
BASS_CONFIG_MIDI_AUTOFONT	config
option

Automatically	load	matching	soundfonts?

BASS_SetConfig(

				BASS_CONFIG_MIDI_AUTOFONT,

				DWORD	autofont

);

Parameters
autofont If	set	to	1,	BASSMIDI	will	try	to	load	a	soundfont	matching	the

MIDI	file.	If	set	to	2,	the	matching	soundfont	will	also	be	used	on	all
banks.

Remarks
When	enabled,	BASSMIDI	will	check	for	a	matching	soundfont	when	loading	a
MIDI	file.	For	example,	if	the	MIDI	file	is	"afile.mid",	then	it	will	look	for	a
soundfont	named	"afile.sf2"	or	"afile.mid.sf2".	If	found,	this	soundfont	will	take
precedence	over	any	other	soundfonts	applied	via	BASS_MIDI_StreamSetFonts.

When	the	soundfont	is	used	on	all	banks	(autofont=2),	BASSMIDI	will	first
check	for	the	specific	bank	and	preset	in	the	soundfont,	but	if	it	does	not	find
that,	it	will	just	look	for	a	preset	match	on	any	bank.

This	option	only	applies	to	local	MIDI	files,	loaded	using
BASS_MIDI_StreamCreateFile	(or	BASS_StreamCreateFile	via	the	plugin
system).	BASSMIDI	will	not	look	for	matching	soundfonts	for	MIDI	files
loaded	from	the	internet.

By	default,	this	option	is	set	to	1.

mk:@MSITStore:bass.chm::/BASS_StreamCreateFile.html

See	also
BASS_MIDI_StreamCreateFile

BASS_GetConfig,	BASS_SetConfig

mk:@MSITStore:bass.chm::/BASS_GetConfig.html
mk:@MSITStore:bass.chm::/BASS_SetConfig.html

BASS_CONFIG_MIDI_COMPACT	config
option

Automatically	compact	all	soundfonts	following	a	configuration	change?

BASS_SetConfig(

				BASS_CONFIG_MIDI_COMPACT,

				BOOL	compact

);

Parameters
compact If	TRUE,	all	soundfonts	are	compacted	following	a	MIDI	stream

being	freed,	or	a	BASS_MIDI_StreamSetFonts	call.

Remarks
The	compacting	is	not	performed	immediately	upon	a	MIDI	stream	being	freed
or	BASS_MIDI_StreamSetFonts	being	called,	but	rather	2	seconds	later	(in
another	thread),	so	that	if	another	MIDI	stream	immediately	starts	using	the
soundfonts,	they	are	not	needlessly	closed	and	reopened.

Samples	that	have	been	preloaded	by	BASS_MIDI_FontLoad	are	not	affected	by
automatic	compacting.	Other	samples	that	have	been	preloaded	by
BASS_MIDI_StreamLoadSamples	are	affected	though,	so	it	is	probably	wise	to
disable	this	option	when	using	that	function.

By	default,	this	option	is	enabled.

See	also
BASS_MIDI_FontCompact

BASS_GetConfig,	BASS_SetConfig

mk:@MSITStore:bass.chm::/BASS_GetConfig.html
mk:@MSITStore:bass.chm::/BASS_SetConfig.html

BASS_CONFIG_MIDI_DEFFONT	config
option

The	default	soundfont.

BASS_SetConfigPtr(

				BASS_CONFIG_MIDI_DEFFONT,

				char	*filename

);

Parameters
filename Filename	of	the	soundfont...	NULL	=	no	default	soundfont.

Remarks
A	copy	is	made	of	the	provided	filename,	so	it	does	not	need	to	persist	beyond
the	BASS_SetConfigPtr	call.	If	the	specified	soundfont	cannot	be	loaded,	the
default	soundfont	setting	will	remain	as	it	is.	BASS_GetConfigPtr	can	be	used	to
confirm	what	that	is.

mk:@MSITStore:bass.chm::/BASS_SetConfigPtr.html
mk:@MSITStore:bass.chm::/BASS_GetConfigPtr.html

Platform-specific
On	Windows,	the	BASS_UNICODE	flag	can	be	used	to	set/get	the	soundfont
filename	in	UTF-16	form,	otherwise	it	is	ANSI.	The	filename	is	in	UTF-8	form
on	other	platforms.	On	Windows,	the	default	is	to	use	one	of	the	Creative
soundfonts	(28MBGM.SF2	or	CT8MGM.SF2	or	CT4MGM.SF2	or
CT2MGM.SF2)	if	present	in	the	Windows	system	directory.

See	also
BASS_MIDI_StreamCreateFile

BASS_GetConfigPtr,	BASS_SetConfigPtr

mk:@MSITStore:bass.chm::/BASS_GetConfigPtr.html
mk:@MSITStore:bass.chm::/BASS_SetConfigPtr.html

BASS_CONFIG_MIDI_IN_PORTS	config
option

The	number	of	MIDI	input	ports	to	make	available.

BASS_SetConfig(

				BASS_CONFIG_MIDI_IN_PORTS,

				DWORD	ports

);

Parameters
ports Number	of	input	ports...	0	(min)	-	10	(max).

Remarks
MIDI	input	ports	allow	MIDI	data	to	be	received	from	other	software,	not	only
MIDI	devices.	Once	a	port	has	been	initialized	via	BASS_MIDI_InInit,	the
ALSA	client	and	port	IDs	can	be	retrieved	from	BASS_MIDI_InGetDeviceInfo,
which	other	software	can	use	to	connect	to	the	port	and	send	data	to	it.	Prior	to
initialization,	an	input	port	will	have	a	client	ID	of	0.

The	default	is	for	1	input	port	to	be	available.

Platform-specific
This	option	is	only	available	on	Linux.

See	also
BASS_MIDI_InGetDeviceInfo,	BASS_MIDI_InInit

BASS_GetConfig,	BASS_SetConfig

mk:@MSITStore:bass.chm::/BASS_GetConfig.html
mk:@MSITStore:bass.chm::/BASS_SetConfig.html

BASS_CONFIG_MIDI_VOICES	config
option

The	maximum	number	of	samples	to	play	at	a	time.

BASS_SetConfig(

				BASS_CONFIG_MIDI_VOICES,

				DWORD	voices

);

Parameters
voices Maximum	number	of	samples	to	play	at	a	time...	1	(min)	-	100000

(max).

Remarks
This	setting	determines	the	maximum	number	of	samples	that	can	play	together
in	a	single	MIDI	stream.	This	is	not	necessarily	the	same	thing	as	the	maximum
number	of	notes,	due	to	presets	possibly	containing	multiple	layered	samples,	ie.
multiple	samples	may	be	played	for	a	single	note.	When	the	voice	limit	is	hit,	the
voice	with	the	lowest	volume	level	will	be	killed,	which	will	usually	be	one	that
is	already	fading	out	following	a	note	release.

The	more	voices	that	are	used,	the	more	CPU	that	is	required.	So	this	option	can
be	used	to	restrict	that,	for	example	on	a	lower	spec	system.	The
BASS_ATTRIB_MIDI_CPU	attribute	can	also	be	used	to	limit	CPU	usage.

Changing	this	setting	only	affects	subsequently	created	MIDI	streams,	not	any
that	already	exist.	The	voice	limit	of	an	existing	MIDI	stream	can	be	changed	via
the	BASS_ATTRIB_MIDI_VOICES	attribute.

Platform-specific
The	default	setting	is	100,	except	on	Android	and	iOS	where	it	is	40,	and
Windows	CE	where	it	is	30.	The	maximum	setting	is	1000	on	those	3	platforms.

See	also
BASS_MIDI_StreamCreateFile,	BASS_ATTRIB_MIDI_CPU,
BASS_ATTRIB_MIDI_VOICES

BASS_GetConfig,	BASS_SetConfig

mk:@MSITStore:bass.chm::/BASS_GetConfig.html
mk:@MSITStore:bass.chm::/BASS_SetConfig.html

BASS_MIDI_StreamCreate

Creates	a	sample	stream	to	render	real-time	MIDI	events.

HSTREAM	BASS_MIDI_StreamCreate(

				DWORD	channels,

				DWORD	flags,

				DWORD	freq

);

Parameters
channels The	number	of	MIDI	channels...	1	(min)	-	128	(max).	The	number	of

channels	can	subsequently	be	changed	via	the
BASS_ATTRIB_MIDI_CHANS	attribute.

flags A	combination	of	these	flags.
BASS_SAMPLE_8BITS Use	8-bit	resolution.	If	neither	this

or	the	BASS_SAMPLE_FLOAT
flags	are	specified,	then	the
sample	data	will	be	16-bit.

BASS_SAMPLE_FLOAT Use	32-bit	floating-point	sample
data.	See	Floating-point	channels
for	more	info.

BASS_SAMPLE_MONO Decode/play	the	MIDI	in	mono
(uses	less	CPU	than	stereo).	This
flag	is	automatically	applied	if
BASS_DEVICE_MONO	was
specified	when	calling	BASS_Init.

BASS_SAMPLE_SOFTWARE Force	the	stream	to	not	use
hardware	mixing.

BASS_SAMPLE_3D Enable	3D	functionality.	This
requires	that	the
BASS_DEVICE_3D	flag	was
specified	when	calling	BASS_Init.
3D	channels	must	also	be	mono,
so	BASS_SAMPLE_MONO	is
automatically	applied.	The
SPEAKER	flags	cannot	be	used
together	with	this	flag.

BASS_SAMPLE_FX Enable	the	old	implementation	of
DirectX	8	effects.	See	the	DX8
effect	implementations	section	for
details.	Use	BASS_ChannelSetFX
to	add	effects	to	the	stream.

BASS_STREAM_AUTOFREE Automatically	free	the	stream

mk:@MSITStore:bass.chm::/float.html
mk:@MSITStore:bass.chm::/BASS_Init.html
mk:@MSITStore:bass.chm::/BASS_Init.html
mk:@MSITStore:bass.chm::/effects.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetFX.html

when	playback	ends.
BASS_STREAM_DECODE Decode/render	the	sample	data,

without	playing	it.	Use
BASS_ChannelGetData	to
retrieve	decoded	sample	data.	The
BASS_SAMPLE_3D,
BASS_STREAM_AUTOFREE
and	SPEAKER	flags	cannot	be
used	together	with	this	flag.	The
BASS_SAMPLE_SOFTWARE
and	BASS_SAMPLE_FX	flags
are	also	ignored.

BASS_SPEAKER_xxx Speaker	assignment	flags.	The
BASS_SAMPLE_MONO	flag	is
automatically	applied	when	using
a	mono	speaker	assignment	flag.

BASS_MIDI_NOFX Disable	reverb	and	chorus
processing,	saving	some	CPU
time.	This	flag	can	be	toggled	at
any	time	using
BASS_ChannelFlags.

BASS_MIDI_NOSYSRESET Ignore	system	reset	events
(MIDI_EVENT_SYSTEM)	when
the	system	mode	is	unchanged.
This	flag	can	be	toggled	at	any
time	using	BASS_ChannelFlags.

BASS_MIDI_NOTEOFF1 Only	release	the	oldest	instance
upon	a	note	off	event
(MIDI_EVENT_NOTE	with
velocity=0)	when	there	are
overlapping	instances	of	the	note.
Otherwise	all	instances	are
released.	This	flag	can	be	toggled
at	any	time	using
BASS_ChannelFlags.

mk:@MSITStore:bass.chm::/BASS_ChannelGetData.html
mk:@MSITStore:bass.chm::/speaker.html
mk:@MSITStore:bass.chm::/BASS_ChannelFlags.html
mk:@MSITStore:bass.chm::/BASS_ChannelFlags.html
mk:@MSITStore:bass.chm::/BASS_ChannelFlags.html

BASS_MIDI_SINCINTER Use	sinc	interpolated	sample
mixing.	This	increases	the	sound
quality,	but	also	requires	more
CPU.	Otherwise	linear
interpolation	is	used.	The	sinc
interpolation	uses	8	points	by
default,	but	16	point	sinc
interpolation	is	also	available	via
the	BASS_ATTRIB_MIDI_SRC
attribute.

freq Sample	rate	to	render/play	the	MIDI	stream	at...	0	=	the	rate	specified
in	the	BASS_Init	call,	1	=	the	device's	current	output	rate	(or	the
BASS_Init	rate	if	that	is	not	available).

mk:@MSITStore:bass.chm::/BASS_Init.html
mk:@MSITStore:bass.chm::/BASS_Init.html

Return	value
If	successful,	the	new	stream's	handle	is	returned,	else	0	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_INIT BASS_Init	has	not	been	successfully	called.
BASS_ERROR_NOTAVAIL Only	decoding	channels

(BASS_STREAM_DECODE)	are	allowed
when	using	the	"no	sound"	device.	The
BASS_STREAM_AUTOFREE	flag	is	also
unavailable	to	decoding	channels.

BASS_ERROR_ILLPARAM channels	is	not	valid.
BASS_ERROR_FORMAT The	sample	format	is	not	supported	by	the

device/drivers.	If	the	stream	is	more	than	stereo
or	the	BASS_SAMPLE_FLOAT	flag	is	used,	it
could	be	that	they	are	not	supported.

BASS_ERROR_SPEAKER The	specified	SPEAKER	flags	are	invalid.	The
device/drivers	do	not	support	them	or	3D
functionality	is	enabled.

BASS_ERROR_MEM There	is	insufficient	memory.
BASS_ERROR_NO3D Could	not	initialize	3D	support.
BASS_ERROR_UNKNOWN Some	other	mystery	problem!

mk:@MSITStore:bass.chm::/BASS_Init.html

Remarks
This	function	creates	a	stream	solely	for	real-time	MIDI	events.	As	it	is	not
based	on	any	file,	the	stream	has	no	predetermined	length	and	is	never-ending.
Seeking	is	not	possible,	but	it	is	possible	to	reset	everything,	including	playback
buffer,	by	calling	BASS_ChannelPlay	(restart	=	TRUE)	or
BASS_ChannelSetPosition	(pos	=	0).

MIDI	events	are	applied	using	the	BASS_MIDI_StreamEvent	and
BASS_MIDI_StreamEvents	functions.	If	the	stream	is	being	played	(it	is	not	a
decoding	channel),	then	there	will	be	some	delay	in	the	effect	of	the	events	being
heard.	This	latency	can	be	reduced	by	making	use	of	the
BASS_CONFIG_BUFFER	and	BASS_CONFIG_UPDATEPERIOD	config
options.

If	a	stream	has	16	MIDI	channels,	then	channel	10	defaults	to	percussion/drums
and	the	rest	melodic,	otherwise	they	are	all	melodic.	That	can	be	changed	using
BASS_MIDI_StreamEvent	and	the	MIDI_EVENT_DRUMS	event.

Soundfonts	provide	the	sounds	that	are	used	to	render	a	MIDI	stream.	A	default
soundfont	configuration	is	applied	initially	to	the	new	MIDI	stream,	which	can
subsequently	be	overridden	using	BASS_MIDI_StreamSetFonts.

To	play	a	MIDI	file,	use	BASS_MIDI_StreamCreateFile.

mk:@MSITStore:bass.chm::/BASS_ChannelPlay.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetPosition.html
mk:@MSITStore:bass.chm::/BASS_CONFIG_BUFFER.html
mk:@MSITStore:bass.chm::/BASS_CONFIG_UPDATEPERIOD.html

Platform-specific
Away	from	Windows,	all	mixing	is	done	in	software	(by	BASS),	so	the
BASS_SAMPLE_SOFTWARE	flag	is	unnecessary.	The	BASS_SAMPLE_FX
flag	is	also	ignored.	On	Android	and	iOS,	sinc	interpolation	requires	a	NEON-
supporting	CPU;	the	BASS_MIDI_SINCINTER	flag	will	otherwise	be	ignored.
Sinc	interpolation	is	not	available	on	Windows	CE.

See	also
BASS_MIDI_StreamCreateEvents,	BASS_MIDI_StreamCreateFile,
BASS_MIDI_StreamEvent,	BASS_MIDI_StreamEvents,
BASS_MIDI_StreamGetChannel,	BASS_MIDI_StreamSetFonts,
BASS_ATTRIB_MIDI_CPU,	BASS_ATTRIB_MIDI_SRC,
BASS_CONFIG_MIDI_DEFFONT,	BASS_CONFIG_MIDI_VOICES

BASS_ChannelGetInfo,	BASS_ChannelPlay,	BASS_ChannelSetAttribute,
BASS_ChannelSetDSP,	BASS_ChannelSetFX,	BASS_ChannelSetLink,
BASS_StreamFree

mk:@MSITStore:bass.chm::/BASS_ChannelGetInfo.html
mk:@MSITStore:bass.chm::/BASS_ChannelPlay.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetAttribute.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetDSP.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetFX.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetLink.html
mk:@MSITStore:bass.chm::/BASS_StreamFree.html

BASS_MIDI_StreamCreateEvents

Creates	a	sample	stream	from	a	sequence	of	MIDI	events.

HSTREAM	BASS_MIDI_StreamCreateEvents(

				BASS_MIDI_EVENT	*events,

				DWORD	ppqn,

				DWORD	flags,

				DWORD	freq

);

Parameters
events Pointer	to	an	array	containing	the	event	sequence	to	play.
ppqn The	Pulses	Per	Quarter	Note,	or	ticks	per	beat.
flags A	combination	of	these	flags.

BASS_SAMPLE_8BITS Use	8-bit	resolution.	If	neither	this
or	the	BASS_SAMPLE_FLOAT
flags	are	specified,	then	the	sample
data	will	be	16-bit.

BASS_SAMPLE_FLOAT Use	32-bit	floating-point	sample
data.	See	Floating-point	channels	for
more	info.

BASS_SAMPLE_MONO Decode/play	the	MIDI	in	mono
(uses	less	CPU	than	stereo).	This
flag	is	automatically	applied	if
BASS_DEVICE_MONO	was
specified	when	calling	BASS_Init.

BASS_SAMPLE_SOFTWARE Force	the	stream	to	not	use	hardware
mixing.

BASS_SAMPLE_3D Enable	3D	functionality.	This
requires	that	the
BASS_DEVICE_3D	flag	was
specified	when	calling	BASS_Init.
3D	channels	must	also	be	mono,	so
BASS_SAMPLE_MONO	is
automatically	applied.	The
SPEAKER	flags	cannot	be	used
together	with	this	flag.

BASS_SAMPLE_LOOP Loop	the	events.	This	flag	can	be
toggled	at	any	time	using
BASS_ChannelFlags.

BASS_SAMPLE_FX Enable	the	old	implementation	of
DirectX	8	effects.	See	the	DX8
effect	implementations	section	for
details.	Use	BASS_ChannelSetFX
to	add	effects	to	the	stream.

mk:@MSITStore:bass.chm::/float.html
mk:@MSITStore:bass.chm::/BASS_Init.html
mk:@MSITStore:bass.chm::/BASS_Init.html
mk:@MSITStore:bass.chm::/BASS_ChannelFlags.html
mk:@MSITStore:bass.chm::/effects.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetFX.html

BASS_STREAM_AUTOFREE Automatically	free	the	stream	when
playback	ends.

BASS_STREAM_DECODE Decode/render	the	sample	data,
without	playing	it.	Use
BASS_ChannelGetData	to	retrieve
decoded	sample	data.	The
BASS_SAMPLE_3D,
BASS_STREAM_AUTOFREE	and
SPEAKER	flags	cannot	be	used
together	with	this	flag.	The
BASS_SAMPLE_SOFTWARE	and
BASS_SAMPLE_FX	flags	are	also
ignored.

BASS_SPEAKER_xxx Speaker	assignment	flags.	The
BASS_SAMPLE_MONO	flag	is
automatically	applied	when	using	a
mono	speaker	assignment	flag.

BASS_MIDI_DECAYEND Let	the	sound	decay	naturally
(including	reverb)	instead	of
stopping	abruptly	at	the	end	of	the
events,	including	when	looping.
This	flag	can	be	toggled	at	any	time
using	BASS_ChannelFlags.

BASS_MIDI_DECAYSEEK Let	the	old	sound	decay	naturally
(including	reverb)	when	changing
the	position,	including	looping.	This
flag	can	be	toggled	at	any	time	using
BASS_ChannelFlags,	but	it	should
generally	only	be	used	in
BASS_ChannelSetPosition	calls	to
have	it	applied	to	particular	position
changes,	eg.	custom	loops.

BASS_MIDI_NOFX Disable	reverb	and	chorus
processing,	saving	some	CPU	time.
This	flag	can	be	toggled	at	any	time
using	BASS_ChannelFlags.

mk:@MSITStore:bass.chm::/BASS_ChannelGetData.html
mk:@MSITStore:bass.chm::/speaker.html
mk:@MSITStore:bass.chm::/BASS_ChannelFlags.html
mk:@MSITStore:bass.chm::/BASS_ChannelFlags.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetPosition.html
mk:@MSITStore:bass.chm::/BASS_ChannelFlags.html

BASS_MIDI_NOSYSRESET Ignore	system	reset	events
(MIDI_EVENT_SYSTEM)	when
the	system	mode	is	unchanged.	This
flag	can	be	toggled	at	any	time	using
BASS_ChannelFlags.

