
BASS_OPUS_StreamCreateFile

Creates	a	sample	stream	from	an	Opus	file.

HSTREAM	BASS_OPUS_StreamCreateFile(

				BOOL	mem,

				void	*file,

				QWORD	offset,

				QWORD	length,

				DWORD	flags

);



Parameters
mem TRUE	=	stream	the	file	from	memory.
file Filename	(mem	=	FALSE)	or	a	memory	location	(mem	=	TRUE).
offset File	offset	to	begin	streaming	from	(only	used	if	mem	=	FALSE).
length Data	length...	0	=	use	all	data	up	to	the	end	of	the	file	(if	mem	=	FALSE).
flags A	combination	of	these	flags.

BASS_SAMPLE_FLOAT Use	32-bit	floating-point	sample	data.	See
Floating-point	channels	for	info.	If	this
flag	is	not	specified,	then	the	stream	is	16-
bit.

BASS_SAMPLE_SOFTWARE Force	the	stream	to	not	use	hardware
mixing.

BASS_SAMPLE_3D Enable	3D	functionality.	This	requires
that	the	BASS_DEVICE_3D	flag	was
specified	when	calling	BASS_Init,	and
the	stream	must	be	mono.	The	SPEAKER
flags	can	not	be	used	together	with	this
flag.

BASS_SAMPLE_LOOP Loop	the	file.	This	flag	can	be	toggled	at
any	time	using	BASS_ChannelFlags.

BASS_SAMPLE_FX Enable	the	old	implementation	of	DirectX
8	effects.	See	the	DX8	effect
implementations	section	for	details.	Use
BASS_ChannelSetFX	to	add	effects	to	the
stream.

BASS_STREAM_PRESCAN Pre-scan	the	file	for	seek	points	and
accurate	length	reading	in	chained	Opus
files	(has	no	effect	on	normal	Opus	files).
This	can	significantly	increase	the	time
taken	to	create	the	stream,	particularly
with	a	large	file.

BASS_STREAM_AUTOFREE Automatically	free	the	stream	when
playback	ends.

BASS_STREAM_DECODE Decode	the	sample	data,	without	playing

mk:@MSITStore:bass.chm::/float.html
mk:@MSITStore:bass.chm::/BASS_Init.html
mk:@MSITStore:bass.chm::/BASS_ChannelFlags.html
mk:@MSITStore:bass.chm::/effects.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetFX.html


it.	Use	BASS_ChannelGetData	to	retrieve
decoded	sample	data.	The
BASS_SAMPLE_3D,
BASS_STREAM_AUTOFREE	and
SPEAKER	flags	cannot	be	used	together
with	this	flag.	The
BASS_SAMPLE_SOFTWARE	and
BASS_SAMPLE_FX	flags	are	also
ignored.

BASS_SPEAKER_xxx Speaker	assignment	flags.	These	flags
have	no	effect	when	the	stream	is	more
than	stereo.

BASS_ASYNCFILE Read	the	file	asynchronously.	When
enabled,	the	file	is	read	and	buffered	in
parallel	with	the	decoding,	to	reduce	the
chances	of	the	decoder	being	affected	by
I/O	delays.	This	can	be	particularly	useful
with	slow	storage	media	and/or	low
latency	output.	The	size	of	the	file	buffer
is	determined	by	the
BASS_CONFIG_ASYNCFILE_BUFFER
config	option.	This	flag	is	ignored	when
streaming	from	memory	(mem	=	TRUE

BASS_UNICODE file	is	in	UTF-16	form.	Otherwise	it	is
ANSI	on	Windows	or	Windows	CE,	and
UTF-8	on	other	platforms.

mk:@MSITStore:bass.chm::/BASS_ChannelGetData.html
mk:@MSITStore:bass.chm::/speaker.html
mk:@MSITStore:bass.chm::/BASS_CONFIG_ASYNCFILE_BUFFER.html


Return	value
If	successful,	the	new	stream's	handle	is	returned,	else	0	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html


Error	codes
BASS_ERROR_INIT BASS_Init	has	not	been	successfully	called.
BASS_ERROR_NOTAVAIL Only	decoding	channels

(BASS_STREAM_DECODE)	are	allowed
when	using	the	"no	sound"	device.	The
BASS_STREAM_AUTOFREE	flag	is	also
unavailable	to	decoding	channels.

