk

(go	back	to	working	on	the	trunk)

Note:	 The	 branches	 may	 be	 local	 only	 or	 they	 may	 be	 bound	 to
remote	ones	(by	creating	them	with	checkout	or	by	using	bind	after
creating	them	with	branch).

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Distributed	development

Motivation
Distributed	VCS	tools	offer	new	ways	of	working	together,	ways	that
better	 reflect	 the	 modern	 world	 we	 live	 in	 and	 ways	 that	 enable
higher	quality	outcomes.

The	decentralized	with	shared	mainline
workflow
In	 this	workflow,	each	developer	has	their	own	branch	or	branches,
plus	 a	 checkout	 of	 the	 main	 branch.	 They	 do	 their	 work	 in	 their
personal	branch,	then	merge	it	into	the	mainline	when	it	is	ready.

Other	distributed	workflows	are	explored	later	in	this	chapter.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Organizing	branches

Mirror	branches
A	primary	difference	when	using	distributed	workflows	to	develop	 is
that	 your	 main	 local	 branch	 is	 not	 the	 place	 to	 make	 changes.
Instead,	 it	 is	kept	as	a	pristine	copy	of	 the	central	branch,	 i.e.	 it’s	a
mirror	branch.

To	create	a	mirror	branch,	set-up	a	shared	repository	(if	you	haven’t
already)	and	then	use	the	 branch	 (or	 checkout)	command	to	create
the	mirror.	For	example:

bzr	init-repo	PROJECT

cd	PROJECT

bzr	branch	sftp://centralhost/srv/bzr/PROJECT/trunk

Task	branches
Each	 new	 feature	 or	 fix	 is	 developed	 in	 its	 own	 branch.	 These
branches	are	referred	to	as	feature	branches	or	task	branches	-	the
terms	are	used	interchangeably.

To	 create	 a	 task	 branch,	 use	 the	 branch	 command	 against	 your
mirror	branch.	For	example:

bzr	branch	trunk	fix-123

cd	fix-123

(hack,	hack,	hack)

There	are	numerous	advantages	to	this	approach:

1.	 You	can	work	on	multiple	changes	in	parallel
2.	 There	is	reduced	coupling	between	changes
3.	 Multiple	 people	 can	 work	 in	 a	 peer-to-peer	 mode	 on	 a

branch	until	it	is	ready	to	go.

In	particular,	some	changes	take	 longer	 to	cook	than	others	so	you
can	ask	for	reviews,	apply	feedback,	ask	for	another	review,	etc.	By
completing	 work	 to	 sufficient	 quality	 in	 separate	 branches	 before
merging	into	a	central	branch,	the	quality	and	stability	of	the	central
branch	are	maintained	at	higher	level	than	they	otherwise	would	be.

Refreshing	a	mirror	branch
Use	the	pull	command	to	do	this:

cd	trunk

bzr	pull

Merging	the	latest	trunk	into	a	feature
branch
Use	the	merge	command	to	do	this:

cd	fix-123

bzr	merge

(resolve	any	conflicts)

bzr	commit	-m	"merged	trunk"

Merging	a	feature	into	the	trunk
The	policies	for	different	distributed	workflows	vary	here.	The	simple
case	where	all	developers	have	commit	rights	to	the	main	trunk	are
shown	below.

If	your	mirror	is	a	checkout:

cd	trunk

bzr	update

bzr	merge	../fix-123

(resolve	any	conflicts)

bzr	commit	-m	"Fixed	bug	#123"

If	your	mirror	is	a	branch:

cd	trunk

bzr	pull

bzr	merge	../fix-123

(resolve	any	conflicts)

bzr	commit	-m	"Fixed	bug	#123"

bzr	push

Backing	up	task	branches
One	of	the	side	effects	of	centralized	workflows	is	that	changes	get
frequently	committed	to	a	central	location	which	is	backed	up	as	part
of	normal	 IT	operations.	When	developing	on	 task	branches,	 it	 is	a
good	 idea	 to	 publish	 your	 work	 to	 a	 central	 location	 (but	 not
necessarily	a	shared	location)	that	will	be	backed	up.	You	may	even
wish	 to	 bind	 local	 task	 branches	 to	 remote	 ones	 established	 on	 a
backup	server	just	for	this	purpose.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Using	gatekeepers

The	decentralized	with	human	gatekeeper
workflow
In	this	workflow,	one	developer	(the	gatekeeper)	has	commit	rights	to
the	main	branch	while	other	developers	have	 read-only	access.	All
developers	make	their	changes	in	task	branches.

When	a	developer	wants	their	work	merged,	they	ask	the	gatekeeper
to	 review	 their	change	and	merge	 it	 if	acceptable.	 If	a	change	 fails
review,	 further	 development	 proceeds	 in	 the	 relevant	 task	 branch
until	it	is	good	to	go.

Note	 that	 a	 key	 aspect	 of	 this	 approach	 is	 the	 inversion	 of	 control
that	 is	 implied:	developers	no	 longer	decide	when	to	“commit/push”
changes	 into	 the	 central	 branch:	 the	 code	 base	 evolves	 by
gatekeepers	 “merging/pulling”	 changes	 in	 a	 controlled	 manner.	 It’s
perfectly	 acceptable,	 indeed	 common,	 to	 have	 multiple	 central
branches	with	different	gatekeepers,	e.g.	one	branch	for	the	current

production	release	and	another	 for	 the	next	release.	 In	 this	case,	a
task	branch	holding	a	bug	 fix	will	most	 likely	be	advertised	 to	both
gatekeepers.

One	 of	 the	 great	 things	 about	 this	 workflow	 is	 that	 it	 is	 hugely
scalable.	 Large	 projects	 can	 be	 broken	 into	 teams	 and	 each	 team
can	 have	 a	 local	 master	 branch	 managed	 by	 a	 gatekeeper.
Someone	 can	 be	 appointed	 as	 the	 primary	 gatekeeper	 to	 merge
changes	 from	 the	 team	 master	 branches	 into	 the	 primary	 master
branch	when	team	leaders	request	it.

The	decentralized	with	automatic
gatekeeper	workflow
To	 obtain	 even	 higher	 quality,	 all	 developers	 can	 be	 required	 to
submit	changes	 to	an	automated	gatekeeper	 that	only	merges	and
commits	 a	 change	 if	 it	 passes	 a	 regression	 test	 suite.	 One	 such
gatekeeper	is	a	software	tool	called	PQM.

For	further	information	on	PQM,	see	https://launchpad.net/pqm.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

https://launchpad.net/pqm
http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Sending	changes

Motivation
In	many	 distributed	 development	 scenarios,	 it	 isn’t	 always	 feasible
for	developers	to	share	task	branches	by	advertising	their	URLs.	For
example,	 a	 developer	 working	 on	 a	 laptop	 might	 take	 it	 home
overnight	so	his/her	task	branches	could	well	be	inaccessible	when	a
gatekeeper	in	another	timezone	wants	to	review	or	merge	it.

Bazaar	provides	a	neat	feature	to	assist	here:	merge	directives.

Understanding	merge	directives
You	can	think	of	a	merge	directive	as	a	“mini	branch”	-	just	the	new
growth	 on	 a	 branch	 since	 it	 was	 created.	 It’s	 a	 software	 patch
showing	 what’s	 new	 but	 with	 added	 intelligence:	 metadata	 like
interim	commits,	renames	and	digital	signatures.

Another	useful	metaphor	 is	a	packet	cake:	a	merge	directive	has	a
recipe	 together	with	 the	 ingredients	 you	 need	bundled	 inside	 it.	 To
stretch	 the	 metaphor,	 the	 ingredients	 are	 all	 the	 metadata	 on	 the
changes	made	to	the	branch;	the	recipe	is	instructions	on	how	those
changes	ought	to	be	merged,	i.e.	information	for	the	merge	command
to	use	in	selecting	common	ancestors.

Regardless	 of	 how	 you	 think	 of	 them,	 merge	 directives	 are	 neat.
They	are	easy	to	create,	suitable	for	mailing	around	as	attachments
and	can	be	processed	much	like	branches	can	on	the	receiving	end.

Creating	a	merge	directive
To	 create	 and	 optionally	 send	 a	 merge	 directive,	 use	 the	 send
command.

By	 default,	 send	 will	 email	 the	 merge	 directive	 to	 the	 “submission
address”	for	the	branch,	which	is	typically	the	lead	developer	or	the
development	 mailing	 list.	 send	 without	 options	 will	 create	 a	 merge
directive,	 fire	up	your	email	 tool	and	attach	 it,	 ready	 for	you	 to	add
the	 explanatory	 text	 bit.	 (See	 the	 online	 help	 for	 send	 and
Configuration	Settings	 in	 the	 User	 Reference	 for	 further	 details	 on
how	to	configure	this.)

Most	projects	like	people	to	add	some	explanation	to	the	mail	along
with	 the	 patch,	 explaining	 the	 reason	 for	 the	 patch,	 and	 why	 it	 is
done	the	way	it	is.	This	gives	a	reviewer	some	context	before	going
into	the	line-by-line	diff.

Alternatively,	if	the	--output	(or	-o)	option	is	given,	send	will	write	the
merge	directive	 to	a	 file,	so	you	can	mail	 it	 yourself,	examine	 it,	or
save	 it	 for	 later	 use.	 If	 an	 output	 file	 of	 -	 is	 given,	 the	 directive	 is
written	to	stdout.	For	example:

cd	X-fix-123

bzr	send	-o	../fix-123.patch

Applying	a	merge	directive
Merge	directives	can	be	applied	in	much	the	same	way	as	branches:
by	using	the	merge	and	pull	commands.

They	can	also	be	useful	when	communicating	with	upstream	projects
that	don’t	use	Bazaar.	In	particular,	the	preview	of	the	overall	change
in	a	merge	directive	looks	like	a	vanilla	software	patch,	so	they	can
be	applied	using	patch	-p0	for	example.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

The	journey	ahead
We	hope	that	earlier	chapters	have	given	you	a	solid	understanding
of	how	Bazaar	can	assist	you	 in	being	productive	on	your	own	and
working	effectively	with	others.	If	you	are	learning	Bazaar	for	the	first
time,	 it	might	 be	 good	 to	 try	 the	 procedures	 covered	 already	 for	 a
while,	coming	back	to	this	manual	once	you	have	mastered	them.

Remaining	 chapters	 covers	 various	 topics	 to	 guide	 you	 in	 further
optimizing	how	you	use	Bazaar.	Unless	stated	otherwise,	the	topics
in	 this	 and	 remaining	 chapters	 are	 independent	 of	 each	 other	 and
can	therefore	be	read	in	whichever	order	you	wish.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Pseudo	merging

Cherrypicking
At	times,	it	can	be	useful	to	selectively	merge	some	of	the	changes
in	 a	 branch,	 but	 not	 all	 of	 them.	 This	 is	 commonly	 referred	 to	 as
cherrypicking.	 Here	 are	 some	 examples	 of	 where	 cherrypicking	 is
useful:

selectively	taking	fixes	from	the	main	development	branch	into	a
release	branch
selectively	 taking	 improvements	out	of	an	experimental	branch
into	a	feature	branch.

To	merge	only	 the	changes	made	by	 revision	X	 in	branch	 foo,	 the
command	is:

bzr	merge	-c	X	foo

To	 merge	 only	 the	 changes	 up	 to	 revision	 X	 in	 branch	 foo,	 the
command	is:

bzr	merge	-r	X	foo

To	 merge	 only	 the	 changes	 since	 revision	 X	 in	 branch	 foo,	 the
command	is:

bzr	merge	-r	X..	foo

To	merge	only	 the	changes	 from	revision	X	 to	 revision	Y	 in	branch
foo,	the	command	is:

bzr	merge	-r	X..Y	foo

Like	a	normal	merge,	 you	must	explicitly	 commit	a	cherrypick.	You
may	wish	 to	 see	 the	 changes	made	using	 bzr	 diff,	 and	 run	 your

test	suite	if	any,	before	doing	this.

Unlike	a	normal	merge,	Bazaar	does	not	currently	track	cherrypicks.
In	 particular,	 the	 changes	 look	 like	 a	 normal	 commit	 and	 the
(internal)	 revision	 history	 of	 the	 changes	 from	 the	 other	 branch	 is
lost.	In	many	cases	where	they	are	useful	(see	above),	this	is	not	a
major	 problem	 because	 there	 are	 good	 reasons	 why	 a	 full	 merge
should	 never	 be	 done	 at	 a	 later	 time.	 In	 other	 cases,	 additional
conflicts	 will	 need	 to	 be	 resolved	 when	 the	 changes	 are	 merged
again.

Merging	without	parents
A	 related	 technique	 to	 cherrypicking,	 in	 that	 it	 makes	 changes
without	reference	to	the	revisions	that	they	came	from	is	to	perform	a
merge,	but	forget	about	the	parent	revisions	before	committing.	This
has	the	effect	of	making	all	of	the	changes	that	would	have	been	in
the	merge	happen	 in	 a	 single	 commit.	After	 the	merge	 and	 before
the	corresponding	commit,	you	can	do:

bzr	revert	--forget-merges

to	 keep	 the	changes	 in	 the	working	 tree,	but	 remove	 the	 record	of
the	revisions	where	the	changes	originated.	The	next	commit	would
then	 record	all	 of	 those	changes	without	any	 record	of	 the	merged
revisions.

This	 is	 desired	 by	 some	 users	 to	make	 their	 history	 “cleaner”,	 but
you	should	be	careful	that	the	loss	of	history	does	not	outweigh	the
value	 of	 cleanliness,	 particularly	 given	 Bazaar’s	 capabilities	 for
progressively	disclosing	merged	revisions.	In	particular,	because	this
will	 include	 the	 changes	 from	 the	 source	 branch,	 but	 without
attribution	 to	 that	branch,	 it	 can	 lead	 to	additional	 conflicts	on	 later
merges	that	involve	the	same	source	and	target	branches.

Reverse	cherrypicking
Cherrypicking	 can	 be	 used	 to	 reverse	 a	 set	 of	 changes	 made	 by
giving	an	upper	bound	in	the	revision	range	which	is	below	the	lower
bound.	For	example,	 to	back-out	changes	made	 in	 revision	10,	 the
command	is:

bzr	merge	-r	10..9

If	you	want	to	take	most	changes,	but	not	all,	from	somewhere	else,
you	 may	 wish	 to	 do	 a	 normal	 merge	 followed	 by	 a	 few	 reverse
cherrypicks.

Merging	uncommitted	changes
If	 you	 have	 several	 branches	 and	 you	 accidentally	 start	 making
changes	in	the	wrong	one,	here	are	the	steps	to	take	to	correct	this.
Assuming	you	began	working	in	branch	foo	when	you	meant	to	work
in	branch	bar:

1.	 Change	into	branch	bar.
2.	 Run	bzr	merge	--uncommitted	foo
3.	 Check	the	changes	came	across	(bzr	diff)
4.	 Change	into	branch	foo
5.	 Run	bzr	revert.

Rebasing
Another	option	to	normal	merging	is	rebasing,	i.e.	making	it	look	like
the	 current	 branch	 originated	 from	 a	 different	 point	 than	 it	 did.
Rebasing	 is	supported	 in	Bazaar	by	 the	 rebase	command	provided
by	the	rebase	plugin.

The	rebase	command	takes	the	location	of	another	branch	on	which
the	 branch	 in	 the	 current	 working	 directory	 will	 be	 rebased.	 If	 a
branch	 is	 not	 specified	 then	 the	parent	 branch	 is	 used,	 and	 this	 is
usually	the	desired	result.

The	 first	 step	 identifies	 the	 revisions	 that	 are	 in	 the	 current	 branch
that	are	not	 in	 the	parent	branch.	The	current	branch	 is	 then	set	 to
be	at	 the	 same	 revision	as	 the	 target	branch,	and	each	 revision	 is
replayed	on	top	of	the	branch.	At	the	end	of	the	process	it	will	appear
as	 though	 your	 current	 branch	 was	 branched	 off	 the	 current	 last
revision	of	the	target.

Each	revision	that	is	replayed	may	cause	conflicts	in	the	tree.	If	this
happens	 the	 command	 will	 stop	 and	 allow	 you	 to	 fix	 them	 up.
Resolve	 the	 commits	 as	 you	 would	 for	 a	 merge,	 and	 then	 run	 bzr
resolve	to	marked	them	as	resolved.	Once	you	have	resolved	all	the
conflicts,	you	should	run	bzr	rebase-continue	to	continue	the	rebase
operation.	 If	 conflicts	 are	 encountered	 and	 you	 decide	 not	 to
continue,	you	can	run	 bzr	rebase-abort.	You	can	also	use	 rebase-
todo	to	show	the	list	of	commits	still	to	be	replayed.

Note:	Some	users	coming	 from	central	VCS	 tools	with	poor	merge
tracking	 like	 rebasing	 because	 it’s	 similar	 to	 how	 they	 are	 use	 to
working	 in	 older	 tools,	 or	 because	 “perfectly	 clean”	 history	 seems
important.	Before	rebasing	 in	Bazaar,	 think	about	whether	a	normal
merge	 is	 a	 better	 choice.	 In	 particular,	 rebasing	 a	 private	 branch

before	 sharing	 it	 is	 OK	 but	 rebasing	 after	 sharing	 a	 branch	 with
someone	else	is	strongly	discouraged.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Shelving	Changes
Sometimes	you	will	want	 to	 temporarily	 remove	changes	 from	your
working	tree	and	restore	them	later,	For	instance	to	commit	a	small
bug-fix	you	found	while	working	on	something.	Bazaar	allows	you	to
put	changes	on	a	 shelf	 to	achieve	 this.	When	you	want	 to	 restore
the	 changes	 later	 you	 can	 use	 unshelve	 to	 apply	 them	 to	 your
working	tree	again.

For	 example,	 consider	 a	 working	 tree	 with	 one	 or	 more	 changes
made	...

$	bzr	diff

===	modified	file	'description.txt'

---	description.txt

+++	description.txt

@@	-2,7	+2,7	@@

	===============

	These	plugins

-by	Michael	Ellerman

+written	by	Michael	Ellerman

	provide	a	very

	fine-grained	'undo'

	facility

@@	-11,6	+11,6	@@

	This	allows	you	to

	undo	some	of

	your	changes,

-commit,	and	get

+perform	a	commit,	and	get

	back	to	where	you

	were	before.

The	shelve	command	interactively	asks	which	changes	you	want	to
retain	in	the	working	tree:

$	bzr	shelve

---	description.txt

+++	description.txt

@@	-2,7	+2,7	@@

	===============

	These	plugins

-by	Michael	Ellerman

+written	by	Michael	Ellerman

	provide	a	very

	fine-grained	'undo'

	facility

Shelve?	[yNfrq?]:	y

---	description.txt

+++	description.txt

@@	-11,6	+11,6	@@

	This	allows	you	to

	undo	some	of

	your	changes,

-commit,	and	get

+perform	a	commit,	and	get

	back	to	where	you

	were	before.

Shelve?	[yNfrq?]:	n

Shelve	2	change(s)?	[yNfrq?]',	'y'

Selected	changes:

	M		description.txt

Changes	shelved	with	id	"1".

If	there	are	lots	of	changes	in	the	working	tree,	you	can	provide	the
shelve	command	with	a	list	of	files	and	you	will	only	be	asked	about
changes	 in	 those	 files.	 After	 shelving	 changes,	 it’s	 a	 good	 idea	 to
use	diff	to	confirm	the	tree	has	just	the	changes	you	expect:

$	bzr	diff

===	modified	file	'description.txt'

---	description.txt

+++	description.txt

@@	-2,7	+2,7	@@

	===============

	These	plugins

-by	Michael	Ellerman

+written	by	Michael	Ellerman

	provide	a	very

	fine-grained	'undo'

	facility

Great	-	you’re	ready	to	commit:

$	bzr	commit	-m	"improve	first	sentence"

At	some	later	time,	you	can	bring	the	shelved	changes	back	into	the
working	tree	using	unshelve:

$	bzr	unshelve

Unshelving	changes	with	id	"1".

	M		description.txt

All	changes	applied	successfully.

If	you	want	to,	you	can	put	multiple	items	on	the	shelf.	Normally	each
time	 you	 run	 unshelve	 the	 most	 recently	 shelved	 changes	 will	 be
reinstated.	However,	 you	 can	 also	 unshelve	 changes	 in	 a	 different
order	by	explicitly	specifying	which	changes	to	unshelve.

Bazaar	 merges	 the	 changes	 in	 to	 your	 working	 tree,	 so	 they	 will
apply	 even	 if	 you	 have	 edited	 the	 files	 since	 you	 shelved	 them,
though	they	may	conflict,	in	which	case	you	will	have	to	resolve	the
conflicts	in	the	same	way	you	do	after	a	conflicted	merge.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Filtered	views

Introducing	filtered	views
Views	 provide	 a	mask	 over	 the	 tree	 so	 that	 users	 can	 focus	 on	 a
subset	 of	 a	 tree	 when	 doing	 their	 work.	 There	 are	 several	 cases
where	 this	 masking	 can	 be	 helpful.	 For	 example,	 technical	 writers
and	 testers	on	many	 large	projects	may	prefer	 to	deal	with	 just	 the
directories/files	in	the	project	of	interest	to	them.

Developers	 may	 also	 wish	 to	 break	 a	 large	 set	 of	 changes	 into
multiple	 commits	 by	 using	 views.	 While	 shelve	 and	 unshelve	 let
developers	 put	 some	 changes	 aside	 for	 a	 later	 commit,	 views	 let
developers	specify	what	 to	 include	 in	 (instead	of	exclude	 from)	 the
next	commit.

After	creating	a	view,	commands	that	support	a	 list	of	 files	-	status,
diff,	commit,	etc	-	effectively	have	that	list	of	files	implicitly	given	each
time.	An	explicit	list	of	files	can	still	be	given	to	these	commands	but
the	nominated	files	must	be	within	the	current	view.	In	contrast,	tree-
centric	 commands	 -	 pull,	merge,	 update,	 etc.	 -	 continue	 to	operate
on	 the	 whole	 tree	 but	 only	 report	 changes	 relevant	 to	 the	 current
view.	In	both	cases,	Bazaar	notifies	the	user	each	time	it	uses	a	view
implicitly	 so	 that	 it	 is	 clear	 that	 the	 operation	 or	 output	 is	 being
masked	accordingly.

Note:	Filtered	views	are	only	supported	 in	 format	2a,	 the	default	 in
Bazaar	2.0,	or	later.

Creating	a	view
This	 is	 done	 by	 specifying	 the	 files	 and	 directories	 using	 the	 view
command	like	this:

bzr	view	file1	file2	dir1	...

The	output	is:

Using	'my'	view:	file1,	file2,	dir1

Listing	the	current	view
To	see	the	current	view,	use	the	view	command	without	arguments:

bzr	view

If	 no	 view	 is	 current,	 a	message	will	 be	 output	 saying	 No	 current
view..	Otherwise	 the	name	and	 content	 of	 the	 current	 view	will	 be
displayed	like	this:

'my'	view	is:	a,	b,	c

Switching	between	views
In	most	cases,	a	view	has	a	short	 life-span:	 it	 is	created	to	make	a
selected	 change	and	 is	 deleted	once	 that	 change	 is	 committed.	At
other	times,	you	may	wish	to	create	one	or	more	named	views	and
switch	between	them.

To	define	a	named	view	and	switch	to	it:

bzr	view	--name	view-name	file1	dir1	...

For	example:

bzr	view	--name	doc	NEWS	doc/

Using	doc	view:	NEWS,	doc/

To	list	a	named	view:

bzr	view	--name	view-name

To	switch	to	a	named	view:

bzr	view	--switch	view-name

To	list	all	views	defined:

bzr	view	--all

Temporarily	disabling	a	view
To	disable	the	current	view	without	deleting	it,	you	can	switch	to	the
pseudo	view	called	 off.	This	can	be	useful	when	you	need	 to	see
the	whole	tree	for	an	operation	or	two	(e.g.	merge)	but	want	to	switch
back	to	your	view	after	that.

To	disable	the	current	view	without	deleting	it:

bzr	view	--switch	off

After	doing	 the	operations	you	need	 to,	you	can	switch	back	 to	 the
view	 you	 were	 using	 by	 name.	 For	 example,	 if	 the	 previous	 view
used	the	default	name:

bzr	view	--switch	my

Deleting	views
To	delete	the	current	view:

bzr	view	--delete

To	delete	a	named	view:

bzr	view	--name	view-name	--delete

To	delete	all	views:

bzr	view	--delete	--all

Things	to	be	aware	of
Defining	a	view	does	not	delete	the	other	files	in	the	working	tree	-	it
merely	provides	a	“lens”	over	the	working	tree.

Views	are	stored	as	working	tree	metadata.	They	are	not	propagated
by	branch	commands	like	pull,	push	and	update.

Views	are	defined	in	terms	of	file	paths.	If	you	move	a	file	in	a	view
to	 a	 location	 outside	 of	 the	 view,	 the	 view	will	 no	 longer	 track	 that
path.	 For	 example,	 if	 a	 view	 is	 defined	 as	 doc/	 and	 doc/NEWS	 gets
moved	 to	 NEWS,	 the	 views	 stays	 defined	 as	 doc/	 and	 does	 not	 get
changed	 to	 doc/	 NEWS.	 Likewise,	 deleting	 a	 file	 in	 a	 view	 does	 not
remove	the	file	from	that	view.

The	commands	that	use	the	current	view	are:

status
diff
commit
add
remove
revert
mv
ls.

Commands	 that	 operate	 on	 the	 full	 tree	 but	 only	 report	 changes
inside	the	current	view	are:

pull
update
merge.

Many	commands	currently	ignore	the	current	view.	Over	time,	some

of	 these	 commands	may	 be	 added	 to	 the	 lists	 above	 as	 the	 need
arises.	By	design,	some	commands	will	most	likely	always	ignore	the
current	view	because	showing	the	whole	picture	is	the	better	thing	to
do.	Commands	in	this	group	include:

log
info.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Using	stacked	branches

Motivation
If	you	are	working	on	a	project,	and	you	have	read	access	to	whose
public	 repository	 but	 do	 not	 have	write	 access	 to	 it,	 using	 stacked
branches	 to	 backup/publish	 your	 work	 onto	 the	 same	 host	 of	 the
public	repository	might	be	an	option	for	you.

Other	 scenarios	 for	 stacked	 branch	 usage	 include	 experimental
branches	 and	 code	 hosting	 sites.	 For	 these	 scenarios,	 stacked
branches	are	ideal	because	of	the	benefits	it	provides.

What	is	a	stacked	branch?
A	 stacked	 branch	 is	 a	 branch	 that	 knows	 how	 to	 find	 revisions	 in
another	branch	(the	stacked-on	branch).	Stacked	branches	store	just
the	unique	 revisions	 that	are	not	 in	 the	stacked-on	branch,	making
them	faster	 to	create	and	more	storage	efficient.	 In	 these	respects,
stacked	 branches	 are	 similar	 to	 shared	 repositories.	 However,
stacked	branches	have	additional	benefits:

The	new	branch	can	be	in	a	completely	different	location	to	the
branch	being	stacked	on.
Deleting	the	stacked	branch	really	deletes	 the	revisions	(rather
than	leaving	them	in	a	shared	repository).
Security	 is	 improved	 over	 shared	 repositories,	 because	 the
stacked-on	repository	can	be	physically	readonly	to	developers
committing	to	stacked	branches.

Creating	a	stacked	branch
To	 create	 a	 stacked	 branch,	 use	 the	 stacked	 option	 of	 the	 branch
command.	For	example:

bzr	branch	--stacked	source-url	my-dir

This	will	create	my-dir	as	a	stacked	branch	with	no	local	revisions.	If
it	 is	 defined,	 the	 public	 branch	 associated	 with	 source-url	 will	 be
used	as	 the	stacked-on	 location.	Otherwise,	 source-url	will	 be	 the
stacked-on	location.

Creating	a	stacked	checkout
Direct	 creation	 of	 a	 stacked	 checkout	 is	 expected	 to	 be	 supported
soon.	In	the	meantime,	a	two	step	process	is	required:

1.	 Create	a	stacked	branch	as	shown	above.
2.	 Convert	the	branch	into	a	checkout	using	either	the	reconfigure

or	bind	command.

Pushing	a	stacked	branch
Most	changes	on	most	projects	build	on	an	existing	branch	such	as
the	 development	 trunk	 or	 current	 stable	 branch.	 Creating	 a	 new
branch	 stacked	 on	 one	 of	 these	 is	 easy	 to	 do	 using	 the	 push
command	like	this:

bzr	push	--stacked-on	reference-url	my-url

This	creates	a	new	branch	at	 my-url	 that	 is	stacked	on	 reference-
url	and	only	contains	the	revisions	in	the	current	branch	that	are	not
already	 in	 the	 branch	 at	 reference-url.	 In	 particular,	 my-url	 and
reference-url	 can	be	on	 the	same	host,	 and	 the	 --stacked	 option
can	be	used	additionally	to	inform	push	to	reference	the	revisions	in
reference-url.	For	example:

bzr	push	--stacked-on	sftp://host/project	--stacked	sftp://host/user/stacked-branch

This	usage	fits	the	scenario	described	in	the	Motivation	section.

Limitations	of	stacked	branches
Currently,	 you	 cannot	 commit	 to	 a	 stacked	 branch,	 due	 to	 bug
375013.

The	important	thing	to	remember	about	a	stacked	branch	is	that	the
stacked-on	 branch	 needs	 to	 be	 available	 for	 almost	 all	 operations.
This	is	not	an	issue	when	both	branches	are	local	or	both	branches
are	on	the	same	server.

Similarly,	 because	 most	 of	 the	 history	 is	 stored	 in	 the	 stacked-on
repository,	operations	like	bzr	log	can	be	slower	when	the	stacked-
on	repository	is	accessed	via	a	network.

https://bugs.launchpad.net/bzr/+bug/375013

Changing	branch	stacking
Stacking	 of	 existing	 branches	 can	 be	 changed	 using	 the	 bzr

reconfigure	 command	 to	 either	 stack	 on	 an	 existing	 branch,	 or	 to
turn	off	stacking.	Be	aware	that	when	bzr	reconfigure	--unstacked
is	 used,	 bzr	 will	 copy	 all	 the	 referenced	 data	 from	 the	 stacked-on
repository	 into	 the	 previously	 stacked	 repository.	 For	 large
repositories	 this	may	 take	 considerable	 time	and	may	 substantially
increase	the	size	of	the	repository.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Running	a	smart	server
Bazaar	 does	 not	 require	 a	 specialised	 server	 because	 it	 operates
over	HTTP,	FTP	or	SFTP.	There	is	an	optional	smart	server	that	can
be	invoked	over	SSH,	from	inetd,	or	in	a	dedicated	mode.

Dumb	servers
We	 describe	 HTTP,	 FTP,	 SFTP	 and	 HTTP-WebDAV	 as	 “dumb”
servers	because	 they	do	not	offer	any	assistance	 to	Bazaar.	 If	 you
make	 a	 Bazaar	 repository	 available	 over	 any	 of	 these	 protocols,
Bazaar	will	allow	you	 to	 read	 it	 remotely.	Just	enter	 the	URL	 to	 the
branch	in	the	Bazaar	command	you	are	running.:

bzr	log	http://bazaar-vcs.org/bzr/bzr.dev

Bazaar	 supports	 writing	 over	 FTP,	 SFTP	 and	 (via	 a	 plugin)	 over
HTTP-WebDAV.

High-performance	smart	server
The	 high-performance	 smart	 server	 (hpss)	 performs	 certain
operations	much	faster	 than	dumb	servers	are	capable	of.	 In	 future
releases,	 the	 range	 of	 operations	 that	 are	 improved	 by	 using	 the
smart	server	will	increase	as	we	continue	to	tune	performance.

To	maintain	 the	 highest	 security	 possible,	 the	 current	 smart	 server
provides	 read-only	access	by	default.	To	enable	 read-write	access,
run	it	with	--allow-writes.	When	using	the	SSH	access	method,	bzr
automatically	runs	with	the	--allow-writes	option.

The	 alternative	 ways	 of	 configuring	 a	 smart	 server	 are	 explained
below.

SSH

Using	 Bazaar	 over	 SSH	 requires	 no	 special	 configuration	 on	 the
server;	 so	 long	 as	 Bazaar	 is	 installed	 on	 the	 server	 you	 can	 use
bzr+ssh	URLs,	e.g.:

bzr	log	bzr+ssh://host/path/to/branch

If	bzr	 is	 not	 installed	 system-wide	 on	 the	 server	 you	may	 need	 to
explicitly	tell	the	local	bzr	where	to	find	the	remote	bzr:

BZR_REMOTE_PATH=~/bin/bzr	bzr	log	bzr+ssh://host/path/to/branch

The	 BZR_REMOTE_PATH	 environment	 variable	 adjusts	 how	 bzr	 will	 be
invoked	on	 the	 remote	system.	By	default,	 just	bzr	will	be	 invoked,
which	requires	the	bzr	executable	to	be	on	the	default	search	path.
You	can	also	set	this	permanently	per-location	in	locations.conf.

Like	SFTP,	paths	starting	with	~	are	relative	to	your	home	directory,
e.g.	 bzr+ssh://example.com/~/code/proj.	Additionally,	paths	starting
with	~user	will	be	relative	to	that	user’s	home	directory.

inetd

This	example	shows	how	to	run	bzr	with	a	dedicated	user	bzruser	for
a	 shared	 repository	 in	 /srv/bzr/repo	 which	 has	 a	 branch	 at
/srv/bzr/repo/branchname.

Running	a	Bazaar	server	from	inetd	requires	an	inetd.conf	entry:

4155		stream		tcp		nowait		bzruser		/usr/bin/bzr	/usr/bin/bzr	serve	--inet	--directory=/srv/bzr/repo

When	running	client	commands,	the	URL	you	supply	is	a	bzr://	URL
relative	to	the	--directory	option	given	in	inetd.conf:

bzr	log	bzr://host/branchname

If	possible,	paths	starting	with	 ~	and	 ~user	will	be	expanded	as	 for
bzr+ssh.	Home	directories	outside	 the	 --directory	 specified	 to	 bzr
serve	will	not	be	accessible.

Dedicated

This	 mode	 has	 the	 same	 path	 and	 URL	 behaviour	 as	 the	 inetd
mode.	To	run	as	a	specific	user,	you	should	use	su	or	 login	as	that
user.

This	example	runs	bzr	on	its	official	port	number	of	4155	and	listens
on	all	interfaces.	This	allows	connections	from	anywhere	in	the	world
that	can	reach	your	machine	on	port	4155.

server:

bzr	serve	--directory=/srv/bzr/repo

client:

bzr	log	bzr://host/branchname

This	example	runs	bzr	serve	on	localhost	port	1234.

server:

bzr	serve	--port=localhost:1234	--directory=/srv/bzr/repo

client:

bzr	log	bzr://localhost:1234/branchname

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Using	hooks

What	is	a	hook?
One	 way	 to	 customize	 Bazaar’s	 behaviour	 is	 with	 hooks.	 Hooks
allow	 you	 to	 perform	 actions	 before	 or	 after	 certain	 Bazaar
operations.	The	operations	include	commit,	push,	pull,	and	uncommit.
For	a	complete	list	of	hooks	and	their	parameters,	see	Hooks	in	the
User	Reference.

Most	hooks	are	 run	on	 the	 client,	 but	 a	 few	are	 run	on	 the	 server.
(Also	see	the	push-and-update	plugin	that	handles	one	special	case
of	server-side	operations.)

http://doc.bazaar.canonical.com/plugins/en/push-and-update-plugin.html

Using	hooks
To	use	a	hook,	you	should	write	a	plugin.	Instead	of	creating	a	new
command,	 this	 plugin	 will	 define	 and	 install	 the	 hook.	 Here’s	 an
example:

from	bzrlib	import	branch

def	post_push_hook(push_result):

				print	"The	new	revno	is	%d"	%	push_result.new_revno

branch.Branch.hooks.install_named_hook('post_push',	post_push_hook

																																	'My	post_push	hook')

To	use	this	example,	create	a	file	named	push_hook.py,	and	stick	it	in
plugins	 subdirectory	 of	 your	 configuration	 directory.	 (If	 you	 have
never	 installed	 any	 plugins,	 you	 may	 need	 to	 create	 the	 plugins
directory).

That’s	 it!	 The	 next	 time	 you	 push,	 it	 should	 show	 “The	 new	 revno
is...”.	 Of	 course,	 hooks	 can	 be	 much	 more	 elaborate	 than	 this,
because	 you	 have	 the	 full	 power	 of	 Python	 at	 your	 disposal.	 Now
that	you	know	how	to	use	hooks,	what	you	do	with	them	is	up	to	you.

The	plugin	code	does	two	things.	First,	it	defines	a	function	that	will
be	 run	 after	 push	 completes.	 (It	 could	 instead	 use	 an	 instance
method	or	a	callable	object.)	All	push	hooks	take	a	single	argument,
the	push_result.

Second,	the	plugin	installs	the	hook.	The	first	argument	'post_push'
identifies	where	to	install	the	hook.	The	second	argument	is	the	hook
itself.	The	third	argument	is	a	name	'My	post_push	hook',	which	can
be	used	in	progress	messages	and	error	messages.

http://doc.bazaar.canonical.com/plugins/en/plugin-development.html

Debugging	hooks
To	get	a	list	of	installed	hooks,	use	the	hidden	hooks	command:

bzr	hooks

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Exporting	version	information

Getting	the	last	revision	number
If	 you	only	need	 the	 last	 revision	number	 in	 your	build	 scripts,	 you
can	use	the	revno	command	to	get	that	value	like	this:

$	bzr	revno

3104

Getting	more	version	information
The	version-info	command	can	be	used	to	output	more	information
about	the	latest	version	like	this:

$	bzr	version-info

revision-id:	pqm@pqm.ubuntu.com-20071211175118-s94sizduj201hrs5

date:	2007-12-11	17:51:18	+0000

build-date:	2007-12-13	13:14:51	+1000

revno:	3104

branch-nick:	bzr.dev

You	 can	 easily	 filter	 that	 output	 using	 operating	 system	 tools	 or
scripts.	For	example	(on	Linux/Unix):

$	bzr	version-info	|	grep	^date

date:	2007-12-11	17:51:18	+0000

The	--all	option	will	actually	dump	version	information	about	every
revision	 if	 you	 need	 that	 information	 for	 more	 advanced	 post-
processing.

Python	projects
If	using	a	Makefile	to	build	your	project,	you	can	generate	the	version
information	file	as	simply	as:

library/_version.py:

						bzr	version-info	--format	python	>	library/_version.py

This	generates	a	file	which	contains	3	dictionaries:

version_info:	 A	 dictionary	 containing	 the	 basic	 information
about	the	current	state.
revisions:	 A	 dictionary	 listing	 all	 of	 the	 revisions	 in	 the
history	of	the	tree,	along	with	the	commit	times	and	commit
message.	This	defaults	 to	being	empty	unless	 --all	or	 --
include-history	 is	 supplied.	 This	 is	 useful	 if	 you	 want	 to
track	what	bug	fixes,	etc,	might	be	included	in	the	released
version.	 But	 for	many	 projects	 it	 is	more	 information	 than
needed.
file_revisions:	A	dictionary	 listing	 the	 last-modified	 revision
for	all	files	in	the	project.	This	can	be	used	similarly	to	how
Id	 keywords	 are	 used	 in	 CVS-controlled	 files.	 The	 last
modified	 date	 can	 be	 determined	 by	 looking	 in	 the
revisions	map.	This	is	also	empty	by	default,	and	enabled
only	by	--all	or	--include-file-revisions.

Getting	version	info	in	other	formats
Bazaar	 supports	 a	 template-based	 method	 for	 getting	 version
information	in	arbitrary	formats.	The	--custom	option	to	version-info
can	 be	 used	 by	 providing	 a	 --template	 argument	 that	 contains
variables	 that	will	be	expanded	based	on	 the	status	of	 the	working
tree.	For	example,	to	generate	a	C	header	file	with	a	formatted	string
containing	the	current	revision	number:

bzr	version-info	--custom	\

					--template="#define	VERSION_INFO	\"Project	1.2.3	(r{revno})\"\n"	\

					>	version_info.h

where	 the	 {revno}	 will	 be	 replaced	 by	 the	 revision	 number	 of	 the
working	 tree.	 (If	 the	 example	 above	 doesn’t	 work	 on	 your	 OS,	 try
entering	the	command	all	on	one	line.)	For	more	information	on	the
variables	 that	 can	 be	 used	 in	 templates,	 see	 Version	 Info	 in	 the
Bazaar	User	Reference.

Predefined	 formats	 for	 dumping	 version	 information	 in	 specific
languages	 are	 currently	 in	 development.	 Please	 contact	 us	 on	 the
mailing	list	about	your	requirements	in	this	area.

Check	clean
Most	 information	 about	 the	 contents	 of	 the	 project	 can	 be	 cheaply
determined	 by	 just	 reading	 the	 revision	 entry.	 However,	 it	 can	 be
useful	to	know	if	the	working	tree	was	completely	up-to-date	when	it
was	 packaged,	 or	 if	 there	 was	 a	 local	 modification.	 By	 supplying
either	--all	or	--check-clean,	bzr	will	inspect	the	working	tree,	and
set	 the	 clean	 flag	 in	 version_info,	 as	 well	 as	 set	 entries	 in
file_revisions	as	modified	where	appropriate.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

BzrTools

Overview
BzrTools	 is	 a	 collection	 of	 useful	 enhancements	 to	 Bazaar.	 For
installation	 instructions,	see	 the	BzrTools	home	page:	http://bazaar-
vcs.org/BzrTools.	Here	is	a	sample	of	the	frequently	used	commands
it	provides.

http://bazaar-vcs.org/BzrTools

shell
bzr	shell	starts	up	a	command	interpreter	than	understands	Bazaar
commands	natively.	This	has	several	advantages:

There’s	no	need	to	type	bzr	at	the	front	of	every	command.
Intelligent	auto-completion	is	provided.
Commands	 run	 slightly	 faster	 as	 there’s	 no	 need	 to	 load
Bazaar’s	libraries	each	time.

cdiff
bzr	 cdiff	 provides	 a	 colored	 version	 of	 bzr	 diff	 output.	 On
GNU/Linux,	UNIX	and	OS	X,	this	is	often	used	like	this:

bzr	cdiff	|	less	-R

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr-svn

Overview
bzr-svn	 lets	developers	use	Bazaar	as	 their	VCS	client	on	projects
still	 using	 a	 central	 Subversion	 repository.	 Access	 to	 Subversion
repositories	 is	 largely	 transparent,	 i.e.	 you	 can	 use	 most	 bzr

commands	directly	on	Subversion	repositories	exactly	the	same	as	if
you	were	using	bzr	on	native	Bazaar	branches.

Many	bzr-svn	users	create	a	 local	mirror	of	 the	central	Subversion
trunk,	work	in	local	feature	branches,	and	submit	their	overall	change
back	to	Subversion	when	it	is	ready	to	go.	This	lets	them	gain	many
of	 the	 advantages	 of	 distributed	 VCS	 tools	 without	 interrupting
existing	 team-wide	 processes	 and	 tool	 integration	 hooks	 currently
built	on	top	of	Subversion.	Indeed,	this	is	a	common	interim	step	for
teams	 looking	to	adopt	Bazaar	but	who	are	unable	 to	do	so	yet	 for
timing	or	non-technical	reasons.

For	 installation	 instructions,	 see	 the	 bzr-svn	 home	 page:
http://bazaar-vcs.org/BzrForeignBranches/Subversion.

http://bazaar-vcs.org/BzrForeignBranches/Subversion

A	simple	example
Here’s	a	simple	example	of	how	you	can	use	bzr-svn	 to	hack	on	a
GNOME	project	 like	beagle.	Firstly,	setup	a	 local	shared	repository
for	storing	your	branches	in	and	checkout	the	trunk:

bzr	init-repo	beagle-repo

cd	beagle-repo

bzr	checkout	svn+ssh://svn.gnome.org/svn/beagle/trunk	beagle-trunk

Next,	create	a	feature	branch	and	hack	away:

bzr	branch	beagle-trunk	beagle-feature1

cd	beagle-feature1

(hack,	hack,	hack)

bzr	commit	-m	"blah	blah	blah"

(hack,	hack,	hack)

bzr	commit	-m	"blah	blah	blah"

When	 the	 feature	 is	 cooked,	 refresh	 your	 trunk	 mirror	 and	 merge
your	change:

cd	../beagle-trunk

bzr	update

bzr	merge	../beagle-feature1

bzr	commit	-m	"Complete	comment	for	SVN	commit"

As	your	trunk	mirror	is	a	checkout,	committing	to	it	implicitly	commits
to	the	real	Subversion	trunk.	That’s	it!

Using	a	central	repository	mirror
For	 large	 projects,	 it	 often	makes	 sense	 to	 tweak	 the	 recipe	 given
above.	 In	 particular,	 the	 initial	 checkout	 can	 get	 quite	 slow	 so	 you
may	wish	to	import	the	Subversion	repository	into	a	Bazaar	one	once
and	for	all	for	your	project,	and	then	branch	from	that	native	Bazaar
repository	 instead.	 bzr-svn	 provides	 the	 svn-import	 command	 for
doing	this	repository-to-repository	conversion.	Here’s	an	example	of
how	to	use	it:

bzr	svn-import	svn+ssh://svn.gnome.org/svn/beagle

Here’s	the	recipe	from	above	updated	to	use	a	central	Bazaar	mirror:

bzr	init-repo	beagle-repo

cd	beagle-repo

bzr	branch	bzr+ssh://bzr.gnome.org/beagle.bzr/trunk	beagle-trunk

bzr	branch	beagle-trunk	beagle-feature1

cd	beagle-feature1

(hack,	hack,	hack)

bzr	commit	-m	"blah	blah	blah"

(hack,	hack,	hack)

bzr	commit	-m	"blah	blah	blah"

cd	../beagle-trunk

bzr	pull

bzr	merge	../beagle-feature1

bzr	commit	-m	"Complete	comment	for	SVN	commit"

bzr	push

In	this	case,	committing	to	the	trunk	only	commits	the	merge	locally.
To	 commit	 back	 to	 the	 master	 Subversion	 trunk,	 an	 additional
command	(bzr	push)	is	required.

Note:	You’ll	need	 to	give	 pull	and	 push	 the	 relevant	URLs	 the	 first
time	 you	 use	 those	 commands	 in	 the	 trunk	 branch.	 After	 that,	 bzr
remembers	them.

The	final	piece	of	the	puzzle	in	this	setup	is	to	put	scripts	in	place	to
keep	 the	 central	 Bazaar	 mirror	 synchronized	 with	 the	 Subversion
one.	 This	 can	 be	 done	 by	 adding	 a	 cron	 job,	 using	 a	 Subversion
hook,	or	whatever	makes	sense	in	your	environment.

Limitations	of	bzr-svn
Bazaar	and	Subversion	are	different	 tools	with	different	capabilities
so	there	will	always	be	some	limited	interoperability	issues.	Here	are
some	examples	current	as	of	bzr-svn	0.5.4:

Bazaar	doesn’t	support	versioned	properties
Bazaar	doesn’t	support	tracking	of	file	copies.

See	 the	 bzr-svn	 web	 page,	 http://bazaar-
vcs.org/BzrForeignBranches/Subversion,	 for	 the	 current	 list	 of
constraints.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar-vcs.org/BzrForeignBranches/Subversion
http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Web	browsing

Overview
There	are	a	range	of	options	available	for	providing	a	web	view	of	a
Bazaar	repository,	 the	main	one	being	Loggerhead.	The	homepage
of	Loggerhead	can	be	found	at	https://launchpad.net/loggerhead.

A	 list	 of	 alternative	 web	 viewers	 including	 download	 links	 can	 be
found	on	http://bazaar-vcs.org/WebInterface.

Note:	 If	 your	 project	 is	 hosted	 or	 mirrored	 on	 Launchpad,
Loggerhead	code	browsing	is	provided	as	part	of	the	service.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

https://launchpad.net/loggerhead
http://bazaar-vcs.org/WebInterface
http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Bug	trackers
Bazaar	 has	 a	 facility	 that	 allows	 you	 to	 associate	 a	 commit	with	 a
bug	in	the	project’s	bug	tracker.	Other	tools	(or	hooks)	can	then	use
this	information	to	generate	hyperlinks	between	the	commit	and	the
bug,	 or	 to	 automatically	mark	 the	 bug	 closed	 in	 the	 branches	 that
contain	the	commit.

Associating	commits	and	bugs
When	you	make	a	commit,	you	can	associate	it	with	a	bug	by	using
the	--fixes	option	of	commit.	For	example:

$	bzr	commit	--fixes	lp:12345	-m	"Properly	close	the	connection"

This	records	metadata	in	Bazaar	linking	the	commit	with	bug	12345
in	Launchpad.	 If	you	use	a	different	bug	 tracker,	 it	can	be	given	 its
own	 tracker	 code	 (instead	 of	 lp)	 and	 used	 instead.	 For	 details	 on
how	 to	 configure	 this	 for	 Bugzilla,	 Trac,	 Roundup	 and	 other
bug/issue	trackers,	refer	to	Bug	Tracker	Settings	in	the	Bazaar	User
Reference.

Metadata	recording	vs	bug	tracker	updating
Recording	metadata	about	bugs	fixed	at	commit	time	is	only	one	of
the	features	needed	for	complete	bug	tracker	integration.	As	Bazaar
is	 a	 distributed	 VCS,	 users	 may	 be	 offline	 while	 committing	 so
accessing	 the	 bug	 tracker	 itself	 at	 that	 time	 may	 not	 be	 possible.
Instead,	 it	 is	 recommended	 that	 a	 hook	 be	 installed	 to	 update	 the
bug	 tracker	 when	 changes	 are	 pushed	 to	 a	 central	 location
appropriate	for	your	project’s	workflow.

Note:	 This	 second	 processing	 stage	 is	 part	 of	 the	 integration
provided	by	Launchpad	when	it	scans	external	or	hosted	branches.

Making	corrections
This	 method	 of	 associating	 revisions	 and	 bugs	 does	 have	 some
limitations.	 The	 first	 is	 that	 the	 association	 can	 only	 be	 made	 at
commit	 time.	This	means	 that	 if	you	 forget	 to	make	 the	association
when	 you	 commit,	 or	 the	 bug	 is	 reported	 after	 you	 fix	 it,	 you
generally	cannot	go	back	and	add	the	link	later.

Related	to	this	is	the	fact	that	the	association	is	immutable.	If	a	bug
is	marked	 as	 fixed	 by	 one	 commit	 but	 that	 revision	 does	 not	 fully
solve	the	bug,	or	there	is	a	later	regression,	you	cannot	go	back	and
remove	the	link.

Of	course,	bzr	uncommit	can	always	be	used	to	undo	the	last	commit
in	order	to	make	it	again	with	the	correct	options.	This	is	commonly
done	 to	 correct	 a	 bad	 commit	 message	 and	 it	 equally	 applies	 to
correcting	metadata	 recorded	 (via	 --fixes	 for	example)	on	 the	 last
commit.

Note:	 uncommit	 is	 best	 done	 before	 incorrect	 revisions	 become
public.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Specifying	revisions

Revision	identifiers	and	ranges
Bazaar	has	a	very	expressive	way	to	specify	a	revision	or	a	range	of
revisions.	 To	 specify	 a	 range	 of	 revisions,	 the	 upper	 and	 lower
bounds	are	separated	by	the	..	symbol.	For	example:

$	bzr	log	-r	1..4

You	can	omit	one	bound	like:

$	bzr	log	-r	1..

$	bzr	log	-r	..4

Some	commands	take	only	one	revision,	not	a	range.	For	example:

$	bzr	cat	-r	42	foo.c

In	 other	 cases,	 a	 range	 is	 required	 but	 you	want	 the	 length	 of	 the
range	to	be	one.	For	commands	where	this	is	relevant,	the	-c	option
is	used	like	this:

$	bzr	diff	-c	42

Available	revision	identifiers
The	revision,	or	the	bounds	of	the	range,	can	be	given	using	different
format	specifications	as	shown	below.

argument	type description
number revision	number
revno:number revision	number
last:number negative	revision	number
guid globally	unique	revision	id
revid:guid globally	unique	revision	id
before:rev leftmost	parent	of	‘’rev’‘
date-value first	entry	after	a	given	date
date:date-value first	entry	after	a	given	date
tag-name revision	matching	a	given	tag
tag:tag-name revision	matching	a	given	tag
ancestor:path last	merged	revision	from	a	branch
branch:path latest	revision	on	another	branch

submit:path common	ancestor	with	submit
branch

A	 brief	 introduction	 to	 some	 of	 these	 formats	 is	 given	 below.	 For
complete	 details,	 see	 Revision	 Identifiers	 in	 the	 Bazaar	 User
Reference.

Numbers

Positive	 numbers	 denote	 revision	 numbers	 in	 the	 current	 branch.
Revision	numbers	are	labelled	as	“revno”	in	the	output	of	bzr	log.	To
display	the	log	for	the	first	ten	revisions:

$	bzr	log	-r	..10

Negative	 numbers	 count	 from	 the	 latest	 revision,	 -1	 is	 the	 last
committed	revision.

To	display	the	log	for	the	last	ten	revisions:

$	bzr	log	-r	-10..

revid

revid	 allows	 specifying	 a	 an	 internal	 revision	 ID,	 as	 shown	 by	 bzr
log	--show-ids	and	some	other	commands.

For	example:

$	bzr	log	-r	revid:Matthieu.Moy@imag.fr-20051026185030-93c7cad63ee570df

before

before
‘’rev’’	 specifies	 the	 leftmost	 parent	 of	 ‘’rev’‘,	 that	 is	 the	 revision
that	 appears	before	 ‘’rev’’	 in	 the	 revision	history,	 or	 the	 revision
that	was	current	when	‘’rev’’	was	committed.

‘’rev’’	can	be	any	revision	specifier	and	may	be	chained.

For	example:

$	bzr	log	-r	before:before:4

...

revno:	2

...

date

date

‘’value’’	matches	the	first	history	entry	after	a	given	date,	either	at
midnight	or	at	a	specified	time.

Legal	values	are:

yesterday
today
tomorrow
A	YYYY-MM-DD	format	date.
A	YYYY-MM-DD,HH:MM:SS	format	date/time,	seconds	are
optional	(note	the	comma)

The	proper	way	of	saying	“give	me	all	the	log	entries	for	today”	is:

$	bzr	log	-r	date:yesterday..date:today

Ancestor

ancestor:path
specifies	the	common	ancestor	between	the	current	branch	and	a
different	branch.	This	is	the	same	ancestor	that	would	be	used	for
merging	purposes.

path	may	be	the	URL	of	a	remote	branch,	or	the	file	path	to	a	local
branch.

For	example,	to	see	what	changes	were	made	on	a	branch	since	it
was	forked	off	../parent:

$	bzr	diff	-r	ancestor:../parent

Branch

branch
path	specifies	the	latest	revision	in	another	branch.

path	may	be	the	URL	of	a	remote	branch,	or	the	file	path	to	a	local
branch.

For	 example,	 to	 get	 the	 differences	 between	 this	 and	 another
branch:

$	bzr	diff	-r	branch:http://example.com/bzr/foo.dev

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Organizing	your	workspace

Common	workspace	layouts
The	 best	way	 for	 a	Bazaar	 user	 to	 organize	 their	workspace	 for	 a
project	depends	on	numerous	factors	including:

user	role:	project	owner	vs	core	developer	vs	casual	contributor
workflows:	 particularly	 the	 workflow	 the	 project
encourages/mandates	for	making	contributions
size:	 large	 projects	 have	 different	 resource	 requirements	 to
small	ones.

There	are	at	least	4	common	ways	of	organizing	one’s	workspace:

lightweight	checkout
standalone	tree
feature	branches
switchable	sandbox.

A	brief	description	of	each	layout	follows.

Lightweight	checkout
In	this	layout,	the	working	tree	is	local	and	the	branch	is	remote.	This
is	the	standard	layout	used	by	CVS	and	Subversion:	it’s	simple	and
well	understood.

To	set	up:

bzr	checkout	--lightweight	URL	project

cd	project

To	work:

(make	changes)

bzr	commit

(make	changes)

bzr	commit

Note	 that	each	commit	 implicitly	 publishes	 the	change	 to	everyone
else	working	from	that	branch.	However,	you	need	to	be	up	to	date
with	 changes	 in	 the	 remote	 branch	 for	 the	 commit	 to	 succeed.	 To
grab	the	latest	code	and	merge	it	with	your	changes,	if	any:

bzr	update

Standalone	tree
In	this	layout,	the	working	tree	&	branch	are	in	the	one	place.	Unless
a	shared	repository	exists	in	a	higher	level	directory,	the	repository	is
located	 in	 that	 same	 place	 as	 well.	 This	 is	 the	 default	 layout	 in
Bazaar	and	it’s	great	for	small	to	moderately	sized	projects.

To	set	up:

bzr	branch	URL	project

cd	project

To	work:

(make	changes)

bzr	commit

(make	changes)

bzr	commit

To	publish	changes	to	a	central	location:

bzr	push	[URL]

The	URL	for	push	is	only	required	the	first	time.

If	 the	central	 location	has,	 in	 the	meantime,	 received	changes	 from
other	users,	then	you’ll	need	to	merge	those	changes	into	your	local
branch	before	you	try	to	push	again:

bzr	merge

(resolve	conflicts)

bzr	commit

As	an	alternative,	a	checkout	can	be	used.	Like	a	branch,	a	checkout
has	 a	 full	 copy	 of	 the	 history	 stored	 locally	 but	 the	 local	 branch	 is
bound	to	the	remote	location	so	that	commits	are	published	to	both

locations	at	once.

Note:	A	checkout	is	actually	smarter	than	a	local	commit	followed	by
a	push.	 In	 particular,	 a	 checkout	wil	 commit	 to	 the	 remote	 location
first	and	only	commit	locally	if	the	remote	commit	succeeds.

Feature	branches
In	 this	 layout,	 there	are	multiple	branches/trees,	 typically	 sharing	a
repository.	One	branch	is	kept	as	a	mirror	of	“trunk”	and	each	unit-of-
work	 (i.e.	 bug-fix	 or	 enhancement)	 gets	 its	 own	 “feature	 branch”.
This	 layout	 is	 ideal	 for	most	 projects,	 particularly	moderately	 sized
ones.

To	set	up:

bzr	init-repo	project

cd	project

bzr	branch	URL	trunk

To	start	a	feature	branch:

bzr	branch	trunk	featureX

cd	featureX

To	work:

(make	changes)

bzr	commit

(make	changes)

bzr	commit

To	publish	changes	to	a	mailing	list	for	review	&	approval:

bzr	send

To	publish	changes	 to	a	public	branch	 (that	can	 then	be	 registered
as	a	Launchpad	merge	request,	say):

bzr	push	[URL]

As	a	variation,	 the	trunk	can	be	created	as	a	checkout.	 If	you	have

commit	 privileges	 on	 trunk,	 that	 lets	 you	merge	 into	 trunk	 and	 the
commit	of	the	merge	will	implicitly	publish	your	change.	Alternatively,
if	 the	 trunk	 URL	 is	 read-only	 (e.g.	 a	 http	 address),	 that	 prevents
accidental	submission	this	way	-	ideal	if	the	project	workflow	uses	an
automated	gatekeeper	like	PQM,	say.

Local	sandbox
This	layout	is	very	similar	to	the	feature	branches	layout	except	that
the	feature	branches	share	a	single	working	tree	rather	than	having
one	 each.	 This	 is	 similar	 to	 git’s	 default	 layout	 and	 it’s	 useful	 for
projects	with	really	large	trees	(>	10000	files	say)	or	for	projects	with
lots	of	build	artifacts	(like	.o	or	.class	files).

To	set	up:

bzr	init-repo	--no-trees	project

cd	project

bzr	branch	URL	trunk

bzr	checkout	--lightweight	trunk	sandbox

cd	sandbox

While	you	could	 start	making	changes	 in	sandbox	now,	committing
while	 the	sandbox	 is	pointing	 to	 the	 trunk	would	mean	 that	 trunk	 is
no	 longer	a	mirror	of	 the	upstream	URL	 (well	unless	 the	 trunk	 is	a
checkout).	 Therefore,	 you	 usually	 want	 to	 immediately	 create	 a
feature	branch	and	switch	your	sandbox	to	it	like	this:

bzr	branch	../trunk	../featureX

bzr	switch	../featureX

The	 processes	 for	 making	 changes	 and	 submitting	 them	 are
otherwise	pretty	much	the	same	as	those	used	for	feature	branches.

Advanced	layouts
If	you	wish,	you	can	put	together	your	own	layout	based	on	how	you
like	 things	 organized.	 See	 Advanced	 shared	 repository	 layouts	 for
examples	and	inspiration.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Advanced	shared	repository	layouts
Bazaar	is	designed	to	give	you	flexibility	in	how	you	layout	branches
inside	 a	 shared	 repository.	 This	 flexibility	 allows	 users	 to	 tailor
Bazaar	to	their	workflow,	but	it	also	leads	to	questions	about	what	is
a	 “good”	 layout.	 We	 present	 some	 alternatives	 and	 give	 some
discussion	about	the	benefits	of	each.

One	 key	 point	which	 should	 be	mentioned	 is	 that	 any	 good	 layout
should	somehow	highlight	what	branch	a	“general”	user	should	grab.
In	 SVN	 this	 is	 deemed	 the	 “trunk/”	 branch,	 and	 in	 most	 of	 the
layouts	 this	 naming	 convention	 is	 preserved.	 Some	would	 call	 this
“mainline”	 or	 “dev“,	 and	 people	 from	 CVS	 often	 refer	 to	 this	 as
“HEAD“.

“SVN-Style”	(trunk/,	branches/)
Most	people	coming	 from	SVN	will	be	 familiar	with	 their	 “standard”
project	layout.	Which	is	to	layout	the	repository	as:

repository/							#	Overall	repository

	+-	trunk/								#	The	mainline	of	development

	+-	branches/					#	A	container	directory

	|			+-	foo/						#	Branch	for	developing	feature	foo

	|					...

	+-	tags/									#	Container	directory

					+-	release-X	#	A	branch	specific	to	mark	a	given	release	version

								...

With	Bazaar,	that	is	a	perfectly	reasonable	layout.	It	has	the	benefit
of	 being	 familiar	 to	 people	 coming	 from	 SVN,	 and	making	 it	 clear
where	the	development	focus	is.

When	 you	 have	multiple	 projects	 in	 the	 same	 repository,	 the	 SVN
layout	is	a	little	unclear	what	to	do.

project/trunk

The	preferred	method	 for	SVN	seems	 to	be	 to	give	each	project	a
top	level	directory	for	a	layout	like:

repository/												#	Overall	repository

	+-	project1/										#	A	container	directory

	|			+-	trunk/									#	The	mainline	of	development	of	project1

	|			+-	branches/						#	A	container	directory

	|							+-	foo/							#	Branch	for	developing	feature	foo	of	project1

	|									...

	|

	+-	project2/										#	Container	for	project2

					+-	trunk/									#	Mainline	for	project2

					+-	branches/						#	Container	for	project2	branches

This	also	works	with	Bazaar.	However,	with	Bazaar	repositories	are
cheap	 to	 create	 (a	 simple	 bzr	 init-repo	 away),	 and	 their	 primary
benefit	is	when	the	branches	share	a	common	ancestry.

So	the	preferred	way	for	Bazaar	would	be:

project1/										#	A	repository	for	project1

	+-	trunk/									#	The	mainline	of	development	of	project1

	+-	branches/						#	A	container	directory

					+-	foo/							#	Branch	for	developing	feature	foo	of	project1

							...

project2/										#	A	repository	for	project2

	+-	trunk/									#	Mainline	for	project2

	+-	branches/						#	Container	for	project2	branches

trunk/project

There	are	also	a	few	projects	who	use	this	layout	in	SVN:

repository/													#	Overall	repository

		+-	trunk/													#	A	container	directory

		|			+-	project1							#	Mainline	for	project	1

		|			+-	project2							#	Mainline	for	project	2

		|									...

		|

		+-	branches/										#	Container

						+-	project1/						#	Container	(?)

						|			+-	foo								#	Branch	'foo'	of	project1

						+-	project2/

										+-	bar								#	Branch	'bar'	of	project2

A	slight	variant	is:

repository/													#	Overall	repository

		+-	trunk/													#	A	container	directory

		|			+-	project1							#	Mainline	for	project	1

		|			+-	project2							#	Mainline	for	project	2

		|									...

		|

		+-	branches/										#	Container

						+-	project1-foo/		#	Branch	'foo'	of	project1

						+-	project2-bar/		#	Branch	'bar'	of	project2

I	believe	the	reason	for	this	in	SVN,	is	so	that	someone	can	checkout
all	of	“trunk/”	and	get	the	all	the	mainlines	for	all	projects.

This	 layout	 can	 be	 used	 for	 Bazaar,	 but	 it	 is	 not	 generally
recommended.

1.	 bzr	 branch/checkout/get	 is	 a	 single	 branch	 at	 a	 time.	 So
you	 don’t	 get	 the	 benefit	 of	 getting	 all	 mainlines	 with	 a
single	command.	[1]

2.	 It	 is	 less	 obvious	 of	 whether	 repository/trunk/foo	 is	 the
trunk	 of	 project	 foo	 or	 it	 is	 just	 the	 foo	 directory	 in	 the
trunk	 branch.	 Some	 of	 this	 confusion	 is	 due	 to	 SVN,
because	it	uses	the	same	“namespace”	for	files	in	a	project
that	 it	uses	for	branches	of	a	project.	 In	Bazaar,	 there	 is	a
clear	distinction	of	what	files	make	up	a	project,	versus	the
location	 of	 the	 Branch.	 (After	 all,	 there	 is	 only	 one	 .bzr/
directory	per	branch,	versus	many	 .svn/	 directories	 in	 the
checkout).

[1]

Note:	NestedTreeSupport	can	provide	a	way	to	create	“meta-
projects”	which	aggregate	multiple	projects	regardless	of	the
repository	layout.	Letting	you	bzr	checkout	one	project,	and
have	it	grab	all	the	necessary	sub-projects.

http://bazaar-vcs.org/NestedTrees

Nested	Style	(project/branch/sub-branch/)
Another	style	with	Bazaar,	which	is	not	generally	possible	in	SVN	is
to	have	branches	nested	within	each-other.	This	is	possible	because
Bazaar	 supports	 (and	 recommends)	 creating	 repositories	 with	 no
working	 trees	 (--no-trees).	With	 a	 --no-trees	 repository,	 because
the	working	 files	are	not	 intermixed	with	your	branch	 locations,	you
are	free	to	put	a	branch	in	whatever	namespace	you	want.

One	possibility	is:

project/													#	The	overall	repository,	*and*	the	project's	mainline	branch

	+	joe/														#	Developer	Joe's	primary	branch	of	development

	|		+-	feature1/					#	Developer	Joe's	feature1	development	branch

	|		|			+-	broken/			#	A	staging	branch	for	Joe	to	develop	feature1

	|		+-	feature2/					#	Joe's	feature2	development	branch

	|				...

	+	barry/												#	Barry's	development	branch

	|		...

	+	releases/

				+-	1.0/

								+-	1.1.1/

The	idea	with	this	layout	is	that	you	are	creating	a	hierarchical	layout
for	 branches.	 Where	 changes	 generally	 flow	 upwards	 in	 the
namespace.	It	also	gives	people	a	little	corner	of	the	namespace	to
work	 on	 their	 stuff.	 One	 nice	 feature	 of	 this	 layout,	 is	 it	 makes
branching	“cheaper”	because	it	gives	you	a	place	to	put	all	the	mini
branches	without	cluttering	up	the	global	branches/	namespace.

The	 other	 power	 of	 this	 is	 that	 you	 don’t	 have	 to	 repeat	 yourself
when	specifying	more	detail	in	the	branch	name.

For	example	compare:

bzr	branch	http://host/repository/project/branches/joe-feature-foo-bugfix-10/

Versus:

bzr	branch	http://host/project/joe/foo/bugfix-10

Also,	 if	 you	 list	 the	 repository/project/branches/	 directory	 you
might	see	something	like:

barry-feature-bar/

barry-bugfix-10/

barry-bugfix-12/

joe-bugfix-10/

joe-bugfix-13/

joe-frizban/

Versus	 having	 these	 broken	 out	 by	 developer.	 If	 the	 number	 of
branches	are	small,	branches/	has	the	nice	advantage	of	being	able
to	 see	 all	 branches	 in	 a	 single	 view.	 If	 the	 number	 of	 branches	 is
large,	 branches/	 has	 the	 distinct	 disadvantage	 of	 seeing	 all	 the
branches	in	a	single	view	(it	becomes	difficult	to	find	the	branch	you
are	interested	in,	when	there	are	100	branches	to	look	through).

Nested	 branching	 seems	 to	 scale	 better	 to	 larger	 number	 of
branches.	However,	each	individual	branch	is	less	discoverable.	(eg.
“Is	Joe	working	on	bugfix	10	in	his	feature	foo	branch,	or	his	feature
bar	branch?”)

One	other	small	advantage	is	that	you	can	do	something	like:

	bzr	branch	http://host/project/release/1/1/1

or

	bzr	branch	http://host/project/release/1/1/2

To	 indicate	 release	 1.1.1	 and	 1.1.2.	 This	 again	 depends	 on	 how
many	releases	you	have	and	whether	the	gain	of	splitting	things	up
outweighs	the	ability	to	see	more	at	a	glance.

Sorted	by	Status	(dev/,	merged/,
experimental/)
One	other	way	to	break	up	branches	is	to	sort	them	by	their	current
status.	So	you	would	end	up	with	a	layout	something	like:

project/															#	Overall	layout

	+-	trunk/													#	The	development	focus	branch

	+-	dev/															#	Container	directory	for	in-progress	work

	|			+-	joe-feature1			#	Joe's	current	feature-1	branch

	|			+-	barry-bugfix10	#	Barry's	work	for	bugfix	10

	|				...

	+-	merged/												#	Container	indicating	these	branches	have	been	merged

	|			+-	bugfix-12						#	Bugfix	which	has	already	been	merged.

	+-	abandonded/								#	Branches	which	are	considered	'dead-end'

This	 has	 a	 couple	 benefits	 and	 drawbacks.	 It	 lets	 you	 see	 what
branches	 are	 actively	 being	 developed	 on,	which	 is	 usually	 only	 a
small	number,	versus	the	total	number	of	branches	ever	created.	Old
branches	 are	 not	 lost	 (versus	 deleting	 them),	 but	 they	 are	 “filed
away”,	such	that	the	more	likely	you	are	to	want	a	branch	the	easier
it	 is	 to	 find.	 (Conversely,	 older	 branches	 are	 likely	 to	 be	 harder	 to
find).

The	 biggest	 disadvantage	 with	 this	 layout,	 is	 that	 branches	 move
around.	 Which	 means	 that	 if	 someone	 is	 following	 the
project/dev/new-feature	 branch,	 when	 it	 gets	 merged	 into	 trunk/
suddenly	 bzr	 pull	 doesn’t	 mirror	 the	 branch	 for	 them	 anymore
because	 the	 branch	 is	 now	 at	 project/merged/new-feature.	 There
are	a	couple	ways	around	this.	One	is	to	use	HTTP	redirects	to	point
people	requesting	the	old	branch	to	the	new	branch.	bzr	>=	0.15	will
let	users	know	that	http://old/path	redirects	to	http://new/path.
However,	this	doesn’t	help	if	people	are	accessing	a	branch	through
methods	other	than	HTTP	(SFTP,	local	filesystem,	etc).

It	would	also	be	possible	to	use	a	symlink	for	temporary	redirecting
(as	 long	as	the	symlink	 is	within	the	repository	 it	should	cause	 little
trouble).	However	eventually	you	want	to	remove	the	symlink,	or	you
don’t	get	the	clutter	reduction	benefit.	Another	possibility	instead	of	a
symlink	is	to	use	a	BranchReference.	 It	 is	currently	difficult	 to	create
these	through	the	bzr	command	 line,	but	 if	people	 find	 them	useful
that	could	be	changed.	This	is	actually	how	Launchpad	allows	you	to
bzr	 checkout	 https://launchpad.net/bzr.	 Effectively	 a
BranchReference	is	a	symlink,	but	it	allows	you	to	reference	any	other
URL.	 If	 it	 is	 extended	 to	 support	 relative	 references,	 it	would	 even
work	over	http,	sftp,	and	local	paths.

https://launchpad.net

Sorted	by	date/release/etc	(2006-06/,	2006-
07/,	0.8/,	0.9)
Another	method	of	allowing	some	scalability	while	also	allowing	the
browsing	 of	 “current”	 branches.	 Basically,	 this	 works	 on	 the
assumption	that	actively	developed	branches	will	be	“new”	branches,
and	older	branches	are	either	merged	or	abandoned.

Basically	the	date	layout	looks	something	like:

project/																#	Overall	project	repository

	+-	trunk/														#	General	mainline

	+-	2006-06/												#	containing	directory	for	branches	created	in	this	month

	|			+-	feature1/							#	Branch	of	"project"	for	"feature1"

	|			+-	feature2/							#	Branch	of	"project"	for	"feature2"

	+-	2005-05/												#	Containing	directory	for	branches	create	in	a	different	month

					+-	feature3/

					...

This	 answers	 the	 question	 “Where	 should	 I	 put	 my	 new	 branch?”
very	 quickly.	 If	 a	 feature	 is	 developed	 for	 a	 long	 time,	 it	 is	 even
reasonable	 to	 copy	 a	 branch	 into	 the	 newest	 date,	 and	 continue
working	on	it	there.	Finding	an	active	branch	generally	means	going
to	 the	 newest	 date,	 and	 going	 backwards	 from	 there.	 (A	 small
disadvantage	 is	 that	 most	 directory	 listings	 sort	 oldest	 to	 the	 top,
which	may	mean	more	scrolling).	 If	you	don’t	copy	old	branches	 to
newer	 locations,	 it	 also	 has	 the	 disadvantage	 that	 searching	 for	 a
branch	may	take	a	while.

Another	variant	is	by	release	target:

project/										#	Overall	repository

	+-	trunk/								#	Mainline	development	branch

	+-	releases/					#	Container	for	release	branches

	|			+-	0.8/						#	The	branch	for	release	0.8

	|			+-	0.9/						#	The	branch	for	release	0.9

	+-	0.8/										#	Container	for	branches	targeting	release	0.8

	|			+-	feature1/	#	Branch	for	"feature1"	which	is	intended	to	be	merged	into	0.8

	|			+-	feature2/	#	Branch	for	"feature2"	which	is	targeted	for	0.8

	+-	0.9/

					+-	feature3/	#	Branch	for	"feature3",	targeted	for	release	0.9

Some	possible	variants	include	having	the	0.9	directory	imply	that	it
is	branched	 from	0.9	rather	 than	 for	0.9,	or	having	 the	 0.8/release
as	the	official	release	0.8	branch.

The	general	idea	is	that	by	targeting	a	release,	you	can	look	at	what
branches	are	waiting	to	be	merged.	It	doesn’t	necessarily	give	you	a
good	 idea	 of	what	 the	 state	 of	 the	 branch	 (is	 it	 in	 development	 or
finished	 awaiting	 review).	 It	 also	 has	 a	 history-hiding	 effect,	 and
otherwise	 has	 the	 same	 benefits	 and	 deficits	 as	 a	 date-based
sorting.

Simple	developer	naming	(project/joe/foo,
project/barry/bar)
Another	 possibly	 layout	 is	 to	 give	 each	 developer	 a	 directory,	 and
then	have	a	single	sub-directory	for	branches.	Something	like:

project/						#	Overall	repository

	+-	trunk/				#	Mainline	branch

	+-	joe/						#	A	container	for	Joe's	branches

	|			+-	foo/		#	Joe's	"foo"	branch	of	"project"

	+-	barry/

					+-	bar/		#	Barry's	"bar"	branch	of	"project"

The	idea	is	that	no	branch	is	“nested”	underneath	another	one,	 just
that	each	developer	has	his/her	branches	grouped	together.

A	variant	which	is	used	by	Launchpad	is:

repository/

	+-	joe/													#	Joe's	branches

	|			+-	project1/				#	Container	for	Joe's	branches	of	"project1"

	|			|			+-	foo/					#	Joe's	"foo"	branch	of	"project1"

	|			+-	project2/				#	Container	for	Joe's	"project2"	branches

	|							+-	bar/					#	Joe's	"bar"	branch	of	"project2"

	|								...

	|

	+-	barry/

	|			+-	project1/				#	Container	for	Barry's	branches	of	"project1"

	|							+-	bug-10/		#	Barry's	"bug-10"	branch	of	"project1"

	|			...

	+-	group/

					+-	project1/

									+-	trunk/			#	The	main	development	focus	for	"project1"

This	 lets	 you	 easily	 browse	 what	 each	 developer	 is	 working	 on.
Focus	branches	are	kept	 in	a	 “group”	directory,	which	 lets	you	see
what	branches	the	“group”	is	working	on.

https://launchpad.net

This	 keeps	 different	 people’s	 work	 separated	 from	 each-other,	 but
also	makes	 it	 hard	 to	 find	 “all	 branches	 for	 project	 X”.	 Launchpad
compensates	 for	 this	 by	 providing	 a	 nice	 web	 interface	 with	 a
database	 back	 end,	which	 allows	 a	 “view”	 to	 be	 put	 on	 top	 of	 this
layout.	This	 is	 closer	 to	 the	model	 of	 people’s	home	pages,	where
each	person	has	a	“~/public_html”	directory	where	they	can	publish
their	 own	web-pages.	 In	 general,	 though,	when	 you	are	 creating	 a
shared	 repository	 for	 centralization	 of	 a	 project,	 you	 don’t	 want	 to
split	it	up	by	person	and	then	project.	Usually	you	would	want	to	split
it	up	by	project	and	then	by	person.

https://launchpad.net

Summary
In	 the	 end,	 no	 single	 naming	 scheme	 will	 work	 for	 everyone.	 It
depends	a	lot	on	the	number	of	developers,	how	often	you	create	a
new	branch,	what	sort	of	lifecycles	your	branches	go	through.	Some
questions	to	ask	yourself:

1.	 Do	you	create	a	few	long-lived	branches,	or	do	you	create
lots	 of	 “mini”	 feature	 branches	 (Along	 with	 this	 is:	 Would
you	 like	 to	 create	 lots	 of	 mini	 feature	 branches,	 but	 can’t
because	they	are	a	pain	in	your	current	VCS?)

2.	 Are	you	a	single	developer,	or	a	large	team?
3.	 If	 a	 team,	 do	 you	 plan	 on	 generally	 having	 everyone

working	on	the	same	branch	at	the	same	time?	Or	will	you
have	a	“stable”	branch	that	people	are	expected	to	track.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Configuring	email

Why	set	up	an	email	address	with	Bazaar?
Bazaar	stores	the	specified	email	address	in	revisions	when	they’re
created	so	that	people	can	tell	who	committed	which	revisions.	The
email	addresses	are	not	verified,	 therefore	they	could	be	bogus,	so
you	have	to	trust	the	people	involved	in	your	project.	Additionally,	the
email	address	in	a	revision	gives	others	a	way	to	contact	the	author
of	a	revision	for	credit	and/or	blame.	:)

How	to	set	up	your	email	address
Bazaar	will	 try	to	guess	an	email	address	based	on	your	username
and	the	hostname	if	none	is	set.	This	will	probably	not	be	what	you
want,	so	three	ways	exist	to	tell	Bazaar	what	email	to	use:

You	 can	 set	 your	 email	 in	 one	 of	 several	 configuration	 files.	 Like
other	configuration	values,	you	can	set	it	in	bazaar.conf	as	a	general
setting.	 If	you	want	 to	override	 the	value	 for	a	particular	branch,	or
set	 of	 branches,	 you	 can	 use	 locations.conf.
.bzr/branch/branch.conf	will	also	work,	but	will	cause	all	commits	to
that	 branch	 to	 use	 the	 same	email	 address,	 even	 if	 someone	else
does	them.

The	order	of	precedence	is

1.	 If	the	BZR_EMAIL	environment	variable	is	set.
2.	 If	 an	 email	 is	 set	 for	 your	 current	 branch	 in	 the

locations.conf	file.
3.	 If	 an	 email	 is	 set	 four	 your	 current	 branch	 in	 the

.bzr/branch/branch.conf	file.
4.	 If	 an	 email	 is	 set	 in	 the	 bazaar.conf	 default	 configuration

file.
5.	 If	the	EMAIL	environment	variable	is	set.
6.	 Bazaar	will	 try	 to	guess	based	on	your	username	and	 the

hostname.

To	check	on	what	Bazaar	thinks	your	current	email	is,	use	the	whoami
(“who	am	i?”)	command:

%	bzr	whoami

Joe	Cool	<joe@example.com>

Setting	email	via	the	‘whoami’	command
You	can	use	the	whoami	command	to	set	your	email	globally:

%	bzr	whoami	"Joe	Cool	<joe@example.com>"

or	only	for	the	current	branch:

%	bzr	whoami	--branch	"Joe	Cool	<joe@example.com>"

These	 modify	 your	 global	 bazaar.conf	 or	 branch	 branch.conf	 file,
respectively.

Setting	email	via	default	configuration	file
To	 use	 the	 default	 ini	 file,	 create	 or	 edit	 the	 bazaar.conf	 file	 (in
~/.bazaar/	on	Linux	and	in	%APPDATA%\bazaar\2.0\	in	Windows)	and
set	 an	 email	 address	 as	 shown	 below.	 Please	 note	 that	 the	 word
DEFAULT	is	case	sensitive,	and	must	be	in	upper-case.

[DEFAULT]

email=Your	Name	<name@isp.com>

For	 more	 information	 on	 the	 ini	 file	 format,	 see	 Configuration
Settings	in	the	Bazaar	User	Reference.

Setting	email	on	a	per-branch	basis
The	second	approach	is	to	set	email	on	a	branch	by	branch	basis	by
using	the	locations.conf	configuration	file	like	this:

[/some/branch/location]

email=Your	Name	<name@other-isp.com>

This	 will	 set	 your	 email	 address	 in	 the	 branch	 at
/some/branch/location,	 overriding	 the	 default	 specified	 in	 the
bazaar.conf	above.

Setting	email	via	environment	variable
The	final	method	Bazaar	will	use	 is	checking	for	 the	 BZR_EMAIL	and
EMAIL	environment	variables.	Generally,	you	would	use	this	method
to	 override	 the	 email	 in	 a	 script	 context.	 If	 you	would	 like	 to	 set	 a
general	default,	then	please	see	the	ini	methods	above.

Concerns	about	spam
Some	people	want	to	avoid	sharing	their	email	address	so	as	not	to
get	spam.	Bazaar	will	never	disclose	your	email	address,	unless	you
publish	a	branch	or	changeset	in	a	public	location.	It’s	recommended
that	you	do	use	a	real	address,	so	that	people	can	contact	you	about
your	 work,	 but	 it’s	 not	 required.	 You	 can	 use	 an	 address	 which	 is
obfuscated,	 which	 bounces,	 or	 which	 goes	 through	 an	 anti-spam
service	such	as	spamgourmet.com.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Serving	Bazaar	with	Apache
This	document	describes	one	way	 to	set	up	a	Bazaar	HTTP	smart
server,	using	Apache	2.0	and	FastCGI	or	mod_python	or	mod_wsgi.

For	 more	 information	 on	 the	 smart	 server,	 and	 other	 ways	 to
configure	it	see	the	main	smart	server	documentation.

Example
You	 have	 a	 webserver	 already	 publishing
/srv/example.com/www/code	 as	 http://example.com/code/...	 with
plain	 HTTP.	 It	 contains	 bzr	 branches	 and	 directories	 like
/srv/example.com/www/code/branch-one	 and
/srv/example.com/www/code/my-repo/branch-two.	 You	 want	 to
provide	read-only	smart	server	access	to	these	directories	in	addition
to	the	existing	HTTP	access.

Configuring	Apache	2.0

FastCGI

First,	configure	mod_fastcgi,	e.g.	by	adding	 lines	 like	 these	 to	your
httpd.conf:

LoadModule	fastcgi_module	/usr/lib/apache2/modules/mod_fastcgi.so

FastCgiIpcDir	/var/lib/apache2/fastcgi

In	 our	 example,	we’re	 already	 serving	 /srv/example.com/www/code
at	 http://example.com/code,	 so	 our	 existing	 Apache	 configuration
would	look	like:

Alias	/code	/srv/example.com/www/code

<Directory	/srv/example.com/www/code>

				Options	Indexes

				#	...

</Directory>

We	 need	 to	 change	 it	 to	 handle	 all	 requests	 for	 URLs	 ending	 in
.bzr/smart.	It	will	look	like:

Alias	/code	/srv/example.com/www/code

<Directory	/srv/example.com/www/code>

				Options	Indexes	FollowSymLinks

				RewriteEngine	On

				RewriteBase	/code

				RewriteRule	^(.*/|)\.bzr/smart$	/srv/example.com/scripts/bzr-smart.fcgi

</Directory>

#	bzr-smart.fcgi	isn't	under	the	DocumentRoot,	so	Alias	it	into	the	URL

#	namespace	so	it	can	be	executed.

Alias	/srv/example.com/scripts/bzr-smart.fcgi	/srv/example.com/scripts/bzr-smart.fcgi

<Directory	/srv/example.com/scripts>

				Options	ExecCGI

				<Files	bzr-smart.fcgi>

								SetHandler	fastcgi-script

				</Files>

</Directory>

This	 instructs	 Apache	 to	 hand	 requests	 for	 any	 URL	 ending	 with
/.bzr/smart	inside	/code	to	a	Bazaar	smart	server	via	FastCGI.

Refer	to	the	mod_rewrite	and	mod_fastcgi	documentation	for	further
information.

mod_python

First,	configure	mod_python,	e.g.	by	adding	 lines	 like	 these	 to	your
httpd.conf:

LoadModule	python_module	/usr/lib/apache2/modules/mod_python.so

Define	 the	 rewrite	 rules	 with	 mod_rewrite	 the	 same	 way	 as	 for
FastCGI,	except	change:

RewriteRule	^(.*/|)\.bzr/smart$	/srv/example.com/scripts/bzr-smart.fcgi

to:

RewriteRule	^(.*/|)\.bzr/smart$	/srv/example.com/scripts/bzr-smart.py

Like	 with	 mod_fastcgi,	 we	 also	 define	 how	 our	 script	 is	 to	 be
handled:

Alias	/srv/example.com/scripts/bzr-smart.py	/srv/example.com/scripts/bzr-smart.py

<Directory	/srv/example.com/scripts>

				<Files	bzr-smart.py>

								PythonPath	"sys.path+['/srv/example.com/scripts']"

								AddHandler	python-program	.py

								PythonHandler	bzr-smart::handler

				</Files>

http://httpd.apache.org/docs/2.0/mod/mod_rewrite.html
http://www.fastcgi.com/mod_fastcgi/docs/mod_fastcgi.html

</Directory>

This	 instructs	 Apache	 to	 hand	 requests	 for	 any	 URL	 ending	 with
/.bzr/smart	inside	/code	to	a	Bazaar	smart	server	via	mod_python.

NOTE:	 If	 you	 don’t	 have	 bzrlib	 in	 your	 PATH,	 you	 will	 be	 need	 to
change	the	following	line:

PythonPath	"sys.path+['/srv/example.com/scripts']"

To:

PythonPath	"['/path/to/bzr']+sys.path+['/srv/example.com/scripts']"

Refer	to	the	mod_python	documentation	for	further	information.

mod_wsgi

First,	 configure	 mod_wsgi,	 e.g.	 enabling	 the	 mod	 with	 a2enmod
wsgi.	We	need	to	change	it	to	handle	all	requests	for	URLs	ending	in
.bzr/smart.	It	will	look	like:

WSGIScriptAliasMatch	^/code/.*/\.bzr/smart$	/srv/example.com/scripts/bzr.wsgi

#The	three	next	lines	allow	regular	GETs	to	work	too

RewriteEngine	On

RewriteCond	%{REQUEST_URI}	!^/code/.*/\.bzr/smart$

RewriteRule	^/code/(.*/\.bzr/.*)$	/srv/example.com/www/code/$1	[L]

<Directory	/srv/example.com/www/code>

				WSGIApplicationGroup	%{GLOBAL}

</Directory>

This	 instructs	 Apache	 to	 hand	 requests	 for	 any	 URL	 ending	 with
/.bzr/smart	inside	/code	to	a	Bazaar	smart	server	via	WSGI,	and	any
other	URL	inside	/code	to	be	served	directly	by	Apache.

http://www.modpython.org/

Refer	to	the	mod_wsgi	documentation	for	further	information.

http://code.google.com/p/modwsgi/

Configuring	Bazaar

FastCGI

We’ve	 configured	 Apache	 to	 run	 the	 smart	 server	 at
/srv/example.com/scripts/bzr-smart.fcgi.	 This	 is	 just	 a	 simple	 script
we	 need	 to	 write	 to	 configure	 a	 smart	 server,	 and	 glue	 it	 to	 the
FastCGI	gateway.	Here’s	what	it	looks	like:

import	fcgi

from	bzrlib.transport.http	import	wsgi

smart_server_app	=	wsgi.make_app(

				root='/srv/example.com/www/code',

				prefix='/code/',

				path_var='REQUEST_URI',

				readonly=True,

				load_plugins=True,

				enable_logging=True)

fcgi.WSGIServer(smart_server_app).run()

The	 fcgi	 module	 can	 be	 found	 at	 http://svn.saddi.com/py-
lib/trunk/fcgi.py.	It	is	part	of	flup.

mod_python

We’ve	 configured	 Apache	 to	 run	 the	 smart	 server	 at
/srv/example.com/scripts/bzr-smart.py.	This	is	just	a	simple	script	we
need	 to	 write	 to	 configure	 a	 smart	 server,	 and	 glue	 it	 to	 the
mod_python	gateway.	Here’s	what	it	looks	like:

import	modpywsgi

from	bzrlib.transport.http	import	wsgi

smart_server_app	=	wsgi.make_app(

				root='/srv/example.com/www/code',

http://svn.saddi.com/py-lib/trunk/fcgi.py
http://www.saddi.com/software/flup/

				prefix='/code/',

				path_var='REQUEST_URI',

				readonly=True,

				load_plugins=True,

				enable_logging=True)

def	handler(request):

				"""Handle	a	single	request."""

				wsgi_server	=	modpywsgi.WSGIServer(smart_server_app)

				return	wsgi_server.run(request)

The	 modpywsgi	 module	 can	 be	 found	 at
http://ice.usq.edu.au/svn/ice/trunk/apps/ice-server/modpywsgi.py.	 It
was	part	of	pocoo.	You	sould	make	sure	you	place	modpywsgi.py	in
the	same	directory	as	bzr-smart.py	(ie.	/srv/example.com/scripts/).

mod_wsgi

We’ve	 configured	 Apache	 to	 run	 the	 smart	 server	 at
/srv/example.com/scripts/bzr.wsgi.	 This	 is	 just	 a	 simple	 script	 we
need	 to	write	 to	 configure	a	 smart	 server,	 and	glue	 it	 to	 the	WSGI
gateway.	Here’s	what	it	looks	like:

from	bzrlib.transport.http	import	wsgi

def	application(environ,	start_response):

				app	=	wsgi.make_app(

								root="/srv/example.com/www/code/",

								prefix="/code",

								readonly=True,

								enable_logging=False)

				return	app(environ,	start_response)

http://ice.usq.edu.au/svn/ice/trunk/apps/ice-server/modpywsgi.py
http://dev.pocoo.org/projects/pocoo/

Clients
Now	you	can	use	bzr+http://	URLs	or	just	http://	URLs,	e.g.:

bzr	log	bzr+http://example.com/code/my-branch

Plain	HTTP	access	should	continue	to	work:

bzr	log	http://example.com/code/my-branch

Advanced	configuration
Because	the	Bazaar	HTTP	smart	server	is	a	WSGI	application,	it	can
be	 used	 with	 any	 3rd-party	 WSGI	 middleware	 or	 server	 that
conforms	the	WSGI	standard.	The	only	requirements	are:

to	construct	a	SmartWSGIApp,	you	need	to	specify	a	root
transport	that	it	will	serve.
each	 request’s	 environ	 dict	 must	 have	 a	 ‘bzrlib.relpath’
variable	set.

The	 make_app	 helper	 used	 in	 the	 example	 constructs	 a
SmartWSGIApp	with	a	 transport	based	on	 the	 root	path	given	to	 it,
and	 calculates	 the	 ‘bzrlib.relpath`	 for	 each	 request	 based	 on	 the
prefix	and	path_var	arguments.	In	the	example	above,	it	will	take	the
‘REQUEST_URI’	 (which	 is	 set	 by	 Apache),	 strip	 the	 ‘/code/’	 prefix
and	the	‘/.bzr/smart’	suffix,	and	set	that	as	the	‘bzrlib.relpath’,	so	that
a	 request	 for	 ‘/code/foo/bar/.bzr/smart’	will	 result	 in	a	 ‘bzrlib.relpath’
of	‘foo/bzr’.

It’s	possible	to	configure	a	smart	server	for	a	non-local	transport,	or
that	 does	 arbitrary	 path	 translations,	 etc,	 by	 constructing	 a
SmartWSGIApp	 directly.	 Refer	 to	 the	 docstrings	 of
bzrlib.transport.http.wsgi	 and	 the	 WSGI	 standard	 for	 further
information.

Pushing	over	the	http	smart	server

It	 is	possible	 to	allow	pushing	data	over	 the	http	smart	server.	The
easiest	 way	 to	 do	 this,	 is	 to	 just	 supply	 readonly=False	 to	 the
wsgi.make_app()	 call.	 But	 be	 careful,	 because	 the	 smart	 protocol
does	not	contain	any	Authentication.	So	if	you	enable	write	support,
you	will	want	 to	 restrict	 access	 to	 .bzr/smart	URLs	 to	 restrict	who

http://www.python.org/dev/peps/pep-0333/

can	actually	write	data	on	your	system,	e.g.	in	apache	it	looks	like:

<Location	/code>

				AuthType	Basic

				AuthName	"example"

				AuthUserFile	/srv/example.com/conf/auth.passwd

				<LimitExcept	GET>

								Require	valid-user

				</LimitExcept>

</Location>

At	this	time,	it	is	not	possible	to	allow	some	people	to	have	read-only
access	 and	 others	 to	 have	 read-write	 access	 to	 the	 same	 urls.
Because	 at	 the	 HTTP	 layer	 (which	 is	 doing	 the	 Authenticating),
everything	 is	 just	 a	 POST	 request.	 However,	 it	 would	 certainly	 be
possible	 to	 have	HTTPS	 require	 authentication	 and	 use	 a	writable
server,	and	plain	HTTP	allow	read-only	access.

If	bzr	gives	an	error	like	this	when	accessing	your	HTTPS	site:

bzr:	ERROR:	Connection	error:	curl	connection	error	(server	certificate	verification	failed.

CAfile:/etc/ssl/certs/ca-certificates.crt	CRLfile:	none)

You	 can	 workaround	 it	 by	 using	 https+urllib	 rather	 than	 http	 in
your	URL,	or	by	uninstalling	pycurl.	See	bug	82086	for	more	details.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

https://bugs.launchpad.net/bzr/+bug/82086
http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Writing	a	plugin

Introduction
Plugins	 are	 very	 similar	 to	 bzr	 core	 functionality.	 They	 can	 import
anything	 in	 bzrlib.	 A	 plugin	 may	 simply	 override	 standard
functionality,	but	most	plugins	supply	new	commands.

Creating	a	new	command
To	 create	 a	 command,	 make	 a	 new	 object	 that	 derives	 from
bzrlib.commands.Command,	 and	 name	 it	 cmd_foo,	 where	 foo	 is	 the
name	 of	 your	 command.	 If	 you	 create	 a	 command	 whose	 name
contains	an	underscore,	 it	will	appear	 in	the	UI	with	the	underscore
turned	 into	a	hyphen.	For	example,	cmd_baz_import	will	appear	as
baz-import.	 For	 examples	 of	 how	 to	 write	 commands,	 please	 see
builtins.py.

Once	 you’ve	 created	 a	 command	 you	must	 register	 the	 command
with	bzrlib.commands.register_command(cmd_foo).	You	must	register
the	command	when	your	file	is	imported,	otherwise	bzr	will	not	see	it.

Specifying	a	plugin	version	number
Simply	define	version_info	to	be	a	tuple	defining	the	current	version
number	of	your	plugin.	eg.	version_info	=	(0,	9,	0)	 version_info
=	(0,	9,	0,	'dev',	0)

Plugin	searching	rules
Bzr	will	 scan	 ~/.bazaar/plugins	 and	 bzrlib/plugins	 for	 plugins	 by
default.	 You	 can	 override	 this	 with	 BZR_PLUGIN_PATH	 (see	 User
Reference	for	details).

Plugins	may	be	either	modules	or	packages.	If	your	plugin	is	a	single
file,	you	can	structure	it	as	a	module.	If	it	has	multiple	files,	or	if	you
want	 to	 distribute	 it	 as	 a	 bzr	 branch,	 you	 should	 structure	 it	 as	 a
package,	i.e.	a	directory	with	an	__init__.py	file.

More	information
Please	 feel	 free	 to	contribute	your	plugin	 to	BzrTools,	 if	you	 think	 it
would	be	useful	to	other	people.

See	 the	 Bazaar	 Developer	 Guide	 for	 details	 on	 Bazaar’s
development	guidelines	and	policies.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Tutorials	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Bazaar	Tutorial

Introduction
If	 you	 are	 already	 familiar	 with	 decentralized	 version	 control,	 then
please	feel	free	to	skip	ahead	to	“Introducing	Yourself	to	Bazaar”.	If,
on	 the	 other	 hand,	 you	 are	 familiar	 with	 version	 control	 but	 not
decentralized	 version	 control,	 then	 please	 start	 at	 “How	 DVCS	 is
different.”	 Otherwise,	 get	 some	 coffee	 or	 tea,	 get	 comfortable	 and
get	ready	to	catch	up.

The	purpose	of	version	control
Odds	are	 that	you	have	worked	on	some	sort	of	 textual	data	–	 the
sources	to	a	program,	web	sites	or	the	config	files	that	Unix	system
administrators	have	to	deal	with	in	/etc.	The	chances	are	also	good
that	you	have	made	some	sort	of	mistake	that	you	deeply	regretted.
Perhaps	 you	 deleted	 the	 configuration	 file	 for	 your	 mailserver	 or
perhaps	 mauled	 the	 source	 code	 for	 a	 pet	 project.	 Whatever
happened,	 you	 have	 just	 deleted	 important	 information	 that	 you
would	desperately	like	to	get	back.	If	this	has	ever	happened	to	you,
then	you	are	probably	ready	for	Bazaar.

Version	 control	 systems	 (which	 I’ll	 henceforth	 call	 VCS)	 such	 as
Bazaar	give	you	the	ability	to	track	changes	for	a	directory	by	turning
it	 into	something	slightly	more	complicated	 than	a	directory	 that	we
call	 a	branch.	 The	 branch	 not	 only	 stores	 how	 the	 directory	 looks
right	now,	but	also	how	it	looked	at	various	points	in	the	past.	Then,
when	 you	 do	 something	 you	wish	 you	 hadn’t,	 you	 can	 restore	 the
directory	to	the	way	it	looked	at	some	point	in	the	past.

Version	control	systems	give	users	 the	ability	 to	save	changes	to	a
branch	 by	 “committing	 a	 revision“.	 The	 revision	 created	 is
essentially	a	summary	of	the	changes	that	were	made	since	the	last
time	the	tree	was	saved.

These	 revisions	 have	 other	 uses	 as	 well.	 For	 example,	 one	 can
comment	revisions	to	record	what	 the	recent	set	of	changes	meant
by	 providing	 an	 optional	 log	 message.	 Real	 life	 log	 messages
include	 things	 like	 “Fixed	 the	web	 template	 to	 close	 the	 table”	 and
“Added	sftp	suppport.	Fixes	#595”

We	keep	these	logs	so	that	if	later	there	is	some	sort	of	problem	with
sftp,	we	can	figure	out	when	the	problem	probably	happened.

How	DVCS	is	different
Many	Version	Control	Systems	(VCS)	are	stored	on	servers.	 If	one
wants	to	work	on	the	code	stored	within	a	VCS,	then	one	needs	to
connect	to	the	server	and	“checkout”	the	code.	Doing	so	gives	one	a
directory	in	which	a	person	can	make	changes	and	then	commit.	The
VCS	client	then	connects	to	the	VCS	server	and	stores	the	changes.
This	method	is	known	as	the	centralized	model.

The	 centralized	 model	 can	 have	 some	 drawbacks.	 A	 centralized
VCS	requires	that	one	is	able	to	connect	to	the	server	whenever	one
wants	 to	do	version	control	work.	This	can	be	a	bit	of	a	problem	 if
your	 server	 is	on	some	other	machine	on	 the	 internet	and	you	are
not.	Or,	worse	yet,	you	are	on	the	internet	but	the	server	is	missing!

Decentralized	 Version	 Control	 Systems	 (which	 I’ll	 call	 DVCS	 after
this	point)	deal	with	this	problem	by	keeping	branches	on	the	same
machine	 as	 the	 client.	 In	 Bazaar’s	 case,	 the	 branch	 is	 kept	 in	 the
same	place	as	the	code	that	is	being	version	controlled.	This	allows
the	user	to	save	his	changes	(commit)	whenever	he	wants	–	even	if
he	is	offline.	The	user	only	needs	internet	access	when	he	wants	to
access	 the	changes	 in	someone	else’s	branch	 that	are	somewhere
else.

A	common	requirement	 that	many	people	have	 is	 the	need	to	keep
track	 of	 the	 changes	 for	 a	 directory	 such	 as	 file	 and	 subdirectory
changes.	Performing	this	tracking	by	hand	is	a	awkward	process	that
over	 time	 becomes	 unwieldy.	 That	 is,	 until	 one	 considers	 version
control	 tools	such	as	Bazaar.	These	 tools	automate	 the	process	of
storing	data	by	creating	a	revision	of	the	directory	tree	whenever	the
user	asks.

Version	control	software	such	as	Bazaar	can	do	much	more	than	just
storage	and	performing	undo.	For	example,	with	Bazaar	a	developer

can	take	the	modifications	in	one	branch	of	software	and	apply	them
to	a	related	branch	–	even	if	those	changes	exist	in	a	branch	owned
by	 somebody	 else.	 This	 allows	 developers	 to	 cooperate	 without
giving	write	access	to	the	repository.

Bazaar	 remembers	 the	 ‘’ancestry’’	 of	 a	 revision:	 the	 previous
revisions	that	it	is	based	upon.	A	single	revision	may	have	more	than
one	direct	descendant,	each	with	different	changes,	 representing	a
divergence	in	the	evolution	of	the	tree.	By	branching,	Bazaar	allows
multiple	people	to	cooperate	on	the	evolution	of	a	project,	without	all
needing	to	work	in	strict	lock-step.	Branching	can	be	useful	even	for
a	single	developer.

Introducing	yourself	to	Bazaar
Bazaar	 installs	 a	 single	 new	 command,	 bzr.	 Everything	 else	 is	 a
subcommand	of	 this.	You	can	get	 some	help	with	 bzr	help.	 Some
arguments	 are	 grouped	 in	 topics:	 bzr	 help	 topics	 to	 see	 which
topics	are	available.

One	 function	 of	 a	 version	 control	 system	 is	 to	 keep	 track	 of	 who
changed	what.	In	a	decentralized	system,	that	requires	an	identifier
for	 each	 author	 that	 is	 globally	 unique.	 Most	 people	 already	 have
one	 of	 these:	 an	 email	 address.	 Bazaar	 is	 smart	 enough	 to
automatically	 generate	 an	 email	 address	 by	 looking	 up	 your
username	 and	 hostname.	 If	 you	 don’t	 like	 the	 guess	 that	 Bazaar
makes,	then	three	options	exist:

1.	 Set	an	email	address	via	bzr	whoami.	This	is	the	simplest	way.

To	set	a	global	identity,	use:

%	bzr	whoami	"Your	Name	<email@example.com>"

If	 you’d	 like	 to	 use	 a	 different	 address	 for	 a	 specific	 branch,
enter	the	branch	folder	and	use:

%	bzr	whoami	--branch	"Your	Name	<email@example.com>"

2.	 Setting	 the	 email	 address	 in	 the	 ~/.bazaar/bazaar.conf	 [1]	 by
adding	 the	 following	 lines.	 Please	 note	 that	 [DEFAULT]	 is	 case
sensitive:

[DEFAULT]

email=Your	Name	<email@isp.com>

As	above,	you	can	override	this	settings	on	a	branch	by	branch

basis	by	creating	a	branch	section	in	~/.bazaar/locations.conf
and	adding	the	following	lines:

[/the/path/to/the/branch]

email=Your	Name	<email@isp.com>

3.	 Overriding	 the	 two	 previous	 options	 by	 setting	 the	 global
environment	variable	$BZR_EMAIL	or	$EMAIL	($BZR_EMAIL	will	take
precedence)	to	your	full	email	address.

[1]

(1,	2)	On	Windows,	the	users	configuration	files	can	be	found	in
the	application	data	directory.	So	instead	of
~/.bazaar/branch.conf	the	configuration	file	can	be	found	as:
C:\Documents	and	Settings\<username>\Application

Data\Bazaar\2.0\branch.conf.	The	same	is	true	for
locations.conf,	ignore,	and	the	plugins	directory.

Creating	a	branch
History	 is	by	default	 stored	 in	 the	 .bzr	directory	of	 the	branch.	 In	a
future	 version	 of	 Bazaar,	 there	 will	 be	 a	 facility	 to	 store	 it	 in	 a
separate	repository,	which	may	be	remote.

We	create	a	new	branch	by	running	bzr	init	in	an	existing	directory:

%	mkdir	tutorial

%	cd	tutorial

%	ls	-a

./		../

%	pwd

/home/mbp/work/bzr.test/tutorial

%

%	bzr	init

%	ls	-aF

./		../		.bzr/

%

As	with	CVS,	there	are	three	classes	of	file:	unknown,	ignored,	and
versioned.	 The	 add	 command	 makes	 a	 file	 versioned:	 that	 is,
changes	to	it	will	be	recorded	by	the	system:

%	echo	'hello	world'	>	hello.txt

%	bzr	status

unknown:

		hello.txt

%	bzr	add	hello.txt

added	hello.txt

%	bzr	status

added:

		hello.txt

If	 you	 add	 the	 wrong	 file,	 simply	 use	 bzr	 remove	 to	 make	 it
unversioned	 again.	 This	 does	 not	 delete	 the	 working	 copy	 in	 this
case,	though	it	may	in	others	[2].

(1,	2)	bzr	remove	will	remove	the	working	copy	if	it	is	currently

[2] versioned,	but	has	no	changes	from	the	last	committed	version.You	can	force	the	file	to	always	be	kept	with	the	--keep	option	to
bzr	remove,	or	force	it	to	always	be	deleted	with	--force.

Branch	locations
All	 history	 is	 stored	 in	 a	 branch,	 which	 is	 just	 an	 on-disk	 directory
containing	control	files.	By	default	there	is	no	separate	repository	or
database	 as	 used	 in	 svn	 or	 svk.	 You	 can	 choose	 to	 create	 a
repository	if	you	want	to	(see	the	bzr	init-repo	command).	You	may
wish	to	do	this	if	you	have	very	large	branches,	or	many	branches	of
a	moderately	sized	project.

You’ll	usually	refer	to	branches	on	your	computer’s	filesystem	just	by
giving	 the	 name	 of	 the	 directory	 containing	 the	 branch.	 bzr	 also
supports	accessing	branches	over	http	and	sftp,	for	example:

%	bzr	log	http://bazaar-vcs.org/bzr/bzr.dev/

%	bzr	log	sftp://bazaar-vcs.org/bzr/bzr.dev/

By	 installing	 bzr	 plugins	 you	 can	 also	 access	 branches	 using	 the
rsync	protocol.

See	 the	Publishing	your	branch	 section	 for	more	 about	 how	 to	 put
your	branch	at	a	given	location.

Reviewing	changes
Once	you	have	completed	some	work,	you	will	want	to	commit	it	to
the	version	history.	 It	 is	 good	 to	 commit	 fairly	 often:	whenever	 you
get	 a	 new	 feature	 working,	 fix	 a	 bug,	 or	 improve	 some	 code	 or
documentation.	It’s	also	a	good	practice	to	make	sure	that	the	code
compiles	and	passes	 its	 test	suite	before	committing,	 to	make	sure
that	every	revision	is	a	known-good	state.	You	can	also	review	your
changes,	to	make	sure	you’re	committing	what	you	intend	to,	and	as
a	chance	to	rethink	your	work	before	you	permanently	record	it.

Two	bzr	commands	are	particularly	useful	here:	status	and	diff.

bzr	status

The	status	command	tells	you	what	changes	have	been	made	to	the
working	directory	since	the	last	revision:

%	bzr	status

modified:

			foo

bzr	status	hides	“boring”	files	that	are	either	unchanged	or	ignored.
The	status	command	can	optionally	be	given	the	name	of	some	files
or	directories	to	check.

bzr	diff

The	diff	 command	 shows	 the	 full	 text	 of	 changes	 to	 all	 files	 as	 a
standard	unified	diff.	This	can	be	piped	through	many	programs	such
as	‘’patch’‘,	‘’diffstat’‘,	‘’filterdiff’’	and	‘’colordiff’‘:

%	bzr	diff

===	added	file	'hello.txt'

---	hello.txt			1970-01-01	00:00:00	+0000

+++	hello.txt			2005-10-18	14:23:29	+0000

@@	-0,0	+1,1	@@

+hello	world

With	the	-r	option,	the	tree	is	compared	to	an	earlier	revision,	or	the
differences	between	two	versions	are	shown:

%	bzr	diff	-r	1000..										#	everything	since	r1000

%	bzr	diff	-r	1000..1100						#	changes	from	1000	to	1100

The	 --diff-options	 option	 causes	 bzr	 to	 run	 the	 external	 diff
program,	passing	options.	For	example:

%	bzr	diff	--diff-options	--side-by-side	foo

Some	projects	prefer	patches	to	show	a	prefix	at	the	start	of	the	path
for	 old	 and	new	 files.	 The	 --prefix	 option	 can	 be	 used	 to	 provide
such	 a	 prefix.	 As	 a	 shortcut,	 bzr	 diff	 -p1	 produces	 a	 form	 that
works	with	the	command	patch	-p1.

Committing	changes
When	the	working	tree	state	 is	satisfactory,	 it	can	be	committed	 to
the	branch,	creating	a	new	revision	holding	a	snapshot	of	that	state.

bzr	commit

The	commit	command	takes	a	message	describing	the	changes	in
the	 revision.	 It	 also	 records	 your	 userid,	 the	 current	 time	 and
timezone,	 and	 the	 inventory	 and	 contents	 of	 the	 tree.	 The	 commit
message	is	specified	by	the	-m	or	--message	option.	You	can	enter	a
multi-line	commit	message;	in	most	shells	you	can	enter	this	just	by
leaving	the	quotes	open	at	the	end	of	the	line.

%	bzr	commit	-m	"added	my	first	file"

You	 can	 also	 use	 the	 -F	 option	 to	 take	 the	 message	 from	 a	 file.
Some	people	 like	 to	make	notes	 for	a	 commit	message	while	 they
work,	then	review	the	diff	to	make	sure	they	did	what	they	said	they
did.	(This	file	can	also	be	useful	when	you	pick	up	your	work	after	a
break.)

Message	from	an	editor

If	 you	 use	 neither	 the	 -m	 nor	 the	 -F	 option	 then	 bzr	 will	 open	 an
editor	for	you	to	enter	a	message.	The	editor	to	run	is	controlled	by
your	 $VISUAL	 or	 $EDITOR	 environment	 variable,	 which	 can	 be
overridden	 by	 the	 editor	 setting	 in	 ~/.bazaar/bazaar.conf;
$BZR_EDITOR	 will	 override	 either	 of	 the	 above	 mentioned	 editor
options.	 If	 you	 quit	 the	 editor	 without	 making	 any	 changes,	 the
commit	will	be	cancelled.

The	 file	 that	 is	opened	 in	 the	editor	 contains	a	horizontal	 line.	The
part	of	the	file	below	this	line	is	included	for	information	only,	and	will
not	form	part	of	the	commit	message.	Below	the	separator	is	shown
the	list	of	files	that	are	changed	in	the	commit.	You	should	write	your
message	above	the	line,	and	then	save	the	file	and	exit.

If	you	would	like	to	see	the	diff	that	will	be	committed	as	you	edit	the
message	 you	 can	 use	 the	 --show-diff	 option	 to	 commit.	 This	 will
include	the	diff	 in	 the	editor	when	 it	 is	opened,	below	the	separator
and	 the	 information	 about	 the	 files	 that	 will	 be	 committed.	 This
means	 that	 you	 can	 read	 it	 as	 you	write	 the	message,	 but	 the	 diff
itself	wont	be	seen	in	the	commit	message	when	you	have	finished.
If	you	would	like	parts	to	be	included	in	the	message	you	can	copy
and	paste	them	above	the	separator.

Marking	bugs	as	fixed

Many	changes	to	a	project	are	as	a	result	of	fixing	bugs.	Bazaar	can
keep	metadata	about	bugs	you	fixed	when	you	commit	them.	To	do
this	you	use	the	--fixes	option.	This	option	takes	an	argument	that
looks	like	this:

%	bzr	commit	--fixes	<tracker>:<id>

Where	 <tracker>	 is	 an	 identifier	 for	 a	 bug	 tracker	 and	 <id>	 is	 an
identifier	for	a	bug	that	is	tracked	in	that	bug	tracker.	<id>	is	usually
a	number.	Bazaar	already	knows	about	a	few	popular	bug	trackers.
They	 are	 bugs.launchpad.net,	 bugs.debian.org,	 and
bugzilla.gnome.org.	 These	 trackers	 have	 their	 own	 identifiers:	 lp,
deb,	and	gnome	respectively.	For	example,	if	you	made	a	change	to
fix	 the	 bug	 #1234	 on	 bugs.launchpad.net,	 you	 would	 use	 the
following	command	to	commit	your	fix:

%	bzr	commit	-m	"fixed	my	first	bug"	--fixes	lp:1234

For	 more	 information	 on	 this	 topic	 or	 for	 information	 on	 how	 to
configure	other	bug	trackers	please	read	Bug	Tracker	Settings.

Selective	commit

If	you	give	file	or	directory	names	on	the	commit	command	line	then
only	the	changes	to	those	files	will	be	committed.	For	example:

%	bzr	commit	-m	"documentation	fix"	commit.py

By	default	 bzr	 always	 commits	 all	 changes	 to	 the	 tree,	 even	 if	 run
from	a	subdirectory.	To	commit	from	only	the	current	directory	down,
use:

%	bzr	commit	.

Removing	uncommitted	changes
If	you’ve	made	some	changes	and	don’t	want	to	keep	them,	use	the
revert	command	to	go	back	to	the	previous	head	version.	It’s	a	good
idea	to	use	bzr	diff	first	to	see	what	will	be	removed.	By	default	the
revert	command	reverts	the	whole	tree;	if	file	or	directory	names	are
given	 then	only	 those	ones	will	be	affected.	 bzr	revert	also	clears
the	list	of	pending	merges	revisions.

Ignoring	files

The	.bzrignore	file

Many	 source	 trees	 contain	 some	 files	 that	 do	 not	 need	 to	 be
versioned,	such	as	editor	backups,	object	or	bytecode	files,	and	built
programs.	You	can	simply	not	add	them,	but	then	they’ll	always	crop
up	 as	 unknown	 files.	 You	 can	 also	 tell	 bzr	 to	 ignore	 these	 files	 by
adding	them	to	a	file	called	.bzrignore	at	the	top	of	the	tree.

This	 file	 contains	 a	 list	 of	 file	 wildcards	 (or	 “globs”),	 one	 per	 line.
Typical	contents	are	like	this:

*.o

*~

*.tmp

*.py[co]

If	a	glob	contains	a	slash,	it	is	matched	against	the	whole	path	from
the	top	of	the	tree;	otherwise	it	is	matched	against	only	the	filename.
So	 the	 previous	 example	 ignores	 files	 with	 extension	 .o	 in	 all
subdirectories,	 but	 this	 example	 ignores	 only	 config.h	 at	 the	 top
level	and	HTML	files	in	doc/:

./config.h

doc/*.html

To	 get	 a	 list	 of	 which	 files	 are	 ignored	 and	 what	 pattern	 they
matched,	use	bzr	ignored:

%	bzr	ignored

config.h																	./config.h

configure.in~												*~

It	is	OK	to	have	either	an	ignore	pattern	match	a	versioned	file,	or	to

add	an	ignored	file.	Ignore	patterns	have	no	effect	on	versioned	files;
they	 only	 determine	 whether	 unversioned	 files	 are	 reported	 as
unknown	or	ignored.

The	 .bzrignore	 file	 should	 normally	 be	 versioned,	 so	 that	 new
copies	of	the	branch	see	the	same	patterns:

%	bzr	add	.bzrignore

%	bzr	commit	-m	"Add	ignore	patterns"

bzr	ignore

As	an	alternative	to	editing	the	.bzrignore	file,	you	can	use	the	bzr
ignore	command.	The	bzr	ignore	command	takes	filenames	and/or
patterns	as	arguments	and	then	adds	them	to	the	.bzrignore	file.	If	a
.bzrignore	 file	 does	 not	 exist	 the	 bzr	 ignore	 command	 will
automatically	 create	 one	 for	 you,	 and	 implicitly	 add	 it	 to	 be
versioned:

%	bzr	ignore	tags

%	bzr	status

added:

		.bzrignore

Just	 like	when	editing	 the	 .bzrignore	 file	 on	 your	 own,	 you	 should
commit	the	automatically	created	.bzrignore	file:

%	bzr	commit	-m	"Added	tags	to	ignore	file"

Global	ignores

There	are	some	ignored	files	which	are	not	project	specific,	but	more
user	 specific.	 Things	 like	 editor	 temporary	 files,	 or	 personal
temporary	files.	Rather	than	add	these	ignores	to	every	project,	bzr
supports	a	global	ignore	file	in	~/.bazaar/ignore	[1].	It	has	the	same

syntax	as	the	per-project	ignore	file.

