


The	AutoCAD	Map	3D	ActiveX	API	covers	data	extension	functionality
(drawing	sets,	queries,	object	data...	the	"ADE"	functionality).
For	broader	coverage	of	AutoCAD	Map	3D	functionality,	use	the	.NET	API,
which	is	included	in	the	AutoCAD	Map	3D	SDK.	The	SDK	is	a	separate
installation	from	AutoCAD	Map	3D	itself.	You	can	download	it	from	the
Autodesk	web	site.
Note		The	ActiveX	API	remains	available	to	support	legacy	applications	that	use
it.	For	all	new	development,	the	.NET	API	is	the	best	choice.

To	download	the	AutoCAD	Map	3D	SDK
1.	 Open	the	Autodesk	Home	Page	(it	opens	in	a	new	window)	and	click	Search.
2.	 Search	for	"ObjectARX	for	Autodesk	Map	3D".
3.	 Click	"Developer	Center	-	ObjectARX	for	Autodesk	Map	3D".
4.	 Click	"License	And	Download".

AutoCAD	Map	3D	2009	ActiveX	Reference
080207

http://www.autodesk.com


The	AutoCAD	Map	3D	ActiveX	API	covers	data	extension	functionality
(drawing	sets,	queries,	object	data...	the	"ADE"	functionality).
For	broader	coverage	of	AutoCAD	Map	3D	functionality,	use	the	.NET	API,
which	is	included	in	the	AutoCAD	Map	3D	SDK.	The	SDK	is	a	separate
installation	from	AutoCAD	Map	3D	itself.	You	can	download	it	from	the

	The	ActiveX	API	remains	available	to	support	legacy	applications	that	use
it.	For	all	new	development,	the	.NET	API	is	the	best	choice.

To	download	the	AutoCAD	Map	3D	SDK
Autodesk	Home	Page	(it	opens	in	a	new	window)	and	click	Search.

Search	for	"ObjectARX	for	Autodesk	Map	3D".
Click	"Developer	Center	-	ObjectARX	for	Autodesk	Map	3D".
Click	"License	And	Download".

AutoCAD	Map	3D	2009	ActiveX	Reference





No	changes	have	been	made	to	ActiveX	for	AutoCAD	Map	3D	2009.

What's	New



No	changes	have	been	made	to	ActiveX	for	AutoCAD	Map	3D	2009.





Container	relationships:	AcadMap	object





AcadMap	object
Alias	object
Aliases	collection
AllBound	object
AlterLine	object
AlterLines	collection
AttachedDrawing	object
BufferFenceBound	collection
BufferPolylineBound	collection
CircleBound	object
ClosedPolylineBound	collection
DiagParam	object
DrawingSet	collection
ErrorEntry	collection
ErrorStack	collection
Expression	object
FenceBound	collection
HatchDef	object
MapUtil	object
NestedDrawings	collection
ODFieldDef	object
ODFieldDefs	collection
ODFieldValue	object
ODRecord	collection
ODRecords	collection
ODTable	object
ODTables	collection
Point3d	object

Automation	objects	listed



PolygonBound	collection
PolylineBound	collection
Project	object
ProjectOptions	object
Projects	collection
Query	object
QueryBranch	collection
QueryCategories	collection
QueryCategory	collection
QueryLeaf	object
QueryReport	collection
Range	object
RangeTable	collection
RangeTables	collection
SavedQuery	object
SaveSet	collection
SystemOptions	object
TextDef	object
WindowBound	object





Click	here	to	see	the	list	of	properties.

Methods
Aliases.Add
Aliases.FindByPath
Aliases.Item
Aliases.Remove
AlterLines.Add
AlterLines.AddHatchDef
AlterLines.AddTextDef
AlterLines.Item
AlterLines.Remove
AlterLines.RemoveAll
AttachedDrawing.AddAllToSSet
AttachedDrawing.CountInSSet
AttachedDrawing.GetTableList
AttachedDrawing.QuickView
AttachedDrawing.RemoveAllFromSSet
AttachedDrawing.Save
AttachedDrawing.SaveNewObjs
AttachedDrawing.SaveObjectsByArea
AttachedDrawing.SaveObjectsByLayer
AttachedDrawing.SaveQueriedObjects
BufferFenceBound.Add
BufferFenceBound.Item
BufferFenceBound.Remove
BufferPolylineBound.Item
ClosedPolylineBound.Item

Methods	and	Properties	listed



DrawingSet.Add
DrawingSet.GetTableList
DrawingSet.Item
DrawingSet.Remove
DrawingSet.ZoomExtents
ErrorEntry.Add
ErrorEntry.Item
ErrorStack.Add
ErrorStack.Item
ErrorStack.RemoveAll
Expression.Execute
Expression.Execute
FenceBound.Add
FenceBound.Item
FenceBound.Remove
MapUtil.NewBufferFence
MapUtil.NewBufferPolyline
MapUtil.NewCircle
MapUtil.NewClosedPolyline
MapUtil.NewExpression
MapUtil.NewFence
MapUtil.NewLocationAll
MapUtil.NewODFieldDefs
MapUtil.NewPoint3d
MapUtil.NewPolygon
MapUtil.NewPolyline
MapUtil.NewWindow
NestedDrawings.Item



ODFieldDefs.Add
ODFieldDefs.Item
ODFieldDefs.Remove
ODRecord.AttachTo
ODRecord.Item
ODRecords.Init
ODRecords.Next
ODRecords.Record
ODRecords.Remove
ODRecords.Rewind
ODRecords.Update
ODTable.CreateRecord
ODTable.GetODRecords
ODTables.Add
ODTables.GetODRecords
ODTables.Item
PolygonBound.Add
PolygonBound.Item
PolygonBound.Remove
PolylineBound.Item
Project.RunExternalQuery
Project.WhoLocksObject
Projects.Item
Query.Clear
Query.Define
Query.Execute
Query.Load
Query.Save



QueryBranch.Add
QueryBranch.Clear
QueryBranch.Item
QueryBranch.Remove
QueryCategories.Add
QueryCategories.Item
QueryCategories.Remove
QueryCategory.Add
QueryCategory.AddFromFile
QueryCategory.Item
QueryCategory.Remove
QueryLeaf.SetDataCond
QueryLeaf.SetLocationCond
QueryLeaf.SetPropertyCond
QueryLeaf.SetSQLCond
QueryReport.Add
QueryReport.Clear
QueryReport.Item
QueryReport.Remove
RangeTable.Add
RangeTable.Item
RangeTable.Remove
RangeTables.Add
RangeTables.Item
RangeTables.Remove
SaveSet.AddObjects
SaveSet.GetObjects
SaveSet.RemoveObjects



Click	here	to	see	the	list	of	methods.

Properties
AcadMap.Aliases	property
AcadMap.ErrorStack	property
AcadMap.Projects	property
AcadMap.SystemOptions	property
Alias.Directory	property
Alias.Name	property
Aliases.Count	property
Alterline.Property	property
Alterline.Value	property
Alterlines.Count	property
AttachedDrawing.Active	property
AttachedDrawing.AliasPath	property
AttachedDrawing.ApplyTransform	property
AttachedDrawing.Description	property
AttachedDrawing.Extents	property
AttachedDrawing.HasLocks	property
AttachedDrawing.HasNested	property
AttachedDrawing.IsTopLevel	property
AttachedDrawing.NestedDrawings	property
AttachedDrawing.Parent	property
AttachedDrawing.Projection	property
AttachedDrawing.SaveBackExt	property
AttachedDrawing.Trotate	property
AttachedDrawing.Tscale	property
AttachedDrawing.TXOffset	property



AttachedDrawing.TYOffset	property
BufferFenceBound.Count	property
BufferFenceBound.Width	property
BufferPolylineBound.Count	property
BufferPolylineBound.ObjectID	property
BufferPolylineBound.Width	property
CircleBound.CenterX	property
CircleBound.CenterY	property
CircleBound.CenterZ	property
CircleBound.Radius	property
ClosedPolylineBound.Count	property
ClosedPolylineBound.ObjectID	property
DiagParam.Message	property
DiagParam.Position	property
DiagParam.Source	property
DiagParam.SqlStatement	property
DrawingSet.Count	property
DrawingSet.Extents	property
ErrorEntry.Count	property
ErrorEntry.ErrCode	property
ErrorEntry.ErrMessage	property
ErrorEntry.ErrType	property
ErrorStack.Count	property
ErrorStack.LastErrCode	property
Expression.Value	property
FenceBound.Count	property
HatchDef.Color	property
HatchDef.Layer	property



HatchDef.Pattern	property
HatchDef.Property	property
HatchDef.Rotation	property
HatchDef.ScaleFactor	property
NestedDrawings.Count	property
ODFieldDef.Default	property
ODFieldDef.Description	property
ODFieldDef.IsUpdatable	property
ODFieldDef.Name	property
ODFieldDef.Type	property
ODFieldDefs.Count	property
ODFieldDefs.IsUpdatable	property
ODFieldValue.Type	property
ODFieldValue.Value	property
ODRecord.Count	property
ODRecord.ObjectID	property
ODRecord.TableName	property
ODRecords.IsDone	property
ODRecords.OwnerDbID	property
ODTable.Description	property
ODTable.Name	property
ODTable.ODFieldDefs	property
ODTable.StoreAsXdata	property
ODTables.Count	property
Point3d.X	property
Point3d.Y	property
Point3d.Z	property
PolygonBound.Count	property



PolylineBound.Count	property
PolylineBound.ObjectID	property
Project.CurrentProjection	property
Project.CurrQuery	property
Project.DrawingSet	property
Project.IsMapActiveCommand	property
Project.MapUtil	property
Project.ODTables	property
Project.ProjectOptions	property
Project.QueryCategories	property
Project.RangeTables	property
Project.SaveSet	property
Projects.Count	property
Query.AlterDefined	property
Query.AlterProp	property
Query.AlterTag	property
Query.Mode	property
Query.QueryBranch	property
Query.Report	property
Query.ReportDefined	property
Query.StringContext	property
QueryBranch.Count	property
QueryBranch.JoinOp	property
QueryBranch.Type	property
QueryCategories.Count	property
QueryCategory.Count	property
QueryCategory.Name	property
QueryLeaf.DataType	property



QueryLeaf.JoinOp	property
QueryLeaf.LocationType	property
QueryLeaf.Not	property
QueryLeaf.Operation	property
QueryLeaf.Source	property
QueryLeaf.Type	property
QueryLeaf.Value	property
QueryReport.Count	property
QueryReport.IsReportNested	property
QueryReport.IsTransformEnabled	property
QueryReport.ReportFileName	property
Range.Expression	property
Range.Operation	property
Range.ReturnValue	property
RangeTable.Count	property
RangeTable.Description	property
RangeTable.Name	property
RangeTables.Count	property
SavedQuery.Category	property
SavedQuery.Description	property
SavedQuery.IsExternal	property
SavedQuery.Name	property
SavedQuery.Path	property
SaveSet.Count	property
SaveSet.CountErased	property
SaveSet.CountLocked	property
SaveSet.CountNew	property
TextDef.Color	property



TextDef.Height	property
TextDef.InsertPoint	property
TextDef.Justification	property
TextDef.Layer	property
TextDef.Property	property
TextDef.Rotation	property
TextDef.TextStyle	property
TextDef.TextValue	property
WindowBound.BottomLeft	property
WindowBound.UpperRight	property





EAdeClassId
EAdeDwgStatus
EAdeMode
EAdeNotification
EAlterationType
EClassId
EConditionOperator
EDataQueryType
EDataType
EDwgUpdateStatus
EErrCode
EErrType
EJoinOperator
ELocationType
EPrefType
EPropertyType
EQueryType
ERangeOperator
ESaveQueryOptions
ESaveSetObjectType
ETableType
EUserRights

Constant	groups	listed



ESaveSetObjectType

Constant	groups	listed





–15 1200 2000 2500 3000

0 1300 2100 2600 3100

200 1500 2200 2700 3200

1000 1800 2300 2800 4000

1100 1900 2400 2900 	

	
The	following	EErrCode	constants	correspond	to	the	AcMap::EErrCode
enumerators	in	the	ObjectARX	API	and	to	the	error	codes	in	the
ADSRX/AutoLISP	API.	Errors	on	the	error	stack	are	represented	by	ErrorEntry
collections.	Error	codes	are	returned	by	the	ErrorEntry.ErrCode	property.
Errors	are	listed	below	by	number.	To	see	them	listed	alphabetically,	choose
EErrCode	in	the	VBA	object	browser	with	the	AutocadMap	library	selected.
Expression

–15 kErrXEDValueFail Internal	error

–14 kErrRngTabEvalFail Internal	error

–13 kErrNoRngTabFound Internal	error

–12 kErrNoRngTabLibFound Internal	error

–11 kErrLispValueFail Internal	error

–10 kErrGetAttrFail Internal	error

–09 kErrGetSQLFail Internal	error

–08 kErrGetEEDFail Internal	error

–07 kErrInvalidProperty Internal	error

EErrCode
See	Also

javascript:RelatedTopic0.Click()


–06 kErrExpInvalidOperand Internal	error

–05 kErrExpADS Internal	error

–04 kErrExpNoMemforOperand Internal	error

–03 kErrExpMathOverFlow Internal	error

–02 kErrExpInvalidOper Internal	error

–01 kErrExpSyntaxErr Internal	error

For	more	Expression	errors,	which	begin	at	2900,	click	 .
Common	Usage

00 kAdeOk General	ADE	return	value:
call	to	ADE	object	is
successful

01 kAdeErr General	ADE	error:	call	to
ADE	object	is	not	successful

02 kAdeBadInput Invalid	function	argument

03 kAdeObjectNotFound 	

04 kAdeOutOfMemory 	

05 kAdeObjNotInitialized 	

06 kAdeWrongType 	

07 kAdeWrongProject 	

08 kAdeEOB 	

09 kAdeADSError Invalid	function	argument
type



10 kAdeAdsNameConvertionFails 	

11 kAdeWrongArgument 	

12 kAdeWriteBufFails 	

13 kAdeReadBufFails 	

14 kAdeXDataCorrupted 	

15 kAdeNoEnvironment 	

16 kAdeUsrBreak 	

17 kAdeUncomparable 	

18 kAdePermissionDenied No	permission	to	perform
some	action.	When	using	the
following	commands,	the
message	has	different
meanings:	ADESAVEOBJS	=
can't	be	executed	in
demonstration	mode;
ADEDRAWINGS	=	User	has
no	rights	to	update	the	set;
ADESELOBJS,
ADDREMOBJS	=	User	has
no	rights	to	edit;
ADEDWGMAINT	=	User
needs	to	be	superuser	to
remove	the	foreign	locks;
MAPOPTIONS:	System
Preferences	=	can't	set	"Force
User	Login"	flag	and	change
"Object	Locking"	flag	if
drawing	set	contains	active	or
locked	drawings.	Deactivate



or	unlock	the	drawings	before
trying	to	set	these	preferences.

19 kAdeWrongSyntax 	

20 kAdeDuplicate 	

21 kAdeInvalidPathOrFileName 	

22 kAdeInvalidVersion 	

23 kAdeFileIOFatalError 	

External	Subsystems

200 kAdeAcDbError 	

201 kAdeIRDNotInitialized 	

202 kAdeIRDError 	

203 kAdeASENotInitialized 	

204 kAdeASEError 	

205 kAdeASIError 	

206 kAdeAsiNotInitialized 	

207 kAdeAsiConnectToEnvironmentFailed 	

Transactional	Manager

1000 kErrClosed Repeated	attempts	to	close	previously
closed	ADE	object.	Call	support.

1001 kErrWasErased Attempt	to	work	with	erased	ADE
object.	Call	support.



1002 kErrOpenForRead Attempt	to	update	ADE	objects	opened
for	read.	Call	support.

1003 kErrOpenForWrite Attempts	to	get	multiple	access	to	ADE
object	opened	for	write.	Call	support.

1004 kErrWrongMode Incorrect	mode	of	the	ADE	objects
should	be	opened.	Call	support.

1005 kErrClone Exception	at	the	time	of	cloning	ADE
objects.	Call	support.

1006 kErrResponse Incorrect	attempt	to	start	ADE
transaction.	Call	support.

1007 kErrObjIsAbsent Attempt	to	work	with	erased	ADE
object.	Call	support.

1008 kErrAccess Type	of	work	with	ADE	does	not
correspond	to	its	status.	Call	support.

1009 kErrMultipleUsage Attempts	to	get	multiple	access	to	ADE
object	opened	for	write.	Call	support.

1010 kErrUpgrade Incorrect	attempt	to	update	opening
mode	of	the	ADE	object.	Call	support.

1011 kErrNotClosed Object	was	not	closed	during	current
ADE	transaction.	Call	support.

CAdeList

1100 kAdeGetIteratorFails 	

1101 kAdeListIsEmpty 	

CAdeListIterator

1102 kErrListEnd 	



1103 kErrListObjectIsAbsent 	

Drawing

1200 kAdeQueriedEntity Ignoring	queried	entity
for	saving	selection.
When	using
ADESAVEOBJS,	the
message	means	queried
objects	that	are	selected
for	save	back	are
ignored.

1201 kAdeDwgNotActive Attempt	to	read	the
object	locked	from	an
inactive	drawing.	When
using
ADEWHOHASIT,	the
message	means	the
drawing	from	which
the	object	was	queried
is	no	longer	active.
ADE	is	unable	to
determine	if	the	object
selected	is	currently
locked.	Activate	the
specified	drawing	and
re-enter	the	command.

1202 kAdeReadDwgFileFails ADE	fails	to	read
external	drawing.	If
using
ADEDRAWINGS,	this
message	means	that
ADE	is	unable	to	read
the	specified	drawing.
Perhaps	the	drawing



doesn't	exit	or	the
specified	file	is	not	a
valid	AutoCAD
Drawing	File.	Check
the	error	message	stack
for	more	information.

1203 kAdeMultipleUsers ADE	fails	to	access
external	drawing.	If
using
ADEDRAWINGS,	this
message	means	ADE	is
unable	to	access	the
specified	drawing
because	of	file	locking
problems.	Check	the
error	message	stack	for
more	information.

1204 kAdeEntityLockingFails ADE	fails	to	lock.	If
using	ADESELOBJS,
this	message	means
ADE	is	unable	to	lock
an	object.	The	object
may	already	be	locked.
Use	the
ADEWHOHASIT	to
determine	if	the	object
is	locked,	perhaps	by
another	user.	Check	the
error	message	stack	for
more	information.	

1205 kAdeUnlockedEntity Entity	is	unlocked.	If
using
ADEWHOHASIT,	this
message	indicates	that



the	selected	object	is
not	currently	locked.

1206 kAdeLockedEntity Entity	has	been	locked
by	another	ADE	user.	If
using	ADESELOBJS,
this	message	indicates
that	the	object	is
already	locked	by
another	user.	Use	the
ADEWHOHASIT
command	to	identify
the	user.

1207 kAdeAlreadyInSaveSet 	

1208 kAdeAlreadyNotInSaveSet 	

1209 kAdeMultipleReaders 	

1210 kAdeOpenPrefDictionaryFails ADE	fails	to	open	ADE
preferences	dictionary.
Call	support.

1211 kAdeSavePrefDictionaryFails ADE	fails	to	save	ADE
preferences	dictionary.
Call	support.

1212 kAdeRestoreDSetFails ADE	fails	to	restore	the
drawing	set.	Call
support.

1213 kAdeOpenDSetDictionaryFails ADE	fails	to	open	ADE
drawing	set	dictionary.
Call	support.

1214 kAdeSaveDSetDictionaryFails ADE	fails	to	save	ADE
drawing	set	in



dictionary.	Call
support.

1215 kAdeOpenQueryDictionaryFails ADE	fails	to	open	ADE
query	library
dictionary.	Call
support.

1216 kAdeSaveQueryDictionaryFails ADE	fails	to	save	ADE
query	library	in
dictionary.	Call
support.

1217 kAdeOpenRTableDictionaryFails ADE	fails	to	open	ADE
range	table	dictionary.
Call	support.

1218 kAdeSaveRTableDictionaryFails ADE	fails	to	save	ADE
range	table	in
dictionary.	Call
support.

1219 kAdeRestoreRTableDictionaryFails ADE	fails	to	restore
ADE	range	table	in
dictionary.	Call
support.

1220 kAdeOpenDocViewDictionaryFails ADE	fails	to	open	ADE
Doc	View	information
dictionary.	Call
support.

1221 kAdeSaveDocViewDictionaryFails ADE	fails	to	save	ADE
Doc	View	information
in	dictionary.	Call
support.



1222 kAdeOpenKeyViewDictionaryFails ADE	fails	to	open	ADE
Key	View	information
dictionary

1223 kAdeSaveKeyViewDictionaryFails ADE	fails	to	save	ADE
Key	View	information
in	dictionary.	Call
support.

1224 kAdeSaveProjectionFails ADE	fails	to	save
projection	code	in	the
drawing.	Call	support.

1225 kAdeCopyHardPointerFails ADE	fails	to	apply
property	alteration	for
some	symbol	table.
Call	support.

1226 kAdeDwgToBeReloaded 	

1227 kAdeDwgHasBeenModified There	were	objects
queried	from	the
drawing	that	will	be
treated	as	new	objects.
If	using
ADEDRAWINGS,	this
message	means	that
when	a	drawing	from
which	objects	have
been	queried	is
detached,	ADE
converts	the	objects
into	newly	created
objects.	When	you	use
the	ADEWHOHASIT
command	to	see	the
origin	of	these	objects,



it	says	that	they	have
not	been	queried.

1228 kAdeOnLockedLayer Objects	from	a	locked
layer	have	been
selected.	If	using
ADESELOBJS,
ADEREMOBJS,	or
ADESAVEOBJS,	this
message	means	you
selected	objects	from	a
locked	layer	and	they
cannot	be	added	to,
saved	to,	or	removed
from	the	save	set	or
saved	to	source.

1229 kAdeDwgSaveFales ADE	fails	to	save	the
source	drawing.	If
using	ADESAVEOBJS,
ADESELOBJS,
ADEREMOBJS,
OPEN,	NEW,	or	QUIT,
or	if	you're	configuring
options,	or	modifying
objects,	you	may	get
this	message.	Call
support.	NOTE:	Use
this	message	exactly	as
spelled	here.

1230 kAdeDwgLocksLeft ADE	fails	to	remove
object	locks	(if	present)
by	the	end	of	ADE
session.	If	using	OPEN,
NEW,	or	QUIT,	or	if
you're	configuring



options,	this	message
means	the	drawing
might	be	locked	by
another	ADE	user.

1231 kAdeLinkWillBeLost ADE	does	not	save
links	between	queried
objects	and	source
drawings	between	ADE
sessions.	Detach	source
drawing	with	queried
objects;	Use	the	SAVE
command	with	queried
objects	or	no	objects	in
the	save	set.

1232 kAdeDwgDiskFull 	

1233 kAdeDwgHasQueriedObject 	

1234 kAdeDwgHasNoHeavyLock 	

Current	Session

1300 kAdeGetCPointFails	=	1300 ADE	fails	to	get	Text
location	for	the	entity.	Call
support.

1301 kAdeSetCPointFails ADE	fails	to	store	Text
location	for	the	entity.	Call
support.

1302 kAdeTextInsPointMissed Missing	Text	insert	point.
Call	support.

1303 kAdeTextAllignPointMissed Missing	alignment	point
for	Aligned	and	Fit	Text.



Call	support.

1304 kAdeTextHeightMissed Missing	Text	height.	Call
support.

1305 kAdeTextStringMissed Missing	Text	string.	Call
support.

1306 kAdeIndexUpdateFails Exception	in	Index
generation	or	regeneration.
If	using	ADESAVEOBJS,
ADESELOBJS,
ADEREMOBJS,	or
ADEDWGMAINT,	this
message	means	entity
modification	occurred.	Call
support.

1307 kAdeIgnorePreview ADE	custom	object	is
selected	to	add	to	save	set
or	to	save.	If	using
ADESAVEOBJS,
ADESELOBJS,	or
ADEREMOBJS	this
message	has	the	following
meaning:	When	doing	a
Preview	Query,	ADE
creates	a	special	object
called	a	PREVIEW	object,
used	to	display	the	queried
objects.	PREVIEW	cannot
be	saved	back	to	a	source
drawing.	When	a	user
selects	this	object	for
adding	to	the	save	set	or
when	saving	back,	ADE
detects	this	and	prevents



the	operation.

1308 kAdeIgnorePSpace 	

1309 kAdeEraseIRDObjectFails ADE	fails	to	erase	the
Object	Data	Table.	Call
support.

1310 kAdeRenameIRDObjectFails ADE	fails	to	rename	the
Object	Data	Table.	Call
support.	If	using
ADEDEFDATA,	this
message	means	ADE	can't
rename	Object	Data	Table.
Perhaps	Object	Data	of	the
same	name	already	exists
in	the	drawing	or	Object
Data	Table	definitions
bearing	the	old	name	are
different	in	the	source
drawings.	Check	the	error
message	for	more
information.

1311 kAdeAlterIRDObjectFails ADE	fails	to	alter	Object
Data	Table.	If	using
ADEDEFDATA,	this
message	means	ADE	can't
alter	Object	Data	Table.
Perhaps	Object	Data	Table
definitions	are	different	in
the	source	drawings.	Check
the	error	message	stack	for
more	information.

1312 kAdeIrdDuplicateTableName Object	Data	Table	with
specified	name	already



exists.	ADEDEFDATA	-
all	Object	Data	table	names
must	be	unique.	Duplicate
names	are	not	allowed.

1313 kAdeIrdNotIdenticaFormat Conflict	in	Object	Data
Table	definition.	If	using
ADEDEFDATA,	this
message	means	that
perhaps	Object	Data	Table
definitions	are	different	in
the	source	drawings.
NOTE:	Use	this	message
exactly	as	spelled	here.

1314 kAdeBHatchUnit ADE	treats	bhatch	and	its
boundary	as	one	unit.	If
using	ADESELOBJS	or
ADEREMOBJS,	this
message	has	the	following
meaning:	When	adding	an
object	to	the	save	set,	ADE
checks	if	this	object	is	part
of	a	hatch	boundary.	If	it	is,
all	other	objects	that	form
the	boundary	are	added	to
or	removed	from	the	save
set.	When	saving	back
bhatched	areas,	ADE
always	treats	the	boundary
as	one	object.

1315 kAdeReQuery ADE	queried	one	or	more
objects	twice.	ADE	does
not	support	UNDO	for	this
operation.	If	using
ADEQUERY	or



ADERUNXQUERY	this
message	has	the	following
meaning:	If	a	drawing	file
has	been	modified	by
another	ADE	user	and	if	a
queried	object	matches
another	query,	ADE
removes	the	old	copy	and
queries	a	new	copy.	This
operation	can't	be	undone.

1316 kAdeCantAccessFont 	

1317 kAdeCantAccessImageFile 	

1318 kAdeUnableRedefineXrefBlock 	

Drawing	Set

1500 kAdeRestoreDrawingSetFails ADE	fails	to	read	Drawing
Set	from	DWG	file.	You
encounter	this	message
during	ADE	initialization
or	when	using	Open
drawing	file	or
ADEDRAWINGS.	If
using	ADEDRAWINGS	-
attach	drawing,	the
message	means	"activate
on	attach"	is	ON	or
ade_dsattach(),
ade_dswcattach()	drawing
is	corrupted	or	old	ADE
version	is	in	use.

1501 kAdeDuplicatedDrawing Attempt	to	attach	the	same
drawing	twice.	If	using
ADEDRAWINGS,	this



error	appears	when	a
drawing	with	the	same
name	has	already	been
attached	to	the	work
session.

1502 kAdeNestedDrawing Prohibited	attempt	to	edit
properties	of	the	drawing
in	the	nested	drawing	set.
If	using
ADEDRAWINGS,	this
message	means	a	user	is
not	allowed	to	modify	the
transformation	and	save
back	extents	of	nested
drawings	in	the	work
session.	These	properties
can	only	be	modified	for
top	level	drawings.

1503 kAdeActivateDrawingFails ADE	fails	to	activate
source	drawing.	ADE	was
unable	to	activate	a
drawing	Perhaps	the
drawing	does	not	exist	or
it	is	locked	by	another
user,	or	the	current	user
doesn't	have	permission	to
read	the	specified	drawing
file.	Check	the	error
message	stack	for	more
information.

1504 kAdeDeactivateDrawingFails ADE	fails	to	deactivate
source	drawing.	ADE	is
unable	to	deactivate	a
drawing.	Perhaps	the



drawing	is	locked	by
another	user,	the	drawing
no	longer	exists,	or	there
are	locked	objects	in	the
drawing.	Check	the	error
message	stack	for	more
information.

1505 kAdeLongDrawingDescription Specified	drawing
description	exceeds	133
symbols.	Shorten
description.

1506 kAdeEntityHasBeenLocked Drawing	with	locked
entities	can't	be
deactivated.
ADEDRAWINGS	-	the
specified	drawing	cannot
be	deactivated	because	it
contains	locked	objects.
Remove	locks	and
deactivate.

1507 kAdePreviewNotSupported ADE	2.0	ignores	these
objects:	Tolerance,	Body,
Ellipse,	3dSolid,	Region,
and	Mline.	If	using
ADEQUERY	(Preview),
ADEQVIEWDWGS,	or
ADEKEYVIEW,	this
message	means	ADE	does
not	support	a	Preview
Query	of	Tolerance,	Body,
Ellipse,	3dSolid,	Region
and	Mline.

1508 kAdeAliasIsInUse 	



1509 kAdeActivateDrawingCancelled 	

1510 kAdeAttachDrawingCancelled 	

Feature	Alteration

1800 kAdeInvalidFeatureType Attempt	to	set	an	invalid
property	alteration	type.	If
calling	API	functions
ade_altpsetprop	or
ade_altpdefine,	check	for	a
mistake	in	property	type.

1801 kAdeNoListId Property	alteration	internal	list	is
invalid.	Call	support.

1802 kAdeInvalidExpType Attempt	made	to	set	an	invalid
property	alteration	expression
type.	Call	support.

1803 kAdeNoExpression Property	alteration	internal
object	is	invalid.	Call	support.

1804 kAdeTextCreationFailed Property	alteration	was	unable	to
create	a	new	text	object.	This
message	occurs	when	using
queries	that	alter	properties.
Check	expressions	in	the	text
property	alteration	definition.

1805 kAdeHatchCreationFailed Property	alteration	was	unable	to
create	a	new	hatch	object.	This
message	occurs	when	using
queries	that	alter	properties.
Check	expressions	in	the	hatch
property	alteration	definition.

1806 kAdeInvalidColor Invalid	color	passed	to	property



alteration.	This	message	occurs
when	using	queries	that	alter
properties.	Check	expressions
evaluates	to	a	valid	AutoCAD
color.

1807 kAdeInvalidLayer Invalid	layer	name.	This	message
occurs	when	using	queries	that
alter	properties.	Check
expressions	evaluates	to	a	valid
AutoCAD	layer.

1808 kAdeInvalidStyle Invalid	style	name.	This	message
occurs	when	using	queries	that
alter	properties.	Check
expressions	evaluates	to	a	valid
style.

1809 kAdeInvalidJustification The	expression	for	justification
in	a	text	property	alteration	did
not	evaluate	to	a	valid
justification.	This	message
occurs	when	using	queries	that
alter	properties.	Check
expressions	evaluates	to	a	valid
AutoCAD	justification.

1810 kAdeInvalidScale 	

1811 kAdeNoRangeId ADE	internal	object	is	invalid.
Call	support.

Mapping

1900 kErrMapCoincPoint Coincident	points.	If	using
ADERSHEET	or
ADETRANSFORM	this
message	means	either	old	or



new	points	are	coincident.
They	must	be	different.

1901 kErrMapWrongScale Invalid	scale.	Call	support.

1902 kErrMapTransform Can't	transform	entity.
ADERSHEET,
ADETRANSFORM,
ADEQUERY,	ADESAVEOBJS
An	error	appeared	at	the	time
of	entity	transformation.	It	is
high-level	error.	There	must	be
another	error	in	the	stack	with
more	specific	information.

1903 kErrMapWrongExtents Invalid	entity	extents.	If	you're
using	ADETEXTLOC,
ADERSHEET,	ADEQUERY,
ADESAVEOBJS,	or	calling
AcDbEntity::getGeomExtents()
method	you	may	get	this
message.

1904 kErrMapWrongPoints Invalid	points	number.	If	you're
using	ADERSHEET,	this
message	means	that	the
numbers	of	old	and	new	points
are	different,	or	less	than	2.
Dialog	doesn't	allow	this.	C

1905 kErrMapWrongSelSet Invalid	selection	set.	Call
support.

1906 kErrMapWrongEntityName Invalid	entity	name.	The	entity
is	open.	For	example,	it	has
been	received	from	the	API.

1907 kErrMapOpenEntity Can't	open	entity.	The	entity	is



open.	For	example,	another
application	opened	the	entity.

1908 kErrMapUpgradeEntity Can't	upgrade	open.	Entity
modification	occurred.

1909 kErrMapMoveStretchPoints Can't	modify	stretch	points.
Call	support.

1910 kErrMapEntityPoint Can't	modify	entity	points.	Call
support.

1911 kErrMapCmdecho Can't	change	CMDECHO
variable.	Using
ADEFILLPOLYG	may
produce	this	message.

1912 kErrMapCecolor Can't	change	CECOLOR
variable.	Using
ADEFILLPOLYG	may
produce	this	message.

1913 kErrMapHatch Error	in	hatch	command.	Using
ADEFILLPOLYG	may
produce	this	message.

1914 kErrMapWrongIntersectForPoints Can't	find	intersection.	Using
ADEQUERY	or	calling
AcDbentity::IntersectWith()
method	may	produce	this
message.

1915 kErrMapWrongHandle Wrong	entity	handle.	Call
support.

1916 kErrMapNotPolyline Entity	isn't	polyline.	Call
support.



1917 kErrMapIterator Can't	create	iterator.	Call
support.

1918 kErrMapWriteXData Can't	write	Xdata.	Ensure	that
Xdata	size	is	16	KB	or	less.

1919 kErrMapBuffer Can't	create	buffer.	If	you're
using	ADEQUERY,	to	make	a
location	query	using	a
bufferfence,	you	may	get	this
message.

1920 kErrMapStretchPoints Can't	get	stretch	points.	If
you're	using
ADETRANSFORM	or
ADEQUERY	or	calling
AcDbEntity::getStretchPoints()
you	may	get	this	message.

Topology

2000 kErrTopInvalidName Invalid	topology	name.
Occurs	during	topology
creation.

2001 kErrTopExist Topology	already	exists.
Occurs	during	topology
creation.

2002 kErrTopBuildNet Error	building	network
topology.	Occurs	during
topology	creation.

2003 kErrTopBuildPolygon Error	building	polygon
topology.	Occurs	during
topology	creation.

2004 kErrTopBuildNode Can't	create	node.	Occurs



during	topology	creation.

2005 kErrTopBuildArc Can't	create	link.	Occurs
during	topology	creation.

2006 kErrTopBuildCntr Can't	create	centroid.
Occurs	during	topology
creation.

2007 kErrTopAPIReg Can't	register	topology
API.	Occurs	during	ADE
loading.

2008 kErrTopFuncNotAvail Function	isn't	available.
Occurs	if	you're	using
topology	functions	of	the
API.

2009 kErrTopWriteData Error	writing	Xdata.
Occurs	during	topology
creation	and	modification.

2010 kErrTopNotExist Topology	doesn't	exist.
Occurs	if	you're	using
topology	functions	of	the
API.

2011 kErrTopOverlayType Wrong	overlay	type.

2012 kErrTopMakeLayer Can't	create	new	layer.
Using	ADEDWGCLEAN
produces	this	message.

2013 kErrTopBlockNotExist Block	doesn't	exist.

2014 kErrTopNotOpenForWrite Topology	isn't	open	for
write.	Occurs	when	editing
topology.



2015 kErrTopOpenIrdTable Can't	open	object	data
table.	Occurs	when
loading	and	editing
topology.

2016 kErrTopWrongIrdAttr Invalid	object	data	table.
Occurs	when	loading	and
editing	topology.

2017 kErrTopLoaded Topology	is	already
loaded.	Occurs	when
loading	topology.

2018 kErrTopIncompleteElem Incomplete	topological
element.	Occurs	when
editing	topology.

2019 kErrTopInvalidColor Invalid	color	number.
Occurs	when	using
ADEDWGCLEAN	and
creating	topology.

2020 kErrTopInvalidFlag Invalid	flag.	Occurs	when
using	ADEDWGCLEAN.

2021 kErrTopInvalidTolerance Invalid	tolerance.	Occurs
when	using
ADEDWGCLEAN	and
creating	topology.

2022 kErrTopInvalidCorridor Invalid	corridor	width.
Occurs	when	using
ADEDWGCLEAN.

2023 kErrTopInvalidOffset Invalid	offset.	Occurs
when	using	buffering.



2024 kErrTopInvalidHeight Invalid	marker	height.
Occurs	when	using
ADEDWGCLEAN.

2025 kErrTopInvalidMarkerType Invalid	marker	type.
Occurs	when	using
ADEDWGCLEAN.

2026 kErrTopInvalidEntityType Invalid	type	for	new
entities.	Occurs	when
using	ADEDWGCLEAN.

2027 kErrTopInvalidErrorType Invalid	error	type.	Occurs
when	using
ADEDWGCLEAN.

2028 kErrTopIntersection Intersections	detected.
Occurs	when	creating	and
editing	polygon	topology.

2029 kErrTopOverlayItself Can't	overlay	topology
with	itself.

2030 kErrTopSourceDwgAccess Can't	access	source
drawing.

2031 kErrTopSourceDwgNotActive Source	drawing	isn't
active.

2032 kErrTopSourceDatabaseAccess Can't	access	source
drawing	database.

2033 kErrTopSourceObjectId Can't	get	object	ID	by
handle	in	source	drawing
database.

2034 kErrTopNotLoaded Topology	isn't	loaded.



2035 kErrTopImplicitNode Node	object	doesn't	exist
in	node	topology.

2036 kErrTopMisplacedNode Wrong	node	coordinates.

2037 kErrTopUnreferencedNode Node	isn't	referenced	in
links.

2038 kErrTopUnexistentNode Link	references
nonexistent	node.

2039 kErrTopMismatchStartNode Link	has	invalid	ID	at	the
start	node.

2040 kErrTopMismatchEndNode Link	has	invalid	ID	at	the
end	node.

2041 kErrTopMisplacedCentroid Wrong	centroid
coordinates.

2042 kErrTopMismatchLeftPoly Link	has	invalid	ID	for	the
left	polygon.

2043 kErrTopMismatchRightPoly Link	has	invalid	ID	for	the
right	polygon.

2044 kErrTopUnexistentCentroid Centroid	isn't	inside
polygon.

2045 kErrTopMultiplyCentroid Polygon	has	several
centroids	inside.

2046 kErrTopWrongPolyQty Some	polygons	are
incorrect.

2047 kErrTopMismatchPolyArea Incorrect	polygon	area.

2048 kErrTopMismatchPolyPerimeter Incorrect	polygon



perimeter.

2049 kErrTopOpenSourceDwgTopo Topology	loaded	from
source	drawings	can't	be
open	for	write.

2050 kErrTopOpenTempTopo Temporary	topology	can't
be	open	for	write.

2051 kErrTopIdNotExist Current	drawing	doesn't
have	OD	table	with
information	about	last	ID.

2052 kErrTopEmpty Can't	create	or	load	empty
topology.

2053 kErrTopWasModified Topological	objects	were
modified	by	AutoCAD
commands.

2054 kErrTopMultiple Object	belongs	to	multiple
topologies	and	can't	be
erased.

2055 kErrTopCalculateOffset Can't	calculate	offset.	Use
default.	Occurs	when
using	buffering.

2056 kErrTopZeroOffset Zero	offset.	Can't	build
buffer.

2057 kErrTopDifferentOffset Offset	has	different	sign
for	some	objects.	Can't
build	buffer.

2058 kErrTopInvalidSelSet Invalid	selection	set.
Occurs	when	using	the



API.

2059 kErrTopCleanNotInit Cleanup	model	isn't
initialized.	Occurs	when
using	the	API.

2060 kErrTopCleanNoGroup There	is	no	current	group.
Occurs	when	using	the
API.

2061 kErrTopCleanInvalidIndex Invalid	error	index.	Occurs
when	using	the	API.

2062 kErrTopCleanNoError Current	error	isn't	set.
Occurs	when	using	the
API.

2063 kErrTopTraceLinkNotExist Link	doesn't	exist	in
tracing	model.	Occurs
when	using	the	API.

2064 kErrTopTraceNodeNotExist Node	doesn't	exist	in
tracing	model.	Occurs
when	using	the	API.

2065 kErrTopTraceNoPath Result	path	isn't
calculated.	Occurs	when
using	the	API.

2066 kErrTopTraceInvalidIndex Invalid	element	index.
Occurs	when	using	the
API.

2067 kErrTopInvalidExpression Can't	process	ADE
expression.	Occurs	when
using	overlay,	buffer,
dissolve,	or	tracing
command.



2068 kErrTopLockedTable Can't	write	into	topology
OD	table.	Occurs	when
using	dissolve	command.

2069 kErrTopCreateTable Can't	create	OD	table.
Occurs	when	using
topology	creation,	overlay,
buffer,	or	dissolve
commands.

2070 kErrTopCreateTableColumn Can't	add	column	to	OD
table.	Occurs	when	using
topology	creation,	overlay,
buffer,	or	dissolve
commands.

2071 kErrTopTraceNodesEqual Start	and	end	nodes	are	the
same.	Occurs	doing
shortest	path	tracing.

2072 kErrTopTracePathNotExist Empty	path.	Occurs	during
shortest	path	tracing.

2073 kErrTopTraceFloodNotExist Empty	path.	Occurs	when
tracing	floods.

2074 kErrTopRenameDisabled Can't	rename	topology,
because	current	drawing
has	queried	objects	with
OD.

2075 kErrTopDeleteDisabled Can't	delete	topology,
because	current	drawing
has	queried	objects	with
OD.



2076 kErrTopInvalidExtents 	

Topology	API

2100 kAdeTopApiErrWrongInput Missing	or	invalid	parameter.

2101 kAdeTopApiWrongId Invalid	ID.

Tracing

2150 kAdeTopSprErr Tracing	error.	Occurs	during	topology
tracing.

Query	Definition

2200 kErrUnexpectedBuffChar Invalid	character
encountered	while	reading
the	query	definition	from
the	drawing.	Options	are	a)
Recover	the	drawing	b)
Define	and	save	a	new
query	definition	in	the
drawing.

2201 kErrInvalidIndex An	invalid	line	number	was
specified	for	either
grouping	or	ungrouping	of
query	lines.	Specify	the
correct	line	number	for
grouping	or	ungrouping	the
lines.

2202 kErrInvalidQueryLine One	or	more	query	lines
have	been	incorrectly
defined.	May	occur	when
you	incorrectly	place	a
parenthesis	or	an	operator	in
a	query	line.



2203 kErrInvalidName Either	a	query	or	a	query
category	name	is	invalid.
Ensure	that	the	query	or
category	name	conform	to
the	AutoCAd	symbol	name
specifications.

2204 kErrEntryAlreadyExists Either	the	query	or	the
query	category	name
already	exists	in	the	query
library.	Ensure	that	the
query	name	is	unique	within
the	query	library.

2205 kErrEntryInOtherCategory The	query	name	specified
already	exists	in	another
category	in	the	query
library.	Ensure	that	the
query	name	is	unique	within
the	query	library.

2206 kErrEntryAndFileAlreadyExist The	file	name	specified	for
saving	the	external	query
already	exists.	Choose	a
different	file	name.

2207 kErrASIConnectFailed The	connection	to	the	ASI
environment	required	for
the	SQL	query	was	not
made.	Use	ASE	to	connect
to	the	environment	before
attempting	to	perform	the
SQL	query.	

2208 kErrASIStmtPrepareFailed The	call	to	CAsiExecStm::
Prepare	failed.	correct	the
table	name	or	the	SQL



statement	specified.

2209 kErrASICsrAllocFailed The	call	to
CAsiCsr::Allocate	failed.
Look	at	the	ASI	error
displayed.

2210 kErrASICsrOpenFailed The	call	to	CAsiCsr::Open
failed.	Look	at	the	ASI	error
displayed.	

2211 kErrInvalidDOName An	invalid	Environment,
Schema	or	Catalog	name
was	specified.	Set	the
correct	Environment,
Catalog,	and	Schema
names.	

2212 kErrLPInitFailed The	call	to
CAseLinkPath::init	failed.
Look	at	the	ASE	error
displayed.	

2213 kErrColNotFound Used	for	the	SQL	Order-by
dialog	now	obsolete.	Call
support.

2214 kErrQDefNotInTM The	CAdeQueryDef	object
was	not	appended	to	the
Transaction	Manager.
Internal	error.

2215 kErrQryDefnExists A	query	definition	already
exists	and	a	new	one	cannot
be	loaded.	Clear	the
existing	query	definition
before	loading	a	new	one.



2216 kErrInvalidOperator Invalid	operator	defined	in
query	definition.	The
specified	comparison
operator	is	incompatible
with	operand	types.	Do	not
use	>	with	the	point	type.
Check	the	query	definition
and	change	either	the
operator	or	operand	type.

2217 kErrInvalidPtrnOperator Invalid	operator	defined	in
query	definition	for	pattern
value.	If	value	operand	is
defined	as	pattern,	only	"="
comparison	operator	can	be
used.	Check	the	query
definition	and	change	either
operator	or	operand	value.

2218 kErrInvalidField Non-existent	object	data
field	specified.	This	error
occurs	when	the	user
specifies	the	wrong	object
data	field	name	for	a	table
(if	there	is	no	such	field	in
the	specified	table)	in	the
query	definition	and
executes	the	query.	Check
query	definition	and	tables
and	correct	the	mistake.

2219 kErrInvalidNotBranch 	

2220 kErrInvalidBranch 	

2221 kErrUndefinedValue 	



2222 kErrInvalidLocationType 	

2223 kErrCantLoadExternQuery 	

Query	Manager

2300 kErrIntersectFailed A	call	to	CAseLinkSel::
intersectPartialKey	failed.	Look
at	the	ASE	error	displayed.

2301 kErrNoTemplate The	query	type	was	specified	as
report	but	no	report	options	were
defined.	Define	report	options.

2302 kErrASIStoreValueFailed A	call	to	CAsiData	::storeValue
failed.	Look	at	the	ASI	error
displayed.

2303 kErrASIGetValueFailed A	call	to	CAsiData	::getValue
failed.	Look	at	the	ASI	error
displayed.

Utility

2400 kErrLicFatal Fatal	error	in	ADE	license.	Call	support.

2401 kErrFileNotFound Can't	find	associated	document.	Occurs
when	using	ADEDOCVIEW.

2402 kErrPathNotFound Can't	find	executable	file.	Occurs	when
using	ADEDOCVIEW.

2403 kErrBadFormat Syntax	error	in	the	command	line.
Occurs	when	using	ADEDOCVIEW.

2404 kErrConvtErr Error	converting	ADE	1.0	data	to	ADE
2.0	data.	Occurs	when	using
ADECONVERT.



Data	Dialogs

2450 kErrIRDMismatch 	

2451 kErrIRDInvalidName 	

2452 kErrIRDTableExists 	

2453 kErrInvalidTableName 	

2454 kErrInvalidAttrName 	

2455 kErrTopoName 	

2456 kErrQueriedAndNotNew 	

2457 kErrNotAdministrator 	

GenLink

2500 kErrTagNotFound 	

2501 kErrTagValueAbcent 	

2502 kErrIllegalFormat 	

2503 kErrColMoreThanOne 	

Environment

2600 kErrInitEnv An	error	occurred	during	the
initialization	of	ADE.	The	cause
of	this	error	may	be	due	to	errors
in	loading/initializing	ADE	user
preferences,	system	preferences,
log	file,	or	user	list.