BASS_ERROR_ILLPARAM The	length	must	be	specified	when	streaming
from	memory.

BASS_ERROR_FILEOPEN The	file	could	not	be	opened.
BASS_ERROR_FILEFORM The	file's	format	is	not	recognised/supported.
BASS_ERROR_FORMAT The	sample	format	is	not	supported	by	the

device/drivers.	If	the	stream	is	more	than	stereo
or	the	BASS_SAMPLE_FLOAT	flag	is	used,	it
could	be	that	they	are	not	supported.

BASS_ERROR_SPEAKER The	specified	SPEAKER	flags	are	invalid.	The
device/drivers	do	not	support	them,	they	are
attempting	to	assign	a	stereo	stream	to	a	mono
speaker	or	3D	functionality	is	enabled.

BASS_ERROR_MEM There	is	insufficent	memory.
BASS_ERROR_NO3D Could	not	initialize	3D	support.
BASS_ERROR_UNKNOWN Some	other	mystery	problem!

mk:@MSITStore:bass.chm::/BASS_Init.html


Remarks
Use	BASS_ChannelGetInfo	to	retrieve	information	on	the	format	of	the	stream.
Opus	always	has	a	sample	rate	of	48000	Hz,	but	the	source	material	may	have
had	a	different	sample	rate,	which	is	available	via	the
BASS_ATTRIB_OPUS_ORIGFREQ	attribute.	The	playback	length	of	the
stream	can	be	retrieved	using	BASS_ChannelGetLength.

The	Opus	file	format	is	Ogg-based,	so	the	standard	BASS_TAG_OGG	and
BASS_TAG_VENDOR	tag	types	apply	to	Opus	too,	via
BASS_ChannelGetTags.

Chained	Opus	files	containing	multiple	logical	bitstreams	are	supported,	but
seeking	within	them	is	only	fully	supported	if	the	BASS_STREAM_PRESCAN
flag	is	used	(or	the	BASS_CONFIG_OGG_PRESCAN	option	is	enabled)	to
have	them	pre-scanned.	Without	pre-scanning,	seeking	will	only	be	possible
back	to	the	start.	The	BASS_POS_OGG	"mode"	can	be	used	with
BASS_ChannelGetLength	to	get	the	number	of	bitstreams	and	with
BASS_ChannelSetPosition	to	seek	to	a	particular	one.	A
BASS_SYNC_OGG_CHANGE	sync	can	be	set	via	BASS_ChannelSetSync	to
be	informed	of	when	a	new	bitstream	begins	during	decoding/playback.

To	stream	a	file	from	the	internet,	use	BASS_OPUS_StreamCreateURL.	To
stream	from	other	locations,	see	BASS_OPUS_StreamCreateFileUser.

mk:@MSITStore:bass.chm::/BASS_ChannelGetInfo.html
mk:@MSITStore:bass.chm::/BASS_ChannelGetLength.html
mk:@MSITStore:bass.chm::/BASS_ChannelGetTags.html
mk:@MSITStore:bass.chm::/BASS_CONFIG_OGG_PRESCAN.html
mk:@MSITStore:bass.chm::/BASS_ChannelGetLength.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetPosition.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetSync.html


Platform-specific
Away	from	Windows,	all	mixing	is	done	in	software	(by	BASS),	so	the
BASS_SAMPLE_SOFTWARE	flag	is	unnecessary.	The	BASS_SAMPLE_FX
flag	is	also	ignored.



Example
Create	a	stream	of	an	Opus	file.

HSTREAM	stream=BASS_OPUS_StreamCreateFile(FALSE,	"afile.opus",	0,	0,	0);



See	also
BASS_OPUS_StreamCreateFileUser,	BASS_OPUS_StreamCreateURL

BASS_ChannelGetInfo,	BASS_ChannelGetLength,	BASS_ChannelGetTags,
BASS_ChannelPlay,	BASS_ChannelSetAttribute,	BASS_ChannelSetDSP,
BASS_ChannelSetFX,	BASS_ChannelSetLink,	BASS_StreamFree,
BASS_StreamGetFilePosition

mk:@MSITStore:bass.chm::/BASS_ChannelGetInfo.html
mk:@MSITStore:bass.chm::/BASS_ChannelGetLength.html
mk:@MSITStore:bass.chm::/BASS_ChannelGetTags.html
mk:@MSITStore:bass.chm::/BASS_ChannelPlay.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetAttribute.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetDSP.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetFX.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetLink.html
mk:@MSITStore:bass.chm::/BASS_StreamFree.html
mk:@MSITStore:bass.chm::/BASS_StreamGetFilePosition.html


BASS_OPUS_StreamCreateFileUser

Creates	a	sample	stream	from	a	Opus	file	via	user	callback	functions.

