
Welcome	to	BASin!

BASin	is	a	program	that	helps	you	to	write	programs	in	BASIC.	It	is	made	by	a
company	called	Retro	Computers	Ltd,	 and	with	 it	 you	 can	 learn	how	 to	make
your	own	programs	and	games.

BASIC	is	the	name	of	the	language	that	BASin	uses.	It	stands	for	Beginners	All-
purpose	Symbolic	Instruction	Code	-	which	means	that	people	who	have	never
tried	to	write	their	own	programs	before	will	find	it	easy	to	understand	and	use.
This	 version	 of	 BASin	 is	 called	 "BASin	 for	 Beginners"	 because	 it	 has	 some
changes	that	are	designed	to	make	learning	as	easy	as	possible.	While	there	are
other	languages	that	you	can	use,	we	would	recommend	that	you	start	here.	The
things	that	you	learn	with	BASin	for	Beginners	will	help	you	when	you	feel	you
are	ready	to	learn	more	about	programming	on	your	PC.

Before	you	 start,	 you	may	want	 to	 read	 the	 following	 topics	 that	 explain	what
BASin	does	and	how	the	BASIC	language	started:

What	is	BASin?
What	is	a	Sinclair	Spectrum?
History	of	Sinclair	BASIC.
How	BASin	differs	from	a	real	ZX	Spectrum.

To	get	help	on	a	particular	topic

To	learn	how	to	do	something	in	BASin,	use	the	Contents	and	Index	areas	on
the	 left	 of	 this	 help	window.	You	 can	 look	 for	 the	 topic	 you	want,	 or	 enter	 a
codeword	on	the	index	tab.

What	is	BASin?

BASin	 is	 a	 what	 is	 called	 a	 "Development	 Environment".	 It	 was	 designed	 to
make	programming	in	BASIC	easy.

Way	back	 in	 the	 early	 1980s,	 a	 company	 called	Sinclair	Research	Ltd	made	 a
computer	called	the	ZX	Spectrum.	Nothing	quite	like	it	had	been	made	before,	at
least	not	as	cheap	to	buy	as	Sinclair's	computer	-	so	a	great	many	children	of	that
time	had	one	in	their	houses.	For	the	price,	it	was	very	powerful	-	it	had	colour
graphics,	a	full	keyboard	(trust	me,	that	was	a	big	deal	back	then!)	and	connected
to	your	living	room	TV.

AND	it	played	games!	Lots	of	them.	Throughout	the	life	of	the	Spectrum,	about
10	years,	there	were	thousands	of	games	made	and	sold.	Because	this	was	a	new
thing	at	the	time	(because	games	hadn't	been	around	for	long)	most	of	them	were
made	by	people	like	you	and	me	-	who	made	programs	as	a	hobby.

That	is	the	real	genius	of	Sinclair's	computers.	They	not	only	had	the	ability	to
play	 games,	 they	 also	 had	 a	 secret	weapon	 built-in:	A	 programming	 language
called	BASIC.	With	BASIC	you	could	give	the	computer	instructions	that	could
be	used	to	make	it	do	anything	you	wanted	-	including	make	games.

BASin	 runs	 what	 is	 called	 an	 "emulator"	 -	 that	 is,	 a	 program	 for	 a	 PC	 that
pretends	to	be	another	computer.	This	means	that	BASin	will	let	you	program	in
the	 same	 language	 as	 the	 Spectrum,	 and	 that's	 what	 makes	 it	 easy	 to	 do.
Programming	 for	 a	 PC	 is	 a	 very	 complex	 thing	 to	 do,	 and	 not	 something	 an
absolute	beginner	should	attempt.	Once	they	have	learnt	one	language	though,	it
makes	 it	 easier	 to	 program	 in	 another.	 So	 starting	 with	 Sinclair	 BASIC	 on	 a
Spectrum,	although	quite	simple,	will	open	 the	doors	 to	a	world	 that	 is	so	vast
and	full	of	fun	that	you	will	spend	the	rest	of	your	life	exploring	it!

BASin's	editor	 looks	 like	 that	 of	 the	Spectrum,	with	 the	 addition	of	 codeword
help,	 a	 "Coding	 teacher"	 that	 checks	 your	 program	 as	 you	 write	 it,	 and
development	 tools	 such	 as	 a	UDG	 editor	 and	 a	 variable	 viewer/editor.	 BASin
also	 provides	 advanced	 debugging	 features:	 conditional	 breakpoints,	 watches,
and	 full	 program	 flow	 control	 at	 the	 line/statement	 level.	 Don't	 worry	 if	 you

don't	understand	what	all	that	means	-	you	soon	will!

Program	development	 in	BASin	 is	easier	and	faster	 than	 it	was	on	 the	original
ZX	Spectrum.	The	Spectrum	BASIC	manual	-	an	excellent	introduction	not	only
to	the	language,	but	to	programming	in	general	-	is	included	here	for	beginners,
and	has	been	modified	where	necessary	to	take	account	of	BASin's	features.

What	is	a	Sinclair	Spectrum?

Released	 in	 1982	 as	 a	 direct	 rival	 to	 Acorn's	 BBC	 range	 of	 educational
computers,	the	Sinclair	ZX	Spectrum	was	a	true	home	computer	at	an	affordable
price.	It	loaded	games	from	a	standard	cassette	player	and	produced	a	display	on
the	 family	 television	 set.	 Unlike	 its	 competitors,	 the	 Spectrum	was	 small	 and
black,	with	rubber	keys	and	a	small	buzzer	for	making	simple	beeping	noises	-
and	it	was	amazingly	successful.

The	hardware

The	Spectrum	was	based	on	a	combination	of	ULA	(uncommitted	 logic	array)
and	 3.5	 MHz	 Z80	 processor,	 and	 initially	 had	 16	 kilobytes	 of	 RAM	 (usable
memory).	This	was	later	increased	to	48	KB,	which	rapidly	became	the	standard.

The	screen	display	measured	256	×	192	pixels,	a	high	resolution	for	its	time,	and
supported	eight	colours	at	 two	brightness	levels,	 totalling	fifteen	colours	(since
bright	and	dull	black	were	identical).	The	display	was	divided	into	24	rows	and
32	columns	of	"character	cells",	each	8	×	8	pixels	and	capable	of	containing	any
two	of	 the	basic	eight	colours	 (or	attributes),	as	 long	as	 they	were	at	 the	same
intensity.	This	led	to	some	"attribute	clash",	one	of	the	most	endured	and	loved
features	 of	 the	 hardware:	where	 two	 coloured	 objects	 collided,	 their	 attributes
would	overlap,	giving	the	impression	of	coloured	squares.

Sound	was	similarly	simple	and	to	the	point:	a	buzzer	capable	of	outputting	one
channel	of	beeping.	The	BEEP	command	was	used	to	drive	it	from	BASIC,	but
clever	 machine	 code	 routines	 could	 produce	 multi-channel	 effects	 and	 music,
which	 no	 other	 computer	 of	 the	 time	 could	 rival	 without	 dedicated	 sound
hardware.

The	BASIC

Spectrum	BASIC	was	more	or	less	unique,	as	was	the	method	of	programming.
Keys	on	the	keyboard	were	imprinted	with	BASIC	keywords,	which	meant	that
a	 single	keypress	 (such	as	P)	could	produce	an	entire	keyword	 (PRINT).	 The
use	of	shift	keys	made	further	keywords	available.	 It	was	a	quirky	system,	but

easy	to	learn.	This	style	of	coding	was	the	standard	for	all	Spectrums	prior	to	the
128K	machine.

For	more	information,	see	History	of	Sinclair	BASIC.

History	of	the	Spectrum

Although	intended	as	a	serious	business	and	educational	machine,	the	Spectrum
quickly	 gained	 a	 devoted	 following	 of	 gamers.	 Because	 Sinclair	 had	 wisely
incorporated	 the	 BASIC	 programming	 language,	 a	 legion	 of	 bedroom
programmers	 arose	 almost	 overnight,	 advertising	 their	 home-grown	 games
cheaply	 in	magazines.	Many	 of	 today's	 programmers	 owe	 their	 careers	 to	 the
Spectrum,	 having	 moved	 from	 BASIC	 to	 Z80	 assembly	 language;	 and	 top
software	houses	such	as	Rare	and	Bullfrog	cut	their	teeth	in	the	home	computer
market	by	writing	top-quality	Spectrum	games.

The	Spectrum	continued	 to	 grow,	 not	 only	with	new	 incarnations,	 but	with	 an
increasing	selection	of	peripherals.	You	could	buy	printers,	mass	storage	devices,
joysticks,	light-pens,	and	light-guns	-	all	in	the	same	sleek	rounded	black	style.	It
was	a	hobbyist's	dream.

In	1984,	the	Spectrum	became	the	Spectrum+,	with	a	typewriter-style	keyboard
housing	for	the	still	popular	48K	machine.	The	new	keyboard	kept	the	"Sinclair"
feel	and	was	adequate	for	single-key	programming,	if	not	for	touch-typing.

The	 128K	 Spectrum	 followed	 in	 1986.	 A	 clever	 memory	 paging	 mechanism
gave	 this	machine	 a	 full	 128	kilobytes	of	RAM.	The	BASIC	benefited	 from	a
"silicon	 disk"	 or	 RAM	 disk,	 allowing	 programs	 to	 be	 saved	 to	 temporary
memory	 almost	 instantly,	 and	 a	 PLAY	 command	 which	 controlled	 the	 three
channels	of	the	new	AY-3-8912	sound	chip.

Later	 in	 1986,	 Sinclair	 Research	 was	 sold	 to	 Amstrad	 Consumer	 Electronics,
who	re-released	the	128K	machine	as	the	Spectrum	+2	with	a	new	ROM,	a	grey
case	with	a	more	professional	keyboard	(reminiscent	of	the	Amstrad	CPC),	and	a
built-in	 cassette	 recorder.	Many	 considered	 this	 to	 be	 the	 death	 of	 the	Sinclair
Spectrum,	 but	 Amstrad	 did	 eventually	 address	 issues	 with	 the	 machine's
hardware	when	they	produced	the	Spectrum	+3,	complete	with	3"	disk	drive.

Commercial	software	(mostly	games)	continued	to	be	released	for	the	Spectrum
until	 the	 early	 1990s.	 Even	 now,	 in	 the	 twenty-first	 century,	 the	 Spectrum	 is
almost	 a	 household	word	 -	 and	 the	 enthusiasm	 for	 it	 seems	 likely	 to	 continue
well	into	the	future.

History	of	Sinclair	BASIC

[From	The	History	of	Sinclair	BASIC,	by	Andrew	Owen.]

Sinclair	BASIC	 needs	 no	 introduction	 to	 enthusiasts	 of	 the	 little	 rubber-keyed
machine,	but	its	evolution	is	stranger	than	you	might	think.

In	July	1975,	Micro-Soft,	as	it	was	then	called,	shipped	BASIC	(Beginner's	All-
purpose	 Symbolic	 Instruction	 Code)	 version	 2.0	 for	 the	 MITS	 Altair	 8800
hobbyist	 computer.	 This	 was	 the	 first	 commercial	 version	 of	 the	 BASIC
programming	language,	originally	developed	by	J	G	Kemeny	and	T	E	Kurtz	in
1964	at	Dartmouth	College	in	the	United	States.

By	then,	Kemeny	and	Kurtz	had	addressed	the	main	criticisms	of	BASIC	-	that	it
lacked	structure	and	encouraged	bad	programming	habits	 -	but	 the	4K	and	8K
versions	for	the	Altair,	written	by	Paul	Allen	and	Bill	Gates,	were	based	on	the
original	Dartmouth	BASIC.

Microsoft	 BASIC	 became	 so	 popular	 that	 it	 made	 Gates	 and	 Allen	 their	 first
fortune	and	was	subsequently	supplied	with	the	majority	of	8-bit	computers.	So,
not	 surprisingly,	 when	 the	 ANSI	 Standard	 for	 Minimal	 BASIC	 (X3.60-1978)
was	launched,	it	was	based	mainly	on	the	Microsoft	version.

In	May	1979,	Clive	Sinclair's	engineers	began	work	on	the	machine	that	would
become	the	ZX80.	Sinclair	was	inspired	to	create	the	machine	after	seeing	how
much	his	son	enjoyed	using	a	TRS-80	but	guessing	that	many	people	would	be
put	off	buying	one	because	of	the	high	price	-	just	under	£500.

Unlike	the	MK14,	Sinclair's	previous	foray	into	the	computer	hobbyist	market,
this	machine	would	ship	with	BASIC	based	on	the	ANSI	standard.	But	the	aim
was	to	keep	costs	down,	and	that	precluded	paying	a	licence	fee	to	Microsoft.	To
this	 end,	 Sinclair	 had	 already	 met	 with	 John	 Grant	 of	 Nine	 Tiles	 in	 April	 to
discuss	the	software	requirements	of	the	ZX80.

Given	the	tiny	R&D;	budget,	Nine	Tiles	stood	to	make	hardly	any	money	out	of
the	deal,	but	 the	feeling	was	 that	 the	project	was	exciting	and	worthwhile,	and

one	the	company	would	benefit	from	being	associated	with.

To	achieve	the	launch	price	of	£79.95	in	kit	form,	RAM	was	limited	to	1K	and
the	integer	BASIC	had	to	be	crammed	into	a	4K	ROM.	Grant	wrote	the	bulk	of
the	ROM	between	June	and	July.	But	the	resulting	program	was	5K	in	length,	so
Grant	spent	that	August	trimming	the	code.

According	 to	 Cambridge	 mathematician	 Steven	 Vickers,	 who	 wrote	 the
subsequent	versions	of	Sinclair	BASIC:	"The	ZX80	integer	BASIC,	written	by
John	Grant,	was	 in	Z80	assembly	 code	pure	 and	 simple,	 though	 it	 did	use	 the
usual	stack	based	techniques	for	interpreting	expressions."

The	 lack	 of	 support	 for	 floating-point	 numbers	 overshadows	 Grant's
achievement.	 He	 laid	 the	 path	 for	 things	 to	 come,	 introducing	 many	 unique
features	 of	 Sinclair	 BASIC,	 such	 as	 the	 way	 it	 refuses	 to	 allow	 most	 syntax
errors	to	be	entered	into	the	program,	instead	pointing	out	where	the	error	is	in
the	 line	 before	 it	 is	 entered,	making	 it	much	 easier	 to	 learn	 and	 use	 than	 any
other	version	of	BASIC.

The	kit	was	launched	at	a	computer	fair	in	the	first	week	of	February	1980,	and
while	 it	 was	 not	 a	 massive	 success	 by	 comparison	 with	 the	 ZX	 Spectrum,	 it
turned	 Sinclair's	 fortunes	 around,	 eventually	 earning	 him	 a	 knighthood,	 and	 it
sold	well	enough	to	persuade	him	to	make	a	new	computer:	the	ZX81.

Work	 on	 the	 ZX81	 hardware	 had	 begun	 in	 September	 1979,	 even	 before	 the
launch	of	the	ZX80,	but	it	was	the	development	of	the	uncommitted	logic	array,
or	ULA,	which	allowed	the	machine	to	go	into	production.	The	ULA,	produced
by	Ferranti	for	Sinclair,	reduced	the	chip	count	and	brought	the	retail	cost	of	the
machine,	in	kit	form,	down	to	£49.95.

Again,	Nine	Tiles	was	called	on	to	provide	the	new	BASIC,	but	this	time	there
was	8K	to	play	with.	Vickers,	who	had	joined	Nine	Tiles	in	January	1980,	wrote
the	 BASIC	 more	 or	 less	 from	 scratch,	 only	 using	 some	 of	 the	 ZX80	 code,
making	 numerous	 improvements	 while	 managing	 to	 maintain	 backwards
compatibility	with	the	ZX80	hardware.

"As	far	as	Clive	was	concerned,	it	wasn't	a	question	of	what	the	machine	ought
to	be	able	 to	do,	but	more	what	could	be	crammed	 into	 the	machine	given	 the

component	budget	he'd	set	his	mind	on,"	said	Vickers	in	an	interview	on	July	23,
1985.	"The	only	firm	brief	for	 the	 '81	was	 that	 the	 '80's	math	package	must	be
improved."

The	ROM	was	almost	complete	by	the	end	of	autumn	1980,	but	support	still	had
to	be	added	for	the	ZX	Printer.	Somewhere	between	this	time	and	the	launch,	a
bug	crept	 in	which	caused	 the	square	root	of	0.25	 to	be	1.3591409.	Nine	Tiles
quickly	 fixed	 the	bug,	but	Sinclair	was	somewhat	 tardy	 in	making	 this	version
available	to	people	who	had	already	bought	the	machine.

Despite	 this	 problem,	 the	 ZX81	 was	 well	 received	 and	 became	 a	 massive
success,	spawning	a	series	of	clones,	both	illegal	and	licensed	by	Timex,	which
was	manufacturing	the	UK	models	for	Sinclair	at	its	Dundee	plant.	Inspired	by
the	 public	 reaction	 to	 the	 ZX81,	 and	 annoyed	 at	 not	 winning	 the	 contract	 to
design	a	computer	for	the	British	Broadcasting	Corporation,	Sinclair	decided	the
market	needed	a	budget	colour	computer.

The	ZX80	and	ZX81	hardware	had	been	the	primarily	the	work	of	one	man,	Jim
Westwood,	but	he	had	been	moved	 to	 the	 flat-screen	 television	department,	 so
the	 hardware	 design	 job	 on	 the	 ZX82,	 which	 became	 the	 ZX	 Spectrum,	 was
given	 to	 Richard	Altwasser	 -	 while	 Vickers	 at	 Nine	 Tiles	 was	 again	 asked	 to
provide	the	BASIC.

What	started	out	as	an	expansion	of	 the	ZX81	BASIC	soon	turned	into	a	 large
16K	program.	Sinclair	wanted	as	few	changes	to	the	ZX81	code	as	possible,	but
Nine	Tiles	felt	that	software	designed	for	a	machine	with	1K	was	inappropriate
for	 a	 machine	 with	 16K	 and	 that	 problems	 would	 occur	 later	 on.	 They	 were
right.

"Certainly	with	the	Spectrum	we	wanted	to	rewrite	the	code,	but	there	wasn't	the
time	 and	 there	 definitely	weren't	 the	 resources,"	 said	Grant	 in	 an	 interview	on
September	8,	1985.	"At	every	point	[in	the	development	of	the	ZX	range]	Clive
wanted	the	maximum	new	facilities	for	the	minimum	money."

After	the	best	part	of	a	year's	work	the	BASIC	was	almost	finished.	While	it	was
greatly	 enhanced,	 it	 was	 also	 depressingly	 slow,	 but	 more	 problems	 were	 to
follow.	 The	main	 problem	was	 providing	 support	 for	 the	 planned	 peripherals,
because	no	working	prototypes	were	available	 to	Vickers	until	near	 the	end	of

1981.	 But	 then,	 in	 February	 1982,	 Nine	 Tiles	 began	 to	 have	 financial
disagreements	with	Sinclair	over	royalties	which	it	became	apparent	would	not
be	forthcoming.

To	make	matters	worse,	Vickers	and	Altwasser	both	handed	in	their	resignations
in	 order	 to	 form	 their	 own	 company,	 Cantab,	 which	 went	 on	 to	 produce	 the
Jupiter	 Ace,	 essentially	 a	 ZX80	 with	 the	 Forth	 language	 taking	 the	 place	 of
BASIC.	The	result	of	 the	delays	 these	problems	caused	was	that	when	Sinclair
launched	the	machine,	it	did	so	with	an	incomplete	ROM.	Nine	Tiles	continued
working	 on	 the	ROM	 for	 three	months	 after	 the	 launch	 in	April	 1982,	 but	 by
then	too	many	units	had	been	sold	and	the	program	was	never	finished.

The	 original	 plan	 was	 to	 issue	 only	 a	 limited	 number	 of	 Spectrums	 with	 the
incomplete	ROM	and	provide	an	upgrade,	much	in	the	way	the	bug	in	the	ZX81
ROM	 had	 been	 handled;	 except	 that	 by	 the	 time	 Sinclair	 got	 its	 act	 together,
around	75,000	units	had	been	sold	and	the	plan	became	unworkable.	This	is	the
reason	why	the	microdrive	commands	don't	work	in	the	standard	ROM,	and	led
to	 the	 development	 of	 the	 shadow	ROM	 in	 the	 Interface	 1	 in	 order	 to	 handle
peripherals	which	should	have	been	supported	directly	by	BASIC.

How	BASin	differs	from	a	real	Spectrum

This	section	is	intended	for	Adults	who	are	familiar	with	the	Sinclair	Spectrum
to	read

BASin,	although	as	functionally	close	to	being	a	Sinclair	Spectrum	on	a	PC	as
possible,	has	several	differences.	Mostly	these	affect	the	way	you	enter	programs
into	the	emulated	Spectrum.	Firstly,	the	Spectrum	ROM	used	has	been	patched
extensively	 to	allow	new	features	and	bug-fixes,	 though	no	changes	have	been
made	 to	 the	 ROM	 that	 would	 affect	 how	 your	 programs	would	 run	 on	 a	 real
Spectrum.	One	example	of	this	is	the	lack	of	K,	L,	C,	E,	and	G	cursors	-	because
of	the	addition	of	PC	keyboard	support,	these	are	no	longer	necessary,	as	is	also
the	case	with	 the	Symbol	Shift	key.	The	main	cursor	 in	INPUT	 commands	 is
now	a	white	and	blue	 flashing	square,	which	hovers	over	 the	 input	 rather	 than
nestled	 between	 tokens.	 The	 editor	 does	 support	 the	 usual	 text	 processing
operations	such	as	cut,	copy,	paste	and	search/replace	functions.

Editor	and	keyboard

Tokens	 are	 handled	 differently	 too.	 You	 no	 longer	 enter	 entire	 words	 using	 a
single	key-press	 -	 the	editor	 is	based	on	 the	128k	Spectrum,	which	means	 full
typing	support	with	the	available	use	of	every	key	on	a	modern	keyboard.	You
are	also	free	to	use	the	mouse	to	make	selections	and	get	context	sensitive	help.
For	more	information,	consult	the	section	devoted	to	Using	the	Editor.

As	 mentioned	 before,	 the	 keyboard	 does	 not	 function	 as	 a	 48k	 Spectrum's
keyboard	would.	This	means	that	retrieving	key	states	by	reading	the	result	of	a
BASIC	IN	 instruction	 from	port	$FE	 (254)	no	 longer	works.	INKEY$	 is	 not
affected,	however.	Machine	code	instructions	that	read	the	keyboard	from	a	Z80
IN	 opcode	 will	 retrieve	 the	 correct	 keys	 -	 but	 the	 keyboard	 is	 significantly
different	from	a	PC.	The	CTRL	key	is	designated	to	Symbol	Shift,	the	Shift	keys
act	as	expected,	but	bear	in	mind	that	CTRL-P	will	produce	a	quote	(")	mark,	as
opposed	to	shift-2	on	a	UK	keyboard.

Screen	display

The	main	display	output	(the	Spectrum	"screen")	sits	to	the	right	of	the	Editor	in
the	main	window.	When	a	program	is	 running,	 this	window	will	be	where	any
program	output	 appears.	 It	 behaves	exactly	 the	 same	way	as	 a	 real	Spectrum's
display.	 Because	 the	 editor	 is	 now	 in	 a	 separate	 area	 to	 the	 display,	 runtime
errors	no	longer	report	to	the	bottom	of	the	display	-	they	can	be	redirected	to	an
error	 dialog	 which	 also	 provides	 information	 on	 that	 error.	 This	 again	 helps
prevent	display	corruption,	but	is	a	feature	that	can	be	turned	off.

prompts	 have	 been	 enhanced:	 they	 use	 the	 same	 blue-and-white	 cursor	 as	 the
editor,	and	they	support	cut	and	paste	operations.

Loading	and	saving	files

BASin	uses	text	files	with	the	.bas	extension	to	store	BASIC	code.	This	code	is
in	raw	text	format	(windows	notepad	compatible)	with	escape	codes	to	represent
tokens	that	cannot	be	rendered	in	plain	text.	See	the	chapter	on	.BAS	File	Format
for	 more	 details.	 These	 files	 can	 be	 used	 just	 like	 tape	 files	 on	 the	 original
hardware	-	they	can	store	runtime	variable	contents	and	auto-start	when	loaded.
BASin	for	Beginners	can	load	any	of	the	formats	that	BASin	supports,	but	can
only	save	in	.szx	format.	This	is	to	ensure	that	any	program	saved	by	BASin	can
be	run	on	a	Sinclair	Spectrum	Vega.

See	Loading	and	saving	files	for	more	information.

BASin	and	the	128k	Spectrum

Although	 BASin's	 emulation	 is	 based	 upon	 the	 more	 reliable	 and	 robust	 48k
Spectrum,	it	has	extra	functionality	to	provide	the	enhancements	to	BASIC	that
the	128k	Spectrums	brought.

The	 sound	 is	 enhanced	 over	 the	 simple	 beeper	 of	 the	 48k,	 by	 using	 an	AY-3-
8912	sound	chip,	which	enables	the	BASIC	to	produce	three	channel	sound	and
white	noise,	with	full	envelope	control.

The	extra	memory	of	 the	128k	Spectrum	is	available	 to	BASIC	via	 the	silicon
disc	which	 is	a	"virtual	disk"	system	providing	64kb	of	storage	space	which	 is
almost	 instant	 to	 access.	 With	 careful	 programming	 and	 judicious	 use	 of	 the
MERGE	 command,	 up	 to	 91kb	 of	 BASIC	 program	 can	 be	 stored	 at	 any	 one
time.

128k	Commands

BASin	 will	 allow	 you	 to	 use	 the	 extra	 sound	 and	 silicon	 disc	 systems	 by
"branching"	the	emulation	out	to	the	128k	+2	rom	and	AY-3-8912	sound	chip	as
commands	are	intepreted.	The	commands	given	are...

PLAY	

LOAD	!

SAVE	!

MERGE	!

CAT

ERASE

For	instruction	on	how	to	use	these	commands,	see	the	following	sections	of	this
help	file...

Chapter	19	-	Beep	and	PLAY
Chapter	20	-	File	storage

The	following	keyword	reference	sections	may	also	be	useful...

PLAY
CAT
ERASE
LOAD
SAVE
MERGE

Limitations	of	the	128k	BASIC	-	UDGs

The	extra	commands,	PLAY	and	SPECTRUM	had	to	be	housed	somewhere	in
the	 character	 set	 -	 all	 keywords	 in	 BASIC	 are	 stored	 in	 this	 manner.	 The
designers	decided	that	 in	order	 to	accomodate	the	new	commands,	 the	last	 two
User-Defined	Graphics	("T"	and	"U")	would	be	given	over	to	them.	This	means
that	 some	 programs,	 when	 run	 in	 128k	 mode,	 will	 display	 these	 graphics
characters	incorrectly.

Because	 of	 this	 limitation,	 BASin	 will	 only	 replace	 these	 UDGs	 with	 their
command-replacements	if	your	program	makes	use	of	the	silicon	disc	or	PLAY
command.	This	 is	worth	bearing	in	mind	if	you	would	like	 to	use	 them.	As	an
example,	 the	 program	 "frogger"	 from	 the	 BASin	 examples,	 displays	 correctly
when	run	in	a	48k	mode...

...and	 as	 you	 can	 see,	 all	 the	 graphics	 are	 accounted	 for	 and	 display	 well.
However,	 placing	 a	PLAY	 command	 anywhere	 in	 the	 game	 produces	 a	 quite
drastic	and	undesireable	effect...

...where	 all	 the	 instances	 of	 UDGs	 "T"	 and	 "U"	 have	 been	 replaced	 with
"SPECTRUM"	and	"PLAY".	This	kind	of	thing	was	common	in	BASIC	games
designed	on	the	48k	spectrum	and	run	on	the	128k	without	modification.

Limitations	of	the	128k	BASIC	-	Printing

In	order	 to	 provide	 a	 full	 128kb	of	memory	 in	 the	 later	Spectrum	models,	 the
designers	 utilised	 an	 ingenious	method	 of	 "paging"	 -	 pages	 of	RAM	could	 be
swapped	into	and	out	of	the	upper	memory	at	will.

Also,	 to	 provide	 the	 extra	 commands	 for	 the	 silicon	 disc	 and	 AY	 chip,	 two
ROMs	were	 used,	 which	 could	 be	 swapped	 in	 a	 similar	 manner	 to	 the	 RAM
pages	in	upper	memory.	Of	course,	when	one	ROM	was	paged	in	it	would	need
to	know	 that	 it	 had	 to	 page	 itself	 back	out	 to	 allow	 the	main	ROM	 to	 resume
control.	 This	 was	 not	 possible	 for	 the	 48k	 ROM	 that	 lived	 behind	 the	 newer
128k	 ROM	 -	 it	 had	 to	 be	 an	 exact	 copy	 of	 the	 original	 48k	 ROM	 for
compatibility	reasons,	and	this	ROM	had	not	been	designed	for	paging	systems.

This	meant	that	an	area	of	RAM	had	to	be	allocated	which	the	48k	ROM,	when
it	had	finished	the	job	it	was	called	for,	would	jump	back	to.	This	area	contains
code	that	swaps	the	128k	ROM	back	in.	Because	the	128k	Spectrum	used	an	RS-
232	port	to	communicate	with	more	advanced	printers,	it	was	felt	that	the	printer
buffer	utilised	by	the	48k	ROM	was	no	longer	needed,	and	as	such	this	area	was
reclaimed	 for	 the	 paging	 system	 and	 some	 more	 system	 variables	 which
contained	information	about	the	silicon	disk,	amongst	other	things.

Because	BASin	allows	the	user	to	use	the	old	48k	printer	routines,	then	the	use
of	 the	 commands	 for	 it	 will	 try	 to	 read	 (and	 write)	 to	 the	 buffer	 region
maintained	 by	 the	 paging	 system.	 The	 repercussions	 of	 this	 are	 that	 if	 any

printing	commands	(LPRINT,	LLIST)	are	used	after	a	128k	command,	at	best
you	will	 see	garbage	on	your	printout,	 and	at	worst	 it	may	crash	 the	emulated
spectrum.	 If	 you	 use	 the	 printer	 commands	 with	 silicon	 disk	 commands,	 you
may	find	that	the	silicon	disc	becomes	corrupted,	which	may	in	turn	also	crash
the	emulation.

So	if	you're	going	to	use	128k	commands,	then	please	avoid	the	use	of	the	ZX
Printer	support.

BASin's	48k/128k	program	state	indicator

To	help	 remind	you	which	 computer	 your	program	 is	 compatible	with,	BASin
provides	a	small	indicator	at	the	bottom	of	the	editor	window.	This	is	updated	as
you	create	or	edit	your	program,	and	appears	like	this...

As	you	enter	commands	 into	BASin,	 this	 indicator	will	 remain	 in	 "48k	mode"
until	you	enter	a	128k	command	which	utilises	the	enhanced	sound	(PLAY)	or
the	silicon	disc	 (LOAD	!,	SAVE	!,	MERGE	!,	CAT	!	 and	ERASE	!).
When	BASin	detects	these,	the	indicator	will	change...

...and	when	this	happens	you	may	also	notice	that	any	instances	of	the	UDGs	"T"
and	"U"	will	change	to	their	small-character	hexadecimal	equivalents.

Removing	128k	commands	from	your	program	will	revert	it	back	to	48k	mode.

The	 Program	 Information	Window	will	 also	 display	 compatibility	 information
based	on	your	usage	of	128k	features.

Note:	 Snapshots	 saved	 by	 BASin	 will	 differ	 in	 behaviour	 if	 they	 are	 128k
hardware-based.	 See	 the	 section	 on	 Loading	 and	 saving	 snapshots	 for	 more
information.

Using	BASin

BASin	is	easy	to	use	-	 just	start	 it	and	get	 typing!	There	are	 lessons	online	for
you	to	try.

This	section	will	give	you	an	overview	of	what	BASin	can	do,	and	what	all	the
options	 and	 windows	 you	 can	 open	 actually	 do.	 BASin	 is	 quite	 a	 complex
application,	but	is	very	user-friendly	and	helpful.	You	can	call	up	help	for	any	of
the	dialogs	that	BASin	presents	to	you	by	using	the	F1	key	(except	in	the	Editor
window,	where	this	is	used	for	fast	context	sensitive	BASIC	Keyword	help).

Choose	a	section	to	get	help	for:

Starting	BASin
System	requirements
Getting	help
The	BASIC	editor
The	display	window
Loading	and	saving	files
Running	and	debugging	programs
Debugging	your	programs
Configuring	BASin
BASin's	tools
Sinclair	BASIC	reference

Starting	BASin

BASin	has	been	made	easy	 to	use,	and	starting	 is	no	different.	Start	BASin	by
using	 the	 icon	 supplied	 (BASin.exe)	 in	 the	 Start	 Menu	 or	 in	 the	 folder
BASin	 was	 installed	 into.	 You	 will	 firstly	 be	 greeted	 by	 the	 Editor	 window,
which	 will	 remain	 unresponsive	 until	 the	 emulated	 Spectrum	 has	 been
initialised.

This	 is	 a	 process	 whereby	 the	 original	 48k	 ROM	 is	 loaded	 into	 an	 emulated
memory	model	and	executed	from	address	zero.	The	ROM	will	perform	a	self-
test,	which	is	to	fill	all	available	RAM	with	the	number	two,	and	then	read	that
back,	whilst	clearing	 the	RAM	back	 to	zeros.	Originally,	 this	was	a	useful	 test
which	could	 tell	 the	ROM	how	much	memory	 is	available	back	 in	 the	days	of
16k	 and	 48k	 Spectrums.	 It's	 not	 essential	 to	 BASin's	 operation,	 but	 is	 a	 nice
historical	effect.	The	net	result	is	that	the	Display	Window	will	display	a	white
border	around	an	animated	black	rectangle,	with	faint	 red	vertical	 lines,	before
clearing	to	white	with	the	message

©	2015	Sinclair	Research	Ltd

at	the	bottom	of	the	display.	This	indicates	that	all	is	well,	and	BASin	is	ready	to
start.

The	Editor	will	then	gain	focus	and	pop	to	the	front,	with	a	blank	white	editing
area,	and	a	flashing	blue/white	cursor	similar	to	the	128k	Spectrum's	Editor.	The
gutter	at	the	left	is	for	line	numbers,	and	is	not	a	bug	in	the	Editor.

System	requirements

BASin	is	designed	to	perform	well	regardless	of	PC	hardware	specification.	The
emulation	has	been	tested	using	a	50	MHz	486	DX/2,	and	(with	sound	disabled)
runs	very	well	on	that	specification.	The	editor	is	more	resource-hungry,	but	the
BASin	tab	allows	certain	features	to	be	disabled	if	necessary.

Sound

DirectX	5	or	higher	must	be	installed	in	order	for	sounds	to	play.	DirectX	is	not
required	 for	 the	 display,	 but	 performance	 in	 this	 case	will	 vary	 depending	 on
your	display	driver	software	and	computer	usage	by	other	programs.

Help	file

HTML	Help	requires	Microsoft	Internet	Explorer	5	or	higher.

Spectrum	ROM	image

BASin	 requires	 unmodified	 Spectrum	 48K	 and	 +2	 ROM	 images,	 which	 are
included	 in	 the	 installation	 package.	Amstrad	 has	 graciously	 given	 permission
for	Spectrum	ROM	images	to	be	freely	distributed	and	included	with	emulators.

Getting	help

BASin	has	a	very	detailed	help	file,	to	allow	you	to	easily	find	help	on	any	topic.
You	can	open	the	main	help	page	using	Ctrl-F1	or	by	using	the	Help	Menu	in	the
Editor.

The	 Help	 file	 also	 includes	 a	 complete	 BASIC	 programming	 course,	 adapted
from	 the	 original	 Sinclair	 BASIC	manual.	 This	 also	 includes	 specific	 help	 on
any	of	the	codewords	found	in	Sinclair	BASIC.	Just	hover	your	mouse	over	the
keyword	 you	 want	 help	 with,	 and	 click	 your	 right	 mouse	 button	 to	 get	 a
Codeword	 Context	 Menu	 for	 that	 codeword,	 which	 includes,	 amongst	 other
options,	help	for	 that	codeword.	You	can	also	use	the	Editor	cursor	to	move	to
the	codeword	you	want	help	with,	and	press	F1.

To	get	help	on	an	item	in	a	tool,	click	the	Help	button	in	the	window	you	want
help	with,	or	use	the	Help	menu	if	available.

As	a	last	resort,	you	can	fnd	contact	details	for	the	Author	in	the	Contact	chapter.

The	editor

The	editor	is	the	area	where	you	enter	and	modify	your	BASIC	program.

BASin's	editor	is	where	you	enter	your	program.

Program	 lines	 are	 automatically	 arranged	 in	 numerical	 order,	 no	matter	where
they	are	entered.

Keyboard	and	mouse	operations

BASin	supports	many	standard	navigation	keys.

Like	 any	 other	Notepad	 program,	 you	 can	 use	 the	mouse	 and/or	 shift	 keys	 to
make	 selections	 and	 cut/copy	 them	 to	 the	 windows	 clipboard.	 They	 will	 be
stored	in	.bas	format	which	can	be	pasted	into	any	text	editor.	Pasting	is	a	little
different.	A	 single	 line	of	 text	 pasted	 in	will	 be	 sent	 directly	 to	 the	 editor,	 but
more	than	one	line	will	be	sent	to	the	Add	Code	Window	-	where	you	can	view
the	 lines	 and	change	 them	as	you	wish.	Multiple	 line	pastes	must	 each	have	a
line	number,	 and	contain	no	syntax	errors.	 If	 an	error	occurs	when	pasting	 the
lines	in,	the	offending	line	will	be	ignored	and	will	not	appear	in	your	program.
You	can	see	the	status	of	any	errors	in	pasting	by	viewing	the	Log	Window.	This
facility	 allows	 you	 to	 copy	 a	 BASIC	 program	 from	 say,	 a	 web	 page	 or	 text
document,	and	paste	it	directly	into	BASin.

Right-clicking	in	the	editor	produces	a	context	menu	with	commands	relating	to
the	item	that	was	clicked.

How	your	program	is	formatted

The	 darker	 area	 at	 the	 left-hand	 side	 is	 the	 gutter,	 where	 line	 numbers	 are
displayed.	To	aid	debugging	and	make	things	easier	to	read,	program	lines	that
contain	more	than	one	statement	are	split	on	the	:	(colon)	character,	so	that	each

statement	begins	on	a	new	line	of	the	display.

How	BASin	handles	program	lines

Program	lines,	as	mentioned	earlier,	are	stored	 in	 the	editor	 in	order,	sorted	by
their	line	number.	This	makes	the	program	easier	to	follow	for	the	programmer.

BASin	has	a	number	of	features	to	help	you	with	your	programming:

The	Coding	Teacher

The	coding	teacher	is	a	bar	that	appears	at	the	bottom	of	the	editor	window,
which	tracks	your	code	as	you	type	and	offers	hints	as	to	what	the	current
codeword	actually	does,	and	it's	syntax.

If	you	 type	an	error,	 it	will	 colour	 the	 relevant	part	of	 the	 syntax	 list	 red.
The	syntax	that	is	currently	expected	is	coloured	blue,	and	any	return	types
of	codewords	is	 in	green.	Error	messages	will	appear	at	 the	bottom	of	 the
helper	bar	which	explains	what	has	gone	wrong.

For	more	information,	there	is	a	chapter	dedicated	to	the	coding	teacher.

The	Character	Ruler

This	option	is	available	in	the	View	menu,	rather	than	the	Options	dialog.

The	 character	 ruler	 helps	 you	 to	make	 long	 strings	 for	 display	 on-screen.
Due	to	the	nature	of	the	PRINT	keyword,	a	string	longer	than	32	characters
will	"wrap"	round	to	the	beginning	of	the	next	line	down.	This	can	be	useful
for	displaying	many	lines	of	text	with	one	PRINT.	The	character	ruler	will
show	you	at	a	glance	how	long	your	string	is,	and	a	red	marker	will	appear
at	any	point	where	the	32	character	boundary	is	reached.	This	activity	will

be	activated	whenever	the	cursor	enters	a	string	area	in	the	BASIC	text.

More	information	is	available	in	the	Character	Ruler	chapter.

Line	Overwrite	Protection

BASin	will	not	allow	you	 to	enter	a	 line	 that	contains	a	 syntax	error,	and
when	 you	 make	 one	 the	 cursor	 will	 move	 to	 the	 error	 and	 if	 you	 have
sounds	enabled,	will	emit	a	low	pitched	beep	to	alert	you.

This	behaviour	 is	also	used	by	 the	 line-overwrite	protection	system	which
you	can	 configure	 in	 the	Options	window,	 on	 the	BASin	 tab.	 This,	when
enabled,	will	alert	you	when	you	try	to	enter	a	line	for	which	a	line	already
exists	with	the	same	number.	The	cursor	will	turn	green,	and	the	same	low
beep	can	be	heard.	In	this	instance,	however,	you	do	not	have	to	correct	the
line	number	 -	pressing	Return	a	second	 time	will	accept	 the	new	 line	and
replace	the	old	one.

Auto	line	numbering

BASin	has	a	shortcut	(the	"."	key)	which	will	create	a	line	number	for	you.
Pressing	 the	"."	key	at	 the	 start	 of	 a	new	 line	will	 choose	 a	 line	number
roughly	 halfway	 between	 the	 previous	 line	 number	 (of	 the	 line	 directly
above	the	current	cursor	position	-	Line	0	is	assumed	if	you're	at	the	start	of
the	program)	and	the	next	line	number	if	it	exists.	If	no	next	line	is	present,
then	10	is	added	to	the	previous	line	number.	The	"."	will	not	be	displayed	-
instead,	 your	 new	 line	 number	 will	 be	 typed	 out.	 This	 behaviour	 can	 be
enabled	or	disabled	in	the	Options	window.

Auto-Bracket	completion

Finally,	a	word	about	typing	expressions	of	the	form

(a+(b/c))*3

Which	 make	 use	 of	 brackets	 -	 BASin	 has	 an	 option	 which	 can	 make

counting	many	brackets	easier	-	BASin	can	either	insert	a	closing	bracket	as
you	type,	ahead	of	the	cursor,	or	can	complete	any	open	brackets	when	you
press	enter	to	finish	a	line.

Syntax	Highlighting

The	text	of	your	program	can	optionally	colour	in	the	text	according	to	the
type	of	words	displayed.

This	is	called	"syntax	highlighting",	and	can	make	a	program	a	lot	easier	to
read	 and	 follow.	 Keywords,	 user	 defined	 functions,	 comments,	 numbers,
symbols,	strings,	variables	(BASin	will	colour	variable	names	that	exist	in
VARS	memory	 space	 differently	 to	 those	 that	 do	 not,	 which	 can	 quickly
show	 up	 typing	 errors	 where	 they	 may	 occur)	 and	 the
background/foreground	colours	can	all	be	altered	in	appearance,	also	to	be
set	 to	bold	or	 italics	 in	 style.	Be	aware	 that	 this	 requires	quite	a	 lot	more
effort	to	display	by	your	CPU,	so	may	slow	the	editor	down	on	older	PCs.

Predictive	typing

This	option	will	display	any	keyword	or	variable	name	in	dark	grey	to	the
right	of	your	cursor	as	you	type.

If	 you	 continue	 to	 type,	 the	 search	 for	 the	 correct	word	will	 be	narrowed
down	-	when	you	see	the	correct	word	displayed,	hit	the	right	cursor	key,	or
the	"."	key	to	accept	it.	You	can,	of	course,	continue	typing	over	the	top.	If
you	 do	 not	 accept	 a	 word	 and	 press	 return,	 any	 predicted	 text	 will	 be
removed.

Source	Markers

Source	markers	 are	 a	method	of	moving	quickly	 around	 a	 large	program.
By	 inserting	 a	 source	marker,	 you	 associate	 that	marker	with	 a	 particular

line	or	statement.	By	recalling	it	 later,	you	can	jump	instantly	 to	 that	 line.
This	 makes	 navigation	 between	 important	 sections	 of	 code	 much	 easier.
You	can	access	source	markers	from	the	Search	menu.

Mode	indicator

The	mode	indicator	is	a	black	strip	that	appears	at	the	bottom	of	the	editing
area.	 It	 shows	which	 type	 of	 spectrum	 your	 program	 is	 compatible	with,
based	 on	 commands	 that	 your	 program	 uses.	 It	 shows	 "48	 BASIC"	 by
default,	 until	 you	use	 a	128k	command,	 at	which	point	 it	will	 show	"128
BASIC".	The	Mode	 Indicator	 is	visible	at	all	 times,	and	cannot	be	 turned
off.

Editor	features

The	toolbar.
The	character	ruler.
The	coding	teacher.
The	status	bar.
Variable	ToolTips.
Source	Markers
Expression	Evaluator.

The	status	bar

The	 status	 bar	 is	 located	 at	 the	 bottom	 of	 the	 editor,	 ,	 and	 shows	 some
information	that	can	be	useful	when	programming	in	BASin.	It	can	be	enabled	or
disabled	from	the	View	Menu.

Syntax	state	indicator

The	 white-on-black	 letter	 at	 the	 left-hand	 side	 indicates	 the	 type	 of	 syntax
element	that	BASin	expects	you	to	type	next.	(This	is	roughly	equivalent	to	the
old-style	edit	cursor	on	a	48K	Spectrum.)

A	keyword	is	required	(e.g.	at	the	start	of	a	line).

Characters	will	be	entered	in	lower	case.

Characters	will	be	entered	in	upper	case.

Characters	will	be	entered	in	graphics	mode.

Hint	area

The	hint	area	usually	displays	the	size	of	your	program	and	the	amount	of	free
memory	in	kilobytes.	A	Spectrum	has	about	38	kilobytes	of	memory	for	BASIC
programs.

When	a	menu	is	open,	the	hint	area	displays	a	short	description	of	the	selected
menu	command.

Keyboard	state	indicator

The	 area	 on	 the	 right	 displays	 Insert	 or	 Overwrite,	 depending	 on	 whether

overtype	mode	is	enabled.

The	keyboard

BASin	makes	full	use	of	the	PC	keyboard.

The	editor	uses	a	standard	set	of	keys	for	editing,	as	well	as	some	special	ones
that	are	unique	to	Spectrum	BASIC.

	 	 	 Moves	left,	right,	up,	or	down	by	one	character.

Shift	+	 	 	 	 Extends	the	current	selection.

Home,	End Jumps	to	the	beginning	or	end	of	the	current	line.

Ctrl	+	Home,	End Jumps	to	the	beginning	or	end	of	the	entire	program.

Page	Up,	Page	Down Moves	up	or	down	by	one	screenful	of	text.

Insert Toggles	overtype	mode,	where	newly	typed	characters	replace	old	ones.

Delete Deletes	the	character	to	the	right	of	the	cursor.

Backspace Deletes	the	character	to	the	left	of	the	cursor.

Tab Inserts	three	spaces.	(Actual	tab	characters	are	not	supported.)

¬	or	€ Inserts	the	©	copyright	symbol.

^ Inserts	the	↑	exponentiation	(raise	to	a	power)	maths	symbol.

When	 you	 attempt	 to	 move	 the	 cursor	 away	 from	 a	 modified	 line,	 BASin
behaves	 as	 though	 the	 line	 had	 been	 entered,	 checking	 it	 for	 mistakes	 before
storing	it	in	the	program.

Graphics	characters

Spectrum	BASIC	programs	can	contain	two	kinds	of	graphics	characters:	built-
in	chequered	graphics	and	user-defined	graphics	 (UDGs).	These	characters	are
described	in	Chapter	14	of	the	manual.

In	BASin,	you	can	 toggle	graphics	mode	using	Num	Lock	or	Scroll	Lock,	 or
(under	Windows	NT	and	XP)	enable	it	temporarily	by	holding	down	Alt	Gr.	The
key	to	be	used	can	be	configured	on	the	BASin	tab.

Control	characters

Spectrum	 BASIC	 programs	 can	 contain	 special	 characters,	 called	 control
characters,	that	affect	the	display	of	the	listing.

You	 can	 insert	 control	 characters	 using	 either	 the	 Token	 Table	window	 or	 the
function	keys	F1	to	F8.

In	 BASin,	 the	 appearance	 of	 "control	 characters"	 depends	 on	 whether	 syntax
highlighting	is	enabled;	and	the	flash	attribute	has	no	visible	effect	in	a	program
line.

Note:	Control	codes	will	appear	in	the	program	as	small	hex	numbers,	two	per
character	square,	when	Syntax	Highlighting	 is	 enabled	 -	when	 this	 is	disabled,
then	BASin	will	show	the	text	with	any	colour	modifications	as	it	would	appear
on	a	real	spectrum,	with	the	exception	of	the	FLASH	attribute.

Keystroke Graphics Non-graphics

F1 Blue

F2 Red

F3 Magenta Inverse	Video	on

F4 Green Inverse	Video	off

F5 Cyan Bright	on

F6 Yellow Bright	off

F7 White Flash	on

F8 Black Flash	off

In	 graphics	mode,	 a	 function	 key	 sets	 the	 ink	 colour,	 and	 a	 function	 key	with
Shift	sets	the	paper	(background)	colour.

The	toolbar

The	toolbar	is	located	at	the	top	of	the	editor.

It	provides	quick	access	to	some	of	the	more	commonly	used	menu	commands.

Buttons

From	the	File	menu:

New	 -	This	button	will	 clear	 the	current	program	and	variables	 from	memory,	allowing	you	 to
start	 afresh.	 You	 will	 be	 prompted	 to	 save	 any	 changes	 you	 may	 have	 made	 to	 the	 current
program.

LOAD	""	 -	Brings	up	the	Load	Program	dialog.	The	same	as	using	the	File…Load	""	 options
from	the	main	menu.	You	can	load	either	.bas	files,	or	Spectrum	Snapshots.

Save	 -	 Saves	 the	 current	 program	 in	memory.	 If	 this	 program	 is	 new,	 and	 has	 not	 been	 saved
before	("Untitled	Project")	 then	the	save	program	dialog	will	be	displayed	prompting	you	for	a
filename.	This	saves	either	.bas	files	or	Spectrum	Snapshots.

From	the	Run	menu:

	

Run	 /	 Pause	 -	 If	 the	 current	 program	 is	 not	 running,	 then	 this	 starts	 the	 program	 from	 the
beginning,	as	if	the	user	had	typed	"RUN"	in	the	editor	as	a	Direct	Command.	If	the	program	is
already	running	then	execution	will	be	suspended	when	the	current	statement	has	been	executed.
From	there	you	can	use	the	single	step	and	other	debugger	functions.

GO	TO	cursor	 -	This	will	 start	program	execution	 from	 the	 line	and	statement	 that	 the	editor
cursor	is	currently	positioned	at.	Similar	to	issuing	a	GO	TO	command	from	the	editor.

	

System	BREAK	/	Continue	-	This	will	either	stop	the	current	program	execution	by	sending	a
BREAK	message	to	the	emulation,	or	CONTINUE	from	where	it	left	off.	See	the	CONTINUE
keyword	help	in	the	BASIC	manual	for	more	on	how	CONTINUE	operates.

Single-step	 statement	 -	 When	 program	 execution	 is	 suspended,	 you	 can	 step	 through	 the
program	one	 statement	 at	 a	 time,	 pausing	 after	 each	 so	you	 can	 inspect	 the	program	 flow	and
variables.	See	the	Single	Step	tool	description	for	more	information.

Step	over	statement	 -	Will,	when	the	program	is	suspended,	run	through	the	current	statement
until	the	next	statement	in	the	program	is	encountered.	This	allows	you	to	step	past	subroutines
that	you	don't	want	to	have	to	step	through.

Run	to	cursor	-	Will	start	execution	and	not	stop	until	the	program	reaches	the	statement	that	the
editor	cursor	is	resting	on.	The	statement	will	not	be	executed	-	the	program	will	be	suspended
before	it	starts.

Add	Breakpoint	at	cursor	-	Will	toggle	a	breakpoint	at	the	current	statement	which	the	editor
cursor	lies	upon.	It's	the	same	effect	as	double	clicking	a	line	in	the	editor.	See	the	Breakpoints
section	 for	more	on	breakpoints.	This	will	 open	 the	Breakpoint	Properties	window	so	you	can
edit	the	breakpoint's	conditions.

Add	Watch	 -	Opens	 the	Watch	Properties	window	 to	allow	you	 to	add	a	Watch	 to	 the	current
Watchlist.	See	the	entry	under	Watches	for	more	information.

From	the	View	menu:

Expression	Evaluator	 -	Opens	 the	Expression	Evaluator	 tool	which	 lets	 you	 inspect	 variables
within	expressions,	and	perform	calculations	using	Sinclair	BASIC	codewords.

The	character	ruler

The	character	 ruler	 is	 located	at	 the	bottom	of	 the	editor.	 It	helps	making	 long
strings	for	display	on-screen.	Due	to	how	the	PRINT	codeword	works,	a	string
longer	 than	 32	 characters	will	 "wrap"	 round	 to	 the	 beginning	 of	 the	 next	 line
down.	This	can	be	useful	for	displaying	many	lines	of	text	on	one	command.	The
character	 ruler	 will	 show	 you	 at	 a	 glance	 how	 long	 your	 string	 is,	 and	 a	 red
marker	will	appear	at	any	point	where	the	32	character	boundary	is	reached.	This
happen	whenever	 the	cursor	enters	a	quote	delimited	string	area	 in	 the	BASIC
text.

To	show	or	hide	the	character	ruler,	choose	Character	Ruler	on	the	View	menu.

Edit	cursor	position

Each	 mark	 on	 the	 ruler	 represents	 one	 character.	 Every	 eighth	 mark	 has	 a
number	 that	 indicates	 the	 character	 count	 from	 the	 start	 of	 the	 program	 line.
These	numbers	increase	as	you	scroll	to	the	right.

The	small	black	arrow	()	shows	the	location	of	the	edit	cursor.

A	grey	vertical	bar	shows	the	position	of	the	mouse	pointer.

String	lengths

The	character	 ruler	also	 indicates	 the	 lengths	of	 strings.	 (A	string	 is	a	piece	of
program	text	enclosed	in	quotation	marks,	such	as	"Welcome".)

While	 the	 edit	 cursor	 is	 inside	 a	 string,	 the	 character	 ruler	 displays	 the	 length
with	 a	 green	 bar,	 with	 a	 red	 arrow	 after	 every	 32nd	 character.	 The	 Spectrum
screen	display	is	32	characters	wide,	so	this	shows	where	a	line	of	text	will	wrap.

See	 also	 the	 section	 on	 the	 editor	 context	menu	 for	 information	 on	 wrapping
long	strings	around	the	screen	with	word-wrap	and	other	effects.

The	coding	teacher

The	coding	teacher	is	located	at	the	bottom	of	the	editor.

To	show	or	hide	the	coding	teacher,	choose	Debug	Windows	>	Coding	teacher
on	the	View	menu.

If	you	don't	want	the	coding	teacher	to	appear	automatically	when	BASin	starts,
clear	the	Show	coding	teacher	on	startup	check	box	on	the	BASin	tab.

The	 coding	 teacher	 displays	 a	 continuously	 updated	 reminder	 of	 the	 correct
syntax	 for	 the	 keyword	 you	 are	 typing.	 It	 can	 help	 you	 identify	 and	 fix	 any
problems	with	a	program	line	before	you	enter	it.

The	top	line	of	the	coding	teacher	is	a	colour-coded	template	that	illustrates	the
syntax	of	the	statement	being	edited.

The	return	type	from	a	function	is	displayed	in	dark
green.
The	 expected	 item	 -	 the	 syntax	 element	 that	 comes
next	-	is	dark	blue.
Any	 syntax	 error	 or	 missing	 item	 in	 the	 current
statement	is	dark	red.

The	bottom	 line	of	 the	coding	 teacher	provides	a	more	detailed	explanation	of
any	errors.

Variable	ToolTips

Hovering	over	a	variable	in	the	editor	produces	a	floating	ToolTip	that	shows	its
name,	type,	and	contents.

Note:	 Variable	 ToolTips	 only	 appear	 for	 variables	 that	 are	 already	 present	 in
memory.	This	means	that	a	variable	must	have	been	made	(using	a	DIM	or	LET
statement)	before	it	will	produce	a	ToolTip.

Source	Markers

Source	Markers	are	available	from	the	Search	menu.

Source	Markers	 are	 a	method	of	managing	 large	BASIC	programs	 easily.	You
can	use	these	to	"mark"	important	sections	of	code,	and	once	marked,	can	jump
back	 to	 them	 from	anywhere	 in	your	program.	Lines	 and	 statements	 that	 have
been	marked	have	a	small	green	number	next	to	them	in	the	gutter	to	the	left	of
the	line,	as	in	the	illustration	above.

Setting	a	source	marker

To	 set	 a	 source	 marker,	 use	 the	 Search	Menu.	 You	 can	 also	 move	 the	 editor
cursor	to	the	line	or	statement	you	want	to	mark,	and	then	press	CTRL-SHIFT
and	a	number	from	0	to	9.

Jumping	to	a	source	marker

You	 can	 retrieve	 a	 source	 marker	 that	 has	 previously	 been	 set	 by	 using	 the
Search	menu.	You	can	also	use	CTRL	and	the	number	of	the	source	marker	you
wish	to	jump	to.

Note:	 you	 cannot	 jump	 to	 a	 source	marker	 that	 has	 not	 been	 previously	 been
defined,	for	obvious	reasons.

Clearing	source	markers

You	can	clear	all	the	source	markers	by	using	the	Clear	all	option	on	the	Search
menu.	Once	cleared,	none	of	the	source	markers	will	be	available.

Note:	 If	you	clear	your	program	using	NEW	or	by	 loading	a	new	program,	 the
source	markers	will	be	automatically	cleared.

Expression	Evaluator	window

The	Expression	Evaluator	window	is	available	from	the	View	menu.

This	window,	 accessed	 from	 the	View	Menu,	 provides	 a	 simple	 calculator	 for
Sinclair	BASIC	expressions.	At	the	top	of	the	window	is	an	edit	field	where	you
can	type	in	your	expression,	which	also	incorporates	a	drop-down	list	consisting
of	 the	"history"	of	all	 expressions	you	have	 typed.	The	expression	can	contain
any	keywords	or	functions	accessible	to	Sinclair	BASIC,	including	any	variables
you	have	declared	either	programmatically	at	runtime,	or	by	Direct	Command.

Upon	pressing	Return,	or	by	clicking	the	"Evaluate"	button,	the	expression	will
be	parsed	for	errors	and	executed.	This	is	performed	by	starting	a	new	instance
of	 Spectrum	 Emulation,	 and	 allowing	 the	 ROM	 to	 process	 the	 expression	 as
though	 it	 had	 the	 keyword	PRINT	 inserted	 before	 it.	 The	 resulting	 text	which
would	be	displayed	on-screen	is	taken	by	BASin	and	sent	to	the	larger	"Result"
field	below	the	edit	field.

Note:	 expressions	 by	 their	 nature	 can	 contain	 functions	 such	 as	 the	 USR
function	which	can	execute	a	section	of	memory	as	machine	code.	Although	it's
a	valid	function	(and	returns	the	value	in	BC	as	the	code	performs	it's	final	RET)
it	can	get	stuck	in	infinite	loops,	or	take	an	age	to	complete.	This	will	mean	that
the	 Evaluate	 Expression	 Window	 will	 not	 respond	 to	 requests	 for	 more
expressions,	 either	 at	 all	 or	 for	 a	 long	 time.	 To	 this	 end,	 you	 can	 press	 the
"Evaluate"	button	again	to	halt	 the	current	expression.	Any	result	returned	will
be	displayed.	Closing	the	Evaluate	Expression	Window	will	also	have	this	effect.

Also,	 related	 to	 this,	 the	Evaluation	will	use	 the	 same	"engine"	 to	produce	 the

result	 as	 the	Watches	 (and	 other	 evaluated	 expressions,	 such	 as	 Find	Window
parameters)	 and	 as	 such	 any	 expressions	 taking	 a	 long	 time	 to	 evaluate	 will
"stall"	other	expressions	waiting	to	execute.	However,	none	of	 them	will	affect
the	progress	of	the	main	system	emulation.

There	is	also	the	option,	via	the	"Add	as	Watch"	button,	to	add	this	expression	as
an	Expression	Watch	to	the	Watches	Window.

Program	Information

The	Program	Information	window	is	available	from	the	View	menu.

The	Program	Information	window	is	provided	simply	to	give	an	"overview"	of
your	program	 -	how	many	 lines	 and	 statements	you	have	used	and	how	many
variables	you	have	declared.

It	also	gives	 information	as	 to	how	much	memory	has	been	used	 in	 total,	how
much	of	that	is	program	code,	and	how	much	has	been	used	by	the	variables.	It
also	 displays	 the	 amount	 of	 free	memory	 remaining	 to	 BASIC.	 This	 figure	 is
calculated	using	the	RAMTOP	system	variable	and	so	represents	how	much	you
can	use	currently,	and	may	not	be	taking	the	full	memory	of	the	Spectrum	into
account.

The	final	line	informs	you	which	of	the	two	flavours	of	Spectrum	your	program
is	compatible	with	-	128k	or	48k.

If	you	use	the	extended	128k	commands	then	the	pogram	will	be	128k	only.

If	 you	 use	 the	UDGs	 "T"	 and	 "U"	 inside	 strings,	 then	 it	will	 be	 48k	 only	 (as
these	UDGs	were	not	available	on	the	128k).

If	you	use	neither	 then	 the	program	 is	deemed	compatible	with	both,	with	one
exception	-	if	you	have	files	currently	residing	on	the	silicon	disc,	and	the	silicon
disc	has	been	used	then	the	window	will	warn	you	that	the	program	may	not	be
compatible	with	the	48k	Spectrum	should	you	decide	to	utilise	these	files	in	the

future.	However,	as	silicon	disk	contents	are	not	saved	 to	 inside	 .bas	 files,	and
also	not	to	tape	files,	then	compatibility	might	not	be	an	issue.

When	 saving	 snapshots	 the	 contents	 of	 the	 silicon	 disc	will	 be	 stored,	 and	 as
such	if	the	silicon	disc	is	in	use	you	will	not	be	able	to	save	48k	snapshots.

The	48k/128k	mode	indicator

To	help	 remind	you	which	 computer	 your	program	 is	 compatible	with,	BASin
provides	a	small	indicator	at	the	bottom	of	the	editor	window.	This	is	updated	as
you	create	or	edit	your	program,	and	appears	like	this...

As	you	enter	commands	 into	BASin,	 this	 indicator	will	 remain	 in	 "48k	mode"
until	you	enter	a	128k	command	which	utilises	the	enhanced	sound	(PLAY)	or
the	silicon	disc	 (LOAD	!,	SAVE	!,	MERGE	!,	CAT	!	 and	ERASE	!).
When	BASin	detects	these,	the	indicator	will	change...

...and	when	this	happens	you	may	also	notice	that	any	instances	of	the	UDGs	"T"
and	"U"	will	change	to	their	small-character	hexadecimal	equivalents.

Removing	128k	commands	from	your	program	will	revert	it	back	to	48k	mode.

Find	window

The	Find	window	is	available	from	the	Search	menu.

This	window	allows	you	 to	 search	 for	 text	within	your	program.	 It	works	 in	a
similar	way	to	other	text	editor's	Find…	dialogs,	but	has	some	useful	behaviours
pertinent	to	Sinclair	BASIC.

You	can	type	the	text	you	wish	to	search	for	into	the	edit	field	at	the	top	of	the
dialog,	and	set	options	for	the	search:

Direction

This	 sets	 which	 way	 BASin	 will	 search	 for	 your	 text	 -	 either	 forward
towards	 the	 end	 of	 your	 program,	 or	 backwards	 towards	 the	 beginning.
Searching	backwards	only	makes	sense	when	you	search	from	the	current
cursor	position	as	the	origin.

Origin

This	sets	where	in	your	program	BASin	will	begin	the	search	-	either	from
the	current	Editor	cursor	position,	or	from	the	start	of	the	program.

Because	 BASin	 has	 the	 ability	 to	 evaluate	 Sinclair	 BASIC	 expressions
independently	from	the	main	emulation,	the	text	can	be	flagged	as	an	expression
rather	 than	 just	 a	 string	 of	 characters	 to	 be	 searched	 for.	 If	 you	 set	 the

"Expression"	 checkbox,	 then	 BASin	 will	 evaluate	 the	 search	 text	 as	 an
expression,	and	use	the	result	as	the	text	to	search	for	-	for	example,	if	A$	is	set
to	 "Hello"	 then	 entering	 "A$"	 as	 the	 search	 text	 and	 then	 checking	 the
"Expression"	box	will	set	BASin	to	search	your	program	for	the	string	"Hello".

Lastly,	you	can	use	the	"Case	Sensitive"	checkbox	to	search	for	an	exact	match
of	 your	 text,	 including	 capital	 or	 lowercase	 letters,	 or	 to	 search	 regardless	 of
letter	case.

Replace	window

The	Replace	window	is	available	from	the	Search	menu.

The	 Replace	 Dialog	 is	 functionally	 very	 similar	 to	 the	 Find	 Text	 Dialog,	 but
allows	you	to	replace	the	found	text	with	new	text	of	your	choosing.	To	this	end,
there	is	the	usual	Find…	options,	such	as	the	edit	field	for	your	search	text,	but
an	additional	edit	field	with	which	you	can	specify	the	text	you	want	to	replace
the	found	text	with.

As	 with	 the	 Find	 Text	 Dialog	 (the	 chapter	 for	 which	 gives	 more	 information
about	 searching	 for	 text),	 you	 can	 specify	 that	 the	 text	 to	 search	 for	 is	 an
expression	with	the	"Find	Expression"	checkbox,	and	also	that	the	text	to	replace
it	with	is	also	an	expression	with	the	"Replace	Expression"	checkbox.

The	Direction	and	Origin	options	are	the	same	as	for	the	Find	Dialog,	as	is	the
"Case	Sensitive"	option.

Lastly,	there	are	the	two	buttons	at	the	bottom	of	the	window:

Replace	All

This	button	will,	regardless	of	direction	and	origin,	replace	all	occurrences
of	the	search	text	with	the	replace	text	in	your	program.

Replace

Will	 perform	 one	 replace	 operation	 at	 a	 time,	 subsequent	 presses	 of	 this
button	will	repeat	the	process	with	the	next	occurrence	of	your	search	text.

The	Editor	Menu	strip

The	Editor	menu	strip	is	the	main	method	of	getting	at	BASin's	more	advanced
features.	 Below	 is	 a	 list	 of	 options	 on	 each	 of	 the	 menu	 items,	 and	 a	 brief
explanation	of	each	can	be	found	by	clicking	the	corresponding	link.

File	Menu
New
Load	""
Re-Load
Save
Save	As...
Print
Exit

Edit	Menu
Undo
Redo
Cut
Copy
Paste
Delete
Copy	Listing

View	Menu
Status	Bar
Toolbar

Syntax	Helper
Character	Ruler
Program	Information
Command	History
Last	Error
Debug	Windows

Variables
Breakpoints
Watches
Log	Window

Expression	Evaluator

Search	Menu
Find...
Replace...
Find	Next
Replace	Next
Source	Markers

Set	Marker
Get	Marker
Clear	All

Go	to	Line	Number...
Go	to	Error

Run	Menu
Run/Pause/Resume
Break/Continue

Go	to	Cursor
Enable	Profiling
Force	Break
Trace	Execution
Single	Step	Statement
Step	Over	Statement
Run	To	Cursor
Toggle	Breakpoint
Add	Breakpoint...
Add	Watch...

Tools	Menu
BASin	Options...
Token	Table...
UDG	Editor...
Renumber...

Help	Menu
Contents
Command	Help
Sinclair	BASIC	Manual
Error	Help
About

File	menu

The	File	menu	provides	commands	relating	to	the	current	BASIC	program	and
the	associated	file	on	disk.

New

Clears	 the	current	program	and	variables	 from	 the	editor,	 and	also	clears	 them
from	 the	 emulated	 Spectrum's	 memory.	 You	 will	 be	 prompted	 to	 save	 any
changes	 you	 may	 have	 made	 to	 your	 program	 since	 your	 last	 save,	 but	 this
applies	 only	 to	 the	 program	 itself	 and	 not	 any	 variables	 that	 may	 have	 been
altered.

LOAD	""

Opens	a	saved	program	or	snapshot	file.

Re-LOAD

Opens	 a	 recently	 used	 program	 from	 a	 list	 of	 up	 to	 10	 programs,	 or	 (if	 you
choose	 Previous	 Session)	 restores	 the	 program	 and	 emulated	 Spectrum	 state
from	your	 last	BASin	 session.	To	 restore	your	 session	automatically	whenever
BASin	starts,	select	Restore	previous	session	on	the	BASin	tab.

Save

Saves	 changes	 to	 the	program,	 in	 the	 format	used	 to	 load	 it.	 If	 no	 format	was
specified	(if	the	program	was	created	from	scratch)	then	the	default	.bas	format
will	be	used.

Save	As

Prompts	for	a	filename	and	file	type,	and	saves	the	program	to	disk	-	either	as	a
.bas	file,	or	as	a	snapshot	file.	The	default	method	is	to	save	as	a	.bas	file,	other
types	 of	 file	 are	 specified	 by	 the	 extension	 of	 the	 filename	 supplied	 by	 you.
Saving	"myprog.sna"	will	instruct	BASin	to	use	the	.sna	format,	for	example

Print

Opens	the	Print	Preview	window,	ready	to	send	the	program	listing	to	a	printer.

Exit

Quits	BASin,	prompting	to	save	changes	if	necessary.

Edit	menu

The	Edit	menu	provides	commands	for	manipulating	text	in	the	editor.

BASin	uses	the	.bas	file	format	to	store	program	text	on	the	Clipboard.

Undo

Reverses	changes	you	have	made	to	your	program,	one	at	a	time.

Redo

Repeats	 the	 changes	 that	 you	 have	 undone.	 This	 command	 is	 only	 available
immediately	after	an	undo.

Cut

Removes	 the	 selected	 text	 and	 places	 it	 on	 the	Clipboard.	 The	 clipped	 text	 is
stored	as	.bas	format,	so	any	control	characters	in	the	text,	or	characters	from	the
Spectrum	ASCII	set	will	be	converted	to	escape	characters.

You	can	then	Paste	this	text	into	say,	a	notepad	or	an	email.

Copy

Copies	the	selected	text	to	the	Clipboard.	As	with	the	cut	option,	text	is	stored	in
the	.bas	format.

Paste

Inserts	any	text	found	on	the	Windows	system	clipboard	into	the	program	at	the
current	cursor	position.	The	text	will	be	processed	for	.bas	format	escape	codes,
and	then	will	be	inserted	using	one	of	two	methods:

If	 the	text	contains	no	Return	(CHR$	13)	characters,	 then	it	will	be	inserted	as
one	line.

If	 the	 text	 contains	 more	 than	 one	 line,	 then	 the	 Add	 Code	Window	 will	 be
shown,	with	the	clipboard	text	in	the	edit	area	as	plain	text.	You	can	change	this
text	if	you	like,	and	it	will	then	be	checked	for	mistakes	before	being	added	line
by	line	into	your	program.	If	any	of	the	lines	will	overwrite	any	current	program
lines,	 then	 (assuming	 that	 you	 have	 enabled	 Line	Overwrite	 Protection	 in	 the
relevant	Options	Window	page)	BASin	will	warn	you	with	 the	option	 to	 stop,
ignore	the	line,	or	replace	the	old	line	in	the	program.

Delete

Removes	 the	 selected	 text.	Does	 not	 store	 a	 copy	 of	 the	 text	 on	 the	Windows
clipboard.	You	will	lose	the	text	forever	-	use	with	care!

Copy	Listing

Copies	the	entire	program	listing	to	the	Clipboard.	Unlike	a	normal	save	in	.bas
format,	this	does	not	include	any	variables	in	memory.

View	menu

The	View	menu	provides	commands	relating	to	information	about	your	program
and	to	show	the	various	debugging	tools.

Toolbar

Shows	or	hides	the	toolbar	which	contains	shortcut	buttons	to	the	more	common
of	BASin's	editor	operations.

Status	Bar

Shows	or	hides	the	status	bar	at	the	bottom	of	the	editor	window.

Syntax	Helper

Shows	 or	 hides	 the	 code	 teacher.This	 is	 a	 useful	 tool	 which	 evaluates	 the
"correctness"	of	your	program	 line	 as	you	 type	 -	 errors	 are	highlighted	 in	 red,
enabling	you	to	spot	errors	before	you	enter	a	program	line.

Character	Ruler

Shows	or	hides	the	character	ruler.

Program	Information

This	window	will	 display	 information	 about	 your	 program	 -	 how	 large	 it	 is	 in
memory,	 how	many	 variables	 you	 currently	 have	 declared	 and	 their	 usage	 of
available	 memory.	 Also	 how	 much	 memory	 remains	 available	 to	 you	 for
programming.	 Bear	 in	 mind	 that	 the	 system	 variable	 RAMTOP	 is	 used	 to
calculate	this	figure.

Command	History

Shows	 or	 hides	 the	 Command	 History	 window	 -	 contains	 a	 list	 of	 all	 direct
commands	which	have	been	entered	into	BASin	for	this	session.

Last	Error

Displays	the	most	recent	BASIC	error	message	and	its	description,	 in	 the	error
dialog.

Debug	Windows

Opens	a	submenu	that	allows	you	to	show	or	hide	the	debug	windows.	See	the
section	 entitled	 "debugging	 your	 programs"	 for	 a	more	 in-depth	 discussion	 of
this	powerful	aspect	of	BASin.

Variables:	 Shows	 or	 hides	 the	 Variables	 window,
which	lists	all	variables	currently	declared	in	memory.
Also	provides	the	means	to	alter	a	variable's	contents
whilst	 debugging	 a	 program,	 and	 to	 set	 a	 watch	 a
variable	for	changes.

Breakpoints:	 Shows	 or	 hides	 the	 Breakpoints
window,	where	you	can	manage	any	breakpoints	you
might	have	set	up.

Watches:	Shows	or	hides	 the	Watch	List,	which	 like
the	Breapoints	 option	 above	 allows	 you	 to	 manage
any	watches	you	have	set.

Log	 Window:	 Shows	 or	 hides	 the	 Log	 window.
Certain	 operations	 can	 produce	 log	 messages	 on
completion,	 and	 one	 of	 the	 REM	 Directives	 can
produce	 user-configurable	 log	 entres.	 You	 can	 view
them	in	the	log	window.

Expression	Evaluator

Shows	or	hides	the	Expression	Evaluator	window,	where	you	can	enter	a	BASIC
expression	and	view	its	result.

Search	menu

The	Search	menu	provides	tools	for	finding	text	in	your	program.

Find

Displays	the	Find	window,	where	you	can	search	the	current	program	for	a	word
or	phrase.

Find	Next

Finds	the	next	single	occurrence	of	the	word	or	phrase	after	the	cursor	position.

Replace

Displays	the	Replace	window,	where	you	can	search	 the	current	program	for	a
word	or	phrase	and	replace	it	with	another	word	or	phrase.

Replace	Next

Replaces	 the	 next	 single	 occurrence	 of	 the	 word	 or	 phrase	 after	 the	 cursor
position.

Source	Markers

This	menu	opens	a	submenu	which	you	can	use	to	manipulate	Source	Markers.

Source	Markers	are	like	bookmarks	in	your	program,	and	can	be	used	to	quickly
move	around	a	very	big	program.

GetMarker	-	opens	a	submenu	containing	ten	options	to	set	a	marker	at	the
current	cursor	position.	A	small	green	number	corresponding	to	the	source
maker's	number	will	appear	in	the	gutter	to	the	left	of	the	statement.

SetMarker	-	opens	a	submenu	with	a	list	of	the	ten	markers	available.	Any
that	have	been	set	will	be	enabled.	Any	source	markers	that	have	not	been
selected	will	 not	 be	 available.	 Clicking	 one	 of	 these	will	 send	 the	 editor

cursor	to	the	statement	or	line	associated	with	it.

Clear	All	-	this	option	will	clear	any	source	markers	you	have	set.

Go	to	Line	Number

Opens	a	small	requester	which	allows	you	to	type	in	a	line	number	to	jump	to	in
the	Editor.	This	line	number	does	not	have	to	be	a	number	-	you	could	specify	an
expression	(which	must	end	up	as	a	number,	like	"2+4"	or	"a+6")	which	can	be
specified	 using	 any	 Sinclair	 BASIC	 codewords,	 such	 as	 functions	 or	 variable
names.	For	example,	By	setting	variable	"A"	to	10,	then	typing	"A"	into	the	edit
box,	BASin	will	evaluate	the	result	as	10,	and	move	the	cursor	to	line	10.

Go	to	Error

Moves	to	the	program	line	and	statement	that	caused	the	last	error.

Run	menu

This	 menu	 is	 the	 main	 control	 for	 running	 your	 program,	 and	 most	 of	 the
debugging	options	are	in	here.	Most	have	keyboard	shortcuts.	More	information
on	debugging	can	be	found	in	the	chapter	headed	Debugging	your	programs.

Run	/	Pause	/	Resume

This	item	will	start	your	program	if	 it	 is	not	already	running,	and	has	not	been
paused.	Selecting	 this	option	again	will	put	your	program	into	pause,	or	debug
mode.	A	further	click	on	this	item	will	start	your	program	again.	Stopping	your
program	this	way	is	not	the	same	as	using	the	BREAK	key	(the	Escape	key	on
your	keyboard).	Whilst	 the	program	is	stopped,	 it	cannot	be	edited	but	various
debugging	methods	can	be	carried	out.

Note:	When	using	 this	 item	whilst	 the	program	 is	neither	 running	nor	paused,
you	 should	 be	 aware	 that	 the	 program	 will	 be	 started	 using	 a	 RUN	 direct
command,	which	will	perform	a	CLEAR	codeword	as	part	of	 the	startup.	This
will	remove	any	previously	declared	variables	from	memory.

System	BREAK	/	Continue

Sends	a	BREAK	keypress	 to	 the	running	program,	or	continues	running	with	a
CONTINUE	statement.

Note:	You	 can	 only	 break	 into	 a	 program	between	 statements.	 This	 command
has	no	effect	until	the	current	statement	finishes,	even	if	it	is	a	statement	which
might	not	end	soon	(such	as	INPUT	or	PAUSE).

Go	to	cursor

Continues	 the	program	 from	 the	 location	of	 the	 edit	 cursor.	This	has	 the	 same
effect	as	typing

GO	TO	[line	number]

and	will	not	clear	your	currently	declared	variables.

Force	BREAK

Aborts	 the	 running	 program	 and	 returns	 to	 the	 editor	 as	 it	was	 before	 the	 last
direct	 command	 was	 started.	 Unlike	 System	 BREAK,	 this	 command	 has
immediate	 effect	 and	 works	 even	 when	 the	 running	 program	 cannot	 see	 the
Escape	key.	This	is	because	BASin	stores	the	state	of	your	program	just	before
any	 direct	 command	 is	 executed,	 and	 this	 menu	 item	 will	 restore	 that	 state
when	clicked.

Trace	Execution

Enables	or	disables	tracing,	which	illustrates	program	flow	by	highlighting	each
statement	in	your	program	as	it	is	executed.	This	can	take	a	considerable	amount
of	CPU	time	away	from	your	program,	which	may	run	significantly	slower	as	a
result.

Single	Step	Statement

When	the	program	is	paused,	or	has	triggered	a	Breakpoint,	this	item	can	be	used
to	move	through	the	program	one	statement	at	a	time	-	the	program	will	resume
execution,	 and	 when	 the	 next	 statement	 has	 been	 executed,	 will	 pause	 again.
Single-stepping	is	one	of	the	most	powerful	debugging	tools.

Step	Over	Statement

Executes	the	next	statement	in	the	program,	waits	for	 the	program	to	reach	the
statement	after	 that,	and	 then	pauses.	 In	 the	case	of	a	GO	SUB	 statement,	 for
example,	whereas	Single	 Step	 Statement	 would	 jump	 to	 the	 first	 line	 of	 the
subroutine,	 this	 command	 will	 execute	 the	 entire	 subroutine	 and	 move	 to	 the
next	statement	on	the	calling	line.

Run	to	Cursor

Runs	the	program	up	to	the	location	of	the	edit	cursor,	and	then	pauses.

Toggle	breakpoint

Toggles	a	breakpoint	on	 the	 line	 that	 the	cursor	 is	currently	 resting	upon.	This
will	 be	 a	 simple	 breakpoint	 which	 will	 only	 trigger	 when	 program	 execution
reaches	that	line.

Add	Breakpoint

Opens	the	Add	Breakpoint	window,	where	you	can	specify	confitions	and	other
properties	for	a	custom	breakpoint.

Add	Watch

Opens	the	Add	Watch	window.

Tools	menu

The	Tools	menu	provides	built-in	utilities	and	access	to	program	settings.

For	more	information,	see	BASin's	tools.

BASin	Options

Opens	 the	 Options	 window,	 where	 you	 can	 configure	 the	 behaviour	 and
appearance	of	BASin.

Token	Table

Opens	the	Token	Table	window,	which	gives	access	to	a	chart	of	the	ASCII	set
used	 by	 Sinclair	 BASIC,	 including	 a	 visual	 selection	 of	 colour	 control	 codes,
UDGs,	and	keywords.

UDG	Editor

Opens	 the	UDG	Editor	window,	which	 provides	 an	 easy	 to	 use	way	 to	make
User	Defined	Graphics	in	your	program.

Renumber

Opens	the	Renumber	window,	where	you	can	change	the	line	numbering	of	the
current	program.

Help	menu

The	 Help	 menu	 provides	 help	 and	 information	 about	 BASin	 and	 Spectrum
BASIC.

Contents

Displays	this	help	file.

Command	Help

Displays	help	on	the	BASIC	keyword	under	the	cursor.	Pressing	F1	in	the	editor
has	the	same	effect.

Sinclair	BASIC	Manual

Displays	the	Spectrum	BASIC	manual,	as	corrected	and	modified	for	BASin.

Error	Help

Displays	the	Error	Help	window.

About

Displays	program	information,	version	number,	copyright,	and	credits.

The	context	menu

The	context	menu	appears	when	you	right-click	the	program	listing	in	the	editor.

When	using	 the	editor,	 it	 can	 be	 useful	 to	 get	 help	with	 a	 codeword	or	 things
with	a	variable.	BASin	allows	you	 to	click	your	 right	mouse	button	within	 the
Editor	which	will	bring	up	the	a	menu.	Depending	upon	what	you	were	pointing
at	when	you	clicked,	the	menu	will	give	you	different	options.	Bear	in	mind	that
if	you	bring	up	the	menu	for	a	variable,	it	must	have	been	given	a	value	by	the
LET	codeword	before	it	will	be	recognised	by	BASin.

Codewords

These	options	are	available	when	you	select	a	codeword	(such	as	PRINT).

Token	Help

Opens	the	Spectrum	BASIC	manual	at	the	entry	for	that	codeword.

Tokenise

The	Spectrum	character	set	 includes	a	single	character,	called	a	token,	for	each
codeword.	It	is	possible	(but	never	necessary)	to	include	a	token	in	a	string.	This
command	converts	 the	selected	keyword	 to	 its	 token,	 indicated	 in	 the	program
listing	by	a	very	tiny	value,	that	can	be	made	of	letters	or	numbers.

