
BASS_Encode_GetVersion

Retrieves	the	version	of	BASSenc	that	is	loaded.

DWORD	BASS_Encode_GetVersion();

Return	value
The	BASSenc	version.	For	example,	0x02040103	(hex),	would	be	version
2.4.1.3

BASS_CONFIG_ENCODE_CAST_TIMEOUT
config	option

The	time	to	wait	to	send	data	to	a	cast	server.

BASS_SetConfig(

				BASS_CONFIG_ENCODE_CAST_TIMEOUT,

				DWORD	timeout

);

Parameters
timeout The	time	to	wait,	in	milliseconds.

Remarks
When	an	attempt	to	send	data	is	timed-out,	the	data	is	discarded.
BASS_Encode_SetNotify	can	be	used	to	receive	a	notification	of	when	this
happens.

The	default	timeout	is	5	seconds	(5000	milliseconds).	Changes	take	immediate
effect.

See	also
BASS_Encode_CastInit,	BASS_Encode_SetNotify

BASS_GetConfig,	BASS_SetConfig

mk:@MSITStore:bass.chm::/BASS_GetConfig.html
mk:@MSITStore:bass.chm::/BASS_SetConfig.html

BASS_CONFIG_ENCODE_PRIORITY
config	option

Priority	of	the	encoder	DSP.

BASS_SetConfig(

				BASS_CONFIG_ENCODE_PRIORITY,

				int	priority

);

Parameters
priority The	priority.

Remarks
The	priority	determines	where	in	the	DSP	chain	the	encoding	is	performed;	all
DSP	with	a	higher	priority	will	be	present	in	the	encoding.	Changes	only	affect
subsequent	encodings,	not	those	that	have	already	been	started.	The	default
priority	is	-1000.

See	also
BASS_Encode_Start

BASS_GetConfig,	BASS_SetConfig

mk:@MSITStore:bass.chm::/BASS_GetConfig.html
mk:@MSITStore:bass.chm::/BASS_SetConfig.html

BASS_CONFIG_ENCODE_QUEUE	config
option

The	maximum	queue	length.

BASS_SetConfig(

				BASS_CONFIG_ENCODE_QUEUE,

				DWORD	limit

);

Parameters
limit The	limit,	in	milliseconds...	0	=	unlimited.

Remarks
When	queued	encoding	is	enabled,	the	queue's	buffer	will	grow	as	needed	to
hold	the	queued	data,	up	to	a	limit	specified	by	this	config	option.

The	default	limit	is	10	seconds	(10000	milliseconds).	Changes	only	apply	to	new
encoders,	not	any	already	existing	encoders.

See	also
BASS_Encode_GetCount,	BASS_Encode_SetNotify,	BASS_Encode_Start

BASS_GetConfig,	BASS_SetConfig

mk:@MSITStore:bass.chm::/BASS_GetConfig.html
mk:@MSITStore:bass.chm::/BASS_SetConfig.html

BASS_Encode_AddChunk

Sends	a	RIFF	chunk	to	an	encoder.

BOOL	BASS_Encode_AddChunk(

				DWORD	handle,

				char	*id,

				void	*buffer,

				DWORD	length

);

Parameters
handle The	encoder

handle...	a
HENCODE.

id The	4
character
chunk	id.

buffer The	buffer
containing	the
chunk	data.

length The
number	of
bytes	in
the	buffer.

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid.
BASS_ERROR_NOTAVAIL No	RIFF	headers/chunks	are	being	sent	to	the

encoder	(due	to	the	BASS_ENCODE_NOHEAD
flag	being	in	effect),	or	sample	data	encoding	has
started.

BASS_ERROR_ENDED The	encoder	has	died.

Remarks
BASSenc	writes	the	minimum	chunks	required	of	a	WAV	file:	"fmt"	and	"data",
and	"ds64"	and	"fact"	when	appropriate.	This	function	can	be	used	to	add	other
chunks.	For	example,	a	BWF	"bext"	chunk	or	"INFO"	tags.

Chunks	can	only	be	added	prior	to	sample	data	being	sent	to	the	encoder.	The
BASS_ENCODE_PAUSE	flag	can	be	used	when	starting	the	encoder	to	ensure
that	no	sample	data	is	sent	before	additional	chunks	have	been	set.

See	also
BASS_Encode_Start,	BASS_Encode_StartACMFile

BASS_Encode_GetACMFormat

Presents	the	user	with	a	list	of	available	ACM	codec	output	formats	to	choose
from	(or	suggests	one).

DWORD	BASS_Encode_GetACMFormat(

				DWORD	handle,

				void	*form,

				DWORD	formlen,

				char	*title,

				DWORD	flags

);

Parameters
handle The	channel	handle...	a	HSTREAM,	HMUSIC,	or	HRECORD.
form Format	buffer.
formlen Size	of	the	format	buffer.	If	this	is	0,	then	a	suggested	format	buffer

length	is	returned.
title Window	title	for	the	selector...	NULL	=	"Choose	the	output	format".
flags A	combination	of	these	flags.

BASS_ACM_DEFAULT Use	the	format	buffer	(form)	contents	as	the
default	choice	in	the	selector.

BASS_ACM_RATE Only	include	formats	with	the	same	sample
rate	as	the	source.

BASS_ACM_CHANS Only	include	formats	with	the	same	number
of	channels	(mono/stereo)	as	the	source.

BASS_ACM_SUGGEST Suggest	a	format	without	letting	the	user
choose.

BASS_UNICODE title	is	Unicode	(UTF-16).
The	HIWORD	-	use	MAKELONG(flags,format)	-	can	be	used	to
restrict	the	choice	to	a	particular	format	tag	(eg.
WAVE_FORMAT_ADPCM).	This	is	required	with
BASS_ACM_SUGGEST,	and	is	optional	otherwise.

Return	value
If	successful,	the	user-selected	(or	suggested)	format	details	are	put	in	the	form
buffer	and	the	length	of	the	format	details	is	returned,	else	0	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.	If	formlen	is	0,	then	the	suggested
format	buffer	size	is	returned.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid.
BASS_ERROR_NOTAVAIL There	are	no	codecs	available	that	will	accept

the	channel's	format.
BASS_ERROR_ACM_CANCEL The	user	pressed	the	"cancel"	button.
BASS_ERROR_UNKNOWN Some	other	mystery	problem!

Remarks
Unless	the	BASS_ACM_SUGGEST	flag	is	specified,	the	user	is	presented	with
a	list	of	available	ACM	codecs	to	choose	from,	given	the	sample	format	of	the
channel.	The	details	of	the	chosen	codec's	output	are	returned	in	the	form	buffer,
which	can	then	be	used	with	BASS_Encode_StartACM	or
BASS_Encode_StartACMFile	to	begin	encoding.

The	form	buffer	contents	are	actually	a	WAVEFORMATEX	structure,	and	if
writing	the	encoder	output	to	a	WAVE	file,	would	be	the	format	chunk	("fmt	")
of	the	file.

Platform-specific
This	function	is	only	available	on	Windows	and	Windows	CE.

Example
Let	the	user	choose	a	codec,	and	setup	an	encoder	on	a	channel	using	it.

DWORD	formlen=BASS_Encode_GetACMFormat(0,	NULL,	0,	NULL,	0);	//	get	suggested	format	buffer	size

void	*form=malloc(formlen);	//	allocate	the	format	buffer

if	(BASS_Encode_GetACMFormat(channel,	form,	formlen,	NULL,	0))	//	let	the	user	choose	a	codec

				BASS_Encode_StartACMFile(channel,	form,	0,	"acm.wav");	//	begin	encoding	using	the	codec

free(form);	//	free	the	format	buffer

Without	letting	the	user	choose,	setup	an	MP3	encoder	on	a	channel.

DWORD	formlen=BASS_Encode_GetACMFormat(0,NULL,0,NULL,0);	//	get	suggested	format	buffer	size

void	*form=malloc(formlen);	//	allocate	the	format	buffer

if	(BASS_Encode_GetACMFormat(channel,form,formlen,NULL,

				MAKELONG(BASS_ACM_SUGGEST|BASS_ACM_RATE|BASS_ACM_CHANS,WAVE_FORMAT_MPEGLAYER3))	//	get	the	format	details

				BASS_Encode_StartACMFile(channel,form,BASS_ENCODE_NOHEAD,"acm.mp3");	//	begin	encoding	without	a	WAVE	header

free(form);	//	free	the	format	buffer

See	also
BASS_Encode_StartACM,	BASS_Encode_StartACMFile

BASS_Encode_GetChannel

Retrieves	the	channel	that	an	encoder	is	set	on.

DWORD	BASS_Encode_GetChannel(

				HENCODE	handle

);

Parameters
handle The	encoder.

Return	value
If	successful,	the	encoder's	channel	handle	is	returned,	else	0	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid.

See	also
BASS_Encode_SetChannel,	BASS_Encode_Start

BASS_Encode_GetCount

Retrieves	the	amount	of	data	queued,	sent	to	or	received	from	an	encoder,	or	sent
to	a	cast	server.

QWORD	BASS_Encode_GetCount(

				HENCODE	handle,

				DWORD	count

);

Parameters
handle The	encoder.
count The	count	to	retrieve.	One	of	the	following.

BASS_ENCODE_COUNT_QUEUE Data	currently	in	the
queue,	waiting	to	be	sent
to	the	encoder.

BASS_ENCODE_COUNT_QUEUE_LIMIT The	queue's	size	limit.
BASS_ENCODE_COUNT_QUEUE_FAIL Data	not	queued	due	to

the	queue	being	full	or
out	of	memory.

BASS_ENCODE_COUNT_IN Data	sent	to	the	encoder.
BASS_ENCODE_COUNT_OUT Data	received	from	the

encoder.	This	only
applies	when	the	encoder
outputs	to	STDOUT	or	it
is	an	ACM	encoder.

