
Samples
	
	
	

Topics	in	this	section

Introduction
Installation
Extension	Applications
Building
Loading
Concepts
Namespaces	Used	By	The	Samples
Platform.Samples.Util	Utility	Library
BuildMap
Classify
EditSetViewer
FeatureExplorer
FeatureInspector
FindIntersects
GenerateAnnotation
GeoCoder
InputEditor
NetworkTrace
PolygonOperation
QueryAndLocate
SpiderNetwork



Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Introduction
	
	
	

The	sample	code	presented	in	this	document	discusses	the	use	of	the	Geospatial
API	to	do	the	following:

Create	feature	schemas,	classes	and	features,

Query	features,

Add	layers	and	layer	groups	from	feature	sources	on	the	fly,

Perform	buffer	operations	on	features,

Change	the	stylization	of	a	layer,

Get	the	longitude	and	latitude	properties	of	a	street	address	via	web
services,

Apply	Union,	Intersect,	SymetricDifference	and	Substract	geometry
operations	on	two	polygons,

Relate	crimes	to	their	responding	police	stations.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Installation
	
	
	

The	sample	code	is	installed	with	the	Map	3D	SDK.	When	you	install	the	SDK,
you	must	specify	the	root	path	for	it.	The	GeoSpatial	API	sample	code	is	in	a
subfolder	of	the	SDK,	namely,	<root	path>\Map	Samples\Platform\.	In	the
Platform	folder,	you	see	the	following	subfolders:

BuildMap

Classify

EditSetViewer

FeatureExplorer

FeatureInspector

FindIntersects

GenerateAnnotation

GeoCoder

InputEditor

NetworkTrace

PolygonOperation

QueryAndLocate

SpiderNetwork

If	you	want	to	run	the	FindIntersectsMG	project,	you	must	also	install
MapGuide.	When	installing	the	web	component	be	sure	to	pick	the	IIS
configuration	and	not	the	bundled	or	manual	configuration.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Extension	Applications
	
	
	

The	samples	are	constructed	as	extension	applications.	They	are	built	as	DLLs,
and	are	loaded	into	Map	from	the	command-line.	As	part	of	the	load	process	the
loader	calls	the	entry	point	in	the	application	to	initialize	it.	The	ity	of	the
application	is	accessed	by	way	of	commands	executed	at	the	command-line.

The	entry	point	is	the	Initialize()	method	in	a	class	derived	from
Autodesk.AutoCAD.Runtime.IExtensionApplication.	You	point	the	loader	to
this	method	by	putting	the	following	line	in	the	AssemblyInfo.cs	in	the
Properties	folder:	[assembly:
Autodesk.AutoCAD.Runtime.ExtensionApplication(typeof(<your

Class	Derived	From

Autodesk.AutoCAD.Runtime.IExtensionapplication))].	To
learn	more	about	this	open	<Map	3D	SDK	root	folder>\docs\arxdoc.chm	and
search	on	IExtensionApplication.

To	associate	a	command	entered	at	the	Map	command-line	with	a	method	in	a
class	in	your	application	do	the	following.	To	learn	more	about	this	open	<Map
3D	SDK	root	folder>\docs\arxdoc.chm	and	search	on	CommandClass.

1.	 In	your	commands	class	precede	the	method	with	an	attribute	like	the
following:	[CommandMethod("MyCommand")]

2.	 In	the	AssemblyInfo.cs	file	in	the	Properties	folder,	add	a	line	like	the
following:	[assembly:
Autodesk.AutoCAD.Runtime.CommandClass(typeof(MyCommandClass))]

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Building
	
	
	

Each	of	these	subfolders	contains	a	sample	C#	project.	With	the	exception	of	the
FindIntersectsMG	project,	the	steps	to	build	the	project	are	the	same	and	are	as
follows:

1.	 Open	the	project	with	Microsoft	Visual	Studio	2005.

2.	 Open	the	project	properties.

3.	 In	the	Reference	Paths	tab	add	two	folders:	<root	path>	and	<root
path>\FDO\bin.	As	a	result,	you	will	see	the	warning	markers	removed
from	the	references	in	the	References	folder	in	the	Solution	Explorer.

4.	 Build	the	project	to	generate	the	dll.	Do	not	change	the	default	output
path:	bin\<buildType>\	where	<buildType>	is	either	Debug	or	Release
because	some	samples	use	relative	paths	to	access	data.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Loading
	
	
	

With	the	exception	of	the	FindIntersectsMG	project,	the	steps	to	prepare	the
project	to	run	in	Map	3D	are	the	same	and	are	as	follows:

1.	 Start	Map	3D	either	from	the	Windows	Start	menu	or	from	Visual
Studio.

2.	 At	the	Map	3D
Command:

prompt	enter	the	command	netload.	In	the	Choose	.NET	Assembly
dialog,	navigate	to	bin\<buildType>	and	open	the	dll.

What	happens	as	a	result	of	loading	the	dll	varies	from	project	to	project	and	so
is	described	in	the	project-specific	topics.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Concepts
	
	
	

Topics	in	this	section

Resources
Feature	Source,	Feature,	Feature	Schema,	Class	Definition,	and
Properties
Map,	Layer,	Layer	Group

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Resources
	
	
	

Operations	are	performed	on	resources	that	are	stored	in	a	repository.	The
resources	have	identifiers.	The	identifiers	are	passed	to	the	methods,	and	the
methods	use	the	identifiers	to	access	the	resource	in	the	repository.	A	resource
could	be	a	feature	source,	such	as	an	SDF	file,	or	a	layer,	such	as	a	set	of	point
features	extracted	from	a	feature	source.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Feature	Source,	Feature,	Feature	Schema,	Class
Definition,	and	Properties
	
	
	

A	feature	source	contains	features.	A	feature	consists	of	a	geometry	and	other
information	such	as	unique	identifier	and	a	description.

The	structure	of	a	feature	is	modeled	as	a	class	and	the	feature	itself	as	an	object.
The	class	contains	a	default	geometry	property	definition	and	other	property
definitions,	which	may	include	a	non-default	geometry	property	definition.	A
feature	object	contains	properties,	which	are	instantiations	of	the	property
definitions.

A	set	of	related	classes	are	grouped	together	as	a	schema.	A	feature	source	may
contain	multiple	schema.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Map,	Layer,	Layer	Group
	
	
	

A	map	is	a	graphic,	which	consists	of	one	or	more	layers.	A	layer	is	a	collection
of	features	that	have	been	stylized	for	rendering	as	a	graphic	on	the	screen.	All
of	the	features	in	a	layer	have	the	same	class	definition.

A	layer	group	is	a	set	of	layers	whose	features	all	belong	to	the	same	feature
schema.	The	layers	in	the	group	can	be	rendered	individually	or	the	group	of
layers	can	be	rendered.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Namespaces	Used	By	The	Samples
	
	
	

Topics	in	this	section

Autodesk.AutoCAD
Autodesk.Gis.Map
OSGeo.FDO
OSGeo.MapGuide
OSGeo.MapGuide.Schema.FeatureSource
OSGeo.MapGuide.Schema.LayerDefinition

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Autodesk.AutoCAD
	
	
	

The	sample	code	uses	the	following	namespaces.	The	reference	is	the	acmgd.dll.
Help	for	these	classes	can	be	found	in	the	<Map	3D	SDK	root
folder>\docs\arxdoc.chm.

Autodesk.AutoCAD.ApplicationServices

Autodesk.AutoCAD.Colors

Autodesk.AutoCAD.DatabaseServices

Autodesk.AutoCAD.EditorInput

Autodesk.AutoCAD.Geometry

Autodesk.AutoCADRuntime

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Autodesk.Gis.Map
	
	
	

The	sample	code	uses	the	fiollowing	Autodesk.Gis.Map	namespaces.	The
reference	is	ManagedMapApi.dll.	Help	for	these	classes	can	be	found	in	the
Autodesk	Map	3D	ObjectArx	Reference	(<Map	3D	root
folder>\Help\sdk.ref.arx.chm).

Autodesk.Gis.Map

Autodesk.Gis.Map.Annotation

Autodesk.Gis.Map.Constants

Autodesk.Gis.Map.ObjectData

Autodesk.Gis.Map.Project

Autodesk.Gis.Map.Utilities

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


OSGeo.FDO
	
	
	

The	sample	code	uses	the	following	OSGeo.FDO	namespaces.	The	reference	is
the	OSGeo.FDO.dll.	Help	for	these	classes	can	be	found	in	<Map	3D	root
folder>\Help\FDO_API_managed.chm.

OSGeo.FDO

OSGeo.FDO.ClientServices

OSGeo.FDO.Commands.DataStore

OSGeo.FDO.Commands.Feature

OSGeo.FDO.Commands.Schema

OSGeo.FDO.Commands.Spatial	Context

OSGeo.FDO.Connections

OSGeo.FDO..Schema

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


OSGeo.MapGuide
	
	
	

This	Geospatial	API	namespace	contains	all	of	the	Mg*	classes	plus	AcMapMap
and	AcMapServiceFactory.

The	reference	is	the	AcMapApiMgd.dll.	Help	for	the	classes	prefixed	with	Ac
can	be	found	in	the	Autodesk	Map	3d	.NET	API	Supplement	Reference	(<Map
3D	root	folder>\Help\sdk.ref.net.supp.chm).	Help	for	the	classes	prefixed	with
Mg	can	be	found	in	the	Geospatial	Platform	.NET	Reference	(<Map	3D	root
folder>\Help\sdk.ref.gis.platform.chm).

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


OSGeo.MapGuide.Schema.FeatureSource
	
	
	

The	source	for	these	classes	is	in	the	FeatureSource-1_0_0.cs	file,	which	is
located	in	the	<Map	3D	SDK	root	folder>\Map	Samples\Platform\Schema
folder.	The	FeatureSource-1_0_0	.cs	file	is	generated	from	the	FeatureSource-
1.0.0.xsd	file	using	the	.NET	Framework	SDK	tool	xsd.exe.	The	FeatureSource-
1.0.0xsd	file	is	located	in	the	MapGuide	Server	Schema	folder	(<MapGuide
Enterprise	folder>\Server\Schema).	The	xsd.exe	tool	is	located	in	the	bin	folder
of	the	.NET	Framework	SDK	(C:\Program	Files\Microsoft	Visual	Studio
8\SDK\v2.0\Bin\xsd.exe.	The	.NET	Framework	SDK	installer	places	the	SDK
inside	the	Microsoft	Visual	Studio	8	installation.	Documentation	on	the	use	of
the	xsd.exe	tool	can	be	found	at	http://msdn.microsoft.com/library/default.asp?
url=/library/en-us/cptools/html/cpconxmlschemadefinitiontoolxsdexe.asp.

Help	for	these	classes	can	be	found	in	the	Modules/XML	Schemas	topic	in
theGeospatial	Platform	.NET	Reference	(<Map	3D	root
folder>\Help\sdk.ref.gis.platform.chm).

Please	send	us	your	comment	about	this	page

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/html/cpconxmlschemadefinitiontoolxsdexe.asp
javascript:doComments('./html/ac.cmtdialog.htm');


OSGeo.MapGuide.Schema.LayerDefinition
	
	
	

The	source	for	these	classes	is	in	the	LayerDefinition-1_0_0.cs	file,	which	is
located	in	the	<Map	3D	SDK	root	folder>\Map	Samples\Platform\Schema	folder
of	each	project.	The	LayerDefinition-1_0_0	.cs	file	is	generated	from	the
LayerDefinition-1.0.0.xsd	file	using	the	.NET	Framework	SDK	tool	xsd.exe.
The	LayerDefinition-1.0.0.xsd	file	is	in	the	same	location	as	the	FeatureSource-
1.0.0.xsd	file.

Help	for	these	classes	can	be	found	in	the	same	place	as	help	for	the
FeatureSource-1_0_0.cs	classes.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Platform.Samples.Util	Utility	Library
	
	
	

The	utility	library	Platform.Samples.Util.dll	is	used	by	all	of	the	samples.	The
following	are	the	most	important	components	of	the	library:

Platform.Samples.Util\Util.cs	This	file	contains	helpful	functions	used
by	all	the	Map	3D	samples.	It	contains	a	single	class,	Utility,	which
contains	a	series	of	static	methods.

Schema\FeatureSource-1_0_0.cs.	This	file	contains	partial	classes	that
contain	feature	schema	properties.	This	file	is	generated	from	an	XML
schema	file.	See	the	topic	OSGeo.MapGuide.Schema.FeatureSource.

Schema\LayerDefinition-1_0_0.cs.	This	file	contains	partial	classes	that
contain	layer	definition	properties.	This	file	is	generated	from	an	XML
schema	file.	See	the	topic	OSGeo.MapGuide.Schema.LayerDefinition.

Topics	in	this	section

AcadEditor
AddAllToMap
AddToMap
AddFeatureClassToSchema
ChangeSurfaceLayerStyle
ClearResources
ConnectToSdfFile
CopyFeatures
CreateFdoFeatureClass
CreateFeatureSourceDefinition
CreateFeatureSourceXmlForSdf
CreateLayerDefinitionObject



CreateLayerDefinitionXml
CreateRasterFeatureSourceDefinition
CreateRasterLayerDefinitionXml
CreateResultsFdoSchema
CreateSdfFeatureSourceDefinition
CreateSdfFile
CurrentDir
GetColor
GetCoordSysWkt
GetDefaultGeometryPropertyName
GetGeometricType
Highlight
IsGridLayer
IsReadOnlyProperty
MakeDefaultStyle
MakeDefaultStyleForCurve
Print	and	PrintLn
ReadFeature
ToFdoDataType

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


AcadEditor
	
	
	

This	static	property	returns	the	AutoCAD	Editor	object.	It	does	not	do	any
processing,	but	can	be	used	to	make	your	code	clearer.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


AddAllToMap
	
	
	

This	method	adds	all	of	the	features	in	a	feature	source	to	a	map	in	the	Map	3D
drawing	pane.	The	argument	is	a
OSGeo.MapGuide.MgResourceIdentifier	object,	which	identifies	the
feature	source	in	the	repository.

This	method	can	handle	a	feature	source	which	has	many	schema	with	each
schema	having	many	classes.	All	of	the	current	sample	feature	sources	have	only
one	schema	with	only	one	class.

It	does	the	following:

1.	 Uses	an	OSGeo.MapGuide.MgFeatureService	object	to	get	the
name	the	schema	in	the	feature	source,	identified	by	the
MgResourceIdentifier	object.

2.	 Uses	the	MgFeatureService	object	to	get	the	name	of	the	class	in
the	schema.

3.	 Use	the	MgFeatureService	object	to	get	the
OSGeo.MapGuide.MgClassDefinition	object	for	the	class.

4.	 Use	the	MgClassDefinition	object	to	the	name	of	the	geometry
property.	If	there	is	no	geometry	property	then	the	procedure	for	creating
a	serialized,	xml-formatted	layer	definition	from	a	raster	feature	source
is	followed.	See	the	topic	CreateRasterLayerDefinitionXml.	Otherwise
the	procedure	for	creating	a	serialized,	xml-formatted	layer	definition
from	an	SDF	file	is	followed.	See	the	topic
CreateLayerDefinitionObject.

5.	 Use	the	feature	source	name	and	the	class	name	to	create	a	unique	name
for	the	layer.

6.	 Create	an	MgResourceIdentifier	object	with	the	unique	layer
name	as	the	constructor’s	argument.



7.	 Convert	the	serialized	xml-formatted	layer	definition	into	an	array	of
bytes.	This	involves	the	use	of	MgByteSource	and	MgByteReader.

8.	 Use	the	MgResourceService	object	to	store	xml-formatted	layer
definition	in	byte	array	form	in	the	repository	identified	by	the
MgResourceIdentifier	object	cretaed	in	step	6.

9.	 Create	an	OSGeo.MapGuide.MgLayerBase	object	with	the	layer
definition	MgResourceIdentifier	object	as	one	of	the
constructor’s	arguments.

10.	 Use	a	static	method	of	the	OSGeo.MapGuide.AcMapMap	class	to
create	an	object	representing	the	current	map	and	then	use	this	object	to
add	the	MgLayerBase	object	to	the	current	map.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


AddToMap
	
	
	

This	method	adds	a	feature	class	within	a	feature	source	to	the	map	in	the
Map3D	drawing	pane.	It	takes	four	parameters:	the	identifier	of	the	feature
source,	and	the	schema	name,	the	name	of	the	feature	class	to	add	to	the	map,
and	group	name	of	the	layer	to	add	the	feature	class	to.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


AddFeatureClassToSchema
	
	
	

This	method	adds	a	feature	class	to	a	schema	in	a	feature	source.	The	feature
source	must	be	connected	and	should	have	at	least	one	schema	in	it.	If	the	given
schema	is	not	found	in	the	feature	source,	then	the	method	adds	the	feature	class
to	the	first	schema	it	finds.	It	takes	three	parameters:	the	identifier	of	the	feature
source,	the	schema	name,	and	the	feature	class	object.	It	returns	the	schema
name	that	the	feature	class	was	added	to.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


ChangeSurfaceLayerStyle
	
	
	

This	method	takes	one	argument,	an	MgLayerBase	object.	It	assumes	that	the
features	in	the	layer	are	surfaces.	It	changes	the	color	of	the	features.	In
particular,	it	does	the	following:

1.	 Gets	the	schema	and	class	names	from	the	MgLayerBase	object.

2.	 Uses	the	MgLayerBase	object	to	create	an
MgResourceIdentifier	object	for	the	feature	source	used	to	create
the	MgLayerBase	object.

3.	 Uses	an	MgFeatureService	object,	the
MgResourceIdentifier	object,	and	the	schema	and	class	names	to
get	the	MgClassDefinition	object	for	the	features	in	the
MgLayerBase	object.

4.	 Gets	the	default	geometry	property	name	from	the
MgClassDefinition	object.

5.	 Gets	an	MgPropertyDefinitionCollection	object	from	the
MgClassDefinition	object.

6.	 Uses	the	default	geometry	property	name	to	get	the
MgGeometricPropertyDefinition	object	from	the
MgPropertyDefinitionCollection	object.

7.	 Creates	a	serialized
OSGeo.MapGuide.Schema.LayerDefinition.LayerDefinition

object	from	the	MgLayerBase	object.	This	is	described	in	topic
CreateLayerDefinitionObject.

8.	 Deserializes	the	string	object	returned	in	the	previous	step	to	create	an
actualLayerDefinition	object.

9.	 Extracts	an



OSGeo.MapGuide.Schema.LayerDefinition.VectorLayerDefinitionType

object	from	the	LayerDefinition	object.

10.	 Extracts	an
OSGeo.MapGuide.Schema.LayerDefinition.VectorScaleRange

object	from	the	VectorLayerDefinitionType	object.

11.	 Extracts	an
OSGeo.MapGuide.Schema.LayerDefinition.AreaRule

object	from	the	VectorScaleRange	object.

12.	 Extracts	an
OSGeo.MapGuide.Schema.LayerDefinition.Fill	object
from	the	AreaRule	object.

13.	 Changes	the	value	of	the	foreground	color	attribute	of	the	Fill	object.

14.	 Reserializes	the	LayerDefinition	object	as	a	string.

15.	 Converts	the	string	to	an	array	of	bytes.

16.	 Converts	the	array	of	bytes	to	an	MgByteSource	object.

17.	 Uses	an	MgResourceService	object	to	updates	the	value	of	the
modified	MgLayerBase	object	in	the	Resource	Service	repository.

18.	 Refreshes	the	current	map	with	the	newly	changed	MgLayerBase
object.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


ClearResources
	
	
	

This	method	clears	the	layers,	layer	definitions	and	feature	resources	whose
names	contain	the	specified	string.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


ConnectToSdfFile
	
	
	

This	method	takes	three	arguments:	a	string	containing	an	aboslute	path	to	a
directory	containing	the	SDF	file	library,	a	string	containing	the	relative	path	and
filename	of	the	SDF	file,	and	an	optional	boolean	indicating	whether	the	SDF
file	is	read-only.	It	returns	an	MgResourceIdentifier	identifier,	which
identifies	the	SDF	file	as	a	resource.	This	method	does	the	following:

1.	 Constructs	a	full	path	to	the	SDF	file.

2.	 Confirms	that	the	file	exists	and	is	an	SDF	file.

3.	 Constructs	an
OSGeo.MapGuide.Schema.FeatureSource.FeatureSourceType

object	that	contains	a	field	identifying	the	provider	to	use	(SDF	provider)
and	two	key-value	pairs	identifying	the	location	of	the	SDF	file	and
whether	it	is	read-only	or	can	be	written.	The	key-value	pairs	are
OSGeo.MapGuide.Schema.FeatureSource.NameValuePairType

objects.

4.	 Serializes	the	FeatureSourceType	object	as	an	xml-formatted
string.	Here	is	an	example.

<?xml	version=\"1.0\"	encoding=\"utf-16\"?>\r\n

<FeatureSource	xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"	xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\">\r\n

		<Provider>OSGeo.SDF.3.2</Provider>\r\n

		<Parameter>\r\n

				<Name>File</Name>\r\n

				<Value>c:\\temp\\results3.sdf</Value>\r\n

		</Parameter>\r\n

		<Parameter>\r\n

				<Name>ReadOnly</Name>\r\n

				<Value>False</Value>\r\n

		</Parameter>\r\n

</FeatureSource>

5.	 Converts	the	xml-formatted	string	to	an	array	of	bytes.



6.	 Uses	the	relative	path	to	the	SDF	file	to	create	a	string	identifying	the
location	of	the	resource	in	the	repository.

7.	 Uses	the	repository	resource	path	string	to	create	an
OSGeo.MapGuide.MgResourceIdentifier	object.

8.	 Uses	the	OSGeo.MapGuide.MgResourceService	to	store	the
byte	array	containing	the	FeatureSourceType	object	in	the
repository	identified	by	the	MgResourceIdentifier	object.	The
byte	manipulation	involves	the	use	of	the
OSGeo.MapGuide.MgByteSource	and
OSGeo.MapGuide.MgByteReader	classes.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


CopyFeatures
	
	
	

This	method	takes	two	arguments:	a	collection	of	feature	source	id	strings
identifying	the	source	of	the	features	being	copied	and	an	MgResourceIdentifier
object	identifying	the	destination	of	the	features	being	copied.	It	loops	through
the	feature	source	id	strings	and	does	the	following.

1.	 Creates	an	MgResourceIdentifier	object	using	the	feature	source
id	string	as	the	argument	to	the	constructor.

2.	 Uses	an	MgFeatureService	object	to	get	the	names	of	the	schemas
contained	in	the	MgResourceIdentifier	object.

3.	 Uses	an	MgFeatureService	object	to	get	the	names	of	the	classes
contained	in	schema.

4.	 Uses	an	MgFeatureService	object	to	get	all	of	the	features	for	each
class.

5.	 Gets	the	collection	of	properties	in	each	feature.	This	is	described	in
topic	ReadFeature.

6.	 Creates	an	OSGeo.MapGuide.MgFeatureCommandCollection
object.

7.	 Creates	an	OSGeo.MapGuide.MgInsertFeatures	object	passing
the	collection	properties	to	the	constructor.

8.	 Adds	the	MgInsertFeatures	objec	to	the
MgFeatureCommandCollection	object.

9.	 Uses	the	MgFeatureService	object	to	insert	the	collection	of
properties	as	a	feature	into	the	destination	feature	source.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


CreateFdoFeatureClass
	
	
	

This	method	creates	a	new	FDO	feature	class	object	of	type
OSGeo.FDO.Schema.FeatureClass	based	on	the	specified	feature	class
in	the	feature	source.	It	takes	three	arguments:	a	feature	schema	name,	a	class
name,	and	an	MgResourceIdentifier	identifying	the	feature	source	which
contains	the	feature	schema	and	class	definition.	It	does	the	following:

1.	 Uses	an	OSGeo.MapGuide.MgFeatureService	object	and	the
three	arguments	passed	into	the	method	to	get	an
OSGeo.MapGuide.MgClassDefinition	object.

