
BASS_Mixer_GetVersion

Retrieves	the	version	of	BASSmix	that	is	loaded.

DWORD	BASS_Mixer_GetVersion();



Return	value
The	BASSmix	version.	For	example,	0x02040103	(hex),	would	be	version
2.4.1.3



BASS_CONFIG_MIXER_BUFFER	config
option

The	source	channel	buffer	length.

BASS_SetConfig(

				BASS_CONFIG_MIXER_BUFFER,

				DWORD	length

);



Parameters
length The	buffer	length...	1	to	5	is	a	multiplier	of	the

BASS_CONFIG_BUFFER	setting	(at	the	time	of	the	mixer's	creation),
otherwise	it	is	an	absolute	length	in	milliseconds.

mk:@MSITStore:bass.chm::/BASS_CONFIG_BUFFER.html


Remarks
When	a	source	channel	has	buffering	enabled,	the	mixer	will	buffer	the	decoded
data	so	that	it	is	available	to	the	BASS_Mixer_ChannelGetData	and
BASS_Mixer_ChannelGetLevel	and	BASS_Mixer_ChannelGetLevelEx
functions.	The	source	channel	buffer	length	can	be	set	as	a	multiple	of	the
BASS_CONFIG_BUFFER	setting	(at	the	time	of	the	mixer's	creation)	or	as	an
absolute	length.	If	it	is	set	lower	than	the	BASS_CONFIG_BUFFER	setting	and
the	mixer	is	not	a	decoding	channel,	then	it	will	be	automatically	raised	to	match
that.

Larger	buffers	obviously	require	more	memory,	so	this	should	not	be	set	higher
than	necessary.	If	a	source	is	played	at	its	default	rate,	then	the	buffer	only	needs
to	be	as	big	as	the	mixer's	playback	buffer,	but	if	it	is	played	at	a	faster	rate,	then
the	buffer	needs	to	be	bigger	for	it	to	contain	the	data	that	is	currently	being
heard	from	the	mixer.	For	example,	playing	a	channel	at	2x	its	normal	speed
would	require	its	buffer	to	be	2x	the	normal	size.

The	default	setting	is	2,	for	2x	the	BASS_CONFIG_BUFFER	setting.	Changes
only	affect	subsequently	set	up	channel	buffers.	An	existing	channel	can	have	its
buffer	reinitialized	by	removing	and	then	resetting	the	BASS_MIXER_BUFFER
flag	via	BASS_Mixer_ChannelFlags.

mk:@MSITStore:bass.chm::/BASS_CONFIG_BUFFER.html
mk:@MSITStore:bass.chm::/BASS_CONFIG_BUFFER.html
mk:@MSITStore:bass.chm::/BASS_CONFIG_BUFFER.html


See	also
BASS_Mixer_ChannelFlags,	BASS_Mixer_ChannelGetData,
BASS_Mixer_ChannelGetLevel,	BASS_Mixer_ChannelGetLevelEx,
BASS_Mixer_StreamAddChannel

BASS_GetConfig,	BASS_SetConfig

mk:@MSITStore:bass.chm::/BASS_GetConfig.html
mk:@MSITStore:bass.chm::/BASS_SetConfig.html


BASS_CONFIG_MIXER_POSEX	config
option

How	far	back	to	keep	record	of	source	positions	to	make	available	for
BASS_Mixer_ChannelGetPositionEx.

BASS_SetConfig(

				BASS_CONFIG_MIXER_POSEX,

				DWORD	length

);



Parameters
length The	length	of	time	to	back,	in	milliseconds.



Remarks
If	a	mixer	is	not	a	decoding	channel	(not	using	the	BASS_STREAM_DECODE
flag),	this	config	setting	will	just	be	a	minimum	and	the	mixer	will	always	have	a
position	record	at	least	equal	to	its	playback	buffer	length,	as	determined	by	the
BASS_CONFIG_BUFFER	config	option.

The	default	setting	is	2000ms.	Changes	only	affect	newly	created	mixers,	not
any	that	already	exist.

mk:@MSITStore:bass.chm::/BASS_CONFIG_BUFFER.html


See	also
BASS_Mixer_ChannelGetPositionEx,	BASS_Mixer_StreamCreate



BASS_CONFIG_SPLIT_BUFFER	config
option

The	splitter	buffer	length.

BASS_SetConfig(

				BASS_CONFIG_SPLIT_BUFFER,

				DWORD	length

);



Parameters
length The	buffer	length	in	milliseconds.



Remarks
When	a	source	has	its	first	splitter	stream	created,	a	buffer	is	allocated	to	hold	its
sample	data,	which	all	of	its	subsequently	created	splitter	streams	will	share.
This	config	option	determines	how	big	that	buffer	is.	The	default	is	2000ms.

The	buffer	will	always	be	kept	as	empty	as	possible,	so	its	size	does	not
necessarily	affect	latency;	it	just	determines	how	far	splitter	streams	can	drift
apart	before	there	are	buffer	overflow	issues	for	those	left	behind.

Changes	do	not	affect	buffers	that	have	already	been	allocated;	any	sources	that
have	already	had	splitter	streams	created	will	continue	to	use	their	existing
buffers.



See	also
BASS_Split_StreamCreate



BASS_Mixer_StreamCreate

Creates	a	mixer	stream.

HSTREAM	BASS_Mixer_StreamCreate(

				DWORD	freq,

				DWORD	chans,

				DWORD	flags

);



Parameters
freq The	sample	rate	of	the	mixer	output.
chans The	number	of	channels...	1	=	mono,	2	=	stereo,	4	=	quadraphonic,	6	=

5.1,	8	=	7.1.
flags Any	combination	of	these	flags.

BASS_SAMPLE_8BITS Produce	8-bit	output.	If	neither	this
or	the	BASS_SAMPLE_FLOAT
flags	are	specified,	then	the	stream	is
16-bit.

BASS_SAMPLE_FLOAT Produce	32-bit	floating-point	output.
WDM	drivers	or	the
BASS_STREAM_DECODE	flag	are
required	to	use	this	flag	in	Windows.
See	Floating-point	channels	for	more
info.

BASS_SAMPLE_SOFTWARE Force	the	stream	to	not	use	hardware
mixing.	Note	this	only	applies	to
playback	of	the	mixer's	output;	the
mixing	of	the	source	channels	is
always	performed	by	BASSmix.

BASS_SAMPLE_3D Use	3D	functionality.	This	requires
that	the	BASS_DEVICE_3D	flag
was	specified	when	calling
BASS_Init,	and	the	stream	must	be
mono	(chans=1).	The	SPEAKER
flags	can	not	be	used	together	with
this	flag.

BASS_SAMPLE_FX Enable	the	old	implementation	of
DirectX	8	effects.	See	the	DX8	effect
implementations	section	for	details.
Use	BASS_ChannelSetFX	to	add
effects	to	the	stream.

BASS_STREAM_AUTOFREE Automatically	free	the	stream	when
playback	ends.

BASS_STREAM_DECODE Mix	the	sample	data,	without	playing

mk:@MSITStore:bass.chm::/float.html
mk:@MSITStore:bass.chm::/BASS_Init.html
mk:@MSITStore:bass.chm::/effects.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetFX.html


it.	Use	BASS_ChannelGetData	to
retrieve	the	mixed	sample	data.	The
BASS_SAMPLE_3D,
BASS_STREAM_AUTOFREE	and
SPEAKER	flags	can	not	be	used
together	with	this	flag.	The
BASS_SAMPLE_SOFTWARE,
BASS_SAMPLE_FX	and
BASS_MIXER_RESUME	flags	are
also	ignored.

BASS_MIXER_END End	the	stream	when	there	are	no
active	(including	stalled)	source
channels,	else	it	is	never-ending.

BASS_MIXER_NONSTOP Do	not	stop	producing	output	when
there	are	no	active	source	channels,
else	it	will	be	stalled	until	there	are
active	sources.

BASS_MIXER_POSEX Keep	a	record	of	the	source
positions,	making	it	possible	to
account	for	output	latency	when
retrieving	a	source	position.	How	far
back	the	position	record	goes	is
determined	by	the
BASS_CONFIG_MIXER_POSEX
config	option.	If	this	flag	is	not	used
and	neither	is	the
BASS_STREAM_DECODE	flag,
then	the	mixer	will	automatically
have	a	position	record	of	equal
length	to	the
BASS_CONFIG_BUFFER	setting.

BASS_MIXER_RESUME When	stalled,	resume	the	mixer
immediately	upon	a	source	being
added	or	unpaused,	else	it	will	be
resumed	at	the	next	update	cycle.

mk:@MSITStore:bass.chm::/BASS_ChannelGetData.html
mk:@MSITStore:bass.chm::/BASS_CONFIG_BUFFER.html


BASS_SPEAKER_xxx Speaker	assignment	flags.	These
flags	have	no	effect	when	the	stream
is	more	than	stereo.

mk:@MSITStore:bass.chm::/speaker.html


Return	value
If	successful,	the	new	stream's	handle	is	returned,	else	0	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html


Error	codes
BASS_ERROR_INIT BASS_Init	has	not	been	successfully	called.
BASS_ERROR_NOTAVAIL Only	decoding	channels

(BASS_STREAM_DECODE)	are	allowed
when	using	the	"no	sound"	device.	The
BASS_STREAM_AUTOFREE	flag	is	also
unavailable	to	decoding	channels.

BASS_ERROR_FORMAT The	sample	format	is	not	supported	by	the
device/drivers.	If	the	stream	is	more	than	stereo
or	the	BASS_SAMPLE_FLOAT	flag	is	used,	it
could	be	that	they	are	not	supported.

BASS_ERROR_SPEAKER The	specified	SPEAKER	flags	are	invalid.	The
device/drivers	do	not	support	them,	they	are
attempting	to	assign	a	stereo	stream	to	a	mono
speaker	or	3D	functionality	is	enabled.

BASS_ERROR_MEM There	is	insufficient	memory.
BASS_ERROR_NO3D Could	not	initialize	3D	support.
BASS_ERROR_UNKNOWN Some	other	mystery	problem!

mk:@MSITStore:bass.chm::/BASS_Init.html


Remarks
Source	channels	are	"plugged"	into	a	mixer	using	the
BASS_Mixer_StreamAddChannel	or	BASS_Mixer_StreamAddChannelEx
functions,	and	"unplugged"	using	the	BASS_Mixer_ChannelRemove	function.
Sources	can	be	added	and	removed	at	any	time,	so	a	mixer	does	not	have	a
predetermined	length	and	BASS_ChannelGetLength	is	not	applicable.	Likewise,
seeking	is	not	possible,	except	to	position	0,	as	described	below.

If	the	mixer	output	is	being	played	(it	is	not	a	decoding	channel),	then	there	will
be	some	delay	in	the	effect	of	adding/removing	source	channels	or	changing
their	attributes	being	heard.	This	latency	can	be	reduced	by	making	use	of	the
BASS_CONFIG_BUFFER	and	BASS_CONFIG_UPDATEPERIOD	config
options.	The	playback	buffer	can	be	flushed	by	calling	BASS_ChannelPlay
(restart	=	TRUE)	or	BASS_ChannelSetPosition	(pos	=	0).	That	can	also	be	done
to	restart	a	mixer	that	has	ended.

