
																								(:	-=	BASS_FX	v2.4.12	=-	:)
																													-===============-
												Copyright	(c)	2002-2018	JOBnik!	[Arthur	Aminov,	ISRAEL]
																													All	rights	reserved!

Donate
======
If	you	like	BASS_FX	or	use	it	in	a	commercial/shareware	products,
then	you	may	wish	to	make	a	donation	to	support	its	development	(see	the	docs	for	info).

Thank	you!

Files	that	you	should	have	found	in	the	BASS_FX	"package"
===
Win32	version

BASS_FX.TXT						This	file
BASS_FX.DLL						The	BASS_FX	module
BASS_FX.CHM						BASS_FX	documentation
File_ID.Diz						BBS	description	file

x64\
		BASS_FX.DLL				64-bit	BASS_FX	module

C\															C/C++	APIs	and	samples
		BASS_FX.H								BASS_FX	C/C++	header	file
		BASS_FX.LIB						BASS_FX	import	library
		x64\
				BASS_FX.LIB				64-bit	BASS_FX	import	library
		SAFESEH\
				BASS_FX.LIB				SAFESEH	compatible	BASS_FX	import	library

		bpm\													BPM	example
				bpm.c
				bpm.h
				bpm.rc

		dsp\													DSP	example
				dsp.c
				dsp.h
				dsp.rc

		freeverb\								Freeverb	example

				freeverb.c
				freeverb.h
				freeverb.rc

		reverse\									Reverse	example
				reverse.c
				reverse.h
				reverse.rc

		tempo\											Tempo	example
				tempo.c
				tempo.h
				tempo.rc

		bin\													Precompiled	examples
				bpm.exe
				dsp.exe
				reverse.exe
				tempo.exe

Delphi\			Delphi	APIs	and	samples
		BASS_FX.PAS						BASS_FX	Delphi	APIs	Unit

		BPM\					BPM	example
				bpm.dfm										main	form
				bpm.pas										main	unit
				prjBPM.dpr							project	file

		DSP\													DSP	example
				dsp.dfm
				dsp.pas
				prjDSP.dpr

		Reverse\									Reverse	example
				prjRev.dpr
				Reverse.dfm
				Reverse.pas

		Tempo\											Tempo	example
				prjTempo.dpr
				tempo.dfm
				tempo.pas

VB\														Visual	Basic	APIs	and	samples
		BASS_FX.BAS						BASS_FX	VB	APIs	Module

		BPM\													BPM	example

				frmBPM.frm							main	form
				modBPM.bas							module	with	some	functions
				prjBPM.vbp							project	file

		DSP\													DSP	example
				frmDSP.frm
				prjDSP.vbp

		Reverse\									Reverse	example
				frmREVERSE.frm
				prjREVERSE.vbp

		Tempo\											Tempo	example
				frmTempo.frm
				prjTepmo.vbp

NOTE:	To	run	the	sample	EXEs,	first	you'll	have	to	copy	BASS_FX.DLL	into
						the	same	directory	as	the	EXEs.	You'll	also	need	BASS.DLL	which	can
						be	download	from	the	BASS	website.

NOTE:	To	build	the	examples,	you'll	need	to	copy	the	BASS	API	into	the
						same	directory	as	the	BASS_FX	API.

MacOSX	version

BASS_FX.TXT						This	file
LIBBASS_FX.DYLIB		The	BASS_FX	module
BASS_FX.CHM						BASS_FX	documentation
BASS_FX.H								BASS_FX	C/C++	header	file
MAKEFILE									Makefile	for	all	examples
MAKEFILE.IN						Makefile	helper	macros

reverse\									Reverse	example
		reverse.c
		makefile
		reverse.nib

tempo\											Tempo	example
		tempo.c
		makefile
		tempo.nib

NOTE:	To	view	the	documentation,	you	will	need	a	CHM	viewer,	like	CHMOX

						which	is	included	in	the	BASS	package.

NOTE:	To	build	the	examples,	you'll	need	to	copy	the	BASS	API	into	the
						same	directory	as	the	BASS_FX	API.

What's	the	point?
=================
BASS_FX	is	an	extension	to	the	BASS	audio	library,	providing	a	complete
set	of	Real-time	DSP	functions	to	start	developing	your	own	DJ	software	;)
Developed	to	enable	the	simple	and	advanced	developers/users	to	
have	in	their	applications	sound	effects	without	knowing	any	DSP	at	all!

Requirements
============
BASS	2.4	is	required,	the	BASS_FX	module	will	fail	to	load	if	it	is	not	present.

MacOSX	version

OSX	10.3.9	or	above	is	recommended.	BASS_FX	is	compatible	with	both
PowerPC	and	Intel	Macs.

Using	BASS_FX
=============
Win32	version

To	use	BASS_FX	with	Borland	C++	Builder,	you'll	first	have	to	create	a
Borland	C++	Builder	import	library	for	it.	This	is	done	by	using	the
IMPLIB	tool	that	comes	with	Borland	C++	Builder.	Simply	execute	this:

	IMPLIB	BASS_FXBCB.LIB	BASS_FX.DLL

...	and	then	use	BASS_FXBCB.LIB	in	your	projects	to	import	BASS_FX.

To	use	BASS_FX	with	LCC-Win32,	you'll	first	have	to	create	a	compatible
import	library	for	it.	This	is	done	by	using	the	PEDUMP	and	BUILDLIB
tools	that	come	with	LCC-Win32.	Run	these	2	commands:

	PEDUMP	/EXP	BASS_FX.LIB	>	BASS_FXLCC.EXP
	BUILDLIB	BASS_FXLCC.EXP	BASS_FXLCC.LIB

...	and	then	use	BASS_FXLCC.LIB	in	your	projects	to	import	BASS_FX.

TIP:	The	BASS_FX.CHM	file	should	be	put	in	the	same	directory	as	the	BASS.CHM
					file,	so	that	the	BASS_FX	documentation	can	be	accessed	from	within	the
					BASS	documentation.

MacOSX	version

A	separate		"LIB"	file	is	not	required	for	OSX.	Using	XCode,	you	can	simply
add	the	DYLIB	file	to	the	project.	Or	using	a	makefile,	you	can	build	your
programs	like	this,	for	example:

	gcc	yoursource	-L.	-lbass	-lbass_fx	-o	yourprog

As	with	LIBBASS.DYLIB,	the	LIBBASS_FX.DYLIB	file	must	be	put	in	the	same
directory	as	the	executable	(it	can't	just	be	somewhere	in	the	path).	See
the	example	makefiles.

LIBBASS_FX.DYLIB	is	a	universal	binary,	with	support	for	both	PowerPC	and
Intel	Macs.	If	you	want	PowerPC-only	or	Intel-only	versions,	the	included
makefile	can	create	them	for	you,	by	typing	"make	ppc"	or	"make	i386".

Latest	Version
==============
The	latest	versions	of	BASS_FX	&	BASS	can	be	found	at	these	websites:

								http://www.un4seen.com										(the	home	of	BASS)
								http://www.jobnik.org

Copyright,	Disclaimer,	and	all	that	other	jazz
==
The	BASS_FX	library	is	free,	so	if	anyone	tries	to	charge	you
for	it,	kick	'em	where	it	hurts.

This	software	is	provided	"as	is",	without	warranty	of	ANY	KIND,
either	expressed	or	implied,	including	but	not	limited	to	the
implied	warranties	of	merchantability	and/or	fitness	for	a
particular	purpose.	The	author	shall	NOT	be	held	liable	for
ANY	damage	to	you,	your	computer,	or	to	anyone	or	anything	else,
that	may	result	from	its	use,	or	misuse.	Basically,	you	use	it
at	YOUR	OWN	RISK.

Usage	of	BASS_FX	indicates	that	you	agree	to	the	above	conditions.

You	may	freely	distribute	the	BASS_FX	package	as	long	as	NO	FEE	is
charged	and	all	the	files	remain	INTACT	AND	UNMODIFIED.

http://www.un4seen.com
http://www.jobnik.org

All	trademarks	and	other	registered	names	contained	in	the	BASS_FX
package	are	the	property	of	their	respective	owners.

History
=======
These	are	the	major	(and	not	so	major)	changes	at	each	version
stage.	There	are	ofcourse	bug	fixes	and	other	little	improvements
made	along	the	way	too!	To	make	upgrading	simpler,	all	functions
affected	by	a	change	to	the	BASS_FX	interface	are	listed.

2.4.12	-	28/03/2018

*	BASS_FX:
		*	Added	"Windows	Store	(Win10-ARM/x86/x64,	Win8-x86/x64,	Win8-Phone-ARM)"	platform	support
(package	bass_fx24-winstore.zip).
		*	Android,	added	"arm64-v8a"	architecture	support	(package	bass_fx24-android-arm64.zip).
		*	Linux	ARM,	added	"aarch64"	architecture	support.
		*	OSX,	removed	PowerPC	support,	since	the	PowerPC	architecture	is	no	longer	supported	by	BASS	and
Apple.
		*	Delphi/Pascal,	updated	BASS_FX.PAS	unit	and	changed	"WIN32"	to	"MSWINDOWS".

*	Tempo:
		*	Updated	to	the	latest	SoundTouch	version	2.0.0
		*	Adjusted	algorithm	parameters	to	reduce	reverberating	effect	at	tempo	slowdown.
		*	Improved	sound	quality	when	using	integer	processing	algorithm.
		*	Improved	sound	quality	when	BASS_ATTRIB_TEMPO_OPTION_USE_QUICKALGO	==	TRUE.
				The	new	quickseek	algorithm	can	find	99%	as	good	results	as	the	default	full-scan	mode,	while	the
quickseek	algorithm	is
				remarkable	less	CPU	intensive.
		*	"mixtime"	BASS_SYNC_END	syncs	are	delayed	until	the	tempo	processing	reaches	the	end	(not	when
the	source	does),	in	the
				same	was	as	BASS_SYNC_POS	syncs.
		*	Fixed	threading	issue.
		*	Miscellaneous	small	fixes	and	improvements.

*	BPM:
		*	Updated	to	the	latest	SoundTouch	version	2.0.0

*	Reverse:
		*	Fixed	small	bug	in	reverse	processing,	that	BASS_SYNC_END	syncs	aren't	getting	triggered	on	reverse
streams	that	are
				playing	some	files	forwards.

*	DSP:
		*	Fixed	fRate	parameter	in	BASS_FX_BFX_AUTOWAH	effect.
		*	BASS_FX_BFX_PITCHSHIFT	effect	is	also	enabled	for	Android	(armeabi-v7a,	x86)	and	Linux	ARM
(hardfp),	that	using	now

				floating-point	instead	of	fixed-point.

2.4.11.1	-	24/12/2014

*	BASS_FX:
		*	Added	support	for	BASS	2.4.11,	BASS_DATA_FIXED	flag	is	used	in	Android,	WinCE	and	Linux	ARM
platforms.
		*	Documentation	is	updated.
		*	iOS,	added	"x86_64"	simulator	architecture.

*	Tempo:
		*	Fixed	"Segmentation	fault"	on	x64	Linux	system.

*	DSP:
		*	Android,	fixed	"BASS_FX_BFX_ECHO4"	effect	as	reported	in	this	thread:
				http://www.un4seen.com/forum/?topic=13225.msg112373#msg112373

2.4.11	-	02/09/2014

*	BASS_FX:
			*	Fixed	an	issue	on	OSX	(The	Xcode	project's	"Installation	Directory"	setting	set	to	"@loader_path"
instead	of	"@executable_path").
			*	Tempo/Reverse	fixed	a	thread-safety	crash.
			*	Tempo/Reverse	added	CTYPE	info	for	these	streams.
			*	Android,	added	"x86"	architecture	support	(some	effects	are	buggy,	will	be	fixed	soon).
			*	iOS,	added	"arm64"	architecture	support.
			*	Fixed	Delphi/Pascal	unit	by	changing	"FLOAT"	to	"Single".
			*	Added	C/C++	"freeverb"	example.

*	Tempo:
			*	Updated	to	latest	SoundTouch	library	version	1.8.0
			*	Fixed	a	crash	when	using	syncs	on	tempo,	as	described	in	this	thread:	http://www.un4seen.com/forum/?
topic=15708.0
			*	Added	3	interpolation	algorithms	to	set	using	BASS_FX_TEMPO_ALGO_XXX	flags
(BASS_FX_TempoCreate):
						*	BASS_FX_TEMPO_ALGO_LINEAR
						*	BASS_FX_TEMPO_ALGO_CUBIC			(default)
						*	BASS_FX_TEMPO_ALGO_SHANNON

*	DSP:
			*	Fixed	a	bug	in	BASS_FX_BFX_VOLUME_ENV	effect	with	the	"bFollow"	option	on	mobile	devices,
					as	described	in	this	thread	http://www.un4seen.com/forum/?topic=15866
			*	Added	new	effects:
					*	BASS_FX_BFX_PITCHSHIFT,	that	uses	FFT	for	its	pitch	shifting	while	maintaining	duration.
					*	BASS_FX_BFX_FREEVERB,	a	reverb	effect.

2.4.10.1	-	05/06/2013

http://www.un4seen.com/forum/?topic=13225.msg112373#msg112373
http://www.un4seen.com/forum/?topic=15708.0
http://www.un4seen.com/forum/?topic=15866

*	BPM/Beat:
		*	Fixed	a	crash	when	not	using	BPMPROGRESSPROC	callback
		*	Added	a	check	for	BPMPROC/BPMBEATPROC	callbacks,	if	not	available,	returns
BASS_ERROR_ILLPARAM	error	code

2.4.10	-	02/06/2013

*	BASS_FX:
			*	Please	see	DSP	and	BPM	sections	for	decprecated	effects/functions.
					To	not	break	compatibility	with	BASS	2.4	version,	these	effects	and	functions	will	still	remain	in
BASS_FX,
					but	are	removed	from	documentations	and	will	be	totally	removed	from	BASS_FX	in	the	future.
			*	BASS_ERROR_FX_NODECODE	error	code	*removed*,	will	return	BASS_ERROR_DECODE
instead	(Tempo/Reverse/BPM/Beat)
			*	BASS_ERROR_FX_BPMINUSE	error	code	*removed*,	will	return	BASS_ERROR_ALREADY
instead	(BPM/Beat)
			*	Tempo	and	BPM	functions	updated	to	latest	SoundTouch	library	version	1.7.1
			*	Added	BASS_BFX_Linear2dB	and	BASS_BFX_dB2Linear	macros	to	headers,	for	convenience.

*	Tempo:
		*	Multi-channel	support	is	added,	but:
					*	No	SSE	optimizations
					*	BASS_ATTRIB_TEMPO_OPTION_USE_AA_FILTER	is	by	default	set	to	FALSE	on	iOS,	Android,
WinCE	and	Linux	ARM	platforms	for	lower	CPU	usage
					*	Not	part	of	SoundTouch	library,	sources	will	be	sent	to	Olli	Parviainen	after	BASS_FX	release
		*	Sound	quality	improvements
		*	Improved	output	sound	stream	duration	to	match	better	with	ideal	duration
		*	Fixed	BASS_ERROR_UNKNOWN	issue	with	Windows	8	x64,	posted	in	this	thread:
				http://www.un4seen.com/forum/?topic=14499.0

*	BPM:
		*	BASS_FX_BPM_Translate	and	all	of	its	options,	BASS_FX_BPM_TRAN_xxx,	are	*deprecated*
		*	BPMPROCESSPROC	*renamed*	to	BPMPROGRESSPROC
		*	BPM	example	is	updated	to	fit	above	changes
		*	Tuned	detection	algorithm
		*	Fixed	detection	bug	in	Android,	WinCE	&	Linux	ARM	platforms,	for	returning	odd	values
		*	Fixed	percents	bug	in	BPMPROGRESSPROC
		*	Changed	default	min/max	BPM	window	to	SoundTouch's	29/200

*	Beat:
		*	Fixed	regression	since	version	2.4.8	in	BASS_FX_BPM_BeatDecodeGet	function,
				that	would	free	a	"chan"	when	detection	is	completed,	as	described	in	this	thread:
				http://www.un4seen.com/forum/?topic=2181.msg102805#msg102805

*	DSP:
		*	Ported	all	effects	to	Android,	WinCE	&	Linux	ARM	platforms

		*	BASS_FX_BFX_ROTATE:

http://www.un4seen.com/forum/?topic=14499.0
http://www.un4seen.com/forum/?topic=2181.msg102805#msg102805

								added	new	structure	"BASS_BFX_ROTATE"	with	params:
								"fRate"				-	set	the	rotation	rate/speed	in	Hz	between	channels
								"lChannel"	-	multi-channel	support,	only	for	even	number	of	channels

		*	BASS_FX_BFX_ECHO4:
								added	new	effect	and	structure	"BASS_BFX_ECHO4"	with	params:
								"fDryMix"			-	unaffected	signal	mix
								"fWetMix"			-	affected	signal	mix
								"fFeedback"	-	output	signal	to	feed	back	into	input
								"fDelay"				-	delay	seconds
								"bStereo"			-	even	channels	are	echoed	to	each	other	if	enabled
								"lChannel"		-	multi-channel	support

		*	BASS_FX_BFX_ECHO								-	*deprecated*,	use	BASS_FX_BFX_ECHO4
		*	BASS_FX_BFX_ECHO2							-	*deprecated*,	use	BASS_FX_BFX_ECHO4
		*	BASS_FX_BFX_ECHO3							-	*deprecated*,	use	BASS_FX_BFX_ECHO4
		*	BASS_FX_BFX_REVERB						-	*deprecated*,	use	BASS_FX_BFX_ECHO4	with	fFeedback	enabled
		*	BASS_FX_BFX_FLANGER					-	*deprecated*,	use	BASS_FX_BFX_CHORUS
		*	BASS_FX_BFX_COMPRESSOR		-	*deprecated*,	use	BASS_FX_BFX_COMPRESSOR2
		*	BASS_FX_BFX_APF									-	*deprecated*,	use	BASS_FX_BFX_BQF	with
BASS_BFX_BQF_ALLPASS	filter
		*	BASS_FX_BFX_LPF									-	*deprecated*,	use	2x	BASS_FX_BFX_BQF	with
BASS_BFX_BQF_LOWPASS	filter	and	appropriate	fQ	values

2.4.9	-	16/01/2013

*	BASS_FX:
		*	WinCE	version	introduced	(package	bass_fx24-ce.zip)	currently	doesn't	include	most
BASS_FX_BFX_xxx	effects.
		*	Linux	ARM	version	introduced	(package	bass_fx24-linux-arm.zip)	currently	doesn't	include	most
BASS_FX_BFX_xxx	effects.