Note:	If	you	need	to	store	a	token	in	a	string,	it	is	usually	better	to	use	the	CHR$
codeword.

You	can	also	tokenise	entire	strings	by	using	the	"String	Operation"	menu	when
right-clicking	on	them.

De-Tokenise

Converts	 a	 token,	 represented	 by	 its	 tiny-text	 value,	 back	 to	 the	 original
codeword.	When	called	from	the	"String	Operation"	Menu,	when	a	string	literal
has	been	right-clicked,	you	can	un-tokenise	an	entire	string.

Find	Line

Any	codeword	which	requires	a	line	number	as	it's	parameter	such	as	RUN,	GO
TO,	 GO	 SUB	 etc,	 where	 the	 line	 number	 is	 present	 will	 have	 this	 option
available.	 Using	 this,	 you	 can	 jump	 to	 the	 line	 number	 indicated	 by	 the
parameter.	 This	 also	 applies	 to	 line	 numbers	 that	 are	 calculated,	 i.e.	GO	TO
5+5	will	move	the	editor	cursor	to	line	10.	As	this	is	evaluated,	you	can	use	any
Sinclair	BASIC	expression	to	specify	the	line	number.	This	also	applies	to	FOR
variables,	which	will	allow	you	to	jump	to	the	loop	point	(the	statement	directly
after	the	FOR	statement).	This	will	not	find	the	relevant	NEXT	statement	line,	as
you	can	use	more	than	one	NEXT	for	a	FOR	statement.

Variables

These	commands	are	available	when	you	select	a	variable.

Note:	 The	 context	menu	 only	 recognises	 variables	 that	 are	 already	 present	 in
memory.	This	means	 that	a	variable	must	have	been	declared	 (using	a	DIM	or
LET	statement)	before	it	will	show	up	in	the	context	menu.

Edit	Variable

Opens	the	Variables	window	for	the	selected	variable,	so	that	you	can	change	its
value.

String	Wordwrapping

These	options	are	available	from	the	"Wordwrap	String"	when	you	activate	the
menu	on	a	long	string	-	that	is,	one	that	is	longer	than	32	characters.

Wordwrapping	is	useful	when	a	string	has	to	be	printed	to	the	screen,	but	is	too
long	to	fit	into	the	standard	32	character	wide	display.	By	default,	the	text	would
flow	 over	 the	 edge	 of	 the	 screen,	 cutting	 off	 halfway	 through	 a	 word	 if
necessary:

10	PRINT	"This	is	a	very	long	string	and	will	wrap"

Will	display	as

This	is	a	very	long	string	and	w

ill	wrap

Clearly,	 this	 looks	 unacceptable.	 So	 instead,	 there	 are	 word	 wrapping	 options
available	for	these	strings	on	the	Context-Menu.

Split	at	32	Chars	-	This	option	will	split	your	string	into	many	strings,	seperated
by	 the	'	character	 (the	 line-feed	PRINT	 item).	The	 split	will	occur	at	 the	 first
space	charecter	before	the	point	where	the	split	would	occur	normally.

Hence,	our	long	string	now	looks	like	this	in	code:

10	PRINT	"this	is	a	very	long	string	and"'"will	wrap"

Insert	 Spaces	 -	 This	 option	 will,	 instead	 of	 splitting	 the	 string,	 insert	 space
characters	before	any	words	that	will	be	split	to	force	them	over	the	32	character
boundary.	Having	applied	this	method,	our	line	of	code	now	looks	like	this:

10	PRINT	"this	is	a	very	long	string	and		will	wrap"

Note	 the	extra	 space	between	"and"	and	"will".	This	makes	sure	 that	 the	word
"will"	begins	on	a	new	line.	It	does	however	make	your	lines	even	longer.

Standard	commands

These	commands	are	always	available	on	the	context	menu.

Cut

Removes	the	selected	text	(if	any)	and	places	a	copy	on	the	windows	clipboard.
The	clipped	text	is	converted	to	.bas	format,	so	any	control	characters	in	the	text,
or	tokens	from	the	Spectrum	ASCII	set	will	be	converted	to	escape	characters.

Copy

Copies	the	selected	text	(if	any)	to	the	Windows	system	clipboard	in	text	format.

As	with	the	Cut	operation,	the	text	will	be	converted	to	.bas	format	before	being
placed	on	the	clipboard.

Paste

Inserts	any	text	found	on	the	Windows	system	clipboard	into	the	program	at	the
current	cursor	position.	The	text	will	be	processed	for	.bas	format	escape	codes,
and	then	will	be	inserted	using	one	of	two	methods:

If	the	text	contains	no	Return	(CHR$	13)	characters,	 then	it	will	be	 inserted	as
one	line.

If	 the	 text	 contains	 more	 than	 one	 line,	 then	 the	 Add	 Code	Window	 will	 be
shown,	with	the	clipboard	text	in	the	edit	field	as	plain	text.	You	can	edit	this	text
to	your	liking,	and	it	will	then	be	tested	for	syntax	validity	before	being	inserted
line	 by	 line	 into	 your	 program.	 If	 any	 of	 the	 lines	 will	 overwrite	 any	 current
program	lines,	then	(assuming	that	you	have	enabled	Line	Overwrite	Protection
in	the	relevant	Options	Window	page)	BASin	will	warn	you	with	the	option	to
abort	the	operation,	ignore	the	line,	or	replace	the	old	line	in	the	program.

Debug

This	submenu	provides	access	to	common	debugging	features.

Toggle	Breakpoint	 creates	 or	 removes	 a	 breakpoint
at	the	editor	cursor	position.

Run	 to	 Line	 runs	 the	 program	 and	 pauses	 at	 the
statement	indicated	by	the	edit	cursor.

Go	 to	 Line	 runs	 the	 program	 from	 the	 line	 and
statement	at	the	edit	cursor	position.

Watch	Variable	 If	 the	 context	menu	 is	 called	 for	 a

variable,	 you	 can	 Watch	 the	 variable	 as	 program
execution	 runs.	The	watch	will	be	added	by	opening
the	Watch	Properties	window,	which	will	be	pre-filled
with	data	about	the	variable.

Loading	and	saving	files

This	section	is	more	for	adults	and	those	with	experience	of	files	on	a	computer.

Traditionally,	the	Spectrum	used	cassette	tapes	for	loading	and	saving	programs
and	data.

With	BASin,	the	commands	LOAD,	SAVE,	MERGE,	and	VERIFY	refer	to	files
on	your	actual	computer's	hard	disk.	Full	Windows	paths	are	acceptable	(such	as
c:\programs\fruit.bas),	but	be	aware	that	programs	that	load	or	save
with	long	paths	will	not	work	correctly	on	an	original	Spectrum.	When	no	path
is	specified	in	a	filename,	the	most	recent	path	is	used.

You	 can	 specify	 an	 empty	 filename	 if	 you	 wish	 to	 locate	 the	 file	 manually
instead	of	typing	its	full	path.	For	example,	LOAD	""	displays	a	dialogue	box
where	you	can	select	a	file	to	open.

Note	 that	 although	 BASin	 for	 Beginners	 can	 LOAD	 any	 of	 the	 following
formats,	 you	 can	 only	 save	 in	 the	 .szx	 format	 (a	 snapshot	 format)	which	will
allow	you	to	run	your	program	on	a	real	Spectrum	Vega.

Programs	are	saved	and	loaded	in	.bas	format	or	Spectrum	Emulation	Snapshot
format.	 .bas	 format	 is	 a	 text	 representation	 of	 a	 BASIC	 program.	 Escape
characters	 can	 be	 used	 to	 indicate	 embedded	 colour	 commands	 and	 UDG	 or
graphics	 characters.	 In	 all	 load	 and	 save	dialogs	 relating	 to	programs,	 the	 .bas
extension	is	assumed,	and	will	be	added	if	the	user	omits	it	in	the	filename.	In	all
respects	the	emulated	Spectrum	receives	the	data	from	a	.bas	or	snapshot	file	as
if	it	were	a	tape	block	-	program	files	are	encoded	into	tokenised	BASIC	before
being	passed	to	the	ROM	for	loading	into	the	emulated	memory	space.

File	formats

See	the	following	topics	for	a	detailed	description	of	the	file	formats	that	BASin
supports:

The	.bas	format,	which	is	BASin's	preferred	format
for	programs.
The	.bsc	format,	for	code	blocks.
The	.bsd	format,	for	array	variable	data.
The	.scr	format,	for	Spectrum	screen	images.
Snapshot	 files,	 which	 describe	 the	 complete	 state	 of
the	emulated	Spectrum.
Tape	files,	which	contain	sequential	data	blocks	like	a
cassette	tape.

The	.bas	file	format

A	 .bas	 (BASin	 program)	 file	 contains	 a	 plain-text	 representation	 of	 a
Spectrum	BASIC	 program	 and	 variables.	 This	 is	 the	 preferred	 file	 format	 for
programs	developed	in	BASin.

The	 .bas	 format	 is	 an	 extension	 of	 the	 format	 used	 by	 zmakebas,	 a	 tool
written	by	Russell	Marks	 that	converts	plain-text	BASIC	programs	 into	.tap
files	for	loading	into	a	Spectrum	emulator.

Variables

A	 .bas	 file	 begins	 with	 an	 optional	 variables	 section,	 which	 describes	 the
BASIC	variables	that	were	resident	in	memory	when	the	program	was	saved.

Each	variable	declaration	will	take	the	form:

Var	[v]:[Type]	=	[Value]

Where	 v	 is	 the	 variable	 name	 (a$,	 a	 etc).	 Type	 would	 be	 one	 of	 Num,	 Str,
NumArray(),	StrArray(),	NumFOR.	Strings	would	be	Quote	(")	delimited,	with
normal	BASIC	quote-in-quote	rules	applied.

There	are	five	different	types	of	entry:

Numeric Var	name:Num=value

String Var	name$:Str="value"

Numeric	array Var	name(dim1,dim2,.	.	.):NumArray=value1,value2,.	.	.

String	array Var	name$(dim1,dim2,.	.	.):StrArray="value1","value2",.	.	.

Loop	counter Var	name:NumFOR=current,limit,step,loop-line,loop-statement

Multi-dimensional	arrays	are	stored	in	a	linear	fashion,	so	that	all	the	elements	of
the	first	dimension	precede	all	those	of	the	second	dimension,	and	so	on.

For	a	loop	counter	variable,	loop-line	and	loop-statement	represent	the	statement
immediately	after	 the	FOR	 statement,	 i.e.	 the	 one	 to	which	program	 flow	will
jump	when	the	corresponding	NEXT	is	encountered.

Auto-run	line	number

The	 variables	 section	 is	 followed	 by	 an	 optional	 Auto	 declaration,	 which
specifies	 the	 line	 number	 at	 which	 the	 BASIC	 program	 starts	 running.	 This
corresponds	to	the	SAVE	.	.	.	LINE	syntax,	and	takes	the	form:

Auto	line-number

Program

The	 next	 part	 of	 the	 .bas	 file	 is	 the	 actual	 program	 listing.	 Keywords	 are
stored	as	plain	text	(so	e.g.	PRINT	is	five	letters),	not	the	non-standard	keyword
tokens	from	the	Spectrum	character	set.

If	 you	 have	 selected	Break	multi-statement	 lines	 on	 BASin's	 Files	 tab,	 any
program	line	containing	more	than	one	statement	is	split	across	multiple	lines	in
the	 file,	 one	 for	 each	 statement.	 This	 is	 indicated	 by	 a	 line	 ending	 with	 a	\
backslash,	e.g.

10	PRINT	"this	is	the	first	statement":\

PRINT	"this	is	the	second	statement"

Special	characters

Spectrum	 BASIC	 supports	 some	 non-standard	 control	 characters	 (for	 colours
and	 text	 formatting)	 and	 graphics	 characters.	 In	 .bas	 files,	 these	 special
characters	 are	 represented	 by	 escape	 sequences,	 so	 that	 the	 files	 can	 be	 easily

viewed	 and	 modified	 in	 a	 text	 editor.	 Escape	 sequences	 begin	 with	 a	 \
backslash.

The	escape	sequences	for	control	characters	are	as	follows:

\{in} Ink	colour	n,	where	n	is	in	the	range	0	to	7.

\{pn} Paper	colour	n,	where	n	is	in	the	range	0	to	7.

\{bn} Bright	n,	where	n	is	0	or	1.

\{fn} Flash	n,	where	n	is	0	or	1.

Note:	Control	character	escape	sequences	can	be	combined,	so	that	for	instance
\{i6p1f1}	is	equivalent	to	\{i6}\{p1}\{f1}	-	flashing	yellow	ink	on
blue	paper.

The	escape	sequences	for	graphics	characters	are	as	follows	(note	the	spaces!):

\		 The	 	character. \.	 The	 	character.

\	' The	 	character. \.' The	 	character.

\'	 The	 	character. \:	 The	 	character.

\'' The	 	character. \:' The	 	character.

\	. The	 	character. \.. The	 	character.

\	: The	 	character. \.: The	 	character.

\'. The	 	character. \:. The	 	character.

\': The	 	character. \:: The	 	character.

\letter A	user-defined	graphics	character,	where	letter	is	in	the	range	a	to	u.

Other	escape	sequences	are	as	follows:

\@ The	@	at	symbol.

\\ The	\	backslash	symbol.

\` The	£	pound	sterling	symbol.

\#nnn Any	character,	where	nnn	is	a	decimal	number	in	the	range	000	to	255.

The	.bsc	file	format

A	.bsc	 (BASin	code)	 file	contains	 the	contents	of	a	block	of	memory,	along
with	a	descriptive	header	block.	To	save	a	code	block,	use	the	SAVE	.	.	.	CODE
syntax.

Note:	 The	 filename	 extension	 determines	 the	 format	 in	 which	 a	 code	 file	 is
saved.	If	 the	extension	is	.bsc,	BASin	saves	a	.bsc	 file.	If	 the	extension	is
anything	 else	 (or	 missing	 altogether),	 BASin	 saves	 a	 raw	 binary	 file	 with	 no
header.

The	LOAD	 .	 .	 .	CODE	 syntax	allows	you	 to	specify	a	start	address	 in	memory
and	an	optional	length	(in	bytes).	If	the	file	is	too	short,	BASin	will	load	as	much
code	as	is	available.	If	it	is	too	long,	BASin	will	stop	loading	after	the	specified
length	or	when	the	top	of	memory	is	reached.

The	.bsc	 format	begins	with	a	simple	17-byte	header,	 identical	 to	 the	header
saved	by	a	real	Spectrum.	The	header	takes	the	form:

Byte	offset Contents

0 Data	type	indicator:	3	for	a	code	file.

1-10 Filename,	padded	with	trailing	spaces.

11-12 Total	length	of	data	block	(little-endian).

13-14 Start	address	in	memory	(little-endian).

15-16 Reserved.

Bytes	17	onwards	are	the	raw	binary	data	that	was	saved.

BASin	 can	 save	 memory	 dumps	 as	 either	 .bsc,	 which	 includes	 the	 header
described	 above,	 or	 as	 raw	 bytes	 if	 the	 .bsc	 extension	 is	 absent	 from	 the
filename	 -	 e.g.	 SAVE	 "c:\BASin\Screen.scr"	 CODE

16384,6912	would	save	a	raw	.scr	dump	of	the	current	display	memory,
with	no	header.	This	can	be	loaded	into	any	emulator	which	supports	the	loading
of	Binary	files.

The	.bsd	file	format

A	.bsd	 (BASin	 data)	 file	 contains	 the	 name	 and	 contents	 of	 a	BASIC	 array
variable.	To	save	variable	data,	use	the	SAVE	.	.	.	DATA	syntax.

Note:	It	is	only	possible	to	save	array	variables	with	single-letter	names,	such	as
a$.	 This	was	 a	 limitation	 of	 Spectrum	BASIC	 and	 is	 preserved	 in	BASin	 for
compatibility.

The	.bsd	 format	 resembles	 the	.bsc	 format	 in	 that	 it	 comprises	 a	 standard
Spectrum	 header	 followed	 by	 the	 raw	 binary	 data	 for	 the	 variable.	 For	 a
discussion	of	 how	variables	 are	 represented	 in	memory,	 see	Chapter	24	 of	 the
manual.

The	header	takes	the	form:

Byte	offset Contents

0 Data	type	indicator:	1	for	a	numeric	array,	2	for	a	string	array.

1-10 Filename,	padded	with	trailing	spaces.

11-12 Total	length	of	data	block	(little-endian).

13 Variable	name	(a	single	letter	A	to	Z).

14-16 Reserved.

Bytes	17	onwards	are	the	raw	binary	data	that	was	saved.

The	.scr	file	format

A	.scr	(screen)	file	is	a	memory	dump	of	the	Spectrum's	display	file,	or	screen
memory.	This	file	format	is	supported	by	many	emulators.

The	display	 file	starts	at	address	16384	and	 is	6912	bytes	 long.	The	 first	6144
bytes	represent	the	actual	screen	bitmap	(which	pixels	are	set	and	which	are	not),
and	 the	 remaining	 768	 bytes	 represent	 the	 attributes,	 or	 colour	 information,
which	can	be	imagined	as	a	transparent	overlay.

The	layout	of	the	display	file	is	somewhat	unusual.	It	is	split	into	vertical	thirds,
each	comprising	eight	 rows	of	characters,	and	each	character	 is	 stored	 in	eight
(non-sequential!)	 bytes.	 The	 attribute	 data	 is	 stored	 in	 a	 more	 straightforward
way,	"reading"	the	character	cells	from	the	top	left	to	the	bottom	right.

This	simple	program	illustrates	the	layout	of	the	screen	display	by	filling	it	with
consecutive	bytes:

10	FOR	f=0	TO	6911	

20	POKE	f+16384,	255

30	NEXT	f

Snapshot	file	formats

BASin	can	open	and	save	.sna	and	.z80	 files.	These	are	 the	most	popular
snapshot	file	formats	used	by	Spectrum	emulators.

If	you	don't	need	to	load	your	programs	into	other	emulators,	you	should	use	the
.bas	file	format	instead.

A	snapshot	describes	the	complete	state	of	the	emulated	Spectrum	at	the	time	it
was	 saved,	 including	 the	 memory	 contents,	 port	 states,	 and	 register	 contents.
When	you	open	a	snapshot	in	BASin,	the	BASIC	program,	variables,	and	user-
defined	graphics	are	extracted	from	it	and	converted	into	a	tape	block	which	the
ROM	loader	understands.

Note:	BASin	saves	128k	snapshots	in	a	different	manner	to	48k.

When	saving	a	snapshot,	BASin	checks	to	see	which	hardware	it	is	compatible
with	-	by	testing	for	128k	specific	commands,	and	also	for	the	use	of	the	UDGs
"T"	and	"U"	-	which	would	denote	a	48k	snapshot	for	the	majority	of	cases.	If
there	 is	a	clear	case	 for	one	or	either	of	 the	 two	hardware	models,	BASin	will
choose	that	format	for	saving.	If	there	could	reasonably	be	a	choice,	then	BASin
will	ask	you	(assuming	you	have	the	relevant	options	set)	which	you	want	to	use.

48k	Snapshots	work	as	expected	-	they	are	a	dump	of	the	memory	and	the	state
of	 the	 emulation	 as	 it	was	when	 the	 snapshot	was	 saved.	However,	 due	 to	 the
fact	 that	 BASin	 is	 primarily	 a	 48k	 emulation,	 128k	 snapshots	 are	 created	 by
inserting	 your	 program	 and	 silicon	 disc	 contents	 into	 a	 128k	 snapshot.	 This
means	that	when	you	load	the	snapshot,	you	will	find	yourself	at	the	main	128k
menu.	To	examine	your	program	or	run	it,	you	must	choose	"128	BASIC"	from
this	menu.

Note:	The	.z80	file	format,	developed	by	Gerton	Lunter	for	his	Z80	Spectrum
emulator,	has	gone	through	a	series	of	changes,	making	newer	files	incompatible
with	older	versions	of	 the	emulator.	You	can	choose	your	preferred	version	on
BASin's	Files	tab.

Running	a	program

Programs,	when	run,	will	send	all	their	output	to	the	Display	Area.	This	area	is
analogous	 to	 the	 original	 Television	 display	 utilised	 by	 the	 real	 Sinclair
Spectrum.	The	PC	keyboard	operates	in	a	similar	manner	to	the	Editor	window	-
and	thanks	to	more	ROM	modifications,	any	INPUT	statements	will	be	able	to
use	a	much	more	friendly	method	of	entering	data	into	the	program.

All	 programs	 and	 direct	 commands	 will	 return	 to	 the	 editor	 with	 an	 error
message,	even	if	it	is	just	to	say	that	no	errors	have	occurred.	You	can	get	further
help	with	 error	messages	 -	 the	Error	window	and	Error	Help	window	 provide
complete	information	about	BASIC	errors

Direct	commands

Program	 lines	 can	 be	 typed	 in	 with	 a	 line	 number	 and	 will	 be	 accepted	 and
stored	 for	 later	 as	part	of	 a	program.	However,	 if	you	 type	a	 line	with	no	 line
number,	it	will	be	executed	immediately.	This	is	a	"Direct	Command".	You	can
also	use	the	editor	as	a	simple	calculator	-	type	in	an	expression,	such	as	2+3/(4-
2)	and	press	Return.	The	result	will	be	displayed	in	the	display	area.

All	direct	commands	are	"logged"	in	the	Command	History	Window	where	they
can	be	re-called	for	repeated	use.

When	the	command	has	terminated,	or	the	expression	has	been	evaluated,	 then
usually	 a	 "0	 Ok"	 message	 dialog	 will	 appear,	 indicating	 that	 all	 went	 well.
Closing	the	"Error	Message"	dialog	will	return	you	to	the	editor.

Command	History	window

The	Command	History	window	is	available	from	the	View	menu.

This	window	keeps	a	log	of	all	Direct	Commands	executed	by	you	in	the	Editor.

You	can	inspect	the	list	by	scrolling	through	it,	and	recall	any	of	the	commands
by	highlighting	it,	and	clicking	the	"Send	To	Edit"	button.	This	will	discard	any
un-stored	line	that	you	may	have	been	typing	and	replace	it	with	the	command
you	chose.	The	"Close"	button	will	hide	the	Command	History	window.

Error	messages

When	an	error	message	(which	includes	error	"0	Ok"	which	means	that	no	error
happened!)	BASin	will	pop	up	an	Error	Dialog	which	contains	 the	error,	along
with	 a	 short	 explanation	 of	 why	 it	 might	 have	 happened.	 Clicking	 the	 Okay
button	will	hide	the	dialog,	and	return	you	to	the	editor.	The	Continue	button	will
issue	 a	 CONTINUE	 codeword	 as	 a	 Direct	 Command	 and	 resume	 program
execution	if	possible.

You	 can	 turn	 this	 behaviour	 off	with	 the	 checkbox	 at	 the	 bottom	 of	 the	 Error
Dialog	or	by	using	the	relevant	Options	page.

Error	window

The	Error	window	is	displayed	when	an	error	occurs	in	Spectrum	BASIC,	either
while	your	program	is	running	or	as	a	result	of	a	direct	command	in	the	editor.

This	window	 is	 also	used	 for	 reports	 that	 are	not	 technically	 errors,	 such	as	0
OK	and	9	STOP	statement.

For	 a	 complete	 list	 of	possible	 reports	 and	an	 explanation	of	 the	numbers,	 see
Appendix	B.

Click	Continue	 to	 resume	 execution	of	 the	 program.	This	 is	 equivalent	 to	 the
CONTINUE	statement,	and	is	only	available	if	the	error	occurred	in	a	running
program.

Closing	the	window	will	return	you	to	the	Editor	window,	and	if	you	have	asked
BASin	to	do	so	in	the	Options	dialog,	 then	the	editor	cursor	will	automatically
be	moved	to	the	program	line/statement	that	caused	the	error

Uncheck	 the	Notify	me	 of	 this	 error	 type	 box	 if	 you	 do	 not	want	 to	 see	 the
Error	window	when	 this	 error	 occurs	 in	 future.	 If	 you	 choose	 to	 suppress	 the
window	 for	 a	 particular	 report,	 it	 will	 overwrite	 the	 bottom	 two	 lines	 of	 the
screen	instead	-	as	on	an	original	Spectrum.	You	can	re-enable	the	Error	window
for	specific	errors	on	the	Error	Reporting	tab.

Note:	In	the	unlikely	event	that	the	error-handling	routine	in	Spectrum	ROM	is
called	without	a	 legitimate	error	value	 in	 the	ERR	NR	system	variable,	BASin
will	display	the	error	message	?	Unknown	error.

Error	Help	window

The	Error	Help	window	is	available	from	the	Help	menu.

Use	the	Error	Help	window	to	browse	the	Spectrum	BASIC	error	messages	and
their	descriptions.

For	more	information	about	error	reports,	see	Appendix	B.

Debugging

"Debugging"	is	a	term	used	in	computer	programming	which	means	to	remove
or	 fix	 mistakes	 in	 your	 program.	 These	mistakes	 are	 called	 "bugs"	 because	 a
very	 long	 time	 ago,	 when	 computers	 used	 actual	 "thing"	 like	 valves	 to	 work
(rather	than	a	chip)	someone	once	found	an	actual	insect	in	their	computer	which
was	causing	it	to	work	in	an	odd	manner.

BASin	 provides	 many	 ways	 to	 help	 debug	 your	 programs.	 Debugging	 is	 the
process	by	which	you	determine	where	a	program	 is	not	doing	what	 it	 should,
and	narrow	down	the	exact	"fix"	needed	to	get	it	working	properly.	Most	of	the
time,	 this	 is	 due	 to	 an	 error	 on	 the	 your	 part	 -	 a	 spelling	 error,	 or	 a
misunderstanding	of	how	certain	codewords	do	their	jobs.

This	 chapter	 deals	with	 the	methods	 you	 can	 use	 to	 track	 down	 bugs,	 and	 fix
them.	 All	 of	 these	 are	 ways	 to	 get	 information	 about	 your	 program	 and	 its
variables	as	the	program	is	running.	By	watching	this	information	and	following
your	code	slowly,	you	can	(hopefully)	get	an	idea	of	what	is	going	wrong.

There	is	one	thing	worth	mentioning	-	the	more	debugging	systems	you	enable,
the	slower	a	program	will	execute.	BASin	will	have	to	take	time	away	from	the
emulation	 of	 the	 Spectrum	 BASIC	 in	 order	 to	 update	 the	 various	 sources	 of
information	 you	 have	 asked	 for,	 which	 can	 result	 in	 choppy	 sound	 and
inconsistent	program	speed	even	on	the	fastest	of	systems.

Stepping	and	tracing

One	 of	 the	 most	 simple	 debugging	 tools	 is	 the	 Program	 Trace.	 This	 can	 be
enabled	from	the	Run	Menu	in	the	Editor,	and	will	update	the	editor	window	as
statements	execute	in	real	time.	This	is	quite	fast	and	lines	flash	by	very	quickly,
but	some	people	find	that	it's	necessary	to	be	able	to	"watch"	how	their	program
runs.

Another	good	method	to	use	is	to	pause	the	operation	of	your	program,	without
actually	stopping	it.	Your	program	won't	know	that	it's	stopped,	so	it	won't	affect
it.

This	can	be	useful	-	once	the	program	is	"halted"	then	you	can	step	through	the
code	one	statement	at	a	time,	and	monitor	the	program	flow	and	variables	as	you
do.	BASin	provides	three	methods	of	doing	this:

Single	 Stepping	 which	 will	 advance	 one	 line	 at	 a
time	 -	 each	 statement	 will	 be	 executed	 and	 then
control	will	be	returned	to	the	user	with	the	program
halted	once	more.
Step	 Over	 which	 will	 run	 emulation	 until	 the	 next
statement	is	ready	to	run.	Although	on	the	surface	this
looks	very	much	like	Single-Stepping,	the	difference
can	 be	 seen	 when	 you	 step	 over	 a	 GO	 SUB

statement.	 The	 entire	 subroutine	will	 be	 executed	 as
normal,	 and	 the	program	halted	when	 the	 subroutine
RETURNs.
Run	To	which	will	allow	the	program	to	run	until	the
line	 that	 the	 editor	 cursor	 is	 currently	 resting	 on	 is
ready	to	execute.

For	more	information,	see	the	Run	menu.

Breakpoints

The	user	can	suspend	operation	using	the	Run	Menu	in	the	Editor,	but	you'd	be
hard	 pressed	 to	 accurately	 stop	 just	 where	 you	 want	 to.	 This	 is	 where
Breakpoints	and	Watches	come	in	very	handy	indeed.

At	 their	 simplest,	 breakpoints	 are	 "flags"	 attached	 to	 a	 statement	which,	when
the	 statement	 is	 about	 to	be	executed,	 tell	 the	emulation	 to	 suspend	operations
and	 return	 control	 to	 the	 user.	 You	 can	 then	 use	 the	 various	 other	 tools	 to
examine	what	is	going	on	-	look	at	variables,	for	instance.

Breakpoints	in	the	editor	show	up	as	a	red	bar	on	a	statement:

Breakpoints	in	BASin	can	get	a	lot	more	complex	than	this,	however.

You	can	create	a	breakpoint	by	simply	double-clicking	a	statement	in	the	Editor.
However,	if	you	open	the	Breakpoints	Window,	you	can	get	advanced	properties
of	 the	 breakpoint	 and	 attach	 conditions	 and	 logging	 options	 to	 it.	 With	 a
condition	attached,	you	can	tell	BASin	to	suspend	program	operation	only	when
that	condition	evaluates	to	"true",	or	a	non-zero	result.	This	is	for	more	advanced
users,	and	can	be	confusing	to	the	beginner.

The	 condition	 is	 simply	 an	 expression.	Whenever	 that	 statement	 is	 due	 to	 be
executed,	 the	 condition	 is	 evaluated,	 and	 if	 a	 non-zero	 result	 obtained	 then
execution	 is	 suspended.	Similarly,	 a	 log	of	 the	breakpoint	 can	be	 added	 to	 the
Log	Window,	 the	 text	 of	 which	 is	 also	 an	 expression,	 which	 returns	 a	 string
result.	For	instance,	you	can	add	a	log	to	a	breakpoint	which	sends	the	contents
of	a	variable	to	the	Log	Window.	This	can	be	useful	for	 tracking	the	state	of	a
variable	 as	 the	 program	 executes	 -	 the	 breakpoint	 does	 not	 always	 have	 to
suspend	execution.

Watches

Watches	are	another	type	of	debugging	tool,	loosely	related	to	breakpoints,	but
much	more	flexible.	They	are	a	list	of	expressions	(or	other	types	of	data,	such
as	 variable	 contents,	 system	 variable	 states,	 memory	 states	 etc)	 which	 are
updated	 after	 every	 statement	 executes.	 The	 Watch	 Window	 is	 constantly
updated	as	the	program	runs,	to	reflect	the	state	of	these	watches.

Watches	may	have	conditions	as	well.	The	program	halts	when	the	value	of	the
expression	satisfies	the	condition.

To	create	a	watch,	use	the	Add	Watch	window.
To	view	the	values	of	watches,	or	delete	them,	use	the
Watch	List	window.

Alternatively,	you	can	watch	variables	-	and	edit	 their	values	-	 in	 the	Variables
window	and	System	Variables	window.

See	also:

The	Variables	window
The	Breakpoints	window
The	Breapoint-properties	window
The	Watchlist	window
The	Watch-properties	window
The	Log	window

REM	directives

Spectrum	BASIC	 uses	 the	REM	 statement	 for	 comments,	 which	 are	 pieces	 of
text	that	serve	to	explain	the	purpose	of	the	code.	REM	statements	have	no	effect
in	a	running	program.

BASin	supports	a	number	of	REM	directives,	which	are	special	commands	that
can	be	activated	during	 the	 running	of	 a	program	by	 including	 the	appropriate
REM	statement.

REM	directives	are	case-insensitive,	but	 there	must	be	no	more	 than	one	space
between	REM	and	the	directive.

You	cannot	use	a	REM	directive	in	a	direct	command	-	only	in	a	program	line.

REM	fast

Tells	BASin	 to	 start	 running	 the	 program	as	 fast	 as	 possible,	 disregarding	 any
timing	 constraints.	 While	 not	 true	 to	 the	 behaviour	 of	 a	 real	 Spectrum,	 this
feature	is	useful	for	skipping	through	time-consuming	operations.

REM	slow

Tells	BASin	to	resume	normal	execution	speed.

REM	log	expression

Tells	BASin	to	evaluate	expression	(which	may	be	string	or	numeric)	and	write
the	result	to	the	Log	window.

This	 directive	 supports	 BASIC	 keywords	 and	 operators	 as	 well	 as	 simple
variables.	Here	are	some	examples:

	10	REM	log	i

	80	REM	log	"Reached	line	80"

100	REM	log	FN	p(j)

500	REM	log	"Length	of	b$	is	"	+	STR$	LEN	b$

Note:	 If	 an	 error	 occurs	 while	 evaluating	 an	 expression,	 the	 error	message	 is
written	to	the	Log	window	instead.

Variables	window

The	Variables	window	is	available	from	the	View	menu.

This	window	keeps	a	list	of	any	variables	that	have	been	declared	at	runtime	or
as	 a	 Direct	 Command	 with	 a	 LET	 statement.	 Once	 the	 variable	 has	 been
declared,	 it	 will	 appear	 in	 the	 list.	 The	 name	 will	 show	 at	 the	 far	 left	 of	 the
window,	followed	by	its	type:

Numeric	-	a	variable	that	holds	either	a	floating	point
(decimal)	number	or	an	Integer	(whole)	number.

String	 -	 a	 variable	 that	 contains	 a	 string	 of	 ASCII
characters.

For	 Var	 -	 a	 numeric,	 single	 letter	 variable,	 that
contains	 information	 about	 the	 FOR	 command	 that
created	it.	The	current	value,	the	STEP	value,	and	the
limit	(TO	value)	is	shown.

NumArray	-	a	numeric	array.	The	dimensions	of	the
array	are	also	shown.

StrArray	 -	 an	 array	 of	 strings.	 As	 for	 the	 numeric
array,	the	dimensions	are	also	shown	with	the	type.

After	 this,	 the	 contents	 of	 the	 variable	 are	 shown.	 This	 display	will	 update	 in
real-time	as	the	program	changes	the	variable	contents.

You	can	use	either	a	click	of	the	right	mouse	button	on	the	highlighted	variable,
or	use	one	of	the	two	buttons	at	the	bottom-left	of	the	window	to	either	edit	the
variable	or	watch	it.

If	you	elect	to	watch	the	variable,	then	a	Watch	will	be	created	and	added	to	the
Watch	Window	containing	 the	variable	name	as	 it's	watch-expression.	You	can
edit	this	watch	with	the	Watch	Properties	window.

Editing	a	simple	String	or	Numeric	variable

Editing	 variables	 brings	 up	 the	 variable	 editor.	 The	 contents	 of	 this	 window
depend	upon	the	type	of	variable	being	edited.

For	a	simple	numeric	or	string	variable,	you	can	alter	 the	contents	by	 typing	a
new	expression	 into	 the	variable	editor's	edit	 field.	This	expression	must	be	of
correct	syntax,	and	evaluate	to	the	type	of	variable	being	edited.	This	means,	for
example,	 that	any	string	 literals	you	edit	must	be	enclosed	 in	quote	(")	marks,
but	 does	 grant	 the	 ability	 to	 use	 such	 expressions	 as	A$+B$	 or	"Hello"(
TO	4)	which	will	of	course	be	evaluated	when	you	click	OK,	and	 the	 result
stored	in	the	variable.

Editing	a	FOR	control	variable

A	 FOR	 variable	 will,	 when	 edited,	 allow	 you	 to	 alter	 the	 current	 value,	 the
STEP	 value,	 and	 the	 limit	 (the	TO	 value),	 as	 well	 as	 the	 line	 and	 statement
number	 that	 the	corresponding	NEXT	statement	will	 jump	 to	when	 the	 loop	 is
processed.	Note	 that	 if	 the	FOR	 variable	 is	 declared	 as	 a	 direct	 statement,	 the
line	to	jump	to	will	be	65534,	i.e.	an	impossible	jump.	Again,	all	the	edit	fields
will	accept	any	numeric	expression	as	their	contents.

Editing	an	array	variable

Numeric	or	String	arrays	will	present	themselves	as	a	list	in	the	variable	editor	of
their	 contents.	 Clicking	 any	 of	 the	 elements	 will	 open	 an	 edit	 field	 for	 that
element,	which	again	can	be	any	expression	relevant	to	the	variable	type.

Breakpoints	window

The	Breakpoints	window	is	available	from	the	View	menu.

The	breakpoints	window	 lists	every	breakpoint	 that	 the	user	has	 set	within	 the
program,	 along	 with	 some	 other	 information	 which	 can	 be	 useful	 when
debugging.	The	list	has	a	small	column	to	the	left,	which	contains	a	checkbox.
When	 checked,	 this	means	 that	 the	 breakpoint	 is	 active.	When	unchecked,	 the
breakpoint	 will	 be	 ignored	 and	won't	 suspend	 program	 operation.	 This	 option
can	also	be	set	from	the	context	menu	activated	by	right-clicking	a	breakpoint	in
the	list.	After	this,	the	line	and	statement	is	listed,	in	the	Line:Statement
format	(i.e.,	10:1	would	be	line	ten,	statement	1),	along	with	the	source	of	the
line	in	BASIC	code.	Any	condition	that	has	been	set	for	the	breakpoint	is	listed
next	to	this.

Conditional	 breakpoints	 must	 have	 their	 conditions	 attached	 using	 the
Breakpoint	 Properties	 Window	 after	 the	 breakpoint	 has	 been	 created.	 This
condition	is	an	expression	which	must	evaluate	to	a	numerical	result.	Whenever
program	execution	reaches	 the	 line	and	statement	specified	for	 this	breakpoint,
the	 condition	 (if	 present)	 is	 evaluated.	 If	 the	 result	 is	 non-zero,	 then	 the
breakpoint	will	suspend	program	operation	and	return	you	to	the	editor.	A	result
of	zero	will	allow	the	program	to	skip	the	breakpoint,	and	continue	execution.

Finally,	 to	 the	 far	 right,	 is	 the	 Pass	 Count.	 This	 number	 will	 be	 incremented
when	 program	 execution	 reaches	 the	 breakpoint,	 regardless	 of	 whether	 or	 not
execution	is	suspended	by	the	breakpoint.	By	watching	this	value	rise,	you	can
see	if	your	program	is	executing	that	line	of	code,	and	how	often.

You	can	add	a	new	breakpoint	by	either	choosing	the	"Add	Breakpoint…"	menu
item	(after	clicking	your	right	mouse	button	in	the	breakpoints	list),	or	by	using
the	"Add	New…"	button.	A	new	breakpoint	will	be	created,	and	the	Breakpoint
Properties	Windowl	 open	 allowing	 you	 to	 edit	 the	 new	 breakpoint's	 attributes.
You	can	also	call	up	the	properties	for	any	other	breakpoint	by	either	using	the
"Properties"	 button,	 or	 by	 using	 the	 "Properties"	 option	 on	 that	 breakpoint's
context	menu.

breakpoints	 can	 be	 deleted	 by	 highlighting	 a	 breakpoint	 in	 the	 main	 list,	 and
either	using	 the	 "Delete"	option	on	 the	context	 (right-click)	menu,	or	by	using
the	"Delete"	button.

The	 context	menu	 for	 the	main	 list	 has	 extra	 functionality	 if	 no	 breakpoint	 is
highlighted,	and	will	allow	you	to	enable,	disable	or	delete	all	the	breakpoints	in
the	list.	These	items	should	be	used	with	care,	as	they	can	easily	make	a	mess	of
all	your	debugging	efforts	so	far.	When	a	breakpoint	is	highlighted,	then	an	extra
option	appears	on	the	menu	-	"View	Source",	which	will	move	the	Editor	cursor
to	the	start	of	the	line	and	statement	that	the	breakpoint	refers	to.

Breakpoint	Properties	window

The	Breakpoint	Properties	window	is	available	from	the	Breakpoints	window.

This	window	is	used	to	set	the	behaviour	of	any	of	the	breakpoints	currently	set
within	 your	 program.	 There	 are	 two	 tabs	 -	 The	 "Breakpoint"	 tab	 and	 the
"Advanced"	tab.

Note:	When	 creating	 a	 new	 breakpoint,	 this	 is	 known	 as	 the	Add	Breakpoint
window.

The	Breakpoint	tab

In	the	"Breakpoint"	tab,	you	can	set	 the	basic	options	for	your	breakpoint.	The
"Enabled"	 checkbox	 allows	 you	 to	 "turn	 off"	 a	 breakpoint,	which	will	 remain
completely	inactive	until	you	want	to	use	it,	and	the	"Break"	checkbox	lets	you
choose	whether	or	not	this	breakpoint	should	suspend	program	operation	when	it
fires.	 The	 Line	 and	 Statement	 number	 that	 the	 breakpoint	 will	 trigger	 at	 is
displayed	in	the	two	edit	boxes	below	these	options.

Advanced	tab

The	 "Advanced"	 tab	 gives	 you	 the	 opportunity	 to	 add	 a	 condition	 to	 the
breakpoint.	If	the	breakpoint	is	enabled,	then	the	condition	will	be	tested	if	it	is
present.	 The	 condition	 can	 be	 any	 Sinclair	BASIC	 expression,	which	 includes
the	 use	 of	 variables	 (as	 long	 as	 they	 are	 defined	 by	 your	 program).	 The
expression	should	resolve	to	a	numerical	result,	and	if	it	does	then	the	breakpoint

will	trigger	when	that	result	is	non-zero.

Finally,	you	can	also	specify	a	log	entry	which	will	be	made	when	the	breakpoint
fires.	 Bear	 in	 mind	 that	 the	 log	 text	 specified	 will	 only	 be	 logged	 if	 the
breakpoint	is	enabled,	and	any	conditions	have	been	met.	This	log	text	can,	like
the	condition,	also	be	an	expression	of	any	type.	You	can	indicate	that	this	is	the
case	by	checking	the	"Log	Expression"	checkbox	below	the	edit	field.

Watch	List	window

The	Watch	List	window	is	available	from	the	View	menu.

Watches	 are	 another	 tool	 which,	 like	 breakpoints,	 are	 evaluated	 at	 runtime.
Unlike	 breakpoints,	 they	 are	 evaluated	 after	 every	 line	 and	 statement	 of	 your
program,	so	they	can	take	up	quite	a	lot	of	CPU	time	if	you	have	many	of	them
present	 in	 the	Watch	 list.	Watches	 consist	 of	 different	 types	 -	 the	 most	 basic
being	an	expression	which	the	user	enters,	and	is	evaluated	as	the	program	runs.
Other	 watch	 types	 include	 variable	 watches,	 system	 variable	 watches,	 and
watches	that	monitor	memory	addresses.	This	can	be	very	handy	for	keeping	an
eye	on	how	your	program	affects	the	environment	it	runs	in.

The	main	area	of	the	window	is	the	Watch	List.	This	lists,	like	the	Breakpoints
Window,	every	watch	declared	by	you.	To	the	left	of	each	entry	is	the	"Enabled"
checkbox	-	you	can	disable	watches	temporarily	with	this.	The	"Result"	field	to
the	right	will	inform	you	that	the	Watch	is	disabled	if	you	choose	to	do	this.

After	 the	Enabled	box,	 the	 expression	or	 type	of	watch	 is	 listed.	Variables	 are
listed	with	 a	 prefix	 "Var:",	 System	variables	 are	 given	 a	 "SysVar:"	 prefix,	 and
memory	watches	are	 listed	with	a	"Mem"	prefix	followed	by	 the	data	size	 that
they	are	watching	(Byte,	Word	or	DWord).	Finally	the	result	of	the	watch,	if	it	is
enabled,	is	shown.	In	the	case	of	an	expression,	the	result	of	the	evaluation	(or
any	 syntax	 errors	 in	 the	 expression)	 is	 shown.	 Variables	 will	 display	 their
contents,	unless	they	become	undefined	due	to	a	CLEAR	statement	for	example,
where	they	will	show	the	"Variable	not	found"	error.

Managing	watches

You	can	use	the	"Add	New…"	button	to	add	a	new	watch	(the	Watch	Properties
Window	will	pop	up	to	allow	you	to	customise	the	new	Watch),	or	right-click	in
an	empty	part	of	the	watch	list	and	choose	the	corresponding	menu	item.	Delete
watches	using	the	"Delete"	button	after	highlighting	a	watch	in	the	list,	or	again
use	 the	context	menu	on	your	 right	mouse	button.	You	can	alter	any	watch	by
selecting	 it	 and	 using	 the	 "Properties"	 button,	 which	 will	 bring	 up	 the	Watch
Properties	Window.

If	you	find	that	your	watches	are	at	odds	to	your	program	state	(after	you	maybe
POKE'd	one	of	your	variables	programmatically	 for	example),	you	can	force	a
manual	update	of	all	watches	by	clicking	 the	 "Refresh"	button,	which	again	 is
available	on	the	context	menu.

Watch	Properties	window

The	Watch	Properties	window	is	available	from	the	Watch	List	window.

When	you	create	a	new	Watch,	or	 edit	 a	Watch	you	have	already	created,	 this
window	will	allow	you	to	customise	the	way	that	the	Watch	behaves.

Note:	When	creating	a	new	watch,	this	is	known	as	the	Add	Watch	window.

Firstly,	 the	 "Enabled"	 checkbox	will	 allow	 you	 to	 turn	 on	 or	 off	 the	watch	 in
question.	A	disabled	watch	will	not	be	evaluated	at	runtime,	and	so	can	speed	up
debugging	 when	 many	 watches	 are	 created	 but	 not	 necessarily	 needed	 at	 the
current	time.

After	this,	you	can	choose	what	type	of	Watch	you	want	from	the	"Watch	Type"
drop-down	list:

Types	of	watches	available

Expression	Watches

An	Expression	watch	will	 evaluate	 the	 expression	you	 specify	 in	 the	 edit
field	below.	This	can	be	any	Sinclair	BASIC	expression,	including	variables
and	memory	PEEKs.	Below	this,	you	can	opt	to	break	execution	(suspend
the	program)	if	the	expression	evaluates	to	a	non-zero	result.	This	is	similar
to	 the	 conditional	 breakpoint,	 but	 different	 in	 one	 important	 respect.
Watches	 are	 evaluated	 as	 each	 line	 and	 statement	 is	 executed,	 and	 so	 are
constantly	updated.	A	conditional	breakpoint	will	only	be	evaluated	when

the	specified	line	and	statement	number	has	been	reached,	so	an	Expression
Watch	 can	break	whenever	 the	 expression	 results	 non-zero,	which	 can	be
handy	for	tracking	down	where	a	particular	variable	is	corrupted,	say.

Variable	Watches

The	Variable	watch	 is	 similar	 to	 the	Expression	Watch	but	 is	 restricted	 to
only	 watching	 the	 variables	 that	 have	 been	 declared	 at	 runtime	 or	 as	 a
Direct	Command.	These	watches	can	not	break	execution.	You	can	choose
which	variable	by	either	typing	in	the	name,	or	selecting	it	from	the	drop-
down	list.

System	Variable	Watches

These	 are	 similar	 to	 the	Variable	Watches,	 in	 that	 you	 can	 only	 select	 to
monitor	a	System	Variable	(see	Chapter	25	of	 the	Sinclair	BASIC	Manual
for	more	 on	 these)	 from	 the	 drop-down	 list.	 These	watches	 cannot	 break
program	 execution.	 They	will	 be	 displayed	 in	 their	 correct	 format	 -	 two-
byte	words,	or	single	byte	values,	or	lists	of	multi-byte	contents.

Memory	Address	Watches

These	watches	will	monitor	 the	 contents	 of	memory	 addresses.	 They	 can
display,	 from	 the	 address	which	 lies	 in	 the	 range	 0	 to	 65535,	 one	 byte,	 a
Word	 (two	bytes)	 or	 a	Dword	 (four	 bytes).	This	will	 be	updated	between
statements,	 as	 the	 other	 watches	 are.	 Again,	 these	 watches	 cannot	 break
program	execution.

Log	window

The	Log	window	is	available	from	the	View	menu.

This	window	displays	messages	 logged	by	BASin,	 such	as	breakpoint	 log	 text
and	syntax	errors	when	pasting	multiple	lines	from	the	Add	Code	window.

Click	Clear	to	delete	all	messages	from	the	window.

Click	Save	As	to	save	the	logged	messages	to	a	text	file.

Print	Preview	window

The	Print	Preview	window	is	available	from	the	File	menu,	the	display	window's
Display	menu,	and	the	ZX	printer	output	window.

This	window	is	opened	automatically	when	any	of	the	three	printing	options	are
chosen:	 the	Print	option	of	 the	File	Menu	 in	 the	Editor,	 the	Print	option	of	 the
Display	menu	on	the	Display	Window,	and	the	Send	To	Printer	button	in	the	ZX
Printer	Output	Window.	It	allows	you	to	set	various	options	as	to	how	the	output
will	be	printed	to	the	PC	printer.

The	window	is	divided	into	two	areas:	the	options,	and	the	Print	Preview.

The	print	 preview	 area	 is	 a	 graphical	 representation	 of	 how	 the	 output	 will
appear	on	 the	page.	The	 size	of	 the	 image	 is	 taken	 from	your	printer's	 current
orientation	and	paper	 type	settings,	and	 the	actual	data	 is	 laid	out	according	 to
the	options	at	the	bottom	of	the	window.

The	options	start	with	the	Data	Source,	which	is	usually	set	by	the	window	that
opened	 the	 dialog.	 You	 can	 change	 between	 the	 current	 screen,	 the	 current
BASIC	program,	and	the	ZX	Printer	output.	Each	has	options	of	their	own	which
can	be	set.

When	printing	the	current	BASIC	program,	you	can	use	the	numeric	field	to	the
left	of	the	options	area	to	set	at	which	character	column	the	lines	of	BASIC	will
be	wrapped	around	to	the	next	line.	The	output	produced	by	this	source	will	be
as	 close	 to	 the	 Editor's	 display	 as	 possible	 (taking	 into	 account	 the	 line
wrapping),	with	the	same	syntax	highlighting	options	as	you	have	selected	in	the
Options	Window.

When	printing	the	current	screen,	you	can	elect	at	 the	lower	left	of	 the	options
area	 to	 either	grab	 the	display	 "as-is",	which	will	 take	 the	 current	display	 size
and	any	scaling	options	into	account,	or	to	take	the	display	as	the	spectrum	sees
it.	Both	options	will	take	the	border	area	into	account	when	printing.

When	printing	the	ZX	Printer	output,	you	cannot	set	either	of	the	above	options,
and	 the	only	options	available	 to	you	are	 the	standard	set	available	 to	all	 three
Data	Sources.

The	 scaling	 allows	 you	 to	 inflate	 or	 deflate	 the	 printed	 output.	Many	 printers
operate	 at	much,	much	higher	 resolutions	 (dots	 per	 inch,	 or	DPI)	 than	 the	ZX
Spectrum's	printer	could	manage.	For	this	reason,	you	can	scale	the	output	up	or
down	to	enhance	readability	or	maximise	space	usage.

Below	the	scaling	option	you	can	also	select	Multiple	column	output,	which	only
applies	to	the	current	BASIC	program	and	the	ZX	Printer	output.	If	there	is	room
on	your	page,	BASin	will	allow	the	printed	output	to	run	in	columns	down	the
page	before	heading	into	a	new	page.

Below	these	are	the	following	buttons:

Printer	Settings

This	will	open	your	printer's	Preferences	control	panel	applet,	allowing	you
to	set	paper	source	and	orientation	or	quality	settings.	Any	changes	will	be
reflected	in	the	preview	area	at	the	top	of	the	window.

Print

Will	bring	up	 the	standard	windows	Printer	dialog,	where	you	can	set	 the
number	of	copies	and	the	pages	you	wish	to	print	before	commencing	the
print	job.	Note	that	you	can	also	change	the	printer	you	are	sending	the	job
to	 using	 this	 window	 -	 which	 can	 cause	 problems	 if	 the	 paper	 sizes	 and
orientation	of	another	printer	differ	from	the	ones	used	in	the	preview.

Close

Will	close	the	Print	Preview	Window	without	printing	anything.

BASin's	tools

BASin	offers	a	number	of	tools,	accessible	through	the	Tools	Menu,	which	can
make	certain	aspects	of	programming	a	touch	easier	by	removing	the	tedium	of
say,	entering	long	lists	of	DATA	values,	or	designing	UDGs	on	paper.

Some	of	these	tools	will	do	a	certain	amount	of	programming	for	you,	others	are
aids	to	programming.	The	Token	Table	Window,	for	example,	makes	it	easier	to
insert	 colour	 control	 characters	 or	 keyword	 tokens	 into	 your	 program,	 and	 the
Renumber	 Tool	 allows	 you	 to	 make	 your	 program	 tidier	 and	 create	 room	 for
more	lines	between	lines	that	have	become	a	bit	tight	in	their	numbering.

Choose	a	tool	that	you	want	to	read	the	help	for:

The	Token	Table	helps	you	to	locate	and	insert	special
symbols.

The	 UDG	 Editor	 can	 manipulate	 user-defined
graphics	(UDGs).

The	Renumber	tool	changes	the	line	numbering	in	all
or	part	of	your	program.

Other	tools

These	 tools	are	used	by	one	or	more	of	 the	 tools	or	debugging	utilities,	and	as
such	are	not	available	for	use	by	the	user	except	in	conjunction	with	those	parts
of	BASin.	However,	they	are	documented	here:

The	Add	Code	window	controls	the	insertion	of	groups	of	program	lines.

Token	Table	window

The	Token	Table	window	is	available	from	the	Tools	menu.

This	tool	opens	up	a	window	which	contains	a	tabbed	set	of	pages	which	contain
the	usually	hard	to	find	characters	and	tokens	present	in	the	Sinclair	ASCII	set.
You	 can	 browse	 these	 pages	 to	 find	 the	 token	 you	 want,	 whereupon	 double
clicking	it	will	send	that	character	or	token	to	the	Editor	window.	Clicking	once
on	these	will	show	a	larger	version,	which	can	be	useful	to	distinguish	between
them.

The	 status	 area	 at	 the	 bottom	 of	 the	 window,	 below	 the	 tabs,	 shows	 which
character	code	(CHR$	code)	corresponds	to	the	character	or	control	code/token
you	are	currently	pointing	at.

The	window	is	laid	out	in	three	tabs:

Alpha-numerics/Graphics

This	page	shows	three	areas	of	characters	that	are	available	to	Sinclair	BASIC	-
the	 Character	 set,	 which	 contains	 all	 the	 characters	 from	 the	 space	 character
through	to	the	copyright	symbol.

There	is	a	checkbox	below	this	area,	marked	"Use	Chars"	-	this,	when	enabled,
will	 instead	 of	 using	 the	 default	 Sinclair	 Character	 set,	 take	 the	 graphical
representations	 from	 the	 memory	 region	 which	 is	 pointed	 to	 by	 the	 CHARS
system	variable.	This	allows	you	to	see	the	characters	as	they	would	appear	on-
screen.

Control	codes

This	page	displays	the	colour	and	cursor	movement	characters	for	you	to	insert
into	your	program.

These	will	be	sent	as	"Hex	chars"	-	small	custom	characters	which	comprise	the
hexadecimal	equivalent	of	their	CHR$	codes.	For	colour	control	characters,	this
usually	entails	sending	two	characters	to	the	editor	-	the	colour	control	code	and
it's	parameter.	For	example,	the	code	for	setting	the	INK	is	number	16	-	so	that
will	 be	 sent	 first,	 followed	 by	 the	 ink	 number	 from	 0	 to	 7.	 The	 Status	 area,
although	showing	the	correct	PRINT	code	for	the	colour	controls,	does	not	show
the	Editor	codes	needed.	The	correct	characters	will	be	sent	though.

Keywords

This	page	allows	you	to	send	BASIC	keywords	to	your	program.

Like	 the	Control	Codes,	 these	will	 all	 send	 the	 corresponding	 character	 to	 the
editor	as	a	"Hex	char",	with	 the	corresponding	hexadecimal	value.	This	allows
you	to	 insert	 the	 tokens	for	each	of	 the	BASIC's	keywords	 into	strings	 in	your
program.	The	advantage	of	this	is	that	you	get	a	complete	word	using	only	one
byte	of	memory.	If	you	elect	 to	send	a	keyword	outside	of	a	string	literal,	 then
the	sequence	of	letters	that	make	up	the	keyword	will	be	sent	instead.

The	UDG	Editor	window

The	UDG	Editor	window	is	available	from	the	Tools	menu.

One	 of	 the	 most	 laborious	 and	 time-consuming	 tasks	 when	 programming	 in
BASIC	 is	 the	 construction	 of	 UDGs	 for	 your	 programs.	 There	 is	 space	 in
memory	for	up	to	21	of	these,	and	in	the	past	they	had	to	be	designed	on	squared
paper,	 and	 the	 binary	 values	 of	 the	 character's	 lines	 calculated	 and	 entered	 in
using	either	POKEs	or	DATA	statements.

The	 UDG	 editor	 provides	 a	 user-friendly	 and	 intuitive	 graphical	 interface	 for
creating	these	graphics.

The	window	comprises	the	following	areas:

Editing	grid

This	area	represents,	 in	a	 large	form,	 the	8×8	character	grid	used	 to	create	one
character.	You	can	use	the	mouse	in	here	to	set	or	un-set	pixels	in	the	character.
You	can	select	 the	character	you	want	 to	work	on	by	clicking	 in	 the	Character
Selection	Area,	 and	 any	 changes	 you	make	will	 be	 shown	 there	 as	 you	make
them.

A	preview	of	your	current	character	is	also	displayed	at	the	top	right	of	the	grid
region.

Character	selection	area

This	area,	to	the	right	of	the	window,	contains	a	"palette"	of	characters	available.
When	editing	UDGs,	this	contains	21	graphics.

You	can	use	the	left	mouse	button	in	a	single	"click"	to	send	a	character	to	the
editing	grid.	You	can	also	use	a	"drag	and	drop"	operation	on	these	characters:

Use	the	left	mouse	button	to	select	a	character,	and	without	letting	go	of	the
left	mouse	button,	"drag"	the	character	to	another	character	in	the	selection
area	to	make	a	copy	of	that	character	in	that	cell.

Use	 the	 right	 mouse	 button	 to	 drag	 a	 character	 to	 exchange	 it	 with	 the

character	in	the	destination	cell.

Use	the	left	mouse	button	to	drag	a	character	to	the	editing	grid,	to	assign
that	character	to	a	particular	placeholder	on	the	grid.

Use	the	right	mouse	button	to	copy	a	character's	data	from	one	character	to
the	 editing	 grid.	 This	 is	 the	 same	 as	 copying	 between	 characters	 on	 the
palette	using	the	left	button	detailed	above.

The	Menu	strip

The	 main	 menu	 for	 the	 UDG/Charset	 editor	 allows	 you	 to	 access	 advanced
functions.	From	left	to	right,	the	menu	consists	of:

The	File	Menu

New

Clears	all	the	UDGs	away	and	lets	you	start	afresh	with	a	new	set.

Exit

Closes	the	UDG/Charset	editor.

Exit	and	discard

Closes	 the	 window	 and	 undoes	 any	 changes	 you	 have
made	to	the	UDGs.

The	Edit	Menu

This	menu	 allows	you	 access	 to	 a	 simple	Undo	 feature,
tools	 for	manipulating	 the	 grid	 and	 individual	 graphics,
and	 to	utilise	 the	clipboard.	This	clipboard	 is	 internal	 to

the	UDG	editor,	and	does	not	give	access	to	the	Windows
system	clipboard.

Undo

Un-Does	 the	 last	 change	 you	 made	 to	 the	 current
character.

Grid

Gives	tools	for	working	with	the	editing	grid.

Fill

Fills	the	grid	with	the	currently	selected	graphic	in
the	palette	to	the	right	of	the	window.	This	can	be
useful	 for	 designing	 graphics	 that	 must	 tile
seamlessly.

Clear

Clears	 the	 entire	 grid,	 which	 will	 also	 clear	 all
graphics	assigned	to	the	grid.

Invert

Inverts	 every	graphic	 assigned	 to	 the	grid,	which
will	invert	the	entire	grid.

Flip

Brings	up	a	submenu	which	allows	you	to	flip	the
entire	grid.

Horizontal

Flips	 the	whole	 grid	 left	 to	 right.	 This	means
that	all	graphics	in	the	grid	will	be	flipped,	and
also	the	data	from	grid	regions	at	the	left	of	the
grid	will	be	moved	to	the	right,	and	vice-versa.

Vertical

As	for	horizontal	 flipping,	but	 flips	vertically,
top	to	bottom.

Rotate

Brings	up	a	 submenu	 for	 rotating	 the	grid.	Note:
These	 operations	 can	 only	 be	 performed	 on
graphics	 with	 a	 square	 data	 format	 (such	 as	 8x8
pixels,	or	16x16	pixels).

90°	Left

Rotates	 the	 whole	 grid	 90	 degrees	 anti-
clockwise.	 As	 with	 flipping,	 this	 means	 that

not	 only	 will	 each	 graphic	 be	 moved,	 but
characters	 will	 assume	 the	 data	 of	 other
characters	as	they	are	moved	into	place.

90°	Right

Rotates	 the	whole	 grid	 90	 degrees	 clockwise.
Operates	the	same	way	as	the	90°	Left	option,
in	that	the	whole	grid	is	rotated.

Shift

Brings	 up	 a	 submenu	 which	 gives	 options	 for
scrolling	the	grid,	with	wraparound.

Left

Shifts	the	grid	left	by	one	pixel.	Graphics	will
overflow	into	one-another	at	their	edges.

Right

Shifts	 the	grid	 right	by	one	pixel.	As	with	all
shift	operations,	graphics	will	overflow	at	their
edges.

Up

Shifts	 the	whole	 grid	 up	 one	 pixel,	 wrapping
around	at	the	bottom	of	the	grid.

Down

Shifts	 the	 grid	 down	 one	 pixel,	 wrapping
round	at	the	top.

Characters

Provides	 tools	 for	 working	 with	 the	 individually
selected	 (highlighted)	 graphic	 in	 the	 palette	 to	 the
right	 of	 the	 window.	 Many	 of	 these	 operations	 are
similar	 to	 the	 ones	 for	 the	 editing	 grid,	 but	work	 in
subtly	different	ways.

Cut

Stores	a	copy	of	the	current	image	on	the	Graphic
Editor	 clipboard,	 and	 clears	 the	 current	 character
from	the	editing	grid.

Copy

Stores	 a	 copy	 of	 the	 current	 graphic	 on	 the
Graphic	Editor	clipboard.

Paste

Retrieves	any	graphic	stored	on	the	Graphic	Editor
clipboard,	 and	 sends	 it	 to	 the	 currently	 selected
graphic	slot,	 replacing	any	graphic	 that	 is	already
there.

Insert	New

Inserts	 a	 new	 blank	 graphic	 at	 the	 currently
highlighted	position.

Delete

Removes	the	currently	selected	graphic.	This	will
reduce	 the	 number	 of	 graphics	 available	 in	 the
palette	by	1.

Clear

Clears	 the	 currently	 selected	 graphic	 to	 a	 blank
sheet.

Invert

Swaps	the	set	or	un-set	state	of	every	pixel	in	the
Editing	Grid,	thus	inverting	the	character.

Flip

Brings	up	a	submenu	which	allows	you	to	flip	the
currently	selected	graphic.

Horizontal

Flips	the	current	character	in	the	vertical	plane.

Vertical

Flips	 the	 current	 character	 in	 the	 horizontal
plane.

Rotate

Brings	up	 a	 submenu	which	 allows	you	 to	 rotate
the	character	by	90	degrees.

90°	Left

Rotates	 the	 current	 character	 90	 degrees	 anti-
clockwise.

90°	Right

Rotates	 the	 current	 character	 90	 degrees
clockwise.

Shift

Brings	 up	 a	 submenu,	 with	 four	 options	 for
shifting	 the	 current	 character	 around	 the	 Editing
Grid.

Left

Shifts	 all	 pixels	 one	 place	 to	 the	 left,	 with
wraparound.

Right

Shifts	 all	 pixels	 one	 place	 to	 the	 right,	 with
wraparound.

Up

Shifts	 all	 pixels	 up	 one	 place,	 with
wraparound.

Down

Shifts	 all	 pixels	 down	 one	 place,	 with
wraparound.

Renumber	window

The	Renumber	window	is	available	from	the	Tools	menu.

This	tool	is	very	handy	for	any	BASIC,	such	as	Sinclair	BASIC,	which	uses	line
numbers.	Whilst	writing	a	program,	you	may	find	 that	you	need	 to	 insert	 lines
between	existing	lines,	and	that	after	a	while	the	numbering	is	so	tight	that	there
is	no	more	room.

This	 tool	 alleviates	 this	 problem.	 It	will	 take	 each	 line	 number,	 and	 replace	 it
with	 the	 numbers	 you	 choose,	 which	 can	 (assuming	 that	 you	 set	 a	 sane	 Step
value)	increase	the	number	of	available	new	lines.

You	can,	using	 the	first	option,	elect	 to	either	renumber	 the	whole	program,	or
just	a	portion.	If	you	decide	to	renumber	just	a	portion	(the	"Whole	Program"
checkbox	is	un-checked)	then	the	following	options	must	be	set:

From	Start

The	line	number	that	begins	the	block	of	code	you	wish	to	renumber.

To	End

The	 line	 number	 that	 lies	 at	 the	 end	 of	 the	 block	 of	 code	 you	 wish	 to
renumber.

Note:	Both	options	must	be	in	numerical	order	-	the	end	value	cannot	be	smaller
than	the	start	value.

From	hereon,	you	can	set	the	parameters	for	the	renumbering	itself.	You	can	use
the	options:

Starting	At…

This	option	specifies	what	line	number	the	renumber	should	use	as	the	first
line.

Increment	in	steps	of…

Each	new	line	 that	 is	 renumbered	will	be	 the	previous	 line's	number,	plus
this	 amount.	 Setting	 to	 10	 is	 probably	 best,	 as	 it	 gives	 a	 nice	 amount	 of
space	between	the	lines.	Setting	this	to	1	will	renumber	sequentially	as	1,	2,
3,	…	10,	11,	12	etc,	but	will	prevent	you	from	inserting	any	new	lines	into
the	program.

Note:	A	note	of	warning	-	if	a	block	renumber	operation	needs	to	overwrite	any
existing	 lines	 then	 they	 will	 be	 overwritten	 regardless	 of	 the	 settings	 in	 the
Options	Window.	A	log	entry	will	be	made	to	inform	you	of	the	fact.

Only	 lines	 that	 contain	 an	 absolute	 reference	 to	 another	 line	 number	 will	 be
renumbered.	Any	 statements,	 such	 as	GO	TO,	GO	SUB,	RESTORE	 etc	 that
reference	a	line	by	a	calculation,	i.e.

GO	TO	A*10

Will	not	be	 renumbered,	and	again	a	 log	entry	warning	you	of	 the	 fact	will	be
made.	If	any	log	entries	are	made,	then	the	log	window	will	be	shown	after	the
renumber	is	complete.

Add	Code	window

The	Add	Code	window	appears	when	a	group	of	lines	is	about	to	be	inserted	into
your	program.

The	code	you	paste	in	must	be	checked	and	inserted	properly.	To	this	end,	when
BASin	detects	 such	 an	operation,	 it	 sends	 the	 code	 to	 the	Add	Code	window
first.

The	Add	Code	window	displays	the	lines	to	be	inserted	in	a	simple	text	editor,
where	 you	 can	 make	 any	 changes	 that	 you	 require	 before	 confirming	 the
insertion.

If	a	line	to	be	pasted	would	overwrite	an	existing	line,	what	happens	depends	on
the	 Line	 overwrite	 protection	 setting	 on	 the	 BASin	 tab.	 If	 either	 type	 of
overwrite	protection	is	enabled,	BASin	will	prompt	you	to	approve	or	reject	the
replacement	line.	Otherwise,	the	existing	line	will	be	replaced	automatically.

If	 a	 syntax	 error	 occurs	 during	 insertion	 of	 program	 lines,	 the	 error	 will	 be
automatically	displayed	in	the	Log	window	and	the	remaining	lines	will	appear
in	the	Add	Code	window	for	correcting.

Options	window

The	Options	window	is	available	from	the	Tools	menu.

Options	should	not	be	changed	by	the	beginner,	as	you	can	change	the	way	that
BASin	works.

This	window	allows	you	to	configure	the	behaviour	and	appearance	of	BASin.

The	options	are	split	across	two	tabs:

BASin	tab.
Error	reporting	tab.

BASin	tab

The	BASin	tab	can	be	found	in	the	Options	window.

Programming	aids

Restore	previous	session

When	 the	user	 exits	BASin,	 the	 current	 state	of	 the	 editor	 and	 the	 emulator	 is
saved	in	the	BASin	folder	under	the	filename	"Session.bin".	It	is	safe	to
delete	this	file,	as	BASin	does	not	require	it	to	run.	When	this	option	is	enabled,
and	the	file	exists	in	BASin's	folder,	BASin	will	load	that	state,	allowing	you	to
continue	programming	where	you	left	off.

Show	syntax	helper	on	startup

If	 this	 box	 is	 checked,	 the	 syntax	 helper	 appears	 in	 the	 editor	when	 you	 start
BASin.	To	show	or	hide	it	temporarily,	use	the	option	on	the	View	menu.

Auto	line	number	(.)

If	this	box	is	checked,	you	can	start	program	lines	with	a	.	full	stop	instead	of	a
line	number.	BASin	will	 automatically	choose	a	 line	number	 for	you:	 the	next
available	multiple	of	10	(at	the	end	of	a	program)	or	a	number	halfway	between
the	last	entered	line	and	the	one	that	follows	it	(in	the	middle	of	a	program).

Predictive	auto-typing

If	this	box	is	checked,	BASin	will	suggest	likely	keywords	while	you	are	typing.
Keyword	 suggestions	 are	 displayed	 in	 grey	 ahead	 of	 the	 edit	 cursor.	 You	 can
accept	a	suggestion	by	pressing	 ,	or	ignore	it	by	continuing	to	type.

Note:	 On	 slower	 computers,	 BASin	 may	 perform	 poorly	 if	 this	 option	 is
enabled.

Line	overwrite	protection

This	editor	 feature	helps	 to	protect	you	 from	accidentally	overwriting	program
lines	with	new	ones.	By	default,	BASin	will	alert	you	by	flashing	a	green	cursor
at	the	start	of	the	line,	and	making	the	error-beep	sound.	Pressing	return	a	second
time	signals	to	BASin	that	you	have	understood	that	you	are	about	to	replace	a
line,	and	performs	the	replace	operation.	If	you	elect	not	to	replace,	you	can	edit
as	 normal,	 changing	 the	 line	number	 to	 one	more	 appropriate.	There	 are	 three
methods	available	for	this	option:

None	 -	No	prevention	or	warning	will	be	made,	and
lines	will	be	replaced	regardless.
Protect	 all	 -	 All	 operations	 that	 will	 replace	 older
lines,	 including	 edited	 lines	 (as	 opposed	 to	 newly
created	lines)	will	warn	you	before	replacing.
Only	for	new	lines	-	Edited	lines	will	not	warn,	only
lines	that	have	been	typed	from	scratch.

Note:	the	Add	Code	Window	treats	all	lines	as	"new"	and	will	warn	on	all	that
may	cause	a	line-replace,	if	this	option	is	set	to	either	of	the	latter	two	types.

Brackets	completion

Determines	whether	BASin	automatically	balances	unmatched	opening	brackets
with	corresponding	closing	brackets.

None	-	Does	not	automatically	insert	brackets.
Auto	typed	-	As	you	type,	BASin	will	close	brackets
for	you.	If	you	type	a	"("	character,	BASin	will	add
a	 closing	")"	 ahead	 of	 the	 cursor,	 which	will	 stay

ahead	until	you	step	past	it	using	the	right	cursor	key.
Auto	 completion	 -	 Inserts	 any	 missing	 closing
brackets	when	you	enter	a	program	line.

Graphics	modifier

Whilst	 editing	 programs,	 graphics	mode	 allows	 you	 to	 enter	 colour	 codes	 and
user	 defined	 graphics	 (UDGs).	 This	 option	 determines	 which	 key	 is	 used	 to
enable	graphics	mode.

Alt	 Gr	 (XP/NT	 Only)	 -	 This	 option,	 as	 it	 says,	 is
available	to	users	of	NT	based	operating	systems	only.
It	 allows	 you	 to	 use	 the	 right-alt	 (Alt	 Gr)	 to	 enter
graphical	characters,	and	acts	as	a	modifier	key	-	you
hold	 it	 down	 as	 long	 as	 you	 need	 to	 enter	 graphics,
then	release	it	when	you're	done.
Scroll	 Lock	 -	 Users	 of	Windows	 9x	 based	 systems
can	use	this	(or	the	following)	option	as	a	toggle	key	-
press	once	to	enter	graphics	mode,	and	press	again	to
leave	graphics	mode.
Num	Lock	 -	 The	Num	Lock	 key	 is	 used	 to	 toggle
graphics	mode	in	the	same	manner	as	the	Scroll	Lock
key.

Error	reporting	tab

The	Error	reporting	tab	can	be	found	in	the	Options	window.

Error	notification

List	of	error	messages

Basin	can	report	errors	exactly	as	 the	original	Spectrum	would	have	done	-	by
clearing	the	two	lower	lines	of	the	Display	Window	and	writing	the	error	there.
This	tends	to	corrupt	the	display,	which	can	be	annoying	if	you	were	working	in
that	area	using	PRINT	#	or	INPUT	#,	for	example.	The	list	of	checkboxes	here
represents	all	the	error	messages	that	Sinclair	BASIC	can	produce.

Error	messages	in	the	list	that	are	checked	will	be	displayed	in	the	Error	window
when	they	occur.	Those	that	are	unchecked	will	overwrite	the	bottom	two	lines
of	the	screen	display	(as	on	a	real	Spectrum).

Move	editor	cursor	to	error

If	this	box	is	checked,	the	editor	will	automatically	move	the	cursor	to	the	line
and	statement	where	the	error	occurred.

Sinclair	Spectrum	BASIC	Manual

Sinclair	ZX	Spectrum:	BASIC	Programming	By	Steven	Vickers.	
Edited	by	Robin	Bradbeer.

Contents

Chapter	1 Introduction	
A	guide	to	the	ZX	Spectrum	keyboard	and	a	description	of	the	display.

Chapter	2
Basic	programming	concepts	
Programs,	 line	numbers,	editing	programs	using	 	and	 ,	RUN,	LIST,	GO	TO,	CONTINUE,
INPUT,	NEW,	REM,	PRINT,	STOP	in	INPUT	data,	ESC	(BREAK)

Chapter	3
Decisions	
IF,	STOP,	=,	<,	>,	<=,	>=,	<>

Chapter	4
Looping	
FOR,	NEXT,	TO,	STEP.	Introducing	FOR-NEXT	loops

Chapter	5
Subroutines	
GO	SUB,	RETURN

Chapter	6 READ,	DATA,	RESTORE

Chapter	7
Expressions	
Mathematical	expressions	using	+,	-,	*,	/,	scientific	notation	and	variable	names.

Chapter	8 Strings	
Handling	strings	and	slicing.

Chapter	9
Functions	
User-definable	functions	and	others	readily	available	on	the	ZX	Spectrum	using	DEF,	LEN,	STR$,
VAL,	SGN,	ABS,	INT,	SQR,	FN

Chapter
10

Mathematical	functions	
Including	simple	trigonometry:	↑,	PI,	EXP,	LN,	SIN,	COS,	TAN,	ASN,	ACS,	ATN

Chapter
11

Random	numbers	
Using	RANDOMIZE	and	RND.

Chapter
12

Arrays	
Strings	and	numeric	arrays	-	DIM.

Chapter
13

Conditions	
Logical	expressions:	AND,	OR,	NOT.

Chapter
14

The	character	set	
A	look	at	the	ZX	character	set	including	graphics	and	how	to	construct	your	own	graphic	characters:
CODE,	CHR$,	POKE,	PEEK,	USR,	BIN

Chapter
15

More	about	PRINT	and	INPUT	
Some	more	complicated	uses	of	these	commands	using	separators:	,;',	TAB,	AT,	LINE	and	CLS.

Chapter
16

Colours	
INK,	PAPER,	FLASH,	BRIGHT,	INVERSE,	OVER,	BORDER

Chapter
17

Graphics	
PLOT,	DRAW,	CIRCLE,	POINT

Chapter
18

Motion	
Animated	graphics	using	PAUSE,	INKEY$	and	PEEK

Chapter
19

BEEP	
The	sound	capabilities	of	the	ZX	Spectrum	using	BEEP.

Chapter
20

File	Storage	
How	to	store	your	programs	on	cassette	tape:	SAVE,	LOAD,	VERIFY,	MERGE.

Chapter
21

The	ZX	Printer	
LLIST,	LPRINT,	COPY

Chapter
22

Other	equipment	
Connecting	the	ZX	Spectrum	to	other	machines	and	devices.

Chapter
23

IN	and	OUT	
Input/output	ports	and	their	uses:	IN,	OUT

Chapter
24

The	memory	
A	look	at	the	internal	workings	of	the	ZX	Spectrum:	CLEAR

Chapter
25 The	system	variables

Chapter
26

Using	machine	code	
Introducing	USR	with	a	numeric	argument

Appendix
A The	character	set

Appendix
B Reports

Appendix
C

A	description	of	the	ZX	Spectrum	for	reference	
The	BASIC

Appendix
D Example	programs

Appendix
E Binary	and	hexadecimal

Original	edition	published	in	1982	by	Sinclair	Research	Limited.	
Subsequently	converted	to	ASCII	text	and	published	in	1995	by	Chris	Owen	on
behalf	of	Amstrad	plc.	
HTML	version	by	Pete	Robinson.	
This	 version	 reformatted	 and	 modified	 for	 BASin	 by	 Paul	 E	 Collins	 and
published	in	2004.

This	 manual	 is	 freely	 distributable	 but	 must	 not	 be	 distributed	 without	 this
notice.

©	Copyright	1995	Amstrad	plc	-	all	rights	reserved.

Chapter	1:	Introduction

Before	you	start	programming,	you	should	be	aware	of	 the	difference	between
commands	 and	 instructions.	 Commands	 are	 obeyed	 straight	 away,	 and
instructions	begin	with	a	line	number	and	are	stored	away	for	later.	You	may	also
be	aware	of	some	simple	commands:	PRINT,	LET,	and	INPUT	(which	can	be
used	 on	 all	 machines	 that	 use	 BASIC),	 and	 BORDER,	 PAPER	 and	 BEEP
(which	are	used	on	the	Spectrum).

This	 BASIC	 manual	 details	 various	 programming	 concepts	 and	 commands,
telling	 you	 exactly	 what	 you	 can	 and	 cannot	 do.	 You	 will	 also	 find	 some
exercises	at	the	end	of	each	chapter.	Don't	ignore	these;	many	of	them	illustrate
points	that	are	hinted	at	in	the	text.	Look	through	them,	and	do	any	that	interest
you,	or	that	seem	to	cover	ground	that	you	don't	understand	properly.

Whatever	else	you	do,	keep	using	the	computer.	If	you	have	the	question	"What
does	it	do	if	I	tell	it	such	and	such?"	then	the	answer	is	easy:	type	it	in	and	see.
Whenever	the	manual	tells	you	to	type	something	in,	always	ask	yourself,	"what
could	I	type	instead?",	and	try	out	your	replies.	The	more	of	your	own	programs
you	write,	the	better	you	will	understand	the	computer.

At	 the	 end	 of	 this	 programming	 manual	 are	 some	 appendices.	 These	 include
sections	 on	 the	way	 the	memory	 is	 organised,	 how	 the	 computer	manipulates
numbers,	and	a	series	of	example	programs.

The	keyboard

BASin	 uses	 the	 standard	PC	keyboard	 and	 a	 version	 of	 the	ZX	Spectrum	128
editor.	 The	 various	modes	 and	 single-key	 entry	 system	 from	 the	 original	 48K
Spectrum	 do	 not	 apply.	 See	The	keyboard	 for	 information	 on	 entering	 special
characters	that	do	not	appear	on	a	PC	keyboard.

While	you	 type,	 your	position	 is	 indicated	by	 the	 cursor,	 a	 flashing	block	 that
shows	where	the	next	character	from	the	keyboard	will	be	inserted.	The	cursor
can	be	moved	about	with	 the	 four	directional	arrow	keys:	 it	will	automatically
jump	to	the	end	of	a	line	rather	than	wander	into	unused	space.

If	any	key	 is	held	down	for	more	 than	about	2	or	3	seconds,	 it	will	 start	auto-
repeating.

When	Enter	is	pressed,	the	current	line	is	executed,	entered	into	the	program,	or
used	as	INPUT	data	as	appropriate,	unless	it	contains	a	syntax	error.	In	this	case
the	 cursor	 changes	 colour	 (from	 blue	 to	 red)	 and	 moves	 to	 the	 approximate
position	of	the	error,	and	the	computer	sounds	a	beep.

As	program	lines	are	entered,	a	listing	is	built	up	in	the	editor.	You	can	use	move
the	cursor	onto	any	line	in	the	listing	with	the	keys	 	and	 ,	and	edit	the	existing
line	by	typing	your	changes	and	pressing	Enter.

When	a	command	 is	executed	or	a	program	run,	output	 is	shown	in	a	separate
display	 window.	 Error	 reports	 may	 appear	 in	 the	 bottom	 part	 of	 the	 display
window	or	in	a	message	box.	These	reports	are	described	in	Appendix	B.

The	Esc	key	(and,	in	certain	circumstances,	Space)	acts	as	a	break,	stopping	the
computer	with	report	D	or	L.	This	is	recognised:

1.	 at	the	end	of	a	statement	while	a	program	is	running,
or

2.	 while	the	computer	is	loading,	saving,	or	printing.

The	display	window

This	has	24	lines,	each	32	characters	long,	and	is	divided	into	two	parts.	The	top
part	 is	 at	most	 22	 lines	 and	 displays	 either	 a	 listing	 or	 program	output.	When
printing	in	the	top	part	has	reached	the	bottom,	it	all	scrolls	up	one	line;	if	this
would	involve	losing	a	line	that	you	have	not	had	a	chance	to	see	yet,	then	the
computer	stops	with	the	message	scroll?.	Pressing	any	of	the	keys	n,	Space
or	Esc	will	make	the	program	stop	with	report

D	BREAK	-	CONT	repeats

...any	 other	 key	 will	 let	 the	 scrolling	 continue.	 The	 bottom	 part	 is	 used	 for
inputting	 commands,	 program	 lines,	 and	INPUT	 data,	 and	also	 for	displaying

Chapter	2	

reports.	 The	 bottom	 part	 starts	 off	 as	 two	 lines	 (the	 upper	 one	 blank),	 but	 it
expands	to	accommodate	whatever	is	typed	in.	When	it	reaches	the	current	print
position	in	the	top	half,	further	expansions	will	make	the	top	half	scroll	up.