Unless	the	BASS_MIXER_END	flag	is	specified,	a	mixer	stream	will	never	end.
When	there	are	no	sources	(or	the	sources	have	ended/stalled),	it	will	produce	no
output	until	there	is	an	active	source.	That	is	unless	the
BASS_MIXER_NONSTOP	flag	is	used,	in	which	case	it	will	produce	silent
output	while	there	are	no	active	sources.	The	BASS_MIXER_END	and
BASS_MIXER_NONSTOP	flags	can	be	toggled	at	any	time,	using
BASS_ChannelFlags.

Besides	mixing	channels,	a	mixer	stream	can	be	used	for	sample	rate	conversion.
In	that	case	the	freq	parameter	would	be	set	to	the	new	sample	rate,	and	the
source	channel's	attributes	would	be	left	at	their	defaults.	A	mixer	stream	can
also	be	used	to	downmix,	upmix	and	generally	rearrange	channels,	using	the
matrix	mixing	features.

mk:@MSITStore:bass.chm::/BASS_ChannelGetLength.html
mk:@MSITStore:bass.chm::/BASS_CONFIG_BUFFER.html
mk:@MSITStore:bass.chm::/BASS_CONFIG_UPDATEPERIOD.html
mk:@MSITStore:bass.chm::/BASS_ChannelPlay.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetPosition.html
mk:@MSITStore:bass.chm::/BASS_ChannelFlags.html


Platform-specific
Away	from	Windows,	all	mixing	is	done	in	software	(by	BASS),	so	the
BASS_SAMPLE_SOFTWARE	flag	is	unnecessary.	The	BASS_SAMPLE_FX
flag	is	also	ignored.



See	also
BASS_Mixer_StreamAddChannel,	BASS_Mixer_StreamAddChannelEx

BASS_ChannelPlay,	BASS_StreamFree

mk:@MSITStore:bass.chm::/BASS_ChannelPlay.html
mk:@MSITStore:bass.chm::/BASS_StreamFree.html


BASS_Mixer_StreamAddChannel

Plugs	a	channel	into	a	mixer.

BOOL	BASS_Mixer_StreamAddChannel(

				HSTREAM	handle,

				DWORD	channel,

				DWORD	flags

);



Parameters
handle The	mixer	handle.
channel The	handle	of	the	channel	to	plug	into	the	mixer...	a	HMUSIC,

HSTREAM	or	HRECORD.
flags Any	combination	of	these	flags.

BASS_MIXER_MATRIX Creates	a	channel	matrix,	allowing
the	source's	channels	to	be	sent	to
any	of	the	mixer	output	channels,	at
any	levels.	The	matrix	can	be
retrieved	and	modified	via	the
BASS_Mixer_ChannelGetMatrix
and
BASS_Mixer_ChannelSetMatrix
functions.	The	matrix	will	initially
contain	a	one-to-one	mapping,	eg.
left	out	=	left	in,	right	out	=	right	in,
etc.

BASS_MIXER_DOWNMIX If	the	source	has	more	channels	than
the	mixer	output	(and	that	is	stereo
or	mono),	then	matrix	mixing	is
enabled	and	initialized	with	the
appropriate	downmixing	matrix.
Note	the	source	data	is	assumed	to
follow	the	standard	channel
ordering,	as	described	in	the
STREAMPROC	documentation.

BASS_MIXER_BUFFER Buffer	the	sample	data,	for	use	by
BASS_Mixer_ChannelGetData	and
BASS_Mixer_ChannelGetLevel	and
BASS_Mixer_ChannelGetLevelEx.
This	increases	memory
requirements,	so	should	not	be
enabled	needlessly.	The	size	of	the
buffer	can	be	controlled	via	the
BASS_CONFIG_MIXER_BUFFER

mk:@MSITStore:bass.chm::/STREAMPROC.html


config	option.
BASS_MIXER_LIMIT Limit	the	mixer	processing	to	the

amount	of	data	available	from	this
source,	while	the	source	is	active
(not	ended).	If	the	source	stalls,	then
the	mixer	will	too,	rather	than
continuing	to	mix	other	sources,	as
it	would	normally	do.	This	flag	can
only	be	applied	to	one	source	per
mixer,	so	it	will	automatically	be
removed	from	any	other	source	of
the	same	mixer.

BASS_MIXER_NORAMPIN Do	not	ramp-in	the	start,	including
after	seeking
(BASS_Mixer_ChannelSetPosition).
This	is	useful	for	gap-less	playback,
where	a	source	channel	is	intended
to	seamlessly	follow	another.	This
does	not	affect	volume	and	pan
changes,	which	are	always	ramped.

BASS_MIXER_PAUSE Pause	processing	of	the	source.	Use
BASS_Mixer_ChannelFlags	to
resume	processing.

BASS_STREAM_AUTOFREE Automatically	free	the	source
channel	when	it	ends.	This	allows
you	to	add	a	channel	to	a	mixer	and
forget	about	it,	as	it	will
automatically	be	freed	when	it	has
reached	the	end,	or	when	the	source
is	removed	from	the	mixer	or	when
the	mixer	is	freed.

BASS_SPEAKER_xxx Speaker	assignment	flags.	If	matrix
mixing	is	enabled	then	the	matrix
will	be	initialized	to	place	the	source
on	the	requested	speaker(s),	with
downmixing	also	applied	if	the

mk:@MSITStore:bass.chm::/speaker.html


BASS_MIXER_DOWNMIX	flag	is
specified.	The	BASS_Init
BASS_DEVICE_NOSPEAKER
flag	has	effect	here.

mk:@MSITStore:bass.chm::/BASS_Init.html


Return	value
If	successful,	then	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html


Error	codes
BASS_ERROR_HANDLE At	least	one	of	handle	and	channel	is	not	valid.
BASS_ERROR_DECODE channel	is	not	a	decoding	channel.
BASS_ERROR_ALREADY channel	is	already	plugged	into	a	mixer.	It	must

be	unplugged	first.
BASS_ERROR_SPEAKER The	mixer	does	not	support	the	requested

speaker(s),	or	you	are	attempting	to	assign	a
stereo	stream	to	a	mono	speaker.



Remarks
Internally,	a	mixer	will	use	the	BASS_ChannelGetData	function	to	get	data	from
its	source	channels.	That	means	that	the	source	channels	must	be	decoding
channels	(not	using	a	RECORDPROC	in	the	case	of	a	recording	channel).
Plugging	a	channel	into	more	than	one	mixer	at	a	time	is	not	possible	because
the	mixers	would	be	taking	data	away	from	each	other.	An	advantage	of	this	is
that	there	is	no	need	for	a	mixer's	handle	to	be	provided	with	the	channel
functions.	It	is	actually	possible	to	plug	a	channel	into	multiple	mixers	via	the
use	of	splitter	streams.

Channels	are	"unplugged"	using	the	BASS_Mixer_ChannelRemove	function.
Channels	are	also	automatically	unplugged	when	they	are	freed.

When	mixing	a	channel,	the	mixer	makes	use	of	the	channel's	freq/volume/pan
attributes,	as	set	with	BASS_ChannelSetAttribute.	The
BASS_CONFIG_CURVE_VOL	and	BASS_CONFIG_CURVE_PAN	config
option	settings	are	also	used.

If	a	multi-channel	stream	has	more	channels	than	the	mixer	output,	the	extra
channels	will	be	discarded.	For	example,	if	a	5.1	stream	is	plugged	into	a	stereo
mixer,	only	the	front-left/right	channels	will	be	retained.	That	is	unless	matrix
mixing	is	used.

The	mixer	processing	is	performed	in	floating-point,	so	it	makes	sense	(for	both
quality	and	efficiency	reasons)	for	the	source	channels	to	be	floating-point	too,
though	they	do	not	have	to	be.	It	is	also	more	efficient	if	the	source	channels
have	the	same	sample	rate	as	the	mixer	output	because	no	sample	rate
conversion	is	required	then.	When	sample	rate	conversion	is	required,	windowed
sinc	interpolation	is	used	and	the	source's	BASS_ATTRIB_SRC	attribute
determines	how	many	points/samples	are	used	in	that,	as	follows:	0	(or	below)	=
4	points,	1	=	8	points,	2	=	16	points,	3	=	32	points,	4	=	64	points,	5	=	128	points,
6	(or	above)	=	256	points.	8	points	are	used	if	the	BASS_ATTRIB_SRC	attribute
is	unavailable	(old	BASS	version).	A	higher	number	of	points	results	in	better
sound	quality	(less	aliasing	and	smaller	transition	band	in	the	low-pass	filter),
but	also	higher	CPU	usage.

mk:@MSITStore:bass.chm::/BASS_ChannelGetData.html
mk:@MSITStore:bass.chm::/RECORDPROC.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetAttribute.html
mk:@MSITStore:bass.chm::/BASS_CONFIG_CURVE_VOL.html
mk:@MSITStore:bass.chm::/BASS_CONFIG_CURVE_PAN.html
mk:@MSITStore:bass.chm::/BASS_ATTRIB_SRC.html
mk:@MSITStore:bass.chm::/BASS_ATTRIB_SRC.html


Platform-specific
The	sample	rate	conversion	processing	is	limited	to	128	points	on	iOS	and
Android.	The	mixer	processing	is	performed	in	fixed-point	rather	than	floating-
point	on	some	platforms/architectures,	as	indicated	by	the
BASS_CONFIG_FLOAT	value.

mk:@MSITStore:bass.chm::/BASS_CONFIG_FLOAT.html


See	also
BASS_Mixer_ChannelFlags,	BASS_Mixer_ChannelGetLevel,
BASS_Mixer_ChannelGetMixer,	BASS_Mixer_ChannelGetPosition,
BASS_Mixer_ChannelRemove,	BASS_Mixer_ChannelSetMatrix,
BASS_Mixer_ChannelSetPosition,	BASS_Mixer_StreamAddChannelEx,
BASS_Mixer_StreamCreate



BASS_Mixer_StreamAddChannelEx

Plugs	a	channel	into	a	mixer,	optionally	delaying	the	start	and	limiting	the
length.

BOOL	BASS_Mixer_StreamAddChannelEx(

				HSTREAM	handle,

				DWORD	channel,

				DWORD	flags,

				QWORD	start,

				QWORD	length

);



Parameters
handle The	mixer	handle.
channel The	handle	of	the	channel	to	plug	into	the	mixer...	a	HMUSIC,

HSTREAM	or	HRECORD.
flags Any	combination	of	these	flags.

BASS_MIXER_MATRIX Creates	a	channel	matrix,	allowing
the	source's	channels	to	be	sent	to
any	of	the	mixer	output	channels,	at
any	levels.	The	matrix	can	be
retrieved	and	modified	via	the
BASS_Mixer_ChannelGetMatrix
and
BASS_Mixer_ChannelSetMatrix
functions.	The	matrix	will	initially
contain	a	one-to-one	mapping,	eg.
left	out	=	left	in,	right	out	=	right	in,
etc...