*	DSP:
		*	Added	more	effects	to	Android,	WinCE	&	Linux	ARM	ports:
					BASS_FX_BFX_PEAKEQ
					BASS_FX_BFX_MIX
					BASS_FX_BFX_VOLUME_ENV

*	Tempo	and	Reverse:
		*	According	to	this	request:	http://www.un4seen.com/forum/?topic=13910
				Added	support	for	DECODETO	option.

*	Tempo:
		*	iOS,	WinCE	&	Linux	ARM:	Enabled	the	BASS_ATTRIB_TEMPO_OPTION_USE_QUICKALGO
option	on	tempo
				streams	by	default	for	lower	CPU	usage.	See	docs	on	how	to	disable	it.

*	iOS:	Added	armv7s	architecture	support.

http://www.un4seen.com/forum/?topic=13910

2.4.8	-	31/07/2012

*	BASS_FX:
		*	Android	version	introduced	(package	bass_fx24-android.zip)
				currently	doesn't	include	most	BASS_FX_BFX_xxx	effects.
		*	Delphi/Pascal	unit:	changed	"user"	param	from	"DWORD"	to	"Pointer"

*	BPM:
		*	Added	"user"	param	to	BASS_FX_BPM_DecodeGet	and	BPMPROCESSPROC	(you	have	to	recompile
your	project).
		*	BPM	example	is	updated	to	fit	above	changes.
		*	According	to	this	request:	http://www.un4seen.com/forum/?topic=13319
				Added	support	for	BPM	detection	from	the	current	position	with	BASS_FX_BPM_DecodeGet
(startSec<0).	
				
*	Beat:
		*	Couple	of	little	fixes	in	beat	detection.

*	Tempo:
		*	Android:	Enabled	the	BASS_ATTRIB_TEMPO_OPTION_USE_QUICKALGO	option	on	tempo
				streams	by	default	for	lower	CPU	usage.	See	docs	on	how	to	disable	it.

2.4.7.1	-	01/07/2011

*	BASS_FX:
			*	Documentation	updated.

*	DSP:
			*	Fixed	a	small	issue	in	BASS_FXGetParameters	for	BASS_FX_BFX_VOLUME	effect,	as	it	would
change	the	lChannel	value
					when	the	global	volume	(lChannel=0)	is	requested.

*	OSX:
			*	x86_64	architecture	support

2.4.7	-	07/04/2011

*	BASS_FX:
		*	Delphi	unit	updated:	BASS_BFX_ENV_NODE	=	record,	changed	to	BASS_BFX_ENV_NODE	=
packed	record

*	DSP:
			*	Fixed	bug	in	BASS_FX_BFX_VOLUME_ENV,	being	applied	slightly	early	when	"bFollow"	is
enabled.
			*	BASS_FX_BFX_DAMP	made	effect	parameter	setting	a	bit	more	convenient.	If	fGain	<	0	then	leave
the	current	value.

*	iOS:

http://www.un4seen.com/forum/?topic=13319

			*	Added	armv7	architecture	support.
			*	Combined	the	Device	armv6/7	architectures	and	Simulator	libraries	into	a	single	file.

2.4.6	-	27/07/2010

*	BASS_FX:
			*	Tempo	and	BPM	updated	to	SoundTouch	1.5.1pre
			*	iPhone	version	introduced	(package	bass_fx24-iphone.zip)
					NOTE:	Since	iPhone	supports	only	static	libraries,	it	isn't	possible	for	static	libraries	to	declare	their
dependencies,
											so	that	needs	to	be	done	in	the	app's	project	instead,	eg.	by	adding	"-lstdc++"	in	the	"Other	Linker
Flags".
*	Tempo:
			*	Updated	automatic	parameter	adjustment	logic	to	reduce	tone	wobbling	at	large	tempo	changes.
			*	Retired	3DNow!	optimization	support	as	3DNow!	is	nowadays	obsolete	and	assembler	code	is	nuisance
to	maintain.

*	BPM:
			*	Improved	BPM	detection.
			*	Added	automatic	cutoff	threshold	adaptation	to	beat	detection	routine	to	better	adapt	BPM	calculation	to
different	types	of	music.
			*	Fixed	bug	in	BPMPROCESSPROC	percents,	when	endSec	is	greater	than	stream's	length.

*	Reverse:
			*	Fixed	bug	with	getting	the	position	when	using	a	large	output	buffer	(BASS_CONFIG_BUFFER).
			*	Fixed	bug	in	BASS_ChannelGetPosition,	could	return	an	incorrect	position.

2.4.5	-	18/12/2009

*	DSP:	Added	new	effect,	BiQuad	filters,	BASS_FX_BFX_BQF	with	filter	types:
								BASS_BFX_BQF_LOWPASS
								BASS_BFX_BQF_HIGHPASS
								BASS_BFX_BQF_BANDPASS
								BASS_BFX_BQF_BANDPASS_Q
								BASS_BFX_BQF_NOTCH
								BASS_BFX_BQF_ALLPASS
								BASS_BFX_BQF_PEAKINGEQ
								BASS_BFX_BQF_LOWSHELF
								BASS_BFX_BQF_HIGHSHELF

*	Tempo:
			*	Tempo	processing	bypassed	when	tempo/pitch	set	to	0
			*	Couple	of	improvements:
					*	Added	normalization	to	correlation	calculation
					*	Heuristic	that	weights	center	of	the	processing	window

2.4.4.1	-	29/04/2009

*	Tempo:	Fixed	a	bug	that	could	cause	a	stream	to	end	slightly	early.

2.4.4	-	28/03/2009

*	BASS_FX:
		*	Added:	Linux	x64	build	in	bass_fx24-linux.zip	package.

*	Tempo:
		*	Updated	to	most	latest	SoundTouch	library	1.4.1
		*	Improved	sound	quality	by	automatic	calculation	of	time	stretch	algorithm	processing
				parameters	according	to	tempo	setting.
		*	Added	new	BASS_ATTRIB_TEMPO_OPTION_PREVENT_CLICK,	to	prevent	click	when
				samplerate/pitch	crosses	the	default	value	during	processing.
				Default	is	FALSE	as	this	involves	slight	sound	quality	compromise.

*	BPM/Beat:
		*	Fixed	a	small	bug	of	internally	called	SETPOS	sync.

2.4.3.1	-	07/01/2009

*	BASS_FX:	Delphi/Pascal	unit	updated	to	handle	both	Windows	and	Linux
*	Tempo:	Fixed	a	small	bug	in	processing	with	BASS_SAMPLE_LOOP	flag

2.4.3	-	24/12/2008

*	BASS_FX:
		*	Mixtime	POS	syncs	are	now	triggered	when	the	specified	position	is
				rendered	in	the	tempo/reverse	stream	(rather	than	when	it	is	decoded	from	the	source).
		*	Linux	version	introduced	(package	bass_fx24-linux.zip)	//	examples	will	follow

*	Tempo:
		*	Corrected	BASS_ATTRIB_TEMPO_FREQ	min/max	values.

*	DSP:
		*	Added	new	volume	effect:	BASS_FX_BFX_VOLUME_ENV,	a	volume	effect	using	an	envelope.
		*	BASS_FX_BFX_APF,	BASS_FX_BFX_ECHO2,	BASS_FX_BFX_ECHO3:	fDelay	6	seconds	limit
removed.

*	BPM:
		*	Improved	the	peak	detection	algorithm	so	that	it	wouldn't	incorrectly	report	too	slow
				harmonic	beats	if	they	are	close	to	the	true	base	beat.

2.4.2	-	16/08/2008

*	BASS_FX:
		*	Some	processing	functions	optimized	for	speed.

*	DSP:
		*	Added	new	compressor	effect	BASS_FX_BFX_COMPRESSOR2
				For	compatibility	issues	new	compressor	will	replace	old	one	in	version	2.5

2.4.1	-	28/06/2008

*	Tempo:
		*	Fixed	a	bug	in	BASS_ChannelGetPosition,	that	would	return	a
				lower	position	than	it	should	with	a	decoding	tempo	stream.

*	BPM:
		*	Multi-channel	support.
		*	Fixed	a	bug	in	BASS_FX_BPM_DecodeGet,	that	would	return	0	if	using
				the	same	handle	and	endSec	for	both	Callback	and	Decode	BPM.

2.4.0.2	-	17/04/2008

*	BPM:	fixed	another	bug	in	BPMPROC
*	Tempo:	fixed	a	bug	not	allowing	changing	BASS_ATTRIB_TEMPO_OPTION_xxx

2.4.0.1	-	06/04/2008

*	BPM:	fixed	a	bug	in	BPMPROC

2.4	-	02/04/2008

*	BASS_FX:
		*	Updated	to	BASS	2.4
		*	More	integrated	with	BASS	plug-in	system.
		*	Added	a	function	BASS_FX_GetVersion
		*	BASS_FX_CONFIG_DSP_RESET	*removed*
		*	Error	codes	and	names	changed
		*	To	be	able	to	link	with	BASS_FX,	you'll	have	to	call	BASS_FX_GetVersion	function
				(or	any	other	function	from	BASS_FX.DLL)	or	load	it	dynamically	using	LoadLibrary("bass_fx.dll")
		*	Win64	version	introduced	(package	bass_fx24-x64.zip)

*	DSP:
		*	Effect	names,	structure	names,	flags	and	chain	order	are	changed
					e.g:	BASS_FX_DSPFX_PHASER	->	BASS_FX_BFX_PHASER
										BASS_FX_DSPPHASER	->	BASS_BFX_PHASER
		*	All	functions	integrated	with	BASS	FX	functions	and	the	usage	is	the	same
				as	with	BASS	DX8/DMO	effects:

					BASS_FX_DSP_Set	*removed*	(use	BASS_ChannelSetFX)
					BASS_FX_DSP_SetParameters	*removed*	(use	BASS_FXSetParameters)
					BASS_FX_DSP_GetParameters	*removed*	(use	BASS_FXGetParameters)
					BASS_FX_DSP_Reset	*removed*	(use	BASS_FXReset)
					BASS_FX_DSP_Remove	*removed*	(use	BASS_ChannelRemoveFX)

		*	It	is	possible	now	to	apply	an	effect	more	than	once	on	the	same	channel.
		*	BASS_FX_BFX_SWAP	*removed*	(use	BASS_FX_BFX_MIX)
		*	BASS_FX_BFX_S2M:
					Updated	to	support	multi-channel	and	renamed	to	BASS_FX_BFX_MIX
					BASS_FX_BFX_MIX	supports	Swap,	remap	and	mixing	channels	together.
		*	BASS_FX_BFX_PEAKEQ:
				*	fFreq	param	*removed*
						(use	'oldcenter*freq/oldfreq'	to	update	the	fCenter	after	changing	the	Samplerate)
				*	Max	fCenter	updated	from	less	than	1/3	to	1/2	of	info.freq
				*	Take	a	look	at	DSP	example	to	know	how	to	increase	the	number	of	bands

		*	BASS_FX_BFX_LPF:
				*	fFreq	param	*removed*	(adjust	fCutOffFreq	param	when	needed)

*	Tempo:
		*	Support	for	all	source	sync	types
		*	Funtions	integrated	with	BASS	attribute	system	(BASS_ChannelSet/GetAttribute):
					BASS_FX_TempoSet	*removed*
					BASS_FX_TempoGet	*removed*
					BASS_FX_TempoSetOption	*removed*
					BASS_FX_TempoGetOption	*removed*

				*	Tempo	attributes:
							BASS_ATTRIB_TEMPO
							BASS_ATTRIB_TEMPO_PITCH
							BASS_ATTRIB_TEMPO_FREQ

				*	Option	attributes:
							BASS_ATTRIB_TEMPO_OPTION_USE_AA_FILTER
							BASS_ATTRIB_TEMPO_OPTION_AA_FILTER_LENGTH
							BASS_ATTRIB_TEMPO_OPTION_USE_QUICKALGO
							BASS_ATTRIB_TEMPO_OPTION_SEQUENCE_MS
							BASS_ATTRIB_TEMPO_OPTION_SEEKWINDOW_MS
							BASS_ATTRIB_TEMPO_OPTION_OVERLAP_MS

*	Reverse:
		*	Support	for	all	source	sync	types
		*	Funtions	integrated	with	BASS	attribute	system	(BASS_ChannelSet/GetAttribute):
					BASS_FX_ReverseSetDirection	*removed*
					BASS_FX_ReverseGetDirection	*removed*

				*	Reverse	attribute:
							BASS_ATTRIB_REVERSE_DIR

*	BPM:
		*	Seconds	changed	from	"float"	to	"double"
		*	Callback	"user"	parameters	changed	to	pointers:	BASS_FX_BPM_CallbackSet	/	BPMPROC
		*	Translation	names	changed:

					BASS_FX_BPM_X2							->	BASS_FX_BPM_TRAN_X2
					BASS_FX_BPM_2FREQ				->	BASS_FX_BPM_TRAN_2FREQ
					BASS_FX_BPM_FREQ2				->	BASS_FX_BPM_TRAN_FREQ2
					BASS_FX_BPM_2PERCENT	->	BASS_FX_BPM_TRAN_2PERCENT
					BASS_FX_BPM_PERCENT2	->	BASS_FX_BPM_TRAN_PERCENT2

*	Beat:
		*	Multi-channel	support
		*	Seconds	changed	from	"float"	to	"double"
		*	"cutofffreq"	param	renamed	to	"centerfreq"
		*	Callback	"user"	parameters	changed	to	pointers:
					BASS_FX_BPM_BeatCallbackSet	/	BPMBEATPROC
					BASS_FX_BPM_BeatDecodeGet	/	BPMBEATPROC

2.3.0.4	-	30/10/07

*	DSP:
		*	Fixed:	a	bug	in	BASS_FX_DSPFX_DAMP	to	avoid	trying	to	amplify	silence	data
		*	Fixed:	a	bug	in	BASS_FX_DSPFX_PEAKEQ	to	check	illegal	Center	Frequencies	(fCenter)

*	Tempo:
		*	Fixed:	a	bug	that	would	prevent	using	a	BASS_SYNC_MESSAGE	sync
		*	Fixed:	a	bug	that	would	prevent	triggering	a	BASS_SYNC_END	sync

*	Reverse:
		*	Fixed:	a	bug	that	would	prevent	using	a	BASS_SYNC_MESSAGE	sync

2.3.0.3	-	08/08/2007

*	BASS_FX:
		*	Fixed:	a	DEP	crashing	bug.
		*	Added:	a	Config	option,	to	reset	DSPs,	BPM/Beat	Callbacks	when	position	is	set.
											use	BASS_FX_CONFIG_DSP_RESET	with	BASS_Set/GetConfig	function.

*	DSP:
		*	Fixed:	bugs	in	functions:
						BASS_FX_DSP_Set	and	BASS_FX_DSP_Remove

		*	Fixed:	bugs	in	DSP	effects:
						BASS_FX_DSPFX_PEAKEQ
						BASS_FX_DSPFX_ECHO
						BASS_FX_DSPFX_ECHO2
						BASS_FX_DSPFX_REVERB
						BASS_FX_DSPFX_VOLUME
						BASS_FX_DSPFX_DAMP

		*	Removed:	DSPFX.TXT	file,	please	check	the	docs	for	DSP	effects/DSP	Values

*	TEMPO:
		*	Fixed:	a	floating-point	bug	when	calling	BASS_FX_TempoCreate
		*	Fixed:	POS	SYNCs	to	be	more	accurate

*	BPM:
		*	Fixed:	a	bug	in	BASS_FX_BPM_Free	and	BASS_FX_BPM_BeatFree
											that	would	sometimes	release	the	source	channnel	as	well
											without	using	BASS_FX_FREESOURCE	flag.

*	REVERSE:
		*	Fixed:	a	bug	that,	if	you	would	set	the	direction	to	forward	before	starting	playback,
											the	position	would	keep	counting	from	the	end.
		*	Updated:	When	reaching	the	end	of	the	stream,	changing	the	direction	will	now
													reset	the	stream,	so	that	it	can	be	played	again.
		*	Fixed:	POS	SYNCs	to	be	more	accurate

2.3.0.2	-	09/04/2007

*	BEAT:
		*	Added	Beat	position	detection	for	decoded	streams
					BASS_FX_BPM_BeatDecodeGet

		*	Added	new	functions:
					BASS_FX_BPM_BeatCallbackReset
					BASS_FX_BPM_BeatSetParameters
					BASS_FX_BPM_BeatGetParameters

*	REVERSE:
		*	Multi-channel	support
		*	Added	new	feature	to	change	playing	direction	from	Reverse	to	Forward	and	vice-versa
					BASS_FX_ReverseSetDirection
					BASS_FX_ReverseGetDirection

*	BPM:
		*	Fixed:	one	more	critical	bug	in	BPM	functions

*	DSP:
		*	BASS_FX_DSPFX_PEAKEQ:
					Improved	effect	and	reduced	CPU	usage
					Fixed:	a	bug,	preventing	using	fQ	if	fBandwidth	<	0.1f
					Changed:	fQ	min	limit	to	0.1f

		*	BASS_FX_DSPFX_ECHO3:
					Fixed:	a	bug	in	BASS_FX_DSP_GetParameters,	that	would	return	a	wrong	lChannel	value

		*	Error	code:	BASS_FX_ERROR_STEREO	*removed*	(replaced	with	BASS_ERROR_FORMAT)

*	TEMPO:
		*	Setting	functions	name	changed:
					BASS_FX_TempoSettingSet	->	BASS_FX_TempoSetOption
					BASS_FX_TempoSettingGet	->	BASS_FX_TempoGetOption

					BASS_FX_TEMPO_SETTING_xxx	->	BASS_FX_TEMPO_OPTION_xxx

2.3.0.1	-	08/06/2006

*	New	in	BASS_FX:
		*	Added	a	valid	parameters	check	for	all	functions.