Examining	history

bzr	log

The	 bzr	log	 command	 shows	a	 list	 of	 previous	 revisions.	 The	 bzr
log	--forward	command	does	the	same	in	chronological	order	to	get
most	recent	revisions	printed	at	last.

As	with	bzr	diff,	bzr	log	supports	the	-r	argument:

%	bzr	log	-r	1000..										#	Revision	1000	and	everything	after	it

%	bzr	log	-r	..1000										#	Everything	up	to	and	including	r1000

%	bzr	log	-r	1000..1100						#	changes	from	1000	to	1100

%	bzr	log	-r	1000												#	The	changes	in	only	revision	1000

Branch	statistics
The	bzr	info	command	shows	some	summary	information	about	the
working	tree	and	the	branch	history.

Versioning	directories
bzr	 versions	 files	 and	 directories	 in	 a	 way	 that	 can	 keep	 track	 of
renames	and	intelligently	merge	them:

%	mkdir	src

%	echo	'int	main()	{}'	>	src/simple.c

%	bzr	add	src

added	src

added	src/simple.c

%	bzr	status

added:

		src/

		src/simple.c

Deleting	and	removing	files
You	 can	 delete	 files	 or	 directories	 by	 just	 deleting	 them	 from	 the
working	directory.	This	 is	a	bit	different	 to	CVS,	which	requires	 that
you	also	do	cvs	remove.

bzr	remove	makes	the	file	un-versioned,	but	may	or	may	not	delete
the	working	copy	[2].	This	 is	useful	when	you	add	the	wrong	file,	or
decide	that	a	file	should	actually	not	be	versioned.

%	rm	-r	src

%	bzr	remove	-v	hello.txt

?							hello.txt

%	bzr	status

removed:

		hello.txt

		src/

		src/simple.c

unknown:

		hello.txt

If	you	remove	the	wrong	file	by	accident,	you	can	use	bzr	revert	to
restore	it.

Branching
Often	rather	than	starting	your	own	project,	you	will	want	to	submit	a
change	to	an	existing	project.	To	do	this,	you’ll	need	to	get	a	copy	of
the	 existing	 branch.	 Because	 this	 new	 copy	 is	 potentially	 a	 new
branch,	the	command	is	called	branch:

%	bzr	branch	http://bazaar-vcs.org/bzr/bzr.dev

%	cd	bzr.dev

This	copies	down	the	complete	history	of	this	branch,	so	we	can	do
all	 operations	 on	 it	 locally:	 log,	 annotate,	 making	 and	 merging
branches.	There	will	be	an	option	to	get	only	part	of	the	history	if	you
wish.

You	 can	 also	 get	 a	 copy	 of	 an	 existing	 branch	 by	 copying	 its
directory,	expanding	a	tarball,	or	by	a	remote	copy	using	something
like	rsync.

Following	upstream	changes
You	can	stay	up-to-date	with	 the	parent	branch	by	 “pulling”	 in	 their
changes:

%	bzr	pull

After	 this	change,	 the	 local	directory	will	 be	a	mirror	of	 the	source.
This	 includes	 the	 ‘’revision-history’’	 -	which	 is	 a	 list	 of	 the	 commits
done	in	this	branch,	rather	than	merged	from	other	branches.

This	command	only	works	if	your	local	(destination)	branch	is	either
an	older	copy	of	the	parent	branch	with	no	new	commits	of	its	own,
or	 if	 the	most	recent	commit	 in	your	 local	branch	has	been	merged
into	the	parent	branch.

Merging	from	related	branches
If	two	branches	have	diverged	(both	have	unique	changes)	then	bzr
merge	 is	 the	appropriate	 command	 to	use.	Merge	will	 automatically
calculate	 the	changes	 that	exist	 in	 the	branch	you’re	merging	 from
that	are	not	in	your	branch	and	attempt	to	apply	them	in	your	branch.

%	bzr	merge	URL

If	there	is	a	conflict	during	a	merge,	3	files	with	the	same	basename
are	 created.	 The	 filename	 of	 the	 common	 base	 is	 appended	 with
“.BASE”,	 the	 filename	 of	 the	 file	 containing	 your	 changes	 is
appended	with	 “.THIS”	and	 the	 filename	with	 the	changes	 from	the
other	 tree	 is	 appended	 with	 “.OTHER”.	 Using	 a	 program	 such	 as
kdiff3,	you	can	now	comfortably	merge	them	into	one	file.	In	order	to
commit	you	have	to	rename	the	merged	file	(“.THIS”)	to	the	original
file	 name.	 To	 complete	 the	 conflict	 resolution	 you	 must	 use	 the
resolve	 command,	 which	 will	 remove	 the	 “.OTHER”	 and	 “.BASE”
files.	As	 long	as	 there	exist	 files	with	 .BASE,	 .THIS	or	 .OTHER	the
commit	command	will	report	an	error.

%	kdiff3	file.BASE	file.OTHER	file.THIS

%	mv	file.THIS	file

%	bzr	resolve	file

[TODO:	explain	conflict	markers	within	files]

Publishing	your	branch
You	 don’t	 need	 a	 special	 server	 to	 publish	 a	 bzr	 branch,	 just	 a
normal	web	server.	Just	mirror	the	files	to	your	server,	 including	the
.bzr	directory.	One	can	push	a	branch	(or	the	changes	for	a	branch)
by	one	of	the	following	three	methods:

The	best	method	is	to	use	bzr	itself	to	do	it.

%	bzr	push	sftp://servername.com/path/to/directory

(The	 destination	 directory	 must	 already	 exist	 unless	 the	 --
create-prefix	option	is	used.)

Another	 option	 is	 the	 rspush	 plugin	 that	 comes	with	 BzrTools,
which	 uses	 rsync	 to	 push	 the	 changes	 to	 the	 revision	 history
and	the	working	tree.

You	 can	 also	 copy	 the	 files	 around	 manually,	 by	 sending	 a
tarball,	 or	 using	 rsync,	 or	 other	 related	 file	 transfer	 methods.
This	 is	usually	 less	safe	 than	using	 push,	but	may	be	 faster	or
easier	in	some	situations.

Moving	changes	between	trees
It	happens	to	the	best	of	us:	sometimes	you’ll	make	changes	in	the
wrong	tree.	Maybe	because	you’ve	accidentally	started	work	 in	 the
wrong	directory,	maybe	because	as	you’re	working,	the	change	turns
out	to	be	bigger	than	you	expected,	so	you	start	a	new	branch	for	it.

To	move	your	changes	from	one	tree	to	another,	use

%	cd	NEWDIR

%	bzr	merge	--uncommitted	OLDDIR

This	will	apply	all	of	the	uncommitted	changes	you	made	in	OLDDIR
to	NEWDIR.	It	will	not	apply	committed	changes,	even	if	 they	could
be	 applied	 to	 NEWDIR	 with	 a	 regular	 merge.	 The	 changes	 will
remain	 in	OLDDIR,	but	 you	can	use	 bzr	revert	 OLDDIR	 to	 remove
them,	once	you’re	satisfied	with	NEWDIR.

NEWDIR	does	not	have	to	be	a	copy	of	OLDDIR,	but	they	should	be
related.	 The	 more	 different	 they	 are,	 the	 greater	 the	 chance	 of
conflicts.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Tutorials	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Tutorials	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Using	Bazaar	with	Launchpad

Motivation

Communities	are	different	to	teams

The	team	of	people	required	to	create	the	initial	release	of	a	piece	of
software	 may	 vary	 in	 size	 from	 one	 person	 to	 several	 thousand
people.	 Depending	 on	 the	 requirements,	 the	 challenges	 involved,
both	technical	and	managerial,	can	be	immense.	As	explained	in	the
Bazaar	User	Guide,	selecting	“just	 right”	processes	and	using	 tools
like	Bazaar	to	support	matching	workflows	can	greatly	help.

Success	with	software	 though	 requires	more	 than	a	great	 team	 -	 it
requires	 a	 healthy,	 active	 community.	 This	 group	 is	 typically	 far
larger	 than	 the	 team	 as	 it	 includes	 everyone	 interested	 in	 the
software:	 the	 team,	users,	 training	partners,	support	partners,	 third-
party	developers	and	so	on.

Great	 communities	 are	 well	 understood	 in	 the	 open	 source	 world.
Their	applicability	extends	well	beyond	that	though:	most	successful
commercial	 software	 vendors	 are	 well	 skilled	 at	 building	 and
managing	 the	 communities	 that	 grow	 up	 around	 their	 flagship
products.

Like	 great	 teams,	 great	 communities	 don’t	 just	 happen.	 Good
policies	 and	 guidelines	 are	 essential	 for	 fostering	 the	 right	 sort	 of
behaviour	 and	 healthy	 relationships	 between	 participants.	 For	 a
deeper	look	at	this	topic,	see	Karl	Fogel’s	landmark	book:	Producing
Open	Source	Software.

The	need	for	Collaborative	Development
Environments

An	 intelligent	 toolset	 is	 also	 important	 for	 tracking	 and	 managing

http://www.producingoss.com/

community	 information	 and	 workflows.	 These	 tools	 are	 called
Collaborative	 Development	 Environments	 (CDEs).	 These	 toolsets
are	 typically	 web-based	 and	 manage	 things	 such	 as
announcements,	 issues/bugs,	 questions	 and	 answers,	 downloads,
documents	 and	 source	 code.	 Some	 examples	 of	 CDEs	 include
Launchpad,	SourceForge,	java.net	and	SAP	Community	Network.

Helping	communities	work	with	related
communities

Many	 successful	 products	 have	 a	 huge	 number	 of	 downstream
dependencies.	In	other	words,	a	new	challenge	arises	with	success:
dealing	 with	 other	 communities	 and	 understanding	 how	 your
changes	will	impact	them.	This	is	most	obvious	for	projects	like:

software	languages,	e.g.	Python,	PHP,	Ruby,	Java,	Perl,	etc.
compilers,	e.g.	gcc,	JDK,	etc.
libraries,	e.g.	zlib,	openssl,	etc.
frameworks,	e.g.	Zope,	Ruby	on	Rails,	Spring,	etc.

However	it	applies	equally	for	popular	applications	on	which	add-ons
are	 built,	 e.g.	 Firefox,	 Thunderbird,	 OpenOffice.org,	 Drupal,
Wordpress,	Joomla,	etc.

Tools	 that	 assist	 communities	 work	 together	 to	 track	 and	 manage
issues	and	fixes	across	community	boundaries	are	required.	These
tools	help	people	at	both	ends	of	the	spectrum:

users	can	report	problems	in	their	terms,	e.g.	rendering	of	image
type	X	is	broken	in	application	Y	on	operating	system	Z
developers	 can	 better	 appreciate	 the	 downstream	 impact	 of
making	a	change	or	fix,	e.g.	fixing	this	bug	in	a	graphics	library
will	 make	 the	 users	 of	 these	 5	 applications	 on	 these	 10
operating	systems	happy.

https://launchpad.net
http://sourceforge.net
http://java.net
https://www.sdn.sap.com/irj/sdn

People	 in	 the	middle	play	 the	essential	 role	of	 joining	 the	dots	 and
communicating	up	and	down	the	line.	In	many	cases,	they	may	also
fix	 the	 problem	 for	 end	 users,	 releasing	 a	 patch	 and	 pushing	 a
suggested	 fix	 to	 the	upstream	development	 team.	Keeping	 track	of
all	that	over	time	in	a	sustainable	way	is	no	easy	task.

Launchpad:	More	development,	less	friction

As	well	as	sponsoring	Ubuntu	and	Bazaar	development,	Canonical
provides	Launchpad,	https://launchpad.net,	as	a	free	service	for	the
open	 source	 community.	 Launchpad	 is	 one	 of	 the	 most	 exciting
CDEs	around	for	several	notable	reasons:

it	 models	 relationships	 between	 many	 of	 things	 tracked,	 e.g.
source	code	branches	can	be	associated	with	bug	fixes
as	 well	 are	 managing	 historical	 knowledge,	 it	 supports	 future
development	 planning	 and	 tracking	 by	 providing	 features	 such
as	roadmaps,	milestones	and	blueprints
it	 provides	 translation	 tools	 and	 packaging	 services	 so	 that
barriers	 are	 reduced	 for	 translators	 and	 testers	wishing	 to	 join
your	community	and	help	out
it	provides	a	nexus	for	different	communities	to	work	together	on
related	issues	and	roadmaps.

In	 other	 words,	 Launchpad	 has	 been	 designed	 to	 help	 your
community	grow	and	to	reduce	the	workflow	friction	both	within	your
community	 and	 between	 communities.	 Ultimately,	 that	 means	 less
time	on	mechanical	tasks	and	more	time	for	interesting	development.

Bazaar:	Launchpad’s	VCS	client

This	 tutorial	 looks	 at	 how	 Bazaar	 and	 Launchpad	 can	 be	 used
together	 and	 how	 they	 complement	 each	 other.	 It	 is	 important	 to
remember	that:

http://www.ubuntu.com
http://bazaar-vcs.org
https://launchpad.net

1.	 Bazaar	can	be	used	without	Launchpad
2.	 Launchpad	can	be	used	without	Bazaar.

By	design	though,	their	sum	is	greater	than	the	individual	parts.

Finding	and	browsing	branches	using
Launchpad

Finding	available	branches

While	 there	 are	 many	 advantages	 in	 adopting	 distributed	 version
control,	one	of	 the	 things	 that	disappears	 is	 the	all-knowing	central
server	 with	 knowledge	 about	 all	 available	 branches.	 Indeed	 in	 a
distributed	 environment,	 interesting	 branches	 can	 literally	 exist	 in
100s	 of	 locations	 across	 the	 Internet	 (or	within	 an	 Intranet	 for	 that
matter).

Launchpad	fills	this	gap	by	providing	a	registry	of	branches.

Registering	branches

Branches	 can	 be	 uploaded	 to	 Launchpad	 or	 simply	 registered	 as
being	available	in	an	external	location.	Branches	can	also	be	given	a
Status	such	as	New,	Development,	Mature	or	Abandoned.

Note:	 External	 branches	 can	 even	 be	 hosted	 in	 legacy	 version
control	 tools,	 i.e.	CVS	and	Subversion.	Code	 in	 these	systems	will
be	scanned	and	converted	to	Bazaar	branches	on	a	periodic	basis.
For	maximum	fidelity	of	course,	it	is	preferable	for	external	branches
to	be	hosted	in	Bazaar.

Browsing	branches

Branches	 can	 be	 listed,	 filtered	 and	 sorted	 by	 numerous	 attributes
including	 Name,	 Registrant,	 Author,	 Status,	 Age	 and	 time	 of	 last
commit.	Browsing	of	branches	is	also	provided	making	it	easy	to	see
things	such	as:

where	the	branch	can	be	downloaded	from
how	to	upload	changes
recent	commits	and	the	changes	made	by	each
the	source	code	of	individual	files	for	a	given	version.

Accessing	code	in	Launchpad	using	Bazaar

Getting	the	code	for	an	open	source	project

As	Launchpad	keeps	track	of	thousands	of	open	source	projects	and
their	 latest	 code	 whether	 it	 be	 managed	 by	 Bazaar,	 CVS	 or
Subversion,	Bazaar	users	can	grab	that	code	as	easily	as	this:

bzr	branch	lp:project-name

where	 project-name	 is	 the	 Launchpad	 project	 ID.	 Here	 are	 some
examples:

bzr	branch	lp:inkscape

bzr	branch	lp:amarok

bzr	branch	lp:python

bzr	branch	lp:rails

bzr	branch	lp:java-gnome

You	 can	 then	 browse	 the	 code	 locally	 using	 your	 favorite	 editor	 or
IDE	and	change	the	code	if	you	wish.

If	a	project	has	multiple	series	registered	(e.g.	a	development	series
and	a	maintenance	series),	the	latest	code	for	a	given	series	can	be
fetched	using:

bzr	branch	lp:project-name/series

Publishing	your	changes

Having	 fixed	 that	 annoying	 bug	 or	 added	 that	 cool	 feature	 you’ve
always	wanted,	it’s	time	to	impress	your	friends	and	make	the	world
a	better	place	by	making	your	code	available	to	others.	As	explained
earlier,	Launchpad	is	a	free	Bazaar	code	hosting	service	so	you	can

push	your	branch	to	it	and	others	can	access	your	code	from	there.
For	 example,	 assuming	 you	 are	 a	 member	 of	 the	 relevant	 team,
login	to	launchpad	like	this:

bzr	launchpad-login	userid

where	userid	 is	 your	 Launchpad	 user	 ID.	 You	 can	 then	 push	 your
changes	to	a	team	branch	like	this:

bzr	push	lp:~team-name/project-name/branch-name

Others	can	then	download	your	code	like	this:

bzr	branch	lp:~team-name/project-name/branch-name

Personal	branches

Even	if	you	are	not	a	member	of	a	team,	Launchpad	can	be	used	to
publish	your	changes.	In	this	case,	simply	create	a	personal	branch
like	this:

bzr	push	lp:~userid/project-name/branch-name

Others	can	then	download	your	code	like	this:

bzr	branch	lp:~userid/project-name/branch-name

Note:	Even	when	publishing	to	a	personal	branch,	it	is	polite	to	notify
the	 upstream	 developers	 about	 your	 branch	 so	 they	 can	 pull	 your
changes	from	it	if	they	are	generally	applicable	to	all	users	and	meet
the	project’s	quality	standards.

Linking	branches	using	Launchpad

Associating	a	branch	with	a	bug

After	 registering	 a	 branch,	 you	 can	 associate	 it	 to	 a	 bug	 so	 that
people	 interested	 in	 that	 bug	 can	 track	 and	 download	 the	 fix	 as	 it
becomes	available.

To	do	this,	the	steps	are:

1.	 Navigate	to	the	bug	in	question.
2.	 Select	Add	branch	under	Actions.
3.	 Select	the	branch.
4.	 Optionally	 set	 the	 State	 of	 the	 relationship.	 This	 is	 Fix	 In

Progress	by	default	but	you	may	wish	to	set	 it	 to	another	state
such	as	Fix	Available	if	the	branch	already	addresses	the	issue.

If	you	wish,	you	can	also	provide	some	arbitrary	comments	about	the
relationship	between	the	bug	and	the	branch.

Changing	the	state	in	Launchpad	while	committing
in	Bazaar

Bazaar	 and	 Launchpad	 can	 work	 together	 to	 reduce	 some	 of	 the
status	housekeeping	 for	 you.	When	you	commit	 using	Bazaar,	 use
the	–fixes	option	like	this:

bzr	commit	--fixes	lp:1234	-m	"..."

where	 1234	 is	 the	 bug	 ID.	 This	will	 changes	 the	State	 of	 the	 bug-
branch	relationship	to	Fix	Available.	If	the	one	commit	fixes	multiple
issues,	the	–fixes	option	can	be	specified	multiple	times.

One	of	the	cool	things	about	this	feature	is	that	Launchpad	does	not
need	to	be	accessible	when	making	the	commit.	The	--fixes	option
works	by	storing	metadata	which	Launchpad	will	detect	next	time	the
branch	is	pushed	to	it	or	scanned	once	online	again.

Note:	Launchpad	will	not	implicitly	close	a	bug	just	because	a	branch
is	 available	 that	 fixes	 it.	 There	are	 several	 reasons	 for	 this.	 Firstly,
the	 branch	 usually	 needs	 to	 be	 merged	 into	 the	 trunk	 (main
development	branch)	before	most	teams	consider	it	fixed.	Secondly,
many	teams	have	a	separate	process	for	confirming	bugs	are	fixed
over	and	above	a	developer	saying	so.

As	 explained	 later,	 merge	 control	 features	 are	 currently	 under
development	in	Launchpad	and	automatically	changing	the	status	of
bugs	to	Fix	Committed	will	be	more	appropriate	once	those	features
are	in	place.

Associating	a	branch	with	a	blueprint

After	registering	a	branch,	you	can	associate	it	to	a	blueprint	so	that
people	interested	in	that	blueprint	can	track	and	test	the	feature	as	it
develops.

To	do	this,	the	steps	are:

1.	 Navigate	to	the	blueprint	in	question.
2.	 Select	Link	branch	under	Actions.
3.	 Select	the	branch.

If	you	wish,	you	can	also	provide	some	arbitrary	comments	about	the
relationship	between	the	blueprint	and	the	branch.

Managing	releases	using	Launchpad

Integrating	changes

Once	 a	 branch	 has	 been	 developed	 and	 published,	 communities
typically	 go	 through	 a	 rigorous	 process	 before	 those	 changes	 are
integrated	into	the	core	product	and	rolled	out	to	end	users.	Some	of
the	steps	involved	may	include:

peer	review	of	the	changes
deciding	which	releases	to	include	the	changes	in,	e.g.	the	next
maintenance	release,	the	next	major	release,	or	both
running	functional	regression	tests
benchmarking	to	ensure	performance	remains	acceptable
packaging	into	early	access	releases	for	end	user	testing
documentation	 updates,	 e.g.	 Release	 Notes	 for	 the	 targeted
releases
translation	of	the	user	interface	and	documentation	into	multiple
languages.

This	section	briefly	looks	at	some	of	the	features	in	Launchpad	that
help	 get	 good	 quality	 code	 into	 production.	 Strong	 integration	 with
Bazaar	is	core	to	making	this	happen	smoothly.

Note:	Where	 indicated,	 some	 of	 the	 features	 below	 are	 still	 under
development.	 If	 one	or	more	of	 these	 features	 interest	 you,	please
consider	 joining	 the	 Launchpad	 beta	 test	 team	 at	 this	 link:
https://help.launchpad.net/JoiningLaunchpadBetaTesters.	 You	 can
then	 get	 early	 access	 to	 features	 and	 provide	 feedback	 to	 the
developers	before	wider	roll-out.

Branch	merge	proposals

https://help.launchpad.net/JoiningLaunchpadBetaTesters

After	 navigating	 to	 a	 branch	 in	 Launchpad,	 one	 of	 the	 available
actions	is	Propose	for	merging.	This	lets	you	nominate	which	branch
this	code	ought	to	be	merged	into.

Tracking	 the	 knowledge	about	which	 branches	 are	 proposed	 to	 be
merged	into	a	codeline	helps	Release	Managers	keep	on	top	of	what
still	needs	to	be	completed,	or	can	be	completed,	before	a	ship	date.
Using	 this	 information,	 they	can	ensure	branches	are	merged	after
completing	any	necessary	reviews.	In	the	simple	case,	the	Release
Manager	may	manually	merge	branches.	 In	more	advanced	cases,
the	merging	could	be	automatically	done	by	a	robot	(like	PQM)	when
the	branch	reaches	the	right	state	(e.g.	Review	completed).

Code	review	tracking

A	number	of	features	are	under	development	in	Launchpad	to	track
the	 states,	 conversations	 and	 outcomes	 of	 code	 reviews.	 These
features	are	expected	to	be	integrated	with	branch	merge	proposals
and	branch	browsing	features.

Personal	Package	Archives	(PPAs)

PPAs	 help	 developers	 and	 development	 teams	 get	 custom	 builds
into	 the	 hands	 of	 users	 for	 early	 testing	 and	 feedback.	 In	 other
words,	a	PPA	allows	a	developer	to	form	a	community	of	testers	who
are	interested	in	their	changes.	The	testing	community	can	install	the
packages,	run	them	for	the	test	period	and	then	remove	them	cleanly
from	their	system.

See	https://help.launchpad.net/PPAQuickStart	for	further	details.

Translations

The	Translations	module	in	Launchpad	is	designed	to	make	it	easy

https://launchpad.net/pqm
https://help.launchpad.net/PPAQuickStart

for	anyone	to	get	involved	translating	applications	to	languages	they
know.	Translators	are	shielded	from	the	low	level	details.

Launchpad	keeps	track	of	the	translations	for	each	major	version	of
a	project	separately,	allowing	 translators	 to	continue	 to	 improve	 the
translations	of	your	stable	releases	while	others	start	work	on	newer
versions	that	are	still	 in	development.	Translation	speed	 in	reduced
by	sharing	resources	across	projects.	Automatic	suggestions,	from	a
library	 of	 750,000	 translated	 strings,	 and	 a	 community	 of	 19,000
registered	 translators	can	 radically	 cut	 the	 time	 required	 to	 localise
your	project	into	many	languages.

Summary
The	communities	we	join,	whether	off-line	or	on-line,	say	a	lot	about
the	sort	of	people	we	are.	The	 flip-side	 to	 this	 is	 that	 the	 tools	you
choose	for	your	community	-	particularly	the	CDE	and	version	control
tool	-	can	have	a	large	impact	on	who	joins	and	how	easily	they	can
contribute.

In	 their	 own	 right,	 Launchpad	 and	 Bazaar	 are	 highly	 useful	 tools.
Together,	they	can:

help	 your	 community	 track	major	 assets	 such	 as	 source	 code
and	knowledge
help	it	grow	by	reducing	barriers	to	entry
help	it	interact	with	related	communities.

In	 particular,	 Launchpad	 is	 a	 free	 code	 hosting	 service	 for	 your
Bazaar	branches,	branches	can	be	browsed	online,	branches	can	be
linked	 to	 bugs	 and	 blueprints,	 and	 the	 status	 of	 bug-branch
relationships	can	be	automatically	managed	by	mentioning	 the	bug
while	committing	in	Bazaar.	Further	integration	is	under	development
with	 the	aim	of	streamlining	 the	process	 from	great	 idea	 to	running
code	in	the	hands	of	end	users.

If	 you	 have	 any	 feedback	 on	 how	 you’d	 like	 to	 see	 Bazaar	 and
Launchpad	 further	 integrated,	 please	 contact	 us	 on	 the	 Bazaar
mailing	list,	bazaar@lists.canonical.com.

While	 designed	 as	 a	 free	 service	 to	 support	 open	 source	 projects,
Canonical	may	make	 Launchpad	 available	 to	 commercial	 software
developers	depending	on	their	requirements.	We	would	be	happy	to
hear	from	you	if	you	think	Launchpad	would	be	useful	for	managing
your	community,	open	source	or	otherwise.

mailto:bazaar%40lists.canonical.com

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Tutorials	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Tutorials	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Centralized	Workflow	Tutorial

Overview
This	document	describes	a	possible	workflow	for	using	Bazaar.	That
of	 using	 Bazaar,	 the	 distributed	 version	 control	 system,	 in	 a
centralized	 manner.	 Bazaar	 is	 designed	 to	 be	 very	 flexible	 and
allows	several	different	workflows,	from	fully	decentralized	to	mostly
centralized.	 The	workflow	 used	 here	 is	meant	 to	 ease	 a	 new	 user
into	more	advanced	usage	of	Bazaar,	and	allow	 them	 to	work	 in	a
mix	of	centralized	and	decentralized	operations.

In	 general,	 this	 document	 is	 meant	 for	 users	 coming	 from	 a
background	of	centralized	version	control	 systems	such	as	CVS	or
subversion.	 It	 is	 common	 in	work	 settings	 to	 have	 a	 single	 central
server	 hosting	 the	 codebase,	 with	 several	 people	 working	 on	 this
codebase,	 keeping	 their	 work	 in	 sync.	 This	 workflow	 is	 also
applicable	 to	 a	 single	 developer	 working	 on	 several	 different
machines.

http://bazaar-vcs.org
http://bazaar-vcs.org
http://bazaar-vcs.org
http://bazaar-vcs.org

Initial	Setup
These	are	some	reasonably	simple	steps	to	setup	Bazaar	so	that	 it
works	well	for	you.

Setting	User	Email

Your	 user	 identity	 is	 stored	 with	 each	 commit.	 While	 this	 doesn’t
have	to	be	accurate	or	unique,	 it	will	be	used	 in	 log	messages	and
annotations,	so	it	is	better	to	have	something	real.

%	bzr	whoami	"John	Doe	<jdoe@organization.com>"

Setting	up	a	local	Repository

Bazaar	branches	generally	copy	the	history	information	around	with
them,	 which	 is	 part	 of	 how	 you	 can	 work	 in	 a	 fully	 decentralized
manner.	 As	 an	 optimization,	 it	 is	 possible	 for	 related	 branches	 to
combine	their	storage	needs	so	that	you	do	not	need	to	copy	around
all	of	this	history	information	whenever	you	create	a	new	branch.

The	best	way	to	do	this	is	to	create	a	Shared	Repository.	In	general,
branches	will	share	 their	storage	 if	 they	exist	 in	a	subdirectory	of	a
Shared	Repository.	So	let’s	set	up	a	Shared	Repository	in	our	home
directory,	 thus	 all	 branches	 we	 create	 underneath	 will	 share	 their
history	storage.

%	bzr	init-repo	--trees	~

Setting	up	a	remote	Repository

Many	times	you	want	a	location	where	data	is	stored	separately	from
where	 you	 do	 your	 work.	 This	 workflow	 is	 required	 by	 centralized

http://bazaar-vcs.org
http://bazaar-vcs.org

systems	(CVS/SVN).	Usually	they	are	on	separate	machines,	but	not
always.	 This	 is	 actually	 a	 pretty	 good	 setup,	 especially	 in	 a	 work
environment.	Since	 it	ensures	a	central	 location	where	data	can	be
backed	up,	and	means	 that	 if	 something	happens	 to	a	developer’s
machine,	no	committed	work	has	to	be	lost.

So	let’s	set	up	a	shared	location	for	our	project	on	a	remote	machine
called	 centralhost.	 Again,	 we	 will	 use	 a	 Shared	 Repository	 to
optimize	disk	usage.

%	bzr	init-repo	--no-trees	sftp://centralhost/srv/bzr/

You	can	think	of	 this	step	as	similar	 to	setting	up	a	new	cvsroot,	or
subversion	repository.	The	--no-trees	option	tells	bzr	to	not	populate
the	directory	with	a	working	 tree.	This	 is	appropriate,	 since	no	one
will	 be	making	 changes	 directly	 in	 the	 branches	 within	 the	 central
repository.

Migrating	an	existing	project	to	Bazaar
Now	that	we	have	a	repository,	let’s	create	a	versioned	project.	Most
of	 the	 time,	 you	will	 already	have	some	code	 that	 you	are	working
with,	 that	 you	 now	want	 to	 version	 using	 Bazaar.	 If	 the	 code	 was
originally	 in	 source	 control,	 there	 are	 many	 ways	 to	 convert	 the
project	to	Bazaar	without	losing	any	history.	However,	this	is	outside
the	 scope	 of	 this	 document.	 See	 Tracking	 Upstream	 for	 some
possibilities	(section	“Converting	and	keeping	history”).

Developer	1:	Creating	the	first	revision

So	first,	we	want	to	create	a	branch	in	our	remote	Repository,	where
we	want	to	host	the	project.	Let’s	assume	we	have	a	project	named
“sigil”	that	we	want	to	put	under	version	control.

%	bzr	init	sftp://centralhost/srv/bzr/sigil

This	can	be	 thought	of	as	 the	 “HEAD”	branch	 in	CVS	 terms,	or	as
the	“trunk”	in	Subversion	terms.	We	will	call	this	the	dev	branch.

I	 prefer	 working	 in	 a	 subdirectory	 of	 my	 home	 directory	 to	 avoid
collisions	with	all	the	other	files	that	end	up	there.	Also,	we	will	want
a	project	directory	where	we	can	hold	all	of	the	different	branches	we
end	up	working	on.

%	cd	~

%	mkdir	work

%	cd	work

%	mkdir	sigil

%	cd	sigil

%	bzr	checkout	sftp://centralhost/srv/bzr/sigil	dev

%	cd	dev

%	cp	-ar	~/sigil/*	.

%	bzr	add

%	bzr	commit	-m	"Initial	import	of	Sigil"

http://bazaar-vcs.org
http://bazaar-vcs.org
http://bazaar-vcs.org/TrackingUpstream

In	 the	 previous	 section,	 we	 created	 an	 empty	 branch	 (the	 /sigil
branch)	 on	 centralhost,	 and	 then	 checkout	 out	 this	 empty	 branch
onto	our	workstation	to	add	files	from	our	existing	project.	There	are
many	 ways	 to	 set	 up	 your	 working	 directory,	 but	 the	 steps	 above
make	 it	 easy	 to	 handle	 working	 with	 feature/bugfix	 branches.	 And
one	of	the	strong	points	of	Bazaar	is	how	well	it	works	with	branches.

At	 this	point,	because	you	have	a	 ‘checkout’	of	 the	 remote	branch,
any	 commits	 you	 make	 in	 ~/work/sigil/dev/	 will	 automatically	 be
saved	both	locally,	and	on	centralhost.

Developer	N:	Getting	a	working	copy	of	the	project

Since	the	first	developer	did	all	of	the	work	of	creating	the	project,	all
other	developers	would	just	checkout	that	branch.	They	should	still
follow	Setting	User	Email	and	Setting	up	a	local	Repository.

To	get	a	copy	of	the	current	development	tree:

%	cd	~/work/sigil

%	bzr	checkout	sftp://centralhost/srv/bzr/sigil	dev

Now	 that	 two	 people	 both	 have	 a	 checkout	 of
sftp://centralhost/srv/bzr/sigil,	 there	will	be	 times	when	one	of
the	checkouts	will	be	out	of	date	with	the	current	version.	At	commit
time,	 Bazaar	 will	 inform	 the	 user	 of	 this	 and	 prevent	 them	 from
committing.	To	get	up	to	date,	use	bzr	update	to	update	the	tree	with
the	remote	changes.	This	may	require	resolving	conflicts	if	the	same
files	have	been	modified.

http://bazaar-vcs.org
http://bazaar-vcs.org

Developing	on	separate	branches
So	 far	 everyone	 is	 working	 and	 committing	 their	 changes	 into	 the
same	 branch.	 This	 means	 that	 everyone	 needs	 to	 update	 fairly
regularly	and	deal	with	other	people’s	changes.	Also,	 if	one	person
commits	 something	 that	 breaks	 the	 codebase,	 then	 upon	 syncing,
everyone	will	get	the	problem.

Usually,	 it	 is	 better	 to	 do	 development	 on	 different	 branches,	 and
then	integrate	those	back	into	the	main	branch,	once	they	are	stable.
This	 is	 one	 of	 the	 biggest	 changes	 from	 working	 with	 CVS/SVN.
They	both	allow	you	to	work	on	separate	branches,	but	their	merging
algorithms	 are	 fairly	 weak,	 so	 it	 is	 difficult	 to	 keep	 things
synchronized.	 Bazaar	 tracks	 what	 has	 already	 been	 merged,	 and
can	even	apply	changes	to	files	that	have	been	renamed.

Creating	and	working	on	a	new	branch

We	want	to	keep	our	changes	available	for	other	people,	even	if	they
aren’t	quite	complete	yet.	So	we	will	create	a	new	public	branch	on
centralhost,	and	track	it	locally.

%	cd	~/work/sigil

%	bzr	branch	sftp://centralhost/srv/bzr/sigil	\

													sftp://centralhost/srv/bzr/sigil/doodle-fixes

%	bzr	checkout	sftp://centralhost/srv/bzr/sigil/doodle-fixes	doodle-fixes

%	cd	doodle-fixes

We	now	have	a	place	to	make	any	fixes	we	need	to	doodle.	And	we
would	 not	 interrupt	 people	 who	 are	 working	 on	 other	 parts	 of	 the
code.	 Because	 we	 have	 a	 checkout,	 any	 commits	 made	 in	 the
~/work/sigil/doodle-fixes/	will	also	show	up	on	centralhost.	[1]	 It
is	also	possible	to	have	two	developers	collaborate	on	one	of	these

http://bazaar-vcs.org

branches,	just	like	they	would	have	collaborated	on	the	dev	branch.
[2]

[1]

It	may	look	odd	to	have	a	branch	in	a	subdirectory	of	another
branch.	This	is	just	fine,	and	you	can	think	of	it	as	a	hierarchical
namespace	where	the	nested	branch	is	derived	from	the	outer
branch.

[2]

(1,	2)	When	using	lots	of	independent	branches,	having	to
retype	the	full	URL	all	the	time	takes	a	lot	of	typing.	We	are
looking	into	various	methods	to	help	with	this,	such	as	branch
aliases,	etc.	For	now,	though,	the	bzrtools	plugin	provides	the
bzr	cbranch	command.	Which	is	designed	to	take	a	base
branch,	create	a	new	public	branch,	and	create	a	checkout	of
that	branch,	all	with	much	less	typing.	Configuring	cbranch	is
outside	the	scope	of	this	document,	but	the	final	commands	are
similar	to:

%	bzr	cbranch	dev	my-feature-branch

Merging	changes	back

When	 it	 is	 decided	 that	 some	 of	 the	 changes	 in	 doodle-fixes	 are
ready	to	be	merged	into	the	main	branch,	simply	do:

%	cd	~/work/sigil/dev

%	bzr	merge	../doodle-fixes

Now	the	changes	are	available	in	the	dev	branch,	but	they	have	not
been	committed	yet.	This	 is	 the	 time	when	you	want	 to	 review	 the
final	changes,	and	double	check	the	code	to	make	sure	 it	compiles
cleanly	 and	 passes	 the	 test	 suite.	 The	 commands	 bzr	 status	 and
bzr	diff	are	good	tools	to	use	here.	Also,	this	is	the	time	to	resolve
any	conflicts.	Bazaar	will	prevent	you	from	committing	until	you	have
resolved	these	conflicts.	That	way	you	don’t	accidentally	commit	the
conflict	markers.	 The	 command	 bzr	 status	 will	 show	 the	 conflicts
along	with	the	other	changes,	or	you	can	use	bzr	conflicts	 to	 just

http://bazaar-vcs.org/BzrTools
http://bazaar-vcs.org

list	conflicts.	Use	bzr	resolve	file/name	or	bzr	resolve	--all	once
conflicts	 have	 been	 handled.	 [3]	 If	 you	 have	 a	 conflict	 that	 is
particularly	 difficult	 to	 solve	 you	may	want	 to	 use	 the	 bzr	 remerge
command.	It	will	let	you	try	different	merge	algorithms,	as	well	as	let
you	see	the	original	source	lines	(--show-base).

[3]

Some	systems	make	you	resolve	conflicts	as	part	of	the	merge
process.	We	have	found	that	it	is	usually	easier	to	resolve
conflicts	when	you	have	the	view	of	the	entire	tree,	rather	than
just	a	single	file.	It	gives	you	much	more	context,	and	also	lets
you	run	tests	as	you	resolve	the	problems.

Recommended	Branching

One	 very	 common	 way	 to	 handle	 all	 of	 these	 branches	 is	 to	 give
each	developer	their	own	branch,	and	their	own	place	to	work	in	the
central	location.	This	can	be	done	with:

%	bzr	branch	sftp://centralhost/srv/bzr/sigil	\

													sftp://centralhost/srv/bzr/sigil/user-a

%	bzr	branch	sftp://centralhost/srv/bzr/sigil	\

													sftp://centralhost/srv/bzr/sigil/user-b

This	 gives	each	developer	 their	 own	branch	 to	work	 on.	And,	 they
can	easily	create	a	new	feature	branch	for	themselves	with	just	[2]

%	bzr	branch	sftp://centralhost/srv/bzr/sigil/user-a	\

													sftp://centralhost/srv/bzr/sigil/user-a/feature

%	cd	~/work/sigil

%	bzr	checkout	sftp://centralhost/srv/bzr/sigil/user-a/feature	myfeature

Glossary

Shared	Repository

Bazaar	has	the	concept	of	a	“Shared	Repository”.	This	 is	similar	 to
the	 traditional	 concept	 of	 a	 repository	 in	 other	VCSs	 like	CVS	and
Subversion.	 For	 example,	 in	 Subversion	 you	 have	 a	 remote
repository,	which	is	where	all	of	the	history	is	stored,	and	locally	you
don’t	 have	 any	 history	 information,	 only	 a	 checkout	 of	 the	working
tree	files.	Note	that	“Shared”	 in	this	context	means	shared	between
branches.	 It	 may	 be	 shared	 between	 people,	 but	 standalone
branches	can	also	be	shared	between	people.

In	Bazaar	terms,	a	“Shared	Repository”	 is	a	 location	where	multiple
branches	 can	 share	 their	 revision	 history	 information.	 In	 order	 to
support	 decentralized	 workflows,	 it	 is	 possible	 for	 every	 branch	 to
store	its	own	revision	history	information.	But	this	is	often	inefficient,
since	 related	branches	share	history,	and	 they	might	as	well	 share
the	storage	as	well.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Tutorials	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar-vcs.org
http://bazaar-vcs.org
http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	2.2b1
2.2b1: 2010-04-01

This	is	the	first	beta	of	the	2.2	series,	leading	up	to	a	2.2.0	release	in
July	or	August.	Beta	releases	are	suitable	for	everyday	use	but	may
cause	some	 incompatibilities	with	plugins.	Some	plugins	may	need
small	updates	to	work	with	2.2b1.

2.2b1	 includes	 some	 changes	 to	 make	 merge	 conflicts	 easier	 to
understand	 and	 resolve.	 It	 also	 removes	 some	 old	 unnecessary
code,	 and	 loads	 somewhat	 less	 code	 at	 startup.	 It	 starts	 adding	 a
common	 infrastructure	 for	 dealing	with	 colocated	named	branches,
which	 can	 be	 implemented	 in	 various	 ways	 in	 either	 bzr	 native	 or
foreign	formats.	On	Ubuntu	and	other	platforms	with	the	apport	bug-
reporting	 library,	 there’s	an	easier	path	 to	 report	problems	with	bzr.
We	plan	to	continue	with	these	themes	through	the	2.2	series.

Over	 thirty	 bugs	 have	 been	 fixed,	 including	 in	 the	 log	 command,
exporting	to	tarballs,	restarting	interrupted	system	calls,	portability	of
compiled	 extensions,	making	 backups	 during	 upgrade,	 and	 locking
on	ftp.

Compatibility	Breaks
BTreeGraphIndex	 can	 now	 take	 an	 offset	 to	 indicate	 that	 the
data	 starts	 somewhere	 other	 than	 then	 beginning	 of	 the	 file.
(John	Arbash	Meinel)
Deleted	very	old	hidden	commands	versionedfile-list,	weave-
plan-merge,	weave-merge-text.	(Martin	Pool)
Repository.get_inventory_sha1()	 and
Repository.get_revision_xml()	 have	 been	 removed.	 (Jelmer
Vernooij)
Repository.get_revision_inventory()	 has	 been	 removed	 in
favor	of	Repository.get_inventory().	(Jelmer	Vernooij)
All	 test	 servers	 have	 been	 moved	 out	 of	 the	 bzrlib.transport
hierarchy	 to	 bzrlib.tests.test_server	 except	 for	 MemoryServer,
ChrootServer	 and	 PathFilteringServer.	 bzrlib	 users	 may
encounter	test	failures	that	can	be	fixed	by	updating	the	related
imports	 from	 bzrlib.transport.xxx	 to
bzrlib.tests.test_server.	(Vincent	Ladeuil)
BranchReferenceFormat.initialize()	 now	 takes	 an	 optional
name	 argument	 as	 its	 second	 parameter,	 for	 consistency	with
the	initialize()	method	of	other	formats.	(Jelmer	Vernooij)

New	Features
Added	bzr	remove-branch	command	that	can	remove	a	local	or
remote	branch.	(Jelmer	Vernooij,	#276295)
bzr	 export	 now	 takes	 an	 optional	 argument	 --per-file-

timestamps	 to	 set	 file	mtimes	 to	 the	 last	 timestamp	 of	 the	 last
revision	 in	 which	 they	 were	 changed	 rather	 than	 the	 current
time.	(Jelmer	Vernooij)
If	 the	 Apport	 crash-reporting	 tool	 is	 available,	 bzr	 crashes	 are
now	stored	 into	 the	 /var/crash	 apport	 spool	directory,	and	 the
user	is	invited	to	report	them	to	the	developers	from	there,	either
automatically	 or	 by	 running	 apport-bug.	No	 information	 is	 sent
without	 specific	 permission	 from	 the	 user.	 (Martin	 Pool,
#515052)
Parsing	 of	 command	 lines,	 for	 example	 in	 diff	 --using,	 no
longer	 treats	 backslash	 as	 an	 escape	 character	 on	Windows.
(Gordon	Tyler,	#392248)
Plugins	 can	be	disabled	by	defining	 BZR_DISABLE_PLUGINS	 as	 a
list	 of	 plugin	 names	 separated	 by	 ‘:’	 (‘;’	 on	windows).	 (Vincent
Ladeuil,	#411413)
Plugins	 can	 be	 loaded	 from	 arbitrary	 locations	 by	 defining
BZR_PLUGINS_AT	 as	 a	 list	 of	 name@path	 separated	 by	 ‘:’	 (‘;’	 on
windows).	This	 takes	precedence	over	 BZR_PLUGIN_PATH	 for	 the
specified	 plugins.	 This	 is	 targeted	 at	 plugin	 developers	 for
punctual	 needs	 and	 not	 intended	 to	 replace	 BZR_PLUGIN_PATH.
(Vincent	Ladeuil,	#82693)
Tag	 names	 can	 now	 be	 determined	 automatically	 by
automatic_tag_name	hooks	on	Branch	if	they	are	not	specified	on
the	command	line.	(Jelmer	Vernooij)
Tree-shape	conflicts	can	be	 resolved	by	providing	 --take-this
and	 --take-other	 to	 the	 bzr	 resolve	 command.	 Just	 marking

mailto:name%40path

the	conflict	as	resolved	is	still	accessible	via	the	--done	default
action.	(Vincent	Ladeuil)
Merges	 can	 be	 proposed	 on	 Launchpad	 with	 the	 new	 lp-
propose-merge	command.	(Aaron	Bentley,	Jonathan	Lange)

Bug	Fixes
Added	 docstring	 for	 Tree.iter_changes	 (John	 Arbash	 Meinel,
#304182)

Allow	 additional	 arguments	 to
RemoteRepository.add_inventory_by_delta().	 (Jelmer	 Vernooij,
#532631)

Allow	 exporting	 a	 single	 file	 using	 bzr	 export.	 (Michal	 Junák,
#511987)

Allow	 syscalls	 to	 automatically	 restart	 when	 TextUIFactory‘s
SIGWINCH	 handler	 is	 invoked,	 avoiding	 EINTR	 errors	 during
blocking	IO,	which	are	often	poorly	handled	by	Python’s	libraries
and	parts	of	bzrlib.	(Andrew	Bennetts,	#496813)

Avoid	 infinite	 recursion	 when	 probing	 for	 apport.	 (Vincent
Ladeuil,	#516934)

Avoid	malloc(0)	in	patiencediff,	which	is	non-portable.	(Martin
Pool,	#331095)

Avoid	 truncating	 svn	 URLs.	 (Martin	 Pool,	 Martin	 von	 Gagern,
#545185)

bzr	 add	 will	 not	 add	 conflict	 related	 files	 unless	 explicitly
required.	(Vincent	Ladeuil,	#322767,	#414589)

bzr	 dump-btree	 now	 works	 on	 *.cix	 and	 *.six	 files.	 Those
indices	 do	 not	 have	 reference	 lists,	 so	 dump-btree	 will	 simply
show	None	instead.	(Andrew	Bennetts,	#488607)

bzr	help	will	no	longer	trigger	the	get_missing_command	hook

when	 doing	 a	 topic	 lookup.	 This	 avoids	 prompting	 (like	 ‘no
command	plugins/loom,	did	you	mean	log?’)	when	getting	help.
In	 future	 we	 may	 trigger	 the	 hook	 deliberately	 when	 no	 help
topics	match	from	any	help	index.	(Robert	Collins,	#396261)

bzr	 log	 -n0	 -r..A.B.C	 should	 not	 crash	 but	 just	 consider	 the
None	 revspec	 as	 representing	 the	 first	 revision	 of	 the	 branch.
(Vincent	Ladeuil,	#519862)

bzr	pull	now	uses	the	correct	URL	when	a	Launchpad	URI	 is
explicitly	 defined	 as	 the	 pull	 location	 in	 locations.conf.	 Strings
like	lp:bzr	can	now	be	correctly	joined	to	other	URLs.	(Gordon
Tyler,	#534787)

bzr	remove-tree	can	now	remove	multiple	working	trees.	(Jared
Hance,	Andrew	Bennetts,	#253137)

bzr	 resolve	 --take-this	 and	 --take-other	 now	 correctly
renames	 the	 kept	 file	 on	 content	 conflicts	 where	 one	 side
deleted	the	file.	(Vincent	Ladeuil,	#529968)

bzr	upgrade	now	creates	the	backup.bzr	directory	with	the	same
permissions	 as	 .bzr	 directory	 on	 a	 POSIX	 OS.	 (Parth
Malwankar,	#262450)

bzr	 upgrade	 now	 names	 backup	 directory	 as	 backup.bzr.~N~
instead	 of	 backup.bzr.	 This	 directory	 is	 ignored	 by	 bzr
commands	such	as	add.	(Parth	Malwankar,	#335033,	#300001)

Correctly	 interpret	 “451	 Rename/move	 failure:	 Directory	 not
empty”	from	ftp	servers	while	trying	to	take	a	lock.	(Martin	Pool,
#528722)

DirStateRevisionTree.kind()	 was	 returning	 wrong	 result	 when
‘kind’	changes	occured	between	the	workingtree	and	one	of	 its

parents.	(Vincent	Ladeuil,	#535547)

Fix	 log	 to	better	check	ancestors	even	 if	merged	revisions	are
involved.	(Vincent	Ladeuil,	#476293)

Many	 IO	 operations	 that	 returned	 EINTR	were	 retried	 even	 if	 it
wasn’t	safe	to	do	so	via	careless	use	of	until_no_eintr.	Bazaar
now	only	 retries	operations	 that	are	safe	 to	 retry,	and	 in	some
cases	 has	 switched	 to	 operations	 that	 can	 be	 retried	 (e.g.
sock.send	 rather	 than	 sock.sendall).	 (Andrew	Bennetts,	Martin
<gzlist@googlemail.com>,	#496813)

Path	 conflicts	 now	 support	 –take-this	 and	 –take-other	 even
when	a	deletion	is	involved.	(Vincent	Ladeuil,	#531967)

Network	 transfer	 amounts	 and	 rates	 are	 now	 displayed	 in	 SI
units	 according	 to	 the	 Ubuntu	 Units	 Policy
<https://wiki.ubuntu.com/UnitsPolicy>.	(Gordon	Tyler,	#514399)

Support	kind	markers	for	socket	and	fifo	filesystem	objects.	This
prevents	bzr	status	--short	from	crashing	when	those	files	are
present.	(John	Arbash	Meinel,	#303275)

bzr	 mkdir	 DIR	 will	 not	 create	 DIR	 unless	 DIR’s	 parent	 is	 a
versioned

directory.	(Parth	Malwankar,	#138600)

SSH	child	processes	will	 now	 ignore	SIGQUIT	on	nix	systems
so	 breaking	 into	 the	 debugger	 won’t	 kill	 the	 session.	 (Martin
<gzlist@googlemail.com>,	#162502)

Tolerate	patches	with	leading	noise	in	bzr-handle-patch.	(Toshio
Kuratomi,	Martin	Pool,	#502076)

.bazaar,	 .bazaar/bazaar.conf	 and	 .bzr.log	 inherit	 user	 and

mailto:gzlist%40googlemail.com
https://wiki.ubuntu.com/UnitsPolicy
mailto:gzlist%40googlemail.com

group	ownership	from	the	containing	directory.	This	allow	bzr	to
work	better	with	sudo.	(Parth	Malwankar,	#376388)

API	Changes
bzrlib.merge_directive._BaseMergeDirective	 has	 been
renamed	to	 bzrlib.merge_directive.BaseMergeDirective	and	 is
now	public.	(Jelmer	Vernooij)
BranchFormat.initialize	 now	 takes	 an	 optional	 name	 of	 the
colocated	branch	to	create.	(Jelmer	Vernooij)
BzrDir.get_branch_transport	now	takes	an	optional	name	of	the
colocated	branch	to	open.	(Jelmer	Vernooij)
Added	 bzrlib.osutils.set_signal_handler,	 a	 convenience
function	 that	 can	 set	 a	 signal	 handler	 and	 call
signal.siginterrupt(signum,	 False)	 for	 it,	 if	 the	 platform	 and
Python	version	supports	it.	(Andrew	Bennetts,	#496813)
New	 bzrlib.initialize	 is	 recommended	 for	 programs	 using
bzrlib	 to	 run	 when	 starting	 up;	 it	 sets	 up	 several	 things	 that
previously	 needed	 to	 be	 done	 separately.	 (Martin	 Pool,
#507710)
Exporters	now	support	a	per_file_timestamps	argument	to	write
out	 the	 timestamp	 of	 the	 commit	 in	 which	 a	 file	 revision	 was
introduced.	(Jelmer	Vernooij)
New	method	BzrDir.list_branches()	that	returns	a	sequence	of
branches	present	in	a	control	directory.	(Jelmer	Vernooij)
New	 transport	methods	 readlink,	 symlink	 and	 hardlink.	 (Neil
Santos)
Remove	unused	CommandFailed	exception.	(Martin	Pool)

Internals
bzrlib.branchbuilder.BranchBuilder.build_snapshot	 now
accepts	a	message_callback	in	the	same	way	that	commit	does.
(Robert	Collins)
bzrlib.builtins.Commit.run	 raises
bzrlib.errors.BoundBranchOutOfDate	 rather	 than
bzrlib.errors.BzrCommandError	 when	 the	 bound	 branch	 is	 out
of	date.	(Gary	van	der	Merwe)
bzrlib.commands.run_bzr	 is	more	extensible:	callers	can	supply
the	 functions	 to	 load	 or	 disable	 plugins	 if	 they	 wish	 to	 use	 a
different	 plugin	 mechanism;	 the	 –help,	 –version	 and	 no-
command	 name	 code	 paths	 now	 use	 the	 generic	 pluggable
command	lookup	infrastructure.	(Robert	Collins)
bzrlib.errors.BoundBranchOutOfDate	 has	 a	 new	 field
extra_help	which	can	be	set	to	add	extra	help	to	the	error.	(Gary
van	der	Merwe)
New	 method	 Branch.automatic_tag_name	 that	 can	 be	 used	 to
find	the	tag	name	for	a	particular	revision	automatically.	(Jelmer
Vernooij)
The	methods	BzrDir.create_branch(),	BzrDir.destroy_branch()
and	BzrDir.open_branch()	now	take	an	optional	name	argument.
(Jelmer	Vernooij)

Testing
bzr	 now	 has	 a	 .testr.conf	 file	 in	 its	 source	 tree	 configured
appropriately	 for	 running	 tests	 with	 Testrepository
(https://launchpad.net/testrepository).	(Robert	Collins)
Documentation	 about	 testing	 with	 subunit	 has	 been	 tweaked.
(Robert	Collins)
Known	 failures	 has	 been	 added	 for	 resolve	 –take-other	 on
ParentLoop	conflicts.	This	reflects	bug	#537956	without	fixing	it.
(Vincent	Ladeuil)
New	 bzrlib.tests.test_import_tariff	 can	 make	 assertions
about	what	Python	modules	are	loaded,	to	guard	against	startup
time	or	library	dependency	regressions.	(Martin	Pool)
Stop	sending	apport	 crash	 files	 to	 .cache	 in	 the	directory	 from
which	bzr	selftest	was	run.	(Martin	Pool,	#422350)
Tests	no	longer	fail	if	“close()	called	during	concurrent	operation
on	the	same	file	object”	occurs	when	closing	the	log	file	(which
can	happen	if	a	thread	tries	to	write	to	the	log	file	at	the	wrong
moment).	 An	 warning	 will	 be	 written	 to	 stderr	 when	 this
happens,	and	another	warning	will	be	written	if	the	log	file	could
not	 be	 closed	 after	 retrying	 100	 times.	 (Andrew	 Bennetts,
#531746)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	2.1.1
2.1.1: 2010-03-24

This	 is	 a	 small	 bugfix	 release.	 Upgrading	 is	 recommended	 for
anyone	running	2.1.0	or	earlier.

Bug	Fixes
Allow	 syscalls	 to	 automatically	 restart	 when	 TextUIFactory‘s
SIGWINCH	 handler	 is	 invoked,	 avoiding	 EINTR	 errors	 during
blocking	IO,	which	are	often	poorly	handled	by	Python’s	libraries
and	parts	of	bzrlib.	(Andrew	Bennetts,	#496813)
Avoid	malloc(0)	in	patiencediff,	which	is	non-portable.	(Martin
Pool,	#331095)
Fix	plugin	packaging	on	Windows.	(Ian	Clatworthy,	#524162)
Fix	 stub	 sftp	 test	 server	 to	 call	 os.getcwdu().	 (Vincent	 Ladeuil,
#526221,	#526353)
Fixed	CHM	generation	 by	moving	 the	NEWS	section	 template
into	a	separate	file.	(Ian	Clatworthy,	#524184)
Merge	 correctly	 when	 this_tree	 is	 not	 a	 WorkingTree.	 (Aaron
Bentley)
Register	 SIGWINCH	 handler	 only	 when	 creating	 a
TextUIFactory;	 avoids	 problems	 importing	 bzrlib	 from	 a	 non-
main	thread.	(Elliot	Murphy,	#521989)
Standardize	 the	 error	 handling	 when	 creating	 a	 new
StaticTuple	 (problems	 will	 raise	 TypeError).	 (Matt	 Nordhoff,
#457979)
Warn	 if	 pyrex	 is	 too	 old	 to	 compile	 the	 new	 SimpleSet	 and
StaticTuple	 extensions,	 rather	 than	 having	 the	 build	 fail
randomly.	(John	Arbash	Meinel,	#449776)

Documentation
Added	a	link	to	the	Desktop	Guide.	(Ian	Clatworthy)
Added	What’s	New	in	Bazaar	2.1	document.	(Ian	Clatworthy)
Drop	 Google	 Analytics	 from	 the	 core	 docs	 as	 they	 caused
problems	in	the	CHM	files.	(Ian	Clatworthy,	#502010)

API	Changes
Added	 bzrlib.osutils.set_signal_handler,	 a	 convenience
function	 that	 can	 set	 a	 signal	 handler	 and	 call
signal.siginterrupt(signum,	 False)	 for	 it,	 if	 the	 platform	 and
Python	version	supports	it.	(Andrew	Bennetts,	#496813)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	2.1.0
Codename: Strasbourg
2.1.0: 2010-02-11

This	release	marks	our	second	long-term-stable	series.	The	Bazaar
team	has	decided	that	we	will	continue	to	make	bugfix-only	2.0.x	and
2.1.x	releases,	along	with	2.2	development	releases.

This	is	a	fairly	incremental	update,	focusing	on	polish	and	bugfixing.
There	 are	 no	 changes	 for	 supported	 disk	 formats.	 Key	 updates
include	 reduced	memory	 consumption	 for	many	 operations,	 a	 new
per-file	merge	hook,	 ignore	patterns	 can	now	 include	 ‘!’	 to	 exclude
files,	 globbing	 support	 for	 all	 commands	on	Windows,	 and	 support
for	addressing	home	directories	via	bzr+ssh://host/~/	syntax.

Users	are	encouraged	to	upgrade	from	the	2.0	stable	series.

Bug	Fixes
Don’t	require	testtools	to	use	sftp.	(Vincent	Ladeuil,	#516183)
Fix	 “AttributeError	 in	 Inter1and2Helper”	 during	 fetch.	 (Martin
Pool,	#513432)
bzr	update	performs	the	two	merges	in	a	more	logical	order	and
will	stop	when	it	encounters	conflicts.	(Gerard	Krol,	#113809)
Give	a	better	error	message	when	doing	bzr	bind	in	an	already
bound	branch.	(Neil	Martinsen-Burrell,	#513063)
Ignore	 KeyError	 from	 remove_index	 during	 _abort_write_group
in	a	pack	 repository,	which	can	happen	harmlessly	 if	 the	abort
occurs	during	finishing	the	write	group.	Also	use	bzrlib.cleanup
so	that	any	other	errors	that	occur	while	aborting	the	 individual
packs	won’t	be	hidden	by	secondary	failures	when	removing	the
corresponding	indices.	(Andrew	Bennetts,	#423015)
Set	the	mtime	of	files	exported	to	a	directory	by	bzr	export	all	to
the	 same	value	 to	 avoid	 confusing	 make	 and	 other	 date-based
build	systems.	(Robert	Collins,	#515631)

Improvements
Fetching	 into	 experimental	 formats	 will	 now	 print	 a	 warning.
(Jelmer	Vernooij)

API	Changes
Repository.deserialise_inventory	 has	 been	 renamed	 to
Repository._deserialise_inventory	 to	 indicate	 it	 is	 private.
(Jelmer	Vernooij)
Repository.get_inventory_xml	 has	 been	 renamed	 to
Repository._get_inventory_xml	 to	 indicate	 it	 is	private.	 (Jelmer
Vernooij)
Repository.serialise_inventory	 has	 been	 renamed	 to
Repository._serialise_inventory	to	indicate	it	is	private.
Using	the	bzrlib.chk_map	module	from	within	multiple	threads	at
the	same	time	was	broken	due	to	race	conditions	with	a	module
level	 page	 cache.	 This	 shows	 up	 as	 a	 KeyError	 in	 the
bzrlib.lru_cache	 code	 with	 bzrlib.chk_map	 in	 the	 backtrace,
and	can	be	triggered	without	using	the	same	high	level	objects
such	 as	 bzrlib.repository.Repository	 from	 different	 threads.
chk_map	 now	 uses	 a	 thread	 local	 cache	 which	may	 increase
memory	pressure	on	processes	using	 threads.	 (Robert	Collins,
John	Arbash	Meinel,	#514090)
The	 new	 merge_file_content	 should	 now	 be	 ok	 with	 tests	 to
avoid	regressions.	(Vincent	Ladeuil,	#515597)

Internals
Use	 bzrlib.cleanup	 rather	 than	 less	robust	 try/finally	 blocks
in	 several	 places	 in	 bzrlib.merge.	 This	 avoids	 masking	 prior
errors	 when	 errors	 like	 ImmortalPendingDeletion	 occur	 during
cleanup	in	do_merge.	(Andrew	Bennetts,	#517275)

API	Changes
The	 remove_index	 method	 of
bzrlib.repofmt.pack_repo.AggregateIndex	 no	 longer	 takes	 a
pack	 argument.	 This	 argument	 was	 always	 ignored.	 (Andrew
Bennetts,	#423015)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	2.1.0rc2
Codename: after	the	bubbles
2.1.0rc2: 2010-01-29

This	is	a	quick-turn-around	to	update	a	small	issue	with	our	new	per-
file	merge	hook.	We	expect	no	major	changes	from	this	 to	 the	final
2.1.0.

API	Changes
The	 new	 merge_file_content	 hook	 point	 has	 been	 altered	 to
provide	a	better	API	where	 state	 for	 extensions	 can	be	 stored
rather	than	the	too-simple	function	based	approach.	This	fixes	a
performance	 regression	 where	 branch	 configuration	 would	 be
parsed	 per-file	 during	 merge.	 As	 part	 of	 this	 the	 included
news_merger	 has	 been	 refactored	 into	 a	 base	 helper	 class
bzrlib.merge.ConfigurableFileMerger.	 (Robert	 Collins,	 John
Arbash	Meinel,	#513822)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	2.1.0rc1
Codename: the	‘new’	stable
2.1.0rc1: 2009-01-21

This	 is	 the	 first	 stable	 release	 candidate	 for	 Bazaar’s	 2.1	 series.
From	this	point	onwards,	the	2.1	series	will	be	considered	stable	(as
the	 2.0	 series)	 and	 only	 bugfixes	 are	 expected	 to	 be	 incorporated.
The	dozen	or	 so	bugfixes	 in	 the	2.0.4	 release	are	also	 included	 in
this	 release	 (along	with	more	 than	15	more	bugfixes).	Some	of	 the
interesting	 features	 are	 support	 for	 per-file	 merge	 hooks,	 bzr

unshelve	--preview,	support	for	using	!	in	ignore	files	to	exclude	files
from	being	ignored,	a	small	memory	leak	was	squashed,	and	many
ObjectNotLocked	errors	were	fixed.	This	looks	to	be	a	very	good	start
for	a	new	stable	series.

New	Features
Add	 bug	 information	 to	 log	 output	 when	 available.	 (Neil
Martinsen-Burrell,	Guillermo	Gonzalez,	#251729)
Added	 merge_file_content	 hook	 point	 to	 Merger,	 allowing
plugins	 to	 register	custom	merge	 logic,	e.g.	 to	provide	smarter
merging	for	particular	files.
Bazaar	 now	 includes	 the	 news_merge	 plugin.	 It	 is	 disabled	 by
default,	 to	 enable	 it	 add	 a	 news_merge_files	 option	 to	 your
configuration.	 Consult	 bzr	 help	 news_merge	 for	 more
information.	(Andrew	Bennetts)
bzr	branch	now	takes	a	--bind	option.	This	lets	you	branch	and
bind	all	in	one	command.	(Ian	Clatworthy)
bzr	switch	now	takes	a	--revision	option,	to	allow	switching	to
a	specific	revision	of	a	branch.	(Daniel	Watkins,	#183559)
bzr	unshelve	--preview	can	now	be	used	to	show	how	a	patch
on	 the	 shelf	 would	 be	 applied	 to	 the	working	 tree.	 (Guilherme
Salgado,	#308122)
bzr	 update	 now	 takes	 a	 --revision	 argument.	 This	 lets	 you
change	 the	 revision	 of	 the	 working	 tree	 to	 any	 revision	 in	 the
ancestry	of	 the	current	or	master	branch.	 (Matthieu	Moy,	Mark
Hammond,	Martin	Pool,	#45719)
-Dbytes	 can	now	be	used	 to	display	 the	 total	number	of	bytes
transferred	for	the	current	command.	This	information	is	always
logged	to	.bzr.log	for	later	inspection.	(John	Arbash	Meinel)
New	ignore	patterns.	Patterns	prefixed	with	‘!’	are	exceptions	to
ignore	patterns	and	take	precedence	over	regular	ignores.	Such
exceptions	 are	 used	 to	 specify	 files	 that	 should	 be	 versioned
which	would	otherwise	be	ignored.	Patterns	prefixed	with	‘!!’	act
as	 regular	 ignore	patterns,	but	have	highest	precedence,	even
over	the	‘!’	exception	patterns.	(John	Whitley,	#428031)
The	supress_warnings	configuration	option	has	been	introduced

to	 disable	 various	 warnings	 (it	 currently	 only	 supports	 the
format_deprecation	warning).	The	new	option	can	be	set	in	any
of	 the	 following	 locations:	 bazaar.conf,	 locations.conf	 and/or
branch.conf.	(Ted	Gould,	Matthew	Fuller,	Vincent	Ladeuil)

Bug	Fixes
Always	 show	a	message	 if	 an	OS	error	 occurs	while	 trying	 to
run	 a	 user-specified	 commit	 message	 editor.	 (Martin	 Pool,
#504842)
bzr	diff	will	now	use	the	epoch	when	it	is	unable	to	determine
the	 timestamp	of	a	 file,	 if	 the	 revision	 it	was	 introduced	 in	 is	a
ghost.	(Jelmer	Vernooij,	#295611)
bzr	switch	-b	can	now	create	branches	that	are	 located	using
directory	 services	 such	 as	 lp:,	 even	 when	 the	 branch	 name
doesn’t	contain	a	‘/’.	(Neil	Martinsen-Burrell,	#495263)
bzr	 unshelve	 has	 improved	messages	 about	 what	 it	 is	 doing.
(Neil	Martinsen-Burrell,	#496917)
Concurrent	 autopacking	 is	 more	 resilient	 to	 already-renamed
pack	 files.	 If	 we	 find	 that	 a	 file	 we	 are	 about	 to	 obsolete	 is
already	obsoleted,	we	do	not	try	to	rename	it,	and	we	leave	the
file	 in	 obsolete_packs.	 The	 code	 is	 also	 fault	 tolerant	 if	 a	 file
goes	missing,	assuming	that	another	process	already	removed
the	file.	(John	Arbash	Meinel,	Gareth	White,	#507557)
Fix	 “Too	many	concurrent	 requests”	 in	 reconcile	when	network
connection	fails.	(Andrew	Bennetts,	#503878)
Fixed	 a	 side	 effect	 mutation	 of
RemoteBzrDirFormat._network_name	 that	 caused	 some	 tests	 to
fail	when	 run	 in	 a	 non-default	 order.	 Probably	 no	 user	 impact.
(Martin	Pool,	#504102)
Fixed	 ObjectNotLocked	 error	 in	 bzr	 cat	 -rbranch:../foo	 FILE.
(Andrew	Bennetts,	#506274)
FTP	 transports	 support	 Unicode	 paths	 by	 encoding/decoding
them	as	utf8.	(Vincent	Ladeuil,	#472161)
Listen	 to	 the	 SIGWINCH	 signal	 to	 update	 the	 terminal	 width.
(Vincent	Ladeuil,	#316357)
Progress	 bars	 are	 now	 hidden	when	 --quiet	 is	 given.	 (Martin

Pool,	#320035)
SilentUIFactory	now	supports	make_output_stream	and	discards
whatever	 is	written	 to	 it.	This	un-breaks	some	plugin	 tests	 that
depended	on	this	behaviour.	(Martin	Pool,	#499757)
When	 operations	 update	 the	 working	 tree,	 all	 affected	 files
should	 end	 up	 with	 the	 same	 mtime.	 (eg.	 when	 versioning	 a
generated	 file,	 if	 you	update	 the	source	and	 the	generated	 file
together,	 the	 generated	 file	 should	 appear	 up-to-date.)	 (John
Arbash	Meinel,	Martin	<gzlist>,	#488724)

Improvements
Added	add_cleanup	and	cleanup_now	to	bzrlib.command.Command.
All	 the	 builtin	 commands	 now	 use	 add_cleanup	 rather	 than
try/finally	 blocks	where	applicable	as	 it	 is	 simpler	and	more
robust.	(Andrew	Bennetts)
All	 except	a	 small	 number	of	 storage	 formats	are	now	hidden,
making	 the	 help	 for	 numerous	 commands	 far	more	 digestible.
(Ian	Clatworthy)
Attempts	 to	 open	 a	 shared	 repository	 as	 a	 branch	 (e.g.	 bzr
branch	path/to/repo)	will	now	 include	 “location	 is	a	 repository”
as	 a	 hint	 in	 the	 error	 message.	 (Brian	 de	 Alwis,	 Andrew
Bennetts,	#440952)
Push	will	now	inform	the	user	when	they	are	trying	to	push	to	a
foreign	 VCS	 for	 which	 roundtripping	 is	 not	 supported,	 and	will
suggest	them	to	use	dpush.	(Jelmer	Vernooij)
The	 version	 of	 bzr	 being	 run	 is	 now	 written	 to	 the	 log	 file.
(__monty__,	#257170)
Transport	 network	 activity	 indicator	 is	 shown	more	 of	 the	 time
when	Bazaar	is	doing	network	IO.	(Martin	Pool)

Documentation
Add	 documentation	 on	 creating	 merges	 with	 more	 than	 one
parent.	(Neil	Martinsen-Burrell,	#481526)
Better	 explain	 the	 –uncommitted	 option	 of	 merge.	 (Neil
Martinsen-Burrell,	#505088)
Improve	discussion	of	pending	merges	in	the	documentation	for
revert.	(Neil	Martinsen-Burrell,	#505093)
Improved	help	for	bzr	send.	(Martin	Pool,	Bojan	Nikolic)
There	is	a	System	Administrator’s	Guide	in	doc/en/admin-guide,
including	 discussions	 of	 installation,	 relevant	 plugins,	 security
and	backup.	(Neil	Martinsen-Burrell)
The	conflicts	help	topic	has	been	renamed	to	conflict-types.
(Ian	Clatworthy)
The	 User	 Reference	 is	 now	 presented	 as	 a	 series	 of	 topics.
Many	 of	 the	 included	 topics	 have	 link	 and	 format	 tweaks
applied.	(Ian	Clatworthy)

API	Changes
Added	cachedproperty	decorator	to	bzrlib.decorators.	(Andrew
Bennetts)
Many	 test	 features	 were	 renamed	 from	 FooFeature	 to
foo_feature	 to	 be	 consistent	 with	 instances	 being	 lower	 case
and	classes	being	CamelCase.	For	the	features	that	were	more
likely	 to	 be	 used,	 we	 added	 a	 deprecation	 thunk,	 but	 not	 all.
(John	Arbash	Meinel)
Merger	 classes	 (such	 as	 Merge3Merger)	 now	 expect	 a
this_branch	 parameter	 in	 their	 constructors,	 and	 provide
this_branch	as	an	attribute.	(Andrew	Bennetts)
The	 Branch	 hooks	 pre_change_branch_tip	 no	 longer	 masks
exceptions	 raised	by	plugins	 -	 the	original	 exceptions	are	now
preserved.	(Robert	Collins)
The	 Transport	 Server.tearDown	 method	 is	 now	 renamed	 to
stop_server	and	setUp	to	start_server	for	consistency	with	our
normal	 naming	 pattern,	 and	 to	 avoid	 confusion	 with	 Python’s
TestCase.tearDown.	(Martin	Pool)
WorkingTree.update	 implementations	 must	 now	 accept	 a
revision	parameter.

Internals
Added	 BzrDir.open_branchV3	 smart	 server	 request,	 which	 can
receive	a	string	of	details	(such	as	“location	is	a	repository”)	as
part	of	a	nobranch	response.	(Andrew	Bennetts,	#440952)
New	 helper	 osutils.UnicodeOrBytesToBytesWriter	 which
encodes	unicode	objects	but	passes	str	objects	straight	through.
This	 is	 used	 for	 selftest	 but	 may	 be	 useful	 for	 diff	 and	 other
operations	that	generate	mixed	output.	(Robert	Collins)
New	 exception	 NoRoundtrippingSupport,	 for	 use	 by	 foreign
branch	plugins.	(Jelmer	Vernooij)

Testing
bzrlib.tests.permute_for_extension	 is	 a	 helper	 that	 simplifies
running	 all	 tests	 in	 the	 current	 module,	 once	 against	 a	 pure
python	 implementation,	 and	 once	 against	 an	 extension
(pyrex/C)	implementation.	It	can	be	used	to	dramatically	simplify
the	implementation	of	load_tests.	(John	Arbash	Meinel)
bzrlib.tests.TestCase	 now	 subclasses
testtools.testcase.TestCase.	This	permits	 features	 in	 testtools
such	 as	 getUniqueInteger	 and	 getUniqueString	 to	 be	 used.
Because	 of	 this,	 testtools	 version	 0.9.2	 or	 newer	 is	 now	 a
dependency	 to	 run	 bzr	 selftest.	 Running	 with	 versions	 of
testtools	less	than	0.9.2	will	cause	bzr	to	error	while	loading	the
test	suite.	(Robert	Collins)
Shell-like	tests	now	support	the	command	“mv”	for	moving	files.
The	syntax	for	mv	file1	file2,	mv	dir1	dir2	and	mv	file	dir	is
supported.	(Neil	Martinsen-Burrell)
The	test	progress	bar	no	longer	distinguishes	tests	that	‘errored’
from	tests	that	‘failed’	-	they’re	all	just	failures.	(Martin	Pool)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	2.0.5
Codename:
2.0.5: NOT	RELEASED	YET

Bug	Fixes
Avoid	malloc(0)	in	patiencediff,	which	is	non-portable.	(Martin
Pool,	#331095)
Concurrent	 autopacking	 is	 more	 resilient	 to	 already-renamed
pack	 files.	 If	 we	 find	 that	 a	 file	 we	 are	 about	 to	 obsolete	 is
already	obsoleted,	we	do	not	try	to	rename	it,	and	we	leave	the
file	 in	 obsolete_packs.	 The	 code	 is	 also	 fault	 tolerant	 if	 a	 file
goes	missing,	assuming	that	another	process	already	removed
the	file.	(John	Arbash	Meinel,	Gareth	White,	#507557)
Cope	with	 the	 lockdir	 held/info	 file	being	empty,	which	seems
to	happen	fairly	often	if	the	process	is	suddenly	interrupted	while
taking	a	lock.	(Martin	Pool,	#185103)
Give	 the	 warning	 about	 potentially	 slow	 cross-format	 fetches
much	earlier	on	in	the	fetch	operation.	Don’t	show	this	message
during	 upgrades,	 and	 show	 the	 correct	 format	 indication	 for
remote	repositories.	(Martin	Pool,	#456077,	#515356,	#513157)
Handle	renames	correctly	when	there	are	files	or	directories	that
differ	only	in	case.	(Chris	Jones,	Martin	Pool,	#368931)
Fixed	CHM	generation	 by	moving	 the	NEWS	section	 template
into	a	separate	file.	(Ian	Clatworthy,	#524184)
If	bzr	push	--create-prefix	triggers	an	unexpected	NoSuchFile
error,	 report	 that	 error	 rather	 than	 failing	 with	 an	 unhelpful
UnboundLocalError.	(Andrew	Bennetts,	#423563)
Running	 bzr	 command	without	 any	arguments	now	shows	bzr
version	 number	 along	 with	 rest	 of	 the	 help	 text.	 (Parth
Malwankar,	#369501)
Use	 osutils.O_NOINHERIT	 for	 some	 files	 on	 win32	 to	 avoid
PermissionDenied	errors.	(Inada	Naoki,	#524560)

Documentation
Added	location-alias	help	topic.	(Andrew	Bennetts,	#337834)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	2.0.4
Codename: smooth	sailing
2.0.4: 2010-01-21

The	fourth	bugfix-only	release	in	the	2.0	series	contains	more	than	a
dozen	 bugfixes	 relative	 to	 2.0.3.	 The	 primary	 focus	 is	 on	 handling
interruptions	and	concurrent	operations	more	cleanly,	there	is	also	a
fair	improvement	to	bzr	export	when	exporting	a	remote	branch.

Bug	Fixes
bzr	annotate	 on	another	branch	with	 -r	branch:...	no	 longer
fails	with	an	ObjectNotLocked	error.	(Andrew	Bennetts,	#496590)
bzr	export	dir	now	requests	all	file	content	as	a	record	stream,
rather	than	requsting	the	file	content	one	file-at-a-time.	This	can
make	exporting	over	 the	network	significantly	 faster	 (54min	=>
9min	in	one	case).	(John	Arbash	Meinel,	#343218)
bzr	 serve	 no	 longer	 slowly	 leaks	 memory.	 The	 compiled
bzrlib.bencode.Encoder()	 class	was	 using	 __del__	 to	 cleanup
and	free	resources,	and	it	should	have	been	using	__dealloc__.
This	 will	 likely	 have	 an	 impact	 on	 any	 other	 process	 that	 is
serving	 for	 an	 extended	 period	 of	 time.	 (John	 Arbash	Meinel,
#494406)
Check	 for	 SIGINT	 (Ctrl-C)	 and	 other	 signals	 immediately	 if
readdir	 returns	 EINTR	 by	 calling	 PyErr_CheckSignals.	 This
affected	the	optional	_readdir_pyx	extension.	(Andrew	Bennetts,
#495023)
Concurrent	autopacks	will	no	longer	 lose	a	newly	created	pack
file.	There	was	a	race	condition,	where	if	the	reload	happened	at
the	right	 time,	 the	second	packer	would	forget	 the	name	of	 the
newly	 added	 pack	 file.	 (John	 Arbash	 Meinel,	 Gareth	 White,
#507566)
Give	 a	 clearer	 message	 if	 the	 lockdir	 disappears	 after	 being
apparently	successfully	taken.	(Martin	Pool,	#498378)
Give	 a	 warning	 when	 fetching	 between	 repositories	 (local	 or
remote)	 with	 sufficiently	 different	 formats	 that	 the	 content	 will
need	 to	 be	 serialized	 (ie	 InterDifferingSerializer	 or
inventory-deltas),	so	the	user	has	a	clue	that	upgrading	could
make	it	faster.	(Martin	Pool,	#456077)
If	 we	 fail	 to	 open	 ~/.bzr.log	 write	 a	 clear	 message	 to	 stderr

rather	 than	 using	 warning().	 The	 log	 file	 is	 opened	 before
logging	is	set	up,	and	it	leads	to	very	confusing:	‘no	handlers	for
“bzr”’	 messages	 for	 users,	 rather	 than	 something	 nicer.	 (John
Arbash	Meinel,	Barry	Warsaw,	#503886)
Refuse	 to	 build	 with	 any	 Pyrex	 0.9.4	 release,	 as	 they	 have
known	bugs.	(Martin	Pool,	John	Arbash	Meinel,	#449372)
setup.py	bdist_rpm	now	properly	finds	extra	files	needed	for	the
build.	 (there	 is	 still	 the	 distutils	 bug
http://bugs.python.org/issue644744)	(Joe	Julian,	#175839)
The	 2a	 format	 wasn’t	 properly	 restarting	 autopacks	 when
something	changed	underneath	 it	(like	another	autopack).	Now
concurrent	 autopackers	 will	 properly	 succeed.	 (John	 Arbash
Meinel,	#495000)
TreeTransform	can	now	handle	when	a	delta	says	that	the	file	id
for	 the	 tree	 root	 changes.	 Rather	 than	 trying	 to	 rename	 your
working	 directory,	 or	 failing	 early	 saying	 that	 you	 can’t	 have
multiple	tree	roots.	This	also	fixes	revert,	update,	and	pull	when
the	root	id	changes.	(John	Arbash	Meinel,	#494269,	#504390)
_update_current_block	no	longer	suppresses	exceptions,	so	^C
at	 just	 the	 right	 time	 will	 get	 propagated,	 rather	 than	 silently
failing	 to	move	 the	block	pointer.	 (John	Arbash	Meinel,	Gareth
White,	#495023)

http://bugs.python.org/issue644744

Testing
We	 have	 a	 new	 test_source	 that	 ensures	 all	 pyrex	 cdef

functions	 handle	 exceptions	 somehow.	 (Possibly	 by	 setting	 #
cannot_raise	rather	than	an	except	?:	clause.)	This	should	help
prevent	bugs	like	bug	#495023.	(John	Arbash	Meinel)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	2.1.0b4
Codename: san	francisco	airport
2.1.0b4: 2009-12-14

The	 fourth	beta	 release	 in	 the	2.1	series	brings	with	 it	a	significant
number	 of	 bugfixes	 (~20).	 The	 test	 suite	 is	 once	 again	 (finally)
“green”	on	Windows,	and	should	remain	that	way	for	future	releases.
There	 are	 a	 few	 performance	 related	 updates	 (faster	 upgrade	 and
log),	 and	 several	 UI	 tweaks.	 There	 has	 also	 been	 a	 significant
number	 of	 tweaks	 to	 the	 runtime	 documentation.	 2.1.0b4	 include
everything	from	the	2.0.3	release.

Compatibility	Breaks
The	 BZR_SSH	 environmental	 variable	may	 now	 be	 set	 to	 the
path	of	a	secure	shell	client.	 If	currently	set	 to	 the	value	 ssh	 it
will	 now	 guess	 the	 vendor	 of	 the	 program	 with	 that	 name,	 to
restore	 the	 old	 behaviour	 that	 indicated	 the	 SSH	 Corporation
client	 use	 sshcorp	 instead	 as	 the	 magic	 string.	 (Martin
<gzlist@googlemail.com>,	#176292)

mailto:gzlist%40googlemail.com

New	Features
bzr	commit	now	has	a	 --commit-time	option.	 (Alexander	Sack,
#459276)
-Dhpss	now	increases	logging	done	when	run	on	the	bzr	server,
similarly	to	how	it	works	on	the	client.	(John	Arbash	Meinel)
New	 option	 bzr	 unshelve	 --keep	 applies	 the	 changes	 and
leaves	 them	 on	 the	 shelf.	 (Martin	 Pool,	 Oscar	 Fuentes,
#492091)
The	BZR_COLUMNS	envrionment	variable	can	be	set	to	force	bzr	to
respect	a	given	terminal	width.	This	can	be	useful	when	output
is	redirected	or	in	obscure	cases	where	the	default	value	is	not
appropriate.	Pagers	can	use	it	to	get	a	better	control	of	the	line
lengths.	(Vincent	Ladeuil)
The	new	command	 bzr	lp-mirror	will	 request	 that	Launchpad
update	 its	 mirror	 of	 a	 local	 branch.	 This	 command	 will	 only
function	if	launchpadlib	is	installed.	(Jonathan	Lange)

Bug	Fixes
After	 renaming	 a	 file,	 the	 dirstate	 could	 accidentally	 reference
source\\path	 rather	 than	 source/path	 on	Windows.	 This	might
be	 a	 source	 of	 some	 dirstate-related	 failures.	 (John	 Arbash
Meinel)
bzr	 commit	 now	 detects	 commit	 messages	 that	 looks	 like	 file
names	and	issues	a	warning.	(Gioele	Barabucci,	#73073)
bzr	 ignore	 /	 no	 longer	 causes	 an	 IndexError.	 (Gorden	 Tyler,
#456036)
bzr	log	-n0	-rN	should	not	return	revisions	beyond	its	merged
revisions.	(#325618,	#484109,	Marius	Kruger)
bzr	merge	--weave	and	--lca	will	now	create	.BASE	files	for	files
with	conflicts	(similar	 to	 --merge3).	The	contents	of	 the	 file	 is	a
synthesis	of	all	bases	used	for	the	merge.	(John	Arbash	Meinel,
#40412)
bzr	mv	--quiet	really	is	quiet	now.	(Gordon	Tyler,	#271790)
bzr	 serve	 is	 more	 clear	 about	 the	 risk	 of	 supplying	 –allow-
writes.	(Robert	Collins,	#84659)
bzr	serve	--quiet	really	is	quiet	now.	(Gordon	Tyler,	#252834)
Fix	 bug	 with	 redirected	 URLs	 over	 authenticated	 HTTP.	 (Glen
Mailer,	Neil	Martinsen-Burrell,	Vincent	Ladeuil,	#395714)
Interactive	 merge	 doesn’t	 leave	 branch	 locks	 behind.	 (Aaron
Bentley)
Lots	of	bugfixes	for	the	test	suite	on	Windows.	We	should	once
again	 have	 a	 test	 suite	 with	 no	 failures	 on	 Windows.	 (John
Arbash	Meinel)
osutils.terminal_width()	 obeys	 the	 BZR_COLUMNS
environment	variable	but	returns	None	if	the	terminal	is	not	a	tty
(when	 output	 is	 redirected	 for	 example).	 Also	 fixes	 its	 usage
under	OSes	 that	 doesn’t	 provide	 termios.TIOCGWINSZ.	Make
sure	 the	 corresponding	 tests	 runs	 on	 windows	 too.	 (Joke	 de

Buhr,	Vincent	Ladeuil,	#353370,	#62539)	(John	Arbash	Meinel,
Vincent	Ladeuil,	#492561)
Terminate	 ssh	 subprocesses	 when	 no	 references	 to	 them
remain,	 fixing	 subprocess	 and	 file	 descriptor	 leaks.	 (Andrew
Bennetts,	#426662)
The	 --hardlink	 option	 of	 bzr	 branch	 and	 bzr	 checkout	 now
works	for	2a	format	trees.	Only	files	unaffected	by	content	filters
will	be	hardlinked.	(Andrew	Bennetts,	#408193)
The	 new	 glob	 expansion	 on	 Windows	 would	 replace	 all	 \
characters	with	 /	 even	 if	 it	 there	wasn’t	 a	 glob	 to	 expand,	 the
arg	 was	 quoted,	 etc.	 Now	 only	 change	 slashes	 if	 there	 is
something	 being	 glob	 expanded.	 (John	 Arbash	 Meinel,
#485771)
Use	our	faster	KnownGraph.heads()	functionality	when	computing
the	new	rich-root	heads.	This	can	cut	a	conversion	time	in	half
(mysql	from	13.5h	=>	6.2h)	(John	Arbash	Meinel,	#487632)
When	launching	a	external	diff	tool	via	bzr	diff	–using,	temporary
files	 are	 no	 longer	 created,	 rather,	 the	 path	 to	 the	 file	 in	 the
working	 tree	 is	passed	 to	 the	external	diff	 tool.	This	allows	 the
file	 to	 be	edited	 if	 the	diff	 tool	 provides	 for	 this.	 (Gary	 van	der
Merwe,	#490738)
The	 launchpad-open	 command	 can	 now	 be	 used	 from	 a
subdirectory	 of	 a	 branch,	 not	 just	 from	 the	 root	 of	 the	 branch.
(Neil	Martinsen-Burrell,	#489102)

Improvements
bzr	log	is	now	faster.	(Ian	Clatworthy)
bzr	update	provides	 feedback	on	which	branch	 it	 is	up	 to	date
with.	(Neil	Martinsen-Burrell)
bzr	upgrade	 from	pre-2a	 to	 2a	 can	be	 significantly	 faster	 (4x).
For	 details	 see	 the	 xml8	 patch	 and	 heads()	 improvements.
(John	Arbash	Meinel)
bzrlib.urlutils.local_path_from_url	 now	 accepts
‘file://localhost/‘	 as	 well	 as	 ‘file:///‘	 URLs	 on	 POSIX.	 (Michael
Hudson)
The	progress	bar	now	shows	only	a	spinner	and	per-operation
counts,	not	an	overall	progress	bar.	The	previous	bar	was	often
not	 correlated	 with	 real	 overall	 operation	 progress,	 either
because	 the	operations	 take	nonlinear	 time,	or	because	at	 the
start	of	 the	operation	Bazaar	couldn’t	estimate	how	much	work
there	was	to	do.	(Martin	Pool)

Documentation
Lots	 of	 documentation	 tweaks	 for	 inline	 help	 topics	 and
command	help	information.

API	Changes
bzrlib.textui	(vestigial	module)	removed.	(Martin	Pool)
The	Launchpad	plugin	now	has	a	function	login	which	will	log	in
to	 Launchpad	 with	 launchpadlib,	 and	 load_branch	 which	 will
return	 the	 Launchpad	 Branch	 object	 corresponding	 to	 a	 given
Bazaar	Branch	object.	(Jonathan	Lange)

Internals
New	 test	 Feature:	 ModuleAvailableFeature.	 It	 is	 designed	 to
make	 it	 easier	 to	handle	what	 tests	 you	want	 to	 run	based	on
what	 modules	 can	 be	 imported.	 (Rather	 than	 lots	 of	 custom-
implemented	 features	 that	 were	 basically	 copy-and-pasted.)
(John	Arbash	Meinel)
osutils.timer_func()	can	be	used	to	get	either	time.time()	or
time.clock()	 when	 you	 want	 to	 do	 performance	 timing.
time.time()	 is	 limited	 to	 15ms	 resolution	 on	 Windows,	 but
time.clock()	 gives	 CPU	 and	 not	 wall-clock	 time	 on	 other
platforms.	(John	Arbash	Meinel)
Several	 code	 paths	 that	 were	 calling	 Transport.get().read()
have	 been	 changed	 to	 the	 equalivent	 Transport.get_bytes().
The	 main	 difference	 is	 that	 the	 latter	 will	 explicitly	 call
file.close(),	 rather	 than	 expecting	 the	 garbage	 collector	 to
handle	 it.	 This	 helps	 with	 some	 race	 conditions	 on	 Windows
during	the	test	suite	and	sftp	tests.	(John	Arbash	Meinel)

Testing
TestCaseWithMemoryTransport	 no	 longer	 sets	 $HOME	 and
$BZR_HOME	to	unicode	strings.	(Michael	Hudson,	#464174)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	2.0.3
Codename: little	italy
2.0.3: 2009-12-14

The	 third	stable	 release	of	Bazaar	has	a	small	handful	of	bugfixes.
As	expected,	 this	has	no	 internal	 or	external	 compatibility	 changes
versus	2.0.2	(or	2.0.0).

Bug	Fixes
bzr	push	--use-existing-dir	no	 longer	crashes	if	 the	directory
exists	but	contains	an	invalid	.bzr	directory.	(Andrew	Bennetts,
#423563)
Content	 filters	 are	 now	 applied	 correctly	 after	 pull,	merge	 and
switch.	(Ian	Clatworthy,	#385879)
Fix	 a	 potential	 segfault	 in	 the	 groupcompress	 hash	 map
handling	 code.	 When	 inserting	 new	 entries,	 if	 the	 final	 hash
bucket	 was	 empty,	 we	 could	 end	 up	 trying	 to	 access	 if
(last_entry+1)->ptr	==	NULL.	(John	Arbash	Meinel,	#490228)
Improve	 “Binary	 files	 differ”	 hunk	 handling.	 (Aaron	 Bentley,
#436325)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	2.1.0b3
Codename: after	sprint	recovery
2.1.0b3: 2009-11-16

This	release	was	pushed	up	from	its	normal	release	cycle	due	to	a
regression	 in	 python	 2.4	 compatibility	 in	 2.1.0b2.	 Since	 this
regression	was	caught	before	2.1.0b2	was	officially	announced,	the
full	changelog	includes	both	2.1.0b3	and	2.1.0b2	changes.

Highlights	 of	 2.1.0b3	 are:	 new	globbing	 code	 for	 all	 commands	 on
Windows,	 the	 test	 suite	 now	 conforms	 to	 python’s	 trunk	 enhanced
semantics	 (skip,	 etc.),	 and	 bzr	info	 -v	will	 now	 report	 the	 correct
branch	and	repo	formats	for	Remote	objects.

New	Features
Users	can	define	a	shelve	editor	to	provide	shelf	functionality	at
a	granularity	finer	than	per-patch-hunk.	(Aaron	Bentley)

Bug	Fixes
Fix	for	shell	completion	and	short	options.	(Benoît	PIERRE)
Fix	bzr	--profile-imports	with	Python	2.6.	(Martin	Pool)
Hooks	 daughter	 classes	 should	 always	 call	 the	 base
constructor.	(Alexander	Belchenko,	Vincent	Ladeuil,	#389648)
Improve	 “Binary	 files	 differ”	 hunk	 handling.	 (Aaron	 Bentley,
#436325)
On	Windows,	do	glob	expansion	at	the	command-line	level	(as
is	usually	done	in	bash,	etc.)	This	means	that	all	commands	get
glob	 expansion	 (bzr	 status,	 bzr	 add,	 bzr	 mv,	 etc).	 It	 uses	 a
custom	command	line	parser,	which	allows	us	to	know	if	a	given
section	 was	 quoted.	 It	 means	 you	 can	 now	 do	 bzr	 ignore

"*.py".	(John	Arbash	Meinel,	#425510,	#426410,	#194450)
Sanitize	commit	messages	 that	come	 in	 from	 the	 ‘-m’	 flag.	We
translate	 ‘rn’	 =>	 ‘n’	 and	 a	 plain	 ‘r’	 =>	 ‘n’.	 The	 storage	 layer
doesn’t	 allow	 those	 because	 XML	 store	 silently	 translate	 it
anyway.	 (The	 parser	 auto-translates	 rn	 =>	 n	 in	 ways	 that	 are
hard	for	us	to	catch.)
Show	correct	 branch	and	 repository	 format	 descriptions	 in	 bzr
info	-v	on	a	smart	server	location.	(Andrew	Bennetts,	#196080)
The	 fix	 for	 bug	 #186920	 accidentally	 broke	 compatibility	 with
python	2.4.	(Vincent	Ladeuil,	#475585)
Using	 Repository.get_commit_builder().record_iter_changes()
now	 correctly	 sets	 self.inv_sha1	 to	 a	 sha1	 string	 and
self.new_inventory	 to	 an	 Inventory	 instance	 after	 calling
self.finish_inventory().	 (Previously	 it	 accidently	 set	 both
values	as	a	 tuple	on	 self.inv_sha1.	This	was	missed	because
repo.add_revision	 ignores	 the	 supplied	 inventory	 sha1	 and
recomputes	 the	 sha1	 from	 the	 repo	 directly.	 (John	 Arbash
Meinel)
Shelve	 command	 refuse	 to	 run	 if	 there	 is	 no	 real	 terminal.

(Alexander	Belchenko)
Avoid	unnecessarily	flushing	of	trace	file;	it’s	now	unbuffered	at
the	Python	level.	(Martin	Pool)

Documentation
Include	Japanese	translations	for	documentation	(Inada	Naoki)
New	API	ui_factory.make_output_stream	to	be	used	for	sending
bulk	 (rather	 than	 user-interaction)	 data	 to	 stdout.	 This
automatically	 coordinates	 with	 progress	 bars	 or	 other	 terminal
activity,	and	can	be	overridden	by	GUIs.	(Martin	Pool,	493944)

Internals
Some	of	the	core	groupcompress	functionality	now	releases	the
GIL	 before	 operation.	 Similar	 to	 how	 zlib	 and	 bz2	 operate
without	 the	 GIL	 in	 the	 core	 compression	 and	 decompression
routines.	(John	Arbash	Meinel)

Testing
-Dhpssvfs	 will	 now	 trigger	 on	 RemoteBzrDir._ensure_real,
providing	 more	 debugging	 of	 VFS	 access	 triggers.	 (Robert
Collins)
KnownFailure	is	now	signalled	to	ExtendedTestResult	using	the
same	 method	 that	 Python	 2.7	 uses	 -	 addExpectedFailure.
(Robert	Collins)
--parallel=fork	 is	 now	 compatible	 with	 –subunit.	 (Robert
Collins,	Vincent	Ladeuil,	#419776)
Reporting	 of	 failures	 shows	 test	 ids	 not	 descriptions	 and	 thus
shows	parameterised	tests	correctly.	(Robert	Collins)
TestNotApplicable	 is	 now	 handled	 within	 the	 TestCase.run
method	 rather	 than	 being	 looked	 for	 within
ExtendedTestResult.addError.	This	provides	better	handling	with
other	TestResult	objects,	degrading	to	sucess	rather	than	error.
(Robert	Collins)
The	private	method	_testConcluded	on	ExtendedTestResult	has
been	removed	-	it	was	empty	and	unused.	(Robert	Collins)
UnavailableFeature	 is	 now	 handled	 within	 the	 TestCase.run
method	 rather	 than	 being	 looked	 for	 within	 addError.	 If	 the
Result	 object	 does	 not	 have	 an	 addNotSupported	 method,
addSkip	 is	 attempted	 instead,	 and	 failing	 that	 addSuccess.
(Robert	Collins)
When	a	TestResult	does	not	have	an	addSkip	method,	skipped
tests	are	now	reported	as	successful	tests,	rather	than	as	errors.
This	change	is	to	make	it	possible	to	get	a	clean	test	run	with	a
less	capable	TestResult.	(Robert	Collins)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	2.1.0b2
Codename: a	load	off	my	mind
2.1.0b2: 2009-11-02

This	is	our	second	feature-filled	release	since	2.0,	pushing	us	down
the	path	to	a	2.1.0.	Once	again,	all	bugfixes	 in	2.0.2	are	present	 in
2.1.0b2.

Key	 highlights	 in	 this	 release	 are:	 improved	 handling	 of	 failures-
during-cleanup	for	commit,	fixing	a	long-standing	bug	with	bzr+http
and	shared	 repositories,	all	 lp:	urls	 to	be	 resolved	behind	proxies,
and	 a	 new	 StaticTuple	 datatype,	 allowing	 us	 to	 reduce	 memory
consumption	(50%)	and	garbage	collector	overhead	(40%	faster)	for
many	operations.

A	 new	 --concurrency	 option	 has	 been	 added	 as	 well	 as	 an
associated	 BZR_CONCURRENCY	 environment	 variable	 to
specify	 the	 number	 of	 processes	 that	 can	 be	 run	 concurrently
when	running	bzr	selftest.	The	command-line	option	overrides
the	 environment	 variable	 if	 both	 are	 specified.	 If	 none	 is
specified.	the	number	of	processes	is	obtained	from	the	OS	as
before.	(Matt	Nordhoff,	Vincent	Ladeuil)

Bug	Fixes
bzr+http	servers	no	longer	give	spurious	jail	break	errors	when
serving	branches	inside	a	shared	repository.	(Andrew	Bennetts,
#348308)
Errors	during	commit	are	handled	more	robustly	so	that	knock-
on	 errors	 are	 less	 likely	 to	 occur,	 and	 will	 not	 obscure	 the
original	 error	 if	 they	 do	 occur.	 This	 fixes	 some	 causes	 of
TooManyConcurrentRequests	 and	 similar	 errors.	 (Andrew
Bennetts,	#429747,	#243391)
Launchpad	 urls	 can	 now	 be	 resolved	 from	 behind	 proxies.
(Gordon	Tyler,	Vincent	Ladeuil,	#186920)
Reduce	the	strictness	for	StaticTuple,	instead	add	a	debug	flag
-Dstatic_tuple	 which	 will	 change	 apis	 to	 be	 strict	 and	 raise
errors.	This	way,	most	users	won’t	see	failures,	but	developers
can	improve	internals.	(John	Arbash	Meinel,	#471193)
TreeTransform.adjust_path	 updates	 the	 limbo	 paths	 of
descendants	of	adjusted	files.	(Aaron	Bentley)
Unicode	 paths	 are	 now	 handled	 correctly	 and	 consistently	 by
the	smart	server.	(Andrew	Bennetts,	Michael	Hudson,	#458762)

Improvements
When	reading	index	files,	we	now	use	a	StaticTuple	rather	than
a	 plain	 tuple	 object.	 This	 generally	 gives	 a	 20%	 decrease	 in
peak	memory,	and	can	give	a	performance	boost	up	to	40%	on
large	projects.	(John	Arbash	Meinel)
Peak	 memory	 under	 certain	 operations	 has	 been	 reduced
significantly.	 (eg,	 ‘bzr	 branch	 launchpad	 standalone’	 is	 cut	 in
half)	(John	Arbash	Meinel)

Documentation
Filtered	 views	user	 documentation	 upgraded	 to	 refer	 to	 format
2a	instead	of	pre-2.0	formats.	(Ian	Clatworthy)

API	Changes
Remove	deprecated	CLIUIFactory.	(Martin	Pool)
UIFactory	 now	 has	 new	 show_error,	 show_message	 and
show_warning	methods,	 which	 can	 be	 hooked	 by	 non-text	 UIs.
(Martin	Pool)

Internals
Added	bzrlib._simple_set_pyx.	This	 is	a	hybrid	between	a	Set
and	 a	 Dict	 (it	 only	 holds	 keys,	 but	 you	 can	 lookup	 the	 object
located	 at	 a	 given	 key).	 It	 has	 significantly	 reduced	 memory
consumption	versus	the	builtin	objects	(1/2	the	size	of	Set,	1/3rd
the	 size	 of	 Dict).	 This	 is	 used	 as	 the	 interning	 structure	 for
StaticTuple	objects.	(John	Arbash	Meinel)
bzrlib._static_tuple_c.StaticTuple	is	now	available	and	used
by	 the	 btree	 index	 parser	 and	 the	 chk	map	 parser.	 This	 class
functions	similarly	to	tuple	objects.	However,	it	can	only	point	to
a	limited	collection	of	types.	(Currently	StaticTuple,	str,	unicode,
None,	bool,	int,	long,	float,	but	not	subclasses).	This	allows	us	to
remove	it	from	the	garbage	collector	(it	cannot	be	in	a	cycle),	it
also	allows	us	 to	 intern	 the	objects.	 In	 testing,	 this	can	 reduce
peak	memory	by	20-40%,	and	significantly	improve	performance
by	 removing	 objects	 from	 being	 inspected	 by	 the	 garbage
collector.	(John	Arbash	Meinel)
GroupCompressBlock._ensure_content()	 will	 now	 release	 the
zlib.decompressobj()	 when	 the	 first	 request	 is	 for	 all	 of	 the
content.	 (Previously	 it	 would	 only	 be	 released	 if	 you	 made	 a
request	for	part	of	the	content,	and	then	all	of	it	later.)	This	turns
out	 to	 be	 a	 significant	 memory	 savings,	 as	 a	 zstream	 carries
around	 approx	 260kB	 of	 internal	 state	 and	 buffers.	 (For
branching	 bzr.dev	 this	 drops	 peak	 memory	 from	 382MB	 =>
345MB.)	(John	Arbash	Meinel)
When	 streaming	 content	 between	 2a	 format	 repositories,	 we
now	clear	caches	 from	earlier	versioned	 files.	 (So	 ‘revisions’	 is
cleared	when	we	start	reading	‘inventories’,	etc.)	This	can	have
a	significant	impact	on	peak	memory	for	initial	copies	(~200MB).
(John	Arbash	Meinel)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	2.0.2
Codename: after	the	scare
2.0.2: 2009-11-02

The	second	in	our	“let’s	keep	the	stable	bugfixes	flowing”	series.	As
expected	this	has	a	few	(~9)	bugfixes	relative	to	2.0.1,	and	no	major
api	changes	or	features.

Bug	Fixes
Avoid	 “NoneType	 has	 no	 attribute	 st_mode”	 error	 when	 files
disappear	 from	 a	 directory	 while	 it’s	 being	 read.	 (Martin	Pool,
#446033)
Content	 filters	 are	 now	 applied	 correctly	 after	 revert.	 (Ian
Clatworthy)
Diff	 parsing	handles	 “Binary	 files	differ”	hunks.	 (Aaron	Bentley,
#436325)
Fetching	 from	stacked	pre-2a	 repository	 via	a	 smart	 server	no
longer	fails	intermittently	with	“second	push	failed	to	complete”.
(Andrew	Bennetts,	#437626)
Fix	 typos	 left	 after	 test_selftest	 refactoring.	 (Vincent	 Ladeuil,
Matt	Nordhoff,	#461149)
Fixed	 ObjectNotLocked	errors	during	 bzr	log	-r	NNN	 somefile.
(Andrew	Bennetts,	#445171)
PreviewTree	 file	 names	are	not	 limited	by	 the	encoding	of	 the
temp	directory’s	filesystem.	(Aaron	Bentley,	#436794)

Improvements
bzr	log	now	read-locks	branches	exactly	once,	so	makes	better
use	of	data	caches.	(Andrew	Bennetts)

Documentation
Filtered	 views	user	 documentation	 upgraded	 to	 refer	 to	 format
2a	instead	of	pre-2.0	formats.	(Ian	Clatworthy)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	2.1.0b1
Codename: While	the	cat	is	away
2.1.0b1: 2009-10-14

This	 is	 the	 first	 development	 release	 in	 the	 new	 split	 “stable”	 and
“development”	series.	As	such,	the	release	is	a	snapshot	of	bzr.dev
without	creating	a	release	candidate	first.	This	release	includes	a	fair
amount	 of	 internal	 changes,	with	 deprecated	 code	 being	 removed,
and	several	new	 feature	developments.	People	 looking	 for	a	stable
code	base	with	only	bugfixes	should	focus	on	the	2.0.1	release.	All
bugfixes	present	in	2.0.1	are	present	in	2.1.0b1.

Highlights	 include	 support	 for	 bzr+ssh://host/~/homedir	 style	 urls,
finer	 control	 over	 the	 plugin	 search	 path	 via	 extended
BZR_PLUGIN_PATH	 syntax,	 visible	 warnings	 when	 extension
modules	fail	to	load,	and	improved	error	handling	during	unlocking.

New	Features
Bazaar	can	now	send	mail	through	Apple	OS	X	Mail.app.	(Brian
de	Alwis)

bzr+ssh	and	bzr	paths	can	now	be	relative	to	home	directories
specified	 in	 the	URL.	Paths	 starting	with	 a	 path	 segment	 of	 ~
are	relative	to	the	home	directory	of	the	user	running	the	server,
and	paths	starting	with	~user	are	relative	to	the	home	directory
of	 the	named	user.	For	example,	 for	a	user	 “bob”	with	a	home
directory	of	/home/bob,	these	URLs	are	all	equivalent:

bzr+ssh://bob@host/~/repo

bzr+ssh://bob@host/~bob/repo

bzr+ssh://bob@host/home/bob/repo

If	bzr	serve	was	invoked	with	a	--directory	argument,	then	no
home	directories	outside	that	directory	will	be	accessible	via	this
method.

This	 is	 a	 feature	 of	 bzr	 serve,	 so	 pre-2.1	 clients	 will
automatically	benefit	from	this	feature	when	bzr	on	the	server	is
upgraded.	(Andrew	Bennetts,	#109143)

Extensions	 can	 now	 be	 compiled	 if	 either	 Cython	 or	 Pyrex	 is
available.	Currently	Pyrex	 is	preferred,	but	 that	may	change	 in
the	future.	(Arkanes)

Give	more	control	 on	BZR_PLUGIN_PATH	by	providing	a	way
to	 refer	 to	or	disable	 the	user,	 site	and	core	plugin	directories.
(Vincent	Ladeuil,	#412930,	#316192,	#145612)

Bug	Fixes
Bazaar’s	 native	 protocol	 code	 now	 correctly	 handles	 EINTR,
which	most	 noticeably	 occurs	 if	 you	 break	 in	 to	 the	 debugger
while	connected	to	a	bzr+ssh	server.	You	can	now	can	continue
from	 the	 debugger	 (by	 typing	 ‘c’)	 and	 the	 process	 continues.
However,	note	that	pressing	C-in	the	shell	may	still	kill	the	SSH
process,	which	is	bug	162509,	so	you	must	sent	a	signal	to	the
bzr	process	specifically,	for	example	by	typing	kill	-QUIT	PID	in
another	shell.	(Martin	Pool,	#341535)
bzr	add	in	a	tree	that	has	files	with	\r	or	\n	in	the	filename	will
issue	 a	 warning	 and	 skip	 over	 those	 files.	 (Robert	 Collins,
#3918)
bzr	 dpush	 now	 aborts	 if	 uncommitted	 changes	 (including
pending	 merges)	 are	 present	 in	 the	 working	 tree.	 The
configuration	option	dpush_strict	can	be	used	to	set	the	default
for	this	behavior.	(Vincent	Ladeuil,	#438158)
bzr	merge	and	 bzr	remove-tree	now	requires	–force	 if	pending
merges	 are	 present	 in	 the	 working	 tree.	 (Vincent	 Ladeuil,
#426344)
Clearer	message	when	Bazaar	runs	out	of	memory,	instead	of	a
MemoryError	traceback.	(Martin	Pool,	#109115)
Don’t	 give	 a	 warning	 on	 Windows	 when	 failing	 to	 import
_readdir_pyx	as	it	is	never	built.	(John	Arbash	Meinel,	#430645)
Don’t	 restrict	 the	 command	 name	 used	 to	 run	 the	 test	 suite.
(Vincent	Ladeuil,	#419950)
ftp	 transports	 were	 built	 differently	 when	 the	 kerberos	 python
module	 was	 present	 leading	 to	 obscure	 failures	 related	 to
ASCII/BINARY	modes.	(Vincent	Ladeuil,	#443041)
Network	streams	now	decode	adjacent	records	of	the	same	type
into	a	single	stream,	reducing	layering	churn.	(Robert	Collins)
PreviewTree	behaves	correctly	when	get_file_mtime	 is	 invoked

on	an	unmodified	file.	(Aaron	Bentley,	#251532)
Registry	 objects	 should	not	 use	 iteritems()	when	asked	 to	use
items().	(Vincent	Ladeuil,	#430510)
Weave	based	 repositories	couldn’t	be	cloned	when	committers
were	using	domains	or	user	ids	embedding	‘.sig’.	Now	they	can.
(Matthew	Fuller,	Vincent	Ladeuil,	#430868)

Improvements
Revision	 specifiers	 can	 now	 be	 given	 in	 a	 more	 DWIM	 form,
without	 needing	 explicit	 prefixes	 for	 specifiers	 like	 tags	 or
revision	 id’s.	 See	 bzr	 help	 revisionspec	 for	 full	 details.
(Matthew	Fuller)
Bazaar	gives	a	warning	before	exiting,	and	writes	into	.bzr.log,
if	compiled	extensions	can’t	be	loaded.	This	typically	indicates	a
packaging	or	installation	problem.	In	this	case	Bazaar	will	keep
running	 using	 pure-Python	 versions,	 but	 this	 may	 be
substantially	 slower.	 The	 warning	 can	 be	 disabled	 by	 setting
ignore_missing_extensions	 =	 True	 in	 bazaar.conf.	 See	 also
<https://answers.launchpad.net/bzr/+faq/703>.	 (Martin	 Pool,
#406113,	#430529)
Secondary	 errors	 that	 occur	 during	 Branch.unlock	 and
Repository.unlock	 no	 longer	 obscure	 the	 original	 error.	 These
methods	 now	 use	 a	 new	 decorator,	 only_raises.	 This	 fixes
many	causes	of	 TooManyConcurrentRequests	 and	 similar	 errors.
(Andrew	Bennetts,	#429747)

https://answers.launchpad.net/bzr/+faq/703

Documentation
Describe	the	new	shell-like	test	feature.	(Vincent	Ladeuil)
Help	 on	 hooks	 no	 longer	 says	 ‘Not	 deprecated’	 for	 hooks	 that
are	currently	supported.	(Ian	Clatworthy,	#422415)

API	Changes
bzrlib.user_encoding	 has	 been	 removed;	 use
bzrlib.osutils.get_user_encoding	instead.	(Martin	Pool)
bzrlib.tests	 now	 uses	 stopTestRun	 for	 its	 TestResult

subclasses	 -	 the	 same	 as	 python’s	 unittest	 module.	 (Robert
Collins)
diff._get_trees_to_diff	 has	 been	 renamed	 to
diff.get_trees_and_branches_to_diff.	 It	 is	 now	 a	 public	 API,
and	it	returns	the	old	and	new	branches.	(Gary	van	der	Merwe)
bzrlib.trace.log_error,	error	and	info	have	been	deprecated.
(Martin	Pool)
MutableTree.has_changes()	 does	 not	 require	 a	 tree	 parameter
anymore.	It	now	defaults	to	comparing	to	the	basis	tree.	It	now
checks	 for	 pending	merges	 too.	 Merger.check_basis	 has	 been
deprecated	 and	 replaced	 by	 the	 corresponding	 has_changes()
calls.	 Merge.compare_basis,	 Merger.file_revisions	 and
Merger.ensure_revision_trees	 have	 also	 been	 deprecated.
(Vincent	Ladeuil,	#440631)
ProgressTask.note	is	deprecated.	(Martin	Pool)

Internals
Added	-Drelock	debug	flag.	It	will	note	a	message	every	time	a
repository	or	branch	object	is	unlocked	then	relocked	the	same
way.	(Andrew	Bennetts)
BTreeLeafParser.extract_key	 has	 been	 tweaked	 slightly	 to
reduce	mallocs	 while	 parsing	 the	 index	 (approx	 3=>1	mallocs
per	key	read).	This	results	 in	a	10%	speedup	while	reading	an
index.	(John	Arbash	Meinel)
The	bzrlib.lsprof	module	has	a	new	class	BzrProfiler	which
makes	profiling	in	some	situations	like	callbacks	and	generators
easier.	(Robert	Collins)

Testing
Passing	 --lsprof-tests	 -v	 to	 bzr	 selftest	 will	 cause	 lsprof
output	to	be	output	for	every	test.	Note	that	this	is	very	verbose!
(Robert	Collins)
Setting	 BZR_TEST_PDB=1	when	 running	 selftest	will	 cause	 a	 pdb
post_mortem	to	be	triggered	when	a	test	failure	occurs.	(Robert
Collins)
Shell-like	 tests	 can	 now	 be	 written.	 Code	 in
bzrlib/tests/script.py	 ,	 documentation	 in
developers/testing.txt	for	details.	(Vincent	Ladeuil)
Some	tests	could	end	up	with	the	same	id,	that	was	dormant	for
a	long	time.	(Vincent	Ladeuil,	#442980)
Stop	showing	the	number	of	tests	due	to	missing	features	in	the
test	progress	bar.	(Martin	Pool)
Test	 parameterisation	 now	 does	 a	 shallow	 copy,	 not	 a	 deep
copy	 of	 the	 test	 to	 be	 parameterised.	 This	 is	 not	 expected	 to
break	external	use	of	test	parameterisation,	and	is	substantially
faster.	(Robert	Collins)
Tests	that	try	to	open	a	bzr	dir	on	an	arbitrary	transport	will	now
fail	 unless	 they	 have	 explicitly	 permitted	 the	 transport	 via
self.permit_url.	 The	 standard	 test	 factories	 such	 as
self.get_url	will	 permit	 the	urls	 they	provide	automatically,	 so
only	exceptional	tests	should	need	to	do	this.	(Robert	Collins)
The	break-in	 test	no	 longer	cares	about	clean	shutdown	of	 the
child,	 instead	 it	 is	 happy	 if	 the	 debugger	 starts	 up.	 (Robert
Collins)
The	full	test	suite	is	expected	to	pass	when	the	C	extensions	are
not	present.	(Vincent	Ladeuil,	#430749)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	2.0.1
Codename: Stability	First
2.0.1: 2009-10-14

The	first	of	our	new	ongoing	bugfix-only	stable	releases	has	arrived.
It	 includes	a	collection	of	12	bugfixes	applied	to	bzr	2.0.0,	but	does
not	include	any	of	the	feature	development	in	the	2.1.0	series.