BASS_ENCODE_COUNT_CAST Data	sent	to	a	cast	server.

Return	value
If	successful,	the	requested	count	(in	bytes)	is	returned,	else	-1	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Remarks
The	queue	counts	are	based	on	the	channel's	sample	format	(floating-point	if	the
BASS_CONFIG_FLOATDSP	option	is	enabled),	while	the
BASS_ENCODE_COUNT_IN	count	is	based	on	the	sample	format	used	by	the
encoder,	which	could	be	different	if	one	of	the	BASS_ENCODE_FP	flags	is
active	or	the	encoder	is	using	an	ACM	codec	(which	take	16-bit	data).

When	the	encoder	output	is	being	sent	to	a	cast	server,	the
BASS_ENCODE_COUNT_CAST	count	will	match	the
BASS_ENCODE_COUNT_OUT	count,	unless	there	have	been	problems	(eg.
network	timeout)	that	have	caused	data	to	be	dropped.

mk:@MSITStore:bass.chm::/BASS_CONFIG_FLOATDSP.html

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid.
BASS_ERROR_NOTAVAIL The	encoder	does	not	have	a	queue.
BASS_ERROR_ILLPARAM count	is	not	valid.

See	also
BASS_Encode_CastGetStats,	BASS_Encode_IsActive

BASS_Encode_IsActive

Checks	if	an	encoder	is	running.

DWORD	BASS_Encode_IsActive(

				DWORD	handle

);

Parameters
handle The	encoder	or	channel	handle...	a	HENCODE,	HSTREAM,	HMUSIC,

or	HRECORD.

Return	value
The	return	value	is	one	of	the	following.
BASS_ACTIVE_STOPPED The	encoder	isn't	running.
BASS_ACTIVE_PLAYING The	encoder	is	running.
BASS_ACTIVE_PAUSED The	encoder	is	paused.

Remarks
When	checking	if	there's	an	encoder	running	on	a	channel,	and	there	are	multiple
encoders	on	the	channel,	BASS_ACTIVE_PLAYING	will	be	returned	if	any	of
them	are	active.

If	an	encoder	stops	running	prematurely,	BASS_Encode_Stop	should	still	be
called	to	release	resources	that	were	allocated	for	the	encoding.

See	also
BASS_Encode_GetCount,	BASS_Encode_SetNotify,
BASS_Encode_SetPaused,	BASS_Encode_Stop

BASS_Encode_SetChannel

Moves	an	encoder	(or	all	encoders	on	a	channel)	to	another	channel.

BOOL	BASS_Encode_SetChannel(

				DWORD	handle,

				DWORD	channel

);

Parameters
handle The	encoder	or	channel	handle...	a	HENCODE,	HSTREAM,	HMUSIC,

or	HRECORD.
channel The	channel	to	move	the	encoder(s)	to...	a	HSTREAM,	HMUSIC,	or

HRECORD.

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_HANDLE handle	or	channel	is	not	valid.
BASS_ERROR_FORMAT The	new	channel's	sample	format	is	not	the	same	as

the	old	channel's.

Remarks
The	new	channel	must	have	the	same	sample	format	(rate,	channels,	resolution)
as	the	old	channel,	as	that	is	what	the	encoder	is	expecting.	A	channel's	sample
format	is	available	via	BASS_ChannelGetInfo.

mk:@MSITStore:bass.chm::/BASS_ChannelGetInfo.html

See	also
BASS_Encode_GetChannel

BASS_Encode_SetNotify

Sets	a	callback	function	on	an	encoder	(or	all	encoders	on	a	channel)	to	receive
notifications	about	its	status.

BOOL	BASS_Encode_SetNotify(

				DWORD	handle,

				ENCODENOTIFYPROC	*proc,

				void	*user

);

Parameters
handle The	encoder	or	channel	handle...	a	HENCODE,	HSTREAM,	HMUSIC,

or	HRECORD.
proc Callback	function	to	receive	the	notifications...	NULL	=	no	callback.
user User	instance	data	to	pass	to	the	callback	function.

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid.

Remarks
When	setting	a	notification	callback	on	a	channel,	it	only	applies	to	the	encoders
that	are	currently	set	on	the	channel.	Subsequent	encoders	will	not	automatically
have	the	notification	callback	set	on	them,	this	function	will	have	to	be	called
again	to	set	them	up.

An	encoder	can	only	have	one	notification	callback	set.	Subsequent	calls	of	this
function	can	be	used	to	change	the	callback	function,	or	disable	notifications
(proc	=	NULL).

The	status	of	an	encoder	and	its	cast	connection	(if	it	has	one)	is	checked	when
data	is	sent	to	the	encoder	or	server,	and	by	BASS_Encode_IsActive.	That
means	an	encoder's	death	will	not	be	detected	automatically,	and	so	no
notification	given,	while	no	data	is	being	encoded.

If	the	encoder	is	already	dead	when	setting	up	a	notification	callback,	the
callback	will	be	triggered	immediately.

See	also
BASS_Encode_Start,	ENCODENOTIFYPROC

BASS_Encode_SetPaused

Pauses	or	resumes	an	encoder,	or	all	encoders	on	a	channel.

BOOL	BASS_Encode_SetPaused(

				DWORD	handle,

				BOOL	paused

);

Parameters
handle The	encoder	or	channel	handle...	a	HENCODE,	HSTREAM,	HMUSIC,

or	HRECORD.
paused Paused?

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid.

Remarks
When	an	encoder	is	paused,	no	sample	data	will	be	sent	to	the	encoder
automatically	via	the	DSP	system.	Data	can	still	be	sent	to	the	encoder	manually
though,	via	the	BASS_Encode_Write	function.

See	also
BASS_Encode_IsActive,	BASS_Encode_Start,	BASS_Encode_Stop

BASS_Encode_Start

Sets	up	an	encoder	on	a	channel.

HENCODE	BASS_Encode_Start(

				DWORD	handle,

				char	*cmdline,

				DWORD	flags,

				ENCODEPROC	*proc,

				void	*user

);

Parameters
handle The	channel	handle...	a	HSTREAM,	HMUSIC,	or	HRECORD.
cmdline The	encoder	command-line,	including	the	executable	filename	and	any

options.	Or	the	output	filename	if	the	BASS_ENCODE_PCM	flag	is
used.

flags A	combination	of	these	flags.
BASS_ENCODE_PCM Write	plain	PCM	sample	data	to

a	file,	without	an	encoder.	The
output	filename	is	given	in	the
cmdline	parameter.

BASS_ENCODE_NOHEAD Don't	send	a	WAVE	header	to	the
encoder.	If	this	flag	is	used	then
the	sample	format	must	be
passed	to	the	encoder	some	other
way,	eg.	via	the	command-line.

BASS_ENCODE_RF64 Send	an	RF64	header	to	the
encoder	instead	of	a	standard
RIFF	header,	allowing	more	than
4GB	of	sample	data.	This	flag	is
ignored	if	the
BASS_ENCODE_NOHEAD
flag	is	used.

BASS_ENCODE_BIGEND Send	big-endian	sample	data	to
the	encoder,	else	little-endian.
This	flag	is	ignored	unless	the
BASS_ENCODE_NOHEAD
flag	is	used,	as	WAV	files	are
little-endian.

BASS_ENCODE_FP_8BIT,
BASS_ENCODE_FP_16BIT,
BASS_ENCODE_FP_24BIT,
BASS_ENCODE_FP_32BIT

Convert	floating-point	sample
data	to	8/16/24/32	bit	integer.	If
the	encoder	does	not	support	32-
bit	floating-point	sample	data,
one	of	these	flags	can	be	used	to
have	the	sample	data	converted
to	integer	before	it	is	fed	to	the
encoder.	These	flags	are	ignored

if	the	channel	is	not	floating-
point	and	the
BASS_CONFIG_FLOATDSP
option	is	not	enabled.

BASS_ENCODE_QUEUE Queue	data	to	feed	the	encoder
asynchronously.	This	prevents
the	data	source	(DSP	system	or
BASS_Encode_Write	call)
getting	blocked	by	the	encoder,
but	if	data	is	queud	more	quickly
than	the	encoder	can	process	it,
that	could	result	in	lost	data.

BASS_ENCODE_LIMIT Limit	the	encoding	rate	to	real-
time	speed,	by	introducing	a
delay	when	the	rate	is	too	high.
With	BASS	2.4.6	or	above,	this
flag	is	ignored	when	the	encoder
is	fed	in	a	playback	buffer	update
cycle	(including	BASS_Update
and	BASS_ChannelUpdate
calls),	to	avoid	possibly	causing
playback	buffer	underruns.
Except	for	in	those	instances,
this	flag	is	applied	automatically
when	the	encoder	is	feeding	a
Shoutcast	or	Icecast	server.

BASS_ENCODE_CAST_NOLIMIT Don't	limit	the	encoding	rate	to
real-time	speed	when	feeding	a
Shoutcast	or	Icecast	server.	This
flag	overrides	the
BASS_ENCODE_LIMIT	flag.

BASS_ENCODE_PAUSE Start	the	encoder	in	a	paused
state.

BASS_ENCODE_AUTOFREE Automatically	free	the	encoder
when	the	source	channel	is	freed.
If	queuing	is	enabled,	any

mk:@MSITStore:bass.chm::/BASS_CONFIG_FLOATDSP.html
mk:@MSITStore:bass.chm::/BASS_Update.html
mk:@MSITStore:bass.chm::/BASS_ChannelUpdate.html

remaining	queued	data	will	be
sent	to	the	encoder	before	it	is
freed.

BASS_UNICODE cmdline	is	in	UTF-16	form.
Otherwise	it	is	ANSI	on
Windows	and	UTF-8	on	OSX.

proc Optional	callback	function	to	receive	the	encoded	data...	NULL	=	no
callback.	To	have	the	encoded	data	received	by	a	callback	function,	the
encoder	needs	to	be	told	to	output	to	STDOUT.

user User	instance	data	to	pass	to	the	callback	function.