*	BPM:
		*	A	little	improved	Beat	position	trigger.
		*	Changing	buffer	content	won't	affect	the	BPM/Beat	detection	anymore.
		*	BASS_Stream/MusicFree	will	free	the	callback	BPM/Beat	as	well.

*	BASS_FX.CHM:
		*	Added	a	very	simple	example	to	BPMBEATPROC	callback,	showing	how	to
				count	the	BPM	with	just	2	beats.

*	DSP:
		*	Fixed	small	bugs	in	BASS_FX_DSPFX_VOLUME	effect.

2.3	-	21/05/2006

*	New	in	BASS_FX:
		*	This	version	has	some	API	changes.
		*	You'll	have	to	recompile	your	application	to	use	this	version.
		*	=====
					If	you	like	BASS_FX	or	use	it	in	a	commercial/shareware	products,
					then	you	may	wish	to	make	a	donation	to	support	its	development	(see	the	docs	for	info).
				=====

*	Tempo:
		*	Fixed	a	bug,	that	wouldn't	clear	buffers	if	a	source	channel	isn't	seekable.
		*	Removed	flags:
					BASS_FX_TEMPO_QUICKALGO
					BASS_FX_TEMPO_NO_AAFILTER

				you	can	set	these	using	a	function	below,	in	real-time.

		*	Added	2	new	functions:
					BASS_FX_TempoSettingSet
					BASS_FX_TempoSettingGet

				with	options	(check	the	docs	for	more	info	about	using	them):

					BASS_FX_TEMPO_SETTING_USE_AA_FILTER
					BASS_FX_TEMPO_SETTING_AA_FILTER_LENGTH
					BASS_FX_TEMPO_SETTING_USE_QUICKALGO
					BASS_FX_TEMPO_SETTING_SEQUENCE_MS
					BASS_FX_TEMPO_SETTING_SEEKWINDOW_MS
					BASS_FX_TEMPO_SETTING_OVERLAP_MS

*	DSP:
		*	Added	new	struct:
					BASS_FX_DSPSWAP

		*	Added	multi-channel	support	and	a	per	channel	control	with	flags/macro:
				each	effect	with	a	per	channel	control	has	a	new	"lChannel"	param
				(if	you	won't	set	the	new	param,	then	the	effect	will	be	affected	on	all	channels	as	by	default)

					BASS_FX_DSPFX_SWAP		->	it's	now	possible	not	only	swap,	but	remap	as	well.
					BASS_FX_DSPFX_FLANGER
					BASS_FX_DSPFX_VOLUME	->	it's	now	needed	to	set	a	global	volume,	before	boosting.
					BASS_FX_DSPFX_PEAKEQ
					BASS_FX_DSPFX_LPF
					BASS_FX_DSPFX_DAMP
					BASS_FX_DSPFX_AUTOWAH
					BASS_FX_DSPFX_ECHO2
					BASS_FX_DSPFX_PHASER
					BASS_FX_DSPFX_ECHO3
					BASS_FX_DSPFX_CHORUS
					BASS_FX_DSPFX_APF
					BASS_FX_DSPFX_COMPRESSOR
					BASS_FX_DSPFX_DISTORTION

		*	Channel	flags	(check	the	docs	for	channels	order):
					BASS_FX_DSP_CHANALL
					BASS_FX_DSP_CHANNONE
					BASS_FX_DSP_CHAN1	..	BASS_FX_DSP_CHAN8

				*	If	you	have	more	than	8	channels	(7.1),	use	this	macro.
						BASS_FX_DSP_CHANNEL_N(n)

		*	Added	a	DENORMAL	check	for	all	effects.
		*	BASS_FX_DSP_Reset	is	updated	for	all	effects.

*	BPM:
		*	Added	Real-Time	Beat	Position	Trigger:
					BASS_FX_BPM_BeatCallbackSet
					BASS_FX_BPM_BeatFree

		*	BASS_FX_ERROR_BPMX2	error	code	*removed*	and	*replaced*	with	BASS_ERROR_ALREADY
		*	Fixed	bugs:
				*	Serious	memory-leak	is	fixed	using	both	options.
				*	A	bug	that	would	free	resources	before	the	detecting	process	is	finished.
				*	A	bug	that	would	still	continue	to	detect	previous	data	even	if	changing	file	to
						scan,	using	a	BASS_FX_BPM_BKGRND	flag.
				*	A	bug	that	would	still	return	BPMs	out	of	MIN/MAX	range	if	using	BASS_FX_BPM_MULT2	flag.

2.2.0.1	-	30/11/2005

*	New	in	BASS_FX:
		*	8-bit	support.
		*	Added	more	DSP	effect	information	to	BASS_FX.CHM

*	DSP:
		*	Automatically	free	DSP	resources	when	freeing	the	channel.
		*	Multi-channel	support	started	with:
				*	BASS_FX_DSPFX_ECHO2
				*	BASS_FX_DSPFX_ECHO3
				+	more	effects	will	be	updated	soon!	:)
		*	Some	bugs	fixed.

*	BPM:
		*	Fixed	a	bug	that	would	return	BPMs	out	of	MIN/MAX	range	if
				using	BASS_FX_BPM_MULT2	flag.

*	MacOSX:
		*	Samples	added.

2.2	-	03/10/2005

*	New	in	BASS_FX:
		*	Removed	all	DSP	GPL	code.
		*	BASS_FX	is	now	fully	useable	in	commercial	software,	as	long	as
				credit	is	given.
		*	BASS_FX_GetVersion()	*removed*	(won't	load	if	BASS	2.2	isn't	present)
		*	BASS_FX_ERROR_MODLEN	*removed*	(replaced	with	BASS_ERROR_NOTAVAIL)
		*	BASS_FX_ERROR_16BIT	*removed*	(no	16-bit	only	effects	are	left)
		*	Multi_FX	example	*removed*
		*	MacOSX	port	introduced

*	DSP:
		*	Removed	GPL	FX:
				*	BASS_FX_DSPFX_FLANGER2	&	BASS_FX_DSPFX_CUT
						-	because	of	that	the	DSP	chain	is	changed!

*	Reverse:
		*	MOD	playback	is	now	supported	if	using	BASS_MUSIC_PRESCAN	flag.

*	MacOSX	examples	will	follow	this	week.

2.1.0.2	-	07/05/2005

*	DSP:
		*	Chorus:	fixed	a	bug,	that	would	convert	stereo	to	mono.
		*	Low	Pass	Filter:	fixed	a	bug,	that	would	convert	stereo	to	mono.
		*	DynamicAMP:	another	bug	fix,	that	would	sometimes	cause	a	total	silence.
		+	Added:
				*	A	new	effect:	Distortion
				*	DSPFX.TXT	-	a	values	to	use	with	some	effects,	to	achieve	different
																		effect	with	the	same	one	(not	using	other	effect/s)	:)

2.1.0.1	-	22/02/2005

*	New	in	BASS_FX:
		+	Added:
				*	File	version	info.
				*	Documentation	file	BASS_FX.CHM.

*	DSP:
		*	Another	DynamicAMP	bug	fix.
		*	Added	a	new	effect:	Compressor

*	BPM:
		*	Added:	"User"	param	to	Callback	BPM	functions.

2.1	-	27/12/2004	-	Happy	New	Year	;)

*	New	in	BASS_FX:
		*	No	more	"alpha/beta"	releases!	:)
		*	Updated	to	BASS	2.1	add-on	APIs,	coz	of	that	BASS_FX	is	not	compatible	with	any	
				previous	versions.	You'll	have	to	make	some	changes	in	your	project.
		*	Full	32-bit	floating-point	support.
		*	Sync	support,	"Sync	&	Tempo"	example	*removed*
		*	A	lot	of	functions/error	codes	removed	and	integrated	with	BASS	functions/error	codes.
		*	New	flag:	BASS_FX_FREESOURCE	if	you	want	BASS_FX	to	free	the	source	handle	as	well.
		*	New	error	code:	BASS_FX_ERROR_16BIT	for	Flanger	2.
		*	BASS_FX_ErrorGetCode	*removed*	(use	BASS_ErrorGetCode)
		*	BASS_FX_Free	*removed*

*	Tempo:
		*	BASS_FX_TempoGetResampledHandle	*removed*
		*	BASS_FX_TempoStopAndFlush	*removed*
		*	BASS_FX_TempoFree	*removed*	(use	BASS_StreamFree	for	music	as	well)
		*	BASS_FX_TempoGetApproxSeconds	*removed*	(use	BASS_FX_TempoGetRateRatio	to	calculate)
		*	BASS_FX_TempoGetApproxPercents	*removed*	(use	BASS_FX_TempoGetRateRatio	to	calculate)
		+	New	functions:

					BASS_FX_TempoGetSource	(get	the	source	handle	when	needed)
					BASS_FX_TempoGetRateRatio
		+	New	in	flags:
					BASS_FX_TEMPO_QUICKSEEK	*renamed*	to	BASS_FX_TEMPO_QUICKALGO
					BASS_FX_TEMPO_NO_AAFILTER	*added*
		*	3DNow!	&	SSE	support.

*	Reverse:
		*	BASS_FX_ReverseGetReversedHandle	*removed*
		*	BASS_FX_ReverseSetPosition	*removed*	(use	BASS_ChannelSetPosition)
		*	BASS_FX_ReverseFree	*removed*	(use	BASS_StreamFree)
		*	BASS_FX_ReverseCreate:	"decode"	param	*removed*	(use	BASS_STREAM_DECODE	flag)
		*	New	function:	BASS_FX_ReverseGetSource	(get	the	source	handle	when	needed)

*	BPM:
		+	These	functions	are	combined	to	one:	BASS_FX_BPM_Translate
					*	BASS_FX_BPM_X2	*removed*
					*	BASS_FX_BPM_Frequency2BPM	*removed*
					*	BASS_FX_BPM_2Frequency	*removed*
					*	BASS_FX_BPM_Percents2BPM	*removed*
					*	BASS_FX_BPM_2Percents	*removed*

				+	Use	these	translation	options	with	a	function	above:
							BASS_FX_BPM_X2
							BASS_FX_BPM_2FREQ
							BASS_FX_BPM_FREQ2
							BASS_FX_BPM_2PERCENT
							BASS_FX_BPM_PERCENT2

*	DSP:
		*	Flanger	2	still	only	16-bit,	will	return	an	error	if	applied	to	32-bit.
		*	Some	DSP	effects	bug	fixed.
		+	Echo	2.1	renamed	to	Echo	3:
				*	BASS_FX_DSPFX_ECHO21	->	BASS_FX_DSPFX_ECHO3
				*	BASS_FX_DSPECHO21	->	BASS_FX_DSPECHO3
		+	New	effects	added	(more	will	come	soon!):
				.	Chorus
				.	All	Pass	Filter

2.0	"beta	2"	-	28/11/2004

*	New	in	BASS_FX:
		*	Updated	to	BASS	2.1,	just	before	releasing	the	official	BASS_FX	2.1	:)
		*	Oops...	again	BASS_FX	is	a	bit	smaller	;)

2.0	"beta	2"	-	19/10/2004

*	DSP:

		+	Updated	with	32-bit	floating-point	support:
				.	Auto	Wah
				+	Dynamic	Amplification:
						*	Fixed	bug	that	would	cause	a	sound	mute	if	there're	~20+	seconds	of	silence.
								All	parameters	changed	from	"Integer/Long"	to	"Float/Single"	and	their	names
								now	starts	with	"f:	Float/Single".

				+	Not	updated,	yet	[only	16-bit	support]:
						.	Flanger	2.0!

		+	Fixed	bugs	of:
				*	"Echo"	&	"Reverb"	effects	that	would	cause	a	noise	clicks	and	a	sound	mute.
				*	"Peaking	EQ"	that	would	cause	a	crash	with	Mono	files.

*	Reverse:
		*	32-bit	floating-point	support.

*	Tempo:
		*	Fixed	bug	that	would	cause	a	crash	if	BASS_FX_Free	would	be	called	twice.

*	WARN!NG	NOTE:
			Not	updated	effects	(Flanger	2/Tempo)	must	not	be	used	with	32-bit.
			It	will	crash	your	program	and	could	make	a	very	annoying	noise!!!
			Sometimes	could	even	crash	your	system	until	RESET!

2.0	"beta	1"	-	07/09/2004

*	Really	sorry	for	a	long	delay	with	updates!!!

*	New	in	BASS_FX:
		*	Now	supports	Windows	98/98SE	without	"msvcp60.dll"	~392KB
		*	Some	DSP	effects	updated	with	32-bit	floating-point	support.
				The	updated	effects	could	be	used	with	16-bit	&	32-bit.

*	DSP:
		+	Updated	with	32-bit	floating-point	support:
				.	Swap	Channels
				.	Rotate
				.	Echo
				.	Flanger
				.	Volume	Amplifier
				.	Peaking	EQ
				.	Reverb
				.	Low	Pass	Filter
				.	Volume	Cutter
				.	Stereo	2	Mono
				.	Echo	2.0!
				.	Phaser

				.	Echo	2.1!

				+	Not	updated,	yet	[only	16-bit	support]:
						.	Flanger	2.0!
						.	Dynamic	Amplification
						.	Auto	Wah

		*	All	parameters	that	began	with	"d:	Double"	changed	to	"f:	Float/Single",
				as	it	was	forgotten	with	last	update.

*	BPM:
		*	Updated	with	32-bit	floating-point	support.

*	WARN!NG	NOTE:
			Not	updated	effects	(DSP/Tempo/Reverse)	must	not	be	used	with	32-bit.
			It	will	crash	your	program	and	could	make	a	very	annoying	noise!!!
			Sometimes	could	even	crash	your	system	until	RESET!

*	New	in	Examples:
		*	Added:	"Sync	&	Tempo"

*	Removed:
		*	BASS_FX_ERROR_BASS20	error	code,	BASS_FX	will	show	an	error	message
				if	BASS.DLL	version	is	below	2.0	and	won't	load.

2.0	"alpha"	-	4/12/2003

*	New	in	BASS_FX:
		*	Updated	to	BASS	2.0!
		*	Version	jumpted	from	'1.2	"beta"'	to	'2.0	"alpha"',
					means	only	BASS	v2.x	is	supported!

*	DSP:
		*	Added	*priority*	param	to	BASS_FX_DSP_Set(..)	func
		*	All	*Double*	types	changed	to	*Float/Single*

*	New	in	Examples:
		*	Added	"Multi_FX"	C/C++	only.

*	VERSION	2.0	(not	"alpha")	will	support:
		*	32-bit	floating-point	including	in:	DSP,	Tempo,	BPM	&	Reverse.
		*	Multi	Channel	in	some	DSPs.
		*	Planning	to	release	till	the	end	of	this	month/year	:)

1.2	"beta"	-	30/06/2003

*	New	in	BASS_FX:

		*	Not	compatible	with	any	previous	BASS_FX	versions,
					you'll	have	to	make	changes	&	recompile	your
					application	to	use	with	this	version!

		+	Tempo,	Pitch	Scaling	&	Samplerate	changers	(3	at	once	;))
				+	Functions:
						*	BASS_FX_TempoCreate
						*	BASS_FX_TempoSet
						*	BASS_FX_TempoGet
						*	BASS_FX_TempoGetApproxSeconds
						*	BASS_FX_TempoGetApproxPercents
						*	BASS_FX_TempoGetResampledHandle
						*	BASS_FX_TempoStopAndFlush
						*	BASS_FX_TempoFree

		+	Two	BPM	Detection	options:
				+	Option	1	-	Get	BPM	from	a	Decoding	channel:
						+	Function
								*	BASS_FX_BPM_DecodeGet

				+	Option	2	-	Get	BPM	by	period	of	time	of	any	handle	-	in	Real-Time:
						+	Functions
								*	BASS_FX_BPM_CallbackSet
								*	BASS_FX_BPM_CallbackReset

				+	Functions	to	use	with	both	options:
								*	BASS_FX_BPM_X2
								*	BASS_FX_BPM_Frequency2BPM
								*	BASS_FX_BPM_2Frequency
								*	BASS_FX_BPM_Percents2BPM
								*	BASS_FX_BPM_2Percents
	*	BASS_FX_BPM_Free

*	New	in	DSP:
		*	All	DSP	effects	names	has	changed.
		*	The	index	of	1st	DSP	effect	starts	from	0	and
				not	from	1	as	it	was	before.

		+	-=	DSP	FXs	=-	added:
						*	Dynamic	Amplification
						*	Stereo	2	Mono
						*	Auto	Wah
						*	Echo	v2.0!
						*	Phaser
						*	Echo	v2.1!

		+	Equalizer:
				*	Added	*Q*	parameter.

				*	Fixed	some	bugs	:)
		+	Flanger	v2.0!
				*	fixed	bug	(crashed	with	Mono	files)

*	New	in	Functions:
		+	Added:
				*	BASS_FX_ErrorGetCode
		*	Always	check	for	any	Function	changes.

