
Overview
	
	
	

Topics	in	this	section

Introduction
Relationship	to	MapGuide
Geospatial	Platform	API	Documentation
Setting	Up	Visual	Studio
Sample	Applications

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Introduction
	
	
	

The	AutoCAD	Map	3D	2009	Geospatial	Platform	API	is	used	for	managing
geospatial	data	in	a	map.	It	shares	many	classes	and	methods	with	Autodesk
MapGuide®	Enterprise	and	MapGuide	Open	Source,	so	applications	written	for
one	product	can	work	in	another	with	minimal	modification.

The	Geospatial	Platform	API	is	not	the	same	as	the	AutoCAD	Map	3D
ObjectARX	.NET	API.	For	details	about	this	API	see	the	ObjectARX	.NET
Developer’s	Guide	and	the	ObjectARX	.NET	API	Reference.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Relationship	to	MapGuide
	
	
	

Many	parts	of	the	Geospatial	Platform	API	are	shared	between	AutoCAD	Map
3D	and	MapGuide	Web	Server	Extensions.	There	are	differences	in	the	products,
though,	that	affect	how	the	API	is	used.

The	MapGuide	API	is	designed	to	be	used	in	a	web	server	environment,	and	is
available	in	PHP,	Java,	and	.NET.	AutoCAD	Map	3D	is	designed	to	be	used	in	a
desktop	environment	and	exposes	only	a	.NET	API.

AutoCAD	Map	3D	stores	some	resource	information	directly	in	the	DWG	file,
while	MapGuide	uses	an	external	repository.	This	is	explained	in	more	detail	in
Resources.	The	MapGuide	repository	is	structured	like	a	file	system,	with	a
hierarchy	of	folders.	To	ensure	as	much	consistency	between	the	products	as
possible,	AutoCAD	Map	3D	uses	a	similar	structure	for	its	internal	repository.

Some	methods	in	the	Geospatial	Platform	API	are	not	valid	in	AutoCAD	Map
3D,	and	will	throw	an	exception	if	called.	Generally	these	will	be	methods	that
do	not	have	corresponding	functionality	in	the	AutoCAD	Map	3D	environment.
For	example,	AutoCAD	Map	3D	does	not	have	the	concept	of	permissions	on
resources	so	any	methods	dealing	with	permissions	are	invalid.	These	are
identified	in	the	API	Reference.

All	map	data	in	a	MapGuide	application	is	written	and	read	through	FDO
connections.	This	means	that	updates	occur	immediately.	AutoCAD	Map	3D
works	with	data	stored	in	the	DWG	file	as	well	as	FDO	data.	Depending	on	the
method	chosen,	updates	in	a	AutoCAD	Map	3D	application	may	be	cached	and
not	written	directly	to	the	feature	source.

Differences	in	operation	between	AutoCAD	Map	3D	and	MapGuide	mean	that
in	some	cases	the	Geospatial	Platform	API	has	a	different	implementation	in	the
products.	AutoCAD	Map	3D	includes	a	set	of	classes	that	extend	the	API.	For
example,	the	Geospatial	Platform	API	has	an	MgLayerBase	class.	AutoCAD
Map	3D	extends	this	in	the	AcMapLayer	class.

All	classes	that	are	part	of	the	Geospatial	Platform	API	begin	with	the	prefix	Mg.
Classes	that	extend	the	Geospatial	Platform	API	for	use	in	AutoCAD	Map	3D
begin	with	the	prefix	AcMap.

AutoCAD	Map	3D	includes	the	following	enums	that	are	not	part	of	the
Geospatial	Platform	API:

EditMode

HighlightMode

AutoCAD	Map	3D	also	includes	event	handling,	which	is	not	a	part	of	the
Geospatial	Platform	API.	For	more	details	see	the	Geospatial	Platform
Supplement	Reference.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Geospatial	Platform	API	Documentation
	
	
	

The	documentation	for	the	Geospatial	Platform	API	is	in	3	places:

AutoCAD	Map	3D	Geospatial	Platform	Developer’s	Guide	(this	guide)

AutoCAD	Map	3D	Geospatial	Platform	API	Reference

AutoCAD	Map	3D	.NET	Reference	Supplement

The	Geospatial	Platform	API	reference	contains	documentation	about	classes
and	methods	that	are	common	to	AutoCAD	Map	3D	and	MapGuide.	When	a
method	behaves	differently	in	AutoCAD	Map	3D	this	is	noted	in	the	reference.

The	Geospatial	Platform	Supplement	Reference	contains	documentation	about
classes	and	methods	that	are	used	only	within	AutoCAD	Map	3D.	In	most	cases
the	classes	extend	classes	in	the	Geospatial	Platform	API	Reference.

The	Geospatial	Platform	API	works	with	the	Feature	Data	Objects	(FDO)	API.
FDO	documentation	is	available	with	AutoCAD	Map	3D,	both	in	the	product
installation	help	folder	and	in	the	SDK.

Note The	API	References	are	available	in	CHM	format.	The	Developer’s	Guides
are	available	in	PDF	and	CHM	format.	To	view	all	CHM	documentation	as	part
of	one	help	system,	open	sdk.doc.main.chm.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Setting	Up	Visual	Studio
	
	
	

To	use	the	Geospatial	Platform	API,	follow	the	instructions	in	the	AutoCAD
Map	3D	ObjectARX	.NET	Developer’s	Guide.	Add	the	following	reference	to
the	project:

AcMapApiMgd.dll

This	assembly	contains	the	Geospatial	Platform	API	and	adds	the	namespace
OSgeo.MapGuide.	It	is	located	in	the	AutoCAD	Map	3D	installation	folder.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Sample	Applications
	
	
	

The	SDK	includes	sample	applications	in	the	MapSamples\Platform	folder.	See
the	Developer	Samples	Guide	for	details.	The	samples	serve	as	a	good
introduction	to	many	aspects	of	the	Geospatial	Platform	API	and	can	be	used	as
a	starting	point	for	developing	custom	applications.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Resources
	
	
	

Topics	in	this	section

Introduction
Working	With	Resources
Differences	Between	AutoCAD	Map	3D	and	MapGuide
Sample	-	Using	Resources

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Introduction
	
	
	

In	the	Geospatial	Platform	API,	resources	are	the	files	and	configuration
information	necessary	to	draw	layers	and	maps.	There	are	various	types	of
resources	required.	For	example,	a	FeatureSource	describes	the	location,
type,	and	other	details	needed	for	access	to	GIS	feature	data.	A
LayerDefinition	defines	the	data	and	style	for	a	layer.

Resources	are	stored	in	a	resource	repository.	AutoCAD	Map	3D	has	a	single
repository	named	Library.	This	repository	is	contained	within	the	DWG	file.

MapGuide	uses	multiple	repositories.	The	Library	repository	contains
persistent,	site-wide	data.	There	is	a	single	Library	repository	for	each
MapGuide	site.	There	are	multiple	Session	repositories,	each	one	containing
data	from	a	single	MapGuide	session.	Session	repositories	are	unique	to	an
individual	session	and	cannot	be	shared.	All	MapGuide	repositories	are	managed
on	the	site	server.

Allowable	resource	types	are	defined	as	static	members	of	the	class
MgResourceType.	Some	resource	types	apply	only	to	MapGuide.

The	following	resource	types	are	valid	for	both	Map	3D	and	MapGuide:

Resource	Type Description

FeatureSource Contains	the	required	parameters
for	connecting	to	a	geospatial
feature	source.

LayerDefinition Contains	the	required	parameters
for	displaying	and	styling	a	layer.
Layers	can	be	drawing	layers,
vector	layers,	or	grid	(raster)	layers.

SymbolDefinition Defines	a	symbol	to	be	displayed
on	a	map.

The	following	resource	types	are	only	valid	for	MapGuide:

Resource	Type Description

ApplicationDefinition Defines	a	flexible	Web	layout	for
the	Fusion	framework.

DrawingSource Contains	the	required	parameters
for	connecting	to	a	DWG	file.

Folder A	folder	in	the	resource	repository.

LoadProcedure Contains	the	required	parameters
for	loading	new	data	into	the
MapGuide	repository.

Map Contains	the	run-time	definition	of
a	map.

MapDefinition Defines	an	initial	map	state,	used
as	the	basis	for	creating	a	run-time
map.

PrintLayout Defines	the	components	of	a
printed	map	created	from
MapGuide.

Selection Contains	selection	information.

SymbolLibrary Defines	a	library	of	symbols.

WebLayout Defines	the	components	of	a	Web
layout	for	a	MapGuide	Viewer.

Resource	repositories	are	structured	like	directories,	with	folders,	subfolders,	and
documents.	Each	resource	is	an	XML	document	in	the	repository,	named	with	a

unique	resource	identifier.	A	resource	identifier	is	made	up	of	the	following
parts:

Repository	type—either	“Library”	or	“Session”.	Map	3D	only	uses
“Library”.

Repository	name—for	library	repositories,	an	empty	string.	For	session
repositories,	a	unique	session	identifier	assigned	by	the	site	server.

Path—the	path	to	the	folder	containing	the	resource.

Name—the	resource	name,	without	the	extension.

Resource	type—the	resource	type	(the	extension).	This	must	match	one
of	the	allowable	types	defined	in	MgResourceType.

For	example,	the	following	could	be	a	name	for	a	feature	source	in	either	Map
3D	or	MapGuide:

Library://Samples/CityOutline.FeatureSource

The	following	could	be	a	name	for	a	map	definition	in	MapGuide:

Session:70ea89fe-0000-1000-8000-005056c00008_en//Map.MapDefinition

Resource	Service

Resources	are	managed	by	the	resource	service,	an	MgResourceService
object.

In	AutoCAD	Map	3D,	use	AcMapServiceFactory	to	get	the	resource
service:

MgResourceService	resourceService	=	

		AcMapServiceFactory.GetService(MgServiceType.ResourceService)	

		as	MgResourceService;

In	MapGuide,	use	MgSiteConnection	to	get	the	resource	service:

MgSiteConnection	siteConnection	=	new	MgSiteConnection();

siteConnection.Open(userInfo);

MgResourceService	resourceService	=	

		siteConnection.CreateService(MgServiceType.ResourceService)	

		as	MgResourceService;

Resource	Dependencies

Resources	may	depend	on	other	items:

Some	resources	are	self	sufficient	and	do	not	refer	to	any	other	resources
or	files.

Some	resources	reference	other	resources.	For	example,	layer	definitions
and	feature	sources	are	stored	as	separate	resources.	A	layer	definition
resource	contains	a	reference	to	the	resources	for	the	feature	sources	that
are	used	in	that	layer.

Some	resources	use	associated	resource	data.	For	example,	this	is	used
to	store	configuration	information	for	ODBC/WMS/Raster	feature
sources.

Resource	Schemas

Resources	are	stored	in	the	repository	as	XML	documents.	Applications	that	add
or	modify	resources	must	ensure	that	the	XML	validates	against	the	appropriate
schema.

For	AutoCAD	Map	3D,	the	schemas	are	available	as	part	of	the	SDK,	in	the
Schema	folder.

For	MapGuide,	the	schemas	are	installed	with	the	server	files,	in
InstallDir\Server\Schema.

The	schemas	are	documented	in	the	XML	Schemas	module	of	the	Geospatial
Platform	Reference.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Working	With	Resources
	
	
	

Resources	in	the	repository	can	be	managed	by	using	the	MgByteSource,
MgByteReader,	and	MgByteSink	objects.

To	convert	a	string	representation	of	the	XML	data	into	data	for	a	resource,	first
create	an	MgByteSource.	New	MgByteSource	objects	can	be	initialized
with	a	string	or	the	contents	of	a	file.	Get	an	MgByteReader	from	the	byte
source	and	pass	that	to	MgResourceService.SetResource().

For	example,	if	an	external	file	contains	the	string	representation	of	the	XML	for
a	layer	definition,	the	following	would	read	the	contents	of	the	file	and	store	it	in
the	repository.

