
AutoCAD	Map	3D	2009	AutoLISP	Reference
071020

	
	

AutoCAD	Map	3D	AutoLISP	functions	cover	data	extension	(drawing	sets,
queries,	object	data...	the	"ADE"	functionality),	map	plotting,	and	topology.

For	broader	coverage	of	AutoCAD	Map	3D	functionality,	use	the	.NET	API,
which	is	included	in	the	AutoCAD	Map	3D	SDK.	The	SDK	is	a	separate
installation	from	AutoCAD	Map	3D	itself.	You	can	download	it	from	the
Autodesk	web	site.

Note		The	AutoLISP	API	remains	available	to	support	legacy	applications	that
use	it.	For	all	new	development,	the	.NET	API	is	the	best	choice.

To	download	the	AutoCAD	Map	3D	SDK

1.	 Open	the	Autodesk	Home	Page	(it	opens	in	a	new	window)	and	click
Search.

2.	 Search	for	"ObjectARX	for	Autodesk	Map	3D".
3.	 Click	"Developer	Center	-	ObjectARX	for	Autodesk	Map	3D".
4.	 Click	"License	And	Download".

Three	Functional	Groups

AutoCAD	Map	AutoLISP	comprises	three	functional	groups:

Data	Extension	Functions	Plotting	Functions
Topology	Functions

http://www.autodesk.com

Before	You	Begin

To	develop	AutoLISP	applications	for	AutoCAD	Map,	you	should	be	familiar
with	AutoCAD,	the	AutoCAD	Map	user	interface,	and	the	AutoLISP	API	for
AutoCAD.

Related	Topics

Using	AutoLISP	Functions
Numeric	Identifiers
Typographic	Conventions

What's	New
	 	 	

	
	

No	new	features	or	enhancements	have	been	added	to	AutoLISP	for	AutoCAD
Map	3D	2008.

Data	Extension	Function	Catalog
Function	Synopsis 	 	

	
	

Data	Extension	functions	listed	alphabetically.

alias	|	altp	|	ds	|	dwg	|	edit	|	ent	|	err	|	expr	|	key	|	od

os	|	pref	|	proj	|	ql	|	qry	|	rt	|	save	|	sql	|	ss	|	user	|	ver

ade_aliasadd	ade_aliasdelete
ade_aliasgetlist
ade_aliasupdate

ade_altpclear
ade_altpdefine
ade_altpdelprop
ade_altpgetprop
ade_altplist
ade_altpsetprop

ade_dsattach
ade_dsdetach
ade_dsisnested
ade_dslist
ade_dsproplist

ade_dwgactivate
ade_dwgactualpath
ade_dwgaliaspath
ade_dwgattriblist
ade_dwgdeactivate
ade_dwggetid
ade_dwggetsetting

ade_dwghaslocks
ade_dwgindex
ade_dwgindexdef
ade_dwgisactive
ade_dwgistoplevel
ade_dwgproplist
ade_dwgquickview
ade_dwgselectdlg
ade_dwgsetof
ade_dwgsetsetting
ade_dwgunlock
ade_dwgzoomextents

ade_editdefcen
ade_editlockederased
ade_editislocked
ade_editlocked
ade_editlockobjs
ade_editnew
ade_editunlockobjs

ade_entsetlocation

ade_errclear
ade_errcode
ade_errgetlevel
ade_errmsg
ade_errpush
ade_errpushstatement
ade_errqty
ade_errsetlevel
ade_errshowdlg
ade_errstatement
ade_errtype

ade_expreval

ade_keycolumnlist

ade_odaddfield

ade_odaddrecord
ade_odattachrecord
ade_oddefinetab
ade_oddeletefield
ade_oddeletetab
ade_oddelrecord
ade_odfreerec
ade_odgetfield
ade_odgetrecfield
ade_odgetrecord
ade_odgettables
ade_odmodifyfield
ade_odmodifytab
ade_odnewrecord
ade_odpresetfield
ade_odrecordqty
ade_odsetfield
ade_odtabledefn
ade_odtablelist

ade_osfexpand

ade_prefgetval
ade_prefsetval

ade_projgetctgyname
ade_projgetinfo
ade_projgetwscode
ade_projlistcrdsysts
ade_projlistctgy
ade_projptbackward
ade_projptforward
ade_projsetdest
ade_projsetsrc
ade_projsetwscode

ade_qldelctgy
ade_qldelquery
ade_qlgetctgyinfo

ade_qlgetqryinfo
ade_qllistctgy
ade_qlloadqry
ade_qlqrygetid
ade_qlsetctgyname
ade_qlsetquery

ade_qryclear
ade_qrydefine
ade_qryexecute
ade_qrygetcond
ade_qrygetdwgandhandle
ade_qrygetentlist
ade_qrygetreptransform
ade_qrygroup
ade_qryhandent
ade_qrylist
ade_qrysave
ade_qrysetaltprop
ade_qrysetcond
ade_qrysetreptransform
ade_qrysettype
ade_qryungroup

ade_rtdefrange
ade_rtdeltable
ade_rtgetid
ade_rtgetprop
ade_rtlist

ade_saveobjs
ade_savetodwg

ade_sqlgetenvstring

ade_ssfree

ade_userget
ade_usergetrights
ade_userlist

ade_userset
ade_usersetrights

ade_version

Data	Extension	Function	Synopsis
Function	Catalog 	 	

	
	

Data	Extension	functions	listed	by	functional	group.

Coordinate	Transformation	Functions

Drawing	Functions

Drawing	Set	Functions

Drive	Alias	Functions

Error	Message	Functions

Expression	Evaluation	Function

Object	Data	Functions

Object	Editing	Functions

Object	Saving	Functions

Option	Functions

Property	Alteration	Functions

Query	Functions

Query	Library	Functions

Range	Table	Functions

SQL	Environment	Functions

Text	Label	Function

User	Security	Functions

Other	Functions

Plotting	Function	Catalog
Function	Synopsis 	 	

	
	

Plotting	functions	listed	alphabetically.

dwg	|	plt	|	topo

map_dwgbreakobj	map_dwgtrimobj

map_pltblkatts
map_pltblklist
map_pltblkvps
map_pltcleanup
map_pltcurrdef
map_pltcurrdel
map_pltcurrget
map_pltcurrsave
map_pltcurrset
map_pltdefdelete
map_pltdefget
map_pltdeflist
map_pltdefread
map_pltdefsave
map_pltdefvalid
map_pltdefverify
map_pltdisplay
map_pltexecute
map_pltinit
map_pltplot
map_pltrestore

map_topoaudit
map_topoclose
map_topocomplete
map_topostat

Plotting	Function	Synopsis
Function	Catalog 	 	

	
	

Plotting	functions	listed	by	functional	group.

Boundary	Functions

Plotting	Functions

Topology	Functions

Topology	Function	Catalog
Function	Synopsis 	 	

	
	

Topology	functions	listed	alphabetically.

ac	|	ana	|	clean	|	edit	|	elem	|	info	|	iter	|	mnt	|	qry	|	trace	|	var

tpm_acclose	tpm_acexist
tpm_acload
tpm_acopen
tpm_acqty
tpm_acunload
tpm_acupgradeopen

tpm_anabuffer
tpm_anadissolve
tpm_anaoverlay

tpm_cleanactionlistdel
tpm_cleanactionlistgetat
tpm_cleanactionlistins
tpm_cleanactionlistqty
tpm_cleanalloc
tpm_cleananchorss
tpm_cleancancel
tpm_cleancomplete
tpm_cleancreatedss
tpm_cleanend
tpm_cleanerrorcur
tpm_cleanerrordraw
tpm_cleanerrorfix

tpm_cleanerrorget
tpm_cleanerrormark
tpm_cleanerrorset
tpm_cleanfree
tpm_cleangroupdraw
tpm_cleangroupfix
tpm_cleangroupmark
tpm_cleangroupnext
tpm_cleangroupqty
tpm_cleangroupsubtype
tpm_cleangrouptype
tpm_cleanincludess
tpm_cleaninit
tpm_cleaninitanchorset
tpm_cleanmodifiedss
tpm_cleanprofileload
tpm_cleanprofilesave
tpm_cleanstart
tpm_cleanunchangedss

tpm_editaddelem
tpm_editdelelem
tpm_editmodelem
tpm_editupdelem

tpm_elemadj
tpm_elemfind
tpm_elemget
tpm_elemid
tpm_elemqty
tpm_elemss

tpm_infobuildvar
tpm_infocomplete
tpm_infocorrect
tpm_infocurrent
tpm_infodesc
tpm_infomodified
tpm_infoname

tpm_infostatus
tpm_infotype
tpm_infoversion

tpm_iterdesc
tpm_itername
tpm_iternext
tpm_iterstart
tpm_iterstop
tpm_itertype
tpm_iterversion

tpm_mntbuild
tpm_mnterase
tpm_mntrebuild
tpm_mntrename

tpm_qrygetresdesc
tpm_qrygetrestopo
tpm_qrygettoponame
tpm_qrysetrestopo
tpm_qrysettoponame

tpm_tracealloc
tpm_tracebestroute
tpm_tracebestroutescan
tpm_tracebestrouteval
tpm_traceelemedit
tpm_traceelemget
tpm_traceelemid
tpm_traceflood
tpm_tracefree
tpm_traceqty
tpm_tracesetmaxres
tpm_tracesetminres
tpm_traceshort
tpm_traceshortscan
tpm_traceshortval

tpm_varalloc

tpm_varfree
tpm_varget
tpm_varlist
tpm_varset

Topology	Function	Synopsis
Function	Catalog 	 	

	
	

Topology	functions	listed	by	functional	group.

Access	Functions

Analyzing	Functions

Building	and	Erasing	Functions

Cleanup	Functions

Editing	Functions

Element	Information	Functions

Iterating	Functions

Network	Tracing	Functions

Topology	Information	Functions

Topology	Query	Functions

Topology	Variables	Functions

Configuration	Variables
	 	 	

	
	

Configuration	variables	include	three	subsets:

Cleanup	variables,	properties	for	cleanup	models.

Cleanup	action	variables,	properties	for	cleanup	actions.

Topology	variables,	properties	for	topologies.

To	allocate	a	set	of	configuration	variables,	regardless	of	which	subset	you	will
be	using,	use	tpm_varalloc,	which	returns	an	ade_id	for	the	set	that	it	creates.

To	free	a	set	of	configuration	variables,	use	tpm_varfree.

To	get	the	value	of	a	configuration	variable,	use	tpm_varget.

To	set	the	value	of	a	configuration	variable,	use	tpm_varset.

To	get	the	properties	of	a	given	cleanup	action,	first	allocate	a	new	set	of
variables,	and	then	use	tpm_cleanactionlistgetat.

To	get	the	properties	of	a	given	topology,	first	allocate	a	new	set	of	variables,
and	then	use	tpm_infobuildvar.

To	list	all	the	values	of	a	given	set	of	variables,	use	tpm_varlist.

Topology	Variables
	 	 	

	
	

Topology	variables	store	properties	for	topologies,	which	are	created	by
tpm_mntbuild	and	the	topology	analysys	functions,	tpm_ana[xx].

Topology	variables	are	a	subset	of	the	configuration	variables	data	structure.

BUILD_TOL Tolerance	for	topology
building,	buffering,	and	other
processes	(positive	real).	
Default	=	0.01

CNTR_COLOR Color	for	new	centroids,	an
AutoCAD	color	index
(integer).	
Negative	integer	=	Current
color	
Default	=	-1	
See	Color	Index	Colors.

CNTR_LAYER Layer	name	for	new	centroids
(string).	
nil	=	Current	layer	
Default	=	""

CNTR_TYPE Entity	type	of	new	centroids
(integer).	
1	=	Point	(default)

2	=	Block

CNTR_BLOCK Block	name	for	new	centroids
(string).	
Default	=	""

CREATE_CNTR Flag	for	centroids	generation
(integer).	
1	=	Generate	(default)	
0	=	Do	not	generate

CREATE_MARKERS Whether	errors	should	be
marked	with	persistent
markers	as	drawn	by
tpm_cleanerrormark
(integer).	
0	=	Do	not	mark	(default)	
1	=	Mark	
Marker	shapes	are	set	by
MARKER_HEIGHT	and
the	[XX]_MARKER
cleanup	variables.

CREATE_NODE Flag	for	nodes	generation
(integer).	
1	=	Generate	(default)	
0	=	Do	not	generate

CREATE_VIEW Whether	errors	should	be
marked	with	temporary
markers	as	drawn	by
tpm_cleanerrordraw	
0	=	Do	not	mark	
1	=	Mark	(default)

DEF_OFFSET Default	offset	(real).	

Use	when	offset	value	cannot
be	calculated	for	an	object,
for	example,	if	the	object
lacks	necessary	object	data.	
Default	=	1.0

DUPLICATE_CENTROID_COLOR Marker	color	for	duplicate
centroid	errors,	an	AutoCAD
color	index	(integer).	
Default	=	1	(red)	
See	Color	Index	Colors.

DUPLICATE_CENTROID_MARKER Marker	shape	for	duplicate
centroid	errors	(integer).	See
Marker	Shapes.	
Default	=	4	(square)

IGNORE_INCOMPLETE_AREA What	to	do	if	links	are
encountered	that	do	not
belong	to	any	polygon
(integer).	
1	=	Ignore	them	
0	=	Cancel	topology	creation
process	(default)

INCOMPLETE_AREA_COLOR Marker	color	for	incomplete
area	errors,	an	AutoCAD
color	index	(integer).	
Default	=	2	(yellow)	
See	Color	Index	Colors.

INCOMPLETE_AREA_MARKER Marker	shape	for	incomplete
area	errors	(integer).	See
Marker	Shapes.	
Default	=	2	(triangle)

INTERSECTION_COLOR Marker	color	for	intersection

errors,	an	AutoCAD	color
index	(integer).
Default	=	3	(green)	
See	Color	Index	Colors.

INTERSECTION_MARKER Marker	shape	for	intersection
errors	(integer).	See	Marker
Shapes.	
Default	=	1	(octagon)

MISSING_CENTROID_COLOR Marker	color	for	missing
centroid	errors,	an	AutoCAD
color	index	(integer).
Default	=	4	(cyan)	
See	Color	Index	Colors.

MISSING_CENTROID_MARKER Marker	shape	for	missing
centroid	errors	(integer).	See
Marker	Shapes.	
Default	=	3	(rhombus)

NODE_BLOCK Block	name	for	new	nodes
(string).	Default	=	""

NODE_COLOR Color	for	new	nodes,	an
AutoCAD	color	index
(integer):	
Negative	integer	=	The
current	color
Default	=	-1	
See	Color	Index	Colors.

NODE_LAYER Layer	name	for	new	nodes
(string):	
nil	The	current	layer
Default	=	""

NODE_TYPE Entity	type	of	new	nodes
(integer):	
1	Point	(default)
2	Block

STOP_AT_MISSING_CNTR What	to	do	if	a	polygon	has
no	centroid	(integer):
0	Create	a	centroid	(default)
1	Cancel	topology	creation
process

STOP_AT_MULTIPLE_CNTR What	to	do	if	a	polygon	has
more	than	one	centroid
(integer):
0	Designate	one	centroid	
1	Cancel	topology	creation
process	(default)

Cleanup	Variables
	 	 	

	
	

Cleanup	variables	store	properties	for	cleanup	models.

Cleanup	variables	are	a	subset	of	the	configuration	variables	data	structure.

Note		Data	types	cited	below	are	AutoLISP	types.	The	AutoLISP	real
corresponds	to	the	C++	double.	Similarly,	integer	corresponds	to	long.

ANCHOROBJS_FEATURES !!	New	!!		Classified
objects	to	include,	a
comma-separated	list	of
feature	names	(string),
such	as	"Roads,	Rivers,
Streets".	Default	=	"*"
(all	features).

ANCHOROBJS_LAYERS Anchored	entities	specified
by
tpm_cleaninitanchorset
will	be	anchored	only	if
they	reside	on	layers
specified	here,	with
multiple	layer	names
separated	by	commas.	For
example,
"0,Layer1,Layer2".
Default	=	"*"	(any	layer)

APPARENT_INTERSECTION_COLOR !!	New	!!		Color	for
apparent-intersection
markers,	an	AutoCAD
color	index	(integer).	See
Color	Index	Colors.	
Default	=	7	(white)

APPARENT_INTERSECTION_MARKER !!	New	!!		Marker	shape
for	apparent-intersection
errors	(integer).	See
Marker	Shapes.	
Default	=	2	(triangle)

ARC_TYPE Convert	arcs	to	(integer):	
0	=	Arc	(default)
1	=	2D	polyline

CIRCLE_TYPE Convert	circles	to
(integer):	
0	=	Circle	(default)
1	=	2D	polyline
2	=	Arc

CLEAN_TOL Cleanup	tolerance
(positive	real).	
Default	=	0.01

CLUSTER_COLOR Color	for	cluster	markers,
an	AutoCAD	color	index
(integer).	See	Color	Index
Colors.	
Default	=	5	(blue)

CLUSTER_MARKER Marker	shape	for	cluster
errors	(integer).	See
Marker	Shapes.	
Default	=	4	(square)

CONVERT Flag	for	the	original
entities	conversion
(integer).	
0	=	Do	not	convert
(default)	
1	=	Convert

CORRIDOR Corridor	width	(positive
real).	
Default	=	0.01	
Note		If	you	are	using	an
explicit	cleanup	action	list
(specifying	cleanup	actions
using
tpm_cleanactionlistins),
this	setting	is	ignored.

CROSS_COLOR Color	for	cross	markers,	an
AutoCAD	color	index
(integer).	See	Color	Index
Colors.	
Default	=	2	(yellow)

CROSS_MARKER Marker	shape	for	cross
errors	(integer).	See
Marker	Shapes.	
Default	=	1	(octagon)

DANGL_COLOR Color	for	dangling	node
markers,	an	AutoCAD
color	index	(integer).	See
Color	Index	Colors.	
Default	=	1	(red)

DANGL_MARKER Marker	shape	for	dangling
node	errors	(integer).	See
Marker	Shapes.	

Default	=	1	(octagon)

DEL_MARKER Whether	to	delete	previous
error	markers	(integer).	
0	=	Do	not	delete	
1	=	Delete	(default)

DUPL_COLOR Color	for	duplicates
markers,	an	AutoCAD
color	index	(integer).	See
Color	Index	Colors.	
Default	=	6	(magenta)

DUPL_MARKER Marker	shape	for	duplicate
errors	(integer).	See
Marker	Shapes.	
Default	=	1	(octagon)

ENT_PROCESS Flag	for	original	entities
processing	(integer).	
1	=	Convert	original	
2	=	Create	new	and	keep
original	
3	=	Create	new	and	delete
original	
Default	=	0

GENERALIZE Flag	for	generalization
(link	simplication)
(integer).	
0	=	Do	not	generalize
(default)	
1	=	Generalize	
Note		If	you	are	using	an
explicit	cleanup	action	list
(specifying	cleanup	actions

using
tpm_cleanactionlistins),
this	setting	is	ignored.

INCLUDE_LINEAROBJS !!	New	!!		Whether	to
include	linear	objects
while	deleting	duplicates
(integer).	
0	=	Do	not	include.	
1	=	Include.	
Default	=	1.

INCLUDE_POINTS !!	New	!!		Whether	to
include	points	while
deleting	duplicates	or
snapping	clustered	nodes
(integer).	
0	=	Do	not	include.	
1	=	Include.	
Default	=	1.

INCLUDE_BLOCKS !!	New	!!		Whether	to
include	blocks	while
deleting	duplicates	or
snapping	clustered	nodes
(integer).	
0	=	Do	not	include.	
1	=	Include.	
Default	=	0.

INCLUDE_TEXT !!	New	!!		Whether	to
include	text	while	deleting
duplicates	(integer).	
0	=	Do	not	include.	
1	=	Include.	
Default	=	0.

INCLUDE_MTEXT !!	New	!!		Whether	to
include	mtext	while
deleting	duplicates
(integer).	
0	=	Do	not	include.	
1	=	Include.	
Default	=	1.

INCLUDE_ROTATION !!	New	!!		Whether	to
include	rotation	while
deleting	duplicates
(integer).	
0	=	Do	not	include.	
1	=	Include.	
Default	=	0.

INCLUDE_ZVALUES !!	New	!!		Whether	to
include	z-values	while
deleting	duplicates
(integer).	
0	=	Do	not	include.	
1	=	Include.	
Default	=	0.

SNAP_TO_NODE !!	New	!!		Whether	to	snap
to	nodes	or	links
(integer).	
0	=	Snap	to	nodes.	
1	=	Snap	to	links.	
Default	=	0.

INCLUDEOBJS_AUTOSELECT How	entities	are	specified
for	cleanup	
0	=	Select	entities
manually	
(that	is,	by	passing	a

selection	set	to
tpm_cleaninit)	
1	=	Select	all	entities	in
the	drawing	
(in	which	case	the
selection	set	passed	to
tpm_cleaninit,	if	any,	is
ignored)

INCLUDEOBJS_FEATURES !!	New	!!		Classified
objects	to	include,	a
comma-separated	list	of
features	(string),	such	as
"Roads,	Rivers,
Streets".	Default	=	"*"
(all	features).

INCLUDEOBJS_LAYERS Entities	specified	by
tpm_cleaninit	will	be
cleaned	only	if	they	reside
on	layers	specified	here,
with	multiple	layer	names
separated	by	commas.	For
example,
"0,Layer1,Layer2".
Default	=	"*"	(any	layer)

LINE_TYPE Convert	lines	to	(integer)	
0	=	Line	(default)
1	=	2D	polyline

LINK_COLOR Color	for	new	links,	an
AutoCAD	color	index
(integer).	See	Color	Index
Colors.	
Negative	integer	=
Current	color	

Default	=	-1

LINK_CORRECT Flag	for	link	error
correction	(integer).	
0	=	Do	not	correct	
1	=	Correct	(default)	
Note		If	you	are	using	an
explicit	cleanup	action	list
(specifying	cleanup	actions
using
tpm_cleanactionlistins),
this	setting	is	ignored.

LINK_ERROR Link	error	types	(integer),
sum	of	the	desired	options.
0	=	None	
1	=	Short	
2	=	Cross	
4	=	Undershoot	
8	=	Duplicate	
Default	=	15

LINK_LAYER Layer	name	for	new	links
(string).	
nil	=	Current	layer	
Default	=	""

MAINTAIN_MARKERS Flag	to	maintain	markers
when	cleanup	ends	
0	=	Do	not	maintain	
1	=	Maintain	markers	
This	variable	affects	only
errors	that	have	not	been
fixed.	If	an	error	has	been
fixed,	its	marker	is	deleted
at	the	end	of	the	cleanup

process	no	matter	what	(by
tpm_cleanend).

MARKER_HEIGHT The	height	of	error
markers,	a	percent	of
screen	height	(positive
real).	
Default	=	5.0

NODE_CORRECT Flag	for	node	error
correction	(integer).	
0	=	Do	not	correct	
1	=	Correct	(default)	
Note		If	you	are	using	an
explicit	cleanup	action	list
(specifying	cleanup	actions
using
tpm_cleanactionlistins),
this	setting	is	ignored.

NODE_ERROR Node	error	types
(integer),	sum	of	the
desired	options.	
 0	=	None	
16	=	Cluster	
32	=	Pseudo	
64	=	Dangling	
Default	=	48

POLY3D_TYPE Convert	3D	polylines	to
(integer).	
0	=	3D	polyline	(default)	
1	=	2D	polyline

PSEUDO_COLOR Color	for	pseudo	node
markers,	an	AutoCAD

color	index	(integer).	See
Color	Index	Colors.	
Default	=	6	(magenta)

PSEUDO_MARKER Marker	shape	for	pseudo
node	errors	(integer).	See
Marker	Shapes.	
Default	=	2	(triangle)

SHORT_COLOR Color	for	short	markers,	an
AutoCAD	color	index
(positive	integer).	See
Color	Index	Colors.	
Default	=	1	(red)

SHORT_MARKER Marker	shape	for	short
errors	(integer).	See
Marker	Shapes.	
Default	=	1	(octagon)

UNDER_COLOR Color	for	undershoot
markers,	an	AutoCAD
color	index	(integer).	See
Color	Index	Colors.	
Default	=	3	(green)

UNDER_MARKER Marker	shape	for
undershoot	errors
(integer).	See	Marker
Shapes.	
Default	=	1	(octagon)

WEED_DISTANCE !!	New	!!		Weeding
distance	(real).	Default	=
15.0

WEED_ANGLE !!	New	!!		Weed	distance

(real).	Default	=	4.0

WEED_SUPPLEMENT_DISTANCE !!	New	!!		Weed
supplement	distance
(real).	Default	=	100.0

WEED_SUPPLEMENT_BULGE !!	New	!!		Weed
supplement	bulge	(real).
Default	=	1.0

Cleanup	Action	Variables
	 	 	

	
	

Cleanup	action	variables	store	properties	for	cleanup	actions,	which	are	assigned
to	action	lists	by	tpm_cleanactionlistins.

Action	lists	are	a	feature	of	cleanup	models.	Cleanup	action	variables	are	a
subset	of	the	configuration	variables	data	structure.

ARC_TYPE With	the	Simplify	Objects	cleanup	action	(clean	group
type	128)	only,	whether	to	create	arcs	(integer).	
1	=	Create	arcs	(default)	
0	=	Do	not	create	arcs	
For	any	action	other	than	128,	Simplify	Objects,
ARC_TYPE	does	not	matter.

CLEAN_TOL Cleanup	tolerance	(positive	real).	
Default	=	0.01	
CLEAN_TOL	affects	the	following	actions	only:	
		8	=	Delete	Duplicates	
		1	=	Erase	Short	Objects	
		4	=	Extend	Undershoots	
	16	=	Snap	Clustered	Nodes	
	64	=	Erase	Dangling	Objects	
128	=	Simplify	Objects	
With	the	following	actions,	the	CLEAN_TOL	value
does	not	matter:	
		2	=	Break	Crossing	Objects	

	32	=	Dissolve	Pseudo	Nodes	
256	=	Zero	Length	Objects

CONVERT With	the	Extend	Undershoots	cleanup	action	(clean	group
type4)	only,	whether	to	break	the	target	object	(insert	a
new	node)	where	the	extended	undershoot	intersects	it
(integer).	
1	=	Break	target	(default)	
0	=	Do	not	break	target	
For	any	action	other	than	4,	Extend	Undershoots,
CONVERT	does	not	matter.

Error	Codes
	 	 	

	
	

The	following	errors	codes	are	native	to	AutoCAD	Map.

Custom	applications	can	define	their	own	error	codes.	See	ade_errpush.

You	can	get	an	error's	error	code	by	passing	its	stack	index	(0	=	first	error)	to
ade_errcode.

Error	Code	Index

�15 1200 2000 2500 3000

0 1300 2100 2600 3100

200 1500 2200 2700 3200

1000 1800 2300 2800 4000

1100 1900 2400 2900 	

Expression

�15 kErrXEDValueFail Internal	error

�14 kErrRngTabEvalFail Internal	error

�13 kErrNoRngTabFound Internal	error

�12 kErrNoRngTabLibFound Internal	error

�11 kErrLispValueFail Internal	error

�10 kErrGetAttrFail Internal	error

�09 kErrGetSQLFail Internal	error

�08 kErrGetEEDFail Internal	error

�07 kErrInvalidProperty Internal	error

�06 kErrExpInvalidOperand Internal	error

�05 kErrExpADS Internal	error

�04 kErrExpNoMemforOperand Internal	error

�03 kErrExpMathOverFlow Internal	error

�02 kErrExpInvalidOper Internal	error

�01 kErrExpSyntaxErr Internal	error

For	more	Expression	errors,	which	begin	at	2900,	click	 .

Common	Usage

00 kAdeOk General	ADE	return	value:	call	to
ADE	object	is	successful

01 kAdeErr General	ADE	error:	call	to	ADE
object	is	not	successful

02 kAdeBadInput Invalid	function	argument

03 kAdeObjectNotFound 	

04 kAdeOutOfMemory 	

05 kAdeObjNotInitialized 	

06 kAdeWrongType 	

07 kAdeWrongProject 	

08 kAdeEOB 	

09 kAdeADSError Invalid	function	argument	type

10 kAdeAdsNameConvertionFails 	

11 kAdeWrongArgument 	

12 kAdeWriteBufFails 	

13 kAdeReadBufFails 	

14 kAdeXDataCorrupted 	

15 kAdeNoEnvironment 	

16 kAdeUsrBreak 	

17 kAdeUncomparable 	

18 kAdePermissionDenied No	permission	to	perform	some
action.	When	using	the	following
commands,	the	message	has	different
meanings:	ADESAVEOBJS	=	Can't
be	executed	in	demonstration	mode;
ADEDRAWINGS	=	User	has	no
rights	to	update	the	set;
ADESELOBJS,	ADDREMOBJS	=
User	has	no	rights	to	edit;
ADEDWGMAINT	=	User	needs	to	be
superuser	to	remove	the	foreign	locks;
MAPOPTIONS:	System	Preferences
=	Can't	set	"Force	User	Login"	flag
and	change	"Object	Locking"	flag	if
drawing	set	contains	active	or	locked
drawings.	Deactivate	or	unlock	the
drawings	before	trying	to	set	these
preferences.

19 kAdeWrongSyntax 	

20 kAdeDuplicate 	

21 kAdeInvalidPathOrFileName 	

22 kAdeInvalidVersion 	

23 kAdeFileIOFatalError 	

External	Subsystems

200 kAdeAcDbError 	

201 kAdeIRDNotInitialized 	

202 kAdeIRDError 	

203 kAdeASENotInitialized 	

204 kAdeASEError 	

205 kAdeASIError 	

206 kAdeAsiNotInitialized 	

207 kAdeAsiConnectToEnvironmentFailed 	

Transactional	Manager

1000 kErrClosed Repeated	attempts	to	close	previously	closed
ADE	object.	Call	support.

1001 kErrWasErased Attempt	to	work	with	erased	ADE	object.	Call
support.

1002 kErrOpenForRead Attempt	to	update	ADE	objects	opened	for
read.	Call	support.

1003 kErrOpenForWrite Attempts	to	get	multiple	access	to	ADE	object
opened	for	write.	Call	support.

1004 kErrWrongMode Incorrect	mode	of	the	ADE	objects	should	be

opened.	Call	support.

1005 kErrClone Exception	at	the	time	of	cloning	ADE	objects.
Call	support.

1006 kErrResponse Incorrect	attempt	to	start	ADE	transaction.	Call
support.

1007 kErrObjIsAbsent Attempt	to	work	with	erased	ADE	object.	Call
support.

1008 kErrAccess Type	of	work	with	ADE	does	not	correspond	to
its	status.	Call	support.

1009 kErrMultipleUsage Attempts	to	get	multiple	access	to	ADE	object
opened	for	write.	Call	support.

1010 kErrUpgrade Incorrect	attempt	to	update	opening	mode	of	the
ADE	object.	Call	support.

1011 kErrNotClosed Object	was	not	closed	during	current	ADE
transaction.	Call	support.

CAdeList

1100 kAdeGetIteratorFails 	

1101 kAdeListIsEmpty 	

CAdeListIterator

1102 kErrListEnd 	

1103 kErrListObjectIsAbsent 	

Drawing

1200 kAdeQueriedEntity Ignoring	queried	entity	for
saving	selection.	When	using

ADESAVEOBJS,	the	message
means	queried	objects	that	are
selected	for	save	back	are
ignored.

1201 kAdeDwgNotActive Attempt	to	read	the	object
locked	from	an	inactive
drawing.	When	using
ADEWHOHASIT,	the	message
means	the	drawing	from	which
the	object	was	queried	is	no
longer	active.	ADE	is	unable	to
determine	if	the	object	selected
is	currently	locked.	Activate
the	specified	drawing	and	re-
enter	the	command.

1202 kAdeReadDwgFileFails ADE	fails	to	read	external
drawing.	If	using
ADEDRAWINGS,	this
message	means	that	ADE	is
unable	to	read	the	specified
drawing.	Perhaps	the	drawing
doesn't	exit	or	the	specified	file
is	not	a	valid	AutoCAD
Drawing	File.	Check	the	error
message	stack	for	more
information.

1203 kAdeMultipleUsers ADE	fails	to	access	external
drawing.	If	using
ADEDRAWINGS,	this
message	means	ADE	is	unable
to	access	the	specified	drawing
because	of	file	locking
problems.	Check	the	error
message	stack	for	more
information.

1204 kAdeEntityLockingFails ADE	fails	to	lock.	If	using
ADESELOBJS,	this	message
means	ADE	is	unable	to	lock
an	object.	The	object	may
already	be	locked.	Use	the
ADEWHOHASIT	to	determine
if	the	object	is	locked,	perhaps
by	another	user.	Check	the
error	message	stack	for	more
information.

1205 kAdeUnlockedEntity Entity	is	unlocked.	If	using
ADEWHOHASIT,	this
message	indicates	that	the
selected	object	is	not	currently
locked.

1206 kAdeLockedEntity Entity	has	been	locked	by
another	ADE	user.	If	using
ADESELOBJS,	this	message
indicates	that	the	object	is
already	locked	by	another	user.
Use	the	ADEWHOHASIT
command	to	identify	the	user.

1207 kAdeAlreadyInSaveSet 	

1208 kAdeAlreadyNotInSaveSet 	

1209 kAdeMultipleReaders 	

1210 kAdeOpenPrefDictionaryFails ADE	fails	to	open	ADE
preferences	dictionary.	Call
support.

1211 kAdeSavePrefDictionaryFails ADE	fails	to	save	ADE
preferences	dictionary.	Call
support.

1212 kAdeRestoreDSetFails ADE	fails	to	restore	the
drawing	set.	Call	support.

1213 kAdeOpenDSetDictionaryFails ADE	fails	to	open	ADE
drawing	set	dictionary.	Call
support.

1214 kAdeSaveDSetDictionaryFails ADE	fails	to	save	ADE
drawing	set	in	dictionary.	Call
support.

1215 kAdeOpenQueryDictionaryFails ADE	fails	to	open	ADE	query
library	dictionary.	Call	support.

1216 kAdeSaveQueryDictionaryFails ADE	fails	to	save	ADE	query
library	in	dictionary.	Call
support.

1217 kAdeOpenRTableDictionaryFails ADE	fails	to	open	ADE	range
table	dictionary.	Call	support.

1218 kAdeSaveRTableDictionaryFails ADE	fails	to	save	ADE	range
table	in	dictionary.	Call
support.

1219 kAdeRestoreRTableDictionaryFails ADE	fails	to	restore	ADE
range	table	in	dictionary.	Call
support.

1220 kAdeOpenDocViewDictionaryFails ADE	fails	to	open	ADE	Doc
View	information	dictionary.
Call	support.

1221 kAdeSaveDocViewDictionaryFails ADE	fails	to	save	ADE	Doc
View	information	in	dictionary.
Call	support.

1222 kAdeOpenKeyViewDictionaryFails ADE	fails	to	open	ADE	Key
View	information	dictionary

1223 kAdeSaveKeyViewDictionaryFails ADE	fails	to	save	ADE	Key

View	information	in	dictionary.
Call	support.

1224 kAdeSaveProjectionFails ADE	fails	to	save	projection
code	in	the	drawing.	Call
support.

1225 kAdeCopyHardPointerFails ADE	fails	to	apply	property
alteration	for	some	symbol
table.	Call	support.

1226 kAdeDwgToBeReloaded 	

1227 kAdeDwgHasBeenModified There	were	objects	queried
from	the	drawing	that	will	be
treated	as	new	objects.	If	using
ADEDRAWINGS,	this
message	means	that	when	a
drawing	from	which	objects
have	been	queried	is	detached,
ADE	converts	the	objects	into
newly	created	objects.	When
you	use	the	ADEWHOHASIT
command	to	see	the	origin	of
these	objects,	it	says	that	they
have	not	been	queried.

1228 kAdeOnLockedLayer Objects	from	a	locked	layer
have	been	selected.	If	using
ADESELOBJS,
ADEREMOBJS,	or
ADESAVEOBJS,	this	message
means	you	selected	objects
from	a	locked	layer	and	they
cannot	be	added	to,	saved	to,	or
removed	from	the	save	set	or
saved	to	source.

1229 kAdeDwgSaveFales ADE	fails	to	save	the	source

drawing.	If	using
ADESAVEOBJS,
ADESELOBJS,
ADEREMOBJS,	OPEN,	NEW,
or	QUIT,	or	if	you're
configuring	options,	or
modifying	objects,	you	may	get
this	message.	Call	support.
NOTE:	Use	this	message
exactly	as	spelled	here.

1230 kAdeDwgLocksLeft ADE	fails	to	remove	object
locks	(if	present)	by	the	end	of
ADE	session.	If	using	OPEN,
NEW,	or	QUIT,	or	if	you're
configuring	options,	this
message	means	the	drawing
might	be	locked	by	another
ADE	user.

1231 kAdeLinkWillBeLost ADE	does	not	save	links
between	queried	objects	and
source	drawings	between	ADE
sessions.	Detach	source
drawing	with	queried	objects.
Use	the	SAVE	command	with
queried	objects	or	no	objects	in
the	save	set.

1232 kAdeDwgDiskFull 	

1233 kAdeDwgHasQueriedObject 	

1234 kAdeDwgUnlockedFile 	

Current	Session

1300 kAdeGetCPointFails	=	1300 ADE	fails	to	get	Text	location	for

the	entity.	Call	support.

1301 kAdeSetCPointFails ADE	fails	to	store	Text	location	for
the	entity.	Call	support.

1302 kAdeTextInsPointMissed Missing	Text	insert	point.	Call
support.

1303 kAdeTextAllignPointMissed Missing	alignment	point	for
Aligned	and	Fit	Text.	Call	support.

1304 kAdeTextHeightMissed Missing	Text	height.	Call	support.

1305 kAdeTextStringMissed Missing	Text	string.	Call	support.

1306 kAdeIndexUpdateFails Exception	in	Index	generation	or
regeneration.	If	using
ADESAVEOBJS,	ADESELOBJS,
ADEREMOBJS,	or
ADEDWGMAINT,	this	message
means	entity	modification
occurred.	Call	support.

1307 kAdeIgnorePreview ADE	custom	object	is	selected	to
add	to	save	set	or	to	save.	If	using
ADESAVEOBJS,	ADESELOBJS,
or	ADEREMOBJS	this	message
has	the	following	meaning:	When
doing	a	Preview	Query,	ADE
creates	a	special	object	called	a
PREVIEW	object,	used	to	display
the	queried	objects.	PREVIEW
cannot	be	saved	back	to	a	source
drawing.	When	a	user	selects	this
object	for	adding	to	the	save	set	or
when	saving	back,	ADE	detects
this	and	prevents	the	operation.

1308 kAdeIgnorePSpace 	

1309 kAdeEraseIRDObjectFails ADE	fails	to	erase	the	Object	Data
Table.	Call	support.

1310 kAdeRenameIRDObjectFails ADE	fails	to	rename	the	Object
Data	Table.	Call	support.	If	using
ADEDEFDATA,	this	message
means	ADE	can't	rename	Object
Data	Table.	Perhaps	Object	Data	of
the	same	name	already	exists	in	the
drawing	or	Object	Data	Table
definitions	bearing	the	old	name
are	different	in	the	source
drawings.	Check	the	error	message
for	more	information.

1311 kAdeAlterIRDObjectFails ADE	fails	to	alter	Object	Data
Table.	If	using	ADEDEFDATA,
this	message	means	ADE	can't
alter	Object	Data	Table.	Perhaps
Object	Data	Table	definitions	are
different	in	the	source	drawings.
Check	the	error	message	stack	for
more	information.

1312 kAdeIrdDuplicateTableName Object	Data	Table	with	specified
name	already	exists.
ADEDEFDATA	-	all	Object	Data
table	names	must	be	unique.
Duplicate	names	are	not	allowed.

1313 kAdeIrdNotIdenticaFormat Conflict	in	Object	Data	Table
definition.	If	using
ADEDEFDATA,	this	message
means	that	perhaps	Object	Data
Table	definitions	are	different	in
the	source	drawings.	NOTE:	Use
this	message	exactly	as	spelled
here.

1314 kAdeBHatchUnit ADE	treats	bhatch	and	its
boundary	as	one	unit.	If	using
ADESELOBJS	or
ADEREMOBJS,	this	message	has
the	following	meaning:	When
adding	an	object	to	the	save	set,
ADE	checks	if	this	object	is	part	of
a	hatch	boundary.	If	it	is,	all	other
objects	that	form	the	boundary	are
added	to	or	removed	from	the	save
set.	When	saving	back	bhatched
areas,	ADE	always	treats	the
boundary	as	one	object.

1315 kAdeReQuery ADE	queried	one	or	more	objects
twice.	ADE	does	not	support
UNDO	for	this	operation.	If	using
ADEQUERY	or
ADERUNXQUERY	this	message
has	the	following	meaning:	If	a
drawing	file	has	been	modified	by
another	ADE	user	and	if	a	queried
object	matches	another	query,
ADE	removes	the	old	copy	and
queries	a	new	copy.	This	operation
can't	be	undone.

1316 kAdeCantAccessFont 	

1317 kAdeCantAccessImageFile 	

1318 kAdeUnableRedefineXrefBlock 	

Drawing	Set

1500 kAdeRestoreDrawingSetFails ADE	fails	to	read	Drawing	Set
from	DWG	file.	You	encounter
this	message	during	ADE

initialization	or	when	using	Open
drawing	file	or	ADEDRAWINGS.
If	using	ADEDRAWINGS	-	attach
drawing,	the	message	means
"activate	on	attach"	is	ON	or
ade_dsattach(),	ade_dswcattach()
drawing	is	corrupted	or	old	ADE
version	is	in	use.

1501 kAdeDuplicatedDrawing Attempt	to	attach	the	same
drawing	twice.	If	using
ADEDRAWINGS,	this	error
appears	when	a	drawing	with	the
same	name	has	already	been
attached	to	the	work	session.

1502 kAdeNestedDrawing Prohibited	attempt	to	edit
properties	of	the	drawing	in	the
nested	drawing	set.	If	using
ADEDRAWINGS,	this	message
means	a	user	is	not	allowed	to
modify	the	transformation	and
save	back	extents	of	nested
drawings	in	the	work	session.
These	properties	can	only	be
modified	for	top	level	drawings.

1503 kAdeActivateDrawingFails ADE	fails	to	activate	source
drawing.	ADE	was	unable	to
activate	a	drawing	Perhaps	the
drawing	does	not	exist	or	it	is
locked	by	another	user,	or	the
current	user	doesn't	have
permission	to	read	the	specified
drawing	file.	Check	the	error
message	stack	for	more
information.

1504 kAdeDeactivateDrawingFails ADE	fails	to	deactivate	source
drawing.	ADE	is	unable	to
deactivate	a	drawing.	Perhaps	the
drawing	is	locked	by	another	user,
the	drawing	no	longer	exists,	or
there	are	locked	objects	in	the
drawing.	Check	the	error	message
stack	for	more	information.

1505 kAdeLongDrawingDescription Specified	drawing	description
exceeds	133	symbols.	Shorten
description.

1506 kAdeEntityHasBeenLocked Drawing	with	locked	entities	can't
be	deactivated.	ADEDRAWINGS
-	the	specified	drawing	cannot	be
deactivated	because	it	contains
locked	objects.	Remove	locks	and
deactivate.

1507 kAdePreviewNotSupported ADE	2.0	ignores	these	objects:
Tolerance,	Body,	Ellipse,	3dSolid,
Region,	and	Mline.	If	using
ADEQUERY	(Preview),
ADEQVIEWDWGS,	or
ADEKEYVIEW,	this	message
means	ADE	does	not	support	a
Preview	Query	of	Tolerance,
Body,	Ellipse,	3dSolid,	Region
and	Mline.

1508 kAdeAliasIsInUse A	drive	alias	of	the	same	name
already	exists.

1509 kAdeActivateDrawingCancelled The	drawing	activation	operation
failed.

1510 kAdeAttachDrawingCancelled The	drawing	attachment	operation
failed.

Feature	Alteration

1800 kAdeInvalidFeatureType Attempt	to	set	an	invalid	property
alteration	type.	If	calling	API	functions
ade_altpsetprop	or	ade_altpdefine,	check
for	a	mistake	in	property	type.

1801 kAdeNoListId Property	alteration	internal	list	is	invalid.
Call	support.

1802 kAdeInvalidExpType Attempt	made	to	set	an	invalid	property
alteration	expression	type.	Call	support.

1803 kAdeNoExpression Property	alteration	internal	object	is
invalid.	Call	support.

1804 kAdeTextCreationFailed Property	alteration	was	unable	to	create	a
new	text	object.	This	message	occurs
when	using	queries	that	alter	properties.
Check	expressions	in	the	text	property
alteration	definition.

1805 kAdeHatchCreationFailed Property	alteration	was	unable	to	create	a
new	hatch	object.	This	message	occurs
when	using	queries	that	alter	properties.
Check	expressions	in	the	hatch	property
alteration	definition.

1806 kAdeInvalidColor Invalid	color	passed	to	property
alteration.	This	message	occurs	when
using	queries	that	alter	properties.	Check
expressions	evaluates	to	a	valid
AutoCAD	color.

1807 kAdeInvalidLayer Invalid	layer	name.	This	message	occurs
when	using	queries	that	alter	properties.
Check	expressions	evaluates	to	a	valid
AutoCAD	layer.

1808 kAdeInvalidStyle Invalid	style	name.	This	message	occurs
when	using	queries	that	alter	properties.
Check	expressions	evaluates	to	a	valid
style.