*	Removed	all	PITCH	functions:
		*	BASS_FX_PitchCreate
		*	BASS_FX_PitchSet
		*	BASS_FX_PitchGet
		*	BASS_FX_PitchGetResampledHandle
		*	BASS_FX_PitchStopAndFlush
		*	BASS_FX_PitchFree

*	New	in	Examples:
		*	Added:	C/C++,	Delphi	&	VB

1.1	-	02/10/2002

*	New	in	BASS_FX:
		*	Now	supports	-	16/8-Bit	Stereo/Mono.
		*	Support	for	Multiple	BASS	instances.
		*	A	lot	of	BUGs	fixed	=)

*	New	in	DSP:
		+	-=	DSP	FXs	=-	added:
						*	Low	Pass	Filter
						*	Cutter
						*	Flanger	v2.0!

		+	Equalizer:	
				*	Algorithm	optimized	to	BiQuad.
				*	Added	a	new	parameter	*eqBandwidth*

*	New	in	Reverse:
		*	Now	you	can	add	DX8	effects	+	change	Pitch
				with	BASS_FX_Pitch...	(check	the	*Reverse*	example).

*	New	in	functions:
		+	Added:
				*	BASS_FX_DSP_Reset
				*	BASS_FX_Free
		*	Always	check	for	any	Function	changes.

*	Added:
		*	Delphi	APIs	+	Pitch	Example.
		*	C/C++	Examples	+	corrected	BASS_FX.LIB	file	;)

*	Switched	from	MFC	to	Win32	DLL	[MFC42.DLL	~1MB	doesn't	required]

1.0	-	14/06/2002

*	First	release

Credits
=======
*	Thanks	a	lot	to	-	Ian	Luck	@	www.un4seen.com	-	for:	
			+	BASS	-	Best	Available	Sound	System!
			+	DSP	source	codes	for	Echo,	Dynamic	Amplification,	Compressor	and	Volume	Envelope
			+	Reverse	playback	source	code
			+	SoundTouch	algorithms	implementation	for	Tempo/BPM
			+	Beat	position	algorithm	fixes
			+	8/16/32-bit	support
			+	Fixed-point	support
			+	Multi-channel	support
			+	Add-on	support
			+	MacOSX	support
			+	Android	support
*	Ian,	you're	the	best	programmer	in	the	whole	world!

Credits	-	API/Sample	Contributors
=================================
Delphi	-	Roger	Johansson,	Alex	Graham	(bigjim),	DJ-Chris
BASS_FX.CHM	-	Thijs	van	Vliet

Bug	reports,	Suggestions,	Comments,	Enquiries,	etc...
===
If	you	have	any	of	the	aforementioned	please	check	the	BASS	forum	(at
the	website)...	If	you	can't	find	an	answer	there,	you	can	email:

								bass_fx@jobnik.org

System	-	Desktop/PC
===================

		BASS_FX.DLL	-	Windows	-	developed	and	tested	using:

http://www.un4seen.com
mailto:bass_fx@jobnik.org

		System					:	Intel	Core	i7	Haswell	4770	3.9GHz	8MB,	16GB	DDR3	1600MHz	CL9
															Intel	Core	i7	860	2.8GHz	8MB,	4GB	DDR3	1600MHz	CL7
															VMware	10

		OS									:	Microsoft	Windows:
																x86:	8,	7	Ultimate,	Vista	Ultimate,	XP	Pro	SP3,	2000	Pro	SP4	&	98
																x64:	10	Pro,	8.1	Pro,	7	Enterprise/Ultimate,	Vista	Ultimate	SP1,	XP	Pro	SP1

		Sound	Card	:	RealTek	HD	7.1	(onboard)

		Compiler			:	x86:	Microsoft	Visual	C++	v6.0	SP5	with	a	Processor	Pack
															x64:	Microsoft	Visual	C++	2005	v8.0

		DirectX				:	12,	11,	10,	9.0c	and	7.0
		BASS.DLL			:	2.4.13.8

		--
		LIBBASS_FX.DYLIB	-	OSX	-	developed	and	tested	using:
		--
		System								:	VMware	10

		OS												:	Apple	Macintosh	OS	X:
																			Intel	Mac	:	10.9,	10.8.2,	10.5.8	and	10.4.10
																			PowerPC			:	10.3.9	and	10.4

		Compiler						:	GCC	4.0.1
		IDE											:	XCode	3.1.4
		LIBBASS.DYLIB	:	2.4.13.8

		LIBBASS_FX.SO	-	Linux	-	developed	and	tested	using:

		System					:	VMware	10

		OS									:	Ubuntu	Desktop	x86	and	x64	v8.04

		Compiler			:	x86	and	x64:	GCC	4.2.4	(g++)

		IDE								:	Code::Blocks	v8.02
		LIBBASS.SO	:	2.4.13.8

System	-	Mobile/Portable
========================
		--

		LIBBASS_FX.A	-	iOS	-	developed	and	tested	using:
		--
		System				:	VMware	10

		OS								:	Apple	Macintosh	OS	X:	Intel	Mac	10.9

		Compiler		:	GCC	4.2	/	LLVM
		IDE							:	XCode	3.1.4	/	XCode	5.0.2	for	armv7s/arm64	architectures
		LIBBASS.A	:	2.4.13.8

		LIBBASS_FX.SO	-	Android	-	developed	and	tested	using:

		System					:	Samsung	Galaxy	S7	Edge
															LG	G4-H815
															Samsung	Galaxy	S2	GT-I9100
															Android	Virtual	Device

		OS									:	Android	Lollipop	5.1
															Android	JB	4.1.1/2
															Android	ICS	4.0.3/4
															Android	GB	2.3.3

		Compiler			:	Android	NDK	R10:	GCC	4.4.8/9

		IDE								:	Eclipse
		LIBBASS.SO	:	2.4.13.8

		BASS_FX.DLL	-	Windows	Store/Phone	-	developed	and	tested	using:

		Compiler			:	Microsoft	Visual	C++	2015	v14.0
		BASS.DLL			:	2.4.13.8

		BASS_FX.DLL	-	WinCE	-	developed	and	tested	using:

		System			:	GPS	Device	with	CPU	@	372MHz
													Pocket	PC	2003	SE	Emulator

		OS							:	Windows	CE	5
													Windows	Mobile	2003	SE	version	4.21.1088

		Compiler	:	Microsoft	Visual	C++	2005	v8.0
		BASS.DLL	:	2.4.13.8

		LIBBASS_FX.SO	-	Linux	ARM	-	developed	and	tested	using:

		System					:	VMware	8

		OS									:	Ubuntu	Desktop	x86	v11.10

		Compiler			:	GCC:	(crosstool-NG	1.15.2)	4.7.1	20120402	(prerelease)

		IDE								:	Code::Blocks	v8.02
		LIBBASS.SO	:	2.4.13.8

More	Credits	;)
===============
	*		BiQuad	filters
(c)	Robert	Bristow-JohnsonD
	@		http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt

	*		Peaking	Equalizer	(BiQuad	filter)
				The	main	source	is	based	on	-	Manu	Webber's	-	source	code.
	@		http://www.un4seen.com/forum/?topic=1246.msg6484#msg6484

	*		Tempo/Pitch/Rate/BPM	[SoundTouch	v2.0.0]
(c)	Copyright	(c)	2002-2017	Olli	Parviainen
	@		http://www.surina.net/soundtouch
	L		LGPL	license

	*		Auto	Wah,	Chorus,	Distortion,	Echo	(some	parts	from	1st	algorithm)	and	Phaser
(c)	Copyright	(c)	2000	Aleksey	Smoli
	@		http://st.karelia.ru/~smlalx				(offline)

	*		Freeverb
(c)	Copyright	(c)	2000	Jezar	at	Dreampoint
	@		http://www.dreampoint.co.uk
	L		Public	domain

	*		Pitch	shifting	using	FFT	[smbPitchShift	v1.2]
(c)	Copyright	(c)	1999-2009	Stephan	M.	Bernsee	<smb	[AT]	dspdimension	[DOT]	com>
	@		http://www.dspdimension.com/admin/pitch-shifting-using-the-ft/
	L		WOL	license

	*	BASS_FX	is	fully	useable	in	commercial	software,	as	long	as	credit	is	given.

*	BASS_FX.TXT	&	File_ID.Diz	are	better	viewed	in	DOS	mode	OR	with	-	Courier	-	font.

http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt
http://www.un4seen.com/forum/?topic=1246.msg6484#msg6484
http://www.surina.net/soundtouch
http://st.karelia.ru/~smlalx
http://www.dreampoint.co.uk
http://www.dspdimension.com/admin/pitch-shifting-using-the-ft/

Donate
There	is	no	charge	for	using	BASS_FX,	but	if	you	like	BASS_FX	or	are	using
BASS_FX	in	Commercial/Shareware	products,	then	you	may	wish	to	make	a
donation	to	support	its	development.
	
Donations	can	be	made	quickly	and	securely	via	PayPal,	by	clicking	on	this
button:

	

	

Or	to	my	paypal	address:	admin@jobnik.org

Thank	you!

mailto:admin@jobnik.org

BASS_FX_GetVersion

Retrieves	the	version	of	BASS_FX	that	is	loaded.

DWORD	BASS_FX_GetVersion();

Return	value
The	BASS_FX	version.	For	example,	0x02040103	(hex),	would	be	version
2.4.1.3

Remarks
There	is	no	guarantee	that	a	previous	or	future	version	of	BASS_FX	supports	all
the	BASS	or	BASS_FX		functions	that	you	are	using,	so	you	should	always	use
this	function	to	make	sure	the	correct	version	is	loaded.	It	is	safe	to	assume	that
future	revisions	(indicated	in	the	LOWORD)	will	be	fully	compatible.

BASS_FX	version	should	be	identical	to	BASS	version,	only	the	revision
changes	on	updates.

The	BASS	API	includes	a	BASSVERSION	constant,	which	can	be	used	to
check	that	the	loaded	BASS.DLL	and	BASS_FX.DLL	matches	the	API	version
used,	ignoring	revisions.

Example
Check	that	the	correct	BASS_FX	version	is	loaded,	ignoring	the	revision.

if	(HIWORD(BASS_FX_GetVersion())!=BASSVERSION)	{
				//	incorrect	version	loaded!
}

Check	that	revision	1.0	(or	above)	of	the	correct	BASS_FX	version	is	loaded.

if	(HIWORD(BASS_FX_GetVersion())!=BASSVERSION	//	check	the	main
version

				||	LOWORD(BASS_FX_GetVersion())<0x100)	{	//	check	the	revision
				//	incorrect	version	loaded!
}

BASS_ChannelSetFX

Sets	up	a	DSP	effect	on	a	stream,	MOD	music,	or	recording	channel.

HFX	BASS_ChannelSetFX(
				DWORD	handle,
				DWORD	type,
				int	priority
);

Parameters
handle The	channel	handle...	a	HSTREAM,	HMUSIC,	or	HRECORD
type One	of	the	following	types	of	effect:

		BASS_FX_BFX_ROTATE A	channels	volume
ping-pong

multi-
channel

		BASS_FX_BFX_VOLUME Volume multi-
channel

		BASS_FX_BFX_PEAKEQ Peaking	Equalizer multi-
channel

		BASS_FX_BFX_MIX Swap,	remap	and	mix
channels

multi-
channel

		BASS_FX_BFX_DAMP Dynamic
Amplification

multi-
channel

		BASS_FX_BFX_AUTOWAH Auto	Wah multi-
channel

		BASS_FX_BFX_PHASER Phaser multi-
channel

		BASS_FX_BFX_CHORUS Chorus/Flanger multi-
channel

		BASS_FX_BFX_DISTORTION Distortion multi-
channel

		BASS_FX_BFX_COMPRESSOR2 Compressor multi-
channel

		BASS_FX_BFX_VOLUME_ENV Volume	envelope multi-

channel
		BASS_FX_BFX_BQF BiQuad	filters multi-

channel
		BASS_FX_BFX_ECHO4 Echo/Reverb multi-

channel
		BASS_FX_BFX_PITCHSHIFT Pitch	shift	using	FFT multi-

channel
		BASS_FX_BFX_FREEVERB Reverb	using

"Freeverb"	algorithm
multi-
channel

priority The	priority	of	the	new	DSP,	which	determines	its	position	in	the
DSP	chain.	DSPs	with	higher	priority	are	called	before	those	with
lower	priority

Return	value
If	successful,	then	the	new	effect's	handle	is	returned,	else	0	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

Error	codes
BASS_ERROR_HANDLEhandle	is	not	a	valid	channel

BASS_ERROR_ILLTYPE type	is	invalid.	Note	BASS_FX	must	be	loaded
before	these	effects	can	be	used	(call
BASS_FX_GetVersion	on	project	load).

BASS_ERROR_FORMATThe	selected	effect	could	be	applied	only	on	stereo
or	mono	handle

BASS_ChannelRemoveFX,	BASS_FXSetParameters,	BASS_FXGetParameters,
BASS_FXReset

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

BASS_ChannelRemoveFX

Removes	a	DSP	effect	on	a	stream,	MOD	music,	or	recording	channel.

BOOL	BASS_ChannelRemoveFX(
				DWORD	handle,
				HFX	fx
);

Parameters
handle The	channel	handle...	a	HSTREAM,	HMUSIC,	or	HRECORD

fx Handle	of	the	effect	to	remove	from	the	channel

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

Error	codes
BASS_ERROR_HANDLE At	least	one	of	handle	and	fx	is	not	valid
BASS_ERROR_ILLPARAMAn	illegal	parameter	was	specified

See	also
BASS_ChannelSetFX,	BASS_FXSetParameters,	BASS_FXGetParameters,
BASS_FXReset

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

BASS_FXSetParameters

Sets	the	parameters	of	an	effect.

BOOL	BASS_FXSetParameters(
				HFX	handle,
				void	*params
);

Parameters
handle The	effect	handle.

params Pointer	to	the	parameters	structure.	One	of:
BASS_BFX_ROTATE
BASS_BFX_VOLUME
BASS_BFX_PEAKEQ
BASS_BFX_MIX
BASS_BFX_DAMP
BASS_BFX_AUTOWAH
BASS_BFX_PHASER
BASS_BFX_CHORUS
BASS_BFX_DISTORTION
BASS_BFX_COMPRESSOR2
BASS_BFX_VOLUME_ENV
BASS_BFX_BQF
BASS_BFX_ECHO4
BASS_FX_BFX_PITCHSHIFT
BASS_FX_BFX_FREEVERB

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

Error	codes
BASS_ERROR_HANDLE The	handle	is	invalid

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

BASS_ERROR_ILLPARAMOne	or	more	of	the	parameters	are	invalid,	make
sure	all	the	values	are	within	the	valid	ranges

See	also
BASS_ChannelSetFX,	BASS_ChannelRemoveFX,	BASS_FXGetParameters,
BASS_FXReset

BASS_FXGetParameters

Retrieves	the	parameters	of	an	effect.

BOOL	BASS_FXGetParameters(
				HFX	handle,
				void	*params
);

Parameters
handle The	effect	handle.

params Pointer	to	the	parameters	structure	to	fill.	Depending	on	the	type	of
effect,	the	parameters	returned	will	be	one	of:
BASS_BFX_ROTATE	
BASS_BFX_VOLUME
BASS_BFX_PEAKEQ
BASS_BFX_MIX	
BASS_BFX_DAMP	
BASS_BFX_AUTOWAH	
BASS_BFX_PHASER
BASS_BFX_CHORUS	
BASS_BFX_DISTORTION
BASS_BFX_COMPRESSOR2
BASS_BFX_VOLUME_ENV	
BASS_BFX_BQF	
BASS_BFX_ECHO4
BASS_FX_BFX_PITCHSHIFT	
BASS_FX_BFX_FREEVERB

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

Error	codes

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

BASS_ERROR_HANDLE The	handle	is	invalid
BASS_ERROR_ILLPARAMOne	or	more	of	the	parameters	are	invalid,	make

sure	all	the	values	are	within	the	valid	ranges

See	also
BASS_ChannelSetFX,	BASS_ChannelRemoveFX,	BASS_FXSetParameters,
BASS_FXReset

BASS_FXReset

Resets	the	state	of	an	effect	or	all	effects	on	a	channel.

BOOL	BASS_FXReset(
				DWORD	handle
);

Parameters
handle The	effect	or	channel	handle...	a	HFX,	HSTREAM,	HMUSIC,	or

HRECORD

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

Remarks
This	function	flushes	the	internal	buffers	of	the	effect(s).	Effects	are
automatically	reset	by	BASS_ChannelSetPosition,	except	when	called	from	a
"mixtime"	SYNCPROC	.

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid
BASS_ERROR_ILLPARAMAn	illegal

parameter	was
specified

See	also
BASS_ChannelSetFX,	BASS_ChannelRemoveFX,	BASS_FXSetParameters,
BASS_FXGetParameters

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetPosition.html
mk:@MSITStore:bass.chm::/SYNCPROC.html

Multi-channel

Multi-channel	is	supported	in	next	effects:

	BASS_FX_BFX_ROTATE
	BASS_FX_BFX_VOLUME
	BASS_FX_BFX_PEAKEQ
	BASS_FX_BFX_MIX
	BASS_FX_BFX_DAMP
	BASS_FX_BFX_AUTOWAH
	BASS_FX_BFX_PHASER
	BASS_FX_BFX_CHORUS
	BASS_FX_BFX_DISTORTION
	BASS_FX_BFX_COMPRESSOR2
	BASS_FX_BFX_VOLUME_ENV
	BASS_FX_BFX_BQF
	BASS_FX_BFX_ECHO4
	BASS_FX_BFX_PITCHSHIFT
	BASS_FX_BFX_FREEVERB

Multi-channel	order	of	each	channel	is	as	follows:

3	channels left-front,	right-front,	center.
4	channels left-front,	right-front,	left-rear/side,	right-rear/side.

5	channels left-front,	right-front,	center,	left-rear/side,	right-rear/side.

6	channels
(5.1)

left-front,	right-front,	center,	LFE,	left-rear/side,	right-rear/side.

8	channels
(7.1)

left-front,	right-front,	center,	LFE,	left-rear/side,	right-rear/side,	left-
rear	center,	right-rear	center.