MgResourceIdentifier	rID_layer	=	new	MgResourceIdentifier(

				@"Library://Data/Zoning.LayerDefinition");

MgByteSource	layer_byteSource	=	new	MgByteSource(xmlFilePath);

layer_byteSource.SetMimeType("text/xml");

resourceService.SetResource(rID_layer,	

		layer_byteSource.GetReader(),	null);

There	are	many	ways	of	modifying	the	XML	in	a	resource.	The	best	method	to
use	in	a	given	situation	depends	on	the	development	environment,	the
developer’s	familiarity	with	a	given	technique,	and	the	desired	result.	Some
possibilities	are	described	in	the	following	sections.	Other	techniques	for
working	with	XML	data	are	equally	valid.

xsd.exe

For	.NET	development,	used	with	AutoCAD	Map	3D	and	the	ASP.NET	API	of
MapGuide,	it	is	possible	to	use	the	tool	xsd.exe,	which	is	available	with	the
SDK	that	comes	with	Microsoft	Visual	Studio.	xsd.exe	reads	an	XML	schema
and	generates	.NET	classes	for	working	with	XML	documents	based	on	the
schema.	xsd.exe	can	generate	both	VB.NET	and	C#	classes.

To	use	xsd,	a	typical	command	is:

xsd.exe	LayerDefinition-1.0.0.xsd	/c	/l:cs	/n:OSGeo.MapGuide.Schema.LayerDefinition	

For	an	example	of	how	to	use	these	classes,	see	the	Developer	Samples	Guide.

For	more	information	on	xsd,	see	http://msdn.microsoft.com.

layerdefinitionfactory.php

MapGuide	includes	layerdefinitionfactory.php,	which	contains	PHP	methods	for
working	with	the	LayerDefinition	schema.	These	methods	are	designed	to	handle
most	basic	tasks	with	layer	definitions,	but	do	not	provide	complete	support	for
all	possibilities.	They	create	the	XML	by	substituting	strings	into	external
templates.	It	is	relatively	easy	to	adapt	the	techniques	from
layerdefinitionfactory.php	for	use	with	a	different	schema	or	to	translate	them
into	one	of	the	other	development	languages.

Autodesk	MapGuide	Studio

One	of	the	simplest	ways	to	create	XML	templates	is	to	use	Autodesk	MapGuide
Studio	with	Autodesk	MapGuide	Enterprise	or	MapGuide	Open	Source.	Using
Studio,	create	the	resources	with	the	desired	values,	then	save	them	as	XML.
The	resulting	file	can	be	edited	using	a	text	editor,	XML	editor,	or	with
techniques	like	those	in	layerdefinitionfactory.php.

Document	Object	Model

Finally,	all	of	the	development	languages	support	versions	of	the	Document
Object	Model	(DOM)	API,	which	is	a	general-purpose	API	for	working	with	and
validating	XML	files.	Using	the	DOM	API	requires	converting	data	into	a	string,
then	converting	that	string	into	an	XML	document.	For	example,	the	following
takes	resource	data	from	the	repository	and	loads	it	into	an	XML	document:

//	using	System.Xml;

	

MgByteReader	byteReader	=	

		resourceService.GetResourceContent(resourceId);

XmlDocument	doc	=	new	XmlDocument();

doc.LoadXml(byteReader.ToString());

http://msdn.microsoft.com

Modify	the	XML	document	using	standard	DOM	methods,	then	convert	it	back
to	a	string	and	re-save	the	resource.

String	xmlString	=	doc.DocumentElement.OuterXml;

resourceService.SetResource(resourceId,	

		new	MgByteReader(xmlString,	"text/xml"),	null);

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Differences	Between	AutoCAD	Map	3D	and	MapGuide
	
	
	

The	Platform	API	has	been	made	to	be	as	consistent	as	possible	between
AutoCAD	Map	3D	and	MapGuide.	However,	there	are	some	differences,
especially	in	the	way	they	handle	resources.

AutoCAD	Map	3D	does	not	use	ApplicationDefinition,	DrawingSource,
Folder,	LoadProcedure,	Map,	MapDefinition,	PrintLayout,	Selection,
SymbolLibrary,	or	WebLayout	resources.

In	AutoCAD	Map	3D,	the	resources	are	stored	inside	the	DWG	drawing
file	or	a	DWT	template	drawing,	not	in	an	external	database.	This	means
that	resources	and	their	paths	are	specific	to	that	drawing.	In	other
words,	the	same	repository	path	in	another	drawing	may	not	be	defined,
or	may	refer	to	a	different	resource.	If	you	need	to	share	resources
between	drawings,	you	must	add	them	to	each	drawing.

Session	repositories	are	not	supported	in	AutoCAD	Map	3D.	All
resources	must	be	stored	in	the	Library	repository.

AutoCAD	Map	3D	does	not	use	resource	headers.	For	any	method	that
allows	them,	for	example	SetResource(),	enter	null	for	that
parameter.

The	following	methods	in	MgResourceService	are	not	supported	in
AutoCAD	Map	3D:

ApplyResourcePackage()

ChangeResourceOwner()

GetRepositoryContent()

GetRepositoryHeader()

GetResourceHeader()

UpdateRepository()

The	method	of	specifying	the	resource	data	for	a	file	differs.
In	MapGuide,	the	procedure	is:

1.	 In	the	feature	source	XML,	provide	the	name	of	the	SDF	file.
For	example:

<Value>%MG_DATA_FILE_PATH%

HydrographicPolygons.sdf</Value>

2.	 Use	ResourceService.SetResourceData()	to	specify
the	location	of	the	resource	data	(the	SDF	file)	on	disk.

In	AutoCAD	Map	3D,	the	procedure	is	to	specify	the	absolute	location
of	the	resource	data	in	the	feature	source	XML.	For	example:

<Parameter>

		<Name>File</Name>

		<Value>C:\Map	ObjectARX	SDK\Map	Samples\Platform\BuildMap\Data\SDF\Buffered.sdf</Value>

</Parameter>

No	call	to	ResourceSerivce.SetResourceData()	is	required.
AutoCAD	Map	3D	does	use
ResourceService.SetResourceData()	for	streams,	but	only
for	the	configuration	information	for	ODBC/WMS/Raster	feature
sources.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Sample	-	Using	Resources
	
	
	

This	example	shows	how	to	add	a	resource	programmatically,	using	external
files	that	contain	the	XML	for	the	resources.

Topics	in	this	section

The	XML	Files
Adding	The	Resource
Points	To	Watch

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

The	XML	Files
	
	
	

This	sample	uses	data	from	the	BuildMap	developer	sample.	When	you	run
BuildMap,	it	writes	these	files	to	the	directory	containing	BuildMap.dll.	See
the	Developer	Samples	Guide	for	details.

One	file	is	Zoning.layer.	This	specifies	all	the	properties	for	drawing	one	layer	in
a	map.	Note	the	<ResourceId>	element,	which	refers	to	the	resource	for	the
feature	source.

<?xml	version="1.0"	encoding="utf-8"?>

<LayerDefinition	

				xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

				xmlns:xsd="http://www.w3.org/2001/XMLSchema"	

				version="1.0.0">

		<VectorLayerDefinition>

				<ResourceId>Library://Data/SDF/Zoning.FeatureSource

				</ResourceId>

				<FeatureName>Schema:Zoning</FeatureName>

				<FeatureNameType>FeatureClass</FeatureNameType>

				<Geometry>Geometry</Geometry>

				<VectorScaleRange>

						<AreaTypeStyle>

								<AreaRule>

										<LegendLabel	/>

										<AreaSymbolization2D>

												<Fill>

														<FillPattern>Solid</FillPattern>

														<ForegroundColor>a03cafda</ForegroundColor>

														<BackgroundColor>FF000000</BackgroundColor>

												</Fill>

												<Stroke>

														<LineStyle>Solid</LineStyle>

														<Thickness>0.0</Thickness>

														<Color>FF000000</Color>

														<Unit>Centimeters</Unit>

												</Stroke>

										</AreaSymbolization2D>

								</AreaRule>

						</AreaTypeStyle>

				</VectorScaleRange>

		</VectorLayerDefinition>

</LayerDefinition>

The	second	file	is	Zoning.FeatureSource,	which	defines	the	properties	of	an	SDF
feature	source.	The	File	parameter	points	to	the	location	on	disk.	See	Feature
Service	for	more	details.

<?xml	version="1.0"	encoding="utf-8"?>

<FeatureSource	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	xmlns:xsd="http://www.w3.org/2001/XMLSchema">

				<Provider>OSGeo.SDF.3.3</Provider>

				<Parameter>

								<Name>File</Name>

								<Value>C:\Map	3D	SDK\Map	Samples\Platform\BuildMap\Data\SDF\Zoning.sdf</Value>

				</Parameter>

				<Parameter>

								<Name>ReadOnly</Name>

								<Value>False</Value>

				</Parameter>

</FeatureSource>

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Adding	The	Resource
	
	
	

To	use	the	XML	files	to	create	the	layer	and	the	feature	source,	use
MgResourceService.SetResource().	For	example:

//	Add	the	layer	definition.

//	It	will	be	stored	in	the	repository	using	the	resource

//	identifier.

MgResourceIdentifier	rID_layer	=	new	MgResourceIdentifier(

				@"Library://Data/Zoning.LayerDefinition");

	

//	Note:	Modify	this	directory	to	point	to	the	location	of	

//	the	XML	files.

	

String	xmlDirectory	=	@"C:\Map	3D	SDK\"

		+	@"Map	Samples\Platform\BuildMap\bin\Debug\";

	

//	Read	the	XML	file,	then	save	its	contents	in	the	resource

//	repository.

	

MgByteSource	layer_byteSource	=	

		new	MgByteSource(xmlDirectory	+	"Zoning.layer");

layer_byteSource.SetMimeType("text/xml");

resourceService.SetResource(rID_layer,	

		layer_byteSource.GetReader(),	null);

	

//	Add	the	feature	source

//	Note:	The	layer	definition	XML	refers	to	

//	'Library://Data/SDF/Zoning.FeatureSource'	so

//	we	must	use	that	name	here.

MgResourceIdentifier	rID_feature_source	=	

		new	MgResourceIdentifier(

		@"Library://Data/SDF/Zoning.FeatureSource");

MgByteSource	feature_byteSource	=	new	

		MgByteSource(xmlDirectory	+	"Zoning.FeatureSource");

feature_byteSource.SetMimeType("text/xml");

resourceService.SetResource(rID_feature_source,	

		feature_byteSource.GetReader(),	null);

Then	add	the	layer	to	the	current	map.	For	example:

MgLayerBase	layer	=	AcMapLayer.Create(rID_layer,	

		resourceService);

layer.SetName("NewLayer");

AcMapMap	currentMap	=	AcMapMap.GetCurrentMap();

currentMap.GetLayers().Add(layer);

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Points	To	Watch
	
	
	

In	the	feature	source	XML,	the	provider	name	(for	example,
OSGeo.SDF.3.3)	must	match	one	of	the	provider	names	listed	in	the
output	of	MgFeatureService.GetFeatureProviders().

In	the	layer	definition,	the	ResourceId	value	must	match	the	path	of
the	feature	source.	In	the	example	above,	this	path	is	used	in	the	layer
definition:

<ResourceId>Library://Data/SDF/Zoning.FeatureSource

</ResourceId>

So	the	corresponding	path	must	be	used	when	the	feature	source	is
created.	For	example:

MgResourceIdentifier	rID_feature_source	=	

									new	MgResourceIdentifier(

									@"Library://Data/SDF/Zoning.FeatureSource");

Create	new	layers	using	the	static	method	AcMapLayer.Create().

Create	new	layer	groups	using	the	AcMapLayerGroup	constructor
AcMapLayerGroup(groupName).

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Feature	Service
	
	
	

Topics	in	this	section

Overview
Defining	Feature	Sources
Joins
Adding	Feature	Classes	to	a	Map
Selecting	Feature	Data
Representation	of	Geometry
Selecting	Using	the	API
Updating	Features
Creating	SDF	files

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Overview
	
	
	

A	feature	source	represents	a	single	FDO	(Feature	Data	Objects)	connection.
FDO	is	an	API	for	reading	and	writing	geospatial	data	in	a	variety	of	formats.
For	more	details	about	FDO,	see	the	documentation	included	with	AutoCAD
Map	3D	and	the	SDK,	or	visit	fdo.osgeo.org.