Bug	Fixes
bzr	add	in	a	tree	that	has	files	with	\r	or	\n	in	the	filename	will
issue	 a	 warning	 and	 skip	 over	 those	 files.	 (Robert	 Collins,
#3918)
bzr	 will	 attempt	 to	 authenticate	 with	 SSH	 servers	 that	 support
keyboard-interactive	 auth	 but	 not	 password	 auth	 when	 using
Paramiko.	(Andrew	Bennetts,	#433846)
Fixed	 fetches	 from	 a	 stacked	 branch	 on	 a	 smart	 server	 that
were	 failing	 with	 some	 combinations	 of	 remote	 and	 local
formats.	 This	 was	 causing	 “unknown	 object	 type	 identifier	 60”
errors.	(Andrew	Bennetts,	#427736)
Fixed	 ObjectNotLocked	 errors	 when	 doing	 some	 log	 and	 diff
operations	on	branches	 via	a	 smart	 server.	 (Andrew	Bennetts,
#389413)
Handle	things	like	bzr	add	foo	and	bzr	rm	foo	when	the	tree	is
at	 the	 root	of	a	drive.	 osutils._cicp_canonical_relpath	always
assumed	 that	 abspath()	 returned	 a	 path	 that	 did	 not	 have	 a
trailing	 /,	 but	 that	 is	 not	 true	 when	working	 at	 the	 root	 of	 the
filesystem.	(John	Arbash	Meinel,	Jason	Spashett,	#322807)
Hide	 deprecation	 warnings	 for	 ‘final’	 releases	 for	 python2.6.
(John	Arbash	Meinel,	#440062)
Improve	the	time	for	bzr	log	DIR	for	2a	format	repositories.	We
had	been	using	 the	same	code	path	as	 for	<2a	 formats,	which
required	 iterating	over	all	objects	 in	all	 revisions.	 (John	Arbash
Meinel,	#374730)
Make	 sure	 that	 we	 unlock	 the	 tree	 if	 we	 fail	 to	 create	 a
TreeTransform	object	when	doing	a	merge,	and	 there	 is	 limbo,
or	pending-deletions	directory.	(Gary	van	der	Merwe,	#427773)
Occasional	 IndexError	 on	 renamed	 files	 have	 been	 fixed.
Operations	that	set	a	 full	 inventory	 in	 the	working	tree	will	now
go	via	the	apply_inventory_delta	code	path	which	is	simpler	and

easier	 to	 understand	 than	 dirstates	 set_state_from_inventory
method.	 This	 may	 have	 a	 small	 performance	 impact	 on
operations	 built	 on	 _write_inventory,	 but	 such	 operations	 are
already	doing	full	tree	scans,	so	no	radical	performance	change
should	be	observed.	(Robert	Collins,	#403322)
Retrieving	 file	 text	 or	 mtime	 from	 a	 _PreviewTree	 has	 good
performance	when	there	are	many	changes.	(Aaron	Bentley)
The	CHK	index	pages	now	use	an	unlimited	cache	size.	With	a
limited	 cache	 and	 a	 large	 project,	 the	 random	 access	 of	 chk
pages	could	cause	us	to	download	the	entire	cix	file	many	times.
(John	Arbash	Meinel,	#402623)
When	 a	 file	 kind	 becomes	 unversionable	 after	 being	 added,	 a
sensible	 error	 will	 be	 shown	 instead	 of	 a	 traceback.	 (Robert
Collins,	#438569)

Documentation
Improved	README.	(Ian	Clatworthy)
Improved	 upgrade	 documentation	 for	 Launchpad	 branches.
(Barry	Warsaw)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	2.0.0
2.0.0: 2009-09-22
Codename: Instant	Karma

This	 release	 of	 Bazaar	 makes	 the	 2a	 (previously	 ‘brisbane-core’)
format	 the	 default	when	new	branches	 or	 repositories	 are	 created.
This	 format	 is	substantially	smaller	and	 faster	 for	many	operations.
Most	 of	 the	 work	 in	 this	 release	 focuses	 on	 bug	 fixes	 and
stabilization,	 covering	 both	 2a	 and	 previous	 formats.	 (See	 the
Upgrade	Guide	for	information	on	migrating	existing	projects.)

This	 release	 also	 improves	 the	 documentation	 content	 and
presentation,	including	adding	Windows	HtmlHelp	manuals.

The	 Bazaar	 team	 decided	 that	 2.0	 will	 be	 a	 long-term	 supported
release,	with	bugfix-only	2.0.x	releases	based	on	it,	continuing	for	at
least	six	months	or	until	the	following	stable	release.

Changes	from	2.0.0rc2	to	final
Officially	 branded	 as	 2.0.0	 rather	 than	 2.0	 to	 clarify	 between
things	 that	 “want	 to	 happen	 on	 the	 2.0.x	 stable	 series”	 versus
things	 that	 want	 to	 “land	 in	 2.0.0”.	 (Changes	 how
bzrlib._format_version_tuple()	handles	micro	=	0.)	(John	Arbash
Meinel)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	2.0.0rc2
2.0.0rc2: 2009-09-10

New	Features
Added	 post_commit	 hook	 for	 mutable	 trees.	 This	 allows	 the
keywords	 plugin	 to	 expand	 keywords	 on	 files	 changed	 by	 the
commit.	(Ian	Clatworthy,	#408841)

Bug	Fixes
Bazaar’s	 native	 protocol	 code	 now	 correctly	 handles	 EINTR,
which	most	 noticeably	 occurs	 if	 you	 break	 in	 to	 the	 debugger
while	connected	to	a	bzr+ssh	server.	You	can	now	can	continue
from	 the	 debugger	 (by	 typing	 ‘c’)	 and	 the	 process	 continues.
However,	note	that	pressing	C-in	the	shell	may	still	kill	the	SSH
process,	which	is	bug	162509,	so	you	must	sent	a	signal	to	the
bzr	process	specifically,	for	example	by	typing	kill	-QUIT	PID	in
another	shell.	(Martin	Pool,	#341535)
bzr	check	 in	pack-0.92,	1.6	and	1.9	 format	 repositories	will	no
longer	 report	 incorrect	 errors	 about	 Missing	 inventory

('TREE_ROOT',	...)	(Robert	Collins,	#416732)
bzr	 info	 -v	 on	 a	 2a	 format	 still	 claimed	 that	 it	 was	 a
“Development	format”	(John	Arbash	Meinel,	#424392)
bzr	 log	 stacked-branch	 shows	 the	 full	 log	 including	 revisions
that	are	 in	 the	fallback	repository.	 (Regressed	 in	2.0rc1).	 (John
Arbash	Meinel,	#419241)
Clearer	message	when	Bazaar	runs	out	of	memory,	instead	of	a
MemoryError	traceback.	(Martin	Pool,	#109115)
Conversion	 to	 2a	 will	 create	 a	 single	 pack	 for	 all	 the	 new
revisions	 (as	 long	as	 it	 ran	without	 interruption).	This	 improves
both	 bzr	 upgrade	 and	 bzr	 pull	 or	 bzr	 merge	 from	 local
branches	in	older	formats.	The	autopack	logic	that	occurs	every
100	 revisions	 during	 local	 conversions	 was	 not	 returning	 that
pack’s	 identifier,	 which	 resulted	 in	 the	 partial	 packs	 created
during	 the	conversion	not	being	consolidated	at	 the	end	of	 the
conversion	process.	(Robert	Collins,	#423818)
Fetches	 from	 2a	 to	 2a	 are	 now	 again	 requested	 in
‘groupcompress’	 order.	Groups	 that	 are	 seen	as	 ‘underutilized’
will	be	repacked	on-the-fly.	This	means	that	when	the	source	is
fully	packed,	 there	 is	minimal	overhead	during	 the	 fetch,	but	 if

the	 source	 is	 poorly	 packed	 the	 result	 is	 a	 fairly	 well	 packed
repository	(not	as	good	as	‘bzr	pack’	but	good-enough.)	(Robert
Collins,	John	Arbash	Meinel,	#402652)
Fix	a	potential	segmentation	 fault	when	doing	 ‘log’	of	a	branch
that	had	ghosts	 in	 its	mainline.	 (Evaluating	None	as	a	 tuple	 is
bad.)	(John	Arbash	Meinel,	#419241)
groupcompress	sort	order	is	now	more	stable,	rather	than	relying
on	 topo_sort	 ordering.	 The	 implementation	 is	 now
KnownGraph.gc_sort.	(John	Arbash	Meinel)
Local	 data	 conversion	 will	 generate	 correct	 deltas.	 This	 is	 a
critical	bugfix	vs	2.0rc1,	and	all	2.0rc1	users	should	upgrade	to
2.0rc2	before	converting	repositories.	(Robert	Collins,	#422849)
Network	streams	now	decode	adjacent	records	of	the	same	type
into	a	single	stream,	reducing	layering	churn.	(Robert	Collins)
Prevent	some	kinds	of	incomplete	data	from	being	committed	to
a	2a	repository,	such	as	revisions	without	inventories,	a	missing
chk_bytes	record	for	an	 inventory,	or	a	missing	text	 referenced
by	an	inventory.	(Andrew	Bennetts,	#423506,	#406687)

Documentation
Fix	assertion	error	about	 “_remember_remote_is_before”	when
pushing	to	older	smart	servers.	(Andrew	Bennetts,	#418931)
Help	 on	 hooks	 no	 longer	 says	 ‘Not	 deprecated’	 for	 hooks	 that
are	currently	supported.	(Ian	Clatworthy,	#422415)
PDF	and	CHM	(Windows	HtmlHelp)	formats	are	now	supported
for	the	user	documentation.	The	HTML	documentation	is	better
broken	up	into	topics.	(Ian	Clatworthy)
The	 developer	 and	 foreign	 language	 documents	 are	 now
separated	 out	 so	 that	 searching	 in	 the	 HTML	 and	 CHM	 files
produces	more	useful	results.	(Ian	Clatworthy)
The	 main	 table	 of	 contents	 now	 provides	 links	 to	 the	 new
Migration	Docs	and	Plugins	Guide.	(Ian	Clatworthy)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	2.0.0rc1
Codename: no	worries
2.0.0rc1: 2009-08-26

Compatibility	Breaks
The	default	 format	 for	 bzr	 is	 now	 2a.	 This	 format	 brings	many
significant	 performance	 and	 size	 improvements.	 bzr	 can	 pull
from	any	existing	repository	into	a	2a	one,	but	can	only	transfer
from	 2a	 into	 rich-root	 repositories.	 The	 Upgrade	 guide	 has
more	information	about	this	change.	(Robert	Collins)
On	 Windows	 auto-detection	 of	 Putty’s	 plink.exe	 is	 disabled.
Default	SSH	client	for	Windows	is	paramiko.	User	still	can	force
usage	 of	 plink	 if	 explicitly	 set	 environment	 variable
BZR_SSH=plink.	(#414743,	Alexander	Belchenko)

New	Features
bzr	branch	--switch	can	now	switch	the	checkout	in	the	current
directory	to	the	newly	created	branch.	(Lukáš	Lalinský)

Bug	Fixes
Further	tweaks	to	handling	of	bzr	add	messages	about	ignored
files.	(Jason	Spashett,	#76616)
Fetches	 were	 being	 requested	 in	 ‘groupcompress’	 order,	 but
weren’t	 recombining	 the	groups.	Thus	 they	would	 ‘fragment’	 to
get	the	correct	order,	but	not	‘recombine’	to	actually	benefit	from
it.	 Until	 we	 get	 recombining	 to	 work,	 switching	 to	 ‘unordered’
fetches	 avoids	 the	 fragmentation.	 (John	 Arbash	 Meinel,
#402645)
Fix	a	pycurl	related	test	failure	on	karmic	by	recognizing	an	error
raised	by	newer	versions	of	pycurl.	(Vincent	Ladeuil,	#306264)
Fix	a	test	failure	on	karmic	by	making	a	locale	test	more	robust.
(Vincent	Ladeuil,	#413514)
Fix	IndexError	printing	CannotBindAddress	errors.	(Martin	Pool,
#286871)
Fix	 “Revision	 ...	 not	 present”	 errors	 when	 upgrading	 stacked
branches,	 or	 when	 doing	 fetches	 from	 a	 stacked	 source	 to	 a
stacked	target.	(Andrew	Bennetts,	#399140)
bzr	branch	of	2a	repositories	over	HTTP	is	much	faster.	bzr	now
batches	together	small	fetches	from	2a	repositories,	rather	than
fetching	only	a	few	hundred	bytes	at	a	time.	(Andrew	Bennetts,
#402657)

Improvements
A	 better	 description	 of	 the	 platform	 is	 shown	 in	 crash
tracebacks,	 bzr	 --version	 and	 bzr	 selftest.	 (Martin	 Pool,
#409137)
bzr	 can	 now	 (again)	 capture	 crash	 data	 through	 the	 apport
library,	so	that	a	single	human-readable	file	can	be	attached	to
bug	reports.	This	can	be	disabled	by	using	 -Dno_apport	on	 the
command	 line,	 or	 by	 putting	 no_apport	 into	 the	 debug_flags
section	of	bazaar.conf.	(Martin	Pool,	Robert	Collins,	#389328)
bzr	push	 locally	on	windows	will	no	 longer	give	a	 locking	error
with	dirstate	based	formats.	(Robert	Collins)
bzr	 shelve	 and	 bzr	 unshelve	 now	 work	 on	 windows.	 (Robert
Collins,	#305006)
Commit	 of	 specific	 files	 no	 longer	 prevents	 using	 the
iter_changes	 codepath.	On	 2a	 repositories,	 commit	 of	 specific
files	should	now	be	as	fast,	or	slightly	faster,	than	a	full	commit.
(Robert	Collins)
The	 internal	core	code	 that	handles	specific	 file	operations	 like
bzr	st	FILENAME	or	 bzr	commit	FILENAME	has	been	changed	to
include	 the	parent	directories	 if	 they	have	altered,	and	when	a
directory	 stops	 being	 a	 directory	 its	 children	 are	 always
included.	This	 fixes	a	number	of	causes	 for	 InconsistentDelta
errors,	 and	 permits	 faster	 commit	 of	 specific	 paths.	 (Robert
Collins,	#347649)

Documentation
New	developer	documentation	for	content	filtering.	(Martin	Pool)

API	Changes
bzrlib.shelf_ui	 has	 had	 the	 from_args	 convenience	methods
of	its	classes	changed	to	manage	lock	lifetime	of	the	trees	they
open	 in	 a	 way	 consistent	 with	 reader-exclusive	 locks.	 (Robert
Collins,	#305006)

Testing

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.18.1
Codename: nein	nein	nein!
1.18.1: 2009-09-09

This	release	fixes	two	small	but	worthwhile	bugs	relevant	to	users	on
Microsoft	 Windows:	 some	 commands	 that	 failed	 on	 with	 locking
errors	will	now	work,	and	a	bug	that	caused	poor	performance	after
committing	a	file	with	 line-ending	conversion	has	now	been	fixed.	 It
also	fixes	a	bug	in	pushing	to	older	servers.

Bug	Fixes
Fixed	 a	 problem	 where	 using	 content	 filtering	 and	 especially
end-of-line	 conversion	 will	 commit	 too	 many	 copies	 a	 file.
(Martin	Pool,	#415508)
Fix	 assertion	 error	 about	 _remember_remote_is_before	 in
set_tags_bytes	when	pushing	 to	 older	 smart	 servers.	 (Andrew
Bennetts,	Alexander	Belchenko,	#418931)

Improvements
bzr	push	 locally	on	Windows	will	no	longer	give	a	locking	error
with	dirstate	based	formats.	(Robert	Collins)
bzr	 shelve	 and	 bzr	 unshelve	 now	work	 on	Windows.	 (Robert
Collins,	#305006)

API	Changes
bzrlib.shelf_ui	 has	 had	 the	 from_args	 convenience	methods
of	its	classes	changed	to	manage	lock	lifetime	of	the	trees	they
open	 in	 a	 way	 consistent	 with	 reader-exclusive	 locks.	 (Robert
Collins,	#305006)
Tree.path_content_summary	 may	 return	 a	 size	 of	 None,	 when
called	 on	 a	 tree	 with	 content	 filtering	 where	 the	 size	 of	 the
canonical	form	cannot	be	cheaply	determined.	(Martin	Pool)
When	manually	creating	 transport	servers	 in	 test	cases,	a	new
helper	 TestCase.start_server	 that	 registers	 a	 cleanup	 and
starts	the	server	should	be	used.	(Robert	Collins)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.18

Compatibility	Breaks
Committing	 directly	 to	 a	 stacked	 branch	 from	 a	 lightweight
checkout	 will	 no	 longer	 work.	 In	 previous	 versions	 this	 would
appear	to	work	but	would	generate	repositories	with	insufficient
data	to	create	deltas,	 leading	to	 later	errors	when	branching	or
reading	from	the	repository.	(Robert	Collins,	bug	#375013)

New	Features

Bug	Fixes
Fetching	from	2a	branches	from	a	version-2	bzr	protocol	would
fail	 to	 copy	 the	 internal	 inventory	 pages	 from	 the	 CHK	 store.
This	cannot	happen	 in	normal	use	as	all	2a	compatible	clients
and	 servers	 support	 the	 version-3	 protocol,	 but	 it	 does	 cause
test	 suite	 failures	 when	 testing	 downlevel	 protocol	 behaviour.
(Robert	Collins)
Fix	a	test	failure	on	karmic	by	making	a	locale	test	more	robust.
(Vincent	Ladeuil,	#413514)
Fixed	“Pack	...	already	exists”	error	when	running	bzr	pack	on	a
fully	packed	2a	repository.	(Andrew	Bennetts,	#382463)
Further	tweaks	to	handling	of	bzr	add	messages	about	ignored
files.	(Jason	Spashett,	#76616)
Properly	handle	fetching	into	a	stacked	branch	while	converting
the	data,	especially	when	there	are	also	ghosts.	The	code	was
filling	 in	 parent	 inventories	 incorrectly,	 and	 also	 not	 handling
when	 one	 of	 the	 parents	 was	 a	 ghost.	 (John	 Arbash	 Meinel,
#402778,	#412198)
RemoteStreamSource.get_stream_for_missing_keys	 will	 fetch
CHK	 inventory	 pages	when	appropriate	 (by	 falling	 back	 to	 the
vfs	stream	source).	(Andrew	Bennetts,	#406686)
StreamSource	 generates	 rich	 roots	 from	non-rich	 root	 sources
correctly	now.	(Andrew	Bennetts,	#368921)
When	 deciding	 whether	 a	 repository	 was	 compatible	 for
upgrading	 or	 fetching,	 we	 previously	 incorrectly	 checked	 the
default	 repository	 format	 for	 the	 bzrdir	 format,	 rather	 than	 the
format	that	was	actually	present	on	disk.	(Martin	Pool,	#408824)

Improvements
A	 better	 description	 of	 the	 platform	 is	 shown	 in	 crash
tracebacks,	 bzr	 --version	 and	 bzr	 selftest.	 (Martin	 Pool,
#409137)
Cross-format	fetches	(such	as	between	1.9-rich-root	and	2a)	via
the	 smart	 server	 are	 more	 efficient	 now.	 They	 send	 inventory
deltas	rather	than	full	inventories.	The	smart	server	has	two	new
requests,	 Repository.get_stream_1.19	 and
Repository.insert_stream_1.19	 to	 support	 this.	 (Andrew
Bennetts,	#374738,	#385826)
Extracting	the	full	ancestry	and	computing	the	merge_sort	is	now
significantly	 faster.	 This	 effects	 things	 like	 bzr	 log	 -n0.	 (For
example,	bzr	log	-r	-10..-1	-n0	bzr.dev	is	2.5s	down	to	1.0s.
(John	Arbash	Meinel)

Documentation

API	Changes

Internals
-Dstrict_locks	 can	now	be	used	 to	check	 that	 read	and	write
locks	are	treated	properly	w.r.t.	exclusivity.	(We	don’t	try	to	take
an	OS	read	lock	on	a	file	that	we	already	have	an	OS	write	lock
on.)	 This	 is	 now	 set	 by	 default	 for	 all	 tests,	 if	 you	 have	 a	 test
which	 cannot	 be	 fixed,	 you	 can	 use
self.thisFailsStrictLockCheck()	as	a	compatibility	knob.	(John
Arbash	Meinel)
InterDifferingSerializer	 is	 now	 only	 used	 locally.	 Other	 fetches
that	would	have	used	InterDifferingSerializer	now	use	the	more
network	 friendly	 StreamSource,	 which	 now	 automatically	 does
the	 same	 transformations	 as	 InterDifferingSerializer.	 (Andrew
Bennetts)
KnownGraph	 now	 has	 a	 .topo_sort	 and	 .merge_sort	 member
which	are	 implemented	 in	pyrex	and	significantly	 faster.	This	 is
exposed	 along	 with	 CombinedGraphIndex.find_ancestry()	 as
VersionedFiles.get_known_graph_ancestry(keys).	 (John	Arbash
Meinel)
RemoteBranch.open	now	honours	ignore_fallbacks	correctly	on
bzr-v2	protocols.	(Robert	Collins)
The	 index	 code	 now	 has	 some	 specialized	 routines	 to	 extract
the	 full	 ancestry	 of	 a	 key	 in	 a	 more	 efficient	 manner.
CombinedGraphIndex.find_ancestry().	 (Time	 to	 get	 ancestry	 for
bzr.dev	drops	from	1.5s	down	to	300ms.	For	OOo	from	33s	=>
10.5s)	(John	Arbash	Meinel)

Testing
Install	the	test	ssl	certificate	and	key	so	that	installed	bzr	can	run
the	https	tests.	(Denys	Duchier,	#392401)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.18rc1
Codename: little	traveller
1.18: 2009-08-20
1.18rc1: 2009-08-10

This	release	of	Bazaar	marches	on	towards	the	2.0	release	in	which
the	 2a	 ‘brisbane-core’	 format	 becomes	 generally	 recommended.
Most	 of	 the	 work	 in	 this	 release	 now	 focusses	 on	 bug	 fixes	 and
stabilization,	covering	both	2a	and	previous	formats.	There	is	a	new
text-mode	interactive	merge	feature,	a	new	guide	to	migration	to	2a
format	in	the	user	documentation,	and	pushing	branches	to	a	smart
server	is	now	much	faster.

The	 Bazaar	 team	 decided	 that	 2.0	 will	 be	 a	 long-term	 supported
release,	with	bugfix-only	releases	based	on	it	continuing	for	at	least
six	months	or	until	the	following	stable	release.

There	are	no	changes	from	1.18rc1	to	1.18.

New	Features
bzr	merge	--interactive	applies	a	user-selected	portion	of	 the
merge.	The	UI	is	similar	to	shelve.	(Aaron	Bentley)
bzr	 reconfigure	 now	 takes	 options	 --stacked-on	 URL	 and	 --
unstacked	 to	 change	 stacking	 of	 a	 branch.	 (Martin	 Pool,
#391411)

Bug	Fixes
Annotating	 on	 a	 stacked	 branch	 will	 now	 succeed	 in	 simple
scenarios.	There	are	still	some	complex	scenarios	where	 it	will
fail	(bug	#399884)	(John	Arbash	Meinel,	#393366)
A	 progress	 bar	 is	 no	 longer	 left	 dangling	 when	 bzr	 selftest
completes,	 and	 the	progress	bar	 updates	with	 zero	 latency	 so
the	 displayed	 test	 name	 is	 always	 the	 one	 that’s	 actually
running.	(Martin	Pool,	#123688)
Authenticating	 against	 an	 ssh	 server	 now	 uses	 auth_none	 to
determine	 if	 password	 authentication	 is	 even	 supported.	 This
fixes	 a	 bug	 where	 users	 would	 be	 prompted	 for	 a	 launchpad
password,	 even	 though	 launchpad	 only	 supports	 publickey
authentication.	(John	Arbash	Meinel,	#375867)
BranchBuilder	 now	 accepts	 timezone	 to	 avoid	 test	 failures	 in
countries	far	from	GMT.	(Vincent	Ladeuil,	#397716)
bzr	 commit	 no	 longer	 saves	 the	 unversioning	 of	 missing	 files
until	the	commit	has	completed	on	the	branch.	This	means	that
aborting	 a	 commit	 that	 found	 a	missing	 file	will	 leave	 the	 tree
unedited.	(Robert	Collins,	#282402)
bzr	mv	no	longer	takes	out	branch	locks,	which	allows	it	to	work
when	the	branch	is	readonly.	(Robert	Collins,	#216541)
bzr	 revert	 .	 no	 longer	 generates	 an	 InconsistentDelta	 error
when	there	are	missing	subtrees.	(Robert	Collins,	#367632)
bzr	 send	 now	 generates	 valid	 bundles	 with	 --2a	 formats.
However,	do	to	internal	changes	necessary	to	support	this,	older
clients	will	fail	when	trying	to	insert	them.	For	newer	clients,	the
bundle	 can	 be	 used	 to	 apply	 the	 changes	 to	 any	 rich-root
compatible	format.	(John	Arbash	Meinel,	#393349)
Cope	 with	 FTP	 servers	 that	 don’t	 support	 restart/append	 by
falling	back	to	reading	and	then	rewriting	the	whole	file,	such	as
TahoeLAFS.	 (This	 fallback	 may	 be	 slow	 for	 some	 access

patterns.)	(Nils	Durner,	#294709)
Encode	the	paths	in	mbcs	encoding	on	Windows	when	spawning
an	external	diff	client.	This	at	 least	allows	supporting	filenames
that	are	not	ascii,	 but	are	present	 in	 the	current	 locale.	 Ideally
we	would	be	able	 to	pass	 the	Unicode	path,	but	 that	would	be
client	dependent.	(John	Arbash	Meinel,	#382709)
Fix	 a	 compile	 bug	 on	 Solaris	 having	 to	 do	 with	 const	 and
pointer-to-pointers.	(John	Arbash	Meinel,	#408441)
Fixed	a	NameError	that	occurs	when	merging	or	pulling	from	a
URL	that	causes	a	redirection	loop	when	bzr	tries	to	read	a	URL
as	a	bundle.	(Andrew	Bennetts,	#400847)
Fix	AttributeError:	'TestUIFactory'	object	has	no	attribute
'tick'	 running	 send	 and	 similar	 commands	 on	 2a	 formats.
(Martin	Pool,	#408201)
Fix	 crash	 in	 some	 invocations	 of	 bzr	 status	 in	 format	 2a.
(Martin	Pool,	#403523)
Fixed	 export	 to	 existing	 directory:	 if	 directory	 is	 empty	 then
export	 will	 succeed,	 otherwise	 it	 fails	 with	 error.	 (Alexander
Belchenko,	#406174)
Fixed	 spurious	 “Source	 branch	 does	 not	 support	 stacking”
warning	when	pushing.	(Andrew	Bennetts,	#388908)
Fixed	spurious	transport	activity	 indicator	appearing	while	 tests
are	running.	(Martin	Pool,	#343532)
Merge	 now	 correctly	 handles	 empty	 right-hand	 revision	 specs.
(Aaron	Bentley,	#333961)
Renames	to	lexographically	lower	basenames	in	trees	that	have
never	been	committed	to	will	no	longer	corrupt	the	dirstate.	This
was	caused	by	an	bug	 in	 the	dirstate	update_minimal	method.
(Robert	Collins,	#395556)
Requests	 for	 unknown	 methods	 no	 longer	 cause	 the	 smart
server	 to	 log	 lots	 of	 backtraces	 about	 UnknownSmartMethod,
do_chunk	or	do_end.	(Andrew	Bennetts,	#338561)
Shelve	 will	 not	 shelve	 the	 initial	 add	 of	 the	 tree	 root.	 (Aaron

Bentley)
Streaming	 from	 bzr	 servers	where	 there	 is	 a	 chain	 of	 stacked
branches	(A	stacked	on	B	stacked	on	C)	will	now	work.	(Robert
Collins,	#406597)
The	environment	variable	BZR_PROGRESS_BAR	set	to	either	text	or
none	 always	 forces	 progress	 bars	 either	 on	 or	 off	 respectively.
Otherwise,	 they’re	 turned	on	 if	 TERM	 is	not	 dumb	and	stderr	 is	a
terminal.	bzr	always	uses	the	‘text’	user	interface	when	run	as	a
command,	 so	 BZR_USE_TEXT_UI	 is	 no	 longer	 needed.	 (Martin
Pool,	#339385,	#387717)
The	optional	_knit_load_data_pyx	C	extension	was	never	being
imported.	This	caused	significant	slowdowns	when	reading	data
from	repositories.	(Andrew	Bennetts,	#405653)
The	--hardlink	option	to	branch	and	checkout	 is	not	supported
at	 the	 moment	 on	 workingtree	 formats	 that	 can	 do	 content
filtering.	 (See
<https://bugs.edge.launchpad.net/bzr/+bug/408193>.)	 bzr	 now
says	so,	rather	than	just	ignoring	the	option.	(Martin	Pool)
There	was	a	bug	in	osutils.relpath	that	was	only	triggered	on
Windows.	Essentially	if	you	were	at	the	root	of	a	drive,	and	did
something	to	a	branch/repo	on	another	drive,	we	would	go	into
an	infinite	loop	while	trying	to	find	a	‘relative	path’.	(John	Arbash
Meinel,	#394227)
WorkingTree4.unversion	will	no	longer	fail	to	unversion	ids	which
were	present	 in	a	parent	 tree	but	renamed	 in	 the	working	tree.
(Robert	Collins,	#187207)

https://bugs.edge.launchpad.net/bzr/+bug/408193

Improvements
Can	 now	 rename/move	 files	 even	 if	 they	 have	 been	 removed
from	the	inventory.	(Marius	Kruger)
Pushing	branches	with	tags	via	bzr://	and	bzr+ssh://	is	much
faster,	 using	 a	 new	 Branch.set_tags_bytes	 smart	 server	 verb
rather	 than	 VFS	 methods.	 For	 example,	 pushes	 of	 small
branches	 with	 tags	 take	 11	 rather	 than	 18	 smart	 server
requests.	(Andrew	Bennetts,	#398608)
Sending	 Ctrl-Break	 on	 Windows	 will	 now	 drop	 you	 into	 the
debugger,	 in	 the	 same	 way	 that	 sending	 Ctrl-\	 does	 on	 other
platforms.	(John	Arbash	Meinel)

Documentation
Added	Bazaar	2.0	Upgrade	Guide.	(Ian	Clatworthy)

API	Changes
CLIUIFactory	 is	 deprecated;	 use	 TextUIFactory	 instead	 if	 you
need	 to	 subclass	 or	 create	 a	 specific	 class,	 or	 better	 yet	 the
existing	make_ui_for_terminal.	SilentUIFactory	is	clarified	to	do
no	user	interaction	at	all,	rather	than	trying	to	read	from	stdin	but
not	 writing	 any	 output,	 which	 would	 be	 strange	 if	 reading
prompts	or	passwords.	(Martin	Pool)
New	 TransformPreview.commit()	 allows	 committing	 without	 a
working	tree.	(Aaron	Bentley)
pb	 parameter	 to	 TextTestResult	 is	 deprecated	 and	 ignored.
(Martin	Pool)
ProgressTasks	 now	 prefer	 to	 talk	 direct	 to	 their	 ProgressView
not	to	the	UIFactory.	(Martin	Pool)
WorkingTree._check	 now	 requires	 a	 references	 dict	 with	 keys
matching	 those	 returned	 by	 WorkingTree._get_check_refs.
(Robert	Collins)

Internals
CHKInventory.path2id	uses	the	parent_id	 to	basename	hash	to
avoid	 reading	 the	 entries	 along	 the	 path,	 reducing	 work	 to
lookup	ids	from	paths.	(Robert	Collins)
CHKMap.apply_delta	 now	 raises	 InconsistentDelta	 if	 a	 delta
adds	as	new	a	key	which	was	already	mapped.	(Robert	Collins)
Inventory	 delta	 application	 catches	 more	 cases	 of	 corruption
and	 can	 prevent	 corrupt	 deltas	 from	 affecting	 consistency	 of
data	structures	on	disk.	(Robert	Collins)
–subunit	 support	 now	 adds	 timestamps	 if	 the	 subunit	 version
supports	it.	(Robert	Collins)
The	Windows	 all-in-one	 installer	 now	 bundles	 the	PyQt	 image
format	plugins,	which	allows	previewing	more	images	as	part	of
‘qdiff’.	(Alexander	Belchenko)

Testing
Merge	 directive	 cherrypick	 tests	 must	 use	 the	 same	 root	 id.
(Martin	Pool,	#409684)
Spurious	failure	in	check	tests	on	rich-root	formats	fixed.	(Martin
Pool,	#408199)
The	 bzrlib.tests.TextTestRunner	 will	 no	 longer	 call
countTestsCases	 on	 the	 test	being	 run.	Progress	 information	 is
instead	 handled	 by	 having	 the	 test	 passed	 in	 call
result.progress	before	running	 its	contents.	This	 improves	the
behaviour	when	using	TextTestRunner	with	test	suites	that	don’t
support	countTestsCases.	(Robert	Collins)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.17.1	(unreleased)

Bug	Fixes
The	optional	_knit_load_data_pyx	C	extension	was	never	being
imported.	This	caused	significant	slowdowns	when	reading	data
from	knit	format	repositories.	(Andrew	Bennetts,	#405653)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.17
Codename: so-late-its-brunch
1.17rc1: 2009-07-13
1.17: 2009-07-20

Bazaar	 continues	 to	 blaze	 a	 straight	 and	 shining	 path	 to	 the	 2.0
release	 and	 the	 elevation	 of	 the	 2a	 beta	 format	 to	 the	 full	 glory	 of
“supported	and	stable”.

Highlights	 in	 this	 release	 include	 greatly	 reduced	 memory
consumption	 during	 commits,	 faster	 ls,	 faster	 annotate,	 faster
network	 operations	 if	 you’re	 specifying	 a	 revision	 number	 and	 the
final	destruction	of	those	annoying	progress	bar	artifacts.

Changes	from	1.17rc1	to	1.17final
Change	an	extension	to	call	the	python	frozenset()	rather	than
the	C	 api	 PyFrozenSet_New.	 It	 turns	 out	 that	 python2.4	 did	 not
expose	the	C	api.	(John	Arbash	Meinel,	#399366)
Fixes	 for	 the	Makefile	 and	 the	 rename	 of	 generate_docs.py	 to
tools/generate_docs.py	 to	 allow	 everything	 to	 be	 built	 on
Windows.	(John	Arbash	Meinel,	#399356)
bzr	 serve	 once	 again	 applies	 a	 ChrootServer	 to	 the	 given
directory	before	serving	it.	(Andrew	Bennetts,	#400535)

Compatibility	Breaks
bzr	register-branch	 from	 the	Launchpad	plugin	 now	 refers	 to
“project”	 instead	 of	 “product”	 which	 is	 the	 correct	 Launchpad
terminology.	 The	 –product	 option	 is	 deprecated	 and	 users
should	 switch	 to	 using	 –project.	 (Neil	 Martinsen-Burrell,
#238764)

New	Features
bzr	push	now	aborts	if	uncommitted	changes	(including	pending
merges)	are	present	 in	 the	working	tree	(if	one	 is	present)	and
no	 revision	 is	 specified.	 The	 configuration	 option	 push_strict
can	be	used	to	set	the	default	for	this	behavior.	(Vincent	Ladeuil,
#284038,	#322808,	#65286)
bzr	revno	and	bzr	revision-info	now	have	a	 --tree	option	to
show	 revision	 info	 for	 the	 working	 tree	 instead	 of	 the	 branch.
(Matthew	Fuller,	John	Arbash	Meinel)
bzr	send	now	aborts	if	uncommitted	changes	(including	pending
merges)	 are	 present	 in	 the	 working	 tree	 and	 no	 revision	 is
specified.	The	configuration	option	 send_strict	can	be	used	to
set	the	default	for	this	behavior.	(Vincent	Ladeuil,	#206577)
bzr	switch	--create-branch/-b	can	now	be	used	to	create	and
switch	 to	 a	 new	 branch.	 Supplying	 a	 name	 without	 a	 /	 will
create	the	branch	relative	to	the	existing	branch.	(similar	to	how
bzr	switch	name	works	when	the	branch	already	exists.)	 (John
Arbash	Meinel)

Bug	Fixes
Accept	 uppercase	 “Y/N”	 to	 prompts	 such	 as	 from	 break	 lock.
(#335182,	Tim	Powell,	Martin	Pool)
Add	 documentation	 about	 diverged	 branches	 and	 how	 to	 fix
them	in	the	centralized	workflow	with	local	commits.	Mention	bzr
help	 diverged-branches	 when	 a	 push	 fails	 because	 the
branches	have	diverged.	(Neil	Martinsen-Burrell,	#269477)
Annotate	 would	 sometimes	 ‘latch	 on’	 to	 trivial	 lines,	 causing
important	 lines	 to	 be	 incorrectly	 annotated.	 (John	 Arbash
Meinel,	#387952)
Automatic	format	upgrades	triggered	by	default	stacking	policies
on	 a	 1.16rc1	 (or	 later)	 smart	 server	 work	 again.	 (Andrew
Bennetts,	#388675)
Avoid	 progress	 bar	 artifacts	 being	 left	 behind	 on	 the	 screen.
(Martin	Pool,	#321935)
Better	message	in	bzr	split	error	suggesting	a	rich	root	format.
(Neil	Martinsen-Burrell,	#220067)
Branch.set_append_revisions_only	now	works	with	branches	on
a	smart	server.	(Andrew	Bennetts,	#365865)
By	default,	 bzr	branch	will	 fail	 if	 the	 target	directory	exists,	but
does	 not	 already	 have	 a	 control	 directory.	 The	 flag	 --use-
existing-dir	 will	 allow	 operation	 to	 proceed.	 (Alexander
Belchenko,	#307554)
bzr	 ls	 DIR	 --from-root	 now	 shows	 only	 things	 in	 DIR,	 not
everything.	(Ian	Clatworthy)
Fetch	 between	 repositories	 does	 not	 error	 if	 they	 have
inconsistent	data	that	should	be	irrelevant	to	the	fetch	operation.
(Aaron	Bentley)
Fix	 AttributeError	 exception	 when	 reconfiguring	 lightweight
checkout	of	a	remote	repository.	(Jelmer	Vernooij,	#332194)
Fix	bug	 in	decoding	v3	smart	server	messages	when	receiving

multiple	lots	of	excess	bytes	after	an	end-of-message.	(Andrew
Bennetts)
Force	deletion	of	readonly	files	during	merge,	update	and	other
tree	transforms.	(Craig	Hewetson,	Martin	Pool,	#218206)
Force	 socket	 shutdown	 in	 threaded	 http	 test	 servers	 to	 avoid
client	hangs	(pycurl).	(Vincent	Ladeuil,	#383920).
LRUCache	 will	 maintain	 the	 linked	 list	 pointers	 even	 if	 a	 nodes
cleanup	 function	 raises	 an	 exception.	 (John	 Arbash	 Meinel,
#396838)
Progress	bars	are	now	suppressed	again	when	the	environment
variable	BZR_PROGRESS_BAR	is	set	to	none.	(Martin	Pool,	#339385)
Reduced	memory	consumption	during	bzr	commit	of	large	files.
For	pre	2a	formats,	should	be	down	to	~3x	the	size	of	a	file.	For
--2a	format	repositories,	it	is	down	to	the	size	of	the	file	content
plus	 the	size	of	 the	compressed	 text.	Related	to	bug	#109114.
(John	Arbash	Meinel)
Set	hidden	attribute	on	.bzr	directory	below	unicode	path	should
never	 fail	with	error.	The	operation	should	succeed	even	 if	bzr
unable	to	set	the	attribute.	(Alexander	Belchenko,	related	to	bug
#335362).
Stacking	 will	 no	 longer	 accept	 requests	 to	 stack	 on	 the	 same
branch/repository.	 Existing	 branches	 that	 incorrectly	 reference
the	 same	 repository	 in	 a	 stacking	 configuration	 will	 now	 raise
UnstackableLocationError	when	the	branch	is	opened.	This	can
be	 fixed	by	 removing	 the	 stacking	 location	 inside	 .bzr/branch.
(Robert	Collins,	#376243)
The	 log+	 decorator,	 useful	 in	 debugging	 or	 profiling,	 could
cause	“AttributeError:	‘list’	object	has	no	attribute	‘next’”.	This	 is
now	fixed.	The	log	decorator	no	longer	shows	the	elapsed	time
or	transfer	rate	because	they’re	available	in	the	log	prefixes	and
the	 transport	 activity	 display	 respectively.	 (Martin	 Pool,
#340347)
Unshelve	 works	 correctly	 when	 multiple	 zero-length	 files	 are

present	on	the	shelf.	(Aaron	Bentley,	#363444)
Progress	bars	no	longer	show	the	network	transport	scheme	or
direction.	(Martin	Pool)
launchpad-login	 now	 respects	 the	 ‘verbose’	 option.	 (Jonathan
Lange,	#217031)

Internals
bzrlib.user_encoding	 is	 now	 officially	 deprecated.	 It	 is	 not
possible	to	write	a	deprecation	wrapper,	but	the	variable	will	be
removed	 in	 the	 near	 future.	 Use
bzrlib.osutils.get_user_encoding()	 instead.	 (Alexander
Belchenko)
Command	lookup	has	had	hooks	added.	bzrlib.Command.hooks
has	 three	 new	 hook	 points:	 get_command,	 get_missing_command
and	 list_commands,	 which	 allow	 just-in-time	 command	 name
provision	rather	than	requiring	all	command	names	be	known	a-
priori.	(Robert	Collins)
get_app_path	 from	 win32utils.py	 now	 supports
REG_EXPAND_SZ	 data	 type	 and	 can	 read	 path	 to
wordpad.exe.	(Alexander	Belchenko,	#392046)
graph.KnownGraph	has	been	added.	This	is	a	class	that	can	give
answers	to	heads()	very	quickly.	However,	it	has	the	assumption
that	 the	 whole	 graph	 has	 already	 been	 loaded.	 This	 is	 true
during	annotate	so	it	is	used	there	with	good	success	(as	much
as	 2x	 faster	 for	 files	 with	 long	 ancestry	 and	 ‘cherrypicked’
changes.)	(John	Arbash	Meinel,	Vincent	Ladeuil)
OS	 file	 locks	 are	 now	 taken	 out	 using	 CreateFile	 rather	 than
LockFileEx	 on	 Windows.	 The	 locking	 remains	 exclusive	 with
LockFileEx	but	now	it	also	works	on	older	versions	of	Windows
(such	as	Win98).	(Martin	<gzlist>)
pack	 <=>	 pack	 fetching	 is	 now	 done	 via	 a	 PackStreamSource
rather	than	the	Packer	code.	The	user	visible	change	is	that	we
now	properly	 fetch	 the	minimum	number	of	 texts	 for	non-smart
fetching.	(John	Arbash	Meinel)
VersionedFiles._add_text	 is	 a	 new	 api	 that	 lets	 us	 insert	 text
into	 the	 repository	as	a	single	string,	 rather	 than	a	 list	of	 lines.

This	 can	 improve	 memory	 overhead	 and	 performance	 of
committing	 large	 files.	 (Currently	 a	 private	 api,	 used	 only	 by
commit).	(John	Arbash	Meinel)

Improvements
bzr	annotate	 can	 now	be	 significantly	 faster.	 The	 time	 for	 bzr
annotate	NEWS	 is	 down	 to	 7s	 from	22s	 in	 1.16.	 Files	with	 long
histories	and	lots	of	‘duplicate	insertions’	will	be	improved	more
than	others.	(John	Arbash	Meinel,	Vincent	Ladeuil)
bzr	 ls	 is	 now	 faster.	On	OpenOffice.org,	 the	 time	 drops	 from
2.4	 to	1.1	seconds.	The	 improvement	 for	 bzr	ls	-r-1	 is	more
substantial	dropping	from	54.3	to	1.1	seconds.	(Ian	Clatworthy)
Improve	 “Path(s)	 are	 not	 versioned”	 error	 reporting	 for	 some
commands.	(Benoît	PIERRE)
Initial	 commit	 performance	 in	 --2a	 repositories	 has	 been
improved	 by	 making	 it	 cheaper	 to	 build	 the	 initial	 CHKMap.
(John	Arbash	Meinel)
Resolving	 a	 revno	 to	 a	 revision	 id	 on	 a	 branch	 accessed	 via
bzr://	or	 bzr+ssh://	 is	now	much	 faster	and	 involves	no	VFS
operations.	 This	 speeds	 up	 commands	 like	 bzr	 pull	 -r	 123.
(Andrew	Bennetts)
revision-info	 now	 properly	 aligns	 the	 revnos/revids	 in	 the
output	 and	 doesn’t	 traceback	 when	 given	 revisions	 not	 in	 the
current	branch.	Performance	is	also	significantly	improved	when
requesting	multiple	revs	at	once.	(Matthew	Fuller,	John	Arbash
Meinel)
Tildes	are	no	longer	escaped	by	Transports.	(Andy	Kilner)

Documentation
Avoid	 bad	 text	 wrapping	 in	 generated	 documentation.	 Slightly
better	formatting	in	the	user	reference.	(Martin	Pool,	#249908)
Minor	clarifications	to	the	help	for	End-Of-Line	conversions.	(Ian
Clatworthy)

API	Changes
Removed	 overspecific	 error	 class	 InvalidProgressBarType.
(Martin	Pool)
The	 method	 ProgressView._show_transport_activity	 is	 now
show_transport_activity	 because	 it’s	 part	 of	 the	 contract
between	this	class	and	the	UI.	(Martin	Pool)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.16.1
Released: 2009-06-26

End	 user	 testing	 of	 the	 2a	 format	 revealed	 two	 serious	 bugs.	 The
first,	 #365615,	 caused	 bzr	 to	 raise	 AbsentContentFactory	 errors
when	autopacking.	This	meant	that	commits	or	pushes	to	2a-format
repositories	failed	intermittently.

The	 second	 bug,	 #390563,	 caused	 the	 smart	 server	 to	 raise
AbsentContentFactory	 when	 streaming	 2a	 stacked	 2a-format
branches.	This	particularly	 affected	branches	 stored	on	Launchpad
in	the	2a	format.

Both	 of	 these	 bugs	 cause	 command	 failures	 only,	 neither	 of	 them
cause	 data	 corruption	 or	 data	 loss.	 And,	 of	 course,	 both	 of	 these
bugs	are	now	fixed.

Bug	Fixes
We	now	properly	request	a	more	minimal	set	of	file	texts	when
fetching	multiple	revisions.	(Robert	Collins,	John	Arbash	Meinel,
#390563)
Repositories	 using	 CHK	 pages	 (which	 includes	 the	 new	 2a
format)	 will	 no	 longer	 error	 during	 commit	 or	 push	 operations
when	 an	 autopack	 operation	 is	 triggered.	 (Robert	 Collins,
#365615)
chk_map.iter_interesting_nodes	 now	 properly	 uses	 the
intersection	 of	 referenced	 nodes	 rather	 than	 the	 union	 to
determine	 what	 uninteresting	 pages	 we	 still	 need	 to	 look	 at.
Prior	 to	 this,	 incrementally	 pushing	 to	 stacked	 branch	 would
push	 the	 minimal	 data,	 but	 fetching	 everything	 would	 request
extra	 texts.	 There	 are	 some	 unhandled	 cases	 wrt	 trees	 of
different	 depths,	 but	 this	 fixes	 the	 common	 cases.	 (Robert
Collins,	John	Arbash	Meinel,	#390563)
GroupCompress	 repositories	 now	 take	 advantage	 of	 the	 pack
hints	parameter	to	permit	cross-format	fetching	to	incrementally
pack	the	converted	data.	(Robert	Collins)
Repository.commit_write_group	now	returns	opaque	data	about
what	 was	 committed,	 for	 passing	 to	 the	 Repository.pack.
Repositories	 without	 atomic	 commits	 will	 still	 return	 None.
(Robert	Collins)
Repository.pack	 now	 takes	 an	 optional	 hint	 parameter	 which
will	support	doing	partial	packs	for	repositories	that	can	do	that.
(Robert	Collins)
RepositoryFormat	has	a	new	attribute	‘pack_compresses’	which
is	True	when	doing	a	pack	operation	changes	the	compression
of	content	in	the	repository.	(Robert	Collins)
StreamSink	 and	 InterDifferingSerialiser	 will	 call
Repository.pack	 with	 the	 hint	 returned	 by

Repository.commit_write_group	if	the	formats	were	different	and
the	 repository	 can	 increase	 compression	 by	 doing	 a	 pack
operation.	(Robert	Collins,	#376748)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.16
Codename: yesterday-in-california
1.16rc1: 2009-06-11
1.16: 2009-06-18

This	 version	 of	 Bazaar	 contains	 the	 beta	 release	 of	 the	 new	 2a
repository	 format,	 suitable	 for	 testing	 by	 fearless,	 advanced	 users.
This	format	or	an	updated	version	of	it	will	become	the	default	format
in	 Bazaar	 2.0.	 Please	 read	 the	 NEWS	 entry	 before	 even	 thinking
about	upgrading	to	the	new	format.

Also	included	are	speedups	for	many	operations	on	huge	projects,	a
bug	fix	 for	pushing	stacked	new	stacked	branches	to	smart	servers
and	the	usual	bevy	of	bug	fixes	and	improvements.

Changes	from	1.16rc1	to	1.16final
Fix	 the	 nested	 tree	 flag	 check	 so	 that	 upgrade	 from
development	formats	to	2a	can	work	correctly.	(Jelmer	Vernooij,
#388727)
Automatic	format	upgrades	triggered	by	default	stacking	policies
on	 a	 1.16rc1	 (or	 later)	 smart	 server	 work	 again.	 (Andrew
Bennetts,	#388675)

Compatibility	Breaks
Display	 prompt	 on	 stderr	 (instead	 of	 stdout)	 when	 querying
users	so	that	the	output	of	commands	can	be	safely	redirected.
(Vincent	Ladeuil,	#376582)

New	Features
A	 new	 repository	 format	 2a	 has	 been	 added.	 This	 is	 a	 beta
release	of	the	brisbane-core	(aka	group-compress)	project.	This
format	now	suitable	for	wider	testing	by	advanced	users	willing
to	deal	with	some	bugs.	We	would	appreciate	test	reports,	either
positive	 or	 negative.	 Format	 2a	 is	 substantially	 smaller	 and
faster	 for	 many	 operations	 on	 many	 trees.	 This	 format	 or	 an
updated	version	will	become	the	default	in	bzr	2.0.

This	is	a	rich-root	format,	so	this	repository	format	can	be	used
with	bzr-svn.	Bazaar	branches	in	previous	non-rich-root	formats
can	be	converted	(including	by	merge,	push	and	pull)	to	format
2a,	 but	 not	 vice	 versa.	 We	 recommend	 upgrading	 previous
development	formats	to	2a.

Upgrading	to	this	format	can	take	considerable	time	because	it
expands	and	more	concisely	repacks	the	full	history.

If	 you	 use	 stacked	 branches,	 you	 must	 upgrade	 the	 stacked
branches	 before	 the	 stacked-on	 branches.	 (See
<https://bugs.launchpad.net/bugs/374735>)

--development7-rich-root	is	a	new	dev	format,	similar	to	--dev6
but	using	a	Revision	serializer	using	bencode	rather	than	XML.
(Jelmer	Vernooij,	John	Arbash	Meinel)

mail_client=claws	 now	 supports	 –body	 (and	 message	 body
hooks).	Also	uses	configured	from	address.	(Barry	Warsaw)

https://bugs.launchpad.net/bugs/374735

Improvements
--development6-rich-root	can	now	stack.	(Modulo	some	smart-
server	 bugs	 with	 stacking	 and	 non	 default	 formats.)	 (John
Arbash	Meinel,	#373455)

--development6-rich-root	 delays	 generating	 a	 delta	 index	 for
the	first	object	inserted	into	a	group.	This	has	a	beneficial	impact
on	 bzr	 commit	 since	 each	 committed	 texts	 goes	 to	 its	 own
group.	 For	 committing	 a	 90MB	 file,	 it	 drops	 peak	 memory	 by
about	 200MB,	 and	 speeds	 up	 commit	 from	 7s	 =>	 4s.	 (John
Arbash	Meinel)

Numerous	operations	are	now	faster	for	huge	projects,	i.e.	those
with	a	large	number	of	files	and/or	a	large	number	of	revisions,
particularly	when	the	 latest	development	format	 is	used.	These
operations	(and	improvements	on	OpenOffice.org)	include:

branch	in	a	shared	repository	(2X	faster)
branch	–no-tree	(100X	faster)
diff	(2X	faster)
tags	(70X	faster)

(Ian	Clatworthy)

Pyrex	 version	 of	 bencode	 support.	 This	 provides	 optimized
support	 for	 both	 encoding	 and	 decoding,	 and	 is	 now	 found	 at
bzrlib.bencode.	 bzrlib.utils.bencode	 is	 now	 deprecated.
(Alexander	Belchenko,	Jelmer	Vernooij,	John	Arbash	Meinel)

Bug	Fixes
Bazaar	can	now	pass	attachment	 files	 to	 the	mutt	email	client.
(Edwin	Grubbs,	#384158)
Better	message	in	bzr	add	output	suggesting	using	bzr	ignored
to	see	which	files	can	also	be	added.	(Jason	Spashett,	#76616)
bzr	pull	-r	123	 from	a	 stacked	branch	on	 a	 smart	 server	 no
longer	 fails.	 Also,	 the	 Branch.revision_history()	 API	 now
works	in	the	same	situation.	(Andrew	Bennetts,	#380314)
bzr	 serve	 on	Windows	 no	 longer	 displays	 a	 traceback	 simply
because	a	TCP	client	disconnected.	(Andrew	Bennetts)
Clarify	the	rules	for	locking	and	fallback	repositories.	Fix	bugs	in
how	 RemoteRepository	 was	 handling	 fallbacks	 along	 with	 the
_real_repository.	 (Andrew	 Bennetts,	 John	 Arbash	 Meinel,
#375496)
Fix	 a	 small	 bug	 with	 fetching	 revisions	 w/	 ghosts	 into	 a	 new
stacked	branch.	Not	often	triggered,	because	it	required	ghosts
to	 be	 part	 of	 the	 fetched	 revisions,	 not	 in	 the	 stacked-on
ancestry.	(John	Arbash	Meinel)
Fix	 status	 and	 commit	 to	 work	 with	 content	 filtered	 trees,
addressing	 numerous	 bad	 bugs	 with	 line-ending	 support.	 (Ian
Clatworthy,	#362030)
Fix	problem	of	“directory	not	empty”	when	contending	for	a	lock
over	sftp.	(Martin	Pool,	#340352)
Fix	 rule	 handling	 so	 that	 eol	 is	 optional,	 not	 mandatory.	 (Ian
Clatworthy,	#379370)
Pushing	 a	 new	 stacked	 branch	 to	 a	 1.15	 smart	 server	 was
broken	 due	 to	 a	 bug	 in	 the	 BzrDirFormat.initialize_ex	 smart
verb.	This	 is	fixed	in	1.16,	but	required	changes	to	the	network
protocol,	 so	 the	 BzrDirFormat.initialize_ex	 verb	 has	 been
removed	 and	 replaced	 with	 a	 corrected
BzrDirFormat.initialize_ex_1.16	 verb.	 1.15	 clients	 will	 still

work	with	a	1.16	server	as	they	will	fallback	to	slower	(and	bug-
free)	 methods.	 (Jonathan	 Lange,	 Robert	 Collins,	 Andrew
Bennetts,	#385132)
Reconcile	 can	 now	 deal	 with	 text	 revisions	 that	 originated	 in
revisions	that	are	ghosts.	(Jelmer	Vernooij,	#336749)
Support	 cloning	 of	 branches	 with	 ghosts	 in	 the	 left	 hand	 side
history.	(Jelmer	Vernooij,	#248540)
The	‘’bzr	diff’’	now	catches	OSError	from	osutils.rmtree	and	logs
a	 helpful	 message	 to	 the	 trace	 file,	 unless	 the	 temp	 directory
really	was	removed	(which	would	be	very	strange).	Since	the	diff
operation	has	succeeded	from	the	user’s	perspective,	no	output
is	written	to	stderr	or	stdout.	(Maritza	Mendez,	#363837)
Translate	errors	 received	 from	a	smart	server	 in	 response	 to	a
BzrDirFormat.initialize	 or	 BzrDirFormat.initialize_ex

request.	This	was	causing	tracebacks	even	for	mundane	errors
like	PermissionDenied.	(Andrew	Bennetts,	#381329)

Documentation
Added	 directory	 structure	 and	 started	 translation	 of	 docs	 in
Russian.	 (Alexey	 Shtokalo,	 Alexander	 Iljin,	 Alexander
Belchenko,	Dmitry	Vasiliev,	Volodymyr	Kotulskyi)

API	Changes
Added	osutils.parent_directories().	(Ian	Clatworthy)
bzrlib.progress.ProgressBar,	 ChildProgress,	 DotsProgressBar,
TTYProgressBar	 and	 child_progress	 are	 now	 deprecated;	 use
ui_factory.nested_progress_bar	instead.	(Martin	Pool)
graph.StackedParentsProvider	 is	 now	 a	 public	 API,	 replacing
graph._StackedParentsProvider.	 The	 api	 is	 now	 considered
stable	and	ready	for	external	users.	(Gary	van	der	Merwe)
bzrlib.user_encoding	 is	 deprecated	 in	 favor	 of
get_user_encoding.	(Alexander	Belchenko)
TreeTransformBase	 no	 longer	 assumes	 that	 limbo	 is	 provided
via	 disk.	 DiskTreeTransform	 now	 provides	 disk	 functionality.
(Aaron	Bentley)

Internals
Remove	 weave.py	 script	 for	 accessing	 internals	 of	 old	 weave-
format	repositories.	(Martin	Pool)

Testing
make	 check	 no	 longer	 repeats	 the	 test	 run	 in	 LANG=C.	 (Martin
Pool,	#386180)
The	number	of	cores	 is	now	correctly	detected	on	OSX.	 (John
Szakmeister)
The	 number	 of	 cores	 is	 also	 detected	 on	 Solaris	 and	 win32.
(Vincent	Ladeuil)
The	 number	 of	 cores	 is	 also	 detected	 on	 FreeBSD.	 (Matthew
Fuller)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.15
1.15rc1: 2009-05-16
1.15: 2009-05-22
1.15.1: 2009-06-09

The	 smart	 server	 will	 no	 longer	 raise	 ‘NoSuchRevision’	 when
streaming	 content	 with	 a	 size	 mismatch	 in	 a	 reconstructed	 graph
search.	New	command	bzr	dpush.	Plugins	can	now	define	their	own
annotation	tie-breaker	when	two	revisions	introduce	the	exact	same
line.

Changes	from	1.15.1	to	1.15.2
Use	 zdll	 on	 Windows	 to	 build	 _chk_map_pyx	 extension.
(Alexander	Belchenko)

Changes	from	1.15final	to	1.15.1
Translate	errors	 received	 from	a	smart	server	 in	 response	 to	a
BzrDirFormat.initialize	 or	 BzrDirFormat.initialize_ex

request.	This	was	causing	tracebacks	even	for	mundane	errors
like	PermissionDenied.	(Andrew	Bennetts,	#381329)

Changes	from	1.15rc1	to	1.15final
No	changes

Compatibility	Breaks
bzr	 ls	 is	 no	 longer	 recursive	 by	 default.	 To	 recurse,	 use	 the
new	 -R	 option.	 The	 old	 --non-recursive	 option	 has	 been
removed.	 If	 you	 alias	 ls	 to	 ls	 -R,	 you	 can	 disable	 recursion
using	--no-recursive	instead.	(Ian	Clatworthy)

New	Features
New	 command	 bzr	 dpush	 that	 can	 push	 changes	 to	 foreign
branches	(svn,	git)	without	setting	custom	bzr-specific	metadata.
(Jelmer	Vernooij)
The	 new	 development	 format	 --development6-rich-root	 now
supports	 stacking.	We	chose	not	 to	 use	a	new	 format	marker,
since	old	clients	will	just	fail	to	open	stacked	branches,	the	same
as	if	we	used	a	new	format	flag.	(John	Arbash	Meinel,	#373455)
Plugins	 can	 now	define	 their	 own	 annotation	 tie-breaker	when
two	 revisions	 introduce	 the	 exact	 same	 line.	 See
bzrlib.annotate._break_annotation_tie	 Be	 aware	 though	 that
this	is	temporary,	private	(as	indicated	by	the	leading	‘_’)	and	a
first	step	to	address	the	problem.	(Vincent	Ladeuil,	#348459)
New	 command	 bzr	 dpush	 that	 can	 push	 changes	 to	 foreign
branches	(svn,	git)	without	setting	custom	bzr-specific	metadata.
(Jelmer	Vernooij)
bzr	send	will	now	check	the	child_submit_format	setting	 in	 the
submit	 branch	 to	 determine	 what	 format	 to	 use,	 if	 none	 was
specified	on	the	command-line.	(Jelmer	Vernooij)

Improvements
-Dhpss	output	 now	 includes	 the	number	 of	VFS	calls	made	 to
the	remote	server.	(Jonathan	Lange)
--coverage	 works	 for	 code	 running	 in	 threads	 too.	 (Andrew
Bennets,	Vincent	Ladeuil)
bzr	pull	now	has	a	--local	option	to	only	make	changes	to	the
local	branch,	and	not	 the	bound	master	branch.	 (Gary	van	der
Merwe,	#194716)
bzr	 rm	 *	 is	 now	 as	 fast	 as	 bzr	 rm	 *	 --keep.	 (Johan	Walles,
#180116)

Bug	Fixes
Adding	now	works	properly	when	path	contains	a	symbolic	link.
(Geoff	Bache,	#183831)
An	error	is	now	raised	for	unknown	eol	values.	(Brian	de	Alwis,
#358199)
bzr	 merge	 --weave	 will	 now	 generate	 a	 conflict	 if	 one	 side
deletes	a	line,	and	the	other	side	modifies	the	line.	(John	Arbash
Meinel,	#328171)
bzr	 reconfigure	 --standalone	 no	 longer	 raises
IncompatibleRepositories.	(Martin	von	Gagern,	#248932)
bzr	 send	 works	 to	 send	 emails	 again	 using	 MAPI.	 (Neil
Martinsen-Burrell,	#346998)
Check	 for	 missing	 parent	 inventories	 in	 StreamSink.	 This
prevents	 incomplete	 stacked	 branches	 being	 created	 by	 1.13
bzr://	and	bzr+ssh://	clients	(which	have	bug	#354036).	Instead,
the	 server	 now	 causes	 those	 clients	 to	 send	 the	 missing
records.	(Andrew	Bennetts)
Correctly	handle	http	 servers	proposing	multiple	authentication
schemes.	(Vincent	Ladeuil,	#366107)
End-Of-Line	 content	 filters	 are	 now	 loaded	 correctly.	 (Ian
Clatworthy,	Brian	de	Alwis,	#355280)
Fix	a	bug	in	the	pure-python	GroupCompress	code	when	handling
copies	longer	than	64KiB.	(John	Arbash	Meinel,	#364900)
Fix	 TypeError	 in	 running	 bzr	 break-lock	 on	 some	 URLs.
(Alexander	Belchenko,	Martin	Pool,	#365891)
Non-recursive	 bzr	 ls	 now	 works	 properly	 when	 a	 path	 is
specified.	(Jelmer	Vernooij,	#357863)
ssh	 usernames	 (defined	 in	 ~/.ssh/config)	 are	 honoured	 for
bzr+ssh	connections.	(Vincent	Ladeuil,	#367726)
Several	bugs	 related	 to	unicode	symlinks	have	been	 fixed	and
the	 test	 suite	 enhanced	 to	 better	 catch	 regressions	 for	 them.

(Vincent	Ladeuil)
The	 smart	 server	 will	 no	 longer	 raise	 ‘NoSuchRevision’	 when
streaming	content	with	a	size	mismatch	in	a	reconstructed	graph
search:	it	assumes	that	the	client	will	make	sure	it	is	happy	with
what	 it	 got,	 and	 this	 sort	 of	 mismatch	 is	 normal	 for	 stacked
environments.	bzr	1.13.0/1	will	stream	from	unstacked	branches
only	-	in	that	case	not	getting	all	the	content	expected	would	be
a	bug.	However	the	graph	search	is	how	we	figured	out	what	we
wanted,	so	a	mismatch	 is	both	odd	and	unrecoverable	without
starting	over,	and	starting	over	will	end	up	with	the	same	data	as
if	we	 just	permitted	 the	mismatch.	 If	 data	 is	gc’d,	doing	a	new
search	 will	 find	 only	 the	 truncated	 data,	 so	 sending	 only	 the
truncated	data	seems	reasonable.	bzr	versions	newer	than	this
will	stream	from	stacked	branches	and	check	the	stream	to	find
missing	content	 in	 the	stacked-on	branch,	and	 thus	will	handle
the	situation	implicitly.	(Robert	Collins,	#360791)
Upgrading	 to,	 or	 fetching	 into	 a	 ‘rich-root’	 format	 will	 now
correctly	 set	 the	 root	 data	 the	 same	 way	 that	 reconcile	 does.
(Robert	Collins,	#368921)
Using	unicode	Windows	API	to	obtain	command-line	arguments.
(Alexander	Belchenko,	#375934)

Documentation

API	Changes
InterPackRepo.fetch	and	RepoFetcher	now	raise	NoSuchRevision
instead	 of	 InstallFailed	when	 they	 detect	 a	missing	 revision.
InstallFailed	itself	has	been	deleted.	(Jonathan	Lange)
Not	passing	arguments	to	bzrlib.commands.main()	will	now	grab
the	 arguments	 from	 osutils.get_unicode_argv()	 which	 has
proper	support	for	unicode	arguments	on	windows.	Further,	the
supplied	 arguments	 are	 now	 required	 to	 be	 unicode	 strings,
rather	than	user_encoded	strings.	(Alexander	Belchenko)

Internals
bzrlib.branch.Branch.set_parent	 is	 now	 present	 on	 the	 base
branch	 class	 and	 will	 call	 _set_parent_location	 after	 doing
unicode	encoding.	(Robert	Collins)
bzrlib.remote.RemoteBranch._set_parent_location	 will	 use	 a
new	 verb	 Branch.set_parent_location	 removing	 further	 VFS
operations.	(Robert	Collins)
bzrlib.bzrdir.BzrDir._get_config	 now	 returns	 a
TransportConfig	 or	 similar	when	 the	 dir	 supports	 configuration
settings.	The	base	class	defaults	to	None.	There	is	a	matching
new	 server	 verb	 BzrDir.get-config_file	 to	 reduce	 roundtrips
for	getting	BzrDir	configuration.	(Robert	Collins)
bzrlib.tests.ExtendedTestResult	has	new	methods	startTests
called	 before	 the	 first	 test	 is	 started,	 done	 called	 after	 the	 last
test	completes,	and	a	new	parameter	strict.	(Robert	Collins)
-Dhpss	when	passed	to	bzr	will	cause	a	backtrace	to	be	printed
when	VFS	operations	are	started	on	a	smart	server	 repository.
This	should	not	occur	on	regular	push	and	pull	operations,	and
is	a	key	indicator	for	performance	regressions.	(Robert	Collins)
-Dlock	when	passed	 to	 the	selftest	 (e.g.	 bzr	-Dlock	selftest)
will	cause	mismatched	physical	locks	to	cause	test	errors	rather
than	just	reporting	to	the	screen.	(Robert	Collins)
-Dprogress	will	cause	pdb	 to	start	up	 if	a	progress	view	 jumps
backwards.	(Robert	Collins)
Fallback	 CredentialStore	 instances	 registered	 with
fallback=True	 are	 now	 be	 able	 to	 provide	 credentials	 if
obtaining	 credentials	 via	 ~/.bazaar/authentication.conf	 fails.
(Jelmer	Vernooij,	Vincent	Ladeuil,	#321918)
New	hook	Lock.lock_broken	which	runs	when	a	lock	is	broken.
This	is	mainly	for	testing	that	lock/unlock	are	balanced	in	tests.

(Vincent	Ladeuil)
New	MergeDirective	 hook	 ‘merge_request_body’	 allows	 hooks
to	supply	or	alter	a	body	for	the	message	produced	by	bzr	send.
New	smart	server	verb	BzrDir.initialize_ex	which	implements
a	 refactoring	 to	 the	 core	 of	 clone	 allowing	 less	 round	 trips	 on
new	branches.	(Robert	Collins)
New	 method	 Tags.rename_revisions	 that	 can	 rename	 revision
ids	tags	are	pointing	at.	(Jelmer	Vernooij)
Updated	the	bundled	ConfigObj	library	to	4.6.0	(Matt	Nordhoff)

Testing
bzr	 selftest	 will	 now	 fail	 if	 lock/unlock	 are	 not	 correctly
balanced	in	tests.	Using	-Dlock	will	turn	the	related	failures	into
warnings.	(Vincent	Ladeuil,	Robert	Collins)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.14
Codename: brisbane-core
1.14rc1: 2009-04-06
1.14rc2: 2009-04-19
1.14: 2009-04-28
1.14.1: 2009-05-01

New	 formats	1.14	and	1.14-rich-root	 supporting	End-Of-Line	 (EOL)
conversions,	 keyword	 templating	 (via	 the	 bzr-keywords	 plugin)	 and
generic	content	filtering.	End-of-line	conversion	is	now	supported	for
formats	supporting	content	filtering.

Changes	from	1.14final	to	1.14.1
Change	api_minimum_version	back	 to	api_minimum_version	=
(1,	13,	0)

Changes	from	1.14rc2	to	1.14final
Fix	a	bug	in	the	pure-python	GroupCompress	code	when	handling
copies	longer	than	64KiB.	(John	Arbash	Meinel,	#364900)

Changes	from	1.14rc1	to	1.14rc2
Fix	 for	 bug	 358037	 Revision	 not	 in
bzrlib.groupcompress.GroupCompressVersionedFiles	 (Brian	 de
Alwis,	John	A	Meinel)
Fix	 for	 bug	 354036	 ErrorFromSmartServer	 -
AbsentContentFactory	 object	 has	 no	 attribute	 ‘get_bytes_as’
exception	 while	 pulling	 from	 Launchpad	 (Jean-Francois	 Roy,
Andrew	Bennetts,	Robert	Collins)
Fix	for	bug	355280	eol	content	filters	are	never	loaded	and	thus
never	applied	(Brian	de	Alwis,	Ian	Clatworthy)
bzr.dev	 -r4280	 Change	 _fetch_uses_deltas	 =	 False	 for	 CHK
repos	 until	 we	 can	 write	 a	 better	 fix.	 (John	 Arbash	 Meinel,
Robert	Collins)
Fix	 for	 bug	 361574	 uncommit	 recommends	 undefined	 –levels
and	-n	options	(Marius	Kruger,	Ian	Clatworthy)
bzr.dev	 r4289	 as	 cherrypicked	 at	 lp:~spiv/bzr/stacking-
cherrypick-1.14	(Andrew	Bennetts,	Robert	Collins)

Compatibility	Breaks
A	 previously	 disabled	 code	 path	 to	 accelerate	 getting
configuration	settings	from	a	smart	server	has	been	reinstated.
We	 think	 this	may	 cause	 a	 incompatibility	 with	 servers	 older
than	bzr	0.15.	We	intend	to	issue	a	point	release	to	address	this
if	it	turns	out	to	be	a	problem.	(Robert	Collins,	Andrew	Bennetts)
bzr	 no	 longer	 autodetects	 nested	 trees	 as	 ‘tree-references’.
They	 must	 now	 be	 explicitly	 added	 tree	 references.	 At	 the
commandline,	 use	 join	 –reference	 instead	 of	 add.	 (Aaron
Bentley)
The	 --long	 log	 format	 (the	 default)	 no	 longer	 shows	 merged
revisions	implicitly,	making	it	consistent	with	the	short	and	line
log	 formats.	To	 see	merged	 revisions	 for	 just	 a	 given	 revision,
use	 bzr	 log	 -n0	 -rX.	 To	 see	 every	merged	 revision,	 use	 bzr
log	-n0.	(Ian	Clatworthy)

New	Features
New	 formats	 1.14	 and	 1.14-rich-root	 supporting	 End-Of-Line
(EOL)	 conversions,	 keyword	 templating	 (via	 the	 bzr-keywords
plugin)	and	generic	content	 filtering.	These	formats	replace	the
experimental	 development-wt5	 and	 development-wt5-rich-root
formats	 respectively,	 but	 have	 support	 for	 filtered	 views
disabled.	(Ian	Clatworthy)
New	 mv	 --auto	 option	 recognizes	 renames	 after	 they	 occur.
(Aaron	Bentley)
bzr	 can	 now	 get	 passwords	 from	 stdin	 without	 requiring	 a
controlling	terminal	(i.e.	by	redirecting	stdin).	(Vincent	Ladeuil)
bzr	 log	 now	 supports	 filtering	 of	 multiple	 files	 and	 directories
and	 will	 show	 changes	 that	 touch	 any	 of	 them.	 Furthermore,
directory	filtering	now	shows	the	changes	to	any	children	of	that
directory,	 not	 just	 the	 directory	 object	 itself.	 (Ian	 Clatworthy,
#97715)
bzr	shelve	can	now	apply	changes	without	storing	anything	on
the	shelf,	via	the	new	–destroy	option.	(Aaron	Bentley)
bzr	send	now	accepts	–body	to	specify	an	initial	message	body.
(Aaron	bentley)
bzr	xxx	--usage	where	xxx	is	a	command	now	shows	a	usage
message	and	 the	options	without	 the	descriptive	help	 sections
(like	 Description	 and	 Examples).	 A	 message	 is	 also	 given
explaining	how	to	see	the	complete	help,	i.e.	bzr	help	xxx.	(Ian
Clatworthy)
Content	 filters	 can	now	be	used	 to	provide	custom	conversion
between	the	canonical	format	of	content	(i.e.	as	stored)	and	the
convenience	format	of	content	(i.e.	as	created	in	working	trees).
See	 bzr	 help	 content-filters	 for	 further	 details.	 (Ian
Clatworthy,	Alexander	Belchenko)
End-of-line	conversion	 is	now	supported	for	 formats	supporting

content	filtering.	See	bzr	help	eol	for	details.	(Ian	Clatworthy)
Newly-blessed	 join	 command	 allows	 combining	 two	 trees	 into
one.	(Aaron	Bentley)

Improvements
A	 new	 format	 name	 alias	 default-rich-root	 has	 been	 added
and	 points	 at	 the	 closest	 relative	 of	 the	 default	 format	 that
supports	rich	roots.	(Jelmer	Vernooij,	#338061)
Branching	from	a	stacked	branch	using	bzr*://	will	now	stream
the	 data	when	 the	 target	 repository	 does	 not	 need	 topological
ordering,	reducing	round	trips	and	network	overhead.	This	uses
the	existing	smart	server	methods	added	in	1.13,	so	will	work	on
any	1.13	or	newer	server.	(Robert	Collins,	Andrew	Bennetts)
bzr	cat	and	 bzr	export	now	supports	a	 --filters	option	 that
displays/saves	the	content	after	content	 filters	are	applied.	(Ian
Clatworthy)
bzr	 ignore	 gives	 a	 more	 informative	 message	 when	 existing
version	 controlled	 files	 match	 the	 ignore	 pattern.	 (Neil
Martinsen-Burrell,	#248895)
bzr	log	now	has	 --include-merges	as	an	alias	 for	 --levels	0.
(Ian	Clatworthy)
bzr	 send	 is	 faster	 on	 repositories	 with	 deep	 histories.	 (Ian
Clatworthy)
IPv6	literals	are	accepted	in	URLs.	(stlman,	Martin	Pool,	Jelmer
Vernooij,	#165014)
Progress	 bars	 now	 show	 the	 rate	 of	 network	 activity	 for
bzr+ssh://	and	bzr://	connections.	(Andrew	Bennetts)
Prompt	 for	 user	 names	 if	 they	 are	 not	 in	 the	 configuration.
(Jelmer	Vernooij,	#256612)
Pushing	 to	 a	 stacked	 pack-format	 branch	 on	 a	 1.12	 or	 older
smart	 server	 now	 takes	 many	 less	 round	 trips.	 (Andrew
Bennetts,	Robert	Collins,	#294479)
Streaming	push	can	be	done	to	older	repository	formats.	This	is
implemented	 using	 a	 new	 Repository.insert_stream_locked

RPC.	(Andrew	Bennetts,	Robert	Collins)

The	 “ignoring	 files	 outside	 view:	 ..”	 message	 has	 been	 re-
worded	 to	 “Ignoring	 files	 outside	 view.	 View	 is	 ..”	 to	 reduce
confusion	about	what	was	being	considered	and	what	was	being
ignored.	(Ian	Clatworthy)
The	 long	 log	 formatter	 now	 shows	 [merge]	 indicators.	 If	 only
one	 level	 of	 revisions	 is	 displayed	 and	merges	 are	 found,	 the
long	and	short	 log	formatters	now	tell	 the	user	how	to	see	the
hidden	merged	revisions.	(Ian	Clatworthy)
The	 brisbane-core	 project	 has	 delivered	 its	 beta	 format
development6-rich-root.	 This	 format	 is	 suitable	 for	 judicious
testing	by	early	adopters.	 In	particular	 if	you	are	benchmarking
bzr	performance	please	be	sure	to	test	using	this	format.	At	this
stage	 more	 information	 is	 best	 obtained	 by	 contacting	 the
Bazaar	mailing	list	or	IRC	channel	if	you	are	interested	in	using
this	 format.	 We	 will	 make	 end	 user	 documentation	 available
closer	 to	 blessing	 the	 format	 as	 production	 ready.	 (Robert
Collins,	 John	 Arbash	 Meinel,	 Ian	 Clatworthy,	 Vincent	 Ladeuil,
Andrew	Bennetts,	Martin	Pool)
Tildes	are	no	longer	escaped.	No	more	%7Euser/project/branch!
(Jonathan	Lange)

Bug	Fixes
Pushing	 a	 new	 stacked	 branch	 will	 also	 push	 the	 parent
inventories	 for	 revisions	 at	 the	 stacking	 boundary.	 This	 makes
sure	 that	 the	 stacked	 branch	 has	 enough	 data	 to	 calculate
inventory	 deltas	 for	 all	 of	 its	 revisions	 (without	 requiring	 the
fallback	branch).	This	avoids	“‘AbsentContentFactory’	object	has
no	 attribute	 ‘get_bytes_as’”	 errors	 when	 fetching	 the	 stacked
branch	 from	 a	 1.13	 (or	 later)	 smart	 server.	 This	 partially	 fixes
#354036.	(Andrew	Bennetts,	Robert	Collins)
End-Of-Line	 content	 filters	 are	 now	 loaded	 correctly.	 (Ian
Clatworthy,	Brian	de	Alwis,	#355280)
Authentication	plugins	now	receive	all	 the	parameters	 from	 the
request	 itself	 (aka	host,	port,	 realm,	path,	etc).	Previously,	only
the	 authentication	 section	 name,	 username	 and	 encoded
password	were	provided.	(Jean-Francois	Roy)
bzr	gives	a	better	message	if	an	invalid	regexp	is	passed	to	bzr
log	-m.	(Anne	Mohsen,	Martin	Pool)
bzr	split	now	says	“See	also:	join”	(Aaron	Bentley,	#335015)
bzr	 version-info	 now	 works	 in	 empty	 branches.	 (Jelmer
Vernooij,	#313028)
Fix	“is	not	a	stackable	format”	error	when	pushing	a	stackable-
format	 branch	 with	 an	 unstackable-format	 repository	 to	 a
destination	with	a	default	stacking	policy.	(Andrew	Bennetts)
Fixed	 incorrect	 “Source	 format	 does	 not	 support	 stacking”
warning	 when	 pushing	 to	 a	 smart	 server.	 (Andrew	 Bennetts,
#334114)
Fix	 ‘make	 check-dist-tarball’	 failure	 by	 converting	 paths	 to
unicode	when	needed.	(Vincent	Ladeuil,	#355454)
Fixed	“Specified	file	‘x/y/z’	is	outside	current	view:	”	occurring	on
bzr	 add	 x/y/z	 in	 formats	 supporting	 views	 when	 no	 view	 is
defined.	(Ian	Clatworthy,	#344708)

It	 is	no	 longer	possible	 to	 fetch	between	 repositories	while	 the
target	 repository	 is	 in	 a	 write	 group.	 This	 prevents	 race
conditions	 that	prevent	 the	use	of	RPC’s	 to	perform	 fetch,	and
thus	allows	optimising	more	operations.	(Robert	Collins,	Andrew
Bennetts)
merge	--force	works	again.	(Robert	Collins,	#342105)
No	more	warnings	are	issued	about	sha	being	deprecated	under
python-2.6.	(Vincent	Ladeuil,	#346593)
Pushing	a	new	branch	to	a	server	that	has	a	stacking	policy	will
now	 upgrade	 from	 the	 local	 branch	 format	 when	 the	 stacking
policy	points	at	a	branch	which	 is	 itself	stackable,	because	we
know	the	client	can	read	both	branches,	we	know	that	the	trunk
for	 the	 project	 can	 be	 read	 too,	 so	 the	 upgrade	 will	 not
inconvenience	users.	(Robert	Collins,	#345169)
Pushing	 a	 new	 stacked	 branch	 will	 also	 push	 the	 parent
inventories	 for	 revisions	 at	 the	 stacking	 boundary.	 This	 makes
sure	 that	 the	 stacked	 branch	 has	 enough	 data	 to	 calculate
inventory	 deltas	 for	 all	 of	 its	 revisions	 (without	 requiring	 the
fallback	branch).	This	avoids	“‘AbsentContentFactory’	object	has
no	 attribute	 ‘get_bytes_as’”	 errors	 when	 fetching	 the	 stacked
branch	 from	 a	 1.13	 (or	 later)	 smart	 server.	 This	 partially	 fixes
#354036.	(Andrew	Bennetts,	Robert	Collins)
The	 full	 test	 suite	 is	 passing	 again	 on	 OSX.	 Several	 minor
issues	 (mostly	 test	 related)	 have	 been	 fixed.	 (Vincent	 Ladeuil,
#355273).
The	GNU	Changelog	 formatter	 is	slightly	 improved	 in	 the	case
where	 the	 delta	 is	 empty,	 and	 now	 correctly	 claims	 not	 to
support	tags.	(Andrea	Bolognani)
Shelve	 can	 now	 shelve	 changes	 to	 a	 symlink	 target.	 (James
Westby,	#341558)
The	 help	 for	 the	 info	 command	 has	 been	 corrected.	 (Ian
Clatworthy,	#351931)
Upgrade	 will	 now	 use	 a	 sensible	 default	 format	 if	 the	 source
repository	uses	rich	roots.	(Jelmer	Vernooij,	#252908)

Documentation
Expanded	 the	 index	 of	 the	 developer	 documentation.	 (Eric
Siegerman)
New	topic	bzr	help	debug-flags.	(Martin	Pool)
The	 generated	 manpage	 now	 explicitly	 lists	 aliases	 as
commands.	(James	Westby,	#336998)

API	Changes
APIs	 deprecated	 in	 1.6	 and	 previous	 versions	 of	 bzr	 are	 now
removed.	(Martin	Pool)
CommitReporter	is	no	longer	called	with	unchanged	status	during
commit	 -	 this	 was	 a	 full-tree	 overhead	 that	 bzr	 no	 longer
performs.	(Robert	Collins)
New	 abstract	 UIFactory	 method	 get_username	 which	 will	 be
called	to	obtain	the	username	to	use	when	connecting	to	remote
machines.	(Jelmer	Vernooij)
New	API	Inventory.filter()	added	that	filters	an	inventory	by	a
set	 of	 file-ids	 so	 that	 only	 those	 fileids,	 their	 parents	 and	 their
children	are	included.	(Ian	Clatworthy)
New	sort	order	for	get_record_stream	groupcompress	which	sorts
optimally	 for	 use	 with	 groupcompress	 compressors.	 (John
Arbash	Meinel,	Robert	Collins)
Repository	 APIs	 get_deltas_for_revisions()	 and
get_revision_delta()	 now	 support	 an	 optional
specific_fileids	parameter.	 If	provided,	 the	deltas	are	 filtered
so	 that	 only	 those	 file-ids,	 their	 parents	 and	 their	 children	 are
included.	(Ian	Clatworthy)
The	 get_credentials	 and	 set_credentials	 methods	 of
AuthenticationConfig	now	accept	an	optional	 realm	argument.
(Jean-Francois	Roy)
The	pb	argument	to	fetch()	is	deprecated.	(Martin	Pool)
The	 Serializer	 class	and	 the	 serializer	 format	 registry	 have
moved	 from	 bzrlib.xml_serializer	 to	 bzrlib.serializer.
(Jelmer	Vernooij)
The	smart	server	jail	now	hooks	into	BzrDir.open	to	prevent	any
BzrDir	 that	 is	 not	 inside	 the	 backing	 transport	 from	 being
opened.	 See	 the	 module	 documentation	 for

bzrlib.smart.request	 for	 details.	 (Andrew	 Bennetts,	 Robert
Collins)
Tree.get_symlink_target	 now	 always	 returns	 a	 unicode	 string
result	or	None.	Previously	it	would	return	the	bytes	from	reading
the	 link	 which	 could	 be	 in	 any	 arbitrary	 encoding.	 (Robert
Collins)

Testing
bzrlib.tests.TestCase	 now	 fails	 the	 test	 if	 its	 own	 setUp	 and
tearDown	weren’t	called.	This	catches	 faulty	 tests	 that	 forget	 to
upcall	when	 overriding	 setUp	 and	 tearDown.	 Those	 faulty	 tests
were	not	properly	isolated.	(Andrew	Bennetts,	Robert	Collins)
Fix	 test_msgeditor.MsgEditorTest	 test	 isolation.	 (Vincent
Ladeuil,	#347130)
medusa	is	not	used	anymore	as	an	FTP	test	server	starting	with
python2.6.	 A	 new	 FTP	 test	 server	 based	 on	 pyftplib	 can	 be
used	instead.	This	new	server	is	a	soft	dependency	as	medusa
which	 is	 still	 preferred	 if	 both	 are	 available	 (modulo	 python
version).	(Vincent	Ladeuil)

Internals
Added	 chk_map	 for	 fast,	 trie-based	 storage	 of	 tuple	 to	 string
maps.	(Robert	Collins,	John	Arbash	Meinel,	Vincent	Ladeuil)
Added	 bzrlib.chk_map	 for	 fast,	 trie-based	 storage	 of	 tuple	 to
string	 maps.	 (Robert	 Collins,	 John	 Arbash	 Meinel,	 Vincent
Ladeuil)
Added	 bzrlib.inventory_delta	 module.	 This	 will	 be	 used	 for
serializing	 and	 deserializing	 inventory	 deltas	 for	 more	 efficient
streaming	on	the	network.	(Robert	Collins,	Andrew	Bennetts)
Branch._get_config	has	been	added,	which	splits	out	access	to
the	 specific	 config	 file	 from	 the	 branch.	 This	 is	 used	 to	 let
RemoteBranch	avoid	constructing	real	branch	objects	to	access
configuration	settings.	(Robert	Collins,	Andrew	Bennetts)
Branch	 now	 implements	 set_stacked_on_url	 in	 the	 base	 class
as	 the	 implementation	 is	 generic	 and	 should	 impact	 foreign
formats.	 This	 helps	 performance	 for	 RemoteBranch	 push
operations	 to	 new	 stacked	 branches.	 (Robert	 Collins,	 Andrew
Bennetts)
BtreeIndex._spill_mem_keys_to_disk()	 now	 generates	 disk
index	 with	 optmizations	 turned	 off.	 This	 only	 has	 effect	 when
processing	 >	 100,000	 keys	 during	 something	 like	 bzr	 pack.
(John	Arbash	Meinel)
bzr	 selftest	 now	 accepts	 --subunit	 to	 run	 in	 subunit	 output
mode.	Requires	 lp:subunit	 installed	 to	work,	but	 is	not	a	hard
dependency.	(Robert	Collins)
BzrDir.open_branch	 now	 takes	 an	 optional	 ignore_fallbacks
parameter	for	controlling	opening	of	stacked	branches.	(Andrew
Bennetts,	Robert	Collins)
CommitBuilder	 has	 a	 new	method,	 record_iter_changes	 which
works	 in	 terms	 of	 an	 iter_changes	 iterator	 rather	 than	 full	 tree

scanning.	(Robert	Collins)
DirState	 can	 now	 be	 passed	 a	 custom	 SHA1Provider	 object
enabling	 it	 to	 store	 the	 SHA1	 and	 stat	 of	 the	 canonical	 (post
content	filtered)	form.	(Ian	Clatworthy)
New	 assertLength	method	based	on	one	Martin	has	squirreled
away	somewhere.	(Robert	Collins,	Martin	Pool)
New	 hook	 BzrDir.pre_open	 which	 runs	 before	 opening	 BzrDir
objects,	 allowing	 better	 enforcement	 of	 the	 smart	 server	 jail
when	 dealing	 with	 stacked	 branches.	 (Robert	 Collins,	 Andrew
Bennetts)
New	 hook	 RioVersionInfoBuilder.revision,	 allowing	 extra
entries	to	be	added	to	the	stanza	that	is	printed	for	a	particular
revision.	(Jelmer	Vernooij)
New	repository	method	refresh_data	to	cause	any	repository	to
make	visible	data	inserted	into	the	repository	by	a	smart	server
fetch	operation.	(Robert	Collins,	Andrew	Bennetts)
register_filter_stack_map	 now	 takes	 an	 optional	 fallback
parameter,	a	callable	to	invoke	if	a	preference	has	a	value	not	in
the	map	of	filter	stacks.	This	enhancement	allows,	for	example,
bzr-svn	 to	 handle	 existing	 svn	 properties	 that	 define	 a	 list	 of
keywords	to	be	expanded.	(Ian	Clatworthy)
RemoteBranchConfig	 will	 use	 a	 new	 verb
Branch.set_config_option	 to	 write	 config	 settings	 to	 smart
servers	 that	 support	 this,	 saving	 5	 round	 trips	 on	 the	 stacked
streaming	acceptance	test.	(Robert	Collins,	Andrew	Bennetts)
RemoteBranch	 now	 provides	 _get_config	 for	 access	 to	 just	 the
branch	specific	configuration	from	a	remote	server,	which	uses
the	already	existing	Branch.get_config_file	smart	verb.	(Robert
Collins,	Andrew	Bennetts)
RemoteRepository	 will	 now	 negatively	 cache	 missing	 revisions
during	 get_parent_map	 while	 read-locked.	 Write-locks	 are
unaffected.	(Robert	Collins,	Andrew	Bennetts)
Removed	 InterRemoteToOther,	 InterOtherToRemote	 and

InterPackToRemotePack	 classes,	 as	 they	 are	 now	 unnecessary.
(Andrew	Bennetts)
RepositoryFormat	 as	 a	 new	 attribute	 fast_deltas	 to	 indicate
whether	 the	 repository	 can	 efficiently	 generate	 deltas	 between
trees	regardless	of	tree	size.	(Robert	Collins)
Repository.iter_files_bytes()	 now	 properly	 returns	 an
“iterable	 of	 byte	 strings”	 (aka	 ‘chunked’)	 for	 the	 content.	 It
previously	 was	 returning	 a	 plain	 string,	 which	 worked,	 but
performed	 very	 poorly	 when	 building	 a	 working	 tree
(file.writelines(str)	 is	 very	 inefficient).	 This	 can	 have	 a	 large
effect	on	bzr	checkout	times.	(John	Arbash	Meinel)
selftest	now	supports	a	–parallel	option,	with	values	of	 ‘fork’	or
‘subprocess’	to	run	the	test	suite	in	parallel.	Currently	only	linux
machine	work,	other	platforms	need	patches	submitted.	(Robert
Collins,	Vincent	Ladeuil)
tests.run_suite	has	a	new	parameter	 suite_decorators,	a	 list
of	 callables	 to	 use	 to	 decorate	 the	 test	 suite.	Such	decorators
can	 add	 or	 remove	 tests,	 or	 even	 remote	 the	 test	 suite	 to
another	machine	if	desired.	(Robert	Collins)
The	 smart	 server	 verb	 Repository.get_parent_map	 can	 now
include	 information	 about	 ghosts	 when	 the	 special	 revision
include-missing:	is	in	the	requested	parents	map	list.	With	this
flag,	 ghosts	 are	 included	 as	 missing:REVISION_ID.	 (Robert
Collins,	Andrew	Bennetts)
_walk_to_common_revisions	 will	 now	 batch	 up	 at	 least	 50
revisions	before	calling	get_parent_map	on	the	target,	regardless
of	InterRepository.	(Andrew	Bennetts,	Robert	Collins)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.13
Codename: paraskavedekatriaphobia
1.13: 2009-03-14
1.13rc1: 2009-03-10
1.13.1: 2009-03-23
1.13.2: 2009-04-27

GNU	 Changelog	 output	 can	 now	 be	 produced	 by	 bzr	 log	 --gnu-
changelog.	Debug	 flags	 can	 now	 be	 set	 in	 ~/.bazaar/bazaar.conf.
Lightweight	 checkouts	and	stacked	branches	should	both	be	much
faster	over	remote	connections.

Changes	From	1.13.1	to	1.13.2
A	regression	was	found	in	the	1.13.1	release.	When	bzr	1.13.1	and
earlier	push	a	stacked	branch	they	do	not	 take	care	to	push	all	 the
parent	 inventories	 for	 the	 transferred	 revisions.	 This	means	 that	 a
smart	 server	 serving	 that	 branch	 often	 cannot	 calculate	 inventory
deltas	 for	 the	branch	 (because	 smart	 server	 does	not/cannot	 open
fallback	repositories).	Prior	to	1.13	the	server	did	not	have	a	verb	to
stream	 revisions	 out	 of	 a	 repository,	 so	 that’s	 why	 this	 bug	 has
appeared	now.

Bug	Fixes
Fix	 for	 bug	 354036	 ErrorFromSmartServer	 -
AbsentContentFactory	 object	 has	 no	 attribute	 ‘get_bytes_as’
exception	 while	 pulling	 from	 Launchpad	 (Jean-Francois	 Roy,
Andrew	Bennetts,	Robert	Collins)

Changes	From	1.13final	to	1.13.1
A	 couple	 regessions	 where	 found	 in	 the	 1.13	 release.	 The	 pyrex-
generated	C	 extensions	 are	missing	 from	 the	 .tar.gz	 and	 .zip	 files.
Documentation	on	how	to	generate	GNU	ChangeLogs	is	wrong.

Bug	Fixes
Change	 ./bzr‘s	 _script_version	 to	 match	 ./bzrlib/__init__.py
version_info.	(Bob	Tanner,	Martin	Pool,	#345232)
Distribution	 archives	 for	 1.13	 do	 not	 contain	 generated	 C
extension	modules	(Jean-Francois	Roy,	Bob	Tanner,	#344465)
GNU	 ChangeLog	 output	 can	 now	 be	 produced	 by	 bzr	 log	 –
format	 gnu-changelog	 is	 incorrect	 (Deejay,	Bob	Tanner,	Martin
Pool,	Robert	Collins,	#343928)
merge	--force	works	again.	(Robert	Collins,	#342105)

Changes	From	1.13rc1	to	1.13final
Fix	“is	not	a	stackable	format”	error	when	pushing	a	stackable-
format	 branch	 with	 an	 unstackable-format	 repository	 to	 a
destination	with	a	default	stacking	policy.	(Andrew	Bennetts)
Progress	 bars	 now	 show	 the	 rate	 of	 network	 activity	 for
bzr+ssh://	and	bzr://	connections.	(Andrew	Bennetts)

Compatibility	Breaks
bzr	log	--line	now	indicates	which	revisions	are	merges	with
[merge]	 after	 the	 date.	 Scripts	 which	 parse	 the	 output	 of	 this
command	may	need	to	be	adjusted.	(Neil	Martinsen-Burrell)

New	Features
bzr	 reconfigure	 now	 supports	 –with-trees	 and	 –with-no-trees
options	 to	 change	 the	 default	 tree-creation	 policy	 of	 shared
repositories.	(Matthew	Fuller,	Marius	Kruger,	#145033)
Debug	 flags	can	now	be	set	 in	 ~/.bazaar/bazaar.conf.	 (Martin
Pool)
Filtered	 views	provide	a	mask	over	 the	 tree	 so	 that	 users	 can
focus	on	a	subset	of	a	tree	when	doing	their	work.	See	Filtered
views	 in	 chapter	 7	 of	 the	 User	 Guide	 and	 bzr	 help	 view	 for
details.	(Ian	Clatworthy)
GNU	Changelog	 output	 can	 now	 be	 produced	 by	 bzr	 log	 --
gnu-changelog.	(Andrea	Bolognani,	Martin	Pool)
The	 -Dmemory	 flag	now	gives	memory	 information	on	Windows.
(John	Arbash	Meinel)
Multiple	authors	for	a	commit	can	now	be	recorded	by	using	the
“–author”	option	multiple	times.	(James	Westby,	#185772)
New	clean-tree	command,	from	bzrtools.	(Aaron	Bentley,	Jelmer
Vernooij)
New	 command	 bzr	 launchpad-open	 opens	 a	 Launchpad	 web
page	for	that	branch	in	your	web	browser,	as	long	as	the	branch
is	on	Launchpad	at	all.	(Jonathan	Lange)
New	 API	 for	 getting	 bugs	 fixed	 by	 a	 revision:
Revision.iter_bugs().	(Jonathan	Lange)

Improvements
All	 bzr	 Hooks	 classes	 are	 now	 registered	 in
bzrlib.hooks.known_hooks.	This	 removes	 the	separate	 list	 from
bzrlib.tests	 and	 ensures	 that	 all	 hooks	 registered	 there	 are
correctly	isolated	by	the	test	suite	(previously	MutableTreeHooks
were	 not	 being	 isolated	 correctly).	 Further,	 documentation	 for
hooks	 is	 now	 dynamically	 generated	 from	 the	 present
HookPoints.	 bzr	 hooks	 will	 now	 also	 report	 on	 all	 the	 hooks
present	 in	 the	 bzrlib.hooks.known_hooks	 registry.	 (Robert
Collins)
bzr	add	no	longer	prints	add	completed	on	success.	Failure	still
prints	an	error	message.	(Robert	Collins)
bzr	 branch	 now	 has	 a	 --no-tree	 option	 which	 turns	 off	 the
generation	of	a	working	tree	in	the	new	branch.	(Daniel	Watkins,
John	Klinger,	#273993)
Bazaar	will	now	point	out	bzr+ssh://	to	the	user	when	they	use
ssh://.	(Jelmer	Vernooij,	#330535)
bzr	 -v	 info	 now	 omits	 the	 number	 of	 committers	 branch
statistic,	 making	 it	 many	 times	 faster	 for	 large	 projects.	 To
include	 that	 statistic	 in	 the	 output,	 use	 bzr	 -vv	 info.	 (Ian
Clatworthy)
bzr	push	to	a	bzr	url	(bzr://,	bzr+ssh://	etc)	will	stream	if	 the
server	 is	 version	 1.13	 or	 greater,	 reducing	 roundtrips
significantly.	(Andrew	Bennetts,	Robert	Collins)
Lightweight	 Checkouts	 and	 Stacked	 Branches	 should	 both	 be
much	faster	over	remote	connections.	Building	the	working	tree
now	batches	up	requests	into	approx	5MB	requests,	rather	than
a	separate	request	for	each	file.	(John	Arbash	Meinel)
Support	 for	 GSSAPI	 authentication	 when	 using	 HTTP	 or
HTTPS.	(Jelmer	Vernooij)

ssh://

The	bzr	shelve	prompt	now	includes	a	‘?’	help	option	to	explain
the	short	options	better.	(Daniel	Watkins,	#327429)
bzr	lp-open	now	falls	back	to	the	push	location	if	it	cannot	find	a
public	location.	(Jonathan	Lange,	#332372)
bzr	lp-open	will	 try	 to	 find	 the	Launchpad	URL	for	 the	 location
passed	on	 the	command	 line.	This	makes	 bzr	lp-open	 lp:foo
work	as	expected.	(Jonathan	Lange,	#332705)
bzr	send	now	supports	MH-E	via	emacsclient.	(Eric	Gillespie)

Bug	Fixes
Allows	bzr	log	<FILE>	 to	be	called	 in	an	empty	branch	without
backtracing.	(Vincent	Ladeuil,	#346431)
Bazaar	now	gives	a	better	message	including	the	filename	if	it’s
unable	 to	 read	 a	 file	 in	 the	 working	 directory,	 for	 example
because	of	a	permission	error.	(Martin	Pool,	#338653)
bzr	 cat	 -r<old>	 <path>	 doesn’t	 traceback	 anymore	 when
<path>	has	a	file	id	in	the	working	tree	different	from	the	one	in
revision	<old>.	(Vincent	Ladeuil,	#341517,	#253806)
bzr	 send	 help	 is	 more	 specific	 about	 how	 to	 apply	 merge
directives.	(Neil	Martinsen-Burrell,	#253470)
bzr	missing	now	uses	 Repository.get_revision_delta()	 rather
than	 fetching	 trees	 and	 determining	 a	 delta	 itself.	 (Jelmer
Vernooij,	#315048)
bzr	 push	 to	 a	 smart	 server	 no	 longer	 causes	 “Revision
{set([(‘null:’,)])}	 not	 present	 ...”	 errors	 when	 the	 branch	 has
multiple	root	revisions.	(Andrew	Bennetts,	#317654)
bzr	 shelve	 now	 properly	 handle	 patches	 with	 no	 terminating
newline.	(Benoît	PIERRE,	#303569)
bzr	 unshelve	 gives	 a	 more	 palatable	 error	 if	 passed	 a	 non-
integer	shelf	id.	(Daniel	Watkins)
Export	now	handles	files	that	are	not	present	in	the	tree.	(James
Westby,	#174539)
Fixed	 incorrect	 “Source	 format	 does	 not	 support	 stacking”
warning	 when	 pushing	 to	 a	 smart	 server.	 (Andrew	 Bennetts,
#334114)
Fixed	 “sprout()	 got	 an	 unexpected	 keyword	 argument
‘source_branch’”	 error	 branching	 from	 old	 repositories.	 (Martin
Pool,	#321695)
Make	bzr	push	--quiet	<non-local	location>	less	chatty.	(Kent
Gibson,	#221461)

Many	Branch	hooks	would	not	 fire	with	 bzr://	and	 bzr+ssh://
branches,	and	this	was	not	noticed	due	to	a	bug	in	the	test	logic
for	 branches.	 This	 is	 now	 fixed	 and	 a	 test	 added	 to	 prevent	 it
reoccuring.	(Robert	Collins,	Andrew	Bennetts)
Restore	 the	 progress	 bar	 on	 Windows.	 We	 were	 disabling	 it
when	 TERM	 wasn’t	 set,	 but	 Windows	 doesn’t	 set	 TERM.
(Alexander	Belchenko,	#334808)
setup.py	build_ext	now	gives	a	proper	error	when	an	extension
fails	to	build.	(John	Arbash	Meinel)
Symlinks	 to	 non	 ascii	 file	 names	 are	 now	 supported.	 (Robert
Collins,	Vincent	Ladeuil,	#339055,	#272444)
Under	rare	circumstances	(aka	nobody	reported	a	bug	about	it),
the	 ftp	 transport	 could	 revert	 to	 ascii	 mode.	 It	 now	 stays	 in
binary	mode	except	when	needed.	(Vincent	Ladeuil)
Unshelve	 does	 not	 generate	 warnings	 about	 progress	 bars.
(Aaron	Bentley,	#328148)
shelve	cleans	up	properly	when	unversioned	files	are	specified.
(Benoît	Pierre,	Aaron	Bentley)

Documentation
Added	 Organizing	 your	 workspace	 to	 the	 User	 Guide
appendices,	 summarizing	 some	 common	 ways	 of	 organizing
trees,	 branches	 and	 repositories	 and	 the	 processes/workflows
implied/enabled	by	each.	(Ian	Clatworthy)
Hooks	 can	 now	 be	 self	 documenting.
bzrlib.hooks.Hooks.create_hook	 is	 the	 entry	 point	 for	 this
feature.	(Robert	Collins)
The	documentation	for	shelve	and	unshelve	has	been	clarified.
(Daniel	Watkins,	#327421,	#327425)

API	Changes
bzr	 selftest	 now	 fails	 if	 the	 bazaar	 sources	 contain	 trailing
whitespace,	non-unix	style	line	endings	and	files	not	ending	in	a
newline.	About	372	files	and	3243	lines	with	trailing	whitespace
was	 updated	 to	 comply	 with	 this.	 The	 code	 already	 complied
with	the	other	criteria,	but	now	it	is	enforced.	(Marius	Kruger)
bzrlib.branch.PushResult	 was	 renamed	 to
bzrlib.branch.BranchPushResult.	(Jelmer	Vernooij)
Branch.fetch	 and	 Repository.fetch	 now	 return	 None	 rather
than	 a	 count	 of	 copied	 revisions	 and	 failed	 revisions.	 A	 while
back	 we	 stopped	 ever	 reporting	 failed	 revisions	 because	 we
started	 erroring	 instead,	 and	 the	 copied	 revisions	 count	 is	 not
used	in	the	UI	at	all	-	indeed	it	only	reflects	the	repository	status
not	changes	to	the	branch	itself.	(Robert	Collins)
Inventory.apply_delta	 now	 raises	an	AssertionError	 if	 a	 file-id
appears	multiple	times	within	the	delta.	(Ian	Clatworthy)
MutableTree.commit	 now	 favours	 the	 “authors”	 argument,	 with
the	old	“author”	argument	being	deprecated.
Remove	deprecated	EmptyTree.	(Martin	Pool)
Repository.fetch	 now	 accepts	 an	 optional	 fetch_spec

parameter.	A	SearchResult	or	MiniSearchResult	may	be	passed
to	 fetch_spec	 instead	 of	 a	 last_revision	 to	 specify	 exactly
which	revisions	to	fetch.	(Andrew	Bennetts)
RepositoryAcquisitionPolicy.acquire_repository	now	returns	a
tuple	 of	 (repository,	 is_new_flag),	 rather	 than	 just	 the
repository.	(Andrew	Bennetts)
Revision.get_apparent_author()	is	now	deprecated,	replaced	by
Revision.get_apparent_authors(),	 which	 returns	 a	 list.	 The
former	now	returns	the	first	item	that	would	be	returned	from	the
second.
The	 BranchBuilder	 test	 helper	 now	 accepts	 a	 timestamp

parameter	to	build_commit	and	build_snapshot.	(Martin	Pool)
The	 _fetch_*	 attributes	 on	 Repository	 are	 now	 on
RepositoryFormat,	 more	 accurately	 reflecting	 their	 intent	 (they
describe	 a	 disk	 format	 capability,	 not	 state	 of	 a	 particular
repository	of	that	format).	(Robert	Collins)

Internals
Branching	 from	 a	 non-stacked	 branch	 on	 a	 smart	 protocol	 is
now	free	of	virtual	file	system	methods.	(Robert	Collins,	Andrew
Bennetts)
Branch	and	Repository	creation	on	a	bzr+ssh://server	are	now
done	via	RPC	calls	 rather	 than	VFS	calls,	 reducing	round	 trips
for	pushing	new	branches	substantially.	(Robert	Collins)
Branch.clone	 now	 takes	 the	 repository_policy	 formerly	 used
inside	 BzrDir.clone_on_transport,	 allowing	 stacking	 to	 be
configured	before	the	branch	tags	and	revision	tip	are	set.	This
fixes	 a	 race	 condition	 cloning	 stacked	 branches	 that	 would
cause	plugins	 to	have	hooks	 called	on	non-stacked	 instances.
(Robert	Collins,	#334187)
BzrDir.cloning_metadir	now	has	a	RPC	call.	(Robert	Collins)
BzrDirFormat.__str__	now	uses	the	human	readable	description
rather	than	the	sometimes-absent	disk	label.	(Robert	Collins)
bzrlib.fetch	 is	 now	 composed	 of	 a	 sender	 and	 a	 sink
component	allowing	 for	decoupling	over	a	network	connection.
Fetching	from	or	into	a	RemoteRepository	with	a	1.13	server	will
use	 this	 to	 stream	 the	 operation.	 (Andrew	 Bennetts,	 Robert
Collins)
bzrlib.tests.run_suite	 accepts	 a	 runner_class	 parameter
supporting	the	use	of	different	runners.	(Robert	Collins)
Change	 how	 file_ids	 and	 revision_ids	 are	 interned	 as	 part	 of
inventory	deserialization.	Now	we	use	the	real	intern(),	 rather
than	our	own	workaround	that	would	also	cache	a	Unicode	copy
of	the	string,	and	never	emptied	the	cache.	This	should	slightly
reduce	memory	consumption.	(John	Arbash	Meinel)
New	 branch	method	 create_clone_on_transport	 that	 returns	 a
branch	object.	(Robert	Collins)
New	 hook	 Commands[‘extend_command’]	 to	 allow	 plugins	 to

access	a	command	object	before	 the	command	 is	 run	 (or	help
generated	 from	 it),	 without	 overriding	 the	 command.	 (Robert
Collins)
New	 version	 of	 the	 BzrDir.find_repository	 verb	 supporting
_network_name	 to	 support	 removing	 more	 _ensure_real	 calls.
(Robert	Collins)
RemoteBranchFormat	 no	 longer	 claims	 to	 have	 a	 disk	 format
string.	(Robert	Collins)
Repository	 objects	 now	 have	 suspend_write_group	 and
resume_write_group	 methods.	 These	 are	 currently	 only	 useful
with	pack	repositories.	(Andrew	Bennetts,	Robert	Collins)
BzrDirFormat,	 BranchFormat	and	 RepositoryFormat	 objects	 now
have	a	 network_name	 for	 passing	 the	 format	 across	RPC	calls.
(Robert	Collins,	Andrew	Bennetts)
RepositoryFormat	 objects	 now	 all	 have	 a	 new	 attribute
_serializer	 used	 by	 fetch	 when	 reserialising	 is	 required.
(Robert	Collins,	Andrew	Bennetts)
Some	methods	have	been	pulled	up	from	BzrBranch	to	Branch	to
aid	 branch	 types	 that	 are	 not	 bzr	 branch	 objects	 (like
RemoteBranch).	(Robert	Collins,	Andrew	Bennetts)
Test	adaptation	has	been	made	consistent	 throughout	 the	built
in	 tests.	 TestScenarioApplier,	 multiply_tests_from_modules,
adapt_tests,	 adapt_modules	 have	all	 been	deleted.	Please	use
multiply_tests,	 or	 for	 lower	 level	 needs	 apply_scenarios	 and
apply_scenario.	(Robert	Collins)
TestSkipped	 is	 now	 detected	 by	 TestCase	 and	 passed	 to	 the
TestResult	 by	 calling	 addSkip.	 For	 older	 TestResult	 objects,
where	 addSkip	 is	 not	 available,	 addError	 is	 still	 called.	 This
permits	test	filtering	in	subunit	to	strip	out	skipped	tests	resulting
in	 a	 faster	 fix-shrink-list-run	 cycle.	 This	 is	 compatible	 with	 the
testtools	protocol	for	skips.	(Robert	Collins)
The	 _index	 of	 KnitVersionedFiles	 now	 supports	 the	 ability	 to

scan	 an	 underlying	 index	 that	 is	 going	 to	 be	 incorporated	 into
the	 KnitVersionedFiles	 object,	 to	 determine	 if	 it	 has	 missing
delta	 references.	 The	 method	 is	 scan_unvalidated_index.
(Andrew	Bennetts,	Robert	Collins)
There	 is	a	RemoteSink	object	which	handles	pushing	 to	smart
servers.	(Andrew	Bennetts,	Robert	Collins)
TransportTraceDecorator	 now	 logs	 put_bytes_non_atomic	 and
rmdir	calls.	(Robert	Collins)
VersionedFiles	 record	 adapters	 have	 had	 their	 signature
change	 from	 (record,

record.get_bytes_as(record.storage_kind))	 to	 (record)

reducing	 excess	 duplication	 and	 allowing	 adapters	 to	 access
private	data	in	record	to	obtain	content	more	efficiently.	(Robert
Collins)
We	no	 longer	probe	 to	see	 if	we	should	create	a	working	 tree
during	clone	if	we	cannot	get	a	local_abspath	for	the	new	bzrdir.
(Robert	Collins)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.12
Codename: 1234567890
1.12: 2009-02-13
1.12rc1: 2009-02-10

This	 release	of	Bazaar	contains	many	 improvements	 to	 the	speed,
documentation	and	functionality	of	bzr	log	and	the	display	of	logged
revisions	 by	 bzr	 status.	 bzr	 now	 also	 gives	 a	 better	 indication	 of
progress,	both	in	the	way	operations	are	drawn	onto	a	text	terminal,
and	by	showing	the	rate	of	network	IO.

Changes	from	RC1	to	Final
bzr	init	--development-wt5[-rich-root]	would	 fail	because	of
circular	import	errors.	(John	Arbash	Meinel,	#328135)
Expanded	 the	 help	 for	 log	 and	 added	 a	 new	 help	 topic	 called
log-formats.	(Ian	Clatworthy)

Compatibility	Breaks
By	 default,	 bzr	 status	 after	 a	 merge	 now	 shows	 just	 the
pending	merge	 tip	 revisions.	 This	 improves	 the	 signal-to-noise
ratio	 after	 merging	 from	 trunk	 and	 completes	 much	 faster.	 To
see	all	merged	revisions,	use	the	new	-v	flag.	(Ian	Clatworthy)
bzr	log	--line	now	shows	any	 tags	after	 the	date	and	before
the	commit	message.	If	you	have	scripts	which	parse	the	output
from	 this	command,	you	may	need	 to	adjust	 them	accordingly.
(Ian	Clatworthy)
bzr	log	--short	 now	 shows	 any	 additional	 revision	 properties
after	 the	 date	 and	 before	 the	 commit	 message.	 Scripts	 that
parse	output	of	 the	 log	command	 in	 this	situation	may	need	 to
adjust.	(Neil	Martinsen-Burrell)
The	experimental	formats	1.12-preview	and	1.12-preview-rich-
root	 have	 been	 renamed	 development-wt5	 and	 development-
wt5-rich-root	respectively,	given	they	are	not	ready	for	release
in	1.12.	(Ian	Clatworthy)
read_bundle_from_url	has	been	deprecated.	(Vincent	Ladeuil)

New	Features
Add	 support	 for	 filtering	 bzr	 missing	 on	 revisions.	 Remote
revisions	 can	 be	 filtered	 using	 bzr	 missing	 -r	 -20..-10	 and
local	revisions	can	be	filtered	using	bzr	missing	--my-revision
-20..-10.	(Marius	Kruger)
bzr	 log	 -p	 displays	 the	 patch	 diff	 for	 each	 revision.	 When
logging	 a	 file,	 the	 diff	 only	 includes	 changes	 to	 that	 file.	 (Ian
Clatworthy,	#202331,	#227335)
bzr	log	supports	a	new	option	called	-n	N	or	--level	N.	A	value
of	 0	 (zero)	 means	 “show	 all	 nested	 merge	 revisions”	 while	 a
value	of	1	(one)	means	“show	just	the	top	level”.	Values	above	1
can	 be	 used	 to	 see	 a	 limited	 amount	 of	 nesting.	 That	 can	 be
useful	 for	 seeing	 the	 level	 or	 two	 below	 PQM	 submits	 for
example.	To	force	the	--short	and	--line	formats	to	display	all
nested	merge	 revisions	 just	 like	 --long	 does	by	default,	 use	a
command	like	bzr	log	--short	-n0.	To	display	just	the	mainline
using	--long	format,	bzr	log	--long	-n1.	(Ian	Clatworthy)

Improvements
bzr	add	more	clearly	communicates	success	vs	failure.	(Daniel
Watkins)
bzr	 init	 will	 now	 print	 a	 little	 less	 verbose	 output.	 (Marius
Kruger)
bzr	log	 is	now	much	 faster	 in	many	use	cases,	particularly	at
incrementally	displaying	results	and	filtering	by	a	revision	range.
(Ian	Clatworthy)
bzr	log	--short	and	bzr	log	--line	now	show	tags,	if	any,	for
each	revision.	The	tags	are	shown	comma-separated	inside	{}.
For	short	 format,	 the	 tags	appear	at	 the	end	of	 line	before	 the
optional	[merge]	indicator.	For	line	format,	the	tags	appear	after
the	date.	(Ian	Clatworthy)
Progress	 bars	 now	 show	 the	 rate	 of	 activity	 for	 some	 sftp
operations,	and	they	are	drawn	different.	(Martin	Pool,	#172741)
Progress	bars	now	show	the	rate	of	activity	for	urllib	and	pycurl
based	http	client	implementations.	The	operations	are	tracked	at
the	socket	level	for	better	precision.	(Vincent	Ladeuil)
Rule-based	preferences	can	now	accept	multiple	patterns	for	a
set	of	rules.	(Marius	Kruger)
The	 ancestor:	 revision	spec	will	now	default	 to	referring	 to	 the
parent	 of	 the	 branch	 if	 no	 other	 location	 is	 given.	 (Daniel
Watkins,	#198417)
The	 debugger	 started	 as	 a	 result	 of	 setting	 $BZR_PDB	 works
around	a	bug	in	pdb,	http://bugs.python.org/issue4150.	The	bug
can	cause	 truncated	 tracebacks	 in	Python	versions	before	2.6.
(Andrew	Bennetts)
VirtualVersionedFiles	 now	 implements
iter_lines_added_or_present_in_keys.	 This	 allows	 the	 creation
of	new	branches	based	on	stacked	bzr-svn	branches.	(#311997)

http://bugs.python.org/issue4150

Bug	Fixes
bzr	 annotate	 --show-ids	 doesn’t	 give	 a	 backtrace	 on	 empty
files	anymore.	(Anne	Mohsen,	Vincent	Ladeuil,	#314525)
bzr	log	FILE	now	correctly	shows	mainline	revisions	merging	a
change	 to	 FILE	when	 the	 --short	 and	 --line	 log	 formats	 are
used.	(Ian	Clatworthy,	#317417)
bzr	log	-rX..Y	FILE	now	shows	the	history	of	FILE	provided	it
existed	 in	 Y	 or	 X,	 even	 if	 the	 file	 has	 since	 been	 deleted	 or
renamed.	 If	no	 range	 is	given,	 the	current/basis	 tree	and	 initial
tree	 are	 searched	 in	 that	 order.	 More	 generally,	 log	 now
interprets	 filenames	 in	 their	 historical	 context.	 (Ian	 Clatworthy,
#175520)
bzr	 status	 now	 reports	 nonexistent	 files	 and	 continues,	 then
errors	(with	code	3)	at	the	end.	(Karl	Fogel,	#306394)
Don’t	 require	 the	 present	 compression	 base	 in	 knits	 to	 be	 the
same	when	adding	records	in	knits.	(Jelmer	Vernooij,	#307394)
Fix	a	problem	with	CIFS	client/server	 lag	on	Windows	colliding
with	 an	 invariant-per-process	 algorithm	 for	 generating
AtomicFile	names	(Adrian	Wilkins,	#304023)
Many	 socket	 operations	 now	 handle	 EINTR	 by	 retrying	 the
operation.	 Previously	 EINTR	was	 treated	 as	 an	 unrecoverable
failure.	 There	 is	 a	 new	 until_no_eintr	 helper	 function	 in
bzrlib.osutils.	(Andrew	Bennetts)
Support	 symlinks	 with	 non-ascii	 characters	 in	 the	 symlink
filename.	(Jelmer	Vernooij,	#319323)
There	 was	 a	 bug	 in	 how	 we	 handled	 resolving	 when	 a	 file	 is
deleted	in	one	branch,	and	modified	in	the	other.	If	there	was	a
criss-cross	 merge,	 we	 would	 cause	 the	 deletion	 to	 conflict	 a
second	time.	(Vincent	Ladeuil,	John	Arbash	Meinel)
There	 was	 another	 bug	 in	 how	 we	 chose	 the	 correct
intermediate	LCA	 in	criss-cross	merges	 leading	 to	several	kind

of	 changes	 be	 incorrectly	 handled.	 (John	 Arbash	 Meinel,
Vincent	Ladeuil)
Unshelve	now	handles	deleted	paths	without	crashing.	 (Robert
Collins)

Documentation
Improved	plugin	developer	documentation.	(Martin	Pool)

API	Changes
ProgressBarStack	 is	 deprecated;	 instead	 use
ui_factory.nested_progress_bar	 to	 create	 new	 progress	 bars.
(Martin	Pool)
ForeignVcsMapping()	now	requires	a	ForeignVcs	object	as	first
argument.	(Jelmer	Vernooij)
ForeignVcsMapping.show_foreign_revid()	 has	 been	 moved	 to
ForeignVcs.	(Jelmer	Vernooij)
read_bundle_from_url	 is	 deprecated	 in	 favor	 of
read_mergeable_from_url.	(Vincent	Ladeuil)
Revision	 specifiers	 are	 now	 registered	 in
bzrlib.revisionspec.revspec_registry,	 and	 the	 old	 list	 of
revisionspec	 classes	 (bzrlib.revisionspec.SPEC_TYPES)	 has
been	deprecated.	(Jelmer	Vernooij,	#321183)
The	 progress	 and	 UI	 classes	 have	 changed;	 the	 main	 APIs
remain	 the	same	but	 code	 that	provides	a	new	UI	or	progress
bar	class	may	need	to	be	updated.	(Martin	Pool)

Internals
Default	User	 Interface	 (UI)	 is	CLIUIFactory	when	bzr	 runs	 in	a
dumb	terminal.	It	is	sometimes	desirable	do	override	this	default
by	 forcing	 bzr	 to	 use	 TextUIFactory.	 This	 can	 be	 achieved	 by
setting	 the	 BZR_USE_TEXT_UI	 environment	 variable	 (emacs
shells,	 as	 opposed	 to	 compile	 buffers,	 are	 such	 an	 example).
(Vincent	Ladeuil)
New	 API	 Branch.iter_merge_sorted_revisions()	 that	 iterates
over	 (revision_id,	 depth,	 revno,	 end_of_merge)	 tuples.	 (Ian
Clatworthy)
New	 Branch.dotted_revno_to_revision_id()	 and
Branch.revision_id_to_dotted_revno()	APIs	 that	pick	 the	most
efficient	way	of	doing	the	mapping.	(Ian	Clatworthy)
Refactor	cmd_serve	so	that	it’s	a	little	easier	to	build	commands
that	extend	it,	and	perhaps	even	a	bit	easier	to	read.	(Jonathan
Lange)
TreeDelta.show()	now	accepts	a	filter	parameter	allowing	log
formatters	to	retrict	the	output.	(Vincent	Ladeuil)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.11
Codename: “Eyes	up!”
Released: 2009-01-19

This	 first	 monthly	 release	 of	 Bazaar	 for	 2009	 improves	 Bazaar’s
operation	 in	 Windows,	 Mac	 OS	 X,	 and	 other	 situations	 where	 file
names	are	matched	without	regard	to	capitalization:	Bazaar	 tries	 to
match	 the	 case	 of	 an	 existing	 file.	 This	 release	 of	 Bazaar	 also
improves	 the	 efficiency	 of	 Tortoise	 Windows	 Shell	 integration	 and
lets	it	work	on	64-bit	platforms.