Return	value
The	encoder	handle	is	returned	if	the	encoder	is	successfully	started,	else	0	is
returned.	Use	BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid.
BASS_ERROR_FILEOPEN The	encoder	could	not	be	started.	Check	that	the

executable	exists.
BASS_ERROR_CREATE The	PCM	file	could	not	be	created.
BASS_ERROR_NOTAVAIL External	encoders	are	not	supported.
BASS_ERROR_UNKNOWN Some	other	mystery	problem!

Remarks
The	encoder	must	be	told	(via	the	command-line)	to	expect	input	from	STDIN,
rather	than	a	file.	The	command-line	should	also	tell	the	encoder	what	filename
to	write	its	output	to,	unless	you	are	using	a	callback	function,	in	which	case	it
should	be	told	to	write	its	output	to	STDOUT.

No	user	interaction	with	the	encoder	is	possible,	so	anything	that	would	cause
the	encoder	to	require	the	user	to	press	any	keys	should	be	avoided.	For
example,	if	the	encoder	asks	whether	to	overwrite	files,	the	encoder	should	be
instructed	to	always	overwrite	(via	the	command-line),	or	the	existing	file	should
be	deleted	before	starting	the	encoder.

Standard	RIFF	files	are	limited	to	a	little	over	4GB	in	size.	When	writing	a	WAV
file,	BASSenc	will	automatically	stop	at	that	point,	so	that	the	file	is	valid.	That
does	not	apply	when	sending	data	to	an	encoder	though,	as	the	encoder	may
(possibly	via	a	command-line	option)	ignore	the	size	restriction,	but	if	it	does
not,	it	could	mean	that	the	encoder	stops	after	a	few	hours	(depending	on	the
sample	format).	If	longer	encodings	are	needed,	the
BASS_ENCODE_NOHEAD	flag	can	be	used	to	omit	the	WAVE	header,	and	the
encoder	informed	of	the	sample	format	via	the	command-line	instead.	The	4GB
size	limit	can	also	be	overcome	with	the	BASS_ENCODE_RF64	flag,	but	most
encoders	are	unlikely	to	support	RF64.

When	writing	an	RF64	WAV	file,	a	standard	RIFF	header	will	still	be	written
initially,	which	will	only	be	replaced	by	an	RF64	header	at	the	end	if	the	file	size
has	exceeded	the	standard	limit.	When	an	encoder	is	used,	it	is	not	possible	to	go
back	and	change	the	header	at	the	end,	so	the	RF64	header	is	sent	at	the
beginning	in	that	case.

Internally,	the	sending	of	sample	data	to	the	encoder	is	implemented	via	a	DSP
callback	on	the	channel.	That	means	when	the	channel	is	played	(or
BASS_ChannelGetData	is	called	if	it	is	a	decoding	channel),	the	sample	data
will	be	sent	to	the	encoder	at	the	same	time.	It	also	means	that	if	the
BASS_CONFIG_FLOATDSP	option	is	enabled,	the	sample	data	will	be	32-bit
floating-point,	and	one	of	the	BASS_ENCODE_FP	flags	will	be	required	if	the
encoder	does	not	support	floating-point	sample	data.	The
BASS_CONFIG_FLOATDSP	setting	should	not	be	changed	while	encoding	is
in	progress.

mk:@MSITStore:bass.chm::/BASS_ChannelGetData.html
mk:@MSITStore:bass.chm::/BASS_CONFIG_FLOATDSP.html
mk:@MSITStore:bass.chm::/BASS_CONFIG_FLOATDSP.html

By	default,	the	encoder	DSP	has	a	priority	setting	of	-1000,	which	determines
where	in	the	DSP	chain	the	encoding	is	performed.	That	can	be	changed	via	the
BASS_CONFIG_ENCODE_PRIORITY	config	option.

Besides	the	automatic	DSP	system,	data	can	also	be	manually	fed	to	the	encoder
via	the	BASS_Encode_Write	function.	Both	methods	can	be	used	together,	but
in	general,	the	"automatic"	system	ought	to	be	paused	when	using	the	"manual"
system,	via	the	BASS_ENCODE_PAUSE	flag	or	the	BASS_Encode_SetPaused
function.	Data	fed	to	the	encoder	manually	does	not	go	through	the	source
channel's	DSP	chain,	so	any	DSP/FX	set	on	the	channel	will	not	be	applied	to
the	data.

When	queued	encoding	is	enabled	via	the	BASS_ENCODE_QUEUE	flag,	the
DSP	system	or	BASS_Encode_Write	call	will	just	buffer	the	data,	and	the	data
will	then	be	fed	to	the	encoder	by	another	thread.	The	buffer	will	grow	as	needed
to	hold	the	queued	data,	up	to	a	limit	specified	by	the
BASS_CONFIG_ENCODE_QUEUE	config	option.	If	the	limit	is	exceeded	(or
there	is	no	free	memory),	data	will	be	lost;	BASS_Encode_SetNotify	can	be
used	to	be	notified	of	that	occurrence.	The	amount	of	data	that	is	currently
queued,	as	well	as	the	queue	limit	and	how	much	data	has	been	lost,	is	available
from	BASS_Encode_GetCount.

BASS_Encode_IsActive	can	be	used	to	check	that	the	encoder	is	still	running.
When	done	encoding,	use	BASS_Encode_Stop	or	BASS_Encode_StopEx	to
close	the	encoder.

The	returned	handle	is	the	encoder's	process	handle,	which	can	be	used	to	do
things	like	change	the	encoder's	priority	(SetPriorityClass)	and	get	its	exit	code
(GetExitCodeProcess).

Multiple	encoders	can	be	set	on	a	channel.	For	convenience,	most	of	the	encoder
functions	will	accept	either	an	encoder	handle	or	a	channel	handle.	When	a
channel	handle	is	used,	the	function	is	applied	to	all	encoders	that	are	set	on	that
channel.

Platform-specific
External	encoders	are	not	supported	on	iOS	or	Windows	CE,	so	only	plain	PCM
file	writing	with	the	BASS_ENCODE_PCM	flag	is	possible	on	those	platforms.

Example
Start	encoding	a	channel	to	an	MP3	file	(output.mp3)	using	LAME	with	the
standard	preset	settings.

BASS_Encode_Start(channel,	"lame	--alt-preset	standard	-	output.mp3",	0,	NULL,	0);

BASS_ChannelPlay(channel,	0);	//	start	the	channel	playing	&	encoding

Start	writing	a	channel	to	a	WAV	file	(output.wav).

BASS_Encode_Start(channel,	"output.wav",	BASS_ENCODE_PCM,	NULL,	0);

BASS_ChannelPlay(channel,	0);	//	start	the	channel	playing	&	encoding

See	also
BASS_Encode_AddChunk,	BASS_Encode_CastInit,	BASS_Encode_IsActive,
BASS_Encode_ServerInit,	BASS_Encode_SetNotify,
BASS_Encode_SetPaused,	BASS_Encode_StartACM,	BASS_Encode_StartCA,
BASS_Encode_StartLimit,	BASS_Encode_Stop,	BASS_Encode_Write,
ENCODEPROC	callback,	BASS_CONFIG_ENCODE_PRIORITY

BASS_Encode_StartACM

Sets	up	an	encoder	on	a	channel,	using	an	ACM	codec	and	sending	the	output	to
a	user	defined	function.

HENCODE	BASS_Encode_StartACM(

				DWORD	handle,

				void	*form,

				DWORD	flags,

				ENCODEPROC	*proc,

				void	*user

);

Parameters
handle The	channel	handle...	a	HSTREAM,	HMUSIC,	or	HRECORD.
form ACM	codec	output	format.
flags A	combination	of	these	flags.

BASS_ENCODE_QUEUE Queue	data	to	feed	the	encoder
asynchronously.	This	prevents	the
data	source	(DSP	system	or
BASS_Encode_Write	call)
getting	blocked	by	the	encoder,
but	if	data	is	queud	more	quickly
than	the	encoder	can	process	it,
that	could	result	in	lost	data.

BASS_ENCODE_LIMIT Limit	the	encoding	rate	to	real-
time	speed,	by	introducing	a
delay	when	the	rate	is	too	high.
With	BASS	2.4.6	or	above,	this
flag	is	ignored	when	the	encoder
is	fed	in	a	playback	buffer	update
cycle	(including	BASS_Update
and	BASS_ChannelUpdate	calls),
to	avoid	possibly	causing
playback	buffer	underruns.
Except	for	in	those	instances,	this
flag	is	applied	automatically
when	the	encoder	is	feeding	a
Shoutcast	or	Icecast	server.

BASS_ENCODE_CAST_NOLIMIT Don't	limit	the	encoding	rate	to
real-time	speed	when	feeding	a
Shoutcast	or	Icecast	server.	This
flag	overrides	the
BASS_ENCODE_LIMIT	flag.

BASS_ENCODE_PAUSE Start	the	encoder	paused.
BASS_ENCODE_AUTOFREE Automatically	free	the	encoder

when	the	source	channel	is	freed.
If	queuing	is	enabled,	any

mk:@MSITStore:bass.chm::/BASS_Update.html
mk:@MSITStore:bass.chm::/BASS_ChannelUpdate.html

remaining	queued	data	will	be
sent	to	the	encoder	before	it	is
freed.

proc Callback	function	to	receive	the	encoded	data.
user User	instance	data	to	pass	to	the	callback	function.

Return	value
The	encoder	handle	is	returned	if	the	encoder	is	successfully	started,	else	0	is
returned.	Use	BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid.
BASS_ERROR_NOTAVAIL The	codec	specified	in	form	couldn't	be

initialized.
BASS_ERROR_UNKNOWN Some	other	mystery	problem!