Feature	Service	provides	a	common	API	for	reading	and	writing	feature	data
from	data	sources	for	which	an	FDO	provider	exists.

Different	feature	sources	have	different	capabilities.	For	example,	an	Oracle
Spatial	database	will	have	more	capabilities	than	an	ODBC	connection.	Some
feature	sources	can	have	multiple	schemas.

One	schema	in	a	feature	source	can	describe	multiple	feature	classes.	For
example,	a	single	SDF	file	could	contain	a	feature	class	for	roads	and	another
feature	class	for	hydrography.

In	AutoCAD	Map	3D,	a	single	FDO	feature	class	corresponds	to	a	single	map
layer.	There	cannot	be	more	than	one	feature	class	per	layer,	and	a	layer
containing	feature	data	cannot	contain	AcDb	entities.

Note All	Feature	Service	operations	work	with	features	belonging	to	the	current
map.	To	get	the	current	map,	call	AcMapMap.GetCurrentMap().

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Defining	Feature	Sources
	
	
	

To	define	a	feature	source	within	AutoCAD	Map	3D,	create	a	resource	identifier
for	the	feature	source	and	store	it	in	the	resource	repository.	Then	call
MgResourceService.SetResource()	with	three	parameters:

An	MgResourceIdentifier	that	contains	the	path	in	the	resource
repository	for	the	resource.

An	MgByteReader	that	provides	the	XML	describing	the	feature
source.	This	conforms	to	FeatureSource.xsd.

A	null	parameter	for	the	resource	header.	This	is	not	used	by	AutoCAD
Map	3D.

The	repository	path	is	of	the	form

Library://resourcePath/resourceName.FeatureSource

resourcePath	is	optional,	but	FeatureSource	(case	sensitive)	is
mandatory.	For	example,	the	following	creates	an	MgResourceIdentifier:

MgResourceIdentifier	parcelId	=	

		new	MgResourceIdentifier("Library://parcels.FeatureSource");

The	exact	form	of	the	XML	describing	the	feature	source	varies	depending	on
the	FDO	provider.	See	the	schema	documentation	for	FeatureSource.xsd	and	the
Connection	API	section	of	The	Essential	FDO	for	details.	Different	FDO
providers	accept	different	parameters,	as	described	in	The	Essential	FDO.	For
example,	the	Autodesk.Raster.3.2	provider	accepts	a	single	parameter,
DefaultRasterFileLocation.	This	is	set	in	a	Name/Value	parameter
in	the	XML	data.

<?xml	version="1.0"	encoding="utf-8"?>

<FeatureSource	

		xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

		xmlns:xsd="http://www.w3.org/2001/XMLSchema">

		<Provider>Autodesk.Raster.3.2</Provider>

		<Parameter>

				<Name>DefaultRasterFileLocation</Name>

				<Value>C:\some\folder\rasterfile.jpg</Value>

		</Parameter>

		<ConfigurationDocument>config://rasterfile.jpg

		</ConfigurationDocument>

		<LongTransaction	/>

</FeatureSource>

Some	providers	require	additional	configuration.	For	example,	the
Autodesk.Raster.3.2	provider	requires	georeferencing	information	to
define	the	location	and	resolution	of	the	raster	data	for	some	raster	file	formats.
This	can	be	in	a	world	file	in	the	same	folder	as	the	raster	file,	or	it	can	be	in	a
separate	FDO	configuration	file.	WMS	and	ODBC	providers	can	also	require
separate	configuration	files.

For	those	providers	that	do	require	a	configuration	file,	the	FeatureSource
XML	contains	a	<ConfigurationDocument>	element	that	points	to
resource	data.	Call	MgResourceService.SetResourceData()	to	set
the	data.	The	data	name	must	match	the	name	in	the
<ConfigurationDocument>	element.	The	BuildMap	sample	uses
config://	as	part	of	the	resource	data	name,	but	this	is	not	required.

Topics	in	this	section

Example:	Defining	a	Vector	Feature	Source
Example:	Defining	a	Raster	Feature	Source

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Example:	Defining	a	Vector	Feature	Source
	
	
	

Defining	a	vector	feature	source	requires	creating	the	feature	source	definition
and	storing	it	in	the	resource	repository	using	the	feature	source	resource
identifier.	The	following	example	assumes	that	SDFpath	is	a	string	containing
the	file	path	of	an	SDF	file.	It	creates	a	feature	source	with	a	resource	identifier
of	Library://feature.FeatureSource.

There	are	many	ways	to	create	a	feature	source	definition.	One	method,	used	in
the	sample	applications	and	the	following	example,	uses	classes	generated	using
the	Visual	Studio	tool	xsd.exe	on	FeatureSource.xsd.
FeatureSourceType	and	NameValuePairType	are	classes	generated
this	way.

Note Resource	service	requires	data	to	be	UTF-8	encoded.

//	Get	the	services

	

MgResourceService	rs;

rs	=	AcMapServiceFactory.GetService(MgServiceType.ResourceService)

		as	MgResourceService;

MgFeatureService	fs;

fs	=	AcMapServiceFactory.GetService(MgServiceType.FeatureService)

		as	MgFeatureService;

MgResourceIdentifier	fsId	=	new	MgResourceIdentifier(

		"Library://feature.FeatureSource");

	

//	Create	the	feature	source	definition	with	a	required

//	parameter	of	File	and	an	optional	parameter	of	ReadOnly

	

string	xmlString;

FeatureSourceType	fsType	=	new	FeatureSourceType();

	

fsType.Provider	=	"OSGeo.SDF.3.2";

	

NameValuePairType	param	=	new	NameValuePairType();

param.Name	=	"File";

param.Value	=	SDFpath;

NameValuePairType	param2	=	new	NameValuePairType();

param2.Name	=	"ReadOnly";

param2.Value	=	"false";

fsType.Parameter	=	new	NameValuePairType[]	{	param,	param2	};

	

//	Serialize	the	feature	source	object	model	to	xml	string

using	(StringWriter	writer	=	new	StringWriter())

{

		XmlSerializer	xs	=	new	XmlSerializer(fsType.GetType());

		xs.Serialize(writer,	fsType);

		xmlString	=	writer.ToString();

}

	

//	Convert	the	Unicode	string	to	UTF8	bytes	for	Resource	Service

	

byte[]	unicodeBytes	=	Encoding.Unicode.GetBytes(xmlString);

byte[]	utf8Bytes	=	Encoding.Convert(Encoding.Unicode,	

		Encoding.UTF8,	unicodeBytes);

	

//	Create	a	byte	reader	containing	the	XML	feature	

//	source	definition.	Store	the	definition	in	the	repository

	

MgByteSource	xmlSource	=	new	MgByteSource(utf8Bytes,	

		utf8Bytes.Length);

rs.SetResource(fsId,	xmlSource.GetReader(),	null);

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Example:	Defining	a	Raster	Feature	Source
	
	
	

Defining	a	raster	feature	source	is	similar	to	defining	a	vector	feature	source.
The	parameters	vary	depending	on	the	provider.	Most	raster	files	do	not	contain
coordinate	system	information,	so	it	must	be	obtained	some	other	way.	This	can
be	done	using	a	world	file	or	through	additional	configuration	for	the	FDO
provider.	The	following	example	uses	the	second	method,	adding	resource	data
containing	the	configuration	information.

The	resource	identifier	contains	the	location	in	the	resource	repository	for	the
feature	source	definition.

MgResourceIdentifier	rasterId	=	new	MgResourceIdentifier(

		"Library://rasterFeature.FeatureSource");

string	xmlString;

FeatureSourceType	fsType	=	new	FeatureSourceType();

	

fsType.Provider	=	"Autodesk.Raster.3.2";

	

NameValuePairType	param	=	new	NameValuePairType();

param.Name	=	"DefaultRasterFileLocation";

param.Value	=	@"C:\some\folder\rasterfile.jpg";

fsType.Parameter	=	new	NameValuePairType[]	{	param	};

	

fsType.ConfigurationDocument	=	"config://rasterfile.jpg";

fsType.LongTransaction	=	"";

	

//	Serialize	the	feature	source	object	model	to	an	xml	string

using	(StringWriter	writer	=	new	StringWriter())

{

		XmlSerializer	xs	=	new	XmlSerializer(fsType.GetType());

		xs.Serialize(writer,	fsType);

		xmlString	=	writer.ToString();

}

	

byte[]	unicodeBytes	=	Encoding.Unicode.GetBytes(xmlString);

byte[]	utf8Bytes	=	Encoding.Convert(Encoding.Unicode,

		Encoding.UTF8,	unicodeBytes);

MgByteSource	xmlSource	=	

		new	MgByteSource(utf8Bytes,	utf8Bytes.Length);

	

MgResourceService	rs;

rs	=	AcMapServiceFactory.GetService(MgServiceType.ResourceService)

		as	MgResourceService;

rs.SetResource(rasterId,	xmlSource.GetReader(),	null);

The	configuration	information	varies	depending	on	the	FDO	provider.	The
WMS,	ODBC,	and	Raster	providers	may	need	additional	configuration
information.	Refer	to	the	FDO	documentation	in	the	Map	SDK	and	in	the
AutoCAD	Map	3D	installation	folder	for	more	details.

The	following	reads	the	configuration	from	a	file	and	stores	it	in	the	resource
repository.	Ensure	that	the	data	name	matches	the
<ConfigurationDocument>	element	in	the	feature	source	definition.

MgByteSource	source;

source	=	new	MgByteSource(@"C:\some\folder\rasterconfig.xml");

rs.SetResourceData(rasterId,	"config://rasterfile.jpg",

		MgResourceDataType.Stream,	source.GetReader());

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Joins
	
	
	

Joins	extend	a	feature	source	by	combining	it	with	data	from	another	feature
source,	similar	to	a	database	join.	They	are	commonly	used	to	combine	GIS	data
with	data	from	a	database.

For	example,	an	SDF	file	containing	the	following	properties:

parcel	geometry

parcel	ID

could	be	joined	with	an	ODBC	database	containing	the	following	properties:

parcel	ID

owner	name

assessment	value

land	use	designation

The	join	is	defined	in	the	feature	source	definition.	Each	join	requires	2	feature
classes.	The	primary	feature	class	contains	the	geometry	for	display	in	AutoCAD
Map	3D.	The	secondary	feature	class	does	not	need	geometry,	but	it	must	have	a
property	that	matches	a	property	in	the	primary	feature	class.	In	the	example
above,	the	SDF	file	contains	the	primary	feature	class	and	the	ODBC	database
contains	the	secondary	feature	class.

In	most	cases	the	feature	classes	will	be	from	different	feature	sources,	but	it	is
possible	to	create	a	self-referencing	join	within	1	feature	class	or	a	join	between
2	feature	classes	in	the	same	feature	source.