2601 kErrCantFindAdeExePath 	



2602 kErrINIWrite 	

2603 kErrInvalidUserName The	user	name	specified	does	not
exist	in	the	user	list.	Use	a	user
name	that	already	exists	in	the
user	list	or	define	a	new	one
using	User	Administration.

2604 kErrLoadUserList 	

2605 kErrSaveUserList 	

2606 kErrInvalidPswd The	password	specified	does	not
match	the	one	specified	in	the
user	list	for	this	user.	Use	the
correct	password.

Rx

2700 kErrRxAseLoad ASE	isn't	loaded	Can't	initialize	ASE	API.

2701 kErrRxAseInit Object	Data	module	isn't	loaded.

2702 kErrRxIrdLoad Can't	initialize	Object	Data	API.

2703 kErrRxIrdInit Specified	coordinate	system	category	not
found	in	the	library.	Call	support.

Projection

2800 kErrNoProjCatFound Specified	coordinate	system
category	not	found	in	the
library.Call	support.

2801 kErrNoDatumFound Specified	coordinate	system
datum	not	found.	Call	support.

2802 kErrNoElipFound Ellipsoid	not	found	in	the



ellipsoid	list.	Call	support.

2803 kErrNoCoordFound Specified	Coordinate	System	not
found.	Call	support.

2804 kErrFaileOpenDatumFile Can't	open	projection	.mp3	file.
Occurs	when	loading	ADE.

2805 kErrFaileOpenElipFile Can't	open	ellipse	file.	Occurs
when	loading	ADE.

2806 kErrNoneCoord Internal	code	to	set	"None"
projection	to	the	drawing.	Call
support.

Expression

2900 kErrNoExpressionFound Empty	expression	is	specified.
Call	support.

2901 kErrGetPropFail This	is	an	internal	code	to	show
that	entity	has	no	specified
property.	Call	support.

2902 kErrExpEvalFail ADE	fails	to	evaluate
expression.	Occurs	when
executing	query	with	property
alteration	and	executing	a
property	query.

2903 kErrExpMissingQuote Quotes	mismatched	in	SQL
expression.	Occurs	when
executing	a	SQL	query	and	a
query	with	SQL	property
alteration.	Also	occurs	when
using	ADECONVERT.

2904 kErrExpMissingCParen Parenthesis	mismatched.	Occurs



when	executing	a	query	with
feature	alteration	and	executing
a	property	query.

2905 kErrExpExceedThreeOper More	than	three	operands	are
specified.	Occurs	when
executing	a	query	with	property
alteration	and	executing	a
property	query.

2906 kErrRngTabNameExist Range	table	with	specified	name
already	exists.	Call	support.

2907 kErrLpnInvalid 	

2908 kErrLpnNotFound 	

2909 kErrRangeInvalidElse 	

For	more	Expression	errors,	which	begin	at	–15,	click	 .
Index

3000 kErrInvalidIndexVersion The	version	of	the	index	in	the
drawing	is	invalid.	The	options
are:	1)Regenerate	the	index	using
drawing	maintenance	2)Remove
the	index	using	the	index	removal
utility	and	then	re-generate	the
index.

3001 kErrIndexOutOfDate The	index	in	the	drawing	is	out-of-
date.	Regenerate	the	index	using
drawing	maintenance.

3002 kErrTypeAllObjects 	

3003 kErrTypeNoOneObject 	



Validation

3100 kErrWrongSymbolName 	

3101 kErrWrongSymbol 	

3102 kErrWrongStrLength 	

3103 kErrDirDoesNotExist 	

3104 kErrDirReadOnly 	

3105 kErrAccessDenied 	

3106 kErrFileDoesNotExist 	

3107 kErrFileAlreadyExists 	

3108 kErrFileOpenFailed 	

3109 kErrFileReadOnly 	

3110 kErrInvalidString 	

3111 kErrOutOfRange 	

3112 kErrWrongColor 	

3113 kErrIncorrectParameters One	of	ADE	validation	methods
recognized	incorrect	input
parameters.	This	error	is	an
internal	ADE	error.

3114 kErrFileOpenLimit 	

3115 kErrShareViolation 	

3116 kErrNetAccessDenied 	



3117 kErrPathDoesNotExist 	

File	Locking

3200 kErrDwkFileDoesNotExist ADE	lock	file	is	locked.
Occurs	when	using
ADEDRAWINGS	and
ADEQUERY	commands
and	when	ADE	is	running
in	a	multi-user
environment.

3201 kErrOpenDwkFileFailed ADE	was	unable	to	open
the	.DWK	lock	file.	Call
support.

3202 kErrFileLockedByAcad Attempt	to	remove	a	user
who	does	not	exist	from
the	lock	file.	Call	support.

3203 kErrOldMapLockFile ADE	was	unable	to	create
the	.DWK	lock	file.	Call
support.

3204 kErrFileIsNotDwk ADE	tried	to	lock	a	file	for
write	that	was	already
locked	for	read.	Call
support.

3205 kErrSpecifiedUserDoesNotExist ADE	tried	to	lock	a	file	for
read	that	was	already
locked	for	write.	Occurs
during	query	operations	in
a	multi-user	environment.

3206 kErrCreateDwkFileFailed ADE	tried	to	open	and
read	a	file	that	was	not	a
valid	.DWK	file.	Call



support.

3207 kErrFileIsLockedForRead ADE	was	unable	to	unlock
the	lock	file.	Call	support.

3208 kErrFileIsLockedForWrite ADE	tried	to	attach	a	file
that	is	already	open	by
AutoCAD.	Occurs	when
using	ADEDRAWINGS
with	ATTACH	operations
if	the	file	is	open	in	an
AutoCAD	project.

3209 kErrInvalidLockStateSpecified ADE	internal	object	is
invalid.	Call	support.

3210 kErrNotOwnerOfWLH ADE	tried	to	remove	a
write	lock	when	the	user
did	not	have	a	write	lock.
Call	support.

3211 kErrUserIsNotWriter 	

3212 kErrUserIsNotReader 	

3213 kErrUserHasReadLock 	

3214 kErrLockFileIsFull 	

3215 kErrDwgFileDoesNotExist ADE	tried	to	unlock	a	file
but	the	.DWK	file	was
missing.	Occurs	if	the
.dwk	file	was	erased	after
a	file	was	attached.

3216 kErrNotAnADELockFile ADE	internal	object	is
invalid.	Call	support.



3217 kErrFileMayHaveBeenModified Existing	.DWK	file	does
not	belong	to	ADE.	the
lock	file	exists	and	can	be
read	by	ADE,	but	ADE
does	not	own	the	file.

3218 kErrFileHasLocks ADE	tried	to	remove	a
lock	file	but	it	was	not
found.	Occurs	if	the	.dwk
file	was	erased	after	a	file
was	attached.

Unicode	Support

4000 kAdeUnicodeInsufficientBufferToConvert 	

4001 kAdeUnicodeInvalidFlagsToConvert 	

4002 kAdeUnicodeInvalidParameterToConvert 	

4003 kAdeUnicodeNoTranslation 	

4004 kAdeUnicodeCodePageNotAvailable 	

Double-Byte	Support

4005 kAdeNoMBCSAllowed 	





An	AutoCAD	Map	VBA	macro	is	a	program	that	interacts	with	AutoCAD	Map
through	the	Automation	API.	The	VBA	macro	may	include	operations	on
projects,	drawings,	drawing	sets,	queries,	and	object	data.	VBA	macros	are
stored	in	.dwg	or	.dvp	format.	You	create	macros	in	modules,	the	windows	in	the
Visual	Basic	Editor	for	entering	VBA	code.
From	AutoCAD	Map,	you	can	create	macros	or	access	macros	in	all	active
drawings	and	projects,	or	just	in	certain	ones.	Click	Tools	>	Macros	>	Macro.
Click	VBA	Manager	to	load,	unload,	save,	create,	embed,	and	extract	VBA
projects.	For	more	information,	click	Help	in	the	Macros	dialog	box.
What	else	do	you	want	to	do?

Get	started	with	VBA
Use	modules
Create	a	simple	macro
Save	macros
Work	with	projects
Use	the	Object	Browser
Insert	files	into	modules
Find	Help	on	Microsoft	VB	and	VBA
Find	Help	on	AutoCAD	APIs
You	can	also	use	the	browse	buttons	to	navigate	this	topic	group.

Macros



An	AutoCAD	Map	VBA	macro	is	a	program	that	interacts	with	AutoCAD	Map
through	the	Automation	API.	The	VBA	macro	may	include	operations	on
projects,	drawings,	drawing	sets,	queries,	and	object	data.	VBA	macros	are
stored	in	.dwg	or	.dvp	format.	You	create	macros	in	modules,	the	windows	in	the
Visual	Basic	Editor	for	entering	VBA	code.
From	AutoCAD	Map,	you	can	create	macros	or	access	macros	in	all	active
drawings	and	projects,	or	just	in	certain	ones.	Click	Tools	>	Macros	>	Macro.
Click	VBA	Manager	to	load,	unload,	save,	create,	embed,	and	extract	VBA
projects.	For	more	information,	click	Help	in	the	Macros	dialog	box.
What	else	do	you	want	to	do?

Get	started	with	VBA

Create	a	simple	macro

Use	the	Object	Browser
Insert	files	into	modules
Find	Help	on	Microsoft	VB	and	VBA
Find	Help	on	AutoCAD	APIs
You	can	also	use	the	browse	buttons	to	navigate	this	topic	group.





VBA	and	VB	have	different	entry	points	to	the	object	model.	The	VB	entry	point
is	the	application,	whereas	with	VBA	you	are	already	in	the	application.	Also,
with	VB	you	have	to	reference	the	AcadApplication.ActiveDocument	property
in	the	AutoCAD	Automation	API	explicitly,	but	with	VBA	you	can	use	the
global	"alias"	for	the	ActiveDocument	property,	ThisDrawing.
For	information	about	writing	VB	versus	VBA	code,	click	 .

Comparing	VBA	and	VB

javascript:RelatedTopic0.Click()


VBA	and	VB	have	different	entry	points	to	the	object	model.	The	VB	entry	point
is	the	application,	whereas	with	VBA	you	are	already	in	the	application.	Also,
with	VB	you	have	to	reference	the	AcadApplication.ActiveDocument	property
in	the	AutoCAD	Automation	API	explicitly,	but	with	VBA	you	can	use	the
global	"alias"	for	the	ActiveDocument	property,	ThisDrawing.
For	information	about	writing	VB	versus	VBA	code,	click	 .

Comparing	VBA	and	VB





DrawingSet	collections	contain	the	attached	drawings	of	projects.	You	attach
drawings	to	a	project	by	calling	the	DrawingSet.Add	function,	as	follows:
Dim	atdr	As	AttachedDrawing
Dim	amap	As	AcadMap
	
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	atdr	=	map.Projects(ThisDrawing).DrawingSet.Add("C:\\campus.dwg")
Using	the	GetTableList	function	of	the	DrawingSet,	you	can	access	AutoCAD
symbol	tables.	You	can	get	names	of	layers,	line	types,	blocks,	object	data	tables,
and	other	symbol	tables	in	a	drawing.
The	DrawingSet	provides	the	frequently-used	zoom	extents	feature.
boolVal	=	map.Projects(ThisDrawing).DrawingSet.ZoomExtents
The	DrawingSet.Extents	method	gets	extents	of	the	drawing,	which	can	define	a
query	window,	as	shown	in	the	following	example.
Dim	wind	As	WindowBound
Dim	dblary	As	Variant
	
'Get	DWG	Extents
dblary	=	prj.DrawingSet.Item("MAPTUT:\\citymap7.dwg").Extents
	
'Define	Boundary	Area	for	Location
Set	mapu	=	map.Projects(ThisDrawing).MapUtil
Set	wind	=	mapu.NewWindow(	_
mapu.NewPoint3d(dblary(0),	dblary(1),	0),	_	
mapu.NewPoint3d(dblary(2),	dblary(3),	0))	
Through	the	AttachedDrawing	objects	in	the	DrawingSet	collection,	you	activate
and	nest	drawings,	transform	and	save	back	drawing	objects,	and	get	information
on	a	drawing,	such	as	its	alias	or	locked	status.

Managing	drawing	sets



DrawingSet	collections	contain	the	attached	drawings	of	projects.	You	attach
drawings	to	a	project	by	calling	the	DrawingSet.Add	function,	as	follows:
Dim	atdr	As	AttachedDrawing
Dim	amap	As	AcadMap

Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	atdr	=	map.Projects(ThisDrawing).DrawingSet.Add("C:\\campus.dwg")
Using	the	GetTableList	function	of	the	DrawingSet,	you	can	access	AutoCAD
symbol	tables.	You	can	get	names	of	layers,	line	types,	blocks,	object	data	tables,
and	other	symbol	tables	in	a	drawing.
The	DrawingSet	provides	the	frequently-used	zoom	extents	feature.
boolVal	=	map.Projects(ThisDrawing).DrawingSet.ZoomExtents
The	DrawingSet.Extents	method	gets	extents	of	the	drawing,	which	can	define	a
query	window,	as	shown	in	the	following	example.
Dim	wind	As	WindowBound
Dim	dblary	As	Variant

dblary	=	prj.DrawingSet.Item("MAPTUT:\\citymap7.dwg").Extents

'Define	Boundary	Area	for	Location
Set	mapu	=	map.Projects(ThisDrawing).MapUtil
Set	wind	=	mapu.NewWindow(	_
mapu.NewPoint3d(dblary(0),	dblary(1),	0),	_	
mapu.NewPoint3d(dblary(2),	dblary(3),	0))	
Through	the	AttachedDrawing	objects	in	the	DrawingSet	collection,	you	activate
and	nest	drawings,	transform	and	save	back	drawing	objects,	and	get	information
on	a	drawing,	such	as	its	alias	or	locked	status.

Managing	drawing	sets





A	query	is	composed	of	query	branch	and	query	leaf	objects.	Each	leaf	defines	a
single	query	condition,	and	each	branch	defines	a	condition	grouping.	A	query
has	a	main	branch	and	one	or	more	leaves,	and	may	contain	additional	sub-
branches	and	leaves.	Branch	and	leaf	objects	are	related	by	properties	that
specify	their	logical	operators.	The	following	figure	illustrates	this	structure	for	a
simple	query.

The	query	selects	drawing	objects	inside	a	window	boundary,	and	that	are	either
on	the	STREAM	layer	or	bodies	of	water	with	an	average	depth	of	less	than	10
feet.	For	step-by-step	information	about	creating	queries,	click	 .
After	defining	a	query,	if	you	change	leaves	using	the	QueryLeaf.Value	property,
call	Query.Define	again	before	executing	the	query.	For	step-by-step	information
about	modifying	queries,	click	 .

	

Queries
Query	object

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()


A	query	is	composed	of	query	branch	and	query	leaf	objects.	Each	leaf	defines	a
single	query	condition,	and	each	branch	defines	a	condition	grouping.	A	query
has	a	main	branch	and	one	or	more	leaves,	and	may	contain	additional	sub-
branches	and	leaves.	Branch	and	leaf	objects	are	related	by	properties	that
specify	their	logical	operators.	The	following	figure	illustrates	this	structure	for	a

The	query	selects	drawing	objects	inside	a	window	boundary,	and	that	are	either
on	the	STREAM	layer	or	bodies	of	water	with	an	average	depth	of	less	than	10
feet.	For	step-by-step	information	about	creating	queries,	click	 .
After	defining	a	query,	if	you	change	leaves	using	the	QueryLeaf.Value	property,
call	Query.Define	again	before	executing	the	query.	For	step-by-step	information
about	modifying	queries,	click	 .

	





If	property	alteration	is	defined	and	enabled	for	a	query,	certain	properties	of
queried	objects	are	altered	when	the	query	result	is	displayed	in	the	project
drawing.	(There	is	no	effect	on	source	drawings	unless	you	deliberately	save	the
objects	back.)	Property	alteration	is	governed	by	a	query's	property	alteration
definition,	an	Alterlines	collection,	which	can	contain	any	number	of	simple
alterations	(AlterLine	objects),	hatch	alterations	(HatchDef	objects),	or	text
alterations	(TextDef	objects).	To	alter	queried	objects,	first	define	AlterLine,
HatchDef,	or	TextDef	objects,	and	then	add	them	to	the	AlterLines	collection	of
the	current	query.	For	step-by-step	information	about	altering	queried	objects,
click	 .
Conditional	property	alterations

Note	that	you	can	specify	conditional	property	alterations—for	example,	to	color
a	queried	object	green	if	its	width	is	in	the	range	0	to	1,	or	color	it	blue
otherwise.	First	define	a	range	table	by	building	a	RangeTable	collection,	and
then	use	a	range	table	expression	instead	of	an	explicit	value	or	expression	when
you	set	the	Value	parameter	of	a	property	alteration	(or	the	TextValue	parameter
of	a	text	alteration,	or	the	Pattern	property	of	a	Hatch	alteration).	For	step-by-
step	information	about	using	range	tables,	click	 .

	 	

Altering	queried	objects
AlterLines	collection			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()
javascript:RelatedTopic2.Click()


If	property	alteration	is	defined	and	enabled	for	a	query,	certain	properties	of
queried	objects	are	altered	when	the	query	result	is	displayed	in	the	project
drawing.	(There	is	no	effect	on	source	drawings	unless	you	deliberately	save	the
objects	back.)	Property	alteration	is	governed	by	a	query's	property	alteration
definition,	an	Alterlines	collection,	which	can	contain	any	number	of	simple
alterations	(AlterLine	objects),	hatch	alterations	(HatchDef	objects),	or	text
alterations	(TextDef	objects).	To	alter	queried	objects,	first	define	AlterLine,
HatchDef,	or	TextDef	objects,	and	then	add	them	to	the	AlterLines	collection	of
the	current	query.	For	step-by-step	information	about	altering	queried	objects,

Conditional	property	alterations

Note	that	you	can	specify	conditional	property	alterations—for	example,	to	color
a	queried	object	green	if	its	width	is	in	the	range	0	to	1,	or	color	it	blue
otherwise.	First	define	a	range	table	by	building	a	RangeTable	collection,	and
then	use	a	range	table	expression	instead	of	an	explicit	value	or	expression	when
you	set	the	Value	parameter	of	a	property	alteration	(or	the	TextValue	parameter
of	a	text	alteration,	or	the	Pattern	property	of	a	Hatch	alteration).	For	step-by-
step	information	about	using	range	tables,	click	 .

	 	

Altering	queried	objects
See	Also





Object	data	tables	store	data	that	you	attach	to	objects.	The
MapUtil.NewODFieldsDef	function	creates	the	structure	of	an	object	data	table.
The	ODTables.Add	method	applies	that	structure	to	a	specified	table,	registers	it
in	the	project,	and	specifies	the	type	of	object	data,	either	extended	entity	data	or
an	Xrecord.	The	Value	properties	of	ODFieldDef	objects,	which	are	members	of
the	ODRecord	collection,	represent	the	actual	object	data.	The	ODRecord	object
attaches	data	to	objects.	The	collection	of	records	contains	data	for	an	object	that
may	be	defined	in	different	tables.
For	step-by-step	information	about	creating	object	data	tables,	click	

Object	data

javascript:RelatedTopic0.Click()


Object	data	tables	store	data	that	you	attach	to	objects.	The
MapUtil.NewODFieldsDef	function	creates	the	structure	of	an	object	data	table.
The	ODTables.Add	method	applies	that	structure	to	a	specified	table,	registers	it
in	the	project,	and	specifies	the	type	of	object	data,	either	extended	entity	data	or
an	Xrecord.	The	Value	properties	of	ODFieldDef	objects,	which	are	members	of
the	ODRecord	collection,	represent	the	actual	object	data.	The	ODRecord	object
attaches	data	to	objects.	The	collection	of	records	contains	data	for	an	object	that
may	be	defined	in	different	tables.
For	step-by-step	information	about	creating	object	data	tables,	click	





The	AutoCAD	Map	Automation	API	provides	objects	for	error	handling	in
addition	to	the	error	handling	objects	available	through	VBA.	When	an	error
occurs	in	the	execution	of	an	AutoCAD	Map	Automation	API	function,	the	API
pushes	errors	onto	the	error	stack.	Using	the	ErrorStack	object,	you	can	get	a
diagnostic	message	of	the	error	and	display	it	for	the	user.	To	better	interpret
error	messages	or	to	trigger	the	appropriate	error	handler,	you	can	determine	the
following	types	of	errors	by	reading	the	ErrType	property	of	the	error	in	the	error
stack:	ADE,	ASE,	AutoCAD,	ASI,	object	data	executable	(IRD),	coordinate
system	library	(mentor),	Windows	application,	and	user-defined	(DiagMessage)
errors.
The	DiagParam	object	represents	user-defined	error	messages.	By	calling
ErrorEntry.Add,	you	can	add	such	a	message	to	the	error	stack.	You	add	your
own	messages	to	the	Error	Stack	in	conjunction	with	defining	a	failure	condition
for	your	macro.
For	step-by-step	information	about	creating	an	error	handler,	click	

	

Error	handling
See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()


The	AutoCAD	Map	Automation	API	provides	objects	for	error	handling	in
addition	to	the	error	handling	objects	available	through	VBA.	When	an	error
occurs	in	the	execution	of	an	AutoCAD	Map	Automation	API	function,	the	API
pushes	errors	onto	the	error	stack.	Using	the	ErrorStack	object,	you	can	get	a
diagnostic	message	of	the	error	and	display	it	for	the	user.	To	better	interpret
error	messages	or	to	trigger	the	appropriate	error	handler,	you	can	determine	the
following	types	of	errors	by	reading	the	ErrType	property	of	the	error	in	the	error
stack:	ADE,	ASE,	AutoCAD,	ASI,	object	data	executable	(IRD),	coordinate
system	library	(mentor),	Windows	application,	and	user-defined	(DiagMessage)

The	DiagParam	object	represents	user-defined	error	messages.	By	calling
ErrorEntry.Add,	you	can	add	such	a	message	to	the	error	stack.	You	add	your
own	messages	to	the	Error	Stack	in	conjunction	with	defining	a	failure	condition

For	step-by-step	information	about	creating	an	error	handler,	click	

	

Error	handling





Property	alteration	types

00 kAlterationBlockName Block	name

01 kAlterationColor Color

02 kAlterationLayer Layer	name

03 kAlterationRotation Rotation

04 kAlterationElevation Z	coordinate	in	the	user	coordinate
system

05 kAlterationHeight Text	height

06 kAlterationLineType Line	type

07 kAlterationScale Scaling	factor.	For	example	"1.2"	=
120%

08 kAlterationStyle Text	style

09 kAlterationText Text	value

10 kAlterationThickness Thickness

11 kAlterationWidth Line	width

12 kAlterationTextEntity Text	entity	definition

13 kAlterationHatch Hatch	definition

EAlterationType



Property	alteration	types

kAlterationBlockName Block	name

kAlterationColor Color

kAlterationLayer Layer	name

kAlterationRotation Rotation

kAlterationElevation Z	coordinate	in	the	user	coordinate
system

kAlterationHeight Text	height

kAlterationLineType Line	type

kAlterationScale Scaling	factor.	For	example	"1.2"	=
120%

kAlterationStyle Text	style

kAlterationText Text	value

kAlterationThickness Thickness

kAlterationWidth Line	width

kAlterationTextEntity Text	entity	definition

kAlterationHatch Hatch	definition

EAlterationType





Property	condition	types

00 kArea 	

01 kBlockName 	

02 kColor 	

03 kElevation 	

04 kEntType 	

05 kGroup 	

06 kLayer 	

07 kLength 	

08 kLineType 	

09 kTextStyle 	

10 kTextValue 	

11 kThickness 	

12 kFeature 	

13 kLineweight 	

14 kPlotstyle 	

EPropertyType



Property	condition	types

	

kBlockName 	

	

	

	

	

	

	

	

	

	

	

	

kLineweight 	

	

EPropertyType





Represents	a	query	condition.
Contained	by	a	query	branch,	which	is	contained	by	a	query.
Created	by	adding	a	leaf	to	a	query	using	QueryBranch.Add.
For	more	information,	click	 .

	 	

QueryLeaf	object
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()
javascript:RelatedTopic2.Click()


Represents	a	query	condition.
Contained	by	a	query	branch,	which	is	contained	by	a	query.
Created	by	adding	a	leaf	to	a	query	using	QueryBranch.Add.
For	more	information,	click	 .

	 	

QueryLeaf	object
Object	Model			See	Also





A	property	alteration.
Created	by	calling	AlterLines.Add.
Contained	by	the	property	alteration	definition	of	a	query,	an	AlterLines
collection.
AlterLine	objects	represent	the	simple	property	alterations;	for	example,	a
change	of	color.	Text	and	hatch	alterations,	which	add	text	labels	and	apply	hatch
patterns	to	queried	objects,	are	represented	by	two	additional	objects,	TextDef
and	HatchDef.	A	property	alteration	definition	can	contain	any	of	the	three.
For	more	information,	click	 .

	

AlterLine	object
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()


A	property	alteration.
Created	by	calling	AlterLines.Add.
Contained	by	the	property	alteration	definition	of	a	query,	an	AlterLines

AlterLine	objects	represent	the	simple	property	alterations;	for	example,	a
change	of	color.	Text	and	hatch	alterations,	which	add	text	labels	and	apply	hatch
patterns	to	queried	objects,	are	represented	by	two	additional	objects,	TextDef
and	HatchDef.	A	property	alteration	definition	can	contain	any	of	the	three.
For	more	information,	click	 .

	

AlterLine	object
			Object	Model			See	Also





A	hatch	alteration.	Hatch	alterations	add	hatch	patterns	to	queried	objects	if	they
are	closed	figures;	for	example,	closed	polylines	and	circles.
Created	by	AlterLines.Add	or	AlterLines.AddHatchDef.
Contained	by	the	property	alteration	definition	of	a	query,	an	AlterLines
collection.
For	more	information,	click	 .

	

HatchDef	object
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()


A	hatch	alteration.	Hatch	alterations	add	hatch	patterns	to	queried	objects	if	they
are	closed	figures;	for	example,	closed	polylines	and	circles.
Created	by	AlterLines.Add	or	AlterLines.AddHatchDef.
Contained	by	the	property	alteration	definition	of	a	query,	an	AlterLines

For	more	information,	click	 .

	

HatchDef	object
			Object	Model			See	Also





A	text	alteration.	Text	alterations	add	text	labels	to	queried	objects.
Created	by	AlterLines.Add	or	AlterLines.AddTextDef.
Contained	by	the	property	alteration	definition	of	a	query,	an	AlterLines
collection.
For	more	information,	click	 .

	

TextDef	object
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()


A	text	alteration.	Text	alterations	add	text	labels	to	queried	objects.
Created	by	AlterLines.Add	or	AlterLines.AddTextDef.
Contained	by	the	property	alteration	definition	of	a	query,	an	AlterLines

For	more	information,	click	 .

	

TextDef	object
			Object	Model			See	Also





Represents	options	for	individual	AutoCAD	Map	projects.
Contained	by	Project	objects.
Created	automatically	when	a	project	is	added	to	the	Projects	collection.
Options	for	the	AutoCAD	Map	application	are	represented	by	the
SystemOptions	object.	For	more	information	about	options,	go	to	"Using
AutoCAD	Map	>	Setting	Options	>	Setting	System	Options"	in	AutoCAD	Map
UI	Help.

ProjectOptions	Properties
The	ProjectOptions	object	has	no	methods.	Its	properties	are	listed	in	three
groups	below:
Project	Options	Query	Options
Saveback	Options

Project	Options

ActivateDwgsOnAttach	property Boolean

AdjustSizesAndScalesForChangesInUnits	property Boolean

AdjustRotationsForMapDistortions	property Boolean

AdjustSizesAndScalesForMapDistortions	property Boolean

AdjustElevations	property Boolean

AdjustZeroRotationObjects	property Boolean

NoOfSQLConditionsInHistory	property Long

RestoreLastActiveOnStartup	property Boolean

ReconnectDbOnWSOpen	property Boolean

ProjectOptions	object
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()


Query	Options

CaseSensitiveMatch	property Boolean

SaveCurrQueryInSession	property Boolean

MkSelSetWithQryObj	property Boolean

DefaultJoinOperator	property EJoinOperator

ColorForAdd	property String

ColorForRemove	property String

BlockLocnForQuery	property Boolean

TextLocnForQuery	property Boolean

ReferenceBoundaryForAreaLocation	property Boolean

ShowBlockAsInsPt	property Boolean

CreateAssociativeHatch	property Boolean

ShowPreviewImageAsBoundaryOnly	property Boolean

Saveback	options

DontAddObjectsToSaveSet	property Boolean

MarkObjectsForEditingWithoutPrompting	property Boolean

RedefineBlockDefinitions	property Boolean

RedefineLayerDefinitions	property Boolean

RedefineTextStyleDefinitions	property Boolean



RemoveUnusedGroups	property Boolean

EraseSavedBackObjects	property Boolean

RemoveLockAfterSave	property Boolean

CreateHistoryFileOfChanges	property Boolean

CreateBackupFileOfSourceDwg	property Boolean





Top-level	object	for	accessing	other	objects.
Contains	drives	aliases,	projects,	and	error	stack	collections	and	the	system
options	object.
Created	by	getting	an	AutoCAD	Automation	interface	object.
AutoCAD	Map	Automation	and	AutoCAD	Automation	are	integrated	APIs.
Using	AutoCAD	Automation,	you	get	an	AcadMap	object.	AutoCAD	Map
Automation	organizes	objects	in	a	tree-like	fashion	with	AcadMap	at	the	top
level.	AcadMap	contains	lower-level	objects,	and	these	objects	contain	even
lower-level	objects.You	navigate	the	hierarchy	of	contained	objects	to	access
AutoCAD	Map	functionality.	For	example,	from	the	contained	Projects,	you	get
a	Project,	and	access	lower	levels	of	functionality	through	the	query,	drawing	set,
object	data	tables,	project	options,	and	other	objects.
The	following	code	creates	an	AcadMap	object	and	gets	the	project	associated
with	the	active	drawing.
Dim	amap	As	AcadMap
Dim	prj	As	Project
	
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	prj	=	amap.Projects(ThisDrawing)

	

AcadMap	object
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()


Top-level	object	for	accessing	other	objects.
Contains	drives	aliases,	projects,	and	error	stack	collections	and	the	system

Created	by	getting	an	AutoCAD	Automation	interface	object.
AutoCAD	Map	Automation	and	AutoCAD	Automation	are	integrated	APIs.
Using	AutoCAD	Automation,	you	get	an	AcadMap	object.	AutoCAD	Map
Automation	organizes	objects	in	a	tree-like	fashion	with	AcadMap	at	the	top
level.	AcadMap	contains	lower-level	objects,	and	these	objects	contain	even
lower-level	objects.You	navigate	the	hierarchy	of	contained	objects	to	access
AutoCAD	Map	functionality.	For	example,	from	the	contained	Projects,	you	get
a	Project,	and	access	lower	levels	of	functionality	through	the	query,	drawing	set,
object	data	tables,	project	options,	and	other	objects.
The	following	code	creates	an	AcadMap	object	and	gets	the	project	associated
with	the	active	drawing.
Dim	amap	As	AcadMap

Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	prj	=	amap.Projects(ThisDrawing)

	

AcadMap	object
			Object	Model			See	Also





Represents	a	shorthand	name	for	a	drive	and	directory.
Properties	are	a	full	path	that	exists	on	the	hard	drive	and	the	name	of	the	alias.
Created	by	calling	Aliases.Add.
The	following	example	uses	both	properties	of	this	object	to	cycle	through	and
report	on	the	aliases	in	a	project.
Dim	als	As	Alias
Dim	cAls	As	Integer,	i	As	Integer
Dim	amap	As	AcadMap
Dim	strOutput	As	String
	
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
cAls	=	amap.Aliases.Count
For	i	=	0	To	cAls	-	1
Set	als	=	amap.Aliases.Item(i)	
strOutput	=	strOutput	&	als.Name	&	"="	&	als.Directory	&	Chr(13)	
Next	i
MsgBox	strOutput

	

Alias	object
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()


Represents	a	shorthand	name	for	a	drive	and	directory.
Properties	are	a	full	path	that	exists	on	the	hard	drive	and	the	name	of	the	alias.
Created	by	calling	Aliases.Add.
The	following	example	uses	both	properties	of	this	object	to	cycle	through	and
report	on	the	aliases	in	a	project.

Dim	cAls	As	Integer,	i	As	Integer
Dim	amap	As	AcadMap
Dim	strOutput	As	String

Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
cAls	=	amap.Aliases.Count

Set	als	=	amap.Aliases.Item(i)	
strOutput	=	strOutput	&	als.Name	&	"="	&	als.Directory	&	Chr(13)	

	

			Object	Model			See	Also





A	collection	of	shorthand	names	of	drives	and	directory	locations.
Contained	by	an	AcadMap	object.
Created	by	calling	Aliases.Add.
This	collection	has	the	typical	methods	of	a	collection	object:	Add,	Item,	and
Remove	plus	additional	capabilities	for	adding,	modifying,	deleting,	and	listing
drive	aliases.	The	FindByPath	method	gets	an	alias	that	corresponds	to	an	actual
path.

	 	

Aliases	collection
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()
javascript:RelatedTopic2.Click()


A	collection	of	shorthand	names	of	drives	and	directory	locations.
Contained	by	an	AcadMap	object.
Created	by	calling	Aliases.Add.
This	collection	has	the	typical	methods	of	a	collection	object:	Add,	Item,	and
Remove	plus	additional	capabilities	for	adding,	modifying,	deleting,	and	listing
drive	aliases.	The	FindByPath	method	gets	an	alias	that	corresponds	to	an	actual

	 	

Aliases	collection
Object	Model			See	Also





Unlimited	boundary.
Created	by	the	MapUtil.NewLocationAll	method.
This	object	defines	an	unlimited	location	condition,	which	returns	all	objects
from	all	attached	and	active	source	drawings.	Note	that	you	can	combine	it	with
a	And	Not	xx	condition	to	retur	all	objects	but	xx.	For	example,	combined	with
an	And	Not	Color	=	Red	property	condition,	a	LocationAll	condition	returns	all
objects	but	the	red	ones.
The	following	example	passes	the	AllBound	object	in	the	call	to
SetLocationCondition	to	query	all	objects	in	the	attached	drawings.
Dim	amap	As	AcadMap
Dim	prj	As	Project
Dim	qry	As	Query
Dim	qrybr	As	QueryBranch
Dim	qrylf	As	QueryLeaf
	
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	prj	=	amap.Projects(ThisDrawing)
Set	qry	=	prj.CurrQuery
Set	qrybr	=	qry.QueryBranch
Set	qrylf	=	qrybr.Add(kLocationCondition,	kOperatorAnd)
qrylf.SetLocationCond	kLocationInside,	prj.MapUtil.NewLocationAll

AllBound	object
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()


Created	by	the	MapUtil.NewLocationAll	method.
This	object	defines	an	unlimited	location	condition,	which	returns	all	objects
from	all	attached	and	active	source	drawings.	Note	that	you	can	combine	it	with

	condition	to	retur	all	objects	but	xx.	For	example,	combined	with
And	Not	Color	=	Red	property	condition,	a	LocationAll	condition	returns	all

objects	but	the	red	ones.
The	following	example	passes	the	AllBound	object	in	the	call	to
SetLocationCondition	to	query	all	objects	in	the	attached	drawings.
Dim	amap	As	AcadMap

Dim	qrybr	As	QueryBranch
Dim	qrylf	As	QueryLeaf

Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	prj	=	amap.Projects(ThisDrawing)
Set	qry	=	prj.CurrQuery
Set	qrybr	=	qry.QueryBranch
Set	qrylf	=	qrybr.Add(kLocationCondition,	kOperatorAnd)
qrylf.SetLocationCond	kLocationInside,	prj.MapUtil.NewLocationAll

AllBound	object
Methods			Properties			Object	Model			See	Also





A	property	alteration	definition:	a	collection	of	property,	hatch,	and	text
alterations.
Contained	by	a	query.
Created	automatically	by	the	project.
Used	with	a	range	table	that	modifies	objects	in	different	ways	based	on	where
they	fall	in	a	range	of	values.	You	can	modify	14	properties,	including	text	and
hatch	patterns,	of	queried	objects	using	this	collection.	You	add	property,	hatch,
or	text	alterations	to	the	collection	using	the	Add,	AddHatchDef,	or	AddTextDef
methods.	Therefore,	to	get	an	item	from	this	collection,	declare	the	return	value
as	Variant.	Source	drawings	are	unaffected	by	property	alterations	unless	you
save	them	back.
To	alter	properties,	you	define	a	query,	set	the	Query.AlterTag	property	to	True,
create	a	property	alteration	using	Query.AlterProp,	and	execute	the	query	in
Draw	mode.	You	cannot	use	property	alteration	in	other	modes.
For	more	information,	click	 .

	 	

AlterLines	collection
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()
javascript:RelatedTopic2.Click()


A	property	alteration	definition:	a	collection	of	property,	hatch,	and	text

Contained	by	a	query.
Created	automatically	by	the	project.
Used	with	a	range	table	that	modifies	objects	in	different	ways	based	on	where
they	fall	in	a	range	of	values.	You	can	modify	14	properties,	including	text	and
hatch	patterns,	of	queried	objects	using	this	collection.	You	add	property,	hatch,
or	text	alterations	to	the	collection	using	the	Add,	AddHatchDef,	or	AddTextDef
methods.	Therefore,	to	get	an	item	from	this	collection,	declare	the	return	value
as	Variant.	Source	drawings	are	unaffected	by	property	alterations	unless	you

To	alter	properties,	you	define	a	query,	set	the	Query.AlterTag	property	to	True,
create	a	property	alteration	using	Query.AlterProp,	and	execute	the	query	in
Draw	mode.	You	cannot	use	property	alteration	in	other	modes.
For	more	information,	click	 .

	 	

AlterLines	collection
Object	Model			See	Also





An	AttachedDrawing	object	represents	a	drawing	attached	to	the	project.
An	AttachedDrawing	object	is	contained	by	a	DrawingSet	collection,	which	is
contained	by	a	project.
An	attached	drawing	can	contain	a	NestedDrawings	collection,	or	the	drawing
can	be	a	member	of	another	attached	drawing's	NestedDrawings	collection.
An	attached	drawing	can	be	active,	inactive,	or	locked	for	querying.	The	object-
locking	feature	is	necessary	when	users	share	a	set	of	source	drawings	in	a
networking	environment.
To	use	an	AttachedDrawing	object,	you	create	a	project	containing	drawings.
You	get	the	DrawingSet	collection	using	the	Project.DrawingSet	property,	and
add	an	AttachedDrawing	object	to	the	DrawingSet	collection	using	the
DrawingSet.Add	method.	With	access	to	an	AttachedDrawing	object,	you
manipulate	your	drawings	using	the	AttachedDrawing	object	properties	and
methods.	You	can	also	manipulate	a	NestedDrawings	collection	using	these
properties	and	methods.

	 	

AttachedDrawing	object
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()
javascript:RelatedTopic2.Click()


An	AttachedDrawing	object	represents	a	drawing	attached	to	the	project.
An	AttachedDrawing	object	is	contained	by	a	DrawingSet	collection,	which	is
contained	by	a	project.
An	attached	drawing	can	contain	a	NestedDrawings	collection,	or	the	drawing
can	be	a	member	of	another	attached	drawing's	NestedDrawings	collection.
An	attached	drawing	can	be	active,	inactive,	or	locked	for	querying.	The	object-
locking	feature	is	necessary	when	users	share	a	set	of	source	drawings	in	a
networking	environment.
To	use	an	AttachedDrawing	object,	you	create	a	project	containing	drawings.
You	get	the	DrawingSet	collection	using	the	Project.DrawingSet	property,	and
add	an	AttachedDrawing	object	to	the	DrawingSet	collection	using	the
DrawingSet.Add	method.	With	access	to	an	AttachedDrawing	object,	you
manipulate	your	drawings	using	the	AttachedDrawing	object	properties	and
methods.	You	can	also	manipulate	a	NestedDrawings	collection	using	these
properties	and	methods.

	 	

AttachedDrawing	object
Object	Model			See	Also





A	BufferFenceBound	collection	is	a	polygon	boundary,	also	called	a	fence
boundary,	with	a	buffer	zone	around	it.
Created	with	MapUtil.NewBufferFence	method.
A	buffer	fence	boundary	is	made	of	Point3d	objects.

	 	

BufferFenceBound	collection
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()
javascript:RelatedTopic2.Click()


A	BufferFenceBound	collection	is	a	polygon	boundary,	also	called	a	fence
boundary,	with	a	buffer	zone	around	it.
Created	with	MapUtil.NewBufferFence	method.
A	buffer	fence	boundary	is	made	of	Point3d	objects.

	 	

BufferFenceBound	collection
Object	Model			See	Also





A	polyline	boundary	with	a	buffer	zone.
Created	by	the	MapUtil.NewBufferPolyline	method.

	 	

BufferPolylineBound	collection
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()
javascript:RelatedTopic2.Click()


A	polyline	boundary	with	a	buffer	zone.
Created	by	the	MapUtil.NewBufferPolyline	method.

	 	

BufferPolylineBound	collection
Object	Model			See	Also





A	circle	boundary.
Created	by	the	MapUtil.NewCircle	method.
The	following	example	defines	an	area	using	a	CircleBound	object.	First	the
code	prompts	the	user	to	select	the	centre	of	the	circle,	and	then	to	specify	the
radius.	Lastly,	it	creates	the	boundary.
Dim	acadapp	As	AcadApplication
Dim	amap	As	AcadMap
Dim	prj	As	Project
Dim	cir	As	CircleBound
Dim	acadu	As	AcadUtility
Dim	varVal	As	Variant,	Radius	As	Double,	boolVal	As	Boolean
Dim	strVal	As	String,	ReturnValue	As	String
	
Set	acadapp	=	ThisDrawing.Application
Set	amap	=	acadapp.GetInterfaceObject("AutoCADMap.Application")
Set	prj	=	amap.Projects(ThisDrawing)
Set	acadu	=	acadapp.ActiveDocument.Utility
varVal	=	acadu.GetPoint(,	"Select	centre	of	circle:	")
Radius	=	acadu.GetDistance(varVal,	"Drag	a	line	for	radius:	")
Set	cir	=	prj.MapUtil.NewCircle(Radius,	varVal(0),	varVal(1))

	

CircleBound	object
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()


Created	by	the	MapUtil.NewCircle	method.
The	following	example	defines	an	area	using	a	CircleBound	object.	First	the
code	prompts	the	user	to	select	the	centre	of	the	circle,	and	then	to	specify	the
radius.	Lastly,	it	creates	the	boundary.
Dim	acadapp	As	AcadApplication
Dim	amap	As	AcadMap

Dim	cir	As	CircleBound
Dim	acadu	As	AcadUtility
Dim	varVal	As	Variant,	Radius	As	Double,	boolVal	As	Boolean
Dim	strVal	As	String,	ReturnValue	As	String

Set	acadapp	=	ThisDrawing.Application
Set	amap	=	acadapp.GetInterfaceObject("AutoCADMap.Application")
Set	prj	=	amap.Projects(ThisDrawing)
Set	acadu	=	acadapp.ActiveDocument.Utility
varVal	=	acadu.GetPoint(,	"Select	centre	of	circle:	")
Radius	=	acadu.GetDistance(varVal,	"Drag	a	line	for	radius:	")
Set	cir	=	prj.MapUtil.NewCircle(Radius,	varVal(0),	varVal(1))

	

CircleBound	object
			Object	Model			See	Also





A	closed	polyline	boundary.
Created	by	the	MapUtil.NewClosedPolyline	method.

	 	

ClosedPolylineBound	collection
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()
javascript:RelatedTopic2.Click()


A	closed	polyline	boundary.
Created	by	the	MapUtil.NewClosedPolyline	method.

	 	

ClosedPolylineBound	collection
Object	Model			See	Also





Provides	diagnostic	information	about	an	error.
Created	by	calling	Error.Add.
A	member	of	the	ErrorEntry	collection.
Properties	include	the	ID	of	the	object	that	caused	the	error,	an	error	description,
and	if	SQL	processing	was	involved,	the	SQL	statement,	and	location	of	the
error	within	the	statement.
To	use	this	object,	determine	if	the	last	error	code	is	a	kMapError.	If	so,	retrieve
the	errors	from	the	error	stack	to	obtain	diagnostic	information	represented	by
DiagParam.

	

DiagParam	object
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()


Provides	diagnostic	information	about	an	error.
Created	by	calling	Error.Add.
A	member	of	the	ErrorEntry	collection.
Properties	include	the	ID	of	the	object	that	caused	the	error,	an	error	description,
and	if	SQL	processing	was	involved,	the	SQL	statement,	and	location	of	the
error	within	the	statement.
To	use	this	object,	determine	if	the	last	error	code	is	a	kMapError.	If	so,	retrieve
the	errors	from	the	error	stack	to	obtain	diagnostic	information	represented	by

	

DiagParam	object
			Object	Model			See	Also





Represents	a	group	of	drawings	attached	to	the	project.
Contained	by	the	Project	object,	a	member	of	the	Projects	collection.
To	use	a	DrawingSet	collection,	you	create	an	AcadMap	object	and	access	the
Projects	collection	using	the	AcadMap.Projects	property.	You	then	access	the
drawing	set	of	a	project	using	the	Project.DrawingSet	property.	Once	you	have
access	to	the	DrawingSet	collection,	you	use	its	methods	to	add	or	remove
drawings	from	the	set,	get	the	drawings	symbol	tables,	or	display	the	drawing	at
different	zoom	settings.
For	more	information,	click	 .

	 	

DrawingSet	collection
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()
javascript:RelatedTopic2.Click()


Represents	a	group	of	drawings	attached	to	the	project.
Contained	by	the	Project	object,	a	member	of	the	Projects	collection.
To	use	a	DrawingSet	collection,	you	create	an	AcadMap	object	and	access	the
Projects	collection	using	the	AcadMap.Projects	property.	You	then	access	the
drawing	set	of	a	project	using	the	Project.DrawingSet	property.	Once	you	have
access	to	the	DrawingSet	collection,	you	use	its	methods	to	add	or	remove
drawings	from	the	set,	get	the	drawings	symbol	tables,	or	display	the	drawing	at
different	zoom	settings.
For	more	information,	click	 .