The	 UI	 through	 which	 Bazaar	 supports	 historic	 formats	 has	 been
improved,	so	‘bzr	help	formats’	now	gives	a	simpler	and	shorter	list,
with	clear	advice.

This	 release	 also	 fixes	 a	 number	 of	 bugs,	 particularly	 a	 glitch	 that
can	occur	when	there	are	concurrent	writes	to	a	pack	repository.

Bug	Fixes
Fix	 failing	 test	 when	CompiledChunksToLines	 is	 not	 available.
(Vincent	Ladeuil)
Stacked	 branches	 don’t	 repeatedly	 open	 their	 transport
connection.	(John	Arbash	Meinel)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.11rc1
Codename: “Eyes	up!”
Released: 2009-01-09

Changes
Formats	using	Knit-based	 repository	 formats	are	now	explicitly
marked	as	deprecated.	(Ian	Clatworthy)

New	Features
Add	support	for	bzr	tags	-r	1..2,	that	is	we	now	support	showing
tags	applicable	for	a	specified	revision	range.	(Marius	Kruger)
authentication.conf	 now	 accepts	 pluggable	 read-only
credential	 stores.	 Such	 a	 plugin	 (netrc_credential_store)	 is
now	 included,	handles	 the	 $HOME/.netrc	 file	and	can	server	as
an	example	to	implement	other	plugins.	(Vincent	Ladeuil)
shelve	--list	can	now	be	used	to	list	shelved	changes.	(Aaron
Bentley)

Improvements
Add	 trailing	 slash	 to	 directories	 in	 all	 output	 of	 bzr	 ls,	 except
bzr	ls	--null.	(Gordon	P.	Hemsley,	#306424)
bzr	 revision-info	 now	 supports	 a	 -d	 option	 to	 specify	 an
alternative	branch.	(Michael	Hudson)
Add	connection	to	a	C++	implementation	of	the	Windows	Shell
Extension	 which	 is	 able	 to	 fully	 replace	 the	 current	 Python
implemented	 one.	 Advantages	 include	 64bit	 support	 and
reduction	 in	 overhead	 for	 processes	 which	 drag	 in	 shell
extensions.	(Mark	Hammond)
Support	the	Claws	mail	client	directly,	rather	than	via	xdg-email.
This	 prevents	 the	 display	 of	 an	 unnecessary	 modal	 dialog	 in
Claws,	 informing	 the	 user	 that	 a	 file	 has	 been	attached	 to	 the
message,	 and	 works	 around	 bug	 #291847	 in	 xdg-utils	 which
corrupts	the	destination	address.
When	 working	 on	 a	 case-insensitive	 case-preserving	 file-
system,	as	commonly	found	with	Windows,	bzr	will	often	ignore
the	case	of	the	arguments	specified	by	the	user	in	preference	to
the	case	of	an	existing	item	on	the	file-system	or	in	the	inventory
to	 help	 prevent	 counter-intuitive	 behaviour	 on	Windows.	 (Mark
Hammond)

Bug	Fixes
Allow	BzrDir	implementation	to	implement	backing	up	of	control
directory.	(#139691)
bzr	push	 creating	a	new	stacked	branch	will	 now	only	 open	a
single	connection	to	the	target	machine.	(John	Arbash	Meinel)
Don’t	 call	 iteritems	 on	 transport_list_registry,	 because	 it	 may
change	during	iteration.	(Martin	Pool,	#277048)
Don’t	 make	 a	 broken	 branch	 when	 pushing	 an	 unstackable-
format	 branch	 that’s	 in	 a	 stackable	 shared	 repository	 to	 a
location	 with	 default	 stack-on	 location.	 (Andrew	 Bennetts,
#291046)
Don’t	 require	 embedding	 user	 in	 HTTP(S)	 URLs	 do	 use
authentication.conf.	(Ben	Jansen,	Vincent	Ladeuil,	#300347)
Fix	a	problem	with	CIFS	client/server	 lag	on	windows	colliding
with	 an	 invariant-per-process	 algorithm	 for	 generating
AtomicFile	names	(Adrian	Wilkins,	#304023)
Fix	bogus	setUp	signature	in	UnavailableFTPServer.	(Gary	van
der	Merwe,	#313498)
Fix	compilation	error	in	_dirstate_helpers_c	on	SunOS/Solaris.
(Jari	Aalto)
Fix	 SystemError	 in	 _patiencediff_c	 module	 by	 calling
PyErr_NoMemory()	 before	 returning	 NULL	 in
PatienceSequenceMatcher_new.	(Andrew	Bennetts,	#303206)
Give	 proper	 error	 message	 for	 diff	 with	 non-existent	 dotted
revno.	(Marius	Kruger,	#301969)
Handle	EACCES	 (permission	denied)	errors	when	 launching	a
message	 editor,	 and	 emit	 warnings	 when	 a	 configured	 editor
cannot	be	started.	(Andrew	Bennetts)
$HOME/.netrc	 file	 is	 now	 recognized	 as	 a	 read-only	 credential
store	 if	 configured	 in	 authentication.conf	 with
‘password_encoding=netrc’	in	the	appropriate	sections.	(Vincent

Ladeuil,	#103029)
Opening	a	stacked	branch	now	properly	shares	the	connection,
rather	 than	 opening	 a	 new	 connection	 for	 the	 stacked-on
branch.	(John	Arbash	meinel)
Preserve	 transport	 decorators	 while	 following	 redirections.
(Vincent	Ladeuil,	#245964,	#270863)
Provides	a	finer	and	more	robust	filter	for	accepted	redirections.
(Vincent	Ladeuil,	#303959,	#265070)
shelve	paths	are	now	interpreted	relative	to	the	current	working
tree.	(Aaron	Bentley)
Transport.readv()	defaults	 to	not	reading	more	than	100MB	in
a	single	array.	Further	 RemoteTransport.readv	 sets	 this	 to	5MB
to	 work	 better	 with	 how	 it	 splits	 its	 requests.	 (John	 Arbash
Meinel,	#303538)
Pack	 repositories	 are	 now	 able	 to	 reload	 the	 pack	 listing	 and
retry	 the	current	operation	 if	another	action	causes	 the	data	 to
be	repacked.	(John	Arbash	Meinel,	#153786)
pull	 -v	 now	 respects	 the	 log_format	 configuration	 variable.
(Aaron	Bentley)
push	-v	now	works	on	non-initial	pushes.	(Aaron	Bentley)
Use	 the	 short	 status	 format	when	 the	 short	 format	 is	 used	 for
log.	(Vincent	Ladeuil,	#87179)
Allow	 files	 to	 be	 renamed	 or	 moved	 via	 remove	 +	 add-by-id.
(Charles	Duffy,	#314251)

Documentation
Improved	the	formats	help	topic	to	explain	why	multiple	formats
exist	and	to	provide	guidelines	in	selecting	one.	Introduced	two
new	 supporting	 help	 topics:	 current-formats	 and	 other-formats.
(Ian	Clatworthy)

API	Changes
LRUCache(after_cleanup_size)	 was	 renamed	 to
after_cleanup_count	 and	 the	 old	 name	 deprecated.	 The	 new
name	 is	 used	 for	 clarity,	 and	 to	 avoid	 confusion	 with
LRUSizeCache(after_cleanup_size).	(John	Arbash	Meinel)
New	ForeignRepository	base	class,	 to	help	with	foreign	branch
support	(e.g.	svn).	(Jelmer	Vernooij)
node_distances	and	select_farthest	can	no	longer	be	imported
from	 bzrlib.graph.	 They	 can	 still	 be	 imported	 from
bzrlib.deprecated_graph,	which	has	been	the	preferred	way	to
import	them	since	before	1.0.	(Andrew	Bennetts)
The	logic	 in	commit	now	delegates	inventory	basis	calculations
to	the	CommitBuilder	object;	this	requires	that	the	commit	builder
in	use	has	been	updated	to	support	the	new	recording_deletes
and	record_delete	methods.	(Robert	Collins)

Testing
An	 HTTPS	 server	 is	 now	 available	 (it	 requires	 python-2.6).
Future	 bzr	 versions	 will	 allow	 the	 use	 of	 the	 python-2.6	 ssl
module	that	can	be	installed	for	2.5	and	2.4.
bzr	 selftest	 now	 fails	 if	 new	 trailing	white	 space	 is	 added	 to
the	bazaar	sources.	 It	only	checks	changes	not	committed	yet.
This	 means	 that	 PQM	 will	 now	 reject	 changes	 that	 introduce
new	trailing	whitespace.	(Marius	Kruger)
Introduced	 new	 experimental	 formats	 called	 1.12-preview	 and
1.12-preview-rich-root	 to	 enable	 testing	 of	 related	 pending
features,	 namely	 content	 filtering	 and	 filtered	 views.	 (Ian
Clatworthy)

Internals
Added	an	InventoryEntry	cache	when	deserializing	inventories.
Can	cut	the	time	to	iterate	over	multiple	RevisionsTrees	in	half.
(John	Arbash	Meinel)
Added	bzrlib.fifo_cache.FIFOCache	which	 is	designed	to	have
minimal	overhead	versus	using	a	plain	dict	for	cache	hits,	at	the
cost	 of	 not	 preserving	 the	 ‘active’	 set	 as	well	 as	 an	 LRUCache.
(John	Arbash	Meinel)
bzrlib.patience_diff.unified_diff	 now	 properly	 uses	 a	 tab
character	 to	 separate	 the	 filename	 from	 the	 date	 stamp,	 and
doesn’t	 add	 trailing	 whitespace	 when	 a	 date	 stamp	 is	 not
supplied.	(Adeodato	Simó,	John	Arbash	Meinel)
DirStateWorkingTree	and	 DirStateWorkingTreeFormat	 added	 as
base	 classes	 of	 WorkingTree4	 and	 WorkingTreeFormat4

respectively.	(Ian	Clatworthy)
KnitVersionedFiles._check_should_delta()	 now	 uses	 the
get_build_details	api	to	avoid	multiple	hits	to	the	index,	and	to
properly	 follow	 the	 compression_parent	 rather	 than	assuming	 it
is	the	left-hand	parent.	(John	Arbash	Meinel)
KnitVersionedFiles.get_record_stream()	will	now	chose	a	more
optimal	 ordering	 when	 the	 keys	 are	 requested	 ‘unordered’.
Previously	 the	order	was	 fully	 random,	now	the	records	should
be	returned	from	each	pack	 in	 turn,	 in	 forward	I/O	order.	(John
Arbash	Meinel)
mutter()	will	now	flush	the	~/.bzr.log	if	 it	has	been	more	than
2s	since	the	last	time	it	flushed.	(John	Arbash	Meinel)
New	 method
bzrlib.repository.Repository.add_inventory_by_delta	 allows
adding	an	 inventory	via	an	 inventory	delta,	which	can	be	more
efficient	for	some	repository	types.	(Robert	Collins)

Repository	 CommitBuilder	 objects	 can	 now	 accumulate	 an
inventory	 delta.	 To	 enable	 this	 functionality	 call
builder.recording_deletes	 and	 additionally	 call
builder.record_delete	when	a	delete	against	the	basis	occurs.
(Robert	Collins)
The	default	http	handler	has	been	changed	from	pycurl	to	urllib.
The	 default	 is	 still	 pycurl	 for	 https	 connections.	 (The	 only
advantage	 of	 pycurl	 is	 that	 it	 checks	 ssl	 certificates.)	 (John
Arbash	Meinel)
VersionedFiles.get_record_stream()	 can	 now	 return	 objects
with	a	storage_kind	of	chunked.	This	is	a	collection	(list/tuple)	of
strings.	 You	 can	 use	 osutils.chunks_to_lines()	 to	 turn	 them
into	guaranteed	‘lines’	or	you	can	use	''.join(chunks)	to	turn	it
into	a	 fulltext.	This	allows	for	some	very	good	memory	savings
when	 asking	 for	 many	 texts	 that	 share	 ancestry,	 as	 the
individual	 chunks	 can	 be	 shared	 between	 versions	 of	 the	 file.
(John	Arbash	Meinel)
pull	 -v	 and	 push	 -v	 use	 new	 function
bzrlib.log.show_branch_change	(Aaron	Bentley)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.10
Released: 2008-12-05

Bazaar	 1.10	 has	 several	 performance	 improvements	 for	 copying
revisions	(especially	 for	small	updates	to	 large	projects).	There	has
also	 been	 a	 significant	 amount	 of	 effort	 in	 polishing	 stacked
branches.	The	commands	 shelve	and	 unshelve	 have	become	core
commands,	with	an	improved	implementation.

The	 only	 changes	 versus	 bzr-1.10rc1	 are	 bugfixes	 for	 stacked
branches.

bug	Fixes
Don’t	 set	 a	 pack	write	 cache	 size	 from	RepoFetcher,	 because
the	 cache	 is	 not	 coherent	 with	 reads	 and	 causes
ShortReadvErrors.	 This	 reverses	 the	 change	 that	 fixed
#294479.	(Martin	Pool,	#303856)
Properly	 handle	 when	 a	 revision	 can	 be	 inserted	 as	 a	 delta
versus	when	 it	 needs	 to	 be	 expanded	 to	 a	 fulltext	 for	 stacked
branches.	 There	 was	 a	 bug	 involving	 merge	 revisions.	 As	 a
method	 to	 help	 prevent	 future	 difficulties,	 also	 make	 stacked
fetches	sort	topologically.	(John	Arbash	Meinel,	#304841)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.10rc1
Released: 2008-11-28

This	release	of	Bazaar	focuses	on	performance	improvements	when
pushing	and	pulling	 revisions,	both	 locally	and	 to	 remote	networks.
The	 popular	 shelve	 and	 unshelve	 commands,	 used	 to	 interactively
revert	and	restore	work	in	progress,	have	been	merged	from	bzrtools
into	 the	 bzr	 core.	 There	 are	 also	 bug	 fixes	 for	 portability,	 and	 for
stacked	branches.

New	Features
New	commit_message_template	hook	that	is	called	by	the	commit
code	to	generate	a	template	commit	message.	(Jelmer	Vernooij)
New	shelve	and	unshelve	commands	allow	undoing	and	redoing
changes.	(Aaron	Bentley)

Improvements
(Remote)Branch.copy_content_into	 no	 longer	generates	 the	 full
revision	 history	 just	 to	 set	 the	 last	 revision	 info.	 (Andrew
Bennetts,	John	Arbash	Meinel)
Fetches	 between	 formats	 with	 different	 serializers	 (such	 as
pack-0.92-subtree	and	1.9-rich-root)	are	faster	now.	This	is	due
to	operating	on	batches	of	100	revisions	at	time	rather	than	one-
by-one.	(Andrew	Bennetts,	John	Arbash	Meinel)
Search	 index	 files	 corresponding	 to	 pack	 files	 we’ve	 already
used	before	searching	others,	because	 they	are	more	 likely	 to
have	the	keys	we’re	looking	for.	This	reduces	the	number	of	 iix
and	 tix	 files	 accessed	 when	 pushing	 1	 new	 revision,	 for
instance.	(John	Arbash	Meinel)
Signatures	 to	 transfer	 are	 calculated	 more	 efficiently	 in
item_keys_introduced_by.	 (Andrew	 Bennetts,	 John	 Arbash
Meinel)
The	 generic	 fetch	 code	 can	 once	 again	 copy	 revisions	 and
signatures	 without	 extracting	 them	 completely	 to	 fulltexts	 and
then	 serializing	 them	 back	 down	 into	 byte	 strings.	 This	 is	 a
significant	 performance	 improvement	 when	 fetching	 from	 a
stacked	branch.	(John	Arbash	Meinel,	#300289)
When	making	 a	 large	 readv()	 request	 over	 bzr+ssh,	 break	 up
the	request	into	more	manageable	chunks.	Because	the	RPC	is
not	 yet	 able	 to	 stream,	 this	 helps	 keep	 us	 from	 buffering	 too
much	information	at	once.	(John	Arbash	Meinel)

Bug	Fixes
Better	message	when	the	user	needs	to	set	their	Launchpad	ID.
(Martin	Pool,	#289148)
bzr	commit	--local	doesn’t	access	the	master	branch	anymore.
This	 fixes	 a	 regression	 introduced	 in	 1.9.	 (Marius	 Kruger,
#299313)
Don’t	 call	 the	 system	 chdir()	 with	 an	 empty	 path.	 Sun	 OS
seems	 to	 give	 an	 error	 in	 that	 case.	 Also,	 don’t	 count	 on
getcwd()	 being	 able	 to	 allocate	 a	 new	 buffer,	 which	 is	 a	 gnu
extension.	 (John	 Arbash	 Meinel,	 Martin	 Pool,	 Harry	 Hirsch,
#297831)
Don’t	 crash	when	 requesting	 log	 –forward	<file>	 for	 a	 revision
range	starting	with	a	dotted	revno.	(Vincent	Ladeuil,	#300055)
Don’t	create	text	deltas	spanning	stacked	repositories;	this	could
cause	“Revision	X	not	present	in	Y”	when	later	accessing	them.
(Martin	Pool,	#288751)
Pack	 repositories	 are	 now	 able	 to	 reload	 the	 pack	 listing	 and
retry	 the	current	operation	 if	another	action	causes	 the	data	 to
be	repacked.	(John	Arbash	Meinel,	#153786)
PermissionDenied	 errors	 from	 smart	 servers	 no	 longer	 cause
“PermissionDenied:	 “None””	 on	 the	 client.	 (Andrew	 Bennetts,
#299254)
Pushing	 to	 a	 stacked	 pack	 repository	 now	 batches	writes,	 the
same	way	writes	are	batched	 to	ordinary	pack	 repository.	This
makes	 pushing	 to	 a	 stacked	 branch	 over	 the	 network	 much
faster.	(Andrew	Bennetts,	#294479)
TooManyConcurrentRequests	no	longer	occur	when	a	fetch	fails
and	tries	to	abort	a	write	group.	This	allows	the	root	cause	(e.g.
a	 network	 interruption)	 to	 be	 reported.	 (Andrew	 Bennetts,
#297014)
RemoteRepository.get_parent_map	 now	 uses	 fallback

repositories.	(Aaron	Bentley,	#297991?,	#293679?)

API	Changes
CommitBuilder	now	validates	the	strings	it	will	be	committing,	to
ensure	that	they	do	not	have	characters	that	will	not	be	properly
round-tripped.	 For	 now,	 it	 just	 checks	 for	 characters	 that	 are
invalid	in	the	XML	form.	(John	Arbash	Meinel,	#295161)
Constructor	 parameters	 for	 NewPack	 (internal	 to	 pack
repositories)	have	changed	incompatibly.
Repository.abort_write_group	 now	 accepts	 an	 optional
suppress_errors	 flag.	Repository	 implementations	 that	override
abort_write_group	 will	 need	 to	 be	 updated	 to	 accept	 the	 new
argument.	 Subclasses	 that	 only	 override	 _abort_write_group
don’t	need	to	change.
Transport	 implementations	 must	 provide
copy_tree_to_transport.	A	default	implementation	is	provided	for
Transport	subclasses.

Testing
bzr	 selftest	 now	 fails	 if	 no	 doctests	 are	 found	 in	 a	 module
that’s	expected	to	have	them.	(Martin	Pool)
Doctests	now	only	report	the	first	failure.	(Martin	Pool)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.9
Released: 2008-11-07

This	 release	 of	 Bazaar	 adds	 a	 new	 repository	 format,	 1.9,	 with
smaller	and	more	efficient	 index	 files.	This	 format	 can	be	 specified
when	 creating	 a	 new	 repository,	 or	 used	 to	 losslessly	 upgrade	 an
existing	 repository.	 bzr	 1.9	 also	 speeds	 most	 operations	 over	 the
smart	server	protocol,	makes	annotate	faster,	and	uses	less	memory
when	making	checkouts	or	pulling	large	amounts	of	data.

Bug	Fixes
Fix	 “invalid	 property	 value	 ‘branch-nick’	 for	 None”	 regression
with	branches	bound	to	svn	branches.	(Martin	Pool,	#293440)
Fix	SSL/https	on	Python2.6.	(Vincent	Ladeuil,	#293054)
SFTPTransport.readv()	 had	 a	 bug	 when	 requests	 were	 out-of-
order.	 This	 only	 triggers	 some-of-the-time	 on	 Knit	 format
repositories.	(John	Arbash	Meinel,	#293746)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.9rc1
Released: 2008-10-31

New	Features
New	 Branch	 hook	 transform_fallback_location	 allows	 a
function	 to	 be	 called	 when	 looking	 up	 the	 stacked	 source.
(Michael	Hudson)
New	repository	 formats	 1.9	and	 1.9-rich-root.	These	have	all
the	 functionality	of	 1.6,	 but	 use	 the	 new	btree	 indexes.	These
indexes	 are	 both	 smaller	 and	 faster	 for	 access	 to	 historical
information.	(John	Arbash	Meinel)

Improvements
BTreeIndex	 code	 now	 is	 able	 to	 prefetch	 extra	 pages	 to	 help
tune	 the	 tradeoff	 between	 bandwidth	 and	 latency.	 Should	 be
tuned	 appropriately	 to	 not	 impact	 commands	 which	 need
minimal	information,	but	provide	a	significant	boost	to	ones	that
need	 more	 context.	 Only	 has	 a	 direct	 impact	 on	 the	 --

development2	 format	which	 uses	 btree’s	 for	 the	 indexes.	 (John
Arbash	Meinel)
bzr	 dump-btree	 is	 a	 hidden	 command	 introduced	 to	 allow
dumping	the	contents	of	a	compressed	btree	file.	(John	Arbash
Meinel)
bzr	pack	 now	 tells	 the	 index	 builders	 to	 optimize	 for	 size.	 For
btree	 index	 repositories,	 this	 can	 save	 25%	 of	 the	 index	 size
(mostly	in	the	text	indexes).	(John	Arbash	Meinel)
bzr	push	to	an	existing	branch	or	repository	on	a	smart	server	is
faster,	 due	 to	 Bazaar	making	more	 use	 of	 the	 get_parent_map
RPC	 when	 querying	 the	 remote	 branch’s	 revision	 graph.
(Andrew	Bennetts)
default	 username	 for	 bzr+ssh	 and	 sftp	 can	 be	 configured	 in
authentication.conf.	(Aaron	Bentley)
launchpad-login	 now	 provides	 a	 default	 username	 for	 bzr+ssh
and	 sftp	 URLs,	 allowing	 username-free	 URLs	 to	 work	 for
everyone.	(Aaron	Bentley)
lp:	 lookups	 no	 longer	 include	 usernames,	 making	 them
shareable	and	shorter.	(Aaron	Bentley)
New	 PackRepository.autopack	 smart	 server	 RPC,	 which	 does
autopacking	 entirely	 on	 the	 server.	 This	 is	 much	 faster	 than
autopacking	 via	 plain	 file	 methods,	 which	 downloads	 a	 large
amount	of	pack	data	and	 then	 re-uploads	 the	same	pack	data
into	a	single	file.	This	fixes	a	major	(although	infrequent)	cause
of	 lengthy	 delays	 when	 using	 a	 smart	 server.	 For	 example,

pushing	the	10th	revision	to	a	repository	with	9	packs	now	takes
44	RPCs	 rather	 than	 179,	 and	much	 less	 bandwidth	 too.	 This
requires	Bazaar	1.9	on	both	the	client	and	the	server,	otherwise
the	client	will	fallback	to	the	slower	method.	(Andrew	Bennetts)

Bug	Fixes
A	failure	to	load	a	plugin	due	to	an	IncompatibleAPI	exception	is
now	correctly	reported.	(Robert	Collins,	#279451)
API	versioning	support	now	has	a	multiple-version	checking	api
require_any_api.	(Robert	Collins,	#279447)
bzr	 branch	 --stacked	 from	 a	 smart	 server	 to	 a	 standalone
branch	 works	 again.	 This	 fixes	 a	 regression	 in	 1.7	 and	 1.8.
(Andrew	Bennetts,	#270397)
bzr	co	uses	less	memory.	It	used	to	unpack	the	entire	WT	into
memory	before	writing	 it	 to	disk.	This	was	a	 little	bit	 faster,	but
consumed	lots	of	memory.	(John	Arbash	Meinel,	#269456)
bzr	missing	--quiet	no	 longer	prints	messages	about	whether
there	 are	 missing	 revisions.	 The	 exit	 code	 indicates	 whether
there	were	or	not.	(Martin	Pool,	#284748)
Fixes	 to	 the	 annotate	 code.	 The	 fast-path	 which	 re-used	 the
stored	deltas	was	accidentally	disabled	all	 the	 time,	 instead	of
only	 when	 a	 branch	 was	 stacked.	 Second,	 the	 code	 would
accidentally	 re-use	 a	 delta	 even	 if	 it	 wasn’t	 against	 the	 left-
parent,	this	could	only	happen	if	bzr	reconcile	decided	that	the
parent	 ordering	 was	 incorrect	 in	 the	 file	 graph.	 (John	 Arbash
Meinel)
“Permission	 denied”	 errors	 that	 occur	 when	 pushing	 a	 new
branch	to	a	smart	server	no	 longer	cause	tracebacks.	(Andrew
Bennetts,	#278673)
Some	compatibility	fixes	for	building	the	extensions	with	MSVC
and	for	python2.4.	(John	Arbash	Meinel,	#277484)
The	index	logic	is	now	able	to	reload	the	list	of	pack	files	if	and
index	 ends	 up	 disappearing.	 We	 still	 don’t	 reload	 if	 the	 pack
data	 itself	 goes	 missing	 after	 checking	 the	 index.	 This	 bug
appears	 as	 a	 transient	 failure	 (file	 not	 found)	 when	 another
process	 is	 writing	 to	 the	 repository.	 (John	 Arbash	 Meinel,

#153786)
bzr	switch	and	bzr	bind	will	now	update	the	branch	nickname	if
it	was	previously	set.	All	checkouts	will	now	refer	 to	 the	bound
branch	 for	 a	 nickname	 if	 one	 was	 not	 explicitly	 set.	 (Marius
Kruger,	#230903)

Documentation
Improved	hook	documentation.	(Michael	Ernst)

API	Changes
commands.plugins_cmds	 is	 now	 a	 CommandRegistry,	 not	 a
dict.

Internals
New	 AuthenticationConfig.set_credentials	 method	 allows	 easy
programmatic	configuration	of	authetication	credentials.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.8
Released: 2008-10-16

Bazaar	 1.8	 includes	 several	 fixes	 that	 improve	 working	 tree
performance,	display	of	revision	logs,	and	merges.	The	bzr	testsuite
now	passes	on	OS	X	and	Python	2.6,	and	almost	completely	passes
on	Windows.	 The	 smartserver	 code	 has	 gained	 several	 bug	 fixes
and	performance	improvements,	and	can	now	run	server-side	hooks
within	an	http	server.

Bug	Fixes
Fix	 “Must	 end	 write	 group”	 error	 when	 another	 error	 occurs
during	bzr	push.	(Andrew	Bennetts,	#230902)

Portability
Some	 Pyrex	 versions	 require	 the	 WIN32	 macro	 defined	 to
compile	 on	 that	 platform.	 (Alexander	 Belchenko,	 Martin	 Pool,
#277481)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.8rc1
Released: 2008-10-07

Changes
bzr	log	file	has	been	changed.	It	now	uses	a	different	method
for	determining	which	revisions	to	show	as	merging	the	changes
to	the	file.	It	now	only	shows	revisions	which	merged	the	change
towards	 your	 mainline.	 This	 simplifies	 the	 output,	 makes	 it
faster,	and	reduces	memory	consumption.	(John	Arbash	Meinel)
bzr	merge	now	defaults	to	having	--reprocess	set,	whenever	--
show-base	is	not	supplied.	(John	Arbash	Meinel)
bzr+http//	will	now	optionally	load	plugins	and	write	logs	on	the
server.	(Marius	Kruger)
bzrlib._dirstate_helpers_c.pyx	does	not	compile	correctly	with
Pyrex	0.9.4.1	(it	generates	C	code	which	causes	segfaults).	We
explicitly	blacklist	that	version	of	the	compiler	for	that	extension.
Packaged	 versions	 will	 include	 .c	 files	 created	 with	 pyrex	 >=
0.9.6	so	 it	doesn’t	effect	 releases,	only	users	 running	 from	 the
source	tree.	(John	Arbash	Meinel,	#276868)

Features
bzr	 is	 now	 compatible	 with	 python-2.6.	 python-2.6	 is	 not	 yet
officially	supported	(nor	released,	tests	were	conducted	with	the
dev	 version	 of	 python-2.6rc2),	 but	 all	 known	 problems	 have
been	fixed.	Feedback	welcome.	(Vincent	Ladeuil,	#269535)

Improvements
bzr	 annotate	 will	 now	 include	 uncommitted	 changes	 from	 the
local	 working	 tree	 by	 default.	 Such	 uncommitted	 changes	 are
given	the	revision	number	they	would	get	if	a	commit	was	done,
followed	with	a	?	to	indicate	that	its	not	actually	known.	(Robert
Collins,	#3439)
bzr	branch	now	accepts	a	--standalone	option,	which	creates	a
standalone	 branch	 regardless	 of	 the	 presence	 of	 shared
repositories.	(Daniel	Watkins)
bzr	 push	 is	 faster	 in	 the	 case	 there	 are	 no	 new	 revisions	 to
push.	 It	 is	 also	 faster	 if	 there	 are	 no	 tags	 in	 the	 local	 branch.
(Andrew	Bennetts)
File	 changes	 during	 a	 commit	 will	 update	 the	 tree	 stat	 cache.
(Robert	Collins)
Location	 aliases	 can	 now	 accept	 a	 trailing	 path.	 (Micheal
Hudson)
New	 hooks	 Lock.hooks	 when	 LockDirs	 are	 acquired	 and
released.	(Robert	Collins,	MartinPool)
Switching	 in	 heavyweight	 checkouts	 uses	 the	master	 branch’s
context,	not	the	checkout’s	context.	(Adrian	Wilkins)
status	on	 large	trees	 is	now	faster,	due	to	optimisations	 in	 the
walkdirs	 code.	 Of	 particular	 note,	 the	 walkdirs	 code	 now
performs	a	temporary	chdir()	while	reading	a	single	directory;	if
your	 platform	 has	 non	 thread-local	 current	 working	 directories
(and	 is	 not	 windows	 which	 has	 its	 own	 implementation),	 this
may	introduce	a	race	condition	during	concurrent	uses	of	bzrlib.
The	bzrlib	CLI	will	not	encounter	this	as	it	is	single	threaded	for
working	tree	operations.	(Robert	Collins)
The	 C	 extensions	 now	 build	 on	 python	 2.4	 (Robert	 Collins,
#271939)
The	-Dhpss	debug	flag	now	reports	the	number	of	smart	server

calls	 per	 medium	 to	 stderr.	 This	 is	 in	 addition	 to	 the	 existing
detailed	logging	to	the	.bzr.log	trace	file.	(Andrew	Bennetts)

Bug	Fixes
Avoid	 random	failures	arising	 from	misinterpreted	 errno	 values
in	_readdir_pyx.read_dir.	(Martin	Pool,	#279381)
Branching	from	a	shared	repository	on	a	smart	server	into	a	new
repository	 now	 preserves	 the	 repository	 format.	 (Andrew
Bennetts,	#269214)
bzr	 log	 now	 accepts	 a	 --change	 option.	 (Vincent	 Ladeuil,
#248427)
bzr	missing	now	accepts	an	 --include-merges	option.	(Vincent
Ladeuil,	#233817)
Don’t	 try	 to	 filter	 (internally)	 ‘.bzr’	 from	 the	 files	 to	be	deleted	 if
it’s	not	there.	(Vincent	Ladeuil,	#272648)
Fix	‘_in_buffer’	AttributeError	when	using	the	-Dhpss	debug	flag.
(Andrew	Bennetts)
Fix	TooManyConcurrentRequests	errors	caused	by	a	connection
failure	when	doing	bzr	pull	or	bzr	merge	 from	a	 bzr+ssh	URL.
(Andrew	Bennetts,	#246233)
Fixed	bzr	st	-r	branch:PATH_TO_BRANCH	where	the	other	branch
is	in	a	different	repository	than	the	current	one.	(Lukáš	Lalinský,
#144421)
Make	the	first	line	of	the	manpage	preamble	a	comment	again.
(David	Futcher,	#242106)
Remove	 use	 of	 optional	 parameter	 in	 GSSAPI	 FTP	 support,
since	 it	 breaks	 newer	 versions	 of	 Python-Kerberos.	 (Jelmer
Vernooij)
The	autopacking	logic	will	now	always	create	a	single	new	pack
from	 all	 of	 the	 content	 which	 it	 deems	 is	 worth	 moving.	 This
avoids	the	‘repack	a	single	pack’	bug	and	should	result	in	better
packing	overall.	(John	Arbash	Meinel,	#242510,	#172644)
Trivial	documentation	fix.	(John	Arbash	Meinel,	#270471)
bzr	switch	and	bzr	bind	will	now	update	the	branch	nickname	if

it	was	previously	set.	All	checkouts	will	now	refer	 to	 the	bound
branch	 for	 a	 nickname	 if	 one	 was	 not	 explicitly	 set.	 (Marius
Kruger,	#230903)

Documentation
Explain	revision/range	identifiers.	(Daniel	Clemente)

API	Changes
CommitBuilder.record_entry_contents	 returns	 one	 more
element	 in	 its	result	 tuple	-	an	optional	 file	system	hash	for	the
hash	cache	to	use.	(Robert	Collins)
dirstate.DirState.update_entry	 will	 now	 only	 calculate	 the
sha1	of	a	file	if	it	is	likely	to	be	needed	in	determining	the	output
of	iter_changes.	(Robert	Collins)
The	 PackRepository,	 RepositoryPackCollection,	 NewPack
classes	 have	 a	 slightly	 changed	 interface	 to	 support	 different
index	 types;	 as	 a	 result	 other	 users	 of	 these	 classes	 need	 to
supply	the	index	types	they	want.	(Robert	Collins)

Testing
bzrlib.tests.repository_implementations	 has	 been	 renamed
to	 bzrlib.tests.per_repository	 so	 that	 we	 have	 a	 common
structure	(and	it	is	shorter).	(John	Arbash	Meinel,	#239343)
LocalTransport.abspath()	 now	 returns	 a	 drive	 letter	 if	 the
transport	 has	 one,	 fixing	 numerous	 tests	 on	 Windows.	 (Mark
Hammond)
PreviewTree	 is	 now	 tested	 via	 intertree_implementations.
(Aaron	Bentley)
The	 full	 test	 suite	 is	 passing	 again	 on	 OSX.	 (Guillermo
Gonzalez,	Vincent	Ladeuil)
The	full	test	suite	passes	when	run	with	-Eallow_debug.	(Andrew
Bennetts)

Internals
A	new	hook,	Branch.open,	has	been	added,	which	is	called	when
branch	objects	are	opened.	(Robert	Collins)
bzrlib.osutils._walkdirs_utf8	 has	 been	 refactored	 into
common	tree	walking,	and	modular	directory	 listing	code	to	aid
future	 performance	 optimisations	 and	 refactoring.	 (Robert
Collins)
bzrlib.trace.debug_memory	can	be	used	to	get	a	quick	memory
dump	 in	 the	 middle	 of	 processing.	 It	 only	 reports	 memory	 if
/proc/PID/status	is	available.	(John	Arbash	Meinel)
New	method	RevisionSpec.as_tree	for	representing	the	revision
specifier	as	a	revision	tree	object.	(Lukáš	Lalinský)
New	 race-free	method	 on	MutableTree	 get_file_with_stat	 for
use	when	generating	stat	cache	results.	(Robert	Collins)
New	win32utils.get_local_appdata_location()	provides	access	to
a	local	directory	for	storing	data.	(Mark	Hammond)
To	 be	 compatible	 with	 python-2.6	 a	 few	 new	 rules	 should	 be
observed.	 ‘message’	 attribute	 can’t	 be	 used	 anymore	 in
exception	 classes,	 ‘sha’	 and	 ‘md5’	 modules	 have	 been
deprecated	 (use	 osutils.[md5|sha]),	 object__init__	 and
object.__new__	 don’t	 accept	 parameters	 anymore.	 (Vincent
Ladeuil)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.7.1
Released: 2008-10-01

No	changes	from	1.7.1rc1.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.7.1rc1
Released: 2008-09-24

This	 release	 just	 includes	 an	 update	 to	 how	 the	 merge	 algorithm
handles	file	paths	when	we	encounter	complex	history.

Features
If	 we	 encounter	 a	 criss-cross	 in	 history,	 use	 information	 from
direct	 Least	 Common	 Ancestors	 to	 resolve	 inventory	 shape
(locations	of	files,	adds,	deletes,	etc).	This	 is	similar	 in	concept
to	using	--lca	for	merging	file	texts,	only	applied	to	paths.	(John
Arbash	Meinel)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.7
Released: 2008-09-23

This	 release	 includes	many	 bug	 fixes	 and	 a	 few	 performance	 and
feature	 improvements.	 bzr	 rm	 will	 now	 scan	 for	 missing	 files	 and
remove	 them,	 like	 how	 bzr	 add	 scans	 for	 unknown	 files	 and	 adds
them.	A	bit	more	polish	has	been	applied	to	the	stacking	code.	The
b-tree	indexing	code	has	been	brought	in,	with	an	eye	on	using	it	in	a
future	repository	format.	There	are	only	minor	installer	changes	since
bzr-1.7rc2.

Features
Some	small	 updates	 to	 the	win32	 installer.	 Include	 localization
files	 found	 in	plugins,	and	 include	 the	builtin	distutils	as	part	of
packaging	qbzr.	(Mark	Hammond)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.7rc2
Released: 2008-09-17

A	 few	 bug	 fixes	 from	 1.7rc1.	 The	 biggest	 change	 is	 a	 new
RemoteBranch.get_stacked_on_url	 rpc.	 This	 allows	 clients	 that	 are
trying	 to	 access	 a	 Stacked	 branch	 over	 the	 smart	 protocol,	 to
properly	connect	to	the	stacked-on	location.

Bug	Fixes
Branching	from	a	shared	repository	on	a	smart	server	into	a	new
repository	 now	 preserves	 the	 repository	 format.	 (Andrew
Bennetts,	#269214)
Branching	 from	 a	 stacked	 branch	 via	 bzr+ssh	 can	 properly
connect	to	the	stacked-on	branch.	(Martin	Pool,	#261315)
bzr	init	no	longer	re-opens	the	BzrDir	multiple	times.	(Vincent
Ladeuil)
Fix	‘_in_buffer’	AttributeError	when	using	the	-Dhpss	debug	flag.
(Andrew	Bennetts)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.7rc1
Released: 2008-09-09

This	 release	candidate	 for	bzr	1.7	has	several	bug	 fixes	and	a	 few
performance	 and	 feature	 improvements.	 bzr	 rm	 will	 now	 scan	 for
missing	files	and	remove	them,	like	how	bzr	add	scans	for	unknown
files	 and	 adds	 them.	 A	 bit	 more	 polish	 has	 been	 applied	 to	 the
stacking	code.	The	b-tree	 indexing	code	has	been	brought	 in,	with
an	eye	on	using	it	in	a	future	repository	format.

Changes
bzr	export	can	now	export	a	subdirectory	of	a	project.	(Robert
Collins)
bzr	 remove-tree	 will	 now	 refuse	 to	 remove	 a	 tree	 with
uncommitted	 changes,	 unless	 the	 --force	 option	 is	 specified.
(Lukáš	Lalinský,	#74101)
bzr	rm	will	now	scan	for	 files	that	are	missing	and	remove	just
them	automatically,	much	as	bzr	add	scans	for	new	files	that	are
not	ignored	and	adds	them	automatically.	(Robert	Collins)

Features
Support	 for	 GSSAPI	 authentication	 when	 using	 FTP	 as
documented	in	RFC2228.	(Jelmer	Vernooij,	#49623)
Add	 support	 for	 IPv6	 in	 the	 smart	 server.	 (Jelmer	 Vernooij,
#165014)

Improvements
A	url	like	log+file:///tmp	will	log	all	access	to	that	Transport	to
.bzr.log,	 which	 may	 help	 in	 debugging	 or	 profiling.	 (Martin
Pool)
bzr	branch	and	 bzr	push	 use	 the	default	 stacking	policy	 if	 the
branch	format	supports	it.	(Aaron	Bentley)
bzr	init	and	bzr	init-repo	will	now	print	out	the	same	as	bzr
info	if	it	completed	successfully.	(Marius	Kruger)
bzr	 uncommit	 logs	 the	 old	 tip	 revision	 id,	 and	 displays	 how	 to
restore	the	branch	to	that	tip	using	bzr	pull.	This	allows	you	to
recover	 if	 you	 realize	 you	uncommitted	 the	wrong	 thing.	 (John
Arbash	Meinel)
Fix	 problems	 in	 accessing	 stacked	 repositories	 over	 bzr://.
(Martin	Pool,	#261315)
SFTPTransport.readv()	was	accidentally	using	 list	+=	 string,
which	 ‘works’,	 but	 adds	 each	 character	 separately	 to	 the	 list,
rather	 than	 using	 list.append(string).	 Fixing	 this	 makes	 the
SFTP	 transport	 a	 little	 bit	 faster	 (~20%)	 and	 use	 a	 bit	 less
memory.	(John	Arbash	Meinel)
When	reading	index	files,	if	we	happen	to	read	the	whole	file	in
a	single	request	treat	it	as	a	_buffer_all	request.	This	happens
most	often	on	small	 indexes	over	 remote	 transports,	where	we
default	 to	 reading	 64kB.	 It	 saves	 a	 round	 trip	 for	 each	 small
index	during	 fetch	operations.	Also,	 if	we	have	read	more	 than
50%	of	an	index	file,	trigger	a	_buffer_all	on	the	next	request.
This	works	around	some	inefficiencies	because	reads	don’t	 fall
neatly	on	page	boundaries,	so	we	would	ignore	those	bytes,	but
request	 them	again	 later.	This	could	 trigger	a	 total	 read	size	of
more	than	the	whole	file.	(John	Arbash	Meinel)

Bug	Fixes
bzr	 rm	 is	 now	 aliased	 to	 bzr	 del	 for	 the	 convenience	 of	 svn
users.	(Robert	Collins,	#205416)
Catch	 the	 infamous	 “select/poll	 returned	 error”	 which	 occurs
when	pycurl	 try	 to	send	a	body	request	 to	an	HTTP/1.0	server
which	 has	 already	 refused	 to	 handle	 the	 request.	 (Vincent
Ladeuil,	#225020)
Fix	 ObjectNotLocked	 errors	 when	 using	 various	 commands
(including	 bzr	 cat	 and	 bzr	 annotate)	 in	 combination	 with	 a
smart	server	URL.	(Andrew	Bennetts,	#237067)
FTPTransport.stat()	 would	 return	 0000	 as	 the	 permission	 bits
for	 the	 containing	 .bzr/	 directory	 (it	 does	 not	 implement
permissions).	 This	 would	 cause	 us	 to	 set	 all	 subdirectories	 to
0700	and	files	to	0600	rather	than	leaving	them	unmodified.	Now
we	ignore	0000	as	the	permissions	and	assume	they	are	invalid.
(John	Arbash	Meinel,	#259855)
Merging	from	a	previously	joined	branch	will	no	longer	cause	a
traceback.	(Jelmer	Vernooij,	#203376)
Pack	operations	on	windows	network	shares	will	work	even	with
large	files.	(Robert	Collins,	#255656)
Running	 bzr	 st	 PATH_TO_TREE	 will	 no	 longer	 suppress	 merge
status.	 Status	 is	 also	 about	 7%	 faster	 on	 mozilla	 sized	 trees
when	the	path	 to	 the	root	of	 the	tree	has	been	given.	Users	of
the	internal	show_tree_status	function	should	be	aware	that	the
show_pending	 flag	 is	 now	 authoritative	 for	 showing	 pending
merges,	as	it	was	originally.	(Robert	Collins,	#225204)
Set	valid	default	_param_name	for	Option	so	that	ListOption	can
embed	‘-‘	in	names.	(Vincent	Ladeuil,	#263249)
Show	 proper	 error	 rather	 than	 traceback	 when	 an	 unknown
revision	 id	 is	 specified	 to	 bzr	 cat-revision.	 (Jelmer	 Vernooij,
#175569)

Trailing	text	in	the	dirstate	file	could	cause	the	C	dirstate	parser
to	try	to	allocate	an	invalid	amount	of	memory.	We	now	properly
check	 and	 test	 for	 parsing	 a	 dirstate	 with	 invalid	 trailing	 data.
(John	Arbash	Meinel,	#186014)
Unexpected	 error	 responses	 from	 a	 smart	 server	 no	 longer
cause	the	client	to	traceback.	(Andrew	Bennetts,	#263527)
Use	a	Windows	api	function	to	get	a	Unicode	host	name,	rather
than	 assuming	 the	 host	 name	 is	 ascii.	 (Mark	Hammond,	 John
Arbash	Meinel,	#256550)
WorkingTree4	 trees	 will	 now	 correctly	 report	 missing-and-new
paths	in	the	output	of	iter_changes.	(Robert	Collins)

Documentation
Updated	developer	documentation.	(Martin	Pool)

API	Changes
Exporters	now	take	4	parameters.	(Robert	Collins)
Tree.iter_changes	will	now	return	False	for	the	content	change
field	when	a	 file	 is	missing	 in	 the	basis	 tree	and	not	present	 in
the	 target	 tree.	 Previously	 it	 returned	 True	 unconditionally.
(Robert	Collins)
The	 deprecated	 Branch.abspath	 and	 unimplemented
Branch.rename_one	 and	 Branch.move	 were	 removed.	 (Jelmer
Vernooij)
BzrDir.clone_on_transport	 implementations	must	 now	accept	 a
stacked_on	parameter.	(Aaron	Bentley)
BzrDir.cloning_metadir	 implementations	 must	 now	 take	 a
require_stacking	parameter.	(Aaron	Bentley)

Testing
addCleanup	 now	 takes	 *arguments	 and	 **keyword_arguments

which	 are	 then	 passed	 to	 the	 cleanup	 callable	 as	 it	 is	 run.	 In
addition,	 addCleanup	 no	 longer	 requires	 that	 the	 callables
passed	to	it	be	unique.	(Jonathan	Lange)
Fix	 some	 tests	 that	 fail	 on	Windows	because	 files	 are	 deleted
while	still	in	use.	(Mark	Hammond)
selftest‘s	 --starting-with	 option	 can	 now	 use	 predefined
prefixes	so	that	one	can	say	bzr	selftest	-s	bp.loom	instead	of
bzr	selftest	-s	bzrlib.plugins.loom.	(Vincent	Ladeuil)
selftest‘s	--starting-with	option	now	accepts	multiple	values.
(Vincent	Ladeuil)

Internals
A	 new	 plugin	 interface,	 bzrlib.log.log_adapters,	 has	 been
added.	 This	 allows	 dynamic	 log	 output	 filtering	 by	 plugins.
(Robert	Collins)
bzrlib.btree_index	 is	 now	 available,	 providing	 a	 b-tree	 index
layer.	 The	 design	 is	 memory	 conservative	 (limited	 memory
cache),	 faster	 to	seek	(approx	100	nodes	per	page,	gives	100-
way	fan	out),	and	stores	compressed	pages	allowing	more	keys
per	page.	(Robert	Collins,	John	Arbash	Meinel)
bzrlib.diff.DiffTree.show_diff	now	skips	changes	where	 the
kind	 is	 unknown	 in	 both	 source	 and	 target.	 (Robert	 Collins,
Aaron	Bentley)
GraphIndexBuilder.add_node	 and	 BTreeBuilder	 have	 been
streamlined	 a	 bit.	 This	 should	 make	 creating	 large	 indexes
faster.	 (In	 benchmarking,	 it	 now	 takes	 less	 time	 to	 create	 a
BTree	 index	 than	 it	 takes	 to	 read	 the	GraphIndex	 one.)	 (John
Arbash	Meinel)
Mail	clients	for	bzr	send	are	now	listed	in	a	registry.	This	allows
plugins	 to	 add	 new	 clients	 by	 registering	 them	 with
bzrlib.mail_client.mail_client_registry.	 All	 of	 the	 built-in
clients	now	use	this	mechanism.	(Neil	Martinsen-Burrell)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.6.1
Released: 2008-09-05

A	 couple	 regressions	 were	 found	 in	 the	 1.6	 release.	 There	 was	 a
performance	issue	when	using	bzr+ssh	to	branch	large	repositories,
and	 some	 problems	 with	 stacking	 and	 rich-root	 capable
repositories.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.6.1rc2
Released: 2008-09-03

Bug	Fixes
Copying	 between	 rich-root	 and	 rich-root-pack	 (and	 vice
versa)	was	accidentally	using	the	inter-model	fetcher,	instead	of
recognizing	 that	 both	 were	 ‘rich	 root’	 formats.	 (John	 Arbash
Meinel,	#264321)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.6.1rc1
Released: 2008-08-29

This	release	fixes	a	few	regressions	found	in	the	1.6	client.	Fetching
changes	 was	 using	 an	 O(N^2)	 buffering	 algorithm,	 so	 for	 large
projects	 it	would	 cause	memory	 thrashing.	There	 is	 also	a	 specific
problem	with	 the	 --1.6-rich-root	 format,	which	prevented	stacking
on	 top	 of	 --rich-root-pack	 repositories,	 and	 could	 allow	 users	 to
accidentally	fetch	experimental	data	(-subtree)	without	representing
it	 properly.	 The	 --1.6-rich-root	 format	 has	 been	 deprecated	 and
users	 are	 recommended	 to	 upgrade	 to	 --1.6.1-rich-root

immediately.	 Also	 we	 re-introduced	 a	 workaround	 for	 users	 who
have	repositories	with	incorrect	nodes	(not	possible	if	you	only	used
official	 releases).	 I	 should	also	clarify	 that	none	of	 this	 is	data	 loss
level	issues,	but	still	sufficient	enough	to	warrant	an	updated	release.

Bug	Fixes
RemoteTransport.readv()	 was	 being	 inefficient	 about	 how	 it
buffered	 the	 readv	 data	 and	 processed	 it.	 It	 would	 keep
appending	 to	 the	same	string	 (causing	many	copies)	and	 then
pop	bytes	 out	 of	 the	 start	 of	 the	 string	 (causing	more	 copies).
With	 this	 patch	 “bzr+ssh://local”	 can	 improve	 dramatically,
especially	for	projects	with	large	files.	(John	Arbash	Meinel)
Revision	 texts	 were	 always	 meant	 to	 be	 stored	 as	 fulltexts.
There	 was	 a	 bug	 in	 a	 bzr.dev	 version	 that	 would	 accidentally
create	 deltas	 when	 copying	 from	 a	 Pack	 repo	 to	 a	 Knit	 repo.
This	has	been	fixed,	but	to	support	those	repositories,	we	know
always	 request	 full	 texts	 for	 Revision	 texts.	 (John	 Arbash
Meinel,	#261339)
The	 previous	 --1.6-rich-root	 format	 used	 an	 incorrect	 xml
serializer,	 which	 would	 accidentally	 support	 fetching	 from	 a
repository	 that	 supported	 subtrees,	 even	 though	 the	 local	 one
would	 not.	 We	 deprecated	 that	 format,	 and	 introduced	 a	 new
one	 that	 uses	 the	 correct	 serializer	 --1.6.1-rich-root.	 (John
Arbash	Meinel,	#262333)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.6
Released: 2008-08-25

Finally,	 the	 long	 awaited	 bzr	 1.6	 has	 been	 released.	 This	 release
includes	 new	 features	 like	 Stacked	 Branches,	 improved	 weave
merge,	and	an	updated	server	protocol	(now	on	v3)	which	will	allow
for	 better	 cross	 version	 compatibility.	 With	 this	 release	 we	 have
deprecated	 Knit	 format	 repositories,	 and	 recommend	 that	 users
upgrade	them,	we	will	continue	to	support	reading	and	writing	them
for	 the	 forseeable	 future,	 but	 we	 will	 not	 be	 tuning	 them	 for
performance	 as	 pack	 repositories	 have	 proven	 to	 be	 better	 at
scaling.	This	will	also	be	the	first	release	to	bundle	TortoiseBzr	in	the
standalone	Windows	installer.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.6rc5
Released: 2008-08-19

Bug	Fixes
Disable	automatic	 detection	of	 stacking	based	on	a	 containing
directory	of	the	target.	It	interacted	badly	with	push,	and	needs	a
bit	more	work	to	get	the	edges	polished	before	it	should	happen
automatically.	(John	Arbash	Meinel,	#259275)	(This	change	was
reverted	when	merged	to	bzr.dev)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.6rc4
Released: 2008-08-18

Bug	Fixes
Fix	 a	 regression	 in	 knit	 =>	 pack	 fetching.	 We	 had	 a	 logic
inversion,	 causing	 the	 fetch	 to	 insert	 fulltexts	 in	 random	order,
rather	than	preserving	deltas.	(John	Arbash	Meinel,	#256757)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.6rc3
Released: 2008-08-14

Changes
Disable	reading	.bzrrules	as	a	per-branch	rule	preferences	file.
The	 feature	 was	 not	 quite	 ready	 for	 a	 full	 release.	 (Robert
Collins)

Improvements
Update	 the	 windows	 installer	 to	 bundle	 TortoiseBzr	 and	 qbzr
into	the	standalone	installer.	This	will	be	the	first	official	windows
release	that	installs	Tortoise	by	default.	(Mark	Hammond)

Bug	Fixes
Fix	 a	 regression	 in	 bzr+http	 support.	 There	 was	 a	 missing
function	 (_read_line)	 that	 needed	 to	 be	 carried	 over	 from
bzr+ssh	support.	(Andrew	Bennetts)
GraphIndex	 objects	 will	 internally	 read	 an	 entire	 index	 if	 more
than	1/20th	of	their	keyspace	is	requested	in	a	single	operation.
This	largely	mitigates	a	performance	regression	in	bzr	log	FILE
and	completely	corrects	the	performance	regression	in	bzr	log.
The	 regression	 was	 caused	 by	 removing	 an	 accomodation
which	 had	 been	 supporting	 the	 index	 format	 in	 use.	 A	 newer
index	 format	 is	 in	 development	 which	 is	 substantially	 faster.
(Robert	Collins)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.6rc2
Released: 2008-08-13

This	 release	 candidate	 has	 a	 few	 minor	 bug	 fixes,	 and	 some
regression	fixes	for	Windows.

Bug	Fixes
bzr	 upgrade	 on	 remote	 branches	 accessed	 via	 bzr://	 and
bzr+ssh://	now	works.	(Andrew	Bennetts)
Change	 the	 get_format_description()	 strings	 for
RepositoryFormatKnitPack5	 et	 al	 to	 be	 single	 line	 messages.
(Aaron	Bentley)
Fix	 for	 a	 regression	 on	 Win32	 where	 we	 would	 try	 to	 call
os.listdir()	 on	 a	 file	 and	 not	 catch	 the	 exception	 properly.
(Windows	 raises	a	different	 exception.)	This	would	manifest	 in
places	 like	 bzr	rm	file	or	 bzr	switch.	 (Mark	Hammond,	 John
Arbash	Meinel)
Inventory.copy()	was	failing	to	set	the	revision	property	for	the
root	entry.	(Jelmer	Vernooij)
sftp	 transport:	 added	 missing	 FileExists	 case	 to
_translate_io_exception	(Christophe	Troestler,	#123475)
The	 help	 for	 bzr	 ignored	 now	 suggests	 bzr	 ls	 --ignored	 for
scripting	use.	(Robert	Collins,	#3834)
The	 default	 annotate	 logic	 will	 now	 always	 assign	 the	 last-
modified	value	of	a	 line	to	one	of	 the	revisions	that	modified	 it,
rather	 than	 a	 merge	 revision.	 This	 would	 happen	 when	 both
sides	 claimed	 to	 have	modified	 the	 line	 resulting	 in	 the	 same
text.	 The	 choice	 is	 arbitrary	 but	 stable,	 so	merges	 in	 different
directions	 will	 get	 the	 same	 results.	 (John	 Arbash	 Meinel,
#232188)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.6rc1
Released: 2008-08-06

This	release	candidate	for	bzr	1.6	solidifies	the	new	branch	stacking
feature.	 Bazaar	 now	 recommends	 that	 users	 upgrade	 all	 knit
repositories,	 because	 later	 formats	 are	 much	 faster.	 However,	 we
plan	to	continue	read/write	and	upgrade	support	for	knit	repostories
for	the	forseeable	future.	Several	other	bugs	and	performance	issues
were	fixed.

Changes
Knit	 format	 repositories	 are	 deprecated	 and	 bzr	 will	 now	 emit
warnings	 whenever	 it	 encounters	 one.	 Use	 bzr	 upgrade	 to
upgrade	knit	repositories	to	pack	format.	(Andrew	Bennetts)

Improvements
bzr	 check	 can	 now	 be	 told	 which	 elements	 at	 a	 location	 it
should	check.	(Daniel	Watkins)
Commit	 now	 supports	 --exclude	 (or	 -x)	 to	 exclude	 some	 files
from	the	commit.	(Robert	Collins,	#3117)
Fetching	 data	 between	 repositories	 that	 have	 the	 same	model
but	 no	 optimised	 fetcher	 will	 not	 reserialise	 all	 the	 revisions,
increasing	performance.	(Robert	Collins,	John	Arbash	Meinel)
Give	a	more	specific	error	when	target	branch	is	not	reachable.
(James	Westby)
Implemented	a	custom	walkdirs_utf8	implementation	for	win32.
This	 uses	 a	 pyrex	 extension	 to	 get	 direct	 access	 to	 the
FindFirstFileW	 style	 apis,	 rather	 than	 using	 listdir	 +	 lstat.
Shows	a	very	strong	improvement	in	commands	like	status	and
diff	which	have	to	iterate	the	working	tree.	Anywhere	from	2x-
6x	faster	depending	on	the	size	of	the	tree	(bigger	trees,	bigger
benefit.)	(John	Arbash	Meinel)
New	 registry	 for	 log	 properties	 handles	 and	 the	 method	 in
LongLogFormatter	to	display	the	custom	properties	returned	by
the	registered	handlers.	(Guillermo	Gonzalez,	#162469)

Bug	Fixes
Add	more	 tests	 that	 stacking	 does	 not	 create	 deltas	 spanning
physical	repository	boundaries.	(Martin	Pool,	#252428)
Better	 message	 about	 incompatible	 repositories.	 (Martin	 Pool,
#206258)
bzr	 branch	 --stacked	 ensures	 the	 destination	 branch	 format
can	support	stacking,	even	if	the	origin	does	not.	(Martin	Pool)
bzr	export	no	longer	exports	.bzrrules.	(Ian	Clatworthy)
bzr	 serve	 --directory=/	 now	 correctly	 allows	 the	 whole
filesystem	to	be	accessed	on	Windows,	not	 just	 the	root	of	 the
drive	that	Python	is	running	from.	(Adrian	Wilkins,	#240910)
Deleting	 directories	 by	 hand	 before	 running	 bzr	 rm	 will	 not
cause	 subsequent	 errors	 in	 bzr	 st	 and	 bzr	 commit.	 (Robert
Collins,	#150438)
Fix	a	test	case	that	was	failing	if	encoding	wasn’t	UTF-8.	(John
Arbash	Meinel,	#247585)
Fix	 “no	 buffer	 space	 available”	 error	 when	 branching	 with	 the
new	 smart	 server	 protocol	 to	 or	 from	 Windows.	 (Andrew
Bennetts,	#246180)
Fixed	 problem	 in	 branching	 from	 smart	 server.	 (#249256,
Michael	Hudson,	Martin	Pool)
Handle	a	file	turning	in	to	a	directory	in	TreeTransform.	(James
Westby,	#248448)

API	Changes
MutableTree.commit	 has	 an	 extra	 optional	 keywork	 parameter
exclude	 that	 will	 be	 unconditionally	 supplied	 by	 the	 command
line	 UI	 -	 plugins	 that	 add	 tree	 formats	 may	 need	 an	 update.
(Robert	Collins)
The	 API	 minimum	 version	 for	 plugin	 compatibility	 has	 been
raised	to	1.6	-	there	are	significant	changes	throughout	the	code
base.	(Robert	Collins)
The	generic	fetch	code	now	uses	three	attributes	on	Repository
objects	 to	 control	 fetch.	 The	 streams	 requested	 are	 controlled
via	 :	 _fetch_order	 and	 _fetch_uses_deltas.	 Setting	 these
appropriately	 allows	 different	 repository	 implementations	 to
recieve	data	in	their	optimial	form.	If	the	_fetch_reconcile	is	set
then	a	 reconcile	 operation	 is	 triggered	at	 the	end	of	 the	 fetch.
(Robert	Collins)
The	 put_on_disk	and	 get_tar_item	methods	 in	 InventoryEntry
were	deprecated.	(Ian	Clatworthy)
Repository.is_shared	 doesn’t	 take	 a	 read	 lock.	 It	 didn’t	 need
one	 in	 the	 first	 place	 (nobody	 cached	 the	 value,	 and
RemoteRepository	wasn’t	taking	one	either).	This	saves	a	round
trip	when	probing	Pack	repositories,	as	they	read	the	pack-names
file	when	 locked.	And	during	probe,	 locking	 the	 repo	 isn’t	 very
useful.	(John	Arbash	Meinel)

Internals
bzrlib.branchbuilder.BranchBuilder	 is	 now	 much	 more
capable	 of	 putting	 together	 a	 real	 history	 without	 having	 to
create	a	full	WorkingTree.	It	is	recommended	that	tests	that	are
not	directly	testing	the	WorkingTree	use	BranchBuilder	 instead.
See	 BranchBuilder.build_snapshot	 or
TestCaseWithMemoryTree.make_branch_builder.	 (John	 Arbash
Meinel)
bzrlib.builtins.internal_tree_files	 broken	 into	 two	 giving	 a
new	 helper	 safe_relpath_files	 -	 used	 by	 the	 new	 exclude
parameter	to	commit.	(Robert	Collins)
Make	 it	 easier	 to	 introduce	 new	 WorkingTree	 formats.	 (Ian
Clatworthy)
The	 code	 for	 exporting	 trees	 was	 refactored	 not	 to	 use	 the
deprecated	InventoryEntry	methods.	(Ian	Clatworthy)
RuleSearchers	 return	 ()	 instead	 of	 []	 now	 when	 there	 are	 no
matches.	(Ian	Clatworthy)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.6beta3
Released: 2008-07-17

This	 release	 adds	 a	 new	 ‘stacked	 branches’	 feature	 allowing
branches	to	share	storage	without	being	in	the	same	repository	or	on
the	 same	 machine.	 (See	 the	 user	 guide	 for	 more	 details.)	 It	 also
adds	 a	 new	 hook,	 improved	 weaves,	 aliases	 for	 related	 locations,
faster	bzr+ssh	push,	and	several	bug	fixes.

Features
New	 pre_change_branch_tip	 hook	 that	 is	 called	 before	 the
branch	 tip	 is	moved,	while	 the	branch	 is	write-locked.	See	 the
User	Reference	for	signature	details.	(Andrew	Bennetts)
Rule-based	preferences	can	now	be	defined	for	selected	files	in
selected	branches,	 allowing	 commands	and	plugins	 to	 provide
custom	behaviour	for	files	matching	defined	patterns.	See	Rule-
based	 preferences	 (part	 of	 Configuring	 Bazaar)	 in	 the	 User
Guide	 and	 bzr	 help	 rules	 for	 more	 information.	 (Ian
Clatworthy)
Sites	may	suggest	a	branch	to	stack	new	branches	on.	(Aaron
Bentley)
Stacked	branches	are	now	supported.	See	bzr	help	branch	and
bzr	help	push.	Branches	must	be	in	the	development1	format	to
stack,	 though	 the	 stacked-on	 branch	 can	 be	 of	 any	 format.
(Robert	Collins)

Improvements
bzr	 export	 --format=tgz	 --root=NAME	 -	 to	 export	 a	 gzipped
tarball	to	stdout;	also	tar	and	tbz2.	(Martin	Pool)
bzr	 (re)merge	 --weave	 will	 now	 use	 a	 standard	 Weave
algorithm,	rather	than	the	annotation-based	merge	it	was	using.
It	does	so	by	building	up	a	Weave	of	the	important	texts,	without
needing	 to	 build	 the	 full	 ancestry.	 (John	 Arbash	 Meinel,
#238895)
bzr	 send	 documents	 and	 better	 supports	 emacsclient	 (proper
escaping	 of	 mail	 headers	 and	 handling	 of	 the	 MUA	 Mew).
(Christophe	Troestler)
Remembered	locations	can	be	specified	by	aliases,	e.g.	:parent,
:public,	:submit.	(Aaron	Bentley)
The	 smart	 protocol	 now	 has	 improved	 support	 for	 setting
branches’	revision	info	directly.	This	makes	operations	like	push
faster.	 The	 new	 request	 method	 name	 is
Branch.set_last_revision_ex.	(Andrew	Bennetts)

Bug	Fixes
Bazaar	is	now	able	to	be	a	client	to	the	web	server	of	IIS	6	and
7.	 The	 broken	 implementations	 of	 RFC822	 in	 Python	 and
RFC2046	 in	 IIS	 combined	 with	 boundary-line	 checking	 in
Bazaar	 previously	 made	 this	 impossible.	 (NB,	 IIS	 5	 does	 not
suffer	from	this	problem).	(Adrian	Wilkins,	#247585)
bzr	log	--long	with	a	ghost	 in	your	mainline	now	handles	that
ghost	properly.	(John	Arbash	Meinel,	#243536)
check	 handles	 the	 split-up	 .bzr	 layout	 correctly,	 so	 no	 longer
requires	a	branch	to	be	present.	(Daniel	Watkins,	#64783)
Clearer	message	about	how	 to	 set	 the	PYTHONPATH	 if	 bzrlib
can’t	be	loaded.	(Martin	Pool,	#205230)
Errors	 about	 missing	 libraries	 are	 now	 shown	 without	 a
traceback,	 and	with	 a	 suggestion	 to	 install	 the	 library.	 The	 full
traceback	 is	 still	 in	 .bzr.log	 and	 can	 be	 shown	 with	 -Derror.
(Martin	Pool,	#240161)
Fetch	 from	 a	 stacked	 branch	 copies	 all	 required	 data.	 (Aaron
Bentley,	#248506)
Handle	urls	such	as	ftp://user@host.com@www.host.com	where
the	user	name	contains	an	@.	(Neil	Martinsen-Burrell,	#228058)
needs_read_lock	 and	 needs_write_lock	 now	 suppress	 an	 error
during	unlock	 if	there	was	an	error	in	the	original	function.	This
helps	most	when	 there	 is	 a	 failure	with	 a	 smart	 server	 action,
since	 often	 the	 connection	 closes	 and	 we	 cannot	 unlock.
(Andrew	Bennetts,	John	Arbash	Meinel,	#125784)
Obsolete	 hidden	 command	 bzr	 fetch	 removed.	 (Martin	 Pool,
#172870)
Raise	 the	 correct	 exception	 when	 doing	 -rbefore:0	 or	 -c0.
(John	Arbash	Meinel,	#239933)
You	 can	 now	 compare	 file	 revisions	 in	Windows	 diff	 programs
from	Cygwin	Bazaar.	(Matt	McClure,	#209281)

ftp://user@host.com@www.host.com

revision_history	now	tolerates	mainline	ghosts	for	Branch	format
6.	(Aaron	Bentley,	#235055)
Set	 locale	 from	 environment	 for	 third	 party	 libs.	 (Martin	 von
Gagern,	#128496)

Documentation
Added	 Using	 stacked	 branches	 to	 the	 User	 Guide.	 (Ian
Clatworthy)
Updated	developer	documentation.	(Martin	Pool)

Testing
-Dmemory	 will	 cause	 /proc/PID/status	 to	 be	 catted	 before	 bzr
exits,	 allowing	 low-key	 analysis	 of	 peak	 memory	 use.	 (Robert
Collins)
TestCaseWithTransport.make_branch_and_tree	 tries	 harder	 to
return	a	tree	with	a	branch	attribute	of	the	right	format.	This	was
preventing	some	 RemoteBranch	 tests	 from	actually	 running	with
RemoteBranch	instances.	(Andrew	Bennetts)

API	Changes
Removed	 Repository.text_store,	 control_store,	 etc.	 Instead,
there	 are	 new	 attributes	 texts,	 inventories,	 revisions,

signatures,	 each	 of	 which	 is	 a	 VersionedFiles.	 See	 the
Repository	docstring	for	more	details.	(Robert	Collins)
Branch.pull	 now	 accepts	 an	 _override_hook_target	 optional
parameter.	If	you	have	a	subclass	of	Branch	that	overrides	pull
then	you	should	add	this	parameter.	(Andrew	Bennetts)
bzrlib.check.check()	 has	 been	 deprecated	 in	 favour	 of	 the
more	 aptly-named	 bzrlib.check.check_branch().	 (Daniel
Watkins)
Tree.print_file	 and	 Repository.print_file	 are	 deprecated.
These	 methods	 are	 bad	 APIs	 because	 they	 write	 directly	 to
sys.stdout.	bzrlib	does	not	use	them	internally,	and	there	are	no
direct	tests	for	them.	(Alexander	Belchenko)

Internals
cat	 command	 no	 longer	 uses	 Tree.print_file()	 internally.
(Alexander	Belchenko)
New	 class	 method
BzrDir.open_containing_tree_branch_or_repository	 which
eases	 the	discovery	of	 the	 tree,	 the	branch	and	 the	 repository
containing	a	given	location.	(Daniel	Watkins)
New	 versionedfile.KeyMapper	 interface	 to	 abstract	 out	 the
access	 to	 underlying	 .knit/.kndx	 etc	 files	 in	 repositories	 with
partitioned	storage.	(Robert	Collins)
Obsolete	 developer-use	 command	 weave-join	 has	 been
removed.	(Robert	Collins)
RemoteToOtherFetcher	 and	 get_data_stream_for_search

removed,	 to	 support	 new	 VersionedFiles	 layering.	 (Robert
Collins)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.6beta2
Released: 2008-06-10

This	 release	 contains	 further	 progress	 towards	 our	 1.6	 goals	 of
shallow	repositories,	and	contains	a	fix	for	some	user-affecting	bugs
in	 the	 repository	 layer.	 Building	working	 trees	 during	 checkout	 and
branch	is	now	faster.

Bug	Fixes
Avoid	 KnitCorrupt	 error	 extracting	 inventories	 from	 some
repositories.	 (The	 data	 is	 not	 corrupt;	 an	 internal	 check	 is
detecting	a	problem	 reading	 from	 the	 repository.)	 (Martin	Pool,
Andrew	Bennetts,	Robert	Collins,	#234748)
bzr	status	was	breaking	if	you	merged	the	same	revision	twice.
(John	Arbash	Meinel,	#235407)
Fix	infinite	loop	consuming	100%	CPU	when	a	connection	is	lost
while	reading	a	response	body	via	the	smart	protocol	v1	or	v2.
(Andrew	Bennetts)
Inserting	a	bundle	which	changes	the	contents	of	a	file	with	no
trailing	end	of	line,	causing	a	knit	snapshot	in	a	‘knits’	repository
will	no	longer	cause	KnitCorrupt.	(Robert	Collins)
RemoteBranch.pull	needs	to	return	the	self._real_branch‘s	pull
result.	 It	 was	 instead	 just	 returning	 None,	 which	 breaks	 bzr
pull.	(John	Arbash	Meinel,	#238149)
Sanitize	branch	nick	before	using	 it	as	an	attachment	 filename
in	bzr	send.	(Lukáš	Lalinský,	#210218)
Squash	 inv_entry.symlink_target	 to	 a	 plain	 string	 when
generating	 DirState	 details.	 This	 prevents	 from	 getting	 a
UnicodeError	when	you	have	symlinks	and	non-ascii	filenames.
(John	Arbash	Meinel,	#135320)

Improvements
Added	 the	 ‘alias’	 command	 to	 set/unset	 and	 display	 aliases.
(Tim	Penhey)
added,	 modified,	 and	 unknowns	 behaviour	made	 consistent	 (all
three	now	quote	paths	where	required).	Added	--null	option	to
added	 and	 modified	 (for	 null-separated	 unknowns,	 use	 ls	 --
unknown	--null)	(Adrian	Wilkins)
Faster	 branching	 (1.09x)	 and	 lightweight	 checkouts	 (1.06x)	 on
large	trees.	(Ian	Clatworthy,	Aaron	Bentley)

Documentation
Added	Bazaar	Zen	section	to	the	User	Guide.	(Ian	Clatworthy)

Testing
Fix	 the	 test	 HTTPServer	 to	 be	 isolated	 from	 chdir	 calls	made
while	 it	 is	 running,	 allowing	 it	 to	 be	 used	 in	 blackbox	 tests.
(Robert	Collins)

API	Changes
WorkingTree.set_parent_(ids/trees)	will	now	filter	out	revisions
which	are	in	the	ancestry	of	other	revisions.	So	if	you	merge	the
same	tree	twice,	or	merge	an	ancestor	of	an	existing	merge,	 it
will	only	 record	 the	newest.	 (If	 you	merge	a	descendent,	 it	will
replace	its	ancestor).	(John	Arbash	Meinel,	#235407)
RepositoryPolicy.__init__	 now	 requires	 stack_on	 and
stack_on_pwd,	 through	 the	 derived	 classes	 do	 not.	 (Aaron
Bentley)

Internals
bzrlib.bzrdir.BzrDir.sprout	 now	 accepts	 stacked	 to	 control
creating	stacked	branches.	(Robert	Collins)
Knit	record	serialisation	is	now	stricter	on	what	it	will	accept,	to
guard	 against	 potential	 internal	 bugs,	 or	 broken	 input.	 (Robert
Collins)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.6beta1
Released: 2008-06-02

Commands	 that	 work	 on	 the	 revision	 history	 such	 as	 push,	 pull,
missing,	uncommit	and	log	are	now	substantially	faster.	This	release
adds	a	translation	of	some	of	the	user	documentation	into	Spanish.
(Contributions	of	other	translations	would	be	very	welcome.)	Bazaar
1.6beta1	adds	a	new	network	protocol	which	is	used	by	default	and
which	allows	for	more	efficient	transfers	and	future	extensions.

Notes	When	Upgrading
There	 is	a	new	version	of	 the	network	protocol	used	 for	bzr://,
bzr+ssh://	 and	 bzr+http://	 connections.	 This	 will	 allow	 more
efficient	 requests	 and	 responses,	 and	 more	 graceful	 fallback
when	 a	 server	 is	 too	 old	 to	 recognise	 a	 request	 from	 a	more
recent	 client.	 Bazaar	 1.6	 will	 interoperate	 with	 0.16	 and	 later
versions,	 but	 servers	 should	 be	 upgraded	 when	 possible.
Bazaar	 1.6	 no	 longer	 interoperates	 with	 0.15	 and	 earlier	 via
these	 protocols.	 Use	 alternatives	 like	 SFTP	 or	 upgrade	 those
servers.	(Andrew	Bennetts,	#83935)

Changes
Deprecation	warnings	will	not	be	suppressed	when	running	bzr
selftest	 so	 that	 developers	 can	 see	 if	 their	 code	 is	 using
deprecated	functions.	(John	Arbash	Meinel)

Features
Adding	-Derror	will	now	display	a	traceback	when	a	plugin	fails
to	load.	(James	Westby)

Improvements
bzr	 branch/push/pull	 -r	 XXX	 now	 have	 a	 helper	 function	 for
finding	 the	 revno	 of	 the	 new	 revision
(Graph.find_distance_to_null).	 This	 should	 make	 something
like	 bzr	branch	-r	-100	 in	a	shared,	no-trees	 repository	much
snappier.	(John	Arbash	Meinel)
bzr	 log	 --short	 -r	 X..Y	 no	 longer	 needs	 to	 access	 the	 full
revision	history.	This	makes	it	noticeably	faster	when	logging	the
last	few	revisions.	(John	Arbash	Meinel)
bzr	 ls	 now	 accepts	 -V	 as	 an	 alias	 for	 --versioned.	 (Jerad
Cramp,	#165086)
bzr	 missing	 uses	 the	 new	 Graph.find_unique_ancestors	 and
Graph.find_differences	 to	determine	missing	 revisions	without
having	 to	 search	 the	 whole	 ancestry.	 (John	 Arbash	 Meinel,
#174625)
bzr	 uncommit	 now	 uses	 partial	 history	 access,	 rather	 than
always	 extracting	 the	 full	 revision	 history	 for	 a	 branch.	 This
makes	 it	 resolve	 the	 appropriate	 revisions	 much	 faster	 (in
testing	it	drops	uncommit	from	1.5s	=>	0.4s).	It	also	means	bzr
log	--short	 is	one	step	closer	to	not	using	full	revision	history.
(John	Arbash	Meinel,	#172649)

Bugfixes
bzr	 merge	 --lca	 should	 handle	 when	 two	 revisions	 have	 no
common	 ancestor	 other	 than	 NULL_REVISION.	 (John	 Arbash
Meinel,	#235715)
bzr	status	was	breaking	if	you	merged	the	same	revision	twice.
(John	Arbash	Meinel,	#235407)
bzr	push	with	 both	 --overwrite	 and	 -r	 NNN	 options	 no	 longer
fails.	(Andrew	Bennetts,	#234229)
Correctly	 track	 the	 base	 URL	 of	 a	 smart	 medium	 when	 using
bzr+http://	 URLs,	 which	 was	 causing	 spurious	 “No	 repository
present”	 errors	 with	 branches	 in	 shared	 repositories	 accessed
over	bzr+http.	(Andrew	Bennetts,	#230550)
Define	 _remote_is_at_least_1_2	 on	 SmartClientMedium	 so	 that
all	 implementations	 have	 the	 attribute.	 Fixes	 ‘PyCurlTransport’
object	 has	 no	 attribute	 ‘_remote_is_at_least_1_2’	 attribute
errors.	(Andrew	Bennetts,	#220806)
Failure	to	delete	an	obsolete	pack	file	should	just	give	a	warning
message,	not	a	fatal	error.	It	may	for	example	fail	if	the	file	is	still
in	use	by	another	process.	(Martin	Pool)
Fix	MemoryError	during	large	fetches	over	HTTP	by	limiting	the
amount	of	data	we	 try	 to	 read	per	 recv	 call.	The	problem	was
observed	 with	 Windows	 and	 a	 proxy,	 but	 might	 affect	 other
environments	as	well.	(Eric	Holmberg,	#215426)
Handle	 old	 merge	 directives	 correctly	 in
Merger.from_mergeable.	 Stricter	 get_parent_map	 requirements
exposed	a	latent	bug	here.	(Aaron	Bentley)
Issue	 a	 warning	 and	 ignore	 passwords	 declared	 in
authentication.conf	 when	 used	 for	 an	 ssh	 scheme	 (sftp	 or
bzr+ssh).	(Vincent	Ladeuil,	#203186)
Make	both	http	implementations	raise	appropriate	exceptions	on
403	Forbidden	when	POSTing	smart	requests.	(Vincent	Ladeuil,

#230223)
Properly	 title	 header	 names	 in	 http	 requests	 instead	 of
capitalizing	them.	(Vincent	Ladeuil,	#229076)
The	 “Unable	 to	 obtain	 lock”	 error	message	now	also	 suggests
using	bzr	break-lock	to	fix	it.	(Martin	Albisetti,	#139202)
Treat	an	encoding	of	‘’	as	ascii;	this	can	happen	when	bzr	is	run
under	vim	on	Mac	OS	X.	(Neil	Martinsen-Burrell)
VersionedFile.make_mpdiffs()	 was	 raising	 an	 exception	 that
wasn’t	in	scope.	(Daniel	Fischer	#235687)

Documentation
Added	 directory	 structure	 and	 started	 translation	 of	 docs	 in
spanish.	(Martin	Albisetti,	Lucio	Albenga)
Incorporate	 feedback	from	Jelmer	Vernooij	and	Neil	Martinsen-
Burrell	on	the	plugin	and	integration	chapters	of	the	User	Guide.
(Ian	Clatworthy)
More	 Bazaar	 developer	 documentation	 about	 packaging	 and
release	process,	 and	about	 use	of	Python	 reprs.	 (Martin	Pool,
Martin	Albisetti)
Updated	Tortise	strategy	document.	(Mark	Hammond)

Testing
bzrlib.tests.adapt_tests	was	broken	and	unused	-	it	has	been
fixed.	(Robert	Collins)
Fix	 the	 test	 HTTPServer	 to	 be	 isolated	 from	 chdir	 calls	made
while	 it	 is	 running,	 allowing	 it	 to	 be	 used	 in	 blackbox	 tests.
(Robert	Collins)
New	 helper	 function	 for	 splitting	 test	 suites
split_suite_by_condition.	(Robert	Collins)

Internals
Branch.missing_revisions	 has	 been	 deprecated.	 Similar
functionality	 can	 be	 obtained	 using
bzrlib.missing.find_unmerged.	 The	 api	 was	 fairly	 broken,	 and
the	 function	 was	 unused,	 so	 we	 are	 getting	 rid	 of	 it.	 (John
Arbash	Meinel)

API	Changes
Branch.abspath	 is	 deprecated;	 use	 the	 Tree	 or	 Transport
instead.	(Martin	Pool)
Branch.update_revisions	 now	 takes	 an	 optional	 Graph	 object.
This	 can	 be	 used	 by	 update_revisions	 when	 it	 is	 checking
ancestry,	 and	 allows	 callers	 to	 prefer	 request	 to	 go	 to	 a	 local
branch.	(John	Arbash	Meinel)
Branch,	Repository,	Tree	and	BzrDir	should	expose	a	Transport
as	an	attribute	 if	 they	have	one,	 rather	 than	having	 it	 indirectly
accessible	 as	 .control_files._transport.	 This	 doesn’t	 add	 a
requirement	 to	 support	 a	 Transport	 in	 cases	where	 it	 was	 not
needed	 before;	 it	 just	 simplifies	 the	 way	 it	 is	 reached.	 (Martin
Pool)
bzr	missing	--mine-only	will	return	status	code	0	if	you	have	no
new	revisions,	but	the	remote	does.	Similarly	for	--theirs-only.
The	new	code	only	 checks	one	 side,	 so	 it	 doesn’t	 know	 if	 the
other	 side	 has	 changes.	 This	 seems	 more	 accurate	 with	 the
request	anyway.	It	also	changes	the	output	to	print	‘[This|Other]
branch	 is	 up	 to	 date.’	 rather	 than	 displaying	 nothing.	 (John
Arbash	Meinel)
LockableFiles.put_utf8,	 put_bytes	 and	 controlfilename	 are
now	deprecated	 in	 favor	of	using	Transport	operations.	 (Martin
Pool)
Many	 methods	 on	 VersionedFile,	 Repository	 and	 in
bzrlib.revision	 deprecated	 before	 bzrlib	 1.5	 have	 been
removed.	(Robert	Collins)
RevisionSpec.wants_revision_history	can	be	set	to	False	for	a
given	 RevisionSpec.	 This	 will	 disable	 the	 existing	 behavior	 of
passing	in	the	full	revision	history	to	self._match_on.	Useful	 for
specs	 that	 don’t	 actually	 need	access	 to	 the	 full	 history.	 (John

Arbash	Meinel)
The	constructors	of	 SmartClientMedium	and	 its	subclasses	now
require	 a	 base	 parameter.	 SmartClientMedium	 implementations
now	 also	 need	 to	 provide	 a	 remote_path_from_transport

method.	(Andrew	Bennetts)
The	 default	 permissions	 for	 creating	 new	 files	 and	 directories
should	 now	 be	 obtained	 from	 BzrDir._get_file_mode()	 and
_get_dir_mode(),	 rather	 than	 from	 LockableFiles.	 The
_set_file_mode	 and	 _set_dir_mode	 variables	 on	 LockableFiles
which	were	advertised	as	a	way	for	plugins	to	control	this	are	no
longer	consulted.	(Martin	Pool)
VersionedFile.join	 is	 deprecated.	 This	 method	 required	 local
instances	of	both	versioned	file	objects	and	was	thus	hostile	to
being	 used	 for	 streaming	 from	 a	 smart	 server.	 The	 new
get_record_stream	 and	 insert_record_stream	 are	 meant	 to
efficiently	replace	this	method.	(Robert	Collins)
WorkingTree.set_parent_(ids/trees)	will	now	filter	out	revisions
which	are	in	the	ancestry	of	other	revisions.	So	if	you	merge	the
same	tree	twice,	or	merge	an	ancestor	of	an	existing	merge,	 it
will	only	 record	 the	newest.	 (If	 you	merge	a	descendent,	 it	will
replace	its	ancestor).	(John	Arbash	Meinel,	#235407)
WorkingTreeFormat2.stub_initialize_remote	 is	 now	 private.
(Martin	Pool)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.5
Released: 2008-05-16

This	 release	 of	 Bazaar	 includes	 several	 updates	 to	 the
documentation,	and	fixes	to	prepare	for	making	rich	root	support	the
default	 format.	Many	 bugs	 have	 been	 squashed,	 including	 fixes	 to
log,	bzr+ssh	inter-operation	with	older	servers.

Changes
Suppress	deprecation	warnings	when	bzrlib	 is	a	 ‘final’	 release.
This	 way	 users	 of	 packaged	 software	 won’t	 be	 bothered	 with
DeprecationWarnings,	 but	 developers	 and	 testers	 will	 still	 see
them.	(John	Arbash	Meinel)

Documentation
Incorporate	 feedback	from	Jelmer	Vernooij	and	Neil	Martinsen-
Burrell	on	the	plugin	and	integration	chapters	of	the	User	Guide.
(Ian	Clatworthy)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.5rc1
Released: 2008-05-09

Changes
Broader	 support	 of	 GNU	 Emacs	 mail	 clients.	 Set
mail_client=emacsclient	 in	your	bazaar.conf	and	 send	will	 pop
the	bundle	in	a	mail	buffer	according	to	the	value	of	mail-user-
agent	variable.	(Xavier	Maillard)

Improvements
Diff	 now	 handles	 revision	 specs	 like	 “branch:”	 and	 “submit:”
more	efficiently.	(Aaron	Bentley,	#202928)
More	friendly	error	given	when	attempt	to	start	the	smart	server
on	an	address	already	in	use.	(Andrea	Corbellini,	#200575)
Pull	completes	much	faster	when	there	is	nothing	to	pull.	(Aaron
Bentley)

Bugfixes
Authentication.conf	 can	 define	 sections	 without	 password.
(Vincent	Ladeuil,	#199440)
Avoid	 muttering	 every	 time	 a	 child	 update	 does	 not	 cause	 a
progress	bar	update.	(John	Arbash	Meinel,	#213771)
Branch.reconcile()	 is	 now	 implemented.	 This	 allows	 bzr

reconcile	 to	 fix	 when	 a	 Branch	 has	 a	 non-canonical	mainline
history.	 bzr	 check	 also	 detects	 this	 condition.	 (John	 Arbash
Meinel,	#177855)
bzr	 log	 -r	 ..X	 bzr://	 was	 failing,	 because	 it	 was	 getting	 a
request	 for	 revision_id=None	 which	 was	 not	 a	 string.	 (John
Arbash	Meinel,	#211661)
bzr	 commit	 now	works	with	Microsoft’s	 FTP	 service.	 (Andreas
Deininger)
Catch	 definitions	 outside	 sections	 in	 authentication.conf.
(Vincent	Ladeuil,	#217650)
Conversion	 from	 non-rich-root	 to	 rich-root(-pack)	 updates
inventory	sha1s,	even	when	bundles	are	used.	(Aaron	Bentley,
#181391)
Conversion	from	non-rich-root	to	rich-root(-pack)	works	correctly
even	 though	 search	 keys	 are	 not	 topologically	 sorted.	 (Aaron
Bentley)
Conversion	 from	 non-rich-root	 to	 rich-root(-pack)	 works	 even
when	a	parent	 revision	has	a	different	 root	 id.	 (Aaron	Bentley,
#177874)
Disable	 strace	 testing	 until	 strace	 is	 fixed	 (see	 bug	 #103133)
and	emit	a	warning	when	selftest	ends	 to	remind	us	of	 leaking
tests.	(Vincent	Ladeuil,	#226769)
Fetching	 all	 revisions	 from	 a	 repository	 does	 not	 cause	 pack
collisions.	(Robert	Collins,	Aaron	Bentley,	#212908)
Fix	 error	 about	 “attempt	 to	 add	 line-delta	 in	 non-delta	 knit”.

(Andrew	Bennetts,	#217701)
Pushing	 a	 branch	 in	 “dirstate”	 format	 (Branch5)	 over	 bzr+ssh
would	 break	 if	 the	 remote	 server	was	 <	 version	 1.2.	 This	was
due	 to	 a	 bug	 in	 the	 RemoteRepository.get_parent_map()
fallback	code.	(John	Arbash	Meinel,	#214894)
Remove	leftover	code	in	bzr_branch	that	inappropriately	creates
a	branch-name	file	in	the	branch	control	directory.	(Martin	Pool)
Set	SO_REUSEADDR	on	server	sockets	of	bzr	serve	 to	avoid
problems	 rebinding	 the	 socket	 when	 starting	 the	 server	 a
second	time.	(John	Arbash	Meinel,	Martin	Pool,	#164288)
Severe	 performance	 degradation	 in	 fetching	 from	 knit
repositories	 to	 knits	 and	 packs	 due	 to	 parsing	 the	 entire
revisions.kndx	on	every	graph	walk	 iteration	 fixed	by	using	 the
Repository.get_graph	API.	There	was	another	regression	in	knit
=>	knit	fetching	which	re-read	the	index	for	every	revision	each
side	had	in	common.	(Robert	Collins,	John	Arbash	Meinel)
When	logging	the	changes	to	a	particular	file,	there	was	a	bug	if
there	were	ghosts	in	the	revision	ancestry.	(John	Arbash	Meinel,
#209948)
xs4all’s	ftp	server	returns	a	temporary	error	when	trying	to	list	an
empty	 directory,	 rather	 than	 returning	 an	 empty	 list.	 Adding	 a
workaround	so	that	we	don’t	get	spurious	failures.	(John	Arbash
Meinel,	#215522)

Documentation
Expanded	 the	User	Guide	 to	 include	new	chapters	on	popular
plugins	and	integrating	Bazaar	into	your	environment.	The	Best
practices	 chapter	 was	 renamed	 to	 Miscellaneous	 topics	 as
suggested	by	community	feedback	as	well.	(Ian	Clatworthy)
Document	outlining	strategies	for	TortoiseBzr.	(Mark	Hammond)
Improved	the	documentation	on	hooks.	(Ian	Clatworthy)
Update	 authentication	 docs	 regarding	 ssh	 agents.	 (Vincent
Ladeuil,	#183705)

Testing
Add	 thread_name_suffix	 parameter	 to
SmartTCPServer_for_testing,	 to	make	 it	 easy	 to	 identify	which
test	 spawned	 a	 thread	 with	 an	 unhandled	 exception.	 (Andrew
Bennetts)
New	 --debugflag/-E	 option	 to	 bzr	 selftest	 for	 setting	 options
for	debugging	tests,	these	are	complementary	to	the	-D	options.
The	-Dselftest_debug	global	option	has	been	replaced	by	the	-
E=allow_debug	option	for	selftest.	(Andrew	Bennetts)
Parameterised	test	 ids	are	preserved	correctly	 to	aid	diagnosis
of	test	failures.	(Robert	Collins,	Andrew	Bennetts)
selftest	 now	 accepts	 –starting-with	 <id>	 to	 load	 only	 the	 tests
whose	 id	 starts	with	 the	one	specified.	This	greatly	 speeds	up
running	the	test	suite	on	a	limited	set	of	tests	and	can	be	used
to	 run	 the	 tests	 for	 a	 single	module,	 a	 single	 class	 or	 even	 a
single	test.	(Vincent	Ladeuil)
The	 test	 suite	 modules	 have	 been	 modified	 to	 define
load_tests()	 instead	 of	 test_suite().	 That	 speeds	 up	 selective
loading	(via	–load-list)	significantly	and	provides	many	examples
on	how	to	migrate	(grep	for	load_tests).	(Vincent	Ladeuil)

Internals
Hooks.install_hook	 is	 now	 deprecated	 in	 favour	 of
Hooks.install_named_hook	 which	 adds	 a	 required	 name

parameter,	 to	 avoid	 having	 to	 call	 Hooks.name_hook.	 (Daniel
Watkins)
Implement	xml8	serializer.	(Aaron	Bentley)
New	 form	 @deprecated_method(deprecated_in(1,	 5,	 0))	 for
making	deprecation	wrappers.	(Martin	Pool)
Repository.revision_parents	 is	 now	 deprecated	 in	 favour	 of
Repository.get_parent_map([revid])[revid].	(Jelmer	Vernooij)
The	 Python	 assert	 statement	 is	 no	 longer	 used	 in	 Bazaar
source,	and	a	test	checks	this.	(Martin	Pool)

API	Changes
bzrlib.status.show_pending_merges	 requires	 the	 repository	 to
be	 locked	 by	 the	 caller.	 Callers	 should	 have	 been	 doing	 it
anyway,	but	 it	will	now	raise	an	exception	 if	 they	do	not.	 (John
Arbash	Meinel)
Repository.get_data_stream,
Repository.get_data_stream_for_search(),
Repository.get_deltas_for_revsions(),
Repository.revision_trees(),
Repository.item_keys_introduced_by()	 no	 longer	 take	 read
locks.	(Aaron	Bentley)
LockableFiles.get_utf8	 and	 .get	 are	 deprecated,	 as	 a	 start
towards	 removing	 LockableFiles	 and	 .control_files	 entirely.
(Martin	Pool)
Methods	 deprecated	 prior	 to	 1.1	 have	 been	 removed.	 (Martin
Pool)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.4
Released: 2008-04-28

This	release	of	Bazaar	includes	handy	improvements	to	the	speed	of
log	 and	 status,	 new	 options	 for	 several	 commands,	 improved
documentation,	 and	 better	 hooks,	 including	 initial	 code	 for	 server-
side	 hooks.	 A	 number	 of	 bugs	 have	 been	 fixed,	 particularly	 in
interoperability	 between	 different	 formats	 or	 different	 releases	 of
Bazaar	over	there	network.	There’s	been	substantial	internal	work	in
both	 the	 repository	 and	 network	 code	 to	 enable	 new	 features	 and
faster	performance.

Bug	Fixes
Pushing	 a	 branch	 in	 “dirstate”	 format	 (Branch5)	 over	 bzr+ssh
would	 break	 if	 the	 remote	 server	was	 <	 version	 1.2.	 This	was
due	 to	 a	 bug	 in	 the	 RemoteRepository.get_parent_map()
fallback	code.	(John	Arbash	Meinel,	Andrew	Bennetts,	#214894)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.4rc2
Released: 2008-04-21

Bug	Fixes
bzr	 log	 -r	 ..X	 bzr://	 was	 failing,	 because	 it	 was	 getting	 a
request	 for	 revision_id=None	 which	 was	 not	 a	 string.	 (John
Arbash	Meinel,	#211661)
Fixed	a	bug	 in	handling	ghost	 revisions	when	 logging	changes
in	a	particular	file.	(John	Arbash	Meinel,	#209948)
Fix	 error	 about	 “attempt	 to	 add	 line-delta	 in	 non-delta	 knit”.
(Andrew	Bennetts,	#205156)
Fixed	performance	degradation	in	fetching	from	knit	repositories
to	 knits	 and	packs	 due	 to	 parsing	 the	 entire	 revisions.kndx	 on
every	 graph	 walk	 iteration	 fixed	 by	 using	 the
Repository.get_graph	API.	There	was	another	regression	in	knit
=>	knit	fetching	which	re-read	the	index	for	every	revision	each
side	had	in	common.	(Robert	Collins,	John	Arbash	Meinel)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.4rc1
Released: 2008-04-11

Changes
bzr	main	script	cannot	be	imported	(Benjamin	Peterson)
On	Linux	bzr	additionally	 looks	 for	plugins	 in	arch-independent
site	directory.	(Toshio	Kuratomi)
The	set_rh	branch	hook	is	now	deprecated.	Please	migrate	any
plugins	 using	 this	 hook	 to	 use	 an	 alternative,	 e.g.
post_change_branch_tip.	(Ian	Clatworthy)
When	a	plugin	cannot	be	 loaded	as	 the	 file	path	 is	not	a	valid
python	module	 name	 bzr	will	 now	 strip	 a	 bzr_	 prefix	 from	 the
front	 of	 the	 suggested	 name,	 as	 many	 plugins	 (e.g.	 bzr-svn)
want	to	be	installed	without	this	prefix.	It	is	a	common	mistake	to
have	a	folder	named	“bzr-svn”	for	that	plugin,	especially	as	this
is	 what	 bzr	 branch	 lp:bzr-svn	 will	 give	 you.	 (James	 Westby,
Andrew	Cowie)
UniqueIntegerBugTracker	 now	 appends	 bug-ids	 instead	 of
joining	them	to	the	base	URL.	Plugins	that	register	bug	trackers
may	need	a	trailing	/	added	to	the	base	URL	if	one	is	not	already
there.	(James	Wesby,	Andrew	Cowie)

Features
Added	 start_commit	 hook	 for	 mutable	 trees.	 (Jelmer	 Vernooij,
#186422)
status	 now	 accepts	 --no-pending	 to	 show	 the	 status	 without
listing	pending	merges,	which	speeds	up	the	command	a	lot	on
large	histories.	(James	Westby,	#202830)
New	post_change_branch_tip	hook	that	is	called	after	the	branch
tip	 is	moved	but	while	 the	 branch	 is	 still	write-locked.	See	 the
User	 Reference	 for	 signature	 details.	 (Ian	 Clatworthy,	 James
Henstridge)
Reconfigure	can	convert	a	branch	to	be	standalone	or	to	use	a
shared	repository.	(Aaron	Bentley)

Improvements
The	 smart	 protocol	 now	 has	 support	 for	 setting	 branches’
revision	 info	 directly.	 This	 should	 make	 operations	 like	 push
slightly	faster,	and	is	a	step	towards	server-side	hooks.	The	new
request	 method	 name	 is	 Branch.set_last_revision_info.
(Andrew	Bennetts)
bzr	 commit	 --fixes	 now	 recognises	 “gnome”	 as	 a	 tag	 by
default.	(James	Westby,	Andrew	Cowie)
bzr	switch	will	attempt	 to	 find	branches	to	switch	 to	relative	 to
the	 current	 branch.	 E.g.	 bzr	 switch	 branchname	 will	 look	 for
current_branch/../branchname.	(Robert	Collins,	Jelmer	Vernooij,
Wouter	van	Heyst)
Diff	is	now	more	specific	about	execute-bit	changes	it	describes
(Chad	Miller)
Fetching	data	over	HTTP	is	a	bit	faster	when	urllib	is	used.	This
is	done	by	forcing	it	to	recv	64k	at	a	time	when	reading	lines	in
HTTP	 headers,	 rather	 than	 just	 1	 byte	 at	 a	 time.	 (Andrew
Bennetts)
Log	–short	 and	–line	are	much	 faster	when	 -r	 is	not	 specified.
(Aaron	Bentley)
Merge	 is	 faster.	 We	 no	 longer	 check	 a	 file’s	 existence
unnecessarily	when	merging	the	execute	bit.	(Aaron	Bentley)
bzr	status	 on	an	explicit	 list	 of	 files	no	 longer	 shows	pending
merges,	 making	 it	 much	 faster	 on	 large	 trees.	 (John	 Arbash
Meinel)
The	launchpad	directory	service	now	warns	the	user	if	they	have
not	 set	 their	 launchpad	 login	 and	 are	 trying	 to	 resolve	 a	 URL
using	 it,	 just	 in	 case	 they	want	 to	 do	 a	write	 operation	with	 it.
(James	Westby)
The	smart	protocol	client	 is	slightly	 faster,	because	 it	now	only
queries	the	server	for	the	protocol	version	once	per	connection.

Also,	 the	HTTP	 transport	will	 now	 automatically	 probe	 for	 and
use	 a	 smart	 server	 if	 one	 is	 present.	 You	 can	 use	 the	 new
nosmart+	 transport	decorator	 to	get	 the	old	behaviour.	 (Andrew
Bennetts)
The	 version	 command	 takes	a	 --short	 option	 to	 print	 just	 the
version	number,	for	easier	use	in	scripts.	(Martin	Pool)
Various	 operations	 with	 revision	 specs	 and	 commands	 that
calculate	 revnos	 and	 revision	 ids	 are	 faster.	 (John	 A.	 Meinel,
Aaron	Bentley)

Bugfixes
Add	 root_client_path	 parameter	 to	 SmartWSGIApp	 and
SmartServerRequest.	 This	 makes	 it	 possible	 to	 publish
filesystem	 locations	 that	 don’t	 exactly	 match	 URL	 paths.
SmartServerRequest	 subclasses	 should	 use	 the	 new
translate_client_path	 and	 transport_from_client_path

methods	when	dealing	with	paths	received	from	a	client	to	take
this	into	account.	(Andrew	Bennetts,	#124089)
bzr	 mv	 a	 b	 can	 be	 now	 used	 also	 to	 rename	 previously
renamed	directories,	not	only	files.	(Lukáš	Lalinský,	#107967)
bzr	uncommit	--local	can	now	remove	revisions	from	the	local
branch	to	be	symmetric	with	bzr	commit	--local.	(John	Arbash
Meinel,	#93412)
Don’t	ask	for	a	password	if	there	is	no	real	terminal.	(Alexander
Belchenko,	#69851)
Fix	a	bug	causing	a	ValueError	crash	in	parse_line_delta_iter
when	 fetching	 revisions	 from	 a	 knit	 to	 pack	 repository	 or	 vice
versa	using	bzr://	(including	over	http	or	ssh).	(#208418,	Andrew
Bennetts,	Martin	Pool,	Robert	Collins)
Fixed	_get_line	in	bzrlib.smart.medium,	which	was	buggy.	Also
fixed	 _get_bytes	 in	 the	 same	 module	 to	 use	 the	 push	 back
buffer.	 These	 bugs	 had	 no	 known	 impact	 in	 normal	 use,	 but
were	problematic	for	developers	working	on	the	code,	and	were
likely	to	cause	real	bugs	sooner	or	later.	(Andrew	Bennetts)
Implement	 handling	 of	 basename	 parameter	 for	 DefaultMail.
(James	Westby)
Incompatibility	 with	 Paramiko	 versions	 newer	 than	 1.7.2	 was
fixed.	(Andrew	Bennetts,	#213425)
Launchpad	 locations	 (lp:	URLs)	can	be	pulled.	 (Aaron	Bentley,
#181945)
Merges	that	add	files	to	deleted	root	directories	complete.	They

do	create	conflicts.	(Aaron	Bentley,	#210092)
vsftp’s	 return	 550	 RNFR	 command	 failed.	 supported.	 (Marcus
Trautwig,	#129786)

Documentation
Improved	 documentation	 on	 send/merge	 relationship.	 (Peter
Schuller)
Minor	fixes	to	the	User	Guide.	(Matthew	Fuller)
Reduced	the	evangelism	in	the	User	Guide.	(Ian	Clatworthy)
Added	Integrating	with	Bazaar	document	for	developers	(Martin
Albisetti)

API	Breaks
Attempting	to	pull	data	from	a	ghost	aware	repository	(e.g.	knits)
into	a	non-ghost	aware	repository	such	as	weaves	will	now	fail	if
there	are	ghosts.	(Robert	Collins)
KnitVersionedFile	 no	 longer	 accepts	 an	 access_mode

parameter,	 and	 now	 requires	 the	 index	 and	 access_method
parameters	to	be	supplied.	A	compatible	shim	has	been	kept	in
the	new	function	knit.make_file_knit.	(Robert	Collins)
Log	 formatters	must	 now	provide	 log_revision	 instead	of	 show
and	 show_merge_revno	 methods.	 The	 latter	 had	 been
deprecated	since	the	0.17	release.	(James	Westby)
LoopbackSFTP	 is	 now	 called	 SocketAsChannelAdapter.	 (Andrew
Bennetts)
osutils.backup_file	is	removed.	(Alexander	Belchenko)
Repository.get_revision_graph	 is	 deprecated,	 with	 no
replacement	 method.	 The	 method	 was	 size(history)	 and	 not
desirable.	(Robert	Collins)
revision.revision_graph	 is	 deprecated,	 with	 no	 replacement
function.	 The	 function	 was	 size(history)	 and	 not	 desirable.
(Robert	Collins)
Transport.get_shared_medium	 is	 deprecated.	 Use
Transport.get_smart_medium	instead.	(Andrew	Bennetts)
VersionedFile	 factories	 now	 accept	 a	 get_scope	 parameter
rather	 than	 using	 a	 call	 to	 transaction_finished,	 allowing	 the
removal	of	the	fixed	list	of	versioned	files	per	repository.	(Robert
Collins)
VersionedFile.annotate_iter	 is	 deprecated.	 While	 in	 principle
this	allowed	lower	memory	use,	all	users	of	annotations	wanted
full	 file	annotations,	and	 there	 is	no	storage	 format	suitable	 for
incremental	line-by-line	annotation.	(Robert	Collins)

VersionedFile.clone_text	 is	 deprecated.	 This	 performance
optimisation	is	no	longer	used	-	reading	the	content	of	a	file	that
is	 undergoing	 a	 file	 level	 merge	 to	 identical	 state	 on	 two
branches	 is	 rare	enough,	and	not	expensive	enough	 to	special
case.	(Robert	Collins)
VersionedFile.clear_cache	 and	 enable_cache	 are	 deprecated.
These	 methods	 added	 significant	 complexity	 to	 the
VersionedFile	 implementation,	 but	 were	 only	 used	 for
optimising	fetches	from	knits	-	which	can	be	done	from	outside
the	 knit	 layer,	 or	 via	 a	 caching	 decorator.	As	 knits	 are	 not	 the
default	format,	the	complexity	is	no	longer	worth	paying.	(Robert
Collins)
VersionedFile.create_empty	 is	 removed.	 This	 method
presupposed	 a	 sensible	 mapping	 to	 a	 transport	 for	 individual
files,	 but	 pack	 backed	 versioned	 files	 have	 no	 such	mapping.
(Robert	Collins)
VersionedFile.get_graph	 is	 deprecated,	 with	 no	 replacement
method.	 The	 method	 was	 size(history)	 and	 not	 desirable.
(Robert	Collins)
VersionedFile.get_graph_with_ghosts	 is	 deprecated,	 with	 no
replacement	 method.	 The	 method	 was	 size(history)	 and	 not
desirable.	(Robert	Collins)
VersionedFile.get_parents	 is	 deprecated,	 please	 use
VersionedFile.get_parent_map.	(Robert	Collins)
VersionedFile.get_sha1	 is	 deprecated,	 please	 use
VersionedFile.get_sha1s.	(Robert	Collins)
VersionedFile.has_ghost	 is	 now	 deprecated,	 as	 it	 is	 both
expensive	and	unused	outside	of	a	single	test.	(Robert	Collins)
VersionedFile.iter_parents	 is	 now	 deprecated	 in	 favour	 of
get_parent_map	which	can	be	used	 to	 instantiate	a	Graph	on	a
VersionedFile.	(Robert	Collins)
VersionedFileStore	 no	 longer	 uses	 the	 transaction	 parameter
given	 to	most	methods;	 amongst	 other	 things	 this	means	 that

the	 get_weave_or_empty	method	 no	 longer	 guarantees	 errors
on	 a	 missing	 weave	 in	 a	 readonly	 transaction,	 and	 no	 longer
caches	 versioned	 file	 instances	 which	 reduces	 memory
pressure	 (but	 requires	more	 careful	management	 by	 callers	 to
preserve	performance).	(Robert	Collins)

Testing
New	-Dselftest_debug	flag	disables	clearing	of	 the	debug	flags
during	tests.	This	is	useful	if	you	want	to	use	e.g.	-Dhpss	to	help
debug	a	failing	test.	Be	aware	that	using	this	feature	is	likely	to
cause	spurious	 test	 failures	 if	used	with	 the	 full	 suite.	 (Andrew
Bennetts)

selftest	 –load-list	 now	 uses	 a	 new	more	 agressive	 test	 loader
that	 will	 avoid	 loading	 unneeded	 modules	 and	 building	 their
tests.	Plugins	can	use	this	new	loader	by	defining	a	 load_tests
function	 instead	 of	 a	 test_suite	 function.	 (a	 forthcoming	 patch
will	provide	many	examples	on	how	to	implement	this).	(Vincent
Ladeuil)

selftest	 –load-list	 now	 does	 some	 sanity	 checks	 regarding
duplicate	 test	 IDs	and	 tests	present	 in	 the	 list	but	not	 found	 in
the	actual	test	suite.	(Vincent	Ladeuil)

Slightly	 more	 concise	 format	 for	 the	 selftest	 progress	 bar,	 so
there’s	more	space	to	show	the	test	name.	(Martin	Pool)

[2500/10884,	1fail,	3miss	in	1m29s]	test_revisionnamespaces.TestRev

The	 test	 suite	 takes	 much	 less	 memory	 to	 run,	 and	 is	 a	 bit
faster.	 This	 is	 done	 by	 clearing	 most	 attributes	 of	 TestCases
after	running	them,	if	they	succeeded.	(Andrew	Bennetts)

Internals
Added	 _build_client_protocol	 to	 _SmartClient.	 (Andrew
Bennetts)
Added	 basic	 infrastructure	 for	 automatic	 plugin	 suggestion.
(Martin	Albisetti)
If	a	LockableFiles	object	is	not	explicitly	unlocked	(for	example
because	of	 a	missing	 try/finally	 block,	 it	will	 give	 a	warning
but	 not	 automatically	 unlock	 itself.	 (Previously	 they	 did.)	 This
sometimes	 caused	 knock-on	 errors	 if	 for	 example	 the	 network
connection	had	already	failed,	and	should	not	be	relied	upon	by
code.	(Martin	Pool,	#109520)
make	dist	target	to	build	a	release	tarball,	and	also	check-dist-
tarball	and	dist-upload-escudero.	(Martin	Pool)
The	 read_response_tuple	 method	 of
SmartClientRequestProtocol*	 classes	 will	 now	 raise
UnknownSmartMethod	when	appropriate,	so	that	callers	don’t	need
to	 try	 distinguish	 unknown	 request	 errors	 from	 other	 errors.
(Andrew	Bennetts)
set_make_working_trees	 is	 now	 implemented	 provided	 on	 all
repository	implementations	(Aaron	Bentley)
VersionedFile	 now	 has	 a	 new	 method	 get_parent_map	 which,
like	Graph.get_parent_map	returns	a	dict	of	key:parents.	(Robert
Collins)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.3.1
Released: 2008-04-09

No	changes	from	1.3.1rc1.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.3.1rc1
Released: 2008-04-04

Bug	Fixes
Fix	a	bug	causing	a	ValueError	crash	in	parse_line_delta_iter
when	 fetching	 revisions	 from	 a	 knit	 to	 pack	 repository	 or	 vice
versa	using	bzr://	(including	over	http	or	ssh).	(#208418,	Andrew
Bennetts,	Martin	Pool,	Robert	Collins)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.3
Released: 2008-03-20

Bazaar	has	become	part	of	the	GNU	project	<http://www.gnu.org>

Many	operations	that	act	on	history,	including	log	and	annotate	are
now	substantially	 faster.	Several	bugs	have	been	 fixed	and	several
new	options	and	features	have	been	added.

http://www.gnu.org

Testing
Avoid	 spurious	 failure	 of	 TestVersion.test_version	 matching
directory	names.	(#202778,	Martin	Pool)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.3rc1
Released: 2008-03-16

Notes	When	Upgrading
The	 backup	 directory	 created	 by	 upgrade	 is	 now	 called
backup.bzr,	not	.bzr.backup.	(Martin	Albisetti)

Changes
A	 new	 repository	 format	 ‘development’	 has	 been	 added.	 This
format	will	 represent	 the	 latest	 ‘in-progress’	 format	 that	 the	bzr
developers	 are	 interested	 in	 getting	 early-adopter	 testing	 and
feedback	 on.	 doc/developers/development-repo.txt	 has
detailed	information.	(Robert	Collins)
BZR_LOG	 environment	 variable	 controls	 location	 of	 .bzr.log
trace	 file.	 User	 can	 suppress	 writing	 messages	 to	 .bzr.log	 by
using	 ‘/dev/null’	 filename	 (on	 Linux)	 or	 ‘NUL’	 (on	Windows).	 If
BZR_LOG	 variable	 is	 not	 defined	 but	 BZR_HOME	 is	 defined
then	default	location	for	.bzr.log	trace	file	is	$BZR_HOME/.bzr.log.
(Alexander	Belchenko,	#106117)
launchpad	 builtin	 plugin	 now	 shipped	 as	 separate	 part	 in
standalone	 bzr.exe,	 installed	 to	 C:\Program

Files\Bazaar\plugins	 directory,	and	standalone	 installer	allows
user	to	skip	installation	of	this	plugin.	(Alexander	Belchenko)
Restore	 auto-detection	 of	 plink.exe	 on	 Windows.	 (Dmitry
Vasiliev)
Version	 number	 is	 now	 shown	 as	 “1.2”	 or	 “1.2pr2”,	 without
zeroed	or	missing	final	fields.	(Martin	Pool)

Features
branch	 and	 checkout	 can	 hard-link	 working	 tree	 files,	 which	 is
faster	and	saves	space.	(Aaron	Bentley)
bzr	send	will	now	also	look	at	the	child_submit_to	setting	in	the
submit	 branch	 to	 determine	 the	 email	 address	 to	 send	 to.
(Jelmer	Vernooij)

Improvements
BzrBranch._lefthand_history	 is	 faster	 on	 pack	 repos.	 (Aaron
Bentley)
Branch6.generate_revision_history	is	faster.	(Aaron	Bentley)
Directory	services	can	now	be	registered,	allowing	special	URLs
to	be	dereferenced	into	real	URLs.	This	is	a	generalization	and
cleanup	of	the	lp:	transport	lookup.	(Aaron	Bentley)
Merge	directives	that	are	automatically	attached	to	emails	have
nicer	filenames,	based	on	branch-nick	+	revno.	(Aaron	Bentley)
push	has	a	 --revision	option,	 to	specify	what	 revision	 to	push
up	to.	(Daniel	Watkins)
Significantly	 reducing	 execution	 time	 and	 network	 traffic	 for
trivial	 case	 of	 running	 bzr	 missing	 command	 for	 two	 identical
branches.	(Alexander	Belchenko)
Speed	 up	 operations	 that	 look	 at	 the	 revision	 graph	 (such	 as
‘bzr	 log’).	 KnitPackRepositor.get_revision_graph	 uses
Graph.iter_ancestry	 to	extract	 the	 revision	history.	This	allows
filtering	ghosts	while	stepping	instead	of	needing	to	peek	ahead.
(John	Arbash	Meinel)
The	 hooks	 command	 lists	 installed	 hooks,	 to	 assist	 in
debugging.	(Daniel	Watkins)
Updates	 to	 how	 annotate	 work.	 Should	 see	 a	 measurable
improvement	 in	 performance	and	memory	 consumption	 for	 file
with	 a	 lot	 of	 merges.	 Also,	 correctly	 handle	 when	 a	 line	 is
introduced	 by	 both	 parents	 (it	 should	 be	 attributed	 to	 the	 first
merge	 which	 notices	 this,	 and	 not	 to	 all	 subsequent	merges.)
(John	Arbash	Meinel)

Bugfixes
Autopacking	 no	 longer	 holds	 the	 full	 set	 of	 inventory	 lines	 in
memory	while	copying.	For	 large	 repositories,	 this	can	amount
to	 hundreds	 of	MB	of	 ram	 consumption.	 (Ian	Clatworthy,	 John
Arbash	Meinel)
Cherrypicking	 when	 using	 --format=merge3	 now	 explictly
excludes	BASE	lines.	(John	Arbash	Meinel,	#151731)
Disable	 plink’s	 interactive	 prompt	 for	 password.	 (#107593,
Dmitry	Vasiliev)
Encode	 command	 line	 arguments	 from	 unicode	 to
user_encoding	before	 invoking	external	mail	 client	 in	bzr	 send
command.	(#139318,	Alexander	Belchenko)
Fixed	 problem	 connecting	 to	 bzr+https://	 servers.	 (#198793,
John	Ferlito)
Improved	 error	 reporting	 in	 the	 Launchpad	 plugin.	 (Daniel
Watkins,	#196618)
Include	quick-start-summary.svg	file	to	python-based	installer(s)
for	Windows.	(#192924,	Alexander	Belchenko)
lca	merge	now	respects	specified	files.	(Aaron	Bentley)
Make	 version-info	 –custom	 imply	 –all.	 (#195560,	 James
Westby)
merge	 --preview	 now	 works	 for	 merges	 that	 add	 or	 modify
symlinks	(James	Henstridge)
Redirecting	 the	output	 from	 bzr	 merge	 (when	 the	 remembered
location	is	used)	now	works.	(John	Arbash	Meinel)
setup.py	script	explicitly	checks	 for	Python	version.	 (Jari	Aalto,
Alexander	Belchenko,	#200569)
UnknownFormatErrors	no	longer	refer	to	branches	regardless	of
kind	of	unknown	format.	(Daniel	Watkins,	#173980)
Upgrade	 bundled	 ConfigObj	 to	 version	 4.5.2,	 which	 properly
quotes	 #	 signs,	 among	 other	 small	 improvements.	 (Matt

Nordhoff,	#86838)
Use	 correct	 indices	 when	 emitting	 LCA	 conflicts.	 This	 fixes
IndexError	errors.	(Aaron	Bentley,	#196780)

Documentation
Explained	how	to	use	version-info	--custom	in	the	User	Guide.
(Neil	Martinsen-Burrell)

API	Breaks
Support	 for	 loading	 plugins	 from	 zip	 files	 and
bzrlib.plugin.load_from_zip()	 function	 are	 deprecated.
(Alexander	Belchenko)

Testing
Added	missing	blackbox	tests	for	modified	(Adrian	Wilkins)
The	branch	interface	tests	were	invalid	for	branches	using	rich-
root	 repositories	because	 the	empty	string	 is	not	a	valid	 file-id.
(Robert	Collins)

Internals
Graph.iter_ancestry	returns	the	ancestry	of	revision	ids.	Similar
to	 Repository.get_revision_graph()	 except	 it	 includes	 ghosts
and	you	can	stop	part-way	through.	(John	Arbash	Meinel)
New	module	tools/package_mf.py	provide	custom	module	finder
for	 python	 packages	 (improves	 standard	 python	 library’s
modulefinder.py)	 used	 by	 setup.py	 script	 while	 building
standalone	bzr.exe.	(Alexander	Belchenko)
New	 remote	 method	 RemoteBzrDir.find_repositoryV2	 adding
support	 for	 detecting	 external	 lookup	 support	 on	 remote
repositories.	This	method	is	now	attempted	first	when	lookup	up
repositories,	 leading	 to	 an	 extra	 round	 trip	 on	 older	 bzr	 smart
servers.	(Robert	Collins)
Repository	 formats	 have	 a	 new	 supported-feature	 attribute
supports_external_lookups	 used	 to	 indicate	 repositories	 which
support	falling	back	to	other	repositories	when	they	have	partial
data.	(Robert	Collins)
Repository.get_revision_graph_with_ghosts	 and
bzrlib.revision.

