
		

The	ActiveX	Object	Model	for	AutoCAD	Land	Desktop	is	an	ActiveX	and
VBA	interface	that	enables	developers	to	create	dynamic	and	powerful
applications.	This	guide	describes	the	concept	of	exposing	objects
through	an	ActiveX	interface	and	programming	those	objects	using
various	languages	including	the	Visual	Basic	for	Applications
programming	environment.

The	section	“Getting	Started”	covers	the	example	code	found	in	the	help
reference	and	the	sample	applications	that	are	installed	with	the	ActiveX
Object	Model.	Refer	to	the	section	“Understanding	the	ActiveX	Object
Model”	for	specific	information	on	features	of	AutoCAD	Land	Desktop
that	can	be	accessed	through	the	ActiveX	Object	Model.	In	the	section
“Programming	Guidelines”	there	are	tips	and	recommendations	for
developing	applications	using	various	programming	languages	and
development	environments.

If	you	are	new	to	the	Visual	Basic	for	Applications	programming
environment	or	AutoCAD	ActiveX	technology,	please	refer	to	the
AutoCAD	ActiveX	and	VBA	Developer's	Guide	before	using	this	guide.

Topics	in	this	Section:

Referencing	the	Automation	Type	Libraries

Running	the	Example	Code	in	this	Guide
Reviewing	the	Sample	Applications

Getting	Started	Introduction

javascript:history.back();
acadauto.chm::/idx_object_model.htm

		

Whenever	a	new	AutoCAD	Land	Desktop	project	is	created,	the
supporting	type	libraries	must	be	referenced.	AutoCAD	Land	Desktop
requires	reference	to	three	type	libraries	before	any	coding	begins.	The
three	type	libraries	are:

AEC	Base	4.0	Application	Library	(AecXUiBase40.tlb)
AEC	Base	4.0	Object	Library	(AecXBase40.tlb)
Autodesk	Land	4.0	Type	Library

These	libraries	provide	access	to	all	the	AutoCAD	Land	Desktop	Objects,
Properties,	Methods,	and	Events.	The	VBAIDE	References	dialog	allows
you	to	set	the	type	libraries	for	use.

To	open	the	References	dialog	box
1.	 From	the	Tools	menu,	choose	References.
2.	 Scroll	through	the	list	and	check	the	required	AutoCAD	Land

Desktop	type	libraries.
3.	 Click	OK.

Referencing	the	Automation	Type	Libraries

javascript:history.back();

		

All	of	the	example	code	in	the	Reference	can	be	copied	from	the	help
files,	pasted	directly	into	the	AutoCAD	VBA	environment,	and	then
executed	with	the	following	requirements:

The	current	active	drawing	in	AutoCAD	must	be	a	drawing	created
with	AutoCAD	Land	Desktop	open	to	model	space.

The	active	project	must	contain	objects	or	data	that	the	example	is
trying	to	access	for	use.
In	order	to	provide	clear	and	simple	examples,	all	the	examples
provided	in	the	reference	assume	that	the	Base	Point	and	North
Rotation	is	the	same	as	the	AutoCAD	World	coordinate	system	using
the	default	X	and	Y	settings.	If	you	use	any	of	the	examples	in	your
own	code	make	sure	you	test	for	Base	Point	and	North	Rotation	and
provide	appropriate	conversion	when	necessary.
Some	examples	contain	user	input	methods	such	as	Utility.GetPoint,
which	can	be	called	from	a	macro,	but	cannot	be	called	from	a	modal
dialog.

To	run	the	examples

1.	 Copy	the	example	from	the	help	file	into	an	empty	VBA	code	module.

2.	 Add	a	reference	to	the	AEC	Base	Application,	AEC	Base	Object,	and
AutoCAD	Land	Type	Libraries.

3.	 Verify	that	AutoCAD	has	an	AutoCAD	Land	Desktop	drawing	open	to
model	space.

4.	 Verify	that	the	active	project	has	data	for	the	example	to	work	with.
5.	 Open	the	Macros	dialog	box	by	entering	the	command	VBARUN.
6.	 Choose	the	macro	and	press	Run.	

NOTE:	The	examples	are	provided	to	simply	show	how	a	specific	Object,
Property,	Method,	or	Event	can	be	used.	No	provisions	for	error	trapping
are	provided.	Code	optimization,	format	or	logic	have	been	kept	simple,
and	to	a	minimum,	for	the	sake	of	clarity.

Running	the	Example	Code

javascript:history.back();

		

The	AutoCAD	Land	Desktop	ActiveX	and	VBA	ActiveX	Object	Model
comes	with	several	samples	that	demonstrate	how	to	create	your	own
utilities	and	extensions	to	AutoCAD	Land	Desktop.	We	have	provided
samples	for	each	of	the	most	common	development	environments:

Visual	Basic	for	Applications

ProjectFind
PointGroupFncs
PointGroupReport
Draw3dSurface
AlignmentUtilities
DrapeLine
PointGroupTable
ParcelArea
DrawCrossSection

Visual	Basic

LockWatcher

Visual	Lisp

CogoPoints

ObjectARX

AeccNew
PointGroup
PointExport

VisualC++

EventLogger,

This	listing	provides	the	name,	description,	and	location	of	the	main
source	code	file	for	each	sample	application.	Many	sample	applications
have	support	files	that	can	be	found	in	the	same	directory	as	the	main

Reviewing	the	Sample	Applications

javascript:history.back();

source	code	file.

Sample	Applications:

Sample\Land\Vba\ProjectFind.dvb

Description:	VBA	dialog	for	finding	AutoCAD	Land	Desktop	projects.

Macros:

ProjectFind

This	macro	launches	a	modal	dialog	that	you	can	use
search	for	a	project	based	on	a	path	and	filters	using
wildcards,	and	optionally	load	a	drawing	from	that	project
into	AutoCAD	Land	Desktop.	

Sample\Land\Vba\PointGroupFncs.dvb

Description:	VBA	functions	to	modify	Point	Groups.

Macros:

AddPointsToGroup
This	macro	adds	a	point	list	to	the	selected	Point
Group.	The	point	list	can	be	retrieved	from	an
AutoCAD	drawing	or	typed	in.

CreateGroupByDesc

This	macro	displays	a	list	of	all	unique	point
descriptions.	You	can	then	create	a	new	Point
Group	based	on	that	unique	description.	Then	the
macro	adds	all	points	with	that	description	to	that
new	Point	Group.

DisplayGroupsByPoint

Given	a	Point	number,	the	macro	displays	all
point	groups	that	contain	that	Point	number.	The
Point	number	can	be	typed	or	selected	from	an

AutoCAD	drawing.

Sample\Land\Vba\PointGroupReport.dot

Description:	VBA	macro	that	creates	a	custom	Point	Group	report.

Macros:

PointGroupReport
This	macro	will	accept	customer	data	and	print	out:
customer	data,	project	statistics,	and	multiple	Point
Groups.

NOTE:	To	use	the	word	template,	you	must	have	the	AutoCAD	Land
Desktop	running	and	a	drawing	open	with	a	point	database	created	in	its
project.	Locate	the	PointGroupReport.dot	with	Explorer	and	double	click
on	the	file	name.	This	will	open	Word	and	begin	a	new	document	using
PointGroupReport.dot	as	the	template.	From	the	Tools	menu	open	the
Macros	dialog	and	select	the	macro	named	PointGroupReport.	Select	the
Run	button	to	display	the	Point	Group	Display	Dialog.	This	dialog	creates
a	client	data	section	and	a	point	table	listing	for	each	selected	point
group.

To	edit	this	macro	use	the	Visual	Basic	Editor	from	the	Macro	selection	of
the	Tools	menu	in	Microsoft	Word.

Sample\Land\Vba\Draw3dSurface.dvb

Description:	VBA	dialog	for	drawing	a	Surface	as	3d	Faces.

Macros:

DrawSurface

This	macro	launches	a	modal	dialog	that	you	can	use	to
select	a	Surface	and	then	draw	all	visible	Surface	Faces
as	AutoCAD	3dFaces.	All	drawing	is	done	on	the	current

drawing	surface.

Sample\Land\Vba\AlignmentUtilities.dvb

Description:	VBA	dialog	for	making	a	copy	of	an	alignment	in	the
alignment	database.

Macros:

CopyAlignment

This	macro	launches	a	modal	dialog	that	you	can	use	to
select	an	alignment	and	then	make	a	copy	of	that
alignment.	The	alignment	is	not	drawn	in	the	current
AutoCAD	drawing.

Sample\Land\Vba\DrapeLine.dvb

Description:	VBA	dialog	for	projecting	an	alignment	to	a	surface,	and
drawing	the	result	as	a	set	of	lines.

Macros:

DrapeLine
This	macro	launches	a	modal	dialog	that	lets	the	user
select	an	alignment	and	a	surface,	and	drape	a	projected
series	of	line	entities	onto	the	surface	on	the	current	layer.

Sample\Land\Vba\PointGroupTable.dvb

Description:	VBA	dialog	for	adding	a	point	table	to	the	drawing.

Macros:

PointGroupTable

This	macro	launches	a	modal	dialog	that	allows	the
user	to	select	a	point	group,	and	inserts	a	table	on	the
current	layer	that	identifies	point	number,	eastings,
northings	and	elevations.

Sample\Land\Vba\ParcelArea.dvb

Description:	VBA	dialog	for	displaying	the	total	area	of	a	set	of	parcels.

Macros:

ParcelArea
This	macro	launches	a	modal	dialog	that	allows	the	user
to	select	one	or	more	parcels,	and	displays	the	total	area
in	the	proper	units.

Sample\Land\Vba\DrawCrossSection.dvb

Description:	VBA	utility	for	drawing	a	cross	section	of	the	first	station	of
the	current	alignment.

Macros:

DrawCrossSection

This	macro	will	drawing	a	cross	section	in	Model
Space	using	a	vertical	scale	factor	of	10.	It	imports
the	CrossSection	block,	and	then	drafts	each	cross
section	surfaces	as	a	lightweight	polyline.	The	code
demonstrates	how	to	process	the	right	and	left	sides
of	the	surfaces	properly.

Sample\Land\ActiveX\LockWatcher

Description:	A	VB	application	for	monitoring	multi-user	locks	for	a
project.

NOTE:	The	VB	sample	LockWatcher	was	developed	using	Visual	Basic
version	5.0.	It	is	also	compatible	with	VB4-32	and	VB6.

Sample\Land\VLisp\CogoPoints.lsp

Description:	Various	Visual	Lisp	functions	to	access	the	Project	and
Cogo	interfaces.	This	lisp	file	is	useful	for	learning	the	syntax	of	ActiveX
and	VLisp.