Usage:
An	effect	supporting	multi-channel	has	a	param	"lChannel",	using	flags:

	BASS_BFX_CHANALL -1	 	all	channels	at	once	(as	by	default)

	BASS_BFX_CHANNONE 	0 	disable	an	effect	for	all	channels

	BASS_BFX_CHAN1 	1 	left-front	channel

	BASS_BFX_CHAN2 	2 	right-front	channel

	BASS_BFX_CHAN3 	4 	see	above	info

	BASS_BFX_CHAN4 	8 	see	above	info

	BASS_BFX_CHAN5 	16 	see	above	info

	BASS_BFX_CHAN6 	32 	see	above	info

	BASS_BFX_CHAN7 	64 	see	above	info

	BASS_BFX_CHAN8 	128	see	above	info

If	you	have	more	than	8	channels	(7.1),	use	this	macro:
BASS_BFX_CHANNEL_N(n)

See	also
BASS_ChannelSeFX,	BASS_FXSetParameters,	BASS_FXGetParameters

BASS_BFX_ROTATE	structure

Used	with	BASS_FXGetParameters	and	BASS_FXSetParameters	to	retrieve	and
set	the	parameters	of	rotate	effect.

typedef	struct	{
				float	fRate;
				int	lChannel;
}	BASS_BFX_ROTATE;

Members

fRate Rotation	rate/speed	in	Hz	(A	negative	rate	can	be	used	for	reverse
direction)

lChannel The	affected	channels	using	BASS_BFX_CHANxxx	flags			

Info
This	is	a	volume	rotate	effect	between	even	channels,	just	like	2	channels
playing	ping-pong	between	each	other.

See	also
BASS_ChannelSetFX

BASS_BFX_VOLUME	structure

Used	with	BASS_FXGetParameters	and	BASS_FXSetParameters	to	retrieve	and
set	the	parameters	of	a	volume	effect.

typedef	struct	{
				int	lChannel;	
				float	fVolume;	
}	BASS_BFX_VOLUME;

Members
lChannel Affected	channels	using	BASS_BFX_CHANxxx	flags	or	0	for	global

volume	control
fVolume Volume	[0..1..n]	linear

Remarks
lChannel	needs	to	be	set	before	a	BASS_FXGetParameters	call	to	tell	it	what
volume	level	to	return.
To	set	a	new	global	volume,	set	lChannel	=	0

See	also
BASS_ChannelSetFX

BASS_BFX_PEAKEQ	structure

Used	with	BASS_FXGetParameters	and	BASS_FXSetParameters	to	retrieve	and
set	the	parameters	of	a	peaking	eq	effect	(BiQuad	filter).

typedef	struct{
				int	lBand;		
				float	fBandwidth;
				float	fQ;	
				float	fCenter;	
				float	fGain;	
				int	lChannel;	
}	BASS_BFX_PEAKEQ;

Members
lBand Band	number [0...............n]
fBandwidth In	octaves	-	fQ	is	not	in	use	(Bandwidth

has	a	priority	over	fQ)
[0.1...........<10]

fQ Quality	Factor,	the	EE	kinda	definition
(linear)	(if	Bandwidth	is	not	in	use)

[0...............1]

fCenter Center	frequency,	in	Hz [1Hz..<info.freq/2]
fGain Gain,	in	dB [-15dB...0...+15dB](can	be

above/below	these	limits)

lChannel The	affected	channels
using	BASS_BFX_CHANxxx	flags

Info
This	is	an	implementation	of	BiQuad	Peaking	Equalizer	filter.
A	Peaking	Equalizer	boosts	(or	reduces)	at	the	set	frequency	(called	the	"center
frequency")	and	a	boosts	band	of	frequencies	around	the	center	frequency	by	a
similar	amount.

Good	explanation	can	be	read	here:	http://en.wikiaudio.org/Equalization_filter	

http://en.wikiaudio.org/Equalization_filter

Remarks
The	"lBand"	parameter	needs	to	be	set	before	calling	BASS_FXGetParameters
function.

See	also
BASS_ChannelSetFX,	BASS_FX_BFX_BQF

BASS_BFX_MIX	structure

Used	with	BASS_FXGetParameters	and	BASS_FXSetParameters	to	retrieve	and
set	the	parameters	of	mix	effect.

typedef	struct	{
				int	*lChannel;	
}	BASS_BFX_MIX;

Members
lChannel An	array	of	channels	to	mix	using	BASS_BFX_CHANxxx	flag/s

(lChannel[0]	is	left	channel...)

Remarks
By	default	all	lChannel[n]	indexes	are	set	to	BASS_BFX_CHANxxx	channels
order,	means	none	of	the	channels	are	affected.

Info
This	effect	is	providing	the	ability	to	mix,	swap	or	remap	channels.

See	also
BASS_ChannelSetFX

BASS_BFX_DAMP	structure

Used	with	BASS_FXGetParameters	and	BASS_FXSetParameters	to	retrieve	and
set	the	parameters	of	a	dynamic	amplification	effect.

typedef	struct	{
				float	fTarget;
				float	fQuiet;
				float	fRate;
				float	fGain;
				float	fDelay;
				int	lChannel;	
}	BASS_BFX_DAMP;

Members
fTarget Target	volume	level [0<....1]

linear
fQuiet Quiet	volume	level [0.....1]

linear
fRate Amplification	adjustment	rate [0.....1]

linear
fGain Amplification	level [0..1..n]

linear
fDelay Delay	in	seconds	before	increasing	level [0.....n]

linear
lChannel The	affected	channels	using	BASS_BFX_CHANxxx

flags			

See	also
BASS_ChannelSetFX

BASS_BFX_AUTOWAH	structure

Used	with	BASS_FXGetParameters	and	BASS_FXSetParameters	to	retrieve	and
set	the	parameters	of	an	auto	wah	effect.

typedef	struct	{
				float	fDryMix;
				float	fWetMix;
				float	fFeedback;
				float	fRate;
				float	fRange;
				float	fFreq;
				int	lChannel;	
}	BASS_BFX_AUTOWAH;

Members
fDryMix Dry	(unaffected)	signal	mix [-2....+2]
fWetMix Wet	(affected)	signal	mix [-2....+2]
fFeedback Output	signal	to	feed	back	into	input [-1....+1]
fRate Rate	of	sweep	in	cycles	per	second [0<...<10]
fRange Sweep	range	in	octaves [0<...<10]
fFreq Base	frequency	of	sweep	range [0<..1000]
lChannel The	affected	channels	using	BASS_BFX_CHANxxx

flags			

Info
The	effect	implements	the	auto-wah	by	using	4-stage	phaser	effect	which	moves
a	peak	in	the	frequency	response	up	and	down	the	frequency	spectrum	by
amplitude	of	input	signal.

The	fDryMix	is	the	volume	of	input	signal	&	the	fWetMix	is	the	volume	of
delayed	signal.	The	fFeedback	sets	feedback	of	auto	wah	(phaser).	The	fRate	and
fRange	control	how	fast	and	far	the	frequency	notches	move.	The	fRate	is	the
rate	of	sweep	in	cycles	per	second,	fRange	is	the	width	of	sweep	in	octaves.	And
the	the	fFreq	is	the	base	frequency	of	sweep.

Examples
Dry Wet FeedbackRateRangeFreq

Slow	Auto	Wah 0.5001.5000.5 2.0 4.3 50.0
Fast	Auto	Wah 0.5001.5000.5 5.0 5.3 50.0
Hi	Fast	Auto	Wah 0.5001.5000.5 5.0 4.3 500.0

See	also
BASS_ChannelSetFX

BASS_BFX_PHASER	structure

Used	with	BASS_FXGetParameters	and	BASS_FXSetParameters	to	retrieve	and
set	the	parameters	of	a	phaser	effect.

typedef	struct	{
				float	fDryMix;
				float	fWetMix;
				float	fFeedback;
				float	fRate;
				float	fRange;
				float	fFreq;
				int	lChannel;	
}	BASS_BFX_PHASER;

Members
fDryMix Dry	(unaffected)	signal	mix [-2....+2]
fWetMix Wet	(affected)	signal	mix [-2....+2]
fFeedback Output	signal	to	feed	back	into	input [-1....+1]
fRate Rate	of	sweep	in	cycles	persecond [0<...<10]
fRange Sweep	range	inoctaves [0<...<10]
fFreq Base	frequency	of	sweep	range [0<..1000]
lChannel The	affected	channels	using	BASS_BFX_CHANxxx

flags			

Info
Phasers	use	an	internal	low	frequency	oscillator	to	automatically	move	notches
in	the	frequency	response	up	and	down	the	frequency	spectrum.	An	important
difference	between	phasing	and	flanging	is	that	phasers	space	these	notches
evenly	across	the	frequency	spectrum,	while	the	notches	in	flanging	and	chorus
are	harmonically	(musically)	related.	You	don't	hear	the	notches	as	such
(because	they	are	the	frequencies	that	are	removed).	What	you	hear	is	the
resulting	frequency	peaks	between	these	notches.	Phasing	works	by	mixing	the
original	signal	with	one	that	is	phase	shifted	over	the	frequency	spectrum.	For
example,	a	four	stage	phaser	signal	(such	as	this)	could	be	from	0	degrees	at

100Hz,	shifted	to	720	degrees	at	5Khz	(these	extremes	are	not	quite	possible
practically,	but	are	near	enough	to	explain	the	effect).	This	is	how	the	term	phase
shifter	comes	about.	A	4	stage	phaser	has	2	notches	with	bass	response,	a	central
peak,	and	treble	response.	By	using	resonance	to	enhance	the	central	peak,	you
can	get	a	sound	similar	to	an	automatic	wah.	Using	a	phaser	with	lots	of	stages
and	setting	the	resonance	high	can	give	a	sound	similar	to	flanging,	although
they	are	really	quite	different.

The	fDryMix	is	the	volume	of	input	signal	&	the	fWetMix	is	the	volume	of
delayed	signal.	The	fFeedback	sets	feedback	of	phaser.	The	fRate	and	fRange
control	how	fast	and	far	the	frequency	notches	move.	The	fRate	is	the	rate	of
sweep	in	cycles	per	second,	fRange	is	the	width	of	sweep	in	octaves.	And	the	the
fFreq	is	the	base	frequency	of	sweep.

Examples
Dry Wet FeedbackRateRangeFreq

Phase	shift 0.9990.999 0.0 1.0 4.0 100.0
Slow	invert	phase	shift	with	feedback 0.999-0.999-0.6 0.2 6.0 100.0
Basic	phase 0.9990.999 0.0 1.0 4.3 50.0
Phase	w/	FB 0.9990.999 0.6 1.0 4.0 40.0
Med.	phase 0.9990.999 0.0 1.0 7.0 100.0
Fast	phase 0.9990.999 0.0 1.0 7.0 400.0
Invert	w/	invert	FB 0.999-0.999-0.2 1.0 7.0 200.0
Tremolo	Wah 0.9990.999 0.6 1.0 4.0 60.0

See	also
BASS_ChannelSetFX

BASS_BFX_CHORUS	structure

Used	with	BASS_FXGetParameters	and	BASS_FXSetParameters	to	retrieve	and
set	the	parameters	of	a	chorus/flanger	effect.

typedef	struct	{
				float	fDryMix;
				float	fWetMix;
				float	fFeedback;
				float	fMinSweep;
				float	fMaxSweep;
				float	fRate;
				int	lChannel;	
}	BASS_BFX_CHORUS;

Members
fDryMix Dry	(unaffected)	signal	mix [-2....+2]
fWetMix Wet	(affected)	signal	mix [-2....+2]
fFeedback Output	signal	to	feed	back	into	input [-1....+1]
fMinSweep Minimum	delay	in	ms [0<..6000]
fMaxSweep Maximum	delay	in	ms [0<..6000]
fRate Rate	in	ms/s [0<..1000]
lChannel The	affected	channels	using	BASS_BFX_CHANxxx

flags			

Info
True	vintage	chorus	works	the	same	way	as	flanging.	It	mixes	a	varying	delayed
signal	with	the	original	to	produce	a	large	number	of	harmonically	related
notches	in	the	frequency	response.	Chorus	uses	a	longer	delay	than	flanging,	so
there	is	a	perception	of	"spaciousness",	although	the	delay	is	too	short	to	hear	as
a	distinct	slap-back	echo.	There	is	also	little	or	no	feedback,	so	the	effect	is	more
subtle.

The	fDryMix	is	the	volume	of	input	signal	&	the	fWetMix	is	the	volume	of
delayed	signal.	The	fFeedback	sets	feedback	of	chorus.	The	fRate,	fMinSweep

and	fMaxSweep	control	how	fast	and	far	the	frequency	notches	move.	The	fRate
is	the	rate	of	delay	change	in	millisecs	per	sec,	fMaxSweep-fMinSweep	is	the
range	or	width	of	sweep	in	ms.

Examples
	 	
Dry		Wet		Feedback	Min		Max			Rate		Flanger		1.0		0.35		0.5		1.0		5.0		1.0
	Exaggerated	chorus	leads	to	multiple	pitch	shifted	voices		0.7		0.25		0.5		1.0
	200.0		50.0		Motocycle		0.9		0.45		0.5		1.0		100.0		25.0		Devil		0.9		0.35		0.5		1.0
	50.0		200.0		Who	say	that	there're	not	many	voices?		0.9		0.35		0.5		1.0		400.0
	200.0		Back	chipmunk		0.9		-0.2		0.5		1.0		400.0		400.0		Water		0.9		-0.4		0.5	
	1.0		2.0		1.0		This	is	the	airplane		0.3		0.4		0.5			1.0		10.0		5.0

See	also
BASS_ChannelSetFX

BASS_BFX_DISTORTION	structure

Used	with	BASS_FXGetParameters	and	BASS_FXSetParameters	to	retrieve	and
set	the	parameters	of	a	distortion	effect.

typedef	struct	{
				float	fDrive;
				float	fDryMix;
				float	fWetMix;
				float	fFeedback;
				float	fVolume;
				int	lChannel;	
}	BASS_BFX_DISTORTION;

Members
fDrive Distortion	drive [0....5]
fDryMix Dry	(unaffected)	signal	mix [-5..+5]
fWetMix Wet	(affected)	signal	mix [-5..+5]
fFeedback Output	signal	to	feed	back	into	input [-1..+1]
fVolume Distortion	volume [0...+2]
lChannel The	affected	channels	using	BASS_BFX_CHANxxx	flags			

Info
Similar	to	Pre/Post	Gain	&	Drive	controls	on	amps.	They	were	first	introduced
as	a	trick	to	added	color	to	a	guitar's	tone.	Usually	produced	back	then	by	turning
the	amp	all	the	way	up,	or	slightly	pulling	out	a	tube	from	its	socket.	These	tones
are	now	today	referred	to	as	Overdrives.	Today,	there	are	an	almost	infinite
variety	of	these	effects,	and	they	range	in	3	classes:	Distortions,	Fuzz,	and
Overdrive.	One	common	feature	to	mostly	all	of	these	types	of	pedals	is	a
volume	and	drive	(also	noted	as	distortion,	fuzz,	gain,	...etc.).	Overdrives	are
usually	a	sustain	and	volume	boosting	pedal.	Used	by	more	traditional	rock	and
country	bands.	Next	are	the	Distortions,	which	range	from	punk	style	to	death
metal	screams.	They	are	similar	to	Overdrives,	but	have	more	buzzing	quality	to
them.	Finally,	there	are	the	Fuzzes	which	are	more	distorted	than	distortions,	but
are	more	mellow	and	compressed	sounding.	Many	pedals	can	be	confused	within

these	names,	and	some	may	be	named	other	than	what	they	are.	Towards	the	end
of	this	era,	the	back-to-back	diode	pair	became	popular	as	a	technique	to	provide
soft	clipping	(with	germanium	diodes)	and	hard	clipping	(with	silicon	diodes).
Today,	overdrive	effects	usually	means	soft	clipping,	where	gain	is	reduced
beyond	the	clipping	point,	while	distortion	usually	means	hard	clipping,	where
the	level	is	fixed	beyond	the	clipping	point.	Distortion	is	a	little	harder	sound,
good	for	rock,	while	overdrive	gives	a	more	natural	sound.

The	fDrive	controls	the	amount	of	overdrive.	The	fVolume	to	balance	the	effect
volume	with	the	bypassed	level.	It	can	also	be	used	to	boost	the	signal	for	solos.
The	fDryMix	is	the	volume	of	input	signal	&	the	fWetMix	is	the	volume	of
distorted	signal.	The	fFeedback	sets	feedback	of	distortion.

				Normal	Sin	Wave														Wave	distorted	by	algorithm
																																					*
																																				*	*
				****																												*	*
			*				*																											*	*		*
		*						*																									*		*	*	*
	*								*																							*			*	*		*
*										*																					*				*	*			*
*										*																					*					*				*
------------*-------------							------------*-------------
													*										*																					*					*				*
													*										*																					*				*	*			*
														*								*																							*			*	*		*
															*						*																									*		*	*	*
																*				*																											*	*		*
																	****																												*	*
																																																	*	*
																																																		*

Examples
DriveDry Wet FeedbackVolume

Hard	Distortion 1.0 0.0 1.0 0.0 1.0
Very	Hard	Distortion 5.0 0.0 1.0 0.1 1.0
Medium	Distortion 0.2 1.0 1.0 0.1 1.0

Soft	Distortion 0.0 -2.95-0.05-0.18 0.25

See	also
BASS_ChannelSetFX

BASS_BFX_COMPRESSOR2	structure

Used	with	BASS_FXGetParameters	and	BASS_FXSetParameters	to	retrieve	and
set	the	parameters	of	a	compressor	effect.

typedef	struct	{
				float	fGain;
				float	fThreshold;
				float	fRatio;
				float	fAttack;
				float	fRelease;
				int	lChannel;
}	BASS_BFX_COMPRESSOR2;

Members
fGain Output	gain	of	signal	after	compression.	The	default

value	is	0	dB
[-60.....+60]	dB

fThreshold Point	at	which	compression	begins.	The	default
value	is	-15	dB

[-60.......0]	dB

fRatio Compression	ratio.	The	default	value	is	3,	which
means	3:1	compression

[1.........n]

fAttack Time	before	compression	reaches	its	full	value.	The
default	value	is	10	ms

[0.01...1000]
ms

fRelease Speed	at	which	compression	is	stopped	after	input
drops	below	fThreshold.	The	default	value	is	200	ms

[0.01...5000]
ms

lChannel The	affected	channels	using
BASS_BFX_CHANxxx	flags			

Info
Compressors	are	commonly	used	in	recording	to	control	the	level,	by	making
loud	passages	quieter,	and	quiet	passages	louder.	This	is	useful	in	allowing	a
vocalist	to	sing	quiet	and	loud	for	different	emphasis,	and	always	be	heard
clearly	in	the	mix.	Compression	is	generally	applied	to	guitar	to	give	clean
sustain,	where	the	start	of	a	note	is	"squashed"	with	the	gain	automatically
increased	as	the	not	fades	away.	Compressors	take	a	short	time	to	react	to	a

picked	note,	and	it	can	be	difficult	to	find	settings	that	react	quickly	enough	to
the	volume	change	without	killing	the	natural	attack	sound	of	your	guitar.