BASS_MIXER_DOWNMIX If	the	source	has	more	channels	than
the	mixer	output	(and	the	mixer	is
stereo	or	mono),	then	a	channel
matrix	is	created,	initialized	with	the
appropriate	downmixing	matrix.
Note	the	source	data	is	assumed	to
follow	the	standard	channel
ordering,	as	described	in	the
STREAMPROC	documentation.

BASS_MIXER_BUFFER Buffer	the	sample	data,	for	use	by
BASS_Mixer_ChannelGetData	and
BASS_Mixer_ChannelGetLevel	and
and
BASS_Mixer_ChannelGetLevelEx.
This	increases	memory
requirements,	so	should	not	be
enabled	needlessly.	The	size	of	the
buffer	can	be	controlled	via	the

mk:@MSITStore:bass.chm::/STREAMPROC.html


BASS_CONFIG_MIXER_BUFFER
config	option.

BASS_MIXER_LIMIT Limit	the	mixer	processing	to	the
amount	of	data	available	from	this
source,	while	the	source	is	active
(not	ended).	If	the	source	stalls,	then
the	mixer	will	too,	rather	than
continuing	to	mix	other	sources,	as
it	would	normally	do.	This	flag	can
only	be	applied	to	one	source	per
mixer,	so	it	will	automatically	be
removed	from	any	other	source	of
the	same	mixer.

BASS_MIXER_NORAMPIN Do	not	ramp-in	the	start,	including
after	seeking
(BASS_Mixer_ChannelSetPosition).
This	is	useful	for	gap-less	playback,
where	a	source	channel	is	intended
to	seamlessly	follow	another.	This
does	not	affect	volume	and	pan
changes,	which	are	always	ramped.

BASS_MIXER_PAUSE Pause	processing	of	the	source.	Use
BASS_Mixer_ChannelFlags	to
resume	processing.

BASS_STREAM_AUTOFREE Automatically	free	the	source
channel	when	it	ends.	This	allows
you	to	add	a	channel	to	a	mixer	and
forget	about	it,	as	it	will
automatically	be	freed	when	it	has
reached	the	end,	or	when	the	source
is	removed	from	the	mixer	or	when
the	mixer	is	freed.

BASS_SPEAKER_xxx Speaker	assignment	flags.	Ignored
when	using	the
BASS_MIXER_MATRIX	or
BASS_MIXER_DOWNMIX	flag.

mk:@MSITStore:bass.chm::/speaker.html


The	BASS_Init
BASS_DEVICE_NOSPEAKER
flag	has	effect	here.

start Delay	(in	bytes)	before	the	channel	is	mixed	in.
length The	maximum	amount	of	data	(in	bytes)	to	mix...	0	=	no	limit.	Once

this	end	point	is	reached,	the	channel	will	be	removed	from	the	mixer.

mk:@MSITStore:bass.chm::/BASS_Init.html


Return	value
If	successful,	then	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html


Error	codes
BASS_ERROR_HANDLE At	least	one	of	handle	and	channel	is	not	valid.
BASS_ERROR_DECODE channel	is	not	a	decoding	channel.
BASS_ERROR_ALREADY channel	is	already	plugged	into	a	mixer.	It	must

be	unplugged	first.
BASS_ERROR_SPEAKER The	mixer	does	not	support	the	requested

speaker(s),	or	you	are	attempting	to	assign	a
stereo	stream	to	a	mono	speaker.



Remarks
This	function	is	identical	to	BASS_Mixer_StreamAddChannel,	but	with	the
additional	ability	to	specify	a	delay	and	duration	for	the	channel.

The	start	and	length	parameters	relate	to	the	mixer	output.	So	when	calculating
these	values,	use	the	mixer	stream's	sample	format	rather	than	the	source
channel's.	The	start	parameter	is	automatically	rounded-down	to	the	nearest
sample	boundary,	while	the	length	parameter	is	rounded-up	to	the	nearest	sample
boundary.



Example
Add	a	channel	to	a	mixer,	delaying	the	start	by	1	second	and	limiting	the
duration	to	2	seconds.

QWORD	start=BASS_ChannelSeconds2Bytes(mixer,	1);	//	delay

QWORD	length=BASS_ChannelSeconds2Bytes(mixer,	2);	//	duration

BASS_Mixer_StreamAddChannelEx(mixer,	channel,	0,	start,	length);	//	add	the	channel



See	also
BASS_Mixer_ChannelFlags,	BASS_Mixer_ChannelGetLevel,
BASS_Mixer_ChannelGetMixer,	BASS_Mixer_ChannelGetPosition,
BASS_Mixer_ChannelRemove,	BASS_Mixer_ChannelSetMatrix,
BASS_Mixer_ChannelSetPosition,	BASS_Mixer_StreamAddChannel,
BASS_Mixer_StreamCreate



BASS_Mixer_StreamGetChannels

Retrieves	a	mixer's	source	channels.

DWORD	BASS_Mixer_StreamGetChannels(

				HSTREAM	handle,

				DWORD	*channels,

				DWORD	count

);



Parameters
handle The	mixer	handle.
channels An	array	to	recevive	the	mixer's	source	channel	handles.
count The	maximum	number	of	channels	to	receive	in	the	channels	array...

0	=	get	the	number	of	source	channels	without	getting	the	handles.



Return	value
If	successful,	the	number	of	source	channels	placed	in	the	channels	array	is
returned,	or	the	total	number	of	source	channels	if	count	=	0,	else	-1	is	returned.
Use	BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html


Error	codes
BASS_ERROR_HANDLE handle	is	not	a	valid	mixer	handle.



Remarks
To	determine	whether	a	particular	channel	is	plugged	in	a	mixer,	it	is	simpler	to
use	BASS_Mixer_ChannelGetMixer	instead	of	this	function.



Example
Remove	all	source	channels	from	a	mixer.

DWORD	*channels;

DWORD	a,	count;

count=BASS_Mixer_StreamGetChannels(mixer,	NULL,	0);	//	get	the	number	of	source	channels

channels=(DWORD*)malloc(count*sizeof(DWORD));	//	allocate	channels	array

BASS_Mixer_StreamGetChannels(mixer,	channels,	count);	//	get	the	channels

for	(a=0;	a<count;	a++)	//	go	through	them	all	and...

				BASS_Mixer_ChannelRemove(channels[a]);	//	remove	from	the	mixer

free(channels);	//	free	the	channels	array



See	also
BASS_Mixer_StreamAddChannel,	BASS_Mixer_StreamAddChannelEx,
BASS_Mixer_ChannelGetMixer



BASS_ATTRIB_MIXER_LATENCY
attribute

Custom	output	latency.

BASS_ChannelSetAttribute(

				HSTREAM	handle,

				BASS_ATTRIB_MIXER_LATENCY,

				float	latency

);



Parameters
handle The	mixer	stream	handle.
latency The	latency	in	seconds.



Remarks
When	a	mixer	is	played	by	BASS,	the	BASS_Mixer_ChannelGetData,
BASS_Mixer_ChannelGetLevel,	BASS_Mixer_ChannelGetLevelEx,	and
BASS_Mixer_ChannelGetPosition	functions	will	get	the	output	latency	and
account	for	that	so	that	they	reflect	what	is	currently	being	heard,	but	that	cannot
be	done	when	a	different	output	system	is	used,	eg.	ASIO	or	WASAPI.	In	that
case,	this	attribute	can	be	used	to	tell	the	mixer	what	the	output	latency	is,	so	that
those	functions	can	still	account	for	it.	The	mixer	needs	to	have	the
BASS_STREAM_DECODE	and	BASS_MIXER_POSEX	flags	set	to	use	this
attribute.

The	default	setting	is	0	(no	accounting	for	latency).	Changes	take	immediate
effect.



See	also
BASS_Mixer_ChannelGetData,	BASS_Mixer_ChannelGetLevel,
BASS_Mixer_ChannelGetLevelEx,	BASS_Mixer_ChannelGetPosition

BASS_ChannelGetAttribute,	BASS_ChannelSetAttribute

mk:@MSITStore:bass.chm::/BASS_ChannelGetAttribute.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetAttribute.html


BASS_Mixer_ChannelFlags

Modifies	and	retrieves	a	channel's	mixer	flags.

DWORD	BASS_Mixer_ChannelFlags(

				DWORD	handle,

				DWORD	flags,

				DWORD	mask

);



Parameters
handle The	channel	handle.
flags A	combination	of	these	flags.

BASS_MIXER_BUFFER Buffer	the	sample	data,	for	use	by
BASS_Mixer_ChannelGetData	and
BASS_Mixer_ChannelGetLevel	and
BASS_Mixer_ChannelGetLevelEx.

BASS_MIXER_LIMIT Limit	the	mixer	processing	to	the
amount	of	data	available	from	this
source.	This	flag	can	only	be	applied
to	one	source	per	mixer,	so	it	will
automatically	be	removed	from	any
other	source	of	the	same	mixer.

BASS_MIXER_NORAMPIN Do	not	ramp-in	the	start,	including
after	seeking
(BASS_Mixer_ChannelSetPosition).

BASS_MIXER_PAUSE Pause	processing	of	the	source.
BASS_STREAM_AUTOFREE Automatically	free	the	source

channel	when	it	ends.
BASS_SPEAKER_xxx Speaker	assignment	flags.	If	matrix

mixing	is	enabled,	then	the	matrix
will	be	modified	to	place	the	source
on	the	requested	speaker(s).

mask The	flags	(as	above)	to	modify.	Flags	that	are	not	included	in	this	are
left	as	they	are,	so	it	can	be	set	to	0	in	order	to	just	retrieve	the	current
flags.	To	modify	the	speaker	flags,	any	of	the	BASS_SPEAKER_xxx
flags	can	be	used	in	the	mask	(no	need	to	include	all	of	them).

mk:@MSITStore:bass.chm::/speaker.html


Return	value
If	successful,	the	channel's	updated	flags	are	returned,	else	-1	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html


Error	codes
BASS_ERROR_HANDLE The	channel	is	not	plugged	into	a	mixer.
BASS_ERROR_SPEAKER The	mixer	does	not	support	the	requested

speaker(s),	or	the	channel	has	matrix	mixing
enabled.



Remarks
This	function	only	deals	with	the	channel's	mixer	related	flags.	The	channel's
standard	flags,	for	example	looping	(BASS_SAMPLE_LOOP),	are	unaffected;
use	BASS_ChannelFlags	to	modify	them.

mk:@MSITStore:bass.chm::/BASS_ChannelFlags.html


Example
Disable	ramping-in	of	a	channel.

BASS_Mixer_ChannelFlags(channel,	BASS_MIXER_NORAMPIN,	BASS_MIXER_NORAMPIN);	//	set	NORAMPIN	flag

Enable	ramping-in	of	a	channel.

BASS_Mixer_ChannelFlags(channel,	0,	BASS_MIXER_NORAMPIN);	//	remove	NORAMPIN	flag



See	also
BASS_Mixer_StreamAddChannel



BASS_Mixer_ChannelGetData

Retrieves	the	immediate	sample	data	(or	an	FFT	representation	of	it)	of	a	mixer
source	channel.