Chapter	2:	Basic	programming	concepts

Summary

Programs
Line	numbers
Editing	programs	using	 	and	
RUN,	LIST
GO	TO,	CONTINUE,	LET,	INPUT,	NEW,	REM,
PRINT

STOP	in	INPUT	data
Esc	(BREAK	on	a	real	Spectrum)

Type	 in	 these	 two	 lines	 of	 a	 computer	 program	 to	 print	 out	 the	 sum	 of	 two
numbers:

20	PRINT	a

10	LET	a=10

Because	these	lines	began	with	numbers,	they	were	not	obeyed	immediately	but
stored	 away,	 as	 program	 lines.	 You	 will	 also	 have	 noticed	 here	 that	 the	 line
numbers	govern	the	order	of	the	lines	within	the	program:	this	is	most	important
when	the	program	is	run,	but	 it	 is	also	reflected	in	the	order	of	 the	lines	 in	 the
listing	that	you	can	see	on	the	screen	now.

So	far	you	have	only	entered	one	number,	so	type

15	LET	b=15

and	in	it	goes.	It	would	have	been	impossible	to	insert	this	line	between	the	first
two	if	they	had	been	numbered	1	and	2	instead	of	10	and	20	(line	numbers	must
be	whole	numbers	between	1	and	9999),	 so	 that	 is	why,	when	first	 typing	 in	a
program,	 it	 is	good	practice	 to	 leave	gaps	between	the	 line	numbers.	 If	you	do
get	stuck,	though,	BASin	provides	a	line	renumbering	option	on	the	Tools	menu.

Now	you	need	to	change	line	20	to

20	PRINT	a+b

You	 could	 type	 out	 the	 replacement	 in	 full,	 but	 it	 is	 easier	 to	 move	 onto	 the
existing	line	and	edit	it	in	place.	The	quickest	way	to	move	to	a	line	is	the	Go	to
Line	Number	command	on	the	Search	menu.

Move	to	line	20,	and	keep	pressing	the	 	key	until	the	cursor	moves	to	the	end
of	the	line.	Then	type

+b	(without	Enter)

The	line	should	now	read

20	PRINT	a+b

Press	Enter	and	it	will	replace	the	old	line	20.

BASin	has	 a	 safety	 feature	 that	was	not	 present	 on	 the	original	ZX	Spectrum.
When	you	enter	a	new	line	with	the	same	number	as	an	existing	line,	the	cursor
turns	green	and	jumps	to	the	line	number	to	warn	you.	Pressing	Enter	a	second
time	will	replace	the	old	line	with	the	new	one.	This	behaviour	can	be	turned	off
in	BASin's	options.

Run	the	edited	program	using	RUN	and	Enter	and	the	sum	will	be	displayed.

Run	the	program	again	and	then	type

PRINT	a,	b

The	variables	are	still	there,	even	though	the	program	has	finished.

If	you	enter	a	line	by	mistake,	say

12	LET	b=8

it	will	go	up	into	the	program	and	you	will	realise	your	mistake.	To	delete	this
unnecessary	line,	type

12	(with	Enter	of	course)

Lastly,	type

LIST	15

You	will	now	see	in	the	display	window

15	LET	b=15

20	PRINT	a+b

Line	10	is	not	present	 in	 the	listing,	but	 it	 is	still	 in	your	program	-	which	you
can	 prove	 by	 scrolling	 through	 the	 program	 in	 the	 editor.	 The	 only	 effects	 of
LIST	15	are	to	produce	a	listing	that	starts	at	line	15,	and	to	put	the	program
cursor	at	line	15.	If	you	have	a	very	long	program,	then	LIST	will	probably	be
a	more	useful	way	of	moving	the	program	cursor	than	 	and	 .

This	illustrates	another	use	of	 line	numbers:	 they	act	as	names	for	the	program
lines	so	that	you	can	refer	to	them,	rather	like	the	way	in	which	variables	have
names.

LIST	on	its	own	makes	the	listing	start	at	the	beginning	of	a	program.

Another	useful	command	is	NEW.	This	erases	any	old	programs	and	variables	in
the	 computer.	 Now	 carefully	 type	 in	 this	 program,	 which	 changes	 Fahrenheit
temperatures	to	Centigrade.

10	REM	temperature	conversion

20	PRINT	"deg	F",	"deg	C"

30	PRINT

40	INPUT	"Enter	deg	F",	F

50	PRINT	F,(F-32)*5/9

60	GO	TO	40

Although	GO	TO	 has	 a	 space	 in	 it,	 it	 is	 really	 all	 one	keyword.	The	 space	 is
optional.

Now	run	it.	You	will	see	the	headings	printed	on	the	screen	by	line	20,	but	what
happened	to	line	10?	Apparently	the	computer	has	completely	ignored	it.	Well,	it
has.	REM	in	line	10	stands	for	remark,	or	reminder,	and	is	there	solely	to	remind
you	of	what	the	program	does.	A	REM	command	consists	of	REM	 followed	by
anything	you	like,	and	the	computer	will	ignore	it	right	up	to	the	end	of	the	line.

By	now,	the	computer	has	got	to	the	INPUT	command	on	line	40	and	is	waiting
for	you	to	type	in	a	value	for	the	variable	F	-	you	can	tell	this	because	there	is	a
flashing	cursor	at	the	bottom	of	the	display	window.	Enter	a	number;	remember
Enter.	 Now	 the	 computer	 has	 displayed	 the	 result	 and	 is	 waiting	 for	 another
number.	This	is	because	of	line	60,	GO	TO	40,	which	means	exactly	what	 it
says.	Instead	of	running	out	of	program	and	stopping,	the	computer	jumps	back
to	 line	40	and	starts	again.	So,	enter	another	 temperature.	After	a	 few	more	of
these	 you	might	 be	wondering	 if	 the	machine	will	 ever	 get	 bored	with	 this;	 it
won't.	Next	 time	it	asks	for	another	number,	 type	STOP.	The	computer	comes
back	with	 a	 report	H	STOP	in	INPUT,	40:1,	which	 tells	 you	why	 it
stopped,	and	where	(in	the	first	command	of	line	40).

If	you	want	to	continue	the	program	type

CONTINUE

and	the	computer	will	ask	you	for	another	number.

When	CONTINUE	is	used	the	computer	remembers	the	line	number	in	the	last
report	that	it	sent	you,	as	long	as	it	was	not	0	OK,	and	jumps	back	to	that	line:
in	our	case,	this	involves	jumping	to	line	40,	the	INPUT	command.

Replace	line	60	by	GO	TO	31	-	it	will	make	no	perceptible	difference	to	the
running	of	 the	program.	 If	 the	 line	number	 in	 a	GO	TO	 command	 refers	 to	 a
non-existent	 line,	 then	 the	 jump	is	 to	 the	next	 line	after	 the	given	number.	The
same	goes	for	RUN;	in	fact	RUN	on	its	own	actually	means	RUN	0.

Now	 type	 in	 numbers	 until	 the	 display	 starts	 getting	 full.	When	 it	 is	 full,	 the
computer	will	move	the	whole	of	the	top	half	of	the	display	up	one	line	to	make
room,	losing	the	heading	off	the	top.	This	is	called	scrolling.

When	you	are	tired	of	this,	stop	the	program	using	STOP	(or	Esc)	and	return	to
the	listing	in	the	editor.

Look	at	the	PRINT	statement	on	line	50.	The	punctuation	in	this	-	the	comma
(,)	 -	 is	 very	 important,	 and	 you	 should	 remember	 that	 it	 follows	much	more
definite	rules	than	the	punctuation	in	English.

Commas	are	used	to	make	the	printing	start	either	at	the	left	hand	margin,	or	in
the	middle	of	the	display,	depending	on	which	comes	next.	Thus	in	line	50,	the
comma	causes	the	centigrade	temperature	to	be	printed	in	the	middle	of	the	line.
With	 a	 semicolon,	 on	 the	 other	 hand,	 the	 next	 number	 or	 string	 is	 printed
immediately	after	the	preceding	one.	You	can	see	this	in	line	50,	if	the	comma	is
replaced	by	a	semicolon.

Another	 punctuation	mark	 you	 can	 use	 like	 this	 in	PRINT	 commands	 is	 the
apostrophe	(').	This	makes	whatever	is	printed	next	appear	at	the	beginning	of
the	next	line	on	the	display	but	this	happens	anyway	at	the	end	of	each	PRINT
command,	 so	 you	 will	 not	 need	 the	 apostrophe	 very	 much.	 This	 is	 why	 the
PRINT	 command	 in	 line	50	always	 starts	 its	printing	on	a	new	 line,	 and	 it	 is
also	why	the	PRINT	command	in	line	30	produces	a	blank	line.

If	 you	 want	 to	 inhibit	 this,	 so	 that	 after	 one	PRINT	 command	 the	 next	 one
carries	on	on	the	same	line,	you	can	put	a	comma	or	semicolon	at	the	end	of	the

first.	To	see	how	this	works,	replace	line	50	in	turn	by	each	of

50	PRINT	F,

50	PRINT	F;

and

50	PRINT	F

and	run	each	version	-	for	good	measure	you	could	also	try

50	PRINT	F'

The	one	with	 the	comma	spreads	everything	out	 in	 two	columns,	 that	with	 the
semicolon	crams	everything	 together,	 that	without	either	allows	a	 line	for	each
number	and	so	does	that	with	the	apostrophe	-	the	apostrophe	gives	a	new	line	of
its	own,	but	inhibits	the	automatic	one.

Remember	 the	 difference	 between	 commas	 and	 semicolons	 in	 PRINT
commands;	 also,	 do	 not	 confuse	 them	 with	 the	 colons	 (:)	 that	 are	 used	 to
separate	commands	in	a	single	line.

Now	type	in	these	extra	lines:

100	REM	this	polite	program	remembers	your	name

110	INPUT	n$

120	PRINT	"Hello	";n$;"!"

130	GO	TO	110

This	is	a	separate	program	from	the	last	one,	but	you	can	keep	them	both	in	the
computer	at	the	same	time.	To	run	the	new	one,	type

RUN	100

Because	this	program	inputs	a	string	instead	of	a	number,	it	prints	out	two	string
quotes	-	this	is	a	reminder	to	you,	and	it	usually	saves	you	some	typing	as	well.
Try	it	once	with	any	alias	you	care	to	make	up	for	yourself.

Next	time	round,	you	will	get	two	string	quotes	again.	but	you	don't	have	to	use
them	 if	 you	 don't	 want	 to.	 Try	 this,	 for	 example.	 Rub	 them	 out	 (with	 	 and
Backspace	twice),	and	type

n$

Since	 there	 are	 no	 string	 quotes,	 the	 computer	 knows	 that	 it	 has	 to	 do	 some
calculation:	the	calculation	in	this	case	is	to	find	the	value	of	the	string	variable
called	n$,	which	is	whatever	name	you	happen	to	have	typed	in	last	time	round.
Of	course,	the	INPUT	statement	acts	like	LET	n$=n$,	so	the	value	of	n$	is
unchanged.

The	next	time	round,	for	comparison,	type

n$

again,	this	time	without	rubbing	out	the	string	quotes.	Now,	just	to	confuse	you,
the	variable	n$	has	the	value	"n$".

If	you	want	to	use	STOP	for	string	input,	you	must	first	move	the	cursor	back	to
the	beginning	of	the	line,	using	 .

Now	look	back	at	that	RUN	100	we	had	earlier	on.	That	just	jumps	to	line	100,
so	couldn't	we	have	said	GO	TO	100	instead?	In	this	case,	it	so	happens	that
the	answer	is	yes;	but	there	is	a	difference.	RUN	100	first	of	all	clears	all	the
variables	and	the	display,	and	after	that	works	just	like	GO	TO	100.	GO	TO
100	doesn't	clear	anything.	There	may	well	be	occasions	where	you	want	to	run
a	program	without	clearing	any	variables;	here	GO	TO	would	be	necessary	and
RUN	could	be	disastrous,	so	it	is	better	not	to	get	into	the	habit	of	automatically
typing	RUN	to	run	a	program.

Another	difference	is	that	you	can	type	RUN	without	a	line	number,	and	it	starts

off	at	the	first	line	in	the	program.	GO	TO	must	always	have	a	line	number.

Both	 these	 programs	 stopped	 because	 you	 typed	 STOP	 in	 the	 input	 line;
sometimes	-	by	mistake	-	you	write	a	program	that	you	can't	stop	and	won't	stop
itself.	Type

200	GO	TO	200

RUN	200

This	looks	all	set	to	go	on	for	ever	unless	you	pull	the	plug	out;	but	there	is	a	less
drastic	remedy.	Press	Esc	(equivalent	to	the	Break	key	on	a	real	Spectrum).	The
program	will	stop,	saying

L	BREAK	into	program

At	 the	end	of	every	statement,	 the	program	 looks	 to	 see	 if	 this	key	 is	pressed;
and	 if	 it	 is,	 then	 it	 stops.	 The	Esc	 key	 can	 also	 be	 used	when	 you	 are	 in	 the
middle	of	printing,	or	using	various	other	bits	of	machinery	that	you	can	attach
to	the	computer	-	just	in	case	the	computer	is	waiting	for	them	to	do	something
but	they're	not	doing	it.

In	these	cases	there	is	a	different	report,

D	BREAK	-	CONT	repeats

CONTINUE	 in	 this	 case	 (and	 in	 fact	 in	 most	 other	 cases	 too)	 repeats	 the
statement	 where	 the	 program	 was	 stopped;	 but	 after	 the	 report	 L	 BREAK
into	 program,	 CONTINUE	 carries	 straight	 on	 with	 the	 next	 statement
after	allowing	for	any	jumps	to	be	made.

Run	the	name	program	again	and	when	it	asks	you	for	input	type

n$	(after	removing	the	quotes)

n$	is	an	undefined	variable	and	you	get	an	error	report

2	Variable	not	found

If	you	now	type

LET	n$="something	definite"

(which	has	its	own	report	of	0	OK,	0:1)	and

CONTINUE

you	will	find	that	you	can	use	n$	as	input	data	without	any	trouble.

In	 this	case	CONTINUE	does	a	 jump	 to	 the	INPUT	 command	 in	 line	110.	 It
disregards	the	report	from	the	LET	statement	because	that	said	'OK',	and	jumps
to	the	command	referred	to	in	the	previous	report,	the	first	command	in	line	110.
This	is	intended	to	be	useful.	If	a	program	stops	over	some	error	then	you	can	do
all	sorts	of	things	to	fix	it,	and	CONTINUE	will	still	work	afterwards.

As	 we	 said	 before,	 the	 report	 L	 BREAK	 into	 program	 is	 special,
because	after	 it	CONTINUE	does	not	 repeat	 the	command	where	 the	program
stopped.

Type

LIST	(and	Enter	of	course)

and	when	 it	 asks	scroll?	 (because	 it	 has	 filled	 up	 the	 display)	 press	 n	 for
'No'.	The	computer	will	give	 the	report	D	BREAK	-	CONT	repeats	as
though	you	had	typed	Esc.	You	might	at	some	stage	find	out	what	happens	if	you
press	y	instead	of	n;	n,	Space	and	Esc	count	as	No,	while	everything	else	counts
as	Yes.

Now	type

23	REM

and	 the	 edit	 cursor	 jumps	 to	 a	blank	 line	 just	 after	 the	newly	 inserted	 line	23;
type

28	REM

and	the	edit	cursor	jumps	to	the	new	line	28.	(In	both	cases,	by	typing	a	new	line,
you	have	caused	the	editor	to	move	to	that	line	in	the	listing.)

Experiment	with	moving	the	current	line	about	by	typing

line	number	REM

Using	the	program	full	of	REMs	above,	type

LIST

and	then	n	when	it	asks	you	scroll?.	Now	type

CONTINUE

CONTINUE	 is	 a	 bit	 quirky	here,	 because	 the	 bottom	part	 of	 the	 display	goes
blank;	but	you	can	restore	normality	with	Esc.	The	reason	is	that	LIST	was	the
first	command	in	the	line,	so	CONTINUE	repeats	this	command.	Unfortunately,
the	first	command	in	the	line	is	now	CONTINUE	itself	so	the	computer	just	sits
there	doing	CONTINUE	over	and	over	again	until	you	stop	it.

You	can	vary	this	by	replacing	LIST	with

:

LIST

(bear	in	mind	that	BASin	splits	lines	at	the	":"	character)	for	which	CONTINUE
gives	0	OK	 (because	CONTINUE	 jumps	 to	 the	 second	command	 in	 the	 line,
which	is	taken	to	be	its	end)	or

:

Chapter	3	

:

LIST

for	which	CONTINUE	gives	N	Statement	lost	 (because	CONTINUE
jumps	to	the	third	command	in	the	line,	which	no	longer	exists).

You	 have	 now	 seen	 the	 statements	PRINT,	LET,	INPUT,	RUN,	LIST,	GO
TO,	 CONTINUE,	 NEW	 and	 REM,	 and	 they	 can	 all	 be	 used	 either	 as	 direct
commands	 or	 in	 program	 lines	 -	 this	 is	 true	 of	 almost	 all	 commands	 in	 ZX
Spectrum	BASIC.	RUN,	LIST,	CONTINUE	and	NEW	are	not	usually	of	much
use	in	a	program,	but	they	can	be	used.

Exercises

1.	 Put	a	LIST	statement	in	a	program,	so	that	when	you
run	it,	it	lists	itself.

2.	 Write	a	program	to	 input	prices	and	print	out	 the	 tax
due	(at	15	per	cent).	Put	in	PRINT	statements	so	that
the	 computer	 announces	what	 it	 is	 going	 to	 do,	 and
asks	 for	 the	 input	 price	 with	 extravagant	 politeness.
Modify	the	program	so	that	you	can	also	input	the	tax
rate	(to	allow	for	zero	ratings	or	future	changes).

3.	 Write	 a	 program	 to	 print	 a	 running	 total	 of	 numbers
you	input.	(Suggestion:	have	two	variables	called	total
-	set	to	0	to	begin	with	-	and	item.	Input	item,	add	it	to
total,	print	them	both,	and	go	round	again.)

4.	 What	would	CONTINUE	and	NEW	do	in	a	program?
Can	you	think	of	any	uses	at	all	for	this?

	Chapter	1

<">	<=">	">	">	=">

Chapter	3:	Decisions

Summary

IF,	STOP,	=,	<,	>,	<=,	>=,	<>

All	 the	programs	we	have	seen	so	far	have	been	pretty	predictable	-	 they	went
straight	through	the	instructions,	and	then	went	back	to	the	beginning	again.	This
is	not	very	useful.	In	practice	the	computer	would	be	expected	to	make	decisions
and	act	accordingly.	The	instruction	used	has	the	form	.	.	.

IF	something	is	true,	or	not	true	THEN	do	something	else.

For	example,	use	NEW	to	clear	the	previous	program	from	the	computer	and	type
in	and	run	this	program.	(This	is	clearly	meant	for	two	people	to	play!)

10	REM	Guess	the	number

20	INPUT	a:	

			CLS

30	INPUT	"Guess	the	number",	b

40	IF	b=a	THEN	PRINT	"That	is	correct":	

			STOP

50	IF	ba	THEN	

			PRINT	"That	is	too	big,	try	again"

70	GO	TO	30

You	can	see	that	an	IF	statement	takes	the	form

IF	condition	THEN	.	.	.

where	 the	 '.	 .	 .'	 stands	for	a	sequence	of	commands,	separated	by	colons	 in	 the
usual	way.	The	condition	is	something	that	 is	going	to	be	worked	out	as	either
true	or	false:	if	it	comes	out	as	true	then	the	statements	in	the	rest	of	the	line	after

THEN	 are	 executed,	 but	 otherwise	 they	 are	 skipped	 over,	 and	 the	 program
executes	the	next	instruction.

The	 simplest	 conditions	 compare	 two	 numbers	 or	 two	 strings:	 they	 can	 test
whether	two	numbers	are	equal	or	whether	one	is	bigger	than	the	other;	and	they
can	test	whether	two	strings	are	equal,	or	(roughly)	one	comes	before	the	other
in	alphabetical	order.	They	use	the	relations	=,	<,	>,	<=,	>=	and	<>.

=	means	'equals'.	Although	it	is	the	same	symbol	as	the	=	in	a	LET	command,	it
is	used	in	quite	a	different	sense.

<	means	'is	less	than'	so	that

1	<	2	
-2	<	-1	
-3	<	1

are	all	true,	but

1	<	0	
0	<	-2

are	false.

Line	40	compares	a	and	b.	 If	 they	are	equal	 then	 the	program	 is	halted	by	 the
STOP	command.	The	report	9	STOP	statement,	30:3	shows	that	the
third	statement,	or	command,	in	line	30	caused	the	program	to	halt,	i.e.	STOP.

Line	50	determines	whether	b	is	less	than	a,	and	line	60	whether	b	is	greater	than
a.	If	one	of	these	conditions	is	true	then	the	appropriate	comment	is	printed,	and
the	program	works	its	way	to	line	70	which	tells	the	computer	to	go	back	to	line
30	and	start	all	over	again.

The	CLS,	clear	screen,	command	in	line	20	was	to	stop	the	other	person	seeing
what	you	put	in.

So	>	means	'is	greater	than',	and	is	just	like	<	but	the	other	way	round.	You	can
remember	 which	 is	 which,	 because	 the	 thin	 end	 points	 to	 the	 number	 that	 is

supposed	to	be	smaller.

<=	means	'is	less	than	or	equal	to',	so	that	it	is	like	<	except	that	it	is	true	even	if
the	two	numbers	are	equal:	thus	2<=2	is	true,	but	2<2	is	false.

>=	means	'is	greater	than	or	equal	to'	and	is	similarly	like	>.

<>	means	'is	not	equal	to',	the	opposite	in	meaning	to	=.

Mathematicians	 usually	write	<=,	>=	 and	<>	 as	 ≤,	 ≥	 and	 ≠.	 They	 also	write
things	like	'2<3<4'	to	mean	'2<3	and	3<4',	but	this	is	not	possible	in	BASIC.

Note:	in	some	other	versions	of	BASIC,	the	IF	statement	can	have	the	form

IF	condition	THEN	line	number

This	means	the	same	as

IF	condition	THEN	GO	TO	line	number

Exercises

1.	 Try	this	program:	

10	PRINT	"x":	

			STOP:	

			PRINT	"y"

When	you	run	it,	it	will	display	x	and	stop	with	the	report

9	STOP	statement,	10:2

Now	type

CONTINUE

You	might	expect	this	to	jump	back	to	the	STOP	command	-	CONTINUE

Chapter	4	

usually	 repeats	 the	 statement	 referred	 to	 in	 the	 report.	However,	 here	 this
would	 not	 be	 very	 useful,	 because	 the	 computer	 would	 just	 stop	 again
without	displaying	y.	Therefore,	 things	are	arranged	so	 that	after	 report	9
CONTINUE	jumps	to	the	command	after	the	STOP	command	-	so	in	our
example,	after	CONTINUE,	the	computer	prints	y	and	reaches	the	end	of
the	program.

	Chapter	2

Chapter	4:	Looping

Summary

FOR,	NEXT,	TO,	STEP

Suppose	you	want	to	input	five	numbers	and	add	them	together.	One	way	(don't
type	this	in	unless	you	are	feeling	dutiful)	is	to	write

	10	LET	total=0

	20	INPUT	a

	30	LET	total=total+a

	40	INPUT	a

	50	LET	total=total+a

	60	INPUT	a

	70	LET	total=total+a

	80	INPUT	a

	90	LET	total=total+a

100	INPUT	a

110	LET	total=total+a

120	PRINT	total

This	method	is	not	good	programming	practice.	It	may	be	just	about	controllable
for	five	numbers,	but	you	can	imagine	how	tedious	a	program	like	this	to	add	ten
numbers	would	be,	and	to	add	a	hundred	would	be	just	impossible.

Much	better	is	to	set	up	a	variable	to	count	up	to	5	and	then	stop	the	program,
like	this	(which	you	should	type	in):

10	LET	total=0

20	LET	count=1

30	INPUT	a

40	REM	count=number	of	times	that	a	has	been	input	so	far

50	LET	total=total+a

60	LET	count=count+1

70	IF	count<=5	THEN	

			GO	TO	30

80	PRINT	total

Notice	 how	 easy	 it	would	 be	 to	 change	 line	 70	 so	 that	 this	 program	 adds	 ten
numbers,	or	even	a	hundred.

This	sort	of	counting	is	so	useful	that	there	are	two	special	commands	to	make	it
easier:	 the	 FOR	 command	 and	 the	 NEXT	 command.	 They	 are	 always	 used
together.	Using	these,	the	program	you	have	just	typed	in	does	exactly	the	same
as

10	LET	total=0

20	FOR	c=1	TO	5

30	INPUT	a

40	REM	c=number	of	times	that	a	has	been	input	so	far

50	LET	total=total+a

60	NEXT	c

80	PRINT	total

(To	get	this	program	from	the	previous	one,	you	just	have	to	edit	lines	20,	40,	60,

and	70.)

Note	 that	 we	 have	 changed	count	 to	c.	 The	 counting	 variable	 -	 or	 control
variable	-	of	a	FOR	.	.	.	NEXT	loop	must	have	a	single	letter	for	its	name.

The	effect	of	this	program	is	that	c	runs	through	the	values	1	(the	initial	value),
2,	 3,	 4	 and	 5	 (the	 limit),	 and	 for	 each	 one,	 lines	 30,	 40	 and	 50	 are	 executed.
Then,	when	c	has	finished	its	five	values,	line	80	is	executed.

An	extra	subtlety	to	this	is	that	the	control	variable	does	not	have	to	go	up	by	1
each	time:	you	can	change	this	1	to	anything	you	like	by	using	a	STEP	part	in
the	FOR	command.	The	most	general	form	for	a	FOR	command	is

FOR	control	variable	=	initial	value	TO	limit	STEP	step

where	the	control	variable	is	a	single	letter,	and	the	initial	value,	limit	and	step
are	 all	 things	 that	 the	 computer	 can	 calculate	 as	 numbers	 -	 like	 the	 actual
numbers	 themselves,	 or	 sums,	 or	 the	 names	 of	 numeric	 variables.	 So,	 if	 you
replace	line	20	in	the	program	by

20	FOR	c=1	TO	5	STEP	3/2

then	c	will	 run	 through	 the	values	1,	2.5	 and	4.	Notice	 that	you	don't	have	 to
restrict	yourself	to	whole	numbers,	and	also	that	the	control	value	does	not	have
to	hit	the	limit	exactly	-	it	carries	on	looping	as	long	as	it	is	less	than	or	equal	to
the	limit.

Try	this	program,	to	print	out	the	numbers	from	1	to	10	in	reverse	order.

10	FOR	n=10	TO	1	STEP	-1

20	PRINT	n

30	NEXT	n

We	 said	 before	 that	 the	 program	 carries	 on	 looping	 as	 long	 as	 the	 control
variable	is	less	than	or	equal	to	the	limit.	If	you	work	out	what	this	would	mean

in	 this	 case,	 you	 will	 see	 that	 it	 gives	 nonsense.	 The	 normal	 rule	 has	 to	 be
modified:	when	the	step	 is	negative,	 the	program	carries	on	 looping	as	 long	as
the	control	variable	is	greater	than	or	equal	to	the	limit.

You	must	be	careful	if	you	are	running	two	FOR	.	.	.	NEXT	loops	together,	one
inside	the	other.	Try	this	program,	which	prints	out	the	numbers	for	a	complete
set	of	six	spot	dominoes.

10	FOR	m=0	TO	6

20	FOR	n=0	TO	m

30	PRINT	m;":";n;"	";

40	NEXT	n

50	PRINT

60	NEXT	m

You	 can	 see	 that	 the	 n-loop	 is	 entirely	 inside	 the	 m-loop	 -	 they	 are	 properly
nested.	What	must	be	avoided	is	having	two	FOR	.	.	.	NEXT	loops	that	overlap
without	either	being	entirely	inside	the	other,	like	this:

	5	REM	this	program	is	wrong

10	FOR	m=0	TO	6

20	FOR	n=0	TO	m

30	PRINT	m;":";n;"	";

40	NEXT	m

50	PRINT

60	NEXT	n

Two	FOR	.	.	.	NEXT	loops	must	either	be	one	inside	the	other,	or	be	completely

separate.

Another	thing	to	avoid	is	jumping	into	the	middle	of	a	FOR	.	.	.	NEXT	loop	from
the	outside.	The	control	variable	is	only	set	up	properly	when	its	FOR	statement
is	 executed,	 and	 if	 you	 miss	 this	 out	 the	 NEXT	 statement	 will	 confuse	 the
computer.	 You	 will	 probably	 get	 an	 error	 report	 saying	 NEXT	 without
FOR	or	Variable	not	found.

There	 is	 nothing	 whatever	 to	 stop	 you	 using	 FOR	 and	 NEXT	 in	 a	 direct
command.	For	example,	try:

FOR	m=0	TO	10:	PRINT	m:	NEXT	m

You	can	sometimes	use	this	as	a	(somewhat	artificial)	way	of	getting	round	the
restriction	 that	 you	 cannot	GO	TO	 anywhere	 inside	 a	 command	 -	 because	 a
command	has	no	line	number.	For	instance,

FOR	m=0	TO	1	STEP	0:	INPUT	a:	PRINT	a:	NEXT	m

The	step	of	zero	here	makes	the	command	repeat	itself	forever.

This	sort	of	thing	is	not	really	recommended,	because	if	an	error	crops	up	then
you	have	lost	the	command	and	will	have	to	type	it	in	again	-	and	CONTINUE
will	not	work.

Exercises

1.	 A	 control	 variable	 has	 not	 just	 a	 name	 and	 a	 value,
like	an	ordinary	variable,	but	also	a	limit,	a	step,	and	a
reference	 to	 the	 statement	 after	 the	 corresponding
FOR	statement.	Persuade	yourself	that	when	the	FOR
statement	is	executed	all	this	information	is	available
(using	 the	 initial	value	as	 the	 first	value	 the	variable
takes),	and	also	that	this	information	is	enough	for	the

NEXT	 statement	 to	 know	 by	 how	much	 to	 increase
the	 value,	whether	 to	 jump	back,	 and	 if	 so	where	 to
jump	back	to.	
	

2.	 Run	the	third	program	above	and	then	type	

PRINT	c

Why	is	the	answer	6,	and	not	5?	

(Answer:	the	NEXT	command	in	line	60	is	executed
five	 times,	 and	 each	 time	 1	 is	 added	 to	c.	 The	 last
time,	 c	 becomes	 6;	 and	 then	 the	 NEXT	 command
decides	not	to	loop	back,	but	to	carry	on,	c	being	past
its	limit.)	

What	happens	if	you	put	STEP	2	in	line	20?	
	

3.	 Change	 the	 third	 program	 so	 that	 instead	 of
automatically	 adding	 five	 numbers,	 it	 asks	 you	 to
input	how	many	numbers	you	want	adding.	When	you
run	 this	 program,	 what	 happens	 if	 you	 input	 0,
meaning	 that	 you	 want	 no	 numbers	 adding?	 Why
might	 you	 expect	 this	 to	 cause	 problems	 for	 the
computer,	 even	 though	 it	 is	 clear	 what	 you	 mean?
(The	computer	has	to	make	a	search	for	the	command

Chapter	5	

NEXT	c,	 which	 is	 not	 usually	 necessary.)	 In	 fact
this	has	all	been	taken	care	of.	
	

4.	 In	line	10	of	the	fourth	program	above,	change	10	to
100	 and	 run	 the	 program.	 It	 will	 print	 the	 numbers
from	 100	 to	 79	 on	 the	 screen,	 and	 then	 say
scroll?	 at	 the	 bottom.	 This	 is	 to	 give	 you	 a
chance	 to	 see	 the	 numbers	 that	 are	 about	 to	 be
scrolled	off	the	top.	If	you	press	N,	Space	or	Esc,	the
program	 will	 stop	 with	 the	 report	 D	 BREAK	 -
CONT	repeats.	If	you	press	any	other	key,	then
it	will	print	another	22	lines	and	ask	you	again.	
	

5.	 Delete	 line	 30	 from	 the	 fourth	 program.	When	 you
run	 the	 new	 curtailed	 program,	 it	 will	 print	 the	 first
number	and	stop	with	the	message	0	OK.	If	you	type

NEXT	n

the	program	will	go	once	round	the	loop,	printing	out
the	next	number.

	Chapter	3

Chapter	5:	Subroutines

Summary

GO	SUB,	RETURN

Sometimes	different	parts	of	the	program	will	have	rather	similar	jobs	to	do,	and
you	will	find	yourself	typing	the	same	lines	in	two	or	more	times;	however	this
is	not	necessary.	You	can	type	the	lines	in	once,	in	a	form	known	as	a	subroutine,
and	then	use,	or	call,	them	anywhere	else	in	the	program	without	having	to	type
them	in	again.

To	do	this,	you	use	the	statements	GO	SUB	(GO	to	SUBroutine)	and	RETURN.
This	takes	the	form

GO	SUB	n

where	n	 is	 the	 line	number	of	 the	first	 line	 in	 the	subroutine.	 It	 is	 just	 like	GO
TO	n	except	that	the	computer	remembers	where	the	GO	SUB	statement	was	so
that	it	can	come	back	again	after	doing	the	subroutine.	It	does	this	by	putting	the
line	number	and	the	statement	number	within	the	line	(together	these	constitute
the	return	address)	on	top	of	a	pile	of	them	(the	GO	SUB	stack).

You	can	view	the	GO	SUB	stack	in	BASin.

RETURN

takes	 the	 top	return	address	off	 the	GO	SUB	 stack,	and	goes	 to	 the	statement
after	it.

As	 an	 example,	 let's	 look	 at	 the	 number	 guessing	program	again.	Retype	 it	 as
follows:

	10	REM	"A	rearranged	guessing	game"

	20	INPUT	a:	CLS

	30	INPUT	"Guess	the	number	",b

	40	IF	a=b	THEN	

				PRINT	"Correct":	STOP

	50	IF	a<b	THEN	

				GO	SUB	100

	60	IF	a>b	THEN	

				GO	SUB	100

	70	GO	TO	30

100	PRINT	"Try	again"

110	RETURN

The	GO	TO	statement	in	line	70	is	very	important	because	otherwise	the	program	will	run	on	into	the	subroutine	and	cause	an	error	(

Here	is	another	rather	silly	program	illustrating	the	use	of	GO	SUB.

100	LET	x=10

110	GOSUB	500

120	PRINT	s

130	LET	x=x+4

140	GO	SUB	500

150	PRINT	s

160	LET	x=x+2

170	GO	SUB	500

180	PRINT	s

190	STOP

500	LET	s=0

Chapter	6	

510	FOR	y=1	TO	x

520	LET	s=s+y

530	NEXT	y

540	RETURN

When	 this	 program	 is	 run,	 see	 if	 you	 can	 work	 out	 what	 is	 happening.	 The
subroutine	starts	at	line	500.

A	subroutine	can	happily	call	another,	or	even	itself	(a	subroutine	that	calls	itself
is	recursive),	so	don't	be	afraid	of	having	several	layers.

	Chapter	4

Chapter	6

Summary

READ,	DATA,	RESTORE

In	 some	 previous	 programs	 we	 saw	 that	 information,	 or	 data,	 can	 be	 entered
directly	 into	 the	computer	using	 the	INPUT	 statement.	Sometimes	 this	can	be
very	tedious,	especially	if	a	lot	of	the	data	is	repeated	every	time	the	program	is
run.	 You	 can	 save	 a	 lot	 of	 time	 by	 using	 the	READ,	DATA	 and	 RESTORE
commands.	For	example:

10	READ	a,b,c

20	PRINT	a,b,c

30	DATA	10,20,30

40	STOP

A	 READ	 statement	 consists	 of	 READ	 followed	 by	 a	 list	 of	 the	 names	 of
variables,	 separated	 by	 commas.	 It	 works	 rather	 like	 an	 INPUT	 statement,
except	that	instead	of	getting	you	to	type	in	the	values	to	give	to	the	variables,
the	computer	looks	up	the	values	in	the	DATA	statement.

Each	DATA	 statement	 is	 a	 list	 of	 expressions	 -	 numeric	 or	 string	 expressions
separated	 by	 commas.	 You	 can	 put	 them	 anywhere	 you	 like	 in	 a	 program,
because	the	computer	ignores	them	except	when	it	is	doing	a	READ.	You	must
imagine	the	expressions	from	all	the	DATA	statements	in	the	program	as	being
put	 together	 to	form	one	long	list	of	expressions,	 the	DATA	 list.	The	first	 time
the	computer	goes	to	READ	a	value,	it	takes	the	first	expression	from	the	DATA
list;	 the	 next	 time,	 it	 takes	 the	 second;	 and	 thus	 as	 it	meets	 successive	READ
statements,	it	works	its	way	through	the	DATA	list.	(If	it	tries	to	go	past	the	end
of	the	DATA	list,	then	it	gives	an	error.)

Note	 that	 it's	 a	waste	 of	 time	 putting	DATA	 statements	 in	 a	 direct	 command,
because	READ	will	not	find	them.	DATA	statements	have	to	go	in	the	program.
Let's	see	how	these	fit	together	in	the	program	you've	just	typed	in.	Line	10	tells
the	computer	to	read	three	pieces	of	data	and	give	them	the	variables	a,	b	and	c.
Line	20	then	says	PRINT	these	variables.	The	DATA	statement	in	line	30	gives
the	values	of	a,	b	and	c.	Line	40	stops	 the	program.	To	see	 the	order	 in	which
things	work	change	line	20	to:

20	PRINT	b,c,a

The	information	in	DATA	can	be	part	of	a	FOR	.	.	.	NEXT	loop.	Type	in

10	FOR	n=1	TO	6

20	READ	D

30	DATA	2,4,6,8,10,12

40	PRINT	D

50	NEXT	n

60	STOP

When	this	program	is	RUN	you	can	see	the	READ	statement	moving	through	the
DATA	list.	DATA	statements	can	also	contain	string	variables.	For	example:

10	READ	d$

20	PRINT	"The	date	is",d$

30	DATA	"June	1st,	1982"

40	STOP

This	is	 the	simple	way	of	fetching	expressions	from	the	DATA	 list:	start	at	 the
beginning	and	work	through	until	you	reach	the	end.	However,	you	can	make	the

Chapter	7	

computer	jump	about	in	the	DATA	list,	using	the	RESTORE	statement.	This	has
RESTORE,	followed	by	a	line	number,	and	makes	subsequent	READ	statements
start	getting	 their	data	 from	the	first	DATA	 statement	at	or	after	 the	given	 line
number.	(You	can	miss	out	the	line	number,	in	which	case	it	is	as	though	you	had
typed	the	line	number	of	the	first	line	in	the	program.)

Try	this	program:

10	READ	a,b

20	PRINT	a,b

30	RESTORE	10

40	READ	x,y,z

50	PRINT	x,y,z

60	DATA	1,2,3

70	STOP

In	 this	 program	 the	 data	 required	 by	 line	 10	 made	 a	 =	 1	 and	 b	 =	 2.	 The
RESTORE	10	 instruction	 reset	 the	 variables,	 and	 allowed	 x,	 y	 and	 z	 to	 be
READ	starting	from	the	first	number	in	the	DATA	statement.	Rerun	this	program
without	line	30	and	see	what	happens.

	Chapter	5

Chapter	7:	Expressions

Summary

Operations:	+,	-,	*,	/	
Expressions,	scientific	notation,	variable	names

You	 have	 already	 seen	 some	 of	 the	 ways	 in	 which	 BASin	 can	 calculate	 with
numbers.	It	can	perform	the	four	arithmetic	operations	+,	-,	*	and	/	(remember
that	*	is	used	for	multiplication,	and	/	is	used	for	division),	and	it	can	find	the
value	of	a	variable,	given	its	name.

The	example:

LET	tax=sum*15/100

gives	 just	 a	 hint	 of	 the	 very	 important	 fact	 that	 these	 calculations	 can	 be
combined.	Such	a	combination,	like	sum*15/100,	is	called	an	expression:	so
an	 expression	 is	 just	 a	 short-hand	 way	 of	 telling	 the	 computer	 to	 do	 several
calculations,	one	after	the	other.	In	our	example,	the	expression	sum*15/100
means	 'look	 up	 the	 value	 of	 the	 variable	 called	 "sum",	multiply	 it	 by	 15,	 and
divide	by	100'.

Here	 is	 a	 summary	 of	 the	 order	 in	 which	 BASin	 evaluates	 mathematical
expressions	(sometimes	called	operator	precedence).

Multiplications	 and	 divisions	 are	 done	 first.	 They	 have	 higher	 priority	 than
addition	and	subtraction.	Relative	to	each	other,	multiplication	and	division	have
the	same	priority,	which	means	that	the	multiplications	and	divisions	are	done	in
order	from	left	to	right.	When	they	are	dealt	with,	the	additions	and	subtractions
come	next	-	these	again	have	the	same	priority	as	each	other,	so	we	do	them	in
order	from	left	to	right.

Although	all	you	really	need	to	know	is	whether	one	operation	has	a	higher	or
lower	priority	than	another,	the	computer	does	this	by	having	a	number	between
1	and	16	to	represent	the	priority	of	each	operation:	*	and	/	have	priority	8,	and

+	and	-	have	priority	6.

This	order	of	calculation	is	absolutely	rigid,	but	you	can	circumvent	it	by	using
brackets:	 anything	 in	 brackets	 is	 evaluated	 first	 and	 then	 treated	 as	 a	 single
number.

Expressions	are	useful	because,	whenever	 the	computer	 is	 expecting	a	number
from	you,	you	can	give	it	an	expression	instead	and	it	will	work	out	the	answer.
The	exceptions	to	this	rule	are	so	few	that	they	will	be	stated	explicitly	in	every
case.

You	can	add	together	as	many	strings	(or	string	variables)	as	you	like	in	a	single
expression,	and	if	you	want,	you	can	even	use	brackets.

We	 really	 ought	 to	 tell	 you	 what	 you	 can	 and	 cannot	 use	 as	 the	 names	 of
variables.	As	we	 have	 already	 said,	 the	 name	 of	 a	 string	 variable	 has	 to	 be	 a
single	letter	followed	by	$;	and	the	name	of	the	control	variable	of	a	FOR	 .	 .	 .
NEXT	loop	must	be	a	single	letter;	but	the	names	of	ordinary	numeric	variables
are	much	 freer.	They	 can	use	 any	 letters	 or	 digits	 as	 long	 as	 the	 first	 one	 is	 a
letter.	You	 can	 put	 spaces	 in	 as	well	 to	make	 it	 easier	 to	 read,	 but	 they	won't
count	 as	 part	 of	 the	 name.	 Also,	 it	 doesn't	 make	 any	 difference	 to	 the	 name
whether	you	type	it	in	capitals	or	lower	case	letters.

Here	are	some	examples	of	the	names	of	variables	that	are	allowed:

x

t42

this	name	is	so	long	that	I	shall	never	be	able	to	type	it	out	again	without	making	a	mistake

now	we	are	six

nOWWeaReSiX

(These	last	two	names	are	considered	the	same,	and	refer	to	the	same	variable.)

These	are	not	allowed	to	be	the	names	of	variables:

2001	[it	begins	with	a	digit]

3	bears	[begins	with	a	digit]

M*A*S*H	[*	is	not	a	letter	or	a	digit]

Fotherington-Thomas	[-	is	not	a	letter	or	a	digit]

Numerical	 expressions	 can	be	 represented	by	 a	 number	 and	 exponent.	Try	 the
following	to	prove	the	point:

PRINT	2.34e0

PRINT	2.34e1

PRINT	2.34e2

and	so	on	up	to

PRINT	2.34e15

You	will	see	that	after	a	while	the	computer	also	starts	using	scientific	notation.
This	is	because	no	more	than	fourteen	characters	can	be	used	to	write	a	number.
Similarly,	try

PRINT	2.34e-1

PRINT	2.34e-2

and	so	on.

PRINT	gives	only	eight	significant	digits	of	a	number.	Try

PRINT	4294967295,	4294967295-429e7

This	proves	that	the	computer	can	hold	the	digits	of	4294967295,	even	though	it
is	not	prepared	to	display	them	all	at	once.

BASin	 uses	 floating	 point	 arithmetic,	 which	 means	 that	 it	 keeps	 separate	 the
digits	of	a	number	(its	mantissa)	and	the	position	of	the	point	(the	exponent.	This
is	not	always	exact,	even	for	whole	numbers.	Type

PRINT	1e10+1-1e10,1e10-1e10+1

Numbers	are	held	to	about	nine	and	a	half	digits'	accuracy,	so	1e10	is	too	big	to
be	held	exactly	 right.	The	 inaccuracy	 (actually	about	2)	 is	more	 than	1,	 so	 the
numbers	1e10	and	1e10+1	appear	to	the	computer	to	be	equal.	For	an	even	more
peculiar	example,	type

PRINT	5e9+1-5e9

Here	the	inaccuracy	in	5e9	is	only	about	1,	and	the	1	to	be	added	on	in	fact	gets
rounded	up	 to	2.	The	numbers	5e9+1	and	5e9+2	appear	 to	 the	computer	 to	be
equal.

The	largest	 integer	(whole	number)	that	can	be	held	completely	accurately	is	1
less	than	32	2's	multiplied	together	(or	4,294,967,295).

The	 string	 ""	 with	 no	 characters	 at	 all	 is	 called	 the	 empty	 or	 null	 string.
Remember	that	spaces	are	significant	and	an	empty	string	is	not	the	same	as	one
containing	nothing	but	spaces.

Try:

PRINT	"Have	you	finished	"Finnegans	Wake"	yet?"

When	you	press	Enter,	you	will	get	the	flashing	red	cursor	that	shows	there	is	a
mistake	 somewhere	 in	 the	 line.	When	 the	computer	 finds	 the	double	quotes	 at
the	beginning	of	"Finnegans	Wake",	it	imagines	that	these	mark	the	end
of	 the	 string	"Have	you	finished",	 and	 it	 then	 can't	 work	 out	 what

Chapter	8	

'Finnegans	Wake'	means.

There	 is	a	special	device	 to	get	over	 this:	whenever	you	want	 to	write	a	string
quote	symbol	in	the	middle	of	a	string,	you	must	write	it	twice,	like	this:

PRINT	"Have	you	finished	""Finnegans	Wake""	yet?"

As	you	 can	 see	 from	what	 is	 printed	on	 the	 screen,	 each	double	quote	 is	 only
really	there	once;	you	just	have	to	type	it	twice	to	get	it	recognized.

	Chapter	6

Chapter	8:	Strings

Summary

Slicing,	using	TO.	Note	that	this	notation	is	not	standard	BASIC.

Given	a	string,	a	substring	of	it	consists	of	some	consecutive	characters	from	it,
taken	in	sequence.	Thus	"string"	is	a	substring	of	"bigger	string",
but	"b	string"	and	"big	reg"	are	not.

There	 is	 a	 notation	 called	 slicing	 for	 describing	 substrings,	 and	 this	 can	 be
applied	to	arbitrary	string	expressions.	The	general	form	is

string	expression	(start	TO	finish)

so	that,	for	instance,

"abcdef"(2	TO	5)="bcde"

If	you	omit	the	start,	then	1	is	assumed;	if	you	omit	the	finish	then	the	length	of
the	string	is	assumed.	Thus

"abcdef"(TO	5)="abcdef"(1	TO	5)="abcde"

"abcdef"(2	TO)="abcdef"(2	TO	6)="bcdef"

"abcdef"(TO)="abcdef"(1	TO	6)="abcdef"

(You	can	also	write	this	last	one	as	"abcdef"(),	for	what	it's	worth.)

A	slightly	different	form	misses	out	the	TO	and	just	has	one	number.

"abcdef"(3)="abcdef"(3	TO	3)="c"

Although	normally	both	start	and	finish	must	refer	to	existing	parts	of	the	string,

this	rule	is	overridden	by	another	one:	if	the	start	is	more	than	the	finish,	then	the
result	is	the	empty	string.	So

"abcdef"(5	TO	7)

gives	 error	 3	 Subscript	 wrong	 because	 the	 string	 only	 contains	 6
characters	and	7	is	too	many,	but

"abcdef"(8	TO	7)=""

and

"abcdef"(1	TO	0)=""

The	start	and	finish	must	not	be	negative,	or	you	get	error	B	Integer	out
of	range.	This	next	program	is	a	simple	one	illustrating	some	of	these	rules.

10	LET	a$="abcdef"

20	FOR	n=1	TO	6

30	PRINT	a$(n	TO	6)

40	NEXT	n

50	STOP

Type	NEW	when	this	program	has	been	run	and	enter	the	next	program:

10	LET	a$="ABLE	WAS	I"

20	FOR	n=1	TO	10

30	PRINT	a$(n	TO	10),a$((10-n)	TO	10)

40	NEXT	n

50	STOP

For	string	variables,	we	can	not	only	extract	substrings,	but	also	assign	to	them.
For	instance,	type

LET	a$="Hi	there,	I'm	BASin"

and	then

LET	a$(5	TO	8)="******"

and

PRINT	a$

Notice	how	since	the	substring	a$(5	TO	8)	 is	only	4	characters	long,	only
the	 first	 four	 stars	 have	 been	 used.	 This	 is	 a	 characteristic	 of	 assigning	 to
substrings:	 the	substring	has	to	be	exactly	the	same	length	afterwards	as	it	was
before.	To	make	sure	this	happens,	the	string	that	is	being	assigned	to	it	is	cut	off
on	 the	 right	 if	 it	 is	 too	 long,	or	 filled	out	with	spaces	 if	 it	 is	 too	short	 -	 this	 is
called	Procrustean	assignment	after	the	inn-keeper	Procrustes	who	used	to	make
sure	 that	 his	 guests	 fitted	 the	 bed	 by	 either	 stretching	 them	 out	 on	 a	 rack	 or
cutting	their	feet	off.

If	you	now	try

LET	a$()="Hello	there"

and

PRINT	a$;"."

you	will	see	that	 the	same	thing	has	happened	again	(this	 time	with	spaces	put
in)	because	a$()	counts	as	a	substring.

LET	a$="Hello	there"

will	do	it	properly.

Chapter	9	

Complicated	 string	expressions	will	need	brackets	 round	 them	before	 they	can
be	sliced.	For	example,

"abc"+"def"(1	TO	2)="abcde"

("abc"+"def")(1	TO	2)="ab"

Exercise

1.	 Try	writing	a	program	to	print	out	the	day	of	the	week
using	 string	 slicing.	 Hint:	 let	 the	 string	 be
SunMonTuesWedThursFriSat.

	Chapter	7

Chapter	9:	Functions

Summary

DEF	FN,	LEN,	STR$,	VAL,	SGN,	ABS,	INT,	SQR,	FN

Consider	 the	 sausage	machine.	 You	 put	 a	 lump	 of	meat	 in	 at	 one	 end,	 turn	 a
handle,	and	out	comes	a	sausage	at	the	other	end.	A	lump	of	pork	gives	a	pork
sausage,	a	lump	of	fish	gives	a	fish	sausage,	and	a	lump	of	beef	a	beef	sausage.

Functions	are	practically	indistinguishable	from	sausage	machines	but	there	is	a
difference:	 they	work	on	numbers	and	strings	 instead	of	meat.	You	supply	one
value	 (called	 the	argument),	mince	 it	up	by	doing	some	calculations	on	 it,	and
eventually	get	another	value,	the	result.

Meat	in	→	Sausage	Machine	→	Sausage	out	
Argument	in	→	Function	→	Result	out

Different	 arguments	 give	 different	 results,	 and	 if	 the	 argument	 is	 completely
inappropriate	the	function	will	stop	and	give	an	error	report.

Just	 as	 you	 can	 have	 different	machines	 to	make	 different	 products	 -	 one	 for
sausages,	another	for	dish	cloths,	and	a	third	for	fish-fingers	and	so	on,	different
functions	 will	 do	 different	 calculations.	 Each	 will	 have	 its	 own	 name	 to
distinguish	it	from	the	others.

You	use	a	function	in	expressions	by	typing	its	name	followed	by	the	argument,
and	when	 the	expression	 is	evaluated	 the	result	of	 the	function	will	be	worked
out.

As	an	example,	there	is	a	function	called	LEN,	which	works	out	the	length	of	a
string.	Its	argument	is	the	string	whose	length	you	want	to	find,	and	its	result	is
the	length,	so	that	if	you	type

PRINT	LEN	"Sinclair"

the	computer	will	write	the	answer	8,	the	number	of	letters	in	'Sinclair'.

If	 you	mix	 functions	 and	 operations	 in	 a	 single	 expression,	 then	 the	 functions
will	be	worked	out	before	 the	operations.	Again,	however,	you	can	circumvent
this	rule	by	using	brackets.	For	instance,	here	are	two	expressions	which	differ
only	 in	 the	 brackets,	 and	 yet	 the	 calculations	 are	 performed	 in	 an	 entirely
different	 order	 in	 each	 case	 (although,	 as	 it	 happens,	 the	 end	 results	 are	 the
same).

LEN	"Fred"+	LEN	"Bloggs"								LEN	("Fred"+"Bloggs")

4+LEN	"Bloggs"																		LEN	("FredBloggs")

4+6																													LEN	"FredBloggs"

10																														10

Here	are	some	more	functions.

STR$	converts	numbers	into	strings:	its	argument	is	a	number,	and	its	result	is
the	 string	 that	would	 appear	 on	 the	 screen	 if	 the	 number	were	 displayed	 by	 a
PRINT	statement.	Note	how	its	name	ends	in	a	$	sign	to	show	that	its	result	is	a
string.	For	example,	you	could	say

LET	a$=STR$	1e2

which	would	have	exactly	the	same	effect	as	typing

LET	a$="100"

Or	you	could	say

PRINT	LEN	STR$	100.000

and	get	the	answer	3,	because	STR$	100.000	=	"100".

VAL	is	like	STR$	in	reverse:	it	converts	strings	into	numbers.	For	instance,

VAL	"3.5"=3.5

In	a	sense,	VAL	is	the	reverse	of	STR$,	because	if	you	take	any	number,	apply
STR$	 to	 it,	 and	 then	 apply	VAL	 to	 it,	 you	 get	 back	 to	 the	 number	 you	 first
thought	of.	However,	if	you	take	a	string,	apply	VAL	to	it,	and	then	apply	STR$
to	it,	you	do	not	always	get	back	to	your	original	string.

VAL	is	an	extremely	powerful	function,	because	the	string	which	is	its	argument
is	 not	 restricted	 to	 looking	 like	 a	 plain	 number	 -	 it	 can	 be	 any	 numeric
expression.	Thus,	for	instance,

VAL	"2*3"=6

or	even,

VAL	("2"+"*3")	=	6

There	 are	 two	 processes	 at	 work	 here.	 In	 the	 first,	 the	 argument	 of	 VAL	 is
evaluated	as	a	string:	the	string	expression	"2"+"*3"	is	evaluated	to	give	the
string	"2*3".	Then,	 the	string	has	 its	double	quotes	stripped	off,	and	what	 is
left	is	evaluated	as	a	number:	so	2*3	is	evaluated	to	give	the	number	6.

This	can	get	pretty	confusing	if	you	don't	keep	your	wits	about	you;	for	instance,

PRINT	VAL	"VAL""VAL""""2"""""""

(Remember	 that	 inside	a	string	a	string	quote	must	be	written	 twice.	 If	you	go
down	into	further	depths	of	strings,	 then	you	find	that	string	quotes	need	to	be
quadrupled	or	even	octupled.)

There	is	another	function,	rather	similar	to	VAL,	although	probably	less	useful,
called	VAL$.	Its	argument	is	still	a	string,	but	its	result	is	also	a	string.	To	see
how	this	works,	recall	how	VAL	goes	in	two	steps:	first	its	argument	is	evaluated
as	 a	 string,	 then	 the	 string	 quotes	 stripped	 off	 this,	 and	 whatever	 is	 left	 is
evaluated	as	a	number.	With	VAL$,	the	first	step	is	the	same,	but	after	the	string
quotes	have	been	stripped	off	in	the	second	step,	whatever	is	left	is	evaluated	as

another	string.	Thus

VAL$	"""Fruit	punch"""	=	"Fruit	punch"

(Notice	how	the	string	quotes	proliferate	again.)	Do

LET	a$="99"

and	print	out	all	of	the	following:

VAL	a$

VAL	"a$"

VAL	"""a$"""

VAL$	a$

VAL$	"a$"

VAL$	"""a$"""

Some	of	these	will	work,	and	some	of	them	won't;	try	to	explain	all	the	answers.
(Keep	a	cool	head.)

SGN	is	the	sign	function	(sometimes	called	signum).	It	is	the	first	function	you
have	seen	that	has	nothing	to	do	with	strings,	because	both	its	argument	and	its
result	are	numbers.	The	result	is	+1	if	the	argument	is	positive,	0	if	the	argument
is	zero,	and	-1	if	the	argument	is	negative.

ABS	 is	 another	 function	 whose	 argument	 and	 result	 are	 both	 numbers.	 It
converts	the	argument	into	a	positive	number	(which	is	the	result)	by	forgetting
the	sign,	so	that	for	instance

ABS	-3.2	=	ABS	3.2	=	3.2

INT	stands	for	 'integer	part'	-	an	integer	is	a	whole	number,	possibly	negative.
This	function	converts	a	fractional	number	into	an	integer	by	throwing	away	the

fractional	part,	so	that	for	instance,

INT	3.9	=	3

Be	 careful	 when	 you	 are	 applying	 it	 to	 negative	 numbers,	 because	 it	 always
rounds	down:	thus,	for	instance,

INT	-3.9	=	-4

SQR	calculates	the	square	root	of	a	number	-	the	result	that,	when	multiplied	by
itself,	gives	the	argument.	For	instance,

SQR	4	=	2	because	2*2=4

SQR	0.25	=	0.5	because	0.5*0.5=0.25

SQR	2	=	1.4142136	(approximately)	because	1.4142136*1.4142136=2.0000001

If	you	multiply	any	number	(even	a	negative	one)	by	itself,	the	answer	is	always
positive.	This	means	that	negative	numbers	do	not	have	square	roots,	so	if	you
apply	 SQR	 to	 a	 negative	 argument	 you	 get	 an	 error	 report	 A	 Invalid
argument.

You	 can	 also	 define	 functions	 of	 your	 own.	 Possible	 names	 for	 these	 are	FN
followed	 by	 a	 letter	 (if	 the	 result	 is	 a	 number)	 or	 FN	 followed	 by	 a	 letter
followed	by	$	(if	the	result	is	a	string).	These	are	much	stricter	about	brackets:
the	argument	must	be	enclosed	in	brackets.

You	 define	 a	 function	 by	 putting	 a	 DEF	 FN	 statement	 somewhere	 in	 the
program.	For	instance,	here	is	the	definition	of	a	function	FN	s	whose	result	is
the	square	of	the	argument:

10	DEF	FN	s(x)=x*x:	

			REM	the	square	of	x

The	x	 in	brackets	is	a	name	by	which	you	wish	to	refer	to	the	argument	of	the

function.	You	can	use	any	single	letter	you	like	for	this	(or,	if	the	argument	is	a
string,	a	single	letter	followed	by	$).

After	 the	=	 sign	 comes	 the	 actual	 definition	 of	 the	 function.	 This	 can	 be	 any
expression,	and	it	can	also	refer	to	the	argument	using	the	name	you've	given	it
(in	this	case,	x)	as	though	it	were	an	ordinary	variable.

When	you	have	entered	this	line,	you	can	invoke	the	function	just	like	one	of	the
computer's	own	functions,	by	typing	its	name,	FN	s,	followed	by	the	argument.
Remember	 that	when	you	have	defined	a	function	yourself,	 the	argument	must
be	enclosed	in	brackets.	Try	it	out	a	few	times:

PRINT	FN	s(2)

PRINT	FN	s(3+4)

PRINT	1+1NT	FN	s	(LEN	"chicken"/2+3)

Once	you	have	put	the	corresponding	DEF	FN	statement	into	the	program,	you
can	 use	 your	 own	 functions	 in	 expressions	 just	 as	 freely	 as	 you	 can	 use	 the
computer's.

Note:	in	some	dialects	of	BASIC	you	must	even	enclose	the	argument	of	one	of
the	 computer's	 functions	 in	 brackets.	 This	 is	 not	 the	 case	 in	 ZX	 Spectrum
BASIC.

INT	 always	 rounds	 down.	 To	 round	 to	 the	 nearest	 integer,	 add	 .5	 first	 -	 you
could	write	your	own	function	to	do	this.

20	DEF	FN	r(x)=INT	(x+0.5):	REM	gives	x	rounded	to	the	nearest	integer.

You	will	then	get,	for	instance,

FN	r(2.9)	=	3											FN	r(2.4)	=	2

FN	r(-2.9)	=	-3									FN	r(-2.4)	=	-2

Compare	these	with	the	answers	you	get	when	you	use	INT	instead	of	FN	r.
Type	in	and	run	the	following:

10	LET	x=0:	

			LET	y=0:	

			LET	a=10	

20	DEF	FN	p(x,y)=a+x	

30	DEF	FN	q()=a+x*y	

40	PRINT	FN	p(2,3),FN	q()

There	are	a	lot	of	subtle	points	in	this	program.

First,	a	function	is	not	restricted	to	just	one	argument:	it	can	have	more,	or	even
none	at	all	-	but	you	must	still	always	keep	the	brackets.

Second,	 it	 doesn't	 matter	 whereabouts	 in	 the	 program	 you	 put	 the	DEF	 FN
statements.	After	the	computer	has	executed	line	10,	it	simply	skips	over	lines	20
and	 30	 to	 get	 to	 line	 40.	 They	 do,	 however,	 have	 to	 be	 somewhere	 in	 the
program.	They	can't	be	in	a	command.

Third,	x	and	y	are	both	the	names	of	variables	in	the	program	as	a	whole,	and
the	names	of	arguments	for	the	function	FN	p.	FN	p	temporarily	forgets	about
the	 variables	 called	 x	 and	 y,	 but	 since	 it	 has	 no	 argument	 called	 a,	 it	 still
remembers	the	variable	a.	Thus	when	FN	p(2,3)	 is	being	evaluated,	a	has
the	value	10	because	 it	 is	 the	variable,	x	has	 the	value	2	because	 it	 is	 the	first
argument,	and	y	has	the	value	3	because	it	is	the	second	argument.	The	result	is
then,	10+2*3=16.	When	FN	q()	 is	 beinq	 evaluated,	 on	 the	 other	 hand.
there	 are	no	arguments,	 so	a,	x	 and	y	 all	 still	 refer	 to	 the	 variables	 and	 have
values	10,	0	and	0	respectively.	The	answer	in	this	case	is	10+0*0=10.

Now	change	line	20	to

20	DEF	FN	p(x,y)=FN	q()

This	 time,	FN	p(2,3)	 will	 have	 the	 value	 10	 because	FN	q	 will	 still	 go

back	to	the	variables	x	and	y	rather	than	using	the	arguments	of	FN	p.

Some	BASICs	 (not	 the	 ZX	 Spectrum	BASIC)	 have	 functions	 called	LEFT$,
RIGHT$,	MID$	and	TL$.

LEFT$	(a$,n)	gives	the	substring	of	a$	consisting	of	the	first	n	characters.
RIGHT$	(a$,n)	gives	the	substring	of	a$	consisting	of	the	characters	from
nth	on.	
MID$	 (a$,	 n1,	 n2)	 gives	 the	 substring	 of	 a$	 consisting	 of	 n2
characters	starting	at	the	n1th.	
TL$	(a$)	gives	the	substring	of	a$	consisting	of	all	its	characters	except	the
first.

You	can	write	some	user-defined	functions	to	do	the	same:	e.g.

10	DEF	FN	t$(a$)=a$(2	TO):	

			REM	TL$

20	DEF	FN	l$(a$,	n)=a$(TO	n):	

			REM	LEFT$

Check	that	these	work	with	strings	of	length	0	or	1.

Note	that	our	FN	l$	has	two	arguments,	one	a	number	and	the	other	a	string.	A
function	can	have	up	to	26	numeric	arguments	(why	26?)	and	at	the	same	time
up	to	26	string	arguments.

Exercise

1.	 Use	the	function

FN	s(x)=x*x

Chapter	10	

to	test	SQR:	you	should	find	that

FN	s(SQR	x)=x

if	you	substitute	any	positive	number	for	x,	and

whether	x	is	positive	or	negative	(Why	the	

	Chapter	8

Chapter	10:	Mathematical	functions

Summary

↑,	PI,	EXP,	LN,	SIN,	COS,	TAN,	ASN,	ACS,	ATN

This	chapter	deals	with	the	mathematics	that	BASin	can	handle.	Quite	possibly
you	will	never	have	to	use	any	of	 this	at	all,	so	 if	you	find	it	 too	heavy	going,
don't	be	afraid	of	skipping	it.	It	covers	the	operation	↑	(raising	to	a	power),	the
functions	EXP	and	LN,	and	the	trigonometrical	functions	SIN,	COS,	TAN	and
their	inverses	ASN,	ACS,	and	ATN.

↑	and	EXP

You	can	raise	one	number	to	the	power	of	another	-	that	means	'multiply	the	first
number	by	itself	the	second	number	of	times'.	This	is	normally	shown	by	writing
the	second	number	just	above	and	to	the	right	of	the	first	number;	but	obviously
this	 would	 be	 difficult	 on	 a	 computer	 so	 we	 use	 the	 symbol	 ↑	 instead.	 For
example,	the	powers	of	2	are

2↑1=2

2↑2=2*2=4 (2	squared)

2↑3=2*2*2=8 (2	cubed)

2↑4=2*2*2*2=16 (2	to	the	power	four)

Thus	at	its	most	elementary	level,	'a↑b'	means	'a	multiplied	by	itself	b	times',	but
obviously	 this	 only	 makes	 sense	 if	 b	 is	 a	 positive	 whole	 number.	 To	 find	 a
definition	that	works	for	other	values	of	b,	we	consider	the	rule

a^(b+c)	=	a^b*a^c

(Notice	 that	we	 give	↑	 a	 higher	 priority	 than	*	 and	/	 so	 that	when	 there	 are
several	operations	in	one	expression,	the	↑s	are	evaluated	before	the	*s	and	/s.)
You	 should	 not	 need	much	 convincing	 that	 this	works	when	 b	 and	 c	 are	 both
positive	whole	 numbers;	 but	 if	we	 decide	 that	we	want	 it	 to	work	 even	when
they	are	not,	then	we	find	ourselves	compelled	to	accept	that

a^0	=	1

a^(-b)	=	1/a^b

a^(1/b)	=	the	bth	root	of	a...

...which	is	to	say,	the	number	that	you	have	to	multiply	by	itself	b	times	to	get	a
and	finally...

a^(b*c)	=	(a^b)^c

If	you	have	never	seen	any	of	this	before	then	don't	 try	to	remember	it	straight
away;	just	remember	that

a^(-1)	=	1/a

and

a^(1/2)	=	SQR	a

and	maybe	when	you	are	familiar	with	these	the	rest	will	begin	to	make	sense.

Experiment	with	all	this	by	trying	this	program:

10	INPUT	a,b,c	

20	PRINT	a^(b+c),a^b*a^c	

30	GO	TO	10

Of	 course,	 if	 the	 rule	 we	 gave	 earlier	 is	 true,	 then	 each	 time	 round	 the	 two
numbers	that	the	computer	prints	out	will	be	equal.	(Note	-	because	of	the	way
the	computer	works	out	↑,	the	number	on	the	left	-	a	in	this	case	-	must	never	be

negative.)

A	 rather	 typical	 example	 of	 what	 this	 function	 can	 be	 used	 for	 is	 that	 of
compound	interest.	Suppose	you	keep	some	of	your	money	in	a	building	society
and	they	give	15%	interest	per	year.	Then	after	one	year	you	will	have	not	just
the	 100%	 that	 you	 had	 anyway,	 but	 also	 the	 15%	 interest	 that	 the	 building
society	have	given	you,	making	altogether	115%	of	what	you	had	originally.	To
put	it	another	way,	you	have	multiplied	your	sum	of	money	by	1.15,	and	this	is
true	however	much	you	had	there	in	the	first	place.	After	another	year,	the	same
will	 have	 happened	 again,	 so	 that	 you	 will	 then	 have
1.15*1.15=1.15↑2=1.3225	 times	 your	 original	 sum	 of	 money.	 In
general,	after	y	years,	you	will	have	1.15↑y	times	what	you	started	out	with.

If	you	try	this	command

FOR	y=0	TO	198:	PRINT	y,10*1.15^y:NEXT	y

you	will	see	that	even	starting	off	from	just	£10,	it	all	mounts	up	quite	quickly,
and	what	 is	more,	 it	gets	 faster	and	faster	as	 time	goes	on.	 (Although	even	so,
you	might	still	find	that	it	doesn't	keep	up	with	inflation.)

This	 sort	 of	 behaviour,	 where	 after	 a	 fixed	 interval	 of	 time	 some	 quantity
multiplies	 itself	 by	 a	 fixed	 proportion,	 is	 called	 exponential	 growth,	 and	 it	 is
calculated	by	raising	a	fixed	number	to	the	power	of	the	time.

Suppose	you	did	this:

10	DEF	FN	a(x)=a^x

Here,	a	is	more	or	less	fixed,	by	LET	statements:	its	value	will	correspond	to	the
interest	rate,	which	changes	only	every	so	often.

There	 is	 a	 certain	 value	 for	 a	 that	 makes	 the	 function	FN	a	 look	 especially
pretty	 to	 the	 trained	eye	of	a	mathematician:	and	 this	value	 is	called	e.	BASin
has	a	function	called	EXP	defined	by

EXP	x=e^x

Unfortunately,	 e	 itself	 is	 not	 an	 especially	pretty	number:	 it	 is	 an	 infinite	non-
recurring	decimal.	You	can	see	its	first	few	decimal	places	by	doing

PRINT	EXP	1

because	EXP	1	=	e↑1	=	e.	Of	course,	this	is	just	an	approximation.	You
can	never	write	down	e	exactly.

LN

The	 inverse	of	an	exponential	 function	 is	a	 logarithmic	function:	 the	 logarithm
(to	base	a)	of	a	number	x	 is	 the	power	 to	which	you	have	 to	 raise	a	 to	get	 the
number	x,	and	 it	 is	written	 logax.	Thus	by	definition	a↑logax=x;	 and	 it	 is	 also
true	that	log	(a↑x)=x.

You	 may	 well	 already	 know	 how	 to	 use	 base	 10	 logarithms	 for	 doing
multiplications;	these	are	called	common	logarithms.	BASin	has	a	function	LN
which	calculates	logarithms	to	the	base	e;	these	are	called	natural	logarithms.	To
calculate	logarithms	to	any	other	base,	you	must	divide	the	natural	logarithm	by
the	natural	logarithm	of	the	base:

loga	x	=	LN	x	/	LN	a

PI

Given	any	circle,	you	can	find	 its	perimeter	 (the	distance	round	 its	edge;	often
called	its	circumference)	by	multiplying	its	diameter	(width)	by	a	number	called
π.	π	is	a	Greek	p,	and	it	is	used	because	it	stands	for	perimeter.	Its	name	is	pi.)

Like	e,	π	is	an	infinite	non-recurring	decimal;	it	starts	off	as	3.141592653589...

The	word	PI	on	the	Spectrum	is	taken	as	standing	for	this	number	-	try

PRINT	PI

SIN,	COS	and	TAN;	ASN,	ACS	and	ATN

The	trigonometrical	functions	measure	what	happens	when	a	point	moves	round
a	circle.	Here	is	a	circle	of	radius	1	(1	what?	It	doesn't	matter,	as	long	as	we	keep
to	 the	 same	unit	 all	 the	way	 through.	There	 is	nothing	 to	 stop	you	 inventing	a
new	unit	of	your	own	for	every	circle	that	you	happen	to	be	interested	in)	and	a
point	 moving	 round	 it.	 The	 point	 started	 at	 the	 3	 o'clock	 position,	 and	 then
moved	round	in	an	anti-clockwise	direction.

We	have	also	drawn	in	two	lines	called	axes	through	the	centre	of	the	circle.	The
one	through	9	o'clock	and	3	o'clock	is	called	the	x-axis,	and	the	one	through	6
o'clock	and	12	o'clock	is	called	the	y-axis.

To	 specify	where	 the	 point	 is,	 you	 say	 how	 far	 it	 has	moved	 round	 the	 circle
from	its	3	o'clock	starting	position:	let	us	call	this	distance	a.	We	know	that	the
circumference	of	the	circle	is	2π	(because	its	radius	is	1	and	its	diameter	is	thus
2):	so	when	it	has	moved	a	quarter	of	the	way	round	the	circle,	a	=	π/2;	when	it
has	moved	halfway	round,	a	=	π;	and	when	it	has	moved	the	whole	way	round,	a
=	2π.

Given	the	curved	distance	round	the	edge,	a,	two	other	distances	you	might	like
to	know	are	how	far	the	point	is	to	the	right	of	the	y-axis,	and	how	far	it	is	above
the	x-axis.	These	are	called,	respectively,	the	cosine	and	sine	of	a.	The	functions
COS	and	SIN	on	the	computer	will	calculate	these.

Note	 that	 if	 the	 point	 goes	 to	 the	 left	 of	 the	 y-axis,	 then	 the	 cosine	 becomes
negative;	and	if	the	point	goes	below	the	x-axis,	the	sine	becomes	negative.

Another	 property	 is	 that	 once	 a	 has	 got	 up	 to	 2π,	 the	 point	 is	 back	 where	 it
started	and	the	sine	and	cosine	start	taking	the	same	values	all	over	again:

SIN	(a+2*PI)	=	SIN	a

COS	(a+2*PI)	=	COS	a

The	 tangent	 of	 a	 is	 defined	 to	 be	 the	 sine	 divided	 by	 the	 cosine;	 the
corresponding	function	on	the	computer	is	called	TAN.

Sometimes	we	need	to	work	these	functions	out	in	reverse,	finding	the	value	of	a
that	has	given	sine,	cosine	or	tangent.	The	functions	to	do	this	are	called	arcsine
(ASN	on	the	computer),	arccosine	(ACS)	and	arctangent	(ATN).

In	the	diagram	of	the	point	moving	round	the	circle,	look	at	the	radius	joining	the
centre	to	the	point.	You	should	be	able	to	see	that	the	distance	we	have	called	a,
the	distance	 that	 the	point	has	moved	round	 the	edge	of	 the	circle,	 is	a	way	of
measuring	the	angle	through	which	the	radius	has	moved	away	from	the	x-axis.
When	a	=	π/2,	the	angle	is	90	degrees;	when	a	=	π	the	angle	is	180	degrees;	and

Chapter	11	

so	round	to	when	a	=	2π,	and	the	angle	 is	360	degrees.	You	might	 just	as	well
forget	about	degrees,	and	measure	the	angle	in	terms	of	a	alone:	we	say	then	that
we	are	measuring	the	angle	in	radians.	Thus	π/2	radians	=	90	degrees	and	so	on.

You	 must	 always	 remember	 that	 SIN,	 COS	 and	 so	 on	 use	 radians	 and	 not
degrees.	 To	 convert	 degrees	 to	 radians,	 divide	 by	 180	 and	 multiply	 by	 π;	 to
convert	back	from	radians	to	degrees,	you	divide	by	π	and	multiply	by	180.

	Chapter	9

Chapter	11:	Random	numbers

Summary

RANDOMIZE,	RND

This	chapter	deals	with	the	function	RND	and	the	keyword	RANDOMIZE.	They
are	both	used	in	connection	with	random	numbers,	so	you	must	be	careful	not	to
get	 them	 mixed	 up.	 On	 the	 original	 Spectrum	 keyboard,	 RANDOMIZE	 was
abbreviated	to	RAND.

In	some	ways	RND	is	like	a	function:	it	does	calculations	and	produces	a	result.
It	is	unusual	in	that	it	does	not	need	an	argument.

Each	 time	 you	 use	 it,	 its	 result	 is	 a	 new	 random	 number	 between	 0	 and	 1.
(Sometimes	it	can	take	the	value	0,	but	never	1.)

Try

10	PRINT	RND

20	GO	TO	10

to	see	how	the	answer	varies.	Can	you	detect	any	pattern?	You	shouldn't	be	able
to;	'random'	means	that	there	is	no	pattern.

Actually,	RND	is	not	truly	random,	because	it	follows	a	fixed	sequence	of	65536
numbers.	However,	these	are	so	thoroughly	jumbled	up	that	there	are	at	least	no
obvious	patterns	and	we	say	that	RND	is	pseudo-random.

RND	gives	a	 random	number	between	0	and	1,	but	you	can	easily	get	 random
numbers	 in	 other	 ranges.	 For	 instance,	 5*RND	 is	 between	 0	 and	 5,	 and
1.3+0.7*RND	 is	 between	 1.3	 and	 2.	 To	 get	 whole	 numbers,	 use	 INT
(remembering	that	INT	always	rounds	down)	as	in	1+INT	(RND*6),	which

we	shall	use	 in	a	program	to	simulate	dice.	RND*6	 is	 in	 the	range	0	 to	6,	but
since	it	never	actually	reaches	6,	INT	(RND*6)	is	0,	1,	2,	3	,4	or	5.

Here	is	the	program:

10	REM	dice	throwing	program

20	CLS

30	FOR	n=1	TO	2

40	PRINT	1+INT	(RND*6);"	";

50	NEXT	n

60	INPUT	a$:	

			GO	TO	20

Press	Enter	each	time	you	want	to	throw	the	dice.

The	RANDOMIZE	statement	is	used	to	make	RND	start	off	at	a	definite	place	in
its	sequence	of	numbers,	as	you	can	see	with	this	program:

10	RANDOMIZE	1

20	FOR	n=1	TO	5:	

			PRINT	RND	,:	

			NEXT	n

30	PRINT:	

			GO	TO	10

After	 each	 execution	 of	RANDOMIZE	1,	 the	RND	 sequence	 starts	 off	 again
with	 0.0022735596.	 You	 can	 use	 other	 numbers	 between	 1	 and	 65535	 in	 the
RANDOMIZE	statement	to	start	the	RND	sequence	off	at	different	places.

If	you	had	a	program	with	RND	in	it	and	it	also	had	some	mistakes	that	you	had
not	found,	then	it	would	help	to	use	RANDOMIZE	like	this	so	that	the	program
behaved	the	same	way	each	time	you	ran	it.

RANDOMIZE	 on	 its	 own	 (and	 RANDOMIZE	 0	 has	 the	 same	 effect)	 is
different,	because	 it	 really	does	 randomize	RND	 -	you	can	 see	 this	 in	 the	next
program.

10	RANDOMIZE

20	PRINT	RND:	

			GO	TO	10

The	sequence	you	get	here	is	not	very	random,	because	RANDOMIZE	uses	the
time	since	 the	computer	was	 switched	on.	Since	 this	has	gone	up	by	 the	 same
amount	each	 time	RANDOMIZE	 is	 executed,	 the	next	RND	 does	more	or	 less
the	 same.	You	would	get	better	 randomness	by	 replacing	GO	TO	10	 by	GO
TO	20.

Note:	Most	dialects	of	BASIC	use	RND	and	RANDOMIZE	 to	produce	random
numbers,	but	not	all	use	them	in	the	same	way.

Here	is	a	program	to	toss	coins	and	count	the	numbers	of	heads	and	tails.

10	LET	heads=0:	

			LET	tails=0

20	LET	coin=INT	(RND*2)

30	IF	coin=3	THEN	

			LET	heads=heads+1

40	IF	coin=1	THEN	

			LET	tails=tails+1

50	PRINT	heads;",";tails,

60	IF	tails<>6	THEN	

			PRINT	heads/tails;

70	PRINT:	

			GO	TO	20

The	 ratio	 of	 heads	 to	 tails	 should	 become	 approximately	 1	 if	 you	 go	 on	 long
enough,	 because	 in	 the	 long	 run	 you	 expect	 approximately	 equal	 numbers	 of
heads	and	tails.

Exercises

1.	 Test	this	rule:	

Suppose	you	choose	a	number	between	1	and	872	and
type	

RANDOMIZE	your	number	

Then	the	next	value	of	RND	will	be	

(75*(your	number+1)-1)/65536	
	

2.	 (For	mathematicians	only.)	

Let	p	be	a	(large)	prime,	and	let	a	be	a	primitive	root
modulo	p.	

Then	if	bi	is	the	residue	of	ai	modulo	p	(1	≤	bi	≤	p-1),
the	sequence	
bi	-	1	
p	-	1

is	 a	 cyclical	 sequence	of	 p-1	distinct	 numbers	 in	 the
range	 0	 to	 1	 (excluding	 1).	 By	 choosing	 a	 suitably,
these	can	be	made	to	look	fairly	random.	

65537	 is	 a	 Fermat	 prime,	 216+1.	 Because	 the
multiplicative	 group	 of	 non-zero	 residues	 modulo
65537	 has	 a	 power	 of	 2	 as	 its	 order,	 a	 residue	 is	 a
primitive	 root	 if	 and	 only	 if	 it	 is	 not	 a	 quadratic
residue.	 Use	 Gauss'	 law	 of	 quadratic	 reciprocity	 to
show	that	75	is	a	primitive	root	modulo	65537.	

BASin	uses	p=65537	and	a=75,	and	stores	some	bi-1
in	memory.	RND	entails	replacing	bi-1	in	memory	by
bi+1-1,	 and	 yielding	 the	 result	 (bi+1-1)	 (p-1).
RANDOMIZE	 n	 (with	 1	 ≤	 n	 ≤	 65535)	 makes	 bi
equal	to	n+1.	

RND	 is	approximately	uniformly	distributed	over	the
range	0	to	1.

Chapter	12	
	Chapter	10

Chapter	12:	Arrays

Summary

Arrays	(the	way	the	Spectrum	handles	string	arrays	is	slightly	non-standard).	
DIM	.	.	.

Suppose	you	have	a	 list	of	numbers,	 for	 instance	 the	marks	of	 ten	people	 in	a
class.	To	store	them	in	the	computer	you	could	set	up	a	single	variable	for	each
person.	 but	 you	would	 find	 them	very	 awkward.	You	might	 decide	 to	 call	 the
variables	Bloggs	1,	Bloggs	2,	 and	 so	on	up	 to	Bloggs	10,	 but	 the
program	to	set	up	these	ten	numbers	would	be	rather	long	and	boring	to	type	in.

How	much	nicer	it	would	be	if	you	could	type	this:

	5	REM	this	program	will	not	work

10	FOR	n=1	TO	10

20	READ	Bloggs	n

30	NEXT	n

40	DATA	10,2,5,19,16,3,11,1,0,6

Well	you	can't.

However,	 there	 is	 a	mechanism	by	which	 you	 can	 apply	 this	 idea,	 and	 it	 uses
arrays.	An	array	is	a	set	of	variables,	its	elements,	all	with	the	same	name,	and
distinguished	 only	 by	 a	 number	 (the	 subscript)	 written	 in	 brackets	 after	 the
name.	In	our	example	the	name	could	be	b	 (like	control	variables	of	FOR	 .	 .	 .
NEXT	loops,	the	name	of	an	array	must	be	a	single	letter),	and	the	ten	variables
would	then	be	b(1),	b(2),	and	so	on	up	to	b(10).

The	 elements	 of	 an	 array	 are	 called	 subscripted	 variables,	 as	 opposed	 to	 the
simple	variables	that	you	are	already	familiar	with.

Before	 you	 can	 use	 an	 array,	 you	 must	 reserve	 some	 space	 for	 it	 inside	 the
computer,	and	you	do	this	using	a	DIM	(for	dimension)	statement.