	 	

DrawingSet	collection
Object	Model			See	Also





A	collection	of	diagnostic	parameters,	one	set	for	each	error.
User-created	by	adding	an	error	to	the	error	stack,	or	API-created	by	an	error
condition.
Diagnostic	parameters,	such	as	the	error	message,	provide	clues	about	why	the
error	occurred.	Properties	of	the	error	entry	include	code,	type,	and	message	for
the	error.	Methods	are	typical	for	a	collection.	For	more	information,	click	 .
The	following	example	adds	a	nonexistent	file	to	the	drawing	set	and	shows	how
to	display	all	messages	in	the	error	stack.
Dim	amap	As	AcadMap
Dim	prj	As	Project
Dim	i	As	Long
Dim	strOutput	As	String
Dim	ee	As	ErrorEntry
On	Error	GoTo	ErrHandler
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	prj	=	amap.Projects(ThisDrawing)
prj.DrawingSet.Add	("c:\\nofile.dwg")
Exit	Sub
ErrHandler:
For	Each	ee	In	amap.ErrorStack
strOutput	=	strOutput	&	ee.ErrMessage	&	Chr(13)	
Next
MsgBox	strOutput

	 	

ErrorEntry	collection
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()
javascript:RelatedTopic2.Click()




A	collection	of	ErrorEntry	collections.
Each	ErrorEntry	collection	represents	AutoCAD	Map	Automation	API	error.
Contained	by	the	AcadMap	object.
Use	the	ErrorStack	and	ErrorEntry	collections	to	manage	diagnostic	messages,
either	system-	or	user-generated,	when	an	error	occurs	in	executing	the
AutoCAD	Map	Automation	API.	You	add	your	own	messages	to	the	error	stack
using	the	Add	method.	You	get	the	LastErrCode	property	immediately	after	an
error	occurs	to	read	the	last	error	code	generated.
The	following	example	adds	a	nonexistent	file	to	the	drawing	set	and	shows	how
to	display	all	messages	in	the	error	stack.
For	more	information,	click	 .
Dim	amap	As	AcadMap
Dim	prj	As	Project
Dim	i	As	Long
Dim	strOutput	As	String
Dim	ee	As	ErrorEntry
On	Error	GoTo	ErrHandler
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	prj	=	amap.Projects(ThisDrawing)
prj.DrawingSet.Add	("c:\\nofile.dwg")
Exit	Sub
ErrHandler:
For	Each	ee	In	amap.ErrorStack
strOutput	=	strOutput	&	ee.ErrMessage	&	Chr(13)	
Next
MsgBox	strOutput

	 	

ErrorStack	collection
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()
javascript:RelatedTopic2.Click()




Represents	the	expression	evaluator.
Created	by	calling	MapUtil.NewExpression.
Contained	by	a	QueryReport	collection.	Can	be	contained	by	an	AlterLine
object.
You	use	expressions	primarily	in	Report	mode	queries	and	property	alteration
definitions,	but	you	can	use	them	for	general	purposes,	such	as	getting	the	area
of	all	objects	in	a	selection	set.
You	control	the	format	of	the	query	report	by	defining	a	template	using
expressions.	Each	expression	defines	a	column	of	the	report.	When	you	execute
the	query	with	a	report	tempate,	the	information	specified	by	the	expressions	is
written	to	the	report.	For	example,	a	report	template	with	three	expressions
creates	three	columns,	separated	by	commas,	of	information	about	queried
objects.
For	more	information,	see	"Expressions"	in	AutoCAD	Map	UI	Help.

	 	

Expression	object
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()
javascript:RelatedTopic2.Click()


Represents	the	expression	evaluator.
Created	by	calling	MapUtil.NewExpression.
Contained	by	a	QueryReport	collection.	Can	be	contained	by	an	AlterLine

You	use	expressions	primarily	in	Report	mode	queries	and	property	alteration
definitions,	but	you	can	use	them	for	general	purposes,	such	as	getting	the	area
of	all	objects	in	a	selection	set.
You	control	the	format	of	the	query	report	by	defining	a	template	using
expressions.	Each	expression	defines	a	column	of	the	report.	When	you	execute
the	query	with	a	report	tempate,	the	information	specified	by	the	expressions	is
written	to	the	report.	For	example,	a	report	template	with	three	expressions
creates	three	columns,	separated	by	commas,	of	information	about	queried

For	more	information,	see	"Expressions"	in	AutoCAD	Map	UI	Help.

	 	

Expression	object
Object	Model			See	Also





A	FenceBound	collection	is	a	polygon	boundary,	also	called	a	fence	boundary.
Created	with	MapUtil.NewFence	to	create	a	new	FenceBound	object.

	 	

FenceBound	collection
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()
javascript:RelatedTopic2.Click()


A	FenceBound	collection	is	a	polygon	boundary,	also	called	a	fence	boundary.
Created	with	MapUtil.NewFence	to	create	a	new	FenceBound	object.

	 	

FenceBound	collection
Object	Model			See	Also





Used	to	create	object	data	tables,	boundaries	for	queries,	the	expression	object,
and	other	objects.
Contained	by	a	project.
Has	methods	for	creating	various	query	components	such	as	boundary	objects
used	by	location	queries.	Also	used	to	create	ODFieldDefs	collections	that
represents	the	schema	of	an	object	data	table.

	

MapUtil	object
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()


Used	to	create	object	data	tables,	boundaries	for	queries,	the	expression	object,

Contained	by	a	project.
Has	methods	for	creating	various	query	components	such	as	boundary	objects
used	by	location	queries.	Also	used	to	create	ODFieldDefs	collections	that
represents	the	schema	of	an	object	data	table.

	

MapUtil	object
			Properties			Object	Model			See	Also





NestedDrawings	represents	a	collection	of	drawings	attached	to	an	attached
drawing.
The	NestedDrawings	collection	is	contained	by	the	AttachedDrawing	object,
which	is	contained	by	a	DrawingSet	collection.
You	cannot	examine	the	objects	of	this	class	if	the	parent	object	is	not	active.
Check	the	AttachedDrawing.Active	property	before	trying	to	get	the
NestedDrawings	object	from	the	AttachedDrawing	object.
You	can	use	a	NestedDrawings	collection	if	you	first	attach	a	drawing,	which	has
attached	drawings	associated	with	it,	to	a	project,	and	then	attach	other	drawings
to	that	AttachedDrawing	object	by	using	a	NestedDrawings	collection.

	 	

NestedDrawings	collection
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()
javascript:RelatedTopic2.Click()


NestedDrawings	represents	a	collection	of	drawings	attached	to	an	attached

The	NestedDrawings	collection	is	contained	by	the	AttachedDrawing	object,
which	is	contained	by	a	DrawingSet	collection.
You	cannot	examine	the	objects	of	this	class	if	the	parent	object	is	not	active.
Check	the	AttachedDrawing.Active	property	before	trying	to	get	the
NestedDrawings	object	from	the	AttachedDrawing	object.
You	can	use	a	NestedDrawings	collection	if	you	first	attach	a	drawing,	which	has
attached	drawings	associated	with	it,	to	a	project,	and	then	attach	other	drawings
to	that	AttachedDrawing	object	by	using	a	NestedDrawings	collection.

	 	

NestedDrawings	collection
Object	Model			See	Also





Represents	a	field	definition.
Contained	by	an	ODFieldDefs	collection.
Created	by	the	ODFieldDefs.Add	method.
After	calling	ODFieldDefs.Add	to	add	a	field	definition,	you	define	the	field
using	the	properties	of	this	object.
For	more	information,	click	 .

	

ODFieldDef	object
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()


Represents	a	field	definition.
Contained	by	an	ODFieldDefs	collection.
Created	by	the	ODFieldDefs.Add	method.
After	calling	ODFieldDefs.Add	to	add	a	field	definition,	you	define	the	field
using	the	properties	of	this	object.
For	more	information,	click	 .

	

ODFieldDef	object
			Object	Model			See	Also





Represents	the	schema	for	an	object	data	table.
Created	by	calling	MapUtil.NewODFieldDefs.
Contains	ODFieldDef	objects.
Contained	by	an	ODTable	object.
When	you	add	a	new	table	to	an	ODTables	collection,	you	specify	its	fields
using	this	collection.
For	more	information,	click	 .

	 	

ODFieldDefs	collection
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()
javascript:RelatedTopic2.Click()


Represents	the	schema	for	an	object	data	table.
Created	by	calling	MapUtil.NewODFieldDefs.
Contains	ODFieldDef	objects.
Contained	by	an	ODTable	object.
When	you	add	a	new	table	to	an	ODTables	collection,	you	specify	its	fields
using	this	collection.
For	more	information,	click	 .

	 	

ODFieldDefs	collection
Object	Model			See	Also





One	of	the	fields	in	a	record.
Contained	by	an	ODRecord	collection.
Created	when	the	containing	record	is	created	by	ODTable.CreateRecord.
Properties	of	this	object	are	the	value	of	the	field	and	its	data	type.	To	get	or	set
data	values	in	a	record,	access	the	Value	property	of	this	object	as	follows:
ODRecord.Item(n).Value.
For	more	information,	click	 .

	

ODFieldValue	object
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()


One	of	the	fields	in	a	record.
Contained	by	an	ODRecord	collection.
Created	when	the	containing	record	is	created	by	ODTable.CreateRecord.
Properties	of	this	object	are	the	value	of	the	field	and	its	data	type.	To	get	or	set
data	values	in	a	record,	access	the	Value	property	of	this	object	as	follows:
ODRecord.Item(n).Value.
For	more	information,	click	 .

	

ODFieldValue	object
			Object	Model			See	Also





An	object	data	record.
Contains	ODFieldValue	objects.
Contained	by	an	ODRecords	collection.
Created	by	ODTable.CreateRecord.
For	more	information,	click	 .
The	following	example	shows	how	to	use	several	properties	of	the	Record
object.	First,	create	an	object	data	table	called	SampleOD.	For	more	information,
click	 .	Next,	put	this	code	into	a	procedure	and	run	it.	The	object	ID	and	value
of	data	attached	to	each	object	from	the	SampleOD	table	prints	in	the	Immediate
Window.
Dim	amap	As	AcadMap
Dim	acadObj	As	Object
Dim	ODtb	As	ODTable
Dim	i	As	Integer
Dim	prj	As	Project
Dim	ODrcs	As	ODRecords
Dim	boolVal	As	Boolean
	
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	prj	=	amap.Projects(ThisDrawing)
prj.ProjectOptions.DontAddObjectsToSaveSet	=	True
Set	ODtb	=	prj.ODTables.Item("SampleOD")
Set	ODrcs	=	ODtb.GetODRecords
For	Each	acadObj	In	ThisDrawing.ModelSpace
boolVal	=	ODrcs.Init(acadObj,	True,	False)	
Debug.Print	ODrcs.Record.tableName	
Debug.Print	ODrcs.Record.ObjectID	
For	i	=	0	To	ODrcs.Record.Count	-	1	
Debug.Print	ODrcs.Record.Item(i).Value	
Next	i	
Next

ODRecord	collection
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()
javascript:RelatedTopic2.Click()


	 	





Represents	object	data	attached	to	an	object	from	tables.
Created	automatically	by	the	project.
You	can	attach	records	from	more	than	one	table,	and	multiple	records	from	the
same	table,	to	a	drawing	object.	The	ODRecords	collection	always	references	a
particular	drawing	object,	which	you	designate	by	calling	the	ODRecords.Init
method.	You	must	explicitly	release	an	ODRecords	object	when	you	are	finished
with	it.	See	ODRecords.Init()	for	details.
For	more	information,	click	 .

	 	

ODRecords	collection
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()
javascript:RelatedTopic2.Click()


Represents	object	data	attached	to	an	object	from	tables.
Created	automatically	by	the	project.
You	can	attach	records	from	more	than	one	table,	and	multiple	records	from	the
same	table,	to	a	drawing	object.	The	ODRecords	collection	always	references	a
particular	drawing	object,	which	you	designate	by	calling	the	ODRecords.Init
method.	You	must	explicitly	release	an	ODRecords	object	when	you	are	finished

ODRecords.Init()	for	details.
For	more	information,	click	 .

	 	

ODRecords	collection
Object	Model			See	Also





Represents	an	object	data	table.
Contained	by	an	ODTables	collection.
Created	by	ODTables.Add.
For	more	information,	click	 .

	 	

ODTable	object
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()
javascript:RelatedTopic2.Click()


Represents	an	object	data	table.
Contained	by	an	ODTables	collection.
Created	by	ODTables.Add.
For	more	information,	click	 .

	 	

ODTable	object
Object	Model			See	Also





A	collection	of	object	data	tables.
Contained	by	a	project.
Created	automatically	by	the	project.
For	more	information,	click	 .

	 	

ODTables	collection
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()
javascript:RelatedTopic2.Click()


A	collection	of	object	data	tables.
Contained	by	a	project.
Created	automatically	by	the	project.
For	more	information,	click	 .

	 	

ODTables	collection
Object	Model			See	Also





A	point	used	in	the	composition	of	boundary	objects.
Note	that	Point3d	objects	can	serve	as	boundary	objects	by	themselves.	In	that
situation,	whether	the	condition	is	Crossing	or	Inside	doesn't	matter.	Objects
returned	include	the	following.

Lines	that	are	coincident	with	the	point
Polylines	if	a	straight	segment	is	coincident
Circles	and	arcs	if	the	center	is	coincident

Note	that	circles	and	arcs	are	returned	only	if	the	center	is	coincident.
Coincidence	of	the	curve	doesn't	matter.	More	complicated	figures	are	returned
only	if	a	vertex	or	control	point	is	coincident.

	

Point3d	object
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()


A	point	used	in	the	composition	of	boundary	objects.
Note	that	Point3d	objects	can	serve	as	boundary	objects	by	themselves.	In	that
situation,	whether	the	condition	is	Crossing	or	Inside	doesn't	matter.	Objects
returned	include	the	following.

Lines	that	are	coincident	with	the	point
Polylines	if	a	straight	segment	is	coincident
Circles	and	arcs	if	the	center	is	coincident

Note	that	circles	and	arcs	are	returned	only	if	the	center	is	coincident.
Coincidence	of	the	curve	doesn't	matter.	More	complicated	figures	are	returned
only	if	a	vertex	or	control	point	is	coincident.

	

Point3d	object
			Object	Model			See	Also





A	polygon	boundary.
Created	by	the	MapUtil.NewPolygon	method.

	 	

PolygonBound	collection
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()
javascript:RelatedTopic2.Click()


A	polygon	boundary.
Created	by	the	MapUtil.NewPolygon	method.

	 	

PolygonBound	collection
Object	Model			See	Also





A	polyline	boundary.
Created	by	the	MapUtil.NewPolyline	method.

	 	

PolylineBound	collection
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()
javascript:RelatedTopic2.Click()


A	polyline	boundary.
Created	by	the	MapUtil.NewPolyline	method.

	 	

PolylineBound	collection
Object	Model			See	Also





An	AutoCAD	Map	project.
Contained	by	the	Projects	collection	of	the	application.
Contains	all	the	elements	of	a	project.

	 	

Project	object
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()
javascript:RelatedTopic2.Click()


An	AutoCAD	Map	project.
Contained	by	the	Projects	collection	of	the	application.
Contains	all	the	elements	of	a	project.

	 	

Project	object
Object	Model			See	Also





Represents	existing	AutoCAD	Map	projects.
Contained	by	AcadMap.
Created	for	you	when	you	get	an	AcadMap	object.
This	collection	contains	all	AutoCAD	Map	projects.	A	project	is	an	open
AutoCAD	Map	document.	When	an	application	opens	or	closes	an	AutoCAD
Map	document,	the	Projects	collection	automatically	adds	projects	to,	or
removes	projects	from,	the	Projects	collection.
You	get	a	project	from	the	collection	by	using	the	AcadMap.Projects.Item
method.

	 	

Projects	collection
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()
javascript:RelatedTopic2.Click()


Represents	existing	AutoCAD	Map	projects.
Contained	by	AcadMap.
Created	for	you	when	you	get	an	AcadMap	object.
This	collection	contains	all	AutoCAD	Map	projects.	A	project	is	an	open
AutoCAD	Map	document.	When	an	application	opens	or	closes	an	AutoCAD
Map	document,	the	Projects	collection	automatically	adds	projects	to,	or
removes	projects	from,	the	Projects	collection.
You	get	a	project	from	the	collection	by	using	the	AcadMap.Projects.Item

	 	

Projects	collection
Object	Model			See	Also





The	current	query.
Contained	by	a	project.
Created	automatically	by	the	project.
Contains	a	QueryBranch	collection	called	the	main	branch,	which	contains	the
query's	conditions	(QueryLeaf	objects).	The	main	branch	can	also	contain	sub-
branches	(other	QueryBranch	collections),	which	contain	grouped	conditions
(more	QueryLeaf	objects).	Sub-branches	can	contain	other	sub-branches,	and	so
on.
To	assign	a	main	branch	to	a	query,	use	the	Query.Define	method.	To	get	a
query's	main	branch,	use	the	Query.QueryBranch	property.
For	more	information,	click	 .

	 	

Query	object
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()
javascript:RelatedTopic2.Click()


Contained	by	a	project.
Created	automatically	by	the	project.
Contains	a	QueryBranch	collection	called	the	main	branch,	which	contains	the
query's	conditions	(QueryLeaf	objects).	The	main	branch	can	also	contain	sub-
branches	(other	QueryBranch	collections),	which	contain	grouped	conditions
(more	QueryLeaf	objects).	Sub-branches	can	contain	other	sub-branches,	and	so

To	assign	a	main	branch	to	a	query,	use	the	Query.Define	method.	To	get	a
query's	main	branch,	use	the	Query.QueryBranch	property.
For	more	information,	click	 .

	 	

Object	Model			See	Also





Represents	a	grouped	set	of	query	conditions.
QueryBranch	collections	can	contain	either	QueryLeaf	objects,	other
QueryBranch	objects,	or	both.
Solitary	conditions	are	represented	by	QueryLeaf	objects.
The	main	branch	of	the	current	query	is	contained	by	Project.CurrQuery	and
accessed	through	the	Project	during	query	creation.
For	more	information	about	queries,	click	 .

	 	

QueryBranch	collection
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()
javascript:RelatedTopic2.Click()


Represents	a	grouped	set	of	query	conditions.
QueryBranch	collections	can	contain	either	QueryLeaf	objects,	other
QueryBranch	objects,	or	both.
Solitary	conditions	are	represented	by	QueryLeaf	objects.
The	main	branch	of	the	current	query	is	contained	by	Project.CurrQuery	and
accessed	through	the	Project	during	query	creation.
For	more	information	about	queries,	click	 .

	 	

QueryBranch	collection
Object	Model			See	Also





A	query	library.
A	collection	of	query	categories,	which	are	collections	of	queries.
Contained	by	the	project.
Created	by	default	when	the	project	is	created.

	 	

QueryCategories	collection
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()
javascript:RelatedTopic2.Click()


A	collection	of	query	categories,	which	are	collections	of	queries.
Contained	by	the	project.
Created	by	default	when	the	project	is	created.

	 	

QueryCategories	collection
Object	Model			See	Also





A	collection	of	queries.
Created	by	adding	the	category	to	the	library	(a	QueryCategories	collection).

	 	

QueryCategory	collection
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()
javascript:RelatedTopic2.Click()


A	collection	of	queries.
Created	by	adding	the	category	to	the	library	(a	QueryCategories	collection).

	 	

QueryCategory	collection
Object	Model			See	Also





A	collection	of	expressions	for	a	report	template.
Contained	by	a	query.
A	report	stores	results	of	a	query	in	a	text	file.	You	control	the	format	of	the
report	by	defining	a	template	using	expressions.	Each	expression	defines	a
column	of	the	report,	and	can	include	dot	variables	that	represent	object
properties,	object	data	cariables	that	represent	nongraphic	information	stored
with	the	object	int	he	drawing	file,	and	SQL	variables	that	represent	the
connection	between	objects	and	external	database	tables.	When	you	execute	the
query	with	a	report	tempate,	the	information	specified	by	the	expressions	is
written	to	the	report.	For	example,	a	report	template	with	three	expressions
creates	three	columns,	separated	by	commas,	of	information	about	queried
objects.
To	specify	what	information	you	want	in	the	report,	create	a	template.	When	the
query	with	a	report	template	executes,	the	output	report	is	sent	to	a	file.

	 	

QueryReport	collection
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()
javascript:RelatedTopic2.Click()


A	collection	of	expressions	for	a	report	template.
Contained	by	a	query.
A	report	stores	results	of	a	query	in	a	text	file.	You	control	the	format	of	the
report	by	defining	a	template	using	expressions.	Each	expression	defines	a
column	of	the	report,	and	can	include	dot	variables	that	represent	object
properties,	object	data	cariables	that	represent	nongraphic	information	stored
with	the	object	int	he	drawing	file,	and	SQL	variables	that	represent	the
connection	between	objects	and	external	database	tables.	When	you	execute	the
query	with	a	report	tempate,	the	information	specified	by	the	expressions	is
written	to	the	report.	For	example,	a	report	template	with	three	expressions
creates	three	columns,	separated	by	commas,	of	information	about	queried

To	specify	what	information	you	want	in	the	report,	create	a	template.	When	the
query	with	a	report	template	executes,	the	output	report	is	sent	to	a	file.

	 	

QueryReport	collection
Object	Model			See	Also





A	range	in	a	range	table.
A	range	specifies	a	condition	to	check,	such	as	"less	than	1,"	and	a	value	to
return	if	the	condition	is	true,	such	as	"green."
For	more	information,	click	 .	Also	go	to	"Using	AutoCAD	Map	>	Queries	>
Altering	the	Properties	of	Queried	Objects	>	Creating	a	Range	Table"	in
AutoCAD	Map	UI	Help.

	

Range	object
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()


A	range	in	a	range	table.
A	range	specifies	a	condition	to	check,	such	as	"less	than	1,"	and	a	value	to
return	if	the	condition	is	true,	such	as	"green."
For	more	information,	click	 .	Also	go	to	"Using	AutoCAD	Map	>	Queries	>
Altering	the	Properties	of	Queried	Objects	>	Creating	a	Range	Table"	in
AutoCAD	Map	UI	Help.

	

			Object	Model			See	Also





A	collection	of	ranges.
Contained	by	the	RangeTables	collection	of	a	project.
Created	by	RangeTables.Add	followed	by	calls	to	RangeTable.Add	as	needed	to
build	the	collection.
Range	tables	allow	conditional	property	alterations�for	example,	an	alteration
that	colors	an	object	green	if	its	width	is	less	than	1,	or	colors	it	blue	otherwise.
To	specify	a	conditional	alteration,	first	define	a	range	table	by	building	a
RangeTable	collection,	and	then	use	a	range	table	expression	instead	of	an
explicit	value	or	expression	when	you	set	the	Value	parameter	of	a	property
alteration	(or	the	TextValue	parameter	of	a	text	alteration,	or	the	Pattern	property
of	a	Hatch	alteration).
For	more	information,	click	 .	Also,	go	to	"Using	AutoCAD	Map	>	Queries	>
Altering	the	Properties	of	Queried	Objects	>	Creating	a	Range	Table"	in
AutoCAD	Map	UI	Help.
This	example	is	based	on	the	sample	code	for	altering	queried	objects.To	go	to
the	sample	code,	click	 .	The	following	example	shows	how	to	set	up	a	range
table	called	safewater.	The	query	using	the	range	table	moves	water	bodies	less
than	10	feet	from	the	WATER	layer	to	the	STREAM	layer.
Dim	rngtb	As	RangeTable
Dim	rng	As	Range
Dim	altlLay	As	AlterLine
	
'Alter	Layer	Based	on	Range	Table
prj.RangeTables.Remove	("foulwater")
Set	rngtb	=	prj.RangeTables.Add("safewater",	"shallow	water")
Set	rng	=	rngtb.Add("10",	"STREAM",	kRangeLT)
Set	altlLay	=	prj.CurrQuery.AlterProp.Add(	_
kAlterationLayer,	_	
"(Range	:AVG_DEPTH@WATER_BODIES	safewater)")	

RangeTable	collection
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()
javascript:RelatedTopic2.Click()
javascript:RelatedTopic3.Click()


	 	

	





Range	library,	a	collection	of	range	tables	defined	in	the	project.
Contained	by	the	project.
Created	automatically	by	the	project.
For	more	information,	click	 .	Also,	go	to	"Using	AutoCAD	Map	>	Queries	>
Altering	the	Properties	of	Queried	Objects	>	Creating	a	Range	Table"	in
AutoCAD	Map	UI	Help.

	 	

RangeTables	collection
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()
javascript:RelatedTopic2.Click()


Range	library,	a	collection	of	range	tables	defined	in	the	project.
Contained	by	the	project.
Created	automatically	by	the	project.
For	more	information,	click	 .	Also,	go	to	"Using	AutoCAD	Map	>	Queries	>
Altering	the	Properties	of	Queried	Objects	>	Creating	a	Range	Table"	in
AutoCAD	Map	UI	Help.

	 	

RangeTables	collection
Object	Model			See	Also





A	query	saved	in	a	query	library.
Created	by	the	QueryCategory.Add,	QueryCategory.AddFromFile,	or
Query.Save	method.
You	can	save	internal	queries	or	queries	from	an	external	file	in	the	query
library.	The	properties	of	the	saved	query	name	it	and	indicate	whether	it	resides
in	an	external	file.	If	the	query	is	external,	another	property	represents	its	path.
The	following	example	shows	how	to	create,	retrieve,	and	execute	a	saved	query.
Dim	atdr	As	AttachedDrawing
Dim	amap	As	AcadMap
Dim	prj	As	Project
Dim	qry	As	Query
Dim	mainqrybr	As	QueryBranch
Dim	qrylf	As	QueryLeaf
Dim	boolVal	As	Boolean
Dim	i	As	Integer,	cqryct	As	Integer
Dim	j	As	Integer,	cqry	As	Integer
Dim	sqry	As	SavedQuery
	
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	prj	=	amap.Projects(ThisDrawing)
prj.CurrQuery.Clear
Set	atdr	=	prj.DrawingSet.Add("MAPTUT:\\citymap7.dwg")
Set	qry	=	prj.CurrQuery
qry.Clear
Set	mainqrybr	=	qry.QueryBranch
Set	qrylf	=	mainqrybr.Add(kLocationCondition,	kOperatorAnd)
qrylf.SetLocationCond	kLocationInside,	prj.MapUtil.NewLocationAll
qry.Mode	=	kQueryDraw
qry.Define	mainqrybr
qry.Save	False,	0,	"DrawingCategory",	"MyInternalquery",	_
"Qry	in	library",	""	
For	i	=	0	To	prj.QueryCategories.Count	-	1
If	prj.QueryCategories(i).Name	=	"DrawingCategory"	Then	
cqryct	=	i	

SavedQuery	object
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()


End	If	
Next	i
For	j	=	0	To	prj.QueryCategories.Item(cqryct).Count	-	1
If	prj.QueryCategories.Item(cqryct).Item(j).Name	=	"MyInternalquery"	Then	
cqry	=	j	
End	If	
Next	j
Set	sqry	=	prj.QueryCategories.Item(cqryct).Item(cqry)
prj.CurrQuery.Load	(sqry)
prj.CurrQuery.Execute
ThisDrawing.Application.ZoomExtents

	





A	set	of	changed,	deleted,	or	new	objects	to	be	saved	back	to	the	source
drawings.
Contained	by	a	project.
SaveSet	is	a	collection	of	new	objects	in	a	drawing	that	are	saved	in	the	default
file	of	a	project	if	none	other	is	specified.	A	SaveSet	collection	also	manages
objects	that	you	save	into	one	or	more	attached	drawings	that	are	active.

	 	

SaveSet	collection
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()
javascript:RelatedTopic2.Click()


A	set	of	changed,	deleted,	or	new	objects	to	be	saved	back	to	the	source

Contained	by	a	project.
SaveSet	is	a	collection	of	new	objects	in	a	drawing	that	are	saved	in	the	default
file	of	a	project	if	none	other	is	specified.	A	SaveSet	collection	also	manages
objects	that	you	save	into	one	or	more	attached	drawings	that	are	active.

	 	

SaveSet	collection
Object	Model			See	Also





Represents	options	for	the	AutoCAD	Map	application.
Contained	by	the	AcadMap	object.
Created	automatically	when	you	call	acadApp.GetInterfaceObject	to	create
AcadMap.
Options	for	individual	AutoCAD	Map	projects	are	represented	by
ProjectOptions	objects.	For	more	information	about	options,	go	to	Using
AutoCAD	Map	>	Setting	Options	>	Setting	System	Options	in	AutoCAD	Map
UI	Help.

SystemOptions	Properties
The	SystemOptions	object	has	no	methods.	Its	properties	are	listed	in	six	groups
below:
Workspace	Options	System	Options
Database	Options
MultiUser	Options
DatabaseDrivers	Options
Additional	Options

Workspace	Options

CheckDrawings	property Boolean Read-Write

DrawingsVisible	property Boolean Read	Only

CheckQueryLibrary	property Boolean Read-Write

QueryLibraryVisible	property Boolean Read	Only

CheckDatabases	property Boolean Read-Write

DatabasesVisible	property Boolean Read	Only

CheckTables	property Boolean Read-Write

TablesVisible	property Boolean Read	Only

SystemOptions	object
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()


CheckQueries	property Boolean Read-Write

QueriesVisible	property Boolean Read	Only

CheckTopologies	property Boolean Read-Write

TopologiesVisible	property Boolean Read	Only

CheckLTs	property Boolean Read-Write

LTsVisible	property Boolean Read	Only

ShowWSpaceOnStartup	property Boolean Read-Write

WspaceDockingView	property Boolean Read-Write

ShowOPMOnStartup	property Boolean Read-Write

CheckClasses	property Boolean Read-Write

ClassesVisible	property Boolean Read	Only

System	Options

NumberofOpenDwgs	property Long

LogFileActive	property Boolean

LogFileName	property String

LogMessageLevel	property Long

QueryFileDirectory	property String

Database	Options



DisplayTabsInSingleView	property Boolean

OpenDataViewReadOnly	property Boolean

SaveDataViewFmtChanges	property Boolean

KeepDataViewOnTop	property Boolean

MultiUser	Options

ForceUserLogin	property Boolean This	property	cannot	be
set	unless	the	current
user	is	logged	in	as	a
superuser,	and	no
drawings	are	attached.

EnableObjectLocking	property Boolean

DoublePrec	property Double

DatabaseDrivers	Options

DriverForDbaseDbf	property String

DriverForExcelXls	property String

DriverForParadoxDb	property String

Additional	Options

ActivePreferencePage	property Long

IncludeCoordsysInDrawing	property Boolean

MapDistUnits	property String





A	rectangle	boundary.
Created	by	the	MapUtil.NewWindow	method.
For	information	about	modifying	queries,	click	
The	following	example	uses	WindowBound	to	create	the	main	branch	of	a	query
of	all	objects	within	the	extents	of	the	attached	drawing.
Dim	amap	As	AcadMap
Dim	prj	As	Project
Dim	qry	As	Query
Dim	atdr	As	AttachedDrawing
Dim	mainqrybr	As	QueryBranch
Dim	qrylf	As	QueryLeaf
Dim	mapu	As	MapUtil
Dim	wind	As	WindowBound
Dim	dblary	As	Variant
	
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	prj	=	amap.Projects(ThisDrawing)
Set	qry	=	prj.CurrQuery
qry.Clear
Set	atdr	=	prj.DrawingSet.Add("MAPTUT:\\citymap7.dwg")
Set	mainqrybr	=	qry.QueryBranch
Set	qrylf	=	mainqrybr.Add(kLocationCondition,	kOperatorAnd)
dblary	=	prj.DrawingSet.Item("MAPTUT:\\citymap7.dwg").Extents
Set	mapu	=	prj.MapUtil
Set	wind	=	mapu.NewWindow(	_
mapu.NewPoint3d(dblary(0),	dblary(1),	0),	_	
mapu.NewPoint3d(dblary(2),	dblary(3),	0))	
qrylf.SetLocationCond	kLocationInside,	wind

	

WindowBound	object
Methods			Properties			Object	Model			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()




Defines	a	drive	alias.

Add(AliasName	As	String,	AliasPath	As	String)	As	Alias
Returns	the	new	drive	alias.

AliasName
Name	of	the	alias.
The	name	must	be	unique,	use	only	alphanumeric	characters	(including
hyphen	and	underscore),	contain	no	spaces	or	colons,	start	with	a	character,
and	not	exceed	31	characters.

AliasPath
An	existing	path	that	the	alias	represents.

If	the	path	represented	by	AliasPath	does	not	exist,	the	Add	method	does	not
create	an	alias.	Trying	to	add	an	alias	of	the	same	name	as	an	existing	one	causes
an	error.
The	following	example	checks	for	an	alias	of	the	same	name	before	adding	an
alias	for	the	Temp	directory	called	SHAREDDRIVE.
Dim	als	As	Alias
Dim	amap	As	AcadMap
Dim	cAls	As	Integer,	i	As	Integer
Dim	strAlsName	As	String
Dim	boolAlsOK	As	Boolean
	
boolAlsOK	=	True
strAlsName	=	"SHAREDDRIVE"
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
cAls	=	amap.aliases.Count
For	i	=	0	To	cAls	-	1
Set	als	=	amap.aliases.Item(i)	
If	als.Name	=	strAlsName	Then	
Debug.Print	"Alias	already	exists"	
boolAlsOK	=	False	
End	If	
Next	i

Aliases.Add	method
Aliases	collection			See	Also

javascript:RelatedTopic0.Click()


If	boolAlsOK	=	True	Then
Set	als	=	amap.aliases.Add(strAlsName,	"C:\\Temp")	
End	If





Gets	a	drive	alias.

FindByPath(RealPath	As	String)	As	Alias
Returns	the	alias.

RealPath
The	actual	path	represented	by	an	existing	alias.

Use	a	second	backslash	to	delimit	each	backslash	in	the	path.
The	following	example	assumes	the	existence	of	a	drive	alias	for	C:\temp.	The
example	shows	how	to	find	and	print	the	name	of	the	alias	in	the	Immediate
Window.
Dim	als	As	Alias
Dim	amap	As	AcadMap
	
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	als	=	amap.Aliases.FindByPath("C:\\Temp")
Debug.Print	als.Name

Aliases.FindByPath	method
Aliases	collection			See	Also

javascript:RelatedTopic0.Click()


FindByPath(RealPath	As	String)	As	Alias

The	actual	path	represented	by	an	existing	alias.
Use	a	second	backslash	to	delimit	each	backslash	in	the	path.
The	following	example	assumes	the	existence	of	a	drive	alias	for	C:\temp.	The
example	shows	how	to	find	and	print	the	name	of	the	alias	in	the	Immediate

Dim	amap	As	AcadMap

Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	als	=	amap.Aliases.FindByPath("C:\\Temp")
Debug.Print	als.Name

Aliases.FindByPath	method
See	Also





Gets	an	alias.

Item(Index	As	Variant)	As	Alias
Returns	the	alias.

Index
Index,	starting	at	0,	or	name	of	an	alias	in	the	collection.

The	following	example	shows	how	to	display	each	item	in	the	aliases	collection.
Dim	als	As	Alias
Dim	cAls	As	Integer,	i	As	Integer
Dim	amap	As	AcadMap
Dim	strOutput	As	String
	
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
cAls	=	amap.Aliases.Count
For	i	=	0	To	cAls	-	1
Set	als	=	amap.Aliases.Item(i)	
strOutput	=	strOutput	&	als.Name	&	"="	&	als.Directory	&	Chr(13)	
Next	i
MsgBox	strOutput

Aliases.Item	method
Aliases	collection			See	Also

javascript:RelatedTopic0.Click()


Item(Index	As	Variant)	As	Alias

Index,	starting	at	0,	or	name	of	an	alias	in	the	collection.
The	following	example	shows	how	to	display	each	item	in	the	aliases	collection.

Dim	cAls	As	Integer,	i	As	Integer
Dim	amap	As	AcadMap
Dim	strOutput	As	String

Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
cAls	=	amap.Aliases.Count

Set	als	=	amap.Aliases.Item(i)	
strOutput	=	strOutput	&	als.Name	&	"="	&	als.Directory	&	Chr(13)	

Aliases.Item	method
See	Also





Removes	a	drive	alias.

Remove(Index	As	Variant)	As	Boolean
Returns	True	on	success.

Index
Index,	starting	at	0,	or	name	of	an	alias	in	the	collection.

Each	project	comes	with	a	default	alias	called	C:=C.	Removing	this	alias	is	not
recommended	and	causes	an	error	when	you	run	the	following	example.	This
example	creates	an	alias	called	SHAREDDRIVE,	lists	all	defined	alises,	and
then	removes	SHAREDDRIVE.
Dim	als	As	Alias
Dim	amap	As	AcadMap
Dim	cAls	As	Integer,	i	As	Integer
Dim	strOutput	As	String
Dim	strAlsName	As	String
Dim	boolAlsOK	As	Boolean
	
boolAlsOK	=	True
strAlsName	=	"SHARED2DRIVE"
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
cAls	=	amap.aliases.Count
'Code	to	check	uniqueness	of	alias	name	goes	here.	See	Aliases.Add
Set	als	=	amap.aliases.Add(strAlsName,	"C:\\Temp")
cAls	=	amap.aliases.Count
For	i	=	0	To	cAls	-	1
Set	als	=	amap.aliases.Item(i)	
strOutput	=	strOutput	&	als.Name	&	"="	&	als.Directory	&	Chr(13)	
Next	i
MsgBox	strOutput
cAls	=	amap.aliases.Count
For	i	=	0	To	cAls	-	1
Set	als	=	amap.aliases.Item(i)	
If	als.Name	=	strAlsName	Then	
amap.aliases.Remove	(als.Name)	

Aliases.Remove	method
Aliases	collection			See	Also

javascript:RelatedTopic0.Click()


Debug.Print	"Removed	"	&	strAlsName	
End	If	
Next	i





Adds	a	property	alteration	to	the	property	alteration	definition.

Add(	AlterType	As	EAlterationType,	_
	Expression	As	String	_
	)	As	LPDISPATCH
Returns	an	AlterLine,	HatchDef,	or	TextDef,	depending	on	AlterType.

AlterType
Specifies	the	type	of	property	alteration.

Expression
An	expression,	evaluated	at	the	time	of	query	execution,	to	alter	properties.
The	result	of	the	expression	must	match	the	data	type	of	the	queried	property.
If	you	pass	AlterationElevation	as	the	AlterType,	the	Expression	must
evaluate	to	a	point.	If	you	pass	kAlterationHeight,	kAlterationRotation,
kAlterationWidth,	or	kAlterationThickness,	Expression	must	evaluate	to	a
real.	For	all	other	values	of	AlterType,	Expression	must	evaluate	to	a	string.
For	more	information	about	expressions,	see	"Expressions"	in	AutoCAD
Map	UI	Help.

You	can	call	this	method	to	add	a	hatch	or	text	alteration	to	the	collection	by
passing	the	KAlterationHatch	or	kAlterationTextEntity	constants	in	the	first
argument,	as	shown	in	the	example.	The	API	then	uses	the	default	hatch	or	text
entity	definitions.	To	use	other	definitions,	call	the	AddHatchDef	and
AddTextDef	methods	instead	of	this	method.
The	following	excerpt	from	a	larger	example	defines	a	query	that	alters	the	color
of	drawing	objects	and	adds	a	text	entity,	the	name,	to	water	bodies	on	the	map.
For	the	complete	example,	click	 .
	
Dim	qry	As	Query
Dim	altls	As	AlterLines
Dim	altl	As	AlterLine
Dim	txtdf	As	TextDef
'	Create	a	query	--	code	not	shown
Set	altls	=	qry.AlterProp
altls.RemoveAll
Set	altl	=	altls.Add(kAlterationColor,	"RED")

AlterLines.Add	method
AlterLines	collection			Examples			See	Also

javascript:RelatedTopic0.Click()


Set	txtdf	=	altls.Add(	_
kAlterationTextEntity,	_	
":NAME@WATER_BODIES")	
qry.AlterTag	=	True
'	Define	and	execute	the	query	to	alter	properties	--	code	not	shown





Adds	a	hatch	alteration	to	the	property	alteration	definition.

AddHatchDef(	_
	Pattern	As	String,	_
	Scale	As	String,	_
	Rotation	As	String,	_
	Layer	As	String,	_
	Color	As	String	_
	)	As	HatchDef
Returns	a	hatch	definition.

Pattern
Name	or	expression	of	the	hatch	pattern

Scale
Hatch	scale	or	expression

Rotation
Hatch	rotation	or	expression

Layer
Layer	or	expression	where	the	hatch	is	drawn.

Color
Hatch	color	or	representative	expression

The	following	example	builds	on	sample	code	for	altering	queried	objects.	For
more	information,	click	 .	Add	the	following	code	to	the	example	just	before
qry.AlterTag	=	True.	This	code	adds	a	solid,	cyan	hatch	pattern	to	objects	on	the
WATER	layer.
Dim	hatdf	As	HatchDef
Set	hatdf	=	altls.AddHatchDef("Solid",	"600",	"0",	"WATER",	"CYAN")

AlterLines.AddHatchDef	method
AlterLines	collection			See	Also

javascript:RelatedTopic0.Click()




Adds	a	text	alteration	to	the	property	alteration	definition.

AddTextDef(	_
	TextValue	As	String,	_
	Height	As	String,	_
	InsertPoint	As	String,	_
	Justification	As	String,	_
	TextStyle	As	String,	_
	Layer	As	String,	_
	Color	As	String,	_
	Rotation	As	String	_
	)	As	TextDef
Returns	a	text	definition.

TextValue
Text	value	or	expression

Height
Text	height	or	expression

InsertPoint
The	location	for	insertion	of	the	text	or	expression

Justification
Text	alignment	or	expression

Text	Style
Text	style	or	expression

Layer
Layer	where	the	text	is	drawn	or	expression

Color
Text	color	or	expression

Rotation
Text	rotation	or	expression

AlterLines.AddTextDef	method
AlterLines	collection			See	Also

javascript:RelatedTopic0.Click()


This	example	builds	on	sample	code	for	altering	queried	objects.	For	more
information,	click	 .	The	following	code	adds	a	text	entity	in	Arial	font	that	is
larger	than	the	text	created	by	the	original	sample	code.	Comment	out	the	call	to
Alterlines.Add	in	the	sample	and	add	the	call	to	Alterlines.AddTextDef	as	shown
here:
'Set	txtdf	=	altls.Add(	_
'	kAlterationTextEntity,	_
'	":NAME@WATER_BODIES")
Set	txtdf	=	altls.AddTextDef(":NAME@WATER_BODIES",	"200",	_
".LABELPT",	"CENTER",	"Arial",	"Water",	"Bylayer",	"0")	





Gets	an	alteration	in	the	property	alteration	definition.

Item(Index	As	Long)	As	LPDISPATCH
Returns	an	alteration.

Index
The	index	of	an	alteration,	starting	at	0.

The	following	code	builds	on	the	sample	code	for	altering	queried	objects.	Using
Alterlines.Item,	this	code	gets	the	property	alteration	for	color	and	prints	its
value.	Insert	the	code	just	before	the	call	to	qry.Define	in	the	sample	code	for
altering	queried	object.	To	go	to	the	sample	code,	click	click	 .
Dim	i	As	Integer
For	i	=	0	To	prj.CurrQuery.AlterProp.Count	-	1
Set	altl	=	altls.Item(i)	
If	altl.Property	=	kAlterationColor	Then	
Debug.Print	altl.Value	
End	If
Next

AlterLines.Item	method
AlterLines	collection



Gets	an	alteration	in	the	property	alteration	definition.

Item(Index	As	Long)	As	LPDISPATCH
Returns	an	alteration.

The	index	of	an	alteration,	starting	at	0.
The	following	code	builds	on	the	sample	code	for	altering	queried	objects.	Using
Alterlines.Item,	this	code	gets	the	property	alteration	for	color	and	prints	its
value.	Insert	the	code	just	before	the	call	to	qry.Define	in	the	sample	code	for
altering	queried	object.	To	go	to	the	sample	code,	click	click	 .

For	i	=	0	To	prj.CurrQuery.AlterProp.Count	-	1
Set	altl	=	altls.Item(i)	
If	altl.Property	=	kAlterationColor	Then	
Debug.Print	altl.Value	

AlterLines.Item	method





Removes	a	property	alteration	from	the	property	alteration	definition.

Remove(Index	As	Long)	As	Boolean
Returns	True	on	success.

Index
Index	of	an	alteration,	starting	at	0.

The	following	code	removes	the	property	alteration	that	colors	queried	objects
red	in	the	sample	code	for	altering	queried	objects.	Insert	the	code	just	before	the
call	to	qry.Define	in	the	sample	code.	To	go	to	the	sample	code,	click	 .
Dim	i	As	Integer
For	i	=	0	To	prj.CurrQuery.AlterProp.Count
Set	altl	=	altls.Item(i)	
If	altl.Property	=	kAlterationColor	Then	
prj.CurrQuery.AlterProp.Remove	(i)	
Exit	For	
End	If	
Next	i

AlterLines.Remove	method
AlterLines	collection



Removes	a	property	alteration	from	the	property	alteration	definition.

Remove(Index	As	Long)	As	Boolean
Returns	True	on	success.

Index	of	an	alteration,	starting	at	0.
The	following	code	removes	the	property	alteration	that	colors	queried	objects
red	in	the	sample	code	for	altering	queried	objects.	Insert	the	code	just	before	the
call	to	qry.Define	in	the	sample	code.	To	go	to	the	sample	code,	click	 .

For	i	=	0	To	prj.CurrQuery.AlterProp.Count
Set	altl	=	altls.Item(i)	
If	altl.Property	=	kAlterationColor	Then	
prj.CurrQuery.AlterProp.Remove	(i)	

AlterLines.Remove	method





Removes	all	alterations	from	the	property	alteration	definition.

RemoveAll(	)	As	Boolean
Returns	True	on	success.
The	following	excerpt	from	a	larger	example	first	clears	the	current	query	and
then	clears	its	property	alterations	by	calling	AlterLines.RemoveAll.	For	the
complete	example,	click	 .
Dim	amap	As	AcadMap
Dim	qry	As	Query
Dim	altls	As	AlterLines
	
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	qry	=	amap.Projects.Item(ThisDrawing).CurrQuery
qry.Clear
'	Define	query	main	branch	and	conditions	--	not	shown
Set	altls	=	qry.AlterProp
altls.RemoveAll

AlterLines.RemoveAll	method
AlterLines	collection			Example

javascript:RelatedTopic0.Click()


Removes	all	alterations	from	the	property	alteration	definition.

RemoveAll(	)	As	Boolean
Returns	True	on	success.
The	following	excerpt	from	a	larger	example	first	clears	the	current	query	and
then	clears	its	property	alterations	by	calling	AlterLines.RemoveAll.	For	the
complete	example,	click	 .
Dim	amap	As	AcadMap

Dim	altls	As	AlterLines

Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	qry	=	amap.Projects.Item(ThisDrawing).CurrQuery

'	Define	query	main	branch	and	conditions	--	not	shown
Set	altls	=	qry.AlterProp

AlterLines.RemoveAll	method
Example





Adds	to	a	save	set	all	the	objects	queried	from	a	drawing.

AddAllToSSet(	)	As	Boolean
Returns	True	on	success.
The	following	example	saves	all	queried	objects	to	a	save	set.
Dim	amobj	as	AcadMap
Dim	pobj	As	AutoCADMap.Project
Dim	dsobj	as	DrawingSet
Dim	adobj	as	AttachedDrawing
Dim	retval	as	Boolean
Set	amobj	=	acadApp.GetInterfaceObject("AutoCADMap.Application")
Set	pobj	=	amobj.Projects(ThisDrawing)
Set	dsobj	=	pobj.DrawingSet
Set	adobj	=	dsobj.Item(5)
retval	=	adobj.AddAllToSSet
If	retval	=	True	Then
	MsgBox	"Queried	drawing	objects	saved	to	a	set."
Else
	MsgBox	"Queried	drawing	objects	not	saved	to	a	set."
End	If

AttachedDrawing.AddAllToSSet	method
AttachedDrawing	object			See	Also

javascript:RelatedTopic0.Click()


Adds	to	a	save	set	all	the	objects	queried	from	a	drawing.