DWORD	BASS_Mixer_ChannelGetData(

				DWORD	handle,

				void	*buffer,

				DWORD	length

);



Parameters
handle The	channel	handle.
buffer Pointer	to	a	buffer	to	receive	the	data.
length Number	of	bytes	wanted,	and/or	the	BASS_ChannelGetData	flags.

mk:@MSITStore:bass.chm::/BASS_ChannelGetData.html


Return	value
If	an	error	occurs,	-1	is	returned,	use	BASS_ErrorGetCode	to	get	the	error	code.
When	requesting	FFT	data,	the	number	of	bytes	read	from	the	channel	(to
perform	the	FFT)	is	returned.	When	requesting	sample	data,	the	number	of	bytes
written	to	buffer	will	be	returned	(not	necessarily	the	same	as	the	number	of
bytes	read	when	using	the	BASS_DATA_FLOAT	flag).	When	using	the
BASS_DATA_AVAILABLE	flag,	the	number	of	bytes	in	the	channel's	buffer	is
returned.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html


Error	codes
BASS_ERROR_HANDLE handle	is	not	plugged	into	a	mixer.
BASS_ERROR_NOTAVAIL The	channel	does	not	have	buffering

(BASS_MIXER_BUFFER)	enabled.



Remarks
This	function	is	like	the	standard	BASS_ChannelGetData,	but	it	gets	the	data
from	the	channel's	buffer	instead	of	decoding	it	from	the	channel,	which	means
that	the	mixer	does	not	miss	out	on	any	data.	In	order	to	do	this,	the	source
channel	must	have	buffering	enabled,	via	the	BASS_MIXER_BUFFER	flag.

If	the	mixer	is	being	played	by	BASS,	the	returned	data	will	be	in	sync	with
what	is	currently	being	heard	from	the	mixer.	If	another	output	system	is	being
used,	the	BASS_ATTRIB_MIXER_LATENCY	option	can	be	used	to	tell	the
mixer	what	the	latency	is	so	that	it	can	be	taken	account	of,	otherwise	the
channel's	most	recent	data	will	be	returned.	The
BASS_CONFIG_MIXER_BUFFER	config	option	determines	how	far	back	data
will	be	available	from,	so	it	should	be	set	high	enough	to	cover	any	latency.

mk:@MSITStore:bass.chm::/BASS_ChannelGetData.html


See	also
BASS_Mixer_ChannelGetLevel,	BASS_ATTRIB_MIXER_LATENCY,
BASS_CONFIG_MIXER_BUFFER

BASS_ChannelGetData

mk:@MSITStore:bass.chm::/ChannelGetData.html


BASS_Mixer_ChannelGetEnvelopePos

Retrieves	the	current	position	and	value	of	an	envelope	on	a	channel.

QWORD	BASS_Mixer_ChannelGetEnvelopePos(

				DWORD	handle,

				DWORD	type,

				float	*value

);



Parameters
handle The	channel	handle.
type The	envelope	to	get	the	position/value	of.	One	of	the	following.

BASS_MIXER_ENV_FREQ Sample	rate.
BASS_MIXER_ENV_VOL Volume.
BASS_MIXER_ENV_PAN Panning/balance.

value Pointer	to	a	variable	to	receive	the	envelope	value	at	the	current
position...	NULL	=	do	not	retrieve	it.



Return	value
If	successful,	the	current	position	of	the	envelope	is	returned,	else	-1	is	returned.
Use	BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html


Error	codes
BASS_ERROR_HANDLE The	channel	is	not	plugged	into	a	mixer.
BASS_ERROR_ILLTYPE type	is	not	valid.
BASS_ERROR_NOTAVAIL There	is	no	envelope	of	the	requested	type	on

the	channel.



Remarks
During	playback,	the	envelope's	current	position	is	not	necessarily	what	is
currently	being	heard,	due	to	buffering.



See	also
BASS_Mixer_ChannelSetEnvelope,	BASS_Mixer_ChannelSetEnvelopePos



BASS_Mixer_ChannelGetLevel

Retrieves	the	level	(peak	amplitude)	of	a	mixer	source	channel.

DWORD	BASS_Mixer_ChannelGetLevel(

				DWORD	handle

);



Parameters
handle The	channel	handle.



Return	value
If	an	error	occurs,	-1	is	returned,	use	BASS_ErrorGetCode	to	get	the	error	code.
If	successful,	the	level	of	the	left	channel	is	returned	in	the	low	word	(low	16-
bits),	and	the	level	of	the	right	channel	is	returned	in	the	high	word	(high	16-
bits).	If	the	channel	is	mono,	then	the	low	word	is	duplicated	in	the	high	word.
The	level	ranges	linearly	from	0	(silent)	to	32768	(max).	0	will	be	returned	when
a	channel	is	stalled.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html


Error	codes
BASS_ERROR_HANDLE handle	is	not	plugged	into	a	mixer.
BASS_ERROR_NOTAVAIL The	channel	does	not	have	buffering

(BASS_MIXER_BUFFER)	enabled.
BASS_ERROR_NOPLAY The	mixer	is	not	playing.



Remarks
This	function	is	like	the	standard	BASS_ChannelGetLevel,	but	it	gets	the	level
from	the	channel's	buffer	instead	of	decoding	data	from	the	channel,	which
means	that	the	mixer	does	not	miss	out	on	any	data.	In	order	to	do	this,	the
source	channel	must	have	buffering	enabled	via	the	BASS_MIXER_BUFFER
flag.

This	function	measures	the	level	of	the	channel's	sample	data,	not	its	level	in	the
mixer	output.	It	includes	the	effect	of	any	DSP/FX	set	on	the	channel,	but	not	the
effect	of	the	channel's	BASS_ATTRIB_VOL	or	BASS_ATTRIB_PAN	attributes
or	matrix	mixing	or	any	envelope	set	via	BASS_Mixer_ChannelSetEnvelope.

If	the	mixer	is	being	played	by	BASS,	the	returned	level	will	be	in	sync	with
what	is	currently	being	heard	from	the	mixer.	If	another	output	system	is	being
used,	the	BASS_ATTRIB_MIXER_LATENCY	option	can	be	used	to	tell	the
mixer	what	the	latency	is	so	that	it	can	be	taken	account	of,	otherwise	the
channel's	most	recent	data	will	be	used	to	get	the	level.	The
BASS_CONFIG_MIXER_BUFFER	config	option	determines	how	far	back	the
level	will	be	available	from,	so	it	should	be	set	high	enough	to	cover	any	latency.

More	flexible	level	retrieval	is	available	with
BASS_Mixer_ChannelGetLevelEx.

mk:@MSITStore:bass.chm::/BASS_ChannelGetLevel.html
mk:@MSITStore:bass.chm::/BASS_ATTRIB_VOL.html
mk:@MSITStore:bass.chm::/BASS_ATTRIB_PAN.html


See	also
BASS_Mixer_ChannelGetData,	BASS_Mixer_ChannelGetLevelEx,
BASS_ATTRIB_MIXER_LATENCY,	BASS_CONFIG_MIXER_BUFFER

BASS_ChannelGetLevel

mk:@MSITStore:bass.chm::/BASS_ChannelGetLevel.html


BASS_Mixer_ChannelGetLevelEx

Retrieves	the	level	of	a	mixer	source	channel.

DWORD	BASS_Mixer_ChannelGetLevelEx(

				DWORD	handle,

				float	*levels,

				float	length,

				DWORD	flags

);



Parameters
levels An	array	to	receive	the	levels.
length The	amount	of	data	to	inspect	to	calculate	the	level,	in	seconds.	The

maximum	is	1	second.	Less	data	than	requested	may	be	used	if	the	full
amount	is	not	available,	eg.	if	the	source's	buffer	(determined	by	the
BASS_CONFIG_MIXER_BUFFER	config	option)	is	shorter.

flags A	combination	of	these	flags.
BASS_LEVEL_MONO Get	a	mono	level.	If	neither	this	or	the

BASS_LEVEL_STEREO	flag	is	used,
then	a	separate	level	is	retrieved	for	each
channel;	the	number	of	channels	is
available	from	BASS_WASAPI_GetInfo.

BASS_LEVEL_STEREO Get	a	stereo	level.	The	left	level	will	be
from	the	even	channels,	and	the	right	level
will	be	from	the	odd	channels.	If	there	are
an	odd	number	of	channels	then	the	left
and	right	levels	will	both	include	all
channels.

BASS_LEVEL_RMS Get	the	RMS	level.	Otherwise	the	peak
level.



Return	value
If	an	error	occurs,	-1	is	returned,	use	BASS_ErrorGetCode	to	get	the	error	code.
If	successful,	the	level	of	the	left	channel	is	returned	in	the	low	word	(low	16-
bits),	and	the	level	of	the	right	channel	is	returned	in	the	high	word	(high	16-
bits).	If	the	channel	is	mono,	then	the	low	word	is	duplicated	in	the	high	word.
The	level	ranges	linearly	from	0	(silent)	to	32768	(max).	0	will	be	returned	when
a	channel	is	stalled.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html


Error	codes
BASS_ERROR_HANDLE handle	is	not	plugged	into	a	mixer.
BASS_ERROR_NOTAVAIL The	channel	does	not	have	buffering

(BASS_MIXER_BUFFER)	enabled.
BASS_ERROR_NOPLAY The	mixer	is	not	playing.



Remarks
This	function	is	like	the	standard	BASS_ChannelGetLevelEx,	but	it	gets	the
level	from	the	channel's	buffer	instead	of	decoding	data	from	the	channel,	which
means	that	the	mixer	does	not	miss	out	on	any	data.	In	order	to	do	this,	the
source	channel	must	have	buffering	enabled	via	the	BASS_MIXER_BUFFER
flag.

This	function	measures	the	level	of	the	channel's	sample	data,	not	its	level	in	the
mixer	output.	It	includes	the	effect	of	any	DSP/FX	set	on	the	channel,	but	not	the
effect	of	the	channel's	BASS_ATTRIB_VOL	or	BASS_ATTRIB_PAN	attributes
or	matrix	mixing	or	any	envelope	set	via	BASS_Mixer_ChannelSetEnvelope.

If	the	mixer	is	being	played	by	BASS,	the	returned	level	will	be	in	sync	with
what	is	currently	being	heard	from	the	mixer.	If	another	output	system	is	being
used,	the	BASS_ATTRIB_MIXER_LATENCY	option	can	be	used	to	tell	the
mixer	what	the	latency	is	so	that	it	can	be	taken	account	of,	otherwise	the
channel's	most	recent	data	will	be	used	to	get	the	level.	The
BASS_CONFIG_MIXER_BUFFER	config	option	determines	how	far	back	the
level	will	be	available	from,	so	it	should	be	set	high	enough	to	cover	any	latency.

mk:@MSITStore:bass.chm::/BASS_ChannelGetLevelEx.html
mk:@MSITStore:bass.chm::/BASS_ATTRIB_VOL.html
mk:@MSITStore:bass.chm::/BASS_ATTRIB_PAN.html


See	also
BASS_Mixer_ChannelGetData,	BASS_Mixer_ChannelGetLevel,
BASS_ATTRIB_MIXER_LATENCY,	BASS_CONFIG_MIXER_BUFFER

BASS_ChannelGetLevelEx

mk:@MSITStore:bass.chm::/BASS_ChannelGetLevelEx.html


BASS_Mixer_ChannelGetMatrix

Retrieves	a	channel's	mixing	matrix,	if	it	has	one.

