
<	(less	than),	<	(less	than),	less	than	operator,	operators:\<=	(less	than	or	equal
to),	<=	(less	than	or	equal	to),	less	than	or	equal	to	operator,	mathematical
functions:less	than	or	equal	to,	operators:>	(greater	than),	>	(greater	than),
greater	than	operator,	mathematical	functions:greater	than,	operators:>=	(greater
than	or	equal	to),	>=	(greater	than	or	equal	to),	greater	than	or	equal	to	operator,
operators:~	(bitwise	NOT),	bitwise	NOT	operator,	~	(bitwise	NOT),
mathematical	functions:bitwise	NOT,	operators:1+	(increment),	1+	(increment),
increment	operator,	incrementing	numbers,	numbers:incrementing,	operators:1-
(decrement),	decrement	operator,	1-	(decrement),	decrementing	numbers,
numbers:decrementing,	absolute	values,	numbers:absolute	values	of,	color
selection	dialog	box,	displaying,	dialog	boxes:color	selection,	Help:	invoking,
acad-pop-dbmod	function,	DBMOD	system	variable:restoring	value	stored	with
acad-push-dbmod,	acapp.arx	file,	DBMOD	system	variable:storing	current
value,	acad-push-dbmod	function,	acapp.arx	file,	sorting:strings,
strings:alphabetizing	list	of,	color	selection	dialog	box,	displaying,	dialog
boxes:color	selection,	color	selection	dialog	box,	displaying,	dialog	boxes:color
selection,	associative	dimensions,	dimensions:associative,	LAYERPMODE
setting,	layers:tracking	changes	to,	acet-layerp-mode	function,	LAYERPMODE
setting,	layers:tracking	changes	to,	acet-layerp-mark	function,	Layer	Translator,
AutoLISP	function	for,	layers:converting	to	standard	settings,	acet-laytrans
function,	model	space	units:converting	to	paper	space	units,	paper	space
units:converting	model	space	units	to,	converting:model	space	units	to	paper
space	units,	Layer	Translator,	AutoLISP	function	for,	layers:converting	to
standard	settings,	acet-laytrans	function,	paper	space	units:converting	to	model
space	units,	model	space	units:converting	paper	space	units	to,	converting:paper
space	units	to	model	space	units,	Layer	Translator,	AutoLISP	function	for,
layers:converting	to	standard	settings,	acet-laytrans	function,	user	input:selecting
tiles,	tiles:selecting	in	dialog	boxes,	dialog	boxes:specifying	tiles,
strings:adding/modifying	in	a	dialog	box	list,	dialog	boxes:modifying	strings	in
active	list,	dialog	boxes:adding	strings	to	active	list,	strings:adding	inactive
dialog	box	lists,	modifying,	strings	in	active	dialog	box	lists,	dialog	boxes:for
error	messages,	dialog	boxes:warning	message,	warning	message,	in	dialog
boxes,	error	messages:displaying	in	dialog	boxes,	expand	function,	setting
segment	size	for,	allocating	memory,	memory:setting	segment	size,	segments,
setting	size	of,	logical	AND,	mathematical	functions:AND,	angles:defined	by
two	endpoints,	endpoints:angle	returned	from,	lines:angle	of,	in	radians,
strings:converting:from	angle	to	radians,	radians:converting	strings	to,
angles:converting	from	string	to	radian,	converting:angles	to	radians,	real
values:converting	angles	from	radians	to,	floating	point	values:converting	angles

from	strings	to,	strings:converting:angular	value	in	radians	to,	radians:converting
to	strings,	angles:converting	to	strings,	lists:concatenating,	appending	lists,
lists:appending	to,	lists:constructing,	concatenating:	lists,	lists:passing	to
functions,	functions:executing,	ARX	applications.	See	ObjectARX	applications,
ObjectARX	applications:listing	loaded	applications,	ObjectARX	applications,
applications:ObjectARX,	listing,	application-handling	functions,	ObjectARX,
ObjectARX	applications:loading,	applications:loading	ObjectARX,	ObjectARX
applications:unloading,	applications:unloading	ObjectARX,	character
codes:ASCII.	See	ASCII	character	codes,	ASCII	character	codes:converting	first
character,	association	lists,	radians:	arctangents	measured	in	,	arctangents,
measured	in	radians,	strings:converting:to	real	numbers,	converting:strings:to
real	numbers,	real	numbers:converting	from	strings,	converting:strings:to
integers,	integers:converting	from	strings,	atoms,	atoms:verifying,
symbols:defining	current	atoms	list,	automatic	loading:of	ObjectARX	files,
ObjectARX	applications:loading	associated	files,	loading	files:for	ObjectARX
commands,	automatic	loading:of	AutoLISP	files,	loading	files:for	AutoLISP
commands,	bitwise	Boolean	functions,	functions:Boolean,	bitwise,	Boolean
bitwise	functions,	values:bound	to	symbols,	symbols:value	bound	to,
elements:third	of	a	list,	lists:third	element,	obtaining	Z	coordinate,	Z	coordinate,
obtaining,	points:Z	coordinate,	elements:second	of	a	list,	lists:second	element,
obtaining	Y	coordinate,	Y	coordinate,	obtaining,	points:Y	coordinate,
elements:first	of	a	list,	lists:first	element:obtaining,	elements:all	but	first	of	a	list,
lists:first	element:excluding,	integers:converting	to	strings,	ASCII	character
codes:converting	to	single	characters,	tiles:managing	data	in	dialog	boxes,
files:closing,	closing:files,	AutoCAD	commands:executing,
commands:executing	in	AutoCAD,	executing	AutoCAD	commands,	SKETCH
command,	SCRIPT	command,	conditional	functions,	primary,	evaluating	lists,
primary	condition,	lists:evaluating	primary	conditions,	elements:adding	to
beginning	of	list,	dotted	lists:constructing,	lists:adding	first	element,
lists:constructing	dotted	lists,	cosine	of	angles,	angles:measuring	cosine	in
radians,	values:converting	to	other	units	of	measurement,	units	of	measurement,
converting	values	and,	measurements,	converting	values,	converting:values,	to
other	units	of	measurement,	functions:defining,	functions:	built-in,	built-in
functions,	functions:defined	in	lists,	list	structure	of	functions,	displaying,
functions:displaying	list	structures,	defun-q,	displaying	defined	function,
functions:defined	in	lists:setting	symbols	as,	symbols:setting	as	functions,
objects:nongraphical:adding	to	dictionaries,	nongraphical	objects,	adding	to
dictionaries,	dictionaries:adding	nongraphical	objects,	dictionaries:finding	next
item,	dictionaries:removing	entries,	renaming:dictionary	entries,

dictionaries:renaming	entries,	searching:dictionaries,	dictionaries:searching
items,	width	of	tiles,	retrieving	in	dialog	box	units,	tiles:widths	of,	height	of	tiles,
retrieving	in	dialog	box	units,	tiles:heights	of,	distance:between	points,	3D
distance:between	points,	real	values:converting	floating	point	values	to,
converting:floating	point	to	real	values,	floating	point	values:converting	to	real
values,	real	numbers:converting	from	floating	point,	closing:dialog	boxes,	dialog
boxes:terminating,	dialog	boxes:closing,	terminating	dialog	boxes,	dialog
boxes:closing,	closing:dialog	boxes,	images:ending	creation	in	dialog	boxes,
dialog	boxes:ending	creation	of	images,	dialog	boxes:ending	active	lists,
deleting:entities,	objects:deleting,	entities:deleting,	objects:restoring	deleted
objects,	entities:restoring	deleted	entities,	deleting:objects,	entities:undeleting,
entities:deleting,	undeleting	objects,	objects:undeleting,	objects:deleting,
removing.	See	deleting,	definition	data:retrieving,	definitions,	retrieving	data	for
objects,	entities:retrieving	definition	data,	objects:retrieving	definition	data,
entities:naming,	nondeleted	last	object,	returning	name	of,	entities:last
nondeleted,	drawings:last	nondeleted	object,	objects:last	nondeleted,
objects:naming,	names:of	objects,	returning,	entities:creating:in	drawings,
objects:creating	in	drawings,	VIEWPORT	entity	type:	creating,	names:of
objects,	returning,	entities:handles	and,	handles:for	new	objects,
entities:creating,	objects:creating,	entities:assigning	handles,	objects:assigning
handles,	entities:naming,	objects:naming,	naming:objects,	definition
data:modifying,	objects:modifying	definition	data,	entities:modifying	definition
data,	VIEWPORT	entity	type:	changing,	numbers:See	also	real	numbers,
namespaces:	See	also	separate-namespace	VLX,	entities:naming,	names:of
objects,	returning,	entities:returning	next	drawing	entity,	objects:returning	next
drawing	object,	objects:naming,	names:of	objects,	returning,	editor	reactors:See
also	reactors,	selecting	objects,	entities:selecting,	objects:selecting,	Object	Snap
mode,	screen	images,	updating,	entities:updating	on	screen,	images:updating	of
screen,	polylines:updating	screen	image,	objects:updating	screen	image,	block
references:with	attributes:updating	screen	image,	block	references:with
attributes:changing,	screens:	updating	object	image,	REGEN	command,
objects:nested,	nested	entities,	entities:nested,	equality	between	expressions,
expressions:determining	whether	identical,	mathematical	functions:equality
checking,	mathematical	functions:equality	checking,	expressions:determining
whether	equal,	equality	between	expressions,	user-definable	error-handling
function,	error	handling:user-defined	function,	functions:error-handling,	error
messages:	user-defined,	evaluating	expressions:using	EVAL	function,	evaluating
expressions,	closing:applications,	forced	quit,	applications:quitting,	quit/exit
abort	error	message,	antilogarithms,	and	real	numbers	,	allocating	memory,

memory:allocating,	mathematical	functions:exponentiation,	exponents,
specifying	power,	filled	rectangles,	drawing	in	dialog	box,	rectangles:filled,
rectangles:	in	dialog	box	image	tiles,	searching:AutoCAD	library	path,	library
paths,	searching	for	files,	files:searching	library	paths	for,	find.	See	search,
converting:numbers,	integers:converting	from	real	numbers,	real
numbers:converting	to	smaller	integers,	truncating	numbers,	numbers:converting
to	real	numbers,	real	numbers:converting	from	numbers,
expressions:evaluating:for	all	members	of	a	list,	evaluating	expressions:for	all
members	of	a	list,	optimizing	arguments	with	Visual	LISP	compiler,	linking
arguments	with	Visual	LISP	compiler,	Visual	LISP:linking	and	optimizing
arguments,	freeing	memory,	garbage	collection,	memory:freeing	unused,
integers:greatest	common	denominator,	common	denominators,	finding	greatest,
numbers:common	denominators,	dialog	boxes:retrieving	DCL	values	of
attributes,	DCL	values,	retrieving,	dialog	boxes:attributes	with	DCL	values,
attributes:retrieving	DCL	values,	runtime	values	of	dialog	box	tiles,	retrieving,
dialog	boxes:retrieving	runtime	values	of	tiles,	tiles:runtime	values	of,
angles:user	input	of,	angles:measured	in	radians	,	radians:of	angles,	application-
specific	data:from	acad.cfg	file,	retrieving,	acad.cfg,	AppData	section,
files:acad.cfg,	AutoCAD	commands:retrieving	localized	names	of,
naming:commands	in	AutoCAD,	commands:localized	name	in	AutoCAD,
commands:English	name	in	AutoCAD,	rectangles:corners,	pausing	for	user
input,	corners,	user	input	for	rectangles,	distance:pausing	for	user	input	of,	3D
distance:specifying,	distance:specifying	points,	base	points,	specifying	distance,
environment	variables:returning	value	of,	environment	variables:defined,	system
variables:environment	variable	names,	dialog	boxes:for	file	selection,	file
names:prompting	user	for,	naming:files:with	AutoCAD	file	dialog	box,	file
names:user	input,	integers:pausing	for	user	input	of,	user	input:integers,
integers:limits	for	user	input,	integers:range	of	values,	user	input:keywords,
keywords:user	input,	angles:in	radians,	user	input:angles,	points:pausing	for	user
input	of,	user	input:points,	points:specifying,	real	numbers:pausing	for	user	input
of,	user	input:real	numbers,	real	numbers:specifying,	strings:pausing	for	user
input	of,	user	input:strings,	strings:specifying,	system	variables:retrieving	values
of,	system	variables:	See	also	environment	variables,	screens:graphics	for
AutoCAD,	AutoCAD	graphics	screen,	viewports:clearing	current,
vectors:drawing	in	viewports,	viewports:vectors,	drawing,	input	devices,	reading
from	AutoCAD,	reading,	AutoCAD	input	devices,	text:in	screen	menus,
AutoCAD	status	line,	writing	text	to,	status	line,writing	text	to,	text:on
AutoCAD	status	line	,	screen	menus,	entering	text	in,	transformation
matrix:vectors,	graphics	vectors:drawing,	multiple	vectors,	on	graphics	screen,

vectors:drawing	on	graphics	screen,	viewports:	drawing	vectors,
handles:returning	object	names	by,	objects:handles	and,	entities:handles	and,
Help:	invoking,	conditionally	evaluating	expressions,
expressions:evaluating:with	if,	evaluating	expressions:conditionally	(if...),
forcing	display	of	dialog	boxes	,	dialog	boxes:forcing	display	of,	user
input:keywords:for	function	calls,	keywords:for	user-input	function	calls,
function	calls,	keywords,	user	input:restricting	type	of,	input,	restricting	users,
keywords:methods	for	abbreviating,	intersections,	of	lines	,	lines:determining
intersections,	strings:converting:integers	to,	converting:integers	to	strings,
integers:converting	to	strings,	anonymous	functions,	defining,
functions:anonymous,	lists:last	element	in,	elements:last	in	a	list,	layouts,	paper
space,	drawings:paper	space	layouts,	paper	space,	current	layouts	in,	layerstate-
addlayers,	addlayers,	add,	layerstate,	layerstate-delete,	delete,	layerstate,
layerstate-export,	export,	layerstate,	layerstate-getlayers,	getlayers,	layerstate,
layerstate-has,	has,	layerstate,	layerstate-import,	import,	layerstate,	layerstate-
rename,	rename,	layerstate,	layerstate-restore,	restore,	layerstate,	layerstate-save,
save,	layerstate,	lists:number	of	elements	in,	lists:quantity	of	elements,
elements:quantity	in	lists,	lists:constructing,	concatenating:	expressions	into	lists,
expressions:concatenating,	verification:of	lists,	lists:verifying,
expressions:evaluating,	evaluating	expressions,	recursion,	in	loading	files	,
files:loading,	loading	files:recursion,	files:loading:DCL	files,	loading	files:DCL
files,	DCL	files:	loading,	real	numbers:and	natural	logs	,	logs,	natural	logs	of
numbers,	logical	bitwise	AND,	AND,	list	of	integers,	integers:list	using	bitwise
AND,	logical	bitwise	OR,	integers:list	using	bitwise	OR,	logical	bitwise	shift	of
integer,	integers:shifting	by	specifying	bits,	bits,	specifying	to	shift	integers,
elements:supplying	as	arguments	for	lists,	lists:supplied	arguments	and,
numbers:largest,	largest	numbers,	integers:largest	in	list	,	real	numbers:largest	in
list,	memory:dynamic,	memory:status	in	AutoLISP,	dynamic	memory,
expressions:searching	for,	searching:lists:for	remainder	,	lists:remainder,
obtaining,	lists:searching	for	remainder,	menus:item	status,	status	of	menu	items,
commands:for	menus,	menu	commands,	issuing,	DIESEL	menu	expressions,
menus:DIESEL	expressions,	verification:of	loaded	menugroups,
loading:menugroups,	menugroups,	loading,	numbers:smallest,	smallest	numbers,
real	numbers:smallest	in	list,	integers:smallest	in	list	,	verification:of	negative
numbers,	numbers:negative,	verifying,	negative	numbers,	verifying,	dialog
boxes:tile	mode,	setting,	tiles:mode	for	dialog	boxes,	named	object	dictionary,
entity	name	of,	dictionaries:named	object,	dictionaries:accessing	objects,
dictionaries:named	object,	objects:nongraphical:accessing,	entities:nongraphical,
accessing,	World	Coordinate	System:transforming	entity	definition	data	points

to,	entities:selecting,	complex	objects,	accessing	definition	data,
objects:complex,	objects:selecting,	selecting	objects,	definition	data:of	complex
objects,	entities:complex,	polylines:definition	data,	block	references:selecting,
block	references:definition	data,	polylines:selecting,	block	references:attributes,
selecting,	Model	to	World	Transformation	Matrix,	coordinate
systems:transforming,	points:transforming	coordinate	systems,	WCS.	See	World
Coordinate	System,	MCS.	See	Model	Coordinate	System,	Model	Coordinate
System	(MCS),	blocks:nested,	complex	objects,	accessing	definition	data,
objects:selecting,	definition	data:of	complex	objects,	user	input:selecting	objects
without	user	input,	dialog	boxes:displaying,	dialog	boxes:adding,	verification:of
nil	evaluation,	symbols:determining	if	nil,	nil:checking	variable	for,	nth	element
of	a	list,	lists:nth	element	of,	elements:nth	element	of	lists,	verification:of	nil
evaluation,	symbols:determining	if	nil,	nil:checking	variable	for,	verification:of
real	numbers	or	integers,	variables:determining	if	numeric,	integers:verifying,
real	numbers:verifying,	accessing	files	with	AutoLISP,	files:opening,	opening
files,	functions:AutoLISP	I/O,	logical	OR	of	expression,	lists:using	OR,
points:3D,	3D	Object	Snap	mode,	Object	Snap	mode:specifying	points,	UCS.
See	user	coordinate	system,	user	coordinate	system,	3D	points,	3D	points:angles,
specifying,	3D	points:in	user	coordinate	system,	writing:expressions	to	files,
command	line:	printing	expressions	to,	expressions:printing	to	command	line,
expressions:writing	to	files,	files:writing	expressions	to,	backslash,	control	codes
(table),	writing:expressions	to	files,	command	line:	printing	expressions	to,
expressions:printing	to	command	line,	expressions:writing	to	files,	files:writing
expressions	to,	writing:expressions	to	files,	command	line:	printing	expressions
to,	expressions:printing	to	command	line,	expressions:	writing	to	files,
files:writing	expressions	to,	expressions:evaluating:sequentially,	expressions:last
evaluated,	evaluating	expressions:sequentially,	strings:displaying	in	prompt	area,
screens:dual-screen	display,	screens:	displaying	messages,	error	messages:for
quitting	applications	,	forcing	an	application	to	quit,	applications:forcing	to	quit,
quitting	applications,	forcing,	expressions:returning	without	evaluating,
evaluating	expressions:no	evaluation,	atoms:first	in	a	string,	converting,	first	list
or	atom	from	a	string,	delimiters,	in	multiple	expressions,	lists:first	expression,
converting,	converting:expressions,	keyboard	input	buffer:returning	ASCII	code
from,	files:returning	ASCII	code	from,	ASCII	character	codes:in	open	files	,
ASCII	character	codes:from	keyboard	input	buffer,	user	input:keyboard	input
buffer,	keyboard	input	buffer:reading	strings	from,	strings:reading	from	files,
files:reading	strings	from,	searching:files,	end-of-line	markers,	files:end-of-line
marker,	end-of-line	markers,	open	files,	objects:redrawing	in	current	viewport,
viewports:redrawing:objects,	viewports:redrawing:current	viewport,

applications:registering,	registering:applications,	applications:naming,	extended
data,	naming	applications,	objects:extended	data,	entities:extended	data,
applications:using	extended	data,	mathematical	functions:division,	division,
determining	remainders,	remainders,	in	division,	expressions:evaluating:a
specified	number	of	times,	expressions:re-evaluation,	specified,	evaluating
expressions:	repetition	specified,	lists:reversing	elements,	elements:reversing	in
lists,	strings:converting:numbers	to,	numbers:converting	to	strings,
converting:numbers	to	strings,	real	numbers:converting	to	strings,
integers:converting	to	strings,	symbols:setting	values	to	expressions,
expressions:setting	symbol	values	to,	symbols:setting	values	to	expressions,
dialog	boxes:tile	values,	setting,	tiles:setting	value	in	dialog	boxes,	application-
specific	data:writing	to	the	AppData	section	of	acad.cfg,	acad.cfg,	AppData
section,	files:acad.cfg,	applications:AppData	section	of	acad.cfg,	environment
variables:setting	values	for,	environment	variables:spelling	requirements	for,
commands:registering,	registering:commands,	user	input:Help	file	commands,
Help:registering	user-defined	commands	with,	symbols:setting	values	to
expressions,	expressions:setting	symbol	values	to,	symbols:setting	values	to
expressions,	variables:setting	values,	system	variables:setting	values,
ANGBASE	system	variable,	SNAPANG	system	variable,	views,	establishing,
viewports:specifying	views,	sine	of	angle,	angles:sine	of,	tiles:displaying	slides
in,	slides,	displaying	in	dialog	boxes,	dialog	boxes:displaying	slides	in,
images:displaying	slides,	symbol	tables:checking	names	of	valid	characters,
symbols:naming	with	valid	characters,	naming:valid	characters	for	symbols,
symbols:invalid	characters	(table),	square	roots,	as	real	numbers,	real
numbers:square	roots,	selection	sets:adding	new	objects,	selection	sets:creating,
objects:adding	to	selection	sets,	entities:adding	to	selection	sets,	deleting:objects,
entities:deleting:from	selection	sets,	selection	sets:deleting	objects	from,
objects:deleting	from	selection	sets,	selection	sets:object	selection	methods	(list),
objects:creating	selection	sets	from,	entities:creating:selection	sets,	selection
sets:creating,	gripped	objects,	objects:selected	and	gripped,	selection
sets:selected	and	gripped,	entities:number	in	selection	set,	selection	sets:number
of	objects	in,	objects:number	in	selection	set,	objects:testing	for	selection	set
membership,	selection	sets:testing	for	membership	of,	selection	sets:members,
determining,	indexed	elements	of	selection	sets,	selection	sets:indexed	elements
of,	elements:indexed,	names:of	entities	in	selections	sets,	selection	sets:returning
entity	names,	entities:in	selection	sets,	selection	sets:creation	information,
selection	sets:selection	method	IDs	(table),	selection	sets:point	descriptor	IDs
(table),	gripped	objects,	objects:selected	and	gripped,	selection	sets:selected	and
gripped,	entities:selecting	for	set,	objects:gripping,	entities:gripping,

objects:selecting	for	set,	applications:starting	Windows	applications,	Windows
applications,	starting,	dialog	boxes:displaying,	dialog	boxes:remaining	active,
dialog	boxes:starting,	user	input:opening	dialog	boxes,	images:creating	in	dialog
boxes,	tiles:creating	images	in	dialog	boxes,	dialog	boxes:image	creation,
lists:processing,	dialog	boxes:pop-up	lists,	dialog	boxes:processing	lists,	pop-up
lists,	processing	in	dialog	boxes,	characters:converting	case	of,	converting:case
of	alphabetic	characters,	uppercase	characters,	converting,	case	conversions,
lowercase	characters,	converting,	strings:concatenating	multiple	strings,
concatenating:multiple	strings,	strings:number	of	characters	in,
characters:quantity	in	strings,	integers:quantity	of	string	characters,	substituting
list	items,	searching:lists:for	old	items	,	lists:substituting	new	items,
lists:replacing	old	items,	substrings.	See	strings,	strings:substrings,	tablet
(digitizer)	calibrations,	digitizers,	setting	calibrations,	calibrations,	digitizer
coordinates,	symbol	tables:finding	next	item,	entities:searching	in	symbol	tables,
symbol	tables:searching:for	object	names,	objects:searching	symbol	tables	for,
symbols:searching	for	names	in	symbol	tables,	symbol	tables:searching:for
symbol	names,	user	input:terminating	dialog	boxes,	dialog	boxes:terminating,
terminating	dialog	boxes,	newlines,	printing	to	command	line,	command	line:
printing	newlines	to,	measuring	text	objects,	text	objects,	measuring,
coordinates,	in	text	boxes,	text	boxes,	diagonal	coordinates,	graphics
screen:switching	to	text	screen,	screens:switching	graphics	screen	to	text	screen,
text	screen,	switching	from	graphics	screen,	graphics	screen:displayed	in
AutoCAD,	Flip	Screen	function	key,	screens:Flip	Screen	function	key,	trace
function,	debugging,	debugging:trace	function,	displacements,	translating,
translating	points	or	displacements,	Object	Coordinate	System	(OCS),
coordinate	systems:translating	points,	points:translating	between	coordinate
systems,	data	types	(list),	type	function,	data	types	(list),	DCL	files:unloading,
dialog	boxes:unloading	DCL	files,	unloading:DCL	files,	loading:	See	also
unloading,	unloading:	See	also	loading,	untrace	function,	debugging,
debugging:untrace	function,	trace	flag,	clearing,	dialog	boxes:drawing	vectors
in,	images:vectors	in	dialog	boxes,	vectors:in	dialog	box	images	,	graphics
vectors:in	dialog	box	images,	strings:containing	AutoLISP	version	number,
version	of	current	AutoLISP,	defining	function	symbols	as	external	subroutines,
symbols:function	symbols:defining,	function	symbols:defining	as	external
subroutines,	symbols:external	subroutines,	subroutines,	external,	external
subroutines,	defining	symbols	as,	symbols:function	symbols:undefining,
function	symbols:undefining,	undefining	function	symbols,	ObjectARX
applications:undefining	symbols,	symbols:undefining	for	ObjectARX,	VLX
applications:separate-namespace.	See	separate-namespace	VLX,	separate-

namespace	VLX:importing	functions	to,	functions:importing,
applications:separate-namespace	VLX,	importing	functions:ADS-DEFUN,
importing	functions:from	ObjectARX,	namespaces:blackboard	namespace
variables,	variables:in	blackboard	namespace	,	blackboard	namespace:returning
variable	value	from,	namespaces:blackboard	namespace	variables,	variables:in
blackboard	namespace	,	blackboard	namespace:setting	variables,	trapping	errors,
arguments,	passing	to	functions,	error	objects:returned	from	vl-catch-all-apply,
error	trapping,	intercepting	errors,	error	messages:in	error	objects,	error
objects:viewing	error	messages	in,	error	objects:returned	from	vl-catch-all-apply,
AutoCAD	commands:executing,	commands:executing	in	AutoCAD,
variables:valid	list	definitions,	lists:valid	list	definitions,	files:listing	in
directories,	directories:listing	all	files,	AutoCAD	documents,	function
availability,	functions:availability	in	AutoCAD	documents,
namespaces:importing	functions,	functions:importing:into	VLX	namespace,
namespaces:variable	values,	variables:retrieving	values	from	namespace,
namespaces:variable	values,	variables:setting	values:in	namespace,	lists:testing
elements	in,	test	functions,	for	lists,	error	handling:VLX	applications,	VLX
applications:error	handlers,	VLX	applications:invoking	from	another	namespace,
functions:invoking	VLX,	files:copying,	files:appending,	deleting:files,
files:deleting,	directories:using	path	names,	directories:file	names	referring	to,
renaming:files,	files:renaming,	bytes,	for	file	size	,	files:determining	size	of,
files:time	of	last	modification,	files:naming:without	directory	or	extension,
files:naming:with	extension	only,	naming:files:temporary	files,
files:naming:temporary	files,	temporary	files,	naming,	.txt	files,	in	VLX,	VLX
applications:.txt	resource	files	in,	atoms:and	dotted	lists,	lists:constructing,
dotted	lists:and	atoms,	character	codes:list,	integers:lists	combining	characters,
VLX	applications:exporting	functions,	functions:exported	by	VLX,	lists:length,
determining,	VLX	applications:and	current	document	,	loading	files:into
AutoCAD	,	files:loading:in	AutoCAD	documents,	loading:extended	Visual	LISP
functions,	Visual	LISP:loading	extensions	to	AutoLISP,	functions:loading	Visual
LISP	extensions	to	AutoLISP,	lists:testing	elements	in,	test	functions,	for	lists,
nil:testing	list	elements	for,	lists:testing	elements	in,	test	functions,	for	lists,
xdata.	See	extended	data	,	index	of	list	element,	determining,	lists:determining
index	of	item,	lists:item	position	in,	AutoLISP	data,	displaying	as	output	from
prin1/princ,	namespaces:variables	in	open	documents,	variables:copying	values
into	document	namespaces,	Windows	registry:deleting	keys	or	values	from,
subkeys,	in	Windows	registry,	Windows	registry:subkeys,	Windows
registry:stored	data	for	keys,	registry	keys,	creating	in	Windows	,	Windows
registry:creating	keys	in,	elements:removing	from	lists,	lists:removing	elements

from,	lists:testing	elements	in,	test	functions,	for	lists,	test	functions,	for	lists,
lists:testing	elements	in,	nil:testing	predicate	for,	comparison	function:in	lists	,
lists:comparison	function,	lists:eliminating	duplicate	elements,	sorting:lists,
lists:comparison	function,	lists:eliminating	duplicate	elements,	comparison
function:in	lists	,	lists:element	index	values,	character	codes:converting	from
strings,	ASCII	character	codes:representing	characters,	lists:deleting	leading
characters,	strings:longest	common	prefix,	strings:searching:for	ASCII	code,
lists:deleting	end	characters,	strings:searching:for	patterns,	patterns:searching	in
strings,	strings:replacing	patterns,	patterns:replacing	in	strings,
strings:substituting	characters,	lists:deleting	end	characters,	lists:deleting
beginning	characters,	symbols:name	in	uppercase,	symbols:value	bound	to,
entities:identifying	symbols,	symbols:identifying	for	objects,	objects:identifying
symbols,	unloading:VLX	applications,	VLX	applications:unloading,
loading:Visual	Basic	projects,	Visual	Basic	projects:loading,	Visual	Basic
projects:running	macros,	macros,	Visual	Basic,	separate-namespace
VLX:determining	if	loaded,	VLX	applications:determining	if	loaded,	points:3D,
3D	points:ActiveX-compatible,	ActiveX:creating	3D	points	compatible	with,
commands:adding	to	AutoCAD,	AutoCAD	commands:adding	to	built-in
command	set,	applications:connecting	with	ActiveX,	application	objects:creating
new	instances	of,	curves:creating	inside	area	of,	curves:finding	nearest	point	of,
planes:nearest	point	on	projected	curve,	curves:projecting	onto	planes,
curves:defining	parameters	of,	curves:segment	length:to	parameter,
curves:segment	length:to	selected	point,	endpoints:of	curves,
curves:parameters:of	endpoints,	World	Coordinate	System:endpoints	in	curves,
curves:WCS	endpoints,	curves:first	derivative	of,	curves:parameters:at	specified
distance,	curves:parameters:in	WCS,	curves:points:at	specified	distance,
curves:points:at	specified	parameter,	curves:second	derivative,	curves:start
parameter,	World	Coordinate	System:start	point	in	curves,	curves:WCS	start
point,	endpoints:equal	to	start	point	in	curves,	curves:closed,	curves:periodic,
curves:infinite	ranges	of,	infinite	ranges,	in	curves,	periodic	curves,	curves:in
planes,	planes:containing	curves,	objects:methods	applicable	to,	listing,
objects:properties	of:listing,	converting:ename	to	VLA-object,
objects:transforming	ename	to	VLA-object,	entities:transforming	to	VLA-object,
entities:erasing,	objects:determining	if	erased,	collections:evaluating,	entities:top
level	in	Auto	CAD,	objects:top	level	in	AutoCAD,	applications:connecting	with
ActiveX,	application	objects:returning	running	instances	of,
entities:creating:new	instance	of,	objects:creating	new	instance	of,
ActiveX:getting	object	properties,	objects:properties	of,	VLA-objects,	getting
properties,	importing	data,	from	type	libraries	,	type	libraries,	importing	data

from,	methods:calling	ActiveX,	dictionaries:erasing	LISP	data,
entities:retrieving	LISP	data,	dictionaries:retrieving	LISP	data,	objects:retrieving
LISP	data,	dictionaries:listing	LISP	data,	entities:storing	LISP	data,
dictionaries:storing	LISP	data,	objects:storing	LISP	data,	saving	data,	in	session
boundaries	,	session	boundaries,	saving	data,	safearrays:creating,
variants:creating,	functions:applying	to	objects,	collections:applying	functions
to,	methods:determining	object	support	for,	objects:methods	supported	by,
objects:releasing,	registry	path,	in	AutoCAD,	entities:specifying	properties,
objects:specifying	properties,	properties:specifying	in	objects,	properties:setting
in	ActiveX,	objects:setting	properties	in	ActiveX,	entities:determining	if
readable,	objects:determining	if	readable,	entities:releasing	in	drawings,
objects:releasing	in	drawings,	commands:removing,	safearrays:storing	data	in
elements	of,	safearrays:number	of	dimensions,	dimensions:of	safearrays,	arrays:
See	also	safearrays,	safearrays:specifying	indexes	of	elements,
safearrays:dimension	boundaries	of,	boundaries,	in	safearrays,	safearrays:lower
boundaries,	dimensions:of	arrays,	safearrays:returning	start	index	of,
safearrays:upper	boundaries,	safearrays:dimension	boundaries	of,	dimensions:of
arrays,	arrays:returning	end	index	of,	arrays:dimension	boundaries	of,
safearrays:adding	elements,	safearrays:data	types	of,	safearrays:displaying	as
lists	,	ActiveX:creating	transformation	matrices,	transformation	matrix:VLA
methods,	methods:converting	transformation	matrix	for,	TypeLib	information,
objects:TypeLib	information,	entities:TypeLib	information,	variants:changing
data	type	of,	variants:determining	data	type	of,	variants:returning	values	of,
converting:VLA-object	to	ename,	objects:transforming	VLA-object	to	ename,
entities:transforming	VLA-object	to,	objects:modifying	in	AutoCAD	drawings,
FAS	files,	compiling	source	code	into,	source	code,	compiling	into	FAS	files,
reactor	objects.	See	reactors,	reactors:constructing,	objects:changing	in	drawing
database,	database	reactors,	creating,	reactor	events	(table),	reactors:enabling,
reactors:enabled,	determining,	beep	sounds,	command	events,	and	editor	reactors
,	editor	reactors:command	event	notification,	command	reactor	events	(table),
events,	current	within	reactor's	callback,	application-specific	data:in	reactor
objects	,	reactors:application-specific	data,	reactors:data	associated	with,
reactors:overwriting	application-specific	data,	deepclone	reactors,	creating,
reactors:deep	cloning	notification,	deep	cloning,	reactor	notification,	DeepClone
reactor	events,	(table),	document	reactors,	creating,	reactors:for	drawing
document	events,	DocManager	reactor	events	(table),	DWG	reactors,	creating,
reactors:drawing	event	notification,	DWG	reactor	events	(table),	DXF	reactors,
creating,	reactors:DXF	file	event	notification,	DXF	reactor	events	(table),	editor
reactors:constructing,	editor	reactor	events	(table),	blocks:inserting	in	editor

reactors,	insert	reactor	events	(table),	ObjectARX	applications:reactor
notification	and,	reactors:of	ObjectARX	application	notification,	linker	reactors,
creating,	linker	reactor	events	(table),	LISP	reactors,	creating,	reactors:LISP
event	notification,	LISP	reactor	events	(table),	editor	reactors:creating,
reactors:miscellaneous	editor	types,	miscellaneous	reactor	events	(table),	mouse
reactors,	creating,	reactors:mouse	event	notification,	mouse	reactor	events
(table),	reactors:inactive	namespace	and,	object	reactors:constructing,
reactors:object	reactors,	constructing,	object	reactors:See	also	reactors,	object
events	(table),	object	reactors:adding	to	list	of	owners,	object	reactors:removing
from	list	of	owners,	object	reactors:owners	of,	persistent	reactors,	declaring,
reactors:persistent:making,	reactors:persistent:in	current	drawing,
reactors:persistent:determining,	reactors:transient,	making,	reactors:callback
conditions,	reactors:replacing	callback	functions,	callback	functions:replacing,
reactors:pairs,	list	of,	reactors:	See	also	editor	reactors;	object	reactors,
reactors:existing,	list	of,	reactors:disabling	one	reactor,	reactors:disabling	all	for
a	specified	type,	callback	functions:and	inactive	namespaces,	editor
reactors:system	variable	change	notification,	editor	reactors:	toolbar	bitmap
change	notification,	callback	functions:printing	arguments	in	Trace	window,
Trace	window,	callback	arguments,	reactor	types:identifying,	reactors:identifying
type	of,	reactor	types:listing,	editor	reactors:undo	event	notification,
blocks:writing	to	reactor	events,	editor	reactors:writing	to	block	notification,
editor	reactors:modifying	AutoCAD	window	notification,	editor
reactors:modifying	xrefs,	viewports:current	configurations,	viewports:listing
descriptors,	wild-card	pattern	match,	patterns:matching	with	wild	cards,
expressions:evaluating:repetitively,	evaluating	expressions:	repetitively,
files:writing	characters	to,	screens:	writing	characters	to,	writing:characters,
output.	See	writing,	files:writing	strings	to,	writing:strings,	screens:	writing
strings	to,	objects:extended	object	data,	functions,	functions:	extended	data-
handling,	entities:linking	as	extended	data,	lists:linked	to	objects	as	extended
data,	objects:linked	as	extended	data,	zero,	testing	number	for,
numbers:evaluating	to	zero,">

AutoLISP	Reference	Guide	>		

AutoLISP	Functions
	
	
	

The	following	is	a	catalog	of	the	AutoLISP®	functions	available	in	AutoCAD®.
The	functions	are	listed	alphabetically.

In	this	chapter,	each	listing	contains	a	brief	description	of	the	function's	use	and
a	function	syntax	statement	showing	the	order	and	the	type	of	arguments
required	by	the	function.

Note	that	any	functions,	variables,	or	features	not	described	here	or	in	other	parts
of	the	documentation	are	not	officially	supported	and	are	subject	to	change	in
future	releases.

For	information	on	syntax,	see	AutoLISP	Function	Syntax	in	the	AutoLISP
Developer's	Guide.

Note	that	the	value	returned	by	some	functions	is	categorized	as	unspecified.
This	indicates	you	cannot	rely	on	using	the	value	returned	from	this	function.

Operators
A	Functions
B	Functions
C	Functions
D	Functions
E	Functions
F	Functions
G	Functions
H	Functions
I	Functions
L	Functions
M	Functions
N	Functions
O	Functions
P	Functions
Q	Functions
R	Functions
S	Functions

javascript:hhctrl_d0e26.Click()

T	Functions
U	Functions
V	Functions
W	Functions
X	Functions
Z	Functions

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<	(less	than),	<	(less	than),	less	than	operator,	operators:\<=	(less	than	or	equal
to),	<=	(less	than	or	equal	to),	less	than	or	equal	to	operator,	mathematical
functions:less	than	or	equal	to,	operators:>	(greater	than),	>	(greater	than),
greater	than	operator,	mathematical	functions:greater	than,	operators:>=	(greater
than	or	equal	to),	>=	(greater	than	or	equal	to),	greater	than	or	equal	to	operator,
operators:~	(bitwise	NOT),	bitwise	NOT	operator,	~	(bitwise	NOT),
mathematical	functions:bitwise	NOT,	operators:1+	(increment),	1+	(increment),
increment	operator,	incrementing	numbers,	numbers:incrementing,	operators:1-
(decrement),	decrement	operator,	1-	(decrement),	decrementing	numbers,
numbers:decrementing,">

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	

Operators
	
	
	

+	(add)
Returns	the	sum	of	all	numbers.
-	(subtract)
Subtracts	the	second	and	following	numbers	from	the	first	and	returns
the	difference
*	(multiply)
Returns	the	product	of	all	numbers
/	(divide)
Divides	the	first	number	by	the	product	of	the	remaining	numbers	and
returns	the	quotient
=	(equal	to)
Compares	arguments	for	numerical	equality
/=	(not	equal	to)
Compares	arguments	for	numerical	inequality
<	(less	than)
Returns	T	if	each	argument	is	numerically	less	than	the	argument	to	its

right;	otherwise	nil
<=	(less	than	or	equal	to)
Returns	T	if	each	argument	is	numerically	less	than	or	equal	to	the
argument	to	its	right;	otherwise	returns	nil
>	(greater	than)
Returns	T	if	each	argument	is	numerically	greater	than	the	argument	to
its	right;	otherwise	returns	nil
>=	(greater	than	or	equal	to)
Returns	T	if	each	argument	is	numerically	greater	than	or	equal	to	the
argument	to	its	right;	otherwise	returns	nil
~	(bitwise	NOT)
Returns	the	bitwise	NOT	(1's	complement)	of	the	argument
1+	(increment)
Increments	a	number	by	1
1-	(decrement)
Decrements	a	number	by	1

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	Operators	>	

+	(add)
	
	
	

Returns	the	sum	of	all	numbers.

(+	[number	number]	...)

Arguments

number

A	number.

Return	Values

The	result	of	the	addition.	If	you	supply	only	one	number	argument,	this	function
returns	the	result	of	adding	it	to	zero.	If	you	supply	no	arguments,	the	function
returns	0.

Examples

(+	1	2)																			returns		3	

(+	1	2	3	4.5)													returns		10.5

(+	1	2	3	4.0)													returns		10.0

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	Operators	>	

-	(subtract)
	
	
	

Subtracts	the	second	and	following	numbers	from	the	first	and	returns	the
difference

(-	[number	number]	...)

Arguments

number

A	number.

Return	Values

The	result	of	the	subtraction.	If	you	supply	more	than	two	number	arguments,
this	function	returns	the	result	of	subtracting	the	sum	of	the	second	through	the
last	numbers	from	the	first	number.	If	you	supply	only	one	number	argument,
this	function	subtracts	the	number	from	zero,	and	returns	a	negative	number.
Supplying	no	arguments	returns	0.

Examples

(-	50	40)																	returns		10

(-	50	40.0)															returns		10.0

(-	50	40.0	2.5)											returns		7.5

(-	8)																					returns		-8

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	Operators	>	

*	(multiply)
	
	
	

Returns	the	product	of	all	numbers

(*	[number	number]	...)	

Arguments

number

A	number.

Return	Values

The	result	of	the	multiplication.	If	you	supply	only	one	number	argument,	this
function	returns	the	result	of	multiplying	it	by	one;	it	returns	the	number.
Supplying	no	arguments	returns	0.

Examples

(*	2	3)																			returns	 6	
(*	2	3.0)																	returns	 6.0	
(*	2	3	4.0)															returns		24.0	

(*	3	-4.5)																returns		-13.5

(*	3)																					returns		3

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	Operators	>	

/	(divide)
	
	
	

Divides	the	first	number	by	the	product	of	the	remaining	numbers	and	returns
the	quotient

(/	[number	number]	...)	

Arguments

number

A	number.

Return	Values

The	result	of	the	division.	If	you	supply	more	than	two	number	arguments,	this
function	divides	the	first	number	by	the	product	of	the	second	through	the	last
numbers,	and	returns	the	final	quotient.	If	you	supply	one	number	argument,	this
function	returns	the	result	of	dividing	it	by	one;	it	returns	the	number.	Supplying
no	arguments	returns	0.

Examples

(/	100	2)																	returns		50	

(/	100	2.0)															returns		50.0	

(/	100	20.0	2)												returns		2.5	

(/	100	20	2)														returns		2	

(/	4)																					returns		4

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	Operators	>	

=	(equal	to)
	
	
	

Compares	arguments	for	numerical	equality

(=	numstr	[numstr]	...)	

Arguments

numstr

A	number	or	a	string.

Return	Values

T,	if	all	arguments	are	numerically	equal;	otherwise	nil	.	If	only	one	argument
is	supplied,	=	returns	T.

Examples

(=	4	4.0)																	returns		T	

(=	20	388)																returns		nil

(=	2.4	2.4	2.4)											returns		T	

(=	499	499	500)											returns		nil	

(=	"me"	"me")													returns		T	

(=	"me"	"you")												returns		nil

See	Also
The	eq	and	equal	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	Operators	>	

/=	(not	equal	to)
	
	
	

Compares	arguments	for	numerical	inequality

(/=	numstr	[numstr]	...)	

Arguments

numstr

A	number	or	a	string.

Return	Values

T,	if	no	two	successive	arguments	are	the	same	in	value;	otherwise	nil.	If	only
one	argument	is	supplied,	/=	returns	T.

Note	that	the	behavior	of	/=	does	not	quite	conform	to	other	LISP	dialects.	The
standard	behavior	is	to	return	T	if	no	two	arguments	in	the	list	have	the	same
value.	In	AutoLISP,	/=	returns	T	if	no	successive	arguments	have	the	same
value;	see	the	examples	that	follow.

Examples

(/=	10	20)																returns		T	

(/=	"you"	"you")										returns		nil

(/=	5.43	5.44)												returns		T

(/=	10	20	10	20	20)							returns		nil

(/=	10	20	10	20)										returns		T	

Note In	the	last	example,	although	there	are	two	arguments	in	the	list	with	the
same	value,	they	do	not	follow	one	another;	thus	/=	evaluates	to	T.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<	(less	than)"><	(less	than),	<	(less	than),	less	than	operator,">

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	Operators	>	

<	(less	than)
	
	
	

Returns	T	if	each	argument	is	numerically	less	than	the	argument	to	its	right;
otherwise	nil

(<	numstr	[numstr]	...)	

Arguments

numstr

A	number	or	a	string.

Return	Values

T,	if	each	argument	is	numerically	less	than	the	argument	to	its	right;	otherwise
returns	nil	.	If	only	one	argument	is	supplied,	<	returns	T.

Examples

(<	10	20)																	returns		T	

(<	"b"	"c")															returns		T	

(<	357	33.2)														returns		nil	

(<	2	3	88)																returns		T	

(<	2	3	4	4)															returns		nil

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

<=	(less	than	or	equal	to)"><=	(less	than	or	equal	to),	<=	(less	than	or	equal	to),
less	than	or	equal	to	operator,	mathematical	functions:less	than	or	equal	to,">

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	Operators	>	

<=	(less	than	or	equal	to)
	
	
	

Returns	T	if	each	argument	is	numerically	less	than	or	equal	to	the	argument	to
its	right;	otherwise	returns	nil

(<=	numstr	[numstr]	...)

Arguments

numstr

A	number	or	a	string.

Return	Values

T,	if	each	argument	is	numerically	less	than	or	equal	to	the	argument	to	its	right;
otherwise	returns	nil.	If	only	one	argument	is	supplied,	<=	returns	T.

Examples

(<=	10	20)																returns		T	

(<=	"b"	"b")														returns		T	

(<=	357	33.2)													returns		nil	

(<=	2	9	9)																returns		T	

(<=	2	9	4	5)														returns		nil

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	Operators	>	

>	(greater	than)
	
	
	

Returns	T	if	each	argument	is	numerically	greater	than	the	argument	to	its	right;
otherwise	returns	nil

(>	numstr	[numstr]	...)	

Arguments

numstr

A	number	or	a	string.

Return	Values

T,	if	each	argument	is	numerically	greater	than	the	argument	to	its	right;
otherwise	nil.	If	only	one	argument	is	supplied,	>	returns	T.

Examples

(>	120	17)																returns		T	

(>	"c"	"b")															returns		T	

(>	3.5	1792)														returns		nil	

(>	77	4	2)																returns		T	

(>	77	4	4)																returns		nil

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	Operators	>	

>=	(greater	than	or	equal	to)
	
	
	

Returns	T	if	each	argument	is	numerically	greater	than	or	equal	to	the	argument
to	its	right;	otherwise	returns	nil

(>=	numstr	[numstr]	...)	

Arguments

numstr

A	number	or	a	string.

Return	Values

T,	if	each	argument	is	numerically	greater	than	or	equal	to	the	argument	to	its
right;	otherwise	nil.	If	only	one	argument	is	supplied,	>=	returns	T.

Examples

(>=	120	17)															returns		T	

(>=	"c"	"c")														returns		T	

(>=	3.5	1792)													returns		nil	

(>=	77	4	4)															returns		T	

(>=	77	4	9)															returns		nil

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	Operators	>	

~	(bitwise	NOT)
	
	
	

Returns	the	bitwise	NOT	(1's	complement)	of	the	argument

(~	int)

Arguments

int

An	integer.

Return	Values

The	bitwise	NOT	(1's	complement)	of	the	argument.

Examples

(~	3)																					returns		-4	

(~	100)																			returns		-101	

(~	-4)																				returns	 	3

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	Operators	>	

1+	(increment)
	
	
	

Increments	a	number	by	1

(1+	number)	

Arguments

number

Any	number.

Return	Values

The	argument,	increased	by	1.

Examples

(1+	5)																				returns	 	6	
(1+	-17.5)																returns		-16.5

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	Operators	>	

1-	(decrement)
	
	
	

Decrements	a	number	by	1

(1-	number)

Arguments

number

Any	number.

Return	Values

The	argument,	reduced	by	1.

Examples

(1-	5)																				returns	 	4	
(1-	-17.5)																returns		-18.5

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	

A	Functions
	
	
	

abs
Returns	the	absolute	value	of	a	number
acad_colordlg
Displays	the	standard	AutoCAD	color	selection	dialog	box
acad_helpdlg
Invokes	the	help	facility	(obsolete)
acad-pop-dbmod
Restores	the	value	of	the	DBMOD	system	variable	to	the	value	that	was
most	recently	stored	with	acad-push-dbmod
acad-push-dbmod
Stores	the	current	value	of	the	DBMOD	system	variable
acad_strlsort
Sorts	a	list	of	strings	in	alphabetical	order
acad_truecolorcli
Prompts	for	colors	at	the	command	line
acad_truecolordlg
Displays	the	AutoCAD	color	selection	dialog	box	with	tabs	for	index
color,	true	color,	and	color	books
acdimenableupdate
Controls	the	automatic	updating	of	associative	dimensions
acet-layerp-mode
Queries	and	sets	the	LAYERPMODE	setting
acet-layerp-mark

Places	beginning	and	ending	marks	for	Layer	Previous	recording
acet-laytrans
Translates	drawing	layers	to	standards	defined	in	another	drawing	or
standards	file
acet-ms-to-ps
Converts	a	real	value	from	model	space	units	to	paper	space	units
acet-ps-to-ms
Converts	a	real	value	from	paper	space	units	to	model	space	units
action_tile
Assigns	an	action	to	evaluate	when	the	user	selects	the	specified	tile	in	a
dialog	box
add_list
Adds	or	modifies	a	string	in	the	currently	active	dialog	box	list
alert
Displays	a	dialog	box	containing	an	error	or	warning	message
alloc
Sets	the	size	of	the	segment	to	be	used	by	the	expand	function
and
Returns	the	logical	AND	of	the	supplied	arguments
angle
Returns	an	angle	in	radians	of	a	line	defined	by	two	endpoints
angtof
Converts	a	string	representing	an	angle	into	a	real	(floating-point)	value
in	radians
angtos
Converts	an	angular	value	in	radians	into	a	string
append
Takes	any	number	of	lists	and	appends	them	together	as	one	list
apply
Passes	a	list	of	arguments	to,	and	executes,	a	specified	function

arx
Returns	a	list	of	the	currently	loaded	ObjectARX	applications
arxload
Loads	an	ObjectARX	application
arxunload
Unloads	an	ObjectARX	application
ascii
Returns	the	conversion	of	the	first	character	of	a	string	into	its	ASCII
character	code	(an	integer)
assoc
Searches	an	association	list	for	an	element	and	returns	that	association
list	entry
atan
Returns	the	arctangent	of	a	number	in	radians
atof
Converts	a	string	into	a	real	number
atoi
Converts	a	string	into	an	integer
atom
Verifies	that	an	item	is	an	atom
atoms-family
Returns	a	list	of	the	currently	defined	symbols
autoarxload
Predefines	command	names	to	load	an	associated	ObjectARX	file
autoload
Predefines	command	names	to	load	an	associated	AutoLISP	file

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	A	Functions	>	

abs
	
	
	

Returns	the	absolute	value	of	a	number

(abs	number)

Arguments

number

Any	number.

Return	Values

The	absolute	value	of	the	argument.

Examples

(abs	100)																	returns		100	

(abs	-100)																returns		100	

(abs	-99.25)														returns		99.25

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	A	Functions	>	

acad_colordlg
	
	
	

Displays	the	standard	AutoCAD	color	selection	dialog	box

(acad_colordlg	colornum	[flag])

Arguments

colornum

An	integer	in	the	range	0-256	(inclusive),	specifying	the	AutoCAD	color
number	to	display	as	the	initial	default.

flag

If	set	to	nil,	disables	the	ByLayer	and	ByBlock	buttons.	Omitting	the	flag
argument	or	setting	it	to	a	non-nil	value	enables	the	ByLayer	and	ByBlock
buttons.

A	colornum	value	of	0	defaults	to	ByBlock,	and	a	value	of	256	defaults	to
ByLayer.

Return	Values

The	user-selected	color	number;	otherwise	nil,	if	the	user	cancels	the	dialog
box.

Examples

Prompt	the	user	to	select	a	color,	and	default	to	green	if	none	is	selected:

(acad_colordlg	3)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	A	Functions	>	

acad_helpdlg
	
	
	

Invokes	the	help	facility	(obsolete)

(acad_helpdlg	helpfile	topic)	

This	externally	defined	function	has	been	replaced	by	the	built-in	function
help.	It	is	provided	for	compatibility	with	previous	releases	of	AutoCAD.

See	Also
The	help	function	for	a	complete	description	of	this	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	A	Functions	>	

acad-pop-dbmod
	
	
	

Restores	the	value	of	the	DBMOD	system	variable	to	the	value	that	was	most
recently	stored	with	acad-push-dbmod

(acad-pop-dbmod)

This	function	is	used	with	acad-push-dbmod	to	control	the	DBMOD	system
variable.	The	DBMOD	system	variable	tracks	changes	to	a	drawing	and	triggers
save-drawing	queries.

This	function	is	implemented	in	acapp.arx,	which	is	loaded	by	default.	This
function	pops	the	current	value	of	the	DBMOD	system	variable	off	an	internal
stack.

Return	Values

Returns	T	if	successful;	otherwise,	if	the	stack	is	empty,	returns	nil.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	A	Functions	>	

acad-push-dbmod
	
	
	

Stores	the	current	value	of	the	DBMOD	system	variable

(acad-push-dbmod)

This	function	is	used	with	acad-pop-dbmod	to	control	the	DBMOD	system
variable.	You	can	use	this	function	to	change	a	drawing	without	changing	the
DBMOD	system	variable.	The	DBMOD	system	variable	tracks	changes	to	a
drawing	and	triggers	save-drawing	queries.

This	function	is	implemented	in	acapp.arx,	which	is	loaded	by	default.	This
function	pushes	the	current	value	of	the	DBMOD	system	variable	onto	an	internal
stack.	To	use	acad-push-dbmod	and	acad-pop-dbmod,	precede
operations	with	acad-push-dbmod	and	then	use	acad-pop-dbmod	to
restore	the	original	value	of	the	DBMOD	system	variable.

Return	Values

Always	returns	T.

Examples

The	following	example	shows	how	to	store	the	modification	status	of	a	drawing,
change	the	status,	and	then	restore	the	original	status.

(acad-push-dbmod)

(setq	new_line	'((0	.	"LINE")	(100	.	"AcDbEntity")	(8	.	"0")

													(100	.	"AcDbLine")	(10	1.0	2.0	0.0)	(11	2.0	1.0	0.0)

													(210	0.0	0.0	1.0)))

(entmake	new_line)												;	Set	DBMOD	to	flag	1

(command	"_color"	"2")								;	Set	DBMOD	to	flag	4

(command	"_-vports"	"_SI")				;	Set	DBMOD	to	flag	8

(command	"_vpoint"	"0,0,1")			;	Set	DBMOD	to	flag	16

(acad-pop-dbmod)														;	Set	DBMOD	to	original	value

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	A	Functions	>	

acad_strlsort
	
	
	

Sorts	a	list	of	strings	in	alphabetical	order

(acad_strlsort	list)	

Arguments

list

The	list	of	strings	to	be	sorted.

Return	Values

The	list	in	alphabetical	order.	If	the	list	is	invalid	or	if	there	is	not	enough
memory	to	do	the	sort,	acad_strlsort	returns	nil.

Examples

Sort	a	list	of	abbreviated	month	names:
Command:	(setq	mos	'("Jan"	"Feb"	"Mar"	"Apr"	"May"	"Jun"	"Jul"	"Aug"

"Sep"	"Oct"	"Nov"	"Dec"))

("Jan"	"Feb"	"Mar"	"Apr"	"May"	"Jun"	"Jul"	"Aug"	"Sep"	"Oct"	"Nov"	"Dec")

Command:	(acad_strlsort	mos)

("Apr"	"Aug"	"Dec"	"Feb"	"Jan"	"Jul"	"Jun"	"Mar"	"May"	"Nov"	"Oct"	"Sep")

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	A	Functions	>	

acad_truecolorcli
	
	
	

Prompts	for	colors	at	the	command	line

(acad_truecolorcli	color	[allowbylayer]	[alternatePrompt])

Arguments

color

A	dotted	pair	that	describes	the	default	color.	The	first	element	of	the	dotted
pair	must	be	one	of	the	color-related	DXF	group	codes	(62,	420,	or	430);	for
example,	(62	.	ColorIndex),	(420	.	TrueColor),	or	(430	.
"colorbook$colorname").

allowbylayer

Omitting	the	allowbylayer	argument	or	setting	it	to	a	non-nil	value	enables
entering	bylayer	or	byblock	to	set	the	color.	If	set	to	nil,	an	error	results	if
bylayer	or	byblock	is	entered.

alternateprompt

An	optional	prompt	string.	If	this	string	is	omitted,	the	default	value	is	“New
color”.

Return	Values

When	the	operation	is	successful,	the	function	returns	a	list	of	one	or	more
dotted	pairs	(depending	on	the	tab	on	which	the	color	is	selected)	describing	the
color	selected.	The	last	dotted	pair	in	the	list	indicates	the	color	selected.	The
function	returns	nil	if	the	user	cancels	the	dialog	box.

Color	book	color

If	the	last	item	in	the	returned	list	is	a	430	pair,	then	the	specified	color
originates	from	a	color	book.	This	returned	list	will	also	contain	a	420	pair

that	describes	the	corresponding	true	color	and	a	62	pair	that	describes	the
closest	matching	color	index	value.

True	color

If	the	returned	list	contains	a	420	pair	as	the	last	item,	then	a	true	color	was
specified	(as	“Red,Green,Blue”).	The	list	will	also	contain	a	62	pair	that
indicates	the	closest	matching	color	index.	No	430	pair	will	be	present.

Color	index

If	the	last	item	in	the	list	is	a	62	pair,	then	a	colorindex	was	chosen.	No	other
dotted	pairs	will	be	present	in	the	returned	list.

Examples

Prompt	for	a	color	selection	at	the	command	line	with	a	purple	color	index
default	selection	and	alternative	text	for	the	command	prompt:

Command:	(acad_truecolorcli	'(62	.	215)	1	"Pick	a	color")

New	Color	[Truecolor/COlorbook]	<215>:

((62	.	215))

Prompt	for	a	color	selection	at	the	command	line	with	a	yellow	color	index
default	selection,	then	set	the	color	by	layer:

Command:	(acad_truecolorcli	'(62	.	2))

New	Color	[Truecolor/COlorbook]	<2	(yellow)>:	bylayer

((62	.	256))

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	A	Functions	>	

acad_truecolordlg
	
	
	

Displays	the	AutoCAD	color	selection	dialog	box	with	tabs	for	index	color,	true
color,	and	color	books

(acad_truecolordlg	color	[allowbylayer]	[currentlayercolor])

Arguments

color

A	dotted	pair	that	describes	the	default	color.	The	first	element	of	the	dotted
pair	must	be	one	of	the	color-related	DXF	group	codes	(62,	420,	or	430);	for
example,	(62	.	ColorIndex),	(420	.	TrueColor),	or	(430	.
"colorbook$colorname").

allowbylayer

If	set	to	nil,	disables	the	ByLayer	and	ByBlock	buttons.	Omitting	the
allowbylayer	argument	or	setting	it	to	a	non-nil	value	enables	the	ByLayer
and	ByBlock	buttons.

currentlayercolor

Optional	dotted	pair	in	the	same	form	as	color	that	sets	the	value	of	the
bylayer/byblock	color	in	the	dialog.

Return	Values

When	the	operation	is	successful,	the	function	returns	a	list	of	one	or	more
dotted	pairs	(depending	on	the	tab	on	which	the	color	is	selected)	describing	the
color	selected.	The	last	dotted	pair	in	the	list	indicates	the	color	selected.	The
function	returns	nil	if	the	user	cancels	the	dialog	box.

Color	book	color

If	the	last	item	in	the	returned	list	is	a	430	pair,	then	the	specified	color

originates	from	a	color	book.	This	returned	list	will	also	contain	a	420	pair
that	describes	the	corresponding	true	color	and	a	62	pair	that	describes	the
closest	matching	color	index	value.

True	color

If	the	returned	list	contains	a	420	pair	as	the	last	item,	then	a	true	color	was
specified	(as	“Red,Green,Blue”).	The	list	will	also	contain	a	62	pair	that
indicates	the	closest	matching	color	index.	No	430	pair	will	be	present.

Color	index

If	the	last	item	in	the	list	is	a	62	pair,	then	a	color	index	was	chosen.	No	other
dotted	pairs	will	be	present	in	the	returned	list.

Examples

Open	the	color	selection	dialog	to	the	Color	Index	tab	and	accept	the	purple
default	selection:

Command:	(acad_truecolordlg	'(62	.	215))

((62	.	215))

Open	the	color	selection	dialog	to	the	True	Color	tab	with	a	green	default
selection	and	with	the	By	Layer	and	By	Block	buttons	disabled:

Command:	(acad_truecolordlg	'(420	.	2686760)	nil)

((62	.	80)	(420	.	2686760))

Open	the	color	selection	dialog	to	the	Color	Books	tab	and	accept	the	mustard
default	selection:

Command:	(acad_truecolordlg	'(430	.	"RAL	CLASSIC$RAL	1003"))

((62	.	40)	(420	.	16235019)	(430	.	"RAL	CLASSIC$RAL	1003"))

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	A	Functions	>	

acdimenableupdate
	
	
	

Controls	the	automatic	updating	of	associative	dimensions

(acdimenableupdate	nil	|	T)	

The	acdimenableupdate	function	is	intended	for	developers	who	are
editing	geometry	and	don't	want	the	dimension	to	be	updated	until	after	the	edits
are	complete.

Arguments

nil

Associative	dimensions	will	not	update	(even	if	the	geometry	is	modified)
until	the	DIMREGEN	command	is	entered.

T

Enable	automatic	updating	of	associative	dimensions	when	the	geometry	is
modified.

Return	Values

nil

Examples

Disable	the	automatic	update	of	associative	dimensions	in	the	drawing:
Command:	(acdimenableupdate	nil)

Enable	the	automatic	update	of	associative	dimensions	in	the	drawing:
Command:	(acdimenableupdate	T)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	A	Functions	>	

acet-layerp-mode
	
	
	

Queries	and	sets	the	LAYERPMODE	setting

(acet-layerp-mode	[status])

Arguments

status

Specifying	T	turns	LAYERPMODE	on,	enabling	layer-change	tracking.	Nil
turns	LAYERPMODE	off.
If	this	argument	is	not	present,	acet-layerp-mode	returns	the	current
status	of	LAYERPMODE.

Return	Values

T	if	current	status	of	LAYERPMODE	is	on;	nil	if	LAYERPMODE	is	off.

Examples

Check	the	current	status	of	LAYERPMODE:
Command:	(acet-layerp-mode)

T

Turn	LAYERPMODE	off:
Command:	(acet-layerp-mode	nil)

nil

Check	the	current	status	of	LAYERPMODE:
Command:	(acet-layerp-mode)

nil

See	Also

The	LAYERP	and	LAYERPMODE	commands	in	the	Command
Reference.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	A	Functions	>	

acet-layerp-mark
	
	
	

Places	beginning	and	ending	marks	for	Layer	Previous	recording

(acet-layerp-mark	[status])

The	acet-layerp-mark	function	allows	you	to	group	multiple	layer
commands	into	a	single	transaction	so	that	they	can	be	undone	by	issuing
LAYERP	a	single	time.	LAYERPMODE	must	be	on	in	order	to	set	marks.

Arguments

status

Specifying	T	sets	a	begin	mark.	Specifying	nil	sets	an	end	mark,	clearing
the	begin	mark.
If	status	is	omitted,	acet-layerp-mark	returns	the	current	mark	status
for	layer	settings.

Return	Values

T	if	a	begin	mark	is	in	effect;	otherwise	nil.

Examples

The	following	code	changes	layer	0	to	blue,	and	then	makes	several	additional
layer	changes	between	a	set	of	begin	and	end	marks.	If	you	issue	LAYERP	after
running	this	code,	layer	0	reverts	to	blue.

(defun	TestLayerP	()

		;;	Turn	LAYERPMODE	on,	if	it	isn't	already

		(if	(not	(acet-layerp-mode))

				(acet-layerp-mode	T)

)

		;;	Set	layer	0	to	the	color	blue

		(command	"_.layer"	"_color"	"blue"	"0"	"")

		;;	Set	a	begin	mark

		(acet-layerp-mark	T)

		;;	Issue	a	series	of	layer	commands,	and	then	set	an	end	mark

		(command	"_.layer"	"_color"	"green"	"0"	"")

		(command	"_.layer"	"_thaw"	"*"	"")

		(command	"_.layer"	"_unlock"	"*"	"")

		(command	"_.layer"	"_ltype"	"hidden"	"0"	"")

		(command	"_.layer"	"_color"	"red"	"0"	"")

		;;	Set	an	end	mark

		(acet-layerp-mark	nil)

)

See	Also
The	LAYERP	command	in	the	Command	Reference.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	A	Functions	>	

acet-laytrans
	
	
	

Translates	drawing	layers	to	standards	defined	in	another	drawing	or	standards
file

(acet-laytrans	“filename”	[settings])

Arguments

filename

A	string	specifying	a	file	containing	layer	mappings	to	be	used	for
translation.

settings

A	bit-coded	integer	specifying	Layer	Translator	processing	options.	The	bits
can	be	added	together	in	any	combination	to	form	a	value	between	0	and	15.
If	the	settings	argument	is	omitted,	a	value	of	15	(all	options	selected)	is
assumed.	The	bit	values	are	as	follows:
0 No	options
1 Force	entity	color	to	BYLAYER
2 Force	entity	linetype	to	BYLAYER
4 Translate	objects	in	blocks
8 Write	transaction	log

Return	Values

T	if	translation	is	successful;	otherwise	nil.

Examples

The	following	command	translates	the	current	drawing	using	layer	mappings
saved	in	LayMap.dwg.	No	transaction	log	will	be	produced,	but	all	other
processing	options	will	be	in	effect.

Command:	(acet-laytrans	"c:/my	documents/cad	drawings/LayMap.dwg"	7)

T

See	Also
The	LAYTRANS	command	in	the	Command	Reference.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	A	Functions	>	

acet-ms-to-ps
	
	
	

Converts	a	real	value	from	model	space	units	to	paper	space	units

(acet-ms-to-ps	[value][viewport])

If	both	the	value	and	viewport	arguments	are	specified,	the	value	is	converted	to
paper	space	units	using	the	specified	viewport.	No	user	input	is	required.

If	only	the	value	argument	is	specified,	the	current	viewport	is	assumed	and	no
user	input	is	required.	However,	if	the	current	space	is	model	space,	there	is	no
current	viewport	and	the	function	will	fail	(returning	nil).	If	paper	space	is	the
current	space,	the	function	will	either	prompt	for	a	viewport	if	more	than	one
viewport	exists	in	the	current	paper	space	layout,	or	use	the	single	existing
viewport.

If	no	arguments	are	specified,	the	function	prompts	for	a	value	and	converts	it	if
possible.

Arguments

value

A	real	value	to	be	converted.

viewport

A	viewport	entity	name	(ads_name).

Return	Values

The	converted	real	value	on	success;	nil	on	failure.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	A	Functions	>	

acet-ps-to-ms
	
	
	

Converts	a	real	value	from	paper	space	units	to	model	space	units

(acet-ps-to-ms	[value][viewport])

If	both	the	value	and	viewport	arguments	are	specified,	the	value	is	converted	to
model	space	units	using	the	specified	viewport.	No	user	input	is	required.

If	only	the	value	argument	is	specified,	the	current	viewport	is	assumed	and	no
user	input	is	required.	However,	if	the	current	space	is	model	space,	there	is	no
current	viewport	and	the	function	will	fail	(returning	nil).	If	paper	space	is	the
current	space,	the	function	will	either	prompt	for	a	viewport	if	more	than	one
viewport	exists	in	the	layout,	or	use	the	single	existing	viewport.

If	no	arguments	are	specified,	the	function	prompts	for	a	value	and	converts	it	if
possible.

Arguments

value

A	real	value	to	be	converted.

viewport

A	viewport	entity	name	(ads_name).

Return	Values

The	converted	real	value	on	success,	nil	on	failure.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	A	Functions	>	

action_tile
	
	
	

Assigns	an	action	to	evaluate	when	the	user	selects	the	specified	tile	in	a	dialog
box

(action_tile	key	action-expression)

The	action	assigned	by	action_tile	supersedes	the	dialog	box's	default
action	(assigned	by	new_dialog)	or	the	tile's	action	attribute,	if	these	are
specified.	The	expression	can	refer	to	the	tile's	current	value	as	$value,	its
name	as	$key,	its	application-specific	data	(as	set	by	client_data_tile)
as	$data,	its	callback	reason	as	$reason,	and	its	image	coordinates	(if	the	tile
is	an	image	button)	as	$x	and	$y.

Arguments

key

A	string	that	names	the	tile	that	triggers	the	action	(specified	as	its	key
attribute).	This	argument	is	case-sensitive.

action-expression

A	string	naming	the	expression	evaluated	when	the	tile	is	selected.

Note You	cannot	call	the	AutoLISP	command	function	from	the	action_tile
function.

Return	Values

T

Examples

If	edit1	is	a	text	box,	the	action	expression	in	the	following	action_tile
call	is	evaluated	when	the	user	exits	the	text	box:

(action_tile	"edit1"	"(setq	ns	$value)")

See	Also
The	Default	and	DCL	Actions	topic	in	the	AutoLISP	Developer's
Guide.

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e2110.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	A	Functions	>	

add_list
	
	
	

Adds	or	modifies	a	string	in	the	currently	active	dialog	box	list

(add_list	string)

Before	using	add_list,	you	must	open	the	list	and	initialize	it	with	a	call	to
start_list.	Depending	on	the	operation	specified	in	start_list,	the
string	is	either	added	to	the	current	list	or	replaces	the	current	list	item.

Arguments

string

A	string.

Return	Values

Returns	the	string	added	to	the	list,	if	successful;	otherwise	nil.

Examples

Assuming	the	currently	active	DCL	file	has	a	popup_list	or	list_box	with
a	key	of	longlist,	the	following	code	fragment	initializes	the	list	and	adds	to
it	the	text	strings	in	llist.

(setq	llist	'("first	line"	"second	line"	"third	line"))

(start_list	"longlist")

(mapcar	'add_list	llist)	

(end_list)

After	the	list	has	been	defined,	the	following	code	fragment	changes	the	text	in
the	second	line	to	"2nd	line".

(start_list	"longlist"	1	0)

(add_list	"2nd	line")

(end_list)

See	Also
The	start_list	and	end_list	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	A	Functions	>	

alert
	
	
	

Displays	a	dialog	box	containing	an	error	or	warning	message

(alert	string)	

Arguments

string

The	string	to	appear	in	the	alert	box.

Return	Values

nil

Examples

Display	a	message	in	an	alert	box:

(alert	"That	function	is	not	available.")

Display	a	multiple	line	message,	by	using	the	newline	character	in	string:

(alert	"That	function\nis	not	available.")

Note Line	length	and	the	number	of	lines	in	an	alert	box	are	platform,	device,	and
window	dependent.	AutoCAD	truncates	any	string	that	is	too	long	to	fit	inside	an
alert	box.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	A	Functions	>	

alloc
	
	
	

Sets	the	size	of	the	segment	to	be	used	by	the	expand	function

(alloc	n-alloc)

Arguments

n-alloc

An	integer	indicating	the	amount	of	memory	to	be	allocated.	The	integer
represents	the	number	of	symbols,	strings,	usubrs,	reals,	and	cons	cells.

Return	Values

The	previous	setting	of	n-alloc.

Examples

_$	(alloc	100)
1000

See	Also
The	expand	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	A	Functions	>	

and
	
	
	

Returns	the	logical	AND	of	the	supplied	arguments

(and	[expr	...])

Arguments

expr

Any	expression.

Return	Values

Nil,	if	any	of	the	expressions	evaluate	to	nil;	otherwise	T.	If	and	is
issued	without	arguments,	it	returns	T.

Examples
Command:	(setq	a	103	b	nil	c	"string")

"string"

Command:	(and	1.4	a	c)

T

Command:	(and	1.4	a	b	c)

nil

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	A	Functions	>	

angle
	
	
	

Returns	an	angle	in	radians	of	a	line	defined	by	two	endpoints

(angle	pt1	pt2)	

Arguments

pt1

An	endpoint.

pt2

An	endpoint.

Return	Values

An	angle,	in	radians.

The	angle	is	measured	from	the	X	axis	of	the	current	construction	plane,	in
radians,	with	angles	increasing	in	the	counterclockwise	direction.	If	3D	points
are	supplied,	they	are	projected	onto	the	current	construction	plane.

Examples
Command:	(angle	'(1.0	1.0)	'(1.0	4.0))

1.5708

Command:	(angle	'(5.0	1.33)	'(2.4	1.33))

3.14159

See	Also
The	Angular	Conversion	topic	in	the	AutoLISP	Developer's	Guide.

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e2458.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	A	Functions	>	

angtof
	
	
	

Converts	a	string	representing	an	angle	into	a	real	(floating-point)	value	in
radians

(angtof	string	[units])

Arguments

string

A	string	describing	an	angle	based	on	the	format	specified	by	the	mode
argument.	The	string	must	be	a	string	that	angtof	can	parse	correctly	to	the
specified	unit.	It	can	be	in	the	same	form	that	angtos	returns,	or	in	a	form
that	AutoCAD	allows	for	keyboard	entry.

units

Specifies	the	units	in	which	the	string	is	formatted.	The	value	should
correspond	to	values	allowed	for	the	AutoCAD	system	variable	AUNITS	in
the	Command	Reference.	If	unit	is	omitted,	angtof	uses	the	current	value	of
AUNITS.	The	following	units	may	be	specified:
0	--	Degrees
1	--	Degrees/minutes/seconds
2	--	Grads
3	--	Radians
4	--	Surveyor's	units

Return	Values

A	real	value,	if	successful;	otherwise	nil.

The	angtof	and	angtos	functions	are	complementary:	if	you	pass	angtof	a
string	created	by	angtos,	angtof	is	guaranteed	to	return	a	valid	value,	and

vice	versa	(assuming	the	unit	values	match).