BASS_MIDI_NOTEOFF1 Only	release	the	oldest	instance
upon	a	note	off	event
(MIDI_EVENT_NOTE	with
velocity=0)	when	there	are
overlapping	instances	of	the	note.
Otherwise	all	instances	are	released.
This	flag	can	be	toggled	at	any	time
using	BASS_ChannelFlags.

BASS_MIDI_SINCINTER Use	sinc	interpolated	sample
mixing.	This	increases	the	sound
quality,	but	also	requires	more	CPU.
Otherwise	linear	interpolation	is
used.	The	sinc	interpolation	uses	8
points	by	default,	but	16	point	sinc
interpolation	is	also	available	via	the
BASS_ATTRIB_MIDI_SRC
attribute.

freq Sample	rate	to	render/play	the	MIDI	stream	at...	0	=	the	rate	specified
in	the	BASS_Init	call,	1	=	the	device's	current	output	rate	(or	the
BASS_Init	rate	if	that	is	not	available).

mk:@MSITStore:bass.chm::/BASS_ChannelFlags.html
mk:@MSITStore:bass.chm::/BASS_ChannelFlags.html
mk:@MSITStore:bass.chm::/BASS_Init.html
mk:@MSITStore:bass.chm::/BASS_Init.html

Return	value
If	successful,	the	new	stream's	handle	is	returned,	else	0	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_INIT BASS_Init	has	not	been	successfully	called.
BASS_ERROR_NOTAVAIL Only	decoding	channels

(BASS_STREAM_DECODE)	are	allowed
when	using	the	"no	sound"	device.	The
BASS_STREAM_AUTOFREE	flag	is	also
unavailable	to	decoding	channels.

BASS_ERROR_ILLPARAM ppqn	cannot	be	0.
BASS_ERROR_ILLTYPE The	event	sequence	contains	invalid	event

type(s).
BASS_ERROR_POSITION The	events	must	be	in	chronological	order

(within	each	track).
BASS_ERROR_FORMAT The	sample	format	is	not	supported	by	the

device/drivers.	If	the	stream	is	more	than	stereo
or	the	BASS_SAMPLE_FLOAT	flag	is	used,	it
could	be	that	they	are	not	supported.

BASS_ERROR_SPEAKER The	specified	SPEAKER	flags	are	invalid.	The
device/drivers	do	not	support	them	or	3D
functionality	is	enabled.

BASS_ERROR_MEM There	is	insufficient	memory.
BASS_ERROR_NO3D Could	not	initialize	3D	support.
BASS_ERROR_UNKNOWN Some	other	mystery	problem!

mk:@MSITStore:bass.chm::/BASS_Init.html

Remarks
This	function	creates	a	16	channel	MIDI	stream	to	play	a	predefined	sequence	of
MIDI	events.	Any	of	the	standard	MIDI	events	listed	in	the
BASS_MIDI_StreamEvent	section	can	be	used,	but	the
MIDI_EVENT_SYSTEMEX	and	the	"non-MIDI"	events	(eg.
MIDI_EVENT_MIXLEVEL)	events	are	not	available	and	will	be	rejected.	The
sequence	should	end	with	a	MIDI_EVENT_END	event.	Multiple	tracks	are
possible	via	the	MIDI_EVENT_END_TRACK	event,	which	signals	the	end	of	a
track;	the	next	event	will	be	in	a	new	track.

The	event	sequence	is	copied,	so	the	events	array	does	not	need	to	persist	beyond
the	function	call.

Soundfonts	provide	the	sounds	that	are	used	to	render	a	MIDI	stream.	A	default
soundfont	configuration	is	applied	initially	to	the	new	MIDI	stream,	which	can
subsequently	be	overridden	using	BASS_MIDI_StreamSetFonts.

Platform-specific
Away	from	Windows,	all	mixing	is	done	in	software	(by	BASS),	so	the
BASS_SAMPLE_SOFTWARE	flag	is	unnecessary.	The	BASS_SAMPLE_FX
flag	is	also	ignored.	On	Android	and	iOS,	sinc	interpolation	requires	a	NEON-
supporting	CPU;	the	BASS_MIDI_SINCINTER	flag	will	otherwise	be	ignored.
Sinc	interpolation	is	not	available	on	Windows	CE.

Example
Play	a	middle	C	note	(key	60)	on	a	violin	every	2	seconds.

BASS_MIDI_EVENT	events[]={

				{MIDI_EVENT_TEMPO,	500000,	0,	0},	//	set	the	tempo	to	0.5	seconds	per	quarter	note

				{MIDI_EVENT_PROGRAM,	40,	0,	0},	//	select	the	violin	preset

				{MIDI_EVENT_NOTE,	MAKEWORD(60,	100),	0,	0},	//	press	the	key

				{MIDI_EVENT_NOTE,	60,	0,	200},	//	release	the	key	after	200	ticks

				{MIDI_EVENT_END,	0,	0,	400}	//	end	after	400	ticks

};

HSTREAM	stream=BASS_MIDI_StreamCreateEvents(events,	100,	BASS_SAMPLE_LOOP,	0);	//	create	a	looping	stream	from	the	events

BASS_ChannelPlay(stream,	0);	//	start	playing	it

See	also
BASS_MIDI_StreamCreate,	BASS_MIDI_StreamCreateFile,
BASS_MIDI_StreamGetChannel,	BASS_MIDI_StreamLoadSamples,
BASS_MIDI_StreamSetFonts,	BASS_ATTRIB_MIDI_CPU,
BASS_ATTRIB_MIDI_SRC,	BASS_CONFIG_MIDI_DEFFONT,
BASS_CONFIG_MIDI_VOICES

BASS_ChannelGetInfo,	BASS_ChannelPlay,	BASS_ChannelSetAttribute,
BASS_ChannelSetDSP,	BASS_ChannelSetFX,	BASS_ChannelSetLink,
BASS_StreamFree

mk:@MSITStore:bass.chm::/BASS_ChannelGetInfo.html
mk:@MSITStore:bass.chm::/BASS_ChannelPlay.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetAttribute.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetDSP.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetFX.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetLink.html
mk:@MSITStore:bass.chm::/BASS_StreamFree.html

BASS_MIDI_StreamCreateFile

Creates	a	sample	stream	from	a	MIDI	file.

HSTREAM	BASS_MIDI_StreamCreateFile(

				BOOL	mem,

				void	*file,

				QWORD	offset,

				QWORD	length,

				DWORD	flags,

				DWORD	freq

);

Parameters
mem TRUE	=	stream	the	file	from	memory.
file Filename	(mem	=	FALSE)	or	a	memory	location	(mem	=	TRUE).
offset File	offset	to	begin	streaming	from	(only	used	if	mem	=	FALSE).
length Data	length...	0	=	use	all	data	up	to	the	end	of	the	file	(if	mem	=

FALSE).
flags A	combination	of	these	flags.

BASS_SAMPLE_8BITS Use	8-bit	resolution.	If	neither	this
or	the	BASS_SAMPLE_FLOAT
flags	are	specified,	then	the	sample
data	will	be	16-bit.

BASS_SAMPLE_FLOAT Use	32-bit	floating-point	sample
data.	See	Floating-point	channels	for
more	info.

BASS_SAMPLE_MONO Decode/play	the	MIDI	in	mono
(uses	less	CPU	than	stereo).	This
flag	is	automatically	applied	if
BASS_DEVICE_MONO	was
specified	when	calling	BASS_Init.

BASS_SAMPLE_SOFTWARE Force	the	stream	to	not	use	hardware
mixing.

BASS_SAMPLE_3D Enable	3D	functionality.	This
requires	that	the
BASS_DEVICE_3D	flag	was
specified	when	calling	BASS_Init.
3D	channels	must	also	be	mono,	so
BASS_SAMPLE_MONO	is
automatically	applied.	The
SPEAKER	flags	cannot	be	used
together	with	this	flag.

BASS_SAMPLE_LOOP Loop	the	file.	This	flag	can	be
toggled	at	any	time	using
BASS_ChannelFlags.

BASS_SAMPLE_FX Enable	the	old	implementation	of

mk:@MSITStore:bass.chm::/float.html
mk:@MSITStore:bass.chm::/BASS_Init.html
mk:@MSITStore:bass.chm::/BASS_Init.html
mk:@MSITStore:bass.chm::/BASS_ChannelFlags.html

DirectX	8	effects.	See	the	DX8
effect	implementations	section	for
details.	Use	BASS_ChannelSetFX	to
add	effects	to	the	stream.

BASS_STREAM_AUTOFREE Automatically	free	the	stream	when
playback	ends.

BASS_STREAM_DECODE Decode/render	the	sample	data,
without	playing	it.	Use
BASS_ChannelGetData	to	retrieve
decoded	sample	data.	The
BASS_SAMPLE_3D,
BASS_STREAM_AUTOFREE	and
SPEAKER	flags	cannot	be	used
together	with	this	flag.	The
BASS_SAMPLE_SOFTWARE	and
BASS_SAMPLE_FX	flags	are	also
ignored.

BASS_SPEAKER_xxx Speaker	assignment	flags.	The
BASS_SAMPLE_MONO	flag	is
automatically	applied	when	using	a
mono	speaker	assignment	flag.

BASS_MIDI_DECAYEND Let	the	sound	decay	naturally
(including	reverb)	instead	of
stopping	abruptly	at	the	end	of	the
file,	including	when	looping.	This
flag	can	be	toggled	at	any	time	using
BASS_ChannelFlags.

BASS_MIDI_DECAYSEEK Let	the	old	sound	decay	naturally
(including	reverb)	when	changing
the	position,	including	looping.	This
flag	can	be	toggled	at	any	time	using
BASS_ChannelFlags,	but	it	should
generally	only	be	used	in
BASS_ChannelSetPosition	calls	to
have	it	applied	to	particular	position
changes,	eg.	custom	loops.

mk:@MSITStore:bass.chm::/effects.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetFX.html
mk:@MSITStore:bass.chm::/BASS_ChannelGetData.html
mk:@MSITStore:bass.chm::/speaker.html
mk:@MSITStore:bass.chm::/BASS_ChannelFlags.html
mk:@MSITStore:bass.chm::/BASS_ChannelFlags.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetPosition.html

BASS_MIDI_NOCROP Do	not	remove	empty	space
(containing	no	events)	from	the	end
of	the	file.

BASS_MIDI_NOFX Disable	reverb	and	chorus
processing,	saving	some	CPU	time.
This	flag	can	be	toggled	at	any	time
using	BASS_ChannelFlags.

BASS_MIDI_NOSYSRESET Ignore	system	reset	events
(MIDI_EVENT_SYSTEM)	when
the	system	mode	is	unchanged.	This
flag	can	be	toggled	at	any	time	using
BASS_ChannelFlags.

BASS_MIDI_NOTEOFF1 Only	release	the	oldest	instance
upon	a	note	off	event
(MIDI_EVENT_NOTE	with
velocity=0)	when	there	are
overlapping	instances	of	the	note.
Otherwise	all	instances	are	released.
This	flag	can	be	toggled	at	any	time
using	BASS_ChannelFlags.

BASS_MIDI_SINCINTER Use	sinc	interpolated	sample	mixing.
This	increases	the	sound	quality,	but
also	requires	more	CPU.	Otherwise
linear	interpolation	is	used.	The	sinc
interpolation	uses	8	points	by
default,	but	16	point	sinc
interpolation	is	also	available	via	the
BASS_ATTRIB_MIDI_SRC
attribute.

BASS_UNICODE file	is	in	UTF-16	form.	Otherwise	it
is	ANSI	on	Windows	or	Windows
CE,	and	UTF-8	on	other	platforms.

freq Sample	rate	to	render/play	the	MIDI	stream	at...	0	=	the	rate	specified
in	the	BASS_Init	call,	1	=	the	device's	current	output	rate	(or	the
BASS_Init	rate	if	that	is	not	available).

mk:@MSITStore:bass.chm::/BASS_ChannelFlags.html
mk:@MSITStore:bass.chm::/BASS_ChannelFlags.html
mk:@MSITStore:bass.chm::/BASS_ChannelFlags.html
mk:@MSITStore:bass.chm::/BASS_Init.html
mk:@MSITStore:bass.chm::/BASS_Init.html

Return	value
If	successful,	the	new	stream's	handle	is	returned,	else	0	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_INIT BASS_Init	has	not	been	successfully	called.
BASS_ERROR_NOTAVAIL Only	decoding	channels

(BASS_STREAM_DECODE)	are	allowed
when	using	the	"no	sound"	device.	The
BASS_STREAM_AUTOFREE	flag	is	also
unavailable	to	decoding	channels.

BASS_ERROR_ILLPARAM The	length	must	be	specified	when	streaming
from	memory.

BASS_ERROR_FILEOPEN The	file	could	not	be	opened.
BASS_ERROR_FILEFORM The	file's	format	is	not	recognised/supported.
BASS_ERROR_FORMAT The	sample	format	is	not	supported	by	the

device/drivers.	If	the	stream	is	more	than	stereo
or	the	BASS_SAMPLE_FLOAT	flag	is	used,	it
could	be	that	they	are	not	supported.

BASS_ERROR_SPEAKER The	specified	SPEAKER	flags	are	invalid.	The
device/drivers	do	not	support	them	or	3D
functionality	is	enabled.

BASS_ERROR_MEM There	is	insufficient	memory.
BASS_ERROR_NO3D Could	not	initialize	3D	support.
BASS_ERROR_UNKNOWN Some	other	mystery	problem!

mk:@MSITStore:bass.chm::/BASS_Init.html

Remarks
BASSMIDI	supports	standard	MIDI	format	0/1/2	files.	In	the	case	of	format	2,
the	tracks	are	rendered/played	one	after	another.	RIFF	MIDI	(RMID)	files	are
also	supported.	The	General	MIDI	standard	events	are	supported,	as	are	several
Roland	GS	and	Yamaha	XG	NRPN	and	SysEx	events.	A	full	list	of	supported
MIDI	events	can	be	found	in	the	BASS_MIDI_StreamEvent	documentation.

Soundfonts	provide	the	sounds	that	are	used	to	render	a	MIDI	stream.	A	default
soundfont	configuration	is	applied	initially	to	the	new	MIDI	stream,	which	can
subsequently	be	overridden	using	BASS_MIDI_StreamSetFonts.	By	default,
with	the	BASS_CONFIG_MIDI_AUTOFONT	config	option	enabled,
BASSMIDI	will	also	check	for	a	soundfont	of	the	same	name	as	the	MIDI	file.
Note	that	a	MIDI	stream	can	have	multiple	soundfonts	stacked,	each	providing
different	presets,	for	example.

As	well	as	the	standard	byte/time-based	positioning,	MIDI	tick-based
positioning	is	also	supported.	The	BASS_POS_MIDI_TICK	"mode"	can	be	used
with	BASS_ChannelGetLength,	BASS_ChannelGetPosition	and
BASS_ChannelSetPosition	to	deal	in	ticks.	The	BASS_ATTRIB_MIDI_PPQN
attribute	can	be	used	to	translate	the	position	to	beats.

Marker,	instrument	name,	cue,	text,	and	lyric	events	can	be	retrieved	via	the
BASS_MIDI_StreamGetMark	function.	Syncs	can	also	be	used	to	be	notified	of
their	occurrence.

Other	texts	of	each	track	(eg.	track	name)	are	available	via	the
BASS_TAG_MIDI_TRACK+<track>	tag,	where	track=0	is	the	first	track.	A
pointer	to	a	series	of	null-terminated	strings	is	given,	the	final	string	ending	with
a	double	null.	The	first	text	in	the	first	track	is	generally	the	title	of	the	MIDI
file.	RIFF	MIDI	tags	are	also	available	via	the	standard
BASS_TAG_RIFF_INFO	tag.

Alongside	the	events	played	from	the	MIDI	file,	custom	MIDI	events	can	be
applied	via	the	BASS_MIDI_StreamEvent	and	BASS_MIDI_StreamEvents
functions.	The	events	can	be	played	on	the	same	MIDI	channels	that	are	used	by
the	MIDI	file,	or	they	can	be	played	on	additional	channels	allocated	via	the
BASS_ATTRIB_MIDI_CHANS	attribute.

mk:@MSITStore:bass.chm::/BASS_ChannelGetLength.html
mk:@MSITStore:bass.chm::/BASS_ChannelGetPosition.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetPosition.html
mk:@MSITStore:bass.chm::/BASS_ChannelGetTags.html

Unlike	with	most	stream	formats,	the	entire	MIDI	file	is	loaded	to	memory.	This
means	the	file	can	be	deleted	or	moved	after	calling	this	function,	or	the	memory
can	be	discarded	(mem	=	TRUE).

To	play	a	MIDI	file	from	the	internet,	use	BASS_MIDI_StreamCreateURL.	To
play	a	custom	sequence	of	MIDI	events,	BASS_MIDI_StreamCreateEvents	can
be	used.

Platform-specific
Away	from	Windows,	all	mixing	is	done	in	software	(by	BASS),	so	the
BASS_SAMPLE_SOFTWARE	flag	is	unnecessary.	The	BASS_SAMPLE_FX
flag	is	also	ignored.	On	Android	and	iOS,	sinc	interpolation	requires	a	NEON-
supporting	CPU;	the	BASS_MIDI_SINCINTER	flag	will	otherwise	be	ignored.
Sinc	interpolation	is	not	available	on	Windows	CE.

Example
Create	a	stream	of	a	MIDI	file,	with	a	sample	rate	of	44100hz.

HSTREAM	stream=BASS_MIDI_StreamCreateFile(FALSE,	"afile.mid",	0,	0,	0,	44100);

See	also
BASS_MIDI_StreamCreate,	BASS_MIDI_StreamCreateEvents,
BASS_MIDI_StreamCreateFileUser,	BASS_MIDI_StreamCreateURL,
BASS_MIDI_StreamGetChannel,	BASS_MIDI_StreamGetEvents,
BASS_MIDI_StreamGetMark,	BASS_MIDI_StreamLoadSamples,
BASS_MIDI_StreamSetFonts,	BASS_ATTRIB_MIDI_CPU,
BASS_ATTRIB_MIDI_SRC,	BASS_CONFIG_MIDI_AUTOFONT,
BASS_CONFIG_MIDI_DEFFONT,	BASS_CONFIG_MIDI_VOICES

BASS_ChannelGetInfo,	BASS_ChannelGetLength,	BASS_ChannelGetTags,
BASS_ChannelPlay,	BASS_ChannelSetAttribute,	BASS_ChannelSetDSP,
BASS_ChannelSetFX,	BASS_ChannelSetLink,	BASS_StreamFree

mk:@MSITStore:bass.chm::/BASS_ChannelGetInfo.html
mk:@MSITStore:bass.chm::/BASS_ChannelGetLength.html
mk:@MSITStore:bass.chm::/BASS_ChannelGetTags.html
mk:@MSITStore:bass.chm::/BASS_ChannelPlay.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetAttribute.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetDSP.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetFX.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetLink.html
mk:@MSITStore:bass.chm::/BASS_StreamFree.html

BASS_MIDI_StreamCreateFileUser

Creates	a	sample	stream	from	a	MIDI	file	via	user	callback	functions.

HSTREAM	BASS_MIDI_StreamCreateFileUser(

				DWORD	system,

				DWORD	flags,

				BASS_FILEPROCS	*procs,

				void	*user,

				DWORD	freq

);

mk:@MSITStore:bass.chm::/BASS_FILEPROCS.html

Parameters
system File	system	to	use,	which	must	be	STREAMFILE_NOBUFFER,	as	the

entire	MIDI	file	is	preloaded.
flags Any	combination	of	these	flags.

BASS_SAMPLE_8BITS Use	8-bit	resolution.	If	neither	this
or	the	BASS_SAMPLE_FLOAT
flags	are	specified,	then	the	sample
data	will	be	16-bit.

BASS_SAMPLE_FLOAT Use	32-bit	floating-point	sample
data.	See	Floating-point	channels
for	more	info.

BASS_SAMPLE_MONO Decode/play	the	MIDI	in	mono
(uses	less	CPU	than	stereo).	This
flag	is	automatically	applied	if
BASS_DEVICE_MONO	was
specified	when	calling	BASS_Init.

BASS_SAMPLE_SOFTWARE Force	the	stream	to	not	use
hardware	mixing.

BASS_SAMPLE_3D Enable	3D	functionality.	This
requires	that	the
BASS_DEVICE_3D	flag	was
specified	when	calling	BASS_Init.
3D	channels	must	also	be	mono,	so
BASS_SAMPLE_MONO	is
automatically	applied.	The
SPEAKER	flags	cannot	be	used
together	with	this	flag.

BASS_SAMPLE_LOOP Loop	the	file.	This	flag	can	be
toggled	at	any	time	using
BASS_ChannelFlags.

BASS_SAMPLE_FX Enable	the	old	implementation	of
DirectX	8	effects.	See	the	DX8
effect	implementations	section	for
details.	Use	BASS_ChannelSetFX
to	add	effects	to	the	stream.

mk:@MSITStore:bass.chm::/float.html
mk:@MSITStore:bass.chm::/BASS_Init.html
mk:@MSITStore:bass.chm::/BASS_Init.html
mk:@MSITStore:bass.chm::/BASS_ChannelFlags.html
mk:@MSITStore:bass.chm::/effects.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetFX.html

BASS_STREAM_AUTOFREE Automatically	free	the	stream	when
playback	ends.