BOOL	BASS_Mixer_ChannelGetMatrix(

				DWORD	handle,

				void	*matrix

);



Parameters
handle The	channel	handle.
matrix Location	to	write	the	matrix.



Return	value
If	successful,	a	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html


Error	codes
BASS_ERROR_HANDLE The	channel	is	not	plugged	into	a	mixer.
BASS_ERROR_NOTAVAIL The	channel	is	not	using	matrix	mixing.



Example
Get	the	matrix	of	a	stereo	channel	plugged	into	a	quad	mixer.

float	matrix[4][2];	//	4x2	array	to	receive	the	matrix

BASS_Mixer_ChannelGetMatrix(handle,	matrix);	//	get	the	matrix



See	also
BASS_Mixer_ChannelSetMatrix,	BASS_Mixer_StreamAddChannel,
BASS_Mixer_StreamAddChannelEx



BASS_Mixer_ChannelGetMixer

Retrieves	the	mixer	that	a	channel	is	plugged	into.

HSTREAM	BASS_Mixer_ChannelGetMixer(

				DWORD	handle

);



Parameters
handle The	channel	handle.



Return	value
If	successful,	the	mixer	stream's	handle	is	returned,	else	0	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html


Error	codes
BASS_ERROR_HANDLE The	channel	is	not	plugged	into	a	mixer.



See	also
BASS_Mixer_StreamAddChannel,	BASS_Mixer_StreamAddChannelEx,
BASS_Mixer_StreamGetChannels



BASS_Mixer_ChannelGetPosition

Retrieves	the	playback	position	of	a	mixer	source	channel.

QWORD	BASS_Mixer_ChannelGetPosition(

				DWORD	handle,

				DWORD	mode

);



Parameters
handle The	channel	handle.
mode How	to	retrieve	the	position.	One	of	the	following.

BASS_POS_BYTE Get	the	position	in	bytes.
BASS_POS_MUSIC_ORDER Get	the	position	in	orders	and	rows...

LOWORD	=	order,	HIWORD	=	row	*
scaler
(BASS_ATTRIB_MUSIC_PSCALER).
(HMUSIC	only)

other	modes	may	be	supported	by	add-ons,	see	the	documentation.

mk:@MSITStore:bass.chm::/BASS_ATTRIB_MUSIC_PSCALER.html


Return	value
If	successful,	then	the	channel's	position	is	returned,	else	-1	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html


Error	codes
BASS_ERROR_HANDLE handle	is	not	plugged	into	a	mixer.
BASS_ERROR_NOTAVAIL The	requested	position	is	not	available.
BASS_ERROR_UNKNOWN Some	other	mystery	problem!



Remarks
This	function	is	like	the	standard	BASS_ChannelGetPosition,	but	it	compensates
for	the	mixer's	playback	buffering	to	return	the	position	that	is	currently	being
heard.	If	the	mixer	is	not	being	played	by	BASS,	it	is	possible	to	account	for	any
other	output	system	latency	with	the	BASS_ATTRIB_MIXER_LATENCY
option	or	the	BASS_Mixer_ChannelGetPositionEx	function.

mk:@MSITStore:bass.chm::/BASS_ChannelGetPosition.html


See	also
BASS_Mixer_ChannelGetPositionEx,	BASS_Mixer_ChannelSetPosition,
BASS_Mixer_ChannelSetSync,	BASS_ATTRIB_MIXER_LATENCY

BASS_ChannelGetPosition

mk:@MSITStore:bass.chm::/BASS_ChannelGetPosition.html


BASS_Mixer_ChannelGetPositionEx

Retrieves	the	playback	position	of	a	mixer	source	channel,	optionally	accounting
for	some	latency.

QWORD	BASS_Mixer_ChannelGetPositionEx(

				DWORD	handle,

				DWORD	mode,

				DWORD	delay

);



Parameters
handle The	channel	handle.
mode How	to	retrieve	the	position.	One	of	the	following.

BASS_POS_BYTE Get	the	position	in	bytes.
BASS_POS_MUSIC_ORDER Get	the	position	in	orders	and	rows...

LOWORD	=	order,	HIWORD	=	row	*
scaler
(BASS_ATTRIB_MUSIC_PSCALER).
(HMUSIC	only)

other	modes	may	be	supported	by	add-ons,	see	the	documentation.
delay How	far	back	(in	bytes)	in	the	mixer	output	to	get	the	source	channel's

position	from.

mk:@MSITStore:bass.chm::/BASS_ATTRIB_MUSIC_PSCALER.html


Return	value
If	successful,	then	the	channel's	position	is	returned,	else	-1	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html


Error	codes
BASS_ERROR_HANDLE handle	is	not	plugged	into	a	mixer.
BASS_ERROR_NOTAVAIL The	requested	position	mode	is	not	available,	or

delay	goes	beyond	where	the	mixer	has	record
of	the	source	channel's	position.

BASS_ERROR_UNKNOWN Some	other	mystery	problem!



Remarks
BASS_Mixer_ChannelGetPosition	compensates	for	the	mixer's	playback
buffering	to	give	the	position	that	is	currently	being	heard,	but	if	the	mixer	is
feeding	some	other	output	system,	it	will	not	know	how	to	compensate	for	that.
This	function	fills	that	gap	by	allowing	the	latency	to	be	specified	in	the	call.
This	functionality	requires	the	mixer	to	keep	a	record	of	its	sources'	position
going	back	some	time,	and	that	is	enabled	via	the	BASS_MIXER_POSEX	flag
when	a	mixer	is	created,	with	the	BASS_CONFIG_MIXER_POSEX	config
option	determining	how	far	back	the	position	record	goes.	If	the	mixer	is	not	a
decoding	channel	(not	using	the	BASS_STREAM_DECODE	flag),	then	it	will
automatically	have	a	position	record	at	least	equal	to	its	playback	buffer	length.



See	also
BASS_Mixer_ChannelGetPosition,	BASS_CONFIG_MIXER_POSEX

BASS_ChannelGetPosition

mk:@MSITStore:bass.chm::/BASS_ChannelGetPosition.html


BASS_Mixer_ChannelRemove

Unplugs	a	channel	from	a	mixer.

BOOL	BASS_Mixer_ChannelRemove(

				DWORD	handle

);



Parameters
handle The	handle	of	the	channel	to	unplug.



Return	value
If	successful,	then	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html


Error	codes
BASS_ERROR_HANDLE The	channel	is	not	plugged	into	a	mixer.



See	also
BASS_Mixer_StreamAddChannel,	BASS_Mixer_ChannelGetMixer



BASS_Mixer_ChannelRemoveSync

Removes	a	synchronizer	from	a	mixer	source	channel.

BOOL	BASS_Mixer_ChannelRemoveSync(

				DWORD	handle,

				HSYNC	sync

);



Parameters
handle The	channel	handle.
sync Handle	of	the	synchronizer	to	remove.



Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html


Error	codes
BASS_ERROR_HANDLE At	least	one	of	handle	and	sync	is	not	valid.



Remarks
This	function	can	only	remove	syncs	that	were	set	via
BASS_Mixer_ChannelSetSync,	not	those	that	were	set	via
BASS_ChannelSetSync.

mk:@MSITStore:bass.chm::/BASS_ChannelSetSync.html


See	also
BASS_Mixer_ChannelSetSync

BASS_ChannelRemoveSync

mk:@MSITStore:bass.chm::/BASS_ChannelRemoveSync.html


BASS_Mixer_ChannelSetEnvelope

Sets	an	envelope	to	modify	the	sample	rate,	volume	or	pan	of	a	channel	over	a
period	of	time.

BOOL	BASS_Mixer_ChannelSetEnvelope(

				DWORD	handle,

				DWORD	type,

				BASS_MIXER_NODE	*nodes,

				DWORD	count

);



Parameters
handle The	channel	handle.
type The	attribute	to	modify	with	the	envelope.	One	of	the	following.

BASS_MIXER_ENV_FREQ Sample	rate.
BASS_MIXER_ENV_VOL Volume.
BASS_MIXER_ENV_PAN Panning/balance.
BASS_MIXER_ENV_LOOP Loop	the	envelope.	This	is	a	flag	and

can	be	used	in	combination	with	any
of	the	above.

nodes The	array	of	envelope	nodes,	which	should	have	sequential	positions.
count The	number	of	elements	in	the	nodes	array...	0	=	no	envelope.



Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html


Error	codes
BASS_ERROR_HANDLE The	channel	is	not	plugged	into	a	mixer.
BASS_ERROR_ILLTYPE type	is	not	valid.



Remarks
Envelopes	are	applied	on	top	of	the	channel's	attributes,	as	set	via
BASS_ChannelSetAttribute.	In	the	case	of	BASS_MIXER_ENV_FREQ	and
BASS_MIXER_ENV_VOL,	the	final	sample	rate	and	volume	is	a	product	of	the
channel	attribute	and	the	envelope.	While	in	the	BASS_MIXER_ENV_PAN
case,	the	final	panning	is	a	sum	of	the	channel	attribute	and	envelope.

BASS_Mixer_ChannelSetEnvelopePos	and
BASS_Mixer_ChannelGetEnvelopePos	can	be	used	to	set	and	get	the	current
envelope	position.	A	BASS_SYNC_MIXER_ENVELOPE	sync	can	be	set	via
BASS_Mixer_ChannelSetSync	to	be	informed	of	when	an	envelope	ends.	This
function	can	be	called	again	from	such	a	sync,	in	order	to	set	a	new	envelope	to
follow	on	from	the	old	one.

Any	previous	envelope	of	the	same	type	is	replaced	by	the	new	envelope.	A
copy	is	made	of	the	nodes	array,	so	it	does	not	need	to	persist	beyond	this
function	call.

mk:@MSITStore:bass.chm::/BASS_ChannelSetAttribute.html


Example
Set	an	envelope	to	bounce	the	pan	position	between	left	and	right	every	4
seconds.

BASS_MIXER_NODE	nodes[4];

nodes[0].pos=0;

nodes[0].val=0;	//	start	at	centre

nodes[1].pos=BASS_ChannelSeconds2Bytes(mixer,	1);

nodes[1].val=-1;	//	full	left	after	1	second

nodes[2].pos=BASS_ChannelSeconds2Bytes(mixer,	3);

nodes[2].val=1;	//	full	right	after	3	seconds

nodes[3].pos=BASS_ChannelSeconds2Bytes(mixer,	4);

nodes[3].val=0;	//	back	at	centre	after	4	seconds

BASS_Mixer_ChannelSetEnvelope(channel,	BASS_MIXER_ENV_PAN|BASS_MIXER_ENV_LOOP,	nodes,	4);	//	apply	the	envelope,	looped



See	also
BASS_Mixer_ChannelGetEnvelopePos,	BASS_Mixer_ChannelSetEnvelopePos,
BASS_MIXER_NODE	structure



BASS_Mixer_ChannelSetEnvelopePos

Sets	the	current	position	of	an	envelope	on	a	channel.