DIM	b(10)

sets	 up	 an	 array	 called	 b	 with	 dimension	 10	 (i.e.	 there	 are	 10	 subscripted
variables	b(1),...,b(10))	and	initializes	the	10	values	to	0.	It	also	deletes	any	array
called	 b	 that	 existed	 previously.	 (But	 not	 a	 simple	 variable.	 An	 array	 and	 a
simple	numerical	variable	with	 the	same	name	can	coexist,	and	 there	shouldn't
be	 any	 confusion	 between	 them	 because	 the	 array	 variable	 always	 has	 a
subscript).

The	subscript	can	be	an	arbitrary	numerical	expression,	so	now	you	can	write

10	FOR	n=1	TO	10

20	READ	b(n)

30	NEXT	n

40	DATA	10,2,5,19,16,3,11,1,0,6

You	can	also	set	up	arrays	with	more	than	one	dimension.	In	a	two	dimensional
array	you	need	two	numbers	to	specify	one	of	the	elements	-	rather	like	the	line
and	column	numbers	to	specify	a	character	position	on	the	television	screen	-	so
it	 has	 the	 form	 of	 a	 table.	 Alternatively,	 if	 you	 imagine	 the	 line	 and	 column
numbers	(two	dimensions)	as	referring	to	a	printed	page,	you	could	have	an	extra
dimension	for	the	page	numbers.	Of	course,	we	are	talking	about	numeric	arrays;
so	the	elements	would	not	be	printed	characters	as	in	a	book,	but	numbers.	Think
of	the	elements	of	a	three-dimensional	array	v	as	being	specified	by	v	(page
number,	line	number,	column	number).

For	example,	to	set	up	a	two-dimensional	array	c	with	dimensions	3	and	6,	you
use	a	DIM	statement

DIM	c(3,6)

This	then	gives	you	3*6=18	subscripted	variables

c(1,1),	c(1,2),	.	.	.,	c(1,6)	
c(2,1),	c(2,2),	.	.	.,	c(2,6)	
c(3,1),	c(3,2),	.	.	.,	c(3,6)

The	same	principle	works	for	any	number	of	dimensions.

Although	you	can	have	a	number	and	an	array	with	the	same	name,	you	cannot
have	 two	 arrays	 with	 the	 same	 name,	 even	 if	 they	 have	 different	 numbers	 of
dimensions.

There	are	also	string	arrays.	The	strings	in	an	array	differ	from	simple	strings	in
that	 they	 are	 of	 fixed	 length	 and	 assignment	 to	 them	 is	 always	 Procrustean	 -
chopped	off	or	padded	with	spaces.	Another	way	of	thinking	of	them	is	as	arrays
(with	one	extra	dimension)	of	single	characters.	The	name	of	a	string	array	is	a
single	letter	followed	by	$,	and	a	string	array	and	a	simple	string	variable	cannot
have	the	same	name	(unlike	the	case	for	numbers).

Suppose	then,	that	you	want	an	array	a$	of	five	strings.	You	must	decide	how
long	 these	 strings	 are	 to	 be	 -	 let	 us	 suppose	 that	 10	 characters	 each	 is	 long
enough.	You	then	say

DIM	a$(5,10)	-	(type	this	in)

This	sets	up	a	5*10	array	of	characters,	but	you	can	also	think	of	each	row	as
being	a	string:

a$(1)	=	a$(1,1)	a$(1,2)	.	.	.	a$(1,10)

a$(2)	=	a$(2,1)	a$(2,2)	.	.	.	a$(2,10)

				:												:													:

a$(5)	=	a$(5,1)	a$(5,2)	.	.	.	a$(5,10)

If	 you	 give	 the	 same	 number	 of	 subscripts	 (two	 in	 this	 case)	 as	 there	 were
dimensions	 in	 the	DIM	 statement,	 then	 you	 get	 a	 single	 character;	 but	 if	 you
miss	 the	 last	 one	 out,	 then	 you	 get	 a	 fixed	 length	 string.	 So,	 for	 instance,

a$(2,7)	is	the	7th	character	in	the	string	a$(2);	using	the	slicing	notation,
we	could	also	write	this	as	a$(2)(7).	Now	type

LET	a$(2)="1234567890"

and

PRINT	a$(2),a$(2,7)

For	the	last	subscript	(the	one	you	can	miss	out),	you	can	also	have	a	slicer,	so
that	for	instance

a$(2,4	TO	8)	=	a$(2)(4	TO	8)	=	"45678"

Remember:

In	a	string	array,	all	the	strings	have	the	same,	fixed	length.	The	DIM	statement
has	an	extra	number	(the	last	one)	to	specify	this	length.	When	you	write	down	a
subscripted	variable	for	a	string	array,	you	can	put	in	an	extra	number,	or	a	slicer,
to	correspond	with	the	extra	number	in	the	DIM	statement.	You	can	have	string
arrays	with	no	dimensions.	Type

DIM	a$(10)

and	you	will	find	that	a$	behaves	just	like	a	string	variable,	except	that	it	always
has	length	10,	and	assignment	to	it	is	always	Procrustean.

Exercises

1.	 Use	READ	 and	DATA	 statements	 to	 set	up	an	array
m$	of	twelve	strings	in	which	m$(n)	is	the	name	of
the	 nth	 month.	 (Hint:	 the	 DIM	 statement	 will	 be
DIM	m$(12,9).	 Test	 it	 by	 printing	 out	 all	 the
m$(n)	(use	a	loop).	

Chapter	13	

Type

PRINT	"now	is	the	month	of	";m$(5);"ing";"	when	merry	lads	are	playing"

What	can	you	do	about	all	those	spaces?

	Chapter	11

<">	<=">	">	">	=">

Chapter	13:	Conditions

Summary

AND,	OR,	NOT

We	saw	in	Chapter	3	how	an	IF	statement	takes	the	form

IF	condition	THEN	.	.	.

The	 conditions	 there	 were	 the	 relations	 (=,	 <,	 >,	 <=,	 >=	 and	 <>),	 which
compare	 two	 numbers	 or	 two	 strings.	You	 can	 also	 combine	 several	 of	 these,
using	the	logical	operations,	AND,	OR	and	NOT.

One	 relation	AND	 another	 relation	 is	 true	whenever	 both	 relations	 are	 true,	 so
you	could	have	a	line	like:

IF	a$="yes"	AND	x>0	THEN	

PRINT	x

in	which	x	only	gets	printed	 if	a$="yes"	and	x>0.	The	BASIC	here	 is	 so
close	to	English	that	it	hardly	seems	worth	spelling	out	the	details.	As	in	English,
you	can	join	lots	of	relations	together	with	AND,	and	then	the	whole	lot	is	true	if
all	the	individual	relations	are.

One	relation	OR	another	is	true	whenever	at	least	one	of	the	two	relations	is	true.
(Remember	that	it	is	still	true	if	both	the	relations	are	true;	this	is	something	that
English	doesn't	always	imply.)

The	 NOT	 relationship	 turns	 things	 upside	 down.	 The	 NOT	 relation	 is	 true
whenever	the	relation	is	false,	and	false	whenever	it	is	true!

Logical	expressions	can	be	made	with	relations	and	AND,	OR	and	NOT,	just	as
numerical	expressions	can	be	made	with	numbers	and	+,	-	and	so	on;	you	can

even	put	them	in	brackets	if	necessary.	They	have	priorities	in	the	same	way	as
the	usual	operations	+,	-,	*,	/	and	↑	do:	OR	has	the	lowest	priority,	then	AND,
then	NOT,	then	the	relations,	and	the	usual	operations.

NOT	is	really	a	function,	with	an	argument	and	a	result,	but	its	priority	is	much
lower	than	that	of	other	functions.	Therefore	its	argument	does	not	need	brackets
unless	 it	 contains	AND	 or	OR	 (or	 both).	NOT	a=b	means	 the	 same	 as	NOT
(a=b)	(and	the	same	as	a<>b,	of	course).

<>	 is	the	negation	of	=	 in	the	sense	that	it	 is	true	if,	and	only	if,	=	 is	false.	In
other	words,

a<>b	is	the	same	as	NOT	a=b	
and	also	
NOT	a<>b	is	the	same	as	a=b

Persuade	 yourself	 that	>=	 and	<=	 are	 the	 negations	 of	<	 and	>	 respectively:
thus	you	can	always	get	rid	of	NOT	from	in	front	of	a	relation	by	changing	the
relation.

Also,

NOT	(a	first	logical	expression	AND	a	second)	
is	the	same	as	
NOT	(the	first)	OR	NOT	(the	second)

and

NOT	(a	first	logical	expression	OR	a	second)	
is	the	same	as	
NOT	(the	first)	AND	NOT	(the	second).

Using	 this	 you	 can	work	NOTs	 through	 brackets	 until	 eventually	 they	 are	 all
applied	to	relations,	and	then	you	can	get	rid	of	them.	Logically	speaking,	NOT
is	 unnecessary,	 although	 you	 might	 still	 find	 that	 using	 it	 makes	 a	 program
clearer.

The	 following	 section	 is	 quite	 complicated,	 and	 can	 be	 skipped	 by	 the	 faint-
hearted!

Try

PRINT	1=2,	1<>2

which	you	might	expect	to	give	a	syntax	error.	In	fact,	as	far	as	the	computer	is
concerned,	 there	 is	 no	 such	 thing	 as	 a	 logical	 value:	 instead	 it	 uses	 ordinary
numbers,	subject	to	a	few	rules.

1.	 =,	<,	>,	<=,	>=	and	<>	all	give	numeric	results:	1	for	true,	and	0	for	false.
Thus	the	PRINT	command	above	printed	0	for	'1=2',	which	is	false,	and	1
for	'1<>2',	which	is	true.

2.	 In	
IF	condition	THEN	.	.	.	
the	condition	can	be	actually	any	numeric	expression.	If	its	value	is	0,	then
it	counts	as	false,	and	any	other	value	(including	the	value	of	1	that	a	true
relation	 gives)	 counts	 as	 true.	 Thus	 the	IF	 statement	 means	 exactly	 the
same	as	
IF	condition	<>	0	THEN	.	.	.

3.	 AND,	OR	and	NOT	are	also	number-valued	operations.	
x	AND	y	has	the	value	x	if	y	is	true	(non-zero),	or	0	(false)	if	y	is	false
(zero).	
x	OR	y	has	 the	value	1	(true),	 if	y	 is	 true	(non-zero),	or	x,	 if	y	 is	 false
(zero).	
NOT	x	has	 the	value	0	 (false),	 if	x	 is	 true	 (non-zero),	or	1	 (true),	 if	x	 is
false	(zero).

4.	 (Notice	that	'true'	means	'non-zero'	when	we're	checking	a	given	value,	but
it	means	'1'	when	we're	producing	a	new	one.)

Read	through	the	chapter	again	in	the	light	of	this	revelation,	making	sure	that	it
all	works.

In	the	expressions	x	AND	y,	x	OR	y	and	NOT	x,	x	and	y	will	usually	take
the	values	 0	 and	1	 for	 false	 and	 true.	Work	out	 the	 ten	different	 combinations

(four	for	AND,	four	for	OR	and	two	for	NOT)	and	check	that	they	do	what	the
chapter	leads	you	to	expect	them	to	do.

Try	this	program:

10	INPUT	a

20	INPUT	b

30	PRINT	(a	AND	a>=b)+(b	AND	a<b)

40	GO	TO	10

Each	time	it	prints	the	larger	of	the	two	numbers	a	and	b.	Convince	yourself	that
you	can	think	of	x	AND	y	as	meaning	x	 if	y	 (else	 the	result	 is	0)	and	of	x
OR	y	as	meaning	x	unless	y	(in	which	case	the	result	is	1).

An	expression	using	AND	or	OR	like	this	is	called	a	conditional	expression.	An
example	using	OR	could	be

LET	total	price=price	less	tax*(1.15	OR	v$="zero	rated")

Notice	how	AND	tends	to	go	with	addition	(because	its	default	value	is	0),	and
OR	tends	to	go	with	multiplication	(because	its	default	value	is	1).

You	can	also	make	string	valued	conditional	expressions,	but	only	using	AND.

x$	AND	y	has	the	value	x$	if	y	is	non-zero,	or	""	if	y	is	zero,	so	it	means
x$	if	y	(else	the	empty	string).

Try	this	program,	which	inputs	two	strings	and	puts	them	in	alphabetical	order.

10	INPUT	"type	in	two	strings"'a$,b$

20	IF	a$>b$	THEN	

			LET	c$=a$:	

			LET	a$=b$:	

			LET	b$=c$

30	PRINT	a$;"	";("<"	AND	a$<b$)+("="	AND	a$=b$);"	";b$

Chapter	14	

40	GO	TO	10

Exercise

1.	 BASIC	can	sometimes	work	along	different	 lines	 from	English.	Consider,
for	instance,	the	English	clause	 'If	a	doesn't	equal	b	or	c'.	How	would	you
write	 this	 in	BASIC?	The	answer	 is	not	IF	a<>b	OR	c	 nor	 is	 it	IF
a<>b	OR	a<>c.

	Chapter	12

Chapter	14:	The	character	set

Summary

CODE,	CHR$,	POKE,	PEEK,	USR,	BIN

The	 letters,	 digits,	 punctuation	marks	 and	 so	 on	 that	 can	 appear	 in	 strings	 are
called	 characters,	 and	 they	make	up	 the	 alphabet,	 or	 character	 set,	 that	BASin
uses.	 Most	 of	 these	 characters	 are	 single	 symbols,	 but	 there	 are	 some	 more,
called	 tokens,	 that	 represent	whole	words,	such	as	PRINT,	STOP,	<>	and	so
on.

There	are	256	characters,	and	each	one	has	a	code	between	0	and	255.	There	is	a
complete	list	of	them	in	Appendix	A.	To	convert	between	codes	and	characters,
there	are	two	functions,	CODE	and	CHR$.

CODE	is	applied	to	a	string,	and	gives	the	code	of	the	first	character	in	the	string
(or	0	if	the	string	is	empty).

CHR$	is	applied	to	a	number,	and	gives	the	single	character	string	whose	code	is
that	number.

This	program	prints	out	the	entire	character	set:

10	FOR	a=32	TO	255:	

			PRINT	CHR$	a;:	

			NEXT	a

At	the	top	you	can	see	a	space,	15	symbols	and	punctuation	marks,	the	ten	digits,
seven	more	symbols,	the	capital	letters,	six	more	symbols,	the	lower	case	letters
and	five	more	symbols.	These	are	all	(except	£	and	©)	taken	from	a	widely-used
set	 of	 characters	 known	 as	ASCII	 (standing	 for	American	Standard	Codes	 for
Information	Interchange);	ASCII	also	assigns	numeric	codes	to	these	characters,
and	these	are	the	codes	that	BASin	uses.

The	 rest	 of	 the	 characters	 are	 not	 part	 of	 ASCII,	 and	 are	 peculiar	 to	 the	 ZX

Spectrum.	 First	 amongst	 them	 are	 a	 space	 and	 15	 patterns	 of	 black	 and	white
blobs.	 These	 are	 called	 the	 graphics	 symbols	 and	 can	 be	 used	 for	 drawing
pictures.	You	can	enter	 these	 from	 the	keyboard,	using	what	 is	called	graphics
mode.	If	you	press	the	graphics	mode	key	(Num	Lock,	Scroll	Lock,	or	Alt	Gr	-
depending	on	your	settings)	 then	the	keys	for	 the	digits	1	 to	8	will	start	giving
the	graphics	 symbols:	 on	 their	 own	 they	give	 the	 symbols	 drawn	on	 the	 keys;
and	with	either	shift	pressed	they	give	the	same	symbol	but	inverted,	i.e.	black
becomes	white,	and	vice	versa.

Regardless	of	shifts,	digit	9	takes	you	out	of	graphics	mode.

Here	are	the	sixteen	graphics	symbols:

After	the	graphics	symbols,	you	will	see	what	appears	to	be	another	copy	of	the
alphabet	 from	 A	 to	 U.	 These	 are	 characters	 that	 you	 can	 redefine	 yourself,
although	when	the	machine	is	first	switched	on	they	are	set	as	letters	-	they	are
called	user-defined	graphics.	You	can	type	these	in	from	the	keyboard	by	going
into	graphics	mode,	and	then	using	the	letter	keys	from	A	to	U.

BASin	provides	a	Graphic	Editor	that	allows	you	to	redefine	characters	visually.
If,	however,	you	want	 to	define	a	new	character	 in	code,	follow	this	recipe	-	 it
defines	a	character	to	show	pi.

1.	 Work	 out	 what	 the	 character	 looks	 like.	 Each
character	 has	 an	 8×8	 square	 of	 dots,	 each	 of	 which
can	show	either	the	paper	colour	or	the	ink	colour	(see
the	 introductory	 booklet).	 You'd	 draw	 a	 diagram
something	 like	 this,	 with	 black	 squares	 for	 the	 ink
colour:	

	

We've	left	a	1	square	margin	round	the	edge	because
the	 other	 letters	 all	 have	 one	 (except	 for	 lower	 case
letters	with	tails,	where	the	tail	goes	right	down	to	the
bottom).	
	

2.	 Work	 out	which	 user-defined	 graphic	 is	 to	 show	π	 -
let's	 say	 the	 one	 corresponding	 to	 P,	 so	 that	 if	 you
press	P	in	graphics	mode	you	get	π.	
	

3.	 Store	 the	new	pattern.	Each	user-defined	graphic	has
its	pattern	stored	as	eight	numbers,	one	for	each	row.
You	 can	 write	 each	 of	 these	 numbers	 as	 BIN
followed	by	eight	0's	or	1's	-	0	for	paper,	1	for	ink	-	so

that	the	eight	numbers	for	our	π	character	are

BIN	00000000

BIN	00000000

BIN	00000010

BIN	00111100

BIN	01010100

BIN	00010100

BIN	00010100

BIN	00000000

(If	you	know	about	binary	numbers,	then	it	should	help	you	to	know	that	BIN	is
used	to	write	a	number	in	binary	instead	of	the	usual	decimal.)

These	eight	numbers	are	stored	in	memory,	in	eight	places,	each	of	which	has	an
address.	The	address	of	the	first	byte,	or	group	of	eight	digits,	is	USR	"P"	(P
because	that	is	what	we	chose	in	(ii)),	that	of	the	second	is	USR	"P"+1,	and
so	on	up	to	the	eighth,	which	has	address	USR	"P"+7.

USR	here	is	a	function	to	convert	a	string	argument	into	the	address	of	the	first

byte	in	memory	for	the	corresponding	user-defined	graphic.	The	string	argument
must	be	a	single	character	which	can	be	either	the	user-defined	graphic	itself	or
the	corresponding	letter	(in	upper	or	lower	case).	There	is	another	use	for	USR,
when	its	argument	is	a	number,	which	will	be	dealt	with	in	Chapter	26.

Even	if	you	don't	understand	this,	the	following	program	will	do	it	for	you:

10	FOR	n=0	TO	7

20	INPUT	row:	

			POKE	USR	"P"+n,row

30	NEXT	n

It	will	stop	for	INPUT	data	eight	times	to	allow	you	to	type	in	the	eight	BIN
numbers	above	-	type	them	in	the	right	order,	starting	with	the	top	row.

The	POKE	statement	stores	a	number	directly	in	a	memory	location,	bypassing
the	mechanisms	normally	used	by	the	BASIC.	The	opposite	of	POKE	is	PEEK,
and	this	allows	us	to	look	at	the	contents	of	a	memory	location	although	it	does
not	actually	alter	the	contents	of	that	location.	They	will	be	dealt	with	properly
in	Chapter	24.

After	the	user-defined	graphics	come	the	tokens.

You	will	have	noticed	that	we	have	not	printed	out	the	first	32	characters,	with
codes	 0	 to	 31.	 These	 are	 control	 characters.	 They	 don't	 produce	 anything
printable,	but	have	some	less	tangible	effect	on	the	display,	or	they	are	used	for
controlling	something	other	than	the	display	and	the	computer	prints	?	to	show
that	it	doesn't	understand	them.	They	are	described	more	fully	in	Appendix	A.

Three	 that	 the	 display	 uses	 are	 those	 with	 codes	 6,	 8	 and	 13;	 on	 the	 whole,
CHR$	8	is	the	only	one	you	are	likely	to	find	useful.

CHR$	6	prints	spaces	in	exactly	the	same	way	as	a	comma	does	in	a	PRINT
statement;	for	instance

PRINT	1;	CHR$	6;2

does	the	same	as

PRINT	1,2

Obviously	this	is	not	a	very	clear	way	of	using	it.	A	more	subtle	way	is	to	say

LET	a$="1"+CHR$	6+"2"

PRINT	a$

CHR$	8	is	'backspace':	it	moves	the	print	position	back	one	place	-	try

PRINT	"1234";	CHR$	8;"5"

which	prints	up	1235.

CHR$	13	 is	 'newline':	 it	moves	 the	print	position	on	 to	 the	beginning	of	 the
next	line.

The	display	also	uses	those	with	codes	16	to	23;	these	are	explained	in	Chapters
15	and	16.	All	the	control	characters	are	listed	in	Appendix	A.

Using	 the	 codes	 for	 the	 characters	we	 can	 extend	 the	 concept	 of	 'alphabetical
ordering'	to	cover	strings	containing	any	characters,	not	just	letters.	If	instead	of
thinking	in	terms	of	the	usual	alphabet	of	26	letters	we	use	the	extended	alphabet
of	256	characters,	in	the	same	order	as	their	codes,	then	the	principle	is	exactly
the	 same.	 For	 instance,	 these	 strings	 are	 in	 their	 Spectrum	 alphabetical	 order.
(Notice	the	rather	odd	feature	that	lower	case	letters	come	after	all	the	capitals:
so	"a"	comes	after	"Z";	also,	spaces	matter.)

CHR$	3+"ZOOLOGICAL	GARDENS"

CHR$	8+"AARDVARK	HUNTING"

"			AAAARGH!"

"(Parenthetical	remark)"

"100"

"129.95	inc.	VAT"

"AASVOGEL"

"Aardvark"

"PRINT"

"Zoo"

"[interpolation]"

"aardvark"

"aasvogel"

"zoo"

"zoology"

Here	is	the	rule	for	finding	out	which	order	two	strings	come	in.	First,	compare
the	first	characters.	If	they	are	different,	then	one	of	them	has	its	code	less	than
the	other,	and	the	string	it	came	from	is	the	earlier	(lesser)	of	the	two	strings.	If
they	are	the	same,	then	go	on	to	compare	the	next	characters.	If	in	this	process
one	 of	 the	 strings	 runs	 out	 before	 the	 other,	 then	 that	 string	 is	 the	 earlier,
otherwise	they	must	be	equal.

The	 relations	 =,	 <,	 >,	 <=,	 >=	 and	 <>	 are	 used	 for	 strings	 as	 well	 as	 for
numbers:	<	means	'comes	before'	and	>	means	'comes	after',	so	that

"AA	man"<"AARDVARK"

"AARDVARK">"AA	man"

are	both	true.

<=	and	>=	work	the	same	way	as	they	do	for	numbers,	so	that

"The	same	string"<="The	same	string"

is	true,	but

"The	same	string"<"The	same	string"

is	false.

Experiment	on	all	this	using	the	program	here,	which	inputs	two	strings	and	puts
them	in	order.

10	INPUT	"Type	in	two	strings:",	a$,	b$

20	IF	a$>b$	THEN	

			LET	c$=a$:	

			LET	a$=b$:	

			LET	b$=c$

30	PRINT	a$;"	";

40	IF	a$<b$	THEN	

			PRINT	"<";:	

			GO	TO	60

50	PRINT	"="

60	PRINT	"	";b$

70	GO	TO	10

Note	how	we	have	to	introduce	c$	in	line	20	when	we	swap	over	a$	and	b$.

LET	a$=b$:	

LET	b$=a$

would	not	have	the	desired	effect.

This	program	sets	up	user-defined	graphics	to	show	chess	pieces:	P	for	pawn,	R
for	rook,	N	for	knight,	B	for	bishop,	K	for	king,	and	Q	for	queen.

		5	LET	b=BIN	01111100:	

				LET	c=BIN	00111000:	

				LET	d=BIN	00010000

	10	FOR	n=1	TO	6:	

				READ	p$:	

				REM	6	pieces

	20	FOR	f=0	TO	7:	

				REM	read	piece	into	8	bytes

	30	READ	a:	

				POKE	USR	p$+f,a

	40	NEXT	f

	50	NEXT	n

100	REM	bishop

110	DATA	"b",0,d,	BIN	00101000,BIN	01000100

120	DATA	BIN	01101100,c,b,0

130	REM	king

140	DATA	"k",0,d,c,d

150	DATA	c,	BIN	01000100,c,0

160	REM	rook

170	DATA	"r",0,	BIN	01010100,b,c

180	DATA	c,b,b,0

190	REM	queen

200	DATA	"q",0,	BIN	01010100,	BIN	00101000,d

210	DATA	BIN	01101100,b,b,0

220	REM	pawn

230	DATA	"p",0,0,d,c

240	DATA	c,d,b,0

250	REM	knight

260	DATA	"n",0,d,c,	BIN	01111000

270	DATA	BIN	00011000,c,b,0

Note	that	0	can	be	used	instead	of	BIN	00000000.

When	you	have	run	the	program,	look	at	the	pieces	by	going	into	graphics	mode.

Exercises

1.	 Imagine	the	space	for	one	symbol	divided	up	into	four
quarters	 like	a	Battenburg	cake.	Then	 if	each	quarter
can	 be	 either	 black	 or	white,	 there	 are	 2×2×2×2=16
possibilities.	Find	them	all	in	the	character	set.	
	

2.	 Run	this	program:

10	INPUT	a

20	PRINT	CHR$	a;

30	GO	TO	10

Chapter	15	

If	you	experiment	with	it,	you'll	find	that	CHR$	a	is
rounded	to	 the	nearest	whole	number;	and	 if	a	 is	not
in	 the	 range	 0	 to	 255	 then	 the	 program	 stops	 with
error	report:

B	integer	out	of	range

3.	 Which	of	these	two	is	the	lesser?

"EVIL"

"evil"

4.	 Work	out	how	to	modify	 the	program	to	set	up	user-
defined	 graphics	 so	 that	 it	 uses	 READ	 and	 DATA
statements	instead	of	the	INPUT	statement.

	Chapter	13

Chapter	15:	More	about	PRINT	and	INPUT

Summary

CLS	PRINT	items:	nothing	at	all	
Expressions	 (numeric	 or	 string	 type):	 TAB	 numeric	 expression,	 AT	 numeric
expression,	numeric	expression	
PRINT	separators:	,	;	',	INPUT	items:	variables	(numeric	or	string	type)	
LINE	string	variable,	Any	PRINT	item	not	beginning	with	a	letter.	(Tokens	are
not	considered	as	beginning	with	a	letter.)	
Scrolling,	SCREEN$

You	have	already	seen	PRINT	used	quite	a	lot,	so	you	will	have	a	rough	idea	of
how	it	 is	used.	Expressions	whose	values	are	printed	are	called	PRINT	 items,
and	 they	 are	 separated	 by	 commas	 or	 semicolons,	 which	 are	 called	 PRINT
separators.	 A	 PRINT	 item	 can	 also	 be	 nothing	 at	 all,	 which	 is	 a	 way	 of
explaining	what	happens	when	you	use	two	commas	in	a	row.

There	are	two	more	kinds	of	PRINT	items,	which	are	used	to	tell	the	computer
not	what,	but	where	to	print.	For	example	PRINT	AT	11,16;"*"	prints	a
star	in	the	middle	of	the	screen.

AT	line,column

moves	the	PRINT	position	(the	place	where	the	next	item	is	to	be	printed)	to	the
line	 and	 column	 specified.	 Lines	 are	 numbered	 from	 0	 (at	 the	 top)	 to	 21,	 and
columns	from	0	(on	the	left)	to	31.

SCREEN$	 is	 the	 reverse	 function	 to	PRINT	AT,	 and	 will	 tell	 you	 (within
limits)	what	 character	 is	 at	 a	particular	position	on	 the	 screen.	 It	uses	 line	and
column	numbers	in	the	same	way	as	PRINT	AT,	but	enclosed	in	brackets:	for
instance

PRINT	SCREEN$	(11,16)

will	retrieve	the	star	you	printed	in	the	paragraph	above.

Characters	 taken	 from	 tokens	 print	 normally,	 as	 single	 characters,	 and	 spaces
return	 as	 spaces.	 Lines	 drawn	 by	 PLOT,	 DRAW	 or	 CIRCLE,	 user-defined
characters	and	graphics	characters	return	as	a	null	(empty)	string,	however.	The
same	applies	if	OVER	has	been	used	to	create	a	composite	character.

TAB	column

prints	 enough	 spaces	 to	move	 the	PRINT	 position	 to	 the	 column	 specified.	 It
stays	on	 the	 same	 line,	or,	 if	 this	would	 involve	backspacing,	moves	on	 to	 the
next	 one.	 Note	 that	 the	 computer	 reduces	 the	 column	 number	 'modulo	 32'	 (it
divides	by	32	and	 takes	 the	 remainder);	 so	TAB	33	means	 the	same	as	TAB
1.

As	an	example,

PRINT	TAB	30;1;TAB	12;"Contents";	AT	3,1;"CHAPTER";TAB	24;"page"

is	how	you	might	print	out	the	heading	of	a	contents	page	on	page	1	of	a	book.

Try	running	this:

10	FOR	n=8	TO	23

20	PRINT	TAB	8*n;n;

30	NEXT	n

This	shows	what	is	meant	by	the	TAB	numbers	being	reduced	modulo	32.	For	a
more	elegant	example,	change	the	8	in	line	20	to	a	6.

Some	small	points:

1.	 These	new	items	are	best	terminated	with	semicolons,
as	 we	 have	 done	 above.	 You	 can	 use	 commas	 (or
nothing,	 at	 the	 end	of	 the	 statement),	 but	 this	means

that	after	having	carefully	set	up	the	PRINT	position
you	 immediately	 move	 it	 on	 again:	 not	 usually
terribly	useful.

2.	 You	cannot	print	on	the	bottom	two	lines	(22	and	23)
on	 the	 screen	 because	 they	 are	 reserved	 for
commands,	 INPUT	 data,	 reports	 and	 so	 on.
References	to	'the	bottom	line'	usually	mean	line	21.

3.	 You	 can	 use	 AT	 to	 put	 the	 PRINT	 position	 even
where	there	is	already	something	printed;	the	old	stuff
will	be	obliterated	when	you	print	more.

Another	statement	connected	with	PRINT	is	CLS.	This	clears	the	whole	screen,
something	that	is	also	done	by	CLEAR	and	RUN.

When	 the	printing	 reaches	 the	bottom	of	 the	 screen,	 it	 starts	 to	 scroll	upwards
rather	like	a	typewriter.	You	can	see	this	if	you	do

CLS:	

FOR	n=1	TO	30:	

PRINT	n:	

NEXT	n

and	then	do

PRINT	99

a	few	times.

If	the	computer	is	printing	out	reams	and	reams	of	stuff,	then	it	takes	great	care
to	make	sure	that	nothing	is	scrolled	off	the	top	of	the	screen	until	you	have	had
a	chance	to	look	at	it	properly.	You	can	see	this	happening	if	you	type

CLS:	

FOR	n=1	TO	100:	

PRINT	n:	

NEXT	n

When	it	has	printed	a	screen	full,	it	will	stop,	writing	scroll?	at	the	bottom
of	 the	screen.	You	can	now	inspect	 the	 first	22	numbers	at	your	 leisure.	When
you	have	finished	with	them,	press	y	(for	'yes')	and	the	computer	will	give	you
another	screen	full	of	numbers.	Actually,	any	key	will	make	the	computer	carry
on	except	N	(for	'no'),	Space	or	Esc.	These	will	make	the	computer	stop	running
the	program	with	a	report	D	BREAK	-	CONT	repeats.

The	INPUT	 statement	 can	 do	much	more	 than	we	 have	 told	 you	 so	 far.	You
have	already	seen	INPUT	statements	like

INPUT	"How	old	are	you?",	age

in	which	the	computer	prints	the	caption	How	old	are	you?	at	the	bottom
of	the	screen,	and	then	you	have	to	type	in	your	age.

In	fact,	an	INPUT	statement	is	made	up	of	items	and	separators	in	exactly	the
same	way	as	a	PRINT	statement	is,	so	How	old	are	you?	and	age	are
both	INPUT	items.	INPUT	items	are	generally	the	same	as	PRINT	items,	but
there	are	some	very	important	differences.

First,	an	obvious	extra	INPUT	item	is	the	variable	whose	value	you	are	to	type
in	age	in	our	example	above.	The	rule	 is	 that	 if	an	INPUT	 item	begins	with	a
letter,	it	must	be	a	variable	whose	value	is	to	be	input.

Second,	this	would	seem	to	mean	that	you	can't	print	out	the	values	of	variables
as	part	of	a	caption;	however,	you	can	get	round	this	by	putting	brackets	round
the	variable.	Any	expression	that	starts	with	a	letter	must	be	enclosed	in	brackets
if	it	is	to	be	printed	as	part	of	a	caption.

Any	kind	of	PRINT	item	that	is	not	affected	by	these	rules	is	also	an	INPUT
item.	Here	is	an	example	to	illustrate	what's	going	on:

LET	my	age	=	INT	(RND	*	100):

INPUT	("I	am	";my	age;".");"How	old	are	you?",	your	age

my	age	is	contained	in	brackets,	so	its	value	gets	printed	out.	your	age	is
not	contained	in	brackets,	so	you	have	to	type	its	value	in.

Everything	 that	 an	 INPUT	 statement	 writes	 goes	 to	 the	 bottom	 part	 of	 the
screen,	which	acts	somewhat	independently	of	the	top	half.	In	particular,	its	lines
are	numbered	relative	to	the	top	line	of	the	bottom	half,	even	if	this	has	moved
up	the	actual	television	screen	(which	it	does	if	you	type	lots	and	lots	of	INPUT
data).

To	see	how	AT	works	in	INPUT	statements,	try	running	this:

10	INPUT	"This	is	line	1.",a$;	AT	0,0;"This	is	line	0.",a$;

			AT	2,0;"This	is	line	2.",a$;

			AT	1,0;"This	is	still	line	1.",a$

(just	press	Enter	each	time	it	stops.)	When	This	is	line	2.	 is	printed,
the	 lower	part	of	 the	screen	moves	up	 to	make	 room	for	 it;	but	 the	numbering
moves	up	as	well,	so	that	the	lines	of	text	keep	their	same	numbers.

Now	try	this:

10	FOR	n=0	TO	19:	

			PRINT	AT	n,0;n;:	

			NEXT	n

20	INPUT	AT	0,0;a$;	AT	1,0;a$;	AT	2,0;a$;	AT	3,0;a$;	AT	4,0;a$;	AT	5,0;a$;

As	 the	 lower	 part	 of	 the	 screen	 goes	 up	 and	 up,	 the	 upper	 part	 is	 undisturbed
until	the	lower	part	threatens	to	write	on	the	same	line	as	the	PRINT	position.
Then	the	upper	part	starts	scrolling	up	to	avoid	this.

Another	 refinement	 to	 the	INPUT	 statement	 that	we	haven't	 seen	yet	 is	called
LINE	 input	 and	 is	 a	 different	 way	 of	 inputting	 string	 variables.	 If	 you	write
LINE	before	the	name	of	a	string	variable	to	be	input,	as	in

INPUT	LINE	a$

then	the	computer	will	not	give	you	the	string	quotes	that	it	normally	does	for	a
string	variable,	although	it	will	pretend	to	itself	that	they	are	there.	So	if	you	type
in

cat

as	the	INPUT	data,	a$	will	be	given	the	value	cat.	Because	the	string	quotes
do	not	appear	on	the	string,	you	cannot	delete	them	and	type	in	a	different	sort	of
string	expression	for	the	INPUT	data.	Remember	that	you	cannot	use	LINE	for
numeric	variables.

The	control	characters	CHR$	22	and	CHR$	23	have	effects	 rather	 like	AT
and	TAB.	 They	 are	 rather	 odd	 as	 control	 characters,	 because	whenever	 one	 is
sent	to	the	television	to	be	printed,	it	must	be	followed	by	two	more	characters
that	do	not	have	 their	usual	effect:	 they	are	 treated	as	numbers	(their	codes)	 to
specify	 the	 line	 and	 column	 (for	AT)	 or	 the	 tab	 position	 (for	TAB).	 You	will
almost	always	find	it	easier	to	use	AT	and	TAB	in	the	usual	way	rather	than	the
control	 characters,	 but	 they	 might	 be	 useful	 in	 some	 circumstances.	 The	 AT
control	 character	 is	CHR$	22.	 The	 first	 character	 after	 it	 specifies	 the	 line
number	and	the	second	the	column	number,	sothat

PRINT	CHR$	22+CHR$	1+CHR$	c;

has	exactly	the	same	effect	as

PRINT	AT	1,c;

This	 is	 so	 even	 if	 CHR$	 1	 or	 CHR$	 c	 would	 normally	 have	 a	 different
meaning	(for	instance	if	c=13);	the	CHR$	22	before	them	overrides	that.

The	TAB	control	character	is	CHR$	23	and	the	two	characters	after	it	are	used
to	give	a	number	between	0	and	65535	specifying	the	number	you	would	have	in
a	TAB	item:

PRINT	CHR$	23+CHR$	a+CHR$	b;

has	the	same	effect	as

PRINT	TAB	a+256*b;

You	can	use	POKE	to	stop	the	computer	asking	you	scroll?	by	doing

POKE	23692,255

every	 so	 often.	 After	 this	 it	 will	 scroll	 up	 255	 times	 before	 stopping	 with
scroll?.	As	an	example,	try

10	FOR	n=0	TO	10000

20	PRINT	n:	

			POKE	23692,255

30	NEXT	n

and	watch	everything	whizz	off	the	screen!

Exercises

1.	 Try	 this	 program	 on	 some	 children,	 to	 test	 their
multiplication	tables.

	10	LET	m$="	"

	20	LET	a=INT	(RND*12)+1:

				LET	b=INT	(RND*12)+1

	30	INPUT	(m$);"	What	is	";(a);"*";(b);"?";c

100	IF	c=a-b	THEN	

				LET	m$="Right.":	GO	TO	20

110	LET	m$="Wrong.	Try	again.":	

				GO	TO	30

If	they	are	perceptive,	they	might	manage	to	work	out
that	they	do	not	have	to	do	the	calculation	themselves.
For	 instance,	 if	 the	 computer	 asks	 them	 to	 type	 the
answer	to	2*3,	all	they	have	to	type	in	is	2*3.	

One	way	of	getting	round	this	 is	 to	make	them	input
strings	 instead	 of	 numbers.	Replace	c	 in	 line	 30	 by
c$,	and	in	line	100	by	VAL	c$,	and	insert	a	line

40	IF	c$	<>	STR$	VAL	c$	THEN	

			LET	m$="Type	it	properly,	as	a	number,":	

			GO	TO	30

That	will	fool	them.	After	a	few	more	days,	however,
one	of	them	may	discover	that	they	can	get	round	this
by	rubbing	out	the	string	quotes	and	typing	in	STR$
(2*3).	 To	 stop	 up	 this	 loophole,	 you	 can	 replace
c$	in	line	30	by	LINE	c$.

Chapter	16	
	Chapter	14

Chapter	16:	Colours

Summary

INK,	PAPER,	FLASH,	BRIGHT,	INVERSE,	OVER,	BORDER

Run	this	program:

	10	FOR	m=4	TO	1:	

				BRIGHT	m

	20	FOR	n=1	TO	14

	30	FOR	c=4	TO	7

	40	PAPER	c:	

				PRINT	"				";:	

				REM	4	coloured	spaces

	50	NEXT	c:	

				NEXT	n:	

				NEXT	m

	60	FOR	m=0	TO	1:	

				BRIGHT	m:	

				PAPER	7

	70	FOR	c=0	TO	3

	80	INK	c:	

				PRINT	c;"				";

	90	NEXT	c:	

				PAPER	0

100	FOR	c=4	TO	7

110	INK	c:	

				PRINT	c;"				";

120	NEXT	c:	

				NEXT	m

130	PAPER	7:	

				INK	0:	

				BRIGHT	0

This	shows	the	eight	colours	(including	white	and	black)	and	the	two	levels	of
brightness	that	BASin	can	produce.	Here	is	a	list	of	them	for	reference.

0 -	black

1 -	blue

2 -	red

3 -	purple,	or	magenta

4 -	green

5 -	pale	blue,	technically	called	cyan

6 -	yellow

7 -	white

On	a	black	and	white	television,	these	numbers	are	in	order	of	brightness.

To	use	these	colours	properly,	you	need	to	understand	a	bit	about	how	the	picture
is	arranged.

The	picture	is	divided	up	into	768	(24	lines	of	32)	positions	where	characters	can
be	printed,	and	each	character	is	printed	as	an	8×8	square	of	dots	like	that	below
for	a.	This	should	remind	you	of	the	user-defined	graphics	in	Chapter	14,	where
we	had	0s	for	the	white	dots	and	1s	for	the	black	dots.

The	 character	 position	 also	 has	 associated	 with	 it	 two	 colours:	 the	 ink,	 or
foreground	colour,	which	is	the	colour	for	the	black	dots	in	our	square,	and	the
paper,	or	background	colour,	which	is	used	for	the	white	dots.	To	start	off	with,
every	 position	 has	 black	 ink	 and	 white	 paper	 so	 writing	 appears	 as	 black	 on
white.

The	 character	 position	 also	 has	 a	 brightness	 (normal	 or	 extra	 bright)	 and
something	to	say	whether	it	flashes	or	not	-	flashing	is	done	by	swapping	the	ink
and	paper	colours.	This	can	all	be	coded	 into	numbers,	 so	a	character	position
then	has

1.	 an	8×8	square	of	0s	and	1	s	to	define	the	shape	of	the
character,	with	0	for	paper	and	1	for	ink,

2.	 ink	 and	 paper	 colours,	 each	 coded	 into	 a	 number
between	0	and	7,

3.	 a	brightness	-	0	for	normal,	1	for	extra	bright	and
4.	 a	flash	number	-	0	for	steady,	1	for	flashing.

Note	that	since	the	ink	and	paper	colours	cover	a	whole	character	position,	you
cannot	 possibly	 have	more	 than	 two	 colours	 in	 a	 given	 block	 of	 64	 dots.	 The
same	goes	for	the	brightness	and	flash	number:	they	refer	to	the	whole	character
position,	not	individual	dots.	The	colours,	brightness	and	flash	number	at	a	given
position	are	called	attributes.

When	 you	 print	 something	 on	 the	 screen,	 you	 change	 the	 dot	 pattern	 at	 that
position;	 it	 is	 less	obvious,	but	 still	 true,	 that	you	also	 change	 the	 attributes	 at
that	 position.	 To	 start	 off	 with	 you	 do	 not	 notice	 this	 because	 everything	 is
printed	with	black	ink	on	white	paper	(and	normal	brightness	and	no	flashing),
but	you	can	vary	this	with	the	INK,	PAPER,	BRIGHT	and	FLASH	statements.
Try

PAPER	5

and	then	print	a	few	things:	they	will	all	appear	on	cyan	paper,	because	as	they
are	printed	the	paper	colours	at	the	positions	they	occupy	are	set	to	cyan	(which
has	code	5).

The	others	work	the	same	way,	so	after

PAPER	number	between	0	and	7	
INK	number	between	0	and	7	
BRIGHT	0	or	1	(Think	of	0	as	off	and	1	as	on)	
or	
FLASH	0	or	1

any	printing	will	set	 the	corresponding	attribute	at	all	 the	character	positions	 it
uses.	Try	some	of	these	out.	You	should	now	be	able	to	see	how	the	program	at
the	beginning	worked	 (remember	 that	a	 space	 is	a	character	 that	has	INK	 and
PAPER	the	same	colour).

There	 are	 some	more	 numbers	 you	 can	 use	 in	 these	 statements	 that	 have	 less
direct	effects.

8	can	be	used	in	all	four	statements,	and	means	'transparent'	in	the	sense	that	the
old	attribute	shows	through.	Suppose,	for	instance,	that	you	do

PAPER	8

No	character	position	will	ever	have	its	paper	colour	set	to	8	because	there	is	no
such	colour;	what	happens	is	that	when	a	position	is	printed	on,	its	paper	colour
is	left	the	same	as	it	was	before.	INK	8,	BRIGHT	8	and	FLASH	8	work	the
same	way	for	the	other	attributes.

9	can	be	used	only	with	PAPER	and	INK,	and	means	'contrast'.	The	colour	(ink
or	paper)	that	you	use	it	with	is	made	to	contrast	with	the	other	by	being	made
white	if	the	other	is	a	dark	colour	(black,	blue,	red	or	magenta),	and	black	if	the
other	is	a	light	colour	(green,	cyan,	yellow	or	white).

Try	this	by	doing

INK	9:	

FOR	c=0	TO	7:	

PAPER	c:	

PRINT	c:	

NEXT	c

A	more	impressive	display	of	its	power	is	to	run	the	program	at	the	beginning	to
make	coloured	stripes,	and	then	doing

INK	9:	

PAPER	8:	

PRINT	AT	0,8;:	

FOR	n=1	TO	1080:	

PRINT	n;:	

NEXT	n

The	ink	colour	here	is	always	made	to	contrast	with	the	old	paper	colour	at	each
position.

Colour	 television	 relies	on	 the	 rather	curious	 fact	 that	 the	human	eye	can	only
really	 see	 three	 colours	 -	 the	 primary	 colours,	 blue,	 red	 and	 green.	 The	 other
colours	 are	 mixtures	 of	 these.	 For	 instance,	 magenta	 is	 made	 by	mixing	 blue

with	red	-	which	is	why	its	code,	3,	is	the	sum	of	the	codes	for	blue	and	red.

To	 see	 how	 all	 eight	 colours	 fit	 together,	 imagine	 three	 rectangular	 spotlights,
coloured	blue,	red	and	green,	shining	at	not	quite	 the	same	place	on	a	piece	of
white	paper	in	the	dark.	Where	they	overlap	you	will	see	mixtures	of	colours,	as
shown	by	this	program	(note	 that	 ink	spaces	are	obtained	by	using	either	Shift
with	8	when	in	graphics	mode):

		10	BORDER	0:	

					PAPER	0:	

					INK	7:	

					CLS

		20	FOR	a=1	TO	6

		30	PRINT	TAB	6;	INK	1;	"nnnnnnnnnnnnnnnnnn":	

					REM	18	ink	squares

		40	NEXT	a

		50	LET	dataline=20

		60	GO	SUB	1000

		70	LET	dataline=210

		80	GO	SUB	1000

		90	STOP

	200	DATA	2,3,7,5,4

	210	DATA	2,2,6,4,4

1000	FOR	a=1	TO	6

1010	RESTORE	dataline

1020	FOR	b=1	TO	5

1030	READ	c:	

					PRINT	INK	c;"nnnnnn";:	

					REM	6	ink	squares

1040	NEXT	b:	

					PRINT:	

					NEXT	a

1050	RETURN

There	is	a	function	called	ATTR	that	finds	out	what	the	attributes	are	at	a	given
position	on	the	screen.	It	is	a	fairly	complicated	function,	so	it	has	been	relegated
to	the	end	of	this	chapter.

There	 are	 two	more	 statements,	INVERSE	 and	OVER,	which	 control	 not	 the
attributes,	but	the	dot	pattern	that	is	printed	on	the	screen.	They	use	the	numbers
0	for	off	and	1	for	on	in	the	same	way	as	FLASH	and	BRIGHT	do,	but	those
are	the	only	possibilities.	If	you	do	INVERSE	1,	then	the	dot	patterns	printed
will	be	 the	 inverse	of	 their	usual	form:	paper	dots	will	be	replaced	by	ink	dots
and	vice	versa.	Thus	a	would	be	printed	as

If	(as	at	switch-on)	we	have	black	ink	and	white	paper,	then	this	a	will	appear	as
white	 on	 black	 -	 but	we	 still	 have	 black	 ink	 and	white	 paper	 at	 that	 character
position.	It	is	the	dots	that	have	changed.

The	statement

OVER	1

sets	 into	 action	 a	 particular	 sort	 of	 overprinting.	Normally	when	 something	 is
written	into	a	character	position	it	completely	obliterates	what	was	there	before;
but	now	the	new	character	will	simply	be	added	in	on	top	of	the	old	one	(but	see
Exercise	1).	This	can	be	particularly	useful	for	writing	composite	characters,	like
letters	with	accents	on	them,	as	in	this	program	to	print	out	German	letters	-	an
'o'	with	an	umlaut	above	it.	(Do	NEW	first.)

10	OVER	1

20	FOR	n=1	TO	32

30	PRINT	"o";	CHR$	8;"""";

40	NEXT	n

(notice	the	control	character	CHR$	8	which	backs	up	one	space.)

There	is	another	way	of	using	INK,	PAPER	and	so	on	which	you	will	probably
find	more	useful	than	having	them	as	statements.	You	can	put	them	as	items	in	a
PRINT	 statement	 (followed	by	;),	and	 they	 then	do	exactly	 the	same	as	 they
would	have	done	if	 they	had	been	used	as	statements	on	their	own,	except	that
their	effect	is	only	temporary:	it	lasts	as	far	as	the	end	of	the	PRINT	statement
that	contains	them.	Thus	if	you	type

PRINT	PAPER	6;"x";:	

PRINT	"y"

then	only	the	x	will	be	on	yellow.

INK	and	the	rest	when	used	as	statements	do	not	affect	the	colours	of	the	lower
part	of	 the	screen,	where	commands	and	INPUT	data	are	 typed	 in.	The	 lower
part	of	the	screen	uses	the	colour	of	the	border	for	its	paper	colour	and	code	9	for
contrast	 for	 its	 INK	 colour,	 has	 flashing	 off,	 and	 everything	 at	 normal
brightness.	You	can	change	the	border	colour	to	any	of	the	eight	normal	colours

(not	8	or	9)	using	the	statement

BORDER	colour

When	you	type	in	INPUT	data,	it	follows	this	rule	of	using	contrasting	ink	on
border	coloured	paper;	but	you	can	change	the	colour	of	the	captions	written	by
the	 computer	 by	 using	 INK	 and	 PAPER	 (and	 so	 on)	 items	 in	 the	 INPUT
statement,	just	as	you	would	in	a	PRINT	statement.	Their	effect	lasts	either	to
the	 end	 of	 the	 statement,	 or	 until	 some	 INPUT	 data	 is	 typed	 in,	 whichever
comes	first.	Try

INPUT	FLASH	1;	INK	1;"What	is	your	number?";n

There	 is	 one	more	way	 of	 changing	 the	 colours	 by	 using	 control	 characters	 -
rather	like	the	control	characters	for	AT	and	TAB	in	Chapter	15.

CHR$	16	corresponds	to	INK	
CHR$	17	corresponds	to	PAPER	
CHR$	18	corresponds	to	FLASH	
CHR$	19	corresponds	to	BRIGHT	
CHR$	20	corresponds	to	INVERSE	
CHR$	21	corresponds	to	OVER

These	are	each	followed	by	one	character	that	shows	a	colour	by	its	code:	so	(for
instance)

PRINT	CHR$	16+CHR$	9;	.	.	.

has	the	same	effect	as

PRINT	INK	9;	.	.	.

On	the	whole,	you	would	not	bother	to	use	these	control	characters	because	you
might	just	as	well	use	the	colour	items.	However,	one	very	useful	thing	you	can
do	with	them	is	put	them	in	programs:	this	results	in	different	parts	being	listed
in	different	colours,	to	set	them	apart	from	each	other	or	even	just	to	look	pretty.

You	must	put	them	in	after	the	line	number,	or	they	will	just	get	lost.

To	get	these	into	the	program,	you	have	to	enter	them	from	the	keyboard.	Note
that	control	characters	tend	to	be	less	useful	in	BASin	than	on	a	real	Spectrum,
because	BASin	already	uses	colour	for	syntax	highlighting.

The	ATTR	function	has	the	form

ATTR	(line,	column)

Its	two	arguments	are	the	line	and	column	numbers	that	you	would	use	in	an	AT
item,	 and	 its	 result	 is	 a	 number	 that	 shows	 the	 colours	 and	 so	 on	 at	 the
corresponding	 character	 position	 on	 the	 television	 screen.	You	 can	 use	 this	 as
freely	in	expressions	as	you	can	any	other	function.

The	number	that	is	the	result	is	the	sum	of	four	other	numbers	as	follows:

128	if	the	character	position	is	flashing,	0	if	it	is	steady	
64	if	the	character	position	is	bright,	0	if	it	is	normal	
8	*	the	code	for	the	paper	colour	
the	code	for	the	ink	colour

For	instance,	if	the	character	position	is	flashing	and	normal	with	yellow	paper
and	 blue	 ink	 then	 the	 four	 numbers	 that	 we	 have	 to	 add	 together	 are	 128,	 0,
8*6=48	and	1,	making	177	altogether.	Test	this	with

PRINT	AT	0,0;	FLASH	1;	PAPER	6;	INK	1;"	";	ATTR	(0,0)

Exercises

1.	 Try

PRINT	"B";	CHR$	8;	OVER	1;"/";

Where	the	/	has	cut	through	the	B,	it	has	left	a	white

dot.	This	is	the	way	overprinting	works:	two	papers	or
two	inks	give	a	paper,	one	of	each	gives	an	ink.	This
has	the	interesting	property	that	if	you	overprint	with
the	 same	 thing	 twice	 you	 get	 back	what	 you	 started
off	with.	If	you	now	type

PRINT	CHR$	8;	OVER	1;"/"

why	do	you	recover	an	unblemished	B?	
	

2.	 Type

BORDER	0:	

PAPER	0:	

INK	0:	

CLS

and	 notice	 that	 the	 '0	 OK'	 report	 is	 printed	 in	 a
contrasting	colour	 to	make	 it	 readable.	 Isn't	 it	 just	as
well	that	INK	and	PAPER	don't	affect	the	lower	part
of	the	screen?	
	

3.	 Run	this	program:

10	POKE	22527+RND*704,	RND*127

20	GO	TO	10

Never	mind	how	this	works;	it	is	changing	the	colours
of	 squares	 on	 the	 television	 screen	 and	 the	 RNDs
should	 ensure	 that	 this	 happens	 randomly.	 The
diagonal	 stripes	 that	 you	 eventually	 see	 are	 a
manifestation	 of	 the	 hidden	 pattern	 in	 RND	 -	 the
pattern	 that	 makes	 it	 pseudorandom	 instead	 of	 truly
random.

4.	 Type	 or	 LOAD	 in	 the	 chess	 piece	 characters	 in
Chapter	 14,	 and	 then	 type	 in	 this	 program	 which
draws	a	diagram	of	a	chess	position	using	them.	

		5	REM	draw	blank	board

	10	LET	bb=1:	

				LET	bw=2:	

				REM	red	and	blue	for	board

	15	PAPER	bw:	

				INK	bb:	

				CLS

	20	PLOT	79,128:	

				REM	border

	30	DRAW	65,0:	

				DRAW	0,-65

	40	DRAW	-65,0:	

				DRAW	0,65

	50	PAPER	bb

	60	REM	board

	70	FOR	n=0	TO	3:	

				FOR	m=0	TO	3

	80	PRINT	AT	6+2*n,	11+2*m;"	"

	90	PRINT	AT	7+2*n,	10+2*m;"	"

100	NEXT	m:	

				NEXT	n

110	PAPER	8

120	LET	pw=6:	

				LET	pb=5:	

				REM	colours	of	white	and	black	pieces

200	DIM	b$	(8,8):	

				REM	positions	of	pieces

205	REM	set	up	initial	positions

210	LET	b$(1)="rnbqkbnr"

220	LET	b$(2)="pppppppp"

230	LET	b$(7)="PPPPPPPP"

240	LET	b$(8)="RNBQKBNR"

Chapter	17	

300	REM	display	board

310	FOR	n=1	TO	8:	

				FOR	m=1	TO	8

320	LET	bc=CODE	b$(n,m):	

				INK	pw

325	IF	bc=CODE	"	"	THEN	

				GO	TO	350:	

				REM	space

330	IF	bc>CODE	"Z"	THEN	

				INK	pb:	

				LET	bc=bc-32:	

				REM	lower	case	for	black

340	LET	bc=bc+79:	

				REM	convert	to	graphics

350	PRINT	AT	5+n,	9+m;	CHR$	bc

360	NEXT	m:	

				NEXT	n

400	PAPER	7:	

				INK	0

	Chapter	15

Chapter	17:	Graphics

Summary

PLOT,	DRAW,	CIRCLE,	POINT,	pixels

In	 this	chapter	we	shall	 see	how	 to	draw	pictures	with	BASin.	The	part	of	 the
screen	you	can	use	has	22	lines	and	32	columns,	making	22	×	32	=	704	character
positions.	 As	 you	 may	 remember	 from	 Chapter	 16,	 each	 of	 these	 character
positions	is	made	of	an	8	by	8	square	of	dots,	and	these	are	called	pixels	(picture
elements).

A	pixel	is	specified	by	two	numbers,	its	coordinates.	The	first,	its	x	coordinate,
says	how	far	it	is	across	from	the	extreme	left-hand	column.	(Remember,	x	is	a
cross.)	The	second,	its	y	coordinate,	says	how	far	it	is	up	from	the	bottom	(wise
up).	These	coordinates	are	usually	written	as	a	pair	in	brackets,	so	(0,0),	(255,0),
(0,175)	and	(255,175)	are	the	bottom	left-,	bottom	right-,	top	left-	and	top	right-
hand	corners.

The	statement

PLOT	x	coordinate,	y	coordinate

inks	in	the	pixel	with	these	coordinates,	so	this	measles	program

10	PLOT	INT	(RND*256),	INT(RND*176):	

			INPUT	a$:	

			GO	TO	10

plots	a	random	point	each	time	you	press	Enter.

Here	is	a	rather	more	interesting	program.	It	plots	a	graph	of	the	function	SIN	(a
sine	wave)	for	values	between	0	and	2π.

10	FOR	n=0	TO	255

20	PLOT	n,88+80*SlN	(n/128*PI)

30	NEXT	n

This	next	program	plots	a	graph	of	SQR	(part	of	a	parabola)	between	0	and	4:

10	FOR	n=0	TO	255

20	PLOT	n,80*SQR	(n/64)

30	NEXT	n

Notice	that	pixel	coordinates	are	rather	different	from	the	line	and	column	in	an
AT	item.	You	may	find	the	diagram	in	Chapter	15	useful	when	working	out	pixel
coordinates	and	line	and	column	numbers.

To	help	you	with	your	pictures,	the	computer	will	draw	straight	lines,	circles	and
parts	of	circles	for	you,	using	the	DRAW	and	CIRCLE	statements.

The	statement	DRAW	to	draw	a	straight	line	takes	the	form

DRAW	x,y

The	 starting	 place	 of	 the	 line	 is	 the	 pixel	 where	 the	 last	 PLOT,	 DRAW	 or
CIRCLE	 statement	 left	 off	 (this	 is	 called	 the	PLOT	 position;	RUN,	CLEAR,
CLS	and	NEW	reset	it	to	the	bottom	left	hand	corner,	at	(0,0)),	and	the	finishing
place	is	x	pixels	to	the	right	of	that	and	y	pixels	up.	The	DRAW	statement	on	its
own	determines	the	length	and	direction	of	the	line,	but	not	its	starting	point.

Experiment	with	a	few	PLOT	and	DRAW	commands;	for	instance

PLOT	0,100:	

DRAW	80,-35

PLOT	90,150:	

DRAW	80,-35

Notice	that	the	numbers	in	a	DRAW	or	PLOT	statement	can	be	negative.

You	can	 also	plot	 and	draw	 in	 colour,	 although	you	have	 to	bear	 in	mind	 that
colours	always	cover	the	whole	of	a	character	position	and	cannot	be	specified
for	individual	pixels.	When	a	pixel	is	plotted,	it	is	set	to	show	the	full	ink	colour,
and	 the	 whole	 of	 the	 character	 position	 containing	 it	 is	 given	 the	 current	 ink
colour.	This	program	demonstrates	this:

10	BORDER	0:	

			PAPER	0:	

			INK	7:	

			CLS:	

			REM	black	out	screen

20	LET	x1=0:	

			LET	y1=0:	

			REM	start	of	line

30	LET	c=1:	

			REM	for	ink	colour,	starting	blue

40	LET	x2=INT	(RND*256):	

			LET	y2=INT	(RND*176):	

			REM	random	finish	of	line

50	DRAW	INK	c;x2-x1,y2-y1

60	LET	x1=x2:	

			LET	y1=y2:	

			REM	next	line	starts	where	last	one	finished

70	LET	c=c+1:	

			IF	c=8	THEN	

			LET	c=1:	

			REM	new	colour

80	GO	TO	40

The	lines	seem	to	get	broader	as	the	program	goes	on,	and	this	is	because	a	line
changes	the	colours	of	all	the	inked	in	pixels	of	all	the	character	positions	that	it
passes	 through.	Note	 that	 you	 can	 embed	PAPER,	INK,	FLASH,	 BRIGHT,
INVERSE	and	OVER	 items	in	a	PLOT	or	DRAW	 statement	 just	as	you	could
with	PRINT	and	INPUT.	They	go	between	the	key	word	and	the	coordinates,
and	are	terminated	by	either	semicolons	or	commas.

An	extra	frill	with	DRAW	is	that	you	can	use	it	to	draw	parts	of	circles	instead	of
straight	lines,	by	using	an	extra	number	to	specify	an	angle	to	be	turned	through:
the	form	is

DRAW	x,y,a

x	and	y	are	used	to	specify	the	finishing	point	of	the	line	just	as	before	and	a	is
the	number	of	radians	that	it	must	turn	through	as	it	goes	-	if	a	is	positive	it	turns
to	the	left,	while	if	a	is	a	negative	it	turns	to	the	right.	Another	way	of	seeing	a	is
as	showing	the	fraction	of	a	complete	circle	that	will	be	drawn:	a	complete	circle
is	2π	radians,	so	if	a	=	π	it	will	draw	a	semicircle,	if	a	=	0.5	×	π	a	quarter	of	a
circle,	and	so	on.

For	instance	suppose	a	=	π.	Then	whatever	values	x	and	y	take,	a	semicircle	will
be	drawn.	Run

10	PLOT	100,100:	

			DRAW	50,50,	PI

which	will	draw	this:

	

finish	at	(150,150)

	start	at	(100,100)

The	drawing	starts	off	in	a	south-easterly	direction,	but	by	the	time	it	stops	it	is
going	 north-west:	 in	 between	 it	 has	 turned	 round	 through	 180	 degrees,	 or	 π
radians	(the	value	of	a).

Run	the	program	several	 times,	with	PI	 replaced	by	various	other	expressions
e.g.	-PI,	PI/2,	3*PI/2,	PI/4,	1,	0.

The	 last	 statement	 in	 this	 chapter	 is	 the	CIRCLE	 statement,	 which	 draws	 an
entire	circle.	You	specify	the	coordinates	of	the	centre	and	the	radius	of	the	circle
using

CIRCLE	x	coordinate,	y	coordinate,	radius

Just	as	with	PLOT	and	DRAW,	you	can	put	the	various	sorts	of	colour	items	in	at
the	beginning	of	a	CIRCLE	statement.

The	POINT	function	tells	you	whether	a	pixel	is	ink	or	paper	colour.	It	has	two
arguments,	the	coordinates	of	the	pixel	(and	they	must	be	enclosed	in	brackets);
and	its	result	is	0	if	the	pixel	is	paper	colour,	1	if	it	is	ink	colour.	Try

CLS:	

PRINT	POINT	(0,0):	

PLOT	0,0:	

PRINT	POINT	(0,0)

Type

PAPER	7:	

INK	0

and	 let	 us	 investigate	 how	 INVERSE	 and	 OVER	 work	 inside	 a	 PLOT
statement.	 These	 two	 affect	 just	 the	 relevant	 pixel,	 and	 not	 the	 rest	 of	 the

character	positions.	They	are	normally	off	(0)	in	a	PLOT	statement,	so	you	only
need	to	mention	them	to	turn	them	on	(1).

Here	is	a	list	of	the	possibilities	for	reference:

PLOT	-	this	is	the	usual	form.	It	plots	an	ink	dot,	i.e.	sets	the	pixel	to	show	the
ink	colour.

PLOT	INVERSE	1;	-	this	plots	a	dot	of	ink	eradicator,	i.e.	it	sets	the	pixel	to
show	the	paper	colour.

PLOT	OVER	1;	-	this	changes	the	pixel	over	from	whatever	it	was	before:	so
if	it	was	ink	colour	it	becomes	paper	colour,	and	vice	versa.

PLOT	INVERSE	1;	OVER	1;	 -	 this	 leaves	 the	 pixel	 exactly	 as	 it	was
before;	 but	 note	 that	 it	 also	 changes	 the	PLOT	 position,	 so	 you	might	 use	 it
simply	to	do	that.

As	another	example	of	using	the	OVER	statement	fill	the	screen	up	with	writing
using	black	on	white,	and	then	type

PLOT	0,0:	DRAW	OVER	1;255,175

This	will	draw	a	fairly	decent	line,	even	though	it	has	gaps	in	it	wherever	it	hits
some	writing.	Now	do	 exactly	 the	 same	 command	 again.	The	 line	will	 vanish
without	leaving	any	traces	whatsoever.	This	is	the	great	advantage	of	OVER	1.
If	you	had	drawn	the	line	using

PLOT	0,0:	

DRAW	255,175

and	erased	it	using

PLOT	0,0:	

DRAW	INVERSE	1;255,175

then	you	would	also	have	erased	some	of	the	writing.

Now	try

PLOT	0,0:	

DRAW	OVER	1;250,175

and	try	to	undraw	it	by

DRAW	OVER	1;-250,-175

This	doesn't	quite	work,	because	the	pixels	the	line	uses	on	the	way	back	are	not
quite	the	same	as	the	ones	that	it	used	on	the	way	down.	You	must	undraw	a	line
in	exactly	the	same	direction	as	you	drew	it.

One	 way	 to	 get	 unusual	 colours	 is	 to	 speckle	 two	 normal	 ones	 together	 in	 a
single	square,	using	a	user-defined	graphic.	Run	this	program:

1000	FOR	n=0	TO	6	STEP	2

1010	POKE	USR	"a"+n,	BIN	01010101:	

					POKE	USR	"a"+n+1,	BIN	10101010

1020	NEXT	n

which	gives	 the	user-defined	graphic	corresponding	 to	a	 chessboard	pattern.	 If
you	print	this	character	(graphics	mode,	then	A)	in	red	ink	on	yellow	paper,	you
will	find	it	gives	a	reasonably	acceptable	orange.

Exercises

1.	 Play	 about	 with	 PAPER,	 INK,	 FLASH	 and
BRIGHT	items	in	a	PLOT	statement.	These	are	the
parts	 that	 affect	 the	 whole	 of	 the	 character	 position
containing	 the	 pixel.	 Normally	 it	 is	 as	 though	 the
PLOT	statement	had	started	off

PLOT	PAPER	8;	FLASH	8;	BRIGHT	8;	.	.	.

and	 only	 the	 ink	 colour	 of	 a	 character	 position	 is
altered	when	something	 is	plotted	 there,	but	you	can
change	this	if	you	want.	

Be	 especially	 careful	 when	 using	 colours	 with
INVERSE	1,	 because	 this	 sets	 the	 pixel	 to	 show
the	paper	colour,	but	changes	 the	 ink	colour	and	 this
might	not	be	what	you	expect.	
	

2.	 Try	to	draw	circles	using	SIN	and	COS	(if	you	have
read	Chapter	10,	try	to	work	out	how).	Run	this:

10	FOR	n=0	TO	2*PI	STEP	PI	/180

20	PLOT	100+80*COS	n,87+80*SIN	n

30	NEXT	n

40	CIRCLE	150,87,80

You	 can	 see	 that	 the	 CIRCLE	 statement	 is	 much
quicker,	even	if	less	accurate.

3.	 Try

CIRCLE	100,87,80:	

DRAW	50,50

You	 can	 see	 from	 this	 that	 the	CIRCLE	 statement
leaves	 the	PLOT	 position	 at	 a	 rather	 indeterminate
place	-	it	is	always	somewhere	about	half	way	up	the
right	hand	side	of	the	circle.	You	will	usually	need	to
follow	 the	 CIRCLE	 statement	 with	 a	 PLOT
statement	before	you	do	any	more	drawing.

4.	 Here	 is	 a	 program	 to	 draw	 the	 graph	 of	 almost	 any
function.	It	first	asks	you	for	a	number	n;	it	will	plot
the	 values	 from	 -n	 to	 +n.	 It	 then	 asks	 you	 for	 the
function	itself,	input	as	a	string.	The	string	should	be
an	expression	using	x	as	the	argument	of	the	function.

	10	PLOT	0,87:	

				DRAW	255,0

	20	PLOT	127,0:	

				DRAW	0,175

	30	INPUT	s,	e$

	35	LET	t=0

	40	FOR	f=0	TO	255

	50	LET	x=(f-128)*s/128:	

				LET	y=VAL	e$

	60	IF	ABS	y>87	THEN	

Chapter	18	

				LET	t=0:	

				GO	TO	100

	70	IF	NOT	t	THEN	

				PLOT	f,y+88:	

				LET	t=1:	

				GO	TO	100

	80	DRAW	1,y-old	y

100	LET	old	y=INT	(y+.5)

110	NEXT	f

Run	it	and,	as	an	example,	type	in	10	for	the	number	n
and	10*TAN	x	for	the	function.	It	will	plot	a	graph
of	tan	x	as	x	ranges	from	-10	to	+10.

	Chapter	16

Chapter	18:	Motion

Summary

PAUSE,	INKEY$,	PEEK

Quite	often	you	will	want	to	make	the	program	take	a	specified	length	of	time,
and	for	this	you	will	find	the	PAUSE	statement	useful.

PAUSE	n

stops	 computing	 and	 displays	 the	 picture	 for	 n	 frames	 of	 the	 television	 (at	 50
frames	per	 second	 in	Europe	or	 60	 in	America).	 n	 can	be	up	 to	65535,	which
gives	you	just	under	22	minutes;	if	n=0	then	it	means	'PAUSE	for	ever'.

A	pause	can	always	be	cut	 short	by	pressing	a	key	 (note	 that	Esc	will	cause	a
break	as	well).	You	have	to	press	the	key	down	after	the	pause	has	started.

This	program	works	the	second	hand	of	a	clock:

	10	REM	First	we	draw	the	clock	face

	20	FOR	n=1	TO	12

	30	PRINT	AT	10-10*COS	(n/6*PI),16+10*SIN	(n/6*PI);n

	40	NEXT	n

	50	REM	Now	we	start	the	clock

	60	FOR	t=0	TO	200000:	

				REM	t	is	the	time	in	seconds

	70	LET	a=t/30*PI:	

				REM	a	is	the	angle	of	the	second	hand	in	radians

	80	LET	sx=80*SIN	a:	

				LET	sy=80*COS	a

200	PLOT	128,88:	

				DRAW	OVER	1;sx,sy:	

				REM	draw	second	hand

210	PAUSE	42

220	PLOT	128,88:	

				DRAW	OVER	1;sx,sy:	

				REM	erase	second	hand

400	NEXT	t

This	clock	will	run	down	after	about	55.5	hours	because	of	line	60,	but	you	can
easily	make	 it	 run	 longer.	Note	how	 the	 timing	 is	 controlled	by	 line	210.	You
might	expect	PAUSE	50	to	make	it	tick	one	a	second,	but	the	computing	takes
a	bit	 of	 time	 as	well	 and	has	 to	 be	 allowed	 for.	This	 is	 best	 done	by	 trial	 and
error,	timing	the	computer	clock	against	a	real	one,	and	adjusting	line	210	until
they	agree.	(You	can't	do	this	very	accurately;	an	adjustment	of	one	frame	in	one
second	is	2%	or	half	an	hour	in	a	day.)

There	is	a	much	more	accurate	way	of	measuring	time.	This	uses	the	contents	of
certain	memory	locations.	The	data	stored	is	retrieved	by	using	PEEK.	Chapter
25	explains	what	we're	looking	at	in	detail.	The	expression	used	is

(65536*PEEK	23674+256*PEEK	23673+PEEK	23672)/50

This	gives	the	number	of	seconds	since	the	computer	was	turned	on	(up	to	about
3	days	and	21	hours,	when	it	goes	back	to	0).

Here	is	a	revised	clock	program	to	make	use	of	this:

	10	REM	First	we	draw	the	clock	face

	20	FOR	n=1	TO	12

	30	PRINT	AT	10-10*COS	(n/6*PI),16+10*SIN	(n/6*PI);n

	40	NEXT	n

	50	DEF	FN	t()=INT	(65536*PEEK	23674+256*PEEK	23673+PEEK	23672)/50):	

				REM	number	of	seconds	since	start

100	REM	Now	we	start	the	clock

110	LET	t1=FN	t()

120	LET	a=t1/30*PI:	

				REM	a	is	the	angle	of	the	second	hand	in	radians

130	LET	sx=72*SIN	a:	

				LET	sy=72*COS	a

140	PLOT	131,91:	

				DRAW	OVER	1;sx,sy:	

				REM	draw	hand

200	LET	t=FN	t()

210	IF	t<=t1	THEN	

				GO	TO	200:	

				REM	wait	until	time	for	next	hand

220	PLOT	131,91:	

				DRAW	OVER	1;sx,sy:	

				REM	rub	out	old	hand

230	LET	t1=t:	

				GO	TO	120

The	 internal	 clock	 that	 this	method	 uses	 should	 be	 accurate	 to	 about	 .01%	 as
long	as	 the	computer	 is	 just	 running	 its	program,	or	10	seconds	per	day;	but	 it
stops	 temporarily	whenever	you	do	BEEP,	or	a	LOAD	or	SAVE	 operation,	 or
use	the	printer	or	any	of	the	other	extra	pieces	of	equipment	you	can	use	with	the
computer.	All	these	will	make	it	lose	time.

The	numbers	PEEK	23674,	PEEK	23673	 and	PEEK	23672	 are	 held
inside	the	computer	and	used	for	counting	in	50ths	of	a	second.	Each	is	between
0	and	255,	and	they	gradually	 increase	 through	all	 the	numbers	from	0	to	255;
after	255	they	drop	straight	back	to	0.

The	 one	 that	 increases	 most	 often	 is	 PEEK	 23672.	 Every	 1/50	 second	 it
increases	by	1.	When	it	is	at	255,	the	next	increase	takes	it	to	0,	and	at	the	same
time	 it	nudges	PEEK	23673	 up	by	1.	When	 (every	256/50	 seconds)	PEEK
23673	 is	 nudged	 from	255	 to	 0,	 it	 in	 turn	 nudges	PEEK	23674	 up	 by	 1.
This	should	be	enough	to	explain	why	the	expression	above	works.

Now,	consider	carefully:	suppose	our	three	numbers	are	0	(for	PEEK	23674),
255	(for	PEEK	23673)	and	255	(for	PEEK	23672).	This	means	 that	 it	 is
about	21	minutes	after	switch-on	-	our	expression	ought	to	yield

(65536*0+256*255+255)/50	=	1310.7

But	 there	 is	 a	 hidden	 danger.	 The	 next	 time	 there	 is	 a	 1/50	 second	 count,	 the
three	numbers	will	change	to	1,	0	and	0.	Every	so	often,	this	will	happen	when
you	 are	 half	 way	 through	 evaluating	 the	 expression:	 the	 computer	 would
evaluate	PEEK	23674	as	0,	but	then	change	the	other	two	to	0	before	it	can
peek	them.	The	answer	would	then	be

(65536*0+256*0+0)/50	=	0

which	is	hopelessly	wrong.

A	 simple	 rule	 to	 avoid	 this	 problem	 is	 evaluate	 the	 expression	 twice	 in
succession	and	take	the	larger	answer.	If	you	look	carefully	at	the	program	above
you	can	see	that	it	does	this	implicitly.

Here	is	a	trick	to	apply	the	rule.	Define	functions

10	DEF	FN	m(x,y)=(x+y+ABS	(x-y))/2:	

			REM	the	larger	of	x	and	y

20	DEF	FN	u()=(65536*PEEK	23674+256*PEEK	23673+PEEK	23672)/50:	

			REM	time,	may	be	wrong

30	DEF	FN	t()=FN	m(FN	u(),	FN	u()):	

			REM	time,	right

You	can	change	the	three	counter	numbers	so	that	they	give	the	real	time	instead
of	the	time	since	the	computer	was	switched	on.	For	instance,	to	set	the	time	at
10.00am,	you	work	out	that	this	is	10*60*60*50=1800000	 fiftieths	of	a
second,	and	that

1800000=65536*27+256*119+64

To	set	the	three	numbers	to	27,	119	and	64,	you	do

POKE	23674,27:	POKE	23673,119:	POKE	23672,64

In	countries	with	mains	frequencies	of	60	Hertz	these	programs	must	replace	'50'
by	'60'	where	appropriate.

The	function	INKEY$	(which	has	no	argument)	reads	the	keyboard.	If	you	are
pressing	exactly	one	key	(or	a	Shift	key	and	just	one	other	key)	then	the	result	is
the	 character	 that	 that	 key	 normally	 gives;	 otherwise	 the	 result	 is	 the	 empty
string.

Try	this	program,	which	works	like	a	typewriter.

10	IF	INKEY$	<>""	THEN	

			GO	TO	10

20	IF	INKEY$	=""	THEN	

			GO	TO	20

30	PRINT	INKEY$;

40	GO	TO	10

Here	line	10	waits	for	you	to	lift	your	finger	off	the	keyboard	and	line	20	waits
for	you	to	press	a	new	key.

Remember	 that	 unlike	INPUT,	INKEY$	 doesn't	 wait	 for	 you.	 So	 you	 don't
type	Enter,	but	on	 the	other	hand	 if	you	don't	 type	anything	at	all	 then	you've
missed	your	chance.

Exercises

1.	 What	happens	if	you	miss	out	line	10	in	the	typewriter
program?	
	

2.	 Another	 way	 of	 using	 INKEY$	 is	 in	 conjunction
with	 PAUSE,	 as	 in	 this	 alternative	 typewriter
program.

10	PAUSE	0

20	PRINT	INKEY$;

30	GO	TO	10

To	make	 this	 work,	 why	 is	 it	 essential	 that	 a	 pause
should	not	finish	if	it	finds	you	already	pressing	a	key
when	it	starts?

Chapter	19	

3.	 Adapt	the	second	hand	program	so	that	it	also	shows
minute	 and	hour	hands,	 drawing	 them	every	minute.
If	 you're	 feeling	 ambitious,	 arrange	 so	 that	 every
quarter	of	an	hour	it	puts	on	some	kind	of	show	-	you
could	produce	the	Big	Ben	chimes	with	BEEP.	 (See
next	chapter.)	
	

4.	 (For	sadists.)	Try	this:

10	IF	INKEY$	=""	THEN	

			GO	TO	10

20	PRINT	AT	11,14;"OUCH!"

30	IF	INKEY$	<>""	THEN	

			GO	TO	30

40	PRINT	AT	11,14;"					"

50	GO	TO	10

	Chapter	17

Chapter	19:	SOUND

Summary

BEEP,	PLAY

Depending	upon	which	model	you	are	using,	the	Spectrum	had	two	methods	of
generating	sound.	The	original	48k	model	comes	equipped	with	a	 loudspeaker,
which	 is	 driven	 by	 the	BEEP	 command.	 It	 is	 capable	 of	 outputting	 a	 single
channel	of	sound	(i.e,	no	more	than	one	note	at	a	time).

The	128k	Spectrums	have,	 as	well	 as	 the	 loudspeaker,	 a	 sound	chip	called	 the
AY-3-8912.	This	chip	is	capable	of	generating	much	more	complex	sounds,	and
can	 play	 up	 to	 three	 of	 them	 at	 once.	 The	 chip	 is	 driven	 using	 the	 PLAY
command.	Note	that	using	the	PLAY	command	will	indicate	to	BASin	that	you
are	working	on	a	128k	program.	For	information	about	this,	and	limitations	the
128k	BASIC	has,	see	here.

The	BEEP	command

The	loudspeaker	is	sounded	by	using	the	BEEP	statement,

BEEP	duration,	pitch

where,	as	usual,	 'duration'	and	 'pitch'	 represent	any	numerical	expressions.	The
duration	is	given	in	seconds,	and	the	pitch	is	given	in	semitones	above	middle	C
using	negative	numbers	for	notes	below	middle	C.

Here	is	a	diagram	to	show	the	pitch	values	of	all	the	notes	in	one	octave	on	the
piano:

To	get	higher	or	lower	notes,	you	have	to	add	or	subtract	12	for	each	octave	that
you	go	up	or	down.

The	simplest	way	to	compose	a	tune	in	BASin	is	to	use	the	BEEP	Composer,	but
here	are	some	tips	for	creating	a	tune	in	code.

If	 you	 have	 a	 piano	 in	 front	 of	 you	 when	 you	 are	 programming	 a	 tune,	 this
diagram	 will	 probably	 be	 all	 that	 you	 need	 to	 work	 out	 the	 pitch	 values.	 If,
however,	you	are	transcribing	straight	from	some	written	music,	then	we	suggest
that	you	draw	a	diagram	of	 the	stave	with	 the	pitch	value	written	against	each
line	and	space,	taking	the	key	into	account.

For	example,	type:

10	PRINT	"Frere	Gustav"

20	BEEP	1,0:	

			BEEP	1,2:	

			BEEP	.5,3:	

			BEEP	.5,2:	

			BEEP	1,0

30	BEEP	1,0:	

			BEEP	1,2:	

			BEEP	.5,3:	

			BEEP	.5,2:	

			BEEP	1,0

40	BEEP	1,3:	

			BEEP	1,5:	

			BEEP	2,7

50	BEEP	1,3:	

			BEEP	1,5:	

			BEEP	2,7

60	BEEP	.75,7:	

			BEEP	.25,8:	

			BEEP	.5,7:	

			BEEP	.5,5:	

			BEEP	.5,3:	

			BEEP	.5,2:	

			BEEP	1,0

70	BEEP	.75,7:	

			BEEP	.25,8:	

			BEEP	.5,7:	

			BEEP	.5,5:	

			BEEP	.5,3:	

			BEEP	.5,2:	

			BEEP	1,0

80	BEEP	1,0:	

			BEEP	1,-5:	

			BEEP	2,0

90	BEEP	1,0:	

			BEEP	1,-5:	

			BEEP	2,0

When	 you	 run	 this,	 you	 should	 get	 the	 funeral	 march	 from	 Mahler's	 first
symphony,	the	bit	where	the	goblins	bury	the	US	Cavalry	man.

Suppose	 for	 example	 that	 your	 tune	 is	written	 in	 the	 key	 of	C	minor,	 like	 the
Mahler	above.	The	beginning	looks	like	this:

and	you	can	write	in	the	pitch	values	of	the	notes	like	this:

We	have	put	in	two	ledger	lines,	just	for	good	measure.	Note	how	the	E	flat	in

the	key	signature	affects	not	only	the	E	in	the	top	space,	flattening	it	from	16	to
15,	but	also	the	E	on	the	bottom	line,	flattening	it	from	4	to	3.	It	should	now	be
quite	easy	to	find	the	pitch	value	of	any	note	on	the	stave.