2.	 Creates	a	FeatureClass	object.

3.	 Uses	the	MgClassDefinition	object	to	get	an
OSGeo.MapGuide.MgPropertyDefinitionCollection

object	that	contains	the	class	properties.

4.	 Loops	through	the	OSGeo.MapGuide.MgPropertyDefinition
objects	in	the	MgPropertyDefinitionCollection	object.	If	the
object	is	an	OSGeo.MapGuide.MgDataPropertyDefinition
object,	it	creates	an
OSGeo.FDO.Schema.DataPropertyDefinition	object	and
copies	the	values	in	the	object’s	attributes	to	the	corresponding	attributes
in	the	DataPropertyDefinition	object.	If	the	object	is	an
OSGeo.MapGuide.MgGeometricPropertyDefinition

object,	it	creates	an
OSGeo.FDO.SChema.GeometricPropertyDefinition	object
and	copies	the	values	in	the	object’s	attributes	to	the	corersponding
attributes	in	the	GeometricPropertyDefinition	object.	It	then
adds	the	FDO	property	definition	object	to	the	FDO	feature	class	object.

5.	 Uses	the	MgClassDefinition	object	to	get	an
OSGeo.MapGuide.MgPropertyDefinitionCollection



object	that	contains	the	class	identity	properties.

6.	 Creates	an	identify	property	collection	in	the	FDO	FeatureClass
object	that	corresponds	to	the	identity	property	collection	in	the
MgClassDefinition	object.

7.	 Returns	the	FeatureClass	object.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


CreateFeatureSourceDefinition
	
	
	

This	method	creates	the	XML	data	containing	information	on	a	feature	class
which	is	needed	for	connecting	to	a	SDF	file.	It	requires	a	string	containing	the
name	of	the	feature	source	provider,	and	a	list	of	parameters.	These	parameters
should	include	a	“File”	item	containing	the	path	and	filename	of	the	SDF	file
and	a	“ReadOnly”	item	indicating	if	the	SDF	file	is	read	only	or	not.	A	string
containing	the	XML	data	is	returned.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


CreateFeatureSourceXmlForSdf
	
	
	

This	method	creates	the	XML	data	containing	information	on	a	feature	class
which	is	needed	for	connecting	to	a	SDF	file.	It	takes	two	parameters:	the	path
and	filename	of	the	SDF	file,	and	a	boolean	value	indicating	if	the	file	is	read
only	or	not.	A	string	containing	the	XML	data	is	returned.	It	uses	a	hard-coded
SDF	provider	name.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


CreateLayerDefinitionObject
	
	
	

This	method	creates	a	vector	layer	definition	object	and	fills	all	its	attributes
according	the	parameters.	It	takes	six	arguments:	a	layer	definition	name,	an
MgResourceIdentifier	object	identifying	the	feature	source	supplying	the
features	for	the	layer,	a	schema	name,	a	class	name,	a	geometry	property	name,
and	a	geometric	type.	The	geometric	type	is	a	value	in	the
MgFeatureGeometricType	enumeration.

The	LayerDefinition	element	has	different	subelements	depending	on	the
MgFeatureGeometricType.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


CreateLayerDefinitionXml
	
	
	

This	method	creates	the	XML	layer	definition	information	for	vector	layers.	It
does	this	by	calling	CreateLayerDefinitionObject	and	serializing	the	returned
layer	definition	object,	which	CreateLayerDefinitionXml	then	returns	as	a	string.
It	takes	six	arguments:	a	layer	definition	name,	an	MgResourceIdentifier
object	identifying	the	feature	source	supplying	the	features	for	the	layer,	a
schema	name,	a	class	name,	a	geometry	property	name,	and	a	geometric	type.
The	geometric	type	is	a	value	in	the	MgFeatureGeometricType
enumeration.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


CreateRasterFeatureSourceDefinition
	
	
	

This	method	creates	the	XML	definition	information	for	a	raster	feature	source
object	model.	Only	images	in	.jpg	format	are	supported.	It	requires	the	path	and
file	name	of	the	raster	image	and	the	path	and	filename	of	the	configuration	file.
A	string	containing	the	XML	data	is	returned.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


CreateRasterLayerDefinitionXml
	
	
	

This	function	creates	layer	definition	information	for	a	raster	image	feature	and
returns	it	as	a	string	containing	XML	data.	It	takes	two	parameters:	the	identifier
of	the	feature	source	and	the	string	name	of	the	raster	feature.

Do	the	following:

1.	 Create	an
OSGeo.MapGuide.Schema.LayerDefinition.GridColorType

object.

2.	 Create	an
OSGeo.MapGuide.Schema.LayerDefinition.GridColorRuleType

object.	Embed	the	GridColorType	object	in	the
GridColorRuleType	object.

3.	 Create	an
OSGeo.MapGuide.Schema.LayerDefinition.GridColorStylizationType

object.	Embed	the	GridColorRuleType	object	in	the
GridColorStylizationType	object.

4.	 Create	an
OSGeo.MapGuide.Schema.LayerDefinition.GridColorRangeType

object.	Embed	the	GridColorStylizationType	object	in	the
GridColorRangeType	object.

5.	 Create	an
OSGeo.MapGuide.Schema.LayerDefinition.GridLayerDefinitionType

object.	Embed	the	GridColorRangeType	object	in	the
GridLayerDefinitionType	object.

6.	 Create	an
OSGeo.MapGuide.Schema.LayerDefinition.LayerDefinitionType

object.	Embed	the	GridLayerDefinitionType	object	in	the



LayerDefinitionType	object.

7.	 Serialize	the	resulting	xml	LayerDefinitionType	object	as	a
string.

Here	is	an	example	of	a	raster	layer	definition	type.

<?xml	version=\"1.0\"	encoding=\"utf-16\"?>\r\n

<LayerDefinitionType	xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"	xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\">\r\n	

		<GridLayerDefinition>\r\n

				<ResourceId>Library://Data/Raster/bayarea.FeatureSource</ResourceId>\r\n

				<FeatureName>rasters:bayarea</FeatureName>\r\n	

				<Geometry>Image</Geometry>\r\n

				<GridScaleRange>\r\n

						<ColorStyle>\r\n

								<ColorRule>\r\n

										<LegendLabel	/>\r\n

										<Color>\r\n

												<Band>1</Band>\r\n	

										</Color>\r\n	

								</ColorRule>\r\n

						</ColorStyle>\r\n

						<RebuildFactor>1</RebuildFactor>\r\n

				</GridScaleRange>\r\n

		</GridLayerDefinition>\r\n

</LayerDefinitionType>

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


CreateResultsFdoSchema
	
	
	

This	method	is	used	to	create	feature	schemas	for	the	Map	3D	sample
applications.	It	creates	schemas	wih	an	integer	id	value,	a	feature	geometry,	and
a	user-defined	property	for	storing	additional	information	as	needed.

The	arguments	are:	a	schema	name,	a	class	name,	an	optional	identity	property
name,	an	optional	geometry	property	name,	an	integer	denoting	a	geometric
type,	the	name	of	an	additional	property,	and	the	data	type	of	the	additional
property.	It	returns	an	OSGeo.FDO.Schema.FeatureSchema	object.

It	does	the	following:

1.	 Uses	the	schema	name	to	create	a	Schema.FeatureSchema	object.

2.	 Uses	the	class	name	to	create	a	Schema.FeatureClass	object.

3.	 Adds	the	FeatureClass	object	to	the	FeatureSchema	object.

4.	 Uses	the	identity	property	name	to	create	a
Schema.DataPropertyDefinition	object	and	makes	it	an	auto-
generated	Int32.

5.	 Adds	the	identity	property	object	to	FeatureClass	object’s	properties
list	and	identity	properties	list.

6.	 Uses	the	additional	property	name	argument	to	create	a
Schema.DataPropertyDefinition	object,	uses	the	additional
property	data	type	argument	to	sets	its	DataType	property,	and	adds
this	object	to	the	FeatureClass	object.

7.	 Uses	the	geometry	property	name	to	create	a
Schema.GeometricPropertyDefinition	object	and	uses	the
geometric	type	argument	to	sets	its	GeometryTypes	property.

8.	 Adds	the	GeometricPropertyDefinition	objec	t	to	the
FeatureClass	object.



Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


CreateSdfFeatureSourceDefinition
	
	
	

Creates	the	XML	definition	for	a	feature	source	located	in	a	SDF	file.	It	requires
the	path	and	filename	of	a	SDF	file	and	a	boolean	value	indicating	whether	the
SDF	file	is	read	only	or	not.	A	string	containing	the	XML	data	is	returned.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


CreateSdfFile
	
	
	

This	method	creates	a	SDF	file	with	a	schema	defined	by	a	FDO	feature	schema
object.	It	takes	three	arguments:	an	absolute	path	for	the	SDF	file,	the	FDO
FeatureSchema	object,	and	a	string	containing	the	well-known-text	(WKT)
description	of	the	coordinate	system	the	SDF	file	will	use.	It	does	the	following:

1.	 Use	the
OSGeo.FDO.ClientServices.FeatureAccessManager	class
to	create	an	OSGeo.FDO.IConnectionManager	object.

2.	 Use	the	IConnectionManager	object	to	create	an
OSgeo.FDO.Connections.IConnection	object.

3.	 Use	the	IConnection	object	to	create	an
OSgeo.FDO.Connections.IConnectionPropertyDictionary

object.

4.	 Use	the	IConnectionPropertyDictionary	object	to	set	the	File
property	to	the	SDF	file	argument	and	the	ReadOnly	property	to	False.

5.	 Use	the	IConnection	object	to	create	an
OSgeo.FDO.Commands.DataStore.ICreateDataStore

object.

6.	 Use	the	ICreateDataStore	object	to	set	its	File	property	to	the	SDF
file	argument.

7.	 Use	the	ICreateDataStore	object	to	create	the	SDF	file	in	the	local
filesystem.

8.	 Use	the	IConnection	object	to	open	a	connection	to	the	SDF	file.

9.	 Use	the	IConnection	object	to	create	an
OSgeo.FDO.Commands.SpatialContext.ICreateSpatialContext

object.



10.	 Use	the	ICreateSpatialContext	object	to	set	its
CoordinateSystemWkt	attribute	to	the	value	of	the	string	argument
containing	the	WKT	description	of	the	coordinate	system.

11.	 Use	the	ICreateSpatialContext	object	to	set	other	attributes.

12.	 Use	the	ICreateSpatialContext	object	to	add	a	coordinate
system	to	the	SDF	file.

13.	 Use	the	IConnection	object	to	create	an
OSgeo.FDO.Commands.Schema.IApplySchema	object.

14.	 Use	the	IApplySchema	object	to	set	its	FeatureSchema	attribute	to	the
value	of	the	FeatureSchema	argument.

15.	 Use	the	IApplySchema	object	to	add	a	feature	schema	to	the	SDF	file.

16.	 Use	the	IConnection	object	to	close	the	connection	to	the	SDF	file.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


CurrentDir
	
	
	

This	static	property	returns	the	file	location	of	the	current	executing	assembly.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


GetColor
	
	
	

This	method	creates	a	new	unique	color	for	the	specified	geometry	type.	The
geometry	type	is	specified	as	an	integer	parameter	where	the	integer	is	one	of	the
values	of	theMgFeatureGeometricType	enumeration.	An	optional	boolean
parameter	specifies	the	transparency	of	the	color	-	if	the	boolean	is	set	to	True,
the	color	returned	is	50%	transparent.	It	returns	the	color	as	a	string	containing
the	numerical	representation	of	the	color	in	ARGB	format.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


GetCoordSysWkt
	
	
	

This	method	takes	one	argument,	an	MgResourceIdentifier	object
identifying	the	feature	source,	and	returns	a	string	containing	the	well-known-
text	description	of	the	coordinate	system.	It	does	the	following:

1.	 Uses	an	MgFeatureService	object	to	get	an
OSGeo.MapGuide.MgSpatialContextReader	object	from	the
MgResourceIdentifier	object.

2.	 Uses	the	MgSpatialContextReader	object	to	get	the	well-known-
text	description	and	returns	the	description.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


GetDefaultGeometryPropertyName
	
	
	

This	method	finds	the	default	geometry	property	name	of	the	specified	feature
class.	It	takes	three	parameters:	the	identifier	of	the	feature	source,	and	the
schema	name,	and	the	name	of	the	feature	class.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


GetGeometricType
	
	
	

This	method	finds	the	geometry	type	in	the	specified	feature	class.	It	takes	three
parameters:	the	identifier	of	the	feature	source,	and	the	schema	name,	and	the
name	of	the	feature	class.	It	returns	an	integer	value	indicating	the	geometric
type.	The	integer	is	one	of	the	values	of	the	MgFeatureGeometricType
enumeration.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Highlight
	
	
	

This	method	will	place	all	the	features	within	a	layer	in	a	selection	set	and	the
highlight	the	features	within	the	set.	It	does	the	following:

1.	 Gets	the	current	map,	an	AcMapMap	object.

2.	 Creates	an	MgSelectionBase	object	using	the	AcMapMap	object	as
a	constructor	argument.

3.	 Uses	the	MgLayerBase	argument	to	get	the	feature	source’s	schema
and	class	names.

4.	 Uses	the	MgLayerBase	argument	to	create	an
MgResourceIdentifier	object	for	the	layer’s	feature	source.

5.	 Uses	an	MgFeatureService	object,	the
MgResourceIdentifier	object,	and	the	schema	and	class	names	to
get	the	MgClassDefinition	object	for	the	feature	source.

6.	 Uses	the	MgClassDefinition	object	to	the	get	the	class’s	identity	property
definitions.

7.	 Adds	the	name	of	each	identity	property	definition	to	an
MgFeatureQueryOptions	object	and	to	a	string	collection.

8.	 Uses	an	MgFeatureService	object,	the
MgResourceIdentifier	object,	the	MgFeatureQueryOptions
object,	and	the	fully	qualified	feature	class	name	(<schemaName>:
<className>)	to	select	features	from	the	feature	source	and	put	them	in
an	MgFeatureReader	object.

9.	 For	each	feature	in	the	reader	does	the	following:

Puts	the	feature	properties	into	an	MgPropertyCollection	object.
This	is	described	in	topic	ReadFeature.



Gets	the	value	of	the	identity	property	from	the	property
collection.

Adds	the	identity	property	value	to	the	MgSelectionBase
object.

10.	 Uses	the	MgSelectionBase	object	to	select	features	in	the
AcMapMap	object.

11.	 Uses	the	AcMapMap	object	to	highlight	the	selected	features.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


IsGridLayer
	
	
	

Returns	true	if	the	specified	layer	object	is	a	grid	layer.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


IsReadOnlyProperty
	
	
	

Returns	True	if	the	specified	property	is	read-only.	This	method	takes	four
parameters:	the	property	name,	the	feature	class	name,	a	FeatureSourceType
object	representing	the	feature	source	definition,	and	a	LayerDefinition
objectrepresenting	the	layer	definition.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


MakeDefaultStyle
	
	
	

This	method	creates	a	VectorLayerDefinitionType	with	a	hard-coded	default
style	depending	on	the	geometry	type.	The	geometry	type	is	specified	by	an
integer	which	is	set	to	one	of	the	values	of	the	MgFeatureGeometricType
enumeration.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


MakeDefaultStyleForCurve
	
	
	

This	method	creates	a	VectorLayerDefinitionType	with	a	hard-coded	default
style	for	features	with	a	curve	geometry	type.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Print	and	PrintLn
	
	
	

These	methods	will	print	a	line	of	text	to	the	Map	3D	command	line.	The
PrintLn	method	will	also	add	a	carriage	return	at	the	end	of	the	string.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


ReadFeature
	
	
	

This	method	reads	the	properties	of	a	feature	from	a	feature	reader	object.	It
takes	two	arguments:	an	OSGeo.MapGuide.MgFeatureReader	object	and
a	list	of	the	names	of	the	properties	contained	in	the	feature.	It	returns	an
OSGeo.MapGuide.MgPropertyCollection	object	containing	all	of	the
properties.	It	does	the	following:

1.	 Creates	an	MgPropertyCollection	object.

2.	 For	each	name	in	the	property	name	list	argument,	it	uses	the
MgFeatureReader	object	to	get	its
OSGeo.MapGuide.MgPropertyType,	creates	the	appropriate
instance	of	a	class	derived	from	OSGeo.MapGuide.MgProperty,
and	adds	this	instance	to	the	MgPropertyCollection	object.	It	uses
the	property	name	and	the	MgFeatureReader	object	to	create	the
property	class	instance.

3.	 Returns	the	MgPropertyCollection	object.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


ToFdoDataType
	
	
	

This	method	converts	an	integer	value	representing	one	of	the	MgPropertyType
data	types	to	the	equivalent	FDO	data	type	and	returns	the	corresponding
OSGeo.FDO.Schema.DataType	value.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


BuildMap
	
	
	

Topics	in	this	section

Running	the	Sample
Code	Walkthrough

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Running	the	Sample
	
	
	

After	loading	the	BuildMap.dll	into	Map	3D,	scroll	through	the	command-line
output	to	see	five	lines	of	response	text:

1.	 BuildMap	sample	application	initialized.

2.	 PROMPT:	BuildMap	sample	commands:

3.	 -	BuildMap	<Case	1>

4.	 -	GisOperation	<Case	2>

5.	 -	ChangeStyle	<Last	step	of	Case	2,	repeatable>

At	the

Command:
prompt	enter	the	command	BuildMap.

Note Before	running	this	command,	edit	BuildMap\Data\Raster\bayarea.xml	and
replace	the	value	of	the	Location	element’s	name	attribute	with	the	local	absolute
path	to	the	Redding.JPG	file,	for	example,	<ObjectARX	rood	folder>\Map
Samples\Platform\BuildMap\Data\Raster.

As	a	result,	you	see	a	map	appear	in	the	drawing	pane	as	shown	in	the	screen
shot.	This	map	is	derived	in	part	from	the	contents	of	the	bayarea.jpg	file	that	is
located	in	the	BuildMap\Data\Raster\	folder.	If	you	scroll	through	the	command-
line	output,	you	see	following	response	text

Command:
_zoom,

Specify	corner	of	window,	enter	a	scale	factor	(nX	or	nXP),	or
[All/Center/Dynamic/Extents/Previous/Scale/Window/Object]	<real	time>:

_extents,	and	Regenerating	model..



At	the

Command:
prompt	enter	the	command	GisOperation.	The	layer	containing	the	point
features	is	made	invisible,	and	the	replacement	of	some	of	the	polygon	features
with	buffered	polygon	features,	which	have	a	different	color.



At	the

Command:
prompt	enter	the	command	ChangeStyle.	The	result	is	a	change	in	the	color
of	the	buffered	polygon	features	created	by	the	GisOperation	command.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Code	Walkthrough
	
	
	

Topics	in	this	section

Entry	Point
BuildMap
GisOperation
ChangeStyle

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Entry	Point
	
	
	

When	you	netload	the	BuildMap.dll,	you	cause	the	Initialize	method	of	the
AppEntry	class	in	Commands.cs	to	run.

The	Initialize	method	prints	the	message	BuildMap	sample	application
initialized.	to	the	Map	command-line.	It	creates	an	instance	of	the	Commands
class,	which	is	also	defined	in	Commands.cs.	It	then	calls	the
CmdListCommand	method	on	this	instance.

The	CmdListCommand	method	prints	the	other	four	lines	of	response	text
found	in	the	command-line	area.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


BuildMap
	
	
	

When	you	enter	the	BuildMap	command	on	the	Map	command-line,	you	cause
an	instance	of	the	Implementation	class	to	be	created	and	its	BuildMap	method
to	be	executed.	The	BuildMap	method	loads	three	files	into	the	Resource
Service	repository:	a	raster	file	(Data\Raster\Redding.JPG)	containing	a	jpeg
map	of	Redding,	California,	and	two	SDF	files,	(Data\SDF\Zoning.sdf
containing	polygons	representing	zoning	in	Redding	and	Data\SDF\Signals.sdf
containing	points	representing	traffic	lights	within	Redding.

The	steps	for	loading	the	SDF	files	are	described	in	ConnectToSdfFile.

The	steps	for	loading	the	raster	file	are	the	same	except	for	the	additional	step	of
storing	raster	configuration	data	in	the	repository	using	the	same
MgResourceIdentifier	object	used	to	identify	the
FeatureSourceType	object	for	the	raster	file..	The	raster	configuration	data
is	contained	in	Data\Raster\Redding.xml.	The	contents	of	the	xml	file	are	read,
serialized,	converted	into	an	array	of	bytes	and	then	stored	in	the	Resource
Service	repository.

This	configuration	file	contains	feature	schema	and	coordinate	system
definitions	for	the	raster	file.	You	do	not	need	to	add	this	additional
configuration	information	for	the	sdf	files	since	it	is	already	contained	in	them.

BuildMap	creates	layer	definitions	for	the	features	in	each	SDF	file	and	for	the
raster	in	the	jpeg	file	and	adds	them	to	the	current	map.	This	is	described	in	the
topic	AddAllToMap.

Note Each	of	the	SDF	files	has	only	one	feature	schema	and	each	schema	has
only	one	class,	and	each	class	has	one	geometry	property.

The	following	graphics	are	the	three	layers	from	the	three	files.

Redding.JPG



Zoning.sdf



Signals.sdf



Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


GisOperation
	
	
	

When	you	enter	the	GisOperation	command	on	the	Map	command-line,	you
cause	an	instance	of	the	Implementation	class	to	be	created	and	its
PerformGisOperations	method	to	be	executed.	This	method	does	the
following:

1.	 Uses	OSGeo.MapGuide.AcMapMap	to	get	the	current	map

2.	 Uses	the	current	map	to	get	the	layers	as	an
OSGeo.MapGuide.MgLayerCollection	object.	There	are	three
layers:	two	vector	data	layers	and	one	raster	data	layer.	The	two	vector
data	layers	contain	the	polygons	from	the	Zoning.sdf	file	and	the	points
from	the	Signals.sdf	file.

3.	 Creates	an	OSGeo.FDO.Schema.FeatureSchema	object.	This
feature	schema	will	contain	the	FDO	class	definitions	from	the	two
layers	that	contain	vector	data.	For	each
OSGeo.MapGuide.MgLayerBase	object	in	the
MgLayerCollection	object,	it	does	the	following:

Gets	the	feature	class	name	from	the	layer.	The	feature	class	name
has	the	form	<schemaName>:<className>.	If	the
<schemaName>	is	rasters,	the	layer	is	ignored.

Extracts	from	the	MgLayerBase	object	the	string	representing
the	feature	source	identifier	for	the	SDF	file,	which	is	the	source
of	the	features	for	the	layer.

Uses	the	feature	source	identifier	for	the	SDF	file	together	with
the	<schemaName>	and	the	<className>	to	create	an
OSGeo.FDO.Schema.FeatureClass	object.	This	is
described	in	topic	CreateFdoFeatureClass.

Adds	the	FeatureClass	object	to	the	FeatureSchema



object.

Get	the	Well-Known-Text	(WKT)	string	specifying	the	coordinate
system	used	for	the	layer.	This	is	described	in	the	topic
GetCoordSysWkt.

4.	 Creates	an	sdf	file	called	Combined.sdf	which	has	the	feature	schema
created	in	the	previous	step	and	the	coordinate	system	from	the	first
layer	processed	in	the	previous	step.	This	is	described	in	the	topic
CreateSdfFile.

