
http://fincs.ahk4.net/scite4ahk/

Version	v3.0.06.01
SciTE	distribution	designed	for	AutoHotkey	-	made	by	fincs	-	Original
SciTE	made	by	Neil	Hodgson

Quick	Reference
Usage:

Opening	AutoHotkey	scripts
Working	with	AutoHotkey	scripts
Debugging	AutoHotkey	scripts
The	toolbar
Using	macros
Changing	settings
AutoHotkey	v2	Support

Editing	features:

Syntax	highlighting
Code	folding
Context	menu
Calltips	and	Autocomplete

Extending	the	editor:

Extensions
COM	interface

Tool	documentation:

SmartGUI	Creator	4.0
MsgBox	Creator
GenDocs	3.0
Scriptlet	Utility
TillaGoto

Changelog

v3.0.06.01	-	October	12,	2014
Changes	and	new	features:

Upgraded	to	SciTE/Scintilla	3.5.1.

AutoHotkey	v1.1.16	syntax	definition	updates.

AutoHotkey	v2.0-a056	syntax	definition	updates.

Added	'Run	selection'	context	menu	command	(requires	AutoHotkey
v1.1.17)

Bug-fixes:

AutoHotkey	v2	syntax	highlighting:	BIFs	in	command
syntax	(broken	by	v3.0.06)

v3.0.06	-	August	18,	2014
Changes	and	new	features:

Upgraded	to	SciTE/Scintilla	3.5.0.

Added	new	program	icon	[designed	by	kon].

Added	support	for	auto-completion	of	built-in	object	methods/properties
as	well	as	CallTips.

Debugger:	The	current	line	marker	color	is	now	translucid	instead	of
opaque	cyan.

AutoHotkey	v2:	added	object	command	syntax	support.

AutoHotkey	v2:	introduced	new	syntax	highlighting	styles	for	object
properties,	methods,	built-in	properties	and	built-in	methods.

Bug-fixes:

Minor	debugger	refactoring.

Toolbar	startup	stability	and	reliability	fixes.

v3.0.05.01	-	April	5,	2014
Changes	and	new	features:

Upgraded	to	SciTE/Scintilla	3.4.1.

Incremental	search	and	replace	were	disabled,	this	makes	the
'Find/Replace	Next'	button	useful	again.

An	'Unmark	All'	button	was	added	to	the	Find	command.

Bug-fixes:

Toolbar	startup	stability	and	reliability	fixes.

v3.0.05	-	March	23,	2014
Changes	and	new	features:

Added	AutoHotkey	v2	language	support	(enabled	when	a	v2	platform
is	selected).

Added	graphical	style	editor.

Upgraded	to	SciTE/Scintilla	3.4.0.

AutoHotkey	v1.1.14	syntax	definition	updates.

Added	new	style	format	that	is	easier	to	process	by	tools.

ActiveWindowInfo:	minor	enhancements	to	user	experience.

OpenInclude:	 %A_LineFile% 	is	now	supported.

Other	miscellaneous	improvements.

Bug-fixes:

Fixed	bug	that	broke	inner	folders	in	Extension	packages.

Other	miscellaneous	bug-fixes.

v3.0.04.01	-	December	24,	2013
Changes	and	new	features:

Upgraded	to	SciTE/Scintilla	3.3.7.

AutoHotkey	v1.1.13	syntax	definition	updates.

VisualStudio	is	now	the	default	style	(except	on	Windows	XP	due	to	its
lack	of	the	Consolas	font).

Bug-fixes:

New	extension:	Lua	scripts	are	now	created	without	UTF-8	BOM.

Toolbar:	minor	button	size	DPI	tweak.

v3.0.04	-	August	14,	2013
Changes	and	new	features:

Upgraded	to	SciTE/Scintilla	3.3.4.

Added	Extension	support	and	framework.

Rewritten	Active	Window	Info	in	script.

All	tools	now	obey	 default.text.font 	instead	of	hardcoding	Courier
New.

Scriptlet	Utility:	major	UI	redesign.

Bug-fixes:

Syntax	definition:	added	missing	 A_FileEncoding 	and	removed
#AllowSameLineComments .

MsgBox	Creator:	minor	bugfixes	and	cleanup.

Removed	functionality:

AutoScriptWriter,	due	to	it	being	outdated;	use	Pulover's	Macro	Creator
instead.

AutoHotkey.net	Tool,	due	to	the	discontinuation	of	said	service.

SplashImage	Maker,	due	to	uselessness.

Compile_AHK	II	support,	as	it	was	obsoleted	by	new	Ahk2Exe
functionality.

http://www.autohotkey.com/board/topic/79763-/

v3.0.03	-	June	21,	2013
Changes	and	new	features:

Upgraded	to	SciTE/Scintilla	3.3.3.

AutoHotkey	v1.1.11	support.

DPI	awareness	-	many	changes	to	make	SciTE4AutoHotkey	behave
correctly	on	non-96-DPI	systems.

Added	a	 default.text.font 	property	to	easily	set	the	default	text
font.

Bug-fixes:

A	bug	affecting	indentation	settings	was	fixed.

A	bug	affecting	breakpoint	filenames	was	fixed.

v3.0.02	-	January	20,	2013
Changes	and	new	features:

Upgraded	to	SciTE/Scintilla	3.2.4.

Added	 ;{ 	and	 ;} 	code	folding	support.

Added	experimental	(and	disabled	by	default)	AutoHotkey	v2	lexer.

Added	standalone	precompiled	version	of	SciTE4AutoHotkey's	custom
SciLexer.dll.

Added	new	program	icon	in	order	to	tell	apart	SciTE4AutoHotkey	from
other	SciTE	distributions.

Other	miscellaneous	improvements.

Bug-fixes:

Fixed	a	certain	updater	bug	that	affected	hotfixes.

Fixed	expression	lines	beginning	with	 (being	misdetected	as
continuation	sections.