See	also
BASS_ChannelSetFX

BASS_BFX_VOLUME_ENV	structure

Used	with	BASS_FXGetParameters	and	BASS_FXSetParameters	to	retrieve	and
set	the	parameters	of	a	volume	envelope	effect.

typedef	struct	{
				int	lChannel;	
				int	lNodeCount;	
				const	struct	BASS_BFX_ENV_NODE	*pNodes;	
				BOOL	bFollow;	
}	BASS_BFX_VOLUME_ENV;

Members

lChannel The	affected	channels	using	BASS_BFX_CHANxxx	flags

lNodeCount Number	of	nodes
pNodes The	nodes

bFollow FALSE	=	process	envelope	from	start	to	finish,	TRUE	=	follow	the
position	of	the	channel

Note
There	must	be	at	least	1	node

See	also
BASS_ChannelSetFX

BASS_BFX_ENV_NODE	structure

Used	with	volume	envelope	effect.

typedef	struct	{
				double	pos;	
				float	val;	
}	BASS_BFX_ENV_NODE;

Members

pos Node	position	in	seconds	(1st	envelope	node	must	be	at	position	0)

val Node	value	at	the	position

See	also
BASS_ChannelSetFX

BASS_BFX_BQF	structure

Used	with	BASS_FXGetParameters	and	BASS_FXSetParameters	to	retrieve	and
set	the	parameters	of	a	biquad	filters	effect.

typedef	struct{
				int	lFilter;			
				float	fCenter;
				float	fGain;
				float	fBandwidth;
				float	fQ;
				float	fS;	
				int	lChannel;	
}	BASS_BFX_BQF;

Members
lFilter BASS_BFX_BQF_xxx	filter

types
One	of	the	following	filter	types:	
		BASS_BFX_BQF_LOWPASS
		BASS_BFX_BQF_HIGHPASS
		BASS_BFX_BQF_BANDPASS constant

0	dB
peak
gain

	
BASS_BFX_BQF_BANDPASS_Q

constant
skirt
gain,
peak
gain	=
Q

		BASS_BFX_BQF_NOTCH
		BASS_BFX_BQF_ALLPASS
		BASS_BFX_BQF_PEAKINGEQ
		BASS_BFX_BQF_LOWSHELF

		BASS_BFX_BQF_HIGHSHELF
fCenter Cutoff	(central)	frequency	in

Hz
[1Hz..<info.freq/2]

fGain Used	only	for	PEAKINGEQ
and	Shelving	filters	in	dB

[-15dB...0...+15dB]	(can	be	above/below	these
limits)

fBandwidth Bandwidth	in	octaves	(fQ	is
not	in	use	(fBandwidth	has	a
priority	over	fQ))
(between	-3	dB	frequencies
for	BANDPASS	and	NOTCH
or	between	midpoint
(fGgain/2)	gain	frequencies
for	PEAKINGEQ)

[0.1...........<10]

fQ The	EE	kinda	definition
(linear)	(if	fBandwidth	is	not
in	use)

[0.1.............1]

fS A	"shelf	slope"	parameter
(linear)	(used	only	with
Shelving	filters)
when	fS	=	1,	the	shelf	slope	is
as	steep	as	you	can	get	it	and
remain	monotonically
increasing	or	decreasing	gain
with	frequency.

[0.1.............1]

lChannel The	affected	channels
using	BASS_BFX_CHANxxx
flags

Info:
BiQuad	filters	are	second-order	recursive	linear	filters.

		BASS_BFX_BQF_LOWPASS:
A	low-pass	filter	is	a	filter	that	passes	low-frequency	signals	but	attenuates
(reduces	the	amplitude	of)	signals	with	frequencies	higher	than	the	fCenter
frequency.	The	actual	amount	of	attenuation	for	each	frequency	varies	from	filter
to	filter.	It	is	sometimes	called	a	high-cut	filter,	or	treble	cut	filter	when	used	in

audio	applications.	A	low-pass	filter	is	the	opposite	of	a	high-pass	filter,	and	a
band-pass	filter	is	a	combination	of	a	low-pass	and	a	high-pass.

		BASS_BFX_BQF_HIGHPASS:
A	high-pass	filter	is	an	LTI	filter	that	passes	high	frequencies	well	but
attenuates	(i.e.,	reduces	the	amplitude	of)	frequencies	lower	than	the	fCenter
frequency.	The	actual	amount	of	attenuation	for	each	frequency	is	a	design
parameter	of	the	filter.	It	is	sometimes	called	a	low-cut	filter;	the	terms	bass-cut
filter	or	rumble	filter	are	also	used	in	audio	applications.

		BASS_BFX_BQF_BANDPASS:
A	band-pass	filter	is	a	device	that	passes	frequencies	within	a	certain	range	and
rejects	(attenuates)	frequencies	outside	that	range.	An	example	of	an	analogue
electronic	band-pass	filter	is	an	RLC	circuit	(a	resistor–inductor–capacitor
circuit).	These	filters	can	also	be	created	by	combining	a	low-pass	filter	with	a
high-pass	filter.

		BASS_BFX_BQF_NOTCH:
In	signal	processing,	a	band-stop	filter	or	band-rejection	filter	is	a	filter	that
passes	most	frequencies	unaltered,	but	attenuates	those	in	a	specific	range	to
very	low	levels.	It	is	the	opposite	of	a	band-pass	filter.	A	notch	filter	is	a	band-
stop	filter	with	a	narrow	stopband	(high	Q	factor).	Notch	filters	are	used	in	live
sound	reproduction	(Public	Address	systems,	also	known	as	PA	systems)	and	in
instrument	amplifier	(especially	amplifiers	or	preamplifiers	for	acoustic
instruments	such	as	acoustic	guitar,	mandolin,	bass	instrument	amplifier,	etc.)	to
reduce	or	prevent	feedback,	while	having	little	noticeable	effect	on	the	rest	of	the
frequency	spectrum.	Other	names	include	'band	limit	filter',	'T-notch	filter',
'band-elimination	filter',	and	'band-reject	filter'.

		BASS_BFX_BQF_ALLPASS:
An	all-pass	filter	is	a	signal	processing	filter	that	passes	all	frequencies	equally,
but	changes	the	phase	relationship	between	various	frequencies.	It	does	this	by
varying	its	propagation	delay	with	frequency.	Generally,	the	filter	is	described	by
the	frequency	at	which	the	phase	shift	crosses	90°	(i.e.,	when	the	input	and
output	signals	go	into	quadrature	—	when	there	is	a	quarter	wavelength	of	delay
between	them).

		BASS_BFX_BQF_PEAKINGEQ:	

A	peaking	equalizer	raises	or	lowers	a	range	of	frequencies	around	a	central
point	in	a	bell	shape.	A	peaking	equalizer	with	controls	to	adjust	the	level
(fGain),	fBandwidth	(fQ)	and	center	frequency	(Hz)	is	called	a	parametric
equalizer.
Peaking	Equalizer	in	BASS_FX	can	be	achieved	directly	and	efficiently	by
BASS_FX_BFX_PEAKEQ

		BASS_BFX_BQF_LOWSHELF:
A	low-shelf	filter	passes	all	frequencies,	but	increasing	or	reducing	frequencies
below	the	fCenter	frequency	by	specified	amount.

		BASS_BFX_BQF_HIGHSHELF:
A	high-shelf	filter	passes	all	frequencies,	but	increasing	or	reducing	frequencies
above	the	fCenter	frequency	by	specified	amount.

See	also
BASS_ChannelSetFX

BASS_BFX_ECHO4	structure

Used	with	BASS_FXGetParameters	and	BASS_FXSetParameters	to	retrieve	and
set	the	parameters	of	an	echo/reverb	effect.

typedef	struct	{
				float	fDryMix;
				float	fWetMix;
				float	fFeedback;
				float	fDelay;
				BOOL	bStereo;
				int	lChannel;	
}	BASS_BFX_ECHO4;

Members
fDryMix Dry	(unaffected)	signal	mix [-2..+2]
fWetMix Wet	(affected)	signal	mix [-2..+2]

fFeedback Output	signal	to	feed	back	into	input [-1..+1]

fDelay Delay	in	seconds [0<...n]

bStereo Only	allowed	with	even	number	of	channels TRUE/FALSE

lChannel The	affected	channels	using	BASS_BFX_CHANxxx
flags			

Info
This	is	an	echo	effect	that	replays	what	you	have	played	one	or	more	times	after
a	period	of	time.	It's	something	like	the	echoes	you	might	hear	shouting	against	a
canyon	wall.	For	reverb	effect	enable	feedback.

The	fDryMix	is	the	volume	of	input	signal	&	the	fWetMix	is	the	volume	of
delayed	signal.	The	fDelay	is	the	delay	time	in	sec.	The	fFeedback	sets	how
much	delay	is	feed	back	to	the	input	(for	repeating	delays).	If	bStereo	is	enabled
and	a	stream	has	an	even	number	of	channels	then,	each	even	channels	will	be

echoed	to	each	other.

Examples
Dry Wet FeedbackDelay

Small	Echo 0.9990.9990.0 0.20
Many	Echoes 0.9990.9990.7 0.50
Reverse	Echoes 0.9990.999-0.7 0.80
Robotic	Voice 0.5000.8000.5 0.10

See	also
BASS_ChannelSetFX

BASS_BFX_PITCHSHIFT	structure

Used	with	BASS_FXGetParameters	and	BASS_FXSetParameters	to	retrieve	and
set	the	parameters	of	pitch-shift	using	FFT	effect.

typedef	struct	{
				float	fPitchShift;	
				float	fSemitones;	
				long	lFFTsize;	
				long	lOsamp;	
				int	lChannel;	
}	BASS_BFX_PITCHSHIFT;

Members

fPitchShift A	factor	value	which	is	between	0.5	(one	octave
down)	and	2	(one	octave	up)	(1	won't	change	the
pitch)
(fSemitones	is	not	in	use,	fPitchShift	has	a	priority
over	fSemitones)	

[0.5...1...2],
def.	1

fSemitones Semitones	(0	won't	change	the	pitch) def.	0

lFFTsize Defines	the	FFT	frame	size	used	for	the	processing.
Typical	values	are	1024,	2048	and	4096
It	may	be	any	value	<=	8192	but	it	MUST	be	a	power
of	2

[1024...8192],
def.	2048

lOsamp Is	the	STFT	oversampling	factor	which	also
determines	the	overlap	between	adjacent	STFT
frames
It	should	at	least	be	4	for	moderate	scaling	ratios.	A
value	of	32	is	recommended	for	best	quality	(better
quality	=	higher	CPU	usage)

[4........32],
def.	8

lChannel The	affected	channels	using	BASS_BFX_CHANxxx
flags			

Info
Changes	the	sound	pitch	or	key,	without	affecting	the	sound	tempo	or	speed
using	FFT.

More	information	about	Pitch	Shifting	Using	The	Fourier
Transform:http://www.dspdimension.com/admin/pitch-shifting-using-the-ft/

Remarks	
The	sound	quality	is	average.
On	mobile	devices,	due	to	expensive	CPU	and	FPU	usage,	this	effect	is	enabled
for	iOS,	Android	(armeabi-v7a,	x86)	and	Linux	ARM	(hardfp),	that	using
floating-point	instead	of	fixed-point.

See	also
BASS_ChannelSetFX

http://www.dspdimension.com/admin/pitch-shifting-using-the-ft/

BASS_BFX_FREEVERB	structure

Used	with	BASS_FXGetParameters	and	BASS_FXSetParameters	to	retrieve	and
set	the	parameters	of	a	reverb	effect.

typedef	struct	{
				float	fDryMix;
				float	fWetMix;
				float	fRoomSize;
				float	fDamp;
				float	fWidth;
				DWORD	lMode;
				int	lChannel;	
}	BASS_BFX_FREEVERB;

Members
fDryMix Dry	(unaffected)	signal	mix [0........1],	def.	0
fWetMix Wet	(affected)	signal	mix [0........3],	def.

1.0f

fRoomSize Room	size [0........1],	def.
0.5f

fDamp Damping [0........1],	def.
0.5f

fWidth Stereo	width [0........1],	def.	1

lMode 0	or	BASS_BFX_FREEVERB_MODE_FREEZE def.	0	(no
freeze)

lChannel The	affected	channels	using
BASS_BFX_CHANxxx	flags			

Info
Reverb	adds	reverberation	(rapid,	modified	repetitions	blended	with	the	original
sound	that	gives	an	impression	of	ambience).	The	Reverb	effect	is	based	on	the

original	"freeverb"	algorithm.	Adding	reverberation	is	sometimes	desirable	for
concert	halls	that	are	too	small	or	contain	so	many	people	that	the	hall's	natural
reverberance	is	diminished.	Applying	a	small	amount	of	stereo	reverb	to	an
untreated	mono	signal	duplicated	into	a	two-channel	stereo	track	will	usually
make	it	sound	more	natural.

See	also
BASS_ChannelSetFX

BASS_FX_TempoCreate

Creates	a	resampling	stream	from	a	decoding	channel.

HSTREAM	BASS_FX_TempoCreate(
				DWORD	chan,
				DWORD	flags
);

Parameters
chan Stream/music/wma/cd/any	other	supported	add-on	format	using	a	decoding	channel
flags A	combination	of	the	following	flags:

		BASS_SAMPLE_LOOP Looped?	Note	that	only	complete	sample	loops	are
allowed	by	DirectSound	(ie.	you	can't	loop	just	part
of	a	sample)

	
BASS_SAMPLE_SOFTWARE

Force	the	sample	to	not	use	hardware	mixing

		BASS_SAMPLE_3D Use	3D	functionality.	This	is	ignored	if
BASS_DEVICE_3D	wasn't	specified	when	calling
BASS_Init.	3D	samples	must	be	mono	(use
BASS_SAMPLE_MONO)

		BASS_SAMPLE_FX
		requires	DirectX	8	or	above

Enable	the	old	implementation	of	DirectX	8	effects.
See	the	DX8	effect	implementations	section	for
details.	Use	BASS_ChannelSetFX	to	add	effects	to
the	stream

	
BASS_STREAM_AUTOFREE

Automatically	free	the	stream's	resources	when	it
has	reached	the	end,	or	when	BASS_ChannelStop
(or	BASS_Stop)	is	called

		BASS_STREAM_DECODE Decode	the	sample	data,	without	outputting	it.	Use
BASS_ChannelGetData	to	retrieve	decoded	sample
data.
BASS_SAMPLE_SOFTWARE/3D/FX/AUTOFREE
are	all	ignored	when	using	this	flag,	as	are	the
SPEAKER	flags

		BASS_SPEAKER_xxx Speaker	assignment	flags

mk:@MSITStore:bass.chm::/BASS_Init.html
mk:@MSITStore:bass.chm::/effects.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetFX.html
mk:@MSITStore:bass.chm::/BASS_ChannelStop.html
mk:@MSITStore:bass.chm::/BASS_Stop.html
mk:@MSITStore:bass.chm::/BASS_ChannelGetData.html
mk:@MSITStore:bass.chm::/speaker.html

		BASS_FX_FREESOURCE Free	the	source	handle	as	well

Return	value
If	successful,	the	tempo	stream	handle	is	returned,	else	0	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

Remarks
Enable	Tempo	supported	flags	in	BASS_FX_TempoCreate	and	the	others	to
source	handle.

Example
Create	a	Tempo	stream.

HSTREAM	chan=BASS_StreamCreateFile(...,BASS_STREAM_DECODE);	//
create	decoded	stream
if	(chan)	chan=BASS_FX_TempoCreate(chan,BASS_FX_FREESOURCE);	//
create	a	tempo	stream

Error	codes
BASS_ERROR_HANDLE chan	is	not	valid
BASS_ERROR_DECODE			The	chan	is	not	a	decoding	channel.	Make	sure	the	chan	was	created	using	BASS_STREAM_DECODE	/	

See	also
BASS_FX_TempoGetSource,		BASS_FX_TempoGetRateRatio,	Tempo
Attributes

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

BASS_FX_TempoGetSource

Get	the	source	channel	handle.

DWORD	BASS_FX_TempoGetSource(
				HSTREAM	chan
);

Parameters
chan Tempo	stream	(or	source	channel)	handle

Return	value
If	successful,	the	source	channel	handle	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

Error	code
BASS_ERROR_HANDLEchan	is	not	valid

See	also
BASS_FX_TempoCreate,	BASS_FX_TempoGetRateRatio,	Tempo	Attributes

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

BASS_FX_TempoGetRateRatio

Get	the	ratio	of	the	resulting	rate	and	source	rate	(the	resampling	ratio).

float	BASS_FX_TempoGetRateRatio(
				HSTREAM	chan
);

Parameters
chan Tempo	stream	(or	source	channel)	handle

Return	value
If	successful,	the	resampling	ratio	is	returned,	else	0	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

Error	code
BASS_ERROR_HANDLEchan	is	not	valid

See	also
BASS_FX_TempoCreate,	BASS_FX_TempoGetSource,	Tempo	Attributes

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

BASS_ATTRIB_TEMPO	attribute

Set	tempo	of	a	channel.