Functions:

loadAecProj
Loads	the	AutoCAD,	Aecc.Application,	and	the	Active
Project	interfaces.	This	routine	must	be	run	before	all
other	functions.

cleanup Releases	all	global	interfaces.

ProjectStats Displays	the	active	project's	properties.

PointGroups Lists	the	point	group	names	using	the	Item()	method.

PointGroups2 Lists	the	point	group	names	using	Enumeration.

addCgPoint Adds	a	new	Cogo	Point.

Sample\Land\Arx\AeccNew

Description:	This	ARX	provides	the	command	line	equivalents	of	the

New	and	Open	dialogs.	It	demonstrates	the	use	of	the
ACRX_CMD_SESSION	and	ACRX_CMD_NOINTERNALLOCK	flags	for
registered	commands	that	use	the	Document.NewProjectBased	and
Document.OpenProjectBased	ActiveX	methods.

NOTE:	You	must	modify	project	settings	for	the	included	directories	and
the	library	to	match	your	system.	The	locations	of	the	following	type
libraries	must	also	be	modified	in	stdafx.h:	acad.tlb,	aecxbase.tlb,
aecxuibase.tlb	and	landauto.tlb.

Functions:

aeccnew This	prompts	you	for	arguments	and	creates	a	new
project/drawing.	

aeccopen This	prompts	you	for	arguments	and	opens	an	existing
project/drawing.

Sample\Land	Arx\PointGroup

Description:	This	application	displays	the	currently	defined	point	groups
and	displays	the	points	for	an	existing	point	group.

NOTE:	You	must	modify	project	settings	for	the	included	directories	and
the	library	paths	to	match	your	system.	The	locations	of	the	following	type
libraries	must	also	be	modified	in	stdafx.h:	acad.tlb,	aecxbase.tlb,
aecxuibase.tlb	and	landauto.tlb.

Functions:

c:pointgroup Lists	routines	for	PointGroup.arx.	

c:listpointgroups Lists	all	point	groups	for	the	current	project.

listgrouppoints Gives	a	point	group	name,	will	list	all	of	the	points.

Sample\Land\	Arx\PointExport

Description:	Application	will	export	all	Cogo	points	into	an	ASCII	file.

NOTE:	You	must	modify	project	settings	for	the	included	directories	and
the	library	paths	to	match	your	system.	The	locations	of	the	following	type
libraries	must	also	be	modified	in	stdafx.h:	acad.tlb,	aecxbase.tlb,
aecxuibase.tlb	and	landauto.tlb.

Functions:

pointexport Exports	all	Cogo	points	to	an	ASCII	file.

Sample\Land\ActiveX\EventLogger

Description:	A	C++	application	for	monitoring	alignment	events.

This	sample	application	displays	a	dialog	with	a	list	box	that	records	all
alignment	events	(when	an	alignment	or	station	equation	is	written	to	the
database).	The	sample	demonstrates	how	to	implement	an	event	sink	in
a	COM	object	using	MFC	and	ATL.

	

The	ActiveX	Object	Model	for	AutoCAD	Land	Desktop	exposes	features
and	provides	access	to	project	data	through	an	object	hierarchy.	This
hierarchy	provides	a	convenient	and	consistent	programming	interface	to
your	projects.

The	object	hierarchy	can	be	grouped	into	the	following	categories:

Alignments
Plan	alignments	can	be	defined	from	tangent,	curve,	and	spiral	objects.
You	can	also	manage	Station	Equations.

Project	Management
This	includes	extensions	to	the	AutoCAD	object	model	so	that	you	can
manage	Land	Desktop	Projects.	It	also	provides	access	to	Preferences
and	Project	Prototypes.

COM	Wrappers	for	ARX	Objects
These	are	provided	for	the	Point,	Contour,	and	CurveText	ARX	objects
that	reside	in	your	drawings.	You	can	modify	existing	objects,	or	add	and
delete	objects	from	the	drawing.	In	addition,	programmatic	access	to	the
ContourStyle	dictionary	object	is	provided	so	that	you	can	manage	the
appearance	of	Contour	objects.

Coordinate	Geometry
These	objects	allow	you	to	manage	your	Cogo	Point	database,	Point
Groups,	and	Description	Keys.

Surfaces
Terrain	management	is	exposed	through	a	collection	of	surfaces	that
have	inputs	and	generated	outputs.	You	can	define	a	surface	from	Point
Files,	Point	Groups,	Boundaries,	Breaklines,	Contour	data,	or	DEM	Files.
You	can	build	a	surface	and	a	watershed	model.	The	generated	Tin
Points,	Edges,	Faces	and	Elevation	Contours	are	provided	as	outputs.

Understanding	The	ActiveX	Object	Model
Introduction

javascript:history.back();

Parcels
Parcel	objects	can	be	defined	from	line	and	curve	objects.	Properties
such	as	area,	perimeter,	centroid,	and	name	can	also	be	accessed.

Profiles,	Cross	Sections,	and	Superelevations
The	ActiveX	Object	model	provides	access	to	profiles,	cross	sections,
and	superelevations.	You	can	also	access	the	profiles	and	cross	section
blocks	in	the	drawing	for	custom	drafting.

Topics	in	this	Section:

The	Big	Picture
Project	Management
Alignments
Surfaces
CogoPoints
Profiles
Cross	Sections	and	Superelevations
Parcels
COM	Wrappers

		

ActiveX	Object	Model
The	ActiveX	Object	Model	is	an	interface	into	the	AutoCAD	Land	Desktop
product.	It	is	not	a	replacement	for	AutoCAD's	ActiveX	interface	but	is	an
extension	of	that	interface.

Through	the	ActiveX	Object	Model	you	can	create	and	edit	your	project
data.	Through	AutoCAD	ActiveX,	you	can	create	and	modify	drawing
entities.	There	is	very	little	overlap	between	the	two.	The	ActiveX	Object
Model	provides	very	little	drawing	interaction.	The	ActiveX	Object	Model
has	no	user	interface.	AutoCAD	ActiveX	provides	these	(and	others)
features.	Using	AutoCAD	ActiveX	you	can	draw	and	edit	AutoCAD
entities,	as	well	as	prompt	the	user	for	entity	selection	or	creation.

By	using	both	the	ActiveX	Object	Model	and	the	AutoCAD	ActiveX
interface,	you	can	easily	customize	AutoCAD	Land	Desktop	for	your
business.

ActiveX	Object	Model	Versions
When	designing	your	applications,	you	can	detect	what	version	of	the
ActiveX	Object	Model	is	installed,	and	behave	appropriately	according	to
the	available	features.	If	you	are	using	ActiveX	Automation	(using
IDispatch	methods	such	as	Invoke	and	GetIdsOfNames),	you	can	try	to
access	a	new	feature	with	the	appropriate	error	handling	(on	error
handler,	try-catch	block,	etc.).	However,	if	you	are	creating	compiled
applications	(vtable	binding),	you	must	check	the	program	IDs	that	are
registered	for	the	application	object:

Sub	version()
	
		Dim	app	As	AeccApplication
		Dim	version2	As	Boolean
		Dim	version4	As	Boolean
		version2	=	False
		version4	=	False
	

The	Big	Picture

javascript:history.back();

Check1:
		On	Error	GoTo	Check2
		Set	app	=
ThisDrawing.Application.GetInterfaceObject("Aecc.Application.2")
		version2	=	True
	
Check2:
		On	Error	GoTo	Done
		Set	app	=
ThisDrawing.Application.GetInterfaceObject("Aecc.Application.4")
		version4	=	True
	
Done:
		If	version4	Then
				Debug.Print	vbCrLf	&	"Land	Desktop	2007	functionality	is	available."
		ElseIf	version2	Then
				Debug.Print	vbCrLf	&	"Land	Desktop	2i	functionality	is	available."	&	_
						"Do	not	try	to	invoke	2007	features	on	this	desktop."
		Else
				Debug.Print	vbCrLf	&	"No	ActiveX	functionality	for	Land	Desktop	is
available."
		End	If
	
End	Sub

Loading	Civil	Engineering	Features
To	access	civl	engineering	features,	such	as	Alignment	Profiles,
CrossSections	and	Superelevations,	you	must	have	AutoCAD	Civil	3D
Land	Desktop	Companion	2009	running.	The	"AutoCAD	Civil	3D	Land
Desktop	Companion	2009"	version	of	Land	Desktop	has	the	civil
engineering	and	survey	features	included.	The	version	of	Land	Desktop
named	"AutoCAD	Land	Desktop	2009",	sometimes	referred	to	as	the
stand-alone	version	of	Land	Desktop,	does	not	have	the	civil	engineering
and	survey	features	installed.	You	may	get	an	error	code
AECC_E_CIVIL_NOT_LOADED	(or	message	"Civil	Desktop\civil
engineering	features	has\have	not	been	loaded.")	when	you	try	to	access
profile	objects	on	the	version	of	Land	Desktop	that	does	not	contain	civil

engineering	features	("AutoCAD	Land	Desktop	2009").

If	you	have	AutoCAD	Civil	3D	Land	Desktop	Companion	2009	installed,
the	civil	engineering	features	are	automatically	loaded.

Data	Validation
The	AutoCAD	Land	Desktop	product	gets	input	through	menus,	dialogs,
command	line	input,	and	the	pointer	device.	In	most	cases	the	program
validates	this	input	before	sending	the	data	to	the	functions.	The	ActiveX
Object	Model	exposes	the	programs	functions,	bypassing	the	AutoCAD
Land	Desktop	interface.	When	using	The	ActiveX	Object	Model,	you	are
responsible	for	the	interface.	The	method	used	for	collecting	and
validating	the	data	is	critical	to	the	design	of	any	program	written	for	use
with	the	ActiveX	Object	Model.	Providing	incorrect	data	to	the	Methods	or
Properties	provided	in	the	ActiveX	Object	Model	can	result	in	invalid
results	and	incorrect	data	in	the	projects	databases.

Projects	and	Drawings
AutoCAD	Land	Desktop	is	project-based.	The	majority	of	data	for	a
project	is	stored	externally	from	an	AutoCAD	drawing.	This	includes
COGO	points,	surfaces,	and	alignments.	A	Drawing	is	considered	part	of
that	project	data.	A	drawing	is	associated	with	one	project.	However,	a
project	can	have	multiple	drawings	associated	with	it.	A	drawing	is	a	view
into	the	project	data.	Because	you	can	have	multiple	drawings	associated
with	a	project,	you	can	have	multiple	views	of	the	project.	In	one	drawing,
you	might	have	all	of	the	COGO	points.	In	another	drawing,	the
alignments	might	be	displayed.	The	number	of	project-based	drawings
and	their	content	is	up	to	the	end	user.	However,	all	data	ends	up	as
project	data.