Fixed	 { 	/	 } 	brace	matching.

Debugger:

Fixed	hovering	stability	issues.

Fixed	debugger	command	stability	issues.

Added	properties	for	controlling	maximum	object	children	and	maximum
data	to	retrieve.

Changed	the	object	inspection	window	to	support	infinitely	nested

objects.

v3.0.01.01	-	November	30,	2012
Changes	and	new	features:

Upgraded	to	GenDocs	v3.0-alpha004.
Added	 oSciTE.IsPortable ,	 oSciTE.UserDir 	and
oSciTE.Output(text) .

Added	debugger	configuration	support	(address/port,	stream	capturing
enabling).
The	internal	source	code	files	have	been	reorganized	in	order	to	fix
certain	failures	on	some	systems.
Other	miscellaneous	improvements.

Bug-fixes:

SciTE/Scintilla	is	now	compiled	with	VS2012	Update	1's	official	XP
targeting	toolchain	and	with	 /arch:IA32 .	This	fixes	the
incompatibility	with	several	older	CPUs.
Breakpoint	resetting	on	launch	now	works	again.
TillaGoto	now	correctly	parses	 /*	...	*/ 	comment	blocks.

v3.0.01	-	November	9,	2012
Upgraded	to	SciTE/Scintilla	3.2.3
Added:	AutoHotkey	v1.1.09	asynchronous	debugging	support
Added:	Support	for	debugging	already	running	scripts	(also
known	as	debugger	attaching/detaching)
Upgraded	to	GenDocs	v3.0-alpha003
Editing	fixes:

Support	for	the	old	 obj._BuiltInMethod() 	syntax	is	removed

else 	indenting	bug	fixed

Fixed:	Variable	dereferencing	autocomplete
TillaGoto	is	now	configurable	through	SciTEUser.properties,
including	listbox	sorting.
TillaGoto	and	autoupdates	can	now	be	turned	off	through
SciTEUser.properties
The	non-portable	build	of	SciTE	now	automatically	detects	the
AutoHotkey	installation	directory,	and	thus	it	can	be	installed	to
anywhere
The	internal	copy	of	AutoHotkey.exe	has	been	renamed	to
InternalAHK.exe	in	order	to	avoid	confusion.
New	COM	interface	method:	 oSciTE.OpenFile(filename)

Sweeping	changes	in	order	to	use	the	COM	interface	(including
TillaGoto)	instead	of	less	reliable	methods.
Double-clicking	on	an	empty	spot	in	the	tab	bar	now	opens	a	new
Untitled	document.
Other	miscellaneous	bugfixes	and	improvements

v3.0.00	-	July	22,	2012
Upgraded	to	SciTE/Scintilla	3.2.1
AutoHotkey	v1.1.08	support
Added:	auto-update	system
Temporarily	dropped	Windows	XP	SP2	support	(SP3	not	affected)
due	to	build	issues
COM	interface:	added	 oSciTE.ResolveProp()

Minor	overall	bugfixes	and	improvements

v3.0.00	(Release	Candidate)	-	December	24,	2011
Upgraded	to	SciTE/Scintilla	3.0.2
The	documentation	was	overhauled.
AutoHotkey	v1.1.05	support
Added:	Basic	breakpoint	persistence	support	(in	a	single
SciTE4AutoHotkey	session).
Added:	AutoHotkey	v2-alpha	platform	(<AutoHotkey
directory>\v2-alpha\<x86	or	x64>\AutoHotkey.exe),	with
debugging	support
Fixed:	The	global	Autorun	script	now	uses	the	correct	User	folder.
Fixed:	SmartGUI	was	writing	the	settings	file	to	the	wrong	directory.
Added:	SciTE	diagnostics	tool
OpenInclude	now	supports	 #Include	<LibName> .

Added:	Polish	language	support
Fixed:	Minor	AutoComplete/IntelliSense	errors	[thanks	Uberi	and
Lexikos]
TillaGoto	hotkey	changed	to	F12.
Removed	redundant	bookmark	hotkeys	(Ctrl+J,	Ctrl+K	and	Ctrl+E).
Changed:	bookmarks	are	now	saved	between	sessions.
Fixed:	ahk.lua	now	doesn't	delete	bookmarks.
Added	HatOfGod	and	tidRich_Zenburn	styles	[thanks	tidbit	and
budRich].

v3	beta	5(a)	-	April	9/10,	2011
A	bug	related	to	running	SciTE	as	admin	was	fixed.
Upgraded	to	SciTE/Scintilla	2.25
Latest	AutoHotkey_L	support	changes
Added	COM	automation	support
All	tools	(except	the	AutoHotkey.net	Tool)	now	use	COM	to	interface
with	SciTE
Updated	TillaGoto	to	its	latest	version
No	longer	compiling	the	toolbar,	thus	the	source	is	now	available!
Fixed	the	parameter	bug
Window	position	is	now	remembered	when	SciTE	is	closed
Files	menu	renamed	to	Tabs.
Fixed:	save	dialog	default	.ahk	extension
Fixed:	SmartGUI	was	writing	settings	to	the	wrong	directory.
AHK	lexer:	Now	treating	the	ternary	operators	(?	:)	as	operators
instead	of	identifier	characters.
Debugger:	Misc.	fixes
Debugger:	When	a	file	must	be	shown,	the	Debugger	now	looks	if	it's
already	opened	in	another	tab.
Debugger:	Added	variable	tooltips	on	hovering
Sources	are	now	on	GitHub
Added	default	codepage,	default	zoom	and	save	window	position
settings	to	the	settings	editor
Added	SciTE	Director	support
Added	macro	recording	support

v3	beta	4	-	November	8,	2010
Upgraded	to	SciTE/Scintilla	2.21
Added	portable	build
Now	using	an	internal	copy	of	AutoHotkey_L	Unicode
No	longer	bundling	nor	forcing	the	installation	of	AutoHotkey_L	and
Compile_AHK	II.
Debugger:	Added	object	support
Debugger:	Removed	variable	listing	warning
Debugger:	Stability	fixes
Debugger:	Now	using	MSXML	instead	of	xpath()