HSTREAM	BASS_OPUS_StreamCreateFileUser(

				DWORD	system,

				DWORD	flags,

				BASS_FILEPROCS	*procs,

				void	*user

);

mk:@MSITStore:bass.chm::/BASS_FILEPROCS.html


Parameters
system File	system	to	use,	one	of	the	following.

STREAMFILE_NOBUFFER Unbuffered.
STREAMFILE_BUFFER Buffered.
STREAMFILE_BUFFERPUSH Buffered,	with	the	data	pushed	to	BASS

via	BASS_StreamPutFileData.
flags A	combination	of	these	flags.

BASS_SAMPLE_FLOAT Use	32-bit	floating-point	sample	data.	See
Floating-point	channels	for	more	info.	If
this	flag	is	not	specified,	then	the	stream
is	16-bit.

BASS_SAMPLE_SOFTWARE Force	the	stream	to	not	use	hardware
mixing.

BASS_SAMPLE_3D Enable	3D	functionality.	This	requires
that	the	BASS_DEVICE_3D	flag	was
specified	when	calling	BASS_Init,	and
the	stream	must	be	mono.	The	SPEAKER
flags	can	not	be	used	together	with	this
flag.

BASS_SAMPLE_LOOP Loop	the	file.	This	flag	can	be	toggled	at
any	time	using	BASS_ChannelFlags.

BASS_SAMPLE_FX Enable	the	old	implementation	of	DirectX
8	effects.	See	the	DX8	effect
implementations	section	for	details.	Use
BASS_ChannelSetFX	to	add	effects	to	the
stream.

BASS_STREAM_PRESCAN Pre-scan	the	file	for	seek	points	and
accurate	length	reading	in	chained	Opus
files	(has	no	effect	on	normal	Opus	files).
This	can	significantly	increase	the	time
taken	to	create	the	stream,	particularly
with	a	large	file.	This	flag	only	applies
when	using	the
STREAMFILE_NOBUFFER	system.

mk:@MSITStore:bass.chm::/BASS_StreamPutFileData.html
mk:@MSITStore:bass.chm::/float.html
mk:@MSITStore:bass.chm::/BASS_Init.html
mk:@MSITStore:bass.chm::/BASS_ChannelFlags.html
mk:@MSITStore:bass.chm::/effects.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetFX.html


BASS_STREAM_RESTRATE Restrict	the	"download"	rate	of	the	file	to
the	rate	required	to	sustain	playback.	If
this	flag	is	not	used,	then	the	file	will	be
downloaded	as	quickly	as	possible.	This
flag	only	has	effect	when	using	the
STREAMFILE_BUFFER	system.

BASS_STREAM_BLOCK Download	and	play	the	file	in	smaller
chunks.	Uses	a	lot	less	memory	than
otherwise,	but	it	is	not	possible	to	seek	or
loop	the	stream;	once	it	has	ended,	the	file
must	be	opened	again	to	play	it	again.
This	flag	will	automatically	be	applied
when	the	file	length	is	unknown.	This	flag
also	has	the	effect	of	restricting	the
download	rate.	This	flag	has	no	effect
when	using	the
STREAMFILE_NOBUFFER	system.

BASS_STREAM_AUTOFREE Automatically	free	the	stream	when
playback	ends.

BASS_STREAM_DECODE Decode	the	sample	data,	without	playing
it.	Use	BASS_ChannelGetData	to	retrieve
decoded	sample	data.	The
BASS_SAMPLE_3D,
BASS_STREAM_AUTOFREE	and
SPEAKER	flags	can	not	be	used	together
with	this	flag.	The
BASS_SAMPLE_SOFTWARE	and
BASS_SAMPLE_FX	flags	are	also
ignored.

BASS_SPEAKER_xxx Speaker	assignment	flags.	These	flags
have	no	effect	when	the	stream	is	more
than	stereo.