Remarks
This	function	allows	installed	ACM	(Audio	Compression	Manager)	codecs	to	be
used	for	encoding.	The	codec	used	is	determined	by	the	contents	of	the	form
parameter.	The	BASS_Encode_GetACMFormat	function	can	be	used	to
initialize	that.	ACM	does	not	support	floating-point	data,	so	floating-point	data
will	be	converted	to	16-bit	before	it	is	fed	to	the	codec.

Internally,	the	sending	of	sample	data	to	the	encoder	is	implemented	via	a	DSP
callback	on	the	channel.	That	means	when	you	play	the	channel	(or	call
BASS_ChannelGetData	if	it's	a	decoding	channel),	the	sample	data	will	be	sent
to	the	encoder	at	the	same	time.	The	encoding	is	performed	in	the	DSP	callback;
there	isn't	a	separate	process	doing	the	encoding,	as	when	using	an	external
encoder	via	BASS_Encode_Start.

By	default,	the	encoder	DSP	has	a	priority	setting	of	-1000,	which	determines
where	in	the	DSP	chain	the	encoding	is	performed.	That	can	be	changed	via	the
BASS_CONFIG_ENCODE_PRIORITY	config	option.

Besides	the	automatic	DSP	system,	data	can	also	be	manually	fed	to	the	encoder
via	the	BASS_Encode_Write	function.	Both	methods	can	be	used	together,	but
in	general,	the	"automatic"	system	ought	to	be	paused	when	using	the	"manual"
system,	via	the	BASS_ENCODE_PAUSE	flag	or	the	BASS_Encode_SetPaused
function.	Data	fed	to	the	encoder	manually	does	not	go	through	the	source
channel's	DSP	chain,	so	any	DSP/FX	set	on	the	channel	will	not	be	applied	to
the	data.

When	queued	encoding	is	enabled	via	the	BASS_ENCODE_QUEUE	flag,	the
DSP	system	or	BASS_Encode_Write	call	will	just	buffer	the	data,	and	the	data
will	then	be	fed	to	the	encoder	by	another	thread.	The	buffer	will	grow	as	needed
to	hold	the	queued	data,	up	to	a	limit	specified	by	the
BASS_CONFIG_ENCODE_QUEUE	config	option.	If	the	limit	is	exceeded	(or
there	is	no	free	memory),	data	will	be	lost;	BASS_Encode_SetNotify	can	be
used	to	be	notified	of	that	occurrence.	The	amount	of	data	that	is	currently
queued,	as	well	as	the	queue	limit	and	how	much	data	has	been	lost,	is	available
from	BASS_Encode_GetCount.

When	done	encoding,	use	BASS_Encode_Stop	to	close	the	encoder.

mk:@MSITStore:bass.chm::/BASS_ChannelGetData.html

Multiple	encoders	can	be	set	on	a	channel.	For	convenience,	most	of	the	encoder
functions	will	accept	either	an	encoder	handle	or	a	channel	handle.	When	a
channel	handle	is	used,	the	function	is	applied	to	all	encoders	that	are	set	on	that
channel.

BASS_Encode_StartACMFile	can	be	used	to	have	the	encoder	output	sent	to	a
file	instead	of	a	callback	function.

Platform-specific
This	function	is	only	available	on	Windows	and	Windows	CE.

See	also
BASS_Encode_CastInit,	BASS_Encode_GetACMFormat,
BASS_Encode_IsActive,	BASS_Encode_ServerInit,	BASS_Encode_SetPaused,
BASS_Encode_Start,	BASS_Encode_StartACMFile,	BASS_Encode_Stop,
BASS_Encode_Write,	ENCODEPROC	callback,
BASS_CONFIG_ENCODE_PRIORITY

BASS_Encode_StartACMFile

Sets	up	an	encoder	on	a	channel,	using	an	ACM	codec	and	writing	the	output	to
a	file.

HENCODE	BASS_Encode_StartACMFile(

				DWORD	handle,

				void	*form,

				DWORD	flags,

				char	*file

);

Parameters
handle The	channel	handle...	a	HSTREAM,	HMUSIC,	or	HRECORD.
form ACM	codec	output	format.
flags A	combination	of	these	flags.

BASS_ENCODE_NOHEAD Don't	write	a	WAVE	header	to	the	file.
BASS_ENCODE_RF64 Write	an	RF64	header	instead	of	a

standard	RIFF	header,	allowing	the	file
to	go	beyond	4GB	in	size.	This	flag	is
ignored	if	the
BASS_ENCODE_NOHEAD	flag	is
used.

BASS_ENCODE_QUEUE Queue	data	to	feed	the	encoder
asynchronously.	This	prevents	the	data
source	(DSP	system	or
BASS_Encode_Write	call)	getting
blocked	by	the	encoder,	but	if	data	is
queud	more	quickly	than	the	encoder
can	process	it,	that	could	result	in	lost
data.

BASS_ENCODE_PAUSE Start	the	encoder	paused.
BASS_ENCODE_AUTOFREE Automatically	free	the	encoder	when

the	source	channel	is	freed.	If	queuing
is	enabled,	any	remaining	queued	data
will	be	sent	to	the	encoder	before	it	is
freed.

BASS_UNICODE file	is	a	Unicode	(UTF-16)	filename.
file The	filename	to	write.

Return	value
The	encoder	handle	is	returned	if	the	encoder	is	successfully	started,	else	0	is
returned.	Use	BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid.
BASS_ERROR_NOTAVAIL The	codec	specified	in	form	couldn't	be

initialized.
BASS_ERROR_CREATE The	file	could	not	be	created.
BASS_ERROR_UNKNOWN Some	other	mystery	problem!

Remarks
This	function	is	identical	to	BASS_Encode_StartACM,	except	that	it	writes	the
encoded	data	to	a	file	instead	of	a	callback	function.

Unless	the	BASS_ENCODE_NOHEAD	flag	is	specified,	a	WAVE	header	and
the	form	contents	will	be	written	to	the	file.	This	is	generally	required	for	the	file
to	be	playable,	but	in	some	cases	(eg.	MP3)	it's	not.	Standard	RIFF	WAV	files
are	limited	to	a	little	over	4GB	in	size,	so	BASSenc	will	automatically	stop
encoding	at	that	point.	That	size	limit	can	be	overcome	with	an	RF64	file.	When
writing	an	RF64	WAV	file,	a	standard	RIFF	header	will	still	be	written	initially,
which	will	only	be	replaced	by	an	RF64	header	at	the	end	if	the	file	size	has
exceeded	the	standard	limit.

Platform-specific
This	function	is	only	available	on	Windows	and	Windows	CE.

See	also
BASS_Encode_AddChunk,	BASS_Encode_GetACMFormat,
BASS_Encode_IsActive,	BASS_Encode_SetPaused,	BASS_Encode_Start,
BASS_Encode_StartACM,	BASS_Encode_Stop,	BASS_Encode_Write,
ENCODEPROC	callback,	BASS_CONFIG_ENCODE_PRIORITY

BASS_Encode_StartCA

Sets	up	an	encoder	on	a	channel,	using	a	CoreAudio	codec	and	sending	the
output	to	a	user	defined	function.

HENCODE	BASS_Encode_StartCA(

				DWORD	handle,

				DWORD	ftype,

				DWORD	atype,

				DWORD	flags,

				DWORD	bitrate,

				ENCODEPROCEX	*proc,

				void	*user

);

Parameters
handle The	channel	handle...	a	HSTREAM,	HMUSIC,	or	HRECORD.
ftype File	format	identifier.
atype Audio	data	format	identifier.
flags A	combination	of	these	flags.

BASS_ENCODE_FP_8BIT,
BASS_ENCODE_FP_16BIT,
BASS_ENCODE_FP_24BIT,
BASS_ENCODE_FP_32BIT

Convert	floating-point	sample
data	to	8/16/24/32	bit	integer
before	encoding.	These	flags	are
ignored	if	the	channel	is	not
floating-point	and	the
BASS_CONFIG_FLOATDSP
option	is	not	enabled.

BASS_ENCODE_MONO Convert	to	mono	before
encoding.

BASS_ENCODE_QUEUE Queue	data	to	feed	the	encoder
asynchronously.	This	prevents	the
data	source	(DSP	system	or
BASS_Encode_Write	call)
getting	blocked	by	the	encoder,
but	if	data	is	queud	more	quickly
than	the	encoder	can	process	it,
that	could	result	in	lost	data.

BASS_ENCODE_LIMIT Limit	the	encoding	rate	to	real-
time	speed,	by	introducing	a
delay	when	the	rate	is	too	high.
With	BASS	2.4.6	or	above,	this
flag	is	ignored	when	the	encoder
is	fed	in	a	playback	buffer	update
cycle	(including	BASS_Update
and	BASS_ChannelUpdate	calls),
to	avoid	possibly	causing
playback	buffer	underruns.
Except	for	in	those	instances,	this
flag	is	applied	automatically
when	the	encoder	is	feeding	a

mk:@MSITStore:bass.chm::/BASS_CONFIG_FLOATDSP.html
mk:@MSITStore:bass.chm::/BASS_Update.html
mk:@MSITStore:bass.chm::/BASS_ChannelUpdate.html

Shoutcast	or	Icecast	server.
BASS_ENCODE_CAST_NOLIMIT Don't	limit	the	encoding	rate	to

real-time	speed	when	feeding	a
Shoutcast	or	Icecast	server.	This
flag	overrides	the
BASS_ENCODE_LIMIT	flag.

BASS_ENCODE_PAUSE Start	the	encoder	in	a	paused
state.

BASS_ENCODE_AUTOFREE Automatically	free	the	encoder
when	the	source	channel	is	freed.
If	queuing	is	enabled,	any
remaining	queued	data	will	be
sent	to	the	encoder	before	it	is
freed.

bitrate The	bitrate	in	bits	per	second...	0	=	the	codec's	default	bitrate.
proc Callback	function	to	receive	the	encoded	data.
user User	instance	data	to	pass	to	the	callback	function.