1809 kAdeInvalidJustification The	expression	for	justification	in	a	text
property	alteration	did	not	evaluate	to	a
valid	justification.	This	message	occurs
when	using	queries	that	alter	properties.
Check	expressions	evaluates	to	a	valid
AutoCAD	justification.

1810 kAdeInvalidScale 	

1811 kAdeNoRangeId ADE	internal	object	is	invalid.	Call
support.

Mapping

1900 kErrMapCoincPoint Coincident	points.	If	using
ADERSHEET	or
ADETRANSFORM	this
message	means	either	old	or	new
points	are	coincident.	They	must
be	different.

1901 kErrMapWrongScale Invalid	scale.	Call	support.

1902 kErrMapTransform Can't	transform	entity.
ADERSHEET,
ADETRANSFORM,
ADEQUERY,	ADESAVEOBJS
An	error	appeared	at	the	time	of
entity	transformation.	It	is	high-
level	error.	There	must	be
another	error	in	the	stack	with
more	specific	information.

1903 kErrMapWrongExtents Invalid	entity	extents.	If	you're
using	ADETEXTLOC,
ADERSHEET,	ADEQUERY,
ADESAVEOBJS,	or	calling
AcDbEntity::getGeomExtents()
method	you	may	get	this
message.

1904 kErrMapWrongPoints Invalid	points	number.	If	you're
using	ADERSHEET,	this
message	means	that	the	numbers
of	old	and	new	points	are
different,	or	less	than	2.	Dialog
doesn't	allow	this.

1905 kErrMapWrongSelSet Invalid	selection	set.	Call
support.

1906 kErrMapWrongEntityName Invalid	entity	name.	The	entity	is
open.	For	example,	it	has	been
received	from	the	API.

1907 kErrMapOpenEntity Can't	open	entity.	The	entity	is
open.	For	example,	another
application	opened	the	entity.

1908 kErrMapUpgradeEntity Can't	upgrade	open.	Entity
modification	occurred.

1909 kErrMapMoveStretchPoints Can't	modify	stretch	points.	Call
support.

1910 kErrMapEntityPoint Can't	modify	entity	points.	Call
support.

1911 kErrMapCmdecho Can't	change	CMDECHO
variable.	Using
ADEFILLPOLYG	may	produce
this	message.

1912 kErrMapCecolor Can't	change	CECOLOR
variable.	Using
ADEFILLPOLYG	may	produce
this	message.

1913 kErrMapHatch Error	in	hatch	command.	Using
ADEFILLPOLYG	may	produce
this	message.

1914 kErrMapWrongIntersectForPoints Can't	find	intersection.	Using
ADEQUERY	or	calling
AcDbentity::IntersectWith()
method	may	produce	this
message.

1915 kErrMapWrongHandle Wrong	entity	handle.	Call
support.

1916 kErrMapNotPolyline Entity	isn't	polyline.	Call
support.

1917 kErrMapIterator Can't	create	iterator.	Call
support.

1918 kErrMapWriteXData Can't	write	Xdata.	Ensure	that
Xdata	size	is	16	KB	or	less.

1919 kErrMapBuffer Can't	create	buffer.	If	you're
using	ADEQUERY,	to	make	a
location	query	using	a
bufferfence,	you	may	get	this
message.

1920 kErrMapStretchPoints Can't	get	stretch	points.	If	you're
using	ADETRANSFORM	or
ADEQUERY	or	calling
AcDbEntity::getStretchPoints()
you	may	get	this	message.

Topology

Topology

2000 kErrTopInvalidName Invalid	topology	name.	Occurs
during	topology	creation.

2001 kErrTopExist Topology	already	exists.	Occurs
during	topology	creation.

2002 kErrTopBuildNet Error	building	network	topology.
Occurs	during	topology	creation.

2003 kErrTopBuildPolygon Error	building	polygon	topology.
Occurs	during	topology	creation.

2004 kErrTopBuildNode Can't	create	node.	Occurs	during
topology	creation.

2005 kErrTopBuildArc Can't	create	link.	Occurs	during
topology	creation.

2006 kErrTopBuildCntr Can't	create	centroid.	Occurs
during	topology	creation.

2007 kErrTopAPIReg Can't	register	topology	API.
Occurs	during	ADE	loading.

2008 kErrTopFuncNotAvail Function	isn't	available.	Occurs	if
you're	using	topology	functions	of
the	API.

2009 kErrTopWriteData Error	writing	Xdata.	Occurs
during	topology	creation	and
modification.

2010 kErrTopNotExist Topology	doesn't	exist.	Occurs	if
you're	using	topology	functions	of
the	API.

2011 kErrTopOverlayType Wrong	overlay	type.

2012 kErrTopMakeLayer Can't	create	new	layer.	Using
ADEDWGCLEAN	produces	this

message.

2013 kErrTopBlockNotExist Block	doesn't	exist.

2014 kErrTopNotOpenForWrite Topology	isn't	open	for	write.
Occurs	when	editing	topology.

2015 kErrTopOpenIrdTable Can't	open	object	data	table.
Occurs	when	loading	and	editing
topology.

2016 kErrTopWrongIrdAttr Invalid	object	data	table.	Occurs
when	loading	and	editing
topology.

2017 kErrTopLoaded Topology	is	already	loaded.
Occurs	when	loading	topology.

2018 kErrTopIncompleteElem Incomplete	topology	element.
Occurs	when	editing	topology.

2019 kErrTopInvalidColor Invalid	color	number.	Occurs
when	using	ADEDWGCLEAN
and	creating	topology.

2020 kErrTopInvalidFlag Invalid	flag.	Occurs	when	using
ADEDWGCLEAN.

2021 kErrTopInvalidTolerance Invalid	tolerance.	Occurs	when
using	ADEDWGCLEAN	and
creating	topology.

2022 kErrTopInvalidCorridor Invalid	corridor	width.	Occurs
when	using	ADEDWGCLEAN.

2023 kErrTopInvalidOffset Invalid	offset.	Occurs	when	using
buffering.

2024 kErrTopInvalidHeight Invalid	marker	height.	Occurs
when	using	ADEDWGCLEAN.

2025 kErrTopInvalidMarkerType Invalid	marker	type.	Occurs	when

using	ADEDWGCLEAN.

2026 kErrTopInvalidEntityType Invalid	type	for	new	entities.
Occurs	when	using
ADEDWGCLEAN.

2027 kErrTopInvalidErrorType Invalid	error	type.	Occurs	when
using	ADEDWGCLEAN.

2028 kErrTopIntersection Intersections	detected.	Occurs
when	creating	and	editing	polygon
topology.

2029 kErrTopOverlayItself Can't	overlay	topology	with	itself.

2030 kErrTopSourceDwgAccess Can't	access	source	drawing.

2031 kErrTopSourceDwgNotActive Source	drawing	isn't	active.

2032 kErrTopSourceDatabaseAccess Can't	access	source	drawing
database.

2033 kErrTopSourceObjectId Can't	get	object	ID	by	handle	in
source	drawing	database.

2034 kErrTopNotLoaded Topology	isn't	loaded.

2035 kErrTopImplicitNode Node	object	doesn't	exist	in	node
topology.

2036 kErrTopMisplacedNode Wrong	node	coordinates.

2037 kErrTopUnreferencedNode Node	isn't	referenced	in	links.

2038 kErrTopUnexistentNode Link	references	nonexistent	node.

2039 kErrTopMismatchStartNode Link	has	invalid	ID	at	the	start
node.

2040 kErrTopMismatchEndNode Link	has	invalid	ID	at	the	end
node.

2041 kErrTopMisplacedCentroid Wrong	centroid	coordinates.

2042 kErrTopMismatchLeftPoly Link	has	invalid	ID	for	the	left
polygon.

2043 kErrTopMismatchRightPoly Link	has	invalid	ID	for	the	right
polygon.

2044 kErrTopUnexistentCentroid Centroid	isn't	inside	polygon.

2045 kErrTopMultiplyCentroid Polygon	has	several	centroids
inside.

2046 kErrTopWrongPolyQty Some	polygons	are	incorrect.

2047 kErrTopMismatchPolyArea Incorrect	polygon	area.

2048 kErrTopMismatchPolyPerimeter Incorrect	polygon	perimeter.

2049 kErrTopOpenSourceDwgTopo Topology	loaded	from	source
drawings	can't	be	open	for	write.

2050 kErrTopOpenTempTopo Temporary	topology	can't	be	open
for	write.

2051 kErrTopIdNotExist Current	drawing	doesn't	have	OD
table	with	information	about	last
ID.

2052 kErrTopEmpty Can't	create	or	load	empty
topology.

2053 kErrTopWasModified Topology	objects	were	modified
by	AutoCAD	commands.

2054 kErrTopMultiple Object	belongs	to	multiple
topologies	and	can't	be	erased.

2055 kErrTopCalculateOffset Can't	calculate	offset.	Use	default.
Occurs	when	using	buffering.

2056 kErrTopZeroOffset Zero	offset.	Can't	build	buffer.

2057 kErrTopDifferentOffset Offset	has	different	sign	for	some
objects.	Can't	build	buffer.

2058 kErrTopInvalidSelSet Invalid	selection	set.	Occurs	when
using	the	API.

2059 kErrTopCleanNotInit Cleanup	model	isn't	initialized.
Occurs	when	using	the	API.

2060 kErrTopCleanNoGroup There	is	no	current	group.	Occurs
when	using	the	API.

2061 kErrTopCleanInvalidIndex Invalid	error	index.	Occurs	when
using	the	API.

2062 kErrTopCleanNoError Current	error	isn't	set.	Occurs
when	using	the	API.

2063 kErrTopTraceLinkNotExist Link	doesn't	exist	in	tracing
model.	Occurs	when	using	the
API.

2064 kErrTopTraceNodeNotExist Node	doesn't	exist	in	tracing
model.	Occurs	when	using	the
API.

2065 kErrTopTraceNoPath Result	path	isn't	calculated.	Occurs
when	using	the	API.

2066 kErrTopTraceInvalidIndex Invalid	element	index.	Occurs
when	using	the	API.

2067 kErrTopInvalidExpression Can't	process	ADE	expression.
Occurs	when	using	overlay,	buffer,
dissolve,	or	tracing	command.

2068 kErrTopLockedTable Can't	write	into	topology	OD
table.	Occurs	when	using	dissolve
command.

2069 kErrTopCreateTable Can't	create	OD	table.	Occurs
when	using	topology	creation,

overlay,	buffer,	or	dissolve
commands.

2070 kErrTopCreateTableColumn Can't	add	column	to	OD	table.
Occurs	when	using	topology
creation,	overlay,	buffer,	or
dissolve	commands.

2071 kErrTopTraceNodesEqual Start	and	end	nodes	are	the	same.
Occurs	doing	shortest	path	tracing.

2072 kErrTopTracePathNotExist Empty	path.	Occurs	during
shortest	path	tracing.

2073 kErrTopTraceFloodNotExist Empty	path.	Occurs	when	tracing
floods.

2074 kErrTopRenameDisabled Can't	rename	topology,	because
current	drawing	has	queried
objects	with	OD.

2075 kErrTopDeleteDisabled Can't	delete	topology,	because
current	drawing	has	queried
objects	with	OD.

2076 kErrTopInvalidExtents 	

Topology	API

2100 kAdeTopApiErrWrongInput Missing	or	invalid	parameter.

2101 kAdeTopApiWrongId Invalid	ID.

Tracing

2150 kAdeTopSprErr Tracing	error.	Occurs	during	topology	tracing.

Query	Definition

Query	Definition

2200 kErrUnexpectedBuffChar Invalid	character	encountered	while
reading	the	query	definition	from
the	drawing.	Options	are	a)	Recover
the	drawing	b)	Define	and	save	a
new	query	definition	in	the
drawing.

2201 kErrInvalidIndex An	invalid	line	number	was
specified	for	either	grouping	or
ungrouping	of	query	lines.	Specify
the	correct	line	number	for
grouping	or	ungrouping	the	lines.

2202 kErrInvalidQueryLine One	or	more	query	lines	have	been
incorrectly	defined.	May	occur
when	you	incorrectly	place	a
parenthesis	or	an	operator	in	a
query	line.

2203 kErrInvalidName Either	a	query	or	a	query	category
name	is	invalid.	Ensure	that	the
query	or	category	name	conform	to
the	AutoCAd	symbol	name
specifications.

2204 kErrEntryAlreadyExists Either	the	query	or	the	query
category	name	already	exists	in	the
query	library.	Ensure	that	the	query
name	is	unique	within	the	query
library.

2205 kErrEntryInOtherCategory The	query	name	specified	already
exists	in	another	category	in	the
query	library.	Ensure	that	the	query
name	is	unique	within	the	query
library.

2206 kErrEntryAndFileAlreadyExist The	file	name	specified	for	saving

the	external	query	already	exists.
Choose	a	different	file	name.

2207 kErrASIConnectFailed The	connection	to	the	ASI
environment	required	for	the	SQL
query	was	not	made.	Use	ASE	to
connect	to	the	environment	before
attempting	to	perform	the	SQL
query.	

2208 kErrASIStmtPrepareFailed The	call	to	CAsiExecStm::	Prepare
failed.	correct	the	table	name	or	the
SQL	statement	specified.

2209 kErrASICsrAllocFailed The	call	to	CAsiCsr::Allocate
failed.	Look	at	the	ASI	error
displayed.

2210 kErrASICsrOpenFailed The	call	to	CAsiCsr::Open	failed.
Look	at	the	ASI	error	displayed.	

2211 kErrInvalidDOName An	invalid	Environment,	Schema	or
Catalog	name	was	specified.	Set	the
correct	Environment,	Catalog,	and
Schema	names.	

2212 kErrLPInitFailed The	call	to	CAseLinkPath::init
failed.	Look	at	the	ASE	error
displayed.	

2213 kErrColNotFound Used	for	the	SQL	Order-by	dialog
now	obsolete.	Call	support.

2214 kErrQDefNotInTM The	CAdeQueryDef	object	was	not
appended	to	the	Transaction
Manager.	Internal	error.

2215 kErrQryDefnExists A	query	definition	already	exists
and	a	new	one	cannot	be	loaded.
Clear	the	existing	query	definition

before	loading	a	new	one.

2216 kErrInvalidOperator Invalid	operator	defined	in	query
definition.	The	specified
comparison	operator	is
incompatible	with	operand	types.
Do	not	use	>	with	the	point	type.
Check	the	query	definition	and
change	either	the	operator	or
operand	type.

2217 kErrInvalidPtrnOperator Invalid	operator	defined	in	query
definition	for	pattern	value.	If	value
operand	is	defined	as	pattern,	only
"="	comparison	operator	can	be
used.	Check	the	query	definition
and	change	either	operator	or
operand	value.

2218 kErrInvalidField Non-existent	object	data	field
specified.	This	error	occurs	when
the	user	specifies	the	wrong	object
data	field	name	for	a	table	(if	there
is	no	such	field	in	the	specified
table)	in	the	query	definition	and
executes	the	query.	Check	query
definition	and	tables	and	correct	the
mistake.

2219 kErrInvalidNotBranch 	

2220 kErrInvalidBranch 	

2221 kErrUndefinedValue 	

2222 kErrInvalidLocationType 	

2223 kErrCantLoadExternQuery 	

Query	Manager

Query	Manager

2300 kErrIntersectFailed A	call	to	CAseLinkSel::
intersectPartialKey	failed.	Look	at	the
ASE	error	displayed.

2301 kErrNoTemplate The	query	type	was	specified	as	report
but	no	report	options	were	defined.
Define	report	options.

2302 kErrASIStoreValueFailed A	call	to	CAsiData	::storeValue	failed.
Look	at	the	ASI	error	displayed.

2303 kErrASIGetValueFailed A	call	to	CAsiData	::getValue	failed.
Look	at	the	ASI	error	displayed.

Utility

2400 kErrLicFatal Fatal	error	in	ADE	license.	Call	support.

2401 kErrFileNotFound Can't	find	associated	document.	Occurs	when
using	ADEDOCVIEW.

2402 kErrPathNotFound Can't	find	executable	file.	Occurs	when	using
ADEDOCVIEW.

2403 kErrBadFormat Syntax	error	in	the	command	line.	Occurs	when
using	ADEDOCVIEW.

2404 kErrConvtErr Error	converting	ADE	1.0	data	to	ADE	2.0	data.
Occurs	when	using	ADECONVERT.

Data	Dialogs

2450 kErrIRDMismatch 	

2451 kErrIRDInvalidName 	

2452 kErrIRDTableExists 	

2453 kErrInvalidTableName 	

2454 kErrInvalidAttrName 	

2455 kErrTopoName 	

2456 kErrQueriedAndNotNew 	

2457 kErrNotAdministrator 	

GenLink

2500 kErrTagNotFound 	

2501 kErrTagValueAbcent 	

2502 kErrIllegalFormat 	

2503 kErrColMoreThanOne 	

Environment

2600 kErrInitEnv An	error	occurred	during	the
initialization	of	ADE.	The	cause	of	this
error	may	be	due	to	errors	in
loading/initializing	ADE	user
preferences,	system	preferences,	log	file,
or	user	list.

2601 kErrCantFindAdeExePath 	

2602 kErrINIWrite 	

2603 kErrInvalidUserName The	user	name	specified	does	not	exist	in
the	user	list.	Use	a	user	name	that
already	exists	in	the	user	list	or	define	a
new	one	using	User	Administration.

2604 kErrLoadUserList 	

2605 kErrSaveUserList 	

2606 kErrInvalidPswd The	password	specified	does	not	match
the	one	specified	in	the	user	list	for	this
user.	Use	the	correct	password.

Rx

2700 kErrRxAseLoad ASE	isn't	loaded	Can't	initialize	ASE	API.

2701 kErrRxAseInit Object	Data	module	isn't	loaded.

2702 kErrRxIrdLoad Can't	initialize	Object	Data	API.

2703 kErrRxIrdInit Specified	coordinate	system	category	not	found	in
the	library.	Call	support.

Projection

2800 kErrNoProjCatFound Specified	coordinate	system	category	not
found	in	the	library.Call	support.

2801 kErrNoDatumFound Specified	coordinate	system	datum	not
found.	Call	support.

2802 kErrNoElipFound Ellipsoid	not	found	in	the	ellipsoid	list.
Call	support.

2803 kErrNoCoordFound Specified	Coordinate	System	not	found.
Call	support.

2804 kErrFaileOpenDatumFile Can't	open	projection	.mp3	file.	Occurs
when	loading	ADE.

2805 kErrFaileOpenElipFile Can't	open	ellipse	file.	Occurs	when
loading	ADE.

2806 kErrNoneCoord Internal	code	to	set	"None"	projection	to
the	drawing.	Call	support.

Expression

2900 kErrNoExpressionFound Empty	expression	is	specified.	Call
support.

2901 kErrGetPropFail This	is	an	internal	code	to	show	that
entity	has	no	specified	property.	Call
support.

2902 kErrExpEvalFail ADE	fails	to	evaluate	expression.
Occurs	when	executing	query	with
property	alteration	and	executing	a
property	query.

2903 kErrExpMissingQuote Quotes	mismatched	in	SQL	expression.
Occurs	when	executing	a	SQL	query	and
a	query	with	SQL	property	alteration.
Also	occurs	when	using
ADECONVERT.

2904 kErrExpMissingCParen Parenthesis	mismatched.	Occurs	when
executing	a	query	with	feature	alteration
and	executing	a	property	query.

2905 kErrExpExceedThreeOper More	than	three	operands	are	specified.
Occurs	when	executing	a	query	with
property	alteration	and	executing	a
property	query.

2906 kErrRngTabNameExist Range	table	with	specified	name	already
exists.	Call	support.

2907 kErrLpnInvalid 	

2908 kErrLpnNotFound 	

2909 kErrRangeInvalidElse 	

For	more	Expression	errors,	which	begin	at	�15,	click	 .

Index

3000 kErrInvalidIndexVersion The	version	of	the	index	in	the	drawing	is
invalid.	The	options	are:	1)Regenerate	the
index	using	drawing	maintenance
2)Remove	the	index	using	the	index
removal	utility	and	then	re-generate	the
index.

3001 kErrIndexOutOfDate The	index	in	the	drawing	is	out-of-	date.
Regenerate	the	index	using	drawing
maintenance.

3002 kErrTypeAllObjects 	

3003 kErrTypeNoOneObject 	

Validation

3100 kErrWrongSymbolName 	

3101 kErrWrongSymbol 	

3102 kErrWrongStrLength 	

3103 kErrDirDoesNotExist 	

3104 kErrDirReadOnly 	

3105 kErrAccessDenied 	

3106 kErrFileDoesNotExist 	

3107 kErrFileAlreadyExists 	

3108 kErrFileOpenFailed 	

3109 kErrFileReadOnly 	

3110 kErrInvalidString 	

3111 kErrOutOfRange 	

3112 kErrWrongColor 	

3113 kErrIncorrectParameters One	of	ADE	validation	methods
recognized	incorrect	input	parameters.
This	error	is	an	internal	ADE	error.

3114 kErrFileOpenLimit 	

3115 kErrShareViolation 	

3116 kErrNetAccessDenied 	

3117 kErrPathDoesNotExist 	

File	Locking

3200 kErrDwkFileDoesNotExist ADE	lock	file	is	locked.	Occurs
when	using	ADEDRAWINGS	and
ADEQUERY	commands	and
when	ADE	is	running	in	a	multi-
user	environment.

3201 kErrOpenDwkFileFailed ADE	was	unable	to	open	the
.DWK	lock	file.	Call	support.

3202 kErrFileLockedByAcad Attempt	to	remove	a	user	who
does	not	exist	from	the	lock	file.
Call	support.

3203 kErrOldMapLockFile ADE	was	unable	to	create	the
.DWK	lock	file.	Call	support.

3204 kErrFileIsNotDwk ADE	tried	to	lock	a	file	for	write
that	was	already	locked	for	read.
Call	support.

3205 kErrSpecifiedUserDoesNotExist ADE	tried	to	lock	a	file	for	read
that	was	already	locked	for	write.
Occurs	during	query	operations	in
a	multi-user	environment.

3206 kErrCreateDwkFileFailed ADE	tried	to	open	and	read	a	file
that	was	not	a	valid	.DWK	file.
Call	support.

3207 kErrFileIsLockedForRead ADE	was	unable	to	unlock	the
lock	file.	Call	support.

3208 kErrFileIsLockedForWrite ADE	tried	to	attach	a	file	that	is
already	open	by	AutoCAD.
Occurs	when	using
ADEDRAWINGS	with	ATTACH
operations	if	the	file	is	open	in	an
AutoCAD	project.

3209 kErrInvalidLockStateSpecified ADE	internal	object	is	invalid.
Call	support.	

3210 kErrNotOwnerOfWLH ADE	tried	to	remove	a	write	lock
when	the	user	did	not	have	a	write
lock.	Call	support.

3211 kErrUserIsNotWriter 	

3212 kErrUserIsNotReader 	

3213 kErrUserHasReadLock 	

3214 kErrLockFileIsFull 	

3215 kErrDwgFileDoesNotExist ADE	tried	to	unlock	a	file	but	the
.DWK	file	was	missing.	Occurs	if
the	.dwk	file	was	erased	after	a	file
was	attached.

3216 kErrNotAnADELockFile ADE	internal	object	is	invalid.
Call	support.

3217 kErrFileMayHaveBeenModified Existing	.DWK	file	does	not
belong	to	ADE.	the	lock	file	exists
and	can	be	read	by	ADE,	but	ADE
does	not	own	the	file.

3218 kErrFileHasLocks ADE	tried	to	remove	a	lock	file
but	it	was	not	found.	Occurs	if	the
.dwk	file	was	erased	after	a	file
was	attached.

Unicode	Support

4000 kAdeUnicodeInsufficientBufferToConvert 	

4001 kAdeUnicodeInvalidFlagsToConvert 	

4002 kAdeUnicodeInvalidParameterToConvert 	

4003 kAdeUnicodeNoTranslation 	

4004 kAdeUnicodeCodePageNotAvailable 	

Double-Byte	Support

4005 kAdeNoMBCSAllowed 	

Error	Types
	 	 	

	
	

Errors	are	grouped	by	error	type.

You	can	get	an	error's	error	type	by	passing	its	stack	index	(0	=	first	error)	to
ade_errtype.

00 kAdeNoMessage Error	condition	does	not	exist.

01 kAdeWarning ADE	(AutoCAD	Data	Extension)	execution
warning

02 kAdeError ADE	execution	error

03 kAseWarning ASE	(AutoCAD	SQL	Extension)	execution
warning

04 kAseError ASE	execution	error

05 kAcWarning AutoCAD	execution	warning

06 kAcError AutoCAD	execution	error

07 kAsiWarning ASI	(AutoCAD	SQL	Interface)	execution	warning

08 kAsiError ASI	execution	error.

09 kIRDWarning Extended	object	data	(Xdata)	warning

10 kIRDError Xdata	error

13 kMapError AutoCAD	Map	execution	error

14 kMentorError 	

15 kApplicationError Operating	system	level	application	error

16 kDiagMessage Diagnostic	message	returned.

Converting	Coordinates
	 	 	

	
	

Converting	point	coordinates	from	one	geo-referenced	system	to	another.

Keep	in	mind	that	any	Cartesian	coordinate	pair	you	select	in	a	geo-referenced
coordinate	system	corresponds	to	a	point	on	the	surface	of	the	earth.	This	fact
defines	a	relation	between	the	coordinate	pairs	in	one	coordinate	system	and	the
coordinate	pairs	in	any	other,	so	long	as	the	point	in	question	actually	exists	in
both	systems.	In	other	words,	so	long	as	the	coordinate	systems	have	a	region	of
intersection,	and	the	point	in	question	is	in	it.

To	convert	the	coordinates	of	a	point	from	one	geo-referenced	coordinate
system	to	another

1.	 Define	a	"source"	coordinate	system	with	ade_projsetsrc.
2.	 Define	a	"destination"	coordinate	system	with	ade_projsetdest.
3.	 Pass	a	coordinate	pair	to	ade_projptforward.

The	function	assumes	that	the	coordinate	pair	you	pass	to	it	is	a	point	in
the	source	system,	and	it	returns	the	corresponding	coordinate	pair	in	the
destination	system.	If	there	is	no	corresponding	coordinate	pair,	it	returns
nil.

To	convert	in	the	other	direction,	use	ade_projptbackward.

You	can	specify	coordinate	triplets,	but	if	you	do,	the	Z	value	is	ignored.

Plotting	a	Map
	 	 	

	
	

Plotting	is	the	last	stage	in	presenting	map	data.

The	following	sample	outlines	the	steps	required	to	set	up	and	plot	a	map	set.

To	plot	a	map
1.	 Set	the	Plotter	name	for	Layout1	using	the	AutoCAD�	ActiveX�

interface.

(vl-load-com)
(setq	acadObject	(vlax-get-Acad-object))
(setq	acadDocument	(vla-get-ActiveDocument	acadObject))
(setq	activeLayoutObject	(vla-Get-ActiveLayout	acadDocument))
(setq	pSpace	(vla-get-PaperSpace	acadDocument))
(setq	layout	(vla-get-layout	pSpace))
(vla-put-configname	layout	"\\\\PlotServer\\Hp	Laserjet	4100	Series	Pcl")

2.	 Add	a	drive	alias	to	the	list	so	that	AutoCAD	Map	can	find	the	drawings
used	to	execute	the	plot.

(ade_aliasadd	"LISP_SAMPLE"	"C:\\Lisp\\Drawings\\PlotMapSet")

3.	 Define	a	boundary	drawing	or	use	an	existing	one.	This	example	uses	an
existing	drawing	named	System-Grid.dwg.

The	boundary	drawing	must	contain	at	least	one	closed	polyline	with
object	data.	Each	closed	polyline	is	a	division	of	the	map,	and	the	sheet

name	is	attached	to	it	as	object	data.

4.	 Attach	the	drawings	for	this	plot	set	and	the	boundary	drawing.

(ade_dsattach	"LISP_SAMPLE:\\Landbase-Shared.dwg")
(ade_dsattach	"LISP_SAMPLE:\\Water-Facilities.dwg")
(ade_dsattach	"LISP_SAMPLE:\\System-Grid.dwg")

5.	 Define	a	"Draw"	mode	query	which	selects	"ALL"	objects	in	the
attached	drawings.

(ade_qryclear)

(ade_qrydefine
		'(""	""	""	"Location"	("All")	""))

(ade_qrysettype	"draw")

6.	 Save	the	query	internal	to	the	project.

(ade_qrysave	"PlotQueries"
		'(("name"	"TruckBook-100")	("saveoption"	2)))

7.	 Define	a	layout	block,	(title	block)	or	use	an	existing	one.	The	layout
block	must	contain	at	least	one	viewport	and	optionally	a	reference
viewport.	If	the	layout	block	contains	an	attribute	which	represents	a
mapname	or	some	other	type	of	area	naming	convention,	that	name	can
be	mapped	from	the	boundary	drawing	to	this	attribute,	in	fact	any	object
data	associated	to	a	boundary	can	be	mapped	to	an	attribute	on	the	layout
block.	This	sample	does	not	contain	code	for	creating	or	defining	this
layout	block.

8.	 Create	a	new	plot	set.

(map_pltCurrDef	"TruckBook-100")

9.	 Define	Plot	Set	variables

Define	the	drawing	set:

(setq	dwgs_list
(list	"LISP_SAMPLE:\\Landbase-Shared.dwg"	"LISP_SAMPLE:\\Water-Facilities.dwg"))
(map_pltCurrSet	"dwgs"	dwgs_list)

Define	the	plotter	name	via	the	layout:

(map_pltCurrSet	"pnam"	"Layout1")

Define	the	layout	block	name:

(map_pltCurrSet	"block"	"TITLE-A")

Define	the	layout	blocks	viewport	layer:

(map_pltCurrSet	"vlayer"	"TB-BORDER")

Define	the	object	data	table	containing	boundary	information:

(map_pltCurrSet	"bnamt"	"MAPSYS-MAP")

Define	the	boundary	field	name:

(map_pltCurrSet	"bnamf"	"MAPNAME")

Define	the	boundary	object	data	field	to	block	attribute	in	layout
mapping:

(map_pltCurrSet	"atts"	"MAPNAME")

Define	the	layout	blocks	reference	viewport	flag:

(map_pltCurrSet	"kflg"	nil)

Define	the	layout	blocks	key	viewport	layer:

(map_pltCurrSet	"klayer"	"")

Define	the	display	layers	in	the	reference	viewport:

(map_pltCurrSet	"kdispl"	"")

Define	the	layers	to	freeze	in	main	viewport:

(map_pltCurrSet	"vdispl"	"0")

Define	the	query	category:

(map_pltCurrSet	"qcat"	"PlotQueries")

Define	the	query	name:

(map_pltCurrSet	"qnam"	"TruckBook-100")

Define	the	boundary	drawing:

(map_pltCurrSet	"bdwg"	"LISP_SAMPLE:\\System-Grid.dwg")

Define	the	boundary	layer:

(map_pltCurrSet	"blyr"	"MAPEDGE")

Define	the	boundary	field	name:

(map_pltCurrSet	"bodfs"	"MAPNAME")

Specify	the	boundaries:

(setq	bndry_list	(list	"101"	"102"))
(map_pltCurrSet	"bnds"	bndry_list)

Define	the	plot	to	specified	scale	flag:

(map_pltCurrSet	"sflg"	nil)

Define	the	plot	scale:

(map_pltCurrSet	"scale"	"1:750")

Define	the	clip	objects	against	boundary	flag:

(map_pltCurrSet	"clip"	T)

Define	the	plot	the	boundary	flag:

(map_pltCurrSet	"pbnd"	T)

10.	 Append	the	current	plot	set	definition	to	the	plot	set	list.

(map_pltCurrSave)

11.	 Write	the	current	plot	set	definition	to	the	plot	definition	dictionary
within	the	currrent	project.

(map_pltDefSave)

12.	 Perform	a	cursory	check	to	see	if	the	required	attributes	have	been	set,
this	is	optional.

(if	(not	(map_pltDefValid	"TruckBook-100"))
				(prompt	"\nERROR:	Plot	set	invalid.")
)

13.	 Perform	a	more	extensive	check	that	makes	sure	that	no	errors	occur
when	plotting	takes	place,	this	is	optional.

(map_pltdefverify	"TruckBook-100")

14.	 Initialize	the	plotting	environment.	See	(map_pltInit)	for	more	detail	on
this	function.

(map_pltInit)

15.	 Display	a	single	sheet	within	the	plot	set	based	on	a	boundary	value,
then	plot	if	successful.	Note,	you	must	always	call	map_pltdisplay()
before	calling	map_pltPlot().

(map_pltDisplay	"101")

;Visually	check	the	plot	set	display.	If	it	is	correct,	plot	it.
(initget	"Yes	No")
(setq	answer
						(getkword	"\nDisplay	is	correct	Yes/No		?"))
(if	(or	(null	answer)	(equal	answer	"Yes"))
				(map_pltPlot))

16.	 Restore	the	display	environment	to	its	state	before	the	last	execution	of
the	map_pltDisplay().

(map_pltRestore)

17.	 Restore	the	data	extension	options	and	AutoCAD	settings	altered	by
map_pltInit().

(map_pltCleanup)

Completing	a	Topology
	 	 	

	
	

This	procedure	creates	a	partial	topology	and	uses	map_topocomplete	to	add
the	missing	elements	to	complete	it.

To	complete	a	topology
1.	 Create	a	polygon	topology	and	save	it	to	a	file.

2.	 Start	a	new	project	and	attach	the	drawing	using	ade_aliasadd,
ade_dsattach,	and	ade_dwgactivate.

3.	 Query	in	some	of	the	topology's	objects	to	create	a	partial	topology.	Use
query	functions.

(ade_qryclear)												;	clear	all	queries
(ade_qrysettype	"draw")			;	draw	query	results
	
(setq	pt1	(list	2.9123		8.8513	0.0))
(setq	pt2	(list	5.9134		1.1634	0.0))
(setq	pt3	(list	10.7931		1.7354	0.0))
(setq	pt4	(list	10.0371		8.8742	0.0))
	
(setq	lst	(list	"polygon"	"crossing"	pt1	pt2	pt3	pt4))
(setq	qry_id	(ade_qrydefine	""	""	""	"location"	lst	""))
(if	(null	qry_id)
			(prompt	"\nERROR:	Query	definition	failed.")	
			(progn	
						(prompt	"\nQuerying	in	part	of	the	polygon	topology.")	
						(setq	result	(ade_qryexecute))	
						(if	(null	result)		

									(prompt	"\nExecution	of	query	failed.")	
)	
)	
)

4.	 Load	the	topology	into	memory	from	the	project	drawing.

(setq	result	(tpm_acload	name	nil))	

5.	 Open	the	topology	with	read	access.

(setq	tpm_id	(tpm_acopen	"test"	nil))

6.	 Test	the	topology	for	correctness	and	completeness.

(if	(tpm_infocorrect	tpm_id)
			(prompt	"\nTopology	is	correct.")	
			(prompt	"\nTopology	is	not	correct.")	
)
(if	(tpm_infocomplete	tpm_id)
			(prompt	"\nTopology	is	complete.")	
			(prompt	"\nTopology	is	not	complete.")	
)

7.	 Optionally,	you	can	get	topology	statistics.	You	can	add	code	to	display
the	statistics.

(setq	lst	(map_topostat	tpm_id))		
(if	(null	lst)
			(prompt	"\nERROR:	Unable	to	get	statistics.")
			(progn	
						(prompt	"\nNumber	of	nodes:	")

						(princ	(cdr	(assoc	"node_count"	lst)))
						(prompt	"\nNumber	of	links:	")	
						(princ	(cdr	(assoc	"link_count"	lst)))
)
)

8.	 Close	the	topology.

(tpm_acclose	tpm_id)

9.	 Use	map_topocomplete	to	bring	in	the	missing	objects	to	complete
the	topology.

(map_topocomplete	"test")	

10.	 Repeat	steps	5	through	7	to	test	the	topology	for	completeness.
11.	 Unload	the	topology.

>

(tpm_acunload	"test")

Drawing	Cleanup
	 	 	

	
	

You	must	clean	drawing	objects	before	building	a	topology	with	them.

Drawing	cleanup	extends	undershoots,	snaps	clustered	nodes,	removes
duplicates,	simplifies	linear	objects,	and	corrects	other	errors.

Let's	look	at	this	in	two	phases,	preparing	the	cleanup	model,	which	ends	with	a
call	to	tpm_cleaninit,	and	executing	the	cleanup,	which	begins	with	a	call	to
tpm_cleanstart.

To	prepare	the	cleanup	model

1.	 Allocate	memory	for	the	cleanup	model.	Use	tpm_cleanalloc.

(setq	clean_id	(tpm_cleanalloc))

2.	 Allocate	memory	for	cleanup	variables,	which	specify	properties	for	the
cleanup	process.	The	variables	are	initialized	to	their	default	values.	Use
tpm_varalloc.

(setq	clean_var_id	(tpm_varalloc))

If	you	will	be	specifying	an	explicit	list	of	cleanup	actions	(you	create
and	manage	this	list	with	calls	to	tpm_cleanactionlistins	and	related
functions),	also	allocate	memory	for	cleanup	action	variables,	which
specify	properties	for	individual	actions.	Again	use	tpm_varalloc.

(setq	action_var_id	(tpm_varalloc))

3.	 Get	a	selection	set	of	objects	to	be	cleaned	(the	include	set).

(prompt	"\nSelect	objects	to	clean.")
(setq	ss_clean	(ssget))

You	can	also	get	a	selection	set	of	objects	to	be	anchored	(the	anchor
set).	Anchored	objects	are	not	repositioned	by	the	cleanup	process,	but
remain	fixed	while	others	are	repositioned	around	them.

(prompt	"\nSelect	objects	to	anchor.")
(setq	ss_anchor	(ssget))

The	ssget	function	prompts	the	user	to	select	objects	and	returns	a
selection	set.

4.	 Set	cleanup	variables	using	tpm_varset	with	the	clean_var_id	that
you	allocated	in	step	2.	A	few	of	these	variables	specify	cleanup	actions,
but	most	of	them	specify	how	cleanup	actions	will	be	performed.

;	set	some	cleanup	variables
(tpm_varset	clean_var_id	"MAINTAIN_MARKERS"	1)
(tpm_varset	clean_var_id	"CLEAN_TOL"	4.21)
(tpm_varset	clean_var_id	"ANCHOROBJS_LAYERS"	"Layer1")

Before	setting	cleanup	variables,	you	can	load	a	cleanup	profile	if	you
saved	one	previously,	and	in	that	way	set	many	variables	at	once.	Use
tpm_cleanprofileload.

(setq	result	
			(tpm_cleanprofileload	clean_var_id	"C:\\profile.dpf"))

If	you	specify	an	explicit	list	of	cleanup	actions,	note	that	those	will	be
the	only	actions	performed.	Cleanup	actions	specified	by	the	variables
NODE_ERROR,	LINK_ERROR,	and	GENERALIZE	will	be
ignored,	as	well	as	any	setting	specific	to	them	only,	such	as
CORRIDOR's,	which	defines	the	tolerance	for	GENERALIZE.

Using	an	action	list	is	the	best	way	to	specify	cleanup	actions,	because
you	can	specify	the	order	in	which	they	execute,	and	you	can	include	the
same	action	more	than	once.	Using	variables	to	specify	cleanup	actions
is	an	older	technique,	which	is	still	supported	for	the	sake	of	older
scripts,	but	it	is	deprecated	from	AutoCAD	Map	6	onward.

Note		When	you	insert	the	Simplify	Objects	action	(clean	group	type
128),	it	is	always	listed	first,	and	you	cannot	insert	it	more	than	once.

With	an	explicit	list	of	cleanup	actions,	note	that	certain	individual
actions	can	have	individual	tolerance	settings	(and	in	some	cases,	other
settings	also).	See	Cleanup	Action	Variables.	When	you	are	about	to
insert	an	action	into	the	action	list,	you	can	use	tpm_varset	with	the
action_var_id	that	you	allocated	in	step	2	to	set	variables	for	this
action	before	calling	tpm_cleanactionlistins.	You	can	continually
reset	and	reuse	the	same	set	of	cleanup	action	variables	with	each	action
that	you	insert.

;	insert	a	cleanup	action	into	the	action	list
;	first	set	a	tolerance	for	this	action
(tpm_varset	action_var_id	"CLEAN_TOL"	2.2)
;	with	the	action	list	referenced	by	clean_var_id...
;	*		insert	at	the	first	position	(position	0)
;	*		insert	Erase	Short	Objects	(action	1)
;	*		with	the	options	referenced	by	action_var_id
(tpm_cleanactionlistins	clean_var_id	0	1	action_var_id)

At	any	point	while	you	are	setting	cleanup	variables,	or	after	you	have
finished,	you	can	save	the	current	cleanup	profile	using

tpm_cleanprofilesave.

(setq	result	
			(tpm_cleanprofilesave	clean_var_id	"C:\\profile.dpf"))

Note	that	saved	profiles	are	XML	files.	You	can	view	or	edit	them	in	a
text	editor	as	you	can	with	saved	queries	(which	are	AutoLISP	scripts).
See	Editing	Query	Files.

5.	 Call	tpm_cleaninit	to	add	cleanup	variables	and	the	selection	set	of
objects	to	clean	to	the	cleanup	model.

(setq	result	
			(tpm_cleaninit	clean_id	clean_var_id	ss_clean))

If	you	have	collected	a	selection	set	of	objects	to	be	anchored,	first	call
tpm_cleaninitanchorset	before	calling	tpm_cleaninit.

(setq	result	
			(tpm_cleaninitanchorset	clean_id	clean_var_id	ss_anchor))

The	cleanup	model	is	now	complete.

To	execute	the	cleanup

1.	 Begin	the	cleanup	process	with	tpm_cleanstart.

(setq	result	(tpm_cleanstart	clean_id))

2.	 Execute	cleanup	actions	(process	cleanup	groups)	until	cleanup	is
complete.	With	each	cleanup	group,	with	each	error,	mark	and	fix	it.

(tpm_cleangroupnext	clean_id)

(while	(not	(tpm_cleancomplete	clean_id))
			;	count	errors	in	this	group
			(setq	i	(tpm_cleangroupqty	clean_id))
			;	process	each	error
			(while	(>=	(setq	i	(1-	i))	0)
						;	with	the	current	error
						(tpm_cleanerrorcur	clean_id	i)
						;	mark	it
						(tpm_cleanerrormark	clean_id)
						;	clean	it
						(tpm_cleanerrorfix	clean_id)
)
			(tpm_cleangroupnext	clean_id)
)

3.	 Update	the	drawing	with	tpm_cleanend.

(tpm_cleanend	clean_id)

To	clear	the	cleanup	model	without	updating	the	drawing,	use
tpm_cleancancel.

Building	a	Topology
	 	 	

	
	

The	following	steps	describe	building	a	topology.

The	resulting	topology	is	loaded	but	not	open.

Note		For	simplicity,	cleaning	drawing	objects	before	building	the	topology	is
omitted.	See	Drawing	Cleanup.

To	build	a	topology
1.	 Allocate	memory	for	topology	variables.	The	variables	are	initialized	to

their	default	values.

(setq	var_id	(tpm_varalloc))

2.	 Set	the	topology	type,	name,	and	description.	This	example	code
prompts	for	the	topology	type.

(initget	"noDe	Network	Polygon")
(setq	typ	(getkword	"Select	topology	type	
						(noDe/Network/Polygon)	<Exit>:	"))	
(if	(null	typ)
						(prompt	"\nNo	topology	type	entered.")	
)

3.	 The	next	step	is	to	include	objects	for	the	topology	(nodes,	links,
centroids),	depending	on	the	topology	type.	This	code	repeats	three
times	to	include	each	object	type.

After	prompting	for	node	objects,	as	shown	here,	this	example	prompts
for	link	and	centroid	objects.

Set	up	a	filter	to	get	the	objects	you	want.	Some	automatic	filtering	is
performed	by	ssget,	which	places	the	objects	in	an	AutoCAD	selection
set.	Note	that	you	must	include	different	object	types	for	each	type	of
topology.

;	Node	objects	are	POINT,	TEXT,	and	INSERT
			(cond		
						((=	indx	1)	
									(setq	filter	(list	(cons	-4	"<OR")		
																																					(cons	0	"POINT")	
																																					(cons	0	"TEXT")	
																																					(cons	0	"INSERT")	
																																					(cons	-4	"OR>")	
)	
)	
									(prompt	"\nSelect	node	objects.")	
									(setq	ss_nod	(ssget	filter))	
)	

				;	Link	objects	are	LINE,	PLINE,	ARC,	and	CIRCLE
						((and	(=	indx	2)		
															(or	(=	typ	"NETWORK")	
																					(=	typ	"POLYGON")	
)	
)	
									(setq	filter	(list	(cons	-4	"<OR")		
																																					(cons	0	"LINE")	
																																					(cons	0	"PLINE")	
																																					(cons	0	"ARC")	
																																					(cons	0	"CIRCLE")	
																																					(cons	-4	"OR>")	
)	
)	
									(prompt	"\nSelect	link	objects.")	