If	you	want	to	change	the	key	of	the	piece,	the	best	thing	is	to	set	up	a	variable
key	and	insert	key+	before	each	pitch	value:	thus	the	second	line	becomes

20	BEEP	1,key+0:	

			BEEP	1,key+2:	

			BEEP	.5,key+3:	

			BEEP	.5,key+2:	

			BEEP	1,key+0

Before	 you	 run	 a	 program	 you	must	 give	 key	 the	 appropriate	 value	 -	 0	 for	C
minor,	2	for	D	minor,	12	for	C	minor	an	octave	up,	and	so	on.	You	can	get	the
computer	 in	 tune	 with	 another	 instrument	 by	 adjusting	 key,	 using	 fractional
values.

You	also	have	 to	work	out	 the	durations	of	 all	 the	notes.	Since	 this	 is	 a	 fairly
slow	piece,	we	have	allowed	one	second	for	a	crotchet	and	based	the	rest	on	that,
half	a	second	for	a	quaver	and	so	on.

More	flexible	is	to	set	up	a	variable	crotchet	to	store	the	length	of	a	crotchet	and
specify	the	durations	in	terms	of	this.	Then	line	20	would	become

20	BEEP	crotchet,key+0:	

			BEEP	crotchet,key+2:	

			BEEP	crotchet/2,key+3:	

			BEEP	crotchet/2,key+2:	

			BEEP	crotchet,key+0

(You	will	probably	want	to	give	crotchet	and	key	shorter	names.)

By	giving	crotchet	appropriate	values,	you	can	easily	vary	the	speed	of	the	piece.

Remember	that	because	there	is	only	one	loudspeaker	in	the	computer	you	can
only	play	one	note	at	a	time,	so	you	are	restricted	to	unharmonized	tunes.	If	you

want	any	more	you	must	sing	it	yourself.

Try	 programming	 tunes	 in	 for	 yourself	 -	 start	 off	with	 fairly	 simple	 ones	 like
'Three	Blind	Mice'.	 If	 you	have	neither	piano	nor	written	music,	get	hold	of	 a
very	simple	instrument	like	a	tin	whistle	or	a	recorder,	and	work	the	tunes	out	on
that.	You	could	make	a	chart	showing	the	pitch	value	for	each	note	that	you	can
play	on	this	instrument.

Type:

FOR	n=0	TO	1000:	

BEEP	.5,n:	

NEXT	n

This	 will	 play	 notes	 as	 high	 as	 it	 can,	 and	 then	 stop	 with	 error	 report	 B
Integer	out	of	range.	You	can	print	out	n	to	find	out	how	high	it	did
actually	get.

Try	 the	 same	 thing,	but	going	down	 into	 the	 low	notes.	The	very	 lowest	notes
will	just	sound	like	clicks;	in	fact	the	higher	notes	are	also	made	of	clicks	in	the
same	way,	but	faster,	so	that	the	ear	cannot	distinguish	them.

Only	 the	middle	 range	 of	 notes	 are	 really	 any	 good	 for	music;	 the	 low	 notes
sound	too	much	like	clicks,	and	the	high	notes	are	thin	and	tend	to	warble	a	bit.

Type	in	this	program	line:

10	BEEP	.5,0:	

			BEEP	.5,2:	

			BEEP	.5,4:	

			BEEP	.5,5:	

			BEEP	.5,7:	

			BEEP	.5,9:	

			BEEP	.5,11:	

			BEEP	.5,12:	

			STOP

This	plays	the	scale	of	C	major,	which	uses	all	the	white	notes	on	the	piano	from
middle	C	to	the	next	C	up.	The	way	this	scale	is	tuned	is	exactly	the	same	as	on	a
piano,	 and	 is	 called	 even-tempered	 tuning	 because	 the	 pitch	 interval	 of	 a
semitone	is	the	same	all	the	way	up	the	scale.	A	violinist,	however,	would	play
the	 scale	 very	 slightly	 differently,	 adjusting	 all	 the	 notes	 to	make	 them	 sound
more	pleasing	to	the	ear.	He	can	do	this	just	by	moving	his	fingers	very	slightly
up	or	down	the	string	in	a	way	that	a	pianist	can't.

The	natural	scale,	which	is	what	the	violinist	plays,	comes	out	like	this:

20	BEEP	.5,0:	

			BEEP	.5,2.039:	

			BEEP	.5,3.86:	

			BEEP	.5,4.98:	

			BEEP	.5,7.02:	

			BEEP	.5,8.84:	

			BEEP	.5,10.88:	

			BEEP	.5,12:	

			STOP

You	may	or	may	not	be	able	 to	detect	any	difference	between	these	 two;	some
people	can.	The	first	noticeable	difference	is	that	the	third	note	is	slightly	flatter
in	the	naturally	tempered	scale.	If	you	are	a	real	perfectionist,	you	might	like	to
program	your	 tunes	 to	use	 this	natural	 scale	 instead	of	 the	even-tempered	one.
The	 disadvantage	 is	 that	 although	 it	works	 perfectly	 in	 the	 key	 of	C,	 in	 other
keys	it	works	less	well	-	they	all	have	their	own	natural	scales	-	and	in	some	keys
it	works	 very	 badly	 indeed.	 The	 even-tempered	 scale	 is	 only	 slightly	 off,	 and
works	equally	well	in	all	keys.

This	 is	 less	of	a	problem	on	 the	computer,	of	course,	because	you	can	use	 the
trick	of	adding	on	a	variable	key.

Some	 music	 -	 notably	 Indian	 music	 -	 uses	 intervals	 of	 pitch	 smaller	 than	 a
semitone.	You	can	program	these	into	the	BEEP	statement	without	any	trouble;
for	instance	the	quartertone	above	middle	C	has	a	pitch	value	of	.5.

You	can	make	the	keyboard	beep	instead	of	clicking	by

POKE	23609,255

The	second	number	in	this	determines	the	length	of	the	beep	(try	various	values
between	0	and	255).	When	it	is	0,	the	beep	is	so	short	that	it	sounds	like	a	soft
click.

If	you	are	interested	in	doing	more	with	sound	from	the	Spectrum,	like	hearing
the	sound	 that	BEEP	makes	on	 something	other	 the	 internal	 speaker,	you	will
find	that	the	signal	is	present	on	both	the	'MIC'	and	the	'EAR'	sockets.	It	will	be
at	a	higher	level	on	the	'EAR'	socket,	but	otherwise	they	are	the	same.	You	may
use	this	to	connect	an	earphone	or	a	pair	of	headphones	to	your	Spectrum.	This
will	not	cut	out	the	internal	loudspeaker.	If	you	are	really	keen	to	make	a	lot	of
noise	you	could	connect	 it	 up	 to	 an	amplifier	 -	 the	 'MIC'	 socket	will	 probably
give	about	the	right	level	-	or	you	could	record	the	sound	onto	tape	and	get	the
Spectrum	to	play	along	with	itself.

You	will	not	damage	the	Spectrum	even	if	you	short-circuit	the	 'MIC'	or	 'EAR'
sockets,	so	experiment	to	find	which	gives	the	best	output	for	what	you	want	to
do.

The	PLAY	command

The	 PLAY	 command	 allows	 you	 to	 make	 more	 complex	 pieces	 of	 music.
However,	 it	 is	 a	 128k	 only	 command,	 and	 will	 not	 run	 on	 a	 standard	 48k
Spectrum.	See	the	chapter	on	BASin	and	the	128k	for	more	details	about	this.

In	the	examples	that	follow,	it	is	important	that	you	type	in	the	string	expressions
exactly	 as	 shown	 in	 upper	 case	 and	 lower	 case	 letters,	 ie.	 the	 example	"ga"
should	not	be	typed	in	as	"Ga",	"gA"	or	"GA".

Type	in	this	command	(don't	worry	about	what	it	means	just	yet)...

PLAY	"ga"

Two	notes	were	played	-	the	second	slightly	higher	than	the	first.	The	difference
between	the	notes	is	called	a	tone.	Now	try...

PLAY	"g$a"

Again	there	were	two	notes	played	-	the	first	one	was	the	same	as	the	previous
example,	 but	 there	 was	 less	 of	 a	 jump	 to	 the	 second.	 If	 you	 didn't	 hear	 the
difference,	then	try	the	first	example	followed	by	the	second	again.	The	second
example	has	half	the	difference	between	notes,	and	this	is	called	a	semitone.

When	you're	happy	with	semitones,	try	this...

PLAY	"gD"

This	 sort	 of	 difference	 is	 called	 a	 fifth,	 and	 occurs	 quite	 often	 in	music	 of	 all
types.	With	that	example	ringing	in	your	ears,	type...

PLAY	"gG"

Although	 (hopefully)	you	noticed	 that	 there	was	a	much	bigger	difference	 that
time	than	for	the	fifth,	the	two	notes	somehow	sounded	much	more	similar.	This
is	called	an	octave,	and	is	the	point	at	which	music	starts	to	'repeat	itself'.	Don't
worry	about	that	unduly,	just	remember	what	an	octave	sounds	like.

PLAY	 is	 much	 more	 flexible	 than	BEEP	 -	 it	 can	 play	 up	 to	 three	 voices	 in
harmony	with	all	manner	of	effects,	and	gives	a	much	higher	quality	of	sound.
It's	also	much	easier	 to	use.	For	example,	 to	play	A	above	middle	C	 for	half	a
second,	type	in...

PLAY	"a"

...	and	to	play	the	C	major	scale	(which	needed	a	program	to	itself	before),	use...

PLAY	"cdefgabC"

Notice	that	the	last	C	in	the	example	above	is	in	upper	case.	This	tells	the	PLAY
command	 to	play	 it	 in	an	octave	higher	 than	 the	 lower	case	c.	A	scale,	by	 the
way,	is	the	term	used	for	a	set	of	notes	between	two	Cs.	Why	major?	There	are
two	main	classes	of	scale,	major	and	minor,	and	this	is	just	musical	shorthand	for
describing	the	two	different	sets.	Just	for	interest,	the	C	minor	scale	sounds	like

this...

PLAY	"cdefga$bC"

Preceding	a	note	by	$	drops	it	by	a	semitone	(flattens	it),	and	preceding	a	note	by
#	 raises	 it	 by	 a	 semitone	 (sharpens	 it).	The	PLAY	 command	 spans	 9	 octaves,
and	can	be	told	which	to	use	by	having	the	upper	case	O	followed	by	a	number,
in	the	list	of	notes	that	it	is	given.	Type	in	this	little	program...

10	LET	o$="O5"

20	LET	n$="DECcg"

30	LET	a$=o$+n$

40	PLAY	a$

There	are	a	few	new	things	in	this	program.	Firstly,	PLAY	is	just	as	happy	with	a
string	variable	as	with	a	string	constant.	 In	other	words,	providing	that	a$	has
been	 set	 up	 beforehand,	 PLAY	 a$	 works	 just	 as	 well	 as	 PLAY
"O5DECcg".	 In	 fact,	 using	 variables	 in	 PLAY	 statements	 has	 distinct
advantages,	and	we	shall	be	doing	this	from	now	on.

Notice	 also	 that	 the	 string	a$	 has	 been	 'built	 up'	 by	 combining	 two	 smaller
strings	o$	and	n$.	While	this	doesn't	make	much	difference	at	this	sort	of	level,
PLAY	can	cope	with	strings	many	thousands	of	notes	long,	and	the	only	sensible
way	 of	 creating	 and	 editing	 those	 strings	 from	 BASIC	 is	 to	 combine	 lots	 of
smaller	strings	in	this	way.

Now	run	 the	above	program.	Edit	 line	10	 so	 that	"O5"	 becomes	"O7",	and
run	it	again,	or	if	you	want	to	make	a	big	spaceship,	make	it	"O2".	If	you	don't
specify	an	octave	number	 for	a	particular	string,	 then	BASin	assumes	 that	you
want	 octave	 5.	 Here	 is	 a	 diagram	 of	 the	 notes	 and	 octave	 numbers	 which
correspond	to	the	standard	even-tempered	music	scale.

There	is	a	lot	of	overlap,	so	for	example,	"O3D"	is	the	same	as	"O4d".	This
makes	it	easier	to	write	tunes	without	having	to	change	octave	all	the	time.	Some
of	 the	 notes	 in	 the	 lowest	 octaves	 (0	 and	 1)	 aren't	 very	 accurate	 for	 technical
reasons,	and	so	 the	computer	 just	makes	a	brave	attempt	at	getting	as	close	as
possible.

PLAY	can	also	handle	many	different	lengths	of	note.	Edit	the	program	above	so
that	line	10	is	now...

10	LET	o$="2"

...	 and	 run	 it.	 Then	 alter	 the	 setting	 of	o$	 between	"1"	 and	"9".	 The	 note
length	 can	be	 changed	 anywhere	 in	 a	 string	by	 including	 a	number	between	1
and	 9,	 and	 this	 is	 effective	 for	 all	 subsequent	 notes	 until	 a	 new	 number	 is
encountered.	Each	of	 these	nine	note	 lengths	has	a	specific	musical	name,	and
looks	 different	 when	 written	 down	 in	 musical	 notation.	 The	 following	 table
shows	which	is	which...

Number Note	Name Musical	Symbol

1 Semi-quaver

2 Dotted	semi-quaver

3 Quaver

4 Dotted	quaver

5 Crotchet

6 Dotted	crotchet

7 Minim

8 Dotted	minim

9 Semi-breve

PLAY	can	also	cope	with	triplets,	which	are	three	notes	played	in	the	time	for
two.	Unlike	 simple	 note	 lengths,	 the	 triplet	 number	 only	 applies	 for	 the	 three
notes	immediately	following,	and	then	the	previous	note	length	number	resumes.
The	triplet	numbers	are	as	follows...

Number Note	Name Musical	Symbol

10 Triplet	semi-quaver

11 Triplet	quaver

12 Triplet	crotchet

PLAY	is	quite	happy	about	being	told	to	'shut	up'!	A	timed	period	during	which
no	notes	play	is	called	a	rest,	and	the	"&"	is	used	to	signify	this.	The	length	of
the	rest	 it	produces	is	the	same	as	the	current	note	length.	To	demonstrate,	edit
lines	10	and	20	to...

10	LET	o$="O4"

20	LET	n$="DEC&cg;"

Two	 notes	 played	 together	 without	 a	 break	 are	 called	 tied	 notes,	 which	 are
signified	in	a	PLAY	command	by	an	_	underline,	so	a	crotchet	c	and	a	minim	c
tied	 together	would	 be	"5_7c".	 (The	 second	 value	 is	 then	 used	 as	 the	 note
length	for	all	subsequent	notes,	as	before.)

There	are	2	occasions	when	the	ambiguity	creeps	in.	Say	that	a	piece	of	music
needs	octave	6	and	a	note	length	of	2,	then...

10	LET	o$="O62"

...seems	a	good	bet	 -	but	no!	The	computer	will	 find	 the	O	 and	 try	 to	 read	 the
number	following	it.	When	it	finds	62,	it	will	stop	with	the	report	n	Out	of
range.	 In	cases	 like	 this,	 there	 is	a	 'dummy	note'	called	N	 that	 just	 serves	 to
split	things	up,	so	line	10	should	be...

10	LET	o$="O6N2"

The	 volume	 can	 be	 set	 between	 0	 (minimum)	 and	 15	 (maximum)	 using	"V"
followed	by	a	number.	In	practice,	only	10	to	16	are	likely	to	be	useful,	as	1-9
are	too	soft	unless	the	computer	is	being	used	with	an	amplifier.	As	previously

mentioned,	 BEEP	 is	 louder	 than	 a	 single	 channel	 of	 PLAY,	 but	 if	 all	 three
channels	play	a	note	at	volume	15,	 then	it	should	be	at	 the	same	level	as	a	not
produced	by	BEEP.

Playing	more	than	one	channel	at	the	same	time	is	very	simple;	you	just	separate
lists	of	notes	by	commas.	Try	this	new	program...

10	LET	a$="O4cCcCgGgG"

20	LET	b$="O6CaCe$bd$bD"

30	PLAY	a$,b$

In	general,	 there	 is	no	difference	between	the	three	channels,	and	any	string	of
notes	can	be	put	onto	any	channel.	The	overall	 speed	of	 the	music,	 the	 tempo,
must	 be	 in	 the	 string	 assigned	 to	 channel	 A	 (the	 first	 string	 after	 PLAY),
otherwise	 it	will	 be	 ignored.	To	 set	 tempo	 in	beats	 (crotchets)	 per	minute,	 use
"T"	followed	by	a	number	between	60	and	240.	The	standard	value	is	120,	or
two	crotchets	per	second.	Modify	the	program	above	to...

	5	LET	t$="T120"

10	LET	a$=t$+"O4cCcCgGgG"

20	LET	b$="O6CaCe$bd$bD"

30	PLAY	a$,b$

...and	run	it	several	times,	changing	line	5	for	different	tempos.

A	common	feature	in	music	is	the	repetition	of	a	group	of	notes.	Any	part	of	a
string	can	be	repeated	by	enclosing	it	in	brackets,	so	if	you	change	line	10	to...

10	LET	a$=t$+"O4(cC)(gG)"

PLAY	treats	it	just	the	same	as	the	old	line	10.	If	you	include	a	closing	bracket,
(with	no	matching	opening	bracket)	 then	 the	string	up	 to	 that	point	 is	 repeated
indefinitely.	This	is	useful	for	rhythm	effects	and	basslines.	To	demonstrate,	try
this	(you'll	have	to	use	the	ESC	key	to	stop	the	sound)...

PLAY	"O4N2cdefgfed)"

...and...

PLAY	"O4N2cd(efgf)ed)"

If	you	set	up	an	infinitely	repeating	bassline,	and	then	play	a	melody	with	it,	then
it	would	be	nice	if	the	bassline	stops	when	the	melody	does.	There	is	a	device	to
do	this	-	of	PLAY	comes	across	"H"	(for	Halt)	in	any	of	the	strings	it	is	playing,
then	 it	 stops	 all	 sound	 immediately.	 Run	 the	 following	 program	 (again,	 you'll
have	to	use	ESC	to	stop	it)...

10	LET	a$="cegbdfac"

20	LET	b$="O4cC)"

30	PLAY	a$,b$

Now	modify	line	10	to...

10	LET	a$="cegbdfaCH"

...and	run	it	again.

So	far	we've	only	used	notes	which	start	and	stop	at	one	level	of	volume.	BASin
can	alter	athe	volume	of	a	note	while	 it	 is	playing,	so	 it	can	start	 loud	and	die
away	like	a	piano,	or	rise	and	fall	like	a	dog	growling.	To	turn	these	effects	on,
use	"W"	(for	Waveform)	followed	by	a	number	between	0	and	7,	together	with
"U"	for	each	channel	you	want	to	use	the	effect	on.	Any	channel	with	a	volume
setting	("V")	will	 not	 respond	 to	"U".	This	 table	 shows	graphically	 how	 the
volume	changes	for	each	setting...

0 Single	decay,	then	off.

1 Single	attack,	then	off.

2 Single	decay,	then	hold.

3 Single	attack,	then	hold.

4 Repeated	decay.

5 Repeated	attack.

6 Repeated	attack-decay.

7 Repeated	decay-attack.

This	program	plays	the	same	note	with	each	effect	in	turn,	so	you	can	compare
them	against	the	diagram	above.

10	LET	a$="UX1000W0C&W1C;&W2C;&W3C;&W4C;&W5C;&W6C;&W7C;"

20	PLAY	a$

The	U	turns	on	effects,	and	the	W	selects	which	waveform	to	use.	There's	also	an
"X1000".	The	X	sets	how	long	the	effect	will	last	for	(from	0	to	65535).	If	you
don't	 include	 an	X	 then	BASin	will	 choose	 the	 longest	 value.	Waveforms	 that
settle	 down	 (0	 to	 3	 in	 the	 table	 above)	 after	 the	 initial	 part,	work	 best	with	X
settings	of	about	1000,	whereas	repetetive	effects	(4-7)	are	more	effective	with
short	values	like	300.	Try	varying	the	X	setting	in	the	program	above	to	get	some
idea	of	how	each	works.

The	PLAY	 command	 isn't	 limited	 to	 pure	musical	 notes.	 There	 are	 also	 three
"white	noise"	generators	(white	noise	 is	a	sound	which	is	 like	an	un-tuned	FM
radio	 or	 TV),	 and	 any	 of	 the	 three	 channels	 can	 play	 notes,	white	 noise,	 or	 a
mixture	of	both.	To	select	a	mix	of	noise	and	note,	you	may	use	"M"	followed
by	a	number	between	1	and	63.	You	can	work	out	which	number	to	use	from	the
following	table...

Tone	Channels Noise	Channels

A B C A B C

Number 1 2 4 8 16 32

Write	 down	 the	 numbers	 corresponding	 to	 the	 effects	 you	want,	 and	 then	 add
them	together.	If	you	wanted	A	to	be	noise,	B	to	be	tone,	and	C	to	be	both	tone
and	noise,	then	add	8,	2,	4,	and	32	together	to	get	46	(the	order	of	the	channels	is
the	order	of	the	strings	which	follow	the	PLAY	command).	The	best	effects	can
be	obtained	with	the	A	channel	-	don't	be	afraid	to	experiment.

By	now,	you'll	be	writing	symphonies.	However,	it	can	be	difficult	to	work	out
just	which	part	of	 the	music	a	particular	section	of	string	is	responsible	for.	To
alleviate	 this	 problem,	 your	 music	 string	 may	 include	 'comments'	 enclosed
between	!	exclamation	marks;	for	example...

10	LET	z$=z$+"CDcE3Ge4_6f!	end	of	the	75th	bar	!egeA"

The	PLAY	command	will	simply	'hop	over'	any	comments	in	the	string.

MIDI	programming

The	original	128k	models	of	the	Spectrum	had	the	ability	to	control	an	external
MIDI	 device.	 BASin	 emulates	 this	 by	 allowing	 your	 programs	 to	 drive	 your
MIDI	soundcard.	For	information	about	setting	up	this	feature,	see	the	relevant
options	page.

If	you	have	an	electronic	musical	instrument	with	MIDI,	then	you	can	control	it
using	 PLAY.	 Up	 to	 8	 channels	 of	 music	 can	 be	 sent	 to	 synthesisers,	 drum
machines	 or	 sequencers.	 The	 PLAY	 command	 is	 constructed	 exactly	 as
described	 so	 far	 in	 this	 section,	 except	 that	 each	 string	 should	 include	 a	"Y"
followed	by	a	number	between	1	and	16.	The	number	after	the	Y	controls	which
channel	the	music	data	is	assigned	to.	Up	to	eight	strings	can	be	used;	the	first
three	 strings	 will	 still	 be	 played	 through	 the	 normal	 Spectrum	 output,	 so	 you
might	 want	 to	 turn	 down	 the	 volume.	 You	 can	 also	 send	MIDI	 programming
codes	via	 the	PLAY	command,	using	"Z"	 followed	by	 the	code	number.	Key
velocities	(loudness)	are	calculated	and	sent	at	8	times	the	V	setting	(so	"V6"

will	send	48	as	a	key	velocity).

So,	to	send	a	little	tune	(in	four	part	harmony)	to	a	four-voice	synthesiser	(after
consulting	your	synth's	handbook	to	find	out	how	to	allocate	MIDI	channels	to
different	 voices),	 you	 would	 use	 the	PLAY	 command	 with	 four	 strings,	 each
starting	with	 a	Y	 followed	 by	 a	 number.	 This	 example	 program	 illustrates	 the
PLAY	command	in	some	of	its	full	glory...

10	LET	a$="Y1T100O2(((1CCg$b))((EEbD))((GGDF))))"

20	LET	b$="Y2O5N&&&&C;$bfG)"

30	LET	c$="Y3O4((3C&)C&1CCDD(3$E&)$E&1$E$EEE(3F&)F&1FF$G$G(3G&)G&1GG$EC))"

40	LET	d$="Y4N9&&&&&&&&(9EGF7b5CD))"

50	PLAY	a$,b$,c$,d$

Summary	table

Finally,	here	 is	a	brief	 list	of	 the	parameters	 that	can	be	used	in	 the	string	of	a
PLAY	command,	together	with	any	values	they	may	take...

String Function

a..g,
A..G Specifies	the	pitch	of	the	note	within	the	current	octave	range.

$ Specifies	that	the	note	which	follows	must	be	flattened.

# Specifies	that	the	note	which	follows	must	be	sharpened.

O Specifies	the	octave	number	to	be	used	(followed	by	0	to	8).

1..12 Specifies	the	length	of	notes	to	be	used.

& Specifies	that	a	rest	is	to	be	played.

_ Specifies	that	a	tied	note	is	to	be	played.

N Separates	two	numbers.

V Specifies	the	volume	to	be	used	(followed	by	0	to	15).

W Specifies	the	volume	effect	to	be	used	(followed	by	0	to	7).

U Specifies	that	volume	effects	are	to	be	used	in	the	string.

Chapter	20	

X Specifies	the	duration	of	the	volume	effect	(followed	by	0	to	65535).

T Specifies	the	tempo	of	the	music	(followed	by	60	to	240).

() Specifies	that	the	enclosed	phrase	is	to	be	repeated.

!	! Specifies	that	the	enclosed	text	is	to	be	skipped	over.

H Specifies	that	the	PLAY	command	must	stop.

M Specifies	the	channel(s)	to	be	used	(followed	by	0	to	63).

Y Specifies	that	a	MIDI	channel	is	to	be	used	(followed	by	1	to	16).

Z Specifies	MIDI	programming	code	(followed	by	code	number).

Exercises

1.	 Rewrite	the	Mahler	program	so	that	it	uses	FOR	loops	to	repeat	the	bars.
2.	 Program	the	computer	so	that	it	plays	not	only	the	funeral	march,	but	also

the	rest	of	Mahler's	first	symphony.

	Chapter	18

Chapter	20:	File	storage

Summary

LOAD,	SAVE,	VERIFY,	MERGE

Loading	and	saving	work	differently	in	BASin	than	on	a	real	ZX	Spectrum.	See
Loading	and	saving	files.

It	 is	also	recommended	that	you	read	the	sections	on	LOAD,	SAVE,	VERIFY
and	MERGE.	These	sections	will	acquaint	you	with	how	those	commands	work.

When	you	have	read	them,	then	come	back	here	for	more	information	as	to	the
things	you	can	do	with	these	commands.

Working	with	MERGE

We	have	seen	that	LOAD	deletes	the	old	program	and	variables	in	the	computer
before	 loading	 in	 the	new	ones	from	disk;	 there	 is	another	command,	MERGE,
that	does	not.	MERGE	only	deletes	an	old	program	 line	or	variable	 if	 it	has	 to
because	there	is	a	new	one	with	the	same	line	number	or	name.	Type	in	the	'dice'
program	 in	Chapter	 11	 and	 save	 it	 on	 disk,	 as	 "dice".	Now	 enter	 and	 run	 the
following:

	1	PRINT	1

	2	PRINT	2

10	PRINT	10

20	LET	x=20

and	then	proceed	as	for	the	verification,	but	replacing	VERIFY	"dice"	with

MERGE	"dice"

If	you	list	the	program	you	can	see	that	lines	1	and	2	have	survived,	but	lines	10
and	20	have	been	replaced	by	those	from	the	dice	program.	x	has	also	survived

(try	PRINT	x).

You	 have	 now	 seen	 simple	 forms	 of	 the	 four	 statements	 used	 with	 the	 file
system:

SAVE	stores	the	program	and	variables	in	a	file.

VERIFY	checks	the	program	and	variables	in	a	file	against	those	already	in	the
computer.

LOAD	 clears	 the	computer	of	all	 its	program	and	variables,	 and	 replaces	 them
with	new	ones	read	in	from	a	file.

MERGE	 is	 like	LOAD	 except	 that	 it	 does	not	 clear	out	 an	old	program	 line	or
variable	unless	it	has	to	because	its	line	number	or	name	is	the	same	as	that	as
that	of	a	new	one	from	the	file.

In	each	of	these,	the	keyword	is	followed	by	a	string:	for	SAVE	this	provides	a
name	 for	 the	 program	 on	 disk,	 while	 for	 the	 other	 three	 it	 tells	 the	 computer
which	program	to	load.	There	are	a	couple	of	twists	to	all	this.

You	 can	 provide	 the	 empty	 string	 instead	 of	 a	 filename;	 then	 the	 computer
prompts	you	 to	browse	 for	 a	 file	on	disk.	 (On	a	 real	ZX	Spectrum,	 the	 empty
string	indicates	the	next	file	on	the	cassette	tape	-	regardless	of	its	filename	-	and
cannot	be	used	with	SAVE.)

A	variant	on	SAVE	takes	the	form

SAVE	string	LINE	number

A	program	saved	using	this	is	recorded	in	such	a	way	that	when	it	is	read	back
by	LOAD	 (but	 not	MERGE)	 it	 automatically	 jumps	 to	 the	 line	with	 the	 given
number,	thus	running	itself.

So	far,	the	only	kinds	of	information	we	have	stored	on	disk	have	been	programs
together	with	their	variables.	There	are	two	other	kinds	as	well,	called	arrays	and
bytes.

Arrays	are	dealt	with	slightly	differently:

You	can	save	arrays	on	disk	using	DATA	in	a	SAVE	statement	by

SAVE	string	DATA	arrayname()

String	 is	 the	name	 that	 the	 information	will	have	on	disk	and	works	 in	exactly
the	same	way	as	when	you	save	a	program	or	plain	bytes.

The	 array	name	 specifies	 the	 array	you	want	 to	 save,	 so	 it	 is	 just	 a	 letter	 or	 a
letter	 followed	by	$.	Remember	 the	brackets	afterwards;	you	might	 think	 they
are	logically	unnecessary	but	you	still	have	to	put	them	in	to	make	it	easier	for
the	computer.

Be	 clear	 about	 the	 separate	 roles	 of	 string	 and	 array	 name.	 If	 you	 say	 (for
instance)

SAVE	"Bloggs"	DATA	b()

then	SAVE	takes	the	array	b	from	the	computer	and	stores	it	on	disk	under	the
name	"Bloggs".	When	you	type

VERIFY	"Bloggs"	DATA	b()

the	 computer	 will	 look	 for	 a	 number	 array	 stored	 on	 disk	 under	 the	 name
"Bloggs"	and	check	it	against	the	array	b	in	the	computer.

LOAD	"Bloggs"	DATA	b()

finds	the	array	on	disk,	and	then	-	if	there	is	room	for	it	in	the	computer	-	deletes
any	array	already	existing	called	b	and	loads	in	the	new	array	from	disk,	calling
it	b.

You	cannot	use	MERGE	with	saved	arrays.

You	can	save	character	(string)	arrays	in	exactly	the	same	way.	When	you	load
in	 a	 character	 array,	 the	 computer	will	 delete	 not	 only	 any	 previous	 character

array	with	the	same	name,	but	also	any	string	with	the	same	name.

Byte	storage	is	used	for	pieces	of	information	without	any	reference	to	what	the
information	is	used	for	-	it	could	be	television	pictures,	or	used-defined	graphics,
or	something	you	have	made	up	yourself.	It	is	shown	using	the	word	CODE,	as
in

SAVE	"picture"	CODE	16384,6912

The	unit	of	storage	 in	memory	 is	 the	byte	 (a	number	between	0	and	255),	and
each	byte	has	 an	 address	 (which	 is	 a	number	between	0	 and	65535).	The	 first
number	after	CODE	is	the	address	of	the	first	byte	to	be	stored	on	disk,	and	the
second	is	the	number	of	bytes	to	be	stored.	In	our	case,	16384	is	the	address	of
the	first	byte	in	the	display	file	(which	contains	the	television	picture)	and	6912
is	the	number	of	bytes	in	it,	so	we	are	saving	a	copy	of	the	television	screen	-	try
it.	The	name	"picture"	works	just	like	the	names	for	programs.

To	load	it	back,	use

LOAD	"picture"	CODE

You	can	put	numbers	after	CODE	in	the	form

LOAD	name	CODE	start,length

Here	length	is	just	a	safety	measure;	when	the	computer	has	found	the	bytes	on
disk	with	the	right	name,	it	will	still	refuse	to	load	them	in	if	there	are	more	than
length	of	 them	-	since	 there	 is	obviously	more	data	 than	you	expected	 it	could
otherwise	overwrite	something	you	had	not	intended	to	be	overwritten.	It	gives
the	error	report	R	File	loading	error.	You	can	miss	out	length,	and
then	the	computer	will	read	in	the	bytes	however	many	there	are.

Start	shows	the	address	where	the	first	byte	is	to	be	loaded	back	to	-	this	can	be
different	from	the	address	it	was	saved	from,	although	if	they	are	the	same	you
can	miss	out	the	start	in	the	LOAD	statement.

CODE	16384,6912	is	so	useful	for	saving	and	loading	the	picture	that	you

can	replace	it	with	SCREEN$	-	for	instance:

SAVE	"picture"	SCREEN$

LOAD	"picture"	SCREEN$

BASin	supports	a	number	of	different	file	formats.	You	can	indicate	the	format
you	wish	to	use	by	providing	a	filename	extension.

The	RAM	Disk

BASin	provides	emulation	of	the	Spectrum	128k	and	+2's	Silicon	Disk	(or	RAM
Disk).	Be	aware	that	using	the	Silicon	Disk	has	it's	own	requirements	related	to
the	use	of	other	128k	commands.	See	the	section	on	128k	commands	in	BASin
for	more	information.

Anything	you	can	do	with	SAVE,	LOAD	or	MERGE	for	files	saved	from	BASin,
you	can	do	with	the	silicon	disk	that's	built	into	the	128k	Spectrum	models.	This
acts	 like	 the	 usual	 cassette,	 or	 hard	 disk	 in	 BASin	 (with	 a	 couple	 of	 extra
commands),	with	the	exception	that	it's	about	64kb	in	size,	very	fast,	and	loses
its	 contents	 when	 BASin	 is	 reset	 or	 quit	 (However,	 it	 does	 survive	 the	NEW
command).	You	use	the	commands	in	exactly	the	same	way	you	would	in	normal
operation	 -	 simply	 add	 an	 exclamation	mark	!	 between	 the	 command	 and	 its
associated	string.	So	where	you	would	type...

SAVE	"squares"

...to	save	normally,	you	may	instead	use...

SAVE	!"squares"

...to	save	to	the	silicon	disk.

There	are	two	extra	commands	for	use	with	the	silicon	disk.	The	first	one	is...

CAT	!

...which	gives	you	a	 list	of	all	 the	programs	or	data	 files	 that	are	stored	on	 the

disc.

The	second	one	is...

ERASE	!"filename"

...to	get	rid	of	an	unwanted	program	or	data.

Perhaps	 the	most	 obvious	 use	 of	 the	 silicon	disc	 is	 to	 store	 chunks	 of	BASIC
program	which	 can	 be	merged	 (using	MERGE	!)	 into	 a	 smaller	 program,	 in
sequence.	This	makes	 it	 possible	 to	write	 about	 90kb	of	BASIC	program,	 and
hold	it	in	the	emulated	memory	(to	do	this,	the	program	structure	has	to	be	well
defined).

One	 of	 the	more	 interesting	 uses	 of	 the	 silicon	 disk	 is	 in	 animation,	 where	 a
series	of	pictures	can	be	defined	by	a	 'slow'	BASIC	program	and	stored	 in	 the
silicon	disk,	then	called	back	to	the	screen	at	high	speed.	The	following	program
gives	a	taste	of	this;	doubtless	you	can	do	better...

	10	INK	5:	

				PAPER	0:	

				BORDER	0:	

				CLS

	20	FOR	f=1	TO	10

	30	CIRCLE	f*20,150,f

	40	SAVE	!"ball"+STR$(f)	CODE	16384,	2048

	50	CLS

	60	NEXT	f

	70	FOR	f=1	TO	10

	80	LOAD	!"ball"+STR$(f)	CODE	

	90	NEXT	f

100	BEEP	0.01,0.01

110	FOR	f=9	TO	2	STEP	-1

120	LOAD	!"ball"+STR$(f)	CODE

130	NEXT	f

140	BEEP	0.01,0.01

150	GO	TO	70

160	REM	use	GO	TO	160	to	clear	pictures	from	disc

170	FOR	f=10	TO	1	STEP	-1

180	ERASE	!"ball"+STR$(f)

190	NEXT	f

Note	that	 in	line	40	of	this	program,	the	two	numbers	following	CODE	are	the
address	in	memory	of	the	start	of	the	screen,	and	the	length	of	the	top	third	of	it.
By	only	saving	and	loading	the	top	third,	the	overall	speed	is	maintained.	Lines
160	 to	190	are	 there	 if	you	break	 (using	ESC)	out	of	 the	program,	modify	 the
circle	drawing	bit,	 and	 try	 to	 save	a	new	set	of	pictures.	So	before	doing	 that,
type	GO	TO	160	 to	 clear	 out	 the	 silicon	 disc.	 (Always	 try	 to	 delete	 files
backwards	so	the	last	file	to	be	saved	will	be	the	first	to	be	deleted.	This	saves
the	computer	a	lot	of	juggling	about,	and	is	much	faster).

Summary

Below	is	a	complete	summary	of	the	four	statements	used	in	this	chapter.	Name
stands	 for	 any	 string	 expression,	 and	 refers	 to	 the	 name	 under	 which	 the
information	 is	 stored	 on	 disk.	 It	 should	 consist	 of	 ASCII	 printing	 characters.
Unlike	the	original	ZX	Spectrum,	BASin	permits	filenames	to	be	longer	than	10
characters.

There	 are	 four	 sorts	 of	 information	 that	 can	 be	 stored	 on	 disk:	 program	 and
variables	(together),	number	arrays,	character	arrays	and	straight	bytes.

When	you	provide	 the	empty	string	 instead	of	a	 filename,	BASin	prompts	you
for	the	file	to	be	opened	or	saved.

SAVE

Saves	information	on	disk	under	the	given	name.

1.	 Program	and	variables:	
SAVE	(!)	name	LINE	line	number	

saves	 the	 program	 and	 variables	 in	 such	 a	 way	 that
LOAD	automatically	follows	with	

GO	TO	line	number	
	

2.	 Bytes:	

SAVE	(!)name	CODE	start,	length	

saves	length	bytes	starting	at	address	start.	

SAVE	(!)name	SCREEN$	

is	equivalent	to	

SAVE	(!)name	CODE	16384,6912	

and	saves	the	television	picture.	

	
3.	 Arrays:	

SAVE	(!)name	DATA	letter()	
or	
SAVE	(!)name	DATA	letter$()	

saves	 the	 array	whose	 name	 is	 letter	 or	 letter$	 (this
need	bear	no	relation	to	name).	
	

4.	 Verify:	

Checks	 the	 information	 against	 on	 tape	 against	 the
information	 already	 in	 memory.	 Failure	 to	 verify
gives	error	R	File	loading	error.	
	
1.	 Program	and	variables:	

VERIFY	name	
	

2.	 Bytes:	

VERIFY	name	CODE	start,length	

If	the	bytes	name	on	disk	are	more	than	length	in
number,	 then	 gives	 error	 R.	 Otherwise,	 checks

them	against	 those	 in	memory	 starting	at	 address
start.	

VERIFY	name	CODE	start	

checks	 the	 bytes	 name	 on	 tape	 against	 those	 in
memory	 starting	 at	 the	 address	 from	 which	 the
first	disk	byte	was	saved.	

VERIFY	name	SCREEN$	

is	equivalent	to	

VERIFY	name	CODE	16384,6912	

(On	 an	 original	 ZX	 Spectrum,	 this	 will	 almost
certainly	 fail	 to	 verify,	 because	 the	 filename	 is
printed	on	screen	as	the	file	loads	from	cassette.)	
	

3.	 Arrays:	

VERIFY	name	DATA	letter()	
or	
VERIFY	name	DATA	letter$()	

checks	 the	 array	 name	 on	 disk	 against	 the	 array

letter	or	letter$	in	memory.	
	

	

LOAD

Loads	new	information	fron	disk,	deleting	old	information	from	memory.

1.	 Program	and	variables:	

LOAD	(!)name	

deletes	 the	 old	 program	 and	 variables	 and	 loads	 in
program	and	variables	name	from	disk;	if	the	program
was	 saved	using	SAVE	 name	LINE	 it	 performs	 an
automatic	jump.	

Error	4	Out	of	memory	 occurs	 if	 there	 is	no
room	for	the	new	program	and	variables.	In	this	case
the	old	program	and	variables	are	not	deleted.	
	

2.	 Bytes:	

LOAD	(!)name	CODE	start,	length	

If	 the	bytes	name	 from	disk	 are	more	 than	 length	 in

number	then	gives	error	R.	Otherwise,	loads	them	into
memory	 starting	 at	 address	 start	 and	 overwriting
whatever	was	there	previously.	

LOAD	(!)name	CODE	start	

loads	the	bytes	name	from	disk	into	memory,	starting
at	 address	 start	 and	 overwriting	 whatever	 was	 there
previously.	

LOAD	(!)name	CODE	

loads	the	bytes	name	from	disk	into	memory	starting
at	 the	 address	 from	 which	 the	 first	 disk	 byte	 was
saved	 and	 overwriting	 the	 bytes	 that	 were	 there	 in
memory	before.	
	

3.	 Arrays:	

LOAD	(!)name	DATA	letter()	
or	
LOAD	(!)name	DATA	letter$()	

deletes	 any	 array	 called	 letter	 or	 letter$	 (as
appropriate)	 and	 forms	 a	 new	 one	 from	 the	 array
stored	on	disk.	

Error	4	Out	of	memory	occurs	if	no	room	for
new	arrays.	Old	arrays	are	not	deleted.	
	

MERGE

Loads	 new	 information	 from	 disk	 without	 deleting	 old	 information	 from
memory.

1.	 Program	and	variables:	

MERGE	(!)name	

merges	 the	program	name	 in	with	 the	one	already	 in
memory,	 overwriting	 any	 program	 lines	 or	 variables
in	 the	 old	 program	 whose	 line	 numbers	 or	 names
conflict	with	ones	in	the	new	program.	

Error	4	Out	of	memory	occurs	unless	there	is
enough	 room	 in	memory	 for	 all	 of	 the	 old	 program
and	 variables	 and	 all	 of	 the	 new	 program	 and
variables	being	loaded	from	disk.	
	
1.	 Bytes:	

Not	possible	
	

2.	 Arrays:	

Not	possible	
	

Exercises

1.	 Make	a	disk	on	which	the	first	program,	when	loaded,
prints	 a	menu	 (a	 list	 of	 some	other	 programs	 on	 the
disk),	asks	you	to	choose	a	program,	and	then	loads	it.
	

2.	 Get	 the	 chess	 piece	 graphics	 from	 Chapter	 14,	 and
then	type	NEW:	they	will	survive	this.	However,	they
will	 not	 survive	 having	 the	 computer	 turned	 off;	 if
you	want	 to	keep	 then,	you	must	 save	 them	on	disk,
using	SAVE	with	CODE.	The	easiest	way	is	 to	save
all	twenty-one	user	defined	graphics	by

SAVE	"chess"	CODE	USR	"a",21*8

followed	by

VERIFY	"chess"	CODE

This	 is	 the	 system	of	bytes	 saving	 that	was	used	 for
saving	the	picture.	The	address	of	the	first	byte	to	be
saved	 is	USR	"a",	 the	 address	 of	 the	 first	 of	 the

Chapter	21	

eight	bytes	that	determine	the	pattern	of	the	first	user-
defined	graphics,	and	the	number	of	bytes	to	be	saved
is	21*8	-	eight	bytes	for	each	of	21	graphics.

To	load	back	you	would	normally	use

LOAD	"chess"	CODE

However,	 if	 you	 are	 loading	 back	 into	 a	 Spectrum
with	 a	 different	 amount	 of	 memory,	 or	 if	 you	 have
moved	the	user-defined	graphics	to	a	different	address
(you	have	to	do	this	deliberately	using	more	advanced
techniques),	you	have	to	be	more	careful	and	use

LOAD	"chess"	CODE	USR	"a"

USR	 allows	 for	 the	 fact	 that	 the	 graphics	 must	 be
loaded	back	to	a	different	address.

	Chapter	19

Chapter	21:	The	ZX	printer

Summary

LPRINT,	LLIST,	COPY

Note:	Using	the	ZX	Printer	support	in	conjunction	with	certain	128k	commands
can	have	undersirable	results.	See	the	section	on	BASin	and	the	128k	Spectrum
for	more	details.	If	you	are	making	use	of	128k	commands,	you	should	avoid	the
use	of	the	ZX	Printer.

This	chapter	covers	the	BASIC	statements	needed	to	operate	the	ZX	printer.

BASin	emulates	 the	ZX	printer:	you	can	view,	save,	and	print	 the	results	 from
the	ZX	printer	output	window.

The	 first	 two	 statements,	 LPRINT	 and	 LLIST,	 are	 just	 like	 PRINT	 and
LIST,	 except	 that	 they	 use	 the	 printer	 instead	 of	 the	 television.	 (The	L	 is	 an
historical	 accident.	 When	 BASIC	 was	 invented	 it	 usually	 used	 an	 electric
typewriter	 instead	 of	 a	 television,	 so	 PRINT	 really	 did	 mean	 print.	 If	 you
wanted	masses	of	output	you	would	use	a	very	fast	 line	printer	attached	 to	 the
computer,	and	an	LPRINT	statement	meaning	'Line	printer	PRINT'.)

Try	this	program	for	example.

10	LPRINT	"This	program"

20	LLIST

30	LPRINT	"prints	out	the	character	set."

40	FOR	n=32	TO	255

50	LPRINT	CHR$	n;

60	NEXT	n

The	 third	 statement,	 COPY,	 prints	 out	 a	 copy	 of	 the	 television	 screen.	 For
instance,	 type	LIST	 to	 get	 a	 listing	 on	 the	 screen	 of	 the	 program	 above,	 and
type

COPY

Note	that	COPY	doesn't	work	with	one	of	the	listings	that	the	computer	puts	up
automatically,	because	that	is	cleared	whenever	a	command	is	obeyed.	You	must
either	use	LIST	first,	or	use	LLIST	and	forget	about	COPY.

You	can	always	stop	the	printer	when	it	is	running	by	pressing	the	Esc	key.

If	you	execute	these	statements	without	the	printer	attached,	it	should	lose	all	the
output	and	carry	on	with	the	next	statement.

Try	this:

10	FOR	n=31	TO	3	STEP	-1

20	PRINT	AT	31-n,n;	CHR$	(CODE	"3"+n);

30	NEXT	n

You	will	see	a	pattern	of	characters	working	down	diagonally	from	the	top	right-
hand	corner	until	it	reaches	the	bottom	of	the	screen,	when	the	program	asks	if
you	want	to	scroll.

Now	 change	 AT	 31-n,n	 in	 line	 20	 to	 TAB	 n.	 The	 program	 will	 have
exactly	the	same	effect	as	before.

Now	 change	 PRINT	 in	 line	 20	 to	 LPRINT.	 This	 time	 there	 will	 be	 no
scroll?,	which	should	not	occur	with	the	printer,	and	the	pattern	will	carry
straight	on	with	the	letters	F	to	O.

Now	change	TAB	n	to	AT	31-n,n	still	using	LPRINT.	This	time	you	will
get	just	a	single	line	of	symbols.	The	reason	for	the	difference	is	that	the	output

Chapter	22	

from	PRINT	is	not	printed	straight	away,	but	arranges	in	a	buffer	store	a	picture
one	line	long	of	what	the	computer	will	send	to	the	printer	when	it	gets	round	to
it.	The	printing	takes	place

1.	 when	the	buffer	is	full,
2.	 after	 an	LPRINT	 statement	 that	 does	 not	 end	 in	 a

comma	or	semicolon,
3.	 when	 a	 comma,	 apostrophe	 or	TAB	 item	 requires	 a

new	line,	or
4.	 at	 the	 end	 of	 a	 program,	 if	 there	 is	 anything	 left

unprinted.

(iii)	explains	why	our	program	with	TAB	works	the	way	it	does.	As	for	AT,	the
line	number	is	ignored	and	the	LPRINT	position	(like	the	PRINT	position,	but
for	the	printer	instead	of	the	television)	is	changed	to	the	column	number.	An	AT
item	can	never	cause	a	line	to	be	sent	to	the	printer.

Exercise

1.	 Make	a	printed	graph	of	SIN	by	running	the	program
in	Chapter	17	and	then	using	COPY.

	Chapter	20

Chapter	23	

Chapter	22:	Other	equipment

Note:	BASin	does	not	currently	support	the	hardware	and	extra	keywords	listed
here.

There	is	other	equipment	that	you	will	be	able	to	attach	to	the	Spectrum.

The	 ZX	Microdrive	 is	 a	 high	 speed	 mass	 storage	 device,	 and	 is	 much	 more
flexible	in	the	way	it	can	be	used	than	a	cassette	recorder.	It	will	operate	not	only
with	 SAVE,	 VERIFY,	 LOAD	 and	 MERGE,	 but	 also	 with	 PRINT,	 LIST,
INPUT	and	INKEY$.

The	network	 is	used	 for	 connecting	 several	Spectrums	 so	 that	 they	can	 talk	 to
each	other	-	one	of	the	uses	of	this	is	that	you	then	need	only	one	Microdrive	to
serve	several	computers.

The	RS232	interface	is	a	standard	connection	that	allows	you	to	link	a	Spectrum
with	 keyboards,	 printers,	 computers	 and	 various	 other	 machines	 even	 if	 they
were	not	designed	specifically	for	the	Spectrum.

These	 will	 use	 some	 extra	 keywords	 that	 cannot	 be	 used	 without	 the	 extra
attachments:	 they	 are	 OPEN	 #,	 CLOSE	 #,	 MOVE,	 ERASE,	 CAT	 and
FORMAT.

	Chapter	21

Chapter	23:	IN	and	OUT

Summary

OUT,	IN

The	processor	can	read	from	and	(at	least	with	RAM)	write	to	memory	by	using
PEEK	and	POKE.	The	processor	itself	does	not	really	care	whether	memory	is
ROM,	RAM	or	even	nothing	at	all;	 it	 just	knows	that	 there	are	65536	memory
addresses,	and	it	can	read	a	byte	from	each	one	(even	if	it's	nonsense),	and	write
a	byte	to	each	one	(even	if	it	gets	lost).	In	a	completely	analogous	way	there	are
65536	of	what	are	called	I/O	ports	(standing	for	Input/Output	ports).	These	are
used	by	 the	processor	 for	 communicating	with	 things	 like	 the	keyboard	or	 the
printer,	 and	 they	 can	 be	 controlled	 from	 the	BASIC	by	using	 the	IN	 function
and	the	OUT	statement.

IN	is	a	function	like	PEEK.

IN	address

It	has	one	argument,	the	port	address,	and	its	result	is	a	byte	read	from	that	port.

OUT	is	a	statement	like	POKE.

OUT	address,	value

writes	 the	 given	 value	 to	 the	 port	with	 the	 given	 address.	How	 the	 address	 is
interpreted	 depends	 very	much	 on	 the	 rest	 of	 the	 computer;	 quite	 often,	many
different	addresses	will	mean	 the	same.	On	 the	Spectrum	it	 is	most	sensible	 to
imagine	the	address	being	written	in	binary,	because	the	individual	bits	 tend	to
work	independently.	There	are	16	bits,	which	we	shall	call	(using	A	for	address)

A15,	A14,	A13,	A12,	,	A2,	A1,	A0

Here	A0	is	the	1s	bit,	A1	the	2s	bit,	A2	the	4s	bit	and	so	on.	Bits	A0,	A1,	A2,	A3
and	A4	are	the	important	ones.	They	are	normally	1,	but	if	any	one	of	them	is	0

this	tells	the	computer	to	do	something	specific.	The	computer	cannot	cope	with
more	than	one	thing	at	a	time,	so	no	more	than	one	of	these	five	bits	should	be	0.
Bits	A6	and	A7	are	ignored,	so	if	you	are	a	wizard	with	electronics	you	can	use
them	yourself.	The	best	addresses	to	use	are	those	that	are	1	less	than	a	multiple
of	32,	so	 that	A0,...A4	are	all	1.	Bits	A8,	A9	and	so	on	are	sometimes	used	to
give	extra	information.

The	byte	read	or	written	has	8	bits,	and	these	are	often	referred	to	(using	D	for
data)	as	D7,	D6,....,	D1,	D0.	Here	is	a	list	of	the	port	addresses	used.

There	is	a	set	of	input	addresses	that	read	the	keyboard	and	also	the	EAR	socket.

The	keyboard	is	divided	up	into	8	half	rows	of	5	keys	each.

IN	65278	reads	the	half	row	Caps	Shift	to	V	
IN	65022	reads	the	half	row	A	to	G	
IN	64510	reads	the	half	row	Q	to	T	
IN	63486	reads	the	half	row	1	to	5	
IN	61438	reads	the	half	row	O	to	6	
IN	57342	reads	the	half	row	P	to	7	
IN	49150	reads	the	half	row	Enter	to	H	
IN	32766	reads	the	half	row	Space	to	B

(These	addresses	are	254+256*(255-2↑n)	as	n	goes	from	0	to	7.)

In	the	byte	read	in,	bits	D0	to	D4	stand	for	the	five	keys	in	the	given	half	row	-
D0	for	the	outside	key,	D4	for	the	one	nearest	the	middle.	The	bit	is	0	if	the	key
is	pressed,	1	if	it	is	not.	D6	is	the	value	at	the	EAR	socket.

Port	address	254	in	output	drives	the	loudspeaker	(C4)	and	the	MIC	socket	(D3),
and	also	sets	the	border	colour	(D2,	D1	and	D0).

Port	address	251	runs	the	printer,	both	in	reading	and	writing:	reading	finds	out
whether	the	printer	is	ready	for	more,	and	writing	sends	out	dots	to	be	printed.

Port	 addresses	 254,	 247	 and	 239	 are	 used	 for	 the	 extra	 devices	mentioned	 in
Chapter	22.

Run	this	program

10	FOR	n=0	TO	7:	

			REM	half-row	number

20	LET	a=254+256*(255-2↑n)

30	PRINT	AT	0,0;	IN	a:	

			GO	TO	30

and	play	around	by	pressing	keys.	When	you	get	bored	with	each	half-row,	press
BREAK	and	then	type

NEXT	n

The	control,	data	and	address	busses	are	all	exposed	at	the	back	of	the	Spectrum,
so	 you	 can	 do	 almost	 anything	 with	 a	 Spectrum	 that	 you	 can	 with	 a	 Z80.
Sometimes,	 though,	 the	 Spectrum	 hardware	 might	 get	 in	 the	 way.	 Here	 is	 a
diagram	of	the	exposed	connections	at	the	back:

Chapter	24	
	Chapter	22

Chapter	24:	The	memory

Summary

CLEAR

Deep	inside	the	computer,	everything	is	stored	as	bytes,	i.e.	numbers	between	0
and	255.	You	may	think	you	have	stored	away	the	price	of	wool	or	the	address	of
your	 fertilizer	 suppliers,	 but	 it	 has	 all	 been	 converted	 into	 collections	of	 bytes
and	bytes	are	what	the	computer	sees.

BASin's	 debugging	 tools	 allow	 you	 to	 work	 with	 the	 memory	 and	 system
variables.

Each	 place	 where	 a	 byte	 can	 be	 stored	 has	 an	 address,	 which	 is	 a	 number
between	0	and	FFFFh	(so	an	address	can	be	stored	as	two	bytes),	so	you	might
think	 of	 the	 memory	 as	 a	 long	 row	 of	 numbered	 boxes,	 each	 of	 which	 can
contain	 a	 byte.	Not	 all	 the	 boxes	 are	 the	 same,	 however.	 In	 the	 standard	 16K
RAM	machine,	 the	boxes	from	8000h	to	FFFFh	are	simply	missing	altogether.
The	boxes	from	4000h	to	7FFFh	are	RAM	boxes,	which	means	you	can	open	the
lid	 and	 alter	 the	 contents,	 and	 those	 from	 0	 to	 3FFFh	 are	ROM	boxes,	which
have	glass	tops	but	cannot	be	opened.	You	just	have	to	read	whatever	was	put	in
them	when	the	computer	was	made.

To	inspect	the	contents	of	a	box,	we	use	the	PEEK	function:	its	argument	is	the
address	of	the	box,	and	its	result	is	the	contents.	For	instance,	this	program	prints
out	the	first	21	bytes	in	ROM	(and	their	addresses):

10	PRINT	"Address";	TAB	8;	"Byte"

20	FOR	a=0	TO	20

30	PRINT	a;	TAB	8;	PEEK	a

40	NEXT	a

All	these	bytes	will	probably	be	quite	meaningless	to	you,	but	the	processor	chip
understands	them	to	be	instructions	telling	it	what	to	do.

To	change	the	contents	of	a	box	(if	it	is	RAM),	we	use	the	POKE	statement.	It
has	the	form

POKE	address,	new	contents

where	'address'	and	'new	contents'	stand	for	numeric	expressions.	For	instance,	if
you	say

POKE	31000,57

the	byte	at	address	31000	is	given	the	new	value	57	-	type

PRINT	PEEK	31000

to	prove	this.	(Try	poking	in	other	values,	to	show	that	there	is	no	cheating.)	The
new	 value	 must	 be	 between	 -255	 and	 +255,	 and	 if	 it	 is	 negative	 then	 256	 is
added	to	it.

The	 ability	 to	poke	gives	you	 immense	power	over	 the	 computer	 if	 you	know
how	 to	 wield	 it,	 and	 immense	 destructive	 possibilities	 if	 you	 don't.	 It	 is	 very
easy,	by	poking	the	wrong	value	in	the	wrong	address,	to	lose	vast	programs	that
took	you	hours	to	type	in.	Fortunately,	you	won't	do	the	computer	any	permanent
damage.

We	shall	now	take	a	more	detailed	look	at	how	the	RAM	is	used,	but	don't	bother
to	read	this	unless	you're	interested.

The	 memory	 is	 divided	 into	 different	 areas	 (shown	 on	 the	 big	 diagram)	 for
storing	different	kinds	of	 information.	The	areas	 are	only	 large	enough	 for	 the
information	 that	 they	 actually	 contain,	 and	 if	 you	 insert	 some	more	 at	 a	 given

point	 (for	 instance	 by	 adding	 a	 program	 line	 or	 variable)	 space	 is	 made	 by
shifting	 up	 everything	 above	 that	 point.	 Conversely,	 if	 you	 delete	 information
then	everything	is	shifted	down.

The	display	file	stores	the	television	picture.	It	is	rather	curiously	laid	out,	so	you
probably	won't	want	 to	PEEK	 or	POKE	 in	 it.	 Each	 character	 position	 on	 the
screen	has	an	8×8	square	of	dots,	and	each	dot	can	be	either	0	(paper)	or	1	(ink)
and	by	using	binary	notation	we	can	store	 the	pattern	as	8	bytes,	one	 for	each
row.	However,	these	8	bytes	are	not	stored	together.	The	corresponding	rows	in
the	 32	 characters	 of	 a	 single	 line	 are	 stored	 together	 as	 a	 scan	 of	 32	 bytes,
because	this	is	what	the	electron	beam	in	the	television	needs	as	it	scans	from	the
left	hand	side	of	the	screen	to	the	other.	Since	the	complete	picture	has	24	lines
of	8	scans	each,	you	might	expect	the	total	of	172	scans	to	be	stored	in	order,	one
after	the	other;	you'd	be	wrong.	First	come	the	top	scans	of	lines	0	to	7,	then	the
next	scans	of	lines	0	to	7,	and	so	on	to	the	bottom	scans	of	lines	0	to	7;	then	the
same	for	lines	8	to	15;	and	then	the	same	for	lines	16	to	23.	The	upshot	of	all	this
is	 that	 if	you're	used	 to	a	 computer	 that	uses	PEEK	and	POKE	 on	 the	 screen,
you'll	 have	 to	 start	 using	SCREEN$	 and	PRINT	AT	 instead,	 or	PLOT	 and
POINT.

The	 attributes	 are	 the	 colours	 and	 so	 on	 for	 each	 character	 position,	 using	 the
format	of	ATTR.	These	are	stored	line	by	line	in	the	order	you'd	expect.

The	printer	buffer	stores	the	characters	destined	for	the	printer.

The	system	variables	contain	various	pieces	of	information	that	tell	the	computer
what	sort	of	state	the	computer	is	in.	They	are	listed	fully	in	the	next	chapter,	but
for	the	moment	note	that	there	are	some	(called	CHANS,	PROG,	VARS,	E	LINE
and	so	on)	that	contain	the	addresses	of	the	boundaries	between	the	various	areas
in	 memory.	 These	 are	 not	 BASIC	 variables,	 and	 their	 names	 will	 not	 be
recognized	by	the	computer.

The	 Microdrive	 maps	 are	 only	 used	 with	 the	 Microdrive.	 Normally	 there	 is
nothing	there.

The	 channel	 information	 contains	 information	 about	 the	 input	 and	 output
devices,	namely	the	keyboard	(with	the	lower	half	of	the	screen),	the	upper	half
of	the	screen,	and	the	printer.

Each	line	of	BASIC	program	has	the	form:

Note	 that,	 in	contrast	with	all	other	cases	of	 two	byte	numbers	 in	 the	Z80,	 the
line	number	here	is	stored	with	its	more	significant	byte	first:	that	is	to	say,	in	the
order	that	you	write	them	down	in.

A	numerical	 constant	 in	 the	program	 is	 followed	by	 its	 binary	 form,	using	 the
character	CHR$	14	followed	by	five	bytes	for	the	number	itself.

The	 variables	 have	 different	 formats	 according	 to	 their	 different	 features.	 The
letters	in	the	names	should	be	imagined	as	starting	off	in	lower	case.

The	order	of	the	elements	is:	
first,	the	elements	for	which	the	first	subscript	is	1;	
next,	the	elements	for	which	the	first	subscript	is	2;	
next,	the	elements	for	which	the	first	subscript	is	3;	
and	so	on	for	all	possible	values	of	the	first	subscript.

The	elements	with	a	given	first	subscript	are	ordered	in	the	same	way	using	the
second	subscript,	and	so	on	down	to	the	last.

As	an	example,	the	elements	of	the	3*6	array	b	in	Chapter	12	are	stored	in	the
order	b(1,1)	b(1,2)	b(1,3)	b(1,4)	b(1,5)	b(1,6)	b(2,1)	b(2,2)	...	b(2,6)	b(3,1)	b(3,2)
...	b(3,6).

The	calculator	 is	 the	part	of	 the	BASIC	system	 that	deals	with	arithmetic,	 and
the	numbers	on	which	it	is	operating	are	held	mostly	in	the	calculator	stack.

The	spare	part	contains	the	space	so	far	unused.

The	 machine	 stack	 is	 the	 stack	 used	 by	 the	 Z80	 processor	 to	 hold	 return
addresses	and	so	on.

The	GO	SUB	stack	was	mentioned	in	Chapter	5.

The	byte	 pointed	 to	 by	RAMTOP	has	 the	 highest	 address	 used	by	 the	BASIC
system.	Even	NEW,	which	clears	the	RAM	out,	only	does	so	as	far	as	this	-	so	it
doesn't	change	the	user	defined	graphics.	You	can	change	the	address	RAMTOP
by	putting	a	number	in	a	CLEAR	statement:

CLEAR	new	RAMTOP

This

1.	 clears	out	all	the	variables
2.	 clears	the	display	file	(like	CLS)
3.	 resets	 the	 PLOT	 position	 to	 the	 bottom	 left	 hand

corner
4.	 clears	 the	 GO	 SUB	 stack	 and	 puts	 it	 at	 the	 new

RAMTOP,	 assuming	 that	 this	 lies	 between	 the
calculator	 stack	 and	 the	 physical	 end	 of	 RAM;
otherwise	it	leaves	RAMTOP	as	it	was.

RUN	also	does	CLEAR,	although	it	never	changes	RAMTOP.

Using	CLEAR	 in	 this	 way,	 you	 can	 either	move	RAMTOP	 up	 to	make	more
room	for	the	BASIC	by	overwriting	the	user	defined	graphics,	or	you	can	move
it	down	to	make	more	RAM	that	is	preserved	from	NEW.

Type	NEW,	 then	CLEAR	23800	 to	 get	 some	 idea	 of	 what	 happens	 to	 the
machine	when	it	fills	up.

One	of	 the	 first	 things	 you	will	 notice	 if	 you	 start	 typing	 in	 a	 program	 is	 that
after	 a	 while	 the	 computer	 stops	 accepting	 any	 more	 input.	 It	 means	 the
computer	is	chock	a	block	and	you	will	have	to	empty	it	slightly.	There	are	two
error	messages	with	roughly	the	same	meaning,	4	Out	of	memory	and	G
No	room	for	line.

You	 can	 adjust	 the	 length	 of	 the	 error	 beep	 by	 poking	 a	 number	 into	 address
23608.	The	usual	length	has	number	64.

Any	number	(except	0)	can	be	written	uniquely	as	±	m	×	2e	where	
±	is	the	sign,	
m	is	the	mantissa,	and	lies	between	0.5	and	1	(it	cannot	be	1),	
and	e	is	the	exponent,	a	whole	number	(possibly	negative).

Suppose	you	write	m	in	the	binary	scale.	Because	it	is	a	fraction,	it	will	have	a
binary	point	(like	the	decimal	point	in	the	scale	of	ten)	and	then	a	binary	fraction
(like	a	decimal	fraction);	so	in	binary:	
a	half	is	written	.1	
a	quarter	is	written	.01	
three	quarters	is	written	.11	

a	tenth	is	written	.000110011001100110011	...	and	so	on.

With	our	number	m,	because	it	is	less	than	1,	there	are	no	bits	before	the	binary
point,	and	because	it	is	at	least	0.5,	the	bit	immediately	after	the	binary	point	is	a
1.

To	store	the	number	in	the	computer,	we	use	five	bytes,	as	follows:

1.	 write	the	first	eight	bits	of	the	mantissa	in	the	second
byte	(we	know	that	the	first	bit	is	1),	the	second	eight
bits	in	the	third	byte,	the	third	eight	bits	in	the	fourth
byte	and	the	fourth	eight	bits	in	the	fifth	byte;

2.	 replace	the	first	bit	in	the	second	byte	which	we	know
is	1	by	the	sign:	0	for	plus,	1	for	minus;

3.	 write	the	exponent	+128	in	the	first	byte.	For	instance,
suppose	our	number	is	1/10:
1/10	=	4/5*2-3

Thus	the	mantissa	m	is	.11001100110011001100110011001100	in	binary	(since
the	33rd	bit	is	1,	we	shall	round	the	32nd	up	from	0	to	1),	and	the	exponent	e	is
3.

Applying	our	three	rules	gives	the	five	bytes:	[missing?]

There	 is	 an	 alternative	 way	 of	 storing	 whole	 numbers	 between	 -65535	 and
+65535:

1.	 the	first	byte	is	0.
2.	 the	second	byte	is	0	for	a	positive	number,	FFh	for	a

negative	one,
3.	 the	 third	 and	 fourth	 bytes	 are	 the	 less	 and	 more

significant	 bytes	 of	 the	 number	 (or	 the	 number

Chapter	25	

+131072	if	it	is	negative),
4.	 the	fifth	byte	is	0.

	Chapter	23

Chapter	25:	The	system	variables

The	bytes	in	memory	from	23552	to	23733	are	set	aside	for	specific	uses	by	the
system.	You	can	peek	them	to	find	out	various	things	about	the	system,	and	some
of	them	can	be	usefully	poked.	They	are	listed	here	with	their	uses.

These	are	called	system	variables,	and	have	names,	but	do	not	confuse	them	with
the	variables	used	by	the	BASIC.	The	computer	will	not	recognize	the	names	as
referring	 to	 system	 variables,	 and	 they	 are	 given	 solely	 as	mnemonics	 for	we
humans.

Poking	 system	variables	 in	 the	BASin	 editor	will	 not	 always	 have	 the	 desired
effect,	because	there	 is	a	 layer	of	abstraction	between	BASin	and	the	emulated
ZX	Spectrum	memory.

The	abbreviations	in	column	1	have	the	following	meanings:

X The	variables	should	not	be	poked	because	the	system	might	crash.

N Poking	the	variable	will	have	no	lasting	effect.

The	number	in	column	1	is	the	number	of	bytes	in	the	variable.	For	two	bytes,
the	first	one	is	the	less	significant	byte,	the	reverse	of	what	you	might	expect.	So
to	poke	a	value	v	to	a	two	byte	variable	at	address	n,	use

POKE	n,v-256*INT	(v/256)

POKE	n+1,INT	(v/256)

and	to	peek	its	value,	use	the	expression

PEEK	n+256*PEEK	(n+1)

Notes Address Name Contents

N8 23552 KSTATE Used	in	reading	the	keyboard.

N1 23560 LAST	K Stores	newly	pressed	key.

1 23561 REPDEL
Time	(in	50ths	of	a	second,	in	60ths	of	a	second	in	N.	America)	that	a	key	must	be
held	 down	 before	 it	 repeats.	 This	 starts	 off	 at	 35,	 but	 you	 can	POKE	 in	 other
values.

1 23562 REPPER Delay	 (in	 50ths	 of	 a	 second,	 in	 60ths	 of	 a	 second	 in	 N.	 America)	 between
successive	repeats	of	a	key	held	down:	initially	5.

N2 23563 DEFADD Address	of	arguments	of	user	defined	function	if	one	is	being	evaluated;	otherwise
0.

Nl 23565 K	DATA Stores	2nd	byte	of	colour	controls	entered	from	keyboard.

N2 23566 TVDATA Stores	bytes	of	coiour,	AT	and	TAB	controls	going	to	television.

X38 23568 STRMS Addresses	of	channels	attached	to	streams.

2 23606 CHARS
256	less	than	address	of	character	set	(which	starts	with	space	and	carries	on	to	the
copyright	symbol).	Normally	in	ROM,	but	you	can	set	up	your	own	in	RAM	and
make	CHARS	point	to	it.

1 23608 RASP Length	of	warning	buzz.

1 23609 PIP Length	of	keyboard	click.

1 23610 ERR	NR 1	less	than	the	report	code.	Starts	off	at	255	(for	1)	so	PEEK	23610	gives	255.

X1 23611 FLAGS Various	flags	to	control	the	BASIC	system.

X1 23612 TV	FLAG Flags	associated	with	the	television.

X2 23613 ERR	SP Address	of	item	on	machine	stack	to	be	used	as	error	return.

N2 23615 LIST	SP Address	of	return	address	from	automatic	listing.

N1 23617 MODE Specifies	K,	L,	C,	E	or	G	cursor.

2 23618 NEWPPC Line	to	be	jumped	to.

	 23620 NSPPC Statement	number	in	line	to	be	jumped	to.	Poking	first	NEWPPC	and	then	NSPPC
forces	a	jump	to	a	specified	statement	in	a	line.

2 23621 PPC Line	number	of	statement	currently	being	executed.

1 23623 SUBPPC Number	within	line	of	statement	being	executed.

1 23624 BORDCR Border	colour	*	8;	also	contains	the	attributes	normally	used	for	the	lower	half	of
the	screen.

2 23625 E	PPC Number	of	current	line	(with	program	cursor).

X2 23627 VARS Address	of	variables.

N2 23629 DEST Address	of	variable	in	assignment.

X2 23631 CHANS Address	of	channel	data.

X2 23633 CURCHL Address	of	information	currently	being	used	for	input	and	output.

X2 23635 PROG Address	of	BASIC	program.

X2 23637 NXTLIN Address	of	next	line	in	program.

X2 23639 DATADD Address	of	terminator	of	last	DATA	item.

X2 23641 E	LINE Address	of	command	being	typed	in.

2 23643 K	CUR Address	of	cursor.

X2 23645 CH	ADD
Address	of	the	next	character	to	be	interpreted:	the	character	after	the	argument	of
PEEK,	or	the	newline	at	the	end	of	a	POKE	statement.

2 23647 X	PTR Address	of	the	character	after	the	?	syntax	error	marker	in	traditional	48K	BASIC.

X2 23649 WORKSP Address	of	temporary	work	space.

X2 23651 STKBOT Address	of	bottom	of	calculator	stack.

X2 23653 STKEND Address	of	start	of	spare	space.

N1 23655 BREG Calculator's	b	register.

N2 23656 MEM Address	 of	 area	 used	 for	 calculator's	 memory.	 (Usually	 MEMBOT,	 but	 not
always.)

	 23658 FLAGS2 More	flags.

X1 23659 DF	SZ The	number	of	lines	(including	one	blank	line)	in	the	lower	part	of	the	screen.

2 23660 S	TOP The	number	of	the	top	program	line	in	automatic	listings.

2 23662 OLDPPC Line	number	to	which	CONTINUE	jumps.

	 23664 OSPCC Number	within	line	of	statement	to	which	CONTINUE	jumps.

N1 23665 FLAGX Various	flags.

N2 23666 STRLEN Length	of	string	type	destination	in	assignment.

N2 23668 T	ADDR Address	of	next	item	in	syntax	table	(very	unlikely	to	be	useful).

2 23670 SEED The	seed	for	RND.	This	is	the	variable	that	is	set	by	RANDOMIZE.

3 23672 FRAMES 3	byte	(least	significant	first),	frame	counter.	Incremented	every	20ms.	See	Chapter
18.

2 23675 UDG Address	of	1st	user	defined	graphic.	You	can	change	this	for	instance	to	save	space
by	having	fewer	user	defined	graphics.

1 23677 COORDS x-coordinate	of	last	point	plotted.

1 23678 	 y-coordinate	of	last	point	plotted.

1 23679 P	POSN 33	column	number	of	printer	position.

X2 23680 PR	CC Full	address	of	next	position	for	LPRINT	to	print	at	(in	printer	buffer).

2 23682 ECHO	E 33	column	number	and	24	line	number	(in	lower	half)	of	end	of	input	buffer.

2 23684 DF	CC Address	in	display	file	of	PRINT	position.

2 23686 DFCCL Like	DF	CC	for	lower	part	of	screen.

X1 23688 S	POSN 33	column	number	for	PRINT	position.

X1 23689 	 24	line	number	for	PRINT	position.

X2 23690 SPOSNL Like	S	POSN	for	lower	part.

	 23692 SCR	CT
Counts	 scrolls:	 it	 is	 always	 1	more	 than	 the	 number	 of	 scrolls	 that	will	 be	 done
before	 stopping	with	scroll?	 If	 you	 keep	 poking	 this	with	 a	 number	 bigger
than	1	(say	255),	the	screen	will	scroll	on	and	on	without	asking	you.

1 23693 ATTR	P Permanent	current	colours,	etc	(as	set	up	by	colour	statements).

1 23694 MASK	P Used	 for	 transparent	colours,	etc.	Any	bit	 that	 is	1	 shows	 that	 the	corresponding
attribute	bit	is	taken	not	from	ATTR	P,	but	from	what	is	already	on	the	screen.

N1 23695 ATTR	T Temporary	current	colours,	etc	(as	set	up	by	colour	items).

N1 23696 MASK	T Like	MASK	P,	but	temporary.

	 23697 P	FLAG More	flags.

N30 23698 MEMBOT Calculator's	memory	area;	used	 to	store	numbers	 that	cannot	conveniently	be	put
on	the	calculator	stack.

2 23728 	 Used	for	the	NMI	in	the	+3	and	+2A,	and	by	the	Interface	1.

2 23730 RAMTOP Address	of	last	byte	of	BASIC	system	area.

2 23732 P	RAMT Address	of	last	byte	of	physical	RAM.

This	program	tells	you	the	first	22	bytes	of	the	variables	area:

10	FOR	n=0	TO	21

20	PRINT	PEEK	(PEEK	23627+256*PEEK	23628+n)

30	NEXT	n

Try	to	match	up	the	control	variable	n	with	the	descriptions	above.	Now	change
line	20	to

20	PRINT	PEEK	(23755+n)

This	 tells	 you	 the	 first	 22	bytes	 of	 the	 program	area.	Match	 these	 up	with	 the

Chapter	26	

program	itself.

	Chapter	24

Chapter	26:	Using	machine	code

Summary

USR	with	numeric	argument

This	chapter	 is	written	 for	 those	who	understand	Z80	machine	code,	 the	set	of
instructions	 that	 the	Z80	processor	chip	uses.	 If	you	do	not,	but	would	 like	 to,
there	are	plenty	of	books	about	it.	You	want	to	get	one	called	something	along
the	 lines	 of	 "Z80	 machine	 code	 [or	 assembly	 language]	 for	 the	 absolute
beginner",	and	if	it	mentions	the	Spectrum,	so	much	the	better.

These	 programs	 are	 normally	 written	 in	 assembly	 language,	 which,	 although
cryptic,	 are	 not	 too	 difficult	 to	 understand	 with	 practice.	 (You	 can	 see	 the
assembly	 language	 instructions	 in	Appendix	A.)	However,	 to	 run	 them	 on	 the
computer	you	need	to	code	the	program	into	a	sequence	of	bytes;	in	this	form	it
is	called	machine	code.	This	 translation	 is	usually	done	by	 the	computer	 itself,
using	 a	 program	 called	 an	 assembler.	 There	 is	 no	 assembler	 built	 in	 to	 the
Spectrum,	but	you	may	well	be	able	to	obtain	one.	Failing	that,	you	will	have	to
do	the	translation	yourself,	provided	that	the	program	is	not	too	long.

Let's	take	as	an	example	the	program

ld	bc,	99	

ret

which	 loads	 the	bc	 register	pair	with	99.	This	 translates	 into	 the	 four	machine
code	bytes	1,	99,	0	(for	ld	bc,	99)	and	201	(for	ret).	(If	you	look	up	1	and
201	in	Appendix	A,	you	will	find	ld	bc,	NN	-	where	NN	stands	for	any	two
byte	number	-	and	ret.)

When	you	have	got	your	machine	code	program,	the	next	step	is	to	get	it	into	the
computer.	 (An	 assembler	 would	 probably	 do	 this	 automatically.)	 You	 need	 to
decide	 whereabouts	 in	 memory	 to	 put	 it,	 and	 the	 best	 thing	 is	 to	 make	 extra

space	for	it	between	the	BASIC	area	and	the	user	defined	graphics.

Suppose,	for	instance,	that	you	have	a	16K	Spectrum.	To	start	off	with,	the	top
end	of	RAM	has

If	you	type

CLEAR	32499

this	will	 give	you	 a	 space	of	 100	 (for	 good	measure)	 bytes	 starting	 at	 address
32500.

To	 put	 in	 the	 machine	 code	 program,	 you	 would	 run	 a	 BASIC	 program
something	like

10	LET	a=32500

20	READ	n:	

			POKE	a,n

30	LET	a=a+1:	

			GO	TO	20

40	DATA	1,99,0,201

(This	will	stop	with	report	E	Out	of	DATA	when	 it	has	 filled	 in	 the	 four
bytes	you	specified.)

To	run	the	machine	code,	you	use	the	function	USR	but	this	time	with	a	numeric
argument,	the	starting	address.	Its	result	is	the	value	of	the	bc	register	on	return
from	the	machine	code	program,	so	if	you	do

PRINT	USR	32500

you	get	the	answer	99.

The	return	address	 to	 the	BASIC	is	stacked	 in	 the	usual	way,	so	return	 is	by	a
Z80	ret	instruction.	You	should	not	use	the	iy	and	i	registers	in	a	machine	code
routine.

You	can	save	your	machine	code	program	easily	enough	with

SAVE	"some	name"	CODE	32500,4

On	 the	 face	 of	 it,	 there	 is	 no	 way	 of	 saving	 it	 so	 that	 when	 loaded	 it
automatically	runs	itself,	but	you	can	get	round	this	by	using	a	BASIC	program.

10	LOAD	"xxxx"	CODE	32500,4

20	PRINT	USR	32500

Do	first

SAVE	"some	name"	LINE	0

and	then

SAVE	"xxxx"	CODE	32500,4

LOAD	"some	name"

Appendix	A	

will	 then	 load	 and	 automatically	 run	 the	 BASIC	 program,	 and	 the	 BASIC
program	will	load	and	run	the	machine	code.

	Chapter	25

Appendix	A:	The	character	set

This	 is	 the	complete	Spectrum	character	set,	with	codes	 in	decimal	and	hex.	 If
one	 imagines	 the	codes	as	being	Z80	machine	code	 instructions,	 then	 the	 right
hand	 columns	 give	 the	 corresponding	 assembly	 language	mnemonics.	 As	 you
are	probably	aware	 if	you	understand	 these	 things,	certain	Z80	 instructions	are
compounds	starting	with	CBh	or	EDh;	the	two	right	hand	columns	give	these.