AddAllToSSet(	)	As	Boolean
Returns	True	on	success.
The	following	example	saves	all	queried	objects	to	a	save	set.
Dim	amobj	as	AcadMap
Dim	pobj	As	AutoCADMap.Project
Dim	dsobj	as	DrawingSet
Dim	adobj	as	AttachedDrawing
Dim	retval	as	Boolean
Set	amobj	=	acadApp.GetInterfaceObject("AutoCADMap.Application")
Set	pobj	=	amobj.Projects(ThisDrawing)
Set	dsobj	=	pobj.DrawingSet
Set	adobj	=	dsobj.Item(5)
retval	=	adobj.AddAllToSSet
If	retval	=	True	Then
	MsgBox	"Queried	drawing	objects	saved	to	a	set."

	MsgBox	"Queried	drawing	objects	not	saved	to	a	set."

AttachedDrawing.AddAllToSSet	method
			See	Also





Counts	the	objects	in	a	save	set.

CountInSSet(Qualifier	As	ESaveSetObjectType)	As	Long
Returns	the	count.

Qualifier
The	types	of	objects	you	want	to	count,	one	or	more	ESaveSetObjectType
constants.

You	can	combine	constants	to	specify	more	than	one	type.	For	example,	to	get
the	number	of	queried	objects	that	have	not	been	deleted	plus	the	number	of	new
objects,	the	Qualifier	argument	is	kQueriedExisted	+	kNewlyCreated.
The	following	example	gets	the	number	of	queried	objects	that	have	been
deleted.
Dim	amobj	as	AcadMap
Dim	pobj	As	AutoCADMap.Project
Dim	dsobj	as	DrawingSet
Dim	adobj	as	AttachedDrawing
Dim	objnum	as	Long
Set	amobj	=	acadApp.GetInterfaceObject("AutoCADMap.Application")
Set	pobj	=	amobj.Projects(ThisDrawing)
Set	dsobj	=	pobj.DrawingSet
Set	adobj	=	dsobj.Item(5)
objnum	=	adobj.CountInSSet(kQueriedErased)
MsgBox	"The	number	of	locked	objects	is:	"	&	CStr(objnum)

AttachedDrawing.CountInSSet	method
AttachedDrawing	object			See	Also

javascript:RelatedTopic0.Click()


Counts	the	objects	in	a	save	set.

CountInSSet(Qualifier	As	ESaveSetObjectType)	As	Long

The	types	of	objects	you	want	to	count,	one	or	more	ESaveSetObjectType

You	can	combine	constants	to	specify	more	than	one	type.	For	example,	to	get
the	number	of	queried	objects	that	have	not	been	deleted	plus	the	number	of	new
objects,	the	Qualifier	argument	is	kQueriedExisted	+	kNewlyCreated.
The	following	example	gets	the	number	of	queried	objects	that	have	been

Dim	amobj	as	AcadMap
Dim	pobj	As	AutoCADMap.Project
Dim	dsobj	as	DrawingSet
Dim	adobj	as	AttachedDrawing
Dim	objnum	as	Long
Set	amobj	=	acadApp.GetInterfaceObject("AutoCADMap.Application")
Set	pobj	=	amobj.Projects(ThisDrawing)
Set	dsobj	=	pobj.DrawingSet
Set	adobj	=	dsobj.Item(5)
objnum	=	adobj.CountInSSet(kQueriedErased)
MsgBox	"The	number	of	locked	objects	is:	"	&	CStr(objnum)

AttachedDrawing.CountInSSet	method
			See	Also





Gets	symbol	table	information	to	use	in	queries.

GetTableList(PropertyIndex	As	ETableType)	As	Variant
Returns	symbol	table	information	for	the	specified	property,	an	array	of	String.

PropertyIndex
A	symbol	table.

AutoCAD	Map	stores	non-graphical	information	such	as	block	definitions,
layers,	groups,	and	text	styles	in	symbol	tables.	Any	source	drawing	or	project
can	have	symbol	tables.
The	following	example	gets	information	from	a	symbol	table.
Dim	amobj	as	AcadMap
Dim	pobj	As	AutoCADMap.Project
Dim	dsobj	as	DrawingSet
Dim	adobj	as	AttachedDrawing
Dim	blockset(1	to	100)	as	String
Set	amobj	=	acadApp.GetInterfaceObject("AutoCADMap.Application")
Set	pobj	=	amobj.Projects(ThisDrawing)
Set	dsobj	=	pobj.DrawingSet
Set	adobj	=	dsobj.Item(5)
blockset	=	adobj.GetTableList(kBlockTable)

AttachedDrawing.GetTableList	method
AttachedDrawing	object			See	Also

javascript:RelatedTopic0.Click()


Gets	symbol	table	information	to	use	in	queries.

GetTableList(PropertyIndex	As	ETableType)	As	Variant
Returns	symbol	table	information	for	the	specified	property,	an	array	of	String.

AutoCAD	Map	stores	non-graphical	information	such	as	block	definitions,
layers,	groups,	and	text	styles	in	symbol	tables.	Any	source	drawing	or	project
can	have	symbol	tables.
The	following	example	gets	information	from	a	symbol	table.
Dim	amobj	as	AcadMap
Dim	pobj	As	AutoCADMap.Project
Dim	dsobj	as	DrawingSet
Dim	adobj	as	AttachedDrawing
Dim	blockset(1	to	100)	as	String
Set	amobj	=	acadApp.GetInterfaceObject("AutoCADMap.Application")
Set	pobj	=	amobj.Projects(ThisDrawing)
Set	dsobj	=	pobj.DrawingSet
Set	adobj	=	dsobj.Item(5)
blockset	=	adobj.GetTableList(kBlockTable)

AttachedDrawing.GetTableList	method
			See	Also





Displays	a	quick	view	of	an	attached	drawing.

QuickView(	)	As	Boolean
Returns	True	if	a	drawing	can	be	shown	in	quick	view.

The	following	example	sets	the	drawing	for	quick	view.
Dim	amobj	as	AcadMap
Dim	pobj	As	AutoCADMap.Project
Dim	dsobj	as	DrawingSet
Dim	adobj	as	AttachedDrawing
Dim	retval	as	Boolean
Set	amobj	=	acadApp.GetInterfaceObject("AutoCADMap.Application")
Set	pobj	=	amobj.Projects(ThisDrawing)
Set	dsobj	=	pobj.DrawingSet
Set	adobj	=	dsobj.Item(5)
retval	=	adobj.QuickView
If	retval	=	True	Then
	MsgBox	"The	drawing	can	be	displayed	in	quick	view."
Else
	MsgBox	"The	drawing	cannot	be	displayed	in	quick	view."
End	If

AttachedDrawing.QuickView	method
AttachedDrawing	object



Displays	a	quick	view	of	an	attached	drawing.

QuickView(	)	As	Boolean
Returns	True	if	a	drawing	can	be	shown	in	quick	view.

The	following	example	sets	the	drawing	for	quick	view.
Dim	amobj	as	AcadMap
Dim	pobj	As	AutoCADMap.Project
Dim	dsobj	as	DrawingSet
Dim	adobj	as	AttachedDrawing
Dim	retval	as	Boolean
Set	amobj	=	acadApp.GetInterfaceObject("AutoCADMap.Application")
Set	pobj	=	amobj.Projects(ThisDrawing)
Set	dsobj	=	pobj.DrawingSet
Set	adobj	=	dsobj.Item(5)
retval	=	adobj.QuickView
If	retval	=	True	Then
	MsgBox	"The	drawing	can	be	displayed	in	quick	view."

	MsgBox	"The	drawing	cannot	be	displayed	in	quick	view."

AttachedDrawing.QuickView	method





Removes	from	a	SaveSet	all	objects	queried	from	a	drawing.

RemoveAllFromSSet(	)	As	Boolean
Returns	True	on	success.
The	following	example	removes	queried	objects	from	a	save	set.
Dim	amobj	as	AcadMap
Dim	pobj	As	AutoCADMap.Project
Dim	dsobj	as	DrawingSet
Dim	adobj	as	AttachedDrawing
Dim	retval	as	Boolean
Set	amobj	=	acadApp.GetInterfaceObject("AutoCADMap.Application")
Set	pobj	=	amobj.Projects(ThisDrawing)
Set	dsobj	=	pobj.DrawingSet
Set	adobj	=	dsobj.Item(5)
retval	=	adobj.RemoveAllFromSSet
If	retval	=	True	Then
	MsgBox	"Queried	objects	removed	from	save	set."
Else
	MsgBox	"Queried	objects	not	removed	from	save	set."
End	If

AttachedDrawing.RemoveAllFromSSet	method
AttachedDrawing	object			See	Also

javascript:RelatedTopic0.Click()


Removes	from	a	SaveSet	all	objects	queried	from	a	drawing.

RemoveAllFromSSet(	)	As	Boolean
Returns	True	on	success.
The	following	example	removes	queried	objects	from	a	save	set.
Dim	amobj	as	AcadMap
Dim	pobj	As	AutoCADMap.Project
Dim	dsobj	as	DrawingSet
Dim	adobj	as	AttachedDrawing
Dim	retval	as	Boolean
Set	amobj	=	acadApp.GetInterfaceObject("AutoCADMap.Application")
Set	pobj	=	amobj.Projects(ThisDrawing)
Set	dsobj	=	pobj.DrawingSet
Set	adobj	=	dsobj.Item(5)
retval	=	adobj.RemoveAllFromSSet
If	retval	=	True	Then
	MsgBox	"Queried	objects	removed	from	save	set."

	MsgBox	"Queried	objects	not	removed	from	save	set."

AttachedDrawing.RemoveAllFromSSet	method
			See	Also





Saves	the	attached	drawing.

Save(	)	As	Boolean
Returns	True	on	success.
Note	Unlike	the	Save	method,	which	saves	to	disk,	the	save-back	methods	of
attached	drawings	(for	example,	the	AttachedDrawing.SaveNewObjs	method)
save	only	to	memory.	Use	AttachedDrawing.Save	after	calling	a	save-back
method	to	make	save	backs	persistent.
The	following	example	shows	how	to	save	an	attached	drawing.
Dim	amobj	as	AcadMap
Dim	pobj	As	AutoCADMap.Project
Dim	dsobj	as	DrawingSet
Dim	adobj	as	AttachedDrawing
Dim	retval	as	Boolean
Set	amobj	=	acadApp.GetInterfaceObject("AutoCADMap.Application")
Set	pobj	=	amobj.Projects(ThisDrawing)
Set	dsobj	=	pobj.DrawingSet
Set	adobj	=	dsobj.Item(5)
retval	=	adobj.Save
If	retval	=	True	Then
	MsgBox	"The	drawing	has	been	saved."
Else
	MsgBox	"The	drawing	has	not	been	saved."
End	If

AttachedDrawing.Save	method
AttachedDrawing	object			See	Also

javascript:RelatedTopic0.Click()


Saves	the	attached	drawing.

Save(	)	As	Boolean
Returns	True	on	success.

	Unlike	the	Save	method,	which	saves	to	disk,	the	save-back	methods	of
attached	drawings	(for	example,	the	AttachedDrawing.SaveNewObjs	method)
save	only	to	memory.	Use	AttachedDrawing.Save	after	calling	a	save-back
method	to	make	save	backs	persistent.
The	following	example	shows	how	to	save	an	attached	drawing.
Dim	amobj	as	AcadMap
Dim	pobj	As	AutoCADMap.Project
Dim	dsobj	as	DrawingSet
Dim	adobj	as	AttachedDrawing
Dim	retval	as	Boolean
Set	amobj	=	acadApp.GetInterfaceObject("AutoCADMap.Application")
Set	pobj	=	amobj.Projects(ThisDrawing)
Set	dsobj	=	pobj.DrawingSet
Set	adobj	=	dsobj.Item(5)

If	retval	=	True	Then
	MsgBox	"The	drawing	has	been	saved."

	MsgBox	"The	drawing	has	not	been	saved."

AttachedDrawing.Save	method
			See	Also





Saves	newly	created	objects	to	memory.

SaveNewObjs(IdArray	As	Variant)	As	Boolean
Returns	True	on	success.

IdArray
IDs	of	the	objects	to	save	as	an	array	of	Longs.

Note	Because	this	method	saves	only	to	memory	and	not	to	disk,	use	the
AttachedDrawing.Save	method	afterward	to	make	the	changes	persistent.
The	following	example	saves	newly	created	objects.
Dim	amobj	as	AcadMap
Dim	pobj	As	AutoCADMap.Project
Dim	dsobj	as	DrawingSet
Dim	adobj	as	AttachedDrawing
Dim	retval	as	Boolean
Set	amobj	=	acadApp.GetInterfaceObject("AutoCADMap.Application")
Set	pobj	=	amobj.Projects(ThisDrawing)
Set	dsobj	=	pobj.DrawingSet
Set	adobj	=	dsobj.Item(5)
retval	=	adobj.SaveNewObjs(12345)
If	retval	=	True	Then
	MsgBox	"New	object	saved	to	memory."
Else
	MsgBox	"New	object	not	saved	to	memory."
End	If

AttachedDrawing.SaveNewObjs	method
AttachedDrawing	object			See	Also

javascript:RelatedTopic0.Click()


Saves	newly	created	objects	to	memory.

SaveNewObjs(IdArray	As	Variant)	As	Boolean
Returns	True	on	success.

IDs	of	the	objects	to	save	as	an	array	of	Longs.
	Because	this	method	saves	only	to	memory	and	not	to	disk,	use	the

AttachedDrawing.Save	method	afterward	to	make	the	changes	persistent.
The	following	example	saves	newly	created	objects.
Dim	amobj	as	AcadMap
Dim	pobj	As	AutoCADMap.Project
Dim	dsobj	as	DrawingSet
Dim	adobj	as	AttachedDrawing
Dim	retval	as	Boolean
Set	amobj	=	acadApp.GetInterfaceObject("AutoCADMap.Application")
Set	pobj	=	amobj.Projects(ThisDrawing)
Set	dsobj	=	pobj.DrawingSet
Set	adobj	=	dsobj.Item(5)
retval	=	adobj.SaveNewObjs(12345)
If	retval	=	True	Then
	MsgBox	"New	object	saved	to	memory."

	MsgBox	"New	object	not	saved	to	memory."

AttachedDrawing.SaveNewObjs	method
			See	Also





Saves	objects	that	are	within	or	crossing	the	save-back	extents	of	the	attached
drawing.

SaveObjectsByArea(	)	As	Boolean
Returns	True	on	success.
Note	Because	this	method	saves	only	to	memory	and	not	to	disk,	use	the
AttachedDrawing.Save	method	afterward	to	make	the	changes	persistent.
The	following	example	saves	objects	within	extent	boundaries.
Dim	amobj	as	AcadMap
Dim	pobj	As	AutoCADMap.Project
Dim	dsobj	as	DrawingSet
Dim	adobj	as	AttachedDrawing
Dim	retval	as	Boolean
Set	amobj	=	acadApp.GetInterfaceObject("AutoCADMap.Application")
Set	pobj	=	amobj.Projects(ThisDrawing)
Set	dsobj	=	pobj.DrawingSet
Set	adobj	=	dsobj.Item(5)
retval	=	adobj.SaveObjectsByArea
If	retval	=	True	Then
	MsgBox	"Saved	the	objects	within	extent	boundaries."
Else
	MsgBox	"Did	not	save	the	objects	within	extent	boundaries."
End	If

AttachedDrawing.SaveObjectsByArea	method
AttachedDrawing	object			See	Also

javascript:RelatedTopic0.Click()


Saves	objects	that	are	within	or	crossing	the	save-back	extents	of	the	attached

SaveObjectsByArea(	)	As	Boolean
Returns	True	on	success.

	Because	this	method	saves	only	to	memory	and	not	to	disk,	use	the
AttachedDrawing.Save	method	afterward	to	make	the	changes	persistent.
The	following	example	saves	objects	within	extent	boundaries.
Dim	amobj	as	AcadMap
Dim	pobj	As	AutoCADMap.Project
Dim	dsobj	as	DrawingSet
Dim	adobj	as	AttachedDrawing
Dim	retval	as	Boolean
Set	amobj	=	acadApp.GetInterfaceObject("AutoCADMap.Application")
Set	pobj	=	amobj.Projects(ThisDrawing)
Set	dsobj	=	pobj.DrawingSet
Set	adobj	=	dsobj.Item(5)
retval	=	adobj.SaveObjectsByArea
If	retval	=	True	Then
	MsgBox	"Saved	the	objects	within	extent	boundaries."

	MsgBox	"Did	not	save	the	objects	within	extent	boundaries."

AttachedDrawing.SaveObjectsByArea	method
			See	Also





Saves	objects	to	drawing	layers	that	match	layers	in	an	active	drawing.

SaveObjectsByLayer(	)	As	Boolean
Returns	True	on	success.
Note	Because	this	method	saves	only	to	memory	and	not	to	disk,	use	the
AttachedDrawing.Save	method	afterward	to	make	the	changes	persistent.
Dim	amobj	as	AcadMap
Dim	pobj	As	AutoCADMap.Project
Dim	dsobj	as	DrawingSet
Dim	adobj	as	AttachedDrawing
Dim	retval	as	Boolean
Set	amobj	=	acadApp.GetInterfaceObject("AutoCADMap.Application")
Set	pobj	=	amobj.Projects(ThisDrawing)
Set	dsobj	=	pobj.DrawingSet
Set	adobj	=	dsobj.Item(5)
retval	=	adobj.SaveObjectsByLayer
If	retval	=	True	Then
	MsgBox	"Saved	the	objects	that	matched	the	layers."
Else
	MsgBox	"Did	not	save	the	objects	that	matched	the	layers."
End	If

AttachedDrawing.SaveObjectsByLayer	method
AttachedDrawing	object			See	Also

javascript:RelatedTopic0.Click()


Saves	objects	to	drawing	layers	that	match	layers	in	an	active	drawing.

SaveObjectsByLayer(	)	As	Boolean
Returns	True	on	success.

	Because	this	method	saves	only	to	memory	and	not	to	disk,	use	the
AttachedDrawing.Save	method	afterward	to	make	the	changes	persistent.
Dim	amobj	as	AcadMap
Dim	pobj	As	AutoCADMap.Project
Dim	dsobj	as	DrawingSet
Dim	adobj	as	AttachedDrawing
Dim	retval	as	Boolean
Set	amobj	=	acadApp.GetInterfaceObject("AutoCADMap.Application")
Set	pobj	=	amobj.Projects(ThisDrawing)
Set	dsobj	=	pobj.DrawingSet
Set	adobj	=	dsobj.Item(5)
retval	=	adobj.SaveObjectsByLayer
If	retval	=	True	Then
	MsgBox	"Saved	the	objects	that	matched	the	layers."

	MsgBox	"Did	not	save	the	objects	that	matched	the	layers."

AttachedDrawing.SaveObjectsByLayer	method
			See	Also





Gets	the	objects	queried	from	an	attached	drawing	and	saves	them	to	memory.

SaveQueriedObjects(	)	As	Boolean
Saves	images	of	objects	from	a	query	of	the	attached	drawing.
Note	Because	this	method	saves	only	to	memory	and	not	to	disk,	use	the
AttachedDrawing.Save	method	afterward	to	make	the	changes	persistent.
The	following	example	shows	how	to	save	queried	objects.
Dim	amobj	as	AcadMap
Dim	pobj	As	AutoCADMap.Project
Dim	dsobj	as	DrawingSet
Dim	adobj	as	AttachedDrawing
Dim	retval	as	Boolean
Set	amobj	=	acadApp.GetInterfaceObject("AutoCADMap.Application")
Set	pobj	=	amobj.Projects(ThisDrawing)
Set	dsobj	=	pobj.DrawingSet
Set	adobj	=	dsobj.Item(5)
retval	=	adobj.SaveQueriedObjects
If	retval	=	True	Then
	MsgBox	"Objects	saved	to	memory."
Else
	MsgBox	"Objects	not	saved	to	memory."
End	If

AttachedDrawing.SaveQueriedObjects	method
AttachedDrawing	object			See	Also

javascript:RelatedTopic0.Click()


Gets	the	objects	queried	from	an	attached	drawing	and	saves	them	to	memory.

SaveQueriedObjects(	)	As	Boolean
Saves	images	of	objects	from	a	query	of	the	attached	drawing.

	Because	this	method	saves	only	to	memory	and	not	to	disk,	use	the
AttachedDrawing.Save	method	afterward	to	make	the	changes	persistent.
The	following	example	shows	how	to	save	queried	objects.
Dim	amobj	as	AcadMap
Dim	pobj	As	AutoCADMap.Project
Dim	dsobj	as	DrawingSet
Dim	adobj	as	AttachedDrawing
Dim	retval	as	Boolean
Set	amobj	=	acadApp.GetInterfaceObject("AutoCADMap.Application")
Set	pobj	=	amobj.Projects(ThisDrawing)
Set	dsobj	=	pobj.DrawingSet
Set	adobj	=	dsobj.Item(5)
retval	=	adobj.SaveQueriedObjects
If	retval	=	True	Then
	MsgBox	"Objects	saved	to	memory."

	MsgBox	"Objects	not	saved	to	memory."

AttachedDrawing.SaveQueriedObjects	method
			See	Also





Adds	a	point	to	a	BufferFenceBound	collection.

Add(	X	As	Double,	_
	Y	As	Double,	_
	Z	As	Double	_
	)	As	Point3d
Returns	a	Point3d	object.

X,	Y,	Z
Coordinates	of	the	point	to	add

The	Z	coordinate	is	ignored.

BufferFenceBound.Add	method
BufferFenceBound	collection



Adds	a	point	to	a	BufferFenceBound	collection.

Add(	X	As	Double,	_

Returns	a	Point3d	object.

Coordinates	of	the	point	to	add
The	Z	coordinate	is	ignored.

BufferFenceBound.Add	method
BufferFenceBound	collection





Gets	a	point	from	a	BufferFenceBound	collection.

Item(PointID	As	Long)	As	Point3d
Returns	a	Point3d	object.

PointID
The	index	of	the	point	to	get,	starting	from	0.

BufferFenceBound.Item	method
BufferFenceBound	collection



Gets	a	point	from	a	BufferFenceBound	collection.

Item(PointID	As	Long)	As	Point3d
Returns	a	Point3d	object.

The	index	of	the	point	to	get,	starting	from	0.

BufferFenceBound.Item	method
BufferFenceBound	collection





Removes	a	point	from	a	BufferFenceBound	collection.

Remove(PointID	As	Long)	As	Boolean
Returns	True	on	success.

PointID
The	index	of	the	point	to	remove,	starting	at	zero.

BufferFenceBound.Remove	method
BufferFenceBound	collection



Removes	a	point	from	a	BufferFenceBound	collection.

Remove(PointID	As	Long)	As	Boolean
Returns	True	on	success.

The	index	of	the	point	to	remove,	starting	at	zero.

BufferFenceBound.Remove	method
BufferFenceBound	collection





Gets	a	point	from	a	BufferPolylineBound	collection.

Item(PointID	As	Long)	As	Object
Returns	the	point.

PointID
The	index	of	the	point	to	get,	starting	at	0.

BufferPolylineBound.Item	method
BufferPolylineBound	collection



Gets	a	point	from	a	BufferPolylineBound	collection.

Item(PointID	As	Long)	As	Object

The	index	of	the	point	to	get,	starting	at	0.

BufferPolylineBound.Item	method
BufferPolylineBound	collection





Gets	a	point	from	a	ClosedPolylineBound	collection.

Item(PointID	As	Long)	As	Point3d
Returns	the	point.

PointID
The	index	of	the	point	to	get,	starting	at	0.

ClosedPolylineBound.Item	method
ClosedPolylineBound	collection



Gets	a	point	from	a	ClosedPolylineBound	collection.

Item(PointID	As	Long)	As	Point3d

The	index	of	the	point	to	get,	starting	at	0.

ClosedPolylineBound.Item	method
ClosedPolylineBound	collection





Attaches	a	drawing	to	the	project.

Add(DwgName	As	String)	As	AttachedDrawing
Returns	the	attached	drawing.

DwgName
The	alias	path	and	file	name	of	the	drawing	to	be	attached.	For	example,
"ALIASNAME:\\DirName\\DwgName.dwg".

The	following	example	attaches	a	drawing.
Dim	prj	As	Project
Dim	drset	As	DrawingSet
Dim	atdr	As	AttachedDrawing
Dim	amap	As	AcadMap
	
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	prj	=	amap.Projects(ThisDrawing)
Set	drset	=	prj.DrawingSet
Set	atdr	=	drset.Add("ALIASNAME:\\DirName\\DwgName.dwg")

	

DrawingSet.Add	method
DrawingSet	collection			Example			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()


Attaches	a	drawing	to	the	project.

Add(DwgName	As	String)	As	AttachedDrawing
Returns	the	attached	drawing.

The	alias	path	and	file	name	of	the	drawing	to	be	attached.	For	example,
"ALIASNAME:\\DirName\\DwgName.dwg".

The	following	example	attaches	a	drawing.

Dim	drset	As	DrawingSet
Dim	atdr	As	AttachedDrawing
Dim	amap	As	AcadMap

Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	prj	=	amap.Projects(ThisDrawing)
Set	drset	=	prj.DrawingSet
Set	atdr	=	drset.Add("ALIASNAME:\\DirName\\DwgName.dwg")

	

DrawingSet.Add	method
Example			See	Also





Gets	symbol	table	information	to	use	in	queries.

GetTableList(PropertyIndex	As	ETableType)	As	Variant
Returns	the	specified	symbol	table	information,	an	array	of	String.

PropertyIndex
A	symbol	table.

AutoCAD	Map	stores	non-graphical	information	such	as	block	definitions,
layers,	groups,	and	text	styles	in	symbol	tables.	Any	source	drawing	or	project
can	have	symbol	tables.	Use	UBound	to	find	the	upper	limit	of	the	array	returned
by	this	function.	Check	that	the	array	is	not	empty	before	you	use	it,	as	shown	in
the	example,	which	displays	the	list	of	layers	in	the	symbol	table	of	a	drawing.
Dim	amap	As	AcadMap

Dim	prj	As	Project

Dim	strArray	As	Variant

Dim	i	As	Integer

Dim	strOutput	As	String

Set	amap	=	ThisDrawing.Application.	_

GetInterfaceObject("AutoCADMap.Application")	

Set	prj	=	amap.Projects(ThisDrawing)

strArray	=	prj.DrawingSet.GetTableList(kLayerTable)

If	UBound(strArray)	>	-1	Then

			For	i	=	0	To	UBound(strArray)	

						strOutput	=	strOutput	&	strArray(i)	&	Chr(13)	

			Next	i	

			MsgBox	strOutput	

Else

			MsgBox	"No	tables	found."	

End	If

DrawingSet.GetTableList	method
DrawingSet	collection			See	Also

javascript:RelatedTopic0.Click()


Gets	symbol	table	information	to	use	in	queries.

GetTableList(PropertyIndex	As	ETableType)	As	Variant
Returns	the	specified	symbol	table	information,	an	array	of	String.

AutoCAD	Map	stores	non-graphical	information	such	as	block	definitions,
layers,	groups,	and	text	styles	in	symbol	tables.	Any	source	drawing	or	project
can	have	symbol	tables.	Use	UBound	to	find	the	upper	limit	of	the	array	returned
by	this	function.	Check	that	the	array	is	not	empty	before	you	use	it,	as	shown	in
the	example,	which	displays	the	list	of	layers	in	the	symbol	table	of	a	drawing.

Set	amap	=	ThisDrawing.Application.	_

GetInterfaceObject("AutoCADMap.Application")	

Set	prj	=	amap.Projects(ThisDrawing)

strArray	=	prj.DrawingSet.GetTableList(kLayerTable)

If	UBound(strArray)	>	-1	Then

			For	i	=	0	To	UBound(strArray)	

						strOutput	=	strOutput	&	strArray(i)	&	Chr(13)	

			MsgBox	"No	tables	found."	

DrawingSet.GetTableList	method
See	Also





Gets	an	attached	drawing	from	a	drawing	set.

Item(AttachedDwg	As	Variant)	As	AttachedDrawing
Returns	the	attached	drawing.

AttachedDwg
Either	the	index,	starting	at	0,	of	the	drawing	in	the	DrawingSet	collection,	or
the	full	path	and	file	name	of	the	drawing	in	this	form:	alias	or	drive	+	path	+
filename.

The	following	example	attaches	two	drawings	to	the	drawing	set,	gets	one	of	the
items	in	the	set	by	passing	the	alias,	and	gets	the	other	item	by	passing	the	index
of	the	drawing	in	the	set.
Dim	amap	As	AcadMap
Dim	prj	As	Project
Dim	drset	As	DrawingSet
Dim	atdr	As	AttachedDrawing
Dim	cDrset	As	Integer,	i	As	Integer
	
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	prj	=	amap.Projects(ThisDrawing)
Set	drset	=	prj.DrawingSet
Set	atdr	=	drset.Add("ALIASNAME:\\DirName\\DwgName1.dwg")
Set	atdr	=	drset.Add("ALIASNAME:\\DirName\\DwgName2.dwg")
Set	atdr	=	drset.Item("ALIASNAME:\\DirName\\DwgName2.dwg")
Debug.Print	"Found	";	atdr.AliasPath
	
cDrset	=	drset.Count
For	i	=	0	To	cDrset	-	1
Set	atdr	=	drset.Item(i)	
If	atdr.AliasPath	=	"ALIASNAME:\\DirName\\DwgName2.dwg"	Then	
Debug.Print	"Found	"	&	"DwgName2.dwg"	
End	If	
Next	i

DrawingSet.Item	method
DrawingSet	collection			Example			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()


	





Detaches	an	attached	drawing.

Remove(AttachedDwg	As	Variant)	As	Boolean
Returns	True	on	success.

AttachedDwg
Either	the	index,	starting	at	0,	of	the	drawing	in	the	DrawingSet	collection,	or
the	full	path	and	file	name	of	the	drawing	to	be	detached.

The	following	example	attaches	two	drawings,	detaches	the	first	one	using	the
path,	and	detaches	the	other	one	using	the	item	number.
Dim	prj	As	Project
Dim	drset	As	DrawingSet
Dim	atdr	As	AttachedDrawing
Dim	amap	As	AcadMap
Dim	boolVal	As	Boolean
Dim	cDrset	As	Integer,	i	As	Integer
	
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	prj	=	amap.Projects(ThisDrawing)
Set	drset	=	prj.DrawingSet
Set	atdr	=	drset.Add("ALIASNAME:\\DirName\\DwgName1.dwg")
Set	atdr	=	drset.Add("ALIASNAME:\\DirName\\DwgName2.dwg")
boolVal	=	drset.Remove("ALIASNAME:\\DirName\\DwgName1.dwg")
If	boolVal	=	True	Then
Debug.Print	"Removed	"	&	"DwgName1.dwg"	
End	If
cDrset	=	drset.Count
For	i	=	0	To	cDrSet	-	1
Set	atdr	=	drset.Item(i)	
If	atdr.AliasPath	=	"ALIASNAME:\\DirName\\DwgName2.dwg"	Then	
drset.Remove	(i)	
Debug.Print	"Removed	"	&	"DwgName2.dwg"	
End	If	
Next	i
ThisDrawing.Application.ZoomExtents

DrawingSet.Remove	method
DrawingSet	collection			See	Also

javascript:RelatedTopic0.Click()




Zooms	to	the	extents	of	the	attached	drawings.

ZoomExtents(	)	As	Boolean
Returns	True	on	success.
ZoomExtents	zooms	the	display	view,	in	or	out,	to	match	the	combined	extents
of	all	the	attached	drawings	in	the	drawing	set.	Extents	define	the	smallest
rectangle	that	encompasses	all	the	objects	in	a	drawing	or	set	of	drawings.
This	one-line	example	assumes	you	altered	queried	objects	of	a	drawing.	For
sample	code	for	querying	a	drawing,	click	 .	Add	the	following	line	of	code	just
before	End	Sub	to	display	queried	objects.
prj.DrawingSet.ZoomExtents
Use	ThisDrawing.Application.ZoomExtents	instead	of
prj.DrawingSet.ZoomExtents	to	display	queried	objects	and	restore	the	state	of
the	command	line,	so	you	can	enter	commands.

DrawingSet.ZoomExtents	method
DrawingSet	collection			See	Also

javascript:RelatedTopic0.Click()


Zooms	to	the	extents	of	the	attached	drawings.

ZoomExtents(	)	As	Boolean
Returns	True	on	success.
ZoomExtents	zooms	the	display	view,	in	or	out,	to	match	the	combined	extents
of	all	the	attached	drawings	in	the	drawing	set.	Extents	define	the	smallest
rectangle	that	encompasses	all	the	objects	in	a	drawing	or	set	of	drawings.
This	one-line	example	assumes	you	altered	queried	objects	of	a	drawing.	For
sample	code	for	querying	a	drawing,	click	 .	Add	the	following	line	of	code	just
before	End	Sub	to	display	queried	objects.
prj.DrawingSet.ZoomExtents
Use	ThisDrawing.Application.ZoomExtents	instead	of
prj.DrawingSet.ZoomExtents	to	display	queried	objects	and	restore	the	state	of
the	command	line,	so	you	can	enter	commands.

DrawingSet.ZoomExtents	method
See	Also





Adds	a	diagnostic	parameter	to	the	error.

Add(	Source	As	EAdeClassId,	_
	Message	As	String,	_
	SQLStatement	As	String,	_
	Position	As	Long	_
	)	As	DiagParam
Returns	the	added	diagnostic	parameter.

Source
Identifies	the	object	that	caused	the	error.

Message
A	message	string	describing	the	error.

SQLStatement
The	SQL	string,	if	SQL	processing	caused	the	error.

Position
The	position	of	the	error	in	an	SQL	string.

The	following	example	adds	a	diagnostic	parameter	to	an	error	entry	object.
	
Dim	diapm	As	DiagParam
	
On	Error	GoTo	ErrHandler
'	Some	error	occurs	while	accessing	the	SQL	database
'	...
Exit	Sub
ErrHandler:
Set	diapm	=	amap.ErrorStack.Item(0).Add(122,	"incorrect	syntax",	_
"SELECT	*	FROM	RECORD3",	5)	

ErrorEntry.Add	method
ErrorEntry	collection			See	Also

javascript:RelatedTopic0.Click()




Gets	a	diagnostic	parameter	associated	with	the	error.

Item(Index	As	Long)	As	DiagParam
Returns	the	diagnostic	parameter.

Index
Index,	starting	at	0,	of	a	diagnostic	parameter	in	the	ErrorEntry	collection.

The	following	example	shows	getting	an	error	and	then	displaying	the	diagnostic
parameters,	message	and	SQL	statement	in	the	Immediate	Window.
Dim	diapm	As	DiagParam
	
On	Error	GoTo	ErrHandler
'	Some	error	occurs	while	accessing	the	SQL	database
'	...
Exit	Sub
ErrHandler:
Set	diapm	=	amap.ErrorStack.Item(0).Add(122,	"incorrect	syntax",	_
"SELECT	*	FROM	RECORD3",	5)	
Debug.Print	amap.ErrorStack.Item(0).Item(0).Message	
Debug.Print	amap.ErrorStack.Item(0).Item(0).SQLStatement	

ErrorEntry.Item	method
ErrorEntry	collection			See	Also

javascript:RelatedTopic0.Click()


Gets	a	diagnostic	parameter	associated	with	the	error.

Item(Index	As	Long)	As	DiagParam
Returns	the	diagnostic	parameter.

Index,	starting	at	0,	of	a	diagnostic	parameter	in	the	ErrorEntry	collection.
The	following	example	shows	getting	an	error	and	then	displaying	the	diagnostic
parameters,	message	and	SQL	statement	in	the	Immediate	Window.
Dim	diapm	As	DiagParam

On	Error	GoTo	ErrHandler
'	Some	error	occurs	while	accessing	the	SQL	database

Set	diapm	=	amap.ErrorStack.Item(0).Add(122,	"incorrect	syntax",	_
"SELECT	*	FROM	RECORD3",	5)	
Debug.Print	amap.ErrorStack.Item(0).Item(0).Message	
Debug.Print	amap.ErrorStack.Item(0).Item(0).SQLStatement	

ErrorEntry.Item	method
See	Also





Adds	a	user-defined	error	to	the	top	of	the	error	stack.

Add(	ErrorCode	As	EErrCode,	_
	ErrorType	As	EAdeErrType,	_
	ErrorMessage	As	String	_
	)	As	ErrorEntry
Returns	the	added	ErrorEntry	collection.

ErrorCode
An	EErrCode	constant	representing	an	error	that	occurred.

ErrorType
An	EAdeErrType	constant	identifying	the	type	of	error	that	occurred.

ErrorMessage
A	string	containing	a	description	of	the	error.

The	following	example	adds	an	error	to	the	error	stack,	gets	it	from	the	stack,
and	displays	it.
Dim	amap	As	AcadMap
Dim	ee	As	ErrorEntry
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	ee	=	amap.ErrorStack.	_
Add(345,	kAdeWarning,	"Abnormal	termination")	
MsgBox	""	&	amap.ErrorStack.Item(0).ErrMessage

ErrorStack.Add	method
ErrorStack	collection			See	Also

javascript:RelatedTopic0.Click()


Adds	a	user-defined	error	to	the	top	of	the	error	stack.

Add(	ErrorCode	As	EErrCode,	_
	ErrorType	As	EAdeErrType,	_
	ErrorMessage	As	String	_

Returns	the	added	ErrorEntry	collection.

An	EErrCode	constant	representing	an	error	that	occurred.

An	EAdeErrType	constant	identifying	the	type	of	error	that	occurred.

A	string	containing	a	description	of	the	error.
The	following	example	adds	an	error	to	the	error	stack,	gets	it	from	the	stack,

Dim	amap	As	AcadMap
Dim	ee	As	ErrorEntry
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	ee	=	amap.ErrorStack.	_
Add(345,	kAdeWarning,	"Abnormal	termination")	
MsgBox	""	&	amap.ErrorStack.Item(0).ErrMessage

ErrorStack.Add	method
See	Also





Gets	an	error	from	the	stack.

Item(Index	As	Long)	As	ErrorEntry
Returns	the	ErrorEntry	collection.

Index
Index	of	the	error,	starting	at	0,	in	the	stack.

ErrorStack.Item	method
ErrorStack	collection			See	Also

javascript:RelatedTopic0.Click()


Gets	an	error	from	the	stack.

Item(Index	As	Long)	As	ErrorEntry
Returns	the	ErrorEntry	collection.

Index	of	the	error,	starting	at	0,	in	the	stack.

ErrorStack.Item	method
See	Also





Empties	the	error	stack.

RemoveAll(	)	As	Boolean
Returns	True	on	success.

ErrorStack.RemoveAll	method
ErrorStack	collection			Example

javascript:RelatedTopic0.Click()


Empties	the	error	stack.

RemoveAll(	)	As	Boolean
Returns	True	on	success.

ErrorStack.RemoveAll	method
Example





Executes	the	expression.

Execute(	_
	AcDbID	as	Long,	_
	ResultValue	As	Variant	_
	)	As	Boolean
Returns	True	on	success.

AcDbID
The	target	object	of	the	expression,	entered	as	a	parameter	of
MapUtil.NewExpression.
If	the	argument	is	0,	the	expression	is	evaluated	without	using	an	object;
otherwise,	the	expression	is	evaluated	with	the	object	identified	by	the
AcDbObjectID.	Expressions	fail	if	the	target	object	is	illogical.	For	example,
if	you	add	the	expression	(".AREA")	to	a	report	template,	the	expression
reports	the	area	of	objects	if	the	objects	have	area.	When	the	expression
executes	on	target	objects	without	area,	no	output	is	sent	to	the	report.	The
report	on	two	objects,	a	stream	without	an	area	and	a	water	body	with	an
area,	that	uses	a	template	with	expressions,	".LENGTH",	".LAYER",	and
".AREA"	looks	like	this:
362,STREAM,
2496,WATER,459170

ResultValue
The	result	of	the	execution	of	the	expression.

The	following	example.creates	and	executes	an	expression	that	finds	the	area	of
all	objects	in	model	space.
Dim	amap	As	AcadMap
Dim	prj	As	Project
Dim	exp	As	Expression
Dim	i	As	Integer
Dim	varVal	As	Variant
Dim	obj	As	Object
Dim	lngAry()	As	Long
ReDim	lngAry(ThisDrawing.ModelSpace.Count)

Expression.Execute	method
Expression	object



Dim	strVal	As	String
	
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	prj	=	amap.Projects(ThisDrawing)
Set	exp	=	prj.MapUtil.NewExpression(".AREA")
For	Each	obj	In	ThisDrawing.ModelSpace
lngAry(i)	=	obj.ObjectID	
exp.Execute	lngAry(i),	varVal	
i	=	i	+	1	
strVal	=	strVal	&	varVal	&	Chr(13)	
Next
MsgBox	strVal





Adds	a	point	to	a	FenceBound	collection.

Add(X	As	Double,	Y	As	Double,	Z	As	Double)	As	Point3d
Returns	a	Point3d	object.

X,	Y,	Z
Coordinates	of	the	point	to	add.

The	Z	value	is	ignored.

FenceBound.Add	method
FenceBound	collection



Adds	a	point	to	a	FenceBound	collection.

Add(X	As	Double,	Y	As	Double,	Z	As	Double)	As	Point3d
Returns	a	Point3d	object.

Coordinates	of	the	point	to	add.
The	Z	value	is	ignored.

FenceBound.Add	method





Gets	a	point	from	a	FenceBound	collection.

Item(PointID	As	Long)	As	Point3d
Returns	a	Point3d	object.

PointID
The	index	of	the	point	to	get,	starting	at	0.

FenceBound.Item	method
FenceBound	collection



Gets	a	point	from	a	FenceBound	collection.

Item(PointID	As	Long)	As	Point3d
Returns	a	Point3d	object.

The	index	of	the	point	to	get,	starting	at	0.

FenceBound.Item	method





Removes	a	point	from	a	FenceBound	collection.

Remove(PointID	As	Long)	As	Boolean
Returns	True	on	success.

PointID
The	index	of	the	point	to	remove,	starting	at	0.

FenceBound.Remove	method
FenceBound	collection



Removes	a	point	from	a	FenceBound	collection.

Remove(PointID	As	Long)	As	Boolean
Returns	True	on	success.

The	index	of	the	point	to	remove,	starting	at	0.

FenceBound.Remove	method





Creates	a	buffer	fence	boundary.

NewBufferFence()	As	BufferFenceBound
Returns	a	BufferFenceBound	collection.

MapUtil.NewBufferFence	method
MapUtil	object			See	Also

javascript:RelatedTopic0.Click()


Creates	a	buffer	fence	boundary.

NewBufferFence()	As	BufferFenceBound
Returns	a	BufferFenceBound	collection.

MapUtil.NewBufferFence	method
See	Also





Creates	a	buffer	polyline	boundary.

NewBufferPolyline(	_
	ObjId	As	Long,	_
	Width	As	Double	_
	)	As	BufferPolylineBound
Returns	a	BufferPolylineBound	collection.

ObjId
ID	of	a	polyline	object	that	will	define	the	new	buffer	polyline	boundary.

Width
Buffer	width.

MapUtil.NewBufferPolyline	method
MapUtil	object			See	Also

javascript:RelatedTopic0.Click()


Creates	a	buffer	polyline	boundary.

NewBufferPolyline(	_
_

	Width	As	Double	_
	)	As	BufferPolylineBound
Returns	a	BufferPolylineBound	collection.

ID	of	a	polyline	object	that	will	define	the	new	buffer	polyline	boundary.

MapUtil.NewBufferPolyline	method
See	Also





Creates	a	circle	boundary.

NewCircle(	_
	Radius	As	Double,	_
	X	As	Double,	_
	Y	As	Double	_
	)	As	CircleBound
Returns	a	CircleBound	object.

Radius
Radius

X,	Y
Center	coordinates

MapUtil.NewCircle	method
MapUtil	object			See	Also

javascript:RelatedTopic0.Click()


Creates	a	circle	boundary.

	Radius	As	Double,	_

	)	As	CircleBound
Returns	a	CircleBound	object.

Center	coordinates

MapUtil.NewCircle	method
See	Also





Creates	a	closed	polyline	boundary.

NewClosedPolyline(ObjId	As	Long)	As	ClosedPolylineBound
Returns	a	ClosedPolylineBound	collection.

ObjId
The	ID	of	a	polyline	object	that	will	define	the	new	closed	polyline
boundary.

MapUtil.NewClosedPolyline	method
MapUtil	object			See	Also

javascript:RelatedTopic0.Click()


Creates	a	closed	polyline	boundary.

NewClosedPolyline(ObjId	As	Long)	As	ClosedPolylineBound
Returns	a	ClosedPolylineBound	collection.

The	ID	of	a	polyline	object	that	will	define	the	new	closed	polyline

MapUtil.NewClosedPolyline	method
See	Also





Creates	an	Expression	object.

NewExpression(Expression	As	String)	As	Expression
Returns	an	Expression	object.

Expression
The	expression	string.
You	can	use	the	Expression	object	to	specify	a	property	alteration	or	a	query
report,	or	use	it	to	execute	general-purpose	expressions,	such	as	an
expression	to	get	the	area	of	all	objects	in	a	selection	set.	You	can	use	the	dot,
colon,	ampersand,	SQL,	and	AutoLISP	variables	as	expression	strings.	For
more	information	on	expressions,	see	AutoCAD	Map	UI	Help,
"Expressions".

The	following	example	creates	an	Expression	object	that	specifies	the	area	of	a
drawing	object.
Dim	amap	As	AcadMap
Dim	prj	As	Project
Dim	exp	As	Expression
Dim	i	As	Integer
Dim	varVal	As	Variant
Dim	obj	As	Object
Dim	lngAry()	As	Long
ReDim	lngAry(ThisDrawing.ModelSpace.Count)
Dim	strVal	As	String
	
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	prj	=	amap.Projects(ThisDrawing)
Set	exp	=	prj.MapUtil.NewExpression(".AREA")

MapUtil.NewExpression	method
MapUtil	object			See	Also

javascript:RelatedTopic0.Click()




Creates	a	new	fence	boundary.

NewFence(	)	As	FenceBound
Returns	a	FenceBound	collection.

MapUtil.NewFence	method
MapUtil	object			See	Also

javascript:RelatedTopic0.Click()


Creates	a	new	fence	boundary.

NewFence(	)	As	FenceBound
Returns	a	FenceBound	collection.

MapUtil.NewFence	method
See	Also





Creates	an	unlimited	boundary.

NewLocationAll(	)	As	AllBound
Returns	the	new	AllBound	object.
The	following	example	calls	MapUtil.NewLocationAll	to	specify	selecting	all
objects	in	a	query.	Before	running	this	code,	attach	a	drawing.
Dim	amap	As	AcadMap
Dim	prj	As	Project
Dim	qry	As	Query
Dim	mainqrybr	As	QueryBranch
Dim	qrylf	As	QueryLeaf
Dim	boolVal	As	Boolean
	
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	prj	=	amap.Projects(ThisDrawing)
Set	qry	=	prj.CurrQuery
Set	mainqrybr	=	qry.QueryBranch
Set	qrylf	=	mainqrybr.Add(kLocationCondition,	kOperatorAnd)
boolVal	=	qrylf.SetLocationCond(kLocationInside,
prj.MapUtil.NewLocationAll)
qry.Mode	=	kQueryDraw
boolVal	=	qry.Define(mainqrybr)
boolVal	=	qry.Execute
ThisDrawing.Application.ZoomExtents

MapUtil.NewLocationAll	method
MapUtil	object			See	Also

javascript:RelatedTopic0.Click()


Creates	an	unlimited	boundary.