BASS_STREAM_DECODE Decode/render	the	sample	data,
without	playing	it.	Use
BASS_ChannelGetData	to	retrieve
decoded	sample	data.	The
BASS_SAMPLE_3D,
BASS_STREAM_AUTOFREE	and
SPEAKER	flags	cannot	be	used
together	with	this	flag.	The
BASS_SAMPLE_SOFTWARE	and
BASS_SAMPLE_FX	flags	are	also
ignored.

BASS_SPEAKER_xxx Speaker	assignment	flags.	The
BASS_SAMPLE_MONO	flag	is
automatically	applied	when	using	a
mono	speaker	assignment	flag.

BASS_MIDI_DECAYEND Let	the	sound	decay	naturally
(including	reverb)	instead	of
stopping	abruptly	at	the	end	of	the
file,	including	when	looping.	This
flag	can	be	toggled	at	any	time
using	BASS_ChannelFlags.

BASS_MIDI_DECAYSEEK Let	the	old	sound	decay	naturally
(including	reverb)	when	changing
the	position,	including	looping.	This
flag	can	be	toggled	at	any	time
using	BASS_ChannelFlags,	but	it
should	generally	only	be	used	in
BASS_ChannelSetPosition	calls	to
have	it	applied	to	particular	position
changes,	eg.	custom	loops.

BASS_MIDI_NOCROP Do	not	remove	empty	space
(containing	no	events)	from	the	end
of	the	file.

mk:@MSITStore:bass.chm::/BASS_ChannelGetData.html
mk:@MSITStore:bass.chm::/speaker.html
mk:@MSITStore:bass.chm::/BASS_ChannelFlags.html
mk:@MSITStore:bass.chm::/BASS_ChannelFlags.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetPosition.html

BASS_MIDI_NOFX Disable	reverb	and	chorus
processing,	saving	some	CPU	time.
This	flag	can	be	toggled	at	any	time
using	BASS_ChannelFlags.

BASS_MIDI_NOSYSRESET Ignore	system	reset	events
(MIDI_EVENT_SYSTEM)	when
the	system	mode	is	unchanged.	This
flag	can	be	toggled	at	any	time
using	BASS_ChannelFlags.

BASS_MIDI_NOTEOFF1 Only	release	the	oldest	instance
upon	a	note	off	event
(MIDI_EVENT_NOTE	with
velocity=0)	when	there	are
overlapping	instances	of	the	note.
Otherwise	all	instances	are	released.
This	flag	can	be	toggled	at	any	time
using	BASS_ChannelFlags.

BASS_MIDI_SINCINTER Use	sinc	interpolated	sample
mixing.	This	increases	the	sound
quality,	but	also	requires	more	CPU.
Otherwise	linear	interpolation	is
used.	The	sinc	interpolation	uses	8
points	by	default,	but	16	point	sinc
interpolation	is	also	available	via
the	BASS_ATTRIB_MIDI_SRC
attribute.

procs The	user	defined	file	functions.
user User	instance	data	to	pass	to	the	callback	functions.
freq Sample	rate	to	render/play	the	MIDI	stream	at...	0	=	the	rate	specified

in	the	BASS_Init	call,	1	=	the	device's	current	output	rate	(or	the
BASS_Init	rate	if	that	is	not	available).

mk:@MSITStore:bass.chm::/BASS_ChannelFlags.html
mk:@MSITStore:bass.chm::/BASS_ChannelFlags.html
mk:@MSITStore:bass.chm::/BASS_ChannelFlags.html
mk:@MSITStore:bass.chm::/BASS_Init.html
mk:@MSITStore:bass.chm::/BASS_Init.html

Return	value
If	successful,	the	new	stream's	handle	is	returned,	else	0	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_INIT BASS_Init	has	not	been	successfully	called.
BASS_ERROR_NOTAVAIL Only	decoding	channels

(BASS_STREAM_DECODE)	are	allowed
when	using	the	"no	sound"	device.	The
BASS_STREAM_AUTOFREE	flag	is	also
unavailable	to	decoding	channels.

BASS_ERROR_ILLPARAM system	is	not	valid.
BASS_ERROR_FILEFORM The	file's	format	is	not	recognised/supported.
BASS_ERROR_FORMAT The	sample	format	is	not	supported	by	the

device/drivers.	If	the	stream	is	more	than	stereo
or	the	BASS_SAMPLE_FLOAT	flag	is	used,	it
could	be	that	they	are	not	supported.

BASS_ERROR_SPEAKER The	specified	SPEAKER	flags	are	invalid.	The
device/drivers	do	not	support	them	or	3D
functionality	is	enabled.

BASS_ERROR_MEM There	is	insufficient	memory.
BASS_ERROR_NO3D Could	not	initialize	3D	support.
BASS_ERROR_UNKNOWN Some	other	mystery	problem!

mk:@MSITStore:bass.chm::/BASS_Init.html

Remarks
As	there	is	no	file	associated	with	a	user	file	stream,	it	is	not	possible	for
BASSMIDI	to	look	for	a	soundfont	with	the	same	name	as	the	MIDI	file.	If	there
is	a	matching	soundfont,	it	can	be	applied	using	BASS_MIDI_StreamSetFonts.

Platform-specific
Away	from	Windows,	all	mixing	is	done	in	software	(by	BASS),	so	the
BASS_SAMPLE_SOFTWARE	flag	is	unnecessary.	The	BASS_SAMPLE_FX
flag	is	also	ignored.	On	Android	and	iOS,	sinc	interpolation	requires	a	NEON-
supporting	CPU;	the	BASS_MIDI_SINCINTER	flag	will	otherwise	be	ignored.
Sinc	interpolation	is	not	available	on	Windows	CE.

See	also
BASS_MIDI_StreamCreate,	BASS_MIDI_StreamCreateEvents,
BASS_MIDI_StreamCreateFile,	BASS_MIDI_StreamCreateURL,
BASS_MIDI_StreamGetChannel,	BASS_MIDI_StreamGetMark,
BASS_MIDI_StreamLoadSamples,	BASS_MIDI_StreamSetFonts,
BASS_ATTRIB_MIDI_CPU,	BASS_ATTRIB_MIDI_SRC,
BASS_CONFIG_MIDI_DEFFONT,	BASS_CONFIG_MIDI_VOICES

BASS_ChannelGetInfo,	BASS_ChannelGetLength,	BASS_ChannelGetTags,
BASS_ChannelPlay,	BASS_ChannelSetAttribute,	BASS_ChannelSetDSP,
BASS_ChannelSetFX,	BASS_ChannelSetLink,	BASS_StreamFree,
BASS_FILEPROCS	structure

mk:@MSITStore:bass.chm::/BASS_ChannelGetInfo.html
mk:@MSITStore:bass.chm::/BASS_ChannelGetLength.html
mk:@MSITStore:bass.chm::/BASS_ChannelGetTags.html
mk:@MSITStore:bass.chm::/BASS_ChannelPlay.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetAttribute.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetDSP.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetFX.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetLink.html
mk:@MSITStore:bass.chm::/BASS_StreamFree.html
mk:@MSITStore:bass.chm::/BASS_FILEPROCS.html

BASS_MIDI_StreamCreateURL

Creates	a	sample	stream	from	an	MIDI	file	on	the	internet,	optionally	receiving
the	downloaded	data	in	a	callback.

HSTREAM	BASS_StreamCreateURL(

				char	*url,

				DWORD	offset,

				DWORD	flags,

				DOWNLOADPROC	*proc,

				void	*user,

				DWORD	freq

);

mk:@MSITStore:bass.chm::/DOWNLOADPROC.html

Parameters
url URL	of	the	file	to	stream.	Should	begin	with	"http://"	or	"ftp://".
offset File	position	to	start	streaming	from.	This	is	ignored	by	some	servers,

specifically	when	the	file	length	is	unknown.
flags Any	combination	of	these	flags.

BASS_SAMPLE_8BITS Use	8-bit	resolution.	If	neither	this	or
the	BASS_SAMPLE_FLOAT	flags
are	specified,	then	the	sample	data
will	be	16-bit.

BASS_SAMPLE_FLOAT Use	32-bit	floating-point	sample
data.	See	Floating-point	channels	for
more	info.

BASS_SAMPLE_MONO Decode/play	the	MIDI	in	mono	(uses
less	CPU	than	stereo).	This	flag	is
automatically	applied	if
BASS_DEVICE_MONO	was
specified	when	calling	BASS_Init.

BASS_SAMPLE_SOFTWARE Force	the	stream	to	not	use	hardware
mixing.

BASS_SAMPLE_3D Enable	3D	functionality.	This
requires	that	the	BASS_DEVICE_3D
flag	was	specified	when	calling
BASS_Init.	3D	channels	must	also
be	mono,	so
BASS_SAMPLE_MONO	is
automatically	applied.	The
SPEAKER	flags	cannot	be	used
together	with	this	flag.

BASS_SAMPLE_LOOP Loop	the	file.	This	flag	can	be
toggled	at	any	time	using
BASS_ChannelFlags.

BASS_SAMPLE_FX Enable	the	old	implementation	of
DirectX	8	effects.	See	the	DX8	effect
implementations	section	for	details.
Use	BASS_ChannelSetFX	to	add

mk:@MSITStore:bass.chm::/float.html
mk:@MSITStore:bass.chm::/BASS_Init.html
mk:@MSITStore:bass.chm::/BASS_Init.html
mk:@MSITStore:bass.chm::/BASS_ChannelFlags.html
mk:@MSITStore:bass.chm::/effects.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetFX.html

effects	to	the	stream.
BASS_STREAM_STATUS Pass	status	info	(HTTP/ICY	tags)

from	the	server	to	the
DOWNLOADPROC	callback	during
connection.	This	can	be	useful	to
determine	the	reason	for	a	failure.

BASS_STREAM_AUTOFREE Automatically	free	the	stream	when
playback	ends.

BASS_STREAM_DECODE Decode/render	the	sample	data,
without	playing	it.	Use
BASS_ChannelGetData	to	retrieve
decoded	sample	data.	The
BASS_SAMPLE_3D,
BASS_STREAM_AUTOFREE	and
SPEAKER	flags	cannot	be	used
together	with	this	flag.	The
BASS_SAMPLE_SOFTWARE	and
BASS_SAMPLE_FX	flags	are	also
ignored.

BASS_SPEAKER_xxx Speaker	assignment	flags.	The
BASS_SAMPLE_MONO	flag	is
automatically	applied	when	using	a
mono	speaker	assignment	flag.

BASS_MIDI_DECAYEND Let	the	sound	decay	naturally
(including	reverb)	instead	of
stopping	abruptly	at	the	end	of	the
file,	including	when	looping.	This
flag	can	be	toggled	at	any	time	using
BASS_ChannelFlags.

BASS_MIDI_DECAYSEEK Let	the	old	sound	decay	naturally
(including	reverb)	when	changing	the
position,	including	looping.	This	flag
can	be	toggled	at	any	time	using
BASS_ChannelFlags,	but	it	should
generally	only	be	used	in
BASS_ChannelSetPosition	calls	to

mk:@MSITStore:bass.chm::/DOWNLOADPROC.html
mk:@MSITStore:bass.chm::/BASS_ChannelGetData.html
mk:@MSITStore:bass.chm::/speaker.html
mk:@MSITStore:bass.chm::/BASS_ChannelFlags.html
mk:@MSITStore:bass.chm::/BASS_ChannelFlags.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetPosition.html

have	it	applied	to	particular	position
changes,	eg.	custom	loops.

BASS_MIDI_NOCROP Do	not	remove	empty	space
(containing	no	events)	from	the	end
of	the	file.

BASS_MIDI_NOFX Disable	reverb	and	chorus
processing,	saving	some	CPU	time.
This	flag	can	be	toggled	at	any	time
using	BASS_ChannelFlags.

BASS_MIDI_NOSYSRESET Ignore	system	reset	events
(MIDI_EVENT_SYSTEM)	when	the
system	mode	is	unchanged.	This	flag
can	be	toggled	at	any	time	using
BASS_ChannelFlags.

BASS_MIDI_NOTEOFF1 Only	release	the	oldest	instance	upon
a	note	off	event
(MIDI_EVENT_NOTE	with
velocity=0)	when	there	are
overlapping	instances	of	the	note.
Otherwise	all	instances	are	released.
This	flag	can	be	toggled	at	any	time
using	BASS_ChannelFlags.

BASS_MIDI_SINCINTER Use	sinc	interpolated	sample	mixing.
This	increases	the	sound	quality,	but
also	requires	more	CPU.	Otherwise
linear	interpolation	is	used.	The	sinc
interpolation	uses	8	points	by	default,
but	16	point	sinc	interpolation	is	also
available	via	the
BASS_ATTRIB_MIDI_SRC
attribute.

BASS_UNICODE url	is	in	UTF-16	form.	Otherwise	it
is	ANSI	on	Windows	or	Windows
CE,	and	UTF-8	on	other	platforms.

proc Callback	function	to	receive	the	downloaded	file...	NULL	=	no	callback.

mk:@MSITStore:bass.chm::/BASS_ChannelFlags.html
mk:@MSITStore:bass.chm::/BASS_ChannelFlags.html
mk:@MSITStore:bass.chm::/BASS_ChannelFlags.html

user User	instance	data	to	pass	to	the	callback	function.
freq Sample	rate	to	render/play	the	MIDI	stream	at...	0	=	the	rate	specified	in

the	BASS_Init	call,	1	=	the	device's	current	output	rate	(or	the
BASS_Init	rate	if	that	is	not	available).

mk:@MSITStore:bass.chm::/BASS_Init.html
mk:@MSITStore:bass.chm::/BASS_Init.html

Return	value
If	successful,	the	new	stream's	handle	is	returned,	else	0	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_INIT BASS_Init	has	not	been	successfully	called.
BASS_ERROR_NOTAVAIL Only	decoding	channels

(BASS_STREAM_DECODE)	are	allowed
when	using	the	"no	sound"	device.	The
BASS_STREAM_AUTOFREE	flag	is	also
unavailable	to	decoding	channels.

BASS_ERROR_NONET No	internet	connection	could	be	opened.
BASS_ERROR_ILLPARAM url	is	not	a	valid	URL.
BASS_ERROR_TIMEOUT The	server	did	not	respond	to	the	request	within

the	timeout	period,	as	set	with	the
BASS_CONFIG_NET_TIMEOUT	config
option.

BASS_ERROR_FILEOPEN The	file	could	not	be	opened.
BASS_ERROR_FILEFORM The	file's	format	is	not	recognised/supported.
BASS_ERROR_FORMAT The	sample	format	is	not	supported	by	the

device/drivers.	If	the	stream	is	more	than	stereo
or	the	BASS_SAMPLE_FLOAT	flag	is	used,	it
could	be	that	they	are	not	supported.

BASS_ERROR_SPEAKER The	specified	SPEAKER	flags	are	invalid.	The
device/drivers	do	not	support	them	or	3D
functionality	is	enabled.

BASS_ERROR_MEM There	is	insufficient	memory.
BASS_ERROR_NO3D Could	not	initialize	3D	support.
BASS_ERROR_UNKNOWN Some	other	mystery	problem!

mk:@MSITStore:bass.chm::/BASS_Init.html
mk:@MSITStore:bass.chm::/BASS_CONFIG_NET_TIMEOUT.html

Remarks
The	entire	MIDI	file	is	preloaded,	so	the	standard	BASS_STREAM_BLOCK
and	BASS_STREAM_RESTRATE	flags	have	no	effect	here.

Regardless	of	the	BASS_CONFIG_MIDI_AUTOFONT	setting,	a	matching
soundfont	is	not	looked	for	when	opening	a	MIDI	file	from	a	URL.

Platform-specific
Away	from	Windows,	all	mixing	is	done	in	software	(by	BASS),	so	the
BASS_SAMPLE_SOFTWARE	flag	is	unnecessary.	The	BASS_SAMPLE_FX
flag	is	also	ignored.	On	Android	and	iOS,	sinc	interpolation	requires	a	NEON-
supporting	CPU;	the	BASS_MIDI_SINCINTER	flag	will	otherwise	be	ignored.
Sinc	interpolation	is	not	available	on	Windows	CE.

See	also
BASS_MIDI_StreamCreateFile,	BASS_MIDI_StreamCreateFileUser,
BASS_MIDI_StreamGetChannel,	BASS_MIDI_StreamGetMark,
BASS_MIDI_StreamLoadSamples,	BASS_MIDI_StreamSetFonts,
BASS_ATTRIB_MIDI_CPU,	BASS_ATTRIB_MIDI_SRC,
BASS_CONFIG_MIDI_DEFFONT,	BASS_CONFIG_MIDI_VOICES

BASS_ChannelGetInfo,	BASS_ChannelGetLength,	BASS_ChannelGetTags,
BASS_ChannelPlay,	BASS_ChannelSetAttribute,	BASS_ChannelSetDSP,
BASS_ChannelSetFX,	BASS_ChannelSetLink,	BASS_StreamFree,
DOWNLOADPROC	callback,	BASS_CONFIG_NET_AGENT,
BASS_CONFIG_NET_PROXY,	BASS_CONFIG_NET_TIMEOUT

mk:@MSITStore:bass.chm::/BASS_ChannelGetInfo.html
mk:@MSITStore:bass.chm::/BASS_ChannelGetLength.html
mk:@MSITStore:bass.chm::/BASS_ChannelGetTags.html
mk:@MSITStore:bass.chm::/BASS_ChannelPlay.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetAttribute.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetDSP.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetFX.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetLink.html
mk:@MSITStore:bass.chm::/BASS_StreamFree.html
mk:@MSITStore:bass.chm::/DOWNLOADPROC.html
mk:@MSITStore:bass.chm::/BASS_CONFIG_NET_AGENT.html
mk:@MSITStore:bass.chm::/BASS_CONFIG_NET_PROXY.html
mk:@MSITStore:bass.chm::/BASS_CONFIG_NET_TIMEOUT.html

BASS_MIDI_StreamEvent

Applies	an	event	to	a	channel	in	a	MIDI	stream.

BOOL	BASS_MIDI_StreamEvent(

				HSTREAM	handle,

				DWORD	chan,

				DWORD	event,

				DWORD	param

);

Parameters
handle The	MIDI	stream	to	apply	the	event	to.
chan The	MIDI	channel	to	apply	the	event	to...	0	=	channel	1.
event The	event	to	apply,	see	the	table	below.
param The	event	parameter.

Event	types,	with	param	definitions.
MIDI_EVENT_NOTE Press	or	release	a	key,	or	stop

without	sustain/decay.
param	:	LOBYTE	=	key	number	(0-
127,	60=middle	C),	HIBYTE	=
velocity	(0=release,	1-127=press,
255=stop).

MIDI_EVENT_PROGRAM Select	the	preset/instrument	to	use.
Standard	soundfont	presets	follow
the	General	MIDI	standard,	and
generally	also	include	Roland	GS
variations	in	other	banks	(accessible
via	the	MIDI_EVENT_BANK
event).
param	:	preset	number	(0-65535).

MIDI_EVENT_CHANPRES Set	the	channel	pressure.
param	:	pressure	level	(0-127).

MIDI_EVENT_KEYPRES Set	a	key's	pressure/aftertouch.
param	:	LOBYTE	=	key	number	(0-
127),	HIBYTE	=	pressure	level	(0-
127).

MIDI_EVENT_PITCH Set	the	pitch	wheel	position.
param	:	pitch	wheel	position	(0-
16383,	8192=normal/middle).

MIDI_EVENT_BANK Select	the	bank	to	use	(MIDI
controller	0).
param	:	bank	number	MSB	(0-127).

MIDI_EVENT_MODULATION Set	the	modulation	(MIDI	controller
1)

http://en.wikipedia.org/wiki/General_MIDI#Melodic_sounds

param	:	modulation	level	(0-127).
MIDI_EVENT_PORTATIME Set	the	portamento	time	(MIDI

controller	5).
param	:	portamento	time	(0-127).

MIDI_EVENT_VOLUME Set	the	volume	(MIDI	controller	7).
param	:	volume	level	(0-127).

MIDI_EVENT_PAN Set	the	pan	position	(MIDI
controller	10).
param	:	pan	position	(0-128,	0=left,
64=middle,	127=right,
128=random).

MIDI_EVENT_EXPRESSION Set	the	expression	(MIDI	controller
11).
param	:	expression	level	(0-127).

MIDI_EVENT_BANK_LSB Select	the	bank	LSB	to	use	(MIDI
controller	32).
param	:	bank	number	LSB	(0-127).

MIDI_EVENT_SUSTAIN Set	the	sustain	pedal/switch	(MIDI
controller	64).
param	:	sustain	is	on?	(0-63=no,	64-
127=yes).

MIDI_EVENT_PORTAMENTO Set	the	portamento	switch	(MIDI
controller	65).
param	:	portamento	is	on?	(0-
63=no,	64-127=yes).

MIDI_EVENT_SOSTENUTO Set	the	sostenuto	pedal/switch
(MIDI	controller	66).
param	:	sostenuto	is	on?	(0-63=no,
64-127=yes).

MIDI_EVENT_SOFT Set	the	soft	pedal/switch	(MIDI
controller	67).
param	:	soft	is	on?	(0-63=no,	64-
127=yes).