BOOL	BASS_Mixer_ChannelSetEnvelopePos(

				DWORD	handle,

				DWORD	type,

				QWORD	pos

);



Parameters
handle The	channel	handle.
type The	envelope	to	set	the	position	of.	One	of	the	following.

BASS_MIXER_ENV_FREQ Sample	rate.
BASS_MIXER_ENV_VOL Volume.
BASS_MIXER_ENV_PAN Panning/balance.

pos The	new	envelope	position,	in	bytes.	If	this	is	beyond	the	end	of	the
envelope	it	will	be	capped	or	looped,	depending	on	whether	the
envelope	has	looping	enabled.



Return	value
If	successful,	the	current	position	of	the	envelope	is	returned,	else	-1	is	returned.
Use	BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html


Error	codes
BASS_ERROR_HANDLE The	channel	is	not	plugged	into	a	mixer.
BASS_ERROR_ILLTYPE type	is	not	valid.
BASS_ERROR_NOTAVAIL There	is	no	envelope	of	the	requested	type	on

the	channel.



Remarks
During	playback,	the	effect	of	changes	are	not	heard	instantaneously,	due	to
buffering.	To	reduce	the	delay,	use	the	BASS_CONFIG_BUFFER	config	option
config	option	to	reduce	the	buffer	length.

mk:@MSITStore:bass.chm::/BASS_CONFIG_BUFFER.html


See	also
BASS_Mixer_ChannelGetEnvelopePos,	BASS_Mixer_ChannelSetEnvelope



BASS_Mixer_ChannelSetMatrix

Sets	a	channel's	mixing	matrix.

BOOL	BASS_Mixer_ChannelSetMatrix(

				DWORD	handle,

				void	*matrix

);



Parameters
handle The	channel	handle.
matrix Pointer	to	the	matrix.



Return	value
If	successful,	a	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html


Error	codes
BASS_ERROR_HANDLE The	channel	is	not	plugged	into	a	mixer.
BASS_ERROR_NOTAVAIL The	channel	is	not	using	matrix	mixing.



Remarks
See	the	matrix	mixing	documentation	for	examples.



See	also
BASS_Mixer_ChannelGetMatrix,	BASS_Mixer_ChannelSetMatrixEx,
BASS_Mixer_StreamAddChannel,	BASS_Mixer_StreamAddChannelEx



BASS_Mixer_ChannelSetMatrixEx

Sets	a	channel's	mixing	matrix,	transitioning	from	the	current	matrix.

BOOL	BASS_Mixer_ChannelSetMatrixEx(

				DWORD	handle,

				void	*matrix,

				float	time

);



Parameters
handle The	channel	handle.
matrix Pointer	to	the	matrix.
time The	time	to	take	(in	seconds)	to	transition	from	the	current	matrix	to

the	specified	matrix.



Return	value
If	successful,	a	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html


Error	codes
BASS_ERROR_HANDLE The	channel	is	not	plugged	into	a	mixer.
BASS_ERROR_NOTAVAIL The	channel	is	not	using	matrix	mixing.



Remarks
The	function	is	identical	to	BASS_Mixer_ChannelSetMatrix	but	with	the	option
of	transitioning	over	time	to	the	specified	matrix.	If	this	function	or
BASS_Mixer_ChannelSetMatrix	is	called	while	a	previous	matrix	transition	is
still	in	progress,	then	that	transition	will	be	stopped.	If
BASS_Mixer_ChannelGetMatrix	is	called	mid-transition,	it	will	give	the	mid-
transition	matrix	values.



See	also
BASS_Mixer_ChannelGetMatrix,	BASS_Mixer_ChannelSetMatrix,
BASS_Mixer_StreamAddChannel,	BASS_Mixer_StreamAddChannelEx



BASS_Mixer_ChannelSetPosition

Sets	the	playback	position	of	a	mixer	source	channel.

BOOL	BASS_Mixer_ChannelSetPosition(

				DWORD	handle,

				QWORD	pos,

				DWORD	mode

);



Parameters
handle The	channel	handle.
pos The	position,	in	units	determined	by	the	mode.
mode How	to	set	the	position.	One	of	the	following,	with	optional	flags.

BASS_POS_BYTE The	position	is	in	bytes,	which	will
be	rounded	down	to	the	nearest
sample	boundary.

BASS_POS_MUSIC_ORDER The	position	is	in	orders	and	rows...
use	MAKELONG(order,row).
(HMUSIC	only)

BASS_POS_DECODETO Flag:	Decode/render	up	to	the
position	rather	than	seeking	to	it.
This	is	useful	for	streams	that	are
unseekable	or	that	have	inexact
seeking,	but	it	is	generally	slower
than	normal	seeking	and	the
requested	position	cannot	be	behind
the	current	decoding	position.	This
flag	can	only	be	used	with	the
BASS_POS_BYTE	mode.

BASS_MUSIC_POSRESET Flag:	Stop	all	notes.	This	flag	is
applied	automatically	if	it	has	been
set	on	the	channel,	eg.	via
BASS_ChannelFlags.	(HMUSIC)

BASS_MUSIC_POSRESETEX Flag:	Stop	all	notes	and	reset
bpm/etc.	This	flag	is	applied
automatically	if	it	has	been	set	on
the	channel,	eg.	via
BASS_ChannelFlags.	(HMUSIC)

BASS_MIXER_NORAMPIN Flag:	Do	not	ramp-in	the	start	after
seeking.	This	flag	is	applied
automatically	if	it	has	been	set	on
the	channel,	eg.	via
BASS_Mixer_ChannelFlags.

BASS_POS_MIXER_RESET Flag:	Flush	the	mixer's	playback

mk:@MSITStore:bass.chm::/BASS_ChannelFlags.html
mk:@MSITStore:bass.chm::/BASS_ChannelFlags.html


buffer,	so	that	the	new	position	is
heard	immediately	in	the	mixer
output.	This	generally	should	not	be
used	when	the	mixer	is	playing
multiple	sources,	as	it	will	cause	a
skip	in	the	sound	of	the	other
sources.	This	flag	has	no	effect	if
the	mixer	has	the
BASS_STREAM_DECODE	flag
set,	as	the	mixer	does	not	have	a
playback	buffer	then.

other	modes	&	flags	may	be	supported	by	add-ons,	see	the
documentation.



Return	value
If	successful,	then	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html


Error	codes
BASS_ERROR_HANDLE handle	is	not	plugged	into	a	mixer.
BASS_ERROR_NOTFILE The	stream	is	not	a	file	stream.
BASS_ERROR_POSITION The	requested	position	is	invalid,	eg.	it	is

beyond	the	end	or	the	download	has	not	yet
reached	it.

BASS_ERROR_NOTAVAIL The	requested	mode	is	not	available.	Invalid
flags	are	ignored	and	do	not	result	in	this	error.

BASS_ERROR_UNKNOWN Some	other	mystery	problem!



Remarks
This	function	works	exactly	like	the	standard	BASS_ChannelSetPosition,	except
that	it	also	resets	things	for	the	channel	in	the	mixer,	as	well	as	supporting	the
BASS_MIXER_NORAMPIN	and	BASS_POS_MIXER_RESET	flags.

For	custom	looping	purposes	(eg.	in	a	mixtime	SYNCPROC),	the	standard
BASS_ChannelSetPosition	function	should	be	used	instead	of	this.

mk:@MSITStore:bass.chm::/BASS_ChannelSetPosition.html
mk:@MSITStore:bass.chm::/SYNCPROC.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetPosition.html


See	also
BASS_Mixer_ChannelGetPosition	BASS_ChannelSetPosition

mk:@MSITStore:bass.chm::/BASS_ChannelSetPosition.html


BASS_Mixer_ChannelSetSync

Sets	up	a	synchronizer	on	a	mixer	source	channel.

HSYNC	BASS_Mixer_ChannelSetSync(

				DWORD	handle,

				DWORD	type,

				QWORD	param,

				SYNCPROC	*proc,

				void	*user

);

mk:@MSITStore:bass.chm::/SYNCPROC.html


Parameters
handle The	channel	handle.
type The	type	of	sync.	This	can	be	one	of	the	standard	sync	types,	as

available	via	BASS_ChannelSetSync,	or	one	of	the	mixer	specific	sync
types	listed	below.

param The	sync	parameter.
proc The	callback	function.
user User	instance	data	to	pass	to	the	callback	function.

Sync	types,	with	param	and	SYNCPROC	data	definitions.
BASS_SYNC_MIXER_ENVELOPE Sync	when	an	envelope	ends.

This	is	not	triggered	by	looping
envelopes.
param	:	envelope	type	to	sync
on,	0	=	all	types.	data	:
envelope	type.

BASS_SYNC_MIXER_ENVELOPE_NODE Sync	when	an	envelope	reaches
a	new	node.
param	:	envelope	type	to	sync
on,	0	=	all	types.	data	:
LOWORD	=	envelope	type,
HIWORD	=	node	number.

BASS_SYNC_STALL Sync	when	mixing	of	the
channel	is	stalled/resumed.	This
is	like	the	standard
BASS_SYNC_STALL	sync,
except	it	can	be	either	mixtime
or	not.
param	:	not	used.	data	:	0	=
stalled,	1	=	resumed.

mk:@MSITStore:bass.chm::/BASS_ChannelSetSync.html
mk:@MSITStore:bass.chm::/SYNCPROC.html


Return	value
If	successful,	then	the	new	synchronizer's	handle	is	returned,	else	0	is	returned.
Use	BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html


Error	codes
BASS_ERROR_HANDLE The	channel	is	not	plugged	into	a	mixer.
BASS_ERROR_ILLTYPE An	illegal	type	was	specified.
BASS_ERROR_ILLPARAM An	illegal	param	was	specified.



Remarks
When	used	on	a	decoding	channel	(eg.	a	mixer	source	channel),	syncs	set	with
BASS_ChannelSetSync	are	automatically	"mixtime",	which	means	that	they	will
be	triggered	as	soon	as	the	sync	event	is	encountered.	But	if	the	mixer	output	is
being	played,	then	there	is	a	playback	buffer	involved,	which	will	delay	the
hearing	of	the	sync	event.	This	function	compensates	for	that,	delaying	the
triggering	of	the	sync	until	the	event	is	actually	heard.

Sync	types	that	would	automatically	be	mixtime	when	using
BASS_ChannelSetSync	are	not	so	when	using	this	function.	The
BASS_SYNC_MIXTIME	flag	should	be	specified	in	those	cases,	or
BASS_ChannelSetSync	used	instead.

If	the	mixer	itself	is	a	decoding	channel,	or	the	BASS_SYNC_MIXTIME	flag	is
used,	then	there	is	effectively	no	real	difference	between	this	function	and
BASS_ChannelSetSync,	except	for	the	mixer	specific	sync	types	listed	above.