Examples
Command:	(angtof	"45.0000")

0.785398

Command:	(angtof	"45.0000"	3)

1.0177

See	Also
The	angtos	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	A	Functions	>	

angtos
	
	
	

Converts	an	angular	value	in	radians	into	a	string

(angtos	angle	[unit	[precision]])	

Arguments

angle

A	real	number,	in	radians.

unit

An	integer	that	specifies	the	angular	units.	If	unit	is	omitted,	angtos	uses
the	current	value	of	the	AutoCAD	system	variable	AUNITS.	The	following
units	may	be	specified:
0	--	Degrees
1	--	Degrees/minutes/seconds
2	--	Grads
3	--	Radians
4	--	Surveyor's	units

precision

An	integer	specifying	the	number	of	decimal	places	of	precision	to	be
returned.	If	omitted,	angtos	uses	the	current	setting	of	the	AutoCAD
system	variable	AUPREC	in	the	Command	Reference.

The	angtos	function	takes	angle	and	returns	it	edited	into	a	string	according	to
the	settings	of	unit,	precision,	the	AutoCAD	UNITMODE	system	variable,	and
the	DIMZIN	dimensioning	variable	in	the	Command	Reference.

The	angtos	function	accepts	a	negative	angle	argument,	but	always	reduces	it
to	a	positive	value	between	zero	and	2	pi	radians	before	performing	the	specified

conversion.

The	UNITMODE	system	variable	affects	the	returned	string	when	surveyor's
units	are	selected	(a	unit	value	of	4).	If	UNITMODE	=	0,	spaces	are	included	in
the	string	(for	example,	“N	45d	E”);	if	UNITMODE	=	1,	no	spaces	are	included
in	the	string	(for	example,	“N45dE”).

Return	Values

A	string,	if	successful;	otherwise	nil.

Examples
Command:	(angtos	0.785398	0	4)

"45.0000"

Command:	(angtos	-0.785398	0	4)

"315.0000"

Command:	(angtos	-0.785398	4)

"S	45d	E"

Note Routines	that	use	the	angtos	function	to	display	arbitrary	angles	(those	not
relative	to	the	value	of	ANGBASE)	should	check	and	consider	the	value	of
ANGBASE.

See	Also
The	angtof	function,	and	String	Conversions	in	the	AutoLISP
Developer's	Guide.

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e2761.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	A	Functions	>	

append
	
	
	

Takes	any	number	of	lists	and	appends	them	together	as	one	list

(append	[list	...])

Arguments

list

A	list.

Return	Values

A	list	with	all	arguments	appended	to	the	original.	If	no	arguments	are	supplied,
append	returns	nil.

Examples
Command:	(append	'(a	b)	'(c	d))

(A	B	C	D)

Command:	(append	'((a)(b))	'((c)(d)))

((A)	(B)	(C)	(D))

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	A	Functions	>	

apply
	
	
	

Passes	a	list	of	arguments	to,	and	executes,	a	specified	function

(apply	'function

list)

Arguments

'function

A	function.	The	function	argument	can	be	either	a	symbol	identifying	a
defun,	or	a	lambda	expression.

list

A	list.	Can	be	nil,	if	the	function	accepts	no	arguments.

Return	Values

The	result	of	the	function	call.

Examples
Command:	(apply	'+	'(1	2	3))

6

Command:	(apply	'strcat	'("a"	"b"	"c"))

"abc"

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	A	Functions	>	

arx
	
	
	

Returns	a	list	of	the	currently	loaded	ObjectARX	applications

(arx)	

Return	Values

A	list	of	ObjectARX®	application	file	names;	the	path	is	not	included	in	the	file
name.

Examples
Command:	(arx)

("acadapp.arx"	"acmted.arx"	"oleaprot.arx")

See	Also
The	arxload	and	arxunload	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	A	Functions	>	

arxload
	
	
	

Loads	an	ObjectARX	application

(arxload	application	[onfailure])	

Arguments

application

A	quoted	string	or	a	variable	that	contains	the	name	of	an	executable	file.	You
can	omit	the	.arx	extension	from	the	file	name.
You	must	supply	the	full	path	name	of	the	ObjectARX	executable	file,	unless
the	file	is	in	a	directory	that	is	in	the	AutoCAD	support	file	search	path.

onfailure

An	expression	to	be	executed	if	the	load	fails.

Return	Values

The	application	name,	if	successful.	If	unsuccessful	and	the	onfailure	argument
is	supplied,	arxload	returns	the	value	of	this	argument;	otherwise,	failure
results	in	an	error	message.

If	you	attempt	to	load	an	application	that	is	already	loaded,	arxload	issues	an
error	message.	You	may	want	to	check	the	currently	loaded	ObjectARX
applications	with	the	arx	function	before	using	arxload.

Examples

Load	the	acbrowse.arx	file	supplied	in	the	AutoCAD	installation	directory:
Command:	(arxload	"c:/program	files/	<AutoCAD	installation	directory>/acbrowse.arx")

"c:/program	files/	<AutoCAD	installation	directory>/acbrowse.arx"

See	Also

The	arxunload	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	A	Functions	>	

arxunload
	
	
	

Unloads	an	ObjectARX	application

(arxunload	application	[onfailure])	

Arguments

application

A	quoted	string	or	a	variable	that	contains	the	name	of	a	file	that	was	loaded
with	the	arxload	function.	You	can	omit	the	.arx	extension	and	the	path
from	the	file	name.

onfailure

An	expression	to	be	executed	if	the	unload	fails.

Return	Values

The	application	name,	if	successful.	If	unsuccessful	and	the	onfailure	argument
is	supplied,	arxunload	returns	the	value	of	this	argument;	otherwise,	failure
results	in	an	error	message.

Note	that	locked	ObjectARX	applications	cannot	be	unloaded.	ObjectARX
applications	are	locked	by	default.

Examples

Unload	the	acbrowse	application	that	was	loaded	in	the	arxload	function
example:

Command:	(arxunload	"acbrowse")

"acbrowse"

See	Also
The	arxload	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	A	Functions	>	

ascii
	
	
	

Returns	the	conversion	of	the	first	character	of	a	string	into	its	ASCII	character
code	(an	integer)

(ascii	string)

Arguments

string

A	string.

Return	Values

An	integer.

Examples
Command:	(ascii	"A")

65

Command:	(ascii	"a")

97

Command:	(ascii	"BIG")

66

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	A	Functions	>	

assoc
	
	
	

Searches	an	association	list	for	an	element	and	returns	that	association	list	entry

(assoc	element	alist)

Arguments

element

Key	of	an	element	in	an	association	list.

alist

An	association	list	to	be	searched.

Return	Values

The	alist	entry,	if	successful.	If	assoc	does	not	find	element	as	a	key	in	alist,	it
returns	nil.

Examples
Command:	(setq	al	'((name	box)	(width	3)	(size	4.7263)	(depth	5)))

((NAME	BOX)	(WIDTH	3)	(SIZE	4.7263)	(DEPTH	5))

Command:	(assoc	'size	al)

(SIZE	4.7263)

Command:	(assoc	'weight	al)

nil

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	A	Functions	>	

atan
	
	
	

Returns	the	arctangent	of	a	number	in	radians

(atan	num1	[num2])	

Arguments

num1

A	number.

num2

A	number.

Return	Values

The	arctangent	of	num1,	in	radians,	if	only	num1	is	supplied.	If	you	supply	both
num1	and	num2	arguments,	atan	returns	the	arctangent	of	num1/num2,	in
radians.	If	num2	is	zero,	it	returns	an	angle	of	plus	or	minus	1.570796	radians
(+90	degrees	or	-90	degrees),	depending	on	the	sign	of num1.	The	range	of
angles	returned	is	-pi/2	to	+pi/2	radians.

Examples
Command:	(atan	1)

0.785398

Command:	(atan	1.0)

0.785398

Command:	(atan	0.5)

0.463648

Command:	(atan	1.0)

0.785398

Command:	(atan	-1.0)

-0.785398

Command:	(atan	2.0	3.0)

0.588003

Command:	(atan	2.0	-3.0)

2.55359

Command:	(atan	1.0	0.0)

1.5708

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	A	Functions	>	

atof
	
	
	

Converts	a	string	into	a	real	number

(atof	string)	

Arguments

string

A	string	to	be	converted	into	a	real	number.

Return	Values

A	real	number.

Examples
Command:	(atof	"97.1")

97.1

Command:	(atof	"3")

3.0

Command:	(atof	"3.9")

3.9

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	A	Functions	>	

atoi
	
	
	

Converts	a	string	into	an	integer

(atoi	string)	

Arguments

string

A	string	to	be	converted	into	an	integer.

Return	Values

An	integer.

Examples
Command:	(atoi	"97")

97

Command:	(atoi	"3")

3

Command:	(atoi	"3.9")

3

See	Also
The	itoa	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	A	Functions	>	

atom
	
	
	

Verifies	that	an	item	is	an	atom

(atom	item)

Arguments

item

Any	AutoLISP	element.

Some	versions	of	LISP	differ	in	their	interpretation	of	atom,	so	be	careful	when
converting	from	non-AutoLISP	code.

Return	Values

Nil	if	item	is	a	list;	otherwise	T.	Anything	that	is	not	a	list	is	considered	an
atom.

Examples
Command:	(setq	a	'(x	y	z))

(X	Y	Z)

Command:	(setq	b	'a)

A

Command:	(atom	'a)

T

Command:	(atom	a)

nil

Command:	(atom	'b)

T

Command:	(atom	b)

T

Command:	(atom	'(a	b	c))

nil

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	A	Functions	>	

atoms-family
	
	
	

Returns	a	list	of	the	currently	defined	symbols

(atoms-family	format	[symlist])	

Arguments

format

An	integer	value	of	0	or	1	that	determines	the	format	in	which	atoms-
family	returns	the	symbol	names:
0 Return	the	symbol	names	as	a	list
1 Return	the	symbol	names	as	a	list	of	strings

symlist

A	list	of	strings	that	specify	the	symbol	names	you	want	atoms-family	to
search	for.

Return	Values

A	list	of	symbols.	If	you	specify	symlist,	then	atoms-family	returns	the
specified	symbols	that	are	currently	defined,	and	returns	nil	for	those	symbols
that	are	not	defined.

Examples
Command:	(atoms-family	0)

(BNS_PRE_SEL	FITSTR2LEN	C:AI_SPHERE	ALERT	DEFUN	C:BEXTEND	REM_GROUP

B_RESTORE_SYSVARS	BNS_CMD_EXIT	LISPED	FNSPLITL...

The	following	code	verifies	that	the	symbols	CAR,	CDR,	and	XYZ	are	defined,
and	returns	the	list	as	strings:

Command:	(atoms-family	1	'("CAR"	"CDR"	"XYZ"))

("CAR"	"CDR"	nil)

The	return	value	shows	that	the	symbol	XYZ	is	not	defined.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	A	Functions	>	

autoarxload
	
	
	

Predefines	command	names	to	load	an	associated	ObjectARX	file

(autoarxload	filename	cmdlist)

The	first	time	a	user	enters	a	command	specified	in	cmdlist,	AutoCAD	loads	the
ObjectARX	application	specified	in	filename,	then	continues	the	command.

If	you	associate	a	command	with	filename	and	that	command	is	not	defined	in
the	specified	file,	AutoCAD	alerts	you	with	an	error	message	when	you	enter	the
command.

Arguments

filename

A	string	specifying	the	.arx	file	to	be	loaded	when	one	of	the	commands
defined	by	the	cmdlist	argument	is	entered	at	the	Command	prompt.	If	you
omit	the	path	from	filename,	AutoCAD	looks	for	the	file	in	the	support	file
search	path.

cmdlist

A	list	of	strings.

Return	Values

nil

Examples

The	following	code	defines	the	C:APP1,	C:APP2,	and	C:APP3	functions	to
load	the	bonusapp.arx	file:

(autoarxload	"BONUSAPP"	'("APP1"	"APP2"	"APP3"))

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	A	Functions	>	

autoload
	
	
	

Predefines	command	names	to	load	an	associated	AutoLISP	file

(autoload	filename	cmdlist)

The	first	time	a	user	enters	a	command	specified	in	cmdlist,	AutoCAD	loads	the
application	specified	in	filename,	then	continues	the	command.

Arguments

filename

A	string	specifying	the	.lsp	file	to	be	loaded	when	one	of	the	commands
defined	by	the	cmdlist	argument	is	entered	at	the	Command	prompt.	If	you
omit	the	path	from	filename,	AutoCAD	looks	for	the	file	in	the	Support	File
Search	Path.

cmdlist

A	list	of	strings.

Return	Values

nil

If	you	associate	a	command	with	filename	and	that	command	is	not	defined	in
the	specified	file,	AutoCAD	alerts	you	with	an	error	message	when	you	enter	the
command.

Examples

The	following	causes	AutoCAD	to	load	the	bonusapp.lsp	file	the	first	time	the
APP1,	APP2,	or	APP3	commands	are	entered	at	the	Command	prompt:

(autoload	"BONUSAPP"	'("APP1"	"APP2"	"APP3"))

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	

B	Functions
	
	
	

Boole
Serves	as	a	general	bitwise	Boolean	function
boundp
Verifies	if	a	value	is	bound	to	a	symbol

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	B	Functions	>	

Boole
	
	
	

Serves	as	a	general	bitwise	Boolean	function

(Boole	operator	int1	[int2	...])	

Arguments

operator

An	integer	between	0	and	15	representing	one	of	the	16	possible	Boolean
functions	in	two	variables.

int1,	int2...

Integers.
Note	that	Boole	will	accept	a	single	integer	argument,	but	the	result	is
unpredictable.

Successive	integer	arguments	are	bitwise	(logically)	combined	based	on	this
function	and	on	the	following	truth	table:

Boolean	truth	table

Int1 Int2 operator	bit

0 0 8

0 1 4

1 0 2

1 1 1

Each	bit	of	int1	is	paired	with	the	corresponding	bit	of	int2,	specifying	one
horizontal	row	of	the	truth	table.	The	resulting	bit	is	either	0	or	1,	depending	on
the	setting	of	the	operator	bit	that	corresponds	to	this	row	of	the	truth	table.

If	the	appropriate	bit	is	set	in	operator,	the	resulting	bit	is	1;	otherwise	the
resulting	bit	is	0.	Some	of	the	values	for	operator	are	equivalent	to	the	standard
Boolean	operations	AND,	OR,	XOR,	and	NOR.

Boole	function	bit	values

Operator Operation Resulting	bit	is	1	if

1 AND Both	input	bits	are
1

6 XOR Only	one	of	the	two
input	bits	is	1

7 OR Either	or	both	of
the	input	bits	are	1

8 NOR Both	input	bits	are
0	(1's	complement)

Return	Values

An	integer.

Examples

The	following	specifies	a	logical	AND	of	the	values	12	and	5:
Command:	(Boole	1	12	5)

4

The	following	specifies	a	logical	XOR	of	the	values	6	and	5:
Command:	(Boole	6	6	5)

3

You	can	use	other	values	of	operator	to	perform	other	Boolean	operations	for
which	there	are	no	standard	names.	For	example,	if	operator	is	4,	the	resulting
bits	are	set	if	the	corresponding	bits	are	set	in	int2	but	not	in	int1:

Command:	(Boole	4	3	14)

12

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	B	Functions	>	

boundp
	
	
	

Verifies	if	a	value	is	bound	to	a	symbol

(boundp	sym)	

Arguments

sym

A	symbol.

Return	Values

T	if	sym	has	a	value	bound	to	it.	If	no	value	is	bound	to	sym,	or	if	it	has	been
bound	to	nil,	boundp	returns	nil.	If	sym	is	an	undefined	symbol,	it	is
automatically	created	and	is	bound	to	nil.

Examples
Command:	(setq	a	2	b	nil)

nil

Command:	(boundp	'a)

T

Command:	(boundp	'b)

nil

The	atoms-family	function	provides	an	alternative	method	of	determining
the	existence	of	a	symbol	without	automatically	creating	the	symbol.

See	Also
The	atoms-family	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	

C	Functions
	
	
	

caddr
Returns	the	third	element	of	a	list
cadr
Returns	the	second	element	of	a	list
car
Returns	the	first	element	of	a	list
cdr
Returns	a	list	containing	all	but	the	first	element	of	the	specified	list
chr
Converts	an	integer	representing	an	ASCII	character	code	into	a	single-
character	string
client_data_tile
Associates	application-managed	data	with	a	dialog	box	tile
close
Closes	an	open	file
command
Executes	an	AutoCAD	command
cond
Serves	as	the	primary	conditional	function	for	AutoLISP
cons
Adds	an	element	to	the	beginning	of	a	list,	or	constructs	a	dotted	list
cos
Returns	the	cosine	of	an	angle	expressed	in	radians

cvunit
Converts	a	value	from	one	unit	of	measurement	to	another

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	C	Functions	>	

caddr
	
	
	

Returns	the	third	element	of	a	list

(caddr	list)

In	AutoLISP,	caddr	is	frequently	used	to	obtain	the	Z	coordinate	of	a	3D	point
(the	third	element	of	a	list	of	three	reals).

Arguments

list

A	list.

Return	Values

The	third	element	in	list;	otherwise	nil,	if	the	list	is	empty	or	contains	fewer
than	three	elements.

Examples
Command:	(setq	pt3	'(5.25	1.0	3.0))

(5.25	1.0	3.0)

Command:	(caddr	pt3)

3.0

Command:	(caddr	'(5.25	1.0))

nil

See	Also
The	Point	Lists	topic	in	the	AutoLISP	Developer's	Guide.

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e4171.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	C	Functions	>	

cadr
	
	
	

Returns	the	second	element	of	a	list

(cadr	list)

In	AutoLISP,	cadr	is	frequently	used	to	obtain	the	Y	coordinate	of	a	2D	or	3D
point	(the	second	element	of	a	list	of	two	or	three	reals).

Arguments

list

A	list.

Return	Values

The	second	element	in	list;	otherwise	nil,	if	the	list	is	empty	or	contains	only
one	element.

Examples
Command:	(setq	pt2	'(5.25	1.0))

(5.25	1.0)

Command:	(cadr	pt2)

1.0

Command:	(cadr	'(4.0))

nil

Command:	(cadr	'(5.25	1.0	3.0))

1.0

See	Also
The	Point	Lists	topic	in	the	AutoLISP	Developer's	Guide.

javascript:hhctrl_d0e4257.Click()

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	C	Functions	>	

car
	
	
	

Returns	the	first	element	of	a	list

(car	list)

Arguments

list

A	list.

Return	Values

The	first	element	in	list;	otherwise	nil,	if	the	list	is	empty.

Examples
Command:	(car	'(a	b	c))

A

Command:	(car	'((a	b)	c))

(A	B)

Command:	(car	'())

nil

See	Also
The	Point	Lists	topic	in	the	AutoLISP	Developer's	Guide.

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e4324.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	C	Functions	>	

cdr
	
	
	

Returns	a	list	containing	all	but	the	first	element	of	the	specified	list

(cdr	list)

Arguments

list

A	list.

Return	Values

A	list	containing	all	the	elements	of	list,	except	the	first	element	(but	see	Note
below).	If	the	list	is	empty,	cdr	returns	nil.

Note When	the	list	argument	is	a	dotted	pair,	cdr	returns	the	second	element
without	enclosing	it	in	a	list.

Examples
Command:	(cdr	'(a	b	c))

(B	C)

Command:	(cdr	'((a	b)	c))

(C)

Command:	(cdr	'())

nil

Command:	(cdr	'(a	.	b))

B

Command:	(cdr	'(1	.	"Text"))

"Text"

See	Also

The	Point	Lists	topic	in	the	AutoLISP	Developer's	Guide.

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e4418.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	C	Functions	>	

chr
	
	
	

Converts	an	integer	representing	an	ASCII	character	code	into	a	single-character
string

(chr	integer)	

Arguments

list

An	integer.

Return	Values

A	string	containing	the	ASCII	character	code	for	integer.	If	the	integer	is	not	in
the	range	of	1-255,	the	return	value	is	unpredictable.

Examples
Command:	(chr	65)

"A"

Command:	(chr	66)

"B"

Command:	(chr	97)

"a"

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	C	Functions	>	

client_data_tile
	
	
	

Associates	application-managed	data	with	a	dialog	box	tile

(client_data_tile	key	clientdata)

Arguments

key

A	string	that	specifies	a	tile.	This	argument	is	case-sensitive.

clientdata

A	string	to	be	associated	with	the	key	tile.	An	action	expression	or	callback
function	can	refer	to	the	string	as	$data.

Return	Values

nil

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	C	Functions	>	

close
	
	
	

Closes	an	open	file

(close	file-desc)	

Arguments

file-desc

A	file	descriptor	obtained	from	the	open	function.

Return	Values

Nil	if	file-desc	is	valid;	otherwise	results	in	an	error	message.

After	a	close,	the	file	descriptor	is	unchanged	but	is	no	longer	valid.	Data
added	to	an	open	file	is	not	actually	written	until	the	file	is	closed.

Examples

The	following	code	counts	the	number	of	lines	in	the	file	somefile.txt	and	sets
the	variable	ct	equal	to	that	number:

(setq	fil	"SOMEFILE.TXT")

(setq	x	(open	fil	"r")	ct	0)

(while	(read-line	x)

		(setq	ct	(1+	ct))

)

(close	x)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	C	Functions	>	

command
	
	
	

Executes	an	AutoCAD	command

(command	[arguments]	...)

Arguments

arguments

AutoCAD	commands	and	their	options.
The	arguments	to	the	command	function	can	be	strings,	reals,	integers,	or
points,	as	expected	by	the	prompt	sequence	of	the	executed	command.	A	null
string	("")	is	equivalent	to	pressing	ENTER	on	the	keyboard.	Invoking
command	with	no	argument	is	equivalent	to	pressing	ESC	and	cancels	most
AutoCAD	commands.

The	command	function	evaluates	each	argument	and	sends	it	to	AutoCAD	in
response	to	successive	prompts.	It	submits	command	names	and	options	as
strings,	2D	points	as	lists	of	two	reals,	and	3D	points	as	lists	of	three	reals.
AutoCAD	recognizes	command	names	only	when	it	issues	a	Command	prompt.

Note	that	if	you	issue	command	from	Visual	LISP,	focus	does	not	change	to	the
AutoCAD	window.	If	the	command	requires	user	input,	you'll	see	the	return
value	(nil)	in	the	Console	window,	but	AutoCAD	will	be	waiting	for	input.
You	must	manually	activate	the	AutoCAD	window	and	respond	to	the	prompts.
Until	you	do	so,	any	subsequent	commands	will	fail.

Return	Values

nil

Examples

The	following	example	sets	two	variables	pt1	and	pt2	equal	to	two	point

values	1,1	and	1,5.	It	then	uses	the	command	function	to	issue	the	LINE
command	in	the	Command	Reference	and	pass	the	two	point	values.

Command:	(setq	pt1	'(1	1)	pt2	'(1	5))

(1	5)

Command:	(command	"line"	pt1	pt2	"")

line	From	point:

To	point:

To	point:

Command:	nil

Restrictions	and	Notes

The	AutoCAD	SKETCH	command	in	the	Command	Reference	reads	the
digitizer	directly	and	therefore	cannot	be	used	with	the	AutoLISP	command
function.	If	the	SCRIPT	command	is	used	with	the	command	function,	it	should
be	the	last	function	call	in	the	AutoLISP	routine.

Also,	if	you	use	the	command	function	in	an	acad.lsp	or	.mnl	file,	it	should	be
called	only	from	within	a	defun	statement.	Use	the	S::STARTUP	function	to
define	commands	that	need	to	be	issued	immediately	when	you	begin	a	drawing
session.

For	AutoCAD	commands	that	require	the	selection	of	an	object	(like	the
BREAK	and	TRIM	commands	in	the	Command	Reference),	you	can	supply	a
list	obtained	with	entsel	instead	of	a	point	to	select	the	object.	For	examples,
see	Passing	Pick	Points	to	AutoCAD	Commands	in	the	AutoLISP	Developer's
Guide.

Commands	executed	from	the	command	function	are	not	echoed	to	the
command	line	if	the	CMDECHO	system	variable	(accessible	from	setvar	and
getvar)	is	set	to	0.

See	Also
The	vl-cmdf	function.	The	Command	Submission	in	the	AutoLISP
Developer's	Guide.

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e4734.Click()
javascript:hhctrl_d0e4761.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	C	Functions	>	

cond
	
	
	

Serves	as	the	primary	conditional	function	for	AutoLISP

(cond	[(test	result	...)	...])	

The	cond	function	accepts	any	number	of	lists	as	arguments.	It	evaluates	the
first	item	in	each	list	(in	the	order	supplied)	until	one	of	these	items	returns	a
value	other	than	nil.	It	then	evaluates	those	expressions	that	follow	the	test	that
succeeded.

Return	Values

The	value	of	the	last	expression	in	the	sublist.	If	there	is	only	one	expression	in
the	sublist	(that	is,	if	result	is	missing),	the	value	of	the	test	expression	is
returned.	If	no	arguments	are	supplied,	cond	returns	nil.

Examples

The	following	example	uses	cond	to	perform	an	absolute	value	calculation:

(cond	

			((minusp	a)	(-	a))	

			(t	a)

)	

If	the	variable	a	is	set	to	the	value -10,	this	returns	10.

As	shown,	cond	can	be	used	as	a	case	type	function.	It	is	common	to	use	T	as
the	last	(default)	test	expression.	Here's	another	simple	example.	Given	a	user
response	string	in	the	variable	s,	this	function	tests	the	response	and	returns	1	if
it	is	Y	or	y,	0	if	it	is	N	or	n;	otherwise	nil.

(cond

			((=	s	"Y")	1)	

			((=	s	"y")	1)	

			((=	s	"N")	0)	

			((=	s	"n")	0)	

			(t	nil)

)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	C	Functions	>	

cons
	
	
	

Adds	an	element	to	the	beginning	of	a	list,	or	constructs	a	dotted	list

(cons	new-first-element	list-or-atom)	

Arguments

new-first-element

Element	to	be	added	to	the	beginning	of	a	list.	This	element	can	be	an	atom
or	a	list.

list-or-atom

A	list	or	an	atom.

Return	Values

The	value	returned	depends	on	the	data	type	of	list-or-atom.	If	list-or-atom	is	a
list,	cons	returns	that	list	with	new-first-element	added	as	the	first	item	in	the
list.	If	list-or-atom	is	an	atom,	cons	returns	a	dotted	pair	consisting	of	new-first-
element	and	list-or-atom.

Examples
Command:	(cons	'a	'(b	c	d))

(A	B	C	D)

Command:	(cons	'(a)	'(b	c	d))

((A)	B	C	D)

Command:	(cons	'a	2)

(A	.	2)

See	Also
The	List	Handling	topic	in	the	AutoLISP	Developer's	Guide.

javascript:hhctrl_d0e4980.Click()

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	C	Functions	>	

cos
	
	
	

Returns	the	cosine	of	an	angle	expressed	in	radians

(cos	ang)

Arguments

ang

An	angle,	in	radians.

Return	Values

The	cosine	of	ang,	in	radians.

Examples
Command:	(cos	0.0)

1.0

Command:	(cos	pi)

-1.0

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	C	Functions	>	

cvunit
	
	
	

Converts	a	value	from	one	unit	of	measurement	to	another

(cvunit	value	from-unit	to-unit)	

Arguments

value

The	numeric	value	or	point	list	(2D	or	3D	point)	to	be	converted.

from-unit

The	unit	that	value	is	being	converted	from.

to-unit

The	unit	that	value	is	being	converted	to.

The	from-unit	and	to-unit	arguments	can	name	any	unit	type	found	in	the
acad.unt	file.

Return	Values

The	converted	value,	if	successful;	otherwise	nil,	if	either	unit	name	is
unknown	(not	found	in	the	acad.unt	file),	or	if	the	two	units	are	incompatible
(for	example,	trying	to	convert	grams	into	years).

Examples
Command:	(cvunit	1	"minute"	"second")

60.0

Command:	(cvunit	1	"gallon"	"furlong")

nil

Command:	(cvunit	1.0	"inch"	"cm")

2.54

Command:	(cvunit	1.0	"acre"	"sq	yard")

4840.0

Command:	(cvunit	'(1.0	2.5)	"ft"	"in")

(12.0	30.0)

Command:	(cvunit	'(1	2	3)	"ft"	"in")

(12.0	24.0	36.0)

Note If	you	have	several	values	to	convert	in	the	same	manner,	it	is	more	efficient
to	convert	the	value	1.0	once	and	then	apply	the	resulting	value	as	a	scale	factor
in	your	own	function	or	computation.	This	works	for	all	predefined	units	except
temperature,	where	an	offset	is	involved	as	well.

See	Also
The	Unit	Conversion	topic	in	the	AutoLISP	Developer's	Guide.

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e5150.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	

D	Functions
	
	
	

defun
Defines	a	function
defun-q
Defines	a	function	as	a	list
defun-q-list-ref
Displays	the	list	structure	of	a	function	defined	with	defun-q
defun-q-list-set
Sets	the	value	of	a	symbol	to	be	a	function	defined	by	a	list
dictadd
Adds	a	nongraphical	object	to	the	specified	dictionary
dictnext
Finds	the	next	item	in	a	dictionary
dictremove
Removes	an	entry	from	the	specified	dictionary
dictrename
Renames	a	dictionary	entry
dictsearch
Searches	a	dictionary	for	an	item
dimx_tile
Retrieves	the	width	of	a	tile	in	dialog	box	units
dimy_tile
Retrieves	the	height	of	a	tile	in	dialog	box	units
distance

Returns	the	3D	distance	between	two	points
distof
Converts	a	string	that	represents	a	real	(floating-point)	value	into	a	real
value
done_dialog
Terminates	a	dialog	box

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	D	Functions	>	

defun
	
	
	

Defines	a	function

(defun	sym	([arguments]	[/	variables...])	expr...)	

Arguments

sym

A	symbol	naming	the	function.

arguments

The	names	of	arguments	expected	by	the	function.

/	variables

The	names	of	one	or	more	local	variables	for	the	function.
The	slash	preceding	the	variable	names	must	be	separated	from	the	first	local
name	and	from	the	last	argument,	if	any,	by	at	least	one	space.

expr

Any	number	of	AutoLISP	expressions	to	be	evaluated	when	the	function
executes.

If	you	do	not	declare	any	arguments	or	local	symbols,	you	must	supply	an	empty
set	of	parentheses	after	the	function	name.

If	duplicate	argument	or	symbol	names	are	specified,	AutoLISP	uses	the	first
occurrence	of	each	name	and	ignores	the	following	occurrences.

Return	Values

The	result	of	the	last	expression	evaluated.

Warning Never	use	the	name	of	a	built-in	function	or	symbol	for	the	sym

argument	to	defun.	This	overwrites	the	original	definition	and	makes	the	built-
in	function	or	symbol	inaccessible.	To	get	a	list	of	built-in	and	previously
defined	functions,	use	the	atoms-family	function.

Examples

(defun	myfunc	(x	y)	...)									Function	takes	two	arguments

(defun	myfunc	(/	a	b)	...)							Function	has	two	local	variables

(defun	myfunc	(x	/	temp)	...)				One	argument,	one	local	variable

(defun	myfunc	()	...)												No	arguments	or	local	variables

See	Also
The	Symbol	and	Function	Handling	topic	in	the	AutoLISP
Developer's	Guide.

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e5255.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	D	Functions	>	

defun-q
	
	
	

Defines	a	function	as	a	list

(defun-q	sym	([arguments]	[/	variables...])	expr...)	

The	defun-q	function	is	provided	strictly	for	backward-compatibility	with
previous	versions	of	AutoLISP,	and	should	not	be	used	for	other	purposes.	You
can	use	defun-q	in	situations	where	you	need	to	access	a	function	definition	as
a	list	structure,	which	is	the	way	defun	was	implemented	in	previous,	non-
compiled	versions	of	AutoLISP.

Arguments

sym

A	symbol	naming	the	function.

arguments

The	names	of	arguments	expected	by	the	function.

/	variables

The	names	of	one	or	more	local	variables	for	the	function.
The	slash	preceding	the	variable	names	must	be	separated	from	the	first	local
name	and	from	the	last	argument,	if	any,	by	at	least	one	space.

expr

Any	number	of	AutoLISP	expressions	to	be	evaluated	when	the	function
executes.

If	you	do	not	declare	any	arguments	or	local	symbols,	you	must	supply	an	empty
set	of	parentheses	after	the	function	name.

If	duplicate	argument	or	symbol	names	are	specified,	AutoLISP	uses	the	first

occurrence	of	each	name	and	ignores	the	following	occurrences.

Return	Values

The	result	of	the	last	expression	evaluated.

Examples

_$	(defun-q	my-startup	(x)

(print	(list	x)))
MY-STARTUP

_$	(my-startup	5)
(5)	(5)

Use	defun-q-list-ref	to	display	the	list	structure	of	my-startup:

_$	(defun-q-list-ref	'my-startup)
((X)	(PRINT	(LIST	X)))

See	Also
The	defun-q-list-ref	and	defun-q-list-set	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	D	Functions	>	

defun-q-list-ref
	
	
	

Displays	the	list	structure	of	a	function	defined	with	defun-q

(defun-q-list-ref	'function)	

Arguments

function

A	symbol	naming	the	function.

Return	Values

The	list	definition	of	the	function;	otherwise	nil,	if	the	argument	is	not	a	list.

Examples

Define	a	function	using	defun-q:

_$	(defun-q	my-startup	(x)

(print	(list	x)))
MY-STARTUP

Use	defun-q-list-ref	to	display	the	list	structure	of	my-startup:

_$	(defun-q-list-ref	'my-startup)
((X)	(PRINT	(LIST	X)))

See	Also
The	defun-q	and	defun-q-list-set	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	D	Functions	>	

defun-q-list-set
	
	
	

Sets	the	value	of	a	symbol	to	be	a	function	defined	by	a	list

(defun-q-list-set	'sym

list)

Arguments

sym

A	symbol	naming	the	function

list

A	list	containing	the	expressions	to	be	included	in	the	function.

Return	Values

The	sym	defined.

Examples

_$	(defun-q-list-set	'foo

'((x)	x))
FOO

_$	(foo	3)
3

The	following	example	illustrates	the	use	of	defun-q-list-set	to	combine
two	functions	into	a	single	function.	First,	from	the	Visual	LISP	Console
window,	define	two	functions	with	defun-q:

_$	(defun-q	s::startup	(x)

(print	x))
S::STARTUP

_$	(defun-q	my-startup	(x)

(print	(list	x)))
MY-STARTUP

Use	defun-q-list-set	to	combine	the	functions	into	a	single	function:

_$	(defun-q-list-set	's::startup

(append

			(defun-q-list-ref	's::startup)

			(cdr	(defun-q-list-ref

'my-startup))))
S::STARTUP

The	following	illustrates	how	the	functions	respond	individually,	and	how	the
functions	work	after	being	combined	using	defun-q-list-set:

_$	(defun-q	foo	(x)	(print

(list	'foo	x)))
FOO

_$	(foo	1)
(FOO	1)	(FOO	1)

_$	(defun-q	bar	(x)	(print

(list	'bar	x)))
BAR

_$	(bar	2)
(BAR	2)	(BAR	2)

_$	(defun-q-list-set

		'foo

		(append	(defun-q-list-ref

'foo)

														(cdr	(defun-q-list-ref

'bar))

))
FOO

_$	(foo	3)
(FOO	3)	

(BAR	3)	(BAR	3)

See	Also
The	defun-q	and	defun-q-list-ref	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	D	Functions	>	

dictadd
	
	
	

Adds	a	nongraphical	object	to	the	specified	dictionary

(dictadd	ename	symbol	newobj)

Arguments

ename

Name	of	the	dictionary	the	object	is	being	added	to.

symbol

The	key	name	of	the	object	being	added	to	the	dictionary;	symbol	must	be	a
unique	name	that	does	not	already	exist	in	the	dictionary.

newobj

A	nongraphical	object	to	be	added	to	the	dictionary.

As	a	general	rule,	each	object	added	to	a	dictionary	must	be	unique	to	that
dictionary.	This	is	specifically	a	problem	when	adding	group	objects	to	the	group
dictionary.	Adding	the	same	group	object	using	different	key	names	results	in
duplicate	group	names,	which	can	send	the	dictnext	function	into	an	infinite
loop.

Note To	access	drawing	properties	such	as	Title,	Subject,	Author,	and	Keywords,
the	IAcadSummaryInfo	interface,	accessible	as	a	property	of	the	Document
object	in	the	AutoCAD	object	model,	must	be	used.

Return	Values

The	entity	name	of	the	object	added	to	the	dictionary.

Examples

The	examples	that	follow	create	objects	and	add	them	to	the	named	object

dictionary.

Create	a	dictionary	entry	list:
Command:	(setq	dictionary	(list	'(0	.	"DICTIONARY")	'(100	.	"AcDbDictionary")))

((0	.	"DICTIONARY")	(100	.	"AcDbDictionary"))

Create	a	dictionary	object	using	the	entmakex	function:
Command:	(setq	xname	(entmakex	dictionary))

<Entity	name:	1d98950>

Add	the	dictionary	to	the	named	object	dictionary:
Command:	(setq	newdict	(dictadd	(namedobjdict)	"MY_WAY_COOL_DICTIONARY"	xname))

<Entity	name:	1d98950>

Create	an	Xrecord	list:
Command:	(setq	datalist	(append	(list	'(0	.	"XRECORD")'(100	.	"AcDbXrecord"))	'((1	.	"This	is
my	data")	(10	1.	2.	3.)	(70	.	33))))

((0	.	"XRECORD")	(100	.	"AcDbXrecord")	(1	.	"This	is	my	data")	(10	1.0	2.0	3.0)	(70	.	33))

Make	an	Xrecord	object:
Command:	(setq	xname	(entmakex	datalist))

<Entity	name:	1d98958>

Add	the	Xrecord	object	to	the	dictionary:
Command:	(dictadd	newdict	"DATA_RECORD_1"	xname)

<Entity	name:	1d98958>

See	Also
The	dictnext,	dictremove,	dictrename,	dictsearch,	and	namedobjdict
functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	D	Functions	>	

dictnext
	
	
	

Finds	the	next	item	in	a	dictionary

(dictnext	ename	[rewind])

Arguments

ename

Name	of	the	dictionary	being	viewed.

rewind

If	this	argument	is	present	and	is	not	nil,	the	dictionary	is	rewound	and	the
first	entry	in	it	is	retrieved.

Return	Values

The	next	entry	in	the	specified	dictionary;	otherwise	nil,	when	the	end	of	the
dictionary	is	reached.	Entries	are	returned	as	lists	of	dotted	pairs	of	DXF-type
codes	and	values.	Deleted	dictionary	entries	are	not	returned.

The	dictsearch	function	specifies	the	initial	entry	retrieved.

Use	namedobjdict	to	obtain	the	master	dictionary	entity	name.

Note Once	you	begin	stepping	through	the	contents	of	a	dictionary,	passing	a
different	dictionary	name	to	dictnext	will	cause	the	place	to	be	lost	in	the
original	dictionary.	In	other	words,	only	one	global	iterator	is	maintained	for	use
in	this	function.

Examples

Create	a	dictionary	and	an	entry	as	shown	in	the	example	for	dictadd.	Then
make	another	Xrecord	object:

Command:	(setq	xname	(entmakex	datalist))

<Entity	name:	1b62d60>

Add	this	Xrecord	object	to	the	dictionary,	as	the	second	record	in	the	dictionary:
Command:	(dictadd	newdict	"DATA_RECORD_2"	xname)

<Entity	name:	1b62d60>

Return	the	entity	name	of	the	next	entry	in	the	dictionary:
Command:	(cdr	(car	(dictnext	newdict)))

<Entity	name:	1bac958>

dictnext	returns	the	name	of	the	first	entity	added	to	the	dictionary.

Return	the	entity	name	of	the	next	entry	in	the	dictionary:
Command:	(cdr	(car	(dictnext	newdict)))

<Entity	name:	1bac960>

dictnext	returns	the	name	of	the	second	entity	added	to	the	dictionary.

Return	the	entity	name	of	the	next	entry	in	the	dictionary:
Command:	(cdr	(car	(dictnext	newdict)))

nil

There	are	no	more	entries	in	the	dictionary,	so	dictnext	returns	nil.

Rewind	to	the	first	entry	in	the	dictionary	and	return	the	entity	name	of	that
entry:

Command:	(cdr	(car	(dictnext	newdict	T)))

<Entity	name:	1bac958>

Specifying	T	for	the	optional	rewind	argument	causes	dictnext	to	return	the
first	entry	in	the	dictionary.

See	Also
The	dictadd,	dictremove,	dictrename,	dictsearch,	and	namedobjdict
functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	D	Functions	>	

dictremove
	
	
	

Removes	an	entry	from	the	specified	dictionary

(dictremove	ename	symbol)

By	default,	removing	an	entry	from	a	dictionary	does	not	delete	it	from	the
database.	This	must	be	done	with	a	call	to	entdel.	Currently,	the	exceptions	to
this	rule	are	groups	and	mlinestyles.	The	code	that	implements	these	features
requires	that	the	database	and	these	dictionaries	be	up	to	date	and,	therefore,
automatically	deletes	the	entity	when	it	is	removed	(with	dictremove)	from
the	dictionary.

Arguments

ename

Name	of	the	dictionary	being	modified.

symbol

The	entry	to	be	removed	from	ename.

The	dictremove	function	does	not	allow	the	removal	of	an	mlinestyle	from
the	mlinestyle	dictionary	if	it	is	actively	referenced	by	an	mline	in	the	database.

Return	Values

The	entity	name	of	the	removed	entry.	If	ename	is	invalid	or	symbol	is	not	found,
dictremove	returns	nil.

Examples

The	following	example	removes	the	dictionary	created	in	the	dictadd
example:

Command:	(dictremove	(namedobjdict)	"my_way_cool_dictionary")

<Entity	name:	1d98950>

See	Also
The	dictadd,	dictnext,	dictrename,	dictsearch,	and	namedobjdict
functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	D	Functions	>	

dictrename
	
	
	

Renames	a	dictionary	entry

(dictrename	ename	oldsym	newsym)

Arguments

ename

Name	of	the	dictionary	being	modified.

oldsym

Original	key	name	of	the	entry.

newsym

New	key	name	of	the	entry.

Return	Values

The	newsym	value,	if	the	rename	is	successful.	If	the	oldname	is	not	present	in
the	dictionary,	or	if	ename	or	newname	is	invalid,	or	if	newname	is	already
present	in	the	dictionary,	then	dictrename	returns	nil.

Examples

The	following	example	renames	the	dictionary	created	in	the	dictadd	sample:
Command:	(dictrename	(namedobjdict)	"my_way_cool_dictionary"	"An	even	cooler	dictionary")

"An	even	cooler	dictionary"

See	Also
The	dictadd,	dictnext,	dictremove,	dictsearch,	and	namedobjdict
functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	D	Functions	>	

dictsearch
	
	
	

Searches	a	dictionary	for	an	item

(dictsearch	ename	symbol	[setnext])

Arguments

ename

Name	of	the	dictionary	being	searched.

symbol

A	string	that	specifies	the	item	to	be	searched	for	within	the	dictionary.

setnext

If	present	and	not	nil,	the	dictnext	entry	counter	is	adjusted	so	the
following	dictnext	call	returns	the	entry	after	the	one	returned	by	this
dictsearch	call.

Return	Values

The	entry	for	the	specified	item,	if	successful;	otherwise	nil,	if	no	entry	is
found.

Examples

The	following	example	illustrates	the	use	of	dictsearch	to	obtain	the
dictionary	added	in	the	dictadd	example:

Command:	(setq	newdictlist	(dictsearch	(namedobjdict)	"my_way_cool_dictionary"))

((-1	.	<Entity	name:	1d98950>)	(0	.	"DICTIONARY")	(5	.	"52")	(102	.	"{ACAD_REACTORS")	(330	.
<Entity	name:	1d98860>)	(102	.	"}")	(330	.	<Entity	name:	1d98860>)	(100	.	"AcDbDictionary")	(280	.
0)	(281	.	1)	(3	.	"DATA_RECORD_1")	(350	.	<Entity	name:	1d98958>))

See	Also

The	dictadd,	dictnext,	dictremove,	and	namedobjdict	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	D	Functions	>	

dimx_tile
	
	
	

Retrieves	the	width	of	a	tile	in	dialog	box	units

(dimx_tile	key)

Arguments

key

A	string	specifying	the	tile	to	be	queried.	The	key	argument	is	case-sensitive.

Return	Values

The	width	of	the	tile.

The	coordinates	returned	are	the	maximum	allowed	within	the	tile.	Because
coordinates	are	zero	based,	this	function	returns	one	less	than	the	total	X
dimension	(X-1).	The	dimx_tile	and	dimy_tile	functions	are	provided	for
use	with	vector_image,	fill_image,	and	slide_image,	which	require
that	you	specify	absolute	tile	coordinates.

Examples

(setq	tile_width	(dimx_tile	"my_tile"))

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	D	Functions	>	

dimy_tile
	
	
	

Retrieves	the	height	of	a	tile	in	dialog	box	units

(dimy_tile	key)

Arguments

key

A	string	specifying	the	tile	to	be	queried.	The	key	argument	is	case-sensitive.

Return	Values

The	height	of	the	tile.

The	coordinates	returned	are	the	maximum	allowed	within	the	tile.	Because
coordinates	are	zero	based,	this	function	returns	one	less	than	the	total	Y
dimension	(Y-1).	The	dimx_tile	and	dimy_tile	functions	are	provided	for
use	with	vector_image,	fill_image,	and	slide_image,	which	require
that	you	specify	absolute	tile	coordinates.

Examples

(setq	tile_height	(dimy_tile	"my_tile"))

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	D	Functions	>	

distance
	
	
	

Returns	the	3D	distance	between	two	points

(distance	pt1	pt2)

Arguments

pt1

A	2D	or	3D	point	list.

pt1

A	2D	or	3D	point	list.

Return	Values

The	distance.

If	one	or	both	of	the	supplied	points	is	a	2D	point,	then	distance	ignores	the	Z
coordinates	of	any	3D	points	supplied	and	returns	the	2D	distance	between	the
points	as	projected	into	the	current	construction	plane.

Examples
Command:	(distance	'(1.0	2.5	3.0)	'(7.7	2.5	3.0))

6.7

Command:	(distance	'(1.0	2.0	0.5)	'(3.0	4.0	0.5))

2.82843

See	Also
The	Geometric	Utilities	topic	in	the	AutoLISP	Developer's	Guide.

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e6413.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	D	Functions	>	

distof
	
	
	

Converts	a	string	that	represents	a	real	(floating-point)	value	into	a	real	value

(distof	string	[mode])

The	distof	and	rtos	functions	are	complementary.	If	you	pass	distof	a
string	created	by	rtos,	distof	is	guaranteed	to	return	a	valid	value,	and	vice
versa	(assuming	the	mode	values	are	the	same).

Arguments

string

A	string	to	be	converted.	The	argument	must	be	a	string	that	distof	can
parse	correctly	according	to	the	units	specified	by	mode.	It	can	be	in	the	same
form	that	rtos	returns,	or	in	a	form	that	AutoCAD	allows	for	keyboard
entry.

mode

The	units	in	which	the	string	is	currently	formatted.	The	mode	corresponds	to
the	values	allowed	for	the	AutoCAD	system	variable	LUNITS	in	the
Command	Reference.	Specify	one	of	the	following	numbers	for	mode:
1 Scientific
2 Decimal
3 Engineering	(feet	and	decimal	inches)
4 Architectural	(feet	and	fractional	inches)
5 Fractional

Return	Values

A	real	number,	if	successful;	otherwise	nil.

Note The	distof	function	treats	modes	3	and	4	the	same.	That	is,	if	mode

specifies	3	(engineering)	or	4	(architectural)	units,	and	string	is	in	either	of	these
formats,	distof	returns	the	correct	real	value.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	D	Functions	>	

done_dialog
	
	
	

Terminates	a	dialog	box

(done_dialog	[status])

Arguments

status

A	positive	integer	that	start_dialog	will	return	instead	of	returning	1	for
OK	or	0	for	Cancel.	The	meaning	of	any	status	value	greater	than	1	is
determined	by	your	application.

You	must	call	done_dialog	from	within	an	action	expression	or	callback
function	(see).

Return	Values

A	two-dimensional	point	list	that	is	the	(X,Y)	location	of	the	dialog	box	when	the
user	exited	it.

Usage	Notes

If	you	provide	a	callback	for	the	button	whose	key	is	"accept"	or	"cancel"
(usually	the	OK	and	Cancel	buttons),	the	callback	must	call	done_dialog
explicitly.	If	it	doesn't,	the	user	can	be	trapped	in	the	dialog	box.	If	you	don't
provide	an	explicit	callback	for	these	buttons	and	use	the	standard	exit	buttons,
AutoCAD	handles	them	automatically.	Also,	an	explicit	AutoLISP	action	for	the
“accept”	button	must	specify	a	status	of	1	(or	an	application-defined	value);
otherwise,	start_dialog	returns	the	default	value,	0,	which	makes	it	appear
as	if	the	dialog	box	was	canceled.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	

E	Functions
	
	
	

end_image
Ends	creation	of	the	currently	active	dialog	box	image
end_list
Ends	processing	of	the	currently	active	dialog	box	list
entdel
Deletes	objects	(entities)	or	restores	previously	deleted	objects
entget
Retrieves	an	object's	(entity's)	definition	data
entlast
Returns	the	name	of	the	last	nondeleted	main	object	(entity)	in	the
drawing
entmake
Creates	a	new	entity	in	the	drawing
entmakex
Makes	a	new	object	or	entity,	gives	it	a	handle	and	entity	name	(but	does
not	assign	an	owner),	and	then	returns	the	new	entity	name
entmod
Modifies	the	definition	data	of	an	object	(entity)
entnext
Returns	the	name	of	the	next	object	(entity)	in	the	drawing
entsel
Prompts	the	user	to	select	a	single	object	(entity)	by	specifying	a	point
entupd

Updates	the	screen	image	of	an	object	(entity)
eq
Determines	whether	two	expressions	are	identical
equal
Determines	whether	two	expressions	are	equal
error
A	user-definable	error-handling	function
eval
Returns	the	result	of	evaluating	an	AutoLISP	expression
exit
Forces	the	current	application	to	quit
exp
Returns	the	constant	e	(a	real	number)	raised	to	a	specified	power	(the
natural	antilog)
expand
Allocates	additional	memory	for	AutoLISP
expt
Returns	a	number	raised	to	a	specified	power

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	E	Functions	>	

end_image
	
	
	

Ends	creation	of	the	currently	active	dialog	box	image

(end_image)

This	function	is	the	complement	of	start_image.

Return	Values

nil

See	Also
The	start_image	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	E	Functions	>	

end_list
	
	
	

Ends	processing	of	the	currently	active	dialog	box	list

(end_list)

This	function	is	the	complement	of	start_list.

Return	Values

nil

See	Also
The	add_list	and	start_list	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	E	Functions	>	

entdel
	
	
	

Deletes	objects	(entities)	or	restores	previously	deleted	objects

(entdel		ename)	

The	entity	specified	by	ename	is	deleted	if	it	is	currently	in	the	drawing.	The
entdel	function	restores	the	entity	to	the	drawing	if	it	has	been	deleted
previously	in	this	editing	session.	Deleted	entities	are	purged	from	the	drawing
when	the	drawing	is	exited.	The	entdel	function	can	delete	both	graphical	and
nongraphical	entities.

Arguments

ename

Name	of	the	entity	to	be	deleted	or	restored.

Return	Values

The	entity	name.

Usage	Notes

The	entdel	function	operates	only	on	main	entities.	Attributes	and	polyline
vertices	cannot	be	deleted	independently	of	their	parent	entities.	You	can	use	the
command	function	to	operate	the	ATTEDIT	or	PEDIT	command	in	the
Command	Reference	to	modify	subentities.

You	cannot	delete	entities	within	a	block	definition.	However,	you	can
completely	redefine	a	block	definition,	minus	the	entity	you	want	deleted,	with
entmake.

Examples

Get	the	name	of	the	first	entity	in	the	drawing	and	assign	it	to	variable	e1:

Command:	(setq	e1	(entnext))

<Entity	name:	2c90520>

Delete	the	entity	named	by	e1:
Command:	(entdel	e1)

<Entity	name:	2c90520>

Restore	the	entity	named	by	e1:
Command:	(entdel	e1)

<Entity	name:	2c90520>

See	Also
The	handent	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	E	Functions	>	

entget
	
	
	

Retrieves	an	object's	(entity's)	definition	data

(entget	ename	[applist])

Arguments

ename

Name	of	the	entity	being	queried.	The	ename	can	refer	to	either	a	graphical
or	a	nongraphical	entity.

applist

A	list	of	registered	application	names.

Return	Values

An	association	list	containing	the	entity	definition	of	ename.	If	you	specify	the
optional	applist	argument,	entget	also	returns	the	extended	data	associated
with	the	specified	applications.	Objects	in	the	list	are	assigned	AutoCAD	DXF™
group	codes	for	each	part	of	the	entity	data.

Note	that	the	DXF	group	codes	used	by	AutoLISP	differ	slightly	from	the	group
codes	in	a	DXF	file.	The	AutoLISP	DXF	group	codes	are	documented	in	the
DXF	Reference.

Examples

Assume	that	the	last	object	created	in	the	drawing	is	a	line	drawn	from	point
(1,2)	to	point	(6,5).	The	following	example	shows	code	that	retrieves	the	entity
name	of	the	last	object	with	the	entlast	function,	and	passes	that	name	to
entget:

Command:	(entget	(entlast))

((-1	.	<Entity	name:	1bbd1d0>)	(0	.	"LINE")	(330	.	<Entity	name:	1bbd0c8>)	(5	.	"6A")	(100	.

"AcDbEntity")	(67	.	0)	(410	.	"Model")	(8	.	"0")	(100	.	"AcDbLine")	(10	1.0	2.0	0.0)	(11	6.0	5.0	0.0)
(210	0.0	0.0	1.0))

See	Also
The	entdel,	entlast,	entmod,	entmake,	entnext,	entupd,	and	handent
functions.	The	Entity	Data	Functions	in	the	AutoLISP	Developer's
Guide.

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e6925.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	E	Functions	>	

entlast
	
	
	

Returns	the	name	of	the	last	nondeleted	main	object	(entity)	in	the	drawing

(entlast)

The	entlast	function	is	frequently	used	to	obtain	the	name	of	a	new	entity
that	has	just	been	added	with	the	command	function.	To	be	selected,	the	entity
need	not	be	on	the	screen	or	on	a	thawed	layer.

Return	Values

An	entity	name;	otherwise	nil,	if	there	are	no	entities	in	the	current	drawing.

Examples

Set	variable	e1	to	the	name	of	the	last	entity	added	to	the	drawing:
Command:	(setq	e1	(entlast))

<Entity	name:	2c90538>

If	your	application	requires	the	name	of	the	last	nondeleted	entity	(main	entity	or
subentity),	define	a	function	such	as	the	following	and	call	it	instead	of
entlast.

(defun	lastent	(/	a	b)	

		(if	(setq	a	(entlast))									Gets	last	main	entity

				(while	(setq	b	(entnext	a))		If	subentities	follow,	loops

until	there	are	no	more	

						(setq	a	b)																	subentities	

)	

)	

		a																														Returns	last	main	entity	

)																																or	subentity

See	Also
The	entdel,	entget,	entmod,	entnext,	entsel,	and	handent	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	E	Functions	>	

entmake
	
	
	

Creates	a	new	entity	in	the	drawing

(entmake	[elist])

The	entmake	function	can	define	both	graphical	and	nongraphical	entities.

Arguments

elist

A	list	of	entity	definition	data	in	a	format	similar	to	that	returned	by	the
entget	function.	The	elist	argument	must	contain	all	of	the	information
necessary	to	define	the	entity.	If	any	required	definition	data	is	omitted,
entmake	returns	nil	and	the	entity	is	rejected.	If	you	omit	optional
definition	data	(such	as	the	layer),	entmake	uses	the	default	value.
The	entity	type	(for	example,	CIRCLE	or	LINE)	must	be	the	first	or	second
field	of	the	elist.	If	entity	type	is	the	second	field,	it	can	be	preceded	only	by
the	entity	name.	The	entmake	function	ignores	the	entity	name	when
creating	the	new	entity.	If	the	elist	contains	an	entity	handle,	entmake
ignores	that	too.

Return	Values

If	successful,	entmake	returns	the	entity's	list	of	definition	data.	If	entmake	is
unable	to	create	the	entity,	it	returns	nil.

Completion	of	a	block	definition	(entmake	of	an	endblk)	returns	the	block's
name	rather	than	the	entity	data	list	normally	returned.

Examples

The	following	code	creates	a	red	circle	(color	62),	centered	at	(4,4)	with	a	radius
of	1.	The	optional	layer	and	linetype	fields	have	been	omitted	and	therefore

assume	default	values.
Command:	(entmake	'((0	.	"CIRCLE")	(62	.	1)	(10	4.0	4.0	0.0)	(40	.	1.0)))

((0	.	"CIRCLE")	(62	.	1)	(10	4.0	4.0	0.0)	(40	.	1.0))

Notes	on	Using	entmake

You	cannot	create	viewport	objects	with	entmake.

A	group	66	code	is	honored	only	for	insert	objects	(meaning	attributes	follow).
For	polyline	entities,	the	group	66	code	is	forced	to	a	value	of	1	(meaning
vertices	follow),	and	for	all	other	entities	it	takes	a	default	of	0.	The	only	entity
that	can	follow	a	polyline	entity	is	a	vertex	entity.

The	group	code	2	(block	name)	of	a	dimension	entity	is	optional	for	the
entmake	function.	If	the	block	name	is	omitted	from	the	entity	definition	list,
AutoCAD	creates	a	new	one.	Otherwise,	AutoCAD	creates	the	dimension	using
the	name	provided.

For	legacy	reasons,	entmake	ignores	DXF	group	code	100	data	for	the
following	entity	types:

AcDbText

AcDbAttribute

AcDbAttributeDefinition

AcDbBlockBegin

AcDbBlockEnd

AcDbSequenceEnd

AcDbBlockReference

AcDbMInsertBlock

AcDb2dVertex

AcDb3dPolylineVertex

AcDbPolygonMeshVertex

AcDbPolyFaceMeshVertex

AcDbFaceRecord

AcDb2dPolyline

AcDb3dPolyline

AcDbArc

AcDbCircle

AcDbLine

AcDbPoint

AcDbFace

AcDbPolyFaceMesh

AcDbPolygonMesh

AcDbTrace

AcDbSolid

AcDbShape

AcDbViewport

See	Also
The	entdel,	entget,	entmod,	and	handent	functions.	In	the	AutoLISP
Developer's	Guide,	refer	to	Entity	Data	Functions	for	additional
information	on	creating	entities	in	a	drawing,	Adding	an	Entity	to	a
Drawing	for	specifics	on	using	entmake,	and	Creating	Complex
Entities	for	information	on	creating	complex	entities.

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e7249.Click()
javascript:hhctrl_d0e7252.Click()
javascript:hhctrl_d0e7259.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	E	Functions	>	

entmakex
	
	
	

Makes	a	new	object	or	entity,	gives	it	a	handle	and	entity	name	(but	does	not
assign	an	owner),	and	then	returns	the	new	entity	name

(entmakex	[elist])

The	entmakex	function	can	define	both	graphical	and	nongraphical	entities.

Arguments

elist

A	list	of	entity	definition	data	in	a	format	similar	to	that	returned	by	the
entget	function.	The	elist	argument	must	contain	all	of	the	information
necessary	to	define	the	entity.	If	any	required	definition	data	is	omitted,
entmakex	returns	nil	and	the	entity	is	rejected.	If	you	omit	optional
definition	data	(such	as	the	layer),	entmakex	uses	the	default	value.

Return	Values

If	successful,	entmakex	returns	the	name	of	the	entity	created.	If	entmakex
is	unable	to	create	the	entity,	the	function	returns	nil.

Examples

_$	(entmakex	'((0	.	"CIRCLE")

(62	.	1)	(10	4.0	3.0	0.0)	(40	.	1.0)))
<Entity	name:	1d45558>	

Warning Objects	and	entities	without	owners	are	not	written	out	to	DWG	or	DXF
files.	Be	sure	to	set	an	owner	at	some	point	after	using	entmakex.	For
example,	you	can	use	dictadd	to	set	a	dictionary	to	own	an	object.

See	Also

The	entmake	and	handent	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	E	Functions	>	

entmod
	
	
	

Modifies	the	definition	data	of	an	object	(entity)

(entmod	elist)

The	entmod	function	updates	database	information	for	the	entity	name
specified	by	the	-1	group	in	elist.	The	primary	mechanism	through	which
AutoLISP	updates	the	database	is	by	retrieving	entities	with	entget,	modifying
the	list	defining	an	entity,	and	updating	the	entity	in	the	database	with	entmod.
The	entmod	function	can	modify	both	graphical	and	nongraphical	objects.

Arguments

elist

A	list	of	entity	definition	data	in	a	format	similar	to	that	returned	by	the
entget	function.
For	entity	fields	with	floating-point	values	(such	as	thickness),	entmod
accepts	integer	values	and	converts	them	to	floating	point.	Similarly,	if	you
supply	a	floating-point	value	for	an	integer	entity	field	(such	as	color
number),	entmod	truncates	it	and	converts	it	to	an	integer.

Return	Values

If	successful,	entmod	returns	the	elist	supplied	to	it.	If	entmod	is	unable	to
modify	the	specified	entity,	the	function	returns	nil.

Examples

The	following	sequence	of	commands	obtains	the	properties	of	an	entity,	and
then	modifies	the	entity.

Set	the	en1	variable	to	the	name	of	the	first	entity	in	the	drawing:
Command:	(setq	en1	(entnext))

<Entity	name:	2c90520>

Set	a	variable	named	ed	to	the	entity	data	of	entity	en1:
Command:	(setq	ed	(entget	en1))

((-1	.	<Entity	name:	2c90520>)	(0	.	"CIRCLE")	(5	.	"4C")	(100	.	"AcDbEntity")	(67	.	0)	(8	.	"0")	(100	.
"AcDbCircle")	(10	3.45373	6.21635	0.0)	(40	.	2.94827)	(210	0.0	0.0	1.0))

Changes	the	layer	group	in	ed	from	layer	0	to	layer	1:
Command:	(setq	ed	(subst	(cons	8	"1")	(assoc	8	ed)	ed))

((-1	.	<Entity	name:	2c90520>)	(0	.	"CIRCLE")	(5	.	"4C")	(100	.	"AcDbEntity")	(67	.	0)	(8	.	"1")	(100	.
"AcDbCircle")	(10	3.45373	6.21635	0.0)	(40	.	2.94827)	(210	0.0	0.0	1.0))

Modify	the	layer	of	the	en1	entity	in	the	drawing:
Command:	(entmod	ed)

((-1	.	<Entity	name:	2c90520>)	(0	.	"CIRCLE")	(5	.	"4C")	(100	.	"AcDbEntity")	(67	.	0)	(8	.	"1")	(100	.
"AcDbCircle")	(10	3.45373	6.21635	0.0)	(40	.	2.94827)	(210	0.0	0.0	1.0))

Restrictions	on	Using	entmod

There	are	restrictions	on	the	changes	the	entmod	function	can	make:

An	entity's	type	and	handle	cannot	be	changed.	If	you	want	to	do	this,
use	entdel	to	delete	the	entity,	and	then	make	a	new	entity	with	the
command	or	entmake	function.

The	entmod	function	cannot	change	internal	fields,	such	as	the	entity
name	in	the	-2	group	of	a	seqend	entity.	Attempts	to	change	such	fields
are	ignored.

You	cannot	use	the	entmod	function	to	modify	a	viewport	entity.

You	can	change	an	entity's	space	visibility	field	to	0	or	1	(except	for	viewport
objects).	If	you	use	entmod	to	modify	an	entity	within	a	block	definition,	the
modification	affects	all	instances	of	the	block	in	the	drawing.

Before	performing	an	entmod	on	vertex	entities,	you	should	read	or	write	the
polyline	entity's	header.	If	the	most	recently	processed	polyline	entity	is	different
from	the	one	to	which	the	vertex	belongs,	width	information	(the	40	and	41
groups)	can	be	lost.

Warning You	can	use	entmod	to	modify	entities	within	a	block	definition,	but
doing	so	can	create	a	self-referencing	block,	which	will	cause	AutoCAD	to	stop.

See	Also
The	entdel,	entget,	entmake,	entnext,	and	handent	functions.	In	the
AutoLISP	Developer's	Guide,	refer	to	Modifying	an	Entity	and
Entity	Data	Functions	and	the	Graphics	Screen.

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e7593.Click()
javascript:hhctrl_d0e7596.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	E	Functions	>	

entnext
	
	
	

Returns	the	name	of	the	next	object	(entity)	in	the	drawing

(entnext	[ename])

Arguments

ename

The	name	of	an	existing	entity.

Return	Values

If	entnext	is	called	with	no	arguments,	it	returns	the	entity	name	of	the	first
nondeleted	entity	in	the	database.	If	an	ename	argument	is	supplied	to
entnext,	the	function	returns	the	entity	name	of	the	first	nondeleted	entity
following	ename	in	the	database.	If	there	is	no	next	entity	in	the	database,	it
returns	nil.	The	entnext	function	returns	both	main	entities	and	subentities.

Examples

(setq	e1	(entnext))	 	 	 	 	 ;	Sets	e1	to	the	name	of	the	first

entity	in	the		drawing

(setq	e2	(entnext	e1))	 ;	Sets	e2	to	the	name	of	the	entity	following	

Notes

The	entities	selected	by	ssget	are	main	entities,	not	attributes	of	blocks	or
vertices	of	polylines.	You	can	access	the	internal	structure	of	these	complex
entities	by	walking	through	the	subentities	with	entnext.	Once	you	obtain	a
subentity's	name,	you	can	operate	on	it	like	any	other	entity.	If	you	obtain	the
name	of	a	subentity	with	entnext,	you	can	find	the	parent	entity	by	stepping
forward	with	entnext	until	a	seqend	entity	is	found,	then	extracting	the	-2
group	from	that	entity,	which	is	the	main	entity's	name.

See	Also
The	entdel,	entget,	entmake,	entnext,	and	handent	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	E	Functions	>	

entsel
	
	
	

Prompts	the	user	to	select	a	single	object	(entity)	by	specifying	a	point

(entsel	[msg])

Arguments

msg

A	prompt	string	to	be	displayed	to	users.	If	omitted,	entsel	prompts	with
the	message,	"Select	object."

Return	Values

A	list	whose	first	element	is	the	entity	name	of	the	chosen	object	and	whose
second	element	is	the	coordinates	(in	terms	of	the	current	UCS)	of	the	point	used
to	pick	the	object.

The	pick	point	returned	by	entsel	does	not	represent	a	point	that	lies	on	the
selected	object.	The	point	returned	is	the	location	of	the	crosshairs	at	the	time	of
selection.	The	relationship	between	the	pick	point	and	the	object	will	vary
depending	on	the	size	of	the	pickbox	and	the	current	zoom	scale.

Examples

The	following	AutoCAD	command	sequence	illustrates	the	use	of	the	entsel
function	and	the	list	returned:

Command:	 line

From	point:	 1,1

To	point: 6,6

To	point: ENTER

Command:	 (setq	e	(entsel	"Please	choose	an	object:	"))

Please	choose	an	object:	 3,3

(<Entity	name:	60000014>	(3.0	3.0	0.0))

When	operating	on	objects,	you	may	want	to	simultaneously	select	an	object	and
specify	the	point	by	which	it	was	selected.	Examples	of	this	in	AutoCAD	can	be
found	in	Object	Snap	and	in	the	BREAK,	TRIM,	and	EXTEND	commands	in
the	Command	Reference.	The	entsel	function	allows	AutoLISP	programs	to
perform	this	operation.	It	selects	a	single	object,	requiring	the	selection	to	be	a
pick	point.	The	current	Osnap	setting	is	ignored	by	this	function	unless	you
specifically	request	it	while	you	are	in	the	function.	The	entsel	function
honors	keywords	from	a	preceding	call	to	initget.

See	Also
The	entget,	entmake,	entnext,	handent,	and	initget	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	E	Functions	>	

entupd
	
	
	

Updates	the	screen	image	of	an	object	(entity)

(entupd	ename)

Arguments

ename

The	name	of	the	entity	to	be	updated	on	the	screen.

Return	Values

The	entity	(ename)	updated;	otherwise	nil,	if	nothing	was	updated.

Examples

Assuming	that	the	first	entity	in	the	drawing	is	a	3D	polyline	with	several
vertices,	the	following	code	modifies	and	redisplays	the	polyline:

(setq	e1	(entnext))							;	Sets	e1	to	the	polyline's	entity

name

(setq	e2	(entnext	e1))				;	Sets	e2	to	its	first	vertex

(setq	ed	(entget	e2))					;	Sets	ed	to	the	vertex	data

(setq	ed	

		(subst	'(10	1.0	2.0)

				(assoc	10	ed)									;	Changes	the	vertex's	location	in	ed	

				ed																				;	to	point	(1,2)

)	

)	

(entmod	ed)															;	Moves

the	vertex	in	the	drawing

(entupd	e1)															;	Regenerates

the	polyline	entity	e1

Updating	Polylines	and	Blocks

When	a	3D	(or	old-style)	polyline	vertex	or	block	attribute	is	modified	with

entmod,	the	entire	complex	entity	is	not	updated	on	the	screen.	The	entupd
function	can	be	used	to	cause	a	modified	polyline	or	block	to	be	updated	on	the
screen.	This	function	can	be	called	with	the	entity	name	of	any	part	of	the
polyline	or	block;	it	need	not	be	the	head	entity.	While	entupd	is	intended	for
polylines	and	blocks	with	attributes,	it	can	be	called	for	any	entity.	It	always
regenerates	the	entity	on	the	screen,	including	all	subentities.

Note If	entupd	is	used	on	a	nested	entity	(an	entity	within	a	block)	or	on	a	block
that	contains	nested	entities,	some	of	the	entities	might	not	be	regenerated.	To
ensure	complete	regeneration,	you	must	invoke	the	REGEN	command	in	the
Command	Reference.

See	Also
The	entget,	entmod,	entnext,	and	handent	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	E	Functions	>	

eq
	
	
	

Determines	whether	two	expressions	are	identical

(eq	expr1	expr2)	

The	eq	function	determines	whether	expr1	and	expr2	are	bound	to	the	same
object	(by	setq,	for	example).

Arguments

expr1

The	expression	to	be	compared.

expr2

The	expression	to	compare	with	expr1.

Return	Values

T	if	the	two	expressions	are	identical;	otherwise	nil.

Examples

Given	the	following	assignments:

(setq	f1	'(a	b	c))	

(setq	f2	'(a	b	c))	

(setq	f3	f2)

Compare	f1	and	f3:
Command:	(eq	f1	f3)

nil

eq	returns	nil	because	f1	and	f3,	while	containing	the	same	value,	do	not
refer	to	the	same	list.

Compare	f3	and	f2:
Command:	(eq	f3	f2)

T

eq	returns	T	because	f3	and	f2	refer	to	the	same	list.

See	Also
The	=	(equal	to)	and	equal	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	E	Functions	>	

equal
	
	
	

Determines	whether	two	expressions	are	equal

(equal	expr1	expr2	[fuzz])	

Arguments

expr1

The	expression	to	be	compared.

expr2

The	expression	to	compare	with	expr1.

fuzz

A	real	number	defining	the	maximum	amount	by	which	expr1	and	expr2	can
differ	and	still	be	considered	equal.

When	comparing	two	real	numbers	(or	two	lists	of	real	numbers,	as	in	points),
the	two	identical	numbers	can	differ	slightly	if	different	methods	are	used	to
calculate	them.	You	can	specify	a	fuzz	amount	to	compensate	for	the	difference
that	may	result	from	the	different	methods	of	calculation.

Return	Values

T	if	the	two	expressions	are	equal	(evaluate	to	the	same	value);	otherwise	nil.

Examples

Given	the	following	assignments:

(setq	f1	'(a	b	c))	

(setq	f2	'(a	b	c))	

(setq	f3	f2)

(setq	a	1.123456)	

(setq	b	1.123457)

Compare	f1	to	f3:
Command:	(equal	f1	f3)

T

Compare	f3	to	f2:
Command:	(equal	f3	f2)

T

Compare	a	to	b:
Command:	(equal	a	b)

nil

The	a	and	b	variables	differ	by	.000001.

Compare	a	to	b:,	with	fuzz	argument	of	.000001:
Command:	(equal	a	b	0.000001)

T

The	a	and	b	variables	differ	by	an	amount	equal	to	the	specified	fuzz	factor,	so
equal	considers	the	variables	equal.

Comparing	the	eq	and	equal	Functions

If	the	eq	function	finds	that	two	lists	or	atoms	are	the	same,	the	equal	function
also	finds	them	to	be	the	same.

Any	atoms	that	the	equal	function	determines	to	be	the	same	are	also	found
equivalent	by	eq.	However,	two	lists	that	equal	determines	to	be	the	same	may
be	found	to	be	different	according	to	the	eq	function.

See	Also
The=	(equal	to)and	eq	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	E	Functions	>	

error
	
	
	

A	user-definable	error-handling	function

(*error*	string)	

If	*error*	is	not	nil,	it	is	executed	as	a	function	whenever	an	AutoLISP
error	condition	exists.	AutoCAD	passes	one	argument	to	*error*,	which	is	a
string	containing	a	description	of	the	error.

Your	*error*	function	can	include	calls	to	the	command	function	without
arguments	(for	example,	(command)).	This	will	cancel	a	previous	AutoCAD
command	called	with	the	command	function.

Return	Values

This	function	does	not	return,	except	when	using	vl-exit-with-value.

Examples

The	following	function	does	the	same	thing	that	the	AutoLISP	standard	error
handler	does.	It	prints	the	word	“error,”	followed	by	a	description:

(defun	*error*	(msg)

		(princ	"error:	")

		(princ	msg)

		(princ)

)

See	Also
The	vl-exit-with-error,	vl-exit-with-value,	vl-catch-all-apply,	vl-
catch-all-error-message,	and	vl-catch-all-error-p	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	E	Functions	>	

eval
	
	
	

Returns	the	result	of	evaluating	an	AutoLISP	expression

(eval	expr)	

Arguments

expr

The	expression	to	be	evaluated.

Return	Values

The	result	of	the	expression,	after	evaluation.

Examples

First,	set	some	variables:
Command:	(setq	a	123)

123

Command:	(setq	b	'a)

A

Now	evaluate	some	expressions:
Command:	(eval	4.0)

4.0

Command:	(eval	(abs	-10))

10

Command:	(eval	a)

123

Command:	(eval	b)

123

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	E	Functions	>	

exit
	
	
	

Forces	the	current	application	to	quit

(exit)

If	exit	is	called,	it	returns	the	error	message	quit/exit	abort	and	returns	to	the
AutoCAD	Command	prompt.