This	idea	of	being	project-based	is	central	to	AutoCAD	Land	Desktop,
and	the	ActiveX	Object	Model	is	based	on	it.

Drawings	and	Documents
A	Project	can	have	multiple	AutoCAD	drawings	associated	with	it.	The
Drawings	collection	is	this	list	of	AutoCAD	drawings.	This	list	is	retrieved
from	the	[Project]\dwgs	directory.

A	Document	is	a	drawing	file	loaded	into	AutoCAD	Land	Desktop.
Currently,	the	ActiveX	Object	Model	only	supports	one	Document	being
loaded	at	a	time.	This	Document	is	derived	from	the	AutoCAD	ActiveX
Document	and	all	methods	are	supported.

Retrieving	Project	Information
The	ActiveX	Object	Model	can	only	retrieve	data	for	the	ActiveProject.
The	ActiveProject	is	the	Project	associated	with	the	Document	that	is
currently	loaded.	You	can	get	a	list	of	all	Projects,	the	statistics	for	those
Projects,	and	the	drawings	associated	with	those	Projects.	You	can	not
get	any	other	information	from	those	Projects.	For	example,	you	can	not
get	a	list	of	alignments	or	surfaces	for	a	non-active	Project.	In	addition,
you	can	not	have	an	active	project	if	AutoCAD	Land	Desktop	is	not
running.	If	AutoCAD	Land	Desktop	is	not	running,	the	ActiveX	Object
Model	will	not	be	running	and	you	can	not	get	any	information	about
projects	or	drawings.

Keeping	this	in	mind,	usually	the	first	thing	you	do	is	to	get	the
ActiveProject.	In	VBA,	to	retrieve	the	ActiveProject,	do:

Dim	activeProj	As	AeccProject
Set	activeProj	=	AeccApplication.ActiveProject

Project	Navigation
From	the	Project,	you	can	get	most	of	the	Land	project	information	that
has	been	exposed	through	the	ActiveX	Object	Model.	The	Object	Model
diagram	shows	that	from	the	Project	you	have	direct	access	to
CogoPoints,	PointGroups,	Description	Keys,	Surfaces,	and	Alignments.
In	addition,	you	have	access	to	all	of	the	Project	specific	settings	and
FileLocks.

CogoPoints,	PointGroups,	Description	Keys,	Surfaces,	and	Alignments
are	collections.	A	collection	will	contain	zero	or	more	objects.	For
example,	the	Surfaces	collection	will	contain	zero	or	more	individual
surfaces.	To	get	access	to	an	individual	member	of	a	collection,	use
either	the	Item	or	Enumeration	methods	on	the	collection.

Note:	All	collections	support	the	Item	and	Enumeration	methods,	and	the
Count	property.	Note	that	all	collections	begin	with	an	index	of	0.	This	is	a

C++	standard,	and	is	used	consistently	across	AutoCAD-based	ActiveX
implementations.

You	can	query	or	modify	the	object	after	you	retrieve	it.	Delete	or	add
operations	always	exist	at	the	collection	level.	If	you	think	about	this,	it
makes	sense.	When	adding	or	deleting,	you	are	changing	the	collection.
All	additions	and	deletions	to	a	collection	will	return	the	new	object.

What's	Next
Ok,	so	now	you	have	the	ActiveProject,	what	is	the	next	step?	First,	you
have	to	figure	out	what	you	want	to	accomplish	with	your	program.	Let’s
take	a	simple	problem:	print	out	the	PointGroup	names.	The	easiest	way
to	use	the	ActiveX	Object	Model	is	to	look	at	the	Object	Model	and	work
your	way	backward.	The	problem	is	to	print	out	some	information	on	a
PointGroup.	If	we	click	on	the	PointGroup	in	the	Developers	Guide,	it	will
display	all	of	the	methods	and	properties	for	the	PointGroup.	In	the
Developers	Guide,	we	see	that	PointGroup	has	a	property	called
GroupName.	This	is	what	we	want	to	print	out.

After	we	have	figured	out	what	we	want	to	print,	then	we	work	our	way	up
the	Object	Model	until	we	get	to	the	Application.	By	doing	this,	we	see
that	we	have	to	use	the	PointGroups	collection,	the	Project	object,	the
Projects	collection,	and	finally	the	AeccApplication.	These	are	the	objects
needed	to	print	out	the	PointGroup.GroupName.	If	we	reverse	the	order
and	start	at	the	AeccApplication,	we	can	now	work	our	way	back	down	to
the	PointGroup.	This	is	how	to	get	PointGroup	information.

You	can	traverse	the	Object	Model	in	the	same	fashion	for	any	of	the
objects	or	collections.	First,	find	what	information	and	object	you	need,
then	follow	the	Object	Model	down	to	that	object.

Overview	of	Modules
Projects

From	Projects,	you	can	get	to	CogoPoints,	PointGroups,
DescriptionKeyFiles,	Surfaces,	Alignments,	Parcels,	CrossSections	and
Superelevations.	In	addition,	the	PreferencesProject,	FileLocks,	and
Drawings	are	exposed.

The	PreferencesProject	contains	the	Cogo,	Surface,	Alignment,	Parcel,
Profile,	and	CrossSection	properties.	These	properties	return	objects	that
expose	settings	for	those	areas.	All	settings	are	for	the	project.

FileLocks	is	a	collection	of	all	multi-user	locks	that	exist	for	the	project.

Drawing	collection	is	the	list	of	drawings	for	the	project.

Cogo

CogoPoints,	PointGroups,	and	DescriptionKeys	are	exposed	through	the
ActiveX	Object	Model.	The	CogoPoint	is	a	COGO	point	that	exists	in	the
Project	database.	It	may	or	may	not	exist	in	the	current	drawing.	When	a
COGO	point	is	inserted	into	a	drawing,	it	can	be	inserted	as	an	AeccPoint
or	as	a	block.	The	AeccPoint	is	a	COM	wrapper	around	an	ARX	object.

PointGroups	are	used	to	work	with	a	number	of	points	at	a	time.	A
PointGroup	does	not	actually	hold	the	CogoPoint.	The	PointGroup	has	a
range	of	point	numbers.	The	point	number	in	a	point	group	may	contain
points	that	are	not	contained	in	the	Project	point	database.	A	PointGroup
can	also	be	used	to	override	the	elevation,	description,	and	name	for	the
points	in	the	PointGroup.

A	DescriptionKey	overrides	the	raw	description	for	the	COGO	point.	By
using	DescriptionKeys,	you	can	substitute	a	short	description	with	a
longer	description.	By	doing	it	with	a	DescriptionKey,	you	only	have	to
change	the	value	in	one	spot.

Surfaces

The	Terrain	Model	is	exposed	through	the	Surfaces	collection.	Using	the
Surface	object,	you	can	define	the	inputs	from	PointFiles,
PointGroupNames,	BreakLines,	ContourItems	and	DEM	Files.	You	can
also	add	Boundaries	to	your	Surface.

You	can	also	get	all	output	information	for	the	Surface.	TinPoints,	Edges,
Faces,	ElevationContours,	and	Watersheds	can	be	retrieved	for	a
Surface.	You	can	query	the	Surface	by	point	to	get	the	elevation	using
the	Surface.FindPoint	method.	You	can	query	between	two	points	and
retrieve	the	coordinates	where	that	line	crosses	a	Surface	Face	by	using

the	Surface.SampleElevations	method.	For	a	given	elevation,	you	can
retrieve	all	of	the	contours	on	that	Surface	by	using	the
ElevationContours.Elevation	method.	This	gives	you	full	control	over
creation	and	querying	of	a	Surface.

Volumes	are	also	supported	as	Surface	objects	that	result	from
DifferenceGrid	and	Composite	calculation	methods.

Alignments

The	Alignments	collection	has	all	of	the	Alignments	for	the	project.	For
each	Alignment,	you	can	retrieve,	add,	and	delete	the	entities	and	station
equations.	Queries	can	also	be	made	on	the	Alignment:
Alignment.StationOffset,	Alignment.PointLocation.

Parcels

The	Parcels	collection	provides	access	to	all	of	the	parcels	in	the	project.
Each	Parcel	can	be	queried	to	obtain	property	information	such	as	area,
perimeter,	centroid	and	name.	New	parcels	can	be	created	or	exisiting
parcel	modified	by	editing	thier	individual	curve	and	line	objects.

Profiles,	Cross	Sections,	and	Superelevations

If	you	are	using	AutoCAD	Civil	3D	Land	Desktop	Companion,	which
includes	civil	engineering	and	survey	features,	extensive	read	access	is
available	for	existing	ground	profiles,	finished	ground	profiles,	cross
sections,	and	superelevations	properties.	If	you	are	using	the	stand-alone
version	of	Land	Desktop	(titled	"AutoCAD	Land	Desktop"),	the	civil
engineering	and	survey	features	are	not	available.

You	can	import	profiles	and	cross	sections	to	the	current	drawing,	and
then	access	the	resulting	ProfileBlocks	and	CrossSectionBlocks	for
custom	annotation.

Overview	of	Events
Events	are	a	mechanism	that	allows	your	application	to	receive
notification	when	a	change	occurs	to	the	state	of	some	object.	To	receive
notification,	you	must	“enable”	events	by	providing	a	“handler”	or	“event

sink”.	Refer	to	the	sample	applications	for	examples	of	how	to	implement
event	handlers	in	VB	and	C++.

When	coding	in	VBA,	you	must	provide	an	event	handler	for	all	objects
enabled	for	the	Modified	event.	If	you	do	not	provide	a	handler,	VBA	may
terminate	unexpectedly.

Note	that	no	events	will	be	fired	while	a	modal	dialog	is	being	displayed.

AcadObject

All	of	the	objects	outside	of	the	Projects	and	Prototypes	hierarchy	are
derived	from	AcadObject.	This	means	that	objects	such	as
AeccApplication	and	AeccDocument	derive	all	of	the	properties	and
methods	from	the	parent	ActiveX	objects.	However,	since	no	additional
events	were	implemented,	you	will	use	the	base	objects	(AcadApplication
and	AcadDocument,	for	example)	to	get	notifications	in	your	application.

AcadEntity

The	COM	wrappers	for	the	AeccDbPoint,	AeccDbContour	and
AecDbCurveText	objects	support	the	Modified	event.	This	event	will	be
triggered	whenever	the	object	is	modified.	Modification	includes
whenever	the	value	of	a	property	is	set,	even	if	the	new	value	is	equal	to
the	current	value.