BASS_ASYNCFILE Read	the	file	asynchronously.	When
enabled,	the	file	is	read	and	buffered	in
parallel	with	the	decoding,	to	reduce	the
chances	of	the	decoder	being	affected	by

mk:@MSITStore:bass.chm::/BASS_ChannelGetData.html
mk:@MSITStore:bass.chm::/speaker.html


I/O	delays.	This	can	be	particularly	useful
with	slow	storage	media	and/or	low
latency	output.	The	size	of	the	file	buffer
is	determined	by	the
BASS_CONFIG_ASYNCFILE_BUFFER
config	option.	This	flag	only	applies	when
using	the	STREAMFILE_NOBUFFER
system.

procs The	user	defined	file	functions.
user User	instance	data	to	pass	to	the	callback	functions.

mk:@MSITStore:bass.chm::/BASS_CONFIG_ASYNCFILE_BUFFER.html


Return	value
If	successful,	the	new	stream's	handle	is	returned,	else	0	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html


Error	codes
BASS_ERROR_INIT BASS_Init	has	not	been	successfully	called.
BASS_ERROR_NOTAVAIL Only	decoding	channels

(BASS_STREAM_DECODE)	are	allowed
when	using	the	"no	sound"	device.	The
BASS_STREAM_AUTOFREE	flag	is	also
unavailable	to	decoding	channels.

BASS_ERROR_ILLPARAM system	is	not	valid.
BASS_ERROR_FILEFORM The	file's	format	is	not	recognised/supported.
BASS_ERROR_FORMAT The	sample	format	is	not	supported	by	the

device/drivers.	If	the	stream	is	more	than	stereo
or	the	BASS_SAMPLE_FLOAT	flag	is	used,	it
could	be	that	they	are	not	supported.

BASS_ERROR_SPEAKER The	specified	SPEAKER	flags	are	invalid.	The
device/drivers	do	not	support	them,	they	are
attempting	to	assign	a	stereo	stream	to	a	mono
speaker	or	3D	functionality	is	enabled.

BASS_ERROR_MEM There	is	insufficent	memory.
BASS_ERROR_NO3D Could	not	initialize	3D	support.
BASS_ERROR_UNKNOWN Some	other	mystery	problem!

mk:@MSITStore:bass.chm::/BASS_Init.html


Remarks
When	using	a	buffered	file	system,	the	playback	length	will	not	be	available
until	the	entire	file	has	been	"downloaded"	via	the	file	functions.



Platform-specific
Away	from	Windows,	all	mixing	is	done	in	software	(by	BASS),	so	the
BASS_SAMPLE_SOFTWARE	flag	is	unnecessary.	The	BASS_SAMPLE_FX
flag	is	also	ignored.



See	also
BASS_OPUS_StreamCreateFile,	BASS_OPUS_StreamCreateURL

BASS_ChannelGetInfo,	BASS_ChannelGetLength,	BASS_ChannelGetTags,
BASS_ChannelPlay,	BASS_ChannelSetAttribute,	BASS_ChannelSetDSP,
BASS_ChannelSetFX,	BASS_ChannelSetLink,	BASS_StreamFree,
BASS_FILEPROCS	structure,	BASS_CONFIG_NET_BUFFER

mk:@MSITStore:bass.chm::/BASS_ChannelGetInfo.html
mk:@MSITStore:bass.chm::/BASS_ChannelGetLength.html
mk:@MSITStore:bass.chm::/BASS_ChannelGetTags.html
mk:@MSITStore:bass.chm::/BASS_ChannelPlay.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetAttribute.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetDSP.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetFX.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetLink.html
mk:@MSITStore:bass.chm::/BASS_StreamFree.html
mk:@MSITStore:bass.chm::/BASS_FILEPROCS.html
mk:@MSITStore:bass.chm::/BASS_CONFIG_NET_BUFFER.html


BASS_OPUS_StreamCreateURL

Creates	a	sample	stream	from	an	Opus	file	on	the	internet,	optionally	receiving
the	downloaded	data	in	a	callback.

HSTREAM	BASS_OPUS_StreamCreateURL(

				char	*url,

				DWORD	offset,

				DWORD	flags,

				DOWNLOADPROC	*proc,

				void	*user

);

mk:@MSITStore:bass.chm::/DOWNLOADPROC.html


Parameters
url URL	of	the	file	to	stream.	Should	begin	with	"http://"	or	"https://"	or

"ftp://".
offset File	position	to	start	streaming	from.	This	is	ignored	by	some	servers,

specifically	when	the	file	length	is	unknown.
flags A	combination	of	these	flags.