5.	 Creates	an	MgResourceIdentifier	for	Combined.sdf	and	stores
the	identifier	in	the	Resource	Service	repository.	This	is	described	in	the
topic	ConnectToSdfFile.

6.	 Copies	the	features	from	Signals.sdf	and	Zoning.sdf	into	Combined.sdf.
The	operations	are	performed	using	the	MgResourceIdentifier
objects	for	the	three	SDF	files.	This	is	described	in	the	topic
CopyFeatures.

7.	 Make	all	of	the	layers	in	the	current	map	invisible.

8.	 Creates	a	layer	for	each	of	the	classes	in	Combined.sdf	and	adds	them	to
the	current	map.	This	is	described	in	the	topic	AddAllToMap.

9.	 Selects	a	subset	of	the	polygon	features	from	the	Combined.sdf	file	and
applies	a	buffer	operation	on	them.	This	starts	off	with	creating	an
OSGeo.MapGuide.MgFeatureQueryOptions	object	and
configuring	it	with	a	filter	string.	The	rest	is	described	in	topic	Apply	A
Buffer	Operation	To	Features.	The	buffering	operation	returns	an
MgBatchPropertyCollection	object.	This	object	contains	a
collection	of	MgPropertyCollection	objects.	Each
MgPropertyCollection	object	contains	the	properties	of	one
feature	including	the	default	geometry	property,	which	has	had	the
buffering	operation	applied	to	it.

10.	 Check	for	the	existence	of	a	file	and	if	it	exists,	delete	it.	This	file	would
have	been	created	by	a	previous	invocation	of	the	GisOperation
command.

11.	 Creates	a	new	feature	schema	with	a	class	definition	which	is	identical	to
that	of	the	polygon	feature	class	definition	contained	in	the



Combined.sdf	file	except	that	the	feature	class	and	geometry	property
names	are	different	and	the	geometry	property	GeometryTypes	attribute
is	MgFeatureGeometricType.Surface.

12.	 Creates	the	Buffered.sdf	file	with	the	schema	created	in	the	previous	step
and	the	coordinate	system	from	the	Combined.sdf	file.

13.	 Creates	an	MgResourceIdentifier	for	Buffered.sdf	and	stores	the
identifier	in	the	Resource	Service	repository.

14.	 Loop	through	the	MgBatchPropertyCollection	object	and	use
MgFeatureCommandCollection,	MgInsertFeatures,	and
MgFeatureService	objects	to	insert	the
MgPropertyCollection	objects	into	the	Buffered.sdf	file.

15.	 Creates	a	layer	from	the	features	in	the	Buffered.sdf	file	and	adds	this
layer	to	the	current	map.	This	is	described	in	topic	AddAllToMap.

16.	 Makes	the	Redding	zoning	areas	and	the	Redding	jpeg	layers	visible.

17.	 Changes	the	color	of	the	buffered	features	layer	in	the	current	map.	This
is	described	in	topic	ChangeSurfaceLayerStyle.

Topics	in	this	section

Apply	A	Buffer	Operation	To	Features

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Apply	A	Buffer	Operation	To	Features
	
	
	

This	method	takes	four	arguments:	an	MgResourceIdentifier	object
identifying	the	feature	source,	the	name	of	a	schema	in	the	feature	source,	the
name	of	a	class	in	the	schema,	and	an
OSGeo.MapGuide.MgFeatureQueryOptions	object.	It	returns	an
OSGeo.MapGuide.MgBatchPropertyCollection	object.	It	does	the
following:

1.	 Uses	an	MgFeatureService	object	and	the	four	arguments	to	create
an	OSGeo.MapGuide.MgFeatureReader	object	containing	the
features	specified	by	the	MgFeatureQueryOptions	object.

2.	 Use	the	MgFeatureService	object	to	create	an
OSGeo.MapGuide.MgClassDefinition	object	for	the	class
identfied	by	the	class	name	argument.

3.	 Use	the	MgClassDefinition	object	to	create	an
OSGeo.MapGuide.MgPropertyDefinitionCollection

object	containing	all	of	the	class’s	property	definitions.

4.	 Get	the	property	names	from	the
OSGeo.MapGuide.MgPropertyDefinition	objects	in	the
MgPropertyDefinitionCollection	object.

5.	 Get	the	name	of	the	default	geometry	property	from	the
MgClassDefinition	object	and	remove	this	name	from	the	property
names	retrieved	in	the	previous	step.

6.	 Create	an	MgBatchPropertyCollection	object.	This	will	hold
the	set	of	MgPropertyCollection	objects,	which	are	the	result	of
applying	the	buffering	operation	to	the	geometries	in	the	features	in	the
MgFeatureReader	object

7.	 Loop	through	the	MgFeatureReader	object.	For	each	feature	do	the



following:

Create	an	MgPropertyCollection	object	containing	all	of
the	feature’s	properties	except	the	default	geometry	property.

Get	the	feature’s	default	geometry	property	and	put	it	in	an
MgByteReader	object.

Use	an	MgAgfReaderWriter	object	to	convert	the
MgByteReader	object	to	an	MgGeometry	object.

Apply	a	buffer	operation	to	the	MgGeometry	object	and	store
the	results	in	a	new	MgGeometry	object.

Use	the	MgAgfReaderWriter	object	to	conver	the	new
MgGeometry	object	to	an	MgByteReader	object.

Use	the	MgByteReader	object	containing	the	buffered
geometry	to	create	an	MgGeometryProperty	object.

Add	the	MgGeometryProperty	object	to	the
MgPropertyCollection	object	extracted	from	the
MgFeatureReader	object.

Add	the	MgPropertyCollection	object	to	the
MgBatchPropertyCollection	object.

8.	 Return	the	MgBatchPropertyCollection	object.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


ChangeStyle
	
	
	

When	you	enter	the	ChangeStyle	command	on	the	Map	command-line,	you
cause	an	instance	of	the	Implementation	class	to	be	created	and	its
ChangeStyle	method	to	be	executed.

The	ChangeStyle	method	gets	the	current	map,	gets	the	layers	in	the	current
map,	loops	through	the	layers	until	it	finds	the	layer	containing	the	buffered
features	and	then	calls	the	ChangeSurfaceLayerStyle	method	with	the
buffered	features	layer	as	an	argument.

The	ChangeStyle	method	changes	the	color	of	the	buffered	features	layer	in
the	current	map.	This	is	described	in	topic	ChangeSurfaceLayerStyle.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Classify
	
	
	

Topics	in	this	section

Running	the	Sample
Code	Walkthough

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Running	the	Sample
	
	
	

To	load	the	sample,	type	NetLoad	on	the	command	prompt.	Select	Classify.dll	in
the	file	browser.

This	samples	requires	the	ClassifyManholes.dwg	file.	Be	sure	that	document	is
open	before	running	this	sample.	To	run	the	sample,	type	ClassifyManholes	on
the	command	line.

This	sample	demonstrates	how	to	convert	AutoCAD	entities	with	object	data	to
FDO	features.	It	also	shows	how	to	find	AutoCAD	entities	that	intersect	with
features,	and	how	to	upload	feature	data	to	an	FDO	data	store.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Code	Walkthough
	
	
	

Topics	in	this	section

ClassifyManholes

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


ClassifyManholes
	
	
	

The	ClassifyManholes	command	activates	the	Classify	entry	point	method	of	the
Commands	class.	This	entry	point	calls	the	DoWork	method	of	the	Implement
class	which	handles	the	entire	operation	of	the	sample.	DoWork	does	the
following:

1.	 Get	the	base	Layer	object.

2.	 Calls	PromptUserToSelectRoads.	This	function	prompts	the	user	to
select	features	from	the	document.	It	also	prompts	the	user	to	type	in	a
double	which	represents	the	buffer	distance.	These	values	are	returned.

3.	 Checks	the	return	values	of	PromptUserToSelectRoads.	If	the	user	did
not	select	any	features	or	if	the	selected	features	come	from	more	than
one	layer,	the	sample	ends.

4.	 DoWork	creates	and	sets	a	filter	by	calling	the
MgSelectionBase.GenerateFilter	and
MgFeatureQueryOptions.SetFilter	API	methods.

5.	 Calls	the	DoBuffer	function.	This	function	selects	all	features	in	the
specified	layer	according	to	the	filter	that	was	just	created.	It	goes	to	the
layer	class	definition	and	gets	the	property	names	for	all	properties.	It
then	loops	through	all	the	selected	features,	extracting	the	properties	for
each	feature	and	placing	them	in	a	collection	of	type
MgBatchPropertyCollection.	The	collection	is	then	returned.

6.	 Extracts	the	schema	and	feature	class	name	by	using	the
AcMapLayer.FeatureClassName	API	property.

7.	 Calls	the	SaveAndAddBufferLayer	function.	It	first	creates	an	FDO
feature	class	object	using	the	utility	method	CreateFdoFeatureClass.	It
creates	a	new	schema	structure	and	assigns	the	FDO	feature	class	to	the
schema.	It	then	calls	the	utility	method	CreateSdfFile	to	create	the	SDF
file	with	the	specified	schema.	SaveAndAddBufferLayer	then	connects



to	the	SDF	file	using	the	ConnectToSdfFile	utility	method.	Each	of	the
property	sets	are	then	examined	and	each	of	the	geometry	properties	are
renamed	to	“BufferedRoadsGeometry”.	It	then	uses	a	FeatureService
object	(which	it	obtains	using	the	utility	class)	to	run	a
MgFeatureCommandCollection	command	to	insert	all	of	the	FDO
feature	classes	into	the	feature	source	(the	SDF	file).	The	feature	classes
in	the	SDF	file	then	read	and	drawn	into	the	map	pane	into	a	new	layer.
A	reference	to	this	new	layer	is	obtained,	and	it	is	made	visible.	The
reference	to	the	SDF	file	is	returned.

8.	 Calls	FindManholesInBuffer	to	find	the	manholes	that	intersect	with
buffer	geometry	and	then	upload	those	manholes	as	point	features	to	a
SDF	file.	Using	the	TransactionManager	object	for	the	current
document’s	database,	it	loops	through	all	entities	in	the	database	for
manholes.	The	geometry	of	each	manhole	is	modified	by	the
GetCircleGeometry	helper	function,	which	creates	a	circle-type	shape
out	of	two	arcs.	Using	the	GeometryIntersects	helper	function,	each
manhole	is	also	compared	to	every	other	feature	to	see	if	it	intersects.	If
so,	its	Id	is	added	a	collection	of	object	Id’s,	which	is	then	returned.

9.	 Calls	UploadManholes	to	create	a	SDF	file	for	manholes	and	save	all
manhole	information	to	it.	First,	UploadManholes	gets	a	reference	to	the
database	transaction	manager.	It	then	gets	the	table	of	all	manhole
features,	and	creates	a	SDF	file	from	the	table	schema	and	data	using	the
function	CreateManholeSDF.	UploadManholes	then	loops	through
all	the	manhole	features.

10.	 UploadManholes	calls	the	function	UploadManhole	for	each	manhole
feature.	Using	the	database	transaction	manager,	it	obtains	the	Circle
object	representing	the	manhole,	extracts	the	position,	and	creates	a	new
property	containing	the	position	information.	It	then	loops	through	all
the	column	definitions	of	the	manhole	table,	creates	FDO	property
equivalents	for	each,	and	adds	them	to	the	manhole	feature	object.
Finally,	it	adds	the	position	property	created	earlier	to	the	feature,	which
is	then	returned.

11.	 UploadManholes	adds	each	of	the	features	returned	by	UploadManhole
to	a	MgBatchPropertyCollection	collection	of	features.	It	then	uses	a
FeatureService	object	(which	it	obtains	using	the	utility	class)	to	run	a
MgFeatureCommandCollection	command	to	insert	all	of	the	FDO



feature	classes	into	the	feature	source	(the	SDF	file).	The	features	are
added	to	the	document	using	the	utility	function	AddAllToMap.
UploadManholes	then	obtains	a	reference	to	the	layer	containing	the
manhole	features	and	selected	and	highlights	all	manholes.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


EditSetViewer
	
	
	

Topics	in	this	section

Running	the	Sample
Code	Walkthough

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Running	the	Sample
	
	
	

This	sample	accesses	a	feature	source	within	a	MySQL	database	using	hard-
coded	values	in	the	Commands	method	of	the	Commands.cs	file.	Modify	the
sample	code	to	suit	your	configuration	before	compiling	and	using	the	sample.

To	load	the	sample,	type	NetLoad	at	the	command	prompt.	Select
EditSetViewer.dll	in	the	file	browser.

To	run	the	sample,	first	type	Prepare	at	the	command	prompt.	Once	the	features
in	the	MySql	feature	source	are	loaded,	type	EditSetViewer.	This	will	bring	up
the	EditSet	Viewer	window.

To	use	the	EditSet	Viewer	window,	select	a	layer	in	the	combo	box	to	see	the
features	cached	by	the	layer.	Click	the	Refresh	button	on	the	viewer	dialog	when
you	want	to	re-query	the	features	in	the	EditSet.	You	can	select	a	row	and	press
the	Del	key	to	delete	a	feature.	You	can	modify	the	data	directly	in	the	grid	as
well.	Click	the	Apply	button	to	save	the	changes	to	EditSet.

This	sample	demonstrates	how	to	connect	to	a	MySql	provider	and	query
features	from	the	feature	source.	It	also	demonstrates	how	to	access	the	EditSet
object	from	AcMapLayer	and	manipulate	the	set	of	features	using	that	object.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Code	Walkthough
	
	
	

Topics	in	this	section

Prepare
EditSetViewer
Viewer	user	control

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Prepare
	
	
	

The	Prepare	method	does	the	following:

1.	 Uses	the	CreateFeatureSourceDefinition	utility	method	to	create	the
XML	data	for	connecting	to	a	MySql	feature	source	given	a	set	of
connection	settings	hard-coded	within	the	Prepare	method	source.

2.	 Uses	the	GetNewResourceId	function	to	generate	a	resource	Id	value
that	is	not	currently	used.

3.	 Passes	the	resource	Id	to	the	TestConnection	method	of	the
FeatureService	object.	If	the	connection	does	not	work,	an	error	message
is	printed	and	Prepare	exits.

4.	 Calls	the	utility	method	AddAllToMap	to	add	all	the	features	in	the
MySql	feature	source	to	the	document.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


EditSetViewer
	
	
	

The	EditSetViewer	command	calls	the	EditSetViewerCommand	method,	which
does	the	following:

1.	 Create	a	window	based	on	the	PaletteSet	style	with	the	caption	"Edit	Set
Viewer".

2.	 Set	the	style	of	the	EditSet	Viewer	window.	This	controls	things	like
showing	the	menu	or	making	the	window	dockable	within	the	Map	3D
user	interface.

3.	 Adds	event	handlers	for	the	PaletteSetDestroy	and	StateChanged	events.
In	response	to	a	StateChanged	event,	the	PaletteSetStateChanged
function	is	called	and	will	set	the	keyboard	focus	to	the	window
whenever	it	is	shown.	In	response	to	a	PaletteSetDestroy	event,	the
PaletteSetDestroy	function	is	called	to	clean	up	the	event	handlers.

4.	 Adds	the	Viewer	user	control	to	the	window.	The	Viewer	user	control	is
defined	in	the	Viewer.cs	file	of	the	EditSetViewer	project.

5.	 Make	the	window	visible	by	setting	the	Visible	property	of	the	window
to	True.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Viewer	user	control
	
	
	

The	Viewer	user	control	consists	of	a	data	grid	control	and	a	series	of	controls	on
a	tool	strip.	When	first	created,	the	user	control	performs	the	following	actions:

1.	 Instantiate	a	global	object	representing	a	single	cell	and	set	its	color.
Later	this	cell	will	be	used	as	a	template	for	those	cells	in	the	data	view
that	hold	information	that	cannot	be	modified.

2.	 Call	UpdateLayersComboBox.	This	function	calls	the	GetLayerNames
function,	which	uses	the	AcMapMap.GetCurrentMap	API	method	to	get
the	current	AcMapMap	object,	loops	through	all	layers	in	that	object,
builds	a	string	array	with	the	names	of	each	of	the	layers,	and	returns	the
string	array.	UpdateLayersComboBox	then	adds	the	names	in	the	string
array	to	the	cbLayers	combo	box,	which	is	on	the	tool	strip.

The	following	are	the	actions	taken	by	the	Viewer	user	control	in	response	to
user	input:

EditSetViewer	-	Resize	event.

1.	 Resize	the	data	grid	to	correctly	fit	within	the	new	window	size.

btnRefreshLayers	-	Click	event

1.	 Calls	UpdateLayersComboBox,	which	clears	the	cbLayers
combo	box	and	fills	it	with	a	new	list	of	all	the	layers	in	the
current	Map	document.

cbLayers	-	Selected	Value	Changed	event

1.	 Calls	the	UpdateFeatureGrid	method	to	redraw	the
dataGridFeatures	data	grid	using	features	from	the	newly
selected	layer	name.	UpdateFeatureGrid	first	gets	the	current
AcMapMap	map	object	using	the	AcMapMap.GetCurrentMap
API	method.	It	then	loops	through	all	the	layers	in	the
AcMapMap	map	object	to	find	the	one	with	the	same	name	as



the	item	selected	in	the	cbLayers	combo	box.	When	it	finds	the
right	layer	object,	it	then	calls	that	layer’s
GetIdsOfEditSetFeatures	method	which	returns	a	collection	of
properties	for	a	series	of	features.	It	then	calls	the
BuildDataTable	function.

2.	 BuildDataTable	fills	the	data	grid	with	information	from	the
collection	of	features.	First,	it	creates	a	Windows	DataTable
object	to	store	the	data	in.	It	then	gets	the	class	definition	for	the
selected	layer.	The	list	of	identity	properties	is	retrieved	from	the
class	definition.	A	loop	adds	a	new	column	in	the	data	grid	for
each	identity	property.	The	list	of	regular	properties	is	then
retrieved	from	the	class	definition,	and	a	loop	similarly	adds	a
new	column	in	the	data	grid	for	each	regular	property.
BuildDataTable	then	loops	through	each	individual	feature’s
properties	from	the	collection	of	all	feature’s	properties	returned
from	GetIdsOfEditSetFeatures.	A	query	filter	is	created	by
adding	together	all	the	property	names	with	a	string	containing
the	“AND”	operator.	The	filter	is	used	in	a	query	sent	to	the
layer	object	using	the	SelectFeatures	API	method,	and	the	results
of	the	query	are	returned	in	a	MgFeatureReader	object.	The	data
values	for	each	of	the	properties	in	the	MgFeatureReader	are
then	added	to	a	row	of	the	data	table.	When	this	process	is
complete,	the	data	table	object	is	returned.

3.	 Calls	SetDataSource	with	the	data	table	returned	from
BuildDataTable.	This	function	sets	the	data	source	of	the
dataGridFeatures	data	grid	view	control	to	the	data	table.	It	also
changes	all	cells	in	columns	containing	read-only	data	to	the
style	specified	by	the	global	ReadOnlyCellStyle	object.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


FeatureExplorer
	
	
	

Topics	in	this	section

Running	the	Sample
Code	Walkthough

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Running	the	Sample
	
	
	

Note This	sample	uses	the	Windows	Presentation	Foundation	(WFP)	to	define	the
form.	To	compile	this	sample	you	will	first	need	to	download	and	install	the
“Visual	Studio	2005	extensions	for	.NET	Framework	3.0	(WCF	&	WPF)”
update	which	can	be	obtained	from	the	Microsoft	web	site.

Note This	sample	uses	a	third-party	datagrid	component	from	Xceed
(http://xceed.com).	A	free	version	of	this	component	(called	“Xceed	DataGrid
for	WPF	Express	Edition”)	can	be	downloaded	from	their	web	site.	In	order	for
this	control	to	function,	you	need	to	register	the	component	and	obtain	a	license
key.	Then	add	this	line	at	the	top	of	the	FeatureExplorerControl	constructor:
Xceed.Wpf.DataGrid.Licenser.LicenseKey	=	"XXXXX-XXXXX-

XXXXX-XXXX";	with	the	correct	key	as	the	string.

To	load	the	sample,	type	NetLoad	at	the	command	prompt.	Select
FeatureExplorer.dll	in	the	file	browser.

To	run	the	sample,	first	load	some	layers	from	a	FDO	source.	Then	type
FeatureExplorer	at	the	command	prompt.

There	are	two	tabs	in	the	FeatureExplorer	form.	The	Layer	Data	tab	lists	all
features	in	the	specified	layer	and	is	controlled	by	a	horizontal	scrollbar	at	the
bottom	of	the	form.



Layer	Data	Tab

The	Selected	Data	tab	lists	those	features	that	have	been	selected.	When	you	first
activate	the	tab,	it	only	displays	a	header	with	the	total	number	of	selected
features.	Press	the	arrow	button	to	the	right	of	the	count	to	list	all	selected
features	with	their	properties.



Selected	Data	Tab

It	provides	options	for	saving	the	features	listed	to	a	separate	SDF	file,	and	for
creating	a	simple	filter	to	select	a	different	set	of	features.

Filter	Condition	for	Selected	Features



This	sample	demonstrates	how	to	show	feature	attributes	of	a	layer	in	a	data	grid
control	through	data	binding.	It	also	demonstrates	how	to	show	feature	attributes
of	layers	and	how	to	create	an	SDF	file	with	the	set	of	selected	features.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Code	Walkthough
	
	
	

Topics	in	this	section

Entry	Point
FeatureExplorerControl	user	control

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Entry	Point
	
	
	

The	FeatureExplorer	command	sets	up	and	displays	the	form	containing	the
FeatureExplorerControl	control.

The	FeatureExplorer	command	does	the	following:

1.	 Calls	the	ShowFeatureExplorer	method	of	the	FeatureExplorerHost
class.

2.	 ShowsFeatureExplorer	creates	a	PaletteSet	object,	which	is	a	dockable
AutoCAD	window	that	serves	as	the	container	for	the	sample’s	controls.
The	style,	location,	and	size	of	the	PaletteSet	window	is	defined.

3.	 ShowsFeatureExplorer	then	creates	a	FeatureExplorerControl	object.
This	control	is	then	placed	in	the	PaletteSet.

4.	 Makes	the	PaletteSet	window	visible.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


FeatureExplorerControl	user	control
	
	
	

When	the	FeatureExplorerControl	is	first	created,	it	does	the	following:

1.	 Adds	events	handlers	for	when	the	items	in	the	data	grid	are	modified,
when	the	view	of	the	data	grid	is	changed,	and	a	property	in	the	grid	is
changed.

2.	 Gets	a	reference	to	the	current	map,	an	object	of	type	AcMapMap.

3.	 Creates	a	data	binding	object	and	assigns	the	current	map’s	list	of	layers
as	the	data	source.

4.	 Creates	a	Windows	Forms	combo	box	object	to	wrap	the	WPF	combo
box,	which	does	not	have	a	data	binding	feature.	It	then	connects	the
combo	box	to	the	previously	created	data	binding.	The	combo	box	will
now	always	list	the	names	of	all	the	layers	in	the	current	Map	document.

5.	 Add	event	handlers	for	when	features	are	selected	or	deselected	in	the
current	Map	document.

The	following	are	the	actions	taken	by	the	FeatureExplorerControl	user	control
in	response	to	user	input:

OnGridSelectedItemsChanged	-	Modifies	the	list	of	selected	features
in	the	document	to	match	changes	of	selected	features	in	the
FeatureExplorer	form.