(common_ancestor,MultipleRevisionSources,common_graph)	have
been	deprecated.	(John	Arbash	Meinel)
Tree.iter_changes	 is	 now	 a	 public	 API,	 replacing	 the	 work-in-
progress	Tree._iter_changes.	The	api	is	now	considered	stable
and	ready	for	external	users.	(Aaron	Bentley)
The	 bzrdir	 format	 registry	 now	 accepts	 an	 alias	 keyword	 to
register_metadir,	used	to	indicate	that	a	format	name	is	an	alias
for	 some	 other	 format	 and	 thus	 should	 not	 be	 reported	 when
describing	the	format.	(Robert	Collins)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.2
Released: 2008-02-15

Bug	Fixes
Fix	failing	test	in	Launchpad	plugin.	(Martin	Pool)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.2rc1
Released: 2008-02-13

Notes	When	Upgrading
Fetching	 via	 the	 smart	 protocol	 may	 need	 to	 reconnect	 once
during	 a	 fetch	 if	 the	 remote	 server	 is	 running	 Bazaar	 1.1	 or
earlier,	 because	 the	 client	 attempts	 to	 use	 more	 efficient
requests	that	confuse	older	servers.	You	may	be	required	to	re-
enter	a	password	or	passphrase	when	this	happens.	This	won’t
happen	 if	 the	 server	 is	 upgraded	 to	 Bazaar	 1.2.	 (Andrew
Bennetts)

Changes
Fetching	via	bzr+ssh	will	no	longer	fill	ghosts	by	default	(this	 is
consistent	with	pack-0.92	fetching	over	SFTP).	(Robert	Collins)
Formatting	of	bzr	plugins	output	is	changed	to	be	more	human-
friendly.	Full	path	of	plugins	locations	will	be	shown	only	with	--
verbose	command-line	option.	(Alexander	Belchenko)
merge	now	prefers	to	use	the	submit	branch,	but	will	fall	back	to
parent	 branch.	 For	 many	 users,	 this	 has	 no	 effect.	 But	 some
users	 who	 pull	 and	 merge	 on	 the	 same	 branch	 will	 notice	 a
change.	 This	 change	makes	 it	 easier	 to	work	 on	 a	 branch	 on
two	 different	 machines,	 pulling	 between	 the	 machines,	 while
merging	from	the	upstream.	merge	--remember	can	now	be	used
to	set	the	submit_branch.	(Aaron	Bentley)

Features
merge	 --preview	 produces	 a	 diff	 of	 the	 changes	merge	 would
make,	but	does	not	actually	perform	the	merge.	(Aaron	Bentley)
New	 smart	 method	 Repository.get_parent_map	 for	 getting
revision	parent	 data.	 This	 returns	 additional	 parent	 information
topologically	adjacent	to	the	requested	data	to	reduce	round	trip
latency	impacts.	(Robert	Collins)
New	 smart	 method,	 Repository.stream_revisions_chunked,	 for
fetching	revision	data	 that	streams	revision	data	via	a	chunked
encoding.	This	avoids	buffering	 large	amounts	of	 revision	data
on	 the	 server	 and	 on	 the	 client,	 and	 sends	 less	 data	 to	 the
server	 to	 request	 the	 revisions.	 (Andrew	 Bennetts,	 Robert
Collins,	#178353)
The	 launchpad	 plugin	 now	 handles	 lp	 urls	 of	 the	 form
lp://staging/,	 lp://demo/,	 lp://dev/	 to	 use	 the	 appropriate
launchpad	instance	to	do	the	resolution	of	the	branch	identities.
This	 is	primarily	of	use	 to	Launchpad	developers,	but	can	also
be	 used	 by	 other	 users	 who	 want	 to	 try	 out	 Launchpad	 as	 a
branch	 location	 without	 messing	 up	 their	 public	 Launchpad
account.	Branches	 that	are	pushed	 to	 the	staging	environment
have	an	expected	lifetime	of	one	day.	(Tim	Penhey)

Improvements
Creating	 a	 new	 branch	 no	 longer	 tries	 to	 read	 the	 entire
revision-history	 unnecessarily	 over	 smart	 server	 operations.
(Robert	Collins)
Fetching	 between	 different	 repository	 formats	 with	 compatible
models	 now	 takes	 advantage	 of	 the	 smart	 method	 to	 stream
revisions.	(Andrew	Bennetts)
The	 --coverage	 option	 is	 now	 global,	 rather	 specific	 to	 bzr
selftest.	(Andrew	Bennetts)
The	register-branch	command	will	now	use	the	public	url	of	the
branch	containing	the	current	directory,	if	one	has	been	set	and
no	explicit	branch	is	provided.	(Robert	Collins)
Tweak	the	reannotate	code	path	to	optimize	the	2-parent	case.
Speeds	up	 bzr	annotate	with	a	pack	repository	by	approx	3:2.
(John	Arbash	Meinel)

Bugfixes
Calculate	 remote	 path	 relative	 to	 the	 shared	 medium	 in
_SmartClient.	 This	 is	 related	 to	 the	 problem	 in	 bug	 #124089.
(Andrew	Bennetts)
Cleanly	handle	connection	errors	in	smart	protocol	version	two,
the	 same	 way	 as	 they	 are	 handled	 by	 version	 one.	 (Andrew
Bennetts)
Clearer	 error	 when	 version-info	 --custom	 is	 used	 without	 --
template	(Lukáš	Lalinský)
Don’t	raise	UnavailableFeature	during	test	setup	when	medusa
is	not	available	or	tearDown	is	never	called	leading	to	nasty	side
effects.	(#137823,	Vincent	Ladeuil)
If	a	plugin’s	test	suite	cannot	be	loaded,	for	example	because	of
a	syntax	error	 in	 the	 tests,	 then	 selftest	 fails,	 rather	 than	 just
printing	a	warning.	(Martin	Pool,	#189771)
List	possible	values	for	BZR_SSH	environment	variable	in	env-
variables	help	topic.	(Alexander	Belchenko,	#181842)
New	 methods	 push_log_file	 and	 pop_log_file	 to	 intercept
messages:	 popping	 the	 log	 redirection	 now	 precisely	 restores
the	previous	state,	which	makes	 it	easier	 to	use	bzr	 log	output
from	other	programs.	TestCaseInTempDir	no	longer	depends	on
a	log	redirection	being	established	by	the	test	framework,	which
lets	 bzr	 tests	 cleanly	 run	 from	 a	 normal	 unittest	 runner.
(#124153,	#124849,	Martin	Pool,	Jonathan	Lange)
pull	--quiet	 is	now	more	quiet,	 in	particular	a	message	 is	no
longer	 printed	 when	 the	 remembered	 pull	 location	 is	 used.
(James	Westby,	#185907)
reconfigure	 can	 safely	 be	 interrupted	 while	 fetching.	 (Aaron
Bentley,	#179316)
reconfigure	 preserves	 tags	 when	 converting	 to	 and	 from
lightweight	checkouts.	(Aaron	Bentley,	#182040)

Stop	 polluting	 /tmp	 when	 running	 selftest.	 (Vincent	 Ladeuil,
#123363)
Switch	 from	 NFKC	 =>	 NFC	 for	 normalization	 checks.	 NFC
allows	a	few	more	characters	which	should	be	considered	valid.
(John	Arbash	Meinel,	#185458)
The	launchpad	plugin	now	uses	the	edge	xmlrpc	server	to	avoid
interacting	 badly	 with	 a	 bug	 on	 the	 launchpad	 side.	 (Robert
Collins)
Unknown	 hostnames	 when	 connecting	 to	 a	 bzr://	 URL	 no
longer	cause	tracebacks.	(Andrew	Bennetts,	#182849)

API	Breaks
Classes	 implementing	 Merge	 types	 like	 Merge3Merger	 must
now	accept	 (and	honour)	a	do_merge	 flag	 in	 their	 constructor.
(Aaron	Bentley)
Repository.add_inventory	 and	 add_revision	 now	 require	 the
caller	 to	 previously	 take	 a	write	 lock	 (and	 start	 a	write	 group.)
(Martin	Pool)

Testing
selftest	 now	accepts	–load-list	 <file>	 to	 load	a	 test	 id	 list.	 This
speeds	 up	 running	 the	 test	 suite	 on	 a	 limited	 set	 of	 tests.
(Vincent	Ladeuil)

Internals
Add	 a	 new	 method	 get_result	 to	 graph	 search	 objects.	 The
resulting	SearchResult	can	be	used	to	recreate	the	search	later,
which	will	be	useful	in	reducing	network	traffic.	(Robert	Collins)
Use	 convenience	 function	 to	 check	 whether	 two	 repository
handles	 are	 referring	 to	 the	 same	 repository	 in
Repository.get_graph.	(Jelmer	Vernooij,	#187162)
Fetching	 now	 passes	 the	 find_ghosts	 flag	 through	 to	 the
InterRepository.missing_revision_ids	 call	 consistently	 for	 all
repository	 types.	 This	 will	 enable	 faster	 missing	 revision
discovery	with	bzr+ssh.	(Robert	Collins)
Fix	 error	 handling	 in	 Repository.insert_data_stream.	 (Lukas
Lalinsky)
InterRepository.missing_revision_ids	 is	 now	 deprecated	 in
favour	 of	 InterRepository.search_missing_revision_ids	 which
returns	 a	 bzrlib.graph.SearchResult	 suitable	 for	 making
requests	from	the	smart	server.	(Robert	Collins)
New	 error	 NoPublicBranch	 for	 commands	 that	 need	 a	 public
branch	to	operate.	(Robert	Collins)
New	 method	 iter_inventories	 on	 Repository	 for	 access	 to
many	 inventories.	This	 is	primarily	used	by	 the	 revision_trees
method,	as	direct	access	to	inventories	is	discouraged.	(Robert
Collins)
New	 method	 next_with_ghosts	 on	 the	 Graph	 breadth-first-
search	 objects	which	will	 split	 out	 ghosts	 and	 present	 parents
into	two	separate	sets,	useful	for	code	which	needs	to	be	aware
of	ghosts	(e.g.	fetching	data	cares	about	ghosts	during	revision
selection).	(Robert	Collins)
Record	 a	 timestamp	 against	 each	 mutter	 to	 the	 trace	 file,
relative	to	the	first	import	of	bzrlib.	(Andrew	Bennetts)

Repository.get_data_stream	 is	 now	 deprecated	 in	 favour	 of
Repository.get_data_stream_for_search	 which	 allows	 less
network	 traffic	 when	 requesting	 data	 streams	 over	 a	 smart
server.	(Robert	Collins)
RemoteBzrDir._get_tree_branch	no	longer	triggers	_ensure_real,
removing	 one	 round	 trip	 on	many	 network	 operations.	 (Robert
Collins)
RemoteTransport’s	 recommended_page_size	method	now	 returns
64k,	 like	 SFTPTransport	 and	 HttpTransportBase.	 (Andrew
Bennetts)
Repository	has	a	new	method	has_revisions	which	signals	 the
presence	of	many	 revisions	by	 returning	a	set	of	 the	 revisions
listed	 which	 are	 present.	 This	 can	 be	 done	 by	 index	 queries
without	 reading	 data	 for	 parent	 revision	 names	 etc.	 (Robert
Collins)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.1
Released: 2008-01-15

(no	changes	from	1.1rc1)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.1rc1
Released: 2008-01-05

Changes
Dotted	revision	numbers	have	been	revised.	Instead	of	growing
longer	with	nested	branches	the	branch	number	just	increases.
(eg	 instead	of	1.1.1.1.1	we	now	report	1.2.1.)	This	helps	scale
long	lived	branches	which	have	many	feature	branches	merged
between	them.	(John	Arbash	Meinel)
The	syntax	 bzr	diff	 branch1	 branch2	 is	 no	 longer	 supported.
Use	bzr	diff	branch1	--new	branch2	instead.	This	change	has
been	made	to	remove	the	ambiguity	where	branch2	 is	 in	 fact	a
specific	file	to	diff	within	branch1.

Features
New	 option	 to	 use	 custom	 template-based	 formats	 in	 bzr

version-info.	(Lukáš	Lalinský)
diff	 ‘–using’	 allows	 an	 external	 diff	 tool	 to	 be	 used	 for	 files.
(Aaron	Bentley)
New	 “lca”	 merge-type	 for	 fast	 everyday	 merging	 that	 also
supports	criss-cross	merges.	(Aaron	Bentley)

Improvements
annotate	 now	 doesn’t	 require	 a	working	 tree.	 (Lukáš	 Lalinský,
#90049)
branch	and	checkout	can	now	use	files	from	a	working	tree	to	to
speed	 up	 the	 process.	 For	 checkout,	 this	 requires	 the	 new	 –
files-from	flag.	(Aaron	Bentley)
bzr	diff	now	sorts	files	in	alphabetical	order.	(Aaron	Bentley)
bzr	diff	 now	works	on	branches	without	working	 trees.	Tree-
less	 branches	 can	 also	 be	 compared	 to	 each	 other	 and	 to
working	trees	using	the	new	diff	options	--old	and	--new.	Diffing
between	branches,	with	or	without	 trees,	now	supports	specific
file	filtering	as	well.	(Ian	Clatworthy,	#6700)
bzr	 pack	 now	 orders	 revision	 texts	 in	 topological	 order,	 with
newest	at	the	start	of	the	file,	promoting	linear	reads	for	bzr	log
and	the	like.	This	partially	fixes	#154129.	(Robert	Collins)
Merge	directives	now	fetch	prerequisites	from	the	target	branch
if	needed.	(Aaron	Bentley)
pycurl	now	handles	digest	authentication.	(Vincent	Ladeuil)
reconfigure	can	now	convert	from	repositories.	(Aaron	Bentley)
-l	is	now	a	short	form	for	--limit	in	log.	(Matt	Nordhoff)
merge	 now	 warns	 when	 merge	 directives	 cause	 cherrypicks.
(Aaron	Bentley)
split	now	supported,	to	enable	splitting	large	trees	into	smaller
pieces.	(Aaron	Bentley)

Bugfixes
Avoid	AttributeError	when	unlocking	a	pack	repository	when	an
error	occurs.	(Martin	Pool,	#180208)
Better	 handle	 short	 reads	 when	 processing	 multiple	 range
requests.	(Vincent	Ladeuil,	#179368)
build_tree	 acceleration	 uses	 the	 correct	 path	 when	 a	 file	 has
been	moved.	(Aaron	Bentley)
commit	 now	succeeds	when	a	 checkout	 and	 its	master	 branch
share	a	repository.	(Aaron	Bentley,	#177592)
Fixed	error	reporting	of	unsupported	timezone	format	 in	log	--
timezone.	(Lukáš	Lalinský,	#178722)
Fixed	 Unicode	 encoding	 error	 in	 ignored	 when	 the	 output	 is
redirected	to	a	pipe.	(Lukáš	Lalinský)
Fix	 traceback	 when	 sending	 large	 response	 bodies	 over	 the
smart	protocol	on	Windows.	(Andrew	Bennetts,	#115781)
Fix	 urlutils.relative_url	 for	 the	 case	 of	 two	 file:///	URLs
pointed	 to	 different	 logical	 drives	 on	 Windows.	 (Alexander
Belchenko,	#90847)
HTTP	 test	 servers	 are	 now	 compatible	 with	 the	 http	 protocol
version	1.1.	(Vincent	Ladeuil,	#175524)
_KnitParentsProvider.get_parent_map	now	handles	requests	for
ghosts	 correctly,	 instead	 of	 erroring	 or	 attributing	 incorrect
parents	to	ghosts.	(Aaron	Bentley)
merge	--weave	--uncommitted	now	works.	(Aaron	Bentley)
pycurl	 authentication	handling	was	broken	and	 incomplete.	Fix
handling	 of	 user:pass	 embedded	 in	 the	 urls.	 (Vincent	 Ladeuil,
#177643)
Files	 inside	 non-directories	 are	 now	handled	 like	 other	 conflict
types.	(Aaron	Bentley,	#177390)
reconfigure	 is	able	 to	convert	 trees	 into	 lightweight	checkouts.
(Aaron	Bentley)

Reduce	 lockdir	 timeout	 to	0	when	 running	 bzr	 serve.	 (Andrew
Bennetts,	#148087)
Test	 that	 the	old	 version_info_format	 functions	still	work,	even
though	 they	 are	 deprecated.	 (John	 Arbash	 Meinel,	 ShenMaq,
#177872)
Transform	failures	no	longer	cause	ImmortalLimbo	errors	(Aaron
Bentley,	#137681)
uncommit	works	even	when	the	commit	messages	of	revisions	to
be	 removed	 use	 characters	 not	 supported	 in	 the	 terminal
encoding.	(Aaron	Bentley)
When	 dumb	 http	 servers	 return	 whole	 files	 instead	 of	 the
requested	ranges,	read	the	remaining	bytes	by	chunks	to	avoid
overflowing	network	buffers.	(Vincent	Ladeuil,	#175886)

Documentation
Minor	 tweaks	 made	 to	 the	 bug	 tracker	 integration
documentation.	(Ian	Clatworthy)
Reference	material	 has	 now	 be	moved	 out	 of	 the	User	Guide
and	 added	 to	 the	 User	 Reference.	 The	 User	 Reference	 has
gained	 4	 sections	 as	 a	 result:	 Authenication	 Settings,
Configuration	Settings,	Conflicts	and	Hooks.	All	help	topics	are
now	 dumped	 into	 text	 format	 in	 the	 doc/en/user-reference
directory	 for	 those	 who	 like	 browsing	 that	 information	 in	 their
editor.	(Ian	Clatworthy)
Using	Bazaar	with	Launchpad	tutorial	added.	(Ian	Clatworthy)

Internals
find_*	 methods	 available	 for	 BzrDirs,	 Branches	 and
WorkingTrees.	(Aaron	Bentley)
Help	 topics	 can	 now	 be	 loaded	 from	 files.	 (Ian	 Clatworthy,
Alexander	Belchenko)
get_parent_map	 now	 always	 provides	 tuples	 as	 its	 output.
(Aaron	Bentley)
Parent	 Providers	 should	 now	 implement	 get_parent_map

returning	 a	 dictionary	 instead	 of	 get_parents	 returning	 a	 list.
Graph.get_parents	 is	 now	 deprecated.	 (John	 Arbash	 Meinel,
Robert	Collins)
Patience	Diff	now	supports	arbitrary	python	objects,	as	 long	as
they	support	hash().	(John	Arbash	Meinel)
Reduce	 selftest	 overhead	 to	 establish	 test	 names	 by
memoization.	(Vincent	Ladeuil)

API	Breaks

Testing
Modules	can	now	customise	their	tests	by	defining	a	load_tests
attribute.	 pydoc

bzrlib.tests.TestUtil.TestLoader.loadTestsFromModule	 for	 the
documentation	on	this	attribute.	(Robert	Collins)
New	helper	function	bzrlib.tests.condition_id_re	which	helps
filter	tests	based	on	a	regular	expression	search	on	the	tests	id.
(Robert	Collins)
New	helper	 function	 bzrlib.tests.condition_isinstance	which
helps	filter	tests	based	on	class.	(Robert	Collins)
New	 helper	 function	 bzrlib.tests.exclude_suite_by_condition
which	 generalises	 the	 exclude_suite_by_re	 function.	 (Robert
Collins)
New	 helper	 function	 bzrlib.tests.filter_suite_by_condition
which	 generalises	 the	 filter_suite_by_re	 function.	 (Robert
Collins)
New	 helper	 method	 bzrlib.tests.exclude_tests_by_re	 which
gives	a	new	TestSuite	that	does	not	contain	tests	from	the	input
that	matched	a	regular	expression.	(Robert	Collins)
New	 helper	 method	 bzrlib.tests.randomize_suite	 which
returns	a	randomized	copy	of	the	input	suite.	(Robert	Collins)
New	 helper	 method	 bzrlib.tests.split_suite_by_re	 which
splits	 a	 test	 suite	 into	 two	 according	 to	 a	 regular	 expression.
(Robert	Collins)
Parametrize	all	http	tests	for	the	transport	implementations,	the
http	 protocol	 versions	 (1.0	 and	 1.1)	 and	 the	 authentication
schemes.	(Vincent	Ladeuil)
The	 exclude_pattern	 and	 random_order	 parameters	 to	 the
function	 bzrlib.tests.filter_suite_by_re	 have	 been
deprecated.	(Robert	Collins)

The	 method	 bzrlib.tests.sort_suite_by_re	 has	 been
deprecated.	It	 is	replaced	by	the	new	helper	methods	added	in
this	release.	(Robert	Collins)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.0
Released: 2007-12-14

Documentation
More	 improvements	 and	 fixes	 to	 the	 User	 Guide.	 (Ian
Clatworthy)
Add	 information	 on	 cherrypicking/rebasing	 to	 the	 User	 Guide.
(Ian	Clatworthy)
Improve	bug	tracker	integration	documentation.	(Ian	Clatworthy)
Minor	edits	to	Bazaar	in	five	minutes	 from	David	Roberts	and
to	 the	 rebasing	section	of	 the	User	Guide	 from	Aaron	Bentley.
(Ian	Clatworthy)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.0rc3
Released: 2007-12-11

Changes
If	 a	 traceback	 occurs,	 users	 are	 now	 asked	 to	 report	 the	 bug
through	 Launchpad	 (https://bugs.launchpad.net/bzr/),	 rather
than	by	mail	to	the	mailing	list.	(Martin	Pool)

https://bugs.launchpad.net/bzr/

Bugfixes
Fix	Makefile	rules	for	doc	generation.	(Ian	Clatworthy,	#175207)
Give	 more	 feedback	 during	 long	 http	 downloads	 by	 making
readv	 deliver	 data	 as	 it	 arrives	 for	 urllib,	 and	 issue	 more
requests	for	pycurl.	High	latency	networks	are	better	handled	by
urllib,	 the	 pycurl	 implementation	 give	 more	 feedback	 but	 also
incur	more	latency.	(Vincent	Ladeuil,	#173010)
Implement	 _make_parents_provider	 on	 RemoteRepository,
allowing	 generating	 bundles	 against	 branches	 on	 a	 smart
server.	(Andrew	Bennetts,	#147836)

Documentation
Improved	user	guide.	(Ian	Clatworthy)
The	 single-page	 quick	 reference	 guide	 is	 now	 available	 as	 a
PDF.	(Ian	Clatworthy)

Internals
readv	urllib	http	implementation	is	now	a	real	iterator	above	the
underlying	socket	and	deliver	data	as	soon	as	it	arrives.	‘get’	still
wraps	its	output	in	a	StringIO.	(Vincent	Ladeuil)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.0rc2
Released: 2007-12-07

Improvements
Added	a	–coverage	option	to	selftest.	(Andrew	Bennetts)
Annotate	 merge	 (merge-type=weave)	 now	 supports
cherrypicking.	(Aaron	Bentley)
bzr	commit	 now	doesn’t	 print	 the	 revision	 number	 twice.	 (Matt
Nordhoff,	#172612)
New	 configuration	 option
bugtracker_<tracker_abbrevation>_url	 to	 define	 locations	 of
bug	 trackers	 that	are	not	directly	supported	by	bzr	or	a	plugin.
The	URL	will	 be	 treated	 as	 a	 template	 and	 {id}	 placeholders
will	be	replaced	by	specific	bug	IDs.	(Lukáš	Lalinský)
Support	 logging	 single	merge	 revisions	with	 short	 and	 line	 log
formatters.	(Kent	Gibson)
User	Guide	enhanced	with	suggested	readability	improvements
from	Matt	Revell	and	corrections	from	John	Arbash	Meinel.	(Ian
Clatworthy)
Quick	Start	Guide	renamed	to	Quick	Start	Card,	moved	down	in
the	catalog,	provided	in	pdf	and	png	format	and	updated	to	refer
to	send	instead	of	bundle.	(Ian	Clatworthy,	#165080)
switch	can	now	be	used	on	heavyweight	checkouts	as	well	as
lightweight	 ones.	 After	 switching	 a	 heavyweight	 checkout,	 the
local	 branch	 is	 a	 mirror/cache	 of	 the	 new	 bound	 branch	 and
uncommitted	 changes	 in	 the	 working	 tree	 are	 merged.	 As	 a
safety	 check,	 if	 there	 are	 local	 commits	 in	 a	 checkout	 which
have	not	been	committed	to	the	previously	bound	branch,	then
switch	 fails	 unless	 the	 --force	 option	 is	 given.	 This	 option	 is
now	 also	 required	 if	 the	 branch	 a	 lightweight	 checkout	 is
pointing	to	has	been	moved.	(Ian	Clatworthy)

Internals
New	-Dhttp	debug	option	reports	http	connections,	requests	and
responses.	(Vincent	Ladeuil)
New	 -Dmerge	 debug	 option,	 which	 emits	 merge	 plans	 for
merge-type=weave.

Bugfixes
Better	error	message	when	 running	 bzr	cat	 on	 a	 non-existant
branch.	(Lukáš	Lalinský,	#133782)
Catch	OSError	 17	 (file	 exists)	 in	 final	 phase	 of	 tree	 transform
and	show	filename	to	user.	(Alexander	Belchenko,	#111758)
Catch	 ShortReadvErrors	 while	 using	 pycurl.	 Also	 make	 readv
more	 robust	 by	allowing	multiple	GET	 requests	 to	be	 issued	 if
too	many	ranges	are	required.	(Vincent	Ladeuil,	#172701)
Check	 for	 missing	 basis	 texts	 when	 fetching	 from	 packs	 to
packs.	(John	Arbash	Meinel,	#165290)
Fall	 back	 to	 showing	 e-mail	 in	 log	 --short/--line	 if	 the
committer/author	has	only	e-mail.	(Lukáš	Lalinský,	#157026)

API	Breaks
Deprecate	 not	 passing	 a	 location	 argument	 to	 commit
reporters’	started	methods.	(Matt	Nordhoff)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	1.0rc1
Released: 2007-11-30

Notes	When	Upgrading
The	default	 repository	 format	 is	now	 pack-0.92.	This	 default	 is
used	when	creating	new	 repositories	with	 init	and	 init-repo,
and	 when	 branching	 over	 bzr+ssh	 or	 bzr+hpss.	 (See
https://bugs.launchpad.net/bugs/164626)

This	 format	can	be	 read	and	written	by	Bazaar	0.92	and	 later,
and	data	can	be	transferred	to	and	from	older	formats.

To	 upgrade,	 please	 reconcile	 your	 repository	 (bzr	 reconcile),
and	then	upgrade	(bzr	upgrade).

pack-0.92	 offers	 substantially	 better	 scaling	 and	 performance
than	 the	 previous	 knits	 format.	 Some	 operations	 are	 slower
where	 the	 code	 already	 had	 bad	 scaling	 characteristics	 under
knits,	 the	 pack	 format	makes	 such	 operations	more	 visible	 as
part	 of	 being	 more	 scalable	 overall.	 We	 will	 correct	 such
operations	over	the	coming	releases	and	encourage	the	filing	of
bugs	 on	 any	 operation	 which	 you	 observe	 to	 be	 slower	 in	 a
packs	repository.	One	particular	case	that	we	do	not	intend	to	fix
is	pulling	data	from	a	pack	repository	into	a	knit	repository	over
a	high	 latency	 link;	downgrading	such	data	requires	reinsertion
of	 the	 file	 texts,	 and	 this	 is	 a	 classic	 space/time	 tradeoff.	 The
current	 implementation	 is	 conservative	 on	 memory	 usage
because	 we	 need	 to	 support	 converting	 data	 from	 any	 tree
without	problems.	(Robert	Collins,	Martin	Pool,	#164476)

https://bugs.launchpad.net/bugs/164626

Changes
Disable	 detection	 of	 plink.exe	 as	 possible	 ssh	 vendor.	 Plink
vendor	 still	 available	 if	 user	 selects	 it	 explicitly	with	BZR_SSH
environment	 variable.	 (Alexander	 Belchenko,	 workaround	 for
bug	#107593)
The	 pack	 format	 is	 now	 accessible	 as	 “pack-0.92”,	 or	 “pack-
0.92-subtree”	 to	enable	 the	subtree	 functions	 (for	example,	 for
bzr-svn).	(Martin	Pool)

Features
New	 authentication.conf	 file	 holding	 the	 password	 or	 other
credentials	 for	 remote	 servers.	This	 can	be	used	 for	 ssh,	 sftp,
smtp	and	other	supported	transports.	(Vincent	Ladeuil)
New	 rich-root	 and	 rich-root-pack	 formats,	 recording	 the	 same
data	 about	 tree	 roots	 that’s	 recorded	 for	 all	 other	 directories.
(Aaron	Bentley,	#164639)
pack-0.92	 repositories	 can	now	be	 reconciled.	 (Robert	Collins,
#154173)
switch	 command	 added	 for	 changing	 the	 branch	 a	 lightweight
checkout	 is	associated	with	and	updating	the	tree	to	reflect	the
latest	content	accordingly.	This	command	was	previously	part	of
the	 BzrTools	 plug-in.	 (Ian	 Clatworthy,	 Aaron	 Bentley,	 David
Allouche)
reconfigure	 command	 can	 now	 convert	 branches,	 trees,	 or
checkouts	to	lightweight	checkouts.	(Aaron	Bentley)

Performance
Commit	updates	the	state	of	the	working	tree	via	a	delta	rather
than	supplying	entirely	new	basis	trees.	For	commit	of	a	single
specified	 file	 this	 reduces	 the	 wall	 clock	 time	 for	 commit	 by
roughly	a	30%.	(Robert	Collins,	Martin	Pool)
Commit	with	many	automatically	found	deleted	paths	no	longer
performs	 linear	scanning	 for	 the	children	of	 those	paths	during
inventory	iteration.	This	should	fix	commit	performance	blowing
out	 when	 many	 such	 paths	 occur	 during	 commit.	 (Robert
Collins,	#156491)
Fetch	with	pack	repositories	will	no	longer	read	the	entire	history
graph.	(Robert	Collins,	#88319)
Revert	 takes	out	an	appropriate	 lock	when	reverting	 to	a	basis
tree,	 and	 does	 not	 read	 the	 basis	 inventory	 twice.	 (Robert
Collins)
Diff	 does	 not	 require	 an	 inventory	 to	 be	 generated	 on	 dirstate
trees.	(Aaron	Bentley,	#149254)
New	 annotate	 merge	 (–merge-type=weave)	 implementation	 is
fast	 on	 versionedfiles	withough	cached	annotations,	 e.g.	 pack-
0.92.	(Aaron	Bentley)

Improvements
bzr	merge	now	warns	when	 it	encounters	a	criss-cross	merge.
(Aaron	Bentley)
bzr	 send	 now	 doesn’t	 require	 the	 target	 e-mail	 address	 to	 be
specified	on	 the	 command	 line	 if	 an	 interactive	e-mail	 client	 is
used.	(Lukáš	Lalinský)
bzr	tags	now	prints	the	revision	number	for	each	tag,	instead	of
the	revision	id,	unless	–show-ids	is	passed.	In	addition,	tags	can
be	 sorted	 chronologically	 instead	 of	 lexicographically	 with	 –
sort=time.	(Adeodato	Simó,	#120231)
Windows	standalone	version	of	bzr	is	able	to	load	system-wide
plugins	 from	 “plugins”	 subdirectory	 in	 installation	 directory.	 In
addition	 standalone	 installer	 write	 to	 the	 registry
(HKLMSOFTWAREBazaar)	 useful	 info	 about	 paths	 and	 bzr
version.	(Alexander	Belchenko,	#129298)

Documentation

Bug	Fixes
A	 progress	 bar	 has	 been	 added	 for	 knitpack	 ->	 knitpack
fetching.	(Robert	Collins,	#157789,	#159147)
Branching	 from	 a	 branch	 via	 smart	 server	 now	 preserves	 the
repository	format.	(Andrew	Bennetts,	#164626)
commit	 is	 now	 able	 to	 invoke	 an	 external	 editor	 in	 a	 non-ascii
directory.	(Daniel	Watkins,	#84043)
Catch	connection	errors	for	ftp.	(Vincent	Ladeuil,	#164567)
check	 no	 longer	 reports	 spurious	 unreferenced	 text	 versions.
(Robert	Collins,	John	A	Meinel,	#162931,	#165071)
Conflicts	 are	 now	 resolved	 recursively	 by	 revert.	 (Aaron
Bentley,	#102739)
Detect	 invalid	 transport	 reuse	 attempts	 by	 catching	 invalid
URLs.	(Vincent	Ladeuil,	#161819)
Deleting	 a	 file	 without	 removing	 it	 shows	 a	 correct	 diff,	 not	 a
traceback.	(Aaron	Bentley)
Do	 no	 use	 timeout	 in	 HttpServer	 anymore.	 (Vincent	 Ladeuil,
#158972).
Don’t	 catch	 the	 exceptions	 related	 to	 the	 http	 pipeline	 status
before	retrying	an	http	request	or	some	programming	errors	may
be	masked.	(Vincent	Ladeuil,	#160012)
Fix	 bzr	 rm	 to	 not	 delete	 modified	 and	 ignored	 files.	 (Lukáš
Lalinský,	#172598)
Fix	 exception	 when	 revisionspec	 contains	 merge	 revisons	 but
log	 formatter	 doesn’t	 support	 merge	 revisions.	 (Kent	 Gibson,
#148908)
Fix	 exception	 when	 ScopeReplacer	 is	 assigned	 to	 before	 any
members	have	been	retrieved.	(Aaron	Bentley)
Fix	multiple	connections	during	checkout	–lightweight.	 (Vincent
Ladeuil,	#159150)
Fix	possible	error	in	insert_data_stream	when	copying	between

pack	 repositories	 over	 bzr+ssh	 or	 bzr+http.
KnitVersionedFile.get_data_stream	 now	 makes	 sure	 that
requested	compression	parents	are	sent	before	any	delta	hunks
that	depend	on	them.	(Martin	Pool,	#164637)
Fix	 typo	 in	 limiting	offsets	coalescing	 for	http,	 leading	 to	whole
files	 being	 downloaded	 instead	 of	 parts.	 (Vincent	 Ladeuil,
#165061)
FTP	server	errors	don’t	error	in	the	error	handling	code.	(Robert
Collins,	#161240)
Give	 a	 clearer	message	when	 a	 pull	 fails	 because	 the	 source
needs	to	be	reconciled.	(Martin	Pool,	#164443)
It	 is	 clearer	 when	 a	 plugin	 cannot	 be	 loaded	 because	 of	 its
name,	 and	 a	 suggestion	 for	 an	 acceptable	 name	 is	 given.
(Daniel	Watkins,	#103023)
Leave	port	as	None	in	transport	objects	if	user	doesn’t	specify	a
port	in	urls.	(vincent	Ladeuil,	#150860)
Make	 sure	 Repository.fetch(self)	 is	 properly	 a	 no-op	 for	 all
Repository	implementations.	(John	Arbash	Meinel,	#158333)
Mark	 .bzr	 directories	 as	 “hidden”	 on	 Windows.	 (Alexander
Belchenko,	#71147)
merge	 --uncommitted	 can	 now	 operate	 on	 a	 single	 file.	 (Aaron
Bentley,	Lukáš	Lalinský,	#136890)
Obsolete	 packs	 are	 now	 cleaned	 up	 by	 pack	 and	 autopack
operations.	(Robert	Collins,	#153789)
Operations	 pulling	 data	 from	 a	 smart	 server	 where	 the
underlying	repositories	are	not	both	annotated/both	unannotated
will	now	work.	(Robert	Collins,	#165304).
Reconcile	now	shows	progress	bars.	(Robert	Collins,	#159351)
RemoteBranch	 was	 not	 initializing
self._revision_id_to_revno_map	properly.	(John	Arbash	Meinel,
#162486)
Removing	 an	 already-removed	 file	 reports	 the	 file	 does	 not
exist.	(Daniel	Watkins,	#152811)
Rename	 on	 Windows	 is	 able	 to	 change	 filename	 case.

(Alexander	Belchenko,	#77740)
Return	 error	 instead	 of	 a	 traceback	 for	 bzr	 log	 -r0.	 (Kent
Gibson,	#133751)
Return	error	instead	of	a	traceback	when	bzr	is	unable	to	create
symlink	 on	 some	 platforms	 (e.g.	 on	 Windows).	 (Alexander
Belchenko,	workaround	for	#81689)
Revert	doesn’t	crash	when	restoring	a	single	file	from	a	deleted
directory.	(Aaron	Bentley)
Stderr	 output	 via	 logging	 mechanism	 now	 goes	 through
encoded	wrapper	and	no	more	uses	utf-8,	but	terminal	encoding
instead.	So	all	unicode	strings	now	should	be	readable	 in	non-
utf-8	terminal.	(Alexander	Belchenko,	#54173)
The	error	message	when	 move	--after	should	be	used	makes
how	to	do	so	clearer.	(Daniel	Watkins,	#85237)
Unicode-safe	output	from	bzr	info.	The	output	will	be	encoded
using	the	terminal	encoding	and	unrepresentable	characters	will
be	replaced	by	‘?’.	(Lukáš	Lalinský,	#151844)
Working	 trees	are	no	 longer	created	when	pushing	 into	a	 local
no-trees	repo.	(Daniel	Watkins,	#50582)
Upgrade	 util/configobj	 to	 version	 4.4.0.	 (Vincent	 Ladeuil,
#151208).
Wrap	medusa	ftp	test	server	as	an	FTPServer	feature.	(Vincent
Ladeuil,	#157752)

API	Breaks
osutils.backup_file	 is	 deprecated.	 Actually	 it’s	 not	 used	 in
bzrlib	during	very	long	time.	(Alexander	Belchenko)
The	 return	 value	 of
VersionedFile.iter_lines_added_or_present_in_versions	 has
been	changed.	Previously	it	was	an	iterator	of	lines,	now	it	is	an
iterator	of	(line,	version_id)	tuples.	This	change	has	been	made
to	aid	reconcile	and	fetch	operations.	(Robert	Collins)
bzrlib.repository.get_versioned_file_checker	 is	 now	 private.
(Robert	Collins)
The	Repository	format	registry	default	has	been	removed;	it	was
previously	obsoleted	by	the	bzrdir	format	default,	which	implies
a	default	repository	format.	(Martin	Pool)

Internals
Added	 ContainerSerialiser	 and	 ContainerPushParser	 to
bzrlib.pack.	 These	 classes	 provide	more	 convenient	 APIs	 for
generating	 and	 parsing	 containers	 from	 streams	 rather	 than
from	files.	(Andrew	Bennetts)
New	module	lru_cache	providing	a	cache	for	use	by	tasks	that
need	 semi-random	 access	 to	 large	 amounts	 of	 data.	 (John	 A
Meinel)
InventoryEntry.diff	 is	 now	 deprecated.	 Please	 use	 diff.DiffTree
instead.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	0.92
Released: 2007-11-05

Changes
New	uninstaller	on	Win32.	(Alexander	Belchenko)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	0.92rc1
Released: 2007-10-29

Changes
bzr	now	returns	exit	code	4	if	an	internal	error	occurred,	and	3	if
a	normal	error	occurred.	(Martin	Pool)
pull,	 merge	 and	 push	 will	 no	 longer	 silently	 correct	 some
repository	 index	 errors	 that	 occured	 as	 a	 result	 of	 the	Weave
disk	format.	Instead	the	reconcile	command	needs	to	be	run	to
correct	those	problems	if	 they	exist	(and	it	has	been	able	to	fix
most	 such	problems	since	bzr	0.8).	Some	new	problems	have
been	identified	during	this	release	and	you	should	run	bzr	check
once	on	every	repository	to	see	if	you	need	to	reconcile.	If	you
cannot	 pull	 or	 merge	 from	 a	 remote	 repository	 due	 to
mismatched	 parent	 errors	 -	 a	 symptom	 of	 index	 errors	 -	 you
should	 simply	 take	 a	 full	 copy	 of	 that	 remote	 repository	 to	 a
clean	directory	outside	any	local	repositories,	then	run	reconcile
on	 it,	 and	 finally	 pull	 from	 it	 locally.	 (And	 naturally	 email	 the
repositories	owner	 to	 ask	 them	 to	upgrade	and	 run	 reconcile).
(Robert	Collins)

Features
New	 knitpack-experimental	 repository	 format.	 This	 is
interoperable	with	the	dirstate-tags	format	but	uses	a	smarter
storage	 design	 that	 greatly	 speeds	 up	 many	 operations,	 both
local	and	remote.	This	new	format	can	be	used	as	an	option	to
the	 init,	 init-repository	 and	 upgrade	 commands.	 (Robert
Collins)
For	 users	 of	 bzr-svn	 (and	 those	 testing	 the	 prototype	 subtree
support)	 that	 wish	 to	 try	 packs,	 a	 new	 knitpack-subtree-

experimental	format	has	also	been	added.	This	is	interoperable
with	the	dirstate-subtrees	format.	(Robert	Collins)
New	reconfigure	command.	(Aaron	Bentley)
New	 revert	 --forget-merges	 command,	 which	 removes	 the
record	 of	 a	 pending	 merge	 without	 affecting	 the	 working	 tree
contents.	(Martin	Pool)
New	 bzr_remote_path	configuration	variable	allows	finer	control
of	remote	bzr	locations	than	BZR_REMOTE_PATH	environment
variable.	(Aaron	Bentley)
New	 launchpad-login	command	to	 tell	Bazaar	your	Launchpad
user	 ID.	 This	 can	 then	 be	 used	 by	 other	 functions	 of	 the
Launchpad	plugin.	(James	Henstridge)

Performance
Commit	in	quiet	mode	is	now	slightly	faster	as	the	information	to
output	is	no	longer	calculated.	(Ian	Clatworthy)
Commit	 no	 longer	 checks	 for	 new	 text	 keys	 during	 insertion
when	 the	 revision	 id	 was	 deterministically	 unique.	 (Robert
Collins)
Committing	a	change	which	is	not	a	merge	and	does	not	change
the	number	of	files	in	the	tree	is	faster	by	utilising	the	data	about
whether	files	are	changed	to	determine	if	the	tree	is	unchanged
rather	 than	 recalculating	 it	 at	 the	 end	 of	 the	 commit	 process.
(Robert	Collins)
Inventory	 serialisation	 no	 longer	 double-sha’s	 the	 content.
(Robert	Collins)
Knit	 text	 reconstruction	now	avoids	making	 copies	of	 the	 lines
list	 for	 interim	 texts	 when	 building	 a	 single	 text.	 The	 new
apply_delta	 method	 on	 KnitContent	 aids	 this	 by	 allowing
modification	 of	 the	 revision	 id	 such	 objects	 represent.	 (Robert
Collins)
Pack	 indices	 are	 now	 partially	 parsed	 for	 specific	 key	 lookup
using	a	bisection	approach.	(Robert	Collins)
Partial	 commits	 are	 now	 approximately	 40%	 faster	 by	walking
over	 the	 unselected	 current	 tree	 more	 efficiently.	 (Robert
Collins)
XML	 inventory	 serialisation	 takes	 20%	 less	 time	 while	 being
stricter	about	the	contents.	(Robert	Collins)
Graph	heads()	queries	have	been	fixed	to	no	longer	access	all
history	unnecessarily.	(Robert	Collins)

Improvements
bzr+https://	 smart	 server	 across	 https	 now	 supported.	 (John
Ferlito,	Martin	Pool,	#128456)
Mutt	 is	 now	 a	 supported	 mail	 client;	 set	 mail_client=mutt	 in
your	bazaar.conf	and	send	will	use	mutt.	(Keir	Mierle)
New	 option	 -c/--change	 for	 merge	 command	 for	 cherrypicking
changes	from	one	revision.	(Alexander	Belchenko,	#141368)
Show	 encodings,	 locale	 and	 list	 of	 plugins	 in	 the	 traceback
message.	(Martin	Pool,	#63894)
Experimental	 directory	 formats	 can	 now	 be	 marked	 with
experimental	=	True	during	registration.	(Ian	Clatworthy)

Documentation
New	Bazaar	in	Five	Minutes	guide.	(Matthew	Revell)
The	hooks	reference	documentation	is	now	converted	to	html	as
expected.	(Ian	Clatworthy)

Bug	Fixes
Connection	error	reporting	for	the	smart	server	has	been	fixed	to
display	 a	 user	 friendly	 message	 instead	 of	 a	 traceback.	 (Ian
Clatworthy,	#115601)
Make	 sure	 to	 use	 O_BINARY	 when	 opening	 files	 to	 check	 their
sha1sum.	 (Alexander	 Belchenko,	 John	 Arbash	 Meinel,
#153493)
Fix	a	problem	with	Win32	handling	of	 the	executable	bit.	 (John
Arbash	Meinel,	#149113)
bzr+ssh://	and	sftp://	URLs	that	do	not	specify	ports	explicitly
no	longer	assume	that	means	port	22.	This	allows	people	using
OpenSSH	 to	 override	 the	 default	 port	 in	 their	 ~/.ssh/config	 if
they	 wish.	 This	 fixes	 a	 bug	 introduced	 in	 bzr	 0.91.	 (Andrew
Bennetts,	#146715)
Commands	 reporting	 exceptions	 can	 now	 be	 profiled	 and	 still
have	 their	 data	 correctly	dumped	 to	a	 file.	For	example,	a	 bzr
commit	with	 no	 changes	 still	 reports	 the	 operation	 as	 pointless
but	 doing	 so	 no	 longer	 throws	 away	 the	 profiling	 data	 if	 this
command	is	run	with	--lsprof-file	callgrind.out.ci	say.	(Ian
Clatworthy)
Fallback	to	ftp	when	paramiko	is	not	 installed	and	sftp	can’t	be
used	 for	 tests/commands	 so	 that	 the	 test	 suite	 is	 still	 usable
without	paramiko.	(Vincent	Ladeuil,	#59150)
Fix	commit	ordering	in	corner	case.	(Aaron	Bentley,	#94975)
Fix	long	standing	bug	in	partial	commit	when	there	are	renames
left	in	tree.	(Robert	Collins,	#140419)
Fix	selftest	semi-random	noise	during	http	related	tests.	(Vincent
Ladeuil,	#140614)
Fix	 typo	 in	 ftp.py	 making	 the	 reconnection	 fail	 on	 temporary
errors.	(Vincent	Ladeuil,	#154259)
Fix	failing	test	by	comparing	real	paths	to	cover	the	case	where

the	 TMPDIR	 contains	 a	 symbolic	 link.	 (Vincent	 Ladeuil,
#141382).
Fix	 log	 against	 smart	 server	 branches	 that	 don’t	 support	 tags.
(James	Westby,	#140615)
Fix	 pycurl	 http	 implementation	 by	 defining	 error	 codes	 from
pycurl	 instead	 of	 relying	 on	 an	 old	 curl	 definition.	 (Vincent
Ladeuil,	#147530)
Fix	 ‘unprintable	error’	message	when	displaying	BzrCheckError
and	 some	 other	 exceptions	 on	 Python	 2.5.	 (Martin	 Pool,
#144633)
Fix	Inventory.copy()	and	add	test	for	it.	(Jelmer	Vernooij)
Handles	 default	 value	 for	 ListOption	 in	 cmd_commit.	 (Vincent
Ladeuil,	#140432)
HttpServer	 and	 FtpServer	 need	 to	 be	 closed	 properly	 or	 a
listening	socket	will	remain	opened.	(Vincent	Ladeuil,	#140055)
Monitor	the	.bzr	directory	created	in	the	top	level	test	directory	to
detect	leaking	tests.	(Vincent	Ladeuil,	#147986)
The	 basename,	 not	 the	 full	 path,	 is	 now	 used	when	 checking
whether	the	profiling	dump	file	begins	with	callgrind.out	or	not.
This	 fixes	 a	 bug	 reported	 by	 Aaron	 Bentley	 on	 IRC.	 (Ian
Clatworthy)
Trivial	fix	for	invoking	command	reconfigure	without	arguments.
(Rob	Weir,	#141629)
WorkingTree.rename_one	will	now	 raise	an	error	 if	normalisation
of	 the	 new	 path	 causes	 bzr	 to	 be	 unable	 to	 access	 the	 file.
(Robert	Collins)
Correctly	 detect	 a	 NoSuchFile	 when	 using	 a	 filezilla	 server.
(Gary	van	der	Merwe)

API	Breaks
bzrlib.index.GraphIndex	now	 requires	a	size	parameter	 to	 the
constructor,	for	enabling	bisection	searches.	(Robert	Collins)
CommitBuilder.record_entry_contents	 now	 requires	 the	 root
entry	of	a	tree	be	supplied	to	it,	previously	failing	to	do	so	would
trigger	a	deprecation	warning.	(Robert	Collins)
KnitVersionedFile.add*	 will	 no	 longer	 cache	 added	 records
even	 when	 enable_cache()	 has	 been	 called	 -	 the	 caching
feature	 is	 now	 exclusively	 for	 reading	 existing	 data.	 (Robert
Collins)
ReadOnlyLockError	 is	 deprecated;	 LockFailed	 is	 usually	 more
appropriate.	(Martin	Pool)
Removed	 bzrlib.transport.TransportLogger	 -	 please	 see	 the
new	trace+	transport	instead.	(Robert	Collins)
Removed	 previously	 deprecated	 varargs	 interface	 to
TestCase.run_bzr	 and	 deprecated	 methods	 TestCase.capture
and	TestCase.run_bzr_captured.	(Martin	Pool)
Removed	 previous	 deprecated	 basis_knit	 parameter	 to	 the
KnitVersionedFile	constructor.	(Robert	Collins)
Special	 purpose	method	 TestCase.run_bzr_decode	 is	moved	 to
the	test_non_ascii	class	that	needs	it.	(Martin	Pool)
The	 class	 bzrlib.repofmt.knitrepo.KnitRepository3	 has	 been
folded	 into	 KnitRepository	 by	 parameters	 to	 the	 constructor.
(Robert	Collins)
The	 VersionedFile	 interface	 now	 allows	 content	 checks	 to	 be
bypassed	by	supplying	check_content=False.	This	saves	nearly
30%	 of	 the	minimum	 cost	 to	 store	 a	 version	 of	 a	 file.	 (Robert
Collins)
Tree’s	with	bad	state	such	as	files	with	no	length	or	sha	will	no
longer	be	silently	accepted	by	the	repository	XML	serialiser.	To

serialise	 inventories	 without	 such	 data,	 pass	 working=True	 to
write_inventory.	(Robert	Collins)
VersionedFile.fix_parents	 has	 been	 removed	 as	 a	 harmful
API.	 VersionedFile.join	will	no	 longer	accept	different	parents
on	 either	 side	 of	 a	 join	 -	 it	 will	 either	 ignore	 them,	 or	 error,
depending	 on	 the	 implementation.	 See	 notes	 when	 upgrading
for	more	information.	(Robert	Collins)

Internals
bzrlib.transport.Transport.put_file	 now	 returns	 the	 number
of	bytes	put	by	the	method	call,	to	allow	avoiding	stat-after-write
or	housekeeping	in	callers.	(Robert	Collins)
bzrlib.xml_serializer.Serializer	 is	 now	 responsible	 for
checking	 that	mandatory	attributes	are	present	 on	 serialisation
and	 deserialisation.	 This	 fixes	 some	 holes	 in	 API	 usage	 and
allows	 better	 separation	 between	 physical	 storage	 and	 object
serialisation.	(Robert	Collins)
New	 class	 bzrlib.errors.InternalBzrError	 which	 is	 just	 a
convenient	 shorthand	 for	 deriving	 from	 BzrError	 and	 setting
internal_error	=	True.	(Robert	Collins)
New	 method
bzrlib.mutabletree.update_to_one_parent_via_delta	 for
moving	 the	state	of	a	parent	 tree	 to	a	new	version	via	a	delta
rather	than	a	complete	replacement	tree.	(Robert	Collins)
New	method	bzrlib.osutils.minimum_path_selection	useful	 for
removing	 duplication	 from	 user	 input,	 when	 a	 user	 mentions
both	 a	 path	 and	 an	 item	 contained	 within	 that	 path.	 (Robert
Collins)
New	 method	 bzrlib.repository.Repository.is_write_locked

useful	 for	 determining	 if	 a	 repository	 is	 write	 locked.	 (Robert
Collins)
New	 method	 on	 bzrlib.tree.Tree	 path_content_summary

provides	a	tuple	containing	the	key	information	about	a	path	for
commit	processing	to	complete.	(Robert	Collins)
New	method	on	xml	serialisers,	write_inventory_to_lines,	which
matches	 the	 API	 used	 by	 knits	 for	 adding	 content.	 (Robert
Collins)
New	 module	 bzrlib.bisect_multi	 with	 generic	 multiple-
bisection-at-once	 logic,	 currently	 only	 available	 for	 byte-based

lookup	(bisect_multi_bytes).	(Robert	Collins)
New	 helper	 bzrlib.tuned_gzip.bytes_to_gzip	 which	 takes	 a
byte	 string	and	 returns	a	gzipped	version	of	 the	 same.	This	 is
used	to	avoid	a	bunch	of	api	friction	during	adding	of	knit	hunks.
(Robert	Collins)
New	 parameter	 on	 bzrlib.transport.Transport.readv

adjust_for_latency	which	changes	readv	from	returning	strictly
the	 requested	 data	 to	 inserted	 return	 larger	 ranges	 and	 in
forward	 read	 order	 to	 reduce	 the	 effect	 of	 network	 latency.
(Robert	Collins)
New	 parameter	 yield_parents	 on
Inventory.iter_entries_by_dir	 which	 causes	 the	 parents	 of	 a
selected	id	to	be	returned	recursively,	so	all	 the	paths	from	the
root	 down	 to	 each	 element	 of	 selected_file_ids	 are	 returned.
(Robert	Collins)
Knit	 joining	 has	 been	 enhanced	 to	 support	 plain	 to	 annotated
conversion	and	annotated	to	plain	conversion.	(Ian	Clatworthy)
The	CommitBuilder	method	record_entry_contents	now	returns
summary	 information	 about	 the	 effect	 of	 the	 commit	 on	 the
repository.	This	tuple	contains	an	inventory	delta	item	if	the	entry
changed	 from	 the	 basis,	 and	 a	 boolean	 indicating	 whether	 a
new	file	graph	node	was	recorded.	(Robert	Collins)
The	python	 path	 used	 in	 the	Makefile	 can	 now	be	overridden.
(Andrew	Bennetts,	Ian	Clatworthy)

Testing
New	transport	implementation	trace+	which	is	useful	for	testing,
logging	activity	taken	to	its	_activity	attribute.	(Robert	Collins)
When	 running	 bzr	 commands	 within	 the	 test	 suite,	 internal
exceptions	 are	 not	 caught	 and	 reported	 in	 the	 usual	 way,	 but
rather	allowed	to	propagate	up	and	be	visible	to	the	test	suite.	A
new	 API	 run_bzr_catch_user_errors	 makes	 this	 behavior
available	to	other	users.	(Martin	Pool)
New	method	TestCase.call_catch_warnings	for	testing	methods
that	raises	a	Python	warning.	(Martin	Pool)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	0.91
Released: 2007-09-26

Bug	Fixes
Print	a	warning	instead	of	aborting	the	python	setup.py	install
process	 if	 building	 of	 a	 C	 extension	 is	 not	 possible.	 (Lukáš
Lalinský,	Alexander	Belchenko)
Fix	commit	ordering	in	corner	case	(Aaron	Bentley,	#94975)
Fix	 ‘’bzr	 info	 bzr://host/’’	 and	 other	 operations	 on	 ‘’bzr://’	 URLs
with	 an	 implicit	 port.	We	were	 incorrectly	 raising	 PathNotChild
due	 to	 inconsistent	 treatment	 of	 the	 ‘’_port’’	 attribute	 on	 the
Transport	object.	(Andrew	Bennetts,	#133965)
Make	 RemoteRepository.sprout	 cope	 gracefully	 with	 servers
that	 don’t	 support	 the	 Repository.tarball	 request.	 (Andrew
Bennetts)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	0.91rc2
Released: 2007-09-11

Replaced	 incorrect	 tarball	 for	 previous	 release;	 a	 debug
statement	was	left	in	bzrlib/remote.py.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	0.91rc1
Released: 2007-09-11

Changes
The	 default	 branch	 and	 repository	 format	 has	 changed	 to
dirstate-tags,	 so	 tag	 commands	 are	 active	 by	 default.	 This
format	is	compatible	with	Bazaar	0.15	and	later.	This	incidentally
fixes	bug	#126141.	(Martin	Pool)
--quiet	 or	 -q	 is	 no	 longer	 a	 global	 option.	 If	 present,	 it	 must
now	appear	after	the	command	name.	Scripts	doing	things	like
bzr	 -q	 missing	 need	 to	 be	 rewritten	 as	 bzr	 missing	 -q.	 (Ian
Clatworthy)

Features
New	option	--author	in	bzr	commit	 to	specify	 the	author	of	 the
change,	 if	 it’s	 different	 from	 the	 committer.	 bzr	 log	 and	 bzr
annotate	 display	 the	 author	 instead	 of	 the	 committer.	 (Lukáš
Lalinský)

In	 addition	 to	 global	 options	 and	 command	 specific	 options,	 a
set	of	standard	options	are	now	supported.	Standard	options	are
legal	for	all	commands.	The	initial	set	of	standard	options	are:

--help	or	-h	-	display	help	message
--verbose	or	-v	-	display	additional	information
--quiet	or	-q	-	only	output	warnings	and	errors.

Unlike	global	options,	 standard	options	can	be	used	 in	aliases
and	may	have	command-specific	help.	(Ian	Clatworthy)

Verbosity	level	processing	has	now	been	unified.	If	--verbose	or
-v	is	specified	on	the	command	line	multiple	times,	the	verbosity
level	is	made	positive	the	first	time	then	increased.	If	--quiet	or
-q	is	specified	on	the	command	line	multiple	times,	the	verbosity
level	is	made	negative	the	first	time	then	decreased.	To	get	the
default	verbosity	level	of	zero,	either	specify	none	of	the	above	,
--no-verbose	 or	 --no-quiet.	 Note	 that	 most	 commands
currently	 ignore	 the	 magnitude	 of	 the	 verbosity	 level	 but	 do
respect	quiet	vs	normal	vs	verbose	when	generating	output.	(Ian
Clatworthy)

Branch.hooks	 now	 supports	 pre_commit	 hook.	 The	 hook’s
signature	 is	 documented	 in	BranchHooks	 constructor.	 (Nam	T.
Nguyen,	#102747)

New	 Repository.stream_knit_data_for_revisions	 request
added	 to	 the	 network	 protocol	 for	 greatly	 reduced	 roundtrips
when	retrieving	a	set	of	revisions.	(Andrew	Bennetts)

Bug	Fixes
bzr	 plugins	 now	 lists	 the	 version	 number	 for	 each	 plugin	 in
square	brackets	after	the	path.	(Robert	Collins,	#125421)
Pushing,	 pulling	 and	 branching	 branches	 with	 subtree
references	was	not	copying	 the	subtree	weave,	preventing	 the
file	graph	from	being	accessed	and	causing	errors	in	commits	in
clones.	(Robert	Collins)
Suppress	 warning	 “integer	 argument	 expected,	 got	 float”	 from
Paramiko,	which	 sometimes	 caused	 false	 test	 failures.	 (Martin
Pool)
Fix	bug	 in	bundle	4	 that	 could	cause	attempts	 to	write	data	 to
wrong	versionedfile.	(Aaron	Bentley)
Diffs	generated	using	“diff	-p”	no	longer	break	the	patch	parser.
(Aaron	Bentley)
get_transport	treats	an	empty	possible_transports	list	the	same
as	a	non-	empty	one.	(Aaron	Bentley)
patch	verification	for	merge	directives	is	reactivated,	and	works
with	CRLF	and	CR	files.	(Aaron	Bentley)
Accept	..as	a	path	in	revision	specifiers.	This	fixes	for	example	“-
r	branch:..other-branch”	on	Windows.	(Lukáš	Lalinský)
BZR_PLUGIN_PATH	 may	 now	 contain	 trailing	 slashes.	 (Blake
Winton,	#129299)
man	 page	 no	 longer	 lists	 hidden	 options	 (#131667,	 Aaron
Bentley)
uncommit	--help	now	explains	the	-r	option	adequately.	(Daniel
Watkins,	#106726)
Error	messages	are	now	better	formatted	with	parameters	(such
as	 filenames)	 quoted	 when	 necessary.	 This	 avoids	 confusion
when	 directory	 names	 ending	 in	 a	 ‘.’	 at	 the	 end	 of	messages
were	confused	with	a	full	stop	that	may	or	not	have	been	there.
(Daniel	Watkins,	#129791)

Fix	status	FILE	-r	X..Y.	(Lukáš	Lalinský)
If	 a	 particular	 command	 is	 an	 alias,	 help	 will	 show	 the	 alias
instead	 of	 claiming	 there	 is	 no	 help	 for	 said	 alias.	 (Daniel
Watkins,	#133548)
TreeTransform-based	 operations,	 like	 pull,	 merge,	 revert,	 and
branch,	now	roll	back	if	they	encounter	an	error.	(Aaron	Bentley,
#67699)
bzr	commit	now	exits	cleanly	 if	a	character	unsupported	by	the
current	 encoding	 is	 used	 in	 the	 commit	 message.	 (Daniel
Watkins,	#116143)
bzr	 send	 uses	 default	 values	 for	 ranges	 when	 only	 half	 of	 an
elipsis	is	specified	(“-r..5”	or	“-r5..”).	(#61685,	Aaron	Bentley)
Avoid	 trouble	when	Windows	ssh	calls	 itself	 ‘plink’	but	no	plink
binary	is	present.	(Martin	Albisetti,	#107155)
bzr	 remove	 should	 remove	 clean	 subtrees.	Now	 it	will	 remove
(without	needing	--force)	subtrees	that	contain	no	files	with	text
changes	or	modified	 files.	With	 --force	 it	 removes	 the	subtree
regardless	 of	 text	 changes	 or	 unknown	 files.	 Directories	 with
renames	 in	 or	 out	 (but	 not	 changed	 otherwise)	 will	 now	 be
removed	without	needing	--force.	Unknown	ignored	files	will	be
deleted	without	needing	--force.	(Marius	Kruger,	#111665)
When	two	plugins	conflict,	the	source	of	both	the	losing	and	now
the	winning	definition	is	shown.	(Konstantin	Mikhaylov,	#5454)
When	committing	to	a	branch,	the	location	being	committed	to	is
displayed.	(Daniel	Watkins,	#52479)
bzr	--version	 takes	 care	 about	 encoding	of	 stdout,	 especially
when	output	is	redirected.	(Alexander	Belchenko,	#131100)
Prompt	for	an	ftp	password	if	none	is	provided.	(Vincent	Ladeuil,
#137044)
Reuse	 bound	 branch	 associated	 transport	 to	 avoid	 multiple
connections.	(Vincent	Ladeuil,	#128076,	#131396)
Overwrite	 conflicting	 tags	 by	 push	 and	 pull	 if	 the	 --overwrite
option	is	specified.	(Lukáš	Lalinský,	#93947)

In	 checkouts,	 tags	 are	 copied	 into	 the	 master	 branch	 when
created,	changed	or	deleted,	and	are	copied	 into	 the	checkout
when	it	is	updated.	(Martin	Pool,	#93856,	#93860)
Print	a	warning	instead	of	aborting	the	python	setup.py	install
process	 if	 building	 of	 a	 C	 extension	 is	 not	 possible.	 (Lukáš
Lalinský,	Alexander	Belchenko)

Improvements
Add	the	option	“–show-diff”	to	the	commit	command	in	order	to
display	 the	 diff	 during	 the	 commit	 log	 creation.	 (Goffredo
Baroncelli)
pull	 and	 merge	 are	much	 faster	 at	 installing	 bundle	 format	 4.
(Aaron	Bentley)
pull	-v	no	longer	includes	deltas,	making	it	much	faster.	(Aaron
Bentley)
send	 now	 sends	 the	 directive	 as	 an	 attachment	 by	 default.
(Aaron	Bentley,	Lukáš	Lalinský,	Alexander	Belchenko)
Documentation	updates	(Martin	Albisetti)
Help	 on	 debug	 flags	 is	 now	 included	 in	 help	 global-options.
(Daniel	Watkins,	#124853)
Parameters	passed	on	the	command	line	are	checked	to	ensure
they	are	supported	by	the	encoding	in	use.	(Daniel	Watkins)
The	 compression	 used	 within	 the	 bzr	 repository	 has	 changed
from	zlib	 level	9	 to	 the	zlib	default	 level.	This	 improves	commit
performance	with	 only	 a	 small	 increase	 in	 space	used	 (and	 in
some	cases	a	reduction	in	space).	(Robert	Collins)
Initial	 commit	 no	 longer	 SHAs	 files	 twice	 and	 now	 reuses	 the
path	 rather	 than	 looking	 it	 up	 again,	 making	 it	 faster.	 (Ian
Clatworthy)
New	option	-c/--change	for	diff	and	status	to	show	changes	in
one	revision.	(Lukáš	Lalinský)
If	versioned	files	match	a	given	ignore	pattern,	a	warning	is	now
given.	(Daniel	Watkins,	#48623)
bzr	status	now	has	-S	as	a	short	name	for	–short	and	-V	as	a
short	 name	 for	 –versioned.	 These	 have	 been	 added	 to	 assist
users	migrating	from	Subversion:	bzr	status	-SV	is	now	like	svn
status	-q.	(Daniel	Watkins,	#115990)
Added	C	 implementation	 of	 PatienceSequenceMatcher,	which	 is

about	 10x	 faster	 than	 the	 Python	 version.	 This	 speeds	 up
commands	 that	 need	 file	 diffing,	 such	 as	 bzr	 commit	 or	 bzr
diff.	(Lukáš	Lalinský)
HACKING	 has	 been	 extended	 with	 a	 large	 section	 on	 core
developer	tasks.	(Ian	Clatworthy)
Add	 branches	 and	 standalone-trees	 as	 online	 help	 topics	 and
include	 them	 as	 Concepts	 within	 the	 User	 Reference.	 (Paul
Moore,	Ian	Clatworthy)
check	 can	 detect	 versionedfile	 parent	 references	 that	 are
inconsistent	with	revision	and	inventory	info,	and	reconcile	can
fix	 them.	 These	 faulty	 references	 were	 generated	 by	 0.8-era
releases,	 so	 repositories	 which	 were	 manipulated	 by	 old	 bzrs
should	 be	 checked,	 and	 possibly	 reconciled	 ASAP.	 (Aaron
Bentley,	Andrew	Bennetts)

API	Breaks
Branch.append_revision	 is	 removed	 altogether;	 please	 use
Branch.set_last_revision_info	instead.	(Martin	Pool)
CommitBuilder	now	advertises	 itself	as	 requiring	 the	 root	entry
to	 be	 supplied.	 This	 only	 affects	 foreign	 repository
implementations	which	 reuse	CommitBuilder	 directly	 and	 have
changed	 record_entry_contents	 to	 require	 that	 the	 root	 not	 be
supplied.	This	should	be	precisely	zero	plugins	affected.	(Robert
Collins)
The	add_lines	methods	on	VersionedFile	 implementations	has
changed	 its	 return	value	 to	 include	 the	sha1	and	 length	of	 the
inserted	 text.	 This	 allows	 the	 avoidance	 of	 double-sha1
calculations	during	commit.	(Robert	Collins)
Transport.should_cache	has	been	removed.	It	was	not	called	in
the	previous	release.	(Martin	Pool)

Testing
Tests	 may	 now	 raise	 TestNotApplicable	 to	 indicate	 they
shouldn’t	be	run	in	a	particular	scenario.	(Martin	Pool)
New	 function	 multiply_tests_from_modules	 to	 give	 a	 simpler
interface	to	test	parameterization.	(Martin	Pool,	Robert	Collins)
Transport.should_cache	has	been	removed.	It	was	not	called	in
the	previous	release.	(Martin	Pool)
NULL_REVISION	 is	 returned	 to	 indicate	 the	 null	 revision,	 not
None.	(Aaron	Bentley)
Use	UTF-8	 encoded	StringIO	 for	 log	 tests	 to	 avoid	 failures	 on
non-ASCII	committer	names.	(Lukáš	Lalinský)

Internals
bzrlib.plugin.all_plugins	 has	 been	 deprecated	 in	 favour	 of
bzrlib.plugin.plugins()	 which	 returns	 PlugIn	 objects	 that
provide	useful	functionality	for	determining	the	path	of	a	plugin,
its	tests,	and	its	version	information.	(Robert	Collins)
Add	the	option	user_encoding	to	the	function	‘show_diff_trees()’
in	 order	 to	move	 the	 user	 encoding	 at	 the	 UI	 level.	 (Goffredo
Baroncelli)
Add	 the	 function	 make_commit_message_template_encoded()
and	 the	 function	 edit_commit_message_encoded()	 which
handle	encoded	strings.	This	is	done	in	order	to	mix	the	commit
messages	(which	is	a	unicode	string),	and	the	diff	which	is	a	raw
string.	(Goffredo	Baroncelli)
CommitBuilder	 now	 defaults	 to	 using	 add_lines_with_ghosts,
reducing	 overhead	 on	 non-weave	 repositories	 which	 don’t
require	all	parents	to	be	present.	(Robert	Collins)
Deprecated	 method	 find_previous_heads	 on
bzrlib.inventory.InventoryEntry.	 This	 has	 been	 superseded
by	 the	 use	 of	 parent_candidates	 and	 a	 separate	 heads	 check
via	the	repository	API.	(Robert	Collins)
New	trace	function	mutter_callsite	will	print	out	a	subset	of	the
stack	to	the	log,	which	can	be	useful	for	gathering	debug	details.
(Robert	Collins)
bzrlib.pack.ContainerWriter	 now	 tracks	 how	 many	 records
have	been	added	via	a	public	attribute	records_written.	(Robert
Collins)
New	 method
bzrlib.transport.Transport.get_recommended_page_size.	 This
provides	 a	 hint	 to	 users	 of	 transports	 as	 to	 the	 reasonable
minimum	 data	 to	 read.	 In	 principle	 this	 can	 take	 latency	 and
bandwidth	into	account	on	a	per-connection	basis,	but	for	now	it

just	has	hard	coded	values	based	on	the	url.	(e.g.	http://	has	a
large	page	size,	file://	has	a	small	one.)	(Robert	Collins)
New	method	on	bzrlib.transport.Transport	open_write_stream
allows	incremental	addition	of	data	to	a	file	without	requiring	that
all	the	data	be	buffered	in	memory.	(Robert	Collins)
New	 methods	 on	 bzrlib.knit.KnitVersionedFile:
get_data_stream(versions),	 insert_data_stream(stream)	 and
get_format_signature().	These	provide	 some	 infrastructure	 for
efficiently	streaming	the	knit	data	for	a	set	of	versions	over	 the
smart	protocol.
Knits	with	no	annotation	cache	still	produce	correct	annotations.
(Aaron	Bentley)
Three	 new	 methods	 have	 been	 added	 to	 bzrlib.trace:
set_verbosity_level,	 get_verbosity_level	 and	 is_verbose.
set_verbosity_level	 expects	 a	 numeric	 value:	 negative	 for
quiet,	 zero	 for	 normal,	 positive	 for	 verbose.	 The	 size	 of	 the
number	can	be	used	to	determine	just	how	quiet	or	verbose	the
application	 should	 be.	 The	 existing	 be_quiet	 and	 is_quiet
routines	 have	 been	 integrated	 into	 this	 new	 scheme.	 (Ian
Clatworthy)
Options	can	now	be	delcared	with	a	custom_callback	parameter.
If	 set,	 this	 routine	 is	 called	 after	 the	 option	 is	 processed.	 This
feature	is	now	used	by	the	standard	options	verbose	and	quiet
so	that	setting	one	implicitly	resets	the	other.	(Ian	Clatworthy)
Rather	 than	 declaring	 a	 new	 option	 from	 scratch	 in	 order	 to
provide	 custom	 help,	 a	 centrally	 registered	 option	 can	 be
decorated	using	the	new	bzrlib.Option.custom_help	routine.	In
particular,	 this	 routine	 is	 useful	 when	 declaring	 better	 help	 for
the	verbose	and	quiet	standard	options	as	the	base	definition	of
these	is	now	more	complex	than	before	thanks	to	their	use	of	a
custom	callback.	(Ian	Clatworthy)
Tree._iter_changes(specific_file=[])	 now	 iterates	 through	 no
files,	instead	of	iterating	through	all	files.	None	is	used	to	iterate

http://

through	all	files.	(Aaron	Bentley)
WorkingTree.revert()	 now	 accepts	None	 to	 revert	 all	 files.	 The
use	of	[]	to	revert	all	files	is	deprecated.	(Aaron	Bentley)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	0.90
Released: 2007-08-28

Improvements
Documentation	is	now	organized	into	multiple	directories	with	a
level	 added	 for	 different	 languages	 or	 locales.	 Added	 the	Mini
Tutorial	 and	 Quick	 Start	 Summary	 (en)	 documents	 from	 the
Wiki,	 improving	 the	 content	 and	 readability	 of	 the	 former.
Formatted	NEWS	 as	Release	Notes	 complete	 with	 a	 Table	 of
Conents,	one	heading	per	release.	Moved	the	Developer	Guide
into	 the	 main	 document	 catalog	 and	 provided	 a	 link	 from	 the
developer	 document	 catalog	 back	 to	 the	 main	 one.	 (Ian
Clatworthy,	Sabin	Iacob,	Alexander	Belchenko)

API	Changes
The	 static	 convenience	 method	 BzrDir.create_repository	 is
deprecated.	Callers	should	instead	create	a	BzrDir	instance	and
call	create_repository	on	that.	(Martin	Pool)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	0.90rc1
Released: 2007-08-14

Bugfixes
bzr	init	 should	connect	 to	 the	 remote	 location	one	 time	only.
We	have	been	 connecting	 several	 times	because	we	 forget	 to
pass	 around	 the	 Transport	 object.	 This	 modifies
BzrDir.create_branch_convenience,	 so	 that	 we	 can	 give	 it	 the
Transport	 we	 already	 have.	 (John	 Arbash	 Meinel,	 Vincent
Ladeuil,	#111702)
Get	 rid	 of	 sftp	 connection	 cache	 (get	 rid	 of	 the	 FTP	 one	 too).
(Vincent	Ladeuil,	#43731)
bzr	 branch	 {local|remote}	 remote	 don’t	 try	 to	 create	 a	working
tree	anymore.	(Vincent	Ladeuil,	#112173)
All	 identified	 multiple	 connections	 for	 a	 single	 bzr	 command
have	been	 fixed.	See	bzrlib/tests/commands	directory.	 (Vincent
Ladeuil)
bzr	rm	now	does	not	 insist	on	--force	 to	delete	files	that	have
been	 renamed	 but	 not	 otherwise	 modified.	 (Marius	 Kruger,
#111664)
bzr	 selftest	 --bench	 no	 longer	 emits	 deprecation	 warnings
(Lukáš	Lalinský)
bzr	 status	 now	 honours	 FILE	 parameters	 for	 conflict	 lists
(Aaron	Bentley,	#127606)
bzr	 checkout	 now	 honours	 -r	 when	 reconstituting	 a	 working
tree.	It	also	honours	-r	0.	(Aaron	Bentley,	#127708)
bzr	 add	 *	 no	more	 fails	 on	Windows	 if	 working	 tree	 contains
non-ascii	file	names.	(Kuno	Meyer,	#127361)
allow	 easy_install	 bzr	 runs	 without	 fatal	 errors.	 (Alexander
Belchenko,	#125521)
Graph._filter_candidate_lca	 does	 not	 raise	 KeyError	 if	 a
candidate	 is	 eliminated	 just	 before	 it	 would	 normally	 be
examined.	(Aaron	Bentley)
SMTP	 connection	 failures	 produce	 a	 nice	 message,	 not	 a

traceback.	(Aaron	Bentley)

Improvements
Don’t	 show	 “dots”	 progress	 indicators	 when	 run	 non-
interactively,	such	as	from	cron.	(Martin	Pool)
info	 now	 formats	 locations	more	 nicely	 and	 lists	 “submit”	 and
“public”	branches	(Aaron	Bentley)
New	 pack	 command	 that	 will	 trigger	 database	 compression
within	the	repository	(Robert	Collins)
Implement	 _KnitIndex._load_data	 in	 a	 pyrex	 extension.	 The
pyrex	 version	 is	 approximately	 2-3x	 faster	 at	 parsing	 a	 .kndx
file.	 Which	 yields	 a	 measurable	 improvement	 for	 commands
which	have	 to	read	 from	the	repository,	such	as	a	1s	=>	0.75s
improvement	in	bzr	diff	when	there	are	changes	to	be	shown.
(John	Arbash	Meinel)
Merge	is	now	faster.	Depending	on	the	scenario,	it	can	be	more
than	2x	faster.	(Aaron	Bentley)
Give	a	 clearer	warning,	and	allow	 python	setup.py	 install	 to
succeed	even	if	pyrex	is	not	available.	(John	Arbash	Meinel)
DirState._read_dirblocks	 now	 has	 an	 optional	 Pyrex
implementation.	This	improves	the	speed	of	any	command	that
has	 to	 read	 the	entire	DirState.	 (diff,	 status,	 etc,	 improve	 by
about	 10%).	 bisect_dirblocks	 has	 also	 been	 improved,	which
helps	all	_get_entry	type	calls	(whenever	we	are	searching	for	a
particular	 entry	 in	 the	 in-memory	 DirState).	 (John	 Arbash
Meinel)
bzr	 pull	 and	 bzr	 push	 no	 longer	 do	 a	 complete	 walk	 of	 the
branch	 revision	 history	 for	 ui	 display	 unless	 -v	 is	 supplied.
(Robert	Collins)
bzr	log	-rA..B	 output	 shifted	 to	 the	 left	margin	 if	 the	 log	only
contains	merge	revisions.	(Kent	Gibson)
The	 plugins	 command	 is	 now	 public	 with	 improved	 help.	 (Ian

Clatworthy)
New	bundle	and	merge	directive	formats	are	faster	to	generate,
and
Annotate	 merge	 now	 works	 when	 there	 are	 local	 changes.
(Aaron	Bentley)
Commit	 now	 only	 shows	 the	 progress	 in	 terms	 of	 directories
instead	of	entries.	(Ian	Clatworthy)
Fix	KnitRepository.get_revision_graph	to	not	request	the	graph
2	times.	This	makes	get_revision_graph	2x	faster.	(John	Arbash
Meinel)
Fix	 VersionedFile.get_graph()	 to	 avoid	 using
set.difference_update(other),	 which	 has	 bad	 scaling	 when
other	 is	large.	This	improves	VF.get_graph([version_id])	 for	a
12.5k	graph	from	2.9s	down	to	200ms.	(John	Arbash	Meinel)
The	 --lsprof-file	 option	 now	 generates	 output	 for
KCacheGrind	if	the	file	starts	with	callgrind.out.	This	matches
the	 default	 file	 filtering	 done	 by	 KCacheGrind’s	 Open	 Dialog.
(Ian	Clatworthy)
Fix	 bzr	 update	 to	 avoid	 an	 unnecessary
branch.get_master_branch	call,	which	avoids	1	extra	connection
to	 the	 remote	 server.	 (Partial	 fix	 for	 #128076,	 John	 Arbash
Meinel)
Log	 errors	 from	 the	 smart	 server	 in	 the	 trace	 file,	 to	 make
debugging	 test	 failures	 (and	 live	 failures!)	 easier.	 (Andrew
Bennetts)
The	HTML	version	of	the	man	page	has	been	superceded	by	a
more	comprehensive	manual	called	the	Bazaar	User	Reference.
This	manual	is	completed	generated	from	the	online	help	topics.
As	part	of	this	change,	limited	reStructuredText	is	now	explicitly
supported	 in	 help	 topics	 and	 command	 help	 with	 ‘unnatural’
markup	 being	 removed	 prior	 to	 display	 by	 the	 online	 help	 or
inclusion	in	the	man	page.	(Ian	Clatworthy)
HTML	documentation	now	use	files	extension	*.html	(Alexander

Belchenko)
The	 cache	 of	 ignore	 definitions	 is	 now	 cleared	 in
WorkingTree.unlock()	 so	 that	 changes	 to	 .bzrignore	 aren’t
missed.	(#129694,	Daniel	Watkins)
bzr	selftest	--strict	fails	if	there	are	any	missing	features	or
expected	test	failures.	(Daniel	Watkins,	#111914)
Link	to	registration	survey	added	to	README.	(Ian	Clatworthy)
Windows	 standalone	 installer	 show	 link	 to	 registration	 survey
when	installation	finished.	(Alexander	Belchenko)

Library	API	Breaks
Deprecated	 dictionary	 bzrlib.option.SHORT_OPTIONS	 removed.
Options	 are	 now	 required	 to	 provide	 a	 help	 string	 and	 it	must
comply	 with	 the	 style	 guide	 by	 being	 one	 or	 more	 sentences
with	an	initial	capital	and	final	period.	(Martin	Pool)
KnitIndex.get_parents	now	returns	tuples.	(Robert	Collins)
Ancient	 unused	 Repository.text_store	 attribute	 has	 been
removed.	(Robert	Collins)
The	 bzrlib.pack	 interface	 has	 changed	 to	 use	 tuples	 of
bytestrings	 rather	 than	 just	 bytestrings,	 making	 it	 easier	 to
represent	 multiple	 element	 names.	 As	 this	 interface	 was	 not
used	by	any	internal	facilities	since	it	was	introduced	in	0.18	no
API	 compatibility	 is	 being	 preserved.	 The	 serialised	 form	 of
these	packs	is	identical	with	0.18	when	a	single	element	tuple	is
in	use.	(Robert	Collins)

Internals
merge	 now	 uses	 iter_changes	 to	 calculate	 changes,	 which
makes	 room	 for	 future	 performance	 increases.	 It	 is	 also	more
consistent	with	other	operations	that	perform	comparisons,	and
reduces	reliance	on	Tree.inventory.	(Aaron	Bentley)
Refactoring	of	 transport	classes	connected	 to	a	 remote	server.
ConnectedTransport	is	a	new	class	that	serves	as	a	basis	for	all
transports	 needing	 to	 connect	 to	 a	 remote	 server.
transport.split_url	have	been	deprecated,	use	the	static	method
on	 the	 object	 instead.	 URL	 tests	 have	 been	 refactored	 too.
(Vincent	Ladeuil)
Better	 connection	 sharing	 for	 ConnectedTransport	 objects.
transport.get_transport()	 now	 accepts	 a	 ‘possible_transports’
parameter.	 If	 a	 newly	 requested	 transport	 can	 share	 a
connection	with	one	of	the	list,	it	will.	(Vincent	Ladeuil)
Most	 functions	 now	 accept	 bzrlib.revision.NULL_REVISION	 to
indicate	 the	 null	 revision,	 and	 consider	 using	 None	 for	 this
purpose	deprecated.	(Aaron	Bentley)
New	index	module	with	abstract	index	functionality.	This	will	be
used	 during	 the	 planned	 changes	 in	 the	 repository	 layer.
Currently	 the	 index	 layer	 provides	 a	 graph	 aware	 immutable
index,	a	builder	for	the	same	index	type	to	allow	creating	them,
and	finally	a	composer	for	such	indices	to	allow	the	use	of	many
indices	 in	 a	 single	 query.	 The	 index	 performance	 is	 not
optimised,	 however	 the	API	 is	 stable	 to	 allow	development	 on
top	of	the	index.	(Robert	Collins)
bzrlib.dirstate.cmp_by_dirs	 can	 be	 used	 to	 compare	 two
paths	by	their	directory	sections.	This	is	equivalent	to	comparing
path.split('/'),	only	without	having	to	split	the	paths.	This	has
a	Pyrex	implementation	available.	(John	Arbash	Meinel)
New	transport	decorator	 ‘unlistable+’	which	disables	the	 list_dir

functionality	for	testing.
Deprecated	change_entry	in	transform.py.	(Ian	Clatworthy)
RevisionTree.get_weave	is	now	deprecated.	Tree.plan_merge	is
now	used	for	performing	annotate-merge.	(Aaron	Bentley)
New	EmailMessage	class	to	create	email	messages.	(Adeodato
Simó)
Unused	 functions	on	 the	private	 interface	KnitIndex	have	been
removed.	(Robert	Collins)
New	 knit.KnitGraphIndex	 which	 provides	 a	 KnitIndex	 layered
on	top	of	a	index.GraphIndex.	(Robert	Collins)
New	 knit.KnitVersionedFile.iter_parents	 method	 that	 allows
querying	 the	 parents	 of	 many	 knit	 nodes	 at	 once,	 reducing
round	trips	to	the	underlying	index.	(Robert	Collins)
Graph	 now	 has	 an	 is_ancestor	 method,	 various	 bits	 use	 it.
(Aaron	Bentley)
The	 -Dhpss	 flag	 now	 includes	 timing	 information.	 As	 well	 as
logging	 when	 a	 new	 connection	 is	 opened.	 (John	 Arbash
Meinel)
bzrlib.pack.ContainerWriter	now	returns	an	offset,	length	tuple
to	callers	when	inserting	data,	allowing	generation	of	readv	style
access	 during	 pack	 creation,	without	 needing	 a	 separate	 pass
across	the	output	pack	to	gather	such	details.	(Robert	Collins)
bzrlib.pack.make_readv_reader	 allows	 readv	 based	 access	 to
pack	files	that	are	stored	on	a	transport.	(Robert	Collins)
New	 Repository.has_same_location	 method	 that	 reports	 if	 two
repository	 objects	 refer	 to	 the	 same	 repository	 (although	 with
some	risk	of	false	negatives).	(Andrew	Bennetts)
InterTree.compare	 now	 passes	 require_versioned	 on	 correctly.
(Marius	Kruger)
New	 methods	 on	 Repository	 -	 start_write_group,
commit_write_group,	 abort_write_group	 and	 is_in_write_group
-	which	provide	a	clean	hook	point	for	transactional	Repositories
-	 ones	 where	 all	 the	 data	 for	 a	 fetch	 or	 commit	 needs	 to	 be

made	atomically	available	in	one	step.	This	allows	the	write	lock
to	 remain	 while	 making	 a	 series	 of	 data	 insertions.	 (e.g.	 data
conversion).	(Robert	Collins)
In	bzrlib.knit	the	internal	 interface	has	been	altered	to	use	3-
tuples	(index,	pos,	length)	rather	than	two-tuples	(pos,	length)	to
describe	where	 data	 in	 a	 knit	 is,	 allowing	 knits	 to	 be	 split	 into
many	files.	(Robert	Collins)
bzrlib.knit._KnitData	 split	 into	 cache	 management	 and
physical	 access	 with	 two	 access	 classes	 -	 _PackAccess	 and
_KnitAccess	 defined.	 The	 former	 provides	 access	 into	 a	 .pack
file,	 and	 the	 latter	 provides	 the	 current	 production	 repository
form	of	.knit	files.	(Robert	Collins)

Testing
Remove	 selftest	 --clean-output,	 --numbered-dirs	 and	 --keep-
output	 options,	 which	 are	 obsolete	 now	 that	 tests	 are	 done
within	directories	in	$TMPDIR.	(Martin	Pool)
The	 SSH_AUTH_SOCK	 environment	 variable	 is	 now	 reset	 to
avoid	interaction	with	any	running	ssh	agents.	(Jelmer	Vernooij,
#125955)
run_bzr_subprocess	 handles	 parameters	 the	 same	 way	 as
run_bzr:	either	a	string	or	a	 list	of	strings	should	be	passed	as
the	 first	 parameter.	 Varargs-style	 parameters	 are	 deprecated.
(Aaron	Bentley)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	0.18
Released: 2007-07-17

Bugfixes
Fix	‘bzr	add’	crash	under	Win32	(Kuno	Meyer)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	0.18rc1
Released: 2007-07-10

Bugfixes
Do	 not	 suppress	 pipe	 errors,	 etc.	 in	 non-display	 commands
(Alexander	Belchenko,	#87178)
Display	 a	 useful	 error	 message	 when	 the	 user	 requests	 to
annotate	 a	 file	 that	 is	 not	 present	 in	 the	 specified	 revision.
(James	Westby,	#122656)
Commands	that	use	status	flags	now	have	a	reference	to	‘help
status-flags’.	(Daniel	Watkins,	#113436)
Work	 around	 python-2.4.1	 inhability	 to	 correctly	 parse	 the
authentication	header.	(Vincent	Ladeuil,	#121889)
Use	 exact	 encoding	 for	 merge	 directives.	 (Adeodato	 Simó,
#120591)
Fix	tempfile	permissions	error	in	smart	server	tar	bundling	under
Windows.	(Martin	_,	#119330)
Fix	 detection	 of	 directory	 entries	 in	 the	 inventory.	 (James
Westby)
Fix	 handling	of	 http	 code	400:	Bad	Request	When	 issuing	 too
many	ranges.	(Vincent	Ladeuil,	#115209)
Issue	a	CONNECT	request	when	connecting	to	an	https	server
via	a	proxy	to	enable	SSL	tunneling.	(Vincent	Ladeuil,	#120678)
Fix	 bzr	 log	 -r	 to	 support	 selecting	 merge	 revisions,	 both
individually	and	as	part	of	revision	ranges.	(Kent	Gibson,	#4663)
Don’t	leave	cruft	behind	when	failing	to	acquire	a	lockdir.	(Martin
Pool,	#109169)
Don’t	 use	 the	 ‘-f’	 strace	 option	 during	 tests.	 (Vincent	 Ladeuil,
#102019).
Warn	when	setting	push_location	to	a	value	that	will	be	masked
by	locations.conf.	(Aaron	Bentley,	#122286)
Fix	commit	ordering	in	corner	case	(Aaron	Bentley,	#94975)
Make	annotate	behave	in	a	non-ASCII	world	(Adeodato	Simó).

Improvements
The	 –lsprof-file	 option	 now	 dumps	 a	 text	 rendering	 of	 the
profiling	 information	 if	 the	 filename	 ends	 in	 “.txt”.	 It	 will	 also
convert	 the	 profiling	 information	 to	 a	 format	 suitable	 for
KCacheGrind	if	the	output	filename	ends	in	“.callgrind”.	Fixes	to
the	 lsprofcalltree	 conversion	 process	 by	 Jean	 Paul	 Calderone
and	 Itamar	 were	 also	 merged.	 See
http://ddaa.net/blog/python/lsprof-calltree.	(Ian	Clatworthy)

info	now	defaults	 to	non-verbose	mode,	displaying	only	paths
and	abbreviated	format	info.	info	-v	displays	all	the	information
formerly	displayed	by	info.	(Aaron	Bentley,	Adeodato	Simó)

bzr	missing	now	has	better	option	names	--this	and	 --other.
(Elliot	Murphy)

The	 internal	 weave-list	command	has	become	 versionedfile-
list,	and	now	lists	knits	as	well	as	weaves.	(Aaron	Bentley)

Automatic	 merge	 base	 selection	 uses	 a	 faster	 algorithm	 that
chooses	 better	 bases	 in	 criss-cross	 merge	 situations	 (Aaron
Bentley)

Progress	 reporting	 in	 commit	 has	 been	 improved.	 The	 various
logical	stages	are	now	reported	on	as	follows,	namely:

Collecting	changes	[Entry	x/y]	-	Stage	n/m
Saving	data	locally	-	Stage	n/m
Uploading	data	to	master	branch	-	Stage	n/m
Updating	the	working	tree	-	Stage	n/m
Running	post	commit	hooks	-	Stage	n/m

If	 there	 is	 no	master	 branch,	 the	 3rd	 stage	 is	 omitted	 and	 the

http://ddaa.net/blog/python/lsprof-calltree

total	number	of	stages	is	adjusted	accordingly.

Each	 hook	 that	 is	 run	 after	 commit	 is	 listed	 with	 a	 name	 (as
hooks	can	be	slow	it	is	useful	feedback).	(Ian	Clatworthy,	Robert
Collins)

Various	 operations	 that	 are	 now	 faster	 due	 to	 avoiding
unnecessary	topological	sorts.	(Aaron	Bentley)

Make	merge	 directives	 robust	 against	 broken	 bundles.	 (Aaron
Bentley)

The	lsprof	filename	note	is	emitted	via	trace.note(),	not	standard
output.	(Aaron	Bentley)

bzrlib	 now	 exports	 explicit	 API	 compatibility	 information	 to
assist	library	users	and	plugins.	See	the	bzrlib.api	module	for
details.	(Robert	Collins)

Remove	 unnecessary	 lock	 probes	 when	 acquiring	 a	 lockdir.
(Martin	Pool)

bzr	--version	now	shows	the	location	of	the	bzr	log	file,	which
is	especially	useful	on	Windows.	(Martin	Pool)

-D	now	supports	hooks	to	get	debug	tracing	of	hooks	(though	its
currently	minimal	in	nature).	(Robert	Collins)

Long	log	format	reports	deltas	on	merge	revisions.	(John	Arbash
Meinel,	Kent	Gibson)

Make	initial	push	over	ftp	more	resilient.	(John	Arbash	Meinel)

Print	 a	 summary	 of	 changes	 for	 update	 just	 like	 pull	 does.
(Daniel	Watkins,	#113990)

Add	 a	 -Dhpss	 option	 to	 trace	 smart	 protocol	 requests	 and

responses.	(Andrew	Bennetts)

Library	API	Breaks
Testing	 cleanups	 -
bzrlib.repository.RepositoryTestProviderAdapter	 has	 been
moved	 to	 bzrlib.tests.repository_implementations;
bzrlib.repository.InterRepositoryTestProviderAdapter	 has
been	moved	to	bzrlib.tests.interrepository_implementations;
bzrlib.transport.TransportTestProviderAdapter	 has	moved	 to
bzrlib.tests.test_transport_implementations.
bzrlib.branch.BranchTestProviderAdapter	 has	 moved	 to
bzrlib.tests.branch_implementations.
bzrlib.bzrdir.BzrDirTestProviderAdapter	 has	 moved	 to
bzrlib.tests.bzrdir_implementations.
bzrlib.versionedfile.InterVersionedFileTestProviderAdapter

has	 moved	 to
bzrlib.tests.interversionedfile_implementations.
bzrlib.store.revision.RevisionStoreTestProviderAdapter	 has
moved	 to	 bzrlib.tests.revisionstore_implementations.
bzrlib.workingtree.WorkingTreeTestProviderAdapter	 has
moved	 to	 bzrlib.tests.workingtree_implementations.	 These
changes	 are	 an	 API	 break	 in	 the	 testing	 infrastructure	 only.
(Robert	Collins)
Relocate	 TestCaseWithRepository	 to	 be	more	 central.	 (Robert
Collins)
bzrlib.add.smart_add_tree	 will	 no	 longer	 perform	 glob
expansion	on	win32.	Callers	of	 the	 function	should	do	 this	and
use	 the	 new	 MutableTree.smart_add	 method	 instead.	 (Robert
Collins)
bzrlib.add.glob_expand_for_win32	 is	 now
bzrlib.win32utils.glob_expand.	(Robert	Collins)

bzrlib.add.FastPath	 is	 now	 private	 and	 moved	 to
bzrlib.mutabletree._FastPath.	(Robert	Collins,	Martin	Pool)
LockDir.wait	removed.	(Martin	Pool)
The	SmartServer	hooks	API	has	changed	for	the	server_started
and	 server_stopped	 hooks.	 The	 first	 parameter	 is	 now	 an
iterable	 of	 backing	 URLs	 rather	 than	 a	 single	 URL.	 This	 is	 to
reflect	 that	 many	 URLs	 may	 map	 to	 the	 external	 URL	 of	 the
server.	E.g.	 the	 server	 interally	may	 have	 a	 chrooted	URL	but
also	 the	 local	 file://	 URL	will	 be	 at	 the	 same	 location.	 (Robert
Collins)

Internals
New	SMTPConnection	class	to	unify	email	handling.	(Adeodato
Simó)
Fix	documentation	of	BzrError.	(Adeodato	Simó)
Make	BzrBadParameter	an	internal	error.	(Adeodato	Simó)
Remove	 use	 of	 ‘assert	 False’	 to	 raise	 an	 exception
unconditionally.	(Martin	Pool)
Give	 a	 cleaner	 error	 when	 failing	 to	 decode	 knit	 index	 entry.
(Martin	Pool)
TreeConfig	would	mistakenly	 search	 the	 top	 level	when	asked
for	options	from	a	section.	It	now	respects	the	section	argument
and	only	searches	the	specified	section.	(James	Westby)
Improve	make	api-docs	output.	(John	Arbash	Meinel)
Use	 os.lstat	 rather	 than	 os.stat	 for	 osutils.make_readonly	 and
osutils.make_writeable.	 This	 makes	 the	 difftools	 plugin	 more
robust	when	dangling	symlinks	are	found.	(Elliot	Murphy)
New	 -Dlock	 option	 to	 log	 (to	 ~/.bzr.log)	 information	 on	 when
lockdirs	are	taken	or	released.	(Martin	Pool)
bzrlib	 Hooks	 are	 now	 nameable	 using	 Hooks.name_hook.	 This
allows	a	nicer	UI	when	hooks	are	 running	as	 the	current	hook
can	be	displayed.	(Robert	Collins)
Transport.get	has	had	its	interface	made	more	clear	for	ease	of
use.	Retrieval	of	a	directory	must	now	fail	with	either	‘PathError’
at	open	time,	or	raise	‘ReadError’	on	a	read.	(Robert	Collins)
New	 method	 _maybe_expand_globs	 on	 the	 Command	 class	 for
dealing	with	unexpanded	glob	lists	-	e.g.	on	the	win32	platform.
This	was	moved	 from	 bzrlib.add._prepare_file_list.	 (Robert
Collins)
bzrlib.add.smart_add	 and	 bzrlib.add.smart_add_tree	 are	 now
deprecated	in	favour	of	MutableTree.smart_add.	(Robert	Collins,
Martin	Pool)

New	method	 external_url	on	Transport	 for	obtaining	the	url	 to
hand	to	external	processes.	(Robert	Collins)
Teach	 windows	 installers	 to	 build	 pyrex/C	 extensions.
(Alexander	Belchenko)

Testing
Removed	 the	 --keep-output	 option	 from	 selftest	 and	 clean	 up
test	directories	as	 they’re	used.	This	 reduces	 the	 IO	 load	 from
running	the	test	suite	and	cuts	the	time	by	about	half.	 (Andrew
Bennetts,	Martin	Pool)
Add	scenarios	as	a	public	attribute	on	 the	TestAdapter	classes
to	allow	modification	of	the	generated	scenarios	before	adaption
and	easier	testing.	(Robert	Collins)
New	testing	support	class	TestScenarioApplier	which	multiplies
out	a	single	teste	by	a	list	of	supplied	scenarios.	(RobertCollins)
Setting	 repository_to_test_repository	 on	 a
repository_implementations	test	will	cause	it	to	be	called	during
repository	 creation,	 allowing	 the	 testing	 of	 repository	 classes
which	are	not	based	around	the	Format	concept.	For	example	a
repository	adapter	can	be	tested	in	this	manner,	by	altering	the
repository	scenarios	to	include	a	scenario	that	sets	this	attribute
during	 the	 test	 parameterisation	 in
bzrlib.tests.repository.repository_implementations.	 (Robert
Collins)
Clean	up	many	of	the	APIs	for	blackbox	testing	of	Bazaar.	The
standard	interface	is	now	self.run_bzr.	The	command	to	run	can
be	passed	as	either	a	list	of	parameters,	a	string	containing	the
command	 line,	 or	 (deprecated)	 varargs	 parameters.	 (Martin
Pool)
The	 base	 TestCase	 now	 isolates	 tests	 from	 -D	 parameters	 by
clearing	 debug.debug_flags	 and	 restores	 it	 afterwards.	 (Robert
Collins)
Add	 a	 relpath	 parameter	 to	 get_transport	 methods	 in	 test
framework	to	avoid	useless	cloning.	(Vincent	Ladeuil,	#110448)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	0.17
Released: 2007-06-18

Bugfixes
Fix	crash	of	commit	due	to	wrong	lookup	of	filesystem	encoding.
(Colin	Watson,	#120647)
Revert	 logging	 just	 to	 stderr	 in	 commit	 as	 broke	 unicode
filenames.	(Aaron	Bentley,	Ian	Clatworthy,	#120930)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	0.17rc1
Released: 2007-06-12

Notes	When	Upgrading
The	 kind()	 and	 is_executable()	 APIs	 on	 the	 WorkingTree
interface	no	 longer	 implicitly	 (read)	 locks	and	unlocks	 the	 tree.
This	might	impact	some	plug-ins	and	tools	using	this	part	of	the
API.	 If	 you	 find	 an	 issue	 that	may	 be	 caused	 by	 this	 change,
please	 let	 us	 know,	 particularly	 the	 plug-in/tool	 maintainer.	 If
encountered,	 the	 API	 fix	 is	 to	 surround	 kind()	 and
is_executable()	calls	with	lock_read()	and	unlock()	like	so:

work_tree.lock_read()

try:

				kind	=	work_tree.kind(...)

finally:

				work_tree.unlock()

Internals
Rework	 of	 LogFormatter	 API	 to	 provide	 beginning/end	 of	 log
hooks	and	to	encapsulate	the	details	of	the	revision	to	be	logged
in	a	LogRevision	object.	In	long	log	formats,	merge	revision	ids
are	 only	 shown	when	 –show-ids	 is	 specified,	 and	 are	 labelled
“revision-id:”,	 as	 per	 mainline	 revisions,	 instead	 of	 “merged:”.
(Kent	Gibson)
New	 BranchBuilder	 API	 which	 allows	 the	 construction	 of
particular	 histories	 quickly.	 Useful	 for	 testing	 and	 potentially
other	applications	too.	(Robert	Collins)

Improvements
There	 are	 two	 new	help	 topics,	working-trees	 and	 repositories
that	 attempt	 to	 explain	 these	 concepts.	 (James	Westby,	 John
Arbash	Meinel,	Aaron	Bentley)
Added	bzr	log	--limit	 to	report	a	limited	number	of	revisions.
(Kent	Gibson,	#3659)
Revert	does	not	try	to	preserve	file	contents	that	were	originally
produced	by	reverting	to	a	historical	revision.	(Aaron	Bentley)
bzr	log	--short	now	includes	[merge]	for	revisions	which	have
more	 than	 one	 parent.	 This	 is	 a	 small	 improvement	 to	 help
understanding	 what	 changes	 have	 occurred	 (John	 Arbash
Meinel,	#83887)
TreeTransform	 avoids	 many	 renames	 when	 contructing	 large
trees,	improving	speed.	3.25x	speedups	have	been	observed	for
construction	 of	 kernel-sized-trees,	 and	 checkouts	 are	 1.28x
faster.	(Aaron	Bentley)
Commit	 on	 large	 trees	 is	 now	 faster.	 In	 my	 environment,	 a
commit	 of	 a	 small	 change	 to	 the	 Mozilla	 tree	 (55k	 files)	 has
dropped	from	66	seconds	to	32	seconds.	For	a	small	tree	of	600
files,	commit	of	a	small	change	is	33%	faster.	(Ian	Clatworthy)
New	 –create-prefix	 option	 to	 bzr	 init,	 like	 for	 push.	 (Daniel
Watkins,	#56322)

Bugfixes
bzr	push	should	only	connect	 to	 the	 remote	 location	one	 time.
We	have	 been	 connecting	 3	 times	 because	we	 forget	 to	 pass
around	 the	 Transport	 object.	 This	 adds
BzrDir.clone_on_transport(),	 so	 that	 we	 can	 pass	 in	 the
Transport	that	we	already	have.	(John	Arbash	Meinel,	#75721)
DirState.set_state_from_inventory()	 needs	 to	 properly	 order
based	on	split	paths,	not	just	string	paths.	(John	Arbash	Meinel,
#115947)
Let	 TestUIFactoy	 encode	 the	 password	 prompt	 with	 its	 own
stdout.	(Vincent	Ladeuil,	#110204)
pycurl	 should	 take	 use	 the	 range	 header	 that	 takes	 the	 range
hint	into	account.	(Vincent	Ladeuil,	#112719)
WorkingTree4.get_file_sha1	no	longer	raises	an	exception	when
invoked	on	a	missing	file.	(Aaron	Bentley,	#118186)
WorkingTree.remove	works	 correctly	 with	 tree	 references,	 and
when	pwd	is	not	the	tree	root.	(Aaron	Bentley)
Merge	 no	 longer	 fails	 when	 a	 file	 is	 renamed	 in	 one	 tree	 and
deleted	in	the	other.	(Aaron	Bentley,	#110279)
revision-info	 now	 accepts	 dotted	 revnos,	 doesn’t	 require	 a
tree,	and	defaults	to	the	last	revision	(Matthew	Fuller,	#90048)
Tests	 no	 longer	 fail	 when	 BZR_REMOTE_PATH	 is	 set	 in	 the
environment.	(Daniel	Watkins,	#111958)
bzr	branch	-r	revid:foo	can	be	used	to	branch	any	revision	in
your	repository.	(Previously	Branch6	only	supported	revisions	in
your	mainline).	(John	Arbash	Meinel,	#115343)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	0.16
Released: 2007-05-07

Bugfixes
Handle	when	you	have	2	directories	with	similar	names,	but	one
has	a	hyphen.	('abc'	versus	'abc-2').	The	WT4._iter_changes
iterator	 was	 using	 direct	 comparison	 and	 'abc/a'	 sorts	 after
'abc-2',	 but	 ('abc',	 'a')	 sorts	 before	 ('abc-2',).	 (John
Arbash	Meinel,	#111227)
Handle	when	someone	renames	a	file	on	disk	without	telling	bzr.
Previously	we	would	report	the	first	file	as	missing,	but	not	show
the	new	unknown	file.	(John	Arbash	Meinel,	#111288)
Avoid	 error	 when	 running	 hooks	 after	 pulling	 into	 or	 pushing
from	 a	 branch	 bound	 to	 a	 smartserver	 branch.	 (Martin	 Pool,
#111968)

Improvements
Move	 developer	 documentation	 to	 doc/developers/.	 This
reduces	 clutter	 in	 the	 root	 of	 the	 source	 tree	 and	 allows
HACKING	 to	 be	 split	 into	 multiple	 files.	 (Robert	 Collins,
Alexander	Belchenko)
Clean	 up	 the	 WorkingTree4._iter_changes()	 internal	 loops	 as
well	as	 DirState.update_entry().	This	optimizes	 the	core	 logic
for	bzr	diff	and	bzr	status	significantly	improving	the	speed	of
both.	(John	Arbash	Meinel)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	0.16rc2
Released: 2007-04-30

Bugfixes
Handle	 the	 case	 when	 you	 delete	 a	 file,	 and	 then	 rename
another	file	on	top	of	it.	Also	handle	the	case	of	bzr	rm	--keep
foo.	bzr	status	should	show	the	removed	file	and	an	unknown
file	in	its	place.	(John	Arbash	Meinel,	#109993)
Bundles	properly	read	and	write	revision	properties	that	have	an
empty	 value.	 And	when	 the	 value	 is	 not	 ASCII.	 (John	 Arbash
Meinel,	#109613)
Fix	 the	 bzr	 commit	 message	 to	 be	 in	 text	 mode.	 (Alexander
Belchenko,	#110901)
Also	handle	when	you	 rename	a	 file	and	create	a	 file	where	 it
used	to	be.	(John	Arbash	Meinel,	#110256)
WorkingTree4._iter_changes	 should	 not	 descend	 into
unversioned	directories.	(John	Arbash	Meinel,	#110399)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	0.16rc1
Released: 2007-04-26

Notes	When	Upgrading
bzr	 remove	 and	 bzr	 rm	 will	 now	 remove	 the	 working	 file,	 if	 it
could	be	 recovered	again.	This	has	been	done	 for	consistency
with	svn	and	 the	unix	 rm	command.	The	old	 remove	 behaviour
has	been	retained	 in	 the	new	option	 bzr	remove	--keep,	which
will	just	stop	versioning	the	file,	but	not	delete	it.	bzr	remove	--
force	 have	 been	added	which	will	 always	 delete	 the	 files.	 bzr
remove	is	also	more	verbose.	(Marius	Kruger,	#82602)

Improvements
Merge	 directives	 can	 now	 be	 supplied	 as	 input	 to	merge	 and
pull,	like	bundles	can.	(Aaron	Bentley)
Sending	the	SIGQUIT	signal	to	bzr,	which	can	be	done	on	Unix
by	pressing	Control-Backslash,	drops	bzr	into	a	debugger.	Type
'c'	to	continue.	This	can	be	disabled	by	setting	the	environment
variable	BZR_SIGQUIT_PDB=0.	(Martin	Pool)
selftest	 now	 supports	 –list-only	 to	 list	 tests	 instead	 of	 running
them.	(Ian	Clatworthy)
selftest	 now	 supports	 –exclude	PATTERN	 (or	 -x	PATTERN)	 to
exclude	 tests	 with	 names	 that	 match	 that	 regular	 expression.
(Ian	Clatworthy,	#102679)
selftest	 now	 supports	 –randomize	 SEED	 to	 run	 tests	 in	 a
random	order.	 SEED	 is	 typically	 the	 value	 ‘now’	meaning	 ‘use
the	current	time’.	(Ian	Clatworthy,	#102686)
New	 option	 --fixes	 to	 commit,	 which	 stores	 bug	 fixing
annotations	 as	 revision	 properties.	 Built-in	 support	 for
Launchpad,	Debian,	Trac	and	Bugzilla	bug	 trackers.	 (Jonathan
Lange,	James	Henstridge,	Robert	Collins)
New	 API,	 bzrlib.bugtracker.tracker_registry,	 for	 adding
support	 for	 other	 bug	 trackers	 to	 fixes.	 (Jonathan	 Lange,
James	Henstridge,	Robert	Collins)
selftest	has	new	short	options	-f	and	-1.	(Martin	Pool)
bzrlib.tsort.MergeSorter	optimizations.	Change	the	inner	loop
into	 using	 local	 variables	 instead	 of	 going	 through	 self._var.
Improves	 the	 time	 to	 merge_sort	 a	 10k	 revision	 graph	 by
approximately	40%	(~700->400ms).	(John	Arbash	Meinel)
make	 docs	 now	 creates	 a	 man	 page	 at	 man1/bzr.1	 fixing	 bug
107388.	(Robert	Collins)
bzr	 help	 now	 provides	 cross	 references	 to	 other	 help	 topics
using	the	_see_also	facility	on	command	classes.	Likewise	the

bzr_man	documentation,	 and	 the	 bzr.1	man	page	also	 include
this	information.	(Robert	Collins)
Tags	are	now	 included	 in	 logs,	 that	use	 the	 long	 log	 formatter.
(Erik	Bågfors,	Alexander	Belchenko)
bzr	help	provides	a	clearer	message	when	a	help	topic	cannot
be	found.	(Robert	Collins,	#107656)
bzr	help	now	accepts	optional	prefixes	for	command	help.	The
help	 for	 all	 commands	 can	 now	 be	 found	 at	 bzr	 help

commands/COMMANDNAME	 as	well	 as	 bzr	 help	 COMMANDNAME	 (which
only	works	for	commands	where	the	name	is	not	the	same	as	a
more	general	help	topic).	(Robert	Collins)
bzr	help	PLUGINNAME	will	now	return	the	module	docstring	from
the	plugin	PLUGINNAME.	(Robert	Collins,	#50408)
New	 help	 topic	 urlspec	 which	 lists	 the	 availables	 transports.
(Goffredo	Baroncelli)
doc/server.txt	 updated	 to	 document	 the	 default	 bzr://	 port	 and
also	 update	 the	 blurb	 about	 the	 hpss’	 current	 status.	 (Robert
Collins,	#107125).
bzr	serve	now	listens	on	interface	0.0.0.0	by	default,	making	it
serve	 out	 to	 the	 local	 LAN	 (and	 anyone	 in	 the	world	 that	 can
reach	the	machine	running	bzr	serve.	(Robert	Collins,	#98918)
A	new	smart	server	protocol	version	has	been	added.	It	prefixes
requests	and	responses	with	an	explicit	version	identifier	so	that
future	 protocol	 revisions	 can	 be	 dealt	 with	 gracefully.	 (Andrew
Bennetts,	Robert	Collins)
The	bzr	protocol	version	2	 indicates	success	or	failure	 in	every
response	without	depending	on	particular	commands	encoding
that	 consistently,	 allowing	 future	client	 refactorings	 to	be	much
more	 robust	about	error	handling.	 (Robert	Collins,	Martin	Pool,
Andrew	Bennetts)
The	 smart	 protocol	 over	 HTTP	 client	 has	 been	 changed	 to
always	 post	 to	 the	 same	 .bzr/smart	 URL	 under	 the	 original
location	when	it	can.	This	allows	HTTP	servers	to	only	have	to

pass	URLs	ending	in	.bzr/smart	to	the	smart	server	handler,	and
not	arbitrary	.bzr/*/smart	URLs.	(Andrew	Bennetts)
digest	authentication	is	now	supported	for	proxies	and	HTTP	by
the	 urllib	 based	 http	 implementation.	 Tested	 against	 Apache
2.0.55	 and	 Squid	 2.6.5.	 Basic	 and	 digest	 authentication	 are
handled	coherently	 for	HTTP	and	proxy:	 if	 the	user	 is	provided
in	 the	 url	 (bzr	 command	 line	 for	 HTTP,	 proxy	 environment
variables	for	proxies),	the	password	is	prompted	for	(only	once).
If	 the	password	 is	 provided,	 it	 is	 taken	 into	 account.	Once	 the
first	 authentication	 is	 successful,	 all	 further	 authentication
roundtrips	 are	 avoided	 by	 preventively	 setting	 the	 right
authentication	header(s).	(Vincent	Ladeuil).