AeccObject

The	AeccObject	supports	the	Modified	event,	and	all	objects	in	the
Projects	and	Prototypes	hierarchy	are	dervied	from	AeccObject.	While
every	object	can	support	event	notification,	refer	to	the	following	table	to
determine	when	an	event	is	fired.

Event	notification	is	dispatched	by	a	queueing	mechanism	that	responds
when	AutoCAD	enters	a	quiescent	state.	No	events	will	be	fired	while	a
modal	dialog	is	being	displayed	or	while	a	command	is	in	progress.	In
addition,	the	event	queue	will	not	accept	more	that	one	event	for	a	given
instance	of	a	COM	object	at	a	time.	If	two	or	more	event	conditions	occur
on	an	object	while	a	pending	event	is	in	the	queue,	there	will	be	only	one
event	sent	when	AutoCAD	becomes	quiescent.

Event Objects

Project
Management New	Drawing Project,	Drawings

Open	Drawing Project

Coordinate
Geometry Save/Delete	point Points,	Point

Save?Delete	point
group PointGroups,	PointGroup

Save/Delete	desc
key

DescKeyFiles,	DescKeyFile,
DescKey

Plan	Alignments Save/Delete Alignments,	Alignment,
AlignEntities,	StationEquations

Surfaces Lock/Unlock
surface Surfaces

Create Surfaces

Set	current
surface Surfaces

Save/Save	As Surfaces,	Surface

Delete/Rename Surfaces,	Surface

Set	description Surface

Add	point	file Surface,	SurfaceInputs,	Pointfiles

Add	point	groups Surface,	SurfaceInputs,
PointGroupNames

Add	breakline Surface,	SurfaceInputs,
BreakLines

Add	boundary Surface,	SurfaceInputs,
Boundaries

Add	contour Surface,	SurfaceInputs,
ContourItems

Set	outer
boundary

Surface,	SurfaceInputs,
Boundaries

Flip	face Surface,	SurfaceOutputs,	Edges,
Faces,	WaterSheds

Insert	ND
breakline

Surface,	SurfaceOutputs,
TinPoints,	Edges,	WaterSheds

Surface,	SurfaceOutputs,

Insert	line TinPoints,	Edges,	WaterSheds

Delete	line
Surface,	SurfaceOutputs,
TinPoints,	Edges,	Faces,
WaterSheds

Minimize	flat
triangles

Surface,	SurfaceOutputs,	Edges,
Faces,	WaterSheds

Add	boundary Surface,	SurfaceOutputs,
TinPoints,	Edges,	WaterSheds

Add	to	all
elevations

Surface,	SurfaceOutputs,
TinPoints,	Edges,	Faces,
WaterSheds

Set	elevation
Surface,	SurfaceOutputs,
TinPoints,	Edges,	Faces,
WaterSheds

Paste	surface
Surface,	SurfaceOutputs,
TinPoints,	Edges,	Faces,
WaterSheds

Build Surface,	SurfaceOutputs,
TinPoints,	Edges,	Faces

Build	hydrology
model

Surface,	SurfaceOutputs,
TinPoints,	Edges,	Faces,
WaterSheds

Compute
extended	stats Surface

Set/Calc	bounding
box Surface

Alignments Set	current
alignment Alignments

Parcels Create Parcels

Delete,	Import,
Merge Parcel,	Parcels

Profiles Alignment	Editor
Save EGProfiles,	FGProfiles

Creat,	Edit,	Delete EGProfiles,	FGProfiles

CrossSections	& Sample	Existing
Ground CrossSections,	Superelevations

Superelevations Process	Sections CrossSections,	Superelevations

Running	Multiple	Instances	of	AutoCAD
All	AecBase	objects	that	are	derived	from	Acad	objects	support	the	Init
method.	This	includes	AecApplication,	AecDocuments,	AecDocuments,
AecDatabasePreferences,	AecPreferences,	AecPreferencesFiles,
AecPreferencesUser,	etc.

The	help	string	describes	the	Init	method	as	an	"Initialization	method
which	must	be	called	before	accessing	the	AEC	application	object"	The
ActiveX	Object	Model	for	AutoCAD	Land	Desktop	performs	the	call	to	Init
automatically	for	Aecc	objects.

It	is	not	restricted	(hidden)	because	it	comes	in	handy	when	you	are
running	multiple	instances	of	AutoCAD,	Architectural	Desktop	(AutoCAD
Architecture)	or	AutoCAD	Land	Desktop.	This	allows	you	to	pass	in	an
instance	of	the	AutoCAD	application	object	that	you	are	interested	in,
instead	of	relying	on	the	active	instance	handed	back	from	the	Running
Object	Table.	If	you	pass	this	into	an	instance	of	the	application	object,	it
will	automatically	be	passed	on	to	any	new	instance	of	child	objects.

		

Land	Desktop	projects	are	used	to	organize	drawing	files,	support	data
files,	and	settings	that	are	associated	with	each	job	you	work	on.	Just	as
the	ActiveDrawing	is	central	to	the	AutoCAD	application	object,	the	Land
Desktop	application	object	exposes	the	ActiveProject.	Through	the	project
object,	you	can	access	Coordinate	Geometry,	Plan	Alignment,	Digital
Terrain,	Parcels,	Profile,	Cross	Section	and	Superelevation	data	and
preferences.

To	create	a	new	project,	use	the	Projects.Add	method,	supplying	a
prototype	name	from	the	Prototypes	collection	and	a	project	name	for	the
new	project.	To	create	the	first	project-based	drawing	for	the	new	project,
use	the	Document.NewProjectBased	method,	specifying	the	drawing
template	name,	the	project	name,	and	the	new	drawing	name.	This	will
switch	the	desktop	to	the	newly	created	project	and	drawing.

The	Projects	collection	is	updated	whenever	the	ProjectPath	property	is
changed.	This	allows	you	search	for	projects	at	various	paths.	To	access
folders	on	a	network,	you	must	first	map	the	drive.	Note	that	you	are
limited	to	the	FileLocks	and	Drawings	collections	for	any	Project	that	is
not	the	ActiveProject	.	To	access	the	CogoPoints,	PointGroups,
DescriptionKeyFiles,	Alignments,	Surfaces,	Parcels,	Profiles,	CrossSections	and
Superelevations	you	must	be	in	the	project	currently	loaded	into	AutoCAD
Land	Desktop.

Extensions	to	AutoCAD	objects
The	Land	Desktop	object	model	extends	many	AutoCAD	ActiveX	objects
by	adding	properties	and	methods.	This	includes	the	Application,
Documents,	Document,	DatabasePreferences,	PreferencesUser,
PreferencesFile,	and	the	Utility	objects.	This	enhancement	is
automatically	available	when	you	navigate	from	the	AeccApplication
object	to	other	objects	in	the	model.

The	Documents	collection	supports	the	management	of	multiple	drawings
(MDI)	in	the	AutoCAD	environment.	Since	AutoCAD	Land	Desktop	works
on	a	single	drawing	at	a	time	(SDI),	the	Documents	object	is	ancillary.
You	can	get	the	first	(and	only)	document	from	the	Document	collection,

Understanding	Project	Management

javascript:history.back();

but	it	is	generally	more	convenient	to	use	the
AeccApplication.ActiveDrawing	method.	Also,	note	that	the	Documents.Add
and	Documents.New	methods	are	not	available	in	SDI	mode.

The	Document	object	adds	two	important	methods	-	OpenProjectBased
and	NewProjectBased.	Use	these	methods	to	open	and	create	project-
based	drawings,	respectively.	Both	methods	accept	an	optional	Project
name	to	allow	you	to	switch	from	one	project	to	another.	Note	that	the
Document.Open	and	Document.New	methods	do	not	support	projects	and
will	return	an	error	if	invoked.

The	DatabasePreferences	object	represents	settings	that	are	saved	on	a
pre-drawing	(or	document)	basis.	This	includes	base	settings	for
Architecture	and	Civil	Engineering,	as	well	as	AutoCAD	Land	Desktop
specific	settings.	These	settings	can	be	loaded	and	saved	to	an	external
setup	profile.

The	PreferencesUser	and	PreferencesFiles	objects	store	user	and
application	level	settings,	respectively.	The	PreferencesUser	settings
control	overrides	to	AutoCAD	behavior	and	the	most	recently	used
project	and	drawings.	It	also	allows	a	default	drawing	setup	profile	to	be
applied	to	new	drawings,	so	that	the	user	is	not	prompted	for	settings.
The	PreferencesFiles	object	exposes	the	paths	used	by	AutoCAD	Land
Desktop.

The	Utility	object	adds	methods	that	convert	an	Easting	and	Northing	to
an	AutoCAD	X	and	Y	and	back	using	the	geodetic	base	point	and	north
rotation	for	the	drawing.

Project-owned	objects
In	addition	to	providing	access	to	Coordinate	Geometry,	Plan	Alignments,
Parcels,Terrain	Modeling,	Profiles,	Cross	Sections,	and	Superelevations,
the	Project	object	exposes	the	Drawings	and	FileLocks	collection.

The	Drawings	collection	is	similar	to	the	Documents	collection,	except
that	it	represents	AutoCAD	drawing	files	in	a	local	or	remote	folder
(directory).	These	files	may	or	may	not	be	loaded	into	the	application.
You	can	use	the	Projects	and	Drawings	collections	to	browse	any	Land
Desktop	project	on	a	local	or	mapped	remote	drive.	For	convenience,	you

can	use	the	Drawings.Open	method	to	switch	to	the	parent	project	and
open	the	drawing	as	the	ActiveDocument	(similar	to	the
Document.OpenProjectBased	method).

The	FileLocks	collection	exposes	multi-user	project	locks.

Using	Collections
The	object	model	contains	simple	objects	and	collections	of	objects.	For
some	collections,	if	you	change	the	value	of	a	property,	the	collection	will
be	rebuilt.	You	need	to	refresh	your	objects	to	see	the	effect	of	this
change.	For	example:

Dim	projects	As	AeccProjects
Set	projects	=	AeccApplication.Projects
	
'	Get	the	first	project	in	the	collection
Dim	project	As	AeccProject
Set	project	=	projects(0)
	
'	Change	the	project	path
projects.Path	=	"c:\projects2"
	
'	Project	is	a	valid	object,	but	no	longer	represents
'	the	first	item	in	the	projects	collection
'	refresh	project
Set	project	=	projects(0)

Changing	the	Active	Project
When	a	drawing	is	opened	from	a	different	project,	the
AeccApplication.ActiveProject	object	and	AeccApplication.Projects	collection
are	released.	For	this	reason,	it	is	a	good	idea	to	get	these	objects	as
needed	instead	of	holding	on	to	them	for	the	duration	of	your	application.