To	create	a	joined	feature	source,	begin	with	the	secondary	feature	source.	This
does	not	require	anything	special.	For	example,	the	following	is	a	simple
connection	to	an	ODBC	database:

<FeatureSource	

				xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

				xmlns:xsd="http://www.w3.org/2001/XMLSchema"	

				xsi:noNamespaceSchemaLocation="MapFeatureSource-1.0.0.xsd"	

				version="1.0.0">

		<Provider>OSGeo.ODBC.3.2</Provider>

		<Parameter>

				<Name>Password</Name>

				<Value></Value>

		</Parameter>

		<Parameter>

				<Name>GenerateDefaultGeometryProperty</Name>

				<Value>false</Value>

		</Parameter>

		<Parameter>

				<Name>ConnectionString</Name>

				<Value></Value>

		</Parameter>

		<Parameter>

				<Name>DataSourceName</Name>

				<Value>OWNERS</Value>

		</Parameter>

		<Parameter>

				<Name>UserId</Name>

				<Value></Value>

		</Parameter>

		<ConfigurationDocument></ConfigurationDocument>

		<LongTransaction></LongTransaction>

</FeatureSource>

The	primary	feature	source	defines	the	join.	It	must	identify	the	secondary
feature	source	and	which	properties	are	to	be	used	for	the	join.	For	example,	the
following	is	a	feature	source	definition	for	an	SDF	file	with	a	join	to	an	ODBC
database:

<FeatureSource	

				xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

				xmlns:xsd="http://www.w3.org/2001/XMLSchema"	

				xsi:noNamespaceSchemaLocation="MapFeatureSource-1.0.0.xsd"	

				version="1.0.0">

		<Provider>OSGeo.SDF.3.2</Provider>

		<Parameter>

				<Name>ReadOnly</Name>

				<Value>false</Value>

		</Parameter>

		<Parameter>

				<Name>File</Name>

				<Value>C:\some\folder\Parcels.sdf</Value>

		</Parameter>

		<ConfigurationDocument></ConfigurationDocument>

		<LongTransaction></LongTransaction>

		<Extension>

				<Name>Parcels_Joins1</Name>

				<FeatureClass>SHP_Schema:Parcels</FeatureClass>

				<AttributeRelate>

						<AttributeClass>Fdo:Parcels</AttributeClass>

						<ResourceId>Library://ODBC_1</ResourceId>

						<Name>Parcels</Name>

						<AttributeNameDelimiter>|</AttributeNameDelimiter>

						<RelateType>LeftOuter</RelateType>

						<ForceOneToOne>true</ForceOneToOne>

						<RelateProperty>

								<FeatureClassProperty>APN</FeatureClassProperty>

								<AttributeClassProperty>APN</AttributeClassProperty>

						</RelateProperty>

				</AttributeRelate>

		</Extension>

</FeatureSource>

The	<Extension>	element	defines	the	join.	<Name>	is	the	name	of	the	join,
used	in	a	layer	definition	that	references	the	feature	source.	If	a	feature	source
defines	more	than	one	join	they	must	have	different	names.	<FeatureClass>
is	a	feature	class	in	the	primary	feature	source.

<AttributeRelate>	defines	a	join	to	a	single	feature	source.	It	is	possible
for	the	primary	feature	source	to	have	joins	to	more	than	one	secondary	feature
source.	This	is	represented	by	multiple	<AttributeRelate>	elements.	As
an	example,	the	owner	information	could	be	in	one	database	table	and
assessment	information	could	be	in	another.

For	each	join,	<AttributeClass>	defines	the	schema	and	feature	class	in
the	secondary	feature	source.	<ResourceId>	is	the	resource	identifier.
<RelateType>	is	the	type	of	join.	This	release	of	AutoCAD	Map	3D	supports
left	outer	joins	and	inner	joins.

The	join	can	have	multiple	<RelateProperty>	elements.	These	define	the
fields	that	must	match	for	the	join.

Store	the	feature	source	definition	using
MgResourceService.SetResource(),	as	described	in	Defining	Feature
Sources.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Adding	Feature	Classes	to	a	Map
	
	
	

To	add	a	feature	class	to	a	map,	create	a	layer	definition	for	the	new	layer	and
add	it	to	the	resource	repository.	Create	an	AcMapLayer	and	set	its	layer
definition.	Add	the	layer	to	the	map	using
AcMapMap.GetCurrentMap().GetLayers().Add().

Creating	the	layer	definition	is	similar	to	creating	the	feature	source	definition.
See	Defining	Feature	Sources.	The	layer	definition	uses	the	LayerDefinition.xsd
schema,	which	includes	styling	information.	See	Layer	Definition	for	details.

The	<FeatureName>	element	in	the	layer	definition	is	of	the	form

schemaName:className

where	schemaName	and	className	are	valid	for	the	feature	source.	Call
MgFeatureService.GetSchemas()	to	get	the	schema	names	for	a
feature	source	and	MgFeatureService.GetClasses()	to	get	the	class
names	for	a	schema.

The	following	example	creates	a	layer	definition	for	a	raster	layer	and	adds	the
layer	to	the	current	map.

AcMapMap	currentMap	=	AcMapMap.GetCurrentMap();

string	layerDefName	=	"Library://rasterlayer.LayerDefinition";

MgResourceIdentifier	layerId	=	new

		MgResourceIdentifier(layerDefName);

	

//	Use	classes	from	xsd.exe	to	build	the	layer

definition

	

LayerDefinitionType	layerDef	=	new	LayerDefinitionType();

GridLayerDefinitionType	gridLayerDef	=	new

		GridLayerDefinitionType();

layerDef.Item	=	gridLayerDef;

gridLayerDef.ResourceId	=	rasterId.ToString();

gridLayerDef.FeatureName	=	"rasters:classname";

gridLayerDef.Geometry	=	"Image";

	

GridScaleRangeType[]	ranges	=	new	GridScaleRangeType[1];

gridLayerDef.GridScaleRange	=	ranges;

	

ranges[0]	=	new	GridScaleRangeType();

ranges[0].ColorStyle	=	new	GridColorStylizationType();

	

GridColorRuleType[]	colorRules	=	new	GridColorRuleType[1];

ranges[0].ColorStyle.ColorRule	=	colorRules;

	

colorRules[0]	=	new	GridColorRuleType();

colorRules[0].LegendLabel	=	"";

colorRules[0].Color	=	new	GridColorType();

colorRules[0].Color.ItemElementName	=	ItemChoiceType.Band;

colorRules[0].Color.Item	=	"1";

ranges[0].RebuildFactor	=	1;

	

//	Serialize	the	layer	definition	to	XML

	

string	layerDefString;

using	(StringWriter	writer	=	new	StringWriter())

{

		XmlSerializer	xs	=	new	XmlSerializer(layerDef.GetType());

		xs.Serialize(writer,	layerDef);

		layerDefString	=	writer.ToString();

}

	

//	Convert	Unicode	to	UTF-8

	

unicodeBytes	=	Encoding.Unicode.GetBytes(layerDefString);

utf8Bytes	=	Encoding.Convert(Encoding.Unicode,	Encoding.UTF8,

		unicodeBytes);

	

//	Create	a	byte	reader	containing	the	layer

source	definition

	

xmlSource	=	new	MgByteSource(utf8Bytes,	utf8Bytes.Length);

rs.SetResource(layerId,	xmlSource.GetReader(),	null);

	

//	Add	the	layer	to	the	Map

MgLayerBase	layer	=	new	AcMapLayer(layerId,	rs);

layer.Name	=	"newLayer";

currentMap.GetLayers().Add(layer);

This	adds	the	new	layer	to	the	end	of	the	layer	collection,	at	the	top	of	the	draw
order.

Layers	can	be	organized	into	groups.	To	add	a	layer	to	a	group	call

AcMapLayer.SetGroup()	with	the	group	name.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Selecting	Feature	Data
	
	
	

Individual	features	within	a	feature	source	are	identified	by	unique	feature	IDs.
The	form	of	the	ID	depends	on	the	feature	source.	Call
MgFeatureService.GetClassDefinition()	to	get	the	feature	class
definition.	Call	MgClassDefinition.GetIdentityProperties()	to
get	a	list	of	all	properties	that	are	identity	properties.

To	get	the	currently	selected	features	for	a	map,	call
AcMapMap.GetFeatureSelection().	This	returns	an
MgSelectionBase	object.	A	single	selection	can	contain	features	from
multiple	layers	and	classes.	Call	MgSelectionBase.GetLayers()	to	get
all	layers	containing	selected	objects,	or	select	an	individual	layer.

For	example,	to	find	selected	features	on	the	Parcels	layer,

AcMapMap	currentMap	=	AcMapMap.GetCurrentMap();

MgFeatureService	fs	=

		AcMapServiceFactory.GetService(MgServiceType.FeatureService)	

		as	MgFeatureService;

	

MgLayerCollection	layers	=	currentMap.GetLayers();

MgLayerBase	parcelsLayer	=	layers.GetItem("Parcels");

string	fcName	=	parcelsLayer.GetFeatureClassName();

	

MgSelectionBase	selection	=	currentMap.GetFeatureSelection();

string	selectionFilter	=	selection.GenerateFilter(parcelsLayer,	

		fcName);

	

MgFeatureQueryOptions	queryOpts	=	new	MgFeatureQueryOptions();

queryOpts.SetFilter(selectionFilter);

MgFeatureReader	featureReader;

	

MgResourceIdentifier	fsId	=	new

		MgResourceIdentifier(parcelsLayer.GetFeatureSourceId());

featureReader	=	fs.SelectFeatures(fsId,	fcName,	queryOpts);

A	selection	consists	of	one	or	more	feature	IDs.	To	process	the	features	in	a

selection,	create	an	MgFeatureReader	that	contains	the	selected	features,
then	call	MgFeatureReader.ReadNext()	to	advance	through	the	feature
reader.	To	create	the	MgFeatureReader()	for	the	selected	features	in	a	layer,
call	MgSelectionBase.GenerateFilter(),	which	creates	a	filter	to
select	the	features.	Then	create	and	initialize	an	MgFeatureQueryOptions
object.	Finally,	call	AcMapFeatureService.SelectFeatures().

An	MgFeatureReader	iterates	through	a	list	of	features	from	a	single	feature
source.	To	advance	to	the	next	feature	in	the	reader,	call
MgFeatureReader.ReadNext().

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Representation	of	Geometry
	
	
	

AutoCAD	Map	3D	can	represent	geometric	data	in	3	different	forms:

AGF	text	format,	which	is	an	extension	of	the	Open	Geospatial
Consortium	(OGC)	Well	Known	Text	(WKT)	format.	This	is	used	to
represent	geometry	as	a	character	string.

Binary	AGF	format.	The	is	used	by	the	FDO	technology	supporting	the
Feature	Service.

Internal	representation,	using	MgGeometry	and	classes	derived	from	it.

To	convert	between	AGF	text	and	the	internal	representation,	use	an
MgWktReaderWriter	object.	Call	MgWktReaderWriter.Read()	to
convert	AGF	text	to	MgGeometry.	Call	MgWktReaderWriter.Write()
to	convert	MgGeometry	to	AGF	text.

To	convert	between	binary	AGF	and	the	internal	representation,	use	an
MgAgfReaderWriter	object.	Call	MgAgfReaderWriter.Read()	to
convert	binary	AGF	to	MgGeometry.	Call
MgAgfReaderWriter.Write()	to	convert	MgGeometry	to	binary	AGF.

For	example,	if	you	have	a	WKT	representation	of	the	geometry,	you	could
create	a	geometry	object	as	follows:

MgWktReaderWriter	wktReaderWriter	=	new	MgWktReaderWriter();

MgGeometry	geometry	=	wktReaderWriter.Read(wktGeometry);

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Selecting	Using	the	API
	
	
	

Selections	can	be	created	programatically	with	the	Platform	API.	This	is	done	by
querying	data	in	a	feature	source,	creating	a	feature	reader	that	contains	the
features,	then	converting	the	feature	reader	to	a	selection	(MgSelection
object).

To	create	a	feature	reader,	apply	a	selection	filter	to	a	feature	class	in	the	feature
source.	A	selection	filter	can	be	a	basic	filter,	a	spatial	filter,	or	a	combination	of
the	two.	The	filter	is	stored	in	an	MgFeatureQueryOptions	object.

Basic	filters	are	used	to	select	features	based	on	the	values	of	feature	properties.
For	example,	you	could	use	a	basic	filter	to	select	all	roads	that	have	four	or
more	lanes.

Spatial	filters	are	used	to	select	features	based	on	their	geometry.	For	example,
you	could	use	a	spatial	filter	to	select	all	roads	that	intersect	a	certain	area.

Topics	in	this	section

Basic	Filters
Spatial	Filters

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Basic	Filters
	
	
	

Basic	filters	perform	logical	tests	of	feature	properties.	You	can	construct
complex	queries	by	combining	expressions.	Expressions	use	the	comparison
operators	below:

Operator Meaning

= Equality

<> Not	equal

< Less	than

<= Less	than	or	equal	to

> Greater	than

>= Greater	than	or	equal	to

LIKE Used	for	string	comparisons.
The	“%”	wildcard	represents
any	sequence	of	0	or	more
characters.	The	“_”	wildcard
represents	any	single	character.
For	example,	“LIKE
Schmitt%”	will	search	for	any
names	beginning	with
“Schmitt”.