See	Also
The	quit	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	E	Functions	>	

exp
	
	
	

Returns	the	constant	e	(a	real	number)	raised	to	a	specified	power	(the	natural
antilog)

(exp	num)

Arguments

num

A	real	number.

Return	Values

A	real	(num),	raised	to	its	natural	antilogarithm.

Examples
Command:	(exp	1.0)

2.71828

Command:	(exp	2.2)

9.02501

Command:	(exp	-0.4)

0.67032

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	E	Functions	>	

expand
	
	
	

Allocates	additional	memory	for	AutoLISP

(expand	n-expand)

Arguments

n-expand

An	integer	indicating	the	amount	of	additional	memory	to	be	allocated.
Memory	is	allocated	as	follows:

n-alloc	free	symbols

n-alloc	free	strings

n-alloc	free	usubrs

n-alloc	free	reals

n-alloc	*	n-expand	cons	cells
where	n-alloc	is	the	current	segment	size.

Return	Values

An	integer	indicating	the	number	of	free	conses	divided	by	n-alloc.

Examples

Set	the	segment	size	to	100:

_$	(alloc	100)
1000

Allocate	memory	for	two	additional	segments:

_$	(expand	2)
82

This	ensures	that	AutoLISP	now	has	memory	available	for	at	least	200	additional
symbols,	strings,	usubrs	and	reals	each,	and	8200	free	conses.

See	Also
The	alloc	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	E	Functions	>	

expt
	
	
	

Returns	a	number	raised	to	a	specified	power

(expt	number	power)	

Arguments

number

Any	number.

power

The	power	to	raise	number	to.

Return	Values

If	both	arguments	are	integers,	the	result	is	an	integer;	otherwise,	the	result	is	a
real.

Examples
Command:	(expt	2	4)

16

Command:	(expt	3.0	2.0)

9.0

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	

F	Functions
	
	
	

fill_image
Draws	a	filled	rectangle	in	the	currently	active	dialog	box	image	tile
findfile
Searches	the	AutoCAD	library	path	for	the	specified	file	or	directory
fix
Returns	the	conversion	of	a	real	number	into	the	nearest	smaller	integer
float
Returns	the	conversion	of	a	number	into	a	real	number
foreach
Evaluates	expressions	for	all	members	of	a	list
function
Tells	the	Visual	LISP	compiler	to	link	and	optimize	an	argument	as	if	it
were	a	built-in	function

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	F	Functions	>	

fill_image
	
	
	

Draws	a	filled	rectangle	in	the	currently	active	dialog	box	image	tile

(fill_image	x1	y1	width	height	color)

The	first	(upper-left)	corner	of	the	rectangle	is	located	at	(x1,y1)	and	the	second
(lower-right)	corner	is	located	the	relative	distance	(width,height)	from	the	first
corner.	The	origin	(0,0)	is	the	upper-left	corner	of	the	image.	You	can	obtain	the
coordinates	of	the	lower-right	corner	by	calling	the	dimension	functions
dimx_tile	and	dimy_tile.

The	fill_image	function	must	be	used	between	start_image	and
end_image	function	calls.

Arguments

x1

X	coordinate	of	the	upper-left	corner	of	the	rectangle	located	at	(x1,y1).	Must
be	a	positive	value.

y1

Y	coordinate	of	upper-left	corner.	Must	be	a	positive	value.

width

Width	of	the	fill	area	(in	pixels),	relative	to	x1.

height

Width	of	the	fill	area	(in	pixels),	relative	to	y1.

color

An	AutoCAD	color	number,	or	one	of	the	logical	color	numbers	shown	in	the
following	table:

Symbolic	names	for	color	attribute

Color
number ADI	mnemonic Description

-2 BGLCOLOR Current	background	of	the
AutoCAD	drawing	area

-15 DBGLCOLOR Current	dialog	box
background	color

-16 DFGLCOLOR Current	dialog	box
foreground	color	(text)

-18 LINELCOLOR Current	dialog	box	line
color

Return	Values

An	integer	representing	the	fill	color.

Examples

(setq	color	-2)	;;	color	of	AutoCAD	drawing	area

(fill_image

		0

		0

		(dimx_tile	"slide_tile")

		(dimy_tile	"slide_tile")

		color

)

(end_image)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	F	Functions	>	

findfile
	
	
	

Searches	the	AutoCAD	library	path	for	the	specified	file	or	directory

(findfile	filename)	

The	findfile	function	makes	no	assumption	about	the	file	type	or	extension
of	filename.	If	filename	does	not	specify	a	drive/directory	prefix,	findfile
searches	the	AutoCAD	library	path.	If	a	drive/directory	prefix	is	supplied,
findfile	looks	only	in	that	directory.

Arguments

filename

Name	of	the	file	or	directory	to	be	searched	for.

Return	Values

A	string	containing	the	fully	qualified	file	name;	otherwise	nil,	if	the	specified
file	or	directory	is	not	found.

The	file	name	returned	by	findfile	is	suitable	for	use	with	the	open
function.

Examples

If	the	current	directory	is	/	AutoCAD	2005	and	it	contains	the	file	abc.lsp,	the
following	function	call	retrieves	the	path	name:

Command:	(findfile	"abc.lsp")

"C:\\Program	Files\\	AutoCAD	2005\\abc.lsp"

If	you	are	editing	a	drawing	in	the	/	AutoCAD	2005/drawings	directory,	and	the
ACAD	environment	variable	is	set	to	/	AutoCAD	2005/support,	and	the	file
xyz.txt	exists	only	in	the	/	AutoCAD	2005/support	directory,	then	the	following
command	retrieves	the	path	name:

Command:	(findfile	"xyz.txt")

"C:\\Program	Files\\	AutoCAD	2005\\support\\xyz.txt"

If	the	file	nosuch	is	not	present	in	any	of	the	directories	on	the	library	search
path,	findfile	returns	nil:

Command:	(findfile	"nosuch")

nil

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	F	Functions	>	

fix
	
	
	

Returns	the	conversion	of	a	real	number	into	the	nearest	smaller	integer

(fix	number)	

The	fix	function	truncates	number	to	the	nearest	integer	by	discarding	the
fractional	portion.

Arguments

number

A	real	number.

Return	Values

The	integer	derived	from	number.

If	number	is	larger	than	the	largest	possible	integer	(+2,147,483,647	or
-2,147,483,648	on	a	32-bit	platform),	fix	returns	a	truncated	real	(although
integers	transferred	between	AutoLISP	and	AutoCAD	are	restricted	to	16-bit
values).

Examples
Command:	(fix	3)

3

Command:	(fix	3.7)

3

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	F	Functions	>	

float
	
	
	

Returns	the	conversion	of	a	number	into	a	real	number

(float	number)	

Arguments

number

Any	number.

Return	Values

The	real	number	derived	from	number.

Examples
Command:	(float	3)

3.0

Command:	(float	3.75)

3.75

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	F	Functions	>	

foreach
	
	
	

Evaluates	expressions	for	all	members	of	a	list

(foreach	name	list	[expr...])

The	foreach	function	steps	through	a	list,	assigning	each	element	in	the	list	to
a	variable,	and	evaluates	each	expression	for	every	element	in	the	list.	Any
number	of	expressions	can	be	specified.

Arguments

name

Variable	that	each	element	in	the	list	will	be	assigned	to.

list

List	to	be	stepped	through	and	evaluated.

expr

Expression	to	be	evaluated	for	each	element	in	list.

Return	Values

The	result	of	the	last	expr	evaluated.	If	no	expr	is	specified,	foreach	returns
nil.

Examples

Print	each	element	in	a	list:
Command:	(foreach	n	'(a	b	c)	(print	n))

A

B

C	C

foreach	prints	each	element	in	the	list	and	returns	C,	the	last	element.	This
command	is	equivalent	to	the	following	sequence	of	commands,	except	that
foreach	returns	the	result	of	only	the	last	expression	evaluated:

(print	a)	

(print	b)	

(print	c)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	F	Functions	>	

function
	
	
	

Tells	the	Visual	LISP	compiler	to	link	and	optimize	an	argument	as	if	it	were	a
built-in	function

(function	symbol	|	lambda-expr)	

The	function	function	is	identical	to	the	quote	function,	except	it	tells	the
Visual	LISP	compiler	to	link	and	optimize	the	argument	as	if	it	were	a	built-in
function	or	defun.

Compiled	lambda	expressions	that	are	quoted	by	function	will	contain
debugging	information	when	loaded	into	the	Visual	LISP	IDE.

Arguments

symbol

A	symbol	naming	a	function.

lambda-expr

An	expression	of	the	following	form:
(LAMBDA	arguments	{S-expression}*)

Return	Values

The	result	of	the	evaluated	expression.

Examples

The	Visual	LISP	compiler	cannot	optimize	the	quoted	lambda	expression	in	the
following	code:

(mapcar

		'(lambda	(x)	(*	x	x))

							'(1	2	3))

After	adding	the	function	function	to	the	expression,	the	compiler	can
optimize	the	lambda	expression.	For	example:

(mapcar

			(function	(lambda	(x)	(*	x	x)))

						'(1	2	3))

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	

G	Functions
	
	
	

gc
Forces	a	garbage	collection,	which	frees	up	unused	memory
gcd
Returns	the	greatest	common	denominator	of	two	integers
get_attr
Retrieves	the	DCL	value	of	a	dialog	box	attribute
get_tile
Retrieves	the	current	runtime	value	of	a	dialog	box	tile
getangle
Pauses	for	user	input	of	an	angle,	and	returns	that	angle	in	radians
getcfg
Retrieves	application	data	from	the	AppData	section	of	the	acad*.cfg	file
getcname
Retrieves	the	localized	or	English	name	of	an	AutoCAD	command
getcorner
Pauses	for	user	input	of	a	rectangle's	second	corner
getdist
Pauses	for	user	input	of	a	distance
getenv
Returns	the	string	value	assigned	to	a	system	environment	variable
getfiled
Prompts	the	user	for	a	file	name	with	the	standard	AutoCAD	file	dialog
box,	and	returns	that	file	name

getint
Pauses	for	user	input	of	an	integer,	and	returns	that	integer
getkword
Pauses	for	user	input	of	a	keyword,	and	returns	that	keyword
getorient
Pauses	for	user	input	of	an	angle,	and	returns	that	angle	in	radians
getpoint
Pauses	for	user	input	of	a	point,	and	returns	that	point
getreal
Pauses	for	user	input	of	a	real	number,	and	returns	that	real	number
getstring
Pauses	for	user	input	of	a	string,	and	returns	that	string
getvar
Retrieves	the	value	of	an	AutoCAD	system	variable
graphscr
Displays	the	AutoCAD	graphics	screen
grclear
Clears	the	current	viewport	(obsolete	function)
grdraw
Draws	a	vector	between	two	points,	in	the	current	viewport
grread
Reads	values	from	any	of	the	AutoCAD	input	devices
grtext
Writes	text	to	the	status	line	or	to	screen	menu	areas
grvecs
Draws	multiple	vectors	in	the	drawing	area

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	G	Functions	>	

gc
	
	
	

Forces	a	garbage	collection,	which	frees	up	unused	memory

(gc)

See	Also
The	Memory	Management	Functions	topic	in	the	AutoLISP
Developer's	Guide.

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e9401.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	G	Functions	>	

gcd
	
	
	

Returns	the	greatest	common	denominator	of	two	integers

(gcd	int1	int2)	

Arguments

int1

An	integer;	must	be	greater	than	0.

int2

An	integer;	must	be	greater	than	0.

Return	Values

An	integer	representing	the	greatest	common	denominator	between	int1	and	int2.

Examples
Command:	(gcd	81	57)

3

Command:	(gcd	12	20)

4

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	G	Functions	>	

get_attr
	
	
	

Retrieves	the	DCL	value	of	a	dialog	box	attribute

(get_attr	key	attribute)

Arguments

key

A	string	that	specifies	the	tile.	This	parameter	is	case-sensitive.

attribute

A	string	naming	the	attribute	as	it	appears	in	the	tile's	DCL	description.

Return	Values

A	string	containing	the	attribute's	initial	value	as	specified	in	its	DCL
description.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	G	Functions	>	

get_tile
	
	
	

Retrieves	the	current	runtime	value	of	a	dialog	box	tile

(get_tile	key)

Arguments

key

A	string	that	specifies	the	tile.	This	parameter	is	case-sensitive.

Return	Values

A	string	containing	the	tile's	value.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	G	Functions	>	

getangle
	
	
	

Pauses	for	user	input	of	an	angle,	and	returns	that	angle	in	radians

(getangle	[pt]	[msg])	

Arguments

pt

A	2D	base	point	in	the	current	UCS.
The	pt	argument,	if	specified,	is	assumed	to	be	the	first	of	two	points,	so	the
user	can	show	AutoLISP	the	angle	by	pointing	to	one	other	point.	You	can
supply	a	3D	base	point,	but	the	angle	is	always	measured	in	the	current
construction	plane.

msg

A	string	to	be	displayed	to	prompt	the	user.

Return	Values

The	angle	specified	by	the	user,	in	radians.

The	getangle	function	measures	angles	with	the	zero-radian	direction	(set	by
the	ANGBASE	system	variable	in	the	Command	Reference)	with	angles
increasing	in	the	counterclockwise	direction.	The	returned	angle	is	expressed	in
radians	with	respect	to	the	current	construction	plane	(the	XY	plane	of	the	current
UCS,	at	the	current	elevation).

Examples

The	following	code	examples	show	how	different	arguments	can	be	used	with
getangle:

Command:	(setq	ang	(getangle))

Command:	(setq	ang	(getangle	'(1.0	3.5)))

Command:	(setq	ang	(getangle	"Which	way?	"))

Command:	(setq	ang	(getangle	'(1.0	3.5)	"Which	way?	"))

Usage	Notes

Users	can	specify	an	angle	by	entering	a	number	in	the	AutoCAD	current	angle
units	format.	Although	the	current	angle	units	format	might	be	in	degrees,	grads,
or	some	other	unit,	this	function	always	returns	the	angle	in	radians.	The	user
can	also	show	AutoLISP	the	angle	by	pointing	to	two	2D	locations	in	the
drawing	area.	AutoCAD	draws	a	rubber-band	line	from	the	first	point	to	the
current	crosshairs	position	to	help	you	visualize	the	angle.

It	is	important	to	understand	the	difference	between	the	input	angle	and	the	angle
returned	by	getangle.	Angles	that	are	passed	to	getangle	are	based	on	the
current	settings	of	ANGDIR	and	ANGBASE	in	the	Command	Reference.
However,	once	an	angle	is	provided,	it	is	measured	in	a	counterclockwise
direction	(ignoring	ANGDIR)	with	zero	radians	as	the	current	setting	of
ANGBASE.

The	user	cannot	enter	another	AutoLISP	expression	as	the	response	to	a
getangle	request.

See	Also
The	illustration	and	comparison	to	the	getorient	function,	the	initget
function,	and	The	getxxx	Functions	in	the	AutoLISP	Developer's
Guide.

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e9656.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	G	Functions	>	

getcfg
	
	
	

Retrieves	application	data	from	the	AppData	section	of	the	acad*.cfg	file

(getcfg	cfgname)	

Arguments

cfgname

A	string	(maximum	length	of	496	characters)	naming	the	section	and
parameter	value	to	retrieve.

The	cfgname	argument	must	be	a	string	of	the	following	form:

"AppData/application_name/section_name/.../param_name"

Return	Values

Application	data,	if	successful.	If	cfgname	is	not	valid,	getcfg	returns	nil.

Examples

Assuming	the	WallThk	parameter	in	the	AppData/ArchStuff	section	has	a	value
of	8,	the	following	command	retrieves	that	value:

Command:	(getcfg	"AppData/ArchStuff/WallThk")

"8"

See	Also
The	setcfg	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	G	Functions	>	

getcname
	
	
	

Retrieves	the	localized	or	English	name	of	an	AutoCAD	command

(getcname	cname)	

Arguments

cname

The	localized	or	underscored	English	command	name;	must	be	64	characters
or	less	in	length.

Return	Values

If	cname	is	not	preceded	by	an	underscore	(assumed	to	be	the	localized
command	name),	getcname	returns	the	underscored	English	command	name.
If	cname	is	preceded	by	an	underscore,	getcname	returns	the	localized
command	name.	This	function	returns	nil	if	cname	is	not	a	valid	command
name.

Examples

In	a	French	version	of	AutoCAD,	the	following	is	true.

(getcname	"ETIRER")returns		"_STRETCH"	

(getcname	"_STRETCH")returns		"ETIRER"	

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	G	Functions	>	

getcorner
	
	
	

Pauses	for	user	input	of	a	rectangle's	second	corner

(getcorner	pt	[msg])	

The	getcorner	function	takes	a	base	point	argument,	based	on	the	current
UCS,	and	draws	a	rectangle	from	that	point	as	the	user	moves	the	crosshairs	on
the	screen.

The	user	cannot	enter	another	AutoLISP	expression	in	response	to	a
getcorner	request.

Arguments

pt

A	point	to	be	used	as	the	base	point.

msg

A	string	to	be	displayed	to	prompt	the	user.

Return	Values

The	getcorner	function	returns	a	point	in	the	current	UCS,	similar	to
getpoint.	If	the	user	supplies	a	3D	point,	its	Z	coordinate	is	ignored.	The
current	elevation	is	used	as	the	Z	coordinate.

Examples
Command:	(getcorner	'(7.64935	6.02964	0.0))

(17.2066	1.47628	0.0)

Command:	(getcorner	'(7.64935	6.02964	0.0)	"Pick	a	corner")

Pick	a	corner(15.9584	2.40119	0.0)

See	Also

The	initget	function.	The	getxxx	Functions	in	the	AutoLISP
Developer's	Guide.

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e9899.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	G	Functions	>	

getdist
	
	
	

Pauses	for	user	input	of	a	distance

(getdist	[pt]	[msg])	

The	user	can	specify	the	distance	by	selecting	two	points,	or	by	specifying	just
the	second	point,	if	a	base	point	is	provided.	The	user	can	also	specify	a	distance
by	entering	a	number	in	the	AutoCAD	current	distance	units	format.	Although
the	current	distance	units	format	might	be	in	feet	and	inches	(architectural),	the
getdist	function	always	returns	the	distance	as	a	real.

The	getdist	function	draws	a	rubber-band	line	from	the	first	point	to	the
current	crosshairs	position	to	help	the	user	visualize	the	distance.

The	user	cannot	enter	another	AutoLISP	expression	in	response	to	a	getdist
request.

Arguments

pt

A	2D	or	3D	point	to	be	used	as	the	base	point	in	the	current	UCS.	If	pt	is
provided,	the	user	is	prompted	for	the	second	point.

msg

A	string	to	be	displayed	to	prompt	the	user.	If	no	string	is	supplied,	AutoCAD
does	not	display	a	message.

Return	Values

A	real	number.	If	a	3D	point	is	provided,	the	returned	value	is	a	3D	distance.
However,	setting	the	64	bit	of	the	initget	function	instructs	getdist	to
ignore	the	Z	component	of	3D	points	and	to	return	a	2D	distance.

Examples

(setq	dist	(getdist))	

(setq	dist	(getdist	'(1.0	3.5)))	

(setq	dist	(getdist	"How	far	"))	

(setq	dist	(getdist	'(1.0	3.5)	"How	far?	"))

See	Also
The	initget	function.	The	getxxx	Functions	in	the	AutoLISP
Developer's	Guide.

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e9997.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	G	Functions	>	

getenv
	
	
	

Returns	the	string	value	assigned	to	a	system	environment	variable

(getenv	variable-name)	

Arguments

variable-name

A	string	specifying	the	name	of	the	variable	to	be	read.	Environment	variable
names	must	be	spelled	and	cased	exactly	as	they	are	stored	in	the	system
registry.

Return	Values

A	string	representing	the	value	assigned	to	the	specified	system	variable.	If	the
variable	does	not	exist,	getenv	returns	nil.

Examples

Assume	the	system	environment	variable	ACAD	is	set	to	/acad/support	and	there
is	no	variable	named	NOSUCH.

Command:	(getenv	"ACAD")

"/acad/support"

Command:	(getenv	"NOSUCH")

nil

Assume	that	the	MaxArray	environment	variable	is	set	to	10000:
Command:	(getenv	"MaxArray")

"10000"

See	Also
The	setenvfunction.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	G	Functions	>	

getfiled
	
	
	

Prompts	the	user	for	a	file	name	with	the	standard	AutoCAD	file	dialog	box,	and
returns	that	file	name

(getfiled	title	default	ext	flags)	

The	getfiled	function	displays	a	dialog	box	containing	a	list	of	available	files
of	a	specified	extension	type.	You	can	use	this	dialog	box	to	browse	through
different	drives	and	directories,	select	an	existing	file,	or	specify	the	name	of	a
new	file.

Arguments

title

A	string	specifying	the	dialog	box	label.

default

A	default	file	name	to	use;	can	be	a	null	string	("").

ext

The	default	file	name	extension.	If	ext	is	passed	as	a	null	string	(""),	it
defaults	to	*	(all	file	types).
If	the	file	type	dwg	is	included	in	the	ext	argument,	the	getfiled	function
displays	an	image	preview	in	the	dialog	box.

flags

An	integer	value	(a	bit-coded	field)	that	controls	the	behavior	of	the	dialog
box.	To	set	more	than	one	condition	at	a	time,	add	the	values	together	to
create	a	flags	value	between	0	and	15.	The	following	flags	arguments	are
recognized	by	getfiled:
1	(bit	0) Prompt	for	the	name	of	a	new	file	to	create.	Do	not	set	this	bit

when	you	prompt	for	the	name	of	an	existing	file	to	open.	In	the	latter	case,	if
the	user	enters	the	name	of	a	file	that	doesn't	exist,	the	dialog	box	displays	an
error	message	at	the	bottom	of	the	box.
If	this	bit	is	set	and	the	user	chooses	a	file	that	already	exists,	AutoCAD
displays	an	alert	box	and	offers	the	choice	of	proceeding	with	or	canceling
the	operation.
4	(bit	2) Let	the	user	enter	an	arbitrary	file	name	extension,	or	no	extension
at	all.
If	this	bit	is	not	set,	getfiled	accepts	only	the	extension	specified	in	the
ext	argument	and	appends	this	extension	to	the	file	name	if	the	user	doesn't
enter	it	in	the	File	text	box.
8	(bit	3) If	this	bit	is	set	and	bit	0	is	not	set,	getfiled	performs	a	library
search	for	the	file	name	entered.	If	it	finds	the	file	and	its	directory	in	the
library	search	path,	it	strips	the	path	and	returns	only	the	file	name.	(It	does
not	strip	the	path	name	if	it	finds	that	a	file	of	the	same	name	is	in	a	different
directory.)
If	this	bit	is	not	set,	getfiled	returns	the	entire	file	name,	including	the
path	name.
Set	this	bit	if	you	use	the	dialog	box	to	open	an	existing	file	whose	name	you
want	to	save	in	the	drawing	(or	other	database).
16	(bit	4) If	this	bit	is	set,	or	if	the	default	argument	ends	with	a	path
delimiter,	the	argument	is	interpreted	as	a	path	name	only.	The	getfiled
function	assumes	that	there	is	no	default	file	name.	It	displays	the	path	in	the
Look	in:	line	and	leaves	the	File	name	box	blank.
32	(bit	5) If	this	bit	is	set	and	bit	0	is	set	(indicating	that	a	new	file	is	being
specified),	users	will	not	be	warned	if	they	are	about	to	overwrite	an	existing
file.	The	alert	box	to	warn	users	that	a	file	of	the	same	name	already	exists
will	not	be	displayed;	the	old	file	will	just	be	replaced.
64	(bit	6) Do	not	transfer	the	remote	file	if	the	user	specifies	a	URL.
128	(bit	7) Do	not	allow	URLs	at	all.

Return	Values

If	the	dialog	box	obtains	a	file	name	from	the	user,	getfiled	returns	a	string
that	specifies	the	file	name;	otherwise,	it	returns	nil.

Examples

The	following	call	to	getfiled	displays	the	Select	a	Lisp	File	dialog	box:

(getfiled	"Select	a	Lisp	File"	"c:/program	files/	<AutoCAD	installation	directory>/support/"	"lsp"	8)

AutoCAD	displays	the	following	dialog	box	as	a	result:

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	G	Functions	>	

getint
	
	
	

Pauses	for	user	input	of	an	integer,	and	returns	that	integer

(getint	[msg])	

Values	passed	to	getint	can	range	from	-32,768	to	+32,767.	If	the	user	enters
something	other	than	an	integer,	getint	displays	the	message,	“Requires	an
integer	value,”	and	allows	the	user	to	try	again.	The	user	cannot	enter	another
AutoLISP	expression	as	the	response	to	a	getint	request.

Arguments

msg

A	string	to	be	displayed	to	prompt	the	user;	if	omitted,	no	message	is
displayed.

Return	Values

The	integer	specified	by	the	user;	otherwise	nil,	if	the	user	presses	ENTER
without	entering	an	integer.

Examples
Command:	(setq	num	(getint))

15

15

Command:	(setq	num	(getint	"Enter	a	number:"))

Enter	a	number:	25

25

Command:	(setq	num	(getint))

15.0

Requires	an	integer	value.

15

15

See	Also
The	initget	function.	The	getxxx	Functions	in	the	AutoLISP
Developer's	Guide.

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e10358.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	G	Functions	>	

getkword
	
	
	

Pauses	for	user	input	of	a	keyword,	and	returns	that	keyword

(getkword	[msg])	

Valid	keywords	are	set	prior	to	the	getkword	call	with	the	initget	function.
The	user	cannot	enter	another	AutoLISP	expression	as	the	response	to	a
getkword	request.

Arguments

msg

A	string	to	be	displayed	to	prompt	the	user;	if	omitted,	getkword	does	not
display	a	prompting	message.

Return	Values

A	string	representing	the	keyword	entered	by	the	user;	otherwise	nil,	if	the	user
presses	ENTER	without	typing	a	keyword.	The	function	also	returns	nil	if	it
was	not	preceded	by	a	call	to	initget	to	establish	one	or	more	keywords.

If	the	user	enters	a	value	that	is	not	a	valid	keyword,	getkword	displays	a
warning	message	and	prompts	the	user	to	try	again.

Examples

The	following	example	shows	an	initial	call	to	initget	that	sets	up	a	list	of
keywords	(Yes	and	No)	and	disallows	null	input	(bits	value	equal	to	1)	to	the
getkword	call	that	follows:

Command:	(initget	1	"Yes	No")

nil

Command:	(setq	x	(getkword	"Are	you	sure?	(Yes	or	No)	"))

Are	you	sure?	(Yes	or	No)	yes

"Yes"

The	following	sequence	illustrates	what	happens	if	the	user	enters	invalid	data	in
response	to	getkword:

Command:	(initget	1	"Yes	No")

nil

Command:	(setq	x	(getkword	"Are	you	sure?	(Yes	or	No)	"))

Are	you	sure?	(Yes	or	No)	Maybe

Invalid	option	keyword.

Are	you	sure?	(Yes	or	No)	yes

"Yes"

The	user's	response	was	not	one	of	the	keywords	defined	by	the	preceding
initget,	so	getkword	issued	an	error	message	and	then	prompted	the	user
again	with	the	string	supplied	in	the	msg	argument.

See	Also
The	initget	function.	The	getxxx	Functions	in	the	AutoLISP
Developer's	Guide.

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e10510.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	G	Functions	>	

getorient
	
	
	

Pauses	for	user	input	of	an	angle,	and	returns	that	angle	in	radians

(getorient	[pt]	[msg])	

The	getorient	function	measures	angles	with	the	zero-radian	direction	to	the
right	(east)	and	angles	that	are	increasing	in	the	counterclockwise	direction.	The
angle	input	by	the	user	is	based	on	the	current	settings	of	ANGDIR	and
ANGBASE,	but	once	an	angle	is	provided,	it	is	measured	in	a	counterclockwise
direction,	with	zero	radians	being	to	the	right	(ignoring	ANGDIR	and
ANGBASE).	Therefore,	some	conversion	must	take	place	if	you	select	a
different	zero-degree	base	or	a	different	direction	for	increasing	angles	by	using
the	UNITS	command	or	the	ANGBASE	and	ANGDIR	system	variables	in	the
Command	Reference.

Use	getangle	when	you	need	a	rotation	amount	(a	relative	angle).	Use
getorient	to	obtain	an	orientation	(an	absolute	angle).

The	user	cannot	enter	another	AutoLISP	expression	as	the	response	to	a
getorient	request.

Arguments

pt

A	2D	base	point	in	the	current	UCS.
The	pt	argument,	if	specified,	is	assumed	to	be	the	first	of	two	points,	so	that
the	user	can	show	AutoLISP	the	angle	by	pointing	to	one	other	point.	You
can	supply	a	3D	base	point,	but	the	angle	is	always	measured	in	the	current
construction	plane.

msg

A	string	to	be	displayed	to	prompt	the	user.

Return	Values

The	angle	specified	by	the	user,	in	radians,	with	respect	to	the	current
construction	plane.

Examples
Command:	(setq	pt1	(getpoint	"Pick	point:	"))

(4.55028	5.84722	0.0)

Command:	(getorient	pt1	"Pick	point:	")

5.61582

See	Also
The	getangle	and	initget	functions.	The	getxxx	Functions	in	the
AutoLISP	Developer's	Guide.

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e10608.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	G	Functions	>	

getpoint
	
	
	

Pauses	for	user	input	of	a	point,	and	returns	that	point

(getpoint	[pt]	[msg])	

The	user	can	specify	a	point	by	pointing	or	by	entering	a	coordinate	in	the
current	units	format.	If	the	pt	argument	is	present,	AutoCAD	draws	a	rubber-
band	line	from	that	point	to	the	current	crosshairs	position.

The	user	cannot	enter	another	AutoLISP	expression	in	response	to	a	getpoint
request.

Arguments

pt

A	2D	or	3D	base	point	in	the	current	UCS.
Note	that	getpoint	will	accept	a	single	integer	or	real	number	as	the	pt
argument,	and	use	the	AutoCAD	direct	distance	entry	mechanism	to
determine	a	point.	This	mechanism	uses	the	value	of	the	LASTPOINT
system	variable	in	the	Command	Reference	as	the	starting	point,	the	pt	input
as	the	distance,	and	the	current	cursor	location	as	the	direction	from
LASTPOINT.	The	result	is	a	point	that	is	the	specified	number	of	units	away
from	LASTPOINT	in	the	direction	of	the	current	cursor	location.

msg

A	string	to	be	displayed	to	prompt	the	user.

Return	Values

A	3D	point,	expressed	in	terms	of	the	current	UCS.

Examples

(setq	p	(getpoint))	

(setq	p	(getpoint	"Where?	"))	

(setq	p	(getpoint	'(1.5	2.0)	"Second	point:	"))	

See	Also
The	getcorner	and	initget	functions.	The	getxxx	Functions	in	the
AutoLISP	Developer's	Guide.

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e10699.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	G	Functions	>	

getreal
	
	
	

Pauses	for	user	input	of	a	real	number,	and	returns	that	real	number

(getreal	[msg])	

The	user	cannot	enter	another	AutoLISP	expression	as	the	response	to	a
getreal	request.

Arguments

msg

A	string	to	be	displayed	to	prompt	the	user.

Return	Values

The	real	number	entered	by	the	user.

Examples

(setq	val	(getreal))	

(setq	val	(getreal	"Scale	factor:	"))

See	Also
The	initget	function.	The	getxxx	Functions	in	the	AutoLISP
Developer's	Guide.

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e10758.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	G	Functions	>	

getstring
	
	
	

Pauses	for	user	input	of	a	string,	and	returns	that	string

(getstring	[cr][msg])	

The	user	cannot	enter	another	AutoLISP	expression	as	the	response	to	a
getstring	request.

Arguments

cr

If	supplied	and	not	nil,	this	argument	indicates	that	users	can	include	blanks
in	their	input	string	(and	must	terminate	the	string	by	pressing	ENTER).
Otherwise,	the	input	string	is	terminated	by	entering	a	space	or	pressing
ENTER.

msg

A	string	to	be	displayed	to	prompt	the	user.

Return	Values

The	string	entered	by	the	user;	otherwise	nil,	if	the	user	pressed	ENTER
without	typing	a	string.

If	the	string	is	longer	than	132	characters,	getstring	returns	only	the	first	132
characters	of	the	string.	If	the	input	string	contains	the	backslash	character	(\),
getstring	converts	it	to	two	backslash	characters	(\\).	This	allows	you	to	use
returned	values	containing	file	name	paths	in	other	functions.

Examples
Command:	(setq	s	(getstring	"What's	your	first	name?	"))

What's	your	first	name?	Gary

"Gary"

Command:	(setq	s	(getstring	T	"What's	your	full	name?	"))

What's	your	full	name?	Gary	Indiana	Jones

"Gary	Indiana	Jones"

Command:	(setq	s	(getstring	T	"Enter	filename:	"))

Enter	filename:	c:\my	documents\vlisp\secrets

"c:\\my	documents\\vlisp\\secrets"

See	Also
The	initget	function.	The	getxxx	Functions	in	the	AutoLISP
Developer's	Guide.

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e10869.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	G	Functions	>	

getvar
	
	
	

Retrieves	the	value	of	an	AutoCAD	system	variable

(getvar	varname)	

Arguments

varname

A	string	or	symbol	that	names	a	system	variable.	See	the	Command
Reference	for	a	list	of	current	AutoCAD	system	variables.

Return	Values

The	value	of	the	system	variable;	otherwise	nil,	if	varname	is	not	a	valid
system	variable.

Examples

Get	the	current	value	of	the	fillet	radius:
Command:	(getvar	'FILLETRAD)

0.25

See	Also
The	setvar	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	G	Functions	>	

graphscr
	
	
	

Displays	the	AutoCAD	graphics	screen

(graphscr)	

This	function	is	equivalent	to	the	GRAPHSCR	command	in	the	Command
Reference	or	pressing	the	Flip	Screen	function	key.	The	textscr	function	is
the	complement	of	graphscr.

Returns

nil

See	Also
The	textscr	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	G	Functions	>	

grclear
	
	
	

Clears	the	current	viewport	(obsolete	function)

(grclear)	

Returns

nil

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	G	Functions	>	

grdraw
	
	
	

Draws	a	vector	between	two	points,	in	the	current	viewport

(grdraw	from	to	color	[highlight])	

Arguments

from

2D	or	3D	points	(lists	of	two	or	three	reals)	specifying	one	endpoint	of	the
vector	in	terms	of	the	current	UCS.	AutoCAD	clips	the	vector	to	fit	the
screen.

to

2D	or	3D	points	(lists	of	two	or	three	reals)	specifying	the	other	endpoint	of
the	vector	in	terms	of	the	current	UCS.	AutoCAD	clips	the	vector	to	fit	the
screen.

color

An	integer	identifying	the	color	used	to	draw	the	vector.	A	-1	signifies	XOR
ink,	which	complements	anything	it	draws	over	and	which	erases	itself	when
overdrawn.

highlight

An	integer,	other	than	zero,	indicating	that	the	vector	is	to	be	drawn	using	the
default	highlighting	method	of	the	display	device	(usually	dashed).
If	highlight	is	omitted	or	is	zero,	grdraw	uses	the	normal	display	mode.

Return	Values

nil

See	Also

The	grvecs	function	for	a	routine	that	draws	multiple	vectors.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	G	Functions	>	

grread
	
	
	

Reads	values	from	any	of	the	AutoCAD	input	devices

(grread	[track]	[allkeys	[curtype]])	

Only	specialized	AutoLISP	routines	need	this	function.	Most	input	to	AutoLISP
should	be	obtained	through	the	various	getxxx	functions.

Arguments

track

If	supplied	and	not	nil,	this	argument	enables	the	return	of	coordinates	from
a	pointing	device	as	it	is	moved.

allkeys

An	integer	representing	a	code	that	tells	grread	what	functions	to	perform.
The	allkeys	bit	code	values	can	be	added	together	for	combined	functionality.
The	following	values	can	be	specified:
1	(bit	0) Return	drag	mode	coordinates.	If	this	bit	is	set	and	the	user	moves
the	pointing	device	instead	of	selecting	a	button	or	pressing	a	key,	grread
returns	a	list	where	the	first	member	is	a	type	5	and	the	second	member	is	the
(X,Y)	coordinates	of	the	current	pointing	device	(mouse	or	digitizer)	location.
This	is	how	AutoCAD	implements	dragging.
2	(bit	1) Return	all	key	values,	including	function	and	cursor	key	codes,	and
don't	move	the	cursor	when	the	user	presses	a	cursor	key.
4	(bit	2) Use	the	value	passed	in	the	curtype	argument	to	control	the	cursor
display.
8	(bit	3) Don't	display	the	error:	console	break	message	when	the	user
presses	ESC.

curtype

An	integer	indicating	the	type	of	cursor	to	be	displayed.	The	allkeys	value	for
bit	2	must	be	set	for	the	curtype	values	to	take	effect.	The	curtype	argument
affects	only	the	cursor	type	during	the	current	grread	function	call.	You	can
specify	one	of	the	following	values	for	curtype:
0 Display	the	normal	crosshairs.
1 Do	not	display	a	cursor	(no	crosshairs).
2 Display	the	object-selection	“target”	cursor.

Return	Values

The	grread	function	returns	a	list	whose	first	element	is	a	code	specifying	the
type	of	input.	The	second	element	of	the	list	is	either	an	integer	or	a	point,
depending	on	the	type	of	input.	The	return	values	are	listed	in	the	following
table:

grread	return	values

First	element Second	element

Value Type	of
input Value Description

2 Keyboard
input

varies Character	code

3 Selected
point

3D	point Point	coordinates

4 Screen/pull-
down	menu
item	(from
pointing
device)

0	to	999
1001	to
1999
2001	to
2999
3001	to
3999

Screen	menu	box	no.
POP1	menu	box	no.
POP2	menu	box	no.
POP3	menu	box	no.
...	and	so	on,	to
POP16	menu	box	no.

…	and	so
on,	to
16001	to
16999

5 Pointing
device
(returned
only	if
tracking	is
enabled)

3D	point Drag	mode	coordinate

6 BUTTONS
menu	item

0	to	999
1000	to
1999
2000	to
2999
3000	to
3999

BUTTONS1	menu	button
no.
BUTTONS2	menu	button
no.
BUTTONS3	menu	button
no.
BUTTONS4	menu	button
no.

7 TABLET1
menu	item

0	to	32767 Digitized	box	no.

8 TABLET2
menu	item

0	to	32767 Digitized	box	no.

9 TABLET3
menu	item

0	to	32767 Digitized	box	no.

10 TABLET4
menu	item

0	to	32767 Digitized	box	no.

11 AUX	menu
item

0	to	999
1000	to
1999

AUX1	menu	button	no.
AUX2	menu	button	no.

2000	to
2999
3000	to
3999

AUX3	menu	button	no.
AUX4	menu	button	no.

12 Pointer
button
(follows	a
type	6	or	type
11	return)

3D	point Point	coordinates

Handling	User	Input	with	grread

Entering	ESC	while	a	grread	is	active	aborts	the	AutoLISP	program	with	a
keyboard	break	(unless	the	allkeys	argument	has	disallowed	this).	Any	other
input	is	passed	directly	to	grread,	giving	the	application	complete	control	over
the	input	devices.

If	the	user	presses	the	pointer	button	within	a	screen	menu	or	pull-down	menu
box,	grread	returns	a	type	6	or	type	11	code,	but	in	a	subsequent	call,	it	does
not	return	a	type	12	code:	the	type	12	code	follows	type	6	or	type	11	only	when
the	pointer	button	is	pressed	while	it	is	in	the	drawing	area.

It	is	important	to	clear	the	code	12	data	from	the	buffer	before	attempting
another	operation	with	a	pointer	button	or	an	auxiliary	button.	To	accomplish
this,	perform	a	nested	grread	like	this:

(setq	code_12	(grread	(setq	code	(grread))))

This	sequence	captures	the	value	of	the	code	12	list	as	streaming	input	from	the
device.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	G	Functions	>	

grtext
	
	
	

Writes	text	to	the	status	line	or	to	screen	menu	areas

(grtext	[box	text	[highlight]])

This	function	displays	the	supplied	text	in	the	menu	area;	it	does	not	change	the
underlying	menu	item.	The	grtext	function	can	be	called	with	no	arguments	to
restore	all	text	areas	to	their	standard	values.

Arguments

box

An	integer	specifying	the	location	in	which	to	write	the	text.

text

A	string	that	specifies	the	text	to	be	written	to	the	screen	menu	or	status	line
location.	The	text	argument	is	truncated	if	it	is	too	long	to	fit	in	the	available
area.

highlight

An	integer	that	selects	or	deselects	a	screen	menu	location.

If	called	without	arguments,	grtext	restores	all	text	areas	to	their	standard
values.	If	called	with	only	one	argument,	grtext	results	in	an	error.

Return	Values

The	string	passed	in	the	text	argument,	if	successful,	and	nil	if	unsuccessful	or
no	arguments	are	supplied.

Screen	Menu	Area

Setting	box	to	a	positive	or	zero	value	specifies	a	screen	menu	location.	Valid
box	values	range	from	0	to	the	highest-numbered	screen	menu	box	minus	1.	The

SCREENBOXES	system	variable	in	the	Command	Reference	reports	the
maximum	number	of	screen	menu	boxes.	If	the	highlight	argument	is	supplied	as
a	positive	integer,	grtext	highlights	the	text	in	the	designated	box.
Highlighting	a	box	automatically	dehighlights	any	other	box	already	highlighted.
If	highlight	is	zero,	the	menu	item	is	dehighlighted.	If	highlight	is	a	negative
number,	it	is	ignored.	On	some	platforms,	the	text	must	first	be	written	without
the	highlight	argument	and	then	must	be	highlighted.	Highlighting	of	a	screen
menu	location	works	only	when	the	cursor	is	not	in	that	area.

Status	Line	Area

If	grtext	is	called	with	a	box	value	of	-1,	it	writes	the	text	into	the	mode	status
line	area.	The	length	of	the	mode	status	line	differs	from	display	to	display	(most
allow	at	least	40	characters).	The	following	code	uses	the	$(linelen)
DIESEL	expression	to	report	the	length	of	the	mode	status	area.

(setq	modelen	(menucmd	"M=$(linelen)"))

If	a	box	value	of	-2	is	used,	grtext	writes	the	text	into	the	coordinate	status
line	area.	If	coordinate	tracking	is	turned	on,	values	written	into	this	field	are
overwritten	as	soon	as	the	pointer	sends	another	set	of	coordinates.	For	both	-1
and	-2	box	values,	the	highlight	argument	is	ignored.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	G	Functions	>	

grvecs
	
	
	

Draws	multiple	vectors	in	the	drawing	area

(grvecs	vlist	[trans])	

Arguments

vlist

A	vector	list	is	comprosed	of	a	series	of	optional	color	integers	and	two	point
lists.	See	below	for	details	on	how	to	format	vlist.

trans

A	transformation	matrix	used	to	change	the	location	or	proportion	of	the
vectors	defined	in	your	vector	list.	This	matrix	is	a	list	of	four	lists	of	four
real	numbers.

Return	Values

nil

Vector	List	Format

The	format	for	vlist	is	as	follows:

([color1]	from1	to1	[color2]	from2	to2	...)	

The	color	value	applies	to	all	succeeding	vectors	until	vlist	specifies	another
color.	AutoCAD	colors	are	in	the	range	0-255.	If	the	color	value	is	greater	than
255,	succeeding	vectors	are	drawn	in	XOR	ink,	which	complements	anything	it
draws	over	and	which	erases	itself	when	overdrawn.	If	the	color	value	is	less
than	zero,	the	vector	is	highlighted.	Highlighting	depends	on	the	display	device.
Most	display	devices	indicate	highlighting	by	a	dashed	line,	but	some	indicate	it
by	using	a	distinctive	color.

A	pair	of	point	lists,	from	and	to,	specify	the	endpoints	of	the	vectors,	expressed
in	the	current	UCS.	These	can	be	2D	or	3D	points.	You	must	pass	these	points	as
pairs—two	successive	point	lists—or	the	grvecs	call	will	fail.

AutoCAD	clips	the	vectors	as	required	to	fit	on	the	screen.

Examples

The	following	code	draws	five	vertical	lines	in	the	drawing	area,	each	a	different
color:

(grvecs	'(1	(1	2)(1	5)							Draws

a	red	line	from	(1,2)	to	(1,5)

										2	(2	2)(2	5)							Draws	a	yellow	line	from	(2,2)	to	(2,5)	

										3	(3	2)(3	5)							Draws	a	green	line	from	(3,2)	to	(3,5)	

										4	(4	2)(4	5)							Draws	a	cyan	line	from	(4,2)	to	(4,5)	

										5	(5	2)(5	5)							Draws	a	blue	line	from	(5,2)	to	(5,5)	

))

The	following	matrix	represents	a	uniform	scale	of	1.0	and	a	translation	of
5.0,5.0,0.0.	If	this	matrix	is	applied	to	the	preceding	list	of	vectors,	they	will	be
offset	by	5.0,5.0,0.0.

'((1.0	0.0	0.0	5.0)

			(0.0	1.0	0.0	5.0)

			(0.0	0.0	1.0	0.0)

			(0.0	0.0	0.0	1.0)

)

See	Also
The	nentselp	function	for	more	information	on	transformation
matrixes	and	the	grdraw	function	for	a	routine	that	draws	a	vector
between	two	points.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	

H	Functions
	
	
	

handent
Returns	an	object	(entity)	name	based	on	its	handle
help
Invokes	the	Help	facility

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	H	Functions	>	

handent
	
	
	

Returns	an	object	(entity)	name	based	on	its	handle

(handent	handle)	

The	handent	function	returns	the	entity	name	of	both	graphic	and	nongraphic
entities.

Arguments

handle

A	string	identifying	an	entity	handle.

Return	Values

If	successful,	handent	returns	the	entity	name	associated	with	handle	in	the
current	editing	session.	If	handent	is	passed	an	invalid	handle	or	a	handle	not
used	by	any	entity	in	the	current	drawing,	it	returns	nil.

The	handent	function	returns	entities	that	have	been	deleted	during	the	current
editing	session.	You	can	undelete	them	with	the	entdel	function.

An	entity's	name	can	change	from	one	editing	session	to	the	next,	but	an	entity's
handle	remains	constant.

Examples
Command:	(handent	"5A2")

<Entity	name:	60004722>

Used	with	the	same	drawing	but	in	another	editing	session,	the	same	call	might
return	a	different	entity	name.	Once	the	entity	name	is	obtained,	you	can	use	it	to
manipulate	the	entity	with	any	of	the	entity-related	functions.

See	Also

The	entdel,	entget,	entlast,	entmake,	entmakex,	entmod,	entnext,
entsel,	and	entupd	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	H	Functions	>	

help
	
	
	

Invokes	the	Help	facility

(help	[helpfile	[topic	[command]]])	

Arguments

helpfile

A	string	naming	the	Help	file.	The	file	extension	is	not	required	with	the
helpfile	argument.	If	a	file	extension	is	provided,	AutoCAD	looks	only	for	a
file	with	the	exact	name	specified.
If	no	file	extension	is	provided,	AutoCAD	looks	for	helpfile	with	an
extension	of	.chm.	If	no	file	of	that	name	is	found,	AutoCAD	looks	for	a	file
with	an	extension	of	.hlp.

topic

A	string	identifying	a	Help	topic	ID.	If	you	are	calling	a	topic	within	a	CHM
file,	provide	the	file	name	without	the	extension;	AutoCAD	adds	an	.htm
extension.

command

A	string	that	specifies	the	initial	state	of	the	Help	window.	The	command
argument	is	a	string	used	by	the	uCommand	(in	HTML	Help)	or	the
fuCommand	(in	WinHelp)	argument	of	the	HtmlHelp()	and	WinHelp()
functions	as	defined	in	the	Microsoft	Windows	SDK.
For	HTML	Help	files,	the	command	parameter	can	be
HH_ALINK_LOOKUP	or	HH_DISPLAY_TOPIC.	For	Windows	Help	files,
the	command	parameter	can	be	HELP_CONTENTS,	HELP_HELPONHELP,
or	HELP_PARTIALKEY.

Return	Values

The	helpfile	string,	if	successful;	otherwise	nil.	If	you	use	help	without	any
arguments,	it	returns	an	empty	string	("")	if	successful,	and	nil	if	it	fails.

The	only	error	condition	that	the	help	function	returns	to	the	application	is	the
existence	of	the	file	specified	by	helpfile.	All	other	error	conditions	are	reported
to	the	user	through	a	dialog	box.

Examples

The	following	code	calls	help	to	display	the	information	on	MYCOMMAND	in
the	Help	file	achelp.chm:

(help	"achelp.chm"	"mycommand")

See	Also
The	setfunhelp	function	associates	context-sensitive	Help	(when	the
user	presses	F1)	with	a	user-defined	command.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	

I	Functions
	
	
	

if
Conditionally	evaluates	expressions
initdia
Forces	the	display	of	the	next	command's	dialog	box
initget
Establishes	keywords	for	use	by	the	next	user-input	function	call
inters
Finds	the	intersection	of	two	lines
itoa
Returns	the	conversion	of	an	integer	into	a	string

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	I	Functions	>	

if
	
	
	

Conditionally	evaluates	expressions

(if	testexpr	thenexpr	[elseexpr])	

Arguments

testexpr

Expression	to	be	tested.

thenexpr

Expression	evaluated	if	testexpr	is	not	nil.

elseexpr

Expression	evaluated	if	testexpr	is	nil.

Return	Values

The	if	function	returns	the	value	of	the	selected	expression.	If	elseexpr	is
missing	and	testexpr	is	nil,	then	it	returns	nil.

Examples
Command:	(if	(=	1	3)	"YES!!"	"no.")

"no."

Command:	(if	(=	2	(+	1	1))	"YES!!")

"YES!!"

Command:	(if	(=	2	(+	3	4))	"YES!!")

nil

See	Also
The	progn	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	I	Functions	>	

initdia
	
	
	

Forces	the	display	of	the	next	command's	dialog	box

(initdia	[dialogflag])

Currently,	the	following	commands	make	use	of	the	initdia	function:
ATTDEF,	ATTEXT,	BHATCH,	BLOCK,	COLOR,	IMAGE,	IMAGEADJUST,
INSERT,	LAYER,	LINETYPE,	MTEXT,	PLOT,	RENAME,	STYLE,
TOOLBAR,	and	VIEW.

Arguments

dialogflag

An	integer.	If	this	argument	is	not	present	or	is	present	and	nonzero,	the	next
use	(and	next	use	only)	of	a	command	will	display	that	command's	dialog
box	rather	than	its	command	line	prompts.
If	dialogflag	is	zero,	any	previous	call	to	this	function	is	cleared,	restoring	the
default	behavior	of	presenting	the	command	line	interface.

Return	Values

nil

Examples

Issue	the	PLOT	command	without	calling	initdia	first:
Command:	(command	"_.PLOT")

plot

Enter	a	layout	name	<Model>:	nil

Enter	a	layout	name	<Model>:

AutoCAD	prompts	for	user	input	in	the	command	window.

Use	the	following	sequence	of	function	calls	to	make	AutoCAD	display	the	Plot

dialog	box:

(initdia)

(command	"_.PLOT")

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	I	Functions	>	

initget
	
	
	

Establishes	keywords	for	use	by	the	next	user-input	function	call

(initget	[bits]	[string])

The	functions	that	honor	keywords	are	getint,	getreal,	getdist,
getangle,	getorient,	getpoint,	getcorner,	getkword,	entsel,
nentsel,	and	nentselp.	The	getstring	function	is	the	only	user-input
function	that	does	not	honor	keywords.

The	keywords	are	checked	by	the	next	user-input	function	call	when	the	user
does	not	enter	the	expected	type	of	input	(for	example,	a	point	to	getpoint).	If
the	user	input	matches	a	keyword	from	the	list,	thefunction	returns	that	keyword
as	a	string	result.	The	application	can	test	for	the	keywords	and	perform	the
action	associated	with	each	one.	If	the	user	input	is	not	an	expected	type	and
does	not	match	a	keyword,	AutoCAD	asks	the	user	to	try	again.	The	initget
bit	values	and	keywords	apply	only	to	the	next	user-input	function	call.

If	initget	sets	a	control	bit	and	the	application	calls	a	user-input	function	for
which	the	bit	has	no	meaning,	the	bit	is	ignored.

If	the	user	input	fails	one	or	more	of	the	specified	conditions	(as	in	a	zero	value
when	zero	values	are	not	allowed),	AutoCAD	displays	a	message	and	asks	the
user	to	try	again.

Arguments

bits

A	bit-coded	integer	that	allows	or	disallows	certain	types	of	user	input.	The
bits	can	be	added	together	in	any	combination	to	form	a	value	between	0	and
255.	If	no	bits	argument	is	supplied,	zero	(no	conditions)	is	assumed.	The	bit
values	are	as	follows:
1	(bit	0) Prevents	the	user	from	responding	to	the	request	by	entering	only

ENTER.
2	(bit	1) Prevents	the	user	from	responding	to	the	request	by	entering	zero.
4	(bit	2) Prevents	the	user	from	responding	to	the	request	by	entering	a
negative	value.
8	(bit	3) Allows	the	user	to	enter	a	point	outside	the	current	drawing	limits.
This	condition	applies	to	the	next	user-input	function	even	if	the	AutoCAD
system	variable	LIMCHECK	is	currently	set.
16	(bit	4) (Not	currently	used.)
32	(bit	5) Uses	dashed	lines	when	drawing	a	rubber-band	line	or	box.	For
those	functions	with	which	the	user	can	specify	a	point	by	selecting	a
location	in	the	drawing	area,	this	bit	value	causes	the	rubber-band	line	or	box
to	be	dashed	instead	of	solid.	(Some	display	drivers	use	a	distinctive	color
instead	of	dashed	lines.)	If	the	system	variable	POPUPS	is	0,	AutoCAD
ignores	this	bit.
64	(bit	6) Prohibits	input	of	a	Z	coordinate	to	the	getdist	function;	lets	an
application	ensure	that	this	function	returns	a	2D	distance.
128	(bit	7) Allows	arbitrary	input	as	if	it	is	a	keyword,	first	honoring	any
other	control	bits	and	listed	keywords.	This	bit	takes	precedence	over	bit	0;	if
bits	7	and	0	are	set	and	the	user	presses	ENTER,	a	null	string	is	returned.
256	(bit	8) Give	direct	distance	input	precedence	over	arbitrary	input.	For
external	applications,	arbitrary	input	is	given	precedence	over	direct	distance
input	by	default.	Set	this	bit	if	you	wish	to	force	AutoCAD	to	evaluate	user
input	as	direct	distance	input.	Note	that	legal	point	input	from	the	keyboard
always	takes	precedence	over	either	direct	distance	or	arbitrary	input.
512	(bit	9) If	set	before	a	call	to	getpoint	or	getcorner,	a	temporary
UCS	will	be	established	when	the	cursor	crosses	over	the	edge	of	a	planar
face	of	a	solid.	The	temporary	UCS	is	reset	when	the	cursor	moves	off	of	a
face.	It	is	dynamically	re-established	when	the	cursor	moves	over	a	different
face.	After	the	point	is	acquired,	the	dynamic	UCS	is	reset	to	the	current
UCS.	This	functionality	is	not	enabled	for	non-planar	faces	such	as	the	side
of	a	cylinder.
1024	(bit	10) When	calling	getdist,	getangle,	getorient,
getpoint,	or	getcorner,	you	may	not	want	the	distance,	angle,	orient,
point,	or	corner	to	be	influenced	by	ortho,	polar,	or	otracking	in	the	Z
direction.	Setting	this	bit	before	calls	to	any	of	these	functions	will
temporarily	disable	ortho,	polar,	and	otracking	in	the	Z	direction.	This	is

useful	when	you	create	2D	entities	such	as	PLINE,	ARC,	or	CIRCLE,	or
when	you	use	the	ARRAY	command,	which	creates	only	a	2D	array.	In	2D-
only	commands	it	can	be	confusing	and	error-prone	to	allow	3D	points	to	be
entered	using	ortho	Z,	polar	Z,	or	otrack	Z.

Note Future	versions	of	AutoLISP	may	use	additional	initget	control	bits,
so	avoid	setting	bits	that	are	not	listed	here.

string

A	string	representing	a	series	of	keywords.	See	“Keyword	Specifications”	for
information	on	defining	keywords.

Return	Values

nil

Function	Applicable	Control	Bits

The	special	control	values	are	honored	only	by	those	getxxx	functions	for
which	they	make	sense,	as	indicated	in	the	following	table:

User-input	functions	and	applicable	control	bits

	 	 Control	bits	values

Function

Honors

key

words

No

null

(1)

No

zero

(2)

No

negative

(4)

No

limits

(8)

Uses

dashes

(32)

getint X X X X 	 	

getreal X X X X 	 	

getdist X X X X 	 X

getangle X X X 	 	 X

getorient X X X 	 	 X

getpoint X X 	 	 X X

getcorner X X 	 	 X X

getkword X X 	 	 	 	

entsel X 	 	 	 	 	

nentsel X 	 	 	 	 	

nentselp X 	 	 	 	 	

User-input	functions	and	applicable	control	bits	(continued)

	 Control	bits	values

Function

2D

distance

(64)

Arbitrary

input

(128)

Direct

distance

(256)

UCS
face

tracking

(512)

Disable

Z-
tracking

(1024)

getint 	 X 	 	 	

getreal 	 X 	 	 	

getdist X X X 	 X

getangle 	 X X 	 X

getorient 	 X X 	 X

getpoint 	 X X X X

getcorner 	 X X X X

getkword 	 X 	 	 	

entsel 	 	 	 	 	

nentsel 	 	 	 	 	

nentselp 	 	 	 	 	

Keyword	Specifications

The	string	argument	is	interpreted	according	to	the	following	rules:

1.	 Each	keyword	is	separated	from	the	following	keyword	by	one	or	more
spaces.	For	example,	"Width	Height	Depth"	defines	three
keywords.

2.	 Each	keyword	can	contain	only	letters,	numbers,	and	hyphens	(-).

There	are	two	methods	for	abbreviating	keywords:

The	required	portion	of	the	keyword	is	specified	in	uppercase	characters,
and	the	remainder	of	the	keyword	is	specified	in	lowercase	characters.
The	uppercase	abbreviation	can	be	anywhere	in	the	keyword	(for
example,	"LType",	"eXit",	or	"toP").

The	entire	keyword	is	specified	in	uppercase	characters,	and	it	is
followed	immediately	by	a	comma,	which	is	followed	by	the	required
characters	(for	example,	"LTYPE,LT").	The	keyword	characters	in	this
case	must	include	the	first	letter	of	the	keyword,	which	means	that
"EXIT,X"	is	not	valid.

The	two	brief	examples,	"LType"	and	"LTYPE,LT",	are	equivalent:	if	the
user	types	LT	(in	either	uppercase	or	lowercase	letters),	this	is	sufficient	to
identify	the	keyword.	The	user	can	enter	characters	that	follow	the	required
portion	of	the	keyword,	provided	they	don't	conflict	with	the	specification.	In	the
example,	the	user	could	also	enter	LTY	or	LTYP,	but	L	would	not	be	sufficient.

If	string	shows	the	keyword	entirely	in	uppercase	or	lowercase	characters	with
no	comma	followed	by	a	required	part,	AutoCAD	recognizes	the	keyword	only
if	the	user	enters	all	of	it.

The	initget	function	provides	support	for	localized	keywords.	The	following
syntax	for	the	keyword	string	allows	input	of	the	localized	keyword	while	it
returns	the	language	independent	keyword:

"local1local2localn_indep1indep2indepn"

where	local1	through	localn	are	the	localized	keywords,	and	indep1	through
indepn	are	the	language-independent	keywords.

There	must	always	be	the	same	number	of	localized	keywords	as	language-
independent	keywords,	and	the	first	language-independent	keyword	is	prefixed
by	an	underscore	as	shown	in	the	following	example:

(initget	"Abc	Def	_Ghi	Jkl")

(getkword	"\nEnter	an	option	(Abc/Def):	")

Entering	A	returns	Ghi	and	entering	_J	returns	Jkl.

See	Also
The	entsel,	getangle,	getcorner,	getdist,	getint,	getkword,	getorient,
getpoint,	getreal,	getstring,	nentsel,	and	nentselp	functions.	The
Control	of	User-Input	Function	Conditions	topic	in	the	AutoLISP
Developer's	Guide.

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e13020.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	I	Functions	>	

inters
	
	
	

Finds	the	intersection	of	two	lines

(inters	pt1	pt2	pt3	pt4	[onseg])	

All	points	are	expressed	in	terms	of	the	current	UCS.	If	all	four	point	arguments
are	3D,	inters	checks	for	3D	intersection.	If	any	of	the	points	are	2D,
inters	projects	the	lines	onto	the	current	construction	plane	and	checks	only
for	2D	intersection.

Arguments

pt1

One	endpoint	of	the	first	line.

pt2

The	other	endpoint	of	the	first	line.

pt3

One	endpoint	of	the	second	line.

pt4

The	other	endpoint	of	the	second	line.

onseg

If	specified	as	nil,	the	lines	defined	by	the	four	pt	arguments	are	considered
infinite	in	length.	If	the	onseg	argument	is	omitted	or	is	not	nil,	the
intersection	point	must	lie	on	both	lines	or	inters	returns	nil.

Return	Values

If	the	onseg	argument	is	present	and	is	nil,	inters	returns	the	point	where

the	lines	intersect,	even	if	that	point	is	off	the	end	of	one	or	both	of	the	lines.	If
the	onseg	argument	is	omitted	or	is	not	nil,	the	intersection	point	must	lie	on
both	lines	or	inters	returns	nil.	The	inters	function	returns	nil	if	the
two	lines	do	not	intersect.

Examples

(setq	a	'(1.0	1.0)	b	'(9.0	9.0))	

(setq	c	'(4.0	1.0)	d	'(4.0	2.0))

Command:	(inters	a	b	c	d)

nil

Command:	(inters	a	b	c	d	T)

nil

Command:	(inters	a	b	c	d	nil)

(4.0	4.0)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	I	Functions	>	

itoa
	
	
	

Returns	the	conversion	of	an	integer	into	a	string

(itoa	int)	

Arguments

int

An	integer.

Return	Values

A	string	derived	from	int.

Examples
Command:	(itoa	33)

"33"

Command:	(itoa	-17)

"-17"

See	Also
The	atoi	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	

L	Functions
	
	
	

lambda
Defines	an	anonymous	function
last
Returns	the	last	element	in	a	list
layoutlist
Returns	a	list	of	all	paper	space	layouts	in	the	current	drawing
layerstate-addlayers
Adds	or	updates	a	series	of	layers	to	a	layer	state
layerstate-delete
Deletes	a	layer	state
layerstate-export
Exports	a	layer	state	to	a	specified	file
layerstate-getlayers
Returns	the	layers	saved	in	a	layer	state
layerstate-has
Checks	if	a	layer	state	is	present
layerstate-import
Imports	a	layer	state	from	a	specified	file
layerstate-rename
Renames	a	layer	state
layerstate-restore
Restores	a	layer	state	into	the	current	drawing
layerstate-save

Saves	a	layer	state	in	the	current	drawing
length
Returns	an	integer	indicating	the	number	of	elements	in	a	list
list
Takes	any	number	of	expressions	and	combines	them	into	one	list
listp
Verifies	that	an	item	is	a	list
load
Evaluates	the	AutoLISP	expressions	in	a	file
load_dialog
Loads	a	DCL	file
log
Returns	the	natural	log	of	a	number	as	a	real	number
logand
Returns	the	result	of	the	logical	bitwise	AND	of	a	list	of	integers
logior
Returns	the	result	of	the	logical	bitwise	inclusive	OR	of	a	list	of	integers
lsh
Returns	the	logical	bitwise	shift	of	an	integer	by	a	specified	number	of
bits

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	L	Functions	>	

lambda
	
	
	

Defines	an	anonymous	function

(lambda	arguments	expr...)	

Use	the	lambda	function	when	the	overhead	of	defining	a	new	function	is	not
justified.	It	also	makes	your	intention	more	apparent	by	laying	out	the	function	at
the	spot	where	it	is	to	be	used.	This	function	returns	the	value	of	its	last	expr,
and	is	often	used	in	conjunction	with	apply	and/or	mapcar	to	perform	a
function	on	a	list.

Arguments

arguments

Arguments	passed	to	an	expression.

expr

An	AutoLISP	expression.

Return	Values

Value	of	the	last	expr.

Examples

The	following	examples	demonstrate	the	lambda	function	from	the	Visual	LISP
Console	window:

_$	(apply	'(lambda	(x	y

z)	

										(*	x	(-	y	z))	

)	

								'(5	20	14)	

)
30

_$	(setq	counter	0)

(mapcar	'(lambda	(x)	

										(setq	counter

(1+	counter))	

										(*	x	5)	

)	

								'(2	4	-6	10.2)	

)
0

(10	20	-30	51.0)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	L	Functions	>	

last
	
	
	

Returns	the	last	element	in	a	list

(last	lst)

Arguments

lst

A	list.

Return	Values

An	atom	or	a	list.

Examples
Command:	(last	'(a	b	c	d	e))

E

Command:	(last	'(a	b	c	(d	e)))

(D	E)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	L	Functions	>	

layoutlist
	
	
	

Returns	a	list	of	all	paper	space	layouts	in	the	current	drawing

(layoutlist)

Return	Values

A	list	of	strings.

Examples
Command:	(layoutlist)

("Layout1"	"Layout2")

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	L	Functions	>	

layerstate-addlayers
	
	
	

Adds	or	updates	a	series	of	layers	to	a	layer	state

(layerstate-addlayers	layerstatename	(list	layerstate

layername	state	color	linetype	lineweight	plotstyle))

Arguments

layerstatename

A	string	specifying	the	name	of	the	layer	state	to	be	updated.

layername

A	string	specifying	the	name	of	the	layer	to	be	added	or	updated.

state

An	integer	sum	designating	properties	in	the	layer	to	be	set.
1-	Turns	the	layer	off
2-	Freeze	the	layer
4-	Lock	the	layer
8-	Flag	the	layer	as	No	Plot
16-	Set	the	layer	as	being	frozen	in	new	viewports
A	nil	value	uses	defaults	of	on,	thawed,	unlocked,	plottable,	and	thawed	in
new	viewports.

color

A	dotted	pair	specifying	the	layers	color	type	and	value,	e.g.	(62	.
ColorIndex),	(420	.	TrueColor),	or	(430	.	"colorbook$colorname").

linetype

A	string	specifying	the	name	of	the	layer	linetype.	The	linetype	must	already

be	loaded	in	the	drawing	or	the	default	of	"Continuous"	will	be	used.	A	nil
value	sets	the	layer	linetype	to	"Continuous."

lineweight

An	integer	corresponding	to	a	valid	lineweight,	i.e.,	35	=	.35,	211	=	2.11.	A
nil	value	sets	the	layer	lineweight	to	"Default."

plotstyle

A	string	specifying	the	name	of	the	layers	plot	style.	The	plotstyle	name	must
already	be	loaded	in	the	drawing	or	the	default	of	"Normal"	will	be	used.	A
nil	value	sets	the	layer	plotstyle	to	"Normal."	If	the	drawing	is	in	color
dependent	mode,	this	setting	is	ignored.

Return	Values

T	if	successful;	otherwise	nil

Examples

(layerstate-addlayers	“myLayerState”	(list	“Walls”	4	'(62	.	45)	“Divide”	35	“10%	Screen”)

(list	“Floors”	6	'(420	.	16235019)	“Continuous”	40	“60%	Screen”)

(list	“Ceiling”	0	'(430	.	“RAL	CLASSIC$RAL	1003”)	“DOT”	nil	nil)))

T

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	L	Functions	>	

layerstate-delete
	
	
	

Deletes	a	layer	state

(layerstate-delete	layerstatename)

Arguments

layerstatename

A	string	specifying	the	name	of	the	layer	state	to	be	deleted.

Return	Values

T	if	the	delete	succeds;	otherwise	nil

Examples

(layerstate-delete	“myLayerState”)

T

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	L	Functions	>	

layerstate-export
	
	
	

Exports	a	layer	state	to	a	specified	file

(layerstate-export	layerstatename	filename)

Arguments

layerstatename

A	string	specifying	the	name	of	the	layer	to	export.

filename

A	string	specifying	the	name	of	the	file	to	which	the	layer	state	should	be
exported.

Return	Values

T	if	the	export	is	successful;nil	otherwise.

Examples

(layerstate-export	“myLayerState“	“c:\\mylayerstate.las“)

T

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	L	Functions	>	

layerstate-getlayers
	
	
	

Returns	the	layers	saved	in	a	layer	state

(layerstate-getlayers	layerstatename	[invert])

Arguments

layerstatename

A	string	specifying	the	name	of	the	layer	state	to	query	for	layers.

invert

If	invert	is	omitted	or	nil,	returns	a	list	of	the	layers	saved	in	the	layer	state.
If	invert	is	T,	it	returns	a	list	of	the	layers	in	the	drawing	that	are	not	saved	in
the	layer	state.

Return	Values

A	list	of	layer	names.	Returns	nil	if	the	layer	state	does	not	exist	or	contains
no	layers.

Examples

(layerstate-getlayers	“myLayerState“)

(“Layername1”	“Layername2“)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	L	Functions	>	

layerstate-has
	
	
	

Checks	if	a	layer	state	is	present

(layerstate-has	layerstatename)

Arguments

layerstatename

A	string	specifying	the	name	of	the	layer	state	to	be	queried.

Return	Values

T	if	the	name	exists;	otherwise	nil

Examples

(layerstate-has	“myLayerState”)

T

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	L	Functions	>	

layerstate-import
	
	
	

Imports	a	layer	state	from	a	specified	file

(layerstate-import	filename)

Arguments

filename

A	string	specifying	the	name	of	the	file	from	which	to	import	a	layer	state.

Return	Values

T	if	the	import	is	successful;	nil	otherwise.

Examples

(layerstate-import	“c:\\mylayerstate.las“)

T

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	L	Functions	>	

layerstate-rename
	
	
	

Renames	a	layer	state

(layerstate-rename	oldlayerstatename	newlayerstatename)

Arguments

oldlayerstatename

A	string	specifying	the	name	of	the	layer	state	to	be	renamed.

newlayerstatename

A	string	specifying	the	name	of	the	layer	state	to	be	updated.

Return	Values

T	if	the	rename	is	successful;	otherwise	nil

Examples

(layerstate-rename	“myLayerState“	“myNewLayerState“)

T

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	L	Functions	>	

layerstate-restore
	
	
	

Restores	a	layer	state	into	the	current	drawing

(layerstate-restore	layerstatename	viewport

[restoreflags])

Arguments

layerstatename

A	string	specifying	the	name	of	the	layer	to	restore.

viewport

An	ename	(ads_name)	of	the	viewport	to	which	layerstatename	should
be	restored.	If	viewport	is	nil,	the	layer	state	is	restored	to	model	space.

restoreflags

Optional	integer	sum	affecting	how	the	layer	state	is	restored.
1-	Turn	off	all	layers	not	in	the	restored	layer	state
2-	Freeze	all	layers	not	in	the	restored	layer	state
4-	Restore	the	layer	state	properties	as	viewport	overrides	(requires	viewport
to	be	not	a	nil	value).

Return	Values

nil	if	the	layer	state	does	not	exist	or	contains	no	layers;	otherwise,	returns	a
list	of	layer	names.

Examples

(layerstate-restore	“myLayerState“	viewportId	5)

(“Layername1”	“Layername2“)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	L	Functions	>	

layerstate-save
	
	
	

Saves	a	layer	state	in	the	current	drawing

(layerstate-save	layerstatenamemaskviewport)

Arguments

layerstatename

A	string	specifying	the	name	of	the	layer	state	to	save.

mask

An	integer	sum	designating	which	properties	in	the	layer	state	are	to	be
restored.
1-	Restore	the	saved	On	or	Off	value
2-	Restore	the	saved	Frozen	or	Thawed	value
4-	Restore	the	saved	Lock	value
8-	Restore	the	saved	Plot	or	No	Plot	value
16-	Restore	the	saved	VPVSDFLT	value
32-	Restore	the	saved	Color
64-	Restore	the	saved	LineType
128-	Restore	the	saved	LineWeight

viewport

An	ename	(ads_name)	of	the	viewport	whose	VPLAYER	setting	is	to	be
captured.	If	nil,	the	layer	state	will	be	saved	without	VPLAYER	settings.

Return	Values

T	if	the	save	is	successful;	otherwise	nil

Examples

(layerstate-save	“myLayerState“	21	viewportId)

T

(layerstate-save	“myLayerState“	nil	nil)

nil

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	L	Functions	>	

length
	
	
	

Returns	an	integer	indicating	the	number	of	elements	in	a	list

(length	lst)

Arguments

lst

A	list.

Return	Values

An	integer.

Examples
Command:	(length	'(a	b	c	d))

4

Command:	(length	'(a	b	(c	d)))

3

Command:	(length	'())

0

See	Also
The	vl-list-length	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	L	Functions	>	

list
	
	
	

Takes	any	number	of	expressions	and	combines	them	into	one	list

(list	[expr...])

This	function	is	frequently	used	to	define	a	2D	or	3D	point	variable	(a	list	of	two
or	three	reals).

Arguments

expr

An	AutoLISP	expression.

Return	Values

A	list,	unless	no	expressions	are	supplied,	in	which	case	list	returns	nil.

Examples

_$	(list	'a	'b	'c)
(A	B	C)	

_$	(list	'a	'(b	c)	'd)
(A	(B	C)	D)	

_$	(list	3.9	6.7)
(3.9	6.7)

As	an	alternative	to	using	the	list	function,	you	can	explicitly	quote	a	list	with
the	quote	function	if	there	are	no	variables	or	undefined	items	in	the	list.	The
single	quote	character	(')	is	defined	as	the	quote	function.

_$	'(3.9	6.7)means	the	same	as		(list	3.9	6.7)

This	can	be	useful	for	creating	association	lists	and	defining	points.

See	Also
The	quote,	vl-list*,	and	vl-list-length	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	L	Functions	>	

listp
	
	
	

Verifies	that	an	item	is	a	list

(listp	item)

Arguments

item

Any	atom,	list,	or	expression.

Return	Values

T	if	item	is	a	list;	otherwise	nil.	Because	nil	is	both	an	atom	and	a	list,	the
listp	function	returns	T	when	passed	nil.

Examples
Command:	(listp	'(a	b	c))

T

Command:	(listp	'a)

nil

Command:	(listp	4.343)

nil

Command:	(listp	nil)

T

Command:	(listp	(setq	v1	'(1	2	43)))

T

See	Also
The	vl-list*	and	vl-list-length	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	L	Functions	>	

load
	
	
	

Evaluates	the	AutoLISP	expressions	in	a	file

(load	filename	[onfailure])	

The	load	function	can	be	used	from	within	another	AutoLISP	function,	or	even
recursively	(in	the	file	being	loaded).