Internals
bzrlib	API	compatability	with	0.8	has	been	dropped,	cleaning	up
some	code	paths.	(Robert	Collins)
Change	 the	 format	 of	 chroot	 urls	 so	 that	 they	 can	 be	 safely
manipulated	by	generic	url	utilities	without	causing	the	resulting
urls	 to	 have	 escaped	 the	 chroot.	 A	 side	 effect	 of	 this	 is	 that
creating	 a	 chroot	 requires	 an	 explicit	 action	 using	 a
ChrootServer.	(Robert	Collins,	Andrew	Bennetts)
Deprecate	 Branch.get_root_id()	because	branches	don’t	have
root	ids,	rather	than	fixing	bug	#96847.	(Aaron	Bentley)
WorkingTree.apply_inventory_delta	 provides	 a	 better
alternative	to	WorkingTree._write_inventory.	(Aaron	Bentley)
Convenience	 method	 TestCase.expectFailure	 ensures	 that
known	failures	do	not	silently	pass.	(Aaron	Bentley)
Transport.local_abspath	 now	 raises	 NotLocalUrl	 rather	 than
TransportNotPossible.	(Martin	Pool,	Ian	Clatworthy)
New	 SmartServer	 hooks	 facility.	 There	 are	 two	 initial	 hooks
documented	 in	 bzrlib.transport.smart.SmartServerHooks.	 The
two	 initial	 hooks	 allow	 plugins	 to	 execute	 code	 upon	 server
startup	and	shutdown.	(Robert	Collins).
SmartServer	 in	 standalone	 mode	 will	 now	 close	 its	 listening
socket	when	it	stops,	rather	than	waiting	for	garbage	collection.
This	primarily	fixes	test	suite	hangs	when	a	test	tries	to	connect
to	a	shutdown	server.	It	may	also	help	improve	behaviour	when
dealing	 with	 a	 server	 running	 on	 a	 specific	 port	 (rather	 than
dynamically	assigned	ports).	(Robert	Collins)
Move	most	SmartServer	code	into	a	new	package,	bzrlib/smart.
bzrlib/transport/remote.py	 contains	 just	 the	 Transport	 classes
that	used	to	be	in	bzrlib/transport/smart.py.	(Andrew	Bennetts)
urllib	 http	 implementation	avoid	 roundtrips	associated	with	401
(and	 407)	 errors	 once	 the	 authentication	 succeeds.	 (Vincent

Ladeuil).
urlib	http	now	supports	querying	the	user	for	a	proxy	password	if
needed.	Realm	is	shown	in	the	prompt	for	both	HTTP	and	proxy
authentication	 when	 the	 user	 is	 required	 to	 type	 a	 password.
(Vincent	Ladeuil).
Renamed	 SmartTransport	 (and	 subclasses	 like
SmartTCPTransport)	 to	 RemoteTransport	 (and	 subclasses	 to
RemoteTCPTransport,	etc).	This	is	more	consistent	with	its	new
home	in	bzrlib/transport/remote.py,	and	because	it’s	not	really
a	“smart”	transport,	just	one	that	does	file	operations	via	remote
procedure	calls.	(Andrew	Bennetts)
The	 lock_write	 method	 of	 LockableFiles,	 Repository	 and
Branch	now	accept	a	token	keyword	argument,	so	that	separate
instances	 of	 those	 objects	 can	 share	 a	 lock	 if	 it	 has	 the	 right
token.	(Andrew	Bennetts,	Robert	Collins)
New	 method	 get_branch_reference	 on	 BzrDir	 allows	 the
detection	 of	 branch	 references	 -	 which	 the	 smart	 server
component	needs.
The	 Repository	 API	 make_working_trees	 is	 now	 permitted	 to
return	False	when	set_make_working_trees	is	not	implemented	-
previously	 an	 unimplemented	 set_make_working_trees	 implied
the	 result	 True	 from	 make_working_trees.	 This	 has	 been
changed	 to	 accomodate	 the	 smart	 server,	 where	 it	 does	 not
make	 sense	 (at	 this	 point)	 to	 ever	 make	 working	 trees	 by
default.	(Robert	Collins)
Command	 objects	 can	 now	 declare	 related	 help	 topics	 by
having	_see_also	set	to	a	list	of	related	topic.	(Robert	Collins)
bzrlib.help	 now	 delegates	 to	 the	 Command	 class	 for
Command	specific	help.	(Robert	Collins)
New	 class	 TransportListRegistry,	 derived	 from	 the	 Registry
class,	 which	 simplifies	 tracking	 the	 available	 Transports.
(Goffredo	Baroncelli)
New	 function	 Branch.get_revision_id_to_revno_map	 which	 will

return	a	dictionary	mapping	revision	ids	to	dotted	revnos.	Since
dotted	 revnos	 are	 defined	 in	 the	 context	 of	 the	 branch	 tip,	 it
makes	 sense	 to	 generate	 them	 from	 a	 Branch	 object.	 (John
Arbash	Meinel)
Fix	the	‘Unprintable	error’	message	display	to	use	the	repr	of	the
exception	that	prevented	printing	the	error	because	the	str	value
for	it	is	often	not	useful	in	debugging	(e.g.	KeyError(‘foo’)	has	a
str()	 of	 ‘foo’	 but	 a	 repr	 of	 ‘KeyError(‘foo’)’	which	 is	much	more
useful.	(Robert	Collins)
urlutils.normalize_url	now	unescapes	unreserved	characters,
such	as	“~”.	(Andrew	Bennetts)

Bugfixes
Don’t	 fail	 bundle	 selftest	 if	 email	 has	 ‘two’	 embedded.	 (Ian
Clatworthy,	#98510)
Remove	 --verbose	 from	 bzr	 bundle.	 It	 didn’t	 work	 anyway.
(Robert	Widhopf-Fenk,	#98591)
Remove	--basis	from	the	checkout/branch	commands	-	it	didn’t
work	 properly	 and	 is	 no	 longer	 beneficial.	 (Robert	 Collins,
#53675,	#43486)
Don’t	 produce	 encoding	 error	 when	 adding	 duplicate	 files.
(Aaron	Bentley)
Fix	bzr	log	<file>	so	it	only	logs	the	revisions	that	changed	the
file,	 and	 does	 it	 faster.	 (Kent	 Gibson,	 John	 Arbash	 Meinel,
#51980,	#69477)
Fix	 InterDirstateTre._iter_changes	 to	 handle	 when	 we	 come
across	an	empty	versioned	directory,	which	now	has	 files	 in	 it.
(John	Arbash	Meinel,	#104257)
Teach	common_ancestor	to	shortcut	when	the	tip	of	one	branch	is
inside	the	ancestry	of	the	other.	Saves	a	lot	of	graph	processing
(with	an	ancestry	of	16k	revisions,	bzr	merge	../already-merged
changes	from	2m10s	to	13s).	(John	Arbash	Meinel,	#103757)
Fix	show_diff_trees	to	handle	the	case	when	a	file	is	modified,
and	 the	 containing	 directory	 is	 renamed.	 (The	 file	 path	 is
different	 in	 this	 versus	base,	 but	 it	 isn’t	marked	as	a	 rename).
(John	Arbash	Meinel,	#103870)
FTP	 now	 works	 even	 when	 the	 FTP	 server	 does	 not	 support
atomic	rename.	(Aaron	Bentley,	#89436)
Correct	handling	 in	bundles	and	merge	directives	of	 timezones
with	 that	 are	not	 an	 integer	number	of	 hours	offset	 from	UTC.
Always	represent	the	epoch	time	in	UTC	to	avoid	problems	with
formatting	 earlier	 times	 on	 win32.	 (Martin	 Pool,	 Alexander
Belchenko,	John	Arbash	Meinel)

Typo	 in	 the	 help	 for	 register-branch	 fixed.	 (Robert	 Collins,
#96770)
“dirstate”	 and	 “dirstate-tags”	 formats	 now	 produce	 branches
compatible	with	old	versions	of	bzr.	(Aaron	Bentley,	#107168))
Handle	 moving	 a	 directory	 when	 children	 have	 been	 added,
removed,	and	renamed.	(John	Arbash	Meinel,	#105479)
Don’t	 preventively	 use	 basic	 authentication	 for	 proxy	 before
receiving	 a	 407	 error.	 Otherwise	 people	 willing	 to	 use	 other
authentication	schemes	may	expose	their	password	in	the	clear
(or	nearly).	This	add	one	roundtrip	 in	case	basic	authentication
should	be	used,	but	plug	the	security	hole.	(Vincent	Ladeuil)
Handle	 http	 and	 proxy	 digest	 authentication.	 (Vincent	 Ladeuil,
#94034).

Testing
Added	 bzrlib.strace.strace	which	will	strace	a	single	callable
and	return	a	StraceResult	object	which	contains	just	the	syscalls
involved	in	running	it.	(Robert	Collins)
New	 test	method	 reduceLockdirTimeout	 to	drop	 the	default	 (ui-
centric)	 default	 time	 down	 to	 one	 suitable	 for	 tests.	 (Andrew
Bennetts)
Add	 new	 vfs_transport_factory	 attribute	 on	 tests	 which
provides	 the	 common	 vfs	 backing	 for	 both	 the	 readonly	 and
readwrite	 transports.	 This	 allows	 the	 RemoteObject	 tests	 to
back	 onto	 local	 disk	 or	 memory,	 and	 use	 the	 existing
transport_server	attribute	all	 tests	know	about	to	be	the	smart
server	 transport.	 This	 in	 turn	 allows	 tests	 to	 differentiate
between	‘transport	to	access	the	branch’,	and	‘transport	which	is
a	 VFS’	 -	 which	 matters	 in	 Remote*	 tests.	 (Robert	 Collins,
Andrew	Bennetts)
The	 make_branch_and_tree	 method	 for	 tests	 will	 now	 create	 a
lightweight	checkout	for	the	tree	if	the	vfs_transport_factory	 is
not	a	LocalURLServer.	(Robert	Collins,	Andrew	Bennetts)
Branch	 implementation	 tests	have	been	audited	 to	ensure	 that
all	 urls	 passed	 to	 Branch	 APIs	 use	 proper	 urls,	 except	 when
local-disk	 paths	 are	 intended.	 This	 is	 so	 that	 tests	 correctly
access	 the	 test	 transport	which	 is	often	not	equivalent	 to	 local
disk	in	Remote*	tests.	As	part	of	this	many	tests	were	adjusted
to	 remove	dependencies	on	 local	disk	access.	 (Robert	Collins,
Andrew	Bennetts)
Mark	 bzrlib.tests	 and	 bzrlib.tests.TestUtil	 as	 providing
assertFOO	 helper	 functions	 by	 adding	 a	 __unittest	 global
attribute.	 (Robert	 Collins,	 Andrew	 Bennetts,	 Martin	 Pool,
Jonathan	Lange)
Refactored	 proxy	 and	 authentication	 handling	 to	 simplify	 the

implementation	 of	 new	 auth	 schemes	 for	 both	 http	 and	 proxy.
(Vincent	Ladeuil)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	0.15
Released: 2007-04-01

Bugfixes
Handle	incompatible	repositories	as	a	user	issue	when	fetching.
(Aaron	Bentley)
Don’t	 give	 a	 recommendation	 to	 upgrade	 when	 branching	 or
checking	out	a	branch	that	contains	an	old-format	working	tree.
(Martin	Pool)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	0.15rc3
Released: 2007-03-26

Changes
A	warning	is	now	displayed	when	opening	working	trees	in	older
formats,	 to	 encourage	 people	 to	 upgrade	 to
WorkingTreeFormat4.	(Martin	Pool)

Improvements
HTTP	 redirections	 are	 now	 taken	 into	 account	when	 a	 branch
(or	a	bundle)	is	accessed	for	the	first	time.	A	message	is	issued
at	 each	 redirection	 to	 inform	 the	 user.	 In	 the	 past,	 http
redirections	 were	 silently	 followed	 for	 each	 request	 which
significantly	 degraded	 the	 performances.	 The	 http	 redirections
are	 not	 followed	 anymore	 by	 default,	 instead	 a
RedirectRequested	exception	is	raised.	For	bzrlib	users	needing
to	 follow	 http	 redirections	 anyway,
bzrlib.transport.do_catching_redirections	 provide	 an	 easy
transition	path.	(vila)

Internals
Added	 ReadLock.temporary_write_lock()	 to	allow	upgrading	an
OS	 read	 lock	 to	 an	 OS	 write	 lock.	 Linux	 can	 do	 this	 without
unlocking,	 Win32	 needs	 to	 unlock	 in	 between.	 (John	 Arbash
Meinel)
New	parameter	 recommend_upgrade	 to	 BzrDir.open_workingtree
to	 silence	 (when	 false)	 warnings	 about	 opening	 old	 formats.
(Martin	Pool)
Fix	minor	performance	 regression	with	bzr-0.15	on	pre-dirstate
trees.	(We	were	reading	the	working	inventory	too	many	times).
(John	Arbash	Meinel)
Remove	 Branch.get_transaction()	 in	 favour	of	a	simple	cache
of	 revision_history.	 Branch	 subclasses	 should	 override
_gen_revision_history	 rather	 than	 revision_history	 to	 make
use	of	 this	cache,	and	call	 _clear_revision_history_cache	and
_cache_revision_history	 at	 appropriate	 times.	 (Andrew
Bennetts)

Bugfixes
Take	smtp_server	from	user	config	into	account.	(vila,	#92195)
Restore	 Unicode	 filename	 handling	 for	 versioned	 and
unversioned	files.	(John	Arbash	Meinel,	#92608)
Don’t	fail	during	bzr	commit	if	a	file	is	marked	removed,	and	the
containing	 directory	 is	 auto-removed.	 (John	 Arbash	 Meinel,
#93681)
bzr	 status	 FILENAME	 failed	 on	 Windows	 because	 of	 an
uncommon	 errno.	 (ERROR_DIRECTORY	 ==	 267	 !=	 ENOTDIR).
(Wouter	van	Heyst,	John	Arbash	Meinel,	#90819)
bzr	checkout	source	should	create	a	 local	branch	 in	 the	same
format	as	source.	(John	Arbash	Meinel,	#93854)
bzr	 commit	 with	 a	 kind	 change	was	 failing	 to	 update	 the	 last-
changed-revision	 for	 directories.	 The
InventoryDirectory._unchanged	 only	 looked	 at	 the	 parent_id
and	name,	 ignoring	 the	 fact	 that	 the	kind	could	have	changed,
too.	(John	Arbash	Meinel,	#90111)
bzr	 mv	 dir/subdir	 other	 was	 incorrectly	 updating	 files	 inside
the	directory.	So	that	there	was	a	chance	it	would	break	commit,
etc.	(John	Arbash	Meinel,	#94037)
Correctly	 handles	 mutiple	 permanent	 http	 redirections.	 (vila,
#88780)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	0.15rc2
Released: 2007-03-14

Notes	When	Upgrading
Release	0.15rc2	of	bzr	changes	the	bzr	init-repo	command	to
default	 to	 --trees	 instead	 of	 --no-trees.	 Existing	 shared
repositories	are	not	affected.

Improvements
New	 merge-directive	 command	 to	 generate	 machine-	 and
human-readable	merge	requests.	(Aaron	Bentley)
New	submit:	revision	specifier	makes	it	easy	to	diff	against	the
common	ancestor	with	the	submit	location	(Aaron	Bentley)
Added	support	for	Putty’s	SSH	implementation.	(Dmitry	Vasiliev)
Added	 bzr	 status	 --versioned	 to	 report	 only	 versioned	 files,
not	unknowns.	(Kent	Gibson)
Merge	 now	 autodetects	 the	 correct	 line-ending	 style	 for	 its
conflict	markers.	(Aaron	Bentley)

Internals
Refactored	 SSH	 vendor	 registration	 into	 SSHVendorManager
class.	(Dmitry	Vasiliev)

Bugfixes
New	 --numbered-dirs	option	to	 bzr	selftest	 to	use	numbered
dirs	 for	 TestCaseInTempDir.	 This	 is	 default	 behavior	 on
Windows.	Anyone	can	force	named	dirs	on	Windows	with	--no-
numbered-dirs.	(Alexander	Belchenko)
Fix	RevisionSpec_revid	to	handle	the	Unicode	strings	passed	in
from	the	command	line.	(Marien	Zwart,	#90501)
Fix	 TreeTransform._iter_changes	 when	 both	 the	 source	 and
destination	are	missing.	(Aaron	Bentley,	#88842)
Fix	 commit	 of	 merges	 with	 symlinks	 in	 dirstate	 trees.	 (Marien
Zwart)
Switch	 the	 bzr	 init-repo	 default	 from	 –no-trees	 to	 –trees.
(Wouter	van	Heyst,	#53483)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	0.15rc1
Released: 2007-03-07

Surprises
The	default	disk	 format	has	changed.	Please	run	 ‘bzr	upgrade’
in	your	working	trees	to	upgrade.	This	new	default	is	compatible
for	 network	 operations,	 but	 not	 for	 local	 operations.	 That	 is,	 if
you	 have	 two	 versions	 of	 bzr	 installed	 locally,	 after	 upgrading
you	can	only	use	the	bzr	0.15	version.	This	new	default	does	not
enable	 tags	 or	 nested-trees	 as	 they	 are	 incompatible	 with	 bzr
versions	before	0.15	over	the	network.
For	users	of	bzrlib:	Two	major	changes	have	been	made	to	the
working	 tree	 api	 in	 bzrlib.	 The	 first	 is	 that	many	methods	 and
attributes,	 including	 the	 inventory	 attribute,	 are	 no	 longer	 valid
for	 use	 until	 one	 of	 lock_read/lock_write/lock_tree_write	 has
been	 called,	 and	 become	 invalid	 again	 after	 unlock	 is	 called.
This	has	been	done	to	improve	performance	and	correctness	as
part	of	the	dirstate	development.	(Robert	Collins,	John	A	Meinel,
Martin	Pool,	and	others).
For	 users	 of	 bzrlib:	 The	 attribute	 ‘tree.inventory’	 should	 be
considered	readonly.	Previously	 it	was	possible	 to	directly	alter
this	attribute,	or	its	contents,	and	have	the	tree	notice	this.	This
has	been	made	unsupported	-	it	may	work	in	some	tree	formats,
but	in	the	newer	dirstate	format	such	actions	will	have	no	effect
and	 will	 be	 ignored,	 or	 even	 cause	 assertions.	 All	 operations
possible	can	still	be	carried	out	by	a	combination	of	the	tree	API,
and	 the	 bzrlib.transform	 API.	 (Robert	 Collins,	 John	 A	 Meinel,
Martin	Pool,	and	others).

Improvements
Support	 for	 OS	 Windows	 98.	 Also	 .bzr.log	 on	 any	 windows
system	saved	in	My	Documents	folder.	(Alexander	Belchenko)
bzr	mv	enhanced	to	support	already	moved	files.	In	the	past	the
mv	command	would	have	failed	if	the	source	file	doesn’t	exist.	In
this	situation	bzr	mv	would	now	detect	 that	 the	file	has	already
moved	 and	 update	 the	 repository	 accordingly,	 if	 the	 target	 file
does	exist.	A	new	option	--after	has	been	added	so	that	if	two
files	already	exist,	you	could	notify	Bazaar	that	you	have	moved
a	(versioned)	file	and	replaced	it	with	another.	Thus	in	this	case
bzr	move	--after	will	only	update	the	Bazaar	identifier.	(Steffen
Eichenberg,	Marius	Kruger)
ls	 now	 works	 on	 treeless	 branches	 and	 remote	 branches.
(Aaron	Bentley)
bzr	 help	 global-options	 describes	 the	 global	 options.	 (Aaron
Bentley)
bzr	 pull	 --overwrite	 will	 now	 correctly	 overwrite	 checkouts.
(Robert	Collins)
Files	are	now	allowed	to	change	kind	(e.g.	from	file	to	symlink).
Supported	by	commit,	revert	and	status	(Aaron	Bentley)
inventory	and	unknowns	hidden	in	favour	of	ls	(Aaron	Bentley)
bzr	 help	 checkouts	 descibes	 what	 checkouts	 are	 and	 some
possible	uses	of	them.	(James	Westby,	Aaron	Bentley)
A	new	 -d	option	 to	push,	pull	and	merge	overrides	 the	default
directory.	(Martin	Pool)
Branch	 format	 6:	 smaller,	 and	 potentially	 faster	 than	 format	 5.
Supports	 append_history_only	 mode,	 where	 the	 log	 view	 and
revnos	do	not	change,	except	by	being	added	to.	Stores	policy
settings	in	“.bzr/branch/branch.conf”.
append_only	 branches:	 Format	 6	 branches	 may	 be	 configured

so	that	log	view	and	revnos	are	always	consistent.	Either	create
the	 branch	 using	 “bzr	 init	 –append-revisions-only”	 or	 edit	 the
config	file	as	descriped	in	docs/configuration.txt.
rebind:	Format	6	branches	retain	the	last-used	bind	location,	so
if	you	“bzr	unbind”,	you	can	“bzr	bind”	to	bind	to	the	previously-
selected	bind	location.
Builtin	 tags	support,	 created	and	deleted	by	 the	 tag	command
and	 stored	 in	 the	 branch.	 Tags	 can	 be	 accessed	 with	 the
revisionspec	 -rtag:,	 and	 listed	 with	 bzr	 tags.	 Tags	 are	 not
versioned	 at	 present.	 Tags	 require	 a	 network	 incompatible
upgrade.	To	perform	this	upgrade,	run	bzr	upgrade	--dirstate-
tags	in	your	branch	and	repositories.	(Martin	Pool)
The	bzr://	transport	now	has	a	well-known	port	number,	4155,
which	it	will	use	by	default.	(Andrew	Bennetts,	Martin	Pool)
Bazaar	 now	 looks	 for	 user-installed	 plugins	 before	 looking	 for
site-wide	plugins.	(Jonathan	Lange)
bzr	 resolve	 now	 detects	 and	 marks	 resolved	 text	 conflicts.
(Aaron	Bentley)

Internals
Internally	revision	ids	and	file	ids	are	now	passed	around	as	utf-
8	bytestrings,	rather	than	treating	them	as	Unicode	strings.	This
has	performance	benefits	for	Knits,	since	we	no	longer	need	to
decode	the	revision	id	for	each	line	of	content,	nor	for	each	entry
in	 the	 index.	This	will	 also	help	with	 the	 future	dirstate	 format.
(John	Arbash	Meinel)
Reserved	ids	(any	revision-id	ending	in	a	colon)	are	rejected	by
versionedfiles,	repositories,	branches,	and	working	trees	(Aaron
Bentley)
Minor	performance	improvement	by	not	creating	a	ProgressBar
for	every	KnitIndex	we	create.	 (about	90ms	 for	a	bzr.dev	 tree)
(John	Arbash	Meinel)
New	 easier	 to	 use	 Branch	 hooks	 facility.	 There	 are	 five	 initial
hooks,	 all	 documented	 in	 bzrlib.branch.BranchHooks.__init__	 -
'set_rh',	 'post_push',	 'post_pull',	 'post_commit',
'post_uncommit'.	These	hooks	fire	after	the	matching	operation
on	a	branch	has	taken	place,	and	were	originally	added	for	the
branchrss	plugin.	(Robert	Collins)
New	 method	 Branch.push()	 which	 should	 be	 used	 when
pushing	 from	 a	 branch	 as	 it	 makes	 performance	 and	 policy
decisions	to	match	the	UI	level	command	push.	(Robert	Collins).
Add	a	new	method	Tree.revision_tree	which	allows	access	to
cached	 trees	 for	 arbitrary	 revisions.	 This	 allows	 the	 in
development	dirstate	tree	format	to	provide	access	to	the	callers
to	cached	copies	of	inventory	data	which	are	cheaper	to	access
than	 inventories	 from	 the	 repository.	 (Robert	 Collins,	 Martin
Pool)
New	 Branch.last_revision_info	method,	 this	 is	 being	 done	 to
allow	optimization	of	 requests	 for	both	 the	number	of	 revisions
and	 the	 last	 revision	 of	 a	 branch	 with	 smartservers	 and

potentially	 future	 branch	 formats.	 (Wouter	 van	 Heyst,	 Robert
Collins)
Allow	 'import	 bzrlib.plugins.NAME'	 to	 work	 when	 the	 plugin
NAME	has	not	yet	been	loaded	by	load_plugins().	This	allows
plugins	 to	 depend	 on	 each	 other	 for	 code	 reuse	 without
requiring	 users	 to	 perform	 file-renaming	 gymnastics.	 (Robert
Collins)
New	 Repository	 method	 'gather_stats'	 for	 statistic	 data
collection.	This	is	expected	to	grow	to	cover	a	number	of	related
uses	mainly	related	to	bzr	info.	(Robert	Collins)
Log	 formatters	 are	 now	 managed	 with	 a	 registry.
log.register_formatter	 continues	 to	 work,	 but	 callers
accessing	the	FORMATTERS	dictionary	directly	will	not.
Allow	a	start	message	to	be	passed	to	the	edit_commit_message
function.	This	will	be	placed	in	the	message	offered	to	the	user
for	 editing	 above	 the	 separator.	 It	 allows	 a	 template	 commit
message	to	be	used	more	easily.	(James	Westby)
GPGStrategy.sign()	 will	 now	 raise	 BzrBadParameterUnicode	 if
you	 pass	 a	 Unicode	 string	 rather	 than	 an	 8-bit	 string.	 Callers
need	to	be	updated	to	encode	first.	(John	Arbash	Meinel)
Branch.push,	 pull,	 merge	 now	 return	 Result	 objects	 with
information	 about	 what	 happened,	 rather	 than	 a	 scattering	 of
various	 methods.	 These	 are	 also	 passed	 to	 the	 post	 hooks.
(Martin	Pool)
File	formats	and	architecture	is	in	place	for	managing	a	forest	of
trees	in	bzr,	and	splitting	up	existing	trees	into	smaller	subtrees,
and	 finally	 joining	 trees	 to	make	 a	 larger	 tree.	 This	 is	 the	 first
iteration	of	this	support,	and	the	user-facing	aspects	still	require
substantial	 work.	 If	 you	 wish	 to	 experiment	 with	 it,	 use	 bzr
upgrade	 --dirstate-with-subtree	 in	 your	 working	 trees	 and
repositories.	You	can	use	the	hidden	commands	split	and	join
and	to	create	and	manipulate	nested	trees,	but	please	consider
using	 the	 nested-trees	 branch,	 which	 contains	 substantial	 UI

improvements,	 instead.
http://code.aaronbentley.com/bzr/bzrrepo/nested-trees/	 (Aaron
Bentley,	Martin	Pool,	Robert	Collins).

http://code.aaronbentley.com/bzr/bzrrepo/nested-trees/

Bugfixes
bzr	annotate	now	uses	dotted	revnos	from	the	viewpoint	of	the
branch,	 rather	 than	 the	 last	 changed	 revision	of	 the	 file.	 (John
Arbash	Meinel,	#82158)
Lock	operations	no	 longer	hang	 if	 they	encounter	a	permission
problem.	(Aaron	Bentley)
bzr	 push	 can	 resume	 a	 push	 that	 was	 canceled	 before	 it
finished.	 Also,	 it	 can	 push	 even	 if	 the	 target	 directory	 exists	 if
you	 supply	 the	 --use-existing-dir	 flag.	 (John	 Arbash	Meinel,
#30576,	#45504)
Fix	 http	 proxy	 authentication	 when	 user	 and	 an	 optional
password	 appears	 in	 the	 *_proxy	 vars.	 (Vincent	 Ladeuil,
#83954).
bzr	log	 branch/file	works	 for	 local	 treeless	 branches	 (Aaron
Bentley,	#84247)
Fix	 problem	 with	 UNC	 paths	 on	 Windows	 98.	 (Alexander
Belchenko,	#84728)
Searching	 location	 of	 CA	 bundle	 for	 PyCurl	 in	 env	 variable
(CURL_CA_BUNDLE),	 and	 on	 win32	 along	 the	 PATH.	 (Alexander
Belchenko,	#82086)
bzr	init	works	with	unicode	argument	LOCATION.	(Alexander
Belchenko,	#85599)
Raise	 DependencyNotPresent	 if	 pycurl	 do	 not	 support	 https.
(Vincent	Ladeuil,	#85305)
Invalid	 proxy	 env	 variables	 should	 not	 cause	 a	 traceback.
(Vincent	Ladeuil,	#87765)
Ignore	 patterns	 normalised	 to	 use	 ‘/’	 path	 separator.	 (Kent
Gibson,	#86451)
bzr	rocks.	It	sure	does!	Fix	case.	(Vincent	Ladeuil,	#78026)
Fix	bzrtools	shelve	command	 for	 removed	 lines	beginning	with
“–”	(Johan	Dahlberg,	#75577)

Testing
New	 --first	 option	 to	 bzr	 selftest	 to	 run	 specified	 tests
before	the	rest	of	the	suite.	(Martin	Pool)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	0.14
Released: 2007-01-23

Improvements
bzr	 help	 global-options	 describes	 the	 global	 options.	 (Aaron
Bentley)

Bug	Fixes
Skip	documentation	generation	tests	if	the	tools	to	do	so	are	not
available.	Fixes	running	selftest	for	installled	copies	of	bzr.	(John
Arbash	Meinel,	#80330)
Fix	 the	 code	 that	 discovers	 whether	 bzr	 is	 being	 run	 from	 it’s
working	tree	to	handle	the	case	when	it	isn’t	but	the	directory	it
is	in	is	below	a	repository.	(James	Westby,	#77306)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	0.14rc1
Released: 2007-01-16

Improvements
New	 connection:	 bzr+http://	 which	 supports	 tunnelling	 the
smart	protocol	over	an	HTTP	connection.	If	writing	is	enabled	on
the	 bzr	 server,	 then	 you	 can	 write	 over	 the	 http	 connection.
(Andrew	Bennetts,	John	Arbash	Meinel)

Aliases	 now	 support	 quotation	 marks,	 so	 they	 can	 contain
whitespace	(Marius	Kruger)

PyCurlTransport	 now	 use	 a	 single	 curl	 object.	 By	 specifying
explicitly	 the	 ‘Range’	 header,	 we	 avoid	 the	 need	 to	 use	 two
different	curl	objects	(and	two	connections	to	the	same	server).
(Vincent	Ladeuil)

bzr	commit	does	not	prompt	for	a	message	until	 it	 is	very	likely
to	succeed.	(Aaron	Bentley)

bzr	conflicts	now	takes	–text	to	list	pathnames	of	text	conflicts
(Aaron	Bentley)

Fix	 iter_lines_added_or_present_in_versions	 to	 use	 a	 set
instead	 of	 a	 list	while	 checking	 if	 a	 revision	 id	was	 requested.
Takes	 10s	 off	 of	 the	 fileids_affected_by_revision_ids	 time,
which	is	10s	of	the	bzr	branch	 time.	Also	 improve	 fileids_...
time	 by	 filtering	 lines	 with	 a	 regex	 rather	 than	 multiple
str.find()	calls.	(saves	another	300ms)	(John	Arbash	Meinel)

Policy	can	be	set	for	each	configuration	key.	This	allows	keys	to
be	inherited	properly	across	configuration	entries.	For	example,
this	should	enable	you	to	do:

[/home/user/project]

push_location	=	sftp://host/srv/project/

push_location:policy	=	appendpath

And	then	a	branch	like	/home/user/project/mybranch	should	get
an	 automatic	 push	 location	 of
sftp://host/srv/project/mybranch.	(James	Henstridge)

Added	bzr	status	--short	to	make	status	report	svn	style	flags
for	each	file.	For	example:

$	bzr	status	--short

A		foo

A		bar

D		baz

?		wooley

‘bzr	 selftest	 –clean-output’	 allows	 easily	 clean	 temporary	 tests
directories	without	running	tests.	(Alexander	Belchenko)

bzr	 help	 hidden-commands	 lists	 all	 hidden	 commands.	 (Aaron
Bentley)

bzr	merge	now	has	an	option	--pull	to	fall	back	to	pull	if	local	is
fully	merged	into	remote.	(Jan	Hudec)

bzr	help	formats	describes	available	directory	 formats.	 (Aaron
Bentley)

Internals
A	 few	 tweaks	 directly	 to	 fileids_affected_by_revision_ids	 to
help	 speed	 up	 processing,	 as	 well	 allowing	 to	 extract
unannotated	 lines.	 Between	 the	 two
fileids_affected_by_revision_ids	 is	improved	by	approx	10%.
(John	Arbash	Meinel)
Change	 Revision	 serialization	 to	 only	 write	 out	 millisecond
resolution.	 Rather	 than	 expecting	 floating	 point	 serialization	 to
preserve	more	resolution	than	we	need.	(Henri	Weichers,	Martin
Pool)
Test	suite	ends	cleanly	on	Windows.	(Vincent	Ladeuil)
When	 encoding_type	 attribute	 of	 class	 Command	 is	 equal	 to
‘exact’,	force	sys.stdout	to	be	a	binary	stream	on	Windows,	and
therefore	 keep	 exact	 line-endings	 (without	 LF	 ->	 CRLF
conversion).	(Alexander	Belchenko)
Single-letter	 short	 options	 are	 no	 longer	 globally	 declared.
(Martin	Pool)
Before	using	detected	user/terminal	encoding	bzr	should	check
that	Python	has	corresponding	codec.	(Alexander	Belchenko)
Formats	 for	 end-user	 selection	 are	 provided	 via	 a
FormatRegistry	(Aaron	Bentley)

Bug	Fixes
bzr	 missing	 --verbose	 was	 showing	 adds/removals	 in	 the
wrong	direction.	(John	Arbash	Meinel)
bzr	annotate	now	defaults	to	showing	dotted	revnos	for	merged
revisions.	 It	 cuts	 them	off	at	a	depth	of	12	characters,	but	you
can	supply	 --long	 to	see	the	full	number.	You	can	also	use	 --
show-ids	to	display	the	original	revision	ids,	rather	than	revision
numbers	and	committer	names.	(John	Arbash	Meinel,	#75637)
bzr	now	supports	Win32	UNC	path	(e.g.	\HOST\path.	(Alexander
Belchenko,	#57869)
Win32-specific:	 output	 of	 cat,	 bundle	 and	 diff	 commands	 don’t
mangle	line-endings	(Alexander	Belchenko,	#55276)
Replace	 broken	 fnmatch	 based	 ignore	 pattern	 matching	 with
custom	pattern	matcher.	(Kent	Gibson,	Jan	Hudec	#57637)
pycurl	 and	 urllib	 can	 detect	 short	 reads	 at	 different	 places.
Update	the	test	suite	to	test	more	cases.	Also	detect	http	error
code	416	which	was	raised	for	 that	specific	bug.	Also	enhance
the	 urllib	 robustness	 by	 detecting	 invalid	 ranges	 (and	 pycurl’s
one	 by	 detecting	 short	 reads	 during	 the	 initial	 GET).	 (Vincent
Ladeuil,	#73948)
The	 urllib	 connection	 sharing	 interacts	 badly	with	 urllib2	 proxy
setting	 (the	 connections	 didn’t	 go	 thru	 the	 proxy	 anymore).
Defining	 a	 proper	 ProxyHandler	 solves	 the	 problem.	 (Vincent
Ladeuil,	#74759)
Use	 urlutils	 to	 generate	 relative	 URLs,	 not	 osutils	 (Aaron
Bentley,	#76229)
bzr	 status	 in	 a	 readonly	 directory	 should	 work	 without	 giving
lots	of	errors.	(John	Arbash	Meinel,	#76299)
Mention	 the	 revisionspec	 topic	 for	 the	 revision	 option	 help.
(Wouter	van	Heyst,	#31663)
Allow	 plugins	 import	 from	 zip	 archives.	 (Alexander	 Belchenko,

#68124)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	0.13
Released: 2006-12-05

No	changes	from	0.13rc

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	0.13rc1
Released: 2006-11-27

Improvements
New	 command	 bzr	 remove-tree	 allows	 the	 removal	 of	 the
working	tree	from	a	branch.	(Daniel	Silverstone)
urllib	uses	shared	keep-alive	connections,	so	http	operations	are
substantially	faster.	(Vincent	Ladeuil,	#53654)
bzr	export	allows	an	optional	branch	parameter,	to	export	a	bzr
tree	 from	some	other	url.	For	example:	 bzr	export	 bzr.tar.gz
http://bazaar-vcs.org/bzr/bzr.dev	(Daniel	Silverstone)
Added	 bzr	 help	 topics	 to	 the	 bzr	 help	 system.	 This	 gives	 a
location	for	general	information,	outside	of	a	specific	command.
This	 includes	updates	for	 bzr	help	revisionspec	 the	 first	 topic
included.	(Goffredo	Baroncelli,	John	Arbash	Meinel,	#42714)
WSGI-compatible	 HTTP	 smart	 server.	 See
doc/http_smart_server.txt.	(Andrew	Bennetts)
Knit	 files	 will	 now	 cache	 full	 texts	 only	 when	 the	 size	 of	 the
deltas	is	as	large	as	the	size	of	the	fulltext.	(Or	after	200	deltas,
whichever	comes	first).	This	has	the	most	benefit	on	large	files
with	small	changes,	such	as	the	inventory	for	a	large	project.	(eg
For	a	project	with	2500	files,	and	7500	revisions,	it	changes	the
size	of	inventory.knit	from	11MB	to	5.4MB)	(John	Arbash	Meinel)

Internals
New	 -D	 option	 given	 before	 the	 command	 line	 turns	 on
debugging	output	for	particular	areas.	-Derror	shows	tracebacks
on	all	errors.	(Martin	Pool)
Clean	up	bzr	selftest	--benchmark	bundle	to	correct	an	import,
and	 remove	 benchmarks	 that	 take	 longer	 than	 10min	 to	 run.
(John	Arbash	Meinel)
Use	time.time()	instead	of	time.clock()	to	decide	on	progress
throttling.	Because	time.clock()	is	actually	CPU	time,	so	over	a
high-latency	connection,	 too	many	updates	get	 throttled.	 (John
Arbash	Meinel)
MemoryTransport.list_dir()	 would	 strip	 the	 first	 character	 for
files	or	directories	in	root	directory.	(John	Arbash	Meinel)
New	 method	 get_branch_reference	 on	 ‘BzrDir’	 allows	 the
detection	 of	 branch	 references	 -	 which	 the	 smart	 server
component	needs.
New	 ChrootTransportDecorator,	 accessible	 via	 the	 chroot+	 url
prefix.	 It	 disallows	 any	 access	 to	 locations	 above	 a	 set	 URL.
(Andrew	Bennetts)

Bug	Fixes
Now	 _KnitIndex	 properly	 decode	 revision	 ids	 when	 loading
index	 data.	 And	 optimize	 the	 knit	 index	 parsing	 code.	 (Dmitry
Vasiliev,	John	Arbash	Meinel)
bzrlib/bzrdir.py	 was	 directly	 referencing	 bzrlib.workingtree,
without	 importing	 it.	 This	 prevented	 bzr	 upgrade	 from	working
unless	 a	 plugin	 already	 imported	 bzrlib.workingtree	 (John
Arbash	Meinel,	#70716)
Suppress	 the	 traceback	 on	 invalid	 URLs	 (Vincent	 Ladeuil,
#70803).
Give	 nicer	 error	 message	 when	 an	 http	 server	 returns	 a	 403
error	code.	(Vincent	Ladeuil,	#57644).
When	 a	multi-range	 http	GET	 request	 fails,	 try	 a	 single	 range
one.	If	it	fails	too,	forget	about	ranges.	Remember	that	until	the
death	 of	 the	 transport	 and	 propagates	 that	 to	 the	 clones.
(Vincent	Ladeuil,	#62276,	#62029).
Handles	user/passwords	supplied	in	url	from	command	line	(for
the	 urllib	 implementation).	 Don’t	 request	 already	 known
passwords	(Vincent	Ladeuil,	#42383,	#44647,	#48527)
_KnitIndex.add_versions()	 dictionary	 compresses	 revision	 ids
as	 they	 are	 added.	 This	 fixes	 bug	 where	 fetching	 remote
revisions	 records	 them	 as	 full	 references	 rather	 than	 integers.
(John	Arbash	Meinel,	#64789)
bzr	 ignore	 strips	 trailing	 slashes	 in	 patterns.	 Also	 bzr	 ignore
rejects	absolute	paths.	(Kent	Gibson,	#4559)
bzr	ignore	takes	multiple	arguments.	(Cheuksan	Edward	Wang,
#29488)
mv	 correctly	 handles	 paths	 that	 traverse	 symlinks.	 (Aaron
Bentley,	#66964)
Give	nicer	looking	error	messages	when	failing	to	connect	over
ssh.	(John	Arbash	Meinel,	#49172)

Pushing	 to	 a	 remote	 branch	 does	 not	 currently	 update	 the
remote	working	 tree.	After	a	 remote	push,	 bzr	status	and	 bzr
diff	on	the	remote	machine	now	show	that	the	working	tree	is
out	of	date.	(Cheuksan	Edward	Wang	#48136)
Use	patiencediff	instead	of	difflib	for	determining	deltas	to	insert
into	 knits.	 This	 avoids	 the	O(N^3)	 behavior	 of	 difflib.	 Patience
diff	should	be	O(N^2).	(Cheuksan	Edward	Wang,	#65714)
Running	bzr	log	on	nonexistent	file	gives	an	error	instead	of	the
entire	log	history.	(Cheuksan	Edward	Wang	#50793)
bzr	cat	can	look	up	contents	of	removed	or	renamed	files.	If	the
pathname	 is	ambiguous,	 i.e.	 the	 files	 in	 the	old	and	new	 trees
have	 different	 id’s,	 the	 default	 is	 the	 file	 in	 the	 new	 tree.	 The
user	can	use	“–name-from-revision”	 to	select	 the	 file	 in	 the	old
tree.	(Cheuksan	Edward	Wang,	#30190)

Testing
TestingHTTPRequestHandler	 really	 handles	 the	Range	 header
(previously	it	was	ignoring	it	and	returning	the	whole	file,).

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	0.12
Released: 2006-10-30

Internals
Clean	up	bzr	selftest	--benchmark	bundle	to	correct	an	import,
and	 remove	 benchmarks	 that	 take	 longer	 than	 10min	 to	 run.
(John	Arbash	Meinel)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	0.12rc1
Released: 2006-10-23

Improvements
bzr	 log	 now	 shows	 dotted-decimal	 revision	 numbers	 for	 all
revisions,	rather	than	just	showing	a	decimal	revision	number	for
revisions	on	 the	mainline.	These	 revision	numbers	are	not	 yet
accepted	 as	 input	 into	 bzr	 commands	 such	 as	 log,	 diff	 etc.
(Robert	Collins)
revisions	 can	 now	 be	 specified	 using	 dotted-decimal	 revision
numbers.	 For	 instance,	 bzr	 diff	 -r	 1.2.1..1.2.3.	 (Robert
Collins)
bzr	help	commands	output	is	now	shorter	(Aaron	Bentley)
bzr	now	uses	lazy	importing	to	reduce	the	startup	time.	This	has
a	moderate	effect	on	 lots	of	actions,	especially	ones	 that	have
little	to	do.	For	example	bzr	rocks	 time	is	down	to	116ms	from
283ms.	(John	Arbash	Meinel)
New	 Registry	 class	 to	 provide	 name-to-object	 registry-like
support,	 for	 example	 for	 schemes	 where	 plugins	 can	 register
new	 classes	 to	 do	 certain	 tasks	 (e.g.	 log	 formatters).	 Also
provides	 lazy	 registration	 to	 allow	 modules	 to	 be	 loaded	 on
request.	(John	Arbash	Meinel,	Adeodato	Simó)

API	Incompatability
LogFormatter	 subclasses	 show	 now	 expect	 the	 ‘revno’
parameter	 to	 show()	 to	 be	 a	 string	 rather	 than	 an	 int.	 (Robert
Collins)

Internals
TestCase.run_bzr,	 run_bzr_captured,	 and	 run_bzr_subprocess
can	 take	 a	 working_dir='foo'	 parameter,	 which	 will	 change
directory	for	the	command.	(John	Arbash	Meinel)
bzrlib.lazy_regex.lazy_compile	can	be	used	to	create	a	proxy
around	a	 regex,	which	 defers	 compilation	 until	 first	 use.	 (John
Arbash	Meinel)
TestCase.run_bzr_subprocess	 defaults	 to	 supplying	 the	 --no-
plugins	 parameter	 to	 ensure	 test	 reproducability,	 and	 avoid
problems	 with	 system-wide	 installed	 plugins.	 (John	 Arbash
Meinel)
Unique	tree	root	ids	are	now	supported.	Newly	created	trees	still
use	the	common	root	id	for	compatibility	with	bzr	versions	before
0.12.	(Aaron	Bentley)
WorkingTree.set_root_id(None)	is	now	deprecated.	Please	pass
in	 inventory.ROOT_ID	 if	 you	 want	 the	 default	 root	 id	 value.
(Robert	Collins,	John	Arbash	Meinel)
New	 method	 WorkingTree.flush()	 which	 will	 write	 the	 current
memory	 inventory	 out	 to	 disk.	 At	 the	 same	 time,
read_working_inventory	 will	 no	 longer	 trash	 the	 current	 tree
inventory	if	it	has	been	modified	within	the	current	lock,	and	the
tree	 will	 now	 flush()	 automatically	 on	 unlock().
WorkingTree.set_root_id()	 has	 been	 updated	 to	 take
advantage	 of	 this	 functionality.	 (Robert	 Collins,	 John	 Arbash
Meinel)
bzrlib.tsort.merge_sorted	 now	accepts	 generate_revnos.	 This
parameter	 will	 cause	 it	 to	 add	 another	 column	 to	 its	 output,
which	contains	the	dotted-decimal	revno	for	each	revision,	as	a
tuple.	(Robert	Collins)
LogFormatter.show_merge	 is	 deprecated	 in	 favour	 of

LogFormatter.show_merge_revno.	(Robert	Collins)

Bug	Fixes
Avoid	 circular	 imports	 by	 creating	 a	 deprecated	 function	 for
bzrlib.tree.RevisionTree.	 Callers	 should	 have	 been	 using
bzrlib.revisontree.RevisionTree	 anyway.	 (John	 Arbash
Meinel,	#66349)
Don’t	use	socket.MSG_WAITALL	as	it	doesn’t	exist	on	all	platforms.
(Martin	Pool,	#66356)
Don’t	 require	 Content-Type	 in	 range	 responses.	 Assume	 they
are	a	single	range	if	Content-Type	does	not	exist.	(John	Arbash
Meinel,	#62473)
bzr	branch/pull	no	 longer	complain	about	progress	bar	cleanup
when	interrupted	during	fetch.	(Aaron	Bentley,	#54000)
WorkingTree.set_parent_trees()	uses	the	trees	to	directly	write
the	 basis	 inventory,	 rather	 than	 going	 through	 the	 repository.
This	allows	us	to	have	1	inventory	read,	and	2	inventory	writes
when	committing	a	new	tree.	(John	Arbash	Meinel)
When	 reverting,	 files	 that	 are	 not	 locally	 modified	 that	 do	 not
exist	 in	 the	 target	 are	 deleted,	 not	 just	 unversioned	 (Aaron
Bentley)
When	trying	to	acquire	a	lock,	don’t	fail	immediately.	Instead,	try
a	few	times	(up	to	1	hour)	before	timing	out.	Also,	report	why	the
lock	is	unavailable	(John	Arbash	Meinel,	#43521,	#49556)
Leave	 HttpTransportBase	 daughter	 classes	 decides	 how	 they
implement	cloning.	(Vincent	Ladeuil,	#61606)
diff3	does	not	indicate	conflicts	on	clean	merge.	(Aaron	Bentley)
If	a	commit	 fails,	 the	commit	message	 is	stored	 in	a	 file	at	 the
root	 of	 the	 tree	 for	 later	 commit.	 (Cheuksan	 Edward	 Wang,
Stefan	Metzmacher,	#32054)

Testing
New	 test	 base	 class	 TestCaseWithMemoryTransport	 offers
memory-only	testing	facilities:	its	not	suitable	for	tests	that	need
to	mutate	 disk	 state,	 but	most	 tests	 should	 not	 need	 that	 and
should	be	converted	to	TestCaseWithMemoryTransport.	(Robert
Collins)
TestCase.make_branch_and_memory_tree	 now	 takes	 a	 format
option	 to	set	 the	BzrDir,	Repository	and	Branch	 formats	of	 the
created	objects.	(Robert	Collins,	John	Arbash	Meinel)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	0.11
Released: 2006-10-02

Smart	 server	 transport	 test	 failures	 on	 windows	 fixed.	 (Lukáš
Lalinský).

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	0.11rc2
Released: 2006-09-27

Bug	Fixes
Test	suite	hangs	on	windows	fixed.	(Andrew	Bennets,	Alexander
Belchenko).
Commit	 performance	 regression	 fixed.	 (Aaron	 Bentley,	 Robert
Collins,	John	Arbash	Meinel).

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	0.11rc1
Released: 2006-09-25

Improvements
Knit	 files	now	wait	 to	create	 their	contents	until	 the	 first	data	 is
added.	The	old	code	used	to	create	an	empty	.knit	and	a	.kndx
with	 just	 the	header.	However,	 this	caused	a	 lot	of	extra	 round
trips	over	sftp.	This	can	change	the	time	for	bzr	push	to	create	a
new	 remote	branch	 from	160s	down	 to	100s.	This	also	affects
bzr	commit	performance	when	adding	new	files,	bzr	commit	on
a	new	kernel-like	tree	drops	from	50s	down	to	40s	(John	Arbash
Meinel,	#44692)
When	 an	 entire	 subtree	 has	 been	 deleted,	 commit	 will	 now
report	 that	 just	 the	 top	of	 the	subtree	has	been	deleted,	 rather
than	reporting	all	the	individual	items.	(Robert	Collins)
Commit	performs	one	less	XML	parse.	(Robert	Collins)
bzr	 checkout	 now	 operates	 on	 readonly	 branches	 as	 well	 as
readwrite	branches.	This	fixes	bug	#39542.	(Robert	Collins)
bzr	bind	no	longer	synchronises	history	with	the	master	branch.
Binding	should	be	followed	by	an	update	or	push	to	synchronise
the	 two	 branches.	 This	 is	 closely	 related	 to	 the	 fix	 for	 bug
#39542.	(Robert	Collins)
bzrlib.lazy_import.lazy_import	 function	 to	 create	 on-demand
objects.	This	allows	all	 imports	 to	stay	at	 the	global	scope,	but
modules	will	not	actually	be	imported	if	they	are	not	used.	(John
Arbash	Meinel)
Support	bzr://	and	bzr+ssh://	urls	to	work	with	the	new	RPC-
based	 transport	 which	 will	 be	 used	 with	 the	 upcoming	 high-
performance	 smart	 server.	 The	 new	 command	 bzr	 serve	 will
invoke	 bzr	 in	 server	 mode,	 which	 processes	 these	 requests.
(Andrew	Bennetts,	Robert	Collins,	Martin	Pool)
New	 command	 bzr	 version-info	 which	 can	 be	 used	 to	 get	 a
summary	 of	 the	 current	 state	 of	 the	 tree.	 This	 is	 especially
useful	as	part	of	a	build	commands.	See	doc/version_info.txt

for	more	information	(John	Arbash	Meinel)

Bug	Fixes
'bzr	 inventory	 [FILE...]'	 allows	 restricting	 the	 file	 list	 to	 a
specific	set	of	files.	(John	Arbash	Meinel,	#3631)
Don’t	 abort	when	 annotating	 empty	 files	 (John	Arbash	Meinel,
#56814)
Add	 Stanza.to_unicode()	 which	 can	 be	 passed	 to	 another
Stanza	when	nesting	stanzas.	Also,	add	read_stanza_unicode	to
handle	when	reading	a	nested	Stanza.	(John	Arbash	Meinel)
Transform._set_mode()	needs	to	stat	the	right	file.	(John	Arbash
Meinel,	#56549)
Raise	WeaveFormatError	 rather	 than	StopIteration	when	 trying
to	read	an	empty	Weave	file.	(John	Arbash	Meinel,	#46871)
Don’t	 access	 e.code	 for	 generic	 URLErrors,	 only	 HTTPErrors
have	.code.	(Vincent	Ladeuil,	#59835)
Handle	 boundary=””	 lines	 properly	 to	 allow	 access	 through	 a
Squid	proxy.	(John	Arbash	Meinel,	#57723)
revert	 now	 removes	 newly-added	 directories	 (Aaron	 Bentley,
#54172)
bzr	 upgrade	 sftp://	 shouldn’t	 fail	 to	 upgrade	 v6	 branches	 if
there	isn’t	a	working	tree.	(David	Allouche,	#40679)
Give	 nicer	 error	messages	 when	 a	 user	 supplies	 an	 invalid	 –
revision	parameter.	(John	Arbash	Meinel,	#55420)
Handle	 when	 LANG	 is	 not	 recognized	 by	 python.	 Emit	 a
warning,	 but	 just	 revert	 to	 using	 ‘ascii’.	 (John	 Arbash	 Meinel,
#35392)
Don’t	 use	 preexec_fn	 on	 win32,	 as	 it	 is	 not	 supported	 by
subprocess.	(John	Arbash	Meinel)
Skip	 specific	 tests	 when	 the	 dependencies	 aren’t	 met.	 This
includes	some	setup.py	tests	when	python-dev	is	not	available,
and	some	tests	that	depend	on	paramiko.	(John	Arbash	Meinel,
Mattheiu	Moy)

Fallback	to	Paramiko	properly,	if	no	ssh	executable	exists	on	the
system.	(Andrew	Bennetts,	John	Arbash	Meinel)
Branch.bind(other_branch)	no	 longer	 takes	a	write	 lock	on	 the
other	 branch,	 and	 will	 not	 push	 or	 pull	 between	 the	 two
branches.	 API	 users	 will	 need	 to	 perform	 a	 push	 or	 pull	 or
update	operation	 if	 they	require	branch	synchronisation	to	 take
place.	(Robert	Collins,	#47344)
When	creating	a	tarball	or	zipfile	export,	export	unicode	names
as	utf-8	paths.	This	may	not	work	perfectly	on	all	platforms,	but
has	 the	 best	 chance	 of	 working	 in	 the	 common	 case.	 (John
Arbash	Meinel,	#56816)
When	 committing,	 only	 files	 that	 exist	 in	working	 tree	 or	 basis
tree	may	be	specified	(Aaron	Bentley,	#50793)

Portability
Fixes	 to	 run	 on	 Python	 2.5	 (Brian	 M.	 Carlson,	 Martin	 Pool,
Marien	Zwart)

Internals
TestCaseInTempDir	now	creates	a	separate	directory	for	HOME,
rather	 than	 having	 HOME	 set	 to	 the	 same	 location	 as	 the
working	directory.	(John	Arbash	Meinel)
run_bzr_subprocess()	 can	 take	 an	 optional	 env_changes={}

parameter,	 which	 will	 update	 os.environ	 inside	 the	 spawned
child.	 It	 also	 can	 take	a	 universal_newlines=True,	which	 helps
when	 checking	 the	 output	 of	 the	 command.	 (John	 Arbash
Meinel)
Refactor	SFTP	vendors	to	allow	easier	re-use	when	ssh	is	used.
(Andrew	Bennetts)
Transport.list_dir()	 and	 Transport.iter_files_recursive()

should	always	return	urlescaped	paths.	This	is	now	tested	(there
were	bugs	 in	a	 few	of	 the	transports)	(Andrew	Bennetts,	David
Allouche,	John	Arbash	Meinel)
New	 utility	 function	 symbol_versioning.deprecation_string.
Returns	 the	 formatted	 string	 for	 a	 callable,	 deprecation	 format
pair.	(Robert	Collins)
New	TestCase	helper	applyDeprecated.	This	allows	you	to	call	a
callable	 which	 is	 deprecated	without	 it	 spewing	 to	 the	 screen,
just	 by	 supplying	 the	 deprecation	 format	 string	 issued	 for	 it.
(Robert	Collins)
Transport.append	 and	 Transport.put	 have	 been	 deprecated	 in
favor	 of	 .append_bytes,	 .append_file,	 .put_bytes,	 and
.put_file.	 This	 removes	 the	 ambiguity	 in	 what	 type	 of	 object
the	functions	take.	Transport.non_atomic_put_{bytes,file}	has
also	been	added.	Which	works	similarly	 to	 Transport.append()
except	for	SFTP,	it	doesn’t	have	a	round	trip	when	opening	the
file.	Also,	it	provides	functionality	for	creating	a	parent	directory
when	 trying	 to	 create	 a	 file,	 rather	 than	 raise	NoSuchFile	 and
forcing	the	caller	to	repeat	their	request.	(John	Arbash	Meinel)

WorkingTree	 has	 a	 new	 api	 unversion	 which	 allow	 the
unversioning	of	entries	by	their	file	id.	(Robert	Collins)
WorkingTree.pending_merges	 is	 deprecated.	 Please	 use	 the
get_parent_ids	 (introduced	 in	 0.10)	 method	 instead.	 (Robert
Collins)
WorkingTree	 has	 a	 new	 lock_tree_write	 method	 which	 locks
the	 branch	 for	 read	 rather	 than	 write.	 This	 is	 appropriate	 for
actions	 which	 only	 need	 the	 branch	 data	 for	 reference	 rather
than	 mutation.	 A	 new	 decorator	 needs_tree_write_lock	 is
provided	 in	 the	 workingtree	 module.	 Like	 the	 needs_read_lock
and	needs_write_lock	decorators	this	allows	static	declaration	of
the	 locking	 requirements	 of	 a	 function	 to	 ensure	 that	 a	 lock	 is
taken	out	for	casual	scripts.	(Robert	Collins,	#54107)
All	WorkingTree	methods	which	write	to	the	tree,	but	not	to	the
branch	 have	 been	 converted	 to	 use	 needs_tree_write_lock
rather	 than	 needs_write_lock.	 Also	 converted	 is	 the	 revert,
conflicts	 and	 tree	 transform	modules.	 This	 provides	 a	 modest
performance	 improvement	 on	 metadir	 style	 trees,	 due	 to	 the
reduce	 lock-acquisition,	 and	 a	 more	 significant	 performance
improvement	 on	 lightweight	 checkouts	 from	 remote	 branches,
where	trivial	operations	used	to	pay	a	significant	penalty.	It	also
provides	 the	 basis	 for	 allowing	 readonly	 checkouts.	 (Robert
Collins)
Special	case	 importing	 the	standard	 library	 ‘copy’	module.	This
shaves	 off	 40ms	 of	 startup	 time,	 while	 retaining	 compatibility.
See:	 bzrlib/inspect_for_copy.py	 for	 more	 details.	 (John
Arbash	Meinel)
WorkingTree	 has	 a	 new	 parent	 class	 MutableTree	 which
represents	 the	 specialisations	 of	 Tree	 which	 are	 able	 to	 be
altered.	(Robert	Collins)
New	 methods	 mkdir	 and	 put_file_bytes_non_atomic	 on
MutableTree	 that	 mutate	 the	 tree	 and	 its	 contents.	 (Robert
Collins)

Transport	behaviour	at	 the	 root	of	 the	URL	 is	now	defined	and
tested.	(Andrew	Bennetts,	Robert	Collins)

Testing
New	test	helper	classs	MemoryTree.	This	 is	 typically	accessed
via	 self.make_branch_and_memory_tree()	 in	 test	 cases.	 (Robert
Collins)
Add	 start_bzr_subprocess	 and	 stop_bzr_subprocess	 to	 allow
test	code	to	continue	running	concurrently	with	a	subprocess	of
bzr.	(Andrew	Bennetts,	Robert	Collins)
Add	 a	 new	 method	 Transport.get_smart_client().	 This	 is
provided	 to	 allow	 upgrades	 to	 a	 richer	 interface	 than	 the	 VFS
one	provided	by	Transport.	(Andrew	Bennetts,	Martin	Pool)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	0.10
Released: 2006-08-29

Improvements
‘merge’	 now	 takes	 –uncommitted,	 to	 apply	 uncommitted
changes	from	a	tree.	(Aaron	Bentley)
‘bzr	 add	 –file-ids-from’	 can	 be	 used	 to	 specify	 another	 path	 to
use	 for	 creating	 file	 ids,	 rather	 than	 generating	 all	 new	 ones.
Internally,	 the	 ‘action’	 passed	 to	 smart_add_tree()	 can	 return
file_ids	 that	 will	 be	 used,	 rather	 than	 having	 bzrlib	 generate
new	ones.	(John	Arbash	Meinel,	#55781)
bzr	selftest	--benchmark	now	allows	a	--cache-dir	parameter.
This	 will	 cache	 some	 of	 the	 intermediate	 trees,	 and	 decrease
the	setup	time	for	benchmark	tests.	(John	Arbash	Meinel)
Inverse	forms	are	provided	for	all	boolean	options.	For	example,
–strict	has	–no-strict,	–no-recurse	has	–recurse	(Aaron	Bentley)
Serialize	out	Inventories	directly,	rather	than	using	ElementTree.
Writing	 out	 a	 kernel	 sized	 inventory	 drops	 from	 2s	 down	 to
~350ms.	(Robert	Collins,	John	Arbash	Meinel)

Bug	Fixes
Help	 diffutils	 2.8.4	 get	 along	 with	 binary	 tests	 (Marien	 Zwart:
#57614)
Change	LockDir	so	that	 if	 the	 lock	directory	doesn’t	exist	when
lock_write()	 is	 called,	 an	 attempt	 will	 be	 made	 to	 create	 it.
(John	Arbash	Meinel,	#56974)
bzr	uncommit	preserves	pending	merges.	(John	Arbash	Meinel,
#57660)
Active	FTP	transport	now	works	as	intended.	(ghozzy,	#56472)
Really	 fix	mutter()	so	 that	 it	won’t	ever	 raise	a	UnicodeError.	 It
means	 it	 is	 possible	 for	 ~/.bzr.log	 to	 contain	 non	 UTF-8
characters.	But	 it	 is	a	debugging	log,	not	a	real	user	file.	(John
Arbash	Meinel,	#56947,	#53880)
Change	 Command	 handle	 to	 allow	 Unicode	 command	 and
options.	 At	 present	 we	 cannot	 register	 Unicode	 command
names,	so	we	will	get	BzrCommandError(‘unknown	command’),
or	BzrCommandError(‘unknown	option’)	But	that	is	better	than	a
UnicodeError	+	a	traceback.	(John	Arbash	Meinel,	#57123)
Handle	TZ=UTC	properly	when	reading/writing	revisions.	(John
Arbash	Meinel,	#55783,	#56290)
Use	 GPG_TTY	 to	 allow	 gpg	 –cl	 to	 work	 with	 gpg-agent	 in	 a
pipeline,	(passing	text	to	sign	in	on	stdin).	(John	Arbash	Meinel,
#54468)
External	 diff	 does	 the	 right	 thing	 for	 binaries	 even	 in	 foreign
languages.	(John	Arbash	Meinel,	#56307)
Testament	 handles	 more	 cases	 when	 content	 is	 unicode.
Specific	 bug	 was	 in	 handling	 of	 revision	 properties.	 (John
Arbash	Meinel,	Holger	Krekel,	#54723)
The	bzr	selftest	was	failing	on	installed	versions	due	to	a	bug	in
a	new	test	helper.	(John	Arbash	Meinel,	Robert	Collins,	#58057)

Internals
bzrlib.cache_utf8	 contains	 encode()	 and	 decode()	 functions
which	 can	 be	 used	 to	 cache	 the	 conversion	 between	utf8	 and
Unicode.	Especially	helpful	for	some	of	the	knit	annotation	code,
which	 has	 to	 convert	 revision	 ids	 to	 utf8	 to	 annotate	 lines	 in
storage.	(John	Arbash	Meinel)
setup.py	now	searches	the	filesystem	to	find	all	packages	which
need	to	be	installed.	This	should	help	make	the	life	of	packagers
easier.	(John	Arbash	Meinel)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	0.9.0
Released: 2006-08-11

Surprises
The	hard-coded	built-in	ignore	rules	have	been	removed.	There
are	now	 two	 rulesets	which	are	enforced.	A	user	global	one	 in
~/.bazaar/ignore	 which	 will	 apply	 to	 every	 tree,	 and	 the	 tree
specific	 one	 ‘.bzrignore’.	 ~/.bazaar/ignore	 will	 be	 created	 if	 it
does	 not	 exist,	 but	 with	 a	 more	 conservative	 list	 than	 the	 old
default.	 This	 fixes	 bugs	 with	 default	 rules	 being	 enforced	 no
matter	what.	The	old	list	of	ignore	rules	from	bzr	is	available	by
running	 ‘bzr	 ignore	 –old-default-rules’.	 (Robert	 Collins,	 Martin
Pool,	John	Arbash	Meinel)
‘branches.conf’	 has	 been	 changed	 to	 ‘locations.conf’,	 since	 it
can	apply	 to	more	 locations	 than	 just	branch	 locations.	 (Aaron
Bentley)

Improvements
The	revision	specifier	“revno:”	 is	extended	to	accept	the	syntax
revno:N:branch.	 For	 example,	 revno:42:http://bazaar-
vcs.org/bzr/bzr.dev/	 means	 revision	 42	 in	 bzr.dev.	 (Matthieu
Moy)
Tests	 updates	 to	 ensure	 proper	 URL	 handling,	 UNICODE
support,	and	proper	printing	when	the	user’s	terminal	encoding
cannot	 display	 the	 path	 of	 a	 file	 that	 has	 been	 versioned.	 bzr
branch	can	take	a	target	URL	rather	than	only	a	local	directory.
Branch.get_parent()/set_parent()	 now	 save	 a	 relative	 path	 if
possible,	 and	 normalize	 the	 parent	 based	 on	 root,	 allowing
access	across	different	transports.	(John	Arbash	Meinel,	Wouter
van	 Heyst,	 Martin	 Pool)	 (Malone	 #48906,	 #42699,	 #40675,
#5281,	#3980,	#36363,	#43689,	#42517,	#42514)
On	 Unix,	 detect	 terminal	 width	 using	 an	 ioctl	 not	 just
$COLUMNS.	 Use	 terminal	 width	 for	 single-line	 logs	 from	 bzr
log	--line	and	pending-merge	display.	 (Robert	Widhopf-Fenk,
Gustavo	Niemeyer)	(Malone	#3507)
On	 Windows,	 detect	 terminal	 width	 using
GetConsoleScreenBufferInfo.	(Alexander	Belchenko)
Speedup	 improvement	 for	 ‘date:’-revision	 search.	 (Guillaume
Pinot).
Show	 the	correct	number	of	 revisions	pushed	when	pushing	a
new	branch.	(Robert	Collins).
‘bzr	selftest’	now	shows	a	progress	bar	with	the	number	of	tests,
and	progress	made.	‘make	check’	shows	tests	in	-v	mode,	to	be
more	useful	for	the	PQM	status	window.	(Robert	Collins).	When
using	 a	 progress	 bar,	 failed	 tests	 are	 printed	 out,	 rather	 than
being	 overwritten	 by	 the	 progress	 bar	 until	 the	 suite	 finishes.
(John	Arbash	Meinel)
‘bzr	selftest	–benchmark’	will	 run	a	new	benchmarking	selftest.

‘bzr	 selftest	 –benchmark	 –lsprof-timed’	 will	 use	 lsprofile	 to
generate	profile	data	for	the	individual	profiled	calls,	allowing	for
fine	 grained	 analysis	 of	 performance.	 (Robert	 Collins,	 Martin
Pool).
‘bzr	 commit’	 shows	 a	 progress	 bar.	 This	 is	 useful	 for	 commits
over	 sftp	where	commit	 can	 take	an	appreciable	 time.	 (Robert
Collins)
‘bzr	 add’	 is	 now	 less	 verbose	 in	 telling	 you	what	 ignore	 globs
were	matched	by	files	being	ignored.	Instead	it	just	tells	you	how
many	 were	 ignored	 (because	 you	 might	 reasonably	 be
expecting	none	to	be	ignored).	‘bzr	add	-v’	is	unchanged	and	will
report	every	ignored	file.	(Robert	Collins).
ftp	 now	 has	 a	 test	 server	 if	 medusa	 is	 installed.	 As	 part	 of
testing,	 ftp	 support	 has	 been	 improved,	 including	 support	 for
supplying	a	non-standard	port.	(John	Arbash	Meinel).
‘bzr	log	–line’	shows	the	revision	number,	and	uses	only	the	first
line	of	the	log	message	(#5162,	Alexander	Belchenko;	Matthieu
Moy)
‘bzr	 status’	 has	 had	 the	 –all	 option	 removed.	 The	 ‘bzr	 ls’
command	should	be	used	to	retrieve	all	versioned	files.	(Robert
Collins)
‘bzr	bundle	OTHER/BRANCH’	will	create	a	bundle	which	can	be
sent	over	email,	and	applied	on	the	other	end,	while	maintaining
ancestry.	This	bundle	can	be	applied	with	either	 ‘bzr	merge’	or
‘bzr	pull’,	the	same	way	you	would	apply	another	branch.	(John
Arbash	Meinel,	Aaron	Bentley)
‘bzr	 whoami’	 can	 now	 be	 used	 to	 set	 your	 identity	 from	 the
command	line,	for	a	branch	or	globally.	(Robey	Pointer)
‘bzr	checkout’	now	aliased	to	‘bzr	co’,	and	‘bzr	annotate’	to	‘bzr
ann’.	(Michael	Ellerman)
‘bzr	 revert	 DIRECTORY’	 now	 reverts	 the	 contents	 of	 the
directory	as	well.	(Aaron	Bentley)
‘bzr	 get	 sftp://foo’	 gives	 a	 better	 error	 when	 paramiko	 is	 not
present.	Also	 updates	 things	 like	 ‘http+pycurl://’	 if	 pycurl	 is	 not

present.	(John	Arbash	Meinel)	(Malone	#47821,	#52204)
New	 env	 variable	 BZR_PROGRESS_BAR,	 sets	 the	 default	 progress
bar	 type.	 Can	 be	 set	 to	 ‘none’	 or	 ‘dummy’	 to	 disable	 the
progress	bar,	 ‘dots’	 or	 ‘tty’	 to	 create	 the	 respective	 type.	 (John
Arbash	Meinel,	#42197,	#51107)
Improve	the	help	text	for	‘bzr	diff’	to	explain	what	various	options
do.	(John	Arbash	Meinel,	#6391)
‘bzr	 uncommit	 -r	 10’	 now	uncommits	 revisions	 11..	 rather	 than
uncommitting	 revision	 10.	 This	 makes	 -r10	 more	 in	 line	 with
what	 other	 commands	 do.	 ‘bzr	 uncommit’	 also	 now	 saves	 the
pending	merges	of	the	revisions	that	were	removed.	So	it	is	safe
to	 uncommit	 after	 a	 merge,	 fix	 something,	 and	 commit	 again.
(John	Arbash	Meinel,	#32526,	#31426)
‘bzr	 init’	 now	 also	 works	 on	 remote	 locations.	 (Wouter	 van
Heyst,	#48904)
HTTP	 support	 has	 been	 updated.	When	 using	 pycurl	 we	 now
support	connection	keep-alive,	which	reduces	dns	requests	and
round	trips.	And	for	both	urllib	and	pycurl	we	support	multi-range
requests,	 which	 decreases	 the	 number	 of	 round-trips.
Performance	 results	 for	 bzr	 branch	 http://bazaar-

vcs.org/bzr/bzr.dev/	indicate	http	branching	is	now	2-3x	faster,
and	 bzr	 pull	 in	 an	 existing	 branch	 is	 as	 much	 as	 4x	 faster.
(Michael	 Ellerman,	 Johan	 Rydberg,	 John	 Arbash	 Meinel,
#46768)
Performance	 improvements	 for	 sftp.	Branching	and	pulling	 are
now	up	 to	2x	 faster.	Utilize	paramiko.readv()	support	 for	async
requests	if	it	is	available	(paramiko	>	1.6)	(John	Arbash	Meinel)

Bug	Fixes
Fix	shadowed	definition	of	TestLocationConfig	that	caused	some
tests	 not	 to	 run.	 (Erik	 Bågfors,	Michael	 Ellerman,	Martin	 Pool,
#32587)
Fix	unnecessary	requirement	of	sign-my-commits	 that	 it	be	run
from	a	working	directory.	(Martin	Pool,	Robert	Collins)
‘bzr	 push	 location’	 will	 only	 remember	 the	 push	 location	 if	 it
succeeds	 in	 connecting	 to	 the	 remote	 location.	 (John	 Arbash
Meinel,	#49742)
‘bzr	revert’	no	longer	toggles	the	executable	bit	on	win32	(John
Arbash	Meinel,	#45010)
Handle	broken	pipe	under	win32	correctly.	(John	Arbash	Meinel)
sftp	 tests	 now	 work	 correctly	 on	 win32	 if	 you	 have	 a	 newer
paramiko	(John	Arbash	Meinel)
Cleanup	win32	test	suite,	and	general	cleanup	of	places	where
file	handles	were	being	held	open.	(John	Arbash	Meinel)
When	specifying	filenames	for	‘diff	-r	x..y’,	the	name	of	the	file	in
the	working	directory	can	be	used,	even	if	its	name	is	different	in
both	x	and	y.
File-ids	 containing	 single-	 or	 double-quotes	 are	 handled
correctly	by	push.	(Aaron	Bentley,	#52227)
Normalize	 unicode	 filenames	 to	 ensure	 cross-platform
consistency.	(John	Arbash	Meinel,	#43689)
The	 argument	 parser	 can	 now	 handle	 ‘-‘	 as	 an	 argument.
Currently	no	code	interprets	it	specially	(it	is	mostly	handled	as	a
file	 named	 ‘-‘).	 But	 plugins,	 and	 future	 operations	 can	 use	 it.
(John	Arbash	meinel,	#50984)
Bundles	 can	 properly	 read	 binary	 files	with	 a	 plain	 ‘r’	 in	 them.
(John	Arbash	Meinel,	#51927)
Tuning	 iter_entries()	 to	 be	 more	 efficient	 (John	 Arbash
Meinel,	#5444)
Lots	of	win32	fixes	(the	test	suite	passes	again).	 (John	Arbash

Meinel,	#50155)
Handle	openbsd	returning	None	for	sys.getfilesystemencoding()
(#41183)
Support	 ftp	APPE	 (append)	 to	 allow	Knits	 to	 be	 used	 over	 ftp
(#42592)
Removals	 are	 only	 committed	 if	 they	match	 the	 filespec	 (or	 if
there	is	no	filespec).	(#46635,	Aaron	Bentley)
smart-add	 recurses	 through	 all	 supplied	 directories	 (John
Arbash	Meinel,	#52578)
Make	the	bundle	reader	extra	lines	before	and	after	the	bundle
text.	 This	 allows	 you	 to	 parse	 an	 email	with	 the	 bundle	 inline.
(John	Arbash	Meinel,	#49182)
Change	 the	 file	 id	 generator	 to	 squash	 a	 little	 bit	more.	Helps
when	working	with	 long	 filenames	on	windows.	 (Also	helps	 for
unicode	 filenames	 not	 generating	 hidden	 files).	 (John	 Arbash
Meinel,	#43801)
Restore	 terminal	 mode	 on	 C-c	 while	 reading	 sftp	 password.
(#48923,	Nicholas	Allen,	Martin	Pool)
Timestamps	 are	 rounded	 to	 1ms,	 and	 revision	 entries	 can	 be
recreated	 exactly.	 (John	 Arbash	 Meinel,	 Jamie	 Wilkinson,
#40693)
Branch.base	 has	 changed	 to	 a	 URL,	 but
~/.bazaar/locations.conf	should	use	 local	paths,	since	 it	 is	user
visible	(John	Arbash	Meinel,	#53653)
bzr	status	foo	when	foo	was	unversioned	used	to	cause	a	full
delta	to	be	generated	(John	Arbash	Meinel,	#53638)
When	 reading	 revision	 properties,	 an	 empty	 value	 should	 be
considered	 the	 empty	 string,	 not	 None	 (John	 Arbash	 Meinel,
#47782)
bzr	 diff	 --diff-options	 can	 now	 handle	 binary	 files	 being
changed.	Also,	the	output	is	consistent	when	–diff-options	is	not
supplied.	(John	Arbash	Meinel,	#54651,	#52930)
Use	 the	 right	suffixes	 for	 loading	plugins	 (John	Arbash	Meinel,
#51810)

Fix	Branch.get_parent()	 to	handle	the	case	when	the	parent	 is
not	accessible	(John	Arbash	Meinel,	#52976)

Internals
Combine	the	ignore	rules	into	a	single	regex	rather	than	looping
over	them	to	reduce	the	threshold	where	N^2	behaviour	occurs
in	operations	like	status.	(Jan	Hudec,	Robert	Collins).
Appending	 to	 bzrlib.DEFAULT_IGNORE	 is	 now	 deprecated.
Instead,	 use	 one	 of	 the	 add	 functions	 in	 bzrlib.ignores.	 (John
Arbash	Meinel)
‘bzr	push’	should	only	push	the	ancestry	of	the	current	revision,
not	 all	 of	 the	 history	 in	 the	 repository.	 This	 is	 especially
important	for	shared	repositories.	(John	Arbash	Meinel)
bzrlib.delta.compare_trees	 now	 iterates	 in	 alphabetically
sorted	 order,	 rather	 than	 randomly	 walking	 the	 inventories.
(John	Arbash	Meinel)
Doctests	are	now	run	in	temporary	directories	which	are	cleaned
up	 when	 they	 finish,	 rather	 than	 using	 special
ScratchDir/ScratchBranch	objects.	(Martin	Pool)
Split	 check	 into	 separate	 methods	 on	 the	 branch	 and	 on	 the
repository,	so	 that	 it	can	be	specialized	 in	ways	that	are	useful
or	efficient	for	different	formats.	(Martin	Pool,	Robert	Collins)
Deprecate	 Repository.all_revision_ids;	 most	 methods	 don’t
really	need	 the	global	 revision	graph	but	only	 that	part	 leading
up	to	a	particular	revision.	(Martin	Pool,	Robert	Collins)
Add	 a	 BzrDirFormat	 control_formats	 list	 which	 allows	 for
control	 formats	 that	 do	 not	 use	 ‘.bzr’	 to	 store	 their	 data	 -	 i.e.
‘.svn’,	‘.hg’	etc.	(Robert	Collins,	Jelmer	Vernooij).
bzrlib.diff.external_diff	 can	 be	 redirected	 to	 any	 file-like
object.	 Uses	 subprocess	 instead	 of	 spawnvp.	 (James
Henstridge,	John	Arbash	Meinel,	#4047,	#48914)
New	command	 line	option	 ‘–profile-imports’,	which	will	 install	a
custom	 importer	 to	 log	 time	 to	 import	 modules	 and	 regex
compilation	time	to	sys.stderr	(John	Arbash	Meinel)

‘EmptyTree’	 is	 now	 deprecated,	 please	 use
repository.revision_tree(None)	instead.	(Robert	Collins)
“RevisionTree”	is	now	in	bzrlib/revisiontree.py.	(Robert	Collins)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	0.8.2
Released: 2006-05-17

Bug	Fixes
setup.py	failed	to	install	launchpad	plugin.	(Martin	Pool)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	0.8.1
Released: 2006-05-16

Bug	Fixes
Fix	 failure	 to	 commit	 a	 merge	 in	 a	 checkout.	 (Martin	 Pool,
Robert	Collins,	Erik	Bågfors,	#43959)
Nicer	 messages	 from	 ‘commit’	 in	 the	 case	 of	 renames,	 and
correct	messages	when	a	merge	has	occured.	(Robert	Collins,
Martin	Pool)
Separate	 functionality	 from	 assert	 statements	 as	 they	 are
skipped	 in	 optimized	mode	 of	 python.	 Add	 the	 same	 check	 to
pending	merges.	(Olaf	Conradi,	#44443)

Changes
Do	not	show	 the	None	 revision	 in	output	of	bzr	ancestry.	 (Olaf
Conradi)
Add	 info	on	standalone	branches	without	a	working	 tree.	 (Olaf
Conradi,	#44155)
Fix	 bug	 in	 knits	 when	 raising	 InvalidRevisionId.	 (Olaf	 Conradi,
#44284)

Changes
Make	 editor	 invocation	 comply	with	Debian	 Policy.	 First	 check
environment	variables	VISUAL	and	EDITOR,	then	try	editor	from
alternatives	system.	 If	 that	all	 fails,	 fall	back	 to	 the	pre-defined
list	of	editors.	(Olaf	Conradi,	#42904)

New	Features
New	 ‘register-branch’	 command	 registers	 a	 public	 branch	 into
Launchpad.net,	 where	 it	 can	 be	 associated	 with	 bugs,	 etc.
(Martin	Pool,	Bjorn	Tillenius,	Robert	Collins)

Internals
New	 public	 api	 in	 InventoryEntry	 -	 describe_change(old,	 new)
which	 provides	 a	 human	 description	 of	 the	 changes	 between
two	old	and	new.	(Robert	Collins,	Martin	Pool)

Testing
Fix	 test	 case	 for	 bzr	 info	 in	 upgrading	 a	 standalone	 branch	 to
metadir,	uses	bzrlib	api	now.	(Olaf	Conradi)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	0.8
Released: 2006-05-08

Notes	When	Upgrading
Release	0.8	of	bzr	introduces	a	new	format	for	history	storage,	called
‘knit’,	as	an	evolution	of	to	the	‘weave’	format	used	in	0.7.	Local	and
remote	 operations	 are	 faster	 using	 knits	 than	 weaves.	 Several
operations	 including	 ‘init’,	 ‘init-repo’,	 and	 ‘upgrade’	 take	 a	 –format
option	that	controls	this.	Branching	from	an	existing	branch	will	keep
the	same	format.

It	is	possible	to	merge,	pull	and	push	between	branches	of	different
formats	 but	 this	 is	 slower	 than	moving	 data	 between	 homogenous
branches.	 It	 is	 therefore	 recommended	 (but	 not	 required)	 that	 you
upgrade	all	branches	for	a	project	at	the	same	time.	Information	on
formats	is	shown	by	‘bzr	info’.

bzr	0.8	now	allows	creation	of	‘repositories’,	which	hold	the	history	of
files	and	 revisions	 for	several	branches.	Previously	bzr	kept	all	 the
history	for	a	branch	within	the	.bzr	directory	at	the	root	of	the	branch,
and	 this	 is	still	 the	default.	To	create	a	 repository,	use	 the	new	 ‘bzr
init-repo’	 command.	 Branches	 exist	 as	 directories	 under	 the
repository	and	contain	 just	a	small	amount	of	 information	 indicating
the	current	revision	of	the	branch.

bzr	 0.8	 also	 supports	 ‘checkouts’,	 which	 are	 similar	 to	 in	 cvs	 and
subversion.	Checkouts	are	associated	with	a	branch	(optionally	in	a
repository),	which	contains	all	the	historical	information.	The	result	is
that	a	checkout	can	be	deleted	without	losing	any	already-committed
revisions.	A	new	‘update’	command	is	also	available.

Repositories	and	checkouts	are	not	supported	with	 the	0.7	storage
format.	 To	 use	 them	 you	 must	 upgrad	 to	 either	 knits,	 or	 to	 the
‘metaweave’	 format,	 which	 uses	 weaves	 but	 changes	 the	 .bzr
directory	arrangement.

Improvements
sftp	 paths	 can	 now	 be	 relative,	 or	 local,	 according	 to	 the	 lftp
convention.	Paths	now	take	the	form:

sftp://user:pass@host:port/~/relative/path

or

sftp://user:pass@host:port/absolute/path

The	 FTP	 transport	 now	 tries	 to	 reconnect	 after	 a	 temporary
failure.	ftp	put	is	made	atomic.	(Matthieu	Moy)

The	 FTP	 transport	 now	 maintains	 a	 pool	 of	 connections,	 and
reuses	them	to	avoid	multiple	connections	to	the	same	host	(like
sftp	did).	(Daniel	Silverstone)

The	bzr_man.py	file	has	been	removed.	To	create	the	man	page
now,	 use	 ./generate_docs.py	 man.	 The	 new	program	 can	 also
create	 other	 files.	 Run	 python	 generate_docs.py	 --help	 for
usage	 information.	 (Hans	 Ulrich	 Niedermann	 &	 James
Blackwell).

Man	 Page	 now	 gives	 full	 help	 (James	 Blackwell).	 Help	 also
updated	to	reflect	user	config	now	being	stored	in	.bazaar	(Hans
Ulrich	Niedermann)

It’s	now	possible	to	set	aliases	in	bazaar.conf	(Erik	Bågfors)

Pull	now	accepts	a	–revision	argument	(Erik	Bågfors)

bzr	re-sign	now	allows	multiple	revisions	to	be	supplied	on	the
command	line.	You	can	now	use	the	following	command	to	sign
all	of	your	old	commits:

find	.bzr/revision-store//	-name	my@email-*	\

		|	sed	's/.*\/\/..\///'	\

		|	xargs	bzr	re-sign

Upgrade	can	now	upgrade	over	the	network.	(Robert	Collins)

Two	 new	 commands	 ‘bzr	 checkout’	 and	 ‘bzr	 update’	 allow	 for
CVS/SVN-alike	behaviour.	By	default	 they	will	 cache	history	 in
the	checkout,	but	with	–lightweight	almost	all	data	is	kept	in	the
master	branch.	(Robert	Collins)

‘revert’	 unversions	 newly-versioned	 files,	 instead	 of	 deleting
them.

‘merge’	is	more	robust.	Conflict	messages	have	changed.

‘merge’	and	‘revert’	no	longer	clobber	existing	files	that	end	in	‘~’
or	‘.moved’.

Default	 log	 format	 can	be	 set	 in	 configuration	and	plugins	 can
register	their	own	formatters.	(Erik	Bågfors)

New	 ‘reconcile’	 command	 will	 check	 branch	 consistency	 and
repair	 indexes	that	can	become	out	of	sync	 in	pre	0.8	 formats.
(Robert	Collins,	Daniel	Silverstone)

New	‘bzr	init	–format’	and	‘bzr	upgrade	–format’	option	to	control
what	 storage	 format	 is	 created	 or	 produced.	 (Robert	 Collins,
Martin	Pool)

Add	parent	location	to	‘bzr	info’,	if	there	is	one.	(Olaf	Conradi)

New	developer	commands	‘weave-list’	and	‘weave-join’.	(Martin
Pool)

New	 ‘init-repository’	 command,	 plus	 support	 for	 repositories	 in
‘init’	and	‘branch’	(Aaron	Bentley,	Erik	Bågfors,	Robert	Collins)

Improve	 output	 of	 ‘info’	 command.	 Show	 all	 relevant	 locations
related	to	working	tree,	branch	and	repository.	Use	kibibytes	for
binary	 quantities.	 Fix	 off-by-one	 error	 in	 missing	 revisions	 of
working	 tree.	 Make	 ‘info’	 work	 on	 branches,	 repositories	 and
remote	 locations.	 Show	 locations	 relative	 to	 the	 shared
repository,	 if	applicable.	Show	 locking	status	of	 locations.	 (Olaf
Conradi)

Diff	and	merge	now	safely	handle	binary	files.	(Aaron	Bentley)

‘pull’	and	 ‘push’	now	normalise	 the	revision	history,	so	 that	any
two	 branches	 with	 the	 same	 tip	 revision	 will	 have	 the	 same
output	from	‘log’.	(Robert	Collins)

‘merge’	accepts	–remember	option	to	store	parent	location,	like
‘push’	and	‘pull’.	(Olaf	Conradi)

bzr	status	and	diff	when	files	given	as	arguments	do	not	exist	in
the	relevant	trees.	(Martin	Pool,	#3619)

Add	‘.hg’	to	the	default	ignore	list.	(Martin	Pool)

‘knit’	 is	 now	 the	 default	 disk	 format.	 This	 improves	 disk
performance	 and	 utilization,	 increases	 incremental	 pull
performance,	robustness	with	SFTP	and	allows	checkouts	over
SFTP	 to	 perform	 acceptably.	 The	 initial	 Knit	 code	 was
contributed	 by	 Johan	 Rydberg	 based	 on	 a	 specification	 by
Martin	 Pool.	 (Robert	 Collins,	 Aaron	 Bentley,	 Johan	 Rydberg,
Martin	Pool).

New	 tool	 to	 generate	 all-in-one	 html	 version	 of	 the	 manual.
(Alexander	Belchenko)

Hitting	CTRL-C	while	doing	an	SFTP	push	will	no	longer	cause
stale	 locks	 to	 be	 left	 in	 the	 SFTP	 repository.	 (Robert	 Collins,
Martin	Pool).

New	 option	 ‘diff	 –prefix’	 to	 control	 how	 files	 are	 named	 in	 diff
output,	 with	 shortcuts	 ‘-p0’	 and	 ‘-p1’	 corresponding	 to	 the
options	 for	 GNU	 patch.	 (Alexander	 Belchenko,	 Goffredo
Baroncelli,	Martin	Pool)

Add	–revision	option	to	‘annotate’	command.	(Olaf	Conradi)

If	 bzr	 shows	 an	 unexpected	 revision-history	 after	 pulling
(perhaps	 due	 to	 a	 reweave)	 it	 can	 now	 be	 corrected	 by	 ‘bzr
reconcile’.	(Robert	Collins)

Changes
Commit	 is	 now	 verbose	 by	 default,	 and	 shows	 changed
filenames	and	the	new	revision	number.	(Robert	Collins,	Martin
Pool)
Unify	‘mv’,	‘move’,	‘rename’.	(Matthew	Fuller,	#5379)
‘bzr	-h’	shows	help.	(Martin	Pool,	Ian	Bicking,	#35940)
Make	 ‘pull’	 and	 ‘push’	 remember	 location	 on	 failure	 using	 –
remember.	(Olaf	Conradi)
For	 compatibility,	 make	 old	 format	 for	 using	 weaves	 inside
metadir	 available	 as	 ‘metaweave’	 format.	 Rename	 format
‘metadir’	 to	 ‘default’.	 Clean	 up	 help	 for	 option	 –format	 in
commands	‘init’,	‘init-repo’	and	‘upgrade’.	(Olaf	Conradi)

Internals
The	internal	storage	of	history,	and	logical	branch	identity	have
now	 been	 split	 into	 Branch,	 and	 Repository.	 The	 common
locking	 and	 file	 management	 routines	 are	 now	 in
bzrlib.lockablefiles.	(Aaron	Bentley,	Robert	Collins,	Martin	Pool)
Transports	can	now	raise	DependencyNotPresent	if	they	need	a
library	which	 is	 not	 installed,	 and	 then	another	 implementation
will	be	tried.	(Martin	Pool)
Remove	 obsolete	 (and	 no-op)	 decode	 parameter	 to
Transport.get.	(Martin	Pool)
Using	Tree	Transform	for	merge,	revert,	tree-building
WorkingTree.create,	 Branch.create,
WorkingTree.create_standalone,	 Branch.initialize	 are	 now
deprecated.	Please	see	BzrDir.create_*	for	replacement	API’s.
(Robert	Collins)
New	 BzrDir	 class	 represents	 the	 .bzr	 control	 directory	 and
manages	formatting	issues.	(Robert	Collins)
New	 repository.InterRepository	 class	 encapsulates	 Repository
to	Repository	actions	and	allows	for	clean	selection	of	optimised
code	paths.	(Robert	Collins)
bzrlib.fetch.fetch	 and	 bzrlib.fetch.greedy_fetch	 are	 now
deprecated,	 please	 use	 branch.fetch	 or	 repository.fetch

depending	on	your	needs.	(Robert	Collins)
deprecated	 methods	 now	 have	 a	 is_deprecated	 flag	 on	 them
that	can	be	checked,	 if	you	need	to	determine	whether	a	given
callable	is	deprecated	at	runtime.	(Robert	Collins)
Progress	 bars	 are	 now	 nested	 -	 see
bzrlib.ui.ui_factory.nested_progress_bar.	 (Robert	 Collins,
Robey	Pointer)
New	API	call	get_format_description()	for	each	type	of	format.
(Olaf	Conradi)

Changed	 branch.set_parent()	 to	 accept	 None	 to	 remove
parent.	(Olaf	Conradi)
Deprecated	BzrError	AmbiguousBase.	(Olaf	Conradi)
WorkingTree.branch	 is	 now	 a	 read	 only	 property.	 (Robert
Collins)
bzrlib.ui.text.TextUIFactory	 now	 accepts	 a	 bar_type	 parameter
which	can	be	None	or	a	factory	that	will	create	a	progress	bar.
This	 is	 useful	 for	 testing	 or	 for	 overriding	 the	 bzrlib.progress
heuristic.	(Robert	Collins)
New	 API	 method	 get_physical_lock_status()	 to	 query	 locks
present	on	a	transport.	(Olaf	Conradi)
Repository.reconcile	 now	 takes	a	 thorough	 keyword	parameter
to	allow	 requesting	an	 indepth	 reconciliation,	 rather	 than	 just	a
data-loss	check.	(Robert	Collins)
bzrlib.ui.ui_factory	 protocol	 now	 supports	 get_boolean	 to
prompt	the	user	for	yes/no	style	input.	(Robert	Collins)

Testing
SFTP	 tests	 now	 shortcut	 the	 SSH	 negotiation,	 reducing	 test
overhead	for	testing	SFTP	protocol	support.	(Robey	Pointer)
Branch	 formats	 are	 now	 tested	 once	 per	 implementation	 (see
bzrlib.	tests.branch_implementations.	This	is	analagous	to	the
transport	interface	tests,	and	has	been	followed	up	with	working
tree,	repository	and	BzrDir	tests.	(Robert	Collins)
New	 test	 base	 class	 TestCaseWithTransport	 provides	 a
transport	 aware	 test	 environment,	 useful	 for	 testing	 any
transport-interface	using	 code.	The	 test	 suite	option	–transport
controls	 the	 transport	 used	 by	 this	 class	 (when	 its	 not	 being
used	 as	 part	 of	 implementation	 contract	 testing).	 (Robert
Collins)
Close	logging	handler	on	disabling	the	test	log.	This	will	remove
the	handler	from	the	internal	list	inside	python’s	logging	module,
preventing	shutdown	from	closing	it	twice.	(Olaf	Conradi)
Move	test	case	for	uncommit	to	blackbox	tests.	(Olaf	Conradi)
run_bzr	 and	 run_bzr_captured	 now	 accept	 a	 ‘stdin=”foo”’
parameter	which	will	provide	String(“foo”)	to	the	command	as	its
stdin.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	0.7
Released: 2006-01-09

Changes
.bzrignore	 is	 excluded	 from	exports,	 on	 the	 grounds	 that	 it’s	 a
bzr	internal-use	file	and	may	not	be	wanted.	(Jamie	Wilkinson)
The	 “bzr	 directories”	 command	 were	 removed	 in	 favor	 of	 the
new	 –kind	 option	 to	 the	 “bzr	 inventory”	 command.	 To	 list	 all
versioned	 directories,	 now	 use	 “bzr	 inventory	 –kind	 directory”.
(Johan	Rydberg)
Under	 Windows	 configuration	 directory	 is	 now
%APPDATA%\bazaar\2.0	by	default.	(John	Arbash	Meinel)
The	parent	of	Bzr	configuration	directory	can	be	set	by	BZR_HOME
environment	 variable.	 Now	 the	 path	 for	 it	 is	 searched	 in
BZR_HOME,	then	in	HOME.	Under	Windows	the	order	is:	BZR_HOME,
APPDATA	 (usually	 points	 to	 C:\Documents	 and	 Settings\User

Name\Application	Data),	HOME.	(John	Arbash	Meinel)
Plugins	 with	 the	 same	 name	 in	 different	 directories	 in	 the	 bzr
plugin	 path	 are	 no	 longer	 loaded:	 only	 the	 first	 successfully
loaded	one	is	used.	(Robert	Collins)
Use	 systems’	 external	 ssh	 command	 to	 open	 connections	 if
possible.	This	gives	better	integration	with	user	settings	such	as
ProxyCommand.	(James	Henstridge)
Permissions	on	files	underneath	.bzr/	are	inherited	from	the	.bzr
directory.	 So	 for	 a	 shared	 repository,	 simply	 doing	 ‘chmod	 -R
g+w	 .bzr/’	 will	 mean	 that	 future	 file	 will	 be	 created	with	 group
write	permissions.
configure.in	and	config.guess	are	no	longer	in	the	builtin	default
ignore	list.
‘.sw[nop]’	pattern	ignored,	to	ignore	vim	swap	files	for	nameless
files.	(John	Arbash	Meinel,	Martin	Pool)

Improvements
“bzr	INIT	dir”	now	initializes	the	specified	directory,	and	creates	it
if	it	does	not	exist.	(John	Arbash	Meinel)
New	remerge	command	(Aaron	Bentley)
Better	zsh	completion	script.	(Steve	Borho)
‘bzr	diff’	now	 returns	1	when	 there	are	changes	 in	 the	working
tree.	(Robert	Collins)
‘bzr	 push’	 now	 exists	 and	 can	 push	 changes	 to	 a	 remote
location.	 This	 uses	 the	 transport	 infrastructure,	 and	 can	 store
the	remote	location	in	the	~/.bazaar/branches.conf	configuration
file.	(Robert	Collins)
Test	 directories	 are	 only	 kept	 if	 the	 test	 fails	 and	 the	 user
requests	that	they	be	kept.
Tweaks	to	short	log	printing
Added	 branch	 nicks,	 new	 nick	 command,	 printing	 them	 in	 log
output.	(Aaron	Bentley)
If	 $BZR_PDB	 is	 set,	 pop	 into	 the	 debugger	 when	 an	 uncaught
exception	occurs.	(Martin	Pool)
Accept	 ‘bzr	 resolved’	 (an	 alias	 for	 ‘bzr	 resolve’),	 as	 this	 is	 the
same	as	Subversion.	(Martin	Pool)
New	ftp	 transport	support	 (on	 ftplib),	 for	 ftp://	and	aftp://	URLs.
(Daniel	Silverstone)
Commit	editor	 temporary	 files	now	start	with	 bzr_log.,	 to	allow
text	 editors	 to	 match	 the	 file	 name	 and	 set	 up	 appropriate
modes	or	settings.	(Magnus	Therning)
Improved	performance	when	integrating	changes	from	a	remote
weave.	(Goffredo	Baroncelli)
Sftp	will	attempt	to	cache	the	connection,	so	it	is	more	likely	that
a	 connection	 will	 be	 reused,	 rather	 than	 requiring	 multiple
password	requests.
bzr	revno	now	takes	an	optional	argument	indicating	the	branch
whose	revno	should	be	printed.	(Michael	Ellerman)

ftp://

bzr	cat	defaults	to	printing	the	last	version	of	 the	file.	(Matthieu
Moy,	#3632)
New	global	 option	 ‘bzr	 –lsprof	COMMAND’	 runs	bzr	 under	 the
lsprof	profiler.	(Denys	Duchier)
Faster	commits	by	reading	only	 the	headers	of	affected	weave
files.	(Denys	Duchier)
‘bzr	add’	now	takes	a	–dry-run	parameter	which	shows	you	what
would	 be	 added,	 but	 doesn’t	 actually	 add	 anything.	 (Michael
Ellerman)
‘bzr	add’	now	lists	how	many	files	were	ignored	per	glob.	add	–
verbose	lists	the	specific	files.	(Aaron	Bentley)
‘bzr	missing’	now	supports	displaying	changes	in	diverged	trees
and	can	be	limited	to	show	what	either	end	of	the	comparison	is
missing.	 (Aaron	 Bently,	 with	 a	 little	 prompting	 from	 Daniel
Silverstone)

Bug	Fixes
SFTP	can	walk	up	to	the	root	path	without	index	errors.	(Robert
Collins)
Fix	bugs	in	running	bzr	with	‘python	-O’.	(Martin	Pool)
Error	when	run	with	-OO
Fix	 bug	 in	 reporting	 http	 errors	 that	 don’t	 have	 an	 http	 error
code.	(Martin	Pool)
Handle	more	cases	of	pipe	errors	in	display	commands
Change	status	to	3	for	all	errors
Files	 that	 are	 added	 and	 unlinked	 before	 committing	 are
completely	ignored	by	diff	and	status
Stores	 with	 some	 compressed	 texts	 and	 some	 uncompressed
texts	are	now	able	to	be	used.	(John	A	Meinel)
Fix	for	bzr	pull	failing	sometimes	under	windows
Fix	for	sftp	transport	under	windows	when	using	interactive	auth
Show	files	which	are	both	renamed	and	modified	as	such	in	‘bzr
status’	output.	(Daniel	Silverstone,	#4503)
Make	annotate	 cope	better	with	 revisions	 committed	without	 a
valid	email	address.	(Marien	Zwart)
Fix	 representation	 of	 tab	 characters	 in	 commit	 messages.
(Harald	Meland)
List	 of	 plugin	 directories	 in	 BZR_PLUGIN_PATH	 environment
variable	 is	 now	 parsed	 properly	 under	 Windows.	 (Alexander
Belchenko)
Show	 number	 of	 revisions	 pushed/pulled/merged.	 (Robey
Pointer)
Keep	 a	 cached	 copy	 of	 the	 basis	 inventory	 to	 speed	 up
operations	that	need	to	refer	to	it.	(Johan	Rydberg,	Martin	Pool)
Fix	 bugs	 in	 bzr	 status	 display	 of	 non-ascii	 characters.	 (Martin
Pool)
Remove	Makefile.in	 from	 default	 ignore	 list.	 (Tollef	 Fog	 Heen,
Martin	Pool,	#6413)

Fix	failure	in	‘bzr	added’.	(Nathan	McCallum,	Martin	Pool)

Testing
Fix	selftest	asking	for	passwords	when	there	are	no	SFTP	keys.
(Robey	Pointer,	Jelmer	Vernooij)
Fix	selftest	run	with	‘python	-O’.	(Martin	Pool)
Fix	HTTP	tests	under	Windows.	(John	Arbash	Meinel)
Make	tests	work	even	if	HOME	is	not	set	(Aaron	Bentley)
Updated	 build_tree	 to	 use	 fixed	 line-endings	 for	 tests	 which
read	the	file	cotents	and	compare.	Make	some	tests	use	this	to
pass	under	Windows.	(John	Arbash	Meinel)
Skip	 stat	 and	 symlink	 tests	 under	 Windows.	 (Alexander
Belchenko)
Delay	 in	 selftest/testhashcash	 is	 now	 issued	 under	win32	 and
Cygwin.	(John	Arbash	Meinel)
Use	terminal	width	to	align	verbose	test	output.	(Martin	Pool)
Blackbox	 tests	 are	 maintained	 within	 the	 bzrlib.tests.blackbox
directory.	 If	 adding	 a	 new	 test	 script	 please	 add	 that	 to
bzrlib.tests.blackbox.__init__.	(Robert	Collins)
Much	 better	 error	 message	 if	 one	 of	 the	 test	 suites	 can’t	 be
imported.	(Martin	Pool)
Make	check	now	runs	the	test	suite	twice	-	once	with	the	default
locale,	 and	 once	with	 all	 locales	 forced	 to	C,	 to	 expose	 bugs.
This	 is	 not	 trivially	 done	 within	 python,	 so	 for	 now	 its	 only
triggered	 by	 running	 Make	 check.	 Integrators	 and	 packagers
who	 wish	 to	 check	 for	 full	 platform	 support	 should	 run	 ‘make
check’	to	test	the	source.	(Robert	Collins)
Tests	 can	 now	 run	 TestSkipped	 if	 they	 can’t	 execute	 for	 any
reason.	(Martin	Pool)	(NB:	TestSkipped	should	only	be	raised	for
correctable	reasons	-	see	the	wiki	spec	ImprovingBzrTestSuite).
Test	sftp	with	 relative,	absolute-in-homedir	and	absolute-not-in-
homedir	paths	for	the	transport	tests.	Introduce	blackbox	remote
sftp	 tests	 that	 test	 the	 same	 permutations.	 (Robert	 Collins,
Robey	Pointer)

Transport	implementation	tests	are	now	independent	of	the	local
file	 system,	 which	 allows	 tests	 for	 esoteric	 transports,	 and	 for
features	not	available	 in	 the	 local	 file	system.	They	also	repeat
for	 variations	on	 the	URL	scheme	 that	 can	 introduce	 issues	 in
the	 transport	 code,	 see
bzrlib.transport.TransportTestProviderAdapter()	 for	 this.	 (Robert
Collins).
TestCase.build_tree	uses	the	transport	 interface	to	build	trees,
pass	 in	a	 transport	parameter	 to	give	 it	an	existing	connection.
(Robert	Collins).

Internals
WorkingTree.pull	 has	 been	 split	 across	 Branch	 and
WorkingTree,	to	allow	Branch	only	pulls.	(Robert	Collins)

commands.display_command	 now	 returns	 the	 result	 of	 the
decorated	function.	(Robert	Collins)

LocationConfig	now	has	a	 set_user_option(key,	value)	call	 to
save	 a	 setting	 in	 its	 matching	 location	 section	 (a	 new	 one	 is
created	if	needed).	(Robert	Collins)

Branch	 has	 two	 new	 methods,	 get_push_location	 and
set_push_location	to	respectively,	get	and	set	the	push	location.
(Robert	Collins)

commands.register_command	now	takes	an	optional	flag	to	signal
that	the	registrant	is	planning	to	decorate	an	existing	command.
When	 given	multiple	 plugins	 registering	 a	 command	 is	 not	 an
error,	 and	 the	 original	 command	 class	 (whether	 built	 in	 or	 a
plugin	based	one)	is	returned	to	the	caller.	There	is	a	new	error
‘MustUseDecorated’	 for	 signalling	 when	 a	 wrapping	 command
should	switch	to	the	original	version.	(Robert	Collins)

Some	option	parsing	errors	will	 raise	 ‘BzrOptionError’,	allowing
granular	detection	for	decorating	commands.	(Robert	Collins).

Branch.read_working_inventory	 has	 moved	 to
WorkingTree.read_working_inventory.	 This	 necessitated
changes	 to	 Branch.get_root_id,	 and	 a	 move	 of
Branch.set_inventory	 to	WorkingTree	as	well.	To	make	 it	clear
that	 a	 WorkingTree	 cannot	 always	 be	 obtained
Branch.working_tree()	 will	 raise	 errors.NoWorkingTree	 if	 one

cannot	be	obtained.	(Robert	Collins)

All	 pending	 merges	 operations	 from	 Branch	 are	 now	 on
WorkingTree.	(Robert	Collins)

The	follow	operations	from	Branch	have	moved	to	WorkingTree:

add()

commit()

move()

rename_one()

unknowns()

(Robert	Collins)

bzrlib.add.smart_add_branch	 is	 now	 smart_add_tree.	 (Robert
Collins)

New	“rio”	serialization	format,	similar	to	rfc-822.	(Martin	Pool)

Rename	 selftests	 to	 bzrlib.tests.test_foo.	 (John	 A	 Meinel,
Martin	Pool)

bzrlib.plugin.all_plugins	has	been	changed	from	an	attribute
to	a	query	method.	(Robert	Collins)

New	 options	 to	 read	 only	 the	 table-of-contents	 of	 a	 weave.
(Denys	Duchier)

Raise	 NoSuchFile	 when	 someone	 tries	 to	 add	 a	 non-existant
file.	(Michael	Ellerman)

Simplify	handling	of	DivergedBranches	 in	 cmd_pull().	 (Michael
Ellerman)

Branch.controlfile*	 logic	 has	 moved	 to
lockablefiles.LockableFiles,	 which	 is	 exposed	 as

Branch().control_files.	 Also	 this	 has	 been	 altered	 with	 the
controlfile	pre/suffix	replaced	by	simple	method	names	like	‘get’
and	‘put’.	(Aaron	Bentley,	Robert	Collins).

Deprecated	functions	and	methods	can	now	be	marked	as	such
using	 the	 bzrlib.symbol_versioning	 module.	 Marked	 method
have	 their	 docstring	 updated	 and	 will	 issue	 a
DeprecationWarning	using	the	warnings	module	when	they	are
used.	(Robert	Collins)

bzrlib.osutils.safe_unicode	 now	 exists	 to	 provide	 parameter
coercion	for	functions	that	need	unicode	strings.	(Robert	Collins)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	0.6
Released: 2005-10-28

Improvements
pull	now	takes	–verbose	to	show	you	what	revisions	are	added
or	removed	(John	A	Meinel)
merge	now	takes	a	–show-base	option	to	include	the	base	text
in	conflicts.	(Aaron	Bentley)
The	config	files	are	now	read	using	ConfigObj,	so	‘=’	should	be
used	as	a	separator,	not	‘:’.	(Aaron	Bentley)
New	 ‘bzr	 commit	 –strict’	 option	 refuses	 to	 commit	 if	 there	 are
any	unknown	files	in	the	tree.	To	commit,	make	sure	all	files	are
either	ignored,	added,	or	deleted.	(Michael	Ellerman)
The	config	directory	 is	now	~/.bazaar,	and	 there	 is	a	single	 file
~/.bazaar/bazaar.conf	 storing	 email,	 editor	 and	 other
preferences.	(Robert	Collins)
‘bzr	add’	no	longer	takes	a	–verbose	option,	and	a	–quiet	option
has	been	added	that	suppresses	all	output.
Improved	 zsh	 completion	 support	 in	 contrib/zsh,	 from	 Clint
Adams.
Builtin	 ‘bzr	 annotate’	 command,	 by	 Martin	 Pool	 with
improvements	from	Goffredo	Baroncelli.
‘bzr	check’	now	accepts	-v	for	verbose	reporting,	and	checks	for
ghosts	in	the	branch.	(Robert	Collins)
New	command	‘re-sign’	which	will	regenerate	the	gpg	signature
for	a	revision.	(Robert	Collins)
If	 you	 set	 check_signatures=require	 for	 a	 path	 in
~/.bazaar/branches.conf	 then	 bzr	 will	 invoke	 your
gpg_signing_command	 (defaults	 to	 gpg)	 and	 record	 a	 digital
signature	of	your	commit.	(Robert	Collins)
New	sftp	transport,	based	on	Paramiko.	(Robey	Pointer)
‘bzr	pull’	now	accepts	‘–clobber’	which	will	discard	local	changes
and	 make	 this	 branch	 identical	 to	 the	 source	 branch.	 (Robert
Collins)

Just	give	a	quieter	warning	if	a	plugin	can’t	be	loaded,	and	put
the	details	in	.bzr.log.	(Martin	Pool)
‘bzr	branch’	will	now	set	the	branch-name	to	the	last	component
of	the	output	directory,	if	one	was	supplied.
If	the	option	post_commit	is	set	to	one	(or	more)	python	function
names	 (must	 be	 in	 the	 bzrlib	 namespace),	 then	 they	 will	 be
invoked	 after	 the	 commit	 has	 completed,	 with	 the	 branch	 and
revision_id	as	parameters.	(Robert	Collins)
Merge	 now	 has	 a	 retcode	 of	 1	 when	 conflicts	 occur.	 (Robert
Collins)
–merge-type	 weave	 is	 now	 supported	 for	 file	 contents.	 Tree-
shape	 changes	 are	 still	 three-way	 based.	 (Martin	 Pool,	 Aaron
Bentley)
‘bzr	 check’	 allows	 the	 first	 revision	 on	 revision-history	 to	 have
parents	 -	something	 that	 is	expected	 for	cheap	checkouts,	and
occurs	 when	 conversions	 from	 baz	 do	 not	 have	 all	 history.
(Robert	Collins).
‘bzr	 merge’	 can	 now	 graft	 unrelated	 trees	 together,	 if	 your
specify	0	as	a	base.	(Aaron	Bentley)
‘bzr	 commit	 branch’	 and	 ‘bzr	 commit	 branch/file1	 branch/file2’
now	work	(Aaron	Bentley)
Add	‘.sconsign*’	to	default	ignore	list.	(Alexander	Belchenko)
‘bzr	merge	–reprocess’	minimizes	conflicts

Testing
The	‘bzr	selftest	–pattern’	option	for	has	been	removed,	now	test
specifiers	 on	 the	 command	 line	 can	 be	 simple	 strings,	 or
regexps,	or	both.	(Robert	Collins)
Passing	 -v	 to	selftest	will	now	show	 the	 time	each	 test	 took	 to
complete,	 which	will	 aid	 in	 analysing	 performance	 regressions
and	related	questions.	(Robert	Collins)
‘bzr	 selftest’	 runs	 all	 tests,	 even	 if	 one	 fails,	 unless	 ‘–one’	 is
given.	(Martin	Pool)
There	is	a	new	method	for	TestCaseInTempDir,	assertFileEqual,
which	will	check	that	a	given	content	 is	equal	 to	 the	content	of
the	named	file.	(Robert	Collins)
Fix	 test	 suite’s	 habit	 of	 leaving	 many	 temporary	 log	 files	 in
$TMPDIR.	(Martin	Pool)

Internals
New	 ‘testament’	 command	 and	 concept	 for	 making	 gpg-
signatures	 of	 revisions	 that	 are	 not	 tied	 to	 a	 particular	 internal
representation.	(Martin	Pool).
Per-revision	 properties	 (‘revprops’)	 as	 key-value	 associated
strings	on	each	revision	created	when	the	revision	is	committed.
Intended	mainly	for	the	use	of	external	tools.	(Martin	Pool).
Config	 options	 have	moved	 from	 bzrlib.osutils	 to	 bzrlib.config.
(Robert	Collins)
Improved	command	line	option	definitions	allowing	explanations
for	 individual	 options,	 among	 other	 things.	 Contributed	 by
Magnus	Therning.
Config	 options	 have	moved	 from	 bzrlib.osutils	 to	 bzrlib.config.
Configuration	 is	 now	 done	 via	 the	 config.Config	 interface:
Depending	 on	 whether	 you	 have	 a	 Branch,	 a	 Location	 or	 no
information	 available,	 construct	 a	 *Config,	 and	 use	 its
signature_checking,	username	and	user_email	methods.	(Robert
Collins)
Plugins	 are	 now	 loaded	 under	 bzrlib.plugins,	 not	 bzrlib.plugin,
and	they	are	made	available	for	other	plugins	to	use.	You	should
not	 import	 other	 plugins	 during	 the	 __init__	 of	 your	 plugin
though,	as	no	ordering	is	guaranteed,	and	the	plugins	directory
is	not	on	the	python	path.	(Robert	Collins)
Branch.relpath	 has	 been	 moved	 to	 WorkingTree.relpath.
WorkingTree	no	no	longer	takes	an	inventory,	rather	it	takes	an
option	 branch	 parameter,	 and	 if	 None	 is	 given	 will	 open	 the
branch	at	basedir	implicitly.	(Robert	Collins)
Cleaner	 exception	 structure	 and	 error	 reporting.	Suggested	 by
Scott	James	Remnant.	(Martin	Pool)
Branch.remove	 has	 been	 moved	 to	 WorkingTree,	 which	 has
also	 gained	 lock_read,	 lock_write	 and	 unlock	 methods	 for

convenience.	(Robert	Collins)
Two	 decorators,	 needs_read_lock	 and	 needs_write_lock	 have
been	 added	 to	 the	 branch	 module.	 Use	 these	 to	 cause	 a
function	 to	 run	 in	 a	 read	 or	 write	 lock	 respectively.	 (Robert
Collins)
Branch.open_containing	 now	 returns	 a	 tuple	 (Branch,	 relative-
path),	which	allows	direct	access	to	the	common	case	of	‘get	me
this	file	from	its	branch’.	(Robert	Collins)
Transports	 can	 register	 using	 register_lazy_transport,	 and
they	will	be	loaded	when	first	used.	(Martin	Pool)
‘pull’	 has	 been	 factored	 out	 of	 the	 command	 as
WorkingTree.pull().	A	new	option	to	WorkingTree.pull	has	been
added,	 clobber,	 which	 will	 ignore	 diverged	 history	 and	 pull
anyway.	(Robert	Collins)
config.Config	has	a	get_user_option	call	that	accepts	an	option
name.	This	will	be	 looked	up	 in	branches.conf	and	bazaar.conf
as	normal.	It	is	intended	that	this	be	used	by	plugins	to	support
options	 -	 options	 of	 built	 in	 programs	 should	 have	 specific
methods	on	the	config.	(Robert	Collins)
merge.merge_inner	 now	has	 tempdir	 as	 an	 optional	 parameter.
(Robert	Collins)
Tree.kind	 is	not	recorded	at	 the	top	 level	of	 the	hierarchy,	as	 it
was	 missing	 on	 EmptyTree,	 leading	 to	 a	 bug	 with	 merge	 on
EmptyTrees.	(Robert	Collins)
WorkingTree.__del__	 has	 been	 removed,	 it	 was	 non
deterministic	 and	 not	 doing	 what	 it	 was	 intended	 to.	 See
WorkingTree.__init__	 for	 a	 comment	 about	 future	 directions.
(Robert	Collins/Martin	Pool)
bzrlib.transport.http	 has	 been	 modified	 so	 that	 only	 404	 urllib
errors	 are	 returned	 as	 NoSuchFile.	 Other	 exceptions	 will
propagate	 as	 normal.	 This	 allows	 debuging	 of	 actual	 errors.
(Robert	Collins)
bzrlib.transport.Transport	 now	 accepts	 ONLY	 url	 escaped

relative	paths	to	apis	like	‘put’,	‘get’	and	‘has’.	This	is	to	provide
consistent	behaviour	-	it	operates	on	url’s	only.	(Robert	Collins)
Transports	 can	 register	 using	 register_lazy_transport,	 and
they	will	be	loaded	when	first	used.	(Martin	Pool)
merge_flex	 no	 longer	 calls	 conflict_handler.finalize(),
instead	that	is	called	by	merge_inner.	This	is	so	that	the	conflict
count	 can	 be	 retrieved	 (and	 potentially	 manipulated)	 before
returning	 to	 the	 caller	 of	 merge_inner.	 Likewise	 ‘merge’	 now
returns	the	conflict	count	to	the	caller.	(Robert	Collins)
revision.revision_graph	can	handle	having	only	partial	history
for	a	revision	-	that	is	no	revisions	in	the	graph	with	no	parents.
(Robert	Collins).
New	 builtins.branch_files	uses	 the	standard	 file_list	 rules
to	produce	a	branch	and	a	 list	of	paths,	 relative	 to	 that	branch
(Aaron	Bentley)
New	TestCase.addCleanup	facility.
New	 bzrlib.version_info	 tuple	 (similar	 to	 sys.version_info),
which	can	be	used	by	programs	importing	bzrlib.

Bug	Fixes
Better	handling	of	branches	in	directories	with	non-ascii	names.
(Joel	Rosdahl,	Panagiotis	Papadakos)
Upgrades	of	trees	with	no	commits	will	not	fail	due	to	accessing
[-1]	in	the	revision-history.	(Andres	Salomon)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	0.1.1
Released: 2005-10-12

Bug	Fixes
Fix	problem	in	pulling	over	http	from	machines	that	do	not	allow
directories	to	be	listed.
Avoid	 harmless	 warning	 about	 invalid	 hash	 cache	 after
upgrading	branch	format.

Performance
Avoid	some	unnecessary	http	operations	in	branch	and	pull.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	0.1
Released: 2005-10-11

Notes
‘bzr	 branch’	 over	 http	 initially	 gives	 a	 very	 high	 estimate	 of
completion	 time	but	 it	 should	 fall	 as	 the	 first	 few	 revisions	 are
pulled	in.	branch	is	still	slow	on	high-latency	connections.