BASS_SAMPLE_FLOAT Use	32-bit	floating-point	sample
data.	See	Floating-point	channels	for
more	info.	If	this	flag	is	not
specified,	then	the	stream	is	16-bit.

BASS_SAMPLE_SOFTWARE Force	the	stream	to	not	use	hardware
mixing.

BASS_SAMPLE_3D Enable	3D	functionality.	This
requires	that	the	BASS_DEVICE_3D
flag	was	specified	when	calling
BASS_Init,	and	the	stream	must	be
mono.	The	SPEAKER	flags	can	not
be	used	together	with	this	flag.

BASS_SAMPLE_LOOP Loop	the	file.	This	flag	can	be
toggled	at	any	time	using
BASS_ChannelFlags.	This	flag	is
ignored	when	streaming	in	blocks
(BASS_STREAM_BLOCK).

BASS_SAMPLE_FX Enable	the	old	implementation	of
DirectX	8	effects.	See	the	DX8	effect
implementations	section	for	details.
Use	BASS_ChannelSetFX	to	add
effects	to	the	stream.

BASS_STREAM_RESTRATE Restrict	the	download	rate	of	the	file
to	the	rate	required	to	sustain
playback.	If	this	flag	is	not	used,	then
the	file	will	be	downloaded	as
quickly	as	the	user's	internet
connection	allows.

BASS_STREAM_BLOCK Download	and	play	the	file	in

mk:@MSITStore:bass.chm::/float.html
mk:@MSITStore:bass.chm::/BASS_Init.html
mk:@MSITStore:bass.chm::/BASS_ChannelFlags.html
mk:@MSITStore:bass.chm::/effects.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetFX.html


smaller	chunks.	Uses	a	lot	less
memory	than	otherwise,	but	it's	not
possible	to	seek	or	loop	the	stream;
once	it's	ended,	the	file	must	be
opened	again	to	play	it	again.	This
flag	will	automatically	be	applied
when	the	file	length	is	unknown,	for
example	with	Shout/Icecast	streams.
This	flag	also	has	the	effect	of
resticting	the	download	rate.

BASS_STREAM_STATUS Pass	status	info	(HTTP/ICY	tags)
from	the	server	to	the
DOWNLOADPROC	callback	during
connection.	This	can	be	useful	to
determine	the	reason	for	a	failure.

BASS_STREAM_AUTOFREE Automatically	free	the	stream	when
playback	ends.

BASS_STREAM_DECODE Decode	the	sample	data,	without
playing	it.	Use
BASS_ChannelGetData	to	retrieve
decoded	sample	data.	The
BASS_SAMPLE_3D,
BASS_STREAM_AUTOFREE	and
SPEAKER	flags	can	not	be	used
together	with	this	flag.	The
BASS_SAMPLE_SOFTWARE	and
BASS_SAMPLE_FX	flags	are	also
ignored.

BASS_SPEAKER_xxx Speaker	assignment	flags.	These
flags	have	no	effect	when	the	stream
is	more	than	stereo.

BASS_UNICODE url	is	in	UTF-16	form.	Otherwise	it
is	ANSI	on	Windows	or	Windows
CE,	and	UTF-8	on	other	platforms.

proc Callback	function	to	receive	the	file	as	it	is	downloaded...	NULL	=	no

mk:@MSITStore:bass.chm::/DOWNLOADPROC.html
mk:@MSITStore:bass.chm::/BASS_ChannelGetData.html
mk:@MSITStore:bass.chm::/speaker.html


callback.
user User	instance	data	to	pass	to	the	callback	function.



Return	value
If	successful,	the	new	stream's	handle	is	returned,	else	0	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html


Error	codes
BASS_ERROR_INIT BASS_Init	has	not	been	successfully	called.
BASS_ERROR_NOTAVAIL Only	decoding	channels

(BASS_STREAM_DECODE)	are	allowed
when	using	the	"no	sound"	device.	The
BASS_STREAM_AUTOFREE	flag	is	also
unavailable	to	decoding	channels.