Arguments

filename

A	string	that	represents	the	file	name.	If	the	filename	argument	does	not
specify	a	file	extension,	load	adds	an	extension	to	the	name	when	searching
for	a	file	to	load.	The	function	will	try	several	extensions,	if	necessary,	in	the
following	order:

.vlx

.fas

.lsp
As	soon	as	load	finds	a	match,	it	stops	searching	and	loads	the	file.
The	filename	can	include	a	directory	prefix,	as	in	“c:/function/test1”.	A
forward	slash	(/)	or	two	backslashes	(\\)	are	valid	directory	delimiters.	If
you	don't	include	a	directory	prefix	in	the	filename	string,	load	searches
the	AutoCAD	library	path	for	the	specified	file.	If	the	file	is	found	anywhere
on	this	path,	load	then	loads	the	file.

onfailure

A	value	returned	if	load	fails.
If	the	onfailure	argument	is	a	valid	AutoLISP	function,	it	is	evaluated.	In
most	cases,	the	onfailure	argument	should	be	a	string	or	an	atom.	This

allows	an	AutoLISP	application	calling	load	to	take	alternative	action	upon
failure.

Return	Values

Unspecified,	if	successful.	If	load	fails,	it	returns	the	value	of	onfailure;	if
onfailure	is	not	defined,	failure	results	in	an	error	message.

Examples

For	the	following	examples,	assume	that	file	/fred/test1.lsp	contains	the
expressions

(defun	MY-FUNC1	(x)	

										...function	body...

)	

(defun	MY-FUNC2	(x)	

										...function	body...

and	that	no	file	named	test2	with	a	.lsp,	.fas,	or	.vlx	extension	exists:
Command:	(load	"/fred/test1")

MY-FUNC2

Command:	(load	"\\fred\\test1")

MY-FUNC2

Command:	(load	"/fred/test1"	"bad")

MY-FUNC2

Command:	(load	"test2"	"bad")

"bad"

Command:	(load	"test2")	causes	an	AutoLISP	error

See	Also
The	defun	and	vl-load-all	functions.	The	Symbol	and	Function
Handling	topic	in	the	AutoLISP	Developer's	Guide.

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e14405.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	L	Functions	>	

load_dialog
	
	
	

Loads	a	DCL	file

(load_dialog	dclfile)

The	load_dialog	function	searches	for	files	according	to	the	AutoCAD
library	search	path.

This	function	is	the	complement	of	unload_dialog.	An	application	can	load
multiple	DCL	files	with	multiple	load_dialog	calls.

Arguments

dclfile

A	string	that	specifies	the	DCL	file	to	load.	If	the	dclfile	argument	does	not
specify	a	file	extension,	.dcl	is	assumed.

Return	Values

A	positive	integer	value	(dcl_id)	if	successful,	or	a	negative	integer	if
load_dialog	can't	open	the	file.	The	dcl_id	is	used	as	a	handle	in
subsequent	new_dialog	and	unload_dialog	calls.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	L	Functions	>	

log
	
	
	

Returns	the	natural	log	of	a	number	as	a	real	number

(log	num)	

Arguments

num

A	positive	number.

Return	Values

A	real	number.

Examples
Command:	(log	4.5)

1.50408

Command:	(log	1.22)

0.198851

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	L	Functions	>	

logand
	
	
	

Returns	the	result	of	the	logical	bitwise	AND	of	a	list	of	integers

(logand	[int	int...])	

Arguments

int

An	integer.

Return	Values

An	integer	(0,	if	no	arguments	are	supplied).

Examples
Command:	(logand	7	15	3)

3

Command:	(logand	2	3	15)

2

Command:	(logand	8	3	4)

0

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	L	Functions	>	

logior
	
	
	

Returns	the	result	of	the	logical	bitwise	inclusive	OR	of	a	list	of	integers

(logior	[intint...])	

Arguments

int

An	integer.

Return	Values

An	integer	(0,	if	no	arguments	are	supplied).

Examples
Command:	(logior	1	2	4)

7

Command:	(logior	9	3)

11

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	L	Functions	>	

lsh
	
	
	

Returns	the	logical	bitwise	shift	of	an	integer	by	a	specified	number	of	bits

(lsh	intnumbits)	

Arguments

int

An	integer.

numbits

Number	of	bits	to	shift	int.
If	numbits	is	positive,	int	is	shifted	to	the	left;	if	numbits	is	negative,	int	is
shifted	to	the	right.	In	either	case,	zero	bits	are	shifted	in,	and	the	bits	shifted
out	are	discarded.
If	numbits	is	not	specified,	no	shift	occurs.

Return	Values

The	value	of	int	after	the	bitwise	shift.	The	returned	value	is	positive	if	the
significant	bit	(bit	number	31)	contains	a	0	after	the	shift	operation;	otherwise	it
is	negative.	If	no	arguments	are	supplied,	lsh	returns	0.

The	behavior	is	different	from	other	languages	(>>	&	<<	of	C,	C++,	or	Java)
where	more	than	32	left	shifts	(of	a	32	bit	integer)	result	in	0.	In	right	shift,	the
integer	appears	again	on	every	32	shifts.

Examples
Command:	(lsh	2	1)

4

Command:	(lsh	2	-1)

1

Command:	(lsh	40	2)

160

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	

M	Functions
	
	
	

mapcar
Returns	a	list	that	is	the	result	of	executing	a	function	with	a	list	(or	lists)
supplied	as	arguments	to	the	function
max
Returns	the	largest	of	the	numbers	given
mem
Displays	the	current	state	of	the	AutoLISP	memory
member
Searches	a	list	for	an	occurrence	of	an	expression	and	returns	the
remainder	of	the	list,	starting	with	the	first	occurrence	of	the	expression
menucmd
Issues	menu	commands,	or	sets	and	retrieves	menu	item	status
menugroup
Verifies	that	a	menugroup	is	loaded
min
Returns	the	smallest	of	the	numbers	given
minusp
Verifies	that	a	number	is	negative
mode_tile
Sets	the	mode	of	a	dialog	box	tile

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	M	Functions	>	

mapcar
	
	
	

Returns	a	list	that	is	the	result	of	executing	a	function	with	a	list	(or	lists)
supplied	as	arguments	to	the	function

(mapcar	functionlist1...	listn)

Arguments

function

A	function.

list1...	listn

One	or	more	lists.	The	number	of	lists	must	match	the	number	of	arguments
required	by	function.

Return	Values

A	list.

Examples
Command:	(setq	a	10	b	20	c	30)

30

Command:	(mapcar	'1+	(list	a	b	c))

(11	21	31)

This	is	equivalent	to	the	following	series	of	expressions,	except	that	mapcar
returns	a	list	of	the	results:

(1+	a)

(1+	b)

(1+	c)

The	lambda	function	can	specify	an	anonymous	function	to	be	performed	by

mapcar.	This	is	useful	when	some	of	the	function	arguments	are	constant	or	are
supplied	by	some	other	means.	The	following	example,	entered	from	the	Visual
LISP	Console	window,	demonstrates	the	use	of	lambda	with	mapcar:

_$	(mapcar		'(lambda	(x)	

										(+	x	3)

)	

									'(10	20	30)

)
(13	23	33)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	M	Functions	>	

max
	
	
	

Returns	the	largest	of	the	numbers	given

(max	[number

number...])	

Arguments

number

A	number.

Return	Values

A	number.	If	any	of	the	arguments	are	real	numbers,	a	real	is	returned;	otherwise
an	integer	is	returned.	If	no	argument	is	supplied,	max	returns	0.

Examples
Command:	(max	4.07	-144)

4.07

Command:	(max	-88	19	5	2)

19

Command:	(max	2.1	4	8)

8.0

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	M	Functions	>	

mem
	
	
	

Displays	the	current	state	of	the	AutoLISP	memory

(mem)

The	mem	function	displays	statistics	on	AutoLISP	memory	usage.	The	first	line
of	this	statistics	report	contains	the	following	information:

GC	calls

Number	of	garbage	collection	calls	since	AutoLISP	started.

GC	run	time

Total	time	spent	collecting	garbage	(in	milliseconds).

LISP	objects	are	allocated	in	dynamic	(heap)	memory	that	is	organized	in
segments	and	divided	into	pages.	Memory	is	described	under	the	heading,
“Dynamic	Memory	Segments	Statistics”:

PgSz

Dynamic	memory	page	size	(in	KB).

Used

Number	of	pages	used.

Free

Number	of	free	(empty)	pages.

FMCL

Largest	contiguous	area	of	free	pages.

Segs

Number	of	segments	allocated.

Type

Internal	description	of	the	types	of	objects	allocated	in	this	segment.	These
include
lisp	stacks—LISP	internal	stacks
bytecode	area—compiled	code	function	modules
CONS	memory—CONS	objects
::new—untyped	memory	requests	served	using	this	segment
DM	Str—dynamic	string	bodies
DMxx	memory—all	other	LISP	nodes
bstack	body—internal	structure	used	for	IO	operations

The	final	line	in	the	report	lists	the	minimal	segment	size	and	the	number	of
allocated	segments.	AutoLISP	keeps	a	list	of	no	more	than	three	free	segments	in
order	to	save	system	calls	for	memory	requests.

All	heap	memory	is	global;	that	is,	all	AutoCAD	documents	share	the	same
heap.	This	could	change	in	future	releases	of	AutoCAD.

Note	that	mem	does	not	list	all	memory	requested	from	the	operating	system;	it
lists	only	those	requests	served	by	the	AutoLISP	Dynamic	Memory	(DM)
subsystem.	Some	AutoLISP	classes	do	not	use	DM	for	memory	allocation.

Return	Values

nil

Examples
Command:	(mem)

;	GC	calls:	23;	GC	run	time:	298	ms

Dynamic	memory	segments	statistic:

PgSz		Used		Free		FMCL		Segs		Type

	512				79				48				48					1		lisp	stacks

	256		3706			423			142				16		bytecode	area

4096			320				10				10				22		CONS	memory

		32			769		1213		1089					1		::new

4096			168				12				10				12		DM	Str

4096			222					4					4				15		DMxx	memory

	128					4			507			507					1		bstack	body

Segment	size:	65536,	total	used:	68,	free:	0

nil

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	M	Functions	>	

member
	
	
	

Searches	a	list	for	an	occurrence	of	an	expression	and	returns	the	remainder	of
the	list,	starting	with	the	first	occurrence	of	the	expression

(member	expr	lst)

Arguments

expr

The	expression	to	be	searched	for.

lst

The	list	in	which	to	search	for	expr.

Return	Values

A	list;	otherwise	nil,	if	there	is	no	occurrence	of	expr	in	lst.

Examples
Command:	(member	'c	'(a	b	c	d	e))

(C	D	E)

Command:	(member	'q	'(a	b	c	d	e))

nil

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	M	Functions	>	

menucmd
	
	
	

Issues	menu	commands,	or	sets	and	retrieves	menu	item	status

(menucmd	string)	

The	menucmd	function	can	switch	between	subpages	in	an	AutoCAD	menu.
This	function	can	also	force	the	display	of	menus.	This	allows	AutoLISP
programs	to	use	image	tile	menus	and	to	display	other	menus	from	which	the
user	can	make	selections.	AutoLISP	programs	can	also	enable,	disable,	and	place
marks	in	menu	items.

Arguments

string

A	string	that	specifies	a	menu	area	and	the	value	to	assign	to	that	menu	area.
The	string	argument	has	the	following	parameters:
"menu_area=value"

The	allowed	values	of	menu_area,	shown	in	the	following	list,	are	the	same
as	they	are	in	menu	file	submenu	references.	For	more	information,	see
“Overview	of	Pull-Down	and	Shortcut	Menus”	in	the	Customization	Guide.
B1-B4 BUTTONS	menus	1	through	4.
A1-A4 AUX	menus	1	through	4.
P0-P16 Pull-down	(POP)	menus	0	through	16.
I Image	tile	menus.
S SCREEN	menu.
T1-T4 TABLET	menus	1	through	4.
M DIESEL	string	expressions.
Gmenugroup.nametag A	menugroup	and	name	tag.

Return	Values

nil

Examples

The	following	code	displays	the	image	tile	menu	MOREICONS:

(menucmd	"I=moreicons")							Loads

the	MOREICONS	image	tile	menu

(menucmd	"I=*")															Displays

the	menu

The	following	code	checks	the	status	of	the	third	menu	item	in	the	pull-down
menu	POP11.	If	the	menu	item	is	currently	enabled,	the	menucmd	function
disables	it.

(setq	s	(menucmd	"P11.3=?"))		Gets	the	status	of	the	menu	item

(if	(=	s	"")																		If	the	status	is	an	empty	string,

		(menucmd	"P11.3=~")									disable	the	menu	item

)

The	previous	code	is	not	foolproof.	In	addition	to	being	enabled	or	disabled,
menu	items	can	also	receive	marks.	The	code	(menucmd	"P11.3=?")	could
return	"!.",	indicating	that	the	menu	item	is	currently	checked.	This	code
would	assume	that	the	menu	item	is	disabled	and	continue	without	disabling	it.	If
the	code	included	a	call	to	the	wcmatch	function,	it	could	check	the	status	for
an	occurrence	of	the	tilde	(~)	character	and	then	take	appropriate	action.

The	menucmd	function	also	allows	AutoLISP	programs	to	take	advantage	of	the
DIESEL	string	expression	language.	Some	things	can	be	done	more	easily	with
DIESEL	than	with	the	equivalent	AutoLISP	code.	The	following	code	returns	a
string	containing	the	current	day	and	date:

(menucmd	"M=$(edtime,$(getvar,date),DDDD\",\"	D	MONTH	YYYY)")

	returns			"Sunday,	16	July	1995"

See	Also
The	Customization	Guide	for	more	information	on	using	AutoLISP
to	access	menu	label	status,	and	for	information	on	using	DIESEL.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	M	Functions	>	

menugroup
	
	
	

Verifies	that	a	menugroup	is	loaded

(menugroup	groupname)	

Arguments

groupname

A	string	that	specifies	the	menugroup	name.

Return	Values

If	groupname	matches	a	loaded	menugroup,	the	function	returns	the	groupname
string;	otherwise,	it	returns	nil.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	M	Functions	>	

min
	
	
	

Returns	the	smallest	of	the	numbers	given

(min	[number

number...])	

Arguments

number

A	number.

Return	Values

A	number.	If	any	number	argument	is	a	real,	a	real	is	returned;	otherwise,	an
integer	is	returned.	If	no	argument	is	supplied,	min	returns	0.

Examples
Command:	(min	683	-10.0)

-10.0

Command:	(min	73	2	48	5)

2

Command:	(min	73.0	2	48	5)

2.0

Command:	(min	2	4	6.7)

2.0

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	M	Functions	>	

minusp
	
	
	

Verifies	that	a	number	is	negative

(minusp	num)	

Arguments

num

A	number.

Return	Values

T	if	number	is	negative;	otherwise	nil.

Examples
Command:	(minusp	-1)

T

Command:	(minusp	-4.293)

T

Command:	(minusp	830.2)

nil

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	M	Functions	>	

mode_tile
	
	
	

Sets	the	mode	of	a	dialog	box	tile

(mode_tile	key	mode)

Arguments

key

A	string	that	specifies	the	tile.	The	key	argument	is	case-sensitive.

mode

An	integer	that	can	be	one	of	the	following:
0 Enable	tile
1 Disable	tile
2 Set	focus	to	tile
3 Select	edit	box	contents
4 Flip	image	highlighting	on	or	off

Return	Values
nil

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	

N	Functions
	
	
	

namedobjdict
Returns	the	entity	name	of	the	current	drawing's	named	object
dictionary,	which	is	the	root	of	all	nongraphical	objects	in	the	drawing
nentsel
Prompts	the	user	to	select	an	object	(entity)	by	specifying	a	point,	and
provides	access	to	the	definition	data	contained	within	a	complex	object
nentselp
Provides	similar	functionality	to	that	of	the	nentsel	function	without	the
need	for	user	input
new_dialog
Begins	a	new	dialog	box	and	displays	it,	and	can	also	specify	a	default
action
not
Verifies	that	an	item	evaluates	to	nil
nth
Returns	the	nth	element	of	a	list
null
Verifies	that	an	item	is	bound	to	nil
numberp
Verifies	that	an	item	is	a	real	number	or	an	integer

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	N	Functions	>	

namedobjdict
	
	
	

Returns	the	entity	name	of	the	current	drawing's	named	object	dictionary,	which
is	the	root	of	all	nongraphical	objects	in	the	drawing

(namedobjdict)	

Using	the	name	returned	by	this	function	and	the	dictionary	access	functions,	an
application	can	access	the	nongraphical	objects	in	the	drawing.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	N	Functions	>	

nentsel
	
	
	

Prompts	the	user	to	select	an	object	(entity)	by	specifying	a	point,	and	provides
access	to	the	definition	data	contained	within	a	complex	object

(nentsel	[msg])	

The	nentsel	function	prompts	the	user	to	select	an	object.	The	current	Object
Snap	mode	is	ignored	unless	the	user	specifically	requests	it.	To	provide
additional	support	at	the	Command	prompt,	nentsel	honors	keywords	defined
by	a	previous	call	to	initget.

Arguments

msg

A	string	to	be	displayed	as	a	prompt.	If	the	msg	argument	is	omitted,	the
Select	Object	prompt	is	issued.

Return	Values

When	the	selected	object	is	not	complex	(that	is,	not	a	3D	polyline	or	block),
nentsel	returns	the	same	information	as	entsel.	However,	if	the	selected
object	is	a	3D	polyline,	nentsel	returns	a	list	containing	the	name	of	the
subentity	(vertex)	and	the	pick	point.	This	is	similar	to	the	list	returned	by
entsel,	except	that	the	name	of	the	selected	vertex	is	returned	instead	of	the
polyline	header.	The	nentsel	function	always	returns	the	starting	vertex	of	the
selected	3D	polyline	segment.	Picking	the	third	segment	of	the	polyline,	for
example,	returns	the	third	vertex.	The	Seqend	subentity	is	never	returned	by
nentsel	for	a	3D	polyline.

Note A	lightweight	polyline	(lwpolyline	entity)	is	defined	in	the	drawing	database
as	a	single	entity;	it	does	not	contain	subentities.

Selecting	an	attribute	within	a	block	reference	returns	the	name	of	the	attribute

and	the	pick	point.	When	the	selected	object	is	a	component	of	a	block	reference
other	than	an	attribute,	nentsel	returns	a	list	containing	four	elements.

The	first	element	of	the	list	returned	from	picking	an	object	within	a	block	is	the
selected	entity's	name.

The	second	element	is	a	list	containing	the	coordinates	of	the	point	used	to	pick
the	object.

The	third	element	is	called	the	Model	to	World	Transformation	Matrix.	It	is	a	list
consisting	of	four	sublists,	each	of	which	contains	a	set	of	coordinates.	This
matrix	can	be	used	to	transform	the	entity	definition	data	points	from	an	internal
coordinate	system	called	the	Model	Coordinate	System	(MCS),	to	the	World
Coordinate	System	(WCS).	The	insertion	point	of	the	block	that	contains	the
selected	entity	defines	the	origin	of	the	MCS.	The	orientation	of	the	UCS	when
the	block	is	created	determines	the	direction	of	the	MCS	axes.

Note nentsel	is	the	only	AutoLISP	function	that	uses	a	matrix	of	this	type;	the
nentselp	function	returns	a	matrix	similar	to	those	used	by	other	AutoLISP
and	ObjectARX	functions.

The	fourth	element	is	a	list	containing	the	entity	name	of	the	block	that	contains
the	selected	object.	If	the	selected	object	is	in	a	nested	block	(a	block	within	a
block),	the	list	also	contains	the	entity	names	of	all	blocks	in	which	the	selected
object	is	nested,	starting	with	the	innermost	block	and	continuing	outward	until
the	name	of	the	block	that	was	inserted	in	the	drawing	is	reported.

For	information	about	converting	MCS	coordinates	to	WCS,	see	the	Entity
Context	and	Coordinate	Transform	Data	topic	in	Using	AutoLISP	to	Manipulate
AutoCAD	Objects	in	the	AutoLISP	Developer's	Guide.

Examples

Draw	a	3D	polyline	with	multiple	line	segments;	then	load	and	run	the	following
function	and	select	different	segments	of	the	line.	Pick	off	the	line	and	then	pick
the	same	segments	again	to	see	the	subentity	handle.	Try	it	with	a	lightweight
polyline	to	see	the	difference.

(defun	c:subent	()

		(while			

					(setq	Ent	(entsel	"\nPick	an	entity:	"))

					(print	(strcat	"Entity	handle	is:	"	

										(cdr	(assoc	5	(entget	(car	Ent))))))

javascript:hhctrl_d0e15669.Click()
javascript:hhctrl_d0e15672.Click()

)

			(while			

						(setq	Ent	(nentsel	"\nPick	an	entity	or	subEntity:	"))

						(print	(strcat	"Entity	or	subEntity	handle	is:		"	

										(cdr	(assoc	5	(entget	(car	Ent))))))

)

		(prompt	"\nDone.")

		(princ)

)

See	Also
The	entsel,	initget,and	nentselp	functions.	The	Entity	Name
Functions	in	the	AutoLISP	Developer's	Guide.

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e15727.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	N	Functions	>	

nentselp
	
	
	

Provides	similar	functionality	to	that	of	the	nentsel	function	without	the	need	for
user	input

(nentselp	[msg]	[pt])	

Arguments

msg

A	string	to	be	displayed	as	a	prompt.	If	the	msg	argument	is	omitted,	the
Select	object	prompt	is	issued.

pt

A	selection	point.	This	allows	object	selection	without	user	input.

Return	Values

The	nentselp	function	returns	a	4×4	transformation	matrix,	defined	as
follows:

The	first	three	columns	of	the	matrix	specify	scaling	and	rotation.	The	fourth
column	is	a	translation	vector.

The	functions	that	use	a	matrix	of	this	type	treat	a	point	as	a	column	vector	of
dimension	4.	The	point	is	expressed	in	homogeneous	coordinates,	where	the
fourth	element	of	the	point	vector	is	a	scale	factor	that	is	normally	set	to	1.0.	The
final	row	of	the	matrix,	the	vector	[M30M31M32M33],	has	the	nominal	value	of	[0
0	0	1];	it	is	currently	ignored	by	the	functions	that	use	this	matrix	format.	In	this
convention,	applying	a	transformation	to	a	point	is	a	matrix	multiplication	that
appears	as	follows:

This	multiplication	gives	us	the	individual	coordinates	of	the	point	as	follows:

As	these	equations	show,	the	scale	factor	and	the	last	row	of	the	matrix	have	no

effect	and	are	ignored.

See	Also
The	initget	and	nentsel	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	N	Functions	>	

new_dialog
	
	
	

Begins	a	new	dialog	box	and	displays	it,	and	can	also	specify	a	default	action

(new_dialog	dlgname	dcl_id	[action

[screen-pt]])

Arguments

dlgname

A	string	that	specifies	the	dialog	box.

dcl_id

The	DCL	file	identifier	obtained	by	load_dialog.

action

A	string	that	contains	an	AutoLISP	expression	to	use	as	the	default	action.	If
you	don't	want	to	define	a	default	action,	specify	an	empty	string	("").	The
action	argument	is	required	if	you	specify	screen-pt.
The	default	action	is	evaluated	when	the	user	picks	an	active	tile	that	doesn't
have	an	action	or	callback	explicitly	assigned	to	it	by	action_tile	or	in
DCL.

screen-pt

A	2D	point	list	that	specifies	the	X,Y	location	of	the	dialog	box	on	the	screen.
The	point	specifies	the	upper-left	corner	of	the	dialog	box.	If	you	pass	the
point	as'(-1	-1),	the	dialog	box	is	opened	in	the	default	position	(the
center	of	the	AutoCAD	drawing	area).

Return	Values

T,	if	successful;	otherwise	nil.

See	Also
The	Managing	Dialog	Boxes	chapter	of	the	AutoLISP	Developer's
Guide.

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e15912.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	N	Functions	>	

not
	
	
	

Verifies	that	an	item	evaluates	to	nil

(not	item)	

Typically,	the	null	function	is	used	for	lists,	and	not	is	used	for	other	data
types	along	with	some	types	of	control	functions.

Arguments

item

An	AutoLISP	expression.

Return	Values

T	if	item	evaluates	to	nil;	otherwise	nil.

Examples
Command:	(setq	a	123	b	"string"	c	nil)

nil

Command:	(not	a)

nil

Command:	(not	b)

nil

Command:	(not	c)

T

Command:	(not	'())

T

See	Also
The	null	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	N	Functions	>	

nth
	
	
	

Returns	the	nth	element	of	a	list

(nth	n	lst)

Arguments

n

The	number	of	the	element	to	return	from	the	list	(zero	is	the	first	element).

lst

The	list.

Return	Values

The	nth	element	of	lst.	If	n	is	greater	than	the	highest	element	number	of	lst,
nth	returns	nil.

Examples
Command:	(nth	3	'(a	b	c	d	e))

D

Command:	(nth	0	'(a	b	c	d	e))

A

Command:	(nth	5	'(a	b	c	d	e))

nil

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	N	Functions	>	

null
	
	
	

Verifies	that	an	item	is	bound	to	nil

(null	item)

Arguments

item

An	AutoLISP	expression.

Return	Values

T	if	item	evaluates	to	nil;	otherwise	nil.

Examples
Command:	(setq	a	123	b	"string"	c	nil)

nil

Command:	(null	a)

nil

Command:	(null	b)

nil

Command:	(null	c)

T

Command:	(null	'())

T

See	Also
The	not	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	N	Functions	>	

numberp
	
	
	

Verifies	that	an	item	is	a	real	number	or	an	integer

(numberp	item)

Arguments

item

An	AutoLISP	expression.

Return	Values

T	if	item	evaluates	to	a	real	or	an	integer;	otherwise	nil.

Examples
Command:	(setq	a	123	b	'a)

A

Command:	(numberp	4)

T

Command:	(numberp	3.8348)

T

Command:	(numberp	"Howdy")

nil

Command:	(numberp	a)

T

Command:	(numberp	b)

nil

Command:	(numberp	(eval	b))

T

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	

O	Functions
	
	
	

open
Opens	a	file	for	access	by	the	AutoLISP	I/O	functions
or
Returns	the	logical	OR	of	a	list	of	expressions
osnap
Returns	a	3D	point	that	is	the	result	of	applying	an	Object	Snap	mode	to
a	specified	point

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	O	Functions	>	

open
	
	
	

Opens	a	file	for	access	by	the	AutoLISP	I/O	functions

(open	filename	mode)	

Arguments

filename

A	string	that	specifies	the	name	and	extension	of	the	file	to	be	opened.	If	you
do	not	specify	the	full	path	name	of	the	file,	open	assumes	you	are	referring
to	the	AutoCAD	default	drawing	directory.

mode

Indicates	whether	the	file	is	open	for	reading,	writing,	or	appending.	Specify
a	string	containing	one	of	the	following	letters:
r Open	for	reading.
w Open	for	writing.	If	filename	does	not	exist,	a	new	file	is	created	and
opened.	If	filename	already	exists,	its	existing	data	is	overwritten.	Data
passed	to	an	open	file	is	not	actually	written	until	the	file	is	closed	with	the
close	function.
a Open	for	appending.	If	filename	does	not	exist,	a	new	file	is	created	and
opened.	If	filename	already	exists,	it	is	opened	and	the	pointer	is	positioned	at
the	end	of	the	existing	data,	so	new	data	you	write	to	the	file	is	appended	to
the	existing	data.
The	mode	argument	can	be	uppercase	or	lowercase.	Note	that	in	releases
prior	to	AutoCAD	2000,	mode	had	to	be	specified	in	lowercase.

Return	Values

If	successful,	open	returns	a	file	descriptor	that	can	be	used	by	the	other	I/O
functions.	If	mode	"r"	is	specified	and	filename	does	not	exist,	open	returns

nil.

Note On	DOS	systems,	some	programs	and	text	editors	write	text	files	with	an
end-of-file	marker	(CTRL+Z,	decimal	ASCII	code	26)	at	the	end	of	the	text.
When	reading	a	text	file,	DOS	returns	an	end-of-file	status	if	a	CTRL+Z	marker
is	encountered,	even	if	that	marker	is	followed	by	more	data.	If	you	intend	to	use
open"a"	mode	to	append	data	to	files	produced	by	another	program,	be	certain
the	other	program	does	not	insert	CTRL+Z	markers	at	the	end	of	its	text	files.

Examples

Open	an	existing	file:
Command:	(setq	a	(open	"c:/program	files/	<AutoCAD	installation	directory>/help/filelist.txt"
"r"))

#<file	"c:/program	files/	<AutoCAD	installation	directory>/help/filelist.txt">

The	following	examples	issue	open	against	files	that	do	not	exist:
Command:	(setq	f	(open	"c:\\my	documents\\new.tst"	"w"))

#<file	"c:\\my	documents\\new.tst">

Command:	(setq	f	(open	"nosuch.fil"	"r"))

nil

Command:	(setq	f	(open	"logfile"	"a"))

#<file	"logfile">

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	O	Functions	>	

or
	
	
	

Returns	the	logical	OR	of	a	list	of	expressions

(or	[expr...])	

The	or	function	evaluates	the	expressions	from	left	to	right,	looking	for	a	non-
nil	expression.

Arguments

expr

The	expressions	to	be	evaluated.

Return	Values

T,	if	a	non-nil	expression	is	found;	otherwise	nil,	if	all	of	the	expressions	are
nil	or	no	arguments	are	supplied.

Note	that	or	accepts	an	atom	as	an	argument	and	returns	T	if	one	is	supplied.

Examples
Command:	(or	nil	45	'())

T

Command:	(or	nil	'())

nil

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	O	Functions	>	

osnap
	
	
	

Returns	a	3D	point	that	is	the	result	of	applying	an	Object	Snap	mode	to	a
specified	point

(osnap	pt	mode)	

Arguments

pt

A	point.

mode

A	string	that	consists	of	one	or	more	valid	Object	Snap	identifiers,	such	as
mid,	cen,	and	so	on,	separated	by	commas.

Return	Values

A	point;	otherwise	nil,	if	the	pick	did	not	return	an	object	(for	example,	if	there
is	no	geometry	under	the	pick	aperture,	or	if	the	geometry	is	not	applicable	to	the
selected	object	snap	mode).	The	point	returned	by	osnap	depends	on	the
current	3D	view,	the	AutoCAD	entity	around	pt,	and	the	setting	of	the
APERTURE	system	variable	in	the	Command	Reference.

Examples
Command:	(setq	pt1	(getpoint))

(11.8637	3.28269	0.0)

Command:	(setq	pt2	(osnap	pt1	"_end,_int"))

(12.1424	3.42181	0.0)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	

P	Functions
	
	
	

polar
Returns	the	UCS	3D	point	at	a	specified	angle	and	distance	from	a	point
prin1
Prints	an	expression	to	the	command	line	or	writes	an	expression	to	an
open	file
princ
Prints	an	expression	to	the	command	line,	or	writes	an	expression	to	an
open	file
print
Prints	an	expression	to	the	command	line,	or	writes	an	expression	to	an
open	file
progn
Evaluates	each	expression	sequentially	and	returns	the	value	of	the	last
expression
prompt
Displays	a	string	on	your	screen's	prompt	area

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	P	Functions	>	

polar
	
	
	

Returns	the	UCS	3D	point	at	a	specified	angle	and	distance	from	a	point

(polar	pt	ang	dist)

Arguments

pt

A	2D	or	3D	point.

ang

An	angle	expressed	in	radians	relative	to	the	world	X	axis.	Angles	increase	in
the	counterclockwise	direction,	independent	of	the	current	construction	plane.

dist

Distance	from	the	specified	pt.

Return	Values

A	2D	or	3D	point,	depending	on	the	type	of	point	specified	by	pt.

Examples

Supplying	a	3D	point	to	polar:
Command:	(polar	'(1	1	3.5)	0.785398	1.414214)

(2.0	2.0	3.5)

Supplying	a	2D	point	to	polar:
Command:	(polar	'(1	1)	0.785398	1.414214)

(2.0	2.0)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	P	Functions	>	

prin1
	
	
	

Prints	an	expression	to	the	command	line	or	writes	an	expression	to	an	open	file

(prin1	[expr	[file-desc]])

Arguments

expr

A	string	or	AutoLISP	expression.	Only	the	specified	expr	is	printed;	no
newline	or	space	is	included.

file-desc

A	file	descriptor	for	a	file	opened	for	writing.

Return	Values

The	value	of	the	evaluated	expr.	If	called	with	no	arguments,	prin1	returns	a
null	symbol.

Used	as	the	last	expression	in	a	function,	prin1	without	arguments	prints	a
blank	line	when	the	function	completes,	allowing	the	function	to	exit	“quietly.”

Examples
Command:	(setq	a	123	b	'(a))

(A)

Command:	(prin1	'a)

AA

The	previous	command	printed	A	and	returned	A.
Command:	(prin1	a)

123123

The	previous	command	printed	123	and	returned	123.

Command:	(prin1	b)

(A)(A)

The	previous	command	printed	(A)	and	returned	(A).

Each	preceding	example	is	displayed	on	the	screen	because	no	file-desc	was
specified.	Assuming	that	f	is	a	valid	file	descriptor	for	a	file	opened	for	writing,
the	following	function	call	writes	a	string	to	that	file	and	returns	the	string:

Command:	(prin1	"Hello"	f)

"Hello"

If	expr	is	a	string	containing	control	characters,	prin1	expands	these	characters
with	a	leading	\,	as	shown	in	the	following	table:

Control	codes

Code Description

\\ \	character

\" "	character

\e Escape	character

\n Newline	character

\r Return	character

\t TAB	character

\nnn Character	whose	octal	code	is	nnn

The	following	example	shows	how	to	use	control	characters:
Command:	(prin1	(chr	2))

"\002""\002"

See	Also

Displaying	Messages	in	the	AutoLISP	Developer's	Guide.

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e16843.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	P	Functions	>	

princ
	
	
	

Prints	an	expression	to	the	command	line,	or	writes	an	expression	to	an	open	file

(princ	[expr	[file-desc]])

This	function	is	the	same	as	prin1,	except	control	characters	in	expr	are	printed
without	expansion.	In	general,	prin1	is	designed	to	print	expressions	in	a	way
that	is	compatible	with	load,	while	princ	prints	them	in	a	way	that	is	readable
by	functions	such	as	read-line.

Arguments

expr

A	string	or	AutoLISP	expression.	Only	the	specified	expr	is	printed;	no
newline	or	space	is	included.

file-desc

A	file	descriptor	for	a	file	opened	for	writing.

Return	Values

The	value	of	the	evaluated	expr.	If	called	with	no	arguments,	princ	returns	a
null	symbol.

See	Also
The	Displaying	Messages	topic	in	the	AutoLISP	Developer's	Guide.

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e16932.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	P	Functions	>	

print
	
	
	

Prints	an	expression	to	the	command	line,	or	writes	an	expression	to	an	open	file

(print	[expr	[file-desc]])

This	function	is	the	same	as	prin1,	except	it	prints	a	newline	character	before
expr,	and	prints	a	space	following	expr.

Arguments

expr

A	string	or	AutoLISP	expression.	Only	the	specified	expr	is	printed;	no
newline	or	space	is	included.

file-desc

A	file	descriptor	for	a	file	opened	for	writing.

Return	Values

The	value	of	the	evaluated	expr.	If	called	with	no	arguments,	print	returns	a
null	symbol.

See	Also
The	Displaying	Messages	topic	in	the	AutoLISP	Developer's	Guide.

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e17008.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	P	Functions	>	

progn
	
	
	

Evaluates	each	expression	sequentially	and	returns	the	value	of	the	last
expression

(progn	[expr]...)

You	can	use	progn	to	evaluate	several	expressions	where	only	one	expression
is	expected.

Arguments

expr

One	or	more	AutoLISP	expressions.

Return	Values

The	result	of	the	last	evaluated	expression.

Examples

The	if	function	normally	evaluates	one	then	expression	if	the	test	expression
evaluates	to	anything	but	nil.	The	following	example	uses	progn	to	evaluate
two	expressions	following	if:

(if	(=	a	b)

		(progn

				(princ	"\nA	=	B	")

				(setq	a	(+	a	10)	b	(-	b	10))

)

)

See	Also
The	if	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	P	Functions	>	

prompt
	
	
	

Displays	a	string	on	your	screen's	prompt	area

(prompt	msg)

On	dual-screen	AutoCAD	configurations,	prompt	displays	msg	on	both	screens
and	is,	therefore,	preferable	to	princ.

Arguments

msg

A	string.

Return	Values

nil

Examples
Command:	(prompt	"New	value:	")

New	value:	nil

See	Also
The	Displaying	Messages	topic	in	the	AutoLISP	Developer's	Guide.

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e17154.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	

Q	Functions
	
	
	

quit
Forces	the	current	application	to	quit
quote
Returns	an	expression	without	evaluating	it

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	Q	Functions	>	

quit
	
	
	

Forces	the	current	application	to	quit

(quit)

If	quit	is	called,	it	returns	the	error	message	quit/exit	abort	and	returns	to	the
AutoCAD	Command	prompt.

See	Also
The	exit	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	Q	Functions	>	

quote
	
	
	

Returns	an	expression	without	evaluating	it

(quote	expr)

Arguments

expr

An	AutoLISP	expression.

Return	Values

The	expr	argument.

Examples
Command:	(quote	a)

A

The	previous	expression	can	also	be	written	as	'a.	For	example:
Command:	!'a

A

Command:	(quote	(a	b))

(A	B)

See	Also
The	function	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	

R	Functions
	
	
	

read
Returns	the	first	list	or	atom	obtained	from	a	string
read-char
Returns	the	decimal	ASCII	code	representing	the	character	read	from	the
keyboard	input	buffer	or	from	an	open	file
read-line
Reads	a	string	from	the	keyboard	or	from	an	open	file,	until	an	end-of-
line	marker	is	encountered
redraw
Redraws	the	current	viewport	or	a	specified	object	(entity)	in	the	current
viewport
regapp
Registers	an	application	name	with	the	current	AutoCAD	drawing	in
preparation	for	using	extended	object	data
rem
Divides	the	first	number	by	the	second,	and	returns	the	remainder
repeat
Evaluates	each	expression	a	specified	number	of	times,	and	returns	the
value	of	the	last	expression
reverse
Returns	a	copy	of	a	list	with	its	elements	reversed
rtos
Converts	a	number	into	a	string

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	R	Functions	>	

read
	
	
	

Returns	the	first	list	or	atom	obtained	from	a	string

(read	[string])	

The	read	function	parses	the	string	representation	of	any	LISP	data	and	returns
the	first	expression	in	the	string,	converting	it	to	a	corresponding	data	type.

Arguments

string

A	string.	The	string	argument	should	not	contain	blanks,	except	within	a	list
or	string.

Return	Values

A	list	or	atom.	The	read	function	returns	its	argument	converted	into	the
corresponding	data	type.	If	no	argument	is	specified,	read	returns	nil.

If	the	string	contains	multiple	LISP	expressions	separated	by	LISP	symbol
delimiters	such	as	blanks,	newline,	tabs,	or	parentheses,	only	the	first	expression
is	returned.

Examples
Command:	(read	"hello")

HELLO

Command:	(read	"hello	there")

HELLO

Command:	(read	"\"Hi	Y'all\"")

"Hi	Y'all"

Command:	(read	"(a	b	c)")

(A	B	C)

Command:	(read	"(a	b	c)	(d)")

(A	B	C)

Command:	(read	"1.2300")

1.23

Command:	(read	"87")

87

Command:	(read	"87	3.2")

87

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	R	Functions	>	

read-char
	
	
	

Returns	the	decimal	ASCII	code	representing	the	character	read	from	the
keyboard	input	buffer	or	from	an	open	file

(read-char	[file-desc])	

Arguments

file-desc

A	file	descriptor	(obtained	from	open)	referring	to	an	open	file.	If	no	file-
desc	is	specified,	read-char	obtains	input	from	the	keyboard	input	buffer.

Return	Values

An	integer	representing	the	ASCII	code	for	a	character.	The	read-char
function	returns	a	single	newline	character	(ASCII	code	10)	whenever	it	detects
an	end-of-line	character	or	character	sequence.

Examples

The	following	example	omits	file-desc,	so	read-char	looks	for	data	in	the
keyboard	buffer:

Command:	(read-char)

The	keyboard	buffer	is	empty,	so	read-char	waits	for	user	input:

ABC
65

The	user	entered	ABC;	read-char	returned	the	ASCII	code	representing	the
first	character	entered	(A).	The	next	three	calls	to	read-char	return	the	data
remaining	in	the	keyboard	input	buffer.	This	data	translates	to	66	(the	ASCII
code	for	the	letter	B),	67	(C),	and	10	(newline),	respectively:

Command:	(read-char)

66

Command:	(read-char)

67

Command:	(read-char)

10

With	the	keyboard	input	buffer	now	empty,	read-char	waits	for	user	input	the
next	time	it	is	called:

Command:	(read-char)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	R	Functions	>	

read-line
	
	
	

Reads	a	string	from	the	keyboard	or	from	an	open	file,	until	an	end-of-line
marker	is	encountered

(read-line	[file-desc])	

Arguments

file-desc

A	file	descriptor	(obtained	from	open)	referring	to	an	open	file.	If	no	file-
desc	is	specified,	read-line	obtains	input	from	the	keyboard	input	buffer.

Return	Values

The	string	read	by	read-line,	without	the	end-of-line	marker.	If	read-
line	encounters	the	end	of	the	file,	it	returns	nil.

Examples

Open	a	file	for	reading:
Command:	(setq	f	(open	"c:\\my	documents\\new.tst"	"r"))

#<file	"c:\\my	documents\\new.tst">

Use	read-line	to	read	a	line	from	the	file:
Command:	(read-line	f)

"To	boldly	go	where	nomad	has	gone	before."

Obtain	a	line	of	input	from	the	user:
Command:	(read-line)

To	boldly	go

"To	boldly	go"

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	R	Functions	>	

redraw
	
	
	

Redraws	the	current	viewport	or	a	specified	object	(entity)	in	the	current
viewport

(redraw	[ename	[mode]])	

If	redraw	is	called	with	no	arguments,	the	function	redraws	the	current
viewport.	If	called	with	an	entity	name	argument,	redraw	redraws	the	specified
entity.

The	redraw	function	has	no	effect	on	highlighted	or	hidden	entities;	however,	a
REGEN	command	forces	the	entities	to	redisplay	in	their	normal	manner.

Arguments

ename

The	name	of	the	entity	name	to	be	redrawn.

mode

An	integer	value	that	controls	the	visibility	and	highlighting	of	the	entity.	The
mode	can	be	one	of	the	following	values:
1 Show	entity
2 Hide	entity	(blank	it	out)
3 Highlight	entity
4 Unhighlight	entity
The	use	of	entity	highlighting	(mode	3)	must	be	balanced	with	entity
unhighlighting	(mode	4).

If	ename	is	the	header	of	a	complex	entity	(a	polyline	or	a	block	reference	with
attributes),	redraw	processes	the	main	entity	and	all	its	subentities	if	the	mode
argument	is	positive.	If	the	mode	argument	is	negative,	redraw	operates	on

only	the	header	entity.

Return	Values

The	redraw	function	always	returns	nil.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	R	Functions	>	

regapp
	
	
	

Registers	an	application	name	with	the	current	AutoCAD	drawing	in	preparation
for	using	extended	object	data

(regapp	application)	

Arguments

application

A	string	naming	the	application.	The	name	must	be	a	valid	symbol	table
name.	See	the	description	of	snvalid	for	the	rules	AutoLISP	uses	to	determine
if	a	symbol	name	is	valid.

Return	Values

If	an	application	of	the	same	name	has	already	been	registered,	this	function
returns	nil;	otherwise	it	returns	the	name	of	the	application.

If	registered	successfully,	the	application	name	is	entered	into	the	APPID	symbol
table.	This	table	maintains	a	list	of	the	applications	that	are	using	extended	data
in	the	drawing.

Examples

(regapp	"ADESK_4153322344")

(regapp	"DESIGNER-v2.1-124753")

Note It	is	recommended	that	you	pick	a	unique	application	name.	One	way	of
ensuring	this	is	to	adopt	a	naming	scheme	that	uses	the	company	or	product
name	and	a	unique	number	(like	your	telephone	number	or	the	current
date/time).	The	product	version	number	can	be	included	in	the	application	name
or	stored	by	the	application	in	a	separate	integer	or	real-number	field;	for
example,	(1040	2.1).

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	R	Functions	>	

rem
	
	
	

Divides	the	first	number	by	the	second,	and	returns	the	remainder

(rem	[number	number...])	

Arguments

number

Any	number.
If	you	provide	more	than	two	numbers,	rem	divides	the	result	of	dividing
the	first	number	by	the	second	with	the	third,	and	so	on.
If	you	provide	more	than	two	numbers,	rem	evaluates	the	arguments	from
left	to	right.	For	example,	if	you	supply	three	numbers,	rem	divides	the	first
number	by	the	second,	then	takes	the	result	and	divides	it	by	the	third
number,	returning	the	remainder	of	that	operation.

Return	Values

A	number.	If	any	number	argument	is	a	real,	rem	returns	a	real;	otherwise,	rem
returns	an	integer.	If	no	arguments	are	supplied,	rem	returns	0.	If	a	single
number	argument	is	supplied,	rem	returns	number.

Examples
Command:	(rem	42	12)

6

Command:	(rem	12.0	16)

12.0

Command:	(rem	26	7	2)

1

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	R	Functions	>	

repeat
	
	
	

Evaluates	each	expression	a	specified	number	of	times,	and	returns	the	value	of
the	last	expression

(repeat	int	[expr...])

Arguments

int

An	integer.	Must	be	a	positive	number.

expr

One	or	more	atoms	or	expressions.

Return	Values

The	value	of	the	last	expression	or	atom	evaluated.	If	expr	is	not	supplied,
repeat	returns	nil.

Examples
Command:	(setq	a	10	b	100)

100

Command:	(repeat	4	(setq	a	(+	a	10))	(setq	b	(+	b	100)))

500

After	evaluation,	a	is	50,	b	is	500,	and	repeat	returns	500.

If	strings	are	supplied	as	arguments,	repeat	returns	the	last	string:
Command:	(repeat	100	"Me"	"You")

"You"

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	R	Functions	>	

reverse
	
	
	

Returns	a	copy	of	a	list	with	its	elements	reversed

(reverse	lst)

Arguments

lst

A	list.

Return	Values

A	list.

Examples
Command:	(reverse	'((a)	b	c))

(C	B	(A))

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	R	Functions	>	

rtos
	
	
	

Converts	a	number	into	a	string

(rtos	number	[mode	[precision]])	

The	rtos	function	returns	a	string	that	is	the	representation	of	number
according	to	the	settings	of	mode,	precision,	and	the	system	variables
UNITMODE,	DIMZIN,	LUNITS,	and	LUPREC.

Arguments

number

A	number.

mode

An	integer	specifying	the	linear	units	mode.	The	mode	corresponds	to	the
values	allowed	for	the	LUNITS	AutoCAD	system	variable.	The	mode	can	be
one	of	the	following	numbers:
1 Scientific
2 Decimal
3 Engineering	(feet	and	decimal	inches)
4 Architectural	(feet	and	fractional	inches)
5 Fractional

precision

An	integer	specifying	the	precision.

The	mode	and	precision	arguments	correspond	to	the	system	variables	LUNITS
and	LUPREC.	If	you	omit	the	arguments,	rtos	uses	the	current	settings	of
LUNITS	and	LUPREC.

Return	Values

A	string.	The	UNITMODE	system	variable	affects	the	returned	string	when
engineering,	architectural,	or	fractional	units	are	selected	(mode	values	3,	4,	or
5).

Examples

Set	variable	x:
Command:	(setq	x	17.5)

17.5

Convert	the	value	of	x	to	a	string	in	scientific	format,	with	a	precision	of	4:
Command:	(setq	fmtval	(rtos	x	1	4))

"1.7500E+01"

Convert	the	value	of	x	to	a	string	in	decimal	format,	with	2	decimal	places:
Command:	(setq	fmtval	(rtos	x	2	2))

"17.50"

Convert	the	value	of	x	to	a	string	in	engineering	format,	with	a	precision	of	2:
Command:	(setq	fmtval	(rtos	x	3	2))

"1'-5.50\""

Convert	the	value	of	x	to	a	string	in	architectural	format:
Command:	(setq	fmtval	(rtos	x	4	2))

"1'-5	1/2\""

Convert	the	value	of	x	to	a	string	in	fractional	format:
Command:	(setq	fmtval	(rtos	x	5	2))

"17	1/2"

Setting	UNITMODE	to	1	causes	units	to	be	displayed	as	entered.	This	affects	the
values	returned	by	rtos	for	engineering,	architectural,	and	fractional	formats,
as	shown	in	the	following	examples:

Command:	(setvar	"unitmode"	1)

1

Command:	(setq	fmtval	(rtos	x	3	2))

"1'5.50\""

Command:	(setq	fmtval	(rtos	x	4	2))

"1'5-1/2\""

Command:	(setq	fmtval	(rtos	x	5	2))

"17-1/2"

See	Also
The	String	Conversions	topic	in	the	AutoLISP	Developer's	Guide	.

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e18184.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	

S	Functions
	
	
	

set
Sets	the	value	of	a	quoted	symbol	name	to	an	expression
set_tile
Sets	the	value	of	a	dialog	box	tile
setcfg
Writes	application	data	to	the	AppData	section	of	the	acad*.cfg	file
setenv
Sets	a	system	environment	variable	to	a	specified	value
setfunhelp
Registers	a	user-defined	command	with	the	Help	facility	so	the
appropriate	Help	file	and	topic	are	called	when	the	user	requests	help	on
that	command
setq
Sets	the	value	of	a	symbol	or	symbols	to	associated	expressions
setvar
Sets	an	AutoCAD	system	variable	to	a	specified	value
setview
Establishes	a	view	for	a	specified	viewport
sin
Returns	the	sine	of	an	angle	as	a	real	number	expressed	in	radians
slide_image
Displays	an	AutoCAD	slide	in	the	currently	active	dialog	box	image	tile
snvalid

Checks	the	symbol	table	name	for	valid	characters
sqrt
Returns	the	square	root	of	a	number	as	a	real	number
ssadd
Adds	an	object	(entity)	to	a	selection	set,	or	creates	a	new	selection	set
ssdel
Deletes	an	object	(entity)	from	a	selection	set
ssget
Creates	a	selection	set	from	the	selected	object
ssgetfirst
Determines	which	objects	are	selected	and	gripped
sslength
Returns	an	integer	containing	the	number	of	objects	(entities)	in	a
selection	set
ssmemb
Tests	whether	an	object	(entity)	is	a	member	of	a	selection	set
ssname
Returns	the	object	(entity)	name	of	the	indexed	element	of	a	selection	set
ssnamex
Retrieves	information	about	how	a	selection	set	was	created
sssetfirst
Sets	which	objects	are	selected	and	gripped
startapp
Starts	a	Windows	application
start_dialog
Displays	a	dialog	box	and	begins	accepting	user	input
start_image
Starts	the	creation	of	an	image	in	the	dialog	box	tile
start_list

Starts	the	processing	of	a	list	in	the	list	box	or	in	the	pop-up	list	dialog
box	tile
strcase
Returns	a	string	where	all	alphabetic	characters	have	been	converted	to
uppercase	or	lowercase
strcat
Returns	a	string	that	is	the	concatenation	of	multiple	strings
strlen
Returns	an	integer	that	is	the	number	of	characters	in	a	string
subst
Searches	a	list	for	an	old	item	and	returns	a	copy	of	the	list	with	a	new
item	substituted	in	place	of	every	occurrence	of	the	old	item
substr
Returns	a	substring	of	a	string

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	S	Functions	>	

set
	
	
	

Sets	the	value	of	a	quoted	symbol	name	to	an	expression

(set	sym	expr)	

The	set	function	is	similar	to	setq	except	that	set	evaluates	both	of	its
arguments	whereas	setq	only	evaluates	its	second	argument.

Arguments

sym

A	symbol.

expr

An	AutoLISP	expression.

Return	Values

The	value	of	the	expression.

Examples

Each	of	the	following	commands	sets	symbol	a	to	5.0:

(set	'a	5.0)

(set	(read	"a")	5.0)

(setq	a	5.0)

Both	set	and	setq	expect	a	symbol	as	their	first	argument,	but	set	accepts	an
expression	that	returns	a	symbol,	whereas	setq	does	not,	as	the	following
shows:

Command:	(set	(read	"a")	5.0)

5.0

Command:	(setq	(read	"a")	5.0)

;	***	ERROR:	syntax	error

See	Also
The	setq	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	S	Functions	>	

set_tile
	
	
	

Sets	the	value	of	a	dialog	box	tile

(set_tile	key	value)

Arguments

key

A	string	that	specifies	the	tile.

value

A	string	that	names	the	new	value	to	assign	(initially	set	by	the	value
attribute).

Return	Values

The	value	the	tile	was	set	to.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	S	Functions	>	

setcfg
	
	
	

Writes	application	data	to	the	AppData	section	of	the	acad*.cfg	file

(setcfg	cfgname	cfgval)	

Arguments

cfgname

A	string	that	specifies	the	section	and	parameter	to	set	with	the	value	of
cfgval.	The	cfgname	argument	must	be	a	string	of	the	following	form:

AppData/application_name/section_name/.../param_name

The	string	can	be	up	to	496	characters	long.

cfgval

A	string.	The	string	can	be	up	to	512	characters	in	length.	Larger	strings	are
accepted	by	setcfg,	but	cannot	be	returned	by	getcfg.

Return	Values

If	successful,	setcfg	returns	cfgval.	If	cfgname	is	not	valid,	setcfg	returns
nil.

Examples

The	following	code	sets	the	WallThk	parameter	in	the	AppData/ArchStuff
section	to	8,	and	returns	the	string	“8”:

Command:	(setcfg	"AppData/ArchStuff/WallThk"	"8")

"8"

See	Also
The	getcfg	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	S	Functions	>	

setenv
	
	
	

Sets	a	system	environment	variable	to	a	specified	value

(setenv	varname	value)	

Arguments

varname

A	string	specifying	the	name	of	the	environment	variable	to	be	set.
Environment	variable	names	must	be	spelled	and	cased	exactly	as	they	are
stored	in	the	system	registry.

value

A	string	specifying	the	value	to	set	varname	to.

Return	Values

value

Examples

The	following	command	sets	the	value	of	the	MaxArray	environment	variable
to	10000:

Command:	(setenv	"MaxArray"	"10000")

"10000"

Note	that	changes	to	settings	might	not	take	effect	until	the	next	time	AutoCAD
is	started.

See	Also
The	getenv	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	S	Functions	>	

setfunhelp
	
	
	

Registers	a	user-defined	command	with	the	Help	facility	so	the	appropriate	Help
file	and	topic	are	called	when	the	user	requests	help	on	that	command

(setfunhelp	c:fname	[helpfile	[topic

[command]]])

Arguments

c:fname

A	string	specifying	the	user-defined	command	(the	C:XXX	function).	You
must	include	the	c:	prefix.

helpfile

A	string	naming	the	Help	file.	The	file	extension	is	not	required	with	the
helpfile	argument.	If	a	file	extension	is	provided,	AutoCAD	looks	only	for	a
file	with	the	exact	name	specified.
If	no	file	extension	is	provided,	AutoCAD	looks	for	helpfile	with	an
extension	of	.chm.	If	no	file	of	that	name	is	found,	AutoCAD	looks	for	a	file
with	an	extension	of	.hlp.

topic

A	string	identifying	a	Help	topic	ID.	If	you	are	calling	a	topic	within	a	CHM
file,	provide	the	file	name	without	the	extension;	AutoCAD	adds	an	.htm
extension.

command

A	string	that	specifies	the	initial	state	of	the	Help	window.	The	command
argument	is	a	string	used	by	the	uCommand	(in	HTML	Help)	or	the
fuCommand	(in	WinHelp)	argument	of	the	HtmlHelp()	and	WinHelp()
functions	as	defined	in	the	Microsoft	Windows	SDK.

For	HTML	Help	files,	the	command	parameter	can	be
HH_ALINK_LOOKUP	or	HH_DISPLAY_TOPIC.	For	Windows	Help	files,
the	command	parameter	can	be	HELP_CONTENTS,	HELP_HELPONHELP,
or	HELP_PARTIALKEY.

Return	Values

The	string	passed	as	c:fname,	if	successful;	otherwise,	nil.

This	function	verifies	only	that	the	c:fname	argument	has	the	c:	prefix.	It	does
not	verify	that	the	c:fname	function	exists,	nor	does	it	verify	the	correctness	of
the	other	arguments	supplied.

Examples

The	following	example	illustrates	the	use	of	setfunhelp	by	defining	a	simple
function	and	issuing	setfunhelp	to	associate	the	function	with	the	circle
topic	in	the	AutoCAD	Help	file	(acad.chm):

(defun	c:foo	()

		(getstring	"Press	F1	for	help	on	the	foo	command:")

)

(setfunhelp	"c:foo"	"acad.chm"	"circle")

After	this	code	is	loaded,	issuing	the	foo	command	and	then	pressing	F1
displays	the	circle	topic.

This	example	works,	but	serves	no	real	purpose.	In	the	real	world,	you	would
create	your	own	Help	file	and	associate	that	Help	file	and	topic	with	your
function.

Define	a	function	named	test:
Command:	(defun	c:test()(getstring	"\nTEST:	")(princ))

C:TEST

Associate	the	function	with	a	call	to	Help	with	the	string	“line”:
Command:	(setfunhelp	"c:test"	"acad.chm"	"line")

"c:test"

Run	the	test	command	and	at	the	prompt,	press	F1;	you	should	see	the	Help
topic	for	the	AutoCAD	LINE	command.

Note When	you	use	the	defun	function	to	define	a	C:XXX	function,	it	removes

that	function's	name	from	those	registered	by	setfunhelp	(if	one	exists).
Therefore,	setfunhelp	should	be	called	only	after	the	defun	call,	which
defines	the	user-defined	command.

See	Also
The	defun	and	help	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	S	Functions	>	

setq
	
	
	

Sets	the	value	of	a	symbol	or	symbols	to	associated	expressions

(setq	sym	expr	[sym	expr]...)	

This	is	the	basic	assignment	function	in	AutoLISP.	The	setq	function	can
assign	multiple	symbols	in	one	call	to	the	function.

Arguments

sym

A	symbol.	This	argument	is	not	evaluated.

expr

An	expression.

Return	Values

The	result	of	the	last	expr	evaluated.

Examples

The	following	function	call	sets	variable	a	to	5.0:
Command:	(setq	a	5.0)

5.0

Whenever	a	is	evaluated,	it	returns	the	real	number	5.0.

The	following	command	sets	two	variables,	b	and	c:
Command:	(setq	b	123	c	4.7)

4.7

setq	returns	the	value	of	the	last	variable	set.

In	the	following	example,	s	is	set	to	a	string:

Command:	(setq	s	"it")

"it"

The	following	example	assigns	a	list	to	x:
Command:	(setq	x	'(a	b))

(A	B)

See	Also
The	AutoLISP	Variables	topic	in	the	AutoLISP	Developer's	Guide	.

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e18835.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	S	Functions	>	

setvar
	
	
	

Sets	an	AutoCAD	system	variable	to	a	specified	value

(setvar	varname	value)	

Arguments

varname

A	string	or	symbol	naming	a	variable.

value

An	atom	or	expression	whose	evaluated	result	is	to	be	assigned	to	varname.
For	system	variables	with	integer	values,	the	supplied	value	must	be	between
-32,768	and	+32,767.

Return	Values

If	successful,	setvar	returns	value.

Examples

Set	the	AutoCAD	fillet	radius	to	0.5	units:
Command:	(setvar	"FILLETRAD"	0.50)

0.5

Notes	on	Using	setvar

Some	AutoCAD	commands	obtain	the	values	of	system	variables	before	issuing
any	prompts.	If	you	use	setvar	to	set	a	new	value	while	a	command	is	in
progress,	the	new	value	might	not	take	effect	until	the	next	AutoCAD	command.

When	using	the	setvar	function	to	change	the	AutoCAD	system	variable
ANGBASE,	the	value	argument	is	interpreted	as	radians.	This	differs	from	the
AutoCAD	SETVAR	command	in	the	Command	Reference,	which	interprets	this

argument	as	degrees.	When	using	the	setvar	function	to	change	the	AutoCAD
system	variable	SNAPANG,	the	value	argument	is	interpreted	as	radians	relative
to	the	AutoCAD	default	direction	for	angle	0,	which	is	east	or	3	o'clock.	This
also	differs	from	the	SETVAR	command,	which	interprets	this	argument	as
degrees	relative	to	the	ANGBASE	setting.

Note The	UNDO	command	does	not	undo	changes	made	to	the	CVPORT	system
variable	by	the	setvar	function.

You	can	find	a	list	of	the	current	AutoCAD	system	variables	in	the	Command
Reference.

See	Also
The	getvar	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	S	Functions	>	

setview
	
	
	

Establishes	a	view	for	a	specified	viewport

(setview	view_descriptor	[vport_id])	

Arguments

view_descriptor

An	entity	definition	list	similar	to	that	returned	by	tblsearch	when
applied	to	the	VIEW	symbol	table.

vport_id

An	integer	identifying	the	viewport	to	receive	the	new	view.	If	vport_id	is	0,
the	current	viewport	receives	the	new	view.
You	can	obtain	the	vport_id	number	from	the	CVPORT	system	variable.

Return	Values

If	successful,	the	setview	function	returns	the	view_descriptor.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	S	Functions	>	

sin
	
	
	

Returns	the	sine	of	an	angle	as	a	real	number	expressed	in	radians

(sin	ang)

Arguments

ang

An	angle,	in	radians.

Return	Values

A	real	number	representing	the	sine	of	ang,	in	radians.

Examples
Command:	(sin	1.0)

0.841471

Command:	(sin	0.0)

0.0

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	S	Functions	>	

slide_image
	
	
	

Displays	an	AutoCAD	slide	in	the	currently	active	dialog	box	image	tile

(slide_image	x1	y1	width	height	sldname)

Arguments

x1

X-offset	from	the	upper-left	corner	of	the	tile,	in	pixels.	Must	be	a	positive
value.

y1

Y-offset	from	the	upper-left	corner	of	the	tile,	in	pixels.	Must	be	a	positive
value.

width

Width	of	the	image,	in	pixels.

height

Height	of	the	image,	in	pixels.

sldname

Identifies	the	slide.	This	argument	can	be	a	slide	file	(.sld)	or	a	slide	in	a	slide
library	file	(.slb).	Specify	sldname	the	same	way	you	would	specify	it	for	the
VSLIDE	command	or	for	a	menu	file	(see	the	Creating	Images	topic	in	the
AutoLISP	Developer's	Guide).	Use	one	of	the	following	formats	for
sldname:
sldnameorlibname(sldname)

The	first	(upper-left)	corner	of	the	slide—its	insertion	point—is	located	at
(x1,y1),	and	the	second	(lower-right)	corner	is	located	at	the	relative	distance

javascript:hhctrl_d0e19132.Click()

(wid,hgt)	from	the	first	(wid	and	hgt	must	be	positive	values).	The	origin	(0,0)	is
the	upper-left	corner	of	the	image.	You	obtain	the	coordinates	of	the	lower-right
corner	by	calling	the	dimension	functions	(dimx_tile	and	dimy_tile).

Return	Values

A	string	containing	sldname.

Examples

(slide_image

		0

		0

		(dimx_tile	"slide_tile")

		(dimy_tile	"slide_tile")

		"myslide"

)

(end_image)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	S	Functions	>	

snvalid
	
	
	

Checks	the	symbol	table	name	for	valid	characters

(snvalid	sym_name	[flag])	

The	snvalid	function	inspects	the	system	variable	EXTNAMES	to	determine
the	rules	to	enforce	for	the	active	drawing.	If	EXTNAMES	is	0,	snvalid
validates	using	the	symbol	name	rules	in	effect	prior	to	AutoCAD	2000.	If
EXTNAMES	is	1	(the	default	value),	snvalid	validates	using	the	rules	for
extended	symbol	names	introduced	with	AutoCAD	2000.	The	following	are	not
allowed	in	symbol	names,	regardless	of	the	setting	of	EXTNAMES:

Control	and	graphic	characters

Null	strings

Vertical	bars	as	the	first	or	last	character	of	the	name

AutoLISP	does	not	enforce	restrictions	on	the	length	of	symbol	table	names	if
EXTNAMES	is	1.

Arguments

sym_name

A	string	that	specifies	a	symbol	table	name.

flag

An	integer	that	specifies	whether	the	vertical	bar	character	is	allowed	within
sym_name.	The	flag	argument	can	be	one	of	the	following:
0 Do	not	allow	vertical	bar	characters	anywhere	in	sym_name.	This	is	the
default.
1 Allow	vertical	bar	characters	in	sym_name,	as	long	as	they	are	not	the
first	or	last	characters	in	the	name.

Return	Values

T,	if	sym_name	is	a	valid	symbol	table	name;	otherwise	nil.

If	EXTNAMES	is	1,	all	characters	are	allowed	except	control	and	graphic
characters	and	the	following:

Characters	disallowed	in	symbol	table	names

<	> less-than	and	greater-than	symbol

/	\ forward	slash	and	backslash

" quotation	mark

: colon

? question	mark

* asterisk

| vertical	bar

, comma

= equal	sign

` backquote

; semicolon	(ASCII	59)

A	symbol	table	name	may	contain	spaces.

If	EXTNAMES	is	0,	symbol	table	names	can	consist	of	uppercase	and	lowercase
alphabetic	letters	(e.g.,	A-Z),	numeric	digits	(e.g.,	0-9),	and	the	dollar	sign	($),
underscore	(_),	and	hyphen	(-)	characters.

Examples

The	following	examples	assume	EXTNAMES	is	set	to	1:
Command:	(snvalid	"hocus-pocus")

T

Command:	(snvalid	"hocus	pocus")

T

Command:	(snvalid	"hocus%pocus")

T

The	following	examples	assume	EXTNAMES	is	set	to	0:
Command:	(snvalid	"hocus-pocus")

T

Command:	(snvalid	"hocus	pocus")

nil

Command:	(snvalid	"hocus%pocus")

nil

The	following	example	includes	a	vertical	bar	in	the	symbol	table	name:
Command:	(snvalid	"hocus|pocus")

nil

By	default,	the	vertical	bar	character	is	considered	invalid	in	all	symbol	table
names.

In	the	following	example,	the	flag	argument	is	set	to	1,	so	snvalid	considers
the	vertical	bar	character	to	be	valid	in	sym_name,	as	long	as	it	is	not	the	first	or
last	character	in	the	name:

Command:	(snvalid	"hocus|pocus"	1)

T

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	S	Functions	>	

sqrt
	
	
	

Returns	the	square	root	of	a	number	as	a	real	number

(sqrt	num)	

Arguments

num

A	number	(integer	or	real).

Return	Values

A	real	number.

Examples
Command:	(sqrt	4)

2.0

Command:	(sqrt	2.0)

1.41421

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	S	Functions	>	

ssadd
	
	
	

Adds	an	object	(entity)	to	a	selection	set,	or	creates	a	new	selection	set

(ssadd	[ename	[ss]])

Arguments

ename

An	entity	name.

ss

A	selection	set.

If	called	with	no	arguments,	ssadd	constructs	a	new	selection	set	with	no
members.	If	called	with	the	single	entity	name	argument	ename,	ssadd
constructs	a	new	selection	set	containing	that	single	entity.	If	called	with	an
entity	name	and	the	selection	set	ss,	ssadd	adds	the	named	entity	to	the
selection	set.

Return	Values

The	modified	selection	set	passed	as	the	second	argument,	if	successful;
otherwise	nil.

Examples

When	adding	an	entity	to	a	set,	the	new	entity	is	added	to	the	existing	set,	and
the	set	passed	as	ss	is	returned	as	the	result.	Thus,	if	the	set	is	assigned	to	other
variables,	they	also	reflect	the	addition.	If	the	named	entity	is	already	in	the	set,
the	ssadd	operation	is	ignored	and	no	error	is	reported.

Set	e1	to	the	name	of	the	first	entity	in	drawing:
Command:	(setq	e1	(entnext))

<Entity	name:	1d62d60>

Set	ss	to	a	null	selection	set:
Command:	(setq	ss	(ssadd))

<Selection	set:	2>

The	following	command	adds	the	e1	entity	to	the	selection	set	referenced	by
ss:

Command:	(ssadd	e1	ss)

<Selection	set:	2>

Get	the	entity	following	e1:
Command:	(setq	e2	(entnext	e1))

<Entity	name:	1d62d68>

Add	e2	to	the	ss	entity:
Command:	(ssadd	e2	ss)

<Selection	set:	2>

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	S	Functions	>	

ssdel
	
	
	

Deletes	an	object	(entity)	from	a	selection	set

(ssdel	enamess)

Arguments

ename

An	entity	name.

ss

A	selection	set.

Return	Values

The	name	of	the	selection	set;	otherwise	nil,	if	the	specified	entity	is	not	in	the
set.

Note	that	the	entity	is	actually	deleted	from	the	existing	selection	set,	as	opposed
to	a	new	set	being	returned	with	the	element	deleted.

Examples

In	the	following	examples,	entity	name	e1	is	a	member	of	selection	set	ss,
while	entity	name	e3	is	not	a	member	of	ss:

Command:	(ssdel	e1	ss)

<Selection	set:	2>

Selection	set	ss	is	returned	with	entity	e1	removed.
Command:	(ssdel	e3	ss)

nil

The	function	returns	nil	because	e3	is	not	a	member	of	selection	set	ss.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	S	Functions	>	

ssget
	
	
	

Creates	a	selection	set	from	the	selected	object

(ssget	[sel-method]	[pt1	[pt2]]

[pt-list]	[filter-list])

Selection	sets	can	contain	objects	from	both	paper	and	model	space,	but	when
the	selection	set	is	used	in	an	operation,	ssget	filters	out	objects	from	the	space
not	currently	in	effect.	Selection	sets	returned	by	ssget	contain	main	entities
only	(no	attributes	or	polyline	vertices).

Arguments

sel-method

A	string	that	specifies	the	object	selection	method.	Valid	selection	methods
are
C Crossing	selection.
CP Cpolygon	selection	(all	objects	crossing	and	inside	of	the	specified
polygon).
F Fence	selection.
I Implied	selection	(objects	selected	while	PICKFIRST	is	in	effect).
L Last	visible	object	added	to	the	database.
P Last	selection	set	created.
W Window	selection.
WP WPolygon	(all	objects	within	the	specified	polygon).
X Entire	database.	If	you	specify	the	X	selection	method	and	do	not	provide
a	filter-list,	ssget	selects	all	entities	in	the	database,	including	entities	on
layers	that	are	off,	frozen,	and	out	of	the	visible	screen.
:E Everything	within	the	cursor's	object	selection	pickbox.
:N Call	ssnamex	for	additional	information	on	container	blocks	and

transformation	matrices	for	any	entities	selected	during	the	ssget	operation.
This	additional	information	is	available	only	for	entities	selected	via
graphical	selection	methods	such	as	Window,	Crossing,	and	point	picks.
Unlike	the	other	object	selection	methods,	:N	may	return	multiple	entities
with	the	same	entity	name	in	the	selection	set.	For	example,	if	the	user	selects
a	subentity	of	a	complex	entity	such	as	a	BlockReference,	PolygonMesh,	or
old	style	polyline,	ssget	looks	at	the	subentity	that	is	selected	when
determining	if	it	has	already	been	selected.	However,	ssget	actually	adds
the	main	entity	(BlockReference,	PolygonMesh,	and	so	on)	to	the	selection
set.	The	result	could	be	multiple	entries	with	the	same	entity	name	in	the
selection	set	(each	will	have	different	subentity	information	for	ssnamex	to
report).
:S 	Allow	single	selection	only.
:U 	Enables	subentity	selection.	Cannot	be	combined	with	the	duplicate
(":D")	or	nested	(":N")	selection	modes.	In	this	mode,	top-level	entities	are
selected	by	default,	but	the	user	can	attempt	to	select	subentities	by	pressing
the	CTRL	key	while	making	the	selection.	This	option	is	supported	only	with
interactive	selections,	such	as	window,	crossing,	and	polygon.	It	is	not
supported	for	all,	filtered,	or	group	selections.
:V 	Forces	subentity	selection.	Treats	all	interactive,	graphic	selections
performed	by	the	user	as	subentity	selections.	The	returned	selection	set
contains	subentities	only.	This	option	cannot	be	combined	with	the	duplicate
(":D")	or	nested	(":N")	selection	modes.	This	option	is	supported	only	with
interactive	selections,	such	as	window	and	crossing.	It	is	not	supported	for
all,	filtered,	or	group	selections.

pt1

A	point	relative	to	the	selection.

pt2

A	point	relative	to	the	selection.

pt-list

A	list	of	points.

filter-list

An	association	list	that	specifies	object	properties.	Objects	that	match	the

filter-list	are	added	to	the	selection	set.

If	you	omit	all	arguments,	ssget	prompts	the	user	with	the	Select	Objects
prompt,	allowing	interactive	construction	of	a	selection	set.

If	you	supply	a	point	but	do	not	specify	an	object	selection	method,	AutoCAD
assumes	the	user	is	selecting	an	object	by	picking	a	single	point.

Return	Values

The	name	of	the	created	selection	set	if	successful;	otherwise	nil	if	no	objects
were	selected.

Notes	on	the	Object	Selection	Methods

When	using	the	:N	selection	method,	if	the	user	selects	a	subentity	of	a
complex	entity	such	as	a	BlockReference,	PolygonMesh,	or	old	style
polyline,	ssget	looks	at	the	subentity	that	is	selected	when	determining
if	it	has	already	been	selected.	However,	ssget	actually	adds	the	main
entity	(BlockReference,	PolygonMesh,	etc.)	to	the	selection	set.	It	is
therefore	possible	to	have	multiple	entries	with	the	same	entity	name	in
the	selection	set	(each	will	have	different	subentity	information	for
ssnamex	to	report).	Because	the	:N	method	does	not	guarantee	that
each	entry	will	be	unique,	code	that	relies	on	uniqueness	should	not	use
selection	sets	created	using	this	option.

When	using	the	L	selection	method	in	an	MDI	environment,	you	cannot
always	count	on	the	last	object	drawn	to	remain	visible.	For	example,	if
your	application	draws	a	line,	and	the	user	subsequently	minimizes	or
cascades	the	AutoCAD	drawing	window,	the	line	may	no	longer	be
visible.	If	this	occurs,	ssget	with	the	"L"	option	will	return	nil.