Bug	Fixes
bzr-man.py	 has	 been	 updated	 to	 work	 again.	 Contributed	 by
Rob	Weir.
Locking	 is	now	done	with	 fcntl.lockf	which	works	with	NFS	 file
systems.	Contributed	by	Harald	Meland.
When	a	merge	encounters	a	 file	 that	has	been	deleted	on	one
side	and	modified	on	the	other,	the	old	contents	are	written	out
to	 foo.BASE	 and	 foo.SIDE,	 where	 SIDE	 is	 this	 or	 OTHER.
Contributed	by	Aaron	Bentley.
Export	was	 choosing	 incorrect	 file	 paths	 for	 the	 content	 of	 the
tarball,	this	has	been	fixed	by	Aaron	Bentley.
Commit	will	no	longer	commit	without	a	log	message,	an	error	is
returned	instead.	Contributed	by	Jelmer	Vernooij.
If	you	commit	a	specific	file	in	a	sub	directory,	any	of	its	parent
directories	 that	 are	 added	 but	 not	 listed	 will	 be	 automatically
included.	Suggested	by	Michael	Ellerman.
bzr	commit	and	upgrade	did	not	correctly	 record	new	revisions
for	 files	with	 only	 a	 change	 to	 their	 executable	 status.	 bzr	will
correct	this	when	it	encounters	it.	Fixed	by	Robert	Collins
HTTP	tests	now	force	off	the	use	of	http_proxy	for	the	duration.
Contributed	by	Gustavo	Niemeyer.
Fix	 problems	 in	 merging	 weave-based	 branches	 that	 have
different	partial	views	of	history.
Symlink	support:	working	with	symlinks	when	not	in	the	root	of	a
bzr	tree	was	broken,	patch	from	Scott	James	Remnant.

Improvements
‘branch’	 now	 accepts	 a	 –basis	 parameter	 which	 will	 take
advantage	 of	 local	 history	 when	 making	 a	 new	 branch.	 This
allows	 faster	 branching	 of	 remote	 branches.	 Contributed	 by
Aaron	Bentley.
New	tree	format	based	on	weave	files,	called	version	5.	Existing
branches	can	be	upgraded	to	this	format	using	‘bzr	upgrade’.
Symlinks	 are	 now	 versionable.	 Initial	 patch	 by	 Erik	 Toubro
Nielsen,	updated	to	head	by	Robert	Collins.
Executable	 bits	 are	 tracked	 on	 files.	 Patch	 from	 Gustavo
Niemeyer.
‘bzr	status’	now	shows	unknown	files	inside	a	selected	directory.
Patch	from	Heikki	Paajanen.
Merge	 conflicts	 are	 recorded	 in	 .bzr.	 Two	 new	 commands
‘conflicts’	 and	 ‘resolve’	 have	 needed	 added,	 which	 list	 and
remove	 those	 merge	 conflicts	 respectively.	 A	 conflicted	 tree
cannot	be	committed	in.	Contributed	by	Aaron	Bentley.
‘rm’	is	now	an	alias	for	‘remove’.
Stores	now	split	out	their	content	in	a	single	byte	prefixed	hash,
dropping	the	density	of	files	per	directory	by	256.	Contributed	by
Gustavo	Niemeyer.
‘bzr	 diff	 -r	 branch:URL’	 will	 now	 perform	 a	 diff	 between	 two
branches.	Contributed	by	Robert	Collins.
‘bzr	 log’	with	 the	 default	 formatter	will	 show	merged	 revisions,
indented	 to	 the	 right.	 Initial	 implementation	 contributed	 by
Gustavo	Niemeyer,	made	incremental	by	Robert	Collins.

Internals
Test	 case	 failures	 have	 the	 exception	 printed	 after	 the	 log	 for
your	viewing	pleasure.
InventoryEntry	 is	 now	 an	 abstract	 base	 class,	 use	 one	 of	 the
concrete	InventoryDirectory	etc	classes	instead.
Branch	raises	an	UnsupportedFormatError	when	it	detects	a	bzr
branch	it	cannot	understand.	This	allows	for	precise	handling	of
such	circumstances.
Remove	RevisionReference	class;	 Revision.parent_ids	 is	now
simply	 a	 list	 of	 their	 ids	 and	 parent_sha1s	 is	 a	 list	 of	 their
corresponding	sha1s	(for	old	branches	only	at	the	moment.)
New	method-object	style	interface	for	Commit()	and	Fetch().
Renamed	 Branch.last_patch()	 to	 Branch.last_revision(),
since	we	call	them	revisions	not	patches.
Move	copy_branch	to	bzrlib.clone.copy_branch.	The	destination
directory	is	created	if	it	doesn’t	exist.
Inventories	now	 identify	 the	 files	which	were	present	by	giving
the	revision	of	that	file.
Inventory	 and	Revision	XML	 contains	 a	 version	 identifier.	 This
must	be	consistent	with	the	overall	branch	version	but	allows	for
more	flexibility	in	future	upgrades.

Testing
Removed	 testsweet	module	 so	 that	 tests	 can	 be	 run	 after	 bzr
installed	by	‘bzr	selftest’.
‘bzr	selftest’	command-line	arguments	can	now	be	partial	ids	of
tests	to	run,	e.g.	bzr	selftest	test_weave

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	0.0.9
Released: 2005-09-23

Bug	Fixes
Fixed	“branch	-r”	option.
Fix	 remote	 access	 to	 branches	 containing	 non-compressed
history.	(Robert	Collins).
Better	reliability	of	http	server	tests.	(John	Arbash-Meinel)
Merge	graph	maximum	distance	calculation	fix.	(Aaron	Bentley)
Various	minor	bug	in	windows	support	have	been	fixed,	 largely
in	the	test	suite.	Contributed	by	Alexander	Belchenko.

Improvements
Status	 now	 accepts	 a	 -r	 argument	 to	 give	 status	 between
chosen	revisions.	Contributed	by	Heikki	Paajanen.
Revision	 arguments	 no	 longer	 use	 +/-/=	 to	 control	 ranges,
instead	 there	 is	 a	 ‘before’	 namespace,	 which	 limits	 the
successive	 namespace.	 For	 example	 ‘$	 bzr	 log	 -r
date:yesterday..before:date:today’	 will	 select	 everything	 from
yesterday	and	before	today.	Contributed	by	Robey	Pointer
There	is	now	a	bzr.bat	file	created	by	distutils	when	building	on
Windows.	Contributed	by	Alexander	Belchenko.

Internals
Removed	uuid()	as	it	was	unused.
Improved	‘fetch’	code	for	pulling	revisions	from	one	branch	into
another	(used	by	pull,	merged,	etc.)

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

bzr	0.0.8
Released: 2005-09-20

Improvements
Adding	 a	 file	 whose	 parent	 directory	 is	 not	 versioned	 will
implicitly	add	the	parent,	and	so	on	up	to	the	root.	This	means
you	should	never	need	to	explictly	add	a	directory,	they’ll	just	get
added	 when	 you	 add	 a	 file	 in	 the	 directory.	 Contributed	 by
Michael	Ellerman.
Ignore	 .DS_Store	 (contains	 Mac	 metadata)	 by	 default.	 (Nir
Soffer)
If	 you	 set	 BZR_EDITOR	 in	 the	 environment,	 it	 is	 checked	 in
preference	 to	 EDITOR	 and	 the	 config	 file	 for	 the	 interactive
commit	 editing	 program.	 Related	 to	 this	 is	 a	 bugfix	 where	 a
missing	program	set	in	EDITOR	would	cause	editing	to	fail,	now
the	fallback	program	for	the	operating	system	is	still	tried.
Files	that	are	not	directories/symlinks/regular	files	will	no	longer
cause	bzr	 to	 fail,	 it	will	 just	 ignore	 them	by	default.	You	cannot
add	them	to	the	tree	though	-	they	are	not	versionable.

Internals
Refactor	xml	packing/unpacking.

Bug	Fixes
Fixed	‘bzr	mv’	by	Ollie	Rutherfurd.
Fixed	 strange	 error	 when	 trying	 to	 access	 a	 nonexistent	 http
branch.
Make	sure	that	the	hashcache	gets	written	out	if	it	can’t	be	read.

Portability
Various	Windows	fixes	from	Ollie	Rutherfurd.
Quieten	warnings	about	locking;	patch	from	Matt	Lavin.

bzr-0.0.7
Released: 2005-09-02

New	Features
bzr	 shell-complete	 command	 contributed	 by	 Clint	 Adams	 to
help	with	intelligent	shell	completion.
New	 expert	 command	 bzr	 find-merge-base	 for	 debugging
merges.

Enhancements
Much	better	merge	support.
merge3	conflicts	are	now	reported	with	markers	 like	 ‘<<<<<<<’
(seven	 characters)	 which	 is	 the	 same	 as	 CVS	 and	 pleases
things	like	emacs	smerge.

Bug	Fixes
bzr	upgrade	no	longer	fails	when	trying	to	fix	trees	that	mention
revisions	that	are	not	present.
Fixed	bugs	in	listing	plugins	from	bzr	plugins.
Fix	case	of	$EDITOR	containing	options	for	the	editor.
Fix	 log	 -r	 refusing	 to	 show	 the	 last	 revision.	 (Patch	 from
Goffredo	Baroncelli.)

Changes
bzr	log	--show-ids	shows	the	revision	ids	of	all	parents.
Externally	 provided	 commands	 on	 your	 $BZRPATH	 no	 longer
need	 to	 recognize	 –bzr-usage	 to	 work	 properly,	 and	 can	 just
handle	–help	themselves.

Library
Changed	 trace	 messages	 to	 go	 through	 the	 standard	 logging
framework,	 so	 that	 they	 can	 more	 easily	 be	 redirected	 by
libraries.

bzr-0.0.6
Released: 2005-08-18

New	Features
Python	 plugins,	 automatically	 loaded	 from	 the	 directories	 on
BZR_PLUGIN_PATH	or	~/.bzr.conf/plugins	by	default.
New	‘bzr	mkdir’	command.
Commit	 mesage	 is	 fetched	 from	 an	 editor	 if	 not	 given	 on	 the
command	line;	patch	from	Torsten	Marek.
bzr	 log	 -m	 FOO	 displays	 commits	 whose	 message	 matches
regexp	FOO.
bzr	 add	with	 no	 arguments	 adds	 everything	 under	 the	 current
directory.
bzr	mv	does	move	or	rename	depending	on	its	arguments,	 like
the	Unix	command.
bzr	 missing	 command	 shows	 a	 summary	 of	 the	 differences
between	two	trees.	(Merged	from	John	Arbash-Meinel.)
An	 email	 address	 for	 commits	 to	 a	 particular	 tree	 can	 be
specified	by	putting	it	into	.bzr/email	within	a	branch.	(Based	on
a	patch	from	Heikki	Paajanen.)

Enhancements
Faster	working	tree	operations.

Changes
3rd-party	modules	shipped	with	bzr	are	copied	within	the	bzrlib
python	package,	so	that	they	can	be	installed	by	the	setup	script
without	 clashing	with	 anything	 already	 existing	 on	 the	 system.
(Contributed	by	Gustavo	Niemeyer.)
Moved	 plugins	 directory	 to	 bzrlib/,	 so	 that	 there’s	 a	 standard
plugin	directory	which	 is	not	only	 installed	with	bzr	 itself	 but	 is
also	 available	 when	 using	 bzr	 from	 the	 development	 tree.
BZR_PLUGIN_PATH	 and	 DEFAULT_PLUGIN_PATH	 are	 then	 added	 to
the	standard	plugins	directory.
When	exporting	 to	a	 tarball	with	 bzr	export	--format	 tgz,	 put
everything	under	a	top	directory	rather	than	dumping	it	 into	the
current	directory.	This	can	be	overridden	with	the	--root	option.
Patch	from	William	Dodé	and	John	Meinel.
New	bzr	upgrade	command	to	upgrade	the	format	of	a	branch,
replacing	bzr	check	--update.
Files	within	store	directories	are	no	 longer	marked	readonly	on
disk.
Changed	bzr	log	output	to	a	more	compact	form	suggested	by
John	 A	 Meinel.	 Old	 format	 is	 available	 with	 the	 --long	 or	 -l
option,	patched	by	William	Dodé.
By	 default	 the	 commit	 command	 refuses	 to	 record	 a	 revision
with	no	changes	unless	the	--unchanged	option	is	given.
The	 --no-plugins,	 --profile	 and	 --builtin	 command	 line
options	 must	 come	 before	 the	 command	 name	 because	 they
affect	 what	 commands	 are	 available;	 all	 other	 options	 must
come	 after	 the	 command	 name	 because	 their	 interpretation
depends	on	it.
branch	and	clone	added	as	aliases	for	branch.
Default	log	format	is	back	to	the	long	format;	the	compact	one	is
available	with	--short.

Bug	Fixes
Fix	 bugs	 in	 committing	 only	 selected	 files	 or	 within	 a
subdirectory.

bzr-0.0.5
Released: 2005-06-15

Changes
bzr	 with	 no	 command	 now	 shows	 help	 rather	 than	 giving	 an
error.	Suggested	by	Michael	Ellerman.
bzr	 status	 output	 format	 changed,	 because	 svn-style	 output
doesn’t	really	match	the	model	of	bzr.	Now	files	are	grouped	by
status	 and	 can	 be	 shown	 with	 their	 IDs.	 bzr	 status	 --all

shows	all	versioned	files	and	unknown	files	but	not	ignored	files.
bzr	log	runs	from	most-recent	to	least-recent,	the	reverse	of	the
previous	order.	The	previous	behaviour	can	be	obtained	with	the
--forward	option.
bzr	inventory	by	default	shows	only	filenames,	and	also	ids	if	-
-show-ids	is	given,	in	which	case	the	id	is	the	second	field.

Enhancements
New	 ‘bzr	 whoami	 –email’	 option	 shows	 only	 the	 email
component	of	the	user	identification,	from	Jo	Vermeulen.
New	bzr	ignore	PATTERN	command.
Nicer	 error	 message	 for	 broken	 pipe,	 interrupt	 and	 similar
conditions	that	don’t	indicate	an	internal	error.
Add	.*.sw[nop]	.git	.*.tmp	*,v	to	default	ignore	patterns.
Per-branch	locks	keyed	on	.bzr/branch-lock,	available	in	either
read	or	write	mode.
New	option	bzr	log	--show-ids	shows	revision	and	file	ids.
New	usage	bzr	log	FILENAME	shows	only	revisions	that	affected
that	file.
Changed	format	for	describing	changes	in	bzr	log	-v.
New	option	 bzr	commit	 --file	 to	 take	 a	message	 from	a	 file,
suggested	by	LarstiQ.
New	syntax	bzr	status	[FILE...]	contributed	by	Bartosz	Oler.
File	may	be	in	a	branch	other	than	the	working	directory.
bzr	log	 and	 bzr	 root	 can	 be	 given	 an	 http	URL	 instead	 of	 a
filename.
Commands	can	now	be	defined	by	external	programs	or	scripts
in	a	directory	on	$BZRPATH.
New	 “stat	 cache”	 avoids	 reading	 the	 contents	 of	 files	 if	 they
haven’t	changed	since	the	previous	time.
If	the	Python	interpreter	is	too	old,	try	to	find	a	better	one	or	give
an	error.	Based	on	a	patch	from	Fredrik	Lundh.
New	optional	parameter	bzr	info	[BRANCH].
New	form	bzr	commit	SELECTED	to	commit	only	selected	files.
New	 form	 bzr	 log	 -r	 FROM:TO	 shows	 changes	 in	 selected
range;	contributed	by	John	A	Meinel.
New	 option	 bzr	 diff	 --diff-options	 'OPTS'	 allows	 passing

options	through	to	an	external	GNU	diff.
New	 option	 bzr	 add	 --no-recurse	 to	 add	 a	 directory	 but	 not
their	contents.
bzr	--version	 now	shows	more	 information	 if	 bzr	 is	being	 run
from	a	branch.

Bug	Fixes
Fixed	 diff	 format	 so	 that	 added	 and	 removed	 files	 will	 be
handled	properly	by	patch.	Fix	from	Lalo	Martins.
Various	 fixes	 for	 files	 whose	 names	 contain	 spaces	 or	 other
metacharacters.

Testing
Converted	black-box	 test	suites	 from	Bourne	shell	 into	Python;
now	run	using	./testbzr.	Various	structural	improvements	to	the
tests.
testbzr	 by	 default	 runs	 the	 version	 of	 bzr	 found	 in	 the	 same
directory	as	the	tests,	or	the	one	given	as	the	first	parameter.
testbzr	 also	 runs	 the	 internal	 tests,	 so	 the	 only	 command
required	to	check	is	just	./testbzr.
testbzr	requires	python2.4,	but	can	be	used	to	 test	bzr	running
under	a	different	version.
Tests	added	for	many	other	changes	in	this	release.

Internal
Included	 ElementTree	 library	 upgraded	 to	 1.2.6	 by	 Fredrik
Lundh.
Refactor	 command	 functions	 into	 Command	 objects	 based	 on
HCT	by	Scott	James	Remnant.
Better	help	messages	for	many	commands.
Expose	 bzrlib.open_tracefile()	 to	start	 the	 tracefile;	until	 this
is	called	trace	messages	are	just	discarded.
New	 internal	 function	 find_touching_revisions()	 and	 hidden
command	touching-revisions	trace	the	changes	to	a	given	file.
Simpler	and	faster	compare_inventories()	function.
bzrlib.open_tracefile()	takes	a	tracefilename	parameter.
New	AtomicFile	class.
New	developer	commands	added,	modified.

Portability
Cope	 on	Windows	 on	 python2.3	 by	 using	 the	weaker	 random
seed.	2.4	is	now	only	recommended.

bzr-0.0.4
Released: 2005-04-22

Enhancements
‘bzr	 diff’	 optionally	 takes	 a	 list	 of	 files	 to	 diff.	 Still	 a	 bit	 basic.
Patch	from	QuantumG.
More	default	ignore	patterns.
New	 ‘bzr	 log	 –verbose’	 shows	 a	 list	 of	 files	 changed	 in	 the
changeset.	Patch	from	Sebastian	Cote.
Roll	over	~/.bzr.log	if	it	gets	too	large.
Command	abbreviations	 ‘ci’,	 ‘st’,	 ‘stat’,	 ‘?’	based	on	a	patch	by
Jason	Diamon.
New	 ‘bzr	 help	 commands’	 based	 on	 a	 patch	 from	 Denys
Duchier.

Changes
User	 email	 is	 determined	 by	 looking	 at	 $BZREMAIL	 or
~/.bzr.email	or	$EMAIL.	All	are	decoded	by	the	locale	preferred
encoding.	If	none	of	these	are	present	user@hostname	is	used.
The	host’s	fully-qualified	name	is	not	used	because	that	tends	to
fail	when	there	are	DNS	problems.
New	‘bzr	whoami’	command	instead	of	username	user-email.

mailto:user%40hostname

Bug	Fixes
Make	commit	safe	for	hardlinked	bzr	trees.
Some	Unicode/locale	fixes.
Partial	 workaround	 for	 difflib.unified_diff	 not	 handling
trailing	newlines	properly.

Internal
Allow	docstrings	 for	help	 to	be	 in	PEP0257	 format.	Patch	from
Matt	Brubeck.
More	tests	in	test.sh.
Write	profile	data	 to	a	 temporary	 file	not	 into	working	directory
and	delete	it	when	done.
Smaller	.bzr.log	with	process	ids.

Portability
Fix	 opening	 of	 ~/.bzr.log	 on	 Windows.	 Patch	 from	 Andrew
Bennetts.
Some	improvements	in	handling	paths	on	Windows,	based	on	a
patch	from	QuantumG.

bzr-0.0.3
Released: 2005-04-06

Enhancements
New	“directories”	internal	command	lists	versioned	directories	in
the	tree.
Can	now	say	“bzr	commit	–help”.
New	“rename”	command	to	rename	one	file	to	a	different	name
and/or	directory.
New	“move”	command	to	move	one	or	more	files	into	a	different
directory.
New	 “renames”	 command	 lists	 files	 renamed	 since	 base
revision.
New	cat	command	contributed	by	janmar.

Changes
.bzr.log	 is	placed	 in	$HOME	(not	pwd)	and	 is	always	written	 in
UTF-8.	(Probably	not	a	completely	good	long-term	solution,	but
will	do	for	now.)

Portability
Workaround	 for	 difflib	 bug	 in	 Python	 2.3	 that	 causes	 an
exception	when	comparing	empty	files.	Reported	by	Erik	Toubro
Nielsen.

Internal
Refactored	inventory	storage	to	insert	a	root	entry	at	the	top.

Testing
Start	of	shell-based	black-box	testing	in	test.sh.

bzr-0.0.2.1

Portability
Win32	fixes	from	Steve	Brown.

bzr-0.0.2
Codename: “black	cube”
Released: 2005-03-31

Enhancements
Default	ignore	list	extended	(see	bzrlib/__init__.py).
Patterns	 in	 .bzrignore	are	now	added	 to	 the	default	 ignore	 list,
rather	than	replacing	it.
Ignore	list	isn’t	reread	for	every	file.
More	help	topics.
Reinstate	 the	 ‘bzr	 check’	 command	 to	 check	 invariants	 of	 the
branch.
New	 ‘ignored’	 command	 lists	which	 files	 are	 ignored	 and	why;
‘deleted’	lists	files	deleted	in	the	current	working	tree.
Performance	improvements.
New	global	–profile	option.
Ignore	 patterns	 like	 ‘./config.h’	 now	 correctly	match	 files	 in	 the
root	directory	only.

bzr-0.0.1
Released: 2005-03-26

Enhancements
More	information	from	info	command.
Can	now	say	“bzr	help	COMMAND”	for	more	detailed	help.
Less	file	flushing	and	faster	performance	when	writing	logs	and
committing	to	stores.
More	useful	verbose	output	from	some	commands.

Bug	Fixes
Fix	inverted	display	of	‘R’	and	‘M’	during	‘commit	-v’.

Portability
Include	 a	 subset	 of	 ElementTree-1.2.20040618	 to	 make
installation	easier.
Fix	 time.localtime	 call	 to	 work	 with	 Python	 2.3	 (the	 minimum
supported).

bzr-0.0.0.69
Released: 2005-03-22

Enhancements
First	public	release.
Storage	 of	 local	 versions:	 init,	 add,	 remove,	 rm,	 info,	 log,	 diff,
status,	etc.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	Release

Notes	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Branches
A	branch	consists	of	the	state	of	a	project,	including	all	of	its	history.
All	 branches	 have	 a	 repository	 associated	 (which	 is	 where	 the
branch	history	is	stored),	but	multiple	branches	may	share	the	same
repository	 (a	 shared	 repository).	 Branches	 can	 be	 copied	 and
merged.

In	 addition,	 one	 branch	may	 be	 bound	 to	 another	 one.	 Binding	 to
another	branch	 indicates	 that	commits	which	happen	 in	 this	branch
must	also	happen	 in	 the	other	branch.	Bazaar	ensures	consistency
by	not	allowing	commits	when	the	two	branches	are	out	of	date.	 In
order	 for	 a	 commit	 to	 succeed,	 it	may	be	necessary	 to	 update	 the
current	branch	using	bzr	update.

Related	commands:

init				Change	a	directory	into	a	versioned	branch.

branch		Create	a	new	branch	that	is	a	copy	of	an	existing	branch.

merge			Perform	a	three-way	merge.

bind				Bind	a	branch	to	another	one.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Checkouts
Checkouts	are	source	trees	that	are	connected	to	a	branch,	so	that
when	 you	 commit	 in	 the	 source	 tree,	 the	 commit	 goes	 into	 that
branch.	They	allow	you	to	use	a	simpler,	more	centralized	workflow,
ignoring	 some	 of	 Bazaar’s	 decentralized	 features	 until	 you	 want
them.	 Using	 checkouts	 with	 shared	 repositories	 is	 very	 similar	 to
working	with	SVN	or	CVS,	 but	 doesn’t	 have	 the	 same	 restrictions.
And	using	checkouts	still	allows	others	working	on	the	project	to	use
whatever	workflow	they	like.

A	 checkout	 is	 created	 with	 the	 bzr	 checkout	 command	 (see	 “help
checkout”).	 You	 pass	 it	 a	 reference	 to	 another	 branch,	 and	 it	 will
create	 a	 local	 copy	 for	 you	 that	 still	 contains	 a	 reference	 to	 the
branch	you	created	 the	checkout	 from	(the	master	branch).	Then	 if
you	make	any	commits	they	will	be	made	on	the	other	branch	first.
This	 creates	 an	 instant	 mirror	 of	 your	 work,	 or	 facilitates	 lockstep
development,	 where	 each	 developer	 is	 working	 together,
continuously	integrating	the	changes	of	others.

However	the	checkout	is	still	a	first	class	branch	in	Bazaar	terms,	so
that	you	have	the	full	history	locally.	As	you	have	a	first	class	branch
you	 can	 also	 commit	 locally	 if	 you	 want,	 for	 instance	 due	 to	 the
temporary	 loss	 af	 a	 network	 connection.	 Use	 the	 –local	 option	 to
commit	 to	 do	 this.	 All	 the	 local	 commits	 will	 then	 be	made	 on	 the
master	branch	the	next	time	you	do	a	non-local	commit.

If	 you	 are	 using	 a	 checkout	 from	 a	 shared	 branch	 you	 will
periodically	want	 to	pull	 in	all	 the	changes	made	by	others.	This	 is
done	using	the	“update”	command.	The	changes	need	to	be	applied
before	any	non-local	commit,	but	Bazaar	will	tell	you	if	there	are	any
changes	and	suggest	that	you	use	this	command	when	needed.

It	is	also	possible	to	create	a	“lightweight”	checkout	by	passing	the	–

lightweight	flag	to	checkout.	A	lightweight	checkout	is	even	closer	to
an	 SVN	 checkout	 in	 that	 it	 is	 not	 a	 first	 class	 branch,	 it	 mainly
consists	of	the	working	tree.	This	means	that	any	history	operations
must	 query	 the	 master	 branch,	 which	 could	 be	 slow	 if	 a	 network
connection	is	involved.	Also,	as	you	don’t	have	a	local	branch,	then
you	cannot	commit	locally.

Lightweight	checkouts	work	best	when	you	have	fast	reliable	access
to	the	master	branch.	This	means	that	if	the	master	branch	is	on	the
same	 disk	 or	 LAN	 a	 lightweight	 checkout	 will	 be	 faster	 than	 a
heavyweight	one	for	any	commands	that	modify	the	revision	history
(as	only	one	copy	of	the	branch	needs	to	be	updated).	Heavyweight
checkouts	 will	 generally	 be	 faster	 for	 any	 command	 that	 uses	 the
history	 but	 does	 not	 change	 it,	 but	 if	 the	master	 branch	 is	 on	 the
same	disk	then	there	won’t	be	a	noticeable	difference.

Another	 possible	 use	 for	 a	 checkout	 is	 to	 use	 it	 with	 a	 treeless
repository	 containing	 your	 branches,	 where	 you	maintain	 only	 one
working	tree	by	switching	the	master	branch	that	the	checkout	points
to	when	you	want	to	work	on	a	different	branch.

Obviously	 to	commit	on	a	checkout	you	need	to	be	able	 to	write	 to
the	 master	 branch.	 This	 means	 that	 the	 master	 branch	 must	 be
accessible	 over	 a	writeable	 protocol	 ,	 such	 as	 sftp://,	 and	 that	 you
have	write	permissions	at	the	other	end.	Checkouts	also	work	on	the
local	file	system,	so	that	all	that	matters	is	file	permissions.

You	 can	 change	 the	 master	 of	 a	 checkout	 by	 using	 the	 “switch”
command	(see	“help	switch”).	This	will	change	the	 location	that	 the
commits	are	sent	to.	The	“bind”	command	can	also	be	used	to	turn	a
normal	 branch	 into	 a	 heavy	 checkout.	 If	 you	would	 like	 to	 convert
your	heavy	checkout	 into	a	normal	branch	so	 that	every	 commit	 is
local,	you	can	use	the	“unbind”	command.	To	see	whether	or	not	a
branch	 is	 bound	 or	 not	 you	 can	 use	 the	 “info”	 command.	 If	 the
branch	is	bound	it	will	tell	you	the	location	of	the	bound	branch.

Related	commands:

checkout				Create	a	checkout.	Pass	--lightweight	to	get	a	lightweight

												checkout

update						Pull	any	changes	in	the	master	branch	in	to	your	checkout

commit						Make	a	commit	that	is	sent	to	the	master	branch.	If	you	have

												a	heavy	checkout	then	the	--local	option	will	commit	to	the

												checkout	without	sending	the	commit	to	the	master

switch						Change	the	master	branch	that	the	commits	in	the	checkout	will

												be	sent	to

bind								Turn	a	standalone	branch	into	a	heavy	checkout	so	that	any

												commits	will	be	sent	to	the	master	branch

unbind						Turn	a	heavy	checkout	into	a	standalone	branch	so	that	any

												commits	are	only	made	locally

info								Displays	whether	a	branch	is	bound	or	unbound.	If	the	branch	is

												bound,	then	it	will	also	display	the	location	of	the	bound	branch

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Content	Filters

Content	formats
Bazaar’s	content	filtering	allows	you	to	store	files	in	a	different	format
from	 the	 copy	 in	 your	 working	 tree.	 This	 lets	 you,	 or	 your	 co-
developers,	use	Windows	development	tools	that	expect	CRLF	files
on	 projects	 that	 use	 other	 line-ending	 conventions.	 Among	 other
things,	content	filters	also	let	Linux	developers	more	easily	work	on
projects	 using	 Windows	 line-ending	 conventions,	 keyword
expansion/compression,	 and	 trailing	 spaces	on	 lines	 in	 text	 files	 to
be	implicitly	stripped	when	committed.

To	generalize,	there	are	two	content	formats	supported	by	Bazaar:

a	canonical	format	-	how	files	are	stored	internally
a	convenience	format	-	how	files	are	created	in	a	working	tree.

Format	conversion
The	conversion	between	these	formats	 is	done	by	content	 filters.	A
content	filter	has	two	parts:

a	 read	 converter	 -	 converts	 from	 convenience	 to	 canonical
format
a	 write	 converter	 -	 converts	 from	 canonical	 to	 convenience
format.

Many	 of	 these	 converters	 will	 provide	 round-trip	 conversion,	 i.e.
applying	 the	 read	 converter	 followed	 by	 the	 write	 converter	 gives
back	 the	 original	 content.	 However,	 others	 may	 provide	 an
asymmetric	 conversion.	 For	 example,	 a	 read	 converter	 might	 strip
trailing	whitespace	off	 lines	in	source	code	while	the	matching	write
converter	might	pass	content	through	unchanged.

Enabling	content	filters
Content	 filters	are	 typically	 provided	by	plugins,	 so	 the	 first	 step	 in
using	 them	 is	 to	 install	 the	 relevant	 plugins	 and	 read	 their
documentation.	Some	plugins	may	be	very	specific	about	which	files
they	filter,	e.g.	only	files	ending	in	.java	or	.php.	In	other	cases,	the
plugin	may	leave	it	in	the	user’s	hands	to	define	which	files	are	to	be
filtered.	This	is	typically	done	using	rule-based	preferences.	See	bzr
help	rules	for	general	information	about	defining	these.

Impact	on	commands
Read	 converters	 are	 only	 applied	 to	 commands	 that	 read	 content
from	a	working	 tree,	e.g.	status,	diff	and	commit.	For	example,	 bzr
diff	 will	 apply	 read	 converters	 to	 files	 in	 the	 working	 tree,	 then
compare	the	results	to	the	content	last	committed.

Write	converters	are	only	applied	by	commands	that	create	files	in
a	working	tree,	e.g.	branch,	checkout,	update.	If	you	wish	to	see	the
canonical	 format	 of	 a	 file	 or	 tree,	 use	 bzr	 cat	 or	 bzr	 export

respectively.

Note:	 bzr	 commit	 does	 not	 implicitly	 apply	 write	 converters	 after
comitting	 files.	 If	 this	 makes	 sense	 for	 a	 given	 plugin	 providing	 a
content	 filter,	 the	 plugin	 can	 usually	 achieve	 this	 effect	 by	 using	 a
start_commit	 or	 post_commit	 hook	 say.	 See	 Hooks	 for	 more
information	on	hooks.

Refreshing	your	working	tree
For	performance	reasons,	Bazaar	caches	the	timestamps	of	files	in	a
working	 tree,	and	assumes	 files	are	unchanged	 if	 their	 timestamps
match	the	cached	values.	As	a	consequence,	there	are	times	when
you	may	need	to	explicitly	ask	for	content	filtering	to	be	reapplied	in
one	 or	 both	 directions,	 e.g.	 after	 installing	 or	 reconfiguring	 plugins
providing	it.

Here	are	some	general	guidelines	for	doing	this:

To	 reapply	 read	 converters,	 touch	 files,	 i.e.	 update	 their
timestamp.	Operations	like	bzr	status	should	then	reapply
the	 relevant	 read	 converters	 and	 compare	 the	 end	 result
with	the	canonical	format.
To	 reapply	 write	 converters,	 ensure	 there	 are	 no	 local
changes,	 delete	 the	 relevant	 files	 and	 run	 bzr	 revert	 on
those	files.

Note:	In	the	future,	it	is	likely	that	additional	options	will	be	added	to
commands	to	make	this	refreshing	process	faster	and	safer.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Criss-Cross
A	 criss-cross	 in	 the	 branch	 history	 can	 cause	 the	 default	 merge
technique	to	emit	more	conflicts	than	would	normally	be	expected.

In	 complex	 merge	 cases,	 bzr	 merge	 --lca	 or	 bzr	 merge	 --weave

may	give	better	results.	You	may	wish	to	bzr	revert	the	working	tree
and	 merge	 again.	 Alternatively,	 use	 bzr	 remerge	 on	 particular
conflicted	files.

Criss-crosses	occur	in	a	branch’s	history	if	two	branches	merge	the
same	thing	and	 then	merge	one	another,	or	 if	 two	branches	merge
one	another	at	the	same	time.	They	can	be	avoided	by	having	each
branch	only	merge	from	or	into	a	designated	central	branch	(a	“star
topology”).

Criss-crosses	 cause	 problems	 because	 of	 the	 way	 merge	 works.
Bazaar’s	 default	 merge	 is	 a	 three-way	 merger;	 in	 order	 to	 merge
OTHER	into	THIS,	it	must	find	a	basis	for	comparison,	BASE.	Using
BASE,	 it	 can	 determine	 whether	 differences	 between	 THIS	 and
OTHER	 are	 due	 to	 one	 side	 adding	 lines,	 or	 from	 another	 side
removing	lines.

Criss-crosses	mean	there	is	no	good	choice	for	a	base.	Selecting	the
recent	merge	points	 could	 cause	one	 side’s	 changes	 to	 be	 silently
discarded.	Selecting	older	merge	points	(which	Bazaar	does)	mean
that	extra	conflicts	are	emitted.

The	 weave	 merge	 type	 is	 not	 affected	 by	 this	 problem	 because	 it
uses	line-origin	detection	instead	of	a	basis	revision	to	determine	the
cause	of	differences.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Reference	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Diverged	Branches
When	Bazaar	tries	to	push	one	branch	onto	another,	it	requires	that
the	destination	branch	must	be	ready	to	receive	the	source	branch.	If
this	 isn’t	 the	 case,	 then	 we	 say	 that	 the	 branches	 have	 diverged.
Branches	 are	 considered	 diverged	 if	 the	 destination	 branch’s	most
recent	commit	is	one	that	has	not	been	merged	(directly	or	indirectly)
by	the	source	branch.	To	recover	from	diverged	branches,	one	must
merge	the	missing	revisions	into	the	source	branch.

This	 situation	 commonly	 arises	 when	 using	 a	 centralized	 workflow
with	local	commits.	If	someone	else	has	committed	new	work	to	the
mainline	since	your	 last	pull	and	you	have	 local	commits	 that	have
not	yet	been	pushed	to	the	mainline,	then	your	local	branch	and	the
mainline	have	diverged.

Discovering	What	Has	Diverged
The	bzr	missing	command	is	used	to	find	out	what	revisions	are	in
another	branch	that	are	not	present	in	the	current	branch,	and	vice-
versa.	 It	 shows	 a	 summary	 of	 which	 extra	 revisions	 exist	 in	 each
branch.	If	you	want	to	see	the	precise	effects	of	those	revisions,	you
can	 use	 bzr	 diff	 --old=other_branch	 to	 show	 the	 differences
between	other_branch	and	your	current	branch.

A	Solution
The	 solution	 is	 to	merge	 the	 revisions	 from	 the	mainline	 into	 your
local	branch.	To	do	so,	use	bzr	merge	to	get	the	new	revisions	from
the	 mainline.	 This	 merge	 may	 result	 in	 conflicts	 if	 the	 other
developer’s	 changes	 overlap	 with	 your	 changes.	 These	 conflicts
should	be	resolved	before	continuing.	After	any	conflicts	have	been
resolved,	or	even	if	there	were	no	conflicts,	Bazaar	requires	that	you
explicitly	 commit	 these	 new	 revisions	 to	 your	 local	 branch.	 This
requirement	 gives	 you	 an	 opportunity	 to	 test	 the	 resulting	 working
tree	 for	 correctness,	 since	 the	merged	 revisions	 could	 have	made
arbitrary	changes.	After	testing,	you	should	commit	the	merge	using
bzr	 commit.	 This	 clears	 up	 the	 diverged	 branches	 situation.	 Your
local	branch	can	now	be	pushed	to	the	mainline.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

End	of	Line	Conversion
EOL	 conversion	 is	 provided	 as	 a	 content	 filter	 where	 Bazaar
internally	 stores	 a	 canonical	 format	 but	 outputs	 a	 convenience
format.	See	bzr	help	content-filters	for	general	information	about
using	these.

Note:	Content	 filtering	 is	only	 supported	 in	 recently	added	 formats,
e.g.	1.14.	Be	sure	 that	both	 the	 repository	and	 the	branch	are	 in	a
recent	 format.	 (Just	 setting	 the	 format	 on	 the	 repository	 is	 not
enough.)	If	content	filtering	does	not	appear	to	be	working,	use	‘bzr
info	-v’	to	confirm	that	the	branch	is	using	“Working	tree	format	5”	or
later.

EOL	conversion	needs	to	be	enabled	for	selected	file	patterns	using
rules.	See	bzr	help	rules	for	general	 information	on	defining	rules.
Currently,	rules	are	only	supported	in	$BZR_HOME/.bazaar/rules	(or
%BZR_HOME%/bazaar/2.0/rules	 on	 Windows).	 Branch	 specific
rules	will	be	supported	in	a	future	verison	of	Bazaar.

To	configure	which	files	to	filter,	set	eol	to	one	of	the	values	below.
(If	a	value	is	not	set,	exact	is	the	default.)

Value Checkout	end-of-lines	as Commit	end-of-
lines	as

native crlf	on	Windows,	lf	otherwise lf

lf lf lf

crlf crlf lf

exact No	conversion Exactly	as	in	file

Note:	For	safety	reasons,	no	conversion	is	applied	to	any	file	where
a	null	byte	is	detected	in	the	file.

For	users	working	on	a	cross-platform	project,	here	 is	a	suggested
rule	to	use	as	a	starting	point:

[name	*]

eol	=	native

If	you	have	binary	files	that	do	not	contain	a	null	byte	though,	be	sure
to	add	eol	=	exact	rules	for	those	as	well.	You	can	do	this	by	giving
more	explicit	patterns	earlier	in	the	rules	file.	For	example:

[name	*.png]

eol	=	exact

[name	*]

eol	=	native

If	 your	 working	 tree	 is	 on	 a	 network	 drive	 shared	 by	 users	 on
different	 operating	 systems,	 you	 typically	 want	 to	 force	 certain
conventions	for	certain	 files.	 In	 that	way,	 if	a	 file	 is	created	with	 the
wrong	 line	endings	or	 line	endings	get	mixed	during	editing,	 it	gets
committed	correctly	and	gets	checked	out	correctly.	For	example:

[name	*.bat]

eol	=	crlf

[name	*.sh]

eol	=	lf

[name	*]

eol	=	native

If	 you	 take	 the	care	 to	 create	 files	with	 their	 required	endings,	 you
can	achieve	almost	the	same	thing	by	using	eol	=	exact.	It	is	slightly
safer	 to	 use	 lf	 and	 crlf	 though	 because	 edits	 accidentally
introducing	mixed	 line	 endings	 will	 be	 corrected	 during	 commit	 for
files	with	those	settings.

If	 you	 have	 sample	 test	 data	 that	 deliberately	 has	 text	 files	 with
mixed	 newline	 conventions,	 you	 can	 ask	 for	 those	 to	 be	 left	 alone
like	this:

[name	test_data/]

eol	=	exact

[name	*]

eol	=	native

Note	that	exact	does	not	imply	the	file	is	binary	but	it	does	mean	that
no	conversion	of	end-of-lines	will	be	done.	(Bazaar	currently	relies	of
content	analysis	to	detect	binary	files	for	commands	like	diff.	In	the
future,	a	 binary	=	true	 rule	may	 be	 added	 but	 it	 is	 not	 supported
yet.)

If	you	have	an	existing	repository	with	text	files	already	stored	using
Windows	 newline	 conventions	 (crlf),	 then	 you	 may	 want	 to	 keep
using	 that	 convention	 in	 the	 repository.	 Forcing	 certain	 files	 to	 this
convention	may	also	help	users	who	do	not	have	 rules	configured.
To	do	this,	set	eol	to	one	of	the	values	below.

Value Checkout	end-of-
lines	as

Commit	end-of-
lines	as

native-with-crlf-in-

repo

crlf	on	Windows,
lf	otherwise

crlf

lf-with-crlf-in-repo lf crlf

crlf-with-crlf-in-

repo
crlf crlf

For	users	working	on	an	existing	project	that	uses	Windows	newline
conventions	 in	 their	 Bazaar	 repository,	 this	 rule	 is	 suggested	 as	 a
starting	point:

[name	*]

eol	=	native-with-crlf-in-repo

For	new	projects,	 it	 is	 recommended	 that	end-of-lines	be	stored	as
lf	and	that	users	stick	to	the	basic	settings,	i.e.	native,	lf,	crlf	and
exact.

Note:	Bazaar’s	EOL	conversion	will	 convert	 the	content	of	 files	but
never	reject	files	because	a	given	line	ending	or	mixed	line	endings
are	found.	A	precommit	hook	should	be	used	if	you	wish	to	validate
(and	not	just	convert)	content	before	committing.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Storage	Formats
To	ensure	that	older	clients	do	not	access	data	incorrectly,	Bazaar’s
policy	 is	 to	 introduce	a	new	storage	 format	whenever	new	 features
requiring	new	metadata	are	added.	New	storage	 formats	may	also
be	introduced	to	improve	performance	and	scalability.

The	newest	format,	2a,	is	highly	recommended.	If	your	project	is	not
using	2a,	then	you	should	suggest	to	the	project	owner	to	upgrade.

Note: 	Some	of	the	older	formats	have	two	variants:	a	plain	one
and	a	rich-root	one.	The	latter	include	an	additional	field	about	the
root	of	the	tree.	There	is	no	performance	cost	for	using	a	rich-root
format	but	you	cannot	easily	merge	changes	from	a	rich-root
format	into	a	plain	format.	As	a	consequence,	moving	a	project	to	a
rich-root	format	takes	some	co-ordination	in	that	all	contributors
need	to	upgrade	their	repositories	around	the	same	time.	2a	and
all	future	formats	will	be	implicitly	rich-root.

See	 Current	 Storage	 Formats	 for	 the	 complete	 list	 of	 currently
supported	 formats.	 See	Other	 Storage	 Formats	 for	 descriptions	 of
any	available	experimental	and	deprecated	formats.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Patterns
Bazaar	uses	patterns	 to	match	 files	at	various	 times.	For	example,
the	 add	 command	 skips	 over	 files	 that	 match	 ignore	 patterns	 and
preferences	 can	 be	 associated	 with	 files	 using	 rule	 patterns.	 The
pattern	syntax	is	described	below.

Trailing	 slashes	 on	 patterns	 are	 ignored.	 If	 the	 pattern	 contains	 a
slash	 or	 is	 a	 regular	 expression,	 it	 is	 compared	 to	 the	whole	 path
from	 the	 branch	 root.	 Otherwise,	 it	 is	 compared	 to	 only	 the	 last
component	 of	 the	 path.	 To	 match	 a	 file	 only	 in	 the	 root	 directory,
prepend	‘./’.	Patterns	specifying	absolute	paths	are	not	allowed.

Patterns	may	include	globbing	wildcards	such	as:

?	-	Matches	any	single	character	except	'/'

*	-	Matches	0	or	more	characters	except	'/'

/**/	-	Matches	0	or	more	directories	in	a	path

[a-z]	-	Matches	a	single	character	from	within	a	group	of	characters

Patterns	 may	 also	 be	 Python	 regular	 expressions.	 Regular
expression	 patterns	 are	 identified	 by	 a	 ‘RE:’	 prefix	 followed	 by	 the
regular	 expression.	 Regular	 expression	 patterns	 may	 not	 include
named	or	numbered	groups.

Ignore	patterns	may	be	prefixed	with	‘!’,	which	means	that	a	filename
matched	by	that	pattern	will	not	be	ignored.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Repositories
Repositories	 in	 Bazaar	 are	where	 committed	 information	 is	 stored.
There	is	a	repository	associated	with	every	branch.

Repositories	are	a	form	of	database.	Bzr	will	usually	maintain	this	for
good	 performance	 automatically,	 but	 in	 some	 situations	 (e.g.	when
doing	 very	many	 commits	 in	 a	 short	 time	period)	 you	may	want	 to
ask	bzr	 to	optimise	 the	database	 indices.	This	can	be	done	by	 the
‘bzr	pack’	command.

By	default	just	running	‘bzr	init’	will	create	a	repository	within	the	new
branch	but	 it	 is	possible	 to	create	a	shared	repository	which	allows
multiple	 branches	 to	 share	 their	 information	 in	 the	 same	 location.
When	 a	 new	 branch	 is	 created	 it	 will	 first	 look	 to	 see	 if	 there	 is	 a
containing	shared	repository	it	can	use.

When	two	branches	of	the	same	project	share	a	repository,	there	is
generally	a	large	space	saving.	For	some	operations	(e.g.	branching
within	the	repository)	this	translates	in	to	a	large	time	saving.

To	 create	 a	 shared	 repository	 use	 the	 init-repository	 command	 (or
the	 alias	 init-repo).	 This	 command	 takes	 the	 location	 of	 the
repository	 to	 create.	 This	 means	 that	 ‘bzr	 init-repository	 repo’	 will
create	a	directory	named	‘repo’,	which	contains	a	shared	repository.
Any	new	branches	that	are	created	in	this	directory	will	then	use	it	for
storage.

It	 is	a	good	 idea	 to	create	a	 repository	whenever	you	might	create
more	 than	 one	 branch	 of	 a	 project.	 This	 is	 true	 for	 both	 working
areas	where	you	are	doing	 the	development,	and	any	server	areas
that	you	use	for	hosting	projects.	In	the	latter	case,	 it	 is	common	to
want	 branches	without	working	 trees.	Since	 the	 files	 in	 the	 branch
will	not	be	edited	directly	there	is	no	need	to	use	up	disk	space	for	a

working	 tree.	 To	 create	 a	 repository	 in	which	 the	 branches	will	 not
have	working	trees	pass	the	‘–no-trees’	option	to	‘init-repository’.

Related	commands:

init-repository			Create	a	shared	repository.	Use	--no-trees	to	create	one

																		in	which	new	branches	won't	get	a	working	tree.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Rules

Introduction
Rules	are	defined	 in	 ini	 file	 format	where	 the	sections	are	 file	glob
patterns	 and	 the	 contents	 of	 each	 section	 are	 the	 preferences	 for
files	matching	that	pattern(s).	For	example:

[name	*.bat]

eol	=	dos

[name	*.html	*.xml]

keywords	=	xml_escape

Preferences	like	these	are	useful	for	commands	and	plugins	wishing
to	provide	custom	behaviour	for	selected	files.	For	more	information
on	 end	 of	 line	 conversion	 see	 End	 of	 Line	 Conversion.	 Keyword
support	is	provided	by	the	keywords	plugin.

http://doc.bazaar.canonical.com/plugins/en/keywords-plugin.html

Files
Default	 rules	 for	 all	 branches	 are	 defined	 in	 the	 optional	 file
BZR_HOME/rules.

Rule	Patterns
Patterns	are	ordered	and	searching	stops	as	soon	as	one	matches.
As	a	consequence,	more	explicit	patterns	should	be	placed	towards
the	top	of	the	file.	Rule	patterns	use	exactly	the	same	conventions	as
ignore	patterns.	See	Patterns	for	details.

Note: 	Patterns	containing	square	brackets	or	spaces	should	be
surrounded	in	quotes	to	ensure	they	are	correctly	parsed.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Standalone	Trees
A	standalone	tree	is	a	working	tree	with	an	associated	repository.	It
is	 an	 independently	 usable	 branch,	 with	 no	 dependencies	 on	 any
other.	Creating	a	standalone	tree	(via	bzr	init)	is	the	quickest	way	to
put	an	existing	project	under	version	control.

Related	Commands:

init				Make	a	directory	into	a	versioned	branch.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Branches	Out	of	Sync
When	 reconfiguring	 a	 checkout,	 tree	 or	 branch	 into	 a	 lightweight
checkout,	a	 local	branch	must	be	destroyed.	(For	checkouts,	 this	 is
the	 local	branch	 that	serves	primarily	as	a	cache.)	 If	 the	branch-to-
be-destroyed	 does	 not	 have	 the	 same	 last	 revision	 as	 the	 new
reference	branch	for	the	lightweight	checkout,	data	could	be	lost,	so
Bazaar	refuses.

How	 you	 deal	 with	 this	 depends	 on	why	 the	 branches	 are	 out	 of
sync.

If	 you	have	a	checkout	and	have	done	 local	 commits,	 you	can	get
back	in	sync	by	running	“bzr	update”	(and	possibly	“bzr	commit”).

If	you	have	a	branch	and	the	remote	branch	is	out-of-date,	you	can
push	the	local	changes	using	“bzr	push”.	If	the	local	branch	is	out	of
date,	you	can	do	“bzr	pull”.	If	both	branches	have	had	changes,	you
can	merge,	commit	and	then	push	your	changes.	If	you	decide	that
some	of	the	changes	aren’t	useful,	you	can	“push	–overwrite”	or	“pull
–overwrite”	instead.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Working	Trees
A	working	tree	is	the	contents	of	a	branch	placed	on	disk	so	that	you
can	see	the	files	and	edit	them.	The	working	tree	is	where	you	make
changes	to	a	branch,	and	when	you	commit	the	current	state	of	the
working	tree	is	the	snapshot	that	is	recorded	in	the	commit.

When	you	push	a	branch	to	a	remote	system,	a	working	tree	will	not
be	 created.	 If	 one	 is	 already	 present	 the	 files	will	 not	 be	 updated.
The	branch	information	will	be	updated	and	the	working	tree	will	be
marked	as	out-of-date.	Updating	a	working	tree	remotely	 is	difficult,
as	 there	 may	 be	 uncommitted	 changes	 or	 the	 update	 may	 cause
content	conflicts	that	are	difficult	to	deal	with	remotely.

If	you	have	a	branch	with	no	working	tree	you	can	use	the	‘checkout’
command	 to	create	a	working	 tree.	 If	 you	 run	 ‘bzr	checkout	 .’	 from
the	 branch	 it	 will	 create	 the	working	 tree.	 If	 the	 branch	 is	 updated
remotely,	you	can	update	the	working	tree	by	running	‘bzr	update’	in
that	directory.

If	 you	have	a	branch	with	a	working	 tree	 that	 you	do	not	want	 the
‘remove-tree’	command	will	remove	the	tree	if	it	is	safe.	This	can	be
done	to	avoid	 the	warning	about	 the	remote	working	tree	not	being
updated	 when	 pushing	 to	 the	 branch.	 It	 can	 also	 be	 useful	 when
working	with	a	‘–no-trees’	repository	(see	‘bzr	help	repositories’).

If	 you	want	 to	 have	 a	working	 tree	 on	 a	 remote	machine	 that	 you
push	 to	 you	 can	 either	 run	 ‘bzr	 update’	 in	 the	 remote	 branch	 after
each	push,	or	use	some	other	method	to	update	the	tree	during	the
push.	 There	 is	 an	 ‘rspush’	 plugin	 that	 will	 update	 the	working	 tree
using	 rsync	 as	 well	 as	 doing	 a	 push.	 There	 is	 also	 a	 ‘push-and-
update’	 plugin	 that	 automates	 running	 ‘bzr	 update’	 via	 SSH	 after
each	push.

Useful	commands:

checkout					Create	a	working	tree	when	a	branch	does	not	have	one.

remove-tree		Removes	the	working	tree	from	a	branch	when	it	is	safe	to	do	so.

update							When	a	working	tree	is	out	of	sync	with	it's	associated	branch

													this	will	update	the	tree	to	match	the	branch.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Authentication	Settings

Intent
Many	 different	 authentication	 policies	 can	 be	 described	 in	 the
authentication.conf	file	but	a	particular	user	should	need	only	a	few
definitions	to	cover	his	needs	without	having	to	specify	a	user	and	a
password	for	every	branch	he	uses.

The	definitions	 found	 in	 this	 file	 are	 used	 to	 find	 the	 credentials	 to
use	for	a	given	url.	The	same	credentials	can	generally	be	used	for
as	many	branches	as	possible	by	grouping	their	declaration	around
the	 remote	 servers	 that	 need	 them.	 It’s	 even	 possible	 to	 declare
credentials	that	will	be	used	by	different	servers.

The	 intent	 is	 to	 make	 this	 file	 as	 small	 as	 possible	 to	 minimize
maintenance.

Once	 the	 relevant	credentials	are	declared	 in	 this	 file	you	may	use
branch	urls	without	embedding	passwords	(security	hazard)	or	even
users	(enabling	sharing	of	your	urls	with	others).

Instead	of	using:

bzr	branch	ftp://joe:secret@host.com/path/to/my/branch

you	simply	use:

bzr	branch	ftp://host.com/path/to/my/branch

provided	you	have	created	the	following	authentication.conf	file:

[myprojects]

scheme=ftp

host=host.com

user=joe

password=secret

Authentication	definitions
There	are	two	kinds	of	authentication	used	by	the	various	schemes
supported	by	bzr:

1.	 user	and	password

FTP	needs	a	(user,	password)	to	authenticate	against	a	host	SFTP	can
use	either	a	password	or	a	host	key	 to	authenticate.	However,	ssh
agents	are	a	better,	more	secure	solution.	So	we	have	chosen	to	not
provide	our	own	less	secure	method.

2.	 user,	realm	and	password

HTTP	 and	 HTTPS	 needs	 a	 (user,	 realm,	 password)	 to	 authenticate
against	 a	 host.	 But,	 by	 using	 .htaccess	 files,	 for	 example,	 it	 is
possible	to	define	several	(user,	realm,	password)	for	a	given	host.
So	what	is	really	needed	is	(user,	password,	 host,	 path).	The	 realm
is	 not	 taken	 into	account	 in	 the	definitions,	 but	will	 displayed	 if	 bzr
prompts	you	for	a	password.

HTTP	proxy	can	be	handled	as	HTTP	(or	HTTPS)	by	explicitly	specifying
the	appropriate	port.

To	take	all	schemes	into	account,	the	password	will	be	deduced	from
a	 set	 of	 authentication	 definitions	 (scheme,	 host,	 port,	 path,	 user,
password).

scheme:	 can	 be	 empty	 (meaning	 the	 rest	 of	 the	 definition
can	be	used	for	any	scheme),	SFTP	and	bzr+ssh	should	not
be	used	here,	ssh	should	be	used	instead	since	this	 is	the
real	scheme	regarding	authentication,
host:	can	be	empty	(to	act	as	a	default	for	any	host),

port	 can	be	empty	 (useful	when	an	host	provides	several
servers	 for	 the	 same	 scheme),	 only	 numerical	 values	 are
allowed,	 this	should	be	used	only	when	 the	server	uses	a
port	different	than	the	scheme	standard	port,
path:	can	be	empty	(FTP	or	SFTP	will	never	user	it),
user:	 can	 be	 empty	 (bzr	 will	 defaults	 to	 python’s
getpass.get_user()),
password:	can	be	empty	if	you	prefer	to	always	be	prompted
for	your	password.

Multiple	 definitions	 can	 be	 provided	 and,	 for	 a	 given	URL,	 bzr	 will
select	a	(user	[,	password])	based	on	the	following	rules	:

1.	 the	first	match	wins,
2.	 empty	fields	match	everything,
3.	 scheme	 matches	 even	 if	 decorators	 are	 used	 in	 the

requested	URL,
4.	 host	matches	exactly	or	act	as	a	domain	 if	 it	starts	with	 ‘.’

(project.bzr.sf.net	 will	 match	 .bzr.sf.net	 but
projectbzr.sf.net	will	not	match	bzr.sf.net).

5.	 port	 matches	 if	 included	 in	 the	 requested	 URL	 (exact
matches	only)

6.	 path	matches	if	included	in	the	requested	URL	(and	by	rule
#2	above,	empty	paths	will	match	any	provided	path).

File	format
The	general	rules	for	configuration	files	apply	except	for	the	variable
policies.

Each	section	describes	an	authentication	definition.

The	 section	 name	 is	 an	 arbitrary	 string,	 only	 the	 DEFAULT	 value	 is
reserved	and	should	appear	as	the	last	section.

Each	section	should	define:

user:	the	login	to	be	used,

Each	section	could	define:

host:	the	remote	server,
port:	the	port	the	server	is	listening,
path:	the	branch	location,
password:	the	password.

Examples

Personal	projects	hosted	outside

All	 connections	 are	 done	 with	 the	 same	 user	 (the	 remote	 one	 for
which	 the	 default	 bzr	 one	 is	 not	 appropriate)	 and	 the	 password	 is
always	prompted	with	some	exceptions:

#	Pet	projects	on	hobby.net

[hobby]

host=r.hobby.net

user=jim

password=obvious1234

#	Home	server

[home]

scheme=https

host=home.net

user=joe

password=1essobV10us

[DEFAULT]

#	Our	local	user	is	barbaz,	on	all	remote	sites	we're	known	as	foobar

user=foobar

Source	hosting	provider

In	the	shp.net	(fictitious)	domain,	each	project	has	its	own	site:

[shpnet	domain]

#	we	use	sftp,	but	ssh	is	the	scheme	used	for	authentication

scheme=ssh

#	The	leading	'.'	ensures	that	'shp.net'	alone	doesn't	match

host=.shp.net

user=joe

#	bzr	don't	support	supplying	a	password	for	sftp,

#	consider	using	an	ssh	agent	if	you	don't	want	to	supply

#	a	password	interactively.	(pageant,	ssh-agent,	etc)

HTTPS,	SFTP	servers	and	their	proxy

At	 company.com,	 the	 server	 hosting	 release	 and	 integration
branches	 is	 behind	 a	 proxy,	 and	 the	 two	 branches	 use	 different
authentication	policies:

[reference	code]

scheme=https

host=dev.company.com

path=/dev

user=user1

password=pass1

#	development	branches	on	dev	server

[dev]

scheme=ssh	#	bzr+ssh	and	sftp	are	available	here

host=dev.company.com

path=/dev/integration

user=user2

#	proxy

[proxy]

scheme=http

host=proxy.company.com

port=3128

user=proxyuser1

password=proxypass1

Planned	enhancements
The	 following	 are	 not	 yet	 implemented	 but	 planned	 as	 parts	 of	 a
work	in	progress:

add	a	password_encoding	field	allowing:
storing	 the	 passwords	 in	 various	 obfuscating	 encodings
(base64	for	one),
delegate	password	storage	to	plugins	(.netrc	for	example).

update	 the	 credentials	 when	 the	 user	 is	 prompted	 for	 user	 or
password,
add	a	verify_certificates	field	for	HTTPS.

The	 password_encoding	 and	 verify_certificates	 fields	 are
recognized	but	ignored	in	the	actual	implementation.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Bug	Tracker	Settings
When	making	a	commit,	metadata	about	bugs	fixed	by	that	change
can	be	recorded	by	using	the	--fixes	option.	For	each	bug	marked
as	 fixed,	an	entry	 is	 included	 in	 the	 ‘bugs’	 revision	property	stating
‘<url>	 <status>’.	 (The	 only	 status	 value	 currently	 supported	 is
fixed.)

The	 --fixes	 option	 allows	 you	 to	 specify	 a	 bug	 tracker	 and	 a	 bug
identifier	rather	than	a	full	URL.	This	looks	like:

bzr	commit	--fixes	<tracker>:<id>

where	“<tracker>”	is	an	identifier	for	the	bug	tracker,	and	“<id>”	is	the
identifier	for	that	bug	within	the	bugtracker,	usually	the	bug	number.

Bazaar	knows	about	a	few	bug	trackers	that	have	many	users.	If	you
use	one	of	these	bug	trackers	then	there	is	no	setup	required	to	use
this	 feature,	 you	 just	 need	 to	 know	 the	 tracker	 identifier	 to	 use.
These	are	the	bugtrackers	that	are	built	in:

URL Abbreviation Example
https://bugs.launchpad.net/ lp lp:12345
http://bugs.debian.org/ deb deb:12345
http://bugzilla.gnome.org/ gnome gnome:12345

For	 the	 bug	 trackers	 not	 listed	 above	 configuration	 is	 required.
Support	 for	 generating	 the	 URLs	 for	 any	 project	 using	 Bugzilla	 or
Trac	 is	 built	 in,	 along	 with	 a	 template	 mechanism	 for	 other
bugtrackers	with	simple	URL	schemes.	 If	your	bug	 tracker	can’t	be
described	 by	 one	 of	 the	 schemes	 described	 below	 then	 you	 can
write	a	plugin	to	support	it.

If	you	use	Bugzilla	or	Trac,	then	you	only	need	to	set	a	configuration

https://bugs.launchpad.net/
http://bugs.debian.org/
http://bugzilla.gnome.org/

variable	 which	 contains	 the	 base	 URL	 of	 the	 bug	 tracker.	 These
options	 can	 go	 into	 bazaar.conf,	 branch.conf	 or	 into	 a	 branch-
specific	 configuration	 section	 in	 locations.conf.	 You	 can	 set	 up
these	values	for	each	of	the	projects	you	work	on.

Note:	As	you	provide	a	short	name	for	each	tracker,	you	can	specify
one	or	more	bugs	in	one	or	more	trackers	at	commit	time	if	you	wish.

Launchpad
Use	bzr	commit	--fixes	lp:2	to	record	that	this	commit	fixes	bug	2.

bugzilla_<tracker>_url
If	 present,	 the	 location	 of	 the	 Bugzilla	 bug	 tracker	 referred	 to	 by
<tracker>.	This	option	can	then	be	used	together	with	bzr	commit	--
fixes	to	mark	bugs	in	that	tracker	as	being	fixed	by	that	commit.	For
example:

bugzilla_squid_url	=	http://www.squid-cache.org/bugs

would	 allow	 bzr	 commit	 --fixes	 squid:1234	 to	 mark	 Squid’s	 bug
1234	as	fixed.

trac_<tracker>_url
If	present,	the	location	of	the	Trac	instance	referred	to	by	<tracker>.
This	option	 can	 then	be	used	 together	with	 bzr	 commit	 --fixes	 to
mark	 bugs	 in	 that	 tracker	 as	 being	 fixed	 by	 that	 commit.	 For
example:

trac_twisted_url	=	http://www.twistedmatrix.com/trac

would	allow	bzr	commit	--fixes	twisted:1234	to	mark	Twisted’s	bug
1234	as	fixed.

bugtracker_<tracker>_url
If	present,	 the	location	of	a	generic	bug	tracker	 instance	referred	to
by	<tracker>.	The	location	must	contain	an	{id}	placeholder,	which
will	be	replaced	by	a	specific	bug	ID.	This	option	can	then	be	used
together	 with	 bzr	 commit	 --fixes	 to	 mark	 bugs	 in	 that	 tracker	 as
being	fixed	by	that	commit.	For	example:

bugtracker_python_url	=	http://bugs.python.org/issue{id}

would	allow	 bzr	 commit	 --fixes	 python:1234	 to	mark	 bug	 1234	 in
Python’s	Roundup	bug	tracker	as	fixed,	or:

bugtracker_cpan_url	=	http://rt.cpan.org/Public/Bug/Display.html?id={id}

for	CPAN’s	RT	bug	tracker.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Configuration	Settings

Environment	settings
While	 most	 configuration	 is	 handled	 by	 configuration	 files,	 some
options	 which	 may	 be	 semi-permanent	 can	 also	 be	 controlled
through	the	environment.

BZR_EMAIL

Override	the	email	id	used	by	Bazaar.	Typical	format:

"John	Doe	<jdoe@example.com>"

See	also	the	email	configuration	value.

BZR_PROGRESS_BAR

Override	 the	 progress	 display.	 Possible	 values	 are	 “none”,	 “dots”,
“tty”

BZR_SIGQUIT_PDB

Control	 whether	 SIGQUIT	 behaves	 normally	 or	 invokes	 a	 breakin
debugger.

0	 =	 Standard	 SIGQUIT	 behavior	 (normally,	 exit	 with	 a	 core
dump)
1	=	Invoke	breakin	debugger	(default)

BZR_HOME

Override	the	home	directory	used	by	Bazaar.

BZR_SSH

Select	a	different	SSH	implementation.

BZR_PDB

Control	whether	to	launch	a	debugger	on	error.

0	=	Standard	behavior
1	=	Launch	debugger

BZR_REMOTE_PATH

Path	 to	 the	 Bazaar	 executable	 to	 use	 when	 using	 the	 bzr+ssh
protocol.

See	also	the	bzr_remote_path	configuration	value.

BZR_EDITOR

Path	to	the	editor	Bazaar	should	use	for	commit	messages,	etc.

BZR_PLUGIN_PATH

The	path	to	the	plugins	directory	that	Bazaar	should	use.	If	not	set,
Bazaar	will	search	for	plugins	in:

the	user	specific	plugin	directory	(containing	the	user	plugins),
the	bzrlib	directory	(containing	the	core	plugins),
the	 site	 specific	 plugin	 directory	 if	 applicable	 (containing	 the
site	plugins).

If	 BZR_PLUGIN_PATH	 is	 set	 in	 any	 fashion,	 it	will	 change	 the	 the	way
the	plugin	are	searched.

As	 for	 the	 PATH	 variables,	 if	 multiple	 directories	 are	 specified	 in

BZR_PLUGIN_PATH	 they	 should	 be	 separated	 by	 the	 platform	 specific
appropriate	character	(‘:’	on	Unix/Linux/etc,	‘;’	on	windows)

By	 default	 if	 BZR_PLUGIN_PATH	 is	 set,	 it	 replaces	 searching	 in	 user.
However	it	will	continue	to	search	in	core	and	site	unless	they	are
explicitly	removed.

If	you	need	to	change	the	order	or	remove	one	of	these	directories,
you	should	use	special	values:

-user,	-core,	-site	will	remove	the	corresponding	path	from	the
default	values,
+user,	 +core,	 +site	will	add	 the	corresponding	path	before	 the
remaining	 default	 values	 (and	 also	 remove	 it	 from	 the	 default
values).

Note	 that	 the	special	 values	 ‘user’,	 ‘core’	and	 ‘site’	 should	be	used
literally,	 they	 will	 be	 substituted	 by	 the	 corresponding,	 platform
specific,	values.

The	examples	below	use	‘:’	as	the	separator,	windows	users	should
use	‘;’.

Overriding	the	default	user	plugin	directory:

BZR_PLUGIN_PATH='/path/to/my/other/plugins'

Disabling	the	site	directory	while	retaining	the	user	directory:

BZR_PLUGIN_PATH='-site:+user'

Disabling	all	plugins	(better	achieved	with	–no-plugins):

BZR_PLUGIN_PATH='-user:-core:-site'

Overriding	the	default	site	plugin	directory:

BZR_PLUGIN_PATH='/path/to/my/site/plugins:-site':+user

BZR_DISABLE_PLUGINS

Under	special	circumstances	(mostly	when	trying	to	diagnose	a	bug),
it’s	 better	 to	 disable	 a	 plugin	 (or	 several)	 rather	 than	 uninstalling
them	 completely.	 Such	 plugins	 can	 be	 specified	 in	 the
BZR_DISABLE_PLUGINS	environment	variable.

In	that	case,	bzr	will	stop	loading	the	specified	plugins	and	will	raise
an	import	error	if	they	are	explicitly	imported	(by	another	plugin	that
depends	on	them	for	example).

Disabling	myplugin	and	yourplugin	is	achieved	by:

BZR_DISABLE_PLUGINS='myplugin:yourplugin'

BZR_PLUGINS_AT

When	 adding	 a	 new	 feature	 or	 working	 on	 a	 bug	 in	 a	 plugin,
developers	 often	 need	 to	 use	 a	 specific	 version	 of	 a	 given	 plugin.
Since	 python	 requires	 that	 the	 directory	 containing	 the	 code	 is
named	 like	 the	plugin	 itself	 this	make	 it	 impossible	 to	use	arbitrary
directory	 names	 (using	 a	 two-level	 directory	 scheme	 is
inconvenient).	 BZR_PLUGINS_AT	 allows	 such	 directories	 even	 if	 they
don’t	appear	in	BZR_PLUGIN_PATH	.

Plugins	specified	in	this	environment	variable	takes	precedence	over
the	ones	in	BZR_PLUGIN_PATH.

The	variable	specified	a	list	of	plugin_name@plugin	path,	plugin_name
being	the	name	of	the	plugin	as	it	appears	in	python	module	paths,
plugin_path	 being	 the	 path	 to	 the	 directory	 containing	 the	 plugin
code	 itself	 (i.e.	 plugins/myplugin	 not	 plugins).	 Use	 ‘:’	 as	 the	 list

separator,	use	‘;’	on	windows.

Example:

Using	 a	 specific	 version	 of	 myplugin:
BZR_PLUGINS_AT='myplugin@/home/me/bugfixes/123456-myplugin

BZRPATH

The	 path	 where	 Bazaar	 should	 look	 for	 shell	 plugin	 external
commands.

Configuration	files

Location

Configuration	 files	 are	 located	 in	 $HOME/.bazaar	 on	 Linux/Unix	 and
C:\Documents	 and	 Settings\<username>\Application

Data\Bazaar\2.0	on	Windows.	 (You	can	check	 the	 location	 for	your
system	by	using	bzr	version.)

There	are	three	primary	configuration	files	in	this	location:

bazaar.conf	describes	default	configuration	options,
locations.conf	 describes	 configuration	 information	 for	 specific
branch	locations,
authentication.conf	describes	credential	information	for	remote
servers.

Each	 branch	 can	 also	 contain	 a	 configuration	 file	 that	 sets	 values
specific	to	that	branch.	This	file	is	found	at	.bzr/branch/branch.conf
within	 the	branch.	This	 file	 is	visible	 to	all	users	of	a	branch,	 if	you
wish	to	override	one	of	the	values	for	a	branch	with	a	setting	that	is
specific	to	you	then	you	can	do	so	in	locations.conf.

General	format

An	 ini	 file	 has	 three	 types	 of	 contructs:	 section	 headers,	 section
variables	and	comments.

Comments

A	 comment	 is	 any	 line	 that	 starts	 with	 a	 “#”	 (sometimes	 called	 a
“hash	 mark”,	 “pound	 sign”	 or	 “number	 sign”).	 Comment	 lines	 are

ignored	by	Bazaar	when	parsing	ini	files.

Section	headers

A	 section	 header	 is	 a	word	 enclosed	 in	 brackets	 that	 starts	 at	 the
begining	of	a	line.	A	typical	section	header	looks	like	this:

[DEFAULT]

The	 only	 valid	 section	 headers	 for	 bazaar.conf	 currently	 are
[DEFAULT]	and	[ALIASES].	Section	headers	are	case	sensitive.	The
default	 section	 provides	 for	 setting	 variables	 which	 can	 be
overridden	with	the	branch	config	file.

For	 locations.conf,	 the	variables	 from	 the	section	with	 the	 longest
matching	 section	 header	 are	 used	 to	 the	 exclusion	 of	 other
potentially	valid	section	headers.	A	section	header	uses	the	path	for
the	branch	as	the	section	header.	Some	examples	include:

[http://mybranches.isp.com/~jdoe/branchdir]

[/home/jdoe/branches/]

Section	variables

A	 section	 variable	 resides	 within	 a	 section.	 A	 section	 variable
contains	a	variable	name,	an	equals	sign	and	a	value.	For	example:

email												=	John	Doe	<jdoe@isp.com>

check_signatures	=	require

Variable	policies

Variables	defined	in	a	section	affect	the	named	directory	or	URL	plus
any	 locations	 they	 contain.	 Policies	 can	 be	 used	 to	 change	 how	a
variable	value	 is	 interpreted	for	contained	 locations.	Currently	 there
are	three	policies	available:

none:
the	 value	 is	 interpreted	 the	 same	 for	 contained	 locations.
This	is	the	default	behaviour.

norecurse:
the	value	is	only	used	for	the	exact	location	specified	by	the
section	name.

appendpath:
for	contained	locations,	any	additional	path	components	are
appended	to	the	value.

Policies	are	specified	by	keys	with	names	of	 the	 form	“$var:policy”.
For	example,	to	define	the	push	location	for	a	tree	of	branches,	the
following	could	be	used:

[/top/location]

push_location	=	sftp://example.com/location

push_location:policy	=	appendpath

With	this	configuration,	 the	push	location	for	/top/location/branch1
would	be	sftp://example.com/location/branch1.

The	main	configuration	file,	bazaar.conf

bazaar.conf	 allows	 two	 sections:	 [DEFAULT]	 and	 [ALIASES].	 The
default	 section	 contains	 the	 default	 configuration	 options	 for	 all
branches.	 The	 default	 section	 can	 be	 overriden	 by	 providing	 a
branch-specific	section	in	locations.conf.

A	typical	bazaar.conf	section	often	looks	like	the	following:

[DEFAULT]

email													=	John	Doe	<jdoe@isp.com>

editor												=	/usr/bin/vim

check_signatures		=	check-available

create_signatures	=	when-required

The	branch	location	configuration	file,
locations.conf

locations.conf	 allows	 one	 to	 specify	 overriding	 settings	 for	 a
specific	branch.	The	format	is	almost	identical	to	the	default	section
in	 bazaar.conf	 with	 one	 significant	 change:	 The	 section	 header,
instead	of	saying	default,	will	be	the	path	to	a	branch	that	you	wish	to
override	a	value	for.	The	‘?’	and	‘*’	wildcards	are	supported:

[/home/jdoe/branches/nethack]

email	=	Nethack	Admin	<nethack@nethack.com>

[http://hypothetical.site.com/branches/devel-branch]

create_signatures	=	always

check_signatures		=	always

[http://bazaar-vcs.org/bzr/*]

check_signatures		=	require

The	authentication	configuration	file,
authentication.conf

authentication.conf	 allows	 one	 to	 specify	 credentials	 for	 remote
servers.	This	can	be	used	 for	all	 the	supported	 transports	and	any
part	of	bzr	that	requires	authentication	(smtp	for	example).

The	syntax	of	the	file	obeys	the	same	rules	as	the	others	except	for
the	variable	policies	which	don’t	apply.

For	 more	 information	 on	 the	 possible	 uses	 of	 the	 authentication
configuration	file	see	Authentication	Settings.

Common	variable	options

debug_flags

A	comma-separated	 list	of	debugging	options	to	 turn	on.	The	same
values	 can	be	used	as	with	 the	 -D	 command-line	option	 (see	help
global-options).	For	example:

debug_flags	=	hpss

email

The	email	address	to	use	when	committing	a	branch.	Typically	takes
the	form	of:

email	=	Full	Name	<account@hostname.tld>

editor

The	 path	 of	 the	 editor	 that	 you	 wish	 to	 use	 if	 bzr	 commit	 is	 run
without	 a	 commit	 message.	 This	 setting	 is	 trumped	 by	 the
environment	 variable	 BZR_EDITOR,	 and	 overrides	 the	 VISUAL	 and
EDITOR	environment	variables.

log_format

The	default	 log	format	to	use.	Standard	log	formats	are	long,	short
and	 line.	 Additional	 formats	 may	 be	 provided	 by	 plugins.	 The
default	value	is	long.

check_signatures

Defines	the	behavior	for	signatures.

require
The	gnupg	signature	for	revisions	must	be	present	and	must	be
valid.

ignore
Do	not	check	gnupg	signatures	of	revisions.

check-available
(default)	 If	 gnupg	 signatures	 for	 revisions	 are	 present,	 check
them.	Bazaar	will	fail	 if	 it	finds	a	bad	signature,	but	will	not	fail	 if
no	signature	is	present.

create_signatures

Defines	the	behaviour	of	signing	revisions.

always
Sign	every	new	revision	that	is	committed.

when-required
(default)	 Sign	 newly	 committed	 revisions	 only	 when	 the	 branch
requires	signed	revisions.

never
Refuse	 to	 sign	 newly	 committed	 revisions,	 even	 if	 the	 branch
requires	signatures.

recurse

Only	 useful	 in	 locations.conf.	 Defines	 whether	 or	 not	 the
configuration	for	this	section	applies	to	subdirectories:

true
(default)	This	section	applies	to	subdirectories	as	well.

false

This	section	only	applies	 to	 the	branch	at	 this	directory	and	not
branches	below	it.

gpg_signing_command

(Default:	 “gpg”).	Which	program	should	be	used	 to	 sign	and	check
revisions.	For	example:

gpg_signing_command	=	/usr/bin/gnpg

bzr_remote_path

(Default:	“bzr”).	The	path	to	the	command	that	should	be	used	to	run
the	 smart	 server	 for	 bzr.	 This	 value	 may	 only	 be	 specified	 in
locations.conf,	because:

it’s	needed	before	branch.conf	is	accessible
allowing	remote	branch.conf	files	to	specify	commands	would	be
a	security	risk

It	is	overridden	by	the	BZR_REMOTE_PATH	environment	variable.

smtp_server

(Default:	 “localhost”).	 SMTP	 server	 to	 use	 when	 Bazaar	 needs	 to
send	 email,	 eg.	 with	 merge-directive	 --mail-to,	 or	 the	 bzr-email
plugin.

smtp_username,	smtp_password

User	 and	 password	 to	 authenticate	 to	 the	 SMTP	 server.	 If
smtp_username	 is	 set,	 and	 smtp_password	 is	 not,	 Bazaar	 will
prompt	for	a	password.	These	settings	are	only	needed	if	the	SMTP
server	requires	authentication	to	send	mail.

mail_client

A	mail	client	 to	use	for	sending	merge	requests.	By	default,	bzr	will
try	to	use	mapi	on	Windows.	On	other	platforms,	it	will	try	xdg-email.
If	either	of	these	fails,	it	will	fall	back	to	editor.

Supported	values	for	specific	clients:

claws: Use	Claws.	This	skips	a	dialog	for	attaching	files.
evolution: Use	Evolution.
kmail: Use	KMail.
mutt: Use	Mutt.

thunderbird:
Use	Mozilla	Thunderbird	or	Icedove.	For
Thunderbird/Icedove	1.5,	this	works	around	some
bugs	that	xdg-email	doesn’t	handle.

Supported	generic	values	are:

default: See	above.

editor:
Use	your	editor	to	compose	the	merge	request.	This	also
uses	your	commit	id,	(see	bzr	whoami),	smtp_server	and
(optionally)	smtp_username	and	smtp_password.

mapi: Use	your	preferred	e-mail	client	on	Windows.
xdg-
email: Use	xdg-email	to	run	your	preferred	mail	program

submit_branch

The	 branch	 you	 intend	 to	 submit	 your	 current	 work	 to.	 This	 is
automatically	 set	 by	 bzr	 send,	 and	 is	 also	 used	 by	 the	 submit:
revision	 spec.	 This	 should	 usually	 be	 set	 on	 a	 per-branch	 or	 per-
location	basis.

public_branch

A	 publically-accessible	 version	 of	 this	 branch	 (implying	 that	 this
version	is	not	publically-accessible).	Used	(and	set)	by	bzr	send.

suppress_warnings

A	list	of	strings,	each	string	represent	a	warning	that	can	be	emitted
by	bzr.	Mentioning	a	warning	in	this	list	tells	bzr	to	not	emit	it.

Valid	values:

format_deprecation:
whether	 the	 format	 deprecation	 warning	 is	 shown	 on
repositories	that	are	using	deprecated	formats.

Branch	type	specific	options
These	options	apply	only	to	branches	that	use	the	dirstate-tags	or
later	 format.	 They	 are	 usually	 set	 in	 .bzr/branch/branch.conf

automatically,	 but	 may	 be	 manually	 set	 in	 locations.conf	 or
bazaar.conf.

append_revisions_only

If	set	 to	 “True”	 then	revisions	can	only	be	appended	to	 the	 log,	not
removed.	 A	 branch	 with	 this	 setting	 enabled	 can	 only	 pull	 from
another	 branch	 if	 the	 other	 branch’s	 log	 is	 a	 longer	 version	 of	 its
own.	This	is	normally	set	by	bzr	init	--append-revisions-only.

parent_location

If	present,	 the	 location	of	 the	default	branch	 for	pull	or	merge.	This
option	is	normally	set	by	pull	--remember	or	merge	--remember.

push_location

If	present,	the	location	of	the	default	branch	for	push.	This	option	is
normally	set	by	push	--remember.

push_strict

If	 present,	 defines	 the	 --strict	 option	 default	 value	 for	 checking
uncommitted	changes	before	pushing.

dpush_strict

If	 present,	 defines	 the	 --strict	 option	 default	 value	 for	 checking
uncommitted	 changes	 before	 pushing	 into	 a	 different	 VCS	 without
any	custom	bzr	metadata.

bound_location

The	location	that	commits	should	go	to	when	acting	as	a	checkout.
This	option	is	normally	set	by	bind.

bound

If	set	to	“True”,	the	branch	should	act	as	a	checkout,	and	push	each
commit	 to	 the	 bound_location.	 This	 option	 is	 normally	 set	 by
bind/unbind.

send_strict

If	 present,	 defines	 the	 --strict	 option	 default	 value	 for	 checking
uncommitted	changes	before	sending	a	merge	directive.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Conflict	Types
Some	operations,	like	merge,	revert	and	pull,	modify	the	contents	of
your	 working	 tree.	 These	 modifications	 are	 programmatically
generated,	 and	 so	 they	may	 conflict	 with	 the	 current	 state	 of	 your
working	tree.

When	 conflicts	 are	 present	 in	 your	working	 tree	 (as	 shown	 by	 bzr
conflicts),	 you	 should	 resolve	 them	 and	 then	 inform	 bzr	 that	 the
conflicts	have	been	resolved.

Resolving	 conflicts	 is	 sometimes	 not	 obvious.	 Either	 because	 the
user	 that	 should	 resolve	 them	 is	 not	 the	 one	 responsible	 for	 their
occurrence,	 as	 is	 the	 case	 when	 merging	 other	 people’s	 work	 or
because	some	conflicts	are	presented	 in	a	way	 that	 is	not	easy	 to
understand.

Bazaar	 tries	 to	avoid	conflicts	 ;	 its	aim	 is	 to	ask	you	 to	 resolve	 the
conflict	 if	 and	 only	 if	 there’s	 an	 actual	 conceptual	 conflict	 in	 the
source	tree.	Because	Bazaar	doesn’t	understand	the	real	meaning	of
the	 files	 being	 versioned,	 it	 can,	 when	 faced	 with	 ambiguities,	 fall
short	in	either	direction	trying	to	resolve	the	conflict	itself.	Many	kinds
of	changes	can	be	combined	programmatically,	but	sometimes	only
a	human	can	determine	the	right	thing	to	do.

When	 Bazaar	 generates	 a	 conflict,	 it	 adds	 information	 into	 the
working	tree	to	present	the	conflicting	versions,	and	it’s	up	to	you	to
find	the	correct	resolution.

Whatever	the	conflict	is,	resolving	it	is	roughly	done	in	two	steps:

-	modify	the	working	tree	content	so	that	the	conflicted	item	is	now	in	the

state	you	want	to	keep,

inform	Bazaar	that	the	conflict	is	now	solved	and	ask	to	cleanup
any	remaining	generated	information	(bzr	resolve	<item>).

For	most	conflict	types,	there	are	some	obvious	ways	to	modify	the
working	 tree	 and	 put	 it	 into	 the	 desired	 state.	 For	 some	 types	 of
conflicts,	Bazaar	itself	already	made	a	choice,	when	possible.

Yet,	whether	Bazaar	makes	 a	 choice	 or	 not,	 there	 are	 some	other
simple	but	different	ways	to	resolve	the	conflict.

Each	type	of	conflict	 is	explained	below,	and	the	action	which	must
be	done	to	resolve	the	conflict	is	outlined.

Various	 actions	 are	 available	 depending	 on	 the	 kind	 of	 conflict,	 for
some	 of	 these	 actions,	 Bazaar	 can	 provide	 some	 help.	 In	 the	 end
you	should	at	 least	 inform	Bazaar	 that	you’re	done	with	 the	conflict
with:

``bzr	resolve	FILE	--action=done'

Note	 that	 this	 is	 the	default	action	when	a	single	 file	 is	 involved	so
you	can	simply	use:

``bzr	resolve	FILE``

See	bzr	help	resolve	for	more	details.

Text	conflicts
Typical	message:

Text	conflict	in	FILE

These	are	produced	when	a	text	merge	cannot	completely	reconcile
two	sets	of	text	changes.	Bazaar	will	emit	files	for	each	version	with
the	extensions	THIS,	OTHER,	and	BASE.	THIS	is	the	version	of	the
file	 from	 the	 target	 tree,	 i.e.	 the	 tree	 that	you	are	merging	changes
into.	 OTHER	 is	 the	 version	 that	 you	 are	 merging	 into	 the	 target.
BASE	is	an	older	version	that	is	used	as	a	basis	for	comparison.

In	the	main	copy	of	the	file,	Bazaar	will	include	all	the	changes	that	it
could	 reconcile,	 and	any	 un-reconciled	 conflicts	 are	 surrounded	by
“herringbone”	markers	like	<<<<<<<.

Say	 the	 initial	 text	 is	 “The	 project	 leader	 released	 it.”,	 and	 THIS
modifies	 it	 to	 “Martin	Pool	 released	 it.”,	while	OTHER	modifies	 it	 to
“The	project	leader	released	Bazaar.”	A	conflict	would	look	like	this:

<<<<<<<	TREE

Martin	Pool	released	it.

=======

The	project	leader	released	Bazaar.

>>>>>>>	MERGE-SOURCE

The	correct	resolution	would	be	“Martin	Pool	released	Bazaar.”

You	can	handle	 text	conflicts	either	by	editing	 the	main	copy	of	 the
file,	 or	 by	 invoking	 external	 tools	 on	 the	 THIS,	OTHER	and	BASE
versions.	 It’s	 worth	 mentioning	 that	 resolving	 text	 conflicts	 rarely
involves	picking	one	set	of	changes	over	 the	other.	More	often,	 the
two	sets	of	changes	must	be	intelligently	combined.

If	 you	 edit	 the	 main	 copy,	 be	 sure	 to	 remove	 the	 herringbone
markers.	When	you	are	done	editing,	the	file	should	look	like	it	never
had	a	conflict,	and	be	ready	to	commit.

When	you	have	resolved	text	conflicts,	just	run	bzr	resolve	--auto,
and	Bazaar	will	auto-detect	which	conflicts	you	have	resolved.

When	 the	 conflict	 is	 resolved,	 Bazaar	 deletes	 the	 previously
generated	.BASE,	.THIS	and	.OTHER	files	if	they	are	still	present	in	the
working	tree.

Content	conflicts
Typical	message:

Contents	conflict	in	FILE

This	 conflict	 happens	 when	 there	 are	 conflicting	 changes	 in	 the
working	tree	and	the	merge	source,	but	the	conflicted	items	are	not
text	files.	They	may	be	binary	files,	or	symlinks,	or	directories.	It	can
even	happen	with	files	that	are	deleted	on	one	side,	and	modified	on
the	other.

Like	 text	 conflicts,	 Bazaar	will	 emit	 THIS,	OTHER	and	BASE	 files.
(They	may	 be	 regular	 files,	 symlinks	 or	 directories).	 But	 it	 will	 not
include	a	“main	copy”	of	the	file	with	herringbone	conflict	markers.	It
will	 appear	 that	 the	 “main	 copy”	 has	 been	 renamed	 to	 THIS	 or
OTHER.

To	 resolve	 that	kind	of	conflict,	you	should	 rebuild	FILE	 from	either
version	or	a	combination	of	both.

bzr	resolve	recognizes	the	following	actions:

--action=take-this	will	issue	bzr	mv	FILE.THIS	FILE,
--action=take-other	will	issue	bzr	mv	FILE.OTHER	FILE,
--action=done	will	just	mark	the	conflict	as	resolved.

Any	action	will	also	delete	the	previously	generated	.BASE,	.THIS	and
.OTHER	files	if	they	are	still	present	in	the	working	tree.

Bazaar	 cannot	 auto-detect	 when	 conflicts	 of	 this	 kind	 have	 been
resolved.

Tag	conflicts
Typical	message:

Conflicting	tags:

				version-0.1

When	pulling	from	or	pushing	to	another	branch,	Bazaar	informs	you
about	tags	that	conflict	between	the	two	branches;	that	 is	the	same
tag	 points	 to	 two	 different	 revisions.	 You	 need	 not	 resolve	 these
conflicts,	but	subsequent	uses	of	pull	or	push	will	result	in	the	same
message.

To	resolve	the	conflict,	you	must	apply	the	correct	tags	to	either	the
target	branch	or	 the	source	branch	as	appropriate.	Use	“bzr	 tags	–
show-ids	-d	SOURCE_URL”	to	see	the	tags	in	the	source	branch.	If
you	want	to	make	the	target	branch’s	tags	match	the	source	branch,
then	in	the	target	branch	do	bzr	tag	--force	-r	revid:REVISION_ID
CONFLICTING_TAG	 for	 each	 of	 the	 CONFLICTING_TAGs,	 where
REVISION_ID	comes	from	the	list	of	tags	in	the	source	branch.	You
need	not	call	“bzr	resolve”	after	doing	this.	To	resolve	in	favor	of	the
target	branch,	you	need	 to	similarly	use	 tag	--force	 in	 the	 source
branch.	(Note	 that	pulling	or	pushing	using	–overwrite	will	overwrite
all	tags	as	well.)

Duplicate	paths
Typical	message:

Conflict	adding	file	FILE.		Moved	existing	file	to	FILE.moved.

Sometimes	Bazaar	will	attempt	to	create	a	file	using	a	pathname	that
has	 already	 been	 used.	 The	 existing	 file	 will	 be	 renamed	 to
“FILE.moved”.

To	 resolve	 that	kind	of	conflict,	you	should	 rebuild	FILE	 from	either
version	or	a	combination	of	both.

bzr	resolve	recognizes	the	following	actions:

-	``--action=take-this``	will	issue	``bzr	rm	FILE	;	bzr	mv	FILE.moved	FILE``,

-	``--action=take-other``	will	issue	``bzr	rm	FILE.moved``,

-	``--action=done``	will	just	mark	the	conflict	as	resolved.

Note	 that	 you	 must	 get	 rid	 of	 FILE.moved	 before	 using	 --

action=done.

Bazaar	 cannot	 auto-detect	 when	 conflicts	 of	 this	 kind	 have	 been
resolved.

Unversioned	parent
Typical	message:

Conflict	because	FILE	is	not	versioned,	but	has	versioned	children.

Sometimes	 Bazaar	 will	 attempt	 to	 create	 a	 file	 whose	 parent
directory	is	not	versioned.	This	happens	when	the	directory	has	been
deleted	in	the	target,	but	has	a	new	child	in	the	source,	or	vice	versa.
In	 this	 situation,	 Bazaar	 will	 version	 the	 parent	 directory	 as	 well.
Resolving	this	 issue	depends	very	much	on	the	particular	scenario.
You	 may	 wish	 to	 rename	 or	 delete	 either	 the	 file	 or	 the	 directory.
When	you	are	satisfied,	you	can	run	“bzr	resolve	FILE”	to	mark	the
conflict	as	resolved.

Missing	parent
Typical	message:

Conflict	adding	files	to	FILE.		Created	directory.

This	happens	when	a	directory	has	been	deleted	 in	 the	 target,	 but
has	new	children	 in	 the	 source.	This	 is	 similar	 to	 the	 “unversioned
parent”	 conflict,	 except	 that	 the	 parent	 directory	 does	 not	 exist,
instead	of	just	being	unversioned.	In	this	situation,	Bazaar	will	create
the	missing	parent.	Resolving	this	 issue	depends	very	much	on	the
particular	scenario.

To	resolve	that	kind	of	conflict,	you	should	either	remove	or	rename
the	children	or	the	directory	or	a	combination	of	both.

bzr	resolve	recognizes	the	following	actions:

-	``--action=take-this``	will	issue	``bzr	rm	directory``	including	the	children,

-	``--action=take-other``	will	acknowledge	Bazaar	choice	to	keep	the	children

and	restoring	the	directory,

--action=done	will	just	mark	the	conflict	as	resolved.

Bazaar	 cannot	 auto-detect	 when	 conflicts	 of	 this	 kind	 have	 been
resolved.

Deleting	parent
Typical	message:

Conflict:	can't	delete	DIR	because	it	is	not	empty.		Not	deleting.

This	is	the	opposite	of	“missing	parent”.	A	directory	is	deleted	in	the
source,	 but	 has	 new	 children	 in	 the	 target.	 Bazaar	 will	 retain	 the
directory.	Resolving	this	 issue	depends	very	much	on	the	particular
scenario.

To	resolve	that	kind	of	conflict,	you	should	either	remove	or	rename
the	children	or	the	directory	or	a	combination	of	both.

bzr	resolve	recognizes	the	following	actions:

-	``--action=take-this``	will	acknowledge	Bazaar	choice	to	keep	the	directory,

-	``--action=take-other``	will	issue	``bzr	rm	directory``	including	the

children,

--action=done	will	just	mark	the	conflict	as	resolved.

Bazaar	 cannot	 auto-detect	 when	 conflicts	 of	 this	 kind	 have	 been
resolved.

Path	conflict
Typical	message:

Path	conflict:	PATH1	/	PATH2

This	 happens	when	 the	 source	 and	 target	 have	 each	modified	 the
name	or	parent	directory	of	a	file.	Bazaar	will	use	the	path	elements
from	the	source.

To	 resolve	 that	kind	of	conflict,	 you	 just	have	 to	decide	what	name
should	be	retained	for	the	file	involved.

bzr	resolve	recognizes	the	following	actions:

-	``--action=take-this``	will	revert	Bazaar	choice	and	keep	``PATH1``	by

issuing	bzr	mv	PATH2	PATH1,

--action=take-other	will	acknowledge	Bazaar	choice	of	keeping
PATH2,
--action=done	will	just	mark	the	conflict	as	resolved.

Bazaar	 cannot	 auto-detect	 when	 conflicts	 of	 this	 kind	 have	 been
resolved.

Parent	loop
Typical	message:

Conflict	moving	FILE	into	DIRECTORY.		Cancelled	move.

This	 happens	 when	 the	 source	 and	 the	 target	 have	 each	 moved
directories,	so	that,	if	the	change	could	be	applied,	a	directory	would
be	contained	by	itself.	For	example:

$	bzr	init

$	bzr	mkdir	white

$	bzr	mkdir	black

$	bzr	commit	-m	"BASE"

$	bzr	branch	.	../other

$	bzr	mv	white	black

$	bzr	commit	-m	"THIS"

$	bzr	mv	../other/black	../other/white

$	bzr	commit	../other	-m	"OTHER"

$	bzr	merge	../other

In	 this	 situation,	 Bazaar	 will	 cancel	 the	 move,	 and	 leave	 white	 in
black.	To	resolve	that	kind	of	conflict,	you	 just	have	to	decide	what
name	should	be	retained	for	the	directories	involved.

bzr	resolve	recognizes	the	following	actions:

-	``--action=take-this``	will	acknowledge	Bazaar	choice	of	leaving	``white``

in	black,

--action=take-other	will	 revert	Bazaar	choice	and	move	 black
in	 white	by	 issuing	 bzr	mv	black/white	white	;	bzr	mv	 black
white,
--action=done	will	just	mark	the	conflict	as	resolved.

Bazaar	 cannot	 auto-detect	 when	 conflicts	 of	 this	 kind	 have	 been
resolved.

Non-directory	parent
Typical	message:

Conflict:	foo.new	is	not	a	directory,	but	has	files	in	it.

Created	directory.

This	happens	when	one	side	has	added	files	to	a	directory,	and	the
other	 side	 has	 changed	 the	 directory	 into	 a	 file	 or	 symlink.	 For
example:

$	bzr	init

$	bzr	mkdir	foo

$	bzr	commit	-m	"BASE"

$	bzr	branch	.	../other

$	rmdir	foo

$	touch	foo

$	bzr	commit	-m	"THIS"

$	bzr	mkdir	../other/foo/bar

$	bzr	commit	../other	-m	"OTHER"

$	bzr	merge	../other

To	resolve	that	kind	of	conflict,	you	have	to	decide	what	name	should
be	retained	for	the	file,	directory	or	symlink	involved.

bzr	resolve	recognizes	the	following	actions:

-	``--action=take-this``	will	issue	``bzr	rm	--force	foo.new``	and

bzr	add	foo,

--action=take-other	will	 issue	bzr	rm	--force	foo	and	 bzr	mv
foo.new	foo,
--action=done	will	just	mark	the	conflict	as	resolved.

Bazaar	 cannot	 auto-detect	 when	 conflicts	 of	 this	 kind	 have	 been

resolved.

MalformedTransform
It	 is	 possible	 (though	 very	 rare)	 for	 Bazaar	 to	 raise	 a
MalformedTransform	 exception.	 This	 means	 that	 Bazaar
encountered	a	filesystem	conflict	 that	 it	was	unable	to	resolve.	This
usually	indicates	a	bug.	Please	let	us	know	if	you	encounter	this.	Our
bug	tracker	is	at	https://launchpad.net/bzr/+bugs

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

https://launchpad.net/bzr/+bugs
http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Current	Storage	Formats

2a:
(native)	(default)	First	format	for	bzr	2.0	series.	Uses	group-
compress	storage.	Provides	rich	roots	which	are	a	one-way
transition.

pack-
0.92:

(native)	New	in	0.92:	Pack-based	format	with	data
compatible	with	dirstate-tags	format	repositories.
Interoperates	with	bzr	repositories	before	0.92	but	cannot	be
read	by	bzr	<	0.92.

1.14: (native)	A	working-tree	format	that	supports	content	filtering.
1.14-
rich-
root:

(native)	A	variant	of	1.14	that	supports	rich-root	data	(needed
for	bzr-svn	and	bzr-git).

See	Storage	Formats	for	more	about	storage	formats.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Debug	Flags
These	flags	can	be	passed	on	the	bzr	command	line	or	(without	the
-D	prefix)	put	in	the	debug_flags	variable	in	bazaar.conf.

-Dauth Trace	authentication	sections	used.
-Dbytes Print	out	how	many	bytes	were	transferred
-Ddirstate Trace	dirstate	activity	(verbose!)

-Derror
Instead	of	normal	error	handling,	always	print	a
traceback	on	error.

-Devil
Capture	call	sites	that	do	expensive	or	badly-scaling
operations.

-Dfetch Trace	history	copying	between	repositories.
-Dfilters Emit	information	for	debugging	content	filtering.
-Dforceinvdeltas

	 Force	use	of	inventory	deltas	during	generic
streaming	fetch.

-Dgraph Trace	graph	traversal.

-Dhashcache
Log	every	time	a	working	file	is	read	to	determine	its
hash.

-Dhooks Trace	hook	execution.
-Dhpss Trace	smart	protocol	requests	and	responses.
-Dhpssdetail More	hpss	details.
-Dhpssvfs Traceback	on	vfs	access	to	Remote	objects.
-Dhttp Trace	http	connections,	requests	and	responses.
-Dindex Trace	major	index	operations.
-Dknit Trace	knit	operations.
-Dlock Trace	when	lockdir	locks	are	taken	or	released.
-Dprogress Trace	progress	bar	operations.
-Dmerge Emit	information	for	debugging	merges.
-Dno_apport Don’t	use	apport	to	report	crashes.

-Dno_activity
Don’t	show	transport	activity	indicator	in	progress
bar.

-Dpack Emit	information	about	pack	operations.

-Drelock Emit	a	message	every	time	a	branch	or	repository
object	is	unlocked	then	relocked	the	same	way.

-Dsftp Trace	SFTP	internals.
-

Dstatic_tuple

Error	when	a	tuple	is	used	where	a	StaticTuple	is
expected

-Dstream Trace	fetch	streams.
-

Dstrict_locks

Trace	when	OS	locks	are	potentially	used	in	a	non-
portable	manner.

-Dunlock Some	errors	during	unlock	are	treated	as	warnings.
-DIDS_never Never	use	InterDifferingSerializer	when	fetching.

-DIDS_always

Always	use	InterDifferingSerializer	to	fetch	if
appropriate	for	the	format,	even	for	non-local
fetches.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Environment	Variables
BZRPATH Path	where	bzr	is	to	look	for	shell	plugin

external	commands.

BZR_EMAIL E-Mail	address	of	the	user.	Overrides
EMAIL.

EMAIL E-Mail	address	of	the	user.

BZR_EDITOR Editor	for	editing	commit	messages.
Overrides	EDITOR.

EDITOR Editor	for	editing	commit	messages.
BZR_PLUGIN_PATH Paths	where	bzr	should	look	for	plugins.

BZR_HOME Directory	holding	.bazaar	config	dir.
Overrides	HOME.

BZR_HOME	(Win32) Directory	holding	bazaar	config	dir.
Overrides	APPDATA	and	HOME.

BZR_REMOTE_PATH Full	name	of	remote	‘bzr’	command	(for
bzr+ssh://	URLs).

BZR_SSH Path	to	SSH	client,	or	one	of	paramiko,
openssh,	sshcorp,	plink.

BZR_LOG Location	of	.bzr.log	(use	‘/dev/null’	to
suppress	log).

BZR_LOG	(Win32) Location	of	.bzr.log	(use	‘NUL’	to	suppress
log).

BZR_COLUMNS Override	implicit	terminal	width.

BZR_CONCURRENCY Number	of	processes	that	can	be	run
concurrently	(selftest).

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Files
On	Linux: ~/.bazaar/bazaar.conf
On
Windows:

C:\Documents	and	Settings\username\Application
Data\bazaar\2.0\bazaar.conf

Contains	 the	 user’s	 default	 configuration.	 The	 section	 [DEFAULT]	 is
used	to	define	general	configuration	that	will	be	applied	everywhere.
The	section	 [ALIASES]	 can	be	used	 to	create	command	aliases	 for
commonly	used	options.

A	typical	config	file	might	look	something	like:

[DEFAULT]

email=John	Doe	<jdoe@isp.com>

[ALIASES]

commit	=	commit	--strict

log10	=	log	--short	-r	-10..-1

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Global	Options
These	options	may	be	used	with	any	command,	and	may	appear	in
front	of	any	command.	(e.g.	bzr	--profile	help).

--version
Print	the	version	number.	Must	be	supplied	before	the
command.

--no-

aliases

Do	not	process	command	aliases	when	running	this
command.

--builtin
Use	the	built-in	version	of	a	command,	not	the	plugin
version.	This	does	not	suppress	other	plugin	effects.

--no-

plugins
Do	not	process	any	plugins.

--

concurrency

Number	of	processes	that	can	be	run	concurrently
(selftest).

--profile Profile	execution	using	the	hotshot	profiler.
--lsprof Profile	execution	using	the	lsprof	profiler.

--lsprof-

file

Profile	execution	using	the	lsprof	profiler,	and	write	the
results	to	a	specified	file.	If	the	filename	ends	with
“.txt”,	text	format	will	be	used.	If	the	filename	either
starts	with	“callgrind.out”	or	end	with	“.callgrind”,	the
output	will	be	formatted	for	use	with	KCacheGrind.
Otherwise,	the	output	will	be	a	pickle.

--coverage
Generate	line	coverage	report	in	the	specified
directory.

See	 http://doc.bazaar.canonical.com/developers/profiling.html	 for
more	information	on	profiling.

A	number	of	debug	flags	are	also	available	to	assist	troubleshooting
and	development.	See	Debug	Flags.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

http://doc.bazaar.canonical.com/developers/profiling.html
http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Hooks

Introduction
A	hook	of	type	xxx	of	class	yyy	needs	to	be	registered	using:

yyy.hooks.install_named_hook("xxx",	...)

See	Using	hooks	in	the	User	Guide	for	examples.

The	 class	 that	 contains	 each	 hook	 is	 given	 before	 the	 hooks	 it
supplies.	For	instance,	BranchHooks	as	the	class	is	the	hooks	class
for	bzrlib.branch.Branch.hooks.

Each	description	also	 indicates	whether	the	hook	runs	on	the	client
(the	 machine	 where	 bzr	 was	 invoked)	 or	 the	 server	 (the	 machine
addressed	 by	 the	 branch	 URL).	 These	 may	 be,	 but	 are	 not
necessarily,	the	same	machine.

Plugins	(including	hooks)	are	run	on	the	server	if	all	of	these	is	true:

The	connection	is	via	a	smart	server	(accessed	with	a	URL
starting	 with	 “bzr://”,	 “bzr+ssh://”	 or	 “bzr+http://”,	 or
accessed	 via	 a	 “http://”	 URL	 when	 a	 smart	 server	 is
available	via	HTTP).
The	 hook	 is	 either	 server	 specific	 or	 part	 of	 general
infrastructure	 rather	 than	 client	 specific	 code	 (such	 as
commit).

BranchHooks

automatic_tag_name

Introduced	in:	2.2

Called	 to	 determine	 an	 automatic	 tag	 name	 for	 a
revision.automatic_tag_name	is	called	with	(branch,	revision_id)	and
should	 return	 a	 tag	 name	 or	 None	 if	 no	 tag	 name	 could	 be
determined.	The	first	non-None	tag	name	returned	will	be	used.

open

Introduced	in:	1.8

Called	with	the	Branch	object	that	has	been	opened	after	a	branch	is
opened.

post_change_branch_tip

Introduced	in:	1.4

Called	in	bzr	client	and	server	after	a	change	to	the	tip	of	a	branch	is
made.	 post_change_branch_tip	 is	 called	 with	 a
bzrlib.branch.ChangeBranchTipParams.	 Note	 that	 push,	 pull,
commit,	uncommit	will	all	trigger	this	hook.

post_commit

Introduced	in:	0.15

Called	in	the	bzr	client	after	a	commit	has	completed.	post_commit	is
called	 with	 (local,	 master,	 old_revno,	 old_revid,	 new_revno,

new_revid).	 old_revid	 is	NULL_REVISION	 for	 the	 first	 commit	 to	 a
branch.

post_pull

Introduced	in:	0.15

Called	 after	 a	 pull	 operation	 completes.	 post_pull	 is	 called	 with	 a
bzrlib.branch.PullResult	object	and	only	runs	in	the	bzr	client.

post_push

Introduced	in:	0.15

Called	after	a	push	operation	completes.	post_push	is	called	with	a
bzrlib.branch.BranchPushResult	 object	 and	 only	 runs	 in	 the	 bzr
client.

post_uncommit

Introduced	in:	0.15

Called	in	the	bzr	client	after	an	uncommit	completes.	post_uncommit
is	 called	 with	 (local,	 master,	 old_revno,	 old_revid,	 new_revno,
new_revid)	 where	 local	 is	 the	 local	 branch	 or	 None,	master	 is	 the
target	 branch,	 and	 an	 empty	 branch	 receives	 new_revno	 of	 0,
new_revid	of	None.

pre_change_branch_tip

Introduced	in:	1.6

Called	in	bzr	client	and	server	before	a	change	to	the	tip	of	a	branch
is	 made.	 pre_change_branch_tip	 is	 called	 with	 a
bzrlib.branch.ChangeBranchTipParams.	 Note	 that	 push,	 pull,

commit,	uncommit	will	all	trigger	this	hook.

pre_commit

Introduced	in:	0.91

Called	 after	 a	 commit	 is	 calculated	 but	 before	 it	 is	 is	 completed.
pre_commit	 is	 called	 with	 (local,	 master,	 old_revno,	 old_revid,
future_revno,	 future_revid,	 tree_delta,	 future_tree).	 old_revid	 is
NULL_REVISION	 for	 the	 first	 commit	 to	 a	 branch,	 tree_delta	 is	 a
TreeDelta	object	describing	changes	from	the	basis	revision.	hooks
MUST	 NOT	 modify	 this	 delta.	 future_tree	 is	 an	 in-memory	 tree
obtained	from	CommitBuilder.revision_tree()	and	hooks	MUST	NOT
modify	this	tree.

set_rh

Introduced	in:	0.15

Invoked	 whenever	 the	 revision	 history	 has	 been	 set	 via
set_revision_history.	The	api	signature	 is	 (branch,	 revision_history),
and	 the	 branch	 will	 be	 write-locked.	 The	 set_rh	 hook	 can	 be
expensive	 for	 bzr	 to	 trigger,	 a	 better	 hook	 to	 use	 is
Branch.post_change_branch_tip.

transform_fallback_location

Introduced	in:	1.9

Called	 when	 a	 stacked	 branch	 is	 activating	 its	 fallback	 locations.
transform_fallback_location	 is	 called	 with	 (branch,	 url),	 and	 should
return	a	new	url.	Returning	 the	same	url	allows	 it	 to	be	used	as-is,
returning	a	different	one	can	be	used	to	cause	the	branch	to	stack	on
a	closer	copy	of	 that	 fallback_location.	Note	 that	 the	branch	cannot
have	 history	 accessing	 methods	 called	 on	 it	 during	 this	 hook

because	the	fallback	locations	have	not	been	activated.	When	there
are	multiple	 hooks	 installed	 for	 transform_fallback_location,	 all	 are
called	 with	 the	 url	 returned	 from	 the	 previous	 hook.The	 order	 is
however	undefined.

BzrDirHooks

pre_open

Introduced	in:	1.14

Invoked	 before	 attempting	 to	 open	 a	BzrDir	with	 the	 transport	 that
the	open	will	use.

CommandHooks

extend_command

Introduced	in:	1.13

Called	after	creating	a	command	object	 to	allow	modifications	such
as	 adding	 or	 removing	 options,	 docs	 etc.	 Called	 with	 the	 new
bzrlib.commands.Command	object.

get_command

Introduced	in:	1.17

Called	when	creating	a	single	command.	Called	with	(cmd_or_None,
command_name).	 get_command	 should	 either	 return	 the
cmd_or_None	 parameter,	 or	 a	 replacement	 Command	 object	 that
should	 be	 used	 for	 the	 command.	 Note	 that	 the	 Command.hooks
hooks	 are	 core	 infrastructure.	 Many	 users	 will	 prefer	 to	 use
bzrlib.commands.register_command	or	plugin_cmds.register_lazy.

get_missing_command

Introduced	in:	1.17

Called	 when	 creating	 a	 single	 command	 if	 no	 command	 could	 be
found.	Called	with	(command_name).	get_missing_command	should
either	 return	 None,	 or	 a	 Command	 object	 to	 be	 used	 for	 the
command.

list_commands

Introduced	in:	1.17

Called	 when	 enumerating	 commands.	 Called	 with	 a	 set	 of
cmd_name	strings	for	all	the	commands	found	so	far.	This	set	is	safe
to	mutate	-	e.g.	to	remove	a	command.	list_commands	should	return
the	updated	set	of	command	names.

InfoHooks

repository

Introduced	in:	1.15

Invoked	when	displaying	 the	statistics	 for	a	 repository.	 repository	 is
called	with	a	statistics	dictionary	as	returned	by	the	repository	and	a
file-like	object	to	write	to.

LockHooks

lock_acquired

Introduced	in:	1.8

Called	with	a	bzrlib.lock.LockResult	when	a	physical	lock	is	acquired.

lock_broken

Introduced	in:	1.15

Called	with	a	bzrlib.lock.LockResult	when	a	physical	lock	is	broken.

lock_released

Introduced	in:	1.8

Called	with	a	bzrlib.lock.LockResult	when	a	physical	lock	is	released.

MergeHooks

merge_file_content

Introduced	in:	2.1

Called	with	a	bzrlib.merge.Merger	object	 to	create	a	per	 file	merge
object	 when	 starting	 a	 merge.	 Should	 return	 either	 None	 or	 a
subclass	 of	 bzrlib.merge.AbstractPerFileMerger.	 Such	 objects	 will
then	be	called	per	file	that	needs	to	be	merged	(including	when	one
side	 has	 deleted	 the	 file	 and	 the	 other	 has	 changed	 it).	 See	 the
AbstractPerFileMerger	 API	 docs	 for	 details	 on	 how	 it	 is	 used	 by
merge.

MergeDirectiveHooks

merge_request_body

Introduced	in:	1.15.0

Called	with	a	MergeRequestBodyParams	when	a	body	is	needed	for
a	merge	 request.	 Callbacks	must	 return	 a	 body.	 If	 more	 than	 one
callback	 is	 registered,	 the	output	of	one	callback	 is	provided	 to	 the
next.

MessageEditorHooks

commit_message_template

Introduced	in:	1.10

Called	 when	 a	 commit	 message	 is	 being	 generated.
commit_message_template	 is	 called	with	 the	 bzrlib.commit.Commit
object	 and	 the	 message	 that	 is	 known	 so	 far.
commit_message_template	 must	 return	 a	 new	 message	 to	 use
(which	could	be	the	same	as	 it	was	given.	When	there	are	multiple
hooks	 registered	 for	 commit_message_template,	 they	 are	 chained
with	the	result	from	the	first	passed	into	the	second,	and	so	on.

MutableTreeHooks

post_commit

Introduced	in:	2.0

Called	after	a	commit	is	performed	on	a	tree.	The	hook	is	called	with
a	 bzrlib.mutabletree.PostCommitHookParams	 object.	 The	 mutable
tree	the	commit	was	performed	on	is	available	via	the	mutable_tree
attribute	of	that	object.

start_commit

Introduced	in:	1.4

Called	 before	 a	 commit	 is	 performed	 on	 a	 tree.	 The	 start	 commit
hook	 is	 able	 to	 change	 the	 tree	 before	 the	 commit	 takes	 place.
start_commit	 is	 called	 with	 the	 bzrlib.mutabletree.MutableTree	 that
the	commit	is	being	performed	on.

SmartClientHooks

call

Introduced	in:	unknown

Called	 when	 the	 smart	 client	 is	 submitting	 a	 request	 to	 the	 smart
server.	 Called	 with	 a	 bzrlib.smart.client.CallHookParams	 object.
Streaming	request	bodies,	and	responses,	are	not	accessible.

SmartServerHooks

server_started

Introduced	in:	0.16

Called	 by	 the	 bzr	 server	 when	 it	 starts	 serving	 a	 directory.
server_started	 is	 called	 with	 (backing	 urls,	 public	 url),	 where
backing_url	 is	 a	 list	 of	 URLs	 giving	 the	 server-specific	 directory
locations,	 and	 public_url	 is	 the	 public	 URL	 for	 the	 directory	 being
served.

server_started_ex

Introduced	in:	1.17

Called	 by	 the	 bzr	 server	 when	 it	 starts	 serving	 a	 directory.
server_started	is	called	with	(backing_urls,	server_obj).

server_stopped

Introduced	in:	0.16

Called	 by	 the	 bzr	 server	 when	 it	 stops	 serving	 a	 directory.
server_stopped	 is	 called	 with	 the	 same	 parameters	 as	 the
server_started	hook:	(backing_urls,	public_url).

RioVersionInfoBuilderHooks

revision

Introduced	in:	1.15

Invoked	when	adding	information	about	a	revision	to	the	RIO	stanza
that	 is	 printed.	 revision	 is	 called	 with	 a	 revision	 object	 and	 a	 RIO
stanza.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Location	aliases
Bazaar	 defines	 several	 aliases	 for	 locations	 associated	 with	 a
branch.	 These	 can	 be	 used	 with	 most	 commands	 that	 expect	 a
location,	such	as	bzr	push.

The	aliases	are:

:parent				the	parent	of	this	branch

:submit				the	submit	branch	for	this	branch

:public				the	public	location	of	this	branch

:bound					the	branch	this	branch	is	bound	to,	for	bound	branches

:push						the	saved	location	used	for	`bzr	push`	with	no	arguments

:this						this	branch

For	example,	to	push	to	the	parent	location:

bzr	push	:parent

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Log	Formats
A	 log	 format	 controls	 how	 information	 about	 each	 revision	 is
displayed.	The	standard	log	formats	are	compared	below:

Feature																	long											short									line

----------------------		-------------		------------		-------------------

design	goal													detailed	view		concise	view		1	revision	per	line

committer															name+email					name	only					name	only

author																		name+email					-													-

date-time	format								full											date	only					date	only

commit	message										full											full										top	line

tags																				yes												yes											yes

merges	indicator								-														yes											-

status/delta												optional							optional						-

diff/patch														optional							optional						-

revision-id													optional							optional						-

branch	nick													yes												-													-

foreign	vcs	properties		yes												yes											-

preferred	levels								all												1													1

The	 default	 format	 is	 long.	 To	 change	 this,	 define	 the	 log_format
setting	in	the	[DEFAULT]	section	of	bazaar.conf	like	this	(say):

[DEFAULT]

log_format	=	short

Alternatively,	 to	 change	 the	 log	 format	 used	 for	 a	 given	query,	 use
the	–long,	–short	or	–line	options.

If	 one	 of	 the	 standard	 log	 formats	 does	 not	 meet	 your	 needs,
additional	formats	can	be	provided	by	plugins.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Other	Storage	Formats
No	experimental	formats	are	available.

No	deprecated	formats	are	available.

See	Storage	Formats	for	more	about	storage	formats.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Revision	Identifiers
A	revision	identifier	refers	to	a	specific	state	of	a	branch’s	history.	It
can	be	expressed	 in	 several	ways.	 It	 can	 begin	with	 a	 keyword	 to
unambiguously	 specify	 a	 given	 lookup	 type;	 some	 examples	 are
‘last:1’,	‘before:yesterday’	and	‘submit:’.

Alternately,	it	can	be	given	without	a	keyword,	in	which	case	it	will	be
checked	 as	 a	 revision	 number,	 a	 tag,	 a	 revision	 id,	 a	 date
specification,	 or	 a	 branch	 specification,	 in	 that	 order.	 For	 example,
‘date:today’	could	be	written	as	simply	‘today’,	though	if	you	have	a
tag	called	‘today’	that	will	be	found	first.