									(setq	ss_lnk	(ssget	filter))	
)	

				;	Centroid	objects	are	POINT,	TEXT,	and	INSERT
						((and	(=	indx	3)(=	typ	"POLYGON"))	
									(setq	filter	(list	(cons	-4	"<OR")		
																																					(cons	0	"POINT")	
																																					(cons	0	"TEXT")	
																																					(cons	0	"INSERT")	
																																					(cons	-4	"OR>")	
)	
)	
									(prompt	"\nSelect	centroid	objects.")	
									(setq	ss_ctr	(ssget	filter))	
)	
)		;	cond	
)		;	repeat

4.	 Build	the	type	of	topology	you	selected	in	step	2,	using	tpm_mntbuild.
This	sample	uses	a	conditional	operation	to	build	the	topology.

For	type	1,	a	node	topology,	tpm_mntbuild	includes	only	nodes.

(cond
			((=	typ	"NODE")	
						(setq	result	(tpm_mntbuild	var_id	name	desc	1	ss_nod))	
)	

For	type	2,	a	network	topology,	it	includes	nodes	and	links.

		((=	typ	"NETWORK")	
						(setq	result	(tpm_mntbuild	var_id	name	desc	2	ss_nod	ss_lnk))	
)	

For	type	3,	a	polygon	topology,	it	includes	nodes,	links,	and	centroids.

		((=	typ	"POLYGON")	
						(setq	result		
												(tpm_mntbuild	var_id	name	desc	3	ss_nod	ss_lnk	ss_ctr))	

If	no	errors	occur,	the	topology	is	now	complete.

Opening	a	Topology
	 	 	

	
	

The	following	numbered	steps	describe	how	to	load	and	open	a	topology	for
read	access,	get	information	about	the	topology,	and	then	close	it.

To	open	a	topology
1.	 Prompt	for	the	topology	name.

(setq	name	(getstring	"\nEnter	the	topology	name"))

2.	 First,	use	Topology	Access	functions	to	see	if	the	topology	is	already
loaded	and,	if	not,	load	it.

Check	to	see	if	the	topology	is	loaded	with	tpm_acexist.

(setq	result	(tpm_acexist	name	T	T))
(if	result
			(prompt	"\nTopology	is	already	loaded.")	
)

Using	T	for	both	the	source	and	loaded	parameters	causes
tpm_acexist	to	check	for	topologies	in	both	current	and	source
drawings	that	are	already	loaded	in	memory.

3.	 If	it	is	not	loaded,	load	it	with	tpm_acload.

(setq	result	(tpm_acload	name))

You	can	add	code	here	to	handle	errors	or	announce	successful	loading.

4.	 Open	the	topology	for	read	access.	The	tpm_acopen	function	opens	a
topology	and	creates	a	new	topology_ID	(*)	that	provides	access	to	it.
Using	the	nil	value	for	the	write_access	parameter	sets	access	to	read.

(setq	tpm_id	(tpm_acopen	name	nil))

5.	 Use	Topology	Information	functions	to	get	information	about	the
topology.

Get	the	description	of	the	topology	with	tpm_infodesc.

(prompt	(strcat	"\nTopology	desc:	"	
						(tpm_infodesc	tpm_id)))	

Get	the	type	of	the	topology	with	tpm_infotype.

(prompt	(strcat	"\nTopology	type:	"	
						(itoa	(tpm_infotype	tpm_id))))	

Test	the	topology	to	see	if	it	is	correct	with	tpm_infocorrect.

(if	(tpm_infocorrect	tpm_id)
						(prompt	"\nTopology	is	correct.")	
						(prompt	"\nTopology	is	not	correct."))	

Test	the	topology	to	see	if	it	is	complete	with	tpm_infocomplete.

(if	(tpm_infocomplete	tpm_id)

						(prompt	"\nTopology	is	complete.")	
						(prompt	"\nTopology	is	not	complete."))	

Get	the	version	of	the	topology	with	tpm_infoversion.

(prompt	(strcat	"\nTopology	version:	"	(tpm_infoversion	tpm_id)))

6.	 Close	the	topology.

(tpm_acclose	tpm_id)

When	you	use	tpm_acopen	to	open	or	test	the	status	of	a	topology,
always	close	the	topology	with	tpm_acclose.	Otherwise,	you	run	the
risk	of	leaving	the	topology	open	with	multiple	IDs	pointing	to	it.

Editing	Query	Files
	 	 	

	
	

If	you	have	queries	that	you	use	often,	you	can	save	them	in	query	files,	which
you	can	modify	and	reuse	as	you	need	them.	Modifying	an	existing	query	rather
than	creating	a	new	one	can	save	you	time.	This	section	shows	the	contents	of
some	typical	query	files.

Location	Query			

Property	Queries			

Location	Query	with	Property	Alteration			

Location	Query	with	Property	Alteration:	Before	and	After			

Complex	Query			

Colors
	 	 	

	
	

Colors	can	be	specified	or	returned	as	AutoCAD	color	indexes	(ACIs)	or	true
colors.

By	true	colors	we	mean	24-bit	color:	three	RGB	components,	8	bits	each,	with
no	alpha	component	(that	is,	no	transparency	value).

ACI	Colors

The	valid	ACI	formats	are

Color	Indexes,	integer	strings	from	0	through	256.	For	example,	"123".	Note
that	indexes	0	and	256	do	not	specify	colors	literally,	as	1	through	255	do,	but
logically.	See	"Logical	Colors"	below.

Color	Names,	which	correspond	to	indexes	1	through	7.	The	color	names	are
red,	yellow,	green,	cyan,	blue,	magenta,	and	white.	For	example,	"yellow"
(always	double-quoted).

Logical	Colors,	which	correspond	to	indexes	0	and	256.	The	logical	colors	are
ByBlock	and	ByLayer.	For	example,	"ByBlock"	(always	double-quoted).	Note
that	ByBlock	and	ByLayer	can	return	true	colors	or	ACIs.

For	more	information	about	ACI	colors,	see	Color	Index	Colors.

True	Colors

The	valid	true-color	formats	are

RGB	Triplets,	where	each	component	is	an	integer	from	0	through	255.	For
example,	"255,0,0".	RGB	triplets	are	wrapped	in	double	quotes	except	when
they	are	used	in	query	conditions,	in	which	case	they	must	always	be	wrapped	in
escaped	double	quotes	('\"').	See	"Color	Patterns"	below.

Color	Book	Colors,	such	as	"Pantone,	123	CVC",	a	composite	of	two
comma-separated	names	representing	a	Color	Book	and	a	color	within	it.	Color
book	strings	are	wrapped	in	double	quotes	except	when	they	are	used	in	query
conditions,	in	which	case	they	must	always	be	wrapped	in	escaped	double	quotes
('\"').	See	"Color	Patterns"	below.	And	no	matter	where	they	are	used,	color
book	strings	must	always	be	wrapped	in	escaped	double	quotes	if	they	contain
certain	special	characters.	If	you	are	unsure	if	a	color	book	string	contains
special	characters,	there	is	no	harm	wrapping	it	in	escaped	double	quotes	just	to
be	sure.

Expressions,	such	as	".COLOR"	or	".TRUECOLOR"	(always	double-
quoted).	".COLOR"	always	returns	an	ACI	color.	If	the	selected	object's	color
is	a	true	color	it	returns	the	nearest	ACI	equivalent.	".TRUECOLOR"	returns
a	true	color	if	the	selected	object's	color	is	a	true	color,	or	an	ACI	if	its	color	is
an	ACI.	Note	that	".TRUECOLOR",	and	other	expressions	that	can	return	true
colors,	return	in	valid	format	only	if	the	type	argument	of	(ade_expreval)	is
"string".

Color	Patterns,	comma-separated	lists	of	colors	in	any	of	the	valid	formats,
including	ACI	colors,	always	double-quoted.	Color	patterns	are	used	to	express
multiple	color	conditions	in	compact	format.	Consider	the	color	pattern	"red,
green".	The	pseudocode	expression,	color	=	"red,green",	is	logically
equivalent	to	(color	=	"red")	OR	(color	=	"green").	Similarly,
color	<>	"red,green"	is	logically	equivalent	to	(color	<>	"red")
AND	(color	<>	"green").	Because	color	patterns	are	comma-
separated	lists,	Color	Book	colors	and	RGB	colors	in	query	conditions
are	always	bounded	by	escaped	double	quotes	('\"')	because	they	are
themselves	comma-separated.	For	example,	the	following	color
pattern	includes	six	colors:	three	ACIs,	one	RGB,	and	one	Color	Book
color.

"12,34,56,\"12,34,56\",\"Pantone,	123	CVC\""

Note		You	can	use	wildcard	characters	when	you	specify	a	match	string	for
Color	Book	colors	(but	not	for	RGB	colors).	For	this	reason,	any	wildcard
character	in	a	Color	Book	string	that	is	meant	to	be	taken	literally	must	be

escaped	using	a	backquote,	"`".	For	example,	the	"."	character	in	the	following
string,	normally	a	wildcard	matching	any	non-alphanumeric	character,	is	meant
as	a	literal:	"My`.Colors,	Hot".

Property	Alteration	Definition	Samples
	 	 	

	
	

The	following	examples	compose	property	alteration	definitions	that	use	range
tables.

(defun	c:run_altpsample1	()	
				
			;	Range	table	for	Color	is:
			;			<	15	"green"
			;			<	20	"yellow"
			;			otherwise	"red"
				
			(ade_rtdefrange	
						"COLOR_RANGE"	"Color	Range	Table"	
						'(
									("<"	15	"green")
									("<"	20	"yellow")
									("otherwise"	""	"red")
)
)
				
			;	Range	table	for	Text	Value	is:
			;			<	15	"Small"
			;			<	20	"Medium"
			;			otherwise	"Large"
				
			(ade_rtdefrange	
			"TEXT_RANGE"	"Text	Value	Range	Table"	
						'(

									("<"	15	"Small")
									("<"	20	"Medium")
									("otherwise"	""	"Large")
)
)
				
			;	The	layer	of	each	object	will	be	used	to	determine	what	value	
			;	from	the	range	table	is	to	be	used:
				
			;	Clear	out	any	existing	alteration	definitions:
			(ade_altpclear)
				
			;	Next	define	the	color	for	the	objects	being	created:
			(ade_altpdefine	"color"	"(range	.layer	COLOR_RANGE)")
				
			;	Next	define	the	text	object	to	be	created	for	each	entity:
			(ade_altpdefine	
						"textobject"		
						'(
									("color"	"(range	.layer	COLOR_RANGE)")
									("textvalue"	"(range	.layer	TEXT_RANGE)")
)
)
				
			;	For	fill,	use	the	following	property	alteration	functions	
			(ade_altpdefine	
						"hatch"		
						'(
									("pattern"	"(range	.layer	TEXT_RANGE)")
									("color"	"(range	.layer	COLOR_RANGE)")
)
)
				
			(princ)
)

(defun	c:run_altpsample2	()	
				
			;	Range	table	for	pattern	is:
			(ade_rtdefrange	
						"PATTERN_RANGE"	"Hatch	Pattern	Range	Table"	
						'(
									("<"	15	"Earth")
									("<"	20	"Grass")
									("otherwise"	""	"Swamp")
)
)
				
			;	Range	table	for	Color	is:
			(ade_rtdefrange	
						"COLOR_RANGE"	"Color	Range	Table"	
						'(
									("<"	15	"green")
									("<"	20	"yellow")
									("otherwise"	""	"red")
)
)
				
			;	Range	table	for	scale	is:
			(ade_rtdefrange	
						"SCALE_RANGE"	"Hatch	Scale	Range	Table"	
						'(
									("<"	15	"25")
									("<"	20	"50")
									("otherwise"	""	"100")
)
)
				
			;	Range	table	for	Angle	is:
			(ade_rtdefrange	
						"ANGLE_RANGE"	"Hatch	Angle	Range	Table"	
						'(
									("<"	15	"45")

									("<"	20	"90")
									("otherwise"	""	"0")
)
)
			;	The	layer	of	each	object	will	be	used	to	determine	which	value	
			;	from	the	range	table	is	to	use
				
			;	Clear	out	any	existing	alteration	definitions:
			(ade_altpclear)
				
			;	For	fill,	use	the	following	property	alteration	functions	
			(ade_altpdefine	
						"hatch"		
						'(
									("pattern"	"(range	.layer	PATTERN_RANGE)")
									("scale"	"(range	.layer	SCALE_RANGE)")
									("rotation"	"(range	.layer	ANGLE_RANGE)")
									("color"	"(range	.layer	COLOR_RANGE)")
)
)
				
			(princ)
)

(defun	c:run_altpsample3	()	
				
			;	Range	table	for	symbol	name	is:
			(ade_rtdefrange	
						"SYMBOL_RANGE"	"Symbol	Name	Range	Table"	
						'(
									("<"	15	"Sym1")
									("<"	20	"Sym2")
									("otherwise"	""	"Sym3")
)
)
				

			;	Range	table	for	scale	is:
			(ade_rtdefrange	
						"SCALE_RANGE"	"Symbol	Scale	Range	Table"	
						'(
									("<"	15	"5")
									("<"	20	"10")
									("otherwise"	""	"50")
)
)
				
			;	Range	table	for	Color	is:
			(ade_rtdefrange	
						"COLOR_RANGE"	"Color	Range	Table"	
						'(
									("<"	15	"green")
									("<"	20	"yellow")
									("otherwise"	""	"red")
)	
)
				
			;	The	layer	of	each	object	will	be	used	to	determine	which	
			;	value	from	the	range	table	to	use
			;	Clear	out	any	existing	alteration	definitions:
			(ade_altpclear)
				
			;	For	fill,	use	the	following	property	alteration	functions:
			(ade_altpdefine	"blockname"	"(range	.layer	SYMBOL_RANGE)")
			(ade_altpdefine	"scale"	"(range	.layer	SCALE_RANGE)")
			(ade_altpdefine	"color"	"(range	.layer	COLOR_RANGE)")
				
			(princ)
)

More	Samples
	 	 	

	
	

There	are	dozens	of	Visual	LISP	samples	in	the	Sample	folder	of	your	AutoCAD
Map	installation.

Using	AutoLISP	Functions
	 	 	

	
	

To	write	AutoLISP	programs,	use	the	Visual	LISP	IDE.	You	do	not	need	a
compiler,	because	AutoCAD	Map	includes	an	interpreter	that	processes
AutoLISP	source	code	directly.

Optional	Parameters

If	an	AutoLISP	function	has	optional	parameters,	they	are	enclosed	in	square
brackets	in	the	function	prototype.	If	a	parameter	is	optional,	you	can	omit	its
argument	if	no	arguments	follow.

A-lists

The	term	a-list	used	in	AutoLISP	function	descriptions	denotes	an	association
list,	also	called	a	dotted	pair.	It	looks	like	this:

(property	.	value)

For	example,	in	the	expression

(ade_altpdefine	"textobject"	
				'(("color"	.	"yellow")		
							("textvalue"	.	".Layer")))	

the	sub-expression	("color"	.	"yellow")	is	an	a-list,	and	so	is	("textvalue"	.

".Layer").

Invoking	Data	Extension	Commands

You	can	invoke	almost	any	Data	Extension	command	using	the	AutoLISP
expression,	(command	"_.ADE[XX]"	...).	The	exceptions	are
ADEDEFCRDSYS,	ADEZEXTENTS,	ADEEDITDATA,	and
ADEATTACHDATA.	You	cannot	invoke	these	commands	from	within
ADSRX	or	Visual	LISP.	For	the	ADEKEYVIEW	command,	only	the
Redisplay	option	is	supported	when	ADSRX	or	Visual	LISP	is	active.

Incomplete	Execution	of	Functions

If	an	AutoLISP	function	that	performs	a	sequence	of	tasks	fails	partway	through
its	execution	and	returns	an	error	code,	the	tasks	it	completed	correctly	are
undone.	For	example,	ade_qrysetcond	modifies	a	query	condition.	If	you	call
this	function	and	it	is	not	able	to	modify	every	component	of	the	condition,	the
components	it	did	modify	are	returned	to	their	original	states.

Numeric	Identifiers
	 	 	

	
	

AutoLISP	functions	work	with	numeric	identifiers	(IDs).	Their	type	is	real.

For	example,	when	you	use	ade_dslist	to	list	the	drawings	attached	to	the
current	drawing,	the	function	returns	a	list	of	IDs,	not	drawing	names.	To	get	a
drawing	name,	you	call	ade_dwggetsetting	with	two	arguments:	"dwgname"
(the	setting	you	want	to	know	about)	and	the	drawing	ID.

Topology	function	documentation	uses	a	number	of	different	kinds	of	IDs.	See
Topology	IDs	for	an	annotated	list.	Although	these	IDs	are	all	the	same	type,
ade_id,	we	give	them	different	names	in	the	documentation	according	to	their
purpose.

Typographic	Conventions
	 	 	

	
	

This	documentation	uses	the	following	typographic	conventions.

Typographic	Conventions

Text	element Description Example

bold	sans	serif Text	you	enter At	the	command	prompt,
enter	(ade_dslist).

italic Names	of	files	and
directories

c:\map\map_api.hlp

monospace	font API	proper	names,	inline
sample	code

The	expression
("color"."yellow")...

[]	square	brackets Optional	parameters	in
function	prototypes

(tpm_iterstart	[source]
[loaded])

Note		All	file	names	and	directory	paths	in	AutoCAD	Map	are	case	sensitive.

tpm_cleanactionlistgetat
Cleanup	Functions 	 	

	
	

Gets	the	cleanup	action	at	a	given	list	position.

(tpm_cleanactionlistgetat	clean_var_id	index	action_var_id)

Returns	a	cleanup	action	as	a	clean	group	type	(integer)	or	0	on	error:	see
tpm_cleangrouptype	for	a	list	of	types.

clean_var_id Cleanup	variables	ID	(real)	returned	by	tpm_varalloc

index List	position	to	access	(integer)

action_var_id Cleanup	action	variables	ID	(real)	returned	by
tpm_varalloc

The	clean_var_id	argument	references	properties	for	the	cleanup	operation	that
you	are	preparing	to	initiate	(see	Cleanup	Variables).	These	properties	include
the	action	list.

The	index	argument	is	a	zero-based	position	in	the	action	list.	A	value	greater
than	or	equal	to	the	list	size	or	less	than	0	returns	an	error.

The	action_var_id	argument	references	properties	affecting	the	specific
cleanup	action	that	you	are	getting	(see	Cleanup	Action	Variables).	Use
tpm_varget	or	tpm_varlist	to	read	them	after	calling
tpm_cleanactionlistgetat.

tpm_cleanactionlistins
Cleanup	Functions 	 	

	
	

Inserts	a	cleanup	action	in	the	action	list.

(tpm_cleanactionlistins	clean_var_id	index	action	action_var_id)

Returns	T	or	nil.

clean_var_id Cleanup	variables	ID	(real)	returned	by	tpm_varalloc

index Where	to	insert	in	the	list	(integer)

action Cleanup	action	to	insert	(integer),	a	clean	group	type:
see	tpm_cleangrouptype	for	a	list	of	types.

action_var_id Cleanup	action	variables	ID	(real)	returned	by
tpm_varalloc

The	clean_var_id	argument	references	properties	for	the	cleanup	operation	that
you	are	preparing	to	initiate	(see	Cleanup	Variables).	These	properties	include
the	action	list.

The	index	argument	is	a	zero-based	position	in	the	action	list,	or	-1	for	the	last
position.	A	value	greater	than	or	equal	to	the	list	size	or	less	than	-1	is	taken	as
-1.

Note		When	you	insert	the	Simplify	Objects	action	(clean	group	type	128),	it	is
always	listed	first,	and	you	cannot	insert	it	more	than	once.

The	action_var_id	argument	references	properties	affecting	the	specific

cleanup	action	that	you	are	inserting	(see	Cleanup	Action	Variables).	Use
tpm_varset	to	set	them	before	calling	tpm_cleanactionlistins.

ADSRX	Equivalent

int
tpm_cleanactionlistins

ade_id	clean_var_id,
long	index,
int	action,
ade_id	action_var_id);

Returns	RTNORM	or	an	error	code.

tpm_cleangrouptype
Cleanup	Functions 	 	

	
	

Determines	the	type	of	the	current	group.

(tpm_cleangrouptype	clean_id)

Returns	a	type	code	or	nil.

clean_id Model	ID	returned	by	tpm_cleanalloc

Type	Codes

			1 Erase	short	objects

			2 Break	crossing	objects

			4 Extend	undershoots

			8 Delete	duplicates

		16 Snap	clustered	nodes

		32 Dissolve	pseudo	nodes

		64 Erase	dangling	objects

	128 Simplify	objects

	256 Zero	length	objects

	512 Apparent	intersections

1024 Weed	polylines

tpm_cleancreatedss
Cleanup	Functions 	 	

	
	

Gets	created	entities	following	a	drawing	cleanup.

(tpm_cleancreatedss	clean_id)

Returns	a	selection	set.

clean_id Cleanup	model	ID	(real),	returned	by	tpm_cleanalloc.

This	function	returns	entities	that	were	created	during	the	cleanup	process.

Note		Call	this	function	after	calling	tpm_cleanend,	which	concludes	the
cleanup	process.	If	you	call	this	function	earlier,	it	returns	a	selection	set	from
the	previous	cleanup	or	the	empty	selection	set.

tpm_cleanmodifiedss
Cleanup	Functions 	 	

	
	

Gets	changed	entities	following	a	drawing	cleanup.

(tpm_cleanmodifiedss	clean_id)

Returns	a	selection	set.

clean_id Cleanup	model	ID	(real),	returned	by	tpm_cleanalloc.

This	function	returns	members	of	the	Include	set	that	were	changed	during	the
cleanup	process.

Note		Call	this	function	after	calling	tpm_cleanend,	which	concludes	the
cleanup	process.	If	you	call	this	function	earlier,	it	returns	a	selection	set	from
the	previous	cleanup	or	the	empty	selection	set.

tpm_cleanunchangedss
Cleanup	Functions 	 	

	
	

Gets	unchanged	entities	following	a	drawing	cleanup.

(tpm_cleanunchangedss	clean_id)

Returns	a	selection	set.

clean_id Cleanup	model	ID	(real),	returned	by	tpm_cleanalloc.

This	function	returns	members	of	the	Include	set	that	were	not	changed	during
the	cleanup	process.	Note	that	it	does	not	return	members	of	the	Anchor	set,
which	are	unchanged	by	definition.

Note		Call	this	function	after	calling	tpm_cleanend,	which	concludes	the
cleanup	process.	If	you	call	this	function	earlier,	it	returns	a	selection	set	from
the	previous	cleanup	or	the	empty	selection	set.

tpm_tracebestroute
Network	Tracing	Functions 	 	

	
	

Calculates	the	best	round-trip	route.

(tpm_tracebestroute	tpm_id	trace_id	node0	node1	...	noden)

Returns	a	topology	ID	(real)	representing	the	best	route	or	nil.

tpm_id Topology	ID	(real)	representing	the	network	you	are
analyzing

trace_id Tracing	model	ID	(real)	returned	by	tpm_tracealloc

node0 Element	ID	(real)	of	the	start	and	end	node

node1	...	noden Element	IDs	(real)	of	the	nodes	to	visit

The	best	route	topology,	whose	ID	this	function	returns	if	successful,	is	assigned
an	arbitrary	name	and	is	open	for	read.	To	get	its	name,	use	tpm_infoname.	To
change	its	name,	use	tpm_mntrename.

For	the	best	route	trace	to	succeed,	the	total	calculated	resistance	cannot	be
greater	than	the	value	set	for	the	maximum	resistance	or	less	than	the	value	set
for	the	minimum	resistance.	See	tpm_tracesetmaxres	and
tpm_tracesetminres.	The	accumulated	resistance	value	is	the	total	resistance
of	the	nodes	and	links	that	make	up	the	best	route.

Typical	usage:

(setq	bestroute	
			(tpm_tracebestroute	
						tpm_id	
						trace_id	
						7.0	1.0	4.0	10.0	5.0	6.0	9.0))

where	7.0	is	the	element	ID	of	the	start	and	end	node	and	the	remaining
arguments	are	element	IDs	of	the	nodes	to	visit.	(Element	IDs	are	returned	by
tpm_traceelemid.)

ADSRX	Equivalent

ade_id
tpm_tracebestroute

ade_id	tpm_id,
ade_id	trace_id,
struct	resbuf	*nodes);

Returns	a	topology	ID	or	ADE_NULLID.

The	list	of	nodes	is	implemented	as	a	resbuf	chain,	which	you	can	create	like
this:

struct	resbuf	*nodes;													//	node	list
struct	resbuf	rb0,	rb1,	..,	rbN;		//	resbuf	elements
ade_id	node0,	node1,	..,	nodeN;			//	nodes	to	analyze
//	get	tracing	element	IDs	for	the	nodes	
//	that	we	will	analyze	and	assign	them	to	
//	node0,	node1,	..,	nodeN
...
rb0.restype	=	RTLONG;
rb0.resval.rlong	=	node0;
rb0.rbnext	=	&rb1;
rb1.restype	=	RTLONG;

rb1.resval.rlong	=	node1;
rb1.rbnext	=	&rb2;
...
rbN.restype	=	RTLONG;
rbN.resval.rlong	=	nodeN;
rbN.rbnext	=	NULL;
nodes	=	&rb0;

tpm_tracebestroutescan
Network	Tracing	Functions 	 	

	
	

Gets	the	element	ID	of	a	link	or	node	in	the	best	route.

(tpm_tracebestroutescan	trace_id	flag)

Returns	an	element	ID	(real)	or	nil.

trace_id Tracing	model	ID	(real)	returned	by	tpm_tracealloc

flag Path	element	code	(integer):	
0	=	Current	element	
1	=	First	element	
2	=	Last	element	
3	=	Next	element	
4	=	Previous	element

First	use	tpm_tracebestroute	to	calculate	the	best	route.

ADSRX	Equivalent

ade_id
tpm_tracebestroutescan

ade_id	trace_id,
int	flag);

Returns	a	element	ID	or	ADE_NULLID.

tpm_tracebestrouteval
Network	Tracing	Functions 	 	

	
	

Calculates	the	resistance	of	the	best	route.

(tpm_tracebestrouteval	trace_id)

Returns	a	resistance	value	(real)	or	nil.

trace_id Tracing	model	ID	(real)	returned	by	tpm_tracealloc

First	use	tpm_tracebestroute	to	calculate	the	best	route.

ADSRX	Equivalent

int
tpm_tracebestrouteval

ade_id	trace_id,
ads_real	*resist);

Returns	RTNORM	or	an	error	code.

resist Resistance

The	ADSRX	function	passes	the	resistance	of	the	best	route	through	a	parameter
instead	of	returning	it	as	the	AutoLISP	function	does.

Color	Index	Colors
	 	 	

	
	

Valid	color	index	values	are	integers	from	0	through	256.	You	can	also	use	color
names	or	the	logical	colors,	ByBlock	and	ByLayer.

AutoCAD	Map	also	supports	true	color.

Named	Colors

Indexes	1	through	7	are	the	named	colors.	You	can	specify	any	of	these	colors	by
name	or	by	index.	Index	7,	the	color	named	white,	displays	as	white	or	black
depending	on	background	color.

Index Name

1 Red

2 Yellow

3 Green

4 Cyan

5 Blue

6 Magenta

7 White

Note	You	can	specify	ACI	colors	in	query	conditions	using	color	names	or	color
indexes.	But	if	you	retrieve	such	a	condition,	ACI	colors	are	always	reported	as

color	indexes,	because	that	is	how	they	are	stored,	even	if	they	were	originally
specified	with	color	names.	However,	this	is	not	the	case	with	color	patterns.	If
you	retrieve	a	condition	using	a	color	pattern,	whether	it	contains	color	indexes,
color	names,	or	both,	the	color	pattern	is	reported	as	it	was	originally	specified.

Other	Colors

Indexes	8	and	9	(a	dark	gray	and	a	light	gray),	together	with	the	named	colors,
are	collectively	the	standard	colors.	Indexes	0	and	256	(the	logical	colors,
ByBlock	and	ByLayer)	invoke	the	relevant	block	and	layer	colors	respectively.
Note	that	ByBlock	and	ByLayer	can	return	ACIs	or	true	colors.

For	more	information
1.	 In	AutoCAD	Map,	click	Format	>	Color.
2.	 In	the	Select	Color	dialog	box,	click	Help.

ade_prefgetval
Option	Functions 	 	

	
	

Gets	an	AutoCAD	Map	option	setting.

(ade_prefgetval	variable)

Returns	an	option	setting	or	nil.

variable Option	name	(string).	See	the	Options	tables	below.

The	function	return	value	depends	on	which	option	you	specify.	The	tables
below	show	option	names	and	return	values,	organized	by	option	type.

Work	Session	Options

RestoreLastActiveDwgsOnStartup T	or	nil.

ActivateDwgsOnAttach T	or	nil.

DontAddObjectsToSaveSet T	or	nil.

MarkObjectsForEditingWithoutPrompting T	or	nil.

LogFileActive T	or	nil.

LogFileName File	name	(string).	For
example,	"ade.log".

LogMessageLevel 0,	1,	or	2.

Query	Options

QueryFileDirectory. Path	(string).	For	example,
"c:\\data\\qry".

CaseSensitiveMatch. T	or	nil.

SaveCurrQueryInSession. T	or	nil.

MkSelSetWithQryObj T	or	nil.

DefaultJoinOperator 1	=	OR,	2	=	AND.

ColorForAdd Color	(string).

ColorForRemove Color	(string).

BlockLocnForQuery 1	=	insertion	point,	2	=
bounding	box.

TextLocnForQuery 1	=	insertion	point,	2	=
bounding	box.

ShowBlockAsInsPt T	or	nil.

ShowImageAsBoundary T	or	nil.

CreateAssociativeHatchObjects T	or	nil.

ReferenceBoundaryForAreaLocation T	or	nil.

Save	Back	Options

RedefineBlockDefinitions T	or	nil.

RedefineLayerDefinitions T	or	nil.

RedefineTextStyleDefinitions T	or	nil.

RemoveUnusedGroups T	or	nil.

EraseSavedBackObjects T	or	nil.

RemoveLockAfterSave T	or	nil.

CreateHistoryFileOfChanges T	or	nil.

CreateBackupFileOfSourceDwg T	or	nil.

External	Database	Options

NoOfSQLConditionsInHistory integer.

DisplayTabsInSingleView T	or	nil.

OpenDataViewReadOnly T	or	nil.

SaveDataViewFmtChanges T	or	nil.

ReconnectDbOnWSOpen T	or	nil.

ShowFullDBPath T	or	nil.

KeepDataViewOnTop T	or	nil.

dbfDatabases string,	one	of	the	following:
"Prompt",	"DB3",	"DB4",
"DB5",	"FOX2.0",	"FOX2.5",	or
"FOX2.6".

xlsDatabases string,	one	of	the	following:
"Prompt",	"Excel3",	"Excel4",
"Excel5",	or	"Excel7".

dbDatabases string,	one	of	the	following:
"Prompt",	"Paradox3.0",
"Paradox4.0",	or	"Paradox5.0".

Coordinate	Transformation	Options

Coordinate	Transformation	Options

AdjustSizesAndScalesForChangesInUnits T	or	nil.

AdjustRotationsForMapDistortions T	or	nil.

AdjustSizesAndScalesForMapDistortions T	or	nil.

AdjustElevations T	or	nil.

AdjustZeroRotationObjects T	or	nil.

.

System	Options

AccessWorkCenter T	or	nil.

CheckoutDirectory Path	(string).	For	example,
"c:\\data\\dwg"	or	""	if	none.

PreserveAWCFiles T	or	nil.

ForceUserLogin T	or	nil.

EnableObjectLocking T	or	nil.

ReadPrefFromINI T	or	nil.

NumberofOpenDwgs integer

DoublePrec real,	0	or	greater,	but	less	than	1.

The	"ForceUserLogin"	and	"DoublePrec"	system	options	cannot	be
modified	unless	your	end	user	has	superuser	privileges.

If	"DoublePrec"	is	set	to	0,	the	behavior	of	data	extension	queries	is	the	same
as	before	introducing	this	option.	The	"DoublePrec"	option	has	no	user
interface	equivalent.

Workspace	Options

CheckClasses T	or	nil.

CheckDrawings T	or	nil.

CheckQueryLibrary T	or	nil.

CheckDatabases T	or	nil.

CheckTables T	or	nil.

CheckQueries T	or	nil.

CheckTopologies T	or	nil.

CheckLPNs T	or	nil.	Note	that	link	path	names
(LPNs)	have	been	replaced	by	link
templates	in	AutoCAD	Map.

ShowOPMOnStartup T	or	nil.

ShowWSpaceOnStartup T	or	nil.

WSpaceDockingView T	or	nil.

WSpaceWindowRect A	list	of	four	values	(integer)	that
define	the	left,	top,	right,	and	bottom
of	the	window	rectangle.

Database	tables	and	database	query	categories	are	visible	in	the	workspace	only
if	"CheckTables"	and	"CheckQueries"	are	set	to	T	and	"CheckDatabases"
is	set	to	T	also.

The	following	workspace	options	are	read	only.	That	is,	they	can	be	used	only
with	ade_prefgetval	to	determine	if	a	category	is	visible	in	the	workspace.

Read-Only	Workspace	Options

ClassesVisible T	or	nil.

DrawingsVisible T	or	nil.

QueryLibraryVisible T	or	nil.

DatabasesVisible T	or	nil.

TablesVisible T	or	nil.

QueriesVisible T	or	nil.

TopologiesVisible T	or	nil.

LPNsVisible T	or	nil.

ade_prefsetval
Option	Functions 	 	

	
	

Sets	an	AutoCAD	Map	option.

(ade_prefsetval	variable	value)

Returns	T	or	nil.

variable Option	name	(string)

value Value	appropriate	for	the	given	option	(type	varies).

See	ade_prefgetval	for	a	list	of	option	names	and	values.

The	following	example	sets	"ColorForAdd"	to	"red".

(ade_prefsetval	"ColorForAdd"	"red")

ade_altpdefine
Property	Alteration	Functions 	 	

	
	

Creates	a	property	alteration	expression.

(ade_altpdefine	property	value)

Returns	a	property	alteration	expression	ID	or	nil.

property Property	to	alter	(string).	See	the	Alterable	Properties	table
below

value New	value	(type	varies),	or	a	range	table	expression	(string)
that	determines	the	new	value.	See	Using	a	Range	Table	later
in	this	topic.

A	list	of	one	or	more	property	alteration	expressions	constitutes	a	property
alteration	definition.	If	there	is	a	current	property	alteration	definition	when	you
create	a	property	alteration	expression,	the	new	expression	is	added	to	it.	When
you	execute	a	Draw	query,	each	queried	entity	is	altered	in	accord	with	the
current	property	alteration	definition.

The	following	table	lists	the	alterable	properties:

Alterable	Properties

blockname Block	name	(string)

color Color	(string)

elevation Z	coordinate	(point)	in	the	user	coordinate	system

height Text	height	(real)

layer Layer	name	(string)

linetype Line	type	(string)

rotation Rotation	(real)

scale Scaling	factor	(real).	For	example,	1.2	=	120%

style Text	style	(string)

width Line	width	(real)

textvalue Text	value	(string)

thickness Thickness	(real)

hatch List	of	dotted	pairs	that	define	the	hatch	properties.	
See	Hatch	properties	below

textobject List	of	dotted	pairs	that	define	the	text	object	properties.	
See	Text	object	properties	below

To	add	a	hatch	pattern	to	each	queried	entity,	as	long	as	it	is	a	closed	polygon,
specify	"hatch"	for	the	property	argument.	The	value	argument	is	then	a	list
of	dotted	pairs.	Each	dotted	pair	is	composed	of	a	hatch	property	and	a	string
value.

Hatch	Properties

pattern Hatch	pattern	name	(string)

scale Scaling	factor	(string).	For	example,	"1.2"	=	120%

rotation Rotation	of	the	hatch	pattern	(string)

layer Name	of	the	layer	that	contains	the	hatch	pattern	(string)

color Hatch	pattern	color	(string)

To	create	a	text	object	for	each	queried	entity,	specify	"textobject"	for	the
property	argument.	The	value	argument	is	then	a	list	of	dotted	pairs.	Each
dotted	pair	is	composed	of	a	text	object	property	and	a	string	value.	The	value
element	in	the	dotted	pair	can	be	an	explicit	value	or	a	range	table	expression
that	determines	a	value.

Text	Object	Properties

textvalue Text	to	display	(string)

height Text	height	(string)

inspt Point	where	text	is	inserted	(expression	as	a	string)

justify Text	alignment	(string).	For	example,	"center".

style Text	style	(string)

layer Name	of	the	layer	on	which	the	text	object	resides	(string)

color Text	color	(string)

rotation Rotation	of	the	text	object	(string)

The	property	alteration	expression	defined	by

(ade_altpdefine	"color"	"red")

changes	the	color	of	each	queried	entity	to	red.

The	property	alteration	expression	defined	by

(ade_altpdefine	"textobject"	
				'(("color"	.	"yellow")	("textvalue"	.	".Layer")))	

creates	a	text	object	for	each	queried	entity.	Each	text	object	is	yellow,	and	its
text	value	is	the	layer	on	which	the	entity	resides.

A	longer	property	alteration	expression	for	a	text	object:

(ade_altpdefine	"textobject"	
(list
			(cons	"Textvalue"	".Layer")
			(cons	"Justify"	"MIDDLE")
			(cons	"Inspt"	".CENTER")
			(cons	"Style"	"STANDARD")
			(cons	"Height"	"1.0")
			(cons	"Rotation"	"0.0")
			(cons	"Color"	"BYLAYER")
))

A	property	alteration	expression	for	a	hatch:

(ade_altpdefine	"hatch"	
(list
			(cons	"Pattern"	"USER")
			(cons	"Scale"	"1.0")
			(cons	"Rotation"	"45.0")
			(cons	"Layer"	"Query_Hatch")
			(cons	"Color"	"BYLAYER")
))

Using	a	Range	Table

Instead	of	supplying	an	explicit	value	argument	when	you	call	ade_altpdefine,
you	can	supply	a	range	table	expression	that	references	an	existing	range	table.
Note	that	this	expression	is	a	string	value.	It	must	be	enclosed	in	quotes.

A	range	table	expression	has	the	following	format:

(range	reference	rtname)

Range	Table	Expression	Parameters

range The	range	keyword.	All	range	table	expressions	begin	with
range.	It	is	not	quoted.

reference Reference	property,	such	as	.Color	or	.Layer.	It	is	not
quoted.

rtname Range	table	name.	Can	be	up	to	31	characters	long.	Must	be
unique,	contain	no	spaces,	and	start	with	an	alphanumeric
character.	It	is	not	quoted.

The	range	table	expression	uses	its	included	range	table	to	process	the	value	of
the	reference	property	and	return	a	new	property	value.	For	example,	the
following	code	(1)	uses	ade_rtdefrange	to	define	a	range	table,	(2)	references
the	range	table	in	a	range	table	expression,	and	then	(3)	supplies	the	range	table
expression	as	the	value	argument	in	an	ade_altpdefine	call.

First	we	define	a	range	table:

(ade_rtdefrange	"rt_def"	
						"Change	all	except	red	to	yellow"	
						'(("="	1	1)	("OTHERWISE"	""	2)))	

Then	we	reference	this	range	table	in	a	range	table	expression,	which	asserts	that
the	range	table	will	look	at	the	.Color	property	of	each	queried	entity	to
determine	if	the	entity's	color	will	be	altered	and	what	color	it	will	be.

(setq	propVal	"(range	.Color	rt_def)")

Finally,	we	use	the	range	table	expression	instead	of	an	explicit	property
alteration	value	in	a	call	to	ade_altpdefine.

(ade_altpdefine	"color"	propVal)

The	next	time	a	Draw	query	is	executed	with	Property	Alteration	in	effect,	the
color	of	each	queried	entity	is	altered	depending	on	its	current	color	and	in
accordance	with	the	rules	embedded	in	the	range	table	and	its	enclosing	range
table	expression.

The	following	example	uses	real	values:

(ade_rtdefrange	"rt_def"	"Set	rotation"
						'(("="	45.	90.)	("OTHERWISE"	""	45.)))		

For	another	example,	you	could	rewrite	the	"textobject"	example	cited	earlier
to	use	a	range	table.

(ade	rtdefrange	"labelWaterOnly"	""	
				'(("="	"Water"	"Water")("OTHERWISE"	""	""))	
)
(ade_altpdefine	"textobject"	
				'(("color"	.	"yellow")	
						("textvalue"	.	"(range	.Layer	myRangeTable)"))	
)

The	following	example	executes	a	location	query	based	on	a	circle	defined	by
the	user.	It	includes	property	alteration	based	on	a	range	table.	The	color	of	each
queried	entity,	if	it	is	not	already	red,	is	changed	to	yellow.

(ade_qryclear)																							
(ade_qrysettype	"draw")														
(ade_dwgzoomextents)																	

								
(prompt	"\nQuery	LOCATION	by	CIRCLE:	")
(setq	c_cen		(getpoint	"\nCenter	of	circle:	")
						c_radp			(getpoint	c_cen	"\nRadius	of	circle:	")	
						c_rad				(distance	c_cen	c_radp)	
						qry_cond	(list	"circle"	"inside"	c_cen	c_rad)	
						qry_id			(ade_qrydefine	""	""	""		
																					"location"	qry_cond	"")	
)
(if	(null	qry_id)
			(prompt	"\nERROR:	Query	definition	failed.")		
			(progn	
						(ade_altpclear)	
						;	Define	the	range	table	
						(ade_rtdefrange	"rt_def"		
												"Change	all	except	red	to	yellow"	
												'(("="	1	1)	("OTHERWISE"	""	2)))	
						;	Reference	the	range	table	in	a	range	table		
						;	expression;	note	that	it's	all	one	string	
						(setq	propVal	"(range	.Color	rt_def)"	
						(if	(or	(null	(ade_altpdefine	"color"	propVal))	
																		(null	(ade_qrysetaltprop	T))	
)	
									(prompt	"\nERROR:	Alter	properties	definition		
																						failed.")		
									(if	(=	0.0	(ade_qryexecute))	
												(prompt	"\nERROR:	No	objects	found.")	
)		;	if	
)		;	if	
)		;	progn	
)		;	if

ade_altpgetprop
Property	Alteration	Functions 	 	

	
	

Gets	a	property	alteration	expression.

(ade_altpgetprop	altp_id)

Returns	a	property	alteration	expression	ID	or	nil.

altp_id Property	alteration	expression	ID	(real)

See	ade_altpdefine	for	information	about	property	alteration	expressions.

ade_altpsetprop
Property	Alteration	Functions 	 	

	
	

Modifies	a	property	alteration	expression.

(ade_altpsetprop	altp_id	property	value)

Returns	T	or	nil.

altp_id Property	alteration	expression	ID	(real)

property Property	to	alter	(string)

value New	value	(type	varies).

See	ade_altpdefine	for	information	about	properties	and	values.

ade_qrydefine
Query	Functions 	 	

	
	

Defines	a	query.

(ade_qrydefine	joinop	bggroups	not_op	condtype	qrycond	endgroups)

Returns	a	condition	ID	or	nil.

joinop A	joining	operator:	"and"	or	"or"	or	""	(none).	If	""	(none)
is	specified,	the	default	joining	operator	is	used	(see
ade_prefgetval).

bggroups For	grouping	this	condition	with	others	in	the	query
definition	you	are	building.	Use	one	or	more	open
parentheses	as	needed,	or	""	(none).	For	example,	"((".

not_op The	NOT	operator,	if	needed:	"not"	or	""	(none).

condtype A	condition	type:	"Location",	"Property",	"Data",	or
"SQL".

qrycond A	condition	expression.	Depends	on	the	condition	type.	See
Condition	Expressions	below.

endgroups For	grouping	this	condition	with	others	in	the	query
definition	you	are	building.	Use	one	or	more	close
parentheses	as	needed,	or	""	(none).	For	example,	"))".

A	query	definition	is	composed	of	one	or	more	conditions,	each	defined	by	a
separate	ade_qrydefine	call.	You	can	group	conditions	by	supplying

parentheses	or	empty	strings	to	the	bggroups	or	endgroups	parameters	as
needed.

You	must	specify	all	six	ade_qrydefine	arguments.

Condition	Expressions

The	qrycond	parameter	requires	a	condition	expression.	Condition	expressions
are	lists.	What	you	include	in	the	list	depends	on	the	condition	type:	Location,
Property,	Data,	or	SQL.

Location	Expressions	Property	Expressions
Data	Expressions
SQL	Expressions

ade_qrygetcond
Query	Functions 	 	

	
	

Gets	a	condition	of	the	current	query.

(ade_qrygetcond	condition_id)

Returns	a	query	condition	or	nil.

condition_id Query	condition	ID	(real)

See	ade_qrydefine	for	information	about	query	conditions.

ade_qrysetcond
Query	Functions 	 	

	
	

Replaces	a	query	condition.

(ade_qrysetcond	condition_id	condition)

Returns	T	or	nil.

condition_id Query	condition	ID	(real)	to	replace.

condition New	query	condition	(a	list).	See	ade_qrydefine.

This	function	affects	the	current	query.

You	cannot	alter	grouping	with	this	function.	Any	grouping	you	specify	is
ignored.	To	group	or	ungroup,	use	ade_qrygroup	or	ade_qryungroup.

Property	Expressions
	 	 	

	
	

Property	expressions	are	used	as	querycond	arguments	in	ade_querydefine
calls	that	define	Property	conditions.