The	comparison	operators	can	be	used	with	numeric	or	string	properties,	except
for	the	LIKE	operator,	which	can	only	be	used	with	string	properties.

Combine	or	modify	expressions	with	the	standard	boolean	operators	AND,	OR,

and	NOT.

Topics	in	this	section

Examples

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Examples
	
	
	

These	examples	assume	that	the	feature	class	you	are	querying	has	an	integer
property	named	year	and	a	string	property	named	owner.	To	select	all	features
newer	than	2001,	create	a	filter	like	this:

MgFeatureQueryOptions	queryOptions	=	new	MgFeatureQueryOptions();

queryOptions.SetFilter("year	>	2001");

To	select	all	features	built	between	2001	and	2004,	create	a	filter	like	this:

queryOptions.SetFilter("year	>=	2001	and	year	<=	2004");

To	select	all	features	owned	by	Davis	or	Davies,	create	a	filter	like	this:

queryOptions.SetFilter("owner	LIKE	'Davi%s'");

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Spatial	Filters
	
	
	

With	spatial	filters,	you	can	do	comparisons	using	geometric	properties.	For
example,	you	can	select	all	features	that	are	inside	an	area	on	the	map,	or	that
intersect	an	area.

There	are	two	ways	of	using	spatial	filters:

Create	a	separate	spatial	filter	to	apply	to	the	feature	source,	using	the
MgFeatureQueryOptions.SetSpatialFilter()	method.

Include	spatial	properties	in	a	basic	filter	created	with	the
MgFeatureQueryOptions.SetFilter()	method.

The	MgFeatureQueryOptions.SetSpatialFilter()	method
requires	an	MgGeometry	object	to	define	the	geometry	and	a	spatial	operation
to	compare	the	feature	property	and	the	geometry.	The	spatial	operations	are
defined	in	class	MgFeatureSpatialOperations.

To	include	spatial	properties	in	a	basic	filter,	define	the	geometry	using	WKT
format.	Use	the	GEOMFROMTEXT()	function	in	the	basic	filter,	along	with	one
of	the	following	spatial	operations:

CONTAINS

COVEREDBY

CROSSES

DISJOINT

EQUALS

INTERSECTS

OVERLAPS

TOUCHES

WITHIN

INSIDE

Note The	spatial	operations	are	not	case	sensitive,	so	“CONTAINS”	and
“contains”	produce	the	same	result.

For	example,	the	following	selects	features	that	cross	an	area:

queryOptions.SetFilter(

	"SHPGEOM	crosses	GEOMFROMTEXT("	+	wktGeom	+	")");

The	same	filtering	syntax	can	be	used	in	a	layer	definition,	to	create	a	layer
containing	only	those	features	that	pass	the	filter.	See	Filtering	Layers	By
Geometry	for	details.

Note Not	all	spatial	operations	can	be	used	on	all	features.	It	depends	on	the
capabilities	of	the	FDO	provider	that	supplies	the	data.	This	restriction	applies	to
separate	spatial	filters	and	spatial	properties	that	are	used	in	a	basic	filter.

Topics	in	this	section

Creating	Geometry	Objects	From	Features

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Creating	Geometry	Objects	From	Features
	
	
	

You	may	want	to	use	an	existing	feature	as	part	of	a	spatial	query.	To	retrieve	the
feature’s	geometry	and	convert	it	into	an	appropriate	format	for	a	query,	perform
the	following	steps:

Create	a	query	that	will	select	the	feature.

Query	the	feature	class	containing	the	feature	using
AcMapLayer.SelectFeatures()	or
MgFeatureService.SelectFeatures().

Obtain	the	feature	from	the	query	using	the
MgFeatureReader.ReadNext()	method.

Get	the	geometry	data	from	the	feature	using	the
MgFeatureReader.GetGeometry()	method.	This	data	is	in	AGF
binary	format.

Convert	the	AGF	data	to	an	MgGeometry	object	using	the
MgAgfReaderWriter.Read()	method.

For	example,	the	following	sequence	creates	an	MgGeometry	object
representing	the	boundaries	of	zone	1	in	the	layer	named	“zones”.	It	creates	an
MgGeometry	object	and	the	WKT	representation	of	that	object.

MgLayerCollection	layers	=	currentMap.GetLayers();

MgLayerBase	layer	=	layers.GetItem("zones");

string	fsId	=	layer.GetFeatureSourceId();

string	className	=	layer.GetFeatureClassName();

MgFeatureQueryOptions	query	=

		new	MgFeatureQueryOptions();

query.SetFilter("ZONE_ID	=	1");

MgResourceIdentifier	resId	=

		new	MgResourceIdentifier(fsId);

	

MgFeatureReader	featureReader	=

		fs.SelectFeatures(resId,

			className,	query);

if	(featureReader.ReadNext())

{

		string	geometryName	=	layer.GetFeatureGeometryName();

		MgByteReader	geometryData	=	

				featureReader.GetGeometry(geometryName);

		MgAgfReaderWriter	agfReaderWriter	=	new	MgAgfReaderWriter();

		MgGeometry	geometry	=	agfReaderWriter.Read(geometryData);

	

		MgWktReaderWriter	wktReaderWriter	=	new	MgWktReaderWriter();

		string	wkt	=	wktReaderWriter.Write(geometry);

}

The	following	assumes	that	another	feature	class	has	a	geometry	property
SHPGEOM.	It	uses	the	WKT	string	in	a	query	to	find	features	in	the	other	feature
class	that	intersect	the	zone:

MgFeatureQueryOptions	queryOpts	=	new	MgFeatureQueryOptions();

queryOpts.SetFilter("SHPGEOM	intersects	GEOMFROMTEXT("	+	

		wkt	+	")");

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Updating	Features
	
	
	

All	updates	to	features	in	a	feature	source	are	performed	using	an
MgFeatureCommandCollection.	The	feature	command	collection	can
contain	commands	to	add	new	features,	delete	existing	features,	update	existing
features,	lock	features,	or	unlock	features.

To	add	a	new	feature,	create	an	MgInsertFeatures	object.
MgInsertFeatures	has	two	constructors.	One	has	an
MgPropertyCollection	parameter	and	is	used	to	insert	a	single	feature.
The	other	has	an	MgBatchPropertyCollection	parameter	and	is	used	to
insert	multiple	features	in	a	single	command.

The	MgPropertyCollection	contains	values	for	the	feature	properties,
including	the	feature	geometry	property.	Create	an	empty
MgPropertyCollection,	then	add	properties	using
MgPropertyCollection.Add().	The	different	property	types,	such	as
MgGeometryProperty	or	MgInt32Property,	are	all	derived	from	the
base	class	MgProperty.

Most	feature	classes	will	require	a	geometry	property,	which	is	used	to	display
the	feature.	To	create	a	geometry	property,	start	with	an	MgGeometry	object.

Convert	the	MgGeometry	to	binary	AGF	format	suitable	for	FDO.

MgByteReader	geometryStream;

MgAgfReaderWriter	agfReaderWriter	=	new	MgAgfReaderWriter;

geometryStream	=	agfReaderWriter.Write(geometry);

Create	a	property	collection	to	contain	the	feature	properties.	Add	the	geometry
property.	Add	any	other	required	properties.	The	property	names	are	case
sensitive	and	must	match	the	names	defined	in	the	feature	class.

MgPropertyCollection	properties	=	new	MgPropertyCollection();

MgGeometryProperty	geomProp;

geomProp	=	new	MgGeometryProperty("SHPGEOM",	geometryStream);

properties.Add(geomProp);

Create	a	feature	command	to	insert	the	feature,	and	add	it	to	a	feature	command
collection.

MgFeatureCommandCollection	commands	=	

		new	MgFeatureCommandCollection();

MgInsertFeatures	insertCommand;

insertCommand	=	new	MgInsertFeatures(className,	properties);

commands.Add(insertCommand);

Call	AcMapLayer.UpdateFeatures()	to	add	the	new	feature.

mapLayer.UpdateFeatures(commands);

Deleting	and	updating	features	is	similar.	The	constructors	for
MgDeleteFeatures	and	MgUpdateFeatures	require	different
parameters,	but	the	feature	commands	can	be	added	to	the	same
MgFeatureCommandCollection.

Topics	in	this	section

Edit	Sets

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Edit	Sets
	
	
	

There	are	two	different	modes	for	updates	to	features:

Edit	set

Direct	update

Note Some	FDO	providers,	including	the	file-based	providers	SDF,	SHP,	and
raster,	do	not	support	edit	set	mode.

Updates	made	using	edit	set	mode	are	made	to	the	working	copy	inside	the
AutoCAD	Map	3D	application,	but	are	not	committed	to	the	feature	source.
Edits	made	using	direct	update	are	changed	in	the	feature	source	immediately.

There	are	two	methods	for	updating	features:

AcMapLayer.UpdateFeatures()

MgFeatureService.UpdateFeatures()

AcMapLayer.UpdateFeatures()	works	directly	with	features	in	the	map
layer.	This	is	the	preferred	method	when	working	in	edit	set	mode.

MgFeatureService.UpdateFeatures()	updates	the	features	in	the
feature	source.	This	method	can	be	used	when	the	feature	source	is	not	being
displayed	in	a	layer.	For	example,	an	AutoCAD	Map	3D	application	could	create
an	SDF	file	containing	result	data	without	ever	having	to	display	the	data.

To	set	the	update	mode	for	a	layer,	call	AcMapLayer.SetEditSetMode().

To	commit	changes	made	in	edit	set	mode,	call
AcMapLayer.SaveFeatureChanges().	This	updates	the	feature	source.
To	discard	the	changes,	call	AcMapLayer.DiscardFeatureChanges().

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Creating	SDF	files
	
	
	

Many	geospatial	operations	require	creating	new	layers,	adding	features	to	the
layers,	and	adding	the	layers	to	the	map.	The	layers	can	be	temporary	or
permanent.	In	AutoCAD	Map	3D	this	is	handled	using	SDF	files.

An	SDF	file	contains	a	single	schema	that	can	define	multiple	feature	classes.

To	create	an	SDF	file,	first	define	the	schema	and	any	feature	classes	used	in	the
schema.	For	each	feature	class,	define	a	list	of	properties.	In	most	cases,	the
properties	should	include	an	identity	property	and	a	geometry	property,	as	well
as	any	other	properties.

Use	the	FDO	API	to	create	the	schema.

The	following	creates	a	simple	schema	with	an	autogenerated	ID	property,	a
string	property,	and	a	geometry	property.

//	Create	the	feature	class	definition

	

FeatureClass	classDefinition	=	

		new	FeatureClass("newClass",	"class	description");

	

//	Add	an	autogenerated	identity	property

	

DataPropertyDefinition	idProp	=	

		new	DataPropertyDefinition("id",	"property	desc");

idProp.DataType	=	DataType.DataType_Int32;

idProp.IsAutoGenerated	=	true;

classDefinition.Properties.Add(idProp);

classDefinition.IdentityProperties.Add(idProp);

	

//	Add	a	name	property

	

DataPropertyDefinition	nameProp	=	

		new	DataPropertyDefinition("Name",	"property	desc");

nameProp.DataType	=	DataType.DataType_String;

classDefinition.Properties.Add(nameProp);

	

//	Add	a	geometry	property

	

GeometricPropertyDefinition	geomProp	=	

		new	GeometricPropertyDefinition("SHPGEOM",	"property	desc");

geomProp.GeometryTypes	=	MgGeometryType.Polygon;

classDefinition.Properties.Add(geomProp);

classDefinition.GeometryProperty	=	geomProp;

	

//	Create	the	schema	and	add	the	class	definition

	

FeatureSchema	schema	=	

		new	FeatureSchema("SHP_Schema",	"Schema	description");

schema.Classes.Add(classDefinition);

Once	the	schema	has	been	created,	use	the	FDO	API	to	create	the	SDF	file,	set
the	spatial	context,	and	apply	the	schema.	The	following	is	modified	from	the
utility	classes	in	the	sample	applications.