If	 ‘REV1’	 and	 ‘REV2’	 are	 revision	 identifiers,	 then	 ‘REV1..REV2’
denotes	 a	 revision	 range.	 Examples:	 ‘3647..3649’,
‘date:yesterday..-1’	 and	 ‘branch:/path/to/branch1/..branch:/branch2’
(note	that	there	are	no	quotes	or	spaces	around	the	‘..’).

Ranges	 are	 interpreted	 differently	 by	 different	 commands.	 To	 the
“log”	command,	a	range	is	a	sequence	of	 log	messages,	but	 to	 the
“diff”	command,	the	range	denotes	a	change	between	revisions	(and
not	 a	 sequence	 of	 changes).	 In	 addition,	 “log”	 considers	 a	 closed
range	whereas	“diff”	and	“merge”	consider	it	to	be	open-ended,	that
is,	 they	 include	one	end	but	not	 the	other.	For	example:	 “bzr	 log	 -r
3647..3649”	shows	the	messages	of	revisions	3647,	3648	and	3649,
while	“bzr	diff	-r	3647..3649”	includes	the	changes	done	in	revisions
3648	and	3649,	but	not	3647.

The	keywords	used	as	revision	selection	methods	are	the	following:

revid: Selects	a	revision	using	the	revision	id.
submit: Selects	a	common	ancestor	with	the	submit	branch.
ancestor: Selects	a	common	ancestor	with	a	second	branch.
date: Selects	a	revision	on	the	basis	of	a	datestamp.
branch: Selects	the	last	revision	of	a	specified	branch.

tag: Selects	a	revision	identified	by	a	tag	name.
revno: Selects	a	revision	using	a	number.
before: Selects	the	parent	of	the	revision	specified.
last: Selects	the	nth	revision	from	the	end.

In	addition,	plugins	can	provide	other	keywords.

A	detailed	description	of	each	keyword	is	given	below.

revid:

Supply	a	specific	revision	id,	that	can	be	used	to	specify	any	revision	id	in	the
ancestry	of	the	branch.	Including	merges,	and	pending	merges.	Examples:

revid:aaaa@bbbb-123456789	->	Select	revision	'aaaa@bbbb-123456789'

submit:

Diffing	against	this	shows	all	the	changes	that	were	made	in	this	branch,	and
is	a	good	predictor	of	what	merge	will	do.	The	submit	branch	is	used	by	the
bundle	and	merge	directive	commands.	If	no	submit	branch	is	specified,	the
parent	branch	is	used	instead.
The	 common	 ancestor	 is	 the	 last	 revision	 that	 existed	 in	 both	 branches.
Usually	 this	 is	 the	 branch	 point,	 but	 it	 could	 also	 be	 a	 revision	 that	 was
merged.
Examples:

$	bzr	diff	-r	submit:

ancestor:

Supply	the	path	to	a	branch	to	select	the	common	ancestor.
The	 common	 ancestor	 is	 the	 last	 revision	 that	 existed	 in	 both	 branches.
Usually	 this	 is	 the	 branch	 point,	 but	 it	 could	 also	 be	 a	 revision	 that	 was
merged.
This	is	frequently	used	with	‘diff’	to	return	all	of	the	changes	that	your	branch
introduces,	while	excluding	the	changes	that	you	have	not	merged	from	the
remote	branch.
Examples:

ancestor:/path/to/branch

$	bzr	diff	-r	ancestor:../../mainline/branch

date:

Supply	a	datestamp	 to	select	 the	 first	 revision	 that	matches	 the	date.	Date
can	be	‘yesterday’,	‘today’,	‘tomorrow’	or	a	YYYY-MM-DD	string.	Matches	the
first	entry	after	a	given	date	(either	at	midnight	or	at	a	specified	time).
One	way	to	display	all	the	changes	since	yesterday	would	be:

bzr	log	-r	date:yesterday..

Examples:

date:yesterday												->	select	the	first	revision	since	yesterday

date:2006-08-14,17:10:14		->	select	the	first	revision	after

																													August	14th,	2006	at	5:10pm.

branch:

Supply	the	path	to	a	branch	to	select	its	last	revision.
Examples:

branch:/path/to/branch

tag: Tags	are	stored	in	the	branch	and	created	by	the	‘tag’	command.

revno:

Use	an	integer	to	specify	a	revision	in	the	history	of	the	branch.	Optionally	a
branch	can	be	specified.	A	negative	number	will	 count	 from	 the	end	of	 the
branch	(-1	is	the	last	revision,	-2	the	previous	one).	If	the	negative	number	is
larger	than	the	branch’s	history,	the	first	revision	is	returned.	Examples:

revno:1																			->	return	the	first	revision	of	this	branch

revno:3:/path/to/branch			->	return	the	3rd	revision	of

																													the	branch	'/path/to/branch'

revno:-1																		->	The	last	revision	in	a	branch.

-2:http://other/branch				->	The	second	to	last	revision	in	the

																													remote	branch.

-1000000																		->	Most	likely	the	first	revision,	unless

																													your	history	is	very	long.

Supply	any	revision	spec	to	return	the	parent	of	that	revision.	
useful	 when	 inspecting	 revisions	 that	 are	 not	 in	 the	 revision	 history	 of	 a
branch.
It	is	an	error	to	request	the	parent	of	the	null	revision	(before:0).
Examples:

before: before:1913				->	Return	the	parent	of	revno	1913	(revno	1912)

before:revid:aaaa@bbbb-1234567890		->	return	the	parent	of	revision

																																						aaaa@bbbb-1234567890

bzr	diff	-r	before:1913..1913

						->	Find	the	changes	between	revision	1913	and	its	parent	(1912).

									(What	changes	did	revision	1913	introduce).

									This	is	equivalent	to:		bzr	diff	-c	1913

last:

Supply	 a	 positive	 number	 to	 get	 the	 nth	 revision	 from	 the	 end.	 This	 is	 the
same	as	supplying	negative	numbers	to	the	‘revno:’	spec.	Examples:

last:1								->	return	the	last	revision

last:3								->	return	the	revision	2	before	the	end.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Standard	Options
Standard	options	are	legal	for	all	commands.

--help,	-h Show	help	message.
--verbose,	-v Display	more	information.
--quiet,	-q Only	display	errors	and	warnings.

Unlike	global	options,	standard	options	can	be	used	in	aliases.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Status	Flags
Status	flags	are	used	to	summarise	changes	to	the	working	tree	in	a
concise	manner.	They	are	in	the	form:

xxx			<filename>

where	the	columns’	meanings	are	as	follows.

Column	1	-	versioning/renames:

+	File	versioned

-	File	unversioned

R	File	renamed

?	File	unknown

X	File	nonexistent	(and	unknown	to	bzr)

C	File	has	conflicts

P	Entry	for	a	pending	merge	(not	a	file)

Column	2	-	contents:

N	File	created

D	File	deleted

K	File	kind	changed

M	File	modified

Column	3	-	execute:

*	The	execute	bit	was	changed

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

Reference	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

URL	Identifiers
Supported	URL	prefixes:

aftp://													Access	using	active	FTP.

bzr://														Fast	access	using	the	Bazaar	smart	server.

bzr+ssh://										Fast	access	using	the	Bazaar	smart	server	over	SSH.

file://													Access	using	the	standard	filesystem	(default)

ftp://														Access	using	passive	FTP.

http://													Read-only	access	of	branches	exported	on	the	web.

https://												Read-only	access	of	branches	exported	on	the	web	using	SSL.

sftp://													Access	using	SFTP	(most	SSH	servers	provide	SFTP).

Bazaar	supports	all	of	the	standard	parts	within	the	URL:

<protocol>://[user[:password]@]host[:port]/[path]

allowing	URLs	such	as:

http://bzruser:BadPass@bzr.example.com:8080/bzr/trunk

For	 bzr+ssh://	 and	 sftp://	 URLs,	 Bazaar	 also	 supports	 paths	 that
begin	 with	 ‘~’	 as	 meaning	 that	 the	 rest	 of	 the	 path	 should	 be
interpreted	relative	to	the	remote	user’s	home	directory.	For	example
if	 the	 user	 remote	 has	 a	 home	 directory	 of	 /home/remote	 on	 the
server	shell.example.com,	then:

bzr+ssh://remote@shell.example.com/~/myproject/trunk

would	refer	to	/home/remote/myproject/trunk.

Many	commands	that	accept	URLs	also	accept	location	aliases	too.
See	:Location	aliases.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	User

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Reference	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	System

Administrator’s	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Introduction
Welcome	 to	 the	Bazaar	Version	Control	System’s	guide	 for	system
administrators.	 Bazaar	 is	 a	 flexible	 system	 that	 provides	 many
possible	options	for	serving	projects	in	ways	that	will	hopefully	meet
your	needs.	If	you	have	requirements	that	are	not	met	by	the	current
state	 of	 the	 Bazaar	 ecosystem,	 please	 let	 us	 know	 at
bazaar@lists.canonical.com	 or	 on	 Launchpad	 at
https://launchpad.net/bzr.

mailto:bazaar%40lists.canonical.com
https://launchpad.net/bzr

Scope	of	this	guide
In	 this	guide,	we	will	discuss	various	techniques	for	making	Bazaar
projects	 available,	 migrating	 from	 other	 Version	 Control	 Systems,
browsing	code	over	the	Web	and	combining	Bazaar	with	other	tools.
In	many	of	these	categories,	multiple	options	exist	and	we	will	try	to
explains	the	costs	and	benefits	of	the	various	options.

The	 intended	 audience	 for	 this	 guide	 is	 the	 individuals	 who
administer	 the	 computers	 that	 will	 do	 the	 serving.	 Much	 of	 the
configuration	 that	 we	 will	 discuss	 requires	 administrator	 privileges
and	we	will	not	necessarily	indicate	every	point	that	those	privileges
are	needed.	That	said,	reading	this	guide	can	also	be	very	helpful	for
those	 who	 are	 interested	 in	 communicating	 to	 the	 system
administrators	about	the	requirements	for	making	full	use	of	Bazaar.

What	you	need	to	run	a	Bazaar	server
Where	 possible,	 we	 will	 discuss	 both	 Unix	 (including	 Linux)	 and
Windows	server	environments.	For	 the	purposes	of	 this	 document,
we	will	consider	Mac	OS	X	as	a	type	of	Unix.

In	 general,	 Bazaar	 requires	 only	 Python	 2.4	 or	 greater	 and	 the
cElementTree	package	 (included	 in	Python	2.5	and	 later)	 to	 run.	 If
you	would	optionally	like	to	be	able	to	access	branches	using	SFTP,
you	need	paramiko	and	pycrypto.

For	 maximum	 performance,	 Bazaar	 can	 make	 use	 of	 compiled
versions	 of	 some	 critical	 components	 of	 the	 code.	 Pure	 Python
alternatives	 exist	 for	 all	 of	 these	 components,	 but	 they	 may	 be
considerably	 slower.	 To	 compile	 these	 extensions,	 you	 need	 a	 C
compiler	and	the	relevant	header	files	from	the	Python	package.	On
Linux,	these	may	be	in	a	separate	package.	Other	operating	systems
should	have	the	required	headers	installed	by	default.

If	you	are	 installing	a	development	version	of	Bazaar,	 rather	 than	a
released	 version,	 you	 will	 need	 Pyrex	 to	 create	 the	 C	 extensions.
The	release	tarballs	already	have	the	Pyrex-created	C	files.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	System

Administrator’s	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://www.python.org/
http://effbot.org/zone/element-index.htm
http://www.lag.net/paramiko/
http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/
http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	System

Administrator’s	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Simple	Setups
Consider	 the	 following	 simple	 scenario	 where	 we	 will	 be	 serving
Bazaar	branches	that	live	on	a	single	server.	Those	branches	are	in
the	 subdirectories	 of	 /srv/bzr	 (or	 C:\\bzr)	 and	 they	 will	 all	 be
related	 to	 a	 single	 project	 called	 “ProjectX”.	 ProjectX	 will	 have	 a
trunk	branch	and	at	least	one	feature	branch.	As	we	get	further,	we
will	consider	other	scenarios,	but	this	will	be	a	sufficiently	motivating
example.

Smart	server
The	 simplest	 possible	 setup	 for	 providing	 outside	 access	 to	 the
branches	on	the	server	uses	Bazaar’s	built-in	smart	server	tunneled
over	SSH	so	that	people	who	can	access	your	server	using	SSH	can
have	 read	 and	write	 access	 to	 branches	 on	 the	 server.	 This	 setup
uses	the	authentication	mechanisms	of	SSH	including	private	keys,
and	 the	 access	 control	 mechanisms	 of	 the	 server’s	 operating
system.	 In	 particular,	 using	 groups	 on	 the	 server,	 it	 is	 possible	 to
provide	different	access	privileges	to	different	groups	of	developers.

Setup

There	 is	no	setup	required	for	 this	on	the	server,	apart	 from	having
Bazaar	 installed	 and	 SSH	 access	 available	 to	 your	 developers.
Using	SSH	configuration	options	it	 is	possible	to	restrict	developers
from	using	anything	but	Bazaar	on	 the	server	via	SSH,	and	 to	 limit
what	part	of	the	file	system	they	can	access.

Client

Clients	 can	 access	 the	 branches	 using	 URLs	 with	 the	 bzr+ssh://
prefix.	 For	 example,	 to	 get	 a	 local	 copy	 of	 the	 ProjectX	 trunk,	 a
developer	could	do:

$	bzr	branch	bzr+ssh://server.example.com/srv/bzr/projectx/trunk	projectx

If	 the	 developers	 have	 write	 access	 to	 the	 /srv/bzr/projectx

directory,	then	they	can	create	new	branches	themselves	using:

$	bzr	branch	bzr+ssh://server.example.com/srv/bzr/projectx/trunk	\

bzr+ssh://server.example.com/srv/bzr/projectx/feature-gui

http://www.openssh.org/

Of	course,	if	this	isn’t	desired,	then	developers	should	not	have	write
access	to	the	/srv/bzr/projectx	directory.

Further	Configuration

For	a	project	with	multiple	branches	that	are	all	related,	 it	 is	best	to
use	a	shared	 repository	 to	hold	all	of	 the	branches.	To	set	 this	up,
do:

$	cd	/srv/bzr

$	bzr	init-repo	--no-trees	projectx

The	 --no-trees	 option	 saves	 space	 by	 not	 creating	 a	 copy	 of	 the
working	 files	 on	 the	 server’s	 filesystem.	 Then,	 any	 branch	 created
under	 /srv/bzr/projectx	 (see	Migration	 for	 some	ways	 to	 do	 this)
will	 share	 storage	 space,	 which	 is	 particularly	 helpful	 for	 branches
that	have	many	revisions	in	common,	such	as	a	project	trunk	and	its
feature	branches.

If	Bazaar	 is	 not	 installed	 on	 the	 user’s	 path	 or	 not	 specified	 in	 the
SSH	configuration,	then	a	path	can	be	specified	from	the	client	with
the	 BZR_REMOTE_PATH	 environment	 variable.	 For	 example,	 if	 the
Bazaar	executable	is	installed	in	/usr/local/bzr-2.0/bin/bzr,	then	a
developer	could	use:

$	BZR_REMOTE_PATH=/usr/local/bzr-2.0/bin/bzr	bzr	info	\

bzr+ssh://server.example.com/srv/bzr/proectx/trunk

to	get	information	about	the	trunk	branch.	The	remote	path	can	also
be	specified	 in	Bazaar’s	 configuration	 files	 for	a	particular	 location.
See	bzr	help	configuration	for	more	details.

If	developers	have	home	directories	on	the	server,	they	can	use	/~/
in	 URLs	 to	 refer	 to	 their	 home	 directory.	 They	 can	 also	 use
/~username/	 to	 refer	 to	 the	 home	 directory	 of	 user	 username.	 For

example,	if	there	are	two	developers	alice	and	bob,	then	Bob	could
use:

$	bzr	log	bzr+ssh://server.example.com/~/fix-1023

to	refer	to	one	of	his	bug	fix	branches	and:

$	bzr	log	bzr+ssh://server.example.com/~alice/fix-2047

to	refer	to	one	of	Alice’s	branches.	[1]

[1] The	version	of	Bazaar	installed	on	the	server	must	be	at	least2.1.0b1	or	newer	to	support	/~/	in	bzr+ssh	URLs.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	System

Administrator’s	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	System

Administrator’s	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Other	Setups

Dumb	servers
Bazaar	 can	 also	 serve	 branches	 over	 protocols	 that	 know	 nothing
about	Bazaar’s	specific	needs.	These	are	called	 “dumb	servers”	 to
distinguish	them	from	Bazaar’s	native	protocol.	Currently	HTTP,	FTP,
SFTP	and	HTTP+WebDAV	can	be	used	to	read	branches	remotely.
FTP,	SFTP	and	HTTP+WebDAV	can	be	used	for	writing	as	well.	To
use	any	of	these	protocols,	it	 is	just	necessary	to	provide	access	to
the	server’s	filesystem	under	/srv/bzr.

For	 example,	 for	 Apache	 to	 provide	 read-only	 access	 to	 the
branches	in	/srv/bzr	the	configuration	may	look	like	this:

Alias	/code	/srv/bzr

<Directory	/srv/bzr>

				Options	Indexes

				#	...

</Directory>

and	 users	 could	 use	 the	 URL
http://server.example.com/code/projectx/trunk	to	refer	to	the	trunk
branch.

Note	 that	 SFTP	 access	 is	 often	 available	 whenever	 there	 is	 SSH
access	 and	 it	 may	 be	 a	 good	 choice	 when	 Bazaar	 cannot	 be
installed	on	the	server	to	allow	bzr+ssh://	access.	Dumb	servers	are
slower	by	their	very	nature	than	the	native	protocol,	but	they	can	be
a	 good	 choice	 in	 situations	 where	 the	 software	 and	 protocols	 that
can	be	used	on	the	server	or	the	network	is	limited.

Smart	server	over	HTTP(S)
Bazaar	can	use	its	native	protocol	with	HTTP	requests.	Since	HTTP
is	a	network	protocol	that	is	available	on	many	networks,	this	can	be
a	good	option	where	SSH	access	is	not	possible.	Another	benefit	of
this	setup	is	that	all	of	the	authentication	and	access	control	methods
available	to	the	HTTP	server	(basic,	LDAP,	ActiveDirectory,	etc.)	are
then	 available	 to	 control	 access	 to	 Bazaar	 branches.	 More
information	about	 setting	up	 this	 type	of	 access	using	Apache	and
FastCGI	 or	mod_python	or	WSGI	 is	 in	 the	 smart	 server	 section	 of
the	User’s	Guide.

Direct	Smart	Server	Access
The	 built-in	 server	 that	 is	 used	 by	 bzr+ssh://	 access	 can	 also	 be
used	as	a	persistent	server	on	a	dedicated	port.	Bazaar’s	official	port
is	 4155,	 although	 the	 port	 used	 can	 be	 configured.	 Further
information	on	running	the	Bazaar	smart	server	from	inetd,	or	directly
from	 the	shell	 is	 in	 the	User’s	Guide.	The	dedicated	Bazaar	 server
does	 not	 currently	 perform	 any	 authentication,	 so	 this	 server	 by
default	 provides	 read-only	 access.	 It	 can	 be	 run	with	 the	 --allow-
writes	 option,	 but	 the	 smart	 server	 does	 not	 do	 any	 additional
access	control	so	this	may	allow	undesired	people	to	make	changes
to	branches.	(Which	of	course	can	be	reverted.)	If	the	user	that	runs
the	server	has	write	access	to	the	branches	on	the	filesystem,	then
anyone	with	access	to	port	4155	on	the	server	can	make	changes	to
the	branches	stored	there.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	System

Administrator’s	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	System

Administrator’s	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Migration
Migrating	 between	 version	 control	 systems	 can	 be	 a	 complicated
process,	and	Bazaar	has	extensive	documentation	on	the	process	at
http://doc.bazaar-vcs.org/migration/en	 and	 we	 won’t	 attempt	 to
repeat	 that	here.	We	will	 try	 to	give	a	 few	motivating	examples	 for
conversion	from	Mercurial	and	Subversion.

http://doc.bazaar-vcs.org/migration/en

Fast	Import
In	many	projects	wishing	to	use	Bazaar,	there	is	pre-existing	history
for	 the	 codebase	 that	 should	 be	 taken	 into	 consideration.	 Bazaar
leverages	an	 interchange	 format	 originally	 developed	 for	Git	 called
fast-import	 to	 provide	 migration	 strategies	 for	 many	 other	 version
control	 systems.	 To	 work	 with	 fast-import	 files,	 Bazaar	 needs	 the
fastimport	plugin.	This	can	be	installed	as	with	any	Bazaar	plugin.

The	way	 that	 fast-import	can	be	used	 for	migration	 is	 to	export	 the
existing	history	 into	a	fast-import	 file,	 then	use	the	bzr	fast-import
command.	The	 fastimport	plugin	 includes	exporters	 for	Subversion,
CVS,	Git,	Mercurial	and	darcs,	accessible	as	the	fast-export-from-
XXX	 commands.	 Note	 that	 fast-import	 should	 not	 be	 used	 in	 a
branch	with	existing	history.

Assuming	 that	 ProjectX	 was	 first	 developed	 in	 Mercurial	 before
switching	 to	 Bazaar,	 and	 that	 the	 Mercurial	 repository	 is	 in
/srv/hg/projectx,	 the	 following	 commands	 will	 import	 that	 history
into	 a	 newly	 created	 trunk	 branch.	 (Recall	 that	 in	 Further
Configuration	 we	 created	 the	 /srv/bzr/projectx	 directory	 as	 a
shared	repository.)

$	cd	/srv/bzr/projectx

$	bzr	fast-export-from-hg	../../hg/projectx	projectx.fi

$	bzr	init	trunk

$	bzr	fast-import	projectx.fi	trunk

http://launchpad.net/bzr-fastimport

Subversion	Conversion
As	 the	most	 common	centralized	 version	 control	 system,	migration
from	Subversion	is	particularly	important	for	any	new	version	control
system.	 Bazaar’s	 svn	 plugin	 provides	 tools	 for	 interaction	 with
Subversion	projects.	 In	 fact,	Bazaar	can	be	used	transparently	with
projects	 stored	 in	Subversion,	 but	 that	 is	 beyond	 the	 scope	of	 this
document.	 (See	 http://doc.bazaar-vcs.org/en/migration/foreign/bzr-
on-svn-projects.html	for	more	on	that	subject.)	What	is	relevant	here
is	the	svn-import	command	provided	by	that	plugin.	This	can	import
an	 entire	 subversion	 repository	 including	 tags	 and	 branches,
particularly	if	they	are	stored	in	Subversion’s	recommended	directory
structure:	/tags/,	/branches/	and	/trunk/.

This	 command	 has	 flexible	 ways	 to	 specify	 what	 paths	 within	 the
Subversion	repository	contain	branches	and	which	contain	tags.	For
example,	 the	 recommended	 layout	 for	 Subversion	 projects	 (called
trunk	 by	 the	 svn	 plugin)	 could	 be	 specified	 in
~/.bazaar/subversion.conf	as

[203ae883-c723-44c9-aabd-cb56e4f81c9a]

branches	=	branches/*

tags	=	tags/*

This	allows	substantially	 complicated	Subversion	 repositories	 to	be
converted	into	a	set	of	separate	Bazaar	branches.	After	installing	the
svn	plugin,	see	bzr	help	svn-import	and	bzr	help	svn-layout.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	System

Administrator’s	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://launchpad.net/bzr-svn
http://doc.bazaar-vcs.org/en/migration/foreign/bzr-on-svn-projects.html
http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	System

Administrator’s	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Extending	Bazaar	with	Hooks	and
Plugins
Bazaar	 offers	 a	 powerful	 extension	 mechanism	 for	 adding
capabilities.	In	addition	to	offering	full	 library	API	access	to	all	of	 its
structures,	which	can	be	useful	for	outside	programs	that	would	like
to	 interact	with	Bazaar	branches,	Bazaar	can	also	 load	plugins	 that
perform	specific	 tasks.	These	specific	 tasks	are	specified	by	hooks
that	run	during	certain	steps	of	the	version	control	process.

For	full	documentation	on	the	available	hooks,	see	bzr	help	hooks.
Among	 those,	 some	 of	 the	 most	 significant	 hooks	 from	 an
administration	 standpoint	 are	 pre_commit,	 post_commit	 and
post_change_branch_tip.	A	pre_commit	hook	can	 inspect	a	commit
before	it	happens	and	cancel	it	if	some	criteria	are	not	met.	This	can
be	useful	for	enforcing	policies	about	the	code,	such	as	line-endings
or	 whitespace	 conventions.	 A	 post_commit	 hook	 can	 take	 actions
based	on	the	commit	that	 just	happened,	such	as	providing	various
types	 of	 notifications.	 Finally,	 a	 post_change_branch_tip	 hook	 is	 a
more	general	 form	of	a	post_commit	hook	which	 is	used	whenever
the	 tip	of	a	branch	changes	 (which	can	happen	 in	more	ways	 than
just	committing).	This	 too	can	be	used	 for	notification	purposes,	as
well	as	for	backups	and	mirroring.

Information	 on	 the	 whole	 range	 of	 Bazaar	 plugins	 is	 available	 at
http://doc.bazaar.canonical.com/plugins/en/.	 For	 purposes	 of
installation,	 plugins	 are	 simply	 python	 packages.	 They	 can	 be
installed	 alongside	 Bazaar	 in	 the	 bzrlib.plugins	 package	 using
each	plugin’s	setup.py.	They	can	also	be	installed	in	the	plugin	path
which	 is	 the	user’s	 ~/.bazaar/plugins	directory	or	can	be	specified
with	 the	 BZR_PLUGIN_PATH	 environment	 variable.	 See	 bzr	 help

configuration	for	more	on	specifying	the	location	of	plugins.

http://doc.bazaar.canonical.com/plugins/en/

Email	Notification
A	common	need	 is	 for	every	change	made	on	a	branch	to	send	an
email	 message	 to	 some	 address,	most	 often	 a	mailing	 list.	 These
plugins	provide	that	capability	in	a	number	of	different	ways.

The	 email	 plugin	 sends	 email	 from	 each	 individual	 developer’s
computer.	This	 can	be	useful	 for	 situations	 that	want	 to	 track	what
each	individual	developer	is	working	on.	On	the	downside,	it	requires
that	every	developer’s	branches	be	configured	individually	to	use	the
same	plugin.

The	next	two	plugins	hookless-email	and	email-notifier	address	this
concern	by	 running	on	a	central	 server	whenever	changes	happen
on	centrally	stored	branches.

email

To	 configure	 this	 plugin,	 simply	 install	 the	 plugin	 and	 configure	 the
post_commit_to	 option	 for	 each	 branch.	 This	 configuration	 can	 be
done	 in	 the	 locations.conf	 file	 or	 individually	 in	 each	 branch’s
branch.conf	 file.	 The	 sender’s	 email	 address	 can	 be	 specified	 as
post_commit_sender	 if	 it	 is	different	 than	 the	email	address	reported
by	 bzr	 whoami.	 The	 post_commit_mailer	 option	 specifies	 how	 the
mail	should	be	sent.	If	it	 isn’t	set,	email	is	sent	via	/usr/bin/mail.	 It
can	 also	 be	 configured	 to	 communicate	 directly	 with	 an	 SMTP
server.	 For	 more	 details	 on	 configuring	 this	 plugin,	 see
http://doc.bazaar-vcs.org/plugins/en/email-plugin.html.	As	 examples,
consider	 the	 following	 two	 possible	 configurations.	 A	 minimal	 one
(uses	/usr/bin/mail)

[DEFAULT]

post_commit_to	=	projectx-commits@example.com

http://doc.bazaar-vcs.org/plugins/en/email-plugin.html

and	a	more	complicated	one	(using	all	of	the	options)

[DEFAULT]

post_commit_url	=	http://www.example.com/code/projectx/trunk

post_commit_to	=	projectx-commits@example.com

post_commit_sender	=	donotreply@example.com

post_commit_mailer	=	smtplib

smtp_server	=	mail.example.com:587

smtp_username	=	bob

#	smtp_password	=	'not	specified,	will	prompt'

hookless-email

This	plugin	is	basically	a	server-side	version	of	the	email	plugin.	It	is
a	program	that	 runs	either	 from	 the	command	 line	or	as	a	daemon
that	monitors	 the	 branches	 specified	 on	 the	 command	 line	 for	 any
changes.	When	a	change	occurs	to	any	of	the	monitored	branches,	it
will	 send	 an	 email	 to	 the	 specified	 address.	 Using	 our	 simple
example,	the	following	command	would	send	an	email	 to	projectx-
commits@example.com	 on	 any	 of	 the	 branches	 under	 /srv/bzr	 since
the	last	time	the	command	was	run.	(This	command	could	be	set	up
to	run	at	regular	intervals,	for	example	from	cron.)

$	bzr_hookless_email.py	--email=projectx-commits@example.com	\

--recurse	/srv/bzr

email-notifier

This	 is	 a	more	 elaborate	 version	 of	 the	hookless-email	 plugin	 that
can	 send	 templated	 HTML	 emails,	 render	 wiki-style	 markup	 in
commit	messages	and	update	working	copies	on	the	server	(similar
to	push_and_update).	It	can	also	send	emails	reporting	the	creation
of	 new	 branches	 or	 the	 removal	 of	 branches	 under	 a	 specified
directory	 (here	 /srv/bzr/projectx).	 As	 it	 is	 more	 complicated,	 its
configuration	 is	 also	 more	 complicated	 and	 we	 won’t	 repeat	 its
documentation	here,	but	a	simple	configuration	that	will	send	emails

on	commits	and	creation/deletion	of	branches	is

[smtp]

server=smtp.example.com

#	If	user	is	not	provided	then	no	authentication	will	be	performed.

user=bob

password=pAssW0rd

[commits]

#	The	address	to	send	commit	emails	to.

to=projctx-commits@example.com

from=$revision.committer

#	A	Cheetah	template	used	to	construct	the	subject	of	the	email	message.

subject=$relative_path:	$revision_number	$summary

[new-branches]

to=projectx-commits@example.com

from=donotreply@example.com

subject=$relative_path:	New	branch	created

[removed-branches]

to=projectx-commits@example.com

from=donotreply@example.com

subject=$relative_path:	Branch	removed

If	 this	 file	 is	 stored	 as	 /srv/bzr/email-notifier.conf,	 then	 the
command

$	bzr-email-notifier.py	--config=/srv/bzr/email-notifier.conf	/srv/bzr/projectx

will	watch	all	branches	under	the	given	directory	for	commits,	branch
creations	and	branch	deletions.

Feed	Generation
A	 related	 concept	 to	 sending	 out	 emails	when	branches	 change	 is
the	 generation	 of	 news	 feeds	 from	 changes	 on	 each	 branch.
Interested	 parties	 can	 then	 choose	 to	 follow	 those	 news	 feeds	 in
order	to	see	what	is	happening	on	a	branch.

branchfeed

This	plugin	creates	an	ATOM	feed	for	every	branch	on	every	branch
change	 (commit,	 etc.).	 It	 stores	 these	 files	 as
.bzr/branch/branch.atom	 inside	 each	 branch.	 Currently,	 it	 includes
the	20	most	recent	changes	in	each	feed.	To	use	it,	simply	install	the
plugin	and	set	your	feed	reader	to	follow	the	branch.atom	files.

In	 addition,	 there	 are	 other	 tools	 that	 are	 not	 plugins	 for	 creating
news	 feeds	 from	 Bazaar	 branches.	 See	 http://bazaar-
vcs.org/FeedGenerators	for	more	on	those	tools.

http://bazaar-vcs.org/FeedGenerators

Mirroring
Sometimes	it	is	useful	to	ensure	that	one	branch	exists	as	an	exact
copy	of	another.	This	can	be	used	to	provide	simple	backup	facilities
or	 redundancy	 (see	 Back-up	 and	 restore	 for	 more	 details	 on
backups).	One	way	 to	do	 this	using	Bazaar’s	workflows	 is	 to	make
the	branch	where	changes	happen	into	a	bound	branch	of	the	mirror
branch.	 Then,	 when	 commits	 happen	 on	 the	 working	 branch,	 they
will	also	happen	on	 the	mirror	branch.	Note	 that	commits	 to	bound
branches	do	not	update	 the	mirror	branch’s	working	copy,	so	 if	 the
mirror	branch	 is	more	than	 just	a	backup	of	 the	complete	history	of
the	 branch,	 for	 example	 if	 it	 is	 being	 served	 as	 a	 web	 page,	 then
additional	plugins	are	necessary.

push_and_update

This	 plugin	 updates	 Bazaar’s	 push	 command	 to	 also	 update	 the
remote	working	copy.	 It	 can	 only	work	 over	 connections	 that	 imply
filesystem	or	SSH	access	 to	 the	 remote	working	copy	 (bzr+ssh://,
sftp://	and	file://).	Also,	it	is	only	useful	when	the	remote	branch
is	updated	with	an	explicit	push	command.

automirror

This	 plugin	 is	 similar	 to	 push_and_update	 in	 that	 it	 updates	 the
working	copy	of	a	remote	branch.	The	difference	is	that	this	plugin	is
designed	 to	 update	 the	 remote	 branch	 on	 every	 change	 to	 the
working	branch.	To	configure	this,	set	the	post_commit_mirror	=	URL
option	 on	 a	 branch.	 This	 option	 can	 include	multiple	 branch	URLs
separated	by	commas	to	create	multiple	mirrors.	For	example,	if	we
want	 to	 mirror	 our	 /srv/bzr/projectx/trunk	 branch	 to	 the	 URL
sftp://www.example.com/var/www/projectx	 (for	 example	 if	 ProjectX

were	 a	 web	 project	 that	 we	 wanted	 to	 access	 at
http://www.example.com/projectx),	then	we	could	include

[DEFAULT]

post_commit_mirror	=	sftp://www.example.com/var/www/branches/trunk

in	the	file	/srv/bzr/projectx/trunk/.bzr/branch/branch.conf.

Other	Useful	Plugins

pqm	(plugin)

Facilitating	 interaction	 with	 PQM,	 this	 plugin	 provides	 support	 for
submitting	merge	requests	to	a	remote	Patch	Queue	Manager.	PQM
provides	 a	 way	 to	 automatically	 run	 the	 test	 suite	 before	 merging
changes	to	the	trunk	branch.

testrunner

Sometimes	 referred	 to	 as	 the	 poor	man’s	 PQM,	 this	 plugin	 runs	 a
single	command	on	 the	updated	 revision	 (in	a	 temporary	directory)
and	if	the	command	returns	0,	then	the	revision	can	be	committed	to
that	branch.	For	 example,	 if	 the	 testsuite	 is	 run	with	 the	 command
nosetests	 in	the	root	of	the	branch	(which	returns	0	if	 the	test	suite
passes	and	1	if	it	doesn’t	pass),	then	one	can	set

[DEFAULT]

pre_change_branch_tip_test_command	=	nosetests

in	.bzr/branch/branch.conf.

checkeol

This	 plugin	 is	 an	 example	 of	 a	 pre_commit	 hook	 that	 checks	 the
revision	 being	 committed	 for	 meeting	 some	 policy.	 In	 this	 case,	 it
checks	that	all	of	the	files	have	the	specified	line	endings.	It	uses	a
configuration	file	.bzreol	in	the	root	of	the	working	tree	(similar	to	the
.bzrignore	 file).	 This	 configuration	 file	 has	 sections	 for	 line	 feed
endings	(LF),	carriage	return/line-feed	endings	(CRLF)	and	carriage
return	endings	(CR).	For	an	unusual	example	that	specifies	different

line	endings	for	different	files,	that	file	might	look	like

[LF]

*.py

*.[ch]

[CRLF]

*.txt

*.ini

[CR]

foo.mac

or	 if	you	simply	want	 to	enforce	a	single	 line	ending	convention	on
the	branch	you	can	use

[LF]

*

This	 plugin	 needs	 to	 be	 installed	 on	 the	 server	 where	 the	 branch
updates	will	 happen,	 and	 the	 .bzreol	 file	must	 be	 in	 each	 branch
where	line	ending	policies	will	be	enforced.	(Adding	it	 to	the	branch
with	 bzr	 add	 .bzreol	 is	 an	 easy	 way	 to	 ensure	 this,	 although	 it
means	that	branches	on	the	server	must	have	working	trees.)

text_checker

This	plugin	 is	a	more	advanced	version	of	checkeol	 that	can	check
such	coding	style	guidelines	such	as	 trailing	whitespace,	 long	 lines
and	 files	 that	 don’t	 end	 with	 a	 newline.	 It	 is	 configured	 using
Bazaar’s	built	in	rules	specification	in	BZR_HOME/rules	(see	bzr	help
rules	for	more	information.	For	different	types	of	undesired	changes,
you	can	specify	different	types	of	actions.	For	example

[name	NEWS	README]

trailing_whitespace=fail

long_lines=warn

newline_at_eof=ignore

[name	*.py]

tabs=fail

long_line_length=78

long_lines=fail

trailing_whitespace=fail

will	 prevent	 changes	 from	 adding	 new	 trailing	 whitespace	 to	 the
specified	files	and	keep	all	python	source	files	free	of	tabs	and	lines
over	78	characters.	To	commit	while	violating	 these	 rules,	one	can
pass	the	--text-check-warn-only	option	to	commit.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	System

Administrator’s	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	System

Administrator’s	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Web-based	code	browsing
Browsing	 the	 history	 of	 a	 project	 online	 is	 an	 important	 part	 of
version	control,	since	it	allows	people	to	easily	see	what	happens	in
a	 branch	 without	 having	 to	 have	 a	 local,	 up-to-date	 copy	 of	 that
branch.	There	are	a	number	of	possible	choices	for	browsing	Bazaar
branches	 on	 the	 web,	 but	 we	 will	 cover	 one	 of	 them	 in	 particular
detail	and	briefly	mention	the	other	choices	where	they	differ.

Loggerhead
Loggerhead	is	a	code	browsing	interface	for	Bazaar	branches	(now
used	 in	 Launchpad).	 To	 see	 an	 example	 of	 Loggerhead	 in	 action,
browse	 to	 http://bazaar.launchpad.net/~bzr-pqm/bzr/bzr.dev/files
which	is	the	loggerhead	view	of	Bazaar’s	trunk	branch.	Loggerhead
runs	 as	 a	 web	 application	 on	 the	 server	 which	 is	 accessed	 over
HTTP	via	a	RESTful	interface.	It	is	possible	to	run	this	application	on
its	 own	dedicated	port	 as	 http://www.example.com:8080	 or	 to	proxy
this	 location	 behind	 a	 separate	 web	 server,	 for	 example	 at
http://www.example.com/loggerhead/.	We	will	discuss	both	of	 these
configurations	below.

Requirements

Loggerhead	depends	on	a	number	of	other	Python	packages	for	the
various	Web	 technologies	 that	 it	builds	on.	Some	of	 these	must	be
installed	 to	 use	 loggerhead,	 although	 some	 of	 them	 are	 optional.
From	the	loggerhead	README	file,	these	are

1.	 SimpleTAL	 for	 templating.	 On	 Ubuntu,	 sudo	 apt-get	 install
python-simpletal	 or	 download	 from
http://www.owlfish.com/software/simpleTAL/download.html

2.	 simplejson	 for	producing	JSON	data.	On	Ubuntu,	sudo	 apt-get
install	python-simplejson	or	use	easy_install	simplejson.

3.	 Paste	for	the	server.	(You	need	version	1.2	or	newer	of	Paste.)
On	Ubuntu,	sudo	apt-get	install	python-paste	or	use	easy_install
Paste

4.	 Paste	Deploy	(optional,	needed	when	proxying	through	Apache)
On	 Ubuntu,	 sudo	 apt-get	 install	 python-pastedeploy	 or	 use
easy_install	PasteDeploy

5.	 flup	 (optional,	 needed	 to	 use	 FastCGI,	 SCGI	 or	 AJP)	 On
Ubuntu,	sudo	apt-get	install	python-flup	or	use	easy_install	flup

http://launchpad.net/loggerhead
http://bazaar.launchpad.net/~bzr-pqm/bzr/bzr.dev/files
http://www.owlfish.com/software/simpleTAL/download.html

Although	 directions	 for	 installing	 these	 on	Ubuntu	 Linux	 are	 given,
most	other	Linux	distributions	should	package	these	dependencies,
making	 installation	easy.	For	Windows	and	Mac	OS	X,	 they	should
all	 be	 easy_install-able	 or	 at	 worst	 installable	 from	 the	 Python
sources.

Built-in	Web	Server

Loggerhead	 has	 a	 built-in	 web	 server	 and	 when	 started	 with	 the
serve-branches	 command,	 that	 web	 server	 is	 started	 on	 a	 default
port	listening	on	the	localhost.	If	port	8080	(the	default)	is	accessible
on	www.example.com,	then	running

$	serve-branches	--host=www.example.com	--port=8080	/srv/bzr

will	 list	 all	 of	 the	 available	 branches	 under	 that	 directory	 on
http://www.example.com:8080/,	 so	 that	 the	ProjectX	 trunk	 could	 be
browsed	at	 http://www.example.com:8080/projectx/trunk.	Note	 that
loggerhead	 provides	 HTTP	 access	 to	 the	 underlying	 Bazaar
branches	 (similar	 to	 that	described	 in	Smart	server	over	HTTP(S)),
so	this	command	should	be	run	as	a	user	without	write	privileges	in
/srv/bzr.	 By	 default,	 loggerhead	 only	 listens	 on	 the	 localhost,	 not
any	external	ports,	unless	specified	as	above.

Behind	a	Proxy

A	more	 common	 and	 more	 safe	 way	 to	 run	 loggerhead	 is	 behind
another	 web	 server	 which	 will	 proxy	 certain	 requests	 to	 the
loggerhead	 server	 on	 the	 localhost.	 To	 do	 this,	 you	 need	 to	 have
PasteDeploy	 installed	 (see	 Requirements).	 Assuming	 that	 your
server	has	Apache	running,	you	need	 to	add	configuration	such	as
this	to	set	up	the	proxy

<Location	"/loggerhead/">

				ProxyPass	http://127.0.0.1:8080/

				ProxyPassReverse	http://127.0.0.1:8080/

</Location>

If	 your	 proxy	 runs	 at	 some	 path	within	 the	 server,	 then	 the	 serve-
branches	 command	 must	 be	 started	 with	 the	 --prefix	 option.	 For
this	example,	we	could	start	loggerhead	with	the	command

$	serve-branches	--prefix=/loggerhead	/srv/bzr

This	 would	 allow	 the	 trunk	 branch	 of	 ProjectX	 to	 be	 browsed	 at
http://www.example.com/loggerhead/projectx/trunk.

Loggerhead	 comes	with	 a	 script	 allowing	 it	 to	 run	 as	 a	 service	 on
init.d	 based	 Linux	 systems.	 Contributions	 to	 do	 a	 similar	 thing	 on
Windows	 servers	 would	 be	 welcomed	 at
http://launchpad.net/loggerhead.

http://launchpad.net/loggerhead

Other	web	interfaces
There	 are	 a	 number	 of	 other	 web	 interfaces	 available	 for	 Bazaar
branches	 (see	 the	 list	 at	 http://bazaar-vcs.org/WebInterfaces)	 and
we	will	 just	mention	 a	 couple	 of	 them	here	 for	 their	 advantages	 in
particular	situations.

trac+bzr	(http://launchpad.net/trac-bzr)
Trac	is	a	popular	web	app	that	integrates	a	browser	for	branches,
an	 issue	 tracker	 and	 a	 wiki.	 trac+bzr	 is	 a	 trac	 extension	 that
allows	for	the	trac	to	be	used	with	Bazaar.

webbzr	(http://thoughts.enseed.com/webbzr)
This	 is	 a	 notable	 solution	 because	 it	 is	written	 in	 pure	PHP	 for
web	 hosts	 that	 don’t	 provide	 a	 way	 to	 run	 arbitrary	 Python
applications	such	as	Trac	or	Loggerhead.

Redmine	(http://redmine.org/)
Like	trac,	Redmine	is	a	full	project	management	application	using
the	 Ruby	 on	 Rails	 framework.	 It	 includes	 support	 for	 Bazaar
branches.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	System

Administrator’s	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar-vcs.org/WebInterfaces
http://launchpad.net/trac-bzr
http://thoughts.enseed.com/webbzr
http://redmine.org/
http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	System

Administrator’s	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Integration	with	Other	Tools

Patch	Queue	Manager	(PQM)

Bug	Trackers

Continuous	Integration	Tools

Bundle	Buggy

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	System

Administrator’s	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	System

Administrator’s	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Security

Authentication
Bazaar’s	 philosophy	 on	 authentication	 is	 that	 it	 is	 best	 to	 reuse
existing	 authentication	 technologies,	 rather	 than	 trying	 to	 reinvent
potentially	 complicated	 methods	 for	 securely	 identifying	 users.	 As
such,	 we	 describe	 two	 such	 uses	 of	 existing	 software	 for
authentication	purposes.

Using	SSH

SSH	is	a	very	well	tested	and	featureful	technology	for	authenticating
users.	For	situations	where	all	of	the	developers	have	local	accounts
on	the	server,	it	is	trivial	to	provide	secure,	authenticated	bzr+ssh://
access.	One	concern	with	this	method	is	that	it	may	not	be	desirable
to	 grant	 shell	 access	 to	 developers	 on	 the	 server	machine.	 In	 this
case,	Bazaar	provides	 bzr_ssh_path_limiter,	 a	 script	 that	 runs	 the
Bazaar	smart	server	on	the	server	machine	at	a	specified	path,	and
allows	no	other	access.

To	set	it	up,	specify:

command="/path/to/bzr_ssh_path_limiter	<path>"	<typical	key	line>

in	 each	 user’s	 ~/.ssh/authorized_keys	 file	 on	 the	 server,	 where
<path>	 is	 the	 path	 to	 limit	 access	 to	 (and	 its	 subdirectories).	 For
more	 documentation	 on	 the	 syntax	 of	 the	 authorized_keys	 file	 see
the	documentation	of	 the	SSH	server.	 This	will	 only	 permit	 Bazaar
access	to	the	specified	path	and	no	other	SSH	access	for	that	user.

If	it	isn’t	desired	to	give	each	user	an	account	on	the	server,	multiple
private/public	 key	 pairs	 can	 be	 included	 under	 one	 single	 SSH
account	(say	sshuser)	in	the	~sshuser/.ssh/authorized_keys	file	and

then	each	developer	 can	be	given	 their	own	private	key.	They	 can
then	 use	 bzr+ssh://sshuser@server.example.com/	 URLs	 to	 access
the	server.

Using	HTTP	authentication	methods

Access	Control
Many	 projects	 need	 fine-grained	 access	 control	 on	 who	may	 read
and	write	 to	which	branches.	 Incorporating	 these	 controls	 into	OS-
level	user	accounts	using	groups	and	filesystem	permissions	can	be
difficult	or	even	not	permitted	in	some	instances.	Bazaar	provides	a
script	called	 bzr_access	 that	can	be	used	 to	provide	access	control
based	on	usernames,	with	authentication	performed	by	SSH.	To	do
so,	we	need	to	set	up	private-key	authentication	in	SSH.	This	can	be
done	 using	 a	 single	 SSH	 user	 on	 the	 server,	 or	 one	 account	 per
user.	The	idea	is	to	use	the	SSH’s	authorized_keys	file	to	specify	the
bzr_access	 script	 as	 the	 only	 command	 that	 can	 be	 run	 by	 a	 user
identified	by	a	particular	key	pair.

First,	you	will	need	to	generate	a	private/public	key	pair	for	each	user
who	 will	 be	 accessing	 the	 repository.	 The	 private	 key	 should	 be
distributed	 to	 the	 user	 and	 the	 public	 key	 will	 be	 needed	 on	 the
server	 to	 identify	 the	 user.	 On	 the	 server,	 in	 the	 SSH	 user’s
~/.ssh/authorized_keys	 file,	 use	 the	 following	 line	 for	 each
repository	user	and	the	corresponding	public	key:

command="/path/to/bzr_access	/path/to/bzr	/path/to/repository	<username>",no-	port-forwarding,no-X11-forwarding,no-agent-forwarding	ssh-<type>	<key>

where	<key>	is	the	(possibly	very	long)	public	key,	<type>	is	the	type
of	SSH	key	and	<username>	is	the	username	to	associate	with	that
public	key.

The	 bzr_access	 script	obtains	 its	 configuration	 information	 from	 the
file	 /path/to/repository/bzr_access.conf.	 This	 file	 should	 not	 be
placed	 under	 version	 control	 in	 a	 branch	 located	 at
/path/to/repository	 since	 that	would	 allow	anyone	with	 access	 to
the	 repository	 to	 change	 the	 access	 control	 rules.	 The

bzr_access.conf	 file	 is	 in	 a	 simple	 INI-style	 format	 with	 sections
defined	by	[groups]	and	[/].	The	options	in	the	[groups]	section	are
the	names	of	groups	and	the	values	of	those	options	should	be	the
usernames	 in	 that	 group.	 Inside	 the	 [/]	 section,	 the	 options	 are
usernames	 or	 group	 names	 (prefixed	 with	 @)	 and	 the	 values	 are
either	 rw,	 r	 or	 nothing,	 representing	 read-write	 access,	 read-only
access	or	no	access	at	all.	A	sample	of	bzr_access.conf	could	be:

[groups]

admins	=	alpha

devels	=	beta,	gamma,	delta

[/]

@admins	=	rw

@devels	=	r

upsilon	=

where	the	user	whose	key	is	associated	with	alpha	would	have	read-
write	access,	the	users	beta,	gamma	and	delta	would	have	read-only
access	and	user	upsilon	would	not	be	able	to	access	any	branches
under	/path/to/repository.

Additional	Considerations	with	bzr_access

As	 currently	 written,	 bzr_access	 only	 allows	 each	 public	 key	 to	 be
associated	 with	 a	 single	 repository	 location.	 This	 means	 that	 if
developers	need	 to	 access	 two	or	more	different	 repositories,	 then
each	developer	will	need	to	have	two	or	more	private	keys	for	SSH
and	 be	 able	 to	 select	 between	 them	 (see	 man	 ssh	 for	 more
information	on	configuring	multiple	private	keys).

Also,	each	repository	can	only	have	a	single	configuration	 file,	with
access	configured	for	all	branches	in	the	repository.	This	means	that
if	different	access	rules	are	needed	for	different	projects,	then	those
projects	must	be	in	different	repositories.	This	then	necessitates	the

use	of	multiple	private	keys	as	just	described.

Finally,	as	noted	above	under	Using	SSH	all	of	the	public	keys	may
be	included	in	the	authorized_keys	file	of	a	single	user	on	the	server.
It	is	also	possible	to	use	a	single	private/public	key	pair	for	all	of	the
developers,	but	this	only	allows	a	single	username	for	access	control
to	 the	 repository	 (since	 the	username	 is	associated	with	 the	public
key	 in	 authorized_keys.	While	 this	 is	 certainly	 possible	 it	 seems	 to
defeat	 the	purpose	of	 fine-grained	access	control,	 although	 it	 does
provide	the	same	limited	SSH	access	as	that	described	above.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	System

Administrator’s	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	System

Administrator’s	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Back-up	and	Restore
Backing	up	Bazaar	branches	can	be	done	in	two	different	ways.	If	an
existing	filesystem-based	backup	scheme	already	exists,	then	it	can
easily	 be	 used	 where	 the	 Bazaar	 branches	 reside.	 Alternately,
Bazaar	 itself	can	be	used	to	mirror	the	desired	branches	to	or	from
another	location	for	backup	purposes.

Filesystem	Backups
Bazaar	 transactions	are	atomic	 in	 the	sense	 that	 the	disk	 format	 is
such	 that	 it	 is	 in	a	valid	state	at	any	 instant	 in	 time.	However,	 for	a
backup	process	 that	 takes	a	 finite	amount	of	 time	 to	complete,	 it	 is
possible	to	have	inconsistencies	between	different	on-disk	structures
when	backing	up	a	live	branch	or	repository.	(Bazaar	itself	manages
this	 concurrency	 issue	 by	 only	 reading	 those	 structures	 in	 a	 well-
defined	 order.)	 Tools	 such	 as	 LVM	 that	 allow	 instantaneous
snapshots	of	 the	contents	of	a	disk	can	be	used	 to	 take	 filesystem
backups	of	live	Bazaar	branches	and	repositories.

For	 other	 backup	 methods,	 it	 is	 necessary	 to	 take	 the	 branch	 or
repository	 offline	 while	 the	 backup	 is	 being	 done	 in	 order	 to
guarantee	 consistency	 between	 the	 various	 files	 that	 comprise	 a
Bazaar	branch’s	history.	This	requirement	can	be	alleviated	by	using
Bazaar	as	its	own	backup	client,	since	it	follows	an	order	for	reading
that	is	designed	to	manage	concurrent	access	(see	the	next	section
for	 details).	 Depending	 on	 the	 different	 access	 methods	 that	 are
being	used	for	a	branch,	there	are	different	ways	to	take	the	branch
“offline”.	For	bzr+ssh://	access,	it	 is	possible	to	temporarily	change
the	 filesystem	permissions	 to	prevent	write	access	 from	any	users.
For	http://	access,	changing	permissions,	shutting	down	the	HTTP
server	 or	 switching	 the	 server	 to	 a	 separate	 configuration	 that
disallows	 access	 are	 all	 possible	ways	 to	 take	 a	 branch	 offline	 for
backup.	Finally,	for	direct	filesystem	access,	it	is	necessary	to	make
the	branch	directories	un-writable.

Because	 this	 sort	 of	 downtime	 can	 be	 very	 disruptive,	we	 strongly
encourage	 using	Bazaar	 itself	 as	 a	 backup	 client,	 where	 branches
are	copied	and	updated	using	Bazaar	directly.

Bazaar	as	its	own	backup
The	 features	 that	 make	 Bazaar	 a	 good	 distributed	 version	 control
system	also	make	it	a	good	choice	for	backing	itself	up.	In	particular,
complete	and	consistent	copies	of	any	branch	can	easily	be	obtained
with	the	branch	and	pull	commands.	As	a	result,	a	backup	process
can	simply	run	bzr	pull	on	a	copy	of	the	main	branch	to	fully	update
that	copy.	If	this	backup	process	runs	periodically,	then	the	backups
will	 be	 as	 current	 as	 the	 last	 time	 that	 pull	 was	 run.	 (This	 is	 in
addition	to	the	fact	that	revisions	are	immutable	in	Bazaar	so	that	a
prior	 revision	 of	 a	 branch	 is	 always	 recoverable	 from	 that	 branch
when	the	revision	id	is	known.)

As	 an	 example,	 consider	 a	 separate	 backup	 server	 that	 stores
backups	in	/var/backup.	On	that	server,	we	could	initially	run

$	cd	/var/backup

$	bzr	branch	bzr+ssh://server.example.com/srv/bzr/trunk

$	bzr	branch	bzr+ssh://server.example.com/srv/bzr/feature-gui

to	 create	 the	 branches	 on	 the	 backup	 server.	 Then,	 we	 could
regularly	(for	example	from	cron)	do

$	cd	/var/backup/trunk

$	bzr	pull		#	the	location	to	pull	from	is	remembered

$	cd	../var/backup/feature-gui

$	bzr	pull		#	again,	the	parent	location	is	remembered

The	 action	 of	 pulling	 from	 the	 parent	 for	 all	 branches	 in	 some
directory	 is	 common	 enough	 that	 there	 is	 a	 plugin	 to	 do	 it.	 The
bzrtools	plugin	contains	a	multi-pull	command	that	does	a	pull	 in
all	branches	under	a	specified	directory.

With	 this	 plugin	 installed,	 the	 above	 periodically	 run	 commands

http://launchpad.net/bzrtools

would	be

$	cd	/var/backup

$	bzr	multi-pull

Note	 that	 multi-pull	 does	 a	 pull	 in	 every	 branch	 in	 the	 specified
directory	(the	current	directory	by	default)	and	care	should	be	taken
that	this	is	the	desired	effect.	A	simple	script	could	also	substitute	for
the	multi-pull	command	while	also	offering	greater	flexibility.

Bound	Branch	Backups

When	 bzr	pull	 is	 run	 regularly	 to	keep	a	backup	copy	up	 to	date,
then	it	is	possible	that	there	are	new	revisions	in	the	original	branch
that	 have	 not	 yet	 been	 pulled	 into	 the	 backup	 branch.	 To	 alleviate
this	problem,	we	can	set	the	branches	up	so	that	new	revisions	are
pushed	to	the	backup	rather	than	periodically	pulling.	One	way	to	do
this	is	using	Bazaar’s	concept	of	bound	branches,	where	a	commit	in
one	 branch	 happens	 only	when	 the	 same	 commit	 succeeds	 in	 the
branch	to	which	 it	 is	bound.	As	a	push-type	 technology,	 it	 is	set	up
on	 the	 server	 itself	 rather	 than	 on	 the	 backup	 machine.	 For	 each
branch	 that	 should	 be	 backed	 up,	 you	 just	 need	 to	 use	 the	 bind
command	to	set	the	URL	for	the	backup	branch.	In	our	example,	we
first	need	to	create	the	branches	on	the	backup	server	(we’ll	use	bzr
push,	but	we	could	as	easily	have	used	bzr	branch	from	the	backup
server)

$	cd	/srv/bzr/projectx/trunk

$	bzr	push	bzr+ssh://backup.example.com/var/backup/trunk

$	cd	../feature-gui

$	bzr	push	bzr+ssh://backup.example.com/var/backup/feature-gui

and	then	we	need	to	bind	the	main	branches	to	their	backups

$	cd	../trunk

$	bzr	bind	bzr+ssh://backup.example.com/var/backup/trunk

$	cd	../feature-gui

$	bzr	bind	bzr+ssh://backup.example.com/var/backup/feature-gui

A	branch	can	only	be	bound	to	a	single	location,	so	multiple	backups
cannot	be	created	using	this	method.

Using	 the	 automirror	 plugin	 mentioned	 under	 Hooks	 and	 Plugins,
one	can	also	make	a	push-type	backup	system	that	more	naturally
handles	mutliple	backups.	Simply	set	the	post_commit_mirror	option
to	multiple	URLs	 separated	 by	 commas.	 In	 order	 to	 backup	 to	 the
backup	server	and	a	remote	location,	one	could	do

$	cd	/srv/bzr/trunk

$	echo	"post_commit_mirror=bzr+ssh://backup.example.com/var/backup/trunk,\

bzr+ssh://offsite.example.org/projectx-corp/backup/trunk"	>>	.bzr/branch/branch.conf

$	cd	../feature-gui

$	echo	"post_commit_mirror=bzr+ssh://backup.example.com/var/backup/feature-gui,\

bzr+ssh://offsite.example.org/projectx-corp/backup/feature-gui"	>>	.bzr/branch/branch.conf

As	for	any	push-type	backup	strategy	that	maintains	consistency,	the
downside	 of	 this	 method	 is	 that	 all	 of	 the	 backup	 commits	 must
succeed	 before	 the	 initial	 commit	 can	 succeed.	 If	 there	 is	 a	many
mirror	 branches	 or	 if	 the	 bound	 branch	 has	 a	 slow	 network
connection,	 then	 the	 delay	 in	 the	 original	 commit	 may	 be
unacceptably	 long.	 In	 this	 case,	 pull-type	 backups,	 or	 a	 mixed
system	may	be	preferable.

http://launchpad.net/bzr-automirror

Restoring	from	Backups

Checking	backup	consistency

Many	 a	 system	 administrator	 has	 been	 bitten	 by	 having	 a	 backup
process,	but	when	it	came	time	to	restore	from	backups,	finding	out
that	the	backups	themselves	were	flawed.	As	such,	it	is	important	to
check	 the	 quality	 of	 the	 backups	 periodically.	 In	 Bazaar,	 there	 are
two	ways	 to	do	 this:	 using	 the	 bzr	 check	 command	 and	 by	 simply
making	 a	 new	 branch	 from	 the	 backup.	 The	 bzr	 check	 command
goes	 through	 all	 of	 the	 revisions	 in	 a	 branch	 and	 checks	 them	 for
validity	 according	 to	 Bazaar’s	 internal	 invariants.	 Since	 it	 goes
through	every	revision,	 it	can	be	quite	slow	for	 large	branches.	The
other	 way	 to	 ensure	 that	 the	 backups	 can	 be	 restored	 from	 is	 to
perform	 a	 test	 restoration.	 This	 means	 performing	 the	 restoration
process	 in	a	 temporary	directory.	After	 the	 restoration	process,	 bzr
check	may	again	 be	 relevant	 for	 testing	 the	 validity	 of	 the	 restored
branches.	 The	 following	 two	 sections	 present	 two	 restoration
recipes.

Restoring	Filesystem	Backups

There	 are	 many	 different	 backup	 tools	 with	 different	 ways	 of
accessing	 the	backup	data,	 so	we	can’t	 cover	 them	all	 here.	What
we	will	 say	 is	 that	 restoring	 the	 contents	 of	 the	 /srv/bzr	 directory
completely	will	restore	all	branches	stored	there	to	their	state	at	the
time	of	the	backup	(see	Filesystem	Backups	for	concerns	on	backing
up	 live	 branches.)	 For	 example,	 if	 the	 backups	 were	 mounted	 at
/mnt/backup/bzr	then	we	could	restore	using	simply:

$	cd	/srv

$	mv	bzr	bzr.old

$	cp	-r	/mnt/backup/bzr	bzr

Of	course,	to	restore	only	a	single	branch	from	backup,	it	is	sufficient
to	 copy	 only	 that	 branch.	 Until	 the	 restored	 backup	 has	 been
successfully	 used	 in	 practice,	 we	 recommend	 keeping	 the	 original
directory	available.

Restoring	Bazaar-based	Backups

In	 order	 to	 restore	 from	 backup	 branches,	 we	 can	 simply	 branch
them	into	the	appropriate	location:

$	cd	/srv

$	mv	bzr	bzr.old

$	cd	bzr

$	bzr	branch	bzr+ssh://backup.example.com/var/backup/trunk

$	bzr	branch	bzr+ssh://backup.example.com/var/backup/feature-gui

If	there	are	multiple	backups,	then	change	the	URL	above	to	restore
from	the	other	backups.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	System

Administrator’s	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	System

Administrator’s	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Upgrades
Bazaar	has	a	strong	commitment	 to	 inter-version	compatibility	both
on	 disk	 and	 over	 the	 network.	 Newer	 clients	 should	 be	 able	 to
interact	with	 older	 versions	 on	 the	 server	 (although	perhaps	 not	 at
optimal	speed)	and	older	clients	should	also	be	able	to	communicate
with	newer	versions	of	Bazaar	on	the	server.	Divergences	from	this
rule	are	considered	bugs	and	are	fixed	in	later	versions.

That	 said,	 Bazaar	 is	 constantly	 improving	 and	 the	 most	 recent
versions	 are	 the	 most	 featureful	 and	 have	 better	 performance.	 In
particular,	 the	 Bazaar	 versions	 2.0	 and	 later	 have	 significant
advantages	 over	 earlier	 versions,	 including	 a	 more	 compact	 disk
format,	 faster	 network	 operations	 and	 overall	 performance
improvements.	 With	 the	 2.0	 release,	 Bazaar	 has	 moved	 to	 a
stable/development	 release	 model	 where	 the	 2.x	 series	 is
maintained	 with	 bugfixes	 releases	 for	 six	 months,	 while
simultaneously	 the	 2.(x+1)	 series	 is	 being	 developed	 with	monthly
beta	 releases	 that	 are	 suitable	 for	 everyday	 use.	 Bazaar
development	has	a	stable	trunk	with	an	extensive	test	suite,	so	there
is	no	reason	to	fear	using	the	development	series	for	everyday	use,
it	simply	changes	more	often	than	the	stable	series.	Many	users	do
run	 the	 development	 version	 of	 Bazaar	 and	 update	 it	 regularly,
including	most	of	the	Bazaar	developers	themselves.

Software	upgrades
Upgrading	 the	 Bazaar	 software	 is	 as	 simple	 as	 re-installing	 the
Python	package	using	either	the	latest	binary	package	for	Windows
or	Mac	OS	X,	the	binary	package	provided	by	your	Linux	distribution,
or	 installing	 from	 the	 source	 release.	 See	 http://bazaar-
vcs.org/Downloads	for	the	latest	releases	for	all	supported	platforms.

Bazaar’s	later	versions	support	all	of	the	earlier	disk	formats	(back	to
the	very	first	one),	so	there	 is	no	need	to	upgrade	the	branches	on
the	disk	when	upgrading	the	software.	To	make	use	of	particular	new
features	 that	might	 need	 updated	 versions	 on	 both	 the	 server	 and
developer’s	machines,	it	does	not	matter	if	the	clients	or	the	servers
are	upgraded	first.

http://bazaar-vcs.org/Downloads

Disk	format	upgrades
In	 its	 evolution,	 Bazaar	 has	 used	 a	 sequence	 of	 disk	 formats	 for
improved	 storage	 efficiency	 and	 speed.	 With	 the	 new	 disk	 format
released	 in	 version	 2.0,	 there	 is	 a	 commitment	 to	 keep	 that	 disk
format	 until	 version	 3.0	 is	 released,	 which	 has	 not	 even	 been
planned	 yet.	 (Bazaar	 2.0	 was	 released	 almost	 two	 years	 after
Bazaar	1.0.)	As	a	result,	disk	 format	upgrades	should	be	extremely
infrequent.

If	 there	are	existing	branches	in	an	older	format	that	you	would	like
to	upgrade	to	the	latest	format,	you	can	see	the	2.0	Upgrade	Guide
for	more	information.	From	the	system	administration	perspective,	it
is	 important	 to	 coordinate	 the	 timing	 of	 various	 upgrades	 in	 the
process.	 First,	 the	 central	 branches	 on	 the	 server	 should	 be
upgraded.	Next,	 any	 local	 mirrors	 that	 developers	 have	 should	 be
upgraded.	 Finally,	 developers’	 local	 branches	 should	 be	 upgraded.
These	upgrades	will	 require	an	appropriate	version	of	 the	software
whenever	 they	 are	 performed.	 (It	 is	 possible	 to	 upgrade	 branches
remotely	over	the	network,	but	it	may	be	much	slower.)

Plugin	upgrades
When	Bazaar	does	update	 its	version,	plugins	 that	use	 the	Bazaar
API	may	need	to	be	upgraded	to	reflect	changes	in	that	API.	Some
plugins	 have	 strict	 version	 dependencies	 on	 the	 version	 of	 the
Bazaar	API	that	they	will	accept.	If	this	is	the	case,	then	you	should
ensure	 that	 the	 plugins	 you	 depend	 on	 have	 been	 updated	before
you	 upgrade	 your	 Bazaar	 version	 to	 avoid	 a	 situation	 where	 your
plugins	won’t	work	with	 the	 installed	version	of	Bazaar.	 If	 this	does
happen,	then	the	solution	is	simply	to	reinstall	the	previous	version	of
Bazaar	 that	did	work	with	 the	plugins.	For	 installations	 that	depend
on	a	large	number	of	plugins,	this	sort	of	version	upgrade	should	be
tested	 in	 a	 safe	 sandbox	 to	 ensure	 that	 the	 entire	 collection	 of
Bazaar	and	its	plugins	can	all	work	together.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	System

Administrator’s	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

previous	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	System

Administrator’s	Guide	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Advanced	Topics

System	Monitoring

Capacity	Planning	Tips

Clustering

Multi-site	Setups
The	“distributed”	in	distributed	version	control	system	should	indicate
that	Bazaar	 is	well	 suited	 for	multi-site	 development	 situations	 and
indeed,	 that	 is	 the	case.	The	advantage	comes	 from	 the	ease	and
transparency	of	managing	merges	between	branches	with	divergent
history.	Note	 that	 there	 are	many,	many	 different	 ways	 to	manage
widely-flung	development	setups	using	Bazaar	and	its	branching	and
merging	 capabilities.	 These	 can	 be	 discovered	 and	 tested	 before
being	 implemented	 as	 policy.	 We	 will	 describe	 one	 such	 possible
setup	here.

Consider	ProjectX	Corp’s	international	expansion	with	a	new	branch
office	in	Darwin,	Australia,	in	addition	to	the	company’s	headquarters
in	Austin,	Texas,	USA.	One	of	the	difficulties	of	a	far-flung	multi-site
development	 environment	 such	 as	 this	 is	 that	 the	 network
connection	between	Australia	and	Texas	is	slow	and	unreliable.	So,
each	branch	office	would	like	the	master	branch	to	be	local	to	them.
(In	situations	with	good	network	connectivity,	a	local	branch	bound	to
the	 remote	master	 may	 be	 all	 that	 is	 needed	 to	 support	 multi-site
development.)

Of	course,	with	two	master	branches,	there	is	always	the	question	of
which	 one	 is	 authoritative.	 Given	 Bazaar’s	 facility	 at	 managing
multiple	 branches,	we	 suggest	 that	 it	 is	 best	 not	 to	 privilege	 either
the	Texas	 or	Australia	 branches,	 but	 to	merge	 both	 of	 them	 into	 a
separate	 master	 branch	 (which	 may	 reside	 at	 either	 site).	 For
definiteness,	we	will	 locate	the	master	branch	at	the	Texas	site.	So,
we	will	have	three	branches	stored	on	two	servers:	trunk	and	texas-
integration	at	 the	Texas	site	and	australia-integration	at	 the	Darwin
site.	 These	 branches	 are	 named	 in	 terms	 of	 the	 sites	 where	 the
development	 takes	 place,	 but	 in	 many	 cases	 it	 may	 make	 more
sense	 to	 name	 branches	 after	 the	 functional	 teams	 rather	 their

geographical	locations.	Since	we	are	trying	illustrate	the	issues	with
multi-site	development,	we	will	persist	in	this	naming	scheme.

Setup

Using	our	previous	setup	at	the	Texas	site,	we	will	simply	rename	the
old	trunk	branch	as	trunk	and	branch	a	copy	as	texas-integration.

$	cd	/srv/bzr/projectx

$	mv	trunk	trunk														#	can	simply	rename	on	the	filesystem

$	bzr	branch	trunk	texas-integration			#	very	fast	in	a	shared	repository

In	Australia,	we	need	to	set	up	the	/srv/bzr/projectx	directory	and
get	a	copy	of	the	current	trunk	as	australia-integration:

$	mkdir	-p	/srv/bzr

$	cd	/srv/bzr

$	bzr	init-repo	--no-trees	projectx

$	cd	projectx

$	bzr	branch	bzr+ssh://server.example.com/srv/bzr/trunk

$	bzr	branch	trunk	australia-integration

Merging	to	master

Then,	each	office	works	with	 their	 local	copy	of	 the	 trunk.	At	some
point,	sooner	or	 later	depending	on	the	pace	of	development	 in	 the
two	 locations,	 the	 two	 local	 trunks	need	 to	be	merged.	 (In	 general,
sooner	 beats	 later	 when	 merging,	 since	 there	 is	 no	 penalty	 for
multiple	merges.)	In	this	example,	Alice	at	the	Texas	office	will	do	the
merging	on	her	local	machine	using	branches	on	the	server:

#	Get	a	copy	of	the	Australia	branch	in	Texas.		After	the	initial	branch

#	command,	use	pull	to	keep	the	branch	up	to	date.		With	a	slow	network,

#	this	is	the	only	slow	part

$	bzr	branch	bzr+ssh://autralia.example.com/srv/bzr/projectx/australia-integration	\

		bzr+ssh://server.example.com/srv/bzr/projectx/australia-integration

#	Check	out	the	master	branch	locally	for	doing	the	merge

$	cd	~/projectx

$	bzr	checkout	bzr+ssh://server.example.com/srv/bzr/projectx/trunk

$	cd	trunk

$	bzr	merge	bzr+ssh://server.example.com/srv/bzr/projectx/texas-integration

#	Run	the	test	suite	and	resolve	any	conflicts

$	bzr	commit	-m	"Merge	Texas	branch	to	master"

#	Now,	merge	from	Australia	using	the	local	copy	of	that	branch

$	bzr	merge	bzr+ssh://server.example.com/srv/bzr/projectx/australia-integration

#	Run	the	test	suite	and	resolve	any	conflicts	between	the	two	offices

$	bzr	commit	-m	"Merge	Australia	branch	to	master"

Note	 that	Bazaar	does	not	commit	even	cleanly	applied	merges	by
default.	 This	 is	 because	 although	 a	 merge	 may	 apply	 cleanly,	 the
merged	state	still	needs	to	be	checked	before	it	 is	committed.	(Just
because	 there	 are	 no	 text	 conflicts	 does	 not	mean	 that	 everything
will	work	after	a	merge.)	An	alternative	 that	can	pull	when	possible
and	merge	otherwise	is	available	with	bzr	merge	--pull.

Merging	back	to	local	trunks

Now	the	trunk	branch	is	the	most	up-to-date	version	of	the	software
and	both	of	the	local	trunks	need	to	reincorporate	the	changes	from
the	master.	If	no	new	commits	have	been	made	to	texas-integration,
then	that	can	happen	using	bzr	pull:

$	cd	~/projectx

$	bzr	checkout	bzr+ssh://server.example.com/srv/bzr/projectx/texas-integration

$	cd	texas-integration

$	bzr	pull	../trunk		#	Use	trunk	from	the	local	disk

																												#	No	need	to	commit

If	 new	 changes	 have	 happened	 on	 texas-integration	 since	 the
integration	 with	 trunk,	 then	 the	 above	 pull	 will	 produce	 an	 error
suggesting	to	use	merge:

$	bzr	merge	../trunk

#	Run	test	suite,	resolve	conflicts

$	bzr	commit	-m	"Merging	Australian	changes"

In	Australia,	they	will	need	to	update	their	local	copy	of	trunk:

$	cd	/srv/bzr/projectx/trunk

$	bzr	pull					#	parent	location	is	used	by	default

Then,	 they	 need	 to	 pull	 or	merge	 the	 changes	 from	 trunk	 into	 the
local	 trunk.	This	should	be	done	by	a	developer	with	a	checkout	of
australia-integration	so	that	they	can	run	the	test	suite:

$	cd	~/projectx

$	bzr	co	bzr+ssh://australia.example.com/srv/bzr/projectx/australia-integration

$	cd	australia-integration

$	bzr	merge	bzr+ssh://australia.example.com/srv/bzr/projectx/trunk

#	Run	test	suite	and	integrate	Texan	changes	with	only	recent	local

#	development

$	bzr	commit	-m	"Integrate	work	from	Texas"

Other	Considerations

Multi-site	deployments	can	be	complicated,	due	to	the	many	possible
variations	 of	 development	 velocity,	 divisions	 of	 labor,	 network
connectivity,	resources	for	integration,	etc.	The	preceding	description
is	 meant	 to	 be	 one	 possible	 way	 to	 do	 fairly	 symmetric	 multi-site
development.	 (Neither	 Texas	 or	 Australia	 is	 privileged	 in	 this
structure.)	 In	 a	 situation	 where	 there	 is	 one	 main	 site	 and	 other
smaller	sites,	one	of	the	local	trunk	branches	can	be	eliminated	and
trunk	can	be	used	directly	for	development	at	the	main	site.

It	is	also	up	to	the	particular	situation	how	frequently	the	local	trunks
are	integrated	into	the	master	trunk.	Given	resources	specifically	for
integration,	 it	 is	 conceivable	 that	 a	 developer	 may	 be	 constantly
responsible	 for	 integrating	 changes	 from	 the	 two	 teams.

Alternatively,	 the	 two	 sites	 could	 work	 on	 well-separated,	 well-
defined	 features	 and	 merge	 to	 the	 master	 trunk	 only	 when	 their
respective	 features	 are	 complete.	 Given	 the	 difficulty	 of	 resolving
conflicts	 in	 very	 large	 merges	 and	 the	 ease	 of	 merge	 handling	 in
Bazaar,	 we	 suggest	 that	 merges	 be	 done	 more	 frequently,	 rather
than	less.

previous	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Bazaar	System

Administrator’s	Guide	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Bazaar	User	Guide

Introduction
Introducing	Bazaar
Core	concepts
Workflows

Getting	started
Installing	Bazaar
Entering	commands
Getting	help
Configuring	Bazaar
Using	aliases
Using	plugins
Bazaar	Zen

Personal	version	control
Going	solo
Starting	a	project
Controlling	file	registration
Reviewing	changes
Recording	changes
Browsing	history
Releasing	a	project
Undoing	mistakes

Sharing	with	peers
Working	with	another
Branching	a	project
Merging	changes
Resolving	conflicts
Annotating	changes

Team	collaboration,	central	style
Centralized	development
Publishing	a	branch
Using	checkouts
Working	offline	on	a	central	branch
Reusing	a	checkout

Team	collaboration,	distributed	style
Distributed	development
Organizing	branches
Using	gatekeepers
Sending	changes

Miscellaneous	topics
The	journey	ahead
Pseudo	merging
Shelving	Changes
Filtered	views
Using	stacked	branches
Running	a	smart	server
Using	hooks
Exporting	version	information

A	brief	tour	of	some	popular	plugins
BzrTools
bzr-svn

Integrating	Bazaar	into	your	environment
Web	browsing
Bug	trackers

Appendices
Specifying	revisions
Organizing	your	workspace
Advanced	shared	repository	layouts
Configuring	email
Serving	Bazaar	with	Apache
Writing	a	plugin

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Tutorials
Bazaar	in	five	minutes
Bazaar	Tutorial
Using	Bazaar	with	Launchpad
Centralized	Workflow	Tutorial

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Quick	Reference
PDF	format
PNG	format
SVG	format

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Bazaar	Release	Notes
List	of	Releases

Bazaar	Release	Notes

bzr	2.2b1
bzr	2.1.1
bzr	2.1.0
bzr	2.1.0rc2
bzr	2.1.0rc1
bzr	2.0.5
bzr	2.0.4
bzr	2.1.0b4
bzr	2.0.3
bzr	2.1.0b3
bzr	2.1.0b2
bzr	2.0.2
bzr	2.1.0b1
bzr	2.0.1
bzr	2.0.0
bzr	2.0.0rc2
bzr	2.0.0rc1
bzr	1.18.1
bzr	1.18
bzr	1.18rc1
bzr	1.17.1	(unreleased)
bzr	1.17
bzr	1.16.1
bzr	1.16
bzr	1.15
bzr	1.14

bzr	1.13
bzr	1.12
bzr	1.11
bzr	1.11rc1
bzr	1.10
bzr	1.10rc1
bzr	1.9
bzr	1.9rc1
bzr	1.8
bzr	1.8rc1
bzr	1.7.1
bzr	1.7.1rc1
bzr	1.7
bzr	1.7rc2
bzr	1.7rc1
bzr	1.6.1
bzr	1.6.1rc2
bzr	1.6.1rc1
bzr	1.6
bzr	1.6rc5
bzr	1.6rc4
bzr	1.6rc3
bzr	1.6rc2
bzr	1.6rc1
bzr	1.6beta3
bzr	1.6beta2
bzr	1.6beta1
bzr	1.5
bzr	1.5rc1
bzr	1.4
bzr	1.4rc2
bzr	1.4rc1
bzr	1.3.1
bzr	1.3.1rc1

bzr	1.3
bzr	1.3rc1
bzr	1.2
bzr	1.2rc1
bzr	1.1
bzr	1.1rc1
bzr	1.0
bzr	1.0rc3
bzr	1.0rc2
bzr	1.0rc1
bzr	0.92
bzr	0.92rc1
bzr	0.91
bzr	0.91rc2
bzr	0.91rc1
bzr	0.90
bzr	0.90rc1
bzr	0.18
bzr	0.18rc1
bzr	0.17
bzr	0.17rc1
bzr	0.16
bzr	0.16rc2
bzr	0.16rc1
bzr	0.15
bzr	0.15rc3
bzr	0.15rc2
bzr	0.15rc1
bzr	0.14
bzr	0.14rc1
bzr	0.13
bzr	0.13rc1
bzr	0.12
bzr	0.12rc1

bzr	0.11
bzr	0.11rc2
bzr	0.11rc1
bzr	0.10
bzr	0.9.0
bzr	0.8.2
bzr	0.8.1
bzr	0.8
bzr	0.7
bzr	0.6
bzr	0.1.1
bzr	0.1
bzr	0.0.9
bzr	0.0.8
bzr-0.0.7
bzr-0.0.6
bzr-0.0.5
bzr-0.0.4
bzr-0.0.3
bzr-0.0.2.1
bzr-0.0.2
bzr-0.0.1
bzr-0.0.0.69

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Bazaar	2.0	Upgrade	Guide

Overview

High	level	upgrade	process

In	 broad	 terms,	 there	 are	 3	 steps	 involved	 in	 upgrading	 to	Bazaar
2.x:

1.	 Upgrade	the	core	software
2.	 Upgrade	required	plugins
3.	 Migrate	data	to	the	new	default	format.

Bazaar	2.x	supports	branches	 in	earlier	 formats	so	the	third	step	 is
strictly	not	required.	However,	the	new	default	format	in	Bazaar	2.x	is
more	space	efficient,	faster	on	large	projects	and	provides	a	range	of
new	features,	so	 it	 is	recommended	that	most	projects	migrate	to	 it
at	a	convenient	time.

For	most	users,	upgrading	to	2.x	and	migrating	to	the	new	format	is
straight	 forward.	For	projects	with	a	 large	community	of	developers
though,	 things	 become	 more	 complex.	 In	 these	 cases,	 careful
planning	 and	 good	 communications	 become	 essential.	 This
document	 provides	 general	 advice	 which	 aims	 to	 assist	 in	 this
regard.	 If	 in	 doubt,	 please	 contact	 us	 on	 our	 mailing	 list	 or	 IRC
channel	with	any	questions	or	concerns	you	have.

Upgrading	the	core	software

The	steps	required	to	upgrade	the	core	software	vary	from	operating
system	 to	 operating	 system.	 There	 is	 nothing	 special	 about
upgrading	 from	 Bazaar	 1.x	 to	 Bazaar	 2.0	 compared	 to	 upgrading
from	Bazaar	1.x	 to	Bazaar	1.y.	 In	either	case,	a	brief	outline	of	 the
steps	is	given	below.

To	upgrade	Bazaar	on	Linux:

1.	 Ensure	 your	 package	manager	 is	 configured	with	 the	 required
software	 sources,	 e.g.	 the	 official	 release	 PPA	 for	 Ubuntu:
https://launchpad.net/~bzr/+archive

2.	 Use	your	package	manager	to	upgrade	to	the	latest	version.

To	upgrade	Bazaar	on	Windows:

1.	 Uninstall	the	existing	version	using	Add/Remove	Programs.
2.	 Install	the	new	version	using	the	relevant	installer.

To	upgrade	Bazaar	on	OS	X	(via	the	installer):

1.	 Install	the	new	version	using	the	relevant	installer.

To	upgrade	Bazaar	on	OS	X	(via	MacPorts):

1.	 Refresh	the	package	metadata	using	sudo	port	selfupdate
2.	 Upgrade	to	the	latest	version	using	sudo	port	upgrade	bzr

For	further	information	on	installing	and	upgrading,	see	http://bazaar-
vcs.org/Download.

Upgrading	required	plugins

Many	plugins	are	not	dependent	on	a	particular	Bazaar	 version	so
upgrading	them	is	optional.	Other	plugins,	notably	bzrtools	and	bzr-
svn,	 are	 more	 tightly	 associated	 with	 Bazaar’s	 APIs	 so	 these
typically	need	to	be	upgraded	in	lockstep	with	the	core	software.

For	 Windows	 and	 OS	 X	 users,	 bzrtools	 and	 bzr-svn	 are	 typically
included	in	the	installer	so	no	special	steps	are	required	to	upgrade
these.	For	Linux	and	UNIX	users,	bztrools,	bzr-svn	and	many	other
popular	plugins	can	be	installed	and	upgraded	using	your	platform’s
package	manager,	e.g.	Synaptic	on	Ubuntu.

https://launchpad.net/~bzr/+archive
http://bazaar-vcs.org/Download

Migrating	data	to	the	new	default	format

As	mentioned	 earlier,	 the	 complexity	 of	 migrating	 to	 a	 new	 format
depends	 on	 several	 factors,	 particularly	 project	 community	 size.	 It
also	depends	on	how	data	 is	 currently	 stored,	e.g.	 in	a	standalone
branch,	multiple	branches	 in	a	shared	repository,	stacked	branches
on	Launchpad,	etc.	These	various	scenarios	are	covered	in	the	next
chapter.

Data	migration

Preparing	for	data	migration

Before	 starting	 a	migration,	 there	 are	 a	 few	 important	 things	 to	 do
first:

1.	 Take	a	complete	backup.
2.	 Take	some	time	to	purge	obsolete	branches.

A	 complete	 backup	 gives	 you	 a	 safety	 net	 in	 case	 anything	 goes
wrong.

Purging	obsolete	branches	reduces	the	amount	of	data	that	needs	to
be	migrated.	See	Finding	obsolete	branches	 later	 for	 some	 tips	on
doing	this.

Introducing	the	upgrade-related	commands

There	 are	 3	 important	 commands	 to	 be	 aware	 of	 when	 migrating
data.

check	 -	 check	 a	 repository,	 branch	 or	 tree	 for	 data	 integrity
errors
reconcile	-	fix	data	integrity	errors
upgrade	-	migrate	data	to	a	different	format.

reconcile	is	rarely	needed	but	it’s	good	practice	to	run	check	before
and	after	running	upgrade.

For	 detailed	 help	 on	 these	 commands,	 see	 the	 Bazaar	 User
Reference.

Communicating	with	your	community

To	enable	a	smooth	transition	to	the	new	format,	you	should:

1.	 Make	one	person	responsible	for	migrating	the	trunk.
2.	 Test	the	migration	of	trunk	works	successfully.
3.	 Schedule	 a	 time	 for	 the	 trunk	 migration	 and	 notify	 your

community	in	advance.

This	advance	warning	should	be	long	enough	for	users	to	have	time
to	 upgrade	 Bazaar	 and	 any	 required	 plugins	 before	 the	 migration
date.

For	 larger	 projects,	 allow	 some	 time	 for	 the	 migration	 itself.	 You
should	 have	 a	 good	 idea	 of	 how	 long	 the	migration	 will	 take	 after
doing	the	test	migration.	It	may	make	sense	to	do	the	migration	on	a
weekend	or	a	Friday,	giving	yourself	some	breathing	space	if	things
go	wrong.

After	 the	 trunk	 is	 migrated,	 you’ll	 need	 to	 notify	 your	 community
accordingly,	giving	them	instructions	as	to	how	to	migrate	their	local
branches.	Sample	instructions	are	provided	later	in	this	document.

Migrating	a	standalone	branch

The	steps	are:

1.	 Run	bzr	check.
2.	 If	 there	 are	 errors,	 try	 using	bzr	 reconcile	 to	 fix	 them.	 If	 that

fails,	 file	 a	 bug	 so	we	 can	 help	 you	 resolve	 the	 issue	 and	 get
your	 trunk	 clean.	 If	 it	 works,	 take	 a	 backup	 copy	 of	 your	 now
clean	trunk.

2.	 Run	bzr	upgrade	–format	where	format	is	2a	or	later.
3.	 Run	bzr	check	to	confirm	the	final	result	is	good.

Migrating	branches	in	a	shared	repository

Upgrade	things	in	the	following	order:

1.	 Upgrade	the	shared	repository.
2.	 Upgrade	the	branches.
3.	 Upgrade	any	lightweight	checkouts.

As	in	the	standalone	branch	case,	be	sure	to	run	check	before	and
after	the	upgrade	to	check	for	any	existing	or	introduced	issues.

Migrating	branches	on	Launchpad

You	have	two	options	for	upgrading	your	Launchpad	branches.	You
can	either	upgrade	 them	remotely	or	you	can	upgrade	 them	 locally
and	 push	 the	migrated	 branch	 to	 Launchpad.	We	 recommend	 the
latter.	 Upgrading	 remotely	 currently	 requires	 a	 fast,	 rock	 solid
network	connection	 to	 the	Launchpad	servers,	and	any	 interruption
in	 that	 connection	 can	 leave	 you	with	 a	 partially	 upgraded	 branch.
The	 instructions	 below	 are	 the	 safest	 and	 often	 fastest	 way	 to
upgrade	your	Launchpad	branches.

To	allow	 isolation	between	public	and	private	branches,	Launchpad
uses	stacked	branches	 rather	 than	shared	 repositories	as	 the	core
technology	for	efficient	branch	storage.	The	process	for	migrating	to
a	new	format	for	projects	using	Launchpad	code	hosting	is	therefore
different	to	migrating	a	personal	or	in-house	project.

In	 Launchpad,	 a	 project	 can	 define	 a	 development	 series	 and
associate	a	branch	with	 that	 series.	The	branch	 then	becomes	 the
focus	of	development	and	gets	special	treatment	and	a	shortcut	url.
By	default,	if	anybody	branches	your	project’s	focus	of	development
and	 pushes	 changes	 back	 to	 Launchpad,	 their	 branch	 will	 be
stacked	on	your	development	 focus	branch.	Also,	branches	can	be
associated	with	other	Launchpad	artifacts	such	as	bugs	and	merge
proposals.	 All	 of	 these	 things	 mean	 that	 upgrading	 your	 focus	 of

development	branch	is	trickier.

Here	are	the	steps	to	follow:

1.	 The	 nominated	 person	 grabs	 a	 copy	 of	 trunk	 and	 does	 the
migration	locally.

2.	 On	 Launchpad,	 unset	 the	 current	 trunk	 from	 being	 the
development	 focus.	 (This	must	 be	 done	 or	 the	 following	 step
won’t	work	as	expected.)
1.	 Go	to	your	project’s	home	page	on	Launchpad
2.	 Look	for	“XXX	is	the	current	focus	of	development”
3.	 Click	on	the	edit	(pencil)	icon
4.	 Click	on	“Change	details”	in	the	portlet	on	the	right
5.	 Scroll	down	to	where	it	says	“Branch:	(Optional)”
6.	 Blank	out	this	input	field	and	click	“Change”

3.	 Push	 the	migrated	 trunk	 to	Launchpad.	See	below	 if	 you	want
your	new	migrated	development	focus	branch	to	have	the	same
name	as	your	old	pre-migration	development	focus	branch.

4.	 Set	 it	as	 the	development	 focus.	Follow	 the	 instructions	above
but	at	step	5,	enter	the	name	of	the	newly	migrated	branch	you
just	pushed.

5.	 Ask	users	 subscribed	 to	 the	old	 trunk	 to	 subscribe	 to	 the	new
one.

In	summary,	these	steps	mean	that	the	old	trunk	is	still	available	and
existing	branches	stacked	on	it	will	continue	to	be	so.	However,	the
development	focus	has	switched	to	the	migrated	trunk	and	any	new
branches	pushed	to	Launchpad	for	your	project	will	now	stack	on	it.

You	 are	 now	 ready	 to	 tell	 your	 community	 that	 the	 new	 trunk	 is
available	 and	 to	 give	 them	 instructions	 on	 migrating	 any	 local
branches	they	have.

If	 you	want	 your	 new	migrated	 development	 focus	 branch	 to	 have
the	same	name	as	your	old	pre-migration	branch,	you	need	to	do	a

few	extra	things	before	you	establish	the	new	development	focus.

1.	 Rename	your	old	pre-migration	branch;	use	something	like	foo-
obsolete-do-not-use.	 You	 will	 really	 not	 want	 to	 delete	 this
because	 there	 will	 be	 artifacts	 (bugs,	 merge	 proposals,	 etc.)
associated	with	it.

2.	 Rename	the	new	migrated	branch	to	the	pre-migration	branch’s
old	name.

3.	 Re-establish	 the	 development	 focus	 branch	 using	 the	 new
migrated	branch’s	new	name	(i.e.	the	old	pre-migration	branch’s
original	name).

Migrating	local	branches	after	a	central	trunk	has
migrated

To	migrate	a	standalone	branch:

1.	 Grab	 the	 latest	 branch	 from	 the	 central	 location	 into	 a	 new
directory.

2.	 Pull	or	merge	any	changes	you’ve	made	in	your	existing	branch
into	the	new	branch.

To	migrate	branches	in	a	shared	repository:

1.	 Create	a	fresh	shared	repository	in	the	new	format	(2a	or	later).
2.	 Grab	 the	 latest	 branch	 from	 the	 central	 location	 into	 a	 new

directory	inside	the	shared	repository.
3.	 Decide	which	of	your	local	branches	you	want	to	migrate.	(If	you

haven’t	 already,	 now’s	 a	 good	 time	 for	 Finding	 obsolete
branches	and	purging	them,	after	backing	up	first	of	course.)

4.	 To	migrate	each	local	branch	of	interest,	there	are	2	options:

init	 an	 empty	 branch	 in	 the	 new	 repository	 and	 pull	 the
revisions	from	the	branch	in	the	old	repository	across.
In	the	new	repository,	branch	from	trunk	to	the	new	branch

name	then	merge	your	changes	from	the	matching	branch
in	the	old	repository.

The	first	method	will	give	you	a	branch	which	is	identical	(in	terms	of
revision	history)	to	the	old	branch,	but	it’s	parent	branch	will	be	set	to
the	 old	 branch,	 not	 your	 new	 trunk.	 If	 you	 use	 this	 method,	 you’ll
probably	 want	 to	 edit	 your	 branch.conf	 file	 to	 update	 the	 parent
branch	setting.

In	contrast,	the	second	approach	sets	up	the	parent	branch	correctly.
However,	 it	 isn’t	 ideal	 if	 you’re	 not	 ready	 to	 include	 all	 the	 latest
revisions	from	trunk	into	that	branch	yet.

Tips	and	tricks

Finding	obsolete	branches

If	 you	 use	 feature	 branching	 for	 developing	 each	 fix	 and
enhancement	 separately,	 you	may	 have	 several	 old	 branches	 that
are	 no	 longer	 required.	 In	many	 cases,	 the	 relevant	 changes	may
now	be	merged	into	trunk.	In	other	cases,	a	branch	may	be	obsolete
thanks	to	another	change	made	by	yourself	or	others.

When	 checking	 for	 an	 obsolete	 branch,	 there	 are	 three	 things	 in
particular	to	confirm:

1.	 The	working	tree	has	no	in-progress	changes.
2.	 The	working	tree	has	no	shelved	changes.
3.	 Any	 locally	 committed	 revisions	 have	 been	 merged	 into	 the

parent	branch.

After	 changing	 into	 the	 root	 of	 a	 branch,	 the	 commands	 to	 check
these	things	respectively	are:

bzr	status

bzr	shelve	--list

bzr	missing	--mine-only

If	 your	branches	are	stored	 in	a	shared	 repository	 locally,	 you	may
find	 the	 Local	 Changes	 tab	 in	 Bazaar	 Explorer’s	 repository	 view
helpful	here	(revision	159	or	 later)	as	 it	shows	a	summary	of	 these
things,	excluding	the	shelve	information	currently,	for	each	branch	as
you	select	it.

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Bazaar	User	Reference

About	This	Manual
This	 manual	 is	 generated	 from	 Bazaar’s	 online	 help.	 To	 use	 the
online	help	system,	try	the	following	commands.

Introduction	including	a	list	of	commonly	used	commands:

bzr	help

List	of	topics	and	a	summary	of	each:

bzr	help	topics

List	of	commands	and	a	summary	of	each:

bzr	help	commands

More	information	about	a	particular	topic	or	command:

bzr	help	topic-or-command-name

The	following	web	sites	provide	further	information	on	Bazaar:

Home	page: http://bazaar.canonical.com/
Official	docs: http://doc.bazaar.canonical.com/
Launchpad: https://launchpad.net/bzr/

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/
https://launchpad.net/bzr/

Concepts
Branches
Checkouts
Content	Filters
Criss-Cross
Diverged	Branches
End	of	Line	Conversion
Storage	Formats
Patterns
Repositories
Rules
Standalone	Trees
Branches	Out	of	Sync
Working	Trees

Lists
Authentication	Settings
Bug	Tracker	Settings
Configuration	Settings
Conflict	Types
Current	Storage	Formats
Debug	Flags
Environment	Variables
Files
Global	Options
Hooks
Location	aliases
Log	Formats
Other	Storage	Formats
Revision	Identifiers
Standard	Options
Status	Flags
URL	Identifiers

Commands

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Bazaar	System	Administrator’s
Guide

Introduction
Scope	of	this	guide
What	you	need	to	run	a	Bazaar	server

Simple	Setups
Smart	server

Other	Setups
Dumb	servers
Smart	server	over	HTTP(S)
Direct	Smart	Server	Access

Migration
Fast	Import
Subversion	Conversion

Extending	Bazaar	with	Hooks	and	Plugins
Email	Notification
Feed	Generation
Mirroring
Other	Useful	Plugins

Web-based	code	browsing
Loggerhead
Other	web	interfaces

Integration	with	Other	Tools
Patch	Queue	Manager	(PQM)
Bug	Trackers
Continuous	Integration	Tools
Bundle	Buggy

Security
Authentication
Access	Control

Back-up	and	Restore

Filesystem	Backups
Bazaar	as	its	own	backup
Restoring	from	Backups

Upgrades
Software	upgrades
Disk	format	upgrades
Plugin	upgrades

Advanced	Topics
System	Monitoring
Capacity	Planning	Tips
Clustering
Multi-site	Setups

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

What’s	New	in	Bazaar	2.1?
This	 document	 outlines	 the	 major	 improvements	 in	 Bazaar	 2.1	 vs
Bazaar	2.0.	As	well	as	summarizing	improvements	made	to	the	core
product,	it	highlights	enhancements	within	the	broader	Bazaar	world
of	potential	interest	to	those	upgrading.

Bazaar	2.1.0	marks	 the	start	of	our	second	 long-term-stable	series.
This	series	will	be	supported	with	bug	fixes	for	the	next	12	months.
All	users	are	encouraged	to	upgrade	from	the	2.0.x	stable	series.

Better	efficiency
Many	operations	now	consume	less	memory.	Several	operations	are
also	 faster	 including	 branching,	 logging	 merged	 revisions	 and
upgrading	from	pre-2a	to	2a	format.

New	command	options
Several	commands	have	new	options.	These	include:

Command Option Description
branch bind Bind	to	the	source	location
commit commit-time Give	an	explicit	commit	timestamp
switch revision Switch	to	a	particular	revision
unshelve keep Apply	changes	but	don’t	delete	them

unshelve preview Show	the	diff	that	would	result	from
unshelving

update revision Update	to	a	particular	revision

Other	command	improvements	include:

A	 ../user-reference/shelve-help	 editor	 can	 be	 defined	 to
provide	 shelf	 functionality	 at	 a	 granularity	 finer	 than	 per-patch
hunk.
../user-reference/send-help	send	now	supports	the	OS	X	Mail
application.

See	the	help	for	the	commands	above	for	further	details.

Per-file	merge	hooks
Hooks	can	now	be	defined	for	smart	merging	of	selected	file	types.
This	 enables	 easier	 merging	 of	 ChangeLogs,	 Release	 Notes	 and
other	file	that	frequently	conflict.

DWIM	revision	identifiers
Revision	identifiers	can	now	be	given	in	a	Do-What-I-Mean	style.	For
example,	you	can	now	just	give	a	tag	(instead	of	saying	tag:xxx)	or
just	say	today	(instead	of	saying	date:today).	Prefixes	are	now	only
required	if	the	revision	spec	could	be	ambiguous.

New	ignore	patterns
Patterns	prefixed	with	 !	are	exceptions	 to	 ignore	patterns	and	 take
precedence	 over	 regular	 ignores.	 Such	 exceptions	 are	 used	 to
specify	 files	 that	 should	 be	 versioned	 which	 would	 otherwise	 be
ignored.	Patterns	prefixed	with	!!	act	as	regular	ignore	patterns,	but
have	highest	precedence,	even	over	the	!	exception	patterns.

Smart	server	home	directory	support
bzr+ssh	 and	 bzr	 paths	 can	 now	 be	 relative	 to	 home	 directories
specified	 in	 the	URL.	 Paths	 starting	with	 a	 path	 segment	 of	 ~	 are
relative	 to	 the	 home	 directory	 of	 the	 user	 running	 the	 server,	 and
paths	 starting	 with	 ~user	 are	 relative	 to	 the	 home	 directory	 of	 the
named	user.	For	example,	for	a	user	“bob”	with	a	home	directory	of
/home/bob,	these	URLs	are	all	equivalent:

bzr+ssh://bob@host/~/repo

bzr+ssh://bob@host/~bob/repo

bzr+ssh://bob@host/home/bob/repo

If	 bzr	 serve	 was	 invoked	 with	 a	 --directory	 argument,	 then	 no
home	 directories	 outside	 that	 directory	 will	 be	 accessible	 via	 this
method.

This	 is	 a	 feature	 of	 bzr	 serve,	 so	 pre-2.1	 clients	will	 automatically
benefit	from	this	feature	when	bzr	on	the	server	is	upgraded.

Generalized	glob	support	on	Windows
On	 Windows,	 glob	 expansion	 is	 now	 handled	 in	 a	 universal	 way
across	all	commands.	 In	previous	versions,	 it	was	explicitly	handed
by	just	a	few	commands,	e.g.	add.	A	side	effect	of	this	change	is	that
patterns	 now	 need	 to	 be	 quoted	 when	 passed	 to	 the	 ignore

command,	 e.g.	 bzr	 ignore	 *.foo	 now	 needs	 to	 be	 given	 as	 bzr
ignore	"*.foo".

Improved	Git	and	Mercurial	interoperability
Many	improvements	have	been	made	to	the	git	and	hg	plugins.	With
these	plugins	installed,	most	Git	and	Mercurial	repositories	can	now
be	 read	 by	 standard	 Bazaar	 clients.	 Changes	 can	 also	 be	 written
back	via	the	dpush	command.

http://doc.bazaar.canonical.com/plugins/en/git-plugin.html
http://doc.bazaar.canonical.com/plugins/en/hg-plugin.html

Metaprojects
New	 plugins	 are	 available	 for	 constructing	 larger	 projects	 from
smaller	ones.	These	include:

builder	-	construction	of	a	branch	using	recipes
externals	-	Subversion-style	external	branches

Note: 	The	builder	plugin	has	been	designed	to	complement	the
builddeb	plugin	to	streamline	Debian	source	package
management.	It	may	also	be	useful	for	building	test	images	for	a
QA	team	or	disk	images	for	installers,	say.

http://doc.bazaar.canonical.com/plugins/en/builder-plugin.html
http://doc.bazaar.canonical.com/plugins/en/externals-plugin.html
http://doc.bazaar.canonical.com/plugins/en/builddeb-plugin.html

Colocated	branch	workspaces
A	colocated	workspace	 is	one	where	a	 single	working	 tree	 is	used
across	one	or	more	branches	managed	at	that	same	location.	This	is
now	supported	by	the	new	colo	plugin	and	by	Bazaar	Explorer.

http://doc.bazaar.canonical.com/plugins/en/colo-plugin.html

Better	documentation
A	 Bazaar	 System	 Administrator’s	 Guide	 covering	 topics	 such	 as
setting	up	servers,	security,	backups	and	email	integration	has	been
added.

A	 large	 number	 of	 documentation	 bugs	 have	 been	 fixed,	 clarifying
numerous	issues	and	filling	in	some	missing	holes.

The	Bazaar	User	Reference	has	been	organized	into	topics	making
it	easier	to	navigate	through	and	print	selected	sections	of.

To	assist	users	migrating	from	other	tools,	a	Survival	Guide	has	been
published	 explaining	 Bazaar	 to	 users	 of	 other	 tools	 in	 terms	 they
already	 know.	 Sections	 are	 provided	 for	 existing	 users	 of	 CVS,
Subversion,	ClearCase,	Perforce,	Visual	SourceSafe,	Git,	Mercurial,
Darcs	and	Monotone.

Selected	documents	have	also	been	translated	to	Japanese.

http://doc.bazaar.canonical.com/migration/en/survival/index.html

Enhanced	GUI	clients
Numerous	 enhancements	 have	 been	 made	 to	 most	 of	 our	 GUIs
including	Bazaar	 Explorer,	 TortoiseBZR	 and	 the	QBzr-Eclipse	 add-
on.	 These	 applications	 all	 build	 on	 top	 of	 improvements	 made	 to
QBzr.	Bzr-gtk	has	also	been	improved.

Bazaar	 Explorer	 has	 over	 a	 dozen	 new	 features	 including	 smart
toolbars,	support	for	all	bzr	commands	(including	those	in	plugins),	a
better	working	 tree	 browser	 and	a	 submit	 delta	 report	 showing	 the
cumulative	effect	of	a	series	of	commits.	See	What’s	New	in	Bazaar
Explorer	1.0?	for	more	information.

http://doc.bazaar.canonical.com/explorer/en/whats-new/whats-new-in-1.0.html

Further	information
For	 more	 detailed	 information	 on	 the	 changes	 made,	 be	 sure	 to
check	the	Bazaar	Release	Notes	for:

the	interim	bzr	milestones
the	plugins	you	use.

Enjoy,	The	Bazaar	Development	Team

	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

https://launchpad.net/bzr/2.1
http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Tutorials	»

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/

Bazaar	in	five	minutes

Introduction
Bazaar	is	a	distributed	version	control	system	that	makes	it	easier	for
people	to	work	together	on	software	projects.

Over	 the	next	 five	minutes,	 you’ll	 learn	how	 to	put	 your	 files	under
version	control,	how	to	record	changes	to	them,	examine	your	work,
publish	it	and	send	your	work	for	merger	into	a	project’s	trunk.

If	you’d	prefer	a	more	detailed	 introduction,	 take	a	 look	at	Learning
More.

Installation
This	guide	doesn’t	describe	how	to	install	Bazaar	but	it’s	usually	very
easy.	You	can	find	installation	instructions	at:

GNU/Linux:	Bazaar	 is	probably	 in	your	GNU/Linux	distribution
already.
Windows:	installation	instructions	for	Windows.
Mac	OS	X:	installation	instructions	for	Mac	OS	X.

For	 other	 platforms	 and	 to	 install	 from	 source	 code,	 see	 the
Download	and	Installation	pages.

http://bazaar-vcs.org/WindowsDownloads
http://bazaar-vcs.org/MacOSXBundle
http://bazaar-vcs.org/Download
http://bazaar-vcs.org/InstallationFaq

Introducing	yourself
Before	you	start	working,	it	is	good	to	tell	Bazaar	who	you	are.	That
way	your	work	is	properly	identified	in	revision	logs.

Using	your	name	and	email	address,	instead	of	John	Doe’s,	type:

$	bzr	whoami	"John	Doe	<john.doe@gmail.com>"

Bazaar	will	now	create	or	modify	a	configuration	file,	 including	your
name	and	email	address.

Now,	 check	 that	 your	 name	 and	 email	 address	 are	 correctly
registered:

$	bzr	whoami

John	Doe	<john.doe@gmail.com>

Putting	files	under	version	control
Let’s	create	a	directory	and	some	files	to	use	with	Bazaar:

$	mkdir	myproject

$	cd	myproject

$	mkdir	subdirectory

$	touch	test1.txt	test2.txt	test3.txt	subdirectory/test4.txt

Note	 for	 Windows	 users:	 use	 Windows	 Explorer	 to	 create	 your
directories,	then	right-click	in	those	directories	and	select	New	file	to
create	your	files.

Now	get	Bazaar	to	initialize	itself	in	your	project	directory:

$	bzr	init

If	 it	 looks	 like	nothing	happened,	don’t	worry.	Bazaar	has	created	a
branch	where	it	will	store	your	files	and	their	revision	histories.

The	next	step	is	to	tell	Bazaar	which	files	you	want	to	track.	Running
bzr	add	will	recursively	add	everything	in	the	project:

$	bzr	add

added	subdirectory

added	test1.txt

added	test2.txt

added	test3.txt

added	subdirectory/test4.txt

Next,	 take	 a	 snapshot	 of	 your	 files	 by	 committing	 them	 to	 your
branch.	Add	a	message	to	explain	why	you	made	the	commit:

$	bzr	commit	-m	"Initial	import"

As	Bazaar	is	a	distributed	version	control	system,	it	doesn’t	need	to

http://bazaar-vcs.org/Branch

connect	 to	 a	 central	 server	 to	 make	 the	 commit.	 Instead,	 Bazaar
stores	 your	 branch	 and	 all	 its	 commits	 inside	 the	 directory	 you’re
working	with;	look	for	the	.bzr	sub-directory.

Making	changes	to	your	files
Let’s	change	a	file	and	commit	that	change	to	your	branch.

Edit	 test1.txt	 in	 your	 favourite	 editor,	 then	 check	 what	 have	 you
done:

$	bzr	diff

===	modified	file	'test1.txt'

---	test1.txt			2007-10-08	17:56:14	+0000

+++	test1.txt			2007-10-08	17:46:22	+0000

@@	-0,0	+1,1	@@

+test	test	test

Commit	your	work	to	the	Bazaar	branch:

$	bzr	commit	-m	"Added	first	line	of	text"

Committed	revision	2.

Viewing	the	revision	log
You	can	see	the	history	of	your	branch	by	browsing	its	log:

$	bzr	log

--

revno:	2

committer:	John	Doe	<john.doe@gmail.com>

branch	nick:	myproject

timestamp:	Mon	2007-10-08	17:56:14	+0000

message:

		Added	first	line	of	text

--

revno:	1

committer:	John	Doe	<john.doe@gmail.com>

branch	nick:	myproject

timestamp:	Mon	2006-10-08	17:46:22	+0000

message:

		Initial	import

Publishing	your	branch	with	sftp
There	 are	 a	 couple	 of	ways	 to	 publish	 your	 branch.	 If	 you	 already
have	 an	 SFTP	 server	 or	 are	 comfortable	 setting	 one	 up,	 you	 can
publish	your	branch	to	it.

Otherwise,	skip	to	the	next	section	to	publish	with	Launchpad,	a	free
hosting	service	for	Bazaar.

Let’s	 assume	 you	 want	 to	 publish	 your	 branch	 at
www.example.com/myproject:

$	bzr	push	--create-prefix	sftp://your.name@example.com/~/public_html/myproject

2	revision(s)	pushed.

Bazaar	will	 create	 a	 myproject	 directory	 on	 the	 remote	 server	 and
push	your	branch	to	it.

Now	anyone	can	create	their	own	copy	of	your	branch	by	typing:

$	bzr	branch	http://www.example.com/myproject

Note:	 to	 use	 sftp,	 you	may	need	 to	 install	 paramiko	 and	 pyCrypto.
See	http://bazaar-vcs.org/InstallationFaq	for	details.

https://launchpad.net/
http://bazaar-vcs.org/InstallationFaq

Publishing	your	branch	with	Launchpad
Launchpad	 is	 a	 suite	 of	 development	 and	 hosting	 tools	 for	 free
software	projects.	You	can	use	it	to	publish	your	branch.

If	 you	 don’t	 have	 a	 Launchpad	 account,	 follow	 the	 account	 signup
guide	and	register	an	SSH	key	in	your	new	Launchpad	account.

Replacing	john.doe	with	your	own	Launchpad	username,	type	[1]:

$	bzr	push	lp:~john.doe/+junk/myproject

[1] Use	of	the	lp:	URL	scheme	requires	bzr	0.92	or	later.

Note:	 +junk	 means	 that	 this	 branch	 isn’t	 associated	 with	 any
particular	project	in	Launchpad.

Now,	anyone	can	create	their	own	copy	of	your	branch	by	typing:

$	bzr	branch	lp:~john.doe/+junk/myproject

You	 can	 also	 see	 information	 about	 your	 branch,	 including	 its
revision	 history,	 at
https://code.launchpad.net/people/+me/+junk/myproject

https://help.launchpad.net/CreatingYourLaunchpadAccount
https://launchpad.net/people/+me/+editsshkeys
https://code.launchpad.net/people/+me/+junk/myproject

Creating	your	own	copy	of	another	branch
To	work	with	someone	else’s	code,	you	can	make	your	own	copy	of
their	 branch.	 Let’s	 take	 a	 real-world	 example,	 Bazaar’s	 GTK
interface:

$	bzr	branch	lp:~bzr/bzr-gtk/trunk	bzr-gtk.john

Branched	292	revision(s).

Bazaar	will	download	all	the	files	and	complete	revision	history	from
the	 bzr-gtk	 project’s	 trunk	 branch	 and	 create	 a	 copy	 called	 bzr-
gtk.john.

Now,	 you	 have	 your	 own	 copy	 of	 the	 branch	 and	 can	 commit
changes	 with	 or	 without	 a	 net	 connection.	 You	 can	 share	 your
branch	at	any	 time	by	publishing	 it	and,	 if	 the	bzr-gtk	 team	want	 to
use	your	work,	Bazaar	makes	it	easy	for	them	to	merge	your	branch
back	into	their	trunk	branch.

Updating	your	branch	from	the	main	branch
While	 you	 commit	 changes	 to	 your	 branch,	 it’s	 likely	 that	 other
people	will	also	continue	to	commit	code	to	the	parent	branch.

To	 make	 sure	 your	 branch	 stays	 up	 to	 date,	 you	 should	 merge
changes	from	the	parent	into	your	personal	branch:

$	bzr	merge

Merging	from	saved	parent	location:	http://bazaar.launchpad.net/~bzr/bzr-gtk/trunk

All	changes	applied	successfully.

Check	what	has	changed:

$	bzr	diff

If	 you’re	 happy	 with	 the	 changes,	 you	 can	 commit	 them	 to	 your
personal	branch:

$	bzr	commit	-m	"Merge	from	main	branch"

Committed	revision	295.

Merging	your	work	into	the	parent	branch
After	 you’ve	 worked	 on	 your	 personal	 branch	 of	 bzr-gtk,	 you	 may
want	 to	 send	 your	 changes	 back	 upstream	 to	 the	 project.	 The
easiest	way	is	to	use	a	merge	directive.

A	 merge	 directive	 is	 a	 machine-readable	 request	 to	 perform	 a
particular	merge.	 It	 usually	 contains	 a	 patch	 preview	 of	 the	merge
and	 either	 contains	 the	 necessary	 revisions,	 or	 provides	 a	 branch
where	they	can	be	found.

Replacing	mycode.patch,	create	your	merge	directive:

$	bzr	send	-o	mycode.patch

Using	saved	parent	location:	http://bazaar.launchpad.net/~bzr/bzr-gtk/trunk

You	can	now	email	the	merge	directive	to	the	bzr-gtk	project	who,	if
they	 choose,	 can	 use	 it	 merge	 your	 work	 back	 into	 the	 parent
branch.

Learning	more
You	can	find	out	more	about	Bazaar	in	the	Bazaar	User	Guide.

To	learn	about	Bazaar	on	the	command-line:

$	bzr	help

To	learn	about	Bazaar	commands:

$	bzr	help	commands

To	learn	about	the	‘’foo’’	topic	or	command:

$	bzr	help	foo

nextprevious	|	Home	|		Documentation	|		Table	of	Contents	(2.2b1)	»	Tutorials	»

©	Copyright	2009,	Canonical	Ltd.	Created	using	Sphinx	0.6.5.

http://bazaar.canonical.com/
http://doc.bazaar.canonical.com/en/
http://sphinx.pocoo.org/

	Table of Contents (2.2b1)
	What's New in Bazaar 2.2?
	Bazaar User Guide
	Tutorials
	Bazaar in five minutes
	Bazaar Tutorial
	Using Bazaar with Launchpad
	Centralized Workflow Tutorial

	Quick Reference
	Bazaar Release Notes
	bzr 2.2b1
	bzr 2.1.1
	bzr 2.1.0
	bzr 2.1.0rc2
	bzr 2.1.0rc1
	bzr 2.0.5
	bzr 2.0.4
	bzr 2.1.0b4
	bzr 2.0.3
	bzr 2.1.0b3
	bzr 2.1.0b2
	bzr 2.0.2
	bzr 2.1.0b1
	bzr 2.0.1
	bzr 2.0.0
	bzr 2.0.0rc2
	bzr 2.0.0rc1
	bzr 1.18.1
	bzr 1.18
	bzr 1.18rc1
	bzr 1.17.1 (unreleased)
	Bug Fixes

	bzr 1.17
	bzr 1.16.1
	bzr 1.16
	bzr 1.15
	bzr 1.14
	bzr 1.13
	bzr 1.12
	bzr 1.11
	bzr 1.11rc1
	bzr 1.10
	bzr 1.10rc1
	bzr 1.9
	bzr 1.9rc1
	bzr 1.8
	bzr 1.8rc1
	bzr 1.7.1
	bzr 1.7.1rc1
	bzr 1.7
	bzr 1.7rc2
	bzr 1.7rc1
	bzr 1.6.1
	bzr 1.6.1rc2
	bzr 1.6.1rc1
	bzr 1.6
	bzr 1.6rc5
	bzr 1.6rc4
	bzr 1.6rc3
	bzr 1.6rc2
	bzr 1.6rc1
	bzr 1.6beta3
	bzr 1.6beta2
	bzr 1.6beta1
	bzr 1.5
	bzr 1.5rc1
	bzr 1.4
	bzr 1.4rc2
	bzr 1.4rc1
	bzr 1.3.1
	bzr 1.3.1rc1
	bzr 1.3
	bzr 1.3rc1
	bzr 1.2
	bzr 1.2rc1
	bzr 1.1
	bzr 1.1rc1
	bzr 1.0
	bzr 1.0rc3
	bzr 1.0rc2
	bzr 1.0rc1
	bzr 0.92
	bzr 0.92rc1
	bzr 0.91
	bzr 0.91rc2
	bzr 0.91rc1
	bzr 0.90
	bzr 0.90rc1
	bzr 0.18
	bzr 0.18rc1
	bzr 0.17
	bzr 0.17rc1
	bzr 0.16
	bzr 0.16rc2
	bzr 0.16rc1
	bzr 0.15
	bzr 0.15rc3
	bzr 0.15rc2
	bzr 0.15rc1
	bzr 0.14
	bzr 0.14rc1
	bzr 0.13
	bzr 0.13rc1
	bzr 0.12
	bzr 0.12rc1
	bzr 0.11
	bzr 0.11rc2
	bzr 0.11rc1
	bzr 0.10
	bzr 0.9.0
	bzr 0.8.2
	bzr 0.8.1
	bzr 0.8
	bzr 0.7
	bzr 0.6
	bzr 0.1.1
	bzr 0.1
	bzr 0.0.9
	bzr 0.0.8

	Bazaar 2.0 Upgrade Guide
	Bazaar User Reference
	Bazaar System Administrator's Guide
	Introduction
	Simple Setups
	Other Setups
	Migration
	Extending Bazaar with Hooks and Plugins
	Web-based code browsing
	Integration with Other Tools
	Security
	Back-up and Restore
	Upgrades
	Advanced Topics