v3	beta	3	-	August	20,	2010
Upgraded	to	SciTE/Scintilla	2.20
Added	native	64-bit	builds	of	SciTE	and	Scintilla
Debugger	engine	changed	to	support	AutoHotkey_L	x64
Added	platform	system	that	allows	to	target	different	AutoHotkey
builds
Added	toolbar	button	to	switch	between	platforms
Added	hotkeys	to	debugging	commands
Added	Light	style

v2.1	beta	2	-	June	21,	2010
Upgraded	to	SciTE/Scintilla	2.12
Added	support	for	multiple	users
Added	multi-language	support
Added	English,	Spanish,	French,	German,	Italian,	Japanese	and
Simplified	Chinese	languages
Added	multi-style	system,	it's	now	easier	to	add/set/customize	styles
without	affecting	other	users/messing	with	the	installation
Added	Noir	(courtesy	of	pajenn)	and	Blank	styles
A	style/autobackup/language	settings	tool	was	added

v2.1	beta	1	-	June	3,	2010
Dropped	support	for	Windows	9x/ME/NT4/2000
Upgraded	to	SciTE/Scintilla	2.11
New	AutoHotkey	toolbar	that	places	itself	to	the	right	of	the	real
SciTE	toolbar
AutoHotkey_L	support:	script	debugger,	object	syntax	highlighting,
AutoComplete,	calltips
AutoIndent	system	rewritten	completely
Fixed	some	style-related	AutoComplete	bugs
Folding	bugs	were	fixed
All	tools	made	Unicode
Tools	are	no	longer	compiled
New	icons	for	all	tools
GenDocs	upgraded	to	2.1:	it	now	supports	AutoHotkey_L	object
"properties"	and	Unicode
Scriptlet	Utility	now	places	scriptlets	at	My
Documents\AutoHotkey\SciTE\Scriptlets
AutoHotkey.net	Utility	now	places	settings	file	at	My
Documents\AutoHotkey\SciTE\Settings

v2.0	-	March	1,	2009
Initial	release.

Opening	AutoHotkey	scripts
Opening	AutoHotkey	scripts	is	a	piece	of	cake.	There	are	two	methods	to
do	so:

The	Explorer	right-click	method
If	you	used	the	installer	and	set	SciTE	as	the	default	.ahk	editor,	just
right-click	the	script	you	want	to	open	and	select	"Edit	Script".

The	open	dialog	method
Open	SciTE4AutoHotkey	then	go	to	the	File	menu,	then	click	on	Open.
Use	the	standard	Windows	dialog	to	select	the	script	you	want	to	open,
then	click	on	the	Open	button.

Working	with	AutoHotkey	scripts

Running	AutoHotkey	scripts
Running	AutoHotkey	scripts	can	be	done	with	a	simple	keypress	(F5)	or
by	clicking	the	Run	button	in	the	toolbar.

Using	the	AutoHotkey	Help
Looking	up	a	certain	command/function	in	the	help	file	is	very	simple.	In
order	to	do	so,	select	said	command/function	and	press	F1.

Compiling	AutoHotkey	scripts
Press	Ctrl+F7	to	compile	your	script	or	select	Tools	>	Compile	in	the
menu	bar.

Selecting	the	AutoHotkey	version	(advanced)
You	can	choose	which	build	of	AutoHotkey	you	want	to	use	for	running
and	compiling	scripts	by	clicking	on	the	platform	selection	button	in	the
toolbar	().	This	is	useful	if	you	need	to	check	your	scripts'	compatibility
with	said	builds.

Currently	SciTE4AutoHotkey	lets	you	use	the	following	builds:

ANSI:	it	refers	to	the	ANSI	build:	 %AhkDir%\AutoHotkeyA32.exe
Unicode:	it	refers	to	the	Unicode	build:
%AhkDir%\AutoHotkeyU32.exe

x64:	it	refers	to	64-bit	(Unicode)	build:
%AhkDir%\AutoHotkeyU64.exe

If	AutoHotkey	v2-alpha	is	installed,	the	following	platforms	are	also
available	(although	without	support	for	compiling	scripts	due	to	the	lack	of
publicly	released	self-contained	binaries):

v2(x86):	requires	 %AhkDir%\v2-alpha\x86\AutoHotkey.exe 	to
be	present.
v2(x64):	requires	 %AhkDir%\v2-alpha\x64\AutoHotkey.exe 	to
be	present.

Debugging	AutoHotkey	scripts
You	can	debug	your	scripts.	In	order	to	do	so,	either	press	F7,	go	to	Tools
>	Debug	or	click	on	the	toolbar	button.	The	SciTE	debugger	will	start	up
and	you'll	enter	Debugging	mode.

Basic	debugging	controls
In	Debugging	mode	you	can	control	the	execution	of	your	script.	When
the	script	is	paused,	the	next	line	that	will	be	executed	is	highlighted.
These	are	the	available	commands	(all	can	be	found	in	the	toolbar):

Run	(F5).	Execution	is	paused	when	a	breakpoint	is	reached	(see
below).
Pause	script.
Stop	script.
Run	current	line	of	code	(F10).
Run	until	next	line	of	code	(F11).
Callstack	(see	below).
Variable	list	(see	below).

Breakpoints
Breakpoints	are	pausing	points	in	a	program.	If	AutoHotkey	is	about	to
execute	a	line	that	has	a	breakpoint,	execution	is	paused.	In	order	to	set
a	breakpoint	on	a	line,	click	on	the	margin	to	the	right	of	the	line	numbers:

Inspecting	variable	contents
You	can	retrieve	the	contents	of	a	variable	and	even	modify	them.	In
order	to	do	so,	find	an	instance	of	the	variable	name,	right	click	it	(or
select	it	and	right	click)	then	choose	"Inspect	variable..."	to	reveal	the
Variable	inspection	dialog.	If	the	variable	contains	an	object,	you'll	be
presented	with	the	Object	inspection	dialog	instead.	In	it,	you	can	double-
click	a	field	to	inspect	and	edit	it.