//	Set	connection	properties

	

IConnectionPropertyDictionary	connProperties	=	

		conn.ConnectionInfo.ConnectionProperties;

connProperties.SetProperty("File",	sdfPath);

connProperties.SetProperty("ReadOnly",	false.ToString());

	

//	Create	data	store,	ie.	SDF	file

	

ICreateDataStore	createDSCmd	=	

		conn.CreateCommand(CommandType.CommandType_CreateDataStore)

		as	ICreateDataStore;

createDSCmd.DataStoreProperties.SetProperty("File",	sdfPath);

createDSCmd.Execute();

	

try

{

		//	Open	the	connection

		ConnectionState	connState	=	conn.Open();

		int	retryRound	=	0;

		while	(++retryRound	<	5	//	Try	5	times

				&&	(connState	==	ConnectionState.ConnectionState_Pending

				||	connState	==	ConnectionState.ConnectionState_Busy))

		{

				connState	=	conn.Open();

		}

		if	(retryRound	>=	5)

		{

				throw	new	

				InvalidOperationException("Failed	to	connect	to	file	"	

				+	sdfPath);

		}

	

		//	Create	spatial	context,	including	coordinate

system

	

		AcMapMap	currentMap	=	AcMapMap.GetCurrentMap();

		string	mapSRS	=	currentMap.GetMapSRS();

	

		ICreateSpatialContext	createSCCmd	=	

		conn.CreateCommand(CommandType.CommandType_CreateSpatialContext)

				as	ICreateSpatialContext;

		createSCCmd.CoordinateSystemWkt	=	mapSRS;

		createSCCmd.Name	=	"";

		createSCCmd.CoordinateSystem	=	mapSRS;

		createSCCmd.Extent	=	new	byte[]	{	0,	0,	0,	0	};

		createSCCmd.Description	=	"Description";

		createSCCmd.XYTolerance	=	0.0;

		createSCCmd.ZTolerance	=	0.0;

		createSCCmd.Execute();

	

		//	Apply	schema

		if	(schema.ElementState	!=	

				SchemaElementState.SchemaElementState_Unchanged)

		{

				IApplySchema	applySchemaCmd	=	

						conn.CreateCommand(CommandType.CommandType_ApplySchema)

						as	IApplySchema;

				applySchemaCmd.FeatureSchema	=	schema;

				applySchemaCmd.Execute();

		}

}

catch	(System.Exception	e)

{

		throw	e;	//	Or	add	exception	handling

}

finally

{

		//	Close	connection

		if	(conn	!=	null)

		{

				conn.Close();

		}

}

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Maps	and	Layers
	
	
	

Topics	in	this	section

Overview
Basic	Layer	Properties
Layer	Groups
Layer	Visibility
Manipulating	Layers
Layer	Definition

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Overview
	
	
	

A	map	is	composed	of	layers,	where	each	layer	represents	data	from	a	feature
source.

AutoCAD	Map	3D	and	Autodesk	MapGuide	differ	in	some	of	the	ways	they
handle	map	layers.	Because	MapGuide	is	a	web-based	mapping	product,	it	must
coordinate	layer	display	based	on	information	from	the	client	and	the	server.
AutoCAD	Map	3D	can	handle	all	layer	display	directly	from	the	application.

Note The	Geospatial	Platform	API	deals	strictly	with	layers	from	FDO	feature
sources.	If	a	map	in	AutoCAD	Map	3D	includes	other	layers,	they	must	be
handled	using	the	appropriate	methods	from	the	.NET	API.

A	layer	(AcMapLayer	object),	has	a	LayerDefinition	property	that	points
to	a	layer	definition	in	the	resource	repository.	The	layer	definition	content	is
XML	that	conforms	to	the	LayerDefinition.xsdLayerDefinition.xsd	schema.
Among	other	elements,	it	contains	a	ResourceId	element	that	identifies	the
feature	source	for	the	layer.

Please	send	us	your	comment	about	this	page

ms-its:sdk.ref.gis.platform.chm::/xml_schemas/LayerDefinition/LayerDefinition.html
javascript:doComments('./html/ac.cmtdialog.htm');

Basic	Layer	Properties
	
	
	

A	map	contains	one	or	more	layers	(AcMapLayer	objects)	that	are	rendered	to
create	a	composite	image.	The	AcMapLayer	class,	which	applies	only	to
AutoCAD	Map	3D,	is	derived	from	MgLayerBase,	which	is	part	of	the
common	Geospatial	Platform	API	shared	between	AutoCAD	Map	3D	and
MapGuide.

Each	layer	has	properties	that	determine	how	it	displays	in	the	map	and	map
legend.	Some	of	the	properties	are:

Layer	name:	A	unique	identifier

Visibility:	whether	the	layer	should	be	displayed	in	the	map.	Note	that
actual	visibility	is	dependent	on	more	than	just	the	visibility	setting	for	a
layer.	See	Layer	Visibility	for	further	details.

Selectable:	Whether	features	in	the	layer	are	selectable.	This	only	applies
to	layers	containing	feature	data.	It	does	not	apply	to	layers	containing
raster	data.

AcMapMap.GetLayers()	returns	an	MgLayerCollection	object	that
contains	all	the	layers	in	the	map.	MgLayerCollection.GetItem()
returns	an	individual	MgLayerBase	object,	by	either	index	number	in	the
collection	or	layer	name.

Layers	in	the	collection	are	sorted	by	drawing	order,	with	the	top	layers	at	the
beginning	of	the	collection.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Layer	Groups
	
	
	

Layers	can	be	optionally	grouped	into	layer	groups.	Layers	in	the	same	group	are
displayed	together	in	the	Display	Manager.

The	visibility	for	all	layers	in	a	group	can	be	set	at	the	group	level.	If	the	group
visibility	is	turned	off	then	none	of	the	layers	in	the	group	will	be	visible,
regardless	of	their	individual	visibility	settings.	If	the	group	visibility	is	turned
on,	then	individual	layers	within	the	group	can	be	made	visible	or	not	visible
separately.

Layer	groups	can	be	nested	so	a	group	can	contain	other	groups.	This	provides	a
finer	level	of	control	for	handling	layer	visibility	or	for	grouping	layers	into
legend	groups.

AcMapMap.GetLayerGroups()	returns	an
MgLayerGroupCollection	object	that	contains	all	the	top-level	layer
groups	in	the	map.

Each	layer	group	in	a	map	must	have	a	unique	name,	even	if	it	is	nested	within
another	group.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Layer	Visibility
	
	
	

Whether	a	layer	is	visible	in	a	given	map	depends	on	three	criteria:

The	visibility	setting	for	the	layer

The	visibility	settings	for	any	groups	that	contain	the	layer

The	map	view	scale	and	the	layer	definition	for	that	view	scale

In	order	for	a	layer	to	be	visible,	its	layer	visibility	must	be	on,	the	visibility	for
any	group	containing	the	layer	must	be	on,	and	the	layer	must	have	a	style
setting	defined	for	the	current	map	view	scale.

Topics	in	this	section

Example:	Actual	Visibility

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Example:	Actual	Visibility
	
	
	

For	example,	assume	that	there	is	a	layer	named	Roads	that	is	part	of	the	layer
group	Transportation.	The	layer	has	view	style	defined	for	the	scale	ranges	0–
10000	and	10000–24000.

The	following	table	shows	some	possible	settings	of	the	various	visibility	and
view	scale	settings,	and	their	effect	on	the	actual	layer	visibility.

Layer	Visibility Group	Visibility View
Scale

Actual
Visibility

On On 10000 On

On On 25000 Off

On Off 10000 Off

Off On 10000 Off

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Manipulating	Layers
	
	
	

Modifying	basic	layer	properties	and	changing	layer	visibility	settings	can	be
done	directly	by	setting	properties	like	AcMapLayer.Name,
AcMapLayer.Selectable,	and	AcMapLayer.Visible.	More	complex
manipulation	requires	modifying	layer	resources	in	the	resource	repository.

Topics	in	this	section

Changing	Visibility

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Changing	Visibility
	
	
	

To	query	the	actual	layer	visibility,	call	AcMapLayer.IsVisible().	There
is	no	method	to	set	actual	visibility	because	it	depends	on	other	visibility
settings.

To	query	the	visibility	setting	for	a	layer,	call	AcMapLayer.GetVisible().
To	change	the	visibility	setting	for	a	layer,	call
AcMapLayer.SetVisible().

To	query	the	visibility	setting	for	a	layer	group,	call
AcMapLayerGroup.GetVisible().	To	change	the	visibility	setting	for	a
layer	group,	use	AcMapLayerGroup.SetVisible().

To	change	the	layer	visibility	for	a	given	view	scale,	modify	the	layer	resource
and	save	it	back	to	the	repository.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Layer	Definition
	
	
	

The	feature	source	and	styling	for	a	layer	are	set	using	a	LayerDefinition,
stored	in	the	resource	repository.	The	layer	definition	conforms	to	the
LayerDefinition.xsdLayerDefinition.xsd	schema.	Raster	layers	and	vector	layers
have	different	styling	requirements	and	capabilities.

For	both	raster	and	vector	data,	a	single	layer	definition	can	contain	multiple
scale	ranges,	which	define	the	styling	for	particular	view	scales.	For	example,	a
vector	layer	could	have	the	following	scale	ranges:

0	to	10,000

10,000	to	500,000

500,000	to	infinity

Features	in	the	layer	could	be	styled	differently	or	be	hidden	completely	for	the
different	scale	ranges.

For	a	a	vector	layer,	each	scale	range	can	contain	styling	information	for	the
following:

AreaTypeStyle,	used	for	polygons

LineTypeStyle,	used	for	lines	and	curves

PointTypeStyle,	used	for	points

The	layer	definition	can	be	any	valid	XML	that	conforms	to	the	schema.	To	help
generate	the	XML,	the	AutoCAD	Map	3D	samples	use	classes	generated	from
LayerDefinition.xsd	by	xsd.exe.

For	example,	to	create	a	vector	layer	definition	that	contains	2	scale	ranges,	do
the	following:

Create	the	two	scale	ranges.	For	each,	specify	the	minimum	and
maximum	scale	for	the	range.	Define	the	necessary	elements,	like	fill

ms-its:sdk.ref.gis.platform.chm::/xml_schemas/LayerDefinition/LayerDefinition.html

and	stroke	settings.

Create	the	vector	layer	definition.	Add	the	scale	ranges.

Set	the	feature	name	to	the	schema/feature	class	in	the	feature	source.

Set	the	resource	id	to	point	to	the	feature	source	containing	the	layer
data.

Set	the	geometry	to	the	geometry	property	of	the	feature	class.

Create	a	layer	definition	that	contains	the	vector	layer	definition.

Store	the	layer	definition	in	the	resource	repository.

Create	a	new	layer	that	references	the	layer	definition.	Add	the	layer	to
the	layer	collection	for	the	current	map.

The	example	code	that	follows	uses	the	following	namespace	declarations:

using	System.IO	(for	the	StringWriter	class)

using	System.Text	(for	the	Encoding	class)

using	System.Xml.Serialization	(for	XML	serialization
routines)

using	OSGeo.MapGuide.Schema.LayerDefinition

(generated	by	xsd.exe.	Code	for	this	class	is	available	with	the
AutoCAD	Map	3D	samples.)

The	following	assumes	that	the	feature	source	contains	only	polygons.	Feature
sources	containing	line	or	point	data	would	require	styling	for	those	feature	types
as	well.