They	have	the	following	format:

(property	operator	value	[subclasses])

Property	Expression	Parameters

property Property	name	(string).	See	the	Property	and	Value
Arguments	table	below.

operator "=",	">",	"<",	"<=",	">=",	"<>".	Note	that	the	only	valid
operator	in	a	string	context	is	"=".

value Depends	on	the	property	argument.	See	the	Property	and
Value	Arguments	table	below.

subclasses Optional.	T	or	nil.	The	default	if	the	argument	is	omitted	is
nil.	This	setting	has	no	effect	unless	property	is	"feature".
T	means	return	all	objects	belonging	to	the	feature	class
identified	by	the	value	argument,	including	objects
belonging	to	any	subclass	of	that	feature.	nil	means	do	not
include	objects	belonging	to	such	a	subclass.

Property	and	Value	Arguments

Property Value

area Area	value	(string).

blockname Block	name	(string).

color Color	(string).

elevation Z	coordinate	(string).

"feature" Feature	name	(string).

group Group	name	(string).

layer Layer	name	(string).

length Length	(string).

linetype Line	type	(string).

"lineweight" Line	weight	(string).

"plotstyle" Plot	style	(string).

style Text	style	(string).

thickness Thickness	(string).

objtype Object	type	(string),	or	"unknown".

value Text	value	(string).

Property	Expression	Examples

The	following	examples	define	Property	conditions.	The	first	specifies	a	layer:

(setq	qry_id	
				(ade_qrydefine		
									'("and"	""	""	"property"	("layer"	"="	"WATER")	"")	

)	
)

And	the	second	specifies	a	color:

(setq	qry_id	
				(ade_qrydefine	
									'("or"	"("	"not"	"property"	("color"	"="	"RED")	"")	
)	
)

Data	Expressions
	 	 	

	
	

Data	expressions	are	used	as	querycond	arguments	in	ade_querydefine	calls
that	define	Data	conditions.

They	have	the	following	format.

(datatype	tablename.fieldname	operator	value	[subclasses])

Data	Expression	Parameters

datatype Data	type	to	match	(string):	"objdata",	"attrib",
"aselink",	"EED",	or	"feature".

tablename Depends	on	the	datatype	argument.	See	the	Tablename	And
Fieldname	Arguments	table	below.

fieldname Depends	on	the	datatype	argument.	See	the	Tablename	And
Fieldname	Arguments	table	below.

operator Comparison	operator	(string):	"=",	">",	"<",	"<=",	">=",
or	"<>".	Note	that	the	only	valid	operator	in	a	string	context
is	"=".

value Value	to	match.

subclasses Optional.	T	or	nil.	The	default	if	the	argument	is	omitted	is
T.	This	setting	has	no	effect	unless	datatype	is	"feature".
T	means	return	objects	belonging	to	the	feature	class

identified	by	the	tablename	argument,	including	objects
belonging	to	any	subclass	of	that	feature.	nil	means	do	not
include	objects	belonging	to	such	a	subclass.

The	tablename	and	fieldname	arguments	depend	on	the	datatype	argument:

Tablename	and	Fieldname	Arguments

datatype tablename fieldname

objdata Table	name. Field	name.

attrib Block	name. Attribute	definition.

aselink Link	template. Column	name.

EED RegApp	name. EED	field	name.

feature Feature	Class	name. Property	name.

Data	Expression	Examples

The	following	examples	define	Data	conditions	of	various	types.

(ade_qrydefine	
				'(""	""	""	"Data"		
						("attrib"	"*.Type"	"="	"c*")""))	

(ade_qrydefine	
				'(""	""	""	"Data"		
						("objdata"	"mytable.fl1"	"="	"1")""))	

(ade_qrydefine	
				'(""	""	""	"Data"		
						("aselink"	"cpu_lpn.cpu"	"="	"MAC2LC")""))	

(ade_qrydefine	
				'(""	""	""	"Data"		
						("EED"	"REGAPP.STREET"	"="	"Willow")""))	

(ade_qrydefine	
				'(""	""	""	"Data"		
						("EED"	"REGAPP.#NUMBER"	"="	"512")""))	

(ade_qrydefine	
				'(""	""	""	"Data"		
						("EED"	"REGAPP.&SQLLINK;"	"="	"MAC2LC")""))	

Note	in	the	last	example	that	&SQLLINK	is	not	treated	as	a	link	template	key.
It	is	treated	just	like	any	other	ADE	1.0	EED	field.	For	example,	if	an	object	has
EED	such	as

(-3	(1000	.	"&EEDFIELD;"	=	"1234"))

then	the	Data	condition	to	retrieve	the	object	is	written	as	follows:

("EED"	"REGAPP.&EEDFIELD;"	"="	"1234")

If	the	EED	is	defined	by

(-3	(1000	.	"&EEDFIELD;"	=	"'First',	'Last'"))

then	the	Data	condition	to	retrieve	the	object	is	written	as	follows:

("EED"	"REGAPP.&EEDFIELD;"	"="	"'First',	'Last'")

In	other	words,	everthing	after	the	equal	sign	is	treated	as	one	string.	That	way
you	can	use	any	pattern	(for	wcmatch)	in	the	query.

ade_aliasadd
Drive	Alias	Functions 	 	

	
	

Creates	a	drive	alias.

(ade_aliasadd	alias_name	path_name)

Returns	T	or	nil.

alias_name Alias	name	(string).	Can	be	up	to	31	characters	long.	Must
be	unique,	contain	no	spaces,	and	start	with	an
alphanumeric	character.

path_name Drive	and	path	to	which	the	alias	refers	(string).

The	function	adds	a	new	drive	alias	to	the	drive	alias	list.	For	example:

(ade_aliasadd	"tutor"	"c:\\tutorials\\drawings")

ade_aliasdelete
Drive	Alias	Functions 	 	

	
	

Deletes	a	drive	alias.

(ade_aliasdelete	alias_name)

Returns	T	or	nil.

alias_name Alias	name	(string);	can	be	up	to	31	characters	long.	Must
be	unique,	contain	no	spaces,	and	start	with	an
alphanumeric	character.

ade_aliasgetlist
Drive	Alias	Functions 	 	

	
	

Lists	all	drive	aliases	in	the	project.

(ade_aliasgetlist)

Returns	the	list	of	drive	aliases	or	nil

The	list	of	drive	aliases	is	a	list	of	a-lists.	Each	a-list	displays	the	alias	name	and
the	drive	and	path	to	which	it	refers.

ade_aliasupdate
Drive	Alias	Functions 	 	

	
	

Changes	the	actual	path	of	a	drive	alias.

(ade_aliasupdate	alias_name	path_name)

Returns	T	or	nil.

alias_name Alias	name	(string)	can	be	up	to	31	characters	long.	Must
be	unique,	contain	no	spaces,	and	start	with	an
alphanumeric	character.

path_name New	actual	path	for	this	drive	alias	(string).

ade_altpclear
Property	Alteration	Functions 	 	

	
	

Clears	the	current	property	alteration	definition	.

(ade_altpclear)

Returns	T	or	nil.

A	property	alteration	definition	is	a	list	of	one	or	more	property	alteration
expressions.	See	ade_altpdefine	for	information	about	property	alteration
expressions.

ade_altpdelprop
Property	Alteration	Functions 	 	

	
	

Deletes	a	property	alteration	expression.

(ade_altpdelprop	altp_id)

Returns	T	or	nil.

altp_id Property	alteration	expression	ID	(real)

ade_altplist
Property	Alteration	Functions 	 	

	
	

Lists	the	IDs	of	the	current	property	alteration	expressions.

(ade_altplist)

Returns	a	list	of	property	alteration	IDs	or	nil.

This	list	of	property	alteration	expressions	returned	by	this	function	constitutes
the	current	property	alteration	definition.

ade_dsattach
Drawing	Set	Functions 	 	

	
	

Attaches	a	drawing	to	the	project	drawing.

(ade_dsattach	dwgname)

Returns	the	ID	of	the	attached	drawing	or	nil.

dwgname Path	alias	and	file	name	(string)

This	function	returns	an	ID	even	if	the	drawing	does	not	exist.	A	system
administrator	can	use	this	function	to	define	a	drawing	set	before	the	drawing
files	it	references	are	created	or	installed.	A	drawing	must	exist	before	you	can
make	it	active.

(ade_aliasadd	"dwg_drive"	"d:\\myproject\\mydir")	
(setq	dwg_id	
				(ade_dsattach	"dwg_drive:\\mydrawing.dwg")	
)
;	check	if	drawing	was	successfully	attached
(if	dwg_id	;	check	if	it	returned	an	ID
				(princ	"\nSuccessfully	attached.")	
				(princ	"\nDid	not	attach.")	
)

ade_dsdetach
Drawing	Set	Functions 	 	

	
	

Detaches	a	drawing	from	the	project.

(ade_dsdetach	dwg_id)

Returns	T	or	nil.

dwg_id Drawing	ID	to	detach	(real)

The	following	code	detaches	the	drawing	attached	in	the	ade_dsattach
example:

(if	(ade_dsdetach	dwg_id)
				;	check	if	it	returned	T	
				(princ	"\nSuccessfully	detached.")	
				(princ	"\nDid	not	detach.")	
)

ade_dsisnested
Drawing	Set	Functions 	 	

	
	

Checks	if	a	drawing	has	nested	drawings	.

(ade_dsisnested	[dwg_id])

Returns	T	if	the	drawing	has	drawings	attached,	or	nil.

dwg_id Drawing	ID	(real)

Verify	that	the	drawing	in	question	is	active	before	calling	ade_dsisnested.	It	is
not	possible	to	determine	if	an	inactive	drawing	has	nested	drawings.	If	dwg_id
is	not	specified	or	is	nil,	the	function	checks	the	project	drawing	to	see	if	it	has
drawings	attached.

;	Get	IDs	of	drawings	currently	attached
(setq	ds_ids	(ade_dslist))
	
;	See	if	the	first	one	has	nested	drawings
(princ	"\nFirst	drawing	has	"
(if	(ade_dsisnested	(car	ds_ids))	
				(princ	"drawings	attached.")		
				(princ	"no	drawings	attached.")	
)

ade_dslist
Drawing	Set	Functions 	 	

	
	

Lists	the	drawings	attached	to	a	given	drawing.

(ade_dslist	[dwg_id	[nested]])

Returns	a	list	of	drawing	IDs	or	nil.

dwg_id Drawing	ID	(real)	or	nil

nested Drawing	is	nested	or	not.	Values:	T	or	nil

If	the	dwg_id	argument	is	omitted	or	nil,	the	function	returns	drawing	IDs	for
the	drawings	attached	to	the	project.

If	you	supply	a	nested	argument	other	than	nil,	the	function	includes	drawings
that	are	directly	attached	and	all	nested	drawings	at	every	level	below	them.
Otherwise,	it	includes	only	drawings	that	are	directly	attached.

(setq	ds_ids	(ade_dslist))

ade_dsproplist
Drawing	Set	Functions 	 	

	
	

Lists	all	values	found	in	the	drawing	set	for	a	given	drawing	property.

(ade_dsproplist	property)

Returns	a	list	of	values	or	nil.

property Drawing	property	(string).	See	Drawing	Properties	below.

The	function	searches	all	active	source	drawings	and	returns	a	list	of	the	values	it
finds	for	the	given	drawing	property.

The	following	table	shows	property	names	and	return	values.

Drawing	Properties

object_type AutoCAD	object	types	(string)

blockname Block	names	(string)

linetype Line	type	names	(string)

textstyle Text	style	names	(string)

attrib Attribute	name	tags	(string)

extents Computed	extents:	the	lower-left	and	upper-right	points	in	the
set	of	active	source	drawings.	
For	example:	((2.20286	4.99866)	(20.4689	12.3563))

group Group	names	(string)

layer Layer	names	(string)

lpn Link	templates	(string).	Note	that	link	path	names	(LPNs)
have	been	replaced	by	link	templates	in	AutoCAD	Map.

objdata Names	of	object	data	tables.	Table	names	can	be	up	to	25
characters	long	(string).	Must	be	unique,	contain	no	spaces,
and	start	with	an	alphanumeric	character

mlinestyle Mline	style	(string)

feature Feature	name	(string)

lineweight Line	weight	(string)

plotstyle Plot	style	(string)

This	code	returns	a	list	of	layers	in	the	drawing	set.

(ade_dsproplist	"layer")

ade_dwgactivate
Drawing	Functions 	 	

	
	

Activates	a	drawing.

(ade_dwgactivate	dwg_id)

Returns	T,	if	the	drawing	is	already	active,	or	nil.

dwg_id Drawing	ID	(real)

You	can	attach	a	drawing	that	does	not	yet	exist,	but	you	cannot	activate	it.	See
ade_dsattach.

ade_dwgactualpath
Drawing	Functions 	 	

	
	

Returns	the	actual	path	for	a	drawing.

(ade_dwgactualpath	dwg_id)

Returns	the	full	path	(without	an	alias)	of	the	specified	drawing	or	nil.

dwg_id Drawing	ID	(real)

ade_dwgaliaspath
Drawing	Functions 	 	

	
	

Returns	the	alias	path	for	a	drawing.

(ade_dwgaliaspath	dwg_path)

Returns	the	alias	path	of	the	specified	drawing	or	nil.

dwg_path Actual	path	of	the	drawing	(string)

ade_dwgattriblist
Drawing	Functions 	 	

	
	

Returns	a	list	of	attribute	tags	for	the	specified	block	name	.

(ade_dwgattriblist	dwg_id	block_name)

Returns	a	list	of	attribute	tags	or	nil.

dwg_id Drawing	ID	(real)

block_name Block	name	for	which	to	get	attribute	tags	(real)

This	function	returns	a	list	of	the	attribute	tags,	given	a	block	name	from	the
specified	drawing.

ade_dwgdeactivate
Drawing	Functions 	 	

	
	

Deactivates	a	drawing.

(ade_dwgdeactivate	dwg_id)

Returns	T	or	nil.

dwg_id Drawing	ID	(real)

This	code	deactivates	all	the	drawings	in	the	drawing	set:

(foreach	dwg_id	(ade_dslist)	(ade_dwgdeactivate	dwg_id))

This	code	uses	the	mapcar	function	to	deactivate	the	drawings	in	the	drawing
set.

(mapcar	'ade_dwgdeactivate	(ade_dslist))

ade_dwggetid
Drawing	Functions 	 	

	
	

Gets	the	drawing	ID	of	a	drawing.

(ade_dwggetid	dwg_pathname)

Returns	a	drawing	ID	(real)	or	nil.

dwg_pathname Path	alias	and	drawing	file	name	(string)

Code	example:

(ade_aliasadd	"mydwgs"	"d:\\myproject\\mydrawing")	
(setq	dwg_id	
				(ade_dwggetid	"mydwgs:\\mydrawing.dwg"))	

ade_dwggetsetting
Drawing	Functions 	 	

	
	

Gets	a	drawing	setting	value.

(ade_dwggetsetting	dwg_id	setting)

Returns	the	value	of	the	given	drawing	setting	or	nil.

dwg_id Drawing	ID	(real)

setting Drawing	setting	name	(string).	
See	Drawing	Setting	Names	below

Drawing	Setting	Names

Setting	Name Return	Value

dwgname Drawing	name	(string);	a	path	alias	and	file	name,	such	as
"myfiles:\\mydwg.dwg”

dwgdesc Drawing	description	(string)

t_scale Simple	transform	scale	(real.	
For	example,	1.2	=	120%

t_rotate Simple	transform	rotation	direction.	Value	depends	on	the
AutoCAD	ANGDIR	setting	(real).	Values:
0	=	counterclockwise
1	=	clockwise

t_xoffset Simple	transform	X	offset	(real)

t_yoffset Simple	transform	Y	offset	(real)

t_apply Flag	value	(integer).	Values:	
1	=	apply	all	simple	transformations	defined	for	the	given
drawing
0	=	do	not	apply	transformations

saveback Save	back	coordinates,	a	sequence	of	corner	points,	in	this
order:	lower	left,	lower	right,	upper	right,	upper	left,
separated	by	"."

The	following	code	gets	the	name	of	the	first	drawing	in	the	list	of	attached
drawings:

(setq	dwg_id	(car	(ade_dslist)))
(ade_dwggetsetting	dwg_id	"dwgname")

The	return	value	is	a	drawing	path	name,	for	example,

"c:\\drawings\\mydwg.dwg"

ade_dwghaslocks
Drawing	Functions 	 	

	
	

Checks	if	a	drawing	has	locked	objects.

(ade_dwghaslocks	dwg_id)

Returns	T	if	the	drawing	has	locked	objects,	or	nil.

dwg_id Drawing	ID	(real)

ade_dwgindex
Drawing	Functions 	 	

	
	

Creates	or	removes	indexes	for	a	given	set	of	drawings.

(ade_dwgindex	dwgIds)

Returns	T	or	nil.

dwgID List	of	drawing	IDs	for	which	indexes	will	be	created.

Calls	to	ade_dwgindexdef	add	index	operations	to	the	index	operation	list.
Calling	ade_dwgindex	executes	the	index	operations	in	the	list.	If	the	index
operation	list	is	empty,	ade_dwgindex	has	no	effect	and	returns	nil.

The	following	example	creates	location	and	property	indexes	for	each	attached
drawing:

;	clear	the	index	operations	list
(ade_dwgindexdef		nil)

;	add	a	'create	location	index'	operation	to	the	list
(ade_dwgindexdef		"location"		1)

;	add	a	'create	property	index'	operation	to	the	list
(ade_dwgindexdef		"property"		1)

;	execute	the	given	index	operations	for	each	attached	drawing
(mapcar		'ade_dwgindex		(ade_dslist))

ade_dwgindexdef
Drawing	Functions 	 	

	
	

Adds	operations	to	the	index	operations	list.

(ade_dwgindexdef	indextype	[indexoper]	[indexparams])

Returns	T	or	nil.

indextype Type	of	index	(string):	"location",	"property",	"eed",
"sqllinks",	"objdata",	or	nil,	where	nil	means	remove
all.

indexoper Operation	(integer):	1	=	create,	0	=	remove.	Omit	this
argument	if	indextype	is	nil.

indexparams List	of	object-data	tables	and	fields	to	include	in	the	index
if	indextype	is	"objdata",	or	nil	to	include	all.	Add	this
argument	only	if	indextype	is	"objdata".

Calls	to	ade_dwgindexdef	add	operations	to	the	index	operations	list.	Calling
ade_dwgindex	executes	the	index	operations	in	the	list.	If	the	index	operation
list	is	empty,	ade_dwgindex	has	no	effect	and	returns	nil.

Examples

(ade_dwgindexdef	nil)	Remove	all	indexes.

(ade_dwgindexdef	"location"	1)	Create	a	location	index.

(ade_dwgindexdef	"location"	0)	Remove	the	location	index.

(ade_dwgindexdef	"property"	1)	Create	a	property	index.

(ade_dwgindexdef	"property"	0)	Remove	the	property	index.

Object	Data	Examples

(ade_dwgindexdef	"objdata"	1	nil)	Create	an	object	data	index	that	includes
all	object	data.

(ade_dwgindexdef	"objdata"	0	nil)	Remove	all	object	data	from	the	object
data	index.

(ade_dwgindexdef	"objdata"	1	'(("TABLE")))	Create	an	object	data	index
that	includes	all	fields	in	TABLE.

(ade_dwgindexdef	"objdata"	0	'(("TABLE")))	Remove	all	fields	in
TABLE	from	the	object	data	index.

More	Object	Data	Examples

(ade_dwgindexdef	"objdata"	1	'(("TABLE"	"FIELD1")))

(ade_dwgindexdef	"objdata"	0	'(("TABLE"	"FIELD1")))

(ade_dwgindexdef	"objdata"	1	'(("TABLE"	"FIELD1"	"FIELD2")))

(ade_dwgindexdef	"objdata"	0	'(("TABLE"	"FIELD1"	"FIELD2")))

(ade_dwgindexdef	"objdata"	1	'(("TABLE1")("TABLE2"	"FIELD1"))
)

(ade_dwgindexdef	"objdata"	0	'(("TABLE1")("TABLE2"	"FIELD1"))
)

ade_dwgisactive
Drawing	Functions 	 	

	
	

Checks	if	a	drawing	is	active.

(ade_dwgisactive	dwg_id)

Returns	T	or	nil.

dwg_id Drawing	ID	(real)

The	function	returns	T	if	the	specified	drawing	is	active.	If	the	drawing	is	not
active	or	the	drawing	ID	is	invalid,	the	function	returns	nil.

ade_dwgistoplevel
Drawing	Functions 	 	

	
	

Checks	if	a	drawing	is	directly	attached	to	the	project	drawing.

(ade_dwgistoplevel	dwg_id)

Returns	T	if	the	drawing	is	attached	directly	to	the	project	drawing,	or	nil.

dwg_id Drawing	ID	(real)

ade_dwgproplist
Drawing	Functions 	 	

	
	

Lists	all	values	found	in	a	drawing	for	a	given	drawing	property.

(ade_dwgproplist	dwg_id	property)

Returns	a	list	of	the	values	for	the	drawing	property,	or	nil.

dwg_id Drawing	ID	(real)

property Property	name	(string).	See	Property	Names	below

The	function	searches	the	given	drawing	and	returns	a	list	of	the	values	it	finds
for	the	given	drawing	property.

Property	Names

Name Return	Value

object_type AutoCAD	object	types	(string)

blockname Block	names	(string)

linetype Line	type	names	(string)

textstyle Text	style	names	(string)

attrib Attribute	tag	names	(string)

extents Computed	extents.	The	most	lower-left	point	and	the	most

upper-right	point	in	the	drawing
For	example:	((2.20286	4.99866)	(20.4689	12.3563))

group Group	names	(string)

layer Layer	names	(string)

lpn Link	templates	(string).	Note	that	link	path	names	(LPNs)
have	been	replaced	by	link	templates	in	AutoCAD	Map

objdata Names	of	object	data	tables	(string)

mlinestyle Mline	style	(string)

feature Feature	name	(string)

lineweight Line	weight	(string)

plotstyle Plot	style	(string)

The	following	code	identifies	the	last	drawing	attached	to	the	project	drawing
and	returns	a	list	of	its	layers.

(setq	dwg_id	(last	(ade_dslist)))	
(ade_dwgproplist	dwg_id	"layer")

The	returned	list	has	the	form

("water"	"sewer"	"electric")

ade_dwgquickview
Drawing	Functions 	 	

	
	

Displays	a	quick	view	of	a	drawing.

(ade_dwgquickview	dwg_id)

Returns	T	or	nil.

dwg_id Drawing	ID	(real)

The	following	code	displays	quick	views	of	all	drawings	in	the	project.

(foreach	dwg_id	(ade_dslist)
				(if	(not	(ade_dwgquickview	dwg_id))	
									(princ	(strcat	"\nProblem	viewing	drawing:	"	
													(ade_dwggetsetting	dwg_id	"dwgname"))		
)	
)	
)

ade_dwgselectdlg
Drawing	Functions 	 	

	
	

Displays	the	Select	Drawings	dialog	box.

(ade_dwgselectdlg	[parent	[caption]])

Returns	a	list	of	selected	drawings,	each	represented	by	its	alias	path	(string),	or
nil	if	no	drawings	are	selected.

parent Integer	value	defining	the	pointer	to	the	Select	Drawings	dialog
box	parent	window,	which	is	expected	to	be	represented	by	a
CWnd	object.	0	means	that	the	parent	window	is	not	defined.

caption A	string	that	is	shown	before	the	current	directory	in	the	caption
of	the	Select	Drawings	dialog	box.

ade_dwgsetof
Drawing	Functions 	 	

	
	

Identifies	the	drawings	to	which	a	given	drawing	is	attached.

(ade_dwgsetof	dwg_id)

Returns	a	list	of	drawing	IDs	(real)	or	nil.

dwg_id Drawing	ID	(real)

You	cannot	use	this	function	to	check	if	a	drawing	is	attached	to	the	project
drawing.	Use	ade_dwgistoplevel	instead.	If	a	drawing	is	attached	to	both	the
project	drawing	and	to	other	drawings,	this	function	returns	a	list	of	the	IDs	of
the	other	drawings	only.

ade_dwgsetsetting
Drawing	Functions 	 	

	
	

Sets	a	drawing	setting	value.

(ade_dwgsetsetting	dwg_id	proplist)

Returns	T	if	successful	and	the	drawing	is	active,	or	nil.

dwg_id Drawing	ID	(real).

proplist List	composed	of	a	setting	name	and	a	value	(string).	
See	Setting	Names	below.

Setting	Names

Setting	name Value

dwgname Drawing	name	(string);	a	full	path	name,	such	as
c:\\drawings\\mydwg.dwg.

dwgdesc Drawing	description	(string)

t_scale Simple	transform	scale	(real).	
For	example,	1.2	=	120%

t_rotate Simple	transform	rotation	(real);	rotation	direction	depends
on	the	AutoCAD	ANGDIR	setting

t_xoffset Simple	transform	X	offset	(real)

t_yoffset Simple	transform	Y	offset	(real)

t_apply Flag	value	(integer).	Values:	
1	=	apply	all	simple	transformations	defined	for	the	given
drawing
0	=	do	not	apply	transformations

saveback Save	back	coordinates,	a	sequence	of	corner	points,	in	this
order:	lower	left,	lower	right,	upper	right,	upper	left,
separated	by	"."

The	following	code	sample	uses	the	"saveback"	value	of	the	proplist
parameter—a	sequence	of	corner	points:	lower	left,	lower	right,	upper	right,
upper	left.

(setq	dwg_id	(car	(ade_dslist)))
(ade_dwgsetsetting	dwg_id	
				'(("dwgdesc"	.	"Sample	Drawing	Description")))	
(ade_dwgsetsetting	dwg_id	
				'(("saveback"	.	((2.20286	4.99866)		
																														(20.4689	4.99866)		
																														(20.4689	12.3563)		
																														(2.20286	12.3563)))))	

ade_dwgunlock
Drawing	Functions 	 	

	
	

Removes	all	object	locks	from	a	drawing.

(ade_dwgunlock	dwg_id)

Returns	T	or	nil.

dwg_id Drawing	ID	(real)

Using	this	function	requires	superuser	privileges.

ade_dwgzoomextents
Drawing	Functions 	 	

	
	

Zooms	to	the	extents	of	the	active	drawings	.

(ade_dwgzoomextents)

Returns	T	or	nil.

ade_editdefcen
Object	Editing	Functions 	 	

	
	

Defines	a	new	label	point	for	an	object.

(ade_editdefcen	ename	pt)

Returns	T	or	nil.

ename AutoCAD	entity	name.

pt Label	point,	a	list	of	real	values	defined	in	
2D	or	3D	point	(point)

Use	this	function	with	property	alteration	if	the	current	label	point	is	not	suitable
for	the	text	object	you	are	adding.

The	following	example	sets	the	label	point	of	the	last	object	to	(5,	5).

(setq	pt1	'(5	5))
(setq	ent1	(entlast))
(ade_editdefcen	ent1	pt)
(ade_expreval	(entlast)	".labelpt"	"point")

ade_editlockederased
Object	Editing	Functions 	 	

	
	

Gets	the	objects	in	the	save	set	that	have	been	erased.

(ade_editlockederased)

Returns	a	selection	set	or	nil.

These	are	objects	that	were	erased	in	the	project	drawing	and	are	now	queued	for
save	back	to	source	drawings.

(setq	ss_erased	(ade_editlockederased))

ade_editislocked
Object	Editing	Functions 	 	

	
	

Gets	lock	information	about	an	object	if	it	is	locked.

(ade_editislocked	ename)

Returns	a	list	of	lock	information	about	the	specified	object	if	locked,	or	if	not
locked,	then	nil.

ename AutoCAD	entity	name.

The	list	of	lock	information	returned	by	this	function	contains	the	following
strings,	in	order:

Login	name	of	the	user	who	locked	the	object.
Name	and	path	of	the	drawing	that	contains	the	object.
Date	the	object	was	locked.
Time	the	object	was	locked.
Name	and	path	of	the	project	drawing.

For	example:

("login"	
			"c:\\path\\drawing.dwg"		
			"7/1/2000"		
			"9:58:36	AM"		
			"c:\\path\\project.dwg")	

You	can	change	the	format	of	the	date	and	time	strings	through	options	in	the
International	dialog	box	in	the	Microsoft	Windows	Control	Panel.

ade_editlocked
Object	Editing	Functions 	 	

	
	

Gets	the	objects	in	the	save	set	that	have	been	modified	or	are	new.

(ade_editlocked)

Returns	a	selection	set	or	nil.

These	are	objects	that	were	modified	in	the	project	drawing	or	added	to	it	and
are	now	queued	for	save	back	to	source	drawings.

(setq	ss_modified	(ade_editlocked))

ade_editlockobjs
Object	Editing	Functions 	 	

	
	

Locks	a	set	of	objects	and	adds	them	to	the	save	set.

(ade_editlockobjs	sel_set)

Returns	the	number	of	objects	locked	(real)	or	nil.

sel_set Selection	set	name.

The	function	locks	the	objects	contained	in	the	designated	selection	set.	Locking
these	objects	adds	them	to	the	save	set.

It	is	a	good	idea	to	compare	the	number	of	objects	locked	with	the	number	of
objects	in	the	designated	selection	set.	If	the	number	locked	is	less	than	the
number	in	the	selection	set,	an	error	occurred	in	the	locking	process,	and	you
should	check	the	error	stack.

The	following	example	creates	a	selection	set,	adds	its	object	to	the	save	set,	and
checks	the	result.

(entmake	'(
					(0	.	"circle")	
					(62	.	1)	
					(10	12.0	2.0	0.0)	
					(40	.	1.0)))	
;	Get	the	new	entity.
(setq	e	(entlast))
;	Create	a	selection	set	containing	e.

(setq	ss	(ssadd	e))
;	Check	how	many	objects	in	ss.
(setq	num_tolock	(sslength	ss))
;	Lock	the	objects	in	ss	and	get	the	number	locked.
(setq	num_locked	(fix	(ade_editlockobjs	ss)))
										;	Fix	truncates	the	real	return	value	of		
										;	ade_editlockobjs.	
(if	(equal	num_tolock	num_locked)
				(progn	
									(princ	"\nObjects	locked	"	
									(princ	"and	added	to	save	set:	")	
									(princ	num_locked))	
				(princ	"\nUh-oh")	
)

ade_editnew
Object	Editing	Functions 	 	

	
	

Gets	the	objects	in	the	saved	set	that	are	new.

(ade_editnew)

Returns	a	selection	set	or	nil.

These	are	objects	that	were	added	to	the	project	drawing	and	are	now	queued	for
save	back	to	source	drawings.

(setq	ss_modified	(ade_editnew))

ade_editunlockobjs
Object	Editing	Functions 	 	

	
	

Unlocks	a	set	of	objects	and	removes	them	from	the	save	set.

(ade_editunlockobjs	sel_set)

Returns	the	number	of	objects	unlocked	(real),	or	nil.

sel_set Selection	set	name.

The	function	unlocks	the	objects	in	the	specified	selection	set.	If	the	selection	set
is	nil,	the	function	unlocks	all	erased	objects.	Unlocking	objects	removes	them
from	the	save	set.

ade_entsetlocation
Other	Functions 	 	

	
	

Sets	a	new	entity	label	point

(ade_entsetlocation	ename	pt)

Returns	T	or	nil

ename AutoCAD	entity	name.

pt New	label	point	location,	a	2D	or	3D	point	(point)

This	function	sets	a	new	label	point	for	an	object.	An	object's	label	point	is	the
starting	position	for	text	added	during	a	query	property	alteration.	By	default,	the
centroid	of	the	object	is	the	label	point.

This	function	sets	the	label	point	as	defined	by	the	point	argument.

ade_errclear
Error	Message	Functions 	 	

	
	

Clears	the	error	stack.

(ade_errclear)

Returns	T	or	nil.

ade_errcode
Error	Message	Functions 	 	

	
	

Gets	the	error	code	for	a	given	error	in	the	stack	.

(ade_errcode	err_index)

Returns	an	error	code	(integer)	or	nil.

err_index Position	of	the	error	in	the	stack	(integer),	where	
0	=	first	error

ade_errgetlevel
Error	Message	Functions 	 	

	
	

Gets	the	system	error	level.

(ade_errgetlevel)

Returns	an	error	level	(integer)	or	nil.

The	system	error	level	determines	which	error	types	are	pushed	to	the	stack.

Error	Levels

0 All	errors	are	pushed.

1 All	errors	except	warnings	and	diagnostics	are	pushed	(their	types	are
listed	below).

2 No	errors	are	pushed.

The	following	error	types	are	suppressed	if	the	error	level	is	1.

Suppressed	Error	Types

01 kAdeWarning ADE	(AutoCAD	Data	Extension)	execution	warning.

03 kAseWarning ASE	(AutoCAD	SQL	Extension)	execution	warning.

05 kAcWarning AutoCAD	execution	warning.

07 kAsiWarning ASI	(AutoCAD	SQL	Interface)	execution	warning.

09 kIRDWarning Extended	object	data	(Xdata)	warning.

16 kDiagMessage Diagnostic	message	returned.

Errors	that	are	not	pushed	to	the	error	stack	are	not	displayed	in	the	error	dialog
in	the	user	interface,	and	they	are	not	accessible	by	any	error	message	function.

The	error	level	managed	by	ade_errgetlevel	and	ade_errsetlevel	has	nothing
to	do	with	the	error	level	managed	by	ade_prefgetval	and	ade_prefsetval
(the	work	session	preference,	LogMessageLevel).	The	latter	affects	which
types	of	message	are	written	to	the	log	file.

The	error	level	is	not	saved	when	a	session	ends.	When	a	session	begins,	the
error	level	is	always	0.

ade_errmsg
Error	Message	Functions 	 	

	
	

Gets	the	error	message	for	a	given	error	in	the	stack	.

(ade_errmsg	err_index)

Returns	an	error	message	(string)	or	nil.

err_index Position	of	the	error	in	the	stack	(integer),	where	
0	=	first	error.

ade_errpush
Error	Message	Functions 	 	

	
	

Pushes	an	error	to	the	stack	.

(ade_errpush	[err_code]	[level]	message)

Returns	T	or	nil.

err_code Error	code	(details	below).

level Error	level	(string).	Values:	"warning",	"error"	(default),	or
the	empty	string.	If	the	empty	string,	the	error	level	is	"error".

message Error	message	(string).

If	your	application	will	use	custom	error	codes,	define	a	range	for	them	that	does
not	conflict	with	any	range	used	for	AutoCAD	Map	error	codes.	To	specify	a
general	error,	let	the	err_code	argument	be	1	(kAdeErr).

The	valid	level	values,	"warning",	and	"error",	correspond	respectively	to	the
following	error	types:

1 kAdeWarning

2 kAdeError

For	a	list	of	all	error	types,	including	the	two	that	are	valid	level	values,	see
Error	Types.

The	following	example	pushes	an	error	to	the	stack.

(ade_errpush	1	"error"	"message	text")

ade_errpushstatement
Error	Message	Functions 	 	

	
	

Pushes	a	faulty	SQL	statement	to	the	error	stack.

(ade_errpushstatement	statement	position)

Returns	T	or	nil.

statement Faulty	statement	that	caused	the	error	(string)

position Starting	position	of	the	error	in	the	faulty	statement	(integer).
Position	1	corresponds	to	the	first	character.

This	function	is	designed	to	add	diagnostic	information	to	an	error	you	have	just
pushed.	It	is	associated	with	the	latest	error	in	the	stack	only.	A	call	to
ade_errpushstatement	makes	sense	only	if	a	call	to	ade_errpush
immediately	precedes	it.

ade_errqty
Error	Message	Functions 	 	

	
	

Returns	the	number	of	errors	in	the	stack.

(ade_errqty)

Returns	an	error	count	(integer)	or	nil.

ade_errsetlevel
Error	Message	Functions 	 	

	
	

Sets	the	system	error	level.

(ade_errsetlevel	level)

Returns	T	or	nil.

level Error	level	(integer):	0,	1,	or	2

See	ade_errgetlevel	for	details.

ade_errshowdlg
Error	Message	Functions 	 	

	
	

Displays	the	Map	Messages	dialog	box.

(ade_errshowdlg)

Returns	T	or	nil.

If	there	are	no	errors	or	messages	in	the	error	stack,	the	dialog	box	does	not
display,	and	the	function	returns	nil.

ade_errstatement
Error	Message	Functions 	 	

	
	

Gets	the	faulty	SQL	statement	for	a	given	error	in	the	stack	.

(ade_errstatement	err_index)

Returns	the	faulty	SQL	statement	with	error	position	or	nil.

err_index Position	of	the	error	in	the	stack	(integer)
0	=	first	error

The	SQL	statement	and	error	position	are	returned	in	the	following	format.

(faulty_statement	err_pos)

The	faulty_statement	string	quotes	the	faulty	SQL	statement	that	caused	the
error.	The	err_pos	value	identifies	the	starting	position	of	the	error	in	the	faulty
statement.	Position	1	is	the	first	character	of	the	statement.

The	expression	(ade_errstatement	2),	which	references	the	third	error	in	the
stack,	could	return

("xxx"	6)

where	"xxx"	is	the	faulty	statement	and	6	tells	you	that	the	trouble	begins	at	the
sixth	character.

ade_errtype
Error	Message	Functions 	 	

	
	

Gets	the	type	of	a	given	error	in	the	stack.

(ade_errtype	err_index)

Returns	an	error	type	(integer)	or	nil.

err_index Position	of	the	error	in	the	stack	(integer),	where	0	=	first
error.

ade_expreval
	 	 	

	
	

Evaluates	an	expression.

(ade_expreval	[ename]	expr	type)

Returns	the	value	of	the	expression	or	nil.

ename Optional	drawing	object	name.	Required	if	the	expression	uses
object	properties	or	data.

expr Expression	to	evaluate	(string)

type Expected	return	type	(string):	"short",	"long",	"real",
"string",	or	"point".

If	the	expression	uses	object	properties	or	data,	you	must	specify	the	name	of	a
drawing	object.	For	example,	if	the	the	expr	argument	is	"(+	5	6)",	no	ename
argument	is	required,	but	to	evaluate	"(+	".COLOR"	6)"	you	need	an	object	to
supply	the	color.

The	following	example	gets	the	area	of	a	selected	object:

(setq	myobject	(car	(entsel	"Select	an	object:")))
(setq	value	(ade_expreval	myobject	".area"	"real"))

Depending	on	what	you	specify	for	the	type	argument	in	the	preceding	example,
the	result	can	be	an	integer	or	a	string,	as	the	following	two	examples

demonstrate.	Suppose	the	area	of	myobject	is	2.7.	The	first	expression	returns
this	area	as	2;	the	second	returns	it	as	"2.7".

(ade_expreval	myobject	".area"	"short")

(ade_expreval	myobject	".area"	"string")

Note		If	the	expr	argument	is	an	integer	calculation	and	you	supply	"string"	for
the	type	argument,	the	resulting	string	does	not	contain	an	integer,	but	a	real.
For	example,	the	following	expression	returns	"2.0",	not	"2".

(ade_expreval	"(+	1	1)"	"string")

If	you	want	the	string	to	contain	an	integer,	include	the	fix	function	in	the	expr
argument.

(ade_expreval	"(fix	(+	1	1))"	"string")

The	ade_expreval	function	can	return	an	integer	string	so	long	as	the	return
value	is	not	the	result	of	an	integer	calculation.	For	example,	the	following	code
returns	an	integer	string	without	using	fix.

(setq	obj	(car	(entsel	"Select	an	object:")))
(setq	objcolor	(ade_expreval	obj	".color"	"string")))

To	get	the	centroid	and	the	layer	name	of	the	same	object,	add	these	lines:

(setq	objcentr	(ade_expreval	obj	".centroid"	"point"))
(setq	objlayer	(ade_expreval	obj	".layer"	"string"))

ade_keycolumnlist
SQL	Environment	Functions 	 	

	
	

Returns	a	list	of	the	key	column	names	for	the	specified	link	template.

(ade_keycolumnlist	linktemplate)

Returns	a	list	of	key	column	names	or	nil.

linktemplate Link	template	(string)

For	more	information	about	link	templates	and	using	SQL,	see	the	AutoCAD
online	documentation.

ade_odaddfield
Object	Data	Functions 	 	

	
	

Adds	fields	to	a	table.

(ade_odaddfield	tabname	fieldlist)

Returns	T	or	nil.

tabname Table	name	(string)	can	be	up	to	25	characters	long.	Must	be
unique,	contain	no	spaces,	and	start	with	an	alphanumeric
character

fieldlist List	of	fields	to	add.	A	sequence	of	field	definitions.

A	sequence	of	field	definitions	is	introduced	by	the	string	"columns".	Each
field	definition	is	a	list	of	a-lists,	and	each	a-list	consists	of	a	field	property	and	a
value,	as	follows:

Field	property Value

colname Field	name	(string)	can	be	up	to	31	characters	long.	Must
be	unique,	contain	no	spaces,	and	start	with	an
alphanumeric	character.

coldesc Field	description	(string)

coltype Field	data	type

defaultval Default	field	value

The	function	adds	fields	to	the	table	and	to	each	of	its	records.	In	each	record,
the	new	fields	are	assigned	default	values	in	accord	with	their	field	definitions.
The	function	has	no	effect	on	existing	fields.	In	other	words,	the	function	adds
fields	to	each	set	of	object	data	defined	by	the	table	and	attached	to	an	object.

For	an	example,	see	Adding	Fields	to	a	Table.

ade_odaddrecord
Object	Data	Functions 	 	

	
	

Attaches	data	to	an	object.

(ade_odaddrecord	ename	table)

Returns	T	or	nil.

ename AutoCAD	object	name.

table Table	name	(string)	can	be	up	to	25	characters	long.	Must	be
unique,	contain	no	spaces,	and	start	with	an	alphanumeric
character

Attaching	data	to	an	object	is	also	called	attaching	a	table	to	an	object.	This
function	attaches	a	new	record	in	a	specific	table	to	a	specific	object.	Typically,	a
record	contains	information	about	whatever	it	is	that	the	object	represents.	For
example,	if	a	line	in	a	drawing	represents	a	section	of	pipe	in	a	water	system,	an
attached	record	could	contain	information	about	that	section.

When	a	new	record	is	attached,	its	fields	contain	default	values	that	correspond
to	their	field	definitions.	To	get	a	field	value,	use	ade_odgetfield;	to	change	it,
use	ade_odsetfield.	Field	definitions	are	included	in	the	table	definition.	See
ade_oddefinetab	for	information	about	table	definitions.

You	can	attach	more	than	one	record	to	the	same	object	with	additional	calls	to
ade_odaddrecord.	The	additional	records	can	be	members	of	the	same	or
different	tables.	If	an	object	has	only	one	record	from	a	given	table,	the	number
of	that	record	is	0.	If	you	attach	a	second	record	from	the	same	table,	the	number

of	that	record	is	1,	and	so	on.	Use	ade_odrecordqty	to	find	how	many	records
of	a	given	table	are	attached.

For	example,	if	a	section	of	water	pipe	is	inspected	at	intervals,	you	could	attach
a	number	of	records	of	the	WATER	INSPECTION	table	to	the	same	line	in	the
WATER	drawing,	and	each	record	could	contain	the	result	of	a	different
inspection.

ade_odattachrecord
Object	Data	Functions 	 	

	
	

Attaches	a	new	record	to	an	object.

(ade_odattachrecord	ename	rec_id)

Returns	T	or	nil.

ename AutoCAD	object	name.

rec_id Record	ID	returned	by	ade_odnewrecord			

ade_oddefinetab
Object	Data	Functions 	 	

	
	

Creates	an	object	data	table.

(ade_oddefinetab	tab_defn)

Returns	T	or	nil.

tab_defn List	of	table	elements:	the	table	name,	the	table	description,
and	a	sequence	field	definitions.

The	table	name	is	specified	by	an	a-list:

("tablename"	.	"NEWTABLE")

The	name	must	be	unique,	contain	no	spaces,	and	start	with	a	character.	The
name	can	be	up	to	25	characters	long.

The	table	description	is	specified	the	same	way,	except	that	spaces	are	allowed:

("tabledesc"	.	"New	Sample	Table")

The	field	definitions	are	introduced	by	the	string,	"columns".	At	least	one	field
definition	is	required.	Each	field	definition	is	a	list	of	a-lists,	and	each	a-list
consists	of	a	field	property	and	a	value,	as	follows:

Field	property Field	name

colname Field	name	(string)	can	be	up	to	31	characters	long.	Must
be	unique,	contain	no	spaces,	and	start	with	an
alphanumeric	character

coldesc Field	description	(string)

coltype Field	data	type

defaultval Default	field	value

The	following	code	creates	a	table.

;	Define	new	table
(setq	tabldefn	
				'(("tablename"	.	"NEWTABLE")		
							("tabledesc"	.	"New	Sample	Table")	
							("columns"	
												;	Define	a	field	
												(("colname"	.	"FIELD1")	
													("coldesc"	.	"Field1	Description")		
													("coltype"	.	"character")	
													("defaultval"	.	"Default	Value"))	
												;	Define	more	fields	as	needed	
													.	
													.	
													.	
												;	For	an	example	of	defining	fields,	click	 .
)))
;	Create	the	new	table
(ade_oddefinetab	tabldefn)

Here	is	another	example	of	creating	a	table.

(setq	pt1	"2,2")
(ade_oddefinetab
			(list	
							'("tablename"	.	"valve_id")	
							'("tabledesc"	.	"Valve	Storage")	
							(list	"columns"	
							(list	
												'("colname"	.	"LOCATION")	
												'("coldesc"	.	"Valve_id")	
												'("coltype"	.	"point")	
												(cons	"defaultval"		pt1))))	

ade_oddeletefield
Object	Data	Functions 	 	

	
	

Deletes	fields	from	a	table.