Notifications	for	changes	to	drawing	settings
The	settings	exposed	by	the	DatabasePreferences	object	are	stored	in
the	AcDbDictionary	named	"AEC_VARS".	The
"AEC_VARS_DWG_SETUP"	key	returns	an	AecDbVarsDwgSetup	object
that	stores	the	base	settings	for	Architecture	and	Civil	Engineering.	The

"AEC_VARS_CIVILSETUP"	key	returns	an	AcDbVarsCivilSetup	object
stores	the	AutoCAD	Land	Desktop	specific	settings.

To	receive	events	when	drawing	settings	are	changed,	implement	an
event	handler	in	a	class	module,	declare	an	object	of	type	AcadObject
with	events,	and	assign	the	desired	dictionary	object	to	the	handler	in
your	code	module	or	form.

		

The	ActiveX	Object	Model	gives	access	to	AutoCAD	Land	Desktop
horizontal	alignments.	An	Alignment	can	contain	tangents	(AlignTangent),
curves	(AlignCurve)	and	spirals	(AlignSpiral).	An	Alignment	can	be	set	to
current.	It	supports	the	locking	mechanism	from	AutoCAD	Land	Desktop.
In	addition,	station	equations	are	supported	for	each	Alignment.

This	section	describes	the	fundamentals	you	need	to	know	when
developing	an	application	with	Alignments.	It	provides	information	on
creating,	using,	and	saving	Alignments.

Creating	an	Alignment
If	an	Alignment	is	added	successfully	to	the	Alignments	collection,	there
are	two	results:	a)	the	new	Alignment	is	made	Current	and	b)	the	new
Alignment	will	have	a	write	lock	on	it.	The	new	Alignment	is	also	saved
immediately.	AutoSave	is	ignored	when	an	Alignment	is	created.

"Current"	Alignment	and	Locks
AutoCAD	Land	Desktop	has	the	notion	of	a	"current"	alignment.
Historically,	this	has	been	used	in	the	application	to	relieve	the	user	from
having	to	select	an	alignment	for	every	command.	Also,	when	an
alignment	was	set	to	current,	locks	were	created	on	that	alignment.	If
there	was	a	previous	alignment,	the	locks	were	freed.

The	ActiveX	Object	Model	supports	the	“Current”	Alignment	concept.	An
Alignment	can	be	made	Current	and	locks	will	be	generated	at	that	time.
Also,	that	Current	Alignment	in	ActiveX	Object	Model	will	also	be	the
current	alignment	in	AutoCAD	Land	Desktop.	Through	the	ActiveX	Object
Model,	you	can	stay	in	sync	with	the	menus.

When	the	Alignments	collection	is	created,	all	of	the	Alignment	names
are	loaded	into	memory.	At	that	time,	each	Alignment	is	given	a
kReadLock.	No	physical	lock	is	created	on	disk.	This	lock	exists	only	in
the	ActiveX	Object	Model.	If	the	Alignment	in	the	collection	is	the	Current
Alignment,	then	the	ActiveX	Object	Model	will	retrieve	whatever	lock
currently	exists	on	disk.	It	could	be	either	a	kReadLock	or	a	kWriteLock.

Understanding	Alignments

javascript:history.back();

When	you	make	an	Alignment	current,	several	things	will	happen.	If	there
was	a	previous	Current	Alignment,	that	will	be	unlocked.	Next,	the	new
Current	Alignment	will	be	set	in	both	the	ActiveX	Object	Model	and
AutoCAD	Land	Desktop.	Finally,	a	lock	will	be	generated	on	that
Alignment	in	the	ActiveX	Object	Model	and	on	disk.	This	lock	can	be
seen	by	any	users	currently	in	that	project.	The	lock	can	be	either	a
kReadLock	or	a	kWriteLock.	The	type	of	lock	depends	on	weather	that
Alignment	was	locked	by	another	user.

As	a	rule,	both	the	ActiveX	Object	Model	and	AutoCAD	Land	Desktop	will
always	try	to	retrieve	a	kWriteLock	when	accessing	an	object.	This
applies	to	Alignments	and	Surfaces.	If	someone	else	has	a	write	lock	on
that	object,	then	a	read	lock	will	be	added	to	that	object.

Before	any	edits	are	made	on	an	Alignment,	the	Alignment	must	be	made
Current.	Also,	that	Alignment	must	have	a	kWriteLock	for	any	changes	to
be	made.

You	can	add	a	new	alignment	to	the	collection	and	later	define	the
underlying	geometry.	Be	advised	that	if	you	save	an	alignment	without
adding	any	tangents,	curves	or	spirals,	you	will	not	be	able	to	edit	the
geometry	using	the	alignment	editor.

AutoSave
Any	changes	made	to	an	Alignment	are	automatically	saved.	When	the
Alignment	is	saved	all	entities	and	the	general	Alignment	data	(starting
station,	description)	are	written	out.	This	can	impact	performance	if	many
changes	are	made	to	the	Alignment.	Remember	that	every	change	made
results	in	writing	the	entire	Alignment.

To	help	with	the	performance	issues,	AutoSave	was	created.	If
Alignments.AutoSave	is	True,	then	every	change	made	to	an	alignment
results	in	a	write	operation.	If	Alignments.AutoSave	is	False,	then	no
write	operations	are	performed.	It	is	the	responsibility	of	the	programmer
to	call	Alignment.Save	for	the	write	operation.

AutoSave	is	at	the	Alignments	collection	level.	When	the	AutoSave	value
is	set,	all	alignments	in	the	collection	are	updated.

		

Through	Terrain	Model	Explorer,	a	three	dimensional	surface	model	can
be	generated	from	data.	In	the	ActiveX	Object	Model,	you	can	create	and
query	this	three	dimensional	model	through	the	Surfaces	collection.	You
can	use	the	Surface	collection	to	iterate	through	all	of	the	existing
Surfaces,	create	an	new	Surface,	or	delete	an	existing	Surface.	These
are	just	a	few	of	the	Surface	operations	at	the	collection	level.

A	Surface	is	broken	down	into	inputs	(SurfaceInputs)	and	outputs
(SurfaceOutputs).	You	can	modify	the	SurfaceInputs	by	changing	the
ContourItems,	Breaklines,	Boundaries,	PointFiles,	PointGroups	or
DEMFiles.	From	the	SurfaceOutputs,	you	can	get	the	TinPoints,	Edges,
Faces,	ElevationContours,	and	Watersheds.

Volume	information	can	be	created	by	using	the	Surfaces.DifferenceGrid
or	the	Surfaces.CompositeGrid	methods.	Both	methods	create	a	new
Surface.	This	new	Surface	can	then	be	queried	for	volume	information.

Surface	Boundary	Points
The	implementation	of	IAeccBoundaries::Add()	will	close	a	boundary,	if
the	last	point	and	first	point	are	not	identical.	In	addition,	if	the	last	and
first	points	are	not	identical	and	cause	lines	that	intersect	each	other,	the
surface	will	not	behave	as	expected.	If	two	points	on	the	boundary	are
co-located,	the	boundary	will	be	rejected.	The	best	way	to	create	a
boundary	is	to	allow	the	implementation	to	close	the	boundary
automatically.

Visible	Areas
Using	Breaklines	and	Boundaries,	areas	of	a	Surface	can	be	made
invisible.	Watersheds	and	Contours	will	not	be	returned	for	the	invisible
areas.	Faces,	Edges,	and	TinPoints	will	be	returned	for	the	invisible
areas.

Build	Settings
Surface.Build	will	use	the	settings	defined	in	Terrain	Model	Explorer	Build
dialog.	These	settings	include	the	"Apply	Edit	History"	and	"Log	Errors	To

Understanding	Surfaces

javascript:history.back();

File"	options.

Edit	History
Edit	History	is	not	exposed	in	this	release	of	the	ActiveX	Object	Model.
However,	if	the	"Apply	Edit	History"	is	turned	on	in	Terrain	Model
Explorer,	then	Surface.Build	will	use	this	setting.

Surface	Locking
Initially,	all	Surfaces	have	no	locks	applied	to	them.	When	a	method	or
property	is	called,	then	the	Surface	is	opened.	At	that	time,	a	lock	will	be
created	on	that	Surface.	The	ActiveX	Object	Model	will	always	try	to
create	a	write	lock	(kWriteLock).	If	someone	else	has	control	of	that
Surface,	you	will	get	a	read	lock	(kReadLock).	If	the	Surface	is	selected
as	the	Current	Surface,	the	locks	will	also	be	generated.	When	the	object
has	gone	out	of	scope,	the	Surface	will	go	back	to	its	original	state.	If	it
was	opened	and	locked	before	the	ActiveX	Object	Model	object	was
created,	then	it	will	stay	opened	and	locked.	If	the	Surface	was	not
opened	(and	therefore,	not	locked),	then	when	the	ActiveX	Object	Model
object	goes	out	of	scope,	the	Surface	will	be	closed	and	unlocked.

Elevation	Contours
After	a	surface	has	been	build,	you	can	generate	contour	data	by	setting
the	ElevationContours.Elevation	property.	Zero	or	more	ElevationContour
objects	will	be	added	to	the	collection,	depending	on	the	elevation	you
set.	You	can	use	the	ElevationContour.Coordinates	property	to	set	the
vertices	of	an	AeccContour	object.

		

For	each	Land	Desktop	Project,	there	is	a	COGO	points	database.	The
ActiveX	Object	Model	gives	access	to	this	database	through	the
CogoPoints	collection.	Through	this	collection,	you	can	add,	delete,	and
modify	a	CogoPoint.

A	CogoPoint	has	Northing,	Easting,	and	Elevation	fields.	If	the
GroupName	is	set	for	the	CogoPoint,	then	you	will	also	see	the	overrides
from	that	PointGroup.

PointGroups	and	DescriptionKey	are	also	exposed	through	the	ActiveX
Object	Model.	These	collections	and	objects	allow	you	to	work	with
groups	of	COGO	points.

CogoPoint	and	AeccPoint
In	a	Land	Development	document,	a	COGO	point	can	exist	in	the
drawing.	This	point	can	be	represented	as	either	an	Arx	object	or	a
Softdesk	block.	If	the	point	is	an	Arx	object,	then	you	can	access	it	by
using	the	COM	wrapper	AeccPoint.	This	point	does	not	necessarily	exist
in	the	point	database.	If	it	does	exist	in	the	database,	then	you	could
access	it	by	using	a	CogoPoint	object.

To	state	it	differently,	a	CogoPoint	object	is	a	point	database	object	and
an	AeccPoint	is	a	COM	wrapper	for	the	Arx	object.