BASS_ERROR_NONET No	internet	connection	could	be	opened.
BASS_ERROR_ILLPARAM url	is	not	a	valid	URL.
BASS_ERROR_SSL SSL/HTTPS	support	is	not	available.
BASS_ERROR_TIMEOUT The	server	did	not	respond	to	the	request	within

the	timeout	period,	as	set	with	the
BASS_CONFIG_NET_TIMEOUT	config
option.

BASS_ERROR_FILEOPEN The	file	could	not	be	opened.
BASS_ERROR_FILEFORM The	file's	format	is	not	recognised/supported.
BASS_ERROR_FORMAT The	sample	format	is	not	supported	by	the

device/drivers.	If	the	stream	is	more	than	stereo
or	the	BASS_SAMPLE_FLOAT	flag	is	used,	it
could	be	that	they	are	not	supported	(ie.	no
WDM	drivers).

BASS_ERROR_SPEAKER The	specified	SPEAKER	flags	are	invalid.	The
device/drivers	do	not	support	them,	they	are
attempting	to	assign	a	stereo	stream	to	a	mono
speaker	or	3D	functionality	is	enabled.

BASS_ERROR_MEM There	is	insufficent	memory.
BASS_ERROR_NO3D Could	not	initialize	3D	support.
BASS_ERROR_UNKNOWN Some	other	mystery	problem!

mk:@MSITStore:bass.chm::/BASS_Init.html
mk:@MSITStore:bass.chm::/BASS_CONFIG_NET_TIMEOUT.html


Remarks
Use	BASS_ChannelGetInfo	to	retrieve	information	on	the	format	of	the	stream.
Opus	always	has	a	sample	rate	of	48000	Hz,	but	the	source	material	may	have
had	a	different	sample	rate,	which	is	available	via	the
BASS_ATTRIB_OPUS_ORIGFREQ	attribute.	The	playback	length	is	not
available	until	the	entire	file	has	been	downloaded,	at	which	point	it	can	be
retrieved	using	BASS_ChannelGetLength.

The	Opus	file	format	is	Ogg-based,	so	the	standard	BASS_TAG_OGG	and
BASS_TAG_VENDOR	tag	types	apply	to	Opus	too,	via
BASS_ChannelGetTags.	The	BASS_SYNC_OGG_CHANGE	sync	is	also
supported,	via	BASS_ChannelSetSync.

When	playing	the	stream,	BASS	will	stall	the	playback	if	there	is	insufficient
data	to	continue	playing.	Playback	will	automatically	be	resumed	when
sufficient	data	has	been	downloaded.	BASS_ChannelIsActive	can	be	used	to
check	if	the	playback	is	stalled,	and	the	progress	of	the	file	download	can	be
checked	with	BASS_StreamGetFilePosition.

When	streaming	in	blocks	(BASS_STREAM_BLOCK	flag),	be	careful	not	to
stop/pause	the	stream	for	too	long,	otherwise	the	connection	may	timeout	due	to
there	being	no	activity	and	the	stream	will	end	prematurely.

When	using	an	offset,	the	file	length	returned	by	BASS_StreamGetFilePosition
can	be	used	to	check	that	it	was	successful	by	comparing	it	with	the	original	file
length.	Another	way	to	check	is	to	inspect	the	HTTP	headers	retrieved	with
BASS_ChannelGetTags.

mk:@MSITStore:bass.chm::/BASS_ChannelGetInfo.html
mk:@MSITStore:bass.chm::/BASS_ChannelGetLength.html
mk:@MSITStore:bass.chm::/BASS_ChannelGetTags.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetSync.html
mk:@MSITStore:bass.chm::/BASS_ChannelIsActive.html
mk:@MSITStore:bass.chm::/BASS_StreamGetFilePosition.html
mk:@MSITStore:bass.chm::/BASS_StreamGetFilePosition.html
mk:@MSITStore:bass.chm::/BASS_ChannelGetTags.html


Platform-specific
Away	from	Windows,	all	mixing	is	done	in	software	(by	BASS),	so	the
BASS_SAMPLE_SOFTWARE	flag	is	unnecessary.	The	BASS_SAMPLE_FX
flag	is	also	ignored.