	

Listing	all	variables
You	can	also	list	all	variables	by	clicking	on	the	appropriate	toolbar
button.

In	order	to	inspect	a	variable,	double	click	on	it.

Viewing	the	callstack
Sometimes	it	is	useful	to	know	the	path	the	script	has	taken.	This	list	is
called	the	callstack.	In	order	to	see	it,	click	on	the	appropriate	toolbar
button.

You	can	go	to	each	of	the	script	positions	by	double-clicking	them	in	the
callstack	viewer.

Debugging	currently	running	scripts
It	is	possible	to	debug	a	script	that	is	already	running.	In	order	to	do	so	go
to	Tools	>	"Debug	a	currently	running	script...",	then	a	window	should
appear	with	a	list	of	all	scripts	available	for	debugging.	Double-click	the
one	you	want	to	debug.

The	toolbar

The	AutoHotkey	toolbar	is	placed	right	to	the	SciTE	toolbar.	Besides
providing	easy	access	to	scripting	tools	and	scriptlets	it	also	takes	care	of
many	AutoHotkey-specific	features	such	as	debugger	actions	and
autorun.	The	platform	selection	button	()	allows	you	to	select	which
AutoHotkey	build	you	want	to	use.	Right	click	on	the	to	reveal	a	context
menu:

Extensions	submenu:

Extension	manager:	opens	the	Extension	manager.
Reload	extensions:	it	reprocesses	the	extension	metadata.

Edit	User	toolbar	properties:	it	allows	you	to	add	custom	icons	to	the
toolbar.
Edit	User	autorun	script:	it	allows	you	to	run	AutoHotkey	code	when
SciTE	starts	up.
Edit	User	Lua	script:	it	allows	you	to	run	custom	SciTE	Lua	code.

Edit	Global	toolbar	properties,	Edit	Global	autorun	script,	Edit	platform
properties	and	Reload	platforms:	these	are	developer	commands	that
should	not	be	used	by	the	end	user.
Reload	toolbar	[with	autorun]:	it	relaunches	the	toolbar,	updating	the
icons	which	may	have	been	edited	by	the	user.
Check	for	updates:	it	checks	if	there	are	new	updates	for
SciTE4AutoHotkey.

These	commands	are	explained	in	Changing	settings.

Using	macros
SciTE4AutoHotkey	supports	recording	macros	and	playing	them	back.	In
order	to	perform	these	operations,	go	to	the	Tools	menu	-	there	are	four
macro-related	commands:

List	Macros:	it	displays	a	list	of	all	available	macros,	and	it	allows	you
to	select	a	macro	for	future	execution.
Run	Current	Macro:	it	runs	the	macro	that	had	been	selected	before.
Record	Macro:	it	begins	macro	recording
Stop	Recording	Macro:	it	ends	macro	recording	and	lets	you	give	it	a
name.

Changing	settings
If	you	want	to	quickly	change	some	specific	settings,	go	to	Tools	>
"SciTE4AutoHotkey	settings...".

Here	you	can	change	the	display	language,	the	syntax	highlighting	style,
the	default	script	codepage,	the	default	zoom	and	turn	on/off	the	auto-
backup	feature	and	window	position	remembering.

By	clicking	on	the	Edit	Style	button,	the	built-in	Style	Editor	will	show	up:

With	this	editor,	you	can	tweak	the	syntax	highlighting	configuration	to
your	liking.	All	styles	inherit	settings	from	the	Base	Style	(except	itself),
hence	the	tri-state	checkboxes.	In	order	to	change	a	color,	click	on	it.

However,	there	are	many	more	settings	to	customize.	They	must	be
configured	using	SciTE	property	files.	The	recommended	file	to	edit	is	the
User	properties	file	(SciTEUser.properties).	You	can	open	it	by	going	to
Options	>	"Open	User	properties".	SciTE	property	lines	take	this	format:

#	This	is	a	comment

variable.name=value

There	MUST	NOT	be	spaces	around	the	equals	(=)	sign.

AutoHotkey	v2	Support
SciTE4AutoHotkey	supports	editing	AutoHotkey	v2	scripts.	To	enable	this
feature,	 %AutoHotkeyDir%\v2-alpha\x86\AutoHotkey.exe 	(or
x64)	must	exist.	After	this,	select	the	v2	platform	using	the	platform
selector	(),	and	.ahk	files	will	now	be	detected	as	AutoHotkey	v2	files.
This	setting	takes	immediate	effect	and	does	not	require	restarting	the
editor.	The	following	items	are	supported	for	AutoHotkey	v2	Code:

Highly	Accurate	Syntax	Highlighting	that	includes	support	for:

Command	and	Function	syntax	(including	Object	command	syntax)
Flow	of	Control	statements
Line	and	block	comments
#Directives
Escape	sequences	in	strings
Nested	 %expressions% 	(up	to	5	levels	of	nesting),	including
command	argument	force-expression	(%	Expr)	mode

Continuation	sections	of	all	kind,	options	are	even	detected
Built-in	Variables	and	Built-in	Functions
Object	Methods	and	Object	Properties
Built-in	Object	Methods	and	Built-in	Object	Properties
Hotkeys,	Hotstrings,	Remaps	and	Labels

Folding
AutoComplete	and	Calltips:	the	latter	contain	a	short	description	of	all
Built-in	Functions.
Interactive	Debugging
Launching	scripts	using	the	Run	/	Quick	Run	command.

http://ahkscript.org/v2/

Syntax	highlighting
SciTE4AutoHotkey	is	a	syntax-highlighting	editor.	This	means	every
different	type	of	word	is	colored	differently.