MIDI_EVENT_RESONANCE Set	the	low-pass	filter	resonance
(MIDI	controller	71,	NRPN	121h)

param	:	resonance	level	(0-127,
0=-64,	64=normal,	127=+63).

MIDI_EVENT_RELEASE Set	the	release	time	(MIDI
controller	72,	NRPN	166h)
param	:	release	time	(0-127,	0=-64,
64=normal,	127=+63).

MIDI_EVENT_ATTACK Set	the	attack	time	(MIDI	controller
73,	NRPN	163h)
param	:	attack	time	(0-127,	0=-64,
64=normal,	127=+63).

MIDI_EVENT_CUTOFF Set	the	low-pass	filter	cutoff	(MIDI
controller	74,	NRPN	120h)
param	:	cutoff	level	(0-127,	0=-64,
64=normal,	127=+63).

MIDI_EVENT_DECAY Set	the	decay	time	(MIDI	controller
75,	NRPN	164h)
param	:	decay	time	(0-127,	0=-64,
64=normal,	127=+63).

MIDI_EVENT_PORTANOTE Set	the	portamento	start	key;	the
next	note	starts	at	this	key	(MIDI
controller	84).
param	:	key	number	(1-127,
60=middle	C).

MIDI_EVENT_REVERB Set	the	reverb	send	level	(MIDI
controller	91)
param	:	reverb	level	(0-127).

MIDI_EVENT_CHORUS Set	the	chorus	send	level	(MIDI
controller	93)
param	:	chorus	level	(0-127).

MIDI_EVENT_USERFX Set	the	user	effect	send	level	(MIDI
controller	94).	This	will	have	no
audible	effect	unless	custom
processing	is	applied	to	the	user
effect	mix	via
BASS_MIDI_StreamGetChannel.
param	:	user	effect	level	(0-127).

MIDI_EVENT_SOUNDOFF Stop	all	sounds	(MIDI	controller
120).
param	:	not	used.

MIDI_EVENT_RESET Reset	controllers	(MIDI	controller
121),	that	is	modulation=0,
expression=127,	sustain=0,
portamento=0,	release	time=64,
attack	time=64,	pitch	wheel=8192,
channel	pressure=0.
param	:	not	used.

MIDI_EVENT_NOTESOFF Release	all	keys	(MIDI	controller
123).
param	:	not	used.

MIDI_EVENT_MODE Set	poly/mono	mode	(MIDI
controllers	126	&	127).
param	:	mode	(0=poly,	1=mono,
2=legato).

MIDI_EVENT_CONTROL Unhandled	controller.	This	has	no
effect	on	the	MIDI	stream,	but	can
be	useful	for	custom	processing
purposes	with	a
BASS_SYNC_MIDI_EVENT	sync.
param	:	LOBYTE	=	controller
number,	HIBYTE	=	controller
value.

MIDI_EVENT_PITCHRANGE Set	pitch	wheel	range	(MIDI	RPN
0).
param	:	range	in	semitones.

MIDI_EVENT_FINETUNE Set	the	fine	tuning	(MIDI	RPN	1).
param	:	finetune	in	cents	(0-16383,
0=-100,	8192=normal,
16383=+100).

MIDI_EVENT_COARSETUNE Set	the	coarse	tuning	(MIDI	RPN
2).
param	:	finetune	in	semitones	(0-

127,	0=-64,	64=normal,	127=+63).

MIDI_EVENT_DRUMS Set	the	percussion/drums	channel
switch.	The	bank	and	program	are
reset	to	0	when	this	changes.
param	:	use	drums?	(0=no,	1=yes).

MIDI_EVENT_DRUM_CUTOFF Set	the	low-pass	filter	cutoff	of	a
drum	key	(MIDI	NRPN	14knh)
param	:	LOBYTE	=	key	number	(0-
127),	HIBYTE	=	cutoff	level	(0-
127,	0=-64,	64=normal,	127=+63).

MIDI_EVENT_DRUM_RESONANCE Set	the	low-pass	filter	resonance	of
a	drum	key	(MIDI	NRPN	15knh)
param	:	LOBYTE	=	key	number	(0-
127),	HIBYTE	=	resonance	level
(0-127,	0=-64,	64=normal,
127=+63).

MIDI_EVENT_DRUM_COARSETUNE Set	the	coarse	tuning	of	a	drum	key
(MIDI	NRPN	18knh).
param	:	LOBYTE	=	key	number	(0-
127),	HIBYTE	=	finetune	in
semitones	(0-127,	0=-64,
64=normal,	127=+63).

MIDI_EVENT_DRUM_FINETUNE Set	the	fine	tuning	of	a	drum	key
(MIDI	NRPN	19knh).
param	:	LOBYTE	=	key	number	(0-
127),	HIBYTE	=	finetune	in	cents
(0-127,	0=-100,	64=normal,
127=+100).

MIDI_EVENT_DRUM_LEVEL Set	the	level	of	a	drum	key	(MIDI
NRPN	1Aknh)
param	:	LOBYTE	=	key	number	(0-
127),	HIBYTE	=	level	(0-127,
127=normal/full).

MIDI_EVENT_DRUM_PAN Set	the	pan	position	of	a	drum	key
(MIDI	NRPN	1Cknh).

param	:	LOBYTE	=	key	number	(0-
127),	HIBYTE	=	pan	position	(0-
128,	0=random,	1=left,	64=middle,
127=right,	128=normal).

MIDI_EVENT_DRUM_REVERB Set	the	reverb	send	level	of	a	drum
key	(MIDI	NRPN	1Dknh)
param	:	LOBYTE	=	key	number	(0-
127),	HIBYTE	=	reverb	level	(0-
127,	127=normal/full).

MIDI_EVENT_DRUM_CHORUS Set	the	chorus	send	level	of	a	drum
key	(MIDI	NRPN	1Eknh)
param	:	LOBYTE	=	key	number	(0-
127),	HIBYTE	=	chorus	level	(0-
127,	127=normal/full).

MIDI_EVENT_DRUM_USERFX Set	the	user	effect	send	level	of	a
drum	key	(MIDI	NRPN	1Fknh)
param	:	LOBYTE	=	key	number	(0-
127),	HIBYTE	=	user	effect	level
(0-127,	127=normal/full).

MIDI_EVENT_SCALETUNING Set	the	tuning	of	a	note	in	every
octave.
param	:	LOWORD	=	tuning	change
in	cents	(0-16383,	0=-100,
8192=normal,	16383=+100),
HIWORD	=	note	(0-11,	0=C).

MIDI_EVENT_MOD_FILTER Set	the	maximum	effect	of
modulation	(MIDI	controller	1)	on
filter	cutoff.
param	:	filter	cutoff	effect	in	cents
(0=-9600,	9600=none,
19200=+9600).

MIDI_EVENT_MOD_PITCH Set	the	maximum	effect	of
modulation	(MIDI	controller	1)	on
pitch.
param	:	pitch	effect	in	semitones
(0=-24,	24=none,	48=+24).

MIDI_EVENT_MOD_VIBRATO Set	the	maximum	effect	of
modulation	(MIDI	controller	1)	on
vibrato	depth	(MIDI	RPN	5).
param	:	vibrato	depth	effect	in	cents
(0=none,	128=100,	256=200,	etc).

MIDI_EVENT_MOD_VOLUME Set	the	maximum	effect	of
modulation	(MIDI	controller	1)	on
volume.
param	:	volume	effect	percentage
(0=-100,	100=none,	200=+100).

MIDI_EVENT_CHANPRES_FILTER Set	the	maximum	effect	of	channel
pressure	on	filter	cutoff.
param	:	filter	cutoff	effect	in	cents
(0=-9600,	9600=none,
19200=+9600).

MIDI_EVENT_CHANPRES_PITCH Set	the	maximum	effect	of	channel
pressure	on	pitch.
param	:	pitch	effect	in	semitones
(0=-24,	24=none,	48=+24).

MIDI_EVENT_CHANPRES_VIBRATO Set	the	maximum	effect	of	channel
pressure	on	vibrato	depth.
param	:	vibrato	depth	effect	in	cents
(0=none,	128=100,	256=200,	etc).

MIDI_EVENT_CHANPRES_VOLUME Set	the	maximum	effect	of	channel
pressure	on	volume.
param	:	volume	effect	percentage
(0=-100,	100=none,	200=+100).

MIDI_EVENT_KEYPRES_FILTER Set	the	maximum	effect	of	key
pressure/aftertouch	on	filter	cutoff.
param	:	filter	cutoff	effect	in	cents
(0=-9600,	9600=none,
19200=+9600).

MIDI_EVENT_KEYPRES_PITCH Set	the	maximum	effect	of	key
pressure/aftertouch	on	pitch.
param	:	pitch	effect	in	semitones

(0=-24,	24=none,	48=+24).
MIDI_EVENT_KEYPRES_VIBRATO Set	the	maximum	effect	of	key

pressure/aftertouch	on	vibrato
depth.
param	:	vibrato	depth	effect	in	cents
(0=none,	128=100,	256=200,	etc).

MIDI_EVENT_KEYPRES_VOLUME Set	the	maximum	effect	of	key
pressure/aftertouch	on	volume.
param	:	volume	effect	percentage
(0=-100,	100=none,	200=+100).

Global	events.

MIDI_EVENT_SYSTEM,
MIDI_EVENT_SYSTEMEX

Set	the	system	mode,	resetting
everything	to	the	system's	defaults.
MIDI_SYSTEM_DEFAULT	is
basically	identical	to
MIDI_SYSTEM_GS,	except	that
channel	10	is	melodic	if	there	are	not
16	channels.
MIDI_EVENT_SYSTEM	does	not
reset	things	in	any	additional
channels	allocated	to	a	MIDI	file
stream	via	the
BASS_ATTRIB_MIDI_CHANS
attribute,	while
MIDI_EVENT_SYSTEMEX	does.
If	the	system	mode	is	unchanged	and
the	BASS_MIDI_NOSYSRESET
flag	is	set	on	the	MIDI	stream,	then
MIDI_EVENT_SYSTEM	has	no
effect	(MIDI_EVENT_SYSTEMEX
still	does).
param	:	system	mode
(MIDI_SYSTEM_DEFAULT,
MIDI_SYSTEM_GM1,
MIDI_SYSTEM_GM2,
MIDI_SYSTEM_GS,
MIDI_SYSTEM_XG).

MIDI_EVENT_TEMPO Set	the	tempo	(MIDI	meta	event	81).
Changing	the	tempo	affects	the
stream	length,	and	the
BASS_ChannelGetLength	byte
value	will	no	longer	be	valid.
param	:	tempo	in	microseconds	per
quarter	note.

mk:@MSITStore:bass.chm::/BASS_ChannelGetLength.html

MIDI_EVENT_MASTERVOL Set	the	master	volume.
param	:	volume	level	(0-16383,
0=silent,	16383=normal/full).

MIDI_EVENT_REVERB_TIME Set	the	reverb	time.
param	:	reverb	time	in	milliseconds.

MIDI_EVENT_REVERB_DELAY Set	the	reverb	delay.
param	:	reverb	delay	in	10ths	of	a
millisecond.

MIDI_EVENT_REVERB_LOCUTOFF Set	the	reverb	low-pass	cutoff
param	:	reverb	low-pass	cutoff	in
hertz	(0=off).

MIDI_EVENT_REVERB_HICUTOFF Set	the	reverb	high-pass	cutoff
param	:	reverb	high-pass	cutoff	in
hertz	(0=off).

MIDI_EVENT_REVERB_LEVEL Set	the	reverb	level
param	:	reverb	level	(0=off,
100=0dB,	200=+6dB).

MIDI_EVENT_CHORUS_DELAY Set	the	chorus	delay.
param	:	chorus	delay	in	10ths	of	a
millisecond.

MIDI_EVENT_CHORUS_DEPTH Set	the	chorus	depth.
param	:	chorus	depth	in	10ths	of	a
millisecond.

MIDI_EVENT_CHORUS_RATE Set	the	chorus	rate.
param	:	chorus	rate	in	100ths	of	a
hertz.

MIDI_EVENT_CHORUS_FEEDBACK Set	the	chorus	feedback	level.
param	:	chorus	feedback	level
(0=-100%,	100=off,	200=+100%).

MIDI_EVENT_CHORUS_LEVEL Set	the	chorus	level.
param	:	chorus	level	(0=off,
100=0dB,	200=+6dB).

MIDI_EVENT_CHORUS_REVERB Set	the	chorus	send	to	reverb	level.
param	:	chorus	send	to	reverb	level
(0=off,	100=0dB,	200=+6dB).

MIDI_EVENT_USERFX_LEVEL Set	the	user	effect	level.
param	:	user	effect	level	(0=off,
100=0dB,	200=+6dB).

MIDI_EVENT_USERFX_CHORUS Set	the	user	effect	send	to	chorus
level.
param	:	user	effect	send	to	chorus
level	(0=off,	100=0dB,	200=+6dB).

MIDI_EVENT_USERFX_REVERB Set	the	user	effect	send	to	reverb
level.
param	:	user	effect	send	to	reverb
level	(0=off,	100=0dB,	200=+6dB).

Other	(non-MIDI)	events.

MIDI_EVENT_MIXLEVEL Set	the	level.
param	:	the	level	(0=silent,	100=0dB,
200=+6dB).

MIDI_EVENT_TRANSPOSE Transpose	all	notes.	Changes	take	effect	from
the	next	note	played,	and	affect	melodic
channels	only	(not	drum	channels).
param	:	transposition	amount	in	semitones
(0=-100,	100=normal,	200=+100).

Other	(non-MIDI)
global	events.

MIDI_EVENT_SPEED Set	a	tempo	modification.	Changing	the	tempo	affects
the	stream	length,	and	the	BASS_ChannelGetLength
byte	value	will	no	longer	be	valid.	The	modification
does	not	affect	seeking.
param	:	speed	in	100ths	of	a	percent	(100=1%/min,
10000=100%/normal,	20000=200%).

mk:@MSITStore:bass.chm::/BASS_ChannelGetLength.html

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid.
BASS_ERROR_ILLPARAM One	of	the	other	parameters	is	invalid.
BASS_ERROR_NOTAVAIL Tempo	does	not	apply	to	streams	created	with

BASS_MIDI_StreamCreate.

Remarks
Apart	from	the	"global"	events,	all	events	apply	only	to	the	specified	MIDI
channel.

Except	for	the	"non-MIDI"	events,	events	applied	to	a	MIDI	file	stream	can
subsequently	be	overridden	by	events	in	the	file	itself,	and	will	also	be
overridden	when	seeking	or	looping.	That	can	be	avoided	by	using	additional
channels,	allocated	via	the	BASS_ATTRIB_MIDI_CHANS	attribute.

BASS_SYNC_MIDI_EVENT	syncs	are	not	triggered	by	this	function.	If	sync
triggering	is	wanted,	BASS_MIDI_StreamEvents	can	be	used	instead.

If	the	MIDI	stream	is	being	played	(it	is	not	a	decoding	channel),	then	there	will
be	some	delay	in	the	effect	of	the	event	being	heard.	This	latency	can	be	reduced
by	making	use	of	the	BASS_CONFIG_BUFFER	and
BASS_CONFIG_UPDATEPERIOD	config	options	when	creating	the	stream.

If	multiple	events	need	to	be	applied	at	the	same	time,
BASS_MIDI_StreamEvents	can	be	used	instead	of	this	function.

mk:@MSITStore:bass.chm::/BASS_CONFIG_BUFFER.html
mk:@MSITStore:bass.chm::/BASS_CONFIG_UPDATEPERIOD.html

Example
Play	the	middle	C	note	(key	60)	with	a	velocity	of	100,	on	channel	1	for	2
seconds.

BASS_MIDI_StreamEvent(handle,	0,	MIDI_EVENT_NOTE,	MAKEWORD(60,	100));	//	press	the	key

Sleep(2000);	//	wait	2	seconds

BASS_MIDI_StreamEvent(handle,	0,	MIDI_EVENT_NOTE,	60);	//	release	the	key

See	also
BASS_MIDI_StreamCreate,	BASS_MIDI_StreamEvents,
BASS_MIDI_StreamGetEvent

BASS_MIDI_StreamEvents

Applies	any	number	of	events	to	a	MIDI	stream.

DWORD	BASS_MIDI_StreamEvents(

				HSTREAM	handle,

				DWORD	mode,

				void	*events,

				DWORD	length

);

Parameters
handle The	MIDI	stream	to	apply	the	events	to.
mode The	type	of	event	data	to	apply.	One	of	the	following,	with	optional	flags.

BASS_MIDI_EVENTS_RAW Raw	MIDI	event	data,	as	would
be	sent	to	a	MIDI	device.	To
overcome	the	16	channel	limit,
the	event	data's	channel
information	can	optionally	be
overridden	by	adding	the	new
channel	number	to	this
parameter,	where	+1	=	the	1st
channel.

BASS_MIDI_EVENTS_STRUCT An	array	of
BASS_MIDI_EVENT
structures.

BASS_MIDI_EVENTS_CANCEL Flag:	Cancel	pending	events
from	a	previous	call	of	this
function.

BASS_MIDI_EVENTS_NORSTATUS Flag:	Disable	running	status,
meaning	each	event	must
include	a	status	byte.	Only
applicable	with
BASS_MIDI_EVENTS_RAW.

BASS_MIDI_EVENTS_SYNC Flag:	Trigger
BASS_SYNC_MIDI_EVENT
syncs	for	the	processed	events.

BASS_MIDI_EVENTS_TIME Flag:	The	raw	MIDI	data
includes	delta-time	info	(when
used	with
BASS_MIDI_EVENTS_RAW)
or	the	BASS_MIDI_EVENT
tick	and	pos	members	should	be
processed	(without
BASS_MIDI_EVENTS_RAW).
The	BASS_MIDI_EVENT	tick

and	pos	members	will	otherwise
be	ignored.

events The	event	data.
length The	length	of	the	event	data.	The	number	of	bytes	or

BASS_MIDI_EVENT	structures,	depending	on	the	type	of	event	data.

Return	value
If	successful,	the	number	of	events	processed	is	returned,	else	-1	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid.
BASS_ERROR_ILLPARAM mode	is	not	valid.

Remarks
Events	applied	to	a	MIDI	file	stream	can	subsequently	be	overridden	by	events
in	the	file	itself,	and	will	also	be	overridden	when	seeking	or	looping.	That	can
be	avoided	by	using	additional	channels,	allocated	via	the
BASS_ATTRIB_MIDI_CHANS	attribute.

The	BASS_MIDI_EVENTS_TIME	flag	allows	events	to	be	delayed.	With	raw
MIDI	data,	it	enables	delta-time	info	to	be	included	in	the	data.	With	an
BASS_MIDI_EVENT	array,	it	enables	processing	of	the	tick	and	pos	members
(only	one	should	be	used).	In	both	cases,	the	values	are	relative	to	the	current
decoding	position,	ie.	0	=	no	delay.	The	events	do	not	necessarily	need	to	be
provided	in	chronological	order;	they	will	be	sorted	automatically.	Tick-based
delays	are	ignored	on	streams	created	with	BASS_MIDI_StreamCreate	because
the	Pulses	Per	Quarter	Note	(BASS_ATTRIB_MIDI_PPQN)	is	undefined;
BASS_MIDI_StreamCreateEvents	could	be	used	instead	when	tick-based	delays
are	wanted.

If	the	MIDI	stream	is	being	played	(it	is	not	a	decoding	channel),	then	there	will
be	some	delay	in	the	effect	of	the	event	being	heard	even	if	no	delay	is	requested
in	the	event	data.	This	latency	can	be	reduced	by	making	use	of	the
BASS_CONFIG_BUFFER	and	BASS_CONFIG_UPDATEPERIOD	config
options	when	creating	the	stream.

mk:@MSITStore:bass.chm::/BASS_CONFIG_BUFFER.html
mk:@MSITStore:bass.chm::/BASS_CONFIG_UPDATEPERIOD.html

Example
Play	a	C	major	chord	with	a	velocity	of	100,	on	channel	1	for	2	seconds.

BASS_MIDI_EVENT	events[3];

memset(events,	0,	sizeof(events));

events[0].event=MIDI_EVENT_NOTE;

events[0].param=MAKEWORD(60,	100);	//	C

events[1].event=MIDI_EVENT_NOTE;

events[1].param=MAKEWORD(64,	100);	//	E

events[2].event=MIDI_EVENT_NOTE;

events[2].param=MAKEWORD(67,	100);	//	G

BASS_MIDI_StreamEvents(handle,	BASS_MIDI_EVENTS_STRUCT,	events,	3);	//	process	the	events

Sleep(2000);	//	wait	2	seconds

//	modify	the	event	data	to	release	the	keys

events[0].param=MAKEWORD(60,	0);	//	release	C

events[1].param=MAKEWORD(64,	0);	//	release	E

events[2].param=MAKEWORD(67,	0);	//	release	G

BASS_MIDI_StreamEvents(handle,	BASS_MIDI_EVENTS_STRUCT,	events,	3);	//	process	the	events

The	same	thing	using	raw	MIDI	event	data.