A	CogoPoint	and	AeccPoint	can	represent	the	same	geometry.	If	you
change	the	coordinates	for	a	CogoPoint,	the	Arx	object	in	the	drawing	will
be	updated.

Point	Number	verses	Item	Number
When	the	collection	class	is	built	for	CogoPoints,	several	things	happen.
First,	a	list	of	the	currently	used	points	is	generated.	These	points	are
then	added	to	the	collection.	For	example,	the	point	database	has	points
with	point	numbers	1,	3,	5,	and	7.	When	the	collection	is	built,	then	the
collection	will	have	4	items.	Item(0)	will	be	point	1,	Item(1)	point	3,
Item(2)	point	5,	and	Item(3)	point	7.	There	is	no	correspondence	between
the	Item	number	and	the	point	number.

Understanding	CogoPoints

javascript:history.back();

If	you	want	to	work	with	points	by	point	number,	use
CogoPoints.PointByNumber.

		

The	vertical	alignment	data	is	represented	by	two	collections:	the
EGProfiles	and	the	FGProfiles.	The	EGProfile,	or	existing	ground	profiles,
contains	the	sampled	surface	data	along	the	alignment.	The	FGProfile,	or
finished	ground	vertical	alignments,	contain	the	PVIs	which	represent	the
basis	for	the	final	roadway	design.	The	EGProfile	can	be	imported	into
the	drawing,	so	that	the	finished	vertical	design	data	can	be	drafted	onto
the	ProfileBlock.

Existing	Ground	Profiles
While	the	ActiveX	interface	does	not	require	you	to	define	any
EGProfiles,	the	vertical	alignment	editor	expects	the	Existing	Ground
Center	to	be	defined.

Finished	Ground	Profiles
When	you	create	a	new	FGProfile	object,	a	default	PVI	is	added	to	the
PVIs	collection	as	a	place	holder.	The	properties	of	this	PVI	are	all	set	to
0.0.	This	behavior	is	intentional	since	at	least	one	datum	is	required	to
access	the	vertical	alignment	editor.

It	is	up	to	the	user	to	make	sure	that	the	geometry	for	the	Finished
Ground	Profile	is	correct.	When	defining	a	profile,	be	sure	to	check	for
the	following:

A	Finished	Ground	Profile	cannot	support	a	vertical	curve	on	the	first
or	last	PVI.

The	Finished	Ground	Profile	object	does	not	check	for	overlapping
vertical	curves.	
The	Finished	Ground	Profile	object	does	not	check	to	ensure	the
start	and	end	points	coincide	with	the	paln	alignment.

Locking
Existing	Ground	Profiles	and	Finished	Ground	Profiles	objects	use	the
same	locking	as	the	Alignment.	If	the	Alignment	has	a	read	lock,	then
Existing	Ground	Profiles	and	Finished	Ground	Profiles	have	a	read	lock.

Understanding	Profiles

javascript:history.back();

The	same	is	true	for	write	locks.	Remember,	the	only	way	to	generate	a
write	lock	is	to	set	the	Alignments.CurrentAlignment	to	the	one	you	want
to	work	with.

ProfileBlocks
ProfileBlocks	do	not	support	xrefs.	If	an	drawing	is	XRefed	into	another
drawing	and	it	has	a	profile,	the	ProfileBlocks	collection	will	not	put	it	into
its	list.

In	a	drawing,	an	alignment	can	have	more	than	one	ProfileBlock	drawn.	If
this	happens,	there	will	be	no	unique	identifier	for	the	ProfileBlock.	The
ProfileBlocks	collection	will	have	both	ProfileBlock	objects	but	it	is	up	the
user	to	determine	which	profile	will	be	used.

The	scale	factor	used	for	the	vertical	exaggeration	of	the	existing	ground
and	finished	ground	profiles	is	the	ProfileBlock.VerticalScale	divided	by
the	DatabasePreferences.DatabaseScale.

The	Coordinates	of	the	ProfileBlock	are	one	inch	below	the
DatumElevation	baseline.

	

The	CrossSections	and	Superelevations	collections	represent	a	slice	of
vertical	alignment	data	at	station	intervals	along	the	alignment.	For	a
given	CrossSection,	the	data	is	presented	as	a	collection	of	point	codes
and	surfaces,	such	as	existing	ground,	top	surface,	match	surface,
templates	and	subassemblies.	Superelevations	are	presented	as	a
collection	of	stations	at	which	the	superelevation	changes.	CrossSections
can	be	imported	into	the	drawing	as	a	CrossSectionBlock	for	custom
annotation.

Read-only	CrossSection	and	Superelevation	Objects
The	process	of	designing	and	applying	roadway	templates,
subassemblies,	transitions,	and	superelevations	is	a	complex	procedure.
For	this	reason,	the	CrossSection	and	Superelevation	objects	are	read-
only.	You	must	use	the	appropriate	commands	to	create	and	edit	the
data.	The	ActiveX	objects	provide	access	to	the	data	for	analysis	and
custom	drafting.

Managing	the	Current	Alignment
When	you	access	the	CrossSection	and	Superelevation	objects,	the
"current	alignment"	is	set	to	the	Alignment	you	are	accessing.	You	can
use	the	Alignments.CurrentAlignment	property	to	save	and	restore	the
current	alignment	if	required.

CrossSectionBlocks
CrossSectionBlocks	do	not	support	xrefs.	If	a	drawing	is	XRefed	into
another	drawing	and	it	has	a	cross	section,	the	CrossSectionBlocks
collection	will	not	put	it	into	its	list.

In	a	drawing,	an	alignment	can	have	more	than	one	CrossSectionBlock
drawn	for	a	given	station.	If	this	happens,	there	will	be	no	unique
identifier	for	the	CrossSectionBlock.	The	CrossSectionBlocks	collection
will	have	both	CrossSectionBlock	objects	but	it	is	up	the	user	to
determine	which	profile	will	be	used.

Understanding	Cross	Sections	and
Superelevations

javascript:history.back();

The	scale	factor	used	for	the	vertical	exaggeration	of	the	cross	section	is
the	CrossSectionBlock.VerticalScale	divided	by	the
DatabasePreferences.DatabaseScale.

		

The	Parcels	collection	provides	access	to	the	Parcel	database	and	allows
a	defined	Parcel	to	be	imported	in	the	drawing.	Similar	to	an	Alignment,	a
Parcel	is	made	up	of	geometric	entities	that	can	be	enumerated	using	the
ParcelEntites	collection.

Closing	Parcel	Perimeters
When	defining	a	Parcel,	the	perimeter	is	not	automatically	closed	for	you.
A	Parcel	that	has	not	been	closed	will	return	an	area	of	0.0	square	units.

Locking
The	Parcel	database	supports	multi-user	access	with	locks.	Unlike
Alignments,	the	locking	occurs	automatically	on	a	command	by	command
basis.	A	Parcel	cannot	be	locked	for	the	duration	of	a	design	session.

Understanding	Parcels

javascript:history.back();

		

Overview
A	COM	wrapper	provides	an	instance	of	an	ActiveX	object	that
represents	a	drawing	entity.	Your	application	uses	the	properties,
methods,	and	events	from	this	object	to	access	and	manage	the
corresponding	entity	in	the	drawing.	COM	wrappers	are	implemented	for
AeccDbContour,	AeccDbPoint,	and	AecDbCurveText	entities.

AutoCAD	Land	Desktop	objects	that	are	created	in	model	space,	use	the
AcadModelSpace	collection	to	iterate	through	objects.	For	example:

Dim	pnt	As	AeccPoint
Dim	obj	As	AcadObject
For	Each	obj	In	ThisDrawing.ModelSpace
		If	obj.ObjectName	=	"AeccDbPoint"	Then
		Set	pnt	=	obj
		End	If
Next

Similarly,	you	can	iterate	existing	entities	in	a	selection	set	to	access	your
custom	ARX	objects	through	their	COM	wrappers.	When	using	the
FilterData	parameter	for	an	AcadSelectionSet,	specify	the	object	name
that	appears	in	the	Properties	window	(or	when	you	list	an	object):
AECC_CONTOUR,	AECC_POINT,	or	AEC_CURVETEXT.

Object	Creation
You	can	use	the	AcadModelSpace.AddCustomObject	method	to	(1)	create
an	instance	of	your	ARX	object	and	(2)	return	an	instance	of	your	COM
wrapper	so	you	can	use	its	properties	to	initialize	the	object.	Note	that
you	cannot	create	AutoCAD	Land	Desktop	objects	in	PaperSpace	or
Blocks.	For	example:

Dim	pnt	As	AeccPoint
Set	pnt	=	ThisDrawing.ModelSpace.AddCustomObject("AeccDbPoint")
pnt.Easting	=	1000
pnt.Northing	=	1000
pnt.Elevation	=	100

Understanding	Com	Wrappers

javascript:history.back();

pnt.Number	=	1
pnt.Description	=	"test	point"

Events
The	AutoCAD	Land	Desktop	objects	support	notification	through	the
Modified	event.

Contour	Styles
Contour	styles	are	saved	on	a	per-drawing	drawing	basis	in	the
dictionary.	To	facilitate	the	management	of	styles	for	contour	objects,	a
COM	wrapper	for	the	contour	style	is	provided.	You	can	access	any	style
loaded	in	the	current	drawing	through	the	"AECC_CONTOUR_STYLE";
dictionary:

Dim	cs	As	AeccContourStyle
Dim	obj	As	AcadObject
For	Each	obj	In
ThisDrawing.Dictionaries("AECC_CONTOUR_STYLES")
		Set	cs	=	obj
		If	cs.Name	=	"Standard"	Then
				Exit	For
		End	If
Next
	
Dim	Contour	As	AeccContour
Set	Contour	=
ThisDrawing.ModelSpace.AddCustomObject("AeccDbContour")
Contour.SetContourStyle	cs

		

This	section	provides	useful	information	on	how	to	use	the	ActiveX
Object	Model	with	various	programming	languages	and	development
environments.

Topics	in	this	Section

VBA
VB
C++
J++
Other	Languages

Programming	Guidelines	Introduction

javascript:history.back();

		

Option	Explicit
A	good	programming	practice	is	to	add	the	Option	Explicit	declaration	at
the	top	of	your	module.	This	will	require	you	to	declare	all	variables	using
the	Dim,	Private,	Public,	ReDim,	or	Static	statements.	If	you	attempt	to
use	an	undeclared	variable	name,	an	error	occurs	at	compile	time.	This
prevents	Visual	Basic	from	automatically	creating	a	variant	for	the
undeclared	variable	on	your	behalf,	which	leads	to	program	errors.