NewLocationAll(	)	As	AllBound
Returns	the	new	AllBound	object.
The	following	example	calls	MapUtil.NewLocationAll	to	specify	selecting	all
objects	in	a	query.	Before	running	this	code,	attach	a	drawing.
Dim	amap	As	AcadMap

Dim	mainqrybr	As	QueryBranch
Dim	qrylf	As	QueryLeaf
Dim	boolVal	As	Boolean

Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	prj	=	amap.Projects(ThisDrawing)
Set	qry	=	prj.CurrQuery
Set	mainqrybr	=	qry.QueryBranch
Set	qrylf	=	mainqrybr.Add(kLocationCondition,	kOperatorAnd)
boolVal	=	qrylf.SetLocationCond(kLocationInside,
prj.MapUtil.NewLocationAll)
qry.Mode	=	kQueryDraw
boolVal	=	qry.Define(mainqrybr)
boolVal	=	qry.Execute
ThisDrawing.Application.ZoomExtents

MapUtil.NewLocationAll	method
See	Also





Creates	a	field	definition	collection.

NewODFieldDefs(	)	As	ODFieldDefs
Returns	an	ODFieldDefs	collection.
ODFieldDefs	collections	contain	field	definitions	for	object	data	tables.
The	following	example	creates	field	definitions	for	an	object	data	table.
Dim	amap	As	AcadMap
Dim	ODfdfs	As	ODFieldDefs
	
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	ODfdfs	=	amap.Projects(ThisDrawing).MapUtil.NewODFieldDefs

	

MapUtil.NewODFieldDefs	method
MapUtil	object			Example			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()


Creates	a	field	definition	collection.

NewODFieldDefs(	)	As	ODFieldDefs
Returns	an	ODFieldDefs	collection.
ODFieldDefs	collections	contain	field	definitions	for	object	data	tables.
The	following	example	creates	field	definitions	for	an	object	data	table.
Dim	amap	As	AcadMap
Dim	ODfdfs	As	ODFieldDefs

Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	ODfdfs	=	amap.Projects(ThisDrawing).MapUtil.NewODFieldDefs

	

MapUtil.NewODFieldDefs	method
Example			See	Also





Creates	a	point	boundary.

NewPoint3d(	_
	X	As	Double,	_
	Y	As	Double,	_
	Z	As	Double	_
	)	As	Point3d
Returns	a	Point3d	object.

X,	Y,	Z
Coordinates

	

MapUtil.NewPoint3d	method
MapUtil	object			Example			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()


Creates	a	point	boundary.

Returns	a	Point3d	object.

	

MapUtil.NewPoint3d	method
Example			See	Also





Creates	a	polygon	boundary.

NewPolygon(	)	As	PolygonBound
Returns	a	PolygonBound	collection.
The	new	collection	is	empty.	Add	points	to	it.

MapUtil.NewPolygon	method
MapUtil	object			See	Also

javascript:RelatedTopic0.Click()


Creates	a	polygon	boundary.

NewPolygon(	)	As	PolygonBound
Returns	a	PolygonBound	collection.
The	new	collection	is	empty.	Add	points	to	it.

MapUtil.NewPolygon	method
See	Also





Creates	a	polyline	boundary.

NewPolyline(ObjId	As	Long)	As	PolylineBound
Returns	a	PolylineBound	collection.

ObjId
The	ID	of	a	polyline	object	that	will	define	the	new	polyline	boundary.

MapUtil.NewPolyline	method
MapUtil	object			See	Also

javascript:RelatedTopic0.Click()


Creates	a	polyline	boundary.

NewPolyline(ObjId	As	Long)	As	PolylineBound
Returns	a	PolylineBound	collection.

The	ID	of	a	polyline	object	that	will	define	the	new	polyline	boundary.

MapUtil.NewPolyline	method
See	Also





Creates	a	window	boundary.

NewWindow(	_
	BottomLeft	As	Point3d,	_
	UpperRight	As	Point3d	_
	)	As	WindowBound
Returns	a	WindowBound	object.

BottomLeft
The	bottom	left	coordinate	point	of	a	new	window.

UpperRight
The	upper	right	coordinate	point	of	a	new	window

This	example	is	an	excerpt	from	the	sample	code	for	creating	a	query.	For	more
information,	click	 .	The	following	example	gets	the	extents	of	the	drawing	to
define	a	query	window	boundary.
Dim	wind	As	WindowBound
Dim	dblary	As	Variant
	
'Get	DWG	Extents
dblary	=	prj.DrawingSet.Item("MAPTUT:\\citymap7.dwg").Extents
Set	mapu	=	map.Projects(ThisDrawing).MapUtil
Set	wind	=	mapu.NewWindow(	_
mapu.NewPoint3d(dblary(0),	dblary(1),	0),	_	
mapu.NewPoint3d(dblary(2),	dblary(3),	0))	

	

MapUtil.NewWindow	method
MapUtil	object			Example			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()


Creates	a	window	boundary.

	BottomLeft	As	Point3d,	_
	UpperRight	As	Point3d	_
	)	As	WindowBound
Returns	a	WindowBound	object.

The	bottom	left	coordinate	point	of	a	new	window.

The	upper	right	coordinate	point	of	a	new	window
This	example	is	an	excerpt	from	the	sample	code	for	creating	a	query.	For	more

.	The	following	example	gets	the	extents	of	the	drawing	to
define	a	query	window	boundary.
Dim	wind	As	WindowBound
Dim	dblary	As	Variant

dblary	=	prj.DrawingSet.Item("MAPTUT:\\citymap7.dwg").Extents
Set	mapu	=	map.Projects(ThisDrawing).MapUtil
Set	wind	=	mapu.NewWindow(	_
mapu.NewPoint3d(dblary(0),	dblary(1),	0),	_	
mapu.NewPoint3d(dblary(2),	dblary(3),	0))	

	

MapUtil.NewWindow	method
Example			See	Also





Gets	an	object	reference	to	a	drawing	that	is	part	of	a	NestedDrawings
collection.

Item(DwgNameOrIndex	As	Variant)	As	AttachedDrawing
Returns	a	reference	to	a	specified	AttachedDrawing	object	that	belongs	to
NestedDrawings.

DwgNameOrIndex
Contains	the	full	name	of	the	drawing	file	(alias	+	path	+	filename)	or	the
index	position,	starting	at	0,	of	the	AttachedDrawing	object	within	the
NestedDrawings	collection.

The	following	example	gets	a	nested	drawing.
Dim	amobj	as	AcadMap
Dim	pobj	As	AutoCADMap.Project
Dim	dsobj	as	DrawingSet
Dim	adobj	as	AttachedDrawing
Dim	ndobj	as	NestedDrawing
Dim	objnum	as	Long
Set	amobj	=	acadApp.GetInterfaceObject("AutoCADMap.Application")
Set	pobj	=	amobj.Projects(ThisDrawing)
Set	dsobj	=	pobj.DrawingSet
Set	ndobj	=	dsobj.NestedDrawings
Set	adobj	=	ndobj.Item(5)

NestedDrawings.Item	method
NestedDrawings	collection



Gets	an	object	reference	to	a	drawing	that	is	part	of	a	NestedDrawings

Item(DwgNameOrIndex	As	Variant)	As	AttachedDrawing
Returns	a	reference	to	a	specified	AttachedDrawing	object	that	belongs	to

DwgNameOrIndex
Contains	the	full	name	of	the	drawing	file	(alias	+	path	+	filename)	or	the
index	position,	starting	at	0,	of	the	AttachedDrawing	object	within	the
NestedDrawings	collection.

The	following	example	gets	a	nested	drawing.
Dim	amobj	as	AcadMap
Dim	pobj	As	AutoCADMap.Project
Dim	dsobj	as	DrawingSet
Dim	adobj	as	AttachedDrawing
Dim	ndobj	as	NestedDrawing
Dim	objnum	as	Long
Set	amobj	=	acadApp.GetInterfaceObject("AutoCADMap.Application")
Set	pobj	=	amobj.Projects(ThisDrawing)
Set	dsobj	=	pobj.DrawingSet
Set	ndobj	=	dsobj.NestedDrawings
Set	adobj	=	ndobj.Item(5)

NestedDrawings.Item	method
NestedDrawings	collection





Adds	a	field	definition.

Add(	_
	FieldName	As	String,	_
	FieldDescription	As	String,	_
	DefaultValue	As	Variant,	_
	Index	As	Long	_
	)	As	ODFieldDef
Returns	a	copy	of	the	field	you	added.

FieldName
Field	name.

FieldDescription
Field	description.

DefaultValue
Default	field	value.

Index
The	index,	starting	at	0,	where	the	field	is	inserted.	Existing	fields	at	that
index	and	higher	move	up.

	

ODFieldDefs.Add	method
ODFieldDefs	collection			Example			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()


Adds	a	field	definition.

	FieldName	As	String,	_
	FieldDescription	As	String,	_
	DefaultValue	As	Variant,	_

Returns	a	copy	of	the	field	you	added.

Field	description.

Default	field	value.

The	index,	starting	at	0,	where	the	field	is	inserted.	Existing	fields	at	that
index	and	higher	move	up.

	

ODFieldDefs.Add	method
			Example			See	Also





Gets	a	field	from	the	collection.

Item(Index	As	Variant)	As	ODFieldDefs
Returns	the	specified	field.

Index
Field	name	or	index,	starting	at	0.

ODFieldDefs.Item	method
ODFieldDefs	collection



Gets	a	field	from	the	collection.

Item(Index	As	Variant)	As	ODFieldDefs
Returns	the	specified	field.

Field	name	or	index,	starting	at	0.

ODFieldDefs.Item	method





Removes	an	object	data	field	from	the	collection.

Remove(Index	As	Variant)	As	Boolean
Returns	True	on	success.

Index
Name	or	index,	starting	at	0,	of	the	field	to	remove.

Note	You	cannot	remove	the	last	field.

ODFieldDefs.Remove	method
ODFieldDefs	collection



Removes	an	object	data	field	from	the	collection.

Remove(Index	As	Variant)	As	Boolean
Returns	True	on	success.

Name	or	index,	starting	at	0,	of	the	field	to	remove.
	You	cannot	remove	the	last	field.

ODFieldDefs.Remove	method





Attaches	a	record	to	a	drawing	object.

AttachTo(DbID	As	Long)	As	Boolean
Returns	True	on	success.	If	False,	check	the	error	stack.

DbID
The	ID	of	the	object	to	which	this	record	will	be	attached.

	

ODRecord.AttachTo	method
ODRecord	object			Example			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()


Attaches	a	record	to	a	drawing	object.

AttachTo(DbID	As	Long)	As	Boolean
Returns	True	on	success.	If	False,	check	the	error	stack.

The	ID	of	the	object	to	which	this	record	will	be	attached.

	

ODRecord.AttachTo	method
Example			See	Also





Gets	a	field.

Item(Index	As	Variant)	As	ODFieldValue
Returns	the	field.

Index
The	index,	starting	at	0,	of	the	field	to	get,	or	the	field's	name.

ODRecord.Item	method
ODRecord	object			See	Also

javascript:RelatedTopic0.Click()


Item(Index	As	Variant)	As	ODFieldValue

The	index,	starting	at	0,	of	the	field	to	get,	or	the	field's	name.

ODRecord.Item	method
See	Also





Initializes	an	ODRecords	collection	with	the	records	of	a	given	drawing	object.

Init(	_
	acadObject	As	Object,	_
	OpenMode	As	Boolean,	_
	SkipNested	As	Boolean	_
	)	As	Boolean
Returns	True	on	success.

acadObject
The	drawing	object	whose	records	you	will	read	or	edit.

OpenMode
If	True,	records	are	read-write.	If	False,	they	are	read-only.

SkipNested
True	inhibits	scanning	of	records	attached	to	subordinate	objects.

You	can	instantiate	an	ODRecords	collection	by	calling	either
ODTable.GetODRecords()	or	ODTables.GetODREcords().	In	the	first	case,	you
are	referencing	a	particular	object-data	table	definition.	In	the	second,	you	are
referencing	all	object-data	table	definitions	in	the	project.	When	you	initialize
the	ODRecords	collection	in	the	first	case,	you	initialize	it	with	all	the	records
attached	to	the	given	object	that	match	a	particular	table	definition.	When	you
initialize	the	ODRecords	collection	in	the	second	case,	you	in	itialize	it	with	all
the	records	attached	to	the	given	object	that	match	any	table	definition.
Note		You	must	explicitly	release	an	ODRecords	collection	when	you	are
finished	with	it.
The	following	sample	demonstrates	reading	and	editing	existing	records.	The
ODRecords	collection	is	created	before	we	enter	the	loop,	and	it	is	not	released
until	we	exit	the	loop,	because	each	call	to	Init()	reuses	the	same	collection
object.	The	sample	assumes	a	selection	set,	ss,	and	an	object-data	table,	oTable2.
Set	oRecords	=	oTable2.GetODRecords()

Dim	oDrawingObject	As	AcadEntity

Dim	bRetVal	As	Boolean

For	Each	oDrawingObject	In	ss

			bRetVal	=	oRecords.Init(oDrawingObject,	True,	True)

			While	oRecords.IsDone	=	False

ODRecords.Init	method
ODRecords	collection			See	Also

javascript:RelatedTopic0.Click()


						oRecord.Item(1).Value	=	oRecord.Item(0).Value

						oRecords.Next

			Wend

Next

Set	oRecords	=	Nothing

Note		Although	you	can	read	or	edit	records,	you	cannot	add	or	remove	records
during	the	life	of	an	ODRecords	object.
The	following	sample	demonstrates	iterating	existing	records	and	then	adding
records	based	on	what	we	have	found.	In	this	situation,	the	ODRecords
collection	is	created	within	the	loop	and	then	released	within	the	loop	before	any
records	are	added.	The	sample	assumes	a	selection	set,	ss,	and	an	object-data
table,	oTable2.
Dim	oDrawingObject	As	AcadEntity

Dim	bRetVal	As	Boolean

Dim	bHasRecords	As	Boolean

Dim	oRecord	As	ODRecord

For	Each	oDrawingObject	In	ss

			bHasRecords	=	False

			Set	oRecords	=	oTable2.GetODRecords()

			bRetVal	=	oRecords.Init(oDrawingObject,	True,	True)

			While	oRecords.IsDone	=	False

						HasRecords	=	True

						oRecords.Next

			Wend

			Set	oRecords	=	Nothing

			If	HasRecords	=	False	Then

						Set	oRecord	=	oTable2.CreateRecord

						oRecord.Item(0).Value	=	"0"

						bRetVal	=	oRecord.AttachTo(CLng(oDrawingObject.ObjectID))

			End	If

Next

Set	oRecord	=	Nothing





Makes	the	next	record	current.

Next(	)	As	Boolean
Returns	True	on	success.
Create	an	object	data	table	called	SampleOD.	For	more	information,	click	 .
Run	this	code	to	step	through	the	records	of	each	object	in	the	drawing	using
ODRecords.Next.
Dim	amap	As	AcadMap
Dim	ODrcs	As	ODRecords
Dim	boolVal	As	Boolean
Dim	acadObj	As	Object
Dim	prj	As	Project
Dim	i	As	Integer
	
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	prj	=	amap.Projects(ThisDrawing)
prj.ProjectOptions.DontAddObjectsToSaveSet	=	True
Set	ODrcs	=	prj.ODTables.GetODRecords
For	Each	acadObj	In	ThisDrawing.ModelSpace
boolVal	=	ODrcs.Init(acadObj,	True,	False)	
Do	While	ODrcs.IsDone	=	False	
Debug.Print	ODrcs.Record.tableName	
Debug.Print	ODrcs.Record.ObjectID	
For	i	=	0	To	ODrcs.Record.Count	-	1	
Debug.Print	ODrcs.Record.Item(i).Value	
Next	i	
ODrcs.Next	
Loop	
Next

ODRecords.Next	method
ODRecords	collection			See	Also

javascript:RelatedTopic0.Click()




Gets	the	current	record.

Record(	)	As	ODRecord
Returns	the	record.

ODRecords.Record	method
ODRecords	collection			See	Also

javascript:RelatedTopic0.Click()


Gets	the	current	record.

Record(	)	As	ODRecord

ODRecords.Record	method
See	Also





Removes	the	current	record	from	the	collection.

Remove(	)	As	Boolean
Returns	True	on	success.
The	record	is	detached	from	its	drawing	object.
Create	the	query	described	here	 .	Create	an	object	data	table	described	here	 .
Run	the	following	code	to	remove	all	the	records	with	fields	called	Streams	and
display	a	list	of	the	remaining	records.
Dim	amap	As	AcadMap
Dim	ODrcs	As	ODRecords
Dim	boolVal	As	Boolean
Dim	acadObj	As	Object
Dim	prj	As	Project
Dim	i	As	Integer
	
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	prj	=	amap.Projects(ThisDrawing)
prj.ProjectOptions.DontAddObjectsToSaveSet	=	True
Set	ODrcs	=	prj.ODTables.GetODRecords
For	Each	acadObj	In	ThisDrawing.ModelSpace
boolVal	=	ODrcs.Init(acadObj,	True,	False)	
Do	While	ODrcs.IsDone	=	False	
For	i	=	0	To	ODrcs.Record.Count	-	1	
If	ODrcs.Record.Item(i).Value	=	"STREAM"	Then	
ODrcs.Remove	
End	If	
Next	i	
ODrcs.Next	
Loop	
Next
ODrcs.Rewind
For	Each	acadObj	In	ThisDrawing.ModelSpace
boolVal	=	ODrcs.Init(acadObj,	True,	False)	
Do	While	ODrcs.IsDone	=	False	
Debug.Print	ODrcs.Record.tableName	

ODRecords.Remove	method
ODRecords	collection			See	Also

javascript:RelatedTopic0.Click()


Debug.Print	ODrcs.Record.ObjectID	
For	i	=	0	To	ODrcs.Record.Count	-	1	
Debug.Print	ODrcs.Record.Item(i).Value	
Next	i	
ODrcs.Next	
Loop	
Next





Makes	the	first	record	current.

Rewind(	)	As	Boolean
Returns	True	on	success.

ODRecords.Rewind	method
ODRecords	collection			See	Also

javascript:RelatedTopic0.Click()


Makes	the	first	record	current.

Rewind(	)	As	Boolean
Returns	True	on	success.

ODRecords.Rewind	method
See	Also





Replaces	the	current	record.

Update(ODRecord	As	ODRecord)	As	Boolean
Returns	True	on	success.

ODRecord
The	record	that	replaces	the	current	record.

ODRecords.Update	method
ODRecords	collection			See	Also

javascript:RelatedTopic0.Click()


Replaces	the	current	record.

Update(ODRecord	As	ODRecord)	As	Boolean
Returns	True	on	success.

The	record	that	replaces	the	current	record.

ODRecords.Update	method
See	Also





Creates	a	record.

CreateRecord(	)	As	ODRecord
Returns	the	new	empty	record.

	

ODTable.CreateRecord	method
ODTable	object			Example			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()


CreateRecord(	)	As	ODRecord
Returns	the	new	empty	record.

	

ODTable.CreateRecord	method
Example			See	Also





Gets	the	collection	of	all	records	in	the	table.

GetODRecords(	)	As	ODRecords
Returns	the	collection.
Note	that	the	ODRecords	collection	iterates	the	records	of	only	one	object	at	a
time,	as	set	by	ODRecords.Init.	If	you	get	ODRecords	through	an	ODTables
collection,	you	can	iterate	the	object	records	regardless	of	which	table	they	are
from.	If	you	get	ODRecords	through	an	ODTable	object,	you	can	iterate	only
those	object	records	from	that	table,	as	shown	in	the	following	example.
The	following	example	builds	on	sample	code	for	creating	object	data	tables.	For
more	information,	click	 .	The	example	shows	how	to	get	the	records	of	a
selected	object	and	print	them	in	the	Immediate	Window.	Add	the	following
code	to	the	end	of	the	sample	code	for	creating	object	data	tables.	Change	the
name	of	the	table	from	SampleOD	to	another	name	and	run	the	sample	again.
Dim	ODrcs	As	ODRecords
Dim	boolVal	As	Boolean
Dim	returnObj	As	AcadObject
Dim	basePnt	As	Variant
Dim	i	As	Integer
	
Set	ODrcs	=	amap.Projects.Item(ThisDrawing).	_
ODTables.Item("SampleOD").GetODRecords	
	
'Prompt	user	to	select	an	object
ThisDrawing.Utility.GetEntity	returnObj,	basePnt,	"Select	an	object"
boolVal	=	ODrcs.Init(returnObj,	True,	False)
Debug.Print	ODrcs.Record.tableName
Debug.Print	ODrcs.Record.ObjectID
For	i	=	0	To	ODrcs.Record.Count	-	1	
Debug.Print	ODrcs.Record.Item(i).Value	
Next	i	

ODTable.GetODRecords	method
ODTable	object			See	Also

javascript:RelatedTopic0.Click()




Creates	an	object	data	table.

Add(	_
	TableName	As	String,	_
	TableDescription	As	String,	_
	ODFieldDefs	As	ODFieldDefs,	_
	StoreAsXData	As	Boolean	_
	)	As	ODTable
Returns	the	specified	table.

TableName
At	most	29	characters,	no	spaces.

TableDescription
The	description	of	the	table.

ODFieldDefs
Field	definitions	for	the	table.

StoreAsXData
True:	Record	data	is	stored	with	drawing	objects	as	extended	entity	data.
False:	Record	data	is	stored	with	drawing	objects	as	AutoCAD	Xrecords.

The	following	code	is	an	excerpt	from	a	larger	example.	The	code	shows	how	to
prevent	an	error	by	checking	that	the	table	you	want	to	add	doesn't	already	exist.
For	the	entire	example,	click	 .
Dim	amap	As	AcadMap
Dim	ODfdfs	As	ODFieldDefs
Dim	ODtb	As	ODTable
	
'Ensure	Table	Does	Not	Exist
If	amap.Projects(ThisDrawing)	_
.ODTables.Item("TableA")	Is	Nothing	Then	
	
'Register	OD	Table	in	the	drawing	
Set	ODtb	=	amap.Projects(ThisDrawing)	_	
.ODTables.Add("TableA",	"Sample	Xdata",	ODfdfs,	True)	

ODTables.Add	method
ODTables	collection			Example			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()


.

.

.
End	If

	





Gets	the	collection	of	all	records	in	the	project.

GetODRecords(	)	As	ODRecords
Returns	the	collection.
Includes	all	the	records	in	all	the	tables	in	the	project.	Note	that	the	ODRecords
collection	iterates	the	records	of	only	one	object	at	a	time,	as	set	by
ODRecords.Init.	If	you	get	ODRecords	through	an	ODTables	collection,	you	can
iterate	the	object	records	regardless	of	which	table	they	are	from,	as	shown	in	the
following	example.	If	you	get	ODRecords	through	an	ODTable	object,	you	can
iterate	only	those	object	records	from	that	table.
The	following	example	builds	on	sample	code	for	creating	object	data	tables.	For
more	information,	click	 .	First,	run	the	sample	code	for	creating	object	data
tables	twice.	Change	the	name	of	the	table	from	SampleOD	to	SampleOD2
before	running	it	the	second	time.	Next,	run	the	following	code	to	iterate	through
records	from	multiple	tables	attached	to	each	object	in	the	drawing.
Dim	amap	As	AcadMap
Dim	ODrcs	As	ODRecords
Dim	boolVal	As	Boolean
Dim	acadObj	As	Object
Dim	prj	As	Project
Dim	i	As	Integer
	
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	prj	=	amap.Projects(ThisDrawing)
prj.ProjectOptions.DontAddObjectsToSaveSet	=	True
Set	ODrcs	=	prj.ODTables.GetODRecords
For	Each	acadObj	In	ThisDrawing.ModelSpace
boolVal	=	ODrcs.Init(acadObj,	True,	False)	
Do	While	ODrcs.IsDone	=	False	
Debug.Print	ODrcs.Record.tableName	
Debug.Print	ODrcs.Record.ObjectID	
For	i	=	0	To	ODrcs.Record.Count	-	1	
Debug.Print	ODrcs.Record.Item(i).Value	
Next	i	
ODrcs.Next	

ODTables.GetODRecords	method
ODTables	collection			See	Also

javascript:RelatedTopic0.Click()


Loop	
Next





Gets	a	table.

Item(Index	As	Variant)	As	ODTable
Returns	the	specified	table.

Index
The	table	name	or	index,	starting	at	0.

The	following	line	of	code,	an	excerpt	from	the	ODTable.GetODRecords
example,	shows	how	to	use	the	ODTables.Item	method	to	get	the	records	of	the
table.
Dim	ODrcs	As	ODRecords
Set	ODrcs	=	amap.Projects.Item(ThisDrawing).	_
ODTables.Item("SampleOD").GetODRecords	

ODTables.Item	method
ODTables	collection			See	Also

javascript:RelatedTopic0.Click()


Item(Index	As	Variant)	As	ODTable
Returns	the	specified	table.

The	table	name	or	index,	starting	at	0.
The	following	line	of	code,	an	excerpt	from	the	ODTable.GetODRecords
example,	shows	how	to	use	the	ODTables.Item	method	to	get	the	records	of	the

Dim	ODrcs	As	ODRecords
Set	ODrcs	=	amap.Projects.Item(ThisDrawing).	_
ODTables.Item("SampleOD").GetODRecords	

ODTables.Item	method
See	Also





Adds	a	point	to	a	PolygonBound	collection.

Add(	X	As	Double,	_
	Y	As	Double,	_
	Z	As	Double	_
	)	As	Point3d
Returns	a	Point3d	object.

X,	Y,	Z
Coordinates	of	the	point	to	add.

The	Z	value	is	ignored.

PolygonBound.Add	method
PolygonBound	collection



Adds	a	point	to	a	PolygonBound	collection.

Add(	X	As	Double,	_

Returns	a	Point3d	object.

Coordinates	of	the	point	to	add.
The	Z	value	is	ignored.

PolygonBound.Add	method
PolygonBound	collection





Gets	a	point	from	a	PolygonBound	collection.

Item(PointID	As	Long)	As	Point3d
Returns	a	Point3d	object.

PointID
The	index	of	the	point	to	get,	starting	at	0.

PolygonBound.Item	method
PolygonBound	collection



Gets	a	point	from	a	PolygonBound	collection.

Item(PointID	As	Long)	As	Point3d
Returns	a	Point3d	object.

The	index	of	the	point	to	get,	starting	at	0.

PolygonBound.Item	method
PolygonBound	collection





Removes	a	point	from	a	PolygonBound	collection.

Remove(PointID	As	Long)	As	Boolean
Returns	True	on	success.

PointID
The	index	of	the	point	to	remove,	starting	at	0.

PolygonBound.Remove	method
PolygonBound	collection



Removes	a	point	from	a	PolygonBound	collection.

Remove(PointID	As	Long)	As	Boolean
Returns	True	on	success.

The	index	of	the	point	to	remove,	starting	at	0.

PolygonBound.Remove	method
PolygonBound	collection





Gets	a	point	from	a	PolylineBound	object.

Item(PointID	As	Long)	As	Point3d
Returns	a	Point3d	object.

PointID
The	index	of	the	point	to	get,	starting	at	0.

PolylineBound.Item	method
PolylineBound	collection



Gets	a	point	from	a	PolylineBound	object.

Item(PointID	As	Long)	As	Point3d
Returns	a	Point3d	object.

The	index	of	the	point	to	get,	starting	at	0.

PolylineBound.Item	method
PolylineBound	collection





Loads	an	external	query;	if	it's	an	auto-execute	query,	it	runs.

RunExternalQuery(PathToExternalQuery	As	String)	As	Boolean
Returns	False	if	the	query	was	not	found	or	did	not	run.

PathToExternalQuery
Alias	path	and	file	name	of	the	external	query.

The	query	runs	when	it	is	loaded	if	was	saved	as	an	auto-execute	query.	To	save
an	auto-execute	query,	include	the	ESaveQueryOptions	constant,	kAutoExecute,
in	the	SaveOptions	argument	when	you	call	Query.Save.

Project.RunExternalQuery	method
Project	object			See	Also

javascript:RelatedTopic0.Click()


Loads	an	external	query;	if	it's	an	auto-execute	query,	it	runs.

RunExternalQuery(PathToExternalQuery	As	String)	As	Boolean
Returns	False	if	the	query	was	not	found	or	did	not	run.

PathToExternalQuery
Alias	path	and	file	name	of	the	external	query.

The	query	runs	when	it	is	loaded	if	was	saved	as	an	auto-execute	query.	To	save
an	auto-execute	query,	include	the	ESaveQueryOptions	constant,	kAutoExecute,
in	the	SaveOptions	argument	when	you	call	Query.Save.

Project.RunExternalQuery	method
See	Also





Gets	information	about	a	locked	drawing	object.

WhoLocksObject(	_
	EntID	As	Long,	_
	ProjectName	As	String,	_
	DrawingName	as	String,	_
	OwnerName	As	String,	_
	Date	As	String,	_
	Time	As	String	_
	)	As	Boolean
Returns	False	if	the	object	is	not	locked.

EntID
The	AcDbObjectID	identifier	of	the	drawing	object.

ProjectName	(Output)
Name	of	the	document	in	the	project	locking	the	object.

DrawingName	(Output)
Name	of	the	drawing	to	which	the	object	EntID	belongs.

OwnerName	(Output)
Login	name	of	the	user	who	locked	the	object.

Date(Output)
Date	the	object	was	locked.

Time(Output)
Time	the	object	was	locked.

Project.WhoLocksObject	method
Project	object			See	Also

javascript:RelatedTopic0.Click()




Gets	an	AutoCAD	Map	project.

Item(Index	As	Variant)	As	Project
Returns	the	project.

Index
Index,	starting	at	0,	of	a	project	in	the	collection	or	an	AutoCAD	document
object.

You	get	the	AutoCAD	document	from	the	AcadDocuments	collection,	and	use	it
to	index	into	the	Projects	collection.

Projects.Item	method
Projects	collection			See	Also

javascript:RelatedTopic0.Click()


Gets	an	AutoCAD	Map	project.

Item(Index	As	Variant)	As	Project

Index,	starting	at	0,	of	a	project	in	the	collection	or	an	AutoCAD	document

You	get	the	AutoCAD	document	from	the	AcadDocuments	collection,	and	use	it
to	index	into	the	Projects	collection.

Projects.Item	method
See	Also





Clears	the	query	of	all	but	the	main	branch	and	mode.

Clear(	)	As	Boolean
Returns	True	on	success.
Call	this	method	before	setting	a	new	query.	The	following	example	clears	a
query	definition.	Before	running	this	code,	attach	a	drawing.
Dim	amap	As	AcadMap
Dim	prj	As	Project
Dim	qry	As	Query
Dim	mainqrybr	As	QueryBranch
Dim	qrylf	As	QueryLeaf
Dim	boolVal	As	Boolean
	
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	prj	=	amap.Projects(ThisDrawing)
Set	qry	=	prj.CurrQuery
qry.Clear

Query.Clear	method
Query	object			Example			

javascript:RelatedTopic0.Click()


Clears	the	query	of	all	but	the	main	branch	and	mode.

Clear(	)	As	Boolean
Returns	True	on	success.
Call	this	method	before	setting	a	new	query.	The	following	example	clears	a
query	definition.	Before	running	this	code,	attach	a	drawing.
Dim	amap	As	AcadMap

Dim	mainqrybr	As	QueryBranch
Dim	qrylf	As	QueryLeaf
Dim	boolVal	As	Boolean

Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	prj	=	amap.Projects(ThisDrawing)
Set	qry	=	prj.CurrQuery

Query.Clear	method
			





Sets	or	replaces	the	query's	main	branch.

Define(QueryBranch	As	QueryBranch)	As	Boolean
Returns	True	on	success.

QueryBranch
The	main	branch	of	a	query.

Note	To	prevent	an	error,	call	Query.Define	before	attempting	to	use
Query.StringContext.
The	following	example	shows	the	minimal	code	for	setting	up	and	defining	a
query.	Before	running	this	code,	attach	a	drawing.
Dim	amap	As	AcadMap
Dim	prj	As	Project
Dim	qry	As	Query
Dim	qrybr	As	QueryBranch
Dim	qrylf	As	QueryLeaf
Dim	boolVal	As	Boolean
	
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	prj	=	amap.Projects(ThisDrawing)
Set	qry	=	prj.CurrQuery
Set	qrybr	=	qry.QueryBranch
Set	qrylf	=	qrybr.Add(kLocationCondition,	kOperatorAnd)
boolVal	=	qrylf.SetLocationCond(kLocationInside,	_
prj.MapUtil.NewLocationAll)	
qry.Mode	=	kQueryDraw
boolVal	=	qry.Define(qrybr)

	

Query.Define	method
Query	object			Example			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()




Executes	the	current	query.

Execute	As	Boolean
Returns	True	on	success.
The	following	example	executes	a	query	and	calls	the	Application.ZoomExtents
to	display	the	query	results.	Before	running	this	code,	attach	a	drawing.
Dim	amap	As	AcadMap
Dim	prj	As	Project
Dim	qry	As	Query
Dim	mainqrybr	As	QueryBranch
Dim	qrylf	As	QueryLeaf
Dim	boolVal	As	Boolean
	
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	prj	=	amap.Projects(ThisDrawing)
Set	qry	=	prj.CurrQuery
qry.Clear
Set	mainqrybr	=	qry.QueryBranch
Set	qrylf	=	mainqrybr.Add(kLocationCondition,	kOperatorAnd)
boolVal	=	qrylf.SetLocationCond(kLocationInside,	_
prj.MapUtil.NewLocationAll)	
qry.Mode	=	kQueryDraw
boolVal	=	qry.Define(mainqrybr)
boolVal	=	qry.Execute
ThisDrawing.Application.ZoomExtents

	

Query.Execute	method
Query	object			Example			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()


Executes	the	current	query.

Execute	As	Boolean
Returns	True	on	success.
The	following	example	executes	a	query	and	calls	the	Application.ZoomExtents
to	display	the	query	results.	Before	running	this	code,	attach	a	drawing.
Dim	amap	As	AcadMap

Dim	mainqrybr	As	QueryBranch
Dim	qrylf	As	QueryLeaf
Dim	boolVal	As	Boolean

Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	prj	=	amap.Projects(ThisDrawing)
Set	qry	=	prj.CurrQuery

Set	mainqrybr	=	qry.QueryBranch
Set	qrylf	=	mainqrybr.Add(kLocationCondition,	kOperatorAnd)
boolVal	=	qrylf.SetLocationCond(kLocationInside,	_
prj.MapUtil.NewLocationAll)	
qry.Mode	=	kQueryDraw
boolVal	=	qry.Define(mainqrybr)
boolVal	=	qry.Execute
ThisDrawing.Application.ZoomExtents

	

Query.Execute	method
			See	Also





Gets	a	query	from	the	query	library.

Load(SavedQuery	As	Query)	As	Boolean
Returns	True	on	success.

SavedQuery
Represents	the	query	taken	from	the	query	library.

The	query	is	made	current.	Note	that	this	method	does	not	load	a	query	from	an
external	file.
The	following	example	shows	how	to	set	a	saved	query	to	the	member	of	the
QueryCategories	collection	you	want	to	load,	call	Load,	and	execute	the	loaded
query.	Before	running	this	code,	attach	a	drawing,	and	save	a	query	in	the	query
library	by	running	the	Query.Save	example.	To	go	to	Query.Save,	click	 .
Dim	amap	As	AcadMap
Dim	prj	As	Project
Dim	qry	As	Query
Dim	mainqrybr	As	QueryBranch
Dim	qrylf	As	QueryLeaf
Dim	boolVal	As	Boolean
Dim	i	As	Integer,	cqryct	As	Integer
Dim	j	As	Integer,	cqry	As	Integer
Dim	sqry	As	SavedQuery
	
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	prj	=	amap.Projects(ThisDrawing)
prj.CurrQuery.Clear
For	i	=	0	To	prj.QueryCategories.Count	-	1
If	prj.QueryCategories(i).Name	=	"DrawingCategory"	Then	
cqryct	=	i	
End	If	
Next	i
For	j	=	0	To	prj.QueryCategories.Item(cqryct).Count	-	1
If	prj.QueryCategories.Item(cqryct).Item(j).Name	=	"myInternalquery"	Then	
cqry	=	j	
End	If	

Query.Load	method
Query	object			See	Also

javascript:RelatedTopic0.Click()


Next	j
Set	sqry	=	prj.QueryCategories.Item(cqryct).Item(cqry)
boolVal	=	prj.CurrQuery.Load(sqry)
boolVal	=	prj.CurrQuery.Execute
ThisDrawing.Application.ZoomExtents





Saves	the	current	query	to	the	query	library	or	an	external	file.

Save(	External	As	Boolean,	_
	kSaveOptions	As	ESaveQueryOptions,	_
	Category	As	String,	_
	Name	As	String,	_
	Description	As	String,	_
	Filename	as	String	_
	)	As	Boolean
Returns	True	on	success.

External
True	saves	the	query	to	the	external	file	named	Filename.	False	saves	the
query	to	the	Query	Library.

kSaveOptions
Specifies	information	to	save	externally.
Set	the	External	property	to	True	before	using	kSaveOptions.
You	combine	kSaveOptions	with	the	+	operator.	For	example,	to	save	the
coordinates	of	the	query	and	the	alter	properties,	enter	kQrySaveCoordinates
+	kQrySaveAlteration.

Category
The	name	of	the	category	to	which	the	query	is	added.

Name
A	unique	name	for	the	query.

Description
The	query	description.

Filename
The	full	path	of	the	external	file	for	saving	the	query.
To	save	a	query	to	an	external	file,	set	External	to	True	and	specify	the	file
name.	Use	a	second	backslash	to	delimit	each	backslash	in	the	path.

The	following	example	first	saves	a	query	with	a	description	and	a	category

Query.Save	method
Query	object			See	Also

javascript:RelatedTopic0.Click()


name	in	an	external	file	and	then	also	saves	it	in	the	query	library.	You	pass	an
empty	string,	as	shown	in	the	second	call	to	Query.Save,	instead	of	a	file	name	to
save	the	query	in	the	library.
Dim	amap	As	AcadMap
Dim	prj	As	Project
Dim	qry	As	Query
Dim	mainqrybr	As	QueryBranch
Dim	qrylf	As	QueryLeaf
Dim	boolVal	As	Boolean
	
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	prj	=	amap.Projects(ThisDrawing)
Set	qry	=	prj.CurrQuery
qry.Clear
Set	mainqrybr	=	qry.QueryBranch
Set	qrylf	=	mainqrybr.Add(kLocationCondition,	kOperatorAnd)
boolVal	=	qrylf.SetLocationCond(kLocationInside,	_
prj.MapUtil.NewLocationAll)	
qry.Mode	=	kQueryDraw
boolVal	=	qry.Define(mainqrybr)
'Only	if	C:\\query.qry	does	not	exist	continue	--	code	not	shown
boolVal	=	qry.Save(	_
True,	0,	"DrawingCategory",	"myExternalquery",	_	
"Qry	on	disk",	"C:\\query.qry")	
boolVal	=	qry.Save(	_
False,	0,	"DrawingCategory",	"myInternalquery",	_	
"Qry	in	library",	"")	





Adds	a	leaf	or	sub-branch	to	a	query.

Add(QueryBranchOrLeaf	As	EClassID,	_
	JoinOp	As	EJoinOperator)	As	Object
Returns	a	QueryBranch	or	QueryLeaf	object.

QueryBranchOrLeaf
Type	of	leaf	(condition)	or	sub-branch	you	are	adding.

JoinOp
Join	operator

The	following	EClassID	values	are	valid	QueryBranchOrLeaf	arguments.
kQueryUnit
kQueryCondition
kQueryBranch
kPropertyCondition
kDataCondition
kLocationCondition
kSQLCondition

The	following	example	adds	a	sub-branch	to	a	query.
Dim	amap	As	AcadMap
Dim	prj	As	Project
Dim	qry	As	Query
Dim	mainqrybr	As	QueryBranch
Dim	qrylf	As	QueryLeaf
Dim	andqrybr	As	QueryBranch
	
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	prj	=	amap.Projects(ThisDrawing)
Set	qry	=	prj.CurrQuery
qry.Clear
Set	mainqrybr	=	qry.QueryBranch
Set	qrylf	=	mainqrybr.Add(kLocationCondition,	kOperatorAnd)
Set	andqrybr	=	mainqrybr.Add(kQueryBranch,	kOperatorAnd)

QueryBranch.Add	method
QueryBranch	collection			Example			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()


	





Deletes	all	branches	and	leaves	from	this	branch	downward.

Clear(	)	As	Boolean
Returns	nothing.
Consider	the	sample,	Creating	a	Query.	Add	the	following	line	to	the	sample
before	qry.Define:
andqrybr.Clear

Run	the	revised	sample	and	then	look	at	the	query	in	the	AutoCAD	Map	UI.
Notice	that	only	the	Location	condition	is	defined,	because	andqrybr.Clear
cleared	the	data	and	property	conditions.

QueryBranch.Clear	method
QueryBranch	collection			See	Also

javascript:RelatedTopic0.Click()


Deletes	all	branches	and	leaves	from	this	branch	downward.

Clear(	)	As	Boolean

Consider	the	sample,	Creating	a	Query.	Add	the	following	line	to	the	sample

Run	the	revised	sample	and	then	look	at	the	query	in	the	AutoCAD	Map	UI.
Notice	that	only	the	Location	condition	is	defined,	because	andqrybr.Clear
cleared	the	data	and	property	conditions.

QueryBranch.Clear	method
			See	Also





Returns	a	sub-branch	or	query	leaf	from	a	branch.

Item(NumObject	As	Long)	As	QueryBranch
Returns	the	specified	branch	or	leaf.

NumObject
Index	of	a	sub-branch	or	leaf	in	a	branch,	starting	at	0.

The	following	example	builds	on	sample	code	for	querying	objects.	For	more
information,	click	 .	Add	the	following	code	to	the	example	after
qry.Define.This	example	uses	two	for	loops	to	get	all	the	branches	and	leaves
and	print	their	types.
'	Define	query	before	running	this	code
For	i	=	0	To	mainqrybr.Count	-	1
Debug.Print	mainqrybr.Type	
Debug.Print	mainqrybr.Item(i).Type	
Next	i
For	i	=	0	To	andqrybr.Count	-	1
Debug.Print	andqrybr.Type	
Debug.Print	andqrybr.Item(i).Type	
Next	i

QueryBranch.Item	method
QueryBranch	collection			See	Also

javascript:RelatedTopic0.Click()


Returns	a	sub-branch	or	query	leaf	from	a	branch.

Item(NumObject	As	Long)	As	QueryBranch
Returns	the	specified	branch	or	leaf.

Index	of	a	sub-branch	or	leaf	in	a	branch,	starting	at	0.
The	following	example	builds	on	sample	code	for	querying	objects.	For	more

.	Add	the	following	code	to	the	example	after
qry.Define.This	example	uses	two	for	loops	to	get	all	the	branches	and	leaves

'	Define	query	before	running	this	code
For	i	=	0	To	mainqrybr.Count	-	1
Debug.Print	mainqrybr.Type	
Debug.Print	mainqrybr.Item(i).Type	

For	i	=	0	To	andqrybr.Count	-	1
Debug.Print	andqrybr.Type	
Debug.Print	andqrybr.Item(i).Type	

QueryBranch.Item	method
			See	Also





Deletes	a	sub-branch	or	a	leaf	from	a	branch.

Remove(NumObject	As	Long)	As	Boolean
Returns	True	on	success.

NumObject
Index	of	a	branch	or	leaf,	starting	at	0.

The	following	example	builds	on	sample	code	for	querying	objects.	For	more
information,	click	 .	Add	the	following	code	to	the	example	after
qry.Define.This	example	prints	the	starting	number	of	items	in	the.sub-branch
collection	called	andqrybr,	searches	the	collection	for	the	kDataCondition	leaf,
removes	it,	and	checks	that	the	number	of	items	in	the	sub-branch	reflects	the
removal.
For	i	=	0	To	andqrybr.Count	-	1
Debug.Print	andqrybr.Count
If	andqrybr.Item(i).Type	=	kDataCondition	Then	
andqrybr.Remove	(i)	
End	If	
Next	i
Debug.Print	andqrybr.Count

QueryBranch.Remove	method
QueryBranch	collection			See	Also

javascript:RelatedTopic0.Click()


Deletes	a	sub-branch	or	a	leaf	from	a	branch.

Remove(NumObject	As	Long)	As	Boolean
Returns	True	on	success.

Index	of	a	branch	or	leaf,	starting	at	0.
The	following	example	builds	on	sample	code	for	querying	objects.	For	more

.	Add	the	following	code	to	the	example	after
qry.Define.This	example	prints	the	starting	number	of	items	in	the.sub-branch
collection	called	andqrybr,	searches	the	collection	for	the	kDataCondition	leaf,
removes	it,	and	checks	that	the	number	of	items	in	the	sub-branch	reflects	the

For	i	=	0	To	andqrybr.Count	-	1
Debug.Print	andqrybr.Count
If	andqrybr.Item(i).Type	=	kDataCondition	Then	
andqrybr.Remove	(i)	

Debug.Print	andqrybr.Count

QueryBranch.Remove	method
			See	Also





Creates	a	query	category

Add(CategoryName	As	String)	As	QueryCategory
Returns	the	query	category.

CategoryName
Name	of	the	category	enclosed	in	quotes.

QueryCategories.Add	method
QueryCategories	collection



Creates	a	query	category

Add(CategoryName	As	String)	As	QueryCategory
Returns	the	query	category.

Name	of	the	category	enclosed	in	quotes.

QueryCategories.Add	method
QueryCategories	collection





Gets	a	query	category	from	the	library.

Item(Index	As	Variant)	As	QueryCategory
Returns	the	query	category.

Index
Name	or	index,	starting	at	0,	of	the	category	to	get

The	following	example	shows	how	to	set	a	saved	query	to	the	member	of	the
QueryCategories	collection	you	want	to	load,	call	Load,	and	execute	the	loaded
query.	Before	running	this	code,	attach	a	drawing,	and	save	a	query	in	the	query
library	by	running	the	Query.Save	example.	To	go	to	Query.Save,	click	 .
Dim	amap	As	AcadMap
Dim	prj	As	Project
Dim	qry	As	Query
Dim	mainqrybr	As	QueryBranch
Dim	qrylf	As	QueryLeaf
Dim	boolVal	As	Boolean
Dim	i	As	Integer,	cqryct	As	Integer
Dim	j	As	Integer,	cqry	As	Integer
Dim	sqry	As	SavedQuery
	
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	prj	=	amap.Projects(ThisDrawing)
prj.CurrQuery.Clear
For	i	=	0	To	prj.QueryCategories.Count	-	1
If	prj.QueryCategories(i).Name	=	"DrawingCategory"	Then	
cqryct	=	i	
End	If	
Next	i
For	j	=	0	To	prj.QueryCategories.Item(cqryct).Count	-	1
If	prj.QueryCategories.Item(cqryct).Item(j).Name	=	"myInternalquery"	Then	
cqry	=	j	
End	If	
Next	j
Set	sqry	=	prj.QueryCategories.Item(cqryct).Item(cqry)

QueryCategories.Item	method
QueryCategories	collection			



boolVal	=	prj.CurrQuery.Load(sqry)
boolVal	=	prj.CurrQuery.Execute
ThisDrawing.Application.ZoomExtents





Removes	a	query	category	from	the	library.

Remove(Index	As	Variant)	As	Boolean
Returns	True	on	success.

Index
Name	or	index,	starting	at	0,	of	the	category	to	remove

QueryCategories.Remove	method
QueryCategories	collection



Removes	a	query	category	from	the	library.

Remove(Index	As	Variant)	As	Boolean
Returns	True	on	success.

Name	or	index,	starting	at	0,	of	the	category	to	remove

QueryCategories.Remove	method
QueryCategories	collection





Saves	the	current	query	to	the	category	or	an	external	file.