(ade_oddeletefield	tabname	fieldlist)

Returns	T	or	nil.

tabname Table	name	(string)	can	be	up	to	25	characters	long.	Must	be
unique,	contain	no	spaces,	and	start	with	an	alphanumeric
character

fieldlist List	of	field	names	(string)

The	function	deletes	the	fields	from	the	table	and	from	each	of	its	records.	The
data	contained	in	these	fields	is	also	deleted.	In	other	words,	it	deletes	the	fields
and	their	data	from	each	set	of	object	data	defined	by	the	table	and	attached	to	an
object.

Note		The	fieldlist	argument	for	ade_oddeletefield	is	a	list	of	field	names
only.	In	the	companion	functions,	ade_odaddfield	and	ade_odmodifyfield,
it	is	a	list	of	field	definitions.

The	ade_oddeletefield	function	affects	all	active	drawings	in	the	drawing	set.
There	should	not	be	any	queried	objects	for	this	operation.

Note		This	function	will	not	operate	unless	your	end	user	has	superuser
privileges.

The	following	code	deletes	three	fields	from	a	table.

(ade_oddeletefield	"table1"	
				'("field1"	"field2"	"field3"))	

ade_oddeletetab
Object	Data	Functions 	 	

	
	

Deletes	a	table.

(ade_oddeletetab	tabname)

Returns	T	or	nil.

tabname Table	name	(string)	can	be	up	to	25	characters	long.	Must	be
unique,	contain	no	spaces,	and	start	with	an	alphanumeric
character

The	function	deletes	a	table	and	all	of	its	records.	It	deletes	every	set	of	object
data	defined	by	the	table	and	attached	to	an	object,	as	well	as	the	data	contained
in	the	records.

The	ade_oddeletetab	function	affects	all	active	drawings	in	the	drawing	set.
There	should	not	be	any	queried	objects	for	this	operation.

Note		This	function	will	not	operate	unless	your	end	user	has	superuser
privileges.

ade_oddelrecord
Object	Data	Functions 	 	

	
	

Deletes	a	record.

(ade_oddelrecord	ename	table	recnum)

Returns	T	or	nil.

ename AutoCAD	entity	name	of	the	object	to	which	the	record	is
attached.

table Name	of	the	table	to	which	the	record	belongs,	up	to	25
characters	long	(string).	Must	be	unique,	contain	no	spaces,	and
start	with	a	character

recnum Record	number	(integer).	The	number	of	the	first	record	is	0

The	function	deletes	the	record	from	the	object.	It	deletes	the	set	of	object	data
defined	by	the	table	and	attached	to	the	object.	This	deletes	the	record	from	the
table	as	well	as	the	data	contained	in	the	record.

The	record	number	is	necessary	because	more	than	one	record	from	the	same
table	can	be	attached	to	an	object.	Use	ade_odrecordqty	to	find	how	many
records	of	a	given	table	are	attached.

ade_odfreerec
Object	Data	Functions 	 	

	
	

Frees	the	memory	claimed	in	defining	a	new	record.

(ade_odfreerec	rec_id)

Returns	T	or	nil.

rec_id Record	ID	returned	by	ade_odnewrecord			

Warning	You	must	release	a	new	record	when	you	are	finished	with	it.

ade_odgetfield
Object	Data	Functions 	 	

	
	

Gets	a	field	value.

(ade_odgetfield	ename	table	field	recnum)

Returns	a	field	value	(data	type	varies)	or	nil.

ename AutoCAD	object	name.

table Table	name	(string)	can	be	up	to	25	characters	long.	Must	be
unique,	contain	no	spaces,	and	start	with	an	alphanumeric
character

field Field	name	(string)	can	be	up	to	31	characters	long.	Must	be
unique,	contain	no	spaces,	and	start	with	an	alphanumeric
character

recnum Record	number	(integer).	The	number	of	the	first	record	is	0

To	identify	a	unique	record,	you	need	to	specify	the	table	to	which	it	belongs,	the
object	to	which	it	is	attached,	and	its	record	number.	The	record	number	is
necessary	because	more	than	one	record	from	the	same	table	can	be	attached	to
an	object.	For	more	information	about	records	and	record	numbers,	see
ade_odaddrecord.

The	field	value	returned	can	be	one	of	four	data	types:	integer,	character,
point,	or	real.

ade_odgetrecfield
Object	Data	Functions 	 	

	
	

Gets	a	field	value	using	a	record	ID.

(ade_odgetrecfield	recID	field)

Returns	a	field	value	(data	type	varies)	or	nil.

recID Record	ID	(real)	returned	by	ade_odgetrecord

field Field	name	(string)

This	function	uses	the	record	ID	assigned	by	ade_odgetrecord	to	get	the	value
of	a	particular	field.	This	means	of	getting	an	object	data	field	value	is	generally
faster	than	any	other.

ade_odgetrecord
Object	Data	Functions 	 	

	
	

Gets	a	record	ID.

(ade_odgetrecord	ename	table	recnum)

Returns	a	record	ID	(real)	or	nil.

ename AutoCAD	object	name.

table Table	name	(string)

recnum Record	number	(integer);	the	first	record	number	is	0

The	function	assigns	an	ID	to	the	record	uniquely	determined	by	the	three
arguments.	Later	you	can	use	this	record	ID	with	ade_odgetrecfield	to	return
the	value	of	a	particular	field	of	this	record.	This	means	of	getting	an	object	data
field	value	is	generally	faster	than	any	other.

Three	arguments	are	necessary	because	an	AutoCAD	object	can	be	associated
with	more	than	one	record	in	a	table,	in	which	case	the	records	are	distinguished
by	their	record	numbers.	If	there	is	only	one	record,	its	number	is	0.	For	more
information	about	records	and	record	numbers,	see	ade_odaddrecord.

ade_odgettables
Object	Data	Functions 	 	

	
	

Lists	the	tables	attached	to	an	object.

(ade_odgettables	ename)

Returns	a	list	of	table	names	(string)	or	nil.

ename AutoCAD	object	name.

An	object	can	have	records	of	more	than	one	table	attached.	This	function	lists
all	the	tables	that	have	records	attached	to	the	object.	See	ade_odaddrecord	for
information	about	records	attached	to	objects.

An	object	can	have	more	than	one	record	from	the	same	table	attached.	To	find
how	many	records	of	a	given	table	are	attached,	use	ade_odrecordqty.

ade_odmodifyfield
Object	Data	Functions 	 	

	
	

Modifies	field	properties	in	a	table.

(ade_odmodifyfield	tableName	fieldList)

Returns	T	or	nil.

tableName Table	name	(string)	can	be	up	to	25	characters	long.	Must
be	unique,	contain	no	spaces,	and	start	with	an	alphanumeric
character

fieldList Fields	to	modify.	A	sequence	of	field	definitions.	See	Field
Definitions	below.

The	ade_odmodifyfield	function	affects	all	active	drawings	in	the	drawing	set.
There	should	not	be	any	queried	objects	for	this	operation.

Note		This	function	will	not	operate	unless	your	end	user	has	superuser
privileges.

Field	Definitions

The	field	definitions	are	introduced	by	the	"columns"	string.	Each	field
definition	is	a	list	of	a-lists,	and	each	a-list	consists	of	a	field	property	and	a
value,	as	follows:

Field	Property Field	Value

colname Field	name	(string)	can	be	up	to	31	characters	long.	Must
be	unique,	contain	no	spaces,	and	start	with	an
alphanumeric	character

coldesc Field	description	(string)

coltype Field	data	type

defaultval Default	field	value

In	the	fieldlist	argument,	specify	the	fields	to	modify	and	their	new	field
definitions.	The	function	acts	on	these	fields	only	and	has	no	effect	on	any
others.	For	each	field	you	specify,	the	function	replaces	the	existing	field
definition	with	the	new	field	definition	in	the	table	and	in	each	of	its	records.	In
each	record,	the	modified	fields	are	assigned	default	values	that	correspond	to
their	new	field	definitions.	In	other	words,	the	function	replaces	field	definitions
in	each	set	of	object	data	defined	by	the	table	and	attached	to	an	object.

The	fieldlist	argument	has	the	same	format	as	the	fieldlist	argument	in
ade_odaddfield.	The	entry	for	this	function	has	source	code	examples.

If	a	new	field	definition	changes	the	field	type,	field	values	in	existing	records
are	converted	to	the	new	type	if	possible.	This	conversion	may	alter	the	values.
For	example,	if	you	change	the	field	type	from	real	to	integer,	existing	field
values	are	converted	by	truncating	their	decimal	parts.

ade_odmodifytab
Object	Data	Functions 	 	

	
	

Redefines	a	table.

(ade_odmodifytab	tab_defn)

Returns	T	or	nil.

tab_defn List	of	table	elements:	the	name	of	the	table	you	will	redefine,
a	new	table	description,	and	a	sequence	of	new	field
definitions.

The	tab_defn	argument	has	the	same	format	as	the	tab_defn	argument	in
ade_oddefinetab.	The	entry	for	this	function	has	source	code	examples.

For	the	table	you	specify	in	the	tab_defn	argument,	the	function	replaces	the
existing	table	definition	with	the	new	one.	For	every	object	to	which	the	table	is
attached,	the	corresponding	fields	of	each	record	of	the	table	are	replaced.	The
old	fields	are	deleted,	and	the	new	fields	are	assigned	default	values	in	accord
with	their	field	definitions.

The	ade_odmodifyfield	function	affects	all	active	drawings	in	the	drawing	set.
There	should	not	be	any	queried	objects	for	this	operation.

Note		This	function	will	not	operate	unless	your	end	user	has	superuser
privileges.

ade_odnewrecord
Object	Data	Functions 	 	

	
	

Defines	a	new	object	data	record.

(ade_odnewrecord	table)

Returns	a	new	record	ID	or	nil.

table Table	name	(string),	the	existing	table	to	which	the	new	record
will	belong.

The	function	creates	a	new	record,	populates	its	fields	with	default	values
according	to	the	table	definition,	and	returns	the	new	record	ID.

ade_odpresetfield
Object	Data	Functions 	 	

	
	

Assigns	a	value	to	a	field	in	a	new	record.

(ade_odpresetfield	rec_id	field	value)

Returns	T	or	nil.

rec_id Record	ID	returned	by	ade_odnewrecord

field Field	name	(string)

value Field	value.

Sets	the	value	of	a	field	in	an	Object	Data	record	defined	through
ade_odnewrecord.

ade_odrecordqty
Object	Data	Functions 	 	

	
	

Counts	the	records	attached	to	an	object.

(ade_odrecordqty	ename	table)

Returns	a	record	count	(integer)	or	nil.

ename AutoCAD	object	name.

table Table	name	(string)	can	be	up	to	25	characters	long.	Must	be
unique,	contain	no	spaces,	and	start	with	an	alphanumeric
character.

The	function	counts	how	many	records	of	the	same	table	are	attached	to	the
object.	See	ade_odaddrecord	for	more	information	about	attaching	records	to
objects.

ade_odsetfield
Object	Data	Functions 	 	

	
	

Sets	a	field	value.

(ade_odsetfield	ename	table	field	recnum	value)

Returns	T	or	nil.

ename AutoCAD	object	name.

table Table	name	(string)	can	be	up	to	25	characters	long.	Must	be
unique,	contain	no	spaces,	and	start	with	an	alphanumeric
character.

field Field	name	(string)	can	be	up	to	31	characters	long.	Must	be
unique,	contain	no	spaces,	and	start	with	an	alphanumeric
character.

recnum Record	number	(integer);	the	first	record	number	is	0.

value New	field	value.

To	identify	a	unique	record,	you	need	to	specify	the	table	to	which	it	belongs,	the
object	to	which	it	is	attached,	and	its	record	number.	The	record	number	is
necessary	because	more	than	one	record	from	the	same	table	can	be	attached	to
an	object.	For	more	information	about	records	and	record	numbers,	see
ade_odaddrecord.

ade_odtabledefn
Object	Data	Functions 	 	

	
	

Gets	a	table	definition.

(ade_odtabledefn	table)

Returns	a	table	definition	or	nil.

table Table	name	(string)	can	be	up	to	25	characters	long.	Must	be
unique,	contain	no	spaces,	and	start	with	an	alphanumeric	character

The	table	definition	returned	by	ade_odtabledefn	has	the	same	format	as	the
tab_defn	argument	in	ade_oddefinetab.	The	entry	for	this	function	has	source
code	examples.

ade_odtablelist
Object	Data	Functions 	 	

	
	

Lists	the	tables	in	the	project.

(ade_odtablelist)

Returns	a	list	of	table	names	(string)	or	nil.

The	list	includes	all	object	data	tables	in	the	project	drawing	and	in	all	active
source	drawings.

ade_osfexpand
	 	 	

	
	

Searches	a	directory	and	returns	a	list	of	file	names.

(ade_osfexpand	path	extension	pattern)

Returns	a	list	of	file	names	or	nil.

path Directory	in	which	to	search	(string)	or	nil.	
If	nil,	the	function	searches	the	working	directory

extension File	name	extension	(string)	or	nil.	If	nil,	the	function	uses
"dwg".

pattern Wild	card	pattern	(string)	or	nil.	If	nil,	the	function	uses	"*"
(search	for	all	file	names	with	the	given	extension	and	path).

For	information	about	wild	card	patterns,	look	up	"wild-card	characters"	on	the
Index	tab	of	AutoCAD	Map	Help.

ade_projgetctgyname
Coordinate	Transformation	Functions 	 	

	
	

Identifies	the	category	that	a	coordinate	system	belongs	to.

(ade_projgetctgyname	cscode)

Returns	a	coordinate	system	category	(string)	or	nil.

cscode Coordinate	system	code	(string),	eight	characters

ade_projgetinfo
Coordinate	Transformation	Functions 	 	

	
	

Gets	information	about	a	projection	system.

(ade_projgetinfo	cscode	info_type)

Returns	a	piece	of	projection	system	information	or	nil.

cscode Coordinate	system	code	(string),	eight	characters

info_type Information	type	(string);	see	Information	Types	below

Information	Types

description Description	(string).	For	example,	"World	Geodetic
System	of	1984	Latitude/Longitude	in	Degrees".

projection Projection	(string).	For	example,	"Unity	Conversion,
produce/accept	lat/longs".

datum Datum	(string).	For	example,	"North	American	Datum	of
1927,	Mean	Values".

ade_projgetwscode
Coordinate	Transformation	Functions 	 	

	
	

Gets	the	project	drawing's	coordinate	system	code.

(ade_projgetwscode)

Returns	a	coordinate	system	code	(string)	or	the	empty	string.

ade_projlistcrdsysts
Coordinate	Transformation	Functions 	 	

	
	

Lists	available	coordinate	systems	in	a	given	category.

(ade_projlistcrdsysts	categoryname)

Returns	a	list	of	available	coordinate	systems	or	nil

categoryname Coordinate	system	code	(string),	eight	characters.

ade_projlistctgy
Coordinate	Transformation	Functions 	 	

	
	

Lists	available	coordinate	system	categories.

(ade_projlistctgy)

Returns	a	list	of	coordinate	system	categories	or	nil.

ade_projptbackward
Coordinate	Transformation	Functions 	 	

	
	

Converts	point	coordinates	from	destination	coordinate	system	to	source.

(ade_projptbackward	pt)

Returns	corresponding	source	values	or	nil.

pt Destination	point	to	convert,	a	set	of	2D	or	3D	coordinate	values
(real).	If	3D,	the	Z	value	is	ignored.

Before	you	can	use	ade_projptbackward	to	convert	points,	you	must	first
identify	the	coordinate	systems	that	you	are	converting	between.	Use
ade_projsetsrc	to	set	the	source	system	and	ade_projsetdest	to	set	the
destination	system.	The	ade_projptbackward	function	assumes	that	the
coordinate	values	you	pass	to	it	belong	to	the	destination	system,	and	it	returns
corresponding	source	values.	The	ade_projptforward	function	does	the
inverse.

For	more	information,	see	Converting	Coordinates.

ade_projptforward
Coordinate	Transformation	Functions 	 	

	
	

Converts	point	coordinates	from	source	coordinate	system	to	destination.

(ade_projptforward	pt)

Returns	corresponding	destination	values	or	nil.

pt Source	point	to	convert,	a	set	of	2D	or	3D	coordinate	values	(real).	If
3D,	the	Z	value	is	ignored.

Before	you	can	use	ade_projptforward	to	convert	points,	you	must	first
identify	the	coordinate	systems	that	you	are	converting	between.	Use
ade_projsetsrc	to	set	the	source	system	and	ade_projsetdest	to	set	the
destination	system.	The	ade_projptforward	function	assumes	that	the
coordinate	values	you	pass	to	it	belong	to	the	source	system,	and	it	returns
corresponding	destination	values.	The	ade_projptbackward	function	does	the
inverse.

For	more	information,	see	Converting	Coordinates.

ade_projsetdest
Coordinate	Transformation	Functions 	 	

	
	

Sets	the	destination	coordinate	system	for	converting	points.

(ade_projsetdest	cscode)

Returns	T	or	nil.

cscode Coordinate	system	code	(string),	eight	characters.

Before	you	can	use	either	ade_projptforward	or	ade_projptbackward	to
convert	points,	you	must	first	identify	the	coordinate	systems	that	you	are
converting	between.	Use	ade_projsetdest	to	set	the	destination	system	and
ade_projsetsrc	to	set	the	source	system.	The	ade_projptforward	function
assumes	that	the	coordinate	values	you	pass	to	it	belong	to	the	source	system,
and	it	returns	corresponding	destination	values.	The	ade_projptbackward
function	does	the	inverse.

For	more	information,	see	Converting	Coordinates.

ade_projsetsrc
Coordinate	Transformation	Functions 	 	

	
	

Sets	the	source	coordinate	system	for	converting	points.

(ade_projsetsrc	cscode)

Returns	T	or	nil.

cscode Coordinate	system	code	(string),	eight	characters.

Before	you	can	use	either	ade_projptforward	or	ade_projptbackward	to
convert	points,	you	must	first	identify	the	coordinate	systems	that	you	are
converting	between.	Use	ade_projsetsrc	to	set	the	source	system	and
ade_projsetdest	to	set	the	destination	system.	The	ade_projptforward
function	assumes	that	the	coordinate	values	you	pass	to	it	belong	to	the	source
system,	and	it	returns	corresponding	destination	values.	The
ade_projptbackward	function	does	the	inverse.

For	more	information,	see	Converting	Coordinates.

ade_projsetwscode
Coordinate	Transformation	Functions 	 	

	
	

Sets	the	coordinate	system	for	the	project	drawing.

(ade_projsetwscode	cscode)

Returns	T	or	nil.

cscode Coordinate	system	code	(string),	eight	characters

ade_qldelctgy
Query	Library	Functions 	 	

	
	

Deletes	a	query	library	category.

(ade_qldelctgy	ctgy_id)

Returns	T	or	nil.

ctgy_id Category	ID	(real)

ade_qldelquery
Query	Library	Functions 	 	

	
	

Deletes	a	query	from	the	query	library.

(ade_qldelquery	qry_id)

Returns	T	or	nil.

qry_id Query	ID	(real)

ade_qlgetctgyinfo
Query	Library	Functions 	 	

	
	

Gets	information	about	a	query	category.

(ade_qlgetctgyinfo	ctgy_id	info)

Returns	the	requested	information	or	nil.

ctgy_id Category	ID	(real)

info Type	of	category	information	to	get	(string):	"name"	to	get	the
category	name,	or	"qrylist"	to	get	a	list	of	query	IDs	of	the
queries	in	the	category.

The	information	returned	depends	on	the	info	argument	you	use,	but	it	is	always
in	list	format.	For	example:

An	expression	such	as	(ade_qlgetctgyinfo	some_id	"name")	returns
a	category	name,	such	as	("SomeCategory").
An	expression	such	as	(ade_qlgetctgyinfo	some_id	"qrylist")	returns
a	list	of	query	IDs,	such	as	(1.23456	2.34567	3.45678).

ade_qlgetqryinfo
Query	Library	Functions 	 	

	
	

Gets	information	about	a	query.

(ade_qlgetqryinfo	qry_id	info)

Returns	the	requested	information	or	nil.

qry_id Query	ID	(real).

info Information	type	(string).	See	the	Information	Types	table
below.

Information	Types

name Query	name.

description Query	description.

category Category	name.

qtype Query	type:	1	=	internal,	2	=	external.

filename For	an	externally	saved	query,	full	path	name	(string).

A	query	gets	a	name	and	an	ID	when	it	is	saved	to	a	query	category	of	the	query
library.	A	new	query	that	you	have	not	yet	saved	does	not	have	a	name	or	an	ID.

ade_qllistctgy
Query	Library	Functions 	 	

	
	

Lists	the	query	category	IDs	.

(ade_qllistctgy)

Returns	a	list	of	category	IDs,	or	if	there	are	no	categories,	nil.

To	find	the	ID	of	a	category	if	its	name	is	known,	use	ade_qllistctgy	to	get	a
list	of	category	IDs,	and	then	use	ade_qlgetctgyinfo	on	each	ID	in	turn	until
you	find	the	ID	associated	with	the	name.

ade_qlloadqry
Query	Library	Functions 	 	

	
	

Makes	a	saved	query	current.

(ade_qlloadqry	qry_id)

Returns	T	or	nil.

qry_id Query	ID	(real)

Once	loaded,	the	query	becomes	the	current	query.	If	there	is	already	a	current
query,	this	query	replaces	it.

ade_qlqrygetid
Query	Library	Functions 	 	

	
	

Gets	a	query	ID.

(ade_qlqrygetid	query_name)

Returns	a	query	ID	or	nil.

query_name Query	name	(string)

A	query	gets	a	name	and	an	ID	when	it	is	saved	to	a	query	category	of	the	query
library.	A	new	query	that	you	have	not	yet	saved	does	not	have	a	name	or	an	ID.

The	query	name	is	enough	to	identify	a	query	uniquely.	The	category	name	is	not
required.	Within	a	project,	no	two	queries	can	have	the	same	name,	even	if	they
are	saved	in	different	categories.

ade_qlsetctgyname
Query	Library	Functions 	 	

	
	

Changes	a	query	category	name	.

(ade_qlsetctgyname	ctgy_id	name)

Returns	T	or	nil.

ctgy_id Query	category	ID	(real)

name Name	of	new	category	(string),	up	to	31	characters	long.	Must
be	unique,	contain	no	spaces,	and	start	with	an	alphanumeric
character

The	category	name	cannot	contain	spaces.

ade_qlsetquery
Query	Library	Functions 	 	

	
	

Changes	a	query	name,	description,	or	the	category	it	belongs	to.

(ade_qlsetquery	qry_id	info	value)

Returns	T	or	nil.

qry_id Query	ID	(real)

info Type	of	information	to	modify	(string).	See	the	Information
Types	table	below.

value New	value	(type	varies).	See	the	Information	Types	table	below.

Information	Types

name Name	of	query	(string),	up	to	31	characters	long.	Must	be
unique,	contain	no	spaces,	and	start	with	an	alphanumeric
character.

description Description	of	query	(string),	up	to	132	characters	long.	Can
contain	spaces.	Must	be	unique	and	start	with	an
alphanumeric	character.

category Category	ID.

This	function	does	not	change	file	name	or	storage	type.

A	query	gets	a	name	and	an	ID	when	it	is	saved	to	a	query	category	of	the	query
library.	A	new	query	that	you	have	not	yet	saved	does	not	have	a	name	or	an	ID.

ade_qryclear
Query	Functions 	 	

	
	

Clears	the	current	query.

(ade_qryclear)

Returns	T	or	an	error	code.

This	function	clears	the	current	query,	including	any	topology	parameters,	such
as	topology	name	and	result.

ade_qryexecute
Query	Functions 	 	

	
	

Executes	the	current	query.

(ade_qryexecute)

Returns	the	number	of	queried	objects	(real).	If	none,	it	returns	0.0.

Executing	a	query	makes	a	new	selection	set	of	the	queried	objects	if	the
"MkSelSetWithQryObj"	option	is	turned	on,	as	follows:

(ade_prefsetval	"MkSelSetWithQryObj"	T)

The	query	runs	slower	in	this	case	because	of	the	extra	work	involved.

The	following	code	captures	the	ID	of	a	selection	set	created	by	executing	the
current	query.

(ade_prefsetval	"MkSelSetWithQryObj"	T)
(if	(>	(ade_qryexecute)	0.0)
				(setq	queried_objects	(ssget	"P"))
				(princ	"\nNo	objects	found.")
)
(ade_prefsetval	"MkSelSetWithQryObj"	nil)

The	"P"	argument	in	the	ssget	call	identifies	the	"previous"	selection	set	(the
objects	currently	or	most	recently	selected).

Note		Whenever	you	create	a	selection	set,	you	replace	the	previous	selection
set.	Make	sure	you	know	which	objects	you	are	getting.

ade_qrygetdwgandhandle
Query	Functions 	 	

	
	

Gets	the	source	drawing	ID	and	original	handle	of	a	queried	object.

(ade_qrygetdwgandhandle	ename)

Returns	the	drawing	ID	and	handle	of	the	queried	object	or	nil.

ename AutoCAD	entity	name.

This	function	returns	the	ID	of	the	source	drawing	from	which	the	object	was
queried	and	the	handle	by	which	the	object	is	known	in	that	drawing.

ADSRX	equivalent

struct
resbuf*	ade_qrygetdwgandhandle

ads_name	ename);

Returns	the	drawing	ID	and	handle	for	the	queried	object	or	NULL.

You	must	release	the	resbuf.

ade_qrygetentlist
Query	Functions 	 	

	
	

Returns	the	list	of	entity	handles	for	all	objects	that	satisfy	the	current	query	in	a
specific	drawing.

(ade_qrygetentlist	dwg_id)

Returns	a	list	of	the	handles	of	selected	objects	or	nil.

dwg_id Drawing	ID	of	the	drawing	to	query	(real)

This	function	executes	the	current	query	and	finds	all	objects	that	satisfy	it	in	the
drawing	specified	by	the	dwg_id	argument.	The	entity	handles	of	the	objects
are	returned	to	the	calling	function.

Once	you	have	the	handle	to	an	object,	you	can	get	the	entity	name	with	the
ade_qryhandent	function	and	use	it	to	perform	other	functions.	For	example,
you	could	use	entget	(and	ads_entget)	to	retrieve	the	entity	and	its	definition
data.

ADSRX	equivalent

struct
resbuf*	ade_qrygetentlist

ade_id	dwg_id);

Returns	a	list	of	the	handles	of	selected	objects	or	NULL.

You	must	release	the	resbuf.

ade_qrygetreptransform
Query	Functions 	 	

	
	

Checks	whether	transformation	is	enabled	for	the	current	report	query.

(ade_qrygetreptransform)

Returns	T	if	transformation	is	enabled	or	nil	if	transformation	is	disabled	or	the
report	query	template	is	not	defined.

ADSRX	equivalent

int
ade_qrygetreptransform();

Returns	TRUE	or	FALSE.

ade_qrygroup
Query	Functions 	 	

	
	

Groups	a	sequence	of	two	or	more	query	conditions.

(ade_qrygroup	condition_id1	condition_id2)

Returns	T	or	nil.

condition_id1 ID	of	first	condition	of	the	group	(real)

condition_id2 ID	of	last	condition	of	the	group	(real)

This	function	affects	the	current	query.

A	query	definition	consists	of	a	sequence	of	query	conditions.	Within	such	a
sequence,	you	can	define	subsequences	of	two	or	more	conditions	by	grouping
them	(by	enclosing	them	in	parentheses).	You	can	group	conditions	when	you
first	define	the	query.	See	the	bggroups	and	endgroups	parameters	of
ade_qrydefine.	Or	you	can	do	it	later	using	ade_qrygroup.

When	you	call	ade_qrygroup,	the	condition	you	specify	as	the	first	condition
of	the	group	(condition_id1)	must	be	a	predecessor	to	the	one	you	specify	as
the	last	(condition_id2).	The	function	groups	the	first	and	the	last	and	any
conditions	in	between.	For	example,	consider	the	following	query	definition,
which	is	composed	of	conditions	A,	B,	C,	and	D:

A	AND	B	OR	C	OR	D

The	function	call	(ade_qrygroup	IDofB	IDofD)	changes	the	definition	to

A	AND	(B	OR	C	OR	D)

To	ungroup	queries,	use	ade_qryungroup.

ade_qryhandent
Query	Functions 	 	

	
	

Gets	the	entity	name	for	the	specified	handle	.

(ade_qryhandent	dwg_id	handle)

Returns	the	entity	name	for	the	specified	drawing	ID	and	handle	or	nil.

dwg_id ID	of	the	drawing	in	which	the	object	resides	(real)

handle Original	handle	of	the	object	in	the	specified	drawing.

This	function	provides	access	to	the	entity	name	of	an	object	in	a	source
database.

You	must	use	the	retrieved	entity	name	immediately	before	you	call	any	other
function	(except	ade_expreval)	or	return	control	to	AutoCAD.

Once	you	have	the	entity	name	of	an	object,	you	can	use	it	with	other	functions.
For	example,	you	could	use	entget	(or	ads_entget)	to	retrieve	the	entity	and	its
definition	data.

To	get	the	original	handle	of	the	object	in	the	source	drawing,	use	the
ade_qrygetentlist	function.

To	obtain	a	drawing	ID,	use	ade_dslist.

To	get	the	ID	of	a	drawing	given	a	drawing	file	path,	use	ade_dwggetid.

The	following	code	sample	shows	how	you	can	combine	ade_qrygetentlist
and	ade_qryhandent	to	count	the	number	of	objects	in	the	source	drawing	that

are	of	type	line.

;	clear	out	old	query...	
(ade_qryclear)	
;	define	a	new	query
(ade_qrydefine	'(""	""	""	"Location"	("All")	""))

;	initialize	the	count...
(setq	total_count	0)	

;	for	each	drawing	in	the	drawing	set...
(foreach	dwg_id	(ade_dslist)

			;	if	the	drawing	is	active
			(if	(ade_dwgisactive	dwg_id)
							(progn

										;	get	the	objects	which	satisfy	the	query...
										(setq	handle_list	(ade_qrygetentlist	dwg_id))
										(foreach	handle	handle_list
													(setq	ename	(ade_qryhandent	dwg_id	handle))

													;	if	it's	a	line,	increment	the	counter
													(if	(=	(cdr	(assoc	0	(entget	ename)))	"LINE")
																	(setq	total_count	(1+	total_count))
)
)
)		;	progn
)		;	if
)		;	foreach

ADSRX	equivalent

int
ade_qryhandent(

ade_id	dwg_id,
char*	handle,
ads_name	result);

Returns	RTNORM	or	an	error	code.

result Output	the	entity	name	for	the	specified	drawing	ID	and	handle.

ade_qrylist
Query	Functions 	 	

	
	

Lists	the	IDs	of	the	current	query	conditions.

(ade_qrylist)

Returns	a	list	of	the	IDs	of	the	current	query	conditions,	or,	if	there	is	no	current
query,	nil.

ade_qrysave
Query	Functions 	 	

	
	

Saves	the	current	query.

(ade_qrysave	catname	qryparams)

Returns	a	query	ID	or	nil.

catname Category	name	(string).	The	category	is	created	if	it	does
not	exist.

qryparams List	of	a-lists,	each	composed	of	an	information	type	and	a
value.	See	the	Information	Types	table	below.

Information	Types

name Query	name	(string)

description Query	description	(string)

qtype How	the	query	is	saved	(integer):	1	=	internal	(default),	2	=
external.

filename For	an	external	query,	full	path	name	(string).

saveoption Bit	code	for	the	save	options	you	are	choosing	(integer).	See
the	Save	Options	table	below.

The	function	saves	the	current	query	to	the	project's	query	library	or	to	a	file.

A	query	saved	to	the	query	library	is	called	an	internal	query.
A	query	saved	to	a	file	is	called	an	external	query.

You	must	specify	a	category	name	and	a	query	name.	In	a	project,	no	two
queries	can	have	the	same	name,	even	if	they	are	saved	in	different	categories.
The	default	value	for	a	description	is	the	same	as	the	query	name.	The	default
value	for	the	storage	type	is	internal.	If	you	want	to	save	the	query	externally,
you	must	specify	a	file	name	for	it.

Save	Options

	1 Keep	reference	in	query	library.

	2 Save	list	of	active	drawings.

	4 Save	location	coordinates.

	8 Save	current	property	alteration	definition.

16 Execute	automatically.

A	query	gets	a	name	and	an	ID	only	if	it	is	referenced	the	query	library.	A	new
query	that	you	have	not	yet	saved	does	not	have	a	name	or	an	ID,	and	neither
does	an	external	query	unless	you	keep	a	reference	to	it	in	the	query	library.

The	following	example	saves	the	current	query	to	the	query	library	without
saving	it	to	a	file.

(ade_qrysave	"CATEGORY1"
		'(("name"	.	"QUERY1")
					("saveoption"	.	2)
)
)

The	expression	saves	the	query	in	CATEGORY1	and	names	it	QUERY1.
Because	there	is	no	"qtype"	list	element,	it	saves	the	query	internally	by	default,

which	eliminates	the	need	for	a	"filename"	element.

The	following	example	saves	the	current	query	to	the	query	library	and	also	to	a
file.

(ade_qrysave	"CATEGORY1"		
		'(("name"	.		"QUERY1")		
						("description"	.	"Query1	description")		
						("qtype"	.	2)		
						("filename"	.	"c:\\qryfiles\\Query1.qry")		
						("saveoption"	.	3)	
)	
)

ade_qrysetaltprop
Query	Functions 	 	

	
	

Turns	property	alteration	on	or	off.

(ade_qrysetaltprop	flag)

Returns	T	or	nil.

flag Specifies	whether	property	alteration	is	on	or	off:	T	=	on,	nil	=	off.

This	function	affects	the	current	query.

If	there	is	no	current	property	alteration	definition,	this	function	has	no	effect.	To
create	a	property	alteration	definition,	use	ade_altpdefine.

ade_qrysetreptransform
Query	Functions 	 	

	
	

Enables	or	disables	transformation	for	the	current	report	query.

(ade_qrysetreptransform	flag)

Returns	T	if	successful,	otherwise	nil.

flag T	or	nil,	where	T	=	transformation	enabled,	and	nil	=
transformation	disabled.

The	function	returns	nil	if	there	is	no	report	query	template.

ade_qrysettype
Query	Functions 	 	

	
	

Sets	the	query	mode:	Preview,	Draw,	or	Report.

(ade_qrysettype	qrytype	[multiline	templ	filename])

Returns	T	or	nil.

qrytype Query	mode	(string):	"preview",	"draw",	or	"report",
where	"preview"	=	Display	queried	objects	without
retrieving	them,	similar	to	Quick	View,	"draw"	=	Get	queried
objects	from	source	drawings	or	external	databases	and	copy
to	the	project	drawing,	and	"report"	=	Direct	queried
information	to	an	output	file.

multiline Whether	to	write	report	rows	for	sub-objects:	T	or	nil,	where
T	=	Write	report	rows	for	sub-objects	(objects	such	as	vertices
of	polylines	and	attributes	of	blocks),	and	nil	=	Write	lines	for
top-level	objects	only.	Relevant	only	if	qrytype	is	"report".

templ> Ordered	list	of	object	properties	to	report	(string).	Each	list
element	defines	a	report	column.	For	example,
".type,.layer".	Relevant	only	if	qrytype	is	"report".

filename Path	and	file	name	of	the	output	file	(string).	Relevant	only	if
qrytype	is	"report".

This	function	affects	the	current	query.

The	three	optional	parameters,	multiline,	templ,	and	filename,	are	relevant
only	if	the	query	mode	is	"report".	If	the	query	mode	is	"preview"	or	"draw",
omit	them.

The	following	example	sets	the	query	mode	to	Report.

(ade_qrysettype	"report"	T	".type,.layer"	"output.txt")

ade_qryungroup
Query	Functions 	 	

	
	

Ungroups	a	sequence	of	two	or	more	query	conditions.

(ade_qryungroup	condition_id1	condition_id2)

Returns	T	or	nil.

condition_id1 Condition	ID	of	the	first	grouped	condition	(real).

condition_id2 Condition	ID	of	the	last	grouped	condition	(real).

This	function	affects	the	current	query.

A	query	definition	consists	of	a	sequence	of	query	conditions.	Within	such	a
sequence,	there	can	be	subsequences	that	have	been	grouped	by	enclosing	them
in	parentheses.	Such	groups	may	have	been	established	when	the	query	was	first
defined.	See	the	bggroups	and	endgroups	parameters	of	ade_qrydefine.	Or
they	may	have	been	established	afterward	by	ade_qrygroup.	However
established,	you	can	use	ade_qryungroup	to	undo	a	group	(remove	its
enclosing	parentheses).

When	you	call	ade_qryungroup,	the	condition	you	specify	as	the	first	of	the
group	(condition_id1)	must	be	a	predecessor	to	the	one	you	specify	as	the	last
(condition_id2).	The	function	ungroups	the	first	and	the	last	and	any
conditions	in	between.	For	example,	consider	the	following	query	definition,
which	is	composed	of	conditions	A,	B,	C,	and	D:

A	AND	(B	OR	C	OR	D)

The	function	call	(ade_qryungroup	IDofB	IDofD)	changes	the	query
definition	to

A	AND	B	OR	C	OR	D

ade_rtdefrange
Range	Table	Functions 	 	

	
	

Defines	a	range	table.

(ade_rtdefrange	tabname	description	range_defn)

Returns	a	range	table	ID	or	nil.

tabname Range	table	name	(string);	can	be	up	to	31	characters	long.
Must	be	unique,	contain	no	spaces,	and	start	with	an
alphanumeric	character

description Range	table	description	(string)

range_defn Range	table	definition	(string)

A	range	table	allows	you	to	alter	properties	of	queried	entities	conditionally.	It
contains	a	set	of	property	alteration	values	from	which	a	single	value	is	selected
depending	on	conditions	obtaining	in	the	queried	entity	to	be	altered.

The	range_defn	argument	is	a	range	table	definition,	a	list	of	range
expressions.	Each	range	expression	includes	(1)	a	condition	and	(2)	a	property
alteration	value	to	return	if	the	condition	is	true.	This	information	is	expressed	as
a	list	of	three	elements:	a	range	table	operator	and	a	comparison	value	(which
together	make	up	the	condition),	and	the	return	value.	You	must	state	each	value
explicitly.	You	cannot	substitute	an	expression.

See	Using	a	Range	Table	for	more	information.

ade_rtdeltable
Range	Table	Functions 	 	

	
	

Deletes	a	range	table.

(ade_rtdeltable	tablename)

Returns	T	or	nil.

tablename Range	table	name	(string);	can	be	up	to	31	characters	long.
Must	be	unique,	contain	no	spaces,	and	start	with	an
alphanumeric	character

ade_rtgetid
Range	Table	Functions 	 	

	
	

Gets	a	range	table	ID.

(ade_rtgetid	tablename)

Returns	a	range	table	ID	or	nil.

tablename Range	table	name	(string);	can	be	up	to	31	characters	long.
Must	be	unique,	contain	no	spaces,	and	start	with	an
alphanumeric	character

ade_rtgetprop
Range	Table	Functions 	 	

	
	

Gets	the	value	of	a	range	table	property.

(ade_rtgetprop	rt_id	property)

Returns	a	property	value,	or	list,	or	nil.

rt_id Range	table	ID	(real)

property Property	to	get	the	value	of	(string).	See	the	Range	Table
Properties	table	below.

Range	Table	Properties

name Range	table	name	(string)

description Range	table	description	(string)

expr Range	table	definition	(list	of	range	expressions)

See	ade_rtdefrange	for	information	about	setting	range	table	properties.

ade_rtlist
Range	Table	Functions 	 	

	
	

Lists	the	IDs	of	all	range	tables	defined	in	the	project.

(ade_rtlist)

Returns	a	list	of	range	table	IDs	or	nil.

ade_saveobjs
Object	Saving	Functions 	 	

	
	

Saves	objects	queued	for	saving	back	to	the	source	drawings.

(ade_saveobjs	priorities)

Returns	T	or	nil.

priorities List	containing	one	to	four	save	back	operation	codes,
depending	on	the	number	of	save	back	operations	you	are
specifying	(integer).	List	the	codes	in	order	of	their	relative
priority.	See	the	Save-Back	Operation	Codes	table	below.

Save-Back	Operation	Codes

Code Operation Description

1 Came	From Saves	objects	to	their	source	drawings

2 Selective Saves	objects	you	select	to	the	drawings	you	specify

3 Layer Saves	objects	to	layers	in	the	source	drawings	that	use
the	same	names	as	those	in	which	the	objects	lie

4 Area Saves	objects	to	the	source	drawing	within	whose
extents	they	lie,	even	if	only	partially	within

During	the	save	back	operation,	the	options	are	executed	in	the	order	specified	in
the	priorities	list.	The	list	must	contain	at	least	one	option.	For	example:

(ade_saveobjs	2	1	4	3)

To	save	a	selection	set	to	a	specific	drawing,	use	ade_savetodwg.

ade_savetodwg
Object	Saving	Functions 	 	

	
	

Saves	a	selection	set	to	a	specific	drawing.

(ade_savetodwg	sel_set	dwg_id)

Returns	T	or	nil.

sel_set Selection	set	name.

dwg_id Drawing	ID	of	the	destination	drawing	(real)

To	save	objects	queued	for	saving	back	to	the	source	drawings,	use
ade_saveobjs.

ade_sqlgetenvstring
SQL	Environment	Functions 	 	

	
	

Gets	a	string	describing	the	SQL	environment.

(ade_sqlgetenvstring	linktemplate)

Returns	a	string	describing	the	SQL	environment	or	nil.

linktemplate Link	template	(string)

This	function	returns	a	string	with	the	following	information:

"DBname.Catalog.Schema.Table"

For	more	information	about	link	templates	using	SQL,	see	the	AutoCAD	online
documentation.

ade_ssfree
	 	 	

	
	

Releases	a	selection	set.

(ade_ssfree	ss)

Returns	T	or	nil.

ss Selection	set	to	release.

Selection	sets	are	returned	by	a	number	of	Visual	LISP	functions.	See	Functions
That	Return	Selection	Sets.	It	is	important	to	release	selection	sets	as	you	finish
with	them,	because	the	number	allowed	is	limited.	If	the	number	runs	out,	your
application	will	fail.

The	following	example	allocates	a	selection	set	and	then	releases	it.

(setq	ss	
				(map_dwgBreakObj		
									sscut	boundary	skiptopo	keepod)	
)

·	·	·

(setq	status	(ade_ssfree	ss))

ade_userget
User	Security	Functions 	 	

	
	

Gets	the	login	name	or	entity	lock	name	of	the	local	user.

(ade_userget	[for_entity_locks])

Returns	a	user	name	(string)	or	nil.

for_entity_locks What	to	do	if	the	local	user	is	not	logged	into	the
application	(optional):	T	or	nil,	where	T	=	Get	the
user	name	used	to	identify	the	owner	of	object	locks
set	locally,	and	nil	=	Return	nil.	Omitting	this
argument	is	the	same	as	supplying	nil.

A	user	name	can	have	as	many	as	32	characters.

If	the	local	user	is	logged	into	the	application,	the	user's	application	login	name
is	used	to	identify	the	owner	of	object	locks	set	locally.	If	the	local	user	is	not
logged	into	the	application,	the	user's	operating	system	login	name	is	used.

This	function	helps	you	determine	if	the	owner	of	a	particular	object	lock	is	the
local	user.

ade_usergetrights
User	Security	Functions 	 	

	
	

Gets	the	access	rights	of	a	user.

(ade_usergetrights	[username])

Returns	a	bit	code	for	the	rights	allowed.	See	the	User	Rights	Codes	table	below.

username Login	name	(string),	at	most	32	characters.

If	the	username	argument	is	omitted	or	nil,	the	function	returns	the	rights	of	the
current	user.

User	Rights	Codes

Code User	Rights

	1 Superuser	(in	which	case	the	other	bits	don't	matter).

	2 Permission	to	alter	the	drawing	set.

	4 Permission	to	edit	objects.

	8 Permission	to	execute	a	draw	query.

16 Permission	to	edit	Feature	Class	definition.

If	the	username	argument	is	omitted	or	nil,	and	there	is	no	current	user,	the
function	returns	a	bit	code	with	all	bits	set,	because	the	no-current-user	condition

is	possible	only	if	the	system	option	"ForceUserLogin"	is	set	to	nil,	in	which
case	all	users	have	all	rights	except	those	reserved	for	a	superuser.

Only	a	superuser	can	specify	a	login	name	other	than	their	own.	If	the
username	argument	is	not	the	login	name	of	the	current	user,	and	the	current
user	does	not	have	superuser	rights,	the	function	returns	nil,	and	the	message
"Access	is	denied"	is	added	to	the	error	stack.

ade_userlist
User	Security	Functions 	 	

	
	

Lists	the	current	users.

(ade_userlist)

Returns	a	list	of	user	login	names	or	nil.

ade_userset
User	Security	Functions 	 	

	
	

Logs	in	a	user.

(ade_userset	[username	[password]])

Returns	T	if	the	user	is	logged	in	successfully,	otherwise	nil.

username Login	name	(string).

password Password	(string).

If	either	argument	is	omitted,	the	User	Login	dialog	box	displays.	If	a	login
name	was	specified,	it	appears	in	the	dialog's	Login	Name	field.

If	both	arguments	are	specified,	but	the	user	cannot	be	logged	in,	one	of	the
following	messages	is	added	to	the	error	stack:

Invalid	user	name.
Invalid	password.