BYTE	events[7]={0x90,	60,	100,	64,	100,	67,	100};	//	the	event	data

BASS_MIDI_StreamEvents(handle,	BASS_MIDI_EVENTS_RAW,	events,	7);	//	process	the	events

Sleep(2000);	//	wait	2	seconds

//	modify	the	event	data	to	release	the	keys

events[2]=0;	//	release	C

events[4]=0;	//	release	E

events[6]=0;	//	release	G

BASS_MIDI_StreamEvents(handle,	BASS_MIDI_EVENTS_RAW,	events,	7);	//	process	the	events

The	same	thing	in	a	single	event	sequence,	making	use	of	pos	to	delay	the
release.

BASS_MIDI_EVENT	events[6];

memset(events,	0,	sizeof(events));

events[0].event=MIDI_EVENT_NOTE;

events[0].param=MAKEWORD(60,	100);	//	C

events[1].event=MIDI_EVENT_NOTE;

events[1].param=MAKEWORD(64,	100);	//	E

events[2].event=MIDI_EVENT_NOTE;

events[2].param=MAKEWORD(67,	100);	//	G

events[3].event=MIDI_EVENT_NOTE;

events[3].param=MAKEWORD(60,	0);	//	release	C

events[3].pos=BASS_ChannelSeconds2Bytes(handle,	2);	//	2	seconds

events[4].event=MIDI_EVENT_NOTE;

events[4].param=MAKEWORD(64,	0);	//	release	E

events[4].pos=events[3].pos;

events[5].event=MIDI_EVENT_NOTE;

events[5].param=MAKEWORD(67,	0);	//	release	G

events[5].pos=events[3].pos;

BASS_MIDI_StreamEvents(handle,	BASS_MIDI_EVENTS_STRUCT|BASS_MIDI_EVENTS_TIME,	events,	6);	//	process	the	events

See	also
BASS_MIDI_StreamCreate,	BASS_MIDI_StreamEvent,
BASS_MIDI_StreamGetEvent

BASS_MIDI_StreamGetChannel

Retrieves	a	MIDI	channel's	stream	handle,	which	can	be	used	to	set	DSP/FX	on
it.	Can	also	replace	the	default	reverb	and	chorus	processing.

HSTREAM	BASS_MIDI_StreamGetChannel(

				HSTREAM	handle,

				DWORD	chan

);

Parameters
handle The	MIDI	stream.
chan The	MIDI	channel...	0	=	channel	1.	Or	one	of	the	following	special

channels.
BASS_MIDI_CHAN_CHORUS Chorus	mix	channel.	The	default

chorus	processing	is	replaced	by
the	stream's	processing.

BASS_MIDI_CHAN_REVERB Reverb	mix	channel.	The	default
reverb	processing	is	replaced	by
the	stream's	processing.

BASS_MIDI_CHAN_USERFX User	effect	mix	channel.

Return	value
If	successful,	the	MIDI	channel's	stream	handle	is	returned,	else	0	is	returned.
Use	BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid.
BASS_ERROR_ILLPARAM chan	is	not	valid.

Remarks
By	default,	MIDI	channels	do	not	have	streams	assigned	to	them;	a	MIDI
channel	only	gets	a	stream	when	this	function	is	called,	which	it	then	keeps	until
the	MIDI	stream	is	freed.	MIDI	channel	streams	can	also	be	freed	before	then
via	BASS_StreamFree.	Each	MIDI	channel	stream	increases	the	CPU	usage
slightly,	even	if	there	are	no	DSP/FX	set	on	them,	so	for	optimal	performance
they	should	not	be	activated	unnecessarily.

A	MIDI	channel	stream	receives	the	channel's	dry	mix,	and	its	output	is	then	sent
through	the	normal	reverb/chorus/userfx	processing,	but	drum	key
reverb/chorus/userfx	settings	get	ignored	as	it	is	impossible	to	apply	different
reverb/chorus/userfx	levels	to	individual	keys	in	this	case	(they	have	already
been	mixed).

MIDI	channel	streams	can	only	be	used	to	set	DSP/FX	on	the	channels.	They
cannot	be	used	with	BASS_ChannelGetData	or	BASS_ChannelGetLevel	to
visualise	the	channels,	for	example,	but	that	could	be	achieved	with	a	DSP
function	instead.	A	MIDI	channel	stream's	sample	format	is	always	floating-
point,	regardless	of	the	MIDI	stream's	sample	format.

mk:@MSITStore:bass.chm::/BASS_StreamFree.html
mk:@MSITStore:bass.chm::/BASS_ChannelGetData.html
mk:@MSITStore:bass.chm::/BASS_ChannelGetLevel.html

Platform-specific
This	function	is	not	available	on	the	Android	armeabi	architecture.

Example
Apply	some	DX8	distortion	to	channel	1	of	a	MIDI	stream.

HSTREAM	chan1=BASS_MIDI_StreamGetChannel(midi,	0);	//	get	a	stream	for	MIDI	channel	1

HFX	fx=BASS_ChannelSetFX(chan1,	BASS_FX_DX8_DISTORTION,	0);	//	set	the	DX8	distortion	effect	on	it

See	also
BASS_MIDI_StreamCreate,	BASS_MIDI_StreamCreateFile

BASS_ChannelSetDSP,	BASS_ChannelSetFX

mk:@MSITStore:bass.chm::/BASS_ChannelSetDSP.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetFX.html

BASS_MIDI_StreamGetEvent

Retrieves	the	current	value	of	an	event	in	a	channel	of	a	MIDI	stream.

DWORD	BASS_MIDI_StreamGetEvent(

				HSTREAM	handle,

				DWORD	chan,

				DWORD	event

);

Parameters
handle The	MIDI	stream	to	get	the	event	value	from.
chan The	MIDI	channel	to	get	the	event	value	from...	0	=	channel	1.
event The	event	value	to	retrieve.	See	BASS_MIDI_StreamEvent	for

details	on	the	available	event	types	and	their	values.	With	the
MIDI_EVENT_NOTE,	MIDI_EVENT_KEYPRES,
MIDI_EVENT_SCALETUNING	and	drum	key
(MIDI_EVENT_DRUM_CUTOFF/etc)	events,	the	HIWORD	-	use
MAKELONG(event,key)	-	can	be	used	to	specify	which	key/note	to
get	the	value	from.	Special	MIDI_EVENT_NOTES	and
MIDI_EVENT_VOICES	events	are	also	available	to	check	how
many	keys	are	pressed	and	how	many	voices	are	active,	respectively.

Return	value
If	successful,	the	event	value	is	returned,	else	-1	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid.
BASS_ERROR_ILLPARAM One	of	the	other	parameters	is	invalid.

Remarks
The	MIDI_EVENT_NOTE	event	value	will	be	1	if	the	specified	key	is	pressed
and	0	if	not.	The	MIDI_EVENT_NOTES	event	can	be	used	to	check	how	many
keys	in	total	are	pressed	in	the	specified	channel.	If	a	key	is	simultaneously
pressed	multiple	times,	it	will	still	only	be	counted	once.

Syncs	can	be	used	to	be	informed	of	when	event	values	change.

See	also
BASS_MIDI_StreamEvent,	BASS_MIDI_StreamGetEvents

BASS_MIDI_StreamGetEvents

Retrieves	the	events	in	a	MIDI	stream.

DWORD	BASS_MIDI_StreamGetEvents(

				HSTREAM	handle,

				int	track,

				DWORD	filter,

				BASS_MIDI_EVENT	*events

);

Parameters
handle The	MIDI	stream	to	get	the	events	from.
track The	track	to	get	the	events	from...	0	=	1st	track,	-1	=	all	tracks.
filter The	type	of	events	to	retrieve...	0	=	all	events.	See

BASS_MIDI_StreamEvent	for	a	list	of	possible	event	types.
events Pointer	to	an	array	to	receive	the	events...	NULL	=	get	the	number	of

events	without	getting	the	events	themselves.

Return	value
If	successful,	the	number	of	events	is	returned,	else	-1	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid.
BASS_ERROR_NOTAVAIL The	stream	does	not	have	an	event	sequence.
BASS_ERROR_ILLPARAM track	is	not	valid.

Remarks
This	function	should	first	be	called	with	events	=	NULL	to	get	the	number	of
events,	before	allocating	an	array	of	the	required	size	and	retrieving	the	events.
The	events	are	ordered	chronologically,	and	by	track	number	(lowest	first)	if
multiple	events	have	the	same	position.	Global	events	(eg.	tempo)	are	always
placed	in	the	1st	track,	even	if	they	were	originally	in	a	different	track	in	the
MIDI	file.

BASS_MIDI_StreamGetEventsEx	can	be	used	to	get	a	portion	of	the	events
instead	of	all	of	them.

Example
Retrieve	all	events	in	the	1st	track.

DWORD	eventc=BASS_MIDI_StreamGetEvents(handle,	0,	0,	NULL);	//	get	number	of	events	in	1st	track

BASS_MIDI_EVENT	*events=(BASS_MIDI_EVENT*)malloc(eventc*sizeof(BASS_MIDI_EVENT));	//	allocate	event	array

BASS_MIDI_StreamGetEvents(handle,	0,	0,	events);	//	get	the	events

Retrieve	all	note	events	in	the	2nd	track.

DWORD	eventc=BASS_MIDI_StreamGetEvents(handle,	1,	MIDI_EVENT_NOTE,	NULL);	//	get	number	of	note	events	in	2nd	track

BASS_MIDI_EVENT	*events=(BASS_MIDI_EVENT*)malloc(eventc*sizeof(BASS_MIDI_EVENT));	//	allocate	event	array

BASS_MIDI_StreamGetEvents(handle,	1,	MIDI_EVENT_NOTE,	events);	//	get	the	events

See	also
BASS_MIDI_StreamCreateFile,	BASS_MIDI_StreamGetEvent,
BASS_MIDI_StreamGetEventsEx,	BASS_MIDI_EVENT	structure

BASS_MIDI_StreamGetEventsEx

Retrieves	a	portion	of	the	events	in	a	MIDI	stream.

DWORD	BASS_MIDI_StreamGetEventsEx(

				HSTREAM	handle,

				int	track,

				DWORD	filter,

				BASS_MIDI_EVENT	*events,

				DWORD	start,

				DWORD	count

);

Parameters
handle The	MIDI	stream	to	get	the	events	from.
track The	track	to	get	the	events	from...	0	=	1st	track,	-1	=	all	tracks.
filter The	type	of	events	to	retrieve...	0	=	all	events.	See

BASS_MIDI_StreamEvent	for	a	list	of	possible	event	types.
events Pointer	to	an	array	to	receive	the	events...	NULL	=	get	the	number	of

events	available	in	the	specified	range	without	getting	the	events
themselves.

start The	first	event	to	retrieve.
count The	maximum	number	of	events	to	retrieve.

Return	value
If	successful,	the	number	of	events	is	returned,	else	-1	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid.
BASS_ERROR_NOTAVAIL The	stream	does	not	have	an	event	sequence.
BASS_ERROR_ILLPARAM track	is	not	valid.

Remarks
This	function	is	identical	to	BASS_MIDI_StreamGetEvents	except	that	it	can
retrieve	a	portion	of	the	events	instead	of	all	of	them.

Example
Retrieve	the	first	10	events	in	the	1st	track.

BASS_MIDI_EVENT	events[10];	//	event	array

DWORD	eventc=BASS_MIDI_StreamGetEvents(handle,	0,	0,	events,	0,	10);	//	get	the	events

See	also
BASS_MIDI_StreamCreateFile,	BASS_MIDI_StreamGetEvent,
BASS_MIDI_StreamGetEvents,	BASS_MIDI_EVENT	structure

BASS_MIDI_StreamGetFonts

Retrieves	the	soundfont	configuration	of	a	MIDI	stream,	or	the	default	soundfont
configuration.

DWORD	BASS_MIDI_StreamGetFonts(

				HSTREAM	handle,

				void	*fonts,

				DWORD	count

);

Parameters
handle The	MIDI	stream	to	retrieve	the	soundfont	configuration	of...	0	=	get

default	soundfont	configuration.
fonts An	array	of	BASS_MIDI_FONT	or	BASS_MIDI_FONTEX	to	retrieve

the	soundfont	configuration.
count The	maximum	number	of	elements	to	retrieve	in	the	fonts	array.	The

BASS_MIDI_FONT_EX	flag	may	also	be	used	to	specify	that	fonts	is
an	array	of	BASS_MIDI_FONTEX	rather	than	BASS_MIDI_FONT.
This	and	fonts	can	be	0,	to	get	the	number	of	elements	in	the	soundfont
configuration.

Return	value
If	successful,	the	number	of	soundfonts	in	the	configuration	(which	can	be
higher	than	count)	is	returned,	else	-1	is	returned.	Use	BASS_ErrorGetCode	to
get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid.

Remarks
When	a	soundfont	matching	the	MIDI	file	is	loaded,	it	will	be	the	first	element
in	the	returned	configuration.

Platform-specific
Depending	on	the	programming	language	used,	the	BASS_MIDI_FONT_EX
flag	may	be	automatically	applied	when	the	BASS_MIDI_FONTEX	structure	is
used,	through	overloading	in	the	BASSMIDI	header.	That	is	true	for	C++	and
Delphi.

See	also
BASS_MIDI_StreamCreateFile,	BASS_MIDI_StreamSetFonts,
BASS_MIDI_FONT	structure,	BASS_MIDI_FONTEX	structure

BASS_MIDI_StreamGetMark

Retrieves	a	marker	from	a	MIDI	file	stream.

BOOL	BASS_MIDI_StreamGetMark(

				HSTREAM	handle,

				DWORD	type,

				DWORD	index,

				BASS_MIDI_MARK	*mark

);

Parameters
handle The	MIDI	stream	to	retrieve	the	marker	from.
type The	type	of	marker	to	retrieve,	one	of	the	following.

BASS_MIDI_MARK_COPY Copyright	notice	events
(MIDI	meta	event	2).

BASS_MIDI_MARK_CUE Cue	events	(MIDI	meta
event	7).

BASS_MIDI_MARK_INST Instrument	name	events
(MIDI	meta	event	4).

BASS_MIDI_MARK_KEYSIG Key	signature	events	(MIDI
meta	event	89).	The	marker
text	is	in	the	form	of	"a	b",
where	a	is	the	number	of
sharps	(if	positive)	or	flats	(if
negative),	and	b	signifies
major	(if	0)	or	minor	(if	1).

BASS_MIDI_MARK_LYRIC Lyric	events	(MIDI	meta
event	5).

BASS_MIDI_MARK_MARKER Marker	events	(MIDI	meta
event	6).

BASS_MIDI_MARK_TEXT Text	events	(MIDI	meta
event	1).

BASS_MIDI_MARK_TIMESIG Time	signature	events	(MIDI
meta	event	88).	The	marker
text	is	in	the	form	of	"a/b	c
d",	where	a	is	the	numerator,
b	is	the	denominator,	c	is	the
metronome	pulse,	and	d	is
the	number	of	32nd	notes	per
MIDI	quarter-note.

BASS_MIDI_MARK_TRACK Track	name	events	(MIDI
meta	event	3).

BASS_MIDI_MARK_TRACKSTART Start	of	a	track	in	a	standard
MIDI	format	2	file.	The
marker	text	is	the	track

number	(0	=	the	first).
BASS_MIDI_MARK_TICK Flag:	Get	the	marker's

position	in	ticks	rather	than
bytes.

index The	marker	to	retrieve...	0	=	the	first.
mark Pointer	to	a	structure	to	receive	the	marker	details.

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid.
BASS_ERROR_ILLTYPE type	in	not	valid.
BASS_ERROR_ILLPARAM index	in	not	valid.

Remarks
The	markers	are	ordered	chronologically,	and	by	track	number	(lowest	first)	if
multiple	markers	have	the	same	position.

Syncs	can	be	used	to	be	informed	of	when	markers	are	encountered	during
playback.

If	a	lyric	marker	text	begins	with	a	/	(slash)	character,	that	means	a	new	line
should	be	started.	If	the	text	begins	with	a	\	(backslash)	character,	the	display
should	be	cleared.	Lyrics	can	sometimes	be	found	in
BASS_MIDI_MARK_TEXT	instead	of	BASS_MIDI_MARK_LYRIC	markers.

Example
List	a	MIDI	stream's	markers.

BASS_MIDI_MARK	mark;

int	a;

for	(a=0;	BASS_MIDI_StreamGetMark(handle,	BASS_MIDI_MARK_MARKER,	a,	&mark;);	a++)

				printf("marker	@	%d	=	%s\n",	mark.pos,	mark.text);	//	display	marker	position	and	text

See	also
BASS_MIDI_StreamCreateFile,	BASS_MIDI_StreamGetMarks,
BASS_MIDI_MARK	structure

BASS_MIDI_StreamGetMarks

Retrieves	the	markers	in	a	MIDI	file	stream.

DWORD	BASS_MIDI_StreamGetMarks(

				HSTREAM	handle,

				int	track,

				DWORD	type,

				BASS_MIDI_MARK	*marks

);

Parameters
handle The	MIDI	stream	to	retrieve	the	markers	from.
track The	track	to	get	the	markers	from...	0	=	1st	track,	-1	=	all	tracks.
type The	type	of	marker	to	retrieve,	one	of	the	following.

BASS_MIDI_MARK_COPY Copyright	notice	events	(MIDI
meta	event	2).

BASS_MIDI_MARK_CUE Cue	events	(MIDI	meta	event	7).
BASS_MIDI_MARK_INST Instrument	name	events	(MIDI

meta	event	4).
BASS_MIDI_MARK_KEYSIG Key	signature	events	(MIDI	meta

event	89).	The	marker	text	is	in
the	form	of	"a	b",	where	a	is	the
number	of	sharps	(if	positive)	or
flats	(if	negative),	and	b	signifies
major	(if	0)	or	minor	(if	1).

BASS_MIDI_MARK_LYRIC Lyric	events	(MIDI	meta	event	5).
BASS_MIDI_MARK_MARKER Marker	events	(MIDI	meta	event

6).
BASS_MIDI_MARK_TEXT Text	events	(MIDI	meta	event	1).
BASS_MIDI_MARK_TIMESIG Time	signature	events	(MIDI	meta

event	88).	The	marker	text	is	in
the	form	of	"a/b	c	d",	where	a	is
the	numerator,	b	is	the
denominator,	c	is	the	metronome
pulse,	and	d	is	the	number	of	32nd
notes	per	MIDI	quarter-note.

BASS_MIDI_MARK_TRACK Track	name	events	(MIDI	meta
event	3).

BASS_MIDI_MARK_TICK Flag:	Get	the	marker's	position	in
ticks	rather	than	bytes.

marks Pointer	to	an	array	to	receive	the	marker	details...	NULL	=	get	the
number	of	markers	without	getting	the	markers	themselves.

Return	value
If	successful,	the	number	of	markers	is	returned,	else	-1	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid.
BASS_ERROR_ILLTYPE type	is	not	valid.
BASS_ERROR_ILLPARAM track	is	not	valid.

Remarks
This	function	should	first	be	called	with	marks	=	NULL	to	get	the	number	of
markers,	before	allocating	an	array	of	the	required	size	and	retrieving	the
markers.	The	markers	are	ordered	chronologically,	and	by	track	number	(lowest
first)	if	multiple	markers	have	the	same	position.

Syncs	can	be	used	to	be	informed	of	when	markers	are	encountered	during
playback.

If	a	lyric	marker	text	begins	with	a	/	(slash)	character,	that	means	a	new	line
should	be	started.	If	the	text	begins	with	a	\	(backslash)	character,	the	display
should	be	cleared.	Lyrics	can	sometimes	be	found	in
BASS_MIDI_MARK_TEXT	instead	of	BASS_MIDI_MARK_LYRIC	markers.

Example
Retrieve	the	markers	from	all	tracks	in	a	MIDI	stream.

DWORD	markc=BASS_MIDI_StreamGetMarks(handle,	-1,	BASS_MIDI_MARK_MARKER,	NULL);	//	get	number	of	markers

BASS_MIDI_MARK	*marks=(BASS_MIDI_MARK*)malloc(markc*sizeof(BASS_MIDI_MARK));	//	allocate	marker	array

BASS_MIDI_StreamGetMarks(handle,	-1,	BASS_MIDI_MARK_MARKER,	marks);	//	get	the	markers

See	also
BASS_MIDI_StreamCreateFile,	BASS_MIDI_StreamGetMark,
BASS_MIDI_MARK	structure

BASS_MIDI_StreamGetPreset

Retrieves	the	preset	currently	in	use	on	a	channel	of	a	MIDI	stream.

BOOL	BASS_MIDI_StreamGetPreset(

				HSTREAM	handle,

				DWORD	chan,

				BASS_MIDI_FONT	*font

);

Parameters
handle The	MIDI	stream	to	retrieve	the	soundfont	configuration	of...	0	=	get

default	soundfont	configuration.
chan The	MIDI	channel...	0	=	channel	1.
fonts Pointer	to	a	structure	to	receive	the	preset	information.

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid.
BASS_ERROR_ILLPARAM chan	is	not	valid.
BASS_ERROR_NOTAVAIL No	preset	is	currently	in	use	on	the	specified

MIDI	channel.

Remarks
This	function	tells	what	preset	from	what	soundfont	is	currently	being	used	on	a
particular	MIDI	channel.	That	information	can	be	used	to	get	the	preset's	name
from	BASS_MIDI_FontGetPreset.