Add(		QueryName	As	String,	_
	QueryDescription	As	String,	_
	SaveOptions	As	Long	_
	QueryFileName	As	String	_
	)	As	SavedQuery
Returns	the	saved	query.

QueryName
Query	name

QueryDescription
Query	description

SaveOptions
Save	options,	one	or	more	ESaveQueryOptions	constants.	This	parameter	is
relevant	only	if	there	is	a	QueryFileName	argument—that	is,	if	the	query	is
saved	externally.

QueryFileName
Path	and	file	name	or	the	empty	string.	If	a	path	and	file	name	are	given,	the
query	is	saved	externally.

You	combine	ESaveQueryOptions	constants	with	the	+	operator.	For	example,	to
save	the	coordinates	of	the	query	and	the	alter	properties,	the	argument	is
kQrySaveCoordinates	+	kQrySaveAlteration.

QueryCategory.Add	method
QueryCategory	collection			See	Also

javascript:RelatedTopic0.Click()


Saves	the	current	query	to	the	category	or	an	external	file.

Add(		QueryName	As	String,	_
	QueryDescription	As	String,	_
	SaveOptions	As	Long	_
	QueryFileName	As	String	_

Returns	the	saved	query.

Query	description

Save	options,	one	or	more	ESaveQueryOptions	constants.	This	parameter	is
relevant	only	if	there	is	a	QueryFileName	argument—that	is,	if	the	query	is

Path	and	file	name	or	the	empty	string.	If	a	path	and	file	name	are	given,	the
query	is	saved	externally.

You	combine	ESaveQueryOptions	constants	with	the	+	operator.	For	example,	to
save	the	coordinates	of	the	query	and	the	alter	properties,	the	argument	is
kQrySaveCoordinates	+	kQrySaveAlteration.

QueryCategory.Add	method
QueryCategory	collection			See	Also





Adds	an	external	query	to	the	category.

AddFromFile(	_
	QueryName	As	String,	_
	QueryDescription	As	String,	_
	QueryFileName	As	String	_
	)	As	SavedQuery
Returns	the	saved	query.

QueryName
Query	name

QueryDescription
Query	description

QueryFileName
Path	and	file	name	of	the	query	to	add

QueryCategory.AddFromFile	method
QueryCategory	collection			See	Also

javascript:RelatedTopic0.Click()


Adds	an	external	query	to	the	category.

	QueryName	As	String,	_
	QueryDescription	As	String,	_
	QueryFileName	As	String	_

Returns	the	saved	query.

Query	description

Path	and	file	name	of	the	query	to	add

QueryCategory.AddFromFile	method
QueryCategory	collection			See	Also





Gets	a	saved	query	from	the	category.

Item(Index	As	Variant)	As	SavedQuery
Returns	the	saved	query.

QueryNameOrIndex
The	name	or	index,	starting	at	0,	of	the	query	to	get.

QueryCategory.Item	method
QueryCategory	collection



Gets	a	saved	query	from	the	category.

Item(Index	As	Variant)	As	SavedQuery
Returns	the	saved	query.

QueryNameOrIndex
The	name	or	index,	starting	at	0,	of	the	query	to	get.

QueryCategory.Item	method
QueryCategory	collection





Removes	a	saved	query	from	the	category.

Remove(Index	As	Variant)	As	Boolean
Returns	True	on	success.

Index
Name	or	index,	starting	at	0,	of	the	query	to	remove.

QueryCategory.Remove	method
QueryCategory	collection



Removes	a	saved	query	from	the	category.

Remove(Index	As	Variant)	As	Boolean
Returns	True	on	success.

Name	or	index,	starting	at	0,	of	the	query	to	remove.

QueryCategory.Remove	method
QueryCategory	collection





Defines	a	data	condition.

SetDataCond(	_
	DataType	As	EDataQueryType,	_
	CondOperation	As	EConditionOperator,	_
	Table	As	String,	_
	Field	As	String,	_
	Value	As	Variant	_
	)	As	Boolean
Returns	True	on	success.

DataType
The	EDataQueryType	constant	that	specifies	the	kind	of	data	to	query.

CondOperation
The	EConditionOperator	constant	that	specifies	the	comparison	operator	for
the	query.	Note	The	only	valid	operator	in	a	string	context	is	kCondEq.

Table
A	data	source:	block	name,	link	template,	or	RegApp.

Field
A	field	value	for	the	data	type:
Attribute	tag	of	a	block
Column	name	of	an	object	data	table
Object	data	field	name
Extended	entity	data	field	name

Value
A	value	in	the	data	source	to	query.

Note	Call	this	method	only	if	the	QueryLeaf	object's	Type	property	is
kDataCondition.
The	following	example	performs	a	query	for	data	less	than	the	value	in	a	table
Water_Bodies,	in	a	field	called	Avg_Depth	with	a	value	of	10.
Dim	amap	As	AcadMap

Dim	prj	As	Project

Dim	qry	As	Query

QueryLeaf.SetDataCond	method
QueryLeaf	object			Example			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()


Dim	mainqrybr	As	QueryBranch

Dim	andqrybr	As	QueryBranch

Dim	dataqrylf	As	QueryLeaf

Dim	qrylf	As	QueryLeaf

Dim	boolVal	As	Boolean

Dim	atdr	As	AttachedDrawing

Set	amap	=	ThisDrawing.Application.	_

			GetInterfaceObject("AutoCADMap.Application")	

Set	prj	=	amap.Projects(ThisDrawing)

Set	qry	=	prj.CurrQuery

Set	atdr	=	prj.DrawingSet.Add("MAPTUT:\\citymap7.dwg")

boolVal	=	qry.Clear

Set	mainqrybr	=	qry.QueryBranch

Set	qrylf	=	mainqrybr.Add(	_

			kLocationCondition,	_	

			kOperatorAnd)

Set	andqrybr	=	mainqrybr.Add(	_

			kQueryBranch,	_	

			kOperatorAnd)

Set	dataqrylf	=	andqrybr.Add(	_

			kDataCondition,	_	

			kOperatorOr)

boolVal	=	qrylf.SetLocationCond(	_

			kLocationInside,	_

			prj.MapUtil.NewLocationAll)	

boolVal	=	dataqrylf.SetDataCond(	_

			kDataIRD,	_	

			kCondLT,	_	

			"Water_Bodies",	_	

			"Avg_Depth",	_	

			10)	

	





Defines	a	location	condition.

SetLocationCond(	_
	DataType	As	ELocationType,	_
	BoundaryObj	As	Variant	_
	)	As	Boolean
Returns	True	on	success.

DataType
One	of	the	following	ELocationType	constants.
kLocationInside
kLocationCrossing

BoundaryObj
A	boundary	object,	such	as	a	PolygonBound.

Boundary	objects	are	created	by	methods	of	the	MapUtil	object.
Note	Call	this	method	only	if	the	QueryLeaf	object's	Type	property	is
kLocationCondition.

	

QueryLeaf.SetLocationCond	method
QueryLeaf	object			Example			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()


Defines	a	location	condition.

SetLocationCond(	_
	DataType	As	ELocationType,	_
	BoundaryObj	As	Variant	_

Returns	True	on	success.

One	of	the	following	ELocationType	constants.
kLocationInside
kLocationCrossing

A	boundary	object,	such	as	a	PolygonBound.
Boundary	objects	are	created	by	methods	of	the	MapUtil	object.

	Call	this	method	only	if	the	QueryLeaf	object's	Type	property	is
kLocationCondition.

	

QueryLeaf.SetLocationCond	method
Example			See	Also





Defines	a	property	condition.

SetPropertyCond(	_
	Property	As	EPropertyType,	_
	CondOperation	As	EConditionOperator,	_
	Value	As	Variant	_
	)	As	Boolean
Returns	True	on	success.

Property
Specifies	an	entity	property.

CondOperation
Specifies	the	comparison	operator.	Note	The	only	valid	operator	in	a	string
context	is	kCondEq.

Value
Specifies	a	string,	long,	or	integer	to	use	in	a	property	condition.

Note	Call	this	method	only	if	the	QueryLeaf	object's	Type	property	is
kPropertyCondition.
The	following	example	defines	a	property	condition	where	the	property	is	layer,
the	comparison	operator	is	equal	to,	and	the	value	is	Stream.
Dim	amap	As	AcadMap
Dim	prj	As	Project
Dim	qry	As	Query
Dim	mainqrybr	As	QueryBranch
Dim	andqrybr	As	QueryBranch
Dim	propqrylf	As	QueryLeaf
Dim	qrylf	As	QueryLeaf
Dim	boolVal	As	Boolean
Dim	atdr	As	AttachedDrawing
	
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	prj	=	amap.Projects(ThisDrawing)
Set	qry	=	prj.CurrQuery

QueryLeaf.SetPropertyCond	method
QueryLeaf	object			Example			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()


Set	atdr	=	prj.DrawingSet.Add("MAPTUT:\\citymap7.dwg")
boolVal	=	qry.Clear
Set	mainqrybr	=	qry.QueryBranch
Set	qrylf	=	mainqrybr.Add(kLocationCondition,	kOperatorAnd)
Set	andqrybr	=	mainqrybr.Add(kQueryBranch,	kOperatorAnd)
Set	propqrylf	=	andqrybr.Add(kPropertyCondition,	kOperatorOr)
boolVal	=	qrylf.SetLocationCond(kLocationInside,	_
prj.MapUtil.NewLocationAll)	
boolVal	=	propqrylf.SetPropertyCond(kLayer,	kCondEq,	"Stream")

	





Defines	an	SQL	condition.

SetSQLCond(	_
	LTNName	As	String,	_
	SQLWhere	As	String	_
	)	As	Boolean
Returns	True	on	success.

LTNName
Link	Template	name.

SQLWhere
SQL	Where	clause.	(Don't	include	the	Where	keyword.)

Note	Call	this	method	only	if	the	QueryLeaf	object's	Type	property	is
kSQLCondition.
The	following	example	defines	an	SQL	condition.
Dim	amap	As	AcadMap
Dim	prj	As	Project
Dim	qry	As	Query
Dim	atdr	As	AttachedDrawing
Dim	mainqrybr	As	QueryBranch
Dim	andqrybr	As	QueryBranch
Dim	sqlqrylf	As	QueryLeaf
Dim	qrylf	As	QueryLeaf
Dim	boolVal	As	Boolean
Dim	whereVal	as	String
Dim	strLT	as	String
	
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	prj	=	amap.Projects(ThisDrawing)
Set	qry	=	prj.CurrQuery
Set	atdr	=	prj.DrawingSet.Add("MAPTUT:\\citymap7.dwg")
boolVal	=	qry.Clear
Set	mainqrybr	=	qry.QueryBranch
Set	qrylf	=	mainqrybr.Add(kLocationCondition,	kOperatorAnd)

QueryLeaf.SetSQLCond	method
QueryLeaf	object



Set	andqrybr	=	mainqrybr.Add(kQueryBranch,	kOperatorAnd)
Set	sqlqrylf	=	andqrybr.Add(kDataCondition,	kOperatorOr)
boolVal	=	qrylf.SetLocationCond(kLocationInside,	_
prj.MapUtil.NewLocationAll)	
strLT	=	"Link	template	name	goes	here"
whereVal	=	"Top	=	500	AND	Left	=	250"
boolVal	=	sqlqrylf.SetSQLCond("LTname",	WhereVal)





Adds	an	expression	to	the	report	template.

Add(Expression	As	String)	As	Expression
Returns	an	expression.

Expression
A	string	expression,	evaluated	when	a	query	executes.

The	following	example	adds	two	expressions	to	a	template	that	produce	a	report
listing	the	length	and	layer	of	each	queried	object.
Dim	amap	As	AcadMap
Dim	prj	As	Project
Dim	atdr	As	AttachedDrawing
Dim	qry	As	Query
Dim	qrybr	As	QueryBranch
Dim	qrylf	As	QueryLeaf
Dim	qryrp	As	QueryReport
Dim	exp	As	Expression
Dim	exp2	As	Expression
	
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	prj	=	amap.Projects(ThisDrawing)
Set	atdr	=	prj.DrawingSet.Add("MAPTUT:\\citymap7.dwg")
Set	qry	=	prj.CurrQuery
qry.Clear
Set	qrybr	=	qry.QueryBranch
Set	qrylf	=	qrybr.Add(kLocationCondition,	kOperatorAnd)
qrylf.SetLocationCond	kLocationInside,	prj.MapUtil.NewLocationAll
Set	qryrp	=	prj.CurrQuery.Report
Set	exp	=	qryrp.Add(".LENGTH")
Set	exp2	=	qryrp.Add(".LAYER")
prj.CurrQuery.Report.ReportFileName	=	"MyReport.txt"
qry.Mode	=	kQueryReport
qry.Define	qrybr
qry.Execute

QueryReport.Add	method
QueryReport	collection			See	Also

javascript:RelatedTopic0.Click()




Removes	all	expressions	from	the	template.

Clear	As	Boolean
Returns	True	on	success.
The	following	example	removes	all	expressions	from	a	template.
Dim	amap	As	AcadMap
Dim	prj	As	Project
Dim	atdr	As	AttachedDrawing
Dim	qry	As	Query
Dim	qrybr	As	QueryBranch
Dim	qrylf	As	QueryLeaf
Dim	qryrp	As	QueryReport
	
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	prj	=	amap.Projects(ThisDrawing)
Set	atdr	=	prj.DrawingSet.Add("MAPTUT:\\citymap7.dwg")
Set	qry	=	prj.CurrQuery
qry.Clear
Set	qrybr	=	qry.QueryBranch
Set	qrylf	=	qrybr.Add(kLocationCondition,	kOperatorAnd)
qrylf.SetLocationCond	kLocationInside,	prj.MapUtil.NewLocationAll
Set	qryrp	=	prj.CurrQuery.Report
qryrp.Clear

QueryReport.Clear	method
QueryReport	collection



Removes	all	expressions	from	the	template.

Returns	True	on	success.
The	following	example	removes	all	expressions	from	a	template.
Dim	amap	As	AcadMap

Dim	atdr	As	AttachedDrawing

Dim	qrybr	As	QueryBranch
Dim	qrylf	As	QueryLeaf
Dim	qryrp	As	QueryReport

Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	prj	=	amap.Projects(ThisDrawing)
Set	atdr	=	prj.DrawingSet.Add("MAPTUT:\\citymap7.dwg")
Set	qry	=	prj.CurrQuery

Set	qrybr	=	qry.QueryBranch
Set	qrylf	=	qrybr.Add(kLocationCondition,	kOperatorAnd)
qrylf.SetLocationCond	kLocationInside,	prj.MapUtil.NewLocationAll
Set	qryrp	=	prj.CurrQuery.Report

QueryReport.Clear	method





Gets	a	specific	expression	from	the	report	template.

Item(ExpNumber	As	Long)	As	Expression
Returns	the	line.

ExpNumber
The	index	number,	or	position,	of	the	expression	to	get,	starting	at	0.

The	following	example	prints	the	values	of	an	expressions	in	a	template.
Dim	amap	As	AcadMap
Dim	prj	As	Project
Dim	qry	As	Query
Dim	qrybr	As	QueryBranch
Dim	qrylf	As	QueryLeaf
Dim	qryrp	As	QueryReport
Dim	exp	As	Expression
Dim	exp2	As	Expression
Dim	i	As	Integer
	
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	prj	=	amap.Projects(ThisDrawing)
Set	qry	=	prj.CurrQuery
qry.Clear
Set	qrybr	=	qry.QueryBranch
Set	qrylf	=	qrybr.Add(kLocationCondition,	kOperatorAnd)
qrylf.SetLocationCond	kLocationInside,	prj.MapUtil.NewLocationAll
Set	qryrp	=	prj.CurrQuery.Report
qryrp.Clear
Set	exp	=	qryrp.Add(".LENGTH")
Set	exp2	=	qryrp.Add(".LAYER")
For	i	=	0	To	qryrp.Count	-	1
Debug.Print	qryrp.Item(i).Value	
Next	i

QueryReport.Item	method
QueryReport	collection			See	Also

javascript:RelatedTopic0.Click()




Removes	an	expression	from	a	report	template.

Remove(ExpNumber	As	Long)	As	Boolean
Returns	True	on	success.

ExpNumber
The	index	number,	or	position,	of	the	expression	to	remove,	starting	at	0.

The	following	example	removes	the	.LAYER	expression	from	the	report
template.
Dim	amap	As	AcadMap
Dim	prj	As	Project
Dim	atdr	As	AttachedDrawing
Dim	qry	As	Query
Dim	qrybr	As	QueryBranch
Dim	qrylf	As	QueryLeaf
Dim	qryrp	As	QueryReport
Dim	exp	As	Expression
Dim	exp2	As	Expression
Dim	i	As	Integer
	
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	prj	=	amap.Projects(ThisDrawing)
Set	atdr	=	prj.DrawingSet.Add("MAPTUT:\\citymap7.dwg")
Set	qry	=	prj.CurrQuery
qry.Clear
Set	qrybr	=	qry.QueryBranch
Set	qrylf	=	qrybr.Add(kLocationCondition,	kOperatorAnd)
qrylf.SetLocationCond	kLocationInside,	prj.MapUtil.NewLocationAll
Set	qryrp	=	prj.CurrQuery.Report
Set	exp	=	qryrp.Add(".LENGTH")
Set	exp2	=	qryrp.Add(".LAYER")
prj.CurrQuery.Report.ReportFileName	=	"MyReport.txt"
qry.Mode	=	kQueryReport
For	i	=	0	To	qryrp.Count	-	1
If	qryrp.Item(i).Value	=	".LAYER"	Then	

QueryReport.Remove	method
QueryReport	collection



qryrp.Remove	(i)	
Exit	For	
End	If	
Next	i
qry.Define	qrybr
qry.Execute





Adds	a	range	to	the	range	table.

Add(	ExprValue	As	String,	_
	ReturnValue	As	String,	_
	CompareOperation	As	ERangeOperator	_
	)	As	Range
Returns	a	range.

ExprValue
The	comparison	value	of	the	range's	condition.

ReturnValue
The	value	to	return	if	the	range's	condition	is	true.

CompareOperation
The	comparitive	operator	of	the	range's	condition.

This	example	is	an	excerpt	from	the	sample	code	for	altering	queried	objects.To
go	to	the	sample	code,	click	 .	The	following	example	shows	how	to	set	up	a
range	table	called	safewater.	The	query	uses	the	range	table	to	specify	a	range	of
less	than	10	feet	and	to	return	the	name	of	the	STREAM	layer.	The	last	line	of
code	adds	a	property	alteration	to	the	AlterLines	collection	that	specifies	what	to
do	with	the	range	and	return	value--to	move	water	bodies	having	a	depth	within
that	range	to	the	STREAM	layer.
Dim	rngtb	As	RangeTable
Dim	rng	As	Range
Dim	altlLay	As	AlterLine
	
'Alter	Layer	Based	on	Range	Table
prj.RangeTables.Remove	("foulwater")
Set	rngtb	=	prj.RangeTables.Add("safewater",	"shallow	water")
Set	rng	=	rngtb.Add("10",	"STREAM",	kRangeLT)
Set	altlLay	=	prj.CurrQuery.AlterProp.Add(	_
kAlterationLayer,	_	
"(Range	:AVG_DEPTH@WATER_BODIES	foulwater)")		

RangeTable.Add	method
RangeTable	collection			Example			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()


	





Gets	a	range	from	the	range	table.

Item(Index	As	Long)	As	Range
Returns	the	range.

Index
The	index,	starting	at	0,	of	a	range	in	the	range	table.

RangeTable.Item	method
RangeTable	collection



Gets	a	range	from	the	range	table.

Item(Index	As	Long)	As	Range

The	index,	starting	at	0,	of	a	range	in	the	range	table.

RangeTable.Item	method





Removes	a	range	from	the	range	table.

Remove(Index	As	Long)	As	Boolean
Returns	True	on	success.

Index
The	index,	starting	at	0,	of	a	range	in	the	range	table.

The	following	example	is	a	procedure	that	you	call	from	the	sample	code	for
altering	queried	objects.	To	go	to	the	sample	code,	click	 .	The	procedure
traverses	the	collection	of	RangeTables	looking	for	a	table	that	contains	the
range	that	specifies	the	"MARSH"	return	value,	and	removes	it.	Add	a	call	to
rmrng	just	before	the	call	to	qry.Define	in	the	sample	code.
rmrng	prj,	rngtb
	
'Define	Query
boolVal	=	qry.Define(mainqrybr)
.
.
.
Sub	rmrng(prj	As	Project,	rngtb	As	RangeTable)
Dim	i	As	Integer
Dim	rng	As	Range
	
For	i	=	0	To	prj.RangeTables.Count	-	1
For	Each	rng	In	prj.RangeTables.Item(i)	
If	rng.ReturnValue	=	"MARSH"	Then	
prj.RangeTables.Remove	(i)	
End	If	
Next	
Next	i
	
End	Sub

RangeTable.Remove	method
RangeTable	collection



Removes	a	range	from	the	range	table.

Remove(Index	As	Long)	As	Boolean
Returns	True	on	success.

The	index,	starting	at	0,	of	a	range	in	the	range	table.
The	following	example	is	a	procedure	that	you	call	from	the	sample	code	for
altering	queried	objects.	To	go	to	the	sample	code,	click	 .	The	procedure
traverses	the	collection	of	RangeTables	looking	for	a	table	that	contains	the
range	that	specifies	the	"MARSH"	return	value,	and	removes	it.	Add	a	call	to
rmrng	just	before	the	call	to	qry.Define	in	the	sample	code.

boolVal	=	qry.Define(mainqrybr)

Sub	rmrng(prj	As	Project,	rngtb	As	RangeTable)

For	i	=	0	To	prj.RangeTables.Count	-	1
For	Each	rng	In	prj.RangeTables.Item(i)	
If	rng.ReturnValue	=	"MARSH"	Then	
prj.RangeTables.Remove	(i)	

RangeTable.Remove	method





Adds	a	range	table	to	the	collection.

Add(	RangeTblName	As	String,	_
	RangeTblDescription	As	String	_
	)	As	RangeTable
Returns	the	added	range	table.

RangeTbleName
Name	of	the	range	table.

RangeTblDescription
Description	of	the	range	table.

The	following	excerpt	from	the	sample	code	for	altering	queried	objects	removes
a	table	of	the	same	name	as	the	one	you	want	to	add,	if	it	exists,	and	adds	a	range
table	called	foulwater	to	the	range	tables	collection.	To	see	the	complete
example,	click	 .
Dim	prj	As	Project
Dim	rngtb	As	RangeTable
	
prj.RangeTables.Remove	("foulwater")
Set	rngtb	=	prj.RangeTables.Add("foulwater",	"shallow	water")

RangeTables.Add	method
RangeTables	collection			Example

javascript:RelatedTopic0.Click()


Adds	a	range	table	to	the	collection.

Add(	RangeTblName	As	String,	_
	RangeTblDescription	As	String	_

Returns	the	added	range	table.

Name	of	the	range	table.

RangeTblDescription
Description	of	the	range	table.

The	following	excerpt	from	the	sample	code	for	altering	queried	objects	removes
a	table	of	the	same	name	as	the	one	you	want	to	add,	if	it	exists,	and	adds	a	range
table	called	foulwater	to	the	range	tables	collection.	To	see	the	complete

Dim	rngtb	As	RangeTable

prj.RangeTables.Remove	("foulwater")
Set	rngtb	=	prj.RangeTables.Add("foulwater",	"shallow	water")

RangeTables.Add	method
			Example





Gets	a	range	table	from	the	collection.

Item(Index	As	Variant)	As	RangeTable
Returns	the	range	table.

Index
The	name	or	index,	starting	at	0,	of	a	range	table	in	a	range	tables	collection.

RangeTables.Item	method
RangeTables	collection



Gets	a	range	table	from	the	collection.

Item(Index	As	Variant)	As	RangeTable
Returns	the	range	table.

The	name	or	index,	starting	at	0,	of	a	range	table	in	a	range	tables	collection.

RangeTables.Item	method





Removes	a	range	table	from	the	collection.

Remove(Index	As	Variant)	As	Boolean
Returns	True	on	success.

Index
The	name	or	index,	starting	at	0,	of	a	range	table	in	a	range	tables	collection.

RangeTables.Remove	method
RangeTables	collection



Removes	a	range	table	from	the	collection.

Remove(Index	As	Variant)	As	Boolean
Returns	True	on	success.

The	name	or	index,	starting	at	0,	of	a	range	table	in	a	range	tables	collection.

RangeTables.Remove	method





Adds	objects	to	the	save	set.

AddObjects(ToBeAdded	As	Variant)	As	Long
Returns	the	number	of	objects	added.

ToBeAdded
An	array	of	Longs	containing	the	IDs	of	objects	to	be	added	to	a	save	set.

You	can	add	the	IDs	of	locked,	erased,	or	newly	created	objects.
The	following	example	assumes	you	altered	queried	objects	of	a	drawing	before
running	this	code.	For	sample	code	for	querying	a	drawing	and	altering
properties,	For	more	information,	click	 .	This	example	adds	queried	objects	to	a
save	set	and	displays	their	IDs.
Dim	amap	As	AcadMap
Dim	prj	As	Project
Dim	i	As	Integer
Dim	entry	As	Object
Dim	varArray	As	Variant
Dim	lngIDArray()	As	Long
ReDim	lngIDArray(ThisDrawing.ModelSpace.Count)
Dim	strOutput	As	String
	
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	prj	=	amap.Projects(ThisDrawing)
For	Each	entry	In	ThisDrawing.ModelSpace
lngIDArray(i)	=	entry.ObjectID	
i	=	i	+	1	
Next
prj.SaveSet.AddObjects	lngIDArray
varArray	=	prj.SaveSet.GetObjects(kQueriedExisted)
Debug.Print	"SaveSet	objects--all	queried	objects"
If	UBound(varArray)	>	-1	Then
For	i	=	0	To	UBound(varArray)	
Debug.Print	varArray(i)	
Next	i	
End	If

SaveSet.AddObjects	method
SaveSet	collection





Gets	the	IDs	of	objects	in	the	save	set.

GetObjects(Qualifier	As	ESaveSetObjectType)	As	Variant
Returns	the	IDs	in	an	array	of	Long.

Qualifier
The	types	of	save	set	objects	you	want	to	get,	one	or	more
ESaveSetObjectType	constants.

You	can	combine	constants	to	specify	more	than	one	type.	For	example,	to	return
the	queried	objects	that	have	not	been	deleted	and	the	new	objects,	the	Qualifier
argument	is	kQueriedExisted	+	kNewlyCreated.
The	following	example	assumes	you	altered	queried	objects	of	a	drawing	before
running	this	code.	For	sample	code	for	querying	a	drawing	and	altering
properties,	click	 .This	example	adds	queried	objects	to	a	save	set	and	displays
their	IDs.
Dim	amap	As	AcadMap
Dim	prj	As	Project
Dim	i	As	Integer
Dim	entry	As	Object
Dim	varArray	As	Variant
Dim	lngIDArray()	As	Long
ReDim	lngIDArray(ThisDrawing.ModelSpace.Count)
Dim	strOutput	As	String
	
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	prj	=	amap.Projects(ThisDrawing)
For	Each	entry	In	ThisDrawing.ModelSpace
lngIDArray(i)	=	entry.ObjectID	
i	=	i	+	1	
Next
prj.SaveSet.AddObjects	lngIDArray
varArray	=	prj.SaveSet.GetObjects(kQueriedExisted)
Debug.Print	"SaveSet	objects--all	queried	objects"
If	UBound(varArray)	>	-1	Then
For	i	=	0	To	UBound(varArray)	

SaveSet.GetObjects	method
SaveSet	collection			See	Also

javascript:RelatedTopic0.Click()


Debug.Print	varArray(i)	
Next	i	
End	If





Removes	an	object	from	a	save	set.

RemoveObjects(ToBeRemoved	As	Variant)	As	Long
Returns	the	number	of	objects	removed	from	the	save	set.

ToBeRemoved
An	array	of	Longs	containing	the	IDs	of	objects	in	the	save	set.

You	can	specify	the	IDs	of	locked,	erased,	or	newly	created	objects.
The	following	example	builds	on	the	SaveSet.Add	example.	For	more
information,	click	 .
You	call	the	following	procedure	from	the	SaveSet.Add	example	to	remove	three
objects	from	the	save	set.
Sub	removeobjects(lngIDArray	As	Variant)
	
Dim	amap	As	AcadMap
Dim	prj	As	Project
Dim	i	As	Integer
Dim	varArray	As	Variant
Dim	strOutput	As	String
Dim	lngIDArray2()	As	Long
ReDim	lngIDArray2(3)
	
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	prj	=	amap.Projects(ThisDrawing)
lngIDArray2(0)	=	lngIDArray(1)
lngIDArray2(1)	=	lngIDArray(5)
lngIDArray2(3)	=	lngIDArray(8)
prj.SaveSet.removeobjects	lngIDArray2
varArray	=	prj.SaveSet.GetObjects(kQueriedExisted)
Debug.Print	"Three	objects	removed	from	save	set"
If	UBound(varArray)	>	-1	Then
For	i	=	0	To	UBound(varArray)	
Debug.Print	varArray(i)	
Next	i	
End	If

SaveSet.RemoveObjects	method
SaveSet	collection



	
End	Sub





Read	Only

Aliases	As	Aliases
Returns	the	drive	aliases	collection.
Using	this	object,	you	get	a	collection	of	shorthand	names	of	drives	and
directory	locations.

AcadMap.Aliases	property
AcadMap	object			See	Also

javascript:RelatedTopic0.Click()


Aliases	As	Aliases
Returns	the	drive	aliases	collection.
Using	this	object,	you	get	a	collection	of	shorthand	names	of	drives	and

AcadMap.Aliases	property
See	Also





Read	Only

ErrorStack	As	ErrorStack
Returns	the	error	stack	collection.

	

AcadMap.ErrorStack	property
AcadMap	object			Example			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()


ErrorStack	As	ErrorStack
Returns	the	error	stack	collection.

	

AcadMap.ErrorStack	property
Example			See	Also





Read	Only

Projects	As	Projects
Returns	the	projects	collection.
Using	this	collection,	you	get	a	Project,	and	access	another	level	of	AutoCAD
Map	functionality	through	the	query,	drawing	set,	object	data	tables,	project
options,	and	other	objects.

AcadMap.Projects	property
AcadMap	object			See	Also

javascript:RelatedTopic0.Click()


Projects	As	Projects
Returns	the	projects	collection.
Using	this	collection,	you	get	a	Project,	and	access	another	level	of	AutoCAD
Map	functionality	through	the	query,	drawing	set,	object	data	tables,	project
options,	and	other	objects.

AcadMap.Projects	property
See	Also





Read	Only

SystemOptions	As	SystemOptions
Returns	the	system	options.

AcadMap.SystemOptions	property
AcadMap	object			See	Also

javascript:RelatedTopic0.Click()


SystemOptions	As	SystemOptions
Returns	the	system	options.

AcadMap.SystemOptions	property
See	Also





Read-Write

Directory	As	String
Sets	or	returns	the	aliased	path.

Alias.Directory	property
Alias	object



Directory	As	String
Sets	or	returns	the	aliased	path.

Alias.Directory	property





Read-Write

Name	As	String
Sets	or	returns	the	alias	name.

Alias.Name	property
Alias	object



Sets	or	returns	the	alias	name.

Alias.Name	property





Read	Only

Count	As	Long
Returns	the	number	of	aliases	in	an	AcadMap	object.
Use	this	property	to	list	current	drive	aliases.
The	following	example	displays	the	name	of	each	alias.
Dim	als	As	Alias
Dim	cAls	As	Integer,	i	As	Integer
Dim	amap	As	AcadMap
Dim	strOutput	As	String
	
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
cAls	=	amap.Aliases.Count
For	i	=	0	To	cAls	-	1
Set	als	=	amap.Aliases.Item(i)	
strOutput	=	strOutput	&	als.Name	&	"="	&	als.Directory	&	Chr(13)	
Next	i
MsgBox	strOutput

Aliases.Count	property
Aliases	collection			See	Also

javascript:RelatedTopic0.Click()


Returns	the	number	of	aliases	in	an	AcadMap	object.
Use	this	property	to	list	current	drive	aliases.
The	following	example	displays	the	name	of	each	alias.

Dim	cAls	As	Integer,	i	As	Integer
Dim	amap	As	AcadMap
Dim	strOutput	As	String

Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
cAls	=	amap.Aliases.Count

Set	als	=	amap.Aliases.Item(i)	
strOutput	=	strOutput	&	als.Name	&	"="	&	als.Directory	&	Chr(13)	

Aliases.Count	property
See	Also





Read-Write

Value	As	Variant
Sets	or	returns	the	new	value	for	the	property,	or	an	expression	that	evaluates	to
such	a	value.
The	value's	type	must	be	appropriate	for	the	property.	For	example,	if
AlterLine.Property	is	kAlterationElevation,	the	value	should	be	a	point.	If
AlterLine.Property	is	kAlterationHeight,	kAlterationRotation,	kAlterationWidth,
or	kAlterationThickness,	the	value	should	be	a	real.	For	all	other	kinds	of
properties,	the	value	should	be	a	string	that	makes	sense	with	such	a	property.
If	you	are	using	a	range	table	to	provide	values	conditionally,	use
AlterLine.Value	to	reference	the	range	table	by	supplying	a	range	expression	as
argument.	For	more	information,	click	 .
The	following	procedure	traverses	a	collection	of	property	alterations	and	prints
the	value	of	the	alteration	if	it	is	a	text	definition.	Call	this	procedure	just	before
the	call	to	qry.Define,	as	shown	in	the	following	example.	To	go	to	the	sample
code,	click	 .
'Call	from	Altering	Queried	Objects	sample
showtxtdf	prj,	altls
'Define	Query
boolVal	=	qry.Define(mainqrybr)
.
.
.
Sub	showtxtdf(prj	As	Project,	altls	As	AlterLines)
Dim	i	As	Integer
Dim	altl	As	Variant
Dim	txtdf	As	TextDef
	
For	i	=	0	To	prj.CurrQuery.AlterProp.Count	-	1
Set	altl	=	altls.Item(i)	
If	altl.Property	=	kAlterationTextEntity	Then	
Set	txtdf	=	altls.Item(i)	
Debug.Print	txtdf.TextValue	
End	If	

AlterLine.Value	property
AlterLine	object			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()


Next	i
End	Sub

	





Read	Only

Count	As	Long
Returns	the	number	of	property	alterations	in	the	collection.

AlterLines.Count	property
AlterLines	collection



Returns	the	number	of	property	alterations	in	the	collection.

AlterLines.Count	property





Read-Write

Active	As	Boolean
Sets	or	returns	True	if	an	attached	drawing	is	active	for	querying.
To	get	information	on	nested	drawings	or	to	get	a	drawing	object	from	a	nested
drawing,	you	must	activate	the	parent	drawing.

AttachedDrawing.Active	property
AttachedDrawing	object			See	Also

javascript:RelatedTopic0.Click()


Active	As	Boolean
Sets	or	returns	True	if	an	attached	drawing	is	active	for	querying.
To	get	information	on	nested	drawings	or	to	get	a	drawing	object	from	a	nested
drawing,	you	must	activate	the	parent	drawing.

AttachedDrawing.Active	property
			See	Also





Read	Only

AliasPath	As	String
Returns	the	drive	alias	that	represents	a	hard-coded	drive	name	and	path.

AttachedDrawing.AliasPath	property
AttachedDrawing	object



AliasPath	As	String
Returns	the	drive	alias	that	represents	a	hard-coded	drive	name	and	path.

AttachedDrawing.AliasPath	property





Read-Write

ApplyTransform	As	Boolean
Sets	or	returns	True	when	queried	objects	are	transformed.

AttachedDrawing.ApplyTransform	property
AttachedDrawing	object			See	Also

javascript:RelatedTopic0.Click()


ApplyTransform	As	Boolean
Sets	or	returns	True	when	queried	objects	are	transformed.

AttachedDrawing.ApplyTransform	property
			See	Also





Read-Write

Description	As	String
Sets	or	returns	a	description	of	the	attached	drawing.

AttachedDrawing.Description	property
AttachedDrawing	object



Description	As	String
Sets	or	returns	a	description	of	the	attached	drawing.

AttachedDrawing.Description	property





Read	Only

Extents	As	Variant
Returns	the	attached	drawing's	extents	as	an	array	of	four	Doubles.
Coordinates	are	returned	in	the	following	order:	MinX,	MinY,	MaxX,	MaxY.
The	extents	of	the	attached	drawing	is	the	smallest	rectangle	that	encompasses
all	the	objects	in	it.	(MinX,	MinY)	is	the	lower-left	corner,	and	(MaxX,	MaxY)
is	the	upper	right.
The	attached	drawing	must	be	active	when	you	use	this	property.
The	following	code	is	an	excerpt	from	a	larger	example.	The	code	shows	how	to
create	the	main	branch	of	a	query	of	all	objects	within	the	extents	of	the	attached
drawing.	For	the	entire	example,	click	 .
Dim	amap	As	AcadMap
Dim	prj	As	Project
Dim	qry	As	Query
Dim	mainqrybr	As	QueryBranch
Dim	qrylf	As	QueryLeaf
Dim	mapu	As	MapUtil
Dim	wind	As	WindowBound
Dim	boolVal	As	Boolean
Dim	dblary	As	Variant
	
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	prj	=	amap.Projects(ThisDrawing)
Set	qry	=	prj.CurrQuery
	
Set	mainqrybr	=	qry.QueryBranch
Set	qrylf	=	mainqrybr.Add(kLocationCondition,	kOperatorAnd)
dblary	=	prj.DrawingSet.Item("MAPTUT:\\citymap7.dwg").Extents
Set	mapu	=	prj.MapUtil
Set	wind	=	mapu.NewWindow(	_
mapu.NewPoint3d(dblary(0),	dblary(1),	0),	_	
mapu.NewPoint3d(dblary(2),	dblary(3),	0))	
boolVal	=	qrylf.SetLocationCond(kLocationInside,	wind)

AttachedDrawing.Extents	property
AttachedDrawing	object			See	Also

javascript:RelatedTopic0.Click()




Read	Only

HasLocks	As	Boolean
Returns	True	if	an	attached	drawing	contains	locked	objects.

AttachedDrawing.HasLocks	property
AttachedDrawing	object			See	Also

javascript:RelatedTopic0.Click()


HasLocks	As	Boolean
Returns	True	if	an	attached	drawing	contains	locked	objects.

AttachedDrawing.HasLocks	property
			See	Also





Read	Only

HasNested	As	Boolean
Returns	True	if	the	drawing	is	indirectly	attached	to	the	project.

AttachedDrawing.HasNested	property
AttachedDrawing	object			See	Also

javascript:RelatedTopic0.Click()


HasNested	As	Boolean
Returns	True	if	the	drawing	is	indirectly	attached	to	the	project.

AttachedDrawing.HasNested	property
			See	Also





Read	Only

IsTopLevel	As	Boolean
Returns	True	if	this	drawing	is	directly	attached	to	the	project.

AttachedDrawing.IsTopLevel	property
AttachedDrawing	object



IsTopLevel	As	Boolean
Returns	True	if	this	drawing	is	directly	attached	to	the	project.

AttachedDrawing.IsTopLevel	property





Read	Only

NestedDrawings	As	NestedDrawings
Returns	the	attached	drawing's	NestedDrawings	collection.

AttachedDrawing.NestedDrawings	property
AttachedDrawing	object			See	Also

javascript:RelatedTopic0.Click()


NestedDrawings	As	NestedDrawings
Returns	the	attached	drawing's	NestedDrawings	collection.

AttachedDrawing.NestedDrawings	property
			See	Also





Read	Only

Parent	As	AttachedDrawing
Returns	a	reference	to	the	parent	of	the	attached	drawing.
Used	only	if	the	attached	drawing	is	part	of	the	NestedDrawings	collection	of
another	attached	drawing,	which	is	referred	to	as	its	parent	drawing.

AttachedDrawing.Parent	property
AttachedDrawing	object			See	Also

javascript:RelatedTopic0.Click()


Parent	As	AttachedDrawing
Returns	a	reference	to	the	parent	of	the	attached	drawing.
Used	only	if	the	attached	drawing	is	part	of	the	NestedDrawings	collection	of
another	attached	drawing,	which	is	referred	to	as	its	parent	drawing.

AttachedDrawing.Parent	property
			See	Also





Read-Write

Projection	As	String
Sets	or	returns	the	name	of	the	drawing	coordinate	system.
You	can	change	the	coordinate	system	of	an	attached	drawing	only	if	no	objects
in	the	drawing	have	been	queried	in	the	current	session	and	(in	a	multi-user
environment)	if	no	other	user	embeds	locked	objects	in	the	drawing.

AttachedDrawing.Projection	property
AttachedDrawing	object			See	Also

javascript:RelatedTopic0.Click()


Projection	As	String
Sets	or	returns	the	name	of	the	drawing	coordinate	system.
You	can	change	the	coordinate	system	of	an	attached	drawing	only	if	no	objects
in	the	drawing	have	been	queried	in	the	current	session	and	(in	a	multi-user
environment)	if	no	other	user	embeds	locked	objects	in	the	drawing.

AttachedDrawing.Projection	property
			See	Also





Read-Write

SaveBackExt	As	Variant
Sets	or	returns	the	attached	drawing's	save-back	extents	as	an	array	of	four
Doubles.
Coordinates	are	returned	in	the	following	order:	MinX,	MinY,	MaxX,	MaxY.
Objects	in	the	save	set	that	are	associated	with	the	attached	drawing	are	saved
back	only	if	they	are	within	or	crossing	the	save-back	extents	boundary.	(MinX,
MinY)	is	the	lower-left	corner,	and	(MaxX,	MaxY)	is	the	upper	right.
The	attached	drawing	must	be	active	when	you	use	this	property.

AttachedDrawing.SaveBackExt	property
AttachedDrawing	object			See	Also

javascript:RelatedTopic0.Click()


SaveBackExt	As	Variant
Sets	or	returns	the	attached	drawing's	save-back	extents	as	an	array	of	four

Coordinates	are	returned	in	the	following	order:	MinX,	MinY,	MaxX,	MaxY.
Objects	in	the	save	set	that	are	associated	with	the	attached	drawing	are	saved
back	only	if	they	are	within	or	crossing	the	save-back	extents	boundary.	(MinX,
MinY)	is	the	lower-left	corner,	and	(MaxX,	MaxY)	is	the	upper	right.
The	attached	drawing	must	be	active	when	you	use	this	property.

AttachedDrawing.SaveBackExt	property
			See	Also





Read-Write

Trotate	As	Double
Sets	or	returns	the	simple	transform	rotation	of	the	attached	drawing.
Returns	True	if	rotation	is	clockwise.

AttachedDrawing.Trotate	property
AttachedDrawing	object			See	Also

javascript:RelatedTopic0.Click()


Trotate	As	Double
Sets	or	returns	the	simple	transform	rotation	of	the	attached	drawing.
Returns	True	if	rotation	is	clockwise.

AttachedDrawing.Trotate	property
			See	Also





Read-Write

Tscale	As	Double
Sets	or	returns	the	simple	transform	scale	of	an	attached	drawing.
The	transformation	temporarily	scales	the	queried	objects.

AttachedDrawing.Tscale	property
AttachedDrawing	object			See	Also

javascript:RelatedTopic0.Click()


Sets	or	returns	the	simple	transform	scale	of	an	attached	drawing.
The	transformation	temporarily	scales	the	queried	objects.

AttachedDrawing.Tscale	property
			See	Also





Read-Write

TXOffset	As	Double
Sets	or	returns	the	X	offset	portion	of	the	X	and	Y	transformation	coordinates	for
the	drawing.

AttachedDrawing.TXOffset	property
AttachedDrawing	object			See	Also

javascript:RelatedTopic0.Click()


TXOffset	As	Double
Sets	or	returns	the	X	offset	portion	of	the	X	and	Y	transformation	coordinates	for

AttachedDrawing.TXOffset	property
			See	Also





Read-Write

TYOffset	As	Double
Sets	of	returns	the	Y	offset	portion	of	the	X	and	Y	transformation	coordinates	for
the	drawing.

AttachedDrawing.TYOffset	property
AttachedDrawing	object			See	Also

javascript:RelatedTopic0.Click()


TYOffset	As	Double
Sets	of	returns	the	Y	offset	portion	of	the	X	and	Y	transformation	coordinates	for

AttachedDrawing.TYOffset	property
			See	Also





Read	Only

Count	As	Long
Returns	the	count	of	the	total	number	of	points,	or	Point3d	objects	in	a
BufferFenceBound	collection.

BufferFenceBound.Count	property
BufferFenceBound	collection



Returns	the	count	of	the	total	number	of	points,	or	Point3d	objects	in	a
BufferFenceBound	collection.

BufferFenceBound.Count	property
BufferFenceBound	collection





Read-Write

Width	As	Double
Sets	or	returns	the	width	of	the	buffer	zone.

BufferFenceBound.Width	property
BufferFenceBound	collection



Sets	or	returns	the	width	of	the	buffer	zone.

BufferFenceBound.Width	property
BufferFenceBound	collection





Read	Only

Count	As	Long
Returns	the	number	of	points	in	the	BufferPolylineBound	collection.

BufferPolylineBound.Count	property
BufferPolylineBound	collection



Returns	the	number	of	points	in	the	BufferPolylineBound	collection.

BufferPolylineBound.Count	property
BufferPolylineBound	collection





Read-Write

ObjectID	As	Long
Sets	or	returns	the	ID	the	BufferPolylineBound	collection.

BufferPolylineBound.ObjectID	property
BufferPolylineBound	collection



ObjectID	As	Long
Sets	or	returns	the	ID	the	BufferPolylineBound	collection.

BufferPolylineBound.ObjectID	property
BufferPolylineBound	collection





Read-Write

Width	As	Double
Sets	or	returns	the	width	of	the	buffer	zone.

BufferPolylineBound.Width	property
BufferPolylineBound	collection



Sets	or	returns	the	width	of	the	buffer	zone.

BufferPolylineBound.Width	property
BufferPolylineBound	collection





Read-Write

CenterX	As	Double
Sets	or	returns	the	center	X	coordinate	of	a	CircleBound	object.
The	following	example	prints	the	center	of	a	CircleBound	object	in	the
Immediate	Window.
Dim	acadapp	As	AcadApplication
Dim	amap	As	AcadMap
Dim	prj	As	Project
Dim	cir	As	CircleBound
Dim	acadu	As	AcadUtility
Dim	varVal	As	Variant,	Radius	As	Double,	boolVal	As	Boolean
Dim	strVal	As	String,	ReturnValue	As	String
	
Set	acadapp	=	ThisDrawing.Application
Set	amap	=	acadapp.GetInterfaceObject("AutoCADMap.Application")
Set	prj	=	amap.Projects(ThisDrawing)
Set	acadu	=	acadapp.ActiveDocument.Utility
varVal	=	acadu.GetPoint(,	"Select	centre	of	circle:	")
Radius	=	acadu.GetDistance(varVal,	"Drag	a	line	for	radius:	")
Set	cir	=	prj.MapUtil.NewCircle(Radius,	varVal(0),	varVal(1))
Debug.Print	cir.CenterX

CircleBound.CenterX	property
CircleBound	object



CenterX	As	Double
Sets	or	returns	the	center	X	coordinate	of	a	CircleBound	object.
The	following	example	prints	the	center	of	a	CircleBound	object	in	the

Dim	acadapp	As	AcadApplication
Dim	amap	As	AcadMap

Dim	cir	As	CircleBound
Dim	acadu	As	AcadUtility
Dim	varVal	As	Variant,	Radius	As	Double,	boolVal	As	Boolean
Dim	strVal	As	String,	ReturnValue	As	String

Set	acadapp	=	ThisDrawing.Application
Set	amap	=	acadapp.GetInterfaceObject("AutoCADMap.Application")
Set	prj	=	amap.Projects(ThisDrawing)
Set	acadu	=	acadapp.ActiveDocument.Utility
varVal	=	acadu.GetPoint(,	"Select	centre	of	circle:	")
Radius	=	acadu.GetDistance(varVal,	"Drag	a	line	for	radius:	")
Set	cir	=	prj.MapUtil.NewCircle(Radius,	varVal(0),	varVal(1))
Debug.Print	cir.CenterX

CircleBound.CenterX	property





Read-Write

CenterY	As	Double
Sets	or	returns	the	center	Y	coordinate	of	a	CircleBound	object.