1.	 Creates	an	instance	of	the	MgPropertyDefinitionCollection	class
to	hold	the	property	names	from	the	layer’s	class	definition.

2.	 Creates	an	instance	of	the	MgBatchPropertyCollection	class	to
hold	all	the	properties	of	all	the	features	to	be	displayed	in	the
grid.

3.	 Loops	through	all	the	selected	rows	in	the	grid.

4.	 For	each	row,	creates	a	MgPropertyCollection	object.	It	then



loops	through	all	the	property	definitions	in	the
MgPropertyDefinitionCollection	object	to	find	property	titles
that	match	column	titles	in	the	data	grid.	When	a	match	is	found,
creates	a	new	MgProperty	object	to	contain	the	property	name
and	value	pair,	and	adds	it	to	the	MgPropertyCollection	object.	It
then	adds	the	MgPropertyCollection	object	representing	a	single
feature	to	the	MgBatchPropertyCollection	object,	which	will
contain	the	new	list	of	selected	features.

5.	 Calls	the	AcMapFeatureEntityService.UnhighlightFeatures
method	to	unhighlight	the	currently	selected	features	in	the
document.

6.	 Builds	a	AcMapSelection	object	with	the	list	of	features	in	the
MgBatchPropertyCollection	object.

7.	 Calls	the	AcMapFeatureEntityService.HighlightFeatures	method
to	highlight	the	new	list	of	selected	features.

OnGridViewChanged	-	Responds	to	requests	to	change	the	theme	of
the	data	grid.

1.	 Calls	the	SetTheme	function	to	change	the	appearance	of	the
data	grid	control.

layers_SelectionChanged

1.	 Gets	the	AcMapLayer	object	associated	with	the	currently
selected	layer	in	the	layers	combo	box	through	the	data	binding.

2.	 Creates	a	MgFeatureReader	object	to	hold	the	collection	of
selected	features	within	the	layer	and	a	MgClassDefinition
object	to	hold	the	layer	class	definition.

3.	 Using	both	the	MgFeatureReader	object	and	the
MgClassDefinition	object,	calls	the	GetFeatures	function	to	get	a
MgBatchPropertyCollection	object	containing	all	the	property
collections	of	all	the	selected	features.

4.	 Calls	the	BindDataGrid	function	to	create	a	DataTable	of	the	list
of	selected	features	and	to	bind	the	data	grid	to	this	DataTable.

tabControl_SelectionChanged



1.	 Gets	a	reference	to	the	TabItem	object	representing	the	new
selection	in	the	tabControl	control.

2.	 If	the	user	selected	the	tab	to	list	all	features,	then	the	function
ends.	If	the	user	selected	the	tab	to	list	only	selected	features,
then	the	function	continues.

3.	 Gets	a	reference	to	the	AutoCAD	Editor	object.

4.	 Calls	the	Editor.SelectImplied	method,	which	makes	the	editor
think	that	a	selection	happened.	This	means	that	the
ed_SlectionAdded	event	will	fire,	and	it	will	be	passed	a	list	of
the	already	selected	items.

ed_SelectionAdded	-	Triggered	when	features	in	the	document	are
selected.

1.	 Calls	the	ShowFeatures	function	with	the	list	of	just	selected
items.

2.	 ShowFeatures	calls	the
AcMapFeatureEntityService.GetSelection	method	to	get	a	list	of
selected	items.

3.	 ShowFeatures	creates	a	MgReadOnlyLayerCollection	collection
of	all	the	layers	that	the	selected	features	reside	in.

4.	 For	each	layer,	Show	Features	uses	both	Windows	and	third	part
controls	to	create	a	list	of	grids	which	,	using	data-binding,	list
the	properties	of	the	selected	features	within	that	layer.	It	also
creates	the	saveToSDF,	SaveToExistingSDF,	and	filterBtn
buttons	and	adds	the	event	handlers	for	each.	The	saveToSDF
and	SaveToExistingSDF	buttons	are	given	tags	consisting	of	a
SelectedLayerData	object	containing	a	list	of	selected	features.

ed_SelectionRemoved	-	Triggered	when	features	in	the	document	are
deselected.

1.	 Calls	the	ShowFeatures	function	with	the	list	of	just	deselected
items.	See	ed_SelectionAdded	for	information	on	the
ShowFeatures	function.

SaveToExistingSDF_Click



1.	 Gets	the	SelectedLayerData	object	from	the	button	Tag	property
which	contains	a	list	of	selected	features.

2.	 Creates	an	OpenFileDialog	to	allow	the	user	to	select	an	existing
SDF	file.

3.	 Calls	the	SaveLayerData	function	to	add	the	selected	features	to
the	specified	SDF	file.

saveToSDF_Click

1.	 Gets	the	SelectedLayerData	object	from	the	button	Tag	property
which	contains	a	list	of	selected	features.

2.	 Creates	a	SaveFileDialog	to	allow	the	user	to	select	the	location
and	name	for	the	new	SDF	file.

3.	 Calls	the	SaveLayerData	function	to	create	a	new	SDF	file	and
add	the	selected	features	to	it.

expander_Expanded

1.	 Calls	the	OnGridViewChanged	function.

2.	 OnGridViewChanged	only	functions	when	the	“Layer	data”	tab
is	selected.

3.	 OnGridViewChanged	creates	a	Windows	Control	ScrollViewer
object	to	wrap	the	WPF	component	containing	all	the	controls	in
this	tab.

4.	 For	each	of	the	controls	in	the	tab,	OnGridViewChanged	checks
to	see	if	it	is	a	Xceed	DataGridControl.	If	it	is,	it	calls	the
SetTheme	function	to	set	the	graphical	style	of	that	grid	to	the
new	style.

filterBtn_Click

1.	 Creates	a	new	FilterSelectedDataWindow,	which	is	a	WPF	form
defined	in	the	FilterSelectedDataWindow.xaml	and
FilterSelectedDataWindow.xaml.cs	files.

2.	 Gets	the	SelectedLayerData	object	containing	a	list	of	selected
features	from	tbe	filterBtn	Tag	property.



3.	 Calls	the	AutoCAD	Application.ShowModalWindow	method	to
display	the	FilterSelectedDataWindow	form.

4.	 Retrieves	a	string	containing	the	filter	from	the	filterWindow
form.

5.	 Gets	the	MgBatchPropertyCollection	object	containing	the
selected	features	and	the	MgClassDefinition	object	containing
hte	feature	class	definition	from	the	SelectedLayerData	object.

6.	 Creates	an	instance	of	the	MgPropertyDefinitionCollection	class
to	hold	the	property	names	from	the	layer’s	class	definition.

7.	 each	feature’s	set	of	properties	in	the
MgBatchPropertyCollection	object

Note There	are	also	a	large	number	of	event	handlers	which	control	the
appearance	of	the	data	grid	control.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


FeatureInspector
	
	
	

Topics	in	this	section

Running	the	Sample
Code	Walkthough

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Running	the	Sample
	
	
	

Note This	sample	uses	the	Windows	Presentation	Foundation	(WFP)	to	define	the
form.	To	compile	this	sample	you	will	first	need	to	download	and	install	the
“Visual	Studio	2005	extensions	for	.NET	Framework	3.0	(WCF	&	WPF)”
update	which	can	be	obtained	from	the	Microsoft	web	site.

To	load	the	sample,	type	NetLoad	at	the	command	prompt.	Select
FeatureInspector.dll	in	the	file	browser.

After	you	load	the	sample	it	will	automatically	register	itself	into	Map	3D	and
the	FeatureInspector	palette	will	be	shown.	Add	a	vector	layer	into	Map	3D	from
an	SDF	feature	source.	Select	some	features	in	the	document,	and	the	selected
features	will	be	presented	in	the	FeatureInspector	palette.	If	you	close	the	palette,
you	can	show	it	again	by	typing	FeatureInspector	at	the	command	prompt.



The	navigation	buttons	in	the	FeatureInspector	can	be	used	to	change	which
features	in	the	layer	are	selected.	You	can	delete	selected	features	and	you	can
edit	the	selected	feature	properties	and	press	the	Update	button	to	save	your
changes.



The	UnregisterEvents	command	will	remove	the	event	handlers	that	cause	this
sample	to	respond	to	changes	in	the	document.	The	RegisterEvents	command
reconnects	those	event	handlers.

This	sample	demonstrates	how	to	get	selected	features	from	the	document	and
how	to	query	and	update	properties	of	the	selected	features.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Code	Walkthough
	
	
	

Topics	in	this	section

RegisterEvents
UnregisterEvents
FeatureInspector
User	Interface	Elements
InspectorForm	user	control

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


RegisterEvents
	
	
	

The	RegisterEvents	command	sets	up	the	event	handlers	used	by	the
FeatureInspector	to	respond	to	changes	in	the	active	documents.

The	RegisterEvents	command	does	the	following:

1.	 Calls	the	RegisterEventCommand	method	of	the	Commands	class.	This
method	accesses	the	static	Instance	property	of	the	EventRegister	class.
This	property	will	create	a	new	instance	of	EventRegister	if	one	does	not
already	exist.

2.	 Calls	the	RegisterEvents	method	of	EventRegister.	This	loops	through
all	open	documents	and	adds	an	event	handler	for	when	features	are
selected	or	unselected.	It	also	adds	event	handlers	to	respond	to	when
documents	are	created,	destroyed,	or	activated,	or	when	the	application
is	shutting	down.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


UnregisterEvents
	
	
	

The	UnregisterEvents	command	removes	the	event	handlers	used	by
FeatureInspector,	and	it	will	no	longer	respond	to	changes	in	the	active
documents.

The	UnregisterEvents	command	calls	the	UnregisterEventCommand	method	of
the	Commands	class.	This	method	accesses	the	static	Instance	property	of	the
EventRegister	class	to	call	the	UnregisterEvents	method.	This	method	removes
all	the	event	handlers	assigned	by	RegisterEvents.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


FeatureInspector
	
	
	

The	FeatureInspector	command	displays	the	FeatureInspector	form	if	it	has	been
closed.

The	FeatureInspector	command	triggers	the	FeatureInspectorCommand	method
of	the	Commands	class.	This	accesses	the	static	Instance	property	of	the
AttributesPalette	class	to	get	a	reference	to	the	one	instance	of	this	class.	If	the
instance	does	not	yet	exist,	the	Instance	property	creates	one.	This	includes
creating	a	new	PaletteSet	AutoCAD	dockable	window	an	a	new	Panel	Windows
user	control	which	is	placed	inside	the	PaletteSet.	FeatureInspectorCommand
then	calls	the	AttributesPalette’s	Show	method.	This	method	makes	sure	the
PaletteSet	window	is	visible	and	forces	a	redraw.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


User	Interface	Elements
	
	
	

The	user	interface	consists	of	three	parts,	the	class	that	controls	the	PaletteSet,
the	Windows	user	control	placed	in	the	PaletteSet	and	serves	as	a	container,	and
the	WPF	XAML	and	code	that	defines	all	the	controls	and	their	behavior.

AttributesPalette	-	AttributesPalette	is	the	class	that	creates	the
PaletteSet	dockable	window	from	the	AutoCAD	API.	It	is	designed	to	be
accessed	through	the	Instance	static	property	to	assure	that	only	one
instance	of	this	class	exists	as	one	time.	When	it	is	first	created,	it	creates
a	PaletteSet	object	and	a	Panel	user	control,	and	places	the	Panel	within
the	PaletteSet	window.	This	class	has	one	method	to	make	the	PalettSet
visible	or	invisible.	It	also	has	a	property	for	accessing	the	features
selected	in	the	underlying	form	called	FeatureSelection.

Panel	-	Panel	is	a	Windows	Forms	user	control	that	serves	as	a	container
for	a	WPF	user	control.	When	it	is	created,	the	Panel	creates	an	instance
of	the	InspectorForm	class	and	hosts	it.	It	also	has	a	property	that	allows
access	to	the	underlying	InspectorForm	object.	It	has	no	other	features,
but	is	required	because	the	PaletteSet	can	only	contain	controls	of	type
System.Windows.Forms.Control.

InspectorForm	-	InspectorForm	is	a	Windows	Presentation	Foundation
(WPF)	user	control	which	uses	XAML	to	define	the	visual	aspects	of
constituent	controls	and	a	code	layer	behind	to	define	their	behavior.
This	code	layer	contains	the	important	functionality	of	the
FeatureExplorer	sample.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


InspectorForm	user	control
	
	
	

The	following	are	the	actions	taken	by	the	InspectorForm	user	control	in
response	to	user	input:

layerComboBox	-	SelectionChanged	event
This	event	is	in	response	to	the	user	selecting	a	layer	from	the
layerComboBox	control.	It	will	set	the	internal	variables	so	that	the	rest
of	the	code	only	accesses	those	features	in	the	layer	specified.	The	list	of
all	selected	features	are	stored	in	the	_featureItems	array.	Each	layer’s
features	are	contiguous	within	the	array.

1.	 If	the	user	selected	the	“*	All	*”	item,	then	the	indexes	are	set	so
that	all	selected	features	can	be	accessed.

2.	 Otherwise,	it	loops	through	_featureItems	(the	list	of	all	selected
features)	until	the	first	feature	of	the	layer	specified	is	found.
The	index	for	this	first	feature	is	set.

3.	 It	then	loops	through	the	remaining	selected	features	until	the
last	feature	in	the	specified	layer	is	found.	The	index	for	the	last
item	is	set.

4.	 Calls	the	UpdateAttributeFields	function.	This	function	recreates
the	list	of	properties	for	the	selected	feature	because	different
features	have	different	numbers	and	kinds	of	properties.	This
function	first	gets	the	layer	of	the	displayed	feature,	and	then
calls	the	GetLayerDefinition	function	to	get	the	layer	definition
and	the	GetFeatureSource	function	to	get	the	layer	feature	source
id.	It	then	loops	though	all	properties	of	the	displayed	feature
and	calls	AddAttributeField	for	each	property.

5.	 UpdateAttributeFields	calls	the	AddAttributeField	function.
AddAttributeField	adds	a	new	row	to	the	detailsGrid	grid	control
and	then	places	a	label	and	(depending	on	the	type	of	the	feature



property)	a	text	box	or	combo	box	within	the	row.

6.	 After	the	loop,	UpdateAttributeFields	calls	the
ResetButtonStatus	function.	ResetButtonsStatus	modifies	the
enabled	status	of	each	of	the	navigation	buttons	in	the
InspectorForm	control.	It	makes	sure	the	user	does	not	select	the
previous	or	next	feature	buttons	if	there	are	no	previous	or	next
features.	It	also	disables	the	update	and	delete	buttons	if	no
features	are	selected.

deleteButton	-	Click	event

1.	 Gets	the	layer	(as	a	MgLayerBase	object)	that	the	currently
displayed	feature	belongs	to.

2.	 Creates	a	MgFeatureCommandCollection	object	and	adds	a
delete	command	to	the	collection.

3.	 Passes	the	command	collection	to	the	layer’s	UpdateFeatures
method.

4.	 Deletes	the	feature	from	the	_featureItems	list	of	all	selected
features.

5.	 Calls	UpdateAttributeFields	to	correctly	display	the	next
selected	feature,	if	one	exists.

updateButton	-	Click	event

1.	 Create	a	MgPropertyCollection	object	to	hold	the	properties	that
the	user	has	modified.

2.	 Obtains	the	PropertyList	of	the	displayed	property.

3.	 Loops	through	all	the	properties	displayed	in	the	grid	control.
The	property	value	shown	in	the	grid	row	is	compared	to	the
previous	property	value.	If	it	is	different,	the	property	value	and
type	are	stored	in	the	MgPropertyCollection	collection.

4.	 Gets	the	layer	(as	a	MgLayerBase	object)	that	the	currently
displayed	feature	belongs	to.

5.	 Creates	a	MgFeatureCommandCollection	object	and	adds	a
update	command	to	the	collection.	The	update	command



includes	the	MgPropertyCollection	list	of	all	changed	properties.

6.	 Passes	the	command	collection	to	the	layer’s	UpdateFeatures
method.

7.	 Calls	UpdateCacheValues	with	the	MgPropertyCollection	object
as	a	parameter.	UpdateCacheValues	loops	through	all	the
modified	properties	held	in	the	MgPropertyCollection	object	and
sets	the	corisponding	properties	in	the	displayed	feature	to	the
new	values.

previousButton,	nextButton,	firstButton,	lastButton	-	Click	events
Sets	the	index	to	change	which	of	the	selected	features	is	displayed.
Calls	the	UpdateAttributeFields	function	to	show	the	properties	of	the
currently	displayed	feature.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


FindIntersects
	
	
	

Topics	in	this	section

Running	the	Sample
Code	Walkthrough

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Running	the	Sample
	
	
	

As	a	result	of	loading	the	FindIntersects.dll	into	Map	3D,	you	see	a	map	appear
in	the	drawing	pane	It	is	a	plan	of	a	suburban	road	network.	This	map	is	derived
from	the	contents	of	the	Roads.sdf	file	that	is	located	in	the	FindIntersects\SDF
folder.If	you	scroll	through	the	command-line	output,	you	see	three	lines	of
response	text:

1.	 Find	Intersects	Sample	application	initialized.

2.	 Command:	_zoom

3.	 Specify	corner	of	window,	enter	a	scale	factor	(nX	or	nXP),	or
[All/Center/Dynamic/Extents/Previous/Scale/Window/Object]	<real
time>:	_extents

4.	 Regenerating	model.

Roads.sdf	loaded	into	Map	3D



Before	invoking	the	FindIntersect	command,	zoom	in	on	the	Roads	drawing.

Zoom	in	on	the	cloverleaf	in	the	middle	of	the	Roads	map



At	the

Command:
prompt	enter	the	command	FindIntersect.

Note Even	though	the	project	name	and	the	DLL	name	is	FindIntersects,	the
command	is	FindIntersect.

The	first	result	is	a	prompt

Tolerance	<3.0000>:
.	Press	the	enter	key	to	accept	the	default	value,	3.0000.	The	second	result	is
another	prompt

Result	limit	(0	=	all)	<0>:
.	Press	the	enter	key	to	accept	the	default,	0.	The	third	result	is	that	the	map	in
the	drawing	pane	is	populated	with	many	little	colored	squares.



The	cloverleaf	and	environs	in	the	Road	drawing	after	invocation	of	the	FindIntersect	command

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Code	Walkthrough
	
	
	

Topics	in	this	section

Entry	Point
FindIntersect
Find	Intersections
Query	the	Feature	Source	for	Intersections
Point	Exists

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Entry	Point
	
	
	

When	you	netload	the	FindIntersects.dll,	you	cause	the	Initialize	method
of	the	AppEntry	class	in	Commands.cs	to	run.

The	Initialize	method	stores	the	path	to	the	FinderIntersects.dll	and	prints	the
message	Find	Intersects	Sample	application	initialized.	to	the	Map	command-
line.	It	creates	an	instance	of	the	Commands	class,	which	is	also	defined	in
Commands.cs.	It	then	calls	the	PrepareCommand	method	on	this	instance.

The	PrepareCommand	method	creates	an	instance	of	the	Implement	class,	which
is	defined	in	Implements.cs,	and	calls	its	Prepare	method.	This	method	does	the
following:

1.	 Uses	the	path	to	the	FindIntersects.dll	stored	earlier	to	construct	a
pathname	for	the	Roads.sdf	file.

2.	 Creates	an	MgResourceIdentifier	object,	which	identifies	the
Roads.sdf	file	as	a	resource	in	the	Resource	Service	repository.	This	is
described	in	the	topic	ConnectToSdfFile.

3.	 Uses	the	MgResourceIdentifier	object	to	add	the	features	in	the
Road.sdf	file	to	the	current	map.	This	is	described	in	topic
AddAllToMap.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


FindIntersect
	
	
	

When	you	enter	the	FindIntersect	command	on	the	Map	command-line,	you
cause	the	FindIntersectCommand	method	to	be	executed.	This	method
collects	two	command-line	arguments	from	the	user:	the	tolerance	and	the
maximum	number	of	intersections	to	return.	It	uses	objects	from	the
Autodesk.AutoCAD.EditorInput	namespace	to	do	this,	namely,
PromptDoubleOptions,	PromptDoubleResult,
PromptIntegerOptions,	PromptIntegerResult,	and	Editor.	It
then	creates	an	Implements	object	and	calls	its	FindIntersections
method	passing	in	the	tolerance	and	maximum	number	of	intersections
arguments.	The	tolerance	is	used	to	decide	whether	two	points	are	close	enough
to	be	considered	as	intersecting,	and	the	maximum	number	of	intersections	is
used	to	limit	how	many	intersections	are	reported.

The	FindIntersections	method	does	the	following:

1.	 Creates	an	AcMapMap	object	that	contains	the	current	map.

2.	 Gets	the	MgLayerCollection	object	from	the	AcMapMap	object.

3.	 Verifies	that	there	is	only	one	MgLayerBase	object	in	the
MgLayerCollection	object.

4.	 Uses	the	MgLayerBase	object	to	create	an
MgResourceIdentifier	object	identifying	the	feature	source	for
the	layer,	that	is,	the	Roads.sdf	file.

5.	 Uses	an	MgFeatureService	object	and	the
MgResourceIdentifier	object	to	get	the	schema	names	from	the
feature	source.

6.	 Verifies	that	there	is	only	one	schema	name.

7.	 Uses	an	MgFeatureService	object,	the
MgResourceIdentifier	object	and	the	schema	name	to	get	the



class	names	from	the	feature	source.

8.	 Verifies	that	there	is	only	one	class	in	the	schema.

9.	 Finds	the	set	of	points	that	represent	intersections	between	the	end	point
of	a	LineString	geometry	and	other	LineString	geometries	in	the	layer.
This	is	described	in	the	topic	Find	Intersections.

10.	 Uses	classes	from	the	OSGeo.FDO.Schema	namespace	to	create	a
feature	schema	for	the	results	of	the	find	intersections	operation,	namely,
FeatureSchema,	FeatureClass,	DataType,
DataPropertyDefinition,	and
GeometricPropertyDefinition.	The
GeometricPropertyDefintion	object	is	for	the	point	geometry
that	identifies	the	intersection.	There	are	two
DataPropertyDefinition	objects.	One	is	used	as	an	identity
property,	and	the	other	for	the	number	of	LineString	endpoints
represented	by	the	intersection	point.

11.	 Creates	the	Result.sdf	file	to	hold	the	results	returned	by	the
FindIntersections	method.	This	file	has	the	feature	schema	created	in	the
previous	step	and	the	coordinate	system	of	the	AcMapMap	object.	This
is	described	in	the	topic	CreateSdfFile.

12.	 Creates	an	MgResourceIdentifier	object	that	identifies	the
Result.sdf	file.	This	is	described	in	the	topic	ConnectToSdfFile.

13.	 Uses	an	MgFeatureService	object,	the
MgResourceIdentifier	object	identifying	Result.sdf,	the
MgBatchPropertyCollection	object	returned	by
FindIntersections	operation,	an	MgFeatureCommandCollection
object,	and	an	MgInsertFeatures	object	to	insert	the	intersection
results	into	the	Result.sdf	file.

14.	 Adds	the	results	returned	by	the	FindIntersections	operation	as	a	layer	in
the	current	map.	This	is	described	in	topic	AddAllToMap.	The	set	of
intersections	appear	as	little	squares	laid	over	the	original	road	map.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Find	Intersections
	
	
	

This	method	takes	six	arguments:	an	MgFeatureService	object,	an
MgResourceIdentifier	object,	a	schema	name,	a	class	name,	a	tolerance,
and	a	limit.	A	limit	value	of	0	means	find	all	intersections.	It	returns	an
MgBatchPropertyCollection	object,	which	contains	a	collection	of
MgPropertyCollection	objects.	Each	MgPropertyCollection
object	represents	an	intersection	between	the	end	point	of	a	LineString	geometry
and	other	LineString	geometries	in	the	layer.	It	does	the	following:

1.	 Uses	the	MgFeatureService,	MgResourceIdentifier,	schema
name	and	class	name	arguments	to	get	the	MgClassDefinition
object	for	the	class.