When	a	source	is	removed	from	a	mixer,	any	syncs	that	have	been	set	on	it	via
this	function	are	automatically	removed.	If	the	channel	is	subsequently	plugged
back	into	a	mixer,	the	previous	syncs	will	not	still	be	set	on	it.	Syncs	set	via
BASS_ChannelSetSync	are	unaffected.

mk:@MSITStore:bass.chm::/BASS_ChannelSetSync.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetSync.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetSync.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetSync.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetSync.html


See	also
BASS_Mixer_ChannelRemoveSync

BASS_ChannelSetSync,	SYNCPROC	callback

mk:@MSITStore:bass.chm::/BASS_ChannelSetSync.html
mk:@MSITStore:bass.chm::/SYNCPROC.html


BASS_MIXER_NODE

Used	with	BASS_Mixer_ChannelSetEnvelope	to	set	an	envelope	on	a	channel.

typedef	struct	{

				QWORD	pos;

				float	val;

}	BASS_MIXER_NODE;



Members
pos The	position	of	the	node	in	bytes.	This	is	based	on	the	mixer's	sample

format,	not	the	source	channel's	format.
val The	envelope	value	at	the	position.



See	also
BASS_Mixer_ChannelSetEnvelope



BASS_Split_StreamCreate

Creates	a	splitter	stream.

HSTREAM	BASS_Split_StreamCreate(

				DWORD	channel,

				DWORD	flags,

				int	*chanmap

);



Parameters
channel The	handle	of	the	channel	to	split...	a	HMUSIC,	HSTREAM	or

HRECORD.
flags Any	combination	of	these	flags.

BASS_SAMPLE_SOFTWARE Force	the	stream	to	not	use
hardware	mixing.

BASS_SAMPLE_3D Use	3D	functionality.	This
requires	that	the
BASS_DEVICE_3D	flag	was
specified	when	calling
BASS_Init,	and	the	stream	must
be	mono.	The	SPEAKER	flags
can	not	be	used	together	with	this
flag.

BASS_SAMPLE_FX Enable	the	old	implementation	of
DirectX	8	effects.	See	the	DX8
effect	implementations	section	for
details.	Use
BASS_ChannelSetFX	to	add
effects	to	the	stream.

BASS_STREAM_AUTOFREE Automatically	free	the	stream
when	playback	ends.

BASS_STREAM_DECODE Render	the	sample	data,	without
playing	it.	Use
BASS_ChannelGetData	to
retrieve	the	sample	data.	The
BASS_SAMPLE_3D,
BASS_STREAM_AUTOFREE
and	SPEAKER	flags	can	not	be
used	together	with	this	flag.	The
BASS_SAMPLE_SOFTWARE
and	BASS_SAMPLE_FX	flags
are	also	ignored.

BASS_SPLIT_POS The	splitter's	length	and	position
is	based	on	the	splitter's	(rather

mk:@MSITStore:bass.chm::/BASS_Init.html
mk:@MSITStore:bass.chm::/effects.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetFX.html
mk:@MSITStore:bass.chm::/BASS_ChannelGetData.html


than	the	source's)	channel	count.
BASS_SPLIT_SLAVE Only	get	data	from	the	splitter

buffer,	not	directly	from	the
source.

BASS_SPEAKER_xxx Speaker	assignment	flags.	These
flags	have	no	effect	when	the
stream	is	more	than	stereo.

chanmap Channel	mapping...	pointer	to	an	array	of	channel	indexes	(0=first,
-1=end	of	array),	NULL	=	a	1:1	mapping	of	the	source.

mk:@MSITStore:bass.chm::/speaker.html


Return	value
If	successful,	the	new	stream's	handle	is	returned,	else	0	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html


Error	codes
BASS_ERROR_INIT BASS_Init	has	not	been	successfully	called.
BASS_ERROR_HANDLE channel	is	not	valid.
BASS_ERROR_DECODE channel	is	not	a	decoding	channel.
BASS_ERROR_ILLPARAM chanmap	contains	an	invalid	channel	index.
BASS_ERROR_NOTAVAIL Only	decoding	channels

(BASS_STREAM_DECODE)	are	allowed
when	using	the	"no	sound"	device.	The
BASS_STREAM_AUTOFREE	flag	is	also
unavailable	to	decoding	channels.

BASS_ERROR_FORMAT The	sample	format	is	not	supported	by	the
device/drivers.	If	the	stream	is	more	than	stereo
or	the	BASS_SAMPLE_FLOAT	flag	is	used,	it
could	be	that	they	are	not	supported.

BASS_ERROR_SPEAKER The	specified	SPEAKER	flags	are	invalid.	The
device/drivers	do	not	support	them,	they	are
attempting	to	assign	a	stereo	stream	to	a	mono
speaker	or	3D	functionality	is	enabled.

BASS_ERROR_MEM There	is	insufficient	memory.
BASS_ERROR_NO3D Could	not	initialize	3D	support.
BASS_ERROR_UNKNOWN Some	other	mystery	problem!

mk:@MSITStore:bass.chm::/BASS_Init.html


Remarks
A	"splitter"	basically	does	the	opposite	of	a	mixer:	it	splits	a	single	source	into
multiple	streams	rather	then	mixing	multiple	sources	into	a	single	stream.	Like
mixer	sources,	splitter	sources	must	be	decoding	channels.

The	splitter	stream	will	have	the	same	sample	rate	and	resolution	as	its	source,
but	it	can	have	a	different	number	of	channels,	as	dictated	by	the	chanmap
parameter.	Even	when	the	number	of	channels	is	different	(and	so	the	amount	of
data	produced	is	different),	BASS_ChannelGetLength	will	give	the	source
length,	and	BASS_ChannelGetPosition	will	give	the	source	position	that	is
currently	being	output	by	the	splitter	stream,	unless	the	BASS_SPLIT_POS	flag
is	used.	The	BASS_SPLIT_POS	flag	can	be	toggled	at	any	time	via
BASS_ChannelFlags.

All	splitter	streams	with	the	same	source	share	a	buffer	to	access	its	sample	data.
The	length	of	the	buffer	is	determined	by	the	BASS_CONFIG_SPLIT_BUFFER
config	option;	the	splitter	streams	should	not	be	allowed	to	drift	apart	beyond
that,	otherwise	those	left	behind	will	suffer	buffer	overflows.	Data	will	usually
be	requested	from	the	source	only	when	it	is	needed,	but	it	can	also	be	gotten
ahead	of	time	asynchronously	instead	via	the
BASS_ATTRIB_SPLIT_ASYNCBUFFER	attribute,	so	that	it	is	ready	for	the
splitter(s)	to	access	immediately	when	needed.

If	the	BASS_SPLIT_SLAVE	flag	is	used,	the	splitter	stream	will	only	receive
data	from	the	buffer	and	will	not	request	more	data	from	the	source,	so	it	can
only	receive	data	that	has	already	been	received	by	another	splitter	stream	with
the	same	source.	The	BASS_SPLIT_SLAVE	flag	can	be	toggled	at	any	time	via
BASS_ChannelFlags.

When	BASS_ChannelSetPosition	is	used	on	a	splitter	stream,	its	source	will	be
set	to	the	requested	position	and	the	splitter	stream's	buffer	state	will	be	reset	so
that	it	immediately	receives	data	from	the	new	position.	The	position	change	will
affect	all	of	the	source's	splitter	streams,	but	the	others	will	not	have	their	buffer
state	reset;	they	will	continue	to	receive	any	buffered	data	before	reaching	the
data	from	the	new	position.	BASS_Split_StreamReset	can	be	used	to	reset	the
buffer	state;	that	can	also	be	used	to	reset	a	splitter	stream	that	has	ended	so	that
it	can	be	played	again.

mk:@MSITStore:bass.chm::/BASS_ChannelGetLength.html
mk:@MSITStore:bass.chm::/BASS_ChannelGetPosition.html
mk:@MSITStore:bass.chm::/BASS_ChannelFlags.html
mk:@MSITStore:bass.chm::/BASS_ChannelFlags.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetPosition.html


When	a	source	is	freed,	all	of	its	splitter	streams	are	automatically	freed.



Platform-specific
Away	from	Windows,	all	mixing	is	done	in	software	(by	BASS),	so	the
BASS_SAMPLE_SOFTWARE	flag	is	unnecessary.	The	BASS_SAMPLE_FX
flag	is	also	ignored.



Example
Create	a	splitter	stream	from	a	stereo	source	with	the	channels	reversed.

int	chanmap[]={1,	0,	-1};	//	channel	mapping:	left	=	source	right,	right	=	source	left

split=BASS_Split_StreamCreate(source,	0,	chanmap);	//	create	the	splitter	stream



See	also
BASS_Split_StreamGetSource,	BASS_Split_StreamReset,
BASS_Split_StreamResetEx,	BASS_ATTRIB_SPLIT_ASYNCBUFFER,
BASS_CONFIG_SPLIT_BUFFER

BASS_ChannelPlay,	BASS_StreamFree

mk:@MSITStore:bass.chm::/BASS_ChannelPlay.html
mk:@MSITStore:bass.chm::/BASS_StreamFree.html


BASS_Split_StreamGetAvailable

Retrieves	the	amount	of	buffered	data	available	to	a	splitter	stream,	or	the
amount	of	data	in	a	splitter	source	buffer.

DWORD	BASS_Split_StreamGetAvailable(

				DWORD	handle

);



Parameters
handle The	splitter	or	source	handle.



Return	value
If	successful,	then	the	amount	of	buffered	data	(in	bytes)	is	returned,	else	-1	is
returned.	Use	BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html


Error	codes
BASS_ERROR_HANDLE handle	is	neither	a	splitter	stream	or	source.



Remarks
When	used	on	a	splitter	source,	this	function	reports	how	much	data	is	in	the
buffer	that	is	shared	by	all	of	its	splitter	streams.	When	used	on	a	splitter	stream,
this	function	reports	how	much	data	is	ahead	of	it	in	the	buffer,	before	it	will
receive	any	new	data	from	the	source.	A	splitter	stream	can	be	repositioned
within	the	buffer	via	the	BASS_Split_StreamResetEx	function.

The	amount	of	data	that	can	be	buffered	is	limited	by	the	buffer	size,	which	is
determined	by	the	BASS_CONFIG_SPLIT_BUFFER	config	option.

The	returned	buffered	byte	count	is	always	based	on	the	source's	sample	format,
even	with	splitter	streams	that	were	created	with	a	different	channel	count.



See	also
BASS_Split_StreamResetEx,	BASS_CONFIG_SPLIT_BUFFER



BASS_Split_StreamGetSource

Retrieves	the	source	of	a	splitter	stream.

DWORD	BASS_Split_StreamGetSource(

				HSTREAM	handle

);



Parameters
handle The	splitter	stream	handle.



Return	value
If	successful,	the	source	channel's	handle	is	returned,	else	0	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html


Error	codes
BASS_ERROR_HANDLE handle	is	not	a	splitter	stream.