If	the	drawing	set	includes	active	drawings	containing	locked	entities,	the	current
user	cannot	be	changed.	If	you	attempt	to	log	in	a	different	user	under	those
conditions,	the	following	error	message	is	added	to	the	error	message	stack:

Cannot	login	again	when	drawings	are	locked/active.

ade_usersetrights
User	Security	Functions 	 	

	
	

Sets	the	access	rights	for	a	user.

(ade_usersetrights	username	userrights)

Returns	T	on	success,	otherwise	nil.

username Login	name	(string)

userrights A	bit	code	for	the	rights	to	allow.	See	the	User	Rights	Codes
table	below.

User	Rights	Codes

Code User	Rights

	1 Superuser	(in	which	case	the	other	bits	don't	matter).

	2 Permission	to	alter	the	drawing	set.

	4 Permission	to	edit	objects.

	8 Permission	to	execute	a	draw	query.

16 Permission	to	edit	Feature	Class	definition.

This	function	cannot	execute	unless	the	current	user	has	superuser	rights,	and	it
cannot	change	the	rights	of	the	current	user	in	any	case.	If	an	ordinary	user	is
logged	in	when	this	function	is	called,	or	a	superuser	is	logged	in	and	the

function	call	would	change	the	rights	of	the	current	user,	the	function	returns	nil,
and	the	following	message	is	added	to	the	error	message	stack:

Can't	change	rights	of	the	current	user.

ade_version
	 	 	

	
	

Gets	the	version	number	of	the	Data	Extension	programming	interface.

(ade_version)

Returns	a	version	number	(string)	or	nil.

At	runtime,	this	function	returns	the	version	number	of	the	Data	Extension
(ADE)	programming	interface	with	which	your	application	is	communicating.
For	example("2.024").

Coordinate	Transformation	Functions
	 	 	

	
	

The	coordinate	transformation	functions	begin	with	ade_proj.

ade_projgetctgyname

Identifies	the	category	that	a	coordinate	system	belongs	to.

ade_projgetinfo

Gets	information	about	a	projection	system.

ade_projgetwscode

Gets	the	project	drawing's	coordinate	system	code.

ade_projlistctgy

Lists	available	coordinate	system	categories.

ade_projlistcrdsysts

Lists	available	coordinate	systems	in	a	given	category.

ade_projptbackward

Computes	new	coordinates	for	a	source	point.

ade_projptforward

Computes	new	coordinates	for	a	destination	point.

ade_projsetdest

Sets	the	destination	coordinate	system.

ade_projsetsrc

Sets	the	source	coordinate	system.

ade_projsetwscode

Sets	the	project	drawing's	coordinate	system.

Drawing	Functions
	 	 	

	
	

The	functions	for	drawing	management	begin	with	ade_dwg.

ade_dwgactivate

Activates	a	drawing.

ade_dwgactualpath

Returns	the	full	path	of	a	drawing.

ade_dwgaliaspath

Returns	the	alias	path	of	a	drawing.

ade_dwgattriblist

Returns	a	list	of	attribute	tags	for	the	specified	block	name.

ade_dwgdeactivate

Deactivates	a	drawing.

ade_dwggetid

Gets	the	drawing	ID	of	a	drawing.

ade_dwggetsetting

Gets	a	drawing	setting	value.

ade_dwghaslocks

Checks	if	a	drawing	has	locked	objects.

ade_dwgindex

Applies	specified	index	operations	to	a	drawing.

ade_dwgindexdef

Specifies	which	indexes	are	to	be	created	or	removed.

ade_dwgisactive

Checks	if	a	drawing	is	active.

ade_dwgistoplevel

Checks	if	a	drawing	is	directly	attached	to	the	project	drawing.

ade_dwgproplist

Lists	all	values	found	in	a	drawing	for	a	given	drawing	property.

ade_dwgquickview

Displays	a	quick	view	of	a	drawing.

ade_dwgselectdlg

Displays	the	Select	Drawings	dialog	box.

ade_dwgsetof

Identifies	the	drawings	to	which	a	given	drawing	is	attached.

ade_dwgsetsetting

Sets	a	drawing	setting	value.

ade_dwgunlock

Removes	all	object	locks	from	a	drawing.

ade_dwgzoomextents

Zooms	to	the	extents	of	the	active	drawings.

Drawing	Set	Functions
	 	 	

	
	

The	functions	for	drawing	set	management	begin	with	ade_ds.

ade_dsattach

Attaches	a	drawing	to	the	project.

ade_dsdetach

Detaches	a	drawing	from	the	project.

ade_dsisnested

Checks	if	a	drawing	has	nested	drawings.

ade_dslist

Lists	the	drawings	attached	to	a	given	drawing.

ade_dsproplist

Lists	all	values	found	in	the	drawing	set	for	a	given	drawing	property.

Drive	Alias	Functions
	 	 	

	
	

The	drive	alias	functions	begin	with	ade_alias.

ade_aliasadd

Creates	a	drive	alias.

ade_aliasdelete

Deletes	a	drive	alias.

ade_aliasgetlist

Lists	all	drive	aliases	in	the	project.

ade_aliasupdate

Assigns	a	new	drive	and	path	to	a	drive	alias.

Error	Message	Functions
	 	 	

	
	

The	functions	for	handling	error	messages	begin	with	ade_err.

ade_errclear

Clears	the	error	stack.

ade_errcode

Gets	the	error	code	for	a	specific	error	on	the	error	stack.

ade_errgetlevel

Gets	the	system	error	level.

ade_errmsg

Gets	the	error	message	for	a	specific	error	on	the	error	stack.

ade_errpush

Pushes	an	error	message	to	the	stack.

ade_errpushstatement

Pushes	a	statement	to	the	stack.

ade_errqty

Returns	the	number	of	error	messages	on	the	stack.

ade_errsetlevel

Sets	the	system	error	level.

ade_errshowdlg

Displays	the	Map	Messages	dialog	box,	which	shows	a	list	of	error	messages	on
the	stack.

ade_errstatement

Gets	the	erroneous	statement	for	a	specific	error	on	the	stack.

ade_errtype

Gets	the	type	of	a	specific	error	in	the	stack.

Expression	Evaluation	Function
	 	 	

	
	

The	expression	evaluation	function	begins	with	ade_exp.

ade_expreval

Evaluates	an	AutoCAD	Map	expression.

Object	Data	Functions
	 	 	

	
	

The	functions	for	object	data	management	begin	with	ade_od.

ade_odaddfield

Adds	fields	to	a	table.

ade_odaddrecord

Attaches	data	to	an	object.

ade_odattachrecord

Attaches	a	new	record	to	an	object.

ade_oddefinetab

Creates	an	object	data	table.

ade_oddeletefield

Deletes	fields	from	a	table.

ade_oddeletetab

Deletes	a	table.

ade_oddelrecord

Deletes	a	record.

ade_odfreerec

Frees	the	memory	claimed	in	defining	a	new	record.

ade_odgetfield

Gets	a	field	value.

ade_odgetrecfield

Gets	a	field	value	using	a	record	ID.

ade_odgetrecord

Gets	a	record	ID.

ade_odgettables

Lists	the	tables	attached	to	an	object.

ade_odmodifyfield

Modifies	field	properties	in	a	table.

ade_odmodifytab

Redefines	a	table.

ade_odnewrecord

Defines	a	new	object	data	record.

ade_odpresetfield

Assigns	a	value	to	a	field	in	a	new	record.

ade_odrecordqty

Counts	the	records	attached	to	an	object.

ade_odsetfield

Sets	a	field	value.

ade_odtabledefn

Gets	a	table	definition.

ade_odtablelist

Lists	the	tables	in	the	project.

Object	Editing	Functions
	 	 	

	
	

The	functions	for	object	editing	begin	with	ade_edit.

ade_editdefcen

Defines	a	new	label	point	for	an	object.

ade_editlockederased

Gets	the	objects	in	the	save	set	that	have	been	erased.

ade_editislocked

Gets	lock	information	about	an	object	if	it	is	locked.

ade_editlocked

Gets	the	objects	in	the	save	set	that	have	been	modified.

ade_editlockobjs

Locks	a	set	of	objects	and	adds	them	to	the	save	set.

ade_editnew

Gets	the	objects	in	the	save	set	that	are	new.

editunlockobjs

Unlocks	a	set	of	objects	and	removes	them	from	the	save	set.

Object	Saving	Functions
	 	 	

	
	

The	object	saving	functions	begin	with	ade_save.

ade_saveobjs

Saves	objects	queued	for	saving	back	to	the	source	drawings.

ade_savetodwg

Saves	a	selection	set	to	a	specific	drawing.

Option	Functions
	 	 	

	
	

The	option	functions	begin	with	ade_pref.

ade_prefgetval

Gets	an	option	setting.

ade_prefsetval

Sets	an	option.

Property	Alteration	Functions
	 	 	

	
	

The	functions	for	specifying	how	objects	retrieved	in	a	query	should	be	altered
begin	with	ade_altp.

ade_altpclear

Clears	the	current	property	alteration	definition.

ade_altpdefine

Creates	a	property	alteration	expression.

ade_altpdelprop

Deletes	a	property	alteration	expression.

ade_altpgetprop

Gets	a	property	alteration	expression.

ade_altplist

Lists	the	IDs	of	the	current	property	alteration	expressions.

ade_altpsetprop

Modifies	a	property	alteration	expression.

Query	Functions
	 	 	

	
	

The	functions	for	query	management	begin	with	ade_qry.

ade_qryclear

Clears	the	current	query.

ade_qrydefine

Defines	a	query.

ade_qryexecute

Executes	the	current	query.

ade_qrygetcond

Gets	a	query	condition.

ade_qrygetdwgandhandle

Gets	the	source	drawing	ID	and	original	handle	of	a	queried	object.

ade_qrygetentlist

Returns	entity	handles	for	objects	that	satisfy	the	current	query.

ade_qrygetreptransform

Checks	whether	transformation	is	enabled	for	the	current	report	query.

ade_qrygroup

Groups	query	conditions.

ade_qryhandent

Gets	the	entity	name	for	the	specified	handle.

ade_qrylist

Lists	the	IDs	of	the	current	query	conditions.

ade_qrysave

Saves	the	current	query.

ade_qrysetaltprop

Turns	property	alteration	on	or	off.

ade_qrysetcond

Modifies	a	query	condition.

ade_qrysetreptransform

Enables	or	disables	transformation	for	the	current	report	query.

ade_qrysettype

Sets	the	query	mode:	Preview,	Draw,	or	Report.

ade_qryungroup

Ungroups	query	conditions.

Query	Library	Functions
	 	 	

	
	

The	functions	for	query	library	management	begin	with	ade_ql.

ade_qldelctgy

Deletes	a	query	library	category.

ade_qldelquery

Deletes	a	query	from	the	query	library.

ade_qlgetctgyinfo

Gets	information	about	a	query	category.

ade_qlgetqryinfo

Gets	information	about	a	query.

ade_qllistctgy

Lists	the	query	category	IDs.

ade_qlloadqry

Makes	a	saved	query	current.

ade_qlqrygetid

Gets	a	query	ID.

ade_qlsetctgyname

Changes	a	query	category	name.

ade_qlsetquery

Changes	a	query	name,	description,	or	the	category	it	belongs	to.

Range	Table	Functions
	 	 	

	
	

The	functions	for	range	table	management	begin	with	ade_rt.

ade_rtdefrange

Defines	a	range	table.

ade_rtdeltable

Deletes	a	range	table.

ade_rtgetid

Gets	a	range	table	ID.

ade_rtgetprop

Gets	the	value	of	a	range	table	property.

ade_rtlist

Lists	the	IDs	of	all	range	tables	defined	in	the	project.

SQL	Environment	Functions
	 	 	

	
	

The	SQL	environment	functions	begins	with	ade_sql	or	ade_key.

ade_keycolumnlist

Returns	a	list	of	the	key	column	names	for	the	specified	link	path	name.

ade_sqlgetenvstring

Gets	a	string	describing	the	SQL	environment.

Text	Label	Function
	 	 	

	
	

The	text	label	function	begins	with	ade_ent.

ade_entsetlocation

Sets	a	new	entity	label	point.

User	Security	Functions
	 	 	

	
	

The	user	security	functions	begin	with	ade_user.

ade_userget

Gets	the	login	name	or	entity	lock	name	of	the	local	user.

ade_usergetrights

Gets	the	access	rights	of	the	specified	user.

ade_userlist

Lists	the	current	users.

ade_userset

Logs	in	a	user.

ade_usersetrights

Sets	the	access	rights	for	the	specified	user.

Other	Functions
	 	 	

	
	

Miscellaneous	ade_xx	functions.

ade_entsetlocation

Sets	a	new	entity	label	point.

ade_expreval

Evaluates	an	AutoCAD	Map	expression.

ade_ssfree

Releases	a	selection	set.

ade_osfexpand

Searches	a	directory	and	returns	a	list	of	file	names.

ade_version

Gets	the	version	number	of	the	Data	Extension	programming	interface.

map_dwgbreakobj
Map	Tool	Functions 	 	

	
	

Breaks	linear	objects	where	they	cross	boundaries.

(map_dwgbreakobj	sscut	boundary	skiptopo	keepod)

Returns	a	selection	set	of	objects	cut	by	the	operation	or	nil.

sscut Selection	set	of	objects	to	cut.

boundary Object	name	of	a	single	object	or	a	selection	set	of	multiple
objects.	Valid	objects:	line,	polyline,	circle,	arc

skiptopo Skip	flag:
1	Skip	objects	referenced	by	a	topology
0	Trim	objects	referenced	by	a	topology

keepod Keep	flag	that	sets	whether	to	keep	object	data	of	clipped
objects	in	result	object:
1	Retain	all	object	data	on	any	clipped	object	
0	Drop	object	data	on	any	clipped	object

This	function	cuts	linear	objects,	such	as	lines,	polylines,	circles,	and	arcs,	that
cross	the	selected	boundary.	Unlike	the	map_dwgtrimobj	function,	this
function	does	not	delete	the	parts	of	the	object	on	either	side	of	the	boundary.
For	example,	you	could	mark	a	boundary	and	divide	one	map	into	two	section
maps	along	this	boundary.

The	following	example	prompts	you	to	select	an	object	to	break	and	make

choices	about	the	break	operation.	It	includes	error	reporting.

(prompt	"\nSelect	object	to	break	:")
(setq	sscut	(ssget))
(if	sscut	(progn
						(setq	boundary	
												(car	(entsel	"\nSelect	boundary	object	")))	
						(if	boundary	(progn	
												(initget	"Yes	No")	
												(setq	kword	
																								(getkword	"\nSkip	objects	referenced	
																									by	a	topology	Yes/No	<Yes>	:	"))	
												(if	(or	(null	kword)	(=	kword	"Yes"))	
																		(setq	skiptopo	1)	
																		(setq	skiptopo	0)	
)	
												(initget	"Yes	No")	
												(setq	kword	
																								(getkword	"\nRetain	object	data	
																									Yes/No	<Yes>	:	"))	
												(if	(or	(null	kword)	(=	kword	"Yes"))	
																		(setq	keepod	1)	
																		(setq	keepod	0)	
)	
												(setq	result	(map_dwgbreakobj	
																																	sscut	
																																	boundary	
																																	skiptopo	
																																	keepod))	
												(if	result	
																		(prompt	"\nObject(s)	break	successfully.")	
																		(progn	
																								(setq	nberr	(ade_errqty)	i	0)	
																								(repeat	nberr	
																														(prompt	(strcat	
																																				"\nError	"	(rtos	i	2	0)	"	of	"	

																																				(rtos	nb	2	0)	
																																				"	:	"	
																																				(ade_errmsg	i)))	
																														(setq	i	(1+	i))	
)	
)	
)	
))	
))

map_dwgtrimobj
Map	Tool	Functions 	 	

	
	

Trims	linear	objects	inside	or	outside	of	a	specified	boundary.

(map_dwgtrimobj	ssclip	boundary	inorout	skiptopo	keepod	bitflag)

Returns	a	selection	set	of	objects	trimmed	by	the	operation	or	nil.

ssclip Selection	set	of	objects	to	trim.

boundary Entity	name	of	a	boundary	object.	Valid	objects:	a	single
circle	or	a	single	closed	2D	polyline

inorout Trim	flag:
1	Trim	outside	boundary
0	Trim	inside	boundary

skiptopo Skip	flag:
1	Skip	objects	referenced	by	a	topology
0	Trim	objects	referenced	by	a	topology

keepod Keep	flag	that	sets	whether	to	keep	object	data	of	trimmed
objects	in	result	object:
1	Drop	object	data	from	all	trimmed	objects	
0	Retain	object	data	on	all	trimmed	objects

bitflag Bit	flag	that	sets	the	way	to	handle	objects	that	cannot	be
trimmed:
0	Delete	these	objects	within	or	on	trim	boundary
1	Ignore	these	objects	within	or	on	trim	boundary

2	Reference	the	insertion	point	of	any	of	these	
objects	within	or	on	trim	boundary

map_pltblkatts
Plotting	Functions 	 	

	
	

Gets	a	list	of	block	attributes.

(map_pltblkatts	name)

Returns	a	list	of	attributes	or	nil.

name Layout	block	name	(string)

map_pltblklist
Plotting	Functions 	 	

	
	

Gets	a	list	of	valid	plot	layouts	for	the	current	work	session.

(map_pltblklist)

Returns	the	names	of	the	blocks	in	a	list	or	nil.

This	function	returns	the	plot	layout	(block)	names	that	are	usable	as	plot
layouts.	To	qualify,	a	block	must	have	at	least	one	unique	viewport	on	one	of	its
layers.	That	is,	if	the	block	has	more	than	one	viewport,	it	must	have	one	layer
that	contains	only	one	viewport.

The	unique	viewport	can	share	its	layer	with	objects	of	other	types,	such	as	lines,
polylines,	blocks,	and	text.

map_pltblkvps
Plotting	Functions 	 	

	
	

Returns	a	list	of	valid	viewport	layers	in	a	specified	layout	blocks.

(map_pltblkvps	name)

Returns	a	list	of	the	valid	viewport	layers	or	nil	if	the	block	name	or	layout
block	is	invalid.

name Layout	block	name	(string)

map_pltcleanup
Plotting	Functions 	 	

	
	

Restores	settings	altered	by	map_pltinit.

(map_pltcleanup)

Returns	T	or	nil.

This	function	restores	certain	settings	to	the	state	they	were	in	before
map_pltinit	was	called.	See	map_pltInit	for	a	list	of	affected	settings.	Before
you	can	use	other	plot	functions,	you	must	call	map_pltinit	again.

map_pltcurrdef
Plotting	Functions 	 	

	
	

Selects	or	creates	a	plot	set.

(map_pltcurrdef	name)

Returns	T	or	nil.

name Name	of	the	plot	set	(string)

If	a	plot	set	called	name	does	not	exist	in	the	current	work	session	or	if	the
function	map_pltdefread	was	not	called,	this	function	creates	a	new	plot	set
called	name.

Use	map_pltcurrset	to	define	the	attributes	of	the	plot	set.

If	the	plot	set	name	exists	and	the	function	map_pltdefread	was	called,	this
function	loads	a	copy	of	name	into	memory.	Use	map_pltcurrGet	and
map_pltcurrSet	to	examine	or	change	its	attributes.

Note		Only	one	plot	set	can	be	current.

map_pltcurrdel
Plotting	Functions 	 	

	
	

Resets	a	plot	set	attribute	to	its	default	value.

(map_pltcurrdel	attr)

Returns	T	or	nil.

attr Name	of	the	attribute	to	reset	(string)

map_pltcurrget
Plotting	Functions 	 	

	
	

Gets	an	attribute	value	for	the	current	plot	set.

(map_pltcurrget	attr)

Returns	the	value	of	the	specified	attribute	or	nil.

attr Name	of	the	plot	set	attribute	to	retrieve	(string)

This	function	retrieves	the	value	of	a	specific	attribute	for	the	current	plot	set.
The	data	type	of	the	return	value	depends	upon	the	attribute.	To	set	plot	set
attributes,	use	map_pltdefget.

map_pltcurrsave
Plotting	Functions 	 	

	
	

Appends	the	current	plot	set	definition	to	the	plot	set	list	.

(map_pltcurrsave)

Returns	T	or	nil.

This	function	appends	the	current	plot	set	definition	to	the	plot	set	list	of	the
current	work	session.	This	list	is	not	saved	in	the	work	session	until	the	user
executes	a	save	with	a	call	to	map_pltdefsave.

To	edit	and	save	a	plot	set	definition

1.	 Get	the	plot	set	definition	with	map_pltdefread	and	map_pltcurrdef.
2.	 Make	the	necessary	changes.

3.	 Save	the	definition	in	the	list	with	map_pltcurrsave.
4.	 Save	the	list	in	the	current	work	session	with	map_pltdefsave.
5.	 Save	the	work	session.

If	you	do	not	save	before	the	end	of	the	processing,	another	application	can
overwrite	your	changes	with	a	call	to	map_pltcurrdef.

map_pltcurrset
Plotting	Functions 	 	

	
	

Sets	the	value	of	an	attribute	for	the	current	plot	set.

(map_pltcurrset	attr	value)

Returns	T	or	nil.

attr Name	of	the	plot	attribute	to	set	(string)

value Value	for	the	plot	set	attribute	(type	varies)

This	function	sets	the	value	of	the	specified	attribute.	The	value	data	type
depends	upon	the	attribute.	To	set	plot	attributes,	use	map_pltdefget.

map_pltdefdelete
Plotting	Functions 	 	

	
	

Deletes	a	plot	set	definition.

(map_pltdefdelete	name)

Returns	T	or	nil.

name Plot	set	name	(string)

The	function	updates	the	plot	definition	dictionary	in	the	current	work	session.

map_pltdefget
Plotting	Functions 	 	

	
	

Gets	the	value	of	an	attribute	of	the	plot	set	definition.

(map_pltdefget	name	attr)

Returns	the	value	of	the	specified	attribute	or	nil.

name Plot	set	name	(string)

attr Name	of	the	plot	set	attribute	to	retrieve	(string).

To	get	the	value	of	an	attribute	for	the	current	plot	set,	use	map_pltCurrGet.

The	data	type	of	the	return	value	depends	on	the	attribute.

map_pltdeflist
Plotting	Functions 	 	

	
	

Gets	the	names	of	available	plot	set	definitions.

(map_pltdeflist)

Returns	a	list	of	plot	set	names	or	nil	if	no	plot	sets	are	available.

This	function	returns	the	available	plot	set	definitions	(strings)	in	the	plot
definition	dictionary	in	the	current	work	session.

Before	using	this	function,	you	must	call	map_pltdefread.

map_pltdefread
Plotting	Functions 	 	

	
	

Reads	in	a	plot	set	definition.

(map_pltdefread)

Returns	T	if	plot	set	definitions	are	available	to	read	or	nil.

This	function	provides	access	to	plot	sets	in	the	plot	definition	dictionary	for	the
current	work	session.

Warning	If	you	do	not	call	map_pltdefsave,	a	new	call	to	map_pltdefread
will	erase	your	new	plot	set	definition	or	your	changes	to	an	existing	plot	set.

map_pltdefsave
Plotting	Functions 	 	

	
	

Writes	the	current	plot	set	definition	to	the	plot	definition	dictionary	.

(map_pltdefsave)

Returns	T	if	plot	set	definitions	are	available	to	save	or	nil.

This	function	stores	the	plot	set	definition	list	in	the	current	work	session.

If	you	do	not	call	this	function,	a	new	call	to	map_pltdefread	will	erase	your
new	plot	set	definition	or	your	changes	to	an	existing	plot	set.

map_pltdefvalid
Plotting	Functions 	 	

	
	

Performs	a	cursory	check	of	the	validity	of	a	plot	set	.

(map_pltdefvalid	name)

Returns	T	or	nil.

name Name	of	the	plot	set	(string)

The	function	performs	a	cursory	check	of	the	given	plot	set	to	see	if	all	required
attributes	have	been	set.	It	does	not	attach	and	query	the	boundary	drawing.
When	used	within	a	dialog	box,	this	call	can	quickly	check	on	a	plot	set's
usability.

If	the	check	fails,	you	can	use	data	extension	error	message	functions
(ade_err[xx])	to	retrieve	errors	from	the	error	stack.

To	perform	an	extensive	check,	use	the	map_pltdefverify	function.

map_pltdefverify
Plotting	Functions 	 	

	
	

Performs	an	extensive	check	of	the	validity	of	a	plot	set	.

(map_pltdefverify	name)

Returns	T	if	the	plot	set	is	valid	or	nil.

name Name	of	the	plot	set	(string)

This	function	makes	sure	that	no	errors	occur	when	plotting	takes	place.	Since
the	check	includes	querying	for	all	boundary	objects,	it	could	take	some	time.

To	perform	a	cursory	check,	use	the	map_pltdefvalid	function.

If	the	check	fails,	you	can	use	data	extension	error	message	functions
(ade_err[xx])	to	retrieve	errors	from	the	error	stack.

map_pltdisplay
Plotting	Functions 	 	

	
	

Generates	the	plot	display	for	the	specified	boundary.

(map_pltdisplay	bndryname)

Returns	T	or	nil.

bndryname Name	for	a	boundary	object	(string)

This	function	prepares	the	display	to	plot	for	the	given	plot	set	definition	and
boundary	object	name.	Generating	the	plot	display	for	the	specified	boundary
includes

Switching	to	paper	mode	(if	necessary)
Inserting	the	layout	block
Mapping	boundary	object	data	to	layout	block	attributes	(if	applicable)
Executing	the	query(ies)	to	collect	the	objects	to	plot
Trimming	the	objects	to	the	boundary	(if	applicable)
Displaying	the	objects	in	the	view	port

You	must	call	map_pltdisplay	before	you	call	map_pltplot.

map_pltexecute
Plotting	Functions 	 	

	
	

Plots	the	plot	set	for	the	specified	plot	set	name.

(map_pltexecute	name)

Returns	T	or	nil.

name Name	of	plot	set	to	execute	(string)

This	function	generates	and	issues	plots	for	each	defined	boundary.

To	get	a	list	of	available	plot	set	names,	use	map_pltdeflist.

map_pltinit
Plotting	Functions 	 	

	
	

Initializes	environment	for	plotting.

(map_pltinit)

Returns	T	always.

This	function	must	be	called	before	any	other	plotting	functions.	The
map_pltinit	function	modifies	the	following	settings	and	checks	that	the	plot
set	description	file	exists:

AutoCAD	Variables

Variable Setting

CMDECHO 0

EXPERT 1

AutoCAD	Map	Options

Option Setting

DontAddObjectsToSaveSet T

ActivateDwgsOnAttach T

MkSelSetWithQryObj T

To	restore	these	settings	to	their	original	values,	use	map_pltcleanup.	Before
you	can	use	other	plot	functions,	you	must	call	map_pltinit	again.

See	ade_prefgetval	for	a	complete	list	of	AutoCAD	Map	options.

map_pltplot
Plotting	Functions 	 	

	
	

Executes	the	current	plot	script.

(map_pltplot)

Returns	T	or	nil.

The	function	plots	the	current	screen	display.	Like	the	AutoCAD	PLOT
command,	it	executes	the	plot	script	of	the	screen	display's	plot	set	definition.

You	must	call	map_pltdisplay	before	you	call	this	function.

map_pltrestore
Plotting	Functions 	 	

	
	

Restores	display	altered	by	map_pltdisplay.

(map_pltrestore)

Returns	T	or	nil.

map_topoaudit
Map	Topology	Functions 	 	

	
	

Checks	whether	a	topology	is	correct.

(map_topoaudit	tpm_id)

Returns	T	or	nil.

tpm_id Unique	ID	for	a	topology	(real).	Topology	must	be	open	for
Read

The	function	audits	the	geometry	of	a	topology	to	determine	whether	the
geometrical	relationships	defined	by	the	topology	object	data	are	correct.	It
shows	the	location	of	errors.

The	following	example	checks	a	topology	named	"parcels"	and	provides	error
reporting.

(setq	tpm_id	(tpm_acopen	"parcels"))
(if	tpm_id	(progn	
				(setq	result	(map_topoAudit	tpm_id))
				(tpm_acclose	tpm_id)
))

(if	(null	result)	(progn	
				(setq	i	0	nberr	(ade_errqty))
				(repeat	nberr	
							(prompt	

										(strcat	"\nError	"	(rtos	i	2	0)	"	of	"	(rtos	nberr	2	0)	"	:	"	(ade_errmsg	i))
)
							(setq	i	(1+	i))
)
))

map_topoclose
Map	Topology	Functions 	 	

	
	

Converts	all	polygons	in	a	topology	to	closed	polylines.

(map_topoclose	toponame	layer	group	odata	aselink)

Returns	a	selection	set	of	closed	polylines	created	by	the	function.

toponame Unique	name	for	a	topology	(string).	Topology	must	be
closed.

layer Target	layer	for	closed	polylines	(string).	If	layer	name	is
incorrect	(for	example	"@@"),	polylines	are	created	in	the
current	layer

group Group	flag	for	complex	polygons:	1	or	0	
1	group	complex	polygons	
0	do	not	group	complex	polygons

odata Object	data	flag	that	sets	whether	to	copy	object	data	on	the
polygon	centroid	to	the	resulting	polyline:	1	or	0	
1	copy	object	data	on	the	centroid	
0	ignore	object	data	on	the	centroid

aselink ASE	link	flag	that	sets	whether	to	copy	ASE	link	data	on	the
centroid	to	the	resulting	polyline:	1	or	0	
1	copy	ASE	link	data	on	the	centroid	
0	ignore	ASE	link	data	on	the	centroid

map_topocomplete
Map	Topology	Functions 	 	

	
	

Completes	all	objects	in	a	loaded	partial	topology.

(map_topocomplete	toponame)

Returns	a	selection	set	of	all	objects	retrieved	to	complete	the	topology.

toponame Unique	name	for	a	topology	(string).	Topology	must	be
closed.

This	function	performs	a	query	to	retrieve	objects	into	the	work	session.	The
tpm_infocomplete	function	determines	whether	the	topology	is	completely
represented	in	the	work	session.

This	function	can	only	complete	objects	imported	from	an	existing	source
drawing.	For	a	polygon	topology,	this	function	imports	links,	nodes,	and	a
centroid,	if	it	is	missing,	from	the	source	drawing.	For	a	network	topology,	this
function	imports	links	and	nodes.	For	a	network	topology,	it	imports	only	nodes.

map_topostat
Map	Topology	Functions 	 	

	
	

Gets	statistics	for	a	topology.

(map_topostat	tpm_id)

Returns	a	list	containing	the	statistics	for	the	specified	topology,	or	nil.

tpm_id Unique	ID	for	a	topology	(real).	Topology	must	be	open	for
read

This	function	returns	a	list	a	list	of	dotted	pairs	or	nil.

The	following	dotted	pairs	apply	to	all	topology	types:

(node_count	.	#nodes)
(link_count	.	#links)
(polygon_count	.	#polygons)
((min_x	.	#n)	(min_y	.	#n))
((max_x	.	#n)	(max_y	.	#n))

Note		This	function	is	not	designed	to	count	polygons	in	a	partial	topology.	If	the
topology	in	question	is	partial,	the	polygon_count	statistic	may	be	overstated.
This	is	because	map_topostat	counts	not	only	the	polygons	in	the	partial
topology,	but	also	any	polygons	that	share	common	edges	with	them	in	the
complete	topology,	even	if	the	adjacent	polygons	are	not	actually	present	in	the
current	drawing.

The	following	dotted	pairs	apply	to	network	topologies:

(length_total	.	#n)
(length_average	.	#n)
(length_min	.	#n)
(length_max	.	#n)
(length_variance	.	#n)
(length_deviation	.	#n)

The	following	dotted	pairs	apply	to	polygon	topologies:

(area_total	.	#n)
(area_average	.	#n)
(area_min	.	#n)
(area_max	.	#n)
(area_variance	.	#n)
(area_deviation	.	#n)
(perimeter_total	.	#n)
(perimeter_average	.	#n)
(perimeter_min	.	#n)
(perimeter_max	.	#n)
(perimeter_variance	.	#n)
(perimeter_deviation	.	#n)

Boundary	Functions
	 	 	

	
	

The	map	boundary	functions	begin	with	map_dwg.

map_dwgBreakObj

Breaks	objects	where	they	cross	boundary	edges.

map_dwgTrimObj

Trims	linear	objects	inside	or	outside	of	a	specified	boundary.

Plotting	Functions
	 	 	

	
	

The	map	plotting	functions	begin	with	map_plt.

map_pltBlkAtts

Gets	a	list	of	block	attributes.

map_pltBlkList

Returns	a	sorted	list	of	block	names	that	are	usable	as	plot	layouts.

map_pltBlkVps

Returns	a	list	of	valid	viewport	layers	in	layout	blocks.

map_pltCleanup

Restores	settings	altered	by	map_pltInit.

map_pltCurrDef

Selects	or	creates	a	plot	set.

map_pltCurrDel

Resets	a	plot	set	attribute	to	its	default	value.

map_pltCurrGet

Retrieves	the	value	for	a	specific	attribute	for	the	current	plot	set.

map_pltCurrSave

Appends	the	current	plot	set	definition	to	the	plot	set	list.

map_pltCurrSet

Sets	the	value	of	an	attribute	for	the	current	plot	set.

map_pltDefDelete

Deletes	a	plot	set	definition.

map_pltDefGet

Gets	the	value	of	an	attribute	of	the	plot	set	definition.

map_pltDefList

Returns	a	list	of	available	plot	set	definitions	in	the	project.

map_pltDefRead

Reads	in	a	plot	set	definition	from	the	plot	definition	dictionary	for	the	project.

map_pltDefSave

Writes	the	current	plot	set	definition	to	the	plot	definition	dictionary.

map_pltDefValid

Tests	the	plot	set	definition	for	validity.

map_pltDefVerify

Validates	the	given	plot	set	to	prevent	plotting	errors.

map_pltDisplay

Generates	the	plot	display	for	the	specified	boundary.

map_pltExecute

Executes	a	plot,	given	a	specified	plot	set.

map_pltInit

Initializes	environment	for	plotting.

map_pltPlot

Executes	the	plot	script	of	the	current	plot	set	definition.

map_pltRestore

Restores	display	altered	by	map_pltDisplay.

Topology	Functions
	 	 	

	
	

The	map	topology	functions	begin	with	map_topo.

map_topoAudit

Checks	the	geometrical	relationships	defined	by	the	topology	object	data.

map_topoClose

Converts	all	polygons	in	a	topology	to	closed	polylines.

map_topoComplete

Completes	all	objects	in	a	loaded	partial	topology.

map_topoStat

Gets	the	statistics	for	a	topology.

tpm_acclose
Access	Functions 	 	

	
	

Closes	a	topology.

(tpm_acclose	tpm_id)

Returns	T	or	nil.

tpm_id Topology	ID	(real)	returned	by	tpm_acopen

When	you	close	a	topology,	it	remains	in	memory	until	you	unload	it.

tpm_acexist
Access	Functions 	 	

	
	

Checks	whether	a	topology	exists.

(tpm_acexist	toponame	[source	[loaded]])

Returns	T	if	the	topology	exists	or	nil.

toponame Topology	name	(string)

source Source	flag	T	or	nil:	
T	Check	topologies	in	the	current	and	source	drawings	
nil	Check	the	current	drawing	only	(default)

loaded Loaded	in	memory	flag	T	or	nil:	
T	Check	only	topologies	in	memory	
nil	Check	all	topologies	(default)

tpm_acload
Access	Functions 	 	

	
	

Loads	a	topology	into	memory.

(tpm_acload	toponame	[source])

Returns	T	or	nil.

toponame Topology	name	(string)

source Source	flag	T	or	nil:	
T	Read	from	source	drawings	only	
nil	Read	from	current	drawing	only	(default)

Before	loading	a	topology,	you	must	first	test	for	its	existence	with
tpm_acexist.

Topology	information	is	stored	in	the	drawing,	but	the	topology	is	not
automatically	loaded	when	you	open	the	drawing.	If	you	want,	for	example,	to
query,	edit,	or	overlay	a	topology,	you	must	load	it	into	memory.	Once	loaded,
the	topology	remains	in	memory	until	you	unload	it.

tpm_acopen
Access	Functions 	 	

	
	

Opens	a	topology.

(tpm_acopen	toponame	[write_access])

Returns	the	topology	ID	or	nil.

toponame Topology	name	(string)

write_access Access	status;	T	or	nil:	
T	Write	
nil	Read	only	(default)

The	tpm_acopen	function	opens	a	topology	and	creates	a	new	tpm_id	that
provides	access	to	it.

If	your	application	opens	a	topology	with	write	access,	your	user	is	the	only	one
who	can	edit	this	topology.	No	other	user	can	even	open	it.	If	your	application
opens	topology	with	read	access,	other	users	can	open	it	also,	but	with	read
access	only.	To	find	out	the	access	status	of	an	already-open	topology,	use
tpm_infostatus.

If	you	use	tpm_acopen	to	test	the	status	of	a	topology,	always	close	the
topology	with	tpm_acclose	to	ensure	that	you	do	not	leave	the	topology	open
with	multiple	IDs	pointing	to	it.

A	topology	loaded	from	a	source	drawing	cannot	be	opened	for	write	access.	To
find	out	if	a	topology	was	loaded	from	a	current	drawing,	use

tpm_infocurrent.

Important	You	must	store	the	topology	ID	when	it	is	returned	by	tpm_acopen,
and	make	sure	that	you	do	not	lose	it.	If	you	do	not	have	the	ID	of	an	open
topology,	you	have	no	way	to	get	it,	and	you	cannot	close	the	topology.	Your
alternatives	are	to	quit	AutoCAD	Map	or	start	a	new	drawing.

tpm_acqty
Access	Functions 	 	

	
	

Counts	topologies.

(tpm_acqty	[source	[loaded]])

Returns	a	topology	count	(integer)	or	nil.

source Source	flag	T	or	nil:	
T	Count	topologies	in	current	and	source	drawings	
nil	Count	topologies	in	current	drawing	only	(default)

loaded Loaded	in	memory	flag	T	or	nil:	
T	Count	only	topologies	in	memory	
nil	Count	all	topologies	(default)

tpm_acunload
Access	Functions 	 	

	
	

Unloads	a	topology	from	memory.

(tpm_acunload	toponame)

Returns	T	or	nil.

toponame Topology	name	(string)

Before	a	topology	can	be	unloaded,	all	topology	IDs	that	reference	it	must	be
closed	with	tpm_acclose.

tpm_acupgradeopen
Access	Functions 	 	

	
	

Allows	write	access	for	a	topology	that	is	open	without	it.

(tpm_acupgradeopen	tpm_id)

Returns	T	or	nil.

tpm_id Topology	ID	(real)	returned	by	tpm_acopen

If	a	topology	is	already	open	with	write	access,	you	cannot	upgrade	access	with
this	function.	You	cannot	upgrade	access	to	write	for	a	source	topology.

tpm_anabuffer
Analyzing	Functions 	 	

	
	

Creates	a	buffer	space	around	a	topology.

(tpm_anabuffer	source_id	offset	var_id	[result_name]	[result_desc])

Returns	T	or	nil.

source_id Source	topology	ID	(real)

offset Buffer	offset	(string),	a	standard	Data	Extension
expression

var_id Topology	variables	ID	(real)

result_name Resulting	topology	name	(string)	or	nil

result_desc Resulting	topology	description	(string)	or	nil

The	topology	variables	ID	references	a	set	of	topology	variables.

This	function	draws	one	or	more	buffer	perimeters.	If	the	result	argument	is
omitted	or	nil,	the	buffered	topologies	are	AutoCAD	objects	only.	Otherwise	the
function	creates	a	new	topology	that	is	loaded	but	not	open.

The	source	topology	must	be	loaded	and	open.	The	Read/Write	access	of	the
source	topology	does	not	affect	this	function.

You	can	buffer	any	of	the	three	topology	types,	node,	network,	or	polygon.

tpm_anadissolve
Analyzing	Functions 	 	

	
	

Merges	connected	topology	elements	that	have	the	same	value	in	the	specified
field.

(tpm_anadissolve	source_id	field	var_id	[result_name]	[result_desc]
[objtable]	[objcolumn])

Returns	T	or	nil.

source_id Source	topology	ID	(real).	Polygon	or	network	topology
only.

field Dissolve	field	name	(string),	a	standard	Data	Extension
expression.	For	example,	:Value@Tab1,	.Layer.

var_id Topology	variables	ID	(real).

result_name Name	of	new	topology	(string);	topology	is	loaded	but	not
open.	If	argument	is	omitted	or	nil,	the	dissolve	results	in
a	collection	of	AutoCAD	objects.

result_desc Resulting	topology	description	(string)	or	nil.

objTable Object	data	table	name	(string)	or	nil.

objColumn Object	data	field	name	(string)	or	nil.

The	topology	variables	ID	references	a	set	of	topology	variables.

The	function	works	for	polygon	or	network	topologies.	If	it	finds	two	or	more
attached	objects	that	have	the	same	value	in	the	specified	dissolve	field,	it
dissolves	them.

Dissolving	polygons	deletes	their	centroids	and	shared	links	and	creates	a
new	polygon	with	a	new	centroid.
Dissolving	links	deletes	shared	nodes.	The	links	are	merged	into	one
polyline.

The	function	writes	the	shared	dissolve	field	value	to	the	object	data	table	and
field	that	you	specify	and	attaches	the	table	to	the	result	object.	If	this	table	does
not	exist,	the	function	creates	it.	If	the	table	you	specify	is	already	attached	to
one	of	the	source	objects,	a	table	with	default	values	is	attached	to	the	result
object.

tpm_anaoverlay
Analyzing	Functions 	 	

	
	

Overlays	two	topologies.

(tpm_anaoverlay	overlay_id	overlay_data	source_id	source_data	oper
var_id	[obj_table]	[obj_tabledesc]	[result_name]	[result_desc])

Returns	T	or	nil.

overlay_id Overlay	topology	ID	(real)	of	topology	1.	Must	be	a
polygon	topology.

overlay_data Overlay	data	expression	composed	of	AutoCAD	Map
expressions	and	output	object	data	columns	or	nil.	See
the	Overlay	Data	Expressions	section	below.

source_id Source	topology	ID	(real)	of	topology	2.	Must	be	a
polygon	topology.

source_data Overlay	data	expression	composed	of	AutoCAD	Map
expressions	and	output	object	data	columns	or	nil.	See
the	Overlay	Data	Expressions	section	below.

oper Overlay	operation	(integer).	See	the	Overlay	Operations
table	below.

var_id ID	of	topology	variables	for	building	the	result	topology
(real).

obj_table Name	of	the	new	object	data	table	that	will	contain	the
final	data	(created	by	the	function).	Cannot	be	an

existing	table.

obj_tabledesc Object	data	table	description.

result_name Result	topology	name	(string).	Omit	if	function	results
produces	AutoCAD	objects	instead	of	a	topology.

result_desc Result	topology	description	(string).

The	source	topology	must	be	of	polygon	type	for	union	and	paste	operations.	For
all	other	operations,	it	can	be	of	any	topology	type,	such	as	node,	network,	and
polygon.

The	topology	variables	ID	references	a	set	of	topology	variables.

Overlay	Data	Expressions

The	overlay_data	and	source_data	arguments	are	overlay	data	expressions.
They	have	the	following	format:

(list	(list	expr1	colname1	coldesc1	coltype1)
(list	expr2	.	.	.)
.	.	.)

Overlay	Data	Expression	Arguments

expr1 AutoCAD	Map	expression	(string).

col_name1 Object	data	column	name	(string).

col_desc1 Object	data	column	description	(string).

col_type1 Object	data	column	type	(integer):	1	through	4,	where	1	=
integer,	2	=	real,	3	=	character,	and	4	=	point.

Overlay	Operations

1 Intersect

2 Union

3 Identity

4 Erase

5 Clip

6 Paste

Result	Topology

If	the	result_name	argument	is	omitted	or	nil,	the	result	is	a	collection	of
AutoCAD	objects.	Otherwise,	it	is	a	new	topology	that	is	loaded	but	not	open.

You	must	specify	the	list	of	data	values	to	come	from	each	input	topology	and
the	specific	data	for	each.

Additionally,	you	must	specify	the	name	of	the	result	object	data	table	in	the
objTable	parameter	to	contain	the	final	data.	If	you	do	not	specify	a	result	table,
no	data	is	attached	to	the	resulting	topology	elements.	The	function	creates	this
table.	If	the	result	table	you	specify	already	exists,	the	function	returns	an	error
and	cancels	the	overlay	process.

Data	derived	by	the	overlay	process	is	also	attached	to	the	result	object	data
table.	This	data	is	written	for	each	topology	element	in	the	resulting	topology.	It
is	written	for	each	polygon	if	the	source	is	a	polygon	topology,	for	each	link	if	it
is	a	network	topology,	or	for	each	node	if	it	is	a	node	topology.	The	table	always
includes	the	following	fields:

Field	Names	in	Result	Object	Data	Table

TOPO_ID Element	ID	of	the	new	element	in	the	result
topology

T1_ID Element	ID	of	the	parent	polygon	in	the	overlay

topology

T1_PERCENTAREA Area	of	the	new	polygon	in	the	result	topology
compared	to	the	area	of	the	parent	polygon	in	the
overlay	topology.	Written	only	if	both	overlay	and
result	are	polygon	topologies

T2_ID Element	ID	of	parent	element	in	the	source
topology.	The	parent	element	can	be	a	node,	link,
or	polygon.