2.	 Gets	the	default	geometry	property	name	from	the
MgClassDefinition	object

3.	 Uses	the	MgClassDefinition	object	to	get	an
MgPropertyDefinitionCollection	object	containing	the
identity	properties.

4.	 Continues	only	if	there	is	exactly	one	identity	property	in	the
MgPropertyDefinitionCollection	object.

5.	 Makes	a	qualifed	feature	class	name	from	the	schema	and	class	name
arguments.

6.	 Creates	an	MgBatchPropertyCollection	object.

7.	 Determines	that	the	caller	wants	all	intersections	to	be	found	and	queries
the	feature	source	for	intersections.	This	is	described	in	topic	Query	the
Feature	Source	for	Intersections.	Return	the
MgBatchPropertyCollection	object	modified	by	the	operation
in	the	referenced	topic.

8.	 Alternatively,	determines	that	there	is	a	limit	on	the	number	of



intersections	to	be	found.	Uses	an	MgFeatureService	object	to
count	the	number	of	features	in	the	feature	source.	Uses	the	total	feature
count,	the	limit	on	the	number	of	intersections,	and	a	step	value	of	100
together	with	the	count	of	features	and	identity	number	returned	by	the
Query	the	Feature	Source	for	Intersections	method	to	create	a	loop
expression	to	govern	the	set	of	features	in	the	feature	source	examined
for	intersections.	Return	the	MgBatchPropertyCollection	object
modified	by	the	operation	in	the	referenced	topic.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Query	the	Feature	Source	for	Intersections
	
	
	

This	method	takes	ten	arguments:

1.	 an	MgFeatureService	object

2.	 an	MgResourceIdentifier	object	(identifies	the	feature	source)

3.	 a	qualified	class	name	(used	to	identify	the	desired	features)

4.	 a	geometry	property	name	(used	to	extract	the	geometry	properties	from
the	selected	features)

5.	 an	MgFeatureQueryOptions	object	(this	has	an	operational	effect
on	feature	selection	when	a	limit	on	the	number	of	intersections	to	be
found	has	been	set)

6.	 a	limit	(either	0	indicating	find	all	intersections	or	a	positive	integer
indicating	when	to	stop	looking	for	intersections)

7.	 a	list	of	visited	points	(this	is	initially	empty;	the	function	adds	points	to
it)

8.	 an	identity	property	value	(initially	1;	the	function	increments	it)

9.	 an	MgBatchPropertyCollection	object	(the	function	adds
MgPropertyCollection	objects	to	it)

10.	 a	tolerance

It	does	the	following:

1.	 Uses	the	MgFeatureService	,	MgResourceIdentifier,	and
MgFeatureQueryOptions	arguments	and	the	qualifed	feature	class
name	to	get	an	MgFeatureReader	object	containing	the	features
from	the	feature	source.

2.	 Loops	through	the	features	in	the	MgFeatureReader	object	using	the



default	geometry	property	name	to	extract	the	geometry	property	and
using	the	MgAgfReaderWriter	object	to	create	an	MgLineString
object	from	the	geometry	property,	filtering	out	any	geometry	that	is	not
an	MgLineString.	Tests	the	start	and	end	points	of	the
MgLineString	ojbect	and	adds	them	to	the	end	points	list	if	they	are
unique.	The	test	is	described	in	the	topic	Point	Exists.

3.	 Loops	through	the	list	of	end	points,	using	the	tolerance	value	to	create	a
bounding	box	around	each	one	and	then	doing	an
EnvelopeIntersects	operation	on	the	end	point	bounding	box	and
each	of	the	feature	geometries	in	the	layer	to	get	an	intersection	count.
The	foregoing	involves	the	use	of	the	MgCoordinateCollection,
MgGeometryFactory,	MgPolygon,
MgFeatureQueryOptions,	MgFeatureReader,
MgFeatureService,	and	MgResourceIdentifier	classes.	If
the	EnvelopeIntersects	operation	yields	more	than	two
intersections,	the	end	point,	the	intersection	count,	and	an	identity
number	are	turned	into	properties	and	added	to	an
MgPropertyCollection	object,	and	the	latter	is	added	to	the
MgBatchPropertyCollection	object	that	represents	all	of	the
qualifying	intersection	points.

4.	 Determine	that	there	is	no	limit	on	the	number	of	intersections	to	be
found	and	continue	processing	or	that	there	is	a	limit,	the	limit	has	been
reached	and	stop	processing	the	list	of	end	points.

5.	 Return	the	number	of	features	processed.	The
MgBatchPropertyCollection	object	contains	all	of	the
intersection	features.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Point	Exists
	
	
	

This	method	takes	three	arguments:	a	list	of	existing	points,	a	new	point	and	a
tolerance.	It	returns	true	if	the	new	point	is	functionally	identical	to	one	of	the
existing	points	and	returns	false	if	the	new	point	is	not	functionally	identifical	to
any	of	the	existing	points.	It	loops	through	the	list	of	existing	points	and
compares	each	point	in	the	list	with	the	new	point	argument.	If	the	absolute
value	of	the	difference	between	the	X	value	of	the	existing	point	and	the	X	value
of	the	new	point	is	less	than	the	tolerance	OR	the	absolute	value	of	the	difference
between	the	Y	value	of	the	existing	point	and	the	Y	value	of	the	new	point	is	less
than	the	tolerance,	THEN	the	new	point	is	functionally	identical	to	the	existing
point,	and	the	function	returns	true.	If	the	function	reaches	the	end	of	the	list
without	returning	true,	it	returns	false.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


GenerateAnnotation
	
	
	

Topics	in	this	section

Running	the	Sample
Background	Information	On	Some	Of	The	Namespaces	and	Classes
Used	In	This	Sample
Code	Walkthrough

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Running	the	Sample
	
	
	

As	a	result	of	loading	the	GenerateAnnotation.dll	into	Map	3D,	you	see	the
following	graphic	appear	in	the	drawing	pane	and	the	following	lines	of	response
text	appear	in	the	command-line	area:

1.	 Generate	annotation	sample	application	initialized

2.	 PROMPT:	Generate	annotation	sample	commands:

3.	 -	GenAnnotation

4.	 _zoom

5.	 Specify	corner	of	window,	enter	a	scale	factor	(nX	or	nXP),	or

6.	 [All/Center/Dynamic/Extents/Previous/Scale/Window/Object]	<real
time>:	extents

7.	 Regenerating	model.

netload	result



As	a	result	of	entering	the	GenAnnotation	command	at	the	command-line,	you
see	“little	wings”	attached	to	the	right-hand	side	of	the	squares	as	shown	in	the
following	graphic.

GenAnnotation	result



As	a	result	of	zooming	in	on	one	of	the	squares,	you	see	that	the	“little	wings”
are	actually	lines	of	text	as	shown	in	the	following	graphic.

Zooming	in	on	the	annotation



Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Background	Information	On	Some	Of	The	Namespaces
and	Classes	Used	In	This	Sample
	
	
	

The	source	of	the	background	information	for	the	Autodesk.Gis.Map	classes	is
the	<Map	3D	SDK	root	folder>\docs\sdk.ref.net.chm	file.

Topics	in	this	section

Autodesk.AutoCAD.DatabaseServices	Namespace
Autodesk.Gis.Map.HostMapApplicationServices	Class
Autodesk.Gis.Map.MapApplication	Class
Autodesk.Gis.Map.ObjectData	Namespace
Autodesk.Gis.Map.Project.ProjectModel

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Autodesk.AutoCAD.DatabaseServices	Namespace
	
	
	

The	classes	in	this	namespace	are	.NET	wrappers	for	ObjectARX	AcDB*
classes.	The	general	naming	rule	is	to	replace	the	AcDb	prefix	on	the
ObjectARX	class	with	the	namespace.	For	example,	AcDbObjectId	becomes
Autodesk.AutoCAD.DatabaseServices.ObjectId.	The	following
overview	is	extracted	from	the	ObjectARX	Developers	Guide	(<Map	3D	SDK
root	folder>\docs\arxdev.chm).	The	topic	path	is	ObjectARX	Introductory
Concepts/Database	Primer/AutoCAD	Database	Overview.

An	AutoCAD	drawing	is	a	collection	of	objects	stored	in	a	database.	Some	of
the	basic	database	objects	are	entities,	symbol	tables,	and	dictionaries.	Entities
are	a	special	kind	of	database	object	that	have	a	graphical	representation	within
an	AutoCAD	drawing.	Lines,	circles,	arcs,	text,	solids,	regions,	splines,	and
ellipses	are	examples	of	entities.	A	user	can	see	an	entity	on	the	screen	and	can
manipulate	it.

In	the	preceding	paragraph	an	entity	is	a	DatabaseServices.Entity
object	and	a	database	is	a	DatabaseServices.Database	object.

Symbol	tables	and	dictionaries	are	containers	used	to	store	database	objects.
Both	container	objects	map	a	symbol	name	(a	text	string)	to	a	database	object.
An	AutoCAD	database	includes	a	fixed	set	of	symbol	tables,	each	of	which
contains	instances	of	a	particular	class	of	symbol	table	record.	You	cannot	add	a
new	symbol	table	to	the	database.	Examples	of	symbol	tables	are	the	layer	table
(AcDbLayerTable),	which	contains	layer	table	records,	and	the	block	table
(AcDbBlockTable),	which	contains	block	table	records.	All	AutoCAD
entities	are	owned	by	block	table	records.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Autodesk.Gis.Map.HostMapApplicationServices	Class
	
	
	

This	is	a	helper	class	used	to	access	the	MapApplication	object.	You	can
access	this	object	using	the	following	code:	using	Autodesk.Gis.Map;
MapApplication	application	=

HostMapApplicationService.Application;

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Autodesk.Gis.Map.MapApplication	Class
	
	
	

This	class	represents	the	Autodesk	Map	application.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Autodesk.Gis.Map.ObjectData	Namespace
	
	
	

Some	of	the	following	information	is	extracted	from	the	sdk.ref.net.chm	by
clicking	the	Index	tab	and	double-clicking	the	“ObjectData	Record”entry.	The
rest	is	a	description	of	what	happens	in	the	sample	code.

Object	data	provides	a	way	of	attaching	additional	information	to	drawing
objects.

Each	drawing	has	its	own	set	of	tables,	available	from	the
ProjectModel.ODTables	property.	This	returns	an	object	of	type
ObjectData.Tables.	This	object	contains	objects	of	type
ObjectData.Table.

Columns	in	anObjectData.Tableobject	are	defined	by
ObjectData.FieldDefinition	objects.	A	FieldDefinition	object
contains	a	Utilities.MapValue	object.	The	latter	contains	a	key-value
pair.	The	key	is	the	column	name	and	the	value	is	a	Constants.DataType
value.	The	ObjectData.FieldDefinition	objects	are	added	to	an
ObjectData.FieldDefinitions	object	and	then	the	latter	is	added	to	the
ProjectModel.ODTables	property	along	with	a	table	name.	The	result	is
that	an	object	of	type	ObjectData.Table	can	be	retrieved	from	the
ProjectModel.ODTables	property	using	the	table	name	as	an	index.

Each	row	in	a	ObjectData.Table	table	is	of	type	ObjectData.Record.
This	type	can	be	viewed	as	an	array	of
Autodesk.Gis.Map.Utilities.MapValue	objects.	Each
Utilities.MapValue	object	is	a	key-value	pair.	The	key	is	a	column	name
that	is	one	of	the	column	names	found	in	the	FieldDefinition	objects	used
to	define	the	ObjectData.Table	table.

Every	record	in	the	table	is	associated	with	a	drawing	object.	This	is	done	using
an	Autodesk.AutoCAD.DatabaseServices.ObjectId	object,	which
identifies	a	DatabaseServices.Entity	object	inside	a



DatabaseServices.BlockTableRecord	object	inside	a
DatabaseServices.BlockTable	object	inside	a
DatabaseServices.Database	object	inside	a
DatabaseServices.ProjectModel	object,	which	is	the	active	project.
The	DatabaseServices.Entity	object	may	appear	in	a	DWG	drawing.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Autodesk.Gis.Map.Project.ProjectModel
	
	
	

Within	a	Map	session,	a	user	can	open	and	close	multiple	projects.	You	cannot
instantiate	a	project	programmatically.	A	project	is	instantiated	when	a	Map	user
opens	a	document.	You	can	get	the	currently	active	project	using	the	following
code:	ProjectModel	activeProject	=
HostMapApplicationServices.Application.ActiveProject;

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Code	Walkthrough
	
	
	

Topics	in	this	section

Entry	Point
GenAnnotation
Create	A	Layer	Using	Autodesk.AutoCAD.DatabaseServices
Create	An	Annotation	Template
Create	An	Object	Data	Table
Create	Centroids
Insert	The	Annotations
Set	An	Attribute	Definition

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Entry	Point
	
	
	

When	you	netload	the	GenerateAnnotation.dll,	you	cause	the	Initialize
method	of	the	AppEntry	class	in	Commands.cs	to	run.

The	Initialize	method	creates	a	Commands	object	and	calls	two	methods
on	this	object.	These	methods	do	the	following:

1.	 Print	Prompt:	Generaet	annotation	sample	commands:	and	-
GenAnnotation	in	the	command-line	area	of	Map	3D.

2.	 Create	a	GenerateAnnotationImp	object	and	call	a	method	on	this
object	to	create	an	MgResourceIdentifier	object	that	identifies
the	features	in	<Map	3D	SDK	root	folder>\Map
Samples\Platform\GenerateAnnotation\SDF\signals.sdf	file.	The
creation	of	this	identifier	is	described	in	the	topic	ConnectToSdfFile.	The
method	then	uses	the	MgResourceIdentifier	object	to	add	all	of
the	features	to	Map	3D.	This	is	described	in	the	topic	AddAllToMap.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


GenAnnotation
	
	
	

This	command	creates	a	GenerateAnnotationImp	object	and	calls	its
CreateAnnotation	method	passing	in	a	feature	source	identifier	string	that
identifies	the	signals.sdf	file	loaded	into	the	resource	repository	during	the
netload	operation.	the	name	of	the	schema	contained	in	the	signals,.sdf	file	and
the	name	of	the	class	definition	contained	in	the	schema.

1.	 Takes	three	arguments:	a	feature	source	identifier	string,	a	schema	name
and	a	class	name.

2.	 Uses	the	feature	source	identifier	string	argument	to	create	an
MgResourceIdentifier	object.

3.	 Uses	an	MgFeatureService	object,	the
MgResourceIdentifier	object	and	the	schema	and	class	names	to
get	the	MgClassDefinition	object	for	the	named	class.

4.	 Makes	a	table	name	by	concatenating	the	schema	and	class	names.

5.	 Uses	the	table	name	and	the	MgClassDefinition	object	to	make	an
Object	Data	table	and	put	it	in	the	active	project’s	Object	Data	tables
property.	This	is	described	in	topic	Create	An	Object	Data	Table.
Note An	Object	Data	table	is	a	planar	entity	that	can	be	created	and
placed	in	an	arbitrary	plane	in	3D	space.	A	table	is	generally	thought	of
as	an	n	x	m	rectangular	array	of	cells	whose	contents	consist	of
annotation	objects,	primarily	text.

6.	 Get	the	features	from	the	signals.sdf	file.	Extract	the	geometry	from	the
feature	and	from	the	geometry	get	the	centroid	coordinates.	Use	the
centroid	coordinate	to	create	a	DatabaseServices.Entity	object
and	add	the	latter	to	the
DatabaseServices.BlockTableRecord	object	which	is	used
for	the	Model	Space.	Generate	a	DatabaseServices.ObjectId
object	to	identify	the	DatabaseServices.Entity	object.	Use	the



feature’s	data	properties	to	create	Utilities.MapValue	objects,
add	the	MapValue	objects	to	an	ObjectData.Record	object,	and
add	the	Record	object	along	with	the	ObjectId	object	to	the	Object
Data	table	created	in	the	preceding	step.	This	is	described	in	more	detail
in	the	topic	Create	Centroids.

7.	 Uses	the	current	project’s
Autodesk.Gis.Map.Annotation.Annotations	object	to
create	an	Annotation.AnnotationTemplate	object	for	the
Object	Data	table.	The	annotation	template	is	stored	in	a
BlockTableRecord	object	in	the	database.	This	is	described	in	topic
Create	An	Annotation	Template.

8.	 Attach	the	annotations	to	the	centroids	in	the	drawing	pane.	This	is
described	in	the	topic	Insert	The	Annotations.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Create	A	Layer	Using
Autodesk.AutoCAD.DatabaseServices
	
	
	

This	method	takes	a	layer	name	argument	and	returns	an
Autodesk.AutoCAD.DatabaseServices.ObjectId	object	that
identifies	an	entry	in	an
Autodesk.AutoCAD.DatabaseServices.LayerTable	object.	It	does
the	following:

1.	 Gets	a	reference	to	the	Project.ProjectModel	object	which
represents	the	active	project.

2.	 Uses	the	active	project	to	get	an
Autodesk.AutoCAD.DatabaseServices.Database	object
and	the	latter	to	get	an
Autodesk.AutoCAD.DatabaseServices.TransactionManager

object	and	the	latter	to	get	an
Autodesk.AutoCAD.DatabaseServices.Transaction

object.	All	of	the	following	actions	take	place	within	the	context	of	the
transaction	and	have	no	effect	in	the	database	until	the	transaction
commits.

3.	 Gets	a	reference	to	the	active	project’s
Autodesk.AutoCAD.DatabaseServices.LayerTable

object.

4.	 Uses	the	layer	name	to	access	the	LayerTable	object.	If	this	fails,	it
carries	on	to	create	a	layer	in	the	layer	table.

5.	 Determines	that	a	layer	whose	name	is	the	layer	name	argument	is	not	in
the	LayerTable	object.

6.	 Creates	an
Autodesk.AutoCAD.DatabaseServices.LayerTableRecord

object,	sets	its	Name	property	to	be	the	layer	name	argument	and	adds	it



to	the	LayerTable	object.	The	effect	of	this	is	that	an
ObjectData.Table	object	can	be	retrieved	from	the	LayerTable
object	using	the	layer	name	as	an	index.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Create	An	Annotation	Template
	
	
	

This	method	takes	one	argument,	the	name	of	an	ObjectData.Table	table.
It	does	the	following:

1.	 Gets	a	reference	to	the	Project.ProjectModel	object	which
represents	the	active	project	of	othe	Map	3D	application.

2.	 Uses	the	table	name	argument	to	get	from	the	active	project	a	reference
to	the	ObjectData.Table	object	with	that	table	name.

3.	 Get	a	reference	to	the	active	project’s	Annotation.Annotations
object.

4.	 Uses	the	Annotation.Annotations	object	to	create	an	annotation
template	for	the	ObjectData.Table	table.

5.	 Uses	the	count	of	the	number	of	fields	in	the	ObjectData.Table
table	to	calculate	the	height	of	an	annotation.

6.	 Uses	Autodesk.AutoCAD.Colors.Color	to	create	a	color	value
for	the	annotation	block.

7.	 Loops	through	the	ObjectData.FieldDefinition	objects	in	the
ObjectData.Table	table	and	creates	the	structure	of	the	annotation
that	will	be	attached	to	each	centroid.	This	is	described	in	topic	Set	An
Attribute	Definition.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Create	An	Object	Data	Table
	
	
	

This	method	takes	two	arguments:	a	table	name	and	an	MgClassDefinition
object.	It	does	the	following:

1.	 Uses	the	abstract	class
Autodesk.Gis.Map.HostMapApplicationServices	to
access	theAutodesk.Gis.Map.MapApplication	object,	which
represents	the	Map	3D	application,	to	the	get	an
Autodesk.Gis.Map.Project.ProjectModel	object	which
represents	the	current	active	project	belonging	to	this	session.

2.	 Uses	the	ProjectModel	object	to	determine	that	there	is	no	Object
Data	Table	defined	for	this	feature	class.

3.	 Uses	the	MgClassDefinition	object	to	get	the	class	property
definitions	(base	class	MgPropertyDefinition)

4.	 Loops	through	the	property	definitions	creating
Autodesk.Gis.Map.ObjectData.FieldDefinition	objects
for	each	data	property	definition	in	the	class	(type
MgDataPropertyDefinition),	which	has	an	MgPropertyType	of
String,	Single,	Double,	Byte,	Int16,	or	Int32.	The	MgPropertyType
types	are	mapped	to	Autodesk.Gis.Map.Constants.DataType
types:	String	to	Character,	Single	and	Double	to	Real,	and	Byte,	Int16,
and	Int32	to	Integer.	Each	FieldDefinition	object	is	added	to	an
Autodesk.Gis.Map.ObjectData.FieldDefinitions

object.

5.	 Uses	the	FieldDefinitions	object	to	create	an
Autodesk.Gis.Map.ObjectData.Table	object	and	adds	the
later	to	the	ProjectModel	object’s	ODTables	property.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');




Create	Centroids
	
	
	

This	method	takes	four	arguments:	an	MgResourceIdentifier	object
identifying	the	feature	source,	a	schema	name,	a	class	name,	and	the	name	of	an
ObjectData	table.	It	returns	a	collection	of
DatabaseServices.ObjectId	objects	that	identify	the	centroids	added	to
the	database.	It	does	the	following:

1.	 Use	an	MgFeatureService	object,	the	MgResourceIdentifier
object,	the	schema	name	and	the	class	name	to	select	all	of	the	features
in	the	signals.sdf	file	and	put	them	in	an	MgFeatureReader	object.

2.	 Use	the	MgFeatureReader	object	to	get	the
MgClassDefinition	object	and	from	the	latter	the	default	geometry
property	name.

3.	 Creates	a	layer	called	“Centroids”	in	the	current	project’s
Autodesk.AutoCAD.DatabaseServices.LayerTable

object.	This	is	described	in	the	topic	Create	A	Layer	Using
Autodesk.AutoCAD.DatabaseServices.

4.	 Uses	the	layer	name	to	get	a	reference	to	the	ObjectData.Table
object	created	in	the	preceding	step.

5.	 Creates	a	DatabaseServices.ObjectIdCollection	object.
This	will	hold	the	ObjectId	objects	of	all	of	the	centroids	created	and
stored	in	the	database.	This	ObjectIdCollection	object	is	returned
to	the	caller.

6.	 Uses	the	geometry	property	name	and	the	current	feature	in	the
MgFeatureReader	object	to	get	an	MgByteReader	containing	the
feature	geometry.

7.	 Uses	an	MgAgfReaderWriter	object	to	convert	the
MgByteReader	object	into	an	MgGeometry	object.



8.	 Extracts	the	x	and	y	coordinates	for	the	feature’s	centroid	from	the
MgGeomtry	object.
Note Informally	a	centroid	is	the	“average”	of	all	points	in	the	geometry.
See	http://en.wikipedia.org/wiki/Centroid	.

9.	 Uses	centroid	coordinates	and	an
Autodesk.AutoCAD.Geometry.Point3d	object	to	create	an
Autodesk.AutoCAD.DatabaseServices.DBPoint	object.
The	base	class	of	DBPoint	is	DatabaseServices.Entity.

10.	 Uses	the
Autodesk.AutoCAD.DatabaseServices.Transaction

object	and	the	ProjectModel	object	to	get	the	current	project’s
Autodesk.AutoCAD.DatabaseServices.BlockTableRecord

object,	which	contains	the	Model	Space	entities.