If	you	want	to	change	the	syntax	highlighting	colors	(style)	see	Changing
settings.

Here	is	a	sample	of	the	Classic	style:

-	/*				***
			*	SciTE4AutoHotkey	v3	syntax	highlighting	demo				*
			*	August	19,	2010	-	fincs																									*

		*/
		
		;	Normal	comment
-	/*
		Block	comment
		*/
		
		;	Directives,	keywords
		#SingleInstance	Force
		#NoTrayIcon
		
		;	Command,	literal	text,	escape	sequence
		MsgBox,	Hello	World	`;	This	isn't	a	comment
		
		;	Operators
		Bar	=	Foo		;	operators
		Foo	:=	Bar	;	expression	assignment	operators
		
		;	String
		Var	:=	"This	is	a	test"
		
		;	Number
		Num	=	40	+	4
		
		;	Dereferencing
		Foo	:=	%Bar%
		
		;	Flow	of	control,	built-in-variables,	BIV	dereferencing
		if	true
						MsgBox,	This	will	always	be	displayed
		Loop,	3
						MsgBox	Repetition	#%A_Index%
		
		;	Built-in-function	call
		MsgBox	%	SubStr("blaHello	Worldbla",	4,	11)
		
		if	false
-	{
						;	Keys	and	buttons

Code	folding
Code	folding	is	a	feature	that	contracts	code	sections	making	the	code
easier	to	follow.	Click	on	the	+	and	-	symbols	on	the	margin	to	expand
and	contract	code	blocks,	respectively.

Context	menu
If	you	right-click	on	the	edit	pane,	the	following	menu	will	appear:

The	first	items	are	standard	to	all	text	editors.

Description	of	the	last	items:

Open	#Include:	it	opens	the	file	pointed	by	the	current	#Include	or
#IncludeAgain	line.
Add	scriptlet:	see	Scriptlet	Utility.
Run	selection:	executes	the	selection	as	AutoHotkey	code.	Requires
AutoHotkey	v1.1.17	or	later.
Inspect	variable:	see	Debugging	AutoHotkey	scripts.

Calltips	and	AutoComplete
When	coding,	little	pop-up	boxes	(AutoComplete	boxes)	will	appear
containing	completion	information	that	can	save	you	from	typing	the
whole	name	of	the	command	or	function	you're	typing:

If	you	press	Enter,	the	selected	word	will	be	automatically	inserted.

Additionally,	a	help	info	pop-up	(calltip)	shows	when	you	type	the	comma
or	the	space	for	a	command	or	the	left	parenthesis	symbol	for	a	function:

Extensions	 [v3.0.04+]

SciTE4AutoHotkey's	functionality	and	behaviour	can	be	extended
through	the	use	of	Extensions.	Extensions	are	packages	that	contain
setting	files,	Lua	scripts	and	other	files	necessary	in	order	to	provide	such
functionality	and	behaviour.	They	are	distributed	as	compressed
packages	(.s4x)	that	are	decompressed	when	the	extension	is	to	be
installed.

Managing	Extensions
In	order	to	manage	your	Extensions,	right-click	on	the	toolbar	and	select
"Extensions	>	Extension	Manager".	The	Extension	Manager	window	will
pop	up.

You	can	check	and	uncheck	each	extension	in	order	to	enable/disable
them.
"Install	extension"	allows	you	to	install	or	upgrade	an	extension.
"Remove	extension"	allows	you	to	remove	one	or	more	extensions.
"Create	extension"	allows	you	to	create	your	own	extension.	See
Developing	Extensions	for	more	details.
"Export	extension"	allows	you	to	create	an	installable	Extension
package	(.s4x)	in	order	to	distribute	your	extension.	See	Developing
Extensions	for	more	details.

In	order	to	apply	changes,	close	the	window.

Developing	Extensions
Extensions	have	an	internal	package	name	which	is	intended	to	be
unique	for	all	extensions.	The	name	should	be	a	valid	file	name	and
should	not	contain	spaces.	It	is	recommended	that	it	be	lowercase.	The
recommended	way	to	name	your	extensions	is:
usr.author.extension_name .

Extensions	are	stored	in	the	 %SciTEProfileDir%\Extensions
folder,	each	in	its	own	subfolder	(named	after	the	internal	package
name).	Each	extension	has	a	 manifest.ini 	file	which	contains
information	about	the	extension:

[Extension] 	section	(all	entries	mandatory):

Name :	Specifies	the	name	of	the	extension.

Author :	Specifies	the	author	of	the	extension.

Version :	Specifies	the	version	number.	It	should	be
lexicographically	comparable	(e.g.	Semantic	versioning).

[Behaviour] 	section	(all	entries	optional):

Properties :	Specifies	a	pipe	(|)	delimited	list	of	property	files
(relative	to	the	extension	folder	and	without	the	 .properties
extension)	to	apply	to	SciTE.
LuaScript :	Specifies	the	filename	of	the	Lua	script	(relative	to
the	extension	folder)	to	load	into	SciTE.
Toolbar :	Specifies	the	filename	of	a	toolbar	properties	file
(relative	to	the	extension	folder)	containing	toolbar	buttons	to
show	in	the	AutoHotkey	Toolbar.
LanguageMenu :	Specifies	text	to	be	added	to	the

menu.language 	SciTE	property.	Can	contain
$(dereferences) .

FileFilter :	Specifies	text	to	be	added	to	both	the
open.filter 	and	 save.filter 	SciTE	properties.	Can
contain	 $(dereferences) .

The	"Create	extension"	dialog	allows	you	to	easily	start	writing	an
extension;	providing	template	code.	When	the	manifest	is	changed,	you
need	to	make	SciTE4AutoHotkey	reload	it	by	right-clicking	on	the	toolbar
then	selecting	"Extensions	>	Reload	extensions".

Utilities	Available	in	Extensions

Lua	scripts

The	following	API	is	additionally	available:

RegisterEvents(eventTable)	--	Chains	events	

specified	by	the	table.	See	the	Lua	script	template	

for	more	details.