//	Create	the	first	scale	range

	

VectorScaleRangeType	range	=	new	VectorScaleRangeType();

	

AreaRule	areaRule	=	new	AreaRule();

	

AreaSymbolizationFillType	areaSymFillType	=	

		new	AreaSymbolizationFillType();

	

FillType	fillType	=	new	FillType();

fillType.FillPattern	=	"Solid";

fillType.ForegroundColor	=	"9900ffaa";

fillType.BackgroundColor	=	"FF000000";

	

StrokeType	strokeType	=	new	StrokeType();

strokeType.LineStyle	=	"Solid";

strokeType.Thickness	=	"0.0";

strokeType.Color	=	"FF000000";

strokeType.Unit	=	LengthUnitType.Centimeters;

	

areaSymFillType.Fill	=	fillType;

areaSymFillType.Stroke	=	strokeType;

	

areaRule.Item	=	areaSymFillType;

areaRule.LegendLabel	=	"";

	

object[]	items	=	new	object[1];

items[0]	=	new	AreaRule[]	{	areaRule	};

range.Items	=	items;

range.MinScale	=	0.0;

range.MaxScale	=	10000000.0;

range.MinScaleSpecified	=	true;

range.MaxScaleSpecified	=	true;

	

//	Second	scale	range

	

VectorScaleRangeType	range2	=	new	VectorScaleRangeType();

	

AreaRule	areaRule2	=	new	AreaRule();

	

AreaSymbolizationFillType	areaSymFillType2	=	

		new	AreaSymbolizationFillType();

	

FillType	fillType2	=	new	FillType();

fillType2.FillPattern	=	"Solid";

fillType2.ForegroundColor	=	"ffffff00";

fillType2.BackgroundColor	=	"FF000000";

	

StrokeType	strokeType2	=	new	StrokeType();

strokeType2.LineStyle	=	"Solid";

strokeType2.Thickness	=	"0.0";

strokeType2.Color	=	"FF000000";

strokeType2.Unit	=	LengthUnitType.Centimeters;

	

areaSymFillType2.Fill	=	fillType2;

areaSymFillType2.Stroke	=	strokeType2;

	

areaRule2.Item	=	areaSymFillType2;

areaRule2.LegendLabel	=	"";

	

object[]	items2	=	new	object[1];

items2[0]	=	new	AreaRule[]	{	areaRule2	};

range2.Items	=	items2;

range2.MinScale	=	10000000.0;

range2.MaxScale	=	Double.MaxValue;

range2.MinScaleSpecified	=	true;

range2.MaxScaleSpecified	=	true;

	

//	Now	create	a	vector	layer	definition	and	add

the	scale	ranges.

	

VectorLayerDefinitionType	vectorLayerDef	=	

		new	VectorLayerDefinitionType();

vectorLayerDef.VectorScaleRange	=	new	VectorScaleRangeType[2];

vectorLayerDef.VectorScaleRange.SetValue(range,	0);

vectorLayerDef.VectorScaleRange.SetValue(range2,	1);

	

//	Set	the	resource	id	to	point	to	the	feature

source	for

//	the	layer.	Set	the	feature	name	to	a	feature

class	in	

//	the	feature	source.	Set	the	geometry	property

to	the

//	default	geometry	property	for	the	feature

class.

	

vectorLayerDef.ResourceId	=	"Library://Data/SAMPLE.FeatureSource";

vectorLayerDef.FeatureName	=	"Schema1:FeatureClass1";

vectorLayerDef.Geometry	=	"Geometry";

	

//	Create	a	layer	definition	containing	the	vector

layer

//	definition.

	

LayerDefinition	layerDef	=	new	LayerDefinition();

layerDef.Item	=	vectorLayerDef;

layerDef.version	=	"1.0.0";

	

//	Convert	to	an	XML	string.

	

using	(StringWriter	writer	=	new	StringWriter())

{

		XmlSerializer	xs	=	new	XmlSerializer(typeof(LayerDefinition));

		xs.Serialize(writer,	layerDef);

	

		//	Convert	to	UTF-8.

	

		byte[]	unicodeBytes	=	

				Encoding.Unicode.GetBytes(writer.ToString());

		byte[]	utf8Bytes	=	

				Encoding.Convert(Encoding.Unicode,	Encoding.UTF8,	

				unicodeBytes);

	

		MgByteSource	source	=	

				new	MgByteSource(utf8Bytes,	utf8Bytes.Length);

	

		//	Update	the	resource	in	Map.

	

		MgResourceService	rs	=

				AcMapServiceFactory.GetService(MgServiceType.ResourceService)

				as	MgResourceService;

	

		//	Store	the	layer	definition	in	the	repository.

	

		MgResourceIdentifier	newLayerDefId	=	

				new	MgResourceIdentifier(

				"Library://myNewLayer.LayerDefinition");

		rs.SetResource(newLayerDefId,	source.GetReader(),	null);

	

		//	Create	a	new	layer	that	references	the	layer

definition.	

		//	Add	this	to	the	layers	in	the	current	map.

	

		AcMapMap	currentMap	=	AcMapMap.GetCurrentMap();

		MgLayerCollection	layers	=	currentMap.GetLayers();

		AcMapLayer	layer;

		layer	=	new	AcMapLayer(newLayerDefId,	rs);

		layer.Name	=	"testlayer";

		layers.Add(layer);

}

This	creates	the	following	XML:

<?xml	version="1.0"	encoding="utf-16"?>

<LayerDefinition	

				xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

				xmlns:xsd="http://www.w3.org/2001/XMLSchema"	

				version="1.0.0">

		<VectorLayerDefinition>

				<ResourceId>Library://Data/SAMPLE.FeatureSource</ResourceId>

				<FeatureName>Schema1:FeatureClass1</FeatureName>

				<FeatureNameType>FeatureClass</FeatureNameType>

				<Geometry>Geometry</Geometry>

				<VectorScaleRange>

						<MinScale>0</MinScale>

						<MaxScale>10000000</MaxScale>

						<AreaTypeStyle>

								<AreaRule>

										<LegendLabel	/>

										<AreaSymbolization2D>

												<Fill>

														<FillPattern>Solid</FillPattern>

														<ForegroundColor>9900ffaa</ForegroundColor>

														<BackgroundColor>FF000000</BackgroundColor>

												</Fill>

												<Stroke>

														<LineStyle>Solid</LineStyle>

														<Thickness>0.0</Thickness>

														<Color>FF000000</Color>

														<Unit>Centimeters</Unit>

												</Stroke>

										</AreaSymbolization2D>

								</AreaRule>

						</AreaTypeStyle>

				</VectorScaleRange>

				<VectorScaleRange>

						<MinScale>10000000</MinScale>

						<MaxScale>1.7976931348623157E+308</MaxScale>

						<AreaTypeStyle>

								<AreaRule>

										<LegendLabel	/>

										<AreaSymbolization2D>

												<Fill>

														<FillPattern>Solid</FillPattern>

														<ForegroundColor>ffffff00</ForegroundColor>

														<BackgroundColor>FF000000</BackgroundColor>

												</Fill>

												<Stroke>

														<LineStyle>Solid</LineStyle>

														<Thickness>0.0</Thickness>

														<Color>FF000000</Color>

														<Unit>Centimeters</Unit>

												</Stroke>

										</AreaSymbolization2D>

								</AreaRule>

						</AreaTypeStyle>

				</VectorScaleRange>

		</VectorLayerDefinition>

</LayerDefinition>

Topics	in	this	section

Layers	With	Joined	Feature	Sources
Filtering	Layers	By	Geometry
Modifying	Layer	Style

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Layers	With	Joined	Feature	Sources
	
	
	

To	create	a	layer	definition	for	a	layer	that	uses	a	feature	source	containing	a
join,	create	the	layer	definition	as	described	in	Layer	Definition.	Set	the
<FeatureName>	element	to	the	join	name	as	defined	in	the	feature	source.	Set
the	<FeatureNameType>	element	to	NamedExtension.	For	example,	the
following	portion	of	a	layer	definition	uses	the	join	named	“Parcels_Joins1”.

<?xml	version="1.0"	encoding="utf-16"?>

<LayerDefinition	

				xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

				xmlns:xsd="http://www.w3.org/2001/XMLSchema"	

				version="1.0.0">

		<VectorLayerDefinition>

				<ResourceId>Library://Data/SAMPLE.FeatureSource</ResourceId>

				<FeatureName>Parcels_Joins1</FeatureName>

				<FeatureNameType>NamedExtension</FeatureNameType>

See	Joins	for	details	about	the	feature	source	definition.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Filtering	Layers	By	Geometry
	
	
	

The	layer	definition	for	a	vector	layer	can	include	a	<Filter>	element	to
select	only	certain	features.	The	filter	is	a	string	that	contains	a	valid	FDO
selection	expression.	See	Selecting	Using	the	API	for	a	description	of	filters.

For	example,	assume	the	following:

geomPoly	is	an	MgPolygon	representing	the	area	of	interest.

geometry	is	the	default	geometry	property	for	a	feature	class.

The	following	creates	a	filter	to	select	only	those	features	that	intersect	the
polygon.

MgWktReaderWriter	rw	=	new	MgWktReaderWriter();

string	wktGeom	=	rw.Write(geomPoly);

string	filter	=	"geometry	intersects	GeomFromText("	+

		wktGeom	+	")");

To	modify	the	sample	in	Layer	Definition	to	use	the	filter,	set	the	<Filter>
element	as	follows:

vectorLayerDef.Filter	=	filter;

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Modifying	Layer	Style
	
	
	

To	modify	the	styling	for	a	layer,	retrieve	the	layer	definition	from	the	repository,
make	changes	to	it,	store	it	back	to	the	repository,	and	refresh	the	layer.

To	retrieve	the	layer	definition,	get	its	resource	identifier	from	the	map	layer.	Get
the	resource	content	and	deserialize	it	using	an	XmlSerializer	object.

AcMapMap	currentMap	=	AcMapMap.GetCurrentMap();

MgLayerCollection	layers	=	currentMap.GetLayers();

MgResourceService	rs	=

		AcMapServiceFactory.GetService(MgServiceType.ResourceService)

		as	MgResourceService;

	

//	Get	the	layer	definition.	Convert	it	to	an	XML	string	

//	stored	in	a	byte	reader.

	

AcMapLayer	layer1	=	layers.GetItem(layerName)	as	AcMapLayer;

MgResourceIdentifier	layerDefId	=	layer1.GetLayerDefinition();

MgByteReader	layerReader	=	rs.GetResourceContent(layerDefId);

	

//	Deserialize	it	to	create	a	LayerDefinition	object.

	

XmlSerializer	layerDefSerializer	=	new	

		XmlSerializer(typeof(LayerDefinition));

LayerDefinition	xmlLayerDef	=	

		layerDefSerializer.Deserialize(new	

		StringReader(layerReader.ToString()))	

		as	LayerDefinition;

Updating	the	LayerDefinition	object	is	similar	to	creating	a	new	one.	Find
the	correct	elements	and	set	their	values.	For	example,	the	following	changes	the
foreground	color	for	the	area	rule	in	the	first	scale	range,	then	it	updates	the	layer
definition	in	the	resource	repository	and	refreshes	the	layer.

//	Should	be	a	VectorLayerDefinitionType

	

if	(xmlLayerDef.Item	is	VectorLayerDefinitionType)

{

		VectorLayerDefinitionType	xmlVectorLayerDef	=	

				xmlLayerDef.Item	as	VectorLayerDefinitionType;

	

		//	Check	the	rules	for	the	first	scale	range.	

		//	Only	update	rules	if	they	are	the	correct	type.

	

		object[]	items	=	xmlVectorLayerDef.VectorScaleRange[0].Items;

		foreach	(object	item	in	items)

		{

				Type	type	=	item.GetType();

	

				if	(type.Name	==	typeof(AreaRule[]).Name)

				{

						AreaRule[]	areaRules	=	item	as	AreaRule[];

	

						//	OK,	got	the	correct	area	rule.	Set	the	foreground	color.

	

						if	(areaRules.Length	>	0)

						{

								areaRules[0].Item.Fill.ForegroundColor	=	newColor;

						}

				}

		}

	

		//	Now	convert	it	back	to	an	XML	string	and	update	the	

		//	resource.