Return	value
The	encoder	handle	is	returned	if	the	encoder	is	successfully	started,	else	0	is
returned.	Use	BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid.
BASS_ERROR_FILEFORM ftype	is	not	valid.
BASS_ERROR_CODEC atype	is	not	valid	or	supported	with	ftype.
BASS_ERROR_NOTAVAIL bitrate	is	not	supported	by	the	codec.
BASS_ERROR_FORMAT The	channel's	sample	format	is	not	supported	by

the	codec.
BASS_ERROR_UNKNOWN Some	other	mystery	problem!

Remarks
This	function	allows	CoreAudio	codecs	to	be	used	for	encoding.	A	list	of
standard	file	and	audio	data	format	identifiers	is	available	from	Apple,	here.	The
available	file	and	audio	data	identifiers,	as	well	as	other	information,	can	be
retreived	via	the	Audio	File	Services	and	Audio	Format	Services	APIs,	eg.	the
kAudioFileGlobalInfo_WritableTypes	and
kAudioFormatProperty_EncodeFormatIDs	properties.

Internally,	the	sending	of	sample	data	to	the	encoder	is	implemented	via	a	DSP
callback	on	the	channel.	That	means	when	you	play	the	channel	(or	call
BASS_ChannelGetData	if	it's	a	decoding	channel),	the	sample	data	will	be	sent
to	the	encoder	at	the	same	time.	The	encoding	is	performed	in	the	DSP	callback;
there	isn't	a	separate	process	doing	the	encoding,	as	when	using	an	external
encoder	via	BASS_Encode_Start.

By	default,	the	encoder	DSP	has	a	priority	setting	of	-1000,	which	determines
where	in	the	DSP	chain	the	encoding	is	performed.	That	can	be	changed	via	the
BASS_CONFIG_ENCODE_PRIORITY	config	option.

Besides	the	automatic	DSP	system,	data	can	also	be	manually	fed	to	the	encoder
via	the	BASS_Encode_Write	function.	Both	methods	can	be	used	together,	but
in	general,	the	"automatic"	system	ought	to	be	paused	when	using	the	"manual"
system,	via	the	BASS_ENCODE_PAUSE	flag	or	the	BASS_Encode_SetPaused
function.	Data	fed	to	the	encoder	manually	does	not	go	through	the	source
channel's	DSP	chain,	so	any	DSP/FX	set	on	the	channel	will	not	be	applied	to
the	data.

When	queued	encoding	is	enabled	via	the	BASS_ENCODE_QUEUE	flag,	the
DSP	system	or	BASS_Encode_Write	call	will	just	buffer	the	data,	and	the	data
will	then	be	fed	to	the	encoder	by	another	thread.	The	buffer	will	grow	as	needed
to	hold	the	queued	data,	up	to	a	limit	specified	by	the
BASS_CONFIG_ENCODE_QUEUE	config	option.	If	the	limit	is	exceeded	(or
there	is	no	free	memory),	data	will	be	lost;	BASS_Encode_SetNotify	can	be
used	to	be	notified	of	that	occurrence.	The	amount	of	data	that	is	currently
queued,	as	well	as	the	queue	limit	and	how	much	data	has	been	lost,	is	available
from	BASS_Encode_GetCount.

http://developer.apple.com/documentation/MusicAudio/Conceptual/CoreAudioOverview/SupportedAudioConverterFormats/SupportedAudioConverterFormats.html
http://developer.apple.com/library/mac/documentation/MusicAudio/Reference/AudioFileConvertRef/Reference/reference.html#//apple_ref/doc/c_ref/kAudioFileGlobalInfo_WritableTypes
http://developer.apple.com/library/mac/documentation/AudioToolbox/Reference/AudioFormatServicesReference/Reference/reference.html#//apple_ref/doc/c_ref/kAudioFormatProperty_EncodeFormatIDs
mk:@MSITStore:bass.chm::/BASS_ChannelGetData.html

When	done	encoding,	use	BASS_Encode_Stop	to	close	the	encoder.

Multiple	encoders	can	be	set	on	a	channel.	For	convenience,	most	of	the	encoder
functions	will	accept	either	an	encoder	handle	or	a	channel	handle.	When	a
channel	handle	is	used,	the	function	is	applied	to	all	encoders	that	are	set	on	that
channel.

BASS_Encode_StartCAFile	can	be	used	to	have	the	encoder	output	sent	to	a	file
instead	of	a	callback	function.

Platform-specific
This	function	is	only	available	on	OSX	and	iOS.

See	also
BASS_Encode_CastInit,	BASS_Encode_GetACMFormat,
BASS_Encode_IsActive,	BASS_Encode_ServerInit,	BASS_Encode_SetPaused,
BASS_Encode_Start,	BASS_Encode_StartCAFile,	BASS_Encode_Stop,
BASS_Encode_Write,	ENCODEPROCEX	callback,
BASS_CONFIG_ENCODE_PRIORITY

BASS_Encode_StartCAFile

Sets	up	an	encoder	on	a	channel,	using	a	CoreAudio	codec	and	sending	the
output	to	a	file.

HENCODE	BASS_Encode_StartCAFile(

				DWORD	handle,

				DWORD	ftype,

				DWORD	atype,

				DWORD	flags,

				DWORD	bitrate,

				char	*file

);

Parameters
handle The	channel	handle...	a	HSTREAM,	HMUSIC,	or	HRECORD.
ftype File	format	identifier.
atype Audio	data	format	identifier.
flags A	combination	of	these	flags.

BASS_ENCODE_FP_8BIT,
BASS_ENCODE_FP_16BIT,
BASS_ENCODE_FP_24BIT,
BASS_ENCODE_FP_32BIT

Convert	floating-point	sample	data	to
8/16/24/32	bit	integer	before	encoding.
These	flags	are	ignored	if	the	channel
is	not	floating-point	and	the
BASS_CONFIG_FLOATDSP	option
is	not	enabled.

BASS_ENCODE_MONO Convert	to	mono	before	encoding.
BASS_ENCODE_QUEUE Queue	data	to	feed	the	encoder

asynchronously.	This	prevents	the	data
source	(DSP	system	or
BASS_Encode_Write	call)	getting
blocked	by	the	encoder,	but	if	data	is
queud	more	quickly	than	the	encoder
can	process	it,	that	could	result	in	lost
data.

BASS_ENCODE_PAUSE Start	the	encoder	in	a	paused	state.
BASS_ENCODE_AUTOFREE Automatically	free	the	encoder	when

the	source	channel	is	freed.	If	queuing
is	enabled,	any	remaining	queued	data
will	be	sent	to	the	encoder	before	it	is
freed.

BASS_UNICODE file	is	a	Unicode	(UTF-16)	filename.
bitrate The	bitrate	in	bits	per	second...	0	=	the	codec's	default	bitrate.
file The	filename	to	write.

mk:@MSITStore:bass.chm::/BASS_CONFIG_FLOATDSP.html

Return	value
The	encoder	handle	is	returned	if	the	encoder	is	successfully	started,	else	0	is
returned.	Use	BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid.
BASS_ERROR_FILEFORM ftype	is	not	valid.
BASS_ERROR_CODEC atype	is	not	valid	or	supported	with	ftype.
BASS_ERROR_NOTAVAIL bitrate	is	not	supported	by	the	codec.
BASS_ERROR_FORMAT The	channel's	sample	format	is	not	supported	by

the	codec.
BASS_ERROR_CREATE The	file	could	not	be	created.
BASS_ERROR_UNKNOWN Some	other	mystery	problem!

Remarks
This	function	is	identical	to	BASS_Encode_StartCA,	except	that	it	writes	the
encoded	data	to	a	file	instead	of	a	callback	function.

Platform-specific
This	function	is	only	available	on	OSX	and	iOS.

Example
Start	encoding	a	channel	to	an	ALAC	file	(output.m4a).

BASS_Encode_StartCAFile(channel,	'm4af',	'alac',	0,	0,	"output.m4a");

BASS_ChannelPlay(channel,	0);	//	start	the	channel	playing	&	encoding	

Start	encoding	a	channel	to	a	128	kb/s	AAC	MP4	file	(output.mp4).

BASS_Encode_StartCAFile(channel,	'mp4f',	'aac	',	0,	128000,	"output.mp4");

BASS_ChannelPlay(channel,	0);	//	start	the	channel	playing	&	encoding	

See	also
BASS_Encode_GetACMFormat,	BASS_Encode_IsActive,
BASS_Encode_SetPaused,	BASS_Encode_Start,	BASS_Encode_StartCA,
BASS_Encode_Stop,	BASS_Encode_Write,
BASS_CONFIG_ENCODE_PRIORITY

BASS_Encode_StartLimit

Sets	up	an	encoder	on	a	channel,	and	limits	the	amount	of	sample	data	that	is	fed
to	it.

HENCODE	BASS_Encode_StartLimit(

				DWORD	handle,

				char	*cmdline,

				DWORD	flags,

				ENCODEPROC	*proc,

				void	*user,

				DWORD	limit

);

Parameters
handle The	channel	handle...	a	HSTREAM,	HMUSIC,	or	HRECORD.
cmdline The	encoder	command-line,	including	the	executable	filename	and	any

options.	Or	the	output	filename	if	the	BASS_ENCODE_PCM	flag	is
used.

flags A	combination	of	these	flags.
BASS_ENCODE_PCM Write	plain	PCM	sample	data	to

a	file,	without	an	encoder.	The
output	filename	is	given	in	the
cmdline	parameter.

BASS_ENCODE_NOHEAD Don't	send	a	WAVE	header	to	the
encoder.	If	this	flag	is	used	then
the	sample	format	must	be
passed	to	the	encoder	some	other
way,	eg.	via	the	command-line.

BASS_ENCODE_RF64 Send	an	RF64	header	to	the
encoder	instead	of	a	standard
RIFF	header,	allowing	more	than
4GB	of	sample	data.	This	flag	is
ignored	if	the
BASS_ENCODE_NOHEAD
flag	is	used.