BOOL	BASS_ChannelSetAttribute(
				DWORD	handle,
				BASS_ATTRIB_TEMPO,
				float	tempo
);

Parameters
handle Tempo	stream	(or	source	channel)

handle
tempo Tempo	value [-95%..0..+5000%]

percents

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

Error	codes
BASS_ERROR_HANDLE handle		is	invalid
BASS_ERROR_ILLPARAMAn	illegal

parameter	was
specified

Info
Tempo	(time-stretch):	Changes	the	sound	to	play	at	faster	or	slower	speed	than
original,	without	affecting	the	sound	pitch.

Example
Set	Tempo	by	BPM	value:

float	tempo	=	(goalBPM	/	bpmValue	-	1.0f)	*	100.0f;
BASS_ChannelSetAttribute(chan,	BASS_ATTRIB_TEMPO,	tempo);

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

See	also
BASS_FX_TempoCreate,	BASS_FX_TempoGetSource,	
BASS_FX_TempoGetRateRatio

BASS_ATTRIB_TEMPO_PITCH	attribute

Set	pitch	of	a	channel.

BOOL	BASS_ChannelSetAttribute(
				DWORD	handle,
				BASS_ATTRIB_TEMPO_PITCH,
				float	pitch
);

Parameters
handle Tempo	stream	(or	source	channel)	handle
pitch Pitch	(key) [-60....0....+60]	semitones

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

Error	codes
BASS_ERROR_HANDLE handle		is	invalid
BASS_ERROR_ILLPARAMAn	illegal

parameter	was
specified

Info
Pitch	(key)	:	Changes	the	sound	pitch	or	key,	without	affecting	the	sound	tempo
or	speed.

See	also
BASS_FX_TempoCreate,	BASS_FX_TempoGetSource,	
BASS_FX_TempoGetRateRatio

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

BASS_ATTRIB_TEMPO_FREQ	attribute

Set	sample	rate	of	a	channel.

BOOL	BASS_ChannelSetAttribute(
				DWORD	handle,
				BASS_ATTRIB_TEMPO_FREQ,
				float	freq
);

Parameters
handle Tempo	stream	(or	source	channel)	handle
freq Samplerate	in	Hz	(must	be	within	5%	to	5000%	of	the	original

sample	rate)

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

Error	codes
BASS_ERROR_HANDLE handle		is	invalid
BASS_ERROR_ILLPARAMAn	illegal

parameter	was
specified

Info	
Sample	Rate	:	Changes	both	the	sound	tempo	and	pitch,	as	if	an	LP	disc	was
played	at	wrong	RPM	rate.

See	also
BASS_FX_TempoCreate,	BASS_FX_TempoGetSource,	
BASS_FX_TempoGetRateRatio

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

About	Algorithms	

BASS_FX	provides	three	seemingly	independent	effects:	tempo,	pitch	and
sample	rate	control.	These	three	controls	are	implemented	as	combination	of	two
primary	effects,	sample	rate	transposing	and	time-stretching.

Sample	rate	transposing	affects	both	the	audio	stream	duration	and	pitch.	It's
implemented	simply	by	converting	the	original	audio	sample	stream	to	the
desired	duration	by	interpolating	from	the	original	audio	samples.	In	BASS_FX,
linear	interpolation	with	anti-alias	filtering	is	used.	Theoretically	a	higher-order
interpolation	provide	better	result	than	1st	order	linear	interpolation,	but	in	audio
application	linear	interpolation	together	with	anti-alias	filtering	performs
subjectively	about	as	well	as	higher-order	filtering	would.

Time-stretching	means	changing	the	audio	stream	duration	without	affecting	it's
pitch.	BASS_FX	uses	WSOLA-like	time-stretching	routines	that	operate	in	the
time	domain.	Compared	to	sample	rate	transposing,	time-stretching	is	a	much
heavier	operation	and	also	requires	a	longer	processing	"window"	of	sound
samples	used	by	the	processing	algorithm,	thus	increasing	the	algorithm
input/output	latency.	Typical	i/o	latency	for	the	BASS_FX	time-stretch	algorithm
is	around	100	ms.

Sample	rate	transposing	and	time-stretching	are	then	used	together	to	produce
the	tempo,	pitch	and	rate	controls:

'Tempo'	control	is	implemented	purely	by	time-stretching.
'Rate'	control	is	implemented	purely	by	sample	rate	transposing.
'Pitch'	control	is	implemented	as	a	combination	of	time-stretching	and
sample	rate	transposing.	For	example,	to	increase	pitch	the	audio	stream	is
first	time-stretched	to	longer	duration	(without	affecting	pitch)	and	then
transposed	back	to	original	duration	by	sample	rate	transposing,	which
simultaneously	reduces	duration	and	increases	pitch.	The	result	is	original
duration	but	increased	pitch.

BASS_FX	uses	SoundTouch	library	for	its	tempo/pitch	processing.

See	alsoBASS_FX_TempoCreate,	BASS_FX_TempoGetSource,	

http://www.surina.net/soundtouch/

BASS_FX_TempoGetRateRatio,	Tempo	Attributes

BASS_ATTRIB_TEMPO_OPTION_USE_AA_FILTER
attribute

Use	Anti-Alias	Filter	on	a	tempo	channel.

BOOL	BASS_ChannelSetAttribute(
				DWORD	handle,
				BASS_ATTRIB_TEMPO_OPTION_USE_AA_FILTER,
				float	use_aa_filter	
);

Parameters
handle Tempo	stream	(or	source	channel)	handle

use_aa_filter TRUE	/	FALSE (default	TRUE)

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

Remarks
iOS,	Android,	WinCE	and	Linux	ARM:	Disabled	the
BASS_ATTRIB_TEMPO_OPTION_USE_AA_FILTER	option	on	tempo
streams	with	multi-channel	by	default	for	lower	CPU	usage.
Doesn't	SSE	optimized	for	multi-channel	streams.

Error	codes
BASS_ERROR_HANDLE handle		is	invalid
BASS_ERROR_ILLPARAMAn	illegal

parameter	was
specified

See	also
BASS_FX_TempoCreate,	BASS_FX_TempoGetSource,
BASS_FX_TempoGetRateRatio

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

BASS_ATTRIB_TEMPO_OPTION_AA_FILTER_LENGTH
attribute

The	AA	Filter	length.

BOOL	BASS_ChannelSetAttribute(
				DWORD	handle,
				BASS_ATTRIB_TEMPO_OPTION_AA_FILTER_LENGTH,
				float	aa_filter_length	
);

Parameters
handle Tempo	stream	(or	source	channel)	handle

aa_filter_length 8	..	128	taps (default	32)

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

Error	codes
BASS_ERROR_HANDLE handle		is	invalid
BASS_ERROR_ILLPARAMAn	illegal

parameter	was
specified

See	also
BASS_FX_TempoCreate,	BASS_FX_TempoGetSource,	
BASS_FX_TempoGetRateRatio

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

BASS_ATTRIB_TEMPO_OPTION_USE_QUICKALGO
attribute

Use	tempo	quick	algorithm.

BOOL	BASS_ChannelSetAttribute(
				DWORD	handle,
				BASS_ATTRIB_TEMPO_OPTION_USE_QUICKALGO,
				float	use_quickalgo	
);

Parameters
handle Tempo	stream	(or	source	channel)	handle

use_quickalgo TRUE	/	FALSE (default	FALSE)

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

Remarks
iOS,	Android,	WinCE	and	Linux	ARM:	Enabled	the
BASS_ATTRIB_TEMPO_OPTION_USE_QUICKALGO	option	on	tempo
streams	by	default	for	lower	CPU	usage.

Error	codes
BASS_ERROR_HANDLE handle		is	invalid
BASS_ERROR_ILLPARAMAn	illegal

parameter	was
specified

See	also
BASS_FX_TempoCreate,	BASS_FX_TempoGetSource,	
BASS_FX_TempoGetRateRatio

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

BASS_ATTRIB_TEMPO_OPTION_SEQUENCE_MS
attribute

Set	tempo	sequence	in	ms.

BOOL	BASS_ChannelSetAttribute(
				DWORD	handle,
				BASS_ATTRIB_TEMPO_OPTION_SEQUENCE_MS,
				float	sequence_ms	
);

Parameters
handle Tempo	stream	(or	source	channel)

handle

sequence_ms [-50%..+100%]	of	current	value (default	=	82,	automatic
=	0)

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

Error	codes
BASS_ERROR_HANDLE handle		is	invalid
BASS_ERROR_ILLPARAMAn	illegal

parameter	was
specified

See	also
BASS_FX_TempoCreate,	BASS_FX_TempoGetSource,	
BASS_FX_TempoGetRateRatio

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

BASS_ATTRIB_TEMPO_OPTION_SEEKWINDOW_MS
attribute

Set	tempo	seek	window	in	ms.

BOOL	BASS_ChannelSetAttribute(
				DWORD	handle,
				BASS_ATTRIB_TEMPO_OPTION_SEEKWINDOW_MS,
				float	seekwindow_ms	
);

Parameters
handle Tempo	stream	(or	source	channel)

handle

seekwindow_ms [-50%..+100%]	of	current	value (default	=	28,	automatic
=	0)

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

Error	codes
BASS_ERROR_HANDLE handle		is	invalid
BASS_ERROR_ILLPARAMAn	illegal

parameter	was
specified

See	also
BASS_FX_TempoCreate,	BASS_FX_TempoGetSource,	
BASS_FX_TempoGetRateRatio

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

BASS_ATTRIB_TEMPO_OPTION_OVERLAP_MS
attribute

Set	tempo	overlap	in	ms.

BOOL	BASS_ChannelSetAttribute(
				DWORD	handle,
				BASS_ATTRIB_TEMPO_OPTION_OVERLAP_MS,
				float	overlap_ms	
);

Parameters
handle Tempo	stream	(or	source	channel)

handle

overlap_ms [-50%..+100%]	of	current	value (default	8)

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

Error	codes
BASS_ERROR_HANDLE handle		is	invalid
BASS_ERROR_ILLPARAMAn	illegal

parameter	was
specified

See	also
BASS_FX_TempoCreate,	BASS_FX_TempoGetSource,	
BASS_FX_TempoGetRateRatio

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

BASS_ATTRIB_TEMPO_OPTION_PREVENT_CLICK
attribute

Prevents	a	clicking	sound	when	the	samplerate/pitch	crosses	from	value	<1	to	>=
1	or	vice	versa	during	processing.

BOOL	BASS_ChannelSetAttribute(
				DWORD	handle,
				BASS_ATTRIB_TEMPO_OPTION_PREVENT_CLICK,
				float	prevent_click	
);

Parameters
handle Tempo	stream	(or	source	channel)	handle

prevent_click TRUE	/	FALSE (default	FALSE)

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

Remarks
Default	is	FALSE	as	this	involves	slight	sound	quality	compromise.

Error	codes
BASS_ERROR_HANDLE handle		is	invalid
BASS_ERROR_ILLPARAMAn	illegal

parameter	was
specified

See	also
BASS_FX_TempoCreate,	BASS_FX_TempoGetSource,	
BASS_FX_TempoGetRateRatio

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Tuning	the	option	attributes	parameters

Remarks
_MS	options	are	not	fully	tested,	use	it	carefully	as	they	may	crash	your
application.

Tuning	the	option	attributes	parameters

The	time-stretch	algorithm	has	few	parameters	that	can	be	tuned	to	optimize
sound	quality	for	certain	application.	The	current	default	parameters	have	been
chosen	by	iterative	if-then	analysis	(read:	"trial	and	error")	to	obtain	best
subjective	sound	quality	in	pop/rock	music	processing,	but	in	applications
processing	different	kind	of	sound	the	default	parameter	set	may	result	into	a
sub-optimal	result.

The	default	attribute	parameter	values	are:

BASS_ATTRIB_TEMPO_OPTION_SEQUENCE_MS					AUTOMATIC

BASS_ATTRIB_TEMPO_OPTION_SEEKWINDOW_MS			AUTOMATIC

BASS_ATTRIB_TEMPO_OPTION_OVERLAP_MS						8

These	parameters	affect	to	the	time-stretch	algorithm	as	follows:

BASS_ATTRIB_TEMPO_OPTION_SEQUENCE_MS:	This	is	the
default	length	of	a	single	processing	sequence	in	milliseconds	which
determines	the	how	the	original	sound	is	chopped	in	the	time-stretch
algorithm.	Larger	values	mean	fewer	sequences	are	used	in	processing.	In
principle	a	larger	value	sounds	better	when	slowing	down	the	tempo,	but
worse	when	increasing	the	tempo	and	vice	versa.
BASS_ATTRIB_TEMPO_OPTION_SEEKWINDOW_MS:	The
seeking	window	default	length	in	milliseconds	is	for	the	algorithm	that
seeks	the	best	possible	overlapping	location.	This	determines	from	how
wide	a	sample	"window"	the	algorithm	can	use	to	find	an	optimal	mixing
location	when	the	sound	sequences	are	to	be	linked	back	together.
By	default,	this	setting	value	is	calculated	automatically	according	to	tempo
value.

The	bigger	this	window	setting	is,	the	higher	the	possibility	to	find	a	better
mixing	position	becomes,	but	at	the	same	time	large	values	may	cause	a
"drifting"	sound	artifact	because	neighboring	sequences	can	be	chosen	at
more	uneven	intervals.	If	there's	a	disturbing	artifact	that	sounds	as	if	a
constant	frequency	was	drifting	around,	try	reducing	this	setting.
BASS_ATTRIB_TEMPO_OPTION_OVERLAP_MS:	Overlap	length	in
milliseconds.	When	the	sound	sequences	are	mixed	back	together	to	form
again	a	continuous	sound	stream,	this	parameter	defines	how	much	the	ends
of	the	consecutive	sequences	will	overlap	with	each	other.
By	default,	this	setting	value	is	calculated	automatically	according	to	tempo
value.

This	shouldn't	be	that	critical	parameter.	If	you	reduce	the
BASS_ATTRIB_TEMPO_OPTION_SEQUENCE_MS	setting	by	a	large
amount,	you	might	wish	to	try	a	smaller	value	on	this.

The	table	below	summarizes	how	the	parameters	can	be	adjusted	for	different
applications:

Parameter
name

Default
value
magnitude

Larger
value
affects...

Smaller
value
affects...

Music Speech Effect	in
CPU
burden

SEQUENCE_MS Default
value	is
relatively
large,
chosen	for
slowing
down
music
tempo

Larger
value	is
usually
better	for
slowing
down
tempo.
Growing
the	value
decelerates
the
"echoing"
artifact
when
slowing

Smaller
value
might	be
better	for
speeding
up	tempo.
Reducing
the	value
accelerates
the
"echoing"
artifact
when
slowing
down	the

Default
value
usually
good

A
smaller
value
than
default
might
be
better

Increasing
the
parameter
value
reduces
computation
burden

down	the
tempo.

tempo

SEEKWINDOW_MSDefault
value	is
relatively
large,
chosen	for
slowing
down
music
tempo

Larger
value
eases
finding	a
good
mixing
position,
but	may
cause	a
"drifting"
artifact

Smaller
reduce
possibility
to	find	a
good
mixing
position,
but	reduce
the
"drifting"
artifact.

Default
value
usually
good,
unless	a
"drifting"
artifact	is
disturbing.

Default
value
usually
good

Increasing
the
parameter
value
increases
computation
burden

OVERLAP_MS Default
value	is
relatively
large,
chosen	to
suit	with
above
parameters.

	 If	you
reduce	the
"sequence
ms"
setting,
you	might
wish	to	try
a	smaller
value.

	 	 Increasing
the
parameter
value
increases
computation
burden

Performance	Optimizations

General	optimizations:

The	time-stretch	routine	has	a	'quick'	mode	that	substantially	speeds	up	the
algorithm	but	may	degrade	the	sound	quality	by	a	small	amount.	This	mode	is
activated	by	BASS_ATTRIB_TEMPO_OPTION_USE_QUICKALGO	and
value	"TRUE",	i.e.

BASS_ChannelSetAttribute(chan,
BASS_ATTRIB_TEMPO_OPTION_USE_QUICKALGO,	TRUE);

CPU-specific	optimizations:

Intel	SSE/SSE2	optimized	routines	are	used	with	compatible	CPUs	when
floating	point	sample	type	is	used.	Processors	compatible	with	SSE
extension	are	Intel	processors	starting	from	Pentium-III,	and	AMD
processors	starting	from	Athlon	XP.

See	also
BASS_FX_TempoCreate,	BASS_FX_TempoGetSource,	
BASS_FX_TempoGetRateRatio,	Tempo	Attributes

BASS_FX_ReverseCreate

Creates	a	reversed	stream	from	a	decoding	channel.