T2_PERCENTAREA Area	of	the	new	polygon	in	the	resulting	topology
compared	to	the	area	of	the	parent	polygon	in	the
source	topology.	Written	only	if	both	source	and
result	are	polygon	topologies

The	result	table	includes	these	fields	along	with	the	fields	that	you	specify	in	the
arguments	you	supply	for	the	overlay_data	and	source_data	parameters.	Each
field	name	is	prefixed	with	T1_	or	T2_	to	indicate	which	topology	its	data
comes	from.

For	example,	if	you	specify	FIELD1,	FIELD2	and	FIELD3	from	table	SOIL
for	the	first	topology	and	FIELD1,	FIELD4	and	FIELD5	from	table
WATER	for	the	second,	the	result	table	has	the	following	fields:

T1_SOIL_FIELD1
T1_SOIL_FIELD2
T1_SOIL_FIELD3
T1_WATER_FIELD1
T1_WATER_FIELD4
T1_WATER_FIELD5

The	following	code	overlays	two	topologies.	The	names	t1	and	list1	refer	to	the
overlay	topology.

(setq	t1	(tpm_acopen	"top1"))		;	a	polygon	topology
(setq	t2	(tpm_acopen	"top2"))
(setq	v	(tpm_varalloc))
(setq	list1
			(list	(list	".LAYER"	"OVERLAY_LAYER"	""	3)))	
(setq	list2
			(list	(list	".LAYER"	"SOURCE_LAYER"	""	3)))	
(tpm_anaoverlay	t1
			list1	
			t2	
			list2	
			1	
			v	
			"OVERLAY_TABLE"	
			nil	
			"OVERLAY_TOPO")	
			;	Result_desc	argument	omitted	

tpm_cleanactionlistdel
Cleanup	Functions 	 	

	
	

Deletes	a	cleanup	action	from	the	action	list.

(tpm_cleanactionlistdel	clean_var_id	index)

Returns	T	or	nil.

clean_var_id Cleanup	variables	ID	(real)	returned	by	tpm_varalloc

index Position	in	the	list	of	the	action	to	delete	(integer)

The	clean_var_id	argument	references	properties	for	the	cleanup	operation	that
you	are	preparing	to	initiate	(see	Cleanup	Variables).	These	properties	include
the	action	list.

The	index	argument	is	a	zero-based	position	in	the	action	list.	A	value	greater
than	or	equal	to	the	list	size	or	less	than	0	returns	an	error.

ADSRX	Equivalent

int
tpm_cleanactionlistdel

ade_id	clean_var_id,
long	index);

Returns	RTNORM	or	an	error	code.

tpm_cleanactionlistqty
Cleanup	Functions 	 	

	
	

Gets	the	number	of	cleanup	actions	in	the	action	list.

(tpm_cleanactionlistqty	clean_var_id)

Returns	the	number	of	cleanup	actions	(real)	or	nil.

clean_var_id Cleanup	variables	ID	(real)	returned	by	tpm_varalloc

The	clean_var_id	argument	references	properties	for	the	cleanup	operation	that
you	are	preparing	to	initiate	(see	Cleanup	Variables).	These	properties	include
the	action	list.

ADSRX	Equivalent

int
tpm_cleanactionlistqty

ade_id	clean_var_id,
long	*qty);

Returns	RTNORM	or	an	error	code.

qty Outputs	the	number	of	cleanup	actions

The	ADSRX	function	passes	the	number	of	cleanup	actions	through	a	parameter

(as	a	long)	instead	of	returning	it	(as	a	real)	as	the	AutoLISP	function	does.

tpm_cleanalloc
Cleanup	Functions 	 	

	
	

Allocates	the	cleanup	model.

(tpm_cleanalloc)

Returns	the	cleanup	model	ID	(real)	or	nil.

To	clean	the	objects	before	they	become	the	elements	of	a	topology,	you	must
construct	a	model	of	these	objects	and	their	relationships.	You	can	use	this	model
to	discover	and	repair	drawing	errors	that	would	prevent	topology	creation.

tpm_cleananchorss
Cleanup	Functions 	 	

	
	

Gets	a	cleanup	model's	anchored	entities.

(tpm_cleananchorss	clean_var_id)

Returns	a	selection	set	of	anchored	entities	or	nil.

clean_var_id Cleanup	variables	ID	(real)	returned	by	tpm_varalloc

Call	this	function	after	calling	tpm_cleaninit.

ADSRX	Equivalent

int
tpm_cleananchorss

ade_id	clean_var_id,
ads_name	ss);

Returns	RTNORM	or	an	error	code.

ss Anchored	entities,	a	selection	set

tpm_cleancancel
Cleanup	Functions 	 	

	
	

Cancels	the	cleanup	process	.

(tpm_cleancancel	clean_id)

Returns	T	or	nil.

clean_id Cleanup	model	ID	returned	by	tpm_cleanalloc

The	function	clears	the	cleanup	model	without	updating	the	drawing.	Do	one	of
the	following:

Because	the	model	is	still	allocated,	you	can	call	tpm_cleaninit	using
the	same	cleanup	model	ID.	You	can	then	use	tpm_cleanstart	to	start
the	cleanup	process.

Because	tpm_cleancancel	does	not	cancel	initialized	values,	you	can
clear	the	cleanup	model	and	continue	without	calling	tpm_cleaninit.

tpm_cleancomplete
Cleanup	Functions 	 	

	
	

Tests	for	groups	to	clean.

(tpm_cleancomplete	clean_id)

Returns	T	if	no	more	groups	need	cleaning	or	nil.

clean_id Model	ID	returned	by	tpm_cleanalloc.

You	must	call	this	function	after	tpm_cleangroupnext	to	determine	if	another
group	needs	cleaning,	because	tpm_cleangroupnext	does	not	provide	this
information.

You	must	usually	execute	several	cleanup	loops,	because	fixing	one	error
sometimes	causes	others.	After	you	process	all	the	groups	in	the	selection	set,
call	tpm_cleanstart	to	return	to	the	beginning,	and	then	call
tpm_cleancomplete	to	test	if	cleaning	is	complete.	Repeat	the	loop	until
cleaning	is	complete.

tpm_cleanend
Cleanup	Functions 	 	

	
	

Concludes	the	cleanup	process.

(tpm_cleanend	clean_id)

Returns	T	or	nil.

clean_id Model	ID	(real)	returned	by	tpm_cleanalloc

The	function	resets	the	cleanup	model	and	updates	the	drawing.	It	fixes	errors
marked	with	the	tpm_cleanerrorfix	function.	The	model	is	still	allocated.	It	is
possible	to	call	tpm_cleaninit	using	the	same	cleanup	model	ID.

Each	error	has	some	default	method,	which	tpm_cleanend	uses	during	error
fixing.	To	change	this	method,	use	tpm_cleanerrorset.

tpm_cleanerrorcur
Cleanup	Functions 	 	

	
	

Sets	the	next	error	to	clean	in	the	current	group.

(tpm_cleanerrorcur	clean_id	index)

Returns	T	or	nil.

clean_id Model	ID	(real)	returned	by	tpm_cleanalloc

index Index	of	the	error	to	clean.	The	index	of	the	first	error	is	0

The	next	error	to	clean	is	also	called	the	current	error.

tpm_cleanerrordraw
Cleanup	Functions 	 	

	
	

Creates	a	temporary	marker	for	the	current	error.

(tpm_cleanerrordraw	clean_id)

Returns	T	or	nil.

clean_id Model	ID	(real)	returned	by	tpm_cleanalloc

Unlike	the	persistent	markers	drawn	by	tpm_cleanerrormark,	these	markers
are	deleted	when	the	drawing	redraws.

tpm_cleanerrorfix
Cleanup	Functions 	 	

	
	

Fixes	the	current	error.

(tpm_cleanerrorfix	clean_id)

Returns	T	or	nil.

clean_id Model	ID	(real)	returned	by	tpm_cleanalloc

This	function	marks	the	current	error	to	fix.	It	fixes	the	errors	in	the	cleanup
model,	but	does	not	fix	the	drawing.	The	objects	in	the	drawing	are	not	fixed
until	you	call	tpm_cleanend.

Each	error	has	a	default	method	that	tpm_cleanend	uses	during	error	fixing.
You	can	use	tpm_cleanerrorset	to	change	this	method.	For	example,	the
default	method	for	the	dangling	node	error	is	to	erase	the	link.	If	you	call
tpm_cleanerrorset	for	this	error,	the	dangling	node	is	moved	to	a	new	position,
but	is	not	erased.

tpm_cleanerrorget
Cleanup	Functions 	 	

	
	

Gets	the	coordinates	of	the	current	error	point.

(tpm_cleanerrorget	clean_id)

Returns	a	two-dimensional	point	or	nil.

clean_id Model	ID	(real)	returned	by	tpm_cleanalloc

The	error	point	is	a	misplaced	node.	For	example,	for	a	line	undershoot,	the	end
of	the	unattached	line	is	the	error	point.

To	specify	the	error	to	get,	use	tpm_cleanerrorcur.

tpm_cleanerrormark
Cleanup	Functions 	 	

	
	

Creates	a	persistent	marker	for	the	current	error.

(tpm_cleanerrormark	clean_id)

Returns	T	or	nil.

clean_id Model	ID	(real)	returned	by	tpm_cleanalloc

Unlike	the	temporary	marker	drawn	by	tpm_cleanerrordraw,	these	markers
are	AutoCAD	objects,	and	they	become	part	of	the	drawing	until	you	perform
another	cleanup.	AutoCAD	Map	automatically	erases	persistent	markers	from
any	previous	cleanup	process.

tpm_cleanerrorset
Cleanup	Functions 	 	

	
	

Sets	the	coordinates	of	an	error	fix	point.

(tpm_cleanerrorset	clean_id	coords)

Returns	T	or	nil.

clean_id Model	ID	(real)	returned	by	tpm_cleanalloc

coords 2D	point.

You	can	use	this	function	to	change	the	default	method	used	by	tpm_cleanend
during	error	fixing.	For	example,	the	default	method	for	the	dangling	node	error
is	to	erase	the	link.	If	you	call	tpm_cleanerrorset	for	this	error,	the	dangling
node	is	moved	to	the	new	position,	but	is	not	erased.

You	can	also	use	this	function	to	merge	a	cluster	of	points	to	the	point	you
specify.

To	tell	the	clean	engine	which	error	to	set,	use	tpm_cleanerrorcur.

tpm_cleanfree
Cleanup	Functions 	 	

	
	

Frees	the	cleanup	model.

(tpm_cleanfree	clean_id)

Returns	T	or	nil.

clean_id Model	ID	(real)	returned	by	tpm_cleanalloc

tpm_cleangroupdraw
Cleanup	Functions 	 	

	
	

Creates	temporary	markers	for	all	errors	of	the	current	group.

(tpm_cleangroupdraw	clean_id)

Returns	T	or	nil.

clean_id Model	ID	(real)	returned	by	tpm_cleanalloc

tpm_cleangroupfix
Cleanup	Functions 	 	

	
	

Fixes	all	errors	of	the	current	group.

(tpm_cleangroupfix	clean_id)

Returns	T	or	nil.

clean_id Model	ID	(real)	returned	by	tpm_cleanalloc

This	function	marks	errors	in	the	entire	current	group	for	fixing.	It	fixes	the
errors	in	the	cleanup	model,	but	does	not	fix	the	drawing.	The	objects	in	the
drawing	are	not	fixed	until	you	call	tpm_cleanend.

To	mark	only	the	current	error,	use	tpm_cleanerrorfix.

tpm_cleangroupmark
Cleanup	Functions 	 	

	
	

Creates	persistent	markers	for	all	errors	of	the	current	group.

(tpm_cleangroupmark	clean_id)

Returns	T	or	nil.

clean_id Model	ID	(real)	returned	by	tpm_cleanalloc

tpm_cleangroupnext
Cleanup	Functions 	 	

	
	

Goes	to	the	next	error	group.

(tpm_cleangroupnext	clean_id)

Returns	T	or	nil.

clean_id Model	ID	(real)	returned	by	tpm_cleanalloc

The	function	always	returns	T,	and	fails	only	when	the	clean_id	parameter	is
invalid.	It	cannot	inform	you	when	there	are	no	more	groups	to	clean.	To	check
for	this	condition,	use	tpm_cleancomplete.

tpm_cleangroupqty
Cleanup	Functions 	 	

	
	

Counts	the	errors	in	the	current	group.

(tpm_cleanqroupqty	clean_id)

Returns	the	error	count	(real)	or	nil.

clean_id Model	ID	(real)	returned	by	tpm_cleanalloc

In	the	ADSRX	equivalent	function,	the	error	count	type	is	long.	Because	this
32-bit	data	type	is	not	available	in	Visual	LISP,	the	Visual	LISP	function	uses	the
32-bit	type	real.

tpm_cleangroupsubtype
Cleanup	Functions 	 	

	
	

Determines	the	subtype	of	the	current	group.

(tpm_cleangroupsubtype	clean_id)

Returns	a	subtype	code	or	nil.

clean_id Model	ID	(real)	returned	by	tpm_cleanalloc

Subtype	Codes

1 Degenerate	entities	(subtype	of	Erase	Short	Objects)

2 Short	entities	(subtype	of	Erase	Short	Objects)

3 Short	segments	(subtype	of	Erase	Short	Objects)

4 Vertex	is	near	to	segment	(subtype	of	Extend	Undershoots)

5 Vertex	is	near	to	vertex	(subtype	of	Extend	Undershoots)

Codes	1	through	3	are	subtypes	of	the	short	type.	Codes	4	and	5	are	subtypes	of
the	undershoot	type.	This	function	is	useful	for	short	and	undershoot	errors	only.

Degenerate	Entities		A	degenerate	polyline	has	only	one	vertex.	This	invalid
vertex	type	sometimes	results	from	the	drawing	cleanup	process,	and	can	be
removed	by	further	drawing	cleanup.

tpm_cleanincludess
Cleanup	Functions 	 	

	
	

Gets	a	cleanup	model's	Include	set.

(tpm_cleanincludess	clean_var_id)

Returns	the	Include	set,	the	selection	set	of	entities	to	be	cleaned.

clean_var_id Cleanup	variables	ID	(real)	returned	by	tpm_varalloc

Call	this	function	after	calling	tpm_cleaninit.

ADSRX	Equivalent

int
tpm_cleanincludess

ade_id	clean_var_id,
ads_name	ss);

Returns	RTNORM	or	an	error	code.

ss Entities	to	be	cleaned,	a	selection	set

tpm_cleaninit
Cleanup	Functions 	 	

	
	

Initializes	the	cleanup	model.

(tpm_cleaninit	clean_id	var_id	ss)

Returns	T	or	nil.

clean_id Cleanup	model	ID	(real)	returned	by	tpm_cleanalloc

var_id Cleanup	variables	ID	(real)	returned	by	tpm_varalloc

ss Selection	set	or	nil	(see	note	below	about
INCLUDEOBJS_AUTOSELECT)

You	can	free	the	selection	set	after	the	cleanup	model	has	been	initialized.

The	function	reads	the	cleanup	settings	and	the	selected	entities	into	the	cleanup
model.

If	the	cleanup	variable	INCLUDEOBJS_AUTOSELECT	is	set	to	1	(select
all),	all	entities	in	the	drawing	will	be	included,	regardless	of	the	ss	argument,	in
which	case	this	argument	can	be	nil	instead	of	a	selection	set,	as	the	following
code	sample	illustrates.

(setq	clean_id	(tpm_cleanalloc))
(setq	var_id	(tpm_varalloc))
(tpm_varset	var_id	"INCLUDEOBJS_AUTOSELECT"	1)
(setq	ssInclude	nil)

(tpm_cleaninit	clean_id	var_id	ssInclude)

If	the	cleanup	variable	INCLUDEOBJS_LAYERS	is	set	to	"*"	(all	layers),
all	ss	entities	will	be	included.	If	it	contains	a	list	of	layers,	ss	entities	will	be
included	only	if	they	reside	on	those	layers.

The	cleanup	variables	ID	references	a	set	of	cleanup	variables.

tpm_cleaninitanchorset
Cleanup	Functions 	 	

	
	

Specifies	anchored	entities	for	the	cleanup	model.

(tpm_cleaninitanchorset	clean_id	clean_var_id	ssanchor)

Returns	t	or	nil.

clean_id Cleanup	model	ID	(real)	returned	by	tpm_cleanalloc

clean_var_id Cleanup	variables	ID	(real)	returned	by	tpm_varalloc

ssanchor Entities	to	be	anchored,	a	selection	set

Anchored	entities	remain	fixed	in	position	during	the	cleanup	process.	You	can
free	the	selection	set	after	anchored	entities	have	been	specified.

Call	tpm_cleaninitanchorset	before	calling	tpm_cleaninit.

The	clean_var_id	argument	references	properties	for	the	cleanup	operation	that
you	are	preparing	to	initiate	(see	Cleanup	Variables).

If	the	cleanup	variable	ANCHOROBJS_LAYERS	is	set	to	"*"	(all	layers),
all	ssAnchor	entities	will	be	anchored.	If	it	contains	a	list	of	layers,	ssAnchor
entities	will	be	anchored	only	if	they	reside	on	those	layers.

ADSRX	Equivalent

int

tpm_cleaninitanchorset
ade_id	clean_id,
ade_id	clean_var_id,
ads_name	ssAnchor);

Returns	RTNORM	or	an	error	code.

tpm_cleanprofileload
Cleanup	Functions 	 	

	
	

Loads	a	drawing	cleanup	profile.

(tpm_cleanprofileload	clean_var_id	filename)

Returns	T	or	nil.

clean_var_id Cleanup	variables	ID	(real)	returned	by	tpm_varalloc

filename Full	path	and	.dpf	file	name	(string)

Note		Loading	a	profile	will	reset	all	properties	referenced	by	the	clean_var_id
argument.

ADSRX	Equivalent

int
tpm_cleanprofileload

ade_id	clean_var_id,
char	*filename);

Returns	RTNORM	or	an	error	code.

tpm_cleanprofilesave
Cleanup	Functions 	 	

	
	

Saves	a	drawing	cleanup	profile.

(tpm_cleanprofilesave	clean_var_id	filename)

Returns	T	or	nil.

clean_var_id Cleanup	variables	ID	(real)	returned	by	tpm_varalloc

filename Full	path	and	.dpf	file	name	(string)

ADSRX	Equivalent

int
tpm_cleanprofilesave

ade_id	clean_var_id,
char	*filename);

Returns	RTNORM	or	an	error	code.

tpm_cleanstart
Cleanup	Functions 	 	

	
	

Starts	the	cleanup	process.

(tpm_cleanstart	clean_id)

Returns	T	or	nil.

clean_id Cleanup	model	ID	(real)	returned	by	tpm_cleanalloc

The	function	finds	the	first	group	type	or	subtype	that	contains	errors.	See
tpm_cleangrouptype	and	tpm_cleangroupsubtype	for	lists	of	types.

Cleanup	is	an	iterative	process.	Depending	on	cleanup	options	and	processing
order,	you	may	need	to	run	the	cleanup	loop	several	times	to	achieve	the	desired
results.	After	selecting	the	groups	to	process	with	tpm_cleangrouptype	and
processing	all	the	groups	in	the	selection	set,	call	tpm_cleancomplete	to	test	if
cleaning	is	complete.	If	complete,	call	tpm_cleanstart	and	repeat	the	cleanup
loop.

tpm_editaddelem
Editing	Functions 	 	

	
	

Adds	an	element	to	a	topology.

(tpm_editaddelem	tpm_id	type	elem)

Returns	T	or	nil.

tpm_id Topology	ID	(real).

type Element	type	code	(integer):	1,	2,	or	3,	where	1	=	Node,	2	=
Link,	and	3	=	Polygon.

elem Element	to	add.	Depending	on	the	type	argument,	specify	one
of	the	following:	If	1,	specify	a	point	or	the	entity	name	of	a
point	object.	If	2,	specify	the	entity	name	of	a	line	object.	If	3,
specify	a	selection	set.

The	topology	must	be	open	with	Write	access.	If	you	add	a	node	to	a	link,	the
link	is	split.

tpm_editdelelem
Editing	Functions 	 	

	
	

Deletes	an	element	from	a	topology.

(tpm_editdelelem	tpm_id	elem_id	[delobjs])

Returns	T	or	nil.

tpm_id Topology	ID	(real)

elem_id Element	ID	(real)

delobjs T	or	nil:	
T	Delete	object	from	the	drawing	also	
nil	Delete	object	from	the	topology	only

This	function	deletes	elements	from	a	topology.	It	does	not	erase	corresponding
entities	in	the	drawing	unless	the	delobjs	argument	is	T.

Warning		Deleting	an	element	can	cause	other	deletions.

If	you	delete	a	node,	you	delete	any	link	or	polygon	that	contains	it.
If	you	delete	a	link,	you	delete	only	the	nodes	belonging	to	that	link.	If
the	link	belongs	to	one	polygon	only,	you	delete	the	polygon.	If	the	link	is
shared	by	two	polygons,	you	merge	the	polygons.
If	you	delete	a	polygon,	you	delete	any	node	or	link	belonging	to	that
polygon	only.

tpm_editmodelem
Editing	Functions 	 	

	
	

Modifies	a	topology	element.

(tpm_editmodelem	tpm_id	elem_id	new_val)

Returns	T	or	nil.

tpm_id Topology	ID	(real)

elem_id Element	ID	(real)

new_val List	consisting	of	a	code	for	the	property	to	modify	and	a	new
value	for	the	property.	See	Properties	and	Values	below.

Properties	and	Values

(10	.	point) New	coordinates	of	node	or	centroid	(point)

(40	.	f_res) Resistance	of	node	(real),	or	forward	resistance	of	link

(41	.	r_res) Reverse	resistance	of	link	(real)

(70	.	dir) Link	direction	(integer):
-1	Reverse
	0	Bidirectional
	1	Forward

The	following	example	assigns	new	coordinates	to	the	first	node	in	a	node

topology.

(setq	node_ss
			(ssget))	
(setq	var_id		(tpm_varalloc))
(setq	result
			(tpm_mntbuild	
						var_id	
						"test"	
						"test	descr"	
						1	
						node_ss))	
(setq	tpm_id
			(tpm_acopen	"test"	T))					;	open	for	write
(setq	elem_id
			(tpm_elemid	tpm_id	1	0))			;	gets	first	node
(setq	result
			(tpm_editmodelem	
						tpm_id	
						elem_id	
						(cons	10	(list	1.0	1.0	0.0))))

tpm_editupdelem
Editing	Functions 	 	

	
	

Updates	a	topology	element.

(tpm_editupdelem	tpm_id	elem_id)

Returns	T	if	the	object	was	succesfully	updated	or	nil	if	it	was	not.

tpm_id Topology	ID	(real)

elem_id Element	ID	(real)

This	function	updates	a	topology	element	so	that	it	reflects	the	current	state	of
the	corresponding	entity	in	AutoCAD.	This	function	is	normally	used	in
conjunction	with	AutoCAD	Notification	so	that	changes	made	in	AutoCAD	can
be	reflected	in	the	topology	model.

tpm_elemadj
Element	Information	Functions 	 	

	
	

Compiles	a	list	of	adjacent	elements	for	the	specified	element.

(tpm_elemadj	tpm_id	elem_id	adj_type)

Returns	a	list	of	element	IDs	or	nil.

tpm_id Topology	ID	(real)

elem_id Element	ID,	received	from	tpm_elemid

adj_type Type	of	adjacent	elements	(int).	Values:	
1	Node	
2	Pink	
3	Polygon

tpm_elemfind
Element	Information	Functions 	 	

	
	

Finds	an	element	within	a	topology.

(tpm_elemfind	tpm_id	type	pattern)

Returns	an	element	ID	(real)	or	nil.

tpm_id Topology	ID	(real)

type Type	of	element	to	find	(int).	Values:
1	Node	
2	Link	
3	Polygon

pattern Point	or	entity	name.	If	pattern	is	a	point,	in	which	case	type
must	be	1,	the	function	returns	the	nearest	point	or	link,	or	the
enclosing	polygon.	If	pattern	is	an	entity	name,	in	which	case
type	can	have	any	value,	the	function	returns	the	corresponding
object.

The	following	example	gets	a	point	from	the	user	and	finds	the	nearest	node	in
the	topology	named	Parcel.

(setq	pt	(getpoint))
(setq	topo_id	(tpm_acopen	"Parcel"))
(setq	node_id	(tpm_elemfind	topo_id	1	pt))

The	result	is	a	node	ID,	such	as	4.71389e+007.

tpm_elemget
Element	Information	Functions 	 	

	
	

Lists	information	about	an	element	of	a	topology.

(tpm_elemget	tpm_id	elem_id)

Returns	a	list	of	dotted	pairs	or	nil.

tpm_id Topology	ID	(real)

elem_id Element	ID	(tpm_id)	returned	by	tpm_elemid

For	each	dotted	pair	in	the	list	that	is	returned,	the	first	value	is	an	integer	code
for	the	information	type,	and	the	second	value	is	the	information.	The	list	format
depends	on	the	element	type:	node,	link,	or	polygon.

Information	List	Format	for	Nodes

Type Information

	0 Persistent	topology	ID	(real).

-1 Element	type	code	(integer).	With	node	lists,	always	1,	meaning
node	element.

-2 Entity	name	of	the	node	object	(real).

10 Coordinates	of	the	node	object	(point).

40 Node	resistance	(real).	Relevant	only	for	nodes	belonging	to	network

or	polygon	topologies.

Information	List	Format	for	Links

Type Information

	0 Persistent	topology	ID	(real).

-1 Element	type	(integer).	With	link	lists,	always	2,	meaning	link
element.

-2 Entity	name	of	the	link	object	(real).

	1 Topology	ID	of	start	node	(real).

	2 Topology	ID	of	end	node	(real).

	3 Topology	ID	of	left	polygon	(real).	Relevant	only	if	the	link	belongs
to	a	polygon	topology.	Links	in	a	polygon	topology	can	belong	to	two
adjacent	polygons,	one	on	the	left,	and	one	one	the	right.

	4 Topology	ID	of	right	polygon	that	shares	this	link	(real).	Relevant
only	if	the	link	belongs	to	a	polygon	topology.

40 Forward	resistance	of	the	link	(real).

41 Reverse	resistance	of	the	link	(real).

70 Link	direction	(integer):	-1,	0,	or	1,	where	-1	=	Reverse,	0	=
Bidirectional,	and	1	=	Forward.

Information	List	Format	for	Polygons

Type Information

	0 Persistent	topology	ID	(real).

-1 Element	type	(integer).	With	polygon	lists,	always	3,	meaning
polygon	element.

-2 Entity	name	of	the	polygon	centroid	(real).

10 Coordinates	of	the	polygon	centroid	(point).

50 Perimeter	of	the	polygon	(real).

51 Area	of	the	polygon	(real).

When	a	topology	is	built,	it	is	given	a	set	of	object	data	fields.	Their	purpose	is
to	contain	the	information	listed	in	the	preceding	tables.

tpm_elemid
Element	Information	Functions 	 	

	
	

Gets	the	ID	of	an	element.

(tpm_elemid	tpm_id	type	index)

Returns	an	element	ID	(real)	or	nil.

tpm_id Topology	ID	(real)

type Element	type	(integer).	Values:	
1	Node	
2	Pink	
3	Polygon

index Element	index	(real).	
The	index	of	the	first	element	is	0

tpm_elemqty
Element	Information	Functions 	 	

	
	

Counts	topology	elements.

(tpm_elemqty	tpm_id	type)

Returns	an	element	count	(real)	or	nil.

tpm_id Topology	ID	(real)

type Element	type	(int).	Values:	
1	Node	
2	Link	
3	Polygon

In	the	ADSRX	equivalent	to	this	function,	the	element	count	type	is	long.
Because	this	32-bit	data	type	is	not	available	in	Visual	LISP,	the	Visual	LISP
function	uses	real,	another	32-bit	type.

tpm_elemss
Element	Information	Functions 	 	

	
	

Creates	a	selection	set	of	elements	of	a	given	type.

(tpm_elemss	tpm_id	type)

Returns	a	selection	set	or	nil.

tpm_id Topology	ID.

type Element	type	(int).	Values:	
1	Node	
2	Pink	
3	Polygon

tpm_infobuildvar
Topology	Information	Functions 	 	

	
	

Gets	the	configuration	values	of	a	topology.

(tpm_infobuildvar	tpm_id	var_id)

Returns	T	or	nil.

tpm_id Topology	ID	(real)

var_id Topology	variables	ID	(real)

The	topology	variables	ID	references	a	set	of	topology	variables	in	which	to
store	the	values	that	this	function	gets.

If	no	topology	variables	are	allocated,	call	tpm_varalloc	to	allocate	a	set	of
them	and	return	their	ID.

To	read	the	values	that	this	function	gets,	use	tpm_varget	or	tpm_varlist.	To
build	a	new	topology	using	these	variables,	use	tpm_mntbuild.

The	following	code	opens	a	topology,	reads	its	configuration	values,	and	gets	its
node	layer.

(setq	tpm_id	(tpm_acopen	"SampleTopo"))
(setq	var_id	(tpm_varalloc))
(tpm_infobuildvar	tpm_id	var_id)
(tpm_acclose	tpm_id)
(setq	nlayer	(tpm_varget	var_id	"NODE_LAYER"))

tpm_infocomplete
Topology	Information	Functions 	 	

	
	

Tests	if	a	polygon	topology	is	complete	.

(tpm_infocomplete	tpm_id)

Returns	T	if	the	topology	is	complete,	nil.

tpm_id Topology	ID	of	a	polygon	topology.

Use	this	function	to	verify	that	a	polygon	topology	is	complete	before
performing	an	element	trace,	overlay,	or	other	topology	operation.	This	function
applies	only	to	polygon	topologies.

A	topology	is	considered	complete	if	all	necessary	entities	exist	in	the	current
drawing.	It	is	considered	incomplete	if	at	least	one	polygon	is	incomplete.

A	query	can	bring	an	incomplete	topology	into	the	current	drawing.	Because	this
part	has	the	same	name	as	the	complete	topology	that	it	came	from,	the	part
could	be	mistaken	for	the	whole.	Although	you	can	execute	any	topology
operation	on	an	incomplete	topology,	the	result	may	not	be	what	you	intend.

tpm_infocorrect
Topology	Information	Functions 	 	

	
	

Tests	whether	a	topology	is	correct	and	performs	a	geometrical	audit	.

(tpm_infocorrect	tpm_id)

Returns	T	or	nil.

tpm_id Topology	ID.

If	topology	entities	are	changed	using	drawing	tools,	the	topology	information	is
modified	according	to	the	geometrical	changes.	If	this	is	impossible,	the
topology	becomes	incorrect.	Use	this	function	to	verify	that	a	topology	is	correct
before	performing	an	element	trace,	overlay,	or	other	topology	operation.	See
also	tpm_infomodified.

To	fix	an	incorrect	topology,	try	unloading	and	reloading	it.	If	it	does	not	reload,
you	must	use	topology	edit	to	fix	the	topology.	If	this	does	not	work,	rebuild	the
topology.

Note		This	function	indicates	when	an	error	occurs,	but	does	not	show	its
location.

tpm_infocurrent
Topology	Information	Functions 	 	

	
	

Checks	the	source	from	which	the	topology	was	loaded.

(tpm_infocurrent	tpm_id)

Returns	T	if	the	topology	is	loaded	from	the	current	drawing,	or	nil	if	it	comes
from	source	drawings.

tpm_id Topology	ID.

tpm_infodesc
Topology	Information	Functions 	 	

	
	

Gets	a	topology	description.

(tpm_infodesc	tpm_id)

Returns	a	topology	description	(string)	or	nil.

tpm_id Topology	ID	(real)

tpm_infomodified
Topology	Information	Functions 	 	

	
	

Checks	if	topology	elements	have	been	modified	using	drawing	tools.

(tpm_infomodified	tpm_id)

Returns	T	if	any	elements	have	been	modified,	otherwise	nil.

tpm_id Topology	ID.

If	topology	elements	have	been	modified	using	drawing	tools,	then	possibly	they
are	no	longer	correct	topologies.	See	also	tpm_infocorrect.

tpm_infoname
Topology	Information	Functions 	 	

	
	

Gets	a	topology	name.

(tpm_infoname	tpm_id)

Returns	a	topology	name	(string)	or	nil.

tpm_id Topology	ID	(real)

tpm_infostatus
Topology	Information	Functions 	 	

	
	

Checks	whether	the	topology	is	open	for	Read	or	Write	access.

(tpm_infostatus	tpm_id)

Returns	T	if	the	topology	is	open	for	Write	or	nil	if	open	for	Read.

tpm_id Topology	ID	(real)

tpm_infotype
Topology	Information	Functions 	 	

	
	

Gets	a	topology	type.

(tpm_infotype	tpm_id)

Returns	a	topology	type	code	(int)	or	nil.

tpm_id Topology	ID	(real)

Topology	type	codes:	1	=	node,	2	=	network,	3	=	polygon.

tpm_infoversion
Topology	Information	Functions 	 	

	
	

Gets	a	topology	version.

(tpm_infoversion	tpm_id)

Returns	a	topology	version	(string)	or	nil.

tpm_id Topology	ID	(real)

A	topology's	version	is	the	Data	Extension	version	(ADE)	in	which	the	topology
was	created.	For	example,	"2.026".	This	function	gets	the	same	result	as
tpm_iterversion.	The	difference	is	that	tpm_infoversion	requires	a	topology
ID,	and	it	works	only	on	topologies	that	are	open.

tpm_iterdesc
Topology	Iterating	Functions 	 	

	
	

Gets	a	topology	description.

(tpm_iterdesc	iter_id)

Returns	a	topology	description	(string)	or	nil.

iter_id Iterator	ID.

The	function	gets	a	description	of	the	topology	that	the	iterator	points	to.

For	an	example	that	shows	how	you	can	use	Topology	Iterating	functions	to	find
all	the	topologies	the	system	knows	about,	see	tpm_iterstart.

tpm_itername
Topology	Iterating	Functions 	 	

	
	

Gets	a	topology	name.

(tpm_itername	iter_id)

Returns	a	topology	name	(string)	or	nil.

iter_id Iterator	ID	(real)

The	function	gets	the	name	of	the	topology	that	the	iterator	points	to.

For	an	example	that	shows	how	you	can	use	Topology	Iterating	functions	to	find
all	the	topologies	the	system	knows	about,	see	tpm_iterstart.

tpm_iternext
Topology	Iterating	Functions 	 	

	
	

Moves	the	iterator	to	the	next	topology.

(tpm_iternext	iter_id)

Returns	T	or	nil	if	another	topology	is	not	present.

iter_id Iterator	ID	(real)

The	first	time	this	function	is	called	after	tpm_iterstart,	it	sets	the	iterator	on
the	first	topology	definition.

For	an	example	that	shows	how	you	can	use	Topology	Iterating	functions	to	find
all	the	topologies	the	system	knows	about,	see	tpm_iterstart.

tpm_iterstart
Topology	Iterating	Functions 	 	

	
	

Allocating	a	topology	iterator.

(tpm_iterstart	[source	[loaded]])

Returns	an	iterator	ID	(real)	or	nil.

source Source	flag	(int):	
T	Iterate	through	the	current	and	source	drawings
nil	Iterate	through	the	current	drawing	only	(default)

loaded Loaded	in	memory	flag	(int):	
T	Iterate	through	topologies	in	memory	only
nil	Iterate	through	all	topologies	(default)

This	function	allocates	an	iterator	and	positions	it	before	the	first	topology
definition.	This	behavior	has	implications	to	remember	when	you	use	the
function.

Because	tpm_iterstart	always	generates	an	iterator	ID,	even	if	the
drawing	has	no	topologies	to	iterate	through,	the	function	fails	only	when
it	is	out	of	memory.

Because	tpm_iterstart	positions	the	iterator	before	the	first	topology
definition,	the	function	cannot	indicate	whether	any	topologies	exist	in
the	drawing.	The	only	way	to	determine	whether	the	drawing	has
topologies	is	to	call	tpm_internext,	which	fails	if	no	topology	exists
beyond	the	current	position	of	the	iterator.

You	can	have	more	than	one	iterator	running	at	the	same	time.

This	example	shows	how	you	can	use	Topology	Iterating	functions	to	find	all	the
topologies	the	system	knows	about.

(setq	itr_id	(tpm_iterstart))
(if	(null	itr_id)
				(prompt	"\nERROR:	Unable	to	start	topology	iterator.")	
				(while	(not	done)	
							(if	(null	(tpm_iternext	itr_id))	
										(setq	done	T)	
										(progn	
													(setq	lst	(list	
																(tpm_itername	itr_id)	
																(tpm_itertype	itr_id)	
																(tpm_iterdesc	itr_id)))
													(setq	tpmlist	(cons	lst	tpmlist))	
)		;	progn
)		;	if
)		;	while	
)		;	if	

tpm_iterstop
Topology	Iterating	Functions 	 	

	
	

Frees	an	iterator.

(tpm_iterstop	iter_id)

Returns	T	or	nil.

iter_id Iterator	ID	(real)

tpm_itertype
Topology	Iterating	Functions 	 	

	
	

Gets	a	topology	type.

(tpm_itertype	iter_id)

Returns	a	topology	type	code	(int)	or	nil.

iter_id Iterator	ID	(real)

The	function	gets	the	type	of	the	topology	that	the	iterator	is	pointing	to.	The
topology	type	codes	are	1	=	node,	2	=	network,	3	=	polygon.

For	an	example	that	shows	how	you	can	use	Topology	Iterating	functions	to	find
all	the	topologies	the	system	knows	about,	see	tpm_iterstart.

tpm_iterversion
Topology	Iterating	Functions 	 	

	
	

Gets	a	topology	version.

(tpm_iterversion	iter_id)

Returns	a	topology	version	(string)	or	nil.

iter_id Iterator	ID	(real)

The	function	gets	the	version	of	the	topology	that	the	iterator	is	pointing	to.	The
version	of	a	topology	is	the	version	of	ADE	in	which	it	was	created,	for
example,	"2.026".	The	function	gets	the	same	result	as	tpm_infoversion.	The
difference	is	that	tpm_infoversion	requires	a	topology	ID,	and	so	it	works	only
on	topologies	that	are	open.

tpm_mntbuild
Building	and	Erasing	Functions 	 	

	
	

Builds	a	topology.

(tpm_mntbuild	var_id	name	desc	type	node_ss	[link_ss	cntr_ss])

Returns	T	or	nil.

var_id Topology	variables	ID	(real)

name Topology	name	(string)

desc Topology	description	(string)

type Topology	type	code	(int):
1	Node	
2	Network	
3	Polygon

node_ss Entity	selection	set	of	nodes	or	nil

link_ss Entity	selection	set	of	links	or	nil.
Omit	for	node	topology

cntr_ss Entity	selection	set	of	centroids	or	nil.
Omit	for	node	and	network	topology

The	topology	variables	ID	references	a	set	of	topology	variables.

The	new	topology	is	loaded,	but	closed.	You	must	open	it	with	tpm_acopen.

The	following	AutoCAD	object	types	are	acceptable	for	topology	elements:

For	links:	line,	arc,	circle,	2D	and	3D	polyline
For	nodes	and	centroids:	point,	insert,	and	text

A	node	topology	can	contain	only	nodes.	A	network	topology	can	contain	nodes
or	links,	but	not	centroids.	A	polygon	topology	can	contain	all	three.

When	the	topology	is	built,	all	links	are	assigned	a	default	direction	of
bidirectional	(a	value	of	0).	The	forward	and	reverse	resistance	values	are	the
length	of	the	link.	Nodes	are	assigned	a	resistance	of	0.

When	a	topology	is	built,	it	is	given	a	set	of	object	data	fields.	These	fields
contain	information	about	the	elements	of	the	topology.

tpm_mnterase
Building	and	Erasing	Functions 	 	

	
	

Erases	a	closed	topology	from	the	current	drawing.

(tpm_mnterase	toponame)

Returns	T	or	nil.

toponame Topology	name	(string)

This	function	can	erase	a	closed	topology	whether	or	not	it	is	loaded.

tpm_mntrebuild
Building	and	Erasing	Functions 	 	

	
	

Rebuilds	a	topology.

(tpm_mntrebuild	toponame)

Returns	T	or	nil.

toponame Topology	name	(string)

The	rebuilt	topology	is	loaded,	but	closed.	You	must	open	it	with	tpm_acopen.

Rebuilding	a	topology	restores	all	its	object	data	fields	to	their	default	values.
Any	object	data	fields	modified	after	the	topology	was	built	are	lost.	See
Topology	Object	Data.

Whether	you	need	to	rebuild	a	topology	after	you	change	it	depends	upon	the
functions	used	to	make	the	changes.

If	changes	were	made	using	AutoCAD	drawing	and	editing	functions,
you	may	need	to	rebuild	the	topology.

If	the	AutoCAD	alterations	introduce	an	error,	the	rebuild	could	fail.	If
this	happens,	you	must	clean	the	objects	again	and	use	tpm_mntbuild.
You	can	use	tpm_infocorrect	to	check	for	errors	before	attempting
tpm_mntrebuild.

If	changes	were	made	using	Topology	functions,	you	do	not	have	to
rebuild	the	topology.	This	applies	to	objects	altered	with	functions	such	as
tpm_editaddelem,	tpm_editdelelem,	and	tpm_editmodelem.

tpm_mntrename
Building	and	Erasing	Functions 	 	

	
	

Renames	a	topology.

(tpm_mntrename	toponame	newname	newdesc)

Returns	T	or	nil.

toponame Topology	name	(string).

newname New	topology	name	(string).

newdesc New	topology	description	(string)

tpm_qrygetresdesc
Topology	Query	Functions 	 	

	
	

Gets	the	description	of	the	query	result	topology.

(tpm_qrygetresdesc)

Returns	a	topology	description	(string)	or	nil	if	there	is	no	result	topology	or	it
has	no	description.

tpm_qrygetrestopo
Topology	Query	Functions 	 	

	
	

Gets	the	name	of	the	query	result	topology.

(tpm_qrygetrestopo)

Returns	a	topology	name	(string)	if	there	is	a	result	topology	or	nil	if	there	is
not.	If	no	result	topology	is	defined,	then	no	objects	are	added	to	the	current
drawing	when	the	query	executes.

If	the	name	of	the	query	result	topology	starts	with	*,	the	result	topology	is	a
temporary	topology

tpm_qrygettoponame
Topology	Query	Functions 	 	

	
	

Gets	the	name	of	the	query	source	topology	.

(tpm_qrygettoponame)

Returns	a	topology	name	(string)	if	there	is	a	query	source	topology	or	nil	if
there	is	not.	If	there	is	a	query	source	topology,	the	current	query	is	a	topology
query.	If	there	is	not,	the	current	query	is	a	standard	data	extension	query.

tpm_qrysetrestopo
Topology	Query	Functions 	 	

	
	

Defines	or	or	undefines	a	query	result	topology.

(tpm_qrysetrestopo	result_name	result_desc)

Returns	T	or	nil.

result_name Name	of	the	query	result	topology	(string)	or	nil

result_desc Description	of	the	query	result	topology	(string)	or	nil

A	description	is	optional.	Its	presence	or	absence	has	no	effect	on	the	query.
Regarding	the	name:

If	no	name	is	specified,	then	no	query	result	topology	is	defined.	If	a
definition	already	exists,	it	is	canceled.
If	the	name	begins	with	an	asterisk	(*),	the	next	query	result	is	a
temporary	topology.
If	the	name	begins	with	any	other	acceptable	character,	the	next	query
result	is	a	standard	topology.

tpm_qrysettoponame
Topology	Query	Functions 	 	

	
	

Defines	or	undefines	a	topology	query.

(tpm_qrysettoponame	toponame)

Returns	T	or	nil.

toponame Name	of	topology	to	query	(string)	or	nil

This	function	determines	whether	the	current	query	is	a	topology	query	or	a
standard	data	extension	query	as	follows:

If	the	toponame	argument	is	nil,	the	current	query	becomes	a	standard
data	extension	query.

If	the	toponame	argument	is	a	name,	the	current	query	becomes	a
topology	query.	But	if	you	specify	a	topology	that	does	not	exist,	a
subsequent	call	to	ade_qryexecute	returns	nil.

tpm_tracealloc
Network	Tracing	Functions 	 	

	
	

Allocates	the	tracing	model.

(tpm_tracealloc	tpm_id	[node_res	link_dir	link_forward_res
link_reverse_res])

Returns	the	tracing	model	ID	(real)	or	nil.

tpm_id Topology	ID	(real)

node_res Expression	for	node	resistance	(string):	
nil	=	Default	resistance

link_dir Expression	for	link	direction	(string):	
nil	=	Default	direction

link_forward_res Expression	for	forward	link	resistance	(string):	
nil	=	Default	resistance

link_reverse_res Expression	for	reverse	link	resistance	(string):	
nil	=	Default	resistance

This	function	sets	the	values	for	the	specified	topology	to	the	parameters	you
enter.	The	values	stored	in	topology	object	data	when	the	topology	was	created
are	used	as	defaults	if	you	omit	parameters.	You	can	enter	any	valid	expression
that	evaluates	to	a	numeric	result.

The	tracing	model	can	be	used	only	with	a	network	or	polygon	topology.

When	you	enter	a	value	other	than	nil	for	any	of	the	optional	resistance
arguments,	this	value	is	used	for	all	objects	in	the	topology	of	the	appropriate
type.	It	overrides	the	corresponding	value	attached	to	the	object.	For	example,	if
node_res	is	set	to	nil,	the	tracing	model	uses	the	value	attached	to	topology
object	data	when	calculating	the	trace.	If	node_res	is	set	to	10.0,	all	nodes	in
the	topology	are	overridden	with	the	value	of	10.0	when	the	trace	is	calculated.