11.	 Sets	the	DBPoint	object’s	Layer	property	to	be	the	layer	name.

12.	 Appends	the	DBPoint	object	to	the	BlockTableRecord	object.
This	operation	returns	an
Autodesk.AutoCAD.DatabaseServices.ObjectId	object,
which	is	added	to	the
DatabaseServices.ObjectIdCollection	object	which	will
be	returned	by	this	method.

13.	 Uses	the	Transaction	object	to	add	the	DBPoint	object	to	the
Autodesk.AutoCAD.DatabaseServices.Database	object.

14.	 Creates	an	ObjectData.Record	object	and	uses	the
ObjectData.Table	object	to	initialize	it.

15.	 Creates	a	Utilities.MapValue	object	for	each	of	the	feature’s	data
properties	and	adds	the	MapValue	object	to	the
ObjectData.Record	object.

16.	 Adds	the	ObjectData.Record	object	and	the
Autodesk.AutoCAD.DatabaseServices.ObjectId	object,
which	identifies	the	DBPoint	object	in	the	BlockTableRecord
object,	to	the	ObjectData.Table	object.

http://en.wikipedia.org/wiki/Centroid


Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Insert	The	Annotations
	
	
	

This	method	takes	two	arguments:	the	ObjectData.Table	table	name	and
the	ObjectId	objects	returned	by	the	Create	Centroids	method.	These	objects
identify	the	centroids	that	were	created	from	the	features	in	the	feature	source
and	stored	in	the	database.	It	does	the	following:

1.	 Get	a	reference	to	the	active	project	and	use	that	to	get	a	reference	to	the
active	project’s	Annotations	object.

2.	 Use	the	ObjectData.Table	table	name	to	get
AnnotationTemplate	object	and	use	this	object	to	insert	the
ObjectId	objects	into	the	drawing.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Set	An	Attribute	Definition
	
	
	

This	method	takes	the	following	arguments:

the	ObjectData.Table	table	name

the	name	of	one	of	the	ObjectData.FeatureDefinition	objects
contained	in	the	ObjectData.Table	table

an	Autodesk.AutoCAD.Geometry.Point3d	object
Note This	is	the	position	argument.	It	is	not	used	in	favor	of	the	alignment
argument.	Read	the	description	of	the	AcDbText::SetPosition
function	in	the	<Map	3D	SDK	root	folder>\docs\arxdoc.chm	file	for
some	discussion	of	the	reason.

the	total	height	of	the	annotation

the	color	of	the	annotation

the	annotation	text	vertical	alignment

the	annotation	text	horizontal	alignment

an	expression	string	whose	pattern	is	<feature	definition	name>	=
<feature	definition	name>@<table	name>

an	Autodesk.AutoCAD.Geometry.Point3d	object	which
defines	the	positioning	of	the	annotation	text	associated	with	this
FeatureDefinition	object.	This	is	the	alignment	argument.

It	does	the	following:

1.	 Gets	a	reference	to	the	Project.ProjectModel	object	which
represents	the	active	project.

2.	 Gets	a	reference	to	the	active	project’s	Annotation.Annotations
object.



3.	 Uses	the	active	project	to	create	a
DatabaseServices.Transaction	object.	All	of	the	following
actions	take	place	within	the	context	of	this	transaction	and	have	no
effect	in	the	Database	until	the	transaction	commits.

4.	 Creates	a	DatabaseServices.ObjectId	object	that	identifies	the
Annotation.AnnotationTemplate	object	for	the
ObjectData.Table	table.

5.	 Uses	the	ObjectId	object	to	create	a
DatabaseServices.AttributeDefinition	object	and	sets
properties	on	this	object	using	the	arguments	passed	into	this	method.

6.	 Creates	a	layer	name	for	the	annotations	and	then	creates	a	layer	for	the
annotations,	if	this	has	not	already	been	done.	This	is	described	in	topic
Create	A	Layer	Using	Autodesk.AutoCAD.DatabaseServices.

7.	 Associates	the	expression,	the	layer	name,	and	the
AttributeDefinition	object	with	the	Annotations	object.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


GeoCoder
	
	
	

Topics	in	this	section

Running	the	Sample
Code	Walkthrough

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Running	the	Sample
	
	
	

To	load	the	sample,	type	NetLoad	at	the	command	prompt.	Select	GeoCoder.dll
in	the	file	browser.

To	run	the	sample,	type	GeoCoder	at	the	command	prompt.	You	will	then	get	a
request	to	type	in	a	street	address,	with	a	default	address	provided.	If	the	address
is	valid,	the	latitude	and	longitude	of	the	street	address	will	be	printed	in	the
command	line	and	the	sample	will	exit.

This	sample	demonstrates	how	to	get	the	longitude	and	latitude	properties	of	the
given	address	using	a	web	service.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Code	Walkthrough
	
	
	

Topics	in	this	section

GeoCoderCommand

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


GeoCoderCommand
	
	
	

The	GeoCoder	command	activates	the	GeoCoderCommand	entry	point	method
of	the	Commands	class.	GeoCoderCommand	does	the	following:

1.	 Create	a	PromptStringOptions	object	and	pass	it	to	the
AcadEditor.GetString	API	method.	This	will	prompt	the	user	to	type	in	a
street	address,	with	a	default	address	if	the	user	does	not	give	an	input
value.

2.	 Use	the	PromptResult.StringResult.Split	API	method	to	split	the	input	at
each	comma	into	four	parts	(street,	city,	state,	zip	code).

3.	 Create	a	GeoCoder	object	and	call	its	RequestGeoCode	method.	This
method	first	creates	a	string	containing	the	link	to	the	web	service,	the
web	service	command	being	called,	and	the	parameters	making	up	the
address.	The	string	is	passed	to	the	constructer	of	a	XmlTextReader
object.	The	XmlTextReader	object	is	then	used	to	parse	the	return
information	from	the	web	service.	The	latitude	and	longitude	values	are
extracted,	converted	from	strings	to	floats,	and	returned.

4.	 Uses	the	PrintLn	utility	function	to	print	the	latitude	and	longitude
values	to	the	command	line.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


InputEditor
	
	
	

Topics	in	this	section

Running	the	Sample
Code	Walkthrough

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Running	the	Sample
	
	
	

As	a	result	of	loading	the	InputEditor.dll	into	Map	3D,	you	see	two	lines	of
response	textInput	editor	sample	application	initialized.,	and	The	event	was
registered	successfully..

Add	a	vector	data	layer	into	Map	3D	from	an	SDF	feature	source.	To	get	help
about	how	to	do	this,	open	the	Autodesk	Map	3D	Help	window.	Under	the
heading	Adding	Data	to	your	Map	click	Add	geospatial	features.	On	the
Accessing	Geospatial	Features	page	click	Using	Features	from	an	SDF	Feature
Source.

Note For	the	purpose	of	this	description,	the	Roads.sdf	file	in	the	<Map	3D	SDK
root	folder>\Map	Samples\Platform\FindIntersect\SDF	folder	is	used.	The
graphic	shows	some	of	the	features	of	the	Roads.sdf	file	after	a	connection	has
been	made	to	it,	it	has	added	to	a	map,	and	a	zoom	and	pan	operation	has	been
perfomed	on	the	map.

Roads.sdf	in	Map	3D,	zoomed	and	panned



In	the	main	menubar	click	Edit	and	select	Edit	Updates	Automatically.	This
means	that	when	a	feature	is	added	to	the	drawing	pane,	it	is	also	added	to	the
feature	source.	In	the	context	of	this	sample,	this	means	that	adding	a	feature
triggers	the	appearance	of	the	Edit	New	Features	dialog.

Create	a	new	feature	in	this	map.	To	get	help	about	how	to	do	this,	open	the
Autodesk	Map	3D	Help	window.	Under	the	Creating	and	Editing	Data	heading
click	Edit	features.	On	the	Working	with	Features	page	click	Creating	New
Features.	On	the	Creating	New	Features	page	click	Creating	New	LineString	and
MultiLineString	Features.	On	the	resulting	page	click	the	Procedure	tab.

The	following	graphic	shows	the	same	view	of	the	Roads	map	after	a	LineString
has	been	added.

Roads.sdf	in	Map	3D,	zoomed	and	panned,	with	a	new	feature	added



As	a	result	of	adding	the	LineString	in	the	map,	a	dialog	box	appears	as	shown
in	the	following	graphic.	Provide	a	non-null	value	for	each	of	the	fields	and	then
click	Update.	The	result	is	that	a	message	is	displayed	on	the	command-line.	The
message	reads	1	selected	feature(s)	checked	in.

Edit	New	Features	dialog	box



At	the

Command:
prompt	enter	the	command	UnregisterEvent.	The	result	is	that	a	message	is
displayed	on	the	command-line.	The	message	reads	The	event	was	unregistered
successfully.

At	the

Command:
prompt	enter	the	command	RegisterEvent.	The	result	is	that	a	message	is
displayed	on	the	command-line.	The	message	reads	The	event	was	registered
successfully.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Code	Walkthrough
	
	
	

Topics	in	this	section

Entry	Point
Automatic	Feature	Update
RegisterEvent
UnregisterEvent

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Entry	Point
	
	
	

When	you	netload	the	InputEditor.dll,	you	cause	the	Initialize()	method	of	the
AppEntry	class	in	Commands.cs	to	run.

The	Initialize	method	prints	the	message	Input	editor	sample	application
initialized.	to	the	Map	command-line.	It	creates	an	instance	of	the	Commands
class,	which	is	also	defined	in	Commands.cs.	It	then	calls	the
RegisterEventCommand	method	on	this	instance.	What	the
RegisterEventCommand	does	is	described	in	the	topicRegisterEvent	.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Automatic	Feature	Update
	
	
	

You	have	added	a	class	from	an	sdf	schema	to	a	map.	You	enabled	Update	Edits
Automatically.	You	have	added	a	feature	to	the	layer	containing	the	sdf	vector
data,	and	as	a	result	the	FeatureInsertedHandler	called
NewFeaturesourceIdentifier	that	was	registered	during	the	netload
operation	is	run.	It	does	the	following:

1.	 Uses	the	properites	argument	to	create	a	filter	string,	creates	an
MgFeatureQueryOptions	object	and	the	sets	the	filter	on	this
object	to	the	value	of	the	filter	string.

2.	 Uses	an	AcMapFeatureService	object,	the
MgResourceIdentifier	argument,	the	feature	class	name
argument,	and	the	MgFeatureQueryOptions	object	to	select	the
feature	from	the	feature	source	sdf	file.

3.	 Uses	the	MgFeatureReader	object	returned	by	the	select	operation	to
get	an	MgClassDefinition	object.

4.	 Uses	the	MgClassDefinition	object	to	get	an
MgPropertyDefinitionCollection	object.

5.	 Use	a	custom	UI	class	found	in	the	UI	folder	and	some	system	classes	to
create	a	custom	dialog	and	uses	the
MgPropertyDefinitionCollection	object	to	add	field	names
and	values	to	the	custom	dialog.	If	the	field	does	not	have	a	value,	its
input	control	in	the	dialog	is	given	a	value	of	(null).

6.	 Uses	the
Autodesk.AutoCAD.ApplicationServices.Application

class	to	expose	the	custom	dialog.

7.	 Extracts	the	values	provided	by	the	user	from	the	dialog	and	uses	them
to	create	an	MgPropertyCollection	object.



8.	 Uses	the	MgPropertyCollection	object	to	create	an
MgUpdateFeatures	object.

9.	 Adds	the	MgUpdateFeatures	object	to	an
MgFeatureCommandCollection	object.

10.	 Uses	the	AcMapFeatureService	object,	the
MgResourceIdentifier	argument	identifying	the	sdf	feature
source,	and	the	MgFeatureCommandCollection	object	to	update
the	feature	in	the	sdf	file.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


RegisterEvent
	
	
	

Enter	“RegisterEvent”	at	the	Map	3D	command-line.	This	causes	the
RegisterEventCommand	method	to	be	invoked.

The	RegisterEventCommand	method	creates	an	instance	of	the
EventRegister	class,	which	is	defined	in	EventRegister.cs,	and	calls	its
RegisterEvent	method.

The	RegisterEvent	method	creates	an	AcMapFeatureService	object
and	registers	an	OSGeo.MapGuide.FeatureInsertedHandler	object
with	it.	The	FeatureInsertedHandler	will	run	when	a	feature	is	inserted.
The	handler	registered	is	the	NewFeaturesourceIdentifier	method
found	in	EventRegister.cs.

A	FeatureInsertedHandler	takes	four	arguments:	(object	sender,
MgResourceIdentifier	resId,	string	featureClassName,

MgPropertyCollection	properties).	The	sender	argument	is	the
AcMapFeatureService	object.	The	resId	argument	identifies	the	feature
source.	The	featureClassName	argument	identifies	the	feature	class
definition	and	is	of	the	form	<schemaName>:<className>.	The	properties
argument	contains	the	identity	property	of	the	feature	inserted	by	the
mapcheckin	command.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


UnregisterEvent
	
	
	

Enter	UnregisterEvent	at	the	Map	3D	command-line.	This	causes	the
UnregisterEventCommand	method	to	be	invoked.

The	UnregisterEventCommand	method	creates	an	instance	of	the
EventRegister	class,	which	is	defined	in	EventRegister.cs,	and	calls	its
UnregisterEvent	method.

The	UnregisterEvent	method	creates	an	AcMapFeatureService
object	and	removes	the	OSGeo.MapGuide.FeatureInsertedHandler
object	from	it.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


NetworkTrace
	
	
	

Topics	in	this	section

Running	the	Sample
Code	Walkthrough

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Running	the	Sample
	
	
	

As	a	result	of	loading	the	NetworkTrace.dll	into	Map	3D,	you	see	a	map	appear
in	the	drawing	pane.	It	looks	like	a	plan	of	a	suburban	road	network.	This	map	is
derived	from	the	contents	of	the	Roads.sdf	file	that	is	located	in	the
NetworkTrace\SDF	folder.If	you	scroll	through	the	command-line	output,	you
see	three	lines	of	response	textNetwork	Trace	Sample	application	initialized.,

Command:
_zoom,

Specify	corner	of	window,	enter	a	scale	factor	(nX	or	nXP),	or
[All/Center/Dynamic/Extents/Previous/Scale/Window/Object]	<real	time>:

_extents,	and	Regenerating	model..

It	is	advisable	to	use	the	zoom	and	pan	tools	to	enlarge	a	portion	of	the	map	so
that	locating	the	end	points	of	lines	in	the	drawing	easier.

At	the

Command:
prompt	enter	the	command	NetworkTrace.

The	first	result	is	a	prompt

Start	point	of	the	trace:
.	In	the	drawing	pane	move	the	cursor	over	the	map	until	a	small	square	appears
indicating	that	the	cursor	is	positioned	over	the	end	point	of	a	line.	Click	to
select	the	point.	The	second	result	is	another	prompt

End	point	of	the	trace:
.	Position	the	cursor	over	an	end	point	and	click	to	select	it.	As	a	result,	a	path
between	the	two	points	is	drawn	over	the	map.

Note Before	running	the	NetworkTrace	command	again,	select	the	right-click	the
Result	node	in	the	Display	Manager	and	select	Remove	Layer.



Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Code	Walkthrough
	
	
	

Topics	in	this	section

Data	Structures	Used	by	the	Network	Trace	Algorithm
Entry	Point
NetworkTrace

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Data	Structures	Used	by	the	Network	Trace	Algorithm
	
	
	

Topics	in	this	section

Point
Link
Point	Lists

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Point
	
	
	

A	point	has	the	following	properties:

an	X	coordinate

a	Y	coordinate

the	point	previous	to	it	in	the	path

the	distance	to	the	point	previous	to	it	in	the	path

an	index	which	is	the	sum	of	the	number	of	points	in	the	ready	list	and
the	number	of	points	in	the	possible	path	list.	The	index	is	calculated
after	adding	the	previous	point	to	the	ready	list	and	prior	to	adding	the
point	to	the	not	ready	list.

Points	are	compared	on	the	basis	of	the	distance	property.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Link
	
	
	

A	link	has	the	following	properties:

a	start	point

an	end	point

an	integer	identifier

Links	contain	information	extracted	from	features	selected	from	the	feature
source	by	doing	an	envelope	intersects	operation	between	a	point	on	the	path	and
the	feature	source.	The	integer	identifier	is	the	feature	identifier.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Point	Lists
	
	
	

The	following	point	lists	are	used:

the	ready	list,	which	contains	points	including	the	start	point	whose
attributes	have	been	set.

the	not	ready	list,	which	contains	points	whose	attributes	have	not	been
set.

the	target	list,	which	contains	the	end	point	and	points	that	are	on	links
directly	connected	to	the	end	point,	and	whose	attributes	have	been	set.

Topics	in	this	section

Shortest	Path	List

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Shortest	Path	List
	
	
	

This	is	an	array	of	feature	IDs,	which	identify	LineStrings	in	the	feature	source
that	together	constitute	a	path	between	the	start	and	end	points	specified	by	the
user.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Entry	Point
	
	
	

When	you	netload	the	NetworkTrace.dll,	you	cause	the	Initialize()	method	of	the
AppEntry	class	in	Commands.cs	to	run.

The	Initialize	method	stores	the	path	to	the	NetworkTrace.dll	and	prints	the
message	Network	trace	sample	application	initialized.	to	the	Map	command-line.
It	creates	an	instance	of	the	Commands	class,	which	is	also	defined	in
Commands.cs.	It	then	calls	the	PrepareCommand	method	on	this	instance.

The	PrepareCommand	method	creates	an	instance	of	the	NetworkTrace
class,	which	is	defined	in	NetworkTrace.cs,	and	calls	its
RunLoadNetworkCommand	method,	which	does	the	following:

1.	 Uses	the	path	to	the	NetworkTrace.dll	stored	earlier	to	construct	a
pathname	for	the	Roads.sdf	file.

2.	 Creates	an	MgResourceIdentifier	object	that	identifies	the
Roads.sdf	file.	This	is	described	in	the	topic	ConnectToSdfFile.

3.	 Uses	the	MgResourceIdentifier	object	to	add	the	features	in	the
Roads.sdf	file	to	the	current	map.	This	is	described	in	topic
AddAllToMap.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


NetworkTrace
	
	
	

When	you	enter	the	NetworkTrace	command	on	the	Map	command-line,	you
cause	the	NetworkTraceCommand	method	to	be	executed.	This	method	uses
an	Autodesk.AutoCAD.EditorInput.Editor	object	to	collect	two
command-line	arguments	from	the	user:	the	end	point	of	a	line	in	the	map	which
represents	the	start	point	of	the	trace	and	the	end	point	of	a	line,	which	represents
the	end	point	of	the	trace.	It	creates	a	NetworkTrace	object	and	calls	its
RunNetworkTraceCommand	method,	passing	in	the	start	point	and	end	point
arguments.	The	graphic	shows	a	portion	of	the	map	contained	in	the	Roads.sdf
file	annotated	to	show	the	values	of	the	start	and	end	points	selected	using	the
Editor	object	as	well	as	the	points	processed	during	the	construction	of	the
shortest	path	between	the	start	and	end	points	The	letters	in	the	graphic	name	the
links	for	the	purpose	of	the	code	walkthrough.



The	RunNetworkTraceCommand	method	does	the	following:

1.	 Checks	the	repository	for	the	results	of	a	previous	run	and	if	found,
removes	it.

2.	 Creates	an	AcMapMap	object	and	gets	the	current	map.

3.	 Gets	the	layers	in	the	current	map

4.	 Looks	for	the	layer	whose	name	is	“Roads”.

5.	 Uses	the	“Roads”	layer	to	create	an	MgResourceIdentifier	object
identifying	the	Roads.sdf	file.

6.	 Uses	the	“Roads”	layer	to	get	the	schema	name	and	class	name
belonging	to	the	Roads.sdf	file.

7.	 Uses	an	MgFeatureService	object,	the	“Roads”
MgResourceIdentifier	object,	and	the	schema	and	class	names	to
get	the	MgClassDefinition	object.

8.	 Uses	the	MgClassDefinition	object	to	get	the
MgPropertyDefinitionCollection	object	containing	the



identity	property	definitions	and	from	that	the	name	of	the	identity
property.

9.	 Constructs	a	SearchEngine	object.	The	constructor	takes	the
following	arguments:

an	MgFeatureService	object

an	MgResourceIdentifier	object	identifying	the	feature	source
(Roads.sdf)

the	qualified	feature	class	name

the	name	of	the	feature’s	default	geometry	property

the	name	of	the	feature’s	identity	property

the	tolerance	to	be	used	to	declare	that	two	points	intersect

10.	 Searches	for	a	path	between	the	start	and	end	points	specified	by	the
user.	This	is	described	in	topic	Search	for	a	Path.	The	SearchPath
method	belongs	to	the	SearchEngine	object.	If	no	path	is	found,	an
exception	is	thrown.

11.	 Create	a	feature	schema	that	will	be	applied	to	the	Result.sdf	file.	It	will
have	three	properties:	a	geometry	whose	name	is	geometry,	an	identity
property	whose	name	is	Id,	and	a	data	property	whose	name	is	OldId.
This	is	described	in	topic	CreateResultsFdoSchema.

12.	 Creates	an	sdf	file	in	the	local	filesystem	that	has	the	schema	created	in
the	previous	step	and	the	coordinate	system	of	the	current	map.	This	file
will	contain	the	results	of	the	network	trace.	This	is	described	in	topic
CreateSdfFile.

13.	 For	each	feature	ID	in	the	shortest	path	list,	does	the	following:

Uses	an	MgFeatureService	object,	the	MgResourceIdentifier
object	for	the	feature	source,	an	MgFeatureQueryOptions	object
whose	filter	is	set	to	“<idPropertyName>	=	<featureID>”	to	select
the	LineString	from	the	feature	source	and	put	them	in	an
MgFeatureReader	object.

Puts	the	feature	properties	into	an	MgPropertyCollection	object.
This	is	described	in	topic	ReadFeature.



Changes	the	name	of	the	feature’s	identity	property	to	‘OldId’	and
the	name	of	the	geometry	property	to	‘geometry’	and	add	an
identity	property	whose	name	is	‘Id’.

Adds	the	feature	to	the	Results.sdf	using	an
MgInsertFeatures	object,	an
MgFeatureCommandCollection	object,	and	an
MgFeatureService	object.

14.	 Adds	the	contents	of	the	Result.sdf	file	to	the	map	as	a	layer.	This	is
described	in	AddAllToMap.

15.	 Loops	through	the	MgLayerCollection	object	until	it	finds	the	Result
layer	and	changes	the	color	of	the	layer.	This	is	described	in	topic
Highlight.

The	graphic	shows	the	result	of	adding	the	path	to	the	map.

Topics	in	this	section

Assemble	the	Shortest	Path
Get	Neighbor	Links
Get	Next	Point	From	Link
Initialize	the	End	Point



Initialize	the	Start	Point
Relax	Point
Relax	the	Point
Search	for	a	Path

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Assemble	the	Shortest	Path
	
	
	

This	method	three	arguments:	the	start	point,	the	last	point	added	to	the	ready
list,	and	the	end	point.	It	does	the	following:

Note In	this	case	the	start	point	is	(1905927,	472596),	the	last	point	is	(1905929,
472103),	and	the	end	point	is	(1905442,	472111).

1.	 Clear	the	shortest	path	list.

2.	 Assign	last	and	end	point	arguments	to	local	variables.

3.	 Determines	that	the	last	and	end	points	are	not	the	same,	gets	the	links
neighboring	the	end	point.	This	is	described	in	the	topic	Get	Neighbor
Links.
Note Two	links	are	returned.	The	first	has	points	(1905106,	472138)	and
(1905936,	471768).	The	second	has	points	(1905442,	472111)	and
(1905929,	472103).