CancelAutoComplete()	--	Cancels	the	AutoComplete	

popup.

GetWord(pos)

GetCurWord()

getPrevLinePos()

isInTable(table,	elem)

GetFilteredLine(lineN,	style1,	style2)	--	Retrieves	

the	text	of	the	specified	line	that	is	not	styled	

using	the	specified	numbers.

FileExists(fileName)

g_SettingsDir	--	Global	variable,	points	to	

%SciTEProfileDir%\Settings.

SciTE	properties

The	following	properties	are	additionally	available:

extensions.dir 	-	Path	to	 %SciTEProfileDir%\Extensions .

Toolbar	definition	files

The	following	dereferences	are	additionally	available:

%EXTDIR% 	-	Path	to	the	extension's	folder.

COM	interface	 [v3	beta	5+]

You	can	interface	with	SciTE	programmatically	by	using	COM.

On	startup,	SciTE	registers	a	COM	IDispatch	object	under	the	AppID	of
SciTE4AHK.Application	that	you	can	retrieve	using	ComObjActive()	or
similar.	Here's	a	sample	AutoHotkey	script	to	get	the	current	file:

oSciTE	:=	ComObjActive("SciTE4AHK.Application")

MsgBox	%	oSciTE.CurrentFile

List	of	methods	and	(GET-only)	properties:

Version
Gets	the	current	SciTE4AutoHotkey	version.

oSciTE.Version

SciTEHandle
Gets	the	HWND	of	the	SciTE	window.

oSciTE.SciTEHandle

UserDir	 [v3.0.01.01+]

Retrieves	the	user	profile	directory.

oSciTE.UserDir

IsPortable	 [v3.0.01.01+]

Gets	whether	the	SciTE	installation	is	portable	or	not.

oSciTE.IsPortable

Message()
Sends	a	message	to	either	SciTE	or	the	toolbar.

msg The	message	number	to	send.

wParam (Optional)	The	wParam	of	the	message.	If	omitted,
defaults	to	zero.

lParam (Optional)	The	lParam	of	the	message.	If	omitted,	defaults
to	zero.

If	the	message	number	is	greater	or	equal	than	0x1000,	it	is	sent	to	the
toolbar	using	PostMessage.	Else,	it's	sent	to	SciTE	using
SendMessage.

oSciTE.Message(msg	[,	wParam,	lParam])

ReloadProps()
Reloads	all	SciTE	property	files.

oSciTE.ReloadProps()

SciTEDir	 [v3.0.00	RC+]

Returns	the	SciTE4AutoHotkey	installation	directory.

oSciTE.SciTEDir

CurrentFile
Gets	the	full	path	of	the	currently	active	file.

oSciTE.CurrentFile

OpenFile()	 [v3.0.01+]

Opens	a	file	in	SciTE.

filename The	file	to	open.

oSciTE.OpenFile(filename)

DebugFile()
Opens	a	file	if	necessary	and	starts	a	debugging	session.

filename The	file	to	debug.

oSciTE.DebugFile(filename)

Tabs
Gets	a	TabList	object	containing	the	filenames	of	all	currently	opened
tabs:

Returns A	TabList	object:

oTabs	:=	oSciTE.Tabs

Array
Retrieves	the	tab	list	as	a	SafeArray.

oTabs.Array

List
Retrieves	the	tab	list	as	a	 `n -delimited	list.

oTabs.List

Count
Retrieves	the	number	of	tabs.

oTabs.Count

SwitchToTab()
Switches	to	the	specified	tab.

tabidx Tab	number	(zero	based).

oSciTE.SwitchToTab(tabidx)

Document
Gets	the	whole	text	of	the	current	file.

oSciTE.Document

Selection
Gets	the	current	selection.

oSciTE.Selection

InsertText()
Inserts	the	specified	text	at	the	specified	position.

text The	text	to	insert.

wParam (Optional)	The	position	at	which	insert	the	text.	If	omitted,
the	current	caret	position	is	used	instead.

oSciTE.InsertText(text	[,	pos])

ActivePlatform
Gets	the	name	of	the	currently	selected	platform.

oSciTE.ActivePlatform

SetPlatform()
Selects	the	current	platform.

platform The	name	of	the	platform	to	set.

oSciTE.SetPlatform(platform)

SendDirectorMsg()
Sends	a	message	to	SciTE	using	the	Director	interface.

message The	message	to	send.

oSciTE.SendDirectorMsg(message)

http://www.scintilla.org/SciTEDirector.html

SendDirectorMsgRet()
Same	as	above,	but	allows	for	getting	a	return	value.

message The	message	to	send.

Returns A	COM	object	with	two	properties:	 verb 	and	 value .

oSciTE.SendDirectorMsgRet(message)

SendDirectorMsgRetArray()
Same	as	above,	but	allows	for	getting	an	array	as	the	return	value.

message The	message	to	send.

Returns A	SafeArray	of	COM	objects	with	two	properties:	 verb
and	 value .

oSciTE.SendDirectorMsgRet(message)

ResolveProp()	 [v3.0.00+]

Retrives	the	value	of	a	property	key,	resolving	$(dereferences)	in	the
process.

propname The	name	of	the	property	key	to	retrieve.

Returns The	value	of	the	property	key.

oSciTE.ResolveProp(propname)

Output()	 [v3.0.01.01+]

Adds	text	to	SciTE's	output	pane.

text The	text	to	add.

oSciTE.Output(text)

SmartGUI	Creator	4.0
SmartGUI	Creator	is	a	WYSIWYG	AutoHotkey	GUI	editor.

The	build	of	SmartGUI	Creator	bundled	with	SciTE4AutoHotkey	has
some	minor	modifications:

The	"Copy	to	Clipboard"	functionality	has	been	replaced	with	an
"Insert	into	SciTE"	functionality.
The	final	script	generation	routine	has	been	edited.
The	"Open"	feature	has	been	removed.
Unicode	GUIs	are	supported.