If	you	want	to	omit	the	optional	parameters,	you	can	either	enter	nil	to	invoke	a
default	value	or	leave	out	the	parameter	altogether,	as	with	other	Visual	LISP
functions.	However,	before	you	omit	optional	parameters,	note	the	dependency
relationships	indicated	by	bracketed	groups.	For	example,	if	you	want	to	use	the
link_dir	parameter,	you	must	enter	a	node_res	parameter.

Important!	When	using	the	Topology	API	to	perform	a	network	trace,	such	as	a
Best	Route	analysis,	the	source	topology	used	to	create	the	trace	topology	should
not	be	unloaded	or	erased	until	after	all	API	calls	relating	to	the	trace	have	been
made.	This	is	because	the	trace	topology	references	the	nodes	and	links	in	the
source	topology.	It	does	not	create	its	own.	So,	in	order	to	do	anything	with	the
elements	of	the	trace,	the	source	topology	must	remain	loaded.

For	example,	the	following	Best	Route	code	will	silently	fail:

;	topo_id	is	the	netTopo	topology	(tmp_id)
(setq	topo_id	(tpm_acopen	topo_name	T))

;	create	the	trace	model
(setq	network_trace_id	(tpm_tracealloc	topo_id))

;	create	the	best	route
(setq	bestroute	(tpm_tracebestroute	topo_id	network_trace_id	7.0	1.0	4.0	9.0	5.0	6.0	8.0))

;	remove	the	netTopo	topology
;	THIS	SHOULD	NOT	BE	DONE	UNTIL	AFTER	BESTROUTE	TOPO	QUERIES	ARE	DONE.
(tpm_acclose	topo_id)	(tpm_acunload	topo_name)

;	this	next	call	fails	because	the	element	info	is	on	the	source	topology
(setq	BestRouteTraceElement	(tpm_tracebestroutescan	network_trace_id	3))

The	simple	solution	is	to	defer	the	calls	to	tpm_acclose	and	tpm_acunload
until	after	all	tpm_tracebestroutescan	calls.

tpm_traceelemedit
Network	Tracing	Functions 	 	

	
	

Modifies	a	tracing	model	element.

(tpm_traceelemedit	trace_id	elem_id	new_val)

Returns	T	or	nil.

trace_id Model	ID	(returned	by	tpm_tracealloc)

elem_id Element	ID	(real)

new_val List	consisting	of	a	code	for	the	property	to	modify	and	a	new
value	for	the	property.	See	Properties	and	Values	below.

Properties	and	Values

(40	.	f_res) Resistance	of	node	(real),	or	forward	resistance	of	link

(41	.	r_res) Reverse	resistance	of	link	(real)

(70	.	dir) Link	direction	(integer):	
-1	Reverse	
	0	Bidirectional	
	1	Forward

tpm_traceelemget
Network	Tracing	Functions 	 	

	
	

Lists	information	about	a	tracing	model	element.

(tpm_traceelemget	trace_id	elem_id)

Returns	an	information	list	or	nil.

trace_id Tracing	model	ID	(real)	returned	by	tpm_tracealloc

elem_id Trace	element	ID	(real)

The	list	format	depends	on	the	element	type.	For	each	a-list,	the	first	component
is	an	integer	code	for	the	information	type,	and	the	second	is	the	information.

List	Format	for	Nodes

(-1	.	elem_code) Element	type	code	(integer).	With	node	lists,	always
1,	meaning	node	element.

(40	.	resistance) Node	resistance	(real).

List	Format	for	Links

(-1	.	elem_code) Element	type	code	(integer).	With	link	lists,	always
2,	meaning	link	element.

(1	.	topo_id) Topology	ID	of	start	node	(real).

(2	.	topo_id) Topology	ID	of	end	node	(real).

(40	.	fwd_resist) Forward	resistance	(real).

(41	.	rev_resist) Reverse	resistance	(real).

(70	.	link_dir) Link	direction	(integer):	-1,	0,	or	1.
-1	=	Reverse
	0	=	Bidirectional
	1	=	Forward

tpm_traceelemid
Network	Tracing	Functions 	 	

	
	

Returns	the	ID	of	the	selected	element.

(tpm_traceelemid	trace_id	type	index)

Returns	an	element	ID	(real)	or	nil.

trace_id Tracing	model	ID	(real)	returned	by	tpm_tracealloc

type Element	type:	
1	Node	
2	Link

index Element	index.	The	first	element's	index	is	0

This	function	returns	the	ID	of	the	element	selected.	Use	this	function	to	find	the
trace	result	in	the	source	topology	after	performing	a	trace	with	tpm_traceshort
or	tpm_traceflood.

This	example	performs	a	short	path	trace	and	gets	the	ID	of	the	first	link	of	the
result	path.

;	open	topology	to	trace
(setq	tpm_id	(tpm_acopen	"nettopo"	nil))
;	create	the	model
(setq	trc_id	(tpm_tracealloc	tpm_id))
;	find	shortest	path

(tpm_traceshort	trc_id	start_id	end_id)
;	number	of	links	in	path
(setq	qty	(tpm_traceqty	trc_id	2))
;	get	first	link	of	path
(setq	id	(tpm_traceelemid	trc_id	2	0))

tpm_traceflood
Network	Tracing	Functions 	 	

	
	

Calculates	flood	paths.

(tpm_traceflood	trace_id	start	maxres)

Returns	T	or	nil.

trace_id Tracing	model	ID,	returned	by	tpm_tracealloc	(real)

start Element	ID	of	start	node	(real)

maxres Maximum	allowed	accumulated	path	resistance	(real)

The	accumulated	resistance	value	is	the	total	resistance	of	the	nodes	and	links
that	make	up	the	flood	trace.

tpm_tracefree
Network	Tracing	Functions 	 	

	
	

Frees	a	tracing	model.

(tpm_tracefree	trace_id)

Returns	T	or	nil.

trace_id Tracing	model	ID	(real)	returned	by	tpm_tracealloc

tpm_traceqty
Network	Tracing	Functions 	 	

	
	

Counts	the	selected	elements	after	a	trace.

(tpm_traceqty	trace_id	type)

Returns	an	element	count	(real)	or	nil.

trace_id Tracing	model	ID,	returned	by	tpm_tracealloc.

type Element	type	(integer):	
1	Node	
2	Link

tpm_tracesetmaxres
Network	Tracing	Functions 	 	

	
	

Sets	maximum	resistance	for	the	shortest	path	algorithm	.

(tpm_tracesetmaxres	trace_id	maxres)

Returns	T	or	nil.

trace_id Tracing	model	ID	(real),	returned	from	tpm_tracealloc

maxres Maximum	allowed	accumulated	path	resistance	(real)

This	function	sets	an	accumulated	resistance	value	for	path	tracing.

For	the	shortest	path	trace	to	succeed,	the	total	calculated	resistance	cannot	be
greater	than	the	value	set	for	the	maximum	resistance	or	less	than	the	value	set
for	the	minimum	resistance.	See	tpm_tracesetminres.	See	tpm_traceshort.

tpm_tracesetminres
Network	Tracing	Functions 	 	

	
	

Sets	minimum	resistance	for	the	shortest	path	algorithm.

(tpm_tracesetminres	trace_id	minres)

Returns	T	or	nil.

trace_id Tracing	model	ID	(real),	returned	from	tpm_tracealloc

minres Minimum	accumulated	allowed	path	resistance	(real)

This	function	sets	an	accumulated	resistance	value	for	path	tracing.	For	the
shortest	path	trace	to	succeed,	the	total	calculated	resistance	cannot	be	greater
than	the	value	set	for	the	maximum	resistance	or	less	than	the	value	set	for	the
minimum	resistance.	See	tpm_tracesetmaxres.	See	tpm_traceshort.

tpm_traceshort
Network	Tracing	Functions 	 	

	
	

Calculates	the	shortest	path	between	two	nodes.

(tpm_traceshort	trace_id	start	end)

Returns	T	or	nil.

trace_id Tracing	model	ID	(real),	returned	by	tpm_tracealloc

start Element	ID	of	start	node	(real)

end Element	ID	of	end	node	(real)

For	the	shortest	path	trace	to	succeed,	the	total	calculated	resistance	cannot	be
greater	than	the	value	set	for	the	maximum	resistance	or	less	than	the	value	set
for	the	minimum	resistance.	See	tpm_tracesetminres	and
tpm_tracesetmaxres.	The	accumulated	resistance	value	is	the	total	resistance
of	the	nodes	and	links	that	make	up	the	shortest	path.

tpm_traceshortscan
Network	Tracing	Functions 	 	

	
	

Gets	the	ID	of	a	link	or	node	in	the	shortest	path.

(tpm_traceshortscan	trace_id	flag)

Returns	a	topology	ID	(real)	or	nil.

trace_id Tracing	model	ID	(real),	returned	by	tpm_tracealloc

flag Path	element	code	(integer):
0	Current	element
1	First	element
2	Last	element
3	Next	element
4	Previous	element

First	use	tpm_traceshort	to	calculate	a	shortest	path.

tpm_traceshortval
Network	Tracing	Functions 	 	

	
	

Calculates	the	resistance	of	the	shortest	path.

(tpm_traceshortval	trace_id)

Returns	a	resistance	(real)	or	nil.

trace_id Tracing	model	ID	(real)	returned	by	tpm_tracealloc

Before	calling	this	function,	use	tpm_traceshort	to	calculate	the	shortest	path.

tpm_varalloc
Variables	Functions 	 	

	
	

Allocates	a	set	of	configuration	variables.

(tpm_varalloc)

Returns	a	configuration	variables	ID	(real)	or	nil.

Configuration	variables	are	composed	of	cleanup	variables,	cleanup	action
variables,	and	topology	variables.	The	variables	are	initialized	to	their	default
values.	For	a	list	of	these	variables	and	their	default	values,	see	Configuration
Variables.

You	can	allocate	more	than	one	set	of	configuration	variables.

tpm_varfree
Variables	Functions 	 	

	
	

Frees	a	set	of	configuration	variables.

(tpm_varfree	var_id)

Returns	T	or	nil.

var_id Configuration	variables	ID	(real)

Configuration	variables	are	composed	of	cleanup	variables,	cleanup	action
variables,	and	topology	variables.	The	variables	are	initialized	to	their	default
values.	For	a	list	of	these	variables	and	their	default	values,	see	Configuration
Variables.

tpm_varget
Variables	Functions 	 	

	
	

Gets	the	value	of	a	configuration	variable.

(tpm_varget	var_id	var_name)

Returns	a	variable	value	or	nil.

var_id Configuration	variables	ID	(real)

var_name Variable	name	(string)

Configuration	variables	are	composed	of	cleanup	variables,	cleanup	action
variables	and	topology	variables.	The	variables	are	initialized	to	their	default
values.	For	a	list	of	these	variables	and	their	default	values,	see	Configuration
Variables.

The	following	code	opens	a	topology,	stores	the	topology's	configuration	values
in	a	new	set	of	variables,	and	gets	the	value	of	NODE_LAYER.

(setq	tpm_id	(tpm_acopen	"SampleTopo"))
(setq	var_id	(tpm_varalloc))
(tpm_infobuildvar	tpm_id	var_id)
(tpm_acclose	tpm_id)
(setq	nlayer	(tpm_varget	var_id	"NODE_LAYER"))

tpm_varlist
Variables	Functions 	 	

	
	

Gets	all	the	values	in	aa	set	of	configuration	variables.

(tpm_varlist	var_id)

Returns	a	list	of	name-value	pairs	or	nil.

var_id Configuration	variables	ID	(real)

Each	a-list	has	this	format:

(variable	name	.	value)

Configuration	variables	are	composed	of	cleanup	variables,	cleanup	action
variables,	and	topology	variables.	The	variables	are	initialized	to	their	default
values.	For	a	list	of	these	variables	and	their	default	values,	see	Configuration
Variables.

tpm_varset
Variables	Functions 	 	

	
	

Sets	the	value	of	a	configuration	variable.

(tpm_varset	var_id	var_name	var_value)

Returns	T	or	nil.

var_id Configuration	variables	ID	(real)

var_name Variable	name	(char)

var_value Variable	value.

Configuration	variables	are	composed	of	cleanup	variables,	cleanup	action
variables,	and	topology	variables.	The	variables	are	initialized	to	their	default
values.	For	a	list	of	these	variables	and	their	default	values,	see	Configuration
Variables.

For	an	example	that	shows	how	to	use	tpm_varset	and	tpm_varget,	see
tpm_varget.

Access	Functions
	 	 	

	
	

The	functions	for	accessing	topologies	begin	with	tpm_ac.

tpm_acclose

Closes	a	topology.

tpm_acexist

Checks	if	a	topology	exists.

tpm_acload

Loads	a	topology	into	memory.

tpm_acopen

Opens	a	topology.

tpm_acqty

Counts	topologies.

tpm_acunload

Unloads	a	topology	from	memory.

tpm_acupgradeopen

Changes	access	from	read	only	to	write.

Analyzing	Functions
	 	 	

	
	

The	functions	for	analyzing	topologies	begin	with	tpm_ana.

tpm_anabuffer

Creates	a	buffer	space	around	a	topology.

tpm_anadissolve

Merges	topology	elements	with	the	same	value	in	the	specified	field.

tpm_anaoverlay

Overlays	two	topologies.

Building	and	Erasing	Functions
	 	 	

	
	

The	functions	for	topology	maintenance	begin	with	tpm_mnt.

tpm_mntbuild

Builds	a	topology.

tpm_mnterase

Erases	a	topology	from	the	project	drawing.

tpm_mntrebuild

Rebuilds	a	topology.

tpm_mntrename

Renames	a	topology.

Cleanup	Functions
	 	 	

	
	

The	functions	for	cleaning	topology	objects	before	building	the	topology	begin
with	tpm_clean.

tpm_cleanactionlistdel

Deletes	a	cleanup	action	from	the	action	list.

tpm_cleanactionlistgetat

Gets	the	cleanup	action	at	a	given	list	position.

tpm_cleanactionlistins

Inserts	a	cleanup	action	in	the	action	list.

tpm_cleanactionlistqty

Gets	the	number	of	cleanup	actions	in	the	action	list.

tpm_cleanalloc

Allocates	the	cleanup	model.

tpm_cleananchorss

Gets	a	cleanup	model's	anchored	entities.

tpm_cleancancel

Cancels	the	cleanup	process	without	updating	the	drawing.

tpm_cleancomplete

Tests	for	a	next	group	to	be	cleaned.

tpm_cleancreatedss

Gets	created	entities	following	a	cleanup	process.

tpm_cleanend

Completes	the	cleanup	process	and	updates	the	drawing.

tpm_cleanerrorcur

Sets	the	next	error	to	clean	in	the	current	group.

tpm_cleanerrordraw

Creates	a	temporary	marker	for	the	current	error.

tpm_cleanerrorfix

Fixes	the	current	error.

tpm_cleanerrorget

Gets	the	coordinates	of	the	current	error.

tpm_cleanerrormark

Creates	a	persistent	marker	for	the	current	error.

tpm_cleanerrorset

Sets	the	coordinates	of	an	error	fix	point.

tpm_cleanfree

Frees	the	cleanup	model.

tpm_cleangroupdraw

Creates	temporary	markers	for	all	errors	of	the	current	group.

tpm_cleangroupfix

Fixes	all	errors	of	the	current	group.

tpm_cleangroupmark

Creates	persistent	markers	for	all	errors	of	the	current	group..

tpm_cleangroupnext

Goes	to	the	next	error	group.

tpm_cleangroupqty

Counts	the	errors	in	the	current	group.

tpm_cleangroupsubtype

Determines	the	subtype	of	the	current	group.

tpm_cleangrouptype

Determines	the	type	of	the	current	group.

tpm_cleanincludess

Gets	a	cleanup	model's	target	entities.

tpm_cleaninit

Initializes	the	cleanup	model.

tpm_cleaninitanchorset

Specifies	anchored	entities	for	the	cleanup	model.

tpm_cleanmodifiedss

Gets	changed	entities	following	a	cleanup	process.

tpm_cleanprofileload

Loads	a	drawing	cleanup	profile.

tpm_cleanprofilesave

Saves	a	drawing	cleanup	profile.

tpm_cleanstart

Starts	the	cleanup	process.

tpm_cleanunchangedss

Gets	unchanged	entities	following	a	cleanup	process.

Editing	Functions
	 	 	

	
	

The	functions	for	editing	topology	elements	begin	with	tpm_edit.

tpm_editaddelem

Adds	an	element	to	a	topology.

tpm_editdelelem

Deletes	an	element	from	a	topology.

tpm_editmodelem

Modifies	a	topology	element.

tpm_editupdelem

Updates	a	topology	element.

Element	Information	Functions
	 	 	

	
	

The	functions	for	managing	topology	elements	begin	with	tpm_elem.

tpm_elemadj

Compiles	a	list	of	adjacent	elements.

tpm_elemfind

Finds	an	element.

tpm_elemget

Lists	information	about	an	element.

tpm_elemid

Gets	the	ID	of	an	element.

tpm_elemqty

Counts	topology	elements.

tpm_elemss

Creates	a	selection	set	of	elements	of	a	given	type.

Topology	Iterating	Functions
	 	 	

	
	

The	functions	for	iterating	through	topologies	begin	with	tpm_iter.

Many	have	counterparts	in	the	topology	information	functions	(tpm_info[xx]).
The	iterating	functions	can	query	any	topology,	loaded	or	unloaded,	open	or
closed.	The	information	functions	query	only	topologies	that	are	open.

tpm_iterdesc

Gets	a	topology	description.

tpm_itername

Gets	a	topology	name.

tpm_iternext

Moves	the	iterator	to	the	next	topology.

tpm_iterstart

Creates	a	topology	iterator.

tpm_iterstop

Frees	a	topology	iterator.

tpm_itertype

Gets	a	topology	type.

tpm_iterversion

Gets	the	version	of	a	topology.

Network	Tracing	Functions
	 	 	

	
	

The	functions	for	network	tracing	begin	with	tpm_trace.

tpm_tracealloc

Allocates	a	tracing	model.

tpm_tracebestroute

Calculates	the	best	round-trip	route.

tpm_tracebestroutescan

Gets	the	element	ID	of	a	link	or	node	in	the	best	route.

tpm_tracebestrouteval

Calculates	the	resistance	of	the	best	route.

tpm_traceelemedit

Modifies	a	tracing	element.

tpm_traceelemget

Gets	information	about	a	tracing	element.

tpm_traceelemid

Gets	the	topology	ID	of	a	tracing	element.

tpm_traceflood

Traces	a	flood	path	from	a	specified	point.

tpm_tracefree

Frees	a	tracing	model.

tpm_traceqty

Counts	the	selected	elements	after	a	trace.

tpm_tracesetmaxres

Sets	maximum	resistance	for	the	shortest	path	algorithm.

tpm_tracesetminres

Sets	minimum	resistance	for	the	shortest	path	algorithm.

tpm_traceshort

Calculates	the	shortest	path	between	two	nodes.

tpm_traceshortscan

Gets	the	topology	ID	of	a	link	or	node	in	the	shortest	path.

tpm_traceshortval

Calculates	the	resistance	of	the	shortest	path.

Topology	Information	Functions
	 	 	

	
	

The	functions	for	getting	information	about	topologies	begin	with	tpm_info.

Many	have	counterparts	in	the	topology	iterating	functions	(tpm_iter[xx]).	The
information	functions	can	query	only	topologies	that	are	open.	The	iterating
functions	can	query	any	topology,	loaded	or	unloaded,	open	or	closed.

tpm_infobuildvar

Stores	the	configuration	values	of	a	topology.

tpm_infocomplete

Tests	if	a	topology	is	complete.

tpm_infocorrect

Tests	if	a	topology	is	correct.

tpm_infocurrent

Checks	the	source	from	which	a	topology	was	loaded.

tpm_infodesc

Gets	a	topology	description.

tpm_infomodified

Checks	if	topology	elements	have	been	modified	using	drawing	tools.

tpm_infoname

Gets	a	topology	name.

tpm_infostatus

Checks	whether	a	topology	is	open	for	Read	or	Write.

tpm_infotype

Gets	a	topology	type.

tpm_infoversion

Gets	a	topology	version.

Topology	Query	Functions
	 	 	

	
	

The	functions	for	querying	topologies	begin	with	tpm_qry.

tpm_qrygetresdesc

Gets	the	description	of	the	query	result	topology.

tpm_qrygetrestopo

Gets	the	name	of	the	query	result	topology.

tpm_qrygettoponame

Gets	the	name	of	the	query	source	topology.

tpm_qrysetrestopo

Defines	or	or	undefines	a	query	result	topology.

tpm_qrysettoponame

Defines	or	undefines	a	topology	query.

Topology	Variables	Functions
	 	 	

	
	

The	functions	for	managing	configuration	variables	begin	with	tpm_var.

tpm_varalloc

Allocates	a	set	of	configuration	variables.

tpm_varfree

Frees	a	set	of	configuration	variables.

tpm_varget

Gets	the	value	of	a	configuration	variable.

tpm_varlist

Gets	all	the	values	in	a	set	of	configuration	variables.

tpm_varset

Sets	the	value	of	a	configuration	variable.

Marker	Shapes
	 	 	

	
	

Drawing	cleanup	markers	are	available	in	the	following	shapes.

Shape	Code Shape

1 Octagon

2 Triangle

3 Rhombus

4 Square

Topology	Object	Data
	 	 	

	
	

A	topology	is	given	the	following	set	of	object	data	fields	when	it	is	built.	These
fields	contain	information	about	the	elements	of	the	topology.

Warning		Although	it	is	possible	to	use	Data	Extension	Object	Data	functions
(ade_od[xx])	to	modify	these	fields,	it	is	not	a	good	idea	to	do	so.	The	topology
functions	assume	these	fields	are	managed	by	them	alone.

Element Field	Name Default

Node ID	(int) 	

Node RESISTANCE	(real) 0.0

Link ID	(int) 	

Link START_NODE	(int) 	

Link END_NODE	(int) 	

Link DIRECTION	(int) 0	(Bidirectional)

Link DIRECT_RESISTANCE	(real) Length

Link REVERSE_RESISTANCE	(real) Length

Link LEFT_POLYGON	(int) 	

Link RIGHT_POLYGON	(int) 	

Centroid ID	(int) 	

Centroid AREA	(real) 	

Centroid PERIMETER	(real) 	

Centroid LINKS_QTY	(int) 	

The	default	resistance	value	Length	is	interpreted	as	follows,	depending	on	the
AutoCAD	entity	type:

Entity	type Length

Line Line	length

Pline Total	pline	length

Arc Calculated	arc	length

Circle Calculated	circumference

The	default	link	direction	value	is	0	(bi-directional).	The	other	possible	direction
values	are	1	(forward),	or	-1	(reverse).	The	forward	direction	for	lines	is	from
start	point	to	end	point.	For	circles	and	arcs,	the	forward	direction	is	counter-
clockwise.

Location	Query
	 	 	

	
	

This	example	defines	and	executes	a	location	query.

	
(mapcar	'ade_dwgdeactivate	(ade_dslist))
(setq	ade_tmpprefval	(ade_prefgetval	"ActivateDwgsOnAttach"))
(ade_prefsetval	"ActivateDwgsOnAttach"	T)
(ade_dsattach	"E:\\ADEDWG\\ARCS2.DWG")
(ade_dsattach	"E:\\ADEDWG\\CIRCLES2.DWG")
(ade_dsattach	"E:\\ADEDWG\\DONUTS.DWG")
(ade_dsattach	"E:\\ADEDWG\\MAKE.DWG")
(ade_dsattach	"E:\\ADEDWG\\POLYLINE.DWG")
(ade_prefsetval	"ActivateDwgsOnAttach"	ade_tmpprefval)
(ade_qryclear)
(ade_qrysettype	1)
(ade_qrydefine	'(""	""	""	"Location"	(1)""))
(ade_qryexecute)

Property	Queries
	 	 	

	
	

The	following	examples	define	and	execute	property	queries:

(mapcar	'ade_dwgdeactivate	(ade_dslist))
(setq	ade_tmpprefval	(ade_prefgetval	"ActivateDwgsOnAttach"))
(ade_prefsetval	"ActivateDwgsOnAttach"	T)
(ade_dsattach	"E:\\ADEDWG\\ARCS2.DWG")
(ade_dsattach	"E:\\ADEDWG\\CIRCLES2.DWG")
(ade_dsattach	"E:\\ADEDWG\\DONUTS.DWG")
(ade_dsattach	"E:\\ADEDWG\\LINES2.DWG")
(ade_dsattach	"E:\\ADEDWG\\MAKE.DWG")
(ade_dsattach	"E:\\ADEDWG\\POLYGONS.DWG")
(ade_dsattach	"E:\\ADEDWG\\POLYLINE.DWG")
(ade_prefsetval	"ActivateDwgsOnAttach"	ade_tmpprefval)
(ade_qryclear)
(ade_qrysettype	2)
(ade_qrydefine	'(""	""	""	"Property"	("color"	"="	"5")""))
(ade_qryexecute)

(mapcar	'ade_dwgdeactivate	(ade_dslist))
(setq	ade_tmpprefval	(ade_prefgetval	"ActivateDwgsOnAttach"))
(ade_prefsetval	"ActivateDwgsOnAttach"	T)
(ade_dsattach	"AUTO:\\AQP5.DWG")
(ade_dsattach	"AUTO:\\AQP5A.DWG")
(ade_dsattach	"AUTO:\\MAKE.DWG")
(ade_prefsetval	"ActivateDwgsOnAttach"	ade_tmpprefval)
(ade_qryclear)

(ade_qrysettype	"draw")
(ade_qrydefine	
				'(""	""	""	"Property"	("objtype"	"="	"SPLINE")""))	
(ade_qrydefine	
				'("OR"	""	""	"Property"	("objtype"	"="	"ELLIPSE")""))	
(ade_qryexecute)

Location	Query	with	Property	Alteration
	 	 	

	
	

This	example	defines	and	executes	a	location	query	with	property	alteration.

	
(mapcar	'ade_dwgdeactivate	(ade_dslist))
(setq	ade_tmpprefval	(ade_prefgetval	"ActivateDwgsOnAttach"))
(ade_prefsetval	"ActivateDwgsOnAttach"	T)
(ade_dsattach	"E:\\ADEDWG\\AQFA3.DWG")
(ade_prefsetval	"ActivateDwgsOnAttach"	ade_tmpprefval)
(ade_qryclear)
(ade_qrysettype	"draw")
(ade_qrydefine	'(""	""	""	"Location"	("all")""))
(ade_altpclear)
(ade_altpdefine	"Height"	"2")
(ade_altpdefine	"Style"	"Y")
(ade_altpdefine	"TextValue"	"test")
(ade_altpdefine	"Layer"	"newlyr")
(ade_altpdefine	"Rotation"	"0.5")
(ade_altpdefine	"Color"	"blue")
(ade_qryexecute)

Location	Query	with	Property	Alteration:	Before	and
After
	 	 	

	
	

This	example	shows	two	versions	of	a	property	alteration	query.	The	second
example	is	an	edited	version	of	the	first.	Note	how	changes	to	the	arguments	in
the	ade_altpdefine	calls	cause	different	property	alteration	effects.

Original	Version

(mapcar	'ade_dwgdeactivate	(ade_dslist))
(setq	ade_tmpprefval	(ade_prefgetval	"ActivateDwgsOnAttach"))
(ade_prefsetval	"ActivateDwgsOnAttach"	T)
(ade_dsattach	"E:\\ADEDWG\\ARCS2.DWG")
(ade_dsattach	"E:\\ADEDWG\\CIRCLES2.DWG")
(ade_dsattach	"E:\\ADEDWG\\DONUTS.DWG")
(ade_dsattach	"E:\\ADEDWG\\ESPMR.DWG")
(ade_dsattach	"E:\\ADEDWG\\LINES2.DWG")
(ade_dsattach	"E:\\ADEDWG\\POLYGONS.DWG")
(ade_dsattach	"E:\\ADEDWG\\POLYLINE.DWG")
(ade_prefsetval	"ActivateDwgsOnAttach"	ade_tmpprefval)
(ade_qryclear)
(ade_qrysettype	"draw")
(ade_qrydefine	'(""	""	""	"Location"	("all")""))
;	ade_altpdefine	calls
(ade_altpdefine	"Color"	"5")
(ade_altpdefine	"Layer"	"NEWLYR")
(ade_altpdefine	"Elevation"	"-2")
(ade_altpdefine	"Thickness"	"1.5")
(ade_altpdefine	"Linetype"	"CENTER")

(ade_qryexecute)

Edited	Version

(mapcar	'ade_dwgdeactivate	(ade_dslist))
(setq	ade_tmpprefval	(ade_prefgetval	"ActivateDwgsOnAttach"))
(ade_prefsetval	"ActivateDwgsOnAttach"	T)
(ade_dsattach	"E:\\ADEDWG\\ARCS2.DWG")
(ade_dsattach	"E:\\ADEDWG\\CIRCLES2.DWG")
(ade_dsattach	"E:\\ADEDWG\\DONUTS.DWG")
(ade_dsattach	"E:\\ADEDWG\\ESPMR.DWG")
(ade_dsattach	"E:\\ADEDWG\\LINES2.DWG")
(ade_dsattach	"E:\\ADEDWG\\POLYGONS.DWG")
(ade_dsattach	"E:\\ADEDWG\\POLYLINE.DWG")
(ade_prefsetval	"ActivateDwgsOnAttach"	ade_tmpprefval)
(ade_qryclear)
(ade_qrysettype	"draw")
(ade_qrydefine	'(""	""	""	"Location"	("all")""))
;	changes	in	ade_altpdefine	calls
(ade_altpdefine	"Color"	"BLUE")
(ade_altpdefine	"Layer"	"XYZ")
(ade_altpdefine	"Elevation"	"7")
(ade_altpdefine	"Thickness"	"1.5")
(ade_altpdefine	"Linetype"	"CENTER")
(ade_qryexecute)

Complex	Query
	 	 	

	
	

The	following	query	definition	combines	a	location	buffer	fence	condition	and	a
property	condition	with	a	range	table	definition,	and	property	alteration	is
performed	on	the	query	result.

(mapcar	'ade_dwgdeactivate	(ade_dslist))
(setq	ade_tmpprefval	(ade_prefgetval	"ActivateDwgsOnAttach"))
(ade_prefsetval	"ActivateDwgsOnAttach"	T)
(setq	dwg_id(ade_dsattach	"E:\\ADEDWG\\POPS.DWG"))
(ade_prefsetval	"ActivateDwgsOnAttach"	ade_tmpprefval)
(ade_qryclear)
(ade_qrysettype	"draw")
;	location	buffer	fence
(ade_qrydefine	
			'(""	""	""	"Location"	("bufferfence"	"inside"		3.000000		
				(4.426217	7.991379	0.000000)	
				(2.385054	5.530788	0.000000)	
				(4.648083	3.912562	0.000000)	
				(5.912716	5.708128	0.000000)	
				(7.754200	3.823892	0.000000)	
				(8.020439	3.646552	0.000000))""))	
(ade_qrydefine	
			'("OR"	""	""	"Property"	("objtype"	"="	"ARC,CIRCLE")""))	
;	range	table
(ade_rtdefrange	
				"Rtable"	"Range	table	depending	upon	object	type"		
				'(("="	"CIRCLE"	"LAYER-CIRCLE")	
						("="	"ARC"	"LAYER-ARC")	

						("OTHERWISE"	""	"LAYER-OTHERS")))	
(ade_altpclear)
(ade_altpdefine	"Layer"	"(Range	.TYPE	Rtable)")
(ade_altpdefine	"Color"	"YELLOW")
(ade_qryexecute)

Topology	IDs
	 	 	

	
	

Topology	function	documentation	uses	a	number	of	different	kinds	of	IDs,	as
listed	in	the	following	table.

Although	these	IDs	are	all	the	same	type,	ade_id,	we	give	them	different	names
in	the	documentation	according	to	their	purpose.

Type Name Identifies Used	or	Returned	By

ade_id clean_id A	cleanup	model tpm_clean[xx]

ade_id elem_id A	topology	element tpm_editdelelem
tpm_editmodelem
tpm_elemadj
tpm_elemget
tpm_traceelemedit
tpm_traceelemget

ade_id iter_id A	topology	iterator tpm_iter[xx]

ade_id overlay_id An	overlay	topology tpm_anaoverlay

ade_id source_id A	source	topology tpm_anabuffer
tpm_anadissolve
tpm_anaoverlay

ade_id tpm_id A	topology tpm_acclose
tpm_acopen

tpm_acupgradeopen
tpm_editaddelem
tpm_editdelelem
tpm_editmodelem
tpm_elemadj
tpm_elemfind
tpm_elemget
tpm_elemid
tpm_elemqty
tpm_elemss
tpm_info[xx]
tpm_mntbuild
tpm_mntrebuild
tpm_tracealloc
tpm_traceelemget
map_topoAudit
map_topoStat

ade_id trace_id A	tracing	model tpm_trace[xx]

ade_id var_id
clean_var_id
act_var_id

Configuration
variables
Topology	variables
Cleanup	variables
Cleanup	action
variables

tpm_anabuffer
tpm_anadissolve
tpm_anaoverlay
tpm_clean[xx]
tpm_infobuildvar
tpm_mntbuild
tpm_var[xx]

Location	Expressions
	 	 	

	
	

Location	expressions	are	used	as	querycond	arguments	in	ade_querydefine
calls	that	define	Location	conditions.

There	are	a	number	of	formats	to	choose	from	when	writing	Location
expressions.	They	are	listed	below.	The	format	to	use	depends	on	the	Location
type,	which	is	identified	in	each	of	the	following	formats	by	the	first	argument.
The	other	arguments	are	described	below.

Location-All

("all")

Location-Bufferfence

("bufferfence"	searchtype	offset	pt1	pt2	...	ptN)

Location-Circle

("circle"	searchtype	centerpt	radius)

Location-Fence

("fence"	pt1	pt2	...	ptN)

Location-Point

("point"	pt)

Location-Polygon

("polygon"	searchtype	pt1	pt2	...	ptN)

Location-Polyline-Bufferfence

("polyline"	"bufferfence"	searchtype	offset	ename)

Location-Polyline-Fence

("polyline"	"fence"	ename)

Location-Polyline-Polygon

("polyline"	"polygon"	searchtype	ename)

Location-Window

("window"	searchtype	pt1	pt2)

Location	Expression	Parameters

searchtype Search	type	keyword	(string):	"inside"	or
"crossing".

offset Buffer	offset	distance	(real).

ename AutoCAD	entity	name,	or	a	set	of	points,	or	"?".	If	"?",
when	the	query	executes,	it	prompts	the	user	to	click	a
set	of	points.

pt	ptN	centerpt A	2D	or	3D	point	(a	list	of	reals).	If	a	3D	point,	the	Z
coordinate	is	ignored.

radius Radius	(real).

Location	Examples

The	following	examples	define	Location	conditions.	The	first	is	a	Location-All
condition:

(ade_qrydefine	
				'("AND"	"("	"NOT"	"Location"	("All")	"")	
)

The	second	is	a	Location-Window	condition:

(ade_qrydefine	
				'("AND"	""	""	"Location"		
						("window"	"crossing"	(1.0		2.0)	(3.0		4.0))	"")		
)

And	the	third	is	a	Location-Polyline	condition.

(ade_qrydefine	
				(list	"AND"	"("	""	"Location"		
				(list	"polyline"	"bufferfence"	"inside"	20.0		
				(entlast))	"")		
)

The	following	three	examples	of	Location-Polyline	conditions	specify	the
ename	argument	in	different	ways.	The	first	supplies	an	entity	name:

(ade_qrydefine	
				(list	""	""	""	"Location"		
				(list	"polyline"	"polygon"	"crossing"		
				(entlast))	"")	
)

The	second	supplies	a	set	of	points:

(ade_qrydefine	
				'(""	""	""	"Location"		
								("polyline"	"polygon"	"crossing"	(

													1											;	1	=	Polyline	open,	0	=	Polyline	closed

													(0	0	1)					;	Direction	of	normal	vector:
																									;	(0	0	1)	identifies	the	Z	axis,	
																									;	i.e.,	this	polygon	is	parallel	to	
																									;	the	XY	plane

													0.000000																								;	Bulge	factor	of	a	vertex
													(4.426217	7.991379	0.000000)				;	Coordinates	of	a	vertex

													0.000000
													(2.385054	5.530788	0.000000)

													0.000000
													(4.648083	3.912562	0.000000)

													0.000000
													(5.912716	5.708128	0.000000)

													0.000000

													(7.754200	3.823892	0.000000)

													0.000000
													(8.020439	3.646552	0.000000)))	"")
)

And	the	third	prompts	the	user	to	click	a	set	of	points:

(ade_qrydefine	
				'(""	""	""	"Location"		
						("polyline"	"polygon"	"crossing"	"?")	"")	
)

SQL	Expressions
	 	 	

	
	

SQL	expressions	are	used	as	querycond	arguments	in	ade_querydefine	calls
that	define	SQL	conditions.

They	have	the	following	format:

(linkpathname	sqlcondition)

SQL	Expression	Parameters

linkpathname Link	template	(string).

sqlcondition SQL	condition	(string).

The	sqlcondition	argument	should	contain	only	the	WHERE	clause	of	an
SQL	statement	(for	example,	"last_name	=	'Smith'").	To	select	the	entire
table,	let	the	sqlcondition	argument	be	the	empty	string	("").

(ade_qrydefine	
				'("AND"	""	""	"Sql"		
						("EMPLN3"	"")	"")	
)

Object	Data	Field	Types
	 	 	

	
	

The	data	types	for	object	data	fields	are	as	follows.	The	type	names	in	the	first
column	are	the	coltype	arguments	for	use	in	field	definitions.

Type Description

integer From	–2,147,483,648	through	2,147,483,647

character Any	alphanumeric	string,	including	the	empty	string,	""

point List	of	three	real	numbers,	separated	by	commas,	that	represent
a	point	with	an	X,	Y,	and	Z	value,	enclosed	in	quotes	(a	string
value)

real From	–1.7E308	through	+1.7E308

Adding	Fields	to	a	Table
	 	 	

	
	

The	following	sample	adds	one	field	of	each	data	type	to	an	existing	table.

;	Define	new	fields
(setq	newfields	
				'("columns"	
									;	Define	a	character	field	
									(("colname"	.	"NEWFIELD1")	
										("coldesc"	.	"New	Field	1	Description")		
										("coltype"	.	"character")	
										("defaultval"	.	"Default	Value"))	
									;	Define	an	integer	field	
									(("colname"	.	"NEWFIELD2")
										("coldesc"	.	"New	Field	2	Description")	
										("coltype"	.	"integer")	
										("defaultval"	.	1))	
									;	Define	a	point	field	
									(("colname"	.	"NEWFIELD3")
										("coldesc"	.	"New	Field	3	Description")	
										("coltype"	.	"point")	
										("defaultval"	.	"4.426217,	7.991379,	1.726213"))	
									;	Define	a	real	field	
									(("colname"	.	"NEWFIELD4")
										("coldesc"	.	"New	Field	4	Description")	
										("coltype"	.	"real")	
										("defaultval"	.	1.2345))))	
;	Add	new	fields	to	existing	table
(ade_odaddfield	"OLDTABLE"	newfields);

Range	Table	Operators
	 	 	

	
	

You	can	use	the	following	comparison	operators	in	range	table	expressions:

<		>		<=		>=		/=		otherwise

When	the	first	element	in	the	range	expression	is	"otherwise",	the	second
element	must	be	the	empty	string	("").	For	example:	("otherwise"	""	"red").
Although	you	do	not	specify	a	comparison	value	when	you	use	the	otherwise
operator,	a	second	list	element	is	still	required.

Note		The	not-equal	operator,	represented	here	by	"/=",	is	represented	by	"<>"
in	other	Data	Extension	functions.

Functions	that	Return	Selection	Sets
	 	 	

	
	

The	following	functions	return	selection	sets.

tpm_elemss	ade_editlocked
ade_editnew
ade_editlockederased
map_dwgbreakobj
map_dwgtrimobj
map_topoclose
map_topocomplete

Plot	Set	Attributes
	 	 	

	
	

This	table	shows	plot	set	attribute	names,	descriptions,	examples,	and	default
values.

Attribute Description Default

name Query	name	(string),	e.g.,	"plotset2" ""

desc Description	(string),	e.g.,	"Complete	Plot	Set" ""

pnam Plotter	name	(string),	e.g.,	"HP	LaserJet	III	on
LPT1"

""

pscr Plot	script	(string),	e.g.,	"e,	n,	y" ""

block Name	of	plot	layout,	a	block	name	(string),	e.g.,
"TBLOCK"

""

atts List	of	attributes	for	the	block	(string	list),	e.g.,
"TITLE"

nil

vlayer Main	viewport	layer	(string),	e.g.,	"VPORT2" ""

vdispl Layers	to	disable	for	the	main	viewport	(string	list),
e.g.,	"0"

nil

kflg Enables	the	reference	viewport:	T	or	nil	
T	Enabled	
nil	Disabled	

T

Note	that	there	are	two	dependent	attributes,	"klayer"
and	"kdispl"

klayer Key	viewport	layer	(string),	e.g.,	"VPORT1",	the
layer	of	the	reference	viewport,	which	must	be	a
different	layer	from	the	layer	used	for	the	main
viewport	(attribute	"vlayer");	if	the	function
map_pltblkvps	returns	only	one	viewport	layer,	it
should	be	used	for	the	main	viewport

""

kdispl Key	display	layers	(string	list),	e.g.,
"BOUNDARY",	a	list	of	layers	to	be	displayed	in
the	referenced	viewport.	This	should	not	be	nil	if
"kflg"	is	enabled.	Valid	layers	are	all	the	layers
returned	by	ade_dsproplist	using	the	option	"layer"

nil

kscl Key	viewport	scale	factor	(real) 0.25

dwgs List	of	source	drawings	(string	list),	e.g.,
"DRAWING1.DWG"	"DRAWING2.DWG"

nil

dact Force	drawing	active	at	plot	time:	T	or	nil T

qcat List	of	query	catalogs	(string	list),	paired	with	qnam
list	entries,	e.g.,	"Queries"

nil

qnam List	of	query	names	(string	list),	paired	with	qcat	list
entries,	e.g.,	"Query_One"

nil

bdwg Boundary	drawing	(string),	e.g.,
"BOUNDARY.DWG"

""

bnds Boundaries	(string	list),	the	boundary	or	boundaries
to	use	by	providing	the	value	for	the	field	assigned	in
"bnamf",	e.g.,	"Boundary	#3"

nil

blyr Boundary	layer	(string),	the	name	of	the	layer	the
boundary	is	placed	on.	It	can	be	any	layer	of	the

""

boundary	drawing.	For	example,	"BOUNDARY"

bnamt Boundary	name	table	(string),	the	name	of	the	object
data	table	attached	to	the	boundary	object,	e.g.,
"BOUNDARIES"

""

bnamf Boundary	name	field	(string),	the	name	of	the	field	to
use	(from	the	table	assigned	in	"bnamt")	for	the
"bnds"	attribute,	e.g.,	"name"

""

bodfs Boundary	fields	(string	list),	the	list	of	field	names	to
be	mapped	to	attributes	in	the	title	block,	e.g.,
"name"	(see	details	and	example	following	this
table);	the	title	block	is	assigned	using	the	attributes
from	the	block	assigned	in	"block"

nil

sflg Plot	to	specified	scale:	T	or	nil nil

scale Plot	scale	(string),	e.g.,	"1:2000" 1:1

clip Clip	objects	against	boundary	(flag):	
T	or	nil

nil

pbnd Plot	boundary	(flag):	T	or	nil	
T	Plot	boundary	polylines	are	plotted	
nil	Plot	boundary	polylines	are	erased	
before	plotting

nil

bbuf Buffer	boundary:	T	or	nil nil

btyp Buffer	type:	"true"	or	"rect"
"true"	Offsets	the	minimum	bounding	
rectangle	for	a	map	boundary	
polyline
"rect"	Specifies	an	offset	of	an	existing	
plot	boundary	line

true

bdist Buffer	distance	(real) 0.10

Mapping	of	object	data	fields	to	block	attributes	is	managed	by	the	two	plot
attributes	"bodfs"	and	"atts".	The	mapping	is	best	explained	by	example.
Suppose	the	following	conditions:

The	boundary	object	data	table,	defined	by	the	"bnamf"	attribute,	has	the
following	fields:	Field1,	Field2,	Field3,	and	Field4.

The	layout	block,	defined	by	the	"block"	attribute,	has	the	following
attributes:	Attr1,	Attr2,	Attr3,	Attr4,	and	Attr5.
You	want	the	value	of	Field1	to	appear	in	place	of	Attr2,	the	value	of
Field2	in	place	of	Attr3,	and	value	of	Field4	in	place	of	Attr1.

To	define	the	desired	mapping,	set	the	"bodfs"	attribute	to	("field1"	"field2"
"field4")	and	the	"atts"	attribute	to	("attr2"	"attr3"	"attr1").	When	plotting	is
done,	values	of	the	fields	from	the	object	data	table	attached	to	the	boundary's
closed	polyline	will	be	assigned	to	the	specified	block	attributes.	The	number	of
elements	in	each	list	for	"bodfs"	and	"atts"	must	be	the	same.

	Configuration Variables
	Topology Variables
	Cleanup Variables
	Cleanup Action Variables