Examples

Prompt	the	user	to	select	the	objects	to	be	placed	in	a	selection	set:
Command:	(ssget)

<Selection	set:	2>

Create	a	selection	set	of	the	object	passing	through	(2,2):
Command:	(ssget	'(2	2))

nil

Create	a	selection	set	of	the	most	recently	selected	objects:
Command:	(ssget	"_P")

<Selection	set:	4>

Create	a	selection	set	of	the	objects	crossing	the	box	from	(0,0)	to	(1,1):
Command:	(ssget	"_C"	'(0	0)	'(1	1))

<Selection	set:	b>

Create	a	selection	set	of	the	objects	inside	the	window	from	(0,0):
Command:	(ssget	"_W"	'(0	0)	'(5	5))

<Selection	set:	d>

By	specifying	filters,	you	can	obtain	a	selection	set	that	includes	all	objects	of	a
given	type,	on	a	given	layer,	or	of	a	given	color.	The	following	example	returns	a
selection	set	that	consists	only	of	blue	lines	that	are	part	of	the	implied	selection
set	(those	objects	selected	while	PICKFIRST	is	in	effect):

Command:	(ssget	"_I"	'((0	.	"LINE")	(62	.	5)))

<Selection	set:	4>

The	following	examples	of	ssget	require	that	a	list	of	points	be	passed	to	the
function.	The	pt_list	variable	cannot	contain	points	that	define	zero-length
segments.

Create	a	list	of	points:
Command:	(setq	pt_list	'((1	1)(3	1)(5	2)(2	4)))

((1	1)	(3	1)	(5	2)	(2	4))

Create	a	selection	set	of	all	objects	crossing	and	inside	the	polygon	defined	by
pt_list:

Command:	(ssget	"_CP"	pt_list)

<Selection	set:	13>

Create	a	selection	set	of	all	blue	lines	inside	the	polygon	defined	by	pt_list:
Command:	(ssget	"_WP"	pt_list	'((0	.	"LINE")	(62	.	5)))

<Selection	set:	8>

The	selected	objects	are	highlighted	only	when	ssget	is	used	with	no
arguments.	Selection	sets	consume	AutoCAD	temporary	file	slots,	so	AutoLISP
is	not	permitted	to	have	more	than	128	open	at	one	time.	If	this	limit	is	reached,
AutoCAD	cannot	create	any	more	selection	sets	and	returns	nil	to	all	ssget
calls.	To	close	an	unnecessary	selection	set	variable,	set	it	to	nil.

A	selection	set	variable	can	be	passed	to	AutoCAD	in	response	to	any	Select
objects	prompt	at	which	selection	by	Last	is	valid.	AutoCAD	then	selects	all	the
objects	in	the	selection	set	variable.

The	current	setting	of	Object	Snap	mode	is	ignored	by	ssget	unless	you
specifically	request	it	while	you	are	in	the	function.

See	Also
Selection	Set	Handling	and	Selection	Set	Filter	Lists	in	the
AutoLISP	Developer's	Guide	.

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e20072.Click()
javascript:hhctrl_d0e20075.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	S	Functions	>	

ssgetfirst
	
	
	

Determines	which	objects	are	selected	and	gripped

(ssgetfirst)

Returns	a	list	of	two	selection	sets	similar	to	those	passed	to	sssetfirst.	The
first	element	in	the	list	is	always	nil	because	AutoCAD	no	longer	supports
grips	on	unselected	objects.	The	second	element	is	a	selection	set	of	entities	that
are	selected	and	gripped.	Both	elements	of	the	list	can	be	nil.

Note Only	entities	from	the	current	drawing's	model	space	and	paper	space,	not
nongraphical	objects	or	entities	in	other	block	definitions,	can	be	analyzed	by
this	function.

See	Also
The	ssget	and	sssetfirst	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	S	Functions	>	

sslength
	
	
	

Returns	an	integer	containing	the	number	of	objects	(entities)	in	a	selection	set

(sslength	ss)

Arguments

ss

A	selection	set.

Return	Values

An	integer.

Examples

Add	the	last	object	to	a	new	selection	set:
Command:	(setq	sset	(ssget	"L"))

<Selection	set:	8>

Use	sslength	to	determine	the	number	of	objects	in	the	new	selection	set:
Command:	(sslength	sset)

1

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	S	Functions	>	

ssmemb
	
	
	

Tests	whether	an	object	(entity)	is	a	member	of	a	selection	set

(ssmemb	enamess)

Arguments

ename

An	entity	name.

ss

A	selection	set.

Return	Values

If	ename	is	a	member	of	ss,	ssmemb	returns	the	entity	name.	If	ename	is	not	a
member,	ssmemb	returns	nil.

Examples

In	the	following	examples,	entity	name	e2	is	a	member	of	selection	set	ss,
while	entity	name	e1	is	not	a	member	of	ss:

Command:	(ssmemb	e2	ss)

<Entity	name:	1d62d68>

Command:	(ssmemb	e1	ss)

nil

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	S	Functions	>	

ssname
	
	
	

Returns	the	object	(entity)	name	of	the	indexed	element	of	a	selection	set

(ssname	ss	index)

Entity	names	in	selection	sets	obtained	with	ssget	are	always	names	of	main
entities.	Subentities	(attributes	and	polyline	vertices)	are	not	returned.	(The
entnext	function	allows	access	to	them.)

Arguments

ss

A	selection	set.

index

An	integer	(or	real)	indicating	an	element	in	a	selection	set.	The	first	element
in	the	set	has	an	index	of	zero.	To	access	entities	beyond	number	32,767	in	a
selection	set,	you	must	supply	the	index	argument	as	a	real.

Return	Values

An	entity	name,	if	successful.	If	index	is	negative	or	greater	than	the	highest-
numbered	entity	in	the	selection	set,	ssname	returns	nil.

Examples

Get	the	name	of	the	first	entity	in	a	selection	set:
Command:	(setq	ent1	(ssname	ss	0))

<Entity	name:	1d62d68>

Get	the	name	of	the	fourth	entity	in	a	selection	set:
Command:	(setq	ent4	(ssname	ss	3))

<Entity	name:	1d62d90>

To	access	entities	beyond	the	number	32,767	in	a	selection	set,	you	must	supply
the	index	argument	as	a	real,	as	in	the	following	example:

(setq	entx	(ssname	sset	50843.0))

See	Also
The	entnext	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	S	Functions	>	

ssnamex
	
	
	

Retrieves	information	about	how	a	selection	set	was	created

(ssnamex	ss	[index])	

Only	selection	sets	with	entities	from	the	current	drawing's	model	space	and
paper	space—not	nongraphical	objects	or	entities	in	other	block	definitions—can
be	retrieved	by	this	function.

Arguments

ss

A	selection	set.

index

An	integer	(or	real)	indicating	an	element	in	a	selection	set.	The	first	element
in	the	set	has	an	index	of	zero.

Return	Values

If	successful,	ssnamex	returns	the	name	of	the	entity	at	index,	along	with	data
describing	how	the	entity	was	selected.	If	the	index	argument	is	not	supplied,	this
function	returns	a	list	containing	the	entity	names	of	the	elements	in	the	selection
set,	along	with	data	that	describes	how	each	entity	was	selected.	If	index	is
negative	or	greater	than	the	highest-numbered	entity	in	the	selection	set,
ssnamex	returns	nil.

The	data	returned	by	ssnamex	takes	the	form	of	a	list	of	lists	containing
information	that	describes	either	an	entity	and	its	selection	method	or	a	polygon
used	to	select	one	or	more	entities.	Each	sublist	that	describes	the	selection	of	a
particular	entity	comprises	three	parts:	the	selection	method	ID	(an	integer	>=	0),
the	entity	name	of	the	selected	entity,	and	selection	method	specific	data	that
describes	how	the	entity	was	selected.

((sel_id1	ename1	(data))(sel_id2ename2	(data))	...)

The	following	table	lists	the	selection	method	IDs:

Selection	method	IDs

ID Description

0 Nonspecific	(i.e.,	Last	All)

1 Pick

2 Window	or	WPolygon

3 Crossing	or	CPolygon

4 Fence

Each	sublist	that	both	describes	a	polygon	and	is	used	during	entity	selection
takes	the	form	of	a	polygon	ID	(an	integer	<	0),	followed	by	point	descriptions.

(polygon_idpoint_description_1point_description_n...)

Polygon	ID	numbering	starts	at	-1	and	each	additional	polygon	ID	is
incremented	by	-1.	Depending	on	the	viewing	location,	a	point	is	represented	as
one	of	the	following:	an	infinite	line,	a	ray,	or	a	line	segment.	A	point	descriptor
comprises	three	parts:	a	point	descriptor	ID	(the	type	of	item	being	described),
the	start	point	of	the	item,	and	an	optional	unit	vector	that	describes	either	the
direction	in	which	the	infinite	line	travels	or	a	vector	that	describes	the	offset	to
the	other	side	of	the	line	segment.

(point_descriptor_idbase_point[unit_or_offset_vector])

The	following	table	lists	the	valid	point	descriptor	IDs:

Point	descriptor	IDs

ID Description

0 Infinite	line

1 Ray

2 Line	segment

The	unit_or_offset_vector	is	returned	when	the	view	point	is	something	other
than	0,0,1.

Examples

The	data	associated	with	Pick	(type	1)	entity	selections	is	a	single	point
description.	For	example,	the	following	record	is	returned	for	the	selection	of	an
entity	picked	at	1,1	in	plan	view	of	the	WCS:

Command:	(ssnamex	ss3	0)

((1	<Entity	name:	1d62da0>	0	(0	(1.0	1.0	0.0))))

The	data	associated	with	an	entity	selected	with	the	Window,	WPolygon,
Crossing,	or	CPolygon	method	is	the	integer	ID	of	the	polygon	that	selected	the
entity.	It	is	up	to	the	application	to	associate	the	polygon	identifiers	and	make	the
connection	between	the	polygon	and	the	entities	it	selected.	For	example,	the
following	returns	an	entity	selected	by	Crossing	(note	that	the	polygon	ID	is	-1):

Command:	(ssnamex	ss4	0)

((3	<Entity	name:	1d62d60>	0	-1)	(-1	(0	(-1.80879	8.85536	0.0))	(0	(13.4004	8.85536	0.0))	(0	(13.4004
1.80024	0.0))	(0	(-1.80879	1.80024	0.0))))

The	data	associated	with	fence	selections	is	a	list	of	points	and	descriptions	for
the	points	where	the	fence	and	entity	visually	intersect.	For	example,	the
following	command	returns	information	for	a	nearly	vertical	line	intersected
three	times	by	a	Z-shaped	fence:

Command:	(ssnamex	ss5	0)

((4	<Entity	name:	1d62d88>	0	(0	(5.28135	6.25219	0.0))	(0	(5.61868	2.81961	0.0))	(0	(5.52688
3.75381	0.0))))

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	S	Functions	>	

sssetfirst
	
	
	

Sets	which	objects	are	selected	and	gripped

(sssetfirst	gripset[pickset])	

The	gripset	argument	is	ignored;	the	selection	set	of	objects	specified	by	pickset
are	selected	and	gripped.

You	are	responsible	for	creating	a	valid	selection	set.	For	example,	you	may
need	to	verify	that	a	background	paper	space	viewport	(DXF	group	code	69)	is
not	included	in	the	selection	set.	You	may	also	need	to	ensure	that	selected
objects	belong	to	the	current	layout,	as	in	the	following	code:

(setq	ss	(ssget	(list	(cons	410	(getvar	"ctab")))))

Arguments

gripset

AutoCAD	no	longer	supports	grips	on	unselected	objects,	so	this	argument	is
ignored.	However,	if	gripset	is	nil	and	no	pickset	is	specified,
sssetfirst	turns	off	the	grip	handles	and	selections	it	previously	turned
on.

pickset

A	selection	set	to	be	selected.

Return	Values

The	selection	set	or	sets	specified.

Examples

First,	draw	a	square	and	build	three	selection	sets.	Begin	by	drawing	side	1	and
creating	a	selection	set	to	include	the	line	drawn:

Command:	(entmake	(list	(cons	0	"line")	'(10	0.0	0.0	0.0)'(11	0.0	10.0	0.0)))

((0	.	"line")	(10	0.0	0.0	0.0)	(11	0.0	10.0	0.0))

Command:	(setq	pickset1	(ssget	"_l"))

<Selection	set:	a5>

Variable	pickset1	points	to	the	selection	set	created.

Draw	side	2	and	add	it	to	the	pickset1	selection	set:
Command:	(entmake	(list	(cons	0	"line")	'(10	0.0	10.0	0.0)'(11	10.0	10.0	0.0)))

((0	.	"line")	(10	0.0	10.0	0.0)	(11	10.0	10.0	0.0))

Command:	(ssadd	(entlast)	pickset1)

<Selection	set:	a5>

Create	another	selection	set	to	include	only	side	2:
Command:	(setq	2onlyset	(ssget	"_l"))

<Selection	set:	a8>

Draw	side	3	and	add	it	to	the	pickset1	selection	set:
Command:	(entmake	(list	(cons	0	"line")	'(10	10.0	10.0	0.0)'(11	10.0	0.0	0.0)))

((0	.	"line")	(10	10.0	10.0	0.0)	(11	10.0	0.0	0.0))

Command:	(ssadd	(entlast)	pickset1)

<Selection	set:	a5>

Create	another	selection	and	include	side	3	in	the	selection	set:
Command:	(setq	pickset2	(ssget	"_l"))

<Selection	set:	ab>

Variable	pickset2	points	to	the	new	selection	set.

Draw	side	4	and	add	it	to	the	pickset1	and	pickset2	selection	sets:
Command:	(entmake	(list	(cons	0	"line")	'(10	10.0	0.0	0.0)'(11	0.0	0.0	0.0)))

((0	.	"line")	(10	10.0	0.0	0.0)	(11	0.0	0.0	0.0))

Command:	(ssadd	(entlast)	pickset1)

<Selection	set:	a5>

Command:	(ssadd	(entlast)	pickset2)

<Selection	set:	ab>

At	this	point,	pickset1	contains	sides	1-4,	pickset2	contains	sides	3	and	4,
and	2onlyset	contains	only	side	2.

Turn	grip	handles	on	and	select	all	objects	in	pickset1:

Command:	(sssetfirst	nil	pickset1)

(nil	<Selection	set:	a5>)

Turn	grip	handles	on	and	select	all	objects	in	pickset2:
Command:	(sssetfirst	nil	pickset2)

(nil	<Selection	set:	ab>)

Turn	grip	handles	on	and	select	all	objects	in	2onlyset:
Command:	(sssetfirst	nil	2onlyset)

(nil	<Selection	set:	a8>)

Each	sssetfirst	call	replaces	the	gripped	and	selected	selection	set	from	the
previous	sssetfirst	call.

Note Do	not	call	sssetfirst	when	AutoCAD	is	in	the	middle	of	executing	a
command.

See	Also
The	ssget	and	ssgetfirst	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	S	Functions	>	

startapp
	
	
	

Starts	a	Windows	application

(startapp	appcmd[file])	

Arguments

appcmd

A	string	that	specifies	the	application	to	execute.	If	appcmd	does	not	include
a	full	path	name,	startapp	searches	the	directories	in	the	PATH
environment	variable	for	the	application.

file

A	string	that	specifies	the	file	name	to	be	opened.

Return	Values

An	integer	greater	than	0,	if	successful;	otherwise	nil.

Examples

The	following	code	starts	Windows	Notepad	and	opens	the	acad.lsp	file.
Command:	(startapp	"notepad"	"acad.lsp")

33

If	an	argument	has	embedded	spaces,	it	must	be	surrounded	by	literal	double
quotes.	For	example,	to	edit	the	file	my	stuff.txt	with	Notepad,	use	the	following
syntax:

Command:	(startapp	"notepad.exe"	"\"my	stuff.txt\"")

33

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	S	Functions	>	

start_dialog
	
	
	

Displays	a	dialog	box	and	begins	accepting	user	input

(start_dialog)

You	must	first	initialize	the	dialog	box	by	a	previous	new_dialog	call.	The
dialog	box	remains	active	until	an	action	expression	or	callback	function	calls
done_dialog.	Usually	done_dialog	is	associated	with	the	tile	whose	key
is	"accept"	(typically	the	OK	button)	and	the	tile	whose	key	is	"cancel"
(typically	the	Cancel	button).

The	start_dialog	function	has	no	arguments.

Return	Values

The	start_dialog	function	returns	the	optional	status	passed	to
done_dialog.	The	default	value	is	1	if	the	user	presses	OK,	0	if	the	user
presses	Cancel,	or	-1	if	all	dialog	boxes	are	terminated	with	term_dialog.	If
done_dialog	is	passed	an	integer	status	greater	than	1,	start_dialog
returns	this	value,	whose	meaning	is	determined	by	the	application.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	S	Functions	>	

start_image
	
	
	

Starts	the	creation	of	an	image	in	the	dialog	box	tile

(start_image	key)

Subsequent	calls	to	fill_image,	slide_image,	and	vector_image
affect	the	created	image	until	the	application	calls	end_image.

Arguments

key

A	string	that	specifies	the	dialog	box	tile.	The	key	argument	is	case-sensitive.

Return	Values

The	key	argument,	if	successful;	otherwise	nil.

Note Do	not	use	the	set_tile	function	between	start_image	and
end_image	function	calls.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	S	Functions	>	

start_list
	
	
	

Starts	the	processing	of	a	list	in	the	list	box	or	in	the	pop-up	list	dialog	box	tile

(start_list	key	[operation	[index]])

Subsequent	calls	to	add_list	affect	the	list	started	by	start_list	until	the
application	calls	end_list.

Arguments

key

A	string	that	specifies	the	dialog	box	tile.	The	key	argument	is	case-sensitive.

operation

An	integer	indicating	the	type	of	list	operation	to	perform.	You	can	specify
one	of	the	following:
1 Change	selected	list	contents
2 Append	new	list	entry
3 Delete	old	list	and	create	new	list	(the	default)

index

A	number	indicating	the	list	item	to	change	by	the	subsequent	add_list
call.	The	first	item	in	the	list	is	index	0.	If	not	specified,	index	defaults	to	0.
The	index	argument	is	ignored	if	start_list	is	not	performing	a	change
operation.

Return	Values

The	name	of	the	list	that	was	started.

Note Do	not	use	the	set_tile	function	between	start_list	and
end_list	function	calls.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	S	Functions	>	

strcase
	
	
	

Returns	a	string	where	all	alphabetic	characters	have	been	converted	to
uppercase	or	lowercase

(strcase	string	[which])	

Arguments

string

A	string.

which

If	specified	as	T,	all	alphabetic	characters	in	string	are	converted	to
lowercase.	Otherwise,	characters	are	converted	to	uppercase.

Return	Values

A	string.

Examples
Command:	(strcase	"Sample")

"SAMPLE"

Command:	(strcase	"Sample"	T)

"sample"

The	strcase	function	will	correctly	handle	case	mapping	of	the	currently
configured	character	set.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	S	Functions	>	

strcat
	
	
	

Returns	a	string	that	is	the	concatenation	of	multiple	strings

(strcat	[string[string]...])	

Arguments

string

A	string.

Return	Values

A	string.	If	no	arguments	are	supplied,	strcat	returns	a	zero-length	string.

Examples
Command:	(strcat	"a"	"bout")

"about"

Command:	(strcat	"a"	"b"	"c")

"abc"

Command:	(strcat	"a"	""	"c")

"ac"

Command:	(strcat)

""

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	S	Functions	>	

strlen
	
	
	

Returns	an	integer	that	is	the	number	of	characters	in	a	string

(strlen	[string]...)

Arguments

string

A	string.

Return	Values

An	integer.	If	multiple	string	arguments	are	provided,	strlen	returns	the	sum
of	the	lengths	of	all	arguments.	If	you	omit	the	arguments	or	enter	an	empty
string,	strlen	returns	0.

Examples
Command:	(strlen	"abcd")

4

Command:	(strlen	"ab")

2

Command:	(strlen	"one"	"two"	"four")

10

Command:	(strlen)

0

Command:	(strlen	"")

0

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	S	Functions	>	

subst
	
	
	

Searches	a	list	for	an	old	item	and	returns	a	copy	of	the	list	with	a	new	item
substituted	in	place	of	every	occurrence	of	the	old	item

(subst	newitem	olditem	lst)

Arguments

newitem

An	atom	or	list.

olditem

An	atom	or	list.

lst

A	list.

Return	Values

A	list,	with	newitem	replacing	all	occurrences	of	olditem.	If	olditem	is	not	found
in	lst,	subst	returns	lst	unchanged.

Examples
Command:	(setq	sample	'(a	b	(c	d)	b))

(A	B	(C	D)	B)

Command:	(subst	'qq	'b	sample)

(A	QQ	(C	D)	QQ)

Command:	(subst	'qq	'z	sample)

(A	B	(C	D)	B)

Command:	(subst	'qq	'(c	d)	sample)

(A	B	QQ	B)

Command:	(subst	'(qq	rr)	'(c	d)	sample)

(A	B	(QQ	RR)	B)

Command:	(subst	'(qq	rr)	'z	sample)

(A	B	(C	D)	B)

When	used	in	conjunction	with	assoc,	subst	provides	a	convenient	means	of
replacing	the	value	associated	with	one	key	in	an	association	list,	as
demonstrated	by	the	following	function	calls.

Set	variable	who	to	an	association	list:
Command:	(setq	who	'((first	john)	(mid	q)	(last	public)))

((FIRST	JOHN)	(MID	Q)	(LAST	PUBLIC))

The	following	sets	old	to	(FIRST	JOHN)	and	new	to	(FIRST	J):
Command:	(setq	old	(assoc	'first	who)	new	'(first	j))

(FIRST	J)

Finally,	replace	the	value	of	the	first	item	in	the	association	list:
Command:	(subst	new	old	who)

((FIRST	J)	(MID	Q)	(LAST	PUBLIC))

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	S	Functions	>	

substr
	
	
	

Returns	a	substring	of	a	string

(substr	string	start	[length])

The	substr	function	starts	at	the	start	character	position	of	string	and
continues	for	length	characters.

Arguments

string

A	string.

start

A	positive	integer	indicating	the	starting	position	in	string.	The	first	character
in	the	string	is	position	1.

length

A	positive	integer	specifying	the	number	of	characters	to	search	through	in
string.	If	length	is	not	specified,	the	substring	continues	to	the	end	of	string.

Note The	first	character	of	string	is	character	number	1.	This	differs	from	other
functions	that	process	elements	of	a	list	(like	nth	and	ssname)	that	count	the
first	element	as	0.

Return	Values

A	string.

Examples
Command:	(substr	"abcde"	2)

"bcde"

Command:	(substr	"abcde"	2	1)

"b"

Command:	(substr	"abcde"	3	2)

"cd"

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	

T	Functions
	
	
	

tablet
Retrieves	and	sets	digitizer	(tablet)	calibrations
tblnext
Finds	the	next	item	in	a	symbol	table
tblobjname
Returns	the	entity	name	of	a	specified	symbol	table	entry
tblsearch
Searches	a	symbol	table	for	a	symbol	name
term_dialog
Terminates	all	current	dialog	boxes	as	if	the	user	had	canceled	each	of
them
terpri
Prints	a	newline	to	the	command	line
textbox
Measures	a	specified	text	object,	and	returns	the	diagonal	coordinates	of
a	box	that	encloses	the	text
textpage
Switches	focus	from	the	drawing	area	to	the	text	screen
textscr
Switches	focus	from	the	drawing	area	to	the	text	screen	(like	the
AutoCAD	F2	function	key)
trace
Aids	in	AutoLISP	debugging

trans
Translates	a	point	(or	a	displacement)	from	one	coordinate	system	to
another
type
Returns	the	type	of	a	specified	item

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	T	Functions	>	

tablet
	
	
	

Retrieves	and	sets	digitizer	(tablet)	calibrations

(tablet	code	[row1	row2	row3	direction])	

Arguments

code

An	integer	that	can	be	one	of	the	following:
0 Return	the	current	digitizer	calibration.	In	this	case,	the	remaining
arguments	must	be	omitted.
1 Set	the	calibration	according	to	the	arguments	that	follow.	In	this	case,
you	must	provide	the	new	calibration	settings	(row1,row2,row3,	and
direction).

row1,	row2,	row3

Three	3D	points.	These	three	arguments	specify	the	three	rows	of	the	tablet's
transformation	matrix.
The	third	element	in	row3	(Z)	should	always	equal	1:	tablet	returns	it	as	1
even	if	you	specify	a	different	value	in	row3.

direction

One	3D	point.	This	is	the	vector	(expressed	in	the	world	coordinate	system,
or	WCS)	that	is	normal	to	the	plane	that	represents	the	surface	of	the	tablet.
If	the	specified	direction	isn't	normalized,	tablet	corrects	it,	so	the
direction	it	returns	when	you	set	the	calibration	may	differ	from	the	value
you	passed.

Return	Values

If	tablet	fails,	it	returns	nil	and	sets	the	ERRNO	system	variable	to	a	value

that	indicates	the	reason	for	the	failure	(see	AutoLISP	Error	Codes	in
theAutoLISP	Developer's	Guide).	This	can	happen	if	the	digitizer	is	not	a	tablet.

Examples

A	very	simple	transformation	that	can	be	established	with	tablet	is	the
identity	transformation:

(tablet	1	'(1	0	0)	'(0	1	0)	'(0	0	1)	'(0	0	1))

With	this	transformation	in	effect,	AutoCAD	will	receive,	effectively,	raw
digitizer	coordinates	from	the	tablet.	For	example,	if	you	pick	the	point	with
digitizer	coordinates	(5000,15000),	AutoCAD	will	see	it	as	the	point	in	your
drawing	with	those	same	coordinates.

The	TABMODE	system	variable	allows	AutoLISP	routines	to	toggle	the	tablet
on	and	off.

See	Also
The	Calibrating	Tablets	topic	in	the	AutoLISP	Developer's	Guide	.

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e21773.Click()
javascript:hhctrl_d0e21798.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	T	Functions	>	

tblnext
	
	
	

Finds	the	next	item	in	a	symbol	table

(tblnext	table-name	[rewind])	

When	tblnext	is	used	repeatedly,	it	normally	returns	the	next	entry	in	the
specified	table	each	time.	The	tblsearch	function	can	set	the	next	entry	to	be
retrieved.	If	the	rewind	argument	is	present	and	is	not	nil,	the	symbol	table	is
rewound	and	the	first	entry	in	it	is	retrieved.

Arguments

table-name

A	string	that	identifies	a	symbol	table.	Valid	table-name	values	are
"LAYER",	"LTYPE",	"VIEW",	"STYLE",	"BLOCK",	"UCS",	"APPID",
"DIMSTYLE",	and	"VPORT".	The	argument	is	not	case	sensitive.

rewind

If	this	argument	is	present	and	is	not	nil,	the	symbol	table	is	rewound	and
the	first	entry	in	it	is	retrieved.

Return	Values

If	a	symbol	table	entry	is	found,	the	entry	is	returned	as	a	list	of	dotted	pairs	of
DXF-type	codes	and	values.	If	there	are	no	more	entries	in	the	table,	nil	is
returned.	Deleted	table	entries	are	never	returned.

Examples

Retrieve	the	first	layer	in	the	symbol	table:
Command:	(tblnext	"layer"	T)

((0	.	"LAYER")	(2	.	"0")	(70	.	0)	(62	.	7)	(6	.	"CONTINUOUS"))

The	return	values	represent	the	following:

(0	.	"LAYER")															Symbol	type

(2	.	"0")																			Symbol	name

(70	.	0)																				Flags

(62	.	7)																				Color	number,	negative	if	off

(6	.	"CONTINUOUS")										Linetype	name

Note	that	there	is	no	-1	group.	The	last	entry	returned	from	each	table	is	stored,
and	the	next	one	is	returned	each	time	tblnext	is	called	for	that	table.	When
you	begin	scanning	a	table,	be	sure	to	supply	a	non-nil	second	argument	to
rewind	the	table	and	to	return	the	first	entry.

Entries	retrieved	from	the	block	table	include	a	-2	group	with	the	entity	name	of
the	first	entity	in	the	block	definition	(if	any).	For	example,	the	following
command	obtains	information	about	a	block	called	BOX:

Command:	(tblnext	"block")

((0	.	"BLOCK")	(2	.	"BOX")	(70	.	0)	(10	9.0	2.0	0.0)	(-2	.	<Entity	name:	1dca370>))

The	return	values	represent	the	following:

(0	.	"BLOCK")																				Symbol	type

(2	.	"BOX")																						Symbol	name

(70	.	0)																									Flags

(10	9.0	2.0	0.0)																	Origin	X,Y,Z

(-2	.	<Entity	name:	1dca370>)				First	entity

The	entity	name	in	the	-2	group	is	accepted	by	entget	and	entnext,	but	not
by	other	entity	access	functions.	For	example,	you	cannot	use	ssadd	to	put	it	in
a	selection	set.	By	providing	the	-2	group	entity	name	to	entnext,	you	can
scan	the	entities	comprising	a	block	definition;	entnext	returns	nil	after	the
last	entity	in	the	block	definition.

If	a	block	contains	no	entities,	the	-2	group	returned	by	tblnext	is	the	entity
name	of	its	endblk	entity.

Note The	vports	function	returns	current	VPORT	table	information;	therefore,	it
may	be	easier	to	use	vports	as	opposed	to	tblnext	to	retrieve	this
information.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	T	Functions	>	

tblobjname
	
	
	

Returns	the	entity	name	of	a	specified	symbol	table	entry

(tblobjname	table-name	symbol)	

Arguments

table-name

A	string	that	identifies	the	symbol	table	to	be	searched.	The	argument	is	not
case-sensitive.

symbol

A	string	identifying	the	symbol	to	be	searched	for.

Return	Values

The	entity	name	of	the	symbol	table	entry,	if	found.

The	entity	name	returned	by	tblobjname	can	be	used	in	entget	and
entmod	operations.

Examples

The	following	command	searches	for	the	entity	name	of	the	block	entry	“ESC-
01”:

Command:	(tblobjname	"block"	"ESC-01")

<Entity	name:	1dca368>

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	T	Functions	>	

tblsearch
	
	
	

Searches	a	symbol	table	for	a	symbol	name

(tblsearch	table-name	symbol	[setnext])	

Arguments

table-name

A	string	that	identifies	the	symbol	table	to	be	searched.	This	argument	is	not
case-sensitive.

symbol

A	string	identifying	the	symbol	name	to	be	searched	for.	This	argument	is	not
case-sensitive.

setnext

If	this	argument	is	supplied	and	is	not	nil,	the	tblnext	entry	counter	is
adjusted	so	the	following	tblnext	call	returns	the	entry	after	the	one
returned	by	this	tblsearch	call.	Otherwise,	tblsearch	has	no	effect	on
the	order	of	entries	retrieved	by	tblnext.

Return	Values

If	tblsearch	finds	an	entry	for	the	given	symbol	name,	it	returns	that	entry	in
the	format	described	for	tblnext.	If	no	entry	is	found,	tblsearch	returns	nil.

Examples

The	following	command	searches	for	a	text	style	named	“standard”:
Command:	(tblsearch	"style"	"standard")

((0	.	"STYLE")	(2	.	"STANDARD")	(70	.	0)	(40	.	0.0)	(41	.	1.0)	(50	.	0.0)	(71	.	0)	(42	.	0.3)	(3	.	"txt")
(4	.	""))

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	T	Functions	>	

term_dialog
	
	
	

Terminates	all	current	dialog	boxes	as	if	the	user	had	canceled	each	of	them

(term_dialog)

If	an	application	is	terminated	while	any	DCL	files	are	open,	AutoCAD
automatically	calls	term_dialog.	This	function	is	used	mainly	for	aborting
nested	dialog	boxes.

Return	Values

The	term_dialog	function	always	returns	nil.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	T	Functions	>	

terpri
	
	
	

Prints	a	newline	to	the	command	line

(terpri)	

The	terpri	function	is	not	used	for	file	I/O.	To	write	a	newline	to	a	file,	use
prin1,	princ,	or	print.

Return	Values

nil

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	T	Functions	>	

textbox
	
	
	

Measures	a	specified	text	object,	and	returns	the	diagonal	coordinates	of	a	box
that	encloses	the	text

(textbox	elist)

Arguments

elist

An	entity	definition	list	defining	a	text	object,	in	the	format	returned	by
entget.
If	fields	that	define	text	parameters	other	than	the	text	itself	are	omitted	from
elist,	the	current	(or	default)	settings	are	used.
The	minimum	list	accepted	by	textbox	is	that	of	the	text	itself.

Return	Values

A	list	of	two	points,	if	successful;	otherwise	nil.

The	points	returned	by	textbox	describe	the	bounding	box	of	the	text	object	as
if	its	insertion	point	is	located	at	(0,0,0)	and	its	rotation	angle	is	0.	The	first	list
returned	is	generally	the	point	(0.0	0.0	0.0)	unless	the	text	object	is	oblique	or
vertical,	or	it	contains	letters	with	descenders	(such	as	g	and	p).	The	value	of	the
first	point	list	specifies	the	offset	from	the	text	insertion	point	to	the	lower-left
corner	of	the	smallest	rectangle	enclosing	the	text.	The	second	point	list	specifies
the	upper-right	corner	of	that	box.	Regardless	of	the	orientation	of	the	text	being
measured,	the	point	list	returned	always	describes	the	lower-left	and	upper-right
corners	of	this	bounding	box.

Examples

The	following	command	supplies	the	text	and	accepts	the	current	defaults	for	the
remaining	parameters:

Command:	(textbox	'((1	.	"Hello	world.")))

((0.000124126	-0.00823364	0.0)	(3.03623	0.310345	0.0))

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	T	Functions	>	

textpage
	
	
	

Switches	focus	from	the	drawing	area	to	the	text	screen

(textpage)	

The	textpage	function	is	equivalent	to	textscr.

Return	Values

nil

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	T	Functions	>	

textscr
	
	
	

Switches	focus	from	the	drawing	area	to	the	text	screen	(like	the	AutoCAD	F2
function	key)

(textscr)	

Return	Values

The	textscr	function	always	returns	nil.

See	Also
The	graphscr	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	T	Functions	>	

trace
	
	
	

Aids	in	AutoLISP	debugging

(trace	[function...])

The	trace	function	sets	the	trace	flag	for	the	specified	functions.	Each	time	a
specified	function	is	evaluated,	a	trace	display	appears	showing	the	entry	of	the
function	(indented	to	the	level	of	calling	depth)	and	prints	the	result	of	the
function.

If	Visual	LISP	is	active,	trace	output	is	sent	to	the	Visual	LISP	Trace	window.	If
Visual	LISP	is	not	active,	trace	output	goes	to	the	AutoCAD	command	window.

Note Once	you	start	Visual	LISP	during	an	AutoCAD	session,	it	remains	active
until	you	exit	AutoCAD.	Therefore,	all	trace	output	prints	in	the	Visual	LISP
Trace	window	for	the	remainder	of	that	AutoCAD	session.	Exiting	or	closing
Visual	LISP	while	AutoCAD	is	running	only	closes	the	IDE	windows	and	places
Visual	LISP	in	a	quiescent	state;	it	does	not	result	in	a	true	shutdown.	You	must
reopen	Visual	LISP	to	view	the	output	in	the	Trace	window.

Use	untrace	to	turn	off	the	trace	flag.

Arguments

function

A	symbol	that	names	a	function.	If	no	argument	is	supplied,	trace	has	no
effect.

Return	Values

The	last	function	name	passed	to	trace.	If	no	argument	is	supplied,	trace
returns	nil.

Examples

Define	a	function	named	foo	and	set	the	trace	flag	for	the	function:
Command:	(defun	foo	(x)	(if	(>	x	0)	(foo	(1-	x))))

FOO

Command:	(trace	foo)

FOO

Invoke	foo	and	observe	the	results:
Command:	(foo	3)

Entering	(FOO	3)

 Entering	(FOO	2)

  Entering	(FOO	1)

   Entering	(FOO	0)

   Result:	nil

  Result:	nil

 Result:	nil

Result:	nil

Clear	the	trace	flag	by	invoking	untrace:
Command:	(untrace	foo)

FOO

See	Also
The	untrace	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	T	Functions	>	

trans
	
	
	

Translates	a	point	(or	a	displacement)	from	one	coordinate	system	to	another

(trans	pt	from	to	[disp])			

Arguments

pt

A	list	of	three	reals	that	can	be	interpreted	as	either	a	3D	point	or	a	3D
displacement	(vector).

from

An	integer	code,	entity	name,	or	3D	extrusion	vector	identifying	the
coordinate	system	in	which	pt	is	expressed.	The	integer	code	can	be	one	of
the	following:
0 World	(WCS)
1 User	(current	UCS)
2 If	used	with	code	0	or	1,	this	indicates	the	Display	Coordinate	System
(DCS)	of	the	current	viewport.	When	used	with	code	3,	it	indicates	the	DCS
of	the	current	model	space	viewport.
3 Paper	space	DCS	(used	only	with	code	2)

to

An	integer	code,	entity	name,	or	3D	extrusion	vector	identifying	the
coordinate	system	of	the	returned	point.	See	the	from	argument	for	a	list	of
valid	integer	codes.

disp

If	present	and	is	not	nil,	this	argument	specifies	that	pt	is	to	be	treated	as	a
3D	displacement	rather	than	as	a	point.

If	you	use	an	entity	name	for	the	from	or	to	argument,	it	must	be	passed	in	the
format	returned	by	the	entnext,	entlast,	entsel,	nentsel,	and
ssname	functions.	This	format	lets	you	translate	a	point	to	and	from	the	Object
Coordinate	System	(OCS)	of	a	particular	object.	(For	some	objects,	the	OCS	is
equivalent	to	the	WCS;	for	these	objects,	conversion	between	OCS	and	WCS	is
a	null	operation.)	A	3D	extrusion	vector	(a	list	of	three	reals)	is	another	method
of	converting	to	and	from	an	object's	OCS.	However,	this	does	not	work	for
those	objects	whose	OCS	is	equivalent	to	the	WCS.

Return	Values

A	3D	point	(or	displacement)	in	the	requested	to	coordinate	system.

Examples

In	the	following	examples,	the	UCS	is	rotated	90	degrees	counterclockwise
around	the	WCS	Z	axis:

Command:	(trans	'(1.0	2.0	3.0)	0	1)

(2.0	-1.0	3.0)

Command:	(trans	'(1.0	2.0	3.0)	1	0)

(-2.0	1.0	3.0)

The	coordinate	systems	are	discussed	in	greater	detail	in	Coordinate	System
Transformations	in	the	AutoLISP	Developer's	Guide.

For	example,	to	draw	a	line	from	the	insertion	point	of	a	piece	of	text	(without
using	Osnap),	you	convert	the	text	object's	insertion	point	from	the	text	object's
OCS	to	the	UCS.

(trans	text-insert-pointtext-ename	1)

You	can	then	pass	the	result	to	the	From	Point	prompt.

Conversely,	you	must	convert	point	(or	displacement)	values	to	their	destination
OCS	before	feeding	them	to	entmod.	For	example,	if	you	want	to	move	a	circle
(without	using	the	MOVE	command)	by	the	UCS-relative	offset	(1,2,3),	you
need	to	convert	the	displacement	from	the	UCS	to	the	circle's	OCS:

(trans	'(1	2	3)	1	circle-ename)

Then	you	add	the	resulting	displacement	to	the	circle's	center	point.

javascript:hhctrl_d0e22656.Click()

For	example,	if	you	have	a	point	entered	by	the	user	and	want	to	find	out	which
end	of	a	line	it	looks	closer	to,	you	convert	the	user's	point	from	the	UCS	to	the
DCS.

(trans	user-point	1	2)

Then	you	convert	each	of	the	line's	endpoints	from	the	OCS	to	the	DCS.

(trans	endpoint	line-ename	2)

From	there	you	can	compute	the	distance	between	the	user's	point	and	each
endpoint	of	the	line	(ignoring	the	Z	coordinates)	to	determine	which	end	looks
closer.

The	trans	function	can	also	transform	2D	points.	It	does	this	by	setting	the	Z
coordinate	to	an	appropriate	value.	The	Z	component	used	depends	on	the	from
coordinate	system	that	was	specified	and	on	whether	the	value	is	to	be	converted
as	a	point	or	as	a	displacement.	If	the	value	is	to	be	converted	as	a	displacement,
the	Z	value	is	always	0.0;	if	the	value	is	to	be	converted	as	a	point,	the	filled-in	Z
value	is	determined	as	shown	in	the	following	table:

Converted	2D	point	Z	values

From Filled-in	Z	value

WCS 0.0

UCS Current	elevation

OCS 0.0

DCS Projected	to	the	current	construction
plane	(UCS	XY	plane	+	current
elevation)

PSDCS Projected	to	the	current	construction
plane	(UCS	XY	plane	+	current
elevation)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	T	Functions	>	

type
	
	
	

Returns	the	type	of	a	specified	item

(type	item)

Arguments

item

A	symbol.

Return	Values

The	data	type	of	item.	Items	that	evaluate	to	nil	(such	as	unassigned	symbols)
return	nil.	The	data	type	is	returned	as	one	of	the	atoms	listed	in	the	following
table:

Data	types	returned	by	the	type	function

Data	type Description

ENAME Entity	names

EXRXSUBR External	ObjectARX	applications

FILE File	descriptors

INT Integers

LIST Lists

PAGETB Function	paging	table

PICKSET Selection	sets

REAL Floating-point	numbers

SAFEARRAY Safearray

STR Strings

SUBR Internal	AutoLISP	functions	or
functions	loaded	from	compiled
(FAS	or	VLX)	files
Functions	in	LISP	source	files
loaded	from	the	AutoCAD
Command	prompt	may	also	appear
as	SUBR

SYM Symbols

VARIANT Variant

USUBR User-defined	functions	loaded	from
LISP	source	files

VLA-object ActiveX	objects

Examples

For	example,	given	the	following	assignments:

(setq	a	123	r	3.45	s	"Hello!"	x	'(a	b	c))

(setq	f	(open	"name"	"r"))

then

(type	'a)																			returns		SYM

(type	a)																				returns		INT

(type	f)																				returns		FILE

(type	r)																				returns		REAL

(type	s)																				returns		STR

(type	x)																				returns		LIST

(type	+)																				returns		SUBR

(type	nil)																		returns		nil

The	following	code	example	uses	the	type	function	on	the	argument	passed	to
it:

(defun	isint	(a)

			(if	(=	(type	a)	'INT)				is	TYPE	integer?

					T																						yes,	return	T	

					nil																				no,	return	nil	

)

)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	

U	Functions
	
	
	

unload_dialog
Unloads	a	DCL	file
untrace
Clears	the	trace	flag	for	the	specified	functions

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	U	Functions	>	

unload_dialog
	
	
	

Unloads	a	DCL	file

(unload_dialog	dcl_id)

Unloads	the	DCL	file	associated	with	dcl_id	(obtained	from	a	previous
new_dialog	call)	from	memory.

It	is	generally	not	necessary	to	unload	a	DCL	definition	from	memory,	unless
you	are	running	low	on	memory	or	need	to	update	the	DCL	dialog	definition
from	a	new	file.

Arguments

dcl_id

A	DCL	file	identifier	obtained	from	a	previous	load_dialog	call.

Return	Values

The	unload_dialog	function	always	returns	nil.

See	Also
The	load_dialog	and	new_dialog	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	U	Functions	>	

untrace
	
	
	

Clears	the	trace	flag	for	the	specified	functions

(untrace	[function...])

Arguments

function

A	symbol	that	names	a	function.	If	function	is	not	specified,	untrace	has
no	effect.

Return	Values

The	last	function	name	passed	to	untrace.	If	function	was	not	specified,
untrace	returns	nil.

Examples

The	following	command	clears	the	trace	flag	for	function	foo:
Command:	(untrace	foo)

FOO

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	

V	Functions
	
	
	

vector_image
Draws	a	vector	in	the	currently	active	dialog	box	image
ver
Returns	a	string	that	contains	the	current	AutoLISP	version	number
vl-acad-defun
Defines	an	AutoLISP	function	symbol	as	an	external	subroutine
vl-acad-undefun
Undefines	an	AutoLISP	function	symbol	so	it	is	no	longer	available	to
ObjectARX	applications
vl-arx-import
Imports	ObjectARX/ADSRX	functions	into	a	separate-namespace	VLX
vl-bb-ref
Returns	the	value	of	a	variable	from	the	blackboard	namespace
vl-bb-set
Sets	a	variable	in	the	blackboard	namespace
vl-catch-all-apply
Passes	a	list	of	arguments	to	a	specified	function	and	traps	any
exceptions
vl-catch-all-error-message
Returns	a	string	from	an	error	object
vl-catch-all-error-p
Determines	whether	an	argument	is	an	error	object	returned	from	vl-
catch-all-apply

vl-cmdf
Executes	an	AutoCAD	command
vl-consp
Determines	whether	or	not	a	list	is	nil
vl-directory-files
Lists	all	files	in	a	given	directory
vl-doc-export
Makes	a	function	available	to	the	current	document
vl-doc-import
Imports	a	previously	exported	function	into	a	VLX	namespace
vl-doc-ref
Retrieves	the	value	of	a	variable	from	the	current	document's	namespace
vl-doc-set
Sets	the	value	of	a	variable	in	the	current	document's	namespace
vl-every
Checks	whether	the	predicate	is	true	for	every	element	combination
vl-exit-with-error
Passes	control	from	a	VLX	error	handler	to	the	*error*	function	of	the
calling	namespace
vl-exit-with-value
Returns	a	value	to	the	function	that	invoked	the	VLX	from	another
namespace
vl-file-copy
Copies	or	appends	the	contents	of	one	file	to	another	file
vl-file-delete
Deletes	a	file
vl-file-directory-p
Determines	if	a	file	name	refers	to	a	directory
vl-file-rename

Renames	a	file
vl-file-size
Determines	the	size	of	a	file,	in	bytes
vl-file-systime
Returns	last	modification	time	of	the	specified	file
vl-filename-base
Returns	the	name	of	a	file,	after	stripping	out	the	directory	path	and
extension
vl-filename-directory
Returns	the	directory	path	of	a	file,	after	stripping	out	the	name	and
extension
vl-filename-extension
Returns	the	extension	from	a	file	name,	after	stripping	out	the	rest	of	the
name
vl-filename-mktemp
Calculates	a	unique	file	name	to	be	used	for	a	temporary	file
vl-get-resource
Returns	the	text	stored	in	a	.txt	file	packaged	in	a	VLX
vl-list*
Constructs	and	returns	a	list
vl-list->string
Combines	the	characters	associated	with	a	list	of	integers	into	a	string
vl-list-exported-functions
Lists	exported	functions
vl-list-length
Calculates	list	length	of	a	true	list
vl-list-loaded-vlx
Returns	a	list	of	all	separate-namespace	VLX	files	associated	with	the
current	document
vl-load-all

Loads	a	file	into	all	open	AutoCAD	documents,	and	into	any	document
subsequently	opened	during	the	current	AutoCAD	session
vl-load-com
Loads	Visual	LISP	extensions	to	AutoLISP
vl-load-reactors
Loads	reactor	support	functions
vl-mkdir
Creates	a	directory
vl-member-if
Determines	if	the	predicate	is	true	for	one	of	the	list	members
vl-member-if-not
Determines	if	the	predicate	is	nil	for	one	of	the	list	members
vl-position
Returns	the	index	of	the	specified	list	item
vl-prin1-to-string
Returns	the	string	representation	of	LISP	data	as	if	it	were	output	by	the
prin1	function
vl-princ-to-string
Returns	the	string	representation	of	LISP	data	as	if	it	were	output	by	the
princ	function
vl-propagate
Copies	the	value	of	a	variable	into	all	open	document	namespaces	(and
sets	its	value	in	any	subsequent	drawings	opened	during	the	current
AutoCAD	session)
vl-registry-delete
Deletes	the	specified	key	or	value	from	the	Windows	registry
vl-registry-descendents
Returns	a	list	of	subkeys	or	value	names	for	the	specified	registry	key
vl-registry-read
Returns	data	stored	in	the	Windows	registry	for	the	specified	key/value

pair
vl-registry-write
Creates	a	key	in	the	Windows	registry
vl-remove
Removes	elements	from	a	list
vl-remove-if
Returns	all	elements	of	the	supplied	list	that	fail	the	test	function
vl-remove-if-not
Returns	all	elements	of	the	supplied	list	that	pass	the	test	function
vl-some
Checks	whether	the	predicate	is	not	nil	for	one	element	combination
vl-sort
Sorts	the	elements	in	a	list	according	to	a	given	compare	function
vl-sort-i
Sorts	the	elements	in	a	list	according	to	a	given	compare	function,	and
returns	the	element	index	numbers
vl-string->list
Converts	a	string	into	a	list	of	character	codes
vl-string-elt
Returns	the	ASCII	representation	of	the	character	at	a	specified	position
in	a	string
vl-string-left-trim
Removes	the	specified	characters	from	the	beginning	of	a	string
vl-string-mismatch
Returns	the	length	of	the	longest	common	prefix	for	two	strings,	starting
at	specified	positions
vl-string-position
Looks	for	a	character	with	the	specified	ASCII	code	in	a	string
vl-string-right-trim
Removes	the	specified	characters	from	the	end	of	a	string

vl-string-search
Searches	for	the	specified	pattern	in	a	string
vl-string-subst
Substitutes	one	string	for	another,	within	a	string
vl-string-translate
Replaces	characters	in	a	string	with	a	specified	set	of	characters
vl-string-trim
Removes	the	specified	characters	from	the	beginning	and	end	of	a	string
vl-symbol-name
Returns	a	string	containing	the	name	of	a	symbol
vl-symbol-value
Returns	the	current	value	bound	to	a	symbol
vl-symbolp
Identifies	whether	or	not	a	specified	object	is	a	symbol
vl-unload-vlx
Unload	a	VLX	application	that	is	loaded	in	its	own	namespace
vl-vbaload
Loads	a	VBA	project
vl-vbarun
Runs	a	VBA	macro
vl-vlx-loaded-p
Determines	whether	a	separate-namespace	VLX	is	currently	loaded
vlax-3D-point
Creates	ActiveX-compatible	(variant)	3D	point	structure
vlax-add-cmd
Adds	commands	to	the	AutoCAD	built-in	command	set
vlax-create-object
Creates	a	new	instance	of	an	application	object
vlax-curve-getArea

Returns	the	area	inside	the	curve
vlax-curve-getClosestPointTo
Returns	the	point	(in	WCS)	on	a	curve	that	is	nearest	to	the	specified
point
vlax-curve-getClosestPointToProjection
Returns	the	closest	point	(in	WCS)	on	a	curve	after	projecting	the	curve
onto	a	plane
vlax-curve-getDistAtParam
Returns	the	length	of	the	curve's	segment	from	the	curve's	beginning	to
the	specified	parameter
vlax-curve-getDistAtPoint
Returns	the	length	of	the	curve's	segment	between	the	curve's	start	point
and	the	specified	point
vlax-curve-getEndParam
Returns	the	parameter	of	the	endpoint	of	the	curve
vlax-curve-getEndPoint
Returns	the	endpoint	(in	WCS)	of	the	curve
vlax-curve-getFirstDeriv
Returns	the	first	derivative	(in	WCS)	of	a	curve	at	the	specified	location
vlax-curve-getParamAtDist
Returns	the	parameter	of	a	curve	at	the	specified	distance	from	the
beginning	of	the	curve
vlax-curve-getParamAtPoint
Returns	the	parameter	of	the	curve	at	the	point
vlax-curve-getPointAtDist
Returns	the	point	(in	WCS)	along	a	curve	at	the	distance	specified	by	the
user
vlax-curve-getPointAtParam
Returns	the	point	at	the	specified	parameter	value	along	a	curve
vlax-curve-getSecondDeriv

Returns	the	second	derivative	(in	WCS)	of	a	curve	at	the	specified
location
vlax-curve-getStartParam
Returns	the	start	parameter	on	the	curve
vlax-curve-getStartPoint
Returns	the	start	point	(in	WCS)	of	the	curve
vlax-curve-isClosed
Determines	if	the	specified	curve	is	closed	(that	is,	the	start	point	is	the
same	as	the	endpoint)
vlax-curve-isPeriodic
Determines	if	the	specified	curve	has	an	infinite	range	in	both	directions
and	there	is	a	period	value	dT,	such	that	a	point	on	the	curve	at	(u	+	dT)
=	point	on	curve	(u),	for	any	parameter	u
vlax-curve-isPlanar
Determines	if	there	is	a	plane	that	contains	the	curve
vlax-dump-object
Lists	an	object's	properties,	and	optionally,	the	methods	that	apply	to	the
object
vlax-ename->vla-object
Transforms	an	entity	to	a	VLA-object
vlax-erased-p
Determines	whether	an	object	was	erased
vlax-for
Iterates	through	a	collection	of	objects,	evaluating	each	expression
vlax-get-acad-object
Retrieves	the	top	level	AutoCAD	application	object	for	the	current
AutoCAD	session
vlax-get-object
Returns	a	running	instance	of	an	application	object
vlax-get-or-create-object

Returns	a	running	instance	of	an	application	object,	or	creates	a	new
instance	if	the	application	is	not	currently	running
vlax-get-property
Retrieves	a	VLA-object's	property
vlax-import-type-library
Imports	information	from	a	type	library
vlax-invoke-method
Calls	the	specified	ActiveX	method
vlax-ldata-delete
Erases	LISP	data	from	a	drawing	dictionary
vlax-ldata-get
Retrieves	LISP	data	from	a	drawing	dictionary	or	an	object
vlax-ldata-list
Lists	LISP	data	in	a	drawing	dictionary
vlax-ldata-put
Stores	LISP	data	in	a	drawing	dictionary	or	an	object
vlax-ldata-test
Determines	if	data	can	be	saved	over	a	session	boundary
vlax-make-safearray
Creates	a	safearray
vlax-make-variant
Creates	a	variant	data	type
vlax-map-collection
Applies	a	function	to	all	objects	in	a	collection
vlax-method-applicable-p
Determines	if	an	object	supports	a	particular	method
vlax-object-released-p
Determines	if	an	object	has	been	released
vlax-product-key

Returns	the	AutoCAD	Windows	registry	path
vlax-property-available-p
Determines	if	an	object	has	a	specified	property
vlax-put-property
Sets	the	property	of	an	ActiveX	object
vlax-read-enabled-p
Determines	if	an	object	can	be	read
vlax-release-object
Releases	a	drawing	object
vlax-remove-cmd
Removes	a	single	command	or	a	command	group
vlax-safearray-fill
Stores	data	in	the	elements	of	a	safearray
vlax-safearray-get-dim
Returns	the	number	of	dimensions	in	a	safearray	object
vlax-safearray-get-element
Returns	an	element	from	an	array
vlax-safearray-get-l-bound
Returns	the	lower	boundary	(starting	index)	of	a	dimension	of	an	array
vlax-safearray-get-u-bound
Returns	the	upper	boundary	(end	index)	of	a	dimension	of	an	array
vlax-safearray-put-element
Adds	an	element	to	an	array
vlax-safearray-type
Returns	the	data	type	of	a	safearray
vlax-safearray->list
Returns	the	elements	of	a	safearray	in	list	form
vlax-tmatrix
Returns	a	suitable	representation	for	a	4	x	4	transformation	matrix	to	be

used	in	VLA	methods
vlax-typeinfo-available-p
Determines	whether	TypeLib	information	is	present	for	the	specified
type	of	object
vlax-variant-change-type
Returns	the	value	of	a	variant	after	changing	it	from	one	data	type	to
another
vlax-variant-type
Determines	the	data	type	of	a	variant
vlax-variant-value
Returns	the	value	of	a	variant
vlax-vla-object->ename
Transforms	a	VLA-object	to	an	AutoLISP	entity
vlax-write-enabled-p
Determines	if	an	AutoCAD	drawing	object	can	be	modified
vlisp-compile
Compiles	AutoLISP	source	code	into	a	FAS	file
vlr-acdb-reactor
Constructs	a	reactor	object	that	notifies	when	an	object	is	added	to,
modified	in,	or	erased	from	a	drawing	database
vlr-add
Enables	a	disabled	reactor	object
vlr-added-p
Tests	to	determine	if	a	reactor	object	is	enabled
vlr-beep-reaction
Produces	a	beep	sound
vlr-command-reactor
Constructs	an	editor	reactor	that	notifies	of	a	command	event
vlr-current-reaction-name
Returns	the	name	(symbol)	of	the	current	event,	if	called	from	within	a

reactor's	callback
vlr-data
Returns	application-specific	data	associated	with	a	reactor
vlr-data-set
Overwrites	application-specific	data	associated	with	a	reactor
vlr-deepclone-reactor
Constructs	an	editor	reactor	object	that	notifies	of	a	deep	clone	event
vlr-docmanager-reactor
Constructs	a	reactor	object	that	notifies	of	events	relating	to	drawing
documents
vlr-dwg-reactor
Constructs	an	editor	reactor	object	that	notifies	of	a	drawing	event	(for
example,	opening	or	closing	a	drawing	file)
vlr-dxf-reactor
Constructs	an	editor	reactor	object	that	notifies	of	an	event	related	to
reading	or	writing	a	DXF	file
vlr-editor-reactor
Constructs	an	editor	reactor	object
vlr-insert-reactor
Constructs	an	editor	reactor	object	that	notifies	of	an	event	related	to
block	insertion
vlr-linker-reactor
Constructs	a	reactor	object	that	notifies	your	application	every	time	an
ObjectARX	application	is	loaded	or	unloaded
vlr-lisp-reactor
Constructs	an	editor	reactor	object	that	notifies	of	a	LISP	event
vlr-miscellaneous-reactor
Constructs	an	editor	reactor	object	that	does	not	fall	under	any	other
editor	reactor	types
vlr-mouse-reactor

Constructs	an	editor	reactor	object	that	notifies	of	a	mouse	event	(for
example,	a	double-click)
vlr-notification
Determines	whether	or	not	a	reactor	will	fire	if	its	associated	namespace
is	not	active
vlr-object-reactor
Constructs	a	drawing	object	reactor	object
vlr-owner-add
Adds	an	object	to	the	list	of	owners	of	an	object	reactor
vlr-owner-remove
Removes	an	object	from	the	list	of	owners	of	an	object	reactor
vlr-owners
Returns	the	list	of	owners	of	an	object	reactor
vlr-pers
Makes	a	reactor	persistent
vlr-pers-list
Returns	a	list	of	persistent	reactors	in	the	current	drawing	document
vlr-pers-p
Determines	whether	a	reactor	is	persistent
vlr-pers-release
Makes	a	reactor	transient
vlr-reaction-name
Returns	a	list	of	all	possible	callback	conditions	for	this	reactor	type
vlr-reaction-set
Adds	or	replaces	a	callback	function	in	a	reactor
vlr-reactions
Returns	a	list	of	pairs	(event-name	.	callback_function)	for	the	reactor
vlr-reactors
Returns	a	list	of	existing	reactors

vlr-remove
Disables	a	reactor
vlr-remove-all
Disables	all	reactors	of	the	specified	type
vlr-set-notification
Defines	whether	a	reactor's	callback	function	will	execute	if	its
associated	namespace	is	not	active
vlr-sysvar-reactor
Constructs	an	editor	reactor	object	that	notifies	of	a	change	to	a	system
variable
vlr-toolbar-reactor
Constructs	an	editor	reactor	object	that	notifies	of	a	change	to	the
bitmaps	in	a	toolbar
vlr-trace-reaction
A	predefined	callback	function	that	prints	one	or	more	callback
arguments	in	the	Trace	window
vlr-type
Returns	a	symbol	representing	the	reactor	type
vlr-types
Returns	a	list	of	all	reactor	types
vlr-undo-reactor
Constructs	an	editor	reactor	object	that	notifies	of	an	undo	event
vlr-wblock-reactor
Constructs	an	editor	reactor	object	that	notifies	of	an	event	related	to
writing	a	block
vlr-window-reactor
Constructs	an	editor	reactor	object	that	notifies	of	an	event	related	to
moving	or	sizing	an	AutoCAD	window
vlr-xref-reactor
Constructs	an	editor	reactor	object	that	notifies	of	an	event	related	to
attaching	or	modifying	XREFs

vports
Returns	a	list	of	viewport	descriptors	for	the	current	viewport
configuration

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vector_image
	
	
	

Draws	a	vector	in	the	currently	active	dialog	box	image

(vector_image	x1	y1	x2	y2	color)

This	function	draws	a	vector	in	the	currently	active	dialog	box	image	(opened	by
start_image)	from	the	point	(x1,y1)	to	(x2,y2).	The	origin	(0,0)	is	the	upper-
left	corner	of	the	image.	You	can	obtain	the	coordinates	of	the	lower-right	corner
by	calling	the	dimension	functions	(dimx_tile	and	dimy_tile).

Arguments

x1

X	coordinate	of	the	first	point.

y1

Y	coordinate	of	the	first	point.

x2

X	coordinate	of	the	second	point.

y2

Y	coordinate	of	the	second	point.

color

An	AutoCAD	color	number,	or	one	of	the	logical	color	numbers	shown	in	the
following	table:

Symbolic	names	for	color	attribute

Color

number ADI	mnemonic Description

-2 BGLCOLOR Current	background	of
the	AutoCAD	drawing
area

-15 DBGLCOLOR Current	dialog	box
background	color

-16 DFGLCOLOR Current	dialog	box
foreground	color	(text)

-18 LINELCOLOR Current	dialog	box	line
color

Return	Values

An	integer	representing	the	color	of	the	vector.

Examples

(setq	color	-2)	;;	color	of	AutoCAD	drawing	area

(vector_image

		0

		0

		(dimx_tile	"slide_tile")

		(dimy_tile	"slide_tile")

		color

)

(end_image)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

ver
	
	
	

Returns	a	string	that	contains	the	current	AutoLISP	version	number

(ver)	

The	ver	function	can	be	used	to	check	the	compatibility	of	programs.

Return	Values

The	string	returned	takes	the	following	form:

"Visual	LISP	version	(nn)"

where	version	is	the	current	version	number	and	nn	is	a	two-letter	language
description.

Examples	of	the	two-letter	language	descriptions	are	as	follows:

(de)	German

(en)	US/UK

(es)	Spanish

(fr)	French

(it)	Italian

Examples
Command:	(ver)

"Visual	LISP	2006	(en)"

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-acad-defun
	
	
	

Defines	an	AutoLISP	function	symbol	as	an	external	subroutine

(vl-acad-defun	'symbol)

Arguments

symbol

A	symbol	identifying	a	function.

If	a	function	does	not	have	the	c:	prefix,	and	you	want	to	be	able	to	invoke	this
function	from	an	external	ObjectARX	application,	you	can	use	vl-acad-
defun	to	make	the	function	accessible.

Return	Values

Unspecified.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-acad-undefun
	
	
	

Undefines	an	AutoLISP	function	symbol	so	it	is	no	longer	available	to
ObjectARX	applications

(vl-acad-undefun	'symbol)

Arguments

symbol

A	symbol	identifying	a	function.

You	can	use	vl-acad-undefun	to	undefine	a	c:	function	or	a	function	that
was	exposed	via	vl-acad-defun.

Return	Values

T	if	successful;	nil	if	unsuccessful	(for	example,	the	function	was	not	defined
in	AutoLISP).

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-arx-import
	
	
	

Imports	ObjectARX/ADSRX	functions	into	a	separate-namespace	VLX

(vl-arx-import	['function	|	"application"])

By	default,	separate-namespace	VLX	applications	do	not	import	any	functions
from	ObjectARX/ADSRX	applications.	Use	vl-arx-import	to	explicitly
import	functions	from	ObjectARX/ADSRX	applications.

Arguments

function

A	symbol	naming	the	function	to	import.

application

A	string	naming	the	application	whose	functions	are	to	be	imported.

If	no	argument	(or	nil)	is	specified,	vl-arx-import	imports	all	function
names	from	the	current	document	namespace.

Return	Values

Unspecified.

If	executed	from	a	document	VLX,	this	function	does	nothing	and	returns	nil,
as	all	ADS-DEFUN	function	names	are	automatically	imported	to	document
VLX	applications.

Examples

To	see	how	vl-arx-import	works,	try	the	following:

1.	 Copy	the	following	code	into	the	VLISP	editor	and	save	the	file:

(vl-doc-export	'testarx)

(defun	testarx	()

			(princ	"This	function	tests	an	ObjectARX	application	")

			(vl-arx-import	'c:cal)

			(c:cal)

)

2.	 Use	Make	Application	to	build	a	VLX	with	this	code.	Select	Separate-
Namespace	Application	Options.

3.	 Load	geomcal.arx,	if	it	is	not	already	loaded.

4.	 Load	and	run	the	application.
To	verify	the	effect	of	vl-arx-import,	comment	out	the	vl-arx-
import	call	in	the	code,	save	the	change,	then	rebuild	and	run	the
application.	Without	the	vl-arx-import	call,	the	c:cal	function
will	not	be	found.

In	the	example	above,	you	could	have	replaced	the	vl-arx-import	call	with
the	following:

(vl-arx-import	"geomcal.arx")

This	would	import	all	functions	defined	in	geomcal.arx,	including	c:cal.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-bb-ref
	
	
	

Returns	the	value	of	a	variable	from	the	blackboard	namespace

(vl-bb-ref	'variable)	

Arguments

'variable

A	symbol	identifying	the	variable	to	be	retrieved.

Return	Values

The	value	of	the	variable	named	by	symbol.

Examples

Set	a	variable	in	the	blackboard:
Command:	(vl-bb-set	'foobar	"Root	toot	toot")

"Root	toot	toot"

Use	vl-bb-ref	to	retrieve	the	value	of	foobar	from	the	blackboard:
Command:	(vl-bb-ref	'foobar)

"Root	toot	toot"

See	Also
The	vl-bb-set	function.	Sharing	Data	Between	Namespaces	in	the
AutoLISP	Developer's	Guide	for	a	description	of	the	blackboard
namespace.

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e23715.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-bb-set
	
	
	

Sets	a	variable	in	the	blackboard	namespace

(vl-bb-set	'symbol	value)	

Arguments

'symbol

A	symbol	naming	the	variable	to	be	set.

value

Any	value,	except	a	function.

Return	Values

The	value	you	assigned	to	symbol.

Examples
Command:	(vl-bb-set	'foobar	"Root	toot	toot")

"Root	toot	toot"

Command:	(vl-bb-ref	'foobar)

"Root	toot	toot"

See	Also
The	vl-bb-ref	function.	Sharing	Data	Between	Namespaces	in	the
AutoLISP	Developer's	Guide	for	a	description	of	the	blackboard
namespace.

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e23789.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-catch-all-apply
	
	
	

Passes	a	list	of	arguments	to	a	specified	function	and	traps	any	exceptions

(vl-catch-all-apply	'function	list)

Arguments

'function

A	function.	The	function	argument	can	be	either	a	symbol	identifying	a
defun,	or	a	lambda	expression.

list

A	list	containing	arguments	to	be	passed	to	the	function.

Return	Values

The	result	of	the	function	call,	if	successful.	If	an	error	occurs,	vl-catch-
all-apply	returns	an	error	object.

Examples

If	the	function	invoked	by	vl-catch-all-apply	completes	successfully,	it
is	the	same	as	using	apply,	as	the	following	examples	show:

_$	(setq	catchit	(apply	'/

'(50	5)))
10

_$	(setq	catchit	(vl-catch-all-apply

'/	'(50	5)))
10

The	benefit	of	using	vl-catch-all-apply	is	that	it	allows	you	to	intercept
errors	and	continue	processing.	See	what	happens	when	you	try	to	divide	by	zero

using	apply:

_$	(setq	catchit	(apply	'/

'(50	0)))
;	error:	divide	by	zero

When	you	use	apply,	an	exception	occurs	and	an	error	message	displays.

Here	is	the	same	operation	using	vl-catch-all-apply:

_$	(setq	catchit	(vl-catch-all-apply

'/	'(50	0)))
#<%catch-all-apply-error%>

The	vl-catch-all-apply	function	traps	the	error	and	returns	an	error
object.	Use	vl-catch-all-error-message	to	see	the	error	message
contained	in	the	error	object:

_$	(vl-catch-all-error-message	catchit)

"divide	by	zero"

See	Also
The	*error*,	vl-catch-all-error-p,	and	vl-catch-all-error-message
functions.	The	Error	Handling	in	AutoLISP	topic	in	the	AutoLISP
Developer's	Guide.

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e23944.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-catch-all-error-message
	
	
	

Returns	a	string	from	an	error	object

(vl-catch-all-error-message	error-obj)

Arguments

error-obj

An	error	object	returned	by	vl-catch-all-apply.

Return	Values

A	string	containing	an	error	message.

Examples

Divide	by	zero	using	vl-catch-all-apply:

_$	(setq	catchit	(vl-catch-all-apply

'/	'(50	0)))
#<%catch-all-apply-error%>

The	vl-catch-all-apply	function	traps	the	error	and	returns	an	error
object.	Use	vl-catch-all-error-message	to	see	the	error	message
contained	in	the	error	object:

_$	(vl-catch-all-error-message	catchit)

"divide	by	zero"

See	Also
The	*error*,	vl-catch-all-apply,	and	vl-catch-all-error-p	functions.
The	Error	Handling	in	AutoLISP	topic	in	the	AutoLISP	Developer's
Guide.

javascript:hhctrl_d0e24028.Click()

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-catch-all-error-p
	
	
	

Determines	whether	an	argument	is	an	error	object	returned	from	vl-catch-all-
apply

(vl-catch-all-error-p	arg)

Arguments

arg

Any	argument.

Return	Values

T,	if	the	supplied	argument	is	an	error	object	returned	from	vl-catch-all-
apply;	otherwise	nil.

Examples

Divide	by	zero	using	vl-catch-all-apply:

_$	(setq	catchit	(vl-catch-all-apply

'/	'(50	0)))
#<%catch-all-apply-error%>

Use	vl-catch-all-error-p	to	determine	if	the	value	returned	by	vl-
catch-all-apply	is	an	error	object:

_$	(vl-catch-all-error-p

catchit)
T

See	Also
The	*error*,	vl-catch-all-apply,	and	vl-catch-all-error-message

functions.	The	Error	Handling	in	AutoLISP	topic	in	the	AutoLISP
Developer's	Guide.

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e24119.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-cmdf
	
	
	

Executes	an	AutoCAD	command

Arguments

(vl-cmdf		[arguments]	...)

The	vl-cmdf	function	is	similar	to	the	command	function,	but	differs	from
command	in	the	way	it	evaluates	the	arguments	passed	to	it.	The	vl-cmdf
function	evaluates	all	the	supplied	arguments	before	executing	the	AutoCAD
command,	and	will	not	execute	the	AutoCAD	command	if	it	detects	an	error
during	argument	evaluation.	In	contrast,	the	command	function	passes	each
argument	in	turn	to	AutoCAD,	so	the	command	may	be	partially	executed	before
an	error	is	detected.

If	your	command	call	includes	a	call	to	another	function,	vl-cmdf	executes	the
call	before	it	executes	your	command,	while	command	executes	the	call	after	it
begins	executing	your	command.

Some	AutoCAD	commands	may	work	correctly	when	invoked	through	vl-
cmdf,	while	failing	when	invoked	through	command.	The	vl-cmdf	function
mainly	overcomes	the	limitation	of	not	being	able	to	use	get.xxx	functions
inside	command.

Arguments

arguments

AutoCAD	commands	and	their	options.
The	arguments	to	the	vl-cmdf	function	can	be	strings,	reals,	integers,	or
points,	as	expected	by	the	prompt	sequence	of	the	executed	command.	A	null
string	("")	is	equivalent	to	pressing	ENTER	on	the	keyboard.	Invoking	vl-
cmdf	with	no	argument	is	equivalent	to	pressing	ESC	and	cancels	most
AutoCAD	commands.

Return	Values

T

Note	that	if	you	issue	vl-cmdf	from	Visual	LISP,	focus	does	not	change	to	the
AutoCAD	window.	If	the	command	requires	user	input,	you'll	see	the	return
value	(T)	in	the	Console	window,	but	AutoCAD	will	be	waiting	for	input.	You
must	manually	activate	the	AutoCAD	window	and	respond	to	the	prompts.	Until
you	do	so,	any	subsequent	commands	will	fail.

Examples

The	differences	between	command	and	vl-cmdf	are	easier	to	see	if	you	enter
the	following	calls	at	the	AutoCAD	Command	prompt,	rather	than	the	VLISP
Console	prompt:

Command:	(command	"line"	(getpoint	"point?")	'(0	0)	"")

line	Specify	first	point:	point?

Specify	next	point	or	[Undo]:

Command:	nil

Using	command,	the	LINE	command	executes	first;	then	the	getpoint
function	is	called.

Command:	(VL-CMDF	"line"	(getpoint	"point?")	'(0	0)	"")

point?line	Specify	first	point:

Specify	next	point	or	[Undo]:

Command:	T

Using	vl-cmdf,	the	getpoint	function	is	called	first	(notice	the	“point?”
prompt	from	getpoint);	then	the	LINE	command	executes.

The	following	examples	show	the	same	commands,	but	pass	an	invalid	point	list
argument	to	the	LINE	command.	Notice	how	the	results	differ:

Command:	(command	"line"	(getpoint	"point?")	'(0)	"")

line	Specify	first	point:	point?

Specify	next	point	or	[Undo]:

Command:	ERASE	nil

Select	objects:	Specify	opposite	corner:	*Cancel*

0	found

The	command	function	passes	each	argument	in	turn	to	AutoCAD,	without

evaluating	the	argument,	so	the	invalid	point	list	is	undetected.
Command:	(VL-CMDF	"line"	(getpoint	"point?")	'(0)	"")

point?Application	ERROR:	Invalid	entity/point	list.

nil

Because	vl-cmdf	evaluates	each	argument	before	passing	the	command	to
AutoCAD,	the	invalid	point	list	is	detected	and	the	command	is	not	executed.

See	Also
The	command	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-consp
	
	
	

Determines	whether	or	not	a	list	is	nil

(vl-consp	list-variable)	

The	vl-consp	function	determines	whether	a	variable	contains	a	valid	list
definition.

Arguments

list-variable

A	list.

Return	Values

T,	if	list-variable	is	a	list	and	is	not	nil;	otherwise	nil.

Examples

_$	(vl-consp	nil)
nil

_$	(vl-consp	t)
nil

_$	(vl-consp	(cons	0	"LINE"))
T

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-directory-files
	
	
	

Lists	all	files	in	a	given	directory

(vl-directory-files		[directory	pattern	directories])

Arguments

directory

A	string	naming	the	directory	to	collect	files	for;	if	nil	or	absent,	vl-
directory-files	uses	the	current	directory.

pattern

A	string	containing	a	DOS	pattern	for	the	file	name;	if	nil	or	absent,	vl-
directory-files	assumes	“*.*”

directories

An	integer	that	indicates	whether	the	returned	list	should	include	directory
names.	Specify	one	of	the	following:
-1 List	directories	only.
0 List	files	and	directories	(the	default).
1 List	files	only.

Return	Values

A	list	of	file	and	path	names;	otherwise	nil	if	no	files	match	the	specified
pattern.