To	start	SmartGUI	click	on	its	icon	in	the	toolbar	().

After	clicking	on	"Yes",	the	generated	GUI	code	appears:

http://www.autohotkey.net/~rajat/SGUI/index.html

MsgBox	Creator
Click	on	its	icon	in	the	toolbar:	

You	can	easily	choose	the	options	for	your	MsgBox.

GenDocs	3.0-alpha004
GenDocs	is	a	utility	for	easily	creating	documentation	for	AutoHotkey
libraries.	It	supports	the	following	structures:

Functions
Pages
Classes

Constructors
Methods
Properties
Inner	classes

GenDocs	works	via	specially-crafted	comment	blocks.	For	more
information,	look	at	the	example	below.

GenDocs-flavored	Markdown
GenDocs	uses	a	stripped	down	version	of	Markdown,	which	supports:

Paragraphs:	blocks	of	text	delimited	by	blank	lines.	Equivalent	to
HTML	 <p>...</p> .

In-paragraph	line	breaks:	end	a	line	with	two	spaces.	Equivalent	to
HTML	
 .

Headings:	start	a	line	with	up	to	three	hash	(#)	characters,	followed
by	space.	Equivalent	to	HTML	 <hN>...</hN> .

Emphasis	marks:	 *...* .	Equivalent	to	HTML	

Strong	emphasis	marks:	 **...** .	Equivalent	to	HTML
... .

Inline	code	marks:	 `...` .	Equivalent	to	HTML	 <code>...
</code> .

Code	sections:	unlike	standard	Markdown,	they	use	the	blockquote
syntax:	blocks	of	text	whose	lines	start	with	 > 	followed	by	a	space.

Unordered	lists:	lines	that	start	with	 * .	Equivalent	to	HTML	 ...
...... .

Ordered	lists:	lines	that	start	with	a	number,	dot	and	space	(e.g.	 1.);
or	letter,	dot	and	space	(e.g.	 a.).	Equivalent	to	HTML	 ...
 	and	 <ol	style="list-style-type:	lower-
alpha">... 	respectively.

Escape	sequences:	the	sequences	 * ,	 \` ,	 \[,	 \] ,	 \! 	and	 \\
are	recognized,	and	yield	literal	characters.
Links:	 [Link	text](Link	URL) .	Equivalent	to	HTML	

Images:	 ![Image	ALT	text](Image	file	name) .	Equivalent	to

HTML	 .

Running	GenDocs
Open	the	script	you	want	to	generate	the	documentation	for,	then	click	on
its	icon	in	the	toolbar	()	then	on	the	Generate	button.

Documentation	is	always	saved	on	the	folder
%SelectedScriptDir%\%SelectedScriptName%-doc.

Example

/*!

	 Library:	Test	library,	version	1.0

	 	 This	library	does	something

	 	

	 	 or	maybe	not!		

	 	 In-paragraph	line	breaks	work

	 Author:	fincs

	 License:	WTFPL

*/

/*!

	 Page:	Test	Page

	 Filename:	TestPage

	 Contents:	@file:TestPage.md

*/

/*!

	 Function:	something(a,	b	[,	c])

	 	 something()	does	something	:)

	 Parameters:

	 	 a	-	Something

	 	 				>	MsgBox	Yay,	this	works?!	;	

comment!

	 	 b	-	Something	else

	 	 c	-	(Optional)	Even	more	stuff

	 Remarks:

	 	 Meow.

	 Returns:

	 	 Dinner,	really	:)

	 Extra:

	 	 ###	It	looks	like	everybody's	been	

taken	to	Tykogi	Tower!

	 	 Oh,	my!

	 Throws:

	 	 Stuff	if	stuff

*/

something(a,	b,	c="")

{

}

/*!

	 Class:	MyClass

	 	 Provides	an	interface	to	*dinner*

	 Inherits:	OtherClass

	 Example:	@file:TestExample.ahk

*/

class	MyClass	extends	OtherClass

{

	 /*!

	 	 Constructor:	(a)

	 	 	 Creates	a	MyClass	object.

	 	 Parameters:

	 	 	 a	-	Something

	 */

	 __New(a)

	 {

	 }

	

	 /*!

	 	 Method:	Hello()

	 	 	 Displays	hello	world	

message.

	 */

	 Hello()

	 {

	 }

	

	 __Get(m,	p*)

	 {

	 	 return	this["get_"	m](p*)

	 }

	 __Set(m,	ByRef	v,	p*)

	 {

	 	 return	this["set_"	m](v,	p*)

	 }

	

	 /*!

	 	 Property:	Something	[get/set]

	 	 	 It's	the	something	of	a	

something

	 	 Value:

	 	 	 The	something	to	set

	 	 Remarks:

	 	 	 Automagically	dinner

	 */

	

	 get_Something()

	 {

	 }

	

	 set_Something(ByRef	v)

	 {

	 }

	

	 /*!

	 	 Class:	Meow

	 	 	 What	do	you	want	me	to	

do?!?!

	 	 @UseShortForm

	 	 Example:

	 	 	 >	MsgBox	Meow	example	;	

Testing

	 */

	 class	Meow

	 {

	 	 /*!

	 	 	 Method:	Hello([msg])

	 	 	 	 Displays	a	greeting	

message.

	 	 	 Parameters:

	 	 	 	 msg	-	(Optional)	The	

message	to	display.	Defaults	to	"Hello,	world!".

	 	 	 Returns:	Absolutely	nothing	

:)

	 	 	 Throws:	Again,	nothing	:)

	 	 */

	 	 Hello(msg="Hello,	world!")

	 	 {

	 	 	 MsgBox,	%	msg

	 	 }

	 	

	 	 /*!

	 	 	 Class:	MoreNesting

	 	 	 	 Nesting	is	so	much	

fun!