See	also
BASS_OPUS_StreamCreateFile,	BASS_OPUS_StreamCreateFileUser

BASS_ChannelGetInfo,	BASS_ChannelGetLength,	BASS_ChannelGetTags,
BASS_ChannelPlay,	BASS_ChannelSetAttribute,	BASS_ChannelSetDSP,
BASS_ChannelSetFX,	BASS_ChannelSetLink,	BASS_StreamFree,
DOWNLOADPROC	callback,	BASS_CONFIG_NET_AGENT,
BASS_CONFIG_NET_BUFFER,	BASS_CONFIG_NET_PREBUF,
BASS_CONFIG_NET_PROXY,	BASS_CONFIG_NET_TIMEOUT

mk:@MSITStore:bass.chm::/BASS_ChannelGetInfo.html
mk:@MSITStore:bass.chm::/BASS_ChannelGetLength.html
mk:@MSITStore:bass.chm::/BASS_ChannelGetTags.html
mk:@MSITStore:bass.chm::/BASS_ChannelPlay.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetAttribute.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetDSP.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetFX.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetLink.html
mk:@MSITStore:bass.chm::/BASS_StreamFree.html
mk:@MSITStore:bass.chm::/DOWNLOADPROC.html
mk:@MSITStore:bass.chm::/BASS_CONFIG_NET_AGENT.html
mk:@MSITStore:bass.chm::/BASS_CONFIG_NET_BUFFER.html
mk:@MSITStore:bass.chm::/BASS_CONFIG_NET_PREBUF.html
mk:@MSITStore:bass.chm::/BASS_CONFIG_NET_PROXY.html
mk:@MSITStore:bass.chm::/BASS_CONFIG_NET_TIMEOUT.html


Plugin	system

As	well	as	providing	dedicated	stream	creation	functions,	BASSOPUS	supports
the	BASS	plugin	system,	adding	Opus	file	support	to	the	standard	BASS	stream
and	sample	creation	functions:	BASS_StreamCreateFile,
BASS_StreamCreateFileUser,	and	BASS_SampleLoad.	This	is	enabled	using
the	BASS_PluginLoad	function.

mk:@MSITStore:bass.chm::/BASS_StreamCreateFile.html
mk:@MSITStore:bass.chm::/BASS_StreamCreateFileUser.html
mk:@MSITStore:bass.chm::/BASS_SampleLoad.html
mk:@MSITStore:bass.chm::/BASS_PluginLoad.html


BASS_ATTRIB_OPUS_GAIN	attribute

The	output	gain	of	an	Opus	stream.

BASS_ChannelGetAttribute(

				HSTREAM	handle,

				BASS_ATTRIB_OPUS_GAIN,

				float	*gain

);



Parameters
handle The	Opus	stream	handle.
gain The	gain	in	dB.



Remarks
Opus	files	have	an	"output	gain"	header	field,	which	is	applied	by	BASSOPUS
to	the	decoded	sample	data.	This	attribute	can	be	used	to	retrieve	and	override
that	gain	value.	When	there	are	multiple	logical	bitstreams,	each	bitstream	has	its
own	output	gain	value,	and	this	attribute	will	be	reset	to	the	new	bitstream's
header	value	upon	a	bitstream	switch.	A	BASS_SYNC_OGG_CHANGE	sync
can	be	set	via	BASS_ChannelSetSync	to	be	informed	of	when	a	new	bitstream
begins	during	decoding/playback.

mk:@MSITStore:bass.chm::/BASS_ChannelSetSync.html


See	also
BASS_ChannelGetAttribute,	BASS_ChannelSetAttribute

mk:@MSITStore:bass.chm::/BASS_ChannelGetAttribute.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetAttribute.html


BASS_ATTRIB_OPUS_ORIGFREQ
attribute

The	sample	rate	of	an	Opus	stream's	source	material.

BASS_ChannelGetAttribute(

				HSTREAM	handle,

				BASS_ATTRIB_OPUS_ORIGFREQ,

				float	*freq

);



Parameters
handle The	Opus	stream	handle.
freq The	sample	rate.



Remarks
Opus	streams	always	have	a	sample	rate	of	48000	Hz,	and	an	Opus	encoder	will
resample	the	source	material	to	that	if	necessary.	This	attribute	presents	the
original	sample	rate,	which	may	be	stored	in	the	Opus	file	header.	This	attribute
is	read-only,	so	cannot	be	modified	via	BASS_ChannelSetAttribute.

mk:@MSITStore:bass.chm::/BASS_ChannelSetAttribute.html


See	also
BASS_ChannelGetAttribute

mk:@MSITStore:bass.chm::/BASS_ChannelGetAttribute.html