Examples

_$	(vl-directory-files	"c:/acadwin"

"acad*.exe")
("ACAD.EXE"	"ACADAPP.EXE"	"ACADL.EXE"	"ACADPS.EXE")

_$	(vl-directory-files	"e:/acadwin"

nil	-1)
("."	".."	"SUPPORT"	"SAMPLE"	"ADS"	"FONTS"	"IGESFONT"	"SOURCE"	"ASE")

_$	(vl-directory-files	"E:/acad13c4"

nil	-1)
("."	".."	"WIN"	"COM"	"DOS")

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-doc-export
	
	
	

Makes	a	function	available	to	the	current	document

(vl-doc-export	'function)	

When	issued	from	a	VLX	that	runs	in	its	own	namespace,	vl-doc-export
exposes	the	specified	function	to	any	document	namespace	that	loads	the	VLX.

The	vl-doc-export	function	should	be	used	only	at	the	top	level	in	a	file,
and	never	inside	other	forms	(for	example,	not	within	a	defun).

Arguments

'function

A	symbol	naming	the	function	to	be	exported.

Return	Values

Unspecified.

Examples

The	following	code	shows	the	contents	of	a	file	named	kertrats.lsp.	This	file	is
compiled	into	a	VLX	that	runs	in	its	own	namespace.	The	VLX	file	is	named
kertrats.vlx.	The	vl-doc-export	call	makes	the	kertrats	function	visible
to	any	document	that	loads	kertrats.vlx:

(vl-doc-export	'kertrats)

(defun	kertrats	()

		(princ	"This	function	goes	nowhere")	

)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-doc-import
	
	
	

Imports	a	previously	exported	function	into	a	VLX	namespace

(vl-doc-import	application	['function...])	

This	function	can	be	used	in	a	separate-namespace	VLX	to	import	a	function
that	was	previously	exported	from	another	VLX	loaded	from	the	same
document.

The	vl-doc-import	function	should	be	used	only	at	the	top	level	in	a	file,
and	never	inside	other	forms	(for	example,	not	within	a	defun).

Arguments

application

A	string	naming	the	VLX	application	whose	functions	are	to	be	imported.	Do
not	include	the	.vlx	extension	in	the	name.

function

One	or	more	symbols	naming	functions	to	be	imported.	If	no	functions	are
specified,	all	functions	exported	by	application	will	be	imported.

Return	Values

Unspecified.

Examples

Import	function	ldataget	from	the	ldatatest	application:

(vl-doc-import	"ldatatest"	'ldataget)

nil

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-doc-ref
	
	
	

Retrieves	the	value	of	a	variable	from	the	current	document's	namespace

This	function	can	be	used	by	a	separate-namespace	VLX	application	to	retrieve
the	value	of	a	variable	from	the	current	document's	namespace.

(vl-doc-ref	'symbol)	

Arguments

'symbol

A	symbol	naming	a	variable.

Return	Values

The	value	of	the	variable	identified	by	symbol.

Examples
Command:	(vl-doc-ref	'foobar)

"Rinky	dinky	stinky"

See	Also
The	vl-doc-set	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-doc-set
	
	
	

Sets	the	value	of	a	variable	in	the	current	document's	namespace

(vl-doc-set	'symbol	value)	

This	function	can	be	used	by	a	VLX	application	to	set	the	value	of	a	variable	that
resides	in	the	current	document's	namespace.

If	executed	within	a	document	namespace,	vl-doc-set	is	equivalent	to	set.

Arguments

'symbol

A	symbol	naming	a	variable.

value

Any	value.

Return	Values

The	value	set.

Examples
Command:	(vl-doc-set	'foobar	"Rinky	dinky	stinky")

"Rinky	dinky	stinky"

See	Also
The	vl-doc-ref	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-every
	
	
	

Checks	whether	the	predicate	is	true	for	every	element	combination

(vl-every		predicate-function	list	[list]...)

The	vl-every	function	passes	the	first	element	of	each	supplied	list	as	an
argument	to	the	test	function,	followed	by	the	next	element	from	each	list,	and	so
on.	Evaluation	stops	as	soon	as	one	of	the	lists	runs	out.

Arguments

predicate-function

The	test	function.	This	can	be	any	function	that	accepts	as	many	arguments	as
there	are	lists	provided	with	vl-every,	and	returns	T	on	any	user-specified
condition.	The	predicate-function	value	can	take	one	of	the	following	forms:

A	symbol	(function	name)

'(LAMBDA	(A1	A2)	...)

(FUNCTION	(LAMBDA	(A1	A2)	...))

list

A	list	to	be	tested.

Return	Values

T,	if	predicate-function	returns	a	non-nil	value	for	every	element	combination;
otherwise	nil.

Examples

Check	whether	there	are	any	empty	files	in	the	current	directory:

_$	(vl-every

'(lambda	(fnm)	(>	(vl-file-size

fnm)	0))

			(vl-directory-files

nil	nil	1))
T

Check	whether	the	list	of	numbers	in	NLST	is	ordered	by	'<=:

_$	(setq	nlst	(list	0	2	pi

pi	4))
(0	2	3.14159	3.14159	4)

_$	(vl-every	'<=	nlst

(cdr	nlst))
T

Compare	the	results	of	the	following	expressions:

_$	(vl-every	'=	'(1	2)	'(1

3))
nil

_$	(vl-every	'=	'(1	2)	'(1

2	3))
T

The	first	expression	returned	nil	because	vl-every	compared	the	second
element	in	each	list	and	they	were	not	numerically	equal.	The	second	expression
returned	T	because	vl-every	stopped	comparing	elements	after	it	had
processed	all	the	elements	in	the	shorter	list	(1	2),	at	which	point	the	lists	were
numerically	equal.	If	the	end	of	a	list	is	reached,	vl-every	returns	a	non-nil
value.

The	following	example	demonstrates	the	result	when	vl-every	evaluates	one
list	that	contains	integer	elements	and	another	list	that	is	nil:

_$	(setq	alist	(list	1	2

3	4))
(1	2	3	4)

_$	(setq	junk	nil)
nil

_$	(vl-every	'=	junk	alist)

T

The	return	value	is	T	because	vl-every	responds	to	the	nil	list	as	if	it	has
reached	the	end	of	the	list	(even	though	the	predicate	hasn't	yet	been	applied	to
any	elements).	And	since	the	end	of	a	list	has	been	reached,	vl-every	returns
a	non-nil	value.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-exit-with-error
	
	
	

Passes	control	from	a	VLX	error	handler	to	the	*error*	function	of	the	calling
namespace

(vl-exit-with-error	msg)

This	function	is	used	by	VLX	applications	that	run	in	their	own	namespace.
When	vl-exit-with-error	executes,	it	calls	the	*error*	function,	the
stack	is	unwound,	and	control	returns	to	a	command	prompt.

Arguments

msg

A	string.

Return	Values

None.

Examples

The	following	code	illustrates	the	use	of	vl-exit-with-error	to	pass	a
string	to	the	*error*	function	of	the	calling	namespace:

(defun	*error*	(msg)

		...	;	processing	in	VLX	namespace/execution	context

(vl-exit-with-error	(strcat	"My	application	bombed!	"	msg)))

See	Also
The	*error*	and	vl-exit-with-value	functions.	The	Handling	Errors
in	an	MDI	Environment	topic	in	the	AutoLISP	Developer's	Guide.

javascript:hhctrl_d0e25042.Click()

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-exit-with-value
	
	
	

Returns	a	value	to	the	function	that	invoked	the	VLX	from	another	namespace

(vl-exit-with-value	value)

A	VLX	*error*	handler	can	use	the	vl-exit-with-value	function	to
return	a	value	to	the	program	that	called	the	VLX.

Arguments

value

Any	value.

Return	Values

value

Examples

The	following	example	uses	vl-exit-with-value	to	return	the	integer
value	3	to	the	function	that	invoked	the	VLX:

(defun	*error*	(msg)

		...	;	processing	in	VLX-T	namespace/execution	context

		(vl-exit-with-value		3))

See	Also
The	*error*	and	vl-exit-with-error	functions.	The	Handling	Errors
in	an	MDI	Environment	topic	in	the	AutoLISP	Developer's	Guide.

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e25115.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-file-copy
	
	
	

Copies	or	appends	the	contents	of	one	file	to	another	file

(vl-file-copy		source-file	destination-file	[append])

Copy	or	append	the	contents	of	one	file	to	another	file.	The	vl-file-copy
function	will	not	overwrite	an	existing	file;	it	will	only	append	to	it.

Arguments

source-file

A	string	naming	the	file	to	be	copied.	If	you	do	not	specify	a	full	path	name,
vl-file-copy	looks	in	the	AutoCAD	default	drawing	directory.

destination-file

A	string	naming	the	destination	file.	If	you	do	not	specify	a	path	name,	vl-
file-copy	writes	to	the	AutoCAD	default	drawing	directory.

append

If	specified	and	not	nil,	source-file	is	appended	to	destination-file	(that	is,
copied	to	the	end	of	the	destination	file).

Return	Values

An	integer,	if	the	copy	was	successful;	otherwise	nil.

Some	typical	reasons	for	returning	nil	are

source-file	is	not	readable

source-file	is	a	directory

append?	is	absent	or	nil	and	destination-file	exists

destination-file	cannot	be	opened	for	output	(that	is,	it	is	an	illegal	file
name	or	a	write-protected	file)

source-file	is	the	same	as	destination-file

Examples

Copy	autoexec.bat	to	newauto.bat:

_$	(vl-file-copy	"c:/autoexec.bat"

"c:/newauto.bat")
1417

Copy	test.bat	to	newauto.bat:

_$	(vl-file-copy	"c:/test.bat"

"c:/newauto.bat")
nil

The	copy	fails	because	newauto.bat	already	exists,	and	the	append	argument	was
not	specified.

Repeat	the	previous	command,	but	specify	append:

_$	(vl-file-copy	"c:/test.bat"

"c:/newauto.bat"	T)
185

The	copy	is	successful	because	T	was	specified	for	the	append	argument.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-file-delete
	
	
	

Deletes	a	file

(vl-file-delete		filename)

Arguments

filename

A	string	containing	the	name	of	the	file	to	be	deleted.	If	you	do	not	specify	a
full	path	name,	vl-file-delete	searches	the	AutoCAD	default	drawing
directory.

Return	Values

T	if	successful;	nil	if	delete	failed.

Examples

Delete	newauto.bat:

_$	(vl-file-delete	"newauto.bat")
nil

Nothing	was	deleted	because	there	is	no	newauto.bat	file	in	the	AutoCAD
default	drawing	directory.

Delete	the	newauto.bat	file	in	the	c:\	directory:

_$	(vl-file-delete	"c:/newauto.bat")
T

The	delete	was	successful	because	the	full	path	name	identified	an	existing	file.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-file-directory-p
	
	
	

Determines	if	a	file	name	refers	to	a	directory

(vl-file-directory-p	filename)

Arguments

filename

A	string	containing	a	file	name.	If	you	do	not	specify	a	full	path	name,	vl-
file-directory-p	searches	only	the	AutoCAD	default	drawing
directory.

Return	Values

T,	if	filename	is	the	name	of	a	directory;	nil	if	it	is	not.

Examples

_$	(vl-file-directory-p	"sample")
T

_$	(vl-file-directory-p	"yinyang")
nil

_$	(vl-file-directory-p	"c:/My

Documents")
T

_$	(vl-file-directory-p	"c:/My

Documents/visuallisp/yinyang.lsp")
nil

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-file-rename
	
	
	

Renames	a	file

(vl-file-rename		old-filename	new-filename)

Arguments

old-filename

A	string	containing	the	name	of	the	file	you	want	to	rename.	If	you	do	not
specify	a	full	path	name,	vl-file-rename	looks	in	the	AutoCAD	default
drawing	directory.

new-filename

A	string	containing	the	new	name	to	be	assigned	to	the	file.

Note If	you	do	not	specify	a	path	name,	vl-file-rename	writes	the
renamed	file	to	the	AutoCAD	default	drawing	directory.

Return	Values

T,	if	renaming	completed	successfully;	nil	if	renaming	failed.

Examples

_$	(vl-file-rename	"c:/newauto.bat"

"c:/myauto.bat")
T

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-file-size
	
	
	

Determines	the	size	of	a	file,	in	bytes

(vl-file-size		filename)

Arguments

filename

A	string	naming	the	file	to	be	sized.	If	you	do	not	specify	a	full	path	name,
vl-file-size	searches	the	AutoCAD	default	drawing	directory	for	the
file.

Return	Values

If	successful,	vl-file-size	returns	an	integer	showing	the	size	of	filename.
If	the	file	is	not	readable,	vl-file-size	returns	nil.	If	filename	is	a
directory	or	an	empty	file,	vl-file-size	returns	0.

Examples

_$	(vl-file-size	"c:/autoexec.bat")
1417

_$	(vl-file-size	"c:/")
0

In	the	preceding	example,	vl-file-size	returned	0	because	c:/	names	a
directory.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-file-systime
	
	
	

Returns	last	modification	time	of	the	specified	file

(vl-file-systime	filename)

Arguments

filename

A	string	containing	the	name	of	the	file	to	be	checked.

Return	Values

A	list	containing	the	modification	date	and	time;	otherwise	nil,	if	the	file	is	not
found.

The	list	returned	contains	the	following	elements:

year

month

day	of	week

day	of	month

hours

minutes

seconds

Note	that	Monday	is	day	1	of	day	of	week,	Tuesday	is	day	2,	and	so	on.

Examples

_$	(vl-file-systime	

"c:/program	files/<AutoCAD	installation

directory>/sample/visuallisp/yinyang.lsp")
(1998	4	3	8	10	6	52)

The	returned	value	shows	that	the	file	was	last	modified	in	1998,	in	the	4th
month	of	the	year	(April),	the	3rd	day	of	the	week	(Wednesday),	on	the	8th	day
of	the	month,	at	10:6:52.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-filename-base
	
	
	

Returns	the	name	of	a	file,	after	stripping	out	the	directory	path	and	extension

(vl-filename-base		filename)

Arguments

filename

A	string	containing	a	file	name.	The	vl-filename-base	function	does
not	check	to	see	if	the	file	exists.

Return	Values

A	string	containing	filename	in	uppercase,	with	any	directory	and	extension
stripped	from	the	name.

Examples

_$	(vl-filename-base	"c:\\acadwin\\acad.exe")
"ACAD"

_$	(vl-filename-base	"c:\\acadwin")
"ACADWIN"

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-filename-directory
	
	
	

Returns	the	directory	path	of	a	file,	after	stripping	out	the	name	and	extension

(vl-filename-directory		filename)

Arguments

filename

A	string	containing	a	complete	file	name,	including	the	path.	The	vl-
filename-directory	function	does	not	check	to	see	if	the	specified	file
exists.	Slashes	(/)	and	backslashes	(\)	are	accepted	as	directory	delimiters.

Return	Values

A	string	containing	the	directory	portion	of	filename,	in	uppercase.

Examples

_$	(vl-filename-directory

"c:\\acadwin\\acad.exe")
"C:\\ACADWIN"

_$	(vl-filename-directory

"acad.exe")
""

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-filename-extension
	
	
	

Returns	the	extension	from	a	file	name,	after	stripping	out	the	rest	of	the	name

(vl-filename-extension		filename)

Arguments

filename

A	string	containing	a	file	name,	including	the	extension.	The	vl-
filename-extension	function	does	not	check	to	see	if	the	specified	file
exists.

Return	Values

A	string	containing	the	extension	of	filename.	The	returned	string	starts	with	a
period	(.)	and	is	in	uppercase.	If	filename	does	not	contain	an	extension,	vl-
filename-extension	returns	nil.

Examples

_$	(vl-filename-extension

"c:\\acadwin\\acad.exe")
".EXE"

_$	(vl-filename-extension

"c:\\acadwin\\acad")
nil

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-filename-mktemp
	
	
	

Calculates	a	unique	file	name	to	be	used	for	a	temporary	file

(vl-filename-mktemp	[pattern	directory	extension])

Arguments

pattern

A	string	containing	a	file	name	pattern;	if	nil	or	absent,	vl-filename-
mktemp	uses	“$VL~~”.

directory

A	string	naming	the	directory	for	temporary	files;	if	nil	or	absent,	vl-
filename-mktemp	chooses	a	directory	in	the	following	order:

The	directory	specified	in	pattern,	if	any.

The	directory	specified	in	the	TMP	environment	variable.

The	directory	specified	in	the	TEMP	environment	variable.

The	current	directory.

extension

A	string	naming	the	extension	to	be	assigned	to	the	file;	if	nil	or	absent,
vl-filename-mktemp	uses	the	extension	part	of	pattern	(which	may	be
an	empty	string).

Return	Values

A	string	containing	a	file	name,	in	the	following	format:

directory\base<XXX><.extension>

where:

base	is	up	to	5	characters,	taken	from	pattern

XXX	is	a	3-character	unique	combination

All	file	names	generated	by	vl-filename-mktemp	during	a	VLISP	session
are	deleted	when	you	exit	VLISP.

Examples

_$	(vl-filename-mktemp)
"C:\\TMP\\$VL~~004"

_$	(vl-filename-mktemp	"myapp.del")
"C:\\TMP\\MYAPP005.DEL"

_$	(vl-filename-mktemp	"c:\\acadwin\\myapp.del")
"C:\\ACADWIN\\MYAPP006.DEL"

_$	(vl-filename-mktemp	"c:\\acadwin\\myapp.del")
"C:\\ACADWIN\\MYAPP007.DEL"

_$	(vl-filename-mktemp	"myapp"

"c:\\acadwin")
"C:\\ACADWIN\\MYAPP008"

_$	(vl-filename-mktemp	"myapp"

"c:\\acadwin"	".del")
"C:\\ACADWIN\\MYAPP00A.DEL"

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-get-resource
	
	
	

Returns	the	text	stored	in	a	.txt	file	packaged	in	a	VLX

(vl-get-resource	text-file)	

Arguments

text-file

A	string	naming	a	.txt	file	packaged	with	the	VLX.	Do	not	include	the	.txt
extension	when	specifying	the	file	name.

Return	Values

A	string	containing	the	text	in	text-file.

Examples

Assume	the	getres.vlx	file	contains	a	LISP	program	defining	a	function	named
print-readme,	and	a	text	file	named	readme.txt.	The	print-readme
function	is	defined	as	follows:

(defun	print-readme	()

			(princ	(vl-get-resource	"readme"))

			(princ)

)

After	loading	getres.vlx,	invoke	print-readme:

_$	(print-readme)
Product	Readme	text

Product	Readme	text	2

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-list*
	
	
	

Constructs	and	returns	a	list

(vl-list*		object[object]...)

Arguments

object

Any	LISP	object.

Return	Values

The	vl-list*	function	is	similar	to	list,	but	it	will	place	the	last	object	in
the	final	cdr	of	the	result	list.	If	the	last	argument	to	vl-list*	is	an	atom,	the
result	is	a	dotted	list.	If	the	last	argument	is	a	list,	its	elements	are	appended	to	all
previous	arguments	added	to	the	constructed	list.	The	possible	return	values
from	vl-list*	are

An	atom,	if	a	single	atom	object	is	specified.

A	dotted	pair,	if	all	object	arguments	are	atoms.

A	dotted	list,	if	the	last	argument	is	an	atom	and	neither	of	the	previous
conditions	is	true.

A	list,	if	none	of	the	previous	statements	is	true.

Examples

_$	(vl-list*	1)
1	

_$	(vl-list*	0	"text")
(0	.	"TEXT")	

_$	(vl-list*	1	2	3)
(1	2	.	3)	

_$	(vl-list*	1	2	'(3	4))
(1	2	3	4)

See	Also
The	list	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-list->string
	
	
	

Combines	the	characters	associated	with	a	list	of	integers	into	a	string

(vl-list->string		char-codes-list)

Arguments

char-codes-list

A	list	of	non-negative	integers.	Each	integer	must	be	less	than	256.

Return	Values

A	string	of	characters,	with	each	character	based	on	one	of	the	integers	supplied
in	char-codes-list.

Examples

_$	(vl-list->string	nil)
""

_$	(vl-list->string	'(49

50))
"12"

See	Also
The	vl-string->list	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-list-exported-functions
	
	
	

Lists	exported	functions

(vl-list-exported-functions	[appname])	

Arguments

appname

A	string	naming	a	loaded	VLX	application.	Do	not	include	the	.vlx	extension.

Return	Values

A	list	of	strings	naming	exported	functions;	otherwise	nil,	if	there	are	no
functions	exported	from	the	specified	VLX.	If	appname	is	omitted	or	is	nil,
vl-list-exported-functions	returns	a	list	of	all	exported	functions
(for	example,	c:	functions)	except	those	exported	from	VLX	namespaces.

Examples

_$	(vl-list-exported-functions

"whichexpns")
("WHICHNAMESPACE")

See	Also
The	vl-list-loaded-vlx	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-list-length
	
	
	

Calculates	list	length	of	a	true	list

(vl-list-length		list-or-cons-object)

Arguments

list-or-cons-object

A	true	or	dotted	list.

Return	Values

An	integer	containing	the	list	length	if	the	argument	is	a	true	list;	otherwise	nil
if	list-or-cons-object	is	a	dotted	list.

Compatibility	note:	The	vl-list-length	function	returns	nil	for	a	dotted
list,	while	the	corresponding	Common	LISP	function	issues	an	error	message	if
the	argument	is	a	dotted	list.

Examples

_$	(vl-list-length	nil)
0

_$	(vl-list-length	'(1	2))
2

_$	(vl-list-length	'(1	2

.	3))
nil

See	Also
The	listp	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-list-loaded-vlx
	
	
	

Returns	a	list	of	all	separate-namespace	VLX	files	associated	with	the	current
document

(vl-list-loaded-vlx)	

Return	Values

A	list	of	symbols	identifying	separate-namespace	VLX	applications	associated
with	the	current	AutoCAD	document;	otherwise	nil,	if	there	are	no	VLX
applications	associated	with	the	current	document.

The	vl-list-loaded-vlx	function	does	not	identify	VLX	applications	that
are	loaded	in	the	current	document's	namespace.

Examples

Test	for	loaded	VLX	files	associated	with	the	current	AutoCAD	document:

_$	(vl-list-loaded-vlx)
nil

No	VLX	files	are	associated	with	the	current	document.

Load	two	VLX	files;	both	VLX	applications	have	been	compiled	to	run	in	their
own	namespace:

_$	(load	"c:/my	documents/visual

lisp/examples/foo1.vlx")
nil

_$	(load	"c:/my	documents/visual

lisp/examples/foo2.vlx")
nil

Test	for	loaded	VLX	files	associated	with	the	current	AutoCAD	document:

_$	(vl-list-loaded-vlx)
(FOO1	FOO2)

The	two	VLX	files	just	loaded	are	identified	by	vl-list-loaded-vlx.

Load	a	VLX	that	was	compiled	to	run	in	a	document's	namespace:

_$	(load	"c:/my	documents/visual

lisp/examples/foolocal.vlx")
nil

Test	for	loaded	VLX	files:

_$	(vl-list-loaded-vlx)
(FOO1	FOO2))

The	last	VLX	loaded	(foolocal.vlx)	is	not	returned	by	vl-list-loaded-vlx
because	the	application	was	loaded	into	the	document's	namespace;	the	VLX
does	not	have	its	own	namespace.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-load-all
	
	
	

Loads	a	file	into	all	open	AutoCAD	documents,	and	into	any	document
subsequently	opened	during	the	current	AutoCAD	session

(vl-load-all	filename)	

Arguments

filename

A	string	naming	the	file	to	be	loaded.	If	the	file	is	in	the	AutoCAD	support
file	search	path,	you	can	omit	the	path	name,	but	you	must	always	specify	the
file	extension;	vl-load-all	does	not	assume	a	file	type.

Return	Values

Unspecified.	If	filename	is	not	found,	vl-load-all	issues	an	error	message.

Examples

_$	(vl-load-all	"c:/my	documents/visual

lisp/examples/whichns.lsp")
nil

_$	(vl-load-all	"yinyang.lsp")
nil

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-load-com
	
	
	

Loads	Visual	LISP	extensions	to	AutoLISP

(vl-load-com)

This	function	loads	the	extended	AutoLISP	functions	provided	with	Visual	LISP.
The	Visual	LISP	extensions	implement	ActiveX	and	AutoCAD	reactor	support
through	AutoLISP,	and	also	provide	ActiveX	utility	and	data	conversion
functions,	dictionary	handling	functions,	and	curve	measurement	functions.

If	the	extensions	are	already	loaded,	vl-load-com	does	nothing.

Return	Values

Unspecified.

See	Also
The	load	function.	The	Using	Extended	AutoLISP	Functions	topic
in	the	AutoLISP	Developer's	Guide.

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e26539.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-load-reactors
	
	
	

Loads	reactor	support	functions

(vl-load-reactors)

This	function	is	identical	to	vl-load-com	and	is	maintained	for	backward
compatibility.

See	Also
The	vl-load-com	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-mkdir
	
	
	

Creates	a	directory

(vl-mkdir	directoryname)

Arguments

directoryname

The	name	of	the	directory	you	want	to	create.

Return	Values

T	if	successful,	nil	if	the	directory	exists	or	if	unsuccessful.

Examples

Create	a	directory	named	mydirectory:

_$	(vl-mkdir	"c:\\mydirectory”)
T

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-member-if
	
	
	

Determines	if	the	predicate	is	true	for	one	of	the	list	members

(vl-member-if		predicate-functionlist)

The	vl-member-if	function	passes	each	element	in	list	to	the	function
specified	in	predicate-function.	If	predicate-function	returns	a	non-nil	value,
vl-member-if	returns	the	rest	of	the	list	in	the	same	manner	as	the	member
function.

Arguments

predicate-function

The	test	function.	This	can	be	any	function	that	accepts	a	single	argument	and
returns	T	for	any	user-specified	condition.	The	predicate-function	value	can
take	one	of	the	following	forms:

A	symbol	(function	name)

'(LAMBDA	(A1	A2)	...)

(FUNCTION	(LAMBDA	(A1	A2)	...))

list

A	list	to	be	tested.

Return	Values

A	list,	starting	with	the	first	element	that	passes	the	test	and	containing	all
elements	following	this	in	the	original	argument.	If	none	of	the	elements	passes
the	test	condition,	vl-member-if	returns	nil.

Examples

The	following	command	draws	a	line:

$	(COMMAND	".LINE"	'(0

10)	'(30	50)	nil)
nil

The	following	command	uses	vl-member-if	to	return	association	lists
describing	an	entity,	if	the	entity	is	a	line:

_$	(vl-member-if

'(lambda	(x)	(=	(cdr	x)

"AcDbLine"))

			(entget	(entlast)))
((100	.	"AcDbLine")	(10	0.0	10.0	0.0)	(11	30.0	50.0	0.0)	(210	0.0	0.0	1.0))	

See	Also
The	vl-member-if-not	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-member-if-not
	
	
	

Determines	if	the	predicate	is	nil	for	one	of	the	list	members

(vl-member-if-not		predicate-function	list)

The	vl-member-if-not	function	passes	each	element	in	list	to	the	function
specified	in	predicate-function.	If	the	function	returns	nil,	vl-member-if-
not	returns	the	rest	of	the	list	in	the	same	manner	as	the	member	function.

Arguments

predicate-function

The	test	function.	This	can	be	any	function	that	accepts	a	single	argument	and
returns	T	for	any	user-specified	condition.	The	predicate-function	value	can
take	one	of	the	following	forms:

A	symbol	(function	name)

'(LAMBDA	(A1	A2)	...)

(FUNCTION	(LAMBDA	(A1	A2)	...))

list

A	list	to	be	tested.

Return	Values

A	list,	starting	with	the	first	element	that	fails	the	test	and	containing	all	elements
following	this	in	the	original	argument.	If	none	of	the	elements	fails	the	test
condition,	vl-member-if-not	returns	nil.

Examples

_$	(vl-member-if-not	'atom

'(1	"Str"	(0	.	"line")	nil	t))
((0	.	"line")	nil	T)

See	Also
The	vl-member-if	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-position
	
	
	

Returns	the	index	of	the	specified	list	item

(vl-position		symbol

list)

Arguments

symbol

Any	AutoLISP	symbol.

list

A	true	list.

Return	Values

An	integer	containing	the	index	position	of	symbol	in	list;	otherwise	nil	if
symbol	does	not	exist	in	the	list.

Note	that	the	first	list	element	is	index	0,	the	second	element	is	index	1,	and	so
on.

Examples

_$	(setq	stuff	(list	"a"

"b"	"c"	"d"	"e"))
("a"	"b"	"c"	"d"	"e")

_$	(vl-position	"c"	stuff)
2

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-prin1-to-string
	
	
	

Returns	the	string	representation	of	LISP	data	as	if	it	were	output	by	the	prin1
function

(vl-prin1-to-string		data)

Arguments

data

Any	AutoLISP	data.

Return	Values

A	string	containing	the	printed	representation	of	data	as	if	displayed	by	prin1.

Examples

_$	(vl-prin1-to-string	"abc")
"\"abc\""

_$	(vl-prin1-to-string	"c:\\acadwin")
"\"C:\\\\ACADWIN\""

_$	(vl-prin1-to-string	'my-var)
"MY-VAR"

See	Also
The	vl-princ-to-string	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-princ-to-string
	
	
	

Returns	the	string	representation	of	LISP	data	as	if	it	were	output	by	the	princ
function

(vl-princ-to-string		data)

Arguments

data

Any	AutoLISP	data.

Return	Values

A	string	containing	the	printed	representation	of	data	as	if	displayed	by	princ.

Examples

_$	(vl-princ-to-string	"abc")
"abc"

_$	(vl-princ-to-string	"c:\\acadwin")
"C:\\ACADWIN"

_$	(vl-princ-to-string	'my-var)
"MY-VAR"

See	Also
The	vl-prin1-to-string	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-propagate
	
	
	

Copies	the	value	of	a	variable	into	all	open	document	namespaces	(and	sets	its
value	in	any	subsequent	drawings	opened	during	the	current	AutoCAD	session)

(vl-propagate	'symbol)	

Arguments

symbol

A	symbol	naming	an	AutoLISP	variable.

Return	Values

Unspecified.

Examples
Command:	(vl-propagate	'radius)

nil

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-registry-delete
	
	
	

Deletes	the	specified	key	or	value	from	the	Windows	registry

(vl-registry-delete	reg-key	[val-name])

Arguments

reg-key

A	string	specifying	a	Windows	registry	key.

val-name

A	string	containing	the	value	of	the	reg-key	entry.

If	val-name	is	supplied	and	is	not	nil,	the	specified	value	will	be	purged	from
the	registry.	If	val-name	is	absent	or	nil,	the	function	deletes	the	specified	key
and	all	of	its	values.

Return	Values

T	if	successful;	otherwise	nil.

Examples

_$	(vl-registry-write	"HKEY_CURRENT_USER\\Test"

""	"test	data")
"test	data"

_$	(vl-registry-read	"HKEY_CURRENT_USER\\Test")
"test	data"

_$	(vl-registry-delete	"HKEY_CURRENT_USER\\Test")
T

Note This	function	cannot	delete	a	key	that	has	subkeys.	To	delete	a	subkey	you
must	use	vl-registry-descendents	to	enumerate	all	subkeys	and	delete
all	of	them.

See	Also
The	vl-registry-descendents,	vl-registry-read,	and	vl-registry-write
functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-registry-descendents
	
	
	

Returns	a	list	of	subkeys	or	value	names	for	the	specified	registry	key

(vl-registry-descendents	reg-key	[val-names])

Arguments

reg-key

A	string	specifying	a	Windows	registry	key.

val-names

A	string	containing	the	values	for	the	reg-key	entry.

If	val-names	is	supplied	and	is	not	nil,	the	specified	value	names	will	be	listed
from	the	registry.	If	val-name	is	absent	or	nil,	the	function	displays	all	subkeys
of	reg-key.

Return	Values

A	list	of	strings,	if	successful;	otherwise	nil.

Examples

_$	(vl-registry-descendents

"HKEY_LOCAL_MACHINE\\SOFTWARE")
("Description"		"Program	Groups"	"ORACLE"	"ODBC"	"Netscape"	"Microsoft")

See	Also
The	vl-registry-delete,	vl-registry-read,	and	vl-registry-write
functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-registry-read
	
	
	

Returns	data	stored	in	the	Windows	registry	for	the	specified	key/value	pair

(vl-registry-read	reg-key	[val-name])

Arguments

reg-key

A	string	specifying	a	Windows	registry	key.

val-name

A	string	containing	the	value	of	a	registry	entry.

If	val-name	is	supplied	and	is	not	nil,	the	specified	value	will	be	read	from	the
registry.	If	val-name	is	absent	or	nil,the	function	reads	the	specified	key	and
all	of	its	values.

Return	Values

A	string	containing	registry	data,	if	successful;	otherwise	nil.

Examples

_$		(vl-registry-read

"HKEY_CURRENT_USER\\Test")
nil

_$	(vl-registry-write	"HKEY_CURRENT_USER\\Test"

""	"test	data")
"test	data"

_$		(vl-registry-read

"HKEY_CURRENT_USER\\Test")
"test	data"

See	Also
The	vl-registry-delete,	vl-registry-descendents,	and	vl-registry-write
functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-registry-write
	
	
	

Creates	a	key	in	the	Windows	registry

(vl-registry-write	reg-key	[val-name	val-data])

Arguments

reg-key

A	string	specifying	a	Windows	registry	key.

Note You	cannot	use	vl-registry-write	for	HKEY_USERS	or
KEY_LOCAL_MACHINE.

val-name

A	string	containing	the	value	of	a	registry	entry.

val-data

A	string	containing	registry	data.

If	val-name	is	not	supplied	or	is	nil,a	default	value	for	the	key	is	written.	If
val-name	is	supplied	and	val-data	is	not	specified,	an	empty	string	is	stored.

Return	Values

vl-registry-write	returns	val-data,	if	successful;	otherwise	nil.

Examples

_$	(vl-registry-write	"HKEY_CURRENT_USER\\Test"

""	"test	data")
"test	data"

_$		(vl-registry-read

"HKEY_CURRENT_USER\\Test")
"test	data"

See	Also
The	vl-registry-delete,	vl-registry-descendents,	and	vl-registry-read
functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-remove
	
	
	

Removes	elements	from	a	list

(vl-remove		element-to-remove	list)

Arguments

element-to-remove

The	value	of	the	element	to	be	removed;	may	be	any	LISP	data	type.

list

Any	list.

Return	Values

The	list	with	all	elements	except	those	equal	to	element-to-remove.

Examples

_$	(vl-remove	pi	(list	pi

t	0	"abc"))
(T	0	"abc")

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-remove-if
	
	
	

Returns	all	elements	of	the	supplied	list	that	fail	the	test	function

(vl-remove-if		predicate-function	list)

Arguments

predicate-function

The	test	function.	This	can	be	any	function	that	accepts	a	single	argument	and
returns	T	for	any	user-specified	condition.	The	predicate-function	value	can
take	one	of	the	following	forms:

A	symbol	(function	name)

'(LAMBDA	(A1	A2)	...)

(FUNCTION	(LAMBDA	(A1	A2)	...))

list

A	list	to	be	tested.

Return	Values

A	list	containing	all	elements	of	list	for	which	predicate-function	returns	nil.

Examples

_$	(vl-remove-if	'vl-symbolp

(list	pi	t	0	"abc"))
(3.14159	0	"abc")

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-remove-if-not
	
	
	

Returns	all	elements	of	the	supplied	list	that	pass	the	test	function

(vl-remove-if-not		predicate-function	list)

Arguments

predicate-function

The	test	function.	This	can	be	any	function	that	accepts	a	single	argument	and
returns	T	for	any	user-specified	condition.	The	predicate-function	value	can
take	one	of	the	following	forms:

A	symbol	(function	name)

'(LAMBDA	(A1	A2)	...)

(FUNCTION	(LAMBDA	(A1	A2)	...))

list

A	list	to	be	tested.

Return	Values

A	list	containing	all	elements	of	list	for	which	predicate-function	returns	a	non-
nil	value

Examples

_$	(vl-remove-if-not	'vl-symbolp

(list	pi	t	0	"abc"))
(T)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-some
	
	
	

Checks	whether	the	predicate	is	not	nil	for	one	element	combination

(vl-some		predicate-functionlist	[list]...)

Arguments

predicate-function

The	test	function.	This	can	be	any	function	that	accepts	as	many	arguments	as
there	are	lists	provided	with	vl-some,	and	returns	T	on	a	user-specified
condition.	The	predicate-function	value	can	take	one	of	the	following	forms:

A	symbol	(function	name)

'(LAMBDA	(A1	A2)	...)

(FUNCTION	(LAMBDA	(A1	A2)	...))

list

A	list	to	be	tested.

The	vl-some	function	passes	the	first	element	of	each	supplied	list	as	an
argument	to	the	test	function,	then	the	next	element	from	each	list,	and	so	on.
Evaluation	stops	as	soon	as	the	predicate	function	returns	a	non-nil	value	for
an	argument	combination,	or	until	all	elements	have	been	processed	in	one	of	the
lists.

Return	Values

The	predicate	value,	if	predicate-function	returned	a	value	other	than	nil;
otherwise	nil.

Examples

The	following	example	checks	whether	nlst	(a	number	list)	has	equal	elements
in	sequence:

_$	(setq	nlst	(list	0	2	pi

pi	4))
(0	2	3.14159	3.14159	4)

_$	(vl-some	'=	nlst	(cdr

nlst))
T

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-sort
	
	
	

Sorts	the	elements	in	a	list	according	to	a	given	compare	function

(vl-sort		list	comparison-function)

Arguments

list

Any	list.

comparison-function

A	comparison	function.	This	can	be	any	function	that	accepts	two	arguments
and	returns	T	(or	any	non-nil	value)	if	the	first	argument	precedes	the
second	in	the	sort	order.	The	comparison-function	value	can	take	one	of	the
following	forms:

A	symbol	(function	name)

'(LAMBDA	(A1	A2)	...)

(FUNCTION	(LAMBDA	(A1	A2)	...))

Return	Values

A	list	containing	the	elements	of	list	in	the	order	specified	by	comparison-
function.	Duplicate	elements	may	be	eliminated	from	the	list.

Examples

Sort	a	list	of	numbers:

_$	(vl-sort	'(3	2	1	3)	'<)
(1	2	3)					;		

Note	that	the	result	list	contains	only	one	3.

Sort	a	list	of	2D	points	by	Y	coordinate:

_$	(vl-sort	'((1	3)	(2	2)

(3	1))

													(function

(lambda	(e1	e2)

																					

			(<	(cadr	e1)	(cadr	e2)))))
((3	1)	(2	2)	(1	3))

Sort	a	list	of	symbols:

_$	(vl-sort	

			'(a	d	c	b	a)

			'(lambda	(s1	s2)

				(<	(vl-symbol-name

s1)	(vl-symbol-name	s2))))
(A	B	C	D)							;		Note	that	only	one	A	remains	in	the	result	list

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-sort-i
	
	
	

Sorts	the	elements	in	a	list	according	to	a	given	compare	function,	and	returns
the	element	index	numbers

(vl-sort-i		list	comparison-function)

Arguments

list

Any	list.

comparison-function

A	comparison	function.	This	can	be	any	function	that	accepts	two	arguments
and	returns	T	(or	any	non-nil	value)	if	the	first	argument	precedes	the
second	in	the	sort	order.	The	comparison-function	value	can	take	one	of	the
following	forms:

A	symbol	(function	name)

'(LAMBDA	(A1	A2)	...)

(FUNCTION	(LAMBDA	(A1	A2)	...))

Return	Values

A	list	containing	the	index	values	of	the	elements	of	list,	sorted	in	the	order
specified	by	comparison-function.	Duplicate	elements	will	be	retained	in	the
result.

Examples

Sort	a	list	of	characters	in	descending	order:

_$	(vl-sort-i	'("a"	"d"	"f"

"c")	'>)
(2	1	3	0)

The	sorted	list	order	is	“f”	“d”	“c”	“a”;	“f”	is	the	3rd	element	(index	2)	in	the
original	list,	“d”	is	the	2nd	element	(index	1)	in	the	list,	and	so	on.

Sort	a	list	of	numbers	in	ascending	order:

_$	(vl-sort-i	'(3	2	1	3)

'<)
(2	1	3	0)

Note	that	both	occurrences	of	3	are	accounted	for	in	the	result	list.

Sort	a	list	of	2D	points	by	Y	coordinate:

_$	(vl-sort-i	'((1	3)	(2

2)	(3	1))

									(function	(lambda

(e1	e2)

																(<

(cadr	e1)	(cadr	e2)))))
(2	1	0)

Sort	a	list	of	symbols:

_$	(vl-sort-i	

			'(a	d	c	b	a)

			'(lambda	(s1	s2)

				(<	(vl-symbol-name

s1)	(vl-symbol-name	s2))))
(4	0	3	2	1)

Note	that	both	a's	are	accounted	for	in	the	result	list.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-string->list
	
	
	

Converts	a	string	into	a	list	of	character	codes

(vl-string->list		string)

Arguments

string

A	string.

Return	Values

A	list,	each	element	of	which	is	an	integer	representing	the	character	code	of	the
corresponding	character	in	string.

Examples

_$	(vl-string->list	"")
nil

_$	(vl-string->list	"12")
(49	50)

See	Also
The	vl-list->string	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-string-elt
	
	
	

Returns	the	ASCII	representation	of	the	character	at	a	specified	position	in	a
string

(vl-string-elt	string	position)

Arguments

string

A	string	to	be	inspected.

position

A	displacement	in	the	string;	the	first	character	is	displacement	0.	Note	that
an	error	occurs	if	position	is	outside	the	range	of	the	string.

Return	Values

An	integer	denoting	the	ASCII	representation	of	the	character	at	the	specified
position.

Examples

_$	(vl-string-elt	"May	the

Force	be	with	you"	8)
70

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-string-left-trim
	
	
	

Removes	the	specified	characters	from	the	beginning	of	a	string

(vl-string-left-trim	character-set	string)

Arguments

character-set

A	string	listing	the	characters	to	be	removed.

string

The	string	to	be	stripped	of	character-set.

Return	Values

A	string	containing	a	substring	of	string	with	all	leading	characters	in	character-
set	removed

Examples

_$	(vl-string-left-trim	"

\t\n"	"\n\t	STR	")
"STR	"

_$	(vl-string-left-trim	"12456789"

"12463CPO	is	not	R2D2")
"3CPO	is	not	R2D2"

_$	(vl-string-left-trim	"

"	"					There	are	too	many	spaces	here")
"There	are	too	many	spaces	here"

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-string-mismatch
	
	
	

Returns	the	length	of	the	longest	common	prefix	for	two	strings,	starting	at
specified	positions

(vl-string-mismatch	str1	str2	[pos1	pos2	ignore-case-p])

Arguments

str1

The	first	string	to	be	matched.

str2

The	second	string	to	be	matched.

pos1

An	integer	identifying	the	position	to	search	from	in	the	first	string;	0	if
omitted.

pos2

An	integer	identifying	the	position	to	search	from	in	the	second	string;	0	if
omitted.

ignore-case-p

If	T	is	specified	for	this	argument,	case	is	ignored;	otherwise,	case	is
considered.

Return	Values

An	integer.

Examples

_$	(vl-string-mismatch	"VL-FUN"

"VL-VAR")
3

_$	(vl-string-mismatch	"vl-fun"

"avl-var")
0

_$	(vl-string-mismatch	"vl-fun"

"avl-var"	0	1)
3

_$	(vl-string-mismatch	"VL-FUN"

"Vl-vAR")
1

_$	(vl-string-mismatch	"VL-FUN"

"Vl-vAR"	0	0	T)
3

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-string-position
	
	
	

Looks	for	a	character	with	the	specified	ASCII	code	in	a	string

(vl-string-position	char-codestr	[start-pos	[from-end-p]])

Arguments

char-code

The	integer	representation	of	the	character	to	be	searched.

str

The	string	to	be	searched.

start-pos

The	position	to	begin	searching	from	in	the	string	(first	character	is	0);	0	if
omitted.

from-end-p

If	T	is	specified	for	this	argument,	the	search	begins	at	the	end	of	the	string
and	continues	backward	to	pos.

Return	Values

An	integer	representing	the	displacement	at	which	char-code	was	found	from	the
beginning	of	the	string;	nil	if	the	character	was	not	found.

Examples

_$	(vl-string-position	(ascii

"z")	"azbdc")
1

_$	(vl-string-position	122

"azbzc")

1

_$	(vl-string-position	(ascii

"x")	"azbzc")
nil

The	search	string	used	in	the	following	example	contains	two	“z”	characters.
Reading	from	left	to	right,	with	the	first	character	being	displacement	0,	there	is
one	z	at	displacement	1	and	another	z	at	displacement	3:

_$	(vl-string-position	(ascii

"z")	"azbzlmnqc")
1

Searching	from	left	to	right	(the	default),	the	“z”	in	position	1	is	the	first	one
vl-string-position	encounters.	But	when	searching	from	right	to	left,	as
in	the	following	example,	the	“z”	in	position	3	is	the	first	one	encountered:

_$	(vl-string-position	(ascii

"z")	"azbzlmnqc"	nil	t)
3

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-string-right-trim
	
	
	

Removes	the	specified	characters	from	the	end	of	a	string

(vl-string-right-trim	character-set	string)

Arguments

character-set

A	string	listing	the	characters	to	be	removed.

string

The	string	to	be	stripped	of	character-set.

Return	Values

A	string	containing	a	substring	of	string	with	all	trailing	characters	in	character-
set	removed.

Examples

_$	(vl-string-right-trim

"	\t\n"	"	STR	\n\t	")
"	STR"

_$	(vl-string-right-trim

"1356789"	"3CPO	is	not	R2D267891")
"3CPO	is	not	R2D2"

_$	(vl-string-right-trim

"	"	"There	are	too	many	spaces	here						")
"There	are	too	many	spaces	here"

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-string-search
	
	
	

Searches	for	the	specified	pattern	in	a	string

(vl-string-search	pattern	string	[start-pos])

Arguments

pattern

A	string	containing	the	pattern	to	be	searched	for.

string

The	string	to	be	searched	for	pattern.

start-pos

An	integer	identifying	the	starting	position	of	the	search;	0	if	omitted.

Return	Values

An	integer	representing	the	position	in	the	string	where	the	specified	pattern	was
found;	otherwise	nil	if	the	pattern	is	not	found;	the	first	character	of	the	string
is	position	0.

Examples

_$	(vl-string-search	"foo"

"pfooyey	on	you")
1

_$	(vl-string-search	"who"

"pfooyey	on	you")
nil

_$	(vl-string-search	"foo"

"fooey-more-fooey"	1)
11

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-string-subst
	
	
	

Substitutes	one	string	for	another,	within	a	string

(vl-string-subst	new-str	pattern	string	[start-pos])

Arguments

new-str

The	string	to	be	substituted	for	pattern.

pattern

A	string	containing	the	pattern	to	be	replaced.

string

The	string	to	be	searched	for	pattern.

start-pos

An	integer	identifying	the	starting	position	of	the	search;	0	if	omitted.

Note	that	the	search	is	case-sensitive,	and	that	vl-string-subst	substitutes
only	the	first	occurrence	it	finds	of	the	string.

Return	Values

The	value	of	string	after	any	substitutions	have	been	made.

Examples

Replace	the	string	“Ben”	with	“Obi-wan”:

_$	(vl-string-subst	"Obi-wan"

"Ben"	"Ben	Kenobi")
"Obi-wan	Kenobi"

Replace	“Ben”	with	“Obi-wan”:

_$	(vl-string-subst	"Obi-wan"

"Ben"	"ben	Kenobi")
"ben	Kenobi"

Nothing	was	substituted	because	vl-string-subst	did	not	find	a	match	for
“Ben”;	the	“ben”	in	the	string	that	was	searched	begins	with	a	lowercase	“b”.

Replace	“Ben”	with	“Obi-wan”:

_$	(vl-string-subst	"Obi-wan"

"Ben"	"Ben	Kenobi	Ben")
"Obi-wan	Kenobi	Ben"

Note	that	there	are	two	occurrences	of	“Ben”	in	the	string	that	was	searched,	but
vl-string-subst	replaces	only	the	first	occurrence.

Replace	“Ben”	with	“Obi-wan,”	but	start	the	search	at	the	fourth	character	in	the
string:

_$	(vl-string-subst	"Obi-wan"

"Ben"	"Ben	\"Ben\"	Kenobi"	3)
"Ben	\"Obi-wan\"	Kenobi"

There	are	two	occurrences	of	“Ben”	in	the	string	that	was	searched,	but	because
vl-string-subst	was	instructed	to	begin	searching	at	the	fourth	character,
it	found	and	replaced	the	second	occurrence,	not	the	first.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-string-translate
	
	
	

Replaces	characters	in	a	string	with	a	specified	set	of	characters

(vl-string-translate	source-set	dest-set	str)

Arguments

source-set

A	string	of	characters	to	be	matched.

dest-set

A	string	of	characters	to	be	substituted	for	those	in	source-set.

str

A	string	to	be	searched	and	translated.

Return	Values

The	value	of	str	after	any	substitutions	have	been	made

Examples

_$	(vl-string-translate	"abcABC"

"123123"	"A	is	a,	B	is	b,	C	is	C")
"1	is	1,	2	is	2,	3	is	3"

_$	(vl-string-translate	"abc"

"123"	"A	is	a,	B	is	b,	C	is	C")
"A	is	1,	B	is	2,	C	is	3"

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-string-trim
	
	
	

Removes	the	specified	characters	from	the	beginning	and	end	of	a	string

(vl-string-trim	char-set	str)

Arguments

char-set

A	string	listing	the	characters	to	be	removed.

str

The	string	to	be	trimmed	of	char-set.

Return	Values

The	value	of	str,	after	any	characters	have	been	trimmed.

Examples

_$	(vl-string-trim	"	\t\n"

"	\t\n	STR	\n\t	")
"STR"

_$	(vl-string-trim	"this

is	junk"	"this	is	junk	Don't	call	this	junk!	this	is	junk")
"Don't	call	this	junk!"

_$	(vl-string-trim	"	"	"

					Leave	me	alone			")
"Leave	me	alone"

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-symbol-name
	
	
	

Returns	a	string	containing	the	name	of	a	symbol

(vl-symbol-name		symbol)

Arguments

symbol

Any	LISP	symbol.

Return	Values

A	string	containing	the	name	of	the	supplied	symbol	argument,	in	uppercase.

Examples

_$	(vl-symbol-name	'S::STARTUP)
"S::STARTUP"

_$	(progn	(setq	sym	'my-var)

(vl-symbol-name	sym))
"MY-VAR"

_$	(vl-symbol-name	1)
;	***	ERROR:	bad	argument	type:	symbolp	1

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-symbol-value
	
	
	

Returns	the	current	value	bound	to	a	symbol

(vl-symbol-value	symbol)

This	function	is	equivalent	to	the	eval	function,	but	does	not	call	the	LISP
evaluator.

Arguments

symbol

Any	LISP	symbol.

Return	Values

The	value	of	symbol,	after	evaluation.

Examples

_$	(vl-symbol-value	't)
T

_$	(vl-symbol-value	'PI)
3.14159

_$	(progn	(setq	sym	'PAUSE)

(vl-symbol-value	sym))
"\\"

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-symbolp
	
	
	

Identifies	whether	or	not	a	specified	object	is	a	symbol

Arguments

(vl-symbolp		object)

object

Any	LISP	object.

Return	Values

T	if	object	is	a	symbol;	otherwise	nil.

Examples

_$	(vl-symbolp	t)
T

_$	(vl-symbolp	nil)
nil

_$	(vl-symbolp	1)
nil

_$	(vl-symbolp	(list	1))
nil

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-unload-vlx
	
	
	

Unload	a	VLX	application	that	is	loaded	in	its	own	namespace

(vl-unload-vlx	appname)	

Arguments

appname

A	string	naming	a	VLX	application	that	is	loaded	in	its	own	namespace.	Do
not	include	the	.vlx	extension.

The	vl-unload-vlx	function	does	not	unload	VLX	applications	that	are
loaded	in	the	current	document's	namespace.

Return	Values

T	if	successful;	otherwise	vl-unload-vlx	results	in	an	error.

Examples

Assuming	that	vlxns	is	an	application	that	is	loaded	in	its	own	namespace,	the
following	command	unloads	vlxns:

Command:	(vl-unload-vlx	"vlxns")

T

Try	unloading	vlxns	again:
Command:	(vl-unload-vlx	"vlxns")

;	***	ERROR:	LISP	Application	is	not	found	VLXNS

The	vl-unload-vlx	command	fails	this	time,	because	the	application	was
not	loaded.

See	Also

The	load	and	vl-vlx-loaded-p	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-vbaload
	
	
	

Loads	a	VBA	project

Arguments

(vl-vbaload		filename)

filename

A	string	naming	the	VBA	project	file	to	be	loaded.

Return	Values

Unspecified,	if	successful.

Examples

_$	(vl-vbaload	"c:/program

files/<AutoCAD	installation	directory>/sample/vba/drawline.dvb")
"c:\\program	files\\<AutoCAD	installation	directory>\\sample\\vba\\drawline.dvb"

See	Also
The	vl-vbarun	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-vbarun
	
	
	

Runs	a	VBA	macro

Arguments

(vl-vbarun		macroname)

macroname

A	string	naming	a	loaded	VBA	macro.

Return	Values

macroname

Examples

Load	a	VBA	project	file:

_$	(vl-vbaload	"c:/program

files/<AutoCAD	installation	directory>/sample/vba/drawline.dvb")
"c:\\program	files\\<AutoCAD	installation	directory>\\sample\\vba\\drawline.dvb"

Run	a	macro	from	the	loaded	project:

_$	(vl-vbarun	"drawline")
"drawline"

See	Also
The	vl-vbaload	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vl-vlx-loaded-p
	
	
	

Determines	whether	a	separate-namespace	VLX	is	currently	loaded

(vl-vlx-loaded-p	appname)	

Arguments

appname

A	string	naming	a	VLX	application.

Return	Values

T	if	the	application	is	loaded,	nil	if	it	is	not	loaded.

Examples

Check	to	see	if	the	vlxns	application	is	loaded	in	its	own	namespace:
Command:	(vl-vlx-loaded-p	"vlxns")

nil

The	application	is	not	loaded	in	its	own	namespace.

Now	load	vlxns:
Command:	(load	"vlxns.vlx")

nil

Check	to	see	if	the	vlxns	application	loaded	successfully:
Command:	(vl-vlx-loaded-p	"vlxns")

T

This	example	assumes	vlxns	was	defined	to	run	in	its	own	namespace.	If	the
application	was	not	defined	to	run	in	its	own	namespace,	it	would	load	into	the
current	document's	namespace	and	vl-vlx-loaded-p	would	return	nil.

See	Also
The	load	and	vl-unload-vlx	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-3D-point
	
	
	

Creates	ActiveX-compatible	(variant)	3D	point	structure

(vlax-3D-point	list)	or	(vlax-3D-point	x	y	[z])

Arguments

list

A	list	of	2	or	3	numbers,	representing	points.

x,	y

Numbers	representing	X	and	Y	coordinates	of	a	point.

z

A	number	representing	the	Z	coordinate	of	a	point.

Return	Values

A	variant	containing	a	three-element	array	of	doubles.

Examples

_$	(vlax-3D-point	5	20)
#<variant	8197	...>

_$	(vlax-3D-point	'(33.6

44.0	90.0))
<variant	8197	...>

See	Also
The	vlax-make-safearray,	vlax-make-variant,	vlax-safearray-fill,
and	vlax-safearray-put-element	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-add-cmd
	
	
	

Adds	commands	to	the	AutoCAD	built-in	command	set

(vlax-add-cmd	global-name	func-sym	[local-name	cmd-flags])

With	vlax-add-cmd	you	can	define	a	function	as	an	AutoCAD	command,
without	using	the	c:	prefix	in	the	function	name.	You	can	also	define	a
transparent	AutoLISP	command,	which	is	not	possible	with	a	c:	function.

Warning You	cannot	use	the	command	function	call	in	a	transparently	defined
vlax-add-cmd	function.	Doing	so	can	cause	AutoCAD	to	close	unexpectedly.

The	vlax-add-cmd	function	makes	an	AutoLISP	function	visible	as	an
ObjectARX-style	command	at	the	AutoCAD	Command	prompt	during	the
current	AutoCAD	session.	The	function	provides	access	to	the	ObjectARX
acedRegCmds	macro,	which	provides	a	pointer	to	the	ObjectARX	system
AcEdCommandStack	object.

The	vlax-add-cmd	function	automatically	assigns	commands	to	command
groups.	When	issued	from	a	document	namespace,	vlax-add-cmd	adds	the
command	to	a	group	named	doc-ID;	doc-ID	is	a	hexadecimal	value	identifying
the	document.	If	issued	from	a	separate-namespace	VLX,	vlax-add-cmd
adds	the	command	to	a	group	named	VLC-Ddoc-ID:VLX-name,	where	VLX-
name	is	the	name	of	the	application	that	issued	vlax-add-cmd.

It	is	recommended	that	you	use	the	vlax-add-cmd	function	from	a	separate-
namespace	VLX.	You	should	then	explicitly	load	the	VLX	using	the	APPLOAD
command,	rather	than	by	placing	it	in	one	of	the	startup	LISP	files.

Note You	cannot	use	vlax-add-cmd	to	expose	functions	that	create	reactor
objects	or	serve	as	reactor	callbacks.

Arguments

global-name

A	string.

func-sym

A	symbol	naming	an	AutoLISP	function	with	zero	arguments.

local-name

A	string	(defaults	to	global-name).

cmd-flags

An	integer	(defaults	to	ACRX_CMD_MODAL	+	ACRX_CMD_REDRAW)
The	primary	flags	are
ACRX_CMD_MODAL	(0) Command	cannot	be	invoked	while	another
command	is	active.
ACRX_CMD_TRANSPARENT	(1) Command	can	be	invoked	while
another	command	is	active.
The	secondary	flags	are
ACRX_CMD_USEPICKSET	(2) When	the	pickfirst	set	is	retrieved	it	is
cleared	within	AutoCAD.	Command	will	be	able	to	retrieve	the	pickfirst	set.
Command	cannot	retrieve	or	set	grips.
ACRX_CMD_REDRAW	(4) When	the	pickfirst	set	or	grip	set	is
retrieved,	neither	will	be	cleared	within	AutoCAD.	Command	can	retrieve
the	pickfirst	set	and	the	grip	set.

If	both	ACRX_CMD_USEPICKSET	and	ACRX_CMD_REDRAW	are	set,	the
effect	is	the	same	as	if	just	ACRX_CMD_REDRAW	is	set.	For	more
information	about	the	flags,	see	the	“Command	Stack”	in	the	ObjectARX
Reference.

Return	Values

The	global-name	argument,	if	successful.	The	function	returns	nil	if
acedRegCmds->addCommand(...)	returns	an	error	condition.

Examples

The	hello-autocad	function	in	the	following	example	has	no	c:	prefix,	but
vlax-add-cmd	makes	it	visible	as	an	ObjectARX-style	command	at	the
AutoCAD	Command	prompt:

_$	(defun	hello-autocad	()

(princ	"hello	Visual	LISP"))
HELLO-AUTOCAD

_$	(vlax-add-cmd	"hello-autocad"

'hello-autocad)
"hello-autocad"

See	Also
The	vlax-remove-cmd	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-create-object
	
	
	

Creates	a	new	instance	of	an	application	object

(vlax-create-object	prog-id)

Use	vlax-create-object	when	you	want	a	new	instance	of	an	application
to	be	started,	and	an	object	of	the	type	specified	by	<Component>	(see	the
argument	description)	to	be	created.	To	use	the	current	instance,	use	vlax-
get-object.	However,	if	an	application	object	has	registered	itself	as	a
single-instance	object,	only	one	instance	of	the	object	is	created,	no	matter	how
many	times	you	call	vlax-create-object.

Arguments

prog-id

A	string	containing	the	programmatic	identifier	of	the	desired	ActiveX
object.	The	format	of	prog-id	is
<Vendor>.<Component>.<Version>
For	example:
AutoCAD.Drawing.15

Return	Values

The	application	object	(VLA-object).

Examples

Create	an	instance	of	a	Microsoft	Excel	application:

_$		(vlax-create-object

"Excel.Application")
#<VLA-OBJECT	_Application	0017b894>

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-curve-getArea
	
	
	

Returns	the	area	inside	the	curve

(vlax-curve-getArea	curve-obj)

Arguments

curve-obj

The	VLA-object	to	be	measured.

Return	Values

A	real	number	representing	the	area	of	the	curve,	if	successful;	otherwise	nil.

Examples

Assume	the	curve	being	measured	is	the	ellipse	in	the	following	drawing:

Sample	curve	(ellipse)	for	vlax-curve-getarea

The	ellipseObj	variable	points	to	the	ellipse	VLA-object.

The	following	command	obtains	the	area	of	the	curve:

_$	(vlax-curve-getArea	ellipseObj)
4.712393

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-curve-getClosestPointTo
	
	
	

Returns	the	point	(in	WCS)	on	a	curve	that	is	nearest	to	the	specified	point

(vlax-curve-getClosestPointTo	curve-obj	givenPnt	[extend])

Arguments

curve-obj

The	VLA-object	to	be	measured.

givenPnt

A	point	(in	WCS)	for	which	to	find	the	nearest	point	on	the	curve.

extend

If	specified	and	not	nil,	vlax-curve-getClosestPointTo	extends
the	curve	when	searching	for	the	nearest	point.

Return	Values

A	3D	point	list	representing	a	point	on	the	curve,	if	successful;	otherwise	nil.

Examples

Assume	that	the	curve	being	measured	is	the	arc	in	the	following	drawing:

Return	the	closest	point	on	the	arc	to	the	coordinates	6.0,	0.5:

_$	(vlax-curve-getClosestPointTo

arcObj	'(6.0	0.5	0.0))
(6.0	1.5	0.0)

Return	the	closest	point	on	the	arc	to	the	coordinates	6.0,	0.5,	after	extending	the

arc:

_$	(vlax-curve-getClosestPointTo

arcObj	'(6.0	0.5	0.0)	T)
(5.7092	0.681753	0.0)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-curve-getClosestPointToProjection
	
	
	

Returns	the	closest	point	(in	WCS)	on	a	curve	after	projecting	the	curve	onto	a
plane

(vlax-curve-getClosestPointToProjection	curve-obj	givenPnt	normal[extend]

Arguments

curve-obj

The	VLA-object	to	be	measured.

givenPnt

A	point	(in	WCS)	for	which	to	find	the	nearest	point	on	the	curve.

normal

A	normal	vector	(in	WCS)	for	the	plane	to	project	onto.

extend

If	specified	and	not	nil,	vlax-curve-
getClosestPointToProjection	extends	the	curve	when	searching
for	the	nearest	point.

vlax-curve-getClosestPointToProjection	projects	the	curve	onto
the	plane	defined	by	the	givenPnt	and	normal,	and	then	calculates	the	nearest
point	on	that	projected	curve	to	givenPnt.	The	resulting	point	is	then	projected
back	onto	the	original	curve,	and	vlax-curve-
getClosestPointToProjection	returns	that	projected	point.

Return	Values

A	3D	point	list	representing	a	point	on	the	curve,	if	successful;	otherwise	nil.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-curve-getDistAtParam
	
	
	

Returns	the	length	of	the	curve's	segment	from	the	curve's	beginning	to	the
specified	parameter

(vlax-curve-getDistAtParam	curve-objparam)	

Arguments

curve-obj

The	VLA-object	to	be	measured.

param

A	number	specifying	a	parameter	on	the	curve.

Return	Values

A	real	number	that	is	the	length	up	to	the	specified	parameter,	if	successful;
otherwise	nil.

Examples

Assume	that	splineObj	points	to	the	spline	in	the	following	drawing:

Sample	curve	(spline)	for	vlax-curve-getDistAtParam

Obtain	the	start	parameter	of	the	curve:

_$	(setq	startSpline	(vlax-curve-getStartParam

splineObj))
0.0

The	curve	starts	at	parameter	0.

Obtain	the	end	parameter	of	the	curve:

_$	(setq	endSpline	(vlax-curve-getEndParam

splineObj))
17.1546

The	curve's	end	parameter	is	17.1546.

Determine	the	distance	to	the	parameter	midway	along	the	curve:

_$	(vlax-curve-getDistAtParam

splineObj	

			(/	(-	endspline	startspline)

2))
8.99417

The	distance	from	the	start	to	the	middle	of	the	curve	is	8.99417.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-curve-getDistAtPoint
	
	
	

Returns	the	length	of	the	curve's	segment	between	the	curve's	start	point	and	the
specified	point

(vlax-curve-getDistAtPoint	curve-obj	point)

Arguments

curve-obj

The	VLA-object	to	be	measured.

point

A	3D	point	list	(in	WCS)	on	curve-obj.

Return	Values

A	real	number	if	successful;	otherwise	nil.

Examples

For	the	following	example,	assume	that	splineObj	points	to	the	spline	shown
in	the	example	for	vlax-curve-getDistAtParam.

Set	OSNAP	to	tangent	and	select	the	point	where	the	line	is	tangent	to	the	curve:

_$	(setq	selPt	(getpoint))
(4.91438	6.04738	0.0)

Determine	the	distance	from	the	start	of	the	curve	to	the	selected	point:

_$	(vlax-curve-getDistAtPoint

splineObj	selpt)
5.17769

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-curve-getEndParam
	
	
	

Returns	the	parameter	of	the	endpoint	of	the	curve

(vlax-curve-getEndParam	curve-obj)

Arguments

curve-obj

The	VLA-object	to	be	measured.

Return	Values

A	real	number	representing	an	end	parameter,	if	successful;	otherwise	nil.

Examples

Assuming	that	ellipseObj	points	to	the	ellipse	shown	in	the	example	for
vlax-curve-getArea,	the	following	function	call	returns	the	end	parameter	of	the
curve:

_$	(vlax-curve-getendparam

ellipseObj)
6.28319

The	end	parameter	is	6.28319	(twice	pi).

See	Also
The	vlax-curve-getStartParam	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-curve-getEndPoint
	
	
	

Returns	the	endpoint	(in	WCS)	of	the	curve

(vlax-curve-getEndPoint	curve-obj)

Arguments

curve-obj

The	VLA-object	to	be	measured.

Return	Values

A	3D	point	list	representing	an	endpoint,	if	successful;	otherwise	nil.

Examples

Get	the	endpoint	of	the	ellipse	used	to	demonstrate	vlax-curve-getArea:

_$	(vlax-curve-getEndPoint

ellipseObj)
(2.0	2.0	0.0)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-curve-getFirstDeriv
	
	
	

Returns	the	first	derivative	(in	WCS)	of	a	curve	at	the	specified	location

(vlax-curve-getFirstDeriv	curve-obj	param)

Arguments

curve-obj

The	VLA-object	to	be	measured.

param

A	number	specifying	a	parameter	on	the	curve.

Return	Values

A	3D	vector	list,	if	successful;	otherwise	nil.

Examples

For	the	following	example,	assume	that	splineObj	points	to	the	spline	shown
in	the	example	of	the	vlax-curve-getDistAtParam	function.

Obtain	the	start	parameter	of	the	curve:

_$	(setq	startSpline	(vlax-curve-getStartParam

splineObj))
0.0

Obtain	the	end	parameter	of	the	curve:

_$	(setq	endSpline	(vlax-curve-getEndParam

splineObj))
17.1546

Determine	the	first	derivative	at	the	parameter	midway	along	the	curve:

_$	(vlax-curve-getFirstDeriv

splineObj	

			(/	(-	endspline	startspline)

2))
(0.422631	-1.0951	0.0)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-curve-getParamAtDist
	
	
	

Returns	the	parameter	of	a	curve	at	the	specified	distance	from	the	beginning	of
the	curve

(vlax-curve-getParamAtDist	curve-obj	dist)

Arguments

curve-obj

The	VLA-object	to	be	measured.

dist

A	number	specifying	the	distance	from	the	beginning	of	the	curve.

Return	Values

A	real	number	representing	a	parameter,	if	successful;	otherwise	nil.

Examples

Assuming	that	splineObj	points	to	the	spline	shown	in	the	example	for	vlax-
curve-getDistAtParam,	determine	the	parameter	at	a	distance	of	1.0	from	the
beginning	of	the	spline:

_$	(vlax-curve-getParamAtDist

splineObj	1.0)
0.685049

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-curve-getParamAtPoint
	
	
	

Returns	the	parameter	of	the	curve	at	the	point

(vlax-curve-getParamAtPoint	curve-obj	point)

Arguments

curve-obj

The	VLA-object	to	be	measured.

point

A	3D	point	list	(in	WCS)	on	curve-obj.

Return	Values

A	real	number	representing	a	parameter,	if	successful;	otherwise	nil.

Examples

Assuming	that	ellipseObj	points	to	the	ellipse	shown	in	the	example	for
vlax-curve-getArea,	set	OSNAP	to	tangent	and	select	the	point	where	the	line	is
tangent	to	the	ellipse:

_$	(setq	selPt	(getpoint))
(7.55765	5.55066	0.0)

Get	the	parameter	value	at	the	selected	point:

_$	(vlax-curve-getParamAtPoint

ellipseObj	selPt)
4.58296

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-curve-getPointAtDist
	
	
	

Returns	the	point	(in	WCS)	along	a	curve	at	the	distance	specified	by	the	user

(vlax-curve-getPointAtDist	curve-objdist)

Arguments

curve-obj

The	VLA-object	to	be	measured.

dist

The	distance	along	the	curve	from	the	beginning	of	the	curve	to	the	location
of	the	specified	point.

Return	Values

A	3D	point	list	representing	a	point	on	the	curve,	if	successful;	otherwise	nil.

Examples

Assuming	that	splineObj	points	to	the	spline	shown	in	the	example	for	vlax-
curve-getDistAtParam,	determine	the	point	at	a	distance	of	1.0	from	the
beginning	of	the	spline:

_$	(vlax-curve-getPointAtDist

splineObj	1.0)
(2.24236	2.99005	0.0)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-curve-getPointAtParam
	
	
	

Returns	the	point	at	the	specified	parameter	value	along	a	curve

(vlax-curve-getPointAtParam	curve-obj	param)

Arguments

curve-obj

The	VLA-object	to	be	measured.

param

A	number	specifying	a	parameter	on	the	curve.

Return	Values

A	3D	point	list	representing	a	point	on	the	curve,	if	successful;	otherwise	nil.

Examples

For	the	following	example,	assume	that	splineObj	points	to	the	spline	shown
in	the	example	for	vlax-curve-getDistAtParam.

Obtain	the	start	parameter	of	the	curve:

_$	(setq	startSpline	(vlax-curve-getStartParam

splineObj))
0.0

Obtain	the	end	parameter	of	the	curve:

_$	(setq	endSpline	(vlax-curve-getEndParam

splineObj))
17.1546

Determine	the	point	at	the	parameter	midway	along	the	curve:

_$	(vlax-curve-getPointAtParam

splineObj	

			(/	(-	endspline	startspline)

2))
(6.71386	2.82748	0.0)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-curve-getSecondDeriv
	
	
	

Returns	the	second	derivative	(in	WCS)	of	a	curve	at	the	specified	location

(vlax-curve-getSecondDeriv	curve-obj	param)

Arguments

curve-obj

The	VLA-object	to	be	measured.

param

A	number	specifying	a	parameter	on	the	curve.

Return	Values

A	3D	vector	list,	if	successful;	otherwise	nil.

Examples

For	the	following	example,	assume	that	splineObj	points	to	the	spline	shown
in	the	example	of	the	vlax-curve-getDistAtParam	function.

Obtain	the	start	parameter	of	the	curve:

_$	(setq	startSpline	(vlax-curve-getStartParam

splineObj))
0.0

Obtain	the	end	parameter	of	the	curve:

_$	(setq	endSpline	(vlax-curve-getEndParam

splineObj))
17.1546

Determine	the	second	derivative	at	the	parameter	midway	along	the	curve:

_$	(vlax-curve-getSecondDeriv

splineObj	

			(/	(-	endspline	startspline)

2))
(0.0165967	0.150848	0.0)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-curve-getStartParam
	
	
	

Returns	the	start	parameter	on	the	curve

(vlax-curve-getStartParam	curve-obj)

Arguments

curve-obj

The	VLA-object	to	be	measured.

Return	Values

A	real	number	representing	the	start	parameter,	if	successful;	otherwise	nil.

Examples

Assuming	that	ellipseObj	points	to	the	ellipse	shown	in	the	example	for
vlax-curve-getArea,	determine	the	start	parameter	of	the	curve:

_$	(vlax-curve-getstartparam

ellipseObj)
0.0

See	Also
The	vlax-curve-getEndParam	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-curve-getStartPoint
	
	
	

Returns	the	start	point	(in	WCS)	of	the	curve

(vlax-curve-getStartPoint	curve-obj)

Arguments

curve-obj

The	VLA-object	to	be	measured.

Return	Values

A	3D	point	list	representing	the	start	point,	if	successful;	otherwise	nil.

Examples

Get	the	start	point	of	the	ellipse	used	to	demonstrate	vlax-curve-getArea:

_$	(vlax-curve-getStartPoint

ellipseObj)
(2.0	2.0	0.0)

For	an	ellipse,	the	start	points	and	endpoints	are	the	same.

Obtain	the	start	point	of	the	spline	used	to	demonstrate	vlax-curve-
getDistAtParam:

_$	(vlax-curve-getStartPoint

splineObj)
(1.73962	2.12561	0.0)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-curve-isClosed
	
	
	

Determines	if	the	specified	curve	is	closed	(that	is,	the	start	point	is	the	same	as
the	endpoint)

(vlax-curve-isClosed	curve-obj)

Arguments

curve-obj

The	VLA-object	to	be	tested.

Return	Values

T	if	the	curve	is	closed;	otherwise	nil.

Examples

Determine	if	the	ellipse	used	to	demonstrate	vlax-curve-getArea	is	closed:

_$	(vlax-curve-isClosed	ellipseObj)
T

Determine	if	the	spline	used	to	demonstrate	vlax-curve-getDistAtParam	is
closed:

_$	(vlax-curve-isClosed	splineObj)
nil

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-curve-isPeriodic
	
	
	

Determines	if	the	specified	curve	has	an	infinite	range	in	both	directions	and
there	is	a	period	value	dT,	such	that	a	point	on	the	curve	at	(u	+	dT)	=	point	on
curve	(u),	for	any	parameter	u

(vlax-curve-isPeriodic	curve-obj)

Arguments

curve-obj

The	VLA-object	to	be	tested.

Return	Values

T	if	the	curve	is	periodic;	otherwise	nil.

Examples

Determine	if	the	ellipse	used	to	demonstrate	vlax-curve-getArea	is	periodic:

_$	(vlax-curve-isPeriodic

ellipseObj)
T

Determine	if	the	spline	used	to	demonstrate	vlax-curve-getDistAtParam	is
periodic:

_$	(vlax-curve-isPeriodic

splineObj)
nil

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-curve-isPlanar
	
	
	

Determines	if	there	is	a	plane	that	contains	the	curve

(vlax-curve-isPlanar	curve-obj)

Arguments

curve-obj

The	VLA-object	to	be	tested.