Code Character Hex Z80	Assembler after	CB after	ED

0 Not	used 00 nop rlc	b 	

1 Not	used 01 ld	bc,NN rlc	c 	

2 Not	used 02 ld	(bc),a rlc	d 	

3 Not	used 03 inc	bc rlc	e 	

4 Not	used 04 inc	b rlc	h 	

5 Not	used 05 dec	b rlc	l 	

6 PRINT	comma 06 ld	b,N rlc	(hl) 	

7 Edit 07 rlca rlc	a 	

8 08 ex	af,af' rrc	b 	

9 09 add	hl,bc rrc	c 	

10 0A ld	a,(bc) rrc	d 	

11 0B dec	bc rrc	e 	

12 Backspace 0C incc rrch 	

13 Enter 0D dec	c rrc 	

14 number 0E ld	c,N rrc	(hl) 	

15 Not	used 0F rrca rrc	a 	

16 INK	control 10 djnz	DIS rl	b 	

17 PAPER	control 11 ld	de,NN rlc 	

18 FLASH	control 12 ld	(de),a rl	d 	

19 BRIGHT	control 13 inc	de rl	e 	

20 INVERSE	control 14 inc	d rl	h 	

21 OVER	control 15 dec	d rl	l 	

22 AT	control 16 ld	d,N rl	(hl) 	

23 TAB	control 17 rla rl	a 	

24 Not	used 18 jr	DIS rr	b 	

25 Not	used 19 add	hl,de rr	c 	

26 Not	used 1A ld	a,(de) rr	d 	

27 Not	used 1B dec	de rr	e 	

28 Not	used 1C inc	e rr	h 	

29 Not	used 1D dec	e rr	l 	

30 Not	used 1E ld	e,N rr	(hl) 	

31 Not	used 1F rra rr	a 	

32 Space 20 jr	nz,	DIS sla	b 	

33 ! 21 ld	hl,NN sla	c 	

34 " 22 ld	(NN),hl sla	d 	

35 # 23 inc	hl sla	e 	

36 $ 24 inc	h sla	h 	

37 % 25 dec	h sla	l

38 & 26 ld	h,N sla	(hl) 	

39 , 27 daa sla	a 	

40 (28 jr	z,DIS sra	b 	

41) 29 add	hl,hl sra	c 	

42 * 2A ld	hl,(NN)sra	d

43 + 2B dec	hl sra	e

44 , 2C inc	ll sra	h

45 - 2D dec	l sra	l

46 . 2F ld	l,N sra	(hl)

47 / 2F cpl sra	a

48 0 30 jr	nc,DIS 	

49 1 31 ld	sp,NN 	

50 2 32 ld	(NN),a 	

51 3 33 inc	sp 	

52 4 34 inc	(hl) 	

53 5 35 dec	(hl) 	

54 6 36 ld	(hl),N 	

55 7 37 scf 	

56 8 38 lr	c,DIS srl	b

57 9 39 add	hl,sp srl	c

58 : 3A ld	a,(NN) srl	d

59 ; 3B dec	sp srl	e

60 < 3C inc	a srl	h

61 = 3D dec	a srl	l

62 > 3E ld	a,N srl	(hl)

63 ? 3F ccf srl	a

64 @ 40 ld	b,b bit	0,b in	b,(c)

65 A 41 ld	b,c bit	0,c out	(c),b

66 B 42 ld	b,d bit	0,d sbc	hl,bc

67 C 43 ld	b,e bit	0,e ld	(NN),bc

68 D 44 ld	b,h bit	0,h neg

69 E 45 ld	b,l bit	0,1 retn

70 F 46 ld	b,(hl) bit	0,(hl) im	0

71 G 47 ld	b,a bit	0,a ld	i,a

72 H 48 ld	c,b bit	1,b in	c,(c)

73 I 49 ld	cc bit	1,c out	(c),c

74 J 4A ld	c,d bit	i,d adc	hl,bc

75 K 4B ld	c,e bit	1,e ld	bc,(NN)

76 L 4C ld	c,h bit	1,h

77 M 4D ld	c,l bit	1,l reti

78 N 4E ld	c,(hl) bit	 1,(hl)

79 O 4F ld	c,a bit	1,a ld	r,a

80 P 50 ld	d,b bit	2,b in	d,(c)

81 Q 51 ld	d,c bit	2,c out	(c),d

82 R 52 ld	d,d bit	2,d sbc	hl,de

83 S 53 ld	d,e bit	2,e ld	(NN),de

84 T 54 ld	d,h bit	2,h

85 U 55 ld	d,l bit	2,l

86 V 56 ld	d,(hl) bit	2,(hl) im	1

87 W 57 ld	d,a bit	2,a ld	a,i

88 X 58 ld	e,b bit	3,b in	e,(c)

89 Y 59 ld	e,c bit	3,c out	(c),e

90 Z 5A ld	e,d bit	3,d adc	hl,de

91 [5B ld	e,e bit	3,e ld	de,(NN)

92 / 5C ld	e,h bit	3,h

93] 5D ld	e,l bit	3,l

94 ^ 5E ld	e,(hl) bit	3,(hl) im	2

95 _ 5F ld	e,a bit	3,a ld	a,r

96 £ 60 ld	h,b bit	4,b in	h,(c)

97 a 61 ld	h,c bit	4,c out	(c),h

98 b 62 ld	h,d bit	4,d sbc	hl,hl

99 c 63 ld	h,e bit	4,e ld	(NN),hl

100 d 64 ld	h,h bit	4,h

101 e 65 ld	h,l bit	4,1

102 f 66 ld	h,(hl) bit	 4,(hl)

103 g 67 ld	h,a bit	4,a rrd

104 h 68 ld	l,b bit	5,b in	l,(c)

105 i 69 ld	l,c bit	5,c out	(c),l

106 j 6A ld	l,d bit	5,d adc	hl,hl

107 k 6B ld	l,e bit	5,e ld	hl,(NN),sp

108 l 6C ld	l,h bit	5,h

109 m 6D ld	l,l bit	5,l

110 n 6E ld	l,(hl) bit	 5,(hl)

111 o 6F ld	l,a bit	5,a rld

112 p 70 ld	(hl),b bit	6,b in	f,(c)

113 q 71 ld	(hl),c bit	6,c

114 r 72 ld	(hl),d bit	6,d sbc	hl,sp

115 s 73 ld	(hl),e bit	6,e ld	(NN),sp

116 t 74 ld	(hl),h bit	6,h

117 u 75 ld	(hl),l bit	6,l

118 v 76 halt bit	 6,(hl)

119 w 77 ld	(hl),a bit	6,a

120 x 78 ld	a,b bit	7,b in	a,(c)

121 y 79 ld	a,c bit	7,c out	(c),a

122 z 7A ld	a,d bit	7,d adc	hl,sp

123 { 7B ld	a,e bit	7,e ld	sp,(NN)

124 | 7C lda,h bit	7,h

125 } 7D ld	al bit	7,l

126 - 7E ld	a,(hl) bit	 7,(hl)

127 © 7F ld	a,a bit	7,a

128 80 add	a,b res	0,b

129 81 add	a,c res	0,c

130 82 add	a,d res	0,d

131 83 add	a,e res	0,e

132 84 add	a,h res	0,h

133 85 add	a,l res	0,l

134 86 add	a,(hl) res	0,(hl)

135 87 add	a,a res	0,a

136 88 adc	a,b res	1,b

137 89 adc	a,c res	1,c

138 8A adc	a,d res	1,d

139 8B adc	a,e res	1,e

140 8C adc	a,h res	1,h

141 8D adc	a,l res	1,i

142 8E adc	a,(hl) res	1,(hl)

143 8F adc	a,a res	1,a 	

144 (a) 90 sub	b res	2,b

145 (b) 91 sub	c res	2,c

146 (c) 92 sub	d res	2,d

147 (d) 93 sub	e res	2,e

148 (e) 94 sub	h res	2,h

149 (f) 95 sub	l res	2,l

150 (g) 96 sub	(hl) res	2,(hl)

151 (h) 97 sub	a res	2,a

152 (i) 98 sbc	a,b res	3,b

153 (j) 99 sbc	a,c res	3,c

154 (k) user 9A sbc	a,d res	3,d

155 (l) graphics 9B sbc	a,e res	3,e

156 (m) 9C sbc	a,h res	3,h

157 (n) 9D sbc	a,l res	3,l

158 (o) 9E sbc	a,(hl) res	3,(hl)

159 (p) 9F sbc	a,a res	3,a

160 (q) A0 and	b res	4,b ld

161 (r) A1 and	c res	4,c cpi

162 (s) A2 and	d res	4,d ini

163 (t) A3 and	e res	4,e outi

164 (u) A4 and	h res	4,h

165 RND A5 and	l res	4,l

166 INKEY$ A6 and	(hl) res	4,(hl)

167 PI A7 and	a res	4,a

168 FN A8 xor	b res	5,b ldd

169 POINT A9 xor	c res	5,c cpd

170 SCREEN$ AA xor	d res	5,d ind

171 ATTR AB xor	e res	5,e outd

172 AT AC xor	h res	5,h

173 TAB AD xor	l res	5,i

174 VAL$ AE xor	(hl) res	5,(hl)

175 CODE AF xor	a res	5,a

176 VAL B0 or	b res	6,b ldir

177 LEN B1 or	c res	6,c cpir

178 SIN B2 or	d res	6,d inir

179 COS B3 or	e res	6,e otir

180 TAN B4 or	h res	6,h

181 ASN B5 or	l res	6,l

182 ACS B6 or	(hl) res	6,(hl)

183 ATN B7 or	a res	6,a

184 LN B8 cp	b res	7,b lddr

185 EXP B9 cp	c res	7,c cpdr

186 INT BA cp	d res	7,d indr

187 SQR BB cp	e res	7,e otdr

188 SGN BC cp	h res	7,h

189 ABS BD cp	l res	7,l

190 PEEK BE cp	(hl) res	7,(hl)

191 IN BF cp	a res	7,a

192 USR C0 ret	nz set	0,b

193 STR$ C1 pop	bc set	0,c

194 CHR$ C2 jp	nz,NN set	0,d

195 NOT C3 jp	NN set	0,e

196 BIN C4 call	nz,NN set	0,h

197 OR C5 push	bc set	0,l

198 AND C6 add	a,N set	 0,(hl)

199 <= C7 rst	0 set	0,a

200 >= C8 ret	z set	1,b

201 <> C9 ret set	l,c

202 LINE CA jp	z,NN set	l,d

203 THEN CB set	l,e

204 TO CC call	z,NN set	l,h

205 STEP CD call	NN set	1,l

206 DEF	FN CE adc	a,N set	 1,(hl)

207 CAT CF rst	B set	1,a

208 FORMAT D0 ret	nc set	2,b

209 MOVE D1 pop	de set	2,c

210 ERASE D2 jpnc,NN set	2,d

211 OPEN	# D3 out	(N),a set	2,e

212 CLOSE	# D4 call	nc,NN set	2,h

213 MERGE D5 push	de set	2,l

214 VERIFY D6 sub	N set	 2,(hl)

215 BEEP D7 rst	16 set	2,a

216 CIRCLE D8 ret	c set	3,b

217 INK D9 exx set	3,c

218 PAPER DA jpc,NN set	3,d

219 FLASH DB in	a,(N) set	3,e

220 BRIGHT DC call	c,NN set	3,h

221 INVERSE DD
[prefixes
instructions
using	ix]

set	3,l

222 OVER DE sbc	a,N set	 3,(hl)

223 OUT DF rst	24 set	3,a

224 LPRINT E0 ret	po set	4,b

225 LLIST E1 pop	hl set	4,c

226 STOP E2 jp	po,NN set	4,d

227 READ E3 ex	(sp),hl set	4,e

228 DATA E4 call	po,NN set	4,h

229 RESTORE E5 push	hl set	4,l

230 NEW E6 and	N set	 4,(hl)

231 BORDER E7 rst	32 set	4,a

232 CONTINUE E8 ret	pe set	5,b

233 DIM E9 jp	(hl) set	5,c

234 REM EA jp	pe,NN set	5,d

235 FOR EB ex	de,hl set	5,e

236 GO	TO EC call	pe,NN set	5,h

237 GO	SUB ED 	 set	5,l

238 INPUT EE xor	N set	 5,(hl)

239 LOAD EF rst	40 set	5,a

240 LIST F0 ret	p set	6,b

241 LET F1 pop	af set	6,c

242 PAUSE F2 jp	p,NN set	6,d

243 NEXT F3 di set	6,e

244 POKE F4 call	p,NN set	6,h

245 PRINT F5 push	af set	6,l

246 PLOT F6 or	N set	 6,(hl)

247 RUN F7 rst	48 set	6,a

248 SAVE F8 ret	m set	7,b

249 RANDOMIZE F9 ld	sp,hl set	7,c

250 IF 	 FA jp	m,NN set	7,d

251 CLS FB ei set	7,e

252 DRAW FC call	m,NN set	7,h

253 CLEAR FD
[prefixes
instructions
using	iy]

set	7,l

Appendix	B	

254 RETURN FE cp	N set	 7,(hl)

255 COPY FF rst	56 set	7,a 	

	Chapter	26

Appendix	B:	Reports

These	appear	in	the	Error	window	whenever	the	computer	stops	executing	some
BASIC,	and	explain	why	it	stopped,	whether	for	a	natural	reason,	or	because	an
error	occurred.

The	report	has	a	code	number	or	letter	so	that	you	can	refer	to	the	table	here,	a
brief	 message	 explaining	 what	 happened	 and	 the	 line	 number	 and	 statement
number	within	that	line	where	it	stopped.	(A	command	is	shown	as	line	0.	Within
a	line,	statement	1	is	at	the	beginning,	statement	2	comes	after	the	first	colon	or
THEN,	and	so	on.)

The	 behaviour	 of	CONTINUE	 depends	 very	 much	 on	 the	 reports.	 Normally,
CONTINUE	goes	to	the	line	and	statement	specified	in	the	last	report,	but	there
are	exceptions	with	reports	0,	9	and	D	(also	see	Appendix	C).

Here	is	a	table	showing	all	the	reports.	It	also	tells	you	in	what	circumstances	the
report	 can	 occur,	 and	 this	 refers	 you	 to	 Appendix	 C.	 For	 instance	 error	 A
Invalid	 argument	 can	 occur	 with	 SQR,	 IN,	 ACS	 and	 ASN	 and	 the
entries	for	these	in	Appendix	C	tell	you	exactly	what	arguments	are	invalid.

Code Meaning Situations

0 OK
Any	
Successful	completion,	or	jump	to	a	line	number	bigger	than	any	existing.	This	report	does	not
change	the	line	and	statement	jumped	to	by	CONTINUE.

1
NEXT
without
FOR

NEXT	
The	control	variable	does	not	exist	(it	has	not	been	set	up	by	a	FOR	statement),	but	there	is	an
ordinary	variable	with	the	same	name.

2 Variable
not	found

Any	
For	a	simple	variable	this	will	happen	if	the	variable	is	used	before	it	has	been	assigned	to	in	a
LET,	READ	or	INPUT	statement	or	loaded	from	tape	or	set	up	in	a	FOR	statement.	For	a
subscripted	variable	it	will	happen	if	the	variable	is	used	before	it	has	been	dimensioned	in	a
DIM	statement	or	loaded	from	tape.

3 Subscript
wrong

Subscripted	variables,	Substrings	
A	subscript	is	beyond	the	dimension	of	the	array,	or	there	are	the	wrong	number	of	subscripts.
If	the	subscript	is	negative	or	bigger	than	65535,	then	error	B	will	result.

4 Out	of
memory

LET,	INPUT,	FOR,	DIM,	GO	SUB,	LOAD,	MERGE.	
Sometimes	during	expression	evaluation,	there	is	not	enough	room	in	the	computer	for	what
you	are	trying	to	do.	If	the	computer	really	seems	to	be	stuck	in	this	state,	you	may	have	to
clear	out	the	command	line	using	Backspace	and	then	delete	a	program	line	or	two	(with	the
intention	of	putting	 them	back	afterwards)	 to	give	yourself	 room	to	manoeuvre	with	 -	 say	 -
CLEAR.

5 Out	of
screen

INPUT,	PRINT	AT	
An	INPUT	statement	has	tried	to	generate	more	than	23	lines	in	the	lower	half	of	the	screen.
Also	occurs	with	PRINT	AT	22,	.	.	.

6 Number
too	big

Any	arithmetic	
Calculations	have	led	to	a	number	greater	than	about	1038.

7
RETURN
without
GO	SUB

RETURN	
There	has	been	one	more	RETURN	than	there	were	GO	SUBs.

8 End	of
file Microdrive,	etc	operations

9 STOP
statement

STOP	
After	this,	CONTINUE	will	not	repeat	the	STOP,	but	carries	on	with	the	statement	after.

A Invalid
argument

SQR,	LN,	ASN,	ACS,	USR	(with	string	argument)	
The	argument	for	a	function	is	no	good	for	some	reason.

B
Integer
out	of
range

RUN,	RANDOMIZE,	POKE,	DIM,	GO	TO,	GO	SUB,	LIST,	LLIST,	PAUSE,	PLOT,
CHR$,	PEEK,	USR	(with	numeric	argument),	Array	access	
When	an	integer	is	required,	the	floating	point	argument	is	rounded	to	the	nearest	integer.	If
this	is	outside	a	suitable	range	then	error	B	results.	For	array	access,	see	also	error	3.

C Nonsense
in	BASIC

VAL,	VAL$	
The	text	of	the	(string)	argument	does	not	form	a	valid	expression.

LOAD,	SAVE,	VERIFY,	MERGE,	LPRINT,	LLIST,	COPY.	

D BREAK	-
CONT
repeats

Also	when	the	computer	asks	scroll?	and	you	type	N,	Space	or	STOP.	
Break	was	pressed	during	some	peripheral	operation.	The	behaviour	of	CONTINUE	after	this
report	is	normal	in	that	it	repeats	the	statement.	Compare	with	report	L.

E Out	of
DATA

READ	
You	have	tried	to	READ	past	the	end	of	the	DATA	list.

F Invalid
file	name

SAVE	
SAVE	with	name	empty	or	longer	than	10	characters	(on	an	original	Spectrum).

G No	room
for	line

Entering	a	line	into	the	program	
There	is	not	enough	room	left	in	memory	to	accommodate	the	new	program	line.

H STOP	in
INPUT

INPUT	
Some	INPUT	data	started	with	STOP,	or	-	for	INPUT	LINE	-	 	was	pressed.	Unlike	the
case	 with	 report	 9,	 after	 report	 H	 CONTINUE	 will	 behave	 normally,	 by	 repeating	 the
INPUT	statement.

I
FOR
without
NEXT

FOR	
There	 was	 a	 FOR	 loop	 to	 be	 executed	 no	 times	 (e.g.	 FOR	 n=1	 TO	 0)	 and	 the
corresponding	NEXT	statement	could	not	be	found.

J
Invalid
I/O
device

Microdrive,	etc	operations

K Invalid
colour

INK,	PAPER,	BORDER,	FLASH,	BRIGHT,	INVERSE,	OVER;	 also	 after	 one	 of	 the
corresponding	control	characters.	
The	number	specified	is	not	an	appropriate	value.

L
BREAK
into
program

Any	
Break	pressed.	This	is	detected	between	two	statements.	The	line	and	statement	number	in	the
report	refer	to	the	statement	before	Break	was	pressed,	but	CONTINUE	goes	to	the	statement
after	(allowing	for	any	jumps	to	be	done),	so	it	does	not	repeat	any	statements.

M RAMTOP
no	good

CLEAR;	possibly	in	RUN	
The	number	specified	for	RAMTOP	is	either	too	big	or	too	small.

N Statement
lost

RETURN,	NEXT,	CONTINUE	
Jump	to	a	statement	that	no	longer	exists.

O Invalid
stream Microdrive,	etc	operations

P
FN
without
DEF

FN	
A	user-defined	function	was	called	but	no	corresponding	definition	could	be	found.

Q Parameter
error

FN	
Wrong	number	of	arguments,	or	one	of	them	is	the	wrong	type	(string	instead	of	number	or
vice	versa).

R
File
loading
error

VERIFY,	LOAD	or	MERGE	
A	file	on	disk	could	not	be	read	in,	or	would	not	verify.

The	following	reports	are	128k	only,	and	will	only	appear	when	using	one	of	the
128k	commands.	They	are	not	common	to	 the	48k	Spectrum,	hence	 their	code
appearing	in	reports	in	lower	case.

Code Meaning Situations

a MERGE	error MERGE	!	
MERGE	!	would	not	execute	for	some	reason	-	either	size	or	file	type	wrong.

b Wrong	file
type

MERGE	!,	LOAD	!	
A	 file	 of	 inappropriate	 type	 was	 specified	 during	 silicon	 disc	 operation,	 for	 instance	 a
CODE	file	in	LOAD	!	"name".

c CODE	error LOAD	!	"file"	CODE	
The	size	of	the	file	would	overrun	the	top	of	memory.

d Too	many
brackets

PLAY	
Too	many	brackets	around	a	repeated	phrase	in	one	of	the	arguments.

e File	already
exists

SAVE	!	
The	file	name	specified	has	already	been	used.

f Invalid	name
ERASE	!	

Appendix	C	

The	file	name	specified	is	empty	or	above	10	characters	in	length.

h File	does	not
exist

LOAD	!,	ERASE	!	
There	is	no	file	in	the	silicon	disc	that	has	the	name	specified.

i Invalid	device
FORMAT	
The	 device	 name	 following	 the	 FORMAT	 command	 does	 not	 exist	 or	 orrespond	 to	 a
physical	device.

j Invalid	baud
rate

FORMAT	
The	baud	rate	for	the	RS232	was	set	to	zero.

k Invalid	note
name

PLAY	
PLAY	came	across	a	note	or	command	it	didn't	recognise,	or	a	command	that	was	in	lower
case.

l Number	too
big

PLAY	
A	parameter	for	a	command	is	an	order	of	magnitude	too	big.

m Note	out	of
range

PLAY	
A	series	of	sharps	or	flats	has	taken	a	note	beyond	the	range	of	the	sound	chip.

n Out	of	range
PLAY	
A	parameter	 for	 a	 command	 is	 too	big	or	 too	 small.	 If	 the	 error	 is	 very	 large,	 error	 "l"
results.

o Too	many	tied
notes

PLAY	
An	attempt	was	made	to	tie	too	many	notes	together.

	Appendix	A

Appendix	C

Part	1:	A	description	of	the	ZX	Spectrum	for	reference

In	the	original	paper	version	of	this	manual,	the	first	section	of	this	appendix	was
a	repeat	of	that	part	of	Chapter	1	concerning	the	keyboard	and	display.

The	display	window

Each	character	position	has	attributes	specifying	its	paper	(background)	and	ink
(foreground)	colours,	a	two-level	brightness,	and	whether	it	flashes	or	not.	The
available	colours	are	black,	blue,	red,	magenta,	green,	yellow	and	white.

The	 edge	 of	 the	 screen	 can	 be	 set	 to	 any	 of	 the	 colours	 using	 the	 border
statement.

A	character	position	is	divided	into	8×8	pixels	and	high	resolution	graphics	are
obtained	by	setting	the	pixels	individually	to	show	either	the	ink	or	paper	colour
for	that	character	position.

The	attributes	at	a	character	position	are	adjusted	whenever	a	character	is	written
there	or	a	pixel	is	plotted.	The	exact	manner	of	the	adjustment	is	determined	by
the	 pnnting	 parameters.	 of	 which	 there	 are	 two	 sets	 (called	 permanent	 and
temporary)	 of	 six:	 the	 PAPER,	 INK,	 FLASH,	 BRIGHT,	 INVERSE	 and
OVER	parameters.	Permanent	parameters	for	the	top	part	are	set	up	by	PAPER,
INK,	etc,	statements,	and	last	until	further	notice.	(Initially	they	are	black	ink	on
white	 paper	 with	 normal	 brightness,	 no	 flashing,	 normal	 video	 and	 no
overprinting).	Permanent	parameters	for	the	bottom	part	use	the	border	colour	as
the	paper	colour,	with	a	black	or	white	contrasting	ink	colour,	normal	brightness,
no	flashing,	normal	video	and	no	overprinting.

Temporary	 parameters	 are	 set	 up	 by	 PAPER,	 INK,	 etc,	 items,	 which	 are
embedded	 in	 PRINT,	 LPRINT,	 INPUT,	 PLOT,	 DRAW	 and	 CIRCLE
statements,	 and	 also	 by	 PAPER,	 INK,	 etc	 control	 characters	 when	 they	 are
printed	 to	 the	 television	 -	 they	 are	 followed	 by	 a	 further	 byte	 to	 specify	 the
parameter	value.	Temporary	parameters	 last	only	 to	 the	end	of	 the	PRINT	 (or

whatever)	 statement,	 or,	 in	 INPUT	 statements,	 until	 some	 INPUT	 data	 is
needed	from	the	keyboard,	when	they	are	replaced	by	the	permanent	parameters.

PAPER	and	INK	parameters	are	in	the	range	0	to	9.	Parameters	0	to	7	are	the
colours	used	when	a	character	is	printed:

0 Black

1 Blue

2 Red

3 Magenta

4 Green

5 Cyan

6 Yellow

7 White

Parameter	 8	 ('transparent')	 specifies	 that	 the	 colour	 on	 the	 screen	 is	 to	 be	 left
unchanged	when	a	character	is	printed.

Parameter	9	('contrast')	specifies	that	the	colour	in	question	(paper	or	ink)	is	to
be	made	either	white	or	black	to	show	up	against	the	other	colour.

FLASH	 and	 BRIGHT	 parameters	 are	 0,	 1	 or	 8:	 1	 means	 that	 flashing	 or
brightness	is	turned	on,	0	that	it	is	turned	off,	and	8	('transparent')	that	it	is	left
unchanged	at	any	character	position.

OVER	and	INVERSE	parameters	are	0	or	1:

OVER	0	new	characters	obliterate	old	ones	
OVER	1	the	bit	patterns	of	the	old	and	new	characters	are	combined	using	an
'exclusive	or'	operation	(overprinting)	
INVERSE	0	new	characters	are	printed	as	ink	colour	on	paper	colour	(normal
video)	
INVERSE	1	new	characters	are	printed	as	paper	colour	on	ink	colour	(inverse
video)

When	a	TAB	control	character	is	received	by	the	television,	two	more	bytes	are
expected	 to	 specify	 a	 tab	 stop	 n	 (less	 significant	 byte	 first).	 This	 is	 reduced
modulo	32	to	n0	(say),	and	then	sufficient	spaces	are	printed	to	move	the	printing
position	 into	 column	 n0.	 When	 a	 comma	 control	 character	 is	 received,	 then
sufficient	 spaces	 (at	 least	 one)	 are	 printed	 to	 move	 the	 printing	 position	 into
column	 0	 or	 column	 16.	 When	 an	 Enter	 control	 character	 is	 received,	 the
printing	position	is	moved	on	to	the	next	line.

The	printer

Output	to	the	ZX	printer	is	via	a	buffer	one	line	(32	characters)	long,	and	a	line
is	sent	to	the	printer

1.	 when	printing	spills	over	from	one	line	to	the	next,
2.	 when	an	Enter	character	is	received,
3.	 at	 the	 end	 of	 the	 program,	 if	 there	 is	 anything	 left

unprinted,
4.	 when	 a	 TAB	 control	 or	 comma	 control	 moves	 the

printing	position	on	to	a	new	line.

TAB	 controls	 and	 comma	 controls	 output	 spaces	 in	 the	 same	 way	 as	 on	 the
television.

The	AT	 control	 changes	 the	 printing	 position	 using	 the	 column	 number,	 and
ignores	the	line	number.

The	printer	is	affected	by	INVERSE	and	OVER	controls	(and	also	statements)
in	 the	 same	 way	 as	 the	 screen	 is,	 but	 not	 by	 PAPER,	 INK,	 FLASH	 or
BRIGHT.

The	printer	will	stop	with	error	B	 if	Esc	 is	pressed.	 If	 the	printer	 is	absent	 the
output	will	simply	be	lost.

Part	2:	The	BASIC

Numbers	are	stored	to	an	accuracy	of	9	or	10	digits.	The	largest	number	you	can
get	is	about	1038,	and	the	smallest	(positive)	number	is	about	4×10-39.

A	number	is	stored	in	floating	point	binary	with	one	exponent	byte	e	(1≤e≤255),
and	four	mantissa	bytes	m	(1/2≤m<1).	This	represents	the	number	m×2e-128.

Since	1/2≤m<1,	the	most	significant	bit	of	the	mantissa	m	is	always	1.	Therefore
in	 actual	 fact	 we	 can	 replace	 it	 with	 a	 bit	 to	 show	 the	 sign	 -	 0	 for	 positive
numbers,	1	for	negative.

Small	 integers	 have	 a	 special	 representation	 in	 which	 the	 first	 byte	 is	 0,	 the
second	is	a	sign	byte	(0	or	FFh)	and	the	third	and	fourth	are	the	integer	in	twos
complement	form,	the	less	significant	byte	first.

Numeric	 variables	 have	 names	 of	 arbitrary	 length,	 starting	 with	 a	 letter	 and
continuing	with	letters	and	digits.	Spaces	and	colour	controls	are	ignored	and	all
letters	are	converted	to	lower-case	letters.

Control	variables	of	FOR-NEXT	loops	have	names	a	single	letter	long.

Numeric	arrays	have	names	a	single	letter	 long,	which	may	be	the	same	as	the
name	 of	 a	 simple	 variable.	 They	 may	 have	 arbitrarily	 many	 dimensions	 of
arbitrary	size.	Subscripts	start	at	1.

Strings	 are	 completely	 flexible	 in	 length.	 The	 name	 of	 a	 string	 consists	 of	 a
single	letter	followed	by	$.

String	arrays	can	have	arbitrarily	many	dimensions	of	arbitrary	size.	The	name	is
a	single	letter	followed	by	$	and	may	not	be	the	same	as	the	name	of	a	string.
All	the	strings	in	a	given	array	have	the	same	fixed	length,	which	is	specified	as
an	extra,	final	dimension	in	the	DIM	statement.	Subscripts	start	at	1.

Slicing:	Substrings	of	strings	may	be	specified	using	slicers.	A	slicer	can	be

1.	 empty	or
2.	 numerical	expression	or
3.	 optional	numerical	expression	TO	optional	numerical

expression

and	is	used	in	expressing	a	substring	either	by

(a)	string	expression	(slicer)	
(b)	string	array	variable	(subscript,...,	subscript,	slicer)	
which	means	the	same	as	
string	array	variable	(subscript	.	.	.	,	subscript)	(slicer)

In	(a),	suppose	the	string	expression	has	the	value	s$.

If	the	slicer	is	empty,	the	result	is	s$	considered	as	a	substring	of	itself.

If	 the	 slicer	 is	 a	 numerical	 expression	with	 value	m,	 then	 the	 result	 is	 the	mth
character	of	s$	(a	substring	of	length	1).

If	the	slicer	has	the	form	(iii),	then	suppose	the	first	numerical	expression	has	the
value	m	(the	default	value	is	1),	and	the	second,	n	(the	default	value	is	the	length
of	s$).

If	1≤m≤n≤the	 length	of	s$	 then	 the	result	 is	 the	substring	of	s$	 starting	with
the	mth	character	and	ending	with	the	nth.	If	0≤n<m	then	the	result	is	the	empty

string.	Otherwise,	error	3	results.

Slicing	 is	 performed	 before	 functions	 or	 operations	 are	 evaluated,	 unless
brackets	dictate	otherwise.

Substrings	can	be	assigned	to	(see	LET).

If	a	string	quote	is	to	be	written	in	a	string	literal,	then	it	must	be	doubled.

Functions

The	 argument	 of	 a	 function	 does	 not	 need	 brackets	 if	 it	 is	 a	 constant	 or	 a
(possibly	subscripted	or	sliced)	variable.

ABS Gives	the	absolute	magnitude	of	a	numeric-expression.

ACS Gives	the	arc-cosine	of	a	numeric	expression.

AND Logical	conjunction.

ASN Gives	the	arc-sine	of	a	numeric	expression.

AT Moves	the	print	position	to	a	point	on	the	screen.

ATN Gives	the	arc-tangent	of	a	numeric	expression.

ATTR Gives	the	number	whose	binary	form	codes	the	attributes	of	a	line.

BIN Binary	representation.

CHR$ Gives	the	character	whose	code	is	a	given	integer.

CODE Gives	the	code	of	the	first	character	in	a	string.

COS Gives	the	cosine	of	a	numeric	expression.

EXP Gives	the	value	of	e	to	a	given	power.

FN Gives	the	return	value	from	a	user-defined	function.

IN Gives	the	result	from	inputting	at	processor	level	from	a	port.

INKEY$ Reads	the	keyboard.

INT Gives	the	integer	part	of	a	numeric	expression.

LEN Gives	the	length	of	a	string	expression.

LN Gives	the	natural	logarithm	(to	base	e)	of	a	numeric	expression.

NOT Logical	inversion.

OR Logical	disjunction.

PEEK Gives	the	value	of	a	byte	in	memory.

PI Gives	the	value	of	the	constant	π.

POINT Determines	whether	a	pixel	is	ink	colour	or	paper	colour.

RND Gives	the	next	pseudo-random	number	in	a	sequence.

SCREEN$ Gives	the	character	that	appears	on	the	screen	at	the	given	position.

SGN Gives	the	sign	of	a	numeric	expression.

SIN Gives	the	sine	of	a	numeric	expression.

SQR Gives	the	square	root	of	a	numeric	expression.

STR$ Gives	the	string	of	characters	that	would	be	displayed	if	a	numeric	expression	were	printed.

TAB Shift	the	print	position	to	a	column	on	the	current	line.

TAN Gives	the	tangent	of	a	numeric	expression.

USR
Calls	 a	machine	 code	 subroutine,	 or	 gives	 the	 address	 of	 the	 first	 bit	 pattern	 for	 a	 user-defined
graphic.

VAL Gives	the	value	of	a	string	expression	evaluated	as	a	numeric	expression.

VAL$
Gives	the	value	of	a	string	expression	evaluated	as	a	numeric	expression	and	converted	back	to	a
string.

The	following	are	binary	operations:

+ Addition	(on	numbers),	or	concatenation	(on	strings)

- Subtraction

* Multiplication

/ Division

↑ Raising	to	a	power.	Error	B	if	the	left	operand	is	negative

= Equals

> Greater	than

Both	operands	must	be	of	 the	same	type.	The	result	 is	a	number:	1	 if	 the	comparison
holds	and	0	if	it	does	not

< Less	than

<=
Less	than	or	equal
to

>=
Greater	 than	 or
equal	to

<> Not	equal	to

Functions	and	operations	have	the	following	priorities:

Operation Priority

Subscripting	and	slicing 12

All	functions	except	NOT	and	unary	minus 11

↑ 10

Unary	minus	(i.e.	minus	just	used	to	negate	something) 10

*,	/ 8

+,	-	(minus	used	to	subtract	one	number	from	another) 6

=,	>,	<,	<=,	>=,	<> 5

NOT 4

AND 3

OR 2

Statements

Note	 that	 arbitrary	 expressions	 are	 allowed	 everywhere	 (except	 for	 the	 line
number	at	the	beginning	of	a	statement).

All	 statements	 can	be	used	 either	 as	 commands	or	 in	programs	 (although	 they
can	 be	more	 sensible	 in	 one	 than	 the	 other).	A	 command	or	 program	 line	 can
have	 several	 statements,	 separated	 by	 colons	 (:).	 There	 is	 no	 restriction	 on
whereabouts	in	a	line	any	particular	statement	can	occur	-	although	see	IF	and
REM.

BEEP Sounds	a	note	through	the	loudspeaker.

BORDER Sets	the	colour	of	the	border	of	the	screen.

BRIGHT Sets	brightness	of	characters	subsequently	printed.

CAT Microdrive	file	handling	command.

CIRCLE Draws	an	arc	of	a	circle.

CLEAR Deletes	all	variables,	freeing	the	space	they	occupied.

CLOSE	# Microdrive	file	handling	command.

CLS Clears	the	display	file.

CONTINUE Continues	the	program,	starting	where	it	left	off	last	time	it	stopped.

COPY Sends	a	copy	of	the	top	22	lines	of	display	to	the	printer.

DATA Part	of	the	DATA	list.

DEF	FN User-defined	function	definition.

DIM Sets	up	an	array	with	specified	dimensions.

DRAW Draws	a	line	from	the	current	plot	position.

ERASE Microdrive	file	handling	command.

FLASH Defines	whether	characters	will	be	flashing	or	steady.

FOR Sets	up	a	FOR-NEXT	loop.

FORMAT Microdrive	file	handling	command.

GO	SUB Jumps	to	a	subroutine.

GO	TO Jumps	to	a	line.

IF Conditional	execution.

INK Sets	the	ink	colour	of	characters	subsequently	printed.

INPUT Waits	for	input	of	an	expression	from	the	keyboard.

INVERSE Controls	inversion	of	characters	subsequently	printed.

LET Assigns	the	value	of	an	expression	to	a	variable.

LINE Removes	quotes	on	string	variable	INPUTs,	Autostarts	saved	programs.

LIST Lists	the	program	to	the	upper	part	of	the	screen.

LLIST Lists	the	program	to	the	printer.

LOAD Loads	a	program	or	data.

LPRINT Outputs	characters	to	the	printer.

MERGE Loads	a	program	and	merges	it	with	the	existing	one.

MOVE Microdrive	file	handling	command.

NEW Starts	the	BASIC	system	off	anew,	deleting	program	and	variables.

NEXT Continues	a	FOR-NEXT	loop.

OPEN	# Microdrive	file	handling	command.

OUT Outputs	a	byte	at	a	port	at	the	processor	level.

OVER Controls	overprinting	for	characters	subsequently	printed.

PAPER Sets	the	paper	colour	of	characters	subsequently	printed.

PAUSE Stops	computing	for	the	specified	number	of	frames	or	until	a	key	is	pressed.

PLOT Prints	an	ink	spot	at	a	pixel.

POKE Writes	a	value	to	the	byte	in	memory.

PRINT Outputs	characters	to	the	screen.

RANDOMIZE Seeds	the	random	number	generator.

READ Assigns	to	variables	using	successive	expressions	in	the	DATA	list.

REM No	effect.

RESTORE Restores	the	DATA	pointer	to	the	first	DATA	statement.

RETURN Returns	from	a	subroutine.

RUN Runs	the	program.

SAVE Saves	a	program	or	data.

STOP Stops	the	program	with	report	9.

TAB Stops	the	program	with	report	9.

THEN Separates	an	IF	condition	from	the	code	to	be	executed.

TO Denotes	the	limit	of	a	FOR	statement,	and	a	string	slicer.

VERIFY Compares	a	saved	program	with	the	one	in	memory.

	Appendix	B

Manual	credits

Sinclair	ZX	Spectrum:	BASIC	Programming	By	Steven	Vickers.	
Edited	by	Robin	Bradbeer.

Original	edition	published	in	1982	by	Sinclair	Research	Limited.	
Subsequently	converted	to	ASCII	text	and	published	in	1995	by	Chris	Owen	on
behalf	of	Amstrad	plc.	
HTML	version	by	Pete	Robinson.	
This	 version	 reformatted	 and	 modified	 for	 BASin	 by	 Paul	 E	 Collins	 and
published	in	2004.

This	 manual	 is	 freely	 distributable	 but	 must	 not	 be	 distributed	 without	 this
notice.

©	Copyright	1995	Amstrad	plc	-	all	rights	reserved.

ABS	ABSolute	value

Function

ABS	gives	the	absolute	magnitude	of	a	numeric	value,	that	is	the	value	without	a
positive	or	negative	sign.

How	to	use	ABS

ABS	 is	 followed	 by	 a	 numeric	 value.	 An	 expression	 must	 be	 enclosed	 in
brackets,	for	example

50	LET	x=ABS(y-z)

ABS	returns	the	absolute	value	of	the	numeric	value.

Example

The	command

PRINT	ABS	-34.2

displays	34.2.

Format

ABS	num-const
ABS	num-var
ABS	(num-expr)

See	also

Chapter	9.

ACS	Arc	CoSine

Function

ACS	calculates	the	value	of	an	angle	from	its	cosine.

How	to	use	ACS

ACS	 is	 followed	 by	 a	 numeric	 value.	 An	 expression	 must	 be	 enclosed	 in
brackets,	for	example

60	LET	x=ACS	(y*z)

The	 value	 following	ACS	 (y*z	 above)	 is	 the	 cosine	 of	 the	 required	 angle	 and
may	range	from	-1	 to	1.	ACS	the	returns	 the	value	of	 the	angle	 in	radians.	To
convert	radians	to	degrees,	multiply	the	value	returned	by	ACS	by	180/PI.

Example

The	command

PRINT	180/PI	*	ACS	0.5

displays	60,	the	angle	in	degrees	that	has	a	cosine	of	0.5.

Format

ACS	num-const
ACS	num-var
ACS	(num-expr)

See	also

Chapter	10.

AND

Logical	Operator/Function

AND	acts	as	a	logical	operator	to	test	the	truth	of	a	combination	of	conditions.
Only	if	all	conditions	are	true	is	the	overall	combination	true.	AND	also	acts	as	a
function	to	perform	binary	operations	on	two	numeric	or	string	values.

How	to	use	AND

As	a	logical	operator,	AND	links	two	conditions	in	a	statement	where	the	truth
of	the	whole	is	to	be	tested,	for	example

90	IF	x=y+z	AND	time<10	THEN	PRINT	"Correct"

Only	if	both	conditions	are	true	will	the	computer	display	"Correct".	If	either	or
both	 conditions	 are	 false,	 then	 the	 whole	 combination	 is	 false	 and	 in	 this
example,	the	program	proceeds	to	the	next	line.

AND	as	a	function

As	a	function,	AND	can	operate	on	two	numeric	values,	for	example

50	LET	x=y	AND	z

AND	returns	the	first	value	(y)	if	the	second	(z)	is	not	equal	to	0,	and	returns	0	if
the	second	value(z)	is	0.

AND	may	also	operate	on	a	string	value	providing	it	precedes	AND.	A	numeric
value	must	always	follow	AND,	for	example

50	LET	a$=b$	AND	z

AND	returns	 the	first	value	(b$)	 if	 the	second	(z)	 is	non-zero	and	a	null	string
("")	if	the	second	value	(z)	is	0.

Note	 that	 the	BASIC	 assigns	 a	 value	 of	 1	 to	 a	 true	 condition	 and	 0	 to	 a	 false
condition,	and	recognises	any	non-zero	value	as	true	and	0	as	false.	It	does	not
evaluate	 combinations	 of	 numeric	 values	 in	 accordance	 with	 standard	 truth
tables.

Examples

60	LET	correct=(x=y+z)	AND	time<10

70	LET	score=score+10*(1	AND	correct)

80	LET	a$=("Out	Of	Time	Or	Not	"	AND	NOT	correct)+"Correct"

If	 the	 two	 conditions	 in	 line	 60	 are	 true	 then	 the	 numeric	 variable	 correct	 is
assigned	a	value	of	1.	The	score	is	increased	by	10	and	a$	becomes	"Correct".	If
either	 of	 the	 conditions	 is	 false,	 then	 correct	 has	 a	 value	 of	 0;	 score	 is
unchanged,	and	a$	becomes	"Out	Of	Time	Or	Not	Correct".

Format

cond	AND	cond
num-expr	AND	num-expr
string-expr	AND	num-expr

See	also

Chapter	13.

ASN	Arc	SiNe

Function

ASN	calculates	the	value	of	an	angle	from	its	sine.

How	to	use	ASN

ASN	 is	 followed	 by	 a	 numeric	 value.	 An	 expression	 must	 be	 enclosed	 in
brackets,	for	example

60	LET	x=ASN	(y*z)

The	 value	 following	ASN	 (y*z	 above)	 is	 the	 sine	 of	 the	 required	 angle	 and	 it
may	range	from	-1	to	1.	ASN	then	returns	the	value	of	the	angle	in	radians.	To
convert	radians	to	degrees,	multiply	the	value	returned	by	ASN	by	180/PI.

Example

The	command

PRINT	180/PI	*	ACS	0.5

display	30,	the	angle	in	degress	that	has	a	sine	of	0.5.

Format

ASN	num-const
ASN	num-var
ASN	(num-expr)

See	also

Chapter	10.

AT

PRINT	item

AT	is	used	in	PRINT	statements	to	change	the	position	at	which	new	characters
are	 displayed	 on	 the	 screen.	 AT	 is	 also	 used	 to	 change	 the	 place	 that	 INPUT
items	are	displayed	in	the	lower	screen.

How	to	use	AT

AT	may	be	used	to	form	a	statement.	It	is	preceded	by	PRINT	or	INPUT,	and	is
followed	by	two	numeric	values	separated	by	a	comma,	for	example

10	PRINT	AT	21,0;"The	lowest	line"

The	first	value	following	AT	(21	above)	defines	the	row	component	of	the	new
position.	This	is	rounded	down	to	the	nearest	integer	if	necessary,	and	may	range
from	0	to	21.	The	second	value	is	also	rounded	down	if	necessary	and	may	then
range	from	0	to	31,	and	defines	the	column	of	the	new	position.	Any	characters
then	displayed	will	start	at	this	new	position.

Using	AT	with	INPUT

In	 an	 INPUT	 statement,	AT	will	 change	 the	 position	 on	 the	 lower	 screen	 that
new	 prompts	 appear.	 The	 first	 value	 moves	 the	 prompt	 position	 up	 as	 it
increases.	The	second	value	changes	the	column	as	above.

Format

AT	int-num-expr,	int-num-expr

See	also

Chapter	15;	INPUT;	LPRINT;	PRINT.

ATN	Arc	TaNgent

Function

ATN	calculates	the	value	of	an	angle	from	its	tangent.

How	to	use	ATN

ATN	 is	 followed	 by	 a	 numeric	 value.	 An	 expression	 must	 be	 enclosed	 in
brackets,	for	example

60	LET	x=ATN	(y*z)

The	 value	 following	ATN	 (y*z	 above)	 is	 the	 cosine	 of	 the	 required	 angle	 and
may	range	from	-1	 to	1.	ATN	the	returns	 the	value	of	 the	angle	 in	radians.	To
convert	radians	to	degrees,	multiply	the	value	returned	by	ATN	by	180/PI.

Example

The	command

PRINT	180/PI	*	ATN	0.5

displays	45,	the	angle	in	degrees	that	has	a	tangent	of	0.5.

Format

ATN	num-const
ATN	num-var
ATN	(num-expr)

See	also

Chapter	10.

ATTR	ATTRibutes

Function

ATTR	gives	the	attributes	of	a	specified	character	position	on	the	screen.	These
are	the	ink	and	paper	colours,	brightness	and	flash	status	of	the	character	at	the
position.

How	to	use	ATTR

ATTR	is	followed	by	two	numeric	values	separated	by	a	comma	and	enclosed	in
brackets,	for	example

150	IF	ATTR(v,h)=115	THEN	GO	SUB	2000

The	first	value	following	ATTR	(v	above)	may	range	from	0	to	23	and	is	the	line
number	of	a	position	on	the	screen.	The	second	value	(h	above)	may	range	from
0	to	31,	and	is	the	column	number	of	the	position.	ATTR	then	returns	a	number
from	0	to	255.	This	number	is	the	sum	of	the	attributes	at	the	specified	position,
and	is	made	up	as	follows:

Ink	colour	(0	to	7)

Paper	colour	(8	times	0	to	7)

Bright	(64)

Flashing	(128)

Example

If	 a	 character	 at	 position	 11,16	 is	 displayed	 in	 ink	 colour	 3	 (magenta),	 paper
colour	6	(yellow),	and	is	bright	but	not	flashing,	then	the	command

PRINT	ATTR(11,16)

displays	115	(3	+	8×6	+	64	+	0).

ATTR	in	binary	form

ATTR	returns	one	byte	in	which	bit	7	(most	significant)	is	1	for	flashing	or	0	for
normal,	bit	6	is	1	for	bright	or	0	for	normal,	bits	5	to	3	are	the	paper	colour	(in
binary)	and	bits	2	to	0	are	the	ink	colour.

Format

ATTR	(num-expr,	num-expr)

BEEP

Statement/Command

BEEP	 makes	 the	 loudspeaker	 produce	 a	 single	 note	 of	 a	 given	 duration	 and
pitch.

How	to	use	BEEP

BEEP	may	be	used	to	form	a	statement	in	a	program	or	a	direct	command.	It	is
followed	by	two	numeric	values	separated	by	a	comma,	for	example

80	BEEP	x,y

The	first	value	(x)	may	range	from	0	to	10	and	defines	the	duration	of	the	note	in
seconds.	The	second	value	(y)	may	range	from	-60	to	69	and	defines	the	pitch	of
the	note	in	semitones	below	middle	C	if	negative	and	above	middle	C	if	positive.

Example

The	command

BEEP	0.5,1

causes	the	note	C#	above	middle	C	to	sound	for	half	a	second.

Format

BEEP	num-expr,	num-expr

See	also

Chapter	19.

BIN	BINary	number

BIN	turns	a	binary	number	into	a	decimal	number.

How	to	use	BIN

BIN	 is	 followed	by	a	binary	number	consisting	of	up	 to	sixteen	1s	and	0s,	 for
example

50	POKE	USR	"a",	BIN	10101010

BIN	 returns	 the	 decimal	 value	 of	 the	 binary	 number.	 It	 is	 commonly	 used	 in
conjunction	with	 POKE	 and	USR	 as	 above	 for	 creating	 user-defined	 graphics
characters,	with	1	signifying	a	pixel	of	ink	colour,	and	0	a	pixel	of	paper	colour.

Example

The	command

PRINT	BIN	11111110

displays	254,	the	decimal	value	of	the	binary	number.

Format

BIN	[1][0]

See	also

Chapter	14.

BORDER

Statement/Command

BORDER	specifies	the	colour	of	the	border	around	the	screen	display	area.

How	to	use	BORDER

BORDER	may	be	used	as	a	direct	command	or	as	a	statement	in	a	program.	It	is
followed	by	a	numeric	value,	for	example

30	BORDER	RND*7

The	value	following	BORDER	is	rounded	to	the	nearest	integer	and	specifies	the
colour	of	the	border	as	follows:

0	Black
1	Blue
2	Red
3	Magenta
4	Green
5	Cyan
6	Yellow
7	White

Note	 that	BORDER	also	 sets	 the	paper	 colour	of	 the	 lower	part	of	 the	 screen.
Unlike	INK	and	PAPER,	a	BORDER	statement	cannot	be	embedded	(inserted)
in	a	PRINT	statement.

Format

BORDER	int-num-expr

See	also

Chapter	16.

BRIGHT

Statement/Command

BRIGHT	causes	characters	to	be	displayed	in	brighter	colours	than	normal.

How	to	use	BRIGHT

BRIGHT	 may	 be	 used	 as	 a	 direct	 command	 but	 is	 normally	 used	 to	 form	 a
statement	in	a	program.	It	is	followed	by	a	numeric	value,	for	example

80	BRIGHT	1

The	value	following	BRIGHT	is	rounded	to	the	nearest	integer	if	necessary	and
may	 then	 be	 either	 0,	 1	 or	 8.	A	 value	 of	 1	 causes	 all	 characters	 subsequently
displayed	by	PRINT	or	INPUT	statements	to	appear	in	a	brighter	ink	and	paper
colour,	and	a	value	of	8	causes	bright	character	positions	 to	 remain	bright	and
normal	 character	 positions	 to	 remain	 normal	when	 new	 characters	 are	 printed
there.	BRIGHT	followed	by	0	cancels	both	BRIGHT	1	and	BRIGHT	8	so	that	all
characters	subsequently	displayed	are	normal.

BRIGHT	may	also	be	embedded	(inserted)	within	display	statements	formed	by
PRINT,	INPUT,	PLOT,	DRAW	and	CIRCLE.	BRIGHT	follows	the	keyword	but
precedes	the	data	or	display	parameters;	it	is	followed	by	the	same	values	and	a
semicolon,	for	example

50	PRINT	BRIGHT	1;"WARNING"

The	effect	of	BRIGHT	is	then	local	and	applies	only	to	the	characters	displayed,
point	 plotted	 or	 line	 drawn	 by	 the	 display	 statement.	 Note	 that	 BRIGHT	 1
brightens	 the	paper	colour	of	 the	whole	 character	position	of	8×8	pixels	 if	any
pixel	in	the	position	in	plotted	in	an	ink	colour.

Format

BRIGHT	int-num-expr	[;]

See	also

Chapter	16.

CAT	CATalogue

Microdrive	file	handling	command.

CAT	and	the	Silicon	Disc

The	128k	Silicon	Disc	used	the	CAT	command	to	list	the	contents	of	the	disc	to
the	screen.	Files	are	displayed	sequentially	 in	alphabetical	order	-	and	start	on-
screen	at	the	current	PRINT	position,	using	one	line	per	file.	The	format	of	the
CAT	for	this	purpose	is...

CAT	!

See	also

Chapter	20
128k	Commands	in	BASin

CHR$	CHaRacter	string

Function

The	 characters	 and	 keywords	 available	 on	 the	 keyboard	 plus	 any	 user-defined
graphics	make	up	the	BASIC	character	set.	By	using	CHR$	and	a	code	number,
each	 one	 can	 be	 obtained	 as	 a	 string.	 The	 character	 set	 also	 contains	 several
display	codes	 that	affect	 the	display	of	characters.	These	codes	can	be	brought
into	 operation	 on	 characters	 displayed	 by	 using	 PRINT	 before	 CHR$.	 The
complete	character	set	can	be	found	here.

How	to	use	CHR$

CHR$	is	followed	by	a	numeric	value,	for	example

80	PRINT	CHR$	x

An	 expression	 must	 be	 enclosed	 by	 brackets.	 The	 value	 following	 CHR$	 (x
above)	 is	 rounded	 to	 the	nearest	 integer.	 If	 it	 is	 in	 the	 range	32	 to	255,	CHR$
returns	the	a	keyboard	character,	user-defined	graphics	character	or	a	keyword	as
a	 string.	The	BASIC	uses	 the	ASCII	 code	 for	values	 from	32	 to	95	and	97	 to
126.	If	x	is	assigned	a	value	of	65,	the	above	statement	displays	A,	for	example.

CHR$	control	codes

Values	from	1	to	31	either	return	control	codes	or	are	not	used.	CHR$	6	(PRINT
comma),	 8	 (back	 space)	 and	 13	 (new	 line	 or	 ENTER)	 affect	 displays	 on	 the
screen	 if	 inluded	 in	 a	 PRINT	 statement.	 CHR$	may	 be	 followed	 by	 the	 code
value	and	a	semicolon,	for	example

60	PRINT	"A";CHR$	6;"B"

This	statement	displays

A															B

Another	 way	 of	 using	 CHR$	 control	 codes	 is	 to	 form	 a	 composite	 string
containing	them.	The	statement

60	PRINT	"A"+CHR$	6+"B"

has	exactly	the	same	effect	as	the	previous	example.

Codes	16	to	23	affect	colour	and	position	and	each	may	be	used	in	a	composite
string	 together	 with	 CHR$	 followed	 by	 a	 colour	 code	 value	 from	 0	 to	 7	 for
CHR$	16	(INK	control)	and	CHR$	17	(PAPER),	or	by	0	or	1	 for	CHR$	18	 to
CHR$	21	(FLASH,	BRIGHT,	INVERSE,	and	OVER	controls).	The	command

PRINT	CHR$	16+CHR$	3+CHR$	17+CHR$	6+CHR$	18+CHR$	1+"BASin"

displays	BASin	in	flashing	red	and	yellow.	Alternatively,	as	above,	each	plus	(+)
sign	may	be	replaced	by	a	semicolon.

CHR$	22	(AT	control)	is	followed	by	two	CHR$	values	to	indicate	the	line	and
column	numbers.	The	command

PRINT	CHR$	22+CHR$	11+CHR$	16+CHR$	42

displays	a	star	in	the	centre	of	the	screen.

CHR$	23	(TAB	control)	 is	 also	 followed	by	 two	values	 in	 the	 same	way.	The
second	value	is	normally	0	and	the	first	gives	the	TAB	position.	The	command

PRINT	CHR$	23+CHR$	16+CHR$	0+CHR$	42

displays	a	star	halfway	across	the	screen.

Note	that	only	these	controls	are	available.	Using	PRINT	CHR$	with	a	keyword
value	greater	 than	164	 simply	displays	 the	keyword	and	does	not	bring	 it	 into
operation.

Format

CHR$	int-num-const	[;]	[+]

CHR$	int-num-var	[;]	[+]
CHR$	(int-num-expr)	[;]	[+]

See	also

Chapter	14.

CIRCLE

Statement/Command

CIRCLE	draws	a	circle	on	the	screen.

How	to	use	CIRCLE

Circle	 is	 followed	 by	 three	 numeric	 values	 each	 separated	 by	 a	 comma,	 for
example

80	CIRCLE	x,y,z

Each	of	the	three	values	is	rounded	to	the	nearest	integer	if	necessary.	CIRCLE
then	draws	a	circle	on	the	high	resolution	graphics	grid	in	the	current	ink	colour.
The	 first	 two	values	 (x,y)	define	 the	horizontal	 and	vertical	 coordinates	of	 the
centre,	and	 the	 third	value	(z)	defines	 the	 length	of	 the	radius.	The	dimensions
must	be	such	that	the	circle	does	not	extend	beyond	the	display	area.

CIRCLE	 is	 affected	 by	 colour	 statements	 or	 commands	 and	 may	 include
embedded	colour	statements	with	the	same	effects	as	PLOT	and	DRAW.

Example

The	command

CIRCLE	128,88,87

draws	a	circle	taking	up	most	of	the	display	area.

Format

CIRCLE	[statement;]	int-num-expr,	int-num-expr,	int-num-expr

See	also

Chapter	17.

CLEAR

Statement/Command

CLEAR	deletes	the	current	values	of	all	variables,	freeing	the	memory	space	that
the	values	occupied	and	space	as	far	as	RAMTOP,	the	top	address	of	the	BASIC
system	area.	CLEAR	may	also	be	used	to	reset	RAMTOP.

How	to	use	CLEAR

CLEAR	 may	 be	 used	 as	 a	 direct	 command	 or	 it	 may	 form	 a	 statement	 in	 a
program.	It	requires	no	parameters,	for	example

50	CLEAR

CLEAR	 then	 delets	 the	 values	 that	 are	 currently	 assigned	 to	 all	 variables,
including	 arrays.	 It	 also	 executes	CLS	and	RESTORE	 to	 clear	 the	 screen	 and
restore	the	data	pointer	to	the	first	item	of	data.	In	assition,	the	PLOT	position	is
reset	to	the	bottom	left-hand	corner	of	the	display	area	and	the	GO	SUB	stack	is
cleared.

Note	that	CLEAR	is	not	required	before	re-dimensioning	arrays	as	DIM	deletes
an	existing	array	of	the	same	name.	Note	also	that	RUN	executes	CLEAR.

CLEAR	and	RAMTOP

CLEAR	may	also	be	followed	by	a	numeric	value,	for	example

CLEAR	65267

Clear	 then	 executes	 CLEAR	 as	 above	 and	 also	 sets	 RAMTOP,	 the	 highest
address	of	the	BASIC	system	area,	to	the	given	value.	RAMTOP	is	normally	set
at	65367	in	BASIC,	and	lies	below	the	area	reserved	for	user-defined	graphics.
NEW	 clears	 out	 the	 memory	 as	 far	 as	 RAMTOP,	 so	 using	 CLEAR	 to	 lower
RAMTOP	(by	100	bytes	 in	 the	above	example)	provides	more	memory	 that	 is
immune	 from	 NEW.	 Raising	 RAMTOP	 gives	 more	 space	 for	 BASIC	 at	 the

expense	of	user-defined	graphics.	Note	that	the	GO	SUB	stack	is	then	located	at
RAMTOP.

The	current	RAMTOP	address	can	be	located	by	the	following	command

PRINT	PEEK	23730+256*PEEK	23731

Format

CLEAR	[num-expr]

See	also

Chapter	24.

CLOSE	#

Microdrive	file-handling	command

CLS	CLear	Screen

Statement/Command

CLS	 clears	 all	 text	 and	 graphics	 from	 the	 display	 area	 leaving	 it	 blank	 in	 the
current	paper	(background)	colour.

How	to	use	CLS

CLS	may	be	used	as	a	direct	command	or	it	may	form	a	statement	in	a	program.
It	requires	no	parameters,	for	example

250	IF	a$="NO"	THEN	CLS

The	display	area	(but	not	the	border)	is	then	cleared	to	the	colour	selected	by	the
previous	PAPER	statement	or	command	or	to	the	default	paper	colour	of	white.

Note	that	CLS	must	be	used	after	PAPER	and	before	PRINT	or	any	other	display
statement	to	produce	a	coloured	background	over	the	whole	display	area.

Format

CLS

See	also

Chapter	15.

CODE

Function

CODE	gives	the	code	number	of	a	character	in	the	BASIC	character	set	(see	here
for	the	complete	set).

How	to	use	CODE

CODE	is	followed	by	a	string	value,	for	example

90	IF	CODE	a$<65	OR	CODE	a$>90	THEN	GO	TO	80

A	 string	 expression	 must	 be	 enclosed	 in	 brackets.	 CODE	 returns	 the	 code
number	 of	 the	 first	 character	 in	 the	 string.	 If	 this	 is	 a	 null	 string	("")	 then
CODE	returns	0.

SAVE/LOAD/VERIFY	CODE

CODE	 is	 used	 in	 a	 different	way	with	 SAVE,	 LOAD	 and	VERIFY.	 See	 their
respective	entries	for	more	information.

Format

CODE	string-const
CODE	string-var
CODE	(string-expr)

See	also

Chapter	14.

CONTINUE

Command

If	 a	 program	 stops,	 CONTINUE	 can	 be	 used	 to	 restart	 the	 program	 from	 the
point	 at	which	 it	 stopped.	 If	 an	 error	has	occurred	 to	halt	 the	program,	 then	 it
must	be	rectified	before	CONTINUE	will	allow	the	program	to	resume.

How	to	use	CONTINUE

CONTINUE	 is	 used	 as	 a	 direct	 command	 when	 a	 program	 has	 stopped.	 It
requires	no	parameters.	After	CONTINUE	a	program	then	normally	resumes	at
the	 same	 statement	 at	 which	 it	 stopped.	 If	 the	 cause	 was	 an	 error,	 then	 a
commond	 can	 be	 entered	 to	 rectify	 the	 error	 and	 CONTINUE	 will	 allow	 the
program	 to	 continue	 from	 that	 statement.	 If	 the	 program	 stopped	 at	 a	 STOP
statement	giving	report	9	("STOP	statement")	or	if	it	halted	because	the	BREAK
key	was	 pressed	 giving	 report	 L	 ("BREAK	 into	 program"),	 then	 CONTINUE
causes	 the	 program	 to	 resume	 from	 the	 next	 statement.	A	 rectifying	 command
can	be	entered	first	if	necessary.

If	CONTINUE	is	used	to	resume	a	direct	command,	then	it	will	go	into	a	loop	if
the	 command	 stopped	 at	 the	 first	 statement	 in	 the	 command.	 The	 display
disappears,	but	control	can	be	regained	by	pressing	BREAK.	CONTINUE	gives
report	 0	 ("Ok")	 if	 the	 command	 stopped	 at	 the	 second	 statement	 and	 report	N
("Statement	lost")	at	the	third	or	subsequent	statements.

Format

CONTINUE

See	also

Chapter	2.

COPY

Command/Statement

COPY	makes	Sinclair	ZX	Printers	produce	a	copy	of	the	screen	display.

How	to	use	COPY

COPY	 is	 used	 as	 a	 direct	 command	 or	 as	 a	 statement	 within	 a	 program.	 It
requires	no	parameters.	After	COPY,	 and	providing	 the	printer	 is	 connected,	 a
copy	of	the	first	22	lines	of	the	screen	display	is	then	printed.	Note	that	all	ink
(foreground)	 colours	 are	 printed	 in	 black;	 paper	 (background)	 colours	 are	 not
printed.	The	printer	can	be	stopped	by	BREAK.

If	a	program	listing	appears	on	the	screen,	it	can	be	printed	by	using	the	COPY
provided	it	was	produced	by	a	LIST	command	or	statement.	Note	that	a	listing
will	 appear	 in	 the	 screen	 on	 pressing	 ENTER	 after	 a	 program	 has	 been
completed	or	stopped,	but	this	'automatic'	listing	cannot	be	printed	with	COPY.

Format

COPY

See	also

Chapter	21.

COS	COSine

Function

COS	calculates	the	cosine	of	an	angle.

How	to	use	COS

COS	is	followed	by	a	numeric	variable,	for	example

140	LET	x=COS	y

An	 expression	must	 be	 enclosed	 in	 brackets.	 The	 value	 following	COS	 is	 the
angle	 in	 radians.	 COS	 then	 returns	 the	 cosine	 of	 the	 angle.	 Degrees	 may	 be
converted	into	radians	by	multiplying	by	PI/180.

Note	that	COS	returns	a	negative	value	for	angles	from	90	to	270	degrees	and	a
positive	value	for	angles	from	0	to	90	and	270	to	360	degrees.

Example

The	command

PRINT	COS	(60*PI/180)

displays	0.5,	the	cosine	of	60	degrees.

Format

COS	num-const
COS	num-var
COS	(num-expr)

See	also

Chapter	10.

DATA

Statement

DATA	provides	 a	 list	 of	 items	 of	 data	within	 a	 program.	 These	 items	may	 be
values	or	variables	or	strings	to	be	displayed,	for	example.	Each	item	is	assigned
to	a	variable	by	a	READ	statement.

Assignment	 is	 carried	 out	 in	 the	 order	 in	 which	 items	 of	 data	 appear	 in	 the
program,	but	RESTORE	can	be	used	to	begin	assignment	at	the	first	DATA	item
on	or	following	a	program	line.

How	to	use	DATA

DATA	 can	 only	 be	 used	 to	 form	 a	 statement	 in	 a	 program.	 It	 is	 normally
followed	by	a	list	of	numeric	or	string	contants	each	separated	by	a	comma,	for
example

50	DATA	31,"JAN",28,"FEB"

Each	constant	is	then	assigned	to	a	variable	by	a	READ	statement	that	reads	the
DATA.	The	DATA	statement	may	be	positioned	anywhere	 in	 the	program.	The
number,	kind	(numeric	or	string)	and	order	of	the	constants	must	correspond	to
the	number	of	times	the	READ	statement	is	executed	and	the	kind	and	order	of
variables	 in	 the	READ	statement.	The	 list	of	data	may	be	 split	up	 into	 several
DATA	statements	if	there	are	too	many	items	to	fit	into	one	statement.

Example

The	following	program

10	FOR	n=1	TO	2

20	READ	x,a$

30	PRINT	a$,x;"	days"

40	NEXT	n

50	DATA	31,"JAN",28,"FEB"

displays

JAN															31	days

FEB															28	days

Using	DATA	with	variables

The	 items	 of	 data	 in	 a	 DATA	 statement	 may	 consist	 of	 numeric	 or	 string
variables	 or	 expressions	 provided	 the	 variables	 have	 previously	 been	 assigned
values.	In	the	above	example,	the	DATA	statement	may	be	changed	to

50	DATA	d,m$,d-3,"FEB"

If	d	 is	previously	assigned	a	value	of	31,	and	m$	a	value	of	"JAN",	 then	 the
same	display	is	given.

LOAD	DATA,	SAVE	DATA,	and	VERIFY	DATA

DATA	may	 also	 be	 used	with	 LOAD,	 SAVE	 and	VERIFY	 to	 store	 arrays	 on
tape.	See	LOAD	DATA,	SAVE	DATA	and	VERIFY	for	more	information.

Format

DATA	num-expr,	[num-expr][,	string-expr]
DATA	string-expr,	[num-expr][,	string-expr]

See	also

Chapter	6.

DEF	FN	DEFine	FuNction

Statement

DEF	FN	enables	the	user	to	define	a	function	that	is	not	available	as	a	keyword.
A	variety	of	parameters	can	be	passed	to	the	function	in	an	FN	statement,	which
calls	the	function	and	may	return	either	a	numeric	or	string	value	as	a	result.

How	to	use	DEF	FN

DEF	FN	may	only	be	used	as	a	statement	in	a	program.	If	a	numeric	function	is
to	be	defined,	DEF	FN	is	followed	by	any	single	letter	and	then	by	one	or	more
numeric	 variables	 each	 separated	 by	 a	 comma	 and	 enclosed	 in	 brackets.	 For
example,	DEF	FN	r(x,y).	This	is	followed	by	an	equals	sign	and	then	a	numeric
expression	containing	the	variables,	for	example

1000	DEF	FN	r(x,y)=SQR(x↑2+y↑2)

The	letter	following	DEF	FN	(r	above)	is	a	name	that	identifies	the	function.	The
variables	may	 also	 only	 be	 single	 letters.	Note	 that	 in	 both	 cases,	 the	BASIC
does	not	distinguish	between	capital	and	lower-case	letters.

The	expression	that	follows	the	equals	sign	uses	the	variables	(x	and	y	above)	to
define	the	function.

A	DEF	FN	statement	may	be	placed	anywhere	in	the	program.	To	call	a	function
that	 it	 defines,	 a	 FN	 statement	 is	 used.	 This	 is	 then	 followed	 by	 the	 function
name	 letter	 and	 a	 list	 of	 numeric	 values	 each	 separated	 by	 a	 comma	 and
enclosed	in	brackets,	for	example

50	PRINT	FN	r(3,4)

The	values	 in	 the	brackets	 are	passed	 to	 the	 function	 in	 the	 same	order	 as	 the
variables	in	the	DEF	FN	statement.	Thus,	in	this	example,	x	is	assigned	a	value
of	3	and	y	a	value	of	4.	FN	evaluates	the	expression	and	returns	the	value.

DEF	 FN	 may	 also	 be	 followed	 by	 a	 letter	 and	 a	 pair	 of	 brackets	 only,	 for
example

1000	DEF	FN	r()=INT	(x+0.5)

The	value	currently	assigned	to	the	variable	(x	above)	is	passed	to	the	function
when	it	is	called	by	FN.	In	this	case,	FN	r()	returns	the	value	currently	assigned
to	x	rounded	to	the	nearest	integer.

DEF	FN	and	strings

DEF	 FN	 and	 FN	may	 also	 be	 used	 the	 same	way	 to	 define	 and	 call	 a	 string
function.	In	this	case,	the	function	name	is	a	single	letter	followed	by	$	and	one
or	 more	 of	 the	 variables	 in	 the	 statement	 is	 a	 letter	 followed	 by	 $.	 A
corresponding	string	expression	forms	the	definition,	for	example

1000	DEF	FN	a$(b$,x,y)=b$(x	TO	y)

The	string	expression	following	the	equals	sign	in	this	example	is	a	string	slicer,
and	 x	 and	 y	 are	 the	 first	 and	 last	 characters	 of	 a	 section	 of	 b$.	 FN	must	 be
followed	by	the	function	name	and,	in	brackets,	a	string	value	together	with	any
other	parameters	that	are	to	be	passed	to	the	function.	In	this	case,	the	command

PRINT	FN	a$("FUNDAMENTAL",1,3)

displays	FUN,	and	the	command

PRINT	FN	a$("FUNDAMENTAL",5,8)

displays	AMEN.

Format

DEF	FN	letter	([letter]	[,letter])=num-expr
DEF	FN	letter$	([letter$]	[letter]	[,letter]	[,letter$])=string-expr

FN	letter	([num-expr]	[,num-expr])
FN	letter$	([string-expr]	[,num-expr]	[,string-expr])

See	also

Chapter	9.

DIM	DIMension

Statement

DIM	 is	 used	 to	 dimension	 (set	 up)	 an	 array	 of	 a	 given	 number	 of	 numeric	 or
string	 variables.	 An	 array	 is	 a	 list	 of	 variables	 of	 the	 same	 name	 that	 are
distinguished	by	a	subscripts	(values	that	identify	each	variable	or	element	in	the
array).

How	to	use	DIM	with	numeric	arrays

DIM	is	used	to	form	a	statement	 in	a	program.	It	 is	followed	by	a	single	letter
that	 names	 the	 array,	 and	 one	 or	 more	 numeric	 values	 each	 separated	 by	 a
comma	and	enclosed	in	brackets,	for	example

10	DIM	x(10)

20	DIM	z(20,5)

In	the	first	case,	a	one-dimensional	array	is	created	containing	ten	elements	with
subscripts	from	1	to	10.	The	array	has	the	name	x	and	the	subscripted	variables
are	x(1)	to	x(10)	inclusive.	Any	existing	array	of	the	same	name	is	deleted,
and	 the	variables	are	each	assigned	a	value	of	0.	Note	 that	 in	dimensioning	an
array,	the	BASIC	does	not	distinguish	between	names	with	capital	and	lowercase
letters	 -	 variable	 x(2)	 is	 the	 same	 as	 X(2).	 However,	 simple	 numeric
variables	having	the	same	letter	as	an	array	name	(x	or	X)	can	coexist	and	may
be	used	separately	if	required.

The	number	of	values	in	brackets	equals	the	number	of	dimensions	in	a	numeric
array.	The	second	example	sets	up	a	two-dimensional	array	of	100	elements	with
20	 elements	 in	 the	 first	 dimension	 and	 5	 in	 the	 second.	 These	 elements	 are
numbered	z(1,1)	to	to	z(20,5).

Arrays	of	any	number	of	dimensions	may	be	created.

The	 elements	 of	 a	 numeric	 array	may	 subsequently	 be	 identified	 by	 the	 array
value	in	brackets,	for	example

	70	PRINT	x(a)

160	PRINT	z(7,b)

DIM	and	string	arrays

DIM	is	used	in	the	same	way	as	with	numeric	arrays	except	that	a	single	letter
followed	by	$	 is	used	for	 the	array	name.	Furthermore,	an	extra	value	must	be
added	to	the	dimension	values	in	brackets	in	order	to	define	the	length	of	each
string.	For	example

30	DIM	a$(20,5)

90	DIM	b$(20,5,10)

The	 first	 statement	 creates	 an	 array	 of	 20	 elements,	 each	 of	which	 contains	 a
string	of	5	characters.	The	subscripted	variables	are	named	a$(1)	to	a$(20)
inclusive,	and	they	are	initially	assigned	a	null	(empty)	string	("").	Any	existing
array	 of	 the	 same	 name	 is	 deleted	 and,	 unlike	 numeric	 arrays,	 a	 simple	 string
variable	of	the	same	name	cannot	coexist.

The	 second	 example	 creates	 a	 two-dimensional	 array	of	 100	 elements	with	20
elements	in	the	first	dimension	and	5	in	the	second.	All	elements	have	a	length
of	10	characters.

When	 string	 values	 are	 assigned	 to	 a	 string	 array,	 they	 are	 padded	 out	 with
spaces	at	the	end	of	the	string	or	truncated	to	the	defined	length	if	necessary.

The	 elements	 of	 a	 string	 array	 are	 identified	 by	 the	 array	 name	 followed,	 in
brackets,	 by	 one	 or	 more	 numeric	 values	 giving	 the	 subscript	 number(s).	 For
example,	 element	a$(2)	 may	 be	"SMITH"	 and	 element	 b$(12,4)	 may	 be
"DERBYSHIRE".	However,	an	extra	value	may	be	added	to	define	a	particular
character	in	a	string.	In	these	examples,	a$(2,2)	would	be	"M"	(the	second
character	in	"SMITH"),	and	b$(12,4,5)	would	be	"Y".

Zero-dimension	string	arrays

It	is	possible	to	create	a	zero-dimension	string	array	by	using	only	one	value	in
brackets,	for	example

10	DIM	c$(15)

This	 array	 has	 only	 one	 element,	 which	 is	 c$,	 and	 its	 length	 is	 fixed	 at	 the
defined	value	(15	characters).

Format

DIM	letter	(num-expr	[,num-expr])
DIM	letter$	(num-expr	[,num-expr])

See	also

Chapter	12.

DRAW

Statement/Command

DRAW	is	used	to	draw	straight	lines	and	curves	on	the	screen.

How	to	use	DRAW

DRAW	 is	 normally	 used	 to	 for	 a	 statement	 in	 a	 program.	 If	 a	 straight	 line	 is
required,	 it	 is	 followed	 by	 two	 numeric	 values	 separated	 by	 a	 comma,	 for
example

40	DRAW	x,y

A	straight	line	is	then	drawn	on	the	high-resolution	graphics	grid	from	from	the
position	 defined	 by	 the	 previous	 PLOT	 statement	 or	 the	 previous	 DRAW
statement,	whichever	 is	 last.	Both	values	 following	DRAW	are	 rounded	 to	 the
nearest	 integer	 if	 necessary.	 The	 first	 value	 (x	 above)	 defines	 the	 horizontal
distance	from	this	position,	and	the	second	value	(y)	the	vertical	distance.	These
values	are	negative	 if	 the	 line	 is	 to	go	to	 the	 left	or	down	respectively,	and	the
position	reached	must	be	within	the	display	area.

If	 there	 is	 no	 previous	 PLOT	 or	 DRAW	 statement,	 DRAW	 commences	 at
position	0,0	(the	bottom	left-hand	corner	of	the	screen).

DRAW	 is	 affected	 by	 colour	 statements	 or	 commands	 and	 may	 include
embedded	statements	with	the	same	effects	as	with	PLOT	and	CIRCLE.

DRAWing	curved	lines

DRAW	may	be	followed	by	a	third	value	to	produce	a	curve	that	is	a	part	of	a
circle,	for	example

40	DRAW	x,y,z

The	third	value	(z	above)	defines	 the	angle	(in	radians)	 through	which	 the	 line

turns	as	it	is	drawn.	The	line	turns	to	the	left	if	this	is	positive,	and	to	the	right	if
it	is	negative.	Values	of	PI	or	-PI	produce	a	circle.

Example

The	following	program	draws	a	triangle:

10	PLOT	127,50

20	DRAW	70,-100

30	DRAW	-140,0

40	DRAW	70,100

Adding	 1	 or	 -1	 to	 the	 DRAW	 statement	 causes	 the	 sides	 to	 curve	 in	 or	 out
respectively.

Format

DRAW	[statement;]	int-num-expr,	int-num-expr[,	int-num-expr]

See	also

Chapter	17.

ERASE

Microdrive	file	handling	command.

ERASE	and	the	Silicon	Disc

Use	ERASE	with	the	128k	Silicon	Disc	to	delete	files	previously	saved	onto	it.
It	is	recommended	that	you	delete	files	in	reverse	order	of	their	creation,	i.e	the
last	 to	 be	 saved	 should	 be	 the	 first	 to	 be	 deleted	 -	 this	will	 save	 a	 lot	 of	 time
spent	deleting	many	files.	The	format	for	the	ERASE	command	is...

ERASE	!	filename

Where	filename	is	the	name	of	a	file	saved	previously,	as	a	string	expression	or
string	literal..	You	can	generate	a	list	of	files	using	the	CAT	command.

See	also

Chapter	20
Keyword	Reference	-	CAT
128k	Commands	in	BASin

EXP	EXPonent

Function

EXP	is	a	mathematical	function	that	raises	the	exponent	e	to	a	given	power.

How	to	use	EXP

EXP	is	followed	by	a	numeric	value,	for	example

60	LET	y=EXP	x

An	 expression	mst	 be	 enclosed	 in	 brackets.	 EXP	 then	 returns	 the	 exponent	 e
raised	to	the	power	of	the	argument	(x	above).

Example

The	command

PRINT	EXP	1

displays	2.7182818,	the	value	of	e.

Format

EXP	num-const
EXP	num-var
EXP	(num-expr)

See	also

Chapter	10.

FLASH

Statement/Command

FLASH	 causes	 character	 positions	 to	 flash,	 making	 ink	 and	 paper	 colours
alternate	at	a	constant	rate.

How	to	use	FLASH

FLASH	may	 be	 used	 as	 a	 direct	 command	 but	 it	 is	 normally	 used	 to	 form	 a
statement	in	a	program.	It	is	followed	by	a	numeric	value,	for	example

50	FLASH	1

The	value	is	rounded	to	the	nearest	integer	if	necessary	and	may	then	be	either	0,
1	or	8.	A	value	of	1	causes	all	characters	subsequently	displayed	by	PRINT	or
INPUT	 to	 flash.	 A	 value	 of	 8	 causes	 flashing	 character	 positions	 to	 remain
flashing	and	normal	character	positions	 to	remain	normal	when	new	characters
are	printed	there.	FLASH	followed	by	0	cancels	both	FLASH	1	and	FLASH	8	so
that	all	characters	subsequently	displayed	are	normal.

FLASH	 may	 be	 embedded	 (inserted)	 within	 statements	 formed	 by	 PRINT,
INPUT,	 PLOT,	 DRAW	 and	 CIRCLE.	 FLASH	 follows	 the	 keyword,	 but
precedes	the	data	or	display	parameters;	it	is	followed	by	the	same	values	and	a
semicolon,	for	example

120	PRINT	FLASH	1;	INK	2;	PAPER	6;"WARNING"

The	 effect	 of	 the	 FLASH	 is	 then	 local	 and	 applies	 only	 to	 the	 characters
displayed,	 point	 plotted	 or	 line	 drawn	 by	 the	 display	 statement.	 Note	 that
FLASH	1	causes	the	whole	8×8	pixel	position	to	flash	if	any	pixel	is	plotted	in
an	ink	colour.

Format

FLASH	int-num-expr[;]

See	also

Chapter	16.

FN	FuNction

Function

FN	calls	a	user-defined	function.	It	is	always	used	in	conjunction	with	DEF	FN,
which	defines	the	function	to	be	called.

How	to	use	FN

If	a	numeric	function	is	to	be	called,	FN	is	followed	by	a	letter	and	then	a	pair	of
brackets.	If	any	parameters	are	to	be	passed	to	the	function,	then	these	are	each
separated	by	a	comma	and	enclosed	in	brackets,	for	example

170	LET	x=FN	r(3,4)

The	parameters	 are	 then	passed	 to	 the	 function	called	 "r".	FN	 then	 returns	 the
result.	If	no	parameters	are	to	be	passed,	then	the	pair	of	brackets	must	still	be
included,	for	example

70	PRINT	FN	r()

In	this	case,	the	function	uses	the	values	currently	assigned	to	its	variables.

FN	calls	a	string	function	 the	same	way,	except	 that	$	must	be	added	after	 the
letter	(see	DEF	FN).

FN	 does	 work	 recursively,	 but	 care	 should	 be	 taken	 not	 to	 cause	 an	 infinite
recursion	and	eventual	memory	waste.

Format

FN	letter	([num-expr]	[,num-expr])
FN	letter$	([string-expr]	[num-expr]	[,num-expr]	[,string-expr])

See	also

Chapter	9.

FOR

Statement/Command

FOR	is	always	used	with	the	keywords	TO	and	NEXT	to	create	a	FOR-NEXT
loop.	This	structure	enables	a	section	of	the	program	to	repeat	a	given	number	of
times.

How	to	use	FOR

FOR	always	forms	a	statement	with	TO.	FOR	is	followed	by	a	letter,	an	equals
sign,	and	then	two	numeric	values	separated	by	TO,	for	example

60	FOR	a=1	TO	9

The	 letter	 (a	 above)	 forms	 a	 control	 variable.	 The	 statements	 that	 are	 to	 be
repeated	 follow,	 and	 one	 or	more	 of	 these	 normally	makes	 use	 of	 the	 control
variable.	 The	 loop	 then	 ends	 with	 a	 NEXT	 statement,	 in	 which	 NEXT	 is
followed	by	the	control	variable,	for	example

90	NEXT	a

On	execution,	FOR	deletes	any	variable	of	the	same	name	as	the	control	variable
and	 assigns	 it	 an	 initial	 value	 equal	 to	 the	 value	 before	 TO	 (1	 above).	 The
statements	 are	 then	 executed	 with	 the	 control	 variable	 having	 this	 value.	 On
reaching	NEXT,	the	value	of	the	control	variable	is	increased	by	1.	If	this	value
is	less	than	or	equal	to	the	value	after	TO	(the	limit	value	9	above),	the	program
returns	to	the	FOR	statement	and	the	FOR-NEXT	loop	is	repeated.	If	the	control
variable	 has	 a	 greater	 value	 than	 the	 limit	 value,	 then	 the	 loop	 ends	 and	 the
program	continues	with	the	statement	after	NEXT.

In	the	above	example,	the	loop	is	repeated	nine	times	with	the	control	variable	a
increasing	from	1	to	9.	On	leaving	the	loop,	a	has	a	value	of	10.

Note	that	the	BASIC	does	not	distinguish	between	capital	and	lower-case	letters
when	naming	the	control	variable.

Using	STEP	in	a	FOR-NEXT	loop

STEP	 is	a	keyword	 that	can	be	 incorporated	 in	a	FOR	statement	 if	 the	control
variable	 is	 to	 increase	 by	 a	 value	 other	 than	 1	 or	 decrease.	 STEP	 follows	 the
limit	value	and	is	followed	by	a	numeric	value,	for	example

60	FOR	a=1	TO	9	STEP	2

The	control	value	is	increased	by	the	step	value	(2	above)	until	it	is	greater	than
the	limit	value.	The	control	variable	a	has	successive	values	of	1,	3,	5,	7	and	9
and	leaves	the	loop	with	a	value	of	11.

A	negative	 step	value	 causes	 the	 control	 variable	 to	decrease.	 In	 this	 case,	 the
initial	 value	must	 be	 greater	 than	 the	 limit	 value	 and	 the	 loop	 ends	when	 the
value	of	the	control	variable	is	less	than	the	limit	value,	for	example

60	FOR	a=9	TO	1	STEP	-1

The	value	of	a	decreases	from	9	to	1	and	leaves	the	loop	with	a	value	of	0.

Nesting	loops

One	 or	more	 FOR-NEXT	 loops	may	 be	 placed	 inside	 each	 other,	 a	 procedure
called	 "nesting"	 loops.	 The	 order	 of	 the	 control	 variables	 in	 the	 NEXT
statements	must	be	the	reverse	of	the	of	the	order	of	the	control	variables	in	the
FOR	statements.	FOR-NEXT	loops	may	be	nested	to	any	depth,	that	is	as	many
loops	as	required	may	be	placed	inside	each	other.

Format

FOR	letter=num-expr	TO	num-expr	[STEP	num-expr]
NEXT	letter

See	also

Chapter	4.

FORMAT

Microdrive	file	handling	command.

GO	SUB	GO	to	SUBroutine

Statement/Command

GO	 SUB	 causes	 the	 program	 to	 branch	 to	 a	 subroutine,	 which	 is	 a	 seperate
section	of	the	program.	This	is	useful	if	a	subroutine	is	required	several	times	in
a	program.