For	Next	Loops
When	using	a	For	Next	loop	to	iterate	through	an	object	collection	use
"EXIT	FOR"	if	you	need	to	exit	the	loop	befor	conclusion.	If	a	"GOTO"	is
used	to	exit	the	loop	the	reference	count	to	the	object	is	not	cleaned	and
will	create	an	error	condition.

IntelliSense
If	an	AutoCAD	Land	Desktop	object	does	not	display	the	complete	list	of
properties	and	methods	in	the	IntelliSense	pick	list,	try	assigning	the
object	to	a	typed	variable	first.	For	example:

Dim	prefuser	As	AeccPreferencesUser
Set	prefuser	=	AeccApplication.Preferences.User
'	The	prefuser	object	will	now	correctly	display
'	all	properties	and	methods	with	IntelliSense

AutoCAD	Land	Desktop	Enumerated	Value
AutoCAD	Land	Desktop	enumerated	values	are	named	constants	used	in
the	AutoCAD	Land	Desktop	ActiveX	Automation	methods	and	properties.

In	VBA,	you	cannot	create	an	instance	of	an	object	of	the	enumerated
type.	For	example:

'	Works	in	VB,	but	not	VBA
Dim	borderstyle	As	eAeccBorderStyle

Globals

VBA	Programming	Guidelines

javascript:history.back();

In	VBA,	global	variables	are	not	released	until	the	VBA	project	is
unloaded.	For	example,	in	your	project	the	following	variables	are
declared	as	global	variables:

Option	Explicit
	
Public	acad	As	AcadApplication
Public	app	As	AeccApplication
Public	projs	As	AeccProjects

The	objects	acad,	app,	and	proj	will	not	be	released	until	the	VBA	project	is
unloaded.	This	is	correct	behavior	but	you	must	refresh	the	variables
when	you	come	back	into	the	VBA	code.	If	you	do	not	refresh	the
variables,	you	might	not	get	the	latest	information.	For	example,
additional	projects	might	be	added	to	the	AeccProjects	collection.

		

In	general,	all	of	the	guidelines	from	the	VBA	section	also	apply	to	VB.
This	section	includes	some	additional	information	that	is	specific	to
developing	stand-alone	(out-of-process)	applications	using	Visual	Basic.

Connecting	to	AutoCAD	Land	Desktop
Visual	Basic	provides	a	function	called	GetObject	to	get	a	reference	to	a
currently	active	instance	of	an	ActiveX	object	of	the	specified	type.	Since
a	compiled	VB	application	is	in	a	different	process	than	AutoCAD	Land
Desktop,	you	must	"connect"	to	the	application	object:

Dim	acad	As	AcadApplication
Set	acad	=	GetObject(,	"AutoCAD.Application")

Next,	you	use	the	AcadApplication.GetInterfaceObject	method	to	get	an
instance	of	the	AutoCAD	Land	Desktop	application	object:

Dim	app	As	AeccApplication
Set	app	=	acad.GetInterfaceObject("Aecc.Application")

You	might	want	to	declare	these	variables	as	Public	at	the	module	level
so	that	they	are	available	to	all	procedures	in	all	modules.

For	Next	Loops
When	using	a	For	Next	loop	to	iterate	through	an	object	collection	use
"EXIT	FOR"	if	you	need	to	exit	the	loop	befor	conclusion.	If	a	"GOTO"	is
used	to	exit	the	loop	the	reference	count	to	the	object	is	not	cleaned	and
will	create	an	error	condition.

Quiescent	State	and	ActiveX	calls
When	AutoCAD	is	at	the	command	line	prompt,	it	is	in	a	quiescent	state.
When	AutoCAD	has	completed	processing	the	last	command	and	there
are	no	pending	commands,	it	is	in	a	state	that	AutoCAD	can	process	an
ActiveX	call.

Be	aware	that	if	AutoCAD	is	busy	when	your	application	tries	to	invoke
an	ActiveX	property	or	method,	AutoCAD	may	display	a	modal	dialog
indicating	that	the	ActiveX	request	was	not	handled.	You	are	then

VB	Programming	Guidelines

javascript:history.back();

prompted	to	retry	the	request.

To	prevent	this	situation,	your	application	should	use	the
AcadApplication.GetAcadState	method	to	determine	if	AutoCAD	is	busy.
This	method	returns	an	AcadState	object,	which	is	a	transient	object
used	to	check	for	AutoCAD	quiescence	from	out-of-process	applications.

		

Importing	Type	Libraries
COM	replaces	the	notion	of	header	files	with	Type	Libraries.	In	the
Microsoft	Visual	C++	environment,	you	use	the	preprocessor	directive
#import	in	the	StdAfx.h	file	to	make	all	interfaces,	properties,	methods,
events,	enumerations,	etc.	available	in	your	code.	Use	the
no_namespace	option	to	disable	the	requirement	of	qualifying	each
object	with	the	type	library	name.

For	example:

//	create	C++	wrapper	classes	for	the	COM	interfaces

//	new	TLH	and	TLI	files	will	be	generated	each	time

#import	"acax16enu.tlb"	/*no_implementation*/	raw_interfaces_only
no_namespace	named_guids	rename("GetObject",	"acaxGetObject")

#import	"AecXUIBase40.tlb"	no_implementation	raw_interfaces_only
named_guids	no_namespace

#import	"AecXBase40.tlb"	no_implementation	raw_interfaces_only
named_guids	no_namespace

#import	"LandAuto46.tlb"	no_implementation	raw_interfaces_only
named_guids	no_namespace

Note	that	the	AecXBase	type	library	references	the	AutoCAD	AxDb16
type	library.	While	you	do	not	have	to	explicitly	import	AxDb16enu.tlb,	it
must	be	in	the	path	or	properly	registered	on	your	workstation,	otherwise
you	will	encounter	errors	when	importing	AecXBase40.tlb.

Initializing	the	COM	libraries
When	you	create	your	project,	you	may	safely	omit	the	options
"Automation"	and	"ActiveX	Controls"	to	reduce	the	code	size	of	your
project.	However,	you	will	need	to	make	2	manual	changes	to	ensure	that
the	COM	libraries	are	initialized:

C++	Programming	Guidelines

javascript:history.back();

In	StdAfx.h:

#include	<afxdisp.h>	//	MFC	OLE	automation	classes

In	your	application’s	InitInstance	method:

//	Initialize	OLE	libraries
if	(!AfxOleInit())
{
		AfxMessageBox("OLE	initialization	failed.");
		return	FALSE;
}

Connecting	to	the	Land	Desktop	Application	Object
In	general,	these	are	the	steps	to	get	to	the	running	instance	of	the	Land
Desktop	Application	Object:

Call	GetActiveObject	to	get	the	running	instance	of	the	AutoCAD
application	object.	This	method	returns	a	pointer	to	IUnknown.

Call	QueryInterface	to	get	the	interface	IAcadApplication.

Call	GetInterfaceObject	to	get	the	running	instance	of	the	Land
Desktop	application	object.	This	method	returns	a	pointer	to
IDispatch.

Call	QueryInterface	to	get	the	interface	IAeccApplication.

If	you	have	several	instances	of	AutoCAD	applications	running	at	the
same	time	(AutoCAD,	Land	Desktop,	Architectural	Desktop,	Raster
Design),	and	you	are	developing	an	in-process	application	(e.g.	ARX
DLL),	you	can	use	these	steps	to	get	the	correct	instance	of	AutoCAD:

Call	AfxGetApp	to	get	a	pointer	to	the	CWinApp	derived	object.

Call	GetIDispatch	to	get	the	IDispatch	interface	for	the	AutoCAD
application	object.

Call	QueryInterface	to	get	the	interface	IAcadApplication	interface.

Call	GetInterfaceObject	to	get	the	running	instance	of	the	Land
Desktop	application	object.	This	method	returns	a	pointer	to
IDispatch.

Call	QueryInterface	to	get	the	interface	IAeccApplication.

Call	Init,	passing	in	the	IAcadApplication	pointer	to	initialize	the	object
model	with	the	proper	instance	of	AutoCAD.

When	developing	a	stand	alone	(out	of	process)	application	that	needs	to
handle	multiple	running	instances	of	AutoCAD	applications,	you	must
enumerate	the	Running	Object	Table	for	the	desired	instance	of	AutoCAD
in	place	of	the	call	to	AfxGetApp.	See	MSDN	Article	190985	for	details
and	sample	code.

Restricted	Properties	and	Methods
When	you	import	a	Type	Library	into	your	project,	you	may	seem	to	have
access	to	read-only	properties	and	be	able	to	invoke	methods	that	are
not	documented	in	the	AutoCAD	Land	Desktop	ActiveX	and	VBA
Reference.	These	"restricted"	members	of	the	interface	are	hidden	in
VBA	and	other	macro	languages,	but	are	not	filtered	out	by	the	import
directive.

Be	aware	that	these	members	cannot	be	called	arbitrarily.	Most	are	used
for	initializing	the	COM	object,	and	will	not	update	your	project	database.
Refer	to	the	AutoCAD	Land	Desktop	ActiveX	and	VBA	Reference	for	the
list	of	supported	interface	members,	or	use	the	OLE	Viewer	supplied	with
the	Microsoft	Visual	Studio	Tools	to	determine	which	members	are
restricted.

Caching	Interfaces
It	is	recommended	that	you	cache	the	application	object	only	(i.e.
IAeccApplicationPtr).	This	will	allow	access	to	any	object	throughout	the
duration	of	your	application.

For	all	other	objects,	it	is	generally	safer	to	query	for	interfaces	upon
each	use	instead	of	caching	and	re-using	pointers	as	class	members	or
other	non-local	variables.	This	will	avoid	any	confusion	about	the	state	of
the	interface	object	at	the	time	of	use.

Exception	Handling
When	you	import	a	Type	Library	into	your	Microsoft	Visual	C++	project,
the	preprocessor	generates	both	"raw"	methods	and	"wrapper"	methods
in	the	*.tlh	file.	The	raw	methods	return	HRESULTs,	which	should	be
checked	by	the	programmer.	The	wrapper	methods	hide	the	HRESULTs,
providing	error	handling	for	you,	and	will	issue	a	COM	exception	when	an
error	occurs.	While	the	wrapper	methods	provide	a	convenience	to	the
developer,	unhandled	exceptions	will	appear	in	a	dialog	before	your
users.