Return	Values

T	if	there	is	a	plane	that	contains	the	curve;	otherwise	nil.

Examples

Determine	if	there	is	a	plane	containing	the	ellipse	used	to	demonstrate	vlax-
curve-getArea:

_$	(vlax-curve-isPlanar	ellipseObj)
T

Determine	if	there	is	a	plane	containing	the	spline	used	to	demonstrate	vlax-
curve-getDistAtParam:

_$	(vlax-curve-isPeriodic

splineObj)
nil

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-dump-object
	
	
	

Lists	an	object's	properties,	and	optionally,	the	methods	that	apply	to	the	object

(vlax-dump-object	obj	[T])

Arguments

obj

A	VLA-object.

T

If	specified,	vlax-dump-object	also	lists	all	methods	that	apply	to	obj.

Return	Values

T,	if	successful.	If	an	invalid	object	name	is	supplied,	vlax-dump-object
displays	an	error	message.

Examples

_$	(setq	aa	(vlax-get-acad-object))
#<VLA-OBJECT	IAcadApplication	00b3b91c>

_$	(vlax-dump-object	aa)
;	IAcadApplication:	AutoCAD	Application	Interface

;	Property	values:

;			ActiveDocument	(RO)	=	#<VLA-OBJECT	IAcadDocument	01b52fac>

;			Application	(RO)	=	#<VLA-OBJECT	IAcadApplication	00b3b91c>

;			Caption	(RO)	=	"AutoCAD	-	[Drawing.dwg]"

.

.

.

T

List	an	object's	properties	and	the	methods	that	apply	to	the	object:

_$	(vlax-dump-object	aa	T)
;	IAcadApplication:	AutoCAD	Application	Interface

;	Property	values:

;			ActiveDocument	(RO)	=	#<VLA-OBJECT	IAcadDocument	01b52fac>

;			Application	(RO)	=	#<VLA-OBJECT	IAcadApplication	00b3b91c>

;			Caption	(RO)	=	"AutoCAD	-	[Drawing.dwg]"

.

.

.

;	Methods	supported:

;			EndUndoMark	()

;			Eval	(1)

;			GetInterfaceObject	(1)

;			ListAds	()

;			ListArx	()

.

.

.

T	

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-ename->vla-object
	
	
	

Transforms	an	entity	to	a	VLA-object

(vlax-ename->vla-object	entname)

Arguments

entname

An	entity	name	(ename	data	type).

Return	Values

A	VLA-object.

Examples

_$	(setq	e	(car	(entsel)))
<Entity	name:	27e0540>

_$	(vlax-ename->vla-object

e)
#<VLA-OBJECT	IAcadLWPolyline	03f713a0>

See	Also
The	vlax-vla-object->ename	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-erased-p
	
	
	

Determines	whether	an	object	was	erased

(vlax-erased-p	obj)

Arguments

obj

A	VLA-object.

Return	Values

T	if	the	object	was	erased;	otherwise	nil.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-for
	
	
	

Iterates	through	a	collection	of	objects,	evaluating	each	expression

(vlax-for	symbol	collection	[expression1	[expression2	...]])

Arguments

symbol

A	symbol	to	be	assigned	to	each	VLA-object	in	a	collection.

collection

A	VLA-object	representing	a	collection	object.

expression1,	expression2...

The	expressions	to	be	evaluated.

Return	Values

The	value	of	the	last	expression	evaluated	for	the	last	object	in	the	collection.

Examples

The	following	code	issues	vlax-dump-object	on	every	drawing	object	in
the	model	space:

(vl-load-com)																								;	load	ActiveX	support

(vlax-for	for-item	

			(vla-get-modelspace

								(vla-get-activedocument	(vlax-get-acad-object))

)

		(vlax-dump-object	for-item)								;	list	object	properties

)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-get-acad-object
	
	
	

Retrieves	the	top	level	AutoCAD	application	object	for	the	current	AutoCAD
session

(vlax-get-acad-object)

Return	Values

A	VLA-object.

Examples

_$	(setq	aa	(vlax-get-acad-object))
#<VLA-OBJECT	IAcadApplication	00b3b91c>

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-get-object
	
	
	

Returns	a	running	instance	of	an	application	object

(vlax-get-object	prog-id)

Arguments

prog-id

A	string	that	identifies	the	desired	application	object.	The	format	of	prog-id
is:
appname.objecttype
where	appname	is	the	name	of	the	application	and	objecttype	is	the
application	object.	The	objecttype	may	be	followed	by	a	version	number.

Note You	can	usually	find	the	prog-id	for	an	application	in	that	application's
Help.	For	example,	Microsoft	Office	applications	document	this	information
in	the	VBA	Reference.

Return	Values

The	application	object;	otherwise	nil,	if	there	is	no	instance	of	the	specified
object	currently	running.

Examples

Obtain	the	application	object	for	the	Excel	program:

_$	(vlax-get-object	"Excel.Application")
#<VLA-OBJECT	_Application	0017bb5c>

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-get-or-create-object
	
	
	

Returns	a	running	instance	of	an	application	object,	or	creates	a	new	instance	if
the	application	is	not	currently	running

(vlax-get-or-create-object	prog-id)

Arguments

prog-id

A	string	containing	the	programmatic	identifier	of	the	desired	ActiveX
object.	The	format	of	prog-id	is
<Vendor>.<Component>.<Version>
For	example:
AutoCAD.Drawing.15

Return	Values

The	object.

Examples

_$	(vlax-get-or-create-object

"Excel.Application")
#<VLA-OBJECT	_Application	0017bb5c>

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-get-property
	
	
	

Retrieves	a	VLA-object's	property

(vlax-get-property	object	property)

This	function	was	formerly	known	as	vlax-get.

Arguments

object

A	VLA-object.

property

A	symbol	or	string	naming	the	property	to	be	retrieved.

Return	Values

The	value	of	the	object's	property.

Examples

Begin	by	retrieving	a	pointer	to	the	root	AutoCAD	object:

_$	(setq	acadObject	(vlax-get-acad-object))
#<VLA-OBJECT	IAcadApplication	00a4b2b4>

Get	the	AutoCAD	ActiveDocument	property:

_$	(setq	acadDocument	(vlax-get-property

acadObject	'ActiveDocument))
#<VLA-OBJECT	IAcadDocument	00302a18>

The	function	returns	the	current	document	object.

Get	the	ModelSpace	property	of	the	ActiveDocument	object:

_$	(setq	mSpace	(vlax-get-property

acadDocument	'Modelspace))
#<VLA-OBJECT	IAcadModelSpace	00c14b44>

The	model	space	object	of	the	current	document	is	returned.

Convert	a	drawing	entity	to	a	VLA-object:

_$	(setq	vlaobj	(vlax-ename->vla-object

e))
#<VLA-OBJECT	IAcadLWPolyline	0467114c>

Get	the	color	property	of	the	object:

_$	(vlax-get-property	vlaobj

'Color)
256

See	Also
The	vlax-property-available-p	and	vlax-put-property	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-import-type-library
	
	
	

Imports	information	from	a	type	library

(vlax-import-type-library	:tlb-filename	filename

[:methods-prefix	mprefix		:properties-prefix	pprefix	:constants-prefix	c

Arguments

filename

A	string	naming	the	type	library.	A	file	can	be	one	of	the	following	types:

A	type	library	(TLB)	or	object	library	(OLB)	file

An	executable	(EXE)	file

A	library	(DLL)	file	containing	a	type	library	resource

A	compound	document	holding	a	type	library

Any	other	file	format	that	can	be	understood	by	the	LoadTypeLib
API

If	you	omit	the	path	from	tlb-filename,	AutoCAD	looks	for	the	file	in	the
support	file	search	path.

mprefix

Prefix	to	be	used	for	method	wrapper	functions.	For	example,	if	the	type
library	contains	a	Calculate	method	and	the	mprefix	parameter	is	set	to	“cc-”,
Visual	LISP	generates	a	wrapper	function	named	cc-Calculate.	This
parameter	defaults	to	“”.

pprefix

Prefix	to	be	used	for	property	wrapper	functions.	For	example,	if	the	type
library	contains	a	Width	property	with	both	read	and	write	permissions,	and
pprefix	is	set	to	“cc-”,	then	Visual	LISP	generates	wrapper	functions	named

cc-get-Width	and	cc-put-Width.	This	parameter	defaults	to	“”.

cprefix

Prefix	to	be	used	for	constants	contained	in	the	type	library.	For	example,	if
the	type	library	contains	a	ccMaxCountOfRecords	property	with	both	read
and	write	permissions,	and	cprefix	is	set	to	“cc-”,	Visual	LISP	generates	a
constant	named	cc-ccMaxCountOfRecords.	This	parameter	defaults	to
“”.

Note	the	required	use	of	keywords	when	passing	arguments	to	vlax-import-
type-library.

Return	Values

T,	if	successful.

Examples

Import	a	Microsoft	Word	type	library,	assigning	the	prefix	“msw-”	to	methods
and	properties,	and	“mswc-”	to	constants:

_$	(vlax-import-type-library

			:tlb-filename	"c:/program

files/microsoft	office/msword8.olb"

			:methods-prefix	"msw-"

			:properties-prefix

"msw-"

			:constants-prefix	"mswc-")
T

Remarks

Function	wrappers	created	by	vlax-import-type-library	are	available
only	in	the	context	of	the	document	vlax-import-type-library	was
issued	from.

In	the	current	release	of	Visual	LISP,	vlax-import-type-library	is
executed	at	runtime,	rather	than	at	compile	time.	In	future	releases	of	Visual
LISP,	this	may	change.	The	following	practices	are	recommended	when	using
vlax-import-type-library:

If	you	want	your	code	to	run	on	different	machines,	avoid	specifying	an

absolute	path	in	the	tlb-file-name	parameter.

If	possible,	avoid	using	vlax-import-type-library	from	inside
any	AutoLISP	expression	(that	is,	always	call	it	from	a	top-level
position).

In	your	AutoLISP	source	file,	code	the	vlax-import-type-
library	call	before	any	code	that	uses	method	or	property	wrappers	or
constants	defined	in	the	type	library.

See	Also
The	vlax-typeinfo-available-p	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-invoke-method
	
	
	

Calls	the	specified	ActiveX	method

(vlax-invoke-method	obj	method	arg	[arg...])

This	function	was	known	as	vlax-invoke	prior	to	AutoCAD	2000.

Arguments

obj

A	VLA-object.

method

A	symbol	or	string	naming	the	method	to	be	called.

arg

Argument	to	be	passed	to	the	method	called.	No	argument	type	checking	is
performed.

Return	Values

Depends	on	the	method	invoked.

Examples

The	following	example	uses	the	AddCircle	method	to	draw	a	circle	in	the	current
AutoCAD	drawing.

The	first	argument	to	AddCircle	specifies	the	location	of	the	center	of	the	circle.
The	method	requires	the	center	to	be	specified	as	a	variant	containing	a	three-
element	array	of	doubles.	You	can	use	vlax-3d-point	to	convert	an
AutoLISP	point	list	to	the	required	variant	data	type:

_$	(setq	circCenter	(vlax-3d-point

'(3.0	3.0	0.0)))
#<variant	8197	...>

Now	use	vlax-invoke-method	to	draw	a	circle	with	the	AddCircle	method:

_$	(setq	mycircle	(vlax-invoke-method

mspace	'AddCircle	circCenter	3.0))
#<VLA-OBJECT	IAcadCircle	00bfd6e4>

See	Also
The	vlax-get-property,	vlax-method-applicable-p,	vlax-property-
available-p,	and	vlax-put-property	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-ldata-delete
	
	
	

Erases	LISP	data	from	a	drawing	dictionary

(vlax-ldata-delete	dict	key	[private])

Arguments

dict

A	VLA-object,	AutoCAD	drawing	entity	object,	or	a	string	naming	a	global
dictionary.

key

A	string	specifying	the	dictionary	key.

private

If	a	non-nil	value	is	specified	for	private	and	vlax-ldata-delete	is
called	from	a	separate-namespace	VLX,	vlax-ldata-delete	deletes
private	LISP	data	from	dict.	(See	vlax-ldata-get	for	examples	using	this
argument.)

Return	Values

T,	if	successful;	otherwise	nil	(for	example,	the	data	did	not	exist).

Examples

Add	LISP	data	to	a	dictionary:

_$	(vlax-ldata-put	"dict"

"key"	'(1))
(1)

Use	vlax-ldata-delete	to	delete	the	LISP	data:

_$	(vlax-ldata-delete	"dict"

"key")
T

If	vlax-ldata-delete	is	called	again	to	remove	the	same	data,	it	returns
nil	because	the	data	does	not	exist	in	the	dictionary:

_$	(vlax-ldata-delete	"dict"

"key")
nil

See	Also
The	vlax-ldata-get,	vlax-ldata-list,	and	vlax-ldata-put	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-ldata-get
	
	
	

Retrieves	LISP	data	from	a	drawing	dictionary	or	an	object

(vlax-ldata-get	dict	key	[default-data]	[private])

Arguments

dict

A	VLA-object,	an	AutoCAD	drawing	entity	object,	or	a	string	naming	a
global	dictionary.

key

A	string	specifying	the	dictionary	key.

default-data

LISP	data	to	be	returned	if	no	matching	key	exists	in	the	dictionary.

private

If	a	non-nil	value	is	specified	for	private	and	vlax-ldata-get	is	called
from	a	separate-namespace	VLX,	vlax-ldata-get	retrieves	private
LISP	data	from	dict.
If	you	specify	private,	you	must	also	specify	default-data;	you	can	use	nil
for	default-data.

Note	that	a	separate-namespace	VLX	can	store	both	private	and	non-private	data
using	the	same	dict	and	key.	The	private	data	can	be	accessed	only	by	the	same
VLX,	but	any	application	can	retrieve	the	non-private	data.

Return	Values

The	value	of	the	key	item.

Examples

Enter	the	following	commands	at	the	Visual	LISP	Console	window:

_$	(vlax-ldata-put	"mydict"

"mykey"	"Mumbo	Dumbo")
"Mumbo	Dumbo"

_$	(vlax-ldata-get	"mydict"

"mykey")
"Mumbo	Dumbo"

To	test	the	use	of	private	data	from	a	VLX

1.	 Enter	the	following	commands	at	the	Visual	LISP	Console	window:

_$	(vlax-ldata-put	"mydict"

"mykey"	"Mumbo	Dumbo")
"Mumbo	Dumbo"

_$	(vlax-ldata-get	"mydict"

"mykey")
"Mumbo	Dumbo"

2.	 Enter	the	following	code	in	a	file	and	use	Make	Application	to	build	a
VLX	from	the	file.	Use	the	Expert	mode	of	the	Make	Application
wizard,	and	select	the	Separate	Namespace	option	on	the	Compile
Options	tab.

(vl-doc-export	'ldataput)

(vl-doc-export	'ldataget)

(vl-doc-export	'ldataget-nilt)

(defun	ldataput	()

		(princ	"This	is	a	test	of	putting	private	ldata	")

		(vlax-ldata-put	"mydict"	"mykey"	"Mine!	Mine!	"	T)

)

(defun	ldataget	()

		(vlax-ldata-get	"mydict"	"mykey")

)

(defun	ldataget-nilt	()

		(vlax-ldata-get	"mydict"	"mykey"	nil	T)

)

3.	 Load	the	VLX	file.

4.	 Run	ldataput	to	save	private	data:

_$	(ldataput)
This	is	a	test	of	putting	private	ldata

Refer	to	the	code	defining	ldataput:	this	function	stores	a	string
containing	“Mine!	Mine!”

5.	 Run	ldataget	to	retrieve	LISP	data:

_$	(ldataget)
"Mumbo	Dumbo"

Notice	that	the	data	returned	by	ldataget	is	not	the	data	stored	by
ldataput.	This	is	because	ldataget	does	not	specify	the	private
argument	in	its	call	to	vlax-ldata-get.	So	the	data	retrieved	by
ldataget	is	the	data	set	by	issuing	vlax-ldata-put	from	the
Visual	LISP	Console	in	step	1.

_$	(ldataget-nilt)
"Mine!	Mine!	"

6.	 Run	ldataget-nilt	to	retrieve	LISP	data:

_$	(ldataget-nilt)
"Mine!	Mine!	"

This	time	the	private	data	saved	by	ldataput	is	returned,	because
ldataget-nilt	specifies	the	private	argument	in	its	call	to	vlax-
ldata-get.

7.	 From	the	Visual	LISP	Console	prompt,	issue	the	same	call	that
ldataget-nilt	uses	to	retrieve	private	data:

_$	(vlax-ldata-get	"mydict"

"mykey"	nil	T)
"Mumbo	Dumbo"

The	private	argument	is	ignored	when	vlax-ldata-get	is	issued
outside	a	separate-namespace	VLX.	If	non-private	data	exists	for	the
specified	dict	and	key	(as	in	this	instance),	that	data	will	be	retrieved.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-ldata-list
	
	
	

Lists	LISP	data	in	a	drawing	dictionary

(vlax-ldata-list	dict	[private])

Arguments

dict

A	VLA-object,	an	AutoCAD	drawing	entity	object,	or	a	string	naming	a
global	dictionary.

private

If	vlax-ldata-list	is	called	from	a	separate-namespace	VLX	and	a
non-nil	value	is	specified	for	private,	vlax-ldata-list	retrieves	only
private	data	stored	by	the	same	VLX.	(See	vlax-ldata-get	for	examples	using
this	argument.)

Return	Values

An	associative	list	consisting	of	pairs	(key	.	value).

Examples

Use	vlax-ldata-put	to	store	LISP	data	in	a	dictionary:

_$	(vlax-ldata-put	"dict"

"cay"	"Mumbo	Jumbo	")
"Mumbo	Jumbo	"

_$	(vlax-ldata-put	"dict"

"say"	"Floobar	")
"Floobar	"

Use	vlax-ldata-list	to	display	the	LISP	data	stored	in	“dict”:

_$	(vlax-ldata-list	"dict")
(("say"	.	"Floobar	")	("cay"	.	"Mumbo	Jumbo	"))

See	Also
The	vlax-ldata-get,	vlax-ldata-delete,	and	vlax-ldata-put	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-ldata-put
	
	
	

Stores	LISP	data	in	a	drawing	dictionary	or	an	object

(vlax-ldata-put	dict	key	data	[private])

Arguments

dict

A	VLA-object,	an	AutoCAD	drawing	entity	object,	or	a	string	naming	a
global	dictionary.

key

A	string	specifying	the	dictionary	key.

data

LISP	data	to	be	stored	in	the	dictionary.

private

If	vlax-ldata-put	is	called	from	a	separate-namespace	VLX	and	a	non-
nil	value	is	specified	for	private,	vlax-ldata-put	marks	the	data	as
retrievable	only	by	the	same	VLX.

Return	Values

The	value	of	data.

Examples

_$	(vlax-ldata-put	"dict"

"key"	'(1))
(1)

_$	(vlax-ldata-put	"dict"

"cay"	"Gumbo	jumbo")

"Gumbo	jumbo"

See	Also
The	vlax-ldata-get,	vlax-ldata-delete,	and	vlax-ldata-list	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-ldata-test
	
	
	

Determines	if	data	can	be	saved	over	a	session	boundary

(vlax-ldata-test	data)

Arguments

data

Any	LISP	data	to	be	tested.

Return	Values

T,	if	the	data	can	be	saved	and	restored	over	the	session	boundary;	otherwise
nil.

Examples

Determine	if	a	string	can	be	saved	as	ldata	over	a	session	boundary:

_$	(vlax-ldata-test	"Gumbo

jumbo")
T

Determine	if	a	function	can	be	saved	as	ldata	over	a	session	boundary:

_$	(vlax-ldata-test	yinyang)
nil

See	Also
The	vlax-ldata-get,	vlax-ldata-delete,	and	vlax-ldata-list,	and	vlax-
ldata-put	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-make-safearray
	
	
	

Creates	a	safearray

(vlax-make-safearray	type	'(l-bound	.	u-bound)

['(l-bound	.	u-bound)...)]

A	maximum	of	16	dimensions	can	be	defined	for	an	array.	The	elements	in	the
array	are	initialized	as	follows:

Numbers

0

Strings

Zero-length	string.

Booleans

:vlax-false

Object

nil

Variant

Uninitialized	(vlax-vbEmpty)

Arguments

type

The	type	of	safearray.	Specify	one	of	the	following	constants:
vlax-vbInteger	(2) Integer
vlax-vbLong	(3) Long	integer
vlax-vbSingle	(4) Single-precision	floating-point	number

vlax-vbDouble	(5) Double-precision	floating-point	number
vlax-vbString	(8) String
vlax-vbObject	(9) Object
vlax-vbBoolean	(11) Boolean
vlax-vbVariant	(12) Variant
The	integer	shown	in	parentheses	indicates	the	value	to	which	the	constant
evaluates.	It	is	recommended	that	you	specify	the	constant	in	your	argument,
not	the	integer	value,	in	case	the	value	changes	in	later	releases	of	AutoCAD.

'(l-bound	.	u-bound)

Lower	and	upper	index	boundaries	of	a	dimension.

Return	Values

The	safearray	created.

Examples

Create	a	single-dimension	safearray	consisting	of	doubles,	beginning	with	index
0:

_$	(setq	point	(vlax-make-safearray

vlax-vbDouble	'(0	.	3)))
#<safearray...>

Use	the	vlax-safearray->list	function	to	display	the	contents	of	the
safearray	as	a	list:

_$	(vlax-safearray->list

point)
(0.0	0.0	0.0	0.0)

The	result	shows	each	element	of	the	array	was	initialized	to	zero.

Create	a	two-dimension	array	of	strings,	with	each	dimension	starting	at	index	1:

_$	(setq	matrix	(vlax-make-safearray

vlax-vbString	'(1	.	2)	'(1	.	2)))
#<safearray...>

See	Also
The	vlax-make-variant,	vlax-safearray-fill,	vlax-safearray-get-dim,
vlax-safearray-get-element,	vlax-safearray-get-l-bound,	vlax-
safearray-get-u-bound,	vlax-safearray-put-element,	vlax-safearray-
type,	vlax-safearray->list,	and	vlax-variant-value	functions.	For
more	information	on	using	these	functions,	see	Working	with
Safearrays	in	the	AutoLISP	Developer's	Guide.

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e32580.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-make-variant
	
	
	

Creates	a	variant	data	type

(vlax-make-variant	[value]	[type])

Arguments

value

The	value	to	be	assigned	to	the	variant.	If	omitted,	the	variant	is	created	with
the	vlax-vbEmpty	type	(uninitialized).

type

The	type	of	variant.	This	can	be	represented	by	one	of	the	following
constants:
vlax-vbEmpty	(0) Uninitialized	(default	value)
vlax-vbNull	(1) Contains	no	valid	data
vlax-vbInteger	(2) Integer
vlax-vbLong	(3) Long	integer
vlax-vbSingle	(4) Single-precision	floating-point	number
vlax-vbDouble	(5) Double-precision	floating-point	number
vlax-vbString	(8) String
vlax-vbObject	(9) Object
vlax-vbBoolean	(11) Boolean
vlax-vbArray	(8192) Array
The	integer	shown	in	parentheses	indicates	the	value	to	which	the	constant
evaluates.	It	is	recommended	that	you	specify	the	constant	in	your	argument,
not	the	integer	value,	because	the	value	may	change	in	later	releases	of
AutoCAD.
If	you	do	not	specify	a	type,	vlax-make-variant	assigns	a	default	data

type	based	on	the	data	type	of	the	value	it	receives.	The	following	list
identifies	the	default	variant	data	type	assigned	to	each	LISP	data	type:
nil vlax-vbEmpty

:vlax-null vlax-vbNull

integer vlax-vbLong

real vlax-vbDouble

string vlax-vbString

VLA-object vlax-vbObject

:vlax-true,	:vlax-false vlax-vbBoolean

variant Same	as	the	type	of	initial	value
vlax-make-safearray vlax-vbArray

Return	Values

The	variant	created.

Examples

Create	a	variant	using	the	defaults	for	vlax-make-variant:

_$	(setq	varnil	(vlax-make-variant))
#<variant	0	>

The	function	creates	an	uninitialized	(vlax-vbEmpty)	variant	by	default.	You	can
accomplish	the	same	thing	explicitly	with	the	following	call:

_$	(setq	varnil	(vlax-make-variant

nil))
#<variant	0	>

Create	an	integer	variant	and	set	its	value	to	5:

_$	(setq	varint	(vlax-make-variant

5	vlax-vbInteger))
#<variant	2	5>

Repeat	the	previous	command,	but	omit	the	type	argument	and	see	what
happens:

_$	(setq	varint	(vlax-make-variant

5))
#<variant	3	5>

By	default,	vlax-make-variant	assigned	the	specified	integer	value	to	a
Long	integer	data	type,	not	Integer,	as	you	might	expect.	This	highlights	the
importance	of	explicitly	stating	the	type	of	variant	you	want	when	working	with
numbers.

Omitting	the	type	argument	for	a	string	produces	predictable	results:

_$	(setq	varstr	(vlax-make-variant

"ghost"))
#<variant	8	ghost>

To	create	a	variant	containing	arrays,	you	must	specify	type	vlax-vbArray,
along	with	the	type	of	data	in	the	array.	For	example,	to	create	a	variant
containing	an	array	of	doubles,	first	set	a	variable's	value	to	an	array	of	doubles:

_$	(setq	4dubs	(vlax-make-safearray

vlax-vbDouble	'(0	.	3)))
#<safearray...>

Then	take	the	array	of	doubles	and	assign	it	to	a	variant:

_$	(vlax-make-variant	4dubs)
#<variant	8197	...>

See	Also
The	vlax-make-safearray,	vlax-variant-change-type,	vlax-variant-
type,	and	vlax-variant-value	functions.	For	more	information	on
using	variants,	see	Working	with	Variants	in	the	AutoLISP
Developer's	Guide.

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e32831.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-map-collection
	
	
	

Applies	a	function	to	all	objects	in	a	collection

(vlax-map-collection	objfunction)

Arguments

obj

A	VLA-object	representing	a	collection.

function

A	symbol	or	lambda	expression	to	be	applied	to	obj.

Return	Values

The	obj	first	argument.

Examples

(vlax-map-collection	(vla-get-ModelSpace

acadDocument)	'vlax-dump-object)
;	IAcadLWPolyline:	AutoCAD	Lightweight	Polyline	Interface

;	Property	values:

;			Application	(RO)	=	#<VLA-OBJECT	IAcadApplication	00a4ae24>

;			Area	(RO)	=	2.46556

;			Closed	=	0

;			Color	=	256

;			ConstantWidth	=	0.0

;			Coordinate	=	...Indexed	contents	not	shown...

;			Coordinates	=	(8.49917	7.00155	11.2996	3.73137	14.8	5.74379	...)

;			Database	(RO)	=	#<VLA-OBJECT	IAcadDatabase	01e3da44>

;			Elevation	=	0.0

;			Handle	(RO)	=	"53"

;			HasExtensionDictionary	(RO)	=	0

;			Hyperlinks	(RO)	=	#<VLA-OBJECT	IAcadHyperlinks	01e3d7d4>

;			Layer	=	"0"

;			Linetype	=	"BYLAYER"

;			LinetypeGeneration	=	0

;			LinetypeScale	=	1.0

;			Lineweight	=	-1

;			Normal	=	(0.0	0.0	1.0)

;			ObjectID	(RO)	=	28895576

;			ObjectName	(RO)	=	"AcDbPolyline"

;			PlotStyleName	=	"ByLayer"

;			Thickness	=	0.0

;			Visible	=	-1

T

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-method-applicable-p
	
	
	

Determines	if	an	object	supports	a	particular	method

(vlax-method-applicable-p	objmethod)

Arguments

obj

A	VLA-object.

method

A	symbol	or	string	containing	the	name	of	the	method	to	be	checked.

Return	Values

T,	if	the	object	supports	the	method;	otherwise	nil.

Examples

The	following	commands	are	issued	against	a	LightweightPolyline	object:

_$	(vlax-method-applicable-p

WhatsMyLine	'copy)
T

_$	(vlax-method-applicable-p

WhatsMyLine	'AddBox)
nil

See	Also
The	vlax-property-available-p	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-object-released-p
	
	
	

Determines	if	an	object	has	been	released

(vlax-object-released-p	obj)

Note Erasing	a	VLA-object	(using	command	ERASE	or	vla-erase)	does	not
release	the	object.	A	VLA-object	is	not	released	until	you	invoke	vlax-
release-object	on	the	object,	or	normal	AutoLISP	garbage	collection
occurs,	or	the	drawing	database	is	destroyed	at	the	end	of	the	drawing	session.

Arguments

obj

A	VLA-object.

Return	Values

T,	if	the	object	is	released	(no	AutoCAD	drawing	object	is	attached	to	obj);	nil
if	the	object	has	not	been	released.

Examples

Attach	a	Microsoft	Excel	application	to	the	current	AutoCAD	drawing:

_$	(setq	excelobj	(vlax-get-object

"Excel.Application"))
#<VLA-OBJECT	_Application	00168a54>

Release	the	Excel	object:

_$	(vlax-release-object	excelobj)
1

Issue	vlax-object-released-p	to	verify	the	object	was	released:

_$	(vlax-object-released-p

excelobj)
T

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-product-key
	
	
	

Returns	the	AutoCAD	Windows	registry	path

(vlax-product-key)

The	AutoCAD	registry	path	can	be	used	to	register	an	application	for	demand
loading.

Return	Values

A	string	containing	the	AutoCAD	registry	path.

Examples

_$	(vlax-product-key)
"Software\\Autodesk\\AutoCAD\\R15.0\\ACAD-1:409"

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-property-available-p
	
	
	

Determines	if	an	object	has	a	specified	property

(vlax-property-available-p	obj	prop	[check-modify])

Arguments

obj

A	VLA-object.

property

A	symbol	or	string	naming	the	property	to	be	checked.

check-modify

If	T	is	specified	for	this	argument,	vlax-property-available-p	also
checks	that	the	property	can	be	modified.

Return	Values

T,	if	the	object	has	the	specified	property;	otherwise	nil.	If	T	is	specified	for
the	check-modify	argument,	vlax-property-available-p	returns	nil	if
either	the	property	is	not	available	or	the	property	cannot	be	modified.

Examples

The	following	examples	apply	to	a	LightweightPolyline	object:

_$	(vlax-property-available-p

WhatsMyLine	'Color)
T

_$	(vlax-property-available-p

WhatsMyLine	'center)
nil

The	following	examples	apply	to	a	Circle	object:

_$	(vlax-property-available-p

myCircle	'area)
T

Note	how	supplying	the	optional	third	argument	changes	the	result:

_$	(vlax-property-available-p

myCircle	'area	T)
nil

The	function	returns	nil	because,	although	the	circle	has	an	“area”	property,
that	property	cannot	be	modified.

See	Also
The	vlax-method-applicable-p	and	vlax-put-property	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-put-property
	
	
	

Sets	the	property	of	an	ActiveX	object

(vlax-put-property	obj	property	arg)

This	function	was	formerly	known	as	vlax-put.

Arguments

obj

A	VLA-object.

property

A	symbol	or	string	naming	the	property	to	be	set.

arg

The	value	to	be	set.

Return	Values

Nil,	if	successful.

Examples

Color	an	object	red:

_$	(vlax-put-property	vlaobj

'Color	1)
nil

See	Also
The	vlax-get-property	and	vlax-property-available-p	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-read-enabled-p
	
	
	

Determines	if	an	object	can	be	read

(vlax-read-enabled-p	obj)

Arguments

obj

A	VLA-object.

Return	Values

T,	if	the	object	is	readable;	otherwise	nil.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-release-object
	
	
	

Releases	a	drawing	object

(vlax-release-object	obj)

When	an	AutoLISP	routine	no	longer	uses	an	object	outside	AutoCAD,	such	as	a
Microsoft	Excel	object,	call	the	(vlax-release-object)	function	to	make
sure	that	the	associated	application	closes	properly.	Objects	released	with
(vlax-release-object...)	may	not	be	released	immediately.	The	actual
release	may	not	happen	until	the	next	automatic	garbage	collection	occurs.	You
can	call	(gc)	directly	to	force	the	garbage	collection	to	occur	at	a	specific
location	within	your	code.	However,	calling	(gc)	may	degrade	performance,
and	it	is	recommended	that	you	avoid	placing	calls	to	(gc)	in	locations	where	it
is	likely	to	be	called	many	times	in	a	row,	such	as	within	loops.

If	an	object-associated	application	does	not	close	after	calling	the	(gc)
function,	the	(vlax-release-object)	function	was	not	called	for	all
objects	outside	AutoCAD.

Arguments

obj

A	VLA-object.

After	release,	the	drawing	object	is	no	longer	accessible	through	obj.

Return	Values

Unspecified.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-remove-cmd
	
	
	

Removes	a	single	command	or	a	command	group

(vlax-remove-cmd	global-name)

Removes	a	single	command	or	the	whole	command	group	for	the	current
AutoCAD	session.

Arguments

global-name

Either	a	string	naming	the	command,	or	T.	If	global-name	is	T,	the	whole
command	group	VLC-AppName	(for	example,	VLC-VLIDE)	is	deleted.

Return	Values

T,	if	successful;	otherwise	nil	(for	example,	the	command	is	not	defined).

Examples

Remove	a	command	defined	with	vlax-add-cmd:

_$	(vlax-remove-cmd	"hello-autocad")
T

Repeat	the	vlax-remove-cmd:

_$	(vlax-remove-cmd	"hello-autocad")
nil

This	time	vlax-remove-cmd	returns	nil,	because	the	specified	command
does	not	exist	anymore.

See	Also

The	vlax-add-cmd	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-safearray-fill
	
	
	

Stores	data	in	the	elements	of	a	safearray

(vlax-safearray-fill	var	'element-values)

Arguments

var

A	variable	whose	data	type	is	a	safearray.

'element-values

A	list	of	values	to	be	stored	in	the	array.	You	can	specify	as	many	values	as
there	are	elements	in	the	array.	If	you	specify	fewer	values	than	there	are
elements,	the	remaining	elements	retain	their	current	value.
For	multi-dimension	arrays,	element-values	must	be	a	list	of	lists,	with	each
list	corresponding	to	a	dimension	of	the	array.

Return	Values

var

Examples

Create	a	single-dimension	array	of	doubles:

_$	(setq	sa	(vlax-make-safearray

vlax-vbdouble	'(0	.	2)))
#<safearray...>

Use	vlax-safearray-fill	to	populate	the	array:

_$	(vlax-safearray-fill	sa

'(1	2	3))

#<safearray...>

List	the	contents	of	the	array:

_$	(vlax-safearray->list

sa)
(1.0	2.0	3.0)

Use	vlax-safearray-fill	to	set	the	first	element	in	the	array:

_$	(vlax-safearray-fill	sa

'(-66))
#<safearray...>

List	the	contents	of	the	array:

_$	(vlax-safearray->list

sa)
(-66.0	2.0	3.0)

Notice	that	only	the	first	element	in	the	array	has	been	changed;	the	remaining
elements	are	unaffected	and	retain	the	value	you	previously	set	them	to.	If	you
need	to	change	the	second	or	third	element	and	leave	the	first	element
unaffected,	use	vlax-put-element.

Instruct	vlax-safearray-fill	to	set	four	elements	in	an	array	that
contains	only	three	elements:

_$	(vlax-safearray-fill	sa

'(1	2	3	4))
Error:	Assertion	failed:	safearray-fill	failed.	Too	many	elements.

The	vlax-safearray-fill	function	returns	an	error	if	you	specify	more
elements	than	the	array	contains.

To	assign	values	to	a	multi-dimensional	array,	specify	a	list	of	lists	to	vlax-
safearray-fill,	with	each	list	corresponding	to	a	dimension.	The
following	command	creates	a	two-dimension	array	of	strings	containing	three
elements	in	each	dimension:

_$	(setq	mat2	(vlax-make-safearray

vlax-vbString	'(0	.	1)	'(1	.	3)))

#<safearray...>

Use	vlax-safearray-fill	to	populate	the	array:

_$	(vlax-safearray-fill	mat2

'(("a"	"b"	"c")	("d"	"e"	"f")))
#<safearray...>

Call	the	vlax-safearray->list	function	to	confirm	the	contents	of	mat2:

_$	(vlax-safearray->list

mat2)
(("a"	"b"	"c")	("d"	"e"	"f"))

See	Also
The	vlax-make-safearray,	vlax-safearray-get-dim,	vlax-safearray-
get-element,	vlax-safearray-get-l-bound,	vlax-safearray-get-u-
bound,	vlax-safearray-put-element,	vlax-safearray-type,	vlax-
safearray->list,	and	vlax-variant-value	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-safearray-get-dim
	
	
	

Returns	the	number	of	dimensions	in	a	safearray	object

(vlax-safearray-get-dim	var)

Arguments

var

A	variable	whose	data	type	is	a	safearray.

Return	Values

An	integer	identifying	the	number	of	dimensions	in	var.	An	error	occurs	if	var	is
not	a	safearray.

Examples

Set	sa-int	to	a	single-dimension	safearray	with	one	dimension:

_$	(setq	sa-int	(vlax-make-safearray

vlax-vbinteger	'(1	.	4)))
#<safearray...>

Use	vlax-safearray-get-dim	to	return	the	number	of	dimensions	in	sa-
int:

_$	(vlax-safearray-get-dim

sa-int)
1

See	Also
The	vlax-make-safearray,	vlax-safearray-get-l-bound,	and	vlax-
safearray-get-u-bound	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-safearray-get-element
	
	
	

Returns	an	element	from	an	array

(vlax-safearray-get-element	var	element...)

Arguments

var

A	variable	whose	data	type	is	a	safearray.

element...

Integers	specifying	the	indexes	of	the	element	to	be	retrieved.	For	an	array
with	one	dimension,	specify	a	single	integer.	For	multi-dimension	arrays,
specify	as	many	indexes	as	there	are	dimensions.

Return	Values

The	value	of	the	element.

Examples

Create	an	array	with	two	dimensions,	each	dimension	starting	at	index	1:

_$	(setq	matrix	(vlax-make-safearray

vlax-vbString	'(1	.	2)	'(1	.	2)))
#<safearray...>

Use	vlax-safearray-put-element	to	populate	the	array:

_$	(vlax-safearray-put-element

matrix	1	1	"a")
"a"

_$	(vlax-safearray-put-element

matrix	1	2	"b")

"b"

_$	(vlax-safearray-put-element

matrix	2	1	"c")
"c"

_$	(vlax-safearray-put-element

matrix	2	2	"d")
"d"

Use	vlax-safearray-get-element	to	retrieve	the	second	element	in	the
first	dimension	of	the	array:

_$	(vlax-safearray-get-element

matrix	1	2)
"b"

See	Also
The	vlax-make-safearray,	vlax-safearray-get-dim,	vlax-safearray-
get-l-bound,	vlax-safearray-get-u-bound,	and	vlax-safearray-put-
element	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-safearray-get-l-bound
	
	
	

Returns	the	lower	boundary	(starting	index)	of	a	dimension	of	an	array

(vlax-safearray-get-l-bound	var	dim)

Arguments

var

A	variable	whose	data	type	is	a	safearray.

dim

A	dimension	of	the	array.	The	first	dimension	is	dimension	1.

Return	Values

An	integer	representing	the	lower	boundary	(starting	index)	of	the	dimension.	If
var	is	not	an	array,	or	dim	is	invalid	(for	example,	0,	or	a	number	greater	than	the
number	of	dimensions	in	the	array),	an	error	results.

Examples

The	following	examples	evaluate	a	safearray	defined	as	follows:

(vlax-make-safearray	vlax-vbString	'(1	.	2)	'(0	.	1)))

Get	the	starting	index	value	of	the	array's	first	dimension:

_$	(vlax-safearray-get-l-bound

tmatrix	1)
1

The	first	dimension	starts	with	index	1.

Get	the	starting	index	value	of	the	second	dimension	of	the	array:

_$	(vlax-safearray-get-l-bound

tmatrix	2)
0

The	second	dimension	starts	with	index	0.

See	Also
The	vlax-make-safearray,	vlax-safearray-get-dim,	and	vlax-
safearray-get-u-bound	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-safearray-get-u-bound
	
	
	

Returns	the	upper	boundary	(end	index)	of	a	dimension	of	an	array

(vlax-safearray-get-u-bound	var	dim)

Arguments

var

A	variable	whose	data	type	is	a	safearray.

dim

A	dimension	of	the	array.	The	first	dimension	is	dimension	1.

Return	Values

An	integer	representing	the	upper	boundary	(end	index)	of	the	dimension.	If	var
is	not	an	array,	or	dim	is	invalid	(for	example,	0,	or	a	number	greater	than	the
number	of	dimensions	in	the	array),	an	error	results.

Examples

The	following	examples	evaluate	a	safearray	defined	as	follows:

(vlax-make-safearray	vlax-vbString	'(1	.	2)	'(0	.	1)))

Get	the	end	index	value	of	the	array's	first	dimension:

_$	(vlax-safearray-get-u-bound

tmatrix	1)
2

The	first	dimension	ends	with	index	2.

Get	the	end	index	value	of	the	second	dimension	of	the	array:

_$	(vlax-safearray-get-u-bound

tmatrix	2)
1

The	second	dimension	starts	with	index	1.

See	Also
The	vlax-make-safearray,	vlax-safearray-get-dim,	and	vlax-
safearray-get-l-bound	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-safearray-put-element
	
	
	

Adds	an	element	to	an	array

(vlax-safearray-put-element	var	index...	value)

Arguments

var

A	variable	whose	data	type	is	a	safearray.

index...

A	set	of	index	values	pointing	to	the	element	you	are	assigning	a	value	to.	For
a	single-dimension	array,	specify	one	index	value;	for	a	two-dimension	array,
specify	two	index	values,	and	so	on.

value

The	value	to	assign	the	safearray	element.

Return	Values

The	value	assigned	to	the	element.

Examples

Create	a	single-dimension	array	consisting	of	doubles:

_$	(setq	point	(vlax-make-safearray

vlax-vbDouble	'(0	.	2)))
#<safearray...>

Use	vlax-safearray-put-element	to	populate	the	array:

_$	(vlax-safearray-put-element

point	0	100)
100

_$	(vlax-safearray-put-element

point	1	100)
100

_$	(vlax-safearray-put-element

point	2	0)
0

Create	a	two-dimension	array	consisting	of	strings:

_$	(setq	matrix	(vlax-make-safearray

vlax-vbString	'(1	.	2)	'(1	.	2)))
#<safearray...>

Use	vlax-safearray-put-element	to	populate	the	array:

_$	(vlax-safearray-put-element

matrix	1	1	"a")
"a"

_$	(vlax-safearray-put-element

matrix	1	2	"b")
"b"

_$	(vlax-safearray-put-element

matrix	2	1	"c")
"c"

_$	(vlax-safearray-put-element

matrix	2	2	"d")
"d"

Note	that	you	can	also	populate	arrays	using	the	vlax-safearray-fill
function.	The	following	function	call	accomplishes	the	same	task	as	three
vlax-safearray-put-element	calls:

(vlax-safearray-fill	matrix	'(("a"	"b")	("c"	"d")))

See	Also
The	vlax-safearray-get-element,	vlax-safearray-fill,	and	vlax-
safearray-type	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-safearray-type
	
	
	

Returns	the	data	type	of	a	safearray

(vlax-safearray-type	var)

Arguments

var

A	variable	containing	a	safearray.

Return	Values

If	var	contains	a	safearray,	one	of	the	following	integers	is	returned:

2	Integer	(vlax-vbInteger)

3	Long	integer	(vlax-vbLong)

4	Single-precision	floating-point	number	(vlax-vbSingle)

5	Double-precision	floating-point	number	(vlax-vbDouble)

8	String	(vlax-vbString)

9	Object	(vlax-vbObject)

11	Boolean	(vlax-vbBoolean)

12	Variant	(vlax-vbVariant)

If	var	does	not	contain	a	safearray,	an	error	results.

Examples

Create	a	single-dimension	array	of	doubles	and	a	two-dimension	array	of	strings:

_$	(setq	point	(vlax-make-safearray

vlax-vbDouble	'(0	.	2)))
#<safearray...>

_$	(setq	matrix	(vlax-make-safearray

vlax-vbString	'(1	.	2)	'(1	.	2)))
#<safearray...>

Use	vlax-safearray-type	to	verify	the	data	type	of	the	safearrays:

_$	(vlax-safearray-type	point)
5

_$	(vlax-safearray-type	matrix)
8

See	Also
The	vlax-make-safearray	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-safearray->list
	
	
	

Returns	the	elements	of	a	safearray	in	list	form

(vlax-safearray->list	var)

Arguments

var

A	variable	containing	a	safearray.

Return	Values

A	list.

Examples

Create	a	single-dimension	array	of	doubles:

_$	(setq	point	(vlax-make-safearray

vlax-vbDouble	'(0	.	2)))
#<safearray...>

Use	vlax-safearray-put-element	to	populate	the	array:

_$	(vlax-safearray-put-element

point	0	100)
100

_$	(vlax-safearray-put-element

point	1	100)
100

_$	(vlax-safearray-put-element

point	2	0)
0

Convert	the	array	to	a	list:

_$	(setq	pointlist	(vlax-safearray->list

point))
(100.0	100.0	0.0)

The	following	example	demonstrates	how	a	two-dimension	array	of	strings	is
displayed	by	vlax-safearray->list:

_$	(vlax-safearray->list

matrix)
(("a"	"b")	("c"	"d"))

See	Also
The	vlax-make-safearray,	vlax-safearray-fill,	and	vlax-safearray-
put-element	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-tmatrix
	
	
	

Returns	a	suitable	representation	for	a	4	x	4	transformation	matrix	to	be	used	in
VLA	methods

(vlax-tmatrix	list)

Arguments

list

A	list	of	four	lists,	each	containing	four	numbers,	representing	transformation
matrix	elements.

Return	Values

A	variant	of	type	safearray,	representing	the	4×4	transformation	matrix.

Examples

Define	a	transformation	matrix	and	assign	its	value	to	variable	tmatrix:

_$	(setq	tmatrix	(vlax-tmatrix

'((1	1	1	0)	(1	2	3	0)	(2	3	4	5)	(2	9	8	3))))
#<variant	8197	...>

Use	vlax-safearray->list	to	view	the	value	of	tmatrix	in	list	form:

_$	(vlax-safearray->list

(vlax-variant-value	tmatrix))
((1.0	1.0	1.0	0.0)	(1.0	2.0	3.0	0.0)	(2.0	3.0	4.0	5.0)	(2.0	9.0	8.0	3.0))

The	following	code	example	creates	a	line	and	rotates	it	90	degrees	using	a
transformation	matrix:

(defun	Example_TransformBy	()	;	/	lineObj	startPt	endPt	matList	transMat)	

(vl-load-com)						;	Load	ActiveX	support

(setq	acadObject			(vlax-get-acad-object))

(setq	acadDocument	(vla-get-ActiveDocument	acadObject))

(setq	mSpace							(vla-get-ModelSpace	acadDocument))

;;	Create	a	line

	(setq	startPt	(getpoint	"Pick	the	start	point"))

	(setq	endPt	(vlax-3d-point	(getpoint	startPt	"Pick	the	end	point")))

	(setq	lineObj	(vla-addline	mSpace	(vlax-3d-point	startPt)	endPt))

;;;	Initialize	the	transMat	variable	with	a	transformation	matrix

;;;	that	will	rotate	an	object	by	90	degrees	about	the	point(0,0,0).

;;;	Begin	by	Creating	a	list	of	four	lists,	each	containing	four

;;;	numbers,	representing	transformation	matrix	elements.

	(setq	matList	(list	'(0	-1	0	0)	'(1	0	0	0)	'(0	0	1	0)	'(0	0	0	1)))

;;;	Use	vlax-tmatrix	to	convert	the	list	to	a	variant.

	(setq	transmat	(vlax-tmatrix	matlist))

;;;		Transform	the	line	using	the	defined	transformation	matrix

	(vla-transformby	lineObj	transMat)

	(vla-zoomall	acadObject)

	(princ	"The	line	is	transformed	")

	(princ)

)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-typeinfo-available-p
	
	
	

Determines	whether	TypeLib	information	is	present	for	the	specified	type	of
object

Visual	LISP	requires	TypeLib	information	to	determine	whether	a	method	or
property	is	available	for	an	object.	Some	objects	may	not	have	TypeLib
information	(for	example,	AcadDocument).

(vlax-typeinfo-available-p	obj)

Arguments

obj

A	VLA-object.

Return	Values

T,	if	TypeLib	information	is	available;	otherwise	nil.

See	Also
The	vlax-import-type-library	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-variant-change-type
	
	
	

Returns	the	value	of	a	variant	after	changing	it	from	one	data	type	to	another

(vlax-variant-change-type	var	type)

The	vlax-variant-change-type	function	returns	the	value	of	the
specified	variable	after	converting	that	value	to	the	specified	variant	type.

Arguments

var

A	variable	whose	value	is	a	variant.

type

The	type	of	variant	to	return,	using	the	value	of	var	(the	value	of	var	is
unchanged).	The	type	value	can	be	represented	by	one	of	the	following
constants:
vlax-vbEmpty	(0) Uninitialized
vlax-vbNull	(1) Contains	no	valid	data
vlax-vbInteger	(2) Integer
vlax-vbLong	(3) Long	integer
vlax-vbSingle	(4) Single-precision	floating-point	number
vlax-vbDouble	(5) Double-precision	floating-point	number
vlax-vbString	(8) String
vlax-vbObject	(9) Object
vlax-vbBoolean	(11) Boolean
vlax-vbArray	(8192) Array
The	integer	shown	in	parentheses	indicates	the	value	to	which	the	constant
evaluates.	It	is	recommended	that	you	specify	the	constant	in	your	argument,

not	the	integer	value,	in	case	the	value	changes	in	later	releases	of	AutoCAD.

Return	Values

The	value	of	var,	after	converting	it	to	the	specified	variant	type;	otherwise	nil,
if	var	could	not	be	converted	to	the	specified	type.

Examples

Set	a	variable	named	varint	to	a	variant	value:

_$	(setq	varint	(vlax-make-variant

5))
#<variant	3	5>

Set	a	variable	named	varintstr	to	the	value	contained	in	varint,	but
convert	that	value	to	a	string:

_$	(setq	varintStr	(vlax-variant-change-type

varint	vlax-vbstring))
#<variant	8	5>

Check	the	value	of	varintstr:

_$	(vlax-variant-value	varintStr)
"5"

This	confirms	that	varintstr	contains	a	string.

See	Also
The	vlax-variant-type	and	vlax-variant-value	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-variant-type
	
	
	

Determines	the	data	type	of	a	variant

(vlax-variant-type	var)

Arguments

var

A	variable	whose	value	is	a	variant.

Return	Values

If	var	contains	a	variant,	one	of	the	following	integers	is	returned:

0	Uninitialized	(vlax-vbEmpty)

1	Contains	no	valid	data	(vlax-vbNull)

2	Integer	(vlax-vbInteger)

3	Long	integer	(vlax-vbLong)

4	Single-precision	floating-point	number	(vlax-vbSingle)

5	Double-precision	floating-point	number	(vlax-vbDouble)

8	String	(vlax-vbString)

9	Object	(vlax-vbObject)

11	Boolean	(vlax-vbBoolean)

8192	+	n	Safearray	(vlax-vbArray)	of	some	data	type.	For	example,	an	array
of	doubles	(vlax-vbDouble)	returns	8197	(8192	+	5).

If	var	does	not	contain	a	variant,	an	error	results.

Examples

Set	a	variant	to	nil	and	display	the	variant's	data	type:

_$	(setq	varnil	(vlax-make-variant

nil))
#<variant	0	>

_$	(vlax-variant-type	varnil)
0

Set	a	variant	to	an	integer	value	and	explicitly	define	the	variant	as	an	integer
data	type:

_$	(setq	varint	(vlax-make-variant

5	vlax-vbInteger))
#<variant	2	5>

_$	(vlax-variant-type	varint)
2

Set	a	variant	to	an	integer	value	and	display	the	variant's	data	type:

_$	(setq	varint	(vlax-make-variant

5))
#<variant	3	5>

_$	(vlax-variant-type	varint)
3

Notice	that	without	explicitly	defining	the	data	type	to	vlax-variant-variant,	an
integer	assignment	results	in	a	Long	integer	data	type.

Set	a	variant	to	a	string	and	display	the	variant's	data	type:

_$	(setq	varstr	(vlax-make-variant

"ghost"))
#<variant	8	ghost>

_$	(vlax-variant-type	varstr)
8

Create	a	safearray	of	doubles,	assign	the	safearray	to	a	variant,	and	display	the
variant's	data	type:

_$	(setq	4dubs	(vlax-make-safearray

vlax-vbDouble	'(0	.	3)))
#<safearray...>

_$	(setq	var4dubs	(vlax-make-variant

4dubs))
#<variant	8197	...>

_$	(vlax-variant-type	var4dubs)
8197

A	variant	type	value	greater	than	8192	indicates	that	the	variant	contains	some
type	of	safearray.	Subtract	8192	from	the	return	value	to	determine	the	data	type
of	the	safearray.	In	this	example,	8197-8192=5	(vlax-vbDouble).

Assign	a	real	value	to	a	variable,	then	issue	vlax-variant-type	to	check
the	variable's	data	type:

_$	(setq	notvar	6.0)
6.0

_$	(vlax-variant-type	notvar)
;	***	ERROR:	bad	argument	type:	variantp	6.0

This	last	example	results	in	an	error,	because	the	variable	passed	to	vlax-
variant-type	does	not	contain	a	variant.

See	Also
The	vlax-make-safearray,	vlax-make-variant,	vlax-variant-change-
type,	and	vlax-variant-value	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-variant-value
	
	
	

Returns	the	value	of	a	variant

(vlax-variant-value	var)

Arguments

var

A	variable	whose	value	is	a	variant.

Return	Values

The	value	of	the	variable.	If	the	variable	does	not	contain	a	variant,	an	error
occurs.

Examples

_$	(vlax-variant-value	varstr)
"ghost"

_$	(vlax-variant-value	varint)
5

_$	(vlax-variant-value	notvar)
;	***	ERROR:	bad	argument	type:	variantp	6.0

The	last	example	results	in	an	error,	because	notvar	does	not	contain	a	variant.

See	Also
The	vlax-make-safearray	and	vlax-make-variant	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-vla-object->ename
	
	
	

Transforms	a	VLA-object	to	an	AutoLISP	entity

(vlax-vla-object->ename	obj)

Arguments

obj

A	VLA-object.

Return	Values

An	AutoLISP	entity	name	(ename	data	type).

Examples

_$	(vlax-vla-object->ename

vlaobj)
<Entity	name:	27e0540>

See	Also
The	vlax-ename->vla-object	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlax-write-enabled-p
	
	
	

Determines	if	an	AutoCAD	drawing	object	can	be	modified

(vlax-write-enabled-p	obj)

Arguments

obj

A	VLA-object	or	AutoLISP	entity	object	(ename).

Return	Values

T,	if	the	AutoCAD	drawing	object	can	be	modified,	nil	if	the	object	cannot	be
modified.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlisp-compile
	
	
	

Compiles	AutoLISP	source	code	into	a	FAS	file

(vlisp-compile	'mode

filename	[out-filename])

Note The	Visual	LISP	IDE	must	be	open	in	order	for	vlisp-compile	to	work.

Arguments

mode

The	compiler	mode,	which	can	be	one	of	the	following	symbols:
st Standard	build	mode
lsm Optimize	and	link	indirectly
lsa Optimize	and	link	directly

filename

A	string	identifying	the	AutoLISP	source	file.	If	the	source	file	is	in	the
AutoCAD	support	file	search	path,	you	can	omit	the	path	when	specifying
the	file	name.	If	you	omit	the	file	extension,	.lspis	assumed.

out-filename

A	string	identifying	the	compiled	output	file.	If	you	do	not	specify	an	output
file,	vlisp-compile	names	the	output	with	the	same	name	as	the	input
file,	but	replaces	the	extension	with	.fas.
Note	that	if	you	specify	an	output	file	name	but	do	not	specify	a	path	name
for	either	the	input	or	the	output	file,	vlisp-compile	places	the	output
file	in	the	AutoCAD	installation	directory.

Return	Values

T,	if	compilation	is	successful;	otherwise	nil.

Examples

Assuming	that	yinyang.lsp	resides	in	a	directory	that	is	in	the	AutoCAD	support
file	search	path,	the	following	command	compiles	this	program:

_$	(vlisp-compile	'st	"yinyang.lsp")
T

The	output	file	is	named	yinyang.fas	and	resides	in	the	same	directory	as	the
source	file.

The	following	command	compiles	yinyang.lsp	and	names	the	output	file
GoodKarma.fas:

(vlisp-compile	'st	"yinyang.lsp"

"GoodKarma.fas")

Note	that	the	output	file	from	the	previous	command	resides	in	the	AutoCAD
installation	directory,	not	the	directory	where	yinyang.lsp	resides.	The	following
command	compiles	yinyang.lsp	and	directs	the	output	file	to	the	c:\my
documents	directory:

(vlisp-compile	'st	"yinyang.lsp"	"c:/my	documents/GoodKarma")

This	last	example	identifies	the	full	path	of	the	file	to	be	compiled:

(vlisp-compile	'st	"c:/program

files/<AutoCAD	installation	directory>/Sample/yinyang.lsp")

The	output	file	from	this	command	is	named	yinyang.fas	and	resides	in	the	same
directory	as	the	input	file.

See	Also
The	Compiling	a	Program	from	a	File	topic	in	the	AutoLISP
Developer's	Guide.

Please	send	us	your	comment	about	this	page

javascript:hhctrl_d0e35357.Click()
javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlr-acdb-reactor
	
	
	

Constructs	a	reactor	object	that	notifies	when	an	object	is	added	to,	modified	in,
or	erased	from	a	drawing	database

The	vlr-acdb-reactor	function	constructs	a	database	reactor	object.

(vlr-acdb-reactor	data	callbacks)

Arguments

data

Any	AutoLISP	data	to	be	associated	with	a	reactor	object;	otherwise	nil,	if
no	data.

callbacks

A	list	of	pairs	of	the	following	form:
(event-name	.	callback_function)
where	event-name	is	one	of	the	symbols	listed	in	the	“Database	reactor
events”	table	below,	and	callback_function	is	a	symbol	representing	a
function	to	be	called	when	the	event	fires.	Each	callback	function	accepts	two
arguments:
reactor_object The	VLR	object	that	called	the	callback	function
obj The	database	object	(AutoLISP	entity)	associated	with	the	event

Database	reactor	events

Name Event

:vlr-objectAppended An	object	has	been
appended	to	the	drawing

database.

:vlr-objectUnAppended An	object	has	been
detached	from	the	drawing
database,	e.g.,	by	using
UNDO.

:vlr-objectReAppended A	detached	object	has	been
restored	in	the	drawing
database,	e.g.,	by	using
REDO.

:vlr-objectOpenedForModify An	object	is	about	to	be
changed.

:vlr-objectModified An	object	has	been
changed.

:vlr-objectErased An	object	has	been	flagged
as	being	erased.

:vlr-objectUnErased An	object's	erased-flag	has
been	removed.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlr-add
	
	
	

Enables	a	disabled	reactor	object

(vlr-add	obj)

Arguments

obj

A	VLR	object	representing	the	reactor	to	be	enabled.

Return	Values

The	obj	argument.

See	Also
The	vlr-added-p	and	vlr-remove	functions.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlr-added-p
	
	
	

Tests	to	determine	if	a	reactor	object	is	enabled

(vlr-added-p	obj)

Arguments

obj

A	VLR	object	representing	the	reactor	to	be	tested.

Return	Values

T	if	the	specified	reactor	is	enabled;	otherwise	nil	if	the	reactor	is	disabled.

See	Also
The	vlr-add	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlr-beep-reaction
	
	
	

Produces	a	beep	sound

(vlr-beep-reaction	[args])

Arguments

This	is	a	predefined	callback	function	that	accepts	a	variable	number	of
arguments,	depending	on	the	reactor	type.	The	function	can	be	assigned	to	an
event	handler	for	debugging.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlr-command-reactor
	
	
	

Constructs	an	editor	reactor	that	notifies	of	a	command	event

(vlr-command-reactor	data	callbacks)

Arguments

data

Any	AutoLISP	data	to	be	associated	with	the	reactor	object;	otherwise	nil
if	no	data	is	to	be	associated	with	the	reactor.

callbacks

A	list	of	pairs	of	the	following	form:
(event-name	.	callback_function)
where	event-name	is	one	of	the	symbols	listed	in	the	“Command	reactor
events”	table	below,	and	callback_function	is	a	symbol	representing	a
function	to	be	called	when	the	event	fires.	Each	callback	function	accepts	two
arguments:
reactor_object The	VLR	object	that	called	the	callback	function.
list A	list	containing	a	single	element,	the	string	identifying	the	command.

Return	Values

The	reactor_object	argument.

Command	reactor	events

Event	name Description

:vlr-unknownCommand A	command	not	known	to

AutoCAD	was	issued.

:vlr-commandWillStart An	AutoCAD	command	has
been	called.

:vlr-commandEnded An	AutoCAD	command	has
completed.

:vlr-commandCancelled An	AutoCAD	command	has
been	canceled.

:vlr-commandFailed An	AutoCAD	command
failed	to	complete.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlr-current-reaction-name
	
	
	

Returns	the	name	(symbol)	of	the	current	event,	if	called	from	within	a	reactor's
callback

(vlr-current-reaction-name)

Return	Values

A	symbol	indicating	the	event	that	triggered	the	reactor.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlr-data
	
	
	

Returns	application-specific	data	associated	with	a	reactor

(vlr-data	obj)

Arguments

obj

A	VLR	object	representing	the	reactor	object	from	which	to	extract	data.

Return	Values

The	application-specific	data	obtained	from	the	reactor	object.

Examples

The	following	example	obtains	a	string	associated	with	the	circleReactor
VLR	object:

_$	(vlr-data	circleReactor)
"Circle	Reactor"

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlr-data-set
	
	
	

Overwrites	application-specific	data	associated	with	a	reactor

(vlr-data-set	objdata)

Note The	vlr-data-set	function	should	be	used	with	care	to	avoid	creation
of	circular	structures.

Arguments

obj

A	VLR	object	representing	the	reactor	object	whose	data	is	to	be	overwritten.

data

Any	AutoLISP	data.

Return	Values

The	data	argument.

Examples

Return	the	application-specific	data	value	attached	to	a	reactor:

_$	(vlr-data	circleReactor)
"Circle	Reactor"

Replace	the	text	string	used	to	identify	the	reactor:

_$	(vlr-data-set	circleReactor

"Circle	Area	Reactor")
"Circle	Area	Reactor"

Verify	the	change:

_$	(vlr-data	circleReactor)
"Circle	Area	Reactor"

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlr-deepclone-reactor
	
	
	

Constructs	an	editor	reactor	object	that	notifies	of	a	deep	clone	event

(vlr-deepclone-reactor	datacallbacks)

Arguments

data

Any	AutoLISP	data	to	be	associated	with	the	reactor	object;	otherwise	nil	if
no	data.

callbacks

A	list	of	pairs	of	the	following	form:
(event-name	.	callback_function)
where	event-name	is	one	of	the	symbols	listed	in	the	“DeepClone	reactor
events”	table	below,	and	callback_function	is	a	symbol	representing	a
function	to	be	called	when	the	event	fires.	Each	callback	function	accepts	two
arguments:
reactor_object The	VLR	object	that	called	the	callback	function.
list A	list	of	extra	data	elements	associated	with	the	particular	event.	The
contents	of	this	list	for	particular	events	are	shown	in	the	“DeepClone	reactor
callback	data”	table.

Return	Values

The	reactor_object	argument.

DeepClone	reactor	events

Event	name Description

:vlr-beginDeepClone A	deep	clone	operation	is
beginning.

:vlr-beginDeepCloneXlation A	deep	clone	operation	has
two	stages.	First,	each	object
and	any	owned	objects	are
cloned.	Second,	any	object	ID
references	are	translated	to
their	cloned	IDs.	This	callback
occurs	between	these	two
stages.

:vlr-abortDeepClone A	deep	clone	operation	is
aborting.

:vlr-endDeepClone A	deep	clone	operation	is
ending.

 

DeepClone	reactor	callback	data

Name List
length Parameters

:vlr-beginDeepClone
:vlr-abortDeepClone
:vlr-endDeepClone

0 	

:vlr-beginDeepCloneXlation 1 An	integer	containing
the	return	error	status;
if	this	value	indicates
an	error,	the	deep
clone	operation	is

terminated

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlr-docmanager-reactor
	
	
	

Constructs	a	reactor	object	that	notifies	of	events	relating	to	drawing	documents

(vlr-docmanager-reactor	data	callbacks)

Arguments

data

Any	AutoLISP	data	to	be	associated	with	the	reactor	object;	otherwise	nil
if	no	data.

callbacks

A	list	of	pairs	of	the	following	form:
(event-name	.	callback_function)
where	event-name	is	one	of	the	symbols	listed	in	the	“DocManager	reactor
events”	table	below,	and	callback_function	is	a	symbol	representing	a
function	to	be	called	when	the	event	fires.	Each	callback	function	accepts	two
arguments:
reactor_object The	VLR	object	that	called	the	callback	function.
list A	list	of	extra	data	elements	associated	with	the	particular	event.	The
contents	of	this	list	for	particular	events	are	shown	in	the	“DocManager
reactor	callback	data”	table.

Return	Values

The	reactor_object	argument.

DocManager	reactor	events

Event	name Description

:vlr-documentCreated A	new	document	was	created	for
a	drawing	(new	or	open).
Useful	for	updating	your	per-
document	structures.

:vlr-documentToBeDestroyed A	document	will	be	destroyed.

:vlr-documentLockModeWillChange A	command	is	about	to	start	or
finish	modifying	elements	in	the
document,	and	is	obtaining	or
releasing	a	lock	on	the	document.

:vlr-documentLockModeChangeVetoed A	reactor	invoked	veto	on	itself
from	a	:vlr-
documentLockModeChanged
callback.

:vlr-documentLockModeChanged The	lock	on	the	document	has
been	obtained	or	released.

:vlr-documentBecameCurrent The	current	document	has	been
changed.
This	does	not	necessarily	imply
that	the	document	has	been
activated,	because	changing	the
current	document	is	necessary	for
some	operations.	To	obtain	user
input,	the	document	must	be
activated	as	well.

:vlr-documentToBeActivated A	currently	inactive	document
has	just	received	the	activate
signal,	implying	that	it	is	about	to
become	the	current	document.

:vlr-documentToBeDeactivated Another	window	(inside	or

outside	of	AutoCAD)	has	been
activated.

 

DocManager	reactor	callback	data

Name List
length Parameters

:vlr-documentCreated
:vlr-documentToBeDestroyed
:vlr-documentBecameCurrent
:vlr-documentToBeActivated
:vlr-documentToBeDeactivated

1 The	affected
document	object
(VLA-object).

:vlr-documentLockModeChangeVetoed 2 First	parameter
is	the	affected
document	object
(VLA-object).
Second
parameter	is	the
global	command
string	passed	in
for	the	lock
request.	If	the
callback	is
being	made	on
behalf	of	an
unlock	request,
the	string	will
be	prefixed	with
“#”.

:vlr-documentLockModeWillChange
:vlr-documentLockModeChanged

5 First	parameter
is	the	affected
document	object
(VLA-object).
Second
parameter	is	an
integer
indicating	the
lock	currently	in
effect	for	the
document
object.
Third	parameter
is	an	integer
indicating	the
lock	mode	that
will	be	in	effect
after	the	lock	is
applied.
Fourth
parameter	is	the
strongest	lock
mode	from	all
other	execution
contexts.
Fifth	parameter
is	the	global
command	string
passed	in	for	the
lock	request.	If
the	callback	is
being	made	on
behalf	of	an
unlock	request,
the	string	will
be	prefixed	with

“#”.
Lock	modes
may	be	any	of
the	following:
1—Auto	Write
Lock
2—Not	Locked
4—Shared
Write
8—Read
10—Exclusive
Write

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlr-dwg-reactor
	
	
	

Constructs	an	editor	reactor	object	that	notifies	of	a	drawing	event	(for	example,
opening	or	closing	a	drawing	file)

(vlr-dwg-reactor	data	callbacks)

Arguments

data

Any	AutoLISP	data	to	be	associated	with	the	reactor	object;	otherwise	nil
if	no	data.

callbacks

A	list	of	pairs	of	the	following	form:
(event-name	.	callback_function)
where	event-name	is	one	of	the	symbols	listed	in	the	“DWG	reactor	events”
table	below,	and	callback_function	is	a	symbol	representing	a	function	to	be
called	when	the	event	occurs.	Each	callback	function	accepts	two	arguments:
reactor_object The	VLR	object	that	called	the	callback	function.
list A	list	of	extra	data	elements	associated	with	the	particular	event.	The
contents	of	this	list	for	particular	events	are	shown	in	the	“DWG	reactor
callback	data”	table.

Return	Values

The	reactor_object	argument.

DWG	reactor	events

Event	name Description

:vlr-beginClose The	drawing	database	is	to
be	closed.

:vlr-databaseConstructed A	drawing	database	has	been
constructed.

:vlr-databaseToBeDestroyed The	contents	of	the	drawing
database	are	about	to	be
deleted	from	memory.

vlr-beginDwgOpen AutoCAD	is	about	to	open	a
drawing	file.

:vlr-endDwgOpen AutoCAD	has	ended	the
open	operation.

:vlr-dwgFileOpened A	new	drawing	has	been
loaded	into	the	AutoCAD
window.

vlr-beginSave AutoCAD	is	about	to	save
the	drawing	file.

vlr-saveComplete AutoCAD	has	saved	the
current	drawing	to	disk.

 

DWG	reactor	callback	data

Name List
length Parameters

:vlr-beginClose
:vlr-databaseConstructed

0 	

:vlr-databaseToBeDestroyed

:vlr-beginDwgOpen
:vlr-endDwgOpen
:vlr-dwgFileOpened

1 A	string	identifying
the	file	to	open.

:vlr-beginSave 1 A	string	containing
the	default	file	name
for	save;	may	be
changed	by	the	user.

:vlr-saveComplete 1 A	string	containing
the	actual	file	name
used	for	the	save.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlr-dxf-reactor
	
	
	

Constructs	an	editor	reactor	object	that	notifies	of	an	event	related	to	reading	or
writing	a	DXF	file

(vlr-dxf-reactor	datacallbacks)

Arguments

data

Any	AutoLISP	data	to	be	associated	with	the	reactor	object;	otherwise	nil
if	no	data.

callbacks

A	list	of	pairs	of	the	following	form:
(event-name	.	callback_function)
where	event-name	is	one	of	the	symbols	listed	in	the	“DXF	reactor	events”
table	below,	and	callback_function	is	a	symbol	representing	a	function	to	be
called	when	the	event	fires.	Each	callback	function	accepts	two	arguments:
reactor_object The	VLR	object	that	called	the	callback	function.
list A	list	of	extra	data	elements	associated	with	the	particular	event.	The
contents	of	this	list	for	particular	events	are	shown	in	the	“DXF	reactor
callback	data”	table.

Return	Values

The	reactor_object	argument.

DXF	reactor	events

Event	name Description

:vlr-beginDxfIn The	contents	of	a	DXF	file	are
to	be	appended	to	the	drawing
database.

:vlr-abortDxfIn The	DXF	import	was	not
successful.

:vlr-dxfInComplete The	DXF	import	was
successful.

:vlr-beginDxfOut AutoCAD	is	about	to	export
the	drawing	database	into	a
DXF	file.

:vlr-abortDxfOut The	DXF	export	operation
failed.

:vlr-dxfOutComplete The	DXF	export	operation	was
successful.

 

DXF	reactor	callback	data

Name List	length

:vlr-beginDxfIn
:vlr-abortDxfIn
:vlr-dxfInComplete,
:vlr-beginDxfOut
:vlr-abortDxfOut
:vlr-dxfOutComplete

0

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlr-editor-reactor
	
	
	

Constructs	an	editor	reactor	object

(vlr-editor-reactor	data	callbacks)

Arguments

data

Any	AutoLISP	data	to	be	associated	with	the	reactor	object;	otherwise	nil
if	no	data.

callbacks

A	list	of	pairs	of	the	following	form:
(event-name	.	callback_function)
where	event-name	is	one	of	the	symbols	listed	in	the	“Editor	reactor	events”
table	below,	and	callback_function	is	a	symbol	representing	a	function	to	be
called	when	the	event	fires.	Each	callback	function	accepts	two	arguments:
reactor_object The	VLR	object	that	called	the	callback	function.
list A	list	of	extra	data	elements	associated	with	the	particular	event.	The
contents	of	this	list	for	particular	events	are	shown	in	the	“Editor	reactor
callback	data”	table.

Return	Values

The	reactor_object	argument.

Editor	reactor	events

Event	name Description

:vlr-beginClose The	drawing	database	is	to
be	closed.

:vlr-beginDxfIn The	contents	of	a	DXF	file
are	to	be	appended	to	the
drawing	database.

:vlr-abortDxfIn The	DXF	import	was	not
successful.

:vlr-dxfInComplete The	DXF	import	completed
successfully.

:vlr-beginDxfOut AutoCAD	is	about	to	export
the	drawing	database	into	a
DXF	file.

:vlr-abortDxfOut DXF	export	operation	failed.

:vlr-dxfOutComplete DXF	export	operation
completed	successfully.

:vlr-databaseToBeDestroyed The	contents	of	the	drawing
database	are	about	to	be
deleted	from	memory.

:vlr-unknownCommand A	command	not	known	to
AutoCAD	was	issued.

:vlr-commandWillStart An	AutoCAD	command	has
been	called.

vlr-commandEnded An	AutoCAD	command	has
completed.

:vlr-commandCancelled An	AutoCAD	command	has
been	canceled.

:vlr-commandFailed An	AutoCAD	command
failed	to	complete.

:vlr-lispWillStart An	AutoLISP	expression	is
to	be	evaluated.

:vlr-lispEnded Evaluation	of	an	AutoLISP
expression	has	completed.

:vlr-lispCancelled Evaluation	of	an	AutoLISP
expression	has	been
canceled.

:vlr-beginDwgOpen AutoCAD	is	about	to	open	a
drawing	file.

:vlr-endDwgOpen AutoCAD	has	ended	the
open	operation.

:vlr-dwgFileOpened A	new	drawing	has	been
loaded	into	the	AutoCAD
window.

:vlr-beginSave AutoCAD	is	about	to	save
the	drawing	file.

:vlr-saveComplete AutoCAD	has	saved	the
current	drawing	to	disk.

:vlr-sysVarWillChange AutoCAD	is	about	to	change
the	value	of	a	system
variable.

:vlr-sysVarChanged The	value	of	a	system
variable	has	changed.