CircleBound.CenterY	property
CircleBound	object



CenterY	As	Double
Sets	or	returns	the	center	Y	coordinate	of	a	CircleBound	object.

CircleBound.CenterY	property





Read-Write

CenterZ	As	Double
Sets	or	returns	the	center	Z	coordinate	of	a	Circlebound	object	(ignored).

CircleBound.CenterZ	property
CircleBound	object



CenterZ	As	Double
Sets	or	returns	the	center	Z	coordinate	of	a	Circlebound	object	(ignored).

CircleBound.CenterZ	property





Read-Write

Radius	As	Double
Sets	or	returns	the	radius	of	a	CircleBound	object.

CircleBound.Radius	property
CircleBound	object



Radius	As	Double
Sets	or	returns	the	radius	of	a	CircleBound	object.

CircleBound.Radius	property





Read	Only

Count	As	Long
Sets	or	returns	number	of	points	in	the	ClosedPolylineBound	collection.

ClosedPolylineBound.Count	property
ClosedPolylineBound	collection



Sets	or	returns	number	of	points	in	the	ClosedPolylineBound	collection.

ClosedPolylineBound.Count	property
ClosedPolylineBound	collection





Read-Write

ObjectID	As	Long
Sets	or	returns	the	ID	of	the	ClosedPolylineBound	collection.

ClosedPolylineBound.ObjectID	property
ClosedPolylineBound	collection



ObjectID	As	Long
Sets	or	returns	the	ID	of	the	ClosedPolylineBound	collection.

ClosedPolylineBound.ObjectID	property
ClosedPolylineBound	collection





Read	Only

Message	As	String
Returns	a	description	of	the	error.

DiagParam.Message	property
DiagParam	object			See	Also

javascript:RelatedTopic0.Click()


Message	As	String
Returns	a	description	of	the	error.

DiagParam.Message	property
See	Also





Read	Only

Position	As	Long
Returns	the	position	of	the	error	within	the	SQL	statement.

DiagParam.Position	property
DiagParam	object			See	Also

javascript:RelatedTopic0.Click()


Returns	the	position	of	the	error	within	the	SQL	statement.

DiagParam.Position	property
See	Also





Read	Only

Source	As	EAdeClassId
Returns	the	identifier	of	the	ADE	object	that	caused	the	error.

DiagParam.Source	property
DiagParam	object			See	Also

javascript:RelatedTopic0.Click()


Source	As	EAdeClassId
Returns	the	identifier	of	the	ADE	object	that	caused	the	error.

DiagParam.Source	property
See	Also





Read	Only

SqlStatement	As	String
Returns	the	SQL	statement	that	caused	the	error.
An	empty	string	means	SQL	processing	did	not	cause	the	error.

DiagParam.SqlStatement	property
DiagParam	object			See	Also

javascript:RelatedTopic0.Click()


SqlStatement	As	String
Returns	the	SQL	statement	that	caused	the	error.
An	empty	string	means	SQL	processing	did	not	cause	the	error.

DiagParam.SqlStatement	property
See	Also





Read	Only

Count	As	Long
Returns	the	number	of	drawings	in	the	drawing	set.
Note	The	Count	property	does	not	include	nested	drawings.

DrawingSet.Count	property
DrawingSet	collection			See	Also

javascript:RelatedTopic0.Click()


Returns	the	number	of	drawings	in	the	drawing	set.
	The	Count	property	does	not	include	nested	drawings.

DrawingSet.Count	property
See	Also





Read	Only

Extents	As	Variant
Returns	the	extents	of	all	active	drawings.
Returns	coordinates	as	an	array	of	four	Doubles	in	the	following	order:	MinX,
MinY,	MaxX,	MaxY.	The	extents	of	the	drawing	set	is	the	smallest	rectangle	that
encompasses	all	the	objects	in	all	the	attached	and	active	drawings.	(MinX,
MinY)	is	the	lower-left	corner,	and	(MaxX,	MaxY)	is	the	upper	right.

DrawingSet.Extents	property
DrawingSet	collection			See	Also

javascript:RelatedTopic0.Click()


Extents	As	Variant
Returns	the	extents	of	all	active	drawings.
Returns	coordinates	as	an	array	of	four	Doubles	in	the	following	order:	MinX,
MinY,	MaxX,	MaxY.	The	extents	of	the	drawing	set	is	the	smallest	rectangle	that
encompasses	all	the	objects	in	all	the	attached	and	active	drawings.	(MinX,
MinY)	is	the	lower-left	corner,	and	(MaxX,	MaxY)	is	the	upper	right.

DrawingSet.Extents	property
See	Also





Read	Only

Count	As	Long
Returns	the	number	of	diagnostic	parameters	associated	with	the	error.

ErrorEntry.Count	property
ErrorEntry	collection			See	Also

javascript:RelatedTopic0.Click()


Returns	the	number	of	diagnostic	parameters	associated	with	the	error.

ErrorEntry.Count	property
See	Also





Read	Only

ErrCode	As	EErrCode
Returns	the	error	number.
For	a	list	of	error	codes	alphabetically	by	name,	see	the	object	browser	in	the
VBA	editor.	Each	name	entry	also	shows	the	corresponding	number.
For	a	list	of	error	codes	by	number,	click	 .

	

ErrorEntry.ErrCode	property
ErrorEntry	collection			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()


ErrCode	As	EErrCode
Returns	the	error	number.
For	a	list	of	error	codes	alphabetically	by	name,	see	the	object	browser	in	the
VBA	editor.	Each	name	entry	also	shows	the	corresponding	number.
For	a	list	of	error	codes	by	number,	click	 .

	

ErrorEntry.ErrCode	property
See	Also





Read	Only

ErrMessage	As	String
Returns	a	description	of	the	error.

ErrorEntry.ErrMessage	property
ErrorEntry	collection			See	Also

javascript:RelatedTopic0.Click()


ErrMessage	As	String
Returns	a	description	of	the	error.

ErrorEntry.ErrMessage	property
See	Also





Read	Only

ErrType	As	EErrType
Returns	the	type	of	the	error.

ErrorEntry.ErrType	property
ErrorEntry	collection			See	Also

javascript:RelatedTopic0.Click()


ErrType	As	EErrType
Returns	the	type	of	the	error.

ErrorEntry.ErrType	property
See	Also





Read	Only

Count	As	Long
Returns	the	number	of	error	messages	in	the	error	stack.
The	count	starts	at	0.

ErrorStack.Count	property
ErrorStack	collection



Returns	the	number	of	error	messages	in	the	error	stack.
The	count	starts	at	0.

ErrorStack.Count	property





Read	Only

LastErrCode	As	EErrCode
Returns	the	error	number	of	the	latest	error	that	was	pushed	to	the	stack	by
AutoCAD	Map.
Read	this	value	immediately	after	the	error	occurs.	This	value	is	valid	only	after
calling	the	method	or	using	the	property	that	caused	the	error.
For	a	list	of	error	codes	by	number,	click	 .
For	a	list	of	error	codes	alphabetically	by	name,	see	the	object	browser	in	the
VBA	editor.	Each	name	entry	in	the	object	browser	includes	the	corresponding
number.

	

ErrorStack.LastErrCode	property
ErrorStack	collection			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()


LastErrCode	As	EErrCode
Returns	the	error	number	of	the	latest	error	that	was	pushed	to	the	stack	by

Read	this	value	immediately	after	the	error	occurs.	This	value	is	valid	only	after
calling	the	method	or	using	the	property	that	caused	the	error.
For	a	list	of	error	codes	by	number,	click	 .
For	a	list	of	error	codes	alphabetically	by	name,	see	the	object	browser	in	the
VBA	editor.	Each	name	entry	in	the	object	browser	includes	the	corresponding

	

ErrorStack.LastErrCode	property
See	Also





Read-Write

Value	As	String
Sets	or	returns	an	expression,	such	as	".LENGTH"	and	".COLOR".

Expression.Value	property
Expression	object



Sets	or	returns	an	expression,	such	as	".LENGTH"	and	".COLOR".

Expression.Value	property





Read	Only

Count	As	Long
Returns	a	count	of	the	total	number	of	points	in	a	FenceBound	collection.

FenceBound.Count	property
FenceBound	collection



Returns	a	count	of	the	total	number	of	points	in	a	FenceBound	collection.

FenceBound.Count	property





Read-Write

Color	As	String
Sets	or	returns	the	name	of	the	hatch	color.

HatchDef.Color	property
HatchDef	object



Sets	or	returns	the	name	of	the	hatch	color.

HatchDef.Color	property





Read-Write

Layer	As	String
Sets	or	returns	the	name	of	the	layer	for	the	hatch.

HatchDef.Layer	property
HatchDef	object



Sets	or	returns	the	name	of	the	layer	for	the	hatch.

HatchDef.Layer	property





Read-Write

Pattern	As	String
Sets	or	returns	a	hatch	pattern	name	or	expression.
If	you	are	using	a	range	table	to	provide	hatch	patterns	conditionally,	use
TextDef.TextValue	to	reference	the	range	table	by	supplying	a	range	expression
as	an	argument.	For	more	information,	click	 .
The	following	example	consists	of	two	procedures	that	you	call	from	the	sample
code	for	altering	queried	objects.	To	go	to	the	sample	code,	click	 .	The	first
procedure	sets	a	hatch	pattern	to	ANSI36,	and	the	second	changes	the	pattern	to
ANSI38.	Add	a	call	to	chghat1	just	before	the	call	to	qry.Define	in	the	sample
code.	Run	the	sample	code	and	look	at	the	Actrix	drawing	that	displays	the	water
bodies	with	the	ANSI36	hatch	pattern.	Delete	the	call	to	chghat1	from	the
sample	code,	and	add	a	call	to	chghat2.	Rerun	the	sample	code.
Sub	chghat1(prj	As	Project,	altls	As	AlterLines)
	
Dim	i	As	Integer
Dim	altl	As	Variant
Dim	hatdf	As	HatchDef
Set	hatdf	=	altls.AddHatchDef("ANSI36",	_
"600",	_	
"90",	_	
"WATER",	_	
"CYAN")	
End	Sub
	
Sub	chghat2(prj	As	Project,	altls	As	AlterLines)
	
Dim	i	As	Integer
Dim	altl	As	Variant
Dim	hatdf	As	HatchDef
For	i	=	0	To	prj.CurrQuery.AlterProp.Count	-	1
Set	altl	=	altls.Item(i)	
If	altl.Property	=	kAlterationHatch	Then	
Set	hatdf	=	altls.Item(i)	
hatdf.Pattern	=	"ANSI38"	

HatchDef.Pattern	property
HatchDef	object			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()


End	If	
Next	i
	
End	Sub

	





Read	Only

Property	As	EAlterationType
The	alteration	type
For	hatch	alterations,	there	is	only	one	alteration	type:	kAlterationHatch.

HatchDef.Property	property
HatchDef	object



Property	As	EAlterationType

For	hatch	alterations,	there	is	only	one	alteration	type:	kAlterationHatch.

HatchDef.Property	property





Read-Write

Rotation	As	String
Sets	or	returns	the	amount	or	expression	to	rotate	the	hatch.

HatchDef.Rotation	property
HatchDef	object



Rotation	As	String
Sets	or	returns	the	amount	or	expression	to	rotate	the	hatch.

HatchDef.Rotation	property





Read-Write

ScaleFactor	As	String
Sets	or	returns	the	amount	or	expression	to	scale	the	hatch.

HatchDef.ScaleFactor	property
HatchDef	object



ScaleFactor	As	String
Sets	or	returns	the	amount	or	expression	to	scale	the	hatch.

HatchDef.ScaleFactor	property





Read	Only

Count	As	Long
Returns	the	number	of	nested	drawings	in	an	attached	drawing.

NestedDrawings.Count	property
NestedDrawings	collection



Returns	the	number	of	nested	drawings	in	an	attached	drawing.

NestedDrawings.Count	property
NestedDrawings	collection





Read-Write

Default	As	Variant
Sets	or	returns	the	default	value	of	the	field.

ODFieldDef.Default	property
ODFieldDef	object



Default	As	Variant
Sets	or	returns	the	default	value	of	the	field.

ODFieldDef.Default	property





Read-Write

Description	As	String
Sets	or	returns	the	description	of	the	field.

ODFieldDef.Description	property
ODFieldDef	object



Description	As	String
Sets	or	returns	the	description	of	the	field.

ODFieldDef.Description	property





Read	Only

IsUpdatable	As	Boolean
Returns	True	if	you	can	update	the	field	definition.

ODFieldDef.IsUpdatable	property
ODFieldDef	object



IsUpdatable	As	Boolean
Returns	True	if	you	can	update	the	field	definition.

ODFieldDef.IsUpdatable	property





Read-Write

Name	As	String
Sets	or	returns	the	name	of	the	field.

ODFieldDef.Name	property
ODFieldDef	object



Sets	or	returns	the	name	of	the	field.

ODFieldDef.Name	property





Read	Only

Type	As	EDataType
Returns	the	data	type	of	the	field.

ODFieldDef.Type	property
ODFieldDef	object			See	Also

javascript:RelatedTopic0.Click()


Type	As	EDataType
Returns	the	data	type	of	the	field.

ODFieldDef.Type	property
See	Also





Read	Only

Count	As	Long
Returns	the	number	of	fields	in	the	collection	of	fields.

ODFieldDefs.Count	property
ODFieldDefs	collection



Returns	the	number	of	fields	in	the	collection	of	fields.

ODFieldDefs.Count	property





Read	Only

IsUpdatable	As	Boolean
Returns	True	if	you	can	update	the	collection.

ODFieldDefs.IsUpdatable	property
ODFieldDefs	collection			See	Also

javascript:RelatedTopic0.Click()


IsUpdatable	As	Boolean
Returns	True	if	you	can	update	the	collection.

ODFieldDefs.IsUpdatable	property
			See	Also





Read	Only

Type	As	EDataType
Returns	the	field's	data	type.

ODFieldValue.Type	property
ODFieldValue			See	Also

javascript:RelatedTopic0.Click()


Type	As	EDataType
Returns	the	field's	data	type.

ODFieldValue.Type	property
See	Also





Read-Write

Value	As	Variant
Sets	or	returns	the	field's	value.

ODFieldValue.Value	property
ODFieldValue



Sets	or	returns	the	field's	value.

ODFieldValue.Value	property





Read	Only

Count	As	Long
Returns	the	number	of	fields	in	the	record.

ODRecord.Count	property
ODRecord	object



Returns	the	number	of	fields	in	the	record.

ODRecord.Count	property





Read	Only

ObjectID	As	Long
Returns	the	ID	of	the	object	to	which	this	record	is	attached.
Returns	0	if	the	record	is	not	attached	to	any	object.

ODRecord.ObjectID	property
ODRecord	object



ObjectID	As	Long
Returns	the	ID	of	the	object	to	which	this	record	is	attached.
Returns	0	if	the	record	is	not	attached	to	any	object.

ODRecord.ObjectID	property





Read	Only

TableName	As	String
Returns	the	name	of	the	table	to	which	the	record	belongs.

ODRecord.TableName	property
ODRecord	object			See	Also

javascript:RelatedTopic0.Click()


TableName	As	String
Returns	the	name	of	the	table	to	which	the	record	belongs.

ODRecord.TableName	property
See	Also





Read	Only

IsDone	As	Boolean
Returns	True	if	the	current	record	is	the	last	one.
Check	this	property	as	you	traverse	a	list	of	records	to	prevent	reading	past	the
end	of	the	list.

ODRecords.IsDone	property
ODRecords	collection



IsDone	As	Boolean
Returns	True	if	the	current	record	is	the	last	one.
Check	this	property	as	you	traverse	a	list	of	records	to	prevent	reading	past	the

ODRecords.IsDone	property





Read	Only

OwnerDbID	As	Long
Returns	the	ID	of	the	object	to	which	the	current	record	is	attached.

The	ID	is	specified	when	the	object	is	created.

ODRecords.OwnerDbID	property
ODRecords	collection



OwnerDbID	As	Long
Returns	the	ID	of	the	object	to	which	the	current	record	is	attached.

The	ID	is	specified	when	the	object	is	created.

ODRecords.OwnerDbID	property





Read	Only

Description	As	String
Returns	the	description	of	the	table.

ODTable.Description	property
ODTable	object



Description	As	String
Returns	the	description	of	the	table.

ODTable.Description	property





Read	Only

Name	As	String
Returns	the	name	of	the	table.

ODTable.Name	property
ODTable	object



Returns	the	name	of	the	table.

ODTable.Name	property





Read	Only

ODFieldsDefs	As	ODFieldDefs
Returns	the	table's	field	definitions.

ODTable.ODFieldDefs	property
ODTable	object			See	Also

javascript:RelatedTopic0.Click()


ODFieldsDefs	As	ODFieldDefs
Returns	the	table's	field	definitions.

ODTable.ODFieldDefs	property
See	Also





Read	Only

StoreAsXdata	As	Boolean
Returns	how	record	data	is	stored	with	drawing	objects.
True:	Record	data	is	stored	as	extended	entity	data.
False:	Record	data	is	stored	as	AutoCAD	Xrecords.

ODTable.StoreAsXdata	property
ODTable	object



StoreAsXdata	As	Boolean
Returns	how	record	data	is	stored	with	drawing	objects.
True:	Record	data	is	stored	as	extended	entity	data.
False:	Record	data	is	stored	as	AutoCAD	Xrecords.

ODTable.StoreAsXdata	property





Read	Only

Count	As	Long
Returns	the	number	of	tables	in	the	project.

ODTables.Count	property
ODTables	collection



Returns	the	number	of	tables	in	the	project.

ODTables.Count	property





Read-Write

X	As	Double
Sets	or	returns	the	X	coordinate	of	a	Point3d	object.

Point3d.X	property
Point3d	object



Sets	or	returns	the	X	coordinate	of	a	Point3d	object.

Point3d.X	property





Read-Write

Y	As	Double
Sets	or	returns	the	Y	coordinate	of	a	Point3d	object.

Point3d.Y	property
Point3d	object



Sets	or	returns	the	Y	coordinate	of	a	Point3d	object.

Point3d.Y	property





Read-Write

Z	As	Double
Sets	or	returns	the	Z	coordinate	of	a	Point3d	object	(ignored).

Point3d.Z	property
Point3d	object



Sets	or	returns	the	Z	coordinate	of	a	Point3d	object	(ignored).

Point3d.Z	property





Read	Only.

Count	As	Long
Returns	the	count	of	the	total	number	of	points	in	a	PolygonBound	object.

PolygonBound.Count	property
PolygonBound	collection



Returns	the	count	of	the	total	number	of	points	in	a	PolygonBound	object.

PolygonBound.Count	property
PolygonBound	collection





Read	Only

Count	As	Long
Returns	the	number	of	points	in	a	PolylineBound	collection.

PolylineBound.Count	property
PolylineBound	collection



Returns	the	number	of	points	in	a	PolylineBound	collection.

PolylineBound.Count	property
PolylineBound	collection





Read-Write

ObjectID	As	Long
Sets	or	returns	the	ID	of	the	PolylineBound	collection.

PolylineBound.ObjectID	property
PolylineBound	collection



ObjectID	As	Long
Sets	or	returns	the	ID	of	the	PolylineBound	collection.

PolylineBound.ObjectID	property
PolylineBound	collection





Read-Write

CurrentProjection	As	String
Sets	or	returns	the	name	of	the	project's	coordinate	system.

Project.CurrentProjection	property
Project	object			See	Also

javascript:RelatedTopic0.Click()


CurrentProjection	As	String
Sets	or	returns	the	name	of	the	project's	coordinate	system.

Project.CurrentProjection	property
See	Also





Read	Only

CurrQuery	As	Query
Returns	the	current	query.

Project.CurrQuery	property
Project	object			See	Also

javascript:RelatedTopic0.Click()


CurrQuery	As	Query
Returns	the	current	query.

Project.CurrQuery	property
See	Also





Read	Only

DrawingSet	As	DrawingSet
Returns	the	drawing	set,	which	is	a	collection	of	attached	drawings.

Project.DrawingSet	property
Project	object			See	Also

javascript:RelatedTopic0.Click()


DrawingSet	As	DrawingSet
Returns	the	drawing	set,	which	is	a	collection	of	attached	drawings.

Project.DrawingSet	property
See	Also





Read	Only

IsMapActiveCommand	As	Boolean
Returns	True	if	an	AutoCAD	Map	command	is	active.

Project.IsMapActiveCommand	property
Project	object



IsMapActiveCommand	As	Boolean
Returns	True	if	an	AutoCAD	Map	command	is	active.

Project.IsMapActiveCommand	property





Read	Only

MapUtil	As	MapUtil
Returns	the	factory	for	query	components.

Project.MapUtil	property
Project	object			See	Also

javascript:RelatedTopic0.Click()


MapUtil	As	MapUtil
Returns	the	factory	for	query	components.

Project.MapUtil	property
See	Also





Read	Only

ODTables	As	ODTables
Returns	the	object	data	tables	collection.

Project.ODTables	property
Project	object			See	Also

javascript:RelatedTopic0.Click()


ODTables	As	ODTables
Returns	the	object	data	tables	collection.

Project.ODTables	property
See	Also





Read	Only

ProjectOptions	As	ProjectOptions
Returns	project	options.

Project.ProjectOptions	property
Project	object			See	Also

javascript:RelatedTopic0.Click()


ProjectOptions	As	ProjectOptions
Returns	project	options.

Project.ProjectOptions	property
See	Also





Read	Only

QueryCategories	As	QueryCategories
Returns	the	Query	Library,	which	is	a	collection	of	query	categories.

Project.QueryCategories	property
Project	object			See	Also

javascript:RelatedTopic0.Click()


QueryCategories	As	QueryCategories
Returns	the	Query	Library,	which	is	a	collection	of	query	categories.

Project.QueryCategories	property
See	Also





Read	Only

RangeTables	As	RangeTables
Returns	a	collection	of	range	tables.

Project.RangeTables	property
Project	object			See	Also

javascript:RelatedTopic0.Click()


RangeTables	As	RangeTables
Returns	a	collection	of	range	tables.

Project.RangeTables	property
See	Also





Read	Only

SaveSet	As	SaveSet
Returns	the	save	set	collection.
You	use	this	object	to	mark	the	objects	to	save	back.

Project.SaveSet	property
Project	object			See	Also

javascript:RelatedTopic0.Click()


SaveSet	As	SaveSet
Returns	the	save	set	collection.
You	use	this	object	to	mark	the	objects	to	save	back.

Project.SaveSet	property
See	Also





Read	Only

Count	As	Long
Returns	the	number	of	available	AutoCAD	Map	projects.

Projects.Count	property
Projects	collection			See	Also

javascript:RelatedTopic0.Click()


Returns	the	number	of	available	AutoCAD	Map	projects.

Projects.Count	property
See	Also





Read	Only

AlterDefined	As	Boolean
Returns	True	if	Query.AlterProp	defines	a	property	alteration.
False	if	AlterProp	is	empty.

Query.AlterDefined	property
Query	object			See	Also

javascript:RelatedTopic0.Click()


AlterDefined	As	Boolean
Returns	True	if	Query.AlterProp	defines	a	property	alteration.
False	if	AlterProp	is	empty.

Query.AlterDefined	property





Read-Only

AlterProp	As	AlterLines
Returns	a	property	alteration	definition.
To	define	property	alteration,	use	AlterLines.Add,	which	assigns	a	valid
AlterLines	object	to	this	property.To	determine	the	status	of	property	alteration,
use	Query.AlterDefined.
The	following	excerpt	from	a	larger	example	uses	the	Query.AlterProp	to	clear
property	alterations	that	might	have	been	created	before	running	the	example.
For	the	complete	example,	click	 .
	
Dim	qry	As	Query
Dim	altls	As	AlterLines
Dim	altl	As	AlterLine
Dim	txtdf	As	TextDef
'	Create	a	query	--	code	not	shown
Set	altls	=	qry.AlterProp
altls.RemoveAll

	

Query.AlterProp	property
Query	object			Example			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()


AlterProp	As	AlterLines
Returns	a	property	alteration	definition.
To	define	property	alteration,	use	AlterLines.Add,	which	assigns	a	valid
AlterLines	object	to	this	property.To	determine	the	status	of	property	alteration,
use	Query.AlterDefined.
The	following	excerpt	from	a	larger	example	uses	the	Query.AlterProp	to	clear
property	alterations	that	might	have	been	created	before	running	the	example.
For	the	complete	example,	click	 .

Dim	altls	As	AlterLines
Dim	altl	As	AlterLine
Dim	txtdf	As	TextDef
'	Create	a	query	--	code	not	shown
Set	altls	=	qry.AlterProp

	

Query.AlterProp	property
			See	Also





Read-Write

AlterTag	As	Boolean
Sets	or	returns	whether	the	query	alters	retrieved	objects.
To	make	alterations,	you	must	set	this	flag	to	True	before	defining	a	query.

Query.AlterTag	property
Query	object			See	Also

javascript:RelatedTopic0.Click()


AlterTag	As	Boolean
Sets	or	returns	whether	the	query	alters	retrieved	objects.
To	make	alterations,	you	must	set	this	flag	to	True	before	defining	a	query.

Query.AlterTag	property





Read-Write

Mode	As	EQueryType
Sets	or	returns	the	query	mode,	such	as	kQueryDraw.

Query.Mode	property
Query	object			See	Also

javascript:RelatedTopic0.Click()


Mode	As	EQueryType
Sets	or	returns	the	query	mode,	such	as	kQueryDraw.

Query.Mode	property





Read	Only

QueryBranch	As	QueryBranch
Returns	the	main	branch	of	the	query.
Like	all	QueryBranch	objects,	the	main	branch	is	a	collection	of	query
conditions	and	sub-branches.To	set	or	change	a	query	branch,	use	the
Query.Define	method.

Query.QueryBranch	property
Query	object			See	Also

javascript:RelatedTopic0.Click()


QueryBranch	As	QueryBranch
Returns	the	main	branch	of	the	query.
Like	all	QueryBranch	objects,	the	main	branch	is	a	collection	of	query
conditions	and	sub-branches.To	set	or	change	a	query	branch,	use	the
Query.Define	method.

Query.QueryBranch	property





Read	Only

Report	As	QueryReport
Returns	a	query	report	template	or	an	empty	object.
Using	an	empty	Query.Report	causes	an	error.

Query.Report	property
Query	object			See	Also

javascript:RelatedTopic0.Click()


Report	As	QueryReport
Returns	a	query	report	template	or	an	empty	object.
Using	an	empty	Query.Report	causes	an	error.

Query.Report	property





Read	Only

ReportDefined	As	Boolean
Returns	True	if	the	query	has	a	report	template	associated	with	it.

Query.ReportDefined	property
Query	object			See	Also

javascript:RelatedTopic0.Click()


ReportDefined	As	Boolean
Returns	True	if	the	query	has	a	report	template	associated	with	it.

Query.ReportDefined	property





Read	Only

StringContext	As	String
Returns	the	string	representation	of	a	query.
For	example,	"Property	LAYER=RAILROAD"	is	a	query.
Note	To	prevent	an	error,	call	Query.Define	before	attempting	to	use
Query.StringContext.

Query.StringContext	property
Query	object			See	Also

javascript:RelatedTopic0.Click()


StringContext	As	String
Returns	the	string	representation	of	a	query.
For	example,	"Property	LAYER=RAILROAD"	is	a	query.

	To	prevent	an	error,	call	Query.Define	before	attempting	to	use
Query.StringContext.

Query.StringContext	property





Read	Only

Count	As	Long
Returns	the	number	of	sub-branches	and	leaves	in	a	branch.
Before	traversing	the	query	tree,	check	this	property	to	ensure	that	it	is	not
empty.

QueryBranch.Count	property
QueryBranch	collection			See	Also

javascript:RelatedTopic0.Click()


Returns	the	number	of	sub-branches	and	leaves	in	a	branch.
Before	traversing	the	query	tree,	check	this	property	to	ensure	that	it	is	not

QueryBranch.Count	property
			See	Also





Read-Write

JoinOP	As	EJoinOperator
Sets	or	returns	the	join	operator	of	the	branch.

QueryBranch.JoinOp	property
QueryBranch	collection			See	Also

javascript:RelatedTopic0.Click()


JoinOP	As	EJoinOperator
Sets	or	returns	the	join	operator	of	the	branch.

QueryBranch.JoinOp	property
			See	Also





Read	Only

Type	As	EClassID
Returns	kQueryBranch	if	the	object	is	a	branch.
When	you	get	a	branch	or	a	condition	from	a	QueryBranch	collection,	you	don't	know	which	it	is	until	you
check	its	Type	property.	Note	that	there	is	a	corresponding	QueryLeaf.Type	property.

The	following	example	builds	on	sample	code	for	querying	objects.	For	more
information,	click	 .	Add	the	following	code	to	the	example	after
qry.Define.This	example	prints	the	type	of	items	in	the	mainqrybr	and	andqrybr
collections.
'	Define	query	before	running	this	code
For	i	=	0	To	mainqrybr.Count	-	1
Debug.Print	mainqrybr.Type	
Debug.Print	mainqrybr.Item(i).Type	
Next	i
For	i	=	0	To	andqrybr.Count	-	1
Debug.Print	andqrybr.Type	
Debug.Print	andqrybr.Item(i).Type	
Next	i

QueryBranch.Type	property
QueryBranch	collection			See	Also

javascript:RelatedTopic0.Click()


Type	As	EClassID
Returns	kQueryBranch	if	the	object	is	a	branch.
When	you	get	a	branch	or	a	condition	from	a	QueryBranch	collection,	you	don't	know	which	it	is	until	you
check	its	Type	property.	Note	that	there	is	a	corresponding	QueryLeaf.Type	property.

The	following	example	builds	on	sample	code	for	querying	objects.	For	more
.	Add	the	following	code	to	the	example	after

qry.Define.This	example	prints	the	type	of	items	in	the	mainqrybr	and	andqrybr

'	Define	query	before	running	this	code
For	i	=	0	To	mainqrybr.Count	-	1
Debug.Print	mainqrybr.Type	
Debug.Print	mainqrybr.Item(i).Type	

For	i	=	0	To	andqrybr.Count	-	1
Debug.Print	andqrybr.Type	
Debug.Print	andqrybr.Item(i).Type	

QueryBranch.Type	property
			See	Also





Read	Only

Count	As	Long
Returns	the	number	of	query	categories	in	the	project.
The	following	example	that	traverses	the	query	categories	collection	prints	the
name	and	item	number	of	each	category,	represented	by	Queries.Count,	and	sets
up	the	For	loop	using	QueryCategories.Count.
Dim	prj	As	Project
Dim	i	As	Integer
For	i	=	0	To	prj.QueryCategories.Count	-	1
debug.Print	prj.QueryCategories(i).Name	
debug.Print	prj.QueryCategories.Count	
Next	i

QueryCategories.Count	property
QueryCategories	collection



Returns	the	number	of	query	categories	in	the	project.
The	following	example	that	traverses	the	query	categories	collection	prints	the
name	and	item	number	of	each	category,	represented	by	Queries.Count,	and	sets
up	the	For	loop	using	QueryCategories.Count.

For	i	=	0	To	prj.QueryCategories.Count	-	1
debug.Print	prj.QueryCategories(i).Name	
debug.Print	prj.QueryCategories.Count	

QueryCategories.Count	property
QueryCategories	collection





Read	Only

Count	As	Long
Returns	the	number	of	queries	in	the	category.

QueryCategory.Count	property
QueryCategory	collection



Returns	the	number	of	queries	in	the	category.

QueryCategory.Count	property
QueryCategory	collection





Read-Write

Name	As	String
Sets	or	returns	the	name	of	the	category.
The	following	example	that	traverses	the	query	categories	collection	and	prints
the	name	of	each	category.
Dim	prj	As	Project
Dim	i	As	Integer
For	i	=	0	To	prj.QueryCategories.Count	-	1
debug.Print	prj.QueryCategories(i).Name	
Next	i

QueryCategory.Name	property
QueryCategory	collection



Sets	or	returns	the	name	of	the	category.
The	following	example	that	traverses	the	query	categories	collection	and	prints
the	name	of	each	category.

For	i	=	0	To	prj.QueryCategories.Count	-	1
debug.Print	prj.QueryCategories(i).Name	

QueryCategory.Name	property
QueryCategory	collection





Read	Only

DataType	As	Long
Returns	the	data	type	that	is	the	subject	of	this	condition.
Returns	either	an	EPropertyType,	ELocationType,	or	EDataQueryType	constant.
For	example,	with	a	property	condition	such	as	"color	=	red,"	the	data	type	is
kColor.	An	SQL	condition	returns	–1,	because	this	property	does	not	apply.

QueryLeaf.DataType	property
QueryLeaf	object			See	Also

javascript:RelatedTopic0.Click()


DataType	As	Long
Returns	the	data	type	that	is	the	subject	of	this	condition.
Returns	either	an	EPropertyType,	ELocationType,	or	EDataQueryType	constant.
For	example,	with	a	property	condition	such	as	"color	=	red,"	the	data	type	is
kColor.	An	SQL	condition	returns	–1,	because	this	property	does	not	apply.

QueryLeaf.DataType	property
See	Also





Read-Write

JoinOp	As	EJoinOperator
Sets	or	returns	which	join	operator	applies	to	this	condition:	Or	or	And.

QueryLeaf.JoinOp	property
QueryLeaf	object			See	Also

javascript:RelatedTopic0.Click()


JoinOp	As	EJoinOperator
Sets	or	returns	which	join	operator	applies	to	this	condition:	Or	or	And.

QueryLeaf.JoinOp	property
See	Also





Read	Only

LocationType	As	EClassID
Returns	a	location	type	if	this	is	a	location	condition,	or	1	if	it	isn't.
Only	the	following	subset	of	the	EClassID	constants	are	valid	location	types.

kAllBoundary
kPointBoundary
kCircleBoundary
kFenceBoundary
kBufferFenceBoundary
kPolygonBoundary
kWindowBoundary
kPolylineBoundary
kBufferPolylineBoundary
kClosedPolylineBoundary

QueryLeaf.LocationType	property
QueryLeaf	object			See	Also

javascript:RelatedTopic0.Click()


LocationType	As	EClassID
Returns	a	location	type	if	this	is	a	location	condition,	or	1	if	it	isn't.
Only	the	following	subset	of	the	EClassID	constants	are	valid	location	types.

kCircleBoundary

kBufferFenceBoundary
kPolygonBoundary
kWindowBoundary
kPolylineBoundary
kBufferPolylineBoundary
kClosedPolylineBoundary

QueryLeaf.LocationType	property
See	Also





Read-Write

Not	As	Boolean
Sets	or	returns	whether	a	Not	operator	is	applied	to	this	condition.
Returns	False	by	default.	To	apply	the	Not	operator,	set	it	to	True.
Note	that	there	is	no	corresponding	QueryBranch.Not	property.	You	can	apply	a
Not	operator	only	to	a	single	condition;	you	cannot	apply	it	to	a	group.	If	you
have	a	situation	where	applying	a	Not	operator	to	a	group	seems	to	be	necessary,
you	can	always	manipulate	the	query	structure	to	avoid	it.	For	example,	the
expression	Not(A	Or	B)	is	logically	equivalent	to	Not	A	and	Not	B.

QueryLeaf.Not	property
QueryLeaf	object			See	Also

javascript:RelatedTopic0.Click()


Sets	or	returns	whether	a	Not	operator	is	applied	to	this	condition.
Returns	False	by	default.	To	apply	the	Not	operator,	set	it	to	True.
Note	that	there	is	no	corresponding	QueryBranch.Not	property.	You	can	apply	a
Not	operator	only	to	a	single	condition;	you	cannot	apply	it	to	a	group.	If	you
have	a	situation	where	applying	a	Not	operator	to	a	group	seems	to	be	necessary,
you	can	always	manipulate	the	query	structure	to	avoid	it.	For	example,	the
expression	Not(A	Or	B)	is	logically	equivalent	to	Not	A	and	Not	B.

QueryLeaf.Not	property
See	Also





Read-Write

Operation	As	EConditionOperator
Sets	or	returns	the	comparison	operator	for	a	data	or	property	condition.
Attempting	to	change	this	property	is	an	error	if	the	leaf	does	not	represent	a
data	or	property	condition.	To	understand	what	part	of	a	condition	the	Operation
property	represents,	consider	the	structure	of	property	conditions.	They	express
ideas	such	as	"If	an	entity's	length	is	greater	than	2…."	The	greater	than	part	is
given	by	the	property	condition's	Operation	property.	The	situation	with	data
conditions	is	analogous.

QueryLeaf.Operation	property
QueryLeaf	object			See	Also

javascript:RelatedTopic0.Click()


Operation	As	EConditionOperator
Sets	or	returns	the	comparison	operator	for	a	data	or	property	condition.
Attempting	to	change	this	property	is	an	error	if	the	leaf	does	not	represent	a
data	or	property	condition.	To	understand	what	part	of	a	condition	the	Operation
property	represents,	consider	the	structure	of	property	conditions.	They	express
ideas	such	as	"If	an	entity's	length	is	greater	than	2…."	The	greater	than	part	is
given	by	the	property	condition's	Operation	property.	The	situation	with	data
conditions	is	analogous.

QueryLeaf.Operation	property
See	Also





Read-Write

Source	As	String
Sets	or	returns	the	source	for	a	data	query.
Strings	of	the	following	form	can	be	returned.

"Blockname.AttributeTag"
"LinkPathName.ColumnName"
"ObjectDataTableName.ObjectDataFieldName"
"Regapp.EEDFieldName"

The	strings	represent	the	attribute	tag	of	a	block,	column	name	of	an	object	data
table,	an	object	data	field	name,	or	an	extended	entity	data	field	name.
Use	this	property	for	data	conditions	only.	If	you	attempt	to	set	the	source	for	a
query	that	is	not	of	type	kDataQueryType,	the	API	does	not	set	the	property,	and
returns	the	string	previously	set	for	a	data	query	or	an	empty	string	if	none	is	set.
Wild	card	characters	are	supported	for	Blockname.AttributeTag.	For	information
about	wild	card	characters,	look	up	"wild-card	characters"	on	the	Index	tab	of
AutoCAD	Map	UI	Help.
.

QueryLeaf.Source	property
QueryLeaf	object			See	Also

javascript:RelatedTopic0.Click()


Sets	or	returns	the	source	for	a	data	query.
Strings	of	the	following	form	can	be	returned.

"Blockname.AttributeTag"
"LinkPathName.ColumnName"
"ObjectDataTableName.ObjectDataFieldName"
"Regapp.EEDFieldName"

The	strings	represent	the	attribute	tag	of	a	block,	column	name	of	an	object	data
table,	an	object	data	field	name,	or	an	extended	entity	data	field	name.
Use	this	property	for	data	conditions	only.	If	you	attempt	to	set	the	source	for	a
query	that	is	not	of	type	kDataQueryType,	the	API	does	not	set	the	property,	and
returns	the	string	previously	set	for	a	data	query	or	an	empty	string	if	none	is	set.
Wild	card	characters	are	supported	for	Blockname.AttributeTag.	For	information
about	wild	card	characters,	look	up	"wild-card	characters"	on	the	Index	tab	of
AutoCAD	Map	UI	Help.

QueryLeaf.Source	property
See	Also





Read	Only

Type	As	EClassID
Returns	the	condition	type:	Property,	Data,	Location,	or	SQL.
The	following	subset	of	EClassID	values	is	valid.

kQueryCondition
kPropertyCondition
kDataCondition
kLocationCondition
kSQLCondition.

When	you	get	a	branch	or	a	condition	from	a	QueryBranch	collection,	you	don't	know	which	it	is	until	you
check	its	Type	property.	Note	that	there	is	a	corresponding	QueryBranch.Type	property.

QueryLeaf.Type	property
QueryLeaf	object			See	Also

javascript:RelatedTopic0.Click()


Type	As	EClassID
Returns	the	condition	type:	Property,	Data,	Location,	or	SQL.
The	following	subset	of	EClassID	values	is	valid.

kQueryCondition
kPropertyCondition

kLocationCondition

When	you	get	a	branch	or	a	condition	from	a	QueryBranch	collection,	you	don't	know	which	it	is	until	you
check	its	Type	property.	Note	that	there	is	a	corresponding	QueryBranch.Type	property.

QueryLeaf.Type	property
See	Also





Read-Write

Value	As	Variant
Sets	or	returns	a	boundary	object	if	this	is	a	location	condition,	or	a	string	if	this
is	any	other	type	of	condition.
To	understand	what	part	of	a	condition	the	Value	property	represents,	consider
the	structure	of	location	conditions	and	property	conditions.	Location	conditions
express	ideas	such	as	"If	an	entity	is	inside	some	boundary	object…."	The
boundary	object	part	is	given	by	the	location	condition's	Value	property.
Property	conditions	express	ideas	such	as	"If	an	entity's	length	is	greater	than
2…."	The	2	part	is	given	by	the	property	condition's	Value	property.	The
situation	with	Data	and	SQL	conditions	is	analogous.

QueryLeaf.Value	property
QueryLeaf	object			See	Also

javascript:RelatedTopic0.Click()


Sets	or	returns	a	boundary	object	if	this	is	a	location	condition,	or	a	string	if	this
is	any	other	type	of	condition.
To	understand	what	part	of	a	condition	the	Value	property	represents,	consider
the	structure	of	location	conditions	and	property	conditions.	Location	conditions
express	ideas	such	as	"If	an	entity	is	inside	some	boundary	object…."	The

	part	is	given	by	the	location	condition's	Value	property.
Property	conditions	express	ideas	such	as	"If	an	entity's	length	is	greater	than

	part	is	given	by	the	property	condition's	Value	property.	The
situation	with	Data	and	SQL	conditions	is	analogous.

QueryLeaf.Value	property
See	Also





Read	Only

QueryReport	As	Long
Returns	the	number	of	expressions	in	a	report	template.

QueryReport.Count	property
QueryReport	collection



QueryReport	As	Long
Returns	the	number	of	expressions	in	a	report	template.

QueryReport.Count	property





Read-Write

IsReportNested	As	Boolean
Sets	or	returns	if	sub-objects	are	processed.
Set	this	property	to	True	to	include	sub-objects	in	the	report.	Sub-objects	are
components	of	objects	with	query	results.	For	example,	True	writes	all	points	in
a	polygon	to	output,	like	objects	in	a	block	reference.	False	writes	the	first	point
only.

QueryReport.IsReportNested	property
QueryReport	collection



IsReportNested	As	Boolean
Sets	or	returns	if	sub-objects	are	processed.
Set	this	property	to	True	to	include	sub-objects	in	the	report.	Sub-objects	are
components	of	objects	with	query	results.	For	example,	True	writes	all	points	in
a	polygon	to	output,	like	objects	in	a	block	reference.	False	writes	the	first	point

QueryReport.IsReportNested	property





Read-Write

QueryReport	As	Boolean
Sets	or	returns	if	the	query	evaluates	transformed	objects.

QueryReport.IsTransformEnabled	property
QueryReport	collection



QueryReport	As	Boolean
Sets	or	returns	if	the	query	evaluates	transformed	objects.

QueryReport.IsTransformEnabled	property





Read-Write

ReportFileName	As	String
Sets	or	returns	the	path	and	file	name	for	the	query	report.
Note	Wherever	there	is	a	backslash	in	the	ReportFileName	string,	you	must
write	two	of	them.	The	first	one	of	the	pair	is	an	escape	character.

QueryReport.ReportFileName	property
QueryReport	collection



ReportFileName	As	String
Sets	or	returns	the	path	and	file	name	for	the	query	report.

	Wherever	there	is	a	backslash	in	the	ReportFileName	string,	you	must
write	two	of	them.	The	first	one	of	the	pair	is	an	escape	character.

QueryReport.ReportFileName	property





Read-Write

Expression	As	String
Sets	or	returns	the	comparison	value	of	the	range's	condition,	either	a	literal
value	or	an	expression	that	resolves	to	such	a	value.

Range.Expression	property
Range	object



Expression	As	String
Sets	or	returns	the	comparison	value	of	the	range's	condition,	either	a	literal
value	or	an	expression	that	resolves	to	such	a	value.

Range.Expression	property





Read-Write

Operation	As	ERangeOperator
Sets	or	returns	the	comparitive	operator	of	the	range's	condition.

Range.Operation	property
Range	object			See	Also

javascript:RelatedTopic0.Click()


Operation	As	ERangeOperator
Sets	or	returns	the	comparitive	operator	of	the	range's	condition.

Range.Operation	property





Read	Only

Count	As	Long
Returns	the	number	of	ranges	in	the	range	table.

RangeTable.Count	property
RangeTable	collection



Returns	the	number	of	ranges	in	the	range	table.

RangeTable.Count	property





Read-Write

Description	As	String
Sets	or	returns	the	description	of	the	range	table.

RangeTable.Description	property
RangeTable	collection



Description	As	String
Sets	or	returns	the	description	of	the	range	table.

RangeTable.Description	property





Read-Write

Name	As	String
Sets	or	returns	the	name	of	the	range	table.

RangeTable.Name	property
RangeTable	collection



Sets	or	returns	the	name	of	the	range	table.

RangeTable.Name	property





Read	Only

Count	As	Long
Returns	the	number	of	range	tables	in	the	collection.

RangeTables.Count	property
RangeTables	collection



Returns	the	number	of	range	tables	in	the	collection.

RangeTables.Count	property





Read	Only

Category	As	String
Returns	the	name	of	the	category	of	the	saved	query.

SavedQuery.Category	property
SavedQuery	object			See	Also

javascript:RelatedTopic0.Click()


Category	As	String
Returns	the	name	of	the	category	of	the	saved	query.

SavedQuery.Category	property
See	Also





Read-Write

Description	As	String
Sets	or	returns	a	description	of	the	saved	query.

SavedQuery.Description	property
SavedQuery	object



Description	As	String
Sets	or	returns	a	description	of	the	saved	query.

SavedQuery.Description	property





Read	Only

IsExternal	As	Boolean
Returns	True	if	the	saved	query	resides	in	an	external	file.

SavedQuery.IsExternal	property
SavedQuery	object			See	Also

javascript:RelatedTopic0.Click()


IsExternal	As	Boolean
Returns	True	if	the	saved	query	resides	in	an	external	file.

SavedQuery.IsExternal	property
See	Also





Read-Write

Name	As	String
Sets	or	returns	the	name	of	the	saved	query.

SavedQuery.Name	property
SavedQuery	object



Sets	or	returns	the	name	of	the	saved	query.

SavedQuery.Name	property





Read-Write

Path	As	String
Sets	or	returns	the	path	and	file	name	if	the	saved	query	resides	in	an	external
file.

SavedQuery.Path	property
SavedQuery	object			See	Also

javascript:RelatedTopic0.Click()


Sets	or	returns	the	path	and	file	name	if	the	saved	query	resides	in	an	external

SavedQuery.Path	property
See	Also





Read	Only

Count	As	Long
Returns	the	number	of	objects	in	the	save	set.