4.	 For	each	of	the	links,	determines	that	the	last	point	is	the	same	as	one	of
the	boundary	points	of	the	link,	extracts	the	feature	identifier	from	the
link	data	structure	and	adds	the	feature	identifier	to	the	shortest	path	list.
Note The	last	point	(1905929,	472103)	shows	up	in	the	second	link	so	the
feature	ID	(1606)	for	this	link	is	added	to	the	shortest	path	list.

5.	 Follows	the	trail	of	previous	points	starting	with	the	last	point	argument.
Gets	the	links	that	neighbor	the	point.	For	each	of	these	links	does	what
is	specified	in	the	bulleted	list.	After	exiting	the	loop	processing	the
links,	sets	the	point	tested	in	the	outer	loop	to	the	value	of	that	loop’s
previous	point.	Once	the	outer	loop	terminates	the	shortest	path	list
contains	the	feature	IDs	of	all	of	the	links	that	constitute	the	shortest	path
between	the	start	and	end	points	of	the	network	trace.

Goes	to	the	next	link	if	the	point	does	not	intersect	one	of	the
link’s	boundary	points.



Adds	the	link’s	feature	id	to	the	shortest	path	list	and	breaks	out
of	the	link	loop	if	the	point’s	previous	point	intersects	one	of	the
link’s	boundary	points.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Get	Neighbor	Links
	
	
	

This	method	takes	a	point	argument	and	returns	an	array	of	links.	A	link	has
three	components:	the	start	point	of	an	MgLineString	object,	the	end	point	of	an
MgLineString	object,	and	an	identifier	value.	It	does	the	following:

1.	 Uses	the	point	argument	and	a	delta	value	to	create	an
MgCoordinateCollection	object	containing	the	coordinates	of	a
linear	ring	around	the	point.

2.	 Uses	an	MgGeometryFactory	object	and	the
MgCoordinateCollection	object	to	create	an	MgPolygon	object.

3.	 Uses	the	geometry	property	name,	the	MgPolygon	object,	the
EnvelopeIntersects	operator,	and	an	MgFeatureQueryOptions
object	to	set	a	spatial	filter.

4.	 Uses	an	MgFeatureService	object,	the	MgFeatureQueryOptions	object,
and	the	“Roads”	MgResourceIdentifier	object	to	select	features	that
satisfy	the	spatial	filter.
Note That	is,	uses	the	given	point	and	delta	to	construct	a	polygon,	which
defines	a	buffer	around	the	point.	It	then	selects	features	from	the	file
whose	geometry	properties	have	envelopes	which	intersect	with	the
polygon.	An	envelope	is	a	rectangular	bounding	box,	which	completely
encloses	the	feature	geometry.	Depending	on	the	shape	of	the	geometry,
the	envelope	may	contain	points	that	lies	outside	the	boundary	of	the
geometry.

5.	 For	each	selected	feature	do	the	following:

Get	the	feature	properties	as	an	MgPropertyCollection
object.	This	is	described	in	topic	ReadFeature.

Get	the	identify	property	from	the	MgPropertyCollection	object.

Get	the	geometry	property	from	the	MgPropertyCollection	object.



Use	an	MgAgfReaderWriter	object	to	create	an
MgGeometry	object	from	the	geometry	property.

Determines	that	the	MgGeometry	object	is	null	and	loops	to
process	the	next	feature

Determines	that	the	MgGeometry	object	is	not	null.	Assumes
that	the	MgGeometry	object	is	an	MgLineString	object	and
creates	a	Link	object	using	the	start	and	end	points	of	the
MgLineString	object	and	value	contained	in	the	identity	property.

Adds	the	Link	object	to	an	array.

6.	 Returns	the	array.

The	graphic	shows	the	two	LineStrings	returned	by	this	method	given	a	point
whose	coordinates	are	(1899984,	457829).	This	point	is	that	selected	by	the	user
when	prompted	for	the	start	point	in	the	course	of	running	the	NetworkTrace
command.The	callouts	show	the	start	and	end	points	of	LineString	features	from
the	perspective	of	the	feature	source.

The	LineString	feature,	which	is	not	connected	to	the	start	point	selected	by	the
user,	is	selected	because	its	envelope	intersects	the	start	point.

The	graphic	shows	the	three	LineStrings	returned	by	this	method	given	the	point
whose	coordinates	are	(1902739,	458271).	This	point	is	that	selected	by	the	user
when	prompted	for	the	end	point	in	the	course	of	running	the	NetworkTrace
command.The	callouts	show	the	start	and	end	points	of	LineString	features	from
the	perspective	of	the	feature	source.	The	NetworkTrace	end	point	is	a	start	point
for	two	of	the	LineStrings	and	an	end	point	for	the	third.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Get	Next	Point	From	Link
	
	
	

This	method	takes	five	arguments.	a	point,	a	link,	a	boolean	value	(true	if	the
point	is	a	start	point	and	false	if	the	point	argument	is	an	end	point),	a	null
reference	to	a	point,	and	another	null	reference	to	a	point.	It	does	the	following:

1.	 Determines	that	the	point	argument	and	the	link’s	start	point	are	close
and	sets	the	first	null	point	reference	to	the	value	of	the	link’s	end	point,
or

2.	 Determines	that	the	point	argument	and	the	link’s	end	point	are	close	and
sets	the	first	null	point	reference	to	the	value	of	the	link’s	start	point,	or

3.	 Determines	that	the	point	is	a	start	point	or	an	end	point	and	is	not	close
to	either	the	link’s	start	point	or	the	link’s	end	point	and	sets	the	null
point	references	to	the	value	of	the	link’s	start	point	and	the	link’s	end
point	respectively.

4.	 Determines	that	the	point	is	not	a	start	point	and	not	an	end	point	and	is
not	close	to	either	the	link’s	start	point	or	end	point	and	leaves	the	null
point	references	null.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Initialize	the	End	Point
	
	
	

This	method	takes	two	arguments:	the	end	point	and	the	target	list.	It	does	the
following:

1.	 Adds	the	end	point	to	the	target	list.

2.	 Gets	the	links	connected	to	the	end	point.	This	is	described	in	topic	Get
Neighbor	Links.
Note For	the	case	illustrated	here,	there	are	two	links,	the	ones	labeled	‘B’
and	‘C’	in	the	graphic.	Although	‘B’	is	not	connected	to	the	end	point,	it
is	selected	because	its	envelope	intersects	with	the	end	point.

3.	 For	each	link	returned	by	previous	step	do	the	following:

Get	the	next	point	from	the	link.	This	is	described	in	the	topic	Get
Next	Point	From	Link

The	arguments	passed	in	are	the	end	point	selected	by	the	user,
the	neighboring	link,	true	indicating	that	the	first	argument	is
either	the	start	point	or	the	end	point,	and	two	null	point
references.

Add	non-null	point	references	to	the	target	list.
Note In	the	context	of	the	given	example,	both	of	the	boundary
points	of	link	‘B’	are	added	to	the	target	list,	and	the	rightmost
boundary	point	of	link	‘C’	is	added	to	the	target	list.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Initialize	the	Start	Point
	
	
	

This	method	takes	three	arguments:	the	start	point,	the	ready	list,	and	the	not
ready	list.	It	does	the	following:

Note The	start	point	in	this	case	has	coordinates	(1905927,	472596).

1.	 Sets	the	CurrentDistance	and	Index	properties	of	the	start	point	to	0	and
adds	the	start	point	to	the	ready	list.

2.	 Gets	the	links	whose	envelopes	intersect	the	start	point.	This	is	described
in	topic	Get	Neighbor	Links.
Note In	this	case,	there	is	one	link,	whose	start	point	is	(1905922,
472443)	and	whose	end	point	is	1905927,	472596).	This	link	is	labeled
‘A’	in	the	graphic.

3.	 For	each	link	returned	by	previous	step	do	the	following:

Get	the	next	point	from	the	link.	This	is	described	in	the	topic	Get
Next	Point	From	Link.	The	arguments	passed	in	are	the	start
point,	the	neighboring	link,	true	indicating	the	first	argument	is	a
start	or	end	point,	and	two	null	point	references.	The
GetNextPointFromLink	method	will	decide	whether	one	or	both
of	the	link	boundary	points	needs	to	be	considered	and	will	set
one	or	both	null	point	references	to	point	to	a	link	boundary	point.
Note The	only	non-null	point	reference	returned	is	the	boundary
point	of	link	‘A’,	whose	coordinates	are	(1905922,	472443).

Sets	properties	on	non-null	point	references	set	by
GetNextPointFromLink.	The	point’s	current	distance	is	set
to	the	distance	between	the	start	point	and	the	point,	and	its
previous	point	is	set	to	refer	to	the	start	point	and	its	index	is	set
to	1.
Note The	distance	property	of	the	point	whose	coordinates	are
(1905922,	472443)	is	set	to	156.	Its	previous	point	property	is	set



to	the	start	point	and	its	index	property	is	set	to	1.

Adds	a	non-null	point	reference	to	the	not	ready	list	and	this	list	is
sorted.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Relax	Point
	
	
	

This	method	takes	five	arguments:	a	point	from	the	ready	list,	a	point	on	a	link
that	is	a	neighbor	of	this	point,	the	ready	list,	the	not	ready	list,	and	the	distance
between	the	point	from	the	ready	list	and	its	predecessor	point.	It	does	the
following:

1.	 Determines	that	the	point	from	the	not	ready	list	is	close	to	a	point	in	the
ready	list	and	returns.

2.	 Determines	that	the	point	from	the	not	ready	list	is	close	to	a	point	in	the
not	ready	list

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Relax	the	Point
	
	
	

This	method	takes	the	following	five	arguments:

a	candidate	point

a	point	connected	to	the	candidate	point	by	a	link

the	ready	list

the	not	ready	list

the	distance	bewteen	the	second	point	argument	and	its	previous	point

This	block	does	the	following:

1.	 Determines	that	the	candidate	point	is	in	the	ready	list	and	returns.
Note The	second	point	argument	for	the	four	calls	to	this	block	has
coordinates	(1905922,	472443).	In	the	first	call	(1905112,	472448)	is	not
in	the	ready	list.	In	the	second	call	(1906072,	472441)	is	not	in	the	ready
list.	In	the	third	call	(1905927,	472596)	is	in	the	ready	list	and	the
method	returns.	In	the	fourth	call	(1905929,	472103)	is	not	in	the	ready
list.

Note The	second	point	argument	for	the	fifth	call	to	this	block	has
coordinates	(1906072,	472441).	In	the	first	and	only	call	(1905922,
472443)	is	in	the	ready	list	and	the	method	returns.

2.	 Determines	that	the	candidate	point	is	in	the	not	ready	list	and	replaces
the	candidate	point	with	the	point	that	is	in	the	not	ready	list.
Note In	the	first	call	(1905112,	472448)	is	not	in	the	not	ready	list.

Note In	the	second	call	(1906072,	472441)	is	not	in	the	not	ready	list.

Note In	the	fourth	call	(1905929,	472103)	is	not	in	the	not	ready	list.

3.	 Calculates	the	length	of	the	link	whose	boundary	points	are	the	two	point
arguments.



Note In	the	first	call	the	distance	between	(1905112,	472448)	and
(1905922,	472443)	is	814.

Note In	the	second	call	the	distance	between	(1906072,	472441)	and
(1905922,	472443)	is	152.

Note In	the	second	call	the	distance	between	(1905929,	472103)	and
(1905922,	472443)	is	347.

4.	 Queries	the	candidate	point	for	the	distance	between	it	and	its	previous
point.
Note In	the	first	call	the	distance	between	(1905112,	472448)	and	its
previous	point	is	2147483647	because	it	has	no	previous	point.

Note In	the	second	call	the	distance	between	(1906072,	472441)	and	its
previous	point	is	2147483647	because	it	has	no	previous	point.

Note In	the	fourth	call	the	distance	between	(1905929,	472103)	and	its
previous	point	is	2147483647	because	it	has	no	previous	point.

5.	 Determines	that	the	distance	between	the	candidate	point	and	its	prevous
point	is	greater	than	the	sum	of	the	distances	between	the	two	point
arguments	and	the	second	point	argument	and	its	previous	point	and	sets
the	candidate	point’s	prevous	point	to	be	the	second	point	argument	and
the	candidate	point’s	current	distance	to	be	the	sum	of	the	distances
between	the	two	point	arguments	and	the	second	point	argument	and	its
previous	point.
Note In	the	first	call	the	candidate	point	is	(1905112,	472448)	and	its
previous	point	becomes	(1905922,	472443);	this	is	link	‘D’	in	the
graphic.	The	current	distance	property	of	the	candidate	point	becomes
(814	+	156),	which	is	the	length	of	link	‘D’	+	the	length	of	link	‘A’.	This
is	because	the	previous	point	of	point	(1905922,	472443)	is	the	start
point	((1905927,	472596).

Note In	the	second	call	the	candidate	point	is	(1906072,	472441)	and	its
previous	point	becomes	(1905922,	472443);	this	is	link	‘E’	in	the
graphic.	The	current	distance	property	of	the	candidate	point	becomes
(152	+	156),	which	is	the	length	of	link	‘E’	+	the	length	of	link	‘A’.	This
is	because	the	previous	point	of	point	(1905922,	472443)	is	the	start
point	(1905927,	472596).

Note In	the	fourth	call	the	candidate	point	is	(1905929,	472103)	and	its



previous	point	becomes	(1905922,	472443);	this	is	link	‘F’	in	the
graphic.	The	current	distance	property	of	the	candidate	point	becomes
(347	+	156),	which	is	the	length	of	link	‘F’	+	the	length	of	link	‘A’.	This
is	because	the	previous	point	of	point	(1905922,	472443)	is	the	start
point	(1905927,	472596).

6.	 Remembers	that	the	candidate	point	is	not	in	the	not	ready	list,	calculates
an	index	for	it,	adds	it	to	the	not	ready	list,	and	sorts	the	list	in	ascending
order	according	to	the	point’s	current	distance	property.
Note The	index	calculated	for	the	point	is	not	an	index	into	the	not	ready
list.	It	is	a	value	stored	in	the	point	data	structure.

Note In	the	first	call	the	candidate	point	gets	an	index	of	1,	and	it	is	the
only	point	in	the	not	ready	list.

Note In	the	second	call	the	candidate	point	gets	an	index	of	2,	and	it	is
one	of	two	points	in	the	not	ready	list.	As	a	result	of	the	sort	the	point
(1906072,	472411)	is	before	the	point	(1905112,	472448)	in	the	not
ready	list	since	its	total	distance	from	the	start	point	(307)	is	less	than
that	of	point	(1905112,	472448)	(970).

Note In	the	fourth	call	the	candidate	point	gets	an	index	of	3,	and	it	is	one
of	three	points	in	the	not	ready	list.	As	a	result	of	the	sort	the	order	is
(1906072,	472411),	(1905929,	472103),	and	(1905112,	472448).

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Search	for	a	Path
	
	
	

This	method	takes	two	arguments:	the	start	and	end	points	specified	by	the	user.
It	does	the	following:

1.	 Determine	that	the	start	and	end	points	are	not	the	same,	and	if	they	are,
return.

2.	 Add	the	start	point	to	the	ready	list	and	add	the	boundary	points	of
LineStrings	directly	connected	to	the	start	point	to	the	not	ready	list.	This
is	described	in	topic	Initialize	the	Start	Point.

3.	 Add	the	end	point	to	the	target	list	with	information	about	the	end	point
and	points	on	LineStrings	directly	connected	to	the	end	point.	This	is
described	in	topic	Initialize	the	End	Point.

4.	 Loops	through	the	not	ready	list	as	long	it	contains	points	and	does	the
following:

Removes	the	first	point	from	the	not	ready	list,	adds	it	to	the
ready	list,	and	keeps	a	local	copy	for	processing.
Note The	first	time	through	the	loop	the	point	processed	has
coordinates	(1905922,	472443);	it	is	a	boundary	point	of	link	‘A’.

Note The	second	time	through	the	loop	the	point	processed	has
coordinates	(1906072,	472441);	it	is	a	boundary	point	of	link	‘B’.

Note The	third	time	through	the	loop	the	point	processed	has
coordinates	(1905929,	472103);	it	is	a	boundary	point	of	links	‘F’
and	‘C’.

Determines	that	this	point	is	close	to	one	of	the	points	in	the
target	list,	adds	it	to	the	ready	list	and	breaks	out	of	the	loop
processing	the	not	ready	list.
Note The	target	list	has	three	points	whose	coordinates	are	the
boundary	points	of	link	‘B’	and	one	of	the	boundary	points	of	link



‘C’,	namely,	the	one	whose	coordinates	are	(1905929,	472103).

Note The	program	breaks	out	of	the	loop	on	the	third	iteration.

Determines	that	this	intermediate	point	is	not	close	to	one	of	the
points	in	the	target	list.

Retrieves	the	distance	between	the	intermediate	point	and	its
previous	point.	This	value	will	become	an	argument	to	the
RelaxPoint	method	call.
Note In	the	first	iteration	the	intermediate	point	is	(1905922,
472443)	whose	previous	point	is	the	start	point	(1905927,
472596)	and	the	value	of	the	current	distance	property	is	156.
This	represents	the	distance	between	the	intermediate	point	and
the	start	point.

Note In	the	second	iteration	the	intermediate	point	is	(1906072,
472441)	whose	previous	point	is	(1905922,	472443),	and	the
value	of	the	current	distance	property	is	309.	This	represents	the
distance	between	this	intermediate	point	and	the	start	point.

Gets	the	links	connected	to	this	intermediate	point.	This	is
described	in	topic	Get	Neighbor	Links.
Note In	the	first	iteration	the	neighbor	links	to	the	intermediate
point	with	coordinates	(1905922,	472443)	are	‘D’,	‘E’,	‘A’,	and
‘F’.	During	the	course	of	processing	these	links,	the	following
points	are	added	to	the	not	ready	list:	(1905112,	472448),
(1906072,	472441),	and	(1905929,	472103).

Note In	the	second	iteration	the	neighbor	link	to	the	intermediate
point	with	coordinates	(1906072,	472441)	is	‘D’.

For	each	link	returned	by	previous	step	do	the	following:

Get	the	next	point	from	the	link.	This	is	described	in	the
topic	Get	Next	Point	From	Link.	The	arguments	passed	in
are	the	intermediate	point,	the	neighboring	link,	false
indicating	that	the	intermediate	point	is	not	the	start	or	end
point	of	the	trace,	and	two	null	point	references.	In	this
situation	only	the	first	of	the	two	null	point	references	may
be	returned	with	a	valid	reference.
Note In	the	first	use	of	this	loop	there	are	four	links:	‘D’,



‘E’,	‘A’,	and	‘F’.	The	non-null	point	reference	returned
from	processing	the	‘D’	link	has	coordinates	(1905112,
472448).	The	non-null	point	reference	returned	from
processing	the	‘E’	link	has	coordinates	(1906072,	472441).
The	non-null	point	reference	returned	from	processing	the
‘A’	link	has	coordinates	(1905927,	472596).	The	non-null
point	reference	returned	from	processing	the	‘F’	link	has
coordinates	(1905929,	472103).

Note In	the	second	use	of	this	loop	there	is	one	link:	‘D’.

The	RelaxPoint	method	is	called	with	the	following
arguments:	the	non-null	point	reference	returned	by
GetNextPointFromLink,	the	intermediate	link,	the
ready	list,	the	not	ready	list	and	the	distance	between	the
intermediate	point	and	its	previous	point.	What	happens	is
described	in	the	topic	Relax	the	Point.
Note In	the	first	call	of	the	first	use	of	this	loop	the	non-null
point	reference	is	(1905112,	472448)	and	its	prevous	point
is	(1905922,	472443),	that	is,	the	boundary	points	of	link
‘D’.

Note In	the	second	call	of	the	first	use	of	this	loop	the	non-
null	point	reference	is	(1906072,	472441)	and	its	previous
point	is	(1905922,	472443),	that	is,	the	boundary	points	of
link	‘E’.

Note In	the	third	call	of	the	first	use	of	this	loop	the	non-
null	point	reference	is	(1905927,	47259896)	and	its
previous	point	is	(1905922,	472443),	that	is	the	boundary
points	of	link	‘A’.

Note In	the	fourth	call	of	the	first	use	of	this	loop	the	non-
null	reference	point	is	1905929,	472103)	and	its	previous
point	is	(1905922,	472443),	that	is	the	boundary	points	of
link	‘F’.

Note In	the	first	call	of	the	second	use	of	this	loop	the	non-
null	reference	is	(1905922,	472443).

5.	 Uses	the	points	in	the	ready	list	and	the	network	trace	end	point	to
construct	the	shortest	path.	This	is	described	in	the	topic	Assemble	the



Shortest	Path.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


PolygonOperation
	
	
	

Topics	in	this	section

Running	the	Sample
Code	Walkthrough

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Running	the	Sample
	
	
	

As	a	result	of	loading	the	PolygonOperation.dll	into	Map	3D,	you	see	the
following	graphic	appear	in	the	drawing	pane	and	the	following	lines	of	response
text	appear	in	the	command-line	area:

1.	 PolygonOperation	sample	application	initialized

2.	 PROMPT:	PolygonOperation	sample	commands:

3.	 -	Prepare

4.	 -	PolygonOperation

5.	 _zoom

6.	 Specify	corner	of	window,	enter	a	scale	factor	(nX	or	nXP),	or

7.	 [All/Center/Dynamic/Extents/Previous/Scale/Window/Object]	<real
time>:	extents

netload	result



The	netload	operation	executes	the	Prepare	command,	which	adds	the	contents
of	the	Data\SAMPLE.sdf	file	to	the	drawing	pane.

Topics	in	this	section

PolygonOperation

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


PolygonOperation
	
	
	

Before	you	run	the	PolygonOperation	command,	select	the	two	polygons	in	the
drawing	pane.	You	must	do	this	every	time	you	run	the	command.	The	program
will	complain	if	you	have	not	selected	anything.	This	means	that	you	can	add
polygons	to	the	drawing	and	select	them	for	inclusion	in	the	spatial	operation
that	you	will	choose	to	apply.

After	you	run	the	PolygonOperation	command	and	before	you	run	it	again,
remove	the	Result	layer	created	by	the	previous	run.	You	do	this	by	right-
clicking	Result	in	the	Display	Manager	and	selecting	Remove	Layer.

Enter	PolygonOperation	at	the	command-line.	You	are	prompted	to	enter	the
name	one	of	four	spatial	operations	available.	What	operation	do	you	want?
[Union,	Intersects,	Difference,	Subtract]:

If	you	chose	Union,	you	see	the	following	in	the	drawing	pane.

Union

If	you	chose	Intersect,	you	see	the	following	in	the	drawing	pane.



Intersect

If	you	chose	Difference,	you	see	the	following	in	the	drawing	pane.	The	result	is
indicated	by	the	darker	shading.

Difference

If	you	chose	Subtract,	you	see	the	following	in	the	drawing	pane.	The	result	is
either	the	lighter-shaded	area	on	the	left	or	the	darker-shaded	area	on	the	right
depending	on	which	polygon	you	consider	is	the	subtrahend.

Subtract



Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Code	Walkthrough
	
	
	

Topics	in	this	section

Entry	Point
PolygonOperation

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Entry	Point
	
	
	

When	you	netload	the	PolygonOperation.dll,	you	cause	the	Initialize()	method	of
the	AppEntry	class	in	Commands.cs	to	run.