No	preset	information	will	be	available	for	a	MIDI	channel	until	a	note	is	played
in	that	channel.	The	present	and	bank	numbers	will	not	necessarily	match	the
channel's	current	MIDI_EVENT_PROGRAM	and	MIDI_EVENT_BANK	event
values,	but	rather	what	the	MIDI	stream's	soundfont	configuration	maps	those
event	values	to.

Example
List	the	presets	in	use	on	all	16	MIDI	channels.

BASS_MIDI_FONT	font;

int	ch;

for	(ch=0;	ch<16;	ch++)	{

				if	(BASS_MIDI_StreamGetPreset(handle,	ch,	&font;))	//	get	preset	information	for	the	MIDI	channel

								printf("%d:	%s\n",	ch+1,	BASS_MIDI_FontGetPreset(font.font,	font.preset,	font.bank));	//	display	the	preset	name

}

See	also
BASS_MIDI_FontGetPreset,	BASS_MIDI_FONT	structure

BASS_MIDI_StreamLoadSamples

Preloads	the	samples	required	by	a	MIDI	file	stream.

BOOL	BASS_MIDI_StreamLoadSamples(

				HSTREAM	handle

);

Parameters
handle The	MIDI	stream	handle.

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid.
BASS_ERROR_NOTAVAIL The	stream	is	for	real-time	events	only,	so	it	is

not	possible	to	know	what	presets	are	going	to
be	used.	Use	BASS_MIDI_FontLoad	instead.

Remarks
Samples	are	normally	loaded	as	they	are	needed	while	rendering	a	MIDI	stream,
which	can	result	in	CPU	spikes,	particularly	with	packed	soundfonts.	That
generally	will	not	cause	any	problems,	but	when	smooth/constant	performance	is
critical	this	function	can	be	used	to	preload	the	samples	before	rendering,	so
avoiding	the	need	to	load	them	while	rendering.

The	samples	loaded	by	this	function	are	subject	to	automatic	compacting	via	the
BASS_CONFIG_MIDI_COMPACT	option,	so	it	is	probably	wise	to	disable	that
option	when	using	this	function,	to	avoid	any	chance	of	the	loaded	samples
subsequently	being	automatically	unloaded.

This	function	is	not	affected	by	any	filtering	that	may	have	been	enabled	via
BASS_MIDI_StreamSetFilter;	the	samples	loaded	will	be	those	needed	by	the
original	event	sequence.

This	function	should	not	be	used	while	the	MIDI	stream	is	being	rendered,	as	it
could	delay	the	rendering.

See	also
BASS_MIDI_FontLoad,	BASS_MIDI_StreamCreateFile,
BASS_MIDI_StreamSetFonts,	BASS_CONFIG_MIDI_COMPACT

BASS_MIDI_StreamSetFilter

Sets	an	event	filtering	function	on	a	MIDI	stream.

BOOL	BASS_MIDI_StreamSetFilter(

				HSTREAM	handle,

				BOOL	seeking,

				MIDIFILTERPROC	*proc,

				void	*user

);

Parameters
handle The	MIDI	stream	handle.
seeking Also	filter	events	when	seeking?
proc The	callback	function...	NULL	=	no	filtering.
user User	instance	data	to	pass	to	the	callback	function.

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid.
BASS_ERROR_NOTAVAIL The	stream	does	not	have	an	event	sequence.

Remarks
This	function	allows	a	MIDI	stream	to	have	its	events	modified	during	playback
via	a	callback	function.	The	callback	function	will	be	called	before	an	event	is
processed,	and	it	can	choose	to	keep	the	event	as	is,	or	it	can	modify	or	drop	the
event.	The	filtering	can	also	be	applied	to	events	while	seeking,	so	that	playback
begins	in	a	filtered	state	after	seeking.

Filtering	only	applies	to	a	MIDI	stream's	defined	event	sequence,	not	any	events
that	are	applied	via	BASS_MIDI_StreamEvent	or	BASS_MIDI_StreamEvents.

See	also
MIDIFILTERPROC	callback

BASS_MIDI_StreamSetFonts

Applies	a	soundfont	configuration	to	a	MIDI	stream,	or	sets	the	default
soundfont	configuration.

BOOL	BASS_MIDI_StreamSetFonts(

				HSTREAM	handle,

				void	*fonts,

				DWORD	count

);

Parameters
handle The	MIDI	stream	to	apply	the	soundfonts	to...	0	=	set	default	soundfont

configuration.
fonts An	array	of	BASS_MIDI_FONT	or	BASS_MIDI_FONTEX

containing	the	soundfonts	to	apply.
count The	number	of	elements	in	the	fonts	array.	The

BASS_MIDI_FONT_EX	flag	may	also	be	used	to	specify	that	fonts	is
an	array	of	BASS_MIDI_FONTEX	rather	than	BASS_MIDI_FONT.

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid.
BASS_ERROR_ILLPARAM Something	in	the	fonts	array	is	invalid,	check

the	soundfont	handles.

Remarks
Multiple	soundfonts	can	be	stacked,	each	providing	different	presets,	for
example.	When	a	preset	is	present	in	multiple	soundfonts,	the	earlier	soundfont
in	the	array	has	priority.	When	a	soundfont	matching	the	MIDI	file	is	loaded,
that	remains	loaded	when	calling	this	function,	and	has	priority	over	all	other
soundfonts.	When	a	preset	is	not	available	on	a	non-0	bank	in	any	soundfont,
BASSMIDI	will	try	to	fall	back	to	bank	0;	first	the	LSB	and	then	the	MSB	if	still
unsuccessful.

Changing	the	default	configuration	only	affects	subsequently	created	MIDI
streams.	Existing	streams	that	are	using	the	previous	default	configuration	will
continue	to	use	that	previous	configuration.

Platform-specific
Depending	on	the	programming	language	used,	the	BASS_MIDI_FONT_EX
flag	may	be	automatically	applied	when	the	BASS_MIDI_FONTEX	structure	is
used,	through	overloading	in	the	BASSMIDI	header.	That	is	true	for	C++	and
Delphi.

Example
Set	a	MIDI	stream	to	use	one	soundfont	for	program	10	on	bank	0,	and	all
available	presets	from	another	soundfont.

BASS_MIDI_FONT	fonts[2];

fonts[0].font=font1;

fonts[0].preset=10;	//	preset	10

fonts[0].bank=0;	//	bank	0

fonts[1].font=font2;

fonts[1].preset=-1;	//	all	presets

fonts[1].bank=0;	//	default	banks

BASS_MIDI_StreamSetFonts(handle,	fonts,	2);	//	apply	it	to	the	stream

Set	a	MIDI	stream	to	use	preset	20	from	one	soundfont	for	program	10	on	bank
0,	and	all	available	presets	from	another	soundfont.

BASS_MIDI_FONTEX	fonts[2];

fonts[0].font=font1;

fonts[0].spreset=20;	//	soundfont	preset	20

fonts[0].sbank=0;	//	soundfont	bank	0

fonts[0].dpreset=10;	//	destination	preset	10

fonts[0].dbank=0;	//	destination	bank	0

fonts[0].dbanklsb=0;	//	destination	bank	LSB	0

fonts[1].font=font2;

fonts[1].spreset=-1;	//	all	presets

fonts[1].sbank=-1;	//	all	banks

fonts[1].dpreset=-1;	//	all	presets

fonts[1].dbank=0;	//	default	banks

fonts[1].dbanklsb=0;	//	destination	bank	LSB	0

BASS_MIDI_StreamSetFonts(handle,	fonts,	2|BASS_MIDI_FONT_EX);	//	apply	it	to	the	stream

See	also
BASS_MIDI_FontInit,	BASS_MIDI_StreamCreateFile,
BASS_MIDI_StreamGetFonts,	BASS_MIDI_StreamLoadSamples,
BASS_MIDI_FONT	structure,	BASS_MIDI_FONTEX	structure,
BASS_CONFIG_MIDI_AUTOFONT,	BASS_CONFIG_MIDI_DEFFONT

MIDI	syncs	-	BASS_ChannelSetSync

Syncs	are	set	on	MIDI	streams	in	exactly	the	same	way	as	on	any	other	stream,
using	BASS_ChannelSetSync.	The	following	is	a	list	of	the	types	of	sync
supported	on	MIDI	streams.

Sync	types,	with	param	and	SYNCPROC	data	definitions.
BASS_SYNC_MIDI_EVENT Sync	when	a	type	of	event	is	processed.

param	:	event	type	(0	=	all	types).	data	:
LOWORD	=	event	parameter,	HIWORD	=
channel	(high	8	bits	contain	the	event	type
when	syncing	on	all	types).	If	the	event	type	is
MIDI_EVENT_TEMPO,	then	the	event
parameter	will	use	24	bits	(channel	is
replaced).	See	BASS_MIDI_StreamEvent	for	a
list	of	event	types	and	their	parameters.

BASS_SYNC_MIDI_MARK Sync	when	a	marker	is	encountered.
param	:	marker	type.	data	:	the	marker	index,
which	can	be	used	in	a
BASS_MIDI_StreamGetMark	call.

BASS_SYNC_MIDI_TICK Sync	when	reaching	a	tick	position.
param	:	tick	position.	data	:	not	used.

The	BASS_SYNC_POS,	BASS_SYNC_END,	BASS_SYNC_SLIDE,
BASS_SYNC_STALL	and	BASS_SYNC_FREE	sync	types	are	also	supported
on	MIDI	streams,	as	described	in	the	BASS_ChannelSetSync	documentation.

mk:@MSITStore:bass.chm::/BASS_ChannelSetSync.html
mk:@MSITStore:bass.chm::/SYNCPROC.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetSync.html

See	also
BASS_MIDI_StreamSetFilter

Plugin	system

As	well	as	providing	dedicated	stream	creation	functions,	BASSMIDI	supports
the	BASS	plugin	system,	adding	MIDI	file	support	to	the	standard	BASS	stream
creation	functions:	BASS_StreamCreateFile,	BASS_StreamCreateURL,	and
BASS_StreamCreateFileUser.	This	is	enabled	using	the	BASS_PluginLoad
function.

MIDI	streams	created	via	the	plugin	system	use	the	device's	sample	rate,
equivalent	to	using	freq=1	in	a	BASS_MIDI_StreamCreateFile	call.

mk:@MSITStore:bass.chm::/BASS_StreamCreateFile.html
mk:@MSITStore:bass.chm::/BASS_StreamCreateURL.html
mk:@MSITStore:bass.chm::/BASS_StreamCreateFileUser.html
mk:@MSITStore:bass.chm::/BASS_PluginLoad.html

MIDIFILTERPROC	callback

User	defined	callback	function	to	filter	events.

BOOL	CALLBACK	MidiFilterProc(

				HSTREAM	handle,

				DWORD	track,

				BASS_MIDI_EVENT	*event,

				BOOL	seeking,

				void	*user

);

Parameters
handle The	MIDI	stream	handle.
track The	track	that	the	event	is	from...	0	=	1st	track.
event Pointer	to	the	event	structure.
seeking TRUE	=	the	event	is	being	processed	while	seeking,	FALSE	=	the

event	is	being	played.
user The	user	instance	data	given	when	BASS_MIDI_StreamSetFilter	was

called.

Return	value
Return	TRUE	to	process	the	event,	and	FALSE	to	drop	the	event.

Remarks
The	event's	type	(event),	parameter	(param),	and	channel	(chan)	can	be
modified,	but	not	its	position	(tick	or	pos).	It	is	also	possible	to	apply	additional
events	at	the	same	time	via	BASS_MIDI_StreamEvent,	but	not
BASS_MIDI_StreamEvents.

MIDI_EVENT_NOTE,	MIDI_EVENT_NOTESOFF,	and
MIDI_EVENT_SOUNDOFF	events	are	ignored	while	seeking	so	they	will	not
be	received	by	a	filtering	function	then.	MIDI_EVENT_TEMPO	events	can	be
changed	while	seeking	but	doing	so	when	seeking	in	bytes	(BASS_POS_BYTE)
will	result	in	reaching	a	different	position.	Seeking	in	ticks
(BASS_POS_MIDI_TICK)	is	unaffected	by	tempo	changes.	The
MIDI_EVENT_SPEED	event	can	be	used	to	modify	the	tempo	without	affecting
seeking.

Example
A	filtering	function	that	drops	all	notes	with	a	velocity	lower	than	10.

BOOL	CALLBACK	MidiFilterProc(HSTREAM	handle,	DWORD	track,	BASS_MIDI_EVENT	*event,	BOOL	seeking,	void	*user)

{

				if	(event->event==MIDI_EVENT_NOTE)	{	//	got	a	note

								int	vel=HIBYTE(event->param);	//	extract	the	velocity

								if	(vel<10	&&	vel>0)	return	FALSE;	//	drop	the	note	if	velocity	is	below	10	and	not	0	(note	off)

				}

				return	TRUE;	//	process	the	event

}

A	filtering	function	that	changes	bank	2	to	bank	1.

BOOL	CALLBACK	MidiFilterProc(HSTREAM	handle,	DWORD	track,	BASS_MIDI_EVENT	*event,	BOOL	seeking,	void	*user)

{

				if	(event->event==MIDI_EVENT_BANK	&&	event->param==2)	//	got	a	bank	2	request

					 event->param==1;	//	change	it	to	bank	1

				return	TRUE;	//	process	the	event

}

See	also
BASS_MIDI_StreamSetFilter,	BASS_MIDI_EVENT	structure

BASS_MIDI_EVENT	structure

Used	with	BASS_MIDI_StreamEvents	to	apply	events	and
BASS_MIDI_StreamGetEvents	to	retrieve	events,	and
BASS_MIDI_StreamCreateEvents	to	play	event	sequences.

typedef	struct	{

				DWORD	event;

				DWORD	param;

				DWORD	chan;

				DWORD	tick;

				DWORD	pos;

}	BASS_MIDI_EVENT;

Members
event The	event	type.
param The	event	parameter.
chan The	MIDI	channel	of	the	event...	0	=	channel	1.
tick The	position	of	the	event,	in	ticks.
pos The	position	of	the	event,	in	bytes.

Remarks
When	used	with	BASS_MIDI_StreamEvents,	the	tick	and	pos	member	values
are	relative	to	the	current	decoding	position,	and	only	one	of	them	should	be
used	at	a	time	(pos	has	precedence	if	both	are).	The	pos	member	is	ignored	by
BASS_MIDI_StreamCreateEvents.

See	also
BASS_MIDI_StreamEvents,	BASS_MIDI_StreamGetEvents

BASS_MIDI_FONT	structure

Used	with	BASS_MIDI_StreamSetFonts	and	BASS_MIDI_StreamGetFonts	to
set	and	retrieve	soundfont	configurations.

typedef	struct	{

				HSOUNDFONT	font;

				int	preset;

				int	bank;

}	BASS_MIDI_FONT;

Members
font Soundfont	handle,	previously	initialized	with	BASS_MIDI_FontInit.
preset Preset	number...	0-65535,	-1	=	use	all	presets	in	the	soundfont.	This

determines	what	MIDI_EVENT_PROGRAM	event	value(s)	the
soundfont	is	used	for.

bank Base	bank	number,	or	the	bank	number	of	the	individual	preset.	This
determines	what	MIDI_EVENT_BANK	event	value(s)	the	soundfont	is
used	for.

Remarks
When	using	an	individual	preset	from	a	soundfont,	BASSMIDI	will	first	look	for
the	exact	preset	and	bank	match,	but	if	that	is	not	present,	the	first	preset	from
the	soundfont	will	be	used.	This	is	useful	for	single	preset	soundfonts.	Individual
presets	can	be	assigned	to	program	numbers	beyond	the	standard	127	limit,	up	to
65535,	which	can	then	be	accessed	via	BASS_MIDI_StreamEvent.

When	using	all	presets	in	a	soundfont,	the	bank	member	is	a	base	number	that	is
added	to	the	soundfont's	banks.	For	example,	if	bank=1	then	the	soundfont's
bank	0	becomes	bank	1,	etc.	Negative	base	numbers	are	allowed.

For	more	flexible	mapping	of	soundfont	presets	to	MIDI	programs,	see	the
BASS_MIDI_FONTEX	structure.

See	also
BASS_MIDI_FontInit,	BASS_MIDI_StreamGetFonts,
BASS_MIDI_StreamSetFonts

BASS_MIDI_FONTEX	structure

Used	with	BASS_MIDI_StreamSetFonts	and	BASS_MIDI_StreamGetFonts	to
set	and	retrieve	soundfont	configurations.

typedef	struct	{

				HSOUNDFONT	font;

				int	spreset;

				int	sbank;

				int	dpreset;

				int	dbank;

				int	dbanklsb;

}	BASS_MIDI_FONTEX;

Members
font Soundfont	handle,	previously	initialized	with	BASS_MIDI_FontInit.
spreset Soundfont	preset	number...	0-127,	-1	=	use	all	presets.
sbank Soundfont	bank	number...	0-128,	-1	=	use	all	banks.
dpreset Destination	preset/program	number...	0-65535,	-1	=	all	presets.	This

determines	what	MIDI_EVENT_PROGRAM	event	value(s)	the
soundfont	is	used	for.

dbank Destination	bank	number,	or	a	base	bank	number	when	using	all
presets	from	all	banks.	This	determines	what	MIDI_EVENT_BANK
event	value(s)	the	soundfont	is	used	for.

dbanklsb Destination	bank	number	LSB.	This	is	the
MIDI_EVENT_BANK_LSB	event	value	that	the	soundfont	is	used
for.

Remarks
This	is	an	extended	version	of	the	BASS_MIDI_FONT	structure	that	allows
more	flexible	mapping	of	soundfont	presets	to	MIDI	programs,	including	access
to	the	bank	LSB	(eg.	MIDI	controller	32).

When	using	an	individual	preset	from	a	soundfont,	BASSMIDI	will	first	look	for
the	exact	spreset	and	sbank	match,	but	if	that	is	not	present,	the	first	preset	from
the	soundfont	will	be	used.	This	is	useful	for	single	preset	soundfonts.	Individual
presets	can	be	assigned	to	program	numbers	beyond	the	standard	127	limit,	up	to
65535,	which	can	then	be	accessed	via	BASS_MIDI_StreamEvent.

When	using	all	presets	from	all	banks	in	a	soundfont,	the	dbank	member	is	a
base	number	that	is	added	to	the	soundfont's	banks.	For	example,	if	dbank	=	1
then	the	soundfont's	bank	0	becomes	bank	1,	etc.	Negative	base	numbers	are
allowed,	to	lower	a	soundfont's	bank	numbers.

The	bank	LSB	raises	the	maximum	number	of	melodic	banks	from	128	to	16384
(128	x	128),	but	the	SF2	soundfont	format	only	supports	128	banks,	so	a
soundfont	that	is	set	to	be	used	on	all	banks	(dpreset	and	dbank	are	-1)	will	still
only	apply	to	the	single	bank	LSB	specified	by	dbanklsb.

See	also
BASS_MIDI_FontInit,	BASS_MIDI_StreamGetFonts,
BASS_MIDI_StreamSetFonts

BASS_MIDI_MARK	structure

Used	with	BASS_MIDI_StreamGetMark	and	BASS_MIDI_StreamGetMarks	to
retrieve	markers.

typedef	struct	{

				DWORD	track;

				DWORD	pos;

				char	*text;

}	BASS_MIDI_MARK;

Members
track The	MIDI	track	containing	the	marker...	0	=	first.
pos The	position	of	the	marker.	This	may	be	in	bytes	or	ticks,	depending	on

whether	the	BASS_MIDI_MARK_TICK	flag	was	used	in	the
BASS_MIDI_StreamGetMark	or	BASS_MIDI_StreamGetMarks	call.

text The	marker	text.

Remarks
If	a	lyric	marker's	text	begins	with	a	/	(slash)	character,	a	new	line	should	be
started.	If	it	begins	with	a	\	(backslash)	character,	the	display	should	be	cleared.

See	also
BASS_MIDI_StreamGetMark

BASS_ATTRIB_MIDI_CHANS	attribute

The	number	of	MIDI	channels	in	a	MIDI	stream.

BASS_ChannelSetAttribute(

				HSTREAM	handle,

				BASS_ATTRIB_MIDI_CHANS,

				float	channels

);

Parameters
handle The	MIDI	stream	handle.
channels The	number	of	MIDI	channels...	1	(min)	-	128	(max).	For	a	MIDI	file

stream,	the	minimum	is	16.

Remarks
New	channels	are	melodic	by	default.	Any	notes	playing	on	a	removed	channel
are	immediately	stopped.

See	also
BASS_MIDI_StreamCreate,	BASS_MIDI_StreamCreateFile

BASS_ChannelGetAttribute,	BASS_ChannelSetAttribute

mk:@MSITStore:bass.chm::/BASS_ChannelGetAttribute.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetAttribute.html

BASS_ATTRIB_MIDI_CPU	attribute

The	maximum	percentage	of	CPU	time	that	a	MIDI	stream	can	use.

BASS_ChannelSetAttribute(

				HSTREAM	handle,

				BASS_ATTRIB_MIDI_CPU,

				float	limit

);

Parameters
handle The	MIDI	stream	handle.
limit The	CPU	usage	limit...	0	to	100,	0	=	no	limit.