 

Editor	reactor	callback	data

Name List
length Parameters

:vlr-lispEnded
:vlr-lispCancelled
:vlr-beginClose
:vlr-beginDxfIn
:vlr-abortDxfIn
:vlr-dxfInComplete
:vlr-beginDxfOut
:vlr-abortDxfOut
:vlr-dxfOutComplete
:vlr-databaseToBeDestroyed

0 	

:vlr-unknownCommand
:vlr-commandWillStart
:vlr-commandEnded
:vlr-commandCancelled
:vlr-commandFailed

1 A	string	containing
the	command	name.

:vlr-lispWillStart 1 A	string	containing
the	first	line	of	the
AutoLISP	expression
to	evaluate.

:vlr-beginDwgOpen
:vlr-endDwgOpen

1 A	string	identifying
the	file	to	open.

:vlr-dwgFileOpened

:vlr-beginSave 1 A	string	containing
the	default	file	name
for	save;	this	may	be
changed	by	the	user.

:vlr-saveComplete 1 A	string	identifying
the	actual	file	name
used	for	the	save.

:vlr-sysVarWillChange 1 A	string	naming	the
system	variable.

:vlr-sysVarChanged 2 First	parameter	is	a
string	naming	the
system	variable.
Second	parameter	is
an	integer	indicating
whether	the	change
was	successful	(1	=
success,	0	=	failed).

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlr-insert-reactor
	
	
	

Constructs	an	editor	reactor	object	that	notifies	of	an	event	related	to	block
insertion

(vlr-insert-reactor	data	callbacks)

Arguments

data

Any	AutoLISP	data	to	be	associated	with	the	reactor	object;	otherwise	nil	if
no	data.

callbacks

A	list	of	pairs	of	the	following	form:
(event-name	.	callback_function)
where	event-name	is	one	of	the	symbols	listed	in	the	“Insert	reactor	events”
table	below,	and	callback_function	is	a	symbol	representing	a	function	to	be
called	when	the	event	fires.	Each	callback	function	accepts	two	arguments:
reactor_object The	VLR	object	that	called	the	callback	function.
list A	list	of	extra	data	elements	associated	with	the	particular	event.	The
contents	of	this	list	for	particular	events	is	shown	in	the	“Insert	reactor
callback	data”	table.

Return	Values

The	reactor_object	argument.

Insert	reactor	events

Event	name Description

:vlr-beginInsert A	block	is	about	to	be	inserted	into	the	drawing
database.

:vlr-beginInsertM A	3D	transformation	matrix	is	about	to	be
inserted	into	the	drawing	database.

:vlr-otherInsert A	block	or	matrix	has	been	added	to	the	drawing
database.	This	notification	is	sent	after	the	insert
process	completes	copying	the	object	into	the
database,	but	before	ID	translation	or	entity
transformation	occurs.

:vlr-endInsert Usually	indicates	an	insert	operation	on	the
drawing	database	is	complete.	However,	in	some
cases,	the	transform	has	not	yet	happened,	or	the
block	that	was	created	has	not	yet	been
appended.	This	means	the	objects	copied	are	not
yet	graphical,	and	you	cannot	use	them	in
selection	sets	until	the	:vlr-commandEnded
notification	is	received.

:vlr-abortInsert Insert	operation	was	terminated	and	did	not
complete,	leaving	the	database	in	an	unstable
state.

 

Insert	reactor	callback	data

Name List	length Parameters

:vlr-
beginInsert

3 First	parameter	is	a
VLA-object	pointing
to	the	database	in
which	the	block	is

being	inserted.
Second	parameter	is	a
string	naming	the
block	to	be	inserted.
Third	parameter	is	a
VLA-object
identifying	the	source
database	of	the	block.

:vlr-
beginInsertM

3 First	parameter	is	a
VLA-object	pointing
to	the	database	in
which	the	3D
transformation	matrix
is	being	inserted.
Second	parameter	is
the	3D	transformation
matrix	to	be	inserted.
Third	parameter	is	a
VLA-object
identifying	the	source
database	of	the
matrix.

:vlr-otherInsert 2 First	parameter	is	a
VLA-object	pointing
to	the	database	in
which	the	block	or
matrix	is	being
inserted.
Second	parameter	is	a
VLA-object
identifying	the	source
database	of	the	block
or	matrix.

:vlr-endInsert
:vlr-abortInsert

1 VLA-object	pointing
to	target	database.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlr-linker-reactor
	
	
	

Constructs	a	reactor	object	that	notifies	your	application	every	time	an
ObjectARX	application	is	loaded	or	unloaded

(vlr-linker-reactor	data	callbacks)

Arguments

data

Any	AutoLISP	data	to	be	associated	with	the	reactor	object.

callbacks

A	list	of	pairs	of	the	following	form:
(event-name	.	callback_function)
where	event-name	is	one	of	the	symbols	listed	in	the	“Linker	reactor	events”
table,	and	callback_function	is	a	symbol	representing	a	function	to	be	called
when	the	event	fires.	Each	callback	function	accepts	two	arguments:
reactor_object The	VLR	object	that	called	the	callback	function.
list A	list	containing	the	name	of	the	ObjectARX	program	that	was	loaded
or	unloaded	(a	string).

Return	Values

The	reactor_object	argument.

Linker	reactor	events

Name Event

:vlr-rxAppLoaded The	dynamic	linker	has	loaded

a	new	ObjectARX	program.
The	program	has	finished	its
initialization.

:vlr-rxAppUnLoaded The	dynamic	linker	has
unloaded	an	ObjectARX
program.	The	program	already
has	done	its	clean-up.

Examples

_$	(vlr-linker-reactor	nil	

			'((:vlr-rxAppLoaded

.	my-vlr-trace-reaction)))
#<VLR-Linker-Reactor>

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlr-lisp-reactor
	
	
	

Constructs	an	editor	reactor	object	that	notifies	of	a	LISP	event

(vlr-lisp-reactor	data	callbacks)

Arguments

data

Any	AutoLISP	data	to	be	associated	with	the	reactor	object;	otherwise	nil
if	no	data.

callbacks

A	list	of	pairs	of	the	following	form:
(event-name	.	callback_function)
where	event-name	is	one	of	the	symbols	listed	in	the	“Lisp	reactor	events”
table	below,	and	callback_function	is	a	symbol	representing	a	function	to	be
called	when	the	event	fires.	Each	callback	function	accepts	two	arguments:
reactor_object The	VLR	object	that	called	the	callback	function.
list A	list	of	extra	data	elements	associated	with	the	particular	event.	The
contents	of	this	list	for	particular	events	are	shown	in	the	table	Lisp	reactor
callback	data”	table.

Return	Values

The	reactor_object	argument.

Lisp	reactor	events

Event	name Description

:vlr-lispWillStart An	AutoLISP	expression	is	to	be	evaluated.

:vlr-lispEnded Evaluation	of	an	AutoLISP	expression	has	been
completed.

:vlr-lispCancelled Evaluation	of	an	AutoLISP	expression	has	been
canceled.

 

Lisp	reactor	callback	data

Name List	length Parameters

:vlr-lispEnded
:vlr-lispCancelled

0 	

:vlr-lispWillStart 1 A	string	containing	the
first	line	of	the	AutoLISP
expression	to	evaluate.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlr-miscellaneous-reactor
	
	
	

Constructs	an	editor	reactor	object	that	does	not	fall	under	any	other	editor
reactor	types

(vlr-miscellaneous-reactor	data	callbacks)

Arguments

data

Any	AutoLISP	data	to	be	associated	with	the	reactor	object;	otherwise	nil
if	no	data.

callbacks

A	list	of	pairs	of	the	following	form:
(event-name	.	callback_function)
where	event-name	is	one	of	the	symbols	listed	in	the	“Miscellaneous	reactor
events”	table	below,	and	callback_function	is	a	symbol	representing	a
function	to	be	called	when	the	event	fires.	Each	callback	function	accepts	two
arguments:
reactor_object The	VLR	object	that	called	the	callback	function.
list A	list	of	extra	data	elements	associated	with	the	particular	event.	The
contents	of	this	list	for	particular	events	are	shown	in	the	“Miscellaneous
reactor	callback	data”	table.

Return	Values

The	reactor_object	argument.

Miscellaneous	reactor	events

Event	name Description

:vlr-pickfirstModified The	pickfirst	selection	set	of
the	current	document	has	been
modified.

:vlr-layoutSwitched The	layout	was	switched.

 

Miscellaneous	reactor	callback	data

Name List	length Parameters

:vlr-pickfirstModified 0 	

:vlr-layoutSwitched 1 A	string	naming	the
layout	switched	to.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlr-mouse-reactor
	
	
	

Constructs	an	editor	reactor	object	that	notifies	of	a	mouse	event	(for	example,	a
double-click)

(vlr-mouse-reactor	data	callbacks)

Arguments

data

Any	AutoLISP	data	to	be	associated	with	the	reactor	object;	otherwise	nil
if	no	data.

callbacks

A	list	of	pairs	of	the	following	form:
(event-name	.	callback_function)
where	event-name	is	one	of	the	symbols	listed	in	the	“Mouse	reactor	events”
table	below,	and	callback_function	is	a	symbol	representing	a	function	to	be
called	when	the	event	fires.	Each	callback	function	accepts	two	arguments:
reactor_object The	VLR	object	that	called	the	callback	function.
list A	list	of	extra	data	elements	associated	with	the	particular	event.	The
contents	of	this	list	for	particular	events	are	shown	in	the	“Mouse	reactor
callback	data”	table.

Return	Values

The	reactor_object	argument.

Mouse	reactor	events

Event	name Description

:vlr-beginDoubleClick The	user	has	double-clicked.

:vlr-beginRightClick The	user	has	right-clicked.

 

Mouse	reactor	callback	data

Name List	length Parameters

:vlr-beginDoubleClick
:vlr-beginRightClick

1 A	3D	point	list	(list	of
3	reals)	showing	the
point	clicked	on,	in
WCS.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlr-notification
	
	
	

Determines	whether	or	not	a	reactor	will	fire	if	its	associated	namespace	is	not
active

(vlr-notification	reactor)

Arguments

reactor

A	VLR	object.

Return	Values

A	symbol,	which	can	be	either	'all-documents	(the	reactor	fires	whether
or	not	its	associated	document	is	active),	or	'active-document-only	(the
reactor	fires	only	if	its	associated	document	is	active).

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlr-object-reactor
	
	
	

Constructs	a	drawing	object	reactor	object

(vlr-object-reactor	owners	data	callbacks)

The	reactor	object	is	added	to	the	drawing	database,	but	does	not	become
persistent.

Arguments

owners

An	AutoLISP	list	of	VLA-objects	identifying	the	drawing	objects	to	be
watched.

data

Any	AutoLISP	data	to	be	associated	with	the	reactor	object;	otherwise	nil
if	no	data.

callbacks

A	list	of	pairs	of	the	following	form:
(event-name	.	callback_function)
where	event-name	is	one	of	the	symbols	listed	in	the	“Object	Events”	table
and	callback_function	is	a	symbol	representing	a	function	to	be	called	when
the	event	fires.	Each	callback	function	accepts	three	arguments:
owner The	owner	of	the	VLA-object	the	event	applies	to.
reactor_object The	VLR	object	that	called	the	callback	function.
list A	list	of	extra	data	elements	associated	with	the	particular	event.	The
contents	of	this	list	for	particular	events	are	shown	in	the	“Object	Events
Callback	Data”	table.

Return	Values

The	reactor_object	argument.

Object	events

Name Event

:vlr-cancelled The	modification	of	the	object
has	been	canceled.

:vlr-copied The	object	has	been	copied.

:vlr-erased Erase-flag	of	the	object	has
been	set.

:vlr-unerased Erase-flag	of	the	object	has
been	reset.

:vlr-goodbye The	object	is	about	to	be
deleted	from	memory.

:vlr-openedForModify The	object	is	about	to	be
modified.

:vlr-modified The	object	has	been	modified.
If	the	modification	was
canceled,	also	:vlr-cancelled
and	:vlr-modifyUndone	will	be
fired.

:vlr-subObjModified A	sub-entity	of	the	object	has
been	modified.	This	event	is
triggered	for	modifications	to
vertices	of	polylines	or
meshes,	and	for	attributes
owned	by	blockReferences.

:vlr-modifyUndone The	object's	modification	was

undone.

:vlr-modifiedXData The	object's	extended	entity
data	has	been	modified.

:vlr-unappended The	object	has	been	detached
from	the	drawing	database.

:vlr-reappended The	object	has	been	re-
attached	to	the	drawing
database.

:vlr-objectClosed The	object's	modification	has
been	finished.

 

Object	events	callback	data

Name List	length Parameters

:vlr-cancelled
:vlr-erased,
:vlr-unerased
:vlr-goodbye
:vlr-openedForModify
:vlr-modified
:vlr-modifyUndone
:vlr-modifiedXData
:vlr-unappended
:vlr-reappended
:vlr-objectClosed

0 	

:vlr-copied 1 The	object	created	by
the	copy	operation
(ename).

:vlr-subObjModified 1 The	sub-object
(ename)	that	has	been
modified

Examples

The	following	code	attaches	an	object	reactor	to	the	myCircle	object.	It
defines	the	reactor	to	respond	whenever	the	object	is	modified	(:vlr-
modified)	and	to	call	the	print-radius	function	in	response	to	the
modification	event:

(setq	circleReactor	(vlr-object-reactor	(list	myCircle)

									"Circle	Reactor"	'((:vlr-modified	.	print-radius))))

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlr-owner-add
	
	
	

Adds	an	object	to	the	list	of	owners	of	an	object	reactor

(vlr-owner-add	reactor	owner)

This	function	adds	a	new	source	of	reactor	events;	the	reactor	will	receive	events
from	the	specified	object.

Arguments

reactor

A	VLR	object.

owner

A	VLA-object	to	be	added	to	the	list	of	notifiers	for	this	reactor.

Return	Values

The	VLA-object	to	which	the	reactor	has	been	added.

Examples

In	the	following	example,	an	arc	object	named	“archie”	is	added	to	the	owner	list
of	reactor	circleReactor:

_$	(vlr-owner-add	circleReactor

archie)
#<VLA-OBJECT	IAcadArc	03ad0bcc>

See	Also
The	vlr-owner-remove	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlr-owner-remove
	
	
	

Removes	an	object	from	the	list	of	owners	of	an	object	reactor

(vlr-owner-remove	reactor	owner)

Arguments

reactor

A	VLR	object.

owner

A	VLA-object	to	be	removed	from	the	list	of	notifiers	for	this	reactor.

Return	Values

The	VLA-object	from	which	the	reactor	was	removed.

Examples

_$	(vlr-owner-remove	circleReactor

archie)
#<VLA-OBJECT	IAcadArc	03ad0bcc>

See	Also
The	vlr-owner-add	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlr-owners
	
	
	

Returns	the	list	of	owners	of	an	object	reactor

(vlr-owners	reactor)

Arguments

reactor

A	VLR	object.

Return	Values

A	list	of	objects	that	notify	the	specified	reactor.

Examples

	_$	(vlr-owners	circleReactor)
(#<VLA-OBJECT	IAcadCircle	01db98f4>	#<VLA-OBJECT	IAcadCircle	01db9724>	#<VLA-OBJECT	IAcadCircle	01db93d4>	#<VLA-OBJECT	IAcadCircle	01db9084>)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlr-pers
	
	
	

Makes	a	reactor	persistent

(vlr-pers	reactor)

Arguments

reactor

A	VLR	object.

Return	Values

The	specified	reactor	object,	if	successful;	otherwise	nil.

Examples

Define	a	reactor:

_$	(setq	circleReactor	(vlr-object-reactor	

(list	myCircle)	"Radius

size"	'((:vlr-modified	.	print-radius))))
#<VLR-Object-Reactor>

Make	the	reactor	persistent:

_$	(vlr-pers	circleReactor)
#<VLR-Object-Reactor>

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlr-pers-list
	
	
	

Returns	a	list	of	persistent	reactors	in	the	current	drawing	document

(vlr-pers-list	[reactor])

Arguments

reactor

The	reactor	object	to	be	listed.	If	reactor	is	not	specified,	vlr-pers-list
lists	all	persistent	reactors.

Return	Values

A	list	of	reactor	objects.

Examples

_$	(vlr-pers-list)
(#<VLR-Object-Reactor>	#<VLR-Object-Reactor>	(#<VLR-Object-Reactor>)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlr-pers-p
	
	
	

Determines	whether	a	reactor	is	persistent

(vlr-pers-p	reactor)

Arguments

reactor

A	VLR	object.

Return	Values

The	specified	reactor	object,	if	it	is	persistent;	nil,	if	the	reactor	is	transient.

Examples

Make	a	reactor	persistent:

_$	(vlr-pers	circleReactor)
#<VLR-Object-Reactor>

Verify	that	a	reactor	is	persistent:

_$	(vlr-pers-p	circleReactor)
#<VLR-Object-Reactor>

Change	the	persistent	reactor	to	transient:

_$	(vlr-pers-release	circleReactor)
#<VLR-Object-Reactor>

Verify	that	the	reactor	is	no	longer	persistent:

_$	(vlr-pers-p	circleReactor)

nil

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlr-pers-release
	
	
	

Makes	a	reactor	transient

(vlr-pers-release	reactor)

Arguments

reactor

VLR	object.

Return	Values

The	specified	reactor	object,	if	successful;	otherwise	nil.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlr-reaction-name
	
	
	

Returns	a	list	of	all	possible	callback	conditions	for	this	reactor	type

(vlr-reaction-names	reactor-type)

Arguments

reactor-type

One	of	the	following	symbols:
:VLR-AcDb-Reactor
:VLR-Command-Reactor
:VLR-DeepClone-Reactor
:VLR-DocManager-Reactor
:VLR-DWG-Reactor
:VLR-DXF-Reactor
:VLR-Editor-Reactor
:VLR-Insert-Reactor
:VLR-Linker-Reactor
:VLR-Lisp-Reactor
:VLR-Miscellaneous-Reactor
:VLR-Mouse-Reactor
:VLR-Object-Reactor
:VLR-SysVar-Reactor
:VLR-Toolbar-Reactor
:VLR-Undo-Reactor
:VLR-Wblock-Reactor
:VLR-Window-Reactor

:VLR-XREF-Reactor

Return	Values

A	list	of	symbols	indicating	the	possible	events	for	the	specified	reactor	type.

Examples

_$	(vlr-reaction-names	:VLR-Editor-Reactor)
(:vlr-unknownCommand	:vlr-commandWillStart	:vlr-commandEnded....	

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlr-reaction-set
	
	
	

Adds	or	replaces	a	callback	function	in	a	reactor

(vlr-reaction-set	reactor	event	function)

Arguments

reactor

A	VLR	object.

event

A	symbol	denoting	one	of	the	event	types	available	for	this	reactor	type.

function

A	symbol	representing	the	AutoLISP	function	to	be	added	or	replaced.

Return	Values

Unspecified.

Examples

The	following	command	changes	the	circleReactor	reactor	to	call	the
print-area	function	when	an	object	is	modified:

_$	(vlr-reaction-set	circleReactor

:vlr-modified	'print-area)
PRINT-AREA

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlr-reactions
	
	
	

Returns	a	list	of	pairs	(event-name	.	callback_function)	for	the	reactor

(vlr-reactions	reactor)

Arguments

reactor

A	VLR	object.

Examples

_$	(vlr-reactions	circleReactor)
((:vlr-modified	.	PRINT-RADIUS))

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlr-reactors
	
	
	

Returns	a	list	of	existing	reactors

(vlr-reactors	[reactor-type...])

Arguments

reactor-type

One	or	more	of	the	following	symbols:
:VLR-AcDb-Reactor
:VLR-Command-Reactor
:VLR-DeepClone-Reactor
:VLR-DocManager-Reactor
:VLR-DWG-Reactor
:VLR-DXF-Reactor
:VLR-Editor-Reactor
:VLR-Insert-Reactor
:VLR-Linker-Reactor
:VLR-Lisp-Reactor
:VLR-Miscellaneous-Reactor
:VLR-Mouse-Reactor
:VLR-Object-Reactor
:VLR-SysVar-Reactor
:VLR-Toolbar-Reactor
:VLR-Undo-Reactor
:VLR-Wblock-Reactor
:VLR-Window-Reactor

:VLR-XREF-Reactor

If	you	specify	reactor-type	arguments,	vlr-reactors	returns	lists	of	the
reactor	types	you	specified.	If	you	omit	reactor-type,	vlr-reactors	returns
all	existing	reactors.

Return	Values

A	list	of	reactor	lists;	otherwise	nil,	if	there	are	no	reactors	of	any	specified
type.	Each	reactor	list	begins	with	a	symbol	identifying	the	reactor	type,
followed	by	pointers	to	each	reactor	of	that	type.

Examples

List	all	reactors	in	a	drawing:

_$	(vlr-reactors)
((:VLR-Object-Reactor	#<VLR-Object-Reactor>)	(:VLR-Editor-Reactor	#<VLR-Editor-Reactor>))

List	all	object	reactors:

_$	(vlr-reactors	:vlr-object-reactor)
((:VLR-Object-Reactor	#<VLR-Object-Reactor>))

vlr-reactors	returns	a	list	containing	a	single	reactor	list.

List	all	database	reactors:

_$	(vlr-reactors	:vlr-acdb-reactor)
nil

There	are	no	database	reactors	defined.

List	all	DWG	reactors:

_$	(vlr-reactors	:vlr-dwg-reactor)
((:VLR-DWG-Reactor	#<VLR-DWG-Reactor>	#<VLR-DWG-Reactor>))

vlr-reactors	returns	a	list	containing	a	list	of	DWG	reactors.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlr-remove
	
	
	

Disables	a	reactor

(vlr-remove	reactor)

Arguments

reactor

A	VLR	object.

Return	Values

The	reactor	argument;	otherwise	nil,	if	unsuccessful.

Examples

The	following	command	disables	the	circleReactor	reactor:

_$	(vlr-remove	circleReactor)
#<VLR-Object-reactor>

See	Also
The	vlr-remove-all	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlr-remove-all
	
	
	

Disables	all	reactors	of	the	specified	type

(vlr-remove-all	[reactor-type])

Arguments

reactor-type

One	of	the	following	symbols:
:VLR-AcDb-Reactor
:VLR-Command-Reactor
:VLR-DeepClone-Reactor
:VLR-DocManager-Reactor
:VLR-DWG-Reactor
:VLR-DXF-Reactor
:VLR-Editor-Reactor
:VLR-Insert-Reactor
:VLR-Linker-Reactor
:VLR-Lisp-Reactor
:VLR-Miscellaneous-Reactor
:VLR-Mouse-Reactor
:VLR-Object-Reactor
:VLR-SysVar-Reactor
:VLR-Toolbar-Reactor
:VLR-Undo-Reactor
:VLR-Wblock-Reactor
:VLR-Window-Reactor

:VLR-XREF-Reactor
If	no	reactor-type	is	specified,	vlr-remove-all	disables	all	reactors.

Return	Values

A	list	of	lists.	The	first	element	of	each	list	identifies	the	type	of	reactor,	and	the
remaining	elements	identify	the	disabled	reactor	objects.	The	function	returns
nil	if	there	are	no	reactors	active.

Examples

The	following	function	call	disables	all	editor	reactors:

_$	(vlr-remove-all	:vlr-editor-reactor)
((:VLR-Editor-Reactor	#<VLR-Editor-Reactor>))

The	following	call	disables	all	reactors:

_$	(vlr-remove-all)
((:VLR-Object-Reactor	#<VLR-Object-Reactor>	#<VLR-Object-Reactor>

#<VLR-Object-Reactor>)(:VLR-Editor-Reactor#<VLR-Editor-Reactor>))

See	Also
The	vlr-remove	function.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlr-set-notification
	
	
	

Defines	whether	a	reactor's	callback	function	will	execute	if	its	associated
namespace	is	not	active

(vlr-set-notification	reactor	'range)

Arguments

reactor

A	VLR	object.

'range

The	range	argument	is	a	symbol	that	can	be	either	'all-documents	(execute
the	callback	regardless	of	whether	the	reactor	is	associated	with	the	active
document),	or	'active-document-only	(execute	the	callback	only	if	the	reactor
is	associated	with	the	active	document).

Return	Values

The	VLR	object.

Examples

Set	a	reactor	to	execute	its	callback	function	even	if	its	associated	namespace	is
not	active:

_$	(vlr-set-notification

circleReactor	'all-documents)
#<VLR-Object-Reactor>

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlr-sysvar-reactor
	
	
	

Constructs	an	editor	reactor	object	that	notifies	of	a	change	to	a	system	variable

(vlr-sysvar-reactor	data	callbacks)

Arguments

data

Any	AutoLISP	data	to	be	associated	with	the	reactor	object;	otherwise	nil
if	no	data.

callbacks

A	list	of	pairs	of	the	following	form:
(event-name	.	callback_function)
where	event-name	is	one	of	the	symbols	listed	in	the	“SysVar	reactor	events”
table	below,	and	callback_function	is	a	symbol	representing	a	function	to	be
called	when	the	event	fires.	Each	callback	function	accepts	two	arguments:
reactor_object The	VLR	object	that	called	the	callback	function.
list A	list	of	extra	data	elements	associated	with	the	particular	event.	The
contents	of	this	list	for	particular	events	are	shown	in	the	“SysVar	reactor
callback	data”	table.

Return	Values

The	reactor_object	argument.

SysVar	reactor	events

Event	name Description

:vlr-sysVarWillChange AutoCAD	is	about	to	change
the	value	of	a	system	variable.

:vlr-sysVarChanged The	value	of	a	system	variable
has	changed.

 

SysVar	reactor	callback	data

Name List	length Parameters

:vlr-sysVarWillChange 1 A	string	identifying
the	system	variable
name.

:vlr-sysVarChanged 2 First	parameter	is	a
string	identifying	the
system	variable	name.
Second	parameter	is
symbol	indicating
whether	the	change
was	successful	(T	if
successful,	nil	if
not).

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlr-toolbar-reactor
	
	
	

Constructs	an	editor	reactor	object	that	notifies	of	a	change	to	the	bitmaps	in	a
toolbar

(vlr-toolbar-reactor	data	callbacks)

Arguments

data

Any	AutoLISP	data	to	be	associated	with	the	reactor	object;	otherwise	nil	if
no	data.

callbacks

A	list	of	pairs	of	the	following	form:
(event-name	.	callback_function)
where	event-name	is	one	of	the	symbols	listed	in	the	“Toolbar	reactor	events”
table	below,	and	callback_function	is	a	symbol	representing	a	function	to	be
called	when	the	event	fires.	Each	callback	function	accepts	two	arguments:
reactor_object The	VLR	object	that	called	the	callback	function.
list A	list	of	extra	data	elements	associated	with	the	particular	event.	The
contents	of	this	list	for	particular	events	are	shown	in	the	“Toolbar	reactor
callback	data”	table.

Return	Values

The	reactor_object	argument.

Toolbar	reactor	events

Event	name Description

:vlr-toolbarBitmapSizeWillChange The	size	of	the	AutoCAD
toolbar	icons	is	about	to
change.

:vlr-toolbarBitmapSizeChanged The	size	of	the	AutoCAD
toolbar	icons	has	changed.

 

Toolbar	reactor	callback	data

Name List
length Parameters

:vlr-toolbarBitmapSizeWillChange
:vlr-toolbarBitmapSizeChanged

1 T,	if	the	toolbar	is
being	set	to	large
bitmaps;	nil	if	the
toolbar	is	being	set
to	small	bitmaps.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlr-trace-reaction
	
	
	

A	predefined	callback	function	that	prints	one	or	more	callback	arguments	in	the
Trace	window

(vlr-trace-reaction)

This	function	can	be	used	as	a	debugging	tool	to	verify	that	a	reactor	has	fired.

Examples

Define	a	command	reactor	and	assign	vlr-trace-reaction	as	the	callback
function:

_$		(VLR-Reaction-Set

(VLR-Command-Reactor)	:VLR-commandWillStart	'VLR-trace-reaction)
VLR-trace-reaction

At	the	AutoCAD	Command	prompt,	enter	the	following:

_.LINE

Respond	to	the	command	prompts,	then	activate	the	VLISP	window	and	open
the	Trace	window.	You	should	see	the	following	in	the	Trace	window:

;	"Reaction":	:VLR-commandWillStart;	"argument	list":	(#<VLR-COMMAND-REACTOR>	("LINE"))

The	output	from	vlr-trace-reaction	identifies	the	type	of	trigger	event,
the	reactor	type,	and	the	command	that	triggered	the	reactor.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlr-type
	
	
	

Returns	a	symbol	representing	the	reactor	type

(vlr-type	reactor)

Arguments

reactor

A	VLR	object.

Return	Values

A	symbol	identifying	the	reactor	type.	The	following	table	lists	the	types	that
may	be	returned	by	vlr-type:

Reactor	types

Reactor	type Description

:VLR-AcDb-Reactor Database	reactor.

:VLR-Command-Reactor An	editor	reactor	notifying	of	a	command
event.

:VLR-DeepClone-
Reactor

An	editor	reactor	notifying	of	a	deep	clone
event.

:VLR-DocManager-
Reactor

Document	management	reactor.

:VLR-DWG-Reactor An	editor	reactor	notifying	of	a	drawing	event

(for	example,	opening	or	closing	a	drawing
file).

:VLR-DXF-Reactor An	editor	reactor	notifying	of	an	event	related
to	reading	or	writing	of	a	DXF	file.

:VLR-Editor-Reactor General	editor	reactor;	maintained	for
backward	compatibility.

:VLR-Insert-Reactor An	editor	reactor	notifying	of	an	event	related
to	block	insertion.

:VLR-Linker-Reactor Linker	reactor.

:VLR-Lisp-Reactor An	editor	reactor	notifying	of	a	LISP	event.

:VLR-Miscellaneous-
Reactor

An	editor	reactor	that	does	not	fall	under	any
of	the	other	editor	reactor	types.

:VLR-Mouse-Reactor An	editor	reactor	notifying	of	a	mouse	event
(for	example,	a	double-click).

:VLR-Object-Reactor Object	reactor.

:VLR-SysVar-Reactor An	editor	reactor	notifying	of	a	change	to	a
system	variable.

:VLR-Toolbar-Reactor An	editor	reactor	notifying	of	a	change	to	the
bitmaps	in	a	toolbar.

:VLR-Undo-Reactor An	editor	reactor	notifying	of	an	undo	event.

:VLR-Wblock-Reactor An	editor	reactor	notifying	of	an	event	related
to	writing	a	block.

:VLR-Window-Reactor An	editor	reactor	notifying	of	an	event	related
to	moving	or	sizing	an	AutoCAD	window.

:VLR-XREF-Reactor An	editor	reactor	notifying	of	an	event	related
to	attaching	or	modifying	XREFs.

Examples

_$	(vlr-type	circleReactor)
:VLR-Object-Reactor

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlr-types
	
	
	

Returns	a	list	of	all	reactor	types

(vlr-types)

Return	Values

(:VLR-Linker-Reactor	:VLR-Editor-Reactor	:VLR-AcDb-
Reactor)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlr-undo-reactor
	
	
	

Constructs	an	editor	reactor	object	that	notifies	of	an	undo	event

(vlr-undo-reactor	data	callbacks)

Arguments

data

Any	AutoLISP	data	to	be	associated	with	the	reactor	object;	otherwise	nil
if	no	data.

callbacks

A	list	of	pairs	of	the	following	form:
(event-name	.	callback_function)
where	event-name	is	one	of	the	symbols	listed	in	the	“Undo	reactor	events”
table	below,	and	callback_function	is	a	symbol	representing	a	function	to	be
called	when	the	event	fires.	Each	callback	function	accepts	two	arguments:
reactor_object The	VLR	object	that	called	the	callback	function.
list A	list	of	extra	data	elements	associated	with	the	particular	event.	The
contents	of	this	list	for	particular	events	are	shown	in	the	“Undo	reactor
callback	data”	table.

Return	Values

The	reactor_object	argument.

Undo	reactor	events

Event	name Description

:vlr-undoSubcommandAuto The	UNDO	command's
Auto	option	has	been
executed.

:vlr-undoSubcommandControl The	UNDO	command's
Control	option	has	been
executed.

:vlr-undoSubcommandBegin The	UNDO	command's
BEGIN	or	GROUP	option
is	being	performed.	BEGIN
and	GROUP	mark	the
beginning	of	a	series	of
commands	that	can	be
undone	as	one	unit.

:vlr-undoSubcommandEnd The	UNDO	command's
END	option	is	being
performed.	UNDO/END
marks	the	end	of	a	series	of
commands	that	can	be
undone	as	one	unit.

:vlr-undoSubcommandMark The	UNDO	command's
MARK	option	is	about	to
be	executed.	This	places	a
marker	in	the	undo	file	so
UNDO/BACK	can	undo
back	to	the	marker.

:vlr-undoSubcommandBack The	UNDO	command's
BACK	option	is	about	to
be	performed.
UNDO/BACK	undoes
everything	back	to	the	most
recent	MARK	marker	or
back	to	the	beginning	of

the	undo	file	if	no	MARK
marker	exists.

:vlr-undoSubcommandNumber The	UNDO	command's
NUMBER	option	is	about
to	be	executed	(the	default
action	of	the	UNDO
command).

 

Undo	reactor	callback	data

Name List
length Parameters

:vlr-undoSubcommandAuto 2 First	parameter	is	an
integer	indicating	the
activity.	The	value	is
always	4,	indicating
that	notification
occurred	after	the
operation	was
performed.
Second	parameter	is
a	symbol	indicating
the	state	of	Auto
mode.	Value	is	T	if
Auto	mode	is	turned
on,	nil	if	Auto
mode	is	turned	off.

:vlr-undoSubcommandControl 2 First	parameter	is	an
integer	indicating	the
activity.	The	value	is

always	4,	indicating
that	notification
occurred	after	the
operation	was
performed.
Second	parameter	is
an	integer	indicating
the	Control	option
selected.	This	can	be
one	of	the	following:
0—NONE	was
selected
1—ONE	was
selected
2—ALL	was
selected

:vlr-undoSubcommandBegin
:vlr-undoSubcommandEnd
:vlr-undoSubcommandMark
:vlr-undoSubcommandBack

1 An	integer	value	of
0,	indicating	that
notification	occurs
before	the	actual
operation	is
performed.

:vlr-undoSubcommandNumber 2 First	parameter	is	an
integer	indicating	the
activity.	The	value	is
always	0,	indicating
that	notification
occurs	before	the
actual	operation	is
performed.
Second	parameter	is
an	integer	indicating
the	number	of	steps

being	undone.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlr-wblock-reactor
	
	
	

Constructs	an	editor	reactor	object	that	notifies	of	an	event	related	to	writing	a
block

(vlr-wblock-reactor	data	callbacks)

Arguments

data

Any	AutoLISP	data	to	be	associated	with	the	reactor	object;	otherwise	nil
if	no	data.

callbacks

A	list	of	pairs	of	the	following	form:
(event-name	.	callback_function)
where	event-name	is	one	of	the	symbols	listed	in	the	“Wblock	reactor	events”
table	below,	and	callback_function	is	a	symbol	representing	a	function	to	be
called	when	the	event	fires.	Each	callback	function	accepts	two	arguments:
reactor_object The	VLR	object	that	called	the	callback	function.
list A	list	of	extra	data	elements	associated	with	the	particular	event.	The
contents	of	this	list	for	particular	events	are	shown	in	the	“Wblock	reactor
callback	data”	table.

Return	Values

The	reactor_object	argument.

Wblock	reactor	events

Event	name Description

:VLR-wblockNotice A	wblock	operation	is	about
to	start.

:VLR-beginWblockPt A	wblock	operation	is	being
performed	on	a	set	of
entities.

:VLR-beginWblockId A	wblock	operation	is	being
performed	on	a	specified
block.

:VLR-beginWblock A	wblock	operation	is	being
performed	on	an	entire
database.	Notification	does
not	occur	until	all	the	entities
in	the	source	database's
model	space	are	copied	into
the	target	database.

:VLR-endWblock A	wblock	operation
completed	successfully.

:VLR-beginWblockObjects wblock	has	just	initialized
the	object	ID	translation
map.

 

Wblock	reactor	callback	data

Name List	length Parameters

:VLR-wblockNotice 1 Database	object
(VLA-object)	from
which	the	block	will

be	created.

:VLR-beginWblockPt 3 First	parameter	is	the
target	database
object	(VLA-object).
Second	parameter	is
the	source	database
object	(VLA-object)
containing	the
objects	being
wblocked.
Third	parameter	is	a
3D	point	list	(in
WCS)	to	be	used	as
the	base	point	in	the
target	database.

:VLR-beginWblockId 3 First	parameter	is	the
target	database
object	(VLA-object).
Second	parameter	is
the	source	database
object	(VLA-object)
containing	the
objects	being
wblocked.
Third	parameter	is
the	object	ID	of	the
BlockTableRecord
being	wblocked.

:VLR-beginWblock
:VLR-otherWblock

2 First	parameter	is	the
target	database
object	(VLA-object).
Second	parameter	is

the	source	database
object	(VLA-object)
containing	the
objects	being
wblocked.

:VLR-abortWblock
:VLR-endWblock

1 The	target	database
object	(VLA-object).

:VLR-beginWblockObjects 2 First	parameter	is	the
source	database
object	(VLA-object)
containing	the
objects	being
wblocked.
Second	parameter	is
an	ID	map.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlr-window-reactor
	
	
	

Constructs	an	editor	reactor	object	that	notifies	of	an	event	related	to	moving	or
sizing	an	AutoCAD	window

(vlr-window-reactor	data	callbacks)

Arguments

data

Any	AutoLISP	data	to	be	associated	with	the	reactor	object;	otherwise	nil
if	no	data.

callbacks

A	list	of	pairs	of	the	following	form:
(event-name	.	callback_function)
where	event-name	is	one	of	the	symbols	listed	in	the	“Window	reactor
events”	table	below,	and	callback_function	is	a	symbol	representing	a
function	to	be	called	when	the	event	fires.	Each	callback	function	accepts	two
arguments:
reactor_object The	VLR	object	that	called	the	callback	function.
list A	list	of	extra	data	elements	associated	with	the	particular	event.	The
contents	of	this	list	for	particular	events	are	shown	in	the	“Window	reactor
callback	data”	table.

Return	Values

The	reactor_object	argument.

Window	reactor	events

Event	name Description

:vlr-docFrameMovedOrResized An	MDI	child	frame
window	(a	document
window)	has	been	moved
or	resized.

:vlr-mainFrameMovedOrResized The	main	AutoCAD
window	has	been	moved	or
resized.

 

Window	reactor	callback	data

Name List
length Parameters

:vlr-docFrameMovedOrResized
:vlr-mainFrameMovedOrResized

2 The	first	parameter
is	an	integer
containing	the
HWND	of	the
window.
The	second
parameter	indicates
whether	the	window
has	been	moved	or
resized.	The	value	is
T	if	the	window	has
been	moved,	nil	if
the	window	has	been
resized.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vlr-xref-reactor
	
	
	

Constructs	an	editor	reactor	object	that	notifies	of	an	event	related	to	attaching	or
modifying	XREFs

(vlr-xref-reactor	data	callbacks)

Arguments

data

Any	AutoLISP	data	to	be	associated	with	the	reactor	object;	otherwise	nil
if	no	data.

callbacks

A	list	of	pairs	of	the	following	form:
(event-name	.	callback_function)
where	event-name	is	one	of	the	symbols	listed	in	the	“XREF	reactor	events”
table	below,	and	callback_function	is	a	symbol	representing	a	function	to	be
called	when	the	event	fires.	Each	callback	function	accepts	two	arguments:
reactor_object The	VLR	object	that	called	the	callback	function.
list A	list	of	extra	data	elements	associated	with	the	particular	event.	The
contents	of	this	list	for	particular	events	are	shown	in	the	“XREF	reactor
callback	data”	table.

Return	Values

The	reactor_object	argument.

XREF	reactor	events

Event	name Description

:VLR-beginAttach An	xref	is	about	to	be
attached.

:VLR-otherAttach An	external	reference	is
being	added	to	the
drawing	database.	This
event	occurs	after	objects
are	cloned,	but	before	any
translation.	This	callback
function	is	sent	just	after
beginDeepCloneXlation
notification,	but	occurs
only	for	the	xref	attach
process.

:VLR-abortAttach An	xref	attach	operation
was	terminated	before
successful	completion.

:VLR-endAttach An	xref	attach	operation
completed	successfully.

:VLR-redirected An	object	ID	in	the	xref
drawing	is	being
modified	to	point	to	the
associated	object	in	the
drawing	being	referenced.

:VLR-comandeered The	object	ID	of	the
object	is	being	appended
to	the	symbol	table	of	the
drawing	being	xrefed
into.

:VLR-beginRestore An	existing	xref	is	about
to	be	resolved	(typically
when	a	drawing	with

xrefs	is	loading).

:VLR-abortRestore An	xref	unload	or	reload
was	terminated	before
successful	completion.

:VLR-endRestore An	existing	xref	has	been
resolved	(typically	when
a	drawing	with	xrefs	has
completed	loading).

:VLR-xrefSubcommandBindItem The	BIND	subcommand
of	XREF	was	invoked,	or
a	preexisting	xref	is	being
bound.
Note	that	the	BIND
subcommand	is
interactive	and	triggers
multiple	events.

:VLR-xrefSubcommandAttachItem The	ATTACH
subcommand	of	XREF
was	invoked,	or	a
preexisting	xref	is	being
resolved.
Note	that	the	ATTACH
subcommand	is
interactive	and	triggers
multiple	events.

:VLR-xrefSubcommandOverlayItem The	OVERLAY
subcommand	of	XREF
was	invoked,	or	a
preexisting	xref	is	being
resolved.
Note	that	the	OVERLAY

subcommand	is
interactive	and	triggers
multiple	events.

:VLR-xrefSubcommandDetachItem The	DETACH
subcommand	of	XREF
was	invoked.
Note	that	the	DETACH
subcommand	is
interactive	and	triggers
multiple	events.

:VLR-xrefSubcommandPathItem The	PATH	subcommand
of	XREF	was	invoked.
Note	that	the	PATH
subcommand	is
interactive	and	triggers
multiple	events.

:VLR-xrefSubcommandReloadItem The	RELOAD
subcommand	of	XREF
was	invoked,	or	a
preexisting	xref	is	being
reloaded.
Note	that	the	RELOAD
subcommand	is
interactive	and	triggers
multiple	events.

:VLR-xrefSubcommandUnloadItem The	UNLOAD
subcommand	of	XREF
was	invoked,	or	a
preexisting	xref	is	being
unloaded.

 

XREF	reactor	callback	data

Name List
length Parameters

:VLR-beginAttach 3 First	parameter	is	a
VLA-object
pointing	to	the
target	drawing
database.
Second	parameter
is	a	string
containing	the	file
name	of	the	xref
being	attached.
Third	parameter	is
a	VLA-object
pointing	to	the
drawing	database
that	contains	the
objects	being
attached.

:VLR-otherAttach 2 First	parameter	is	a
VLA-object
pointing	to	the
target	drawing
database.
Second	parameter
is	a	VLA-object
pointing	to	the
drawing	database
that	contains	the

objects	being
attached.

:VLR-abortAttach 1 A	VLA-object
pointing	to	the
drawing	database
that	contains	the
objects	being
attached.

:VLR-endAttach 1 A	VLA-object
pointing	to	the
target	drawing
database.

:VLR-redirected 2 First	parameter	is
an	integer
containing	the
object	ID	for	the
redirected	symbol
table	record	(STR)
in	the	drawing
being	referenced.
Second	parameter
is	an	integer
containing	the
object	ID	for	the
object	in	the	xref
drawing.

:VLR-comandeered 3 First	parameter	is	a
VLA-object
pointing	to	the
database	receiving
the	xref.
Second	parameter
is	an	integer

containing	the
object	ID	of	the
object	being
commandeered.
Third	parameter	is
a	VLA-object
pointing	to	the
drawing	database
that	contains	the
objects	being
attached.

:VLR-beginRestore 3 First	parameter	is	a
VLA-object
pointing	to	the
database	receiving
the	xref.
Second	parameter
is	a	string
containing	the	xref
block	table	record
(BTR)	name.
Third	parameter	is
a	VLA-object
pointing	to	the
drawing	database
that	contains	the
objects	being
attached.

:VLR-abortRestore
:VLR-endRestore

1 A	VLA-object
pointing	to	the
target	drawing
database.

:VLR-xrefSubcommandBindItem 2 First	parameter	is
an	integer
indicating	the
activity	the	BIND
is	carrying	out.
Possible	values	are
0—BIND
subcommand
invoked.
2—xref	with	the
indicated	object	ID
is	being	bound.
3—xref	with	the
indicated	object	ID
was	successfully
bound.
4—BIND
subcommand
completed.
5—BIND
operation	is	about
to	either	terminate
or	fail	to	complete
on	the	specified
object	ID.
6—BIND
operation	has
either	terminated
or	failed	to
complete	on	the
specified	object
ID.
7—Sent	for	an
XDep	block	bound
by	XBind.

8—Sent	for	all
other	symbols:
Layers,	Linetypes,
TextStyles,	and
DimStyles.
Second	parameter
is	an	integer
containing	the
object	ID	of	the
xref	being	bound,
or	0	if	not
applicable.

:VLR-xrefSubcommandAttachItem 2 First	parameter	is
an	integer
indicating	the
activity	the
ATTACH	is
carrying	out.
Possible	values	are
0—BIND
subcommand
invoked.
2—xref	with	the
indicated	object	ID
is	being	bound.
3—xref	with	the
indicated	object	ID
was	successfully
bound.
4—BIND
subcommand
completed.
5—BIND

operation	is	about
to	either	terminate
or	fail	to	complete
on	the	specified
object	ID.
6—BIND
operation	has
either	terminated
or	failed	to
complete	on	the
specified	object
ID.
Second	parameter
is	a	string
identifying	the	file
being	attached;
otherwise	nil	if
not	applicable.

:VLR-xrefSubcommandOverlayItem 2 First	parameter	is
an	integer
indicating	the
activity	the
OVERLAY	is
carrying	out.
Possible	values	are
0—BIND
subcommand
invoked.
2—xref	with	the
indicated	object	ID
is	being	bound.
3—xref	with	the
indicated	object	ID
was	successfully

bound.
4—BIND
subcommand
completed.
5—BIND
operation	is	about
to	either	terminate
or	fail	to	complete
on	the	specified
object	ID.
6—BIND
operation	has
either	terminated
or	failed	to
complete	on	the
specified	object
ID.
Second	parameter
is	a	string
identifying	the	file
being	overlaid;
otherwise	nil	if
not	applicable.

:VLR-xrefSubcommandDetachItem 2 First	parameter	is
an	integer
indicating	the
activity	the
DETACH	is
carrying	out.
Possible	values	are
0—BIND
subcommand
invoked.
2—xref	with	the

indicated	object	ID
is	being	bound.
3—xref	with	the
indicated	object	ID
was	successfully
bound.
4—BIND
subcommand
completed.
5—BIND
operation	is	about
to	either	terminate
or	fail	to	complete
on	the	specified
object	ID.
6—BIND
operation	has
either	terminated
or	failed	to
complete	on	the
specified	object
ID.
Second	parameter
is	an	integer
containing	the
object	ID	of	the
xref	being
detached,	or	0	if
not	applicable.

:VLR-xrefSubcommandPathItem 3 First	parameter	is
an	integer
indicating	the
activity	the
DETACH	is

carrying	out.
Possible	values	are
0—BIND
subcommand
invoked.
2—xref	with	the
indicated	object	ID
is	being	bound.
3—xref	with	the
indicated	object	ID
was	successfully
bound.
4—BIND
subcommand
completed.
5—BIND
operation	is	about
to	either	terminate
or	fail	to	complete
on	the	specified
object	ID.
6—BIND
operation	has
either	terminated
or	failed	to
complete	on	the
specified	object
ID.
Second	parameter
is	an	integer
containing	the
object	ID	of	the
xref	being
operated	on,	or	0	if
not	applicable.

Third	parameter	is
a	string	identifying
the	new	path	name
of	the	xref;
otherwise	nil	if
not	applicable.

:VLR-xrefSubcommandReloadItem 2 First	parameter	is
an	integer
indicating	the
activity	the
RELOAD	is
carrying	out.
Possible	values	are
0—BIND
subcommand
invoked.
2—xref	with	the
indicated	object	ID
is	being	bound.
3—xref	with	the
indicated	object	ID
was	successfully
bound.
4—BIND
subcommand
completed.
5—BIND
operation	is	about
to	either	terminate
or	fail	to	complete
on	the	specified
object	ID.
6—BIND
operation	has

either	terminated
or	failed	to
complete	on	the
specified	object
ID.
Second	parameter
is	an	integer
containing	the
object	ID	of	the
xref	being
reloaded,	or	0	if
not	applicable.

:VLR-xrefSubcommandUnloadItem 2 First	parameter	is
an	integer
indicating	the
activity	the
UNLOAD	is
carrying	out.
Possible	values	are
0—BIND
subcommand
invoked.
2—xref	with	the
indicated	object	ID
is	being	bound.
3—xref	with	the
indicated	object	ID
was	successfully
bound.
4—BIND
subcommand
completed.
5—BIND
operation	is	about

to	either	terminate
or	fail	to	complete
on	the	specified
object	ID.
6—BIND
operation	has
either	terminated
or	failed	to
complete	on	the
specified	object
ID.
Second	parameter
is	an	integer
containing	the
object	ID	of	the
xref	being
unloaded,	or	0	if
not	applicable.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	V	Functions	>	

vports
	
	
	

Returns	a	list	of	viewport	descriptors	for	the	current	viewport	configuration

(vports)	

Return	Values

One	or	more	viewport	descriptor	lists	consisting	of	the	viewport	identification
number	and	the	coordinates	of	the	viewport's	lower-left	and	upper-right	corners.

If	the	AutoCAD	TILEMODE	system	variable	is	set	to	1	(on),	the	returned	list
describes	the	viewport	configuration	created	with	the	AutoCAD	VPORTS
command.	The	corners	of	the	viewports	are	expressed	in	values	between	0.0	and
1.0,	with	(0.0,	0.0)	representing	the	lower-left	corner	of	the	display	screen's
graphics	area,	and	(1.0,	1.0)	the	upper-right	corner.	If	TILEMODE	is	0	(off),	the
returned	list	describes	the	viewport	objects	created	with	the	MVIEWcommand.
The	viewport	object	corners	are	expressed	in	paper	space	coordinates.	Viewport
number	1	is	always	paper	space	when	TILEMODE	is	off.

Examples

Given	a	single-viewport	configuration	with	TILEMODE	on,	the	vports
function	might	return	the	following:

((1	(0.0	0.0)	(1.0	1.0)))

Given	four	equal-sized	viewports	located	in	the	four	corners	of	the	screen	when
TILEMODE	is	on,	the	vports	function	might	return	the	following	lists:

((5	(0.5	0.0)	(1.0	0.5))

	(2	(0.5	0.5)	(1.0	1.0))

	(3	(0.0	0.5)	(0.5	1.0))

	(4	(0.0	0.0)	(0.5	0.5)))

The	current	viewport's	descriptor	is	always	first	in	the	list.	In	the	previous

example,	viewport	number	5	is	the	current	viewport.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	

W	Functions
	
	
	

wcmatch
Performs	a	wild-card	pattern	match	on	a	string
while
Evaluates	a	test	expression,	and	if	it	is	not	nil,	evaluates	other
expressions;	repeats	this	process	until	the	test	expression	evaluates	to	nil
write-char
Writes	one	character	to	the	screen	or	to	an	open	file
write-line
Writes	a	string	to	the	screen	or	to	an	open	file

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	W	Functions	>	

wcmatch
	
	
	

Performs	a	wild-card	pattern	match	on	a	string

(wcmatch	string	pattern)	

Arguments

string

A	string	to	be	compared.	The	comparison	is	case-sensitive,	so	uppercase	and
lowercase	characters	must	match.

pattern

A	string	containing	the	pattern	to	match	against	string.	The	pattern	can
contain	the	wild-card	pattern-matching	characters	shown	in	the	table	Wild-
card	characters.	You	can	use	commas	in	a	pattern	to	enter	more	than	one
pattern	condition.	Only	the	first	500	characters	(approximately)	of	the	string
and	pattern	are	compared;	anything	beyond	that	is	ignored.

Both	arguments	can	be	either	a	quoted	string	or	a	string	variable.	It	is	valid	to
use	variables	and	values	returned	from	AutoLISP	functions	for	string	and
pattern	values.

Return	Values

If	string	and	pattern	match,	wcmatch	returns	T;	otherwise,	wcmatch
returns	nil.

Wild-card	characters

Character Definition

# (pound) Matches	any	single	numeric	digit.

@ (at) Matches	any	single	alphabetic	character.

. (period) Matches	any	single	nonalphanumeric	character.

* (asterisk) Matches	any	character	sequence,	including	an
empty	one,	and	it	can	be	used	anywhere	in	the
search	pattern:	at	the	beginning,	middle,	or	end.

? (question	mark) Matches	any	single	character.

~ (tilde) If	it	is	the	first	character	in	the	pattern,	it	matches
anything	except	the	pattern.

[...] Matches	any	one	of	the	characters	enclosed.

[~...] Matches	any	single	character	not	enclosed.

- (hyphen) Used	inside	brackets	to	specify	a	range	for	a	single
character.

, (comma) Separates	two	patterns.

` (reverse	quote) Escapes	special	characters	(reads	next	character
literally).

Examples

The	following	command	tests	a	string	to	see	if	it	begins	with	the	character	N:
Command:	(wcmatch	"Name"	"N*")

T

The	following	example	performs	three	comparisons.	If	any	of	the	three	pattern
conditions	is	met,	wcmatch	returns	T.	The	tests	are:

Does	the	string	contain	three	characters?

Does	the	string	not	contain	an	m?

Does	the	string	begin	with	the	letter	“N”?

If	any	of	the	three	pattern	conditions	is	met,	wcmatch	returns	T:
Command:	(wcmatch	"Name"	"???,~*m*,N*")

T

In	this	example,	the	last	condition	was	met,	so	wcmatch	returned	T.

Using	Escape	Characters	with	wcmatch

To	test	for	a	wild-card	character	in	a	string,	you	can	use	the	single	reverse-quote
character	(`)	to	escape	the	character.	Escape	means	that	the	character	following
the	single	reverse	quote	is	not	read	as	a	wild-card	character;	it	is	compared	at	its
face	value.	For	example,	to	search	for	a	comma	anywhere	in	the	string	“Name”,
enter	the	following:

Command:	(wcmatch	"Name"	"*`,*")

nil

Both	the	C	and	AutoLISP	programming	languages	use	the	backslash	(\)	as	an
escape	character,	so	you	need	two	backslashes	(\\)	to	produce	one	backslash	in	a
string.	To	test	for	a	backslash	character	anywhere	in	“Name”,	use	the	following
function	call:

Command:	(wcmatch	"Name"	"*`*")

nil

All	characters	enclosed	in	brackets	([.	.	.])	are	read	literally,	so	there	is	no	need
to	escape	them,	with	the	following	exceptions:	the	tilde	character	(~)	is	read
literally	only	when	it	is	not	the	first	bracketed	character	(as	in	"[A~BC]");
otherwise,	it	is	read	as	the	negation	character,	meaning	that	wcmatch	should
match	all	characters	except	those	following	the	tilde	(as	in	"[~ABC]").	The
dash	character	(-)	is	read	literally	only	when	it	is	the	first	or	last	bracketed
character	(as	in	"[-ABC]"	or	"[ABC-]")	or	when	it	follows	a	leading	tilde	(as
in	"[~-ABC]").	Otherwise,	the	dash	character	(-)	is	used	within	brackets	to
specify	a	range	of	values	for	a	specific	character.	The	range	works	only	for
single	characters,	so	"STR[1-38]"	matches	STR1,	STR2,	STR3,	and	STR8,
and	"[A-Z]"	matches	any	single	uppercase	letter.

The	closing	bracket	character	(])	is	also	read	literally	if	it	is	the	first	bracketed
character	or	if	it	follows	a	leading	tilde	(as	in	"[]ABC]"	or	"[~]ABC]").

Note Because	additional	wild-card	characters	might	be	added	in	future	releases	of
AutoLISP,	it	is	a	good	idea	to	escape	all	nonalphanumeric	characters	in	your
pattern	to	ensure	upward	compatibility.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	W	Functions	>	

while
	
	
	

Evaluates	a	test	expression,	and	if	it	is	not	nil,	evaluates	other	expressions;
repeats	this	process	until	the	test	expression	evaluates	to	nil

(while	testexpr	[expr...])	

The	while	function	continues	until	testexpr	is	nil.

Arguments

testexpr

The	expression	containing	the	test	condition.

expr

One	or	more	expressions	to	be	evaluated	until	testexpr	is	nil.

Return	Values

The	most	recent	value	of	the	last	expr.

Examples

The	following	code	calls	user	function	some-func	ten	times,	with	test	set	to
1	through	10.	It	then	returns	11,	which	is	the	value	of	the	last	expression
evaluated:

(setq	test	1)

(while	(<=	test	10)

		(some-func	test)

		(setq	test	(1+	test))

)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	W	Functions	>	

write-char
	
	
	

Writes	one	character	to	the	screen	or	to	an	open	file

(write-char	num	[file-desc])	

Arguments

num

The	decimal	ASCII	code	for	the	character	to	be	written.

file-desc

A	file	descriptor	for	an	open	file.

Return	Values

The	num	argument.

Examples

The	following	command	writes	the	letter	C	to	the	command	window,	and	returns
the	supplied	num	argument:

Command:	(write-char	67)

C67

Assuming	that	f	is	the	descriptor	for	an	open	file,	the	following	command	writes
the	letter	C	to	that	file:

Command:	(write-char	67	f)

67

Note	that	write-char	cannot	write	a	NULL	character	(ASCII	code	0)	to	a
file.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	W	Functions	>	

write-line
	
	
	

Writes	a	string	to	the	screen	or	to	an	open	file

(write-line	string	[file-desc])	

Arguments

string

A	string.

file-desc

A	file	descriptor	for	an	open	file.

Return	Values

The	string,	quoted	in	the	normal	manner.	The	quotes	are	omitted	when	writing	to
a	file.

Examples

Open	a	new	file:
Command:	(setq	f	(open	"c:\\my	documents\\new.tst"	"w"))

#<file	"c:\\my	documents\\new.tst">

Use	write-line	to	write	a	line	to	the	file:
Command:	(write-line	"To	boldly	go	where	nomad	has	gone	before."	f)

"To	boldly	go	where	nomad	has	gone	before."

The	line	is	not	physically	written	until	you	close	the	file:
Command:	(close	f)

nil

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	

X	Functions
	
	
	

xdroom
Returns	the	amount	of	extended	data	(xdata)	space	that	is	available	for
an	object	(entity)
xdsize
Returns	the	size	(in	bytes)	that	a	list	occupies	when	it	is	linked	to	an
object	(entity)	as	extended	data

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	X	Functions	>	

xdroom
	
	
	

Returns	the	amount	of	extended	data	(xdata)	space	that	is	available	for	an	object
(entity)

(xdroom	ename)

Because	there	is	a	limit	(currently,	16	kilobytes)	on	the	amount	of	extended	data
that	can	be	assigned	to	an	entity	definition,	and	because	multiple	applications
can	append	extended	data	to	the	same	entity,	this	function	is	provided	so	an
application	can	verify	there	is	room	for	the	extended	data	that	it	will	append.	It
can	be	called	in	conjunction	with	xdsize,	which	returns	the	size	of	an	extended
data	list.

Arguments

ename

An	entity	name	(ename	data	type).

Return	Values

An	integer	reflecting	the	number	of	bytes	of	available	space.	If	unsuccessful,
xdroom	returns	nil.

Examples

The	following	example	looks	up	the	available	space	for	extended	data	of	a
viewport	object:

Command:	(xdroom	vpname)

16162

In	this	example,	16,162	bytes	of	the	original	16,383	bytes	of	extended	data	space
are	available,	meaning	that	221	bytes	are	used.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	X	Functions	>	

xdsize
	
	
	

Returns	the	size	(in	bytes)	that	a	list	occupies	when	it	is	linked	to	an	object
(entity)	as	extended	data

(xdsize	lst)

Arguments

lst

A	valid	list	of	extended	data	that	contains	an	application	name	previously
registered	with	the	use	of	the	regapp	function.	See	the	Examples	section	of
this	function	for	lst	examples.

Return	Values

An	integer	reflecting	the	size,	in	bytes.	If	unsuccessful,	xdsize	returns	nil.

Brace	fields	(group	code	1002)	must	be	balanced.	An	invalid	lst	generates	an
error	and	places	the	appropriate	error	code	in	the	ERRNO	variable.	If	the
extended	data	contains	an	unregistered	application	name,	you	see	this	error
message	(assuming	that	CMDECHO	is	on):

Invalid	application	name	in	1001	group

Examples

The	lst	can	start	with	a	-3	group	code	(the	extended	data	sentinel),	but	it	is	not
required.	Because	extended	data	can	contain	information	from	multiple
applications,	the	list	must	have	a	set	of	enclosing	parentheses.

(-3	("MYAPP"	(1000	.	"SUITOFARMOR")

													(1002	.	"{")

													(1040	.	0.0)

													(1040	.	1.0)

													(1002	.	"}")

)

)

Here	is	the	same	example	without	the	-3	group	code.	This	list	is	just	the	cdr	of
the	first	example,	but	it	is	important	that	the	enclosing	parentheses	are	included:

(("MYAPP"	(1000	.	"SUITOFARMOR")

											(1002	.	"{")

											(1040	.	0.0)

											(1040	.	1.0)

											(1002	.	"}")

)

)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	

Z	Functions
	
	
	

zerop
Verifies	that	a	number	evaluates	to	zero

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	AutoLISP	Functions	>	Z	Functions	>	

zerop
	
	
	

Verifies	that	a	number	evaluates	to	zero

(zerop	number)

Arguments

number

A	number.

Return	Values

T	if	number	evaluates	to	zero;	otherwise	nil.

Examples
Command:	(zerop	0)

T

Command:	(zerop	0.0)

T

Command:	(zerop	0.0001)

nil

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>		

Externally	Defined	Commands
	
	
	

AutoCAD®	commands	defined	by	ObjectARX®	or	AutoLISP®	applications	are
called	externally	defined.	AutoLISP	applications	may	need	to	access	externally
defined	commands	differently	from	the	way	they	access	built-in	AutoLISP
functions.	Many	externally	defined	commands	have	their	own	programming
interfaces	that	allow	AutoLISP	applications	to	take	advantage	of	their
functionality.

For	additional	information	on	the	commands	described	in	this	appendix,	see	the
Command	Reference.

align
cal
mirror3d
rotate3d
solprof

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	Externally	Defined	Commands	>	

align
	
	
	
Translates	and	rotates	objects,	allowing	them	to	be	aligned	with	other	objects
(externally	defined:	geom3d	ObjectARX	application)

(align	arg1	arg2

...)	

Arguments

arg1	arg2...

Arguments	to	the	AutoCAD	ALIGN	command.	The	order,	number,	and	type
of	arguments	for	the	align	function	are	the	same	as	if	you	were	entering
ALIGN	at	the	command	line.
To	indicate	a	null	response	(a	user	pressing	ENTER),	specify	nil	or	an
empty	string	("").

Return	Values

T	if	successful;	otherwise	nil.

Examples

The	following	example	specifies	two	pairs	of	source	and	destination	points,
which	perform	a	2D	move:

(setq	ss	(ssget))

(align	ss	s1	d1	s2	d2	""	"2d")

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	Externally	Defined	Commands	>	

cal
	
	
	
Invokes	the	on-line	geometry	calculator	and	returns	the	value	of	the	evaluated
expression	(externally	defined:	geomcal	ObjectARX	application)

(c:cal	expression)	

Arguments

expression

A	quoted	string.	See	CAL	in	the	Command	Reference	for	a	description	of
allowable	expressions.

Return	Values

The	result	of	the	expression.

Examples

The	following	example	uses	cal	in	an	AutoLISP	expression	with	the	trans
function:

(trans	(c:cal	"[1,2,3]+MID")	1	2)	

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	Externally	Defined	Commands	>	

mirror3d
	
	
	
Reflects	selected	objects	about	a	user-specified	plane	(externally	defined:
geom3d	ObjectARX	application)

(mirror3d	arg1	arg2

...)	

Arguments

The	order,	number,	and	type	of	arguments	for	the	mirror3d	function	are	the
same	as	if	you	were	entering	the	MIRROR3D	AutoCAD	command.	To	signify	a
user	pressing	ENTER	without	typing	any	values,	use	nil	or	an	empty	string
("").

Return	Values

T	if	successfu;,	otherwise	nil.

Examples

The	following	example	mirrors	the	selected	objects	about	the	XY	plane	that
passes	through	the	point	0,0,5,	and	then	deletes	the	old	objects:

(setq	ss	(ssget))

(mirror3d	ss	"XY"	'(0	0	5)	"Y")

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	Externally	Defined	Commands	>	

rotate3d
	
	
	
Rotates	an	object	about	an	arbitrary	3D	axis	(externally	defined:	geom3d
ObjectARX	application)

(rotate3d	args	...)	

Arguments

args

The	order,	number,	and	type	of	arguments	for	the	rotate3d	function	are
the	same	as	if	you	were	entering	them	at	the	command	line;	see	ROTATE3D
in	the	Command	Reference.
To	signify	a	null	response	(user	pressing	ENTER	without	specifying	any
arguments),	use	nil	or	an	empty	string	("").

Return	Values

If	successful,	rotate3d	returns	T;	otherwise	it	returns	nil.

Examples

The	following	example	rotates	the	selected	objects	30	degrees	about	the	axis
specified	by	points	p1	and	p2.

(setq	ss	(ssget))

(rotate3d	ss	p1	p2	30)

AutoLISP	support	for	the	rotate3d	function	is	implemented	with	the	use	of
the	SAGET	library.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

AutoLISP	Reference	Guide	>	Externally	Defined	Commands	>	

solprof
	
	
	
Creates	profile	images	of	three-dimensional	solids	(externally	defined:	solids
ObjectARX	application

(c:solprof	args	...)

Arguments

args

The	order,	number,	and	type	of	arguments	are	the	same	as	those	specified
when	issuing	SOLPROF	at	the	Command	prompt.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

	AutoLISP Functions
	Operators
	+ (add)
	- (subtract)
	* (multiply)
	/ (divide)
	= (equal to)
	/= (not equal to)
	< (less than)
	<= (less than or equal to)
	> (greater than)
	>= (greater than or equal to)
	~ (bitwise NOT)
	1+ (increment)
	1- (decrement)
	A Functions
	abs
	acad_colordlg
	acad_helpdlg
	acad-pop-dbmod
	acad-push-dbmod
	acad_strlsort
	acad_truecolorcli
	acad_truecolordlg
	acdimenableupdate
	acet-layerp-mode
	acet-layerp-mark
	acet-laytrans
	acet-ms-to-ps
	acet-ps-to-ms
	action_tile
	add_list
	alert
	alloc
	and
	angle
	angtof
	angtos
	append
	apply
	arx
	arxload
	arxunload
	ascii
	assoc
	atan
	atof
	atoi
	atom
	atoms-family
	autoarxload
	autoload
	B Functions
	Boole
	boundp
	C Functions
	caddr
	cadr
	car
	cdr
	chr
	client_data_tile
	close
	command
	cond
	cons
	cos
	cvunit
	D Functions
	defun
	defun-q
	defun-q-list-ref
	defun-q-list-set
	dictadd
	dictnext
	dictremove
	dictrename
	dictsearch
	dimx_tile
	dimy_tile
	distance
	distof
	done_dialog
	E Functions
	end_image
	end_list
	entdel
	entget
	entlast
	entmake
	entmakex
	entmod
	entnext
	entsel
	entupd
	eq
	equal
	error
	eval
	exit
	exp
	expand
	expt
	F Functions
	fill_image
	findfile
	fix
	float
	foreach
	function
	G Functions
	gc
	gcd
	get_attr
	get_tile
	getangle
	getcfg
	getcname
	getcorner
	getdist
	getenv
	getfiled
	getint
	getkword
	getorient
	getpoint
	getreal
	getstring
	getvar
	graphscr
	grclear
	grdraw
	grread
	grtext
	grvecs
	H Functions
	handent
	help
	I Functions
	if
	initdia
	initget
	inters
	itoa
	L Functions
	lambda
	last
	layoutlist
	layerstate-addlayers
	layerstate-delete
	layerstate-export
	layerstate-getlayers
	layerstate-has
	layerstate-import
	layerstate-rename
	layerstate-restore
	layerstate-save
	length
	list
	listp
	load
	load_dialog
	log
	logand
	logior
	lsh
	M Functions
	mapcar
	max
	mem
	member
	menucmd
	menugroup
	min
	minusp
	mode_tile
	N Functions
	namedobjdict
	nentsel
	nentselp
	new_dialog
	not
	nth
	null
	numberp
	O Functions
	open
	or
	osnap
	P Functions
	polar
	prin1
	princ
	print
	progn
	prompt
	Q Functions
	quit
	quote
	R Functions
	read
	read-char
	read-line
	redraw
	regapp
	rem
	repeat
	reverse
	rtos
	S Functions
	set
	set_tile
	setcfg
	setenv
	setfunhelp
	setq
	setvar
	setview
	sin
	slide_image
	snvalid
	sqrt
	ssadd
	ssdel
	ssget
	ssgetfirst
	sslength
	ssmemb
	ssname
	ssnamex
	sssetfirst
	startapp
	start_dialog
	start_image
	start_list
	strcase
	strcat
	strlen
	subst
	substr
	T Functions
	tablet
	tblnext
	tblobjname
	tblsearch
	term_dialog
	terpri
	textbox
	textpage
	textscr
	trace
	trans
	type
	U Functions
	unload_dialog
	untrace
	V Functions
	vector_image
	ver
	vl-acad-defun
	vl-acad-undefun
	vl-arx-import
	vl-bb-ref
	vl-bb-set
	vl-catch-all-apply
	vl-catch-all-error-message
	vl-catch-all-error-p
	vl-cmdf
	vl-consp
	vl-directory-files
	vl-doc-export
	vl-doc-import
	vl-doc-ref
	vl-doc-set
	vl-every
	vl-exit-with-error
	vl-exit-with-value
	vl-file-copy
	vl-file-delete
	vl-file-directory-p
	vl-file-rename
	vl-file-size
	vl-file-systime
	vl-filename-base
	vl-filename-directory
	vl-filename-extension
	vl-filename-mktemp
	vl-get-resource
	vl-list*
	vl-list->string
	vl-list-exported-functions
	vl-list-length
	vl-list-loaded-vlx
	vl-load-all
	vl-load-com
	vl-load-reactors
	vl-mkdir
	vl-member-if
	vl-member-if-not
	vl-position
	vl-prin1-to-string
	vl-princ-to-string
	vl-propagate
	vl-registry-delete
	vl-registry-descendents
	vl-registry-read
	vl-registry-write
	vl-remove
	vl-remove-if
	vl-remove-if-not
	vl-some
	vl-sort
	vl-sort-i
	vl-string->list
	vl-string-elt
	vl-string-left-trim
	vl-string-mismatch
	vl-string-position
	vl-string-right-trim
	vl-string-search
	vl-string-subst
	vl-string-translate
	vl-string-trim
	vl-symbol-name
	vl-symbol-value
	vl-symbolp
	vl-unload-vlx
	vl-vbaload
	vl-vbarun
	vl-vlx-loaded-p
	vlax-3D-point
	vlax-add-cmd
	vlax-create-object
	vlax-curve-getArea
	vlax-curve-getClosestPointTo
	vlax-curve-getClosestPointToProjection
	vlax-curve-getDistAtParam
	vlax-curve-getDistAtPoint
	vlax-curve-getEndParam
	vlax-curve-getEndPoint
	vlax-curve-getFirstDeriv
	vlax-curve-getParamAtDist
	vlax-curve-getParamAtPoint
	vlax-curve-getPointAtDist
	vlax-curve-getPointAtParam
	vlax-curve-getSecondDeriv
	vlax-curve-getStartParam
	vlax-curve-getStartPoint
	vlax-curve-isClosed
	vlax-curve-isPeriodic
	vlax-curve-isPlanar
	vlax-dump-object
	vlax-ename->vla-object
	vlax-erased-p
	vlax-for
	vlax-get-acad-object
	vlax-get-object
	vlax-get-or-create-object
	vlax-get-property
	vlax-import-type-library
	vlax-invoke-method
	vlax-ldata-delete
	vlax-ldata-get
	vlax-ldata-list
	vlax-ldata-put
	vlax-ldata-test
	vlax-make-safearray
	vlax-make-variant
	vlax-map-collection
	vlax-method-applicable-p
	vlax-object-released-p
	vlax-product-key
	vlax-property-available-p
	vlax-put-property
	vlax-read-enabled-p
	vlax-release-object
	vlax-remove-cmd
	vlax-safearray-fill
	vlax-safearray-get-dim
	vlax-safearray-get-element
	vlax-safearray-get-l-bound
	vlax-safearray-get-u-bound
	vlax-safearray-put-element
	vlax-safearray-type
	vlax-safearray->list
	vlax-tmatrix
	vlax-typeinfo-available-p
	vlax-variant-change-type
	vlax-variant-type
	vlax-variant-value
	vlax-vla-object->ename
	vlax-write-enabled-p
	vlisp-compile
	vlr-acdb-reactor
	vlr-add
	vlr-added-p
	vlr-beep-reaction
	vlr-command-reactor
	vlr-current-reaction-name
	vlr-data
	vlr-data-set
	vlr-deepclone-reactor
	vlr-docmanager-reactor
	vlr-dwg-reactor
	vlr-dxf-reactor
	vlr-editor-reactor
	vlr-insert-reactor
	vlr-linker-reactor
	vlr-lisp-reactor
	vlr-miscellaneous-reactor
	vlr-mouse-reactor
	vlr-notification
	vlr-object-reactor
	vlr-owner-add
	vlr-owner-remove
	vlr-owners
	vlr-pers
	vlr-pers-list
	vlr-pers-p
	vlr-pers-release
	vlr-reaction-name
	vlr-reaction-set
	vlr-reactions
	vlr-reactors
	vlr-remove
	vlr-remove-all
	vlr-set-notification
	vlr-sysvar-reactor
	vlr-toolbar-reactor
	vlr-trace-reaction
	vlr-type
	vlr-types
	vlr-undo-reactor
	vlr-wblock-reactor
	vlr-window-reactor
	vlr-xref-reactor
	vports
	W Functions
	wcmatch
	while
	write-char
	write-line
	X Functions
	xdroom
	xdsize
	Z Functions
	zerop
	Externally Defined Commands
	alignALIGN commandcommands:ALIGN
	calcommands:CAL
	mirror3dcommands:MIRROR3DMIRROR3D command
	rotate3dcommands:ROTATE3D
	solprofcommands:SOLPROFSOLPROF command