How	to	use	GO	SUB

GO	SUB	may	be	used	as	a	statement	or	direct	command	and	it	is	followed	by	a
numeric	value,	for	example

GO	SUB	1000

On	 execution,	 the	 value	 following	 GO	 SUB	 (1000	 above)	 is	 rounded	 to	 the
nearest	integer,	and	the	program	branches	to	the	line	number	having	this	value.
The	 use	 of	 a	 variable	 or	 expression	 enables	 the	 program	 to	 branch	 to	 a
subroutine	 at	 a	 calculated	 line	 number.	 Note	 that	 if	 the	 line	 number	 does	 not
exist,	 the	 program	 still	 branches	 and	 continues	with	 the	 first	 statement	 that	 is
then	encountered.

A	 subroutine	 ends	with	RETURN,	 and	 the	program	 then	branches	back	 to	 the
statement	following	the	GO	SUB	statement.	Subroutines	may	be	nested	so	that
one	is	reached	from	another,	in	which	case	the	RETURN	sends	the	program	back
to	the	statement	following	the	last	GO	SUB	statement	executed.

The	GO	SUB	stack

Whenever	GO	SUB	is	executed,	its	line	number	is	placed	on	the	GO	SUB	stack
in	memory.	If	 two	or	more	GO	SUBs	are	executed	before	RETURN,	 their	 line
numbers	stack	up	so	that	the	last	number	is	on	top	of	the	stack.	RETURN	always
takes	 the	 top	 line	 number	 from	 the	 stack	 and	 goes	 to	 this	 line	 to	 continue	 the
program.

Note	that	error	4	(Out	of	memory)	can	occur	if	there	are	not	enough	RETURN

statements.

Format

GO	SUB	int-num-expr

See	also

Chapter	5.

GO	TO

Statement/Command

GO	TO	Makes	a	program	branch	to	a	particular	line.

How	to	use	GO	TO

GO	TO	may	be	used	as	a	direct	command	 to	 run	a	program	from	a	given	 line
number	without	first	clearing	the	screen.	It	may	also	be	used	to	form	a	statement
in	a	program.	GO	TO	is	followed	by	a	numeric	value,	for	example

60	GO	TO	350

On	execution	the	value	following	GO	TO	is	rounded	to	the	nearest	integer	and
the	program	branches	to	the	line	number	having	this	value.	The	use	of	a	variable
or	 expression	 allows	 the	 program	 to	 branch	 to	 a	 calculated	 line	 number.	Note
that	if	the	line	does	not	exist,	then	the	program	branches	and	continues	with	the
first	statement	that	is	then	encountered.

Format

GO	TO	int-num-expr

See	also

Chapter	2.

IF

Statement/Command

If	is	always	used	with	THEN	to	prompt	a	decision	that	affects	subsequent	action.
To	do	this,	the	computer	tests	something	to	find	out	whether	or	not	it	is	true.	If	it
is	true,	then	one	course	of	action	follows.	If	it	is	untrue,	another	occurs.

How	to	use	IF	and	THEN

IF	 normally	 forms	 a	 statement	with	 THEN.	 IF	 is	 first	 followed	 by	 a	 numeric
value	 or	 by	 a	 condition,	 and	 second	 by	 THEN	 and	 one	 or	 more	 BASIC
statements,	for	example

	80	IF	x	THEN	GO	TO		250

240	IF	a$="NO"	THEN	PRINT	"THE	END":	STOP

A	constant,	variable	or	expression	(such	as	x	above)	is	considered	to	be	true	if	it
has	a	non-zero	value.	In	this	case	the	statement	following	THEN	and	any	more
statements	in	the	same	line	are	executed.	The	program	then	proceeds	to	the	next
line.	If	the	value	is	0,	then	the	constant,	variable	or	expression	is	considered	to
be	false.	The	following	statements	are	then	not	executed	and	the	program	skips
to	the	next	line.	In	the	example,	the	program	will	not	GO	TO	line	250	if	x	is	0.

If	 a	 condition	 (a$="NO")	 following	 IF	 is	 true	 then	 the	 statements	 following
THEN	are	executed.	If	the	condition	is	false,	then	the	program	moves	to	the	next
line.	In	this	example,	if	a$	has	the	value	"NO"	then	"THE	END"	is	displayed	and
the	 program	 stops.	 If	 a$	 has	 any	 other	 value,	 the	 program	 continues	 from	 the
next	line.

The	BASIC	gives	a	true	condition	a	value	of	1	and	a	false	condition	a	value	of	0.
It	 recognises	 any	 non-zero	 value	 as	 true	 and	 0	 as	 false.	 A	 variable	 can	 be
assigned	the	value	of	a	condition	by	a	statement	such	as

70	LET	x=a$="NO"

Note	that,	unlike	in	some	other	BASICs,	THEN	cannot	be	ommitted	before	GO
TO.

Format

IF	num-expr	THEN	statement	[:statement]
IF	cond	THEN	statement	[:statement]

See	also

Chapter	3.

IN

Function

IN	checks	the	status	of	the	keyboard	and	other	input	and	output	devices.	It	reads
a	byte	from	a	given	port	address	that	indicates	the	status	of	the	device	connected
to	the	port.

How	to	use	IN

IN	is	followed	by	a	numeric	value,	for	example

150	LET	x=IN	y

The	value	following	IN	may	range	from	0	to	65535	inclusive,	and	specifies	the
port	address	that	is	to	be	read.	IN	then	returns	the	byte	read	from	this	port.

Keyboard	addresses

The	 keyboard	 has	 eight	 addresses,	 each	 of	 which	 may	 contain	 one	 of	 five
different	 bytes	 depending	 on	 which	 key	 is	 pressed.	 The	 addresses	 are	 65278,
65022,	 64510,	 63486,	 61438,	 57342,	 49150	 and	 32766.	 Byte	 values	 at	 these
addresses	may	be	175,	183,	187,	189	or	190.

Format

IN	num-const
IN	num-var
IN	(num-expr)

See	also

Chapter	23.

INK

Statement/Command

INK	specifies	the	foreground	colour	in	which	the	characters	are	displayed,	points
plotted	and	lines	and	curves	drawn.

How	to	use	INK

INK	May	be	used	as	a	direct	command	but	is	normally	used	to	form	a	statement
in	a	program.	It	is	followed	by	a	numeric	value,	for	example

70	INK	x

The	value	following	INK	is	rounded	to	the	nearest	integer	and	may	range	from	0
to	9.	The	following	foreground	colours	are	then	given.

0	Black
1	Blue
2	Red
3	Magenta	(Purple)
4	Green
5	Cyan	(Blue-Green)
6	Yellow
7	White
8	Transparent
9	Contrasting	Black	or	White

INK	8	 specifies	 that	 the	existing	colour	 remains	unchanged	at	 any	position	on
the	screen	where	INK	8	is	used.	INK	9	causes	the	ink	colours	to	be	either	black
or	white	so	that	it	shows	up	against	the	paper	(background)	colour.

Global	and	local	ink	colours

When	 INK	 forms	 a	 statement	 alone,	 as	 above,	 the	 colour	 is	 global	 and	 all
subsequent	displays	occur	in	this	foreground	colour.	INK	may	also	be	embeeded

in	display	statements	formed	by	PRINT,	INPUT,	PLOT,	DRAW	and	CIRCLE.
INK	 follows	 the	 keyword	 but	 precedes	 the	 data	 or	 display	 parameters;	 it	 is
followed	by	the	same	values	and	a	semicolon,	for	example

60	CIRCLE	INK	4;128,88,87

The	effect	of	INK	is	then	local	and	applies	only	to	the	characters	displayed,	point
plotted	 or	 line	 drawn	 by	 the	 display	 statement,	 this	 example	 drawing	 a	 green
circle.	Thereafter	the	ink	colour	reverts	to	the	global	colour	or	default	colour	of
black.

Format

INK	int-num-expr	[;]

See	also

Chapter	16.

INKEY$	INput	KEY	string

Function

INKEY$	is	used	to	detect	the	pressing	of	the	keys	on	the	keyboard.

How	to	use	INKEY$

INKEY$	requires	no	argument	and	 is	generally	used	 to	assign	a	character	 to	a
string	variable	or	to	test	for	a	particular	character,	for	example

	70	LET	a$=INKEY$

130	IF	INKEY$="N"	THEN	STOP

On	 execution,	 INKEY$	 returns	 the	 character	 given	 by	 the	 key	 that	 is	 being
pressed	at	 that	 instant.	 If	no	key	 is	being	pressed,	 then	 INKEY$	returns	a	null
(empty)	string	("").	Note	that	INKEY$	distinguishes	between	capital	and	lower-
case	letters	and	other	shifted	and	un-shifted	characters.	(Use	IN	to	detect	any	key
without	distinguishing	characters).

Unlike	 INPUT,	 INKEY$	 does	 not	 wait	 but	 goes	 immediately	 to	 the	 next
statement.	 It	 is	 therefore	 normally	 placed	 inside	 a	 loop	 that	 repeats	 until	 the
required	key	is	pressed.

Example

This	line	suspends	operation	until	the	Y	key	is	pressed	(without	CAPS	SHIFT	or
CAPS	LOCK).

60	IF	INKEY$<>"y"	THEN	GO	TO	60

Format

INKEY$

See	also

Chapter	18.

INPUT

Statement/Command

INPUT	enables	data	to	be	entered	during	the	running	of	a	program.

How	to	use	INPUT

INPUT	normally	 forms	a	statement	 in	a	program	and	 is	used	 in	a	very	similar
way	 to	 PRINT.	 In	 its	 simplest	 form,	 it	 is	 followed	 by	 a	 numeric	 or	 string
variable,	for	example

60	INPUT	x

70	INPUT	a$

The	computer	then	waits	until	either	a	number	or	a	string	is	entered.	The	value	is
displayed	 at	 the	 beginning	 of	 the	 bottom	 line	 as	 it	 is	 keyed	 in.	 On	 pressing
ENTER,	the	value	is	assigned	to	the	named	variable	and	the	program	continues.

An	 INPUT	 statement	 may	 include	 more	 than	 one	 variable	 and	 will	 display
characters	 to	 form	 a	 prompt.	 This	 is	 done	 in	 exactly	 the	 same	 way	 as	 with
PRINT,	using	quote	marks	 to	enclose	 the	prompt	characters	and	semicolons	or
commas	as	necessary	to	separate	items.	Display	statements	such	as	INK,	FLASH
and	PAPER	may	be	embedded,	for	example

80	INPUT	INK	2;"What	is	your	name?";n$,("How	old	are	you,	"+n$+"?"	");age

Note	 the	 following	 differences	 to	 PRINT.	 INPUT	 waits	 when	 it	 comes	 to	 a
variable,	 so	 all	 variables	 and	 expressions	 (such	 as	 that	 including	 n$	 above)
which	 are	 to	 be	 included	 in	 prompts	 must	 be	 enclosed	 in	 brackets.	 Display
begins	at	the	start	of	the	bottom	line	and	then	scrolls	up	if	more	than	one	line	is
used.	AT	may	be	used	in	an	INPUT	statement	in	the	same	way	as	with	PRINT.
Used	with	INPUT,	AT	0,0	displays	at	the	start	of	the	line	above	the	bottom	line
and	the	display	scrolls	up	if	more	than	two	lines	are	displayed.

How	to	halt	INPUT

If	 INPUT	 is	 followed	 by	 a	 numeric	 variable	 and	 STOP	 is	 entered,	 then	 the
program	stops.	With	a	string	variable,	the	first	quote	mark	that	appears	may	be
deleted	and	then	STOP	entered	to	halt	the	program.

Using	INPUT	with	LINE

INPUT	LINE	may	be	used	with	string	variables	only.	Normally,	INPUT	with	a
string	variable	causes	a	pair	of	quotes	to	be	displayed.	As	the	string	is	keyed	in,
it	 appears	 between	 the	 quotes.	 To	 remove	 these	 quotes,	 use	 INPUT	 LINE
followed	by	the	string	variable.	If	a	prompt	is	required,	it	is	placed	between	the
INPUT	and	LINE,	for	example

70	INPUT	"What	is	your	name?	";	LINE	n$

Format

INPUT	[prompt]	[;]	[,]	[']	num-var
INPUT	[prompt]	[;]	[,]	[']	string-var
INPUT	[prompt]	[;]	[,]	[']	LINE	num-var

See	also

Chapter	2,	Chapter	15.

INT	INTeger

Function

INT	changes	non-integers	(numbers	that	are	not	whole	numbers)	into	integers	or
whole	numbers.

How	to	use	INT

INT	is	followed	by	a	numeric	value,	for	example

70	LET	x=INT	y

An	expression	must	be	enclosed	in	brackets.	INT	then	returns	the	value	rounded
down	to	an	integer.

Example

The	command

PRINT	INT	45.67,	INT	-7.66

displays

45															-8

Format

INT	num-const
INT	num-var
INT	(num-expr)

See	also

Chapter	9.

INVERSE

Statement/Command

INVERSE	 causes	 colours	 to	 be	 inverted	 at	 character	 positions	 so	 that	 the	 ink
becomes	the	paper	and	vice-versa.

How	to	use	INVERSE

INVERSE	is	normally	used	to	form	a	statement	in	a	program.	It	is	followed	by	a
numeric	value,	for	example

70	INVERSE	1

The	value	following	INVERSE	is	rounded	to	the	nearest	integer	and	may	then	be
either	0	or	1.	 INVERSE	1	causes	all	subsequent	displays	made	by	PRINT	 and
INPUT	 to	 be	 produced	 using	 these	 colours.	 INVERSE	 0	 restores	 the	 ink	 and
paper	colours	to	normal.

Note	that	INVERSE	can	be	embedded	(inserted)	within	display	statements	in	the
same	 way	 as	 INK.	 However,	 if	 used	 with	 PLOT,	 DRAW	 or	 CIRCLE	 then
INVERSE	 1	 causes	 a	 line	 or	 point	 to	 be	 plotted	 in	 the	 paper	 colour	 so	 it
disappears.

Format

INVERSE	int-num-expr

See	also

Chapter	16.

LEN	LENgth	of	string

Function

LEN	gives	the	length	of	a	string.

How	to	use	LEN

LEN	is	followed	by	a	string	value,	for	example

50	LET	x=LEN	a$

An	 expression	 must	 be	 enclosed	 in	 brackets.	 LEN	 returns	 the	 number	 of
characters	in	the	string.

Example

The	following	line

120	INPUT	a$:	IF	LEN	a$>9	THEN	GO	TO	120

passes	only	strings	that	contain	up	to	9	characters.

Format

LEN	string-const
LEN	string-var
LEN	(string-expr)

See	also

Chapter	9.

LET

Statement/Command

LET	 is	 used	 to	 assign	 a	 value	 to	 a	 variable.	 In	 this	 version	 of	 BASIC,	 LET
cannot	be	omitted	in	an	assignment	statement.

How	to	use	LET

LET	 normally	 forms	 a	 statement	 in	 a	 program	 but	 may	 be	 used	 as	 a	 direct
command.	It	is	followed	by	a	numeric	or	string	variable,	an	equals	sign,	and	then
a	 value.	 The	 value	 may	 be	 numeric	 or	 string,	 depending	 on	 the	 variable
preceding	LET,	for	example

60	LET	x=x+1

80	LET	a$="Correct"

The	value	is	then	assigned	to	the	variable.

Note	that	simple	variables	are	undefined	until	assigned	values	by	LET,	READ	or
INPUT.	 Array	 variables	 however	 are	 initialised	 to	 0	 or	 a	 null	 string	 ("")	 by
DIM.

Format

LET	num-var	=	num-expr
LET	string-var	=	num-expr

See	also

Chapter	2.

LINE

Modifier

LINE	 is	 used	 in	 INPUT	 statements	 to	 remove	 the	 quote	 marks	 around	 string
inputs,	and	with	SAVE	to	force	a	saved	program	to	autostart	after	loading.

How	to	use	LINE	with	INPUT

In	 an	 INPUT	 statement	 with	 a	 string	 variable,	 you	 can	 remove	 the	 quotation
marks	around	the	input	area	and	type	STOP	to	break	into	a	program.	By	using
LINE	before	the	variable,	the	quotation	marks	are	removed,	for	example

10	INPUT	"What	is	your	name?	";LINE	n$

displays	the	prompt	after	"What	is	your	name?	"	without	any	quotes.

Using	LINE	with	SAVE

LINE	 can	 also	 be	 used	 in	 a	 SAVE	 statement	 to	 save	 your	 program	 in	 such	 a
manner	 as	 it	 auto-runs	 after	 re-loading.	LINE	 follows	 the	 filename	 in	 a	SAVE
statement,	and	is	followed	by	a	numeric	value,	for	example

SAVE	"myprog"	LINE	1

When	a	program	is	saved	in	this	way,	the	value	following	LINE	is	rounded	down
to	the	nearest	integer	if	necessary,	and	then	may	range	from	1	to	9999.	When	the
program	is	re-loaded,	it	will	automatically	start	from	that	line	number,	or	the	line
after	 if	 it	 does	 not	 exist.	 Note	 that	 when	 starting,	 a	 GO	TO	 is	 performed,	 so
variables	are	not	cleared	and	the	screen	display	is	also	not	cleared.

Format

SAVE	string-expr	LINE	nt-num-expr
INPUT	[input-items;]	LINE	string-var

See	also

Chapter	15;	INPUT;	SAVE

LIST

Command/Statement

LIST	produces	a	listing	of	the	program	currently	in	memory.

How	to	use	LIST

LIST	 is	 normally	 used	 as	 a	 direct	 command	 but	 may	 form	 a	 statement	 in	 a
program.	To	list	a	complete	program	from	the	first	line,	it	is	used	alone.	After	the
direct	command

LIST

the	 first	 page	 of	 the	 listing	 appears	 and	 subsequent	 pages	 will	 scroll	 up	 the
screen	 at	 the	 touch	 of	 any	 key	 except	 N,	 the	 space	 bar	 or	 BREAK	 at	 the
"Scroll?"	prompt.

LIST	may	also	be	followed	by	a	line	number,	in	the	form	of	a	numeric	value,	for
example

LIST	100

The	value	following	LIST	is	then	rounded	to	the	nearest	integer	if	necessary,	and
the	listing	commences	at	 this	 line.	If	 there	is	no	line	with	this	number	then	the
listing	commences	at	the	next	line.

Format

LIST	[int-num-expr]

See	also

Chapter	2.

LLIST	Line	printer	List

Command/Statement

LLIST	makes	 Sinclair-type	 printers	 produce	 a	 print-out	 listing	 of	 the	 program
currently	in	memory.

How	to	use	LLIST

LLIST	is	used	in	exactly	the	same	way	as	LIST	(see	LIST	for	 further	details).
Note	that	the	screen	display	does	not	change	as	the	listing	is	printed.

Format

LLIST	[int-num-expr]

See	also

Chapter	21.

LN	Logarithm	(natural)

Function

LN	gives	the	natural	logarithm	(the	logarithm	to	base	e)	of	a	value.	It	acts	as	the
inverse	of	EXP.

How	to	use	LN

LN	is	followed	by	a	numeric	value,	for	example

60	LET	x=LN	y

An	expression	must	be	enclosed	 in	brackets.	The	value	 following	LN	must	be
greater	than	0.	LN	then	returns	the	natural	logarithm	of	this	value.

Format

LN	num-const
LN	num-var
LN	(num-expr)

See	also

Chapter	10.

LOAD

Command/Statement

LOAD	loads	a	complete	program	into	the	memory	from	a	tape.

How	to	use	LOAD

LOAD	is	normally	used	as	a	direct	command,	but	it	may	form	a	statement	in	a
program	 in	 order	 to	 load	 a	 new	 program.	 LOAD	 is	 followed	 by	 a	 filename,
which	is	a	string	value	up	to	ten	characters	long,	for	example

LOAD	"filename"

On	 execution,	 the	 program	 currently	 in	 memory,	 and	 all	 the	 values	 of	 its
variables,	 are	 deleted.	 The	 BASIC	 then	 searches	 for	 the	 named	 program	 and
loads	it	when	it	is	located.	Note	that	the	computer	distinguishes	between	capital
and	lower-case	letters	in	program	names.

If	a	null	string	("")	follows	LOAD,	as	in	this	command

LOAD	""

Then	 the	 BASIC	 loads	 the	 first	 complete	 program	 that	 it	 locates.	 Note:	 In
BASin,	LOAD	""	will	bring	up	the	Windows	file	requester	for	you	to	locate	a
program	to	load	yourself.

Note	that	LOAD	is	used	differently	when	a	microdrive	is	attached.

LOAD	and	the	silicon	disc

LOAD	can	also	be	used	 to	access	a	 file	 stored	on	 the	128k	Spectrum's	 silicon
disc.	 To	 do	 this,	 insert	 a	 !	 character	 between	 the	 keyword	 LOAD	 and	 the
filename,	for	example

LOAD	!"foo"	CODE

You	can	use	any	of	 the	commands	used	with	LOAD	 such	as	CODE,	DATA	 or
SCREEN$.	 Perhaps	 the	 most	 useful	 is	 the	SCREEN$	 command,	 as	 loading
from	the	silicon	disc	is	very	rapid.

Loading	other	types	of	data

LOAD	 can	 be	 used	 to	 load	 types	 of	 data	 other	 than	 programs;	 see	 the	 help
entries	 for	 LOAD	 CODE,	 LOAD	 DATA	 and	 LOAD	 SCREEN$	 for	 further
information.

Format

LOAD	string-expr

See	also

Chapter	20.

128k	Commands	in	BASin

LPRINT	Line	printer	PRINT

Statement/Command

LPRINT	makes	Sinclair-type	printers	print	an	item	of	data	in	the	same	way	that
PRINT	causes	the	item	to	appear	on	the	screen.

How	to	use	LPRINT

LPRINT	may	form	a	statement	in	a	program	or	a	direct	command.	It	is	followed
by	items	of	data	that	may	be	separated	by	commas,	semicolons	or	apostrophes,
for	example

60	LPRINT	"Number	";x'"Name	";n$,"Age	";a

When	output	 to	 the	printer,	 the	 items	are	printed	in	 the	same	format	as	PRINT
would	 cause	 them	 to	 be	 displayed	 on	 the	 screen.	 An	 LPRINT	 statement	 or
command	may	also	include	TAB,	certain	CHR$	controls,	INVERSE	and	OVER
statements	and	control	codes	with	 the	same	effect	as	PRINT.	An	AT	statement
may	 also	 be	 included,	 but	 the	 line	 number	 is	 ignored,	 and	 the	 item	 of	 data
printed	at	the	given	column	position	on	the	same	line.

Format

LPRINT	[TAB	(int-num-expr);]	[AT	int-num-expr,	int-num-expr;]	[CHR$
(int-num-expr);]	[statement;]	[num-expr]	[string-expr]	[;]	[,]	[']

See	also

Chapter	21.

MERGE

Statement/Command

MERGE	allows	two	programs	to	be	merged	together.

How	to	use	MERGE

MERGE	may	be	used	to	form	a	statement	in	a	program	or	more	commonly	as	a
direct	command.	It	 is	followed	by	a	filename	in	 the	form	of	a	string	value,	for
example

500	MERGE	"prog2"

The	filename	following	MERGE	is	the	name	of	the	program	to	be	merged	with
the	program	currently	in	memory.	This	name	is	subject	 to	the	same	restrictions
as	 program	 names	 used	 with	 LOAD.	 MERGE	 then	 loads	 the	 new	 program
without	 first	 deleting	 the	 existing	 program.	 However,	 the	 new	 program
overwrites	any	lines	in	the	existing	program	that	have	the	same	line	numbers	as
lines	in	the	new	program,	and	variables	with	the	same	name	are	also	overwritten.

MERGE	and	the	silicon	disc

MERGE	can	also	be	used	to	access	a	file	stored	on	the	128k	Spectrum's	silicon
disc.	 To	 do	 this,	 insert	 a	 !	 character	 between	 the	 keyword	 MERGE	 and	 the
filename,	for	example

MERGE	!"bar"

If	a	program	is	well	structured,	then	up	to	91kb	of	BASIC	code	can	be	stored	in
the	128k	memory	model.

Format

MERGE	string-expr

See	also

Chapter	20.

128k	Commands	in	BASin

MOVE

Microdrive	file-handling	command.

NEW

Statement/Command

NEW	clears	 the	BASIC	memory	area	 (the	area	as	 far	 as	RAMTOP)	 removing
any	program	currently	in	this	part	of	memory.

How	to	use	NEW

NEW	 is	 normally	 used	 as	 a	 direct	 command	 but	 may	 form	 a	 statement	 in	 a
program.	It	is	used	alone.	On	execution,	the	program	and	variables	are	deleted.
The	 memory	 is	 cleared	 as	 far	 as	 RAMTOP	 so	 that	 user-defined	 graphics
characters,	which	are	stored	above	RAMTOP,	are	not	affected.

Format

NEW

See	also

Chapter	2.

NEXT

Statement/Command

NEXT	is	always	used	in	conjunction	with	FOR	to	create	a	FOR-NEXT	loop.

How	to	use	NEXT

NEXT	is	normally	used	 to	 form	a	statement	 in	a	program	to	complete	a	FOR-
NEXT	loop.	It	is	followed	by	a	letter	that	is	the	control	variable	in	the	loop,	for
example

90	NEXT	a

In	Sinclair	BASIC,	 the	control	variable	must	be	 included.	See	FOR	for	 further
details	of	FOR-NEXT	loops.

Format

NEXT	letter

See	also

Chapter	4.

NOT

Logical	Operator

NOT	is	used	to	reverse	the	truth	of	a	condition	so	that	a	false	condition	becomes
true	and	vice-versa.

How	to	use	NOT

NOT	is	followed	by	a	condition	or	by	a	numeric	value,
for	example

90	IF	NOT	x=y+z	THEN	PRINT	"Wrong"

or

90	LET	correct=x=y+z:	IF	NOT	correct	THEN	PRINT	"Wrong"

When	NOT	is	followed	by	a	condition	(x=y+z	above),	the	BASIC	first	assigns	a
value	of	1	 to	 the	condition	 if	 it	 is	 true	and	0	 if	 it	 is	 false.	NOT	 then	acts	 as	 a
function,	reversing	the	value	produced,	so	that	 the	reverse	of	 the	condition	can
be	 tested.	 Note	 that	 a	 condition	 should	 be	 enclosed	 in	 brackets	 if	 it	 contains
AND	or	OR.

If	NOT	is	followed	by	a	numeric	value,	it	returns	0	if	the	if	the	value	following
is	non-zero	and	1	 if	 the	value	 following	 is	0.	Thus	 in	 the	above	examples,	 the
BASIC	prints	"Wrong"	if	x<>y+z	or	if	correct	has	a	value	of	0.

Format

NOT	cond
NOT	num-expr

See	also

Chapter	13.

OPEN#

Microdrive	file-handling	command.

OR

Logical	Operator/Function

OR	acts	as	a	logical	operator	to	test	the	truth	of	a	combination	of	conditions.	If
one	or	more	of	the	conditions	are	true,	then	the	overall	combination	is	true.	OR
also	acts	as	a	function	to	perform	binary	operations	on	two	numeric	values.

How	to	use	OR

As	a	logical	operator,	OR	links	two	conditions	in	a	statement	where	the	truth	is
to	be	tested,	for	example

70	IF	INKEY$="N"	OR	INKEY$="n"	THEN	STOP

If	any	of	the	conditions	is	true,	then	the	overall	combination	is	true.	In	the	line
above,	one	of	the	conditions	(INKEY$="N"	and	INKEY$="n")	becomes	true	as
soon	 as	 the	 N	 key	 is	 pressed,	 regardless	 of	 whether	 CAPS	 SHIFT	 or	 CAPS
LOCK	is	operating	or	not.	The	whole	combination	is	then	true	and	the	program
stops.

OR	as	a	function

The	BASIC	 assigns	 a	 numeric	 value	 of	 1	 to	 a	 true	 condition	 and	 0	 to	 a	 false
condition.	 It	 recognises	 any	 non-zero	 value	 as	 true	 and	 0	 as	 false.	 OR	 may
therefore	be	preceded	or	followed	by	a	numeric	value,	for	example

40	LET	x=y	OR	z

The	variable	x	is	then	assigned	a	value	of	1	if	z	is	non-zero	or	a	true	condition,
or	a	value	of	y	if	z	is	0	or	a	false	condition.

This	 is	useful	 in	arithmetic.	 In	 the	 following	example,	 the	 fare	 is	halved	 if	 the
age	is	less	than	14.

60	PRINT	fare*(0.5	OR	age>13)

If	 the	 age	 is	 less	 than	 14,	 the	 condition	 age>13	 is	 false,	 so	 the	 fare	 is
multiplied	by	0.5.	If	age>13	is	true,	then	the	fare	is	multiplied	by	1.

Note	 that	 the	 BASIC	 does	 not	 evaluate	 combinations	 of	 numeric	 values	 in
accordance	with	standard	truth	tables.

Format

cond	OR	cond
num-expr	OR	num-expr

See	also

Chapter	13.

OUT	OUTput	to	port

Statement/Command

OUT	sends	a	byte	to	a	given	input/output	port	address	in	order	to	drive	an	output
device.

How	to	use	OUT

OUT	may	be	used	to	form	a	statement	or	as	a	direct	command.	It	is	followed	by
two	numeric	values,	separated	by	a	comma,	for	example

40	OUT	254,3

Both	values	are	rounded	to	the	nearest	integer.	The	first	value	(254	above)	may
then	range	from	0	 to	65535	and	 is	 the	port	address.	The	second	value	(3)	may
range	from	0	to	255	and	this	is	the	byte	to	be	sent	to	the	port	address.

Bits	 0	 to	 2	 of	 the	 byte	 output	 to	 port	 254	 set	 the	 border	 colour;	 the	 above
example	therefore	turns	the	border	magenta.	Bit	3	at	this	address	drives	the	MIC
output,	and	bit	4	the	loudspeaker	(for	BEEP).	Port	address	251	drives	the	printer
and	ports	254,	247	and	239	are	used	with	other	peripherals.

Format

OUT	int-num-expr,int-num-expr

See	also

Chapter	23.

OVER

Statement/Command

OVER	is	used	to	overprint	one	character	on	another.	It	can	also	be	used	to	plot
points	or	draw	lines	or	curves	in	a	paper	colour	instead	of	an	ink	colour.

How	to	use	OVER

OVER	 is	normally	used	 to	 form	a	 statement	 in	 a	program.	 It	 is	 followed	by	a
numeric	value,	for	example

80	OVER	1

The	value	 following	OVER	 is	 rounded	 to	 the	nearest	 integer	 and	may	 then	be
either	0	or	1.	OVER	0,	which	is	the	default	(preset)	state,	causes	any	character	to
obliterate	 a	 previous	 character	 at	 the	 same	 character	 position	 and	 replace	 it.
OVER	1	causes	any	two	characters	displayed	at	 the	same	character	position	 to
be	combined.

OVER	may	be	embedded	(inserted)	in	a	PRINT	or	INPUT	statement	in	the	same
way	as	INK	so	that	it	affects	only	the	characters	displayed	by	the	statement.	This
statement	for	example,	underlines	a	word

PRINT	AT	11,15;"YES";	OVER	1;	AT	11,15;"___"

However,	 note	 that	 characters	 are	 combined	 so	 that	 the	 paper	 colour	 is	 given
where	the	ink	colours	overlap.

OVER	in	high	resolution

OVER	may	be	used	with	PLOT,	DRAW	and	CIRCLE.	Without	OVER,	lines	and
curves	can	overlap	each	other,	but	they	must	have	the	same	ink	colour	otherwise
the	 ink	 colour	 in	 the	 whole	 character	 position	 changes	 where	 they	 cross.	 If
OVER	1	is	used,	lines	or	curves	produce	the	paper	colour	where	they	overlap	or
meet	characters.	Plotting	points	or	drawing	lines	or	curves	again	 in	exactly	 the

same	position	with	OVER	1	cases	them	to	disappear.

Format

OVER	int-num-expr

See	also

Chapter	16.

PAPER

Statement/Command

PAPER	 is	 used	 to	 select	 the	 paper	 or	 background	 colour	 used	 for	 the	 screen
display.	This	may	be	either	 the	colour	of	 the	background	of	 the	whole	display
area,	or	 the	colour	behind	 individual	characters,	points	and	lines	 that	appear	 in
single	character	positions.

How	to	use	PAPER

PAPER	may	be	used	to	form	a	statement	in	a	program	or	as	a	direct	command.	It
is	followed	by	a	numeric	value,	for	example

80	PAPER	x

The	value	 following	PAPER	 is	 rounded	 to	 the	neaerst	 integer	 and	 it	may	 then
range	from	0	to	9.	The	paper	colours	that	are	given	are	the	same	as	those	given
by	INK.	Paper	colours	may	also	be	global	or	may	be	made	local	by	embedding
(inserting)	 them	 in	display	 statements	 in	 exactly	 the	 same	way	 as	 ink	 colours.
See	INK	for	further	details.

Whenever	characters	are	printed	following	a	PAPER	statement,	whether	global
or	 local,	 the	background	over	 the	whole	character	position	affected	changes	 to
the	selected	colour.	This	 is	also	 true	when	points	are	plotted	or	 lines	or	circles
drawn	 with	 an	 embedded	 PAPER	 statement	 but	 which	 have	 not	 followed	 a
global	command	or	statement.

To	produce	a	coloured	background	over	the	whole	display	area,	it	is	necessary	to
use	CLS	after	 a	PAPER	statement.	The	entire	display	 is	 cleared	 to	 this	colour,
which	remains	the	overall	background	colour.

Format

PAPER	int-num-expr[;]

See	also

Chapter	16.

PAUSE

Statement/Command

PAUSE	can	be	used	to	suspend	a	program	for	a	definite	or	indefinite	time.

How	to	use	PAUSE

PAUSE	is	normally	used	to	form	a	statement	 in	a	program.	It	 is	 followed	by	a
numeric	value,	for	example

130	PAUSE	100

The	 value	 following	 PAUSE	 is	 rounded	 to	 the	 nearest	 integer	 and	 may	 then
range	from	0	to	65535.	It	defines	the	delay	that	occurs	as	this	number	of	frames
of	the	television	picture,	so	that	a	value	of	50	produces	a	pause	of	1	second	in	th
UK	and	europe	where	the	frame	frequency	is	50Hz.

However,	 note	 that	 any	 pause	may	 be	 cut	 short	 by	 pressing	 any	 key	 and	 that
PAUSE	0	gives	an	unlimited	pause	that	lasts	until	a	key	is	pressed.

Format

PAUSE	int-num-expr

See	also

Chapter	18.

PEEK

Function

PEEK	gives	the	value	of	the	byte	stored	at	a	particular	location	in	the	memory.

How	to	use	PEEK

PEEK	is	followed	by	a	numeric	value,	for	example

80	LET	x=PEEK(256*y)

Note	 that	 an	 expression	 must	 be	 enclosed	 in	 brackets.	 The	 value	 following
PEEK	 is	 rounded	 to	 the	nearest	 integer	 if	necessary,	 and	may	 range	 from	0	 to
65535	to	give	an	address	in	the	memory.	PEEK	then	returns	the	value	of	the	byte
(a	number	from	0	to	255)	at	the	address	specified.

Example

The	number	of	frames	of	the	display	that	have	occurred	since	the	program	was
last	reset	is	stored	at	addresses	23672	to	23674.	As	the	frames	are	produced	at	a
regular	 rate,	 PEEKing	 these	 locations	 gives	 a	method	 of	measuring	 time.	 The
following	 line	 displays	 the	 time	 in	 seconds	 since	 the	 last	 reset	 (less	 any	 time
spent	in	producing	sounds).

10	PRINT	PEEK(23672+256*PEEK	23673+65536*PEEK	23674)/50

Format

PEEK	int-num-const
PEEK	int-num-var
PEEK	(int-num-expr)

See	also

Chapter	14,	Chapter	18.

PI

Function

PI	 gives	 the	 value	 of	 pi	 (π)	 for	 use	 in	 calculations.	 Pi	 is	 the	 ratio	 of	 the
circumference	of	a	circle	to	its	diameter.

How	to	use	PI

DRAW	255,0,-PI

PI	 returns	 a	 value	 of	 3.1415927,	 so	 that	 the	 above	 command	 draws	 a	 large
semicircle	on	the	screen.

Format

PI

See	also

Chapter	10.

PLOT

Statement/Command

PLOT	 is	 used	 in	 high-resolution	 graphics	 to	 plot	 a	 pixel	 or	 dot	 of	 colour	 at	 a
particular	position	on	the	screen.

How	to	use	PLOT

PLOT	 is	 used	 to	 form	a	 statement	 in	 a	 program	or	 as	 a	 direct	 command.	 It	 is
normally	followed	by	two	numeric	values	separated	by	a	comma,	for	example

50	PLOT	128,87

Both	values	following	PLOT	are	rounded	to	integers	if	necessary.	The	first	value
may	then	range	from	0	to	255	and	defines	the	horizontal	coordinate	of	a	position
on	the	screen.	The	second	value	may	range	from	0	to	175	and	defines	a	vertical
coordinate.	 A	 pixel	 is	 then	 normally	 plotted	 in	 the	 current	 ink	 colour	 at	 the
defined	position	-	in	the	above	example	at	the	centre	of	the	screen.

Note	 the	 following	 effects	 of	 colour	 statements	 or	 commands	 on	PLOT.	After
OVER	1,	 an	 existing	 dot	 at	 the	 same	 position	 is	 changed	 to	 the	 paper	 colour.
Following	 INVERSE	 1,	 the	 dot	 is	 plotted	 in	 the	 current	 paper	 colour.	 After
BRIGHT	 1	 or	 FLASH	 1,	 the	 whole	 character	 position	 on	 the	 low-resolution
screen	in	which	the	pixel	is	plotted	will	be	bright	or	flashing.

These	 four	 keywords	 and	 INK	 or	 PAPER	 may	 also	 be	 embedded	 (inserted)
within	a	PLOT	statement	in	the	same	way	as	with	PRINT,	for	example

160	PLOT	INK	2;x,y

Their	 effect	 is	 the	 same	 but	 is	 then	 local	 and	 limited	 to	 statement.	 If	 colour
statements	 are	 embedded	 this	 way	 then	 the	 character	 position	 on	 the	 low-
resolution	screen	which	is	occupied	by	the	point	plotted	will	be	affected	by	the
colour	changes	and	assume	the	given	values.

Note	that	PLOT	also	defines	the	starting	position	of	the	next	DRAW	statement.

Format

PLOT	[statement;]	int-num-expr,int-num-expr

See	also

Chapter	17.

PLAY

Statement/Command

PLAY	outputs	multi-channel	sound	effects	and	music	using	the	128k	Spectrum's
AY-3-8912	sound	chip.	PLAY	is	a	128k	command	and	as	such	introduces	certain
limitations	to	the	BASIC	you	can	use.

How	to	use	PLAY

PLAY	 may	 be	 used	 as	 a	 direct	 command	 but	 is	 normally	 used	 to	 form	 a
statement	in	a	program.	It	 is	commonly	followed	by	one	to	three	string	values,
and	up	to	eight	if	being	used	to	control	a	MIDI	device,	for	example

10	PLAY	"ccc","ⅇ","&&g;"

The	 values	 following	 PLAY	must	 equate	 to	 strings,	 and	must	 contain	 specific
characters.	Musical	notes	are	 represented	by	 their	alphabetical	names,	with	 the
current	octave	in	lower-case,	with	upper-case	representing	one	octave	higher.

Note	lengths	are	measured	in	crotchets,	and	may	range	from	1	to	9.	Notes	to	be
played	in	triplets	(three	notes	played	in	the	time	of	two)	are	preceded	by	10,	11
and	12	for	triplets	in	semi-quavers,	quavers,	and	crotchets.

Command	characters	in	a	PLAY	string

Music	 performed	 by	 the	 PLAY	 command	 can	 be	 interspersed	 with	 command
characters	which	are	single	upper-case	letters	usually	followed	by	a	number.	A
command	character	will	affect	all	music	in	that	channel	from	that	point	onwards.

The	following	table	summarises	the	Command	Characters.

String Function

a..g,
A..G Specifies	the	pitch	of	the	note	within	the	current	octave	range.

$ Specifies	that	the	note	which	follows	must	be	flattened.

# Specifies	that	the	note	which	follows	must	be	sharpened.

O Specifies	the	octave	number	to	be	used	(followed	by	0	to	8).

1..12 Specifies	the	length	of	notes	to	be	used.

& Specifies	that	a	rest	is	to	be	played.

_ Specifies	that	a	tied	note	is	to	be	played.

N Separates	two	numbers.

V Specifies	the	volume	to	be	used	(followed	by	0	to	15).

W Specifies	the	volume	effect	to	be	used	(followed	by	0	to	7).

U Specifies	that	volume	effects	are	to	be	used	in	the	string.

X Specifies	the	duration	of	the	volume	effect	(followed	by	0	to	65535).

T Specifies	the	tempo	of	the	music	(followed	by	60	to	240).

() Specifies	that	the	enclosed	phrase	is	to	be	repeated.

!	! Specifies	that	the	enclosed	text	is	to	be	skipped	over.

H Specifies	that	the	PLAY	command	must	stop.

M Specifies	the	channel(s)	to	be	used	(followed	by	0	to	63).

Y Specifies	that	a	MIDI	channel	is	to	be	used	(followed	by	1	to	16).

Z Specifies	MIDI	programming	code	(followed	by	code	number).

For	further	details,	see	also	Chapter	19	of	the	Sinclair	BASIC	manual.

Format

PLAY	str-expr	[,str-expr]	[,str-expr]

See	also

Chapter	19.

POINT

Function

POINT	is	used	to	find	out	whether	the	colour	at	a	particular	position	on	the	high-
resolution	screen	is	either	an	ink	colour	or	a	paper	colour.	POINT	does	not	check
the	actual	colour	itself.

How	to	use	POINT

POINT	is	followed	by	two	numeric	values	separated	by	a	comma	and	enclosed
in	brackets,	for	example

240	IF	POINT(x,y)=1	THEN	GO	SUB	600

The	two	values	following	POINT	are	rounded	to	integers	if	necessary.	The	first
value	may	range	from	0	to	255	and	defines	the	horizontal	coordinate	of	a	pixel
on	the	screen.	The	second	value	may	range	from	0	to	175	and	defines	the	vertical
component	 of	 the	 coordinate.	 POINT	 the	 returns	 1	 if	 the	 pixel	 at	 the	 defined
position	is	ink	colour	or	0	if	it	is	paper	colour.

Format

POINT	(int-num-expr,int-num-expr)

See	also

Chapter	17.

POKE

Statement/Command

POKE	is	used	to	change	the	value	of	the	byte	at	a	particular	address	in	memory.
Values	are	normally	POKEd	to	memory	locations	in	order	to	produce	actions	not
given	by	BASIC	keywords.

How	to	use	POKE

POKE	is	used	to	form	a	statement	in	a	program	or	as	a	command.	It	is	followed
by	two	numeric	values	separated	by	a	comma,	for	example

POKE	23609,255

The	two	values	following	POKE	are	rounded	to	the	nearest	integers	if	necessary.
The	first	value	may	then	range	from	0	to	65535	and	is	an	address	in	RAM	(Note:
The	 BASIC	 ROM	 inhabits	 the	 range	 from	 0	 to	 16384	 and	 is	 read-only,	 so
POKEing	to	 that	range	will	have	no	effect).	The	second	value	may	range	from
-255	to	255	and	is	the	byte	to	be	written	to	the	defined	address.

In	the	above	example,	255	is	POKEd	to	address	23609,	which	controls	the	sound
produced	when	a	key	is	pressed.	A	value	of	255	gives	a	long	beep	instead	of	the
normal	click,	with	other	values	producing	a	shorter	beep.

Format

POKE	int-num-expr,int-num-expr

See	also

Chapter	14.

PRINT

Statement/Command

PRINT	displays	data	on	 the	screen.	The	data	may	be	any	single	character	or	a
sequence	of	characters.	A	PRINT	statement	may	incorporate	other	keywords	to
define	the	position	and	colour	of	the	data.

How	to	use	PRINT

PRINT	may	be	used	alone	or	it	may	be	followed	by	data.	This	data	may	be	in	the
form	of	any	numeric	or	string	expressions,	or	a	mixture	of	these.

When	 using	 PRINT	 with	 data,	 two	 or	 more	 separate	 items	 must	 each	 be
separated	by	a	semicolon,	comma	or	apostrophe.

Certain	 other	 keywords	may	be	 inserted	 in	 any	order	 between	PRINT	and	 the
data,	 provided	 each	 statement	 formed	 by	 the	 keyword	 ends	 in	 a	 semicolon.
These	 keywords	 are	 CHR$,	 TAB,	 AT,	 INK,	 PAPER,	 FLASH,	 BRIGHT,
INVERSE	or	OVER.

PRINT	with	strings

PRINT	alone	or	followed	by	a	null	string	("")	displays	a	blank	line	and	moves
the	print-position	to	the	beginning	of	the	next	line.

PRINT	followed	by	a	string	constant	(any	characters	within	double	quote	marks)
displays	the	characters	as	they	appear	between	the	quote	marks.	The	command

PRINT	"3/542/76/32"

displays

3/542/76/32

PRINT	followed	by	a	string	variable	or	expression	displays	the	string	or	strings

they	represent.

PRINT	with	numbers

PRINT	 followed	 by	 any	 numeric	 expression	 displays	 the	 expression's	 value.
Numbers	are	displayed	in	decimal	notation	with	up	to	eight	significant	digits	and
no	trailing	zeros	after	the	decimal	point.

Very	large	numbers	and	very	small	numbers	are	displayed	in	a	shorter	scientific
notation,	 as	 two	 figures	 separated	 by	 the	 letter	 E.	 This	 indicates	 a	 number	 in
which	the	first	part	(the	mantissa)	is	multiplied	by	10	to	the	power	of	the	second
part	(the	exponent).	The	command

PRINT	3/542/76/21

for	example	displays

3.4680798E-6

PRINT	formatting	with	punctuation	signs

PRINT	 followed	by	 items	of	data	 separated	by	a	 semicolon	displays	 the	 items
placed	next	to	each	other	without	a	space.	The	command

PRINT	1;2;3

displays

123

PRINT	followed	by	 items	of	data	 separated	by	a	comma	displays	each	 item	at
the	beginning	or	in	the	middle	of	the	a	line	depending	on	the	position	of	the	first
item.	The	command

PRINT	1,2,3

displays

1															2

3

PRINT	followed	by	items	of	data	separated	by	an	apostrophe	displays	the	item
after	the	apostrophe	at	the	beginning	of	the	next	line.	The	command

PRINT	1'2'3

displays

1

2

3

If	a	PRINT	statement	or	command	ends	with	a	semicolon,	comma	or	apostrophe,
then	the	item	displayed	by	the	next	PRINT	statement	is	affected	in	the	same	way.

PRINT	and	other	keywords

PRINT	may	be	followed	by	TAB,	a	numeric	value,	a	semicolon	and	then	an	item
of	data,	for	example

60	PRINT	TAB	x;a$

The	value	following	TAB	(x	above)	is	rounded	to	the	nearest	integer	if	necessary
and	is	then	divided	by	32	and	the	remainder	returned	to	give	a	value	of	between
0	and	31.	The	item	of	data	is	then	displayed	at	this	column	position	in	the	same
or	the	next	line.

PRINT	may	 be	 followed	 by	AT	 and	 then	 two	 numeric	 values	 separated	 by	 a
comma,	a	semicolon	and	an	item	of	data.	For	example,

50	PRINT	AT	l,c;"Data"

The	first	value	(l	above)	may	range	from	0	to	21	and	defines	the	number	of	the
line	or	row	in	which	the	data	will	be	displayed.	The	second	value	(c	above)	may
range	 from	 0	 to	 31	 and	 defines	 the	 number	 of	 the	 column	 in	 which	 the	 first

character	or	digit	of	the	data	will	be	displayed.	Non-integer	values	are	accepted
and	rounded	to	the	nearest	integer.	The	command

PRINT	AT	11,16;"*"

displays	a	star	in	the	centre	of	the	screen.

PRINT	may	also	be	 followed	by	one	or	more	CHR$	 functions.	See	CHR$	for
more	details.

PRINT	and	colour	keywords

The	display	produced	by	PRINT	is	affected	by	colour	statements	or	commands
given	 by	 INK,	 PAPER,	 FLASH,	 BRIGHT,	 INVERSE	 and	 OVER	 that	 are
currently	in	operation.	PRINT	may	also	be	followed	by	one	or	more	of	these	six
statements	each	followed	by	a	semicolon	before	the	item	of	data,	for	example

50	PRINT	AT	11,16;INK	2;FLASH	1;"*"

The	 item	 of	 data	 is	 then	 displayed	with	 the	 attributes	 specified	 by	 the	 colour
keyword(s).	 These	 attributes	 are	 local	 and	 only	 apply	 to	 the	 item	 displayed.
Following	 execution	 of	 the	 PRINT	 statement,	 they	 revert	 to	 their	 default	 or
previously	declared	global	values.

Format

PRINT	 [TAB	 int-num-expr;]	 [AT	 int-num-expr,int-num-expr;]	 [CHR$
(int-num-expr);]	[num-expr]	[string-expr]	[;]	[,]	[']

See	also

Chapter	2,	Chapter	15.

RANDOMIZE

Command/Statement

RANDOMIZE	 is	 used	 in	 conjunction	 with	 RND	 to	 produce	 sequences	 of
numbers	that	are	either	random	or	predictable.

How	to	use	RANDOMIZE

RANDOMIZE	is	used	either	to	form	a	statement	in	a	program	or	as	a	command.
It	is	optionally	followed	by	a	numeric	value,	for	example

RANDOMIZE	1

10	RANDOMIZE

The	value	following	RANDOMIZE	is	rounded	to	the	nearest	integer	if	necessary
and	may	 then	 range	 from	 0	 to	 65535.	 A	 value	 greater	 than	 0	 sets	 the	 system
variable	SEED	to	 this	value,	 following	which	RND	always	generates	 the	same
sequence	 of	 numbers.	 The	 actual	 sequence	 depends	 on	 the	 value	 of
RANDOMIZE.

If	RANDOMIZE	is	followed	by	0	or	no	value,	then	SEED	is	given	the	value	of
another	 system	 variable	 called	 FRAMES,	 which	 counts	 the	 frames	 displayed
since	 the	BASIC	was	 last	 reset.	As	FRAMES	 changes	 50	 times	 a	 second,	 the
sequence	 of	 numbers	 generated	 by	 RND	 following	 RANDOMIZE	 or
RANDOMIZE	0	is	highly	random.

If	 RANDOMIZE	 is	 not	 used,	 RND	 generates	 the	 same	 sequence	 of	 numbers
from	reset	and	after	NEW.

Format

RANDOMIZE	[int-num-expr]

See	also

Chapter	11.

READ

Statement/Command

READ	is	used	in	conjuntion	with	DATA	to	assign	values	to	variables	using	the
values	in	a	DATA	statement.

How	to	use	READ

READ	is	normally	used	to	form	a	statement	in	a	program.	It	is	followed	by	one
or	more	numeric	variables	or	 string	variables	each	 separated	by	a	 comma,	 for
example

20	READ	a$,x

When	READ	is	 first	executed,	 it	 takes	 the	same	number	of	values	as	 there	are
variables	from	the	first	DATA	list	and	assigns	the	values	to	the	variables	in	order.
When	READ	is	next	executed,	 the	next	 set	of	DATA	values	 is	assigned	 to	 the
variables	named	in	the	READ	statement	and	so	on.

For	further	details,	see	DATA.

Format

READ	num-var	[,num-var]	[,string-var]
READ	string-var	[,num-var]	[,string-var]

See	also

Chapter	6.

REM	REMark

Statement

REM	is	used	to	put	remarks	or	reminders	into	your	program.	These	may	be	the
title	and	author	of	the	program,	and	explanations	of	lines	in	the	program	such	as
the	purpose	of	a	variable.	The	remarks	play	no	part	in	the	running	of	the	program
and	can	be	seen	only	in	the	listing.

How	to	use	REM

REM	forms	either	a	line	of	its	own	in	a	program	or	the	last	statement	in	a	line.	It
is	followed	by	any	remark	that	can	be	keyed	in	as	required,	for	example

80	INPUT	n$:	REM	n$	is	a	name

When	the	BASIC	encounters	REM,	it	 ignores	everything	that	follows	REM	on
the	line.

Format

REM	any	characters

See	also

Chapter	2.

RESTORE

Statement/Command

RESTORE	is	used	 in	conjunction	with	READ	and	DATA	to	make	READ	take
values	 from	 a	 particular	 DATA	 statement	 instead	 of	 the	 first	 or	 next	 DATA
statement	in	the	program.

How	to	use	RESTORE

RESTORE	normally	forms	a	statement	in	a	program.	It	is	optionally	followed	by
a	numeric	value,	for	example

160	RESTORE	800

The	value	is	rounded	down	to	the	nearest	integer	if	necessary,	and	should	then	be
the	 number	 of	 a	 line	 in	 the	 program	 containing	 a	DATA	statement.	Following
RESTORE,	 the	 next	 READ	 statement	 will	 assign	 the	 value	 contained	 in	 this
DATA	statement.	If	the	numbered	line	does	not	exist	or	does	not	contain	a	DATA
statement,	then	READ	goes	to	the	next	DATA	statement	after	this	line.	If	there
are	 no	 further	DATA	 statements	 in	 the	 program,	 then	 error	 E	 (Out	 of	 DATA)
results.

If	RESTORE	is	followed	by	0	or	no	value,	then	the	next	READ	statement	goes
to	the	first	DATA	statement	in	the	program.

Format

RESTORE	[int-num-expr]

See	also

Chapter	6.

RETURN

Statement/Command

RETURN	is	used	to	terminate	a	subroutine	and	return	the	computer	to	the	main
program	or	a	previous	subroutine.

How	to	use	RETURN

RETURN	is	normally	used	to	form	a	statement	in	a	program.	It	is	used	alone	at
the	end	of	a	subroutine,	for	example

1080	RETURN

On	execution,	the	program	branches	to	the	statement	following	the	last	GO	SUB
executed.

See	GO	SUB	for	further	details.

Format

RETURN

See	also

Chapter	5.

RND	RaNDom	number

Function

RND	is	used	to	generate	a	random	number.

How	to	use	RND

RND	is	used	alone	in	a	statement	or	command,	for	example

60	LET	x=RND

RND	then	returns	a	random	number	less	than	1	and	greater	than	or	equal	to	0.

When	 BASIC	 is	 reset	 or	 started,	 or	 NEW	 is	 used,	 numbers	 are	 subsequently
returned	by	RND	in	the	same	sequence.	The	sequence	is	generated	by	taking	the
powers	of	75	 (75,	75*75,	75*75*75	and	so	on)	dividing	each	power	by	65537
and	using	the	remainder	only,	then	subtracting	1	from	the	remainder	and	dividing
this	result	by	65536.

If	 a	 more	 random	 sequence	 or	 another	 fixed	 sequence	 is	 required,	 then	 use
RANDOMIZE	before	RND.

Random	whole	numbers

Many	of	the	BASIC's	statements	and	functions,	such	as	INK	and	CHR$,	round
numbers	 to	 the	 nearest	 integer	 and	RND	may	 be	 used	with	 them	 directly,	 for
example

INK	RND*7

produces	an	ink	colour	at	random.	Others	require	integers	and	any	whole	number
from	1	to	x	is	given	by

INT	(RND*x)+1

To	generate	a	random	integer	from	0	to	x,	use

INT	(RND*x+0.5)

Format

RND

See	also

Chapter	11.

RUN

Command/Statement

RUN	makes	a	program	run,	normally	from	the	first	line.

How	to	use	RUN

RUN	may	be	used	as	a	direct	command	or	it	may	form	a	statement	in	a	program
line.	It	is	optionally	followed	by	a	numeric	value,	for	example

RUN	50

If	no	value	follows	RUN	then	the	program	runs	from	the	first	line.	If	a	value	is
included,	it	is	rounded	down	to	the	nearest	integer	if	necessary	and	the	program
then	runs	from	this	line.	If	the	line	does	not	exist,	the	program	runs	from	the	next
line	 in	 the	 program.	 Note	 that	 RUN	 performs	 CLEAR	 before	 running	 the
program,	 so	 that	 variable	 values	 are	 are	 erased.	 To	 avoid	 this,	 use	 GO	 TO
followed	by	a	line	number.

If	a	program	has	been	saved	using	LINE,	 then	 it	 runs	automaticaly	on	 loading
and	RUN	is	not	required.

Format

RUN	[int-num-expr]

See	also

Chapter	2.

SAVE

Statement/Command

SAVE	sends	a	program	to	a	file	in	order	to	store	it	for	later	retrieval.

How	to	use	SAVE

SAVE	 is	 normally	 used	 as	 a	 direct	 command	 but	 may	 form	 a	 statement	 in	 a
program.	It	is	followed	by	a	filename	which	is	a	string	value,	for	example

SAVE	"filename"

The	filename	may	contain	up	to	ten	characters.	Specifying	an	empty	or	null	("")
filename	will	 bring	up	 a	windows	 requester	 to	prompt	you	 for	 a	 filename.	On
execution,	the	message

Start	tape,	then	press	any	key

is	 displayed.	 On	 pressing	 any	 key,	 the	 program	 is	 saved	 to	 a	 file,	 and	 on
conclusion,	the	report	0	Ok,	0:1	appears.

Automatic	running

If	 the	stored	program	is	 to	run	automatically	on	 loading,	 then	SAVE	should	be
used	in	conjunction	with	LINE.	The	program	name	is	followed	by	LINE	and	a
numeric	value,	for	example

SAVE	"filename"	LINE	1

The	 value	 following	 LINE	 is	 rounded	 down	 if	 necessary,	 and	 should	 then	 be
either	1	or	the	number	of	a	line	in	the	program.	The	program	is	then	sent	to	the
file	 in	 the	 same	 way	 as	 a	 normal	 SAVE.	 On	 loading,	 the	 program	 starts
automatically	 from	 the	 line	 having	defined	 the	 line	 number	 or,	 if	 no	 such	 line
exists,	 from	the	next	 line	 in	 the	program.	In	practice,	using	LINE	1	causes	 the
whole	program	to	run	automatically.

Note	 that	 an	 auto-running	 program	 will	 not	 clear	 variables	 or	 the	 screen
(effectively,	the	program	uses	a	GO	TO	instead	of	a	RUN	to	start	the	program).

SAVE	and	the	silicon	disc

SAVE	can	also	be	used	to	store	a	file	on	the	128k	Spectrum's	silicon	disc.	To	do
this,	 insert	 a	 !	 character	 between	 the	 keyword	 SAVE	 and	 the	 filename,	 for
example

SAVE	!"udgs"	CODE	USR	"A",21*8

You	can	use	any	of	 the	commands	used	with	SAVE	 such	as	CODE,	DATA	 or
SCREEN$.

The	silicon	disc	stores	just	under	64kb	of	data,	and	is	very	useful	for	rapid	access
to	stored	information	which	would	otherwise	take	up	too	much	memory.

Saving	other	types	of	data

SAVE	can	also	store	other	types	of	data	-	sections	of	memory	and	variable	arrays
can	be	stored,	and	SAVE	also	has	a	special	command	to	save	the	screen	display.
See	SAVE	CODE,	SAVE	DATA,	and	SAVE	SCREEN$	for	further	information

Format

SAVE	string-expr	[LINE	int-num-expr]

See	also

Chapter	20.

128k	Commands	in	BASin

SCREEN$

Statement/Command

SCREEN$	detects	which	character	appears	at	a	particular	location	on	the	screen.

How	to	use	SCREEN$

SCREEN$	 is	 followed	 by	 two	 numeric	 values	 separated	 by	 a	 comma	 and
enclosed	in	brackets,	for	example

160	IF	SCREEN$(l,c)="X"	THEN	PRINT	"CRASH"

The	 values	 following	 SCREEN$	 are	 rounded	 down	 to	 the	 nearest	 integer	 if
necessary.	The	first	value	(l	above)	may	then	range	from	0	to	21	and	gives	the
line	 (or	 row)	 number	 of	 a	 position	 on	 the	 screen.	The	 second	 value	 (c	 above)
may	range	from	0	to	31	and	gives	the	column	number	of	the	position.	SCREEN$
then	 returns	 the	 character	 displayed	 at	 this	 position	 as	 a	 string	 constant	 (the
character	in	quote	marks,	"X"	above	for	example).	If	no	character	is	present	(or
recognisable)	 at	 this	 position,	 SCREEN$	 returns	 a	 null	 (empty)	 string	 ("").
SCREEN$	 cannot	 detect	 user-defined	 graphics	 unless	 they	 are	 identical	 to
regular	alpha-numeric	characters.

Note	that	SCREEN$	may	also	be	used	with	SAVE	and	LOAD	to	store	the	screen
display	 in	 a	 file	 and	 also	 to	 load	 it	 from	 that	 file.	 See	 SAVE	 SCREEN$	 and
LOAD	SCREEN$	for	further	details.

Format

SCREEN$	(int-num-expr,	int-num-expr)

See	also

Chapter	15.

SGN	SiGN

Function

SGN	indicates	whether	a	number	is	positive,	negative	or	zero.

How	to	use	SGN

SGN	is	followed	by	a	numeric	value,	for	example

50	LET	x=SGN	y

An	expression	must	be	enclosed	in	brackets.	SGN	then	returns	1	if	the	value	of
the	argument	(y	above)	is	positive,	-1	if	it	is	negative	and	0	if	it	is	zero.

Format

SGN	num-const
SGN	num-var
SGN	(num-expr)

See	also

Chapter	9.

SIN	SINe

Function

SIN	gives	the	sine	of	an	angle.

How	to	use	SIN

SIN	is	followed	by	a	numeric	value,	for	example

80	LET	x=SIN	y

A	expression	must	be	enclosed	in	brackets.	The	value	following	SIN	is	the	angle
in	radians,	and	SIN	returns	the	sine	of	the	angle.	Degrees	can	be	converted	into
radians	by	multiplying	by	PI/180.

Note	that	SIN	returns	a	positive	value	for	angles	between	0	and	180	degrees,	and
a	negative	value	for	angles	between	180	and	360	degrees.

Example

The	command

PRINT	SIN	(30*PI/180)

displays	0.5,	the	sine	of	30	degrees.

Format

SIN	num-const
SIN	num-var
SIN	(num-expr)

See	also

Chapter	10.

SQR	SQare	Root

Function

SQR	gives	the	square	root	of	a	number.

How	to	use	SQR

SQR	is	followed	by	a	numeric	value,	for	example

70	LET	x=SQR	y

An	expression	must	be	enclosed	in	brackets.	The	value	following	SQR	(y	above)
must	be	greater	than	zero,	and	SQR	returns	its	square	root.

Format

SQR	num-const
SQR	num-var
SQR	(num-expr)

See	also

Chapter	9.

STEP

See	FOR,	also	Chapter	4.

STOP

Statement/Command

STOP	halts	a	program	at	a	particular	point.	It	may	be	necessary	to	use	STOP	to
end	the	main	section	of	a	program	in	order	to	confine	subroutines	to	a	seperate
section.	STOP	is	also	valuable	in	debugging	a	program.

How	to	use	STOP

STOP	is	normally	used	to	form	a	statement	in	a	program.	It	is	used	on	its	own,
for	example

650	STOP

On	execution,	the	program	stops	and	the	report

9	STOP	statement

appears	with	the	line	and	statement	at	which	the	program	halted.

Debugging	procedures,	such	as	displaying	and	changing	the	values	of	variables,
may	then	be	undertaken.	Entering	CONTINUE	subsequently	causes	the	program
to	resume	at	the	next	statement	with	the	new	values.

Format

STOP

See	also

Chapter	2,	Chapter	3.

STR$	STRing

Function

STR$	converts	a	number	into	a	string.

How	to	use	STR$

STR$	is	followed	by	a	numeric	value,	for	example

90	LET	a$=STR$	x

An	 expression	 must	 be	 enclosed	 in	 brackets.	 STR$	 returns	 the	 value	 of	 its
argument	(x	above)	as	a	string	constant.	If	x	were	assigned	the	value	of	65,	then
the	above	statement	assigns	a$	the	value	"65".

Format

STR$	num-const
STR$	num-var
STR$	(num-expr)

See	also

Chapter	9.

TAB	TABulate

PRINT/INPUT	modifier

TAB	changes	the	position	on	a	line	that	PRINT	and	INPUT	items	appear.

How	to	use	TAB

TAB	is	followed	by	a	numeric	value,	for	example

PRINT	TAB	15;"Colunm	15"

The	value	 following	TAB	 is	 rounded	down	 to	 the	nearest	 integer	 if	 necessary,
and	may	range	from	0	to	31	-	values	greater	than	31	will	be	divided	by	32	and
the	 remainder	 used	 as	 the	 TAB	 value.	 Any	 characters	 subsequently	 displayed
will	appear	at	that	column	on	the	screen.

TAB	can	also	be	used	in	exactly	the	same	manner	with	INPUT	items.

Format

TAB	int-num-expr

See	also

LPRINT;	PRINT;	Chapter	15.

TAN	TANgent

Function

TAN	gives	the	tangent	of	an	angle.

How	to	use	TAN

TAN	is	followed	by	a	numeric	value,	for	example

130	LET	x=TAN	Y

An	 expression	must	 be	 enclosed	 in	 brackets.	 The	 value	 following	 TAN	 is	 the
angle	 in	 radians,	 and	 TAN	 returns	 the	 tangent	 of	 the	 angle.	 Degrees	 may	 be
converted	to	radians	by	multiplying	by	PI/180.

Note	that	TAN	returns	a	positive	value	for	angles	between	0	and	90	degrees.	For
angles	 between	90	 and	180	degrees	 and	 angles	 between	270	 and	360	degrees,
TAN	returns	a	negative	value.

Format

TAN	num-const
TAN	num-var
TAN	(num-expr)

See	also

Chapter	10.

THEN

Statement

THEN	Separates	the	condition	from	the	code	to	be	executed	in	an	IF	statement.

How	to	use	THEN

THEN	 is	 preceded	 by	 IF,	 and	 a	 condition.	 It	 is	 followed	 by	 one	 or	 more
statements,	for	example

10	IF	x=0	THEN	PRINT	"YOU	LOSE!"	:	STOP

If	the	condition	(x=0	above)	 is	 true	 then	 the	program	PRINTs	"YOU	LOSE!"
and	then	executes	a	STOP	statement.	If	x	is	any	other	value	then	neither	of	the
statements	following	THEN	will	be	executed,	and	the	program	will	continue	on
to	the	next	line.

Format

IF	cond	THEN	statement	[:	statement]

See	also

Chapter	3.

TO

String	Slicer

TO	has	two	different	uses	in	BASIC.	It	is	used	in	conjunction	with	FOR	to	set	up
a	 FOR-NEXT	 loop	 (see	 FOR	 for	 further	 details)	 and	 it	 is	 also	 used	 in	 string
slicing	(the	splitting	up	of	strings	into	smaller	sub-strings).

How	to	use	TO	for	string	slicing

TO	 is	used	 to	define	 the	 first	 and	 last	characters	of	a	 sub-string	within	a	main
string.	TO	 is	 preceded	 by	 a	 string	 value,	 an	 opening	 bracket,	 then	 an	 optional
numeric	value.	 It	 is	 followed	by	an	optional	numeric	value	 and	 then	a	 closing
bracket,	for	example

80	PRINT	a$(4	TO	7)

A	 string	 expression	 must	 also	 be	 enclosed	 in	 brackets.	 The	 string	 value	 (a$
above)	is	the	string	that	is	to	be	sliced.	The	two	numeric	values	(4	and	7)	define
the	positions	of	 the	 first	 and	 last	 characters	of	 the	 sub-string	within	 the	 string.
TO	then	returns	the	sub-string	(characters	4	to	7	inclusive,	of	a$).

The	 first	 numeric	 value	 has	 a	 default	 value	 of	 1	 and	 the	 second	 has	 a	 default
value	equal	to	the	position	of	the	last	character	in	the	string.	The	first	value	can
therefore	be	omitted	if	the	sub-string	begins	with	the	first	character	in	the	string,
and	the	second	value	can	be	omitted	if	the	sub-string	ends	with	the	last	character
in	the	string.

Format

string-const	([num-expr]	TO	[num-expr])
string-var	([num-expr]	TO	[num-expr])
(string-expr)	([num-expr]	TO	[num-expr])

See	also

Chapter	4,	Chapter	8.

USR	User	SubRoutine

Function

USR	is	used	to	call	a	machine	code	subroutine	that	has	been	placed	in	memory
at	a	specified	address.	It	is	also	used	to	place	the	data	for	a	user-defined	graphics
character	in	the	reserved	locations	at	the	top	of	the	memory.

USR	and	machine	code

To	use	machine	code,	USR	is	followed	by	a	numeric	value,	for	example

	80	PRINT	USR	65000

100	RANDOMIZE	USR	65000

An	 expression	 should	 be	 enclosed	 in	 brackets.	 The	 value	 following	 USR	 is
rounded	 down	 to	 the	 nearest	 integer	 and	 is	 then	 the	 starting	 address	 in	 the
memory	at	which	the	machine	code	subroutine	has	been	placed.	Any	statement
containing	USR	 then	 calls	 the	 subroutine	 at	 this	 address	 and	USR	 returns	 the
contents	 of	 the	BC	 register	 pair.	 RANDOMIZE	USR	 or	 RESTORE	 USR,	 for
example	runs	the	subroutine	only	(though	bear	 in	mind	that	any	command	that
takes	 a	 numeric	 parameter	 will	 act	 on	 the	 result	 of	 the	 USR	 call),	 whereas
PRINT	USR	additionally	displays	the	BC	register	value.

USR	and	user-defined	graphics

To	 create	 user-defined	 graphics,	USR	 is	 used	with	 POKE.	 It	 is	 followed	 by	 a
string	constant	or	variable	to	return	an	address	for	the	POKE,	for	example

50	POKE	USR	"a",255

the	string	value	following	USR	may	be	a	single	letter	ranging	from	A	to	U,	or	a
to	u,	capital	letters	not	being	distinguished	from	lower-case	letters.

USR	 then	 returns	 the	 starting	 address	 of	 one	 of	 the	 21	 sections	 of	 memory
reserved	 for	 user-defined	 graphics.	 Each	 section	 contains	 eight	 addresses	 to

which	eight	bytes	are	POKEd	to	create	one	graphics	character.	The	bytes	may	be
given	in	decimal	form	or	in	binary	(see	BIN).

Format

USR	int-num-const
USR	int-num-var
USR	(int-num-expr)
USR	string-const
USR	string-var
USR	(string-expr)

See	also

Chapter	14,	Chapter	26.

VAL	VALue

Function

VAL	changes	a	string	with	a	numeric	value	contained	within	into	a	number.

How	to	use	VAL

VAL	is	followed	by	a	string	constant	or	variable,	for	example

70	LET	x=VAL	a$

The	value	 of	 the	 string	 constant	 or	 variable	 is	 stripped	of	 its	 quotation	marks,
and	must	 then	 be	 a	 numeric	 value.	 VAL	 then	 evaluates	 this,	 returning	 it	 as	 a
numeric	value.

Examples

If	a$	has	the	value	"435"	then	the	above	statement	assigns	a	value	of	435	to	x.
However,	VAL	can	also	evaluate	expressions,	for	example

10	INPUT	a$,x

20	PRINT	VAL	a$

The	 string	 value	 that	 is	 assigned	 to	 a$	 should	 be	 an	 expression	 using	 x,	 for
example	"x*x".	A	numeric	 value	 is	 then	 assigned	 to	 x,	 for	 example	5.	VAL
strips	 the	 quotation	 marks	 from	 the	 string	 value	 to	 get	x*x	 and	 evaluates	 it
using	the	value	assigned	to	x,	displaying	the	result	25.

Format

VAL	string-const
VAL	string-var
VAL	(string-expr)

See	also

Chapter	9.

VAL$	VALue	(string)

Function

VAL$	evaluates	a	string	as	a	string	expression.

How	to	use	VAL$

VAL$	is	followed	by	a	string	variable,	for	example

130	PRINT	VAL$	a$

The	value	of	the	string	variable	is	stripped	of	its	quotation	marks,	and	must	then
be	a	string	expression.	VAL$	evaluates	the	expression	and	returns	the	value	as	a
string	constant.

Examples

Try	this	program

10	INPUT	a$,x$

20	PRINT	VAL$	a$

The	 string	 value	 that	 is	 assigned	 to	 a$	 should	 be	 an	 expression	 using	 x$,	 for
example	"x$+x$".	A	string	value	is	then	assigned	to	x$,	for	example	"DO".
VAL$	strips	the	quotes	of	the	value	of	a$	to	get	x$+x$	and	evaluates	it	using
the	value	assigned	to	x$,	displaying	the	result	DODO.

Format

VAL$	string-var
VAL$	string-const
VAL$	(string-expr)

VERIFY

Command/Statement

VERIFY	checks	that	a	program	has	been	correctly	stored	following	SAVE.

How	to	use	VERIFY

VERIFY	 is	 normally	 used	 as	 a	 direct	 command	 in	 exactly	 the	 same	 way	 as
LOAD	and	is	followed	by	the	program	name,	for	example

VERIFY	"filename"

When	the	VERIFY	process	is	started,	the	name	of	every	file	is	displayed	and	any
program	 found	 that	 has	 the	 same	 name	 is	 compared	 with	 the	 program	 in
memory.	If	the	two	are	found	to	be	the	same,	byte	for	byte,	the	report

0	OK,	0:1

is	given.

VERIFY	CODE	and	VERIFY	DATA

VERIFY	CODE	can	be	used	in	exactly	the	same	way	as	LOAD	CODE	to	verify
that	a	section	of	memory	information	has	been	stored	correctly.	VERIFY	DATA
works	in	the	same	way	as	LOAD	DATA	to	check	that	an	array	has	been	stored
without	error.	See	LOAD	CODE	and	LOAD	DATA	for	further	details.

Format

VERIFY	string-expr
VERIFY	string-expr	CODE	[int-num-expr]	[,int-num-expr]
VERIFY	string-expr	DATA	letter[$]()

See	also

Chapter	20.

Contact	Retro	Computers	Ltd

By	email

Should	you	have	any	questions	about	BASin	then	you	should	send	a	message	to
the	publisher.

The	address	is:

http://everychildcancode.com/contact-us/

Via	Social	Media

You	can	contact	Retro	Computers	Ltd	via	Facebook	and	Twitter:

https://www.facebook.com/retrocomputersltd

https://twitter.com/sinclairzxvega

http://everychildcancode.com/contact-us/
https://www.facebook.com/retrocomputersltd
https://twitter.com/sinclairzxvega

Credits

BASin	 was	 written	 by	 Paul	 Dunn.	 The	 help	 files	 were	 written	 by	 Paul	 E
Collins	 and	 Paul	 Dunn,	 with	 contributions	 from	 Andrew	 Owen,	 and	 were
compiled	into	Microsoft	HTML	Help	format	by	Paul	E	Collins.

BASin	would	 not	 have	 been	 possible	without	 the	 invaluable	 help	 of	 all	 those
who	reported	bugs,	suggested	features,	and	assisted	with	the	coding.	The	author
would	 especially	 like	 to	 thank	 the	 SPIN	 team	 (Mark	 Boyd,	 Woody,	 and
Damien	 Guard)	 for	 their	 help	 and	 encouragement	 -	 notably	 Mark	 Boyd's
contributions	 to	 the	 user	 interface	 and	 assembler,	Woody's	 help	with	 the	main
emulation	core,	and	Damien's	help	with	the	user	interface	-	and	for	creating	such
fantastic	fonts	for	the	editor	to	use.

BASin	for	Beginners	is	published	by	Retro-Computers	Ltd.

The	display	area

The	display	area,	to	the	right	of	the	editor,	shows	the	output	from	your	program
just	as	it	would	be	displayed	on	a	Spectrum	screen.

On	start-up,	the	Editor	will	appear,	and	after	a	short	pause,	the	display	will	run
through	the	Spectrum	ROM's	start-up	sequence.	The	display	will	go	from	white,
to	black	(with	red	vertical	lines)	and	finally	back	to	white	with	the	message

©	2015	Sinclair	Research	Ltd

at	the	bottom.	The	Editor	will	then	become	active,	ready	for	programming.

Display	capabilities

For	 BASIC	 programming	 purposes,	 the	 Spectrum	 display	 has	 three	 distinct
regions:

The	printable	area,	which	is	the	main	central	part	of
the	screen	and	receives	most	text	output.
The	 lower	part	 of	 the	printable	area,	which	consists
of	 its	 bottom	 two	 lines	 and	 is	 typically	 used	 for
INPUT	 prompts	 and	 error	 messages.	 Text	 can	 be
printed	here	with	PRINT	#0.
The	border,	which	is	a	region	of	plain	colour	(set	by
the	 BORDER	 statement)	 surrounding	 the	 printable
area.	The	lower	part	usually	adopts	the	border	colour.

Graphics	can	be	drawn	anywhere	in	the	printable	area,	including	the	lower	part.
However,	you	cannot	produce	text	or	graphics	in	the	border.

BASin,	by	default,	displays	the	Spectrum	screen	as	a	320	×	240	pixel	bitmap.	On
a	 higher	 display	 resolution,	 this	 can	 make	 the	 display	 appear	 quite	 small.	 To
circumvent	 this	 limitation,	 the	 display	 window	 can	 be	 re-sized,	 by	 using	 the
mouse	to	grab	the	strip	between	the	editor	and	the	display	area.	Aspect	ratio	is
always	preserved.

To	learn	about	the	resolution	and	colour	depth	of	the	Spectrum	display,	see	What
is	a	Sinclair	Spectrum?.

Editor	Fonts	tab

The	Editor	Fonts	tab	can	be	found	in	the	Options	window.

BASin's	editor	can	use	other	fonts	if	you	wish,	rather	than	the	standard	sinclair
font.	These	fonts	are	any	file	(either	a	binary	dump	or	a	.bsc	file)	which	holds
768	bytes.	This	data	is	then	used	to	form	the	font	used	by	the	editor.

Fonts	can	be	created	and	edited	using	the	UDG	Editor.	They	can	also	be	loaded
by	 your	 programs	 and	 used	 (with	 a	 little	 modification	 to	 the	 CHARS	 system
variable)	as	the	default	font	by	BASIC.

Font	Folder

BASin	will,	on	startup	and	when	the	options	window	opens,	search	for	fonts	that
can	 be	 used	 by	 the	 editor.	 BASin	 will	 search	 the	 folder	 specified	 here,	 and
recurse	any	subdirectories	in	that	folder.	The	list	of	fonts	gathered	will	be	used	in
the	Font	Filename	option.

If	 no	 fonts	 can	 be	 found,	 the	 only	 option	 available	 to	 you	will	 be	 the	 default
Sinclair	Font	which	is	built	into	BASin	and	into	the	ROM.

Changing	the	Editor	Font

Clicking	 the	Font	Filename	 list-box	will	bring	up	a	 small	 tree-view	of	 all	 the
folders	in	the	Font	Folder,	and	all	the	fonts	found	in	them.	Folders	with	no	fonts
will	not	be	shown.	You	can	scroll	through	the	list	and	find	a	font	which	you	like
the	look	of,	and	select	it	to	activate	it.

You	can	get	a	preview	image	of	your	font	at	the	bottom	of	the	window.	This	will
show	all	96	characters	used	in	the	character	set.	As	you	can	see,	some	fonts	are
not	 really	 suitable	 for	 use	 in	 the	 editor,	 but	 will	 look	 very	 nice	 in	 the	 right
context	-	perhaps	a	game.

Syntax	Highlighting

As	you	work	 in	BASin,	with	Syntax	highlighting	 enabled	you	will	 notice	 that
some	words	are	coloured	differently.	This	is	more	than	just	cosmetic	-	you	can
identify	errors	(especially	with	variables)	in	your	code	quite	easily	this	way.

You	can	enable	or	disable	syntax	highlighting	with	the	checkbox	below	the	fonts
list.	Setting	the	options	opens	a	new	window:

The	 options	 here	 are	 applicable	 for	 each	 element	 that	 you	 can	 highlight.	 The
checkbox	next	to	each	item	can	turn	on	or	off	highlighting	for	that	element,	and
the	colour	palette	below	chooses	the	colour	you	want	for	that	item.	You	can	also
choose	for	it	to	be	either	bold-faced	or	Italicised.

The	list	contains	these	items:

Keywords	-	Any	reserved	word	used	by	BASIC,	such	as	PRINT,	LET,	GO
TO	etc.

Functions	 -	User	 defined	 functions	 created	with	DEF	 FN	 and	 referenced
throughout	the	program	with	the	FN	keyword.

Comments	-	Any	REM	statement

Symbols	 -	 Any	 symbol	 character	 -	 i.e.,	 from	 ASCII	 33,	 "!"	 character
through	to	127,	the	Copyright	symbol.

Variables	-	Variables	that	are	valid,	and	have	a	corresponding	entry	in	the
VARS	space	in	memory.

Undefined	Variables	-	Any	variable	name	that	has	either	no	corresponding
LET	 statement	 or	 whose	 LET	 statement	 has	 not	 yet	 been	 executed	 at
runtime	will	be	an	invalid	variable	name.

Numbers	-	Any	digits	(except	line	numbers).

Line	Numbers	-	Line	numbers	at	the	start	of	a	line.

Strings	-	All	string	literals	-	any	string	of	any	characters	enclosed	in	quote
marks.

Editor	Foreground	-	The	colour	use	to	render	any	non-highlighted	text	in
the	editor.

Editor	Background	 -	 The	 colour	 used	 to	 render	 the	 background	 (default
grey)	and	also	used	as	a	reference	colour	for	the	darker	line-number	gutter.

The	Tape	Image	file	formats

TAP	 and	 TZX	 files	 store	 images	 of	 Sinclair	 Spectrum	 tapes.	 Because	 the
Spectrum	 stored	 it’s	 data	 by	 outputting	 pulses	 of	 sound	 to	 an	 audio	 device,
emulators	 originally	 used	 wave	 recordings	 which	 recreated	 the	 sounds	 on	 the
tape.	Later,	 the	 .tap	 format	 came	 along.	 It	was	 found	 that	 the	 format	 of	 these
sounds	matched	identically	with	the	bits	of	bytes	being	saved,	and	that	when	a
certain	 section	of	 the	Spectrum	ROM	was	entered,	you	could	discover	exactly
what	was	being	saved	and	what	was	being	loaded.	To	this	end,	the	 .tap	 format
stored	 a	 copy	 of	 each	 block	 of	 memory	 saved	 by	 the	 ROM.	 This	 has	 the
advantage	of	being	a	lot	smaller	than	a	corresponding	wave-sound	file.

Each	 file	 on	 a	 tape	 comes,	 most	 usually,	 in	 two	 parts.	 The	 “header”	 gives
information	to	the	Spectrum	about	the	file	that	is	coming	from	the	tape,	such	as
the	name,	 the	 type	of	data	 (a	program,	a	memory	block	or	 a	variable)	 and	 the
size	of	the	data.	Following	this	header	is	the	main	body	of	the	file.

Note:	 It	 is	worth	mentioning	 that	BASin	 treats	each	header	and	body	pair	as	a
single	 file,	 unless	 the	 data	 has	 no	 header	 in	 which	 case	 it	 is	 flagged	 as
“headerless”.