BASS_ENCODE_BIGEND Send	big-endian	sample	data	to
the	encoder,	else	little-endian.
This	flag	is	ignored	unless	the
BASS_ENCODE_NOHEAD
flag	is	used,	as	WAV	files	are
little-endian.

BASS_ENCODE_FP_8BIT,
BASS_ENCODE_FP_16BIT,
BASS_ENCODE_FP_24BIT,
BASS_ENCODE_FP_32BIT

Convert	floating-point	sample
data	to	8/16/24/32	bit	integer.	If
the	encoder	does	not	support	32-
bit	floating-point	sample	data,
one	of	these	flags	can	be	used	to
have	the	sample	data	converted
to	integer	before	it	is	fed	to	the
encoder.	These	flags	are	ignored

if	the	channel	is	not	floating-
point	and	the
BASS_CONFIG_FLOATDSP
option	is	not	enabled.

BASS_ENCODE_QUEUE Queue	data	to	feed	the	encoder
asynchronously.	This	prevents
the	data	source	(DSP	system	or
BASS_Encode_Write	call)
getting	blocked	by	the	encoder,
but	if	data	is	queud	more	quickly
than	the	encoder	can	process	it,
that	could	result	in	lost	data.

BASS_ENCODE_LIMIT Limit	the	data	rate	to	real-time
speed,	by	introducing	a	delay
when	the	rate	is	too	high.	With
BASS	2.4.6	or	above,	this	flag	is
ignored	when	the	encoder	is	fed
in	a	playback	buffer	update	cycle
(including	BASS_Update	and
BASS_ChannelUpdate	calls),	to
avoid	possibly	causing	playback
buffer	underruns.	Except	for	in
those	instances,	this	flag	is
applied	automatically	when	the
encoder	is	feeding	a	Shoutcast	or
Icecast	server.

BASS_ENCODE_CAST_NOLIMIT Don't	limit	the	data	rate	to	real-
time	speed	when	feeding	a
Shoutcast	or	Icecast	server.	This
flag	overrides	the
BASS_ENCODE_LIMIT	flag.

BASS_ENCODE_PAUSE Start	the	encoder	paused.
BASS_ENCODE_AUTOFREE Automatically	free	the	encoder

when	the	source	channel	is	freed.
If	queuing	is	enabled,	any
remaining	queued	data	will	be

mk:@MSITStore:bass.chm::/BASS_CONFIG_FLOATDSP.html
mk:@MSITStore:bass.chm::/BASS_Update.html
mk:@MSITStore:bass.chm::/BASS_ChannelUpdate.html

sent	to	the	encoder	before	it	is
freed.

BASS_UNICODE cmdline	is	in	UTF-16	form.
Otherwise	it	is	ANSI	on
Windows	and	UTF-8	on	OSX.

proc Optional	callback	function	to	receive	the	encoded	data...	NULL	=	no
callback.	To	have	the	encoded	data	received	by	a	callback	function,	the
encoder	needs	to	be	told	to	output	to	STDOUT.

user User	instance	data	to	pass	to	the	callback	function.
limit The	number	of	bytes	of	sample	data	to	encode...	0	=	unlimited.	If	one

of	the	BASS_ENCODE_FP	flags	is	used,	the	limit	is	applied	after	the
effect	of	that.

Return	value
The	encoder	handle	is	returned	if	the	encoder	is	successfully	started,	else	0	is
returned.	Use	BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid.
BASS_ERROR_FILEOPEN The	encoder	could	not	be	started.	Check	that	the

executable	exists.
BASS_ERROR_CREATE The	PCM	file	could	not	be	created.
BASS_ERROR_UNKNOWN Some	other	mystery	problem!

Remarks
This	function	is	identical	to	BASS_Encode_Start,	with	the	additional	ability	to
limit	the	amount	of	sample	data	that	is	fed	to	the	encoder.	This	can	be	useful	in
situations	where	the	encoder	needs	to	know	in	advance	how	much	data	it	will	be
receiving.	For	example,	when	using	a	callback	function	with	a	file	format	that
stores	the	length	in	the	header,	as	the	header	cannot	then	be	updated	at	the	end	of
encoding.	The	length	is	communicated	to	the	encoder	via	the	WAVE	header,	so	it
requires	that	the	BASS_ENCODE_NOHEAD	flag	is	not	used.

Once	the	limit	is	hit,	the	encoder	will	"die".	BASS_Encode_SetNotify	can	be
used	to	be	notified	of	that	occurrence.

Example
Start	encoding	a	channel	to	an	MP3	file	(output.mp3)	using	LAME	with	the
standard	preset	settings,	limiting	it	to	1000000	bytes	of	sample	data.

BASS_Encode_StartLimit(channel,	"lame	--alt-preset	standard	-	output.mp3",	0,	NULL,	0,	1000000);

BASS_ChannelPlay(channel,	0);	//	start	the	channel	playing	&	encoding

See	also
BASS_Encode_AddChunk,	BASS_Encode_CastInit,	BASS_Encode_IsActive,
BASS_Encode_SetNotify,	BASS_Encode_SetPaused,	BASS_Encode_Start,
BASS_Encode_Stop,	BASS_Encode_Write,	ENCODEPROC	callback,
BASS_CONFIG_ENCODE_PRIORITY

BASS_Encode_Stop

Frees	an	encoder	or	all	encoders	on	a	channel.

BOOL	BASS_Encode_Stop(

				DWORD	handle

);

Parameters
handle The	encoder	or	channel	handle...	a	HENCODE,	HSTREAM,	HMUSIC,

or	HRECORD.

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Remarks
This	function	will	free	an	encoder	immediately,	without	waiting	for	any	data	that
may	be	remaining	in	the	queue.	BASS_Encode_StopEx	can	be	used	to	have	an
encoder	process	the	queue	before	it	is	freed.

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid.

See	also
BASS_Encode_Start,	BASS_Encode_StopEx

BASS_Encode_Write

Sends	sample	data	to	an	encoder	or	all	encoders	on	a	channel.

BOOL	BASS_Encode_Write(

				DWORD	handle,

				void	*buffer,

				DWORD	length

);

Parameters
handle The	encoder	or	channel	handle...	a

HENCODE,	HSTREAM,
HMUSIC,	or	HRECORD.

buffer The	buffer
containing
the	sample
data.

length The
number
of	bytes
in	the
buffer.

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid.
BASS_ERROR_ENDED No	more	data	may	be	fed	to	the	encoder.	The

encoder	has	died,	or	the	encoder's	queue	is	being
processed	before	it's	closed.

Remarks
There	is	usually	no	need	to	use	this	function,	as	the	channel's	sample	data	will
automatically	be	fed	to	the	encoder	as	it	is	decoded/played.	But	in	some
situations,	it	could	be	useful	to	be	able	to	manually	feed	the	encoder	instead.	The
sample	data	is	expected	to	be	the	same	format	as	the	channel's,	or	floating-point
if	the	BASS_CONFIG_FLOATDSP	option	is	enabled.

When	queued	encoding	is	enabled,	this	function	will	return	successfully	even	if
the	queue	did	not	have	space	for	all	of	the	provided	data.
BASS_Encode_GetCount	can	be	used	to	check	that	there	is	sufficient	space	prior
to	calling	this	function.

mk:@MSITStore:bass.chm::/BASS_CONFIG_FLOATDSP.html

See	also
BASS_Encode_SetPaused,	BASS_Encode_Start

ENCODENOTIFYPROC	callback

User	defined	callback	function	to	receive	notifications	on	an	encoder's	status.

void	CALLBACK	EncodeNotifyProc(

				HENCODE	handle,

				DWORD	status,

				void	*user

);

Parameters
handle The	encoder	that	the	notification	is	from.
status The	encoder's	status,	one	of	the	following.

BASS_ENCODE_NOTIFY_ENCODER The	encoder	died.
BASS_ENCODE_NOTIFY_CAST Cast	server	connection

died.
BASS_ENCODE_NOTIFY_CAST_TIMEOUT Cast	data	sending	timeout.

The	connection	is	not
dead	at	this	point;	it	may
just	be	a	temporary
problem.

BASS_ENCODE_NOTIFY_QUEUE_FULL The	queue	length	has
reached	its	limit	(or	out	of
memory)	and	data	has
been	dropped.	The	total
amount	of	dropped	data	is
available	from
BASS_Encode_GetCount

user The	user	instance	data	given	when	BASS_Encode_SetNotify	was	called.

Remarks
It	is	safe	to	call	BASS_Encode_Stop	to	free	an	encoder	from	within	a
notification	callback.

See	also
BASS_Encode_SetNotify

ENCODEPROC	callback

User	defined	callback	function	to	process	encoded	sample	data.

void	CALLBACK	EncodeProc(

				HENCODE	handle,

				DWORD	channel,

				void	*buffer,

				DWORD	length,

				void	*user

);

Parameters
handle The	encoder	that	the	data	is	from.
channel The	channel	that	the	encoder	is	set	on.
buffer Buffer	containing	the	encoded	data.
length The	number	of	bytes	in	the	buffer.
user The	user	instance	data	given	when	BASS_Encode_Start	was	called.

See	also
BASS_Encode_Start

ENCODEPROCEX	callback

User	defined	callback	function	to	process	encoded	sample	data.

void	CALLBACK	EncodeProcEx(

				HENCODE	handle,

				DWORD	channel,

				void	*buffer,

				DWORD	length,

				DWORD	offset,

				void	*user

);

Parameters
handle The	encoder	that	the	data	is	from.
channel The	channel	that	the	encoder	is	set	on.
buffer Buffer	containing	the	encoded	data.
length The	number	of	bytes	in	the	buffer.
offset File	offset	of	the	data.
user The	user	instance	data	given	when	BASS_Encode_StartCA	was	called.