	

		using	(StringWriter	writer	=	new	StringWriter())

		{

				//	Get	the	xml	string

				layerDefSerializer.Serialize(writer,	xmlLayerDef);

	

				//	Create	the	resource

				byte[]	unicodeBytes	=	

						Encoding.Unicode.GetBytes(writer.ToString());

				byte[]	utf8Bytes	=	

						Encoding.Convert(Encoding.Unicode,	

						Encoding.UTF8,	unicodeBytes);

	

				MgByteSource	source	=	

						new	MgByteSource(utf8Bytes,	utf8Bytes.Length);

	

				//	Update	the	resource	in	Map

				rs.SetResource(layer1.LayerDefinition,	

						source.GetReader(),	null);

	

				layer1.ForceRefresh();

		}

}

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Geometry
	
	
	

Topics	in	this	section

Overview
Geometry	Objects
Comparing	Geometry	Objects
Coordinate	Systems
Measuring	Distance
Creating	a	Buffer

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Overview
	
	
	

The	AutoCAD	Map	3D	Geospatial	Platform	API	includes	a	complete	set	of
classes	for	working	with	geometry.	This	includes	the	following:

Describing	simple	and	complex	geometric	objects

Performing	spatial	comparisons	between	objects

Creating	new	objects	based	on	the	intersection,	difference,	or	union	of
existing	objects

Converting	between	different	coordinate	systems

Creating	buffers	around	objects

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Geometry	Objects
	
	
	

MgGeometry	is	the	base	class	for	all	the	geometry	types.	The	simple	geometry
types	are:

MgPoint	—	a	single	point

MgLineString	—	a	series	of	connected	line	segments

MgCurveString	—	a	series	of	connected	curve	segments

MgPolygon	—	a	polygon	with	sides	formed	from	line	segments

MgCurvePolygon	—	a	polygon	with	sides	formed	from	curve
segments

The	curve	segments	are	circular	arcs,	defined	by	a	start	point,	an	end	point,	and	a
control	point.

Complex	types	are	formed	by	aggregating	simple	types.	The	complex	types	are:

MgMultiPoint	—	a	group	of	points

MgMultiLineString	—	a	group	of	line	strings

MgMultiCurveString	—	a	group	of	curve	strings

MgMultiPolygon	—	a	group	of	polygons

MgMultiCurvePolygon	—	a	group	of	curve	polygons

MgMultiGeometry	—	a	group	of	simple	geometry	objects	of	any
type

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Comparing	Geometry	Objects
	
	
	

The	MgGeometry	class	contains	methods	for	comparing	different	geometry
objects.	These	are	similar	to	the	spatial	filters	described	in	Selecting	Using	the
API.	Methods	to	test	spatial	relationships	include:

Contains()

Crosses()

Disjoint()

Equals()

Intersects()

Overlaps()

Touches()

Within()

For	example,	if	you	have	an	MgLineString	object	line	and	an
MgPolygon	object	polygon,	you	can	test	if	the	line	crosses	the	polygon	with
a	call	to

line.Crosses(polygon)

Methods	to	create	new	geometry	objects	from	the	point	set	of	two	other
geometries	include:

Difference()

Intersection()

SymmetricDifference()

Union()

Complete	details	are	in	the	Geometry	module	of	the	Geospatial	Platform	API
reference,	under	Spatial	Relationships.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Coordinate	Systems
	
	
	

A	single	map	will	often	combine	data	from	different	sources,	and	the	different
sources	may	use	different	coordinate	systems.	The	map	has	its	own	coordinate
system,	and	any	feature	sources	used	in	the	map	may	have	different	coordinate
systems.	It	is	important	for	display	and	analysis	that	all	locations	are	transformed
to	the	same	coordinate	system.

Note A	coordinate	system	can	also	be	called	a	spatial	reference	system	(SRS)	or	a
coordinate	reference	system	(CRS).	This	guide	uses	the	abbreviation	SRS.

AutoCAD	Map	3D	supports	three	different	types	of	coordinate	system:

Arbitrary	X-Y

Geographic,	or	latitude/longitude

Projected

An	MgCoordinateSystem	object	represents	a	coordinate	system.

Note You	cannot	transform	between	arbitrary	X-Y	coordinates	and	either
geographic	or	projected	coordinates.

To	create	an	MgCoordinateSystem	object	from	an	AcMapMap	object,

Get	the	WKT	representation	of	the	map	coordinate	system,	using
AcMapMap.GetMapSRS().

Create	an	MgCoordinateSystem	object,	using
MgCoordinateSystemFactory.Create().

To	create	an	MgCoordinateSystem	object	from	a	map	layer,

Get	the	feature	source	for	the	layer.

Get	the	active	spatial	context	for	the	feature	source.

Convert	the	spatial	context	to	a	WKT.

Create	an	MgCoordinateSystem	object	from	the	WKT.

To	transform	geometry	from	one	coordinate	system	to	another,	create	an
MgCoordinateSystemTransform	object	using	the	two	coordinate
systems.	Apply	this	transform	to	the	MgGeometry	object.

For	example,	if	you	have	geometry	representing	a	feature	on	a	layer	that	uses
one	coordinate	system,	and	you	want	to	compare	it	to	a	feature	on	another	layer
that	uses	a	different	coordinate	system,	perform	the	following	steps:

string	featureSource1	=	layer1.GetFeatureSourceId();

MgSpatialContextsReader	contexts1	=	

		featureService.GetSpatialContexts(

		featureSource1,	true);

contexts1.ReadNext();

string	srs1	=	contexts1.GetCoordinateSystemWkt();

	

string	featureSource2	=	layer2.GetFeatureSourceId();

MgSpatialContextsReader	contexts2	=	

		featureService.GetSpatialContexts(

		featureSource2,	true);

contexts2.ReadNext();

string	srs2	=	contexts2.GetCoordinateSystemWkt();

	

MgCoordinateSystemFactory	coordsysFactory	=	

		new	MgCoordinateSystemFactory();

MgCoordinateSystemTransform	xform	=	

		coordsysFactory.GetTransform(srs1,	srs2);

MgGeometry	geometry1xform	=	geometry1.Transform(xform);

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Measuring	Distance
	
	
	

Measuring	distance	in	geographic	or	projected	coordinate	systems	requires	great
circle	calculations.	Both	MgGeometry.Buffer()	and
MgGeometry.Distance()	accept	a	measurement	parameter	that	defines	the
great	circle	to	be	used.	If	the	measurement	parameter	is	null,	the	calculation	is
done	using	a	linear	algorithm.

Create	the	measurement	parameter,	an	MgCoordinateSystemMeasure
object,	from	the	MgCoordinateSystem	object.

Distance	is	calculated	in	the	units	of	the	SRS.	MgCoordinateSystem
includes	two	methods,	ConvertCoordinateSystemUnitsToMeters()
and	ConvertMetersToCoordinateSystemUnits(),	to	convert	to	and
from	linear	distances.

For	example,	to	calculate	the	distance	between	two	MgGeometry	objects	a	and
b,	using	the	coordinate	system	srs,	perform	the	following	steps:

MgCoordinateSystemMeasure	measure	=	srs.GetMeasure();

double	distInMapUnits	=	a.Distance(b,	measure);

double	distInMeters	=	srs.ConvertCoordinateSystemUnitsToMeters(

			distInMapUnits);

Another	way	to	calculate	the	distance	is	to	use
MgCoordinateSystemMeasure.GetDistance(),	as	in	the	following:

distInMapUnits	=	measure.GetDistance(a,	b);

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

Creating	a	Buffer
	
	
	

To	create	a	buffer	around	a	feature,	use	the	MgGeometry.Buffer()	method.
This	returns	an	MgGeometry	object	that	you	can	use	for	further	analysis.	For
example,	you	could	display	the	buffer	by	creating	a	feature	in	a	temporary
feature	source	and	adding	a	new	layer	to	the	map.	You	could	also	use	the	buffer
geometry	as	part	of	a	spatial	filter.	For	example,	you	might	want	to	find	all	the
features	within	the	buffer	zone	that	match	certain	criteria,	or	you	might	want	to
find	all	roads	that	cross	the	buffer	zone.

To	create	a	buffer,	get	the	geometry	of	the	feature	to	be	buffered.	If	the	feature	is
being	processed	in	an	MgFeatureReader	as	part	of	a	selection,	this	requires
getting	the	geometry	data	from	the	feature	reader	and	converting	it	to	an
MgGeometry	object.	For	example:

MgByteReader	geometryData	=	

		featureReader.GetGeometry(geometryName);

MgGeometry	featureGeometry	=	agfReaderWriter.Read(geometryData);

If	the	buffer	is	to	be	calculated	using	coordinate	system	units,	create	an
MgCoordinateSystemMeasure	object	from	the	coordinate	system	for	the
map.	For	example:

string	mapWktSrs	=	currentMap.GetMapSRS();

MgCoordinateSystemFactory	coordSysFactory	=	

		new	MgCoordinateSystemFactory();

MgCoordinateSystem	srs	=	coordSysFactory.Create(mapWktSrs);

MgCoordinateSystemMeasure	srsMeasure	=	srs.GetMeasure();

Use	the	coordinate	system	measure	to	determine	the	buffer	size	in	the	coordinate
system,	and	create	the	buffer	object	from	the	geometry	to	be	buffered.

double	srsDist	=	

		srs.ConvertMetersToCoordinateSystemUnits(bufferDist);

MgGeometry	bufferGeometry	=	

		featureGeometry.Buffer(srsDist,	srsMeasure);

To	display	the	buffer	in	the	map,	perform	the	following	steps:

Create	a	feature	source	for	the	buffer.	This	may	require	creating	a	new
file	for	the	feature	source.	See	Creating	SDF	files.

Create	a	layer	that	references	the	feature	source.	Add	it	to	the	map	and
make	it	visible.

Create	a	new	feature	using	the	buffer	geometry	and	insert	it	into	the
feature	source.

For	example,	the	following	code	assumes	that	the	layer	resLayer	has	been
created	using	a	feature	source	with	a	geometry	property	of	Geometry.	It	adds	a
new	feature	using	the	buffer	geometry.

MgPropertyCollection	properties	=	new	MgPropertyCollection();

properties.Add(new	MgGeometryProperty("Geometry",

		agfReaderWriter.Write(bufferGeometry)));

	

MgFeatureCommandCollection	commands	=	

		new	MgFeatureCommandCollection();

commands.Add(new	MgInsertFeatures(resFeatureClassName,	

		properties));

	

resLayer.UpdateFeatures(commands);

To	use	the	buffer	as	part	of	a	query,	create	a	spatial	filter	using	the	buffer
geometry,	and	use	this	in	a	call	to	AcMapLayer.SelectFeatures().	For
example,	the	following	code	uses	a	basic	filter	and	a	spatial	filter	to	select
parcels	inside	the	buffer	area	that	are	of	type	“MFG”.	You	can	use	the
MgFeatureReader	to	perform	tasks	like	generating	a	report	of	the	parcels,	or
creating	a	new	layer	that	puts	point	markers	on	each	parcel.

MgFeatureQueryOptions	queryOptions	=	new	MgFeatureQueryOptions();

queryOptions.SetFilter("PARCELTYPE	=	'MFG'");

queryOptions.SetSpatialFilter('SHPGEOM',	bufferGeometry,	

			MgFeatureSpatialOperations.Inside);

	

MgResourceIdentifier	featureResId	=	new	MgResourceIdentifier(

			"Library://Data/Parcels.FeatureSource");

MgFeatureReader	featureReader	=	

		layer.SelectFeatures(queryOptions);

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

	Overview
	Introduction
	Relationship to MapGuide
	Geospatial Platform API Documentation
	Setting Up Visual Studio
	Sample Applications
	Resources
	Introduction
	Working With Resources
	Differences Between AutoCAD Map 3D and MapGuide
	Sample - Using Resources
	The XML Files
	Adding The Resource
	Points To Watch
	Feature Service
	Overview
	Defining Feature Sources
	Example: Defining a Vector Feature Source
	Example: Defining a Raster Feature Source
	Joins
	Adding Feature Classes to a Map
	Selecting Feature Data
	Representation of Geometry
	Selecting Using the API
	Basic Filters
	Examples
	Spatial Filters
	Creating Geometry Objects From Features
	Updating Features
	Edit Sets
	Creating SDF files
	Maps and Layers
	Overview
	Basic Layer Properties
	Layer Groups
	Layer Visibility
	Example: Actual Visibility
	Manipulating Layers
	Changing Visibility
	Layer Definition
	Layers With Joined Feature Sources
	Filtering Layers By Geometry
	Modifying Layer Style
	Geometry
	Overview
	Geometry Objects
	Comparing Geometry Objects
	Coordinate Systems
	Measuring Distance
	Creating a Buffer