See	also
BASS_Split_StreamCreate,	BASS_Split_StreamGetSplits



BASS_Split_StreamGetSplits

Retrieves	the	splitter	streams	of	a	channel.

DWORD	BASS_Split_StreamGetSplits(

				DWORD	handle,

				HSTREAM	*splits,

				DWORD	count

);



Parameters
handle The	channel	handle...	a	HMUSIC,	HSTREAM	or	HRECORD.
splits An	array	to	receive	the	splitter	stream	handles.
count The	maximum	number	of	handles	to	receive	in	the	splits	array...	0	=	get

the	number	of	splitters	that	the	channel	has	without	getting	the	handles.



Return	value
If	successful,	the	number	of	splitter	streams	placed	in	the	splits	array	is	returned,
or	the	total	number	of	splitter	streams	if	count	=	0,	else	-1	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html


Error	codes
BASS_ERROR_HANDLE handle	has	never	had	any	splitter	streams.



See	also
BASS_Split_StreamGetSource



BASS_Split_StreamReset

Resets	a	splitter	stream	or	all	splitter	streams	of	a	source.

BOOL	BASS_Split_StreamReset(

				DWORD	handle

);



Parameters
handle The	splitter	or	source	handle.



Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html


Error	codes
BASS_ERROR_HANDLE handle	is	neither	a	splitter	stream	or	source.



Remarks
This	function	resets	the	splitter	stream's	buffer	state,	so	that	the	next	sample	data
that	it	receives	will	be	from	the	source's	current	position.	If	the	stream	has	ended,
that	is	reset	too,	so	that	it	can	be	played	again.	Unless	called	from	within	a
mixtime	sync	callback,	the	stream's	output	buffer	(if	it	has	one)	is	also	flushed.



See	also
BASS_Split_StreamCreate,	BASS_Split_StreamResetEx



BASS_Split_StreamResetEx

Resets	a	splitter	stream	and	sets	its	position	in	the	source	buffer.

BOOL	BASS_Split_StreamResetEx(

				DWORD	handle,

				DWORD	offset

);



Parameters
handle The	splitter	handle.
offset How	far	back	(in	bytes)	to	position	the	splitter	in	the	source	buffer.

This	is	based	on	the	source's	sample	format,	which	may	have	a
different	channel	count	to	the	splitter.



Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html


Error	codes
BASS_ERROR_HANDLE handle	is	not	a	splitter	stream.



Remarks
This	function	is	the	same	as	BASS_Split_StreamReset	except	that	it	also
provides	the	ability	to	position	the	splitter	stream	within	the	buffer	that	is	shared
by	all	of	the	splitter	streams	of	the	same	source.	A	splitter	stream's	buffer
position	determines	what	data	it	will	next	receive.	For	example,	if	its	position	is
half	a	second	back,	it	will	receive	half	a	second	of	buffered	data	before	receiving
new	data	from	the	source.	Calling	this	function	with	offset	=	0	will	result	in	the
next	data	that	the	splitter	stream	receives	being	new	data	from	the	source,	and	is
identical	to	using	BASS_Split_StreamReset.

offset	is	automatically	limited	to	the	amount	of	data	that	the	source	buffer
contains,	which	is	in	turn	limited	to	the	buffer	size,	determined	by	the
BASS_CONFIG_SPLIT_BUFFER	config	option.	The	amount	of	source	data
buffered,	as	well	as	a	splitter	stream's	position	within	it,	is	available	from
BASS_Split_StreamGetAvailable.



Example
Create	a	new	splitter	stream	that	will	first	play	0.5s	of	already	buffered	data	(if
available).

split=BASS_Split_StreamCreate(source,	0,	NULL);	//	create	a	splitter	stream

BASS_Split_StreamResetEx(split,	BASS_ChannelSeconds2Bytes(source,	0.5));	//	set	it	0.5s	back	in	the	buffer

BASS_ChannelPlay(split,	FALSE);	//	start	playing



See	also
BASS_Split_StreamGetAvailable,	BASS_Split_StreamReset,
BASS_CONFIG_SPLIT_BUFFER



BASS_ATTRIB_SPLIT_ASYNCBUFFER
attribute

Amount	of	data	to	asynchronously	buffer	from	a	splitter's	source.

BASS_ChannelSetAttribute(

				HSTREAM	handle,

				BASS_ATTRIB_SPLIT_ASYNCBUFFER,

				float	buffer

);



Parameters
handle The	splitter	stream	handle.
buffer The	amount	to	buffer,	in	seconds...	0	=	disable	asynchronous	buffering.

The	asynchronous	buffering	will	be	limited	to	the	splitter's	buffer
length,	as	determined	by	BASS_CONFIG_SPLIT_BUFFER.



Remarks
A	splitter	stream	will	usually	get	data	from	its	source	only	when	it	is	needed.
This	attribute	allows	the	data	to	be	gotten	ahead	of	time	asynchronously	instead,
so	that	it	is	ready	for	the	splitter	to	access	immediately	when	needed.	This	is	not
really	useful	with	normal	BASS	playback	(which	is	already	buffered)	but	it	can
be	used	to	implement	buffering	in	other	cases,	eg.	for	mixer	sources.	The	setting
applies	to	all	splitter	streams	that	have	the	same	source

When	there	are	multiple	splitters	with	the	same	source,	the	asynchronous
buffering	is	based	on	the	most	advanced	of	them,	which	means	that	the
asynchronous	buffer	length	should	be	under	the	splitter	buffer	length
(BASS_CONFIG_SPLIT_BUFFER)	to	allow	the	splitter	positions	to	get	apart
from	each	other	without	the	buffer	overflowing	for	any	of	them.	That	margin
should	be	at	least	equal	to	the	maximum	amount	that	you	expect	the	splitter
positions	to	get	apart	at	any	time.

By	default,	the	asynchronous	buffering	will	try	to	fill	any	space	in	the	buffer	in
one	data	request	of	the	source.	It	can	be	broken	down	into	smaller	amounts	via
the	BASS_ATTRIB_SPLIT_ASYNCPERIOD	attribute.

If	a	splitter	stream	needs	more	data	than	has	been	buffered	then	it	will	revert	to
synchronously	getting	data	from	the	source	for	the	remainder,	unless	it	has	the
BASS_SPLIT_SLAVE	flag	set.

The	amount	of	data	that	a	splitter	has	buffered	can	be	retrieved	from
BASS_Split_StreamGetAvailable.

The	default	setting	is	0	(no	asynchronous	buffering).	Changes	take	immediate
effect.



See	also
BASS_Split_StreamCreate,	BASS_Split_StreamGetAvailable,
BASS_ATTRIB_SPLIT_ASYNCPERIOD

BASS_ChannelGetAttribute,	BASS_ChannelSetAttribute

mk:@MSITStore:bass.chm::/BASS_ChannelGetAttribute.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetAttribute.html


BASS_ATTRIB_SPLIT_ASYNCPERIOD
attribute

Maximum	amount	of	data	to	asynchronously	buffer	at	a	time	from	a	splitter's
source.

BASS_ChannelSetAttribute(

				HSTREAM	handle,

				BASS_ATTRIB_SPLIT_ASYNCPERIOD,

				float	period

);



Parameters
handle The	splitter	stream	handle.
period The	maximum	amount	to	data	to	asynchronously	buffer	at	a	time	from

the	source,	in	seconds...	0	=	as	much	as	possible.



Remarks
When	asynchronous	buffering	is	enabled	via	the
BASS_ATTRIB_SPLIT_ASYNCBUFFER	attribute,	this	attribute	limits	how
much	data	is	requested	from	the	source	at	a	time.	When	there	is	more	space
available	in	the	buffer,	the	request	will	be	repeated	until	the	space	is	filled.

The	setting	applies	to	all	splitter	streams	that	have	the	same	source.	The	default
setting	is	0	(as	much	as	possible).	Changes	take	immediate	effect.



See	also
BASS_Split_StreamCreate,	BASS_Split_StreamGetAvailable,
BASS_ATTRIB_SPLIT_ASYNCBUFFER

BASS_ChannelGetAttribute,	BASS_ChannelSetAttribute

mk:@MSITStore:bass.chm::/BASS_ChannelGetAttribute.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetAttribute.html


Matrix	mixing

Normally	when	mixing	channels,	the	source	channels	are	sent	to	the	output	in
the	same	order;	the	left	input	is	sent	to	the	left	output,	and	so	on.	Sometimes
something	a	bit	more	complex	than	that	is	required.	For	example,	if	the	source
has	more	channels	than	the	output,	you	may	want	to	"downmix"	the	source	so
that	all	channels	are	present	in	the	output.	Equally,	if	the	source	has	fewer
channels	than	the	output,	you	may	want	to	"upmix"	it	so	that	all	output	channels
have	sound.	Or	you	may	just	want	to	rearrange	the	channels.	Matrix	mixing
allows	all	of	these.

A	matrix	mixer	is	created	on	a	per-source	basis	(you	can	mix'n'match	normal	and
matrix	mixing),	by	using	the	BASS_MIXER_MATRIX	and/or
BASS_MIXER_DOWNMIX	flag	when	calling
BASS_Mixer_StreamAddChannel	or	BASS_Mixer_StreamAddChannelEx.	The
matrix	itself	is	a	2-dimensional	array	of	floating-point	mixing	levels,	with	the
source	channels	on	one	axis,	and	the	output	channels	on	the	other.	Some	simple
examples	are	shown	below.

When	using	matrix	mixing,	the	source	channel's	volume	attribute	still	has	effect,
but	the	pan	attribute	does	not.	Whenever	necessary,	panning	changes	can	be
achieved	by	modifying	the	matrix.



Example
In	=	stereo,	Out	=	stereo.

float	matrix[2][2]={

				{1,	0},	//	left	out	=	left	in

				{0,	1}	//	right	out	=	right	in

};

BASS_Mixer_ChannelSetMatrix(handle,	matrix);	//	apply	the	matrix

In	=	stereo,	Out	=	swapped	stereo.

float	matrix[2][2]={

				{0,	1},	//	left	out	=	right	in

				{1,	0}	//	right	out	=	left	in

};

BASS_Mixer_ChannelSetMatrix(handle,	matrix);	//	apply	the	matrix

In	=	stereo,	Out	=	mono.

float	matrix[1][2]={

				{0.5,	0.5}	//	mono	out	=	half	left	+	right	in

};

BASS_Mixer_ChannelSetMatrix(handle,	matrix);	//	apply	the	matrix

In	=	stereo,	Out	=	quadraphonic	(4	channels).

float	matrix[4][2]={

				{1,	0},	//	left	front	out	=	left	in

				{0,	1},	//	right	front	out	=	right	in

				{1,	0},	//	left	rear	out	=	left	in

				{0,	1}	//	right	rear	out	=	right	in

};

BASS_Mixer_ChannelSetMatrix(handle,	matrix);	//	apply	the	matrix



See	also
BASS_Mixer_ChannelGetMatrix,	BASS_Mixer_ChannelSetMatrix,
BASS_Mixer_StreamAddChannel,	BASS_Mixer_StreamAddChannelEx


	BASS_Mixer_GetVersion
	Matrix mixing