Remarks
It	is	not	strictly	the	CPU	usage	that	is	measured,	but	rather	how	timely	the
stream	is	able	to	render	data.	For	example,	a	limit	of	50%	would	mean	that	the
rendering	would	need	to	be	at	least	2x	real-time	speed.	When	the	limit	is
exceeded,	BASSMIDI	will	begin	killing	voices,	starting	with	the	most	quiet.

When	the	CPU	usage	is	limited,	the	stream's	samples	are	loaded	asynchronously
so	that	any	loading	delays	(eg.	due	to	slow	disk)	do	not	hold	up	the	stream	for
too	long.	If	a	sample	cannot	be	loaded	in	time,	then	it	will	be	silenced	until	it	is
available	and	the	stream	will	continue	playing	other	samples	as	normal	in	the
meantime.	This	does	not	affect	sample	loading	via
BASS_MIDI_StreamLoadSamples,	which	always	operates	synchronously.

By	default,	a	MIDI	stream	will	have	no	CPU	limit.

See	also
BASS_ATTRIB_MIDI_VOICES

BASS_ChannelGetAttribute,	BASS_ChannelSetAttribute

mk:@MSITStore:bass.chm::/BASS_ChannelGetAttribute.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetAttribute.html

BASS_ATTRIB_MIDI_PPQN	attribute

The	Pulses	Per	Quarter	Note	(or	ticks	per	beat)	value	of	a	MIDI	stream.

BASS_ChannelGetAttribute(

				HSTREAM	handle,

				BASS_ATTRIB_MIDI_PPQN,

				float	*ppqn

);

Parameters
handle The	MIDI	stream	handle.
ppqn The	PPQN	value.

Remarks
This	attribute	is	the	number	of	ticks	per	beat	as	defined	by	the	MIDI	file;	it	will
be	0	for	MIDI	streams	created	via	BASS_MIDI_StreamCreate.	It	is	also	read-
only,	so	cannot	be	modified	via	BASS_ChannelSetAttribute.

mk:@MSITStore:bass.chm::/BASS_ChannelSetAttribute.html

Example
Get	the	currnet	position	of	a	MIDI	stream	in	beats.

float	ppqn;

BASS_ChannelGetAttribute(handle,	BASS_ATTRIB_MIDI_PPQN,	&ppqn;);	//	get	PPQN	value

QWORD	tick=BASS_ChannelGetPosition(handle,	BASS_POS_MIDI_TICK);	//	get	tick	position

DWORD	beat=tick/ppqn;	//	translate	it	to	beats

See	also
BASS_ChannelGetAttribute

mk:@MSITStore:bass.chm::/BASS_ChannelGetAttribute.html

BASS_ATTRIB_MIDI_STATE	attribute

The	current	state	of	a	MIDI	stream.

BASS_ChannelSetAttributeEx(

				DWORD	handle,

				BASS_ATTRIB_MIDI_STATE,

				void	*state,

				DWORD	size

);

Parameters
handle The	MIDI	stream	handle.
state The	state	data.
size The	size	of	the	state	data.

Remarks
This	attribute	includes	the	state	of	all	events	in	all	MIDI	channels,	except	for
MIDI_EVENT_NOTE	(playing	notes	are	not	preserved)	and
MIDI_EVENT_TEMPO.	BASS_MIDI_StreamGetEvent	can	be	used	to	get	the
MIDI_EVENT_TEMPO	event	state.

The	structure	of	the	MIDI	state	data	may	change	in	future	versions,	so	if	the	data
is	stored,	be	prepared	for	BASS_ChannelSetAttributeEx	to	fail	when	trying	to
apply	it.

mk:@MSITStore:bass.chm::/BASS_ChannelSetAttributeEx.html

Example
Transfer	the	state	from	one	MIDI	stream	to	another.

DWORD	size=BASS_ChannelGetAttributeEx(stream1,	BASS_ATTRIB_MIDI_STATE,	NULL,	0);	//	get	the	size

void	*state=malloc(size);	//	allocate	a	buffer	for	the	data

BASS_ChannelGetAttributeEx(stream1,	BASS_ATTRIB_MIDI_STATE,	state,	size);	//	get	the	data

BASS_ChannelSetAttributeEx(stream2,	BASS_ATTRIB_MIDI_STATE,	state,	size);	//	apply	it	to	the	other	stream

free(state);

See	also
BASS_ChannelGetAttributeEx,	BASS_ChannelSetAttributeEx

mk:@MSITStore:bass.chm::/BASS_ChannelGetAttributeEx.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetAttributeEx.html

BASS_ATTRIB_MIDI_SRC	attribute

The	sample	rate	conversion	quality	of	a	MIDI	stream's	samples.

BASS_ChannelSetAttribute(

				DWORD	handle,

				BASS_ATTRIB_MIDI_SRC,

				float	quality

);

Parameters
handle The	MIDI	stream	handle.
quality The	sample	rate	conversion	quality...	0	=	linear	interpolation,	1	=	8

point	sinc	interpolation,	2	=	16	point	sinc	interpolation.

Remarks
The	samples	in	a	soundfont	will	usually	need	to	be	played	at	rates	that	are
different	to	their	original	rates.	This	attribute	determines	how	that	is	done.	The
linear	interpolation	option	uses	less	CPU,	but	the	sinc	interpolation	gives	better
sound	quality	(less	aliasing),	with	the	quality	and	CPU	usage	increasing	with	the
number	of	points.

When	this	attribute	setting	is	changed,	the	BASS_MIDI_SINCINTER	flag	is
automatically	set	or	unset	on	the	MIDI	stream	accordingly,	and	vice	versa.
Changes	can	be	made	at	any	time,	but	the	effect	of	changes	during	playback	will
not	be	heard	instantaneously	due	to	buffering.

Platform-specific
On	Android	and	iOS,	sinc	interpolation	requires	a	NEON	supporting	CPU.	Sinc
interpolation	is	not	available	on	Windows	CE.	16	point	sinc	interpolation	is	only
available	on	Windows/OSX/Linux	and	requires	an	SSE2	supporting	CPU.

See	also
BASS_ChannelGetAttribute,	BASS_ChannelSetAttribute,	BASS_ATTRIB_SRC

mk:@MSITStore:bass.chm::/BASS_ChannelGetAttribute.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetAttribute.html
mk:@MSITStore:bass.chm::/BASS_ATTRIB_SRC.html

BASS_ATTRIB_MIDI_TRACK_VOL
attribute

The	volume	level	of	a	track	in	a	MIDI	stream.

BASS_ChannelSetAttribute(

				HSTREAM	handle,

				BASS_ATTRIB_MIDI_TRACK_VOL	+	track,

				float	volume

);

Parameters
handle The	MIDI	stream	handle.
track The	track	to	set	the	volume	of...	0	=	first	track.
volume The	volume	level...	0	=	silent,	1.0	=	normal/default.

Remarks
The	volume	curve	used	by	this	attribute	is	always	linear,	eg.	0.5	=	50%.	The
BASS_CONFIG_CURVE_VOL	config	option	setting	has	no	effect	on	this.

During	playback,	the	effect	of	changes	to	this	attribute	are	not	heard
instantaneously,	due	to	buffering.	To	reduce	the	delay,	use	the
BASS_CONFIG_BUFFER	config	option	to	reduce	the	buffer	length.

This	attribute	can	also	be	used	to	count	the	number	of	tracks	in	a	MIDI	file
stream.	MIDI	streams	created	via	BASS_MIDI_StreamCreate	do	not	have	any
tracks.

mk:@MSITStore:bass.chm::/BASS_CONFIG_CURVE_VOL.html
mk:@MSITStore:bass.chm::/BASS_CONFIG_BUFFER.html

Example
Count	the	number	of	tracks	in	a	MIDI	stream.

int	tracks=0;

float	dummy;

while	(BASS_ChannelGetAttribute(handle,	BASS_ATTRIB_MIDI_TRACK_VOL+tracks,	&dummy;))

				tracks++;

See	also
BASS_MIDI_StreamEvent

BASS_ChannelGetAttribute,	BASS_ChannelSetAttribute,
BASS_ChannelSlideAttribute

mk:@MSITStore:bass.chm::/BASS_ChannelGetAttribute.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetAttribute.html
mk:@MSITStore:bass.chm::/BASS_ChannelSlideAttribute.html

BASS_ATTRIB_MIDI_VOICES	attribute

The	maximum	number	of	samples	to	play	at	a	time	in	a	MIDI	stream.

BASS_ChannelSetAttribute(

				HSTREAM	handle,

				BASS_ATTRIB_MIDI_VOICES,

				float	voices

);

Parameters
handle The	MIDI	stream	handle.
voices The	number	of	voices...	1	(min)	-	100000	(max).

Remarks
If	there	are	currently	more	voices	active	than	the	new	limit,	then	some	voices
will	be	killed	to	meet	the	limit.	The	number	of	voices	currently	active	is
available	via	the	BASS_ATTRIB_MIDI_VOICES_ACTIVE	attribute.

A	MIDI	stream	will	initially	have	a	default	number	of	voices	as	determined	by
the	BASS_CONFIG_MIDI_VOICES	config	option.

Platform-specific
The	maximum	setting	is	1000	on	Android,	iOS,	and	Windows	CE.

See	also
BASS_ATTRIB_MIDI_CHANS,	BASS_ATTRIB_MIDI_CPU,
BASS_ATTRIB_MIDI_VOICES_ACTIVE,	BASS_CONFIG_MIDI_VOICES

BASS_ChannelGetAttribute,	BASS_ChannelSetAttribute

mk:@MSITStore:bass.chm::/BASS_ChannelGetAttribute.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetAttribute.html

BASS_ATTRIB_MIDI_VOICES_ACTIVE
attribute

The	number	of	samples	currently	playing	in	a	MIDI	stream.

BASS_ChannelGetAttribute(

				HSTREAM	handle,

				BASS_ATTRIB_MIDI_VOICES_ACTIVE,

				float	*voices

);

Parameters
handle The	MIDI	stream	handle.
voices The	number	of	voices.

Remarks
This	attribute	is	read-only,	so	cannot	be	modified	via
BASS_ChannelSetAttribute.

BASS_MIDI_StreamGetEvent	can	be	used	with	the	MIDI_EVENT_VOICES
event	to	check	how	many	voices	are	active	in	individual	MIDI	channels.

mk:@MSITStore:bass.chm::/BASS_ChannelSetAttribute.html

See	also
BASS_ATTRIB_MIDI_CPU,	BASS_ATTRIB_MIDI_VOICES,
BASS_CONFIG_MIDI_VOICES

BASS_ChannelGetAttribute,	BASS_ChannelSetAttribute

mk:@MSITStore:bass.chm::/BASS_ChannelGetAttribute.html
mk:@MSITStore:bass.chm::/BASS_ChannelSetAttribute.html

BASS_MIDI_FontCompact

Compacts	a	soundfont's	memory	usage.

BOOL	BASS_MIDI_FontCompact(

				HSOUNDFONT	handle

);

Parameters
handle The	soundfont	handle...	0	=	all	soundfonts.

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid.

Remarks
Compacting	involves	freeing	any	samples	that	are	currently	loaded	but	unused
by	any	MIDI	streams.	The	amount	of	sample	data	currently	loaded	can	be
retrieved	using	BASS_MIDI_FontGetInfo.

See	also
BASS_MIDI_FontFree,	BASS_MIDI_FontGetInfo,	BASS_MIDI_FontUnload,
BASS_CONFIG_MIDI_COMPACT

BASS_MIDI_FontFree

Frees	a	soundfont.

BOOL	BASS_MIDI_FontFree(

				HSOUNDFONT	handle

);

Parameters
handle The	soundfont	handle.

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid.

Remarks
When	a	soundfont	is	freed,	it	is	automatically	removed	from	any	MIDI	streams
that	are	using	it.

See	also
BASS_MIDI_FontCompact,	BASS_MIDI_FontInit

BASS_MIDI_FontGetInfo

Retrieves	information	on	a	soundfont.

BOOL	BASS_MIDI_FontGetInfo(

				HSOUNDFONT	handle,

				BASS_MIDI_FONTINFO	*info

);

Parameters
handle The	soundfont	to	get	info	on.
info Pointer	to	a	structure	to	receive	the	info.

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid.

See	also
BASS_MIDI_FontGetPreset,	BASS_MIDI_FontGetPresets,
BASS_MIDI_FONTINFO	structure

BASS_MIDI_FontGetPreset

Retrieves	the	name	of	a	preset	in	a	soundfont.

char	*BASS_MIDI_FontGetPreset(

				HSOUNDFONT	handle,

				int	preset,

				int	bank

);

Parameters
handle The	soundfont	to	get	the	preset	name	from.
preset Preset	number...	-1	=	any	preset	(the	first	encountered).
bank Bank	number...	-1	=	any	bank	(the	first	encountered).

Return	value
If	successful,	the	requested	preset	name	is	returned,	else	NULL	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid.
BASS_ERROR_NOTAVAIL The	soundfont	does	not	contain	the	requested

preset.

Remarks
SFZ	files	do	not	contain	preset	names,	so	their	filenames	(minus	the	".sfz"
extension)	are	used	instead	when	available.

A	list	of	all	presets	in	a	soundfont	is	available	from
BASS_MIDI_FontGetPresets.

Drum	kits	are	located	in	bank	128,	and	possibly	bank	127	in	the	case	of	XG
drum	kits.

See	also
BASS_MIDI_FontGetInfo,	BASS_MIDI_FontGetPresets,
BASS_MIDI_FontInit

BASS_MIDI_FontGetPresets

Retrieves	the	presets	in	a	soundfont.

BOOL	BASS_MIDI_FontGetPresets(

				HSOUNDFONT	handle,

				DWORD	*presets

);

Parameters
handle The	soundfont	to	get	the	presets	from.
presets A	pointer	to	an	array	to	receive	the	presets.

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid.

Remarks
Before	using	this	function	to	retrieve	the	presets,	BASS_MIDI_FontGetInfo
should	be	used	to	get	the	number	of	presets	in	the	soundfont.	The	presets	are
delivered	with	the	preset	number	in	the	LOWORD	and	the	bank	number	in	the
HIWORD,	and	in	numerically	ascending	order.

Example
List	all	presets	in	a	soundfont,	with	their	names.

int	a;

BASS_MIDI_FONTINFO	info;

BASS_MIDI_FontGetInfo(handle,	&info;);	//	get	soundfont	info	for	preset	count

DWORD	*presets=(DWORD*)malloc(info.presets*sizeof(DWORD));	//	allocate	array	for	presets

BASS_MIDI_FontGetPresets(handle,	presets);	//	get	the	presets

for	(a=0;	a<info.presets;	a++)	{

				DWORD	preset=LOWORD(presets[a]),	bank=HIWORD(presets[a]);	//	extract	preset	and	bank	number

				const	char	*name=BASS_MIDI_FontGetPreset(handle,	preset,	bank);	//	get	the	preset's	name

				printf("%d.%d:	%s\n",	bank,	preset,	name);

}

free(presets);

See	also
BASS_MIDI_FontGetInfo,	BASS_MIDI_FontGetPreset

BASS_MIDI_FontGetVolume

Retrieves	a	soundfont's	volume	level.

float	BASS_MIDI_FontGetVolume(

				HSOUNDFONT	handle

);

Parameters
handle The	soundfont	to	get	the	volume	of.

Return	value
If	successful,	the	soundfont's	volume	level	is	returned,	else	-1	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid.

See	also
BASS_MIDI_FontSetVolume

BASS_MIDI_FontInit

Initializes	a	soundfont.

HSOUNDFONT	BASS_MIDI_FontInit(

				void	*file,

				DWORD	flags

);

Parameters
file The	soundfont	filename.
flags Any	combination	of	these	flags.

BASS_MIDI_FONT_MMAP Map	the	file	into	memory.	This	flag
is	ignored	if	the	soundfont	is
packed	as	the	sample	data	cannot
be	played	directly	from	a	mapping;
it	needs	to	be	decoded.	This	flag	is
also	ignored	if	the	file	is	too	large
to	be	mapped	into	memory.

BASS_MIDI_FONT_NOFX Ignore	the	reverb/chorus	levels	of
the	presets	in	the	soundfont	(only
use	the	levels	in	the	MIDI	events).

BASS_MIDI_FONT_XGDRUMS Use	bank	127	in	the	soundfont	for
XG	drum	kits.	When	an	XG	drum
kit	is	needed,	bank	127	in
soundfonts	that	have	this	flag	set
will	be	checked	first,	before	falling
back	to	bank	128	(the	standard	SF2
drum	kit	bank)	if	it	is	not	available
there.

BASS_UNICODE file	is	in	UTF-16	form.	Otherwise	it
is	ANSI	on	Windows,	and	UTF-8
on	other	platforms.

Return	value
If	successful,	the	soundfont's	handle	is	returned,	else	0	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_FILEOPEN The	file	could	not	be	opened.
BASS_ERROR_FILEFORM The	file's	format	is	not	recognised/supported.

Remarks
BASSMIDI	uses	SF2	and/or	SFZ	soundfonts	to	provide	the	sounds	to	use	in	the
rendering	of	MIDI	files.	Several	soundfonts	can	be	found	on	the	internet,
including	a	couple	on	the	BASS	website.

A	soundfont	needs	to	be	initialized	before	it	can	be	used	to	render	MIDI	streams.
Once	initialized,	a	soundfont	can	be	assigned	to	MIDI	streams	via	the
BASS_MIDI_StreamSetFonts	function.	A	single	soundfont	can	be	shared	by
multiple	MIDI	streams.	If	a	soundfont	is	initialized	multiple	times,	each	instance
will	have	its	own	handle	but	share	the	same	sample	data.	Information	on	the
initialized	soundfont	can	be	retrieved	using	BASS_MIDI_FontGetInfo.

Soundfonts	use	PCM	sample	data	as	standard,	but	BASSMIDI	can	accept	any
format	that	is	supported	by	BASS	or	its	add-ons	(the	add-ons	need	to	be	loaded
via	BASS_PluginLoad).	The	BASS_MIDI_FontPack	function	can	be	used	to
compress	the	sample	data	in	SF2	files.	SFZ	samples	are	in	separate	files	and	can
be	compressed	using	standard	encoding	tools.

Using	soundfonts	that	are	located	somewhere	other	than	the	file	system	is
possible	via	BASS_MIDI_FontInitUser.

http://www.un4seen.com
mk:@MSITStore:bass.chm::/BASS_PluginLoad.html

SF2	support
The	SF2	synthesis	model	is	fully	supported,	as	are	all	SF2	generators.	Basic
support	for	the	note	velocity	to	filter	cutoff	(initialFilterFc)	and	note	velocity	to
volume	envelope	attack	(attackVolEnv)	modulators	is	also	included.	In	each
case,	multiple	modulators	in	the	global/instrument/preset	zones	is	supported	but
only	if	they	are	identical	(eg.	all	linear	negative	mono).	If	different	types	are
present	on	a	preset,	then	the	last	one	(with	a	non-zero	amount)	will	be	used.	The
SF2	spec's	slightly	strange	default	note	velocity	to	filter	cutoff	modulator	is	not
used.

SFZ	support
The	following	SFZ	opcodes	are	supported:	ampeg_attack,	ampeg_decay,
ampeg_delay,	ampeg_hold,	ampeg_release,	ampeg_sustain,	ampeg_vel2attack,
ampeg_vel2decay,	amplfo_delay/fillfo_delay/pitchlfo_delay,	amplfo_depth,
amplfo_freq/fillfo_freq/pitchlfo_freq,	amp_veltrack,	cutoff,	default_path,
effect1,	effect2,	end,	fileg_attack/pitcheg_attack,	fileg_decay/pitcheg_decay,
fileg_delay/pitcheg_delay,	fileg_depth,	fileg_hold/pitcheg_hold,
fileg_release/pitcheg_release,	fileg_sustain/pitcheg_sustain,	fileg_vel2depth,
fillfo_depth,	fil_veltrack,	group,	hicc1,	hicc64,	hikey,	hirand,	hivel,	key,	locc1,
locc64,	lokey,	loop_end,	loop_mode,	loop_start,	lorand,	lovel,	offset,	off_by,
off_mode,	pan,	pitcheg_depth,	pitchlfo_depth,	pitch_keycenter,	pitch_keytrack,
pitch_veltrack,	resonance,	sample,	seq_length,	seq_position,	transpose,	tune,
volume.	The	fil_type	opcode	is	also	supported,	but	only	to	confirm	that	a	low
pass	filter	is	wanted	(the	filter	will	be	disabled	otherwise).	The	combined	EG
and	LFO	entries	in	the	opcode	list	reflect	that	there	is	a	shared	EG	for	pitch/filter
and	a	shared	LFO	for	amplitude/pitch/filter,	as	is	the	case	in	SF2.	Information	on
these	(and	other)	SFZ	opcodes	can	be	found	at	www.sfzformat.com.

Samples	can	also	be	loaded	from	memory	by	setting	the	"sample"	opcode	to
"mem:<address>:<length>",	where	address	and	length	are	both	in	hexadecimal.
The	memory	should	remain	valid	until	the	font	is	freed	via
BASS_MIDI_FontFree.

SFZ	files	do	not	have	a	defined	preset	or	bank	number,	so	they	are	nominally
assigned	to	preset	0	in	bank	0	when	loaded,	but	can	be	assigned	to	other
presets/banks	via	BASS_MIDI_StreamSetFonts.

http://www.sfzformat.com/

Platform-specific
The	BASS_MIDI_FONT_MMAP	option	is	not	available	on	big-endian	systems
(eg.	PowerPC)	as	a	soundfont's	little-endian	sample	data	cannot	be	played
directly	from	a	mapping;	its	byte	order	needs	to	be	reversed.