Example
A	callback	function	to	write	the	encoded	data	to	to	a	file.

void	CALLBACK	MyFileWriter(HENCODE	handle,	DWORD	channel,	void	*buffer,	DWORD	length,	DWORD	offset,	void	*user)

{

				FILE	*file=(FILE*)user;

				fseek(file,	offset,	SEEK_SET);	//	seek	to	file	offset

				fwrite(buffer,	1,	length,	file);	//	write	the	data

}

NOTE:	This	is	just	an	example.	It	is	simpler	to	use	BASS_Encode_StartCAFile
to	encode	to	a	file.

See	also
BASS_Encode_StartCA

BASS_Encode_CastGetStats

Retrieves	stats	from	the	Shoutcast	or	Icecast	server.

char	*BASS_Encode_CastGetStats(

				HENCODE	handle

				DWORD	type,

				char	*pass

);

Parameters
handle The	encoder	handle.
type The	type	of	stats	to	retrieve.	One	of	the	following.

BASS_ENCODE_STATS_SHOUT Shoutcast	stats,	including	listener
information	and	additional	server
information.

BASS_ENCODE_STATS_ICE Icecast	mount-point	listener
information.

BASS_ENCODE_STATS_ICESERV Icecast	server	stats,	including
information	on	all	mount	points
on	the	server.

pass Password	when	retrieving	Icecast	server	stats...	NULL	=	use	the
password	provided	in	the	BASS_Encode_CastInit	call.

Return	value
If	successful,	the	stats	are	returned,	else	NULL	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid.
BASS_ERROR_ILLTYPE type	is	invalid.
BASS_ERROR_NOTAVAIL There	isn't	a	cast	of	the	requested	type	set	on	the

encoder.
BASS_ERROR_UNKNOWN Some	other	mystery	problem!

Remarks
The	stats	are	returned	in	XML	format.

Each	encoder	has	a	single	stats	buffer,	which	is	reused	by	each	call	of	this
function	for	the	encoder.	So	if	the	data	needs	to	be	retained	across	multiple	calls,
it	should	be	copied	to	another	buffer.

Example
Display	the	number	of	listeners.

int	listeners=0;

char	*stats;

if	(stats=BASS_Encode_CastGetStats(encoder,	BASS_ENCODE_STATS_SHOUT,	NULL))	{

				char	*t=strstr(stats,	"<CURRENTLISTENERS>");	//	Shoutcast	listener	count

				listeners=atoi(t+18);

}	else	if	(stats=BASS_Encode_CastGetStats(encoder,	BASS_ENCODE_STATS_ICE,	NULL))	{

				char	*t=strstr(stats,	"<Listeners>");	//	Icecast	listener	count

				listeners=atoi(t+11);

}

printf("listeners=%d\n",	listeners);

See	also
BASS_Encode_CastInit,	BASS_Encode_GetCount

BASS_Encode_CastInit

Initializes	sending	an	encoder's	output	to	a	Shoutcast	or	Icecast	server.

BOOL	BASS_Encode_CastInit(

				HENCODE	handle,

				char	*server,

				char	*pass,

				char	*content,

				char	*name,

				char	*url,

				char	*genre,

				char	*desc,

				char	*headers,

				DWORD	bitrate,

				BOOL	pub

);

Parameters
handle The	encoder	handle.
server The	server	to	send	to,	in	the	form	of	"address:port"	(Shoutcast)	or

"address:port/mount"	(Icecast).
pass The	server	password.
content The	MIME	type	of	the	encoder	output.	This	can	be	one	of	the

following.
BASS_ENCODE_TYPE_MP3 MP3.
BASS_ENCODE_TYPE_OGG OGG.
BASS_ENCODE_TYPE_AAC AAC.

name The	stream	name...	NULL	=	no	name.
url The	URL,	for	example,	of	the	radio	station's	webpage...	NULL	=	no

URL.
genre The	genre...	NULL	=	no	genre.
desc Description...	NULL	=	no	description.	This	applies	to	Icecast	only.
headers Other	headers	to	send	to	the	server...	NULL	=	none.	Each	header	should

end	with	a	carriage	return	and	line	feed	("\r\n").
bitrate The	bitrate	(in	kbps)	of	the	encoder	output...	0	=	undefined	bitrate.	In

cases	where	the	bitrate	is	a	"quality"	(rather	than	CBR)	setting,	the
headers	parameter	can	be	used	to	communicate	that	instead,	eg.	"ice-
bitrate:	Quality	0\r\n".

pub Public?	If	TRUE,	the	stream	is	added	to	the	public	directory	of	streams,
at	shoutcast.com	or	dir.xiph.org	(or	as	defined	in	the	server	config).

http://shoutcast.com
http://dir.xiph.org

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid.
BASS_ERROR_ALREADY There	is	already	a	cast	set	on	the	encoder.
BASS_ERROR_ILLPARAM server	doesn't	include	a	port	number.
BASS_ERROR_FILEOPEN Couldn't	connect	to	the	server.
BASS_ERROR_CAST_DENIED pass	is	not	valid.
BASS_ERROR_UNKNOWN Some	other	mystery	problem!

Remarks
This	function	sets	up	a	Shoutcast/Icecast	source	client,	sending	the	encoder's
output	to	a	server,	which	listeners	can	then	connect	to	and	receive	the	data	from.
The	Shoutcast	and	Icecast	server	software	is	available	from
www.shoutcast.com/download/serve.phtml	and	www.icecast.org/download.php,
respectively.

An	encoder	needs	to	be	started,	but	with	no	data	yet	sent	to	it,	before	using	this
function	to	setup	the	sending	of	the	encoder's	output	to	a	Shoutcast	or	Icecast
server.	If	BASS_Encode_Start	is	used,	the	encoder	should	be	setup	to	write	its
output	to	STDOUT.	Due	to	the	length	restrictions	of	WAVE	headers/files,	the
encoder	should	also	be	started	with	the	BASS_ENCODE_NOHEAD	flag,	and
the	sample	format	details	sent	via	the	command-line.

Unless	the	BASS_ENCODE_CAST_NOLIMIT	flag	is	set	on	the	encoder,
BASSenc	automatically	limits	the	rate	that	data	is	processed	to	real-time	speed
to	avoid	overflowing	the	server's	buffer,	which	means	that	it	is	safe	to	simply	try
to	process	data	as	quickly	as	possible,	eg.	when	the	source	is	a	decoding	channel.
Encoders	set	on	recording	channels	are	automatically	exempt	from	the	rate
limiting,	as	they	are	inherently	real-time.	With	BASS	2.4.6	or	above,	also
exempt	are	encoders	that	are	fed	in	a	playback	buffer	update	cycle	(including
BASS_Update	and	BASS_ChannelUpdate	calls),	eg.	when	the	source	is	a
playing	channel;	that	is	to	avoid	delaying	the	update	thread,	which	could	result
in	playback	buffer	underruns.

BASS_Encode_ServerInit	can	be	used	to	setup	a	server	that	listeners	can
connect	to	directly,	without	a	Shoutcast/Icecast	server	intermediary.

http://www.shoutcast.com/download/serve.phtml
http://www.icecast.org/download.php
mk:@MSITStore:bass.chm::/BASS_Update.html
mk:@MSITStore:bass.chm::/BASS_ChannelUpdate.html

Platform-specific
This	function	is	not	available	on	Windows	CE.

Example
Start	encoding	a	stereo	44100hz	channel	to	128kb/s	MP3,	and	send	the	output	to
a	Shoutcast	server.

HENCODE	encoder=BASS_Encode_Start(channel,	"lame	-r	-s	44100	-b	128	-",	BASS_ENCODE_NOHEAD,	NULL,	0);	//	setup	the	encoder

BASS_Encode_CastInit(encoder,	"server.com:8000",	"password",	BASS_ENCODE_TYPE_MP3,	"name",	"url",

				"genre",	NULL,	NULL,	128,	TRUE);	//	start	the	cast

See	also
BASS_Encode_CastGetStats,	BASS_Encode_CastSetTitle,
BASS_Encode_ServerInit,	BASS_Encode_SetNotify,	BASS_Encode_Start,
BASS_Encode_StartACM,	BASS_Encode_StartCA,
BASS_CONFIG_ENCODE_CAST_TIMEOUT

BASS_Encode_CastSetTitle

Sets	the	title	of	a	cast	stream.

BOOL	BASS_Encode_CastSetTitle(

				HENCODE	handle,

				char	*title,

				char	*url

);

Parameters
handle The	encoder	handle.
title The	title...	NULL	=	no	title.
url URL	to	go	with	the	title...	NULL	=	no	URL.	This	applies	to	Shoutcast

only.

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid.
BASS_ERROR_NOTAVAIL There	isn't	a	cast	set	on	the	encoder.
BASS_ERROR_UNKNOWN Some	other	mystery	problem!

See	also
BASS_Encode_CastInit

BASS_Encode_ServerInit

Initializes	a	server	to	send	an	encoder's	output	to	connecting	clients.

DWORD	BASS_Encode_ServerInit(

				HENCODE	handle,

				char	*port,

				DWORD	buffer,

				DWORD	burst,

				DWORD	flags,

				ENCODECLIENTPROC	*proc,

				void	user

);

Parameters
handle The	encoder	handle.
port The	IP	address	and	port	number	to	accept	client	connections	on...

"xxx.xxx.xxx.xxx:port",	NULL	=	an	available	port	on	all	local
addresses.	The	IP	address	should	be	local	and	the	port	number	should	be
lower	than	65536.	If	the	address	is	"0.0.0.0"	or	omitted,	then	the	server
will	accept	connections	on	all	local	addresses.	If	the	port	is	"0"	or
omitted,	then	an	available	port	will	be	assigned.

buffer The	server's	buffer	length	in	bytes.
burst The	amount	of	buffered	data	to	send	to	new	clients.	This	will	be	capped

at	the	size	of	the	buffer.
flags A	combination	of	these	flags.