Because	the	data	saved	to	the	tape	image	is	a	direct	copy	of	the	bytes	saved,	it	is
trivial	 to	 just	“inject”	 the	data	back	 to	memory	–	after	all,	 the	header	provides
information	about	where	it	came	from	originally.	Unfortunately,	the	.tap	format
cannot	 reproduce	 the	 sounds	 made	 by	 the	 newer,	 faster	 loaders	 employed	 by
games	companies	 in	 their	nigh-on	constant	 fight	 to	get	quicker	 load	 times	and
prevent	software	piracy.	The	.tzx	format,	however,	can	reproduce	any	sound	the
Spectrum	can	produce.	The	 .tzx	 format,	 as	 far	 as	BASin	 is	 concerned,	 is	 very
similar	to	the	.tap	format	–	it	just	adds	a	couple	of	extra	bytes	to	the	blocks	with
some	more	detailed	information	about	it.

The	.TAP	File	format

For	the	technically	minded,	the	.tap	format	for	a	block	is	as	follows:

Byte	offset Contents

0..1 Length	of	the	block

2 Flag	byte	(0	for	a	header,	255	for	the	body	of	the	file)

3..xx These	bytes	are	the	data	of	the	block	itself	-	either	the	header	or	the	main	body

Last	Byte Checksum	Byte

The	.TZX	File	format

The	.tzx	equivalent	is	as	follows:

Byte	offset Contents

0 ID	Byte	(16	for	a	ROM-Saved	block)

1..2 The	length	of	the	pause	after	this	block	in	milliseconds	(1000ms	default)

3..4 Length	of	the	block

5 Flag	byte	(0	for	a	header,	255	for	the	body	of	the	file)

6..xx These	bytes	are	the	data	of	the	block	itself	-	either	the	header	or	the	main	body

Last	Byte Checksum	Byte

The	header	format	is	similar	to	that	employed	by

.bsc	and	.bsd	files,	as	follows:
Byte	offset Program Number	Var String	Var Memory	Block Notes

0 0 1 2 3 Data	Type

1..10 Filename Filename Filename Filename 10	Characters

11..12 Length Length Length Length

13..14 Auto	Start Variable	a..z Variable	a..z Start	Address Various

15..16 Program	Length Unused Unused Unused

Note	that	the	Number	and	String	variable	types	have	their	“name”	from	A	to	Z
stored	 in	 one	 byte	 –	 the	 high	 byte	 at	 position	 14,	 and	 do	 not	 use	 the	 byte	 at
position	13.	Programs	 store	 their	 length	 twice	–	once	 for	 the	whole	block	 and
once	for	just	the	BASIC	text,	without	the	variables.

Files	tab

The	Files	tab	can	be	found	in	the	Options	window.

Files	in	BASin	can	be	manipulated	in	various	ways,	and	as	these	options	become
available,	they	can	be	set	here.	For	this	release,	the	options	are:

Snapshots

Save	as	.z80	version	...

The	 .z80	 format	 was	 developed	 by	 Gerton	 Lunter	 for	 his	 spectrum
emulator,	 Z80.	 This	 format	 underwent	 a	 few	 revisions	 as	 his	 emulator	 gained
new	 features,	 and	 the	 different	 versions	 are	 backwardly	 incompatible	 with
eachother.	 For	 this	 reason,	 you	 can	 elect	 to	 save	 your	.z80	Snapshots
using	any	of	the	major	revision	types.	The	most	common	nowadays	is	probably
the	v3.5	option.

Save	as	hardware	mode

When	saving	a	snapshot,	BASin	will	examine	your	program	and	silicon	disc	(if
it	has	been	used)	and	decide	which	hardware	model	to	use	to	save	(48k	or	128k).
This	can	be	overriden	here	by	choosing	to	save	as	one	particular	type	(if	there	is
a	choice)	or	to	ask	you	before	it	saves.

.bas	files

Break	multi-statement	lines

Lines	 with	 more	 than	 one	 statement	 can	 be	 made	 more	 readable	 in	 .bas
files	 (particularly	 when	 reading	 them	 in	 a	 text	 editor)	 by	 splitting	 the
statements	 up	 so	 that	 only	 one	 statement	 occupies	 each	 line.	 This	 is	 done	 by

appending	a	backslash	("\")	character	to	the	end	of	each	line,	after	the	trailing
colon	(":").	 This	will	 not	 affect	 the	way	 that	 BASin	 handles	 this	 file	 in	 the
future,	it	is	provided	for	better	readability	only.

Tape	image	files

Trap	LOAD/MERGE/VERIFY

This	will	 toggle	BASin's	 ability	 to	 load	 directly	 from	 tape	 images	 held	 in	 the
Tape	Creator	Window,	instead	of	 loading	files	from	your	PC's	Hard	Disk.	This
can	 be	 useful	 for	 loading	 a	 complete	 tape	 into	 memory	 without	 having	 to
manually	extract	the	files	first.	While	this	option	is	enabled,	you	will	not	be	able
to	load	files	from	disk.

Trap	SAVE	operations

As	 with	 the	 LOAD/MERGE/VERIFY	 option	 above,	 this	 will	 toggle	 BASin's
ability	to	redirect	all	tape	(and	file)	output	to	the	currently	loaded	TZX	file.	The
TZX	file	must	be	present	in	the	Tape	Creator	Window.

Rewind	when	tapes	end

This	option	will,	when	loading	from	a	tape,	automatically	rewind	the	tape	when
it	 reaches	 the	 end,	 by	 setting	 the	 current	 tape	 position	 in	 the	 Tape	 Creator
Window	 to	 the	 first	 block.	 Be	 aware	 that	 continuous	 LOAD	 commands	 will
continue	 to	 load	 from	 the	 tape	 until	 the	 user	 BREAKs	 the	 operation	with	 the
ESC	key.

SAVE	CODE

Statement/Command

SAVE	 CODE	 sends	 a	 section	 of	 information	 in	 the	 memory	 to	 a	 file.	 The
information	can	then	be	placed	back	in	the	memory	using	LOAD	CODE.

How	to	use	SAVE	CODE

SAVE	CODE	may	 be	 used	 as	 a	 direct	 command	 or	 to	 form	 a	 statement	 in	 a
program.	 SAVE	 is	 followed	 by	 a	 filename	 which	 is	 a	 string	 value,	 and	 then
followed	by	CODE	which	is	in	turn	followed	by	two	numeric	values	separated
by	a	comma,	for	example

SAVE	"picture"	CODE	16384,6912

The	filename	following	SAVE	may	contain	up	to	ten	characters.	The	two	values
following	CODE	are	each	rounded	down	to	the	nearest	integer	if	necessary.	The
first	 then	 gives	 the	 starting	 address	 (16384	 above)	 of	 the	 information	 in	 the
memory,	and	 the	second	value	(6912)	gives	 the	number	of	bytes	 that	are	 to	be
sent	to	the	file	in	the	same	way	as	a	program,	using	SAVE.

The	information	saved	by	the	above	command	is	the	screen	display	area.

Format

SAVE	string-expr	CODE	int-num=expr,int-num-expr

See	also

Chapter	20.

LOAD	CODE

Command/Statement

LOAD	CODE	 is	 used	 to	 load	 a	 section	 of	memory	with	 information	 that	 has
been	stored	in	a	file.	The	information	consists	of	a	set	of	bytes,	and	these	are	sent
to	a	set	of	addresses	in	memory.	LOAD	CODE	can	be	used	to	load	a	display,	or
to	load	information	for	user-defined	graphics,	for	example.

How	to	use	LOAD	CODE

LOAD	CODE	may	be	used	as	a	direct	command	or	it	may	form	a	statement	in	a
program.	 LOAD	 is	 followed	 by	 a	 filename,	which	 is	 a	 string	 value,	 and	 then
CODE,	for	example

LOAD	"data"	CODE

The	filename	following	LOAD	is	the	name	of	the	information	to	be	loaded	and
is	subject	to	the	same	restrictions	as	program	names	(see	LOAD.	LOAD	CODE
then	 searches	 for	 the	 named	 information	 and	 when	 found,	 displays	Bytes:
followed	 by	 the	 name.	 The	 BASIC	 then	 loads	 the	 bytes	 into	 memory	 at	 the
addresses	from	which	they	were	saved.	Any	existing	information	is	overwritten.

CODE	 may	 also	 be	 followed	 by	 one	 or	 two	 numeric	 values,	 separated	 by	 a
comma,	for	example

LOAD	"picture"	CODE	16384,6912

The	values	following	CODE	are	rounded	to	the	nearest	integer	and	then	define
the	 starting	 address	 (16384	 above)	 at	 which	 the	 named	 information	 is	 to	 be
loaded,	and	the	number	of	bytes	(6912)	that	are	to	be	sent	to	locations	beginning
at	this	address.	If	the	number	is	wrong,	the	tape	loading	error	report	is	given.	If
only	one	value	follows	CODE,	it	defines	the	starting	address	from	which	all	the
bytes	are	to	be	located.

The	above	example	can	also	be	carried	out	by	the	keywords	LOAD	SCREEN$.

For	details	on	storing	bytes,	see	SAVE	CODE.

Format

LOAD	string-expr	CODE	[int-num-expr]	[,int-num-expr]

See	also

Chapter	20.

SAVE	DATA

Statement/Command

SAVE	DATA	 stores	 an	 array	 variable	 in	 a	 file.	 The	 array	 can	 then	 be	 loaded
using	LOAD	DATA.

How	to	use	SAVE	DATA

SAVE	 DATA	 may	 be	 used	 to	 form	 a	 statement	 in	 a	 program	 or	 as	 a	 direct
command.	SAVE	is	followed	by	a	filename,	then	DATA,	a	letter	or	letter	with	$,
and	finally	a	pair	of	empty	brackets,	for	example

450	SAVE	"numbers"	DATA	n()

750	SAVE	"names"	DATA	n$()

The	 array's	 filename	 may	 contain	 up	 to	 ten	 characters.	 The	 letter	 or	 letter$
following	DATA	us	the	name	of	the	array	in	the	program	that	is	to	be	stored	in	a
file.	 The	 array	 is	 then	 sent	 to	 the	 file	 in	 the	 same	was	 as	 a	 program	 is	 using
SAVE.

Format

SAVE	string-expr	DATA	letter[$]()

See	also

Chapter	20.

System	Variables	window

The	System	Variables	window	is	available	from	the	View	menu.

This	window	allows	the	user	 to	 inspect	and	modify	 the	contents	of	 the	System
Variables	used	by	the	BASIC	to	monitor	certain	aspects	of	the	program.	The	list
shows	the	contents	of	all	the	variables,	and	updates	as	dictated	by	the	user.	You
can	elect,	using	the	drop	down	box	at	the	bottom	left	of	the	window,	to	update:

Do	not	update	refreshes	the	list	only	when	you	click
the	Refresh	button.

Update	on	step	 refreshes	 the	 list	each	 time	you	step
through	a	BASIC	statement.

Update	every	time	period	refreshes	the	list	after	a	set
number	of	seconds.

If	you	have	decided	against	any	updating	and	set	the	window	to	"never	update"
then	you	can	force	an	update	using	the	"Refresh"	button	at	the	bottom	right.

Each	Sysvar	occupies	a	byte	or	two	of	memory,	and	the	address	that	they	live	in
is	to	the	right	of	their	name,	followed	by	their	contents.	In	the	case	of	two	and
three	byte	Sysvars,	 the	value	shown	is	 the	Word	value	of	 their	combined	bytes
(Low	Byte	plus	 the	High	byte	*	256),	with	 the	 individual	 component	 bytes	 in
brackets	after.

You	 can	 get	 an	 explanation	 of	 each	 variable	 by	 hovering	 the	 mouse	 over	 it's
entry	and	waiting	for	the	ToolTip	to	appear.

You	can	edit	any	of	the	variables	by	either	right	clicking	and	choosing	"Edit	this
Sysvar",	 or	 by	 clicking	 the	 "Edit"	 button	 at	 the	 bottom	 of	 the	window.	 In	 the
main,	 this	will	produce	an	editor	very	similar	 to	 the	Variables	Window's	editor
for	 numeric	 variables,	 except	 in	 the	 case	 of	 the	 longer	 multi-byte	 system
variables	(such	as	STRMS)	which	will	open	the	Memory	Viewer	in	edit	mode	at
the	location	of	this	variable.

Lastly,	you	can	elect	to	add	any	of	the	variables	to	the	Watch	Window	by	right
clicking	and	choosing	"Watch	this	Sysvar".

ZX	printer	output	window

The	ZX	printer	output	window	is	available	from	the	View	menu.

This	window	holds	all	output	sent	to	the	ZX	Printer	via	the	LLIST,	LPRINT	and
COPY	commands,	along	with	any	commands	that	have	their	output	sent	 to	 the
printer	stream.

Note:	This	window	will	only	accept	printer	output	when	it	is	visible	(open).	If	it
is	closed,	then	the	printer	will	be	"Offline"	and	will	not	display	any	new	printer
data	until	it	is	opened	again.

As	 printer	 information	 is	 received	 by	 the	 emulated	 printer,	 it	 is	 interpreted
graphically,	and	displayed	at	the	bottom	of	the	upper	display	area	of	the	window.
This	 graphical	 display	 area	will	 automatically	 scroll	 up	 to	 accommodate	more
data	as	it	is	sent.	You	can	use	the	scrollbar	at	the	right	of	this	display	to	review
older	output.

BASin	 can	 accelerate	 the	ROM	printing	 commands,	 by	 trapping	 the	 stream	of
bytes	 to	be	 sent	 to	 the	printer	 and	 converting	 them	 into	graphics	 a	 lot	 quicker
than	by	just	trapping	individual	pixels.	This	behaviour	can	be	turned	on	or	off	in
the	BASin	Options	Window,	using	the	Emulation	Tab.	Also	in	that	section	of	the
options	is	an	option	to	save	the	current	printer	output	when	you	quit	BASin	-	and
to	automatically	reload	it	when	you	next	start	up.

Along	the	bottom	of	the	window	are	a	set	of	buttons	which	provide	functionality
for	working	with	the	printed	output.	These,	from	left	to	right,	are:

Buttons

Opens	the	Print	Preview	Window	with	the	ZX	Printer	output	ready	configured	to
print.

This	 button	will	 simulate	 the	 "tearing	 off"	 of	 the	 paper	 currently	 printed,	 and
give	 you	 a	 fresh	 clean	 output	 sheet.	You	will	 be	 given	 the	 option	 to	 save	 the
output	as	a	Windows	Bitmap	(.bmp)	file	before	it	is	cleared.

This	will	scroll	the	graphical	display	up	one	line.

The	ROM	COPY	command	does	not	include	the	lower	two	lines	of	the	display
when	 printing.	 This	 button	 will	 swiftly	 send	 the	 entire	 display	 to	 the	 printer.
There	is	a	choice	of	two	methods	when	using	this	button	-	the	first	will	send	just
the	Display	File	area	of	the	Spectrum's	memory,	with	no	attributes.	This	is	very
similar	 to	 the	way	 the	 ROM's	 COPY	 command	 works.	 The	 other	 option	 will
send	the	attributes	too,	to	get	a	colour	screen	grab.

Close

Closes	the	ZX	Printer	Output	window.	Note	 that	when	 the	printer	window	is
closed,	the	printer	is	classed	as	"offline"	and	no	further	output	will	be	sent	to	it.

The	Display	Window	menu

This	menu	controls	the	size	and	visibility	of	the	display	window,	and	provides	an
option	to	print	the	contents	of	the	display	window.

Visible:	 Determines	 whether	 the	 display	 window	 is
shown	 or	 hidden.	 This	 is	 useful	 for	 viewing	 output
when	 editing,	 as	 the	 window	 will	 hide	 behind	 the
editor	if	emulation	is	not	running.

100%	 /	 200%:	 Specifies	 the	 size	 of	 the	 display
window.

Force	 1:1	 Aspect:	 Maintains	 correct	 aspect	 ration
(width	 to	 height)	 and	 thus	 prevents	 distortion	 of	 the
image	 as	 you	 resize	 the	 window.	 This	 for	 example,
keeps	 a	 circle	 onscreen	 looking	 circular	 rather	 than
elliptical	 when	 sizing.	 (this	 is	 the	 same	 option	 as
Maintain	Aspect	Ratio	on	the	Display	tab).

The	 Edit	 menu	 provides	 Cut,	 Copy,	 Paste	 and	 Delete	 commands.	 These	 are
similar	 to	 the	 commands	on	 the	Edit	menu	 in	 the	 editor,	 but	 they	apply	 to	 the
display	window	instead	-	 in	 this	context,	 these	operations	work	on	any	INPUT
command	being	executed.

Note:	In	the	display	window,	text	can	only	be	selected	with	the	keyboard	-	not
with	the	mouse.	Using	the	mouse	is	planned	for	a	future	release	of	BASin.

The	Print	option

The	current	display	can	be	sent	as-is	to	the	Print	Preview	Window	for	sending	to

your	 PC	 printer.	 The	 display	 will	 be	 sent	 exactly	 as	 it	 appears	 in	 the	 display
window	including	any	scaling	effects.

Appendix	D:	Example	programs

This	appendix	contains	some	example	programs.

The	first	of	these	programs	requires	a	date	to	be	input	and	gives	the	day	of	the
week	which	corresponds	to	this	date.

		10	REM	convert	date	to	day

		20	DIM	d$(7,6):	

					REM	days	of	week

		30	FOR	n=1	TO	7:	

					READ	d$(n):	

					NEXT	n

		40	DIM	m(12):	

					REM	lengths	of	months

		50	FOR	n=1	TO	12:	

					READ	m(n):	

					NEXT	n

	100	REM	input	date

	110	INPUT	"day?";day

	120	INPUT	"month?";month

	130	INPUT	"year	(20th	century	only)?";year

	140	IF	year<1901	THEN	

					PRINT	"20th	century	starts	at	1901":	

					GO	TO	100	

	150	IF	YEAR>2000	THEN	

					PRINT	"20th	century	ends	at	2000":	

					GO	TO	100	

	160	IF	month<1	THEN	

					GO	TO	210	

	170	IF	MONTH>12	THEN	

					GO	TO	210	

	180	IF	year/4-INT(year/4)=0	THEN	

					LET	m(2)=29:	

					REM	leap	year	

	190	IF	day>m(month)	THEN	

					PRINT	"This	month	has	only	";	m(month);"	days.":	

					GO	TO	500	

	200	IF	day>0	THEN	

					GO	TO	300	

	210	PRINT	"Stuff	and	nonsense.	Give	me	a	real	date."	

	220	GO	TO	500	

	300	REM	convert	date	to	number	of	days	since	start	of	century	

	310	LET	y=year-1901	

	320	LET	b=365*y+INT	(y/4):	

					REM	number	of	days	to	start	of	year	

	330	FOR	n=1	TO	month-1:	

					REM	add	on	previous	months	

	340	LET	b=b+m(n):	

					NEXT	n	

	350	LET	b=b+day	

	400	REM	convert	to	day	of	week	

	410	LET	b=b-7*INT	(b/7)+1	

	420	PRINT	day;"/";month;"/";year	

	430	FOR	n=6	TO	3	STEP	-1:	

					REM	remove	trailing	spaces	

	440	IF	d$(b,n)	<>	"	"	THEN	

					GO	TO	460	

	450	NEXT	n

	460	LET	e$=d$(b,	TO	n)

	470	PRINT"	is	a	";	e$;	"day"

	500	LET	m(2)=28:	

					REM	restore	February

	510	INPUT	"again?",	a$

	520	IF	a$="n"	THEN	

					GO	TO	540

	530	IF	a$	<>	"N"	THEN	

					GO	TO	100

1000	REM	days	of	week

1010	DATA	"Mon",	"Tues",	"Wednes"

1020	DATA	"Thurs",	"Fri",	"Satur",	"Sun"

1100	REM	lengths	of	months

1110	DATA	31,	28,	31,	30,	31,	30

1120	DATA	31,	31,	30,	31,	30,	31

This	program	handles	yards,	feet	and	inches.

		10	INPUT	"yards?",yd,"feet?",ft,	"inches?",ins

		40	GO	SUB	2000:	

					REM	print	the	values

		50	PRINT	'"	=	";

		70	GO	SUB	1000:	

					REM	the	adjustment

		80	GO	SUB	2000:	

					REM	print	the	adjusted	values

		90	PRINT

	100	GOTO	10

1000	REM	subroutine	to	adjust	yd,	ft,	in	to	the	normal	form	for	yards,	feet	and	inches

1010	LET	ins=36*yd+12*ft+ins:	

					REM	now	everything	is	in	inches

1030	LET	s=SGN	ins:	

					LET	ins=ABS	ins:	

					REM	we	work	with	in	positive,	holding	its	sign	in	s

1060	LET	ft=INT	(ins/12):	

					LET	ins=(ins-12*ft)*s:	

					REM	now	ins	is	ok

1080	LET	yd=INT	(ft/3)*s:	

					LET	ft=ft*s-3*yd:	

					RETURN

2000	REM	subroutine	to	print	yd,	ft	and	in

2010	PRINT	yd;"yd";ft;"ft";ins;"in";:	

					RETURN

Here	is	a	program	to	throw	coins	for	the	I	Ching.	(Unfortunately	it	produces	the
patterns	upside	down.	but	you	might	not	worry	about	this.)

		5	RANDOMIZE

	10	FOR	m=1	TO	6:	

				REM	for	6	throws

	20	LET	c=0:	

				REM	initialize	coin	total	to	0

	30	FOR	n=1	TO	3:	

				REM	for	3	coins

	40	LET	c=c+2+INT	(2*RND)

	50	NEXT	n

	60	PRINT	"	";

	70	FOR	n=1	TO	2:	

				REM	1st	for	the	thrown	hexagram,	2nd	for	the	changes

	80	PRINT	"___";

	90	IF	c=7	THEN	

				PRINT	"	";

100	IF	c=8	THEN	

				PRINT	"	";

110	IF	c=6	THEN	

				PRINT	"X";:	

				LET	c=7

120	IF	c=9	THEN	

				PRINT	"0";:	

				LET	c=8

130	PRINT	"___	";

140	NEXT	n

150	PRINT

160	INPUT	a$

170	NEXT	m:	

				NEW

To	use	this,	type	it	in	and	run	it,	and	then	press	Enter	five	times	to	get	the	two
hexagrams.	Look	these	up	in	a	copy	of	the	Chinese	Book	of	Changes.	The	text
will	describe	a	situation	and	the	courses	of	action	appropriate	to	it,	and	you	must
ponder	 deeply	 to	 discover	 the	 parallels	 between	 that	 and	 your	 own	 life.	 Press
Enter	 a	 sixth	 time,	 and	 the	 program	will	 erase	 itself	 this	 is	 to	 discourage	 you
from	using	it	frivolously.

Many	 people	 find	 the	 texts	 are	 always	 more	 apt	 than	 they	 would	 expect	 on
grounds	 of	 chance;	 this	 may	 or	 may	 not	 be	 the	 case	 for	 you.	 In	 general,
computers	are	pretty	godless	creatures.

Here	is	a	program	to	play	'Pangolins'.	You	think	up	an	animal,	and	the	computer
tries	 to	guess	what	 it	 is,	by	asking	you	questions	 that	can	be	answered	 'yes'	or
'no'.	If	it's	never	heard	of	your	animal	before,	it	asks	you	to	give	it	some	question
that	it	can	use	next	time	to	find	out	whether	someone's	given	it	your	new	animal.

			5	REM	Pangolins

		10	LET	nq=100:	

					REM	number	of	questions	and	animals

		15	DIM	q$(nq,50):	

					DIM	a(nq,2):	

					DIM	r$(1)

		20	LET	qf=8

		30	FOR	n=1	TO	qf/2-1

		40	READ	q$(n):	

					READ	a(n,1):	

					READ	a(n,2)

		50	NEXT	n

		60	FOR	n=n	TO	qf-1

		70	READ	q$(n):	

					NEXT	n

	100	REM	start	playing

	110	PRINT	"Think	of	an	animal.","Press	any	key	to	continue."

	120	PAUSE	0

	130	LET	c=1:	

					REM	start	with	1st	question

	140	IF	a(c,1)=0	THEN	

					GO	TO	300

	150	LET	p$=q$(c):	

					GO	SUB	910

	160	PRINT	"?":	

					GO	SUB	1000

	170	LET	inn=1:	

					IF	r$="y"	THEN	

					GO	TO	210

	180	IF	r$="Y"	THEN	

					GO	TO	210

	190	LET	inn=2:	

					IF	r$="n"	THEN	

					GO	TO	210

	200	IF	r$<>"N"	THEN	

					GO	TO	150

	210	LET	c=a(c,inn):	

					GO	TO	140

	300	REM	animal

	310	PRINT	"Are	you	thinking	of"

	320	LET	P$=q$(c):	

					GO	SUB	900:	

					PRINT	"?"

	330	GO	SUB	1000

	340	IF	r$="y"	THEN	

					GO	TO	400

	350	IF	r$="Y"	THEN	

					GO	TO	400

	360	IF	r$="n"	THEN	

					GO	TO	500

	370	IF	r$="N"	THEN	

					GO	TO	500

	380	PRINT	"Answer	me	properly	when	I'm","talking	to	you.":	

					GO	TO	300

	400	REM	guessed	it

	410	PRINT	"I	thought	as	much.":	GO	TO	800

	500	REM	new	animal

	510	IF	qf>nq-1	THEN	

					PRINT	"I'm	sure	your	animal	is	very",	"interesting,	but	I	don't	have","room	for	it	just	now.":	

					GO	TO	800

	520	LET	q$(qf)=q$(c):	

					REM	move	old	animal	

	530	PRINT	"What	is	it,	then?":	

					INPUT	q$(qf+1)

	540	PRINT	"Tell	me	a	question	which	dist	","inguishes	between	"

	550	LET	p$=q$(qf):	

					GO	SUB	900:	

					PRINT	"	and"	

	560	LET	p$=q$(qf+1):	

					GO	SUB	900:	

					PRINT	"	"	

	570	INPUT	s$:	

					LET	b=LEN	s$	

	580	IF	s$(b)="?"	THEN	

					LET	b=b-1	

	590	LET	q$(c)=s$(TO	b):	

					REM	insert	question

	600	PRINT	"What	is	the	answer	for"

	610	LET	p$=q$(qf+1):	

					GO	SUB	900:	

					PRINT	"?"

	620	GO	SUB	1000

	630	LET	inn=1:	

					LET	io=2:	

					REM	answers	for	new	and	old	animals

	640	IF	r$="y"	THEN	

					GO	TO	700

	650	IF	r$="Y"	THEN	

					GO	TO	700

	660	LET	inn=2:	

					LET	io=1

	670	IF	r$="n"	THEN	

					GO	TO	700

	680	IF	r$="N"	THEN	

					GO	TO	700

	690	PRINT	"That's	no	good.	":	

					GO	TO	600

	700	REM	update	answers

	710	LET	a(c,inn)=qf+1:	

					LET	a(c,io)=qf

	720	LET	qf=qf+2:	

					REM	next	free	animal	space

	730	PRINT	"That	fooled	me."

	800	REM	again?

	810	PRINT	"Do	you	want	another	go?":	

					GO	SUB	1000

	820	IF	r$="y"	THEN	

					GO	TO	100

	830	IF	r$="Y"	THEN	

					GO	TO	100

	840	STOP

	900	REM	print	without	trailing	spaces

	905	PRINT	"	";

	910	FOR	n=50	TO	1	STEP	-1

	920	IF	p$(n)<>"	"	THEN	

					GO	TO	940

	930	NEXT	n

	940	PRINT	p$(TO	n);:	

					RETURN

1000	REM	get	reply

1010	INPUT	r$:	

					IF	r$=""	THEN	

					RETURN

1020	LET	r$=r$(1):	

					RETURN

2000	REM	initial	animals

2010	DATA	"Does	it	live	in	the	sea",4,2

2020	DATA	"Is	it	scaly",3,5

2030	DATA	"Does	it	eat	ants",6,7

2040	DATA	"a	whale",	"a	blancmange",	"a	pangolin",	"an	ant"

Here	is	a	program	to	draw	a	Union	Flag.

		5	REM	union	flag

	10	LET	r=2:	

				LET	w=7:	

				LET	b=1

	20	BORDER	0:	

				PAPER	b:	

				INK	w:	

				CLS

	30	REM	black	in	bottom	of	screen

	40	INVERSE	1

	50	FOR	n=40	TO	0	STEP	-8

	60	PLOT	PAPER	0;7,n:	

				DRAW	PAPER	0;241,0

	70	NEXT	n:	

				INVERSE	0

100	REM	draw	in	white	parts

105	REM	St.	George

110	FOR	n=0	TO	7

120	PLOT	104+n,175:	

				DRAW	0,-35

130	PLOT	151-n,175:	

				DRAW	0,-35

140	PLOT	151-n,48:	

				DRAW	0,35

150	PLOT	104+n,48:	

				DRAW	0,35

160	NEXT	n

200	FOR	n=0	TO	11

210	PLOT	0,139-n:	

				DRAW	111,0

220	PLOT	255,139-n:	

				DRAW	-111,0

230	PLOT	255,84+n:	

				DRAW	-111,0

240	PLOT	0,84+n:	

				DRAW	111,0

250	NEXT	n

300	REM	St.	Andrew

310	FOR	n=0	TO	35

320	PLOT	1+2*n,175-n:	

				DRAW	32,0

330	PLOT	224-2*n,175-n:	

				DRAW	16,0

340	PLOT	254-2*n,48+n:	

				DRAW-32,0	

350	PLOT	17+2*n,48+n:	

				DRAW	16,0

360	NEXT	n

370	FOR	n=0	TO	19

380	PLOT	185+2*n,140+n:	

				DRAW	32,0	

390	PLOT	200+2*n,83-n:	

				DRAW	16,0

400	PLOT	39-2*n,83-n:	

				DRAW	32,0

410	PLOT	54-2*n,140+n:	

				DRAW	-16,0

420	NEXT	n

425	REM	fill	in	extra	bits	

430	FOR	n=0	TO	15

440	PLOT	255,160+n:	

				DRAW	2*n-30,0	

450	PLOT	0,63-n:	

				DRAW	31-2*n,0

460	NEXT	n

470	FOR	n=0	TO	7

480	PLOT	0,160+n:	

				DRAW	14-2*n,0

485	PLOT	255,63-n:	

				DRAW	2*n-15,0	

490	NEXT	n

500	REM	red	stripes	

510	INVERSE	1

520	REM	St	George

530	FOR	n=96	TO	120	STEP	8

540	PLOT	PAPER	r;7,n:	

				DRAW	PAPER	r;241,0	

550	NEXT	n

560	FOR	n=112	TO	136	STEP	8

570	PLOT	PAPER	r;n,168:	

				DRAW	PAPER	r;0,-113	

580	NEXT	n

600	REM	St	Patrick

610	PLOT	PAPER	r;170,140:	

				DRAW	PAPER	r;70,35	

620	PLOT	PAPER	r;179,140:	

				DRAW	PAPER	r;70,35	

630	PLOT	PAPER	r;199,83:	

				DRAW	PAPER	r;56,-28	

640	PLOT	PAPER	r;184,83:	

				DRAW	PAPER	r;70,-35	

650	PLOT	PAPER	r;86,83:	

				DRAW	PAPER	r;-70,-35	

660	PLOT	PAPER	r;72,83:	

				DRAW	PAPER	r;-70,-35	

670	PLOT	PAPER	r;56,140:	

				DRAW	PAPER	r;-56,28	

680	PLOT	PAPER	r;71,140:	

				DRAW	PAPER	r;-70,35	

690	INVERSE	0:	

				PAPER	0:	

				INK	7

If	you're	not	British,	have	a	go	at	drawing	your	own	flag.	Tricolours	are	 fairly
easy,	 although	 some	of	 the	colours	 -	 for	 instance	 the	orange	 in	 the	 Irish	 flag	 -
might	 present	 difficulties.	 If	 you're	 an	American,	 you	might	 be	 able	 to	 fit	 the
character	*	in.

Here	 is	 a	 program	 to	 play	 hangman.	One	 player	 enters	 a	word,	 and	 the	 other
guesses.

			5	REM	hangman	

		10	REM	set	up	screen	

		20	INK	0:	

					PAPER	7:	

					CLS	

		30	LET	x=240:	

					GO	SUB	1000:	

					REM	draw	man	

		40	PLOT	238,128:	

					DRAW	4,0:	

					REM	mouth	

	100	REM	set	up	word	

	110	INPUT	w$:	

					REM	word	to	guess	

	120	LET	b=LEN	w$:	

					LET	v$="	"	

	130	FOR	n=2	TO	b:	

					LET	v$=v$+"	"	

	140	NEXT	n:	

					REM	v$=word	guessed	so	far	

	150	LET	c=0:	

					LET	d=0:	

					REM	guess	&	mistake	counts	

	160	FOR	n=0	TO	b-1	

	170	PRINT	AT	20,n;"	";

	180	NEXT	n:	

					REM	write		's	instead	of	letters

	200	INPUT	"Guess	a	letter	";g$	

	210	IF	g$=""	THEN	

					GO	TO	200	

	220	LET	g$=g$(1):	

					REM	1st	letter	only	

	230	PRINT	AT	0,c;g$	

	240	LET	c=c+1:	

					LET	u$=v$	

	250	FOR	n=1	TO	b:	

					REM	update	guessed	word	

	260	IF	w$(n)=g$	THEN	

					LET	v$(n)=g$	

	270	NEXT	n	

	280	PRINT	AT	19,0;v$	

	290	IF	v$=w$	THEN	

					GO	TO	500:	

					REM	word	guessed	

	300	IF	v$<>u$	THEN	

					GO	TO	200:	

					REM	guess	was	right	

	400	REM	draw	next	part	of	gallows	

	410	IF	d=8	THEN	

					GO	TO	600:	

					REM	hanged	

	420	LET	d=d+1

	430	READ	x0,y0,x,y	

	440	PLOT	x0,y0:	

					DRAW	x,y	

	450	GO	TO	200	

	500	REM	free	man	

	510	OVER	1:	

					REM	rub	out	man	

	520	LET	x=240:	

					GO	SUB	1000	

	530	PLOT	238,128:	

					DRAW	4,0:	

					REM	mouth	

	540	OVER	0:	

					REM	redraw	man	

	550	LET	x=146:	

					GO	SUB	1000	

	560	PLOT	143,129:	

					DRAW	6,0,	PI/2:	

					REM	smile	

	570	GO	TO	800	

	600	REM	hang	man	

	610	OVER	1:	

					REM	rub	out	floor	

	620	PLOT	255,65:	

					DRAW	-48,0

	630	DRAW	0,-48:	

					REM	open	trapdoor

	640	PLOT	238,128:	

					DRAW	4,0:	

					REM	rub	out	mouth

	650	REM	move	limbs

	655	REM	arms

	660	PLOT	255,117:	

					DRAW	-15,-15:	

					DRAW	-15,15

	670	OVER	0

	680	PLOT	236,81:	

					DRAW	4,21:	

					DRAW	4,	21

	690	OVER	1:	

					REM	legs

	700	PLOT	255,66:	

					DRAW	-15,15:	

					DRAW	-15,-15

	710	OVER	0

	720	PLOT	236,60:	

					DRAW	4,21:	

					DRAW	4,-21

	730	PLOT	237,127:	

					DRAW	6,0,-PI/2:	

					REM	frown

	740	PRINT	AT	19,0;w$

	800	INPUT	"again?	";a$

	810	IF	a$=""	THEN	

					GO	TO	850

	820	LET	a$=a$(1)

	830	IF	a$="n"	THEN	

					STOP

	840	IF	a$(1)="N"	THEN	

					STOP

	850	RESTORE:	

					GO	TO	5

1000	REM	draw	man	at	column	x

1010	REM	head

1020	CIRCLE	x,132,8

1030	PLOT	x+4,134:	

					PLOT	x-4,134:	

					PLOT	x,131

1040	REM	body

1050	PLOT	x,123:	

					DRAW	0,-20

1055	PLOT	x,101:	

					DRAW	0,-19

Appendix	E	

1060	REM	legs

1070	PLOT	x-15,66:	

					DRAW	15,15:	

					DRAW	15,-15

1080	REM	arms

1090	PLOT	x-15,117:	

					DRAW	15,-15:	

					DRAW	15,15

1100	RETURN

2000	DATA	120,65,135,0,184,65,0,91

2010	DATA	168,65,16,16,184,81,16,-16

2020	DATA	184,156,68,0,184,140,16,16

2030	DATA	204,156,-20,-20,240,156,0,-16

	Appendix	C

Appendix	E:	Binary	and	hexadecimal

This	appendix	describes	how	computers	count,	using	the	binary	system.

Most	European	languages	count	using	a	more	or	less	regular	pattern	of	tens	-	in
English,	for	example,	although	it	starts	off	a	bit	erratically,	it	soon	settles	down
into	regular	groups:

twenty,	twenty	one,	twenty	two,	.	.	.	twenty	nine	
thirty,	thirty	one,	thirty	two,	.	.	.	thirty	nine	
forty,	forty	one,	forty	two,	.	.	.	forty	nine

and	so	on,	and	this	is	made	even	more	systematic	with	the	Arabic	numerals	that
we	use.	However,	 the	only	 reason	 for	 using	 ten	 is	 that	we	happen	 to	have	 ten
fingers	and	thumbs.

Instead	of	using	the	decimal	system,	with	ten	as	its	base,	computers	use	a	form
of	binary	called	hexadecimal	(or	hex,	for	short),	based	on	sixteen.	As	there	are
only	ten	digits	available	in	our	number	system	we	need	six	extra	digits	to	do	the
counting.	So	we	use	A,	B,	C,	D,	E	and	F.	And	what	comes	after	F?	Just	as	we,
with	 ten	 fingers,	 write	 10	 for	 ten,	 so	 computers	 write	 10	 for	 sixteen.	 Their
number	system	starts	off:

Hex	 	 English

0	 	 nought

1	 	 one

2	 	 two

:	 	 	:

:	 	 	:

9	 	 nine

just	as	ours	does,	but	then	it	carries	on

A	 	 ten	

B	 	 eleven	

C	 	 twelve	

D	 	 thirteen	

E	 	 fourteen	

F	 	 fifteen	

10	 	 sixteen	

11	 	 seventeen

:																			:

:														 				:

9	 	 twenty	five	

1A	 	 twenty	six

1B		 	 twenty	seven

:	 	 				:

:	 	 				:

1F		 	 thirty	one

20		 	 thirty	two

21		 	 thirty	three

:	 	 				:

:	 	 				:

9E		 	 one	hundred	and	fifty	eight	

9F		 	 one	hundred	and	fifty	nine	

A0		 	 one	hundred	and	sixty

A1		 	 one	hundred	and	sixty	one

:	 	 				:

B4		 	 one	hundred	and	eighty

:	 	 				:

FE		 	 two	hundred	and	fifty	four	

FF		 	 two	hundred	and	fifty	five	

100		 	 two	hundred	and	fifty	six

If	 you	 are	 using	 hex	 notation	 and	 you	want	 to	make	 the	 fact	 quite	 plain,	 then
write	 'h'	at	 the	end	of	 the	number,	and	say	 'hex'.	For	 instance,	 for	one	hundred
and	fifty	eight,	write	'9Eh'	and	say	'nine	E	hex'.

You	will	be	wondering	what	all	this	has	to	do	with	computers.	In	fact,	computers
behave	as	though	they	had	only	two	digits,	represented	by	a	low	voltage,	or	off
(0),	and	a	high	voltage,	or	on	(1).	This	is	called	the	binary	system,	and	the	two
binary	digits	are	called	bits:	so	a	bit	is	either	0	or	1.

In	the	various	systems,	counting	starts	off

English		 Decimal		 Hexadecimal	 Binary

nought	 	 0	 	 0	 	 0	or	0000

one	 	 1	 	 1	 	 1	or	0001

two	 	 2	 	 2	 	 10	or	0010

three	 	 3	 	 3	 	 11	or	0011

four	 	 4	 	 4	 	 100	or	0100

five	 	 5	 	 5	 	 101	or	0101

six	 	 6	 	 6	 	 110	or	0110

seven	 	 7	 	 7	 	 111	or	0111

eight	 	 8	 	 8	 	 1000

nine	 	 9	 	 9	 	 1001

ten	 	 10	 	 A	 	 1010

eleven	 	 11	 	 B	 	 1011

twelve	 	 12	 	 C	 	 1100

thirteen	 13	 	 D	 	 1101

fourteen	 14	 	 E	 	 1110

fifteen		 15	 	 F	 	 1111

sixteen		 16	 	 10	 	 10000

The	important	point	is	that	sixteen	is	equal	to	two	raised	to	the	fourth	power,	and
this	makes	converting	between	hex	and	binary	very	easy.

To	 convert	 hex	 to	 binary,	 change	 each	 hex	digit	 into	 four	 bits,	 using	 the	 table
above.

To	 convert	 binary	 to	 hex,	 divide	 the	 binary	 number	 into	 groups	 of	 four	 bits,
starting	 on	 the	 right,	 and	 then	 change	 each	 group	 into	 the	 corresponding	 hex
digit.

For	this	reason,	although	strictly	speaking	computers	use	a	pure	binary	system,
humans	often	write	the	numbers	stored	inside	a	computer	using	hex	notation.

The	bits	 inside	 the	computer	are	mostly	grouped	into	sets	of	eight,	or	bytes.	A
single	byte	can	represent	any	number	from	nought	to	two	hundred	and	fifty	five
(11111111	binary	or	FF	hex),	or	alternatively	any	character	in	the	ZX	Spectrum
character	set.	Its	value	can	be	written	with	two	hex	digits.

Two	bytes	can	be	grouped	together	to	make	what	is	technically	called	a	word.	A

word	 can	 be	 written	 using	 sixteen	 bits	 or	 four	 hex	 digits,	 and	 represents	 a
number	from	0	to	(in	decimal)	2562	=	65535.

A	byte	is	always	eight	bits,	but	words	vary	in	length	from	computer	to	computer.

The	BIN	notation	in	Chapter	14	provides	a	means	of	writing	numbers	in	binary:
'BIN	0'	represents	nought,	'BIN	1'	represents	one,	'BIN	10'	represents	two,
and	so	on.

You	 can	 only	 use	 0's	 and	 1's	 for	 this,	 so	 the	 number	must	 be	 a	 non	 negative
whole	number;	 for	 instance	you	can't	write	 'BIN	-11'	 for	minus	 three	 -	 you
must	 write	 '-BIN	 11'	 instead.	 The	 number	 must	 also	 be	 no	 greater	 than
decimal	65535	-	i.e.	it	can't	have	more	than	sixteen	bits.

ATTR	really	was	binary.	If	you	convert	the	result	from	ATTR	 into	binary,	you
can	write	it	in	eight	bits.

The	first	is	1	for	flashing,	0	for	steady.	
The	second	is	1	for	bright,	0	for	normal.	
The	next	three	are	the	code	for	the	paper	colour,	written	in	binary.	
The	last	three	are	the	code	for	the	ink	colour,	written	in	binary.

The	colour	codes	also	use	binary:	each	code	written	in	binary	can	be	written	in
three	bits,	the	first	for	green,	the	second	for	red	and	the	third	for	blue.

Black	has	no	light	at	all,	so	all	the	bits	are	0	(off).	Therefore	the	code	for	black	is
000	in	binary,	or	nought.

The	pure	colours,	green,	red	and	blue	have	just	one	bit	1	(on)	out	of	 the	three.
Their	codes	are	100,	010	and	001	in	binary,	or	four,	two	and	one.

The	 other	 colours	 are	mixtures	 of	 these,	 so	 their	 codes	 in	 binary	 have	 two	 or
more	bits	1.

	Appendix	D

GO	SUB	stack	window

The	GO	SUB	stack	window	is	available	from	the	View	menu.

The	GO	SUB	 stack	 is	 a	 region	 of	memory	which	 keeps	 track	 of	where	 your
program	came	from	when	it	executes	a	GO	SUB	command.	When	a	RETURN
is	subsequently	executed,	the	last	location	stored	on	this	"stack"	is	taken	off,	and
program	execution	is	sent	to	that	location.	This	enables	you	to	run	subroutines	in
your	 program	 to	 take	 the	 tedium	 out	 of	 doing	 repetitive	 functions,	 and	 to
organise	 things	 into	blocks	of	 code.	As	 each	GO	SUB	 is	 executed,	 this	 stack
grows	in	size.	Correspondingly,	each	RETURN	executed	will	shrink	the	stack.

Each	entry	takes	the	form:

line-number:statement-number

The	topmost	entry	corresponds	to	the	most	recently	called	subroutine.

Click	Show	Source	to	jump	to	the	selected	line	and	statement	in	the	editor.

BEEP	Composer	window

The	Beep	Composer	window	is	available	from	the	Tools	menu.

This	 tool	 is	 not	 yet	 fully	 implemented.	 When	 finished,	 it	 will	 allow	 you	 to
compose	music	visually,	using	staff	notation,	and	convert	it	to	BEEP	statements.

Sound	tab

The	Sound	tab	can	be	found	in	the	Options	window.

BASin	 produces	 sound	 from	 the	 emulated	 Spectrum's	 beeper	 (generated	 by
DirectSound)	 and	 sounds	 in	 the	 editor	 (generated	 by	 the	 standard	waveOut
functions	in	Windows).

Note:	 In	 general,	 higher	 quality	 sound	 requires	 more	 calculation.	 If	 BASin
appears	 to	 run	 slowly	 on	 your	 computer,	 try	 reducing	 the	 sound	 quality	 or
disabling	sound	altogether.

Sound	settings

You	can	use	the	options	here	to	turn	on	or	off	the	Beeper	or	Editor	sounds,	and
what	type	of	Editor	sounds	you	want	to	hear.

Beeper/AY

If	this	box	is	checked,	BASin	plays	sounds	produced	by	the	BEEP	command	or
by	 manipulation	 of	 port	 $FE	 (254)	 in	 machine	 code,	 and	 also	 the	 AY	 chip's
output	 from	 the	 AY's	 registers	 or	 the	 PLAY	 command.	 If	 it	 is	 not	 checked,
beeper	and	AY	sound	is	muted,	but	the	emulated	Spectrum	still	pauses	while	it	is
being	played.

Editor	sounds

If	this	box	is	checked,	the	editor	generates	a	click	for	each	keypress,	a	high	beep
when	 a	 program	 line	 is	 successfully	 entered,	 and	 a	 low	 beep	 when	 a	 line	 is
rejected	because	it	contains	a	syntax	error,	or	already	exists.

Key	click	type

Determines	 whether	 the	 keypress	 click	 sound	 resembles	 that	 of	 the	 48K
Spectrum	or	that	of	the	128K	Spectrum.	48k	sounds	will	use	the	softer,	sharper
"click"	 of	 the	 classic	 48k	 Spectrum,	 and	 128k	 sounds	will	 use	 a	 louder,	more
beep-ish	sound	of	the	128k.	The	syntax	checking	sounds	are	taken	from	the	128k
machine,	and	will	be	used	regardless	of	the	key	click	type.

MIDI	Device

BASin	 can,	 when	 emulating	 the	 PLAY	 command,	 drive	 any	 MIDI	 device
attached	to	your	PC.	Generally,	this	will	be	your	sound	card	but	you	can	use	this
menu	to	choose	any	device	you	have	-	this	includes	keyboards,	drum	machines
etc.	Choosing	"None"	will	disable	MIDI	output.

Volume

This	part	of	the	sound	options	provides	a	simple	slider	which	allows	you	to	set
the	 volume	of	 the	 sounds	 produced	by	BASin.	To	 the	 left	 is	 the	minimum,	 or
silent	 volume,	 and	 to	 the	 right	 of	 the	 slider	 is	 the	 maximum.	 This	 affects	 all
sound	within	both	 the	Editor	Window	and	the	main	emulated	sound	from	your
programs.

Quality	settings

Here	you	can	set	how	accurate	and	smooth	the	sound	made	by	BASin	is.	Higher
settings	 will	 result	 in	 much	 crisper,	 cleaner	 sounds	 at	 the	 expense	 of	 greatly
increased	CPU	usage,	whereas	lower	quality	will	sound	much	more	coarse,	but
will	consume	less	CPU	time.

Frequency	(Hz)

This	setting,	at	either	44100,	22050	or	11250	samples	per	second	(Hertz,	or	Hz)
will	set	how	often	BASin	"samples"	the	beeper	port	to	create	the	sound.	Higher
settings	 will	 consume	 more	 CPU	 time,	 but	 will	 produce	 much	 higher	 quality
sound.

Bit	depth

The	 bit	 depth	 can	 be	 either	 8	 or	 16	 bit,	 which	 increases	 the	 range	 of	 volume
granularity	 that	BASin	 can	produce.	This	 setting	will	 use	more	CPU	at	 16	bit

than	 at	 8	Bit,	 but	will	 probably	 have	 very	 little	 effect	 on	 sound	quality	 as	 the
Spectrum's	Beeper	 is	only	capable	of	a	 square-wave	 type	sound,	which	has	no
graduated	volume	setting.

Stereo

This	will	allow	you	to	choose	either	stereo	or	monaural	output.	This,	like	the	bit
depth,	 will	 not	 have	 much	 impact	 other	 than	 increased	 CPU	 output	 if	 set	 to
stereo,	as	the	Spectrum	was	not	a	stereo	capable	computer.	Some	Russian	clones
which	 incorporate	 the	AY	chip	of	 the	128k	Spectrum	can	output	 stereo	 sound,
but	 in	 line	with	 the	original	Spectrum	128k,	BASin's	AY	output	via	 the	PLAY
command	is	mono.

DSound	Synch

Enabling	 this	 item	will	 tell	 BASin	 to	 synchronise	 the	 speed	 of	 the	 emulation
with	 the	 "play	 cursor"	 in	 the	 internal	 Directsound	 buffers.	 This	 can,	 on	 good
soundcards	 with	 good	 drivers,	 provide	 very	 accurate	 timings	 with	 the	 least
stuttering	in	the	sound.	However,	not	all	drivers	are	created	equal,	and	some	can
mis-report	the	position	of	the	"play	cursor"	or	even	omit	it	altogether.	If	you	find
that	BASin	runs	very	slowly,	you	can	try	disabling	this	option	to	see	if	it	helps.	If
it	does,	then	you	really	need	to	get	a	decent	soundcard.	On-board	soundcards	are
the	main	culprits	in	this	case.

Buffering	options

BASin	does	not	output	sound	directly	to	the	soundcard	as	it	is	produced	by	your
program.	Instead,	it	builds	a	"buffer"	of	sound	samples	which,	when	full,	is	then
sent	out	to	the	soundcard	for	playing.	Smaller	buffers	result	in	quicker	response,
but	the	transport	to	the	soundcard	can	consume	a	relatively	large	amount	of	CPU
time.	Larger	buffers	require	less	processing	time,	but	there	may	be	a	small,	but
noticeable	lag	before	the	sound	plays.

Users	are	encouraged	to	experiment	with	these	settings	to	find	the	best	for	their
tastes/tolerances	and	system	hardware.

Sound	buffer	size

This	is	the	overall	amount	of	time	that	will	be	buffered,	in	frames	per	second,	of

sound	before	it	is	sent	to	the	soundcard.	Smaller	values	require	more	CPU	time,
but	if	this	is	available	then	the	sound	will	be	much	more	responsive	and	remain
better	 synchronised	 to	 the	 display.	This	will	 be	more	 noticeable	with	machine
code	sound	routines,	such	as	sound	effects.	A	larger	buffer	will	require	less	CPU
time	 to	process,	but	will	 conversely	affect	 the	 response	of	 rapid	 sound	effects.
This	 setting	will	 also	 contribute	 in	 some	ways	 to	 the	 speed	and	 fluidity	of	 the
emulation	and	display	update	speed.

Sound	latency

Some	 sound	 cards	 have	 trouble	 outputting	 sound	 at	 a	 rapid	 rate,	 and	 on	 some
computers	the	CPU	may	have	trouble	keeping	up	with	your	buffer	settings.	This
can	be	alleviated	by	setting	a	higher	 latency,	but	be	warned	 that	 the	higher	 the
latency,	the	larger	the	"lag"	between	emulation	and	sound	synchronisation.	Lag
experienced	 due	 to	 this	 option	 will	 be	 more	 noticeable	 than	 lag	 created	 by	 a
larger	sound	buffer.

LOAD	DATA

Statement/Command

LOAD	DATA	is	used	to	load	arrays	from	files.	The	arrays	are	stored	using	SAVE
DATA.

How	to	use	LOAD	DATA

LOAD	DATA	may	be	used	to	form	a	statement	or	as	a	direct	command.	LOAD
is	first	followed	by	a	filename,	which	is	a	string	value,	followed	by	DATA	and	a
letter	or	a	letter	and	$,	and	finally	by	a	pair	of	empty	brackets,	for	example

270	LOAD	"numbers"	DATA	n()

300	LOAD	"names"	DATA	n$()

The	filename	following	LOAD	is	the	name	that	is	given	to	the	array	in	the	file,
and	it	is	subject	to	the	same	restrictions	as	program	names	used	with	LOAD.	The
letter	 or	 letter$	 following	 DATA	 is	 the	 name	 to	 be	 given	 to	 the	 array	 in	 the
program	when	it	is	loaded	and	used.

On	 execution,	 the	 BASIC	 searches	 for	 the	 named	 array.	 When	 found,	 the
message	 Number	 array:	 or	 Character	 array:	 followed	 by	 the
name	appears	and	the	array	is	loaded.	Any	array	currently	in	memory	having	the
same	letter	name	(n	or	n$	above)	 is	deleted,	and	a	new	array	having	 this	 letter
name	and	the	values	stored	in	the	file	is	created.	Note	that	with	character	arrays,
any	 string	 variable	 currently	 in	 memory	 having	 the	 same	 letter	 name	 is	 also
deleted.

Format

LOAD	string-expr	DATA	letter[$]()

See	also

Chapter	20.

LOAD	SCREEN$

Statement/Command

LOAD	SCREEN$	enables	a	screen	display	to	be	loaded	directly	from	a	file.	 It
sends	 information	 to	 the	 section	 of	 memory	 controlling	 the	 screen	 display	 in
order	to	reproduce	the	picture.

How	to	use	LOAD	SCREEN$

LOAD	 SCREEN$	may	 be	 used	 to	 form	 a	 statement	 or	 as	 a	 direct	 command.
LOAD	is	followed	by	a	filename,	which	is	a	string	value,	and	then	SCREEN$,
for	example

LOAD	"picture"	SCREEN$

The	 filename	 following	 LOAD	 is	 the	 name	 that	 is	 given	 to	 the	 screen
information	 in	 the	 file,	 and	 it	 is	 subject	 to	 the	 same	 restrictions	 as	 program
names	used	with	LOAD.	The	BASIC	 then	searches	 for	 the	named	 information
and	when	found,	loads	it	first	into	the	display	file	and	then	the	attributes	section
of	the	memory.	The	picture	slowly	builds	up	in	the	current	ink	and	paper	colours
and	then	the	attributes	(true	colours	and	so	on)	are	added.

For	more	details	on	storing	screen	information,	see	SAVE	SCREEN$.

Format

LOAD	string-expr	SCREEN$

See	also

Chapter	20.

SAVE	SCREEN$

Statement/Command

SAVE	SCREEN$	stores	 the	screen	display	in	a	file.	 It	can	be	loaded	back	into
the	computer	at	a	later	date	using	LOAD	SCREEN$.

How	to	use	SAVE	SCREEN$

SAVE	SCREEN$	may	be	used	as	a	direct	command	or	to	form	a	statement	in	a
program.	 SAVE	 is	 followed	 by	 a	 filename	 which	 is	 a	 string	 value,	 and	 then
SCREEN$,	for	example

SAVE	"picture"	SCREEN$

The	filename	may	have	up	to	ten	characters.	The	display	is	then	sent	to	the	file
in	the	same	way	as	a	program	is	with	SAVE.

Format

SAVE	string-expre	SCREEN$

See	also

Chapter	20.

Tape	Creator	window

The	Tape	Creator	window	is	available	from	the	Tools	menu.

BASin	provides	this	window	as	a	means	to	creating	and	manipulating	Spectrum
Tape	 images	 of	 your	 programs	 and	 code.	These	 images	 can	 be	 "inserted"	 into
any	 emulator	 that	 supports	 the	.tap	 and	.tzx	 format,	 for	 loading	 into	 the
emulated	Spectrum.	Blocks	can	be	created	here	in	this	tool,	or	by	using	SAVE
commands	from	BASIC	whilst	Tape	Save	Streaming	is	active	(see	 the	Options
dialog,	Files	Tab	help	and	the	Working	with	Tape	files	section	for	information	on
setting	this	up).

The	main	 list	 in	 the	window	contains	 the	blocks	 that	will	make	up	 the	 tape,	 in
the	order	that	they	will	appear.	You	should	start	by	either:

Adding	a	program	block,	then	adding	other	blocks	for	that	program	to	load,
or

Using	the	File	Menu	to	open	an	existing	tape	image.

Adding	blocks	to	a	tape	image

To	add	 a	block,	 you	need	 to	 click	 the	 "Add"	button,	 or	 use	 the	 "Block"	menu
item,	and	choose	from	the	menu	that	appears:

From	File...

Opens	 the	Windows	 file	 requester,	 from	where	 you	 can	 load	 any	 one	 of
either	.bas	 files,	.bsc	 files,	.bsd	 files,	 Snapshots	 (both	.sna	 and
.z80),	.scr	files,	.tzx/.tap	files,	and	raw	binary	files	which	will	be
added	 as	 CODE	 blocks.	When	 you	 open	 a	.tzx	 or	.tap	 file,	 all	 the
compatible	blocks	found	within	will	be	added	to	the	end	of	the	list.

From	Current…

This	 menu	 has	 a	 set	 of	 sub-items	 which	 allow	 you	 to	 import	 from	 your
current	program:

Program

This	option	will	send	the	current	program	area	(with	variables)	to	the
tape	creator	as	a	PROGRAM	block.

Screen

This	option	will	send	the	current	screen	as	a	.scr	file	to	the	tape	creator
list.	This	will	be	a	6912	byte	CODE	block,	and	 is	a	straight	memory
dump	of	the	emulated	screen	display.

Memory	Block

This	option	will	open	the	Add	Memory	Block	window,	where	you	can
specify	the	size	and	location	of	the	memory	block	you	want	to	add	to
the	tape	as	a	CODE	block.

As	you	add	blocks,	they	will	appear	in	the	main	list.	You	can	get	the	properties
of	 these	blocks	by	using	 the	Block	Menu	 item,	or	by	clicking	 the	 "properties"
button	below	the	list.

As	 blocks	 are	 added,	 you	 can	 delete	 them	with	 the	 "Delete"	 button,	 or	move
them	 up/down	 through	 the	 list	 with	 the	 up/down	 arrow	 buttons.	 You	 can	 cut,
copy	and	paste	the	blocks	by	utilising	the	Edit	Menu.

You	can	use	the	Block	Menu	item	to	save	these	blocks	out	as	their	corresponding
File	Formats	using	the	Save	As…	option.

When	you	have	added	all	 the	blocks	your	program	needs,	 then	you	can	hit	 the
"Build"	button	 to	create	a	 tape	 image.	The	Windows	file	requester	will	appear,
prompting	you	for	a	filename.	The	extension	you	supply	dictates	the	type	of	file
created	 -	 a	 ".tap"	 filename	will	 create	 a	 file	 of	 the	older	 "TAP"	 format,	which
although	 less	capable	 than	 the	TZX	format,	will	 load	 into	a	greater	number	of
emulators.	 The	 TZX	 format	 is	 much	 more	 flexible,	 but	 in	 BASin	 has	 no
advantages	over	the	TAP	format.	You	can	save	files	of	this	type	by	specifying	a
".tzx"	extension.	The	TZX	file	format	is	used	as	a	default	if	you	fail	to	specify	an
extension,	and	 this	 format	 is	 to	be	preferred	 in	 the	 interests	of	phasing	out	 the
obsolete	TAP	format.

The	menu	strip

The	File	Menu

The	file	menu	gives	you	options	for	loading	and	saving	the	tape	images	you	use.

Open	Tape	Image…

This	will	open	the	standard	windows	file	requester	and	prompt	you	to	load
a	new	.tzx	or	.tap	file.	This	will	clear	any	tape	image	held	in	memory.

Add	From	Image…

Like	the	Open	Tape	Image…	option,	this	option	will	prompt	you	to	load	a
.tzx	or	 .tap	 file,	but	will	not	 clear	 the	current	 tape	 image	 -	 it	will	 add	 the
blocks	from	the	new	file	to	the	end	of	the	current	tape	file.

Save	Image

Saves	 any	 changes	 you	may	have	made	 to	 the	 current	 tape	 image.	 If	 this
image	has	not	been	saved	previously,	you	will	be	prompted	for	a	filename.

Save	Image	As…

Allows	you	to	specify	the	name	that	the	image	will	be	saved	under,	which
can	be	useful	when	editing	tapes	which	you	want	to	make	copies	of.

Exit

Closes	the	Tape	Creator	tool,	but	leaves	the	current	tape	image	intact	within
memory,	for	tape	streaming	purposes.

The	Edit	Menu

The	edit	menu	gives	functionality	for	copying	and	pasting	blocks,	to	enable	you
to	manage	the	list	order	and	content.

Cut	Block

Removes	the	currently	selected	block	from	the	image,	but	takes	a	copy	and
places	it	on	the	internal	clipboard	first.

Copy	Block

Takes	 a	 copy	 of	 the	 currently	 selected	 block	 and	 places	 that	 copy	 on	 the
internal	clipboard.

Paste	Block

If	a	copied	tape	block	is	currently	residing	on	the	internal	clipboard,	it	will
be	 copied	 and	 inserted	 into	 the	 tape	 image	 at	 the	 currently	 selected	 tape
block	position.	The	block	on	the	clipboard	will	be	left	on	the	clipboard.

Delete	Block

Removes	 the	 currently	 selected	 block	 from	 the	 tape	 image,	 and	 does	 not
take	any	copies	of	that	block	before	it	does	so.	Handle	with	care.

The	Block	Menu

The	block	menu	gives	you	methods	of	working	with	the	blocks	themselves,	from
adding	them	through	to	converting	them	to	files	external	to	the	tape	image.	This

can	be	useful	for	"ripping"	a	block	out	(say	for	example,	a	768	byte	font	image)
for	later	use	in	a	BASIC	program.

Add	From	File

Opens	 the	Windows	 file	 requester,	 from	where	 you	 can	 load	 any	 one	 of
either	 .bas	 files,	 .bsc	 files,	 .bsd	 files,	Snapshots	 (both	 .sna	 and	 .z80),	 .scr
files,	 .tzx/.tap	 files,	 and	 raw	 binary	 files	 which	 will	 be	 added	 as	 CODE
blocks.	When	you	open	a	.tzx	or	.tap	file,	all	 the	compatible	blocks	found
within	will	be	added	to	the	end	of	the	list.

Add	From	Current…

This	 menu	 has	 a	 set	 of	 sub-items	 which	 allow	 you	 to	 import	 from	 your
current	program:

Program

This	option	will	send	the	current	program	area	(with	variables)	to	the
tape	creator	as	a	PROGRAM	block.

Screen

This	option	will	send	the	current	screen	as	a	.scr	file	to	the	tape	creator
list.	This	will	be	6912	bytes	 long,	and	 is	a	straight	memory	dump	of
the	emulated	screen	display.

Memory	Block

This	option	will	open	the	Add	Memory	Block	window,	where	you	can
specify	the	size	and	location	of	the	memory	block	you	want	to	add	to
the	tape	as	a	CODE	block.

Save	As…

Allows	 you	 to	 save	 the	 currently	 selected	 block	 as	 one	 of	 the	 BASin
supported	 types-	 for	 instance,	 you	 can	 save	 Program	 blocks	 as	 .bas	 files,
Code	blocks	as	.bsc	files,	and	variables	as	.bsd	files.	Certain	types	can	also
be	 saved	 as	 raw	 bytes.	 You	will	 be	 prompted	 for	 a	 filename	 to	 save	 the

block	under,	and	in	these	circumstances	your	choice	of	file	extensions	will
determine	what	you	can	save	the	blocks	as.

In	 particular	 it	 is	 worth	 mentioning	 that	 although	 every	 effort	 to	 make
BASin	as	stable	as	possible	has	been	undertaken	for	these	procedures,	a	lot
of	the	more	modern	games	played	fast	and	loose	with	the	rules	of	the	ROM
where	memory	 structure	was	 concerned,	 and	 inserted	 all	 sorts	 of	 fiendish
tricks	 like	 invalid	 lines	 and	 misleading	 system	 variables	 into	 their
programs.	If	BASin	encounters	such	a	program	block,	it	may	well	hang	or
crash	BASin	when	it	tries	to	extract	the	BASIC	from	them.	You	have	been
warned!

Move	Up

Moves	the	selected	memory	block	up	one	place	in	the	list.

Move	Down

Moves	the	selected	memory	block	down	one	place	in	the	list.

Properties

Opens	the	Block	properties	dialog	where	you	can	set	the	parameters	of	each
block	 that	 appears	 in	 your	 tape	 image.	 The	 options	 present	 here	 are
explained	 in	more	 detail	 elsewhere	 in	 the	Tape	Block	Properties	Window
help	section.

The	Streaming	Menu

One	of	BASin's	other	tape	manipulation	features	is	the	ability	to	stream	data	to
your	 program	 from	 tape	 image	 files.	 These	 options	 enable	 or	 disable	 this
behaviour.

LOAD/MERGE/VERIFY	Commands

When	 checked,	 this	 option	 instructs	 BASin	 that	 all	 LOAD,	MERGE	 and
VERIFY	commands	executed	by	the	user	are	to	gather	their	data	not	from
files	on	your	hard	disk,	 but	 from	 the	 current	 tape	 image	held	 in	 the	Tape
Creator	Window.

SAVE	Commands

When	 checked,	 this	 option	 instructs	 BASin	 that	 all	 SAVE	 commands
executed	by	the	user	are	to	send	their	data	not	to	files	on	your	hard	disk,	but
to	the	end	of	the	current	tape	image	held	in	the	Tape	Creator	Window.

Memory	Viewer	window

The	Memory	Viewer	window	is	available	from	the	View	menu	and	 the	System
Variables	window.

Note:	Editing	the	memory	incorrectly	can	corrupt	your	BASIC	program	or	cause
the	emulated	Spectrum	to	crash.

The	 memory	 viewer	 is	 reminiscent	 of	 a	 file	 hex-editor,	 but	 operates	 on	 the
memory	 of	 the	 emulated	 spectrum.	 It	 is	 primarily	 intended	 for	 close
inspection/editing	 of	 various	 regions	 of	 memory,	 and	 to	 that	 end	 it	 supports
instant	location	of	those	areas.

At	the	top	of	the	window,	you	will	notice	that	there	is	a	drop-down	list	attached
to	an	edit	 field.	From	 the	drop-down	 list,	you	can	choose	 from	any	one	of	 the
System	Variables,	 and	 the	display	 area	will	move	 to	 the	 address	pointed	 to	by
that	SysVar.	For	example,	you	could	choose	the	PROG	system	variable,	and	the
display	will	 show	 the	 start	 of	 the	 area	of	memory	 that	 contains	your	program.
You	can	also	choose	from	a	list	of	any	variables	that	are	stored	in	the	VARS	area
of	memory,	and	inspect	the	structure	of	those.	It	may	help	to	refer	to	Chapter	24
of	 the	 Sinclair	 BASIC	 Manual,	 which	 lists	 how	 variables	 and	 programs	 are
stored	in	memory	in	much	more	detail.	An	interesting	feature	that	you	may	use
often	is	the	program	line	locator	-	simply	type	in	a	line	number	followed	by	the
statement	number	(in	Line:Statement	format,	i.e.	"10:1")	and	 the	display	will
move	to	that	line's	tokenised	representation	in	memory.

Having	chosen	a	region	to	jump	to,	you	must	click	the	"Go"	button	to	the	right

of	the	edit	field	to	actually	move	to	that	location.

You	 can	 also	 use	 the	 "Find"	 button	 to	 search	 memory	 for	 whatever	 string	 of
characters	you	have	typed	into	the	edit	field.

You	can	edit	the	memory	by	either	typing	in	the	hexadecimal	codes	into	the	left-
hand	pane	 of	 the	window,	 or	 by	 typing	 in	 regular	ASCII	 codes	 into	 the	 right-
hand	pane.	All	changed	memory	locations	are	coloured	in	dark	red.

At	 the	 bottom	 of	 the	window	 is	 a	 small	 status	 area,	 which	 shows	 the	 current
address	that	you	are	examining,	and	the	contents	of	that	address	in	both	byte	and
word	format.

Emulation	tab

The	Emulation	tab	can	be	found	in	the	Options	window.

Z80	core	emulation

Allow	IN	for	keyboard

If	 this	 box	 is	 checked,	 the	 IN	 keyword	 can	 be	 used	 to	 read	 the	 emulated
Spectrum	 keyboard	 at	 hardware	 level	 -	 for	 example,	 to	 detect	 multiple	 keys
being	pressed	at	once.

Speed	tuning

Determine	the	speed	of	the	emulated	Z80	processor	(approximately	3.5	MHz	on
a	true	Spectrum,or	69888	TStates	per	frame).	Beware	that	excessibley	speeding
BASin	up	can	cause	the	display	to	stop	responding,	and	for	the	sound	to	break
up	if	your	PC	is	not	fast	enough.

ZX	printer	emulation

BASin	emulates	a	ZX	Printer	as	a	device	which	operates	 independently	of	 the
main	Z80	 emulation.	The	Z80	 core	 can	 communicate	with	 the	 device	 through
port	commands,	to	set	the	stylus	and	to	turn	the	motor	on	and	off.

Save	output	between	sessions

To	simulate	a	real	printer,	BASin	can	save	the	state	of	 the	"paper"	 that	 the	ZX
Printer	 uses,	 as	 a	 continuous	 sheet,	 or	 roll	 of	 paper.	 This	 option	will	 save	 the
current	printer	output	when	you	quit	BASin,	and	re-load	it	when	you	start	a	new
BASin	session.	The	file	is	saved	in	BASin's	folder,	as	"Printer.bin".

Accelerate	printing

All	 ROM	 Commands	 for	 printing	 such	 as	 LPRINT,	 LLIST,	 COPY	 and	 the
printer	 streams	 pass	 through	 a	 particular	 point	 in	 the	 ROM	 which	 sends	 a
complete	line	of	32	characters	to	the	printer.	BASin	can	trap	this	and	send	all	the
characters	 in	one	go,	which	considerably	 accelerates	printing.	This	option	will
turn	 this	behaviour	on	and	off.	Machine	code	 routines	which	utilise	 this	ROM
entry	point	will	also	benefit	from	this	behaviour,	but	it	is	not	guaranteed	to	work
with	all	machine	code	routines,	especially	if	they	don't	supply	the	right	values.

Display	tab

The	Display	tab	can	be	found	in	the	Options	window.

Scaling	options

Here	you	can	configure	how	BASin	scales	 the	Display	Window	when	 the	user
resizes.	 The	 options	 affect	 display	 update	 performance	 in	 various	 ways,	 so
experiment	to	find	the	settings	that	best	suit	your	display	and	PC	hardware.

Maintain	aspect	ratio

If	this	box	is	checked,	the	width	and	height	of	the	display	window	always	keep
their	 standard	 PAL	 ratio	 of	 4:3,	 and	 the	 border	 expands	 to	 fill	 any	 remaining
space.	 To	 set	 this	 option	 temporarily,	 choose	Display	 Window	 >	 Force	 1:1
Aspect	on	the	View	menu.

Use	integer	scaling

This,	when	enabled,	will	only	allow	scaling	to	occur	at	exactly	1x,	2x,	3x	etc	of
the	display.	Any	scaling	in-between	will	not	occur,	for	example	at	150%	(1.5x),
and	borders	will	be	added	to	make	up	the	extra	space	in	the	window.	This	option
is	enabled	when	using	some	scalers	-	the	Hq2x,	Super	2xSAI,	Super	Eagle,	and
Scale2x	types,	as	they	can	in	most	cases	only	scale	at	2	or	3	times	normal	size.
These	 types	make	educated	guesses	as	 to	what	 the	scaling	should	 look	like,	so
some	distortion	can	occur	in	dithered	graphics.

Use	8-bit	stretch	for	GDI	mode

This	option	will,	particularly	on	NT	based	systems,	allocate	an	extra	in-memory
bitmap	 set	 to	 256	 colours	 which	 will	 be	 used	 for	 scaling.	 This	 can	 increase
scaling	performance	considerably	when	using	the	GDI	scaling	method,	but	does

require	more	memory	to	use.

Scaling	method

This	 option	 dictates	 how	 BASin	 will	 scale	 the	 Display	 Window	 when	 it	 is
enlarged	beyond	100%	of	 the	original	 (320x240)	size.	BASin	does	not	employ
DirectDraw	or	OpenGL	acceleration.	The	options	are:

Scaling	method Available	sizes Notes

None	(GDI) Any

Uses	 the	 standard	 Windows	 scaling
routines.	Relatively	 slow,	 but	 guaranteed
to	 work	 on	 any	 system.	 To	 improve
performance,	 also	 select	 Use	 8-bit
stretch	in	GDI	mode.

Bilinear Any

Uses	 a	 software	 bilinear	 interpolation
method	 to	 scale	 the	 display	 smoothly.
This	may	be	very	slow	at	larger	sizes,	and
causes	 pixels	 to	 appear	 blurred	 where
blending	occurs	between	them.

Scale2x 2×,	3×,	4×

Uses	a	fast	and	simple	algorithm	to	guess
the	intended	shape	of	a	set	of	pixels.	This
is	 restricted	 to	 256	 colours,	 so	 no
blending	occurs.

HQ2x 2×,	3×,	4×

Combines	 a	 method	 similar	 to	 Scale2x
and	some	blending	to	achieve	the	highest
quality	 display.	 Relatively	 slow,	 but
optimised	 for	 Intel	 processors	 that
support	MMX	(Multimedia	Extensions).

Super	2xSAI 2×	only

Uses	 a	 relatively	 slow	 and	 complex
algorithm	to	guess	the	intended	shape	of	a
set	 of	 pixels.	 The	 result	 is	 of	 higher
quality	than	Scale2x.

Super	Eagle 2×	only Similar	to	Super	2xSAI.

Frameskip

Frameskipping	 is	 a	 useful	 system	 which,	 rather	 than	 render	 all	 50	 frames	 of
display	 every	 second,	 instead	 renders	 only	 a	 set	 portion	 -	 every	 other	 frame,
every	 third	 frame	 and	 so	 on.	 This	 has	 the	 advantage	 that	 BASin	 is	 able	 to
emulate	 the	 Spectrum	 more	 fluidly,	 as	 it	 has	 to	 spend	 less	 time	 per	 second
rendering	 the	 display	 (converting	 the	 Spectrum's	 Display	 memory	 area	 into	 a
Windows	bitmap	image	is	quite	an	intensive	operation).	Frameskip	can	be	quite
useful,	mainly	because	Sinclair	BASIC	is	not	the	swiftest	language,	and	does	not
require	a	constant	frame	update	every	50th	of	a	second.

Update	every	n	frames

Determines	 how	 often	 BASin	 updates	 the	 display.	 Setting	 this	 to	 1	 always
updates	the	display	immediately;	setting	it	to	2	only	renders	every	other	frame;
and	so	on.	A	larger	value	increases	performance	but	reduces	the	smoothness	of
the	display.

Automatically	skip	if	necessary

Selecting	 this	 option	 will	 set	 BASin	 to	 update	 only	 when	 the	 emulation	 is
waiting	 for	 synchronisation	 to	 the	 50hz	 frequency	 -	 i.e.	 when	 the	 engine	 is
idling.	This	will	allow	a	smooth	emulation	with,	depending	on	the	speed	of	your
PC	hardware,	a	reasonable	display	update	speed.	This	is	managed	by	sending	all
display	functions	to	a	separate	thread,	which	waits	until	Windows	gives	it	a	slice
of	CPU	time	to	work	with.	As	the	new	thread	is	set	to	a	lower	priority	than	the
emulation,	then	only	when	the	emulation	is	idling	does	the	display	get	priority.

Note:	On	slower	hardware	with	large	scaling	applied,	this	option	can	freeze	the

display	or	cause	a	rather	jerky	update.

Embellishments

These	extra	options	are	cosmetic	only,	and	will	not	affect	the	speed	or	the	quality
of	 the	 display.	 They	 can	 be	 enabled	 or	 disabled	 according	 to	 the	 tastes	 of	 the
user.

Scanlines	simulation

If	 this	 box	 is	 checked,	BASin	 adds	 dark	 lines	 to	 the	 display	 that	 simulate	 the
scan	lines	on	a	portable	TV	set.	(The	original	Spectrum	was	generally	used	with
a	TV	set,	not	a	computer	monitor.)

Rounded	display	corners

If	 this	 box	 is	 checked,	 the	 display	 is	 given	 a	 rounded	 rectangle	 shape,	 which
more	closely	resembles	an	old	14"	television	set.

Working	with	Tape	image	files

Note:	Detailed	 information	about	 the	 two	 types	of	 tape	 file	 format	 that	BASin
understands	can	be	found	here.

There	are	two	methods	which	BASin	provides	for	managing	Sinclair	Spectrum
tape	 image	 files,	 which	 are	 predominantly	 used	 by	 emulators.	 These	 files	 are
intended	 to	 be	 a	 compressed	 representation	of	 the	 sounds	which	 the	Spectrum
produces	when	saving	files,	and	to	this	end	can	be	very	complex	to	use.	BASin,
through	 the	 use	 of	modified	 emulation,	 employs	 these	 tape	 images	 as	 storage
areas	where	you	can	store	files	created	from	BASIC	programs	and	memory	data
blocks.

The	simplest	method	of	creating	and	working	with	tape	files	is	to	use	the	Tape
Creator	 tool,	 which	 is	 found	 in	 BASin's	 Tools	 Menu.	 You	 should	 read	 the
documentation	for	this	tool	if	you	are	at	all	unsure	as	to	how	to	use	tape	image
files.	 It	 allows	you	 to	 add,	 remove	 and	 create	new	 tape	blocks	 from	programs
either	in-memory	or	from	.bas	files,	and	to	add	blocks	from	memory	chunks,	and
to	save	certain	types	of	variables.

The	other	method	for	working	with	tape	files	within	BASin	is	to	use	"streaming"
where	 the	 actions	 of	 LOAD,	 SAVE,	 MERGE	 and	 VERIFY	 commands	 are
redirected	to	a	tape	image	rather	than	files	on	your	hard	drive.	The	Files	Tab	in
the	Options	dialog	has	two	switches,	which	allow	you	to	turn	this	behaviour	on
or	off.	When	active,	for	example,	a	LOAD	""	command	will	(instead	of	bringing
up	 a	 file	 requester	 asking	 for	 a	 file	 to	 load)	 attempt	 to	 load	 a	 block	 from	 the
current	 tape	 image.	 If	no	 tape	 image	has	been	created	and	"attached",	 then	 the
file	 requester	will	 be	 used.	 If	 tape	 SAVE	 streaming	 is	 active,	 then	 any	 SAVE
command	issued	by	the	user	will	send	the	saved	data	directly	to	the	tape,	adding
it	 on	 to	 the	 end	 of	 the	 tape	 image.	 This	 behaviour	 is	 very	 close	 to	 that	 of
Spectrum	Emulators	in	general.

The	 tape	 image	 formats	 that	BASin	 supports	 are	 the	 .tzx	and	 the	 .tap	 formats.
The	.tap	format	is	supported	completely	-	but	only	the	.tzx	format's	ROM	block
type	(ID	type	16)	is	supported	by	BASin.	This	is	because	BASin	intercepts	ROM
routines	for	loading	and	saving,	rather	than	monitoring	the	EAR	bit	of	port	$FE

(which	is	where	tape-sounds	would	normally	be	arriving	in	a	real	Spectrum).	As
such,	complex	loaders	that	employ	the	more	exotic	blocks	of	the	.tzx	format	will
fail	to	be	recognised,	or	indeed	even	acknowledged	as	existing	at	all.	Support	for
headerless	tape	blocks	is	provided,	however.

The	original	tapes	stored	files	sequentially,	and	the	position	of	the	tape	head	in
the	 tape	 drive,	 along	 the	 tape,	 dictated	 which	 file	 would	 be	 loaded	 next.	 In
BASin,	this	is	indicated	in	the	Tape	Creator	tool	by	the	small	cassette-tape	icon
that	appears	to	the	left	of	the	block	list.	This	icon	indicates	which	block	will	be
loaded	next	by	a	streamed	tape	operation.

Tape	Block	Properties	window

The	Tape	Block	Properties	window	is	available	from	the	Tape	Creator	tool.

This	window	allows	you	to	view	the	properties	of	any	tape	blocks	found	in	the
Tape	 Creator	 window.	 Some	 block	 types	 can	 be	 modified	 -	 the	 information
contained	in	the	tape	header	is	customisable.

For	more	 information	 about	 tape	 file	 headers,	 see	 the	Tape	 image	 file	 formats
section.

Tape	block	types	explained

Program	Blocks

Program	blocks	are	listed	with	the	prefix	"Program:"	and	contain	images	of	the
program	 as	 it	 exists	 in	 the	 PROG	memory	 area,	 with	 any	 variables	 that	 have
been	declared.	Options	available	to	set	are	the	filename	that	appears	as	the	block
loads,	and	the	Autostart	line	number	-	when	the	program	is	loaded,	then	that	line
will	be	executed	automatically	as	though	a	GO	TO	command	had	been	issued.

CODE	Blocks

CODE	blocks	are	listed	with	the	prefix	"Bytes:"	and	are	an	image	of	an	area	of
memory.	 They	 must	 typically	 be	 loaded	 using	 the	LOAD	 ""	 CODE	 direct
command,	and	the	only	optional	parameter	you	can	set	(aside	from	the	filename)
is	the	start	address	that	the	block	will	be	loaded	into.

Array	Blocks

Array	Blocks	are	listed	with	the	prefix	"Number	Array:"	or	"String	Array:"	and
hold	the	contents	of	either	a	string,	a	string	array,	or	a	numeric	array.	You	can	set
the	filename	for	these	blocks,	but	there	are	no	other	options	that	you	can	set.

Note:	The	original	ROM	file	loader	could	only	accept	up	to	ten	characters	for	a
filename,	and	so	the	tape	images	that	BASin	produces	inherit	this	limitation.

Add	Memory	Block	window

The	Add	Memory	Block	window	is	accessible	from	the	Tape	Creator	tool.

This	 window	 is	 used	 to	 specify	 a	 memory	 block	 to	 add	 to	 the	 Tape	Creator
Window.	Here	you	can	specify	the	location	and	size	(using	the	two	edit	fields)	of
the	memory	block	you	wish	to	copy	onto	your	tape	image.

Start	Address

This	is	the	location	in	the	emulated	memory	model	that	you	wish	to	copy	your
block	from.	This	value	can	range	from	0	to	65535.

Length

This	value	specifies	the	length	of	the	memory	block	you	want	to	copy.	Bear	in
mind	 that	 there	 is	 a	maximum	 size	 of	 65535	 bytes,	 but	 only	 enough	 bytes	 to
copy	from	the	Start	Address	up	to	this	limit	will	be	copied.

	Welcome to BASin
	Contact
	Credits