The	Initialize	method	prints	the	following	message	to	the	command-line:
PolygonOperation	sample	application	initialized..	It	creates	an	instance	of	the
Commands	class,	which	is	also	defined	in	Commands.cs.	It	then	calls	the
CmdListCommand	method	on	this	instance.

The	CmdListCommand	method	prints	the	following	to	the	command-line:

PROMPT:	PolygonOperation	sample	commands:

-	Prepare

-	PolygonOperation

The	Initialize	method	calls	the	PrepareCommand	method,	which	creates
a	PolygonOp	object	and	calls	the	latter’s	Prepare	method.

The	Prepare	method	creates	an	MgResourceIdentifier	object	for	the
Data\SAMPLE.sdf	file.	This	is	described	in	topic	ConnectToSdfFile.

The	Prepare	method	uses	the	MgResourceIdentifier	object	to	add	the
contents	of	the	SAMPLE.sdf	file	to	the	Map	drawing.	This	is	described	in	the
topic	AddAllToMap.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


PolygonOperation
	
	
	

When	you	enter	the	PlygonOperation	command	on	the	Map	command-line,
you	cause	the	Commands	object’s	PolygonOperationCommand	method	to
be	executed.	This	method	displays	What	operation	do	you	want?	[Union,
Intersects,	Difference,	Subtract]:	on	the	command-line	and	waits	for	you	to	make
your	choice.	Once	it	has	your	choice,	it	creates	a	PolygonOp	object	and	passes
your	choice	to	the	RunPolygonOp	method.	This	method	does	the	following:

1.	 Uses	the	AcMapMap	class	to	get	the	current	AcMapMap	object.

2.	 Uses	the	AcMapMap	object	to	get	MgSelectionBase	object	and	uses
the	latter	to	get	an	MgReadOnlyLayerCollection	object.
Note You	can	add	polygons	to	the	drawing	and	select	them	so	that	they
are	included	in	theMgReadOnlyLayerCollection	object	.

3.	 Counts	the	layers	in	the	MgReadOnlyLayerCollection	object	and
if	there	are	none,	displays	the	following	message	on	the	command-line:
Please	select	two	polygons	first.

4.	 Gets	an	MgLayerBase	object	from	the
MgReadOnlyLayerCollection	object.

5.	 Uses	the	MgSelectionBase	and	MgLayerBase	objects	to	generate
a	string	containing	the	filter	expression,	“(FeatId=1)	OR	(FeatId=2)“.

6.	 Creates	an	MgFeatureQueryOptions	object	and	sets	its	filter	to	the
value	of	the	filter	expression	generated	in	the	previous	step.

7.	 Uses	the	MgLayerBase	object	to	generate	an
MgResourceIdentifier	object	identifying	the	feature	source.

8.	 Uses	an	MgFeatureService	object	and	the
MgResourcIdentifier,	MgLayerBase,	and
MgFeatureQueryOptions	objects	to	create	an



MgFeatureReader	object	containing	the	features	in	the	layer.

9.	 Uses	an	MgAgfReaderWriter	object	and	the	MgFeatureReader
object	to	get	the	MgGeometry	objects	from	the	selected	features	and
add	them	to	a	list.

10.	 Throws	an	exception	if	there	are	less	than	2	polygons	in	the	list.

11.	 Creates	an	MgGeometry	object	that	contains	the	results	of	performing
the	requested	spatial	operation	on	the	first	two	geometries	in	the	list.
Note Given	the	two	polygons	contained	in	the	SAMPLES.sdf	file,	the
geometry	resulting	from	any	of	the	spatial	operations	performed	is	never
an	MgMultiGeometry	object.

12.	 Creates	an	OSGeo.FDO.Schema.FeatureSchema	object	in
preparation	for	creating	a	feature	out	of	the	results	of	the	spatial
operation.	This	is	described	in	the	topic	CreateResultsFdoSchema.

13.	 Uses	the	Schema.FeatureSchema	object	to	create	an	sdf	file	to
contain	the	results	of	the	spatial	operation.	This	is	described	in	the	topic
CreateSdfFile.

14.	 Creates	an	MgResourceIdentifier	object	representing	the	sdf	file
created	in	the	previous	step	and	connects	to	that	file.	This	is	described	in
the	topic	ConnectToSdfFile.

15.	 Uses	an	MgAgfReaderWriter	object	and	the	MgGeometry	object
to	create	an	MgGeometryProperty	object	and	adds	the	latter	to	an
MgPropertyCollection	object.

16.	 Uses	the	MgPropertyCollection	object	to	create	an
MgInsertFeatures	object	and	adds	the	latter	to	an
MgFeatureCommandCollection	object.

17.	 Uses	an	MgFeatureService	object,	the
MgFeatureCommandCollection	object,	and	the
MgResourceIdentifier	object	to	add	the	results	geometry
property	to	the	Result.sdf	file.

18.	 Uses	the	MgResourceIdentifier	object	to	add	the	results
geometry	property	as	a	layer	to	the	map.	This	is	described	in	the	topic
AddAllToMap.



Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


QueryAndLocate
	
	
	

Topics	in	this	section

Running	the	Sample
Code	Walkthrough

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Running	the	Sample
	
	
	

To	load	the	sample,	type	NetLoad	at	the	command	prompt.	Select
QueryAndLocate.dll	in	the	file	browser.

To	run	the	sample,	first	type	Prepare	at	the	command	prompt.	Once	the
preparation	process	is	complete,	type	QueryAndLocate.	This	will	display	the
Query	and	Locate	window.





The	Query	and	Locate	window	allows	you	to	select	features	within	a	specified
layer	using	either	or	both	a	property	filter	or	a	spatial	filter.

This	sample	demonstrates	the	following:

How	to	load	FDO	features	into	Map.

How	to	get	the	name	and	property	definitions	of	a	feature	class.

How	to	query	features	in	a	layer	by	the	specific	value	fitlers.

How	to	query	features	in	a	layer	by	the	specific	spatial	filters.

How	to	zoom	to	a	selected	feature	in	Map.

How	to	highlight	a	selected	feature	in	Map.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Code	Walkthrough
	
	
	

Topics	in	this	section

Prepare
QueryAndLocate
QueryControl	user	control

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Prepare
	
	
	

The	Prepare	method	does	the	following:

1.	 Create	a	DataLoader	object	and	call	the	Load	method.

2.	 DataLoader.Load	loops	through	all	the	SDF	files	in	a	hard-coded
directory.	For	each	file,	it	calls	the	ConnectToSdfFile	and	AddAllToMap
utility	functions	to	connect	to	the	SDF	file	and	add	all	the	features	in
each	to	the	Map	document.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


QueryAndLocate
	
	
	

The	QueryAndLocate	method	does	the	following:

1.	 Call	the	Instance	static	property	of	the	QueryPaletteSet	class.	If	an
instance	of	QueryPaletteSet	has	not	yet	been	created,	this	will	create	one.
The	QueryPaletteSet	class	is	a	singleton,	so	there	can	never	be	more	than
one	instance	of	QueryPaletteSet	no	matter	how	many	times
QueryAndLocate	is	called.	When	the	QueryPaletteSet	object	is	created,
it	makes	a	new	AutoCAD	PaletteSet	window	and	adds	a	QueryControl
user	control	to	it.	It	also	sets	up	an	event	handler	to	clean	up	the
PaletteSet	window	when	the	Map	document	is	closed.

2.	 Call	the	Show	method	of	the	QueryPaletteSet	instance.	This	makes	the
PalettSet	window	visible	and	calls	the	OnLoad	method	of	the
QueryControl	user	control	that	was	created	earlier,	which	sets	up	and
displays	the	QueryControl	control.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


QueryControl	user	control
	
	
	

When	the	QueryControl	control	is	first	created,	it	performs	the	following	actions
in	the	constructor	and	in	the	OnLoad	event:

1.	 Create	an	instance	of	the	Query	class.	Query	provides	a	series	of	utility
functions	for	QueryControl.

2.	 Calls	the	Query.GetMapLayerNames	function	to	get	an	array	of	all	the
layer	names.	The	layer	names	are	placed	in	the	comboBoxLayer	combo
box.

3.	 Triggers	the	OnLayerChange	event.

The	following	are	the	actions	taken	by	the	QueryControl	user	control	in	response
to	user	input:

comboBoxLayer_SelectedIndexChanged	-	Calls	the	function
OnLayerChange	function.	OnLayerChange	gets	the	string	name	of	the
layer	from	the	comboBoxLayer	control	and	uses	the	global	instance	of
the	Query	object	to	get	the	properties	of	that	layer.	OnLayerChange	then
adds	the	property	names	to	the	comboBoxProperty	and
comboBoxOutputProperty	controls.	The	event	then	calls
OnPropertyChange.	OnPropertyChange	then	gets	the	Property	object	for
the	property	selected	in	the	comboBoxProperty	control,	and	depending
on	the	type	of	property	it	fills	the	comboBoxOperator	control	with	the
various	types	of	operators	that	can	act	on	that	property.

comboBoxProperty_SelectedIndexChanged	-	Calls
OnPropertyChange.	OnPropertyChange	gets	the	Property	object	for	the
property	selected	in	the	comboBoxProperty	control,	and	depending	on
the	type	of	property	it	fills	the	comboBoxOperator	control	with	the
various	types	of	operators	that	can	act	on	that	property.

checkBoxSpatialFilter_CheckedChanged	-	Calls	the
OnToggleSpatialFilter	function	which	sets	whether	the	spatial	filter	layer



created	by	the	buttonRectangle	or	buttonPolygon	controls	is	visible	or
not.	OnToggleSpatialFilter	first	locks	the	currently	active	document
using	the	LockDocument	method.	It	then	gets	a	reference	to	the
currently	active	document’s	database,	and	then	a	reference	to	the
database’s	transaction	manager	property.	It	creates	a	new	transaction	by
calling	the	StartTransaction	method	of	the	transaction	manager.	It	then
gets	the	AutoCAD	Polyline	entity	that	represents	the	spatial	filter	outline
and	sets	its	visibility.

buttonRectangle_Click	-	Calls	the	OnRectangleDigitized	function	to
create	a	spatial	filter	layer.	Using	a	utility	property,
OnRectangleDigitized	gets	a	reference	to	the	AutoCAD	Editor	object.	It
then	creates	a	PromptPointOptions	object	which	contains	a	prompt
string.	The	prompt	is	passed	to	the	GetPoint	method	of	the	Editor	object,
which	returns	a	PromptPointResult	object	containing	the	point	the	user
selected.	It	then	creates	an	instance	of	RectangleJig,	a	local	class
overriding	the	AutoCAD	EntityJig	abstract	class.	The	Drag	method	of
the	AutoCAD	Editor	object	is	called	with	the	RectangleJig	object	as	the
parameter	to	obtain	the	opposite	corner	point	of	the	rectangle.	Next,	the
SetRectangle	method	of	RectangleJig	is	called	to	compute	all	four
corners	of	the	rectangle,	and	the	local	AddEntityToMap	function	is
called.
AddEntityToMap	first	locks	the	currently	active	document	using	the
LockDocument	method.	It	then	gets	a	reference	to	the	currently	active
document’s	database,	and	then	a	reference	to	the	database’s	transaction
manager	property.	It	creates	a	new	transaction	by	calling	the
StartTransaction	method	of	the	transaction	manager.	AddEntityToMap
then	adds	the	rectangle	entity	to	a	block	table	from	the	document’s
database.

buttonPolygon_Click	-	Calls	the	OnPolyonDigitized	function	to	create
a	spatial	filter	layer.	Using	a	utility	property,	OnRectangleDigitized	gets
a	reference	to	the	AutoCAD	Editor	object.	It	then	creates	a
PromptPointOptions	object	which	contains	a	prompt	string.	The	prompt
is	passed	to	the	GetPoint	method	of	the	Editor	object,	which	returns	a
PromptPointResult	object	containing	the	point	the	user	selected.	It	then
creates	an	instance	of	PolygonJig,	a	local	class	overriding	the	AutoCAD
EntityJig	abstract	class.	Within	a	While	loop	the	Drag	method	of	the
AutoCAD	Editor	object	is	called	with	the	PolygonJig	object	as	the



parameter	to	obtain	the	remaining	points	of	the	polygon.	Next,	the	local
AddEntityToMap	function	is	called.
AddEntityToMap	first	locks	the	currently	active	document	using	the
LockDocument	method.	It	then	gets	a	reference	to	the	currently	active
document’s	database,	and	then	a	reference	to	the	database’s	transaction
manager	property.	It	creates	a	new	transaction	by	calling	the
StartTransaction	method	of	the	transaction	manager.	AddEntityToMap
then	adds	the	polyline	entity	to	a	block	table	from	the	document’s
database.

buttonClear_Click	-	Calls	the	OnClear	method	to	erase	the	selection
entity	created	by	the	buttonRectangle	or	buttonPolygon	controls	and
reset	the	spatial	filter	layer.	OnClear	first	locks	the	currently	active
document	using	the	LockDocument	method.	It	then	gets	a	reference	to
the	currently	active	document’s	database,	and	then	a	reference	to	the
database’s	transaction	manager	property.	It	creates	a	new	transaction	by
calling	the	StartTransaction	method	of	the	transaction	manager.	It	uses
the	transaction	manager’s	GetObject	method	to	get	a	reference	to	the
entity	described	by	the	global	_boundaryEntityId	property	and	erases	it.
Lastly,	it	causes	the	current	document	to	refresh	its	display.

comboBoxOutputProperty_SelectedIndexChanged	-	Calls	the
OnOutputPropertyChange	function	which	clears	the	listBoxResults
control.

button1_Click	-	Loops	through	all	layers	to	find	the	one	that	matches
the	selected	text	in	the	comboBoxLayer	control,	and	then	calls
ZoomToLayer	method	of	the	layer	that	matches.
Note This	control	is	a	button	labeled	“Zoom”	near	the	comboBoxLayer
control.

buttonExecute_Click	-	Calls	the	ExecuteQuery	function.	ExecuteQuery
first	creates	an	instance	of	the	QueryCondition	class.	All	of	the
QueryCondition	properties	as	assigned	to	the	selected	values	of	the
controls	on	the	user	control	and	to	the	Property	object	represented	by	the
value	of	the	comboBoxProperty	control.	The	QueryCondition	object	is
then	passed	to	the	Execute	method	of	the	global	Query	object	to	perform
the	database	query.	Execute	returns	an	array	of	Features.	A	loop	adds	the
value	of	each	of	the	features	to	the	listBoxResults	list	box.



buttonSelect_Click	-	Calls	the	SelectFeature	function.	SelectFeature
first	gets	the	Feature	object	represented	by	the	selected	item	in	the
listBoxResults	control.	It	then	creates	a	hash	table	from	the	IdProperties
property	of	the	feature	object.	If	any	features	are	currently	selected	(that
is,	if	the	_selectionSet	object	contains	any	features),	they	are	unselected
by	calling	the	AcMapFeatureEntityService.UnhighlightFeatures	method.
The	feature	is	then	selected	by	calling	the	GetHilightSelectionFeature
method	of	the	global	Query	object,	which	requires	a	layer	name	and	the
hash	table	of	IdProperties	as	parameters.

buttonZoom_Click	-	Calls	the	ZoomToFeature	function.
ZoomToFeature	first	gets	a	reference	to	the	currently	displayed
AcMapMap	object.	It	then	gets	the	Feature	object	named	by	the	selected
item	in	the	listBoxResults	control.	It	then	gets	a	reference	to	the
MgGeometry	property	of	the	feature,	and	creates	an	MgEnvelope	object
indicating	the	extents	of	the	feature.	It	calls	the	AcMapMap	object’s
ZoomToExtent	function	to	zoom	the	map	to	the	specified	envelope,	and
finally	calls	the	SelectFeature	method	to	select	the	specified	feature.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


SpiderNetwork
	
	
	

Topics	in	this	section

Running	the	Sample
Code	Walkthrough

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Running	the	Sample
	
	
	

As	a	result	of	loading	the	SpiderNetwork.dll	into	Map	3D,	you	see	three	lines	of
response	textSpider	network	sample	application	initialized.,PROMPT:
SpiderNetwork	sample	commands:,	and	-	SpiderNetwork.

At	the

Command:
prompt	enter	the	command	SpiderNetwork.

The	result	is	that	the	following	graphic	is	loaded	into	the	drawing	pane.	The	hub
nodes	represent	police	stations,	and	the	rim	nodes	represent	crime	locations.



Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Code	Walkthrough
	
	
	

Topics	in	this	section

Entry	Point
SpiderNetwork

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Entry	Point
	
	
	

When	you	netload	the	SpiderNetwork.dll,	you	cause	the	Initialize	method
of	the	AppEntry	class	in	Commands.cs	to	run.

The	Initialize	method	prints	the	message	Spider	network	sample
application	initialized.	to	the	Map	command-line.	It	creates	an	instance	of	the
Commands	class,	which	is	also	defined	in	Commands.cs.	It	then	calls	the
CmdListCommand	method	on	this	instance.

The	CmdListCommand	method	prints	PROMPT:	SpiderNetwork	sample
commands:	and	-	SpiderNetwork	to	the	command-line.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


SpiderNetwork
	
	
	

When	you	enter	the	SpiderNetwork	command	on	the	Map	command-line,
you	cause	an	instance	of	the	SpiderNetwork	class	to	be	created	and	its
RunSpiderNetwork	method	to	be	executed.

The	RunSpiderNetwork	method	does	the	following:

1.	 Prints	SpiderNetwork...	to	the	command-line.

2.	 Connects	to	the	SpiderNetwork\Data\crime.sdf	file.	This	data	store
contains	a	set	of	points	which	represent	the	location	of	crimes.	Each
feature	contains	an	integer	field	containing	the	feature	id	of	a	police
station.	This	is	described	in	the	topic	ConnectToSdfFile.

3.	 Connects	to	the	SpiderNetwork\Data\policestation.sdf	file.	This	data
store	contains	a	set	of	points	which	represent	the	location	of	police
station.	This	is	described	in	the	topic	ConnectToSdfFile.

4.	 Creates	an	sdf	file	in	the	local	filesystem	to	hold	the	results	and	uses	the
Resource	Service	to	give	it	an	MgResourceIdentifier.	This	is
described	in	the	topic	CreateSdfFile.

5.	 Gets	all	of	the	features	in	the	policestation.sdf	and	loops	over	them.

6.	 Extracts	the	point	geometry	and	feature	id	from	the	policestation	feature.

7.	 Gets	all	of	the	features	in	the	crime.sdf	data	store	whose
PoliceStationResponded	property	value	is	equal	to	the
policestation	feature	id,	which	is	currently	being	read	and	loops	over
them.

8.	 Extracts	the	point	geometry	from	the	crime	feature	currently	being	read
and	creates	a	LineString	geometry	whose	start	point	is	the	police	station
point	geometry	and	whose	end	point	is	the	crime	location	point
geometry.



9.	 Uses	the	LineString	geometry	to	create	a	geometry	property	and	adds	it
to	a	property	collection.

10.	 Uses	the	police	station	feature	id	to	create	an	integer	property	and	adds	it
to	the	same	property	collection.

11.	 Creates	an	MgInsertFeatures	command	for	the	feature	in	the
property	collection	and	adds	the	command	to	a	feature	command
collection.

12.	 Uses	an	MgFeatureService	object	to	execute	the	command	in	the
feature	command	collection	to	insert	the	feature	into	the	results	sdf	file.

13.	 Creates	a	layer	for	the	police	station	features	and	adds	this	layer	to	the
current	map.

14.	 Creates	a	layer	for	the	crime	location	features	and	adds	this	layer	to	the
current	map.

15.	 Creates	a	layer	for	the	results	features	and	adds	this	layer	to	the	current
map.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

	Samples
	Introduction
	Installation
	Extension Applications
	Building
	Loading
	Concepts
	Resources
	Feature Source, Feature, Feature Schema, Class Definition, and Properties
	Map, Layer, Layer Group
	Namespaces Used By The Samples
	Autodesk.AutoCAD
	Autodesk.Gis.Map
	OSGeo.FDO
	OSGeo.MapGuide
	OSGeo.MapGuide.Schema.FeatureSource
	OSGeo.MapGuide.Schema.LayerDefinition
	Platform.Samples.Util Utility Library
	AcadEditor
	AddAllToMap
	AddToMap
	AddFeatureClassToSchema
	ChangeSurfaceLayerStyle
	ClearResources
	ConnectToSdfFile
	CopyFeatures
	CreateFdoFeatureClass
	CreateFeatureSourceDefinition
	CreateFeatureSourceXmlForSdf
	CreateLayerDefinitionObject
	CreateLayerDefinitionXml
	CreateRasterFeatureSourceDefinition
	CreateRasterLayerDefinitionXml
	CreateResultsFdoSchema
	CreateSdfFeatureSourceDefinition
	CreateSdfFile
	CurrentDir
	GetColor
	GetCoordSysWkt
	GetDefaultGeometryPropertyName
	GetGeometricType
	Highlight
	IsGridLayer
	IsReadOnlyProperty
	MakeDefaultStyle
	MakeDefaultStyleForCurve
	Print and PrintLn
	ReadFeature
	ToFdoDataType
	BuildMap
	Running the Sample
	Code Walkthrough
	Entry Point
	BuildMap
	GisOperation
	Apply A Buffer Operation To Features
	ChangeStyle
	Classify
	Running the Sample
	Code Walkthough
	ClassifyManholes
	EditSetViewer
	Running the Sample
	Code Walkthough
	Prepare
	EditSetViewer
	Viewer user control
	FeatureExplorer
	Running the Sample
	Code Walkthough
	Entry Point
	FeatureExplorerControl user control
	FeatureInspector
	Running the Sample
	Code Walkthough
	RegisterEvents
	UnregisterEvents
	FeatureInspector
	User Interface Elements
	InspectorForm user control
	FindIntersects
	Running the Sample
	Code Walkthrough
	Entry Point
	FindIntersect
	Find Intersections
	Query the Feature Source for Intersections
	Point Exists
	GenerateAnnotation
	Running the Sample
	Background Information On Some Of The Namespaces and Classes Used In This Sample
	Autodesk.AutoCAD.DatabaseServices Namespace
	Autodesk.Gis.Map.HostMapApplicationServices Class
	Autodesk.Gis.Map.MapApplication Class
	Autodesk.Gis.Map.ObjectData Namespace
	Autodesk.Gis.Map.Project.ProjectModel
	Code Walkthrough
	Entry Point
	GenAnnotation
	Create A Layer Using Autodesk.AutoCAD.DatabaseServices
	Create An Annotation Template
	Create An Object Data Table
	Create Centroids
	Insert The Annotations
	Set An Attribute Definition
	GeoCoder
	Running the Sample
	Code Walkthrough
	GeoCoderCommand
	InputEditor
	Running the Sample
	Code Walkthrough
	Entry Point
	Automatic Feature Update
	RegisterEvent
	UnregisterEvent
	NetworkTrace
	Running the Sample
	Code Walkthrough
	Data Structures Used by the Network Trace Algorithm
	Point
	Link
	Point Lists
	Shortest Path List
	Entry Point
	NetworkTrace
	Assemble the Shortest Path
	Get Neighbor Links
	Get Next Point From Link
	Initialize the End Point
	Initialize the Start Point
	Relax Point
	Relax the Point
	Search for a Path
	PolygonOperation
	Running the Sample
	PolygonOperation
	Code Walkthrough
	Entry Point
	PolygonOperation
	QueryAndLocate
	Running the Sample
	Code Walkthrough
	Prepare
	QueryAndLocate
	QueryControl user control
	SpiderNetwork
	Running the Sample
	Code Walkthrough
	Entry Point
	SpiderNetwork