SaveSet.Count	property
SaveSet	collection			See	Also

javascript:RelatedTopic0.Click()


Returns	the	number	of	objects	in	the	save	set.

SaveSet.Count	property
See	Also





Read	Only

CountErased	As	Long
Returns	the	number	of	erased	objects	in	the	save	set.

SaveSet.CountErased	property
SaveSet	collection			See	Also

javascript:RelatedTopic0.Click()


CountErased	As	Long
Returns	the	number	of	erased	objects	in	the	save	set.

SaveSet.CountErased	property
See	Also





Read	Only

CountLocked	As	Long
Returns	the	number	of	locked	objects	in	the	save	set.

SaveSet.CountLocked	property
SaveSet	collection			See	Also

javascript:RelatedTopic0.Click()


CountLocked	As	Long
Returns	the	number	of	locked	objects	in	the	save	set.

SaveSet.CountLocked	property
See	Also





Read	Only

CountNew	As	Long
Returns	the	number	of	newly	created	objects	in	the	save	set.

SaveSet.CountNew	property
SaveSet	collection			See	Also

javascript:RelatedTopic0.Click()


CountNew	As	Long
Returns	the	number	of	newly	created	objects	in	the	save	set.

SaveSet.CountNew	property
See	Also





Read-Write

Color	As	String
Sets	or	returns	the	text	color.

TextDef.Color	property
TextDef	object



Sets	or	returns	the	text	color.

TextDef.Color	property





Read-Write

Height	As	String
Sets	or	returns	the	text	height.

TextDef.Height	property
TextDef	object



Sets	or	returns	the	text	height.

TextDef.Height	property





Read-Write

InsertPoint	As	String
Sets	or	returns	the	expression	for	the	insertion	point	of	altered	text.
Valid	values	are	".LABELPT"	and	".CENTROID".

TextDef.InsertPoint	property
TextDef	object



InsertPoint	As	String
Sets	or	returns	the	expression	for	the	insertion	point	of	altered	text.
Valid	values	are	".LABELPT"	and	".CENTROID".

TextDef.InsertPoint	property





Read-Write

Justification	As	String
Sets	or	returns	the	alignment	of	altered	text.
The	following	strings	are	valid.

"CENTER"

"MIDDLE"

"RIGHT"

"TL"

"TC"

"TR"

"ML"

"MC"

"MR"

"BL"

"BC"

"BR"

TextDef.Justification	property
TextDef	object



Justification	As	String
Sets	or	returns	the	alignment	of	altered	text.
The	following	strings	are	valid.

TextDef.Justification	property





Read-Write

Layer	As	String
Sets	or	returns	the	layer	where	text	is	drawn.

TextDef.Layer	property
TextDef	object



Sets	or	returns	the	layer	where	text	is	drawn.

TextDef.Layer	property





Read	Only

Property	As	EAlterationType
The	alteration	type.
For	text	alterations,	there	is	only	one	alteration	type,	kAlterationTextEntity.
The	following	procedure	traverses	a	collection	of	property	alterations,
distinguishing	text	definitions	from	other	alterations,	and	prints	the	value	of	the
text	definition	in	the	Immediate	Window.	Call	this	procedure	just	before	the	call
to	qry.Define,	as	shown	in	the	following	example.	To	go	to	the	sample	code,
click	 .
'Call	from	Altering	Queried	Objects	sample
txtdfprop	prj,	altls
'Define	Query
boolVal	=	qry.Define(mainqrybr)
.
.
.
Sub	txtdfprop(prj	As	Project,	altls	As	AlterLines)
Dim	i	As	Integer
Dim	altl	As	Variant
Dim	txtdf	As	TextDef
	
For	i	=	0	To	prj.CurrQuery.AlterProp.Count	-	1
Set	altl	=	altls.Item(i)	
If	altl.Property	=	kAlterationTextEntity	Then	
Set	txtdf	=	altls.Item(i)	
Debug.Print	"This	is	a	text	definition	property	#	"	_	
&	txtdf.Property	&	"	of	value	"	&	txtdf.TextValue	
Else	
Debug.Print	"This	is	not	a	text	definition.	It's	a	property	#	"	&	altl.Property	
End	If	
Next	i
End	Sub

TextDef.Property	property
TextDef	object			See	Also

javascript:RelatedTopic0.Click()




Read-Write

Rotation	As	String
Sets	or	returns	the	text	rotation.

TextDef.Rotation	property
TextDef	object



Rotation	As	String
Sets	or	returns	the	text	rotation.

TextDef.Rotation	property





Read-Write

TextStyle	As	String
Sets	or	returns	the	text	style.

TextDef.TextStyle	property
TextDef	object



TextStyle	As	String
Sets	or	returns	the	text	style.

TextDef.TextStyle	property





Read-Write

TextValue	As	String
Sets	or	returns	the	text	for	the	text	alteration.
If	you	are	using	a	range	table	to	provide	strings	conditionally,	use
TextDef.TextValue	to	reference	the	range	table	by	supplying	a	range	expression
as	argument.	For	more	information,	click	 .
The	following	example	shows	how	to	change	the	text	definition	in	the	sample
code	for	altering	queried	objects.	To	go	to	the	sample	code,	click	 .	The	sample
code	sets	the	text	value	to	the	name	of	the	water	body.	This	example	changes
that	text	value	to	the	color	number	of	the	text.	To	run	the	example,	add	a	call	to
chgtxt	just	before	the	call	to	qry.Define	in	the	sample	code,	as	shown	here:
'Call	from	Altering	Queried	Objects	sample
chgtxt	prj,	altls
'Define	Query
boolVal	=	qry.Define(mainqrybr)
.
.
.
Sub	chgtxt(prj	As	Project,	altls	As	AlterLines)
	
Dim	i	As	Integer
Dim	altl	As	Variant
Dim	txtdf	As	TextDef
	
For	i	=	0	To	prj.CurrQuery.AlterProp.Count	-	1
Set	altl	=	altls.Item(i)	
If	altl.Property	=	kAlterationTextEntity	Then	
Set	txtdf	=	altls.Item(i)	
txtdf.TextValue	=	".COLOR"	
End	If	
Next	i
	
End	Sub

TextDef.TextValue	property
TextDef	object			See	Also

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()


	





Read-Write

BottomLeft	As	Point3d
Sets	or	returns	the	bottom-left	corner	of	the	window	boundary.

WindowBound.BottomLeft	property
WindowBound	object



BottomLeft	As	Point3d
Sets	or	returns	the	bottom-left	corner	of	the	window	boundary.

WindowBound.BottomLeft	property





Read-Write

UpperRight	As	Point3d
Sets	or	returns	the	upper-right	corner	of	the	window	boundary.

WindowBound.UpperRight	property
WindowBound	object



UpperRight	As	Point3d
Sets	or	returns	the	upper-right	corner	of	the	window	boundary.

WindowBound.UpperRight	property





Class	identification	codes	for	data	extension	objects
Common	classes

000 kAdeUnknownClass 	

001 kAdeObj 	

002 kAdeList 	

003 kAdeListIterator 	

004 kAdeResBuf 	

005 kAdeAlias 	

006 kAdeAliasList 	

007 kAdeDir 	

Drawing	index

008 kAdeArray 	

009 kAdeFloatArray 	

010 kAdeUnslongArray 	

011 kAdeFloatIndex 	

012 kAdeIndex 	

Drawing	objects

013 kAdeDwgObj 	

014 kAdeEntity 	

015 kAdeDwgDictionary 	

EAdeClassId



016 kAdeQueryEntity 	

017 kAdeCircle 	

018 kAdePoint 	

019 kAdeFence 	

020 kAdeBufferfence 	

021 kAdePolyline 	

022 kAdeBufferPolyline 	

023 kAdeClosedPolyline 	

024 kAdePolygon 	

025 kAdeWindow 	

026 kAdeDwgObjIterator 	

027 kAdeEntityIterator 	

028 kAdeGroupIterator 	

029 kAdeSubentIterator 	

030 kAdeEntHistory 	

031 kAdeDwgDatabase, 	

032 kAdeDwgDatabaseManager 	

033 kAdeDwgDatabaseHolder 	

034 kAdeDwgLock 	

035 kAdeDwg 	



Drawing	set

036 kAdeDwgSet 	

037 kAdeDwgSetEntry 	

038 kAdeDwgSetIterator 	

Current	session

039 kAdeDwgGroup 	

040 kAdeSession 	

Feature	alteration

041 kAdeFeatureAlt 	

042 kAdeGeneralFeat 	

043 kAdeEntityFeat 	

044 kAdeTextFeat 	

045 kAdeHatchFeat 	

Query	definition

046 kAdeQueryDefinition 	

047 kAdeQueryLineList 	

048 kAdeBaseQueryLine 	

049 kAdeQueryLine 	

050 kAdeSQLQueryLine 	

051 kAdeQueryUnit 	



052 kAdeLocnQuery 	

053 kAdePropQuery 	

054 kAdeDataQuery 	

055 kAdeSQLBaseQuery 	

056 kAdeSQLCondListQuery 	

057 kAdeSQLOrderByDef 	

058 kAdeSQLStmtQuery 	

059 kAdeQueryAttrs 	

060 kAdeQueryLibrary 	

061 kAdeQueryCategory 	

Expressions

062 kAdeExpDef 	

063 kAdeExpEval 	

064 kAdeExpSQLInfo 	

065 kAdeRangeTab 	

066 kAdeRangeTabLine 	

067 kAdeRangeLib 	

Coordinate	system

068 kAdeCoordSysLibrary 	



069 kAdeCoordSysCategory 	

070 kAdeCoordSysNameDesc 	

071 kAdeCoordSystem 	

072 kAdeDoProjection 	

073 kAdeCSProjFile 	

074 kAdeDatumDesc 	

075 kAdeElipDesc 	

Template

076 kAdeTemplate 	

077 kAdeTemplateLine 	

Preferences

078 kAdeBasePrefDefn 	

079 kAdeWSpacePrefDefn 	

080 kAdeWSPrefDefn 	

081 kAdeKeyViewLine 	

082 kAdeKeyView 	

083 kAdeQryPrefDefn 	

084 kAdeSvBkPrefDefn 	

085 kAdeExtDbPrefDefn 	

086 kAdeDbTypePrefDefn 	



087 kAdeCoordXformPrefDefn 	

088 kAdeSysPrefDefn 	

089 kAdeUserProfile 	

090 kAdeUserList 	

091 kAdeLog 	

Utility

092 kAdeDwgConvt 	

093 kAdeConfigConvt 	

094 kAdeProjConvt 	

095 kAdeSQLinkConvt 	

096 kAdeDocAccess 	

097 kAdeDocDefineDoc 	

098 kAdeDocDefLib 	

099 kAdeDocDefinition 	

Temporary

100 kAdeSymtbRecord 	

Topology

101 kAdeTopology 	

102 kAdeTopElement 	

103 kAdeTopNode 	



104 kAdeTopLink 	

105 kAdeTopPolygon 	

106 kAdeTopVar 	

107 kAdeTopEntity 	

Validation

108 kAdeValidation 	

109 kAdeIRDRecord 	

110 kAdeBaseAbovePrefDefn 	





Attached	drawing	status	codes

0 kDwgInactive 	

1 kDwgActive 	

4 kDwgLocked 	

EAdeDwgStatus



Attached	drawing	status	codes

kDwgInactive 	

	

	

EAdeDwgStatus





Transactional	manager	status	codes

0 kUnExist Object	is	empty.

1 kAdeClosed Closed	object

2 kOpenForWrite Object	was	opened	for	write

3 kOpenForRead Object	was	opened	for	read

4 kOpenForMultiple Object	was	open	for	read	several	times

5 kErased Object	was	erased

6 kShouldBeErased Object	scheduled	for	deletion

EAdeMode



Transactional	manager	status	codes

Object	is	empty.

Closed	object

kOpenForWrite Object	was	opened	for	write

kOpenForRead Object	was	opened	for	read

kOpenForMultiple Object	was	open	for	read	several	times

Object	was	erased

kShouldBeErased Object	scheduled	for	deletion





Notifications

0 kStartOfAdeCommand 	

1 kEndOfAdeCommand 	

EAdeNotification



kStartOfAdeCommand 	

kEndOfAdeCommand 	

EAdeNotification





Object	run-time	identification	codes
Location	boundaries

01 kLocationBoundary 	

02 kAllBoundary 	

03 kPointBoundary 	

04 kCircleBoundary 	

05 kFenceBoundary 	

06 kBufferFenceBoundary 	

07 kPolygonBoundary 	

08 kWindowBoundary 	

09 kPolylineBoundary 	

10 kBufferPolylineBoundary 	

11 kClosedPolylineBoundary 	

Query	units

12 kQueryUnit Query	unit	of	undetermined	type

13 kQueryCondition Query	condition	of	undetermined
type

14 kLocationCondition Location	condition

15 kPropertyCondition Property	condition

16 kSQLCondition SQL	condition

EClassId



17 kDataCondition Data	condition

18 kLocationConditionImp Not	intended	for	public	use.

19 kPropertyConditionImp Not	intended	for	public	use.

20 kSQLConditionImp Not	intended	for	public	use.

21 kDataConditionImp Not	intended	for	public	use.

22 kQueryBranch Query	branch,	a	set	of	grouped
conditions





Comparison	operators	for	query	conditions.
Note	The	only	valid	operator	in	a	string	context	is	kCondEq.

1 kCondEq Equal

2 kCondGT Greater	than

3 kCondGTorEq Greater	than	or	equal

4 kCondLT Less	than

5 kCondLTorEq Less	than	or	equal

6 kCondNotEq Not	equal

EConditionOperator



Comparison	operators	for	query	conditions.
	The	only	valid	operator	in	a	string	context	is	kCondEq.

Equal

Greater	than

kCondGTorEq Greater	than	or	equal

Less	than

kCondLTorEq Less	than	or	equal

Not	equal

EConditionOperator





Data	query	types

0 kDataIRD Internal	resources	dictionary	data	tables,
object	data	fields,	and	an	expression

1 kDataAttribute Blocks	and	attribute	tags

2 kDataLinkTemplate Link	templates	and	key	columns	for	tables

3 kDataEED Extended	entity	data

4 kDataFeature Feature	data

EDataQueryType



Internal	resources	dictionary	data	tables,
object	data	fields,	and	an	expression

kDataAttribute Blocks	and	attribute	tags

kDataLinkTemplate Link	templates	and	key	columns	for	tables

Extended	entity	data

Feature	data

EDataQueryType





Data	types	for	object	data	fields

0 kUnknownType 	

1 kInteger 	

2 kReal 	

3 kCharacter 	

4 kPoint 	

EDataType



Data	types	for	object	data	fields

kUnknownType 	

	

	

	

	





Drawing	update	status

0 kDwgNonUpdated Nothing	to	save

1 kDwgShouldBeReloaded Lock	information	updated.	Another
ADE	should	only	reload	the
drawing.

4 kDwgShouldBeRequeried Queried	objects	have	been	modified.
Another	ADE	instance	should
requery.

EDwgUpdateStatus



Drawing	update	status

kDwgNonUpdated Nothing	to	save

kDwgShouldBeReloaded Lock	information	updated.	Another
ADE	should	only	reload	the
drawing.

kDwgShouldBeRequeried Queried	objects	have	been	modified.
Another	ADE	instance	should
requery.

EDwgUpdateStatus





The	following	EErrType	constants	correspond	to	the	AcMap::EErrType
enumerators	in	the	ObjectARX	API	and	to	the	error	types	in	the
ADSRX/AutoLISP	API.	Errors	on	the	error	stack	are	represented	by	ErrorEntry
collections.	Error	types	are	returned	by	the	ErrorEntry.ErrType	property.

00 kAdeNoMessage Error	condition	does	not	exist.

01 kAdeWarning ADE	(AutoCAD	Data	Extension)	execution
warning

02 kAdeError ADE	execution	error

03 kAseWarning ASE	(AutoCAD	SQL	Extension)	execution
warning

04 kAseError ASE	execution	error

05 kAcWarning AutoCAD	execution	warning

06 kAcError AutoCAD	execution	error

07 kAsiWarning ASI	(AutoCAD	SQL	Interface)	execution
warning

08 kAsiError ASI	execution	error.

09 kIRDWarning Extended	object	data	(Xdata)	warning

10 kIRDError Xdata	error

13 kMapError AutoCAD	Map	execution	error

14 kMentorError 	

15 kApplicationError Operating	system	level	application	error

16 kDiagMessage Diagnostic	message	returned.

EErrType
See	Also

javascript:RelatedTopic0.Click()




Join	operators	for	query	conditions

1 kOperatorAnd 	

2 kOperatorOr 	

EJoinOperator



Join	operators	for	query	conditions

kOperatorAnd 	

	

EJoinOperator





Location	condition	types

0 kLocationInside 	

1 kLocationCrossing 	

ELocationType



Location	condition	types

kLocationInside 	

kLocationCrossing 	

ELocationType





Option	types

0 kQryType Query

1 kSvBkType Save	back

2 kCoordXformType Coordinate	transformation

EPrefType



Query

Save	back

kCoordXformType Coordinate	transformation





Query	modes

0 kQueryDraw 	

1 kQueryPreview 	

2 kQueryReport 	

EQueryType



	

kQueryPreview 	

kQueryReport 	





Comparison	operators	for	range	lines

1 kRangeEq Equal	to

2 kRangeGT Greater	than

3 kRangeGTorEq Greater	than	or	equal	to

4 kRangeLT Less	than

5 kRangeLTorEq Less	than	or	equal	to

6 kRangeNotEq Not	equal	to

7 kRangeOtherwise Otherwise

ERangeOperator



Comparison	operators	for	range	lines

Equal	to

Greater	than

kRangeGTorEq Greater	than	or	equal	to

Less	than

kRangeLTorEq Less	than	or	equal	to

kRangeNotEq Not	equal	to

kRangeOtherwise Otherwise

ERangeOperator





Save	query	options

1 kSaveDrawingSet Saves	drawing	objects

2 kSaveLocationCoordinates Saves	location	coordinates

4 kSavePropertyAlteration Saves	property	alterations

8 kAutoExecute Executes	a	query	when	it	is	loaded.

ESaveQueryOptions



kSaveDrawingSet Saves	drawing	objects

kSaveLocationCoordinates Saves	location	coordinates

kSavePropertyAlteration Saves	property	alterations

kAutoExecute Executes	a	query	when	it	is	loaded.

ESaveQueryOptions





Types	of	the	objects	in	the	save	set

1 kQueriedExisted Queried	objects	that	are	unchanged	or	were
altered	by	the	query

2 kQueriedErased Queried	objects	that	were	deleted

4 kNewlyCreated New	objects	added	to	model	space

ESaveSetObjectType



Types	of	the	objects	in	the	save	set

kQueriedExisted Queried	objects	that	are	unchanged	or	were
altered	by	the	query

kQueriedErased Queried	objects	that	were	deleted

kNewlyCreated New	objects	added	to	model	space

ESaveSetObjectType





Symbol	table	types

0 kBlockTable Block	names

1 kLayerTable Layer	names

2 kLinetypeTable Line	types

3 kStyleTable Text	styles

4 kRegappTable AutoCAD	regapps

5 kGroupTable Group	names

6 kLinkTemplate Link	template	names

7 kODD Object	data	table	names

8 kMLinestyleTable Line	styles

9 kFeatureTable Feature	names

10 kLineweightTable Line	weights

11 kPlotstyleTable Plot	styles

ETableType



kBlockTable Block	names

kLayerTable Layer	names

kLinetypeTable Line	types

kStyleTable Text	styles

kRegappTable AutoCAD	regapps

kGroupTable Group	names

kLinkTemplate Link	template	names

Object	data	table	names

kMLinestyleTable Line	styles

kFeatureTable Feature	names

kLineweightTable Line	weights

kPlotstyleTable Plot	styles





User	rights

01 kRightsSuperUser Superuser

02 kRightsAltDwgSet Can	alter	drawing	set

04 kRightsEditDwg Can	edit	drawings

08 kRightsDrawQuery Can	run	Draw	queries

16 kRightsAltClass Can	edit	Feature	Class	definitions

EUserRights



kRightsSuperUser Superuser

kRightsAltDwgSet Can	alter	drawing	set

kRightsEditDwg Can	edit	drawings

kRightsDrawQuery Can	run	Draw	queries

kRightsAltClass Can	edit	Feature	Class	definitions





You	use	the	Visual	Basic	Editor	to	create	macros	with	objects	listed	in	the	Object
Browser.	You	make	objects	available	by	referencing	type	libraries.	AutoCAD
Map	has	two	libraries,	an	AutoCAD	library	and	an	AutoCAD	Map	library	(exact
names	vary	with	released	versions).
To	reference	required	libraries

1	Open	the	drawing	or	project.
2	From	AutoCAD	Map,	choose	Tools	>	Macro	>	Visual	Basic	Editor.
3	Choose	Tools	>	References.
4	Locate	the	AutoCAD	Map	library	in	the	list	of	references	(exact	name	varies
with	released	versions),	and	if	it	is	not	checked,	click	to	check	it.

5	Check	that	the	following	required	libraries	are	already	checked:	the
AutoCAD	library	(exact	name	varies	with	released	versions),	Visual	Basic
for	Applications,	OLE	Automation,	and	Microsoft	Forms	2.0	Object
Library.

Now	you	can	create	macros	that	interact	with	AutoCAD	Map	through	the
Automation	API	libraries.

Getting	started	with	VBA



You	use	the	Visual	Basic	Editor	to	create	macros	with	objects	listed	in	the	Object
Browser.	You	make	objects	available	by	referencing	type	libraries.	AutoCAD
Map	has	two	libraries,	an	AutoCAD	library	and	an	AutoCAD	Map	library	(exact
names	vary	with	released	versions).
To	reference	required	libraries

Open	the	drawing	or	project.
	From	AutoCAD	Map,	choose	Tools	>	Macro	>	Visual	Basic	Editor.
Choose	Tools	>	References.
	Locate	the	AutoCAD	Map	library	in	the	list	of	references	(exact	name	varies
with	released	versions),	and	if	it	is	not	checked,	click	to	check	it.
	Check	that	the	following	required	libraries	are	already	checked:	the
AutoCAD	library	(exact	name	varies	with	released	versions),	Visual	Basic
for	Applications,	OLE	Automation,	and	Microsoft	Forms	2.0	Object

Now	you	can	create	macros	that	interact	with	AutoCAD	Map	through	the
Automation	API	libraries.

Getting	started	with	VBA





Modules	are	windows	in	the	Visual	Basic	Editor	where	you	write	VBA	code.
The	modules	have	word	processing	and	other	features	that	simplify	writing	VBA
code.	There	are	the	following	kinds	of	modules:

Module Uses

ThisDrawing Simple	procedures	to	extend	the	functionality	of	your
drawing	or	project.

Class New	object	definitions

Standard Procedures	and	declarations	that	other	modules	in	your
program	access	frequently

User	Form User	interface	for	your	macro

Every	VBA	project	starts	with	a	class	module	called	ThisDrawing.	ThisDrawing
represents	the	class	object	that	defines	the	AutoCAD	Map	drawing.
For	step-by-step	information	about	using	ThisDrawing	and	other	modules,	click
.

Understanding	modules

javascript:RelatedTopic0.Click()


Modules	are	windows	in	the	Visual	Basic	Editor	where	you	write	VBA	code.
The	modules	have	word	processing	and	other	features	that	simplify	writing	VBA
code.	There	are	the	following	kinds	of	modules:

Uses

Simple	procedures	to	extend	the	functionality	of	your
drawing	or	project.

New	object	definitions

Procedures	and	declarations	that	other	modules	in	your
program	access	frequently

User	interface	for	your	macro

Every	VBA	project	starts	with	a	class	module	called	ThisDrawing.	ThisDrawing
represents	the	class	object	that	defines	the	AutoCAD	Map	drawing.
For	step-by-step	information	about	using	ThisDrawing	and	other	modules,	click

Understanding	modules





You	create	and	run	a	VBA	macro	from	either	AutoCAD	Map	or	the	Visual	Basic
Editor.
To	create	and	run	a	macro	from	AutoCAD	Map

1	Choose	Tools	>	Macro	>	Macros.
2	Type	the	name	of	the	macro,	for	example	Hello.
3	Click	Create.
4	Select	a	project	or	drawing.
VBA	displays	a	code	window	and	inserts	the	following	statements	in	it:	Sub
Hello,	and	End	Sub.	By	default,	the	Option	Explicit	statement	is	displayed
above	Sub	Hello	,	to	force	you	to	declare	variables	in	a	module.	If	option	to
include	this	statement	is	turned	off,	you	do	not	see	Option	Explicit.

5	Between	the	Sub	Hello	and	End	Sub	statements,	type	the	following	code:
MsgBox	"Hello"

6	Choose	Run	>	Run	Sub/User	Form	to	run	the	code.	To	step	through	the
code,	put	the	cursor	between	the	Sub	and	End	Sub	statements,	and	press	F8.
To	run	the	code,	choose	Run	>	Run	Sub.
The	Hello	message	appears	in	AutoCAD	Map.

To	create	and	run	a	macro	from	the	Visual	Basic	Editor

1	Double-click	ThisDrawing	in	the	Project	Explorer.
2	Choose	Insert	>	Procedure	and	type	the	name	for	the	procedure.	For
example,	type	Hello.
VBA	inserts	the	following	statements:	Sub	Hello,	End	Sub,	and	Option
Explicit,	which	forces	you	to	declare	variables	in	a	module	if	the	option	to
include	this	statement	is	turned	on.

3	Between	the	Sub	Hello	and	End	Sub	statements,	type	the	following	code:
MsgBox	"Hello"

4	To	step	through	the	code,	put	the	cursor	between	the	Sub	and	End	Sub
statements,	and	press	F8.	To	run	the	code,	choose	Run	>	Run	Sub.
The	Hello	message	appears	in	AutoCAD	Map.

Creating	a	simple	macro





Using	a	project	to	save	macros	has	many	advantages,	such	as	easier	management
of	multiple	files	and	restoration	of	the	previous	environment.	If	you	save	code	in
a	VB	or	VBA	project,	you	can	open	the	code	in	the	respective	IDE	only.	If	you
save	code	in	modules,	you	can	import	the	module	into	either	VB	or	VBA
projects.
You	save	macros	with	the	following	file	extensions.

Extension Description

.dvb AutoCAD	Map	project

.bas Visual	Basic

.cls Class	module

For	step-by-step	information	about	saving	macros,	click	 .

Saving	macros

javascript:RelatedTopic0.Click()


Using	a	project	to	save	macros	has	many	advantages,	such	as	easier	management
of	multiple	files	and	restoration	of	the	previous	environment.	If	you	save	code	in
a	VB	or	VBA	project,	you	can	open	the	code	in	the	respective	IDE	only.	If	you
save	code	in	modules,	you	can	import	the	module	into	either	VB	or	VBA

You	save	macros	with	the	following	file	extensions.

Description

AutoCAD	Map	project

Visual	Basic

Class	module

For	step-by-step	information	about	saving	macros,	click	 .

Saving	macros





When	you	open	the	Visual	Basic	Editor,	the	Project	Explorer	appears,	displaying
a	hierarchical	list	of	the	projects	associated	with	the	open	AutoCAD	Map
drawings	and	projects	and	the	items	contained	in	and	referenced	by	each	project.
If	the	Project	Explorer	is	closed,	press	Ctrl+R	to	open	it.
Use	the	Project	Explorer	to	navigate	your	projects,	open	the	code	editing
window,	and	view	the	AutoCAD	Map	object	specified	by	the	code.
You	can	change	the	project	name,	add	a	description,	associate	a	Help	file	with
the	project,	list	constant	declarations,	and	lock	your	project	so	that	only	you	can
modify	it.
To	set	project	options

1	In	the	Project	Explorer,	select	a	project.
2	On	the	Tools	menu,	click	ACADProject	Properties.
3	Click	the	appropriate	tab,	and	then	enter	the	information.

Working	with	projects



When	you	open	the	Visual	Basic	Editor,	the	Project	Explorer	appears,	displaying
a	hierarchical	list	of	the	projects	associated	with	the	open	AutoCAD	Map
drawings	and	projects	and	the	items	contained	in	and	referenced	by	each	project.
If	the	Project	Explorer	is	closed,	press	Ctrl+R	to	open	it.
Use	the	Project	Explorer	to	navigate	your	projects,	open	the	code	editing
window,	and	view	the	AutoCAD	Map	object	specified	by	the	code.
You	can	change	the	project	name,	add	a	description,	associate	a	Help	file	with
the	project,	list	constant	declarations,	and	lock	your	project	so	that	only	you	can

	In	the	Project	Explorer,	select	a	project.
	On	the	Tools	menu,	click	ACADProject	Properties.
	Click	the	appropriate	tab,	and	then	enter	the	information.

Working	with	projects





In	the	Visual	Basic	Editor,	the	Object	Browser	lists	API	components
alphabetically.
To	see	API	component	lists

1	From	the	Visual	Basic	Editor,	choose	View	>	Object	Browser.
2	From	the	list	of	libraries	at	the	top	of	the	Object	Browser,	select	the
AutoCAD	Map	library	(exact	name	varies	with	released	versions).

3	In	the	Classes	pane,	click	a	class	such	as	Query.	Its	properties	and	methods
are	listed	in	the	Members	pane.

4	In	the	Members	pane,	click	a	method	or	property.	Its	syntax	is	displayed	in
the	Details	pane	below.

Using	the	Object	Browser



In	the	Visual	Basic	Editor,	the	Object	Browser	lists	API	components

To	see	API	component	lists

	From	the	Visual	Basic	Editor,	choose	View	>	Object	Browser.
From	the	list	of	libraries	at	the	top	of	the	Object	Browser,	select	the
AutoCAD	Map	library	(exact	name	varies	with	released	versions).
	In	the	Classes	pane,	click	a	class	such	as	Query.	Its	properties	and	methods
are	listed	in	the	Members	pane.
	In	the	Members	pane,	click	a	method	or	property.	Its	syntax	is	displayed	in
the	Details	pane	below.

Using	the	Object	Browser





You	can	insert	class	modules,	standard	modules,	and	text	files	that	are	stored	on
the	hard	disk	into	the	active	module.
To	insert	a	file

1	From	AutoCAD	Map,	choose	Tools	>	Macro	>	Visual	Basic	Editor.
2	In	the	Project	Explorer,	double-click	a	module	to	open	its	code	window.
3	Click	the	location	in	the	window	where	you	want	to	insert	the	code	from	the
file.

4	Choose	Insert	>	File.
5	Browse	for	the	folder	and	file	type	of	the	file	you	want	to	insert.
6	Select	the	file,	and	click	Open.
The	stored	code	appears	in	the	code	window	of	the	active	module.

Inserting	files	into	modules



You	can	insert	class	modules,	standard	modules,	and	text	files	that	are	stored	on
the	hard	disk	into	the	active	module.

	From	AutoCAD	Map,	choose	Tools	>	Macro	>	Visual	Basic	Editor.
In	the	Project	Explorer,	double-click	a	module	to	open	its	code	window.
	Click	the	location	in	the	window	where	you	want	to	insert	the	code	from	the

	Choose	Insert	>	File.
	Browse	for	the	folder	and	file	type	of	the	file	you	want	to	insert.
	Select	the	file,	and	click	Open.

The	stored	code	appears	in	the	code	window	of	the	active	module.

Inserting	files	into	modules





From	AutoCAD	Map,	choose	Tools	>	Macro	>	Visual	Basic	Editor.
From	Microsoft	Visual	Basic,	choose	Help	>	Microsoft	Visual	Basic	Help.

Finding	Help	on	Microsoft	VB	and	VBA



From	AutoCAD	Map,	choose	Tools	>	Macro	>	Visual	Basic	Editor.
From	Microsoft	Visual	Basic,	choose	Help	>	Microsoft	Visual	Basic	Help.

Finding	Help	on	Microsoft	VB	and	VBA





1	From	AutoCAD	Map,	choose	Tools	>	Macro	>	Visual	Basic	Editor.
2	From	Microsoft	Visual	Basic,	choose	Help	>	Microsoft	Visual	Basic	Help
3	Click	the	Contents	tab
4	Click	Shortcut	to	AutoCAD	Map	Visual	Basic	Reference

Finding	Help	on	AutoCAD	APIs



	From	AutoCAD	Map,	choose	Tools	>	Macro	>	Visual	Basic	Editor.
From	Microsoft	Visual	Basic,	choose	Help	>	Microsoft	Visual	Basic	Help
	Click	the	Contents	tab
	Click	Shortcut	to	AutoCAD	Map	Visual	Basic	Reference

Finding	Help	on	AutoCAD	APIs





The	following	example	creates	a	table	of	object	data:	the	AutoCAD	database
entity	name,	the	color,	and	the	layer	of	the	object.	It	builds	object	data	records
from	the	table	and	attaches	them	to	objects	in	the	drawing.
	
Sub	tableproc()
	
Dim	amap	As	AcadMap
Dim	ODfdfs	As	ODFieldDefs
Dim	ODfdf	As	ODFieldDef
Dim	ODtb	As	ODTable
Dim	ODrc	As	ODRecord
	
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
	
'Create	OD	Table	Definition
Set	ODfdfs	=	amap.Projects(ThisDrawing).MapUtil.NewODFieldDefs
	
'	Add	Column	Headings	and	Defaults
Set	ODfdf	=	ODfdfs.Add("Entity",	"Entity	name",	"",	0)
Set	ODfdf	=	ODfdfs.Add("Color",	"Object	color",	acRed,	1)
Set	ODfdf	=	ODfdfs.Add("Layer",	"Object	layer",	"0",	2)
	
'Ensure	Table	Does	Not	Exist
If	amap.Projects(ThisDrawing)	_
.ODTables.Item("SampleOD")	Is	Nothing	Then	
			
'Register	OD	Table	in	the	drawing	
Set	ODtb	=	amap.Projects(ThisDrawing)	_	
.ODTables.Add("SampleOD",	"Sample	Xdata",	ODfdfs,	True)
	
'Create	OD	Record	with	Defaults	
Set	ODrc	=	ODtb.CreateRecord
	
'Loop	Through	Entities	in	Model	Space	
For	Each	acadObj	In	ThisDrawing.ModelSpace	
	

Creating	object	data	tables
Step	By	Step			Sample	Code



'Fill	Records	with	Entity	Data	
ODrc.Item(0).Value	=	acadObj.EntityName	
ODrc.Item(1).Value	=	acadObj.Color	
ODrc.Item(2).Value	=	acadObj.Layer	
			
'Attach	Record	to	Entity
ODrc.AttachTo(acadObj.ObjectID)
	
Next	
	
Else
	
'Table	Already	Exists	
MsgBox	"Unable	to	create	"	&	"SampleOD",	,	_	
"Object	Data	Table	Error"	
End	If
	
End	Sub





The	following	example	defines	property	alteration	for	a	query.	The	property
alteration	uses	a	range	table.	To	run	the	example	again,	clear	the	query	and	clear
the	list	of	expressions	for	alterations.
	
Sub	altermap()
	
Dim	amap	As	AcadMap
Dim	prj	As	Project
Dim	qry	As	Query
Dim	mainqrybr	As	QueryBranch
Dim	qrylf	As	QueryLeaf
Dim	propqrylf	As	QueryLeaf
Dim	dataqrylf	As	QueryLeaf
Dim	andqrybr	As	QueryBranch
Dim	mapu	As	MapUtil
Dim	wind	As	WindowBound
Dim	boolVal	As	Boolean
Dim	atdr	As	AttachedDrawing
Dim	dblary	As	Variant
Dim	altls	As	AlterLines
Dim	altl	As	Variant
Dim	txtdf	As	TextDef
Dim	rngtb	As	RangeTable
Dim	rng	As	Range
Dim	altlLay	As	AlterLine
Dim	lay	As	AcadLayer
	
'Get	AutoCAD	Map	and	Project	Objects
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	prj	=	amap.Projects(ThisDrawing)
	
'Get	Current	Query
Set	qry	=	prj.CurrQuery
qry.Clear
	
'Attach	DWG

Altering	queried	objects	using	a	range	table
Step	By	Step			Sample	Code

javascript:RelatedTopic0.Click()


Set	atdr	=	prj.DrawingSet.Add("MAPTUT:\\citymap7.dwg")
	
'Get	Main	Branch
Set	mainqrybr	=	qry.QueryBranch
	
'Create	Layout	of	Leaves	and	Branch
Set	qrylf	=	mainqrybr.Add(kLocationCondition,	kOperatorAnd)
Set	andqrybr	=	mainqrybr.Add(kQueryBranch,	kOperatorAnd)
	
Set	propqrylf	=	andqrybr.Add(kPropertyCondition,	kOperatorOr)
Set	dataqrylf	=	andqrybr.Add(kDataCondition,	kOperatorOr)
	
'Get	DWG	Extents
dblary	=	prj.DrawingSet.Item("MAPTUT:\\citymap7.dwg").Extents
	
	
'Define	Boundary	Area	for	Location
Set	mapu	=	prj.MapUtil
Set	wind	=	mapu.NewWindow(	_
mapu.NewPoint3d(dblary(0),	dblary(1),	0),	_
mapu.NewPoint3d(dblary(2),	dblary(3),	0))
	
'Complete	Leaves
boolVal	=	qrylf.SetLocationCond(kLocationInside,	wind)
boolVal	=	propqrylf.SetPropertyCond(kLayer,	kCondEq,	"Stream")
boolVal	=	dataqrylf.SetDataCond(	_
kDataIRD,	_	
kCondLT,	_	
"Water_Bodies",	_	
"Avg_Depth",	_	
10)	
	
'Specify	Draw	Query
qry.Mode	=	kQueryDraw
	
'Alter	Color	and	Annotate
Set	altls	=	qry.AlterProp



altls.RemoveAll
Set	altl	=	altls.Add(kAlterationColor,	"RED")
Set	txtdf	=	altls.Add(	_
kAlterationTextEntity,	_	
":NAME@WATER_BODIES")	
qry.AlterTag	=	True
	
'Create	MARSH	Layer
Set	lay	=	ThisDrawing.Layers.Add("MARSH")
	
'Alter	Layer	Based	on	Range	Table
prj.RangeTables.Remove	("foulwater")
Set	rngtb	=	prj.RangeTables.Add("foulwater",	"shallow	water")
Set	rng	=	rngtb.Add("10",	"MARSH",	kRangeLT)
Set	altlLay	=	prj.CurrQuery.AlterProp.Add(	_
kAlterationLayer,	_	
"(Range	:AVG_DEPTH@WATER_BODIES	foulwater)")	
	
'Define	Query
boolVal	=	qry.Define(mainqrybr)
	
'Execute	Query
boolVal	=	qry.Execute
ThisDrawing.Application.ZoomExtents
	
End	Sub





	Simple	example
	Range	table	example

	

AlterLines.Add	examples

javascript:RelatedTopic0.Click()
javascript:RelatedTopic1.Click()


	Range	table	example

	

AlterLines.Add	examples





The	following	code	queries	objects	from	a	source	file.
Public	Sub	queryexample()
	
Dim	amap	As	AcadMap
Dim	prj	As	Project
Dim	qry	As	Query
Dim	mainqrybr	As	QueryBranch
Dim	qrylf	As	QueryLeaf
Dim	propqrylf	As	QueryLeaf
Dim	dataqrylf	As	QueryLeaf
Dim	andqrybr	As	QueryBranch
Dim	mapu	As	MapUtil
Dim	wind	As	WindowBound
Dim	boolVal	As	Boolean
Dim	atdr	As	AttachedDrawing
Dim	dblary	As	Variant
	
'Get	AutoCAD	Map	and	Project	Objects
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
Set	prj	=	amap.Projects(ThisDrawing)
	
'Get	Current	Query
Set	qry	=	prj.CurrQuery
qry.Clear
	
'Attach	DWG
Set	atdr	=	prj.DrawingSet.Add("MAPTUT:\\citymap7.dwg")
	
'Get	Main	Branch
Set	mainqrybr	=	qry.QueryBranch
	
'Create	Layout	of	Leaves	and	Branch
Set	qrylf	=	mainqrybr.Add(kLocationCondition,	kOperatorAnd)
	
'Set	Main	Branch

Creating	a	query
Step	By	Step			Sample	Code



Set	andqrybr	=	mainqrybr.Add(kQueryBranch,	kOperatorAnd)
	
'	Set	Conditions	for	Leaves
Set	propqrylf	=	andqrybr.Add(kPropertyCondition,	kOperatorOr)
Set	dataqrylf	=	andqrybr.Add(kDataCondition,	kOperatorOr)
	
'Get	DWG	Extents
dblary	=	prj.DrawingSet.Item("MAPTUT:\\citymap7.dwg").Extents
	
'Define	Boundary	Area	for	Location
Set	mapu	=	prj.MapUtil
Set	wind	=	mapu.NewWindow(	_
mapu.NewPoint3d(dblary(0),	dblary(1),	0),	_
mapu.NewPoint3d(dblary(2),	dblary(3),	0))
	
'Complete	Leaves
boolVal	=	qrylf.SetLocationCond(kLocationInside,	wind)
boolVal	=	propqrylf.SetPropertyCond(kLayer,	kCondEq,	"Stream")
boolVal	=	dataqrylf.SetDataCond(	_
kDataIRD,	_	
kCondLT,	_	
"Water_Bodies",	_	
"Avg_Depth",	_	
10)	
	
'Specify	Draw	Query
qry.Mode	=	kQueryDraw
	
'Define	Query
boolVal	=	qry.Define(mainqrybr)
	
'Execute	Query
boolVal	=	qry.Execute
ThisDrawing.Application.ZoomExtents
End	Sub





The	following	example	creates	an	object	data	table	and	attaches	records	to
drawing	objects.
1	Declare	variables.
Dim	amap	As	AcadMap
Dim	acadObj	As	Object
Dim	ODfdfs	As	ODFieldDefs
Dim	ODfdf	As	ODFieldDef
Dim	ODtb	As	ODTable
Dim	ODrc	As	ODRecord

2	Set	application	and	project	objects.
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	

3	Create	the	schema	for	the	object	data	table.
Set	ODfdfs	=	amap.Projects(ThisDrawing).MapUtil.NewODFieldDefs

4	Create	fields	for	object	data.	For	example,	create	fields	for	the	name,	color,
and	layer	of	a	drawing	object.	Specify	default	values,	for	example,	empty
string,	AcRed,.and	layer	0,	respectively.	Add	the	fields	to	the	table	using
consecutive	index	numbers.
Set	ODfdf	=	ODfdfs.Add("Entity",	"Entity	name",	"",	0)
Set	ODfdf	=	ODfdfs.Add("Color",	"Object	color",	acRed,	1)
Set	ODfdf	=	ODfdfs.Add("Layer",	"Object	layer",	"0",	2)

5	Name	the	table	and	test	the	uniqueness	of	the	name.
If	amap.Projects(ThisDrawing).ODTables.	_
Item("SampleOD3")	Is	Nothing	Then	

6	Register	the	OD	Table	in	the	drawing	and	specify	the	type	of	object	data	as
Xdata.
Set	ODtb	=	amap.Projects(ThisDrawing)	_
.ODTables.Add("SampleOD3",	"Sample	Xdata",	ODfdfs,	True)	

7	Create	a	record	of	data	with	defaults	specified	in	step	4.
Set	ODrc	=	ODtb.CreateRecord

8	Loop	though	each	drawing	object,	get	its	values	for	the	name,	color,	and
layer	of	the	object,	and	attach	the	data	to	the	drawing	object.

Creating	object	data	tables
Step	By	Step			Sample	Code



For	Each	acadObj	In	ThisDrawing.ModelSpace
ODrc.Item(0).Value	=	acadObj.EntityName	
ODrc.Item(1).Value	=	acadObj.Color	
ODrc.Item(2).Value	=	acadObj.Layer	
ODrc.AttachTo	(acadObj.ObjectID)	
Next

Testing	the	example

Run	the	example,	and	enter	ADEEDITDATA	at	the	command	prompt	to	see	the
output.	To	run	the	code	again,	change	the	name	of	the	table	from	SampleOD	to
another	name.





The	following	example	queries	objects	from	a	source	file.
Attach	source	drawings

		Attach	the	source	drawings	that	you	will	query	from.	For	example,	to	attach
citymap7.dwg,	whose	path	is	represented	by	the	drive	alias,	MAPTUT,	use
this	code.
Dim	atdr	As	AttachedDrawing
Set	atdr	=	prj.DrawingSet.Add("MAPTUT:\\citymap7.dwg")

Create	the	main	branch

1	Get	the	AutoCAD	Map	application.
Dim	amap	As	AcadMap
Set	amap	=	ThisDrawing.Application.	_
GetInterfaceObject("AutoCADMap.Application")	
	

2	Get	the	project	and	the	current	query.
Dim	prj	As	project
Dim	qry	As	Query
Set	prj	=	amap.Projects(ThisDrawing)
Set	qry	=	prj.CurrQuery

3	Clear	the	current	query's	main	branch	(its	definition).	Note	If	you	plan	to	use
this	query	again,	save	a	copy	of	it	in	the	query	library	before	clearing	it.
Otherwise,	it	will	be	lost.
qry.Clear

4	Get	a	copy	of	the	main	branch,	which	is	now	empty.
Dim	mainqrybr	As	QueryBranch
Set	mainqrybr	=	qry.QueryBranch

5	Add	a	location,	property,	data,	or	SQL	condition	to	the	branch.	For	example,
create	a	location	query	to	retrieve	all	objects	inside	a	window.
Dim	qrylf	As	QueryLeaf
Set	qrylf	=	mainqrybr.Add(kLocationCondition,	kOperatorAnd)

6	Define	and	set	the	boundary	for	the	location	leaf.
Dim	wind	As	WindowBound
Dim	boolVal	As	Boolean
Dim	mapu	As	MapUtil

Creating	a	query
Step	By	Step			Sample	Code



Dim	dblary	As	Variant
	
dblary	=	prj.DrawingSet.Item("MAPTUT:\\citymap7.dwg").Extents
Set	mapu	=	prj.MapUtil
Set	wind	=	mapu.NewWindow(	_
mapu.NewPoint3d(dblary(0),	dblary(1),	0),	_	
mapu.NewPoint3d(dblary(2),	dblary(3),	0))	
boolVal	=	qrylf.SetLocationCond(kLocationInside,	wind)

Create	sub-branches	and	leaves

1	Create	other	leaves	and	branches.	For	example,	create	an	AND	sub-branch
with	property	and	data	condition	leaves.
Dim	andqrybr	As	QueryBranch
Set	andqrybr	=	mainqrybr.Add(kQueryBranch,	kOperatorAnd)

2	Set	the	conditional	relationships	for	the	leaves.	For	example,	to	the	AND
sub-branch,	add	OR	leaves.
Set	propqrylf	=	andqrybr.Add(kPropertyCondition,	kOperatorOr)
Set	dataqrylf	=	andqrybr.	.Add(kDataCondition,	kOperatorOr)

3	Set	the	property	and	object	data	leaves	to	query	objects	within	a	window
boundary	and	that	are	either	on	the	stream	layer	or	a	water	body	with	an
average	depth	of	less	than	10	feet.
boolVal	=	propqryleaf.SetPropertyCond(kLayer,	kCondEq,	"Water")
boolVal	=	dataqryleaf.SetDataCond	_
(kDataIRD,	kCondLT,	"Water_Bodies",	"Avg_Depth",	10)	

4	Redefine	the	query	(assign	the	branch	that	you	copied	and	modified	as	the
new	main	branch).
boolVal	=	qry.Define(mainbr)

5	Execute	the	query.
boolVal	=	qry.Execute