In	either	case,	you	should	handle	these	errors	in	your	application.	This
can	be	accomplished	in	one	of	two	ways:

Wrap	all	calls	to	wrapper	methods	in	try-catch	blocks

Check	the	HRESULT	from	the	raw	methods	and	implement	error
checking	yourself

Smart	Pointers
When	you	import	a	Type	Library,	the	generated	wrapper	methods	will	use
"smart	pointers"	whenever	the	method	returns	an	interface.	You	must	use
a	smart	pointer	in	your	code	to	ensure	that	the	reference	count	on	the
object	does	not	decrement	to	0	before	the	call	to	the	wrapper	method
returns.	If	you	use	a	standard	pointer,	you	will	be	left	with	the	address	of
a	released	COM	object,	and	an	exception	will	occur	when	you	try	to	use
it.

COM	Support	classes
If	an	argument	or	return	value	of	a	wrapper	class	expects	a	_variant_t	(or
_bstr_t),	do	not	use	a	VARIANT	(or	BSTR).	This	will	compile,	but	will
ultimately	cause	problems.

For	example,	the	raw	method	for	AeccCogoPoints.PointStringToArray	looks
like	this:

virtual	HRESULT	__stdcall	raw_PointStringToArray	(BSTR	PointString,
VARIANT	*	Points)	=	0;

The	wrapper	method	looks	like	this:

;_variant_t	PointStringToArray	(_bstr_t	PointString);

The	COM	support	class	_variant_t	automatically	initializes	its	internal
VARIANT	using	the	correct	constructor	(the	one	that	takes	a	VARIANT*,
in	this	case).	Note	that	while	in	general,	the	client	is	responsible	for
deallocating	the	memory	allocated	for	the	variant,	the	_variant_t	(or
_bstr_t)	classes	do	it	automatically	for	you.

MFC	class	Wizard	Support
Through	Microsoft's	MFC	classWizard,	you	can	generate	MFC	classes
from	the	Type	Library.	This	gives	you	easy	access	to	wrapped	methods
and	properties.	However,	some	of	the	Land	Desktop	objects	are	derived
from	AutoCAD	or	Aec	objects.	For	example:	AeccApplication,
AeccDocument.	When	a	MFC	class	is	generated	for	these	classes
through	classWizard,	then	only	the	additional	methods	and	properties
that	Land	Desktop	added	will	be	implemented	in	that	new	class.
classWizard	does	not	implement	the	methods	and	properties	from	the
parent	class.

ARX	development
When	registering	a	new	command	that	will	invoke	ActiveX	methods,	use
the	ACRX_CMD_MODAL	command	flag.	The	command	must	be	modal
(and	not	transparent)	so	that	no	other	commands	or	programs	are
currently	active.

If	you	plan	to	use	the	Document.OpenProjectBased	or
Document.NewProjectBased	methods	in	your	registered	command,	be	sure
to	add	the	ACRX_CMD_SESSION	and
ACRX_CMD_NOINTERNALLOCK	flags.	The	former	flag	runs	the
command	handler	in	the	session	fiber,	while	the	later	avoids	locking	the
AutoCAD	state	out	of	quiescence	(normally	used	with	ActiveX	calls).
These	flags	are	required	to	ensure	that	AutoCAD	is	in	the	proper	context
when	switching	documents.

Return	values
In	general,	all	properties	and	methods	return	S_OK	when	no	errors	are

encountered.	The	return	value	E_FAIL	is	returned	when	an	internal	error
condition	prevents	successful	completion	of	the	operation.	An	example	is
a	memory	allocation	or	other	Win32	service	failure.	In	certain	cases,	a
return	value	of	S_FALSE	is	returned	to	indicate	that	the	operation	did	not
complete	due	to	user	error.	Some	examples	include	trying	to	append	an
alignment	entity	that	has	no	matching	endpoint	with	the	previous	entity,	or
trying	to	access	the	coordinates	of	an	elevation	contour	using	an	invalid
elevation	for	the	surface.

In	your	application,	check	for	a	return	value	of	S_OK	to	indicate	that	no
internal	or	user	errors	have	occured.

Using	"IntelliSense"
If	you	typically	use	IntelliSense	to	determine	what	properties	and
functions	are	available	for	a	given	interface,	please	be	advised	that
restricted	functions	will	show	up	in	IntelliSense.	These	restricted
functions	are	not	supported,	and	in	most	cases	will	cause	undesirable
effects.	The	safe	way	to	determine	the	supported	functions	is	to	consult
the	Help	for	AutoCAD	Land	Desktop	ActiveX	Objects.

		

Importing	Type	Libraries
After	creating	a	Windows	Application	project	in	Visual	J++,	you	can
import	COM	objects	through	the	Type	Libraries.	Visual	J++	creates	class
wrappers	that	provide	the	interface	for	accessing	the	COM	objects.
These	class	wrappers	are	added	as	packages	in	your	project	directory.

Note:	To	access	a	specific	COM	object	from	another	project,	you	can
avoid	wrapping	the	objects	for	each	project	by	placing	the	COM	wrapper
classes	in	the	CLASSPATH.

The	COM	wrappers	can	be	created	from	the	Visual	J++	IDE	or	at	the
command	line	using	the	jactivex.exe	utility.

To	create	the	COM	wrappers	from	the	command	line:	Invoke	the
jactivex.exe	utility.	For	example:	jactivex	/wfc	/w	/xi	/X:rkc	/d
"d:\VJ++\COM_Wrappers"	landauto46.tlb	Build	the	class	files	for	each
COM	Wrapper	java	file	using	the	Java	compiler.	The	*.java	files	can	be
removed	from	the	CLASSPATH	after	the	class	files	have	been	created.

To	generate	the	COM	Wrappers	from	the	Visual	J++	IDE:	On	the	COM
Wrapper	dialog,	select	the	Land	Type	Library	1.1	check	box	and	click	OK.
Select	the	Build	menu	item	to	build	the	solution	and	generate	the	class
files	from	the	java	files	The	COM	wrapper	folders	may	now	be	removed
from	the	project	to	prevent	the	class	files	from	being	regenerated	during
each	build.	This	will	reduce	the	size	of	the	solution	and	reduce	the	build
time

Getting	the	Application	object
This	example	shows	how	to	access	the	AutoCAD	Land	Desktop
Application	object	through	the	running	object	table.

//	Import	the	library	packages	so	objects	can	be	referred	by	their	short
names:
//	Required	Visual	J++	imports:
import	com.ms.win32.Ole32;

J++	Programming	Guidelines

javascript:history.back();

import	com.ms.wfc.ui.*;
import	com.ms.com.*;
	
//	Required	Landauto	imports:
import	acax16enu.*;
import	AecXBase40.*;
import	AecXUIBase40.*;
import	AxDb16enu.*;
import	LandAuto46.*;
	
public	class	LandAutoSample	extends	Object
{
		private	IAeccApplication	m_iaecApp;
		private	IAeccProjects	m_iaecProjects;
		private	IAeccProject	m_iaecProject;
	
		//	Constructor:
		public	LandAutoSample()
		{
				m_iaecApp	=	GetAeccApplication();
				m_iaecProjects	=	m_iaecApp.getProjects();
				m_iaecProject	=	m_iaecApp.getActiveProject();
		}
	
//	Sample	class	method	to	get	the	existing	IAeccApplication	object:
private	IAeccApplication	GetAeccApplication()
		{
				//	***	Get	the	existing	AutoCAD	session:
	
				Ole32	ole32	=	new	Ole32();
				String	sAcadApp	=	"AutoCAD.Application";
				_Guid	_guid	=	ole32.CLSIDFromProgID(sAcadApp);
				String	sGuidAcad	=	_guid.toString();
				String	sMonikerDispName	=	"!"	+	sGuidAcad;
				IRunningObjectTable	irot	=	ole32.GetRunningObjectTable(0);
				IMoniker	imoniker	=	ole32.CreateItemMoniker(sMonikerDispName,"");
				IAcadApplication	iacApp	=	(IAcadApplication)

irot.GetObject(imoniker);
	
				//	***	If	you	are	going	to	use	civil	enginering	feature	interfaces,	Cross
Sections,	Profiles,	etc.
				//	initialize	civil	engineering	features	interface	in	case	it	has	not	been
initialized.:
	
				IAcadDocument	iacDoc	=	(IAcadDocument)
iacApp.getActiveDocument();
				iacDoc.SendCommand("(cd_mnl)	");
	
				//	***	Get	the	AeccApplication	interface	object:
	
				String	sAeccApp	=	"Aecc.Application";
				IAeccApplication	iaecApp	=	(IAeccApplication)
iacApp.GetInterfaceObject(sAeccApp);
				return	iaecApp;
		}
	
		//	Sample	method	that	returns	a	String	array	containing	Project	Names
		//	that	could	be	displayed	in	a	ListBox	control:
		public	String[]	GetProjectNames()
		{
				IAeccProject	proj	=	m_iaecApp.getActiveProject();
				int	iCount	=	m_iaecProjects.getCount();
				String[]	sProjects	=	new	String[iCount];
				String	sProjName	=	"";
				Variant	v	=	new	Variant();
				for	(int	i=0;i<iCount;i++)
				{
						v.putInt(i);
						proj	=	m_iaecProjects.Item(v);
						sProjects[i]	=	proj.getName();
				}
				return	sProjects;
		}
}

Restricted	Properties	and	Methods
When	you	import	a	Type	Library	into	your	project,	you	may	seem	to	have
access	to	read-only	properties	and	be	able	to	invoke	methods	that	are
not	documented	in	the	AutoCAD	Land	Desktop	ActiveX	and	VBA
Reference.	These	"restricted"	members	of	the	interface	are	hidden	in
VBA	and	other	macro	languages,	but	are	not	filtered	out	by	the	import
directive.

Be	aware	that	these	members	cannot	be	called	arbitrarily.	Most	are	used
for	initializing	the	COM	object,	and	will	not	update	your	project	database.
Refer	to	the	AutoCAD	Land	Desktop	ActiveX	and	VBA	Reference	for	the
list	of	supported	interface	members,	or	use	the	OLE	Viewer	supplied	with
the	Microsoft	Visual	Studio	Tools	to	determine	which	members	are
restricted.

		

The	ActiveX	Object	Model	opens	up	programmatic	access	to	AutoCAD
Land	Desktop	Projects	to	many	programming	environments	other	than
VB,	VBA,	C++,	J++	and	VisualLISP.	These	include:

Any	Microsoft	Office	97	product,	including	Word,	Access,	Excel,
Project	and	PowerPoint.
Any	VBScript	enabled	product,	including	Outlook	and	Internet
Explorer.
Any	product	that	supports	Automation	(ActiveX	Dispatch	interfaces),
including	Delphi.

Please	refer	to	the	documentation	provided	with	each	product.

Other	Programming	Guidelines

javascript:history.back();