HSTREAM	BASS_FX_ReverseCreate(
				DWORD	chan,
				float	dec_block,
				DWORD	flags
);

Parameters
chan Stream/music/wma/cd/any	other	supported	add-on	format	using	a	decoding	channel
dec_block Length	of	decoding	blocks	in	seconds.	Larger	blocks	means	less	seeking	overhead	but

larger	spikes
flags A	combination	of	the	following	flags:

		BASS_SAMPLE_LOOP Looped?	Note	that	only	complete	sample	loops	are
allowed	by	DirectSound	(ie.	you	can't	loop	just	part
of	a	sample)

	
BASS_SAMPLE_SOFTWARE

Force	the	sample	to	not	use	hardware	mixing

		BASS_SAMPLE_3D Use	3D	functionality.	This	is	ignored	if
BASS_DEVICE_3D	wasn't	specified	when	calling
BASS_Init.	3D	samples	must	be	mono	(use
BASS_SAMPLE_MONO)

		BASS_SAMPLE_FX
		requires	DirectX	8	or	above

Enable	the	old	implementation	of	DirectX	8	effects.
See	the	DX8	effect	implementations	section	for
details.	Use	BASS_ChannelSetFX	to	add	effects	to
the	stream

	
BASS_STREAM_AUTOFREE

Automatically	free	the	stream's	resources	when	it
has	reached	the	end,	or	when	BASS_ChannelStop
(or	BASS_Stop)	is	called

		BASS_STREAM_DECODE Decode	the	sample	data,	without	outputting	it.	Use
BASS_ChannelGetData	to	retrieve	decoded	sample
data.
BASS_SAMPLE_SOFTWARE/3D/FX/AUTOFREE

mk:@MSITStore:bass.chm::/BASS_Init.html
mk:@MSITStore:bass.chm::/effects.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetFX.html
mk:@MSITStore:bass.chm::/BASS_ChannelStop.html
mk:@MSITStore:bass.chm::/BASS_Stop.html
mk:@MSITStore:bass.chm::/BASS_ChannelGetData.html

are	all	ignored	when	using	this	flag,	as	are	the
SPEAKER	flags

		BASS_SPEAKER_xxx Speaker	assignment	flags
		BASS_FX_FREESOURCE Free	the	source	handle	as	well

Return	value
If	successful,	the	handle	of	the	reversed	stream	is	returned,	else	0	is	returned.
Use	BASS_ErrorGetCode	to	get	the	error	code.

Remarks
MODs	are	supported	if	BASS_MUSIC_PRESCAN	flag	was	applied	to	a	source
handle.	Enable	reverse	supported	flags	in	BASS_FX_ReverseCreate	and	the
others	to	source	handle.	For	better	MP3/2/1	reverse	playback	create	the	stream
using	the	BASS_STREAM_PRESCAN	flag.

By	default	stream's	position	will	start	from	the	end	with	the
BASS_FX_RVS_REVERSE	direction.

Example
Create	a	Reverse	stream.

HSTREAM	chan=BASS_StreamCreateFile(...,BASS_STREAM_DECODE);	//
create	decoded	stream
if	(chan)	chan=BASS_FX_ReverseCreate(chan,2,BASS_FX_FREESOURCE);
//	create	reverse	stream,	2	secs	decoding	block

Error	codes
BASS_ERROR_HANDLE chan	is	not	valid
BASS_ERROR_DECODE			 The	chan	is	not	a	decoding	channel.	Make	sure	the	chan	
BASS_ERROR_ILLPARAMAn	illegal	parameter	was	specified

See	also
BASS_FX_ReverseGetSource,	Reverse	Attribute

mk:@MSITStore:bass.chm::/speaker.html
mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

BASS_FX_ReverseGetSource

Get	the	source	channel	handle	of	the	reversed	stream.

DWORD	BASS_FX_ReverseGetSource(
				HSTREAM	chan
);

Parameters
chan Reverse	stream	(or	source	channel)	handle

Return	value
If	successful,	the	handle	of	the	source	of	the	reversed	stream	is	returned,	else	0	is
returned.	Use	BASS_ErrorGetCode	to	get	the	error	code.

Error	code
BASS_ERROR_HANDLEchan	is	not	valid

See	also
BASS_FX_ReverseCreate,	Reverse	Attribute

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

BASS_ATTRIB_REVERSE_DIR	attribute

Set	playback	direction.

BOOL	BASS_ChannelSetAttribute(
				DWORD	handle,
				BASS_ATTRIB_REVERSE_DIR,
				float	direction	
);

Parameters
handle Reverse	stream	(or	source	channel)	handle

direction Playback	direction:	BASS_FX_RVS_REVERSE	or
BASS_FX_RVS_FORWARD

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

Error	codes
BASS_ERROR_HANDLE handle		is	invalid
BASS_ERROR_ILLPARAMAn	illegal

parameter	was
specified

See	also
BASS_FX_ReverseCreate,	BASS_FX_ReverseGetSource

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

BASS_FX_BPM_DecodeGet

Get	the	BPM	value	of	a	decoding	channel.

float	BASS_FX_BPM_DecodeGet(
				DWORD	chan,
				double	startSec,
				double	endSec,
				DWORD	minMaxBPM,
				DWORD	flags,
				BPMPROGRESSPROC	*proc,
				void	*user
);

Parameters
chan Stream/music/wma/cd/any	other	supported	add-on	format	using	a

decoding	channel
startSec Start	detecting	position	in	seconds
endSec End	detecting	position	in	seconds
minMaxBPM Set	min	&	max	bpm,	e.g:	MAKELONG(LOWORD.HIWORD),

LO=Min,	HI=Max.	0	=	defaults	29/200
flags BASS_FX_BPM_xxx	or	BASS_FX_FREESOURCE
proc User	defined	function	to	receive	the	detection	progress	in

percents,	use	NULL	if	not	in	use
user User	instance	data	to	pass	to	the	callback	function.

Return	value
If	successful,	the	original	BPM	value	is	returned,	else	-1	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

Remarks	
BASS_FX_BPM_BKGRND	flag	is	supported	only	in	Windows	platforms.

Error	codes

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

BASS_ERROR_HANDLE chan	is	not	valid
BASS_ERROR_DECODE			 The	chan	is	not	a	decoding	channel.	Make	sure	the	
BASS_ERROR_ILLPARAMAn	illegal	parameter	was	specified
BASS_ERROR_ALREADY BPM	detection,	for	this	chan,	is	already	being	processed

See	also
BASS_FX_BPM_CallbackSet,	BASS_FX_BPM_CallbackReset,
BASS_FX_BPM_Translate,	BASS_FX_BPM_Free

BASS_FX_BPM_CallbackSet

Enable	getting	BPM	value	after	period	of	time	in	seconds.

BOOL	BASS_FX_BPM_CallbackSet(
				DWORD	handle,
				BPMPROC	*proc,
				double	period,
				DWORD	minMaxBPM,
				DWORD	flags,
				void	*user
);

Parameters
handle Stream/music/wma/cd/any	other	supported	add-on	format
proc User	defined	function	to	receive	the	bpm	value
period Detection	period	in	seconds
minMaxBPM Set	min	&	max	bpm,	e.g:	MAKELONG(LOWORD.HIWORD),

LO=Min,	HI=Max.	0	=	defaults	29/200
flags Only	BASS_FX_BPM_MULT2	flag	is	used
user User	instance	data	to	pass	to	the	callback	function.

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid
BASS_ERROR_ILLPARAM			An	illegal

parameter	was
specified

See	also
BASS_FX_BPM_DecodeGet,	BASS_FX_BPM_CallbackReset,
BASS_FX_BPM_Translate,	BASS_FX_BPM_Free

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

BASS_FX_BPM_CallbackReset

Reset	the	buffers.	Call	this	function	after	changing	position.

BOOL	BASS_FX_BPM_CallbackReset(
				DWORD	handle
);

Parameters
handle Stream/music/wma/cd/any	other	supported	add-on	format

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

Remarks
This	function	flushes	the	internal	buffers	of	the	BPM	callback.	BPM	callback	is
automatically	reset	by	BASS_ChannelSetPosition,	except	when	called	from	a
"mixtime"	SYNCPROC	.

Error	code
BASS_ERROR_HANDLEhandle	is	not	valid

See	also
BASS_FX_BPM_DecodeGet,	BASS_FX_BPM_CallbackSet,
BASS_FX_BPM_Translate,	BASS_FX_BPM_Free

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetPosition.html
mk:@MSITStore:bass.chm::/SYNCPROC.html

BASS_FX_BPM_Free

Frees	all	resources	used	by	a	given	handle	(decode	or	callback	bpm).

BOOL	BASS_FX_BPM_Free(
				DWORD	handle
);

Parameters
handle Stream/music/wma/cd/any	other	supported	add-on	format

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

Remarks
If	BASS_FX_FREESOURCE	flag	is	used,	this	will	free	the	source	decoding
channel	as	well.	You	can't	set/get	this	flag	with
BASS_ChannelFlags/BASS_ChannelGetInfo.

Error	code
BASS_ERROR_HANDLEhandle	is	not	valid

See	also
BASS_FX_BPM_DecodeGet,	BASS_FX_BPM_CallbackSet,
BASS_FX_BPM_CallbackReset,	BASS_FX_BPM_Translate

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

BPMPROC	callback

User	defined	callback	function,	to	get	the	BPM	after	period	of	time	in	seconds.

void	CALLBACK	yourBpmProc(
				DWORD	chan,
				float	bpm,
				void	*user	
);

Parameters
chan Channel	handle	that	the	BASS_FX_BPM_CallbackSet	applies	to
bpm The	bpm	value
user The	user	instance	data	given	when	BASS_FX_BPM_CallbackSet	was

called

See	also
BASS_FX_BPM_CallbackSet

BPMPROGRESSPROC	callback

User	defined	callback	function,	to	get	the	bpm	detection	progress	in	percents.

void	CALLBACK	yourBpmProgressProc(
				DWORD	chan,
				float	percent,
				void	*user
);

Parameters
chan Channel	handle	that	the	BASS_FX_BPM_DecodeGet	applies	to
percent The	detection	progress	in	percents	[0%..100%]
user The	user	instance	data	given	when	BASS_FX_BPM_DecodeGet	was

called

See	also
BASS_FX_BPM_DecodeGet

BASS_FX_BPM_BeatDecodeGet

Enable	getting	Beat	position	in	seconds	of	the	decoded	channel	using	the
callback	function.

BOOL	BASS_FX_BPM_BeatDecodeGet(
				DWORD	chan,
				double	startSec,
				double	endSec,
				DWORD	flags,
				BPMBEATPROC	*proc,
				void	*user
);

Parameters
chan Stream/music/wma/cd/any	other	supported	add-on	format	using	a

decoding	channel
startSec Start	detecting	position	in	seconds
endSec End	detecting	position	in	seconds
flags BASS_FX_BPM_BKGRND	or	BASS_FX_FREESOURCE
proc User	defined	function	to	receive	the	beat	position	in	seconds
user User	instance	data	to	pass	to	the	callback	function

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

Remarks
BASS_FX_BPM_BKGRND	flag	is	supported	only	in	Windows	platforms.

Error	codes
BASS_ERROR_HANDLE chan	is	not	valid
BASS_ERROR_DECODE			 The	chan	is	not	a	decoding	channel.	Make	sure	the	
BASS_ERROR_ILLPARAMAn	illegal	parameter	was	specified
BASS_ERROR_ALREADY Beat	detection,	for	this	chan,	is	already	being	processed

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

See	also
BASS_FX_BPM_BeatCallbackSet,	BASS_FX_BPM_BeatCallbackReset,
BASS_FX_BPM_BeatSetParameters,	BASS_FX_BPM_BeatGetParameters,
BASS_FX_BPM_BeatFree

BASS_FX_BPM_BeatCallbackSet

Enable	getting	Beat	position	in	seconds	in	real-time.

BOOL	BASS_FX_BPM_BeatCallbackSet(
				DWORD	handle,
				BPMBEATPROC	*proc,
				void	*user
);

Parameters
handle Stream/music/wma/cd/any	other	supported	add-on	format
proc User	defined	function	to	receive	the	beat	position	in	seconds
user User	instance	data	to	pass	to	the	callback	function

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

Error	code
BASS_ERROR_HANDLE handle	is	not	valid
BASS_ERROR_ILLPARAMAn	illegal

parameter	was
specified

See	also
BASS_FX_BPM_BeatDecodeGet,	BASS_FX_BPM_BeatCallbackReset,
BASS_FX_BPM_BeatSetParameters,	BASS_FX_BPM_BeatGetParameters,
BASS_FX_BPM_BeatFree

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

BASS_FX_BPM_BeatCallbackReset

Reset	the	buffers.	Call	this	function	after	changing	position.

BOOL	BASS_FX_BPM_BeatCallbackReset(
				DWORD	handle
);

Parameters
handle Stream/music/wma/cd/any	other	supported	add-on	format

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

Remarks
This	function	flushes	the	internal	buffers	of	the	Beat	callback.	Beat	callback	is
automatically	reset	by	BASS_ChannelSetPosition,	except	when	called	from	a
"mixtime"	SYNCPROC	.

Error	code
BASS_ERROR_HANDLEhandle	is	not	valid

See	also
BASS_FX_BPM_BeatDecodeGet,	BASS_FX_BPM_BeatCallbackSet,
BASS_FX_BPM_BeatSetParameters,	BASS_FX_BPM_BeatGetParameters,
BASS_FX_BPM_BeatFree

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetPosition.html
mk:@MSITStore:bass.chm::/SYNCPROC.html

BASS_FX_BPM_BeatSetParameters

Set	new	values	for	beat	detection.

BOOL	BASS_FX_BPM_BeatSetParameters(
				DWORD	handle,
				float	bandwidth,
				float	centerfreq,
				float	beat_rtime
);

Parameters
handle Stream/music/wma/cd/any	other

supported	add-on	format			
bandwidth Bandwidth	in	Hz [0<..

<rate/2]
Hz			

[def.
10Hz]
			

-1.0f	=
leave
current

centerfreq Center	frequency [0<..
<rate/2]
Hz

[def.
90Hz]

-1.0f	=
leave
current

beat_rtime			 Beat	release	time	in	ms ms [def.
20ms]

-1.0f	=
leave
current

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

Error	codes
BASS_ERROR_HANDLEhandle	is	not	valid

See	also
BASS_FX_BPM_BeatDecodeGet,	BASS_FX_BPM_BeatCallbackSet,
BASS_FX_BPM_BeatCallbackReset,	BASS_FX_BPM_BeatGetParameters,
BASS_FX_BPM_BeatFree

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

BASS_FX_BPM_BeatGetParameters

Get	current	beat	values.

BOOL	BASS_FX_BPM_BeatGetParameters(
				DWORD	handle,
				float	*bandwidth,
				float	*centerfreq,
				float	*beat_rtime
);

Parameters
handle Stream/music/wma/cd/any	other	supported

add-on	format			
bandwidth Current	bandwidth	in	Hz NULL	=	don't

retrieve	it
centerfreq Current	center	frequency NULL	=	don't

retrieve	it
beat_rtime			 Current	beat	release	time	in	ms NULL	=	don't

retrieve	it

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

Error	codes
BASS_ERROR_HANDLEhandle	is	not	valid

See	also
BASS_FX_BPM_BeatDecodeGet,	BASS_FX_BPM_BeatCallbackSet,
BASS_FX_BPM_BeatCallbackReset,	BASS_FX_BPM_BeatSetParameters,
BASS_FX_BPM_BeatFree

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

BASS_FX_BPM_BeatFree

Frees	all	resources	used	by	a	given	handle	(decode	or	callback	beat).

BOOL	BASS_FX_BPM_BeatFree(
				DWORD	handle
);

Parameters
handle Stream/music/wma/cd/any	other	supported	add-on	format

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

Remarks
If	BASS_FX_FREESOURCE	flag	is	used,	this	will	free	the	source	decoding
channel	as	well.	You	can't	set/get	this	flag	with
BASS_ChannelFlags/BASS_ChannelGetInfo.

Error	code
BASS_ERROR_HANDLEhandle	is	not	valid

See	also
BASS_FX_BPM_BeatDecodeGet,	BASS_FX_BPM_BeatCallbackSet,
BASS_FX_BPM_BeatCallbackReset,	BASS_FX_BPM_BeatSetParameters,
BASS_FX_BPM_BeatGetParameters

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

BPMBEATPROC	callback

User	defined	callback	function,	to	get	the	Beat	position	in	seconds.

void	CALLBACK	yourBpmBeatProc(
				DWORD	chan,
				double	beatpos,
				void	*user	
);

Parameters
chan Channel	handle	that	the	BASS_FX_BPM_BeatCallbackSet	or

BASS_FX_BPM_BeatDecodeGet	has	applied	to
beatpos The	exact	beat	position	in	seconds
user The	user	instance	data	given	when	BASS_FX_BPM_BeatCallbackSet

or	BASS_FX_BPM_BeatDecodeGet	was	called

Remarks
To	filter	out	false	beat	positions,	users	first	will	have	to	find	a	BPM	of	a	song,
using	one	of	the	BPM	detection	functions,	e.g:	BASS_FX_BPM_DecodeGet
When	you	know	the	BPM,	you	can	calculate	the	approximate	duration	that
should	be	between	beat	positions,	e.g:

stream_length	=	330	seconds	(5	minutes	30	seconds)
stream_bpm	=	140	(beats	per	minute)
duration_between_beats	=	stream_bpm	/	stream_length	=	140	/	330	=	0.4242	sec

If	beat	position	returned	by	callback	functions	doesn't	fit
in	duration_between_beats,	then	it's	probably	some	harmonic	sound	or	a	false
beat,	so	you	can	ignore	it.
That	way	you	can	also	detect	and	map	all	beats,	including	the	1st	one.

Examples
A	very	simple	way	to	count	the	BPM	in	real-time,	using	only	2	beats.

double	prevBeatPos	=	0.0f;					//	previous	beat	position	in	seconds
double	bpm	=	0.0f;													//	the	bpm

void	CALLBACK	BeatProcGetBPM(DWORD	handle,	double	beatpos,	void
*user)
{
				if	(beatpos	!=	prevBeatPos)
								bpm	=	60.0f	/	(beatpos	-	prevBeatPos);					//	calculate	the	bpm

				prevBeatPos	=	beatpos;				//	save	current	beat	position
}

Get	the	detection	progress	in	percents:

float	progress	=	100.f	*	(beatpos	-	startpos)	/	(endpos	-	startpos);

See	also
BASS_FX_BPM_BeatCallbackSet,	BASS_FX_BPM_BeatDecodeGet

	BASS_FX.TXT
	Donate