BASS_ENCODE_SERVER_NOHTTP Do	not	read	or	send	HTTP
headers.

proc Callback	function	to	receive	notification	of	clients	connecting	and
disconnecting...	NULL	=	no	callback.

user User	instance	data	to	pass	to	the	callback	function.

Return	value
If	successful,	the	new	server's	port	number	is	returned,	else	0	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid.
BASS_ERROR_ALREADY There	is	already	a	server	set	on	the	encoder.
BASS_ERROR_ILLPARAM port	is	not	valid.
BASS_ERROR_BUSY The	port	is	in	use.
BASS_ERROR_MEM There	is	insufficient	memory.
BASS_ERROR_UNKNOWN Some	other	mystery	problem!

Remarks
This	function	allows	remote	(or	local)	clients	to	receive	the	encoder's	output	by
setting	up	a	TCP	server	for	them	to	connect	to,	using	BASS_StreamCreateURL
for	example.	Connections	can	be	refused	by	the	ENCODECLIENTPROC
callback	function,	and	already	connected	clients	can	be	kicked	with	the
BASS_Encode_ServerKick	function.

The	server	buffers	the	data	that	it	receives	from	the	encoder,	and	the	data	is	then
sent	from	the	buffer	to	the	connected	clients.	The	buffer	should	be	at	least	big
enough	to	account	for	the	time	that	it	takes	for	the	clients	to	receive	the	data.	If	a
client	falls	too	far	behind	(beyond	the	buffer	length),	it	will	miss	some	data.
When	a	client	connects,	buffered	data	can	be	"burst"	to	the	client,	allowing	it	to
prebuffer	and	begin	playback	more	quickly.

An	encoder	needs	to	be	started,	but	with	no	data	yet	sent	to	it,	before	using	this
function	to	setup	the	server.	If	BASS_Encode_Start	is	used,	the	encoder	should
be	setup	to	write	its	output	to	STDOUT.	Due	to	the	length	restrictions	of	WAVE
headers/files,	the	encoder	should	also	be	started	with	the
BASS_ENCODE_NOHEAD	flag,	and	the	sample	format	details	sent	via	the
command-line.

mk:@MSITStore:bass.chm::/BASS_StreamCreateURL.html

Platform-specific
This	function	is	not	available	on	Windows	CE.

Example
Start	encoding	a	stereo	44100hz	channel	to	128kb/s	MP3,	and	start	a	server	on
port	8000	with	a	fully	burstable	4	second	(64KB)	buffer.

HENCODE	encoder=BASS_Encode_Start(channel,	"lame	-r	-s	44100	-b	128	-",	BASS_ENCODE_NOHEAD,	NULL,	0);	//	setup	the	encoder

BASS_Encode_ServerInit(encoder,	"8000",	64000,	64000,	0,	NULL,	NULL);	//	start	the	server

Start	encoding	a	stereo	44100hz	channel	to	160kb/s	OGG,	and	start	a	server	on
any	available	port	on	the	loopback	address	(127.0.0.1)	with	a	fully	burstable	2
second	(40KB)	buffer.

HENCODE	encoder=BASS_Encode_Start(channel,	"oggenc	-r	-R	44100	-M	160	-m	160	-",	BASS_ENCODE_NOHEAD,	NULL,	0);	//	setup	the	encoder

DWORD	port=BASS_Encode_ServerInit(encoder,	"127.0.0.1",	40000,	40000,	0,	NULL,	NULL);	//	start	the	server

See	also
BASS_Encode_CastInit,	BASS_Encode_ServerKick,	BASS_Encode_SetNotify,
BASS_Encode_Start,	BASS_Encode_StartACM,	BASS_Encode_StartCA,
BASS_CONFIG_ENCODE_CAST_TIMEOUT

BASS_Encode_ServerKick

Kicks	clients	from	a	server.

DWORD	BASS_Encode_ServerInit(

				HENCODE	handle,

				char	*client

);

Parameters
handle The	encoder	handle.
client The	client(s)	to	kick...	""	(empty	string)	=	all	clients.	Unless	a	port

number	is	included,	this	string	is	compared	with	the	start	of	the
connected	clients'	IP	address.

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid.
BASS_ERROR_NOTAVAIL No	matching	clients	were	found.

Remarks
The	clients	may	not	be	kicked	immediately,	but	shortly	after	the	call.	If	the
server	has	been	setup	with	an	ENCODECLIENTPROC	callback	function,	that
will	receive	notification	of	the	disconnections.

Example
Kick	a	client	connected	from	port	1234	at	1.2.3.4.

BASS_Encode_ServerKick(encoder,	"1.2.3.4:1234");

Kick	all	clients	connected	from	1.2.3.4.

BASS_Encode_ServerKick(encoder,	"1.2.3.4:");

See	also
BASS_Encode_ServerInit,	ENCODECLIENTPROC

ENCODECLIENTPROC	callback

User	defined	callback	function	to	receive	notification	of	client	connections	and
disconnections,	and	optionally	refuse	connections.

BOOL	CALLBACK	EncodeClientProc(

				HENCODE	handle,

				BOOL	connect,

				char	*client,

				char	*headers,

				void	*user

);

Parameters
handle The	encoder/server	that	the	client	is	connecting	to	or	disconnecting

from.
connect The	client	is	connecting?	TRUE	=	connecting,	FALSE	=	disconnecting.
client The	client's	IP	address	and	port	number...	"xxx.xxx.xxx.xxx:port".
headers The	request	headers...	NULL	=	the	client	is	disconnecting	or	HTTP

headers	have	been	disabled	via	the
BASS_ENCODE_SERVER_NOHTTP	flag.	The	headers	are	in	the
same	form	as	would	be	given	by	BASS_ChannelGetTags,	which	is	a
series	of	null-terminated	strings,	the	final	string	ending	with	a	double
null.	The	request	headers	can	optionally	be	replaced	with	response
headers	to	send	back	to	the	client,	each	ending	with	a	carriage	return
and	line	feed	("\r\n").	The	response	headers	should	not	exceed	1KB	in
length.

user The	user	instance	data	given	when	BASS_Encode_ServerInit	was
called.

mk:@MSITStore:bass.chm::/BASS_ChannelGetTags.html

Return	value
If	the	client	is	connecting,	FALSE	means	the	connection	is	denied,	otherwise	it	is
accepted.	The	return	value	is	ignored	if	the	client	is	disconnecting.

Remarks
This	function	can	be	used	to	keep	track	of	how	many	clients	are	connected,	and
who	is	connected.	The	request	headers	can	be	used	to	authenticate	clients,	and
response	headers	can	be	used	to	pass	information	back	to	the	clients.	By	default,
connecting	clients	will	be	sent	an	"HTTP/1.0	200	OK"	status	line	if	accepted,
and	an	"HTTP/1.0	403	Forbidden"	status	line	if	denied.	That	can	be	overridden
in	the	first	response	header.

Disconnection	notifications	will	be	received	for	clients	that	have	disconnected
themselves	or	that	have	been	kicked	by	BASS_Encode_ServerKick,	but	there
will	no	notification	of	any	clients	that	are	disconnected	by	the	encoder	being
freed.

Each	server	has	its	own	thread	that	handles	new	connections	and	sends	data	to	its
clients.	The	notification	callbacks	also	come	from	that	thread,	so	the	callback
function	should	avoid	introducing	long	delays	as	that	could	result	in	clients
missing	some	data	and	delay	other	clients	connecting.

Example
A	callback	function	that	only	allows	connections	from	the	196.168/16	network,
and	only	5	clients.

int	listeners=0;	//	client	count

BOOL	CALLBACK	EncodeClientProc(HENCODE	handle,	BOOL	connect,	char	*client,	char	*headers,	void	*user)

{

				if	(connect)	{

								if	(listeners==5)	{	//	hit	client	limit

												strcpy(headers,	"HTTP/1.0	403	Server	Full\r\n");	//	set	custom	status

												return	FALSE;	//	refuse	the	connection

								}

								if	(strncmp(client,"192.168.",8))	//	not	on	the	196.168/16	network

												return	FALSE;	//	refuse	the	connection

								listeners++;	//	increment	the	client	count

				}	else

								listeners--;	//	decrement	the	client	count

				return	TRUE;

}

A	callback	function	that	only	allows	connections	with	a	particular	"User-Agent"
request	header.

BOOL	CALLBACK	EncodeClientProc(HENCODE	handle,	BOOL	connect,	char	*client,	char	*headers,	void	*user)

{

				if	(connect)	{

								char	*p=headers;

								while	(*p)	{

												if	(!strncimp(p,	"User-Agent:",	11))	{	//	found	the	User-Agent	header

																if	(strcmp(p+12,	"Special	Agent"))	//	not	the	wanted	agent

																				return	FALSE;	//	refuse	the	connection

																break;

												}

												p+=strlen(p)+1;	//	go	to	next	header

								}

				}

				return	TRUE;

}

See	also
BASS_Encode_ServerInit,	BASS_Encode_ServerKick

BASS_Encode_StopEx

Frees	an	encoder	or	all	encoders	on	a	channel,	optionally	delaying	it	until	the
queue	has	been	processed.

BOOL	BASS_Encode_StopEx(

				DWORD	handle,

				BOOL	queue

);

Parameters
handle The	encoder	or	channel	handle...	a	HENCODE,	HSTREAM,	HMUSIC,

or	HRECORD.
queue Wait	for	the	queue?	If	so,	the	encoder	will	not	be	freed	until	any	data

remaining	in	the	queue	has	been	processed,	and	it	will	not	accept	any
new	data	in	the	meantime.

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Remarks
When	an	encoder	has	been	told	to	wait	for	its	queue	to	be	processed,
BASS_Encode_Stop	(or	this	function	with	queue	=	FALSE)	can	be	used	to
cancel	that	and	free	the	encoder	immediately.

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid.

See	also
BASS_Encode_Start,	BASS_Encode_Stop

	BASS_Encode_GetVersion