	 	 	 Example:

	 	 	 	 >	MsgBox	MoreNesting	

example	;	Testing

	 	 */

	 	

	 	 class	MoreNesting

	 	 {

	 	 	 /*!

	 	 	 	 Property:	HasDinner	

[get]

	 	 	 	 	 Does	this	

object	have	dinner?

	 	 	 */

	 	 	 __Get(m)

	 	 	 {

	 	 	 	 if	m	=	HasDinner

	 	 	 	 	 return	true

	 	 	 }

	 	 }

	 	

	 	 /*!

	 	 	 End	of	class

	 	 */

	 }

	 /*!

	 	 End	of	class

	 */

	 /*!

	 	 Class:	InnerCls

	 	 	 This	time	it's	dinnerish!

	 	 @UseShortForm

	 */

	 class	InnerCls

	 {

	 	 /*!

	 	 	 Constructor:	(params...)

	 	 	 Parameters:

	 	 	 	 params	-	The	

parameters	to	use	to	create	the	object.

	 	 	 Throws:	I	have	no	clue!

	 	 */

	 	 __New(prm*)

	 	 {

	 	 }

	 }

	 /*!

	 	 End	of	class

	 */

}

/*!

	 End	of	class

*/

Scriptlet	Utility
The	Scriptlet	Utility	is	a	tool	that	allows	you	to	quickly	access	code
snippets	and	insert	them	into	the	script	you	are	writing.	To	open	it,	click
on	its	icon	in	the	toolbar	().

The	New	button	creates	a	new	scriptlet.
The	Rename	button	renames	the	selected	scriptlet.
The	Delete	button	deletes	the	selected	scriptlet.
The	"Add	to	toolbar"	attaches	a	new	button	to	the	toolbar	that	inserts
the	selected	scriptlet	into	the	script.
The	"Insert	into	SciTE"	inserts	the	scriptlet	into	the	script	you	are
editing.
The	"Save"	button	saves	any	modifications	you	made	to	the	selected
scriptlet.
The	"Open	in	SciTE"	button	opens	the	scriptlet	in	SciTE.

Using	attached	toolbar	scriptlets
Fortunately,	it's	easy	enough.	Find	the	scriptlet	you	want	in	the	toolbar	(
)	and	click	it.

Adding	selected	blocks	of	code	to	the	scriptlet
database
Select	a	region	you	want	to	add	as	scriptlet,	open	the	context	menu	then
click	on	"Add	Scriptlet".

TillaGoto
TillaGoto	is	a	tool	that	allows	you	to	quickly	list	all	functions,	labels	and
hotkeys	(FLHs)	in	a	script	and	go	to	their	definitions.	In	order	to	bring	up
the	FLH	list,	press	F12:

You	can	also	go	to	a	FLH	by	middle-clicking	on	an	instance	of	its	name	in
the	script.	If	you	want	to	go	back	to	where	you	left	off,	press	Alt-Left.	In	a
similar	way,	Alt-Right	takes	you	back	to	the	FLH	definition.

Software	License

Scintilla	and	SciTE

Copyright	1998-2014	by	Neil	Hodgson	

<neilh@scintilla.org>

All	Rights	Reserved

Permission	to	use,	copy,	modify,	and	distribute	this	

software	and	its

documentation	for	any	purpose	and	without	fee	is	

hereby	granted,

provided	that	the	above	copyright	notice	appear	in	

all	copies	and	that

both	that	copyright	notice	and	this	permission	

notice	appear	in

supporting	documentation.

NEIL	HODGSON	DISCLAIMS	ALL	WARRANTIES	WITH	REGARD	TO	

THIS

SOFTWARE,	INCLUDING	ALL	IMPLIED	WARRANTIES	OF	

MERCHANTABILITY

AND	FITNESS,	IN	NO	EVENT	SHALL	NEIL	HODGSON	BE	

LIABLE	FOR	ANY

SPECIAL,	INDIRECT	OR	CONSEQUENTIAL	DAMAGES	OR	ANY	

DAMAGES

WHATSOEVER	RESULTING	FROM	LOSS	OF	USE,	DATA	OR	

PROFITS,

WHETHER	IN	AN	ACTION	OF	CONTRACT,	NEGLIGENCE	OR	

OTHER

TORTIOUS	ACTION,	ARISING	OUT	OF	OR	IN	CONNECTION	

WITH	THE	USE

OR	PERFORMANCE	OF	THIS	SOFTWARE.

Everything	else

Copyright	2007-2014	by	fincs	(@	autohotkey.com	

forum)

This	program	is	free	software.	It	comes	without	any	

warranty,	to

the	extent	permitted	by	applicable	law.	You	can	

redistribute	it	and/or

modify	it	under	the	terms	of	the	WTFPL,	Version	2,	

as	published	by

Sam	Hocevar.	The	full	license	text	can	be	found	at	

http://www.wtfpl.net/txt/copying/.

http://www.wtfpl.net/txt/copying/

Acknowledgements
Without	these	people	this	program	wouldn't	have	existed.	Thanks	to:

Neil	Hodgson	for	creating	Scintilla	and	SciTE.

Chris	Mallett	for	designing,	making	and	spawning	the	awesome	software
that	is	AutoHotkey.

Steve	Gray	(Lexikos)	for	doing	a	sterling	job	at	continuing	development
of	AutoHotkey	where	Chris	left	off,	providing	extremely	valuable	insight
and	many	other	things.

Philippe	Lhoste	for	programming	the	original	LexAHK1	lexer.

The	AutoHotkey	community	for	programming	some	tools	and	being
incredibly	nice:

Rajat:	SmartGUI	Creator	and	SplashImage	Maker.
TheGood:	TillaGoto
ladiko:	Compile_AHK	II

Ice_Tea,	Tuncay	and	kon	for	the	logos.

http://www.autohotkey.com/board/topic/8813-/

	Introduction
	Changelog
	License
	Credits