Example
Initialize	a	soundfont.

HSOUNDFONT	sfont=BASS_MIDI_FontInit("afile.sf2",	0);

See	also
BASS_MIDI_FontFree,	BASS_MIDI_FontGetInfo,
BASS_MIDI_FontGetPresets,	BASS_MIDI_FontInitUser,
BASS_MIDI_FontPack,	BASS_MIDI_FontLoad,	BASS_MIDI_FontSetVolume,
BASS_MIDI_StreamSetFonts,	BASS_CONFIG_MIDI_COMPACT

BASS_MIDI_FontInitUser

Initializes	a	soundfont	via	user	callback	functions.

HSOUNDFONT	BASS_MIDI_FontInitUser(

				BASS_FILEPROCS	*procs,

				void	*user,

				DWORD	flags

);

mk:@MSITStore:bass.chm::/BASS_FILEPROCS.html

Parameters
procs The	user	defined	file	functions.
user User	instance	data	to	pass	to	the	callback	functions.
flags Any	combination	of	these	flags.

BASS_MIDI_FONT_XGDRUMS Use	bank	127	in	the	soundfont	for
XG	drum	kits.	When	an	XG	drum
kit	is	needed,	bank	127	in
soundfonts	that	have	this	flag	set
will	be	checked	first,	before	falling
back	to	bank	128	(the	standard
SF2	drum	kit	bank)	if	it	is	not
available	there.

Return	value
If	successful,	the	soundfont's	handle	is	returned,	else	0	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_FILEFORM The	file's	format	is	not	recognised/supported.

Remarks
The	unbuffered	file	system	(STREAMFILE_NOBUFFER)	is	always	used	by
this	function.

See	also
BASS_MIDI_FontFree,	BASS_MIDI_FontGetInfo,
BASS_MIDI_FontGetPresets,	BASS_MIDI_FontInit,	BASS_MIDI_FontPack,
BASS_MIDI_FontLoad,	BASS_MIDI_FontSetVolume,
BASS_MIDI_StreamSetFonts,	BASS_CONFIG_MIDI_COMPACT

BASS_MIDI_FontLoad

Preloads	presets	from	a	soundfont.

BOOL	BASS_MIDI_FontLoad(

				HSOUNDFONT	handle,

				int	preset,

				int	bank

);

Parameters
handle The	soundfont	handle.
preset Preset	number	to	load...	-1	=	all	presets.
bank Bank	number	to	load...	-1	=	all	banks.

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid.
BASS_ERROR_CODEC The	appropriate	add-on	to	decode	the	samples	is

not	loaded.
BASS_ERROR_NOTAVAIL The	soundfont	does	not	contain	the	requested

preset.

Remarks
Samples	are	normally	loaded	as	they	are	needed	while	rendering	a	MIDI	stream,
which	can	result	in	CPU	spikes,	particularly	with	packed	soundfonts.	That
generally	will	not	cause	any	problems,	but	when	smooth/constant	performance	is
critical	this	function	can	be	used	to	preload	the	samples	before	rendering,	so
avoiding	the	need	to	load	them	while	rendering.

When	preloading	samples	to	render	a	particular	MIDI	stream,	it	is	more	efficient
to	use	BASS_MIDI_StreamLoadSamples	to	preload	the	specific	samples	that	the
MIDI	stream	will	use,	rather	than	preloading	the	entire	soundfont.

Samples	that	are	preloaded	by	this	function	are	not	affected	by	automatic
compacting	via	the	BASS_CONFIG_MIDI_COMPACT	option,	but	can	be
compacted/unloaded	manually	with	BASS_MIDI_FontCompact	and
BASS_MIDI_FontUnload.

A	soundfont	should	not	be	preloaded	while	it	is	being	used	to	render	any	MIDI
streams,	as	that	could	delay	the	rendering.

See	also
BASS_MIDI_FontCompact,	BASS_MIDI_FontGetInfo,
BASS_MIDI_FontGetPreset,	BASS_MIDI_FontInit,	BASS_MIDI_FontUnload,
BASS_MIDI_StreamLoadSamples

BASS_MIDI_FontPack

Produces	a	compressed	version	of	a	soundfont.

BOOL	BASS_MIDI_FontPack(

				HSOUNDFONT	handle,

				void	*outfile,

				void	*encoder,

				DWORD	flags

);

Parameters
handle The	soundfont	to	pack.
outfile Filename	for	the	packed	soundfont.
encoder Encoder	command-line.
flags Any	combination	of	these	flags.

BASS_MIDI_PACK_NOHEAD Don't	send	a	WAVE	header	to	the
encoder.	If	this	flag	is	used	then
the	sample	format	(mono	16-bit)
must	be	passed	to	the	encoder
some	other	way,	eg.	via	the
command-line.

BASS_MIDI_PACK_16BIT Reduce	24-bit	sample	data	to	16-
bit	before	encoding.

BASS_UNICODE outfile	and	encoder	are	in	UTF-16
form.	Otherwise	they	are	ANSI	on
Windows,	and	UTF-8	on	other
platforms.

Return	value
If	successful,	the	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid.
BASS_ERROR_FILEOPEN Could	not	start	the	encoder.	Check	that	the

executable	exists.
BASS_ERROR_CREATE Could	not	create	the	output	file,	outfile.
BASS_ERROR_UNKNOWN Some	other	mystery	problem!

Remarks
Standard	soundfonts	use	PCM	samples,	so	they	can	be	quite	large,	which	can	be
a	problem	if	they	are	to	be	distributed.	To	reduce	the	size,	BASSMIDI	can
compress	the	samples	using	any	command-line	encoder	with	STDIN	and
STDOUT	support.	Packed	soundfonts	can	be	used	for	rendering	by	BASSMIDI
just	like	normal	soundfonts.	They	can	also	be	unpacked	using
BASS_MIDI_FontUnpack.

Although	any	command-line	encoder	can	be	used,	it	is	best	to	use	a	lossless
format	like	FLAC	or	WavPack,	rather	than	a	lossy	one	like	OGG	or	MP3.	Using
a	lossless	encoder,	the	packed	soundfont	will	produce	exactly	the	same	results	as
the	original	soundfont,	and	will	be	identical	to	the	original	when	unpacked.	As	a
compromise	between	quality	and	size,	the	WavPack	hybrid/lossy	mode	also
produces	good	sounding	results.

The	encoder	must	be	told	(via	the	command-line)	to	expect	input	from	STDIN
and	to	send	its	output	to	STDOUT.

Before	using	a	packed	soundfont,	the	appropriate	BASS	add-on	needs	to	be
loaded	via	BASS_PluginLoad.	For	example,	if	the	samples	are	FLAC	encoded,
BASSFLAC	would	need	to	be	loaded.	During	rendering,	the	samples	are
unpacked	as	they	are	needed,	which	could	result	in	CPU	spikes.	Where	smooth
performance	is	critical,	it	may	be	wise	to	preload	the	samples	using
BASS_MIDI_FontLoad	or	BASS_MIDI_StreamLoadSamples.

A	soundfont	should	not	be	packed	while	it	is	being	used	to	render	any	MIDI
streams,	as	that	could	delay	the	rendering.

This	function	only	applies	to	SF2	soundfonts.	SFZ	samples	can	be	compressed
using	standard	encoding	tools.

http://flac.sourceforge.net/
http://www.wavpack.com/
mk:@MSITStore:bass.chm::/BASS_PluginLoad.html

Platform-specific
This	function	is	not	available	on	iOS	or	Android.

Example
Create	a	FLAC	encoded	version	of	a	soundfont.

HSOUNDFONT	handle=BASS_MIDI_FontInit("afile.sf2",	0);	//	open	original	soundfont

BASS_MIDI_FontPack(handle,	"afile.sf2pack",	"flac	--best	-",	0);	//	produce	packed	version

See	also
BASS_MIDI_FontInit,	BASS_MIDI_FontLoad,	BASS_MIDI_FontUnpack

BASS_MIDI_FontSetVolume

Sets	a	soundfont's	volume	level.

BOOL	BASS_MIDI_FontSetVolume(

				HSOUNDFONT	handle,

				float	volume

);

Parameters
handle The	soundfont	to	set	the	volume	of.
volume The	volume	level...	0	=	silent,	1.0	=	normal/default.

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid.

Remarks
By	default,	some	soundfonts	may	be	louder	than	others,	which	could	be	a
problem	when	mixing	multiple	soundfonts.	This	function	can	be	used	to
compensate	for	any	differences,	by	raising	the	level	of	the	quieter	soundfonts	or
lowering	the	louder	ones.

Changes	take	immediate	effect	in	any	MIDI	streams	that	are	using	the	soundfont.

See	also
BASS_MIDI_FontGetVolume

BASS_MIDI_FontUnload

Unloads	presets	from	a	soundfont.

BOOL	BASS_MIDI_FontUnload(

				HSOUNDFONT	handle,

				int	preset,

				int	bank

);

Parameters
handle The	soundfont	handle.
preset Preset	number	to	unload...	-1	=	all	presets.
bank Bank	number	to	unload...	-1	=	all	banks.

Return	value
If	successful,	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid.
BASS_ERROR_NOTAVAIL The	soundfont	does	not	contain	the	specified

preset,	or	the	soundfont	is	memory	mapped.

Remarks
An	unloaded	preset	will	be	loaded	again	when	needed	by	a	MIDI	stream.	Any
samples	that	are	currently	being	used	by	a	MIDI	stream	will	not	be	unloaded.

See	also
BASS_MIDI_FontCompact,	BASS_MIDI_FontLoad

BASS_MIDI_FontUnpack

Produces	a	decompressed	version	of	a	packed	soundfont.

BOOL	BASS_MIDI_FontUnpack(

				HSOUNDFONT	handle,

				void	*outfile,

				DWORD	flags

);

Parameters
handle The	soundfont	to	unpack.
outfile Filename	for	the	unpacked	soundfont.
flags Any	combination	of	these	flags.

BASS_UNICODE outfile	is	in	UTF-16	form.	Otherwise	it	is	ANSI
on	Windows,	and	UTF-8	on	other	platforms.

Return	value
If	successful,	the	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_HANDLE handle	is	not	valid.
BASS_ERROR_NOTAVAIL The	soundfont	is	not	packed.
BASS_ERROR_INIT BASS_Init	has	not	been	successfully	called	-	it

needs	to	be	to	decode	the	samples.
BASS_ERROR_CODEC The	appropriate	add-on	to	decode	the	samples

is	not	loaded.
BASS_ERROR_CREATE Could	not	create	the	output	file,	outfile.
BASS_ERROR_UNKNOWN Some	other	mystery	problem!

mk:@MSITStore:bass.chm::/BASS_Init.html

Remarks
To	unpack	a	soundfont,	the	appropriate	BASS	add-on	needs	to	be	loaded	(via
BASS_PluginLoad)	to	decode	the	samples.	For	example,	if	the	samples	are
FLAC	encoded,	BASSFLAC	would	need	to	be	loaded.	BASS	also	needs	to	have
been	initialized,	using	BASS_Init.	For	just	unpacking	a	soundfont,	the	"no
sound"	device	could	be	used.

A	soundfont	should	not	be	unpacked	while	it	is	being	used	to	render	any	MIDI
streams,	as	that	could	delay	the	rendering.

BASS_MIDI_FontGetInfo	can	be	used	to	check	if	a	soundfont	is	packed.

mk:@MSITStore:bass.chm::/BASS_PluginLoad.html
mk:@MSITStore:bass.chm::/BASS_Init.html

Example
Unpack	a	FLAC	encoded	soundfont.

BASS_PluginLoad("bassflac.dll",	0);	//	load	FLAC	plugin

HSOUNDFONT	handle=BASS_MIDI_FontInit("afile.sf2pack",	0);	//	open	soundfont

BASS_MIDI_FontUnpack(handle,	"afile.sf2",	0);	//	produce	unpacked	version

See	also
BASS_MIDI_FontInit,	BASS_MIDI_FontPack

BASS_MIDI_FONTINFO	structure

Used	with	BASS_MIDI_FontGetInfo	to	retrieve	information	on	a	soundfont.

typedef	struct	{

				char	*name;

				char	*copyright;

				char	*comment;

				DWORD	presets;

				DWORD	samsize;

				DWORD	samload;

				DWORD	samtype;

}	BASS_MIDI_FONTINFO;

Members
name Name	of	the	soundfont.
copyright Copyright	notice.
comment Any	comments.
presets The	number	of	presets/instruments	in	the	soundfont.
samsize The	total	size	(in	bytes)	of	the	sample	data	in	the	soundfont.
samload The	amount	of	sample	data	currently	loaded...	-1	=	the	soundfont	is

memory	mapped.
samtype The	BASS_CTYPE_STREAM_xxx	format	of	the	sample	data	if	it

is	packed...	-1	=	unknown	format	(appropriate	BASS	add-on	not
loaded),	0	=	not	packed.

Remarks
The	name,	copyright	and	comment	information	might	not	be	included	in	some
SF2	files.	Only	the	presets,	samload	and	samtype	members	are	available	with
SFZ	files,	with	the	samtype	value	reflecting	the	most	recently	loaded	encoded
sample	(it	is	possible	for	different	samples	to	use	different	encoding).

See	also
BASS_MIDI_FontGetInfo

BASS_MIDI_InFree

Frees	a	MIDI	input	device.

BOOL	BASS_MIDI_InFree(

				DWORD	device

);

Parameters
device The	device	to	free.

Return	value
If	successful,	then	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_DEVICE device	is	invalid.
BASS_ERROR_INIT The	device	has	not	been	initialized.

See	also
BASS_MIDI_InInit

BASS_MIDI_InGetDeviceInfo

Retrieves	information	on	a	MIDI	input	device.

BOOL	BASS_MIDI_InGetDeviceInfo(

				DWORD	device,

				BASS_MIDI_DEVICEINFO	*info

);

Parameters
device The	device	to	get	the	information	of...	0	=	first.
info Pointer	to	a	structure	to	receive	the	information.

Return	value
If	successful,	then	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_DEVICE device	is	invalid.

Platform-specific
MIDI	input	is	not	available	on	Android.

See	also
BASS_MIDI_InInit

BASS_MIDI_InInit

Initializes	a	MIDI	input	device.

BOOL	BASS_MIDI_InInit(

				DWORD	device,

				MIDIINPROC	*proc,

				void	*user

);

Parameters
device The	device	to	use...	0	=	first.	BASS_MIDI_InGetDeviceInfo	can	be

used	to	enumerate	the	available	devices.
proc Callback	function	to	receive	MIDI	data	from	the	device.
user User	instance	data	to	pass	to	the	callback	function.

Return	value
If	the	device	was	successfully	initialized,	TRUE	is	returned,	else	FALSE	is
returned.	Use	BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_DEVICE device	is	invalid.
BASS_ERROR_ALREADY The	device	has	already	been	initialized.

BASS_MIDI_InFree	must	be	called	before	it
can	be	initialized	again.

BASS_ERROR_NOTAVAIL The	device	not	available.
BASS_ERROR_UNKNOWN Some	other	mystery	problem!

Platform-specific
MIDI	input	is	not	available	on	Android.

See	also
BASS_MIDI_InFree,	BASS_MIDI_InGetDeviceInfo,	BASS_MIDI_InStart,
BASS_CONFIG_MIDI_IN_PORTS

BASS_MIDI_InStart

Starts	a	MIDI	input	device.

BOOL	BASS_MIDI_InStart(

				DWORD	device

);

Parameters
device The	device	to	start.

Return	value
If	successful,	then	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_DEVICE device	is	invalid.
BASS_ERROR_INIT The	device	has	not	been	initialized.
BASS_ERROR_UNKNOWN Some	other	mystery	problem!

See	also
BASS_MIDI_InStop

BASS_MIDI_InStop

Stops	a	MIDI	input	device.

BOOL	BASS_MIDI_InStop(

				DWORD	device

);

Parameters
device The	device	to	stop.

Return	value
If	successful,	then	TRUE	is	returned,	else	FALSE	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_DEVICE device	is	invalid.
BASS_ERROR_INIT The	device	has	not	been	initialized.
BASS_ERROR_UNKNOWN Some	other	mystery	problem!

See	also
BASS_MIDI_InFree,	BASS_MIDI_InStart

MIDIINPROC	callback

User	defined	callback	function	to	receive	MIDI	data.

void	CALLBACK	MidiInProc(

				DWORD	device,

				double	time,

				const	BYTE	*buffer,

				DWORD	length,

				void	*user

);

Parameters
device The	MIDI	input	device	that	the	data	is	from.
time Timestamp,	in	seconds	since	BASS_MIDI_InStart	was	called.
buffer Pointer	to	the	MIDI	data.
length The	amount	of	data	in	bytes.
user The	user	instance	data	given	when	BASS_MIDI_InInit	was	called.

Example
A	callback	function	that	forwards	the	received	data	to	a	MIDI	stream.

stream=BASS_MIDI_StreamCreate(16,	0,	0);	//	create	a	MIDI	stream	to	play	the	MIDI	data

...

void	CALLBACK	MidiInProc(DWORD	device,	double	time,	const	BYTE	*buffer,	DWORD	length,	void	*user)

{

				BASS_MIDI_StreamEvents(stream,	BASS_MIDI_EVENTS_RAW,	buffer,	length);	//	forward	the	data	to	the	MIDI	stream

}

See	also
BASS_MIDI_InInit

BASS_MIDI_DEVICEINFO	structure

Used	with	BASS_MIDI_InGetDeviceInfo	to	retrieve	information	on	a	MIDI
input	device.

typedef	struct	{

				char	*name;

				DWORD	id;

				DWORD	flags;

}	BASS_MIDI_DEVICEINFO;

Members
name Description	of	the	device.
id An	identification	number.
flags The	device's	current	status...	a	combination	of	these	flags.

BASS_DEVICE_ENABLED The	device	is	enabled.	It	will	not	be
possible	to	initialize	the	device	if	this
flag	is	not	present.

BASS_DEVICE_INIT The	device	is	initialized,	ie.
BASS_MIDI_InInit	has	been	called.

Platform-specific
On	Windows,	id	consists	of	a	manufacturer	identifier	in	the	LOWORD	and	a
product	identifier	in	the	HIWORD.	This	will	not	uniquely	identify	a	particular
device,	ie.	multiple	devices	may	have	the	same	value.	A	list	of	identifiers	is
available	from	Microsoft,	here.	On	OSX,	id	is	the	device's
"kMIDIPropertyUniqueID"	property	value,	which	is	unique	to	the	device.	On
Linux,	id	contains	the	device's	ALSA	client	ID	in	the	LOWORD	and	port	ID	in
the	HIWORD.

Depending	on	the	BASS_CONFIG_UNICODE	config	setting,	name	can	be	in
ANSI	or	UTF-8	form	on	Windows.	It	is	always	in	UTF-8	form	on	other
platforms.

http://msdn.microsoft.com/en-us/library/dd757146.aspx
mk:@MSITStore:bass.chm::/BASS_CONFIG_UNICODE.html

See	also
BASS_MIDI_InGetDeviceInfo

BASS_MIDI_ConvertEvents

Converts	raw	MIDI	data	to	BASS_MIDI_EVENT	structures.

DWORD	BASS_MIDI_ConvertEvents(

				BYTE	*data,

				DWORD	lengthBASS_MIDI_EVENT	*events,

				DWORD	count,

				DWORD	flags

);

Parameters
data The	raw	MIDI	data.
length The	length	of	the	data.
events Pointer	to	an	array	to	receive	the	events...	NULL	=	get	the	number	of

events	without	getting	the	events	themselves.
count The	maximum	number	of	events	to	convert.
flags A	combination	of	these	flags.

BASS_MIDI_EVENTS_NORSTATUS Disable	running	status,
meaning	each	event	must
include	a	status	byte.

BASS_MIDI_EVENTS_TIME The	raw	MIDI	data	includes
delta-time	info.

Return	value
If	successful,	the	number	of	events	processed	is	returned,	else	-1	is	returned.	Use
BASS_ErrorGetCode	to	get	the	error	code.

mk:@MSITStore:bass.chm::/BASS_ErrorGetCode.html

Error	codes
BASS_ERROR_MEM There	is	insufficient	memory.
BASS_ERROR_UNKNOWN Some	mystery	problem!

Example
Convert	some	raw	MIDI	data.

BYTE	data[7]={0x90,	60,	100,	64,	100,	67,	100};	//	the	event	data

BASS_MIDI_EVENTS	events[3];

BASS_MIDI_ConvertEvents(data,	7,	events,	3,	0);	//	convert	the	events

Convert	the	same	data	with	delta-time	info.

BYTE	data[10]={0,	0x90,	60,	100,	0,	64,	100,	0,	67,	100};	//	the	event	data

BASS_MIDI_EVENTS	events[3];

BASS_MIDI_ConvertEvents(data,	10,	events,	3,	BASS_MIDI_EVENTS_TIME);	//	convert	the	events

See	also
BASS_MIDI_StreamCreate,	BASS_MIDI_StreamEvent,
BASS_MIDI_StreamGetEvent

